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1

General Introduction

In 1962, Rachel Carson reveals to the whole American society the negative impact
of pesticides on the environment in her book entitled Silent Spring.1 Since then, the
adverse effect of pesticides is still a matter of concern for the scientific community.
Not only pesticides are affecting the biodiversity, soil composition, water quality but
they are also altering human health (Pimentel and Greiner, 1997; Pimentel et al.,
1992; Wilson, 1999). Despite plentiful evidence of their noxiousness, pesticides are
still abundantly used in the French agriculture, and more globally in the European
agriculture. In Europe, France is amongst the biggest pesticide consumer with Spain
and Italy: in 2018, France is the first of the European Union (EU) countries in terms
of pesticides sales with more than 80 millions kilograms.2 , 3 But France is also the
country with the largest total cultivated area in Europe withmore than 27millions of
hectares of cultivated area.2 When accounting for the total cultivated area, pesticide
sales in France is close to the European average (respectively 2.6 kg/ha in France
and 2.3 kg/ha in Europe in 2016). Yet, when looking at the evolution of pesticides
sales between 2011 and 2016, they increased in France either we consider the sales in
kilograms or in kilograms per hectare. This increasing trend is quite recent as from
the 1990s, we were rather observing a decrease in pesticide consumption. In France,
in 1999, pesticides sales were peaking at 120.5 millions of kilograms and they were
almost divided by two by 2011with 63millions of kilograms.4 The increase observed
during the 2010s in the French pesticide consumption contradicts the 2009 European
directive – Directive 2009/128/EC5 – whose objective is to reduce pesticide uses
in European agriculture. This EU directive requires member states to implement
programs in order to achieve such goal but there is no bounding obligation of result.
France developed a plan in 2008 named Ecophyto aiming at reducing pesticide use
by 50% in 10 years (i.e. on the 2018 horizon). Farmers are encouraged to reduce their
pesticide use but there is no coercive measures. When looking at the 2018 pesticide
sales, we can see that this goal is far from being achieved. Even the 25% reduction
goal introduced by the second plan, Ecophyto II, on the 2020 horizon is not even close

1Re-edition: Carson (2002).
2Source: Eurostat.
3The amount of active ingredient does not permit to account for the heterogeneous impact of

pesticides in terms of human health or environment. There exist specific indicators, such as the Load
Index, that are accounting both for the amount of active ingredients as well as the noxiousness of the
considered pesticide. Yet, contrary to the amount of active ingredients, this type of indicator is scarcely
available in the data.

4Source: UIPP, the French union of the plant protection industry.
5See Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing

a framework for Community action to achieve the sustainable use of pesticides 2009.
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to be reached.

Despite strong adverse effects, pesticides are still widely used in the European
agriculture. The question asked by Wilson and Tisdell (2001) in their article Why
farmers continue to use pesticides despite environmental, health and sustainability costs is
still relevant. Not long ago, use of biochemistry in agriculture was limited. But in
less than one century, it seems that it became an indispensable element of modern
agriculture. Hence the farmer’s reluctance to change their practices especially when
pesticide use guarantees high yields over time. Indeed, the combination of (i) the
extensive use of pesticides and artificial fertilizers, (ii) the use of productive cultivars6
and (iii) the generalization of mechanization and motorization allowed tremendous
productivity gain. For instance, in France, wheat yield was around 15 quintals per
hectare at the end of the Second World War and reached 80 quintals per hectare at
the end of the 1990s. For some years now, wheat yields seem to have reach a ceiling
(Brisson et al., 2010) and are more volatile across years.7 The productivity gain –
even if stagnating this past decade – allowed by pesticides and their user-friendliness
combinedwith their relative low price (compared to wheat or work) plead for a large
use by farmers. Farmers are thereby neglecting the environmental and societal costs
of pesticide use. This difference between the social and the individual costs is one
of the fundamental aspects of the externality concept. Pesticide use can be seen as a
negative externality from agricultural production as it has detrimental effect both on
human health and on the environment. As long as this social cost is not internalized
by farmers, they will likely keep to have excessive pesticide use compared to the
socially desirable level. A classical way to account for such difference is to introduce
a Pigouvian tax in order to equalize the individual and social costs. The introduc-
tion of a pesticide tax is supported by some economists as Lichtenberg (2004) and
Aubertot et al. (2005). France is among the few European countries with Norway,
Denmark and Sweden where a pesticide taxation scheme was introduced. First, this
tax was part of the general tax on polluting activities that was implemented in 2000.
It was a volume tax on pesticides that was to be paid by pesticide distributors. This
tax lasted until 2009 and was replaced then by a licence fee for agricultural diffuse
pollution. Contrary to the previous tax, this fee is to be paid by the farmer when
purchasing pesticides. Yet, the amount of such tax appeared to be quite limited,
especially when comparing it to the Norway and Danish cases (Böcker and Finger,
2016). More globally, the authors conclude to a limited effectiveness of such pesticide
taxes.

6In the European Union, contrary to other countries, genetically modified organisms are not al-
lowed. Yet, crop breeding techniques permit to select more productive cultivars.

7This stagnation of wheat yields is a phenomenon that is also affecting Switzerland (see Finger,
2008) and other European countries, except Germany.
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Such limited effectiveness of pesticide taxes is coherent with econometric results
that are generally demonstrating that farmers’ pesticide uses display very limited re-
sponsiveness to pesticide price increases (Böcker and Finger, 2017; Skevas, Lansink,
and Stefanou, 2013). This provides support to the hypothesis stating current agri-
cultural production technology “heavily depends” on pesticide uses. Yet, micro-
econometric analyses of farmers’ chemical input uses are generally based on panel
data with short time dimension and assume that farmers’ production technology re-
mains unchanged throughout the considered period. Hence, they mostly reveal that
farmers’ chemical input choices are inelastic given their current technology choices.
When considering a conventional and low-input production functions, Féménia and
Letort (2016) find that pesticide demand is more responsive to price changes. Actu-
ally, such finding highlights the fact that it is hard to reduce significantly pesticide use
without a change of production technology. Indeed, pesticides and other chemical
inputs are the keystone of conventional practices (Aubertot et al., 2007). As long as a
farmer keeps on using those input-intensive conventional practices, his opportunity
to reduce pesticide is limited. To significantly reduce pesticide use, farmersmust rely
on low-input techniques and integrated pest management (IPM). From that remark
derives two main points. First, agronomic principles that are behind each type of
practice – low-input versus conventional practices – being distinct, one might con-
sider using distinct production functions (see Section 0.1). Secondly, we can state that
encouraging a decrease in pesticide use is equivalent to design a program support-
ing the adoption of new agricultural practices that are more environment-friendly.
One question is then to develop the optimal instrument to promote those pesticide
saving practices. In order to do so, determinants of technology adoption should be
investigated. One can also wonder how to evaluate the effectiveness of such pro-
grams either ex-ante or ex-post? In particular, will farmers react homogenously to
such programs, even if they are heterogenous and have different farming practices?
Plus, can we measure the impact of existing agri-environmental programs (AEP) –
which aim at reducing the use of pesticides – by comparing the yield and input use
levels observed among adopters and non-adopters?8 , 9

8As for agri-environmental programs,we can take as an example theDEPHYnetwork inFrance. The
creation of such network is a part of the firstEcophytoplan and consists of a network of voluntary farmers
who decided to experiment techniques to reduce their input uses. This network alsomobilizes research
and development resources to develop the innovations that will permit the decrease in pesticide use.
The advantage of constituting a network is that each farmer can get the feedback from other farmers
on experimented practices.

9In Switzerland, the Extenso program can be seen as an AEP. It is based on voluntary subscription
and requires that the farmer do not use neither fungicide nor insecticides during thewhole crop season.
If doing so, they benefit from price premiums as well as a 400 CHF subsidy per hectare. This program
is non-coercive as at every moment of the crop season they can decide to drop out and use insecticides
or fungicides.
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There is an abundant literature focusing on the adoption of agricultural pro-
duction technologies, in economically developed or developing countries. Griliches
(1957) is considered as the pioneering work initiating this literature. Yet, before the
work of Griliches, we can cite the work of Tarde (1903) who describes the curve of
innovation as being S-shaped. According toGriliches (1957), such shape derives from
farmer heterogeneity. Indeed, when studying the diffusion of hybrid corn, he empha-
sizes the heterogeneous economic returns that were associated to such innovation.
Such heterogeneity in returns was also highlighted more recently by Suri (2011) and
Michler et al. (2018). From that perspective, early adopters are the farmers for whom
the innovation is the most profitable. And, given that the cost of the innovation is
expected to decrease with time, it will become profitable for more andmore farmers.
On the other hand, Ryan and Gross (1943) in their study highlight the social process
that is behind the innovation adoption. From their study on the diffusion of hybrid
seed corn, they conclude that “Commercial channels, especially salesmen, weremost
important as original sources of knowledge, while neighbors were most important
as influences leading to acceptance”.10 This illustrates the importance of information
exchanges. Another social aspect of the social process behind technology adoption is
imitation – also called the learning-by-others process. The importance of imitation in
the technology adoption process is emphasized by Rogers (1962) who reutilises the
five stages of adoption given byRyan andGross (1943). The five steps are represented
in Figure 1.

Figure 1: The successful diffusion of innovation according to Rogers,
1962

10The pesticide saving certificates implemented with Ecophyto II tend to turn pesticide retailers into
those “original sources of knowledge”. Pesticide retailers are constrained into implementing a set of
actions known for decreasing pesticide use among their buyers.
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Innovators and Early Adopters can be seen as less risk-averse since uncertainty is an
inherent characteristics of those new technologieswhose returns are unknown. Once
the innovation implemented by the innovators and early adopters, if the returns turn
to be positive for them, other will adopt the technology by exploiting the information
gathered from other farmers.

Other determinants of technology adoption were emphasised in the literature
such as technical efficiency in organic farming (e.g., Kumbhakar, Tsionas, and Sipiläi-
nen, 2009; Latruffe and Nauges, 2014), labour-constraints (e.g., Fernandez-Cornejo,
Hendricks, and Mishra, 2005) or the role of risk and uncertainty (e.g., Chavas and
Nauges, 2020; Marra and Pannell, 2003). Whatever the adoption determinants,
the prominent fact is that adopters tend to have different characteristics from non-
adopters. If such difference in characteristics is also affecting their baseline perfor-
mance or their input uses, as suggested by the finding on technical efficiency of
organic farming adopters, there might be selection biases. Then, comparing the a
posteriori yield and input use levels of adopters versus non-adopters is not adequate.
Such concern about potential selection biases seems to be confirmed by the finding of
Finger and El Benni (2013). In Switzerland, farmers who adopted low-input practices
tend to have lower yield and input use levels at baseline compared to farmers who
did not adopt them. Even more, if farmers adopting low-input practices have a com-
parative advantage in adopting them, there might be self-selection effects combined
to selection biases.

