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Jen-Cheng Hou
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RÉSUMÉ

L’épilepsie est un trouble neurologique causé par une activité neuronale anormale dans le cerveau.
Environ 1% de la population mondiale en est affectée. De nombreuses manifestations motrices (in-
cluant des convulsions, des modifiations toniques, cloniques, hyperkinétiques) peuvent s‘observer
et sont une source de handicap majeur pour les patients. La motivation de cette recherche est
de développer des méthodes basées sur des techniques récentes d’apprentissage automatique pour
fournir une analyse objective des vidéos de crises cliniques.

Dans cette thèse, nous proposons trois contributions principales á l’analyse automatisée des
vidéos de crises. Dans la première contribution, nous explorons des crises d’épilepsie hyperkiné-
tiques en analysant les trajectoires du mouvement de la tête des patients. Les résultats fournissent
une base pour étudier la corrélation entre le modifications spectrales de l’EEG et la fréquence des
mouvements de la tête.

Néanmoins, l’épilepsie n’est pas la seule cause qui donne lieu á des crises. Par exemple, les
crises psychogènes non épileptiques (PNES) en font partie. Ce sont des événements ressem-
blant á une crise d’épilepsie (ES), mais sans les décharges électriques caractéristiques associées
á l’épilepsie. Bien les distinguer est donc important pour un diagnostic précis et des traitements
de suivi. Les signes cliniques ou sémiologiques, sont évalués par les neurologues, mais leur inter-
prétation subjective est susceptible de variabilité inter-observateur. Par conséquent, il est urgent
de créer un système automatisé pour analyser les vidéos de crises. Dans cette recherche, nous pro-
posons deux autres contributions pour classer ES et PNES uniquement sur la base des vidéos. Notre
deuxième contribution utilise des informations issues de l’apparence et de points clés du corps et
du visage des patients. En introduisant aussi un mécanisme de distillation des connaissances, les
performances du score F1 et la précision sont de 0,85 et 0,82.

Puis sur la base de cette approche, nous menons une expérience parallèle pour distinguer
ES avec émotion/non-émotion et dystonie/non-dystonie en fonction des composantes visage ou
corps de la méthode. La validation LOSO donne des résultats satisfaisants, indiquant que notre
modèle peut capturer des caractéristiques spatio-temporelles efficaces pour le visage et le corps
pour l’analyse des crises. Dans notre troisième contribution, nous proposons un modèle en deux
étapes qui est d’abord pré-entraîné sur de grandes vidéos contextuelles puis ce modèle est affiné
pour la classification des types de crises.

Le modèle est basé sur l’encodeur du modèle Transformer. Étant donné qu’il est coûteux
d’obtenir de grandes bases de données étiquetés par des médecins, nous cherchons á exploiter
des données volumineuses non étiquetées pour initialiser les poids du modèle, puis le modèle est
affiné sur la tâche cible en aval. Ce modèle traite uniquement les caractéristiques d’apparence par
contre il implique plus de cas que ceux de la première étude. Le score F1 et la précision de la vali-
dation LOSO sont de 0,82 et 0,75. Grâce aux résultats très encourageants de cette recherche, nous
proposons une base pour une direction de recherche prometteuse dans le domaine de l’analyse
vidéo automatisée des crises.

Mots clés: Analyse vidéo de crise, apprentissage profond, apprentissage auto-supervisé
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ABSTRACT

Epilepsy is a neurological disorder caused by abnormal neuron activity in the brain. Around 1%
of the population worldwide is affected by it. Numerous motor manifestations (including convul-
sions, tonic, clonic, hyperkinetic changes) can be observed and are a source of major disability for
patients. The motivation of this research is to develop methods based on recent machine learning
techniques to provide objective analysis for clinical seizure videos.

In this thesis, we propose three main contributions towards automated vision-based seizure
analysis. In the first contribution, we explore some hyperkinetic epileptic seizures by analyzing the
head movement trajectories of the patients. The results provide a basis for studying the correlation
between the spectrum of EEG and the head movement frequency. Nevertheless, epilepsy is not
the only cause that gives rise to a seizure event. For example, psychogenic non-epileptic seizures
(PNES) are one of them. They are events resembling an epileptic seizure (ES), but without the
characteristic electrical discharges associated with epilepsy. How to distinguish them is important
for accurate diagnosis and follow-up treatments. The clinical signs or semiology are evaluated by
neurologists, but the subjective interpretation is liable for inter-observer variability. Hence, there
is an urgent need to build an automated system to analyze seizure videos with the latest computer
vision progress. In this research, we propose two other contributions for classifying ES and PNES
solely based on the videos. Our second contribution utilizes multi-stream information from ap-
pearance and key-points for both the bodies and faces of the patients. In addition by introducing
the knowledge distillation mechanism, the performance of the F1-score and the accuracy are 0.85
and 0.82. Furthermore, based on this approach, we conduct a side experiment for distinguishing
ES with emotion/non-emotion and dystonia/non-dystonia based on the face and body streams in
the method. The LOSO validation gives satisfactory results, indicating our model can capture ef-
fective spatio-temporal features for face and body for seizure analysis. In our third contribution,
we propose a two-step model which is first pre-trained on large contextual videos then this model
is fine-tuned for seizure type classification.

The model is based on the encoder of the Transformer model. Given that it is expensive to
get large datasets labeled by doctors, we try to leverage large unlabeled data for a good weight
initialization point for the model, and then fine-tune it on the target downstream task. This model
only processes the appearance features but more cases than those in the first study are involved.
The F1-score and accuracy of the LOSO validation are 0.82 and 0.75. With the very encouraging
results in this research, we demonstrate a basis for a promising research direction in the field of
automated seizure video analysis.

Keywords: seizure video analysis, deep learning, self-supervised learning
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Chapter 1

Introduction

1.1 Motivation

Epilepsy is one of the most prevalent neurological disorders, affecting nearly 1% of the

population worldwide. It is characterized by recurrent seizures, which are caused by ab-

normal, excessive neuronal activity in the brain [1]. Globally, there are estimated five

million people being diagnosed with epilepsy each year. People with epilepsy often expe-

rience negative impacts on their quality of life, such as less mobility, social interactions,

learning or school attendance. Thus, how to perform an effective diagnosis of epilepsy

and its monitoring are crucial towards a better quality of life for the patients.

Epilepsy is also known as a seizure disorder. It is usually diagnosed after a person

has had two seizures, or one seizure with the tendency to have more. Seizures happen

when the brain nerve cells fire more rapidly with less control than usual, affecting how a

person feels or acts. Nevertheless, not all seizures are epileptic in origin. Some are caused

by psychological reasons, and such type of seizures are called psychogenic non-epileptic

seizures (PNES), which are not associated with an epileptic discharge. To determine if

a seizure is caused by epileptic discharges, Video-EEG/Video-SEEG monitoring is used to

check the existence of simultaneous culprit brain EEG rhythms during the seizure. Fig. 1.1

shows examples of how Video-EEG/Video-SEEG monitoring records the semiology and the

real-time neuron activities for assessment. Despite the different cause of epileptic seizures

(ES) and PNES, these two types of seizure could be similar in terms of the semiology, i.e.

the clinical signs. Even for experienced neurologists, it could be challenging sometimes

for them to correctly distinguish them. In addition, the evaluation could be subject to

inter-observer variability. Hence, a computer-aided diagnosis is naturally considered as a

way to improve the quality of the assessment.

Semiological signs play an important role in analyzing the clinical symptoms regarding

a seizure event. It relates to multiple informative sources from the patients in a tempo-
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Figure 1.1: Samples of the Video-EEG/Video-SEEG recordings during seizures. The real-
time neuron activities are used to determine if a seizure is caused by an epileptic discharge.

ral progression, like the evolving of one’s facial expression, emotion, and body gestures.

Fig. 1.2 and Fig. 1.3 show some examples. The motivation of this research is to develop

methods based on recent machine learning progress to provide objective analysis for clini-

cal seizure videos. This research aims to step towards the development of computer-based

methodologies for seizure diagnosis considering the semiological information. The pro-

posed approaches could be useful for developing related methodologies for monitoring

other disease, such as dementia.

1.2 Challenges

As opposed to conditions within a highly controlled environment, the automated vision-

based seizure analysis system is aimed at dealing with real-world seizure videos. To build

such a system, there are several challenges we could encounter:

The complicated conditions in videos

For seizure videos, there is usually a complicated condition involved. Patients might be

partially occluded by bed sheet, clinical staff, or even themselves due to hyperkinetic



1.2. Challenges 3

Figure 1.2: Selected video sequences of seizure events. The semiological signs might
include the time-evolving changes of facial expressions.

behavior. The occlusion could affect the performance of some automatic detection process,

like region or key-points detection. In addition, low camera resolution or inadequate light

could also incur poor performance. Fig. 1.4 shows some challenges in real conditions.

Insufficent data

For AI applications in the medical domains, doctor’s annotation is usually time-consuming.

So one of the major challenges for machine learning for medical applications is the fact

that the scale of the labeled data are small compared to other problem domains. Seizure

video analysis is no exception. Nevertheless, on the bright side of this challenge, recently

some approaches are proposed to address this issue by self-supervised learning (SSL). In

SSL, a learning machine captures the dependencies between variables, and learns repre-

sentations of the data without requiring human-provided labels. The methodology usu-

ally first pre-trains on large volume of unlabeled data, and then fine-tunes the pre-trained

model on downstream tasks, which usually have smaller labeled dataset. The SSL-based

methods have revolutionized natural language processing (NLP) and is making very fast

progress for speech and image recognition.

Model explainability

Model explainability means being able to explain model’s predictions. As like the insuf-

ficient labeled data issue, the model explainability is another important topic for AI in

medical applications. Doctors would favor an explainable model more than a blackbox

model. Nevertheless, how to better leverage the trade-off between performance and ex-
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Figure 1.3: Selected video sequences of seizure events. The semiological signs might in-
clude the repetitive lateral head turing movement, limb rigidity, anterior-posterior rocking
movement, and irregular upper-limb postures.
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Figure 1.4: In real-world seizure videos, occlusions of the patients are often observed,
either by (a) medical staff, (b) bed sheets, or (c) themselves due to hyperkinetic behavior.
In addition, (d) illumination changes could also happen and affect the performance of
some pre-processing procedures.
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plainability is still an unsolved research topic. Related to our study, some video prediction

models visualize the attention map as an indicator for "what the model sees". Yet as more

and more research on the combination of vision and language, perhaps it is another good

way towards explainable AI. So the model could provide both a prediction and an expla-

nation. These could provide inspirations for models in medical applications.

1.3 Contribution of this study

The innovation of this thesis is the investigation of how deep learning can be exploited

in the presence of limited data and complex conditions towards automated seizure video

analysis. In this thesis, we propose several contributions as follows:

Head movement analysis for hyperkinetic seizures

For hyperkinetic seizures, in which high amplitude and/or rapid movements are involved

in the ictal phase, we propose a method to analyze the trajectories of the head movements

of the patients. This analysis provides a basis for investigating the correlation between

the frequency of head movement and that of the EEG signals.

A multi-stream framework for seizure classification

We propose a multi-stream deep learning architecture in order to characterize semi-

ological patterns from epileptic seizures (ES) and psychogenic non-epileptic seizures

(PNES), based on the semiological signs from patients’ motor manifestations and facial

expressions.

A self-supervised learning framework for seizure classification

We propose a self-supervised learning framework to classify ES and PNES. The proposed

transformer-based method is pre-trained on large unlabeled clinical contextual videos.

Then the pre-trained model is fine-tuned on labeled datasets for the seizure type classifi-

cation task.

1.4 Structure of the thesis

The chapters of this thesis are structured as follows:

Chapter 2 will conduct a literature survey on recent vision-based seizure analysis works.

Chapter 3 elaborates the data collection process and specification.

Chapter 4 shows the study on head movement analysis for hyperkinetic seizures.

Chapter 5 presents our multi-stream framework for seizure classification.

Chapter 6 illustrates the proposed self-supervised framework for seizure classification.
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Chapter 7 summarizes this research and provides perspectives for future works.





