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Résumé

Nous considérons un problème d’ordonnancement à une machine avec dates de fin impra-
tives et nous cherchons caractériser l’ensemble des solutions optimales, sans les énumérer.
Nous supposons que les travaux sont numérotés selon la règle EDD et que cette séquence
est réalisable. La méthode consiste à utiliser le treillis des permutations et d’associer à la
permutation maximale du treillis la séquence EDD. Afin de caractériser beaucoup de solu-
tions, nous cherchons une séquence réalisable aussi loin que possible de cette séquence. La
distance utilisée est le niveau de la séquence dans le treillis, qui doit être minimum (le plus
bas possible). Cette nouvelle fonction objectif est étudiée. Quelques cas particuliers poly-
nomiaux sont identifiés, mais la complexité du problème général reste ouverte. Quelques
méthodes de résolution, polynomiales et exponentielles, sont proposées et évaluées. Le
niveau de la séquence étant en rapport avec la position des travaux dans la séquence, de
nouvelles fonctions objectifs en rapport avec les positions des travaux sont identifiées et
étudiées. Le problème de la minimisation de la somme pondérée des positions des travaux
est prouvé fortement NP-difficile. Quelques cas particuliers sont étudiés et des méthodes
de résolution proposées et évaluées.

Mots clés : ordonnancement, une machine, dates impératives, positions, treillis, car-
actérisation, complexité
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Abstract

We consider a single machine scheduling problem with deadlines and we want to char-
acterise the set of optimal solutions, without enumerating them. We assume that jobs are
numbered in EDD order and that this sequence is feasible. The key idea is to use the lat-
tice of permutations and to associate to the supremum permutation the EDD sequence. In
order to characterize a lot of solutions, we search for a feasible sequence, as far as possible
to the supremum. The distance is the level of the sequence in the lattice, which has to
be minimum. This new objective function is investigated. Some polynomially particular
cases are identified, but the complexity of the general case problem remains open. Some
resolution methods, polynomial and exponential, are proposed and evaluated. The level of
the sequence being related to the positions of jobs in the sequence, new objective functions
related to the jobs positions are identified and studied. The problem of minimizing the
total weighted positions of jobs is proved to be strongly NP-hard. Some particular cases
are investigated, resolution methods are also proposed and evaluated.

Keywords : scheduling, single machine, deadlines, positions, lattice, characterization,
complexity
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Chapter 1

Introduction

Making a schedule and following a schedule is an ancient human activity, which is
encountered in every aspect of life. About more than 100 years ago, Henry Laurence Gantt,
who is best known for his work in the development of scientific management, created
the famous “Gantt chart”, which is the chart that illustrates a project schedule. This
chart is one of the most famous basic knowledge, which leads to Advanced Planning and
Scheduling systems that rely on sophisticated algorithms. Some of the first publications
appeared in the Naval Research Logistics Quarterly in the mid fifties and contained the
results by W.E. Smith [Smith, 1956], S.M. Johnson, [Johnson, 1954] and J.R. Jackson
[Jackson, 1955]. After that period, because the scheduling problems become closer and
closer to industrial applications, it increases the complexity and there has been a growing
interest in scheduling.

Since this period, together with the development of the complexity theory [Cook, 1971],
the scheduling problems have been intensively investigated, both for their possible appli-
cations and for their interest from a theoretical point of view. A classification of the
problems has been standardized, with respect to their complexity.

In a very large majority of studies, the authors consider a scheduling problem, and
(1) establish the complexity of the problem, and/or (2) propose resolution algorithms to
find a solution to the problem (optimal or as close as possible to the optimal one, with or
without performance guaranty, etc.).

In this thesis, we consider a very well known problem of the scheduling literature, and
we search for the characteristics of the set of optimal solutions, without enumerating them.
To our point of view, it is an original research topic, for which very few results have been
found up to now.

This chapter introduces the basic concepts and components of scheduling theory and
all the elements required to understand the contribution of this thesis. The outline of the
thesis is given at the end of the chapter.
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1.1. INTRODUCTION TO THE CONTEXT OF THE STUDY - REQUIRED
BACKGROUND

1.1 Introduction to the context of the study - required back-
ground

This study takes place in the field of scheduling theory. Before introducing some notions
in scheduling theory, we introduce basic notions in the field of complexity theory.

1.1.1 Complexity of algorithms

Algorithmic complexity is concerned about how fast or slow a given algorithm performs.
Algorithm complexity is a numerical function denoted by T (n) which gives the computation
time versus the input size n of the algorithm, without considering implementation details.
Function T (n) is the number of elementary steps performed by the algorithm, assuming
that the running time of one step is a constant.

The complexity of an algorithm depends on estimating its processing cost in time (time
complexity) but also in the required space memory (spatial complexity). By default, we
talk about the time complexity.

In order to classify the algorithms according to their performances, the time function
T (n) is restricted to its asymptotic notation, using the “big-O” notation. For example,
an algorithm with complexity T (n) = 4n+ 3n2 has the notation O(n2), meaning that the
algorithm has a quadratic time complexity. Figure 1.1 shows the evolution of the running
time for the most classical complexity functions, depending on the input size.

Figure 1.1: Computation times of common algorithm complexities

Table 1.1 shows some examples of common algorithms complexity.

Notice that in some cases, the complexity of an algorithm may be improved to the

16
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Table 1.1: Common algorithms complexities
Name T (n) Example

Constant O(1) Determining if an integer (represented in binary) is
even or odd

Logarithmic O(log n) Binary search
Linear O(n) Finding the smallest or largest item in an unsorted

array
Linearithmic O(n log n) Fastest sorting algorithm

Quadratic O(n2) Karmarkar’s algorithm for linear programming; AKS
primality test

Exponential 2O(n) Solving the traveling salesman problem using dynamic
programming

Factorial O(n!) Solving the traveling salesman problem via brute-force
search

detriment of the spatial complexity: it is possible to reduce the computational time by
increasing the size of the stored data. However, such a step often leads to adding new
functions, uniquely dedicated to the management of these data.

1.1.2 Introduction to Complexity theory

After Richard Karp’s famous paper on complexity theory “Reducibility Among Combi-
natorial Problems” [Karp, 1972], the research in the 1970s focused mainly on the complex-
ity of scheduling problems. We can refer the famous book “Computers and Intractability”
of Michael R. Garey and David S. Johnson [Garey et Johnson, 1990] to obtain “A Guide
to the Theory of NP-Completeness”.

1.1.2.1 Complexity of problems

Complexity theory proposes a set of results and methods to evaluate the intrinsic
difficulty of solving problems. A problem belongs to a class of complexity, which informs
us about the complexity of the “best algorithm” able to solve it. A complexity class is a
set of problems of related complexity.

In mathematics and computer science, several types of problems can be distinguished
by the following two main classes of problems:

• Decision problems that are defined by a name, an instance, which is a description of
all the parameters, and a question for which the answer belongs to {yes, no},

• and Optimization problems that are defined by a name, an instance and in which
the aim is to find the best solution (with minimum or maximum) value of a given
function.

a. Complexity of decision problems We denote by P, the class of all decision
problems which are polynomially solvable, i.e. for which the answer ‘yes’ or ‘no’ can be

17
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found by an algorithm for which the complexity is bounded by a polynomial of n.

We denote by NP the class of decision problems for which the answer can be deter-
mined by a non-deterministic Turing machine in polynomial time (or less). Or, equiva-
lently, those decision problems for which an answer ‘yes’ can be checked in polynomial
time.

Definition 1 Reduction between problems

A decision problem P1 polynomially reduces to a decision problem P2 if and only if
there exists a polynomial time algorithm f , which can build, from any instance I1 of P1,
an instance I2 = f(I1) of P2 such that the response to problem P1 for instance I1 is ‘yes’
if and only if the answer to problem P2 for instance I2 is ‘yes’.

If such an algorithm f exists, it proves that any instance of problem P1 can be solved
by an algorithm for problem P2. We say that P2 is at least as difficult as P1.

If a polynomial time algorithm exists for solving P2, then P1 can also be solved in
polynomial time.

A decision problem P1 which polynomially reduces to a decision problem P2 is denoted
by P1 ∝ P2.

Reductions are of course useful for optimization problems as well.

The next definition introduces an important subclass of the class NP.

Definition 2 NP-completeness

A problem P is NP-complete if P belongs to NP and any problem of NP polynomially
reduces to P .

Lemma 1 Let P,Q be decision problems. If P ∝ Q, then Q ∈ P implies P ∈ P (and,
equivalently, P /∈ P implies Q /∈ P).

Lemma 2 Let P,Q,R be decision problems. If P ∝ Q and Q ∝ R, then P ∝ R.

Note: If an NP-complete problem Q could be solved in polynomial time, then due to
Lemma 1, all problems in NP could be solved in polynomial time and we would have
P = NP.

Lemma 3 If P,Q ∈ NP, P is NP-complete, and P ∝ Q, then Q is NP-complete.

The class of NP-complete problems can also be divided into two parts. A problem P
is NP-complete in the strong sense if P cannot be solved by a pseudo-polynomial time
algorithm, unless P = NP .

The NP-complete problems that can be solved by a pseudo-polynomial time algo-
rithm are said to be NP-complete in the ordinary sense. We can refer to a more de-
tailed discussion about strong and weak NP-complexity in [Garey et Johnson, 1990]
and [Papadimitriou, 1994].

18



1.1. INTRODUCTION TO THE CONTEXT OF THE STUDY - REQUIRED
BACKGROUND

There are many NP-complete problems, the first problem proven to be NP-complete
was SATISFIABILITY problem [Cook, 1971]. Some of the most important NP-complete
problems that we use in this thesis are PARTITION and 3-PARTITION.

PARTITION problem
Instance: A finite set A = {ai}n and a “size” s(a) ∈ Z+ for each a ∈ A.

Question: Is there a subset A′ ⊆ A such that
∑
a∈A′

s(a) =
∑

a∈A\A′
s(a) ?

The Partition problem is very important for scheduling theory. It is particularly useful
for proving NP-Completeness results for problems involving numerical parameters, such
as lengths, weights, costs, capacities, etc.

3-PARTITION problem
Instance: A = {ai}1≤i≤3m a set of 3m elements such that

B/4 < ai < B/2 and
∑

A ai = mB, with a bound B ∈ N .
Question: Can A be partition into m disjont sets A1, A2, ..., Am such that∑

Ak
ai = B, ∀k ∈ {1, 2, ...,m}

(note that each Ak must contain exactly 3 elements of A)

b. Complexity of optimization problems To any optimization problem, it is possible
to associate a decision problem, by introducing a bound K, and asking to the existence
of a solution with a cost smaller or greater than K (depending if the objective function
is a min or a max). If the cost function is not difficult to compute, then the decision
problem is not harder than the optimization problem. We say that if the decision problem
is NP-complete, then the corresponding optimization problem is NP-hard.

NP-Hardness is a class of decision problems which are at least as hard as the hardest
problems in NP (member of NP or not, may not even be decidable). NP-Hardness has
the property that it cannot be solved in polynomial time, unless P = NP.

The following table illustrates the possible algorithms for solving NP-hard problems
to optimality.

Complexity class Algorithm Example

Strongly NP-Hard Exponential 2n, n!, 3n

Weakly or ordinary NP-Hard Pseudo-polynomial nW , P.n2

P Polynomial n2, n log n

1.1.3 Required background in resolution methods

The goal of an optimization method is to find an optimal or near-optimal solution with
low computational effort. The effort of an optimization method can be measured as the
time (computation time) and space (computer memory) that is consumed by the method.
There are different types of optimization methods to solve an optimization problem, with
different efficiency.
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Optimization methods can be roughly divided into two main categories: Exact methods
(see 1.1.3.1) and Approximate (Heuristic and Metaheuristic) (see 1.1.3.2). Exact methods
are guaranteed to find the optimal solution of the problem and to prove its optimality,
for every finite size instance and with an instance dependent running time. Approximate
methods do not have this guarantee and therefore generally return solutions that are worse
than an optimal solution. However, for very difficult optimization problems (NP-hard or
global optimization), the running time of exact methods may increase exponentially with
respect to the dimensions of the problem, while heuristic methods usually find “acceptable”
solutions in a “reasonable” amount of time. However, many heuristic methods are very
specific and problem-dependent. So, we need the development of heuristic which are more
general, called metaheuristic methods. Figure 1.2 presents the resolution methods in a
graphical way.

In this section, we will not go into the details, and our presentation should only fulfill
the needs of this thesis. We do not present examples, since they will be given in the later
chapters.

Figure 1.2: Resolution methods used in this thesis

1.1.3.1 Exact methods

In Computer Science and Operations Research, exact algorithms are algorithms that
always solve an optimization problem to optimality. For the NP-hard problems, unless
P = NP, such an algorithm cannot run in worst-case polynomial time, but there has been
extensive research on finding exact algorithms whose running time are exponential with a
low base.

Some exact resolution methods that we often meet are enumerative, such as Dynamic
Programming, Branch-and-Bound (developed from Tree Search). Integer Linear Program-
ming (ILP) or Mixed Integer Linear Programming (MILP) are based on the use of commer-
cial solvers (or non commercial) which implement very sophisticated branching methods.
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We describe three basic ways of formulating a scheduling problem using mathematical
programming.

• Modeling with mathematical programming

Mixed Integer Linear Programming (MILP) is a very general framework for captur-
ing problems with both discrete and continuous decision variables. MILP is a phase of
modelisation of a problem under the following matrix form [Bixby et al., 2000] and then,
a phase of resolution of this problem by using a solver.

Minimize cTx

subject to Ax ≥ b
l ≤ x ≤ u

where some or all xj variables are integer or binary, c are the cost parameters, A and
b are the constraints parameters.

The problem is to find a feasible solution which minimizes the objective function.

A vector x = (x1, ..., xn) satisfying the constraints is called a feasible solution.

A linear program that has a feasible solution is called feasible. A linear program may
also be unbounded, i.e. for each real number K there exists a feasible solution x with
z(x) < K. Linear programs which have a feasible solution and are not unbounded always
have an optimal solution.

In scheduling, there are different ways to define the variables. We present now the
most frequent definitions.

Positional Variables For these models, some binary variables represent the positions
of jobs in a sequence. More precisely, we define binary variables

xj,k =

{
1 if job Jj is in position k
0 otherwise

,∀j ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., n}

This type of variables can be used when the considered scheduling problem is equivalent
to finding a sequence of jobs. This sort of model has been introduced in [Wagner, 1959].

The following constraints ensure that there is exactly one job per position and one
position per job:

n∑
j=1

xj,k = 1,∀k ∈ {1, 2, ...n} (1.1)

n∑
k=1

xj,k = 1,∀j ∈ {1, 2, ...n} (1.2)

Linear Ordering Variables The binary variables represent the relative positions of
jobs. We define the following binary variables:
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yi,j =

{
1 if job Ji precedes job Jj
0 otherwise

,∀i ∈ {1, 2, ..., n}, ∀j ∈ {1, 2, ..., n}

This type of model has been introduced in [Manne, 1960] for the job shop scheduling
problem.

Time-Indexed Variables There are several possible definitions for time-indexed vari-
ables (see the initial paper [Bowman, 1959]). We define the following binary variables:

zj,t =

{
1 if job Jj is being performed at time t
0 otherwise

,∀j ∈ {1, 2, ..., n}, ∀t ∈ {1, 2, ..., T}

T is an upper bound to the maximum completion time. This quantity may be too big
in the models. It is instance dependent. Another possibility is to say that it is equal to 1
if job j starts its processing at time t.

The disjunctive constraint is simply given by

n∑
j=1

zj,t ≤ 1, ,∀t ∈ {1, 2, ..., T}

• Branch and bound (B&B)

The method was first proposed in [Land et Doig, 1960] for discrete programming prob-
lems. The name “Branch-and-Bound” first occurred in the work of [Little et al., 1963] on
the traveling salesman problem and in [Balas, 1983]. B&B is a problem-solving technique
which is widely used for various problems in Operations Research.

The process of solving a problem using B&B algorithm can be described by a search
tree. Each node of the search tree corresponds to a subset of feasible solutions to a
problem. We assume in the following that the B&B algorithm is to find for a mini-
mum value of a function f(x), where x ranges over some set S of candidate solutions
[Mehlhorn et Sanders, 2008], [Agnetis et al., 2014].

The characteristics of this method are the following.

• A branching rule, that defines partitions of the set of feasible solutions into subsets.
From a set S of feasible solutions, the branching returns two or more smaller sets
S1, S2, etc. whose union covers S. The minimum of f(x) over S is the minimum of
the value v1, v2, etc. where each vi is the minimum of f(x) within Si.

• A lower bounding rule that provides a lower bound LB(S) on the value of the feasible
solutions for any S. A good lower bound (with the highest possible value) may lead
to the elimination of an important number of nodes of the search tree, but if its
computational requirements are excessively large, it may become advantageous to
use a weaker but more quickly computable lower bound.

• A search strategy, which selects the next node to explore. There are three basic search
strategies: depth−first (the list of nodes is managed as a LIFO list), breadth−first
(the list of nodes is managed as a FIFO list) and best − first (nodes are sorted
according to a sorting rule, generally the lower bound value is used).
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• An upper bounding method UB of the objective value. The objective value of any
feasible solution will provide such an upper bound for a minimization problem.

If the lower bound LB(Si) of a subproblem Si is greater than or equal to UB, then
this subproblem cannot yield to a better solution and there is no need to continue the
branching from this node. We say that we cut this node. To stop the branching process
in many nodes, the upper bound UB has to be as small as possible. Therefore, at the
beginning of the B&B algorithm, some heuristic algorithms may be applied to find a good
feasible solution with a small value of the objective function.

When the considered node is a leaf of the tree, it corresponds to a feasible solution.
If the value of this solution is better than UB, then UB is updated and this solution is
memorized.

The algorithm stops when the list of nodes to explore is empty.

A general formulation algorithm is given in Algorithm B&B 1.

Algorithm 1 B&B algorithm

1: UB = f(xh): value of a heuristic solution xh (if no heuristic is available, UB =∞)
2: Initialize a list Q to hold a partial solution, with no variable assigned.
3: while Q 6= ∅ do
4: Take a node N of Q.
5: if (N represents a single candidate solution x and f(x) < UB) then
6: x is the best solution so far. Record it and UB ← f(x)
7: else branch on N to produce new nodes Ni.
8: for each child node Ni do
9: if LB(Ni) < UB then store Ni on Q

10: return UB, x

• Dynamic Programming (DP)

Dynamic programming was invented by Richard Bellman [Bellman, 1957] and devel-
oped by the time. Depending on the subject, there are many ways to describe DP.
Even only in computer science, we still have a lot of ways to present the concept of
DP. With this thesis, we refer to the presentations given in [Blazewicz et al., 2007] and
[Agnetis et al., 2014].

DP is a complete enumeration method. It decomposes recursively the problem into a
series of subproblems, in order to minimize the amount of computation to be done. The
approach solves each subproblem and determines its contribution to the objective function.
At each iteration, it determines the optimal solution for a subproblem. The solution for
the original problem can be deduced from the solution of each subproblem. Depending on
the number of states and phases, the running time of a DP algorithm can be polynomial,
pseudopolynomial or exponential. A DP formulation is characterized by three types of
expressions:

• some initial conditions,
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• a recursive relation,

• and a goal (i.e. an optimal value function).

1.1.3.2 Approximate methods

For approximate methods, too many methods are used in scheduling optimization,
such as the applications of relaxations and the duality of MIP, heuristics, metaheuristics,
matheuristics, etc. In this section, we limit the presentation to heuristics and metaheuris-
tics. The applications of relaxations of MIP is not presented here even it is used for finding
the lower bound in some parts.

It is also well known that there are a lot of contributors of heuristic methods in most
of the aspect of optimization problems. We can say that heuristics are problem-dependent
techniques “(consisting of a rule or a set of rules) which seeks (and hopefully finds) good
solutions at a reasonable computational cost. A heuristic is approximate in the sense that
it provides (hopefully) a good solution for relatively little effort, but it does not guarantee
optimality” [Maniezzo et al., 2009]. However, they usually get trapped in a local optimum
and thus fail, in general, to obtain the global optimum solution.

Meta-heuristics, on the other hand, are problem-independent techniques. There are so
many formal definitions and characteristics based on a variety of definitions from different
authors derived from several books and a lot of survey papers have been published such
as [Voss et al., 1998], [Glover et Kochenberger, 2003], [Ólafsson, 2006], [Dréo et al., 2006],
[Brucker, 2007], [Maniezzo et al., 2009], [Boussaid et al., 2013], [Gonçalves et al., 2016].

For computer science and mathematical optimization, Metaheuristic can be considered
as a higher-level procedure or heuristic designed to find, generate, or select a heuristic
(partial search algorithm) that may provide a sufficiently good solution to an optimiza-
tion problem, especially with incomplete or imperfect information or limited computation
capacity. Especially, they do not take advantage of the specificity of any problem, and
so they may be used for a variety of problems. Some well known metaheuristic methods
are Simulated Annealing (SA), Tabu Search(TS), Evolutionary Algorithms (genetic algo-
rithms GA , evolutionary strategies, evolutionary programs, scatter search, and memetic
algorithms), Cross Entropy Method, Ant Colony Optimization (ACO), Corridor Method
(CM), Pilot Method, Adaptive memory programming (AMP), etc.

In this thesis, we consider some heuristic methods and two main metaheuristics meth-
ods: Simulated Annealing (SA) and Tabu Search (TS), described below.

• Simulated Annealing

Simulated Annealing (SA) as it is known today is motivated by an analogy to annealing
in metallurgy. The idea of SA comes from [Metropolis et al., 1953].

Annealing is a physical process. When we heat a solid past melting point and then
cool it, the structural properties of the solid depend on the rate of cooling. If the liquid
is cooled slowly enough, large crystals will be formed. However, if the liquid is cooled
quickly (quenched) the crystals will contain imperfections. Metropolis’s algorithm simu-
lated the material as a system of particles. The algorithm simulates the cooling process
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by gradually lowering the temperature of the system until it converges to a steady, frozen
state [Dréo et al., 2006].

In 1983, [Kirkpatrick et al., 1983] took the idea of the Metropolis algorithm and applied
it to optimization problems. The idea is to use simulated annealing to search for feasible
solutions and converge to an optimal solution. Some interesting theory with applications
can refer in [Chibante, 2010].

The SA algorithm requires the definition of an initial solution, an initial temperature,
a perturbation mechanism, an objective function, a cooling schedule, and a terminating
criterion.

Initial solutions: Some algorithms require the use of several initial solutions, but it
is not the case of SA.

Initial temperature: The control parameter T must be carefully defined since it
controls the acceptance rule defined by e−∆/T : T must be large enough to enable the
algorithm to move off a local minimum but small enough not to move off a global minimum.

Perturbation mechanism: it corresponds to the definition of the neighborhood.

Objective function: denoted f(S), with S a feasible solution.

Cooling schedule: The cooling schedule is a rule to define the temperature variation.
For example: “update Ti+1 = aTi, 0 < a < 1 after each iteration”.

Terminating criterion: There are several methods to control the termination of the
algorithm. Some examples are:

• maximum number of iterations,

• minimum temperature value,

• minimum value of the objective function. The algorithm stops when the best objec-
tive function value is less than or equal to a given value.

• minimum value of acceptance rate,

• maximum computation time.

Fig. 1.3 of “Ball on terrain” is the illustration for a minimization problem solved by
SA.

A general formulation algorithm is given in Algorithm SA 2.

A disadvantage of AS is that it may visit several times the same solutions. However,
this method doesn’t cost much of memory to remember the set of solutions that have been
visited. The Tabu Search (which we are going to present in the following) has not this
disadvantage, but it requires more memory.

• Tabu Search

Tabu search is a metaheuristic method proposed by Fred W. Glover in [Glover, 1986]
and [Glover, 1989] for mathematical optimization, based on local search. We can also refer
to [Glover et Laguna, 1997], [Rego et Alidaee, 2005], or [Gendreau et Potvin, 2010].
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Figure 1.3: Illustration for a minimization problem with Simulated Annealing

Algorithm 2 SA algorithm

1: i = 0
2: S = {S0}, initial solution, S∗ = S0, best = f(S0)
3: T = T0, initial temperature
4: while Terminating criterion is not satisfied do
5: S′ = neighboring solution of S
6: if f(S′) < best then S∗ = S′, best = f(S′)
7: else

8: if random[0, 1] < min
{

1, e
f(S)−f(S′)

T

}
then S = S′

9: Ti+1 = g(Ti)
10: i = i+ 1

11: return S∗
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Tabu search has a mechanism to help get out of local minima. Indeed, if a solution
has been already visited within a certain short-term period, it is marked as “tabu” (i.e.
forbidden), so that the algorithm will not consider that solution again in the future. So,
the method costs some memory structures that describe the previously visited solutions.

For certain problems, the Tabu method is known to give excellent results; moreover,
in its basic form, the method requires less parameters than Simulated Annealing, which
makes it easier to use. However, the various additional mechanisms, like the intensification
and diversification, increase its complexity and at the end, the setting of a lot of parameters
is needed.

Some conceptions and definitions between SA and TS are the same (initial solution,
perturbation mechanism, objective function, terminating criterion). We only present some
details on the basic concepts of TS which differ from SA: the Tabu list and the Tabu size.

• Tabu list: it records the recent history of the search, which is stored in a short-
term memory (a fixed and fairly limited quantity of information is recorded). In
any context, there are several possibilities regarding the specific information that is
recorded. We list some ways below:

– record complete solutions, which needs a lot of storage and makes it expensive
to check whether a potential move is tabu or not (it is therefore seldom used),

– record the last few transformations performed on the current solution, prohibit-
ing reverse transformations, this is the most commonly used possibility,

– record based on the key characteristics of the solutions themselves or of the
moves.

– record by Multiple tabu lists can be used simultaneously and are sometimes
interesting. For example, when different types of moves are used to generate
the neighborhood, it might be a good idea to keep a separate tabu list for
each type. Standard tabu lists are usually implemented as circular lists of fixed
length.

• Tabu size: it has been shown that fixed-length tabu algorithms cannot always prevent
cycling, and some authors have proposed varying the tabu list length during the
search. Its setting generally comes from empirical experiments.

Despite the use of a Tabu list, the iterative improvement may stop at local optima,
which can be very “poor”. Some techniques and strategies required to prevent the search
from getting trapped and to escape from them.

To escape from local optima, we may need to consider local intensification and global
diversification mechanisms. They are the driving forces of metaheuristic search but there
is no common rule to explain how to balance these two important components.

• Intensification (exploitation) improves solutions by exploiting the accumulated search
experience (e.g., concentrating the search in a small search space area). In inten-
sification, the promising regions are explored more thoroughly in the hope to find
better solutions.

27



1.1. INTRODUCTION TO THE CONTEXT OF THE STUDY - REQUIRED
BACKGROUND

• Diversification (exploration) explorates “in the large” of the search space, trying
to identify the regions with high quality solutions. In diversification, non-explored
solutions must be visited to be sure that all regions of the search space are evenly
explored and that the search is not confined to only a reduced number of regions.

Fig. 1.4 of “Ball on terrain” illustrates the minimization problem that is solved by TS.

Figure 1.4: Illustration for a minimization problem with Tabu Search

The general TS algorithm 3 is described below. We have:

• S0 an initial solution, S∗ the best known solution, S the current solution,

• f is the value of solution S, f∗ is the value of S∗,

• N(S) is the whole neighborhood of S,

• N ′(S) is the neighborhood of S which is not tabu,

• T is the tabu list.

Algorithm 3 TS algorithm

1: S = S0, initial solution
2: S∗ = S0

3: f∗ = f(S0)
4: Tabu list T = ∅
5: while Terminating criterion is not satisfied do
6: Select S = minS′∈N ′(S)f(S′), where S′ is a neighbor of S,
7: if (f(S) < f∗) then f∗ = f(S), S∗ = S

8: Record the current move in the tabu list T (delete oldest entry if necessary)

9: return S∗
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Similarly to Alg. 2, this method can be improved by intensification and diversification
mechanisms.

1.1.4 Introduction to Scheduling theory

We give in this section basic notions and notations in scheduling.

1.1.4.1 Definition

There are many definitions of scheduling problems. Scheduling problems are encoun-
tered in a lot of types of systems, when it is necessary to organize and/or distribute
the work between some entities. We find in every book in the literature a definition of a
scheduling problem, as well as its principal components. Among these definitions we quote
the following one [Carlier et Chrétienne, 1988]:

“Scheduling is to forecast the processing of a work by assigning resources to tasks and
fixing their starting times. [...] The different components of a scheduling problem are the
tasks, the potential constraints, the resources and the objective function. [...] The tasks
must be programmed to optimise a specific objective [...] Of course, often it will be more
realistic in practice to consider several criteria.”

A scheduling problem deals with jobs to schedule, each job may be broken down into a
series of operations. The operations of a job may be connected by precedence constraints.
The resources or machines can perform only one operation at a time. To solve a scheduling
problem, we may have to solve an assignment problem. The purpose of scheduling is to
minimize functions depending on jobs completion times and costs.

To simplify the problem description and to know if a scheduling problem is already
treated in the literature, we use a notation for problems. The notation which is now ad-
mitted in the literature was introduced by [Graham et al., 1979] (see a detailed description
in [Blazewicz et al., 2007]). This notation is divided into three fields: α|β|γ.

• field α may break down into two fields: α = α1α2. The values of α1 and α2 refer to
the machines environment of the problem and possibly with the number of available
machines,

• field β contains the explicit constraints of the problem to respect,

• field γ contains the criterion/criteria to optimize.

We can refer to a lot of books, definitions, propositions, notations, etc. Each book has
an introduction to a particular field. For more details, the reader can refer to:

• [Brucker, 2007] for a global overview of scheduling algorithms,

• to [Blazewicz et al., 2007] for another presentation of scheduling problems in com-
puter and manufacturing processes,

• to [Pinedo, 2016] where supplementary material is included in the form of slide-shows
from industry and movies, that show implementations of scheduling systems,
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• to [T’Kindt et Billaut, 2006] for an overview of multicriteria scheduling problems,

• to [Jozefowska, 2007], dedicated to just-in-time scheduling problems,

• to [Agnetis et al., 2014] which is dedicated to multiagent scheduling problems.

All these books give enough details on the main theories related to the context of our
study.