The main objective of the thesis is to take into account the different types of
technology in production functions. Our attention will be focused on winter wheat
producers in France – and in particular in LaMarne department – and in Switzerland.
Cereals in France representmore than 50%of the total cultivated area. In total, cereals
in 2019 representedmore than 71 millions of tonnes in France for a surface exceeding
9 millions of hectares. In terms of cereal production and surface area, la Marne is
the first department with a respective production of 2.5 millions of tonnes and more
than 0.3 millions of hectares.11 Among cereals, at the national level, winter wheat
representsmore than50%of the cereal cultivatedarea aswell as the cereal production.
In 2019, wheat in France represented a total of 5 millions of hectares cultivated and
39 millions of tonnes produced.12 , 13 Moreover, arable crops totalize more than 60%
of pesticide expenditures due to their large acreages.14 Even if wheat crop is not
the most pesticide consuming crop (the first one being potatoes), it is among the
most pesticide consuming crops (after potatoes and wine) in France with a treatment

11Source: SAA 2019.
12Source: SSP récolte 2019.
13Statistics on the production and surface of winter wheat are not available at the department level.

This is the reason why we are not giving the figures for La Marne.
14Source: calculation done in Butault et al. (2011) based on Agreste data.
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frequency index (TFI) of 4.15 The main contributor to pesticide uses in wheat crop
are herbicides. As for Switzerland, even if the context of cereal production is quite
different, it gives more coherence to consider the same crop as in France. Indeed,
in Switzerland, cereals are less represented as prairies are representing more than
70% of the total cultivated area. After prairies, come cereals with 13.5% of the total
cultivated area and wheat represents 50% of the cereal surface with approximately
82 000 hectares in 2019. In terms of production, Switzerland has produced around
430 000 tonnes of winter wheat in 2019.16

0.1 Agronomic principles and brief history of “Low Input”
CMPs

Cropping management practices17 (CMPs) are defined by agronomists as ordered
sequence of yield production decisions or decision rules aimed to produce a given
crop. CMPs include soil preparation operations and type, seeding type, date and
density, fertilization and pesticide applications, etc. We are interested in specific
CMPs, the low-input CMPs (LI-CMPs) proposed by agronomists in the mid 1980s
and, then, developed and promoted by agronomists and extension agents since
the mid 1990s. LI-CMPs were developed by INRA starting in the mid 1980s and
combined with multi-resistant wheat cultivars in the late 1990s. The “LI-CMP and
hardy wheat cultivars” package were promoted by agronomists, extension agents
and French wheat breeders starting in the late 1990s (Larédo and Hocdé, 2014).

0.1.1 “Low-Input” CMPs as induced technological innovations

LI-CMPs can be interpreted as technological innovations aimed to provide answers
to two main issues raised by conventional high-yielding CMPs (HY-CMPs).18 First,
HY-CMPs are intensive in chemical input uses, which are polluting inputs. LI-CMPs
were primarily designed for reducing pesticide uses. Second, the decrease in grain
prices induced by the – progressive for cereals while sudden for oilseeds – removal

15Treatment frequency index is an indicator that was built to reflect the “phytosanitaire pressure”
exerted on the environment at the plot level (see Pingault et al., 2009). There is no absolute scale for TFI
as it represents the number of recommended pesticide doses that were applied to the plot. In France,
the “Pratiques culturales” surveys permitted to establish that, in 2001, the TFI of winter wheat as
around 4, a level that is similar to sugar beet and colza. The highest TFI is associated to potatoes and is
situated around 16. Interestingly enough, when comparing the results from 1994 and 2001 surveys, the
TFI of arable crops in Champagne region – La Marne is part of this region – increased by approximately
35%.

16Source: https://www.agrarbericht.ch/.
17The agronomic principles of cropping management practices will be of particular interest when

trying to recover unobserved technology. As extensive and intensive practices are clearly identified in
Swiss data but not in France. Therefore, we will focus on France during this presentation as technology
are latent in French data. Yet, the agronomic principles that are presented are applicable to Swiss
extensive practices.

18In this manuscript, we use both the high-yielding and high-input denominations to refer to these
conventional practices. Occasionally, we also refer CMPs as production practices.

https://www.agrarbericht.ch/
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of the CAP price support in 1992 called into question the profitability of grain pro-
duction in the EU from the late 1990s to the mid 2000s. Due to the low grain prices
during this period, HY-CMPs appeared to be much less profitable than they were in
the early 2000s.

The price support implemented by the CAP until the so-called McSharry reform
in 1992 led most agricultural scientists to develop HY-CMPs to be adopted by Euro-
pean grain producers. Indeed, due to the relative scarcity of arable land in Western
Europe, adopting HY-CMPs appeared to be the most profitable technological option
for farmers to benefit from high grain prices (Mahé and Rainelli, 1987; Meynard,
1991). HY-CMPs aim to increase grain potential yield by increasing seeding densi-
ties, choosing early seeding dates, relying on productive seed varieties and applying
large amounts of, especially nitrogen, fertilizers. Importantly, these HY techniques
tend to increase pest and weed pressures and, consequently, call for efficient crop
protection. Early seeding dates tend to expose crops to pest outbreaks. Nitrogen
fertilizer uses tend to trigger competition by weeds. High seed densities, productive
– but susceptible to diseases – cultivars and high loads of nitrogen fertilizer tend
to increase wheat susceptibility to diseases. Yet, availability of efficient, as well as
relatively cheap, chemical pesticides enable farmers to control the pest and weed
pressures triggered by HY techniques.

LI-CMPs were conceived by agricultural scientists as an agronomic response to
the polluting emissions induced by the use of chemical inputs, of chemical pesticides
in particular, and to the decrease in grain prices due to the CAP reform implemented
in 1992 – the so-called McSharry reform. HY-CMPs are conceived to achieve high
target yield levels but rely on high levels of chemical input uses, precisely because
the techniques implemented for achieving high target yield levels tend to trigger
the need of high fertilization and crop protection levels. The basic principle of the
conception of LI-CMPs is to slightly lower target yield levels in order to significantly
lower chemical input uses, pesticides in particular. Lowering target yield levels di-
rectly reduces crop nutrition needs and, thereby, nitrogen fertilization uses. LI-CMPs
reduce crop protection needs by avoiding cropping techniques that increase pest and
weed pressures. Therefore, they allow reducing pesticide uses.

The HY-CMPs and LI-CMPs considered by agronomists vary across time and
production areas, depending on economic and agro-climatic conditions (Bouchard
et al., 2008; Loyce andMeynard, 1997; Loyce et al., 2008, 2012; Rolland et al., 2003). On
average, the yield levels obtained with LI-CMPs are 10% lower than those obtained
with HY-CMPs. Nitrogen fertilizer loads decrease by 10% from the HY-CMPs to the
LI-CMPs while the use of (mostly) fungicides and insecticides is reduced by around
30%. Finally, due to the lower sowing densities in LI-CMPs seed uses decrease by



8

around 50% when using these CMPs. Also, hardy wheat cultivars are complemen-
tary to the agronomic principles underlying the design of LI-CMPs (Larédo and
Hocdé, 2014; Loyce et al., 2008). These cultivars are resistant to multiple diseases but
slightly less productive than the ones typically used in HY-CMPs. Finally, LI-CMPs
are labor and fuel saving thanks to their lower expected pesticide application num-
bers.

0.1.2 Recent trends in input and wheat prices, and their potential impacts
on “Low-Input” CMPs

Due to the CAP price support, the wheat price paid to French farmers was relatively
high until the McSharry reform 1992 (see Figure 2). Then it progressively declined
and attained the world price level in the late 90’s. World wheat price remained low
until 2006. It dramatically increased in 2007, following the US biofuel policy and
increasing fuel and feed demands. Wheat price has remained relatively high on
average since then, though it is volatile due to random shocks on cereal supply and
demand.

Figure 2: Average farmgate wheat nominal price, France, 1990-2018

The early 1990s are considered as the peak of the chemical intensity of the French
arable production, with price ratios favoring the use of chemical inputs and, as a re-
sult, of HY-CMPs. LI-CMPs were developed starting in the mid 1980s. They started
to be tested on farm fields and promoted in the 1990s, as responses to the low wheat
prices observed from the late 90s to 2006. The yield reductions entailed in adoption
of LI-CMPs have much less detrimental effects on profits when crop prices are low.
But, the high wheat price levels observed since 2007 suggest that HY-CMPs might be
as profitable today as they were in the early 1990s. Yet, input prices increased since
the early 1990s, at difference rates though.

Figure 3 displays the evolution of the ratio of the input price indices to that of wheat
from 1990 to 2016, using 1990 as the baseline. Basically, an input is cheaper (more
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expensive) for wheat production in year C than it was in 1990 when ratio of the price
index of this input to that of wheat is below (above) 1. Panel (A) in Figure 3 shows
that pesticide prices were about 50% more expensive relative to wheat in the early
2000s than they were in the early 1990s. Since 2007, the ratios of the prices of pesti-
cides to that of wheat have been only slightly above the ones observed in the early
1990s. Indeed, the nominal prices of fungicides and insecticides remained steady
while that of herbicides increased only by 15% from 1990 to 2016.

Figure 3: Price index ratios, inputs to wheat, France, 1990-2016 (1 in
1990)

(a) Seeds and pesticides

(b) Fuel and fertilizers

Fuel and fertilizers increased significantly during the 1990s, as shown by panel (B)
in Figure 3. Fertilizers were 75% more expensive relative to wheat during the 2000s
and 2010s than they were during the early 1990s. The corresponding ratio is around
50% for fuels. Differences in input uses between LI-CMPs and HY-CMPs are less
important for fuel and fertilizers than they are for fungicides and insecticides. Yet,
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fuel and fertilizers price levels were substantially higher from 2007 to 2016 than in
the early 1990s.

