
HAL Id: tel-03576106
https://hal.science/tel-03576106v1

Submitted on 15 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approches de résolution de problèmes
d’ordonnancement multi-agent à machines parallèles

identiques
van Ut Tran

To cite this version:
van Ut Tran. Approches de résolution de problèmes d’ordonnancement multi-agent à machines par-
allèles identiques. Recherche opérationnelle [math.OC]. Université de Tours - LIFAT, 2018. Français.
�NNT : �. �tel-03576106�

https://hal.science/tel-03576106v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE TOURS

École Doctorale Mathématiques, Informatique, Physique Théorique, Ingénierie des Systèmes (MIPTIS)

Laboratoire d’Informatique Fondamentale et Appliquée de Tours (LIFAT, EA 6300)
Equipe Recherche Opérationnelle, Ordonnancement et Transport (ROOT, ERL CNRS 7002)

THÈSE
présenté par Van Ut TRAN

soutenue le : 20 décembre 2018

pour obtenir le grade de : Docteur de l’Université de Tours

Discipline/ Spécialité : INFORMATIQUE

Approches de résolution de problèmes d’ordonnancement
multi-agent à machines parallèles identiques

Thèse dirigée par :
Soukhal Ameur Professeur des universités, Université de Tours
Rapporteurs :
Norre Sylvie Professeur des universités, Université Clermont Auvergne, Clermont-Ferrand
Oulamara Ammar Professeur des universités, Université de Lorraine, Nancy
Jury :
Billaut Jean-Charles Professeur des universités, Université de Tours
Hao Jin-Kao Professeur des universités, Université d’Angers
Kergosien Yannick Maitre de Conférences, Université de Tours
Norre Sylvie Professeur des universités, Université Clermont Auvergne, Clermont-Ferrand
Oulamara Ammar Professeur des universités, Université de Lorraine, Nancy
Soukhal Ameur Professeur des universités, Université de Tours

Remerciements

Je ne voudrais pas terminer ce travail sans remercier, ici, toutes celles et tous ceux, et
ils sont nombreux, qui m’ont aidé à mener à terme cette thèse.

Je veux, tout d’abord et tout particulièrement, remercier et exprimer ma profonde
gratitude à mon directeur de thèse le Professeur Ameur SOUKHAL pour toute son aide
tout au long de thèse. Ses qualités scientifiques, mêlées à une gentillesse. Ses conseils
avisés ont été très nombreux tout au long de ce travail, et m’ont permis de découvrir les
fabuleux plaisirs de la recherche sous ses apparences les plus diverses. Je n’oublierai jamais
son soutien et sa disponibilité dans les moments de doute. Je lui suis reconnaissant pour
tous ces moments de partage qui ont agrémente mon parcours C’est également avec plaisir
que je remercie mes rapporteurs pour le temps qu’ils ont accordé à la lecture de cette thèse
et à lélaboration de leur rapport. Je remercie aussi les membre du Jury.

Je remercie tout particulièrement l’accueil du laboratoire d’Informatique, de lécole doc-
torale MIPTIS de l’université de Tours, ainsi que ses responsables qui m’ont permis de
m’intégrer rapidement et de réaliser mes projets. Je n’oublie évidemment pas mes col-
lègues du LIFAT avec lesquels j’ai partagé tous ces moments de doutes et de plaisirs.
Tous ces instants autour les plates ou d’un café ont été autant de moments de d’entente
indispensables pour une complète expression scientifique.

Je remercie le gouvernement du Vietnam de m’avoir accordé une bourse me permettant
d’effectuer mes études de doctorat en France. Je remercie l’Université de Technologique
de Can Tho pour m’avoir permis de venir en France pour faire mes études.

Je n’oublie pas, dans ces remerciements, l’association Touraine-Vietnam qui m’avez
donné les cours de française, vos aides dans la vie de notre famille. Je remercie également
l’association des étudiants Vietnamiens de Tours et Blois.

Je tiens à remercier tout particulièrement, et du fond du coeur, toute ma famille en
pensant plus spécialement à mes parents, ma famille, notamment ma femme et ma fille
pour tout leur soutien et leurs encouragements tout au long de ma thèse.

20 Décembre 2018, Tours, France
TRAN Van Ut

3

REMERCIEMENTS

4

Résumé

Nous étudions des « problèmes d’ordonnancement multiagent non-disjoint ». Ces mod-
èles considèrent différents agents associés à des sous-ensembles de travaux non nécessaire-
ment disjoints, chacun d’eux vise à minimiser un objectif qui ne dépend que de ses propres
travaux. Deux types de critères sont considérés : minimisation du makespan et du nom-
bre de travaux en retard. Nous cherchons donc les meilleurs compromis entre les critères
des agents. Ces problèmes sont une classe particulière des problèmes d’ordonnancement
« multi-agents » qui ont connu une grande expansion par leurs intérêts dans le domaine
de l’ordonnancement et l’optimisation combinatoire. Dans nos travaux, nous nous sommes
intéressés aux problèmes à machines parallèles identiques. Dans une première partie, nous
étudions le cas d’une seule machine et celui où les travaux ont des durées identiques. Ainsi,
des problèmes polynomiaux sont identifiés. Dans une seconde partie de nos travaux, nous
abordons le problème à machines parallèles identiques avec deux agents. Notre étude porte
sur l’énumération du front de Pareto par l’approche ε-contrainte en utilisant des modèles
mathématiques à variables mixtes. Les résultats des expérimentations montrent les limites
de ces méthodes. Pour résoudre des problèmes de grande taille, des heuristiques glou-
tonnes, hybrides, des métaheuristiques ou encore une matheuristique sont développées.
Des expérimentations sont menées afin de montrer leurs performances par rapport aux
méthodes exactes ou par rapport à la borne inférieure proposée.

Mots clés : Recherche Opérationnelle, Ordonnancement multi-agent, Machines paral-
lèles, Fronts de Pareto, Programmation mathématique, Metaheuristiques, Matheuristique.

5

RÉSUMÉ

6

Abstract

We are studying ”non-disjoint multi-agent scheduling problems‘. These models consider
different agents associated with non-disjoint subsets of jobs, each of them aims to minimize
an objective function that depends only on its own jobs. Two types of criteria are con-
sidered: minimization of the makespan and minimization of the number of late jobs. We
are therefore looking for the best compromise solution between the agents. These prob-
lems constitute particular class of ”multi-agent“ scheduling problems that have developed
considerably due to their interests in scheduling and combinatorial optimization domains.
In our work, we focused on problems with identical parallel machines. In a first part, we
study the case of a single machine, then the case where the jobs are equal length. Thus,
polynomial scheduling problems are identified. In a second part, we address the identical
parallel machine scheduling problems with two agents. Our study focuses on the enumer-
ation of the Pareto front by the ε-constraint approach using mathematical mixed integer
programming. The computational results show the limitations of these methods. To solve
large instances, greedy heuristics, hybrid heuristics, metaheuristic or even matheuristic are
developed. The computational results show their performance compared to exact methods
or to the proposed lower bound.

Keywords : Operational research, Multi-agent scheduling, Parallel machines, Pareto
fronts, Mathematical programming, Metaheuristics, Matheuristic.

7

ABSTRACT

8

Contents

1 Global introduction 19

2 Introduction to multi-criteria optimization 25
2.1 Introduction . 25
2.2 Definitions and dominance concept . 26

2.2.1 Dominance concept . 27
2.2.2 Pareto front structure and reference points 28

2.3 Some multi-criteria approaches . 29
2.3.1 Linear combination . 30
2.3.2 ε−constraint approach . 30
2.3.3 Lexicographic order . 31
2.3.4 Pareto set enumeration . 31
2.3.5 Counting approach . 32

2.4 Resolution methods . 32
2.4.1 General structure of multi-criteria optimization algorithms 32
2.4.2 Exact algorithm . 33
2.4.3 Heuristic approaches . 35
2.4.4 Metaheuristic approaches . 35
2.4.5 Matheuristic . 42

2.5 Performance analysis . 46
2.5.1 Hypervolume . 46
2.5.2 Average distances . 47
2.5.3 Number of non-dominated solutions 48

2.6 Conclusion . 48

3 Scheduling theory and multi-agent scheduling problems 51
3.1 Classical scheduling problems: mono-criterion objective function 52

3.1.1 Concepts and scheduling notations 53
3.1.2 Complexity of scheduling problems 55

9

CONTENTS

3.1.3 Some classical scheduling algorithms 56
3.2 Multi-criteria scheduling problems . 60

3.2.1 Multi-criteria scheduling problem notations 61
3.2.2 Example . 61

3.3 Multi-agent scheduling problems . 62
3.3.1 Definitions and notations . 63
3.3.2 Examples . 65
3.3.3 Complexity study . 67
3.3.4 Studied problems and motivations 69

3.4 Main results related to the studied problems 72
3.5 Conclusion . 76

4 Exact methods and solvable cases 77
4.1 Studied problems . 78
4.2 Preliminary results . 78
4.3 Single machine multi-agent scheduling problem 82

4.3.1 Problem 1|ND, dAj = dA, CBmax ≤ QB|
∑
UAj 82

4.3.2 Problem 1|ND, dB,
∑
UBj ≤ QB|CAmax 84

4.3.3 Problem 1|ND, dBj = dB|P (CAmax,
∑
UBj) 84

4.4 Equal length jobs . 84
4.4.1 Pm|ND, dAj , pj = p|ε(

∑
UAj /C

B
max) 85

4.4.2 Pm|ND, dBj , pj = p|ε(CAmax/
∑
UBj) 86

4.4.3 Problem Pm|ND, dBj , pj = p|P (CAmax,
∑
UBj) 87

4.5 Mixed Integer Linear Programming . 87
4.5.1 Assignment-based formulation . 88
4.5.2 Time-based formulation . 90

4.6 Computational experiments . 90
4.6.1 Data generation . 91

4.7 Conclusion . 93

5 Polynomial and Pseudo Polynomial Heuristics 95
5.1 General approach for the studied problems 96
5.2 Lower bound . 97
5.3 List scheduling heuristics . 98

5.3.1 Heuristic H1 . 98
5.3.2 Heuristic H2 . 100
5.3.3 Heuristic H3 . 103

5.4 Two-step heuristic methods . 105

10

CONTENTS

5.4.1 Hybrid heuristics . 106
5.4.2 Heuristics and MILP . 107

5.5 Computational experiments . 108
5.5.1 Used performance measures . 109
5.5.2 Performance analyses of LB . 109
5.5.3 Performance analyses of greedy heuristics 110
5.5.4 Performance analyses of hybrid heuristics 112
5.5.5 Conclusion . 113

6 Iterative methods to solve the studied scheduling problems 115
6.1 Introduction . 116
6.2 Tabu search . 117

6.2.1 Encoding mechanism . 119
6.2.2 Decoding mechanism . 119
6.2.3 Initial solution . 120
6.2.4 Neighborhood function . 120
6.2.5 Tabu list . 120
6.2.6 Stopping criteria . 120
6.2.7 Implemented tabu search algorithm 121

6.3 NSGA-II algorithm . 121
6.3.1 Encoding . 123
6.3.2 Initial population . 123
6.3.3 Crossover operator . 123
6.3.4 Mutation operator . 124
6.3.5 Parameters . 124

6.4 Matheuristic algorithms . 125
6.4.1 Encoding . 126
6.4.2 Initial solution . 126
6.4.3 Neighborhood function . 126
6.4.4 Implemented matheuristic algorithm 127

6.5 Computational experiments . 128
6.6 Conclusion . 131

7 Conclusions and future research directions 133

11

CONTENTS

12

List of Tables

3.1 Complexity results of non-disjoint two-agent scheduling problems: Linear
combination approach . 75

3.2 Complexity results of non-disjoint K-agent scheduling problems 75

4.1 Computing exact Pareto front with m = 2 and pj ∈ [1, 10] 92
4.2 MILP performances: exact Pareto front with m = 3 and pj ∈ [1, 10] 92
4.3 MILP performances: exact Pareto front with m = 3 and pj ∈ [1, 100] 92
4.4 New complexity results. 93

7.1 New complexity results. 133
7.2 New complexity results. 136

13

LIST OF TABLES

14

List of Figures

2.1 Pareto solutions . 29

2.2 General structure of multi-criteria optimization algorithms 33

2.3 Diagram representing the NSGA-II . 42

2.4 Branch and X algorithm . 43

2.5 Combine S-metaheuristic and Mathematical programming 44

2.6 Mathematical programming is embedded into a P-metaheuristic 44

2.7 Sequence of combine metaheuristic and mathematical programming 45

2.8 Parallel cooperative between mathematical programming and metaheuristic 45

2.9 HTH cooperation between metaheuristic and mathematic programming . . 46

2.10 Hypervolume measures representations . 47

2.11 Minimum distance and Average distance . 48

3.1 Criteria reduction relationships . 56

3.2 An optimal solution for P2||Cmax . 57

3.3 Optimal solution for 1|dj |
∑
Uj . 58

3.4 LPT&FAM-heuristic minimzing makespan 59

3.5 Minimizing both makespan and total tardy jobs on two-identical parallel
machines . 62

3.6 Makespan and total tardy jobs minimization: Cmax = 8 and
∑
Uj = 2 . . . 62

3.7 Makespan and total tardy jobs minimization: Cmax = 9 and
∑
Uj = 1 . . . 62

3.8 Competing scenario . 64

3.9 Interfering scenario . 65

3.10 Non-disjont scenario . 65

3.11 Strict Pareto solution: (
∑
CAj = 44, CBmax = 12) 66

3.12 Reduction graph between scenarios . 68

3.13 Minimizing makespan and number of tardy jobs on two machines 70

3.14 No-disjoint multi-agent scheduling problem vs Networks 71

3.15 No-disjoint multi-agent scheduling problem vs IT projects 71

15

LIST OF FIGURES

4.1 Structure of an optimal solution . 79
4.2 Proof of Proposition 3.1 . 80
4.3 Proof of Proposition 3.3 . 80
4.4 Proof of Proposition 4 . 81
4.5 Solution optimal of one machine . 81
4.6 Miniminzing

∑
UAj with dA ≤ QB . 83

4.7 Algorithm 10: case dA > QB . 84
4.8 Structure of an optimal schedule of Pm|ND, dj , pj = p|ε(CAmax/

∑
UBj) . . . 86

5.1 Heuristic of Upper bound . 99
5.2 Heuristic H1: step 1 . 99
5.3 Heuristic H1: step 2 . 100
5.4 Heuristic H1: step 3 . 100
5.5 H2: Improving H1 . 100
5.6 Example of improving H1 . 101
5.7 Heuristic H2: step 1 . 102
5.8 Heuristic H2: step 2 . 103
5.9 Heuristic H2: step 3 . 103
5.10 Heuristic H2: step 4 . 103
5.11 H3: Example step 1 . 105
5.12 H3: Example step 2 . 105
5.13 Performance of LB: m = 2, pj ∈ [1, 10] . 109
5.14 Performance of LB: m = 3, pj ∈ [1, 10] . 110
5.15 H1 vs H2 performances with m = 2 . 110
5.16 Data1: H2 vs H3 performances with m = 2 111
5.17 Data1: H2 vs H3 performances with m = 3 111
5.18 Data2: H2 vs H3 performances with m = 2 112
5.19 Data2: H2 vs H3 performances with m = 2 112
5.20 Data1: H2− 3 vs DP (H2&H3) or MILP2(H2&H3) with m = 2 113
5.21 Data2: H2− 3 vs DP (H2&H3) or MILP2(H2&H3) with m = 2 113

6.1 Conceptual scheme of Tabu search . 117
6.2 General scheme of Tabu search . 118
6.3 TS encoding and decoding of a solution . 119
6.4 General structure of an evolutionary algorithm 122
6.5 Used encoding for NSGA-II . 123
6.6 2-point crossover operator . 124
6.7 Mutation operator . 124

16

LIST OF FIGURES

6.8 General structure of our matheuristic algorithm 125
6.9 The main idea of the proposed matheuristic 126
6.10 Combining position-job encoding with assignent-machine encoding 126
6.11 Swapping of any two distinct elements . 127
6.12 Swapping of two successive elements . 127
6.13 Data1 with m = 2: Iterative methods performances 129
6.14 Data1 with m = 3: Iterative methods performances 130
6.15 Data2 with m = 2: Iterative methods performances 130
6.16 Data2 with m = 3: Iterative methods performances 131

17

LIST OF FIGURES

18

Chapter 1

Global introduction

Systems for production of goods and services are increasingly complex and do not fa-
cilitate the task of the decision-maker in charge of scheduling and managing production.
Being competitive and staying competitive is a very important issue for companies. More-
over, to offer its products at a lower cost, in the right place and at the right time, the
decision-maker is looking for the best organizational and production strategy. This begins
with a detailed modeling of its production system, identifying: the tasks, the constraints
related to their realization and those imposed by the system, and of course the objective
function(s) to optimize. Then comes the resolution phase. The Operational Research tools
provide solutions to the decision-maker regarding the scheduling jobs.

Scheduling theory has become an important field of combinatorial optimization, sit-
uated at the interface between applied mathematics, computer science and operational
research. “[...] scheduling is the process of organizing, choosing, and timing resource usage
to carry out all the activities necessary to produce the desired outputs at the desired times
while satisfying a large number of time and relationship constraints among the activities
and the resources” [Morton et Pentico, 1993].

Scheduling problems are often presented in a multi-criteria form. Indeed, the decision-
makers generally seek to find the best compromise between several conflicting criteria. So
we are talking about ”multi-criteria scheduling problems”. The classic definition of multi-
criteria scheduling problems supposes that all jobs are concerned by all the criteria to be
optimized. Several studies tackled this problem. More recently, few articles have appeared
dealing with scheduling problems, considering that there may be jobs that are concerned
by one criterion but not another. This corresponds to some practical cases.

• In the case of a supply chain, for example, the organization is based on the coor-
dination of actors from the supplier to the customer. Synchronization and delivery
problems require a perfectly ordered coordination, where each actor expects an ir-
reproachable quality of service. Taking into account the particularities of customers
(some are more demanding on deadlines, some on quantities, some wish to group
their deliveries, others do not, etc.) requires the introduction of parameters and
metrics dedicated to certain jobs and not to others. By nature, jobs compete for re-
sources, jobs interfere with their achievement and their objectives are not necessarily
the same.

19

• In communication networks, delays are not tolerated for audio or video packets.
However, text packets may be delayed but data loss is less tolerated.

These situations generally lead to the definition of one criterion for some jobs and then
another criterion for others jobs. This type of problem requires studies on multi-agent
scheduling. The definition of multi-agent scheduling problems is as follows: given a set
of jobs to be scheduled on a set of machines, sub-sets of jobs are defined such that each
sub-set aims to minimize a criterion that depends only on the execution of its own jobs
[Agnetis et al., 2014]. In this case, each subset of jobs is associated with decision-maker or
user. These subsets of jobs are called "agents".

Depending on the relationship between the subsets of jobs associated with agents,
scenarios are defined as follows: Competition when agents only share common resources;
Interfering when subsets of jobs are included in each other; A more general scenario is also
defined, indicating that agents may have common jobs, it is referred to as Non-disjoint. The
last scenario is the subject of our study. More specifically, we focus on two non-dissident
agents, A and B. The two agents share the same identical parallel machines to schedule
their jobs. The objective function of one agent is to minimize the makespan, while the
objective function of the other agent is to minimize the total number of late jobs. The
objective of our study is then to develop efficient methods to determine and compute the
Pareto front. The ε-constraint approach is used.

The rest of the manuscript is structured as follows:

• Chapter 1 is dedicated to the presentation of the basic principles of multi-criteria
optimization. Concepts such as dominance, resolution methods and multi-criteria
resolution approaches are presented.

• In Chapter 2, after a short introduction to the mono-criterion scheduling problems
and multi-criteria scheduling problems, we present the definitions and classification of
multi-agent scheduling problems. The complexity relationships between the different
scenarios are recalled. We then recall the main results of the literature on multi-agent
scheduling problems. As we will see, there few results dealing with the non-disjoint
scenario than the competition case.

• In Chapter 3, we study some particular cases and show that are polynomially solvable.
We then present the optimal structure of a strict Pareto solution. To solve the
problem at the optimum, we propose two mixed linear programming models. The
tables of experimental results are presented at the end of this chapter.

• In chapter 4, we propose a lower bound for the minimization of the makespan. This
lower bound then allows us to deduce the lower bound of the Pareto front. Some
greedy heuristics and their hybridizations with exact methods (MILP or dynamic
programming algorithm) are proposed. The tables of experimental results are also
presented at the end of this chapter.

• Chapter 5 is dedicated to the presentation of iterative improvement methods: Tabu
Search algorithm, NSGA-II and Matheuristics. Subsequently, experiments are carried
out to show the performance of the proposed methods.

20

• We conclude this manuscript with Chapter 6, in which we give a summary of our
work and our research perspectives.

21

Introduction globale
Les systèmes de production de biens et de services sont de plus en plus complexes

et ne facilitent pas la tâche du décideur chargé d’ordonnancer et de gérer la production.
Etre compétitif et rester compétitif est une question très importante pour les entreprises.
De plus, pour offrir ses produits à moindre coût, au bon endroit et au bon moment, le
décideur recherche la meilleure stratégie d’organisation et de production. Cela commence
par une modélisation détaillée de son système de production, identifiant : les tâches, les
contraintes liées à leur réalisation et celles imposées par le système, et bien sûr la ou les fonc-
tions objectives à optimiser. Vient ensuite la phase de résolution. Les outils de recherche
opérationnelle apportent des solutions au décideur en ce qui concerne l’ordonnancement
des tâches.

La théorie de l’ordonnancement est devenue un domaine important de l’optimisation
combinatoire, situé à l’interface entre les mathématiques appliquées, l’informatique et la
recherche opérationnelle. “[...] scheduling is the process of organizing, choosing, and timing
resource usage to carry out all the activities necessary to produce the desired outputs at the
desired times while satisfying a large number of time and relationship constraints among
the activities and the resources” [Morton et Pentico, 1993].

Les problèmes d’ordonnancement sont souvent présentés sous une forme multicritères.
En effet, les décideurs cherchent généralement à trouver le meilleur compromis entre
plusieurs critères conflictuels. Nous parlons donc de ”problèmes d’ordonnancement mul-
ticritères”. La définition classique des problèmes d’ordonnancement multicritères suppose
que tous les travaux soient concernés par tous les critères à optimiser. Autrement dit,
la qualité de la solution est mesurée par des critères appliqués sur tous les travaux sans
distinction. C’est le cas classique largement étudié dans la littérature spécialisée. Cepen-
dant, peu d’articles sont parus sur les problèmes d’ordonnancement considérant qu’il peut
y avoir des travaux qui sont concernés par un critère mais pas par un autre. Néanmoins,
depuis une dizaine d’années, de plus en plus de chercheurs s’intéressent aux problèmes
d’ordonnancement où les critères à optimiser sont définis sur des sous-ensembles de travaux.
Cela correspond à certains cas pratiques comme suits.

• Dans le cas d’une chaîne logistique, par exemple, l’organisation repose sur la coor-
dination des acteurs, du fournisseur au client. Les problèmes de synchronisation et
de livraison nécessitent une coordination parfaitement ordonnée, où chaque acteur
attend une qualité de service irréprochable. La prise en compte des particularités des
clients (certains sont plus exigeants sur les délais, d’autres sur les quantités, certains
souhaitent grouper leurs livraisons, d’autres non, etc.) nécessite l’introduction de
paramètres et de métriques dédiés à certains travaux et non à d’autres. Par nature,
les travaux sont en compétition pour l’utilisation des ressources, les travaux inter-
fèrent pour leur réalisation et leurs objectifs ne sont pas nécessairement les mêmes.

• Dans les réseaux de communication, les retards ne sont pas tolérés pour les paquets
audio ou vidéo. Cependant, les paquets de texte peuvent être retardés, mais la perte
de données est moins bien tolérée.

These situations generally lead to the definition of one criterion for some job and then

22

another criterion for others jobs. This type of problem requires studies on multi-agent
scheduling. The definition of multi-agent scheduling problems is as follows: given a set
of jobs to be scheduled on a set of machines, sub-sets of jobs are defined such that each
sub-set aims to minimize a criterion that depends only on the execution of its own jobs
[Agnetis et al., 2014]. decision maker is associated with each subset of jobs, these subsets
are called "agents".

Ces situations conduisent généralement à la définition d’un critère pour certains travaux,
puis d’un autre critère pour d’autres travaux. Ce type de problème nécessite des études
sur l’ordonnacement multi-agents.

La définition des problèmes d’ordonnancement multi-agent est la suivante : étant donné
un ensemble de travaux à planifier sur un ensemble de machines, des sous-ensembles de
travaux sont définis de telle sorte que chaque sous-ensemble vise à minimiser un critère
qui dépend uniquement de l’exécution de ses propres travaux [Agnetis et al., 2014]. Dans
ce cas, chaque sous-ensemble de travaux est associé à un décideur ou utilisateur. Ces
sous-ensembles sont appelés "agents".

Depending on the relationship between the subsets of jobs associated with agents,
scenarios are defined as follows: Competition when agents only share common resources;
Interfering when subsets of jobs are included in each other; A more general scenario is also
defined, indicating that agents may have common jobs, it is referred to as Non-disjoint. The
last scenario is the subject of our study. More specifically, we focus on two non-dissident
agents, A and B. The two agents share the same identical parallel machines to schedule
their jobs. The objective function of one agent is to minimize the makespan, while the
objective function of the other agent is to minimize the total number of late jobs. The
objective of our study is then to develop efficient methods to determine and compute the
Pareto front. The ε-constraint approach is used.

Selon la relation entre les sous-ensembles de travaux associés aux agents, des scénarios
ont été définis comme suit : Competition lorsque les agents ne partagent que des ressources
communes ; Interfering lorsque des sous-ensembles de travaux sont inclus les uns dans les
autres ; Un scénario plus général est également défini, indiquant que les agents peuvent
avoir des travaux communs, il est appelé Non-disjoint. Le dernier scénario fait l’objet de
notre étude. Plus précisément, nous nous concentrons sur deux agents non disjoints, A et
B. Les deux agents partagent les mêmes machines parallèles identiques pour ordonnancer
leurs travaux. La fonction objective d’un agent est de réduire au minimum la durée du
travail, tandis que la fonction objective de l’autre agent est de réduire au minimum le
nombre total de travaux en retard. L’objectif de notre étude est ensuite de développer des
méthodes efficaces pour déterminer et calculer le front de Pareto. L’approche ε-constraint
est utilisée dans notre étude.

Le reste du manuscrit est structuré comme suit :

• Le chapitre 1 est consacré à la présentation des principes de base de l’optimisation
multicritères. Des concepts tels que la dominance, les méthodes de résolution et les
approches de résolution multicritères sont présentés.

• Dans le chapitre 2, après une brève introduction aux problèmes d’ordonnancement
mono-critères et multicritères, nous présentons les définitions et la classification des

23

problèmes d’ordonnancement multi-agents. Les relations entre les différents scénar-
ios sont rappelées nous permettant de déduire la complexité de certains problèmes.
Nous rappelons ensuite les principaux résultats de la littérature sur les problèmes
d’ordonnancement multi-agents. Comme nous le verrons, il y a peu de résultats con-
cernant le scénario non disjoint, contrairement au scénario Compétition qui a connu
ces dernières années de développement important.

• Au chapitre 3, nous étudions quelques cas particuliers et montrons qu’ils peuvent être
résolus polynomialement. Nous présentons ensuite la structure optimale d’une solu-
tion de Pareto stricte. Pour résoudre le problème à l’optimum, nous proposons deux
modèles de programmation linéaire en nombres mixtes. Les tableaux des résultats
expérimentaux sont présentés à la fin de ce chapitre.

• Dans le chapitre 4, nous proposons une borne inférieure pour la minimisation du
makespan. Cette borne inférieure nous permet alors de borner inférieurement le
front de Pareto. Quelques heuristiques gloutonnes et leurs hybridations avec des
méthodes exactes (MILP ou algorithmes de type programmation dynamique) sont
proposées. Les tableaux des résultats expérimentaux sont également présentés à la
fin de ce chapitre.

• Le chapitre 5 est consacré à la présentation des méthodes itératives d’amélioration :
Algorithme de recherche Tabu, NSGA-II et Matheuristics. Par la suite, des expéri-
ences sont menées pour montrer la performance des méthodes proposées.

• Nous concluons ce manuscrit par le chapitre 6, dans lequel nous donnons un résumé
de notre travail et de nos perspectives de recherche.

24

Chapter 2

Introduction to multi-criteria
optimization

Résumé: Nous consacrons ce chapitre à la définition des notions théoriques qui seront
utilisées dans ce manuscrit. Ce chapitre est une introduction au manuscrit.

Ce chapitre est organisé comme suit : dans la section 2.2 nous présentons la définition
des problèmes d’optimisation multicritères ainsi que les concepts de dominance. La section
2.3 est consacrée aux différentes approches pour résoudre les problèmes d’optimisation mul-
ticritères. Dans la section 2.4, les différentes méthodes de résolution qui nous intéressent
dans notre étude sont discutées. La section 2.5 est consacrée aux approches développées
pour mesurer la qualité des solutions des problèmes multicritères. Enfin, le chapitre se
termine par une conclusion présentée dans la section 2.6.

Abstract: We devote this chapter to the definition of the theoretical notions which
will be used in this manuscript. This chapter is an introduction to the manuscript.

This chapter is organized as follows: in section 2.2 we present the definition of multi-
criteria optimization problems as well as dominance concepts. Section 2.3 is devoted to
the different approaches to solve multi-criteria optimisation problems. In section 2.4, the
different resolution methods which interest us in this thesis study are discussed. Section
2.5 is devoted to measuring the quality of the solutions given for a multi-criteria problem.
And finally the chapter concludes with a conclusion given in section 2.6.

2.1 Introduction

Scheduling problems are an important part of combinatorial optimization problems.
These problems are encountered in any operating system when it comes to organize activi-
ties or tasks over time and determining their best allocation(s) to consumable or renewable
resources [Carlier et Chrétienne, 1988]. The scheduling theory is a very broad field due
to the diversity of systems and activities to be planned over time. However, it turns out
that in practice the scheduling problems are complex and more difficult to solve. Thus,
scheduling theory lies in the development of theoretical and algorithmic tools for modeling

25

2.2. DEFINITIONS AND DOMINANCE CONCEPT

and solving various problems encountered by practitioners. Dealing with industrial com-
pany for example, scheduling is one of important task for production management where
the decision maker has to define the schedules for launching the activities while respecting
the production constraints previously defined. Difficulties in job assigning and sequencing
are also encountered in other areas such as communication or the exchange of all types of
data via networks. We can refer to classic books presenting classical models, more recently
studied models and also resolution algorithms. Blazewicz et al. [Blazewicz et al., 2007],
Brucker [Brucker, 2007] and Pinedo [Pinedo, 2008] are cited as reference books dedicated
to single-criterion scheduling problems. These reference books tackle the classic cases of
scheduling problems.

Dealing with multi-criteria scheduling problems, the quality of scheduling is depend-
ing on several objective functions. In this case, the whole set of jobs contributes in
the same way to measuring the quality of the solution, and this is given by several
criteria. Hence, a decision-maker applies a set of criteria on the totality of jobs that
should be processed. For example, the maximum completion date of all jobs will be
considered as one criterion and the maximum tardiness of all jobs as another criterion.
Here too scheduling theory has received great interest. We can quote for example the
works of T’kindt and Billaut [T’Kindt et Billaut, 2006], Jozefowska [Jozefowska, 2007] and
[Rios-Mercado et Rios-Solis, 2012].

In our study, a set of objective functions is considered to determine best schedules where
each criterion may relate to a subset of jobs. For example, some jobs should be scheduled
as early as possible (minimize the maximum completion time), while respecting a limit for
the greatest late of certain jobs. These problems arise in these terms for certain companies
where daily production is evaluated by a criterion which covers some jobs, and where
another subsets of jobs should respect constraints -sometimes imposed by customers or
relating to delays already accumulated- according to other criteria. It is about a particular
class of multi-criteria scheduling problems called ”multi-agents scheduling problems”. The
fundamental idea of these models is the taking into account of several decision-makers
(agents) who share the common resources to execute their respective jobs. As with multi-
criteria problems, the objective in this case is to found a schedule, which gives better
compromise solutions between the different decision-makers.

From multi-criteria combinatorial optimization domain, multi-agent scheduling offers
exciting challenges for researchers by their theoretical and practical complexity. Indeed,
the specificity of multi-agent scheduling problems is the existence of several objectives to
be optimized at the same time, which recalls the definition of a multi-criterion optimization
problem.

2.2 Definitions and dominance concept

Multi-criteria optimization (also known as multi-objective programming, vector opti-
mization, multi-criteria optimization, multi-attribute optimization or Pareto optimization)
is a branch of combinatorial optimization whose peculiarity is to simultaneously optimize
several objectives of the same problem (against a single objective for classical combinatorial
optimization).

26

2.2. DEFINITIONS AND DOMINANCE CONCEPT

Multi-objective problems have a growing interest in the industry where managers are
forced to try to optimize conflicting objective functions. These problems are in generalNP-
hard even if the mono-objective version is not. Hence, their resolution in reasonable times
becomes necessary and requires a mastery of operational research tools. For example,
let us consider the following polynomially solvable scheduling problem: single machine
scheduling problem minimizing the total completion times. The problem instance is defined
by a number of jobs that should be executed on a single machine minimizing the total
completion times. However, if the set of jobs is split into two subset of jobs each one
should be executed on the same machine to be executed in order to minimize the total
completion times, the problem becomes NP-hard [Baker et Smith, 2003].