1.1.4.2 Notations

A scheduling problem is characterized by a set J of n jobs. To each job Jj is associated
a processing time denoted by pj (1 ≤ j ≤ n), a due date dj or deadline (means strict due
date) d̃j . For some problems, a weight wj is also associated to each job Jj (1 ≤ j ≤ n).

The completion time of a job Jj is denoted by Cj . Its tardiness Tj is defined by
Tj = max(0, Cj − dj).

1.1.4.3 Shop environments

There are several classes for the shop environments.

a. Scheduling problems without assignment We distinguish:

• Single machine (1) : Only a single machine is available for the processing of
jobs. It concerns a basic shop or a shop in which a unique machine poses a real
scheduling problem. The case of a single machine is the simplest of all possible
machine environments and is a special case of several more complicated machine
environments.

• Flowshop (Fm): m machines are available in the shop. The jobs use the machines
in the same order, from the machine M1 to the last machine Mm. We say that they
have the same routing. In a permutation flowshop we find in addition that each
machine has the same sequence of jobs: they cannot overtake each other.

• Jobshop (J): several machines are available in the shop. Each job has its own
routing.

• Openshop (O): several machines are available in the shop. The jobs do not have
fixed routings. They can, therefore, use the machines in any order.

b. Scheduling and assignment problems We assume that the machines can perform
the same operations. The problem is two folds: assigning one machine to each operation
and sequencing the operations on the machines. We can differentiate between the following
configurations:

• identical machines (P): an operation has the same processing time on any ma-
chine.
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• uniform machines (Q): the processing time of an operation depends on the number
of components the machine can process per unit of time.

• unrelated or independent machines (R): the processing time of an operation
depends on the operation and on the machine.

1.1.4.4 Constraints

A solution of a scheduling problem must always satisfy a certain number of constraints,
explicit or implicit. For example, in a single machine scheduling problem, it is implicit
that the machine can perform only one job at a time. In this section we describe the
explicit constraints encountered most frequently in scheduling.

• pmtn indicates that preemption is authorized: it is possible to interrupt a job and
to resume its processing later, possibly on another resource.

• prec indicates that the operations are connected by precedence constraints. ‘prec’
leads to different cases according to the nature of the constraints: prec to describe
the most general case, tree, in-tree, outtree, chains and sp-graph (for series-parallel
graph ; see [Pinedo, 2016] or [Brucker, 2007] to denote some particular cases).

• batch indicates that the operations are grouped into batches. Two types of batch
constraints are differentiated in the literature: the first called s-batch concerns serial
batches where the operations constituting a batch are processed in sequence and the
second called p-batch concerns parallel batches where the operations constituting a
batch are processed in parallel on a cumulative resource. In both cases, the comple-
tion time of an operation is equal to the completion time of the batch. In the first
case, the duration of the batch is equal to the sum of the processing times of the
operations which constitute it, whereas in the second case its duration is equal to
the longest processing time of the operations in the batch.

• dj = d indicates that all the due dates are identical. A due date may be not
respected. In this case, the quality of the solution is generally given by a measure of
the tardiness. Likewise d̃j = d̃ for the deadlines. A deadline must be respected, and
a part of the problem is to find a feasible solution.

• pj = p indicates that the processing times are all identical. We often encounter this
constraint with p = 1.

1.1.4.5 Optimality criteria

We can classify the optimality criteria into two large families: “minimax” criteria,
which represent the maximum value of a set of functions to be minimized, and “minisum”
criteria, which represent a sum of functions to be minimized.
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a. Minimisation of a maximum function: “minimax” criteria We define here
the most important objective functions in scheduling.

• Cmax =
n

max
j=1

Cj , the makespan, with Cj the completion time of job Jj .

• Lmax =
n

max
j=1

Lj , the maximum lateness, with Lj = Cj − dj the lateness of Jj .

• Tmax =
n

max
j=1

Tj , the maximum tardiness, with Tj = max(0, Cj − dj) the tardiness of

Jj .

Generally, fmax will refer to an ordinary “minimax” criterion, which is a non decreasing
function of the completion times of jobs.

b. Minimisation of a sum function: “minisum” criteria “Minisum” criteria are

usually more difficult to optimize than “minimax” criteria. We write “
∑

” for “
n∑
j=1

” when

there is no ambiguity. Among the minisum criteria, we have:

•
∑
Cj or 1

n

∑
Cj . This criterion represents the average completion time or total

completion time of jobs.

•
∑
wjCj or 1

n

∑
wjCj . This criterion represents the average weighted completion

time or total weighted completion time of jobs.

•
∑
Tj or 1

n

∑
Tj . This criterion represents the average or total tardiness of jobs.

•
∑
wjTj or 1

n

∑
wjTj . This criterion represents the average weighted tardiness or

total weighted tardiness of jobs.

In a general way,
∑
fj designates an ordinary “minisum” criterion which is usually a

non decreasing function of the jobs completion times.

1.1.5 Required background in single machine scheduling

We give in this section the basic notions in scheduling algorithms, required for a good
understanding of the rest of the thesis.

1.1.5.1 Solving the 1||
∑
Cj and 1||

∑
wjCj problems

We consider a single machine scheduling problem. To each job is associated a processing
time and a weight. The objective is to find a solution minimizing the sum of completion
times, or the weighted sum of completion times.

Definition 3 We define SPT (Shortest Processing Time first) a sorting rule, that sorts
the jobs in a non decreasing order of the processing times. The converse rule is the rule
LPT (Longest Processing Time first).
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Definition 4 We define WSPT (Weighted Shortest Processing Time first) a sorting rule,
that sorts the jobs in a non decreasing order of the ratio processing time divided by the
weight.

Proposition 1 [Smith, 1956] Sequencing the jobs in SPT order gives an optimal sequence
for the 1||

∑
Cj problem. Therefore, the problem is in P, and can be solved in O(n log n).

Sequencing the jobs in WSPT order gives an optimal sequence for the 1||
∑
wjCj problem.

Therefore, the problem is in P, and can be solved in O(n log n).

1.1.5.2 Solving the 1||Lmax problem

We consider a single machine scheduling problem. To each job is associated a processing
time and a due date. The objective is to find a solution minimizing the maximum lateness.

Definition 5 We define EDD (Earliest Due Date first) a sorting rule, that sorts the jobs
in a non decreasing order of the due dates.

Proposition 2 [Jackson, 1955] Sequencing the jobs in EDD order gives an optimal se-
quence for the 1||Lmax problem. Therefore, the problem is in P, and can be solved in
O(n log n).

We notice that this rule also solves the 1||Tmax problem optimally.

We denote by L∗max the value of the optimal maximum lateness. We define

d̃j = min

dj + L∗max,
n∑
j=1

pj


for each job Jj . Because for this problem, a right-shifted schedule is always optimal, there
is no reason to keep a deadline greater than the sum of processing times.

Finding a sequence respecting these deadlines is equivalent to find a sequence with an
optimal maximum lateness.

Example 1 Consider a 5-job instance with p = (6, 7, 2, 1, 10) and d = (16, 31, 9, 12, 13).

The sequence given by EDD rule is EDD = (J3, J4, J5, J1, J2). The completion times
of the jobs (from J1 to J5) are equal to C = (19, 26, 2, 3, 13) and the lateness of jobs are
equal to T = (3,−5,−7,−9, 0). Therefore, we have L∗max = 3.

Now, we renumber the jobs so that EDD = (J1, J2, ..., J5) and we associate to each job
a deadline d̃j. We obtain:

J1 J2 J3 J4 J5

pj 2 1 10 6 7

d̃j = L∗max + dj 12 15 16 19 26

Because finding a sequence respecting these deadlines is equivalent to find
a sequence with an optimal maximum lateness, in the rest of the thesis, we
will only consider the problem with the deadlines and jobs numbered in EDD
order.

33



1.1. INTRODUCTION TO THE CONTEXT OF THE STUDY - REQUIRED
BACKGROUND

1.1.5.3 Solving the 1|prec|fmax problem

We consider the problem 1|prec|fmax with fmax = max(fj(Cj)), fj monotone for
∀j ∈ {1, 2, ..., n}. A set of precedence constraints prec between jobs is defined and no
preemption is allowed.

The algorithm builds an optimal sequence π [Lawler, 1973] in reverse order.

Let N = {1, 2, ..., n} be the set of all jobs and S ⊆ N the set of unscheduled jobs. We
define p(S) =

∑
j∈S pj . The scheduling rule may be formulated as follows: schedule a job

j ∈ S, which has no successor in S and with a minimal value fj(p(S)), as the last job in
S.

To give a precise description of the algorithm, we represent the precedence constraints
by the corresponding adjacency matrix A = (ai,j) where ai,j = 1 if and only if Jj is a
direct successor of Ji. By n(i) we denote the number of immediate successors of Ji.

The algorithm BW-Lawler is presented in Algorithm 4.

Algorithm 4 BW-Lawler for problem 1|prec|fmax
1: for i = 1 to n do n(i) =

∑n
j=1 ai,j

2: S = {J1, J2, ..., Jn}, t =
∑n

j=1 pj
3: for k = n down to 1 do
4: Find job Jj ∈ S with n(j) = 0 and minimal value fj(t)
5: S = S \ {Jj}; nj =∞; π(k) = Jj ; t = t− pj
6: for i = 1 to n do
7: if ai,j = 1 then n(i) = n(i)− 1

The complexity of this optimal algorithm is O(n2).

1.1.5.4 Solving the 1|d̃j |
∑
wjCj problem

We consider a single machine scheduling problem. To each job is associated a processing
time, a weight and a deadline, that has to be respected. The objective is to find a feasible
solution (respecting the deadlines) and minimizing the total weighted completion times.
This problem is NP-hard [Lenstra et al., 1977].

We describe here the heuristic “Smith’s backward scheduling rule”. We define t =∑n
j=1 pj . Provided there exists a schedule in which all jobs meet their deadlines, the

algorithm chooses one job with largest ratio pj/wj among all jobs Jj with d̃j ≥ P , and
schedules the selected job last. It then continues by choosing an element of best ratio
among the remaining n− 1 jobs and placing it in front of the already scheduled jobs, etc.

This algorithm BW-Smith is described in Alg. 5.

This algorithm can be implemented in O(n log n). We also know that the algorithm is
exact in the following cases:

(i) unit processing times, i.e. for the problem 1|pj = 1, d̃j |
∑
wjCj
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Algorithm 5 BW-Smith for problem 1|d̃j |wjCj
1: S = {J1, J2, ..., Jn} a set of jobs, t =

∑n
j=1 pj

2: while S 6= ∅ do
3: St = {Jj ∈ S/d̃j ≥ t}
4: Choose Jj ∈ St such that pj/wj is minimal
5: Schedule Jj in position n
6: n = n− 1, S = S \ {j}, t = t− pj

(ii) unit weights, i.e. for problem 1|d̃j |
∑n

j=1Cj [Smith, 1956]

(iii) agreeable weights, i.e. for problems where pi ≤ pj implies wi ≤ wj , ∀i, j ∈ {1, 2, ...n}.

1.2 Characterization of solutions

As it has been explained earlier (see Section 1.1.4), the resolution of a scheduling
problem consists in giving a starting time for each job. And solving a scheduling problem
consists in returning one solution (one schedule), as best as possible, or possibly optimal.

It is well known that some problems are really hard to solve, and finding one optimal
– or feasible – solution is really challenging. It is also well known that some scheduling
problems have a lot of optimal solutions (potentially an exponential number).

Example 2 Let consider the 1|d̃j |− problem (find a schedule of jobs respecting the dead-
lines). This problem is known to be solvable in polynomial time by sorting the jobs in EDD
order (see Section 1.1.5.2). Let consider an n-job instance where each job Jj has a pro-
cessing time equal to pj and the following deadlines: d̃1 = p1, d̃j = P , ∀i ∈ {2, ..., n} and
P =

∑n
j=1 pj. All the sequences such that job J1 is in first position are feasible. Therefore,

for this instance, there are (n− 1)! feasible solutions.

In a dynamic environment (some new jobs arrive in real time in the system and one has
to insert these jobs in the current schedule, and some events occur, making the solution
no more usable), it can be interesting to have some flexibility or robustness in the current
solution, in order to make the decision maker able to react to hazards or unexpected
events. For doing this, it could be interesting to have not only one solution to the problem,
but several solutions. Furthermore, if we know that there are an important set of optimal
solutions for a given objective function, it may be interesting to introduce another objective
function, in order to be more precise and to obtain a more interesting solution.

In such contexts, having a set of solutions may be of interest, but if this set contains an
exponential number of solutions, this is no more interesting. In some cases, an important
element is to know the characteristics of the solutions in this set.

Some preliminary studies concerning the search of the characteristics of some solutions
(characteristics of the solutions, but not the list) have been conducted in this direction
since several years.
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We present a survey of these technics, and then the characterization that in used in
this thesis.

1.2.1 Survey of characterization methods

We present briefly three methods: the groups of permutable operations 1.2.1.1, the
partial order 1.2.1.2 and the pyramid structures 1.2.1.3.

1.2.1.1 Groups of permutable operations

“Groups of permutable operations” is a scheduling method that consists in scheduling
groups of jobs, instead of jobs. In each group, it is supposed that the processing order is
not fixed between the jobs.

This notion has been first developed in the LAAS-CNRS laboratory in Toulouse in the
80s [Thomas, 1980], [Le Gall, 1989], [Billaut, 1993], [Artigues, 1997], and extensions have
been proposed later [Esswein, 2005], [Pinot, 2008].

Let consider a job shop environment. On each machine Mk, we define a sequence of
vk groups gk,1, ..., gk,vk . So, the set of operations processed on machine Mk is equal to
∪vkr=1gk,r = {Oi,j |mi = Mk} and ∩vkr=1gk,r = ∅ on any machine Mk.

Example 3 Let consider a job shop with two machines and 4 jobs, each composed by two
operations. It is equivalent to consider 8 independent jobs where:

• precedence relations J1 ≺ J2, J3 ≺ J4, J5 ≺ J6, J7 ≺ J8,

• operations J1, J3, J6, J8 are processed on machine M1 and J2, J4, J5, and J7 are
processed on machine M2.

We assume that the jobs have identical processing times, release dates are equal to zero,
and identical due dates.

Fig. 1.5 represents a sequence of groups of permutable operations, where there are four
groups, each group with two jobs. So, there are 24 = 16 potential solutions characterized
by this sequence of groups.

Figure 1.5: Groups of permutable operations

To evaluate a sequence of groups, two indicators can be given. One is the quality of
the sequence in the worst case and one is the quality of the sequence in the best case.

Finding the best-case quality leads to an NP-hard problem that can be solved optimally
using an exact method, because a group of permutable operations is a partial solution, for
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which some decisions have not been taken. Finding the best-case quality is equivalent to
consider the current groups as constraints, and to optimize the rest of the schedule. This
is of course NP-hard in the case of a job shop problem.

Finding the worst-case quality can be done in polynomial time by applying the critical
path method in a specific graph with activities on nodes.

Some indicators have been proposed, as for example the flexibility. The flexibility of
a group sequence is related to the total number of groups, denote by Gps. A measure of
flexibility is for example the number of characterized sequences, denoted by Seq. Thus,
if Gps decreases (the number of groups decreases), then Seq increases and the quality of
the worst characterized schedule decreases.

In reality, a compromise between the flexibility and the quality of the worst character-
ized solution can be searched. To solve this multicriteria scheduling problem, the authors
use the ε−constraint approach, assuming that the objective is to maximize the flexibility,
respecting a threshold value of the quality.

In [Esswein et al., 2005], the author tackles three classical two-machine shop problems:
the F2||Cmax, the J2||Cmax and the O2||Cmax problem with a measure for the flexibility
defined by φ = 2n−Gps

2n−2 .

1.2.1.2 Partial order between operations

In order to characterize a set of solutions S for a single machine problem where release
times are associated to the operations, [Aloulou, 2002] and [Aloulou et al., 2004] consider
the partial order between operations. There are two criteria to measure the quality of a
partial order. Because it is impossible to enumerate all the characterized solutions, only
the quality of the best characterized solution and of the worst characterized solution for
both criteria are determined. Zmink (S) and Zmaxk (S) denote the value of the best and the
worst characterized solution, for criterion Zk, 1 ≤ k ≤ 2.

The performance of a partial order between operations is a function of these four
parameters plus the coordinates of the Utopian point M∗ (minimum of each criterion when
considered separately, denoted by Z∗1 and Z∗2 ). Figure 1.6 illustrates these definitions for
a set of solutions.

Besides, the author has an interesting measure of the performance of S.

D(S) = αD1(S) + (1− α)D2(S)

Dk(S) = βk
Zmink (S)

Z∗k
+ (1− βk)

Zmaxk (S)

Z∗k
, ∀k, 1 ≤ k ≤ 2

where α, βk ∈ [0, 1] are real parameters. Clearly, the smaller the value D(S), the better
the solution S.

The ideal measure of the sequential flexibility is the number of characterized solu-
tions, i.e. the number of “linear extensions of a partially ordered set”. This problem is
#P − complete as shown by [Brightwell et Winkler, 1991]. Thus, Aloulou [Aloulou, 2002]
measures the sequential flexibility by the number of non-oriented edges in the transitive
graph representing the partial order, i.e. the number of non fixed precedences, denoted
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Figure 1.6: Quality of a set of solutions characterized by a partial order of operations

by Zseqflex. As a measure for the temporal flexibility, the author proposes to compute
the mean slack, where the slack is determined with the worst possible starting time for
each operation, denoted by Ztempflex. [Aloulou, 2002] provides a genetic algorithm to find
solutions that minimize a linear combination of D(S), Zseqflex and Ztempflex.

In [Policella et al., 2005] and [Policella, 2005] the authors consider a Resource Con-
strained Project Scheduling Problem with minimum and maximum time lags. The aim
is to propose a set of solutions with an implicit and compact representation of this set.
The author introduces a partial order schedule (POS), i.e. a set of feasible solutions to a
scheduling problem that can be represented by a graph with the activity on nodes and with
arcs to represent the constraints between activities, such that any “time feasible” schedule
defined by the graph is also a “feasible” schedule. The makespan of a POS is defined as
the makespan of its earliest start schedule, where each activity is scheduled to start at
its earliest start time. Some metrics are proposed to compare POS [Policella et al., 2004].
Two metrics give an evaluation of the flexibility and one measure gives an evaluation of the
stability of the solutions found. The first measure for evaluating the flexibility is Zseqflex
(as defined in [Aloulou et Portmann, 2003]). The second metric is based on the slacks
associated to the activities:

Zslackflex = 100×
∑
i6=j

|d(Cj , ti)− d(Ci, tj)|
H × n× (n− 1)

= 100×
∑
i6=j

||Cj − ti| − |Ci − tj ||
H × n× (n− 1)

with ti and Ci the starting time and the completion time of activity i, H the horizon time
and n the number of activities.

This metric characterizes the fluidity of a solution, i.e. its availability to absorb tem-
poral variation in the execution of activities. The higher the value of Zslackflex the higher
the probability of localized changes.

To measure the stability, [Policella et al., 2004] introduce a third measure, called dis-
ruptibility, denoted by Zdisrup and defined by:

Zdisrup =
1

n

n∑
i=1

sli
num(i,∆i)
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where sli the slack of activity i (difference between latest and earliest starting times)
and num(i,∆i) a function that returns the number of activities that are shifted in the
process if activity i is shifted to the right for ∆i time units. For solving the problem,
[Policella et al., 2004] also propose several heuristic algorithms.

1.2.1.3 Interval structures-pyramid

By using Allen’s Interval Algebra [Allen, 1983] to describe the relative position of
spatial objects, the interval relationships are analyzed and a sufficient optimality condition
is established providing a characterization of a large subset of optimal sequences. There are
many ways to describe the Allen’s relations (figure 1.7), and to define the basic concepts
of interval structure, we can refer a way below.

Figure 1.7: Allen’s thirteen basic relations

La in [La, 2005] considers the problem 1|ri, di|Lmax and aims at proposing a set of
solutions to the decision maker. An interval [ri, di] is associated to each operation Oi and
an interval structure is defined based on Allen’s relations.

Consider two intervals A,B, during(A,B) = true if and only if rB < rA ≤ dA <
dB. A top of an interval structure is an interval T such that for all A, Allen’s relation
during(A, T ) never holds. Given a top Tα, a T − pyramid Pα is a set of intervals A such
that during(T,A) holds. [Erschler et al., 1983] show that a set of dominant sequences is
composed by sequences such that:

• the tops of intervals are sequenced in the ri increasing order (di in case of equality),

• before the first top of interval, are sequenced the operations that belong to the first
T − pyramid in the ri non decreasing order,

• after the last top of interval, are sequenced the operations that belong to the last
T − pyramid in the di non decreasing order,

• between two tops Tk and Tk+1 are sequenced first the operations that belong to Pk
and not to Pk+1 in the di non decreasing order ; then the operations that belong to
Pk ∩ Pk+1 in an arbitrary order ; and finally the operations that belong to Pk+1 but
not to Pk in the ri non decreasing order.

Example 4 Figure 1.8 illustrates an interval structure for the following example: n = 6
jobs, release dates r = (2, 1, 0, 6, 4, 8), due dates d = (3, 5, 10, 7, 9, 11). The tops of
this interval structure are operations Ti = 1, T2 = 4, T3 = 6, and the T − pyramids
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are P1 = {2, 3}, P2 = {3, 5}, P3 = ∅. This interval structure characterizes the fol-
lowing sequences: (3,2,1,5,4,6), (3,2,1,4,5,6), (3,1,2,5,4,6), (3,1,2,4,5,6), (2,1,3,5,4,6),
(2,1,3,4,5,6), (1,2,3,5,4,6), (1,2,3,4,5,6), (2,1,5,4,3,6), (2,1,4,5,3,6), (1,2,5,4,3,6), and
(1,2,4,5,3,6).

Figure 1.8: Illustration of an interval structure

[La, 2005] proposes one measure for the flexibility and two measures for the quality.

The flexibility is equal to the number of characterized sequences, which is equal to
P∏
q=1

(q+

1)nq , with P the number of pyramids and nq the number of operations different from a
top, that belong exactly to q pyramids.

For the example,
P∏
q=1

(q+1)nq = (1+1)2× (2+ l)1× (3+1)0 = 4×3×1 = 12 sequences.

Two measures are associated to each operation: its best possible lateness and its
worst possible lateness, both computed in O(n log n). The quality of a set of solutions is
measured by the maximum of the best possible lateness for all the operations, denoted by
max(Lminj ) and by the worst possible lateness, denoted by max(Lmaxj ).

A branch-and-bound algorithm is proposed to characterize a set of solutions. Problems
with 100 operations are solved in less than two seconds on the average, and enable to
characterize up to 1012 sequences.

A base of an interval structure is an interval B such that for all A, Allen’s relation
during(B,A) never holds. Given a base Bα, a b − pyramid Pa related to Bα is the set
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of intervals A such that during(A,B)α holds. [Briand et al., 2005] use the concept of
b−pyramid to characterize a subset of optimal sequences for the F2||Cmax problem. Two
interval structures are defined: an interval structure with the jobs such that pi,1 ≤ pi,2,
an interval [pi,1, pi,2] is associated to these jobs; and an interval structure with the jobs
such that pi,1 ≥ pi,2, an interval [pi,2, pi,1] is associated to these jobs. A huge number of
solutions are characterized in polynomial time, including all the Johnson’s sequences.

This characterization can be considered as robust since the interval structures do not
change if the relative order of the processing times pi,2, pi,1 remains unchanged.

To continue with the theory interval structures and the pyramids, the authors develop
a robust approach for single machine scheduling problem 1|ri|Lmax in [Briand et al., 2007].

1.2.2 A new way to characterize solutions

In this section, we present a new way to characterize the solutions. Some preliminary
studies concerning the search of the characteristics of the optimal solutions have been
conducted by using the lattice of permutations as support.

1.2.2.1 The lattice of permutation and properties

A lattice consists of a partially ordered set in which every two elements have a unique
supremum (also called a least upper bound or join) and a unique infimum (also called a
greatest lower bound or meet).

The lattice of permutations This paragraph is taken from [Billaut et al., 2012].

Consider the set {1, 2, ..., n} of integers and Sn the group of all permutations on
{1, 2, ..., n}. The members of Sn can be represented by strings of integers. For exam-
ple when n = 4, σ = 4132 is a permutation, where σ(1) = 4, σ(2) = 1, σ(3) = 3, and
σ(4) = 2.

We denote by index(σ, i) the position of i in permutation σ (for example index(σ, 1) =
2).

With the elements of Sn, we define a directed graph where the nodes are the elements
of Sn. In this digraph, there exists an edge between two nodes σ and σ′ if and only
if σ = αijβ and σ′ = αjiβ, with α and β two partial orders, i, j ∈ {1, 2, ..., n} with
index(σ, j) = index(σ, i) + 1, and i < j. In other words, there is an edge between σ and σ′

if these permutations are the same, except that there exist i and j, two consecutive jobs
in σ with i < j, that are in the reverse order in σ′.

We call σ a predecessor of σ′ (or σ′ a successor of σ).

This digraph is a lattice, called the lattice of permutations or permutohedron. Fig
1.9 illustrates the lattices of permutations for n = 3 and n = 4.

To each permutation σ in the lattice can be associated a level. There are at most
n(n−1)

2 +1 levels, from minimum value 0 (of permutation (n, n−1, n−2, ..., 1)) to maximum

value n(n−1)
2 (of permutation (1, 2, ..., n)). We denote by κ(σ) the level of permutation σ.
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Figure 1.9: Lattice of permutations for n = 3 and n = 4

For a given permutation σ, we denote by Γ(σ) the set of couples defined as follows:

Γ(σ) =
{

(i, j) ∈ {1, 2, ..., n}2/i < j and index(σ, i) < index(σ, j)
}

For example, in permutation σ = 4132, we have Γ(σ) = {(1, 3), (1, 2)}.

Properties We now report some properties associated with the lattice of permutations.

Property 1 For any permutation σ, the level of σ is exactly its number of inversions from
permutation at level 0, i.e., the number of times we have i < j and index(σ, i) < index(σ, j)

κ(σ) = |Γ(σ)|

Property 2 Let consider a permutation σ. Any predecessor π of σ in the digraph is such
that:

Γ(σ) ⊂ Γ(π)

If we consider the elements of Γ(σ) as a set of constraints associated to σ, we can say
that all the predecessors of σ have to satisfy at least the same constraints as π. We then
claim that Γ(σ) gives the characteristics of all the predecessors of permutation σ in the
digraph.
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Relations between the lattice and the Permutohedron There are many definitions
of a permutohedron. In mathematics, the permutohedron (also called permutahedron) of
order n is an (n − 1)-dimensional polytope embedded in an n-dimensional space, the
vertices of which are formed by permuting the coordinates of the vector (1, 2, 3, ..., n).

The relations between the lattice of permutations and Permutohedron are interesting
for our problem.

Permutohedra were first studied by [Schoute, 1911]. The name “Permutohedron” was
coined by [Osenstiehl, 1963]. Permutohedra are sometimes also called “permutation poly-
topes (or permutation polyhedron)” for a related polytope, for any polytope whose vertices
are in 1-1 correspondence with the permutations of some sets [Bowman, 1972].

A permutohedron of order n, whose vertices are in one-to-one correspondence with the
n! permutations of the n jobs J1, J2, ..., Jn in the lattice. Thus, each vertex of permutohe-
dron represents a sequence in which the n jobs can be processed.

Fig. 1.10 is an example which illustrates the equivalences between the lattice and the
permutohedron for n = 4.

Figure 1.10: The lattice of permutations and the permutohedron for n = 4

The details of the equivalences between the lattice of permutations and the Permuto-
hedron are the following:

• the symmetric group Sn acts on them by permutation of {1, 2, ..., n},

• they have the same number of vertices, that is n!,

• each of the vertice is adjacent to n− 1 others,

• the total number of edges is (n− 1)n!/2,

• each edge connects two vertices that differ by swapping two adjacent elements,

• there are n(n− 1)/2 linear independence vectors to contribute a permutohedron,
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• the maximum level in the lattice is n(n− 1)/2,

• there are a generating set of Sn with n(n − 1)/2 generators which has the form
(ij), i 6= j.

Thus, the total number of predecessors of a sequence with the root sequence 12...n in
the lattice is exactly the total number of vertices from a vertex A to vertex 12...n (includes
vertex 12...n) in the permutohedron.

However, the lattice has not much symmetric axis and no symmetric plane, while
permutohedron has a lot symmetric axis and symmetric planes.

Besides, it is well known that there are many ways to deduce the properties of the
geometry in the plane from the geometry of the space and vice versa. Thus, from the
equivalences between the lattice and the permutohedron, we may deduce more character-
istics of the lattice from the permutohedron in the space.

1.2.2.2 Application to scheduling problems

The resolution of some scheduling problems is equivalent to finding a sequence of jobs.
It is the case for the problems where a sequence of jobs gives a schedule without ambiguity
by simply scheduling the jobs in the order of the sequences, as early as possible. A
sequence, i.e. a schedule, is completely characterized by a permutation of jobs. Therefore,
we associate to each permutation of the lattice the corresponding permutation of jobs in
the considered scheduling problem.

A lot of scheduling problems can be solved in polynomial time by the application of a
simple rule, often called “priority rule”. The application of this rule allows to know if in a
sequence (permutation) π of jobs, it is better to schedule a job Ji before a job Jj or not.
This is the case for some scheduling problems such as :

• the 1||Lmax that can be solved to opimality by sorting the jobs in the non decreasing
order of their due dates (EDD rule) [Jackson, 1955] (see Section 1.1.5.2)

• the 1||
∑
Cj and 1||

∑
wjCj problems (see Section 1.1.5.1)

• the 1|rj |Cmax problem that can be solved to opimality by sorting the jobs in the non
decreasing order of their release dates (ERD rule)

• the F2||Cmax problem that can be solved by the famous Johnson’s rule [Johnson, 1954]

• etc.

As explained before, it is also well known that this scheduling problems generally have
a lot of optimal solutions.

Let us assume that jobs are renumbered so that sequence σ> = (J1, J2, ..., Jn) corre-
sponds to the sequence returned by applying the sequencing rule. We will denote in the
following by σ⊥ the reverse sequence.