This factual analysis suggests that economic conditions tended to favor adoption
of LI-CMPs from the late 1990s to 2006, mostly due to the low grain prices observed
during this period. The prices of fungicides and insecticides, the use of which is
aimed to be reduced by adopting LI-CMPs, remained stable from 1990 to 2016. The
high grain price levels observed since 2007 have tended to favor conventional HY-
CMPs, although these effects of high grain prices on the profitability of HY-CMPs
are partially offset by the high levels of fuel and fertilizers prices.

0.2 Production function, technology and endogeneity

The presence of technological heterogeneity among farmers is a fact not to be dis-
cussed. What need to be discuss however is how to account for such heterogeneity
in production functions. A naive approach would be to introduce a dummy vari-
able when technology is observed. By doing so, one only allows for a shift in yield
and input use due to technology choice and induce homogeneous reaction to public
policies or changes in input prices. The differences between low-input and high-
yielding CMPs described in the previous section suggest that different CMPs need
to be considered as different crop production technology. For instance, produc-
tion functions describing high-yielding CMPs are expected to be more responsive to
fungicide uses than those describing low-input CMPs. Low-input CMPs for wheat
rely on early and light sowing and on seed varieties that tend to decrease disease
risks. Similarly, production functions describing high-yielding CMPs are expected
to bemore responsive to nitrogen uses than those describing low-input CMPs. High-
yielding CMPs are, by definition, designed for achieving high yield levels that, in
turn, require high fertilization rates. This variety of responses to input uses cannot
be accounted for by simply allowing for a “shift” in yield level. Accordingly, dif-
ferent CMPs need to be described by different, CMP specific, production functions.
One can argue that, instead of separate production functions, introducing interactive
terms with the adopted technology might be enough as done by Serra, Zilberman,
and Gil (2008). Yet, contrary to separate functions, the use of a unique model implies
that the distribution of error terms is the same across technology. Such assumption
is quite strong in a CMP context as it means that yield variability is similar whatever
the implemented technology. The use of separate functions seems more adequate,
especially given the fact that the findings from the production frontier literature
show significant differences in terms of input productivity and overall efficiency de-
pending on the farmer technology.



0.2. Production function, technology and endogeneity 11

By using distinct production functions, one allows for heterogenous responses
to input price changes or public policy more generally. The literature considering
separate conventional and organic functions is particularly extensive. For instance,
Gardebroek, Chavez, and Lansink (2010) estimate separately the production func-
tion as developed by Just and Pope (1978) for conventional and organic farmers. A
similar approach was adopted by Lansink, Pietola, and Bäckman (2002) in a stochas-
tic frontier analysis framework and by Gardebroek (2006). From those separate
functions, one might derive yield and productivity differences between organic and
conventional farming. Yet, by doing so, one implicitly assumes that organic farmers
would have the same average productivity as conventional farmers if switching to
conventional practices, other heterogeneity factors being controlled for (e.g., farm
size or other farm(er) characteristics that might affect yield). Pietola and Lansink
(2001) study on the impact of the Finnish policy to encourage the adoption of organic
farming practices shows the opposite. Farmers who switched to organic farming
tend to already have lower performances, hence lower yield level. If all the factors
that are affecting both production choices and technology adoption are observed by
the econometrician, then this selection issue can easily be controlled for. Yet, some
factors that are impacting both choices might be unobserved, thus leading to selec-
tion biases. Then, one cannot genuinely compare the performances of organic versus
conventional farmers to derive the differences in terms of yield and input use level
between both production practices.

This discussion about whether these factors are totally or partially observed by
the econometrician is crucial. Indeed, it permits to better understand the contro-
versy that arise on the ability of organic agriculture to feed the world (see the answer
of Connor (2008) to the article of Badgley et al. (2007)). On that matter, Seufert,
Ramankutty, and Foley (2012) argue that the yield differences between organic and
conventional agriculture are “highly contextual”. Behind that argument is the idea
that unobserved factors underlie lower productivity of organic farms. It advocates in
favor of selection biases between conventional and organic agriculture that might be
generalizable to low-input practices. In line with findings from Pietola and Lansink
(2001) on organic farming, Finger and El Benni (2013) show that, after being sub-
sidized by the Swiss authorities, low-input practices were adopted by farmers that
tend to have lower yield and input use levels at baseline. This argues in favor of the
presence of selection issues between low- and high-input production practices. One
can also think about a self-selection effect. Self-selection effect is a form of selec-
tion issue arising if farmers adopting low-input practices tend to have a comparative
advantage when adopting them, i.e. they are benefiting from this technology. This
self-selection effect is in line with the innovation adoption theory of Griliches (1957).
It remains that, whether they impact the economic return of each technology, the
unobserved factors that impact both production choices and technology adoption
need to be accounted for. Otherwise, when evaluating the impact of a technology
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on production outcomes – or more generally the effect of an AEP, estimates would
suffer from selection biases.

The approachproposed byHeckman (1979) to account for selection biases became
standard. The method he developed to correct this endogeneity issue is to introduce
a control function in the model. This control function – the inverse Mills ratio –
accounts for the expectation difference and comes from a second equation called
the selection equation. As initially formulated, this method was implemented for
cases where only the “treated” group is observed. Lee (1982) generalizes Heckman’s
approach to the case where both the treated and untreated (or control) groups are
observed. This method is known as the endogenous switching regressionmodel and
also relies on the use of the inverse Mills ratio. Heckman’s correction for selection
bias is widely used in the literature andwas also used to control for technology endo-
geneity in agriculture. In particular, Greene (2010) extends Heckman’s correction to
the framework of stochastic frontier models. The developed methodology was then
applied by Bravo-Ureta, Greene, and Solís (2012) to evaluate the impact of a program
implemented in Honduras on technical efficiency. Endogenous regime switching
(ERS) models are also applied to production choice models. For instance, Alene and
Manyong (2007) use an endogenous regime switching model to evaluate the impact
of farmer education on the farm productivity considering both a traditional and im-
proved technology. Asfaw et al. (2012) use this approach to evaluate the impact on
technology adoption on household whereas Abdulai and Huffman (2014) estimate
the impact on both yield level and economic returns.

Yet, most of time when considering production functions, other endogeneity
issues tend to arise in addition to the one caused by self-selection effects and/or
selection biases. In particular, production function estimation generally suffers from
input endogeneity issues. While acknowledging the pioneering work of Haavelmo
(1943), Marschak andAndrews (1944) were the first to formalize the input endogene-
ity issue in production function estimation problems. If one, reasonably, assume
that farmers are economically rational then they seek to maximize their expected
profit yields by optimizing their input uses. If the simultaneity of input choice and
expected profit is neglected, the estimated production function is biased. The so-
lution proposed by Marschak and Andrews (1944) to solve such input endogeneity
issue is to estimate simultaneously the production function and input demand equa-
tions. An alternative approach consists in estimating the production function while
instrumenting input uses – generally by input and crop price levels (e.g., Mundlak,
1996). Similar approaches can be implemented in an endogenous regime switching
framework. For instance, an extended approach of Heckman’s selection model is
developed by Schwiebert (2015) to include endogenous covariates whereas Kumb-
hakar, Tsionas, and Sipiläinen (2009) consider a simultaneous equation framework
to solve both covariates endogeneity and selection issues.
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0.3 Recovering latent technology

Unfortunately, no data exists on the adoption of LI-CMPs by French farmers. More-
over, farm accountancy data, even with cost accounting, does not contain any indi-
cator enabling us to identify farmers using LI-CMPs. For instance, seed cultivars are
not reported. Similarly, if purchased seed expenditures vary with sowing densities,
these expenditures may also vary with seed prices and the share of seeds produced
farmers themselves. This information lacking implies that we can only consider in-
ferring farmers’ CMPs from their yield and chemical input use levels, that is to say
indirectly. Different approaches can be considered to reveal latent structure in a data
set.

Among those approaches is clustering analysis. Clustering is an unsupervised
learning method whose aims at finding structure in a data set or, to say it differently
it is “the art of finding groups in data” (Kaufman and Rousseeuw, 2009). Clustering
analysis results in defining several groups among the data. To bemeaningful, the ob-
tained partition must separate observations that are very dissimilar while gathering
similar observations. Clustering algorithms are thus trying to minimize the within
group distance while maximizing the between-group distance. There exists different
metrics to measure distance as well as different partitioning algorithms. Hence the
need to generally compare the results obtained with different algorithms and metric
to get robust results.
Clustering analysis is used in a lot of research areas and among them is agriculture.
It has been used mainly to build farm classifications. For instance, it has been used
by Gebauer (1987) to build a typology of farm households in Germany. Such type
of typology was also used by Perrot (1990) in France and Maseda, Diaz, and Alvarez
(2004) in Spain. Those typologies were foremost used to describe the state of the
agricultural sector at a specific time. Clustering analysis was also used to identify
different cultural systems by Bellon, Lescourret, and Calmet (2001) and Renaud-
Gentié, Burgos, and Benoît (2014). Clustering is used here to summarize the detailed
agronomic information available for each farm to build homogeneous groups.

Another method to recover latent variable is to use a latent class model (see
Bartholomew, Knott, and Moustaki, 2011). Whereas clustering analysis assigns each
observation to a class, latent class models rather estimate a probability to belong to
each class. Given the number of classes we expect to have, we use a mixture model
to estimate (i) the a posteriori probability to belong to each group and (ii) the parame-
ters of the dependent variable distribution. Generally, the estimation of the mixture
likelihood is performedwith the Expectation-Maximization algorithm. In fact, latent
class models can be seen as a probabilistic clustering where the distance metric is
substituted by the likelihood that evaluates the model consistency. Plus, contrary to
clustering methods that require a second step to estimate the separated production
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functions, latent class models have the merit to compute both the production func-
tions and the CMP affiliation in one step. In that case, this one step procedure has
advantages over the two step procedure because it avoids (i) biasing the estimates of
the second stage equation if some errors are affecting the first stage and (ii) losing
information. The latest point is emphasized by Orea and Kumbhakar (2004): the
information that is contained within a class is not used to estimate the technology of
other classes. This is the very reason why, in their work, Orea and Kumbhakar (2004)
prefer to use a latent class framework to estimate different production frontiers.
The work of Orea and Kumbhakar (2004) was conducted on Spanish banks and
proved that latent class models allow to control adequately for unobserved hetero-
geneity. Latent class frontier models were also used in the agricultural literature
by Alvarez and Corral (2010), Martinez Cillero et al. (2018) and Renner, Sauer, and
El Benni (2021) for instance. Alvarez and Corral (2010) distinguish intensive from
extensive dairy farm. As for Martinez Cillero et al. (2018), they estimated three dif-
ferent categories among Irish beef farms. Renner, Sauer, and El Benni (2021) consider
stochastic frontierwith latent class so to evaluate the impact of technology choice and
change on productivity and efficiency of Swiss dairy farms. If production frontiers
are found to be significantly different across technology, no doubt that this techno-
logical heterogeneity also needs to be accounted for when considering production
functions.