Multi-criteria optimization consists in choosing, in the presence of multiple criteria,
one or more alternatives among an infinite number of alternatives that generally vary in a
continuous field. The field of multi-criteria optimization is undergoing a major evolution.
This development has resulted in the development of a large number of methods. The
multitude of multi-criteria optimization methods is perceived as an indisputable richness
of this domain. Moreover, some justify it by the diversity of the problems as well as by the
existence of different possible and legitimate approaches to the resolution of these problems.

The multi-objective optimization has been applied in many fields such as transporta-
tion, scheduling and planning, where optimal decisions should be taken in the presence
of two or more trade-offs between conflicting objectives. Minimizing costs while max-
imizing quality of service for the production of good or service, or maximizing perfor-
mance while minimizing energy consumption or greenhouse gas emissions are examples of
a multi-objective optimization problems (at least two objectives). More general definition
of Multi-criteria optimization problem can be introduced as following.

Definition 1 Multi-criteria optimization problem:
Given:

• A vector function F (x) = (f1(x), f2(x), ..., fK(x)) and

• A feasible solution space Ω.

The Multi-criteria optimization problem consists to find a vector x ∈ Ω that optimizes
the vector function F (x), where vector x = (x1, x2, ..., xn).

x is called the search point or solution candidate and X is the search space or decision
space. Finally, f1(x), f2(x), ..., fK(x) denote the objective functions 1, 2, ...,K.

2.2.1 Dominance concept

Initially used in economic and social sciences, the concept of dominance was introduced
by [Pareto, 1897] to express the fact that it is no longer possible to improve the situation
of one individual without degrading that of at least one other. Nowadays, this concept
is understood in other fields such as multicriteria optimization area. In fact, the concept
of Pareto dominance is of extreme importance in multi-objective optimization, especially
where some or all of the objectives and constraints are mutually conflicting. In such a

27

2.2. DEFINITIONS AND DOMINANCE CONCEPT

case, there is no single point that yields the "best" value for all objectives and constraints.
Instead, the best solutions, often called a Pareto or non-dominated set, are a set of solutions
such that selecting any one of them in place of another will always sacrifice quality for
at least one objective or constraint, while improving at least one other. Formally, the
description of such Pareto optimality for generic optimization problems can be formulated
in the following [Santiago et al., 2014].

Definition 2 Pareto dominance:
A vector x dominates y (denoted by x ≺ y):

• If fk(x) ≤ fk(y), ∀k = 1, ...,K, and

• There is at least one i such that f i(x) < f i(y).

Definition 3 Pareto optimal:
A vector x∗ is Pareto optimal if does not exists a vector x ∈ Ω such that x ≺ x∗.

2.2.2 Pareto front structure and reference points

Definition 4 Strict Pareto optimal solution
A feasible solution x is a strict Pareto optimal solution or strictly nondominated solution

with respect to the objective functions f1, f2, . . . , fK , if there is no feasible solution y such
that fk(y) ≤ fk(x),∀k, 1 ≤ k ≤ K, with at least one strict inequality.

Definition 5 Weak Pareto optimal solution:
A feasible schedule x is a weak Pareto optimal solution or weakly nondominated solution

with respect to the objective functions f1, f2, . . . , fK , if there is no feasible schedule y such
that fk(y) < fk(x),∀k, 1 ≤ k ≤ K.

The set of weak Pareto optimal points define the tradeoff curve. The position of strict
and weak Pareto optimal solutions is illustrated in Fig. 2.1 for K = 2.

Definition 6 Pareto optimal set:
The Pareto optimal set for a multi-criteria optimization problem is defined as: P ∗ =

x∗ ∈ Ω.

Definition 7 Pareto front:
Given a multi-criteria optimization problem and its Pareto optimal set, the Pareto front

is defined as PF ∗ = F (x)|x ∈ P ∗.

Example: Let consider two objective functions to be minimized. According to Figure
2.1, some Pareto solutions are represented, denoted by P1, P2, P3, P4, P5, P6, and P7

28

2.3. SOME MULTI-CRITERIA APPROACHES

Figure 2.1: Pareto solutions

We can easily verify that:

• P2 dominates P1; P4 dominates P3; P6 dominates P7;

• P2, P4, P5, P6 are not dominated;

• P2, P4, P5 and P6 are strict Pareto optimal solution. Note that P2, P4 and P6 are
also called Supported Pareto optimal solutions where P5 is called Unsupported Pareto
solution;

• P1, P3 and P7 are weak Pareto optimal solution.

The Pareto front of a multi-objective optimization problem is bounded by a so-called
Nadir point and Ideal point, if these are finite (see Figure 2.1).

• The Nadir point is defined as: xNadir = maxT (x ∈ Ω)fk(x), ∀k = 1, . . . ,K;

• The Ideal point is defined as: xIdeal = minT (x ∈ Ω)fk(x),∀k = 1, . . . ,K.

Solving multi-objective optimization problem consists in finding Pareto optimal so-
lutions. In case of finding one Pareto optimal solution, we usually interest only in the
strict Pareto optimal. The whole set of Pareto optimal solutions can be obtained by find-
ing strict Pareto optimal solutions one by one and iteratively. Finally, in counting the
number of Pareto optimal solutions, the aim is to count the number of optimal solutions
or to give an approximation of their number. These methods are described in details in
[T’Kindt et Billaut, 2006].

2.3 Some multi-criteria approaches

At the phase of taking account of criteria, and following the information that sets
out, the decision maker chooses a resolution approach for the multi-criteria problem and

29

2.3. SOME MULTI-CRITERIA APPROACHES

thus defines his optimization problem. Taking account of the diversity of the methods of
determining Pareto optima, the functions to optimize for the problem can take different
forms. Each one translates a method of determining a Pareto optimum. The criteria do not
change and they correspond to those defined during the phase of modeling of the problem
[T’Kindt et Billaut, 2006].

2.3.1 Linear combination

Linear combination is an expression constructed from a set of terms by multiplying
each term by a constant and adding the results (e.g. a linear combination of x and y would
be any expression of the form ax+by, where a and b are constants). Based on this concept,
we can apply linear combination of multi-criteria.

For example, dealing with k objective functions f1, . . . , fk to be minimized, linear
combination approach consists in defining a linear combination of k objective functions:
a1f

1(x) + a2f
2(x), . . . aKf

K(x) with x ∈ Ω and ak, k = 1, . . .K are constants and verify:∑K
k=1 ak = 1.
The solutions that can be obtained by this approach constitute a subset of the set of

strict Pareto optimal solutions [Geoffrion, 1968]. In other words, it may be impossible to
fix weights to the criteria so that all the Pareto optimal solutions are obtained. This is due
to the shape of the tradeoff curve, which can be non-convex for problems and therefore,
the non-supported Pareto optimal solutions cannot be returned by such a method.

2.3.2 ε−constraint approach

The idea here is to reduce the multi-criteria optimization problem to a mono-criteria
optimization problem where only one objective function has to be optimized, denoted
ε(fk/f1, . . . , f (k−1), f (k+1), . . . , fK). For example, ε(f1/f2, f3, ..., fK) indicates that only
the criterion f1 is optimized, subject to all the other criteria being upper bounded by
given values. This case is distinguished from the previous case because the function to be
optimized is f1 and this criterion is not subject to any bound constraint. More formally,
dealing with minimizing problem, the problem consists of finding solution s∗ such that:

Min f1(s)

st.

f2(s) ≤ Q2

f3(s) ≤ Q3

...

fK(s) ≤ QK

(2.1)

In general, this method leads to one weak Pareto solution. For finding a strict Pareto
optimal solution, a symmetric problem has to be solved (see Algorithm 1).

30

2.3. SOME MULTI-CRITERIA APPROACHES

Algorithm 1 Finding strict Pareto solution by ε−constraint approach: case of two objec-
tive functions
1: Let S be the set of feasible solutions
2: Find s1 ∈ S such that x1 = minf1(s1) and f2(s1) ≤ Q2, if there exists;
3: Find s2 ∈ S such that x2 = minf2(s2) and f1(s2) ≤ x1;
4: Return strict Pareto solution s∗ = s2 with (x∗1, x

∗
2) = (f1(s2), f2(s2));

2.3.3 Lexicographic order

Denoted by Lex(f1, f2, . . . , fK), the decision maker does not allow any trade-offs be-
tween the criteria when he uses this approach. The order in which the criteria are given
is related to their importance, the most important being in first. The decision maker uses
the lexicographical order and optimizes the criteria one after the other as follow: the first
criterion is minimized. Then, we search for another solution that minimizes the second
criterion under the constraint that this new solution is optimal for the first criterion, and
so on.

2.3.4 Pareto set enumeration

Pareto set enumeration is denoted by P (f1, f2, ..., fK). In this case we are looking for
the whole set of strict Pareto optimal solutions. To determine this set of strict Pareto
optimal solutions, an ε−constraint approach can be used, for example, by modifying the
vector Q = (Q1, . . . , QK) iteratively. Notice that several algorithms have been introduced
in the literature for improving the implementation of such procedure. Algorithm below
illustrates this approach as introduced in [Agnetis et al., 2014] in the case of K objectives
functions. From Algorithm 2, the value δk denotes the predefined decrement of Qk. LBk
and UBk denote the bound of objective function fk and the function lex−min(f) returns
the solution with minimum lexicographic value, i.e. with minimum f1, then minimum f2,
. . . , minimum fk.

31

2.4. RESOLUTION METHODS

Algorithm 2 for the enumeration of Pareto optimal solution with ε−constraint approach
[Agnetis et al., 2014]
1: R = ∅;
2: for each Q2 = UB2 down to LB2 step δ2 do
3: for each Q3 = UB3 down to LB3 step δ3 do
4:
5: for each QK = UBK down to LBK do
6: x = lex−min{f : fk(x) ≤ Qk, 2 ≤ k ≤ K}
7: if not exit x′ ∈ R such that f(x′) ≤ f(x) then
8: R := R

⋃
{x}∗

9: end if
10: end for
11:
12: end for
13: end for
14: Return R

2.3.5 Counting approach

Denoted by #(f1, . . . , fK), this approach means that the objective is to count the
number of strict Pareto optimal solutions.

2.4 Resolution methods

In this section, we will recall some of the resolution methods (exact and approximate)
used to solve our scheduling problems studied in this thesis. It is therefore not a question of
carrying out a complete and detailed state of the art, but simply of recalling these methods
in their broad outlines.

2.4.1 General structure of multi-criteria optimization algorithms

As already mentioned, multi-criteria optimization belongs to a broad class of combina-
torial optimization problems. Many resolution algorithms for multi-criteria optimization
can be developed. In general, we divide two groups, that are exact algorithms and heuris-
tics/metaheuristics methods. We can solve these problems by using exact algorithms which
for sure always find optimal solutions, if there exists and can be calculated within reason-
able time. This is the case of ’easy’ problem, it means that a polynomial time optimization
algorithm can be constructed to calculate strict Pareto solutions. Otherwise, some exact
methods such as: Branch and Bound, Mathematical programming or Dynamic program-
ming can be used to determine an optimal solution for small size instances.

Unfortunately, more multi-criteria problems areNP-hard, and use exact methods is not
effective. In this case, heuristics offer better trade-offs between the quality of the solution
and the computation time. In fact, heuristic algorithm is a technique designed for solving
a problem more quickly when exact methods are too slow, or for finding an approximate

32

2.4. RESOLUTION METHODS

solution when classic methods fail to find an exact solution. With the algorithm, we can
find the feasible solution (some time, it is optimal solution) in short time. This is achieved
by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be
considered a shortcut. Different approaches can be used to build heuristic: simple approach
as dedicated heuristics based on priority rules for example, or complex approach such as
metaheuristics, matheuristic, hybrid heuristic, etc.

Figure 2.2: General structure of multi-criteria optimization algorithms

2.4.2 Exact algorithm

One of the exact techniques to obtain an optimal solution is the straightforward enu-
meration, where every possible solution is explored in order to find the optimal solution.
However, due to the computational complexity, it is not practical even for problems of
moderate sizes. We have therefore to search for more sophisticated resolution methods.
For combinatorial optimization problems, it can be tempting to enumerate the whole set of
potential solutions and to keep the best solution. For example, finding the best sequence of
a scheduling problem with n jobs can be done by enumerating then n! possible sequences.
However, this method is not possible even we use supercomputers!

2.4.2.1 Mathematical Programming

Integer Linear Programming (ILP) or Mixed Integer Linear Programming (MILP) are
two variants of mathematical programming that sometimes are used for solving combina-
torial optimization problems. In both cases, first we formulate the problem to be solved in
terms of variables, restrictions and functions, and next, using commercial or open source
solvers to obtain solution(s). The resolution methods for solving ILP or MILP problems
are generic methods using sophisticated variants of branch-and-bound algorithms.

The general formulation of mathematical programming is below:

33

2.4. RESOLUTION METHODS

Minimize f(x)

st.

{
g(x) ≤ 0

x ∈ S ⊂ Rn
(2.2)

x is a vector of Rn where x = (x1, x2, ..., xn). xi is the decision variable. The function
f(x) is objective function to be minimized and g(x) is the constrain of the problem.

According to decision variables and dealing with scheduling problems, in general there
are three basic ways to formulate a scheduling problem using mathematical programming:
positional variables, precedence variables, time-indexed variables.

Positional variables: Let j be the index of job and let l be the position of job where
j ∈ {1, . . . , n} and l ∈ {1, . . . , L}, n is the number of jobs to be scheduled and L is the total
number of possible positions that can be assigned. Hence, we define binary variables xj,k
equal to 1 if job jj is in position l and 0 otherwise. For example, this type of variables can
be used when the considered scheduling problem is equivalent to find the order of execution
jobs on a single machine or non-permutation scheduling problems [Wagner, 1959].

Precedence variables: We define binary variables xi,j to define which job should
executed before another one. We have: xi,j equal to 1 if job ji precedes job jj and 0
otherwise [Bowman et Edward, 1959].

Time-Indexed Variables: The classical time-indexed 0-1 linear programming for-
mulations for scheduling problems involve binary variables indicating whether an activity
starts precisely at or before a given time period. We define binary variables xj,t equal to 1
if job j is being performed at time t; 0 otherwise, where t ∈ [0, . . . , T] and T is the planning
horizon. Some examples and different formultaions for time-indexed linear programming
formulations can be found in [Bowman et Edward, 1959]. For example, we can define de-
cision variables as follow: xj,t is equal to 1 if job j starts its processing exactly at time t;
0 otherwise.

2.4.2.2 Dynamic programming algorithm

Dynamic programming (also known as dynamic optimization) is a method for solving
a complex problem by breaking it down into a collection of simpler sub-problems, solving
each of those sub-problems just once, and storing their solutions. Dynamic Programming
(DP) is an implicit enumeration method, based on the Bellman’s principle of optimality
[Bellman et Kalaba, 1957]. The main idea of the DP is that a problem -satisfying certain
conditions- can be decomposed into sub problems of the same nature, and the optimal
solution of the problem can be obtained from the optimal solutions of the sub-problems,
by using recursive relations. Each step of the recursion is called a phase. The problem is in
a given state at the beginning of the phase, and after taking some decisions, the problem
enters into another state. A final state of the DP corresponds to an optimal solution.
Depending on the number of states and phases, the running time of a DP algorithm can
be polynomial, pseudo polynomial or exponential [Sadi et al., 2014, Agnetis et al., 2014,
Soukhal, 2012].

A DP formulation is characterized by three types of expressions:

34

2.4. RESOLUTION METHODS

• some initial conditions

• recursive relation

• goal (i.e. an optimal value function).

2.4.3 Heuristic approaches

Heuristic methods are algorithms used to find solutions among all possible ones, but
these algorithms do not guarantee that the best solution will be found. Therefore, they
are considered as approximated algorithms. They usually find quickly and easily a solu-
tion closes to the optimal one. On some instances, these algorithms may return optimal
solutions. They can be simple methods based on priority rules or complex methods based
on Operational Research models or derived from graph theory such as min cost max flow
problem, generalized assignment problem, knapsack problem, vehicles routing problems,
etc.

2.4.4 Metaheuristic approaches

2.4.4.1 Local search algorithms

The search space associated with a combinatorial optimization problem is often non-
enumerable in a reasonable amount of time. So we try to identify structure of solutions
that can reduce the search space or indicate the best way to reach a best solution within
a reasonable time. So, from one solution, we can find another, and so on. It is necessary
to define a relation of neighborhood which is a function relating any solution of the search
space to a neighborhood, that is to say a set of neighboring solutions. Local searches
are therefore methods based on a neighborhood relation and on a procedure allowing this
neighborhood to be explored. The local searches are differentiated by the procedure of
neighborhood exploration. So the neighborhood function being able to be regarded as a
parameter of this procedure.

Local descent method: The descent methods are classic and very fast. Algorithm 3
gives a global idea on the procedure exploiting the neighborhood [Papadimitriou et Harilaos, 1976]
and [Papadimitriou et Steiglitz, 1982].

Algorithm 3 General Structure Local descent Methods
1: Let s be an initial solution from search space of solutions
2: Choosing a solution close to s′ such that f(s′) ≤ f(s)
3: Changing s by s′ and repeat (ii) until for any neighbor s′ of s, f(s) ≤ f(s′).
4: Return s which is a local optimum

There are several procedures for choosing a better neighbor, two of which are widely
used.

• Hill Climbing (HC) consists of choosing the neighbor of the current solution with the
best quality (exhaustive exploration of the neighborhood).

35

2.4. RESOLUTION METHODS

• The First Improvement Hill Climbing (FIHC) consists in choosing the first neighbor
met that has a better quality (partial exploration of the neighborhood).

In [Papadimitriou et Harilaos, 1976] and [Papadimitriou et Steiglitz, 1982], we can find
more details.

Iterated Local Search (ILS) [Papadimitriou et Steiglitz, 1982]: descent methods are
fast and simple to implement but do not generally lead to the best optima because they
stop as soon as a local optimum is found. To avoid getting stuck on this local optimum,
there are different strategies to continue. These strategies make it possible to continue the
search after having found an optimum, it is then necessary to define a stopping criterion.
The current stop criteria are the execution time, the number of iterations or the total
number of evaluations.

A first strategy to overcome the quick stop of the search on a local optimum is to iterate
the method of descent. Algorithm 4 gives principal steps which are carried out starting
from the optimum found.

Algorithm 4 Exploiting neighborhood
1: Apply a perturbation on the current solution
2: Apply a method of descent on this solution
3: Choose via an acceptance criterion if the new optimum becomes the current solution

and return to (1) until the stopping criterion is reached
4: Return last best obtained solution

The perturbation may consist of:

• restarting from a solution taken randomly in the search space

• choosing a solution in a neighborhood far from the optimum

• choosing a neighbor of the same quality as the optimum

• using the strategies to balance of "two-faced Janus" intensification and diversification
to avoid local optimal

When we use iterative improvement method, sometimes we meet the local optimal. In
this case, we use some escaping strategies. Let N(S) be a set of neighboring solutions
in the search space. Formally, N(S) is a subset of the search space made of all solutions
obtained by applying a single local transformation to S. Bellow we recall principal escaping
strategies:

• Accept up-hill moves: i.e., the search moves toward a solution with a worse ob-
jective function value by climbing the hills and go downward in another direction;
They accept a temporary deterioration of the solution which allows them to explore
more thoroughly the solution space and thus to get a hopefully better solution (that
sometimes will coincide with the global optimum). However, necessary to do some
fine-tuning of its intrinsic parameters in order to adapt the technic to the problem.

36

2.4. RESOLUTION METHODS

• Change neighborhood structure during the search by different neighborhoods. This
can be done by generating different search space topologies, which could simply be
the set of feasible solutions to the problem.

• Formally, N(S) is a subset of the search space made of all solutions obtained by
applying a single local transformation to S.

• Change the objective function so as to "fill-in" local minima. So, they can modify
the search space with the aim of making more "desirable" not yet explored areas.

• Intensification and Diversification procedures. These two procedures are the driv-
ing forces of metaheuristic search. Intensification explores the accumulated search
experience (e.g., by concentrating the search in small search space area). In the
other hand, Diversification explores "in the large" of the search space. They are
contrary and complementary: their dynamical balance determines the effectiveness
of metaheuristics.

2.4.4.2 Simulated Annealing

Simulated Annealing (SA) as it is known today is motivated by an analogy to annealing
in solids. The idea of SA comes from a paper [Metropolis, 1953].

In 1983, took the idea of the Metropolis algorithm and applied it to optimization
problems, SA was developed in [Kirkpatrick et al., 1983]. It approaches the global maxi-
mization problem. The idea is to use simulated annealing to search for feasible solutions
and converge to an optimal solution. One can refer to [Chibante, 2010] for this interesting
theory and its applications.

In general, SA algorithm requires definition of initial solution, initial temperature,
perturbation mechanism, cooling schedule, stopping criteria and of course objective(s)
function(s). Algorithm 5 describes the general structure of this resolution approach.

• Initial solutions: AS requires the use of an initial solution, which can be calculated
by a simple and dedicated heuristic or randomly generated.

• Initial temperature: The control parameter T must be carefully defined since it con-
trols the acceptance rule defined by e−∆/T must be large enough to enable the al-
gorithm to move off a local minimum but small enough not to move off a global
minimum.

• Perturbation mechanism: this is defined by the neighborhood generation procedure.

• Cooling schedule: The cooling schedule was implemented using a rule for temperature
variation. For example: Update Ti+1 = aTi, 0 < a < 1 after each iteration.

• Stopping criterion: Several methods to control the stopping of the algorithm may be
implemented. we can use one or more strategies among the following:

– maximum number of iterations;

– minimum temperature value;

37

2.4. RESOLUTION METHODS

– minimum value of objective function;

– minimum value of acceptance rate.

– time limited.

Algorithm 5 Simulated Annealing algorithm
1: i := 0;
2: Let S0 be the initial solution and let T0 := T be the initial temperature;
3: S := S0; S∗ := S0; best := f(S0);
4: while Stopping criterion is not satisfied do
5: S′ := Some random neighboring solution of S;
6: if f(S′) < best then
7: S∗ := S′ ;
8: best := f(S′)
9: else

10: if random[0, 1] < min{1, e(f(S)−f(S′)

T } then
11: S := S′ ;
12: end if
13: end if
14: Ti+1 := λTi (λ < 1, quite frequently λ = 0, 99) ;
15: i := i+ 1

16: end while
17: return best solution

2.4.4.3 Tabu search

Tabu Search (TS) has been initially proposed by Glover [Glover et Laguna, 1997]. TS is
a metaheuristic local search algorithm that begins with an initial solution and successively
moves to the best solution in the neighborhood of the current solution. The algorithm
maintains a list of forbidden solutions, to prevent the algorithm from visiting solutions
already examined.

For certain optimization problems, the Tabu method gave excellent results []; moreover,
in its basic form, the method comprises less parameters of adjustment than simulated
annealing, which makes it easier to use. However, the various additional mechanisms, like
the intensification and diversification, bring a notable complexity.

Some mechanisms defining TS algorithm are the same as used in SA (initial solution,
perturbation mechanism, objective(s) function(s), stopping criteria). In next, we only recall
additional and specific concepts of TS algorithm which different from SA algorithm such
as tabu list and its size [Glover, 1989, Glover, 1990].

• Tabu list: record the recent history of the search, which are stored in a short-term
memory of the search. Usually only a fixed and fairly limited quantity of information
is recorded. In any context, there are several possibilities regarding the specific
information that is recorded. Here are some ways to proceed:

38

2.4. RESOLUTION METHODS

– record complete solutions, but this can require a lot of storage space and makes
it expensive to check whether a potential move is Tabu or not (it is therefore
seldom used);

– record the last few transformations performed on the current solution and pro-
hibiting reverse transformations (most commonly used).

– record based on key characteristics of the solutions themselves or of the moves.
– record by multiple tabu lists can be used simultaneously and are sometimes

advisable. For example, when different types of moves are used to generate the
neighborhood, it might be a good idea to keep a separate Tabu list for each type.
Standard Tabu lists are usually implemented as circular lists of fixed length.

• Tabu size: It has been shown that fixed-length Tabus cannot always prevent cycling,
and some authors have proposed varying the Tabu list length during the search.

Algorithm 6 gives the general TS algorithm where the used notations are:

• S0 is an initial solution, S∗ is the best solution, S is the current solution,

• f is the value of solution S, f∗ is the value of S∗ (best solution value found),

• N(S) is the whole neighborhood of S,N ′(S) is the neighborhood of S which is not
tabu,

• LT is the tabu list.

Algorithm 6 Tabu search algorithm
1: S := S0;
2: S∗ = S0,
3: f∗ = f(S0), (f∗ = best)
4: Tabu list LT = ∅
5: while Stopping criteria not satisfied do
6: Select S = min[f(S′)], where S is a solution belonging to N ′(S),
7: if f(S) < f∗ then
8: f∗ = f(S)
9: S∗ = S

10: end if
11: Record the current move in the Tabu list LT (delete oldest entry if necessary)
12: end while
13: return S∗

2.4.4.4 Genetic algorithm

Genetic algorithms (GA) have been originally proposed by Holland [Holland, 1992].
This is a general search technique where a population composed by individuals evolves
following nature inspired mechanisms called "genetic operators". The population is com-
posed by individuals that are evaluated by a fitness, which is often related to the objective

39

2.4. RESOLUTION METHODS

function. Starting from an initial population, new solutions are generated by selecting
some "parents" randomly, but with a probability growing with fitness, and by applying
genetic operators such as selection, crossover and mutation, which introduce random mod-
ifications. Some existing solutions are randomly selected for crossover, some solutions are
selected for mutation, and a new population of the same size is obtained. The process is
repeated until a given stopping criterion is reached, e.g. a time limit or when a suffciently
satisfactory solution has been found. A typical genetic algorithm requires:

1. a genetic representation of the solution domain,

2. a fitness function to evaluate the solution domain.

Once the genetic representation and the fitness function are defined, a GA proceeds to
initialize a population of solutions and then to improve it through repetitive application of
the mutation, crossover and selection operators. The main steps to implement GA are:

• Coding : The choice of coding is the first step in the implementation of GA, it must
take into account the specificities of the problem studied, in order to guarantee a
better application of the methods. In fact, each individual is represented by a chro-
mosome describes a gene sequence. Initially Holland [Holland, 1992] used a sequence
of bits containing all the information necessary to describe any solution from search
space. In general, this representation is known as indirect coding and requires de-
coding function to describe solution.

• Initialization: The population size depends on the nature of the problem. Often,
the initial population is generated randomly, allowing the entire range of possible
solutions (the search space). Occasionally, the solutions may be found from a heuris-
tic solution are likely to be found. with the key idea: give preference to better
individuals, allowing them to pass on their genes to the next generation.

• Selection: During each successive generation, a portion of the existing population
is selected to breed a new generation. Individual solutions are selected through a
fitness-based process, where fitter solutions are typically more likely to be selected.
Certain selection methods rate the fitness of each solution and preferentially select
the best solutions.

• The fitness function is defined over the genetic representation and measures the
quality of the represented solution. The fitness function is always adapting objective
function to find the effective populations.

• Genetic operators: The next step is to generate a second generation population of
solutions from those selected through a combination of genetic operators: crossover
(also called recombination), and mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding
from the pool selected previously. By producing a "child" solution using the above methods
of crossover and mutation, a new solution is created which typically shares many of the
characteristics of its "parents".

40

2.4. RESOLUTION METHODS

• Crossover is a genetic operator used to vary the programming of a chromosome or
chromosomes from one generation to the next. It is analogous to reproduction and
biological crossover, upon which genetic algorithms are based. Crossover is a process
of taking more than one parent solution and producing a child solution from them.
By recombining portions of good individuals, this process is likely to create even
better individuals.

• Mutation is a genetic operator used to maintain genetic diversity from one genera-
tion of a population of genetic algorithm chromosomes to the next. In mutation, the
solution may change entirely from the previous solution. Its purpose is to maintain
diversity within the population and inhibit premature convergence. Hence GA can
come to a better solution by using mutation.

Algorithm 7 gives the main steps of GA algorithm.

Algorithm 7 General genetic algorithm
1: randomly initialize population
2: determine fitness of each individual in the current population
3: repeat
4: select parents from population
5: perform crossover on parents creating population
6: perform mutation of population
7: determine fitness of each individual in the current population
8: until best individual is good enough or stopping criteria satisfied

2.4.4.5 Non-dominated Sorting Genetic Algorithm

NSGA (Non-dominated Sorting Genetic Algorithm) is a popular non-domination based
genetic algorithm for multi-criteria optimization [Srinivas et Deb, 1994].

The objective of the NSGA algorithm is to improve the adaptive fit of a population of
candidate solutions to a Pareto front constrained by a set of objective functions. The al-
gorithm uses an evolutionary process with surrogates for evolutionary operators including
selection, genetic crossover, and genetic mutation. The population is sorted into a hierar-
chy of sub-populations based on the ordering of Pareto dominance. A similarity between
members of each sub-group is evaluated on the Pareto front, and the resulting groups and
similarity measures are used to promote a diverse front of non-dominated solutions.

NSGA is a very effective algorithm but has been generally criticized for its computa-
tional complexity, lack of elitism and for choosing certain parameter values. To overcome
some of these criticisms, Deb et al. propose another version of NSGA called NSGA II.

NSGA II is a modified NSGA, which has a better sorting algorithm, incorporates
elitism and no sharing parameter needs to be chosen a priori (Deb et al. 2002).

The population is initialized as usual. Once the population in initialized the population
is sorted based on non-domination into each front. The first front being completely non-
dominant set in the current population and the second front being dominated by the

41

2.4. RESOLUTION METHODS

Figure 2.3: Diagram representing the NSGA-II

individuals in the first front only and the front goes so on. Each individual in each front
is assigned rank (fitness) values or based on the front in which they belong to.

Individuals in the first front are given a fitness value of 1 and individuals in second are
assigned fitness value as 2 and so on. In addition to fitness value, a new parameter called
crowding distance is calculated for each individual. The crowding distance is a measure
of how close an individual is to its neighbors. Large average crowding distance will result
in better diversity in the population. Parents are selected from the population by using
binary tournament selection based on the rank and crowding distance. An individual is
selected in the rank is lesser than the other or if crowding distance is greater than the
other [Beyer et Deb, 2001]. The selected population generates offsprings from crossover
and mutation operators, which will be discussed in detail in a later section. The population
with the current population and current offsprings is sorted again based on non-domination
and only the best Popsize individuals are selected, where Popsize is the population size.
The selection is based on rank and the on crowding distance on the last front.

The general model of the NSGA II is presented by Figure 2.3.

2.4.5 Matheuristic

Matheuristics are optimization algorithms made by the interoperation of (meta)heuristics
and mathematical programming (MP) techniques. An essential feature is the exploitation
in some part of the algorithms of features derived from the mathematical model of the
problems of interest [Marco et Voss, 2010], [Talbi, 2013].

Since several years, a new type of approximated algorithms, including exact resolution
inside heuristic approaches, has received a great interest in the literature, because of their
very best performances on some difficult problems [Kergosien et al., 2017]. These meth-
ods are also called "Hybridizing metaheuristics and mathematical programming" (MP) in

42

2.4. RESOLUTION METHODS

[Marco et Voss, 2010].
Exact MP algorithms are known to be time and/or memory consuming. We cannot

be applied it to large instances of difficult optimization problems because their completion
time is very long. However, we can their combination with metaheuristics may improve
the effectiveness of heuristic search methods to getting better solutions.

Sometimes, this type of combination allows finding optimal solutions in a shorter time
by using the design of more efficient exact methods.

As introduced in [Talbi, 2013], metaheuristics and exact algorithms are complementary
optimization strategies in terms of the quality of solutions and the search time used to
find the better solutions. In the last few years, solving exactly important optimization
problems using integer programming techniques has improved dramatically. Moreover, the
availability of efficient optimization software, frameworks for mathematical programming
and high-level modeling languages will lead to more hybrid approaches effective combining
metaheuristics and exact optimization algorithms more effective.

Depending on the implementation and the level of hybridization achieved through the
interoperation of metaheuristics and exact methods, different matheuristics can be derived.
Thus, following a classification of hybrid metaheuristics in terms of design problems intro-
duced in [Talbi, 2013], we can propose a similar classification for matheuritic algorithms.
As introduced by Talbi, at the first level, two types of hybridations can be defined: low-
level and high-level hybridations. With low-level hybridation, only one metaheuristic is
used and is combined with the exact method. In the case of high-level hybrid algorithm,
different metaheuristics can be implemented and each is executed independently of the
other. From this first level, a second level can be defined as follows: Relay hybridization
and Teamwork hybridization. With Relay hybridization, a set of metaheuristics is applied
on after another, each using the output of the previous as its input, when Teamwork hy-
bridization represents cooperative optimization models, in which each metaheuristic evolve
in parallel to carrie out a search in a (dedicated) solution space.

2.4.5.1 Low-Level Relay Hybrids (LRH)

This class of algorithms represents hybrid schemes in which a S-metaheuristic approach
(single solution based metaheuristic) is embedded into an exact approach or an exact
approach is embedded into an S-metaheuristic approach to improving the search strategy.

