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* % Résumé xx
]

Dans une situation de prise de décision collective, les régles de décision sont généralement
utilisées pour agréger les avis des membres de la collectivité en un résultat final. A cet effet,

plusieurs modéles de décision ont été proposés et étudiés dans la littérature, notamment

les jeux simples par ( ), les jeux de vote avec abstention par
( ), les (j,k) jeux simples par ( ) et les jeux
simples continus introduits par ( ). Notre travail porte sur I’étude des jeux simples

continus. L’une des problématiques centrale commune aux classes de jeux précédents porte
sur le probléme de la mesure du pouvoir de décision, autrement dit, peut-on formaliser
I’aptitude d’un membre de la collectivité a influencer le résultat final? L’indice de Shapley-
Shubik défini par ( ) ainsi que la relation d’influence de

( ) font partie des outils qui ont été congus pour évaluer le pouvoir de décision dans un
jeu simple. Ils ont été généralisés aux (j, k) jeux simples; puis aux jeux simples continus.
Sur ces classes de jeux, beaucoup de défis mathématiques restent a relever, notamment ceux
d’axiomatisation et de comparaison de ces mesures de pouvoir.

Dans la premiére partie de notre travail, nous montrons que les jeux simples continus
comme fonctions a plusieurs variables sont Riemann intégrables; ce résultat permet de
justifier que 'extension de l'indice de Shapley-Shubik aux jeux simples continus proposée
par ( ) est bien défini. Nous montrons en plus que 'indice de Shapley-Shubik
sur les jeux simples tout comme sur les (j, k) jeux simples est une discrétisation de celui
des jeux simples continus. Dans la deuxiéme partie, nous proposons une formule simple et
pratique de I'indice de Shapley-Shubik sur les (j, k) jeux simples et nous fournissons la toute
premiére justification axiomatique de cet indice. Nous obtenons aussi deux caractérisations
du méme indice dans le cadre des jeux simples continus. Dans la derniére partie, nous
étudions les propriétés de la relation d’influence introduite par ( ) sur les jeux
simples continus. Principalement nous caractérisons la classe des jeux simples continus sur
laquelle cette relation est compléte et nous montrons qu’elle est un préordre dés qu’elle est
compléte. Pour comparer la relation d’influence et le préordre induit par I'indice de Shapley-
Shubik, nous proposons une condition suffisante pour que ces deux relations coincident.

Mots clés: Jeux simples; (j, k) jeux simples; jeux simples continus; indices de pouvoir;

relation d’influence; indice de Shapley-Shubik.
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* % Abstract *xx
-

In the context of collective decision-making, decision rules are typically used to aggregate
the opinions of community members into a final outcome. For this purpose, several decision

models have been proposed and studied in the literature. This is the case for simple games

by ( ), voting games with abstention by ( )
(7, k) simple games by ( ) and continuous simple games introduced
by ( ). Our work focuses on the study of the continuous simple games. One of

the central problems common to the previous classes of games concerns the issue of power
measurement. In other words, can we formalize the ability of a member of the community to
influence the final outcome? The Shapley-Shubik index, see ( ) and
the influence relation introduced by ( ) are tools that were designed to evaluate
power distribution in a simple game. They were generalised to (j, k) simple games and to
continuous simple games, see ( ), ( ) and ( ). For
these classes of games, many mathematical challenges are still to be tackled, principally
those of axiomatizing and comparing of these power measurements.

In the first part of our contribution, we show that any continuous simple game viewed
as a multivariate real-valued function is Riemann integrable; this result allows us to justify
that the extension of the Shapley-Shubik index proposed by ( ) is well defined in
the whole set of all continuous simple games. We also show that the Shapley-Shubik index
for simple games as well as for (j, k) simple games appears as a special discretization of
that one for continuous simple games. In the second part, we propose a rather simple and
convenient formula of the Shapley-Shubik index for (7, k) simple games and provide the first
axiomatic justification of this index. We also obtain two characterizations of the same index
in the context of continuous simple games. The last part of our investigation leads us to the
study of the properties of the influence relation introduced by ( ) on continuous
simple games. We mainly characterize the class of continuous simple games on which this
relation is complete, and show that it is a preordering whenever it is complete. In order to
compare the influence relation and the preordering induced by the Shapley-Shubik index,
we provide a sufficient condition for which these two relations coincide.

Keywords: Simple games; (j, k) simple games; continuous simple games; power indices;

influence relation; Shapley-Shubik index.
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* % Introduction xx
-

In many organizations around the world, the most important decisions are usually taken by
a committee of experts or in a democratic context by voters (players) through a decision-
making rule. For example, in a collective decision-making situation where the parliament
must decide whether to adopt or reject a bill, each member is usually asked to vote “yes”
if he is in favour of passing the bill and “no” if he is against it; the motion is adopted or
not depending on the collective strength of members who vote “yes”. Each parliamentar-
ian therefore has two levels of approval: “yes” or “no” and the collective decision is either
“adoption” or “rejection”. Simple games (binary decision rules) are proposed in the liter-
ature to formalize such decision-making contexts. However, not all decisions are binary.
For instance, in some real electoral systems such as the United Nations Security Council,
the United States Federal System and the European Union Council of Ministers, absten-

tion plays a key role in the decision-making process. It is seen as a third level of approval

between “yes” and “no”. Several models among which that of ( ), the general-
ized binary constitutions, see ( ) or ( )
and the ternary voting games of ( ); take into account these

contexts where players have three options of voting to express their opinions. In general,
there might also be any number j > 2 of alternatives that can be chosen from. To this
end, previous models were generalized to (j, k) simple games by ( ),
where 7 is the number of ordered alternatives in the input, i.e., the voting possibilities, and
k the number of ordered alternatives for the group decision. Simple games can be viewed
as (2, 2) simple games; generalized binary constitutions and ternary voting games as (3, 2)
simple games and ( ) games as (3, 3) simple games. The models presented
above can be considered as discrete, since the input and output alternatives are finite. Then
those games can not covered some collection of economics problems such as, tax rates and
spending, where we have a continuum of alternatives in the input. Mimicking the properties
of a simple game, ( ) introduced the continuous simple games, where the set of

individual alternatives as well as the output set is the real interval [0, 1]. More general mod-

els with a continuum of alternatives exist in the literature, see, for example ( ),
(2000), (2007), (2009) and
( ), for some variants of games with a continuum of alternatives. Our
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Introduction

thesis is focused on continuous simple games. In fact we aim to study the links between
simple games, (j, k) simple games and continuous simple games. To this end, we show that
simple games as well as (j, k) simple games are covered by continuous simple games using
some natural embedding. This gives a coherent story condensing the different variants for
committee decisions in one common framework.

One of the fundamental issues that is common to all models of collective decision making,
we just mentioned, is the measurement of a decision maker’s ability to affect the final
outcome. In the literature, two approaches of solving this problem have been presented.
The quantitative approach, consists in associating each n-players game v, with an n-tuples
of real numbers, called power distribution in the game v, the ith component of which is
interpreted as a numerical evaluation of the influence that player ¢ can exert on the final
outcome. In the context of simple games, several power indices were designed to evaluate
the power distribution. For a short list of commonly used, voting power indices, the reader
is referred to ( ) ( ), ( ),

( ) or ( ). A larger list of power indices can be founded in

( ). A generalization of the Shapley-Shubik and Banzhaf-Coleman indices was

proposed on voting games with abstention by ( ), and few
years later on (j, k) simple games by ( ) and ( ). The Shapley-
Shubik like index for continuous simple games was motivated and defined in ( ).

The qualitative approach allows to classify players according to their influence in the game.
For simple games, ( ) introduced the influence relation, and a weak version of this
relation was introduced by ( ). ( ) extended the
influence relation to voting games with abstention. For (j, k) simple games and continuous
simple games, several variants of the influence relation were proposed respectively by

(2011) and Kurz (2014).

The existence of a multitude of power measurements on the same class of games has
given rise to two major concerns: the axiomatization of power indices and the comparison
of power theories resulting from the two approaches. The axiomatization of a power index
allows to explore its features and its relevance using some intuitive properties called axioms.
With regards to the issue of axiomatization, the Shapley-Shubik index is one of the most
established power indices for committees drawing binary decisions. The first axiomatic
justification of the Shapley-Shubik index for simple games was given by ( ) using
axioms of Efficiency, Symmetry, Null player and Transfer property. Nowadays, several
results of characterization of this index are available in the literature, for instance,

( ) provided a new axiomatization by substituting the classical axioms
by more transparent ones in terms of power in collective decision making procedures;

( ) show that the characterization result of ( ) still holds if
the efficiency is replaced by a weaker axiom called gain-loss property.

To the best of our knowledge, no axiomatization result of the generalized Shapley-Shubik
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index to the full class of (j, k) simple games, as well as to continuous simple games is available
in the literature. These characterization problems constitute a major challenge in this thesis.
Our investigations have successfully led us to alternative axiomatizations of the Shapley-
Shubik index not only on (j, k) simple games; but also on continuous simple games. More
precisely, we introduce on both classes of games the notion of average game, which is a
TU-game associated to each game that is a (j, k) simple game or a continuous simple game.
This notion is then used to formulate the new axiom of average convexity, which, combines
to efficiency, symmetry and null player property leads to a characterization of the Shapley-
Shubik index. The average game itself seems to be a very natural object on its own and
has some nice properties. Indeed, the Shapley value of the average game of a given game
v (a (j, k) simple game or a continuous simple game) coincides with the Shapley-Shubik
index of the game v. Moreover, this latter property emerges to a functional formula for the
Shapley-Shubik index for (j, k) simple games which is better suited for computation issues.
A similar result was obtained in ( ) for the Banzhaf index of a (j, k) simple
game.

On continuous simple games, the first characterization result of the Shapley-Shubik
index is obtained by transferring all the axioms used on (j, k) simple games. Within the
framework of continuous simple games, we motivate and define two new axioms: our axiom of
Homogeneous Increments Sharing can be seen as a correspondent to the axiom of Symmetry
Gain-Loss introduced by ( ) in the context of simple games;
while the axiom of Discreteness bridges power distributions in continuous simple games
with those from a specific class, the class of discrete continuous simple games that are
regular. These axioms together with efficiency and null player property lead to a second
axiomatization of the Shapley-Shubik index for continuous simple games. Furthermore, to
justify the relevance of the Shapley-Shubik index for continuous simple games, we show that
the Shapley-Shubik index for simple games, as well as for (j, k) simple games, occurs as a
special discretization.

The problem in comparing power theories is whether or not any two theories of power
induce the same ranking order on the set of players. This question was initially addressed
within the class of simple games, ( ) proves that the preorderings induced
by the Shapley-Shubik and Banzhaf-Coleman indices coincide on the subclass of weighted
simple games. ( ) generalize earlier result of ( )
by showing that the influence relation and the preorderings induced both by the Shapley-
Shubik index and the Banzhaf-Colemann index coincide if and only if the game is swap-
robust. On the class of voting games with abstention and that of (j, k) simple games,
similar results were obtained, see ( ), ( ) and
( ). To the best of our knowledge, neither a study of the influence relation of continuous
simple games nor it comparison with the preordering induced by the Shapley-Shubik index

has been made. One of our main goal in this thesis is to make an in-depth study of that
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relation and conduct an ordinal comparison with the Shapley-Shubik index. To this end,
we firstly extend to continuous simple games the notion of swap-robustness introduced by

( ) on simple games and generalized to voting games with abstention
by ( ). After showing that the influence relation of continuous simple
games is neither transitive nor complete in general, we show that this relation is complete if
and only if the game is swap-robust; additionally we show that it is transitive whenever it
is complete. This result thus generalizes that of ( ) on simple games
and that of ( ) on voting games with abstention. In order to compare
the influence relation and the preordering induced by the Shapley-Shubik index, we provide
a sufficient condition for which these two relations coincide.

A detailed presentation of the main ideas we just sketch above includes four chapters
as follows. In Chapter 1, we present the models of simple games, (j,k) simple games
and continuous simple games. We then show that the class of simple games and that
of (j,k) simple games can be regarded as a subclass of continuous simple games. The
relations between the Shapley-Shubik index defined on the different classes of games are
also established. The axiomatization of the Shapley-Shubik index for (j, k) simple games is
provided in Chapter 2. More precisely, after showing that the extension of classical axioms
over (7, k) simple games are no longer sufficient to uniquely characterize the Shapley-Shubik
index, we introduce the notion of average game that leads to the axiom of average convezity.
The latter axiom with efficiency, symmetry and null player property characterize our index.
The independence of axioms is also proven. Chapter 3 is devoted to the axiomatizations of
the Shapley-Shubik index for continuous simple games and to the independence of the axioms
used. In Chapter 4, we focus on the study of the influence relation of continuous simple
games and its comparison with the preordering induced by the Shapley-Shubik index. The
results obtained in this thesis suggest many other directions of research. In the conclusion,
after a summary of the work carried out, we highlight some of these lines of future research.
In order to illustrate the technical details and subtleties, detailed examples are given in the

appendix.
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IRl Chapter One [EEES

From simple games to continuous simple

games

In this chapter, we present some basic concepts related to simple games, (j, k) simple games
and continuous simple games. We mainly establish some preliminary results that are useful
in the sequel. More precisely, we provide a Shapley-type formula for (j, k) simple games
which is an alternative to its cumbersome presentation using roll-call and pivotal voters
of several levels. This result on the simplification of the Shapley-Shubik power index is
similar with the one obtained by ( ) on the analytical formula of the
Banzhaf power index. Another achievement is the proof that, the Shapley-Shubik index
for continuous simple games introduced by ( ), using integrals is well-defined.
Moreover, we show that the Shapley-Shubik index for simple games as well as for (j, k)
simple games, appears as a special discretization of the Shapley-Shubik index of continuous
simple games.

The present chapter is organised as follows: Section 1.1 is devoted to the presentation
of the simple games, (j,k) simple games and the Shapley-Shubik index of those classes
of games. Section 1.2 emphases on preliminary results on the continuous simple games.
We end with Section 1.3 which provides relationship between the Shapley-Shubik index for
continuous simple games and its correspondents on simple games and (j, k) simple games.

It should be noted that throughout this thesis, we adopt the following notations and
definitions:

N = {1,2,...,n} is a finite set of players (or voters), with n > 2. A non-empty subset
of N is called a coalition and the set of all coalitions of N is denoted by 2V. Given two
coalitions S and 7', we write S C T'if S C T and S # T'. Consider a finite set A, |A| denotes
the cardinality of A. For easier reading, capital letters are reserved for coalitions (such as
N, S, T, J, K, ...), while the corresponding small letters (n, s, t, j, k, ...) denote their
respective cardinalities when there is no ambiguity. Given a coalition S C N and a player
i € N, we will simple write S + ¢ instead of S U {i} and S instead of N\S.

If F is a nonempty subset of R (R is the set of all real numbers and R, the set of

all non negative real numbers); E™ denotes the set of all n-tuples © = (21,22, ,x,),

UYI: Ph.D Thesis Hilaire TOUYEM ©UYT 2020




1.1. Simple games and (j, k) simple games

where z; € E for all 1 < i < n. Given two n-tuples =z = (1, x2, ..., ,) € E™ and
Yy = (Y1, Y2, -, Yn) € E™, we write x <y (resp. z < y) if x; < y; for all 1 < i < n (resp.
x <X yand z # y). For instance, consider z = (1,2,3), y = (1,3,3) and z = (3, 1,0) elements
of R3. We have x < y; x and z are not comparable.

Consider € E™ and S € 2V, x5 denotes the s-tuple (%), and x_g = x5.. Moreover,
we simply write x; (resp. x_;) instead of xyy (resp. z_g;y). Consider a € E, by slightly
abusing notations we write a € E™, for the n-tuple where each component is a, for example,
0=(0,0,---,0)and 1 = (1,1,---,1).

Here are some distinctions on intervals of real numbers with bounds a and f:
o [o,f]={zeR:a<z <}
o Jo,fl={reR:a<z< b}
e [0,0[={reR:a<z< b}
o Jo,fl={reR:a<z <[}

A permutation of N is a bijection from N to N. We denote by S,, the set of all per-
mutations on N. Given two players ¢ and j, 6;; denotes the permutation of N that only
interchange 7 and j. In other words, 0;; is the transposition of i and j. For any permutation

7 € S, and for any n-tuple € R”, 7(x) is the n-tuple defined by 7(x) = (2r¢;))ien-

1.1 Simple games and (j, k) simple games

This section comprises three subsections: the first one is devoted to the presentation of
simple games while the second is dedicated to (j, k) simple games. The third subsection
presents the Shapley-Shubik index of each of the two models of games. In the context of
(7, k) simple games, we provide a simplified formula of the Shapley-Shubik index.

1.1.1 Simple games

In a parliament for example, amending a proposal generally opposes two issues (adoption
and rejection) and each player is offered two opportunities (to vote for adoption or for
rejection). A vote profile on a given proposal is then any collection that precises the opinion
of each player. Given a decision rule, the outcome of each possible vote profile is either
adoption; or rejection. A monotonicity condition guarantees that adding more support to
an outcome is never harmful. For instance, if the outcome at a profile is adoption and
some players turn their opinions from rejection to adoption, the collective decision remains
unchanged.

More formally, for a given proposal let 1 stands for adoption and 0 stands for rejection.
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1.1. Simple games and (j, k) simple games

DEFINITION 1.1.1. A vote profile (profile) is any collection = € {0, 1}".

Note that for a given player i, x; = 1 means that ¢ votes for adoption of the proposal,

while x; = 0 means that ¢ votes for its rejection.
DEFINITION 1.1.2. A binary decision rule on N, is any map R : {0, 1}" — {0, 1}.

Given a binary decision rule R and a profile z, R(x) = 1 means that the proposal is
adopted when profile x occurs and R(x) = 0 means the rejection of the proposal when profile

x occurs. The following definition of simple games slightly reformulates the one given by

(1997)

DEFINITION 1.1.3. A simple game on N 1is any binary decision rule v on N that

satisfies the following conditions:

(1) if x =1, then v(z) = 1;

(2) if x =0, then v(z) = 0;

(3) if x and y are two profiles such that = <y, then v(z) < v(y).

Condition (1) means that a proposal for which all players are in favor must be adopted.
In the same way, condition (2) means that a proposal which is unanimously rejected by all
the players must be rejected. Condition (3) describes the monotonicity of the rule, which is
a desirable property of simple games. The set of all simple games on N will be denoted by
SG,.

Denote by P(N) the set of all subsets of N. Given a profile x € {0, 1}", pose S, =
{i € N, z; = 1}. The mapping that associates a profile x with the set S, is one-to-one and
onto. Therefore, {0, 1}" is in one-to-one correspondence to P(N). This allows us to give

an alternative definition of a simple game using coalitions.

DEFINITION 1.1.4. A simple game on N is any map v : P(N) — {0, 1} such that
v(0) =0; v(N) =1 and for all SCTT C N, v(S) < v(T).

Given a coalition S C N, v(S) = 1 means that S is a winning and v(S) = 0 means that
S is a losing. Given a simple game v on N, the set of all winning coalitions denoted W(v) is
sufficient to uniquely define v. A winning coalition such that all proper subsets are losing,

is called minimal winning coalition.

DEFINITION 1.1.5. A simple game v (on N) is a wnanimity game if there exists a
coalition ) # T C N such that v(S) =1 iff T C S. As abbreviation, we use the notation

vr for unanimity game with defining coalition T'.
DEFINITION 1.1.6. A simple game on N is :

e proper if the complement N\S of any winning coalition S is losing;
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1.1. Simple games and (j, k) simple games

e strong if the complement N\S of any losing coalition S is winning;
e constant-sum (decisive) if it is proper and strong.
The conditions of properness and strongness prevent instability in a simple game.

DEFINITION 1.1.7. A simple game v is weighted if there exist a quota ¢ > 0 and
positive real numbers wy, wsy, ... w, such that for all coalition S, v(S) =1 if and only

if w(S) =Y ;cqwi > q. Such a game is denoted [q : wy, wy, ..., wy).

EXAMPLE 1.1.1. v = [4 : 3,2,1,1] is a weighted simple game such that W(v) =

UL 25 {035 {1,45{1,2,3};{1,2,4};{1,3,4};{1,2,3,4}; {2, 3,4} }.

The minimal winning coalitions of this game are {1,2}, {1,3}, {1,4}, and {2,3,4}.
DEFINITION 1.1.8. A TU-game on N is any mapping v : 2V — R such that v(@) = 0.

Note that any simple game on N is a {0, 1}-valued and monotonic TU-game on N.

defined a value of a given TU-game v as follows:
(1953)
— Dl(n—s)!
Shap,(v) = Y (s )nﬁn D 10(S) — w(S\{i1)] for any i€ N (1.1)
i€ESCN )

1.1.2 (j,k) simple games

Several voting situations can be modeled by simple games that give each player two issues
of voting: “adoption” and “rejection”. These decision-making procedures do not take into
account the fact that a player has the possibility to abstain, yet abstention plays a key
role in some decision-making mechanisms such as the one of the United Nations Security
Council in its current version. ( ) introduce ternary voting
games that take into account abstention as an alternative for players.

( ) extend this class of games by introducing the (j, k) simple games where j is the
number of ordered alternatives in the input, i.e. the voting possibilities, and k£ the number
of ordered alternatives for the group decision. This section, presents the model of (j, k)
simple games.

We assume that j > 2 and k£ > 2 and consider the alternative definition of a (j, k) simple

game given by ( ). For this, pose J = {0, ---, j — 1} the set of individual
approval levels of the players (j — 1 is the highest, follow by 7 — 2 and so on), J" the set of
all profiles of approval levels (profile) and K = {vy, vq, -+, vx} the set of ordered voting
outcomes (v; < vy < -+ < V).

DEFINITION 1.1.9. A (j, k) simple game on N is any mapping v : J* — K that

satisfies:

e v(0)=v; and v(j — 1) = vy;
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1.1. Simple games and (j, k) simple games

e for all profiles z,y such that x <y, v(z) < v(y).

The set of all (j, k) simple games on N is denoted by JK,. Note that the values vy,
Vg, - -+, U are not necessarily numerical. For example, an ordinary simple game may be
identified to a (2,2) simple game for which the values of outputs set is {lose, win} with
lose < win. We present below a way out (see ( )) to numerical evaluation of a

(7, k) simple games with non real values as outputs.

DEFINITION 1.1.10. Let v be a (j,k) simple game on N. A real numeric evaluation
of v is any mapping « : K — R that assigns for each element v; of K the real number

a(v)) = a; conserving the order i.e. oy < ayyy for each 1 <[ <k —1.

It is usually assumed that a; = 0. The uniform numeric evaluation is defined as the

map p such that yy =1—1forall 1 <[ < k.

NotAaTION 1.1.1. ( , , Definition 2.3)

For any (j,k) simple game v and a numeric evaluation a, we will associate a nmew
(7, k) simple game denote “v which assigns a quantitative numeric output set instead
of a qualitative ordered output set of v. Note that, in the case of uniform numeric

evaluation, the associated game is simply denoted v instead of v.

In order to illustrate the definition of (j, k) simple game, consider the following example

taken from ( ).

EXAMPLE 1.1.2. [The grading system at the Polytechnic School of Manresa|
The academic committee is formed by three professors who evaluate students. Each
professor evaluates a different aspect: one assesses the theoretical contents, another the
laboratory training, and the last considers the exercises written by the student. Each
student then is assigned a single, final mark compounded from the separate marks
proposed by the three professors. The possible final marks that a student can get are:
excellent (vg), notable or creditable (vs), pass (ve), and fail (v1) with v; < vy < vz < vy.
The possible marks that a professor may assign are: right, regular and wrong (right>
regular > wrong), and the rule that determines final marks is given by the (3,4) simple
game v defined as follows: let N = {1,2,3} be the set of professors, where 1, 2 and 3
refers respectively to the theory professor, the practical laboratory professor and to the
exercises professor; J = {wrong, regular, right} := {0,1,2}. For any x = (1, 29, x3) € J*
we set Ny(z) = {i € N,z; = [}, then the collective decision making rule v is defined by :

(

vy if 2 € No(z), |No(z)| > 2 and Ny(z) =0

vg if No(x) =0 and (Nao(z) = {2} or Nyi(z) = {2})
v(x) =4 vy if (|No(z)| =1, |[Ni(z)] =2 and 2 € Ny(z)) or
(INa(2)| =2, Ni(z) =0 and 1 € Ny(z))

vy otherwise

UYI: Ph.D Thesis m Hilaire TOUYEM ©UYT 2020




1.1. Simple games and (j, k) simple games

So, under the uniform numeric evaluation, the game v is defined as follows:

;

3 if 2 € No(z), |No(z)| > 2 and No(z) =0
2 if No(z) =0 and (Na(x) = {2} or Ny(z) = {2})
v(z) =49 1 if (|[No(z)] =1, |[Ni(2)| =2 and 2 € Ny(z)) or

(IN2(z)] =2, Ni(z) =0 and 1 € Ny(x))

0 otherwise

\

1.1.3 The Shapley-Shubik index for simple games and for (j, k) sim-

ple games

In a situation of collective decision-making modeled by a simple game or a (j, k) simple
game, one of the major concerns consists in evaluating the importance of the vote of each
player in the elaboration of the final decision. In other words, can we quantify the ability
of a player to influence the collective decision? To answer the previous question, several
mathematical tools have been introduced and studied in Social Choice Theory. We can
mention power indices among which the well-known Shapley-Shubik index for simple games

defined by ( ) and its generalization to (j, k) simple games, see
( )-
The Shapley-Shubik index for simple games

DEFINITION 1.1.11. Let v be a simple game on N. The Shapley-Shubik index of player
i in v, denoted SSL;(v) is defined by:

sst(o) = 3 ED =9 ) sy gip) (1.2

n!
i€SCN

For the game v of Example 1.1.1 we have,
1111
I(v)=1(=, = = =]t
8100 = (55 5+ 5

DEFINITION 1.1.12. Let v be a TU-game on N.
e aplayer i € N is said to be a null player in v if for all S C N\{:}, v(SU{i}) = v(S);

e two players ¢ and j are symmetric in v if for all S C N\{i,j}, v(S U {i}) =
v(SU{j}).

Similar concepts are defined for (7, k) simple games as follows:

'From this example, we observe that the Shapley-Shubik index of players in a weighted simple game is

not in general proportional to their weights.
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DEFINITION 1.1.13. Let v be a (j, k) simple game on N.
e the player i is a null player in v if v(z) = v(z_;,a) for all x € J" and for all a € J;

e two players i;h € N are symmetric if v(z) = v(y) for all z;y € J", with ; = y,
for all I € N\{i,h}, x; = yp and z, = y;.

The Shapley-Shubik index for simple games was first axiomatized by ( ) using

the axioms we now present:
DEFINITION 1.1.14. A power index ¢ : SG, — R™:

e is anonymous if for all v € §G,,, for any permutation 7 of N and for all ¢ € N,

Or(iy (T0) = ¢ (v); where mv(S) = v (771(S)) for S C N;
e is efficient if for all v € §G,, > ..y ¢i(v) = 1;

e satisfies the null player property if for all v € §G,, and for all i € N, ¢;(v) =0

whenever 7 is a null player in v;

e satisfies the transfer property if for all u, v € §G, and for all ¢ € N, ¢;(u) +
oi(v) = ¢i(uV )+ ¢j(uAv); where (uVv)(S) =max{u(S),v(S)} and (uAV)(S) =
min {u(S),v(S)} for all S C N.

Theorem 1.1.1.}

The unique power index on SG,, that simultaneously satisfies anonymity, efficiency,

null player property and transfer property is the Shapley-Shubik index.

The Shapley-Shubik index for (j, k) simple games

The Shapley-Shubik index for simple games have been extended to ternary voting games by
( ). Few years later, ( ) extends this index to the

class of (7, k) simple games. We recall his definition and simplify it to a more handy one.

DEFINITION 1.1.15. A roll call of N is an ordered pair (7w, ) where 7 is a permutation
of N and z is a vote profile. It follows that, the set of all roll calls is S, x J".

We suppose that,

e S, is the probabilistic space consisting of the set of all permutations of N, with each

permutation assigned probability —
n!

e the set J" of all vote profiles is the probabilistic space and the probability of given

vote profile is assumed to be —;
J
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1.1. Simple games and (j, k) simple games

e the roll call space S,, x J" is the probabilistic space with equal probability, i.e. each

roll call assigned the same probability —.
n! x j»

For a given permutation 7 € S,, and i € N, we set:
o i ={peN : 7(p) <m(i)};
e Toi={peN : w(p) <7(i)};
o i ={peN : 7(p) >n(i)};
o mi={peN :m(p) =n(i)}

Using above notations, we provide a useful and equivalent definition of h-pivotal player as
defined in ( , , Definition 3.5)

DEFINITION 1.1.16. Let v be a (j,k) simple game and (7, ) the roll call of N. The
player 7 is said to be a v-h-pivot in (m, x) for h = 1,2, -+ k — 1 if one of the two

following excluding conditions is satisfied:
(C1) v(ars,, T ;) > vp for some a € J", and v(br,, ¥x_,) < v, for any b€ J™;
(C2) v(ars,, Tn;) < vpga for some a € J", and v(br,,;, Tr.,) = vny1 for any b e J™.

Literally the condition (C}) means that, just before player i gets in, some output level
greater than vy, is reachable; but, as player ¢ gets in, the collective decision will be, inde-
pendently of the approval levels of the subsequent players to ¢ according to the ordering ,
at most vy. Similarly, condition (Cy) expresses the fact that, just before player i gets in,
some output level lower than vy, is observable; but, as player 7 gets in, no matter how
all subsequent players to ¢ according to the ordering 7 are to change their votes, the final
outcome will be at least vp.1.

Note that if a player i is v-h-pivot in (7, ), then he is unique. We will therefore write
“i = h — piv(v, m, x)”. If this occurs for condition (C}), we note i = h™ — piv(v, 7, x) and
i =h~ —piv(v, 7, x) if this occurs according to condition (Cs). In practice, the proposition
below helps to identify all different levels for which a given player is pivotal in a given roll

call.

PROPOSITION 1.1.1. Let v be a (4, k) simple game, (7, z)

lect a roll call of N and h=1, 2, ---, k—1. Given a player i:
(P) i=h"—piv(v, 7, z) <= v((j— 1)7r>i,:1:,r§i) < <v((j— l)ﬂZi,xRi);

(P) i=h" —piv(v, 7, 1) <= 0(0ry,, Tn_;) < Vnt1 < V(0ny,, Tr_,).

Proof.
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Suppose that, i = ht — piv(v, 7, x), then from Definition 1.1.16, there exists a € J"
such that, v, < v(ar.,, ¥r_,). Since (ary,, Tx_;) = ((j — 1), 2x;), by monotonicity of v
it follows that v, < v((j — 1), ,%x_,). Moreover, v(br_,, Zr,) < vj, holds for all b € J".
In particular, for b = j — 1, we have v((j — 1)ﬂ>i,$ﬂ9) < vp. Thus, v((j— 1) <
o < o(G— 1), 7).

Conversely, assume that v((j — 1),_,,Zx,) < vp <v((— 1), ,%x,), then for all b €

T>4) m“él')

J", we can conclude using the monotonicity of v that: v(br_,, z~_,) < v((j — 1)7r>i, Tr_,) <
vp < 0((j — 1), ,Zx,). Thus, by Definition 1.1.16, i = h*t — piv(v, 7, ). The proof of

P,) is obtained in the same way. [

EXAMPLE 1.1.3. Consider the game v in Example 1.1.2. Given the roll call (7, x)
with 7 = 213 and = = (1,1, 2), we have:

Player | v((j — 1)ﬂ>1’,xﬂgi) v((j— 1)7r>i,:r,r<i) ht-pivot for U(Oﬁzj, Tr_,) v(0n,, xﬁg) h~-pivot for
1 U2 U3 h=2 vy vy - ——
2 Vs on h=3 V1 U1 -
3 V2 (P - U1 v2 h=1

REMARK 1.1.1. Note that if v is a (7, k) simple game with uniform numeric evaluation,
the output value vy, of the game can be identified with h—1. Thus the set K of outputs

becomes K = {0,1,...,k — 1}. In this case, we can observe that:

o i=h"—piv(v,m, )= he{v((—1), ,v)+ 1, v((—1), 2 )}
e i=h" —piv(v, T, r) == h €{v(0n,, ¥r ;) + 1, v(0n,,r_,)}
DEFINITION 1.1.17. ( : , Definition 3.7)

Let v be a (j,k) simple game with numeric evaluation . The Shapley-Shubik power

index for a player ¢ is:

@i (aU

k—1
n,j Z e —o)|{(m, 2) €Sy x J" i i =h—piv(v, m, 2)}  (1.3)
h:l

If we consider (j, k) simple games with uniform numeric evaluation, we provide in the
next result a functional and more tractable formula of the Shapley-Shubik power index
defined in Equation (1.3). Moreover, our new reformulation helps us in identifying some
typos made by ( , , pp-193) during the computation of the Shapley-Shubik
index of the game of Example 1.1.2. Other extensions of the Shapley-Shubik power index
are considered by some other authors; see for example ( , , Chapter
3).
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r—[Theorem 1.1.2.} N

Let v be a (j, k) simple game with uniform numeric evaluation. The Shapley-Shubik

power index for a player ¢ is given by:

DR i i LUEL AR NN (14

n!
1€ESCN

1

where C,(T) = ———
) J"(k—1)

' Z [v((G —1)p,2—1) —v(0p,z_7)] for all T'C N.

zeJn

Proof.
Let v be a (4, k) simple game with uniform numeric evaluation and i a given player.

We first show that,

00) = mmmm 2 ([ D) 00w )] = [ = 1)) —0sn)]).

(m,x)ESp X J™

Since v is a (j, k) simple game with uniform numeric evaluation, then o = k — 1. Hence

according to Equation (1.3) we have :

ol

-1

1

P ey U € ST =R i m )
= T X Mhe(h k1= ki 7 )

(m,2)ESp xJ™
1 , ,
= arGTD X Mhedl k=1ri= bt —pi(, m )
- (7, 2)ESH X ™
Z {he{l,---, k—=1}:i=h" —piv(v, 7, 2)}| by Definition 1.1.16

(7, x)ESp X J™

1
= m Z [U(Oﬂ>m x‘ffgi) - U<O7r27:7 xﬂ<i)j|

=D

(m,2)ESR X J™
+n!j”(k ) (mm)ezsnxﬁ {”((j — 1)) —v(( — 1)ﬂ>i,xﬂ9)} by Remark 1.1.1
1 . .
= DY ([o0G = Do me) = 00m e )] =[0G = 1)) = 0002

(7,)ESp X J7
Now, we prove Equation (1.4). Consider S C N such that i € S. Pose II{ =
{r€S8,,S =ms}, then the set {II{, i€ SC N} is a partition of S, with |II¥] =
(s — 1)!(n — s)!. Therefore,
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00) = o 3 (o= Ve = 0O )] =[G = D) = 0005

|5n —
nJ (k 1) (m,x)ESp x J"

- WL T Z(Z([ Jlﬂ,zﬁ@)v(oﬂwxﬁ@)}[v«j1>7T>,,xw<i>v<oﬂ>,,;7zﬁ<i>})>

zeJ“ TESH

- T . Z ( Z Z ([v ji—1), I,T<,¢) fv(Oﬁzi,x,rQ)} — [1)((j — 1)ﬂ>i,xﬂ§1) (L IR"')D)

zeJ" i€SCN 7(61‘[5

= ;) Z ( Z Z ([U .]7 1 S7l’ S) 71}(05 xTr_ S)} — [’U((J — 1)5\{1.},1‘_(5\{1-})) 1)(05\{2‘}71’—(5\{2‘}))}))

n!
J ( zeJn \i€eSCN 7(61‘[5

= > N w ([v((j —1)g 2-5) —v(0s,2_5)] — [v((j — Vg T=s\ip) — ’U(OS\{z'}aw—(s‘\{z'»)D

zeJn i€eSCN IL'J
_ Z (s — 1);([” —s)! . ]‘”(k,lf ) (Z w((—1)g,2_5) —v(0s,7_g)]
ieSCN ze "

-> [v((j = D)\ piy2 T—(5\ (i) — U(OS\{i}az—(S\{i}))]>

xzeJn

=y BVt e is) - s\

n!
i€ESCN

Note that, for a given (j, k) simple game v with uniform numeric evaluation, C, is a
TU-game on N. Hence the Shapley-Shubik power index of a player in v is equal to its
Shapley value in C,.