The pitfall of the clustering and latent class approaches as described before is
that it requires restrictive assumptions on the technology choice across time. Indeed,
when having panel data at your disposal, the previous methods entail supposing
either (i) that farmers have the same technology for eachyear (e.g., Alvarez andCorral,
2010; Martinez Cillero et al., 2018) or (ii) that farmers can change technology each
year (e.g., Dakpo et al., 2021; Orea, Perez, and Roibas, 2015). Allowing technology
change each year might be problematic. Even if CMP choices share more similarities
with crop variety choices – usually considered as short run choices and modelled
as such (e.g., Michler et al., 2018; Suri, 2006) – than with irrigation technologies –
modelled as investment choices (e.g., Genius et al., 2014) – existence of transition
costs makes frequent changes not appealing. Yet, technology change needs to be
allowed, especially when considering short run decisions. Hence, the model needs
to allow the possibility of change while making it costly so that individuals cannot
switch every year from technology to technology. Suchmodelling effort wasmade in
Dakpo et al. (2021) by considering explicitly a time trend among the variables that are
used to separate the data in different groups. However, the dynamics of technology
adoption is not explicitly modelled. If one is interested in the determinants of
technological change to evaluate the impact of a public policy, this approach is not
appropriate. A solution is to model the dynamics of technological adoption as a
Markov process. Markov models are particularly adapted to model situation where
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there can be regime switching every year. They were introduced in econometrics by
Goldfeld and Quandt (1973) and then largely diffused with the Markov-switching
regression model used by Hamilton (1989). The Markov-switching models defined
by these authors are based on a latent variable of which we want to model the
dynamics. They were used in economics for example to explore the dramatic breaks
that can occur in economic time series (see Chauvet and Hamilton, 2006; Hamilton,
1989). It is of special interest in financial economics as abrupt changes are common in
financial data (see, e.g., Bonomo and Garcia, 1996; Cecchetti, Lam, and Mark, 1988)).
Markov models are also used in the agricultural literature. For instance, Benoît, Le
Ber, andMari (2001) use hiddenMarkovmodel (HMM) to study the dynamics of crop
rotation. Markov chain were also implemented by Miller et al. (2017) to investigate
the adoption path of precision agriculture technologies in farms. The advantage of
Markov models is their flexibility: transition matrices can either be (i) time invariant
or change across time, (ii) be arbitrary fixed or can be defined by a logistic model.

0.4 Thesis outline

As stated previously, the main objective of the thesis is to estimate and to compare
technology specific production functions. We attempted, in this general introduction,
to stress the need for separate functions to account for heterogeneous technology. Yet,
because technology adoptionmight be subject to selection biases, estimating technol-
ogy specific production functions is not enough. A standard approach to deal with
this technology selection issue in agricultural production is the endogenous regime
switching (ERS) framework. In Chapter 1, we present the standard ERS framework
as well as en extension to the case with endogenous covariates. We also present
an associated estimation procedure to this ERS extension. Such extension and its
estimation procedure are of particular interest in Chapter 2. As a matter of fact, in
this chapter we intend to study how yields respond – and to what extent the re-
sponse differs based on the adopted technology – to changes in variable input uses,
especially pesticide uses. The perspective adopted in Chapter 3 is slightly different.
We still want to compare CMP specific production functions, but in an unobserved
technology choice context. Thus, we need to develop a framework that permits to
uncover the CMP choice.

The second chapter of this thesis is mainly a theoretical chapter. We start by pre-
senting the standard approaches to account for technology in agricultural production
functions. In particular, we present the endogenous regime switching framework
that permits to account for technology selection issues. Chapter 1 contribution lies
in our considering an extension of the ERS framework for the endogenous covariates
case. We consider an easily tractable control function approach with two sets of
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control functions. The first one controls for endogenous sample selection issue asso-
ciated to technology choice whereas the second controls for input use endogeneity.
In particular, we show in this chapter that the expression of the so-called inverseMills
ratio used in the widely used Heckman’s two step approach needs to be adapted in
ERS models when regressors are endogenous.

The extended ERS model we present in Chapter 1 as well as its estimation ap-
proach directly derives from the research question we try to answer in Chapter 2.
In this chapter, we intend to estimate and compare the production functions of low-
input and high-input farmers. In particular, we want to study how yields respond
to input uses with a focus on pesticides. This objective encourages us to consider
(i) a primal production function with (ii) a damage abatement function so we can
consider the protective role of pesticides. The primal function comes with the well-
known input endogeneity estimation issue whereas the damage abatement function
entails non-linearity estimation issues. Both issues are tackled with the approach
proposed in Chapter 1, i.e. a multi-step estimation approach relying on control func-
tions. Thus, Chapter 2 is an empirical application of the extended ERS model and
estimation technique we developed in Chapter 1.

The empirical analysis presented in Chapter 2 uses rich, high resolution panel
data on Swiss wheat production (617 observations, from 2009 to 2015), containing
detailed information on output and input uses (i.e. on pesticide uses, mechanical
weed control, fertilizer uses, work and machinery), obtained from field journals. We
make use of the fact that parallel to conventional wheat production, a low-input (“Ex-
tenso”) wheat production system exists in Switzerland. Thus, we can compare the
conventional and low-input production functions, in particular how yield responds
to input uses in both functions. Unfortunately, our empirical analysis suffers from
weak instruments in the input use equations. It means that the estimation results
of the production functions have to be interpreted cautiously as we do not prop-
erly account for the input use endogeneity. Despite that pitfall, this article seems to
confirm the presence of selection biases affecting both the input demand and yield
level models. In particular, unobserved characteristics of high-input farmers seem to
boost up their pesticide use levels whereas unobserved characteristics of low-input
farmers seem to allow them to reach greater yield levels. Even if estimates from the
production functions need to be considered cautiously, this chapter argues in favor of
controlling for selection biases when estimating input use and yield level functions
and when evaluating the treatment effect of low-input adoption on both input use
and yield levels.
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Finally, Chapter 3 aims at proposing statistical andmicro-econometric approaches
for uncovering CMPs used by farmers when these are not available in the data set.
Given that intensity in the use of chemical inputs of a CMP is directly related to the
yield level targeted by this CMP, our methods aim to identify CMPs used by farmers
based on their yield and chemical input use levels, information that are generally
available in most cost accounting data set. We first considered more exploratory ap-
proaches such as clustering and latent classmodels to (i) identify theCMP classes and
(ii) estimate CMP specific production functions. Yet, when considering panel data,
those approaches suffer from their static perspective. We need either to suppose that
technology is stable on the whole period, an assumption that is problematic when
the size of the panel is increasing. Or, we need to suppose that the technology choice
is independent from the technology observed at the previous period. This second
assumption is as unsatisfactory as the first one. We need to consider the adoption
process as a dynamic one. We will then assume that CMP choices can be modelled
as a Markovian processes and use a hidden Markov chain model to estimate CMP
specific production functions. Another aspect we integrate in our modelling frame-
work is farm unobserved heterogeneity, which can affect both crop production and
farmer choices. We account for the unobserved farm heterogeneity by considering a
random parameter model. Finally, our model combines different elements that are
generally considered separately: latent technologies, unobserved heterogeneity and
the dynamics of CMP choices. Our model can thus be considered as an endogenous
Markov switching model. Plus, by disclosing the effect of CMP returns, our model
allows to investigate the effects of economic incentives on CMP choices, which is
critical from a public policy perspective.

We illustrate our approaches by investigating French farmers’ CMPs for win-
ter wheat based on a panel dataset from 1998 to 2014 covering la Marne, a (highly
productive) arable crop production area located in eastern France. We manage to
distinguish three different CMPs: a high-yielding, an intermediate and a low-input
CMPs. Even if low-input practices are associated to lower profit levels, they are
still attracting an irreducible share of farmers. This shows that technology return
is not sufficient to explain technology adoption and confirms the need to account
for farmer preferences when studying adoption decision. In addition, our results
show that, to encourage farmers with more intensive practices, price instruments on
pesticide inputs are quite ineffective when wheat prices are high. This is due to the
fact that profits dependmore from the selling price of wheat than the input expenses
that are small compared to the yield value. This confirms the previous findings
on the inelastic demand of pesticides when wheat prices are high. A public policy
implication is that, when crop prices are high, economic incentives targeting input
prices might not be the best instrument to encourage a change in practices.
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Overall, the results of this PhD thesis argue for the need to consider CMP in
economists’ production functions. Farmers using different CMPs tend to have differ-
ent input uses and yield levels. Moreover, this CMP choice induces selection biases
on both input use and yield levels. The unobserved factors implying selection biases
might also impact the farmers’ response to public policy. In particular, the response
to public policies aiming at reducing pesticide uses might be heterogeneous across
CMPs. This potential response heterogeneity should be considered by public author-
ities in order to adequately evaluate the impact of a specific policy, or more generally
agri-environmental programs.

An other valuable input from this PhD thesis comes from our investigation into
theCMPchoicemechanisms. Inparticular,we show that the standard taxation instru-
ment is not a sufficient incentive for low-input adoption. Differences in pesticide uses
between low- and high-input CMPs do not compensate for the yield loss, especially
in a context of high crop prices. On the other hand, price premiums for low-input
wheat might help into encouraging farmers to adopt this more agri-environmental
practice. This is the strategy that have been adopted by Switzerland, where low-input
practices are much more established among wheat producers. Low-input produc-
ers benefit from both a price premium and a direct payment (400 CHF/ha). This
might seem a rather expensive policy in comparison to the pesticide uses saving.
The viability of low-input practices in wheat production as a high-input versus or-
ganic in-between might be questioned. In particular, a cost-benefit analysis of both
production practices might be considered to answer that question.
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Chapter 1

Amultistep estimation approach
for primal production functions
accounting for technology choice: a
comparative evaluation1

1.1 Introduction

Historically, agricultural economics was interested in quantifying “the contribution
of inputs to output variations” and evaluate the production elasticities (Mundlak,
2001). Yet, as pointed out by Marschak and Andrews (1944), direct estimation of the
production function suffers from biased estimates due to inputs endogeneity. Such
endogeneity issue comes fromwhat analysts assume that farmer’s inputs choice is ra-
tional while most drivers of this choice remains unobserved to them. In that context,
dual approach gain popularity in the early 1970s as a way to get around input endo-
geneity issue (e.g., Griliches and Mairesse, 1995). Duality relies on the assumption
that farmer’s input demand answers profit maximization objective. This approach
was first developed by Klein (1953) and applied by Wolfson (1958). Chambers et
al. (1988) even wrote an entire book on “dual” approaches applied to production
analysis. Yet, Mundlak (2001) deplores that, because it relies on a direct behavioral
function for input demand, dual approach rarely questions the relationship between
inputs and outputs.