The idea is to find an optimal sequence, as far as possible from the root node σ> of
the lattice of permutations. For some evident pairwise echange arguments, it is clear that
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all the predecessors of this sequence will be optimal sequences as well. And it is easy to
give the characteristics of these sequences.

Definition 6 We say that a sequence σ is minimal iff it is an optimal sequence (respect-
ing the deadlines in our case) and none of its children are, i.e., any further swap of two
consecutive jobs leads to a sub-optimal solution.

Definition 7 A minimum sequence is a minimal sequence at a minimum level in the
lattice.

It is assumed that a minimum sequence “covers” many optimal solutions.

Example 5 Let consider a 4-job instance of a scheduling problem, where sequences (J3, J1, J4, J2)
and (J2, J4, J3, J1) are the only minimal sequences (see Fig. 1.11)

Figure 1.11: Minimal sequences in the lattice

Then, we know that the set of optimal solutions is exactly the set composed of these two
sequences plus their predecessors in the lattice: (J1, J2, J3, J4), (J2, J1, J3, J4), (J2, J3, J1, J4),
(J2, J3, J4, J1), (J2, J4, J3, J1), (J2, J1, J4, J3), (J2, J4, J1, J3), (J1, J2, J4, J3), (J1, J3, J2, J4),
(J3, J1, J2, J4), (J1, J3, J4, J2), (J3, J1, J4, J2).

Notice that sequence (J2, J4, J3, J1) covers 8 optimal sequences (marked in circles),
whereas (J3, J1, J4, J2) covers only 5 optimal sequences (marked in boxes).
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The predecessors of σ = (J3, J1, J4, J2) are exactly all sequences such that:

J1 ≺ J4 (J1 < J4 and index(σ, J1) < index(σ, J4)

J1 ≺ J2 (J1 < J2 and index(σ, J1) < index(σ, J2)

J3 ≺ J4 (J3 < J4 and index(σ, J3) < index(σ, J4)

We say that the sequences characterized by (J3, J1, J4, J2) are those which respect:

J1 ≺ J4 ∧ J1 ≺ J2 ∧ J3 ≺ J4

Similarly, the sequences characterized by (J2, J4, J3, J1) are such that:

J2 ≺ J4 ∧ J2 ≺ J3

So, in this example, the sequences (J3, J1, J4, J2) and (J2, J4, J3, J1) allow to charac-
terize all optimal sequences, which are the sequences verifying

(J1 ≺ J4 ∧ J1 ≺ J2 ∧ J3 ≺ J4)
∨

(J2 ≺ J4 ∧ J2 ≺ J3)

General method When one minimum sequence has been found, a set of sequences
is characterized. It generally happens that this set of sequences is not the whole set of
optimal sequences. Thus, in order to have the characteristics of all the optimal sequences,
a new minimum sequence has to be found, in order to characterize other optimal sequences.
The process for finding the characteristics of all the optimal sequences is iterative. At the
beginning, the characteristic of the characterized sequences is empty. The two main steps
are:

1. find a minimal sequence of jobs as deep as possible in the lattice (i.e. with minimum
level) which is not already characterized,

2. update the characteristics of the solutions already characterized.

The process terminates when there is no more feasible solution.

1.2.2.3 Literature review about the lattice of permutation applied to the
characterization of solutions for a scheduling problem

In many scheduling problems, a set of dominant solutions can be mapped to the set of
permutations of jobs and consequently to the vertices of a permutohedron. Several studies
have been conducted in this direction and using the lattice permutations as support to
provide these features proved very interesting.

Some papers have already been published on this idea of characterization of solutions.

• the two-machine flowshop with makespan minimization is considered for the first time
in [Benoit et Billaut, 2000]. The authors list all the minimal sequences by using a
tree-search algorithm. Some computational experiments show that for n = 11 jobs,
more than 1000 minimal sequences are needed to characterize the whole set of optimal
sequences.
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• the 1||Lmax and the F2||Cmax problems are considered in [Billaut et al., 2011]. An
MILP is proposed to characterize the whole set of minimum sequences.

• in [Billaut et Lopez, 2011], an extension of optimality to ρ-approximated solutions
is presented for the 1||Lmax and the F2||Cmax problems. The authors presented the
basic ideas and MILP models for finding the minimum sequences.

• in [Billaut et al., 2012], an efficient resolution based on constraint programming is
proposed for the F2||Cmax problem, for finding the whole set of minimal sequences.
Again, it is possible to see that for n = 12 jobs, there are more than 7000 sequences
required to characterize the whole set of optimal sequences (more than 7.4 106).

1.3 Problems studied in this thesis

The problem is to characterize a set of optimal sequences without having to enumerate
them, by using the properties of the lattice of permutation. In this thesis, we consider
the 1|d̃j |− problem, assuming that the jobs are numbered in EDD order, and
that at least one feasible sequence exists. We focus on the problem of finding a
minimum sequence, i.e. a minimal sequence as deep as possible in the lattice.

1.3.1 Introduction of new objective functions

We will show in Chapter 2 that the expression of the level in the lattice presents
similarities with a new type of objective function, involving the (weighted) position of a
job in the sequence.

Let us define

Γj(σ) = {Ji/i > j and index(σ, i) > index(σ, j)}

i.e. Γj(σ) is the set of jobs after Jj with an index greater than j. We introduce

Nj = |Γj(σ)|

the number of such jobs in σ. Of course, we have

Γ(σ) =
n⋃
j=1

Γj(σ)

The level of σ in the lattice is exactly κ(σ) =
∑n

j=1Nj . This is the notation that we
consider to indicate the level of σ.

Therefore, we consider in this thesis the problem denoted by:

1|d̃j |
∑

Nj (1.3)

To be more precise, the notation should be 1|Feas.d̃j , d̃1 ≤ d̃2 ≤ ... ≤ d̃n|
∑
Nj , to

indicate that at least one solution is feasible, and that jobs are numbered in EDD order,
but we prefer the notation (1.3) for more simplicity.
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We use the following notations:

σ> = (J1, J2, ..., Jn) (1.4)

σ⊥ = (Jn, Jn−1, ..., J1) (1.5)

We will denote by Pj the position of job Jj in the sequence. We will consider new
objective functions such as

∑
Pj ,

∑
wjPj and the particular case where wj = j.

Notice that all these objective functions are very specific since they do not depend on
the jobs completion times, which is really unusual in the scheduling literature.

1.3.2 Outline of the thesis

In Chapter 2, we present in details the problem of finding a minimal sequence at
minimum level. We present basic theory, mathematical expressions and properties. We
consider also some particular cases.

In Chapter 3, we propose resolution methods for problem (1.3): non-polynomial time
methods and polynomial time methods. Computational experiments are presented to see
the performances of the algorithms.

The Chapter 4 deals with the minimization of the total weighted positions. We propose
a complexity results and resolution methods.

Finally, the thesis terminates by a conclusion and some future research directions.
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Chapter 2

A new sequencing problem:
finding a minimum sequence

In this chapter, we investigate the main problem which is to find a minimal sequence
at the minimum level.

2.1 Presentation of the level
∑
Nj

The lattice structure has already been presented in Chapter 1. The level of a sequence
(a permutation) has some properties, that make it possible to establish a link with other
notions of the literature. More precisely, there is a direct connection between the level
of a permutation in the lattice and the Kendall’s-τ distance, and also with the crossing
number.

These connections may lead to some interesting properties and results for our problem.

2.1.1 Relation with Kendall’s-τ distance

The Kendall’s-τ distance was created by Maurice Kendall [Kendall, 1938]. It is a metric
that counts the number of pairwise disagreements between two ranking lists. Kendall’s-τ
distance is also called bubble-sort distance since it is equivalent to the number of swaps
that the bubble sort algorithm would make to place one list in the same order as the other
list.

Definition 8 The Kendall’s Tau ranking distance between two permutations π1 and π2 is

K(π1, π2) = |{(i, j) : i < j, (i ≺π1 j ∧ j ≺π2 i) ∨ (j ≺π1 i ∧ i ≺π2 j)}|

where i ≺π j means that i precedes j in π.

Notice that K(π1, π2) = 0 if the two lists are identical and K(π1, π2) = n(n − 1)/2 if
one list is the reverse of the other (with n the list size).
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With the definition of the Level in Section 1.2.2.1, we have the relations between
∑
Nj

and Kendall’s-τ distance:
∑
Nj of a sequence π is exactly the Kendall’s-τ distance between

sequence π and the reverse EDD sequence σ⊥ = (Jn, Jn−1, ..., J2, J1).

That is the reason why we can call the level
∑
Nj(σ), the Kendall’s-τ distance of σ.

A simple algorithm based on merge sort requires O(n log n) computation time for
computing the Kendall’sτ distance. A more advanced algorithm requires O(n

√
log n) time

[Chan, 2010].

Example 6 Consider the sequence of 10 jobs π1 = (J10, J8, J7, J5, J1, J9, J6, J3, J2, J4).

Then

K(π1, σ
⊥) =|{(i, j) : i < j, (i ≺π1 j ∧ j ≺σ⊥ i) ∨ (j ≺π1 i ∧ i ≺σ⊥ j)}|

=|{(J8, J9), (J7, J9), (J5, J9), (J5, J6), (J3, J4), (J2, J4), (J1, J9), (J1, J6), (J1, J4),

(J1, J3), (J1, J2)}|
=11

The Level of sequence π1 is
∑
Nj(π1) = 11.

2.1.2 Relation with the Crossing Number

Let us introduce the rank aggregation problem, also called the crossings of permutations
problem. The problem is to combine several rankings π1, ... πk in order to find the best pos-
sible ranking π∗, where the notion of ’best ranking’ lies in the objective function definition
(a cost function involving the penalties between the πi and π∗). The Kendall’s-τ distance
is commonly used and this distance has a correspondence in graph drawing and more par-
ticularly with the crossing minimization problem of two-layered graphs [Biedl et al., 2009].

The following example highlights this correspondence.

Example 7 For example, if we consider the same sequence as in the previous example,
the equivalence with the crossing number is illustrated in Fig.2.1.

Figure 2.1: Crossing and Permutation

The level is 11, exactly equal to the total number of edge crossings.

Therefore, we can see that the level value
∑
Nj of a sequence π1 is exactly the edge

crossings number of two-layered graphs π1 and σ⊥.

The crossing number is very interesting and its applications appear in many aspects.
It is a well known problem among graph theorists. The crossing minimization problem
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in a planar surface is known to be NP-hard for general graphs [Garey et Johnson, 1983].
It is one of the most important studied problems in graph theory [Tollis et al., 1999],
[Hartmanis et Leeuwen, 2001], [Bennett, 2012], etc.. Besides, there are some known results
in heuristics and meta-heuristics [Marti et Lanuna, 2003] and many applications in “On
Metro-Line Crossing Minimization” [Argyriou et al., 2010], etc.

Crossing number is also used to solve the Kemeny optimal aggregation problem, also
known as the rank aggregation problem, which consists in finding a consensus ranking
on a set of alternatives, based on the preferences of individual voters [Biedl et al., 2006],
[Biedl et al., 2009].

There are some interesting results with the crossing number.

Crossing minimization and max crossing minimization problems Let consider
a set of k permutations P = {π1, ..., πk} and π∗ is a “common” permutation. We denote
by:

• κ(P, π∗) =
∑k

i=1K(πi, π
∗) the sum of Kendall’s-τ distances from each permutation

πi to π∗.

• κmax(P, π∗) = max{K(πi, π
∗)|πi ∈ P} the maximum of Kendall’s-τ distances from

each permutation πi to π∗.

The problem of finding a permutation π∗ minimizing κ(P, π∗) is called the “crossing
minimization problem”, denoted by PCM-k problem. The problem of finding a permuta-
tion π∗ minimizing κmax(P, π∗) is called the “max crossing minimization problem”, denoted
by PCMmax-k problem, with k the cardinality of set P . Permutation π∗ corresponds to
the best possible ranking, if the permutations of P correspond to some rankings.

Example 8 For example, consider set P = {π1, π2, π3}, with π1 = (2314), π2 = (1243),
and π3 = (1324). Consider a sequence π∗ = (2143). We have K(π1, π

∗) = 2, K(π2, π
∗) =

1, K(π3, π
∗) = 3. (We can see the results of Kendall’s-τ distance in Fig. 2.2 and Fig 2.4)

Then κ(P, π∗) = 2 + 1 + 3 = 6 and κmax(P, π∗) = K(π3, π
∗) = 3

Figure 2.2: Example for π∗ = (2143)

With π∗ = π> = (1234), the results are illustrated in Fig. 2.3 and Fig 2.4. We have
K(π1, π

∗) = 2, K(π2, π
∗) = 1, K(π3, π

∗) = 1. Then κ(P, π∗) = 2 + 1 + 1 = 4 and
κmax(P, π∗) = K(π1, π

∗) = 2.
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Figure 2.3: Example for π∗ = (1234)

Figure 2.4: Kendall’s-τ distance in the lattice

Complexity results :

• For k ≥ 4 and k even, the crossing minimization problem PCM-k is NP-hard.

• For k ≥ 4, the max crossing minimization problem PCMmax-k is NP-hard.

• PCM-3 and PCMmax-3 are still open problems.

• PCM-2 can be solved in O(1) time, and PCMmax-2 takes at most O(n2 log n) time.

• PCM-1= PCMmax-1 =0.

There is a (2 − 2/k)-approximation algorithm for problem PCM-k. There is a 2-
approximation algorithm for problem PCMmax-k.
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2.1.3 Relation with the One Sided Crossing Minimization problem

We consider a bipartite graph. The one sided crossing minimization (OSCM) problem
consists of placing the vertices of one part on given positions on a straight line, and finding
the positions of the vertices of the second part on a parallel line, then drawing the edges
as straight lines. The objective is to minimize the number of pairwise edge crossings
[Munoz et al., 2002].

Munoz defines the OSCM problem for graphs with maximum degree k on the free side
as the OSCM-k problem. They consider bipartite graphs being forests of stars (k + 1
vertices and k leaves).

Example 9 Let consider for example the input for the OSCM-4 problem presented in Fig.
2.5. In this bipartite graph, vertex u1 has edges with vertices {v1, v4, v6, v10}, vertex u2 has
edges with vertices {v3, v7, v9, v12} and vertex u3 has edges with vertices {v2, v5, v8, v11}.
Vertices vi are fixed in a straight line, the problem is to find in which order putting vertices
ui so that the number of crossings is minimized.

m

m m m m m m m m m m m m

m mu1 u2u3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Figure 2.5: Example of input for the OSCM-4 problem

The sequence of vertices (u1, u3, u2) has a number of crossings equal to 17.

The problem OSCM-2 can be solved in linear time. The problem OSCM-4 is proved
NP-complete. The problem OSCM-3 is open.

Suppose that we are able to impose that some jobs have to be executed in a single
block, then the problem 1|d̃j |

∑
Nj would be NP-hard. But to impose such batches, we

need to introduce release times, but in this case, there is no need of the OSCM-4 problem
to say that problem 1|rj , d̃j |

∑
Nj is NP-hard.

2.1.4 Relation with the Checkpoint Ordering Problem

The Checkpoint Ordering Problem is introduced by P. Hungerlander [Hungerlaner, 2017].
We consider a set of n departments, where a length li and a weight wi is associated to each
department i (1 ≤ i ≤ n). A checkpoint is assigned to a fixed position (left-aligned or at
center for example). For a given permutation π or sequence of departments, the distance
between the center of department i and the checkpoint is denoted by zi(π). The problem
is to find a permutation π∗ of the departments so that the weighted sum

∑n
i=1wizi(π

∗) is
minimum for all the possible permutations.
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Example 10 Let consider an instance with n = 4 departments with the lenghts l =
(4, 6, 3, 5) and the weights w = (2, 4, 1, 3). Let consider the permutation (2,1,4,3) illus-
trated in Fig. 2.6. The checkpoint C is put at the midle (9). The center of department 2
is at a distance 6 to C (z2 = 6), then z1 = 1, etc.

12 4 3

C

-

-

�

�

z2 = 6 z3 = 9

z4 = 3.5z1 = 1

Figure 2.6: Example for the COP problem

The evaluation of this permutation is equal to
∑
wizi = 45.5.

This problem is proved NP-hard by reduction from PARTITION problem. This prob-
lem presents some connexions with the Linear Ordering Problem (LOP: find a tournament
of maximum total edge weight without directed cycles of a complete weighted directed
graph).

In this problem, departments can be considered as jobs and the checkpoint as a common
deadline. However, the distance can be associated to a completion time (if the checkpoint
is put at the beginning), not to the position.

The LOP is NP-complete, but the relation with our problem leads to a graph with
specific weights (0 or 1) which is easy to solve (permutation σ⊥ is optimal). The difficulty
is to introduce the deadlines and the durations of jobs.

2.2 Mathematical expressions and properties

We give in this section some mathematical expressions of the objective function
∑
Nj ,

and some first properties.

Let remember that we consider a set of n jobs {J1, J2, ..., Jn} to schedule on a single
machine. Preemption is not allowed and the machine can perform only one job at a time.
To each job Jj is associated a processing time pj and a deadline d̃j . It is assumed that
the sequence is feasible (maximum lateness equal to 0) and that the jobs are numbered in
EDD order (notice that it can be done in O(n log n) time).

Let remember that
∑
Nj corresponds to the level of sequence σ in the lattice of permu-

tations. Finding a sequence as deep as possible in this lattice, or finding a sequence as far
as possible from sequence σ> = (J1, J2, ..., Jn) is the same and is equivalent to minimize
the objective function

∑
Nj .

There are several ways to give a mathematical expression of
∑
Nj .

2.2.1 Expression of Nj based on position variables

Let us define the following boolean variables (see Section 1.1.3.1):
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xj,k =

{
1 if job Jj is in position k
0 otherwise

The expression of Nj is the following:

Nj =
n∑
k=1

n∑
i=j+1

n∑
h=k+1

xi,hxj,k (2.1)

If Jj is in position k (xj,k = 1) it is equal to the number of jobs after Jj – i.e. at a
position h greater than k – with an index i greater than j.

Therefore, the expression of
∑
Nj is:

∑
Nj =

n∑
j=1

n∑
k=1

n∑
i=j+1

n∑
h=k+1

xi,hxj,k (2.2)

This expression is quadratic and in an MILP model, it is possible to linearize this
expression [Billaut et Lopez, 2011] and [Billaut et al., 2011].

Let us define:

yj,k =
n∑

i=j+1

n∑
h=k+1

xi,h

yj,k is the contribution of Jj to the objective function, if Jj is in position k. We have:

∑
Nj =

n∑
j=1

n∑
k=1

yj,kxj,k (2.3)

Let us consider the function Z ′ defined by:

Z ′ =

n∑
j=1

n∑
k=1

yj,k

Notice that Z ′ is related, but not equivalent to the expression of
∑
Nj .

Proposition 3 Z ′ is a function which depends only on the positions of the jobs in the
sequence.

Proof. Two sequences or permutations play a particular role in the problem. Sequence
σ> = (1, 2, ..., n) at level n(n−1)/2 and sequence σ⊥ = (n, n−1, ..., 1) at level 0. Suppose
that n = 5. The matrices of variables xj,k associated to sequence σ> and σ⊥ are the
following.

MX(σ>) =


1 . . . .
. 1 . . .
. . 1 . .
. . . 1 .
. . . . 1

 MX(σ⊥) =


. . . . 1
. . . 1 .
. . 1 . .
. 1 . . .
1 . . . .


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Associated to σ> and σ⊥, we have the following MY matrices (matrices of variables
yj,k).

MY (σ>) =


4 3 2 1 .
3 3 2 1 .
2 2 2 1 .
1 1 1 1 .
. . . . .

 MY (σ⊥) =


3 2 1 . .
2 1 . . .
1 . . . .
. . . . .
. . . . .


We can see that the level of σ> is 10 (sum of the diagonal terms in MY (σ>)) and the

level of σ⊥ is 0 (sum of the terms in the opposite diagonal).

Let focus on MY (σ>). To find Z ′, we have to compute the sum of all the elements of
this matrix. We can rewrite this sum as the following sum:

MY (σ>) =


4 3 2 1 .
4 3 2 1 .
4 3 2 1 .
4 3 2 1 .
4 3 2 1 .

+


. . . . .
−1 . . . .
−2 −1 . . .
−3 −2 −1 . .
−4 −3 −2 −1 .


Therefore, we deduce that:

Z ′(σ>) = n×
(
n(n− 1)

2

)
−
( n−1∑
i=1

i∑
j=1

j

)

= n×
(
n(n− 1)

2

)
−
( n−1∑
i=1

i(i+ 1)

2

)

=
1

2
n2(n− 1)− 1

2

n−1∑
i=1

i− 1

2

n−1∑
i=1

i2

=
1

2
n2(n− 1)− 1

2
.
1

2
(n− 1)n− 1

2
.
1

6
n(n− 1)(2n− 1)

=
1

2
n(n− 1)

[
n− 1

2
− 1

6
(2n− 1)

]
=

1

2
n(n− 1)

1

6

[
6n− 3− 2n+ 1

]
=

1

6
n(n− 1)(2n− 1)

Similarly, we can prove that:

Z ′(σ⊥) =
1

6
n(n− 1)(n− 2)

Each time a variable xj,k is set to 1, it generates a modification in matrix MY that can
be easily analysed (see Fig. 2.7). If k > j, there is ’+1’ in the submatrix of MY between
columns j and k−1 and lines 1 to j−1. So the value of Z ′ becomes Z ′(σ>)+(j−1)(k−j).
Similarly, if k < j, there is ’−1’ in the submatrix of MY between columns k and j−1 and
lines 1 to j − 1. So the value of Z ′ becomes Z ′(σ>)− (j − k)(j − 1).
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j

j k

-

+1

j

k j

�

-1

Figure 2.7: Modification of matrix MY

Z ′ = Z ′(σ>) +
n∑
j=1

( n∑
k=j+1

(k − j)(j − 1)xj,k −
j−1∑
k=1

(j − k)(j − 1)xj,k

)

= Z ′(σ>) +

n∑
j=1

n∑
k=1

(k − j)(j − 1)xj,k

= Z ′(σ>) +
n∑
j=1

n∑
k=1

kjxj,k −
n∑
j=1

n∑
k=1

kxj,k −
n∑
j=1

n∑
k=1

j2xj,k +
n∑
j=1

n∑
k=1

jxj,k

⇔ Z ′ = Z ′(σ>) +

n∑
j=1

n∑
k=1

kjxj,k −
n∑
k=1

k(

n∑
j=1

xj,k)−
n∑
j=1

j2(

n∑
k=1

xj,k) +

n∑
j=1

j(

n∑
k=1

xj,k)

Because
∑n

j=1 xj,k = 1 and
∑n

k=1 xj,k = 1, we have:

Z ′ = Z ′(σ>) +

n∑
j=1

n∑
k=1

kjxj,k −
n∑
k=1

k −
n∑
j=1

j2 +

n∑
j=1

j

= Z ′(σ>) +

n∑
j=1

n∑
k=1

kjxj,k −
1

2
n(n+ 1)− 1

6
n(n+ 1)(2n+ 1) +

1

2
n(n+ 1)
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⇔ Z ′ =
1

6
n(n− 1)(2n− 1) +

n∑
j=1

n∑
k=1

kjxj,k −
1

6
n(n+ 1)(2n+ 1)

=
1

6
n

[
(n− 1)(2n− 1)− (n+ 1)(2n+ 1)

]
+

n∑
j=1

n∑
k=1

kjxj,k

=
1

6
n(2n2 − n− 2n+ 1− 2n2 − n− 2n− 1) +

n∑
j=1

n∑
k=1

kjxj,k

= −n2 +
n∑
j=1

n∑
k=1

jkxj,k

Notice that this expression is equivalent to:

Z ′ =

n∑
j=1

n∑
k=1

(j − 1)(k − 1)xj,k

Indeed:

Z ′ =
n∑
j=1

n∑
k=1

(j − 1)(k − 1)xj,k

=

n∑
j=1

n∑
k=1

jkxj,k −
n∑
j=1

n∑
k=1

kxj,k −
n∑
j=1

n∑
k=1

jxj,k +

n∑
j=1

n∑
k=1

xj,k

=
n∑
j=1

n∑
k=1

jkxj,k −
n∑
k=1

k

n∑
j=1

xj,k −
n∑
j=1

j

n∑
k=1

xj,k + n

=
n∑
j=1

n∑
k=1

jkxj,k −
n∑
k=1

k −
n∑
j=1

j + n

=
n∑
j=1

n∑
k=1

jkxj,k − n(n+ 1)/2− n(n+ 1)/2 + n

=

n∑
j=1

n∑
k=1

jkxj,k − n(n+ 1) + n

⇔ Z ′ =
n∑
j=1

n∑
k=1

jkxj,k − n2

In this expression,
n∑
k=1

kxj,k is exactly the position of job Jj in the sequence.

So, if we define by Pj the position of job Jj , then:
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minimizing Z ′ is equivalent to minimize

n∑
j=1

jPj

So
∑n

j=1 yj,k is a function related to the positions of the jobs in the sequence.

It means in some sense, that the minimization of
∑
Nj is also related to the minimiza-

tion of
∑n

j=1 jPj .

Remember that minimizing Z ′ is not equivalent to minimize
∑
Nj . This is illustrated

in the following example.

Example 11 Let consider the sequences of the lattice for n = 5, given in Table 2.1. For
each sequence, it is possible to compute the level corresponding to the level

∑
Nj and the

value of Z ′.

We can see for example that sequence (5, 2, 1, 3, 4) has a value of
∑
Nj equal to 5 and

a value of Z ′ equal to 19, whereas sequence (1, 5, 4, 3, 2) has a value of
∑
Nj equal to 4 but

a value of Z ′ equal to 20. Even if
∑
Nj and Z ′ seem to be correlated, it is not possible to

say that
∑
Nj(σ1) <

∑
Nj(σ2)⇔ Z ′(σ1) < Z ′(σ2).

We notice that such an example cannot be found for n = 4.

2.2.2 Expression of Nj based on precedence variables

Let us define now consider precedence variables (see Section 1.1.3.1).

zi,j =

{
0 if job Ji precedes Jj
1 otherwise

We have some trivial constraints:

zj,j = 1,∀j
zj,i + zi,j = 1,∀i 6= j

With these variables, the expression of Nj and the level
∑
Nj are the following:

Nj =

n∑
i=j+1

zi,j (2.4)

∑
Nj =

n∑
j=1

n∑
i=j+1

zi,j (2.5)

The position of job Jj is given by:

Pj =

n∑
i=1

zj,i (2.6)
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∑
Nj Z ′

∑
Nj Z ′

∑
Nj Z ′

12345 10 30 15324 6 23 24513 5 19
12354 9 29 15342 5 21 24531 4 17
12435 9 29 15423 5 21 25134 6 22
12453 8 27 15432 4 20 25143 5 21
12534 8 27 21345 9 29 25314 5 20
12543 7 26 21354 8 28 25341 4 17
13245 9 29 21435 8 28 25413 4 18
13254 8 28 21453 7 26 25431 3 16
13425 8 27 21534 7 26 31245 8 27
13452 7 24 21543 6 25 31254 7 26
13524 7 25 23145 8 27 31425 7 25
13542 6 23 23154 7 26 31452 6 22
14235 8 27 23415 7 24 31524 6 23
14253 7 25 23451 6 20 31542 5 21
14325 7 26 23514 6 22 32145 7 26
14352 6 23 23541 5 19 32154 6 25
14523 6 22 24135 7 25 32415 6 23
14532 5 21 24153 6 23 32451 5 19
15234 7 24 24315 6 23 32514 5 21
15243 6 23 24351 5 19 32541 4 18∑

Nj Z ′
∑
Nj Z ′

∑
Nj Z ′

34125 6 22 42315 5 21 51423 4 17
34152 5 19 42351 4 17 51432 3 16
34215 5 21 42513 4 17 52134 5 19
34251 4 17 42531 3 15 52143 4 18
34512 4 15 43125 5 21 52314 4 17
34521 3 14 43152 4 18 52341 3 14
35124 5 19 43215 4 20 52413 3 15
35142 4 17 43251 3 16 52431 2 13
35214 4 18 43512 3 14 53124 4 17
35241 3 15 43521 2 13 53142 3 15
35412 3 14 45123 4 15 53214 3 16
35421 2 13 45132 3 14 53241 2 13
41235 7 24 45213 3 14 53412 2 12
41253 6 22 45231 2 12 53421 1 11
41325 6 23 45312 2 12 54123 3 14
41352 5 20 45321 1 11 54132 2 13
41523 5 19 51234 6 20 54213 2 13
41532 4 18 51243 5 19 54231 1 11
42135 6 23 51324 5 19 54312 1 11
42153 5 21 51342 4 17 54321 0 10

Table 2.1: Values of
∑
Nj and Z ′ for all the sequences of size 5
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Therefore:

Pj =
n∑
i=1
i6=j

(1− zi,j) + zj,j = (n− 1)−
n∑
i=1
i6=j

zi,j + 1

= n−
n∑
i=1
i6=j

zi,j = n− (

j−1∑
i=1

zi,j +

n∑
i=j+1

zi,j)

= n− (

j−1∑
i=1

zi,j +Nj)

⇒ Nj + Pj = n−
j−1∑
i=1

zi,j (2.7)

This expression gives a relation between the level and the position. Let us define

Qj =

n∑
i=j+1

zj,i.

We have

Nj +Qj =

n∑
i=j+1

zi,j +

n∑
i=j+1

zj,i =

n∑
i=j+1

(zi,j + zj,i)

= n− j

⇒ Nj +Qj = n− j (2.8)

We deduce also that

n∑
j=1

(Nj +Qj) =

n∑
j=1

(n− j)

= n(n− 1)/2 = n(n+ 1)/2− n

=

n∑
j=1

Pj − n

⇒
n∑
j=1

(Nj +Qj) =
n∑
j=1

Pj − n (2.9)

The example below illustrates the results presented above.

Example 12 Let consider n = 10 jobs, and a sequence σ = (J8, J10, J5, J1, J9, J6, J2, J7, J4, J3).
The matrix MZ of zi,j is presented in Table 2.2.