Chapter 2

Related Work

This chapter presents a survey of the development of automated methods for analyzing

seizure motions. Some of the methods are based on traditional machine learning

techniques and some are built on recent deep learning models. We will first have a quick

review of the idea of machine learning and deep learning, and then dive into the related

works on seizure motion analysis.

Figure 2.1: A comparison of the flow of machine learning and deep learning methods.

2.1 Traditional machine learning and deep learning methods

Machine learning is a field of studies that focus on using data and trying to imitate how

human learns, and gradually improve the task performance. Deep learning can be seen

as a sub-category of machine learning. It mimics the function and structure of neurons

in the brain. Usually the deep learning models consist of multiple layers of non-linear

transformation. Artifical Neural Networks (ANN) is used in general to refer to this type
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of models. One major difference between machine learning and deep learning is in the

feature engineering. As shown in Fig. 2.1, machine learning usually adopts hand-crafted

features, which may need domain expertise for different tasks. Then these features are fed

into traditional machine learning models, like Support Vector Machines (SVM), Decision

Trees, or Random Forest, for the target puropose. On the other hand, feature engineering

in deep learning is done automatically. It uses an end-to-end learning framework, and

hence requires less human intervention. The following introduces some widely-used deep

learning models or concepts.

Convolutional Neural Networks (CNN)

The convolutional neural network is a type of ANN, and is especially suitable for tasks

related to image processing. It involves a kernel filter to conduct convolution computation

across the whole input data, as like in Fig 2.2. A CNN typically consists of stacked convolu-

tional layers, and then ends with several fully connected layers. The CNN is then learning

to optimize the output by achieving the possible minimum loss defined by a cost fuction.

The weights of the CNN are then updated by back-propagation [2]. Fig 2.3 shows one of

the earliest work to utilize CNN for image-based digit recognition. Until now, there have

been numerous succesful works using deep CNN to deal with image processing problems.

For example, the VGG-19 model [3] consisting of 19 layers achieved the state-of-the-art

in image recognition and at the time. A year later, He et al. [4] proposed Resnet, which

adds a skip connection for residual learning in CNNs, and thus allows CNNs to be trained

up to 152 layers. The idea of the skip connection has become a standard building blocks

in many deep learning works now.

Recurrent Neural Networks (RNN)

The recurrent neural network is another type of ANN. As shown on the left side of

Fig. 2.4, there is a loop within recurrent neural networks, which make the time-evolving

information of the sequential data be kept. Specifically, in the Fig. 2.4, we have a

main neural network block A, dealing with some input xt, and outputs ht. If we unroll

RNN as like the right side Fig. 2.4, we can see the module A is copied and reused for

different timesteps. This chain-like architecture turns out to be effective in handling

sequential data. Based on the concept of RNN, there are several variants of RNN, like

Long Short-Term Memory (LSTM) [6] and gated recurrent units (GRU) [7]. They have

achieved great success in applications like speech recognition [8].
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Figure 2.2: The convolution operation in CNN.

Figure 2.3: The first proposed CNN for digit recognition. The image is adapted from [5].

Figure 2.4: An unrolled recurrent neural network. The image is adapted from [9]

The Encoder-Decoder Architecture

In deep learning, the encoder-decoder architecture is widely used. It usually consists

of an encoder and a decoder. The encoder is responsible for encoding the input into a
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representation, and by feeding it into the decoder, we can decode the representation and

so have the desired output. One popular implementation is the Denoising Autoencoder,

as shown in Fig. 2.5. It encodes a noisy image, and then reconstructs a clean image

through the decoder. Besides, combined with RNNs, the encoder-decoder architecture

can be powerful for tasks like language translation. As shown in Fig. 2.6, it encodes the

input sentence from source language by RNNs, and then decodes the representation by

the decoder into target sentence in the desired language.

Figure 2.5: A denoising autoencoder encodes a noisy image, and then reconstructs a clean
image through the decoder. The image is adapted from [10]

Figure 2.6: An encoder-decoder architecture can be suitable for machine translation tasks.
The image is adapted from [11]

2.2 Seizure motion analysis with traditional machine learning

methods

Compared to using EEG signals, there are relatively limited studies working on seizure

motion analysis. An early review of seizure motion analysis with traditional machine

learning methods is done by Pediaditis et al. [12]. In general, previous methods are
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proposed under one of the two conditions: it is either a marker-based or a marker-free

system. A marker-based system usually requires patients to attach sensors, such as inertial

sensors [13] or reflective markers [14], on their bodies or wear customized outfits to

effectively detect patients’ limbs [15]. The recorded limb motion trajectories can be

transformed into metrics like velocity, acceleration, and angular speed for motor seizure

analysis. Nevertheless, these approaches may be inconvenient for the patients and subject

to sensor detachment when patients are having violent behaviors due to an onset seizure.

On the other hand, a marker-free system requires no body-attached sensors, and video

cameras are usually used as sensors to record patients’ behaviors. Different types of

camera have been used, such as single, stereo, and depth cameras. Single camera system

is the most widely used one.

In the previous pioneering studies of marker-based systems, Li et al. [14] proposed a

system to analyze the motion trajectories of human body joints in videos, with the help

of infrared reflective markers attached on patients bodies, as shown in Fig. 2.7 a. Lu

et.al [15] developed a color-based system to track and analyze the limb trajectories, as

shown in Fig. 2.7 b.

As for marker-free systems, Pediaditis et al. [16] proposed a method for vision-based

seizure detection. The proposed work detect patients’s faces and then extract the facial

features with dense optical flow [17] and discrete Fourier transform. Based on those

features, five hand-crafted values are designed to discriminate facial expressions for

seizure detection via a decision tree algorithm [18]. Maurel et al. [19] developed a 3D

head model given a face image, and utilize the model for facial expression analysis for

patients with epileptic seizures. For vision-based body motion analysis, some studies use

optical flow and clustering analysis [20, 21, 22]. Some combined spatio-temporal interest

point detectors (STIPs) and histograms-of-flow features [23, 24]. Fig. 2.8 shows examples

of marker-free systems.

2.3 Vision-based seizure video analysis with deep learning

methods

Deep learning has excelled in many computer vision tasks. More and more healthcare ap-

plications are introducing deep learning into their systems for better performances [25].

Nevertheless, in the context of automated seizure video analysis, there are still relatively

limited studies and few datasets are dedicated for the topic. Here we present some deep

learning-based seizure video analysis studies.

Achilles et al. [26] proposed a system to detect seizures by using CNNs to learn features
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Figure 2.7: Illustration of two examples of the marker-based seizure analytic systems. (a)
The system attaches reflective markers on patients keypoints for seizure motion analysis,
and in (b), a color-based limb detection is applied with customized outfits. The images
are adapted from [14] and [15].

Figure 2.8: Illustration of examples of the marker-free seizure analytic systems. (a) Given
a face image, the developed 3D face model is used to conduct facial expression analysis
on patients with epileptic seizures. As for vision-based body motion analysis, (b) the
optical flow features and (c) spatio-temporal interest point detectors (STIPs) are used.
The images are adapted from [19], [22], and [23].



2.3. Vision-based seizure video analysis with deep learning methods 15

on streams from a combined depth and infrated (IR) sensor. The model can show better

results than traditional methods like the combination of Histogram of Oriented Gradients

(HOG) and SVM. Fig. 2.9 demonstrates the proposed framework.

Ahmedt-Aristizabal et al. [27] proposed a deep learning model to classify facial semiology

from patients with mesial temporal lobe epilepsy (MTLE). As shown in Fig. 2.10, the

model crops the face region and feed it to CNNs for generating features. Then a LSTM

network handles temporal relations through the whole video.

Figure 2.9: The task and the proposed architecture in [26]. The model uses CNN to learn
features on depth and IR images for seizure detection. The image is adapted from [26].

Figure 2.10: A deep facial analysis work proposed in [27]. After cropping the face region,
the model uses CNNs to learn spatial features and a LSTM network to learn the temporal
relation. The image is adapted from [27].

The information from patient’s pose is typically used for seizure motion analysis. Nev-

erthless, unlike marker-based systems, marker-free or vision-based systems need an algo-

rithm to predict patient’s pose in the bed. Patient pose estimation could be challenging
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due to various occlusion conditions, e.g. occlusion from blankets, medical staff, or pa-

tients themselves. Achilles et al. [28] proposed a CNN-RNN model trained on depth video

to predict joint positions even under blanket occlusion, as shown in Fig. 2.11.

Figure 2.11: Achilles et al. collected videos via depth sensors and a motion capture system.
The data is used to train a pose estimation model based on a CNN-RNN framework. On the
right side is the pose estimation without and with blanket occlusion. Green/red skeletons
denote the ground-truth/prediction. The image is adapted from [28].

One of the main reasons that the use of deep learning can be hindered in medical

applications is the lack of enough sample data to train a neural network. To overcome

this issue for the in-bed pose estimation research community, Liu et al. [29, 30] released

a large scale dataset on in-bed poses, as shown in Fig. 2.12. The dataset features:

• Two data collection settings: (a) Hospital setting: 7 participants (3 females), and

(b) Home setting: 102 participants (28 females, age range: 20-40).

• Four imaging modalities: RGB (regular webcam), long-wave infrared (FLIR LWIR

camera), Pressure Map (Tekscan Pressure Sensing Map), and depth sensor (Kinect

v2).

• Three cover conditions: No cover, bed sheet (cov1), and blanket (cov2).

• Fully labeled poses with 14 joints.

2.4 Concluding remarks and discussion

According to the literature reviewed, research on seizure motion anlaysis can be divided

into three main directions: marker-based systems, marker-free systems, and deep learning

based systems. The first two kind of systems usually apply traditional machine learning
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Figure 2.12: Sample images from a large-scale in-bed pose collection dataset. The image
is adapted from [30].

techniques and need domain expertise for desigining a good feature for the target tasks.

On the other hand, deep learning provides a data-driven option to learn features end-to-

end and thus needs less human intervention. With deep learning, the choices of video

sensors for vision-based seizure analysis can be more flexible, from single cameras to

infrared and depth cameras. In spite of the motivations, using deep learning for seizure

video analysis is still much under-explored, not only exhibited in the limited numbers

of studies in this field, but also the model architectures used. Current architecures used

in this field are mostly combinations of CNNs and RNNs. Indeed, those two neural nets

are among the most famous building blocks in deep learning, and they seem able to give
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promising results in the literature. However, deep learning field is evolving extremely

fast, and since the success of CNNs and RNNs, there have been several powerful models

proposed, such as Graph Neural Networks (GNNs) [31] and the Transformer model [32].

Given that, in this thesis, we include the GNNs and the Transformer model into our seizure

video analysis, aiming to provide some concrete results with these state-of-the-art models.

Besides, deep learning usually needs large volumes of labeled data to train, and it is

usually difficult and expensive to get large volume of labeled seizure videos. This could

be a reason hindering deep learning from being developed in seizure video analysis. As a

silver lining, recently deep learning researchers proposed a work [33] showing how large

volume of unlabeled data can be helpful for target tasks whose labeled data scale is much

smaller. In this research, we also introduce this idea into our seizure video analysis. In

short, after giving a short summary of the literature, we present some complementary

viewpoints and implement them in this thesis. We hope this can provide some inspirations

for the research community working on automated seizure video analysis.
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Data Collection

3.1 Overview

In this section, we introduce how we collect the seizure video dataset for this research.

This part will cover the patient selection criteria, the context about video recording, eth-

ical approval process and codification of the data. In addition, we will show how we use

some data labelling tools and detectors to localize important body parts for better semiol-

ogy analysis. In addition to the videos containing seizure events, we also collected a large

volume of videos without seizures. They are called as ‘contextual videos’, aiming to pro-

vide contexutal information of where seizure is occurring. Finally, we compare our dataset

to the ones collected by other related works, which shows that our dataset is moderately

large in the field of video-based seizure motion analysis.