As pointed out by Ackerberg, Caves, and Frazer (2015), applied economists have
devotedmuch attention to this endogeneity problem and approaches to solve it. Dual
approach is only one of them. The first approachwas proposed byMarschak andAn-
drews (1944), while acknowledging the pioneering work of Haavelmo (1943) on this
topic. It consists in estimating simultaneously the production function and the input
demand equation(s). An alternative to this “full information” approach is a “limited
information” approach which consists of estimating the production function while
instrumenting input uses by price levels (e.g., Mundlak, 1996). Another approach,

1This chapter is written in collaboration with Alain Carpentier.
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relying on more limited behavioral assumptions that the dual one, is proposed by
Olley and Pakes (1996) or Levinsohn and Petrin (2003). Input endogeneity issue is
tackled by introducing control functions that are based on the timing of input uses
(e.g., Ackerberg et al., 2007; Ackerberg, Caves, and Frazer, 2015; Wooldridge, 2009).

In this chapter, we consider the input endogeneity issue within an endogenous
regime switching (ERS) framework. Our considering of this framework follows the
pioneering works of Pitt (1983) and Fuglie and Bosch (1995) so we can investigate the
effect of cropping management practices (CMPs) on the wheat production and its
associated input uses. In particular, we consider an ERS framework with non-linear
production functions. Non-linearity entails estimation issues. It makes both the
simultaneous estimation “full information” and the instrumental variable “limited
information” approaches hardly tractable. We use a control function approach (see
Wooldridge, 2015) relying on two sets of control functions. The first one controls for
the endogenous sample selection issues implied by ERS models whereas the second
one controls for input use endogeneity. Our estimation approach can be considered
as an extension of the widely used two-step approach that was initially proposed by
Heckman (1976, 1979) to account for endogenous sample selection and later adapted
by Lee (1978) to the case of Gaussian ERS models. In particular, we show that the
expression of the so-called inverse Mills ratio used in Heckman’s two step approach
for estimating regression models under endogenous sample selection needs to be
adapted when regressors are endogenous.

Although it relies on admittedly restrictive assumptions, the approach we pro-
pose here is easier to implement in practice than its competing alternatives – e.g.,
the generalized method of moments or the two-stage least squares (2SLS) approach
proposed by Wooldridge (2010) – especially those based on estimating equations
defined by orthogonal conditions. This point is further discussed in the chapter.
After defining the notations we used in the rest of the chapter, we proceed in two
steps. First, we present a brief literature review on the methods that were used to
deal with the effects of technology choices on producers’ input choices and produc-
tion outcome. In particular, we present and discuss the main issues that arise when
considering endogenous technology choices, i.e. self-selection effects and selection
biases, and the most common approaches to deal with them. Second, we present our
modelling framework and the estimation approach for assessing the effects of CMPs
on crop yield functions.

Notations

Let 8 = 1, ..., # and C = 1, ..., ) represent respectively the farmer and year indexes
from a panel dataset. Let H8C , respectively G:,8C , be the observed wheat yield level,
respectively the use of chemical input : with : ∈  , of farmer 8 at time C. Let
x8C = (G:,8C : : ∈  ) be the  -dimension vector of chemical inputs use. Finally, let
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A8C denotes the CMP choice of farmer 8 at time C where A8C = 1 (respectively A8C = 0)
indicates that s/he chooses the low-input CMP (respectively the high-input CMP).

Relevant wheat and input prices are gathered in  + 1-dimension vector p8C .2 Vector
c8C , of dimension �, collects farmer and farm characteristics that directly impact
wheat production choices whatever the CMP choice whereas &-dimension vector
q8C consists in farmer and farm characteristics that impact farmers’ CMP choices
without (directly) impacting their (CMP specific) wheat production choices. Vector
w8C = (p′8C , c

′
8C
)) stacks up the observed drivers of chemical input uses and, thereby,

of yield levels, that is to say netput prices p8C and farm(er) characteristics c8C . Vector
z8C = (w′8C , q

′
8C
)) appends the observed drivers of the CMP choices, q8C , to those of

chemical input uses and yield levels. This vector constitutes the information set of the
models considered below. It contains the variables that are assumed to be exogenous
in these models.

1.2 A review of the techniques to assess the effects of pro-
duction technologies on farmer choices and production
outcomes

The impact of technologies on various agricultural production choices (e.g., variable
input uses) or outcomes (e.g., yield levels, profit levels, production levels or pro-
duction frontier) is studied in numerous studies. For instance, Fernandez-Cornejo
(1996, 1998) considers the effects of integrated pest management (IPM) on profit
and pesticide use levels in fruit production and viticulture in the United States.
Fernandez-Cornejo and Wechsler (2012) focus on the effect of Bt (i.e. genetically
modified organism) vs. high-input corn on profit and input use levels in the US.
Livingston, Fernandez-Cornejo, and Frisvold (2016) consider the effect of glyphosate
versus herbicide mixes based weed control on yields and profit levels in US soybeans
and corn production. Khanna (2001) studies the effects of soil testing with or with-
out variable rate fertilization techniques vs. standard fertilization practices on the
productivity of nitrogen applications on corn in the United States (US). Teklewold
et al. (2013) analyze the impacts of various combinations of seed choices, cropping
system and tillage practices on profit and input use levels in maize production in
Ethiopia. Suri (2011) considers the effect of hybrid vs. conventional seeds on maize
yield levels in Uganda while Michler and Shively (2015) address the same topic for
chickpea production in Ethiopia. Kumbhakar, Tsionas, and Sipiläinen (2009) com-
pare the stochastic production frontiers of conventional versus organic dairy farms
while accounting for endogeneity of the adoption of organic production practices.

2By default, unless specified otherwise, we consider column vectors.
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All these studies acknowledge that (i) technology choices and (ii) production
choices and outcomes are impacted by many common (or at least correlated) fac-
tors. Among these factors, some are observed by the analyst such as market prices,
weather conditions or general farm(er) characteristics. As such, their effect can be
controlled by explicitely incorporating them in the modelling framework. On the
other hand, some factors as soil quality or farmers skills are unobserved and in-
duce endogeneity issues that are to be accounted for. Yet, most studies assume
that such endogeneity issues cannot be correctly addressed with observed variables.
From that perspective, the approach adopted by Livingston et al. (2015) is a notable
exception. They use a propensity score matching approach to estimate the effects
of weed control practices on corn production outcomes. Yet, whether considering
matching or inverse propensity score weighting techniques, estimates of the causal
effects of technology choices are consistent only if these choices and the considered
outcomes are independent conditionally on the control variables (e.g., Angrist and
Pischke, 2008; Imbens and Wooldridge, 2009; Wooldridge, 2010). Such conditional
independence assumption might not hold when considering production technolo-
gies and their effects on production choices (e.g., input use levels) at the farm level.
Indeed, there exists factors, observed by the farmers but unobserved by the analyst,
impacting farmers’ technology choices as well as their input uses decision. Among
such factors are soil quality, farmers’ technical skills or pest outbreaks, that impact
both technology and production choices as well as outcomes (e.g., yields or profits)
thus creating selection biases. On the other hand, technology choices are made on
purpose by farmers so that it impacts their input use and yield levels through partly
unobserved mechanisms, thereby inducing self-selection effects.

From that perspective, quasi-experimental approaches, designed to avoid para-
metric assumptions asmuch as possible, are notwell-designed to evaluate the impact
on technology choices based on the datasets that are usually available to agricultural
production economists (e.g., cost accounting data). Indeed, they either assume con-
ditional independence or rely on specific situations inducing exogenous variations
in order to be able to identify all the parameters (e.g., Angrist and Pischke, 2008;
Imbens and Wooldridge, 2009; Wooldridge, 2010). Yet, technology choices are pro-
duction decisions that are similar to input or investment decision. Although they can
be impacted by special circumstances, these decisions are much more often made
under typical circumstances. Unfortunately, typical circumstances provide limited
exogenous variations for investigating the effects of technological choices. This im-
plies that approaches that intend to assess the implications of technology choices
should rather be based on parametric models accounting for (i) farmers’ technology
choices, (ii) the considered input choices and production outcomes and (iii) the links
that exist between them.

The standard approaches used by agricultural economists to investigate the impact
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of agricultural technology choices at the farm level are presented in the next sections.

1.3 Standard approaches to account for agricultural technol-
ogy choices

Before presenting the standard approaches to account for agricultural technology
choices, let introduce first the CMP – or more generally technology – choice model
as {

A8C = 1{<∗
8C
≥ 0}

<∗
8C

= <(z8C ; $) + 48C
, (1.1)

where A8C represents the observed CMP choice made by farmer 8 at time C and <∗
8C

represents the underlying choice process, unobserved to the analyst. In <∗
8C
, 48C is

an error term, $ is a vector of parameters and <(·) denotes a function that is known
to the analyst. The equation for <∗

8C
represents the latent regression and measures

the net benefit of farmer 8 using CMP 1 compared to CMP 0 in year C.3 Standard
assumption for error term 48C is that it has zero mean and follows either a logistic
distribution or a normal distribution (see, e.g., Greene, 2020).4 From Equation (1.1)
and assumptions on 48C one can easily derive that

Prob[A8C = 1|z8C] = Prob[<∗8C ≥ 0|z8C]
= Prob[48C ≥ −<(z8C ; $)|z8C]
= Prob[48C < <(z8C ; $)|z8C]
= �[<(z8C ; $)],

where �(·) represents the cumulative distribution function of 48C . In particular, we
consider here a standard normal distribution with variance equals to 1.