We have two ways to compute the position of a job: by index i or j. In the table, we
present Pi by using simply the formulation Pi =

∑n
j=1 yi,j (formulation 2.6).
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MZ(σ) Qj Pi
1
2
3
4
5
6
7
8
9
10



1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1

1
1 1 1 1 1

1 1



3
5
7
6
2
3
3
0
1
0

4
7
10
9
3
6
8
1
5
2

Nj =

n∑
i=j+1

yi,j
(

6 3 0 0 3 1 0 2 0 0
) ∑

(Nj +Qj) = 45
∑
Pj = 55

Table 2.2: Relations between Nj and Pj

We can also obtain the position of a job by index j of formulation Pj = n−(
∑j−1

i=1 yi,j+
Nj) (formulation 2.7), for example:

j = 1, P1 = 10−N1 −
∑0

i=1 yi,1 = 10− 6− y0,1 = 4

j = 2, P2 = 10−N2 −
∑1

i=1 yi,2 = 10− 3− y1,2 = 7− 0 = 7

j = 3, P3 = 10−N3 −
∑2

i=1 yi,3 = 10− 0− y1,3 − y2,3 = 10

j = 4, P4 = 10−N4 −
∑3

i=1 yi,4 = 10− 0− y1,4 − y2,4 −−y3,4 = 10− 1 = 9

j = 5, P5 = 10−N5−
∑4

i=1 yi,5 = 10−3−y1,5−y2,5−y3,5−y4,5 = 10−3−1−1−1−1 = 3

etc,

Moreover, it is easy to check the other formulations on this example.

Thus, we can also easily deduce the positions of jobs in the sequence by using the
precedence variables. Two MILP based on these variables are presented in the Section
devoted to resolution methods.

2.2.3 Properties

We give in this section some properties related to the objective function
∑
Nj .

2.2.3.1 General properties of the feasible sequence

We assume that the root sequence σ> of the lattice was obtained by using EDD algo-
rithm. We look for a minimum sequence (minimal sequence at minimum level) denoted
σ∗ in the lattice, since this solution is likely to cover many optimal solutions.

Obviously, a sequence σ is feasible for 1|d̃j |− problem if all the jobs respect their

deadlines, i.e. Cj ≤ d̃j , ∀j ∈ {1, ..., n}.
We call critical job a job that satisfies two conditions:
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1. in σ> it completes at its deadline (Cj = d̃j).

2. in a set of jobs with the same deadline, its index is the smallest.

Property 3 In the root sequence σ>, consider critical job Jj, we have:

a. ∀k < j (Jk precedes Jj) and d̃k < d̃j, Jk can not be scheduled after Jj in any feasible
sequence.

b. ∀l > j (Jl after Jj) and d̃l > d̃j, Jl can not be scheduled before Jj in any feasible
sequence.

Proof.

a. ∀k < j (Jk precedes Jj) and d̃k < d̃j , if Jk is moved to be scheduled after Jj in a new

sequence, we have C ′k ≥ d̃j (The equation occurs when Jk is scheduled just after Jj).

But d̃k < d̃j ⇒ C ′k ≥ d̃j > d̃k, which is impossible.

b. All the jobs Jk before Jj must be performed before Jj , and Cj = d̃j . So, there is no
place for another job (Jl) before Jj .

Property 4 In an EDD sequence, let consider two consecutive critical jobs Ji and Jj.
We denote by W [i+ 1, j] = {i+ 1, i+ 2, ..., j} the set of positions from i+ 1 to j. In any
feasible solution, all jobs located on the positions that belong to W [i+ 1, j] cannot move to
other outside positions.

Proof Apply Property 3 a. and b. to the jobs inW [i+1, j], and we have the conclusion.

Figure 2.8 illustrates for this property.

Figure 2.8: Property 4

From property 4, we can focus on the intervals which separate the critical jobs. We
only need to consider the sequences with one critical job at the end of each sequence.

Property 5 Suppose that the sequence σ> = σ1σ2σ3, with σ2 being a partial sequence cor-
responding to an interval W [i+ 1, j], as presented in Property 4. The number of crossings
between σ1, σ2 and σ3 do not depend on the positions of the jobs in each interval.
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Proof. Call a, b, c the number of jobs in σ1, σ2 and σ3, respectively (see Fig. 2.9). All
the jobs in σ1 will cross the jobs in σ2 and in σ3, generating a(b+c) crossings. Similarly, all
the jobs in σ3 will cross the jobs in σ2. Therefore, at least there are ab+ ac+ bc crossings
in any feasible solution. Therefore, the optimization has to focus on the minimization of
crossings inside each interval.

e e e e e e

e e e e e e

σ1 σ2 σ3

σ1 σ2 σ3

Figure 2.9: Illustration of Property 5

2.2.3.2 Batches

We introduce in this section the notion of batch.

Property 6 A minimal solution can always be decomposed into a succession of batches,
defined as follows:

• the “head” of the batch is the last job of the batch,

• all the jobs in the batch are in decreasing numbering order and have an index greater
than the head.

Therefore, the index of the heads are increasing, starting with index 1.

Proof. Let consider a minimal solution. The first batch B1 is composed by the first
jobs up to job J1. Suppose that these jobs are not in their reverse numbering order. Then,
reordering these jobs in their reverse numbering order does not violate the deadlines and
is better for the objective function. It would lead to a better solution, which is impossible.
So these jobs are in their reverse numbering order. The next batch B2 starts after job J1

and finishes with the job with the smallest index in {1, 2, ..., n} \ B1. The same pairwise
interchange reasoning can be applied for this batch, and for the other batches. At the end,
the proposition holds.

Example 13 Consider the sequence (J8, J7, J3, J1, J2, J4, J6, J5, J10, J9). This sequence is
composed by 5 batches: batch B1 contains jobs {J8, J7, J3, J1}, batch B2 contains only job
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J2, batch B3 contains only job J4, batch B4 contains jobs J6 and J5 and finally, batch B5

contains jobs J10 and J9.

(J8, J7, J3, J1 , J2 , J4 , J6, J5 , J10, J9 )

Corollary 1 We have the following corollary:

1. If a solution with one batch is feasible, this solution is necessarily σ⊥ at level 0.

2. A solution with n batches always exists, is unique, and is σ> at level n(n−1)
2 .

A natural question comes: “Is a solution with k+1 batches necessarily at a level higher
than a solution with k batches?” The answer is no. For example, let consider five jobs.
Sequence (J1, J3, J2, J5, J4) is at level 8 and has 3 batches but sequence (J1, J5, J2, J3, J4)
with 4 batches is only at level 7. So minimizing the level is not equivalent to minimize the
number of batches.

This particular structure of a minimal sequence allows to reduce the search space. We
illustrate in Fig. 2.10 the reduction of the search space for n = 3 and n = 4. But of course,
the search space remains exponential.

3214 3142 1432 4123

2143 3124 1423

4213 4132

4312

2134 1324 1243

1234

4321

= ? R

? ?� R

) ^ � ^

U �)

	

	
321

312

213 132

123

^�

�

?

Figure 2.10: Lattice of permutation for n = 3 and n = 4 restricted to interesting sequences

We propose now to determine the minimum number of batches in a feasible solution.

We introduce the algorithm Min # B presented in Alg. 6. This algorithm allows to
identify the minimum number of “head” jobs, i.e. the minimum number of batches.
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Algorithm 6 Min # B

σ> = (J1, ..., Jn)

Compute Cσ
>

j , ∀j ∈ {1, 2, ..., n}
k = 0, S = ∅, t = 1
while t ≤ n do

i = t+ 1
bool = True
while i ≤ n and bool do

if Cσ
>

i > d̃t then
bool = False
S = S ∪ {Jt}
Put the jobs between Jt and Ji−1 in the same batch
t = i

else
i = i+ 1

return (|S|)

Property 7 Two “head” jobs returned by the algorithm cannot belong to the same batch.
Therefore, the number of head jobs is the minimum number of batches in a feasible se-
quence.

Proof. Let consider sequence σ> and the sequence built by Alg. 2.11. We denote by
tj the first job in batch number j and by tj+1 − 1 the last job in this batch.

(a) tj−1 + 1 cannot be put before d̃tj−2+1, i.e. it cannot be put in batch j − 1 because
it would be in first position in this batch and tj−2 + 1 would not respect its deadline.
Similarly, tj + 1 cannot be put before job tj−1 + 1.

(b) if tj−1 + 1 is put in the next batch (j + 1), it would be put in the last position. In
this case, we have tj + 1 before tj−1 + 1, which is not possible.

(c) Therefore, at least tj−1 + 1 is alone in its batch, but the batch do exist. So we
cannot reduce the number of batches.

... ...... ......

batch j − 1 batch j batch j + 1

tj tj+1tj−1 tj − 1 tj+1 − 1σ>

tj − 1 tj−1
... ... tjtj+1 − 1 ...

Figure 2.11: Illustration of the proof of Proposition 7

Example 14 Let consider an instance with n = 10 jobs, the processing times equal
to p = (2, 5, 6, 4, 9, 7, 3, 10, 4, 3) and deadlines d̃ = (21, 22, 23, 24, 30, 35, 46, 49, 53, 53).
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The minimum sequence is (J4, J3, J2, J1 , J5 , J6 , J10, J7 , J8 , J9 ) at level 36, with 6
batches.

Following the algorithm, we first compute the jobs completion times. We obtain C =
(2, 7, 13, 17, 26, 33, 36, 46, 50, 53). We put jobs J1 to J4 in the same batch (C5 > d̃1). Then,
J5 and J6 are alone in their batch. Then, J7 and J8 are in the same batch (C9 > d̃7) and
finally J9 and J10 are in the same batch.

We obtain sequence (J4, J3, J2, J1 , J5 , J6 , J8, J7 , J10 , J9 ) at level 39, with 5 batches.

The algorithm runs in O(n2).

2.3 Particular cases

We consider in this section some problems with the objective function
∑
Nj .

2.3.1 Some trivial problems: 1||
∑
Nj, 1|rj|

∑
Nj, 1|prec|

∑
Nj

It is clear that the problem 1||
∑
Nj is trivial. The optimal ordering of the jobs is the

reverse numbering order (Jn, Jn−1, ..., J1) with level 0.

The problem 1|rj |
∑
Nj has the same optimal solution. Indeed, here, the start times

of the jobs can be delayed due to the release dates, but the objective function does not
depend on the completion times. Therefore, there is no problem to schedule the jobs in
reverse numbering order too. Of course, introducing a common deadline would not lead
to the same solution.

The problem 1|prec|
∑
Nj can be solved to optimality by a simple backward algorithm

of the same type as Alg. 8 or [Lawler, 1973]. The only modification is in the choice of the
job Jr to put last: “Let Jr ∈ J such that r = argmin{j/Jj has no successor}”.

2.3.2 Unitary jobs

We consider in this section the case where jobs have a processing time equal to 1 and
a deadline. Again, jobs are supposed to be numbered in EDD order, and at least one
feasible solution exists.

2.3.2.1 Properties

Property 8 The total number of optimal sequences of the problem 1|d̃j , pj = 1|
∑n

j=1Nj

is a constant equal to:

T =

n∏
j=1

(
min(d̃j , n)− j + 1

)
(2.10)

Proof
For any job Jj such that d̃j ≤ n, job Jj has Mj = d̃j + 1− j choices for its position in the
sequence.
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Similarly, ∀Jj such that d̃j > n, Jj has Mj = n+ 1− j choices for its position.

So, the total number of optimal sequences of the problem is T =

n∏
j=1

(
min(d̃j , n)−j+1

)

Example 15 Let consider an instance with n = 5 jobs and the following deadlines d̃ =
(3, 3, 4, 4, 5).

The number of optimal sequences is equal to T = 3×2×2×1×1 = 12. The 12 optimal
sequences are the following.

J4 J2 J1 J3 J5

J2 J4 J1 J3 J5

J4 J1 J2 J3 J5

J2 J1 J4 J3 J5

J1 J4 J2 J3 J5

J1 J2 J4 J3 J5

J3 J2 J1 J4 J5

J2 J3 J1 J4 J5

J3 J1 J2 J4 J5

J2 J1 J3 J4 J5

J1 J3 J2 J4 J5

J1 J2 J3 J4 J5

Property 9 The minimum level of a sequence is a constant equal to:

n∑
j=1

Nj =

n∑
j=1

max(n− d̃j , 0) =
∑

j∈{1,..,n}/d̃j<n

(n− d̃j) (2.11)

Proof for any job Jj such that d̃j < n, Jj is necessarily sequenced “before” (n − d̃j)
jobs having a greater index. On the contrary, for any job Jj such that d̃j ≥ n, Jj has not
to be sequenced “before” a job with a greater index.

The level is the number of the relations “before”. So we have
n∑
j=1

Nj =
n∑
j=1

max(n− d̃j , 0) =
∑

j∈{1,..,n},d̃j<n

(n− d̃j)

Example 16 Let consider the previous instance with n = 5 jobs and deadlines d̃ =
(3, 3, 4, 4, 5).

The EDD sequence is σ> = (J1, J2, J3, J4, J5) and its level is equal to 10. The sequence
with minimal level is (J4, J2, J1, J3, J5) with level 6.

Z = max(5− 3, 0) +max(5− 3, 0) +max(5− 4, 0) +max(5− 4, 0) +max(5− 5, 0) =
2 + 2 + 1 + 1 + 0 = 6

Remark : There is no need to have a deadline greater than n. So if we assume that
d̃j ≤ n, ∀j ∈ {1, 2, ..., n}, the properties 8 and 9 become:

• The total number of optimal sequences is

T =

n∏
j=1

(d̃j − j + 1)
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• The minimum level of a sequence is

n∑
j=1

Nj =
n∑
j=1

(n− d̃j) = n2 −
n∑
j=1

d̃j

2.3.2.2 Algorithms

Let remember that σ> is the root sequence where jobs are numbered with respect to
rule EDD. Sequence σ⊥ is the sequence (Jn, Jn−1, ..., J1) at level 0, but not necessarily
feasible with respect to the deadlines.

We search for the minimum sequence σ∗.

The idea of the algorithm is to take the jobs in their numbering order and to place
each job before its deadline but as late as possible.

Algorithm 7 ALAP1 – As Late As Possible – pj = 1

1: Input: d̃j , ∀j ∈ {1, 2, ..., n}
2: Pa ← {1, 2, ..., n} // set of available positions
3: for j = 1 to n do
4: Position Pj is the (d̃j − (j − 1))th element of Pa
5: Pa ← Pa\{Pj}

The insertion and deletion of elements in a sorted array of n−j element takes O(n−j)
time. There are n arrays with the lengths from n to 1. This algorithm runs in O(n log n)
and is optimal. The proof can be done by a simple pairwise exchange argument (Alg.7
always put the job with the smallest index in the last possible position).

Example 17 Consider again the instance of 5 jobs with d̃ = (3, 3, 4, 4, 5).

We have Pa = {1, 2, 3, 4, 5}.

• j = 1, position P1 of J1 is the (d̃1 − (1 − 1))th = 3rd element in Pa ⇒ P1 = 3 and
Pa = {1, 2, 4, 5}

• j = 2, position P2 of J2 is the (d̃2 − (2 − 1))th = 2nd element in Pa ⇒ P2 = 2 and
Pa = {1, 4, 5}

• j = 3, position P3 of J3 is the (d̃3 − (3 − 1))th = 2nd element in Pa ⇒ P3 = 4 and
Pa = {1, 5}

• j = 4, position P4 of J4 is the (d̃4 − (4 − 1))th = 1st element in Pa ⇒ P4 = 1 and
Pa = {5}

• j = 5, position P5 of J5 is the (d̃5 − (5 − 1))th = 1st element in Pa ⇒ P5 = 5 and
Pa = ∅.

We introduce now a backward algorithm for solving problem 1|d̃j , pj = 1|
∑n

j=1Nj .
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Algorithm 8 BWindex – Backward – pj = 1

1: J ← {J1, J2, ..., Jn}
2: k ← n
3: while J 6= ∅ do
4: Let Jr ∈ J such that r = argmin{j ∈ J /d̃j ≥ k}
5: Put Jr in position k
6: k ← k − 1
7: J ← J \ {Jr}

This algorithm is important because it is very intuitive (remember that such an algo-
rithm is optimal for problems 1|prec|fmax (famous rule of [Lawler, 1973]).

Alg. 8 assigns at each position the job with the smallest index, starting by the end.
Alg. 7 does the same, but placing the jobs at different positions, not in ascending or
descending order. But at the end, the results are the same. The complexity of Alg. 8 is
in O(n log n).

In the case where pj = p, properties 9 and 8 can apply after change d̃′j = b d̃jp c; Alg.
7 can be changed a little in order to solve the problem to optimality, Alg. 9 is optimal in
this case. Similarly, Alg. 8 could be adapted by changing a little to Alg10.

Algorithm 9 ALAPp – As Late As Possible – pj = p

1: Input: d̃j , ∀j ∈ {1, 2, ..., n}
2: Pa ← {1, 2, ..., n}: set of available positions
3: for j = 1 to n do
4: Put Jj at the biggest position Pj ∈ Pa such that p× Pj ≤ d̃j
5: Pa ← Pa\{Pj}

Algorithm 10 BWpindex – Backward – pj = p

1: J ← {J1, J2, ..., Jn}
2: k ← n
3: while J 6= ∅ do
4: Let Jr ∈ J such that r = argmin{j ∈ J /d̃j ≥ pk}
5: Put Jr in position k
6: k ← k − 1
7: J ← J \ {Jr}

We have the mathematical expressions for calculating the level of the minimal sequence
and the number of feasible sequences, before finding the minimal sequence (Properties 9
and 8). The level of the second minimal sequence cannot be the same as the level of the
first sequence. Indeed, for the first sequence at minimum level, no job can change its
position without increasing the level. This problem is tackled in the next subsection.
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2.3.3 Unitary jobs: next minimum sequences

As explained in Chapter 1, finding the first minimum sequence allows to characterize
a lot of feasible sequences, but it is not enough if the aim is to characterize the whole set
of feasible sequences.

Once a minimum sequence has been found, one has to find the other ones. We treat in
this section the search of the next feasible sequences at minimum level with unitary jobs.

2.3.3.1 Finding the second minimal sequence

We are interested in the problem denoted by 1|d̃j , pj = 1, 2ndseq|
∑
Nj .

Let us denote by σ∗1 the 1st minimum sequence which has been found. The character-
istics of the predecessors of σ∗1 are of the type:

a1 ≺ b1 ∧ a2 ≺ b2... ∧ ...av ≺ bv

where ai ≺ bi means that ai < bi and job Jai is before job Jbi . We search for a new
feasible sequence at minimum level, which is not already characterized by σ∗1. We denote
this sequence by σ∗2.

For this sequence, we must have:

b1 ≺ a1 ∨ b2 ≺ a2... ∨ ...bv ≺ av

Example 18 Let consider again the previous example with 5 jobs.

Since σ∗1 = (J4, J2, J1, J3, J5), the characteristics of the feasible solutions characterized
by σ∗1 are the following:

J1 ≺ J3 ∧ J1 ≺ J5 ∧ J2 ≺ J3 ∧ J2 ≺ J5 ∧ J3 ≺ J5 ∧ J4 ≺ J5

Therefore, a feasible sequence not already characterized by σ∗1 has to satisfy:

J3 ≺ J1 ∨ J5 ≺ J1 ∨ J3 ≺ J2 ∨ J5 ≺ J2 ∨ J5 ≺ J3 ∨ J5 ≺ J4

We have some precedence relations, not linked with an “and” operator as usual, but
with an “or” operator. It means that satisfying any subset of the constraints of this set is
sufficient.

The problem is a special case of problem 1|d̃j , pj = 1, or − prec|
∑
Nj .

We know that the level of σ∗1 is also the number of constraints, here denoted by v, and
bounded by 1

2n(n− 1).

The idea of the algorithm is the following. For each condition bi ≺ ai we search for a
sequence with minimum level satisfying this condition. Let remember that we necessarily
have ai < bi and therefore d̃ai ≤ d̃bi . To impose that Jbi precedes Jai , we set its deadline

to d̃ai . Then, we run the equivalent of Alg. 7 and find a feasible solution at minimum
level (or no feasible solution). We do this for each i ∈ {1, 2, ..., v} and at the end, we keep
the feasible sequence with minimum level. The algorithm ALAP2 is described in Alg. 11.
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Algorithm 11 ALAP2: As Late As Possible – pj = 1 – 2nd sequence

1: Input: σ∗1
2: S2 = ∅
3: for i from 1 to v do
4: Pa ← {1, 2, ..., n} // set of available positions in σi2
5: d̃′j = d̃j , ∀j ∈ {1, 2, ..., n}
6: d̃′bi = d̃ai
7: j = 1, Continue = True
8: while j ≤ n and Continue do
9: if d̃′j ≤ j − 1 then Continue = False

10: else Pj is the (d̃′j − (j − 1))th element of Pa; Pa ← Pa\{Pj}
11: j = j + 1

12: if Continue then
13: S2 = S2

⋃
{σi2}

14: return sequence σi2 ∈ S2 with minimum level

Example 19 Let consider again the 5-job example with d̃ = (3, 3, 4, 4, 5). We consider
the 6 conditions consecutively.

• Condition 1: J3 ≺ J1. We now have d̃ = (3, 3, 3, 4, 5). The solution returned by Alg.
7 is (J3, J2, J1, J4, J5) with level 7.

• Condition 2: J5 ≺ J1. There is no feasible solution in this case because the five jobs
have to complete before date 4. This is the same for the conditions J5 ≺ J2, J5 ≺ J3

and J5 ≺ J4.

• Condition 6: J3 ≺ J2. We now have d̃ = (3, 3, 3, 4, 5). Again, the solution returned
by Alg. 7 is (J3, J2, J1, J4, J5) with level 7.

So the second sequence with minimum level is σ∗2 = (J3, J2, J1, J4, J5) with level 7.

There are at most 1
2n(n − 1) possible values for i. Each problem can be solved in

O(n log n). Therefore, problem 1|d̃j , pj = 1, 2ndseq|
∑
Nj can be solved by this algorithm

in O(n3 log n).

2.3.4 The problem 1|d̃j, EDD = LPT |
∑
Nj

In this section, we assume that jobs have arbitrary processing times, but agreeable
deadlines. More precisely we assume that EDD=LPT, in other terms:

d̃1 ≤ d̃2 ≤ ... ≤ d̃n
∧
p1 ≥ p2 ≥ ... ≥ pn

The problem is denoted by 1|d̃j , EDD = LPT |
∑
Nj .

We know that Alg. 8 BWindex gives the exact solution for the case of identical pro-
cessing times. We can generalize Alg.8 BWindex in the case of arbitrary processing times
in the following Alg 12 BWgindex presented in Alg. 12.
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Algorithm 12 BWgindex – Backward – pj arbitrary

1: J ← {J1, J2, ..., Jn}
2: t←

∑n
j=1 pj , k ← n

3: while J 6= ∅ do
4: Let Jr ∈ J such that r = argmin{j ∈ J /d̃j ≥ t}
5: Put Jr in position k
6: t← t− pr, k ← k − 1, J ← J \ {Jr}

Proposition 4 The problem 1|d̃j , EDD = LPT |
∑
Nj is solved optimally in O(n log n)

by Alg.12 BWgindex.

Proof We denote by σBW the sequence obtained by Alg. 12 BWgindex.

Let us assume that this sequence is feasible but not at minimum level. We denote by
σ∗ a feasible sequence at minimum level, not returned by BWgindex algorithm.

We compare sequence σBWg and σ∗, starting by the end. We denote by Jk in σBWg

and Jl in σ∗ the jobs corresponding to the first time the two sequences differ (see Fig.
2.12).

...

...

...

... Jk

Jk σ Jl

Jl σ Jk

σBW

σmin

σ′

Figure 2.12: Proof of BWgindex in the case where EDD = LPT

Because of the definition of BWgindex algorithm, Jk is the smallest-index job that can
be put here. Because Jk and Jl are different, we have k < l and because EDD=LPT, we
have pk ≥ pl. Thus, we can construct a feasible sequence σ′ by swapping Jk and Jl in σ∗.
σ′ remains feasible and because l > k, the level of σ′ is smaller than the level of σ∗, which
is not possible.

So this case is not possible and σBWg is at minimum level.

Notice that the problem 1|d̃j , EDD = LPT |
∑
Nj can also be solved in O(n log n) by

FW1 or FW2 algorithms, which are given in the next chapter.

2.3.5 The problem 1|d̃j, B = k|
∑
Nj

We refer here to the definition of batches introduced in Section 2.2.3.2. We suppose in
this section that the number of batches is fixed, and we denote this constraint by B = k,
the number of batches (as illustrated in Fig. 2.13).
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Figure 2.13: Fixed number of batches

2.3.5.1 Case k = 1

Suppose there is at most one batch.

The only possible solution is to put job J1 in last position. This is possible if d̃1 =
d̃2 = ... = d̃n =

∑n
j=1 pj .

This case is trivial. We can say that if d̃1 ≥
∑n

j=1 pj , then the optimal solution is

σ⊥ = (Jn, Jn−1, ..., J1). Otherwise, there is no solution to the problem with only one
batch.

2.3.5.2 Case k = 2

Suppose there are at most two batches. The first batch is composed by the jobs
preceding job J1 and the second batch is composed by the remaining jobs. We define
D = {Jj/d̃j <

∑n
j=1 pj}.

Proposition 5 The jobs of D are necessarily scheduled before J1.

Proof. Suppose it is not the case and denote by Jl a job of D which is scheduled after
J1. Then, there are more than two batches: one with the first jobs up to J1, one with the
jobs after J1 up to Jl, and the last batch.

Therefore, if
∑

Jj∈D pj > d̃1 there is no feasible solution with only two batches. We
suppose in the following that ∑

Jj∈D
pj ≤ d̃1 (2.12)

Notice that the jobs in D have necessarily the first indices: D = {J1, J2, ..., J|D|}.
The scheme of a solution with exactly two batches is given in Fig. 2.14.

By definition of a batch, the jobs before J1 are scheduled in their reverse numbering
order. It is the same for the jobs after J1.

The expression of the problem to solve is the following. We want to find a subset of
J \ D jobs, called S, to put at the beginning of the schedule. The remainder jobs will be
put at the end. We denote by xj a boolean variable equal to 1 if job Jj ∈ J \ D is put at

74



2.3. PARTICULAR CASES

0 P

J1

d̃1

...

-�
D

i 1

places for the jobs in J \ D

Figure 2.14: Illustration of a feasible solution when B = 2

the beginning of the schedule (Jj ∈ S), and 0 otherwise, for j ∈ [n−N + 1, n] if we denote
by N = |J \ D|. The expression of the objective function, illustrated in Fig. 2.15, is the
following:

Z = Z1 + Z2 (2.13)

Z1 = (n−N)
n∑

j=n−N+1

xj (2.14)

Z2 =
n∑

j=n−N+1

n∑
i=j+1

xjxi (2.15)

where Z1 (2.14) is due to the last jobs of the schedule, crossing the n −N jobs of D,
and Z2 (2.15) is the number of crossings between the jobs in J \ D.

0 P

J1

d̃1

...

-�
D

...

12n−Nn

xj = 1 xj = 0

? ?Jn−N J2

Figure 2.15: Illustration for the expression of
∑
Nj
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We have:

Z = (n−N)
n∑

j=n−N+1

xj +
n∑

j=n−N+1

n∑
i=j+1

xjxi

= (n−N)
n∑

j=n−N+1

(1− xj) +
n∑

j=n−N+1

n∑
i=j+1

xj(1− xi)

= N(n−N)− (n−N)
n∑

j=n−N+1

xj +
n∑

j=n−N+1

n∑
i=j+1

xj −
n∑

j=n−N+1

n∑
i=j+1

xjxi

= N(n−N)− (n−N)
n∑

j=n−N+1

xj +
n∑

j=n−N+1

(n− j)xj −
n∑

j=n−N+1

n∑
i=j+1

xjxi

= N(n−N) +
n∑

j=n−N+1

(N − j)xj −
n∑

j=n−N+1

n∑
i=j+1

xjxi

Therefore:

MIN Z ⇔ MAX Z ′ =

n∑
j=n−N+1

(j −N)xj +

n∑
j=n−N+1

n∑
i=j+1

xjxi

The only constraint is that the total duration of the jobs after D must exceed
∑n

j=1 pj−
d̃1 (see also (2.12)), or equivalently that

∑
j∈S pj ≥ d̃1 −

∑
j∈D pj . So the problem is to

find xj (n−N + 1 ≤ j ≤ n) so that:

MAX
n∑

j=n−N+1

(j −N)xj +
n∑

j=n−N+1

n∑
i=j+1

xjxi

s.t.

n∑
j=n−N+1

pjxj ≤ d̃1 −
∑
j∈D

pj

xj ∈ {0, 1}, ∀j ∈ {n−N + 1, ..., n}

Considering only the jobs in J \D, this problem can be transformed into the following
problem:

MAX

n∑
j=1

(j + c)xj +

n∑
j=1

n∑
i=j+1

xjxi

s.t.

n∑
j=1

pjxj ≤ K

xj ∈ {0, 1},∀j ∈ {1, ..., n}

This problem is a 0-1 quadratic knapsack problem with the particularity that the
coefficients of the quadratic term are all equal to 1. This makes the problem easier to
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solve. Let suppose that the cardinality of S is fixed:
∑n

j=1 xj = C. In this case, c
∑n

j=1 xj
and

∑n
j=1

∑n
i=j+1 xjxi are constant and the problem is equivalent to:

MAX
n∑
j=1

jxj (2.16)

s.t.

n∑
j=1

pjxj ≤ K (2.17)

n∑
j=1

xj = C (2.18)

xj ∈ {0, 1}, ∀j ∈ {1, ..., n} (2.19)

This problem is a “fixed cardinality 0-1 knapsack problem”, for which the profit is
equal to the index of the job. In terms of complexity, we can notice that the “fixed size”
has no impact. Indeed, if the problem with fixed size is polynomially solvable, then the
problem with “arbitrary size” is also polynomially solvable (just run the algorithm for
any possible size, which is bounded by n). And for the same reasons, if the problem with
arbitrary size is NP-hard, then the problem with fixed size is NP-hard as well. So we
decide now to not consider the constraint of the size (2.18). To solve this problem, let us
consider its dual version:

MIN

n∑
j=1

pjxj

s.t.

n∑
j=1

jxj ≥ K

xj ∈ {0, 1},∀j ∈ {1, ..., n}

As we will see, it is possible to derive a Dynamic Programming algorithm for solving
this problem. The general expression of the dual problem is:

MIN

n∑
j=1

pjxj

s.t.

n∑
j=1

ajxj ≥ K

A DP algorithm can be proposed with a time complexity in O(nK). We define Fj(k)
the minimum duration of a subset of {J1, J2, ..., Jj} having a reward at least equal to K.
And we have:

F0(k) =∞,∀k
Fj(k) = 0, ∀k ≤ 0,∀j

Fj(k) =

{
min

(
Fj−1(k), Fj−1(k − aj) + pj

)
,∀j ∈ {1, ..., n}, ∀k ∈ {aj , ...,K}

Fj−1(k − 1), ∀j ∈ {1, ..., n}, ∀k ∈ {0, ..., aj − 1}
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The optimal value is given by Fn(K) and the solution is obtained by a simple backward
algorithm.