3.2 Introduction of the curated seizure video dataset

It is important to have a seizure video dataset containing semiology for vision-based

seizure motion analysis. To our best knowledge, there is no such dataset that is pub-

licly available. To conduct experiments and evaluate our proposed methods, we curated

a seizure video dataset, which contains epileptic seizures (ES) and psychogenic non-

epileptic seizures (PNES). The participated patients are selected by Prof. Fabrice Bar-

tolomei and Dr. Aileen McGonigal, from the Epileptology department in the Marseille

University Hospital (a.k.a. the Timone Hospital), France. The research associated with

the collected data is approved by the Institutional Review Board (IRB) in the Marseille

University Hospital, and the patients involved in the dataset have provided the informed

consent statements.

For epileptic seizures in our dataset, video recordings were carried out in the Epilepsy

Monitoring Units (EMUs). The patients are with drug-resistant epilepsy, indicating the
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medication does not work well for them, and instead they need a brain surgery to re-

move the brain regions that cause the seizures for an improved cure. Before undergoing a

brain surgery, the patients need to go through a pre-surgical evaluation, where clinicians

will identify the culprit brain regions that cause the seizures. The evaluation procedures

usually involve a Video-SEEG monitoring in the EMUs. Stereo-EEG (SEEG) is an invasive

approach for monitoring the epileptic discharge within the brain, as shown in Fig. 3.1.

Figure 3.1: (a) Electrodes used in SEEG monitoring. (b) and (c) represent how multiple
depth electrodes sample distributed neural systems in the brain. (d) is an example of the
recorded multi-channel SEEG signals.

Figure 3.2: Video monitoring of epileptic patients. (a). Epilepsy monitoring units at
Epileptology department in the Marseille University Hospital. (b). Samples of video
recordings of patients under SEEG monitoring.

Fig. 3.2 shows how the clinicians monitor the patients in the EMUs, and some video

samples from patients under SEEG monitoring. Besides, for the collected ES videos, we

divide them into subgroups based on the presence of hyperkinetic motor movements.

Neurologists are especially interested in seizures with hyperkinetic motor movements, as

they usually have more complicated and characteristic semiology. The assessment of the

existing of hyperkinetic motor movements are determined by trained clinicians. Some
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examples of hyperkinetic seizures are shown in Fig. 3.3.

Figure 3.3: Selected samples of epileptic seizure featuring hyperkinetic motor movements.

Figure 3.4: (a) Electrodes used and the placement for the scalp EEG monitoring. (b)
Selected samples of patients under EEG monitoring.

For PNES videos, video recordings are also carried out in the EMUs, while the patients

are under Video-EEG monitoring procedures, unlike the invasive SEEG used in the ES

videos. The main context of receiving these patients is to check whether the seizure is

epileptic or non-epileptic. The video appearance gives clinicians clues to this, but the im-

portant factor is the simultaneous recording of brain EEG rhythms, since epileptic seizures

have an epileptic discharge visible on the EEG but PNES do not. Fig. 3.4 demonstrates

some selected samples of the EEG monitoring procedure. All the patients in the PNES
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video are diagnoised with PNES, indicating the seizures are caused by psychological rea-

sons rather than epileptic discharges in the brain. In particular, the collected PNES videos

are with the hyperkinetic motor movement features.

The seizure video clips are segmented from the untrimmed video recordings during a

Video-SEEG or Video-EEG monitoring procedure. The video segmentation is purely based

on the seizure semiology, where we keep the main expression of semiology of a seizure

event. For example, for a tonic-clonic seizure, there are usually three phases involved:

a tonic phase (stiffening), a clonic phase (jerking), and a post-ictal confusional fatigue

phase (relaxation). In this case, we only look to the first two phases.

For patients who participated in this research, there were no external or additional activ-

ities involved other than the regular monitoring procedures. We aim to collect as much

data as possible. In addition to the clinical data from patients under active treatments, we

also analyze the data in a retrospective way, as to include videos dating back to September,

2000. Besides, all the videos are in real conditions. There is no specific device or settings

catering to this research. With the considered points, we are able to develop a challenging

and representative dataset at a moderately large scale in the field.

3.3 More details about the seizure video dataset

The developed seizure video dataset aims to support and evaluate the proposed methods

in this research. The main task in this research is to distinguish ES from PNES, simply

based on the visual information. The motivation is from the importance of the correct

diagnosis of whether a seizure belongs to ES or not, which makes considerable difference

for the follow-up treatments. In this section, we present more details about the curated

seizure video dataset, including some specification, statistics, and codification of the data.

In addition, we show how we use semi-automated tools to annotate ground-truth for

better region-of-interest (ROI) detection.

The collected seizure videos

As mentioned, our seizure video clips are segmented from the video recordings in the

EMUs. Since the time span within our database is across more than 20 years, there were

several camera system changes. As shown in Fig. 3.5, before 2006, the camera system

provided a focus on patient’s face overlapped on the main content of the video frame. For

the system after 2006 and before 2012, the location of the face focus had been parallel to

the whole view. As for videos recorded after 2012, there is no more focus on the frame.

Although zooming in gave a better visualization for clinicians to assess the semiological

features, it might increase the difficulty for preprocessing the videos as clean data for
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Figure 3.5: Changes of camera view settings in the EMUs at the Marseille University
Hospital. Before 2006, there was a zoom-in overlapped with the main frame, as in (a).
After 2006 and before 2012, the focus was located parallel to the main frame, as in (b).

developing automated methods. Later in this section, we will show how we utilize

semi-automated labelling tools to improve the ROI detection in our dataset.

As could be expected due to different recording systems, there is no unified video format

and specification for the untrimmed video recordings in the EMUs. After segmenting out

each seizure for a new video clip, we saved the new clip as its original format, including

the MPG, MP4, AVI, and ASF. We then converted the trimmed clips into image sequences

for each clip at a frame rate of 25 frames per second, while keeping the resolution

unchanged, inlcuding 352 × 576, 352 × 288, 704 × 576, 720 × 576, and 1280 × 720.

We resize the aspect ratio until the frames were fed into the developed models. Table. 3.1

shows some main statistics of our seizure video dataset.

Class name ES PNES
Number of patients 52 29
Number of seizures 235 48
Average seizure duration [sec] 45 52
Min. seizure duration [sec] 7 12
Max. seizure duration [sec] 150 119
Earliest date recorded Jan. 2000 Oct. 2007
Latest date recorded Oct. 2020 Feb. 2021
Number of HKNS HKNS:101, non-HKNS:134 all

Table 3.1: Some statistics about the seizure video dataset. HKNS denotes hyperkinetic
seizures.
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De-identify patient data via semi-anonymization

To protect the personal information of patients from being identified, we carried out a

semi-anonymization on the collected video data. The naming rule for each seizure video

is AaBbXXM_Y Y Y Y , where

• Aa: The first two characters of the surname of the patient.

• Bb: The first two characters of the first-name of the patient.

• XX: Two digit number indicating the ordinal of the seizure.

• M : This is either a S or E. A S in this position denotes the seizure is from a SEEG

monitoring (ES), while a E indicates a scalp EEG monitoring (PNES).

• Y Y Y Y : Year when the seizure was recorded.

For example, if a patient is named Timothy Roberts (a hypothetical name), and he had

his first ES in 2015. Then the semi-anonymized name for the seizure video clip would be

RoTi01S_2015 . This simple nomenclature not only covers enough private information

for developers, but also provides an easier way for clinicians to decode the target patient

for clinical discussion in case.

Semi-automated labelling tools for ROI detection

Our dataset is challenging because it involves different camera systems, changes of

illumination, occlusion issues, etc. To more effectively detect the ROI for semiology

analysis, we utilized some graphical image annotation tools to manually label some ROI

in our dataset for better detection. As shown in Fig. 3.6, we used LabelImg [34] to

annotate the bounding box of face and full body of the target patient. As for keypoint

annotation, as shown in Fig. 3.7, we utilized Visipedia [35] to help label the joints on our

patients, which are exported as a COCO [36] style format. With the annotated images, we

fine-tuned some pre-trained detectors to fit better on our dataset. Fig. 3.8 demonstrates

some selected samples of the detection results. More details about the ROI detection can

be found in Chapter 5.

3.4 The contextual video dataset

After a routine Video-SEEG or Video-EEG monitoring, there could be several video record-

ings at hours for the entire session. If seizures occurs during the session, the medical staff
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Figure 3.6: A demonstration of using LabelImg, a graphical image annotation tool, to
annotate the bounding box of ROI, i.e. face and body.

Figure 3.7: A demonstration of using Visipedia, a graphical image annotation tool, to
annotate the keypoints of the patient. We labelled 11 keypoints, including nose, eyes,
ears, shoulders, elbows, wrists, and hips, for selected frames.

will identify and extract the video segments afterward, and then save them in the database

of the hospital. As for parts where no seizure events are involved, these recordings will be

erased weeks later, because they could be bulky for storage yet not informative in terms

of medical viewpoints.
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Figure 3.8: A demonstration of face region, body region, and (2D/3D) upper-limb key-
point estimation on selected hyperkinetic seizures recorded in different illumination con-
ditions and camera systems.

Nevertheless, from the side of machine learning, these ‘meaningless’ seizure-free videos

might be useful. The reason is that they can provide the visual information of the sur-

roundings/environments of how seizures are captured. In addition, we can have a large
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quantity of them, and the mainstream deep learning/machine learning models usually

favors big data. Given that, in this research, we intentionally collected more than 1000

hours seizure-free videos, and we call them as ‘contextual videos’ in this research. The be-

havior in these contextual videos can be as diverse and natural as those in daily routines,

such as eating, sleeping, chatting with their families, and interaction with clinicians. The

recording conditions include both daytime and night. Some selected samples are shown in

Fig. 3.9. With these seizure-free data, we can utilize some modern algorithms benefiting

from training large unlabeled data [33]. More details about how we exploit these videos

for seizure type classification can be found in Chapter 6.

3.5 Concluding remarks

In this section, we present the details about the definition and the collection process of

our seizure video dataset. To better analyze the semiology, we demonstrate some ROI

detection results with the help of semi-automated tools. In our dataset, there are 283

seizure events and 81 patients involved in total. The numbers make it a moderately

large scale compared to the ones used in other vision-based seizure anlaysis works, as

shown in Table. 3.2. In addition, to allow novel learning algorithms better adapt to our

research problems, we also gather a large amount of non-seizure videos. As can be seen,

the research and the dataset scale in this field are still limited. We hope our dataset can

provide a good basis for successors to develop a larger and more comprehensive one for

better facilitating vision-based seizure analysis.

Research Number of seizure videos Number of patients
Achilles [26] 52 10
Ahmedt-Aristizabal [37] 52 (MTLE:40, ETLE:12) 18 (MTLE:12, ETLE:6)
Karácsony [38] 126 (FLE:85, TLE:41) 35 (FLE:20, TLE:15)
Maia [39] 143 (ETLE:107, TLE:36) 31
Ahmedt-Aristizabal [40] 161 (MTLE:90, ETLE:71) 34 (MTLE:17, ETLE:17)
Ours 283 (ES:235, PNES:48) 81 (ES:52, PNES:29)

Table 3.2: Comparison of the seizure video datasets used in the literature. MTLE, ETLE,
FLE denotes mesial temporal lobe epilepsy, extra-temporal lobe epilepsy, and frontal lobe
epilepsy, respectively.
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Figure 3.9: The contextual videos cover the daily behaviors of patients in the Video-
SEEG/Video-EEG monitoring unit, except for the onset seizure events. They include (a)
eating food, (b) interacting with their family, (c) sleeping, (d) using laptops/smartphones,
(e) reading books, (f) being checked by the clinical staff. The empty settings are possibly
recorded if patients leave the room, as like (g). (h) shows some night conditions.



Chapter 4

Head Movement Analysis for
Hyperkinetic Seizures

This study investigates the time-evolving frequency of head movement of an charateristic

hyperkinetic behavior during epileptic seizures. Two research journal papers have been

published based on this study [41, 42].