EXAMPLE 1.1.4. For the game of Example 1.1.2 with the uniform numeric evaluation,
we compute the Shapley-Shubik power index of each professor using formula 1.4. We
first define C,(T'), for all T. The detailed computations are stated in Appendix A

S 10 {1 {2h | 3 {12} | {23} | {13} | N
CU(S) 0 11 11 9 7 6 6 1

27 27 27 9 9 9

By Equation (1.4) we have:

59 59 22
®(v) = Shap(Co) = (162 162° 81)

This result is different from that given in ( , , pp.193). Our investigations
allowed us to identify the error made by the author in counting the number of times

for which each player is pivot in the game; see Appendiz B for more details.

1.2 Continuous simple games

To address some economic problems such as tax rates or judgment aggregations in which
the opinion of a player is picked out from a continuum of alternatives, ( ) proposes
the model of continuous simple games. This model, on which we focus in this section is
related to contexts of collective decision-making where the opinion of each player as well as

the collective decision, is a real number of the continuum interval [0, 1].
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1.2.1 The model

Hereafter and unless other indications, I will designate the interval [0, 1].

DEFINITION 1.2.1. A (vote) profile is any n-tuples of elements of I. The set of all

vote profiles is I™.
Given a vote profile x and player i, x; represents the opinion (action) of player i in x.

DEFINITION 1.2.2. A continuous simple game (CSG) on N is any mapping v : [ — [
with:

e v(0) =0 and v(1) = 1;
e v(x) <w(y) for all profiles x and y such that < y.
The set of all CSGs on N is denoted by CSG,.

The monotonicity condition simply means that, if some of the input values increase, the
collective decision should not decrease.

By relaxing the monotonicity property or by changing the domain and/or the co-domain
in Definition 1.2.2, one can define alternative models of CSGs. For instance,

( ) define multilevel continuum game as they suppose that each player ¢ has his
own set of opinions [0, a;] (a; > 0) and the output can be any real number; ( )
defines continuously-many-choice cooperative game with [0, a]” as domain and the whole
set R of real numbers as co-domain. In ( ), CSGs are known under the

name aggregation function.

EXAMPLE 1.2.1. [Inspired from ( )|

Suppose that a three-member committee evaluates a scientific project and decides
about the amount of funding for the project. Each of the referees writes his report
and proposes an amount of funding, i.e. chooses a percentage (from 0% till 100%) of
the grant demanded by the project coordinator to be assigned to the project. The final
amount of project funding is given by the arithmetic average of the referees’ proposals.

This decision-making rule can be describe a CSG defined with N = {1, 2, 3} (the set
of the referees or players). Indeed, we can assume that each player has to choose an
action from the interval [0, 1], where each action means a proportion of the demanded
grant. For example, the actions 0, 0.5 and 1 respectively means that the referee assigns
no grant, one half of the grant and the whole amount of the grant to the project. Since
the collective decision is given by the arithmetic average of the referees’s actions, the
output also belongs to interval [0,1]. More formally, this decision rule is identified to
the CSG v such that: for all (z1, xa, x3) € [0, 1]3,

T1+ To+ T3

U(CCh T2, 5173) = 3
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EXAMPLE 1.2.2. Three shareholders 1, 2 and 3 of an agricultural firm hold respectively
3, 4 and 5 shares of the capital of the company. Knowing that this company can produce
a mazximum of 100 tonnes of maize, the three shareholders must decide about the their
level of production of maize for the current year. To this end, they have to aggregate
their individual levels of production into a collective one. The method of aggregation
involved 1s the weighted geometric average where the weight of a shareholder is the
proportion of his share in the company. This collective decision process can be modeled
by the CSG u such that the set of players is N = {1,2,3} ; and for all profiles z =
(z1, w9, z3) € [0, 1]3,

_1/4_1/3 5/12
u(z) = xy xy "xy

Properties of continuous simple games and special subclasses

Some properties and specials subclasses of CSGs present here were proposed in ( ).

In this section, we specially present CSGs that are weighted, proper, strong or constant-sum.
DEFINITION 1.2.3. A CSG v : I — I is said to be :

e proper if v(x) +v(1 —x) <1 for all vote profile x € I";

e strong if v(z)+v(1 —x) > 1 for all vote profile x € I™;

e constant-sum (decisive) if it is proper and strong.

Hereafter, we will consider the norm ||-||; defined on R™ as follows, for z = (xy, -+ - , z,,) €

R [zl = >3 il

Continuous linearly weighted simple games

DEFINITION 1.2.4. A CSG v : I" — [ is linearly weighted if there exists a positive
weight vector w = (w;)iey with ||w|l; = 1 such that v(z) = > | wiz;, for all x € I".

The set of all continuwous linearly weighted games on N is denoted by IL,.

For instance, the game v from Example 1.2.1 is a continuous linearly weighted game

1 11
with weight vector w = | =, =, = .
3733

ProroOSITION 1.2.1. ( : , Lemma 7)

All continuous linearly weighted games are proper, strong, and constant-sum.
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Threshold continuous simple games

DEFINITION 1.2.5. A CSG v : I — [ is called threshold if there exists a real number
q €]0, 1] called quota and the positive weight vector w = (w;)iey with ||wl]; = 1 such
that for all z € I, v(z) =1 f > wiz; > ¢ and v(z) = 0 otherwise.

The set of all threshold CSGs (threshold games) on N is denoted by T,.

PROPOSITION 1.2.2. ( : , Lemma 8 and 9)

A continuous threshold game with a weight vector w and a quota ¢ €]0, 1] is :
e proper if and only if ¢ > %;
e strong if and only if ¢ < %

COROLLARY 1.2.1. There is no decisive threshold CSG.

Weighted continuous simple games

DEFINITION 1.2.6. A CSG v : I" — [ is weighted if there exists a positive weight

vector w = (w;)ieny with [[w]; = 1 and a monotonously increasing quota function
q: [0, 1] — [0, 1] such that such that for all z € I", v(z) = ¢ (31, wix;).
The set of all weighted continuous (simple) games on N is denoted by W,.

Note that, from the definition of CSG, the quota function ¢ of a weighted continuous
game satisfies ¢(0) = 0 and ¢(1) = 1.

PrRoOPOSITION 1.2.3. ( : , Lemma 10 and 11)

A weighted continuous game with weight vector w and a quota function ¢ is:
e proper if and only if ¢(y) +q(1 —y) <1 for all y € [0, 1];
e strong if and only if ¢(y) +¢(1 —y) > 1 for all y € [0, 1].
COROLLARY 1.2.2. A continuous weighted game with weight vector w and a quota

function ¢ is decisive if and only if ¢(y) +¢q(1 —y) =1 for all y € [0, 1].

Exponential product games

DEFINITION 1.2.7. A CSG v : I™ — [ is an exponential product game if there
exists a positive vector av = (a;)ien such that, for all x € I", v(x) = [[,cny 27" The set

of all exponential product games on N is denoted by IE,.

).

Sl

The game from Example 1.2.2 is an exponential product game with vector a = (i, %,
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1.2.2 Integrability of continuous simple games

We pay our attention on the (Riemann) integrability of CSGs. More generally, we provide
a sufficient monotonicity condition for integrability of multivariate bounded real-valued
functions defined on n-dimensional boxes. But before, we need some further notations and
definitions. The principal results of this section are essentially taken from

( ) working paper.

n

DEFINITION 1.2.8. A cell in R" is a cartesian product C = X E; :== F1 X Ey X ... X Ey,
i=1

such that for some real numbers «;, f;, F; € {[a, 8], ], Bil, [cu, Bil, ], Bi] }-

In this case, the interior of C is the cartesian product int(C) = X |ay, fi] and its
i=1

(n-dimensional) volume is the positive number vol(C') = [[;_, (8 — ;). Moreover, if
vol(C) > 0 and E; = [y, Bi] for all 1 <i < mn, C is called a non-degenerate closed cell.

Given a positive integer n > 1, two n-tuples a and b in R™ such that, a; < b; for 1 <i < n,
n

let C(a,b) = X [a;, b;] be a non-degenerate closed cell.
i=1
DEFINITION 1.2.9. A real-valued function f : C(a,b) — R is monotone if one of the

two following conditions is satisfied:
e (C1): for all z,y € Cla,b):x <=y = f(z) < f(y):
e (C2): for al z,y € C(a,b):x Ry = f(z) > f (v);

Our aim is to prove that that all monotone real-valued function f : C(a,b) — R are
integrable. Of course, this is an n-dimensional extension for n > 2, of the classic result
stating that, for n = 1 all real-valued functions that are monotone on a closed interval are

integrable, see ( , , Corollary 2, pp.106).

DEFINITION 1.2.10. A cell-partition of C(a,b) is a collection P = (C}),_;, of disjoint

cells in C(a, b), which union is C(a,b); that is C;NCy, = 0 if j # k and UI_,C; = C(a,b).

DEFINITION 1.2.11. A step function on C(a,b) is a real valued function f such that
for some partition P = (Cj),,., of C(a,b), f is constant on the interior of each Cj;

that is, there exists a sequence A = (\;) of real numbers such that f(x) = A; for

1<5<q

al x € Cj,5 =1,2,...,q.

In this case, f is said to be a step function associated to the partition P and the collection
A, or simply that f is associated to (P, \). It is well-known that if f is associated to both
(P,\) and (P’, \) with P' = (Cj’-)lgqu, and \' = (A;')lgqu” then it holds that

q ¢
> Aol (Cj) = Nwol (C) .
=1 j=1
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The (Riemann) integral of f on C(a,b) is, by definition, the real number :

/be Z)\vol (1.5)

It is straightforward that for any other cell-partition P’ = (C’ )1 ci<q of C(a,b),

/

q
=3 i,
/C(a,b) Z Clab) o

j=1
where f|_, (z) = f(z) if z € C} and f|_, () =0if z ¢ C].

Note %hat, step functions on C(a, l;) constitute the simplest family of integrable real-
valued functions on C'(a, b). Moreover, step functions are used to test whether a real-valued
function on C(a,b) is integrable or not; see ( ) for a more detailed
theory of integration. To ease the presentation, we use the following characterization of an

integrable multivariate real-valued functions, see ( , , Theorem 18. 13).

DEFINITION 1.2.12. A real-valued function f on C(a,b) is integrable if there exists

two sequences (uy), and (vg), of step functions such that:
e for all non negative integers k and for all z € C(a,b), uy (z) < f(z) < v (x);

° fC(mb) (vg — ug) tends to 0 as k tends to infinity.

Theorem 1.2.1.}

All monotone functions on C(a, b) are Riemann integrable.

Proof.
Suppose that f : C(a,b) — R is monotone and assume that f satisfies (C1))

(otherwise consider —f). Let us prove that f is integrable on C(a,b) by constructing
two sequences of step functions (h,) and (g,) on C(a,b) such that h, < f < g, and
lim fC(a’b) (gp — hp) = 0. To do this, let p be a positive integer. Then we split each

p—r+00

[a;,b;] into 2P intervals of equal length and C(a,b) into (2P)" cells of equal volume by
considering the sequence ai =a;+ 2]p (b; — a;) with 0 < 5 < 2P| the collection (Cp ) 1< j<or
of intervals, the n-cartesian product R, = {1,2,...,2P}" and the collection (C’p k) of

kER,
cells in C(a,b) defined as follows:
CY; = [afj 1 ”[ for 1 <j <2’ and C}; = [a? g 1,afj] for j =27
CPE = 7, X CP X o x CP, for all k = (ky, ks, .. kn) € Ry,
By construction, { ”,jzl 2p} = {[ 500 fl[ e [afzp 95 Ty op 1[ [a’;m, 1,af2p}}

is a partition of [a;, b {Cp’ keR } is a cell-partition of C(a,b) and for all 1 < j < 2P,
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;= CF ;Jl uc? ’231 Moreover for each k € R,, we split CP* into 2" cells of equal

volume by considering
Crh = X (CrguChy) = |J ot (1.6)
=1 lESp’k
with S, = {l € R, : I; € {2k; — 1,2k;},1 <i <n}. Here follows an illustration of the
decomposition of CP* when n = 2.

ks 2k
k2 _ 2k2 o
2 2pt1

Cp'H‘ (2kq, 2ke—1) CP'H-. (261, 2k2)

2k, — 1
2p+1

1, (2ky, 2ka—1
OPHL (201 -1, 2k0-1) CP L (21 2ke—1)

2ky—2  ky—1
2rtl T 2p

2y —2 Ry —1 2%k, — 1 ki 2k
2pt1 2p 291 2r — 2ptl

Now define h, and g, as follows: for all x € C(a, b) there exists an unique k € R, such
that x € CP*; pose

hy(z) = f(CP*) and g,(z) = f(CPk) for all z € CP*

where CPF = (aikl_l, W py—1s oo aﬁ’kn_l) and Crk = (a?kl, W 1y ...,agkn). Note that h,
and g, are both step functions on C/(a,b). Moreover, for all k € R, and for all z € CP*,
we have CPF < z < CPk. Since f is monotone, then f(CP*) < f(x) < f(CP*). Hence
for all z € C(a,b), hy(z) < f(x) < gp(2).

To complete the proof, we show that pli)riloo /. Clab) (g, — hy) = 0. For this purpose, let
dp = fC(mb) (gp — hp). By the definition of h, and g, we compute:

k Vo

Gy =Y [F(CPF) = F(CPF)] x vol(C"") = L N " [f(CPF) — f(CPh)] (1.7)

2np
kER, kER,

where vy = vol(C/(a,b)). Since {CP* : k € R,} is a cell-partition of C(a, b), it follows that

Opt1 = Z /O (Gp+1 — p+1)‘cp7k- (1.8)

kER, (a,b)

Furthermore, for each k € Ry, (gp+1 — th)' . is null out of C”* and CP* is the union
CPp;
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of disjoint cells CP™! for [ € S, ;. Thus, for each k = (ki, kg, ,k,) € R, we have:

/ (gp+1 - hp-i—l)\cp,k
C

(a,b)
- Z <9p+1(m) - hpﬂ(w)) x vol (CPTH)
1€, &
:% Z (f(W) F(Crrihy ) Z (f (CPHLY) f(ﬂ))
le{i1 12} iesy,
where,
I' = (2ki = DVi<i<n, P = (2ki)1<icn and S, = S, \{I', 1’} .
Note that,

1 2
cprtul — CpJf’ CPtLE — Cerl,ll’ Cr+Ll2 — Op.k (1'9)

and for all [ € S, we have:
crk < optll < Optll < Ovk (1.10)

So, thanks to the monotonicity of f and Equation (1.10) we get:

FICPE) < F(CPHM) < f(Critd) < f(CPF),

This implies
F(CPFLD) — F(CPMY) < F(CPF) — f(CP1). (111)
By combining equations (1.9) and (1.11), we obtain:

/ (Gp+1 = hps1)lcwk
C(a,b)

it | (e ) + - (e - )

le{it, 12} lesy
Yo v, _
S2n(p+1 [f(C’ k) — f(ﬂ)] + 2n(p(lrl) Z [f(CPFk) — f(ﬂ)]
1ess

SR Yoy W o)

_ 1 J(C7F) - f(CPh)

(1 +[S5]) =

- 2n 2np 2n 2np
Finally for all k € R,, we have
2" —1w —
[ s = pellens < 2o S (@) — s (1.12)
C(a,b)

By summing over £ € R, all left-hand-side terms and all right-hand-side terms from
(1.12), equations (1.7) and (1.8) imply that

2" —1
Opt1 < o 0p -
L. 2n — 1\”
for all positive integer p. Therefore 0 < §, < do, where 6y = vo(f(b) — f(a)).
_ . 2n — 1
Since lim ( > =0, then lim ¢, =0. [ |
p—~400 on p——+00
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1.2. Continuous simple games

COROLLARY 1.2.3. All continuous simple games are integrable on ™.

We generalize the result of Theorem 1.2.1 to monotonous bounded functions, defined on
a nonempty and bounded Jordan measurable subset of R™. A nonempty subset D of R" is
said to be bounded if it is contained in some cell. The characteristic function of D is the

function yp defined on R™ by

1 fxeD
Xp(z) =

0 otherwise

DEFINITION 1.2.13. Let f: D — R be bounded and C' a non-degenerate closed cell
such that D C C. Then f is Riemann integrable on D if f: C — R is Riemann

-~ o~

integrable on C, with f(z) = f(x) if z € D and f(z) = 0 otherwise.

DEFINITION 1.2.14. ( : , Definition 19.23) A bounded set D
contained in a non-degenerate closed cell C' of R™ is said to be Jordan measurable if the

restriction XD, of xp on C is Riemann integrable.

r—[Theorem 1.2.2.] N

Let D be a nonempty Jordan measurable subset of a non-degenerate closed cell
C of R™. Then any monotone and bounded real-valued function f : D — R is

integrable.

Proof.
Let D be a nonempty Jordan measurable subset of a cell C' of R* and f: D — R

a monotone and bounded function. Without loss of generality (w.l.o.g.), assume that f
satisfies condition (C'1). We show that f is integrable on D by constructing a monotone
function g : ' — R such that f: 9 XD, The result comes from the fact that, fis
the product of two integrable functions.

Consider x € C we set D~ (x) = {t € D,t < x}. Since f is bounded on a nonempty
set D, we define g : C' — R as follows:

(x):{ sup{f(t),t € D~ (x)} if D (z)#0 (1.13)

inf{f(t),t € D} otherwise

Let us show that g is monotone and ]?: g XDy, To do this, consider z,y € D such
that x <y, then D~ (z) C D~ (y).

e If D~ (y) =0 then D~ (z) = (. So, from Equation (1.13), we get

g(x) =inf{f(t),t € D} = g(y);
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e If D™ (y) # 0, two cases are possible. First assume that D~ (z) = (), then g(z) =
inf{f(t),t € D} < f(ty) for all t, € D~ (y). Hence,

g(z) <sup{f(t),t € D" (y)} = g(v).

Second, suppose that D~ (x) # 0, then g(z) = sup{f(t),t € D (z)}. Since
D~ (x) C D(y) then,

g(x) =sup{f(t),t € D" (x)} <sup{f(t),.t € D" (y)} = g(y) .

Finally for all z,y € C such that x < y we have g(z) < g(y). We then conclude that g is
monotone on C' and it follows from Theorem 1.2.1 that g is integrable on C.

To conclude this proof, it is sufficient to show that g, = f. Consider x € D, then
x € D™ (x) and by Equation (1.13) we can write:

f(x) <g(x) =sup{f(t), t € D" (x)}. (1.14)

Moreover for all ¢ € D~ (x) we have ¢ < x. This implies that f(t) < f(x), for all
t € D™ (x). Hence

g(x) =sup{f(t), t € D" ()} < f(x). (1.15)
and from relations (1.14) and (1.15) we conclude that g(x) = f(x), for all z € D, i.e.
g, = f. This implies that f =9 XD, Since D is a bounded Jordan measurable set

then XD, 18 integrable on C; so is the product J/C\Of g and XD, - [ ]

1.2.3 The Shapley-Shubik index for continuous simple games

Given a CSG, it is still of great importance to measure the capacity of each player to affect
the final result of the game. On this class of games, ( ) extended the Shapley-
Shubik index.

DEFINITION 1.2.15. Let v be a CSG on N and ¢ € N an arbitrary player. The
Shapley-Shubik index ¥;(v) of a player i in the game v is given by:
1
qjl(”) = ﬁ Z /I" ([U(lﬂzw‘rﬂg) - /U<07r2i7'r7r<i):| - [U(17T>i7xﬂ'§i) - U(0W>i7x7rgi>]) dz.
TESH
(1.16)

where, dr :=dx;...dz,.

Note that, the existence of U is guaranteed by the integrability of CSGs provided by
Corollary 1.2.3.

Interpretation (see ( ) and ( )

Let v be a CSG on NV and 7 € N.

UYL Ph.D Thesis Hilaire TOUYEM @UYT 2020




1.2. Continuous simple games

e Assume that the players are ranked in a sequence m and called one by one to express

their opinion according to the profile x;

e due to the monotonicity of v, the highest value that can be attained by v(z) before
the vote of player i is v(1,,,, 2r_,). Similarly, v(0r.,, 7x_,), is the lowest value that

can be attained by v(x) before the vote of player i;

e since all real numbers between v(0.,, 7_,) and v(1,,,, Zx_,), can be attained by some
vote profile y € I", the quantity v(1..,,2r_,) — v(0r.,, Tx_,) is a suitable measure
for the uncertainty of the game v before the player ¢ announces his or her opinion,
with respect to the ordering 7= and the profile . Similarly, the uncertainty after the
announcement of player 7 is given by v(1._,, Zx_,) —v(0r.,, Tx_,). Hence the difference
[V(Lrs,, Zr) = V(0ns,, T ,)] — [0(1ns,, Zr,) — ¥(0r.,, T_,)] measures the uncertainty

in the game v due to player i, according to the ordering 7m and the profile x;
e the Shapley-Shubik power index W,(v) can thus be interpreted as the ability of player
7 to reduce the uncertainty in a game v.
Reformulation of the Shapley-Shubik index for continuous simple games

As shown in Theorem 1.1.2 in the context of (j, k) simple games, we provide a functional

formula of the Shapley-Shubik power index for CSGs.

r—[Theorem 1.2.3.} N

For every CSG v with player set N and every player ¢ € N we have

| |

(v = (8—1).(n—3).x ; _Clo .
Uy (v) igg:N . [C(v,S) = C(v, S\{i})], (1-17)

where C(v,T) = / [v(1p,2_7) —v(0p,z_7)] dz for all T'C N.

I n
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Proof. '
Let St := {j € N : ©(j) > n(i)}. Then S: = S for exactly (s — 1)!{(n — s)!

permutations 7 € S, and an arbitrary coalition S such that {i} C.S C N.

1
\I]l(v) = H Z/I 7"> 7$7"< _1(17T>i7'r71'9)+U(OTF>H$TF§¢)_U(0W21’$W<z)] d%’

TESH

= i ' Z [(U(1ﬂ>mxﬁ<i) - 1)(07r>mx7f<i)) - (U(lﬂ'>z7‘r7"si) B ’U(07r>“x7r9))} dz

!
Ti' reS, M I"
= Z Z / 7r> ax‘fr< - U(Oﬂzwl‘ﬂ«:)) - (v(1ﬂ>mx7f§z) - U(Oﬂ'>i7‘rﬂ'§i))] du
n i€ESCN EHS

|
= a2 Z/ v(ls,z-s5) = v(0s,2-5)) = (v(1s\(iy, T (s\iip) = V(Os\(ay> T (s ap)]

i€SCN rems

1
= o > \HS|/ v(ls, 2-5) = v(0s,2-5)) = (v(Ls\(ip T-(s\(ip) — V(O0sy\(iys T—(s\@ipy))] d

’ zESCN

_ Z L“—S)' C(v, S) — C(v, S\{i})]

esc

The simplified formula of ¥ given by the Equation (1.17) is more practical. This re-
formulation highlights the fact that, the Shapley-Shubik index for a given CSG is equal to
the Shapley value of the TU-game C(v, .). To facilitate the computation of ¥, an explicit

formulas of C(., .) can be obtained for a special classes of CSGs.
PROPOSITION 1.2.4.

1. Comsider w € Ry with [|w|; = 1 and f; : I — I weakly monotonic increasing
functions with f;(0) =0 and f;(1) =1 for all ¢ € N. Then v : I™ — I defined by
v(x) =>0 w;- fi(z;) is a CSG such that

S)szi for all SC N .
icS

2. For every exponential product game v with vector a, we have:

1
C(v,S) = for all S C N.
An\s
where, Ap = H (a; +1) for all T'C N with Ay = 1.

i€T
Proof.

1. Let v be a CSG such that for all z € I", v(z) = >,y w; - fi(x;). Consider S C N,
then for all z € I", v(ls, 2-5) = D icqwi + X aswi- fi(x;) and v(0s, z_5) =
> igs Wi+ fi(x;). Therefore,

C(v, S) = /I [0(1s, 2_5) = v(0s, z_g)ldz = > w;.

€S
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1.3. The Shapley-Shubik index for CSGs as a generalisation

2. Let v be an exponential product game with vector a, S C N and x € I"™. We have,
v(1ls, v-5) = [[igs 2" and v(0s, z_g) = 0. Thus,

i¢S

1 1
C(v, S):/O A Hm?idaz‘l‘--dmn
1

1
Oéz'—i-l n AN\S

i¢S

ExXAMPLE 1.2.3. Consider the games v of Example 1.2.1 and u of Example 1.2.2.

Applying Proposition 1.2.J, one obtains:

S 0| {1} | {2} | {3} | {12} | {13} | {23} | {123}
cos) [0 s E [t 322 1
cws) 0| & E e[

Therefore, formula 1.17 gives :

111 7341 763
V)= (2, - = 4 ) = (L 22 168
(v) (3’ 3 3) and ¥ (u) (24’ 1020° 2040)

COROLLARY 1.2.4. The Shapley-Shubik index for any continuous linearly weighted

game coincides with tts weight vector.

1.3 The Shapley-Shubik index for CSGs as a generalisa-
tion

In this section, we show that the Shapley-Shubik index for simple games as well as for (j, k)
simple games appears as special discretizations of the one of CSGs. To establish this result,
we first show that the set SG,, (resp. JK,,) of all simple games (resp. (j, k) simple games)

can be viewed as some subsets of CSG,,.

1.3.1 Simple games and (j, k) simple games viewed as CSGs

We show that simple games as well as (7, k) simple games can be embedded in a CSGs via
an injective map. To do this, consider 7 €]0, 1] and j > 2 an integer. For each x € I", pose
0.(x)={ie N:xz; >7}and X* € J" the profile defined as follows:

l; l;
J J
X! = foralli € N.
— 1
-1 il <<
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PROPOSITION 1.3.1. Let v be a simple game on N and 7 €]0, 1].
1. The mapping C7 : I" — I defined by C7(z) = v(0,(x)), for all z € I" is a CSG.

2. The mapping T7 : §G, — CSG,, that associates each simple game v with the
CSG (C7 is one-to-one.

Proof.

1. Consider v € 8G,, then C7(0) = v(6,(0)) = v(@) = 0 and C7(1) = v(0,(1)) =
v(N) = 1. Consider x,y € I" such that z < y, then 0,(x) C 6,.(y). Since v is
monotone, we have v(0.(z)) < v(0,(y)), that is C7(z) < CI(y). So, C] € CSG,,.

2. From (1), 77 is well defined. Consider u,v € S8G,, such that T7(u) = T7(v) and
S € 2V. We prove that u(S) = v(S). First note that, S = 0,(z) where z € I"
with z; = 1 if i € S and x; = 0 otherwise. Since T7(u) = T7(v), then T7(u)(z) =
T7(v)(x), therefore u(f,(x)) = v(0,.(x)) i.e. u(S) = v(S). Thus u = v and we

conclude that 77 is one-to-one.

Proposition 1.3.1 highlights the fact that the set §G,, of simple games can be identified
to a subset of CS§G,,. However, the embedding transformation is not unique. Nevertheless,

we show below that the embedding T7 preserves some properties of simple games.
DEFINITION 1.3.1. Let v be a CSG.
e the player 7 is a null player in v if v(z) = v(x_;,a) for all x € I"™ and for all a € I;

e two players i;h € N are symmetric if v(z) = v(y) for all z;y € I", with z; = y
for all I € N\{i;h}, x; = yp and z, = y;.

In words, 7 is a null player in v if for any vote profile z, the collective decision v(z) does
not depend on the opinion z; of i. If interchanging the input x; and z;, of two players never
alters the output v(x), then players i and h are symmetric. In other words, ¢ and h are

symmetric players if, and only if, v(x) = v(0;,x) for all z € I™.

PROPOSITION 1.3.2. Consider v € §G, and T7(v) an associated CSG, with 7 €]0, 1].
1. any null player in v is a null player in T7(v);
2. any two symmetric players in v are symmetric in 77 (v);

1
3. if v is proper (resp. strong) and 7 > 3 then T7(v) is proper (resp. strong).
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Proof.
Let v be a simple game on N and 77 (v) the associated CSG, with 7 €]0, 1].

1. Suppose that i be a null player in v. We prove that i is a null player in 77 (v).
Consider z € I"™ and a € [0, 1].

e Ifz; >7anda > 7 (or z; < 7and a < 7), then 0,(x) = 0,(x_;,a). By the
definition of 77 (v), it follows that 77 (v)(x) = T7 (v)(x_;, a);

o If v; > 7 and a < 7, then 0.(z) = 0,(x_;,a) U {i}. Therefore, v (0,(x)) =
v (0-(z_;,a) U{i}) = v (0,(x_;,a)), since player i is a null player in v. There-
fore, by definition, 77 (v)(x) = T7(v)(x_;, a);

o If z; < 7and a > 7, then 0, (z_;,a) = 0,(x) U {i}. Similar to the previous

case.

Finally 77 (v)(z) = T7(v)(z_;,a) for all x € I" and for all a € [0,1]. We then

conclude that ¢ is a null player in 77 (v).

2. Let ¢ and h be two symmetric players in v and =z € I". We have 0.(6;,(z)) =
th(QT(a:))

o Ifi,h € 0,(x) or i,h ¢ 0,(x), then 0;,(0-(z)) = 0.(x). So, T7(v)(bin(z)) =
(O (07 (2))) = v(0-(x)) = T (v)(2).

olfi € 0.(v) and h ¢ 0.(x), then 04 (0-(x)) = [0-(x)\{i}] U {h}. Since
i and h are symmetric in v, then v (0.(z)\{i} U{h}) = v (0.(x)\{i} U{i})
ie. v(0:(0in(x)) = v(0-(x)). By the definition of T7(v), one obtains

T7(0)(0in(2)) = v(0in(0-())) = v(0-(x)) = T7(v)(x).
e Ifi¢ 0, (x)and h € 0.(x), then 0;,(0,(x)) = [0-(x)\{h}]U{i}. By interchang-
ing the role of ¢ and h in the previous step, we get 77 (v)(0in(z)) = T7(v)(z).

It follows that, for all x € I, T7(v)(0;n(z)) = T7(v)(x). This means that players i

and h are symmetric in 77 (v).

3. Let v be a simple game and 7 > 5 a given parameter. Since 7 > 3, we obviously
have 0.(1 — z) = N\0.(z), for all x € I". Therefore, T7(v)(1 —z) + T7(v)(x) =
v (N\b-(z)) + v (0-(z)). Hence,
e If v is proper, then T7(v)(1 — z) + T7(v)(z) < 1, i.e. T7(v) is proper;

o If v is strong, then 77 (v)(1 —x) + 17 (v)(x) > 1, i.e. T7(v) is strong.

PROPOSITION 1.3.3. Let v be a (j, k) simple game with numerical evaluation o.

1. The mapping CL, : I — I defined by Ci,(z) = a(v(X?))/ay, for all z € I"™ is a
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CSG.

2. The mapping 7" : JK,, — CSG, that associates a (j,k) simple game v with

numerical evaluation o with the game Ci, is one-to-one.

Proof.

1. Consider v € JK, with numerical evaluation «. Since 0 € [0, %[ and 1 €
[j;.l, 1} . then CZ,(0) = 2 — 0 and €%, (1) =
J g
such that, x < vy, let us show that X* < Y¥. Suppose the contrary, this means that
X?F > Y for some player i. We pose [; =Y and k; = X7, then 0 < [; < j —2
I +1 k;
and [; + 1 < k;. Since Y =1, < j — 2, it follows that y; < + < =<
Hence y; < x; . This contradicts the fact that z < y. Therefore X* = %/
a(v
<

o) — 1. Consider T,y € I"

€75

By
a(v(X?)) (Y*))

73 73

monotonicity of v, one obtains v(X*) < v(Y¥). This implies

Le. Ch,(z) < Ch,(y). Finally, C, € CSG,,.

2. We now prove that 7" is a one-to-one mapping. From item 1, 7" is well defined. Let u
and v be two (j, k) simple games with numeric evaluation « such that, 7"(u) = T"(v).
Consider y € J", then y = X* where x € I" is defined by z; = % for all i € N.
Since T"(u) = T'(v), then Ci,(z) = Ci,(x) that is a(u(X?")) = a(v(XT)) ie
a(u(y)) = a(v(y)), this implies u(y) = v(y); thus u = v. We conclude that 7" is a

one-to-one mapping.

Using very similar arguments to those of Proposition 1.3.2, one can easily check that,
the embedding 7" transforms a null player (resp. two symmetric players ) into a null player

(resp. two symmetric players).

1.3.2 The Shapley-Shubik index from SG, to CSG,

In Proposition 1.3.1, we have shown that simple games can be embedded in to CSGs via T7.
But one may now be dubious whether the Shapley-Shubik index ¥ for CSGs is a natural
extension of the Shapley-Shubik index SSI for simple games. In this section, we provide
positive arguments to discard such a worrying concern by showing that, each transformation
T™ for a given 7 € ]0, 1] preserves the SSI power index for simple games. More precisely,
we show that, ¥ (77 (v)) = SSI(v) for all v € §G,,. This equality allows us to conclude
that the Shapley-Shubik index ¥ on CSG,, is an extension of that defined on §G,,. In other
words, the SSI index can be seen as a discretization of W. To establish the main result of

this section, we need the following propositions:
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PROPOSITION 1.3.4. Let n > 2 be an integer. Consider the mapping f defined on
10, 1] by :
fry=1+az+2*+ - +a™! (1.18)

and denote by f*) the k™ derivative of f. Then, for all 2 €]0, 1] and for all 1 < k <

n—1,
|
_ (k) _ L1 ___ ™ n—k
(1= )V a) = k) = L (1.19)
Moreover for all k£, with 1 <k <n —1,
n—k—1
(k+3)!
8 (z) = Z a7 (1.20)
Proof.

We first note that, 1f(o) = f. Consider z €]0, 1], following Equation (1.18), f(a;) can
be rewritten as f(x) = 1__2 , thus (1 —2)f(z) =1 — 2", Since (2™)*) = n ﬁk)r?c”k
for 1 < k < n, then by Leibniz derivative formula, we have

(1= 2)fO(x) = kfOD(z) = -0k

 (n—k)!
foralll <k<n-1.
n—1
Moreover, for all z €]0,1[, f(x) = sz thus,
s=0
n—1 | n—k—1 k '
(k) _ S s—k __ ( +S) s
fo@) _;(s—kz)!x - z; s
|

NoTATION 1.3.1. Consider the mapping f defined by Equation (1.18) and 7 €]0, 1].
For all 1 <k < n, we pose:

b Kl (n7 ka 7-) = (7’L - k)' (1 - T)k f(kil)(T);
o Ky(n, k, 7)=7""F(k— 1) f=R(1 - 7).
PRropPoOsITION 1.3.5. Considering the previous motations, we obtain:

Ki(n, k, 7)+7Ks(n, k, 7) = (k=1 (n—Fk)! foral 1<k<n (1.21)
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Proof.
Given k € {1,--- ,n}, consider the following assertion :

Ak) : Ky (n, k, 1)+ 7Ky (n, k, 7) = (k= 1)!(n — k)!

We prove by induction on k € {1,--- ,n} that A(k) holds.

Suppose that k = 1, then K (n, 1, 7)+7K2 (n, 1, 7) = (n—D)!I(1—=7")+(n—1)I7" =
m—1)1—=7"+7")=(1-1)(n—1). It follows that A(1) holds.

Now assume that A(k) holds for some k € {1,---,n — 1}, we prove that, A(k + 1)
holds.

Ki(nk+1,7) = (n—k=11(1—7)"" f®(7)

. k B nlrnk .
= (n — k — 1)' (1 — T>k+1 (Hf(k 1 (T) — (n—k‘)'(l—']’)) by Equatlon (119)
k _ nl
= (- ) ek
_ k . n—k k
= n—kKl(n’ k, T) — (1—7)
and
Ky(n, k4+1,7) = klpnklf=k=D(1 _ 1)
(1 —7)k
= klrnk-l (nikf(”_k)(l —-7)+ Tén(—kz;Z') by Equation (1.19)
k — — ' n—k—
= — ((k - Dl kot 1)(7')) + e =7k
o k ., TL' k_n—k—1
= n_ng(n, k, T)+n—k(1 )T
Therefore,
Kl(n,k—l—l,T)—i-TKQ('n, k+1,71) '
= — ﬁ kKl (n, k, 7) — nri k(l — 7')’“7"7’C + - ﬁ 2 -TKy (n, k, 7) + 77171 kz<1 — T)anik
k
= — (Ky(n, k, 7) + 7Ky (n, k, 7))
= K k—D!(n—k)! since A(k) holds
k
n—
= klln—k—1)!

In conclusion, for all 1 < k < n we have Ky (n, k, 7)+7Ks (n, k, 7) = (k—1)!(n—Fk)!. =

Theorem 1.3.1.]

Given 7 €]0, 1]; ¥(77(v)) = SSI(v) for all v € §G,,.