• Embedding S-metaheuristic into exact algorithms: Metaheuristic can involve
in the design of some search components of an exact method of type branch and
bound such as the node selection strategy, generation of an upper bound, cutting
plane generation and pricing (see Figure 2.4).

Figure 2.4: Branch and X algorithm

43

2.4. RESOLUTION METHODS

• Embedding exact algorithms into S-metaheuristics: We can use many com-
binations may be designed in which exact algorithms (Branch and bound, Dynamic
programming, MILP) are embedded into search components of S-metaheuristics. It
means tnat to find the best solution of the problem, we generate and search large
neighborhoods. Partial exact algorithm is then applied on some of them for try to
find an effective solution (see Figure 2.5).

Figure 2.5: Combine S-metaheuristic and Mathematical programming

2.4.5.2 Low-Level Teamwork Hybrids (LTH)

The idea of this method is that the search component of a P-metaheuristic (Popula-
tion based metaheuristics) is replaced by another optimization algorithm. With regard
to the combination of P-metaheuristics and mathematical programming algorithms, two
main hybrid approaches can be considered: hybrid exact search algorithms in which a
P-metaheuristic is integrated into an exact algorithm, and heuristic search algorithms in
which an exact algorithm is integrated into a P-metaheuristic (see Figure 2.6).

Figure 2.6: Mathematical programming is embedded into a P-metaheuristic

2.4.5.3 High-Level Relay Hybrids (HRH):

From this class, resolution methods are ordered and each one is used in sequence,
defined as an autonomous algorithm algorithm. This can be considered as a pre-processing
or a post- processing step (see Figure 2.7).

44

2.4. RESOLUTION METHODS

Figure 2.7: Sequence of combine metaheuristic and mathematical programming

2.4.5.4 High-Level Teamwork Hybrids (HTH)

Here the emphasis is on parallel cooperation. Since each method (metheuristic and PM)
solves global or partial optimization problems, the basic idea is that these two methods
are applied in parallel and that information exchanges take place regularly. For example, a
possible implementation of such an algorithm is as follows: the input of the metaheuristic
is an output of a sub-problem to be solved by mathematical programming, or a solution
obtained by metaheuristic defines an upper bound for the problem to be solved by mathe-
matical programming (see Figure 2.8).

Figure 2.8: Parallel cooperative between mathematical programming and metaheuristic

It should be noted that the majority of the proposed hybridization approaches are
also referred to as partial hybrids. Indeed, the research space is generally too large to
be solved by an exact approach. Thus, the different algorithms implemented are seen
as complementary and allow different problems to be solved. Sharing any information
gathered during the research process thus improves the effectiveness and efficiency of the
hybrid approach. Exchanged informations can be: solution, relaxed optimal solution and
its dual, upper bound, lower bound, optimal solution of subproblem, partial solution, etc.
(see Figure 2.9).

45

2.5. PERFORMANCE ANALYSIS

Figure 2.9: HTH cooperation between metaheuristic and mathematic programming

2.5 Performance analysis

The goal of multi-criteria optimization problem is to find a set of best compromise
solutions for typically conflicting objectives. Due to the complex nature of most real-life
problems, only an approximation to such an optimal set can be obtained within reasonable
(computing) time. The performance of an approximation method is measured by the
quality of Pareto’s front determined by it. To compare such approximations, and thereby
the performance of multi-criteria optimizer providing them, generally, a single metric is
not enough to do this. Hence, several performance measures are proposed in the literature,
some of which are designed to evaluate a distance between the approximate front and the
exact front. Others are based solely on the approached front. In this thesis, we used four
below measures to compare these results.

2.5.1 Hypervolume

The performance assessment of algorithms for multi-criteria optimization problem is
far from being a trivial issue. Recent results indicate that unary performance measures, i.e
performance measures which assign a single value to each optimal point set, are inherently
limited in their inferential power. Despite these limitations, the hypervolume indicator (also
known as Lebesgue measure or S metric) is still considered to possess some reasonable
properties, having also been proposed as a guidance criterion for accepting solutions in
multiobjective Evolutionary Algorithms, for example [Beume et al., 2009]. Therefore, the
computational time taken for computing the hypervolume indicator is a crucial factor for
the performance of such algorithms.

Hypervolume (H) is hence a metric, which was introduced in [Zitzler et Thiele, 1998],
and in a two-criteria case is defined as follow. For each solution x whose value is given
by (f1(x), f2(x)), we calculates the area of the rectangle defined by the origin (0.0) and
the point (f1(x), f2(x)). The sum of these surfaces gives us the totality of the covered
surface. The difference of the hypervolume calculated for two Pareto fronts, is an indicator

46

2.5. PERFORMANCE ANALYSIS

of distance between two fronts (see Figure 2.10).

Figure 2.10: Hypervolume measures representations

Other variant of this measure are proposed in [Jarboui et al., 2013]. The authors cal-
culate the area dominated by a Pareto front where the origin is replaced by a reference
point, which preferably corresponds to the ideal point (see Figure 2.1). These measures
are obviously easily adaptable to problems of more than two dimensions.

2.5.2 Average distances

GD is a generational distance, and it is used to calculate the average of the min-
imum Euclidian distances between a front of exact Pareto and his approximate front
[Cyzak et Jaszkiewicz, 1998]. Let S∗ (rest. S) be the exact (rest. approximate) Pareto
front. The GD is given by the following formula:

GD =
1

|S|
∑
S1∈S

minS2∈S∗ds1,s2

where ds1,s2 is the Euclidian distance between the element S1 ∈ P and the element S2 ∈ P∗.
This distance is also used to measure the dispersion of points over the research domain.

In fact, the approximate front must be a representative set of the of the exact front, so the
solutions must be well distributed over the search space, not located and grouped in one
place. The generational distance is applied to the approximate front. For each solution,
the minimum distance to the others is calculated and the average of these distances gives
then a an estimator of the dispersion. It is also possible to calculate the minimum distance
between a point of approaches solution and an exact solution.

47

2.6. CONCLUSION

Figure 2.11: Minimum distance and Average distance

2.5.3 Number of non-dominated solutions

The two first metrics can give values equal to zero. In this situation, it does not
necessarily mean that the obtained front is an exact front. Indeed, if only part of the
effective region is reached, then the solutions overlap with the exact solutions, but some
compromise solutions are not achieved. In this case, it is important to compare the size of
the front obtained with the exact size of the front, in terms of number of points.

To do that, we apply two measures to evaluate a the number of points:

1. For each exact and approximate solution, we calculate the cardinalities of the gener-
ated Pareto fronts. We denote by |S∗| the cardinality of the exact Pareto front S∗,
and by |S| the cardinality of the near Pareto front S.

2. We define a percentage of optimal solutions (%S) by using the cardinality. This
metric calculates the number of exact solutions generated by each heuristic, it is
given by |S ∩ S∗|/|S∗|.

2.6 Conclusion

This chapter is the introduction to the context of our research and gives basic concepts
and definitions for studied multi-agent scheduling problems, which will be described in
next chapter. In fact, the studied scheduling problems constitutes a part of the theory of
multi-criteria optimization. Therefore, this chapter leads to define the necessary notions
for multi-criteria analysis.

This chapter composed of four sections preceded by an introduction. In section 2.2,
after recalling the general definition of a multi-criteria optimization problem, we focused
on the presentation of the notion of non-dominance as well as the structure of all non-
dominated solutions of a multi-criteria problem. This set is also referred to as the Pareto
front. Multi-criteria approaches are presented in section 2.3, and details are given for
approaches used in our study to solve scheduling problems. Besides, we present a briefly

48

2.6. CONCLUSION

overview of resolution methods (exact and approximates methods), some of them being
used in the rest of this manuscript. The last part of this section is devoted to matheuristic
methods. A discussion on the way and level of hybridization of such methods led us to
propose a new classification, which takes up the same ideas proposed in the literature for
hybrid metaheuristic approaches.

The performance of an approximation method is measured by the quality of Pareto’s
front determined by it. To compare such approximations, and thereby the performance
developed algorithms, we recall some performance measures in section 2.5.

Next chapter allows us to get to the heart of the matter, that of studying ”multi-agent
scheduling problems”.

49

2.6. CONCLUSION

50

Chapter 3

Scheduling theory and multi-agent
scheduling problems

Résumé : Ce chapitre introduit un aperçu général des problémes d’ordonnancement,
en particulier des problèmes d’ordonnancement multi-agents. Quelques définitions, exem-
ples et notations utilisés tout au long de ce manuscrit sont ensuite introduits pour en
faciliter la lecture de ce document. Dans un premier temps, la section 3.1 rappelle les
concepts de base et les notations des problèmes d’ordonnancement, où la section 3.2 est
consacrée aux problèmes classiques d’ordonnancement multicritères.

Pour situer nos travaux de recherche, une synthése des problèmes de planification multi-
agents est présentée dans la section 3.3, en établissant des liens et soulignons des différences
entre les scénarios étudiés dans la littérature. Notre travail se concentre sur une classe par-
ticulière de problèmes d’ordonnancement multi-objectifs, dite ”Problème d’ordonnancement
multi-agent non-disjoint”. Nous exposons quelques applications réelles montrant ainsi nos
motivations d’étudier cette classe de problèmes d’ordonnancement. Les principaux résul-
tats traitants des problèmes proches de ceux qui font l’objet de notre étude sont ensuite
présentés dans la section 3.4.

Abstract: This chapter is devoted to a general overview of scheduling problems, in
particular to multi-agent scheduling problems. Some definitions, examples and notations
used throughout this manuscript are then introduced for ease of reading. At first, Sec-
tion 3.1 recalls basic concepts and notations of scheduling problems, where Section 3.2 is
dedicated to the classical multi-criteria scheduling problems.

To situate our research works, a synthesis of multi-agent scheduling problems is pre-
sented in Section 3.3, drawing links and differences between the different studied scenarios
in the literature. Our work focuses on a particular class of multi-objective scheduling
problems, denoted ”Non-Disjoint multi-agent scheduling problem”. We hence give some
real-applications showing our motivations to study this class of scheduling problems. Main
results related to the studied problems are then presented in Section 3.4.

51

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

3.1 Classical scheduling problems: mono-criterion objective
function

Scheduling problems are an important part of combinatorial optimization problems.
These problems are encountered in any operating system when it comes to organizing
activities or tasks over time and determining their best allocation(s) to consumable or re-
newable resources [Carlier et Chrétienne, 1988]. Hence, many definitions of a scheduling
problem have been introduced in the literature. In [Morton et Pentico, 1993] authors have
defined scheduling as follows: “[...] scheduling is the process of organizing, choosing, and
timing resource usage to carry out all the activities necessary to produce the desired outputs
at the desired times while satisfying a large number of time and relationship constraints
among the activities and the resources.” Another definitions have been introduced by
researchers. For example, Du and Leung defined scheduling as follows: “Scheduling is con-
cerned with the allocation of scarce resources to activities with the objective of optimizing
one or more performance measure.” [Du et Leung, 1990]; Where Pinedo’s definition is:
“Scheduling is a decision-making process that is used on a regular basis in many manufac-
turing and services industries. It deals with the allocation of resources to tasks over given
time periods and its goal is to optimize one or more objectives”. He also showed the impor-
tance of the sequencing and scheduling problems: “scheduling [...], plays an important role
in most manufacturing and production systems as well as in most information processing
environments. It is also important in transportation and distribution settings and in other
types of service industries” [Pinedo, 2016].

Thus, the theory of scheduling is quite broad because of the diversity of systems
and activities to be planned over time [Lopez et Roubellat, 2008], [Oulamara et al., 2005,
Oulamara et al., 2009]. Reference can be made to classic books presenting classical models,
more recently studied models and also resolution algorithms. As reference books dedicated
to single criterion scheduling problems, we cite Blazewicz et al. [Blazewicz et al., 2007],
Brucker [Brucker, 2007] and Pinedo [Pinedo, 2008]. These reference books address the
classic cases of scheduling problems.

Scheduling problems are very varied. They can be found in many areas as recalled by
Sadi in [Sadi et al., 2015]:

• Flexible Manufacturing Systems (FMS) [Lee et Kim, 1999]: these systems are de-
signed to produce in small and medium quantities a wide variety of products included
time preparations of machines. Their aim is to achieve not only high productivity, but
also a high production flexibility allowing it to follow the variations of the demands.

• Computer system [Cordeiro et al., 2011]: in such a system, scheduling refers to a
component of the operating system that determines the order for running processus
on processors.

• Real-time systems [Navet, 2006, Norre, 1993]: these systems are generally ”embed-
ded“, that is, located within the very environment with which they must interact,
like a calculator in vehicles or planes. In addition to the requirements of time perfor-
mance, they are then subject to severe congestion constraints, of cost and sometimes
energy.

52

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

• Communication networks [Peha, 1995]: achieving quality of service in such a sys-
tem is dependent on the choice of configuration and implementation task scheduling
strategies that allow remote entities of the same system to exchange information.

3.1.1 Concepts and scheduling notations

The great variety of scheduling problems we have seen from the definition motivates
the introduction of a systematic notation that could serve as a basis for a classification
scheme. Such a notation of problem types would greatly facilitate the presentation and
discussion of scheduling problems. Hence, Graham et al. proposed three fields notation for
scheduling problems α|β|γ [Graham et al., 1979].

1. The first field α describes the processor environment. In general, α = {∅, P,Q,R,O, F, J}
characterizes the type of used processors (resources). Resources are "machine or hu-
man" means that can carry out all the jobs to be executed, and are available in
limited quantities. They are classified according to their capabilities or operating
modes. Two types of resources can be identified:

• Non-dedicated machines: this means that a job can be executed on any machine,
and it is defined by only one operation. Depending on the performance of the
machines for job processing, we denote by: α = P identical parallel machines;
α = Q uniform paralle machines; α = R unrelated parallel machines.
• Dedicated machines: in this case, a job is defined by a set of operations in

which each operation should be executed on a specific machine. According to
the production routing, we denote by: α = F flow-shop system (all jobs have
the same operating routing and the same execution order); α = J job-shop
system (each job is defined by its operation routing); α = O open-shop (each
job is defined by its operating routing but the execution order is not imposed).

In general, a resource is referred to be "renewable" if, after performing a given job,
it is available in the same quantity. It is consumable, if its use is limited to only a
certain number of jobs: for example, raw materials, money, etc. We also distinguish
disjunctive resources, which can only perform one job at a time, otherwise they are
called cumulative. In the rest of this manuscript we have an environment with m
identical parallel machines. We assume that these disjunctive resources are always
available. Two different environments are considered in this study as follows.

• Single machine. In such a model, the set of tasks to be performed is executed
by a single machine [Karp, 1975]. We can find this kind of configuration in
a production system including a bottleneck machine that disrupts the whole
system of the process. Hence, in α-field we have: α = 1.
• Identical parallel machines. This model considers a set of identical parallel

machines, the processing times of the jobs are independent of the machines.
Each job must be performed on one or more machines. No overlapping is allowed,
i.e., work cannot be performed on two machines at the same time. This is a
type of workshop that is common in industry, it allows to multiply the speed

53

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

of execution of a given step in the manufacturing process. Hence, in α-field we
have: α = P .

2. The second field β describes jobs and resource characteristics, i.e. ”constraints“.
The constraints encountered in scheduling problems are classified into the following
classes:

(a) Resource constraints: several types of constraints can be induced by the na-
ture of the resources, for example: the limited capacity of a resource implies
a constraint on the amount of jobs to be allocated to them; if the resource is
cumulative, the constraint can limit the number of jobs to be performed si-
multaneously. A resource may also not be available in certain time windows
(unavailability constraints), or not valid for performing given work (disability
constraints).

(b) Procedural constraints: they can be linked to production ranges, for example:

• Precedence constraints (prec): tthey express the relationships between the
tasks to be performed; a task cannot be performed before the end of its
predecessors’ execution.
• Disjunctive constraints: two jobs are in disjunction if they cannot be exe-

cuted simultaneously.
• Preemption (pmtn): Preemption is allowed, if the execution of the work

can be interrupted on a given date and then resumed and potentially on a
different machine.
• pj = p for cases where the job has the same operating time.

(c) Time constraints: they represent restrictions on the values that can be take
certain scheduling time variables: release date, date due or deadline.

3. The third field γ describes optimality criterion (performance measure). The def-
inition of objectives to measure the quality of a scheduling is an important and
even delicate fact. Objectives can be linked to production costs: minimization
of production times, minimization of lates, maximization of production rates, etc.
The classical objectives are those related to the completion dates of jobs. Be-
cause, these criteria are related to a better use of the production system, which
inevitably minimizes production costs. Among these classical criteria we have: γ =
{Cmax,

∑
Cj ,
∑
wjCj , Lmax,

∑
Uj ,
∑
wjUj ,

∑
Tj ,
∑
wjTj}

• ”Makespan“, denoted by Cmax, it defines the maximum completion time of jobs
(last date of execution of the last job).

• "Total completion time", represents the average waiting time for jobs to be
achieved, it is denoted by

∑
Cj where Cj is the job completion time of job j.

• ”Delay“, this measure is very important in practice, it allows to meet customers’
requirements in terms of time. We can define function Lj = Cj − dj that is
associated with the algebraic delay of job Jj , and function Tj = maxCj − dj , 0
that is associated with the absolute tardy of job Jj . The criteria Lmax and Tmax
are defined for maximum lateness/tardiness, or

∑
Tj for the total tardiness. It

54

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

may happen that jobs do not have the same weight (degrees of importance of one
job compared to another). In this case, the jobs are also identified by weights
denoted wj . The objective functions in this case can be:

∑
wjTj for the total

weighted tardiness

• ”Number of (weighted) tardy jobs“ is denoted iby
∑

(wj)Uj , Uj , such that Uj is
a binary function: Uj = 1 if job Jj is late and 0 otherwise.

3.1.2 Complexity of scheduling problems

The complexity of an algorithm lies in estimating its processing cost in time (time
complexity) or in the required space memory (spatial complexity). Set apart for cer-
tain particular algorithms, as for example dynamic programming algorithms which
usually take up a lot of memory space, spatial complexity has been less considered
than time complexity. In both cases, it is possible to propose a theoretical complexity
and a practical complexity. Theoretical complexity reflects an independent estimate
on the machine which processes the algorithm. It is less accurate than the practi-
cal complexity which enables us to calculate the cost of the algorithm for a given
computer. For the latter case, time complexity is obtained using an estimation of
the calculation time for each instruction of the program. The advantage of theoreti-
cal complexity is that it provides an estimation independent of the calculation time
for the machine [T’Kindt et Billaut, 2006]. According to Brucker, complexity theory
provides a mathematical framework in which computational problems are studied so
that they can be classified as “easy" or “hard" [Brucker, 2007].

This classification is useful to see if an efficient algorithm may exist, especially in
terms of computation time, for solving a particular problem. A problem belongs to a
class of complexity, which informs us of the complexity of the “best algorithm" which
is able to solve it. Hence, if a given problem is shown to belong to the class of “easy"
problems, it means that it exists a polynomial-time algorithm to solve it. Hence, this
problem is in P. Usually this is good news but unfortunately, this does not often
happen for complex problems. Accordingly, if a problem belongs to the class of ”hard“
problems, it cannot be solved in polynomial time, i.e. the required CPU time to solve
it becomes “exponential" [Brucker, 2007]. In this case, the problem is in NP. We
refer to [Garey et al., 1976] and [Papadimitriou Christos H. , 1994] for the definition
of complexity classes and more details on computational complexity. Also, More
classification of scheduling problems can be found at http://www.mathematik.uni-
osnabrueck.de/research/OR/class).

The classical criteria of scheduling problems presented previously are regular because
they are non-decreasing functions of the completion times of jobs. Hence, in terms
of complexity status, these criteria are linked by reduction relationships summarized
in Figure 3.1.

55

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

Figure 3.1: Criteria reduction relationships

3.1.3 Some classical scheduling algorithms

In this section, we will recall some algorithms developed to solve classical mono-criteria
scheduling problems. These algorithms form a basis for our algorithmic developments to
the problems studied in this manuscript.

3.1.3.1 Dynamic programming algorithm

Let’s consider the scheduling problem: minimizing makespan on two identical parallel
machines, denoted P2||Cmax. This problem is shown to be NP-hard in ordinary sens.
In fact, an optimal solution can be computed in pseudo-polynomial time by applying the
following dynamic programming algorithm proposed by [Huynh Tuong et al., 2011]:

- We define P as sum of processing times P =
∑
pj , hence P is an upper bound of

Cmax

- Let i = 1, 2 be the number of machine; Let t1 = 0, 1, . . . , P possible completion times
of last job executed on machine M1

- The recursion formula is then:

f(j, t1) = min
(
f(j − 1, t1 − pj), f

(
(j − 1, t1) + pj)

))
where f(j, t1) corresponds to the completion time of the last job executed on machine
M2. The initial value is: f(j, t1) =∞ if t1 < 0

- Cmax = min(max(ti, f(j, t1)))

The running time of this dynamic programming is then O(nP).

Suppose that we have 5 jobs to be scheduled on two machines. The data are:

56

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

Job(j) 1 2 3 4 5
Processing time (pj) 2 3 1 4 2

P =
∑
pj = 12; t1 = 0, 1, . . . , 12;

The next table gives the different values of f(j, t1)

t1 0 1 2 3 4 5 6 7 8 9 10 11 12
f(1, t1) 2 2 0
f(2, t1) 5 5 3 2 2 0
f(3, t1) 6 5 4 3 2 1 0
f(4, t1) 10 9 8 7 6 5 4 3 2 1 0
f(5, t1) 12 11 10 9 8 7 6 5 4 3 2 1 0
max(t1, f(j, t1)) 12 11 10 9 8 7 6 7 8 9 10 11 12
C∗max = min(max(t1, f(j, t1))) = min(12, 12, ..., 8, 6, 7, ..., 12) = 6. Figure 3.2 illus-

trates an optimal schedule.

Figure 3.2: An optimal solution for P2||Cmax

3.1.3.2 Mathematical programming

Let us consider the scheduling problem P2||Cmax. MILP based assignent variables can
be defined as follow [Garey et al., 1976]:

Let xij be a binary variable that takes value 1 if job Jj is scheduled on machine mi; 0
otherwise. Hence, we have:

Minimize Cmax

s.t

∑m

i=1 xij = 1 ∀j, j = 1, . . . , n (1)∑n
j=1 pjxij ≤ Cmax ∀i, i = 1, . . . ,m (2)

xij ∈ {0, 1} ∀i, i = 1, . . . ,m, ∀j, j = 1, . . . , n (3)

Constraints (1) indicate that a job j is assigned to exactly one machine; Constraints
(2) indicate that the Cmax is greater than or equal to the completion time of all jobs on
each machine (makespan of each machine).

3.1.3.3 List scheduling methods

Scheduling problems are in general NP − hard. Hence, important and more efficient
algorithms were developed and are based on ”priority rules“, called list scheduling meth-
ods. Note that heuristic based on priority rules is a (2− 1

m)-approximation for scheduling
problem P ||Cmax. In the following we recall well known of them.

57

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

1. Earliest Due Date (EDD): The earliest due date rule sorts jobs according to the
non-decreasing due dates order. It means that the job with the earliest due date
should be executed firstly. In general, this rule is more effective when it comes to
optimization criteria related to minimizing delay costs.

Example: Let’s consider the classical scheduling problem minimizing the total num-
ber of tardy jobs on single machine, denoted 1|dj |

∑
Uj . Suppose that we have to

schedule 5 jobs defined as follow:

Job(j) 1 2 3 4 5
Processing time (p) 7 6 3 1 5
Due date (d) 8 7 5 4 6

To solve this problem, we call Moor’s algorithm [Moore, 1968] (see Algorithm 8).

Algorithm 8 Moore’s algorithm
1: Compute the tardiness for each job in the EDD sequence. Set NT = 0, and let k be

the first position containing a tardy job. If no job is tardy go to step (4).
2: Find the job j with the largest processing time in positions 1 to k
3: Remove job j from the sequence, set NT = NT + 1, and repeat Step(1)
4: Place the removed NT jobs in any order at the end of the sequence
5: return the obtained sequence (this sequence minimizes the number of tardy jobs)

By applying Moore’s algorithm on sorted jobs according to EDD order, we obtain an
optimal solution with

∑
Uj = 3 (see Figure 3.3).

Job(j) 4 3 5 2 1
Processing time (p) 1 3 5 6 7
Due date (d) 4 5 6 7 8
Tardy jobs (U) 0 0 1 1 1

Figure 3.3: Optimal solution for 1|dj |
∑
Uj

2. Shortest Processing Time (SPT): The shortest processing time rule sorts jobs
according to the non-decreasing processing times order. Whenever a machine can
process one job, the shortest job ready at the time will begin processing. For example,
an algorithm based on this rule is optimal for finding the minimum total completion
time where n jobs should be executed on a single machine without any additional
constraints.

3. Longest Processing Time (LPT): The longest processing time rule sorts jobs
according to the non-increasing processing times order. Whenever a machine can

58

3.1. CLASSICAL SCHEDULING PROBLEMS: MONO-CRITERION OBJECTIVE
FUNCTION

process one job, the largest job ready at the time will begin processing. For example,
to solve m identical parallel machines minimizing makespan, a heuristic based on
this rule gives a solution with good gap from an optimal solution and it is a 4

3 -
approximation heuristic.

4. First Available Machine (FAM): This rule consistes of assigning jobs to the first
available machine. This rule is more efficient when dealing with regular criteria.

Example: The LPT&FAM-heuristic leads to a (4
3 −

1
3m)-approximation for problem

P ||Cmax, and the bound (4
3 −

1
3m) is tight (see [Alharkan, 1997]).

Recall the previous example with 5 jobs to be scheduled on two identical machines. By
applying LPT&FAM-heuristic, we obtain an optimal schedule as presented in Figure 3.2:

• Step1: Jobs are sorted as follow: J4, J2, J1, J5, J3

• Step2: Jobs are assigned to machines as follow:

Machine M1 M2

Job(j) 4 5 2 1 6
Processing time (pj) 4 3 2 2 1
Completion time (Cj) 4 6 3 5 6

Hence, we have an optimal solution with Cmax = max(j=1,...,5)Cj = 6.
However, by considering a second example we can show that LPT&FAM-heuristic can-

not each time find an optimal solution.

Job(j) 1 2 3 4 5
Processing time (pj) 3 3 2 2 2

Applying LPT&FAM-heuristic we have:

Machine M1 M2

Job(j) 1 3 5 2 4
Processing time (pj) 3 2 2 3 2
Completion time (Cj) 3 5 7 3 5

Figure 3.4: LPT&FAM-heuristic minimzing makespan

We obtain Cmax = max(j=1,...,5)Cj = 7. This is not optimal solution. In fact, an
optimal schedule is given by schedule jobs J1 and J2 on machine M1 and the remaining

59

3.2. MULTI-CRITERIA SCHEDULING PROBLEMS

jobs are scheduled on the second machine. In this case, the optimal value of makespan is
C∗max = 6.

Practical situations in scheduling rarely correspond to the optimization of a single
objective. They are generally of a multi-objective nature inherent in the organization’s
various internal performance measures and customer requirements. Hence, let us introduce
multi-criteria scheduling problems and in particular, the main of our study which is dealing
with multi-agent scheduling problems.

3.2 Multi-criteria scheduling problems

When we look at the problems of multi-criteria scheduling problems where several
objective functions mesure the quality of scheduling, here too the theory of scheduling has
received great interest [T’Kindt et Billaut, 2006], [Rios-Mercado et Rios-Solis, 2012] and
[Jozefowska, 2007]. Multi-criteria scheduling problems consider several objective functions
to be optimized, each job to be scheduled is subject to them. More formally, the fk

functions to be minimized depend on the vector C of the completion times of jobs, C =
(C1, . . . , Cn). Under these conditions, the definition can be given by:

MinimizingF (C) = (f1(C), . . . , fk(C), . . . , fK(C))
s.t. S ∈ S = {Any sequence verifying g(C) = b}

Multi-criteria scheduling problems require a different analysis than mono-criterion prob-
lems and the methods applied to obtain Pareto solutions must be adapted to their specifici-
ties. In fact, in multicriteria scheduling area, if we find good solutions with respect to one
objective may be bad with respect to other objectives. Therefore, we must find solutions
of good compromise of the objectives. Smith [Smith, 1956] is the first publication consid-
ering this type of problem where the author studied a single machine scheduling problems
minimizing two criteria: total completion times as well as the maximum lateness. Several
states of the art are proposed later in the literature and the authors propose different clas-
sifications. We can mention the work of Dileepan and Sen [Dileepan et Sen, 1988] which
deals with problems of two-criteria scheduling on a single machine. In [Nagar et al., 1995],
the authors propose a state of the art on multi-criteria scheduling problems. In this work,
the results dealing with the case of single or parallel machines for the minimization of two
or more regular criteria are presented. In [Hoogeveen, 1996] the author was interested in
multi-criteria scheduling problems on a single machine and with several objective functions
such as min-max. When it comes to the bi-criteria problem 1||P (fmax, gmax), the enumer-
ation of the Pareto front is shown polynomial and can be computed in O(n4) running
time. Hoogeveen’s algorithm is based on Lawler’s procedure [Lawler, 1973]. This result
is extended to the case of three criteria 1||P (fmax, gmax, hmax). in this last case, the pro-
posed algorithm is of complexity O(n8). The author also shows that when the number of
criteria is not fixed, the problem is NP-hard in the strong sense. In [Hoogeveen, 2005] the
author presents the most important results on the complexity of multi- criteria scheduling
problems, more precisely, on the criteria minimizing the tardiness and earliness of jobs. A
fairly complete state of the art is proposed in [T’Kindt et Billaut, 2006] where we also find
an extension of the scheduling notation proposed by Graham et al. to the multi-criteria

60

3.2. MULTI-CRITERIA SCHEDULING PROBLEMS

case.

3.2.1 Multi-criteria scheduling problem notations

According to the three-field notation presented in [T’Kindt et Billaut, 2006] which is
an extension of the one proposed by Graham et al. for single-criterion problems, we have :

• α|β|f1, . . . , fK : in the case where several objective functions are to be minimized
and K is the number of functions.

• α|β|ε(f1, . . . , fK): when the ε-constraint approach is considered; we try to minimize
criterion f1, subject to a maximum limit on each of the others objective functions
must be respected. We then associate a vector Q = (Q2, . . . , QK), such that each
element Qk is the upper bound of the criterion fk, k = 2, . . . ,K.

• α|β|Fl(f1, . . . , fK): expresses the linear combination of all criteria.

• α|β|P (f1, . . . , fK): this notation corresponds to the total enumeration of the Pareto
front problem.

• α|β|#(f1, . . . , fK): expresses the study of the number of Pareto solutions of the
problem α|β|f1, . . . , fK .

3.2.2 Example

Let us consider the bi-criteria scheduling problem P2|dj = d|
∑
Uj , Cmax with common

due date. This scheduling problem is NP-hard. Suppose that we have to schedule 5 jobs
on the 2 identical parallel machines where the data are:

Job(j) 1 2 3 4 5
Processing time (pj) 1 2 3 4 5
Due date (dj) 6 6 6 6 6

We know that LPT&FAM-heuristic is efficient for solving scheduling problem P2||Cmax.
Hence, to solve this scheduling problem we can propose the following heuristic:

Step1: Apply LPT&FAM-heuristic to obtain solution σ

Step2: From σ build new solution where jobs assigned to machine M1 (resp. M2) are
scheduled according to SPT rule.

According to Step1, we obtain Cmax = 8 and
∑
Uj = 3:

Machine M1 M2

Job(j) 5 2 1 4 3
Completion time (Cj) 5 7 8 4 7
Tardy job (Uj) 0 1 1 0 1

61

3.3. MULTI-AGENT SCHEDULING PROBLEMS

Figure 3.5: Minimizing both makespan and total tardy jobs on two-identical parallel ma-
chines

Finally, according to Step2, we build another solution. On both machines M1 and M2,
jobs are sequenced with respect to SPT order. We obtain solution presented in Figure 3.6
with Cmax = 8 and

∑
Uj = 2, which is the first optimal Pareto solution

Figure 3.6: Makespan and total tardy jobs minimization: Cmax = 8 and
∑
Uj = 2

Now, if we start with Step2, we obtain a better solution for
∑
Uj = 1 but the value

of the makespan is worsening Cmax = 9 which is the second optimal Pareto solution (see
Figure ??).

Figure 3.7: Makespan and total tardy jobs minimization: Cmax = 9 and
∑
Uj = 1

3.3 Multi-agent scheduling problems

Traditional scheduling models consider that all jobs are equivalent where the qual-
ity of overall scheduling is assessed according to a measure defined by a single objective
function, applied to all jobs with almost no distinction [Baptiste et Brucker, 2004]. The

62

3.3. MULTI-AGENT SCHEDULING PROBLEMS

distinction between jobs is made by generally associating a weighting factor to each job
[Dauzère-Pérès et Sevaux, 2003, Dauzère-Pérès et Pavageau, 2003]. This weight makes it
possible to give more or less importance to one job than another. This distinction may not
be sufficient. However, in this case, the same measure is applied to all work to quantify the
quality of a schedule. Let us take for example, the case of the minimization of the total
weighted completion times of jobs

∑
j∈N wjCj or the minimization of the weighted num-

ber of late jobs
∑

j∈N wjUj [Dauzère-Pérès et Sevaux, 2003]. In these cases, the weight or
importance of the job is represented by the value wj and the same measure applies to all
jobs.