In our case, aj = j, ∀j ∈ {1, ..., n}, therefore
∑n

j=1 aj is bounded by n(n+1)
2 , and thus

the algorithm runs in polynomial time in O(n3).

Example 20 Let consider an instance with 6 jobs. We assume that there is a job J1 with
a duration equal to 11 and a deadline equal to d̃1 = 43. The data of the other jobs are
given in the following table (to feet with the DP algorithm the jobs are renumbered from 1
to 5 and the reward aj is kept to the initial value, i.e. j + 1). The deadlines of the other
jobs are equal to 75.

j 1 2 3 4 5

aj (job number) 2 3 4 5 6
pj 12 11 16 14 11

We have
∑n

j=1 pj = 64.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 − − − − − − − − − − − − − − − − − − − −
1 0 0 12 − − − − − − − − − − − − − − − − − −
2 0 0 11 11 11 23 − − − − − − − − − − − − − − −
3 0 0 11 11 11 16 27 27 27 39 − − − − − − − − − − −
4 0 0 11 11 11 14 14 25 25 25 30 41 41 41 53 − − − − − −
5 0 0 11 11 11 11 11 11 22 22 22 25 25 36 36 36 41 52 52 52 64

Table 2.3: Details of the DP algorithm for the dual problem (− stands for ∞)

We want the minimum possible value of the sum of indices (k) so that the total duration
is greater than or equal to 32. These jobs will be put after job J1 in the solution (leading
to a partition in two sets of equal length). In Table 2.3, we search for the column with the
smallest index, in which there is a number greater than or equal to 32. It is column 9,
line 3, for F3(9) = 39. This value comes from F2(9− 4) + 16 = 39, therefore we take job
J3. The value of F2(5) comes from F2(5 − 3) + 11 = 23, so we take job J2. Finally, we
also take job J1 and we have three jobs J3, J2, J1 with a duration greater than or equal to
35, with the smallest sum of indices. The corresponding jobs J4, J3 and J2 are put after
the “real” job J1 in this order, and the first jobs are J6 and J5 in this order. Sequence
(J6, J5, J1, J4, J3, J2) is optimal.

Last jobs numbered in LPT order We consider the case where the jobs in J \ D
(which have the same deadline) are numbered in decreasing processing time order (LPT
order). We denote by d the number of jobs in D.

We consider the following algorithm called GR (Greedy). We put the jobs of J \ D
in their reverse numbering order: S = (Jn, Jn−1, ..., Jd+1). Then, we insert the jobs of
D consecutively in their reverse numbering order at the last possible position so that
S = (Jn, Jn−1, ..., Jk, (Jd, Jd−1, ..., J1), Jk−1, ...Jd+1). The algorithm 13 GR describes the
method, which runs in O(n).
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Algorithm 13 GR

1: t = 0, k = n, S ← ∅
2: while (t+ pk +

∑
Jj∈D pj ≤ d̃1) and (k ≥ d+ 1) do

3: S ← S + Jk
4: t = t+ pk, k ← k − 1

5: S ← S + (Jd, Jd−1, ..., J1) + (Jk−1, Jk−2, ..., Jd+1)
6: return S

Example 21 We consider an instance with n = 8 jobs, processing times p = (7, 5, 3, 9, 5, 4, 3, 2)
and deadlines d̃ = (28, 29, 30, 38, 38, 38, 38, 38).

We schedule J8, then J7 and J6. Here, we have to schedule (J3, J2, J1) so that J1

completes at time 24. Then we terminate with job J5 and J4, which constitute the second
batch. The final solution is (J8, J7, J6, J3, J2, J1, J5, J4) and

∑
Nj = 6.

Proposition 6 Algorithm 13 GR is optimal for problem 1|d̃j , B = 2, LPT |
∑
Nj. More-

over,
∑
Nj = d.r, where d, r are the number of jobs in D and after D, respectively.

Proof. See Appendix 1.

2.4 Conclusion

In this chapter, we present the main theory, conceptions, mathematical expressions
and some results for particular cases for finding a sequence minimizing a new objective
function denoted

∑
Nj , corresponding to a distance to a reference sequence.

We explain the relations between
∑
Nj and many other notions, such as Kendall’s-

τ distance, the crossing number in permutations, the One Sided Crossing Minimization
problem and the Checkpoint Ordering Problem. These problems have been the subject of
much research and many interesting results exist for theoretical and practical interests.

Mathematical Programming formulations of the objective function are presented, with
positional variables and linear ordering variables. Some properties show a relation between∑
Nj and

∑
jPj or

∑
Pj . This new type of objective function never appeared in the

scheduling literature before, to the best of our knowledge.

The first results which are obtained for this objective function are summarized in the
following table.
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Problem Complexity

1||
∑
Nj O(1) solution σ⊥ is optimal

1|rj |
∑
Nj O(1) solution σ⊥ is optimal

1|prec|
∑
Nj O(n log n) Backward algorithm

1|pj = 1, d̃j |
∑
Nj O(n log n) BW and ALAP1 algorithm

1|d̃j , pj = 1, 2ndseq|
∑
Nj O(n3 log n) Iterated BW algorithm or Iterated ALAP1 algorithm

1|EDD = LPT, d̃j |
∑
Nj O(n log n) BW, FW1 or FW2 algorithm

1|d̃j , B = 1|
∑
Nj O(1) Simple test to know if σ⊥ is feasible

1|d̃j , B = 2|
∑
Nj O(n3) Dynamic programming

1|d̃j , B = 2, LPT |
∑
Nj O(n) Algorithm GR

1|d̃j |
∑
Nj open
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Chapter 3

Resolution methods for finding a
minimum sequence

In this chapter, we present some resolution methods for problem 1|d̃j |
∑
Nj . The

resolution methods are presented in two parts: the non-polynomial time methods and the
polynomial-time algorithms. The chapter terminates by some computational experiments.
Remember that the complexity of this problem is open.

3.1 Non-polynomial time methods

In this section, we present mathematical programming formulations for the 1|d̃j |
∑
Nj

problem, a dynamic programming algorithm and a branch-and-bound algorithm.

3.1.1 Mathematical programming formulations for problem 1|d̃j|
∑
Nj

In this section we propose several Mixed Integer Linear Programming models.

3.1.1.1 MILP1: Positional variables

We use in this model positional variables defined in Section 1.1.3.1:

xj,k =

{
1 if job Jj is in position k
0 otherwise

The processing time and the deadline of the job at position k become the variables

equal to

n∑
k=1

pjxj,k and

n∑
k=1

d̃jxj,k respectively.

The completion time of the job in position k is given by C[k] =

k∑
q=1

n∑
j=1

pjxj,q

We introduce variables nj,k equal to the number of jobs after position k with an index
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greater than j. So, in some sense, we have:

nj,k =

n∑
j′=j+1

n∑
k′=k+1

xj′,k′ (3.1)

but this quantity has to be counted only if variable xj,k is equal to 1. This leads to a
nonlinear expression which is linearized in the model through big-M constraints.

We have Nj =
∑n

k=1 nj,k the contribution of job Jj to the objective function.

The whole model is the following.

MIN

n∑
j=1

Nj (3.2)

s.t. (1.1), (1.2) (3.3)
n∑

j′=j+1

n∑
k′=k+1

xj′,k′ −HV (1− xj,k) ≤ nj,k, ∀j ∈ {1, 2, ...n− 1}, ∀k ∈ {1, 2, ...n− 1}

(3.4)

k∑
q=1

n∑
j=1

pjxj,q ≤
n∑
j=1

d̃jxj,k,∀k ∈ {1, 2, ...n} (3.5)

Nj =
n∑
k=1

nj,k,∀j ∈ {1, 2, ...n} (3.6)

The model contains four sets of constraints. Equations (3.4) allow to compute variables
nj,k: Nj takes the value of equation (3.1) only if xj,k is equal to 1. Finally, constraints
(3.5) guaranty the respect of the deadlines.

This model contains n2 binary variables, n2 continuous variables and 3n+n(n−1)/2+1
constraints, among them, n(n−1)/2 are big-M constraints. notice that the use of variables
Nj (3.6) is not mandatory.

In practice, we can introduce the two following cuts:

nj,k < n (3.7)
n∑
j=1

Nj ≤ n(n− 1)/2 (3.8)

3.1.1.2 MILP2: Linear Ordering variables

We define variables of relative positions as in Section 1.1.3.1.

yi,j =

{
1 if job Ji precedes Jj
0 otherwise

In this case, we generally introduce a continuous variable Cj for the completion time
of job Jj and the expression of the disjunctive constraint (only one job at a time on a
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machine) requires a big-M as follows:

Cj ≥ Ci + pj −M(1− yi,j),∀i ∈ {1, 2, ...n},∀j ∈ {1, 2, ...n} (3.9)

Ci ≥ Cj + pi −Myi,j ,∀i ∈ {1, 2, ...n},∀j ∈ {1, 2, ...n} (3.10)

If Ji precedes Jj , yi,j = 1. In this case, the (3.9) constraints ensure that Cj ≥ Ci + pj
and the (3.10) constraints are deleted because Ci s always greater than Cj + pi −M .

If Jj precedes Ji, yi,j = 0. In this case, the (3.9) constraints can be deleted because Cj
is always greater than Ci + pj −M and the (3.10) constraints ensure that Ci ≥ Cj + pi.

These variables have to satisfy the triangle inequalities (3.12). The respect of the
deadlines is simply given by constraints (3.14).

The whole model is the following:

MIN

n∑
i=1

n∑
j=i+1

yi,j (3.11)

s.t. yi,k + 1 ≥ yi,j + yj,k,∀i ∈ {1, 2, ...n},∀j ∈ {1, 2, ...n},∀k ∈ {1, 2, ...n} (3.12)

(3.9), (3.10) (3.13)

Cj ≤ d̃j , ∀j ∈ {1, 2, ...n} (3.14)

This model contains n2 binary variables, n continuous variables and O(n3) constraints,
among them 2n2 are “big-M constraints”.

It is possible to improve this model.

MILP3: Linear Ordering variables There is a more simple way to express the com-
pletion time of job Jj :

Cj =

n∑
i=1

piyi,j + pj

This leads to the following model MILP3:

MIN

n∑
i=1

n∑
j=i+1

yi,j (3.15)

s.t. yj,k + yk,l + yl,j ≤ 2,∀j ∈ {1, 2, ...n},∀k ∈ {1, 2, ...n},∀l ∈ {1, 2, ...n}, j 6= k 6= l
(3.16)

yi,j + yj,i = 1,∀i ∈ {1, 2, ...n},∀j ∈ {1, 2, ...n}, (3.17)
n∑
i=1

piyi,j + pj ≤ d̃j ,∀j ∈ {1, 2, ...n} (3.18)

This model contains O(n3) constraints, but no “big-M” constraints.
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Remark: Model MILP3 is similar to the models for linear ordering problems. A linear
ordering problem (should be presented before) can be modeled by using variables ui,j = 1
if i ≺ j and 0 otherwise. The linear ordering problem can be modeled as follows:

MAX
∑
i∈Vn

∑
j∈Vn,j 6=i

wi,jui,j

s.t. ui,j + uj,i = 1, ∀i, j ∈ vn, i 6= j

ui,j + uj,k + uk,i ≤ 2,∀i, j, k ∈ Vn, i 6= j 6= k

In our problem, the weights are very particular, because wi,j = 1 if i > j and 0
otherwise. So, without considering the respect of the deadlines, our problem has a trivial
solution, where the nodes are sorted in decreasing numbering order.

3.1.1.3 Finding the second minimal sequence

In this section, we are interested in the integer programming formulation of the problem
of finding the second minimal sequence, by using the MILP models.

Of course, the models differs, depending on the variables definition.

Model with position variables Suppose that we have positional variables xj,k.

Suppose that the optimal feasible sequence σ∗1 has been found and the characterization
gives:

a1 ≺ b1 ∧ a2 ≺ b2... ∧ ...av ≺ bv

meaning that ai is before bi and ai is smaller than bi.

We search for a new sequence such that:

b1 ≺ a1 ∨ b2 ≺ a2... ∨ ...bv ≺ av

For each couple (ai, bi) we introduce a binary variable w1,i equal to 1 if bi ≺ ai. Then,
we introduce the following constraints.

n∑
k=1

kxbi,k ≤
n∑
k=1

kxai,k +M(1− w1,i),∀i ∈ {1, 2, ..., v} (3.19)

v∑
h=1

w1,h ≥ 1 (3.20)

Constraints (3.19) ensure that if w1,i = 1 then bi ≺ ai, and constraints (3.20) ensure
that at least one of these constraints is respected.

Adding these constraints to MILP1 allows to find a second feasible sequence at mini-
mum level not characterized by the first minimum sequence.

Notice that this process generates v new binary variables and v big-M constraints.
Notice also that this process can be iterated for finding the third not characterized feasible
sequence, etc.
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Model with linear ordering variables Suppose that we have the relative variables
yi,j .

We need to introduce the following constraints:

v∑
h=1

ybh,ah ≥ 1 (3.21)

Constraints (3.21) ensure that at least one of the constraints bh ≺ ah, h ∈ {1, .., v} is
respected.

Adding the constraint (3.19) to MILP2 or MILP3 allows to find a second feasible
sequence at minimum level not characterized by the first minimum sequence.

Notice that this process generates only one sequence, and no additional variable. It
can be iterated for finding the third not characterized feasible sequence.

3.1.2 Dynamic Programming formulation

We can propose a very basic DP algorithm for solving the problem.

Let us call J a group of jobs ending by Jj , k = |J | is the number of jobs in J .

We define Kj(J , k) equal to the number of jobs in {J1, J2, .., Jn} \ J with an index

greater than j if Cj ≤ d̃j , and ∞ otherwise.

We call Kj(J , k) = the cost of Jj in position k after J \ {Jj}, or more simply the
contribution of job Jj at this place, to the objective function.

We have the following recursive relation:

Fk(J ) = min
j∈J

(
Fk−1(J \{Jj}) +Kj(J , k)

)
(3.22)

The initial condition is F0(∅) = 0 and we search for Fn({J1, J2, ..., Jn}). Because k
takes its values in (1, 2, ..., n), this DP algorithm has an exponential time complexity.

Example 22 We consider a 4-job example with p = (1, 2, 5, 4) and d̃ = (8, 9, 12, 12).

k = 0: F0(∅) = 0

k = 1: all the jobs can be put in position 1.

J {J1} {J2} {J3} {J4}
j 1 2 3 4

Kj(J , 1) 3 2 1 0
F1(J ) 3 2 1 0

k = 2: F2(J ) = minj∈J
(
F1(J \ {Jj}) +Kj(J , 2)

)
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J {J1, J2} {J1, J3} {J1, J4} {J2, J3} {J2, J4} {J3, J4}
j 1 2 1 3 1 4 2 3 2 4 3 4

F1(J \ {Jj}) 2 3 1 3 0 3 1 2 0 2 0 1
Kj(J , 2) 2 2 2 1 2 0 1 1 1 0 0 0

F1(J \{Jj}) +Kj(J , 2) 4 5 3 4 2 3 2 3 1 2 0 1
F2(J ) 4 3 2 2 1 0

k = 3: F3(J ) = minj∈J (F2(J \ {Jj}) +Kj(J , 3))

J {J1, J2, J3} {J1, J2, J4} {J1, J3, J4} {J2, J3, J4}
j 1 2 3 1 2 4 1 3 4 2 3 4

F2(J \ {Jj}) 2 3 4 1 2 4 0 2 3 0 1 2
Kj(J , 3) 1 1 1 1 1 0 ∞ 0 0 ∞ 0 0

F2(J \ {Jj}) +Kj(J , 3) 3 4 5 2 3 4 ∞ 2 3 ∞ 1 2
F3(J ) 3 2 2 1

k = 4: F4(J ) = minj∈J (F3(J \ {Jj}) +Kj(J, 4))

J {J1, J2, J3, J4}
j 1 2 3 4

F3(J \ {Jj}) 1 2 2 3
Kj(J , 4) ∞ ∞ 0 0

F3(J \ {Jj}) +Kj(J , 4) ∞ ∞ 2 3
F4(J ) 2

Result:

• With J = {J1, J2, J3, J4}, F4(J ) = 2 corresponding to j = 3. Therefore, J3 is at
position 4.

• With J = {J1, J2, J4}, F3(J ) = 2 corresponding to j = 1, therefore J1 is at the
position 3.

• With J = {J2, J4}, F2(J ) = 1 corresponding to j = 2, therefore J2 is at position 2.

• Finally, with J = {J4}, we have J4 at position 1.

If we have n jobs, we have to enumerate all parts of a set of size n, and there are 2n

parts of a set. So the complexity of this DP algorithm is in O(2n).

3.1.3 Branch-and-Bound

The B&B method for problem 1|d̃j |
∑
Nj has the following characteristics.

The initial upper bound is given by the best polynomial heuristic method (Back-
ward, Forward, see Section 3.2).

The strategy of branching is the following:
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• Consider first the initial set of unscheduled jobs in reverse numbering order S =
{Jn, Jn−1, ..., J1}.

• Build the schedule starting by the end, at each level, add a new unscheduled job Jj
in first place of σ, at the end of the schedule.

While S 6= ∅, the job Jj is chosen from the right to the left of S (i.e. from smaller
index to bigger index) so that:

• the deadlines are always respected (put only in the first position of sequence σ a non
tardy job).

• the dominance conditions are respected: keep only the sequences satisfying the Prop-
erty 6 of batches and others properties, according to Alg. 14.

Algorithm 14 Check-head(σ, k, h)

Input:
• σ a node of scheduled jobs (σ[1] the index of the first job in σ[1]),
• k the index of the next job to schedule (before σ),
• h the index of the head of the current batch
ok = 0
if (k > σ[1]) and (k > h) then

ok = 1
else if (k < σ[1]) and (k > h) then

ok = 0
else if k < h then

ok = 2, h = k

return (ok)

This algorithm studies three possible cases:

1. If (k > σ[1]) and (k > h), then there is no problem, job Jk is put before Jσ[1] and
belongs to the same batch,

2. If (k < σ[1]) and (k > h), then this solution is dominated. There is no interest to
put Jk before Jσ[1] in the batch,

3. If k < h, then there is no problem, job Jk is the first job of a new batch.

The Lower Bound can be determined in two ways:

• First method: complete the beginning of the schedule by the unscheduled jobs in
reverse numbering order and evaluate the corresponding full sequence (can be done
in O(n2) time).

• Second method: Consider the following definition of the positions of the jobs in S:
S = {Jaν , ..., Jak , ..., Ja1} Jaν Jaν−1 ... Jak ... Ja2 Ja1

position ν − 1 ν − 2 ... ν − k ... 1 0
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Then:
LB(Jak + σ) = LB(σ) + (k − 1)

This expression can be computed in O(1) time.

We denote by N a node in the B&B algorithm. A node N is composed by a tuple
(S, σ, lb, t, i) with S the unscheduled jobs, σ the current sequence, lb the lower bound of the
node, t the starting time of σ and i the index of the head of the current batch. σ∗ denotes
the best current sequence. Notice that when the value of t of the current node is greater
than or equal to d̃1, we immediately can generate a leaf node with the schedule starting
by the unscheduled jobs in their reverse numbering order. The notation InverseS(N) is
the reverse order of sequence S(N). We have the following algorithm Alg. 15.

Algorithm 15 B&B -
∑
Nj

1: S = {Jn, Jn−1, ..., J1}, σ = ∅, lb = 0, t =
∑n

j=1 pj , i = n+ 1
2: N = (S, σ, lb, t, i)
3: π = sequence returned by a heuristic, σ∗ = π, UB =

∑
Nj(π)

4: Q← N
5: while Q 6= ∅ do
6: N = Q[1]
7: if |σ(N)| = n then
8: if lb(N) < UB then Update UB and σ∗

9: else
10: for Jak ∈ InverseS(N) do // from smallest index to biggest index
11: if ak = 1 then
12: NewN ← (∅, S(N) + σ(N), lb(N), 0, 1), Q← NewN
13: else
14: if Check-head(σ(N), ak, i) = 2 then
15: NewN = (S(N) \ {Jak}, Jak + σ(N), lb(N) + k − 1, t(N)− pak , ak)
16: if lb(NewN) < UB then Q← NewN

17: if Check-head(σ(N), k, i) = 1 then
18: NewN = (S(N) \ {Jk}, Jk + σ(N), lb(N) + k − 1, t(N)− pk, i(N))
19: if lb(NewN) < UB then Q← NewN

20: return σ∗

Example 23 Consider n = 5 jobs with processing times p = {2, 2, 3, 6, 8} and deadlines
d̃ = {8, 9, 16, 18, 21}.

At the beginning, the root node is N1 = ({J5, J4, J3, J2, J1}, ∅, 0, 21, 6).

The heuristic returns sequence π = (J2J1J4J3J5) and UB =
∑
Nj(π) = 8.

To respected of deadline, only job J5 can be scheduled in the last position. So we
generate only one child node N2 with:

• S(N2) = S(N1) \ {Jak} = {J4, J3, J2, J1},

• σ(N2) = (J5),
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• lb(N2) = 4, the position of J5 in S(N1),

• t = 21− p5 = 13,

• i = 5, the new head.

We obtain N2 = ({J4, J3, J2, J1}, (J5), 4, 13, 5).

From N2 we can generate 2 child nodes: one with J3 in last position and one with J4.
We start by generating the child node with J3:

• S(N3) = S(N2) \ {Jak} = {J4, J2, J1},

• σ(N3) = (J3, J5),

• lb(N3) = 6, the position of J3 in S(N2) is 2,

• t = 13− 3 = 10

• i = 3, the new head.

We obtain N3 = ({J4, J2, J1}, (J3, J5), 6, 10, 3).

We generate the child node N4 with J4:

• S(N4) = S(N2) \ {Jak} = {J3, J2, J1},

• σ(N4) = (J4, J5),

• lb(N4) = 7, the position of J4 in S(N2) is 3,

• t = 13− 6 = 7

• i = 4, the new head.

We obtain N4 = ({J3, J2, J1}, (J4, J5), 7, 7, 4).

We explore now node N3. Because t(N3) = 10, the only possible job is J4. We generate
the child node N5:

• S(N5) = S(N3) \ {Jak} = {J2, J1},

• σ(N5) = (J4, J3, J5),

• lb(N5) = 8, the position of J4 in S(N3) is 2,

• t = 10− 6 = 4

• i = 3, unchanged.

We obtain N5 = ({J2, J1}, (J4, J3, J5), 8, 4, 3). Because lb(N5) = UB, we do not continue
the exploration of this node.

We explore now node N4. Because t(N4) = 7, J1 can be scheduled last, and therefore
generate the following leaf node:
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• S(N6) = ∅,

• σ(N6) = (J3, J2, J1, J4, J5),

• lb(N4) = 7,

• t = 0

• i = 1, the new head.

We obtain N6 = (∅, (J3, J2, J1, J4, J5), 7, 0, 1). The evaluation of this node is equal to 7,
and it is the optimal solution.

This example is illustrated in Fig. 3.1.

((J5, J4, J3, J2, J1), ∅, 0, 21, 6)

((J4, J3, J2, J1), (J5), 4, 13, 5)

((J4, J2, J1), (J3, J5), 6, 10, 3) ((J3, J2, J1), (J4, J5), 7, 7, 4)

((J2, J1), (J4, J3, J5), 8, 4, 3)
?

)

?

z

(∅, (J3, J2, J1, J4, J3, J5), 7, 0, 1)
?

N1

N2

N3 N4

N5 N6

Figure 3.1: Illustration of the B&B algorithm

3.2 Polynomial time heuristics

We present in this section some polynomial time heuristic algorithms.

3.2.1 Backward algorithm

We have seen in Section 2.3.2.2 that the backward algorithm Alg. 8 was optimal in the
case of unit processing times. A more general algorithm of 8 is Alg 12, an exact method
for the case EDD = SPT . Moreover, Alg 12 becomes an interesting polynomial heuristic
method for the case arbitrary processing time.

Example 24 Consider an instance with n = 6 jobs and p = (3, 8, 4, 2, 3, 5) and d̃ =
(15, 16, 22, 25, 25, 25)

At the beginning, t =
∑n

j=1 pj = 25.

The smallest index of jobs with a deadline greater than or equal to t = 25 is J4. So
J4 is put in position 6. t is now equal to 23. The next job with the smallest index and a
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deadline greater than or equal to t is J5, which is put in position 5. Then, comes J3, J2,
J1 and J6.

The final sequence is (J6, J1, J2, J3, J5, J4) with a level equal to 9.

Example 25 Consider a second example with n = 10 jobs. The processing times are equal
to p = (1, 1, 1, 35, 3, 99, 74, 5, 13, 3) and the deadlines are equal to
d̃ = (78, 156, 234, 235, 235, 235, 235, 235, 235, 235). At the beginning, t =

∑n
j=1 pj = 235.

The smallest index of the jobs that can be put in last position is J4. Then t is equal to
200. The smallest index of jobs is J3, then come J5 and J6. At this moment, t = 97 and
we put job J2. We continue with job J7, job J1 and finally jobs J8 to J10.

The final sequence is (J10, J9, J8, J1, J7, J2, J6, J5, J3, J4) with a level equal to 11.

Worst case analysis We do now a worst case analysis of this algorithm. Let consider
the following instance, with m+ 2 jobs and the following durations and deadlines.

j 1 2 3 ... m− 2 m− 1 m m+ 1 m+ 2

pj 2 2 2 ... 2 2 2 2m 2

d̃j 2m+ 2 2m+ 4 2m+ 6 ... 4m− 4 4m− 2 4m 4m+ 1 4m+ 2

Starting at t = 2 × (m + 1) + 2m = 4m + 2, the only possible job to schedule at the
end is job Jm+2. Then, at time 4m, we have the choice between Jm and Jm+1. We select
job Jm because it has the smallest index.

Then, at time 4m−2 we will select Jm−1, etc. At the end, Alg. 12 returns the sequence:
(Jm+1, J1, J2, J3, ..., Jm−2, Jm−1, Jm, Jm+2). The level of this sequence is equal to

LevBWindex =
(m+ 1)(m+ 2)

2
+ 1

If we consider that n = m+ 2 is the number of jobs, we have

LevBWindex =
n(n− 1)

2
+ 1

However, the sequence with minimum level is (Jm, Jm−1, Jm−2, ..., J3, J2, J1, Jm+1, Jm+2),
with a level equal to

Lev∗ = 2m+ 1 = 2n− 3

The ratio LevBWindex/Lev∗ is equal to:

LevBWindex

Lev∗
=

(n)(n−1)
2 + 1

2n− 3

=
n2 − n+ 2

4n− 6
=

1

4
(n+

1

2
)

Therefore the worst possible ratio of Alg. 12 is not a constant, but linear in n.
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3.2.2 Forward algorithms

Inspired by Alg. ALAP1 (7) in the case of unit processing times, we construct two
Forward Algorithms with the following main ideas: take the jobs in EDD order; put each
job as late as possible and insert the feasible and most suited jobs before it.

We denote by J[k] the job in position k and Pj(σ) denotes the position of Jj in sequence
σ. We assume that σ is a sequence of type σ1J[si]σ2Jkσ3 with σ1, σ2 and σ3 three partial
sequences. The notation (σ1Jk) indicates that Jk is inserted in σ1 at the best position, so
that σ1 plus Jk is sorted in non increasing index order.

Algorithm 16 FW1index -
∑
Nj

1: σ = (J1, J2, ..., Jn)
2: si = 1 // si stands for “smallest index”
3: while Psi(σ) < n do
4: S′ ← {Jj/Pj(σ) > Psi(σ)}
5: while S′ 6= ∅ do
6: Let Jk ∈ S′ such that k = argmaxj∈S′ (biggest index first)
7: σ′ ← (σ1Jk)J[si]σ2σ3 // remember that σ = σ1J[si]σ2Jkσ3

8: S′ ← S′ \ {Jk}
9: if σ′ is feasible (respect of all the deadlines) then σ ← σ′

10: si← smallest index in S′

The complexity of FW1index is in O(n2).

Example 26 Let consider the same data as in example 24. Before J1 it is possible to
sequence J6. Then we have to sequence J1. The new job with the smallest index is J2,
which has to be sequenced immediately. The new job with the smallest index is J3. It is
possible to put J4 before J3. Then, comes J5.

The final sequence is (J6, J1, J2, J4, J3, J5) with a level equal to 9.

Example 27 Consider the date of example 25. We consider the sequence (J1, J2, ..., J10).
It is possible to put before J1 the jobs J10, then J9 and J8, and J5 to J2. After J1, the job
with the smallest index is J6 and we can put J7 before it.

The final sequence is (J10, J9, J8, J5, J4, J3, J2, J1, J7, J6) with a level equal to 10.

Another Forward algorithm can be proposed.

Algorithm 17 FW2index is almost the same as Algorithm FW1index, the only change is
the step6 which becomes: Let Jk ∈ S′ such that pk = minpj∈S′ pj (the smallest processing
time first) and choose the biggest index first in case of ties.

The complexity of FW2index is O(n2).

Example 28 Let consider the same data as in example 24. Before J1 it is possible to
sequence J4. It is also possible to insert J5, and (J4, J5) is resorted in (J5, J4). Then we
have to sequence J1, then J2. Finally, J3 and J6.