Proof.
| Consider v € §G,,, i € N and 7 € ]0, 1]. First suppose that 7 = 1. Then for all
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S C N, we have :

C:; 15, T_ S CZ (05, 5675) dx

In

/Ln +(1g, v_g)) —v(0:(0s, x_g)) dx where L =|0, 1]

v(S) —v(@) =v(S) since T=1.
)

By substituting v (S) to C (77 (v), S) in Equation (1.17), one obtains W, (77 (v)) =
Now, suppose that 0 < 7 < 1. Then for all S C N,

C(C78)= [ C7 (s, a-5) - 7 (05, 2-5) da

:/n v (0-(1s, z_5)) — v (0-(0g, _g)) dx

Z 1 — 1) w(SUT) — v (T)] by definition of 6,
TCN\S
Hence, for all i € N,

w(op= Y BT S ey (s UT) <0 ()

i€ESCN ’ TCSe
slin—s5—1)!
-y A DS ey (S UT) o ()
SCN\{i} ’ TCSe

=1+ X+ 23+ Xy

where
_ (S_l)l(n_s)' t _n—s—t
Y = _ZT Z (I—7)T1 v (T)
S:eS PATCSe
— ' (n—=3s)!
:721)([()2(3 )('” 5)(17)kn5k
, n!
0#AK ¢ K S:eSCKe®
n—k
—k-1 — D' (n—2s)! L :
= — Z 1—7"“2 " —(S ) n =) ™ Fsince i € S C K¢
s—1 n!
0#£K:i¢K s=1
k—1>' Fs (kB s)!
= =2 vl U=n" > =
K¢ K 5=0
- Z U(K) Ky (n, k+1,,7) | (by Equation (1.20) and Notation 1.3.1.)
- 1— 1 S nl 1 ) ys T Yy &q : g By

R B Pt

_ k ‘5' (TL — S 1) n—k—s
- Yema-nt Y 2
KCN S:gSCK
n—k
—k I(n—s—1)!
D SRTISIE S ) A s 2Dl e
KieK s=0 $ G
n—k—1
A n—k—=1\sln—s—-1!  , .
+ Z v(K)(1—1) ( . ) -
K:i¢K s=0
(n —k)! D(k+s—1) (n—k—1)! " (k4 5)!
= Y u(K) - —7)* . + Y v(K) . 1=7" > T
KiueK s=0 K¢ K s=0
K K
— ZM.Kl(mk‘,T)-I-i Z“( )-Kl(n,k—l—l,T)
_ n! 1—7 . n!
KieK K¢ K

UYI: Ph.D Thesis Hilaire TOUYEM ©UYT 2020




1.3. The Shapley-Shubik index for CSGs as a generalisation

g, = Y ETDmE b sty (s UT)

n!

Therefore, the share ¥;(C7) can be rewriting as:

(€)= Y D (1 0 k) 4 B k) - Y LD
KiueK KagK

(1.22)
Hence by Proposition 1.3.5, Equation (1.22) becomes:

ven=3 "W yw-m- ¥ ”S{)k!(n—k—l)!_ssb(m.

n!
K:ieK K:i¢K

Finally, we obtain W (77 (v)) = SSI (v). u

1.3.3 The Shapley-Shubik index from JK, to C5G,

We prove that, the Shapley-Shubik index for CSGs is an extension of that for (j, k) simple
games with uniform numerical evaluation. To achieve this, we show that the embedding 7"
(see, Proposition (1.3.3)) preserves the Shapley-Shubik index ®. For j = 2, a more general
result is obtained by using parameterized embedding as in the case of simple games.
Consider e = (ey, €9, -+ ,e,) € J". We denote by B, the cartesian product I, X I, X

- x I, of intervals, where each interval I, is given by:

S:ies ’ TCSe
-1 — .
_ Z U(K) Z (S ) ('TL 5) (1_ )k sTn—k
KiheK S:HeESCK s
k
-1 -1 — .
- Yoy D=9 g ks ik ginee i€ S C K
KieK s=1 k—1 n!
e k= DI (n—k+s)! s v (K
= ZU(K)T i n')z( 5 )(1—7):2 ;')~K2(n,k,7)
KieK ’ 5=0 o KieK ’
and
'(n—s—1)!
Y, = — Z stn—s— 1! }S ) Z (1—7) "t (SUT)
SCN\{i} w TCSe
slin—s—1)! slin—s—1)!
- _Z”(K) Z M(l_ﬂk—%n%_ ZU(K) Z M(l_ﬂ—
KieK S:SCK\{i} G K:i¢K S:SCK s
_ Z v(K)%( s ) 5!(77/*5*1)!(1_7_)k—s7_n_k
KieK s=0 k-1 n!
k
s \sl(n—s—1) —s n—
—Zumz<>('Hprk
- k n!
K:i¢K s=0
k
(k ke k—i—s sl e k! (n—k+s—1)!
= 720([(7 Z (1—7)""" — ZU(K)T EZ—S'
KiueK (K) (K) K:i¢K s=0
v v
= —(l—T)Z o ~K2(n,k,7)—7~z o “Ky(n, k+1,7)
K:ieK Ku¢K

(1—7)°

(Ki(n,k+1,7)+7Ks(n, k+1, 7))
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[ 6#1[ ife; <j—1
[jfl, 1} otherwise

PROPOSITION 1.3.6. The collection {B., e € J"} is a partition of I™ and the n-

dimensional volume of each Be is equal to —.
]?"L

Proof.
We first prove that [" = U B.. Note that, for each ¢ € J", B, C I"™, thus
ecJn
U B, C I". Consider z € I", for all i € N. We pose ¢; = |ja;] if z; < 1lande; =5 — 1
ecJn
otherwise. We easily check that, x € B,, then I C U B.. Finally we have [" = U B..

ecJn ecJn
Now consider e, e’ € J" such that e # €¢’. Then e; # €] for some i € N. Consider

i € N, with e; # ] and assume that I, N I, # (. Then there is some ¢ € [0; 1] such
that t € I, N L. W.lo.g., suppose that e; < €], then e; < j — 1. Since t € I, N I and

e; < j— 1, then t # 1, therefore we have:
e +1

€; e, +1 el
Pcp Gt Gyt (1.23)
J J J J

It follows from the relation (1.23) that e; = €;. A contradiction arises since e; # €.
So e # ¢ implies B, N By = 0. ]

DEFINITION 1.3.2. For integers 7,k > 2, let v be a (j,k) simple game with uniform
v(e)
for

numerical evaluation. A natural embedding of v is a CSG v defined by 0(z) = -

all z € I" such that x € B., for some e € J".

By Proposition 1.3.3, we remark that 7"(v) = 0.

Theorem 1.3.2.}

For integers j,k > 2, let v be a (j, k) simple game and ¢ its natural embedding,
then U(0) = ®(v).

Proof.
| Due to Equations (1.1.3) and (1.17), it is sufficient to verify the coincidence of the
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two different expressions for C,(T") and C(0,T) for all T'C N.
C(0,T) :/ (0(1p, z_7) = 0(0p,2_7)) da

= Z/ (1r,z_7) —0(0p,z_7)) dz (by Proposition 1.3.6)

eeJ”
1 Z [vol(BB (G—1)r,e—r) —v(0p,e_7)]
eJn
1 .
NIrE > (G =D, 2_r) = v(0r, 2_1)] = Cu(T).
J reJn
Since C,(T)) = C(v,T) for all T C N, we then conclude that ¥ (0) = ®(v). [

For j = 2, there is an even more general statement. For any parameter 7 €]0, 1], we can

replace the natural embedding © by the embedding o, defined by:

() = ) (1.24)

where for all x € I", ["(x) € J" is a profile such that, for all i € N, [7(z) =0 if z; € [0, 7]
and {7 (x) = 1 otherwise. We prove below that U(0;) = ®(v), for all 7 €]0, 1].
But before, note that C,(T") and C(0;,T") do not necessarily coincide for any coalition T

as in the proof of Theorem 1.3.2.

ExAMPLE 1.3.1. Consider 7 €]0, 1]. To see that C,(T") and C(v;,T) may not coincide,

consider the n-player (2, k) simple game defined as follows:
v(z) =11 =1 and v(x) = 0 otherwise

It follows that, 0, (z) = 1 if € [1,1]" and v (x) = 0 otherwise. Thus, for S C N, we
have

€.(9) = 5 and €5, 8) = (1)
Therefore, C, (S) # C (07, S) for any T # 3.

Theorem 1.3.3.}

Given an integer £ > 2 and 7 €]0, 1], let v be a (2, k) simple game with uniform

numerical evaluation and 0, its parametric embedding. Then, ¥(0;) = ®(v).

Proof.
Due to Example 1.3.1, we adopt a different approach from that used in the proof of

Theorem 1.3.2.
Consider 7 €]0, 1] and ¢ € N a given player. Since j = 2, we have:
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D 0s, k) x Y ([o(ls,2-s) = v(0s,7-)] = [v(Lsvip 2 sviip) — v(0s\gi1, T sy ()]

1€ESCN reJn

— DI(n — s)!
where 0(s, k) = (s = Di(n — s)! . Furthermore,

n!2n(k — 1)
v = 3 O s g) - o (05,5-9)
i€SCN m

— [o(I” (15\{1}7 5\{})) v(I7(0s\(iys T—(s\(i1)))] ) d

Following Equation (1.24), one concludes that the ranges of v, and v coincide. Thus, by
collecting all terms that contain each v (x),z € J", one gets
O (v) =Y ali,z)v(z). (1.25)
rzeJn
and

= Z b(r, i, x)v(x) . (1.26)

zeJn
To complete the proof, we show that for all x € J", a(i, ) = b(r, i, x). For this purpose,

consider the following notations in the sequel,

(s, k)= (Sn_@?(li?l__l;)', B(s,k)=2"-0(s, k), and e=1-r7.

For each y € J", we pose

. v
A, ={peN:y,=1},B,={pe N:y,=0} andDy:{CBG[Oal]niUr(ﬂﬁ):kEg)l}.

Therefore, each term of V;(v0;) that depends on v (y) comes from an integration over a
subset of D,,. By definition of 7, D, = [0,7[? x [r,1]"*. We also note that, A, and B,

form a partition of V.

Suppose that i € A,. We compute a(i, y) and b(7, i, y).

aliy) = > 0(sk) D L — > 0(sk) D1+ > sk D 1

i€eSCA, zeJn 1€SCAy:S\{i} 40 zeJn i€S:0£S\{i}C B, zeJn
T_S=Y-5 TSei=Yscti Tseti=Ysc4i
= > 0(s,k)-2°— Yoo 0 k)2 + > 0(sk)-2!
i€SCA,y i€ESCAy:S\{i} 40 i€S:0£S5\{i}C By
a by+1
_ (n—1)! +Zy ay —1 (s —Dl(n—s)! 9s=1 4 Z by (5_1)!(n_5)!2s—1
nl2n=t(k—1) =\ s-1 nl2n(k — 1) —~\s-1 nl2n(k — 1)

n—1)! a =D ), ()2 = (a,—1+p)!
_ =t )1)2( Dy, () 1)2( p)

9P
nl2r=1(k —1)  nl2bst1(k — P! nl2n(k — p!

p=0 p=0

Thus by Equation (1.20), we obtain:

i =200+ o (1Yo () e,
(1.27)
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where g(z) = f(x) — 2" ! and f is the function defined by Equation (1.18).
In order to compute b(7, i,y), we pose Dy = [0, 7] x [r, 1] for all T C N. It
follows that:

b(r, i y) = Y. B(s,kz)/ dr— B(S,k)/ A dx

i€SCA, (0,1]9% Dy, 5¢ (i}S5CA, 0,153 <Dy, seps

+ ) 5(571@)/ | dx

{}SS:S\}CB, (01N XDy, 5044

= Z B (S, k’)anisTby — Z 15} (37 ]g)gay*SJrlTby + Z B (S ]{3) ay rby—s+1

i€SCA, 1€SCAy:S\{i}#£0 ieSI;(D;éf\{i}gBy
= B(1,k)rhvew 4 phutl iﬁ (s, k) < C;y__ll ) cav—st1 4 cay :12:; B (s, k) < Slill ) Fby—st1
— B k) 4 Tbj(gfy__l)l)! p_o (by;p)!gp N n('b&?'il) l;z_—; (a _pl; i),
Hence,
b(r, i, y) =B (1) rve !+ Tby;l(gjy_—l)l)!g(by) (e) + %g(%l) (1) = Fo(r, ay, by) .

(1.28)
We conclude from Equations (1.27) and (1.28) that:

a (i, )—b(l y> (1.29)

Furthermore, by differentiating F5(7, ay, b,) with respect to 7, we obtain:

(k = 1) F5 (7, ay, by)

1+0b,)7%(a, —1)! (g, — 1)!
_ ( J) n'( Yy )g(by)(g) _ ( z|/ )g(1+by)(€)+
bylew 1" byt lew =l (g, — 1)7brgtv2
2y — g( ” 1)(7_) + Yy - My

n
by ay7 ! y! ay—1 a ay—

= DU (14 b,)g®)(e) — (1 — e)g1+¥) () + 27— (1 = 7)g'™)(7) — ayg'@ V(7))
+by7 vlemmt (g, = DT by gay—2

byle® .
Jilg( y)(r)

n n
a —1 bygay72 b byflgayfl b byflgayfl a, —1 bygay72
_ (U7 - + 20 _lay = =0 (by Equation (1.19))
n n n n

It follows that, Fy(7, ay, b,) is independent of any arbitrary value of 7. So, for all
7 €]0; 1], for all y € J™ and for all i € A,

1
6(7—7 i? y) = FQ(Tv ay7 by) = b(

2 i, y) = a(l, y) = Fi(ay, ay) . (1.30)

Now assume that, i € B,. We compute a(i, y) and b(7,1, y).

aliy) = — > 0(s,k) D 1 — > 0sk) D1+ > sk D1

i€SCB, zeJn i€S0£S\{i}C A, zeJn I€SC By:S\{i}#0 zeJn

T_s=Y-_g5 Tsei=YsCi Tgepi=yscti
by—2 Ay — 1
(b, — 1)! (a, + p)! 1+p
= —2-0(1,k)— : 27P
(1) n!2evt1(k — 1) pz_; p! n'2b pz; p!
= = —Fi(by, ay).
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1.3. The Shapley-Shubik index for CSGs as a generalisation

and
vriw) - - ¥ [ 8 (5, k)dz — / 8 (s, K)da
i€SCBy [0, 1] XDy ge {Z}CS S\{’L}CA 0,1] S\{i }XDU SC4i
+ > / B (s, k)dx
{(i}SSCB, S\ <Dy sep
by—2 a,—1
et (b, — 1) <= (a, + p)! a,l™ S (b, — 1 +p)
= —B(1, k)t ! — Y v &P
n!(k—1) pz_; p! (k—l) — p!

= = —Fs(e, by, ay) .

As shown above, Fy (e, by, a,) is independent of ¢ and Fg( by, a,) = Fi(by, a,), thus,

b(r, 1, y) = —F(7, ay,, by) =b (1 i, y) =a(i, y) = —Fi(ay, a,) . (1.31)

Finally, for all ¢ € N, for all y € J", b(7, i,y) = a(i,y). Hence, by Equations
(1.25) and (1.26), we conclude that, U(0;) = ® (v) for all (2, k) simple games v and all
T €]0, 1]. u

The presentation of simple games, (j, k) simple games and CSGs as well as the Shapley-
Shubik index of these classes of games raises several research problems among which the
question of axiomatizing power indices with appropriate sets of axioms that highlight the
intuition and ideas behind each power index. In the next chapter, we focus on the axioma-
tization of the Shapley-Shubik power index for (j, k) simple games, a problem that remains
open for the past decade.
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Axiomatization of the Shapley-Shubik

index for (j, k) simple games

From an axiomatic approach, ( ) introduced a function, the so-called Shapley
value, that maps each TU-game with individual shares of the grand coalition in such a
way that, the share of each player corresponds to his/her expected utility in the game. An
axiomatization of the Shapley-Shubik index, the restriction of the Shapley value on the set

of simple games, was given quite a few years later by ( ). A Shapley-Shubik index
for (j,k) simple games was introduced in ( ) with an axiomatic justification
only for £ = 2 and j > 2, see ( , , Theorem 5.1). Here, we fill this gap by
providing a characterization of the Shapley-Shubik index (®) for arbitrary (j, k) with the
uniform numerical evaluation; see ( ).

This chapter, partially published in ( ) comprises three sections presented

as follows. Section 2.1 is devoted to a presentation of the notions of (j,k) simple game
with point-veto and average game, immediately followed by some preliminary results. An
axiomatization of ® is presented in Section 2.2. We end this chapter in Section 2.3, with an
introduction of a new axiom of power indices for (7, k) simple games called Symmetry Gain
Loss™ which is as an extension of the symmetry gain-loss axiom introduced by
( ) on the class of simple games.

To emphasis on our assumption of uniform numerical evaluation, a (j, k) simple game

will be called “uniform (j, k) simple game” and the set of such games denoted by U* (or

U,,, whenever j and k are clear from the context).

2.1 Preliminaries

In this section, we mostly present a special subclass of uniform (7, k) simple games and
introduce an operator that associates each uniform (j, k) simple game v with a TU-game
v called average game. Additionally, we present some intuitive axioms of power indices for

uniform (j, k) simple games.
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2.1.1 Uniform (j, k) simple games with point-veto

We introduce a subclass of uniform (7, k) simple games with the property that for each profile
x, the collective decision v(x) is either 0 (the lowest level of approval) or it is k — 1 (the
highest level of approval) depending on whether some given players report some minimum
approval levels. For example, when any full support of the proposal needs a full support
of each player in a given coalition S, players in S are each empowered with a veto. One
may require from each player in .S only a certain level of approval for a full support of the

proposal. All such games will be called uniform (7, k) simple games with point-veto.

DEFINITION 2.1.1. A uniform (j,k) simple game with a point-veto is a (j, k) simple

game v such that there exists some a € J"\{0} satisfying

v(x) = { Folif aze for all z € J". (2.1)

0 otherwise

In this case, a is the veto and the game v is denoted by u®. For each coalition S € 2V,

S

we abbreviate w” = u®, where a; =7 — 1 for all ¢ € .S and a; = 0 otherwise.

We remark that uniform (2,2) simple games with a point veto are in one-to-one corre-
spondence to the subclass of unanimity games within simple games presented in Definition
1.1.5, page 7. Hereafter, given a veto a, the set of all players who report a non-null approval
level is denoted by N¢ ie. N* = {i€ N:0<a; <j—1}. Every player in N® will be
called a wvetoer of the game u®. Note that for the profile a defined via w® = u®, we have
N =§.

Null players as well as symmetric players can be identified easily in a given uniform (j, k)

simple game with point-veto:
PROPOSITION 2.1.1. Consider a € J"\{0}.
e a player i € N is a null player of u® iff i € N\N;

e two players i, h € N are symmetric in u® iff a; = ay.

Proof.

e Consider a € J"\{0} and i € N\ N, then a; = 0 by the definition of N*. Therefore,
for any x € J" and any y; € J, a 2z iff a <X (z_;, y;). Thus, u*(z) = u® (x_;, ¥i),
i.e. 7 is a null player in u®. Now consider i € N*, then a; > 0. Since u®(a) = k—1 #

0 =u(a_;,0), player 7 is not a null player in u®.

e Consider i,h € N and a € J"\{0}. If a; = ay, then for any x € J", a < z iff

a X mipz. Thus, the definition of u® leads to u*(x) = u®(myx), so i and h are

symmetric in u®.
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Now assume that the players ¢ and h are symmetric in u®. Since a < a, we obtain
u*(a) = u®(mpa) = k — 1. This implies a < mpa. Hence, a; < ap, and a;, < a;, that

is a; = ap,.

Note that uniform (7, k) simple games can be combined using the disjunction (V) or the

conjunction (A) operations to obtain new games.

DEFINITION 2.1.2. Let v and v' be two uniform (7, k) simple games with player set N.

By v Vv and v Av" we denote the uniform (j, k) simple game defined as follows:
for z € J*, (v V') (x) = max{v(z), v'(x)} and (v A V") (x) = min{v(z), v'(z)}.

One can easily check that the above mentioned games are uniform (j, k) simple games.
This can be specialized to the subclass of uniform (j, k) simple games with point veto, i.e.
uniform (7, k) simple games with point-veto can be combined using the disjunction (V) or
the conjunction (A) operations to obtain new games. To see this, consider a non-empty

subset E of J"\{0} and define the uniform (3, k) simple game denoted by u¥ as follows:

k—1 ifa=<zf cE
for all x € J", uE(:L‘):{ if a = x for some a

0 otherwise

Note that for any a € J"\{0}, ul? = u® (see Definition 2.1.1).
Given a,b € J" ¢ = max{a, b} is the element of J" defined by ¢; = max{a;, b;} for all
1€ N.

PROPOSITION 2.1.2. Let E and E’ be two non-empty subsets of J"\{0}. Then, we

have v v u = P9 and u? A uP = uP" | where E” = {maxr{a,b},a € E and b € E'}.

Proof.

In order to prove that u” Vv v = uY" we consider an arbitrary = € J*. If

uPYP (1) = k — 1, then there exists a € FU E' such that, a < 2. Therefore u”(z) = k —1
or u¥ (r) =k —1 and (u” v u”)(x) = k — 1. Now suppose that u” ¥ () = 0. Then, for
alla € EUE', a £ 2. Since EC EUE" and E' C EUE' then b £ z and ¢ £ z for all
b € E and all ¢ € E'. This implies v”(z) = «¥ (r) = 0 and (uf v u®')(z) = 0. Thus,
uf vl =y,

E" consider an arbitrary x € J". If u”'(z) = k—1,

Similarly to prove that u? Au? = u
then there exists ¢ € E” such that ¢ < z. But, by the definition of E”, ¢ = max(a,b) for
some a € F and b € E', that isa < ¢ <z and b < ¢ < x. Hence, u”(z) :uE'(x) =k—1
and (u” A u®)(z) = k — 1. Now assume that v (z) = 0 and (u” A u”)(x) # 0. By
the definition of u” and u® we have, (u” A uf)(x) = k — 1. Thus, there exists a € E
and b € E’ such that a < x and b < z. It follows that ¢ = max(a,b) < x, which is a

contradiction to u”’ () = 0. This proves that u” A u? = u”". [
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ExAMPLE 2.1.1. For (j,k) = (5,3) and n = 3, pose E = {(1,2,3),(2,1,2)}, F =
{(4,1,1),(1,1,3)}. With this, B = {(4,2,3),(1,2,3),(2,1,3), (4,1,2)}. Note that one
may have B” = {(1,2,3),(2,1,3), (4,1,2)} since (1,2,3) < (4,2,3) or (4,1,2) < (4,2,3).

Especially, Proposition 2.1.2 yields that every uniform (7, k) simple game of the form u
is a disjunction of some uniform (7, k) simple games with point-veto. So, each uniform (j, k)
simple game of the form u¥ will be called a uniform (j, k) simple game with veto.

The previous proposition leads to the following technical result:

COROLLARY 2.1.1. Let E be a non-empty subset of J"\{0}. Then,

|E|

uE _ \/ u® = Z (_1>lfl Z umax{a,aGL} and /\ u® = umax{a, a€E} )

acE =1 LCE,|L|=l acE

In the game u”, E can be viewed as some minimum requirements (or thresholds) on the
approval levels of players’ inputs for the full support of the proposal. It is worth noticing
that u¥ is {0,k — 1}-valued; the final decision at all profiles is either a no-support or a

£ corresponds to the simple

full-support. In the context of uniform (2, 2) simple games, u
game whose minimal winning coalitions are the subsets N¢ a € E. The set of all veto
uniform (j, k) simple games on N is denoted V,,. Note that Proposition 2.1.2 shows that V),
is a lattice.

The sum of two uniform (j, %) simple games cannot be a uniform (j, k) simple game.
However, we will show that each uniform (j, k) simple game is a convex combination of

uniform (j, k) simple games with veto.

DEFINITION 2.1.3. A convex combination of the games vy, vq,...,v, € U, is given by

v =11 o for some non-negative numbers oy, t = 1,2, ..., p, such that Y 7_ oy = 1.

Note that there exists convex combinations of uniform (j, k) simple games that are not
uniform (7, k) simple games. As an example, consider the uniform (3, 3) simple games u and
v with two players such that, u(2,1) = 2 and v(2,1) = 1. Then w = Ju + 3v ¢ U, since

w(2,1) =3 ¢ {0,1,2}.

PROPOSITION 2.1.3. For each uniform (j, k) simple game v there exists a collection
of positive numbers (a;)1<t<p such that >-7_ oy = 1 and a collection (F;(v))i1<i<p of

non-empty subsets of J" such that v =37 oy - ufr ),

Proof.
Consider v € U,,. If v = u¥ for some F C J™\{0}, the result is obvious. Now assume

that v is not a veto game and pose F(v) = {z € J",v(z) > 0}. Since J" is finite and v is
monotone, the elements of F(v) can be labeled in such a way that F(v) = {z', 2, ... 2P},

where 27 = j — 1, v(z") < v(z!™!) for all 1 < ¢ < p, and ¢ < s whenever ! < z*. Now, set
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2" =0and Fy(v) = {2°, t < s < p}, ay = % for all 1 <t < p. By assumption
on zt, ay > 0 for all 1 <t < p. Moreover,

b 1 b : 1 v(aP) —v(2”
2 =gy L) e y-dme)

t=1

Fi(v)  In order to prove that v = w, we consider z € J". First

Pose u = Y7 oy - u
suppose that x ¢ F(v). Since v is monotone, there is no a € F(v) such that a < z. By
definition, it follows that v™*(")(z) = 0 for all t = 1,2,...,p. Therefore v(z) = u(x) = 0.
Now assume that = € F(v), then x = z° for some s = 1,2,...,p. It follows that for all

t=1,2,...,p, 0" (2) =k —1if 1 <t < s and v™")(2) = 0 otherwise. For this reason,

u<x) — Z&t . (k _ 1) _ Z {U(xt)k—_vgxt_w . (k . 1) _ ’U(Z’S) _ ’U(Z’)

t=1

Clearly, the game v is a convex combination of the games u™*"), where t =1,2,...,p. R

Proposition 2.1.3 underlines the importance of uniform (j, %) simple games with veto,
i.e. any uniform (7, k) simple game can be obtained from uniform (j, k) simple games with
veto via convex combination. To illustrate the Proposition 2.1.3, we consider the following

example.

EXAMPLE 2.1.2. Let v be the (3,4) simple game v for 2-players defined by

z |00 @oleolon]anlen]o] ] e
v(z) | 0 1 2 0 1 2 1 3 3

We have F(v) = {(1,0);(1,1);(0,2);(2,0);(2,1); (1,2);(2,2)} and the decomposition of v

as convex combination of uniform (3,4) simple games with veto is given by:

_1 Fy 1 Py 1 F3
v = 3u + Su + Su
where F} = F(v); Fo ={(2,0);(2,1);(1,2);(2,2)} and F3 = {(1,2);(2,2)}.

We end this section with the following useful result on TU-games.

PROPOSITION 2.1.4. Let v be a TU-game on N. If the player ¢+ € N is a null player

in v then, there exists a collection (x%)gean of real numbers such that,

v = Z s vst. (2.2)

¢ Se2N

Proof.

IThe definition of unanimity games has already been given in Definition 1.1.5, page 7.
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It is well known that the set I'V of all TU-games on N is a vector space which a
basis is (7s)geqn, s€€ ( , , Lemma 3). So, for a given TU-game v on N, there

exists a unique collection (z%)geon of real numbers such that

v= Z xS vs (2.3)

Se2N

where the coefficients

wg=) (=1 (D)

TCS
are the well known ( ) dividends.

Now let i € N be a null player in v. Consider S € 2V such that i € S, then:

wg= Y (o) + Y (=1 e(D)

i¢TCS i€TCS

= > (1M + > (1) w(Ludi}) with L=T\{i}
i¢TCS igLCS

= Z (=) Ho(TU{i}) —v(T) =0 since i is null player in v.
i¢TCS

Finally, Equation (2.3) implies,

v= Z TG s+ Z TG Ys = Z Tg s

ieSe2N i¢Se2N igSe2N

2.1.2 The average game of a uniform (j, k) simple game

In Chapter 1, given a (4, k) simple game v, we derive a TU-game C, such that the Shapley-
Shubik index of v coincides with the Shapley value of C,. In this section, we pay a particular
attention to this new defined TU-game called average game. The average game itself seems
to be a very natural object on its own and have some nice properties. Indeed, they are
used to obtain another formula of the Shapley-Shubik index for (j, k) simple games which

is better suited for computation issues.

DEFINITION 2.1.4. Let v € U,, be an arbitrary uniform (7, k) simple game. The average

game, denoted by v, associated with v is defined by

N 1 .
7(8) = AT > (-1 z-s) —v(0g, 2_g)] for dl SCN.  (2.4)

zeJm
REMARK 2.1.1. The Equation (2.4) can be simplified to:

_ 1 .
7(8) = ) > (G- 1)g a—s) —v(0s, 2_5)] forall SCN.  (25)

r_geJn—s
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Given a uniform (j, k) simple game v, the average game v can be seen as a coalitional

representation of v. With that notation the Theorem 1.1.2, page 14 can be restated as

follows:
r—[Theorem 2.1.1.} \
For any uniform (j, k) simple game v the Shapley-Shubik power index ®(v) is equals
to the Shapley value of v. More precisely,
®(v) = Shap(v) (2.6)

ExXAMPLE 2.1.3. Consider the uniform (3,4) simple game v from Example 2.1.2. The

average stmple game s given by

50) = 0,5({1) = 2, 5({2}) = 5, and o(N) = 1,
Consequently, 0o
®(v) = Shap(v) = (E’ 1_8> :

As illustrated in the following example, two distinct uniform (j, k) simple games may
have the same average game. This highlights the fact that the average game operator is not

injective.

EXAMPLE 2.1.4. Consider u,v € U, defined as follows. For all x € J",
e u(z)=k—1if z=j—1 and u(x) = 0 otherwise;
o v(x)=k—1if x # 0 and v(z) = 0 otherwise

Consider S € 2V, then following Equation (2.5) we have:

- 1 . 1
uw%—ﬁs%_lxdg;ﬂgmw—nguu@—um&xﬂnzjny
and . ,
u(S) = k1) > oG —1)g v-5) —v(0s, x_5)] = s

r_g=0_g

It is obvious that u # v, however u = v.
The average game operator has some nice properties among which are the following:
PROPOSITION 2.1.5. Given a uniform (7, k) simple game v € U,,
(a) vis a TU-game on N that is [0, 1]-valued and monotone;

(b) any null player in v is a null player in v;
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(¢) any two symmetric players in v are symmetric in v;

(d) if v = D7 vy is a linear combination for some vy,...,v, € Uy,, then v =

Zf:l Uy

Proof.
Let v € U,, be an uniform (j, k) simple game with n players.

(a) By definition,
- 1 . 1 .
o(0) = AT > (@) —v(@)] =0 and F(N)= ST > w((G—1) —v(0)]=1.

gn
xeJn zeJn

Now consider z € J" and S,T € 2V such that S C T. Since 0 < x <j— 1 and v is
monotone, then v((j —1)g,2_5) < v((j—1)p,2_7) and v(0g,2_g) > v(0p, z_7).
Thus, by Equation (2.4) one concludes that 0 < v(S) <o(T) < 1.

(b) Let i € N be a null player in v. Consider S C N\{:}. Since i is null in v, then
v(Tsugiy, Y—(sugiy)) = v(xs, y—g) for all z,y € J". Therefore,

~ . 1 .
v(S U{i}) =D > [U((J = Dgupp T—sugin) — v(0sugiy, T-(sugip)
zeJn
1 . . . .
:‘m Z [w((G—1)g, -5) —v(0s, z_g)] since i is a null player in v
zeJn
=v(9).

Thus, v(S U {i}) = v(S). It follows that i is a null player in v.

(c) Let i,h € N be two symmetric players in v, S € N\{i,h}. Then, for any x € J"
and any a € J, v(asugy, T—(sug})) = v(asufay (0ih$>—(SU{h}))‘ It follows that,

~ . 1 .
o(SUii}) = ) Z v(( = Dsugays T-(sutip) — U(OSU{i},ﬂL(SU{i}))}
zeJn
) ZGZJ 0(G = Vi Oint)—(suny) = v(0sugny, (9ihl’)—<5u{h}))}
1 r,. .
= ik —1) Z v((j— 1)Su{h}’ Y-(suiny)) — v(0sugny, ?J—(SU{h}))} with y = 0 (2)
yeJn -
= v(SU{h}).

We conclude that, players ¢ and h are symmetric in v.

(d) Now suppose that v = Y7, ayvy is a linear combination for some vy, vg, -+ , v, €
U,. Since for any z € J" and for any a € J, v(ag, _g) = Y ,_, apvy(ag, z_g),
Equation (2.4) gives 0(S) = Y7, ayy(S) for all f C S C N.
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Proposition 2.1.5 highlights the fact that the average game of a given game preserves
some properties of that game. The average game of a uniform (j, k) simple game with a

point-veto is provided by:

PROPOSITION 2.1.6. Given a € J"\{0}, the average game u® satisfies for every coali-
tion S # N

] II (j_.ai) if SANT£0

0 if SANe=10

(2.7)

Proof.
Consider a € J"\{0} and ) €S C N. First assume that SN N® = (). Then, for all

reJ"a=x((j—1)g z_g)iff a 2 (0g, z_g). Thus, u*(((j — 1), z_5)) = u*((0s, z_g)).
It follows from Equation (2.4) that u®(S) = 0.

Now suppose that S N N® # (. Then, for all z € J", a £ (0g, 2z_g). Thus,
u*((0g, z_g)) = 0. Note that a = ((j—1)g, z_g) iff a_s < x_g. Hence, by Equation

(2.5) we obtain:

- 1 o
(S) = mZu (G- 1), v-5)
= m > u*((—1)g, 2-s)

r_geJ" S Na_g=Rx_g

1 s €J" % ag R
= _.(k:—l)HxSE ,’aS_$S}’
k—1 gns
‘ XiEN\S {aia e 7j - 1}‘
o jnfs
_ H (j - ai)
1EN\S J
In both cases, u4(S) is completely determined. [ |

It may be interesting to check whether or not each uniform (j, k) simple game may be
decomposed as a combination of uniform (7, k) simple game with a point-veto of the form
a € {0,757 — 1}". The response is affirmative when one considers combinations between
average games. Before this, recall that the average game associated with each uniform (j, k)
simple game is a TU-game on N. The set of all TU-games on N is vector space and a famous
basis consists in all unanimity games (ys)geon, where y5(7) = 1 if S C T and v5(T) = 0
otherwise.

Let us recall the notation provided in Definition 2.1.1. For S € 2V, w® = u® where

a € J" is specified by a; = j — 1 if 7 € S and a; = 0 otherwise.
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PROPOSITION 2.1.7. For every coalition C' € 2V, there exists a collection of real num-

wC = ZyS"VS-

Se2¢

bers (ys)gezc such that

Proof.

Note that w® is a TU-game on N. Therefore, for some real numbers (yg)geon we
have

?;6 = Z Ys - 7s- <2'8>

SeaN
This proves the result for C' = N.

Now, suppose that C' # N and pose & = {T € 2V, T\C # 0 and |T| = k} for
1 < k < n. We prove by induction on k that y;r = 0 for all coalitions T € &,. Consider
the assertion P(k) : for allT € &, yr = 0.

First assume that, £ = 1. Consider T' € &, then there exists i € N\C such that T' =
{i}. Since player i is not contained in C, Propositions 2.1.1 and 2.1.5 yield that ¢ is a null
player in wC, so that @I}E(T) = 0. Since Equation (2.8) implies lfv\é(T) = geor Ys = Y1,
then yr = 0. Therefore P(1) holds.