The general objective is to assess the effect of CMP – or more broadly technology
– choice A8C on (i) H8C production function and (ii) G:,8C input demands. All the
approaches we consider thereafter include model (1.1) for technology choice. They
also consider A8C – technology choice – as being endogenous regarding H8C and x8C –
yield and input use demands. We consider two mains cases, depending on how the
effect of technology choice on production and input demand functions is modelled.
First, in Section 1.3.1, we consider an approach where the technology choice is
expected to only create a “shift” in the production and/or input demand functions.

3This benefit includes components that are not purely pecuniary. For instance, farmers’ adopting
chemical input saving practices may display above average positive attitudes toward the environment
(e.g., Burton, Rigby, and Young, 1999; Mzoughi, 2011) or are valuing different information sources
(e.g., Anderson, Jolly, and Green, 2005; Burton, Rigby, and Young, 1999). Indeed, because chemical
input saving practices generally require specific agronomic knowledge, information is a key factor in
adoption. Technical assistance, extensions services more broadly, are thus to be considered to “boost
adoption” (see Piñeiro et al., 2020).

4Both distribution are symmetric around their mean, here 0.



24

Secondly, in Section 1.3.2, we consider an approach where technology choice is
considered as a regime, i.e. the associated production and input demand functions
change based on the implemented regime.

1.3.1 Considering a technology shifting effect in the yield supply and/or
input demand models

The first standard approach we consider is when technology A8C is introduced as a
covariate in the yield supply and input demand models. Such approach was imple-
mented by Burrows (1983) and Fernandez-Cornejo (1996, 1998) when studying the
impact of IPM on input uses and/or yields and farm profits. Both authors consider
that technology choice only creates a shift in yields and input uses levels, i.e. they
consider additive technology fixed effects.

The single production choice model with additive technology fixed effects can be
described by the following yield supply model:

ln H8C = B(w8C ; #) + �A8C + E8C ,

where E8C represents the stochastic part of yield and B(·) corresponds to the produc-
tion function whose functional form is assumed to be known by the analyst. Price
variables and farm(er) characteristics w8C are assumed to be exogenous while A8C is
expected to be endogenous, i.e. �[E8C |w8C , A8C] ≠ 0. The standard least squares (LS)
estimator of # is not consistent because the standard exogeneity assumption does
not hold anymore. Yet, we assume that z8C = (w′8C , q

′
8C
)) - covariates from technology

choice model – is exogenous in the yield supply model, i.e. �[E8C |w8C , q8C] = 0. This
new exogeneity condition allows to build consistent estimators for (#, �) based on
the instrumental variable technique.

Similarly, we can describe the input demand model with additive technology fixed
effects with the following equation:

ln G:,8C = 3:(w8C ; ":) + �:A8C + D:,8C ,

where D:,8C represents the stochastic part of input demand and 3:(·) corresponds to
the :th input demand function whose functional form is assumed to be known by
the analyst. As for the yield supply model, we assume that �[D:,8C |w8C , A8C] ≠ 0 but
�[D:,8C |w8C , q8C] = 0 which yields to consistent estimators for parameters (": , �:).

Consistent estimation technique for parameters (#, �) and (": , �:) include the
2SLS estimation technique as in Fernandez-Cornejo (1996, 1998), or the limited in-
formation maximum likelihood (LIML) as in Burrows (1983).5

5See Greene, 2020, Chapter 8 for more details on these estimation techniques.
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By considering technologyas a simple covariate,we consider that a change in tech-
nology is only shifting yield level H8C by �, the technology parameter (see Figure 1.1
(A)). This assumption of a linear effect of technology choice A8C may approximately
hold when considering seed varieties or improved input application techniques, at
least as long as one ignores heterogeneity in farm production conditions. Yet, it
is much more debatable when the considered production technologies significantly
differ, as in studies comparing cropping management techniques or irrigated vs.
non-irrigated crop production. For instance, crop yield response to nitrogen appli-
cations depends on seeding dates and densities, or on whether irrigation is available
or not, etc. As a result, farmers’ chemical input uses may display technology specific
response to input or crop prices, implying in turn that the functional form of yield
supply function B(w8C ; #) needs to be adapted accordingly (see Figure 1.1 (B)).6

Figure 1.1: Intercept versus slope change in production functions
accounting for technology choices

(a) Dummy for technology (b) Technology specific production functions

As amatter of fact, most studies considering the effects of agricultural production
technologies assume that crop yield supply and variable input demand functions
depend on technologies in a rather flexible way.

6These remarks also hold for the input demand model that was not detailed for presentation
considerations. The size of the technology shift would correspond to parameter �: .
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1.3.2 Considering technology as a regime associated to specific production
and input demand models

Endogenous regime switching (ERS)model is the standard frameworkused in studies
which intend to assess the impact of crop production technologies adoption on
input uses or yield levels. Initially, ERS model was proposed by Lee (1978) for
analyzing the effects of unionism on wages. The parametric model this author
develops nests two complementary selectivity models as formulated by Heckman
(1976, 1978). According to Fuglie and Bosch (1995), the first application of the
ERS framework in the agricultural production technology literature comes with Pitt
(1983). In the following paragraphs, we present the standard specification and
estimation method of ERS models.

Specification of the standard Gaussian ERS model

First, we need to define three sets of latent variables and their respective models. Let
HA
8C
and xA

8C
= (GA

:,8C
: : ∈  ) respectively define the observed yield level obtained and

the chosen input use levels of farmer 8 in year C given that the farmer uses CMP A.
These latent variables are generally modelled as yield supply functions

ln HA8C = B
A(w8C ; #A) + EA8C , (1.2)

and as sets of input demand functions

ln GA
:,8C

= 3A
:
(w8C ; "A:) + D

A
:,8C
.

If A8C = A, A ∈ {0, 1}, potential yield and input uses levels are observedwith (HA
8C
, xA
8C
) =

(H8C , x8C). Otherwise, they are counterfactual. Indeed, in this specification (H8C , x8C) are
latent variables that are linked to their observed counterparts through the following
regime switching equations{

H8C = A8CH
1
8C
+ (1 − A8C)H0

8C

G:,8C = A8CG
1
:,8C
+ (1 − A8C)G0

:,8C

. (1.3)

The standard ERS model is also completed by the CMP choice model defined in
Equation (1.1) by {

A8C = 1{<∗
8C
≥ 0}

<∗
8C

= <(z8C ; $) + 48C
.

CMP choice A8C is endogenous regarding yield supply level when error terms 48C and
(E0
8C
, E1

8C
) are correlated. Before deriving the consequences of such correlation, let

consider a simple Roy model to illustrate why correlated error terms is likely to be
the rule rather than the exception when assessing the effects of technology choices
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on production choices and outcomes. The assumptions underlying the so-called Roy
model state that the latent index underlying the CMP choice model is simply given
by<8C = ln H1

8C
− ln H0

8C
(see, e.g., Heckman andHonore, 1990; Suri, 2011). According to

this model, farmers choose the CMP associated to the highest yield level.7 It implies
that error term 48C = E

1
8C
−E0

8C
is positively correlated with E1

8C
and/or negatively corre-

lated with E0
8C
. Such correlations indicate the presence of the so-called self-selection

effects. When choosing their CMP, farmers compare the potential outcomes of the
CMPs and to do this comparison they account for factors and conditions that are
not observed by the analyst. Despite the restrictiveness of Roy model assumptions,
farmers’ expectations of yield level ratios H1

8C
/H0

8C
can be expected to be major drivers

of CMP choices A8C and these expectations certainly depend on factors that are un-
known to the analyst. Such remarks also hold for input uses models and confirm our
self-selection hypothesis.

Other than self-selection effects are selection biases. Self-selection relies on causal
effects whereas selection biases occur due to confounding mechanism. It means that
both error terms 48C and EA

8C
(and respectively DA

:,8C
) contain the effects of common

unobserved factors. In the case of CMP adoption, one can think that it is easier to
implement new technologies for highly skilled farmers. Their skills can also impact
their input uses or yield levels. If not observed and not accounted for, farmers’ skills
yield to biased estimates. More generally, unobserved factors affecting both farmers’
technology and production choices lead to selection biases if not accounted for. The
presence of such potential selection biases speaks in favor of error term correlation
in the agricultural production technology framework.

When 48C and (E1
8C
, E0

8C
) are correlated, parameter #A cannot be estimated only based

on the sub-sample of farmers using CMP A without accounting for their choosing
to use this CMP. In particular, from 48C and EA

8C
correlation derives the fact that

�[EA
8C
|z8C , A8C = A] ≠ 0, even if exogeneity condition �[EA

8C
|z8C] = 0 holds. Omitting this

observation and estimating #A conditionally on A8C = A (i.e., based on the sub-sample
of farmers usingCMP A) using ordinary least squares (LS) inModel (1.2)would result
in biased estimates of #A . Indeed, we can write the conditional expectation of H8C on
z8C and A8C = A as

�[ln HA8C |z8C , A8C = A] = B
A(w8C ; #A) + �[EA8C |z8C , A8C = A],

where �[EA
8C
|z8C , A8C = A] is a non-trivial function of z8C that generates an estimation

bias when it is ignored. As for input use models and their estimation, the reasoning

7According to this schematic model farmers ignore input costs, which is basically harmless when
these don’t depend much on CMPs. Farmers are also assumed to perfectly anticipate the technology
specific production levels. This assumption does not hold for crop production, which is highly random
to its dependence on weather effects, on weed competition and on pest and diseases outbreaks.
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still applies i.e.

�[ln GA
:,8C
|z8C , A8C = A] = 3A:(w8C ; "A:) + �[D

A
:,8C
|z8C , A8C = A].

Non parametrically estimating conditional expectation terms �[EA
8C
|z8C , A8C = A] and

�[DA
:,8C
|z8C , A8C = A] is possible but difficult. Furthermore, this requires the information

content of the technology choice instrumental variables, q8C , to be sufficient, which
is rarely the case. Yet, ERS models generally make the most of their fully paramet-
ric form. Self-selection effects and selection biases are accounted for by explicitly
modelling the error term correlations. For estimation purposes, pairs (48C , EA8C) and
(48C , DA:,8C) are typically assumed to be normal and not to depend on z8C for A ∈ {0, 1},
i.e.:

(EA8C , 48C)|z8C ∼ N(0,

A
E4) with 
A

E4 =

[
$A
EE $A

E4

$A
E4 $44

]
,

and

(DA
:,8C
, 48C)|z8C ∼ N(0,
A

:,D4
) with 
A

:,D4
=

[
$A
:,DD

$A
:,D4

$A
:,D4

$44

]
.