However, in a real-world context, these scheduling models are not always relevant. In
some concrete situations, it may be necessary to examine several aspects of scheduling such
as average completion times, with another measure relating to the respect of due dates.
Give a good compromise between the criteria, it is the challenge of any scheduler. These are
the multi-criteria scheduling problems [T’Kindt et Billaut, 2006, Jozefowska, 2007]. Again,
in these studies, each performance measure is applied to all jobs, which can be perfectly
justified.

In some practical cases, application of the same measure for all jobs may not be rele-
vant, even in the case of classical multi-criteria scheduling. Indeed, it is possible to envisage
a workshop where the job has the following particularity: jobs of a first subset may have
due dates with a possible delay (to be reduced to a minimum), those of a second sub-
set may have deadlines (to be respected obligatorily) and other jobs constituting a third
subset do not have due dates but the objective is to minimize the work in progress. For
the first subset, the decision is to reduce tardiness as much as possible; for the second
subset, it cannot tolerate any delay; for the last type of jobs, we wants to reduce the
total completion times. The scheduling of each subset is evaluated according to different
objectives, but the jobs are all in competition for the use of resources (machines). This
is a multi-criteria scheduling problem where a new type of compromise must be achieved.
These scheduling problems are referred to in the literature as ”multi-agent scheduling“
[Agnetis et al., 2007, Ng et al., 2006a], [Kovalyov et al., 2012] and [Kovalyov et al., 2015]
or ”scheduling with competing agents“ [Agnetis et al., 2004, Agnetis et al., 2009b] or "in-
terfering job scheduling problems" [Hoogeveen, 2005]. Hence, in a multi-agent scheduling
problem, there are several agents, each one is assigned a subset of jobs. Each agent has
its own performance measure that depends solely on the scheduling of his jobs. It is
therefore a local objective. However, agents should share the same resources to complete
their respective jobs. We are therefore looking for a good compromise solution. These
problems are close to the combinatorial optimization area and cooperative game theory
[Agnetis et al., 2000, Agnetis et al., 2009a].

3.3.1 Definitions and notations

A scheduling problem involving several actors, where each has its own decision-making
autonomy, in charge of executing its subset of jobs on the same resources (the jobs are
competing for the use of the same machines), can be assimilated to a multi-agent scheduling
problem, where a new type of compromise must be achieved.

We define the term “agent" as an entity associated with a subset of jobs. This entity

63

3.3. MULTI-AGENT SCHEDULING PROBLEMS

may be associated with another decision maker who intervenes in the choice of the final
solution. Each agent aims to minimize a criterion of his own because it depends only on
his own jobs. These agents compete since they share the same resources.

We note by J the set of n jobs to be scheduled on m parallel machines (m ≥ 1).
Without loss of generality, index j is used to refer to jobs, i for machines, k for agent,
and we note Jkj the jth job of agent k and Mi the ith machine. The following data and
characteristics are associated with each job Jj :

• n: number of jobs to be scheduled;

• nk: number of jobs of agent k;

• pkj : processing time of Jkj on machine Mi (machines are identical);

• Ckj : completion time of Jkj , and we note Ckj (σ) the completion time of Jkj according
to sequence σ;

• dkj : due date of Jkj ; it is a date on which the job should be finished, otherwise a
penalty cost is applied;

• d̃kj : deadline of Jkj , i.e. no tolerance for delays;

• wkj : weight of Jkj .

• Ckmax: makespan of agent k

• Ukj : if Ckj < dkj then job Jkj is late and Ukj = 1; Ukj = 0 otherwise.

3.3.1.1 Competing scenario

This is scheduling problem when the agents are independent, i.e. they have no common
job. It means that all jobs of the same subset J k belong exclusively to the sole agent
k (J A ∩ J B = ∅). In this case, we are talking about a COMPETITION scheduling
problem. This is a class of problems introduced by Agnetis et al [Agnetis et al., 2000,
Agnetis et al., 2004]. In this case the agents’ notation is symmetrical, i.e. the problems
with objective functions fA and gB are the same as the problems with objective functions
gA and fB. According to the three fields notations of scheduling problems, authors propose
to introduce term ′′CO′′ in β-field: α|CO, β|fA, gB (see Figure 3.8).

Figure 3.8: Competing scenario

64

3.3. MULTI-AGENT SCHEDULING PROBLEMS

3.3.1.2 Interfering scenario

In this case the subsets of the jobs are numbered as follows: J = J1 ⊇ J2 ⊇ . . . ⊇ JK .
Note that agent 1 is a global agent (in charge of the whole jobs), i.e. J = J1. According to
the three fields notations of scheduling problems, authors propose to introduce term ′′IN ′′

in β-field: α|IN, β|fA, gB. This class of problems is asymmetric. For example, problems
α|IN, β|fA, gB and α|IN, β|gA, fB may have a different complexity (see Figure 3.9).

Figure 3.9: Interfering scenario

3.3.1.3 Non-disjoint scenario

This is the most general case, in which the two subsets of work can share work, i.e.
∃k and k′ : J k ∩ J k′ 6= ∅. According to the three fields notations of scheduling problems,
authors propose to introduce term ′′ND′′ in β-field: α|ND,β|fA, gB (see Figure 3.10).

Figure 3.10: Non-disjont scenario

3.3.2 Examples

By the following example, we analyze the three scenarios βx ∈ {CO, IN,ND} and
starting by considering classical bi-criteria scheduling problem. The approach considered in
this example is the ε-constraint approach. Let be 6 jobs to be scheduled without preemption
on a single machine, where the objective is to minimize the two criteria:

∑
CAj and CBmax.

The problem data are:

j 1 2 3 4 5 6
pj 1 2 3 4 5 6

Classical bi-criteria problem (BI)
The problem is denoted as 1|BI,CBmax ≤ QB|

∑
CAj . The problem is therefore to determine

a sequence minimizing the total completion times (
∑
CAj) of agent A by respecting the

constraint CBmax ≤ QB (the completion time of the last job is less than or equal to QB).

65

3.3. MULTI-AGENT SCHEDULING PROBLEMS

Figure 3.11: Strict Pareto solution: (
∑
CAj = 44, CBmax = 12)

We notice that there is only one solution that optimizes the
∑
Cj criterion since the

makespan is a constant given by the sum of the processing times. It is therefore the se-
quence σ = (1, 2, 3, 3, 4, 5, 6) where the jobs are scheduled in SPT order, with

∑
CAj = 56

and CBmax = 21.

Competition problem (CO)
Here, it is a scheduling problem with two competing agents where the two subsets of the
jobs are independent, i.e. JA ∩ JB = ∅. The problem 1|CO,CBmax ≤ QB|

∑
CAj consists

in looking for a solution that minimizes
∑
CAj of agent A’s jobs while respecting the

upper bound QB imposed on the makespan of agent B’s jobs. In this case, the value of
each agent’s objective function is based solely on the completion times of each respective
agent’s jobs.

With the same data of previous example, we assume that agent A should perform
the following 4 jobs: (JA1 = J2; JA2 = J3; JA3 = J4; JA4 = J5). The jobs of agent B are
(JB1 = J1; JB2 = J6).

As it is a question of respecting the upper bound on agent B’s makepan, their comple-
tion times are given by the last scheduled job. In this case, it is trivial to consider a single
job JB0 of agent B to be scheduled with processing time pB0 = pB1 + pB6 = 7, since the value
of agent A’s objective (

∑
CAj) is independent of the completion times of agent B’s jobs, i.

e. agent B’s jobs are to be performed contiguously.
By listing all solutions, we have only five optimal strict Pareto. Any other solution is

therefore dominated. We have:

1. (JA2 , J
A
3 , J

A
4 , J

A
5 , J

B
0): criteria values are (

∑
CAj , C

B
max) = (30, 21)

2. (JA2 , J
A
3 , J

A
4 , J

B
0 , J

A
5): criteria values are (

∑
CAj , C

B
max) = (37, 16)

3. (JA2 , J
A
3 , J

B
0 , J

A
4 , J

A
5): criteria values are (

∑
CAj , C

B
max) = (44, 12)

4. (JA2 , J
B
0 , J

A
3 , J

A
4 , J

A
5): criteria values are (

∑
CAj , C

B
max) = (51, 9)

5. (JB0 , J
A
2 , J

A
3 , J

A
4 , J

A
5): criteria values are (

∑
CAj , C

B
max) = (58, 7)

Thus, for example, for QA = 46, the only strict Pareto solution corresponds to the
sequence (JA2 , J

A
3 , J

B
0 , J

A
4 , J

A
5) for a value of CBmax = 12 with

∑
CAj = 44 (see Figure 3.11).

Interfering problem (IN)
The problem denoted 1|IN,CBmax ≤ QB|

∑
CAj corresponds to a multi-agent scheduling

problem with two agents: agent A aims to minimize the total completion times of all jobs,
however, agent B seeks to minimize the completion time of his jobs.

66

3.3. MULTI-AGENT SCHEDULING PROBLEMS

With the same data of previous example, we assume that the jobs of agent B are
(JB1 = J1; JB2 = J6), as in the case of CO.

The first observation we can make in this case is that the execution of agent B’s jobs
in a contiguous manner is not dominant. Thus, the number of combinations increases
compared to the previous case, i.e. we can have more strict Pareto solutions in this case
than in the CO case. Thus, for a value Q2 = 12 for example, the optimal sequence is
(J1, J2, J3, J6, J4, J5) where the values of criteria are:

∑
C1
j = 59 and C2

max = 12

Non-disjoint problem (ND)
The problem denoted 1|ND,CBmax ≤ QB|

∑
CAj corresponds to a multi-agent scheduling

problem with two agents: agent A aims to minimize the total completion times of all jobs,
however, agent B seeks to minimize the completion time of his jobs. In this case, the
value of each agent’s objective function is based on the completion times of each respective
agent’s jobs including the common job.

With the same data of previous example, we assume that agent A should perform 3
jobs belonging to him: (JA1 = J2; JA2 = J3; JA3 = J4) and the fourth job J (A,B)

1 = J5 that
shares it with agent B. Hence, the jobs of agent B are (JB1 = J1; JB2 = J6) and the third
job J (A,B)

1 .
As case CO, it is trivial to consider a single job JB0 of agent B to be scheduled with

processing time pB0 = pB1 + pB6 = 7. However, as there is a sharing job, its completion time
contributes to both criteria. Dealing with criterion of agent A this job should be executed
earliest, i.e. before job JB0 and therefore agent’s A jobs (including J (A,B)

1) are scheduled
in SPT order.

By listing all solutions, we have only four optimal strict Pareto. Any other solution is
therefore dominated. We have:

1. (JA2 , J
A
3 , J

A
4 , J

(A,B)
1 , JB0): criteria values are (

∑
CAj , C

B
max) = (30, 21)

2. (JA2 , J
A
3 , J

(A,B)
1 , JB0 , J

A
4): criteria values are (

∑
CAj , C

B
max) = (38, 17)

3. (JA2 , J
(A,B)
1 , JB0 , J

A
3 , J

A
4 ,): criteria values are (

∑
CAj , C

B
max) = (47, 14)

4. (J
(A,B)
1 , JB0 , J

A
2 , J

A
3 , J

A
4): criteria values are (

∑
CAj , C

B
max) = (57, 12)

Thus, for example, for QA = 50, the only strict Pareto solution corresponds to the
sequence (JA2 , J

(A,B)
1 , JB0 , J

A
3 , J

A
4 ,) for a value of CBmax = 14 with

∑
CAj = 47

3.3.3 Complexity study

Let Π1 and Π2 be two problems, we note Π1 ∝ Π2 if Π1 is at least as difficult as Π2.
The following proposal was made [Agnetis et al., 2014].

Proposition 1 The following proposals are true:

67

3.3. MULTI-AGENT SCHEDULING PROBLEMS

1. α|β|fk ∝ α|β|f1, . . . , fk, . . . , fK (Mono-criterion scheduling problem ∝Multi-criteria
scheduling problem)

2. α|β|fk ∝ α|CO, β|f1, . . . , fk, . . . , fK (Mono-criterion scheduling problem ∝ Com-
puting scheduling problem)

3. α|β|fk ∝ α|IN, β|f1, . . . , fk, . . . , fK (Mono-criterion scheduling problem ∝ Interfer-
ing scheduling problem)

4. α|CO, β|f1, . . . , fK ∝ α|ND,β|f1, . . . , fK (Competing scheduling problem ∝ Non-
disjont scheduling problem)

5. α|IN, β|f1, . . . , fK ∝ α|ND,β|f1, . . . , fK (Interfering scheduling problem ∝ Non-
disjont scheduling problem)

According to Proposition 1, we deduce that multi-criteria scheduling problems are a special
case of the interfering scheduling problem. Indeed, according to the definition of interfering
scenario the subset of jobs are all included or equal to the total set of jobs J . On the other
hand, obviously the non-disjoint scenario is the general case, and hence any scheduling
problem is reduced to this general case (see Figure 3.12).

MULTICRITERIA

INTERFERING

NON DISJOINT

COMPETING
6

> }

Figure 3.12: Reduction graph between scenarios

We know that if mono-criterion scheduling problem α|β|f is NP-hard then all multi-
criteria scheduling problems including at least objective function f are NP-hard. Figure
3.12 shows that: if the multi-criteria scheduling problem is NP-hard, then both interfering
and non-disjoint multi-agent scheduling with the same objective functions are also NP-
hard. If an algorithm polynomial can solve non-disjoint jobs, then this algorithm can be
applied to both multi-criteria and interfering jobs problems, and also to the competing
case.

Let’s now consider linear combination of criteria approach. Determine an optimal
solution for non-disjoint scheduling problem we have to minimize: F =

∑K
k=1 λkf

k.

Proposition 2 If objective functions fk are the same and are of type min − sum, i.e.
fk =

∑
Jj∈J k f(Cj), then non-disjoint scheduling problem α|ND,β|Fl(f1, . . . , fK) and

mono-criterion scheduling problem α|β|
∑

Jj∈J wjfj are equivalent.

Proof : Suppose that the objective functions fk all the same and of type min− sum.
Hence, for each job Jj we can define weight wj as follow: wj =

∑K
k=1 λkxjk, where

68

3.3. MULTI-AGENT SCHEDULING PROBLEMS

xjk = 1 if Jj ∈ J k; 0 otherwise. In this case, the non-disjoint scheduling problem
α|ND,β|Fl(f1, . . . , fK) is equivalent to α|β|

∑
Jj∈J wjfj (the mono-criterion scheduling

problem).
For example, let’s consider the multi-agent scheduling problem 1|ND|Fl(

∑
w1
jC

1
j , . . . ,∑

wKj C
K
j). According to Proposition 2, this problem is equivalent to 1||

∑
wjCj where an

optimal solution can be obtained in O(nlogn) running time, i.e. jobs are scheduled accord-
ing toWSPT rule. However, scheduling problem 1|ND|

∑
w1
jC

1
j , . . . ,

∑
wKj C

K
j admits an

exponential number of strict Pareto solutions. In fact, in competing case Hoogeveen show
that the scheduling problem 1|CO|

∑
w1
jC

1
j , . . . ,

∑
wKj C

K
j accepts an exponential optimal

solutions, even if K = 2 [Hoogeveen, 1992].

3.3.4 Studied problems and motivations

3.3.4.1 Studied problem

In this thesis, the studied problem denoted Pm|ND, dA|CBmax,
∑
UAj corresponds to a

multi-agent scheduling problem with two agents: agent A aims to minimize the number
of late jobs, however, agent B seeks to minimize the completion time of his jobs. In this
case, the value of each agent’s objective function is based on the completion times of each
respective agent’s jobs including the common jobs. Agent A‘s jobs should be achieved
before a common due date dA. However, agents should share the same identical parallel
machines to complete their respective jobs. We are therefore looking for a good compromise
solution. To determine a Pareto optimal solution or the optimal Pareto front, ε-approach,
linear combination of criteria and enumerating Pareto front are considered. in this study the
symmetric case is also studied, i.e. ε-constraint problems Pm|ND, dAj , CBmax ≤ QB|

∑
UAj

and Pm|ND, dBj ,
∑
UBj ≤ QB|CAmax.

3.3.4.2 Complexity of studied problem

In general, if mono-criterion scheduling problem is NP-hard then the correspond-
ing multi-agent scheduling problem on term of the objective function is also NP-hard
[Agnetis et al., 2014]. Hence, the studied scheduling problem Pm|dB|

∑
UBj , C

A
max is also

NP-hard. Note that in the case of single machine scheduling, Competing ε-constraint prob-
lem 1|CO, dAj , CBmax ≤ QB|

∑
UAj is polynomial and can solved in O(nAlognA+nB+lognB)

time by suitable generalization of Moor’s algorithm [Agnetis et al., 2014]. This result is
always valid for any regular min −max type criterion of agent B, i.e. 1|CO, dAj , fBmax ≤
QB|

∑
UAj is polynomial. Unfortunately, this result cannot be applied to the other sce-

narios IN and ND. Thus, the complexity of the ε-constraint problems 1|IN, dAj , CBmax ≤
QB|

∑
UAj and 1|ND, dAj , CBmax ≤ QB|

∑
UAj is still open. In our study, we focus on the

common due date, denotes dk, k ∈ A,B.
To compute the Pareto set, obviously agent A holds

∑
UAj . So, there are O(nA)

Pareto optimal solutions. Hence, in the competing scenario 1|CO, dA|P (
∑
UAj , C

B
max) can

be solved in polynomial time.
Example

69

3.3. MULTI-AGENT SCHEDULING PROBLEMS

Let’s consider the two-machine multi-agent scheduling problem P2|ND, dB = 6,
∑
UBj ≤

0|CAmax where ε−constraint approach is used to determine an optimal schedule. Note that
agent B wants to execute all his tasks in time (no tardy jobs for agent B). The set jobs
data problem are:

Job(j) 1 2 3 4 5
Processing time (p) 1 2 3 4 5
Agent A,B B A A B

The common due date is: dB = 6. If we reuse the optimal solution for agent A, we
obtain CAmax = 4. But for agent B we have:

∑
UBj = 1, see Figure 3.13.(a) (that is not

satisfy the request).

Figure 3.13: Minimizing makespan and number of tardy jobs on two machines

Let’s now consider a second solution as presented in Figure 3.13.(b). Then we have
CAmax = max(j=1,3,4)C

A
j = 9 and

∑
UBj = 0 (that is satisfy the request).

3.3.4.3 Motivations

The problem addressed in this thesis may occur in a computer system, such as networks
or IT project management.
Network systems
Scheduling with competing agents can occur in networks, more precisely when switching
packets in an asynchronous ATM time transfer mode or in a computing grid (see Figure
3.14.

For ATM networks, known as service integration networks, they are networks that carry
various types of traffic such as voice, video, image by transfer, and various types of com-
puter data. In such systems, the information carried by the network is first divided into
small packets. These packets are put in a "buffer" tempo zone waiting for transmission
and a scheduling algorithm determines the order of their transmission. It is relevant to
classify these types of traffic according to whether they have constraints on their comple-
tion time (e. g. deadline), or whether they should be processed as soon as possible, i.
e. without constraints on the completion time. Therefore, the diversity of traffic implies
various objective functions. For example, for most types of computer data, performance
is generally measured by considering the average queue flow, which is equivalent to mini-
mizing the total weighted completion times

∑
j wjCj . However, packets corresponding to

70

3.3. MULTI-AGENT SCHEDULING PROBLEMS

voice and video, if they remain in a queue for a long time and do not reach their des-
tination in time for playback, will be lost. The appropriate objective for these packages
is surely to minimize the average number of weighted late jobs, which we note

∑
j wjUj

[Peha et Tobagi, 1990]. Therefore, some treatments can be mutualized and then these
tasks form common processes. This is typically the case of threads execution, which they
share information about the state of the process, memory zones, and other resources. This
is a non-disjoint multi-agent scheduling problem.

Figure 3.14: No-disjoint multi-agent scheduling problem vs Networks

IT project management
A well-known French digital services company (ESN), an expert in the field of new tech-
nologies and IT, supports its client companies in the implementation of IT projects (see
Figure 3.15). These projects can compete for the use of renewable resources shared over
time (people with diverse and varied skills) [Dhib et al., 2011]. Each project manager is re-
sponsible for the execution of his project and must therefore negotiate the use of resources
with the other project managers. In this case, all the activities of an agent are defined
by the tasks of his project. All projects are disjointed. However, some of the activities
carried out may benefit other projects (web development, database, administration, test
platform, etc.). Each project manager therefore tries to build his team by defining a share
allocated to each one, i.e. to define the participation rate per week of a person in the
project in question. A person can be involved in various projects. The objective of each
project manager is to complete the project as quickly as possible, while maximizing the
satisfaction of the people assigned to the tasks.

Figure 3.15: No-disjoint multi-agent scheduling problem vs IT projects

71

3.4. MAIN RESULTS RELATED TO THE STUDIED PROBLEMS

3.4 Main results related to the studied problems

The scheduling problem on a single machine with competing agents ”CO“ has been
widely studied in the literature [Baker et Smith, 2003, Agnetis et al., 2004, Yuan et al., 2005,
Ng et al., 2006a, Cheng et al., 2008] unlike the Interferering case ”IN“ which is particularly
studied in [Huynh Tuong et Soukhal, 2009] and [Huynh Tuong et al., 2012]. In this sec-
tion, it is not a question of establishing a complete state of the art but of highlighting
the most relevant results in terms of links with our approach and objectives, namely the
exact resolution of problems with the ε constraint approaches and the linear combination
of criteria. The complexity of enumerating the Pareto front is deduced, where possible. In
[Agnetis et al., 2014], a large complete state of the art is established where general table
summarizing the results elaborated on the complexity of multi-agent scheduling problems.
This book is hence dedicated to the multi-agent scheduling problems. The authors give
an introduction to multi-agent scheduling, introducing general definitions and notation,
several resolutions approach for multicriteria problems and different scenario when consid-
ering several agents. A lot of the algorithms have been presented dealing with different
criteria, in particular regular criteria.

In 2004 Agnetis et al. [Agnetis et al., 2004] were the first, to our knowledge, to in-
troduce definitions and concepts of multi-agent scheduling problems. The authors are
interested in the COMPETITION case when the ε-constraint approach is considered for
regular criteria. New complexity results and dynamic programming algorithms have been
developed. Agnetis et al. are also interested in listing all non-dominated solutions (Pareto
front) [Agnetis et al., 2007].

Note that in 2003, Baker and Smith [Baker et Smith, 2003] studied a scheduling prob-
lem on a single machine in charge of performing jobs for two or three clients. Unlike the
classic case where a single measure is applied to all client work, the authors consider an
aggregation function on all client criteria. This is therefore the case of COMPETITION
with two and three agents where the criteria to be minimized are: the makepan Cmax, the
maximum delay Lmax and the total weighted execution time of the work

∑
wjCj . Baker

and Smith show that the combination of these criteria makes the problem, in some cases,
NP-hard. Additional results to the work of Baker and Smith were provided by Yuan et
al. [Yuan et al., 2005]. Other works were introduced much earlier as presented in section
3.3.4.3 [Peha, 1995].

The COMPETITION problem withK agents was addressed in [Ng et al., 2006a], where
the objective of each subset is to minimize the weighted total number of late jobs. The
goal programming approach is considered. In the case where K is not fixed, the problem
is shown NP-hard in the strong sense. However, it can be resolved in pseudo-polynomial
time when the number of agents (K) is fixed and a fully polynomial approximation scheme
(FPTAS) is proposed. In the case where the weights of the work are unitary, the problem
is shown polynomial. In [Ng et al., 2006b], authors show that problems with two agents
for minimizing the total weighted completion times and minimizing the maximum lateness
are NP-difficult in the strong sense, and propose a pseudo-polynomial algorithm for the
problem with unit weights.

In 2008, Cheng et al. also looked at the COMPETITION case with K agents, where

72

3.4. MAIN RESULTS RELATED TO THE STUDIED PROBLEMS

each agent’s objective is of the type min-max [Cheng et al., 2008]. The goal programming
approach is considered. The authors show that the feasibility problem can be solved in
polynomial time, even in the presence of precedence constraints. Some polynomial cases
are identified.

Agnetis et al. [Agnetis et al., 2009a] propose a branch& bound method to solve three
scheduling problems with two competing agents on a single machine. Lagrangian relax-
ation is used to obtain a lower bound. The criteria chosen lead to an effective resolution in
polynomial time of the Lagrange dual. The problems considered minimize the total com-
pletion times of the first agent, where upper bounds on the makespan, maximum lateness
or total weighted completion times of the second agent should be respected.

In [Lee et al., 2009], authors treat problems with K agents. In their model, each agent
minimizes the weighted total completion times of its own jobs. An approximation algorithm
is given. In [Leung et al., 2010], authors propose a complexity analysis for two agents
competing scheduling problem with single machine. The agents’ criteria are min-max,
total weighted completion times, total tardiness and total number of tardy jobs. Some
jobs have specific execution constraints: Agent A’s jobs is carried out without pre-emption
and are not available at time zero, where Agent B’s jobs are all available at time zero and
they can pre-empted. The authors show the NP-hardness of their studied problems by a
reduction from the PARTITION problem.

In [Wu et al., 2013] examine the problem with two disjoint agents each aiming to min-
imize the total weighted completion times of his jobs with release dates. The authors show
that the problem studied is NP-hard in the strong sense. Several dominance conditions
are proposed and implemented in a branch&bound procedure. Four genetic algorithms and
ant colonies optimization heuristic are proposed. Their experiments show that the exact
procedure solves instances of 16 jobs, and that the use of the results of the approached
methods considerably improves its performance in terms of computation time and the
number of nodes explored. [Lee et al., 2013] consider two competing disjointed agents on
a single machine. One of the agents aims to minimize the linear combination of the total
completion times and the maximum lateness, while the second agent does not admits any
delay for his jobs. A procedure by separation and evaluation resolving instances of 24 jobs
has been developed. In [Ketan et Balasubramanian, 2014], the authors study two NP-
hard problems. The considered criteria of the first problem are the minimization of the
total completion times as well as the minimization of the number of late jobs. An effective
heuristic combining SPT and EDD rules is developed. The second problem, agent A are
looking for solution that minimizes the weighted total completion times and the second
agent wants to minimize the maximum lateness. Another efficient heuristic both based on
WSPT and EDD rules is developed.

Three disjoint agents are considered in [Lee et Wang, 2014]. The first wants to minimize
the total weighted completion times while respecting two constraints: the second agent’s
makepan does not exceed a given value and the third agent must ensure a maintenance task
between two very specific dates. For this particular problem, the authors develop an exact
method based on branch&bound procedure. The lower bound used is based on the results
of Posner [Posner, 1985]. The main idea of the proposed resolution method is to solve the
problem with pre-emption when the maintenance task is scheduled as late as possible.

73

3.4. MAIN RESULTS RELATED TO THE STUDIED PROBLEMS

Concerning interfering scenario, i.e. results related to multi-agent problems with a
global objective function can be found in [Huynh Tuong et al., 2011]. In fact, the authors
introduce new complexity results of several single-machine problems in which the agents
compete to perform their objectives, knowing that they all have an impact on the global
objective function. The authors consider both linear combination and ε− constraint ap-
proaches. Dynamic programming and specific polynomial algorithms are also proposed.
Interfering two-agent parallel machines problems are also tackled in [Sadi et al., 2014].
Pseudo-polynomial dynamic programming algorithms are derived for various problems with
the different combination of the objective functions.

We will not recall here the results of the literature dealing with the classical multi-
criteria scheduling problems. T’Kindt and Billaut’s book [T’Kindt et Billaut, 2006] presents
a detailed study of the main results.

Very few results of the literature on the COMPETITION case are dedicated to the case
of m parallel machines. Remember that the case 1|CO|

∑
CAj ,

∑
CBj is NP -hard. The

COMPETITION problems Pm|CO|fA, fB are therefore NP -hard, whatever the classical
regular objective function considered.

Peha [Peha, 1995] considers the case of scheduling jobs in networks on identical pro-
cessors, P |rj , pj = 1, dj |lex(

∑
wjU

A
j ,
∑
wjC

B
j). The authors propose pseudo-polynomial

algorithms according to the due dates. However, these due dates in a network context are
generally limited by the number of jobs.

Balasubramanian et al. [Balasubramanian et al., 2009a] are interested in COMPE-
TITION scheduling on identical parallel machines in the presence of two agents, noted
Pm|CO|ε

(∑
CAj /C

B
max

)
. The problem is NP -hard in the ordinary sense. The authors

develop efficient heuristics to enumerate the Pareto front. As it is the CBmax criterion, on
each machine the jobs of agent B are grouped into a block, thus separating agent A’s jobs
into two blocks. The jobs of agent A (or agent B) is scheduled according to the SPT (or
LPT) order. An evolutionary algorithm has been developed. The authors also propose
a MIP to generate all the strictly non-dominated solutions in an iterative way. In their
study, the varepsilon-constraint approach is considered. Similarly, an optimal solution for
the Pm||ε(

∑
wjC

A
j)/CBmax) can be obtained in pseudo-polynomial running time where a

dynamic program is proposed to calculate a Pareto solution.
In [Elvikis et al., 2011], the authors consider the problemQm|CO, pj = p|P

(
fAmax, f

B
max

)
.

For the enumeration of all solutions of the strict Pareto, the authors propose a polynomial
algorithm in O(n2

A + n2
B + n2

B + nAnBlog(nB)) (nA and nB correspond to the number of
jobs of each agent). The authors also study the classic cases fkmax ∈ {Lkmax, Ckmax}.

In the context of scheduling problems in grids, in [Cordeiro et al., 2011], the authors
are interested in the case of K multi-agent scheduling problems where the objective is
the distribution of loads under an overall objective function that is the makepan, it is
about interfering scenario. The authors propose a 2-approximation algorithm to calculate
collaborative solutions.

Dealing with multi-agent scheduling problems, few polynomial cases have been identi-
fied. The problem P2|CO, pmtn|ε(

∑
CAj /f

B
max) is shown polynomial. However, the case

of 3 machines remains open [Wan et al., 2010]. In [Sadi et al., 2014] authors show that
when preemption is considered and objective function of each agent is the same and is

74

3.4. MAIN RESULTS RELATED TO THE STUDIED PROBLEMS

of type min-max, the parallel machines interfering multi-agent scheduling problems are
polynomial. In [Sadi et Soukhal, 2017], authors give complexity analyses for multi-agent
scheduling problems with a global agent and equal length jobs. The authors had the new
results in scheduling problem where disjoint agents are competing to schedule their jobs on
the same identical parallel machines and aim at minimizing their own objective functions.
A global objective function on the set of jobs has to be minimized. All the jobs have equal
length requirements. Their new complexity results and polynomial time algorithms are
developed.

For non-disjoint multi-agent scheduling problems and based on the reduction graph
presented in section 3.3.3, we can deduce the following complexity results presented in
Table 3.1 and Table 3.2 (see [Agnetis et al., 2014]).

Problem Complexity
1|ND|αCB

max + βCA
max O(n)

1|ND|αfB
max + βfA

max O(n4)
1|ND|α

∑
CB

j + βCA
max O(nB lognB)

1|ND|α
∑
CB

j + βfA
max O(n4)

1|ND|α
∑
wB

j C
B
j + βCA

max O(n logn)
1|ND|α

∑
wB

j C
B
j + βLA

max sNPH
1|ND|α

∑
CB

j + β
∑
CA

j O(n logn)
1|ND|α

∑
wB

j C
B
j + β

∑
wA

j C
A
j O(n logn)

1|ND|α
∑
CB

j + β
∑
UA

j bNPH
1|ND|α

∑
wB

j C
B
j + β

∑
UA

j sNPH
1|ND, dBj = dAj |α

∑
UB

j + β
∑
UA

j O(n3)
1|ND|α

∑
UB

j + β
∑
UA

j bNPH
sNPH: strongly NP-Hard. bNPH: binary NP-Hard.

Table 3.1: Complexity results of non-disjoint two-agent scheduling problems: Linear com-
bination approach

Problem Complexity
1|ND, f2

max ≤ Q2, ..., f
K
max ≤ QK |f1

max O(n2)
1|ND, f2

max ≤ Q2, ..., f
K
max ≤ QK |

∑
C1

j O(n logn)

1|ND,C2
j ≤ Q2, ..., C

K
j ≤ QK |

∑
C1

j bNPH, O(n2K−1Q
K−1

)

1|ND, d1j = d2j = ... = dKj ,
∑
U2

j ≤ Q2, ...,
∑
UK

j ≤ QK |
∑
U1

j O(nk+1)
1|ND, d1j = d2j = ... = dKj ,

∑
w2

jU
2
j ≤ Q2, ...,

∑
wK

j U
K
j ≤ QK |

∑
w1

jU
1
j bNPH, O(nW1Q2, Q2, ..., QK)

1|ND|αkC
k
max O(n2K)

1|ND|
∑K−1

k=1 αk(
∑
wk

jC
k
j) + αKC

K
max O(n logn)

1|ND|
∑K

k=1 αk(
∑
wk

jC
k
j) O(n logn)

1|ND|
∑K−1

k=1 αk(
∑
wk

jC
k
j) + αK

∑
UK

j sNPH

1|ND|
∑K−1

k=1 αk(
∑
Uk

j) + αK

∑
wK

j C
K
j sNPH

1|ND, dkj = dj |
∑K−1

k=1 αk

∑
Uk

j O(nK+1)

Table 3.2: Complexity results of non-disjoint K-agent scheduling problems
Note: K fixed. We let U denote Q = max2≤k≤K{Qk}

75

3.5. CONCLUSION

3.5 Conclusion

This chapter is devoted to a general overview of scheduling problems, in particular
to multi-agent scheduling problems. At first, The notion of multi-agent scheduling is
defined to remove any ambiguity with multi-agent systems. Some definitions, examples
and notations used throughout this manuscript are then introduced for ease of reading.
To situate our research work in relation to the specialized literature, a synthesis of multi-
agent scheduling problems is presented, drawing links and differences between the different
scenarios identified. Our work focuses on a particular class of multi-objective scheduling
problems “Non-disjoint scenario”. Based on the reduction graph presented in section 3.3.3,
some complexity results are deduced. We then introduce the studied scheduling problem
and our motivations based on real-application, denoted Pm|ND, dB|

∑
UBj , C

A
max. As

there are few results, at the and of this chapter, we present some related works. The next
chapters are dedicated to the developed resolution methods (exact and heuristics).