Now consider 2 < k < n and suppose that P(l) holds for all 1 < [ < k. Consider
T € &, then there exists i € N\C such that T = K U {i}, i ¢ K # (). Since i is a null
player in wC, then U/—J\a(T) - @F(K) = 0. By Equation (2.8) we have:

0=wC(T)~wC(K)= ys— Y ys=yr+ > ys=yr

SeaT Se2k i€eSeT

using S\C # () and 1 < |S| < |T'| = k. Thus yr = 0, which proves that P (k) holds.
One concludes that, for any C' # N and all T € 2V such that T\C # 0, yr = 0. So,
Equation (2.8) is reduced to

wC = ZyS"YS-

Se20

LEMMA 2.1.1. For every uniform (j, k) simple game u € U,, there exists a collection

of real numbers (xg)geon such that

U= ) xs-wS. (2.9)

Proof.
Let u be a uniform (7, k) simple. First assume that j = 2, from Propositions 2.1.3

and 2.1.5 we can write

p
U= oy uft (2.10)
t=1
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Besides, for any F; C J"\{0}, Corollary 2.1.1 and Proposition 2.1.5 give:

| £ _
ult = Z (-1t Z uM* | where M* = max{a, a € L} . (2.11)
=1 LCF, |L|=1

Since j = 2 then uM" = wS with S = {i € N, M} = 1}. Thus by substituting each e
in Equation (2.10) by its expression found in Equation (2.11), we collect all the terms
that lead to the same w5 and then write @ as a linear combination of wS S e 2N,

Now suppose that 7 > 3. Note that all TU-games on N can be written as a linear
combination of unanimity games (vg)geon. It is then sufficient to only prove that each
TU-game 7 for C € 2V is a linear combination of the TU-games (z;_é )sezc. The proof is
done by induction on 1 < k = |C] < n. More precisely, we prove the assertion A(k) that
for all C' € 2V such that |C| < k, there exists a collection (zg)gegc such that

Yo=Y 25w, (2.12)

Se2¢

First assume that £ = 1. Using Proposition 2.1.6, it can be easily checked that we
have g3 = wi? for all ¢ € N. Therefore A(1) holds. Now, consider a coalition C' such
that |C| =k € {2,...,n} and assume that A(l) holds for all [ such that 1 <[ < k. By

Proposition 2.1.7, there exists some real numbers (ag)geoc and (Bs)seacy fcy such that
wl=> as-ys=ac-yct+ Y, asys=ac-yc+ > Bsg-wS.
Se2¢ Se20\{C} Se20\{C}

where the last equality holds by the induction hypothesis. Moreover, o can be deter-
mined using Proposition 2.1.6 for ¢ = |C| by:

oe = 3 (C1)OS(5) = 3 (1) () (1) O g e 1 2 2

Se2¢ s=1 J

Therefore we get

Yo = ZZSZ/UVS

Se2¢
where for all S € 2¢, 25 = —% if S =C and zg = —’B—z otherwise. This gives A(k).

In summary, each vg, S € 2V is a linear combination of w®, C' € 2V. Thus, the proof is

completed since % is a linear combination of vg, S € 2V [ |

Before we continue, note that by Equation (2.12), for C € 2V each TU-game 7¢ is a

linear combination of the TU-games <7;é > - Since (7s) geon is a basis of the vector space
Se2

'V it follows that <7;§>S L8 also a basis of TV (using incomplete basis theorem). Form
€2

Lemma 2.1.1 we extract the following technical result.

COROLLARY 2.1.2. If a player i is null in the game wu, then Equation (2.9) can be
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reduced to:

i= > a5 wS (2.13)

SeaN\{i}

Proof.
Consider a null player i in the uniform (j, k) simple game u and let show that, in

Equation (2.9), zs = 0 for all S € 2V such that i € S. Since u is a TU-game on N and i
is null in w, then Propositions 2.1.4 and 2.1.5 yield,

u= Z T g

i¢SCN
= Z rh (Z 2r - ﬁ) by Equation (2.12)
igSCN Te25

The last equality is a linear combination of games w? , T € 2V such that i ¢ T. Since
(w9)geon is a basis of 'V, then by Equation (2.9), we conclude that x5 = 0 for all S € 2V
such that i € S. So, Equation (2.9) is reduced to Equation (2.13). u

2.1.3 Axioms of power indices on U,

We present some desirable axioms of the power indices for uniform (7, k) simple games.

DEFINITION 2.1.5. A power index F' on U, is a mapping that associates each game v

with a n-tuple (F;(v));eny of real numbers. F satisfies:
e positivity (P) if F(v) #0 and Fj(v) >0 for all i € N and all v € Up;

o anonymity (A) if Fr.u(mv) = F(v) for all permutations 7 of N, ¢ € N, and

v € Uy, where mv(z) = v(m(x)) and 7(z) = (xﬁ(i))ieN;
o symmetry (S) if F;(v) = Fj(v) for all v € U, and all players 4,5 € N that are

symmetric i v;
o efficiency (E) if ..y Fi(v) =1 for all v € Uy;

e the null player property (NP) if F;(v) = 0 for every game v € U, such that i is a

null player in v;

e the transfer property (T) if for any u,v € U, and any i € N, F;(u) + Fi(v) =
F,(uV o)+ Fj(uAv);

e convezity (C) if F(w) = Y1 oy F(u) for any uy,ug,---u, € U, and any

(@ )1<t<p, noN-negative numbers such that >°7_ oy = 1; with w = Y0 ap - uy € Uy;
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e linearity (L) if F(w) =", a;- F(uy) for all uy, ug,---u, € U, and all (ou)1<i<p,

real numbers such that, w = E?:l o - up €U,

Obviously, (L) implies (C) and (A) implies (S). Since  +y = max{z,y} + min{z, y} for
all z,y € R so, (T) is also implied by (L).

LEMMA 2.1.2. The Shapley-Shubik index ® satisfies the axioms (P), (A), (S), (E),
(NP), (T), (C) and (L).

Proof.
Combine Proposition 2.1.5 and Equation (2.6) we easily check that ® satisfies (E),

(NP), (S), (NP) and (L). Moreover (L) implies (T) and (C) thus & also satisfies (T) as
well as (C). Since v is monotone and @ is efficient, then ®(v) # 0, so that ® is positive.

In order to show that ® is anonymous, consider a permutation 7 € §,,, S C N and
a € J". Then for all x € J", we obviously obtain m(ag,z_g) = (aﬂfl(s), (7'('1’)_(“-—1(3))).

So, by Equation (2.4) we have:

m8) =Ty ; [ro(( — 1)g, 2—s) — 70(0s, z_s)]
=T 3 (G~ D -5) = ({05, -5)
_j"(kl— 0 ; V(= Drs)y (T2)—(r1(s)) = (0715, (M)—(rl(s»)}
_j”(k‘l— 1) ; V(= Dri(s) Y-1(s) = v(0x-19), y_(rl(s)))} with y = 7z
:5(7T_1(S))y

Therefore, for all i € N,

By (m0) = (s = DMn =9l 29) — mo(s\{m(i)})]

n!
w(i)€

(s —1)!(n — s)! [5(x71(S)) — o(x 1 (S\{7())}))]

SCN
n!
ier—1(S)CN

> (t - 1);(!” ~ V) — SN with T = 71(S)

= Shap(v) = ®;(v) by Equation (2.6).

So, ¢ satisfies anonymity. Therefore, ® satisfies (S) since (A) implies (S). n
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2.2 Axiomatization of ¢ on U,

We provide an axiomatization of the Shapley-Shubik index (®) for uniform (j, k) simple
games. For this fact, after showing that the extension of ( ) axioms (efficiency
(E), symmetry (S), null player property (NP) and transfer (T)) to uniform (j, k) simple
games are no longer sufficient to uniquely determinate ®, we introduce a new axiom called
average convexity (AC). This latter axiom together with (E), (S) and (NP) lead to an
axiomatic justification of ®. We end this section by the proof of the independence of the

characterization axioms.

2.2.1 Average convexity axiom
Insufficiency of ( ) axioms over U,

Actually the proof of Lemma 2.1.2 is valid for a larger class of power indices on U,,. To
prove this, we construct a parametric class of power indices on U, as follows. For a given
uniform (j, k) simple game v and a profile a € J", we associate a TU-game v, defined as
follows:

for any S C N, vy(S) = ﬁ (= 1) a_s) — 0(0g, a_s)]
With this, we define the mapping ®* on U,, by

ar(y= 3 ETDZ I s\ (2.14)

n!
1ESCN

for any v € U,, and any i € N.

PROPOSITION 2.2.1. For every a € J" such that a; = a;, for all i, h € N, the mapping
O is a power indexr on U, that satisfies the axioms (P), (A), (S), (E), (NP), (T),
(C), and (L).

Proof.
| Similar as in the proof of the properties of ® in Lemma 2.1.2 [ |

While the Shapley-Shubik index for simple games is the unique power index that is
symmetric, efficient, satisfies both the null player property and the transfer property, see

( ), this result is not transferred to uniform (j, k) simple games.

PROPOSITION 2.2.2. When j > 3, there exists a = (a,a, - ,a) € J" such that & # ©.

Proof.
Consider the uniform (j, k) simple game u® with point-veto b = (1,5 — 1,0,---,0)

and a = j — 2. From Equation (2.1) we have

u’(z) =
0 otherwise

{k—l ifo; >1landzg=j— 1
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Therefore, Equation (2.14) yields ®2(u®) = (0, 1, 0, --- , 0). Moreover Equation (2.7)
implies that

1 if 1,2€7T

=L 2e T C N\{1}

forall TC N, wh(T)=4 7 (2.15)
0 if TC N\{l, 2}
. o . b 1 5—-1
So, by Equation (2.6) and Proposition 2.1.5 we obtain ®(u") = ( -, =——, 0, ,0) #
] J
P2 (ub). [

We remark that the condition j > 3 is necessary in Proposition 2.2.2, since for (2,2)
simple games the roll-call interpretation of ( ), for the Shapley-Shubik

index for simple games yields ®° = ®! = &.

Average Convexity axiom

As state in Propositions 2.2.1 and 2.2.2 the axioms of Definition 2.1.5 are no longer sufficient
to uniquely identify the Shapley-Shubik power index ® on U, 2. Therefore we introduce a
newer axiom on U, called average convexity (AC) which, combined with (E), (NP) and (S)

provide a characterization of ®.

DEFINITION 2.2.1. A power index F' on U, is averagely conver (AC) if we always have

> - Flu) =) B F(v) (2.16)

whenever ) .
Z%"@ZZ@‘@, (2-17>
t=1 t=1

where uy, Usg, . .., Up; V1, V2, ..., Vg € Uy, and (au)1<i<p, (Br)1<t<q are mon-negative numbers
such that >, oy =1 each.

One may motivate the axiom (AC) as follows. In a game, the a priori strength of a
coalition, given the profile of the other individuals, is the difference between the outputs
observed when all of her members respectively give each her mazimum support and her
manimum support. The average strength game associates each coalition with her expected
strength when the profile of other individuals uniformly varies. Average convexity for power
indices is the requirement that whenever two convex combinations of average games coincide,

the corresponding convex combinations of the power distributions also coincide.

PROPOSITION 2.2.3. The Shapley-Shubik index & satisfies (AC).

2Except on U*F where we show that ® is the unique index satisfying (E), (S), (NP), (T) and (C).
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Proof.
Let show that ® satisfies (AC). Consider uy, ug, ..., Uy, U1, V2, ...,V € Uy (01)1<t<p,

(Bt)1<t<q non-negative numbers such that > ¢ oy = 1L and > 7 o -up = > ¢, B - U,
then

P P
Z ap - () = Z ay - Shap(u;) by Equation (2.6)
t=1 t=1
p
= Shap (Z oy - zl}) since the Shapley value is linear
t=1

q
= Z B: - Shap(v;) by hypothesis and linearity of the Shapley value
t=1

So, the power index ® satisfies (AC). n

We remark that the axiom of Average Convexity is much stronger than the axiom of
Convexity. A minor technical point is that Zle azuy as well as Zgzl Biv; do not need

to be a uniform (7, k) simple game. However, the more important issue is that, when
Z?:l Oy - Up = Z;’:l B¢ - vy € U, then,

—_—

p p q

q
Proposition 2.1.5.(d) ~ ~ Proposition 2.1.5.(d)
E Qg - Uy = E CYt‘Ut:E Bi - vy = E B v,
t=1

t=1 t=1 t=1

i.e. Equation (2.17) is far less restrictive than

P q
E Qg - Uy = E 51: ©Ug
t=1 t=1

since two different uniform (j, k) simple games may have the same average game, see Ex-
ample 2.1.4.
Further evidence is given by the fact that the parametric power indices ®* in Proposition

2.2.1 do not all satisfy (AC) as showing the following proposition.

PROPOSITION 2.2.4. When j > 3, there exists a € J such that ®* does mot satisfy
(AC).

Proof.
To see this, considerer the uniform (j, k) simple game with point-veto b = (1,5 —

1,0,---,0) € J* and a = j — 2. From the proof of Proposition 2.2.2, we have ®2(u’) =

(0, 1,0, -+, 0). Furthermore, due to Equation (2.15) we can easily check that,
wb = =l 4L (2.18)
J J
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Since ®* satisfies (NP), (E), (S) we directly obtain ®* (w{}) = (1,0,---,0) and
o2 (w{Q}) =(0,1,0,---,0). Therefore,
1 1 1 1
— - 9* (wih) by o2 (wt?) = (—, =1, 0> # o(u). (2.19)
J J J J
It follows from Equations (2.18) and (2.19) that ®* does not satisfy (AC). u

2.2.2 Results of axiomatisation

In this section, a characterization of the Shapley-Subik power index ® for uniform (j, k)
simple games is given. More precisely, the axiom (AC) together with (E), (NP) and (S)
provide an axiomatization of the ®. When j = 2, i.e. uniform (7, k) simple games with two
alternatives in the input, an alternative axiomatization is provided using the axioms (E),
(S), (NP), (T) and (C).

As a preliminary step to our characterization result, we establish the following lemma:

LEMMA 2.2.1. If a power index F' on U, satisfies (E), (S) and (NP), then we have
F(w®) = ®(w®) for all C € 2V.

Proof.
Let F be a power index on U, that satisfies (E), (S), (NP) and let C € 2V.

According to Proposition 2.1.1, all players i, h € C are symmetric in w® and those
outside of €' are null players in w®. Since both F and ® satisfy (E), (S), and (NP) then,

1
Fy(w®) = &;(w’) = il if i € C and Fy(w®) = ®&;(w®) = 0 otherwise. It clear that

F(w®) = ®&(w?). u

Theorem 2.2.1.}

A power index F' on U, satisfies (E), (S), (NP), and (AC) if and only if F' = ®.

Proof.
Necessity: As shown in Lemma 2.1.2 | ® satisfies (E), (S), and (NP). For (AC) the

proof follows from Proposition 2.2.3.

Sufficiency: Consider a power index F' on U, that satisfies (E), (S), (NP), and (AC).
Consider an arbitrary uniform (j, k) simple game u € U,,. By Lemma 2.1.1, there exists
a collection of real numbers (zg)geov such that

=Y ag-wS= ag-wS+ Y a5 wS, (2.20)
Se2N SeE; SeE>
where B} = {S € 2V : 25 > 0} and By, = {S € 2V : x5 < 0}. Note that E; # () since
u(N) =1. We pose
w = ng-uf;g(N):ng>0. (2.21)
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It follows that

1 —Xs "é o Ts "'é
SekEs S€eFE;
Since Equation (2.22) is an equality among two convex combinations, axiom (AC) yields
1 —Tg S xrs S
—F F = — F i
Lrw)+ Y T ) = 3 pw?)

w w
SeE> SeEq

Hence by Lemma 2.2.1,

1 —Ts g Ts S
~F s -y I . .
—F(u) + > — o) > =2 () (2.23)
SeE> Seckr
Since ® also satisfies (AC), we have
1 —Xg S 1 —Ts S
—Flu)+ Y —2 o) = =d(u) + Y — O(w). (2.24)
@ seBy @ “ sem @
Therefore F(u) = ®(u), for all w € U,,. That is F' = . [

Alternative characterisation of ® on U%**

We provide here an alternative characterization of ® on U** by proving that, axioms (E),
(NP), (S), (T) and (C) uniquely determine ® on this class of games. A preliminary result

is given by the following lemma.

LEMMA 2.2.2. If F is a power index on U>F that satisfies (E), (NP) and (S) then for
all a € J"\{0}, F(u®) = ®(u?).

Additionally, if F satisfies (T), then for all nonempty subset £ of J"\{0}, F(u®) =
O (uf).

Proof.
Let F be a power index on U>** that satisfies (E), (S) and (NP), and a € J"\{0}.

Since 7 = 2, it follows from Proposition 2.1.1 that all players in N are symmetric in
u® and those outside N are null players. But, since both F' and ® satisfy (E), (S) and
(NP) then, F;(u*) = ﬁ = ®;(u”) for any i € N® and F;(u®) = ®(u”) = 0 otherwise.
So, F(u®*) = ®(u®).

Moreover, assume that F' also satisfies (T). Let £ be a nonempty subset of J"\{0}.

Then v = \/ u® by Corollary 2.1.1. As prove in ( , , Lemma 2.3) we can write:
acE
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F(uf) = Z (-DIEH R </\ u“) since F satisfies (T)

0£LCE a€l

= Z (—D)IEH R (umax{“"’e”) by Corollary 2.1.1
0ALCE

= Z (—1)HH1 @ (ymadaa€ll) - gince max{a, a € L} € J"\{0}, for all L C E
0ALCE

=®(u”) applying Corollary 2.1.1 and (T)

Note that the previous lemma characterizes ® on (2,2) simple games, since all these
games are in the form u®. For k > 3, a similar result of characterization is obtained by

adding convexity among the axioms.

Theorem 2.2.2.}

The Shapley-Shubik index ® is the unique power index on U>* that simultaneously
satisfies de axioms (E), (NP), (S), (T) and (C).

Proof.
Necessity: We have already proven that @ satisfies (E), (NP), (S), (T) and (C), (see
Lemma 2.1.2).

Sufficiency: Consider F : U>* — R™ a power index that simultaneous meets (E), (NP),
(S), (T) and (C). Consider a uniform (2, k) simple game v. Then, from Proposition 2.1.3
there exists a collection (ay)1<i<, of non-negative real numbers sum to 1 and a collection
p
(Et)1<t<p of nonempty subsets of J"\{0} such that v = Z oy - u”*. Thus,
=1

p
Fv) = Z a; - F(u®) since F satisfies (C)

t=1

= Zat - ®(uF") by Lemma 2.2.2

=®(v) since ¢ satisfies (C)

Therefore F(v) = ®(v), for all v € U**. This means that F' = . u

2.2.3 Independence of axioms

We now prove that, the four axioms in Theorem 2.2.1 are independent. To this end, we

provide a power index on U,, that meets the three other axioms but not the chosen one.
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Efficiency can not be dropped

PROPOSITION 2.2.5. The power index F!' = 2 - & satisfies (NP), (S), and (AC) but
not (E).

Proof.
It is straightforward from its definition that F'' satisfies (S), (NP); and (AC) but

not (E). [
Null player property can not be dropped
Denote by ED the equal division power index which assigns % to each player in every uniform
(7, k) simple game.

PROPOSITION 2.2.6. The power index F? = 3. &+ 1-ED satisfies (E), (S) and (AC),
but not (NP).

Proof.
One can easily check that F? satisfies (E) and (S) but not (NP). In order to prove

that 2 meets (AC), consider uy,ug, ..., upy;v1,va,. .., v, € Uy, and (au)1<i<p, (Br)1<i<q
non-negative numbers with Y0 oy => 7 fr=1,and D7 oy -up =D 7, B - 0. We

have:

P P P
1

Zat-Fz(ut) = Zatq)(Ut)+nZOét>
=1 t=1 t=1

q 1 p q
th - D(vy) + ~ Z Bt) since ¢ satisfies (AC) and Z oy = Z Br=1
s P t=1 t=1
= Z B - FQ(Ut)

t=1

So, F? satisfies (AC). u

N~ N~

Average convexity can not be dropped

PROPOSITION 2.2.7. The power index F? = ®2 for a = j — 2 defined in the proof of
Proposition 2.2.2 satisfies (E), (S), and (NP); but not (AC).

Proof.
The proof that F*? satisfies (E), (NP) and (S); but not (AC) is given in Propositions

2.2.2 and 2.2.4. |
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Symmetry can not be dropped

To construct a power index that satisfies (E), (NP) and (AC); but not (S), we recall that
<w5> N is a basis of the vector space of all TU-games on N. Thus given a (j, k) simple
Se2

game u, there exists a unique collection of real numbers (z%§)g,v such that

u = z§ - wd. (2.25)

Let iy € N be a given player and ®® be a power index on U, such that
io(, N wrn fp=io
op(w™) =9 "7 . .
el if p # io
PROPOSITION 2.2.8. The power index F* defined on U, such that for all S € 2M\{N},
FHw?) = @&(w®) and F*(w") = &' (w") and
F*(u) = Z 2% F'(w®)  for any u € Uy, (2.26)
Se2N

satisfies (E), (NP), (AC); but not (S).

Proof.
We first remark that, from Equation (2.25) , the power index F* is well defined.

Since F4(w") = ®!(w"), then F* does not satisfy (S). Let u be a uniform (j, k) simple

game.

Z F]f(u) = Z g (Z <I>p(w5)> + 'y - Z @;(wN) by Equation (2.26)

peEN Se2N\{N} peN peEN

= Z x4 | + 2% since ® and ®' are efficient
Se2N\{N}

—T(N) =1,

This proves that F* is efficient.
Now let i be a null player in u. By Corollary 2.1.2, Equation (2.25) becomes

= > ab-ws (2.27)

Since i is null player in all w® such that i ¢ S, (see Proposition 2.1.1) and ® satisfies
(NP), then Equations (2.26) and (2.27) give

Fl(u) = Z 2% @ (w¥) =0.

igSe2N

So, F"* satisfies (NP).
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To prove that F* satisfies (AC), consider wj,us,...,up;v1,vs,...,0, € U, and

(a)1<t<p, (Bt)1<t<q nON-negative numbers such that > o, => ¢ B =1 and

P q
Zat'@t:zgt‘@~ (2-28)
t=1 t=1

=

Note that, u; and v; are TU-games on N. Hence, Equation (2.25) implies
p —~—
Soci=Ya(Tow) - ¥ (Soar)m e
SealN Se2N \t=1

and

Zﬁt b = Z@(Zx >: D (iat%)@? (2.30)

Se2N Se2N \t=1

Since (wS)SEQN is a basis of the vector space I'V, then Equations (2.28)—(2.30) impose,

p q
Y agal=> p-ay forall S 2V (2.31)
t=1 t=1

Finally, we have,

P
Zat . Zat (Z Ty w®) ) by Equations (2.26) and (2.29)
=1

Se2N

-3 (Soway)

Se2N \t=1

= Z (Z B, - ;pgt) FY(w®) by Equation (2.31)

Se2N \t=1
= Z By < Z 513 )
SeaN

—Zﬁt *(v;) by Equations (2.26) and (2.30)

We conclude that F'* satisfies (AC). u

2.3 An analog of Symmetry Gain-Loss axiom on U,

The Symmetry Gain-Loss (SymGL) axiom for power indices was introduced in the context
of simple games by ( ). We introduced an analog of this axiom
on the class of uniform (7, k) simple games. In terms of simple games, i.e. (2, 2) simple

games, our newer axiom called Symmetry Gain-Loss* (SymGL*) is a strong version of
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2.3. An analog of Symmetry Gain-Loss axiom on U,

(SymGL).

2.3.1 Symmetry Gain-Loss axiom on §G,

We briefly present the axiom of Symmetry Gain-Loss within the class of simple games.

Let u and v be two simple games such that the winning coalitions of v are given by
the winning coalitions of u and a coalition S € 2V\{N} that is losing in u, i.e. W(v) =
W(u)U{S}. As notation we write v = u@® S. Note that v = u® .S implies that the coalition
S is a minimal winning coalition in v. So, u is the modified game of v as defined in (

, , Definition 1).

DEFINITION 2.3.1. A power indexr F for simple games satisfies (SymGL) if for any
games u,v € 8G, such that v =u® S for some S € 2V\{N},

F;(v) — F;(u) = F;(v) — F;(u) for all 4,7 € S (resp. for all 4,5 € N\S). (2.32)

This axiom states that the effect of adding (or dropping) a single minimal winning

coalition is the same for any two players belonging to it and for any two players outside it.

PROPOSITION 2.3.1. ( , , Lemma 1)
The Shapley-Shubik index SSI satisfies (SymGL) and for any games u,v € SG,

such that v =u @ S for some S € 2V\{N},
— 1Yn = s)!
(s 1)T.l(|n s)! fies
SSLi(v) — SSLi(u) = (2.33)
slin —s—1)!

—m— = ifieN\s

2.3.2 Symmetry Gain-Loss* axiom on U,

Note that a profile in a simple game is any element x € {0,1}" which can be viewed as a
2-partition that consistsin 1, = {i € N/x; =1} and 0, = {i € N/z; = 0},i.e. z = (1., 0,).
Similarly, a simple game v partitions the set of all profiles into two components Cy(v) and
C1(v) that respectively correspond to the set of all profiles at which the collective decision
is 0 and the set of all profiles at which the collective decision is 1. The Symmetry Gain-Loss
axiom captures how a reasonable power index changes when a coalition or a profile in a
given simple game v changes from Cy(v) to Ci(v); or conversely.

The same analysis can be carried on uniform (7, k) simple games. Before this, recall
that, the set of all possible profiles J™ and each element x € J" is a j-partition that consists

in the collection (mg),,e; where m, = {i € N/x; = m}.

DEFINITION 2.3.2. Let v be a uniform (j,k) simple game and ¢t = 0,1,--- [k —1. A
t-profile in v is any profile x € J" such that v(xz) = t. The set all t-profiles of v is
denoted by Cy(v).
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2.3. An analog of Symmetry Gain-Loss axiom on U,

For this reason, a uniform (j, k) simple game v partitions the set of all profiles into %
components Co(v), Cy(v), «--, Cx_1(v). These components uniquely defined the game v.
As an example the uniform (3,4) simple game v in Example 2.1.2 is clearly defined by
Co(v) = {(0,0); (0, 1)}, Ci(v) = {(1,0);(1,1); (0,2)}, Cx(v) = {(2,0); (2, 1)} and Ca(v) =
[(1,2);(2.2)}.

For simple games, (SymGL) requires that when a profile x shifts from C; (v) to Co(v) (or
conversely) in a given game v, the powers of all players with the same level of approbation in
profile z in the new obtained game are affected in the same way. Since this changes occurs in
the expense of players in 1, who each gives a full support, these players lost (gain) the same
amount of their respective powers while other players gain (loss) each the same amount of
power, see Definition 2.3.1. In the case of uniform (j, k) simple games, a generalization of
(SymGL) may be phrased for example as follows: in a given uniform (j, k) simple game v,
when a profile x shifts from Cy1(v) to Ci(v) (or conversely) for some t € {0,...,k — 2},
there should exists a vector §(z) that specifies what each player in each subset m,, m € J

gains or loses, in a reasonable way to be specified.

DEFINITION 2.3.3. Let u be a uniform (j,k) simple game on N and a € J" a profile
such that u(a) # k—1. The uniform (j, k) simple game v is an elementary improvement
of u at a and we write u > v if v is defined as follows:

u(a)+1 ifr=a

for al zx € J", w(z) = { (2.34)

u(z)  otherwise

In words, © — v means that, the game v differs from u only on a single profile a and
the output values u(a) and v(a) are consecutive in K. By the definition of a uniform (j, k)
simple game, it is clear that each (j, k) simple game admits no improvement neither at 0;
nor at j — 1. Hereafter, we pose J* = J"\{0,j — 1}.

Note that, in the context of simple games, i.e. uniform (2,2) simple games, the elemen-
tary improvement from v to v at a means that, the set of winning coalitions of v consists of
the set of winning coalitions of u and an additional winning coalition (generated by a) that

was losing in u, see ( , , pp-17).

EXAMPLE 2.3.1. Let v, vy, vy and v3 be uniform (3,4) simple games with two players
defined as follows:

z | (0,0) | (1,0) | (2,0) | (0,1) | (L,1) | (2,1) ] (0,2) | (1,2) | (2,2)
w(z) | 0 1 2 | 0 |2 | 1t | 3 | 3
w(@) | o ! > [ o | 2] 2| 1] 3] 3
w(@) | 0 ! 2 | 0 ! 2 | 2 | 3 | 3
vs(z) | O 1 2 1 1 2 1 3 3

It follows that v (1—’1>) V1, U (0_’1>) vy and v (_72>) vs.
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2.3. An analog of Symmetry Gain-Loss axiom on U,

NorATION 2.3.1.
e For any a € J*, we set J, ={m € J, m, # 0};

e Given S C N, we denote by 1g the mapping defined on N, by 1g(i) =11if i € S

and 15(7) = 0 otherwise.

DEFINITION 2.3.4. A power index F' for uniform (j,k) simple games on N satisfies
the Symmetry Gain-Loss* (SymGL*) if for any games u,v € U, such that u = v for

some a € J*,

F(v) = F(u) = > Ap(my,) - 1, (2.35)

where (Ap(mg))mey, s a collection of real numbers that does mot depend on u and v

but only on a.

The (SymGL*) requires that, in case of an elementary improvement at the profile a € J*,
the variation of the powers of players should depend only on the profile a, but not on the
game in consideration. Moreover, this change is the same for any two players who have the
same level of approval in a.

Hereafter, in order to ease the presentation we pose Ap(a) = Z Ap(m,) - 1,,,, for
meju
a € J*. Ap(a) is the improvement vector associated with F' at a.

REMARK 2.3.1. On uniform (2, k) simple games, the Equation (2.35) becomes

Ap(l,) ifiel,

o (2.36)
AF(Oa) ’L‘f 1€ Oa

Fi(v) — Fi(u) = {

So, the restriction of (SymGL*) axiom on (2,2) simple games can be considered as a

strong version of (SymGL) axiom presented in Definition 2.3.1.

LEMMA 2.3.1. Consider a power index F on U, that satisfies (SymGL*) and let
(Ap(a))eess be its collection of improvement vectors. Then for all v € U,,,
F(v) = Fw")+ Y v(a)- Ap(a). (2.37)
acJ*

where for all z € J", w¥(z) =k —1if 2 =j— 1 and w"(z) = 0 otherwise.

Proof.
Suppose that F'is a power index on U, that satisfies (SymGL*) and let (Ar(a))ses+

be its collection of improvement vectors. Since J* is finite, it can be labeled in such a
way that J* = {a',a? ... a’} and for all s,t € {1,2,...,p}, a' < a® implies s < t. Pose

a’ = j — 1 and define the sequence (v')y<;<, of uniform (j, k) simple games as follows:

0  otherwise

if a' <
for all z € J*, v'(z) = { vi) e’ =z (2.38)
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2.3. An analog of Symmetry Gain-Loss axiom on U,

Note that for t € {0,1,...,p — 1} and for x € J",

P (g) = { vt(atth) + v(atl) if 2 = o't (2.3

vi(x) otherwise
Consequently, v'*! can be obtained from v* after v(a'™) elementary improvements at
a'™ So, applying (SymGL*) v(a'*!)-times yields
F'™™h = F(v') +v(a™)Ap(a'th) (2.40)

Since v? = v and v° = w", then by summing over t € {0,---p — 1} all left-hand-side

terms and all right-hand-side terms in Equation (2.40), we have:

F(v) = F(w™) + ) v(a")Ap(a’).

Since J* = {a',a?, ..., aP}, the proof is completed. [ |

It appears that a power index for uniform (7, k) simple games that satisfies (SymGL*)
is completely defined by its collection of improvement vectors and its distribution of power

for the game w?.

2.3.3 Symmetry Gain-Loss* and the Shapley-Shubik index

We prove that the Shapley-Shubik index & for uniform (7, k) simple games satisfies (SymGL*)

and we determinate its collections of improvement vectors.

DEFINITION 2.3.5. Given a profile x € J*, we say that a player ¢ € N is fully committed
if z; = 7 — 1 (i.e. he reports the highest level of approval to the proposal) and fully
opposed if x; =0 (i.e. he gives the lowest level of approval to the proposal).

The set of all fully committed players in x is denoted by H(x) and the set of all
fully opposed players is L(z). We denote I(z) = N\(H (z) U L(z)).

For each S C N, we define a TU-game 74 as follows:

1
—— f0#ATCS
for T C N,7¢(T) ={ j"'(k—1) 7
0 otherwise

PROPOSITION 2.3.2. For any games u,v € U, such that u % v, for some a € J*, we
have,

UV =U TH(a) — TL(a) - (2.41)

Proof.
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2.3. An analog of Symmetry Gain-Loss axiom on U,

Consider u and v two uniform (j, %) simple games such that u -+ v. To prove
Equation (2.41), we distinguish four cases. Consider S € 2¥\{N} and pose J"(a_g) =

{re" v g=a_g}.

Case 1: H(a) = L(a) = 0. Then, for any z € J", ((j —1)g, v_g) # a and (0g, v_g) #

a. Thus,
5S) =gy - 2 (i~ Do) = 0(05.2-9)]
—m : Z [w((j—1)g,2-5) —u(0s,2_g)] by Definition 2.3.3

:ﬁ(S) + TH(a)(S) — TL(a)(S) since TH(a)(S) = TL(a)(S) =0.

Case 2: L(a) # 0 and H(a) = 0. For this reason, for every z € J", ((j — 1)4, _g) # a
and (0g, z_5) =a< (SC L(a) and z_g=a_g). So,

u(s) = jn(kl_ 0 Y wG-Dgas)—v0s,2 9]+ Y, [p(G-1gzs)— U(OS,I—S)])

zeJ"(a-s) ¢ J"(a—s)

1 . .
= '”(k — 1) Z [u((.] - 1)571’75) - U(OSwaS)] + Z [u((] — 1)573378) — u(Osyxis)]
J zen(a_s) s (a_s)
W(S) — L if SCL
_ ) S m g 0 0ASC L) tion 2.3

u(S) otherwise

= ﬂ(S)JrTH(a)(S)—TL(a)(S) SiHCGTH(a)(S):O.

Case 3: L(a) =0 and H(a) # (. Therefore, for any x € J", (05, xz_s) # a and
(-1)g,z_g)=a+ (SC H(a) and x_g=a_g). Thus, similar to the case 2,

we obtain
~ 1 .
u(S) otherwise

=u(S) + TH()(S) = Tr@)(S) since 714 (S) = 0.

Case 4: L(a) # 0 and H(a) # 0. Since L(a) N H(a) = 0, then by taking in considera-

tion the previous cases we have

U(S) — gy i 0#SC L(a)
0(8) =4 US) + =gy i 0#SC Ha)
u(S) otherwise

=u(S) + Tr(@) (S) — T (S) -

So, the four cases yield that 0(S) = @(S) + Tr(a)(S) — T1)(S) for all S € 2V, That is

5:a+TH(a)_TL(a)~ [ |
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To illustrate the former result, we consider the uniform (3, 4) simple games v, vy, vo and
v3 in Example 2.3.1. The average game of v is defined by o(0) =0, 9({1}) = 2, 9({1}) = 5
and v({12}) = 1.

v v | L(a) | H(a) S 0] {1} | {2} | {1,2}
| e as) o] 2 | 2] 1
Since 02 then ~ ol 5 5 N
v Sy | {1} | {2} Ua(.5) 5 | 9
v & vy | {1} 0 U3(S) | 0] 3 5 1

REMARK 2.3.2. Consider S C N, then any two players i,j € S (resp., i,j € N\S) are

symmetric in 7¢. Therefore, we pose
Shap(7s) = Bs - 1s + Ans - Ins (2.42)
where Bs and Ayg are real numbers.

LEMMA 2.3.2. The Shapley-Shubik index ¢ satisfies (SymGL*) and for all a € J*,

Agp(a) = (Buta) — Ani(@) - La@ + (Ana@ — i) - i@ + (Avi@ — Br@) - i) -
(2.43)

Proof.
Consider u, v € U,, such that u — v for some a € J*. By Proposition 2.3.2, we have,

U = U+TH(a)—TL(a). 1t follows from Theorem 2.1.1 that, ®(v) —®(u) = Shap(Tw (@) —TL(a))-
Since Shap(Tx(a) — Tr(a)) is independent of u and v, we pose Ag(a) = Shap(Ta(a) — Tr(a))-
Then by Equation (2.42), we have

Ag(a) = (Br@) — MW\Lw) * Lu@ + (Anb@ = Ancw) - 1w + i@ = Brw) - 1o -

It follows that the Shapley-Shubik index satisfies (SymGL*). Besides, for any a € J*

and any m € J,,

BH(a) — AN\L@@ Em=7—1
Aq)(ma) = >\N\H(a,) — )\N\L(a) if0<m< j—1
AN\H(a) = Br@ ifm =0

So, in case of an elementary improvement of a uniform (j, k) simple game, variations of
the Shapley-Shubik index depend only on the set of fully committed players and the set of
fully opposed players.

Hereafter, following ( ), we use the numerical coefficients 77 (t) given by :

t
14D
yﬂﬂ:ﬂfE:m/ N1+>, fort =0,1,--- ,n— 1. (2.44)
lj
=0
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PROPOSITION 2.3.3. In case of an elementary improvement of the game at a profile
a, the total change Ag,(a) of a player i is given by:
(77 (l) + (= D)7} (ha — 1)

(e — Dnlj if 1 € H(a)
Ag,(a) = i ((li)__l)f:jf) if i € I(a) (2.45)
'7371(]1&) + (.] - 1)’7]71(la - 1) cp .
- (k — Dnljn if i€ Lia)

where h, = |H(a)| and I, = |L(a)|.