Under these assumptions, the considered model is fully parametric and parameters
(#0 , #1 , $) or ("0

:
, "1

:
, $) can be estimated by using Maximum Likelihood (ML) or

Heckman’s well known two-step estimators (e.g., Heckman, Tobias, and Vytlacil,
2003; Wooldridge, 2002). In particular, under these assumptions technology choices
follow a standard Probit model conditionally on z8C , implying that parameter $

can easily be estimated in a first step. More importantly, these joint normality
assumptions allow error term 48C and error terms (EA

8C
, DA

:,8C
) to be correlated. Yet,

these normality assumptions impose these links to be linear. These links are fully
described by fixed covariance parameters $A

E4 and $A
:,D4

.

Estimation of the standard Gaussian ERS model

Heckman’s two-step estimator makes use of well-known results on the effects of
auxiliary truncations on the moments of jointly normal variables. These results
allow to devise control functions to account for endogenous sample selection issues.
Those control functions are then used in the second step of Heckman’s estimation
approach. From the results on the effects of auxiliary truncations we can derive the
followingmeans of the error terms of the yield and input use levelmodels conditional
on technology choices:

�[EA8C |z8C , A8C = A] = ($44)−1/2$A
E4�

A
(
($44)−1/2<(z8C ; $)

)
, (1.4)

and
�[DA

:,8C
|z8C , A8C = A] = ($44)−1/2$A

:,D4
�A

(
($44)−1/2<(z8C ; $)

)
, (1.5)
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where �(·) denotes the inverse Mills ratio (IMR). The IMR corresponds to:

�(0) = Φ(0)−1!(0),

where function !(·) denotes the probability distribution function ofN(0, 1) and Φ(·)
its cumulative distribution function. Moreover, function �A(·) is defined by

�A(0) = (2A − 1)� ((2A − 1)0) .

If $A
E4 = 0 and $A

:,D4
= 0, then error term 48C is uncorrelated with error terms EA

8C

and DA
:,8C

. In that particular case, technology choice endogeneity can be ignored
conditionally on z8C in the yield and input use levels models. Otherwise, when such
exogeneity conditions are notmet, Equations (1.4) and (1.5) provide control functions
for the second step of Heckman’s estimation approach. Thus, we can define the
following ”augmented“ regression equations for estimating the technology specific
yield supply models:

ln HA8C = B
A(w8C ; #A) + $A

E4�
A
(
<(z8C ; $)

)
+ �A

:,8C
, (1.6)

and input demand models:

ln GA
:,8C

= 3A
:
(w8C ; "A:) + $

A
:,D4

�A
(
<(z8C ; $)

)
+ �A

:,8C
, (1.7)

with �[�A
:,8C
|z8C , A8C = A] = 0 and �[�A

:,8C
|z8C , A8C = A] = 0. Generally, the normalization

condition $44 = 1 is imposed, as it is the case in Equations (1.6) and (1.7).

Before estimating such “augmented models", we need to estimate parameter $ to
compute an estimate of Mills ratio terms �A

(
<(w8C , q8C ; $)

)
. The estimation of pa-

rameter $ corresponds to the first step of Heckman’s two step estimation procedure.
Then, LS estimators based on the farm sub-sample actually using CMP A can be used
for consistently estimating parameter of the “augmented” models i.e. (#A , $A

E4) and
("A

:
, $A

:,D4
).8 When functions BA(w8C ; #A) and 3A:(w8C ; "A:) are linear in their parameters,

linear LS can be implemented.

The estimation of ERS models relies on instrumental variables q8C . Effectively,
these variables are part of the CMP choice drivers z8C but are excluded from the
drivers of the input demand and yield supply functions w8C . Thus, inducing ex-
ogenous variations in Mills ratio terms �A

(
<(w8C , q8C ; $)

)
contributes to separately

identify parameters #A and $A
E4 in the yield supply equation (Equation (1.6)). In the

absence of such instrumental variable vector, the separate identificationof parameters

8From that second step we can also derive a test for the exogeneity of technology choices condition-
ally on z8C . Indeed, null hypotheses $AE4 = 0 or $A

:,D4
= 0 that are tested with the usual Student or Chi-2

tests, correspond to the absence of technology endogeneity. Given that under the null hypotheses, the
first step of the estimation process does not affect the second step estimators, the standard tests can be
used without correcting for multistage estimation.
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#A and $A
E4 only relies on the functional formdifferences that distinguish the effects of

w8C in structural function BA(w8C ; #A) and in control function $A
E4�

A
(
<(z8C ; $)

)
. Such

functional form identification strategy is unwarranted as it relies onquestionable, and
partly untestable, distributional assumptions (e.g., Wooldridge, 2015). Yet, it is often
difficult to find instrumental variables with sufficient information content to ensure
the identification of the model parameters in a non-parametric sense. Admittedly,
factors impacting technology choices are likely to impact input choices and produc-
tion outcomes as well. Thus, identification of the model parameters generally relies
on both the effects of instrumental variable q8C in control functions $A

E4�
A
(
<(z8C ; $)

)
and $A

:,D4
�A

(
<(z8C ; $)

)
, as well as on the functional form differences distinguishing

the effects of control variables w8C in the control functions and in the core of the
model, i.e. in functions BA(w8C ; #A) and 3A:(w8C ; "A:).

Despite being easy to implement, Heckman’s two-step estimator is less efficient
that its ML counterpart. This is due to the fact that it fails to account for statistical
element linking the estimation criterion of $ and those of the other parameters.
Additionally, even if it relatively easy, determining the asymptotic distributions of
the second step estimators, which depend on that of the estimator of $, remains
a tedious task. Resampling techniques can be used for estimating the empirical
distribution of the second step estimators. Yet, even if easy to implement, these
techniques are computationally intensive.

Some extensions of the standard ERS model

The benefit of ERS models as presented above is that they allow to estimate aver-
age causal effect of technology choices. In particular, we can derive from the ERS
model the average causal effect of CMP 1 (compared to CMP 0) on yield level, i.e.
�[ln H1

8C
− ln H0

8C
]. One can also estimate the average causal effect of CMP 1 for farmer

using CMP A, i.e. �[ln H1
8C
− ln H0

8C
|A8C = A].9 Overall, ERS models permit to estimate

the overall impact of technology choice on input uses or yield levels but also the
differentiated impact for each farm type. Up to our knowledge, Di Falco, Veronesi,
and Yesuf (2011) present the first application of this approach comparing the effects
of production technologies on agricultural production choices or outcomes. Not to
be forgotten are the restrictive parametric and distributional assumptions that allow
to draw such average causal effects of ”treatments“. Yet, ERS is among the few ap-
proaches that are applicable when the information content of the control variables
does not permit to correct entirely the self-selection effects and/or selection biases.

9In a context of endogenous covariates, usual formulas for estimating the causal effect of CMP
choice need to be adjusted for.
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As originally developed by Lee (1978), the ERS model is designed to compare
the effects of two technologies: the conventional and the innovative alternative tech-
nology (see, e.g., Abdulai and Huffman, 2014; Di Falco, Veronesi, and Yesuf, 2011;
Fuglie and Bosch, 1995; Kabunga, Dubois, and Qaim, 2012; Khanal et al., 2018b; Pitt,
1983; Shiferaw et al., 2014, for applications to agricultural production technology).
Some extensions of the basic ERSmodel were proposed by (i)Wu and Babcock (1998)
and Di Falco and Veronesi (2013) for more than two technologies and by (ii) Khanna
(2001) for sequential adoption of several technologies. Next section is dedicated to
the presentation of the extension proposed by Suri (2011), an extension requiring
panel data.

1.3.3 Technology specific production function in a panel data ERS model

The extension of Suri (2011) makes the most of panel data by developing an ERS
model free of (parametric) technology choice model. The resulting model is based
on technology specific yield models given by

ln HA8C = �AC + ln x′8C#AG + EA8C ,

where EA
8C
= �A

8
+ �A

8C
. The error term EA

8C
is defined as the sum of a farm and technol-

ogy specific random term, �A
8
, and of a technology specific idiosyncratic error term,

�A
8C
. Error term �A

8
can also be decomposed into the sum of two independent terms,

�A
8
= �A�8 + �8 (e.g., Heckman and Honore, 1990; Lemieux, 1998). �A�8 represents

the technology specific term and captures the comparative advantage of technology
1 over technology 0. On the other hand, �8 is a farm(er) specific term capturing the
absolute productivity advantage. This decomposition is finally used for transform-
ing regime switching equation ln H8C = A8C ln H1

8C
+ (1 − A8C) ln H0

8C
into a “generalized”

yield model.

The resulting yield model is a correlated random coefficient model that can be
estimated using an extension of the linear projection approach proposed by Cham-
berlain (1982, 1984). Yet, for the parameters to be correctly identified, technology
choice A8C needs to be uncorrelatedwith error terms�A

8C
and farm specific parameter �8

(although A8C can, and is likely to, be correlated with comparative advantage random
term �8). The most appealing characteristic of this ERS modelling framework is the
fact that it does not rely on restrictive functional form assumptions. In particular,
technology choice does not need to be modelled. The counterpart of that is the need
for (i) observed technology choices for several consecutive years for most farmers
and (ii) sufficient technology changes in the dataset.10

10Also, identification of the considered model rests on unusual assumptions regarding input uses,
x8C . First, input uses are assumed to not depend on technology choice A8C . This assumption is unusual
for ERSmodels considering agricultural production technology choices. Second, input uses are assume
exogenous with respect to error terms �A

8C
and, especially, to farm specific random term �8 . The strict

exogeneity assumption stating that �[�A
8C
|x8C] = 0 is common in panel data models of production
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1.4 A new modelling framework to account for technology
choice in agricultural production using the primal

Despite the wide variety of approaches proposed in the literature – most standard
ones we presented erstwhile – for comparing implications of technology choice on
cropproduction choices andoutcomes, anyof these approaches fully fulfill ourneeds.
As a matter of fact, we intend to assess the effects of, low-input versus high-input,
CMPs on the production function describing how wheat yield responds to chemical
input use levels. From that derives the fact that we need to consider primal yield
functions instead of dual yield supply functions. Yet, when measuring the effects of
production technologies on farmers’ choices and production outcomes, most studies
consider input demand and yield supply models. The studies of Suri (2011) and
Michler and Shively (2015) are notable exceptions in this respect.