76

Chapter 4

Exact methods and solvable cases

Résumé: Dans ce chapitre, nous analysons les propriétés de la solution optimale de
Pareto des problèmes d’ordonnancement multi-agents étudiés. Plus précisément, nous nous
intéressons à la classe de scénario non disjoint, noté ND. Une définition détaillée de cette
classe de problèmes est rapplée dans la section 3.3. Nous rappelons que chaque agent est
associé à son ensemble de travaux, mais certains travaux sont communs aux deux agents.
Chaque agent minimise une fonction objective qui dépend de ses propres tâches. Cette
classe de problèmes n’a pas connu le même développement théorique que les autres classes
de problèmes d’ordonnancement multi-agents. Notre objectif dans ce chapitre est de pro-
poser d’abord, une étude sur la structure de la solution optimale de Pareto. Ensuite, nous
analysons quelques cas particuliers pour identifier ceux qui peuvent être résolus en temps
polynomial. Ainsi, le cas d’une seule machine est étudié où l’on montre que les problèmes
sont polynomiaux. Lorsque les travaux sont de même temps de traitement (durées opéra-
toires identiques), des algorithmes polynomiaux sont proposés pour les machines paralléles.
A la fin de ce chapitre, nous proposons deux MILPs pour calculer le front de Pareto exact.
Des résultats expérimentaux montrant la performance de ces deux MILPs sont présentés
et discutés.

Abstract: In this chapter we analyse the properties of Pareto optimal solution of
studied multi-agent scheduling problems. More precisely, we are interested in the class
of non-disjoint scenario, this class is denoted ND. A detailed definition of this class of
problems is given in section 3.3. We recall that each agent is associated with his set of
jobs, but some jobs are common. Each agent minimizes an objective function that depends
on its own jobs. This problem class has not undergone the same theoretical development
as the other multi-agent scheduling problem classes. Our objective in this chapter is to
propose a study of the structure of Pareto optimal solution. Then, we analyze some
particular cases to identify those that can be resolved in polynomial time. Thus, the case
of a single machine is studied where we show that the problems are polynomial. When
the jobs are equal length (identical processing times), polynomial algorithms are proposed
for parallel machines. At the end of this chapter, we propose two MILPs to compute the
exact Pareto front. Experimental results showing the performance of these two MILPs are
conducted and presented.

77

4.1. STUDIED PROBLEMS

4.1 Studied problems

In this chapter, the addressed scheduling problems are the following:

• Single-machine case

1. 1|ND, dB,
∑
UBj ≤ QB|CAmax

2. 1|ND, dA, CBmax ≤ QB|
∑
UAj

3. 1|ND, dB|P (CAmax,
∑
UBj)

• m-paralle machines with equal length jobs

1. Pm|ND, dB, pj = p,
∑
UBj ≤ QB|CAmax

2. Pm|ND, dA, pj = p, CBmax ≤ QB|
∑
UAj

3. Pm|ND, dB, pj = p|P (CAmax,
∑
UBj)

• m-paralle machines, general case

1. Pm|ND, dB,
∑
UBj ≤ QB|CAmax

2. Pm|ND, dA, CBmax ≤ QB|
∑
UAj

3. Pm|ND, dA, |P (
∑
UAj , C

B
max)

In this chapter, the exact methods are applied to the problems resulting from the use
of ε-constraint approach Pm|ND|ε(fA/fB) with QB the maximum bound on the agent
B’s criterion. Recall that jobs of agent A (respectively B) are in J A (respectively J B).
We denote by J A,B the set of common jobs, if necessary.

4.2 Preliminary results

Dealing with non-disjoint scheduling problem and two agents, in the following we pro-
pose a study on the structure of non-dominated solutions. This study provides subsequently
some reflections for the design of our resolution methods and also justifies the choice of
coding for proposed metaheuristics and matheuristics presented in the next chapters.

Let be the problem Pm|ND, dAj = dA|ε(
∑
UAj /C

B
max) where agent A aims to minimize

his number of tardy jobs, under the constraint that agent B’s makespan does not exceed
QB. It should be noted that this problem is equivalent to the mono-criterion scheduling
problem minimizing the number of tardy jobs: Pm|dj , d̃j |

∑
Uj with:

• ∀Jj ∈ J A \ J A,B: dj = dA and d̃j = UB

• ∀Jj ∈ J A,B: dj = min(dA, QB) and d̃j = QB

• ∀Jj ∈ J B \ J A,B: dj = d̃j = QB.

78

4.2. PRELIMINARY RESULTS

where UB is an upper bound on the makespan of all jobs
Schedule σ is called Pareto optimal solution if there does not exist another solution

that dominates it. On the basis of the studied problem properties, we want to determine
the overall structure of the Pareto solutions. Some of these properties are a generalization
of classical single machine scheduling problems. According to QB and dA, jobs of agent A
are submitted to at most two common due dates. Hence, it is easy to see that they have
to be sequenced on each machine according to their shortest processing time order, thus
to minimize the number of tardy jobs of agent A. It can also be shown that on a given
machine, the tardy jobs of agent A that belong to J A \ J A,B, have to be scheduled last,
otherwise the makespan of the agent B can be increased. So, we can write the following
propositions.

According to values of dA and QB we have the two following propositions.

Proposition 3 Case dA ≤ QB
If the scheduling problem Pm|ND, dAj = dA, CBmax ≤ QB|

∑
UAj accepts a solution, it is

then possible to build an optimal sequence such that on each machine we have three blocks
of jobs, may happen certain blocks are empty (see Figure 4.1):

1. Early jobs from J A are scheduled first according to SPT rule;

2. The rest jobs of J B (some of them may be are common jobs, so they are tardy jobs)
form the second block and are performed contiguously closely to QB;

3. Tardy jobs of agent A (i.e. the remaining jobs from J A \J A,B) are scheduled in any
order at the end of the sequence and hence form the last block of jobs.

Figure 4.1: Structure of an optimal solution

Proof :

• Proof of 3.1: let’s consider JAj1 and JAj2 two early jobs assigned to the same machine
such that pj1 > pj2 . Let σ be a sequence given by the concatenation of sub-sequences
πl: σ = π1//J

A
j1
//π2//J

A
j2
//π3). According to σ we have: Cj1(σ) < Cj2(σ) ≤ dA.

The new sequence σ′ is constructed by switching between the two jobs. In this case
we have: Cj2(σ′) < Cj1(σ) ≤ dA and Cj1(σ′) = Cj2(σ). So, the new sequence σ′ is
feasible, and we have

∑
UAj (σ) =

∑
UAj (σ′). Note that CBmax(σ′) may be improved

as Cπ2(σ′) < Cπ2(σ) Hence, sequence σ′ cannot be dominated by sequence σ (see
Figure 4.2).

79

4.2. PRELIMINARY RESULTS

Figure 4.2: Proof of Proposition 3.1

• Proof of 3.2: Let’s consider JB1 and JB2 two jobs of agent B assigned to the same
machine such that there exist some jobs only of agent A scheduled between these two
jobs. Let σ be a feasible schedule defined by the concatenation of sub-sequences πl:
σ = π1//J

B
j1
//π2//J

A
j //J

B
j2
//π3.

Then, we have: Cj1(σ) < Cj(σ) < Cj2(σ) ≤ QB.

If JAj is early then we build new sequence σ′ by switching between JBj1 and JAj .
Note that in this case, JBj1 is in J B \ J A,B; Else it is early job. Then we have:
σ′ = π1//J

A
j //π2//J

B
j1
//JBj2//π3. So, we have CAj1(σ′) < CAj (σ) and then

∑
UAj (σ) =∑

UAj (σ′) with CBmax(σ) = CBmax(σ′). If JAj is late job, then it is removed to be
scheduled at the end of σ. This is done without deterioration of objectif value of
agent A. We have: CBmax(σ′) ≤ CBmax(σ). Hence, sequence σ′ cannot be dominated
by sequence σ (see Figure 4.3).

Figure 4.3: Proof of Proposition 3.3

• Proof of 3.4: trivial case.

Proposition 4 Case dA > QB
If the scheduling problem Pm|ND, dAj = dA, CBmax ≤ QB|

∑
UAj accepts a solution, it is

then possible to build an optimal sequence such that on each machine we have three blocks
of jobs, may happen certain blocs are empty (see Figure 4.4):

80

4.2. PRELIMINARY RESULTS

1. Jobs from J B are performed contiguously and define the first block of jobs;

2. The rest early jobs from J A are scheduled in the second block according to SPT rule;

3. The rest jobs from J A (tardy jobs) are performed contiguously and form the thrird
block.

Proof : the proof is given by pairwise interchange argument based on the same way to
proof Proposition 3.

Figure 4.4: Proof of Proposition 4

Proposition 5 Let σ a Pareto optimal solution of scheduling problem Pm|ND, dBj =

dB,
∑
UBj ≤ QB|CAmax. It is then possible to build an optimal sequence such that on each

machine we have three blocks of jobs, may happen certain blocs are empty (see Figure 4.5):

1. Early jobs from J B are scheduled first according to SPT rule, This schedule is satisfy∑
UBj ≤ QB condition;

2. The rest jobs from J A are scheduled in the second block to have CAmax;

3. The tardy jobs from J B are performed contiguously in the three block of jobs.

Figure 4.5: Solution optimal of one machine

Proof : Dealing with ε-constraint problem Pm|ND, dBj = dB,
∑
UBj ≤ QB|CAmax, to prove

this proposition, it is sufficient to consider CAmax(σ) = y (y ∈ [0, UB]) as the upper bound
of makespan of agent A. And hence we can follow the same steps that allowed us to show
previous propositions.

81

4.3. SINGLE MACHINE MULTI-AGENT SCHEDULING PROBLEM

4.3 Single machine multi-agent scheduling problem

Let’s consider the case of single machine with only two agents A and B. In this section,
the ε-constraint approach is considered. Computing the Pareto front is also discussed in
this section.

4.3.1 Problem 1|ND, dAj = dA, CB
max ≤ QB|

∑
UA
j

Let’s consider ε-constraint problem 1|ND, dA, CBmax ≤ QB|
∑
UAj . Agent A aims to

minimize the number of tardy jobs, under the constraint that the makespan of agent B
does not exceed QB. To determine a strict Pareto optimal solution where dA ≤ QB, we
propose Algorithm 9 . In the case of dA > QB we propose Algorithm 10.

Algorithm 9 Problem 1|ND, dA, CBmax ≤ QB|
∑
UAj with dA ≤ QB

1: re-index jobs of J A according to SPT order, in case of equality, jobs from J A,B have
priority

2: PB =
∑

j∈JB pj
3: PB0 =

∑
j∈JB\JA,B pj

4: t = QB − PB
5: if t < 0 then
6: STOP, no feasible solution
7: else
8: Let S be a maximum subset of smallest jobs from J A \J A,B such that

∑
j∈S pj ≤ t

9: Schedule jobs of (S ∪J A,B) according to SPT order in the time intervalle [0, QB −
PB0]

10: Remove all tardy jobs belonging subset S to the end of schedule
11: Schedule remaining jobs of agent B and deduce CBmax
12: Schedule remaining jobs of agent A at the end of schedule
13: Let L be the set of jobs scheduled before QB
14: if

∑
j∈L pj ≤ dA then

15: Jobs of J B from L are scheduled first (to improve CBmax)
16: return solution

Proposition 6 An optimal solution for problem 1|ND, dA, CBmax ≤ QB|
∑
UAj , if there

exists, can be computed in O(nAlognA +n) running time by applying Algorithm 9 or Algo-
rithm 10.

Proof : Algorithm 9 is based on the Proposition 3 where Algorithm 10 is based on the
Proposition 4.

• Case dA ≤ QB:
We can show that the classical scheduling problem 1|dA|

∑
Uj with a common due

date is polynomial and that optimal scheduling is therefore achieved by scheduling

82

4.3. SINGLE MACHINE MULTI-AGENT SCHEDULING PROBLEM

jobs according to SPT rule. The first step of Algorithm 9 is that the jobs of agent
A are reindexed according to the SPT rule. Without loss of generality, suppose that
QB ≥ PB, it means that there is a solution where CBmax ≤ QB. According to step
(8), we determine a set S that contains a maximum number of jobs J A \ J A,B, i.e.
smallest jobs of only agent A, which can be scheduled in the time interval [0, QB]
without damaging makepan of agent B. To minimize the number of tardy jobs, jobs
should be scheduled according to SPT order. This is done by Step (9). As dA ≤ QB,
maybe some jobs of S are late. Therefore, to respect agent B’s makespan, these jobs
are removed to be scheduled later. Thus the structure of the solution obtained by
Algorithm 9 is as described in Proposition 3 (see Figure 4.6).

Figure 4.6: Miniminzing
∑
UAj with dA ≤ QB

Algorithm 10 Problem 1|ND, dA, CBmax ≤ QB|
∑
UAj with dA > QB

1: re-index jobs of J A \ J A,B according to SPT order
2: PB =

∑
j∈JB pj

3: if QB < PB then
4: STOP, no feasible solution
5: else
6: Schedule jobs of J B, deduce CBmax
7: Let S be a maximum subset of smallest jobs from J A \ J A,B such that

∑
j∈S pj ≤

dA − PB
8: Schedule jobs of S (S is a set of early jobs) to form the second block of jobs.
9: Schedule the rest of jobs of J A \ J A,B and deduce

∑
UAj

10: return solution

• Case dA > QB: this case is trivial. In fact, there is only two blocs of jobs. The jobs
of agent B are scheduled (maybe any order) followed by the jobs of agent A, which
they are scheduling according to the SPT rule (see Figure 4.7).

83

4.4. EQUAL LENGTH JOBS

Figure 4.7: Algorithm 10: case dA > QB

4.3.2 Problem 1|ND, dB,
∑

UB
j ≤ QB|CA

max

Here we address the ε-constraint problem with two agents, where agent A objective
function is minimizing makespan (Cmax) function while keeping the number of late jobs
for agent B less or equal to QB. This problem is denoted by 1|ND, dB|ε(CAmax/

∑
UBj).

Let UB be the upper bound given by
∑

j∈JA∪JB pj .
Let us consider the decision version of the scheduling problem denoted by:

1|ND, dB,
∑

UBj ≤ QB, CAmax ≤ y|−

where y is a positive value in the interval [0, UB]. Hence an optimal solution can be
obtained by applying Algorithm 9 (respectively Algorithme 10) if y ≤ dB (respectively
y > dB) as follow: by dichotomic procedure, choose y ∈ [0, UB]; if there is a feasible
(respectively no feasible) solution then the value of y is decreased (respectively increased).

Proposition 7 An optimal solution for ε-contraint problem 1|ND, dB|ε(CAmax/
∑
UBj) if

there exists, can be obtained in O(nBlognB + nlog(UB)) running time.

4.3.3 Problem 1|ND, dBj = dB|P (CA
max,

∑
UB
j)

In this section we study the computing Pareto front problem. As the number of late
jobs is limited by the number of jobs of agent B, we can generate the Pareto font by varying
UBj from 0 to nB. For each value of UBj , we hence solve problem 1|ND, dB|ε(CAmax/

∑
UBj).

Thus, we have the following proposal.

Proposition 8 To compute Pareto front, an optimal solution for 1|ND, dB|P (CAmax,
∑
UBj)

if there exists, can be obtained in O(nBnlog(UB)) running time.

Proof : In fact, for each value of the number of tardy jobs of agent B in [0, nB], we
slove problem 1|ND, dB,

∑
UBj ≤ QB|CAmax (see proposition 7). Hence the needed time to

compute the Pareto front is O(n2
Blog(nB) + nBnlog(UB)).

4.4 Equal length jobs

In this section, we study the non-disjoint scheduling of independent jobs where two
agents compete to perform their jobs on common identical parallel machines. The jobs

84

4.4. EQUAL LENGTH JOBS

have equal processing requirements and each job should scheduled before its due date dj .
With combinations of the objective functions Cmax and

∑
Uj , polynomial algorithms are

derived to find an optimal solution that minimizes one objective function, subject to the
constraint that the objective function of the second agent does not exceed a given threshold.

4.4.1 Pm|ND, dAj , pj = p|ε(
∑

UA
j /C

B
max)

In this section, the agent A aims at minimizing the total number of late jobs while
the makespan Cmax of the second agent does not exceed a given threshold. The studied
problem is denoted by Pm|ND, dAj , pj = p|ε(

∑
UAj /C

B
max). Thus, every feasible solution

has to verify CBj ≤ QB, ∀Jj ∈ J B. We can now define the deadlines d̃j = QB, ∀Jj ∈ J B.
This problem is then equivalent to the mono-criterion scheduling problem minimizing the
number of late jobs, when each job is fitted with due date and deadline: Pm|dj , d̃j , pj =
p|
∑
Uj . Since the jobs in J A\J A,B have no deadline, we suppose that their deadline are

limitless.
Let us define the cost matrix ∆(n×n), where the lines are associated with jobs, columns

with positions on the machines and δj,r is the assigned cost of job Jj at position r (δj,r=1
if job is late; 0 otherwise). Each position is held by one and only one job. We set d nme po-
sitions for the n mod(m) first machines and b nmc for the remaining machines. We therefore
have r = 1, . . . , n positions, numbered in lexicographical order according to the machine
numbers. Each position r is associated with one completion time Cr which can be computed
in constant time. For position r on machine Mi, let r′ be the total number of positions of
the i− 1 first machines. We have: Cr = r × p if m = 1; otherwise Cr = (r − r′)× p.

δj,r =

0 if Cr ≤ dj
1 if dj < Cr ≤ d̃j
∞ otherwise

We introduce a binary variable xj,r that takes the value 1 if Jj is assigned to the position
r, and 0 otherwise. The main problem is modeled by the following mathematical integer
program.

(LP1) min
n∑
j=1

n∑
r=1

δj,rxj,r

n∑
r=1

xj,r = 1 j = 1, . . . , n (4.1)

n∑
j=1

xj,r = 1 r = 1, . . . , n (4.2)

xj,r ∈ {0, 1} ∀j, r (4.3)

Constraints (4.1) assign each job to only one position. Constraints (4.2) ensure that
each position is occupied by a single job.

85

4.4. EQUAL LENGTH JOBS

The constraint matrix of LP1 corresponds to the incidence matrix of bipartite graphe
G = (X1 ∪X2, E,∆). Where nodes in X1 are associated with the jobs and those in X2 are
associated with the positions. There is arc (j, r) ∈ E if δj,r 6= ∞. Hence, the scheduling
problem is equivalent to the minimum cost maximum matching problem, that can be solved
in O(n5/2) time [Hopcroft et Karp, 1973]. Consequently, we have the following theorem.

Proposition 9 An optimal solution for Pm|ND, dAj , pj = p|ε(
∑
UAj /C

B
max) if there exists,

can be obtained in O(n5/2) running time.

4.4.2 Pm|ND, dBj , pj = p|ε(CA
max/

∑
UB
j)

Here we address the ε-constraint problem with two agents, where agent A objec-
tive function is minimizing makespan (Cmax) function while keeping the number of late
jobs for agent B less or equal to QB. This problem is denoted by Pm|ND, dBj , pj =

p|ε(CAmax/
∑
UBj). See Figure 4.8.

Figure 4.8: Structure of an optimal schedule of Pm|ND, dj , pj = p|ε(CAmax/
∑
UBj)

Let us consider the decision version of the problem denoted by:

Pm|ND, dj , pj = p,
∑

UBj ≤ QB, CAmax ≤ y|−

where y is a positive value in the interval [d nme, d
n
mep] (UB = d nmep).

As introduced in section 4.4.1, for each position r, we can compute completion time Cr
in constant time. The cost matrix ∆ is as follow:

δj,r =

∞ if Cr > y and j ∈ J A
0 if Cr > UB and j ∈ J B \ J A,B{

1 if dj > Cr
0 if dj ≤ Cr

otherwise

Considering the following linear constraints LP2:

86

4.5. MIXED INTEGER LINEAR PROGRAMMING

(LP2)
n∑
j=1

n∑
r=1

δj,rxj,r ≤ QB (4.4)

n∑
j=1

xj,r = 1 r = 1, . . . , n (4.5)

n∑
r=1

xj,r = 1 j = 1, . . . , n (4.6)

xj,r ∈ {0, 1} ∀j, r, (4.7)

Constraints (4.4) ensure that the number of late jobs is less or equal to QB. Constraints
(4.5) assign one and only one job at each position. Constraints (4.6) assign one position
to each job. The integrity constraints are given by inequalities (4.7).

In order to obtain a feasible solution, we can minimize
∑
δj,rxj,r subject to constraints

(4.5), (4.6) and (4.7). If the best returned solution is less or equal to y, then this solution
is feasible, otherwise there is no a feasible solution for the chosen y.

The constraint matrix of LP2 defined by (4.5) and (4.6) corresponds to an incidence
matrix of bipartite graphe G = (X1∪X2, E,∆) as introduced in section 4.4.1. Hence an op-
timal solution can be obtained by applying a Hopcroft’s procedure [Hopcroft et Karp, 1973]
as follow: by dichotomic procedure, choose y ∈ [0, UB]; if there is a feasible (respect. no
feasible) solution then the value of y is decreased (respect. increased).

Proposition 10 An optimal solution for Pm|ND, dj , pj = p|ε(CAmax/
∑
UBj) if there ex-

ists, can be obtained in O(n5/2 log(UB)) running time.

4.4.3 Problem Pm|ND, dBj , pj = p|P (CA
max,

∑
UB
j)

In this section we study the computing Pareto front problem. As the number of late
jobs is limited by the number of jobs of agent B, we can generate the Pareto font by
varying UBj from 0 to nB. For each value of UBj , we hence solve problem Pm|ND, dj , pj =

p|ε(CAmax/
∑
UBj). Thus, we have the following proposal.

Proposition 11 To compute Pareto front, an optimal solution for Pm|ND, dBj , pj =

p|P (CAmax,
∑
UBj) if there exists, can be obtained in O(nBn

5/2 log(UB)) running time.

4.5 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) is a variant of mathematical programming
that is used for solving scheduling problems. There are different manners of formulating a
scheduling problem using mathematical programming. In this thesis, two type formulations

87

4.5. MIXED INTEGER LINEAR PROGRAMMING

are considered: model based on Assignment-Precedence Variables and model based on
Time-Indexed Variables.

In literature, [Balasubramanian et al., 2009b] study the competing scheduling problems
on parallel machines. Each agent has its own criterion to be minimized (Cmax and

∑
Cj).

The authors propose a time-indexed integer programming formulation, heuristic and an
efficient genetic algorithm.

On the basis of the studied problem properties, we have deduced the overall structure
of an optimal solution giving a good compromise for agents. Note that the two following
mathematical formulations led us to obtain the jobs assignment to machines with an op-
timal makespan for the first agent respecting all constraints, in particular the ε-constraint
of the second agent. The total description of jobs sequence on each machine is obtained
easily following proposals outlined above.

4.5.1 Assignment-based formulation

Dealing with ε-contraint problem Pm|dB,
∑
UBj ≤ Q|CAmax, we define the following

decision variables:

• xi,j is a binary variable that takes the value 1 if job Jj is scheduled on machine Mi;
0 otherwise.

• yj,k is a binary variable that is equal to 1 if job Jj is executed before job Jk on the
same machine; 0 otherwise.

• UBj is a binary variable that is equal to 1 if job Jj is scheduled after its due date dB;
0 otherwise.

• We also need introduce continuous variables: Cj is the completion time of job Jj and
CAmax is the makespan of agent A (his objective function).

Let HV be a positive high value. J is the set of all jobs, J B is the set of jobs belong to
agent B. Hence, the mathematical formulation based on assignment-precedence denoted
MILP1 is as follow: Considering the following linear constraints LP2:

88

4.5. MIXED INTEGER LINEAR PROGRAMMING

(MILP1) Minimize CAmax

s.t.

m∑
i=1

xi,j = 1 ∀Jj ∈ J

(4.8)

Cj −
n∑
k=1

yj,k × pk ≥ pj ∀Jj ∈ J (4.9)

xi,j + xi,k − yj,k − yk,j ≤ 1 ∀Jj , Jk ∈ J ; i = 1, ...,m (4.10)
xi,j + yj,k − xi,k ≤ 1 ∀Jj ∈ J ; i = 1, ...,m (4.11)
yj,k + yk,l − yj,l ≤ 1 ∀Jj , Jk, Jl ∈ J (4.12)

Cj − dB − UBj HV ≤ 0 ∀Jj ∈ J B (4.13)∑
UBj ≤ QB ∀Jj ∈ J B (4.14)

Cj ≤ CAmax ∀Jj ∈ J A (4.15)

xi,j , yj,k, U
B
j ∈ {0, 1} ∀Jj , Jk ∈ J A; i = 1, . . . ,m (4.16)

• Constraints 4.8 impose that each job Jj should be assigned to one and only one
machine.

• Constraints 4.9 mean that each job completion time is at least equal to the total
processing times of the jobs scheduled before it on the same machine plus its own
processing time.

• Constrains 4.10 impose that if two jobs are performed on the same machine, then
one must be scheduled before another, i.e. either job Jj scheduled before job Jk or
job Jk scheduled before job Jj .

• Constraints 4.11 express that if Jj is executed on machine Mi and Jj is before Jk,
then Jk must be scheduled on machine Mi also.

• Transitivity constraints are expressed by the formula 4.12, which mean that if Jj is
executed before Jk, and Jk is executed before Jl than Jj is executed before Jl.

• Constraints 4.13 fixe the values of the binary variables UBj : if it equals to 0 then we
have Cj ≤ dB; Otherwise the job is late and the constraint is still valid.

• Constraints 4.14 express the ε-constraint, i.e. the number of tardy jobs of agent B
does not exceed QB.

• Constraints 4.15 express that the makespan is greater ou equal to the last completion
time.

• Constraints 4.16 are the integrity ones.

89

4.6. COMPUTATIONAL EXPERIMENTS

4.5.2 Time-based formulation

To solve optimally the ε-constraint problem Pm|ND, dB,
∑
UBj ≤ QB|CAmax, we pro-

pose a second mathematical formulation where decision variables are time-indexed. Hence,
new binary variables denoted sj,t are defined. sj,t takes value 1 if job Jj starts its processing
at time t; 0 otherwise. t is in the interval [0, UB] where UB =

∑
j∈J pj . Thereby, we have

n× (UB + 1) binary variables, which is pseudo-polynomial number.
The mathematical formulation is then given as follow.

(MILP2) Minimize CAmax

s.t.
T∑
t=0

sj,t = 1 ∀Jj ∈ J A (4.17)

∑
Jj∈J

t∑
l=max{0,t−pj+1}

sj,l ≤ m ∀t = 0, . . . , UB (4.18)

CAmax −
T−pj∑
t=0

(t+ pj)sj,t ≥ 0 ∀Jj ∈ J A (4.19)

T−pj∑
t=0

(t+ pj)sj,t −HV UBj ≤ dB ∀Jj ∈ J B (4.20)∑
Jj∈JB

UBj ≤ QB (4.21)

sj,t ∈ {0, 1}, UBj ∈ {0, 1} ∀Jj ∈ J , ∀t = 0, . . . , UB (4.22)

• Constraints 4.17 impose that each job Jj should be scheduled and hence starts at a
time t.

• Constraints 4.18 ensure that no more than m jobs are scheduled simultaneously, it
avoids the jobs overlapping at any time t.

• Constraints 4.19 determine the makespan value of jobs of agent A.

• Constrains 4.20 fixe the values of the decision binary variables UBj , which indicates
if job is late or not: if Cj ≤ dB then UBj equals to 0; Otherwise the job is late and
the constrain is still valid.

• Constraints 4.21 express the ε-approach bound.

• Constraints 4.22 are the integrity ones.

4.6 Computational experiments

The two mixed integer linear programming formulations are executed on a workstation
with a 2.4 GHz Intel Core i5 processor with 8 GB of memory running under Windows

90

4.6. COMPUTATIONAL EXPERIMENTS

10, using IBM Cplex version 12.6.2. To compute the optimal Pareto front by using the
ε-constraint, computation time limit has been fixed to 3600 seconds for all different values
of QB ∈ {0, nB}.

4.6.1 Data generation

Dealing with two agents A and B, we have tested these the two mathematical formu-
lations on data sets, which have been randomly generated with different settings described
as follow:

• The number of identical machines m = 2, 3

• The number of jobs n is {10, 20, . . . , 100}.

• Three types of processing times are randomly generated, denoted Data1 and Data2:

– Data1: processing times are randomly generated in [1, 10].

– Data2: processing times are randomly generated in [1, 100].

• For each (n,m), thirty instances are generated.

• The common due date dB is randomly generated in [0, 15P, 0, 3P] (to have more the
differents solutions), where P =

∑n
1 pj . This is a good compromise when we are

dealing with at most three machines. Therefore, The common due date should be
decreased when the number of machines increases to obtain interesting instances.

• For each instance, we determine the jobs of each agent and the common ones accord-
ing to two parameters aA and aB with aA+aB < 100%. Hence, we have: nA = aA×n
and nB = aB×n. The number of common jobs is thus equal to: nAB = n−(nA+nB).
After several conducted experiments, the values used in the rest of this chapter are:

– 40% of jobs in J are jobs of only agent A

– 30% of jobs in J are jobs belong to only agent B

– 30% of jobs in J are thus common jobs (belong to the two agents)

Dealing with Data1:
Table 4.1 and Table 4.2 summarizes the results that indicate the performances of the

two proposed MILPs to generate the exact Pareto front. We denote by |S∗| the size of the
exact Pareto front and CPU the needed time to compute the exact Pareto Front.

The results presented in Table 4.1 summarizes the performance of MILPs when dealing with
m = 2. About MILPs performances, we can easily to see that the time indexed (MILP2)
formulation is better than the assigned formulation (MILP1), since it solves instances with
70 jobs in 1 hour and 18 minutes on average, the average time spent to obtain the whole
Pareto front. Unfortunately, the assigned indexed formulation shows weaker results since

91

4.6. COMPUTATIONAL EXPERIMENTS

(n,m) MILP1 MILP2
n m CPU |S∗| CPU |S∗|
10 2 1,28 2,37 0,01 2,37
20 2 708,39 4,07 0,069 4,07
30 2 2,65 4,87
40 2 12,20 6,13
50 2 78,00 7,50
70 2 4664,16 9,76

Table 4.1: Computing exact Pareto front with m = 2 and pj ∈ [1, 10]

it cannot solve instances with more than 20 jobs.

The results presented in Table 4.2 summarizes the performance of MILPs when dealing
with m = 3. We remark that MILP1 can solve instances with up to 20 jobs with the time
less than one hour. MILP2 seems to be better than MILP1. The MILP2 can find the
optimal solutions up to 50 jobs.

(n,m) MILP1 MILP2
n m CPU |S∗| CPU |S∗|
10 3 2,22 3,58 0,58 3,58
20 3 2117,22 4,71 8,85 4,71
30 3 52,31 5,25
40 3 408,01 6,09
50 3 1856,75 7,01

Table 4.2: MILP performances: exact Pareto front with m = 3 and pj ∈ [1, 10]

Dealing with Data2:
We note that the time indexed formulation has a pseudo-polynomial binary variables

depending on the UB. With same data excepting processing times, which are generated
in interval [1, 100], Table 4.3 summarizes the obtained results to compute the exact Pareto
front.

(n,m) MILP1 MILP2
n m CPU |S∗| CPU |S∗|
10 2 87,67 3,01 46,24 3,01
20 2 587,15 4,57
30 2 2358,47 7,20
40 2

Table 4.3: MILP performances: exact Pareto front with m = 3 and pj ∈ [1, 100]

92

4.7. CONCLUSION

According to these results, MILP1 and MILP2 can solve instances with up to 10 jobs.
In this case, MILP2 seems to be better than MILP1. However, in case where the number
of jobs is greater than or equal to 20, during 1 hour running time, MILP1 cannot compute
one optimal Pareto solution for a given value of QB, while MILP2 can calculate the exact
Pareto edge for instances up to 30 jobs.

4.7 Conclusion

In this chapter, we first give a general structure of a Pareto optimal solution. This study
provides subsequently some reflections to develop resolution methods and also justifies, in
particular for proposed metaheuristics and matheuristics presented in the next chapters.
Then, we have studied some particular cases. In the case of single machine scheduling
problems, polynomial algorithms have proposed to determine Pareto optimal solution, and
thus the exact Pareto front. For parallel machines, we first analyse the particular case
where all jobs have the same processing times. We show that the studied problems are
polynomial. These new results are summarized in Table 4.4.