The final sequence is (J5, J4, J1, J2, J3, J6) with a level equal to 8.
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Algorithm 17 FW2index -
∑
Nj

1: σ = (J1, J2, ..., Jn)
2: si = 1 // si stands for “smallest index”
3: while Psi(σ) < n do
4: S′ ← {Jj/Pj(σ) > Psi(σ)}
5: while S′ 6= ∅ do
6: Let Jk ∈ S′ such that pk = minpj∈S′ pj (smallest processing time first)
7: σ′ ← (σ1Jk)J[si]σ2σ3 // remember that σ = σ1J[si]σ2Jkσ3

8: S′ ← S′ \ {Jk}
9: if σ′ is feasible (respect of all the deadlines) then σ ← σ′

10: si← smallest index in S′

3.3 Metaheuristic algorithms

We consider in the following the same “configuration” for all the metaheuristic algo-
rithms. The algorithms described below are the generic algorithms for all the problems
within the thesis. However, for each problem, we will present more details if there are
necessary new parameters.

3.3.1 Common configuration

Initial solutions The initial solutions for all the metaheuristic algorithms is the best
result of the heuristic methods BWindex and FWindex.

Terminating criterion The Terminating criterion of Metaheuristic methods is a com-
putation time limit.

Diversification After intensifying exploring the accumulated search experience (by con-
centrating the search in a confined, small search space area), we may diversify the search
by searching in other space to explore “in the large” of the search space. Intensification
and Diversification are contrary and complementary.

To apply the diversification, we diversify the discovered space by a procedure changing
the objective function after a limited iterations (it depends on the number of jobs).

Neighborhood operators There are many ways to define the neighborhood. We con-
sider four types of neighbors called SWAP, EBSR, EFSR and Inversion.

We denote by S the current sequence: S = S1S[i]S2S[j]S3, with S1, S2 and S3 three
subsequences of S and S[i] and S[j] the jobs in positions i and j (i 6= j) respectively. The
neighborhood operators are the following (illustrated in Fig. 3.2):

• SWAP: A neighbor of S is created by interchanging the jobs in position i and j,
leading to sequence S′ = S1S[j]S2S[i]S3.
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• EBSR: (Extraction and Backward Shifted Re-insertion): A neighbor of S is created
by extracting S[j] and re-inserting S[j] backward just before S[i], leading to sequence
S′ = S1S[j]S[i]S2S3.

• EFSR (Extraction and Forward Shifted Re-insertion): A neighbor of S is created
by extracting S[i] and re-inserting it forward immediately after S[j], leading to a
sequence S = S1S2S[j]S[i]S3.

• Inversion: A neighbor of S is created by inserting S[j]S2S[i] between S1 and S3, where

S2 is the inverse of sequence S2.

Figure 3.2: Neighnorhood

3.3.2 Algorithms

Tabu search In alg. 18 we denote by T the tabu list. BN indicates the best neighbor
and fBN is the value ofBN . The notation (X, k, j) withX (X ∈ {SWAP,EBSR,EFSR, Inversion})
indicates that the move X of k and j is Tabou. The notation X(S, (k, j)) returns a neigh-
bor S′ after move X.

Some additional elements have been implemented, and are not presented in the al-
gorithm. For example, several flags have been introduced in order to check easily the
influence of all the neighbors. Furthermore, the neighborhood sizes have been limited by
some parameters in order to concentrate the search on the more promising parts of the
search space.

Simulated Annealing The Simulated Annealing algorithm Alg.19 is the same as the
one described in Alg. 2. The way to implement the neighborhood is the same as the one
described in Alg. 18.

The value T0 depends on the best value of polynomial time heuristic methods (BW,
FW1, FW2) and the number of job n.
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Algorithm 18 TS -
∑
Nj

1: S = S0, initial solution, the best among the solutions returned by BW, FW1 and FW2
2: S∗ = S0 // best solution of N(S) and non− tabu
3: f∗ = f(S0) // f∗ best solution value
4: T = ∅ // T is the Tabu list.
5: while CPU ≤ TimeLimit do
6: fBN =∞
7: for k = 0 to n− 1 do
8: for j = k + 1 to n do
9: if (SWAP, k, j) /∈ T then

10: S′ = SWAP (S, (k, j)), Calculate f(S′)
11: if (f(S′) < fBN) then BN ← S′, fBN ← f(S′),move = (k, j)

12: if (EBSR, k, j) /∈ T then
13: S′ = EBSR(S, (k, j)), Calculate f(S′)
14: if (f(S′) < fBN) then BN ← S′, fBN ← f(S′),move = (k, j)

15: if (EFSR, k, j) /∈ T then
16: S′ = EFSR(S, (k, j)), Calculate f(S′)
17: if (f(S′) < fBN) then BN ← S′, fBN ← f(S′),move = (k, j)

18: if (Inversion, k, j) /∈ T then
19: S′ = EFSR(S, (k, j)), Calculate f(S′)
20: if (f(S′) < fBN) then BN ← S′, fBN ← f(S′),move = (k, j)

21: S ← BN
22: if (fBN < f(S∗)) then S∗ = BN, f(S∗) = fBN

23: T ← T ∪ {move}
24: return (S∗)

Algorithm 19 SA -
∑
Nj

1: i← 0
2: S = S0, initial solution, the best among the solutions returned by BW, FW1 and FW2
3: T0 = Initial temperature
4: while CPU ≤ TimeLimit do
5: S′ ← Some random neighbor solution of S (of SWAP type)
6: if f(S′) < best then
7: S∗ ← S′

8: best← f(S′)
9: else

10: if random[0, 1] < min
{

1, e
f(S)−f(S′)

T

}
then

11: S := S′

12: Ti+1 ← g(Ti)
13: i← i+ 1

14: return (S∗)
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3.4 Computational experiments

Some computational experiments have been conducted in order to evaluate the quality
and the performances of the methods [Ta et Billaut, 2018a, Ta et Billaut, 2018b].

We detail the data generation, give the results and discuss the results.

3.4.1 Data generation

The computational experiments have been run on an Intel(5R) Core(TM) i5-63000
CPU 2.4 Go 2.5 GHz Memory RAM install: 16,0 Go (15,9 Go utilisable), using IBM
ILOG CPLEX 12.6. Two types of instances have been generated. Instances of type I are
classical random data sets, instances of type II are difficult random data sets. For each
type, 30 instances have been generated for each value of n, with n ∈ {10, 20, ..., 100}.

For instances of type I, random data sets have been generated as follows:

• pj ∈ [1, 100], wj ∈ [1, 100]

• dj ∈ [(α− β/2)P, (α+ β/2)P ] with P =
∑
pj , α = 0.75 and β = 0.25

Then, these instances receive the pre-treatment which transforms the due dates into
deadlines and renumbers the jobs in EDD order.

For instances of type II, random data sets have been generated as follows:

• for n′ = bn/4c jobs:

– pj = 1, wj = 0

– d̃j = 4jP/n with P the sum of processing times of the remaining jobs

• for the (n− n′) remaining jobs:

– pj ∈ [1, 100], wj = w0j + P , with w0j ∈ [1, 100] and P =
∑n

j=1 pj

– d̃j = P + bn/4c

These instances have been generated for the 1|d̃j |
∑
wjPj problem (see Chapter 4).

They do not need the pre-treatment because the first n′ jobs are numbered in EDD order
and the remaining jobs have the same deadline.

The CPU time to solve each instance has been limited to 180 seconds.

For setting the parameters of the tabu search and the simulated annealing algorithm,
some preliminary tests have been performed. The results for their settings are presented
in table 3.1.
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SA TS

T = int(BestH/n) + 1 Tabumax = 40 + int(2n/10)
Classic Data a = 0.99− n/1000

Limitedloop = 1000 Limitedloop = 1700 + n/10

T = int(bestH/n) + 1 Tabumax = 40 + int(2n/10)
Difficult Data a = 0.99− n/1000

Limitedloop = 300 Limitedloop = 1700 + n/10

Table 3.1: Settings for SA and TS algorithms

3.4.2 Results

We present in this section the results of the computational experiments.

First, we denote some general notations that we will use for all the computational
experiments of all our problems.

• Polynomial time heuristic methods: H = {BW,FW1, FW2}

• ‘cpu’ indicates the CPU time in seconds.

• ‘opt’ indicates the number of times the method found the optimal solution in less
than 180 seconds.

Comparison of the performances of exact methods The results of the exponential
methods MILP1, MILP2, MILP3 and B&B for instances of type I and II are presented
in tables 3.2 and 3.3. MILP2 presenting bad performances, the experiments for classical
instances have not been performed for n greater than 50. The DP algorithm has not been
implemented. ∑

Nj MILP1 MILP2 MILP3 B&B
n cpu opt cpu opt cpu opt cpu opt

10 0.3 30 1.6 30 0.2 30 0.0 30
20 47.2 30 180 0 24.7 29 0.0 30
30 180 0 180 0 180 0 0.0 30
40 180 0 180 0 180 0 0.0 30
50 180 0 180 0 180 0 0.1 30
60 180 0 180 0 180 0 2.4 30
70 180 0 180 0 180 0 23.8 29
80 180 0 180 0 180 0 127.3 15
90 180 0 180 0 180 0 174.5 1
100 180 0 180 0 180 0 180.0 0

Table 3.2: Results of the exact methods for Type I instances
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For type I instances, MILP2 can solve instances with up to 10 jobs while MILP1 and
MILP3 can solve instances up to 20 jobs. MILP3 seems to be better than MILP1, but
has the same limitations. The B&B algorithm is the best exact method, solving quite all
instances with up to 70 jobs.∑

Nj MILP1 MILP2 MILP3 B&B
n cpu opt cpu opt cpu opt cpu opt

10 0.7 30 0.11 30 0.05 30 0.0 30
20 152 10 111 20 0.7 30 0.5 30
30 180 0 180 0 30 30 180 0
40 180 0 180 0 180 0 180 0
50 180 0 180 0 180 0 180 0

60−100 180 0 180 0 180 0 180 0

Table 3.3: Results of the exact methods for Type II instances

For Type II instances, all the exact methods can solve instances with up to 20 jobs,
except MILP1 and MILP2. MILP3 can solve all the instances with up to 40 jobs. For
these instances, MILP3 is better than the B&B algorithm.

Comparisons of the quality of exact methods Except when they return the optimal
solution, it is possible to compare the quality of the solution returned by the exact methods
after within the allocated computation time of 180 seconds.

The results are presented in Tables 3.4 and 3.5. The columns indicate the number of
times the method returns the best solution.

n MILP1 MILP2 MILP3 B&B

10 30 30 30 30
20 30 8 30 30
30 1 0 7 30

40 - 100 0 0 0 30

Table 3.4: Comparison of the quality of exact methods for Type I instances

n MILP1 MILP2 MILP3 B&B

10 30 30 30 30
20 23 29 30 30
30 0 0 30 30
40 0 0 29 30
50 0 0 2 30

60 - 100 0 0 0 30

Table 3.5: Comparison of the quality of exact methods for Type II instances
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In terms of quality, it is clear that the B&B algorithm is always the best among the
four exact methods. We note that MIP3 is very performing for the difficult instances.

Comparison of the polynomial time heuristic algorithms We consider now the
polynomial time heuristic methods BW, FW1, FW2 (the computation time to solve an
instance for all these methods is nearly zero).

The results for instances of type I is presented in Table 3.6.The results for instances
of type II are presented in Table 3.7. Column # Best indicates the number of times
the method is the best among all the heuristic methods, and ∆ is the average deviation
between the method and the best heuristic method.∑

Nj BW FW1 FW2
n # Best ∆ # Best ∆ # Best ∆

10 24 1.6% 27 0.6% 14 8.2%
20 10 11.6% 16 5.1% 18 4.0%
30 5 15.1% 11 10.3% 21 2.0%
40 3 17.1% 6 13.1% 27 0.2%
50 0 22.9% 3 17.2% 27 0.1%
60 0 23.3% 1 17.9% 29 0.2%
70 0 22.4% 2 18.1% 28 0.1%
80 0 25.6% 0 19.9% 30 0.0%
90 1 24.3% 0 18.5% 29 0.0%
100 0 28.5% 0 23.5% 30 0.0%

Table 3.6: Results of the polynomial heuristic methods for Type I instances

∑
Nj BW FW1 FW2
n # Best ∆ # Best ∆ # Best ∆

10 29 0.3% 6 13.4% 2 29.7%
20 30 0.0% 0 26.1% 0 39.1%
30 30 0.0% 0 26.3% 0 36.6%
40 30 0.0% 0 28.8% 0 39.3%
50 30 0.0% 0 27.4% 0 37.0%
60 30 0.0% 0 28.5% 0 37.9%
70 30 0.0% 0 27.5% 0 37.0%
80 30 0.0% 0 28.1% 0 37.7%
90 30 0.0% 0 27.3% 0 37.4%
100 30 0.0% 0 27.2% 0 37.6%

Table 3.7: Results of the Polynomial heuristic methods for Type II instances

For Type I instances, the best method is clearly FW2 (except for n = 10 jobs). Heuris-
tics BW and FW1 are on average at 19.2% and 14.4% respectively. However, for difficult
instances, the behavior of the heuristics is not the same. BW becomes quite always the
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best heuristic, and FW1 and FW2 are only at 26.1% and 36.9% of average deviation,
respectively.

Comparison of the metaheuristics In this thesis, we consider the Tabu Seach (TS)
method, and the Simulated Annealing (SA) method. These two metaheuristic methods
use the same initial solution, which is the best result of the three polynomial time heuristic
methods BW, FW1 and FW2. The parameters are given in Table 3.1. The results of the
metaheuristic methods for instances of type I and II are presented in Tables 3.8 and 3.9.
Column # Best indicates how many times the method is the best metaheuristic, and col-
umn ∆ is the average deviation between the method and the best metaheuristic. Column
∆H is the average relative deviation between the method M and the best polynomial time
heuristic H:

∆H =
H −M
H∑

Nj TS SA
n # Best ∆ ∆H # Best ∆ ∆H

10 30 0.0% 0.4% 30 0.0% 0.4%
20 27 0.2% 3.9% 22 0.5% 3.6%
30 19 1.8% 4.2% 22 0.4% 5.5%
40 15 3.1% 4.2% 19 0.5% 6.8%
50 14 2.4% 3.8% 19 0.4% 5.8%
60 15 1.6% 4.8% 17 0.5% 5.9%
70 13 2.5% 4.1% 21 0.3% 6.3%
80 12 2.9% 4.4% 21 0.4% 6.7%
90 14 2.1% 3.2% 16 0.5% 4.8%
100 12 1.8% 1.8% 20 0.4% 3.1%

Table 3.8: Results of the Metaheuristic methods for Type I instances

TS SA
n # Best ∆ ∆H # Best ∆ ∆H

10 −100 30 0% 0% 30 0% 0%

Table 3.9: Results of the Metaheuristic methods for Type II instances

For type I instances, the two methods return similar results, but SA is the best method
with a total of 207 best solutions, and only 171 for TS. The methods improve the initial
solution, on average 3.5% for the TS and 4.9% for the SA.

For type II instances, the two methods are not performing. The results indicate that
the methods are not able to improve the initial solution within 180 seconds.

Comparison of the exact and the metaheuristic methods We compare now the
quality of the solutions returned by the exact methods and the metaheuristics. The results
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are given in Tables 3.10 and 3.11. Column # B indicates the number of best solutions
and ∆ is the average relative deviation to the best solution. All the methods have a
computation time limited to 180 seconds.∑

Nj MILP1 MILP2 MILP3 B&B TS SA
n #B ∆ #B ∆ #B ∆ #B ∆ #B ∆ #B ∆

10 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0% 30 0.0%
20 30 0.0% 8 6.7% 30 0% 30 0.0% 26 0.4% 20 0.6%
30 1 9.9% 0 40.8% 7 3.3% 30 0.0% 13 2.4% 11 1.0%
40 0 59.4% 0 77.7% 0 14.1% 30 0.0% 13 4.0% 7 1.6%
50 0 72.3% 0 79.9% 0 39.5% 30 0.0% 5 3.7% 0 1.7%
60 0 73.5% 0 80.5% 0 44.8% 30 0.0% 10 2.4% 0 1.3%
70 0 77.4% 0 82.1% 0 52.5% 29 0.3% 3 3.9% 1 1.7%
80 0 77.4% 0 82.6% 0 54.6% 20 1.2% 7 4.2% 7 1.7%
90 0 79.2% 0 82.6% 0 53.3% 4 4.0% 13 2.6% 13 1.0%
100 0 73.7% 0 82.2% 0 52.7% 1 3.4% 12 1.9% 19 0.5%

Table 3.10: Comparison of the Exact and Metaheuristic methods for Type I instances

∑
Nj MILP1 MILP2 MILP3 B&B TS SA
n #B ∆ #B ∆ #B ∆ #B ∆ #B ∆ #B ∆

10 30 0% 30 0% 30 0% 30 0% 30 0% 30 0%
20 23 0.8% 29 0.1% 30 0% 30 0% 30 0% 30 0%
30 0 21.3% 0 37.4% 30 0% 30 0% 30 0% 30 0%
40 0 50.4% 0 76.2% 29 0% 30 0% 30 0% 30 0%
50 0 67.2% 0 75.1% 2 6% 30 0% 30 0% 30 0%
60 0 74.3% 0 76% 0 32.6% 30 0% 30 0% 30 0%
70 0 74.3% 0 75.2% 0 32.8% 30 0% 30 0% 30 0%
80 0 74.8% 0 75.5% 0 32.7% 30 0% 30 0% 30 0%
90 0 74.6% 0 75.1% 0 33.2% 30 0% 30 0% 30 0%
100 0 74.9% 0 75.4% 0 32.6% 30 0% 30 0% 30 0%

Table 3.11: Comparison of the Exact and Metaheuristic methods for Type II instances

For the instances of Type I, the B&B method is the best for instances with up to 80
jobs but for instances with 90 or 100 jobs, TS and SA are better. Again, one can see that
SA is better than TS.

For type II instances, the B&B, TS and SA always return a solution with the same
value. For TS and SA, it is clear because they do not improve BW algorithm. But the
B&B is not initialized by the solution of BW, and nevertheless, the B&B cannot improve
the solution of BW in 180 seconds.

In fact, for the difficult instances that have been generated, BW is a very performing
method. Not always optimal because for one instance among 300, FW algorithms are
better (see Table 3.7). This instance is the one which is used to illustrate BW and FW
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algorithms in examples 25 and 27. But due to the quality of BW, TS and SA cannot
improve the solution and the B&B has not the time to find a better solution.

3.5 Conclusion

This chapter deals with the most interesting and the most difficult problem 1|d̃j |
∑
Nj .

This general problem remains open. We present resolution methods for finding a minimum
sequence.

We first propose non-polynomial time methods: MILP models, one based on positional
variables and one based on Linear Ordering variables, a Dynamic Programming formula-
tion (DP) and a branch-and-bound algorithm (B&B). We also consider polynomial time
greedy algorithm: a backward algorithm and two forward algorithms. We also propose
some metaheuristic methods: a tabu search and a simulated annealing algorithm.

The computational results are presented and compared. Especially, for type I instance,
Simulated Annealing clearly improves the results with big values of n.

In general, for Type I instances, B&B is the best methods for n < 80 and SA is the best
methods with n > 80. For Type II instances, B&B is the best method for n = 10, and the
polynomial time heuristic methods BW is the best method for n > 10. The superiority of
BW makes sense in Type II instances and brings us the curiosity, that is also an important
point for our future research, even it was not optimal for one instance.
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Chapter 4

Minimization of objective
functions based on jobs positions

We consider in this chapter some objective functions based on jobs positions. After
solving some basic cases, we propose some complexity results and resolution methods for
the minimization of the total weighted positions of jobs. Then, we consider the case where
the weight is equal to the job index.

4.1 Introduction and first results

In Section 1.3.1, we proposed to consider some problems related to the positions of
jobs. In this section, we present some results.

We denote by Pj the position of job Jj in the sequence, ∀j ∈ {1, 2, ..., n}.
With this indicator, we propose the following objective functions:

Pmax the maximum position of a job (4.1)∑
Pj the total positions of jobs (4.2)∑

wjPj the total weighted positions of jobs (4.3)

The new objective functions related to the jobs positions are very particular because
these objective functions, as for

∑
Nj , do not depend on the jobs completion times.

4.1.1 First results with common (or without) due date

We present in this section the first results when there is no deadline. Some of them
are trivial.

• solving the 1|β|Pmax problem has no interest for any field β since Pmax = n whatever
the sequence is.

• solving the 1|β|
∑
Pj problem has no interest for any field β since

∑
Pj is always

equal to n(n+ 1)/2.
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• solving the 1||
∑
jPj problem is very easy. Sequence σ⊥ = (Jn, Jn−1, ..., J1) is always

optimal and the objective function value is equal to n(n+1)(n+2)
6 .

Proposition 7 The 1||
∑
wjPj can be solved to optimality by sorting the jobs in their

weight non increasing order.

Proof. Suppose we have a sequence S = σ1JiJjσ2 with σ1 and σ2 two subsequences
and Ji and Jj two consecutive jobs. We denote by S′ = σ1JjJiσ2 and WP for

∑
wjPj .

WP (S) ≤WP (S′)

⇔WP (σ1) + wiPi(S) + wjPj(S) +WP (σ2) ≤WP (σ1) + wjPj(S
′) + wiPi(S

′) +WP (σ2)

⇔ wiPi(S) + wj(Pi(S) + 1) ≤ wjPi(S) + wi(Pi(S) + 1)

⇔ wj ≤ wi

This is true because the positions of the jobs in σ1 and σ2 are the same in S and in S′.

So there is always an interest to put first the job with the maximum weight. The
problem can be solved in O(n log n).

Notice also that this problem is equivalent to the 1|pj = 1|
∑
wjCj because with

unitary jobs, the completion time of a job is also its position. We obtain the WSPT rule
(Section 1.1.5.1) with pj = 1 for all the jobs.

If there is no specific constraint in the field β involving the processing times (such as
rj or d̃j), the indicator Pj is equal to the indicator Cj with the constraint pj = 1. So, all
the results for scheduling problems of type α|β, pj = 1|

∑
(wj)Cj are valid for problems

α|β|
∑

(wj)Pj .

4.1.2 First results with deadlines

We present in this section the first results when we consider deadlines.

• solving the 1|d̃j |Pmax problem has no interest since Pmax = n whatever the sequence
is. Sequence σ> = (J1, J2, ..., Jn), which is supposed to be feasible, is optimal.

• solving the 1|d̃j |
∑
Pj problem has no interest since

∑
Pj is always equal to n(n +

1)/2. Sequence (J1, J2, ..., Jn) is optimal.

• solving the 1|pj = 1, d̃j |
∑
jPj problem. This problem is equivalent to the problem

1|pj = 1, d̃j |
∑
jCj . We have the polynomial algorithm 8 BWindex to solve it with

the complexity in O(n log n).

• solving the 1|pj = 1, d̃j |
∑
wjPj problem. This problem is equivalents with the

problem 1|pj = 1, d̃j |
∑
wjCj . We have the polynomial exact method BWweight to

solve this problem with the complexity in O(n log n) (see also [Chen et Bulfin, 1990]).

However, solving the 1|d̃j |
∑
jPj problem remains an open question.

An interesting problem is the 1|d̃j |
∑
wjPj . The objective function

∑
wjPj can be

considered as an interesting special case of
∑
wjCj , which we consider below.
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4.2 Total Weighted Positions

We consider in this section the minimization of the total weighted positions, subject to
deadlines. The main content of this section has been presented in IESM 2017 conference
(see [Ta et al., 2017]).

4.2.1 Complexity

The problem we are interested here is the 1|d̃j |
∑
wjPj . We know that problem

1|pj = 1|Lex(Tmax,
∑
wjCj) and therefore problem 1|pj = 1, d̃j |

∑
wjCj can be solved

in polynomial time [Chen et Bulfin, 1990], but problem 1|d̃j |
∑
wjCj is strongly NP-hard

([Lenstra et al., 1977], reduction from Subset Sum problem).

Proposition 8 Problem 1|d̃j |
∑
wjPj is strongly NP-hard.

Proof. It is clear that the problem is in NP. Checking a solution can be done in
polynomial time.

Then, we proceed by reduction from 3-PARTITION problem (see Section 1.1.2.1).

From an arbitrary instance of 3-PARTITION, we build an instance to our problem as
follows:

• We define p = |A| ×max(A).

• We define m dummy jobs Ji, 1 ≤ i ≤ m such that pi = 1, wi = 0, d̃i = i(B+ 3p+ 1).

• We add 3m regular jobs Jm+j , 1 ≤ j ≤ 3m with pm+j = wm+j = aj + p and

d̃m+j = m(B + 3p+ 1).

We show (Part I) that if we have an optimal solution to our problem, then we have a
3-PARTITION and (Part II) that if we have a 3-PARTITION, then we have an optimal
solution to our problem.

Part (I) We first show that in an optimal solution, each job Ji is precisely in position
4i, 1 ≤ i ≤ m and then we show that it completes exactly at its deadline if and only if the
answer to 3-PARTITION is yes.

(a) We consider an optimal sequence S∗. We prove by induction that in S∗, each job
Ji, 1 ≤ i ≤ m, is at position 4i.

• First, we have to check it for i = 1.

Suppose that J1 is in position k and suppose that it completes at time C1 ≤ d̃1. We
denote by D the set of the first k− 1 jobs (before J1). We denote by Jl the job in position
k + 1, and we know that this job completes after d̃1 (since otherwise swapping J1 and Jl
would lead to a better solution). We denote by ∆ the difference between the starting time
of J1 and d̃1. These notations are illustrated in Fig. 4.1.
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J1

D Jl

C1 d̃1

-�
∆

Figure 4.1: Notations for the position of job J1

We have:

∆ ≥ 1⇒ d̃1 −
∑
Jj∈D

pj ≥ 1

⇒ d̃1 −
∑
Jj∈D

aj − (k − 1)p ≥ 1

⇒ B + 3p+ 1−
∑
Jj∈D

aj − kp+ p ≥ 1

⇒ B + 4p−
∑
Jj∈D

aj − kp ≥ 0

So we have:

k ≤ 4 +
1

p
(B −

∑
Jj∈D

aj) (4.4)

Because Cl > d̃1, we have:∑
Jj∈D

aj + (k − 1)p+ 1 + al + p > B + 3p+ 1

∑
Jj∈D

aj + kp+ al > B + 3p

So we have:

k > 3 +
1

p
(B −

∑
Jj∈D

aj − al) (4.5)

We deduce from (4.4), (4.5) that:

3 +
1

p
(B −

∑
Jj∈D

aj − al) < k ≤ 4 +
1

p
(B −

∑
Jj∈D

aj)

⇔ 3 + ε1 < k ≤ 4 + ε2

It shows that J1 is necessary in position 4.

• Suppose now that job Ji is in position 4i,∀i, 1 ≤ i ≤ m − 1. We want to show that
job Ji+1 is in position 4(i + 1). Suppose that Ji+1 is in position k. We denote by D the
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Ji

d̃i

Jr Js

k l

......

Ji

d̃i

JrJs

k l

......

...

...

S∗

S′

Figure 4.2: Case where Ji does not complete at time d̃i (1 ≤ i ≤ m)

jobs preceding Ji+1. There are (k − 1 − i) jobs in D that are regular jobs. We have:
Ci+1 ≤ d̃i+1

⇒ (i+ 1)(B + 3p+ 1)− (
∑
Jj∈D

aj + (k − 1− i)p)− i− 1 ≥ 0

⇒ k ≤ 4(i+ 1) + ε (4.6)

Let us denote by Jl the job just after Ji+1. We have:

Cl > d̃i+1 ⇒
∑
Jj∈D

aj + |D|p+ i+ 1 + p+ al > (i+ 1)(B + 3p+ 1)

If Ji+1 is in position k, the number of jobs before Ji+1 is k − 1, and before this job, there
are |D| regular jobs and i dummy jobs. So we have k − 1 = |D|+ i. Hence:∑

Jj∈D
aj + (k − 1− i)p+ i+ 1 + p+ al > (i+ 1)(B + 3p+ 1) (4.7)

⇒ k > (4i+ 3) + ε (4.8)

We deduce from (4.6) and (4.8) that k = 4i+ 4.

(b) We show now that S∗ is a 3-PARTITION, i.e. each dummy job completes exactly
at its deadline.

We show that breaking the partition would either violate a deadline or generate a
weaker solution.

Suppose that we do not follow the 3-PARTITION solution and that in S∗, we have
Ci < d̃i for one job Ji with 1 ≤ i ≤ m (i.e. we have an optimal solution that is not a
3-partition). Suppose there are two jobs: Jr before Ji in position k and Js after Ji in
position l such that if the jobs are swapped, then Ci = d̃i. In this case, illustrated in Fig.
4.2 we must have ar < as and k < l.

We denote by S′ the solution S∗ except that Jr and Js are swapped in S′. We have:

Z(S′)− Z(S∗) = k(as + p) + l(ar + p)− k(ar + p)− l(as + p)

= k(as − ar) + l(ar − as)
= (l − k)(ar − as) < 0

This quantity is negative, which means that S∗ is not optimal, so this case is not possible.
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Suppose now that there are two jobs Jr1 and Jr2 before Ji and two jobs Js1 and Js2 after
Ji so that if the jobs are swapped, then Ci = d̃i. In this case, we have as1 +as2 > ar1 +ar2
and :
Z(S′)−Z(S∗) = k1as1 +k2as2 + l1ar1 + l2ar2−k1ar1 +k2ar2 + l1as1 + l2as2 = (k1− l1)(as1−
ar1) + (k2 − l2)(as2 − ar2)

We know that k1 − l1 < 0, k2 − l2 < 0
⇒ max(k1 − l1, k2 − l2) < 0 and we have
Z(S′)− Z(S∗) = (k1 − l1)(as1 − ar1) + (k2 − l2)(as2 − ar2)
< (as1 − ar1) max(k1 − l1, k2 − l2) + (as2 − ar2) max(k1 − l1, k2 − l2) < (as1 − ar1 − as2 −
ar2)) max(k1 − l1, k2 − l2) < 0

For the same reasons, this case is not possible because S∗ is optimal. By extending
this reasoning to any number of jobs to exchange (same number before and after J1 due
to the position of this job), we prove that if the answer to the 3-PARTITION problem is
YES, we must follow the 3-PARTITION solution and therefore we have a feasible solution
that is optimal.