4.1 Introduction

Rhythmic movement patterns constitute typical functional motor behaviors across species

and across the lifespan [43], and are considered to arise from subcortical central pattern

generators [44, 45]. Stereotyped non-functional rhythmic movements are observed in

sleep disorders [46], movement disorders [47, 48], and epilepsy [49]. To date, very

little data exist quantifying the time-evolving frequencies of these movement sequences,

which is unfortunate as these may help in elucidating the mechanisms underlying such

pathological behaviors. Semiological “fingerprints” of similar rhythmic movements oc-

curring in both epileptic seizures and sleep disorders have led to speculation of possible

shared mechanisms [49]. However, understanding of these is limited, notably in terms

of how higher cortical circuits might interact with subcortical components of the motor

system to produce similar clinical expressions in conditions with different physiopatholo-

gies [48, 50, 49], even though the neural circuitry involved in repetitive behaviors is

increasingly well characterized from animal models, notably in terms of defining the cor-

ticostriatal circuitry involved. Methods allowing more precise documentation of clinical

and physiological phenomena involving complex motor patterns might facilitate further

investigation and understanding of this relatively unknown domain [51, 50]. Rhythmic

movements are a common feature of epileptic seizures, the best-known example being

clonic jerk movements in the context of generalized tonic-clonic seizures [52, 53]. Other
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Figure 4.1: Samples of the characteristic antero-posterior rocking movement from the
selected 3 patients. In this study, the patients from top to down are called ‘patient 1’,
‘patient 2’, and ‘patient 3’.

seizure-related rhythmic movements involve multi-segmental motor behaviors, which can

involve the axial segment (e.g. rocking movements of the trunk) [54] or upper or

lower limbs (e.g. bicycling-like movements of the lower limbs, hand tapping) [55].

Oro-alimentary automatisms may also occur rhythmically [56, 57]. Amongst possible

methods of movement quantification in neurological disorders (for comprehensive review,

see [58]), there is increasing interest in video analysis techniques, including those based

on deep learning or machine learning, for automated analysis of movements in epileptic

seizures [59, 60, 61, 62, 63] and for motor stereotypies (e.g., in autism [64]). However,

such studies have tended to focus on detection and categorization of movement patterns;

quantification of multi-segmental rhythmic behaviors in terms of time-evolving movement

frequencies has not yet been reported. Here, we describe a series of prefrontal seizures

characterized by highly stereo-typed rhythmic antero-posterior body rocking movements,

analyzed using quantitative video methods as well as electroencephalography (EEG).

4.2 Methods

Clinical data

Videos recorded in the context of presurgical epilepsy evaluation in Timone University

Hospital, Marseille, France were studied. All patients provided written informed consent

for use of data. From a series of 220 cases of frontal epilepsy, 3 patients demonstrated a
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Figure 4.2: Workflow of the proposed approach for head movement trajectory analysis.

characteristic pattern of antero-posterior rocking during epileptic seizures, as can be seen

in Fig. 4.1. Two patients had intracerebral electrode exploration with stereoelectroen-

cephalography (SEEG) and one had surface video-EEG. All had full presurgical work-up

including neuroimaging.

Video method

Videos of seizures with rocking movements were analyzed using a head tracking method.

Recorded seizures in which rocking movements were not clearly visible were excluded.

Each seizure video was converted into an image sequence under 25 frame-per-second and

resized to 512× 512 pixels dimension.

As shown in Fig. 4.2, video processing consisted of four parts: head detection, trajec-

tory denoising, peak detection, and frequency analysis. First, the head of the patient was

detected in each video by utilizing a robust detector: the Single Shot Multibox Detector

(SSD) network [65], a deep learning-based model. We opted for this approach as partial

occlusions and changing environmental lighting conditions, could have jeopardized the

performance of simpler head detection approaches. The location of the head was manu-

ally annotated for 10-15% of the image samples per video, selected randomly, then SSD

was used for head detection. The SSD network is pre-trained on ImageNet [66], a large-

scaled image recognition dataset. The pre-trained weights were used as the initialization

weights for the SSD network while the network was retrained with the manually labelled

samples for fine-tuning the network. After head detection throughout the whole video, the

head movement trajectory was computed in the horizontal and vertical direction. Fig 4.3

demonstrates some head detection results and the head movement trajectory. We can ob-

serve some cyclic patterns in the vertical direction, as the antero-posterior movements are

mainly perpendicular to the camera. The trajectory was then normalized between 0 and

1 for further processing.

To remove the jitter in the trajectory caused by the detector, the trajectory was denoised

in both directions by filtering with Empirical Mode Decomposition (EMD) [67]. EMD

breaks down signals into different components without leaving the time domain. The

components are called Intrinsic Mode Functions (IMFs) and need to satisfy certain condi-

tions as follows:
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Figure 4.3: Selected samples of the head detection and the head movement trajectory from
the cases in Fig. 4.1. For each demonstration, the first row is the image sequence of the
seizure video with head detected. The second/third rows represent the horizontal/vertical
coordinates of the center of the detected bounding box throughout the whole seizure
event. Cyclic patterns are more obvious in the vertical directions, as the antero-posterior
rocking movements are mainly perpendicular to the camera.
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• The number of extrema and the number of zero-crossings must either be equal or

differ at most by one.

• The mean value of the envelope defined by the local maxima and the envelope

defined by the local minima is zero.

Fig. 4.4 shows the procedure of extracting an IMF. The method is purely data-driven

and suitable for non-stationary and nonlinear signals, which corresponds to the conditions

for our movement trajectories. An application of EMD is denoising. It can be achieved by

dropping the high frequency IMFs. Inspired by this, the head movement trajectory was

decomposed into several IMFs. By adding the IMFs with lower frequency components, we

can reconstruct and obtain the denoised trajectory signal, as can be seen in Fig. 4.5.

Peaks of the trajectories in both directions were next detected for calculating the cyclic

head movement frequencies. To identify peaks corresponding to real antero-posterior

movements, we referred to the trajectories in both directions. We defined two functions f

and g, such that f(nx) and g(ny) represent the trajectory value in the horizontal and verti-

cal directions at time-sampled points nx and ny. In addition, nx and ny are denoted as nxp
and nyp respectively, once f(nx) and g(ny) are viewed as peaks. If |nxp − nyp| < T where

T is a threshold for deciding how close the peaks in the trajectories from both directions

are to be considered as real peaks associated with antero-posterior head movement. The

valid peaks are then used to calculate a moving average frequency based on the reciprocal

of the peak-peak duration, in order to inspect the time-evolving frequency properties of

the seizures. The results can be seen in Fig. 4.6. Specifically, take the seizure 5 in Fig. 4.6

as example, the 0-th detected peaks with a peak-peak frequency around at 0.35 Hz rep-

resents the reciprocal of the mean peak-peak duration of the next five antero-posterior

rocking movement episodes from the first detected valid peak. Our medical interpretation

of the results is in the following discussion section.

4.3 Results

Clinical and neurophysiological results

Localization by SEEG showed low voltage fast epileptic discharge in a widespread right

dorsolateral prefrontal distribution for patient 1, and focally in the left orbitofrontal cortex

for patient 2. Patient 3 did not require SEEG for presurgical work-up since non-invasive

investigations including high resolution scalp EEG and positron emission tomography con-

firmed focal right prefrontal epilepsy organisation (right intermediate frontal sulcus). All

3 patients had normal neuroimaging. All 3 underwent subsequent cortectomy, with cure

of epileptic seizures and disappearance of stereotyped behavior, with minimally 2 years’
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Figure 4.4: (a) The procedure of extracting an IMF in EMD. (b) An illustrative signal x(t)
for (a), and its upper/lower envelope and local mean in the first iteration of extracting an
IMF.
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Figure 4.5: On the left, a head movement trajectory (in red) and its seven derived intrinsic
mode functions (IMFs) (in green). On the right, the same head movement trajectory (in
red) and the two denoised trajectories by selecting different IMFs for reconstruction.

Figure 4.6: Peak-peak frequency in hertz for each detected peak in each seizure video.
The color represents individual patients.
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Table 4.1: Data for each video on frequency of rocking movements, as calculated using
automated head tracking.

Seizure 1
(patient 1)

Seizure 2
(patient 1)

Seizure 3
(patient 1)

Seizure 4
(patient 1)

Seizure 5
(patient 2)

Seizure 6
(patient 3)

Duration of seizure-related rocking (sec) 16 20 17 14 40 15
Maximum (Hz) 0.49 1.23 0.76 0.97 0.42 0.79
Minimum (Hz) 0.46 0.77 0.54 0.73 0.33 0.63
Median (Hz) 0.48 1.01 0.63 0.92 0.36 0.72

Standard deviation (Hz) 0.02 0.12 0.06 0.08 0.03 0.05
Mean (Hz) 0.48 1.00 0.63 0.90 0.37 0.71

Coefficient of variation (%) 4.17 12 9.52 8.89 8.11 7.04

follow-up. Etiology of epilepsy was cryptogenic in patient 1 and due to focal cortical

dysplasia in patients 2 and 3.

Video analysis

Six seizure videos with antero-posterior rocking movement from the 3 patients were in-

cluded. Duration of rocking within seizures lasted 15-40 sec (mean 16.5). Mean fre-

quency of rocking movements was 0.37-1.00 Hz (median 0.67) (Table 4.1). Each seizure

was characterized by a stable frequency of rocking throughout its duration, with a mean

coefficient of variation 8.3% (Table 4.1, Fig. 4.7, and Fig. 4.6).

4.4 Discussion

The directionality and regularity of rhythmic axial rocking movements were highly stereo-

typed across seizures and patients, without goal-directed or habitual behavior [68]. Body

rocking also occurs in sleep-related movement disorder [69], or “self-stimulatory behav-

iors” [70] e.g., in autism, as well as in normal infant development [71]. Anteroposterior

spinal rocking is relatively uncommon in epileptic seizures and has only been seen by us

in a context of prefrontal epilepsy; such a pattern occurs in only a small proportion of

seizures involving prefrontal cortex (around 1% in our series). The 3 cases reported here

represent the only ones with this characteristic semiological pattern seen in our Epilepsy

Unit over decades of recording.

The repetition, rhythmicity, cyclicity and topographical similarity suggest a pathophysio-

logical role for a temporal assembly of neural structures acting as an oscillator [72, 73],

with clinical expression reflecting interaction between nervous system activity and biome-

chanical dynamics of the musculoskeletal system [74]. Rocking frequency varied between

individuals and between seizures, within a mean range (0.37-1.0 Hz) overlapping with but

slightly lower than that associated with most physiological rhythmic behaviors (0.8-2 Hz)

[75] and those occurring in sleep disorders (0.5-2 Hz) [46]. Despite the short durations

available for calculation, each sequence showed a stable frequency throughout, in keep-
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Figure 4.7: A. Ictal SEEG trace from patient 1 (10 seconds per page, 50 microV/mm).
Note preictal spiking across a widespread right predominantly dorsolateral prefrontal dis-
tribution, followed by abrupt transition to a low voltage fast discharge in the gamma band
(vertical red line), showing similar distribution as the preictal spikes. A less tonic and
slightly later discharge is seen in electrodes exploring right premotor cortex (top of SEEG
trace). The first semiological sign (sudden onset of antero-posterior rhythmic rocking and
altered contact; vertical blue line) occurs approximately 3 seconds after electrical seizure
onset, at which point slower diffuse rhythmic activity is seen on SEEG. Inset to panel A:
schematic illustration of epileptogenic zone of Patient 1, with right dorsolateral prefrontal
organisation projecting to premotor areas. B. Patient 2: focal left orbitofrontal organisa-
tion of epileptogenic zone, based on SEEG exploration. C. Patient 3: focal right interme-
diate frontal sulcus organisation of epileptogenic zone, based on non-invasive presurgical
evaluation; here, source localisation of HR-EEG interictal data is shown.
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ing with the reduced variability typically associated with stereotyped movements [76].

The coefficient of variation was similar to that reported for healthy gait [77]. It is of

interest that patient 1, who presented 4 seizures with rocking, showed slight differences

in rocking frequency between seizures, suggesting that these were not caused by rigidly

predetermined rhythmic generators. The observation that the rocking frequency differed

somewhat between seizures may reflect individual differences, as for spontaneous natural

rocking [78]. Seizure-specific factors may also have played a role, for example, vari-

ations in frequency of cortical seizure discharge, and degree of synchrony between key

structures, may contribute to differences in clinical output. Higher rocking frequencies

were related to smaller amplitudes (e.g. upper trunk rocking rather than whole body), in

keeping with known biomechanical effects of inertia [55]. Antero-posterior directionality

remained the same throughout each seizure.