Proof.
From Equation (2.43), the total change Ag,(a) of any player i € N in ® due to an

elementary improvement of the game at a profile a can be rewritten as:

M@= Y Sy Dy L) 5 D)

h 1
1
- - (1._1 ha—1

7 (la) + ( — 1)7] (ha — 1)
(k — 1)nlyn

la

h +)! +la!jla.z(/—la—1+8)!

T dlis 158
sl gt slj

by Equation (2.44).
Case 2: if i € I(a) , then from Equation (2.46), we have:
S e
0#SCH (a) " 0£SCL(a) "
h
(s + 1) “[s\ ((s+1)
_Z( ) Z(m)’ =

7 (o) — 2z (ha) -
(k= 1)nlyn

using case 1 and Equation (2.44).

Case 3: if i € L(a) , one can use the two previous cases to obtain,

% (ha) + (G = 1)77(la — 1)
(k — 1)nlj» '

A‘I)i (a> - -
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(CSCH(a) 0£SCH@\) 7 (CSCL(a) 0£SCL@\(i} 7
(2.46)
1 _
where, for all ) £ S C N, ((s) = (s () fl ) - and th—O
te{}
Case 1: if i € H(a) , then we have
¢(s) (s+1) C(s+1)
Aq)l(a) = yN—S -
{z‘}gszg:fm J MSg%(:a)\{z} . w#szc;m) .
b lhy =1\ C(s) R fhe—1\ (s+1) =[5\ C(s+1)
= A Ty L2
SRS > ()
B 1 & (n—s)! e 1(n—s—l 1 Lo (n—s—1)
onlk—1) {(hu_l)' (Z(h —5) S (he —s—1) s Tt ; (ly — s)! .

1

jnfs

|
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From Proposition 2.3.3, we deduce Corollary 2.3.1 below. This result allows us to confirm
that, Equation (2.45) is a generalization of Equation (2.33) (who gives the total change of
Shapley-Shubik index after adding one winning coalition in a simple game) to uniform (7, k)

simple games.

COROLLARY 2.3.1. For any games u,v € U>* such that u = v, for some a € J*,

(ha — 1)+ (n — hy)!

A= 1) if 1 € H(a)
Bi(0) — Bifu) = ( | (2.47)
hy!-(n—h, — 1) .
- k= 1) if i € L(a)

Proof.
Consider u,v € U>* such that u % v for some a € J*. Since j = 2, then H(a) # 0,

L(a) # 0 and I(a) = (. Tt appears that, h, + 1, = n. ! Consider i € H(a), then by
Equation (2.45),

1 (=10 " n—ho+s) 1 1 Zl“ (n—l,—1+s)! 1
Aqh(a) = Tl'(k 7 1) on—ha+1 ’ 2: s! ’ ; + In—la ' s! ' ?
L s=0 s=0
1 1 /1\" ™ 1 1\ 1
= Z. = (hy — 1)+ fln=ha) [ 2 z (= hy)! - flhe=D (2 ince h, + 1, = n.2
=T |2 <2> ( " f 5] T35 (n "W f 5 | | since ha + n
! .1K h = + K h L ing Notation 1.3.1 313
= — |- n, g, = n, hay = using Notation 1.3.1, page 31.
ak—1) |2 "2\ ! 2 & bag
he — DlI(n — hy)! .
( ) ) by Proposition 1.3.5, page 31.
nl(k—1)

Similarly, for i € L(a) we easily compute

(e =D (=) (n—he— 1)1 D!
Aaila) = = nl(k —1) T alk—1)

In particular for uniform (2, 2) simple games, Equation (2.47) leads to Equation (2.33).
|

The characterization of the Shapley-Shubik index for (j,k) simple games suggests a
characterization of that for CSGs. In the next chapter, we extend some axioms introduced

in this chapter to provide two axiomatizations of the Shapley-Shubik index for CSGs.

IThis equality plays a key role in this proof.
2f is defined by Equation (1.18), page 31.
SKi(n k7)) = (1= 7)f(n — k) f*=D(7) and Ko(n, k,7) = 7" F(k — DI f=R (1 — 7).
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* % * %
Axiomatizations of the Shapley-Shubik

index for continuous simple games

The Shapley-Shubik index was designed to evaluate the power distribution in committee
systems drawing binary decisions and is one of the most established power indices. It has
been extended to cover more classes of games such as ternary voting games, see

( ); or (j, k) voting games, see ( ). In each case, a minimal
set of axioms is brought out to identify the Shapley-Shubik index as the unique power index
that succeeds in enjoying that set of axioms; except for continuous simple games on which
we show that in this chapter that resizing, as usual, the classical axioms, namely efficiency,
symmetry, null player property and transfer condition, is no longer sufficient to completely
described the newly introduced power index. Instead, we provide two axiomatizations of
the Shapley-Shubik index (¥) for CSGs thanks to our newly introduced axioms of average
game convexity, homogeneous increments sharing and discreteness.

This chapter is organized into three sections. Section 3.1 is devoted to the presentation
of the axioms. More precisely, after showing that the extension of ( ) axioms to
CSGs is no longer sufficient to characterize the Shapley-Shubik index (V) over CSGs, we
motivate and introduce two new axioms. In Section 3.2, we provide the first axiomatization
of ¥ and show that axioms used to achieve it independence. We end with Section 3.3 in
which we give another axiomatization for ¥ similar to the one we did for the Shapley-Shubik
index for uniform (j, k) simple games in Chapter 2. Note that most of the tools and results

in Sections 3.1 and 3.2 are mainly taken from ( ) working paper.

3.1 Axioms of characterization

The Shapley-Shubik index for simple games was identified by ( ) as the unique
power index that simultancously meets efficiency (E), symmetry (S), null player (NP) and
transfer (T) property, see Theorem 1.1.1, page 11. Proposition 1.3.1, page 28 shows that the
class of simple games can be identified with a subclass of CSGs via T7, for each 7 €]0, 1]. It

is also established that these embedding mapping preserve some properties of simple games
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(see Proposition 1.3.2, page 28 and Theorem 1.3.1, page 32). It is therefore natural to know
whether the extension of Dubey’s axioms to CSGs allows us to obtain a characterization of
the Shapley-Shubik index (V) as conjectured in ( ). Unfortunately, we prove here
that Dubey’s axioms over CSGs are no longer sufficient to uniquely characterize W.

We first extend to CSGs some classical axioms of power indices defined on simple games.
DEFINITION 3.1.1. A power index P : CSG, —> R” satisfies :
e positivity (P) if P(v) # 0 and Pi(v) > 0 for all i € N and all v € CSG,;

e anonymity (A) if for all v € CSG,, for all m € S, and for all i € N, Py (mv) =
P; (v); where for all z € I™, (mv)(z) = v (7(x));

o symmetry (S) if for all v € CSG,, and for all symmetric players i and j of v,
Pi(v) = F;(v);

o efficiency (E) if for all v € CSG,,, > ..y Pi(v) = 1;

e the null player (NP) axiom if for all v € CS§G,, and for all null player i in v,
Pi(v) = 0;

o transfer (T) if for all u, v € CS8G,, for alli € N, Pi(u)+P;(v) = P,(uVv)+P;(uAv);
where (uVv)(z) = max {u(z), v(z)} and (uAv)(z) = min {u(x), v(x)} for all x € I™.

3.1.1 Insufficiency of ( ) axioms over CSGs

We concretely set up a power index on CSGs that is efficient, symmetric, satisfies the null
player property and transfer property but is different to the Shapley-Shubik index. To

achieve this, we first define two families of power indices as follows:

DEFINITION 3.1.2. Given z € I"™ and v be a CSG on N. The punctual Shapley-Shubik

index in x associates the game v with the n-tuple ¥*(v) defined for all i € N by :

vy = 3 CT D= e 6 ergu, 5\ (i) (3.1)

n!
iESCN

where, C*(v,T) =v (1p, x_1) — v (0p, z_7), for all T C N.

In other words, U* does not consider all possible vote vectors with equal probability but
just a specific vote vector x. For simple games, the analogy of Definition 3.1.2 is the roll
call model where either all players say “yes” (corresponding to x = 1) or all players say “no”
(corresponding to x = 0). The punctual Shapley-Shubik index can easily be generalized by

introducing a notion of density function.
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DEFINITION 3.1.3. Let v be a CSG on N, f: I"™ — R>g be a density function on I"
i.e. flz)dz = 1.
m
The density Shapley-Shubik index \Iff(v) is defined by:

i)=Y (s = Di(n = 5)! (€7 (v,8) — €' (v, S\{i})] (3.2)

i€SCN nl
where, C/ (v, T) = / (f(x)-[v(lp, z_7) —v (0, z_7)]) dz, for all T C N.
In
The analogy of Definition 3.1.3 for simple games is the roll call model with exchangeable

probabilities for vote vectors x € {0,1}" as shown in Hu ( ).

LEMMA 3.1.1. Let € be a mapping that associates a pair (v, .S) of a CSG v with player
set N and a subset S of N to a real number € (v, S) such that, € (v, 0) = 0. With this,

we set:
| |

vy = 3 BTV e 5) - s\ (i) (3.3)

n!
i€SCN

for all i € N.

1. If (v, N) =1 and €(v,S) > € (v, S\{i}) for all i € N and all coalitions S such
that 7 € S, then U? is positive and efficient.

2. If €(u,S)+%(v,S) =€ (uVv,S)+%€(uAv, S) for all coalitions S, then ¥ satisfies
the transfer property.

3. If €(v,S) = €(nv,7S) for all 7 € S,,, then V¥ is anonymous.

h. If €(v,S\{i}) = €(v,S\{j}) for any pair of symmetric players i,j in v and any
coalition S such that {i,j7} C S, then ¥¥ is symmetric.

5. If €(v,S) = € (v, S\{i}) for all null player i in v and any coalition S such that
i € S, then ¥¥ satisfies the null player property.

Proof.
We first remark that given a CSG v, the function €'(v,-) that maps each coalition

S to a real number € (v, S) is a TU-game on N. Thus, U?(v) is just the Shapley value
of the TU-game % (v, -). Now consider u,v € CSG,,.

€ (v,S\{i}) > 0. It follows from Equation (3.3) that ¥¥(v) > 0. Moreover, by
the efficiency of the Shapley value, > _\ ¥¥(v) = € (v, N) = 1, since (v, N) = 1.

One concludes that W7 is efficient and positive.

1. If €(v,S) > €(v,S\{i}) for all coalition {i} € S C N, then €(v,S) —

peEN

2. Assume that for all S C N, €(u,S) + € (v,S) = €(uVv,S)+ €(uAv,S). Since
the Shapley value is additive, then W (u) + W% (v) = U¢(u VvV v) + ¥¢(u Av). So,

U? satisfies the transfer property.
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3. Consider 7 € S, such that € (mv, 75) = € (v, S), for all S C N. Let i € N be a
player, by Equation (3.3), we have:

wym) = Y CEROEN e 5) o, 5\ (i)
m(i)€ESCN ’
= ¥ W [€(nv, S) — € (xv, S\{i})]
ien~1(S)CN ’
= Z %M C (v, 7(T)) — € (rv, n(T\{i}))] with T =7"(S5)

= Z %ﬁnfs)' E, T)—F (v, T\{i})] since €(mv, 7T) =% (v, T) forall T C N

= \Ilg(v) )

2
Therefore, U¢ is anonyme.

4. Consider two symmetric players ¢ and j in v such that € (v, S\{i}) = € (v, S\{j})
for all S C N, then, the players ¢ and j are symmetric in € (v, -). So, by symmetry
of the Shapley value, U7 (v) = U7 (v).

5. Directly from Equation (3.3) we obtain ¥¥ (v) = 0.

COROLLARY 3.1.1.

1. For every a € [0, 1], the punctual Shapley-Shubik index U* where a = («, ..., a) €
I™ is positive, efficient, anonymous, symmetric, and satisfies both the null player

and the transfer property.

2. For all symmetric density function f (i.e. f(z) = f(n(z)) for any z € I" and any
7w € 8S,), the density Shapley-Shubik index W/ is positive, efficient, anonymous,

symmetric, and satisfies both the null player and the transfer property.

Proof.
Consider a = («,...,«a) € I" and f a symmetric density function on ™. We remark

that U@ = UC and Uf = U’ Therefore, by Lemma 3.1.1 one directly concludes that ¥@
and W/ are positive, efficient, symmetric and satisfy both the null player and the transfer
property.

To prove the anonymity of ¥ and W/, consider 7 € S,,, S C N, b€ [0, 1] and ¢ € I™.
Pose z = (bﬁ(g), c_,r(s)) and y = wz. Then for i € N, z; = b if 771(i) € S and z; = ¢;

otherwise. Therefore,

b if 7€ 8
Yi = Tn(s) = { o = (bs, (7c)_s); - (3.4)
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). Now consider a CSG v:

®) -

=0 (7(Ln(s), A-n(s))) —
=v (1g, (ma)_s) — v (0g, (Ta)_g)

= (1s, a-g) — v (0s, a-s)

So, y = mx = (bg, (7¢)_g

C*(mv,m(S)) =70 (La(s), ar 70 (On(s),

U?T

7T(S

—7r<s>)

~()))
(by Equation (3.4))

Since ma = a

—C*(v,S).

and

C/(rv,mS) f(z

f(z [U 1s, (mz)_s) — v (0s, (72)_r(s))]) dz, by Equation (3.4)

(s
(G
(s
(e

v (1s, y—s) — v (0s, y—s)]) dy, with y =7z

a
=3

(U, S), since f is a symmetric density function.

By Lemma 3.1.1 (item 3), one concludes that ¥* and ¥/ satisfy anonymity. [ |

(

ciency, the null player property, and the transfer property coincides with W. However, the

) conjectured that every power index for CSGs that satisfies symmetry, effi-

construction in the Corollary 3.1.1 combined with the following proposition prove that this

conjecture fails.

PROPOSITION 3.1.1. U? £ ¥ for some a = (a,...,a) € I" and ¥/ # ¥ for at least one

symmetric density function f.

Proof.
Let v be a CSG on N defined as follows:
for all x = (21, ,m,) € I, v(x1,--,2,) = 1175
Consider x € I" and T C N then

1 if leTand2e T

3 if 1€Tand2¢ T
C*(v, T)=v(Ap,z_7) — v(0p,x_7) = 2 3.5
(0. 7) = v{dr,2-r) = v(0r,71) z if 1¢Tand2eT (3:5)

0 if 1%Tand2¢T

«) € I". By Equation (3.1)

(

¥ (v) £ U(0).

Consider a = (a, .. .,

a—a?
2

1

2

v (v)

Thus for any « ;é + 2\[,
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Now let fs be a symmetric density function on I" defined as follows: for all x € I,
fo(x) =(B+1)"- <H16N l) 3 € R>q. Note that for 3 = 0, U/o = . From Equation
(3.5), one gets:

1 if 1€eTand2€T
Bl if 1€ Tand2¢ T

L v, T) = B+3
1) o it 1¢Tand2eT
0 if 1¢Tand2¢T

Thus, by Equation (3.2),

B4+48+5 B4 68+T
f
o) = (252+105+12 2% 4+ 108 + 12 o 0)

Therefore, for 3 € Rsg such that 8 ¢ {0,1}, W/e(v) # ¥(v). [

3.1.2 Axiom of Homogeneous Increments Sharing

Corollary 3.1.1 together with Proposition 3.1.1 point out the fact that, the axioms of ef-
ficiency (E), symmetry (S), null player property (NP) and the transfer property (T) are
not sufficient to characterize the Shapley-Shubik power index (¥). Also anonymity (A) and
positivity (P) are satisfied by our parametric examples of power indices. So, for an axiom-
atization we need some further axioms. Inspired by the axiom of (SymGL*) introduced in
Page 62, we set up a new axiom of power index for CSGs called Homogeneous Increments

Sharing.

DEFINITION 3.1.4. Let v be a CSG and S € 2¥\{N}. The potential influence (poten-
tial) of the coalition S in v is the mapping Av(S, -), that associates each profile z € I™
to the real number Av (S,z_g), given by Av (S,z_g) =v(1lg, z_5) — v (0g, T_g).

Given a profile x € I"™, the potential influence Av (S,z_g) of S measures the greatest
change in the social decision that may be observed when players in S change their respective
opinions from 0 to 1 while the opinions of players not in S remain constant accordingly to

profile x.

EXAMPLE 3.1.1. Let v be an exponential game with vector a = (aq, -+ ,a,). Given a

profile x € I™ and a coalition S, it can be easily checked that the potential of S in v is

Av(S, z_g) = Hx

1EN\S

given by

DEFINITION 3.1.5. Consider T € 2¥. A T-domain is a cartesian product D =
X la;, b;] with a;,b; € [0,1] for all ¢ € T'.
i€T
Considering the T-domain D = X [a;, b;] amounts to assuming that each player i € T,
i€T
freely and independently, from others chooses his level of approbation from [a;, b;] C [0, 1].
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DEFINITION 3.1.6. Let v be @ CSG on N, S € 2Y\{N}, e € Rsp, and D = X [a;, bj]
1EN\S
be an (N\S)-domain, where 0 < a; < b; <1 for all i € N\S. If a CSG u satisfies

Au (S, z_g) if z_g¢ X [ai, b

1EN\S
o Vo_g €0, 1[N Av (S, z_g) =

Au(S,z-s5)+e if z.s€ X Jai,b

L iEN\S

o VT € 2M\ {S} Vo _1 €]0, 1M\, Av (T, 2_7) = Au (T, x_7),
then v is a local increment (improvement) of u and we write u 55D,

In words, u 5eP 0 can be interpreted as follows: On the one hand, the potential
of coalition S increases by a constant increment & whenever each player i € N\S picks
his opinion from |a;, b;[, but remains unchanged if the opinion of at least one player i €
N\S is outside of [a;,b;]. It is then reasonable that the corresponding increment in the
collective decision mainly comes from players in S and is uniform, local and elsewhere valid

on X Ja;,b;[. On the other hand, the potential of any other coalition 7" remains unchanged
i€s
unless some players in S show a full support (z; = 1), or no support (z; = 0). In such

situations, the shares by a conceivable power index from u to v are expected to change
accordingly by only uniformly rewarding players in S in the expense of players outside of

S. The following example is an illustration of local improvement with n = 2.

EXAMPLE 3.1.2. Let u and v be 2-players CSGs defined as follows: for all x €

[0,1]:\{0, 1},

| (01 if z€0,1]x 0,2
0.1 if xE[O,%[X[Oa%[ 0.6 if xe%o i][X%l ﬂ
. 1 1 . - .
N L IE[?@[X[@}} and w(z) =14 08 if xe[0,1]x {1}
0.3 if we[51]x[0,3] 0.3 if zel[i1]x[0L]
0.9 if we[51]x[51] 0.9 if xe[i 1] x [3 i}
L Y 2 27

Consider t €]0,1[. Then we compute,

02 if 0<t<l 0.2 0<t<i
Au({1}, 1) = POSt<3 4 Av{il )= y0st<p
03 if $<t<1 03 if $<t<1
and
05 if 0<t<1 0.7 if 0<t<1i
Au({2}, 1) = POSt<3 L A2l f) = §0st<p
0.6 if ;<t<1 0.6 if ;<t<1
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Thus, Au({1}, £) = Av({1}, £) and Av({2}, 1) :{ Au({2}, 1) +02 if (1)

Au({2},t) i

{2}, 0.2, [0, 1]
One concludes that u ——= v

REMARK 3.1.1. Let u, v and w be three CSGs.

1. We extend the notion of local improvement to negative parameters € by the equiv-

S, E,D 51 —S,D
alence: © —— v <<= v ——— .

2. Ifuﬂmj and Av = Aw then u 222 .

DEFINITION 3.1.7. A power index F for CSGs satisfies the homogeneous increments
sharing (HIS) axiom, if for all S € 2¥\{N} and for all CSGs u and v such that
u 228y for some £ > 0 and some (N\S)-domain D, then for any player i € N,

Ap(S)-e-vol(D) if i€ S,
E;(v) — F; (u) = (3.6)
—vp(S) -e-vol(D) if i¢S,
where Ap(S) and vr(S) are two real constants that do only depend on S, i.e. they do

neither depend on u and v nor on € and D, and vol(D) denotes the volume of D.

The quantity ¢ - vol(D) captures the fact that the change in the share of a player is both
proportional to the magnitude € of the homogeneous increment and to the (local) volume
vol(D) of the domain on which this change occurs.

For simple games, an analog of (HIS) is the axiom of Symmetric Gain-Loss (SymGL)
given in Page 62, while an analog for (j, k) simple games is the axiom of (SymGL*) defined

in Page 64.

LEMMA 3.1.2. The power index ¥ for CSGs satisfies (HIS) and for any S € 2M\{N},
s—Dl(n—29)! sl(n—s—1)!
R e

n! ’ n!

(3.7)

Proof.
Let u, v, S, e, and D be given such that u 5eDy and S ¢ {0, N}. Consider
T # N, due to the formula for Av(-,-) in Definition 3.1.6, we have

Clu,T)+e-vol(D) if T=S5

, (3.8)
C(u,T) if T+#S8

C(v,T) = / A(T,x_7)dx = {
imn
Thus for any ¢ € N, Equation (1.17), page 25 implies:

) - v = 3 e 1) ey - Y TP e 1) - )
i€TCN ’ i¢TCN )

_{ (oot oL yol(D) if i€ S

n!

by Equation (3.8
_AomeD oDy i ig s (3:8)

Then Ay (S) = W for any i € S and y¢(S) = === for any i ¢ S. u

n!
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Hereafter, given x € I"™, we denote by 1, = {i € N,x; =1} and 0, = {i € N,z; = 0}.
For S € 2M\ {N}, we define the CSGs ug and vg as follows:

ug(x) = if 1] > 151 and wvg(z) = ifus(z) oits = s (3.9)
0 otherwise 0 otherwise

ProposIiTION 3.1.2. If F' is a power index on CSG, that satisfies anonymity and
(HIS), then for S,T € 2M\ {N} such that |S| = |T],

Ar(S) = Ap(T) and vp(S) = vp(T).

Proof.
Let F be a power index on CSG,, and S,T € 2V\ {N} such that |S| = |T|. Then,

there exists a permutation 7 on N such that 7(S) = T and 7(S¢) = T°. Consider
X € {S, T}, we easily obtain mux = ux, ug = ur, 7vg = vy and uy X1 Px, vx, where
Dx = [0, 1}¥\X. Given i € S, we have 7(i) € T and by (HIS) one gets:

Ae(T) =Fr@y(vr) — Frpy(up)  sinceur LL Dr, v
=Fr)(mvs) — Fry(mus)  since mvg = vr and mug = ug = ur
=F; (vg) — F; (us) since F satisfies (A)
=Ap(S)  by(HIS)

Similarly, consider j ¢ S. Then 7(j) ¢ T and by (HIS) we have:
—r(T) =Fr)(vr) = Fry(ur)  since up LD
=F.(j)(mvg) — Fry(mug)  since mvg = vy and mug = ug = up
=Fj (vg) — Fj (ug) since F satisfies (A)
=—r(5)

Finally, Ap(S) = Ap(T') and vp(S) = yr(T). u

In the following lemma, it is shown that all power indices on CSG,, that are (A), (E), (NP)
and (HIS) all share homogeneous increments with respect to same pair of proportionality

constants; those of the Shapley-Shubik index W.

LEMMA 3.1.3. If Fis a power index on CSG,, that simultaneously satisfies (E), (A),
(NP) and (HIS), then for all S € 2M\{N}:

Ap(5) = Au(5) and vp(5) = yw(S). (3.10)

Proof.
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Consider S € 2V\{N}, then there exists i € N such that i ¢ S. We set & =

-1
{T'€2V,i¢Tand |T|=|S|}. The set £ contains ¢ = " coalitions, so can be
s

labelling by € = {S1, 52, - ,S,}. Consider the sequence of CSGs (wy)o<k<, defined by
wy = ug and for all 1 < k <gq,

(2) 1 if ug(x) =1or 3l <k, zg = 1g
w(z) =
g 0 otherwise

We can notice that, for all 1 < k < ¢,

{ 1 if x5, = 1g,

Wp\T) =
(@) wg_1(z) otherwise

. Sk, 1,D
Therefore, we easily have wp_; ———% wy, where D;, = [0, 1]V\%,

Proposition 3.1.2 and (HIS) axiom lead to F;(wy) = Fj(wg—1) — yr(S), then Fj(w,) =

Consequently,

1
Fi(wo) —q-vr(S) = — —q-vr(5). But player ¢ is null in the game w, and all players in
n
wo are symmetric. Thus, by (NP), (A) and (E) we then obtain,
1 1 sln—s—1)!
—=a-7p(5) = 0= 7r(5) _n_q_T_W(S)‘
Moreover, wq Sul Dy wy, thus by (HIS) axiom we can write,
Fa(wl) = Fa(wo) + )\F(Sl) and Fb(wl) = Fb<Q,U0) — "}/F<Sl> .

for all (a,b) € S; x (N\S;). It follows that,

D Fw) =) Fy(wo) +|Si] - Ap(S1) = (n = [Si]) - 7e(S)

peEN pEN
Finally, by (E) and Proposition 3.1.2 one gets,
n—s s—1Dl(n—s)!

n!

For CSGs with at least three players, we show that anonymity is redundant in the
previous lemma. To do this, recall that if v and v are two simple games such that the
winning coalitions of v are given by the winning coalitions of u and a coalition S € 2V\{N}
that is losing in v (noted v = u @ S in Page 62), then for all i € S and j € N\S we have

—Dl(n—s)!

slin —s—1)!
n! '

SSIZ(U) = SSI,(UJ) + <8 n!

(3.11)

and  SSI;(v) = SSL;(u) —

To each simple game v we associate a CSG v defined as follows: v (z) = 1if v(1,) =1

and v (x) = 0 otherwise. It can be easily checked that this embedding transfers the null
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player property, i.e. a null player in v is also a null player in .
PROPOSITION 3.1.3. Let u and v be two simple games on N and S € 2V\{N}.
1. Ifv=u®S, then ﬂM’ﬁ, with D = X [0, 1].
1EN\S

2. W) ={T CN,SCT} and v =u® S, then all players in N\S are null in v.

3. fu=1[n:1,...,1] with n >3 and F is a power indexr on CSG, that satisfies (E),
1 1 1
(NP), and (HIS), then F(7) = <_, 1o _).

n n n

Proof.

Consider u and v two simple games on N and S € 2V\{N}.

1. Assume that v = v @ S. Consider z_g €]0,1[V\%. Since S is loosing in u and
winning in v, then Au(S,z_g) = 0 and Av(S,z_g) = 1. That is Av(S,z_g) =
Au(S, x_g)+1. Furthermore, for any other coalition 7" # S, T € W(u) iff T € W(v).
Thus, for all x_¢ €]0, 1[N\, AG(T,z_7) = Au(T,z_7). It follows from Definition

3.1.7 that 7 22 7.

2. W) ={T CN,SCT}and v =u® S then, W(v) ={T C N, SCT}. Con-
sider i € N\S then, for all 7' C N\{i}, S C T'iftf S C TU{i}, thus v(TU{i}) = v(T).

Therefore, 7 is a null player in v.

3. Now, let u=[n:1,...,1], n > 3 and F be a power index on CSG, that satisfies
(E), (NP), and (HIS). Let us prove that F;(@) = = for alli € N. Let i and j be two
arbitrary players and X = N\{7,j}. Since n > 3, X # (. Pose F'(u) = (a1, ..., a,)
and vy = u® (X U{k}) for all k € {i,7}. As above, player j is a null player in v; and
g Xtk L b, Ui, 80 yrp(X U{i}) = a; by (HIS) and (NP). By (E) we conclude that
Ap(XU{i}) = Ap(XU{i}) = % T Similarly, we conclude yp(XU{j}) = a;

n—1 n —
and )\F<XU {]}) = n

-1
Now pose v;; =u® (X U{i})® (X U{j}) :'U,»®(X U{j}) =v;® (X U{i}). From

the above constants and (HIS), F;(v;;) = % 3 and F;(v;;) = Ll' Inv=v;®X
n— n—
the players ¢ and j are null players and v;; XL0, v, so a; = a; by (NP) and (HIS).

Since i and j were arbitrary, we have Fy(u) = % for all i € N by efficiency.

T on

LEMMA 3.1.4. If F'is a power index for continuous simple games that simultaneously
satisfies (E), (NP), and (HIS) and n > 3, then:

(Ar(S),7#(5)) = ((S L Gk L G e 1)!) (3.12)

n! n!

for all S € 2M\{N'}.
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Proof.
Consider S € 2V\{N}. We prove Equation (3.12) by induction from s = n — 1 to

s = 1. Moreover, we show at each induction stage s that, SSI(v) = F(v) whenever all
winning coalitions in v are of cardinality greater or equal to s.
Consider u = [n : 1,...,1] and v = u @ S for some coalition S C N of cardinality

s =n — 1. It follows from Proposition 3.1.3 that, u SLD, v, Fy(u) = % for all i € N and

sl(n—s—1)!
n!

by (HIS). By efficiency we then conclude A\p(S) = (81)7'1& Note that SSI(u) = F(u)
and by (HIS), SSI(v) = F(v). Moreover, SSI(v) = F(v) whenever v = u®S1®5:®- - -5,
for some coalitions Sy each of cardinality n — 1 by applying (HIS) p-times together with

the unique player j in N\S is a null player in v. Then, F;(v) = 0 and ¢ (S5) =

Equation (3.11). So, the induction start is made.

Now, consider S C N with 0 < s < n. To determine vz (S), let u be the simple game
with W(u) = {T' C N, S C T} . For the corresponding CSG w we have SSI(u) = F(u)
by the induction hypothesis. For v = u & S, Proposition 3.1.3 permits to conclude that
all players j € N\S are null players in v, therefore F;(v) = SSL;(v) = 0. With this, we
easily compute yp(S) = F;(u) = SSL;(u) = M by (HIS) and Equation (3.11), which
gives Ap(S) = % by efficiency. Moreover suppose that v is any other simple game
whose winning coalitions are of cardinality greater than s and that v = u®S; B S ®...BS,.
Then SSI(u) = F(w) by induction hypothesis, and applying (HIS) g-times together with
Equation (3.11) yields SSI(v) = F(v). [

Note that for n = 2, axioms (E), (NP) and (HIS) are not sufficient to uniquely determine

the HIS’s constants as in the previous lemma.

LEMMA 3.1.5. Consider N = {1, 2}, a;,as € R>g with a; + az = 1. The power index
F* defined for all v € CSGy and for 4,5 € N as follows:

1 1
Ff(v) =a; + aj/ Av({i}, t)dt — ai/ Av({j}, t)dt (3.13)

0 0
satisfies (E), (NP) and (HIS). Moreover, the pair of HIS’s constants are given by

(Ara({7}), vra({1})) = (a5, a;).

Proof.
Consider u,v € CSG, and i,j € N two distinct players. Note that F?(v) > 0

by definition. By Equation (3.13), we easily compute F{ (v) + F§ (v) = a; + ag = 1,
thus F is efficient. If ¢ is a null player in v, then for all ¢ € [0, 1], Av({i}, t) = 0 and
Av({j}, t) = 1. Thus, Equation (3.13) gives F*(v) = 0, hence F'* satisfies (NP).

Now assume that, u Welol ) for a given ¢ > 0 and [a, b] C [0, 1]. According
to Definition 3.1.7, Av({i}, t) = Au({i}, t) + ¢ if ¢t €a, b] and Av({i}, t) = Au({i}, t)

otherwise and Av({j}, t) = Au({j}, t) for all ¢ €]0, 1[. Therefore, by Equation (3.13)
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Fi(v) — Ff(u) = a; x e X (b—a) and F}(v) — Fj'(u) = —a; X ¢ X (b—a). We conclude
that, F* satisfies (HIS) and (Apa({i}), vra({i})) = (a;, a;), by Equation (3.6). u

So, for n = 2 including symmetry (S) as in Lemma 3.1.3 permits to uniquely determine
the (HIS) constants, but this symmetry axiom may also be replaced by some technically
weaker axiom.

The following proposition is useful in the axiomatization of .

PROPOSITION 3.1.4. Consider two power indices F' and P which are (HIS) and such
that Ap(S) = Ap(S) and vz (S) = vp (S) for all coalitions S. Then for all CSGs u and

v such that v is a local improvement of potentials in u,

Proof.
Suppose that F' and P are two power indices that satisfy (HIS) and Ag(S) = Ap(5)

and g (S) = vp () for all coalitions S. Consider u,v € CSG,, such that u 55D, v holds

for some coalition S, some ¢ > 0 and some N\S-domain D. Since both F' and P satisfy
(HIS),

F(v) = F(u)4+¢q(S) x e xwvol(D) and P(u) = P(v) + q(S) x € x vol(D) (3.14)

where ¢; (S) = Ap(S) for all i € S and ¢; (S) = —vr(S) otherwise. Therefore, F'(u) —
P(u) = F(v) — P(v). u

3.1.3 Discreteness axiom

We have shown that one can embed the set of simple games in the set of CSGs through
out any transformation 77, 0 < 7 < 1; thus simple games can be viewed as discrete CSGs.
Moreover, each transformation 77 preserves the distribution of power among players while
moving from the Shapley-Shubik index SSI on simple games to the Shapley-Shubik index
U on CSGs. In this section, we formally define a special class of CSGs called discrete
CSGs. Those games are used to formalize the new axiom of discretization, that captures
the possibility for a power index to be completely determined by its restriction on the set
of all discrete CSGs. Further notations and definitions are needed before the formalisation
of this axiom.

For each integer p > 2, we pose:

D, = {a = (g, a1, .y p) € P g = 0,0, = 1 and oy < g for i =0,1,...,p — 1} .
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and A, , = {1,2,...,p}", where n denotes the number of players. Given o € D,, we denote

by w (o) = max (ax — ag_1) the maximal difference between two consecutive «y, and
1<k<p

- if k<
[a] —{ (-1 P for anyk € {1,2, ..., p}

lap_1,0p] if kE=p

For each e = (e1, €9, ...,€,) € A, ,, and each o € D,,, we abbreviate by [a], the box

and c, the center of [a], i.e.

(3.15)

o Qe —1 + Qey Oey—1 + Ue, Ae, —1 + Qe,,
Ce = 9 ) 2 Yt 9

REMARK 3.1.2. For each integer p > 2 and each a € D,, the collection {[a], : 1 <k < p}
form a partition of I =0,1] and P, = {[a]. : e € A, ,} is the paving of I".

It will be useful in the sequel to order all cuboids provided by a paving P, of I". For
this, we use the lexicographic order denoted <., and defined as follows. Consider x,y € R"
then, © <., y if * = y or there exists some k € {1,2,...,n} such that z; < y; and z; =
y; for all j > k. Note that, we compare each component of x with the corresponding one of
y starting at the n'® component and moving downward.

For example, in R?, we have (1,1) <z (2,1) <iex (1,2) <tz (2,2) .
ProprosSITION 3.1.5.
1. The lexicographic order <., 1s a linear order on R™.

2. Let p > 2 be an integer, o € D, and z,y € I" such that (z,y) € [a]c X [a]e for

some e, € € A, ,. If x <y, then e <, €.

Proof.
By definition, <., is reflexive, complete and antisymmetric. To see that =, is

transitive, consider three distinct n-tuples a, b and ¢ such that a <., b and b <., c.
Assume that a = b or b = ¢, then we obtain a <., ¢ without difficulties. Now suppose
that @ <, b and b <y, ¢, then there exists k& and £’ such that a; < b, and a; = b; for
any j > k; and by < ¢ and b; = ¢; for any j > k'. If £ <&’, then ap < by < ¢ and for
all j > k', a; = b; = ¢;. Thus a =y, c. If kK’ <k, then a;, < by < ¢4 and for all j > &,
a; = b; = ¢;. Thus a <., ¢. Therefore <, is transitive.

Now Consider x,y € I" such that (z,y) € [a]. X [a]e for some e, e’ € A, ,,. Assume
that © < y and €’ <., €; then e, < ¢; for some i € N, i.e, e, < e; —1 < p. Since y; € [Oé]e,;

and e, < p, then y; < Qe < ;1 < Ty This implies y; < x; which is a contradiction

since x < y. Consequently, x < vy, z € [a]. and y € [a]|., implies e <., €. [ |
Yy q Y, Y, e ) e p lex
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Simple games as well as (7, k) simple games are discrete in the sense that each such games
take a finite set of values. With CSGs, an analogous class of games is obtained when one
considers for example CSGs that are constant over each cuboid provided by some paving
P, of I". More formally,

DEFINITION 3.1.8. A CSG wu is discrete if there exists a partition P = {P, Py, -+, Py, }
of I" such that for all P; € P (1 < j < m) there exists a; € [0, 1] such that u(z) = a;
for all z € P;.