Part (II) Suppose there is an answer YES to the 3-PARTITION problem. In this
case, we can take the 3-partitions of the jobs and put a dummy job between each 3-
partition. Because of the deadlines definition, each dummy job completes exactly at its
deadline. The contribution to the objective function of the jobs of a 3-partition can be
determined. Let consider the three jobs of the 3-partition number i: Ja, Jb and Jc. Of
course, these jobs are put in their 3-partition in their weight decreasing order. Suppose
that wa > wb > wc and that Ja is in position k. The contribution of these three jobs is
equal to kwa+(k+1)wb+(k+2)wc. This quantity is equal to k(wa+wb+wc)+wb+2wc.
Because wa+wb+wc = B+3p, it is the same quantity for all the 3-partitions, we see that
the contribution of Ja, Jb and Jc do not depend on the position k of Ja. So any sequence
where the 3-partitions are put between the dummy jobs have the same objective function
value and are optimal.

4.2.2 Properties and particular cases

4.2.2.1 Hardy’s inequalities

G.H. Hardy has proposed some results in number theory and mathematical analysis,
reported in [Hardy et al., 1934]. Among his results, we present the following. Let consider
two vectors of integers u and v of size n. Suppose that:{

0 ≤ u1 ≤ u2 ≤ ... ≤ un
0 ≤ v1 ≤ v2 ≤ ... ≤ vn

(4.9)

Then, for any permutation σ, we have:

n∑
j=1

ujvn+1−j ≤
n∑
j=1

ujvσ(j) ≤
n∑
j=1

ujvj (4.10)
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There is equality in 4.10 if and only if at least one of the three following conditions is
satisfied:

• u1 = u2 = ... = un

• v1 = v2 = ... = vn

• vj = vσ(j), ∀j for the right sign “=”, v(n+1−j) = vσ(j), ∀j for the left sign “=”.

We can deduce that if {
0 ≤ u1 ≤ u2 ≤ ... ≤ un
v1 ≥ v2 ≥ ... ≥ vn ≥ 0

(4.11)

then for any permutation σ:

n∑
j=1

ujvj ≤
n∑
j=1

ujvσ(j) ≤
n∑
j=1

ujvn+1−j (4.12)

4.2.2.2 Particular case

Property 10 Suppose that the weights are agreeable, i.e. w1 ≥ w2 ≥ ... ≥ wn. The
problem is denoted by 1|d̃j , agree|

∑
wjPj. Then, sequence σ> is the optimal sequence.

Proof. We can apply Hardy’s property.{
Pj : 0 ≤ 1 ≤ 2 ≤ ... ≤ n
wj : w1 ≥ w2 ≥ ... ≥ wn ≥ 0

(4.13)

It satisfies 4.11, so we apply the inequality 4.12, we have

Z(σ>) =
n∑
j=1

jwj ≤
n∑
j=1

jwσ(j) ≤
n∑
j=1

jwn+1−j (4.14)

Evidently, σ> is the optimal sequence.

4.2.3 Exact methods

4.2.3.1 MILP models

We propose two MILP models.

MILP1: Positional variables We use the position variables

xj,k =

{
1 if job Jj is in position k
0 otherwise
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The expression of the position of job Jj is

Pj =

n∑
k=1

kxj,k

Therefore, we have:

MIN
n∑
j=1

wjPj (4.15)

s.t. (1.1), (1.2) (4.16)

k∑
q=1

n∑
j=1

pjxj,q ≤
n∑
j=1

d̃jxj,k, ∀k ∈ {1, 2, ...n} (4.17)

Pj =

n∑
k=1

kxj,k,∀j ∈ {1, 2, ...n} (4.18)

This model contains n2 binary variables and n continuous variables.

MILP2: Linear Ordering variables We use the variables:

yi,j =

{
1 if job Ji precedes Jj
0 otherwise

The position of a job (see (2.6)) is given by

Pj =
n∑
i=1

yj,i

We have the model:

MIN

n∑
j=1

wjPj (4.19)

s.t. (3.16), (3.17), (3.18) (4.20)

Pj =

n∑
i=1

zj,i (4.21)

4.2.3.2 Dynamic Programming

We can propose a Dynamic Programming algorithm for solving the problem.

Let us call J a group of jobs ending by Jj , k = |J | is the number of jobs in J .

We define Gj(J , k) =

{
Fj−1(J\{Jj}) + Pjwk if Ck ≤ d̃k
0 otherwise

We have the following recursive relation:

Fk(J ) = minj∈J
(
Fk−1(J \{Jj}) +Kj(J , k)

)
(4.22)

110



4.2. TOTAL WEIGHTED POSITIONS

The initial condition is F0(∅) = 0 and we search for Fn({J1, J2, ..., Jn}). Because k
takes its values in (1, 2, ..., n), this DP algorithm has an exponential time complexity.

Example 29 We consider a 4-job example with p = (4, 6, 3, 5), w = (2, 4, 1, 3) and d̃ =
(10, 15, 18, 18).

k = 0: F0(∅) = 0

k = 1: all the jobs can be put in position 1.

J {J1} {J2} {J3} {J4}
j 1 2 3 4

Completion time Cj 4 6 3 5
1.wj 2 4 1 3

F0(J \{k}) 0 0 0 0
G1(J , k) 2 4 1 3
F1(J \{k}) 2 4 1 3

k = 2: G2(J , k) = F1(J \{k}) + 2.wk

F2(J \{k}) = mink∈JG2(J , k)

J {J1, J2} {J1, J3} {J1, J4} {J2, J3} {J2, J4} {J3, J4}
j 1 2 1 3 1 4 2 3 2 4 3 4
Cj 10 7 9 9 11 8

2.wj 4 8 4 2 4 6 8 2 8 6 2 6
F1(J \ {Jj}) 4 2 1 2 3 2 1 4 3 4 3 1
Gj(J , 2) 8 10 5 4 7 8 9 6 11 10 5 7

F2(J \{Jj}) 8 4 7 6 10 5

k = 3: G3(J , k) = F2(J \{k}) + 3.wk

F3(J \{k}) = mink∈JG3(J , k)

J {J1, J2, J3} {J1, J2, J4} {J1, J3, J4} {J2, J3, J4}
j 1 2 3 1 2 4 1 3 4 2 3 4
Cj 13 15 12 10

3.wj ∞ 12 3 ∞ 12 9 ∞ 3 9 12 3 9
F2(J \ {Jj}) 6 4 8 10 7 8 5 7 4 5 10 6
Gj(J , 3) ∞ 16 11 ∞ 19 17 ∞ 10 13 17 13 15

F3(J \ {Jj}) 11 17 10 13

k = 4: G4(J , k) = F3(J \{k}) + 4.wk

F4(J \{k}) = mink∈JG4(J , k)
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J {J1, J2, J3, J4}
j 1 2 3 4
Cj 18
4wj ∞ ∞ 4 12

F3(J \ {Jj}) 13 10 17 11
Gj(J , 4) ∞ ∞ 21 23
F4(J ) 21

Result:

• With J = {J1, J2, J3, J4}, F4(J ) = 21 corresponding to j = 3. Therefore, J3 is at
position 4.

• With J = {J1, J2, J4}, F3(J ) = 17 corresponding to j = 4, therefore J4 is at the
position 3.

• With J = {J1, J2}, F2(J ) = 1 corresponding to j = 1, therefore J1 is at position 2.

• Finally, with J = {J2}, we have J2 at position 1.

If we have n jobs, we have to enumerate all parts of a set of size n, and there are 2n

parts of a set. So the complexity of this DP algorithm is in O(2n).

4.2.3.3 Branch-and-bound

The B&B method for problem 1|d̃j |
∑
wjPj has the same characteristics as the B&B

for the 1|d̃j |
∑
Nj :

• A set of unscheduled jobs S, sorted in the weight non-increasing order. If there
are many jobs with the same weight, we put them in non-decreasing order of the
processing time. And if they still have the same weight and processing time, we put
them in decreasing order of due date.

• The initial upper bound is given by the best polynomial heuristic methods (Back-
ward, Forward).

• The strategy of branching consists in adding a job of S at position n − k in σ
respecting the deadlines. Then a node is characterized by a partial ending sequence
σ composed by k jobs (from position n− k+ 1 to n). The job in S that is chosen to
put in σ starts from the right of S.

The Lower bound is computed as follows: the partial sequence of jobs is completed
by the unscheduled jobs (which are put at the beginning of the sequence) in their weight
decreasing order, without deadline considerations.

While S 6= ∅, all the jobs that be chosen respect of their deadlines, so all the sequences
are feasible. Then, we continue evaluation lower bound LB(σ) =

∑
wjPj , ∀j ∈ (S + σ).
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We denote by N a node in the B&B algorithm. A node N is composed by a tuple
(S, σ, lb, t) with S the unscheduled jobs, σ the current sequence, lb the lower bound of the
node and t the starting time of σ. σ∗ denotes the best current sequence.

S = {Ja1 , Ja2 , ..., Jan} satisfies wa1 ≥ wa2 ≥ ... ≥ wan .

The algorithm Alg. 20 describes the branch-and-bound algorithm.

Algorithm 20 B&B -
∑
wjPj

1: S = {Ja1 , Ja2 , ..., Jan}, σ = ∅, lb = 0, t =
∑n

j=1 pj
2: N = (S, σ, lb, t)
3: π = sequence returned by a heuristic, σ∗ = π, UB =

∑
wjPj(π)

4: Q← N
5: while Q 6= ∅ do
6: N = Q[1]
7: if |σ(N)| = n then
8: if lb(N) < UB then Update UB and σ∗

9: else
10: for Jak ∈ InverseS(N) do
11: if ak = 1 then
12: NewN ← (∅, S(N) + σ(N), lb(N), 0), Q← NewN
13: else
14: NewN =

(
S(N)\{Jak}, (Jak+σ), lb

(
S(N)\{Jak}+Jak+σ

)
, t(N)−pak

)
15: if lb(NewN) < UB then Q← NewN

16: return σ∗

4.2.4 Heuristic Methods

We propose in this section approximate algorithms.

4.2.4.1 Greedy algorithms

We denote by BWweight the backward algorithm where we select at each iteration the
feasible job with minimum weight.

Similarly, we denote by FW1weight the forward algorithm where we try to put in the
first position the jobs with maximum weight first. FW2weight the forward algorithm where
we try to put in the first position the jobs with smallest processing time first, and if there
are the same processing time, put maximum weight first.

4.2.4.2 Metaheuristics

We change the objective function of the Tabu search and of the Simulated annealing
algorithms. The initial solution is the best solution returned by the greedy algorithms.
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4.3 Particular case with wj = j

We have seen in Chapter 2 (function Z ′) that the level of a sequence was related to
the weighted position of jobs, with the weight equal to the job index. We focus on this
problem in this section.

4.3.1 Characteristics of
∑
jPj objective function

Property 11
∑
jPj is bounded by a polynomial function of n:

1

6
n(n+ 1)(n+ 2) ≤

∑
jPj ≤

1

6
n(n+ 1)(2n+ 1)

Proof. The best possible solution is always σ⊥ = (Jn, Jn−1, ..., J1) and the worse
solution is always σ> = (J1, J2, ..., Jn). Therefore, we have:

n∑
j=1

j(n− j + 1) ≤
∑

jPj ≤
n∑
j=1

j2

n
n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2
≤
∑

jPj ≤
1

6
n(n+ 1)(2n+ 1)

3n2(n+ 1)− n(n+ 1)(2n+ 1) + 3n(n+ 1)

6
≤
∑

jPj ≤
1

6
n(n+ 1)(2n+ 1)

n(3n2 + 3n− 2n2 − 3n− 1 + 3n+ 3)

6
≤
∑

jPj ≤
1

6
n(n+ 1)(2n+ 1)

1

6
n(n2 + 3n+ 2) ≤

∑
jPj ≤

1

6
n(n+ 1)(2n+ 1)

1

6
n(n+ 1)(n+ 2) ≤

∑
jPj ≤

1

6
n(n+ 1)(2n+ 1)

Corollary 2
∑
jPj can take 1

6n(n2 − 1) + 1 different values.

Property 12 Let us denote by Z∗ the value of the optimal sequence σ∗ and ZH the value
returned by any heuristic algorithm H. We have the ratio:

ZH
Z∗

< 2 (4.23)

Proof.

Let us denote by Z> and Z⊥ the values of σ> and σ⊥, respectively. The ratio between
Z> and Z⊥ is equal to:

Z>

Z⊥
=

1
6n(n+ 1)(2n+ 1)
1
6n(n+ 1)(n+ 2)

=
2n+ 1

n+ 2

= 2− 3

n+ 2

< 2
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The ratio is valid between the worse and the best possible sequences, so the proposition
is true.

Property 13 Property 6 holds for the minimization of
∑
jPj. In other terms, there al-

ways exists an optimal solution where the jobs are gathered into batches of jobs in decreasing
numbering order.

Proof. The proof is similar to the one of Property 6. Suppose there is an optimal
solution not satisfying this condition. Then, by a simple pairwise exchange argument, we
can show that it is possible to find a better solution.

4.3.2 Particular cases

We consider in this section some particular cases.

4.3.2.1 Unit processing times

Suppose that the durations of jobs are all equal to 1. We consider problem 1|pj =

1, d̃j |
∑
jPj . This problem is equivalent to problem 1|pj = 1, d̃j |

∑
jCj , which can be

solved in polynomial time by BWindex algorithm (see also [Chen et Bulfin, 1990]).

4.3.2.2 Fixed number of batches: B = 1

Suppose that the number of batches is fixed and equal to 1. Then, the case is the same
as for problem 1|d̃j , B = 1|

∑
Nj (see Section 2.3.5).

4.3.2.3 Fixed number of batches: B = 2

Suppose that the number of batches is fixed and equal to B = 2. The condition for
having a feasible solution is the same as for objective function

∑
Nj (see Section 2.3.5):

if
∑

Jj∈D pj > d̃1 there is no feasible solution with only two batches, with D = {Jj/d̃j <∑n
j=1 pj}.

Let suppose that
∑

Jj∈D pj ≤ d̃1. We have the case described in Fig. 2.14.

Last jobs in LPT order Consider the case where the jobs in J \ D (which have
the same deadline) are numbered in decreasing processing time order (LPT order). The
Alg.13 is also applied for this problem, we only change the objective function to evaluate
the solution.

Example 30 We consider again the instance as in Example 21 with n = 8 jobs, processing
times p = (7, 5, 3, 9, 5, 4, 3, 2) and deadlines d̃ = (28, 29, 30, 38, 38, 38, 38, 38).

The sequence for the problem 1|d̃j , B = 2, LPT |
∑
jPj and the problem 1|d̃j , B =

2, LPT |
∑
Nj are the same. That is (J8, J7, J6, J3, J2, J1, J5, J4) and only change the ob-

jective function
∑
jPj = 135.
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Proposition 9 Algorithm 13 GR is optimal for problem 1|d̃j , B = 2, LPT |
∑
jPj.

Proof. See Appendix 1.

4.3.3 Non-polynomial time algorithms

We take the same non-polynomial time methods as for the minimization of
∑
wjPj :

MILP1 with positional variables and MILP2 with linear ordering variables, by only chang-
ing the objective function definition. Notice that MILP2 here corresponds to MILP3 in
Chapter 3.

The branch-and-bound is nearly the same as for
∑
Nj . We only change the objective

function
∑
jPj to evaluate the lower bound.

4.3.4 Heuristic methods

We take the heuristic methods previously presented: Alg. 12 BWgindex, Alg. 16
FW1index and Alg. 17 FW2index. These methods have been defined for

∑
Nj minimiza-

tion, but are still valid for
∑
jPj .

4.3.5 Metaheuristic methods

We take the metaheuristic methods previously presented: TS and SA. With only need
to update the objective function.

4.4 Computational experiment

The data which are used are the same as the ones described in Section 3.4.1.

The parameters for the TS and SA algorithms are given in Table 4.1.∑
wjPj SA TS

T = int(bestH/b%) + 1 Tabumax = 40 + int(2 ∗ n/10)
Classic Data a = 0.99− n/1000

Limitedloop = 1000 Limitedloop = 1700 + n/10

T = int(bestH/b%) + 1 Tabumax = 40 + int(2 ∗ n/10)
Difficult Data a = 0.99− n/1000

Limitedloop = 200 Limitedloop = 1700 + n/10

Table 4.1: Settings for SA and TS algorithms

4.4.1 Computational experiments for
∑
wjPj

We take the same notations as in Section 3.4.2 to present the computational results
for the minimization of the total weighted positions.
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Comparison of the performances of exact methods The results of the exponential
methods MILP1, MILP2 and B&B for instances of type I and II are presented in Tables
4.2 and 4.3. The DP algorithm has not been implemented.

For type I instances, Tables 4.2 shows that MILP2 can solve instances with up to
about more than 20 jobs, while B&B algorithm solves quite all instances with up to 70
jobs. Even if we can see that the performances of MILP1 and B&B are in the same range,
MILP1 is the best exact method, solving quite all instances with up to 70 jobs.∑

wjPj MILP1 MILP2 B&B
n cpu opt cpu opt cpu opt

10 0 30 0 30 0 30
20 0.1 30 3.5 30 0 30
30 0.3 30 99.6 14 0 30
40 0.9 30 139.6 10 0.1 30
50 2.5 30 157.6 5 0.5 30
60 5.1 30 171.8 3 0.8 30
70 23.4 30 180.0 0 11.9 29
80 45.9 28 179.7 1 53.1 23
90 78.4 22 180.0 0 87.2 18
100 127.5 13 180.0 0 139.2 11

Table 4.2: Results of the exact methods for Type I instances

For instances of type II, Table 4.3 shows that MILP1 and MILP2 have more optimal
solutions than the B&B algorithm. MILP1 can solve instances with up to 40 jobs but the
B&B can solve only instances with 10 jobs and MILP2 up to 30 jobs.∑

wjPj MILP1 MILP2 B&B
n cpu opt cpu opt cpu opt

10 0.2 30 0.1 30 0.1 30
20 1.2 30 1.6 30 178.0 1
30 16.4 30 91.9 23 180.0 0
40 105.1 21 174.0 2 180.0 0

50−90 180.0 0 180.0 0 180.0 0

Table 4.3: Results of the exact methods for Type II instances

Comparisons of the quality of exact methods Again, we compare the quality of
the solution returned by the exact methods, after the allocated computation time of 180
seconds.

The results are presented in Tables 4.4 and Tables 4.5. The columns #B(E) indicate
the number of times the method returns the best solution between the exact methods, and
∆(E) = method−BestExact

method is the relative deviation between an exact method and the best
exact method.

117



4.4. COMPUTATIONAL EXPERIMENT

∑
wjPj MILP1 MILP2 B&B
n #B(E) ∆(E) #B(E) ∆(E) #B(E) ∆(E)

10 30 0% 30 0% 30 0%
20 30 0% 30 0% 30 0%
30 30 0% 30 0% 30 0%
40 30 0% 28 0.02% 30 0%
50 30 0% 20 0.05% 30 0%
60 30 0% 16 0.41% 30 0%
70 30 0% 5 0.90% 30 0%
80 30 0% 6 1.37% 28 0%
90 29 0% 7 1.03% 26 0.07%
100 24 0,01% 7 1.78% 23 0.02%

Table 4.4: Comparison of the quality of exact methods for Type I instances

For type I instances, we can see that despite the small number of instances solved to
optimality, the B&B algorithm quite always finds the optimal solution. The method has
not the time to prove the optimality, but the obtained solution is quite always optimal.
MILP2, which is better than B&B in terms of number of instances solved to optimality,
only find optimal solutions for up to 40 jobs. For more jobs, the method does not often
return the best solution, but on average a solution at less than 2% of the best solution.∑

wjPj MILP1 MILP2 B&B
n #B(E) ∆(E) #B(E) ∆(E) #B(E) ∆(E)

10 30 0% 30 0% 30 0%
20 30 0% 30 0% 2 0.30%
30 30 0% 25 0% 0 0.19%
40 30 0% 5 0.02% 0 0.10%
50 22 0.03% 8 0.06% 0 0.06%
60 2 0.32% 25 0.50% 3 0.01%
70 0 1.56% 6 10.27% 24 0%
80 0 3.61% 0 15.08% 30 0%
90 0 6.72% 0 15.93% 30 0.07%

Table 4.5: Comparison of the quality of exact methods for Type II instances

For type II instances, the quality of exact methods in Tables 4.5 show a more compli-
cated behavior for n 6= 10.

• for n ≤ 50, MILP1 is the best method, B&B is the worst method.

• for n = 60, MILP2 is the best method.

• for n ≥ 70, B&B is the best method.

Moreover, the relative deviations ∆(E) are very small for all n ≤ 60. In terms of

118



4.4. COMPUTATIONAL EXPERIMENT

quality, it is clear that the B&B algorithm is always the best among all the exact methods
when n ≥ 60, with a very small value ∆(E), generally smaller than 0.07%.

The Fig.4.3 illustrates clearly the quality of exact methods for Type II instances.

Figure 4.3: Graph of comparison of the exact methods for Type II instances

Comparison of the polynomial time algorithms We consider now the polynomial
time heuristic methods BW, FW1 and FW2. Tables 4.6 and 4.7 give the results for instance
of type I and II, respectively. Column #Best indicates the number of times the method is
the best among all the heuristic methods, and ∆ = method−BestH

method is the average deviation
between the method and the best heuristic method. Column #opt indicates the number
of times the heuristic returns the optimal solution (equal to the optimal solution returned
by an exact method, if known).∑

wjPj BW FW1 FW2
n #Best #opt ∆ #Best #opt ∆ #Best #opt ∆

10 28 28 0.1% 24 24 0.5% 27 27 0.07%
20 24 23 0.1% 19 19 1.1% 28 27 0.02%
30 18 18 0.2% 6 6 1.9% 26 24 0.02%
40 10 6 0.4% 9 6 1.4% 24 16 0.22%
50 10 3 0.1% 2 1 2.2% 24 11 0.01%
60 13 6 0.1% 1 0 1.6% 21 8 0.01%
70 9 3 0.2% 0 0 2.3% 23 4 0.01%
80 12 3 0.1% 2 0 1.9% 19 2 0.03%
90 10 3 0.2% 1 1 2.8% 20 3 0.01%
100 6 0 0.2% 0 0 1.5% 24 4 0.01%

Table 4.6: Results of the polynomial heuristic methods for Type I instances

For Type I instances, the best method is clearly FW2, even when n = 10 jobs, the
number of best of BW algorithm is bigger than FW1 with a smaller average deviation.
The relative deviation between the three methods is small, at most 2.8% for FW1, at most
0.4% for BW and at most 0.22% for FW2.
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∑
wjPj BW FW1 FW2
n #Best ∆ #Best ∆ #Best ∆

10 0 7.3% 26 0.1% 4 1.9%
20 0 10.3% 30 0% 0 6.2%
30 0 13.1% 30 0% 0 7.5%
40 0 12.9% 30 0% 0 8.9%
50 0 13.5% 30 0% 0 9.2%
60 0 13.7% 30 0% 0 10.0%
70 0 14.2% 30 0% 0 10.3%
80 0 14.5% 30 0% 0 10.9%
90 0 15.1% 30 0% 0 10.9%

Table 4.7: Results of the polynomial heuristic methods for Type II instances

For type II instances, the behavior of the heuristics is not the same. FW1 becomes
quite always the best heuristic with the average deviation nearly zero for all cases (except
only when n = 10, with the very small value 0.1%), and BW and FW2 are only at around
13% and 10%, respectively. Notice that for n = 10, FW1 returns the optimal solution for
one instance, and FW1 does not return any other optimal solution for n ≥ 20.

Comparison of the metaheuristics The Tabu Search (TS) method and the Simulated
Annealing (SA) method use the same initial solution, which is the best result of the three
polynomial time heuristic methods BW, FW1 and FW2.

The results of the metaheuristic methods for instances of type I are presented in Ta-
ble 4.8. Column #Best indicates how many times the method is the best metaheuristic,
and column ∆ is the average deviation between the method and the best metaheuristic.
Column ∆H = H−M

H is the average relative deviation between the method M and the
best polynomial time heuristic H. Column #Imp indicates the number of times the meta-
heuristic improves the initial solution.

For type I instances, the relative deviation between the method and the best heuristic
does not exceed 0.1%. The reason is that the value of the objective function is big (around
2000 for n = 10 jobs and around 200000 for n = 100 jobs). Column #Imp shows that
the methods do improve the initial solutions except for n ≤ 30, where these methods are
quite always optimal.

The results of the metaheuristic methods for instances of type II are presented in Table
4.9. For type II instances, we can see that SA really improves the best heuristic (FW1)
with a relative deviation around 10%, but TS is not really able to improve it. SA is the best
metaheuristic method for this problem. Notice that the Tabu Search and the Simulated
Annealing, except for one instance for n = 10, always improve the initial solution.
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4.4. COMPUTATIONAL EXPERIMENT

∑
wjPj TS SA
n #Best ∆ ∆H #Imp #Best ∆ ∆H #Imp

10 30 0.00% 0.00% 0 30 0.00% 0.00% 0
20 29 0.01% 0.00% 0 30 0.00% 0.01% 1
30 29 0.00% 0.00% 0 30 0.00% 0.00% 1
40 26 0.01% 0.01% 8 30 0.00% 0.02% 12
50 19 0.09% 0.02% 12 29 0.00% 0.10% 18
60 12 0.06% 0.00% 0 30 0.00% 0.06% 18
70 10 0.04% 0.00% 0 30 0.00% 0.04% 20
80 20 0.05% 0.02% 18 19 0.00% 0.07% 15
90 15 0.03% 0.01% 15 24 0.00% 0.05% 22
100 17 0.03% 0.02% 20 19 0.00% 0.05% 20

Table 4.8: Results of the Metaheuristic methods for Type I instances

∑
wjPj TS SA
n #Best ∆ ∆H #Best ∆ ∆H

10 30 0% 1.26% 30 0% 10.1%
20 15 0.009% 0.38% 30 0% 9.4%
30 6 0.014% 0.18% 29 0.0004% 10.2%
40 3 0.004% 0.10% 27 0.0001% 9.3%
50 3 0.004% 0.07% 29 0.0001% 10.4%
60 3 0.002% 0.04% 27 0.0002% 10.0%
70 1 0.001% 0.03% 29 0.0000% 10.4%
80 6 0.001% 0.03% 24 0.0001% 10.0%
90 0 0.001% 0.02% 30 0% 10.2%

Table 4.9: Results of the Metaheuristic methods for Type II instances

Comparison of exact and metaheuristic methods We compare now the quality of
the solutions returned by the exact methods and the metaheuristics. The results are given
in Tables 4.10 and 4.11. Column #B indicates the number of best solutions and ∆ is the
average relative deviation to the best solution of all the methods. All the methods have a
computation time limited to 180 seconds.
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4.4. COMPUTATIONAL EXPERIMENT

∑
wjPj MILP1 MILP2 B&B TS SA
n #B ∆ #B ∆ #B ∆ #B ∆ #B ∆

10 30 0% 30 0% 30 0% 30 0% 30 0%
20 30 0% 30 0% 30 0% 29 0.006% 30 0%
30 30 0% 30 0% 30 0% 28 0.006% 29 0.002%
40 30 0% 28 0.015% 30 0% 26 0.013% 30 0%
50 30 0% 20 0,049% 30 0% 17 0.092% 27 0.005%
60 30 0% 16 0.406% 30 0% 12 0.068% 22 0.012%
70 30 0% 5 0,898% 30 0% 5 0.09% 10 0.049%
80 30 0% 6 1,367% 28 0.002% 9 0.14% 6 0.095%
90 29 0% 7 1.025% 26 0.066% 13 0.126% 9 0.092%
100 23 0.011% 7 1.779% 22 0.018% 11 0.066% 7 0.036%

Table 4.10: Comparison of the Exact and Metaheuristic methods for Type I instances

The performances of the exact methods MILP1 and B&B were very good for type I
instances, and SA and TS have difficulties to be competitive for these instances.

∑
wjPj MILP1 MILP2 B&B TS SA
n #B ∆ #B ∆ #B ∆ #B ∆ #B ∆

10 30 0% 30 0% 30 0% 30 0% 30 0%
20 30 0% 30 0.85% 2 0.39% 15 0.092% 30 0%
30 30 0% 25 6.74% 0 0.19% 5 0.014% 23 0.0006%
40 29 0.0% 5 8.36% 0 0.10% 1 0.005% 8 0.0010%
50 7 0.04% 0 9.45% 0 0.07% 1 0.004% 24 0.0003%
60 0 0.35% 0 9.5% 0 0.05% 3 0.002% 27 0.0002%
70 0 1.59% 0 9.99% 0 0.03% 1 0.001% 29 0.0000%
80 0 3.64% 0 9.64% 0 0.03% 6 0.001% 24 0.0001%
90 0 6.74% 0 9.86% 0 0.02% 0 0.001% 30 0%

Table 4.11: Comparison of the Exact and Metaheuristic methods for Type II instances

MILP1 is clearly the best method for n ≤ 40. For n ≥ 50, SA is the best method
(show by the value ∆ = 0).

4.4.2 Computational experiments for
∑
jPj

We keep the same way to present the results as before.

Comparison of the performances of exact methods Consider first the exact meth-
ods for instance of type I in Table 4.12. From 10 to 50 jobs, B&B is better than MILP1
because the running times are smaller than for MILP1, but MILP1 is better than B&B
when the number of jobs is greater than 50. In this case, MILP1 dominates all other
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4.4. COMPUTATIONAL EXPERIMENT

methods. Moreover, MILP1 has time enough to solve optimally almost all the instances
in less than one minute, except one instance for n = 100 jobs.