Repetitive, rhythmic movement patterns in frontal lobe seizures may be characterized as

stereotypies [55, 48], whose segmental distribution was previously shown to be correlated

with localization of the epileptogenic zone along a rostro-caudal axis: axial/proximal mo-

tor stereotypies were associated with more posterior frontal regions and distal stereotypies

with anterior prefrontal regions [50]. All seizures here showed prefrontal cortex epileptic

discharge, but with different sublobar localization across patients. Thus, the here observed

movement patterns were not directly related to epileptic activity within a single specific

cortical region [55], but suggested an effect involving associative motor regions that

might project to a “final common pathway” underlying the repetitive movements. Clini-

cal expression would likely depend on subcortical circuits triggered by different possible

cortical localizations of epileptic activity [79] and probably specific temporal (frequency,

synchrony) conditions of discharge [56, 51].

From a hierarchical perspective of nervous system organization, abnormal triggering of

innate movement patterns may occur by top-down “release” due to transiently altered dy-

namics within topographically organized cortico-subcortical motor control circuits [80],

as has been suggested for some other seizure patterns involving “programmed” behaviors

(e.g. rhythmic movements related to locomotion or mastication). From an ontogenetic

perspective, fetal somersaults around the transverse axis occur from around 12 weeks’

gestation [81]; in addition, rhythmic stereotypies seem to play a specific developmental

role in normal infants, with rhythmic trunk movements occurring mainly between 6 and

12 months of age [71]. Phylogenetically, rhythmic spinal flexion underlies rectilinear lo-

comotion in some limbless vertebrates [82].

In previous SEEG work on seizure-related oroalimentary automatisms, the authors sug-

gested that functional coupling between cortical structures during seizures may be respon-

sible for a top-down effect on outflow pathways from masticatory cortex [56]. Similarly,

specific synchronization dynamics created during certain prefrontal seizures might allow
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expression of subcortical generators of regular, stereo-typed, rhythmic movement, in this

case involving spinal musculature.

Following the research interests on the intersection of neuronal activity and ictal behavior,

we extend this study with the inclusion of SEEG. In particular, the four seizures with the

corresponding SEEG signals of the patient 1 are analyzed. A finding of spectral correlation

between head movement trajectory and SEEG singals is discovered, suggesting a neural

signature during expression of motor semiology incorporating both temporal features as-

sociated with rhythmic movements and spatial features of seizure discharge [42].

Limitations of our work include the use of a single camera, which allowed 2-D video anal-

ysis. More data allowing more detailed characterization of movements could have been

achieved using a 3-D video approach, through recording with multiple cameras placed at

different angles to the subject. A novel 3-D method, NeuroKinect, has recently been used

to successfully record and quantify movements in epileptic seizures [61]. One specific ad-

vantage of a multi-camera approach in the present series would have been a lateral view

of these movements, which could have allowed assessment of their amplitude. However,

since the present data came from a retrospective series recorded in the conventional way

in our videotelemetry unit, we were obliged to work with the available video data. The

other major limitation is the small number of cases (due to the rarity of this specific semi-

ological pattern), and the possibility that including several seizures from the same patient

was a source of bias in determining the mean rocking frequency of the whole group.

4.5 Conclusion

Automated video analysis confirmed stable frequency throughout rocking sequences in

the prefrontal seizures, suggesting a mechanism involving intrinsic oscillatory generators.

Since localization of seizure onset varied within prefrontal cortex across patients, altered

dynamics within a “final common pathway” involving cortico-subcortical movement cir-

cuits is hypothesized. The results provide a basis for studying the correlation between the

spectrum of EEG and the head movement frequency. Further work on time-evolving fre-

quencies of stereotyped movements across a range of pathologies could help shed light on

possible shared pathophysiological mechanisms; to this end, documentation of kinematic

properties of stereotypies using automated video analysis could be a useful tool. Future

studies could focus on a larger series of seizures with complex motor behaviors, aiming to

identify clinical subgroups based on automated video analysis (including a control group),

and to correlate these with intracerebral EEG signal analysis.





Chapter 5

A Multi-Stream Framework for
Seizure Classification

In this study, we investigate semiology-based seizure classification problems with a deep

learning-based method. The proposed method utillzes information from keypoints and

appearance, from both face and body pose. Knowledge distillation is introduced for regu-

lating the model learning. Two tasks are explored: epileptic/non-epileptic seizure classifi-

cation, and recognition of limb dystonia and emotion in epileptic seizures.

5.1 Introduction

As stated in Chapter 1, seizures can be categorized as epileptic seizures (ES) or psy-

chogenic non-epileptic seizures (PNES), based on the presence of epileptic discharges in

the brain. The clinical management of ES and PNES is different and as such, accurate di-

agnosis is crucial to avoid therapeutic errors. To diagnose the type of seizure, one impor-

tant information comes from semiology [83], i.e., the clinical signs that occur during the

seizure, independently from auxiliary information such as EEG or neuroimaging. The gold

standard diagnostic method is to record habitual events on video-EEG, with simple visual

analysis by an expert in epileptology. Nevertheless, distinguishing between ES and PNES

may be challenging, with low accuracy rates for less experienced clinicians, especially

when seizures of either type involve complex hyperkinetic motor behavior [83]. There

have been many works trying to deal with seizure classification problems with machine

learning based on either EEG signals [84, 85] or visually observed semiology [86, 19].

However, to our knowledge, none so far have specifically focused on distinguishing ES

from PNES.

In this study, we take advantage of recent deep learning frameworks in computer vision

for directly analyzing patients’ semiology, focusing particularly on the body pose and face
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regions. Several related works have been proposed recently [40, 37, 38]. In [40], the

authors use semiological signs from face, body, and hands to classify epilepsy with con-

volution neural networks (CNNs) and recurrent neural networks (RNNs). The work in

[37] also utilized similar strategy with pre-trained CNN features combined with RNNs for

analyzing and fusing the information from face and body pose. The method proposed in

[38] used a I3D [87] backbone to extract spatio-temporal features followed by RNNs as

the classifier.

Rather than using the standard combination framework like CNN-RNN architectures, in

this work, we propose to leverage the recent powerful graph convolutional networks

(GCNs) for seizure classification. The GCN model [88], which operates convolution on

graphs, have been adopted in various tasks, such as skeleton-based human action recog-

nition [89, 90] and facial landmark-based emotion recognition [91, 92]. In this study,

we apply a novel, adaptive GCN (AGCN) [89] in which the topology of the graph can

be learned, on the detected body joints and facial landmarks for seizure classification.

In addition, inspired by [90], we introduce a knowledge distillation (KD) mechanism

from the complementary appearance stream for regulating the keypoint features leaned

by AGCN. To obtain further improvement, we combined the prediction from each AGCN

separately trained on body pose keypoints and facial landmarks with the knowledge dis-

tillation mechanism. To our best knowledge, this work is the first attempt to utilize GCNs

for seizure type classification (ES versus PNES) based on semiological information. The

next section will describe the proposed methodology, followed by experimentation and

conclusion.

5.2 Methodology

5.2.1 Overview

In this section, we describe our proposed multi-stream framework for classifying two types

of seizures, i.e. ES and PNES. The overall architecture is shown in Fig. 5.1. After con-

verting the seizure video into an image sequence, we detected and cropped the region

of patient’s body and face, followed by keypoint detectors for joint and facial landmark

localization. The detected keypoints were then fed into separated AGCN for classification,

which are viewed as Keypoint Streams. The cropped detected region of patient and face

were fed into their corresponding feature extractor, and adopted temporal convolutional

networks (TCNs) for temporal reasoning. The outputs of these streams, termed as Appear-

ance Streams, were then used to transfer the learned knowledge to the Keypoint Streams.

The predictions by AGCN from the pose and face streams were further combined for better

performance. The following are the details for each stream.
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Figure 5.1: Overview of the proposed framework.

5.2.2 Region of interest and keypoint detection

We adopted a fast SSD network [93] with MobileNet [94] backbone for region of interest

(ROI) detection, i.e. detecting patients and their faces. The SSD model was pretrained

on Imagenet dataset [95] and fine-tuned on our dataset. For body joint localization, we

detected the 2D keypoints of upper-limb on the detected patient with Keypoint-RCNN

[96, 97], which is pretrained on MS COCO [36] and fine-tuned on our dataset. The

11 detected points include head, neck, left/right shoulders, left/right elbows, left/right

wrists, left/right hips, and bottom of the spine. The detected 2D keypoints were fed

into a 3D estimator [98] for 3D pose estimation. For face stream, we used a toolbox for

extracting 2D facial landmarks with the detected face. There are 23 keypoints detected for

each face, focusing on eyebrows, eyes, nose, and mouth. The toolbox was not optimized

for our dataset. Fig. 5.2 and Fig. 5.3 show some illustrations and detection results.

5.2.3 The appearance stream

After the ROI detection on a video with T frames, we have the detected cropped region

for patient as RP = {rp1, rp2, · · · , rpT } and for detected face as RF = {rf1, rf2, · · · , rfT },
with rpt ∈ RWp×Hp×3 and rft ∈ RWf×Hf×3. Wp and Wf are normalized width, and Hp

and Hf are normalized height for detected regions for pose and face streams respectively.

We leverage pretrained models for feature extraction followed by a temporal convolution

layer. For pose stream, we used R(2+1)D model [99] pretrained on Kinetics [100] with

the last classification layer removed as backbone to extract spatio-temporal features on a

L-frame snippet, by

vt =ModelR(2+1)D(rpt, rp(t+1), · · · , rp(t+L−1)) (5.1)
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Figure 5.2: (a) Illustration of detected upper-limb joints. (b) Samples of ROI detection
and (2D/3D) upper-limb keypoints detection.

Figure 5.3: (a) Illustration of detected facial landmarks. (b) Samples of facial keypoint
detection on our dataset.
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Figure 5.4: Illustration of the temporal convolutional block. Conv1D represents the 1D
convolution on the temporal axis, followed by a batch normalization (BN) layer, a ReLU
layer, and a Dropout layer. Moreover, a residual connection was added for each block.

Hence for each time step t, the feature represents spatio-temporal information from a

video snippet rather than a still image. As for facial feature extraction, we use the last

layer output before classification layer of a VGG-19 model [101] pretrained on a public

facial expression recognition dataset [102] as

ut = V GG(rft) (5.2)

With the extracted spatio-temporal feature sequence V = {v1, v2, · · · , vT } and facial fea-

ture sequence U = {u1, u2, · · · , uT }, we feed them into respective temporal convolutional

networks for video-level temporal reasoning as the following,

cp = softmax(TCNp(V )) (5.3)

cf = softmax(TCNf (U)) (5.4)

TCNp and TCNf represent the TCNs used for the pose and face streams respectively.

Both of them are composed by stacks of the temporal convolutional block, as shown in

Fig. 5.4, followed by a linear layer as the classification layer. TCNp and TCNf are

trained separately with standard cross-entropy loss for seizure classification. Later we

used these pretrained models as teacher models to distill the learnt knowledge to the

Keypoint Streams.

5.2.4 The keypoint stream

In the keypoint streams, we processed the spatio-temporal dynamics of detected keypoints

for pose and face with their respective AGCN. The used AGCN is the one proposed in [89],



46 Chapter 5. A Multi-Stream Framework for Seizure Classification

in which the topology of the graph can be optimized while training for specific tasks. This

property hence increases the flexibility of the model for graph construction and brings

more generality to adapt to various data samples, such as the highly complex behavioral

patterns in our case. For pose stream, we have detected upper-limb keypoint sequence

KP = {kp1, kp2, · · · , kpT }, with kpt ∈ RCp×Vp where Cp and Vp represent the number of

channels and joints respectively. With pre-defined adjacency matrix Ap ∈ RVp×Vp , describ-

ing the connection relation between the keypoints, we have output logits after softmax

operation as

op = AGCNp(KP , Ap) (5.5)

Likewise for face stream, we have a facial landmark sequence KF = {kf1, kf2, · · · , kfT },
with kft ∈ RCf×Vf where Cf and Vf represent the number of channels and facial land-

marks respectively. With adjacency matrix Af ∈ RVf×Vf , we can have its output likewise

by,

of = AGCNf (Kf , Af ) (5.6)

Instead of computing the cross-entropy for op and of , we introduced the learned knowl-

edge in the Appearance Streams as addressed in the following part.