In other words, u is discrete if there exists a partition P = {Py, P5,--- , P,,} such that
the restriction of u over each P; is constant. In this case, we say that u is a discrete CSG

associated with P.
NOTATION 3.1.1. Let p > 2 be an integer and a € D,,.

e We denote by I') the set of all discrete CSGs associated with Py,

(e
p? eEAp,n

numbers such that, c¢(x) = a.; for all z € [a], \ {0, 1} and for all e € A, ,,.

e for any c € 'Y, we will write ¢ = ¢4, where a = (a,) is the collection of real

REMARK 3.1.3. Any 2-players discrete game ¢, € I') can be represented by the

following matrix:

A1p | A2,p T Ap,p
Q12 | G292 ce Qp .2
11 | G21 s Qp 1

DEFINITION 3.1.9. A discrete CSG u associated with the partition P = { Py, P, -+ , P}
is a discretization of a CSG v if for all P; € P, there exists t; € P; such that u(x) = v(t;)
for all x € P;.

A discretization u of a CSG v is called regular if u € 'y for some integer p > 2 and

some o € D,.

EXAMPLE 3.1.3. Consider v € CS8G,,, p > 2 an integer and a € D,. Then, the discrete
game u defined by u(x) = v(c.) for all x € [al., with e € A,,, is a regular discretization

of v.

While discretizing a CSG, one may expect that, the potentials of coalitions to be pre-

served in some sense.
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DEFINITION 3.1.10. A regular discretization u of a CSG v is compatible with the
potentials in v if for all S € 2V\ {N}, for all e € A, ,, there exists t, € [a], such that,

Vo e lal,, Au(S,z_g) = Av (S, (te)—g) .
In this case, we write u ~a v.

In words u, is compatible with potential influence in v if the potential of each coalition
in u is a discretization of the potential in v. Moreover, a regular discretization u of a
CSG v, being potentials compatible requires that, for each S € 2¥\ { N}, the graphs of the
potential of S in v and in v should intercept over each [a],, e € A, ,,. Thus, when w ()
is sufficiently small, potentials of coalitions in v mimic those in v. The question is whether

such a discretization always exists. The answer is “yes”, an example is provided below:

EXAMPLE 3.1.4. Let v be a CSG with three players. Given o = (0,1,1) € Dy, the

discrete game u € I's defined by the constants (ac)eca, ,

e | (1,1,1) | (2,1,1) | (1,2,1) | (2,2,1) | (1,1,2) | (2,1,2) | (1,2,2) | (2,2,2)

a. | v(0,0,0) | v(1,0,0) | v(0,1,0) | v(1,1,0) | v(0,0,1) | v(1,0,1) | v(0,1,1) | v(1,1,1)

is compatible with potentials in v.
More generally, we have:

PROPOSITION 3.1.6. For all ¢ € CSG,, there exists a sequence (Carar),s, 0f Tegular
discetizations of ¢ compatible with potentials such that for all p > 2, o? € D, and

li P)=0.
oo @ (47 =0

Proof.
Consider ¢ € CSG,,. For all integer p > 2, we pose o = (0, %, cee 7%1, 1) € D,,
for each e € A, ,,, we define the profile t£ by (2); = e’;l if e; < p and (t2); = 1 otherwise

and pose a? = ¢(t?). Consider the sequence (uy),>2 of discrete games such that for any

P> 2, Uy = Cap or, Where a? = (a?) . By construction, u, is a regular discretization

6€¢4p, n

of ¢ such that u, € T9" and  lim w(a?) = 0.
p—>+oo

Now let prove that, for all p > 2, u, ~a c. To this end, consider S € 2V\ {N},

e € A, , and x € [aP]., then, the potential of coalition S in w, satisfies:

Auy, (S,z_g) = u,(lg,x_g) —u,(0s,2_g)

= Uy (y) —up (2)

where

x; otherwise x; otherwise

{1 if ieS {0 if ieS
and z; =
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Since = € [o?],, it follows that
(TR [Oép]e/ and z € [Oép]eu
with

, {pifz’es ., {1ifz'eS
e; = and e; =

e; otherwise e; otherwise

So, according to the definition of u,, we have,
u, (y) =a’, =c(tf) =c(ls, (0)-s) and u, (z) = a’, = c(t%,) = ¢(0g, (t8)_s).
Thus, by rewriting Auw, (S,z_g) we get,

Aup (S, J7—S) = Up (y) — Up (Z)
= c(1s, ()-s) —c(0s, () _s)
= Ac(S, (t)-s)

Since t? € [o?], and does not depend on x, we conclude that u, ~a c. |

DEFINITION 3.1.11. A power index F' for CSGs satisfies the discreteness axiom (D) or
is discretizable if for any CSG ¢ and for any regular discretizations sequence (up)p>2 of
¢ compatible with potentials such that

U " and lim w(a?)=0
P S p p—too ( ) )

it follows that,
F(c)= lim F(u,).

p——+o00

LEMMA 3.1.6. The Shapley-Shubik power index ¥ is discretizable.

Proof.
Let ¢ be a CSG on N and (up)p>2 a sequence of regular discretizations of ¢ such

that, for all p > 2, u, € ng, up ~a cand lim w(af) =0. Consider ¢ € N, by Theorem

p—+00
1.2.3, page 25 we can write,

qfi<up):%+ > (t_l);(!”_t)!C(up,T)— > M =t= Ve, 1) (3.16)

n!
i€TCN OATCN\{i}
Since u, is a discrete CSG associated with P,», then
VO C T C N,C(uy,T) = / AT, g)dr = 3 vol ([a”].) Aup(T, (@) 1) (3.17)
m e€Ap n

where for any e € A, ,,, ¢? is the center of [a?].. Since u, ~a ¢ then, Definition 3.1.10
and Equations (3.16)—(3.17) lead to:
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Wy (uy) :%+ > (t_l);(!”_t)! > vol ([o7]e) Ac(T, (27)_1)

€T CN e€Ap n
thn—t—1)! » »
- > | X vol([o¥]e) AT () 1)
PATCN\{i} ) e€Ap, n

Since c is integrable (see Corollary 1.2.3, page 23), then for any T € 2¥\{N}, Ac(T, .)

is integrable on I". Additionally, since lirjp w(a?) =0, then,
p—+o00

lim Z vol ([a?]e) Ac(T, 2?) | = /In Ac(T,y_r)dy=C(c, T) (3.18)

p—>+0o0
e€Ap n

Finally,

p—+o00 . p—+0o0
€T CN e€Ap, n

i w() = -4 S CEDEO g (Z vol ([%],) Ac(T, <x5>T>)

_oy Hmrm by, (Z vol ([a”]e) Ac(T, (w7)-r)

. n! p—>+00
0ATCN\{i} c€Ap,n
1 t—1Dl(n—1)! tn—t—1)!
= -+ ) %C(c, - > L')C(c, T), by Equation (3.18)
n i€ETCN n OATCN\{i} G
= ¥i(o)
Therefore, U(c) = lim W(u,). [
p—+o0

3.2 Results of axiomatization

We prove that, axiom of symmetry (S) together with efficiency (E), null player property
(NP), homogeneous increments sharing (HIS) and discreteness (D) are sufficient to uniquely
identify the Shapley-Shubik index (¥) on the set of 2-players CSGs. In the context of CSGs
with at least three players, we prove that this result of characterization still holds even if
axiom of symmetry is dropped. We end this section with proving the independence of those

axioms of characterization.

3.2.1 An axiomatization of ¥ on 2-players CSGs

It is proved that when regular CSGs are involved, axioms (E), (NP) and (HIS) characterize
the parameterized power indices defined in Lemma 3.1.5. Moreover, we show that adding
axiom (S) to the previous axioms allows to uniquely identify the Shapley-Shubik power index
(V). Secondly, we use the axioms (E), (NP), (HIS), (S) and (D) to provide an axiomatization
of the power index ¥ on CSGs.
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To ease the presentation, we denote by F = {F*, a = (a1,a2) € R%, with a;+a; = 1},

where F'* is the power index defined by Equation (3.13), 81. Note that, ¥ € F; just taking

_ _ 1
CL1—CL2—§.

Theorem 3.2.1.}

Let P be a power index on CSG, that satisfies (E), (NP) and (HIS). Then, there
exists F' € F such that, P(c) = F(c) for every regular CSG c.

Proof.

Consider N = {1, 2} the set of players and P a power index on CSG, that satisfies
(E), (NP) and (HIS). In order to show that the restriction of P on the subset of regular
games coincide with some element of F, for a each player ¢ € N consider the CSGs uf

and ug respectively defined as follows:

| 1 ifa; =1
for all z € I, uf(z) = n and ug(x) =0if z #1.
0 otherwise

We can easily check that, for all i € N, ug L0, uf and the unique player j € N\{i}

is a null player in «j. Thus, by (HIS), (NP) and (E) one get,

Ap({i}) = vp({i}) = P;(uo) .

Hereafter, we pose P(ug) = (a1, az), then ay,as € Rsg and ay + a; = 1 by (E). Consider
a regular CSG v, then there exists an integer p > 2 and a € D, such that, for all
e = (e1,e2) € A, ,, and for all z € [a]e, v(x) = a¢,e,- Throughout this proof, we set
[p] =: {1,---,p} for a given integer p > 2 and I = [ap—k, @p_g41], for any k € [p]. In
order to prove that P(v) = F%(v), four steps are needed.

Step 1 Consider a sequence of CSGs (vy)o<k<p defined by vy = 1y and for all k € [p],

o) = v(x) if xe {1}x]ap—k, 0ppi1]
w(z) =
vg—1(x) otherwise

For all & € [p], vp_1 ~2 "% o with &), = ay,_ps1. It follows by (HIS) that,

Py(vy) = Pi(vg—1)+asep-(ppi1—apr) and Po(vg) = Po(vp—1)—a2-€p(0pty1—p—k) -

By summing over k € [p] all left-hand-side terms and all right-hand-side terms of each of

the above equations, we finally obtain:

p

1
Pi(vy) = Pi(vo) + a2+ Y _ap - (g — 1) = ay + aQ/ (1, t)dt, (3.19)
0

k=1
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and

p

Poluy) = Pa(to) —a+ > iy i+ (0 — 1) = a2 — a2/0 o(1, ) dt. (3.20)

k=1

Step 2 Consider a sequence of CGSs (wy)o<k<p, defined by wy = v, and for all k € [p],

@) i e (apmap {11 X]0,1]
wi ()

wg_1(x) otherwise

For all k € [p] ,wk—1 RCILCRIN wy, with 0y = a,_g41,,- Thus, by (HIS) we one obtain,

Pr(wy) = Pr(wp—1)—a1-0-(p-pp1—pr) and Po(wp) = Po(vg—1)+a1-0p-(p_pr1—p_r)

By summing over k € [p] all left-hand-side terms and all right-hand-side terms of each of
the above equations, it follows from Equations (3.19) and (3.20) that:

1

1 1 1
P (wy) = a1 + ag/ v(1, t)dt — al/ v(t, 1)dt and Py(w,) = as — ag/ v(1, t)dt + al/ v(t, 1)dt.
' ' ' (3.21)

Step 3 Consider a sequence of CSGs (fi)o<k<p defined by fy = w, and for all k € [p],

fi(x) = { v() itz € {0} xJoyk, apps1]

fr_1(x) otherwise

{1}7 9;@ [k

For all k € [p], fi-1 fr where 8, = —a;y 1. Hence by (HIS) we one get,

Pl(fk) = Pl(fkfl)—i_aQ'e;g'(Oépfk%*l_apfk) and P2(fk) = P2(fk71)_a2‘0;g'<ap7k+1_ap7k> .

By summing over k € [p] all left-hand-side terms and all right-hand-side terms of each of

the above equations, it follows from Equation (3.21) that:

1 1 1
Pi(fy) =a —i—ag/ v(1, t) dt—al/ v(t, 1)dt—a2/ v(0, t)dt (3.22)
0 0 0
and

1 1 1
P = a9 — 1, ¢)d 1)d 0,t)d 3.23
5 (fp) = az a2/0 v(1, t) t+a1/0 v(t, 1) t—l—ag/o v(0, t)dt ( )

Step 4 Consider a sequence of CSGs (gx)o<k<, defined by go = f, and for all k € [p],

v(x) if xo=0 and o, <1 < 01
gi(z) = .
gr—1(x) otherwise

We note that, g, = v and for all k € [p], gr_1 REHLNCL/N gr where 07}, = —a, 1.1 It

follows from (HIS) that,

Pi(gr) = Pi(gk—1)—a1-0" - (p—r1—p—) and Pa(gr) = Po(gr—1)+a1-0" k- (p—tt1—p_)
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By summing over k € [p] all left-hand-side terms and all right-hand-side terms of each of
the above equations, it follows from Equations (3.22) and (3.23) that:

Pi(gp) = a1+ ay /01 A{1}, ) dt — ay /01 A({2}, t)dt and Pa(g,) = as — as /01 A({1}, t)dt + a4 /01 A({2}, t)dt .

(3.24)
Since g, = v Equations (3.13) and (3.24) imply P(v) = F%v), with a = (a1,a2) =
P(uyp). u

Note that if P also satisfies (S), then P(ug) = (4, 1). Therefore F(v) = W(v). We

27 2
derive from the proof of Theorem 3.2.1 the following result:

COROLLARY 3.2.1. If P is a power index on CSG, satisfying (E), (NP), (HIS) and
(S) then, P(c) = ¥(c) for every regular CSG c.

Lemmas 3.1.1 and 3.1.2 combined with Corollary 3.2.1 provide a full characterization
of ¥ using four axioms on the subclass of all regular CSGs . We extend this result to the

whole set of all 2-players CSGs using (D) as follows:

Theorem 3.2.2.}

The unique power index on CSG, that simultaneously meets (E), (NP), (S), (HIS)
and (D) is the Shapley-Shubik power index.

Proof.
Let F' be a power index on CSG,,.

Necessity: If F' = W, it follows from Lemmas 3.1.2 and 3.1.6 that F' satisfies (HIS)
and (D). The others properties (E), (NP) and (S) come directly from Lemma 3.1.1.

Sufficiency: Now assume that F' satisfies ( E), (NP), (S), (HIS) and ( D). Consider
c € CSG,, by Proposition 3.1.6, there exists a sequence of regular discretizations (up)p22

of ¢ compatible with potentials such that, u, € Ffjp and liI_I‘rl w (o) = 0. Hence :
p—r+o0

F(c)= lim F(up,) since F is discretizable
p—r+00

= lim U(u,) by Corollary 3.2.1

p—>+00

=U(c) since V is discretizable.

Therefore F' = . [ ]

3.2.2 An axiomatization of ¥ on CSGs with at least three players

Corollary 3.2.1 provides a characterization of ¥ using the axioms (E), (NP), (S) and (HIS)
on the subclass of all 2-players CSGs that are regular. We now show that axioms (E), (NP)
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and (HIS) are sufficient to characterize W on the subclass of regular CSGs with at least three
players. We extend this result to the whole set of all CSGs using the discreteness axiom
(D). Some notations and preliminary results are needed.

Let p > 2 be an integer and o € D,,. We pose,
Ann ={e € Apn, Ule) U L(e) # 0}

where U(e) ={i € N, e;, = p} and L(e) = {i € N, ¢; = 1}. Since =, is a linear order, the
set A% . can be labelling in such way that A* = {e',e?,--- e}, with p* = |45 | and
eF <ep ¥ for all k < p*.

For each e € A, ,, we denote by

Ble)= |J [eJe and B (e)= | [o]e = B(e)\[o]..
€' Sjeze €' <jeze
B~ (e) is the union of all boxes of P, which precede [a]. according to the lexicographic
order <j...
Consider ¢ = ¢4o € I'y. We define a sequence of CSGs (cx)o<k<p+ as follows: ¢p(z) = 1
if x # 0 and

() = { (o) 1w BE) < k<. (3.25)

1 otherwise
Note that, the sequence (cx)o<k<p+ can help to build the game ¢ in a finite number of steps.
To illustrate this, consider the game u in Example 3.1.2. w is a 2-players discrete game,
le. u = c4q With a = (0, %, 1), ai; = 0.1, as; = 0.3, a;2 = 0.6 and az» = 0.9. Note that
Ago = A5 5 = {(1,1);(2,1); (1,2); (2,2)}. By Equation (3.25) and Remark 3.1.3, the games

Co, C1, C2, c3 and ¢y are represented below:

111 1|1 1 1 06| 1 0.6 0.9
Co :— (G Co 1= C3 = Cy 1= — U.
1]1 011 0.110.3 0.1]0.3 0.1]0.3

The following property of the sequence (ck)0<k<p* is useful to prove our main result. It
simply states that from ¢ to cgy1, one can use a finite moves each consisting in a (backward

or forward) local improvement of potentials of two CSGs.

LEMMA 3.2.1. Let p > 2 be an integer, o € D), ¢ = cqq € I'y such that ¢ # ¢
and (¢k)ocpe,- be defined by Equation (3.25). For each k € {0,1,2,...,p" — 1} such that
aqx+1 # 1, there exists a sequence (fl)ogzgm of CSGs such that fo = cg, fin = k1 and
for all [ < m, either fi11 s an improvement of potentials in f;; or f; is an timprovement

of potentials in fii1.

Proof.
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Consider an integer p > 2, a € D, ¢ = (ae)eeAp,n € I'y such that ¢ # ¢y and
k€ {0,1,2,...,p* — 1} such that ag+1 # 1. We pose ¢ = 1 — ag+1 > 0. In order to

construct the sequence (fi)<;<,,, three distinct cases are considered:

Case 1: If L(e*™) # 0 and U (") = 0. Pose ¢ = 2L\ {N}| and consider a la-
belling {S;, 1 < ¢ < ¢} of 25"\ {N} such that | S| > [Siq| for all 1 < ¢ < ¢. Let

(w)o<i<q be the sequence of mapping defined on I™ as follows:

to() = { o(z) if z € B (eF) (3.26)

ck(x) otherwise

and for all 1 <[ <gq,

() c(z) ifz € B (e") or z € [a]+1 and 0, = S; for some ¢ <[
w(x) =
: ck(z) otherwise
(3.27)
Using Proposition 3.1.5, we easily check that, u; is a CSG.
Now, we show that for all [ = 1,2,--- ,q; w4 S, Dy w where Dp = X [a] w1
iGN\Sl '
We first remark that, for all [ =1,2,--- ,q,
c(x if x € |a|k+1 and 0, = S
w(z) = (@) [@]er+ : (3.28)
w—1(z) otherwise

For each T € 2M\{N} and z_r €]0,1["\) we pose y = (17, z_7) and z =
(Or, z_7). Then, 0, = Pand 0, = T. Now let compute Aw (T, z_r) and

A1 (T, z_71). Two cases arise:

o If T'# S, then 0, # S; and one have:

Aw (T, z_7) =w(y) — w(?)
=u;_1(y) —w—1(2), by Equation (3.28)
:Aul—l (T7 x—T)

o If T'= 9, then 0, = S;. Two subcases are considered.

— Ifx_g, ¢ Dy, then y, 2 ¢ [a] ui1. Therefore, Equation (3.28) implies,

Auy(Sy, _s,) =ui(y) — w(z)
=u-1(y) — wi-1(2)
:Aul_l(S,, ZL‘_SZ)

— If g, € D then, z € [&]g+1. Since 0, = S;. Thus by Equation (3.28),
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Aw(S, zog) = w(y) —w(z)
= wa(y) - c(2)
= u1(y) —w—1(2) + w_1(2) — aer+1 since z € [kt
= Au1(S;, xse) +1— a1 due to Equations (3.25) and (3.28)
= Au_1(S), x_g,) + ek
Therefore, Aw(S;, x_s,) = Aw_1(S;, v_s) + ¢ if x_g, € D;, and
Aw(S), x—g,) = Aw_1 (S, x—g,) if x_g, ¢ D.

. Sy, en, D
Finally, we conclude that, u;_; —==2=% 4.

On the one hand, note that Auy = Aci. Thus u; is also an improvement of
potentials in ¢;. On the other hand, note that Au, = Acpy1. Thus ciq; is also
an improvement of potentials in u,_;. One obtained the requested sequence by

considering m = q, fo = ci, fi =w for 1 <1 < qand f; = ci41.

Case 2: If L(e*™) =0 and U (") #£0. Pose Ty = 0 and consider a labelling
(T}, 1 <t < ¢} of 2V ™\ {N} such that |T}| < |Tiyq| for all 1 < ¢ < ¢/. Let
(v1)o<i<g be the sequence defined by

() c(x) xe€B (") orz € [a]sm and 1, = T; for some ¢ <1
v(x) =
l cp(z) otherwise

(3.29)
Similarly, as in case 1, one can check that, v; € CS8G,, and for all [ = 1,2,---,¢/,
Uy T ew By vi—1; where £y = X [a s+1. Moreover we can observe that, vy = cpiq

1EN\T;
and Avg = Acg. Since Avy = Acy, ¢ is also a local improvement of potentials in

v1. One obtained a desired sequence by considering m = ¢/, fo = ¢, f; = v for
1<1<q.

Case 3: If L(eF™') # () and U (e*™) £ (. This case combines the two previous one.
In order to construct our desired sequence, consider the labelling of 25"\ {N}
and that one 2V ™\ { N} given respectively in case 1 and case 2. Pose r = g+¢'+1

and (w;)o<i<, a sequence defined by :

if 0<[<
T (3.30)
Vg1 it ¢g+1<1<r

where, u; is defined by Equation (3.27) and v; is defined by Equation (3.29) by
replacing ¢ with u,. It follows from case 1 and case 2 that, for all 0 < [ < m,
w; € CSG,, and satisfies:

Awg = A¢,  and wHMw, forall 1<[<gq
Tyg1, €k, B—q_
Awy = Awgy;  and  wiy ITamb T P w; forall g+2<[<r
Wy = Ck41
(3.31)
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Therefore by Equations (3.30) and (3.31), we obtain a desired sequence by consid-
eringm=q+¢q, fo=c, fr=w for 1 <l <gand fy =wy, forq+1<1<m.

An illustration of the construction of a sequence of local improvements of potentials from

¢k to gy is provided in Appendix C for any 2-players discrete CSGs.

Theorem 3.2.3.}

Consider n > 3 and let F' be a power index on CSG, satisfying (E), (NP), and
(HIS). Then, F(c) = ¥(c) for every ¢ € CSG,, that is regular.

Proof.
Consider p > 2, a € D), and ¢ = (ac)een, , € I'y. We prove that V(c) = F(c).
First suppose that ¢ = ¢y. By a direct computation, we have ¥ (cy) = (%, %, e ,%)
Consider ¢ € N and the CSG w; defined by w;(z) = 1 if x_; # 0_; and w;(z) = 0
N\{i}, 1, [0,1]

otherwise. One can easily check that, player ¢ is a null player in w; and ¢¢ —————— w;.
Thus, (HIS) and (NP) yield Fi(cy) = vr (N\{i}). Since F' meets (E), (HIS), (NP) and
n > 3, then Lemma 3.1.4 implies,

Fileo) = v (N\{i}) = 30 (N\ {i}) = = = Wi(co). (3.32)

Hereafter, we assume that ¢ # ¢g. Then, the game ¢ can be built up step by step
by considering the sequence (cj)o<k<p+ defined by Equation (3.25). Given 0 < k < p*

consider the following assertion :
H(k) : F(er) = Y(c).

We prove by induction that #(k) holds. According to Equation (3.32), H(0) holds. Now
given k € {0,1,...,p* — 1} such that for all [ < k; H(I) holds. Let show that H(k + 1)
also holds, that is F(cki1) = V(cpyr)-

If agrsr = 1, then Acy = Acgyq. Since ¢ # ¢, there exists some [ € {1,2, ..., k} such
that ag # 1 and Ac; = Acyq for all t € {l, 1+ 1, -, k}. Consequently, by Lemma
3.2.1, there exists a sequence (fs)ogsgm such that fo = ¢_1, f,n = ¢ and for all s < m,
either fy,1 is an improvement of potentials in fs or f, is an improvement of potentials in
fsi1. Since Ac; = Acyyq for all 1 <t < k, ¢xyq is also a local improvement of potentials
in f,,_1. Then, the sequence (gs)ogsgm with g; = fs for all 0 < s < m and ¢, = cxi1:
satisfies g, is a local improvement of potentials in g1 or gsy1 is a local improvement of
potentials in gs. Although W and F satisfy (E), (NP), (HIS) and n > 3, by Lemma 3.1.4

and Proposition 3.1.4 we obtain:
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F(gsi1) — F(9s) =¥ (gs11) — ¥ (g5) forall0 <s<m (3.33)

Since, go = ¢—1 and H(l — 1) holds by hypothesis of induction then F'(go) = ¥(go).
So, Equation (3.33) implies F' (¢x+1) = ¥ (¢k41). That is H(k + 1) holds.

Now suppose that a.x+1 # 1 then, by Lemma 3.2.1 there exists a sequence (fs)ogsgm
of CSGs such that fo = ¢, fin = crxy1 and for all s < m, either f,,1 is an improvement
of potentials in f; or f, is an improvement of potentials in f,.;. By Lemma 3.1.4 and

Proposition 3.1.4,
F(fox1) = F(fs) =Y (foq1) =V (fs) forall0<s<m (3.34)

Since H(k) holds, then F'(c¢;) = ¥ (c,). Hence, Equation (3.34) implies F'(cx1) =
U (cg41). That is H(k + 1) holds.

Finally, for all £k = 0,1--- ,p*; F (cx) = ¥V (¢x). In particular F (c,+) = U (cp), Lee.,
F(c) =Y(c). [

Theorem 3.2.3 provides a characterization of W by three axioms on the subset of all
regular CSGs with at least three players. The additional axiom of discreteness permits to

extends previous result to the whole set of all CSGs.

Theorem 3.2.4.}

Consider n > 3 and let F' be a power index on CSG,,. Then, F satisfies (E), (NP),
(HIS) and (D) if an only if F' = .

' Necessity: If F'' = U, it follows from Lemmas 3.1.2 and 3.1.6 that F satisfies (HIS)
and (D). The two others properties (E) and (NP) come directly from Lemma 3.1.1.
Sufficiency: Now assume that F satisfies ( E), (NP), (HIS) and ( D). Consider ¢ €
CSG,, by Proposition 3.1.6, there exists a sequence of regular discretizations (up)p22 of ¢
compatible with potentials such that, u, € T'9" and , E}riloow (a?) = 0. Hence :
F(c) :piriloo F(u,) since F is discretizable
:piriloo U(u,) by Theorem 3.2.3
=U(c) since VU is discretizable.
We conclude that F' = . |
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3.2.3 Independence of the axioms of characterization

Theorems 3.2.2 and 3.2.4 characterize the Shapley Shubik index for CSGs. We now prove
that none of those axioms can not be dropped and this highlights the independence and the

non-redundancy of these axioms.
Efficiency can not be dropped
PROPOSITION 3.2.1. The power index F' =2 ¥ satisfies (NP), (HIS), and (D), but

not (E).

Proof.
Directly from the definition, F'' obviously satisfies (NP), (HIS) and(D); but not (E).

Note that the (HIS) constants of F'! is given by Ap1 = 2.\g and yp = 2.79y. [
The null player property can not be dropped

PROPOSITION 3.2.2. Denote by ED the equal division power index defined for any

v e CSG, by
ED@):(E’L...,E)
n'n n

Then, the power index F? = JU + 2 ED satisfies (E), (HIS) and (D); but not (NP).

Proof.

Consider v € CSG,,. Then, Y,y F2(v) = 3 3 ,cn Vi(v) + 5 = 1, thus F? is efficient.
Ao
2

F? satisfies (HIS) with constants Age = 2

regular discretizations of v compatible with the potentials, then

and yp2 = T, Let (v,) be a sequence of

1 1 1 1
i 2 = — i _ = — . — 2
, hrilooF (vp) = 5 hriloo‘ll(vp) t3,. =5 U(v) + o™ F*(v).
We conclude that F? satisfies (D). By definition F? assigns to each null player in any

CSG the power <, thus F? does not satisfy (NP). |

Homogeneous increments sharing can not be dropped

In order to construct a power index that satisfies (E), (NP) and (D); but not (HIS), we
define for any CSG v, the game v?* by setting v*(z) = (v(x))?, for all z € I™.

PROPOSITION 3.2.3. The mapping F? that associates each game v to ¥(v?) is a power
index that satisfies (E), (NP) and (D), but not (HIS).

Proof.

UYI: Ph.D Thesis Hilaire TOUYEM ©UYT 2020




3.2. Results of axiomatization

It is easy to check that F? satisfies (E) and (NP). Let v be a CSG on N and (v,),>2
a sequence of regular discretizations of v compatible with the potentials. We first show

that, the series (vg)ng is the sequence of discretizations of v? compatible with potentials.
Consider p > 2 and z € [o?]. for some e € A, ,,. Since v, is a regular discretization of v,
then

vpla) = v(c), (3.35)

where c? is the center of [a?]..

2
p

Moreover, for each S € 2V\{N}, it follows by Equation (3.35) that

Equation (3.35) is equivalent to v(z) = v*(c£), i.e, v} is a regular discretizaion of v°.

vy (1s, 2-s) — v5(0s, 7-5) = v*(1s, (£)-s) — v*(0s, (cV)-s)-
Therefore, vg is compatible with the potentials in v? and thus,

lim F3(v,) = lim \I/(vf)) =V (v?) = F3(v).

p—>+00 p—>+00

Hence, [ is discretizable.
To prove that F** does not meet (HIS) consider a CSG v defined as follows v(z) = z123
for all z € I". Then

13 17 5 7
FB)=—.—.0.--- U)=[= —0.--- )
(U> (30730707 7O> % (U) (127 12707 7O>
Thus by Theorem 3.2.4, it appears that F** does not satisfy (HIS). [ |

Discreteness can not be dropped

The construction of a power index that satisfies (E), (NP), and (HIS) but not (D) is a bit
more technically involved. On CSG,, we can define an equivalence relation, where two CSGs
are in the same class if one of them can be obtained from the other by a finite sequence of
local improvements. It can be shown that there exists more than one equivalence class.

We define a power index F* as follows:

o for v(z) =[], 2 F4(v)=%'(1,2w--m);

1=1" n(n+1)
e for every CSG u within the same equivalence from v, F*(u) is defined by F*(v) via

(HIS)

e for every continuous simple game v’ that is contained in a different equivalence class
than v, we set F4(u') = U(u/).

PROPOSITION 3.2.4. The mapping F* is a power index for CSGs that satisfies (E),
(NP) and (HIS), but not (D).
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Proof.
By construction of [, we cannot lose efficiency and no player can turn into a null

player. So, F* satisfies (E), (NP) and (HIS). Since F*(v) # ¥(v), then by Theorem 3.2.4,
it follows that F* does not satisfy (D). u

Propositions 3.2.1-3.2.4 prove that the four axioms in Theorem 3.2.4 are independent.

Independence of the axioms of characterization in Theorem 3.2.2

We remark that the power indices constructed in the Propositions 3.2.1-3.2.4 also satisfy the
symmetry axiom. So, to prove the independence of axioms in Theorem 3.2.2, it is sufficient
to construct a power index that satisfies (E), (NP), (HIS), (D) but not (S). For this, one
can easily check that every power index F* (with a = (a1, az) € R%, and a; # ay) as defined
in Lemma 3.1.5 satisfies (E), (NP), (HIS), (D) but not (S).

3.3 Alternative axiomatization

In this section published in ( ), we transfer some notions introduced in
Chapter 2 to CSGs. In particular, we introduce an operator that associates each CSG
v with a TU-game v called average game. This notion is used to formalize the continuous
version of average convexity axiom which, combined with efficiency, null player property and
symmetry leads to an alternative characterization of the Shapley-Shubik index for CSGs.

We also show the independence of axioms.

3.3.1 Average game of a CSG

Similarly to the case of uniform (j, k) simple games, we introduce the average game operator

for CSGs and study his properties.

DEFINITION 3.3.1. Let v be a CSG on N. The average game associated with v and
denoted by v is defined via

VS C N, 9(S) = / w(Ls, 7_s) — v(0s, 7_g)ldz = C(v, S (3.36)

Following Definition 3.1.4 of the potential function, v(S) can be interpreted as the aver-
age potential of the coalition S in the game v. Using the definition of the average game of

the CSG, Theorem 1.2.3, page 25 can be rewritten as,
r—[Theorem 3.3.1.} N

For all CSGs v on N and for all i € N,

)= Y EEE = G e 537

n!
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In other words, for a given CSG v the power distribution W¥(v) is given by the Shapley value
of its average game v. As with uniform (j, k) simple games, the average game operator for
CSGs is not injective, i.e. two distinct CSGs may have the same average game as illustrated

in the following example.

EXAMPLE 3.3.1. Consider the CSGs v and v defined on N respectively for all xz € I"
by : wu(z) = 1if x =1, and u(x) = 0 otherwise; v(zx) = 1 if = # 0, and v(z) = 0
otherwise. It is clear that, u # v. But, Equation (3.36) gives u(S) =v(S)=1if S=N

and u(S) =v(S) = 0 otherwise. So, u = 7.
The average game operator preserves some properties of CSGs.
PRoOPOSITION 3.3.1. Given a CSG v on N,
(a) vis a TU-game on N that is [0, 1]-valued and monotone;
(b) any null player in v is a null player in v;
(¢) any two symmetric players in v are symmetric players in v;

(d) if v=">" a v is a convex combination for some v1,...,v, € CSG, then v =

Z?:l o - Uy

Proof.

| Very similar to the one of Proposition 2.1.5, page 46. [ |
For the remaining part of this thesis, we introduce some useful collection of CSGs.
Given a coalition S, consider the CSG C* defined for all € I™ by :

C5(x) =

1 ifsSci,
{ (3.38)

0 otherwise

We can remark that, given a coalition S, any player who is not in S is null in C* and the
players whose belong to S are symmetric. Furthermore, we have the following proposition.

PROPOSITION 3.3.2. The collection of average games (6\S>s N is a basis of IT'V.
)

Proof.
In order to prove this proposition, it is sufficient to show that, for each S € 2%,

5 = vs. For this, consider S € 2¥ and T C N. For every x € [0,1[", we pose
y"(x) = (1p, x_7) and 2" (x) = (Op, z_7), so 1,7,y = T and 1,r(,) = 0. Therefore by
definition, C¥(27(x)) = 0.

If S CT =1,ry), forall z € [0, 1[" then Equation (3.38) yields C*(y” (x)) = 1. Thus,

C3(T) = /[ [0 @) = O @) = 1= 55(7)
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Now assume that S € T = 1,r(,, for all # € [0,1[" then Equation (3.38) gives
O (47 (2)) = 0. So,

C3(T) = /[ [0 @) = O @) = 0 = 2(r).

In both cases C/'Tg(T) = ~v5(T) for all T € 2V; that is CS = vs. We conclude that
(@) N is a basis of the vector space of all TU-games on N [ ]
Se2

PROPOSITION 3.3.3. Let u be a CSG and 7 a given player. If 7 is a null player in u
then, there exists a collection (z%) of real numbers such that:

u= E e C9.

i¢Se2N

Proof.
The proof is similar from that one of Proposition 2.1.4, page 44 since C¥ = ~g for
all S € 2V and w e I'V. n

3.3.2 New result of axiomatization

We provide a new axiomatization of the Shapley-Shubik index (V) for CSGs. Before this,
notice that, the axioms introduced in Definition 2.1.5, page 51 and in Definition 2.2.1, page
54 can be easily extended to CSGs by substituting U, with CSG,,. The continuous version

convexity (average convexity) axiom is denoted (C*) (resp. (AC*)).

PROPOSITION 3.3.4. The Shapley-Shubik index ¥ satisfies (AC*).

Proof.
| Use Theorem 3.3.1 and the linearity of the Shapley value. [ ]

LEMMA 3.3.1. If F' is a power index on CSG,, that satisfies (E), (S), and (NP) then,
F(C%) = ¥(C%) for all S €2V,

Proof.
It is clear that all players in S are symmetric in C'*¥, while all players outside S are

null players in C*¥. Since both F' and V¥ satisfy (E), (S), and (NP), we conclude that
1

Fi(C%) = U, (C%) = Sl if i € S and F;(C?) = ¥,(C%) = 0 otherwise. This proves that,

F(C%) =¥ (C%). ]

Theorem 3.3.2.}

A power index F' for CSGs satisfies (E), (S), (NP) and (AC*) if and only if F' = .
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Proof.
Necessity: It was shown in Corollary 3.1.1 and in Proposition 3.3.4 that U satisfies (E),
(S), (NP), and (AC*).