Problem Complexity Section

1|ND, dA, CB
max ≤ QB |

∑
UA

j O(nA log(nA) + n) 4.3.1

1|ND, dB ,
∑
UB

j ≤ QB |CA
max O(nB log(nB) + n log(UB)) 4.3.2

1|ND, dA|P (
∑
UA

j , C
B
max) O(n2

B log(nB) + nBn log(UB))4.3.3

Pm|ND, dAj , pj = p, CB
max ≤ QB |

∑
UA

j O(n5/2) 4.4.1

Pm|ND, dBj , pj = p,
∑
UB

j ≤ QB |CA
max O(n5/2 log(UB)) 4.4.2

Pm|ND, dAj , pj = p|P (
∑
UA

j , C
B
max) O(nAn

5/2log(UB)) 4.4.3

Table 4.4: New complexity results.

We propose then two mixed integer linear programming formulations to compute Pareto
optimal solution for the general case. The first one is based on the assignment-precedence
variables and the second is based on the time-indexed variables. To analyse their perfor-
mances, some experiments are conducted where the running time is limited to one hour.
The first MILP can compute an optimal solution for small instances (the number of jobs
is less than or equal twenty). The second MILP is better, it solves instances with 70 jobs
in 1 hour.

The next chapter is dedicated to resolution methods ”heuristics” where a lower bound
is proposed.

93

4.7. CONCLUSION

94

Chapter 5

Polynomial and Pseudo Polynomial
Heuristics

Résumé: La complexité des problèmes étudiés suggère l’utilisation de méthodologies
heuristiques. Plusieurs méthodes approchées peuvent être développées. Dans le but de
développer des heuristiques efficaces pour résoudre les problèmes étudiés, nous proposons
des heuristiques gloutonnes dédiées basées sur des règles de priorité et des heuristiques
hybrides basées sur des méthodes exactes.

Ce chapitre est consacré à la résolution du problème Pm|ND, dB,
∑
UBj ≤ Q|CAmax par

heuristiques. Néanmoins, dans la section 5.1 nous montrons comment utiliser les méth-
odes proposées pour résoudre les autres problèmes qui font l’objet de notre étude. Nous
avons donc décidé de nous concentrer sur un seul problème d’ordonnancement pour illus-
trer notre démarche et rendre donc ce chapitre plus facile et léger à lire. Dans la section 5.2
nous proposons une borne inférieure du makepan. Cette borne inférieure est utilisée pour
d’une part, réduire le nombre d’itérations dans le calcul du front de Pareto où l’approche
ε-constraint est utilisée. Dans la section 5.3, nous proposons trois heuristiques (la seconde
est une amélioration de la première qui est basée sur la simple règle LPT−FAM). Dans la
section 5.4, nous proposons une hybridation de ces méthodes avec deux méthodes exactes
: la programmation dynamique et MILP. Le but de l’hybridation est donc d’améliorer la
qualité des heuristiques gloutonnes. Toutes ces méthodes ont été mises en 1

2uvre. Une
discussion sur leurs performances est présentée dans la dernière section.

Abstract: The complexity of the studied problems suggests the use of heuristics
methodologies. Several heuristics are candidates to be used. With the aim of covering
different approaches, both a specific heuristic based on priority rules for this problem and
hybrid heuristics based on exact methods have been developed. This chapter is devoted to
solving the problem Pm|ND, dB,

∑
UBj ≤ Q|CAmax by heuristics. Nevertheless, in section

5.1 we show how to use the proposed methods to solve the other problems that are the
subject of our study. We have therefore decided to focus only on one scheduling problem
to make this chapter easier and lighter to read. In Section 5.2 we propose a lower bound
of the makespan. This lower bound is used to reduce the number of iterations to compute
the Pareto front when the ε-constraint approach is used. In Section 5.3, we proposes three

95

5.1. GENERAL APPROACH FOR THE STUDIED PROBLEMS

heuristics (the second one is an improvement of the first one which is based on the simple
LPT − FAM rule). In section 5.4, we propose a hybridization of these methods with two
exact methods: dynamic programming and MILP. The aim of the hybridization is thus to
improve the greedy heuristics. All these methods have been implemented. A discussion on
their performance is provided in the last section.

5.1 General approach for the studied problems

In this chapter, we propose specific heuristics to solve the non-disjoint multi-agent
scheduling problems. However, to make this chapter easier and lighter to read, we will
illustrate our resolution approaches by focusing only on the studied ε-constraint scheduling
problem :

Pm|ND, dB,
∑

UBj ≤ Q|CAmax

All the methods developed in this chapter are easily generalized for the following two
problems.

1. Pm|ND, dA, CBmax ≤ QB|
∑
UAj : This is the ε-constraint problem with two agents,

where the objective function of agent A is minimizing the number of late jobs function
(
∑
UAj) while keeping the makespan for agent B less or equal to QB. To solve this

scheduling problem it is sufficient to consider the following decision version of the
scheduling problem denoted by:

1|ND, dA, CBmax ≤ QB,
∑

UAj ≤ y|−

where y is a positive value in the set {0, nA}, nA is the number of jobs of agent A.
Hence an optimal solution can be obtained by applying method proposed to solve the
problem Pm|ND, dB,

∑
UBj ≤ Q|CAmax as follow: by dichotomic procedure, choose

y ∈ {0, nB}; if there is a feasible (respectively no feasible) solution then the value
of y is decreased (respectively increased). Indeed, the complexity of the algorithm
increases by factor of log(nA), which is reasonable.

2. Pm|ND, dB, |P (CAmax,
∑
UBj): This is Pareto set enumeration problem. In this case

we are looking for the whole set of strict Pareto optimal solutions. To determine
this set of strict Pareto optimal solutions, an ε−constraint approach can be used,
by modifying QB iteratively. Hence, to compute the Pareto front we can implement
Algorithm 11. From Algorithm 11, UBB is an upper bound and in worst scenario
UBB = nB, LBB is a lower bound and in worst scenario LBB = 0, the function
Heuristic(Pm|ND, dB,

∑
UBj ≤ QB|CAmax) returns the solution by applying one of

our proposed specific method developed for Pm|ND, dB,
∑
UBj ≤ QB|CAmax.

96

5.2. LOWER BOUND

Algorithm 11 Enumeration of Pareto solutions of problem Pm|ND, dB|P (CAmax,
∑
UBj)

1: R = ∅;
2: for each QB = UBB down to LBB step 1 do
3: x = Heuristic(Pm|ND, dB,

∑
UBj ≤ QB|CAmax)

4: if not exit x′ ∈ R such that Cmax(x′) ≤ Cmax(x) then
5: R := R

⋃
{x}∗

6: end for
7: Return R

Our choice was therefore to develop and analyze the performance of our approaches
to solving Pm|ND, dB,

∑
UBj ≤ QB|CAmax. Computational experiments are conducted.

Hence, we give the performance of proposed heuristics to compute the near Pareto front,
i.e. solving problem Pm|ND, dB|P (CAmax,

∑
UBj).

5.2 Lower bound

The ε-constraint problem Pm|ND, dB,
∑
UBj ≤ QB|CAmax is NP-hard and exact meth-

ods proposed in chapter 3 can solve small instances. Hence, to analyse the performances of
heuristics we define a lower bounds of agent’s A makespan. Our proposed lower bound is
based on the classical one introduced for mono-criterion scheduling problem Pm||Cmax.
In fact, minimizing makespan with n jobs, the lower bound is done by the formula:
LB = max

(
pmax;

∑
j∈J pj
m

)
where pmax = maxj∈J (pj). Hence, to compute a lower bound

of agent A makespan, we propose Algorithm 12.

Algorithm 12 Lower bound for problem Pm|dB,
∑
UBj ≤ QB|CAmax

1: Let QB be the number of jobs of agent B, which can be late
2: Let nAB be the number of common jobs
3: S = J B \ J AB
4: k = min(QB, nB − nAB)
5: Remove k biggest jobs from S
6: pSmax = maxj∈S(pj)
7: pAmax = maxj∈JA(pj)

8: LBA = max
(
pSmax; pAmax;

∑
j∈JA∪S pj

m

)
9: if (LBA ≤ dB) then

10: LBA = max
(
pAmax;

∑
j∈JA pj

m

)
11: Return LBA

According to Algorithm 12, it is clear that if QB ≥ nB, the minimum value of makespan
of agent A is given by schedule all agent’s A jobs before jobs from J B \ J AB, this case
is treated by step (5) when k = nB − nAB. Otherwise we have k = QB. Therefore, at
least only (nB −QB) smallest jobs from J B \ J AB are scheduled before jobs in J A where
the value of the LBA is hence given by step (8). Note that if the obtained value of LBA

97

5.3. LIST SCHEDULING HEURISTICS

according to step (8) is less than or equal to the common due date, then jobs of agent A
should be scheduled at first positions and before jobs in S according to Proposition 4. This
is done by step (10). LBA can be thus computed in O(nB log nB) time.

The main interest of this lower bound is the reduction of the values that makepan can
take. Combined with an upper bound (heuristics), the execution time of the proposed
methods to calculate the Pareto front is hence reduced, when the ε-constraint approach
is used (see Algorithm 11). In other words, lower bound with upper bound allow us to
approach the extreme points of the Pareto front.

5.3 List scheduling heuristics

In this section, we focus on minimizing the makespan of agent A where the total tardy
jobs of agent B does not exceed a given value QB. Remember that one of the most effective
heuristics based on the priority rule to solve the classical scheduling problem Pm||Cmax is
based on the LPT rule. That is why we focus particularly on this rule by adapting it to our
studied problem. We propose computation time efficient heuristics to find best solutions.
The main idea of our polynomial time heuristics is:

• First, we schedule jobs of one agent to meet the ε− constraints (such as
∑
UBj ≤ QB);

• Second, we try to effectively schedule the jobs of the second agent to minimize his
objective function (such as CAmax);

• Finally, we try to improve a solution by removing or switching certain jobs.

5.3.1 Heuristic H1

The heuristic presented in this section is made up of three phases, where LPT −FAM
rule is used (see Algorithm 13 illustrated by Figure 5.1). It starts by scheduling jobs of E,
followed by the remaining jobs of agent A from J A \{J A∩E}, and finishes by sequencing
jobs of agent B not already scheduled. The remaining jobs of agent B have no influence on
the makespan, we can execute them at the end of any machine, but in order to optimize the
number of tardy jobs it would be more efficient to use LPT +FAM . The time complexity
of this heuristic presented in Algorithm 13 is O(nA log nA + nB log nB).

98

5.3. LIST SCHEDULING HEURISTICS

Figure 5.1: Heuristic of Upper bound

Algorithm 13 Heuristic 1 (H1) for problem Pm|ND, dB,
∑
UBj ≤ Q|CAmax

1: Sort jobs in J B in SPT order.
2: Let E = {JB1 , . . . , JBnB−QB

} be a set of potential jobs of agent B that can be early
3: Schedule jobs of E on m machines according tp LPT − FAM rule
4: if at least one job is late then
5: STOP; // this heuristic cannot find a feasible solution
6: else
7: Schedule jobs of J A \ E on m machines according to LPT − FAM rule
8: Schedule jobs of J B \ E on m machines according to LPT − FAM rule
9: Return obtained sequence and (CAmax,

∑
UBj)

Example: Let’s consider 6 jobs to be scheduled on 2 machines where common due date
dB = 5. The considered scheduled problem is denoted P2|ND, dB = 5,

∑
UBj ≤ 2|CAmax.

The data problem are:

Job(j) 1 2 3 4 5 6
Processing time (p) 1 2 3 4 5 6
Agent A A,B B B AB B

First, we find the early job set E with nB − QB = 5 − 2 = 3, That is JB2 , JB3 , JB4 .
Second, we schedule jobs of E on 2 machines according to LPT − FAM rule.

Figure 5.2: Heuristic H1: step 1

99

5.3. LIST SCHEDULING HEURISTICS

Third, we schedule jobs of J A \ E(jA1 , jA5) on 2 machines according to LPT − FAM
rule. We obtain thus the value CAmax = 9

Figure 5.3: Heuristic H1: step 2

Finally, we schedule jobs of J B \E(jB6) on 2 machines according to LPT −FAM rule.

Figure 5.4: Heuristic H1: step 3

5.3.2 Heuristic H2

In this section we present a second heuristic, denoted H2. H2 is none other than an im-
provement ofH1. In fact, according toH1, after scheduling early jobs S = {JB1 , . . . , JBnB−QB

}
maybe on a given machine Mi we have: δ = dB − CSij > 0 (see Figure 5.5).

Figure 5.5: H2: Improving H1

Hence, the makespan of agent A can be improved by putting the last job of agent A

100

5.3. LIST SCHEDULING HEURISTICS

(defining his makespan) before the due date without degrading value
∑
UBj . With this

observation, improving Cmax(H1) can be done following two ways:

• Try to schedule late common job earlier, if possible.

• Try to schedule largest job of agent A earlier, if possible.

Let’s consider previous example. We remark that the obtained solution by H1 (see Figure
5.4) can be improved as shown in Figure 5.6.

Figure 5.6: Example of improving H1

Unlike heuristic H1, H2 allows jobs reallocation. First of all, we schedule jobs belong
to set E1 = E ∪ J AB by using LPT − FAM rule. At a given iteration, if the current
job assigned to the first available machine Mi is late, then: if there exist largest scheduled
job Jk from E1 such that Jk ∈ J B \ J AB (not necessary scheduled on Mi), then Jk is
removed; If Jk does not exist, we remove the largest scheduled job. After, we run again
LPT − FAM rule by considering the set of all scheduled jobs with the new one.

This procedure is repeated until ε-constraint is satisfied (i.e.
∑
UBj ≤ QB). Then, jobs

belong to E1 and which are in J B \ J AB are removed. Then we schedule the remaining
jobs belong to E1 ∪ J A. Note that, if ε-constraint is not satisfied, this heuristic cannot
find a feasible solution.

Due to the recalls of LPT −FAM procedure, the time complexity of this algorithm is
therefore bounded by O(n2).

101

5.3. LIST SCHEDULING HEURISTICS

Algorithm 14 Heuristic 2 (H2) for problem Pm|ND, dB,
∑
UBj ≤ QB|CAmax

1: Sort jobs belong to J B in SPT order
2: Let E = {JB1 , . . . , JBnB−QB

} be the potential early jobs of agent B
3: E1 = E ∪ J AB sorted in LPT order.
4: Set UB = nB;
5: while (E1 6= ∅) and (UB > QB) do
6: Schedule the first job Jj in E1 according to LPT − FAM procedure
7: if Jj is late then
8: Remove scheduled job Jk belongs to E1 \ E, where pk = max(pj)
9: If such that job does not exist, remove the largest scheduled job belongs to E1

10: Recall LPT − FAM procedure on the jth first jobs of E1 \ {Jk}
11: Update UB

12: if (UB = QB) then
13: Schedule jobs of J A not already scheduled according to LPT − FAM rule
14: Schedule the remaining jobs belong to J B according to LPT − FAM rule
15: Return solution with (CAmax,

∑
UBj)

16: else
17: STOP there is no feasible solution

Example: Let’s consider the previous example. First, we find the early job set E with
nB−QB = 5−2 = 3 jobs, That is JB2 , JB3 , JB4 . And E1 = E+J B\E = JB2 , J

B
3 , J

B
4 , J

B
5 , J

B
6 .

Second, we schedule jobs of E1 on 2 machines according to LPT − FAM rule.

Figure 5.7: Heuristic H2: step 1

As job JB6 is tardy, we remove scheduled job Jk belongs to E1, where pk = max(pj)
and Jk /∈ E. Hence Jk = JB6 and we continue with the next job in set E1.

102

5.3. LIST SCHEDULING HEURISTICS

Figure 5.8: Heuristic H2: step 2

However, job JB3 is tardy, we remove scheduled job Jk belongs to E1, where pk =
max(pj) and Jk /∈ E. Hence Jk = JB4 and we continue with the next job in set E1.

Figure 5.9: Heuristic H2: step 3

After that, we schedule jobs of (J A \E) = {JA1 }, (J B \E) = {JB6 , JB4 } on 2 machines
according to LPT − FAM rule. Thus we have: CAmax = 5

Figure 5.10: Heuristic H2: step 4

5.3.3 Heuristic H3

The basic idea of Heuristic H3 is based on Algorithm 12 introduced to determine the
lower bound.

First, we try to find the minimum makespan of agent A where some smallest jobs of
agent B are scheduled early. According to Algorithm 15, the (nearly = nB−QB) considered
jobs at this step are belong to E.

Second, we schedule jobs of set E according to LPT − FAM rule. If we have tardy
jobs, we remove the job with largest processing time from E and replace it by smallest job
from SB. Then, we run again LPT − FAM rule by considering the set of all jobs belong

103

5.3. LIST SCHEDULING HEURISTICS

E. This procedure is repeated until CAmax(E) ≤ dB. At the end, we schedule the remaining
jobs of agent A followed by the rest of jobs of agent B according to LPT − FAM rule.

Due to the recalls of LPT −FAM procedure, the time complexity of this algorithm is
therefore bounded by O(n2).

Algorithm 15 Heuristic 3 (H3) for problem Pm|ND, dB,
∑
UBj ≤ QB|CAmax

1: Let SB = {JB1 , ..., JBqB} be the set of jobs belong J
B \J AB numbred according to SPT

order
2: Let QB be the maximum number of late jobs of agent B
3: E = J AB
4: nAB = |J AB|
5: nearly = nB −QB (i.e. minimum number of early jobs)
6: if nAB < nearly then
7: Add the first (nearly − nAB) jobs from SB to E
8: Remove the first (nearly − nAB) jobs belong to SB from SB

9: Schedule jobs of E according to LPT − FAM rule
10: Deduce CAmax(E) given by the completion time of the last scheduled job belongs to E
11: while CAmax(E) > dB do
12: if SB = ∅ then
13: STOP, there is no feasible solution
14: else
15: E = E\{Jk} where pk = maxj∈E(pj) (Jk is the largest job belongs to E)
16: E = E ∪ {Jl} where pl = minj∈SB (pj) (Jl is the smallest job belongs to SB)
17: SB = SB \ {Jj}
18: Recall LPT − FAM procedure by considering the new set of jobs E
19: Deduce the new value of CAmax(E)

20: Schedule the remaining jobs of agent A according to LPT − FAM rule and deduce
CAmax

21: Schedule the remaining jobs of agent B according to LPT − FAM rule and deduce
UBj

22: return solution with (CAmax,
∑
UBj)

Example: Let’s consider an example with 6 jobs and 2 machines with dB = 5 and
QB = 1. In this example we solve scheduling problem Pm|ND, dB,

∑
UBj ≤ 1|CAmax. The

data problem are:

Job(j) 1 2 3 4 5 6
Processing time (p) 1 2 3 4 5 6
Due date (d) 5 5 5 5
Agent AB B A A B AB

First, we compute set SB = {JB1 , . . . , JBqB}. S
B is the set of jobs belong to J B \ J AB

numebred according to SPT order. SB = {JB1 , JB6 }. Thus, nAB = 2 and nearly = nB −
QB = 3. Hence nAB < nearly. We add the first (nearly − nAB) = 1 job belongs to SB to

104

5.4. TWO-STEP HEURISTIC METHODS

E. Hence E = E ∪ {JB2 }, and then we remove JB2 from SB.

Figure 5.11: H3: Example step 1

Second, we apply LPT − FAM procedure by considering the new set of jobs E. So,
we have: CAmax(E) = 6 > dB = 5. We remove then job JB6 (the largest job belongs to E).
Third, we remove job JB5 from set SB and add it to E. We have: CAmax(E) = 5 = dB. SB

is now empty.
Finally, we schedule the rest jobs of agent A followed by the rest jobs of agent B on

the 2 machines according to LPT − FAM rule. We obtain: CAmax = 12.

Figure 5.12: H3: Example step 2

5.4 Two-step heuristic methods

The complexity of the problem suggests the use of heuristics methodologies. Some
specific heuristics applied to solve scheduling problems are greedy algorithms based on
priority rules. These approaches ensure an efficient computational time. However, the
deviation from an optimal solution can be significant. In this section we try to overcome
this deficiency by optimally scheduling some subset of jobs. We propose two-step heuristic
methods based on the decomposition of the problem into two decision steps.

By the first step, we call greedy specific heuristic (greedy heuristic) to determine the
blocks of jobs, which they respect the structure of the optimal solution (see Propositions
3, 4, 5). In fact, according to Proposition 3, an optimal sequence is defined by three job
blocks (see section 3.1.3.1): the early jobs of agent B form the first block; the remaining

105

5.4. TWO-STEP HEURISTIC METHODS

jobs of agent A belong to the second jobs block; and the last jobs block contains the rest
of jobs of agent B.

During the second step, the job blocks are fixed according to the preceding step. How-
ever, scheduling jobs belong each block is equivalent to the classical scheduling problem
Pm||Cmax. Thus, in our study we propose two exact methods to schedule the second block
of jobs (dealing with remaining jobs of agent A): dynamic programming algorithm and
MILP. These two exact methods are hence used to improve heuristic solution.

5.4.1 Hybrid heuristics

In this section, we propose a pseudo-polynomial time heuristic, denoted HDP , where
an adapted dynamic programming algorithm is used to minimize the makespan of some
jobs of agent A. The main steps of this HDP are:

• Apply heuristic (H1, H2, or H3) to determine the set of early jobs of agent B (de-
termine the first block of jobs); Then call LPT − FAM procedure to schedule these
jobs. Let (r1, . . . , ri, . . . , rm) the makespan of each machine, i.e. ri is the completion
time of the last job performed on Mi.

• Optimally solve the problem Pm|ri|Cmax by considering the remaining jobs of agent
A. Note that the machines are not available at time zero due to scheduled jobs of
agent B. Thus, we introduce ri, i = 1, . . . ,m in β field to indicate this constraint.

To illustrate our approach, let’s consider the case of two machines. Without lost of gener-
ality, suppose that the machines are numbered according to non-decreasing order of ri. Let
PJ be the total procession times given by: PJ =

∑
j∈J pj . To optimally solve P2|ri|Cmax,

we propose the following dynamic program DP .
Let t1 be the completion time of the last scheduled job on machine M1, t1 = r1, r1 +

1, . . . , PJ .
Let f(j, t1) be the recursion version to be minimized, where f(j, t1) gives the completion

time of the last job scheduled on M2.
The initial values are:

• f(j, t1) =∞ if j < 0 or t1 < r1

• f(j, r1) = r2 +
∑j

l=1 pl

f(j, t1) = min

{
f(j − 1, t1 − pj) (1)
f(j − 1, t1) + pj (2)

There is two decisions: jobs Jj is assigned to machine M1 (case (1)); job Jj is assigned to
machine M2 (case (2)). The makespan is hence given by: Cmax = min(maxt1(t1, f(n, t1)))

Therefore, heuristic HDP is defined by Algotithm 16.
The time complexity of this dynamic program is O(nAUB

m−1). Therefore, the time
complexity of Algorithm 16 depends on the complexity of used heuristic. In worst case,

106

5.4. TWO-STEP HEURISTIC METHODS

this complexity is bounded by O(n2 + nAUB
m−1), where UB is the upper bound of the

makespan and m is the number of machines.

Algorithm 16 Heuristic HDP for problem Pm|ND, dB,
∑
UBj ≤ Q|CAmax

1: Call heuristic to solve ε-contraint problem Pm|ND, dB,
∑
UBj ≤ Q|CAmax

2: Let E ⊆ J B be the set of jobs scheduled before dB

3: Call LPT − FAM procedure to solve Pm||Cmax by considering only set E
4: Let (r1, r2, . . . , rm) be the completion times of the last jobs scheduled on

(M1,M2, . . . ,Mm).
5: Call dynamic programming algorithm to solve Pm|ri|Cmax by considering the rest jobs

of agent A
6: Schedule the tardy jobs of agent B at the end of the schedule
7: return solution with (CAmax,

∑
UBj)

5.4.2 Heuristics and MILP

Makespan is equivalent to the decision problem involving a common deadline (i.e.
whether a feasible schedule can be obtained such that all jobs finish before a common
deadline). The set of optimal solutions can give the decision-maker important information
on whether jobs for one agent can be finished by a given time, and thus can give the
decision-maker the resulting compromise on the number of tardy jobs for the other agent.
Therefore, by applying the proposed heuristics presented in section 5.3, the set of early jobs
can be computed. That means, this result satisfies the objective function that minimizes
the total number of tardy jobs of agent B. The next step, the second objective function
(makespan defined by agent A) should optimized. To minimize the makespan, in this sec-
tion we propose to replace LPT −FAM procedure by an other more effective method. In
fact, we propose to use a mixed integer linear programming (MILP) to schedule the third
block of jobs belong to agent A (the rest of jobs of agent A). In this case, we propose
MIPL model to solve classical scheduling problem (Pm|ri|Cmax) by considering only jobs
from the second jobs block.

Assignment-based formulation:
Let’s consider the scheduling problem Pm|ri|Cmax, where ri is the avalaible time of

machineMi. We define decision variables xi,j . xi,j is a binary variable that takes the value
1 if job Jj is scheduled on machine Mi; 0 otherwise. The MILP model is then given as
follow:

107

5.5. COMPUTATIONAL EXPERIMENTS

(MILP3) Minimize Cmax

s.t.

n∑
j=1

(ri + pjxij) ≤ Cmax ∀i = 1, . . . ,m (5.1)

m∑
i=1

xij = 1 ∀j = 1, . . . , n (5.2)

xij ∈ {0, 1} ∀i = 1, . . . ,m, ∀j = 1, . . . , n (5.3)

• Constraints 5.1 express that the makespan is greater ou equal to the last completion
time of job on each machine.

• Constraints 5.2 impose that each job Jj should be assigned to one and only one
machine.

To compute a solution of ε-constraint Pm|ND, dB,
∑
UBj ≤ Q|CAmax, we follow the

same idea as presented in section 5.4.1. This MILP3 is thus used to improve returned
solution in term of CAmax. The main steps of this H −MILP are:

• Apply heuristic (H1, H2, or H3) to determine the set of early jobs of agent B (de-
termine the first block of jobs); Then call LPT − FAM procedure to schedule these
jobs. Let (r1, . . . , ri, . . . , rm) the makespan of each machine, i.e. ri is the completion
time of the last job performed on Mi.

• Optimally solve the problem Pm|ri|Cmax by considering MILP3 on the remaining
jobs of agent A, where ri is the availability date of machine Mi.

Thus, heuristic H −MILP is defined by Algotithm 17.

Algorithm 17 Heuristic H −MILP

1: Call heuristic to solve ε-contraint problem Pm|ND, dB,
∑
UBj ≤ Q|CAmax

2: Let E ⊆ J B be the set of jobs scheduled before dB

3: Call LPT − FAM procedure to solve Pm||Cmax by considering only set E
4: Let (r1, r2, . . . , rm) be the completion times of the last jobs scheduled on

(M1,M2, . . . ,Mm).
5: Call MILP3 to solve Pm|ri|Cmax by considering the rest jobs of agent A
6: Schedule the tardy jobs of agent B at the end of the schedule
7: return solution with (CAmax,

∑
UBj)

5.5 Computational experiments

The proposed algorithms are coded in Python language and executed on a workstation
with a 2.4 GHz Intel Core i5 processor with 8 GB of memory, under Windows 10. Cplex

108

5.5. COMPUTATIONAL EXPERIMENTS

version 12.6.2 is used to solve the MILP models. The computation time limit has been
fixed to 3600 seconds for all different values of QB ∈ {0, nB} (getting Pareto front).

To analyse the performances of proposed heuristics we use the same generated instances
as presented in Section 4.6.1. Indeed, and according to the processing times, there are
two sets of data Data1 (processing times are randomly generated in [1, 10]) and Data2

(processing times are randomly generated in [1, 100]). The considered numbers of machines
m are: m = 2, 3.

5.5.1 Used performance measures

In the tables of results presented in this section, we denote by: CPU the needed time to
compute the exact Pareto Front; |S∗| the size of the exact Pareto front; GD is the average
minimum Euclidian distance, it is used to calculate the average of the minimum Euclidian
distances between an exact Pareto front and his approximate front (see section 2.5.2); And
H as Hypervolume metric (see 2.5.1).

GD measure is appropriate for our situation since it requires a reference set (which in
our case is the exact Pareto front) and allows comparisons in terms of closeness to the ref-
erence set. Therefore, even when the convex hull of the Pareto front is near to the convex
hull of the optimal Pareto front, the average distance may be a poor indicator of the quality
of the approximated front. Thus, the metricH calculates the area dominated by some front.

Note that for each table of results, each line is defined by (n,m). Thus, for each
performance measure, the reported value corresponds to the average value over 30 instances.

5.5.2 Performance analyses of LB

To analyze the performance of LB in regard to an optimal Pareto front, we use MILP2.
Indeed, according to the results presented at the end of the previous chapter, this model
is more effective than MILP1. Here, we only consider Data1 instances.

Table of Figure 5.13 and table of Figure 5.14 summarizes the results that indicate the
performances of the LB = (LBA, QB) of the exact Pareto front (recall that ε-constraint
approach is used).

Figure 5.13: Performance of LB: m = 2, pj ∈ [1, 10]

109

5.5. COMPUTATIONAL EXPERIMENTS

Figure 5.14: Performance of LB: m = 3, pj ∈ [1, 10]

For problem Pm|ND, dB|P (CAmax,
∑
UBj), the number of Pareto solutions increases

with an increasing number of jobs when m = 2, while the number of Pareto solutions is
rather constant and varies between 1 and 3 when m = 3. However, in the case of m = 2,
dealing with instances with more than 30 jobs, the gap between the lower bound of the
Pareto front and an exact Pareto front is then zero. It means that for a given value of QB,
we have: (CAmax(LB), QB) = (CAmax(S∗), QB).

Dealing with distance measures (GD and H) and according to the tables, it can be
concluded that the average distances from the reference set are small. It can be concluded
that the average distances from the reference set are very small. Even if the reported values
correspond to average values, this observation remains valid when considering each dataset
(note that LB gives optimal values in an average of 93% of instances such that m = 3 and
n ≥ 20).

5.5.3 Performance analyses of greedy heuristics

Data1 instances: In table of Figure 5.15 we summarize the performance of H1 and
H2 by given the deviation from lower bound of Pareto front.

Figure 5.15: H1 vs H2 performances with m = 2

As H2 is none other than an improvement of H1, by this table, we just want to indicate
the efficiency of the improvement phase added in H2 compared to simple rules that have
been used to define H1. We can see that the performance of H2 is better and better than
H1 when the size of instances increase. Hence, in the rest of this section, we leave out H1.

110

5.5. COMPUTATIONAL EXPERIMENTS

Let’s consider now only H2 and H3 heuristics where the reference set corresponds to
the lower bound of Pareto front.

In table of Figure 5.16 and table of Figure 5.17 we introduce a third column which
summarizes the best approximate Pareto front formed by non-dominated solutions belong
to both Pareto front computed by H2 and Pareto front computed by H3.

Figure 5.16: Data1: H2 vs H3 performances with m = 2

Figure 5.17: Data1: H2 vs H3 performances with m = 3

From these results, we remark that the number of Pareto solutions increases with the
number of jobs when m = 2 (resp. m = 3), to reach 90% (resp. 96%). However, the
distances remain significantly small. It should also be noted that these heuristics struggle
to find optimal solutions for small instances (for n = 10, only 54% of optimal solutions are
obtained by H3 with m = 2 and 34% with of optimal solutions are obtained by H3 with
m = 3).

From column 3, we can conclude that the combination of the two heuristics to compute
the optimal Pareto front is interesting. Even if H2 is much less efficient than H3, it
happens that H2 dominates H3. For example, in the case of 100 jobs and m = 2, the
combination of H2 and H3 allows to find 100% of non-dominated solutions belong to the
optimal Pareto front. This rate is reduced to 97% when m = 3.

Data2 instances: In table of Figure 5.18 and table of Figure 5.19 we summarize the
best approximate Pareto front formed by non-dominated solutions belong to both Pareto
front computed by H2 and Pareto front computed by H3, where pj = [1, 100]. The
reference set corresponds to the lower bound.

111

5.5. COMPUTATIONAL EXPERIMENTS

Figure 5.18: Data2: H2 vs H3 performances with m = 2

Figure 5.19: Data2: H2 vs H3 performances with m = 2

Here, when processing times varying between 1 and 100, we make the same observa-
tion regarding the performance of H3 compared to H2. Nevertheless, the performance
of both methods is deteriorating as the number of jobs increases. Only 15% of the strict
non-dominated solutions are generated by the combining H2 and H3. We note that the
distances from the lower bound remain small.

5.5.4 Performance analyses of hybrid heuristics

Let’s consider now DP (H2&H3) and MILP2(H2&H3) heuristics. DP (H2&H3)
(resp. MILP2(H2&H3)) is the proposed hybrid pseudo-polynomial dynamic program-
ming (resp. MILP2) heuristic. By the notation DP (H2&H3) we mean that the initial
solutions correspond to the non-dominated solution obtained by H2 or H3, for each value
of QB. In fact, these two heuristics give the same result (compute the same approximate
Pareto front). Here we are focused on the CPU times needed by each method to compute
this Pareto front. And, in the same times, we study the performance of H2−H3 by analyse
the deviation from lower bound.