5.2.5 Knowledge distillation and ensemble

We have demonstrated how to process the appearance and keypoint information for both

pose and face streams. For many multi-stream video analysis cases, it is usual to explicitly

combine the learned knowledge from appearance and keypoint sources for a performance

boost. Nevertheless, in this work we argue the keypoints should be the main information

source for distinguishing seizures. First, we have decent fidelity of the keypoint detection

throughout the whole videos. For the appearance stream, on the other hand, occlusions

often occur in our dataset and so make the information less reliable. Besides, in medical

scenarios like our study cases, privacy and confidentiality are important issues. To align

these concepts, the strategy we adopted was to utilize both the appearance and keypoint

information while training and only use keypoint information during testing. In addition

to the cross-entropy loss, we introduced a standard knowledge distillation mechanism

(KD) [103] while training the keypoint streams. It was implemented by minimizing the KL

divergence between the probability distributions from the pretrained appearance streams

and the keypoint streams. The overall objective losses for pose and face keypoint branches
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Figure 5.5: Illustration of the ensemble of the prediction from the pose and face streams in
the testing phase, with the respective spatio-temporal graphs. The orange line denotes the
temporal edges. AGCN+KD denotes AGCN network trained with additional knowledge
distillation loss with the global context branches as teachers.

are hence as follows:

LCE,pose = −
1

N

N∑
i=1

yi · log(AGCNp(K
i
p, Ap))

+ (1− yi) · log(1−AGCNp(K
i
p, Ap))

(5.7)

LKD,pose =
1

N

N∑
i=1

DKL(TCNp(V
i)||AGCNp(K

i
p, Ap)) (5.8)

LCE,face = −
1

N

N∑
i=1

yi · log(AGCNf (K
i
f , Af ))

+ (1− yi) · log(1−AGCNf (K
i
f , Af ))

(5.9)

LKD,face =
1

N

N∑
i=1

DKL(TCNf (V
i)||AGCNf (K

i
f , Af )) (5.10)

LTotal,pose = LCE,pose + λpLKD,pose (5.11)

LTotal,face = LCE,face + λfLKD,face (5.12)

where DKL(P ||Q) =
∑

j Pjlog
Pj

Qj
, denoting the KL divergence. The λp and λf are trade-

off hyper-parameters, and yi is the label for the i-th example. We train the AGCNp and

AGCNf separately. For the final prediction, we combined the prediction from pose and

face streams for performance improvement, as shown in Fig. 5.5.
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Figure 5.6: Seizure examples in a real-world setting during daytime and night.

5.3 Experimentation

5.3.1 Dataset

In this work, we aimed to differentiate between ES and PNES, and tackle the problem

in a real-world setting, as in Fig. 5.6, rather than a highly controlled environment. We

collected 38 ES videos from 19 patients and 23 PNES videos from 15 patients, resulting in

total 61 seizures and 34 patients. These selected seizures are a subset of a larger curated

video dataset, as depicted in Chapter 3 and Table 3.1. All patients have been recorded

in the Video-EEG Epilepsy unit of the Epileptology department of the Marseille University

Hospital. Both ES and PNES were selected according to presence of hyperkinetic motor

behavior [104], which involve large amplitude, often explosive whole body movements.

Due to the clinical challenges of localizing hyperkinetic ES seizures, and the challenges

of discriminating between ES and PNES, this type of semiology is of great interest to

neurologists [105, 106, 79]. The duration of the seizures ranged from 15 seconds to 120

seconds. Each patient had at least one and at most 6 recorded seizures. Both day and

night conditions were included. All the seizure videos were collected from the video-

EEG monitoring unit in the hospital. All patients had a firm diagnosis of either ES or

PNES, established by expert epileptologists based on their video-EEG data. Patients gave

informed consent for use of video-EEG data. Examples in Fig. 5.6 are from this dataset.

5.3.2 Data preprocessing

All seizure videos were converted to image sequence by 25 fps, and for each video, T

frames were equally sampled for analysis. For video frame length shorter than T , the video
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itself was concatenated to enough frame length for sampling. In this study, T is set to 300.

For image preprocessing, pixel values were normalized to 0 to 1.0, and normalized image

size Wp, Hp, Wf , Hf are 112, 112, 48, and 48, respectively. For the 2D spatial coordinates

of the detected keypoints, the values of the coordinates were normalized between -1.0 to

1.0 w.r.t the width and height of the cropped region. As for the third dimension in 3D

pose estimation, the values were normalized with regards to the maximum and minimum

values at the third axis across the video.

5.3.3 Quality of ROI and keypoint detection

As mentioned in section 5.2.2, we fine-tuned the ROI and keypoint detection with manu-

ally labeled data in our dataset. For the ROI detection, the intersection-over-union (IoU)

is used for quantitative evaluation. The definition of IoU is as formula 5.13, where Bgt
and Bpd represent the bounding box of ground-truth and prediction, respectively. The

detection model used reached an average IoU of 0.89 for face detection and 0.94 for pa-

tient detection. As for the 2D body joint detection, the keypoint evaluation metric for MS

COCO dataset is used. The mean average precision (mAP) at IoU of 0.50 is 0.82. As for

facial landmark detection, the model used was not fine-tuned and we visually checked the

quality of the results.

IoU =
area(Bgt ∩Bpd)
area(Bgt ∪Bpd)

(5.13)

5.3.4 Experimental setup

We conducted both seizure-wise 10-fold cross validation and leave-one-subject-out vali-

dation on our datasets. Stochastic gradient descent (SGD) was applied as the learning

optimizer. The initial learning rate for either of the four streams was 0.001, with linear

learning rate decay scheduling used. The training epochs were set at 50, and we choose

the weights at the epoch where the test sets had the highest accuracy for evaluation. The

batch size was 4. The hyperparameters λp and λf are both set as 0.5, and the video snip-

pet length L is 32. The configuration of AGCNp and AGCNf were the same as [89]. The

kernel size and the dropout rate for both TCNp and TCNf are 4 and 0.4.

5.3.5 Experimental results

Table 5.1 shows the F1-score and accuracy of the 10-fold cross validation experiment,

where

precision =
TP

TP + FP
(5.14)
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model F1-score accuracy
AGCNp 0.79 0.74
AGCNf 0.78 0.70
TCNp 0.75 0.69
TCNf 0.80 0.74
AGCNp +KD 0.86 0.84
AGCNf +KD 0.84 0.82
Ensemble 0.89 0.87

Table 5.1: The 10-fold cross validation result: comparison of F1-score and accuracy
between different models. AGCN+KD denotes AGCN network trained with additional
knowledge distillation loss with the appearance streams as teachers.

recall =
TP

TP + FN
(5.15)

F1–score =
2× precision× recall
precision+ recall

(5.16)

accuracy =
TP + TN

TP + FN + TN + FP
(5.17)

and TP, TN, FP, and FN denote true positive, true negative, false postive, and false nega-

tive, respectively. We take ES as a positive case. As shown in Table 5.1, we can see that

AGCNP performs better than TCNp, indicating that keypoint-based feature is more in-

formative than appearance when correlating body pose to seizure classification. On the

other hand, TCNf slightly outperforms AGCNf , inferring that for seizure analysis based

on face, the appearance could provide more characteristic information than facial land-

marks. Besides, for both the pose and face streams, we can have significant performance

gain by introducing the knowledge distillation on the keypoint branch. This indicates the

importance of utilizing complementary information (i.e. from keypoints and appearance)

for seizure analysis. Lastly, combining the prediction from pose and face stream with our

proposed ensemble method, the performances of the F1-score and the accuracy are 0.89

and 0.87, respectively. This performance improvement shows the effectiveness of inte-

grating multi-stream information. Fig. 5.7 is the receiver operating characteristic (ROC)

curve for different models in the 10-fold validation experiment. The ensemble model has

the highest value of area under the ROC curve (AUC), indicating the best performance

among the models. After the inclusion of knowledge distillation, AUCs of the keypoint

branches can gain a significant boost.

Table 5.2 shows the F1-score and accuracy of the leave-one-subject-out validation experi-

ment. We can observe a performance drop compared to the 10-fold validation experiment,

possibly due to that the inter-subject variance is considered in the setting and makes the
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model F1-score accuracy
AGCNp 0.68 0.62
AGCNf 0.68 0.59
TCNp 0.53 0.56
TCNf 0.68 0.61
AGCNp +KD 0.74 0.67
AGCNf +KD 0.72 0.66
Ensemble 0.76 0.72

Table 5.2: The leave-one-subject-out validation result: comparison of F1-score and accu-
racy between different models. AGCN+KD denotes AGCN network trained with additional
knowledge distillation loss with the appearance streams as teachers.

model F1-score (10-fold) accuracy (10-fold)
[38] 0.80 0.71
[40](pose) 0.82 0.79
[40](face) 0.75 0.72
model F1-score (LOSO) accuracy (LOSO)
[38] 0.64 0.58
[40](pose) 0.70 0.62
[40](face) 0.66 0.61

Table 5.3: We implement the methods in Karácsony et al. [38] and Ahmedt-Aristizabal
et al. [40], and test the model in our task. The table shows the results of 10-fold cross
validation and leave-one-subject-out (LOSO) validation.

task harder. Otherwise the overall result in Table 5.2 basically indicates the same trend

and conclusion as that in the 10-fold cross validation. Besides, we also compare some

deep learning based seizure classification studies with ours, as shown in Table 5.3 and

Table 5.4. Table 5.3 shows how the methods in the related works performed in our task.

Table 5.4 present the results on their own work.

5.4 Recognition of limb dystonia and emotion in epileptic

seizures

With our developed method, here we conduct a pilot test on recognizing the presence of

limb dystonia and emotion in epileptic seizures. We divided the 19 patients with epileptic

seizures in this study into sub-groups based on the presence of limb dystonia or emo-

tion. For patients with limb dystonia, they usually have seizures featuring involuntary

and prolonged muscle contractions that result in abnormal postures. The other patients
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Figure 5.7: The 10-fold cross validation result: the ROC curve for the binary seizure
classification task. AGCN+KD denotes AGCN network trained with additional knowledge
distillation loss with the appearance streams as teachers.

Method Classes Result
A.-Aristizaba et al.
(2018) [40]

MTLE
ETLE

Average ACC:
0.53-0.56

Maia et al.
(2019) [39]

TLE
ETLE

AUC: 0.65

Karácsony et al.
(2020) [38]

TLE
FLE

F1-score:
0.84
AUC: 0.90

Ours ES
PNES

F1-score:
0.89
ACC: 0.87
AUC: 0.93

Table 5.4: Comparison of deep learning-based seizure classification studies. The results
shown are based on N-fold cross validation. MTLE, ETLE, and FLE denote mesial temporal
lobe epilepsy, extra temporal lobe epilepsy, and frontal lobe epilepsy, respectively.
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Figure 5.8: Samples of the selected seizures with limb dystonia. Seizures with limb dysto-
nia usually features involuntary and prolonged muscle contractions that result in abnormal
postures.

Figure 5.9: Samples of seizures without limb dystonia. The ictal behaviors tend to be
more kinetic than those with limb dystonia in general.
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Figure 5.10: Samples of the selected seizures with emotion. Seizures with emotion come
with prominent facial expressions, and usually accompany vocal sounds.

Figure 5.11: Samples of the selected seizures without emotion. The selection criteria is
based on the presence of less notable facial expressions, or cases where faces are mostly
invisible during the seizures.



5.4. Recognition of limb dystonia and emotion in epileptic seizures 55

without the features are then catergorized as a non-dystonia group, where ictal behaviors

tend to be more kinetic than those with limb dystonia in general in our cases. Evaluated

by experienced clinicians, 9 patients (20 seizures) are viewed as with limb dystonia and

the remaining 10 patients (18 seizures) belong to the non-dystonia group. Fig. 5.8 and

Fig. 5.9 show some samples of the seizures in the two conditions.