Sufficiency: Let F be a power index for CSGs that simultaneously satisfies (E), (S), (NP),
and (AC*). Consider a CSG wu, note that u is a TU-game by Proposition 3.3.1. Thus by

Proposition 3.3.2, there exists a collection of real numbers (ag)geon such that
u= Zas-c/@: ZO&S'E'TS—F ZO&S'é@
Se2N SeFn SeEs

where E; = {S € 2V : ag > 0} and B, = {S € 2 : ag < 0}. Moreover, E; # () since
U(N) =1. We set

S€eE Sekn
It follows that,
1 ~ —_— —_~ —_~
—a+ Y o=y E s (3.39)
w w
SEEs SeE,

Since (3.39) is an equality among two convex combinations, then by (AC*), we deduce
that
Bl — = - , .
— (W) + Y — F(C%) ZwF(C) (3.40)
SEE, SeB

Therefore, by Lemma 3.3.1 we have,

%F@) Y T wen) = 3 % w(es) (3.41)

SeE, Sek

Since U also satisfies (AC*), we get

1 —Qg S 1 —Qag S
—Fu)+ Y —2 W(C%) = =T(u)+ Y —= (). (3.42)
“ seb, “ sem

Hence F(u) = ¥(u), for all u € CSG,,. This means that F' = V. [

REMARK 3.3.1. In contrast with uniform (7, k) simple games, all convex combinations
of CSGs are also CSGs. Thus, the axiom (AC*) in Theorem 3.3.2 can be split into
two easier axioms: the standard ariom of convexity (C*) and the axriom of average
equivalence (AE) stating that if F is a power index for CSGs, then any two CSGs that

induce the same average game must have the same power distribution by F'.
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3.3.3 Independence of axioms

We now prove that the characterization axioms in Theorem 3.3.2 are independent. To do

this, let ig € N be a given player and P® be a power index on CSG,, such that
Pr(CN) = { w1 AP =o
P : :
n+r1 if p # 4o
PROPOSITION 3.3.5.
1. The power index F' =2 W satisfies (NP), (S) and (AC*); but not (E).
2. The power index F? =1.W+1.ED satisfies (E), (S) and (AC*); but not (NP).

3. The power index F? = ¥l (see, Definition 3.1.2, page T1) satisfies (E), (S), and
(NP); but not(AC*).

. Let u be any CSG on N and (2%)geon the coordinates of it average game in the
basis (C/’\S)S@N. The power index F* defined on CSG,, by
Fiu)= > a4 F*(C*) jor al u € CSG,
Se2N
where, for each S € 2M\{N}, F4(C%) = ¥(C¥) and F(CN) = P?(CV) satisfies
(E), (NP), (AC*); but not (S).

Proof.
The proofs of items 1, 2 and 4 are respectively similar to the one of Propositions

2.2.5,2.2.6 and 2.2.8 (see pages H9-61).

Now, we prove item 3. By Corollary 3.1.1 one concludes that F? satisfies (E), (NP)
and (S). In order to show that F*® does not satisfy (AC*), consider the CSG defined by
v(zy,- - ,x,) = 1123, It can be easily checked that, for all T C N,

it 1€Tand2e€T
if leTand2¢T
1¢Tand2eT
if 1¢Tand2¢ T

O W= Wi
o
—~

o~

Therefore, the decomposition of ¥ in the basis (C¥)geon is given by:

sl omat oot oim =l s oot omal.c® . (343
Y73 *3 6 7 vt3 7 t7 (3-43)

Since W satisfies (NP), (E) and (S), we easily compute ¥* (C1#) = (3,1,0,---,0),

2727

vt (Ct) = (1,0,0,---,0) and ¥ (C¥) = (0,1,0,---,0). We also have ¥* (v) =

(%, %, 0,--- ,O) (see the proof of Proposition 3.1.1). So,

6 1 11
N () R /L g2 € ) S (s S 44
7 (U) 7 (C ) 272707 70 ) (3 )
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and A A
3 3
2oyt (ot Sopt(chy= (2 Z0.... . 4
= (C )+7 (ch =200 (3.45)
It follows from Equations 3.43-3.45 that W' does not satisfy (AC¥). u

We have presented two axiomatizations of the Shapley-Shubik index for CSGs. In the
next chapter, we pay our attention to the qualitative approach of the power measurement
in a CSG. More precisely, we extend to CSGs the influence relation introduced by

( ) on simple games.
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tiE s Chapter Four‘ * %

The influence relation for continuous

simple games

Ranking players with respect to their ability to affect the collective decision is a major
concern in analyzing the structure of voting power in a collective decision making. A well-
known tool for this purpose, in the context of simple games, are the influence (desirability)
relation introduced by ( ) and the weak desirability relation introduced by

( ). On the class of voting games with abstention (i.e. (3, 2) simple games),
the notion of influence relation was introduced and studied by ( ). In
the same innovative trend, ( ) introduce several versions of this relation
on (j, k) simple games and study their properties. A generalization of the influence relation
to the context of CSGs was proposed by ( ). In this chapter we make an in-depth
study of that relation.

The chapter is organised as follows. Section 4.1 is devoted to preliminary definitions
and results. In Section 4.2, we study the properties of the influence relation of CSGs.
We mainly characterize CSGs for which this relation is complete, and show that it is a
preordering whenever it is complete. In Section 4.3, we compare the influence relation
with the preordering induced by the Shapley-Shubik index for CSGs. Chiefly, we provide a

sufficient condition for which these relations coincide.

4.1 Preliminaries

We recall the notion of binary relation and present the influence relation of simple games
as well as that of CSGs.

4.1.1 Binary relations
Let E be any nonempty set.

DEFINITION 4.1.1. A binary relation R on E is a subset of the cartesian product

E x E, i.e. a set of ordered pairs (a,b) of elements of E.
We will simple write aRb instead of (a,b) € R and |(aRb) instead of (a,b) ¢ R.
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Here follows some properties of binary relations.
DEFINITION 4.1.2. A binary relation R on the set E is said to be:

e reflexive if for all a € E, aRa;

symmetric if for all (a,b) € E?, bRa whenever aRb;

asymmetric if for all (a,b) € E?, aRb implies |(bRa);

transitive if for all a,b,c € E, aRb and bRc imply that aRe;

o complete if for all (a,b) € E?, aRb or bRa.
The following definition provides some particular binary relations.
DEFINITION 4.1.3. A binary relation R on E is :

e a preordering if it is reflexive and transitive;
e an equivalence if it is reflexive, symmetric and transitive;

e a strict preordering if it is asymmetric and transitive.

DEFINITION 4.1.4. Two binary relations R and R’ on E are incompatible if for any
a,b € E, aRb if and only if |(aR'D).

Note that, any preordering can be split into two binary relations that are incompatible.

Those components are presented below.
DEFINITION 4.1.5. Given a preordering R on E:

e the symmetric component of R denoted ~x is the binary relation defined as fol-

lows:

for all a,b € F, a =g b <= ((aRb) and (bRa));
e the strict component of R denoted >% 1is the preordering defined as follows:

for all a,b € B, a =g b <= ((aRb) and [(bRa)).

DEFINITION 4.1.6. Given two preorderings R, and Re on E|
e Riis a sub-preordering of Ro and we denote Ry C Ry if

forall a,b € E, (a »gr, b= a>r, b) and (a~g, b= a=p, D).

e R and Ry coincide if for all a,b € E, aR1b <= aRyb. In other words R and
Rs coincide is equivalent to Ry C Ry and Ry C R;.
PROPOSITION 4.1.1. Given R; and Ry two preorderings on E such that Ry C R,. If

R1 s complete then Ry is complete and both preorderings coincide.

Proof.
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Consider R, and Ry two preorderings on F such that R is complete. Assume that
Ri CRo.

e We first prove that R, is complete. Let a,b € F, since R, is complete, w.l.o.g
assume that aR,b, then a >%, b or a =g, b. It follows that a >, b or a =g, b,
since Ry € Ry. Thus aRsb, i.e. Ry is complete.

e We now prove that R, and R, coincide. It is sufficient to prove that R, C R4
since Ry C R» by hypothesis. Let a,b € E, suppose that aRsb and |(aR1b). Since
R, is complete, we necessary have b >x, a; thus b >x, a since R; C Ry. Hence a

contradiction arise since aRob. Therefore, Ro C R;.

4.1.2 The influence relation for simple games

To measure the power of players in a simple game, ( ) introduced the concept of
influence relation which is a preordering that ranks players according to their capacity to

impact the final outcome of the game. We recall below the definition of this relation.
DEFINITION 4.1.7. Let v be a simple game on N, 7 and j two players:

e i is said to be at least as influential (desirable) as j in v, denoted by i 7=, 5 if for
all coalition S C N\{i,j}, v(SU{j}) =1 = v(SU{i}) = 1;

e i is said to be more influential (strictly influential) than 7, denoted i >, j if i 75, Jj
and 1(j Zo 4);

e i is said to be as influential as 7, denoted i ~, j, if ¢ 2=, j and j 2=, i.

[t can be easily checked that given a simple game v, the binary relation 77, is a preordering

on N. 77 is the Isbell’s influence relation on simple games.

EXAMPLE 4.1.1. Consider N = {1,2,3,4} and v a simple game on N with minimal
winning coalitions {1,4} and {2,3}. Then we can easily check that, 2 ~, 3, 1 ~, 4 and
for any two distinct players ¢ and j such that (7,7) ¢ {(1,4);(2,3);(4,1);(3,2)}, ¢ and j

are not comparable according to the influence relation.

As shown in Example 4.1.1, the influence relation for simple game is not in general
complete; i.e. it does not always compare two players in certain cases.
( ) introduced the notion of swap robustness of simple games which provides a necessary

and sufficient condition under which the influence relation is complete.

DEFINITION 4.1.8. Let v be a simple game on N. v is said to be swap-robust if for
any S, T € W(v) and for any i, € N such that i € S\T and j € T\S, we have

(S\{i}) U {7} € W(v) or (T\{j}) U{i} € W(v).
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The following proposition from ( , , Pp-278) characterizes the class

of simple games with a complete influence relation.

PROPOSITION 4.1.2. The influence relation of a simple game is a complete preordering

if and only if the simple game is swap-robust.

4.1.3 The influence relation for continuous simple games

The Isbell’s influence relation introduced in Definition 4.1.7 was extended to CSGs by

( ). We recall the definition of this generalized influence relation.

DEFINITION 4.1.9. Let v : I™ — I be a CSG and 7,57 € N two players. Player i s

said to be at least as influential as j in v, denoted ¢ =, 5 if
for any z € I", [z; < x; = v(6;5(x)) > v(x)].

In words, player ¢ is at least as influential as j if the collective decision increases whenever
the two players exchange their level of approval in any profile where the level approval of
player ¢ is smaller than the one of the player j.

We write:
e =, jif i =, j and j =, i. The relation ~ denoted the symmetric component of >=;

e i>,jifi =, jand |(j =, i). The relation > is the strict component of =.

EXAMPLE 4.1.2. Let u and v be two CSGs on N = {1,2, 3} respectively defined by

T + x9 + 222
3

3

for all z € I?, u(zy, T, 73) = and  v(x1, 19, T3) = T1TATS .

o for any x € I3, u(wy, o, 13) = u(we, 1, 73), 50 1 ~, 2. Now consider i € N\{3},

then
3 .
For this reason, if we choose x € I* in such a way that x; < x3 and z; + x5 > %

(resp. @3 < z; and z; + 23 < 3), then Equation (4.1) implies u(fi3(z)) < u(x)
(resp. u(bis(z)) > u(x)). It folows that ](i %=, 3) and ](3 =, 7), i.e. player 3 is

not comparable to any other player in the game wu.

for any = € I’ u(fiz(x)) — u(z) = (4.1

~—

e Similarly one establishes that 2 >, 1, 3 =, 1 and 3 >, 2. So one can rewrite

3=y 2=y 1.

The following proposition provides an alternative definition of the influence relation of

CSGs.

PROPOSITION 4.1.3. Let v be a CSG on N and 7,5 € N two players,

imy j = [Ve el x> x; = v(0;(x)) <v(x))].
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Proof.
Let v be a CSG and 7,5 € N two players. Suppose that i =, 7 and consider x € I"

such that x; > x;. Setting y = 6;;(x), we have y; < y;. So, by Definition 4.1.9 we can
conclude that v(6;;(y)) > v(y), that is v(6;;(x)) < v(z), since = = 0;;(y).

Conversely, assume that, for all # € I" such that z; > z;, v(6;;(x)) < v(x) and let show
that ¢ =, j. To prove this, consider z € I"™ such that z; < z; and pose y = 6,;(z). One
obtains y; > y;. So, by assumption, we can write v(6;;(y)) < v(y), i.e. v(0;;(2)) > v(2).

We conclude that 7 =, 7. [ |
PROPOSITION 4.1.4. Let v be a CSG on N and i,j € N two players.

iRy j = v(b(x)) =v(z) forall z e "

Proof.
Let v be a CSG with a set of players N and 7,7 € N two players.

Assume that i ~, j and consider x € I". W.l.o.g. assume that z; < z;. Since ¢ =, j
then v(z) < v(0;;x). Consider y = 6,;(x) then y; = x; < z; = y,;. Since j =, @ it follows
that v(y) < v(6;;(y)), i.e. v(0;;(z)) < v(z), so that v(z) = v(f;;x). The converse is

obvious. [ |

DEFINITION 4.1.10. (see ( )) Let F' be a power index on
CS8G,. The separability relation of F is the preordering denoted =p and defined as
follows: for any v € CSG,, and any i,j € N,

i pw) § = F;(v) > Fj(v).

For instance, =y is the separability relation with respect to the Shapley-Shubik index.
Note that =p is always complete and we have i >p(, j <= F;(v) > Fj;(v).

ExXAMPLE 4.1.3. Consider the games of Example 4.1.2, then we have:
112 35 50 59
V(u)=|(=,=,= Yv)=—,—,— ] .
(w) (3’3’3) and 2 (0) (144’ 144’ 144)

1 R (u) 2 W (u) 3 and 3 0 (v) 2 = (v) 1.

Thus,

4.2 Properties of the influence relation of CSGs

We study some properties of the influence relation (=) of CSGs. Firstly, we show that this
relation generalises the one defined on simple games by ( ). Secondly, we provide
a necessary and sufficient condition for which »= is complete. Furthermore, we show that

the completeness of = is a sufficient condition to guarantee his transitivity.
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4.2.1 Influence relation of CSGs as a generalization

We prove that the influence relation > of CSGs generalises the influence relation 77 of
simple games. To this end, we use the collection {T7, 0 < 7 < 1} of embeddings mapping
(see Proposition 1.3.1, page 28), which associate a simple game with a CSG. We need to
reconsider a few preliminary notations. Consider 7 €]0, 1] and = € I", pose S;(z) = {i €
N, z; > 7}. For each simple game v, we associate the CSG v, defined by v, (z) = v (S;(x)),
for all z € I™.

The following result states that the influence relation of CSGs is a generalization of the

same notion for simple games.

PROPOSITION 4.2.1. Let v be a simple game on N. For any 7 €]0, 1], for any i,j € N,

REVES R

Proof.
Let v be a simple game on N, 7 €]0, 1] and v, the CSG associated with v. Consider

two players 7,7 € N.

Assume that ¢ =, j. To prove that i 7, j, consider T C N\ {4,j} and let us
prove that v(T U {i}) > v(T U {j}). Pose z = (Lrugy, O_(rugy) € I, then 6;(z) =
(170, O—(rugy)s S-(z) = TU {5} and S;(0;;(z)) = T U {i}. Since 0 = z; < z; = 1
and 7 %=, j then v.(0;;(x)) > v-(x). That is v (S-(0;;(x))) > v (S;(2)), i.e. v(T U {i}) >
v(T'U{j}). It follows that i 7, j.

Conversely, suppose that ¢ 22, j and consider x € I™ such that x; < x; (the case

x; = x; is obvious) let us show that v,(0;;(z)) > v, (x). Two cases arise:

Casel If ; < 7 < z; theni ¢ S.(z) and j € S.(z). Pose T' = S (x)\{j} then
T € N\{i, j}; TU{j} = S-(z) and T U {i} = [S-(z) U{i}]\ {j} = 0;5(5-(x)) =
S (0;;(z)). Since i 7, j and T C N\ {i, j}, (T U {i}) > v(T'U{j}). Hence,
v(Sr(0;5(x))) > v(S;(x)), that is v, (6;;(z)) > v-(x).

Case 2 If 7 < uz; < x; (resp. z; < x; < 7) then i,j € S;(x) (resp. 4,5 ¢ S-(z)). So,
0,;(S-(z)) = S:(z). It follows that, v(S;(0;;(x))) = v(S;(2)), i.e. v (0;(x)) = v ().

From the two cases highlighted above we conclude that, for any € I" such that xz; < z;,

v, (0;5(2)) > v (), Le. @ =y, ] [ |

A direct consequence of Proposition 4.2.1 is that the influence relation = of CSGs is not

complete in general, since = is not always complete!.

! As illustrated in Example 4.1.1.
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4.2.2 Transitivity and completeness of >

We prove that the influence relation = of CSGs is neither transitive nor complete in general;
but, it is transitive as soon as it is complete. Furthermore, we provide a necessary and
sufficient condition that guarantees the completeness of >=. To do this, we extend to CSGs
the notion of swap-robustness introduced by ( ) on simple games
and generalized to voting games with abstention by ( ).

We start the study of the properties of = by showing that the symmetric component ~

is an equivalence relation on N.

PROPOSITION 4.2.2. For any CSG v on N, &, 1s an equivalence relation on N.

Proof.
Let v be a CSG on N. The relation =, is naturally reflexive and symmetric. To

prove that /2, is transitive, we assume that |N| =n > 3. Let ¢,j and k be three distinct

players such that ¢ =, j and j ~, k. Consider € I". By Proposition 4.1.4, we have:

v(z) = v(0ix) becausei =, j
v(0;1(0;5)) because j ~, k
v[0:5(0x(0i;))x] becausei ~, j
= v(Oir) because 0,5 0 0,1, 0 0;; = Oy,
Finally, for any = € I", v(z) = v(fi(x)) i.e. i =, k. -

PROPOSITION 4.2.3. The influence relation = is meither transitive mor complete in

general.

Proof.
Consider the CSG c on N = {1,2, 3} defined as follows: for all z € I®,

1 1 1
C (ZL’) = gl’l + 5131\/1’_2 + gl’zﬂxg

Here we use an equivalent definition of = given in Proposition 4.1.3.

We show that 1 =.2. Consider z € I3 such that x; > z,.

1 1 1 1 1 1
c(x1, 22, x3) — (22, 1, T3) :§$1 + §I1\/I2 + §$2\/$3 — 5132 — §I2\/I1 — §$1\/I3

1 1 1 1 1 1

==T1 — -T2 + —T1/ T2 — —T2+/T1 + —T2/ T3 — =T1/ T3
3 3 3 3 3 3
1 1 1

:g (1‘1 — ZL’Q) + 5\/1’1\/1’2 (\/1’1 — \/Ig) + 5\/1‘3 (132 — 1‘1)

= (01— 1) (1 T + 3V (VI — V) 2 0

It follows that 1 >=, 2.

UYI: Ph.D Thesis 110 Hilaire TOUYEM ©UYT 2020




4.2. Properties of the influence relation of CSGs

We show that 2 =, 3. Consider z € I® such that zo > 5.

1 1 1 1 1 1
c(x1,x2,x3) — (21, x3, Ta) =§$1 + §$1\/$2 + §$2\/$3 - 51‘1 - §$1\/I3 - §$3\/$2
1 1 1 1
:§x1\/x2 — 5.1'1\/.1'3 + gmgvmg — gxgy/xz

=01 (VT — V) + 3TV (Vs — /T3)

= (V2 ~ V) (31 + T/F5) > 0

It is follow that 2 »=. 3.

We show that players 1 and 3 are not comparable. Consider z = (%, 1, 0) and

o= (i’()’ %), then 21 > 3 and z§ > . Since,

1 2 1 V10 1 1 1 1 1
0(1—0,1,0)—%<C(0,1,1—0)—w and C<Z70’§)—E<C(§’O’Z>_

it follows that | (1 =, 3) and ] (3 =, 1).

In conclusion 1 =, 2, 2 »=. 3 and players 1 and 3 are not comparable by >>=.. So, =

is neither transitive nor complete.

It follows from the Proposition 4.2.2 that = is not a complete preordering in general.
Nevertheless, we will show that this relation is a preordering whenever it is complete. To
this end, we first characterize the set of CSGs for which = is complete.

The definition of swap robustness of a simple game given in Definition 4.1.8 can be

rewritten using profiles as in the following remark:

REMARK 4.2.1. Let v be a simple game on N. v is swap-robust if for any z,y € {0, 1}"
such that v(z) = v(y) = 1 and any 4,5 € N such that z; > z; and y; > y; 2, we have

v(0ij(x)) = v(x) or v(0i;(y)) = v(y) °.
The above remark leads to an extension of swap robustness concept to CSGs as follows:

DEFINITION 4.2.1. A CSG v on N is swap-robust if for all a, f €]0,1] and all z,y € I™
such that v(z) > a and v(y) > B, it holds that for all i,j € N such that (z; > z; and

y; > y;) implies (v(0;;(x)) > a or v(0;;(y)) > B5).
PROPOSITION 4.2.4. A CSG v is swap-robust if and only if for any z,y € I" and any
1,7 €N

z; > x; and y; > v = v(6;(x)) > v(x) or v(b;;(y)) > v(y). (4.2)

YLe. 1 €1,\1, and j € 1,\1,.
3The definition of simple game using profiles is given in Definition 1.1.3, page 7.
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Proof.
Assume that v is swap-robust. Consider z,y € I" and ¢,7 € N such that z; > z;

and y; < y;. Suppose that v(0;;(z)) < v(z) and let us show that v(6;;(y)) > v(y). If
v(y) = 0, there is noting to prove. Now, assume that v(y) > 0 and pose 5 = v(y) > 0.
Since v(0;;(x)) < v(z) then a = v(x) > 0. Likewise, v is swap-robust, v(z) > «, v(y) > S
and v(0;;(z)) < o = v(x). Then Definition 4.2.1 implies v(0;;(y)) > 8 = v(y).
Conversely, consider «, 8 €]0,1]; z,y € I"™ with v(z) > a, v(y) > f and i,j € N such
that z; > z; and y; > y;. By Equation (4.2), one concludes that v(6;;(x)) > v(z) > « or
v(6;;(y)) > v(y) > B, i.e. v is swap-robust. u

The following example illustrates the definition of swap robustness of CSGs.

EXAMPLE 4.2.1. e The game c in the proof of Proposition 4.2.3 1s not swap-robust.
To see this, take x = (1—10, 1,0) and y = (%1,0, %) We have x1 > x3 and y3 > y; but
c(x) < c(b3(z)) and c(y) < c(b13(y))-
e The CSG v in Example 4.1.2 is swap-robust. Indeed, consider z,y € I*; 4,5 € N
such that z; > z; and y; < y;. We denote by k the unique player of N\{i,j}.
ik

Therefore, v(z) can be rewritten as v(z) = ! z;xy. W.lo.g. suppose that i < j

then j =i +1, for some | =1,2,
7
J
=ajajag (o —a5) >0 since z; > 1

It appears that for any x € I? such that z; > z;, v(6;;(z)) > v(x). So, v is

swap-robust.
Some important classes of CSGs that are robust-swap are given below.

PROPOSITION 4.2.5. Any CSGve L, UW,UT,ULE, is swap-robust.

Proof.
In this proof, for any non negative weight vector w = (w;);en we set,

w(z) = pr - zp, forall zeI".
pEN

We show that any CSG linearly weighted game is swap-robust.

Consider v € L, there exists w = (w;);en such that v(z) = w(z), for all z € I™.
Consider z,y € I" and 4,5 € N such that z; > z; and y; > y;. W.lLo.g., assume
that w; < w; then,

v(0;()) — v(z) = (w; —w;)(x; —x;) >0 since w; < w; and z; > ;.

One concludes that v is swap-robust.
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We show that any CSG weighted game is swap-robust.

Consider v € W,,. Then, there exists w = (w;);eny and a monotonic increasing
function f : [0,1] — [0,1] with f(0) = 0 and f(1) = 1 such that for all z € I",
v(z) = f(w(z)). Consider x,y € I" and 4,j € N such that z; > z; and y; > ;.
W.lo.g., suppose that w; < w;. Following the previous case, w(6;;(z)) > w(x).
Since f is an increasing monotonic function, then v(0;;(z)) = f(w(6;;(x))) > v(x) =

f(w(z)). We conclude that v is swap-robust.

We prove that any CSG threshold game is swap-robust.

Consider v € T, then there exists w = (w;);en and a quota ¢ €]0, 1] such that for
all z € I", v(z) = 1 if w(z) > ¢q and v(z) = 0 otherwise. Consider z,y € I" and
i,7 € N such that z; > x; and y; > y;. W.l.o.g., suppose that w; < w; and let us
prove that v(6;;(z)) > v(z). If v(z) = 0, the result is obvious. Now assume that
v(z) = 1, then by the definition of v, w(z) > ¢. But, we have w(6;;(z)) > w(x) > ¢,

therefore v(6;;(x)) = 1. Hence, v(6;;(x)) > v(z) i.e. v is swap-robust.

We show that any CSG exponential product game is swap-robust.

Consider v € IE,. Then, there exists a vector («;);en of positive real numbers such
that, for all z € I", v(z) = HpeN xp". Consider z,y € I"™ and 4,j € N such that
x; > x; and y; > ;. W.lo.g., suppose that a; < a; then a; = «; + € for some
e > 0.

v(0;j(z)) — v(x)

op (%‘ Q5 QJ)
( || :rp)x]xl T;'T;

pEN\{i,}

_ a € 5 ;0 : . . — v — (v
= ( H xpp) (xiij)xi T >0 since z; > x; and € = a; — ao; > 0.

peN\{i, j}

We conclude that v(6;;(x)) > v(x), so v is swap-robust.

The following proposition states that, the embedding transformation 77, 7 €]0, 1], that
associates a simple game v with the CSG v, preserves the swap-robustness property of

simple games.

PROPOSITION 4.2.6. If v is a swap-robust simple game then for any 7 €]0, 1], v, is a

swap-robust CSG.

Proof.
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Let v be a swap-robust simple game and 7 €]0, 1]. To prove that v, is a swap-robust
CSG, consider x,y € I" and 4,5 € N such that z; > x; and y; > y;, then two cases arise:

o If 7 < ux; <u (resp. z; < x; < 7) theni,j € S (r) (resp. 4,5 ¢ S;(x)). Hence
0,;(S-(z)) = S:(6;(x)) = S-(x). By the definition of v,, v.(0;;(x)) = v.(z).

o If v; <7 <z theni € S;(z) and j ¢ S-(x). So, 0;;(S-(x)) = (S-(z)\{i}) U{j}.

Two cases arise:

—Ifr <y <y (resp. y; < y; < 7) then 0;;(S;(y)) = S;(y). Hence, by the
definition of v,, v-(0;;(y)) = v-(y);

—Ify <7 < y; then j € S;(y) and i ¢ S.(y) therefore, 0;;(S;(y)) =
(S-(w\{s}) U {i}. Assume that v(S,(z)) = 0 or v(S-(y)) = 0. Then
v, (0;5(x)) > v-(x) = 0 or v.(6;5(y)) > v, (y) =0, by the definition of v,.

Now, suppose that v(S-(z)) = 1 and v(S-(y)) = 1. Since v is swap-robust,

then v ((S+(y)\{i}) U{j}) = 1 or v ((S-(y)\{7}) U {i}) = L. It follows that,
vr(0i(x)) = vr () or vr(0:5(y)) = vr(y)-

Finally, one concludes that v.(6;;(x)) > v, (x) or v, (6;;(y)) > v,(y). Consequently, v, is

swap-robust. [ |

( , pp-231) proves that the influence relation 77, for simple game v is complete
if and only if the game v is swap-robust. This result was generalized to voting games with
abstention by ( ). The following theorem provides a similar character-

ization in the context of CSGs.

Theorem 4.2.1.]

Let v be a CSG. The influence relation =, is complete if and only if v is swap-

robust.

Proof.
Let v be a CSG with set of players N. Assume that =, is complete and consider

x,y € I". Let ¢,7 € N be two players such that z; > z; and y; > y;. Since =, is complete

then i =, j or j =,
o If i =, j then v(6;;(y)) > v(y), since y; < y;;
o If j =, i then v(6;;(z)) > v(z) since z; < z;.

It follows from Proposition 4.2.4 that v is swap-robust.

Conversely, suppose that v is swap-robust and consider two players ¢, 7 € N such that

1(i %=y 7), let us prove that j =, i. Consider x € I" such that x; < z;. Since |(i =, j)
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then there exists y € I" such that y; < y; and v(6,;(y)) < v(y). Hence, z,y € I" such
that z; > x;, y; > y; and v(0;;(y)) < v(y). Since v is swap-robust, then Proposition 4.2.4
yields v(0;;(z)) > v(z). Therefore, j =, i i.e. =, is complete. u

COROLLARY 4.2.1. The influence relation > is complete on L, UW, UT, UE,. Fur-
thermore, for any i,j € N

, _ w, >w; fvel, UW,UT,
Fv ) = (4.3)

o, > a; ifvell,
where w = (w;)ien 18 a mon megative weight vector defining v € L, U W, UT, and

a = (a;)ien is a vector of positive real numbers defining an exponential product game.

LEMMA 4.2.1. Let v be a CSG. If =, 1s complete then it is transitive.

Proof.
Let v be a CSG on N (with n > 3). Suppose that =, is complete and consider i, j

and k three players such that ¢ >=, 7 and j =, k. Let us show that i =, k.
Since =, is complete then i >=, k or k =, i. If i =, k then ends the prove. Assume that

k =, 1 and consider = € I"™ such that z; < x,. Three cases arise:

Case1l: z; <x; <y :

v(z) < v(b(x)) because z; < xjandi =, j
< v(8;r(0;52)) because (0;;2); = x; < xp = (0;x)rand j =, k
< 0[0;;(0ir(6;5x))] because (6;, 0 Oji(x)); = x5 < xp, = (i, 0 0;5(x));and i =, j
= v(0i(2)) because 6,5 0 05 0 0;; = Oy,

It follows that v(0;x(x)) > v(z);

Case 2 : z; <z, <uxj:

v(z) < v(b(x)) because z; < x;jandi =, j
< v(O(0iz)) because (0;;x)r =z < x; = (0;;x); and k =, @
< w[0k(0ir(0;52))]  because [0y, 0 0j1];(x) = 23 < x5 = [0, 0 O3]k(x) and j =, k
= v(0i(z)) because 0, 0 0;, 0 0;; = Oy,

Case 3 : z; <z, <y
v(z) < v(l(r =) because z; < ziand j =, k
< v(li(05x)) because (8;,2), = x; < x; = (05x); and k =, i
< 0[0;;(0i(0;62))] because (O © 8;1,()); = x5 < ) = (0 0 O1(x));and @ =, j

Qlk(l’)) because Qij 0] sz @) ij = Qlk
So, v(0(x)) > v(x);

I
e
~

It comes from cases 1-3 that for all x € I"™ such that z; < zy, v(0ix(x)) > v(z). Therefore,

we conclude that ¢ =, k£ and then 3=, is transitive. |
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COROLLARY 4.2.2. Let v be a CSG. If v 1s swap-robust, then =, is a complete pre-

ordering.

4.3 Influence relation and Shapley-Shubik power index

The multiplicity of power theories raises the problem of their comparison. In reaction to
that, researchers have attempted to identify classes of games for which two given power
indices induce the same ordinal structure in the set of players. For example, in the context
of simple games ( ) generalize earlier result of ( )
by showing that the influence relations and the preorderings induced both by the Shapley-
Shubik index and the Banzhaf-Coleman index (see, ( )) coincide if and only if
the game is swap-robust. On the class of voting games with abstention and that of (j, k)
simple games, similar results were obtained respectively by ( ) and by
(2014).

In this section, we conduct an ordinal comparison of the influence relation of CSGs with
the preordering (separability relation) induced by the Shapley-Shubik index on the set of
players. In other words, if player 7 is more influential than player j in a given CSG v, can we
say that the Shapley-Shubik index (¥;(v)) of player i in v is greater than the one of player

77 The following example provides a response.

EXAMPLE 4.3.1. Consider a 2-players CSG v such that
1 3
v(1,0) = 2 ;0(0,1) = 1’ v(wg, 21) = v(w1, 22) for any (z1,22) € I°\{(0,1),(1,0)}

and for z1 < x9,
lf ($1,[L’Q> 6]0, 1[2

if x9o=1 and x;#0
if ;=0 and x9#1

v(xy,x0) =

O N

e since v(012(z)) > v(x) for any z € I? such that x; < zy and v(0,1) = 3 > v(1,0) =
%, then 2 >, 1;

e however 0({1}) =0({2}) = 1%, thus ¥;(v) = ¥y(v) = 3.

It follows that the preorderings induced by the Shapley-Shubik index does not reflect in
general the influence relation of CSGs. In order to compare the influence relation and the
separability relation of the Shapley-Shubik index, further notations are needed.

Given a CSG v on N, let us consider for each ¢ € N and for each coalition S such that

1 € S the following notations:

N,={TCN,ieT} and Civ,S)=75(S)—o(S\{i}).

4% is the average game introduced in Definition 3.3.1, page 98.
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Ci(v, S) can be seen as the average marginal contribution of player i in coalition S. Using
the previous notations, we obtain a useful expression of the Shapley-Shubik index W;(v) of
player 7 in the game v as follows:

)= 3 BTl gy (4.4)

n!
SeEN;

4.3.1 The Shapley-Shubik index weakly reflected the influence re-

lation

We compare the influence relation = of CSGs with the separability relation =y of the
Shapley-Shubik index. Before the main result, we prove below that two equally influential

players have the same power distribution with respect to the Shapley-Shubik index

PROPOSITION 4.3.1. Let v be a« CSG on N and 7,5 € N two players then

iRy = U;(v) = V,(v).

Proof.
Consider v € CS8G,, and i, € N two players such ¢ =, j. Then for all z €

I",v(0;;(z)) = v(x) i.e. i and j are symmetric players in v. Since ¥ is symmetric, one
concludes that ¥;(v) = ¥;(v). u

This result implies that the influence relation coincides on complete anonymous CSGs

with the separability relation of the Shapley-Shubik index.

LEMMA 4.3.1. Let v be a CSG on N and 7,7 € N two players. Then,

Z?UJ:CZ(U,QU(S))ZC](U,S), j‘OT CLLLSG'/\/’J

Proof.
Consider v € CS8G,, and ¢,j € N two players such that ¢ =, j. Let us show that for

any S € Nj, C;(v,0;;(S)) > C;(v, S). We first note that for any a,z € I" and any 7' C N,
Qij(aT, ZE_T) = (agi].(T), (Gijx),gij(T)). Consider S € ./\/-j, then:

o If i € S then 6,;(S) = S and we have:

Ci(v,0;;(5)) = Ci(v,9)

\/ITL
> ).
I7L
—|—/ [v (Hij(Og\{i},x,(S\{i}))) - (Os,x_s)] dr since i 3=, j.
I

n

= In [v(1lg,2_5) — (0g,2_g)] dz

- /I v sy Guo)-svon) = 0 05\ (Big7) - s\un) | de
= 0(S)—0(S\{sj}) with y=6,;(z) in the second integral.
= Cj((U7 S)

[v (s, 2-5) = v (Ls\gp 2-(s\(in) 0 (01433, 75 \iip) — v (05, 2-5)] da
[

v(1s,_g) — v (65 (Ls\gay. —(s\qap)) | dav
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4.3. Influence relation and Shapley-Shubik power index

o If 1 ¢ S then 6,;(S) =[S\ {j}] U {i}. Pose T'= 6;;(S) then T\{:} = S\{j}. Thus,

Ci(v,0;;(S)) = Ci(v,T)
/ pArzar) —v (g 2nen) + 0 (0na, 2@ \pp) = v Or, 1)) do
= /j [v (A, 27) = v (Ls\Gy 7—s\p) 0 (0s\43: 75 \gp) — v (07, 2-7)] dz
/1 [v (017, 2-7)) — v (Ls\(gy 2—s\iip) | do
+ /I v 0y wsvin) — v (050, 27))] do - since i =, .
= | [v(s,(0y2)-5) = (0s, (0;2)-s)] dz
- /1 o sy —svn) = v (0s\Gy 75\ de
S)

= v(S) —0v(S\{j}) with y =60;;(z) in the first integral.
= Cj (’U, S)

It follows that C;(v,0;;(S)) > C;(v, S) for all S € N. u
A direct consequence of Lemma 4.3.1 is given below.
PROPOSITION 4.3.2. Let v be a CSG on N; ¢ and j two distinct players. Then,

Proof.
Let v be a CSG on N, 7 and j two players such that i =, j. Then,

U;(v) = Z (s = D - S)!Ci(v, S) by Equation (4.4)

!
SeN; "
— Dl(n—s)!
= Z (s—1) ('n s) Ci(v,0;;(S)) since 6 : N; — N; is one-to-one and onto
) n!
s—1D!(n—s)! .
> Z ( )n<' ) C;(v,S) by Lemma 4.3.1
SeN;
=;(v)
We conclude that W;(v) > ¥;(v), i.e. i =y J. |

The results of Propositions 4.3.1 and 4.3.2 are quite encouraging for the comparison of
the influence relations = and »=y. Nevertheless, in Example 4.3.1, we have shown that we
can have two players, one been more influential than the other but the two have the same
distribution of power according to Shapley-Shubik index, this can be qualified as unfair in
power measurement theory. It is therefore necessary to identify necessary and/or sufficient
conditions for which the influence relation coincide with the separability relation of the

Shapley-Shubik index. We carry out this analysis in the next section.
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4.3.2 A sufficient condition for the ordinal equivalence of = and >y

We provide a sufficient condition for which the influence relations »= and =y coincide. Before
this, we prove that in the class of linearly weighted games and exponential product games,

these two power measurement always coincide.