It should be remembered that the running time of these two methods depends strongly
on the processing times. If the processing times are long, the methods require significant

112

5.5. COMPUTATIONAL EXPERIMENTS

computation times. That is why we were only interested on the data set Data1.
In table of Figure 5.20 and table of Figure 5.17, the second column gives the average

of the size of the exact Pareto front, denoted |S∗|; The thrid column indicates the gabs
between approximate Pareto front obtained by (H2 or H3) and lower bound of the ex-
act Pareto front; The fourth (resp. fifth) column are dealing with DP (H2&H3) (resp.
MILP2(H2&H3)).

Figure 5.20: Data1: H2− 3 vs DP (H2&H3) or MILP2(H2&H3) with m = 2

Figure 5.21: Data2: H2− 3 vs DP (H2&H3) or MILP2(H2&H3) with m = 2

The most important lesson here is that heuristics often find the right job blocks (those
that are early and those that are tardy). However, machine assignment remains a problem
since it is given by solving the classical parallel machine scheduling problem to minimize
the makepan. By optimizing locally on a subset of jobs, we can improve heuristics results.
However, this improvement is at the expense of the calculation time, which is getting
significantly longer.

5.5.5 Conclusion

This chapter is devoted to solving the problem Pm|ND, dB|P (CAmax,
∑
UBj) by heuris-

tics where ε- constraint approach is used. We propose a lower bound of the makespan. And

113

5.5. COMPUTATIONAL EXPERIMENTS

thus, a lower bound of the Pareto front can be computed. To compute this Pareto front,
three greedy heuristics are proposed, where the second heuristic H2 is an improvement of
the first one. The experiment results show that the third heuristic H3 outperforms H2.
Then, we propose a hybridization of these methods with two exact methods: dynamic pro-
gramming and MILP. The aim of the hybridization is thus to improve the greedy heuristics
by a local optimization.

114

Chapter 6

Iterative methods to solve the
studied scheduling problems

Résumé : L’application de méthodes exactes sur des problèmes combinatoires NP-
difficile au sens fort reste inefficace. Par conséquent, des méthodes heuristiques ont été
développées dans le chapitre précédent, basées sur des algorithmes de listes SPT et LPT.
Ces méthodes restent très rapides mais ne garantissent pas l’optimalité, d’autre part, elles
sont généralement conçues pour construire une solution de compromis unique. C’est
pourquoi nous nous sommes intéressés au développement de "Métaheuristiques". Ces
méthodes constituent des algorithmes d’optimisation globale stochastiques, avec une explo-
ration partielle de l’espace de recherche des solutions. Elles s’appuient sur des mécanismes
d’intensification et de diversification de la recherche afin de converger vers la ou les solu-
tions optimales globales. Dans ce chapitre, nous proposons deux types de métaheuristiques
: Recherche Tabu et les algorithmes NSGA-II. Puis un troisième, connu sous le nom de
Matheuristique, est également développée. Nous utilisons ces méthodes pour générer le
front de Pareto des problèmes d’ordonnancement étudiés dans les chapitres précédents.

L’organisation de ce chapitre est la suivante : nous présentons brièvement les méthodes
itératives dans la section 6.1. La recherche Tabu est décrite dans la section 6.2. La section
6.3 est consacrée à la présentation de la NSGA-II. Dans la section ?? nous présentons la
matheuristique que nous avons développée. L’analyse de performance de toutes ces méth-
odes est exposée dans la section 6.5.

Abstract: The application of exact methods on hard combinatorial problems remains
ineffective. Therefore, heuristic methods have been developed in the previous chapter,
based on SPT and LPT list algorithms. These methods remain very fast but do not
guarantee optimality, on the other hand, they are generally designed to build a single
compromise solution. That is why we have taken an interest in "Metaheuristics". These
methods constitute stochastic global optimization algorithms, with a partial exploration
of the research space of solutions. They are based on mechanisms for intensifying and
diversifying research in order to converge towards the overall optimal solution(s). In this
chapter we propose two types of metaheuristic: Tabu Search and NSGA-II algorithms.
Then a third one known as Matheuristic is also developed. We use these methods to

115

6.1. INTRODUCTION

generate the Pareto front of the studied scheduling problem.
The organization of this chapter is as follows: we briefly introduce iterative methods in

the section 6.1. The Tabu Search is described in the section 6.2. The section 6.3 is dedicated
to the presentation of NSGA-II. In section 6.4 we present the developed matheuristic.
Performance analyses of these methods are developed in the section 6.5.

6.1 Introduction

The principle of a traditional “iterative improvement" algorithm can be summarized
as follows. Given an initial solution σ0, which can be randomly generated, we build new
solution σ1 by locally modifying certain elements, i.e. certain decisions that were chosen
according to the initial solution. The objective function values of each solution (initial and
new one) are then compared to analyse the impact of this modification. If the change has
led to an improvement in the value of the objective function, then σ1 is generally accepted.
σ1 is a called ”neighbor” solution to the previous σ0. Therefore, σ1 becomes the new initial
solution and is considered as a starting point to generate a new solution.

Otherwise, σ1 is rejected and we try again to build another solution from σ0. The
process is made iterative until the modification process does not lead to the improvement of
the last best solution (or until stopping conditions). This iterative improvement algorithm
(also indicated as a classical method, or descent method) does not lead, in general, to an
global optimum, but only to a local optimal solution, which constitutes the best accessible
solution taking into account the initial assumptions.

To improve the efficiency of the method, it can of course be applied several times,
starting again with different initial solutions, and retaining as the final solution the best
obtained solution. However, this procedure significantly increases the computing time of
the algorithm and may not find an optimal solution, and the gap maybe non-negligible. In
general, this procedure is particularly ineffective when the number of local minima increases
exponentially with the size of the problem.

To overcome the obstacle of local minima, another idea has proven to be very cost-
effective, to such an extent that it is the basic step of any neighbourhood-based meta-
heuristics such as simulated annealing and tabu search algorithm. It is a question of
sometimes accepting movements that degrade a current solution, i.e. accepting a tempo-
rary degradation of the solution. A mechanism for controlling degradation, specific to each
metaheuristic, makes it possible to avoid process divergence. It then becomes possible to
be extracted from the ”trap” that represents the optimal local solution, and thus to ex-
plore another more promising "valley". The "based population" metaheuristics (such as
evolutionary algorithms) also introduce mechanisms for exploring different sub-areas of so-
lutions. As mechanisms we can mention the mutation procedure in evolutionary algorithms
[Dréo et al., 2006].

To solve our studied scheduling problem, we develop two metaheuristics: tabu search
algorithm (TS) and a non-dominated sorting genetic algorithm (NSGA-II). We develop
also a matheuristic algorithm.

116

6.2. TABU SEARCH

Figure 6.1: Conceptual scheme of Tabu search

6.2 Tabu search

Tabu search algorithm was introduced by Glover [Glover, 1989, Glover, 1990]. This
method has been successfully applied to solve many difficult optimization problems, such
as Bin Paking problem [Gourgand et al., 2007], lot-sizing problems [Gourgand et al., 2010],
machine scheduling problems [Venditti et al., 2010], RCPSP [Laurent et al., 2017], vehicle
routing problems [Kergosien et al., 2011].

The principle of Tabu search is similar to that of iterative local search methods. It is
based on the generation and evaluation of a neighborhood of solutions. Its main feature is
the implementation of a mechanism combining a local search procedure with rules allowing
it to overcome the obstacle of local optimal solution and at the same time avoid being
trapped in a cycle (see Figure 6.1).

The tabu search deals with only one configuration at a time, which is updated at each
iteration. At each iteration, the transition from one S configuration to another S′ is done
in two steps:

• All the neighbors N(S) of S is constructed from the elementary movement of S,

• The objective function f of the problem is evaluated in each of the configurations of
N(S), the configuration S′ that follows S is the configuration of the set N(S) where
f takes the minimum value.

Figure 6.2 presents the general structure of TS algorithm.
To avoid the appearance of a cycle and the return to a configuration already selected,

a list of tabu movements or tabu list TL is updated. This list contains the last |TL|
movements performed. It means that a visited solution it is marked as ”Tabu” (forbidden)
so that the algorithm does not consider this solution during a certain period. So, it costs
memory structures that describe the visited solutions or user-provided sets of mouvements.
Through an aspiration criterion, the tabu status of solution can, however, be revoked if that
would allow the search process to return to a previously visited solution and thus allows the
exploration of other areas and obtain better solutions. Moreover, in its basic form, the TS
method comprises less parameters of adjustment than simulated annealing, for example.
This method makes it easier to use. However, the various additional mechanisms, like the
intensification and diversification, bring a notable complexity.

117

6.2. TABU SEARCH

Figure 6.2: General scheme of Tabu search

118

6.2. TABU SEARCH

In following, we show how this TS algorithm was implemented to solve the studied
scheduling problems by justifying our choices.

6.2.1 Encoding mechanism

According to Propositions 3, 4 and 5, we know that given the assignment of jobs,
we can compute the objective function values of a non-dominated solution for problem
Pm|ND, dB,

∑
UBj ≤ QB|CAmax in polynomial time. In fact, this can be done by adap-

tation of Algorithm 9 or Algorithm 10. Therefore, the proposed encoding is based on a
machine-assignment scheme described as follow.

Machine-assignment encoding: A solution is an n-vector where each element i
stores the number of the machine that performs job Jj . Let us consider an example with
m = 3 machines, n = 7 jobs and nB = 5. Let the processing times be {1; 2; 3; 4; 5; 3; 1}.
Where the five first jobs are in J B are numbered according to SPT order; the two last
jobs are in J A \ J AB (black color) are numbered according to LPT order; jobs J2, J3 are
in J AB (bleu color). Figure 6.3 shows the encoding and decoding of a solution. Note that
in this step, we don’t have call Algorithm 9 yet.

6.2.2 Decoding mechanism

Dealing with values of QB and dB, from an encoding solution, we can compute the
corresponding optimal values of CAmax and

∑
UBj by applying algorithm 9. Note that jobs

have been already sorted. Then this step can be done in O(n).
Let us consider the previous example. Suppose that: (QB, d

B) = (1, 5). Thus, Algo-
rithm 9 returns a solution as showing in Figure 6.3.(a) where (CAmax,

∑
UBj) = (10, 1).

Figure 6.3: TS encoding and decoding of a solution

119

6.2. TABU SEARCH

Let’s now consider (QB, d
B) = (3, 5). Thus, according to encoding solution pre-

sented in Figure 6.3, Algorithm 9 returns a solution as showing in Figure 6.3.(b) where
(CAmax,

∑
UBj) = (6, 3).

6.2.3 Initial solution

There are several ways to generate an initial solution when dealing with metaheuristic
approaches: random generation, greedy heuristics, local search methods, metaheuristics,
etc. In our case, the tabu search heuristic is initialized with a solution S0 constructed by
the best obtained solution given by H2 or H3 heuristics.

6.2.4 Neighborhood function

The set N(s) is generally defined as the set of solutions related to the current configu-
ration, which we consider from a practical point of view as the set of modifications we can
make to S. We call movement, a modification made to a solution. The set N(S) is the set
of valid solutions that can be obtained by applying a movement l belonging to the set L of
possible movements. In the literature, among the possible movements that could generate
eligible neighboring solutions, we quote for example: insertion, i.e. move an element from
its original place to a new place; swapping of two successive elements in the initial solution;
swapping of any two distinct elements.

In our study, the generation of neighbors N(S) is given by modifying the assignment
of job Jj executed on Mi to a machine Mi′ such that i′ = 1, . . . ,m and i 6= i′; ∀j. This
movement allow to have a size neighborhood of (n× (m− 1)).

6.2.5 Tabu list

The recent selected solutions are stored in a short-term memory. In any context, there
are several possibilities regarding the specific information that is recorded. For example,
we can record: complete solutions; the last few transformations performed on the current
solution and prohibiting reverse transformations; key characteristics of solutions.

In our study, we record the last performed mouvement on the current solution which
led us to obtain a new solution.

Concerning the tabu liste size, even if some authors have proposed varying the tabu
list length during the search, it has been shown that fixed-length tabu list can prevent
cycling. In our case, the size of tabu list has been fixed to n, where n is the number of
jobs. According to computational experiments, this offers a good compromise value with
the size of instance.

6.2.6 Stopping criteria

The tabu search procedure is stopped according to two criteria:

• Number of iterations without improving the best computed solution. This value is
fixed to 100 iterations that offers a good compromise according to the conducted

120

6.3. NSGA-II ALGORITHM

computational experiments.

• An optimal solution is reached (value of makespan equals to the value of lower bound)

6.2.7 Implemented tabu search algorithm

The resulting non-disjoint multi-agent scheduling algorithm to compute Pareto front is
summarized in the pseudo-code of Algorithm 18. The approach ε-constraint approach is
then used with QB ∈ [LBB, UBB]. Of course, to reduce the number of iterations, we first
compute a lower bound by Algorithm 12 to determine LBA ≤ CAmax.

Algorithm 18 Tabu search algorithm for Pm|ND, dB|P (CAmax,
∑
UBj)

1: iterationmax = 100; LTsize = n
2: Let ND be the set of non-dominated solutions; ND = ∅
3: for QB = nB down to 0 step 1 do
4: Compute an initial solution S0 (non-dominated solution belongs to H2 and H3)
5: Sbest = S0

6: S = S0

7: LT = ∅
8: Compute LBA

9: iteration = 0
10: while CAmax(S) > LBA AND Iteration < iterationmax do
11: Determine N(Siteration) the neighbor solutions of Siteration
12: Let S be the best neighbor solution belongs to N(Siteration)
13: LT = LT ∪ {S}
14: if LTsize > n then
15: Remove the oldest solution from LT
16: if S dominates Sbest then
17: Sbest = S
18: iteration = 0
19: else
20: iteration = iteration+ 1

21: ND = ND ∪ {Sbest}
22: S0 = S

23: return set of non-dominated solutions ND

6.3 NSGA-II algorithm

Genetic Algorithm have been originally proposed by Holland and further developed by
Goldberg [Holland, 1992]. This is a general search technique where a population composed
by individual evolves according to some genetic operators such as: selection, crossover,
mutation. Finally, each individual presents a good fitness and he is one of the population,
where their organisms are more or less optimal adaptation to their environment. Several
evolutionary algorithms are proposed in the literature, such as genetic algorithms, NSGA or

121

6.3. NSGA-II ALGORITHM

NSGA-II. All these approaches operate on a set of candidate solutions. An iterative process
based on diversification and intensification of solutions is applied. Diversification is ensured
by genetic operators, crossover and mutation which are applied to certain solutions chosen
according to elitist rules. The intensification process builds on existing solutions to find
those that will be considered better. At each iteration, solutions from genetic operators
are inserted into the population. All solutions are then assessed on their fitness (quality of
the criteria values). The method stops thanks to a stopping criterion, which can be defined
by the number of iterations, the execution time or the quality of the solutions found. In
the end, the best solutions are selected and presented as the result of the method. The
general structure of such algorithms is illustrated in Figure 6.4.

Figure 6.4: General structure of an evolutionary algorithm

In this section, we propose a second metaheuristic to compute the Pareto front of
scheduling problem Pm|ND, dB|P (CAmax,

∑
UBj) based on ε-constraint approach. It is

about NSGA-II algorithm. The NSGA-II procedure ”Non-dominated Sorting Genetic Algo-
rithm”, is an evolutionary method often used to solve multi-criteria optimization problems.
The basic idea of this method is to establish a total order between the solutions. NSGA-II
was introduced by Deb et al. [Deb et al., 2002]. The authors proposed a procedure for
sorting solutions with a complexity in O(K|P |2) (K being the number of criteria and |P |
the size of the population to sort). The solutions are thus hierarchized into ranks: rank 1,
rank 2, etc. It means that solutions belonging to rank k are non-dominated among them-
selves and cannot be dominated by a solution that belongs to rank k′ such that k′ > k.
This procedure is called at each iteration.

122

6.3. NSGA-II ALGORITHM

6.3.1 Encoding

Each individual is encoded (represented) by a chromosome consisting of a gene, that
is, a gene sequence. Hence, the same encoding used for tabu search algorithm is used (see
Figure 6.3). It is thus machine-assignment encoding. This coding can be justified by the
previous results and makes it possible to set up particularly simple crossing and mutation
operators.

In the case of the m parallel machine scheduling problem with n jobs, an individual is
thus defined by n-vector which gives the permutation of machines. An example resulting
from this procedure is presented in Figure 6.5.

Job J1 J2 J3 J4 ... Jn
Machine 1 3 2 2 ... 1

That the corresponding solution is represented by Figure 6.5.

Figure 6.5: Used encoding for NSGA-II

6.3.2 Initial population

This step consists in building the initial population. The mechanism that will be
adopted must be able to produce a non-homogeneous population of individuals that will
serve as a basis for future generations. The first individuals were obtained by the sim-
ple gluttonous algorithms presented in Chapter 4 (H1, H2 and H3). To generate other
individuals, we applied our crossover operators to these initial solutions.

We also generated randomly some individuals. This consists of going through each
chromosome, and assigning the job one by one on a randomly decided machine.

6.3.3 Crossover operator

The crossing allows the mixing of two parental genes, the resulting genes partially
inherit the characteristics of the parents. This function of operator is to enrich the diversity
of the population by manipulating the structure of chromosomes in order to generate new
individuals that are potentially better than individuals in the current population.

The crosses considered in our study are made between two individuals in a population
and generate two children. We note PCk the resulting population in step k by applying
crossover operator. During the crossover operator, two parents 1 and 2 are selected from
the individuals of the current population Pk−1. We adopt the 2-point crossover operator.

123

6.3. NSGA-II ALGORITHM

This procedure therefore generates two new individuals. An example resulting from this
crossover operator is presented in Figure 6.6.

Figure 6.6: 2-point crossover operator

6.3.4 Mutation operator

For the application of this operator a random number is generated, if this number is
less than the probability of mutation ρ (fixed to 5%) an individual is selected to carry out
a mutation. The new individuals resulting from this operation will constitute a part of the
new population.

Our mutation operator consists of randomly changing the value of one or more genes
in a chromosome, as shown in Figure 6.7. This operator is described by Algorithm 19.

Figure 6.7: Mutation operator

Algorithm 19 Mutation operator
1: Randomly choose job Jk performed on machine Mi.
2: Randomly choose machine Mi′ 6= Mi.
3: Let Sswap be the set of jobs scheduled on machine Mi′ such that

∑
j∈Sswap

pj ≤ pk
4: Assign Jk to machine Mi′

5: Assign each job belongs to Sswap to machine Mi

6: Add this solution to current population

6.3.5 Parameters

Parameters such as population size, mutation probability or number of crossing points
are often difficult to determine, and the success of the method depends heavily on them.
The mutation rate has been set at 5%. The population size was set at 100. About the
stopping creteria, we use the same as introduced for tabu search algorithm. In particular,
after nG = 100 generations of population, the algorithm returns the found Pareto front.

124

6.4. MATHEURISTIC ALGORITHMS

6.4 Matheuristic algorithms

Matheuristic is a new type of metaheuristc algorithms, which can be defined as an
hybridation of exact methods (generally based on mathematical programming models)
and heuristic/metaheuristic approaches. This type of approach offers best performances
when NP-hard optimization problems are tackled. Notice that a matheuristic method can
be used with any initial solution. Thus, to compute a Pareto front of the studied scheduling
problem, we propose a matheuristic method where scheduling a subset of jobs of agent A
is done by applying MILP3 introduced in section 5.4.2 and is iteratively called.

The main idea of our implemented of the proposed matheuristic is presented as follow
(see Figure 6.8):

• Compute an initial solution S0 (S0 can be done by applying one of proposed greed
heuristics)

• Compute neighbor solutions according to a neighboring function. And thus, set of
early jobs of agent B is deduced (respectively the rest jobs of agent A) (see Figure
6.9.

• Call MILP3 to schedule rest jobs of agent A and deduce CAmax

Figure 6.8: General structure of our matheuristic algorithm

125

6.4. MATHEURISTIC ALGORITHMS

Figure 6.9: The main idea of the proposed matheuristic

6.4.1 Encoding

Dealing with this method, we introduce a new encoding procedure. Here, a solution
is represented by a matrix with the size (2 × n) as showing by Figure 6.10. The first line
contains the position number of job (position-job encoding) and the second one contains
the machine number to indicate on witch job Jj is executed (assignent-machine encoding).
Figure 6.10 shows the encoding of an instance with 7 jobs and tree machines.

Figure 6.10: Combining position-job encoding with assignent-machine encoding

6.4.2 Initial solution

Initial solution S0 corresponds to the best solution obtained by applying proposed
greedy heuristics H2 and H3.

6.4.3 Neighborhood function

The set N(S) is the set of solutions related to the current solution. In our study, the
generation of neighbors N(S) of solution S is given by two different movements: swapping
of any two distinct elements; swapping of two successive elements.

1. Swapping of any two distinct elements: From the encoding matrix, we inter-
change the two columns Jj1 and Jj2 , i.e. copy the column Jj1 (respectively Jj2)

126

6.4. MATHEURISTIC ALGORITHMS

into the column Jj2 (respectively Jj1). This procedure is denoted Swapjobs(Jj1 , Jj2),
∀(Jj1 , Jj2) ∈ J 2. This procedure builds n2 new solutions (see Figure 6.11).

Figure 6.11: Swapping of any two distinct elements

2. Swapping of two successive elements: This is done only on the assignent-
machine encoding (line 2 of encoding matrix). We interchange the first half part
of this line with the second one, i.e. copy the n/2 first (respectively last) elements
into the last (respectively first) half part. This procedure is denoted Swapmachines(S).
Dealing with one solution, this procedure builds a new one (see Figure 6.12).

Figure 6.12: Swapping of two successive elements

The 2n2 solutions belong N(S) are then generated by applying Algorithm 20.

Algorithm 20 Computing neighbor set
1: Let S0 an initial solution
2: N(S0) = ∅
3: for each (Jj1 , Jj2) ∈ J 2 do
4: S = Swapjobs(Jj1 , Jj2)
5: N(S0) = N(S0) ∪ {S}
6: for each S ∈ N(S0) do
7: S = Swapmachines(S)
8: N(S0) = N(S0) ∪ {S}
9: return N(S0)

6.4.4 Implemented matheuristic algorithm

Our matheuristic algorithm has been coded with the following parameters:

127

6.5. COMPUTATIONAL EXPERIMENTS

• Initial solution S0 corresponds to the non-dominated solution belongs to solutions
computed by H2 and H3

• Two stopping criteria are considered: First one when a solution is optimal, it means
that makespan is equal to LBA. The second one is the time-limit. Time-limit is thus
fixed to: time− limit = n8/(5.1011) + 0, 09. This value is approached with the time
needed by exact method to compute solution for 10 to 40 jobs.

Algorithm 21 gives the pseudo-code of the coded matheuristic.

Algorithm 21 Mathheuristic for Pm|ND, dB|P (CAmax,
∑
UBj)

1: iterationmax = timeLimit
2: Let ND be the set of non-dominated solutions; ND = ∅
3: for QB = nB down to 0 step 1 do
4: Compute an initial solution S0 (non-dominated solution belongs to H2 and H3)
5: Sbest = S0

6: S = S0

7: Compute LBA

8: iteration = 0
9: while CAmax(S) > LBA AND Iteration < iterationmax do

10: Call Algorithm 20 to generate N(Siteration), neighbor solutions of Siteration
11: for all S ∈ N(S) do
12: Let E(S) be the early jobs belong J B
13: RA(S) = J A \ E(S) (RA(S) is the rest of jobs belong J A)
14: Schedule jobs belong to E(S) according to LPT − FAM rule
15: Call MILP3 on jobs RA(S)
16: Schedule the remaining jobs of agent B to obtain new solution S
17: According to S, update Sbest and ND
18: endfor
19: Update Iteration
20: endwhile
21: endfor
22: return set of non-dominated solutions ND

6.5 Computational experiments

The proposed algorithms are coded in Python language and executed on a workstation
with a 2.4 GHz Intel Core i5 processor with 8 GB of memory, under Windows 10.

Getting Pareto front, all methods have been tested with different values of QB ∈
{0, nB}. To analyse the performances of proposed methods we use the same generated
instances as presented in Section 4.6.1. Indeed, and according to the processing times,
there are two sets of data: Data1 (processing times are randomly generated in [1, 10]) and
Data2 (processing times are randomly generated in [1, 100]). The considered numbers of
machines m are: m = 2, 3.

128

6.5. COMPUTATIONAL EXPERIMENTS

The tables of results presented in this section are defined as follow:

1. The first column corresponds to the number of jobs, denoted n

2. The second column gives the average on size of the Pareto front, denoted |S(LB)|.
Here we consider the lower bound of the Pareto front computed according to Algo-
rithm 12 where QB = 0, . . . , nB.

3. The last four columns indicate the performance of following heuristics: Best(H2&H3),
NSGA − II, tabu search algorithm TS and Matheuristic, in this order. For each
method, we give: CPU (the needed time to compute the exact Pareto Front); %S
(the average percentage of strict Pareto solutions); GD (the averaged of an Euclidien
distance); and H (the average of the hypervolume), in this order.

Note that for each dataset (n,m), 30 instances were generated. The average values are
therefore over 30 instances.

GD measure is appropriate for our situation since it requires a reference set (which is
the lower bound of Pareto front) and allows comparisons in terms of closeness to this ref-
erence set. Therefore, even when the convex hull of the Pareto front is near to the convex
hull of the optimal Pareto front, the average distance may be a poor indicator of the quality
of the approximated front. Thus, the metricH calculates the area dominated by some front.

Data1 instances:
Tables of Figure 6.13 and Figure 6.14 we summarize the performances of the considered

resolution methods by given the deviation from the lower bound. Here, processing times
are randomly generated in [1, 10].

Figure 6.13: Data1 with m = 2: Iterative methods performances

TS algorithm offers almost the same results as the Matheuristic method, except for
small size instances. For exemple, dealing with 10 jobs and m = 2 (see table of Figure 6.13,
the average percentage of strict Pareto solutions is improved by Matheuristic algorithm to
reach 76% versus 74% for strict Pareto solutions computed by TS algorithm or by NSGA-
II algorithm. Note that the average percentage of the the initial size of the approximate
Pareto front (initial solutions computed by H2&H3) is 62%, which is improved by the
iterative methods.

129

6.5. COMPUTATIONAL EXPERIMENTS

We also notice that the two performance measures GD and H are improved regarding
to the initial Pareto front, which means that the approached Pareto front is almost identical
to the lower bound (the maximum average deviation is 1, 4 in term of hypervolume H and
0, 3 in term of GD). It is worth noting the performance of NSGA-II, even if the Pareto front
obtained by the NSGA-II does not dominate those obtained by TS and Matheuristic. Also
note the performance (as already seen) of the combination of the two heuristics (H2&H3).
As (H2&H3) provide strict Pareto solutions for some values of QB, the computation
times of these iterative methods are significantly improved (0 sec, indicates that the initial
solution is an optimal solution in the Pareto sense).

Figure 6.14: Data1 with m = 3: Iterative methods performances

From results presented in table of Figure 6.14 when m = 3 we remark that NSGA-II
and TS algorithms offer the same performances. However, the observation remains the
same as in the case of 2 machines: Matheuristique slightly dominates the other methods,
but with a slightly longer computation time than the other methods, for some instances.

Data2 instances:
Tables of Figure 6.15 and Figure 6.16 summarize the performances of the considered

resolution methods by given the deviation from the lower bound. Here, processing times
are randomly generated in [1, 100].

Figure 6.15: Data2 with m = 2: Iterative methods performances

130

6.6. CONCLUSION

Figure 6.16: Data2 with m = 3: Iterative methods performances

Here, when processing times varying between 1 and 100, we make the same observation
regarding to the performance of Matheuristic compared to other methods. In the case of
m = 2 (resp. m = 3) with instances of size n ≥ 30 jobs (resp. n ≥ 40 jobs), Matheuristic
allows to find more than 97% in average of non-dominated solutions.

Nevertheless, the performances of both TS algorithm and NSGA-II algorithm is dete-
riorating as the number of jobs increases in term of the number of strict Pareto solutions
found. Only in average 10% (resp. 9%) over 3 strict Pareto solutions (note that here their
corresponding criteria values are lower bounds) are computed. However, we note that the
average distances (GD and H) from the lower bound remain small.

6.6 Conclusion

In this chapter, we have focused on studying job scheduling problems with two agents,
some of which are common, using a Pareto approach. We presented the Tabu search
algorithm and then the NSGA−II method. The chosen encoding depends on the structure
of the problem solutions. Indeed, for problems minimizing the makepan and the number
of late jobs, we have previously shown that from an assignment of jobs to machines we can
calculate a Pareto solution in polynomial time. The encoding of such a solution is thus
done with a n−vector.

Another encoding was proposed giving information on the positions of jobs on the
machines. Thus, the proposed encoding is defined by a matrix (n×2). This coding is used
within the third developed method: Matheuristic. The initial solution (initial population)
is performed using proposed greedy heuristics (H1, H2 and H3). Dealing with NSGA−II,
a part of initial population is (semi-)randomly performed.

In order to analyse the performance of the proposed methods, we have taken up the
instances presented in the previous chapters. The comparison between the lower bounds
of the Pareto fronts and the approximated fronts reveals that the proposed methods are
effective, in particular the Matheuristic method, since the generational distances are very
small compared to the values of the criteria.

131

6.6. CONCLUSION

132

Chapter 7

Conclusions and future research
directions

In this thesis we tackle multiagent scheduling problems, with two objective functions.
The first is minimizing the makespan of one agent and the second is minimizing the total
number of tardy jobs with common due date for the other agent. More precisely, we study
the non-disjoint scenario. Only two agents are considered in our study. Each one has his
own jobs. May happen that some jobs are common. The agents share the same resources
to schedule their own jobs. The considered resources in our study are identical parallel
machines.

This problem is shown to be NP-hard. To compute the Pareto front, the ε-constraint
approach is investigated.

However, in the case of single machine, we show that the Pareto front can be computed
in polynomial time. The case of equal length jobs is also studied. We show that the problem
is equivalent to the minimum cost maximum matching problem, which is polynomially
solvable. Table 7.2 summarizes the polynomial cases.

Problem Complexity Section

1|ND, dA, CB
max ≤ QB |

∑
UA

j O(nA log(nA) + n) 4.3.1

1|ND, dB ,
∑
UB

j ≤ QB |CA
max O(nB log(nB) + n log(UB)) 4.3.2

1|ND, dA|P (
∑
UA

j , C
B
max) O(n2

B log(nB) + nBn log(UB))4.3.3

Pm|ND, dAj , pj = p, CB
max ≤ QB |

∑
UA

j O(n5/2) 4.4.1

Pm|ND, dBj , pj = p,
∑
UB

j ≤ QB |CA
max O(n5/2 log(UB)) 4.4.2

Pm|ND, dAj , pj = p|P (
∑
UA

j , C
B
max) O(nAn

5/2log(UB)) 4.4.3

Table 7.1: New complexity results.

Dealing with general case, several resolutions methods were developed:

• Two exact methods MILP1 and MILP2.

133

• Three greedy heuristics: H1, H2 and H3.

• Two hybrid heuristics combining greedy heuristics and exact methods (dynamic pro-
gramming algorithm and MILP).

• Three iterative improvement methods: Tabu search, NSGA− II and Matheuristic.

We use the different metrics to compare the performances of these methods such as: size
of Pareto front, generational distance and Hypervolume. The greedy algorithm H3 gives
best results than the proposed greedy heuristics, where hybridization method of heuristic
with MILP outperforms the other one based on dynamic programming algorithm. About
the iterative improvement methods, the experiment results show that the best method is
Matheuristic.

Several research directions can be considered for the future work:

• The first idea is to embed the resolution of the MILP model in the NSGA-II algorithm
to have better solutions.

• A second idea is to provide et test other crossover operator and mutation operator.

• A third idea is analyse which result can be generalized to the case of more than two
agents.

• Finally, it mill be interisting to study the case with arbitrary due dates, and consider
unrelated parallel machines.

The study carried out has been published in national conferences and international
conferences. We summarize below all our publications.

• Van Ut Tran, Ameur Soukhal. Multi-agent, two-criteria: Optimization total the
number of tardy jobs and the makespan on identical parallel processors, iFors 2017,
jully 2017, Quebec, Cannada.

• Van Ut Tran, Ameur Soukhal. Multi-agent scheduling problem and apply them in
application. CanTho Software Park, 01/2017, CanTho, Vietnam.

• Faiza Sadi, T. Van Ut, Nguyen Huynh Tuong, Ameur Soukhal:Non-disjoint Multi-
agent Scheduling Problem on Identical Parallel Processors. Conference, Future Data
and Security Engineering, 10018, Springer, pp.400414, 2016, Lecture Notes in Com-
puter Science, 978-3-319-48057-2, CanTho, Vietnam, November 2016.

• Van Ut Tran, Ameur Soukhal, Huynh Nguyen. Minimisation de la date d’achèvement
et du nombre de travaux en retard pour l’ordonnancement multiagent non-disjoint.
18ème Conférence ROADEF de la Société Française de Recherche Opérationnelle et
d’Aide à la Décision, Feb 2017, Metz, France.