As for the selection critera for seizures with emotion, patients who exhibit prominent facial

expressions during the ictal phase are considered as such cases. Those seizures are often

accompanied by vocal sounds from the patients as well. Among the 19 patients, 9 patients

(15 seizures) are considered as having seizures with emotion, while the other 10 patients

(23 seizures) are seen as a non-emotion group. Seizures in the non-emotion group here do

not necessarily indicate the absence of emotion, but seizures with milder-to-none emotion

expressions, or the insufficiency/unavailability of face observation during the seizures.

Fig. 5.10 and Fig. 5.11 show some samples of the seizures in the two conditions.

As shown in Fig. 5.1, our proposed method consists of streams regarding pose and face.

To recognize if a seizure has limb dystonia, we adopt the pose stream of the proposed

method to conduct a classification task, i.e. dystonia group v.s. non-dystonia group. On

the other hand, the streams regarding face are used for recognizing if a seizure has emo-

tion involved, i.e. emotion group v.s. non-emotion group. Previous deep-learning work on

identifying dystonia use neuroimaging data (structural and functional MRI) [107], while

we attempt to solely utilize the semiological signs. Besides, in spite of popularity in the

research of automated facial emotion recognition [108], its use is aimed at normal con-

ditions and still relatively under-investigated for medical applications, particularly when

it comes to vision-based seizure analysis. Given that, we explore our proposed model for

semiology-based dystonia and emotion recognition in the same dataset.

We conduct a LOSO validation and use the same experimental setup and configuration as

stated in 5.3.4. The results can be seen in Table 5.5 and Table 5.6. For limb dystonia recog-

nition, AGCNp outperfoms TCNp, suggesting the pose keypoint can be more informative

than the appearance regarding analyzing limb dystonia. With the knowledge distillation

from the appearance stream, AGCNp can get a further boost in the performance, showing

the effectiveness of knowledge distillation in this task. As for recognizing the presence

of emotion in the epileptic seizures, we can observe TCNf has the best result, indicating

the spatio-temporal appearance features of the face can be more crucial than the facial

landmarks for the task.

The automated recognition of limb dystonia or emotion in a seizure event could be of

great interest for neurologists, as the presence of these iconic subtype behavior is im-

portant for the clinical evalutation. Further we may include more subtle ictal behavior

for fine-grained recognition. Besides, our method may suit other clinical applications

where behavior-based assessment is crucial, such as attention deficit hyperactivity disor-
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der (ADHD) for children or Alzheimer’s disease for the elder.

model F1-score (LOSO) accuracy (LOSO)
AGCNp 0.78 0.76
TCNp 0.76 0.73
AGCNp +KD 0.83 0.81

Table 5.5: Results on classifying if seizures have limb dystonia based on our method re-
garding the body/pose stream.

model F1-score (LOSO) accuracy (LOSO)
AGCNf 0.74 0.74
TCNf 0.84 0.80
AGCNf +KD 0.80 0.78

Table 5.6: Results on classifying if seizures have emotion involved based on our method
regarding the face stream.

5.5 Conclusion

In this work, we propose a novel multi-stream framework with knowledge distillation for

seizure classification, specifically for distinguishing between ES and PNES with hyper-

kinetic motor behavior. The contributions are twofold. First, we utilized multi-stream

information from keypoint and appearance for both body pose and face streams. From

experimental results, we give hints about which type of information should be used

based on which stream information is being dealt with for seizure analysis, that is, for

analysis based on body pose, keypoint-based features should be considered and for those

based on face, appearance information seems more crucial. Second, by introducing a

knowledge distillation mechanism, we show the importance of utilizing complementary

information for keypoint-based seizure analysis. The performance obtained on real-world

data for the challenging task of discriminating epileptic seizures from psychogenic

non-epileptic seizures improve the state-of-the-art and are very encouraging with re-

spective F1-score/accuracy 0.89/0.87 for seizure-wise cross validation and 0.75/0.72 for

leave-one-subject-out validation.

In addition, we conduct a pilot test on recognizing the presence of limb dystonia and

emotion in the same dataset based on our propopsed method. The F1-score/accuracy

for limb dystonia and emotion presence recognition can be 0.83/0.81 and 0.84/0.80,

respectively. We hope the pilot test can be inspiring for more semiology recognition
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research in vision-based seizure analysis.





Chapter 6

A Self-supervised pre-training
framework for Seizure Classification

6.1 Introduction

Deep learning has shown its effectiveness in various applications and domains, spanning

from computer vision, speech recognition to natural language processing (NLP). Never-

theless, one of the notorious traits in deep learning is the need for large labeled data

to train. Yet practically, not every field can acquire large labeled data with ease. For

example, for medical applications, it is often expensive to get doctor’s data annotation.

Thus training a supervised model for medical applications with large data could be very

difficult. Recently a popular learning diagram called self-supervised learning (SSL) has

come to many research scientists’ view scope. SSL uses data itself as its own supervi-

sion, and thus needs no external labels for learning. The mainstream SSL framework,

i.e. the pretraining-finetuning paradigm, aims at learning effective representations with

a large volume of unlabeled data, and take advantages of the learnt knowledge in the

pre-trained model for fine-tuning downstream tasks. BERT [33] is one of the iconic SSL

model achieving success in NLP, as shown in Fig. 6.1. The BERT model is pre-trained on

large unlabeled corpus data, i.e. the wikipedia articles, with several learning objectives,

and by simply fine-tuning the pre-trained BERT model, it achieves state-of-the-art results

on 11 NLP tasks. Besides, there are also SSL-based research works gaining improvement

in computer vision [109] and speech processing domains [110]. In spite of the success

of SSL model, it is still an under-explored area for SSL-based model to show its power

in medical domains, in particular for the vision-based seizure video analysis. Our work

makes the first attempt introducing deep learning-based SSL into the research topic in the

literature.
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Figure 6.1: The BERT model pre-trains on large unlabeled corpus data with several learn-
ing objectives (left), and the pre-trained model is fine-tuned on several NLP downstream
tasks (right). The image is adapted from [33].

Figure 6.2: SSL-based pretraining on contextual videos: The input sequence is the "noised"
version of the target sequence, where random frames are masked out and permutation is
applied. We pretrain the encoder of Transformer to reconstruct the corresponding visual
features.
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Figure 6.3: Finetuning phase for seizure type classification: In the fine-tuning phase, an
uncorrupted seizure video sequence is fed into the pretrained model. A classification
layer, i.e. multi-layer perceptron (MLP), is added on top of the pretrained model for the
classification task.

6.2 Methodology

Overview of the proposed model

As mentioned in Section 6.1, acquiring large labeled medical data for training neural

nets could be practically difficult. The proposed SSL-based method aims at leveraging

large volume of unlabeled medical data for learning good representations. Particularly,

as shown in Fig. 6.2, our model is pre-trained on voluminous contextual videos without

labels. A classification head is added on top of the pre-trained model and the whole model

is fine-tuned on the labeled videos for seizure type classification, as shown in Fig. 6.3.

Similar to the BERT model, we adopt the encoder of the Transformer model [32] as our

main model architecture. The Transformer model can process sequential data in a parallel

form by introducing positional embeddings. In addition, the proposed multi-head atten-

tion in the model is another reason that makes the model effective. We will elaborate

more about the Transformer model in the following part.

As for the voluminous unlabeled data we use for pre-training, we call them as "contex-

tual videos". Like the labeled seizure videos, the contextual videos are recorded in the

EEG-Video monitoring unit. They record daily behaviors of patients and possibly other

associated people in the unit. As mentioned in Chapter. 3, the recorded content can be

as diverse and natural as those in daily routines, except that seizure onset events are
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Figure 6.4: Architecture of the Transformer model. The image is adapted from [32].

not included. It is worth mentioning that the large amount of unlabelled data was not

patient-specific, i.e. we did not compare non-seizure activities with seizure appearance in

individual patients. The idea is to get readily available and abundant data that can pro-

vide contextual information in the video-recording environment, and the model can learn

good contextual representations from them in a self-supervised way. Then, the learnt rep-

resentations in the pretrained model are utilized for the downstream task, i.e. the seizure

type classification task.

The method needs no complex task-specific design and with just minimal modification of

the model, our method can present promising results. In addition, we show an entrypoint

of how to take advantage of large, cheap, and unlabeled videos into medical video anal-

ysis. To our knowledge, this is the first work utilizing large unlabeled videos to faciliate

vision-based seizure video anlaysis. The following parts detail the proposed framework.

The Transformer model and the multi-head attention

Here we give a brief introduction of the Transformer model. The Transformer model
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Figure 6.5: (Left) The proposed attention in the Transformer model, and its multi-head
version (right). The image is adapted from [32].

shows state-of-the-art results on language translation tasks. The model introduces

positional embeddings to avoid the recurrent procedures while dealing with sequential

data, and thus be more parallelizable to train. The model is with an encoder-decoder

architecture, as shown in Fig. 6.4. The encoder of the Transformer is adopted as the main

architecture in our model. Besides, the proposed multi-head attention in the Transformer

is another main contribution of the paper. As shown in Fig. 6.5, the proposed scaled

dot-product attention is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6.1)

The matrix Q, V , and V denotes packed queries, keys and values, respectively. The input

consists of queries and keys of dimension dk, and values of dimension dv.

Multi-head attention allows the model to jointly attend to information from different

representation subspaces at different positions.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWi
Q,KWi

K , V Wi
V )

Where the projections are parameter matrices Wi
Q ∈ Rdmodel×dk , Wi

K ∈ Rdmodel×dk ,

Wi
V ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel . The encoder and decoder of the Transformer

have the same layers of the attention layer. One difference is masked attention is used

to prevent leftward information flow in the decoder. The effectiveness of the Transformer
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model makes it one of the most widely used models in the mainstream deep learning

research. In the following part, we elaborate how we utilize it for our target application.

Pre-training and Fine-tuning the model

Inspired by BART [111], another Transformer-based SSL model for NLP, which corrupts

input text with an arbitrary noising function and makes Transformer to reconstruct the

original text, we include this concept of denoising objective into our model in the pre-

training phase. From the contextual video dataset Dc, for each video Vc ∈ Dc, we have

ordered image sequence as Vc = (m1
c , . . . ,m

K
c ). Two noising functions are applied on Vc.

We change the sequence ordering by permuting Vc, and then randomly mask out some

frames, resulting in a noised version of Vc, denoted as Ṽc. The pre-training objective is to

regress the Transformer output of each frame in Ṽc to the visual features of Vc. The L2

regression loss is formulated as:

L(θ) = Evc∼Dc

K∑
i=1

‖hθ(ṽc(i))− r(v(i)c )‖
2

2 (6.2)

Where θ is the trainable parameters of the Transformer, and the Transformer output is

expressed as hθ. We take ResNet152 [4] as our CNN backbone to generate visual features.

The ResNet152 is pre-trained on ImageNet [66], and we remove the last classification

layer to generate a 2048-d feature. We denote it as r as the function for frame descriptor.

After pre-training the Transformer on the contextual video dataset Dc with the defined

objective loss as equation 6.2, we add a multilayer perceptron (MLP), i.e. fully-connected

(FC) layer, on top of our pre-trained Transformer for classification. Then fine-tune the

whole model on the target dataset Ds, which contains seizure videos for seizure type

classification. For each seizure video Vs ∈ Ds, we have an uncorrupted image sequence as

input to Transformer as Vs = (m1
s, . . . ,m

N
s ), with the corresponding binary seizure type

labels ys ∈ L. In the fine-tuning phase, the seizure classification task is optimized based

on the standard binary cross-entropy loss as

LCE = Evs∼Ds(ys · log(Softmax(FC(hθ(vs))))+ (1− ys) · log(1−Softmax(FC(hθ(vs)))))
(6.3)

6.3 Experimentation

In this section, we give the details of the implementation of the experimentation.