∑
jPj MILP1 MILP2 B&B
n cpu opt cpu opt cpu opt

10 0.0 30 0.0 30 0.0 30
20 0.1 30 87.1 21 0.0 30
30 0.4 30 99.6 0 0.1 30
40 1.2 30 180.0 0 0.3 30
50 2.4 30 180.0 0 1.3 30
60 5.9 30 180.0 0 13.3 30
70 8.9 30 180.0 0 57.4 29
80 14.5 30 180.0 0 150.0 9
90 25.6 30 180.0 0 175.2 1
100 52.7 29 180.0 0 180.0 0

Table 4.12: Results of the exact methods for Type I instances

However, for type II instances (Table 4.13), the exact methods are less performing.
MILP1 and MILP2 can solve instances with up to 40 jobs, and B&B is the worst method,
able to solve only the instances for n = 10 jobs.∑

jPj MILP1 MILP2 B&B
n cpu opt cpu opt cpu opt

10 0.1 30 0.0 30 0.0 30
20 1.2 30 0.3 30 180.0 0
30 12.9 30 6.8 30 180.0 0
40 103.0 26 93.4 23 180.0 0

50−100 180.0 0 180.0 0 180.0 0

Table 4.13: Results of the exact methods for Type II instances

Comparison of the quality of exact methods The results are presented in Tables
4.14 and 4.15. As for objective function

∑
wjPj , the columns #B(E) indicate the number

of times the method returns the best solution between the exact methods and ∆(E) =
method−BestExact

method is the relative deviations between an exact method with the best of the
exact methods.

For type I instances, the quality of exact methods in Tables 4.14 shows that the per-
formances of MILP1, MILP2 and B&B is coherent with the performances of the exact
methods presented in Table 4.12. The relative deviations #B(E) of B&B are smaller than
1.7%. However, for MILP2, the relative deviations #B(E) is up to 22.4%. So again,
MILP1 dominates all the other exact methods.
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∑
jPj MILP1 MILP2 B&B
n #B(E) ∆(E) #B(E) ∆(E) #B(E) ∆(E)

10 30 0% 30 0% 30 0%
20 30 0% 29 0% 30 0%
30 30 0% 7 0.6% 30 0%
40 30 0% 2 2.7% 30 0%
50 30 0% 0 8.0% 30 0%
60 30 0% 0 15.2% 30 0%
70 30 0% 0 19.5% 29 0.1%
80 30 0% 0 21.6% 14 0.5%
90 30 0% 0 21.9% 4 1.4%
100 30 0% 0 22.4% 0 1.7%

Table 4.14: Comparison of the quality of exact methods for Type I instances

For type II instances, the quality of exact methods (see Table 4.15 and Fig. 4.4) shows
that except for n = 10, the B&B method is not efficient. MILP1 and MILP2 have similar
characteristics for n ≤ 40. MILP1 is better for n = 50, but for n ≥ 60, MILP2 is the most
performing method with a relative deviation smaller than 0.32%.

∑
jPj MILP1 MILP2 B&B
n #B(E) ∆(E) #B(E) ∆(E) #B(E) ∆(E)

10 30 0% 30 0% 30 0%
20 30 0% 30 0% 0 1.48%
30 30 0% 30 0.6% 0 1.60%
40 29 0.00% 29 0.00% 0 1.63%
50 20 0.02% 13 0.04% 0 1.59%
60 9 0.11% 21 0.12% 0 1.54%
70 15 0.25% 15 0.32% 0 1.25%
80 10 0.57% 20 0.13% 0 0.57%
90 0 2.66% 30 0% 0 0.35%
100 0 5.27% 30 0% 0 0.27%

Table 4.15: Comparison of the quality of exact methods for Type II instances

Notice that the relative deviations #B(E) of B&B is very small, even when it does
not return an optimal solution. The relative deviation is smaller than 1.63%.
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4.4. COMPUTATIONAL EXPERIMENT

Figure 4.4: Graph of comparison of the exact methods for Type II instances

Comparison of the polynomial time heuristic algorithms The results for instances
of type I are presented in Table 4.16. The results for instances of type II are presented in
Table 4.17. Column #Best indicates the number of times the method is the best among
all the heuristic methods, and ∆ = method−BestH

method is the average deviation between the
method and the best heuristic method.

∑
jPj BW FW1 FW2
n #Best ∆ #Best ∆ #Best ∆

10 27 0.3% 30 0% 8 3.0%
20 12 1.8% 22 0.4% 8 2.1%
30 8 2.4% 16 1.3% 14 1.2%
40 9 2.6% 15 1.7% 15 0.9%
50 1 3.8% 10 2.3% 20 0.6%
60 2 3.5% 7 2.3% 23 0.4%
70 2 3.1% 7 2.1% 23 0.2%
80 2 3.7% 5 2.4% 24 0.3%
90 2 3.4% 8 1.9% 22 0.3%
100 1 4.4% 2 3.0% 28 0.1%

Table 4.16: Results of the polynomial heuristic methods for Type I instances

For Type I instances, FW1 is the best method and FW2 is the worst for 10 ≤ n ≤ 20.
But for all n ≥ 30, BW is the worst while FW2 is the best method. However, the relative
deviation values are not important, smaller than 4.4% for BW, and smaller than 3.0% for
FW1 and FW2.

Fig. 4.5 illustrates more clearly the characteristics of three methods.
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4.4. COMPUTATIONAL EXPERIMENT

Figure 4.5: Graph of the heuristic methods for Type I instances

For Type II instances, the behavior of the polynomial heuristics is very easy to analyse,
but it is not the same as before.∑

jPj BW FW1 FW2
n #Best ∆ #Best ∆ #Best ∆

10 29 0.01% 3 3.9% 1 9.9%
20 30 0% 1 7.4% 0 13.7%
30 30 0% 0 9.3% 0 15.6%
40 30 0% 0 9.8% 0 16.5%
50 30 0% 0 9.8% 0 17.0%
60 30 0% 0 10.1% 0 17.0%
70 30 0% 0 9.4% 0 17.3%
80 30 0% 0 9.1% 0 17.6%
90 30 0% 0 8.9% 0 18.1%
100 30 0% 0 9.1% 0 18.2%

Table 4.17: Results of the polynomial heuristic methods for Type II instances

Figure 4.6: Graph of the heuristic methods for Type II instances
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4.4. COMPUTATIONAL EXPERIMENT

Tables 4.17 and Fig.4.6 show clearly that FW2 is the worse method and BW is the
best for all value n. The relative deviations of FW1 is smaller than 10.1%, and of FW2 is
smaller than 18.2%.

Comparison of the metaheuristics The parameters are given in Table 4.18.

∑
jPj SA TS

T = int(bestH/(10 ∗ n)) Tabumax = 40 + int(2 ∗ n/10)
Difficult Data a = 0.99− n/1000

Limitedloop = 150 Limitedloop = 1700 + n/10

Table 4.18: Settings for SA and TS algorithms

Because the exact methods are optimal for quite all the instances of type I, the experi-
ments have been done for type II instances only. The results of the metaheuristic methods
for instances of type II are presented in Table 4.19. Remember that the column #Best
indicates how many times the method is the best metaheuristic, and column ∆ is the
average deviation between the method and the best metaheuristic. Column ∆H = H−M

H
is the average relative deviation between the method M and the best polynomial time
heuristic H. ∑

jPj TS SA
n #Best ∆ ∆H #Best ∆ ∆H

10 30 0.00% 1.5% 30 0.00% 1.5%
20 20 0.10% 1.4% 30 0.00% 1.5%
30 2 0.50% 1.1% 29 0.00% 1.6%
40 1 0.40% 1.3% 29 0.00% 1.6%
50 4 0.50% 1.1% 26 0.01% 1.5%
60 0 0.40% 1.2% 30 0.00% 1.5%
70 0 0.40% 1.1% 30 0.00% 1.4%
80 1 0.40% 1.1% 29 0.00% 1.4%
90 0 0.50% 0.9% 30 0.00% 1.4%
100 0 0.50% 0.8% 30 0.00% 1.3%

Table 4.19: Results of the Metaheuristic methods for Type II instances

For type II instances, the two methods are executed, the results indicate that the
methods are able to improve the initial solution within 180 seconds. The relative deviation
∆ between TS and SA are not so far, smaller than 1.5% for TS and nearly zero for all n
(except when n = 50) for SA. Especially, SA is the best method for all the values of n,
and SA can improve up to ∆H = 1.6% the best result of the polynomial time heuristic
methods.
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Comparison of the exact and the metaheuristic methods We compare now the
quality of the solutions returned by the exact methods and the metaheuristics. Since there
is no metaheuristic method TS and SA considered for type I instances, we have only the
comparison between the exact and the metaheuristic methods of type II instance. The
results are given in Table 4.20. Column #B indicates the number of best solutions and ∆
is the average relative deviation to the best solution. All the methods have a computation
time limited to 180 seconds.∑

jPj MILP1 MILP2 B&B TS SA
n #B ∆ #B ∆ #B ∆ #B ∆ #B ∆

10 30 0% 30 0% 30 0% 30 0% 30 0%
20 30 0% 30 0% 0 1.5% 20 0.1% 30 0%
30 30 0% 30 0% 0 1.6% 2 0.5% 24 0.0%
40 29 0.0% 29 0.0% 0 1.6% 0 0.4% 9 0.0%
50 20 0.0% 11 0.0% 0 1.6% 1 0.5% 4 0.1%
60 4 0.1% 14 0.2% 0 1.6% 0 0.4% 12 0.0%
70 1 0.5% 7 0.5% 0 1.5% 0 0.4% 22 0.0%
80 0 1.4% 2 1.0% 0 1.4% 1 0.4% 27 0.0%
90 0 3.7% 0 1.1% 0 1.4% 0 0.5% 30 0%
100 0 6.2% 0 1.0% 0 1.3% 0 0.5% 30 0%

Table 4.20: Comparison of the Exact and Metaheuristic methods for Type II instances

For type II instances, the value ∆ of MILP1 and MILP2 increas with n up to 6.2% for
MILP1 and up to 1.1 % for MILP2. For B&B, except when n = 10, all other values ∆ are
about 1.5%. For TS, except when n ≤ 20, all ∆ is on average 0.4%.

The results MILP2 is the best with n ≤ 40, MILP1 is the best with n = 50. The
metaheuristic methods SA is the best when n ≥ 60 and the result of SA is always much
better than TS.

4.4.3 Relation between
∑
Nj and

∑
jPj

We have seen that there are the relations between two objective functions
∑
Nj and∑

jPj in Section 2.2.1. We now study the relations from a computational experiments
point of view.

Because MILP1 is very efficient for solving all the instances of type I for the mini-
mization of

∑
jPj , it is possible to determine for each optimal solution, the level of the

solution.

We denote by Level(jPj) the level of the best sequence obtained for the minimization
of
∑
jPj and by Level(Nj) the level returned by the best method for the minimization

of
∑
Nj . In Table 4.21, ∆(Level(jPj)/Nj) =

Level(jPj)−Level(Nj)
Level(jPj)

is the relative deviation

between these two quantities. The column #B indicates the number of times Level(jPj)
is better than or equal to Level(Nj).
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We can see that the best sequence for the problem
∑
jPj has a very good level, inter-

esting for the minimization of
∑
Nj . In other terms, the use of MILP1 with the objective

function
∑
jPj gives a very good solution for the minimization of

∑
Nj , especially for

instances with more than 80 jobs. We notice also that the relative deviation is smaller
than 1% for n = 60 and 70 jobs, and never greater than 1.7%.

n ∆(Level(jPj)/Nj) # B

10 0.8% 26
20 1.7% 20
30 1.3% 20
40 1.1% 15
50 1.0% 16
60 0.9% 9
70 0.9% 9
80 0.4% 14
90 -1.7% 23
100 -3.5% 29

Table 4.21: Results of the ∆(Level(jPj)/Nj) for Type I instances

For type II instance, the results do not show the interest of minimizing
∑
jPj in order

to derive good solutions for the minimization of
∑
Nj .

4.5 Conclusion

This chapter introduces new objective functions based on job positions. The first
results that are obtained from these objective functions are summarized in Table 4.22.

For the open problem 1|d̃j |
∑
jPj and the strongly NP − hard problem 1|d̃j |

∑
wjPj ,

we propose characteristics, properties and resolution methods.

For the resolution methods, we consider first the exact methods including two kinds of
MILP (MILP1 based on Positional variables, and MILP2 based on Linear Ordering vari-
ables), a Dynamic Programming algorithm and a Branch-and-Bound algorithm. Heuristic
methods BW, FW1, FW2 are also considered for each problem. Two metaheuristic meth-
ods, a Tabu Search and a Simulated Annealing have been proposed. The computational
experiments of

∑
wjPj and

∑
jPj have been performed to see the performances of some

methods.
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Problem Complexity

1|β|Pmax O(1) Any solution is optimal, Pmax = n, ∀β
1|d̃j |Pmax O(1) σ> is optimal

1|β|
∑
Pj O(1) Any solution is optimal,

∑
Pj = n(n+1)

2 , ∀β
1|d̃j |

∑
Pj O(1) σ> is always optimal,

∑
Pj = n(n+1)

2

1|d̃j |
∑
Pj O(1) σ> is optimal

1||
∑
jPj O(1) Sequence σ⊥ is always optimal,

∑
jPj = n(n+1)(n+2)

6

1|pj = 1, d̃j |
∑
jPj O(n log n) BWindex

1|d̃j , B = 1|
∑
jPj O(1) Simple test

1|d̃j , B = 2|
∑
jPj O(n3) Dynamic programming

1|d̃j , B = 2, LPT |
∑
jPj O(n) GR

1|d̃j |
∑
jPj open

1||
∑
wjPj O(n log n) sort the jobs in wj non increasing order

1|pj = 1, d̃j |
∑
wjPj O(n log n) BWweight

1|d̃j , agree|
∑
wjPj O(1) Sequence σ> is optimal

1|d̃j |
∑
wjPj Strongly NP-hard

Table 4.22: The problems related with Positions
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Chapter 5

Conclusions and future research
direction

The objective of this thesis is to contribute to the characterization of all the optimal
solution of the single machine scheduling problem with deadlines. It is well known that
this problem may have an exponential number of optimal solutions, and finding their
characteristics, instead of having the whole list, is an interesting challenge.

In Chapter 1 we introduce the context of the thesis. We introduce briefly the notion of
complexity, we give the required background on resolution methods of operations research
and on scheduling theory. Then, we present a survey in the field of characterization of
solutions. The chapter terminates with the introduction of the lattice of permutation. This
graph structure presents some interesting properties which allow – under some hypotheses
– to characterize some sets of solutions. With the support of the lattice of permutation,
we identify a new scheduling problem denoted 1|d̃j |

∑
Nj , assuming that the jobs are

numbered in EDD order and that at least EDD is a feasible solution. The minimization
of
∑
Nj is equivalent to minimize the level of the feasible sequence searched in the lattice.

The first results obtained in this context are summarized and the rest of the structure of
the thesis is presented.

In Chapter 2 we give the relations between
∑
Nj and many other studies (Kendall’s

τ distance, crossing number in permutations, One Sided Crossing Minimization problem
and Checkpoint Ordering Problem) and many properties are presented. Mathematical
expressions of this objective function are given, depending on the type of variables which
is used. Finally, the first results that are obtained for this new objective function are
given, for some basic problems and for some polynomial particular cases.

In Chapter 3 we propose some resolution methods for this problem. Assuming that
the problem is NP-hard, we propose some exponential exact methods: MILP formulations
and a B&B algorithm, greedy heuristic algorithms and two metaheuristic methods: a Tabu
Search and a Simulated Annealing. Computational experiments are conducted to evaluate
the methods.

The study of function
∑
Nj in Chapter 2 has highlighted a relation between this

function and functions depending on jobs positions. In Chapter 4 we consider the objective
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Objective MILP1 B&B BW FW1 FW2 TS SA
function The best I II I II I II I II I II I II I II

among exact X X∑
Nj among H X X

among MetaH X X X
Overall X X X

among exact X X X∑
wjPj among H X X

among MetaH X X
Overall X X

among exact X X∑
jPj among H X X

among MetaH X
Overall X X

Table 5.1: Summarize of the performances of the methods

function
∑
wjPj where Pj is the position of job Jj . For this new objective function,

we study some particular cases, we prove the strongly NP-hardness of the problem and
we propose resolution methods. These methods are compared through computational
experiments. Finally, the particular case where the weight is equal to the job index is
studied. The complexity status remains open, but resolution methods are still proposed
and evaluated.

To summarize the results of the methods, we propose the Table 5.1, where a cross
indicates the best method. Methods MILP2 and MILP3 are not present because they
never really outperform the other methods.

The main ideas for future research directions are the following:

• to generalize the results to other problems in the same category, i.e. which can be
solved in polynomial time by the application of a simple rule,

• to continue the characterization, searching for other sequences with a minimum level
in the lattice of permutations,

• to close the complexity of the open problems 1|d̃j |
∑
Nj which is supposed to be

NP-hard, and 1|d̃j |
∑
jPj , which may be solvable in polynomial time.

• to find approximation algorithms for the difficult problem 1|d̃j |
∑
wjPj .

• of course, to improve the resolution methods for the difficult problem.

Besides, based on the relations between
∑
Nj and many other studies such as Kendall’s

τ distance, crossing number in permutations, one sided crossing minimization problem and
Checkpoint Ordering Problem, there are many interesting results for both of theoretical
and practical interest. We can make the link with our problems and find new ideas for the
future research directions.
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Chapter 6

Appendix 1 - Proof of propositions
6 and 9

We consider here the case where the number of batches is fixed and equal to B = 2.

It is assumed here that the jobs in J \D (which have the same deadline) are numbered
in decreasing processing time order (LPT order). We denote by d the number of jobs in
D.

We consider the following algorithm called GR (“Greedy”). We put the jobs of J \ D
in their reverse numbering order: S = (Jn, Jn−1, ..., Jd+1). Then, we insert the jobs of
D consecutively in their reverse numbering order at the last possible position so that
S = (Jn, Jn−1, ..., Jk, (Jd, Jd−1, ..., J1), Jk−1, ...Jd+1) is the final solution. The algorithm 13
GR describes the method, which runs in O(n).

Algorithm 21 GR (same as Alg. 13)

1: t = 0, k = n, S ← ∅
2: while (t+ pk +

∑
Jj∈D pj ≤ d̃1) and (k ≥ d+ 1) do

3: S ← S + Jk
4: t = t+ pk, k ← k − 1

5: S ← S + (Jd, Jd−1, ..., J1) + (Jk−1, Jk−2, ..., Jd+1)
6: return S

Let consider sequence SGR returned by Alg. 13. We denote by R and L the sets of
jobs which are at the right and at the left of D in SGR, respectively. We assume that SGR

is not optimal and we denote by S∗ an optimal sequence. We denote by R∗ and L∗ the
sets of jobs which are at the right and at the left of D in S∗, respectively (see Fig. 6.1 for
an illustration).

In S∗, suppose there are x jobs L1 ⊆ L with L1 = {l1, l2, ..., lx} which are scheduled in
R∗, and y jobs R1 = {r1, r2, ..., ry} ⊆ R which are scheduled in L∗. We have plx ≤ plx−1 ≤
... ≤ pl1 and pry ≤ pry−1 ≤ ... ≤ pr1 , and furthermore pl1 ≤ pry . Notice that these jobs are
not necessarily consecutive in L and R.

Because the jobs in J \D (which have the same deadline) are numbered in decreasing

133



6.1. SINGLE MACHINE PROBLEM, MINIMIZATION OF
∑
NJ - FIXED

NUMBER OF BATCHES: B = 2

SGR
L D R

lx ... l1 ry ... r1

S∗
L∗ R∗D

L1R1

S′
L′ R′D

L1 R1

Figure 6.1: Illustration of the notations

processing time order, and D is ordered at the last possible position, then for any feasible
solution (respect of deadlines), we must have:∑

j∈R1

pj ≤
∑
j∈L1

pj

Because plx ≤ plx−1 ≤ ... ≤ pl1 , we have
∑

j∈L1 pj ≤ xpl1 . Similarly, because pry ≤
pry−1 ≤ ... ≤ pr1 , we have

∑
j∈R1

pj ≥ ypry . Therefore:∑
j∈R1

pj ≤
∑
j∈L1

pj

⇒ypry ≤ xpl1
⇒y ≤ x pl1

pry

⇒y ≤ x

because pl1 ≤ pry .
Moreover, since S∗ is optimal and SGR is supposed to be not optimal, x must be

different to zero (since otherwise, x and y are equal to 0, and SGR and S∗ are the same).

Call L1 the sequence of x jobs (lx, lx−1, ..., l1). Similarly, call R1 the sequence of y jobs
(ry, ry−1, ..., r1). Since S∗ has exactly two batches, L1 must be in the first positions in R∗,
and R1 must be in the last positions in L∗.

6.1 Single machine problem, minimization of
∑
Nj - Fixed

number of batches: B = 2

Proposition 10 (same as Prop. 6) Algorithm 13 GR is optimal for problem 1|d̃j , B =
2, LPT |

∑
Nj. Moreover,

∑
Nj = d.r, where d and r are the number of jobs in D and

after D, respectively.

Proof.
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6.2. SINGLE MACHINE PROBLEM, MINIMIZATION OF
∑
JPJ - FIXED

NUMBER OF BATCHES: B = 2

Let consider a feasible sequence S′ constructed by interchanging in S∗ the partial
sequences L1 and R1. Fig.6.1 illustrates this sequence. Notice that this sequence may
have more than two batches and that this sequence is feasible (same jobs before D as in
SGR, which is feasible).

We can examine in details the impact of this move on the objective function between
S∗ and S′. We denote by d the number of jobs in D.

Since the indices of all x jobs in L1 are bigger than the indices of the y jobs in R1 and
of the d jobs in D. We have (see Fig. 6.2):∑

Nj(S
′) =

∑
Nj(S

∗)− xy − dx+ dy

=
∑

Nj(S
∗)− xy + d(y − x)

<
∑

Nj(S
∗)

S∗
D RL

R1 L1 S′
D RL

R1L1

1dr1ryl1lx 1dr1ryl1lx

−xy − dx +dy

...... ............

Figure 6.2: Difference between S∗ and S′

Because of the definition of SGR and of S′, we have:
∑
Nj(S

GR) ≤
∑
Nj(S

′).

Therefore, we deduce that SGR is optimal.

Moreover, it is clear that we have
∑
Nj = dr, where d and r are the number of jobs

in D and after D, respectively.

6.2 Single machine problem, minimization of
∑
jPj - Fixed

number of batches: B = 2

Proposition 11 (same as Prop. 9) Algorithm 13 GR is optimal for problem 1|d̃j , B =
2, LPT |

∑
jPj.

Proof.

In the following, we often using the equality:

a+b∑
i=a

= (a+ b/2)(b+ 1) (6.1)

We can examine the difference between the objective function for S∗ and S′. We have
the impact ∆ =

∑
jPj(S

∗)−
∑
jPj(S

′) equal to:

∆ = (d+ y)
x∑
i=1

li − (d+ x)

y∑
i=1

ri
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6.2. SINGLE MACHINE PROBLEM, MINIMIZATION OF
∑
JPJ - FIXED

NUMBER OF BATCHES: B = 2

We know that
∑x

i=1 li is greater than or equal to the sum of indices of the x last jobs
of L. The indices of these jobs are from d+ r + 1 to d+ r + x. So we have:

x∑
i=1

li ≥
x∑
i=1

(d+ r + i) (6.2)

≥
d+r+x∑
i=d+r+1

i (6.3)

≥
(
d+ r + 1 +

x− 1

2

)
x (6.4)

applying equality 6.1.

Similarly,
∑y

i=1 ri is smaller than or equal to the sum of indices of the y first jobs of
R. The indices of these jobs are from d+ 1 to d+ y. So we have:

y∑
i=1

ri ≤
y∑
i=1

(d+ i) (6.5)

≤
(
d+

y + 1

2

)
y (6.6)

So we have:

∆ ≥ (d+ y)
(
d+ r + 1 +

x− 1

2

)
x− (d+ x)

(
d+

y + 1

2

)
y

≥ (d+ y)
(
dx+ rx+ x+ x

x− 1

2

)
− (d+ x)

(
dy + y

y + 1

2

)
≥ d2x+ drx+ dx+ dx

x− 1

2
+ ydx+ yrx+ yx+ yx

x− 1

2
− d2y − dyy + 1

2
− xdy − xyy + 1

2

≥ d2(x− y) +
1

2
d(x2 − y2) +

1

2
d(x− y) +

1

2
yx(x− y) + rx(d+ y)

We know that x− y ≥ 0, and rx(d+ y) > 0, therefore ∆ > 0.

We have
∑
jPj(S

′) <
∑
jPj(S

∗). For the same reasons as before (using Hardy’s
inequality), we deduce that SGR is optimal as well.
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University, Toulouse. 1.2.1.1

[Lenstra et al., 1977] Lenstra, J. K., Rinnooy Kan, A. H. et Brucker, P. (1977).
Complexity of machine scheduling problems. Annals of Discrete Mathematics, 1:343–
362. 1.1.5.4, 4.2.1

[Little et al., 1963] Little, J. D. C., Karel, C., Murty, K. G. et Sweeney, D. W.
(1963). An algorithm for the traveling salesman problem. Operations Research, 11(6):972
– 989. 1.1.3.1

[Maniezzo et al., 2009] Maniezzo, V., Stutzle, T. et Vob, S. (2009). Metaheuristics:
HybridizingMetaheuristics and Mathematical Programming. Springer. 1.1.3.2

[Manne, 1960] Manne, A. (1960). On the job-shop scheduling problem. Operations Re-
search, 8(2):219–223. 1.1.3.1

[Marti et Lanuna, 2003] Marti, R. et Lanuna, M. (2003). Heuristics and meta-heuristics
for 2-layer straight line crossing minimization. Discrete Applied Mathematics, 127(3):
665–678. 2.1.2

[Mehlhorn et Sanders, 2008] Mehlhorn, K. et Sanders, P. (2008). Generic Approaches
to Optimization. Algorithms and Data Structures: The Basic Toolbox, pages 233–262.
1.1.3.1

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H. et Teller, E. (1953). Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21(6):1087–1092. 1.1.3.2

[Munoz et al., 2002] Munoz, X., Unger, W. et Vrto, I. (2002). One sided crossing
minimization is np-hard for sparse graphs. LNCS 2265, pages 115–123. 2.1.3
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Résumé :

Nous considérons un problème d’ordonnancement à une machine avec dates de fin
impratives et nous cherchons caractériser l’ensemble des solutions optimales, sans les
énumérer. Nous supposons que les travaux sont numérotés selon la règle EDD et que
cette séquence est réalisable. La méthode consiste à utiliser le treillis des permutations
et d’associer à la permutation maximale du treillis la séquence EDD. Afin de caractériser
beaucoup de solutions, nous cherchons une séquence réalisable aussi loin que possible de
cette séquence. La distance utilisée est le niveau de la séquence dans le treillis, qui doit
être minimum (le plus bas possible). Cette nouvelle fonction objectif est étudiée. Quelques
cas particuliers polynomiaux sont identifiés, mais la complexité du problème général reste
ouverte. Quelques méthodes de résolution, polynomiales et exponentielles, sont proposées
et évaluées. Le niveau de la séquence étant en rapport avec la position des travaux dans
la séquence, de nouvelles fonctions objectifs en rapport avec les positions des travaux sont
identifiées et étudiées. Le problème de la minimisation de la somme pondérée des positions
des travaux est prouvé fortement NP-difficile. Quelques cas particuliers sont étudiés et
des méthodes de résolution proposées et évaluées.

Mots clés :

ordonnancement, une machine, dates impératives, treillis, caractérisation, complexité

Abstract :

We consider a single machine scheduling problem with deadlines and we want to char-
acterise the set of optimal solutions, without enumerating them. We assume that jobs are
numbered in EDD order and that this sequence is feasible. The key idea is to use the lat-
tice of permutations and to associate to the supremum permutation the EDD sequence. In
order to characterize a lot of solutions, we search for a feasible sequence, as far as possible
to the supremum. The distance is the level of the sequence in the lattice, which has to
be minimum. This new objective function is investigated. Some polynomially particular
cases are identified, but the complexity of the general case problem remains open. Some
resolution methods, polynomial and exponential, are proposed and evaluated. The level of
the sequence being related to the positions of jobs in the sequence, new objective functions
related to the jobs positions are identified and studied. The problem of minimizing the
total weighted positions of jobs is proved to be strongly NP-hard. Some particular cases
are investigated, resolution methods are also proposed and evaluated.

Keywords :

scheduling, single machine, deadlines, positions, lattice, characterization, complexity


	Introduction
	Introduction to the context of the study - required background
	Complexity of algorithms
	Introduction to Complexity theory
	Required background in resolution methods
	Introduction to Scheduling theory
	Required background in single machine scheduling

	Characterization of solutions
	Survey of characterization methods
	A new way to characterize solutions

	Problems studied in this thesis
	Introduction of new objective functions
	Outline of the thesis


	A new sequencing problem: finding a minimum sequence
	Presentation of the level Nj
	Relation with Kendall's- distance
	Relation with the Crossing Number
	Relation with the One Sided Crossing Minimization problem
	Relation with the Checkpoint Ordering Problem

	Mathematical expressions and properties
	Expression of Nj based on position variables
	Expression of Nj based on precedence variables
	Properties

	Particular cases
	Some trivial problems: 1||Nj, 1|rj|Nj, 1|prec|Nj
	Unitary jobs
	Unitary jobs: next minimum sequences
	The problem 1|d"0365dj, EDD=LPT| Nj
	The problem 1|d"0365dj, B=k|Nj

	Conclusion

	Resolution methods for finding a minimum sequence
	Non-polynomial time methods
	Mathematical programming formulations for problem 1|d"0365dj| Nj
	Dynamic Programming formulation
	Branch-and-Bound

	Polynomial time heuristics
	Backward algorithm
	Forward algorithms

	Metaheuristic algorithms
	Common configuration
	Algorithms

	Computational experiments
	Data generation
	Results

	Conclusion

	Minimization of objective functions based on jobs positions
	Introduction and first results
	First results with common (or without) due date
	First results with deadlines

	Total Weighted Positions
	Complexity
	Properties and particular cases
	Exact methods
	Heuristic Methods

	Particular case with wj=j
	Characteristics of j Pj objective function
	Particular cases
	Non-polynomial time algorithms
	Heuristic methods
	Metaheuristic methods

	Computational experiment
	Computational experiments for wjPj
	Computational experiments for jPj
	Relation between Nj and jPj

	Conclusion

	Conclusions and future research direction
	Appendix 1 - Proof of propositions 6 and 9
	Single machine problem, minimization of Nj - Fixed number of batches: B=2
	Single machine problem, minimization of jPj - Fixed number of batches: B=2