134

• Van Ut Tran, Faiza Sadi, Ameur Soukhal. Minimisation de la date d’achèvement
et du nombre de travaux en retard pour lórdonnancement multiagent. 17ème con-
grès de la société Française de Recherche Opérationnelle et d’Aide à la Décision
(ROADEF2016), Feb 2016, Compiègne, France.

• Van Ut Tran, Ameur Soukhal. Ordonnancement de travaux interférants avec la
date d’achèvement et contraint nombre de retards des travaux. 16 ème conférence
ROADEF Société Française de Recherche Opérationnelle et Aide à la Décision, Feb
2015, Marseille, France.

135

Conclusions et perspectives
Dans cette thèse, nous abordons les problèmes d’ordonnancement multi-agents, avec

deux fonctions objectifs. Le premier est de réduire au minimum la durée d’achèvement
totale des travaux d’un agent et le second est de réduire au minimum le nombre total de
travaux en retard pour une date d’échéance commune. Plus précisément, nous étudions le
scénario non disjoint. Seuls deux agents sont pris en compte dans notre étude. Chacun
a son propre travail. Il peut arriver que certains travaux soient communs. Les agents
partagent les mêmes ressources pour ordonnancer leurs propre travaux. Les ressources
considérées dans notre étude sont des machines parallèles identiques.

Ce problème est NP-difficile. Pour calculer le front de Pareto, l’approche ε-contrainte
est utiliusée.

Cependant, dans le cas d’une seule machine, nous montrons que le front de Pareto
peut être calculé en temps polynomial. Le cas des travaux de même durée opératoire est
également étudié. Nous montrons que le problème est équivalent au problème de couplage
maximum à coût minimum, qui est polynomial. Le tableau 7.2 résume les cas polynomiaux
montrés dans notre étude.

Problem Complexity Section

1|ND, dA, CB
max ≤ QB |

∑
UA

j O(nA log(nA) + n) 4.3.1

1|ND, dB ,
∑
UB

j ≤ QB |CA
max O(nB log(nB) + n log(UB)) 4.3.2

1|ND, dA|P (
∑
UA

j , C
B
max) O(n2

B log(nB) + nBn log(UB))4.3.3

Pm|ND, dAj , pj = p, CB
max ≤ QB |

∑
UA

j O(n5/2) 4.4.1

Pm|ND, dBj , pj = p,
∑
UB

j ≤ QB |CA
max O(n5/2 log(UB)) 4.4.2

Pm|ND, dAj , pj = p|P (
∑
UA

j , C
B
max) O(nAn

5/2log(UB)) 4.4.3

Table 7.2: New complexity results.

En ce qui concerne le cas général, plusieurs méthodes de résolution ont été mises au
point :

• Deux méthodes exactes MILP1 et MILP2.

• Trois heuristiques gloutonnes : H1, H2 et H3.

• Deux heuristiques hybrides combinant heuristiques gloutonnes et méthodes exactes
(algorithme de programmation dynamique et MILP).

• Trois méthodes itératives d’amélioration : Recherche Tabu, NSGA−II et Matheuris-
tique.

Nous avons utilisé différentes métriques pour comparer et analyser les performances
de ces méthodes telles que : taille du front de Pareto, distance générationnelle et Hy-
pervolume. L’algorithme gourmand H3 donne les meilleurs résultats que les deux autres

136

heuristiques gloutonnes. La méthode d’hybridation de l’heuristique H3 avec MILP est
plus performante que l’autre basée sur l’algorithme de programmation dynamique. En
ce qui concerne les méthodes itératives d’amélioration, les résultats des expérimentations
menées montrent que la meilleure méthode est la Matheuristique.

Plusieurs axes de recherche peuvent être envisagés pour les travaux futurs :

• La première idée est d’intégrer la résolution du modèle MILP dans l’algorithme
NSGA-II pour avoir de meilleures solutions.

• Une deuxième idée est de fournir et de tester d’autres opérateurs de croisement et de
mutation.

• Une troisième idée est d’analyser et déduire quels résultats peuvent être généralisés
au cas de plus de deux agents.

• Enfin, il serait intéressant d’étudier le cas avec des dates d’échéance arbitraires, et
d’envisager des machines parallèles non reliées.

Les études menées ont donné lieu à des publications dans des conférences nationales et
internationales. Nous résumons ci-dessous toutes nos communications scientifiques.

• Van Ut Tran, Ameur Soukhal. Multi-agent, two-criteria: Optimization total the
number of tardy jobs and the makespan on identical parallel processors, iFors 2017,
jully 2017, Quebec, Cannada.

• Van Ut Tran, Ameur Soukhal. Multi-agent scheduling problem and apply them in
application. CanTho Software Park, 01/2017, CanTho, Vietnam.

• Faiza Sadi, T. Van Ut, Nguyen Huynh Tuong, Ameur Soukhal:Non-disjoint Multi-
agent Scheduling Problem on Identical Parallel Processors. Conference, Future Data
and Security Engineering, 10018, Springer, pp.400414, 2016, Lecture Notes in Com-
puter Science, 978-3-319-48057-2, CanTho, Vietnam, November 2016.

• Van Ut Tran, Ameur Soukhal, Huynh Nguyen. Minimisation de la date d’achèvement
et du nombre de travaux en retard pour l’ordonnancement multiagent non-disjoint.
18ème Conférence ROADEF de la Société Française de Recherche Opérationnelle et
d’Aide à la Décision, Feb 2017, Metz, France.

• Van Ut Tran, Faiza Sadi, Ameur Soukhal. Minimisation de la date d’achèvement
et du nombre de travaux en retard pour lórdonnancement multiagent. 17ème con-
grès de la société Française de Recherche Opérationnelle et d’Aide à la Décision
(ROADEF2016), Feb 2016, Compiègne, France.

• Van Ut Tran, Ameur Soukhal. Ordonnancement de travaux interférants avec la
date d’achèvement et contraint nombre de retards des travaux. 16 ème conférence
ROADEF Société Française de Recherche Opérationnelle et Aide à la Décision, Feb
2015, Marseille, France.

137

138

Bibliography

[Agnetis et al., 2014] Agnetis, A., Billaut, J.-C., Gawiejnowicz, S., Pacciarelli, D.
et Soukhal, A. (2014). Multiagent Scheduling, Models and Algorithms. Springer. 1, 1,
2.3.4, 2, 2.4.2.2, 3.3.3, 3.3.4.2, 3.4

[Agnetis et al., 2009a] Agnetis, A., de Pascale, G. et M.Pranzo (2009a). Computing
the nash solution for scheduling bargaining problems. International Journal of Opera-
tional Research, 1:54–69. 3.3, 3.4

[Agnetis et al., 2000] Agnetis, A., Mirchandani, P., Pacciarelli, D. et Pacifici, A.
(2000). Nondominated Schedules for a Job-Shop with Two Competing Users. Computa-
tional & Mathematical Organization Theory, 6(2):191–217. 3.3, 3.3.1.1

[Agnetis et al., 2004] Agnetis, A., Mirchandani, P., Pacciarelli, D. et Pacifici, A.
(2004). Scheduling problems with two competing agents. Operations Research, 52:229–
242. 3.3, 3.3.1.1, 3.4

[Agnetis et al., 2009b] Agnetis, A., Pacciarelli, D. et de Pascale, G. (2009b). A
Lagrangian approach to single-machine scheduling problems with two competing agents.
Journal of Scheduling, 12:401–415. 3.3

[Agnetis et al., 2007] Agnetis, A., Pacciarelli, D. et Pacifici, A. (2007). Multi-agent
single machine scheduling. Annals of Operations Research, 150:3–15. 3.3, 3.4

[Alharkan, 1997] Alharkan, I. M. (1997). Algorithms for Sequencing and Scheduling.
Industrial Engineering Department College of Engineering King Saud University Riyadh,
Saudi Arabia. 3.1.3.3

[Baker et Smith, 2003] Baker, K. et Smith, J. (2003). A multiple-criterion model for
machine scheduling. Journal of Scheduling, 6:7–16. 2.2, 3.4

[Balasubramanian et al., 2009a] Balasubramanian, H., Fowler, J., A.Keha et
Pfund, M. (2009a). Scheduling interfering job sets on parallel machines. European
Journal of Operational Research, 199:55–67. 3.4

[Balasubramanian et al., 2009b] Balasubramanian, H., Fowler, J., Keha, A. et
Pfund, M. (2009b). Scheduling interfering job sets on parallel machines. European
Journal of Operational Research, 199(1):55–67. 4.5

139

BIBLIOGRAPHY

[Baptiste et Brucker, 2004] Baptiste, P. et Brucker, P. (2004). Scheduling equal pro-
cessing time jobs, in : J.Y. Leung (Ed.), Handbook of Scheduling : Algorithms, Models
and Performance Analysis. CRC Press, Boca Raton, FL, USA. 3.3

[Bellman et Kalaba, 1957] Bellman, R. et Kalaba, R. (1957). On the role of dynamic
programming in statistical communication theory. IRE Trans. Information Theory, 3(3):
197–203. 2.4.2.2

[Beume et al., 2009] Beume, N., Fonseca, C., Lopez-Ibanez, M., Paquete, L. et
Vahrenhold, J. (2009). On the Complexity of Computing the Hypervolume Indicator.
IEEE Transactions on Evolutionary Computation, 13(5):1075–1082. 2.5.1

[Beyer et Deb, 2001] Beyer, H.-G. et Deb, K. (2001). On self-adaptive features in real-
parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
5(3):250–270. 2.4.4.5

[Blazewicz et al., 2007] Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G. et
Weglarz, J. (2007). Handbook on scheduling. From theory to applications. Springer-
Verlag, Berlin Heidelberg. 2.1, 3.1

[Bowman et Edward, 1959] Bowman et Edward, H. (1959). The Schedule-Sequencing
Problem. Operations Research, 7(5):621–624. 2.4.2.1

[Brucker, 2007] Brucker, P. (2007). Scheduling Algorithms. Springer-Verlag, Berlin, 5th
édition. 2.1, 3.1, 3.1.2

[Carlier et Chrétienne, 1988] Carlier, J. et Chrétienne, P. (1988). ProblÃ¨mes
d’ordonnancement : modÃ c©lisation, complexitÃ c©, algorithmes. Collection Gestion,
Masson, Paris. 2.1, 3.1

[Cheng et al., 2008] Cheng, T. C. E., Ng, C. et Yuan, J. J. (2008). Multi-agent schedul-
ing on a single machine with max-form criteria. European Journal of Operational Re-
search, 188:603–609. 3.4

[Chibante, 2010] Chibante, R. (2010). Simulated Annealing Theory with Applications.
India. 2.4.4.2

[Cordeiro et al., 2011] Cordeiro, D., Dutot, P., Mounié, G. et Trystram, D. (2011).
Tight analysis of relaxed multi-organization scheduling algorithms. In 25th IEEE Inter-
national Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage,
Alaska, USA, 16-20 May, 2011 - Conference Proceedings, pages 1177–1186. 3.1, 3.4

[Cyzak et Jaszkiewicz, 1998] Cyzak, P. et Jaszkiewicz, A. (1998). Pareto simulated
annealing - a metaheuristic technique for multiple-objective combinatorial optimization.
Journal of Multicriteria Decision Analysis, 7:34–47. 2.5.2

[Dauzère-Pérès et Pavageau, 2003] Dauzère-Pérès, S. et Pavageau, C. (2003). Exten-
sions of an integrated approach for multi-resource shop scheduling. IEEE Trans. Systems,
Man, and Cybernetics, Part C, 33(2):207–213. 3.3

140

BIBLIOGRAPHY

[Dauzère-Pérès et Sevaux, 2003] Dauzère-Pérès, S. et Sevaux, M. (2003). Using la-
grangean relaxation to minimize the weighted number of late jobs on a single machine.
Naval Research Logistics, 50:273–288. 3.3

[Deb et al., 2002] Deb, K., Anand, A. et Joshi, D. (2002). A computationally effi-
cient evolutionary algorithm for real-parameter optimization. Evolutionary Computa-
tion, 10(4):345–369. 6.3

[Dhib et al., 2011] Dhib, C., Kooli, A., Soukhal, A. et Néron, E. (2011). Lower bounds
for a multi-skill project scheduling problem. In Operations Research Proceedings 2011,
Selected Papers of the International Conference on Operations Research (OR 2011),
August 30 - September 2, 2011, Zurich, Switzerland, pages 471–476. 3.3.4.3

[Dileepan et Sen, 1988] Dileepan, P. et Sen, T. (1988). Bicriterion static scheduling
research for a single machine. Omega, 16(1):53–59. 3.2

[Dréo et al., 2006] Dréo, J., Pétrowski, A. et Taillard, E. (2006). Metaheuristics for
Hard Optimization. Springer Berlin Heidelberg New York. 6.1

[Du et Leung, 1990] Du, J. et Leung, J. (1990). Minimizing total tardiness on one ma-
chine is np-hard. Mathematics of operations research, 15:483–495. 3.1

[Elvikis et al., 2011] Elvikis, D., Hamacher, H. et T’Kindt, V. (2011). Scheduling two
agents on uniform parallel machines with makespan and cost functions. Journal of
Scheduling, 14:471–481. 3.4

[Garey et al., 1976] Garey, M., Johnson, D. et Sethi, R. (1976). The complexity of
flowshop and jobshop scheduling. Mathematics of operations research, 1(2):117–129.
3.1.2, 3.1.3.2

[Geoffrion, 1968] Geoffrion, A. M. (1968). Proper efficiency and the theory of vector
maximization. Journal of Mathematical Analysis and Applications, 22(3):618–630. 2.3.1

[Glover, 1989] Glover, F. (1989). Tabu search - part I. INFORMS Journal on Computing,
1(3):190–206. 2.4.4.3, 6.2

[Glover, 1990] Glover, F. (1990). Tabu search - part II. INFORMS Journal on Comput-
ing, 2(1):4–32. 2.4.4.3, 6.2

[Glover et Laguna, 1997] Glover, F. et Laguna, M. (1997). Tabu search. Kluwer Aca-
demic Publishers. 2.4.4.3

[Gourgand et al., 2007] Gourgand, M., Grangeon, N. et Norre, S. (2007). Meta-
heuristics based on bin packing for the line balancing problem. RAIRO - Operations
Research, 41(2):193–211. 6.2

[Gourgand et al., 2010] Gourgand, M., Lemoine, D. et Norre, S. (2010). Metaheuristic
for the capacitated lot-sizing problem: a software tool for MPS elaboration. IJMOR,
2(6):724–747. 6.2

141

BIBLIOGRAPHY

[Graham et al., 1979] Graham, R. L., Lawler, E. L., Lenstra, J. K. et Kan, A. H.
G. R. (1979). Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. Annals of Discrete Mathematics, 5:287–326. 3.1.1

[Holland, 1992] Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT
Press. 2.4.4.4, 2.4.4.4, 6.3

[Hoogeveen, 2005] Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of
Operational Research, 167:592–623. 3.2, 3.3

[Hoogeveen, 1992] Hoogeveen, J. (1992). Single-machine multi criteria scheduling. Phd
thesis, Technische Universiteit Eindhiven, The Netherlands. 3.3.3

[Hoogeveen, 1996] Hoogeveen, J. (1996). Single-machine scheduling to minimize a func-
tion of two or three maximum cost criteria. Journal of Algorithms, 21:415–433. 3.2

[Hopcroft et Karp, 1973] Hopcroft, J. E. et Karp, R. M. (1973). An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM Journal on Computing, 4:225–231.
4.4.1, 4.4.2

[Huynh Tuong et Soukhal, 2009] Huynh Tuong, N. et Soukhal, A. (2009). Interfering
job set scheduling on two-operation three-machine flowshop. In International Conference
on Computing and Communication Technologies, 2009, pages 1–5, IEEE press. 3.4

[Huynh Tuong et al., 2011] Huynh Tuong, N., Soukhal, A. et Billaut, J.-C. (2011).
Single-machine multi-agent scheduling problems with a global objective function. Jour-
nal of Scheduling, 15(3):311–321. 3.1.3.1, 3.4

[Huynh Tuong et al., 2012] Huynh Tuong, N., Soukhal, A. et Billaut, J.-C. (2012).
Single-machine multi-agent scheduling problems with a global objective function. Jour-
nal of Scheduling, 15:311–321. 3.4

[Jarboui et al., 2013] Jarboui, B., Siarry, P. et Teghem, J. (2013). Métaheuristiques
pour lòrdonnancement multicritère et les problèmes de transport. Management science
research, pages 1–323. 2.5.1

[Jozefowska, 2007] Jozefowska, J. (2007). Just-in-Time Scheduling. Models and algo-
rithms for computer and manufacturing systems. Springer-Verlag, Berlin. 2.1, 3.2, 3.3

[Kergosien et al., 2017] Kergosien, Y., Gendreau, M. et Billaut, J.-C. (2017). A ben-
ders decomposition-based heuristic for a production and outbound distribution schedul-
ing problem with strict delivery constraints. European Journal of Operational Research,
262(1):287–298. 2.4.5

[Kergosien et al., 2011] Kergosien, Y., Lente, C., Piton, D. et Billaut, J.-C. (2011).
A tabu search heuristic for the dynamic transportation of patients between care units.
European Journal of Operational Research, 214(2):442–452. 6.2

[Ketan et Balasubramanian, 2014] Ketan, K., F. J. K.-A. et Balasubramanian (2014).
Single machine scheduling with interfering job sets. Computers and Operations Research,
45(0):97–107. 3.4

142

BIBLIOGRAPHY

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C. D. et Vecchi, M. P. (1983). Op-
timization by Simulated Annealing. New Science, 220:671–680. 2.4.4.2

[Kovalyov et al., 2012] Kovalyov, M., Oulamara, A. et Soukhal, A. (2012). Two-agent
scheduling with agent specific batches on an unbounded serial batching machine. In The
2nd International Symposium on Combinatorial Optimization, ISCO 2012, LNCS 7422,
Athens. 3.3

[Kovalyov et al., 2015] Kovalyov, M. Y., Oulamara, A. et Soukhal, A. (2015). Two-
agent scheduling with agent specific batches on an unbounded serial batching machine.
J. Scheduling, 18(4):423–434. 3.3

[Laurent et al., 2017] Laurent, A., Deroussi, L., Grangeon, N. et Norre, S. (2017).
A new extension of the RCPSP in a multi-site context: Mathematical model and meta-
heuristics. Computers & Industrial Engineering, 112:634–644. 6.2

[Lawler, 1973] Lawler, E. (1973). Optimal sequencing of a single machine subject to
precedence constraints. Management Science, 19(8):544–546. 3.2

[Lee et Kim, 1999] Lee, D.-H. et Kim, Y.-D. (1999). Scheduling algorithms for flexible
manufacturing systems with partially grouped machines. Journal of Manufacturing Sys-
tems, 18(4):301–309. 3.1

[Lee et al., 2009] Lee, K., Choi, B.-C., Leung, J. Y.-T. et Pinedo, M. (2009). Approx-
imation algorithms for multi-agent scheduling to minimize total weighted completion
time. Information Processing Letters, 109:913–917. 3.4

[Lee et al., 2013] Lee, W.-C., Chung, Y.-H. et Huang, Z.-R. (2013). A single-machine
bi-criterion scheduling problem with two agents. Applied Mathematics and Computation,
219(23):10831–10841. 3.4

[Lee et Wang, 2014] Lee, W.-C. et Wang, J.-Y. (2014). A scheduling problem with three
competing agents. Computers and Operations Research, 51:208–217. 3.4

[Leung et al., 2010] Leung, J. Y.-T., Pinedo, M. et Wan, G. (2010). Competitive two-
agent scheduling and its applications. operations Research, 58:458–469. 3.4

[Lopez et Roubellat, 2008] Lopez, P. et Roubellat, F. (2008). Production Scheduling.
Wiley-ISTE. 3.1

[Marco et Voss, 2010] Marco, C. et Voss, S. (2010). Matheuristics, volume 10 de Annals
of Information Systems. Springer US, MA Boston. 2.4.5

[Metropolis, 1953] Metropolis (1953). Equation of State Calculations by Fast Comput-
ing Machines. The Journal of Chemical Physics, 21(6):1087–1092. 2.4.4.2

[Moore, 1968] Moore, J. M. (1968). An n job, one machine sequencing algorithm for
minimizing the number of late jobs. Management Science, 15:102–109. 1

[Morton et Pentico, 1993] Morton, T. E. et Pentico, D. W. (1993). Heuristic scheduling
systems. A Wiley Interscience. 1, 1, 3.1

143

BIBLIOGRAPHY

[Nagar et al., 1995] Nagar, A., Haddock, J. et Heragu, S. (1995). Multiple and bi-
criteria scheduling : A literature survey. European Journal of Operational Research,
81(1):88–104. 3.2

[Navet, 2006] Navet, N. (2006). Systï¿1
2mes temps rï¿1

2el 2 : Ordonnancement, rï¿1
2seaux

et qualitï¿1
2 de service (traitï¿1

2 ic2, sï¿1
2rie informatique et systï¿1

2mes d’information).
Hermes Science Publications. 3.1

[Ng et al., 2006a] Ng, C., Cheng, T. et Yuan, J. (2006a). A note on the complexity
of the problem of twoagent scheduling on a single machine. Journal of Combinatorial
Optimization, 12(4):387–394. 3.3, 3.4

[Ng et al., 2006b] Ng, C., Cheng, T. C. E. et Yuan, J. J. (2006b). A note on the complex-
ity of the problem of two-agent scheduling on a single machine. Journal of Combinatorial
Optimization, 12:387–394. 3.4

[Norre, 1993] Norre, S. (1993). Static allocation of tasks on multiprocessor architectures
with interprocessor communication delays. In PARLE ’93, Parallel Architectures and
Languages Europe, 5th International PARLE Conference, Munich, Germany, June 14-
17, 1993, Proceedings, pages 488–499. 3.1

[Oulamara et al., 2009] Oulamara, A., Finke, G. et Kuiten, A. K. (2009). Flowshop
scheduling problem with batching machine and task compatibilities. Computers & Op-
erations Research, 36:391–401. 3.1

[Oulamara et al., 2005] Oulamara, A., Kovalyov, M. et Finke, G. (2005). Scheduling
a no-wait flowshop with unbounded batching machines. IIE Transactions on Scheduling
and logistics, 37:685–696. 3.1

[Papadimitriou et Harilaos, 1976] Papadimitriou et Harilaos, C. (1976). The complex-
ity of combinatorial optimization problems. Princeton University. 2.4.4.1, 2.4.4.1

[Papadimitriou et Steiglitz, 1982] Papadimitriou, C. H. et Steiglitz, K. (1982). Com-
binatorial optimization : algorithms and complexity. Prentice Hall. 2.4.4.1, 2.4.4.1

[Papadimitriou Christos H. , 1994] Papadimitriou Christos H. (1994). Computational
Complexity. Addison Wesley Publishing Company. 3.1.2

[Pareto, 1897] Pareto, V. (1897). The new theories of economics. The University of
Chicago Press, 5:485–502. 2.2.1

[Peha, 1995] Peha, J. (1995). Heterogeneous-criteria scheduling: Minimizing weighted
number of tardy jobs and weighted completion time. Journal of Computers and Opera-
tions Research, 22(10):1089–1100. 3.1, 3.4

[Peha et Tobagi, 1990] Peha, J. et Tobagi, F. (1990). Evaluating scheduling algorithms
for traffic with heterogeneous performance objectives. In [Proceedings] GLOBECOM
’90: IEEE Global Telecommunications Conference and Exhibition, pages 21–27. IEEE.
3.3.4.3

144

BIBLIOGRAPHY

[Pinedo, 2008] Pinedo, M. (2008). Scheduling. Theory, algorithms, and systems. Springer-
Verlag, Berlin, 3rd édition. 2.1, 3.1

[Pinedo, 2016] Pinedo, M. L. (2016). Scheduling Theory, Algorithms, and Systems.
Springer Cham Heidelberg New York Dordrecht London, 5th édition. 3.1

[Posner, 1985] Posner, M. E. (1985). Minimizing weighted completion times with dead-
lines. Operations Research, 33(3):562–574. 3.4

[Rios-Mercado et Rios-Solis, 2012] Rios-Mercado, R. Z. et Rios-Solis, Y. A. (2012).
Just-in-Time Systems. Springer-Verlag, London. 2.1, 3.2

[Sadi et Soukhal, 2017] Sadi, F. et Soukhal, A. (2017). Complexity analyses for multi-
agent scheduling problems with a global agent and equal length jobs. Discrete Optimiza-
tion, 23:93–104. 3.4

[Sadi et al., 2014] Sadi, F., Soukhal, A. et Billaut., J.-C. (2014). Solving multi-agent
scheduling problems on parallel machines with a global objective function. RAIRO -
Operations Research, 48(2):255–269. 2.4.2.2, 3.4

[Sadi et al., 2015] Sadi, F., Van Ut, T., Tuong, N. H. et Soukhal, A. (2015). Non-
disjoint Multi-agent Scheduling Problem on Identical Parallel Processors. In Future
Data and Security Engineering, numéro FDSE 2016, chapitre Emerging D, pages 400–
414. Springer, Cham. 3.1

[Santiago et al., 2014] Santiago, A., Huacuja, H. J. F., Dorronsoro, B., Pecero,
J. E., Santillan, C. G., Barbosa, J. J. G. et Monterrubio, J. C. S. (2014). A
Survey of Decomposition Methods for Multi-objective Optimization. pages 453–465.
Springer. 2.2.1

[Smith, 1956] Smith, W. E. (1956). Various optimizer for single-stage production. Naval
Research Logistics Quarterly, 3:59–66. 3.2

[Soukhal, 2012] Soukhal, A. (2012). Modèles et Algorithmes pour l’Ordonnancement des
Travaux Indépendants et Concurrents. Habilitation à diriger des recherches, Université
François-Rabelais de Tours, Tours. 2.4.2.2

[Srinivas et Deb, 1994] Srinivas, N. et Deb, K. (1994). Multiobjective function optimiza-
tion using nondominated sorting genetic algorithms. Journal of association for computing
machinery, pages 221–248. 2.4.4.5

[Talbi, 2013] Talbi, E.-G. (2013). Hybrid Metaheuristics, volume 434 de Studies in Com-
putational Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg. 2.4.5

[T’Kindt et Billaut, 2006] T’Kindt, V. et Billaut, J.-C. (2006). Multicriteria schedul-
ing. Theory, models and algorithms. Springer-Verlag, Berlin Heildelberg New York, 2nd
édition. 2.1, 2.2.2, 2.3, 3.1.2, 3.2, 3.2.1, 3.3, 3.4

[Venditti et al., 2010] Venditti, L., Pacciarelli, D. et Meloni, C. (2010). A tabu
search algorithm for scheduling pharmaceutical packaging operations. European Journal
of Operational Research, 202(2):538–546. 6.2

145

BIBLIOGRAPHIE

[Wagner, 1959] Wagner, H. M. (1959). An integer linear-programming model for machine
scheduling. Naval Research Logistics Quarterly, 6(2):131–140. 2.4.2.1

[Wan et al., 2010] Wan, G., Leung, J.-Y. et Pinedo, M. (2010). Scheduling two agents
with controllable processing times. European Journal of Operational Research, 205:528–
539. 3.4

[Wu et al., 2013] Wu, C. C., W.-H. Wu andChen, J.-C. Y., Y. et Wu, W.-H. (2013).
A study of the singlemachine two-agent scheduling problem with release times. Applied
Soft Computing, 13(2):998–1006. 3.4

[Yuan et al., 2005] Yuan, J. J., Shang, W. et Feng, Q. (2005). A note on the scheduling
with two families of jobs. Journal of Scheduling, 8:537–542. 3.4

[Zitzler et Thiele, 1998] Zitzler, E. et Thiele, L. (1998). Multiobjective optimization
using evolutionary algorithms: A comparative case study. In Springer, Berlin, Heidel-
berg, pages 292–301. Springer, Berlin, Heidelberg. 2.5.1

146

Résumé :

Nous étudions des « problèmes d’ordonnancement multiagent non-disjoint ». Ces modèles
considèrent différents agents associés à des sous-ensembles de travaux non nécessairement disjoints,
chacun d’eux vise à minimiser un objectif qui ne dépend que de ses propres travaux. Deux types
de critères sont considérés : minimisation du makespan et du nombre de travaux en retard. Nous
cherchons donc les meilleurs compromis entre les critères des agents. Ces problèmes sont une classe
particulière des problèmes d’ordonnancement « multi-agents » qui ont connu une grande expansion
par leurs intérêts dans le domaine de l’ordonnancement et l’optimisation combinatoire. Dans nos
travaux, nous nous sommes intéressés aux problèmes à machines parallèles identiques. Dans une
première partie, nous étudions le cas d’une seule machine et celui où les travaux ont des durées
identiques. Ainsi, des problèmes polynomiaux sont identifiés. Dans une seconde partie de nos
travaux, nous abordons le problème à machines parallèles identiques avec deux agents. Notre étude
porte sur l’énumération du front de Pareto par l’approche ε-contrainte en utilisant des modèles
mathématiques à variables mixtes. Les résultats des expérimentations montrent les limites de ces
méthodes. Pour résoudre des problèmes de grande taille, des heuristiques gloutonnes, hybrides,
des métaheuristiques ou encore une matheuristique sont développées. Des expérimentations sont
menées afin de montrer leurs performances par rapport aux méthodes exactes ou par rapport à la
borne inférieure proposée.

Mots clés :

Recherche Opérationnelle, Ordonnancement multi-agent, Machines parallèles, Fronts de Pareto,
Programmation mathématique, Metaheuristiques, Matheuristique.

Abstract :

We are studying "non-disjoint multi-agent scheduling problems". These models consider differ-
ent agents associated with non-disjoint subsets of jobs, each of them aims to minimize an objective
function that depends only on its own jobs. Two types of criteria are considered: minimization
of the makespan and minimization of the number of late jobs. We are therefore looking for the
best compromise solution between the agents. These problems constitute particular class of ”multi-
agent‘ scheduling problems that have developed considerably due to their interests in scheduling
and combinatorial optimization domains. In our work, we focused on problems with identical par-
allel machines. In a first part, we study the case of a single machine, then the case where the
jobs are equal length. Thus, polynomial scheduling problems are identified. In a second part, we
address the identical parallel machine scheduling problems with two agents. Our study focuses on
the enumeration of the Pareto front by the ε-constraint approach using mathematical mixed integer
programming. The computational results show the limitations of these methods. To solve large
instances, greedy heuristics, hybrid heuristics, metaheuristic or even matheuristic are developed.
The computational results show their performance compared to exact methods or to the proposed
lower bound.

Keywords :

Operational research, Multi-agent scheduling, Parallel machines, Pareto fronts, Mathematical
programming, Metaheuristics, Matheuristic.

	Global introduction
	Introduction to multi-criteria optimization
	 Introduction
	Definitions and dominance concept
	Dominance concept
	Pareto front structure and reference points

	Some multi-criteria approaches
	Linear combination
	-constraint approach
	Lexicographic order
	Pareto set enumeration
	Counting approach

	Resolution methods
	General structure of multi-criteria optimization algorithms
	Exact algorithm
	Heuristic approaches
	Metaheuristic approaches
	Matheuristic

	Performance analysis
	Hypervolume
	Average distances
	Number of non-dominated solutions

	Conclusion

	Scheduling theory and multi-agent scheduling problems
	Classical scheduling problems: mono-criterion objective function
	Concepts and scheduling notations
	Complexity of scheduling problems
	Some classical scheduling algorithms

	Multi-criteria scheduling problems
	Multi-criteria scheduling problem notations
	Example

	Multi-agent scheduling problems
	Definitions and notations
	Examples
	Complexity study
	Studied problems and motivations

	Main results related to the studied problems
	Conclusion

	Exact methods and solvable cases
	Studied problems
	Preliminary results
	Single machine multi-agent scheduling problem
	Problem 1|ND, dAj=dA, CBmaxQB|UjA
	Problem 1|ND, dB, UjBQB|CAmax
	Problem 1|ND, dBj=dB|P(CAmax,UjB)

	Equal length jobs
	Pm|ND, djA, pj=p|(UjA/ CmaxB)
	Pm|ND, djB, pj = p| (CmaxA/UjB)
	Problem Pm|ND, djB, pj=p |P(CAmax, UjB)

	Mixed Integer Linear Programming
	Assignment-based formulation
	Time-based formulation

	Computational experiments
	Data generation

	Conclusion

	Polynomial and Pseudo Polynomial Heuristics
	General approach for the studied problems
	Lower bound
	List scheduling heuristics
	Heuristic H1
	Heuristic H2
	Heuristic H3

	Two-step heuristic methods
	Hybrid heuristics
	Heuristics and MILP

	Computational experiments
	Used performance measures
	Performance analyses of LB
	Performance analyses of greedy heuristics
	Performance analyses of hybrid heuristics
	Conclusion

	Iterative methods to solve the studied scheduling problems
	Introduction
	Tabu search
	Encoding mechanism
	Decoding mechanism
	Initial solution
	Neighborhood function
	Tabu list
	Stopping criteria
	Implemented tabu search algorithm

	NSGA-II algorithm
	Encoding
	Initial population
	Crossover operator
	Mutation operator
	Parameters

	Matheuristic algorithms
	Encoding
	Initial solution
	Neighborhood function
	Implemented matheuristic algorithm

	Computational experiments
	Conclusion

	Conclusions and future research directions