Dataset and pre-processing

For pre-training the Transformer model, there are about 13k 10-second clips in the
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Figure 6.6: Patients in image frames are detected and cropped before feeding into the
pre-trained Transformer model for the downstream seizure classification task.

contextual video dataset Dc, resulting in a total 36 hours of clip duration. We convert the

clip into image sequence at 25 fps. We resize the frame into a 128 × 171 dimension, and

while generating the training mini-batch, a random crop of 112 × 112 is applied on the

frames.

In the fine-tuning step for seizure type classification, seizure dataset Ds is used. Ds covers

all the seizure videos specified in Chapter 3. In other words, Ds contains 283 trimmed

seizure videos, and among them, 235 videos belong to ES, and 48 videos are PNES. A

total of 81 patients are involved, in which the ES and PNES class has 52 and 29 patients,

respectively. The length of seizure videos ranges from 7 seconds to 150 seconds. After

converting the seizure videos into image sequence, we detect the target patient with a

SSD detector [93] pre-trained on our seizure video dataset, as shown in Fig 6.6. The

Intersection over Union (IoU) is 0.89. The cropped region is then resized to a 128 ×
171 dimension, and a center crop of 112 × 112 is applied on the frames. Normalization

of image tensors are implemented by subtracting the mean and divided by the standard

deviation across each channel.

Specification of the Transformer

Regarding the specification of the Transformer used in this work, the number of attention

head h is 8. Model dimension dmodel is set as 1024. The maximum position is set as 256.

The number of encoder layer is 6. The number of total trainable parameters is about 78M.

Corrupt the input for pre-training

The video sequence as input for the Transformer while pre-training is corrupted, in terms

of frame ordering and information masking. The input length of the model is set as
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256. A span of consecutive 30 frames are randomly selected and relocated for frame

permutation. As for frame masking, following BERT [33], we replace 15% of frames with

visual MASK tokens. The visual MASK and PAD tokens are tensors with the shape of image

tensors but filled with fixed values of -1.0 and 0.0, respectively.

Training details

We pre-train the Transformer for 60 epochs. The initial learning rate is 0.01, with

a linearly decreased scheduler. Weight decay for pre-training is set as 0.0001. The

pre-training process takes 670 gpu-hours (roughly 14 hours on 48 V100 gpus across 6

nodes). We adopt AdamW [112] as the optimizer. As for fine-tuning the Transformer,

we train it for 50 epochs. Batch size is 16. Except for setting the initial learning rate as

0.005, other training settings are the same as those in the pre-training phase. We test

the whole videos by temporally averaging the predictive results. A dropout rate of 0.5

in the final classifier layer is set. In addition, to mitigate the imbalanced dataset, a class

weight (reciprocal of the number of class clips) is added in the cross entropy loss. The

implementation of the Transformer model is based on the Huggingface library [113].

Experimental results

We perform a leave-one-subject-out (LOSO) validation. The F1-score and the accuracy are

0.82 and 0.75, respectively. As shown in Table 6.1, our results are comparable to other

state-of-the-art seizure classification tasks given different class targets. For ES and PNES

classificaiton, our method outperforms the best results proposed by the approach in Chap-

ter 5. It is worth mentioning the dataset used in Chapter 5 is the subset of the one used

in this section, and the method involves information from multi-streams. This indicates

our proposed Transformer-based pre-training approach can learn robust and generalizable

features for the downstream task. The video-wise confusion matrix is shown in Table 6.2.

6.4 Conclusion

In this study, we propose a Transformer-based self-supervised pre-training framework

for learning features suitable for the downstream task, i.e. classifying ES and PNES

videos. The paradigm aligns with the research direction of self-supervised pre-training

that takes advantage of large unannotated data and learns useful representations from it

for downstream tasks. This may be especially favored for medical applications where data

annotations are usually costly. In our work, a Transformer-based model is pre-trained

on a large volume of contextual videos with denoising pre-training objectives. By simply

fine-tuning the pre-trained model with a minimum model modification, the experimental

classification results can compete with methods from other state-of-the-art works for
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Method Classes Result
A.-Aristizaba et al.
(2018) [40]

MTLE
ETLE

Average
ACC:
0.53-0.56

Maia et al.
(2019) [39]

TLE
ETLE

ACC: 0.83

Karácsony et al.
(2020) [38]

TLE
FLE

F1-score:
0.84

Methods in §5 ES
PNES

F1-score:
0.76
ACC: 0.72

Ours ES
PNES

F1-score:
0.82
ACC: 0.75

Table 6.1: Comparison of deep learning-based seizure classification studies. Our results
can compete to other state-of-the-art seizure classification tasks with different class tar-
gets. For ES and PNES classification, our method outperforms the best results proposed by
the approach in Chapter 5. MTLE, ETLE, and FLE denote mesial temporal lobe epilepsy,
extra temporal lobe epilepsy, and frontal lobe epilepsy, respectively.

(predict)
ES

(predict)
PNES

(actual)
ES 181 54

(actual)
PNES 15 33

Table 6.2: Confusion matrix of the video-wise classification results by leave-one-subject-
out validation.

similar tasks. To our knowledge, this is the first deep learning work exploiting large

unlabeled data for facilitating vision-based seizure analysis. We hope our study can

inspire the research community regarding seizure video analysis to rethink how we can

benefit from large unannotated data.





Chapter 7

Conclusion and Future Work

In this thesis we have proposed and evaluated several methods for video-based seizure

analysis. The proposed methods utilize some of the latest concepts and architectures in the

current deep learning research community. Our experiments demonstrated encouraging

results compared to existing methods applied on vision-based seizure video analysis. We

conclude our work by pointing out key contributions (section 7.1) and discuss short and

long-term perspectives of our work (section 7.2).

7.1 Key Contributions

• Curation of a large-scale seizure video dataset - In collaboration with the Epilep-

tology department in the Marseille University Hospital, we managed to build a large

seizure video dataset aiming to automate semiology analysis. In our dataset, there

are 283 seizure events in total and 81 patients involved. We have 235 epileptic

seizures (52 patients) and 48 psychogenic non-epileptic seizures (29 patients). We

are particulaly interested in hyperkinetic seizures, as the semiology is often complex

yet charateristic. Among the 235 epileptic seizures, 101 seizures are regarded as hy-

perkinetic ones. As for psychogenic non-epileptic seizures, all of the collected ones

are hyperkinetic. The video recording conditions are unconstrained and thus suit-

able for developing automated methods for analyzing real-world seizure cases. To

our knowledge, our curated video dataset is the largest one by far in the vision-based

seizure video analysis literature. In addition, we have high-quality detection results

for all patients’ body and head, and upper-body limbs for some of the seizures. The

detection information can faciliate further research based on this dataset.

• Head trajectory analysis for hyperkinetic seizures - We proposed a simple work-

flow to analyze the head trajectory of 5 hyperkinetic epileptic seizures. The head of
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the patients in each frame of the video was first detected with the Single Shot Multi-

box Detector (SSD) network [65], and the trajectory of the head motion can be

obtained. In particular, the analyzed seizures exhibit charateristic antero-posterior

rocking movement, resulting in cyclic partterns in the head trajectory. The trajec-

tories are then denoised by Empirical Mode Decomposition (EMD) through drop-

ping high frequency intrinsic mode functions (IMFs). Time-evolving frequency are

obtained with the moving-averaged reciprocal of peak-peak duration in the trajec-

tories. Our results confirmed stable frequency throughout rocking sequences in the

prefrontal seizures, suggesting a mechanism involving intrinsic oscillatory genera-

tors. The results can be a basis for further spectral investigation along with EEG

signal [41, 42].

• A Multi-Stream Framework for Seizure Classification - We proposed a multi-

stream framework for semiology-based seizure analysis. The proposed deep-learning

method utillzes information from keypoints and appearance, from both face and

body pose. We use Graphical Neural Networks (GNN) to handle the keypoint fea-

tures, by treating the detected keypoints as a graph. As for the appearance stream,

CNN-based spatio-temporal and facial features are utilized for representing the body

and facial parts. The features are then fed into its Temporal Convolutional Net-

works (TCN) for classification. Besides, knowledge distillation from appearance to

keypoint stream is introduced for regulating the model learning. Two tasks are ex-

plored for the proposed method: epileptic/non-epileptic seizure classification, and

recognition of limb dystonia and emotion in epileptic seizures. For the first task,

experimental results show our best method can outperform other existing methods

used in the literature regarding seizure video anlaysis. As for the second task, it

demonstrated encouraging results for subtype semiology recognition, indicating the

generalizability of our method for the related tasks.

• A Self-supervised framework for Seizure Classification - We proposed a

pretraining-finetuning paradigm for seizure video analysis based on the widely used

Transformer model. The Transformer was pre-trained with a denoising objective to

reconstruct the correct feature on the pre-training data. This aims at learning con-

textual representation that is generalizable for downstream tasks. In this study, the

downstream task is to discriminate between ES and PNES seizures on the full scale

of data we collected. An additional classification layer is added on top of the pre-

trained Transformer for classification. By simply fine-tuning the pre-trained model,

the experimental results show promising results compared to related vision-based

seizure classification works.

The pre-training data we used is the contexutal videos recorded in the EMU where
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no seizure events are involved. Utilizing these unlabelled, easily-accessible data is

important for medical applications, as a large amount of annotation from doctors are

usually costly or unavailable. This research direction aligns with the theme of unsu-

pervised and self-supervised learning that use data itself as its own supervision. To

our knowledge, in the context of video-based seizure analysis research, our work is

the first attempt to take advantage of large-scale unlabelled data with self-supervised

pre-training.

7.2 Future Work

7.2.1 Short-term Perspectives

• Generalizing the pre-trained model for other seizure-related tasks - We have

pre-trained a Transformer model with a large amount of unlabeled video data. It has

shown that the learned contextual representations can be used for seizure classifica-

tion task. A simple and expected extension of the model usage could be utilization

for other vision-based seizure-related tasks, such as seizure detection or fine-grained

semiology recognition.

• Improve the video dataset - Data is the fuel for deep learning, and there is never

too much of them. A continual improvement of our dataset, in terms of quality and

quantity, can be important for the seizure analysis research community. Thanks to

the extensive experiences and patient cases with SEEG monitoring in the Marseille

University Hospital, a conceivable next step is to add the brain region category for

epileptic seizures. It may allow a new research aspect. Besides, more new and

retrospective cases will be considered for collection once the semiology of the seizure

are of interest.

7.2.2 Long-term Perspectives

• Improve model interpretability via vision-and-language learning - For AI in med-

ical applications, doctors would like to know the reason why a model gives such pre-

dictions. Nevertheless, highly explainable models, such as Decision Trees, usually

give poorer performance than those with low interpretability, such as deep neural

network models. The trade of between performance and interpretability of machine

learning models in healthcare applications is still an open topic. Given the recent

success of vision-and-language research with Transformer [114, 115, 116], it makes

us rethink if we can improve the model interpretability via text/language. Language

accounts for a large portion of how humans communicate. It would be interesting
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if we can have a model that can provide both a prediction (e.g. seizure type) and

an explanation (e.g. clinical description of a seizure). The model then would not

be a pure black-box for doctors, and doctors could have an idea of how data are

perceived and how predictions are made by the model.

• Multi-modal self-supervised pre-training with EEG/neuroimaging data - In this

thesis we propose a self-supervised pre-training paradigm solely based on video data

for vision-based seizure video analysis. It is natural to think if we can include other

accessible medical data as a multi-modal framework. Data from different modalities

usually contain complementary information, and thus have potential to improve

the overall performance. In the context of seizure analysis, along with the video

data, it would be interesting to inlcude auxiliary data such as EEG or neuroimages

for multi-modal self-supervised pre-training. The learned contextual multi-modal

features could be useful for downstream tasks where multi-modal data is involved,

e.g. predicting seizure type with both video and EEG/neuroimages.

• Applications for other behavioral disorders - One advantage of our proposed

methods in this thesis is that they are not limited for seizure anlaysis. They also can

be suitable for other video-based behavioral disorder analysis, such as Alzheimer’s

disease for the elder or ADHD for the children. These disorders may contain charac-

teristic behaviors, which form a basis for correct diagnosis by clinicians. Yet subtle

changes or features may be hard to recognize sometimes, and we think our proposed

methods have potentials to be helpful regarding general behavioral disorder analysis

based on vision information.
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