PROPOSITION 4.3.3. For every CSG v € L, UE,, a influence relation =, is the sub-

preordering of =y.

Proof.
Consider v € L, U E, and let us show that ’=, is a sub-preordering of =y ). Let

i,j € N be two players. If i =, j, then ¢ ~y(,) j, by Proposition 4.3.1.
Now suppose that ¢ =, j and let us show that i >y, J.
If v € L, then there exists w = (w;);ey @ non negative weight vector such that for

all x € I, v(z) = prxp. By Corollary 1.2.4, page 27 we have ¥,(v) = w,, for any

peEN
player p. Since i >, j, Corollary 4.2.1 implies w; > wj, that is ¢ =g J.

Now suppose that v € E,, then there exists & = (a;);en a positive real vector such

that for all z € I, v(x) = H z,?. So, Definition 3.3.1, page 98 give:
peEN

uph = 11

leN\{p}

for any player p (4.5)

1
(v +1)

Since ¢ >, j then, a; > a; by Corollary 4.2.1. It follows from Equation (4.5) that
v({i}) >v({j}). That is

Ci(v,05({5})) > C;(v, {7}) - (4.6)
Additionally by Lemma 4.3.1,

Ci(v,0;(S)) > C;(v,S) for any S € Nj. (4.7)

Thus, Equations (4.4), (4.6) and (4.7) imply V;(v) > W;(v), i.e. @ =ww) J- u

PROPOSITION 4.3.4. The preorderings = and >y coincide on L, UIE,.

Proof.
| Combine Corollary 4.2.1, Lemma 4.3.1 and Proposition 4.3.3. [ |

DEFINITION 4.3.1. Let v be a CSG on N.

e v is said to be topologically continuous (TC) on I™ if for all zp € I"™ and all € > 0,

there exists a > 0 such that:

for all z € I", [lz — 201 < o = [v(z) — v(w0)| < €.
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e v satisfies condition (O) if for all players ¢,j € N and all profiles = € I"™ such that

T; < Tj,
v(0;;(z)) > v(r) =y e I", v(1,y_;) —v(0,y_;) > v(1,y—_;) —v(0,y_,) (4.8)

e A given player i is more powerful than another player j in a profile x if z; < x;

and v(6;;(x)) > v(z).

In words, the topologically continuity of a CSG on [™ simply means that any small
changes in the actions of players (possible minor errors) should not entail a big change in
the final decision (output error); see ( : , Definition 2.7). The set of
topologically continuous games on I™ is denoted 7C,,.

Condition (©) inspired from ( , , Definition 4) identifies CSGs such
that: whenever a player is more powerful in a profile than another player, there exists a
voting situation in which this player still has a greater impact than the the other player as
the level of approval of each of the two players goes from 0 to 1.

Hereafter for a given CSG v on N and i,j € N, we define the mapping g;; on I" as
follows:

forall z € I",  gj;(x) = Av({i}, x_;) — Av({j},2_;)°. (4.9)

PROPOSITION 4.3.5. Consider a CSG v € TC,, that satisfies condition (©) and i,7 € N
two players. If ¢ =, j then:

L for all x € I, gi:(x) > 0;

2. there exists D C I", with vol(D) > 0 and m > 0 such that for all z € D, gi;(x) > m.

Proof.

Consider v € TC,, satisfying (0) and i, j € N two players such that ¢ >, j.

1. Consider z € I", then (1,z_;); =1> (1,2_;); = z;, (0,2_;); =0 < (L,z_;); =z
and 6;;(o, z_;) = (a,2_;), (@ = 0,1). Since i >, j it follows that v(1,z_;)
v(1,z_;) and v(0,z_;) < v(0,z_;). Therefore, Av({i},z_;) = v(1,2_;)—v(0,z_;)
v(lz_;) —v(0,2_;5) = Av({j},z—;), ie gi(x) > 0.

<.

>
>

2. Since i =, j, v(0;;(2°)) > v(2°) for some 2° € I" such that 2 < z3. Consequently,

following condition (©) and g7;, there exists y € I" such that gi;(y) > 0. Since v is

g;}j (y)
2

(TC) on I"™ then g;; is a continuous mapping on I". So, for € = , there exists

a > 0 such that for all x € I,

gijQ(y) — gijQ(y) < gi(x) <3 9:5()

SAv({k},x_1) = v(1,2_)—v(0,_}) is the potential of the player k in the game v given a profile z € I"™,

|z =yl < a=|gi;(7) —gi;(y)| < . (4.10)

see Page 75.
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Pose D = {z € I", ||z — y|l1 < a} and m = ¢, vol(D) > 0 and by relation (4.10)

one obtains gj;(r) > m for all x € D,

We show below that, the influence relation is strictly reflected by the Shapley-Shubik
index on the subclass 7C,, of CSGs satisfying condition (©).

PROPOSITION 4.3.6. Given v € TC, satisfying condition (0©) and i,j € N two players.
Then,

i =y j = Ci(v,{i}) > C;j(v,{j})-

Proof.
Consider v € TC, that satisfies condition (6) and i,7 € N two players such that

1 >y J. Then,
Ci(v,{i}) = Cj(v, {4}) :/ 9;;(x)dxr by Definition 3.3.1, page 98.
[n
:/ 9i;(x) dx +/ g;;(z) dz by Proposition 4.3.5 (item 2)
z€D z¢D

2/ g;;(z)dx by Proposition 4.3.5 (item 1)
D

>m -vol(D) >0 by Proposition 4.3.5 (item 2)

We conclude that C;(v, {i}) — C;(v,{j}) > 0, i.e. Ci(v,{i}) > C;(v,{j}). u

Theorem 4.3.1.}

Let v be a swap-robust CSG. If v € TC,, and satisfies condition (©) then =, and

=y coincide.

Proof.
Let v be a swap-robust CSG that is (TC) that satisfies condition (0). Consider

1,7 € N two players.
o If i =, j, Proposition 4.3.1 implies ¥;(v) = ¥;(v), i.e. i =g (v)7.

o If i >, j, then C;(v,{i}) > C;(v,{j}) by Proposition 4.3.6. Moreover, by Lemma
4.3.1, we have C;(v,6;;(S)) > Cj(v,S) for any S € N;.

Therefore, it appears from Equation (4.4) that W;(v) > W;(v), i.e. i =gy J.
We conclude that =, is a sub-preordering of »=¢. Furthermore, since v is swap-robust

then =, is complete (see Theorem 4.2.1). Thus, =, and =y coincide by Proposition
4.1.1. [ |
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Decision-making that involves several participants poses a number of problems, including
the measurement of decision-making power. In other words, how to formalize the capacity
of an individual to affect the outcome of a collective decision in which he or she is an actor?
This question has opened up a fairly wide field of research in Social Choice Theory. In
this thesis, we have addressed some open issues about the power measures for (j, k) simple
games as well as for CSGs. We have closely examined the possibility of axiomatizing the
Shapley-Shubik index of these classes of games, (see ( ) and ( )), and
also provided a detailed study of the influence relation of CSGs.

First of all, we have presented the models of simple games, (j,k) simple games and
CSGs. It appears that the class of simple games and that of (j, k) simple games can be
identified with subclasses of CSGs. This result provides a coherent story condensing the
different variants for committee decisions in one common framework. Besides, we have
shown that the Shapley-Shubik index for simple games, as well as for (j, k) simple games,
is a discretization of that for CSGs, see Theorems 1.3.1-1.3.3. These results give some
relevance to the Shapley-Shubik index generalized to CSGs by ( ).

In order to provide an axiomatization of the Shapley-Shubik index for (j, k) simple games,
we introduced the notion of average game of a (j, k) simple game and the axiom of average
convexity. The average game allows us to give the Shapley-Shubik index of a (j, k) simple
game an explicit formula in terms of the characteristic function. More precisely, the Shapley-
Shubik index of a (j, k) simple game as showing in Theorem 2.1.1, is simply the Shapley
value of its average game. The average convexity axiom is the requirement that if two convex
combinations of average games coincide, then the corresponding convex combinations of the
power distributions of the underlying games also coincide. This property can be viewed
as some form of linearity condition. The average convexity axiom combined with those of
efficiency, symmetry and null player allowed us to obtain the first characterization of the
Shapley-Shubik index for (7, k) simple games. Similarly, by extending the notion of average
game to CSGs, we provided the first characterization of the Shapley-Shubik index on this
class of games. In each case, we established the independence of the axioms.

We have also obtained a second characterization of the Shapley-Shubik index for CSGs

by introducing two new axioms. For the newly introduced axiom (HIS), we gave some
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justification and remarked its similarity to the axiom (SymGL) for simple games. However,
the implication of (HIS) are much more forereaching than the implications of (SymGL),
which is a more direct axiom tailored for simple games. The idea behind the discreetness
axiom is much more mathematical than intuitive. This property allows to extend a power
index that is defined on the subclass of discrete CSGs to the whole set of all CSGs. We
have shown that, the axiom of symmetry together with efficiency, null player property,
homogeneous increments sharing and discreteness are sufficient to uniquely identify the
Shapley-Shubik index on the set of 2-players CSGs. In the context of CSGs with at least
three players, we proved that this result of characterization still holds even if the axiom
of symmetry is dropped. The independence of those axioms of characterization has been
established.

Concerning the influence relation of CSGs, the generalized version of the concept of
swap-robust game due to ( ) allowed us to characterize the games for
which this relation is complete. Furthermore, we have shown that it is transitive whenever
it is complete. Our result therefore generalizes those of ( ) and

( ) known respectively on simple games and on (3,2) simple games. To
conduct an ordinal comparison of the influence relation and the Shapley-Shubik index, we
introduced a sufficient condition (©) for which these two relations coincide. Nevertheless,
we failed to show whether or not the condition is necessary. This remains an open issue.

The results obtained in this thesis suggest possible future research related to the topics
of power measurements. The Shapley-Shubik index (V) for CSGs as defined by ( )
is an n-dimensional integral. However, Theorem 1.2.3, page 25 tells us that only the values
of the game on lower dimensional faces of [0, 1]" are essential in the definition of this index.
Stated more directly, the values of a CSG v in the interior of its domain are more or less
irrelevant for W(v). This property might be analyzed and criticized from a more general
and non-technical point of view. Our rigorous technical analysis uncovers this fact for the
first time, while it is also valid for the Shapley-Shubik index for (j, k) simple games. For
example, in an uniform 3-players (4, 4) simple game v, the value of v(1,2, 1) can be changed
to 0, 1, 2, or 3 without any direct effect for the power distribution of the players. Of course
monotonicity implies some possible indirect changes of other function values, which then
can have an effect for the power distribution. For simple games there are no “internal” vote
profiles. In any case this “boundary dependence” should be studied and interpreted in more
detail. Only the Shapley-Shubik and Banzhaf-Coleman indices have been generalized to
CSGs, the latter assigning a zero power to all players in some games (this finding is omitted
in this thesis with focus on the Shapley-Subik index). The generalization of other indices
as well as the correction of this flaw in the generalized Banzhaf-Coleman index might be
a promising direction for further research. In the case of CSGs, it appears from Remark
3.3.1 that average convexity is equivalent to average equivalence and convexity. Whether

this equivalence still holds for (j, k) simple games remains an open issue.
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* x  Appendices *x

A Determination of C, for Example 1.1.2, page 9

Recall that, given a uniform (7, k) simple game v its associated TU-game C, is defined as

follows: for any S € 2%,

Cu(S) :m %U((J —1)s,z_5) —v(0g,2_5)
1 .
—m; o((j— 1)s,2s) — v(0s,7_5) .

For the game v of Example 1.1.2, page 9 we compute C,(S), for any S C {1,2,3}. It this
important to recall that, for each x € {0, 1,2}3,

;

3 if 2 € Ny(x), |[Na(x)| > 2 and Ny(z) =0

2 if No(z) = 0 and (No(x) = {2} or Ni(z) = {2})

v(z) = 1 if (|No(z)] =1, [Ny(x)| =2 and 2 € Ny(
(|No(z)| = 2, Ni(x) =0 and 1 € Ny(x)

0 otherwise

x)) or

Computation of C,({1})

(‘772:933> (070) (071) (072) (170) (171) (172) (270) (271) (272> CU({1}>

v(2, xg, x3) — v(0, x2, 3) 0 0 1 0 1 2 1 3 3 11/27

Computation of C,({2})

(w1, 73) (0,0) ] (0,1) 1 (0,2) | (1,0) | (1,1) | (1,2) | (2,0) | (2,1) | (2,2) | Cu({2})

v(xy,2,23) — v(21, 0, 23) 0 0 0 0 2 3 1 3 2 11/27

Computation of C,({3})

(1'171'2) (070) (07 1) (072) (170) (171) (172) (20) (271) (272) CL({S})

v(xy, x9,2) — v(x1, 22, 0) 0 0 0 0 1 3 1 2 2 9/27
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B. ( ) error: counting of h-pivotal players

Computation of C,({1, 2})
3 01]2]C({1,2})
v(2,2,23) —v(0,0,23) | 1 [ 3|3 7/9
Computation of C,({1, 3})
To 0]1]2]|C,({L, 3})
v(2,29,2) —v(0,22,0) | 1 [ 2|3 6/9
Computation of C,({2, 3})
T 0]1]2]|C,({2, 3})
v(x1,2,2) —v(21,0,0) | 0|3 |3 6/9

B ( ) error: counting of h-pivotal players

For Example 1.1.2 in page 9 we proceed to count the h-pivots for each step level h = 1,2, 3,
and for each player th := 1, pra := 2 and ex := 3, using Remark 1.1.1, page 13. The results
according to the entry orders of players are presented in Tables 2-7. We summarize in the

Table 1 the number of times, for each player to be a h-pivot at each approval level.

1-pivot | 2-pivot | 3-pivot

Player 1 84 51 42
Player 2 39 60 78
Player 3 39 51 42

Total 162 162 162

Table 1: Number of times of each player to be a h-pivot, h = 1,2, 3.

The Shapley-Shubik index of each player is computed as follows:

By L. B L 5L 1 42 5
3 162 3 162 3 162 162’
@2(U):1-£+1 @_Flﬁ:ig
3 162 3 162 3 162 162’
@3(1)):1.24_1 £+14_2:£
3 162 3 162 3 162 162
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) error: counting

of h-pivotal players

re b | player(i) (@, 20) | 0(ea, 0. | 0(ae.,, 0,.) | 1-pivot | 2-pivot | 3-pivot zeJ* | player(i) | v(wn.,, 2, . 0..) I-pivot | 2-pivot | 3-pivot
1 3 0 0 v v v 1 0 0 v v v
(0,0,0) 2 0 0 0 0 (0,0,0) 0 0 0 0
3 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,0,1) 2 0 0 0 0 (0,0,1) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,0,2) 2 0 0 0 0 (0,0.2) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,1,0) 2 0 0 0 0 (0,1,0) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,1,1) 2 0 0 0 0 (0,1,1) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,1,2) 2 0 0 0 0 (0,1,2) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,0) 2 0 0 0 0 (0,2.0) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,1) 2 0 0 0 0 (0,2.1) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,2) 2 0 0 0 0 (0,2.2) 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
1 3 3 0 0 1 3 3 0 0
(1,0,0) 2 0 3 0 0 v v v (1,0.0) 2 0 0 0 0
3 0 0 0 0 3 0 3 0 0 v v v
1 3 3 0 0 1 3 3 0 0
(1,0,1) 2 0 3 0 0 v v v (1,0.1) 2 0 2 0 0 v v
3 0 0 0 0 3 2 3 0 0 v
1 3 3 0 0 1 3 3 0 0
(1,0,2) 2 0 3 0 0 v v v (1,0,2) 2 0 3 0 0 v v v
3 0 0 0 0 3 3 3 0 0
1 3 3 0 0 1 3 3 0 0
(1,1,0) 2 1 3 0 0 v v (1,1,0) 2 0 0 0 0
3 0 1 0 0 v 3 0 3 0 0 v v v
1 3 3 0 0 1 3 3 0 0
(1,1,1) 2 1 3 0 0 v v (1.1,1) 2 0 2 0 0 v v
3 0 1 0 0 v 3 2 3 0 0 v
1 3 3 0 0 1 3 3 0 0
(1,1,2) 2 1 3 0 0 v v (1,1,2) 2 1 3 0 1 v v v
3 1 1 0 1 v 3 3 3 0 0
1 3 3 0 0 1 3 3 0 0
(1,2,0) 2 3 3 0 0 (1,2.0) 2 0 0 0 0
3 0 3 0 0 v v v 3 0 3 0 0 v v v
1 3 3 0 0 1 3 3 0 0
(1,2,1) 2 3 3 0 0 (1,2.1) 2 2 2 0 2 v v
3 2 3 0 2 v v v 3 2 3 0 0 v
1 3 3 0 0 1 3 3 0 0
(1,2,2) 2 3 3 0 0 (1,2.2) 2 3 3 0 3 v v v
3 3 3 0 3 v v v 3 3 3 0 0
1 3 3 0 0 1 3 3 0 0
(2,0,0) 2 1 3 0 0 v v (2,0,0) 2 0 1 0 0 v
3 0 1 0 0 v 3 1 3 0 0 v v
1 3 3 0 0 1 3 3 0 0
(2,0,1) 2 1 3 0 0 v v (2,0,1) 2 0 3 0 0 v v v
3 0 1 0 0 v 3 3 3 0 0
1 3 3 0 0 1 3 3 0 0
(2,0,2) 2 1 3 0 0 v v (2,0.2) 2 1 3 1 1 v v
3 1 1 0 1 v 3 3 3 0 1 v
1 3 3 0 0 1 3 3 0 0
(2,1,0) 2 2 3 0 0 v (2,1.0) 2 0 1 0 0 v
3 0 2 0 0 v v 3 1 3 0 0 v v
1 3 3 0 0 1 3 3 0 0
(2,1,1) 2 2 3 0 0 v (2.1.1) 2 1 3 0 1 v v v
3 1 2 0 1 v v 3 3 3 0 0
1 3 3 0 0 1 3 3 0 0
(2,1,2) 2 2 3 0 0 v (2,1.2) 2 2 3 1 2 v v
3 2 2 0 2 v v 3 3 3 0 1 v
1 3 3 0 0 1 3 3 0 0
(2,2,0) 2 3 3 0 1 v (2,2.0) 2 1 1 0 1 v
3 1 3 1 1 v v 3 1 3 0 0 v v
1 3 3 0 0 1 3 3 0 0
(2,2,1) 2 3 3 0 1 v (2,2.1) 2 3 3 0 3 v v v
3 3 3 1 3 v v 3 3 3 0 0
1 3 3 0 0 1 3 3 0 0
(2,2,2) 2 3 3 0 1 v (2,2.2) 2 3 3 1 3 v v
3 3 3 1 3 v v 3 3 3 0 1 v
1 9 9 9 1 9 9 9
Total 2 6 9 12 Total 2 12 12 9
3 12 9 6 3 6 6 9

Table 2: Pivotal players in each level for m = 123

Table 3:  Pivotal players in each level for m = 132
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) error: counting

of h-pivotal players

v e J® | player(i) V(e 22,) | Ve, 05) | vlaa,. 05.) | L-pivot | 2-pivot | 3-pivot v e J* | player(i) | v(aes, 20 | vas, 200) | 0(@a, 00) | 0(2as,, 0,.) | 1opivot | 2-pivot | 3-pivot
1 1 0 0 v 1 0 0 0 0
(0,0,0) 2 1 3 0 0 v v (0,0,0) 2 1 3 0 0 v v
3 0 0 0 0 3 0 1 0 0 v
1 0 1 0 0 v 1 0 0 0 0
(0,0,1) 2 1 3 0 0 v v (0,0,1) 2 1 3 0 0 v v
3 0 0 0 0 3 0 1 0 0 v
1 0 1 0 0 v 1 0 1 0 0 v
(0,0,2) 2 1 3 0 0 v v (0,0,2) 2 1 3 0 0 v v
3 0 0 0 0 3 1 1 0 0
1 0 2 0 0 v v 1 0 0 0 0
(0,1,0) 2 2 3 0 0 v (0,1,0) 2 2 3 0 0 v
3 0 0 0 0 3 0 2 0 0 v v
1 0 2 0 0 v v 1 0 1 0 0 v
(0,1,1) 2 2 3 0 0 v (0,1,1) 2 2 3 0 0 v
3 0 0 0 0 3 1 2 0 0 v
1 0 2 0 0 v v 1 0 2 0 0 v v
(0,1,2) 2 2 3 0 0 v (0,1,2) 2 2 3 0 0 v
3 0 0 0 0 3 2 2 0 0
1 0 3 0 0 v v v 1 0 1 0 0 v
(0,2,0) 2 3 3 0 0 (0,2,0) 2 3 3 0 0
3 0 0 0 0 3 1 3 0 0 v v
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,1) 2 3 3 0 0 (0,2,1) 2 3 3 0 0
3 0 0 0 0 3 3 3 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,2) 2 3 3 0 0 (0,2,2) 2 3 3 0 0
3 0 0 0 0 3 3 3 0 0
1 0 1 0 0 v 1 0 0 0 0
(1,0,0) 2 1 3 0 0 v v (1,0,0) 2 1 3 0 0 v v
3 0 0 0 0 3 0 1 0 0 v
1 0 1 0 0 v 1 0 0 0 0
(1,0,1) 2 1 3 0 0 v v (1,0,1) 2 1 3 0 0 v v
3 0 0 0 0 3 0 1 0 0 v
1 0 1 0 0 v 1 0 1 0 0 v
(1,0,2) 2 1 3 0 0 v v (1,0,2) 2 1 3 0 0 v v
3 0 0 0 0 3 1 1 0 0
1 1 2 0 0 v 1 0 0 0 0
(1,1,0) 2 2 3 0 0 v (1,1,0) 2 2 3 0 0 v
3 0 1 0 0 v 3 0 2 0 0 v v
1 1 2 0 0 v 1 0 1 0 0 v
(1,1,1) 2 2 3 0 0 v (1,1,1) 2 2 3 0 0 v
3 0 1 0 0 v 3 1 2 0 0 v
1 1 2 0 0 v 1 1 2 0 1 v v
(1,1,2) 2 2 3 0 0 v (1,1,2) 2 2 3 0 0 v
3 1 1 0 1 v 3 2 2 0 0
1 3 3 0 0 1 0 1 0 0 v
(1,2,0) 2 3 3 0 0 (1,2,0) 2 3 3 0 0
3 0 3 0 0 v v v 3 1 3 0 0 v v
1 3 3 0 0 1 2 3 0 2 v v v
(1,2,1) 2 3 3 0 0 (1,2,1) 2 3 3 0 0
3 2 3 0 2 v v v 3 3 3 0 0
1 3 3 0 0 1 3 3 0 3 v v v
(1,2,2) 2 3 3 0 0 (1,2,2) 2 3 3 0 0
3 3 3 0 3 v v v 3 3 3 0 0
1 1 1 0 0 1 0 0 0 0
(2,0,0) 2 1 3 0 0 v v (2,0,0) 2 1 3 0 0 v v
3 0 1 0 0 v 3 1 0 0 v
1 1 1 0 0 1 0 0 0 0
(2,0,1) 2 1 3 0 0 v v (2,0,1) 2 1 3 0 0 v v
3 0 1 0 0 v 3 0 1 0 0 v
1 1 1 0 0 1 1 1 0 1 v
(2,0,2) 2 1 3 0 0 v v (2,0,2) 2 1 3 0 0 v v
3 1 1 0 1 v 3 1 1 0 0
1 2 2 0 0 1 0 0 0 0
(2,1,0) 2 2 3 0 0 v (2,1,0) 2 2 3 0 0 v
3 0 2 0 0 v v 3 0 2 0 0 v v
1 2 2 0 0 1 1 1 0 1 v
(2,1,1) 2 2 3 0 0 v (2,1,1) 2 2 3 0 0 v
3 1 2 0 1 v v 3 1 2 0 0 v
1 2 2 0 0 1 2 2 0 2 v v
(2,1,2) 2 2 3 0 0 v (2,1,2) 2 2 3 0 0 v
3 2 2 0 2 v v 3 2 2 0 0
1 3 3 0 1 v 1 1 1 0 1 v
(2,2,0) 2 3 3 0 0 (2,2,0) 2 3 3 0 0
3 1 3 1 1 v v 3 1 3 0 0 v v
1 3 3 0 1 v 1 3 3 0 3 v v v
(2,2,1) 2 3 3 0 0 (2,2,1) 2 3 3 0 0
3 3 3 3 v v 3 3 3 0 0
1 3 3 0 1 v 1 3 3 0 3 v v v
(2,2,2) 2 3 3 0 0 (2,2,2) 2 3 3 0 0
3 3 3 1 3 v v 3 3 3 0 0
1 15 9 3 1 18 9 6
Total 2 0 9 18 Total 2 0 9 18
3 12 9 6 3 9 9 3

Table 4: Pivotal players in each level for m = 213

Table 5:

Pivotal players in each level for m = 231
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) error: counting

of h-pivotal players

re b | player(i) (@, 20) | 0(ea, 0. | 0(ae.,, 0,.) | 1-pivot | 2-pivot | 3-pivot v e J* | player(i) | v(aes, 20 | vas, 200) | 0(@a, 00) | 0(2as,, 0,.) | 1opivot | 2-pivot | 3-pivot
1 1 0 0 v 1 0 0 0 0
(0,0,0) 2 0 0 0 0 (0,0,0) 2 0 1 0 0 v
3 1 3 0 0 v v 3 1 3 0 0 v v
1 0 3 0 0 v v v 1 0 0 0 0
(0,0,1) 2 0 0 0 0 (0,0,1) 2 0 3 0 0 v v v
3 3 3 0 0 3 3 3 0 0
1 0 3 0 0 v v v 1 0 1 0 0 v
(0,0,2) 2 0 0 0 0 (0,0,2) 2 1 3 0 0 v v
3 3 3 0 0 3 3 3 0 0
1 0 1 0 0 v 1 0 0 0 0
(0,1,0) 2 0 0 0 0 (0,1,0) 2 0 1 0 0 v
3 1 3 0 0 v v 3 1 3 0 0 v v
1 0 3 0 0 v v v 1 0 1 0 0 v
(0,1,1) 2 0 0 0 0 (0,1,1) 2 1 3 0 0 v v
3 3 3 0 0 3 3 3 0 0
1 0 3 0 0 v v v 1 0 2 0 0 v v
(0,1,2) 2 0 0 0 0 (0,1,2) 2 2 3 0 0 v
3 3 3 0 0 3 3 3 0 0
1 0 1 0 0 v 1 0 1 0 0 v
(0,2,0) 2 0 0 0 0 (0,2,0) 2 1 1 0 0
3 1 3 0 0 v v 3 1 3 0 0 v v
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,1) 2 0 0 0 0 (0,2,1) 2 3 3 0 0
3 3 3 0 0 3 3 3 0 0
1 0 3 0 0 v v v 1 0 3 0 0 v v v
(0,2,2) 2 0 0 0 0 (0,2,2) 2 3 3 0 0
3 3 3 0 0 3 3 3 0 0
1 0 1 0 0 v 1 0 0 0 0
(1,0,0) 2 0 0 0 0 (1,0,0) 2 0 1 0 0 v
3 1 3 0 0 v v 3 1 3 0 0 v v
1 2 3 0 0 v 1 0 0 0 0
(1,0,1) 2 0 2 0 0 v v (1,0,1) 2 0 3 0 0 v v v
3 3 3 0 0 3 3 3 0 0
1 3 3 0 0 1 0 1 0 0 v
(1,0,2) 2 0 3 0 0 v v v (1,0,2) 2 1 3 0 0 v v
3 3 3 0 0 3 3 3 0 0
1 0 1 0 0 v 1 0 0 0 0
(1,1,0) 2 0 0 0 0 (1,1,0) 2 0 1 0 0 v
3 1 3 0 0 v v 3 1 3 0 0 v v
1 2 3 0 0 v 1 0 1 0 0 v
(1,1,1) 2 0 2 0 0 v v (1,1,1) 2 1 3 0 0 v v
3 3 3 0 0 3 3 3 0 0
1 3 3 0 0 1 1 2 0 1 v v
(1,1,2) 2 1 3 0 1 v v v (1,1,2) 2 2 3 0 0 v
3 3 3 0 0 3 3 3 0 0
1 0 1 0 0 v 1 0 1 0 0 v
(1,2,0) 2 0 0 0 0 (1,2,0) 2 1 1 0 0
3 3 0 0 v v 3 1 3 0 0 v v
1 3 0 0 v 1 2 3 0 2 v v v
(1,2,1) 2 2 0 2 v v (1,2,1) 2 3 3 0 0
3 3 0 0 3 3 3 0 0
1 3 3 0 0 1 0 3 0 0 v v v
(1,2,2) 2 3 3 0 3 v v v (1,2,2) 2 3 3 0 0
3 3 3 0 0 3 3 3 0 0
1 1 1 0 0 1 0 0 0 0
(2,0,0) 2 0 1 0 0 v (2,0,0) 2 0 1 0 0 v
3 1 3 0 0 v v 3 1 3 0 0 v v
1 3 3 0 0 1 0 0 0 0
(2,0,1) 2 0 3 0 0 v v v (2,0,1) 2 0 3 0 0 v v v
3 3 3 0 0 3 3 3 0 0
1 3 3 0 1 v 1 1 1 0 1 v
(2,0,2) 2 1 3 1 1 v v (2,0,2) 2 1 3 0 0 v v
3 3 3 0 0 3 3 3 0 0
1 1 1 0 0 1 0 0 0 0
(2,1,0) 2 0 1 0 0 v (2,1,0) 2 0 1 0 0 v
3 1 3 0 0 v v 3 1 3 0 0 v v
1 3 3 0 0 1 1 1 0 1 v
(2,1,1) 2 1 3 0 1 v v v (2,1,1) 2 1 3 0 0 v v
3 3 3 0 0 3 3 3 0 0
1 3 3 0 1 v 1 1 1 0 2 v v
(2,1,2) 2 2 3 1 2 v v (2,1,2) 2 2 3 0 0 v
3 3 3 0 0 3 3 3 0 0
1 1 1 0 0 1 1 1 0 1 v
(2,2,0) 2 0 1 v (2,2,0) 2 1 1 0 0
3 1 3 0 0 v v 3 1 3 0 0 v v
1 3 3 0 0 1 3 3 0 3 v v v
(2,2,1) 2 3 3 0 3 v v v (2,2,1) 2 3 3 0 0
3 3 3 0 0 3 3 3 0 0
1 3 3 0 1 v 1 3 3 0 3 v v v
(2,2,2) 2 3 3 1 3 v v (2,2,2) 2 3 3 0 0
3 3 3 0 0 3 3 3 0 0
1 15 6 9 1 18 9 6
Total 2 12 12 9 Total 2 9 9 12
3 0 9 9 3 0 9 9

Table 6: Pivotal players in each level for m = 312

Table 7: Pivotal players in each level for m = 321
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C. Moves from c¢; to c;.1 by local improvement of potentials: case of 2-players

CSG

C Moves from c; to c;;1 by local improvement of poten-

tials: case of 2-players CSG

Let a = (0,1, 9,1) € D3 and ¢ € I'$ a 2-players CSG on N = {1,2} given by

1,3 | Q23 | A33

Ci=|a12 | Q22 | Q3.2

Q1,1 | Q21 | 431

By Remark 3.1.3 and Equation (3.25) a sequence (cx)o<k<s can be represented as follows:

1111 1 1]1 1 1 1 1 1 1
co:=1|1|1| c:= 1 111] c:= 1 1 |1 c3:= 1 1 1
1 1 1 ay1 1 1 Ay | G21 1 ai 21 as.2
1 1 1 1 1 1 ai3 1 1
cyi={a1n| 1 1 Cs = Q12 | Q22 | 432 C6 "= Q1,2 | Q22 | A32
1,1 | G2,1 | @3,2 aiq | @21 | @32 a1 | G2,1 | @3,2
aiz | asz | 1 a1z | a3 | az3
Cr = Q12 | Q22 | G32 Cg '=| Q12 | G22 | Q32
1,1 | Q2,1 | A3,2 1,1 | G2,1 | A3,2

To illustrate the difference cases highlighted in the proof of Lemma 3.2.1, we construct the
sequence of local improvement from, ¢y to ¢q; from ¢4 to ¢5 and from c5 to cg. We suppose
that, a;; # 1 for all (i, j) € A;z2. Note that a red color on a segment of a rectangular box

allows to specify the value of the game on this segment.

e Moves from ¢y to ¢; by local improvement of potentials

Here e! = (1,1), so L(e') = {1,2} and U(e') = 0. We set S; = {1}, Sy = {2, } and

g0 = 1 — ay ;. Follows Equations (3.26) and (3.27) the games ug, u; and uy are given

below:
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
O T
1|11 atal 1|1 |1 R BT S T
[ .a .
gy = Cy y 1.1 Us

Figure 1: Moves from ¢y to ¢; by local improvement of potentials
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C. Moves from c¢; to c;.1 by local improvement of potentials: case of 2-players

CSsG

From the Figure 1 and the definition of local improvement of potentials of two CSGs,

we one get:

{1}, €0, [0,(11] {2}, €0, [O,Ctl]
Uy

(co = o {1}, <0, [0, ] Uy {2}, <0, 0, n uy and Auy = Aq) — ¢

e Moves from ¢, to c; by local improvement of potentials

Here k = 4, ¢® = (3,2), hence L(e®) = 0 and U(e*) = {1}. We pose e, = 1 — az.
From Equation (3.29) the CSGs vy and v; are represented in Figure 2 below.

1 1 1 1 1 1
L
ayz |22 | G321 12 |Gz2 | G32
.
ap; | Gz | @31 ay|azy | asg
(Y Uy =cCj

Figure 2: Moves from ¢4 to c¢; by local improvement of potentials

By definition of potentials and local increment of two CSGs, we have

{1}7547 [a11a2] {1}7841 [a17a2]

<Ac4 =Avyy and vy v = c5> = 4

e Moves from c; to ¢g by local improvement of potentials In this case, k = 5,
e® = (1,3), L(e®) = {1} and U(e®) = {2}. So, applying (3.30) the sequence (w;)o<i<3

is presented as follows:

1
* 9 o
a

IO RO A S T Gsl 1)1 ol

o
ayz | G2z | Gz a1z | @22 | ass arz |Qzp |ase arz | @22 | @32
a]_.] ﬂ.z__] 113._] a.]__l [12_.1 a.g__] a]._l agl_] a.g._] ﬂ.]__]_ a")._l a’?;,l

Wy = Cx = Uy Wy = uq Uy = g Wy = Cg =1

Figure 3: Moves from c; to ¢4 by local improvement of potentials

Setting €5 =1 — a; 3 > 0, we one get

1,5,0&,1 2,—8,0,0&
c5zw0Mw1;Aw1:Aw2 and UJQMU)[;:CG

Therefore,
{1}, e5, [a2,1] {2}, —&5, [0, a1]
> Wo >

Cg -
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D. Articles and project

D Articles and project

Published article

e Kurz, S., Moyouwou, I. & Touyem, H. Axiomatizations for the Shapley-Shubik power
index for games with several levels of approval in the input and output. Soc Choice
Welf (2020). https://doi.org/10.1007/s00355-020-01296-6

Articles in progress

e Kurz Sascha, Issofa Moyouwou, and Hilaire Touyem. “An Axiomatization of the
Shapley-Shubik Index for Interval Decisions.” arXiv preprint arXiv: 1907.01323 (2019).

e Hilaire Touyem, Issofa Moyouwou and Bertrand Tchantcho. “On Riemann Integrabil-

ity of Monotone Multivariate Real-Valued Functions”
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