Considering primal yield functions implies that the input endogeneity issues
need to be addressed to get consistent estimates of the production function (e.g.,
Ackerberg, Caves, and Frazer, 2015; Griliches andMairesse, 1995).11 Such endogene-
ity issues are well-known. For instance, farmers adapt their fertilizer and pesticide
uses to the conditions prevailing in their fields. While they are observed by farmers,
these conditions are generally poorly documented in standard datasets, implying
that their effects are captured by the random terms of the yield functions and that
these random terms are likely to be correlated with chemical input uses. As pointed
out by Ackerberg, Caves, and Frazer (2015), applied economists have devoted much
attention to this problem and to approaches to solve it.12 Yet, to our knowledge, none
of those approaches were consideredwhen estimating production functions in a ERS
framework. Indeed, estimating technology specific production functions in an ERS
model requires us to simultaneously address the endogeneity issue of input uses and
the one related to the technology choice.

The low-input CMP is primarly intended to reduce pesticide use – a shared objec-
tive for most public authorities. Thus, we pay special attention to the effects of
these particular inputs in the yield functions we consider. Following the agricultural
production literature, and in particular the work from Lichtenberg and Zilberman
(1986), we consider a yield functions in which pesticides impact crop production

functions. Assuming that input uses and the farm specific effect is much less frequent, due to the
seminal work of Mundlak (1961) in particular (see, e.g., Griliches and Mairesse, 1995).

11Input use endogeneity in agricultural production functions is often used as a typical example in
the econometric literature considering endogeneity issues in general (e.g., Chamberlain, 1982, 1984;
Mundlak, 1961, 1978, 1996; Zellner, Kmenta, and Dreze, 1966).

12See Ackerberg, Caves, and Frazer (2015) for a brief overview of the related literature and Greene,
2020, Chapter 8.
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through their effects in a damage abatement function.13 The use of damage abate-
ment function highlights the protective role of pesticides on crop yields whereas
other inputs are generally considered as purely productive inputs that are increasing
the potential yield level. Yet, yield functions featuring damage abatement functions
are generally nonlinear in their parameters. Instrumental variables techniques, usu-
ally considered for dealing with input use endogeneity, are more complex to use
in a nonlinear framework. In particular, standard nonlinear 2SLS estimators often
perform poorly in practice. Solutions to this problem have been proposed, including
estimation approaches based on Generalized Method of Moments (GMM) estima-
tors using estimated (near-)efficient instruments, but their practical implementation
is not straightforward. The estimation approach thatwe proposemakes use of instru-
mental variables to determine control functions instead of estimating orthogonality
conditions (e.g., Wooldridge, 2015).14

Our estimation framework can be seen as an extension to Heckman’s two-step
approach for estimating regressionmodels under endogenous sample selection with
endogenous regressors. We use a control function that accounts for the correlation
of the endogenous regressors and we adapt the expression of the Mills ratio that is
used for controlling for endogenous sample selection in the approach of Heckman.
Another extension of Heckman’s two-step estimation approach under endogenous
sample selection was proposed by Wooldridge (2010) for handling the issues raised
by endogenous regressors. This approach relies on the usual Mills ratios to deal
with endogenous sample selection but uses 2SLS estimators, with Mills ratio terms
included in the instrument vectors, for accounting for regressor endogeneity. This
approach is well suited for linear models but requires significant adaptations for
estimating models with nonlinear functional forms. The approach we developed
here is easier to implement in practice than its competing alternatives, although it
requires distributional assumptions that are more restrictive.

1.4.1 Technology specific yield and input demand functions in a ERS
framework

To investigate the effects of the low-input versus high-input CMP choice on wheat
yield response to chemical input uses, we consider an ERS model that combines (i) a
pair of CMP specific yield function and input demand systems:

(H8C , x8C) = (HA8C , x
A
8C) if A8C = A, (1.8)

13See Frisvold (2019) for a literature survey on the measurement of the effects of pesticides on crop
production.

14Kutlu (2010) proposed a similar approach, which has been widely used since then (e.g., Amsler,
Prokhorov, and Schmidt, 2016; Kumbhakar, Parmeter, and Zelenyuk, 2020), for dealing with the same
issues in stochastic production frontier models.
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where

{
ln HA

8C
= ln 5 A(xA

8C
, c8C ; #A) + EA8C

ln GA
:,8C

= 
A
:,0 +w′8C"A:,F + D

A
:,8C

: ∈  , with (ii) a standard CMP choice

model:
A8C = 1{�0 + $′Iz8C + 48C ≥ 0}. (1.9)

As evoked before, the functional form of CMP specific yield functions 5 A( · ; #A) is
nonlinear in parameter vector #A . Input demand models and the index of the CMP
choice are assumed to be linear in their explanatory variables and parameters.15 Ad-
ditional assumption is that all considered models entail additively separable error
terms (respectively, EA

8C
, uA

8C
and 48C , with uA

8C
= (DA

:,8C
: : ∈  )) as their unique random

terms. In particular, it means that farmers’ chemical input choices respond homoge-
neously to price changes.16

Unlike other ERS models that have been considered in the literature, our model
considers endogenous regressors. Specifically, we address the potential correlation
between xA

8C
and EA

8C
that comes from the fact that chemical input use levels xA

8C
are likely

to be endogenous in the corresponding yield functions, with xA
8C
= (GA

:,8C
: : ∈  ) the

vector of input uses. We assume that variables z8C are exogenous with respect to
error terms EA

8C
and uA

8C
. From that we derive that xA

8C
and EA

8C
are correlated conditional

on z8C only if error terms EA
8C
and uA

8C
are correlated. We assume that error term

vectors (EA
8C
, uA

8C
, 48C) are jointly normal and independent of control and instrumental

variables z8C , with

(uA8C , E
A
8C , 48C)|z8C ∼ N(0,


A) with 
A =



A
DD 
A

DE 
A
D4

(
A
DE)′ $A

EE $A
E4

(
A
D4) $A

E4 1

 for A ∈ {0, 1}, (1.10)

where


A
DE = ($A

:,DE
: : ∈  ), 
A

D4 = ($A
:,D4

: : ∈  ) and 
A
DD = [$A

:ℓ ,DD
: (:, ℓ ) ∈  ×  ].

Apart frombeingusually imposed, thewell-knownproperties ofmultivariate normal
variables make such assumption convenient to deal with the multiple endogeneity
issues we face.

1.4.2 Insights for the estimation procedure

Despite our considering a fully parametric ERS model, the nonlinear production
function and the numerous parameters to be estimated advocate for an alternative
estimation procedure to the standard ML. The distributional assumptions given in
Equation (1.10) enable us to define an alternative, multistage estimation approach for

15These functional forms are obviously convenient for estimation purpose but more general func-
tional forms could be considered without significantly impacting the estimation process of the model.

16Koutchadé, Carpentier, and Féménia (2018, 2020) recently provided empirical evidences showing
that farmers respond heterogeneously to economic incentives.
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our ERS model. This estimation approach is fairly simple as it consists in a sequence
of estimation problems that are easy to solve, i.e. Probit model and LS estimation
problems. The estimation approach we present thereafter can be seen as an exten-
sion of Heckman’s two-step approach for estimating standard – i.e. with exogenous
explanatory variables – Gaussian ERS models (e.g., Heckman, Tobias, and Vytlacil,
2003; Wooldridge, 2002, 2015). It relies on two sets of control functions. The first one
is used to deal with the input use endogeneity issue in the production function while
the second one is used to deal with the sample selection issues due to the production
practice choice.

First, we proceed with the estimation of the CMP specific input use models. One
can define a standard, linear and Gaussian, ERS model for each considered input
with the following input demand model:

ln GA
:,8C

= 
A
:,0 +w′8C"A:,F + D

A
:,8C

when A8C = A. (1.11)

Then, we make use of Heckman’s standard result (Heckman, 1976, 1979):

�[DA
:,8C
|z8C , A8C = A] = $A

:,D4
�A(�0 + $′Iz8C),

to get augmented regression equations given by:

ln G:,8C = 
A
:,0 +w′8C"A:,F + $

A
:,D4

�A(�0 + $′Iz8C) + �A:,8C , (1.12)

with �[�A
:,8C
|z8C , A8C = A] = 0. Equation (1.12) defines regression models in the sub-

samples defined by the farming system choices. Term $A
:,D4

�A(�0 + $′Iz8C) defines a
control function for endogenous selection of the observations characterized by A8C = A
in the considered sub-sample. Error term �A

:,8C
is defined by �A

:,8C
= DA

:,8C
−$A

:,D4
�A(�0+

$′Iz8C), which implies that exogeneity condition �[�A
:,8C
|z8C , A8C = A] = 0 necessarily

holds (in the sub-sample characterized by A8C = A).

Input demand functions can thus be estimated following Heckman’s two-step ap-
proach. First, the Probit model of A8C |z8C (defined by Equation (1.9)) is estimated by
ML for obtaining a consistent estimate of parameter $, $̂ = (�̂0 , $̂I). This estimate
can then be used for obtaining consistent estimates ofMills ratio terms, �A(�̂0+ $̂Iz8C).
Second, consistent estimates of parameters (
A

:,0 , "
A
:,F
, $A

:,D4
) can be obtained by ap-

plying standard linear LS to Equation (1.12) in the sub-sample characterized by A8C = A
after replacing terms �A(�0 + $′Iz8C) by their estimates. Let vectors (
A

:,0 , "
A
:,F
, $A

:,D4
)

denote these parameter estimates.
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Let now consider the following CMP specific yield function:

ln H8C = ln 5 A(x8C , c8C ; #A) + EA8C .

From the joint distribution of error term vectors (EA
8C
, uA

8C
, 48C) (cf. Equation 1.10) and

technology choice model, we can write:17

�[ln H8C |x8C , z8C , uA8C , A8C = A] = ln 5 A(x8C , c8C ; #A) + (1AED)′uA8C + #
A
E4�

A
8C , (1.13)

which is the first key result for our estimation approach, where:

�A8C = (#
A
44)−1/2�A

(
(#A44)−1/2(�0 + $′Iz8C + (1A4D)′uA8C)

)
, (1.14)

and
1AED = (
A

DD)−18A
DE ,

1A4D = (
A
DD)−18A

D4 ,

#AE4 = $A
E4 − (8A

DE)′(
A
DD)−18A

D4 ,

#A44 = 1 − (8A
D4)′(
A

DD)−18A
D4 .

(1.15)

In Equation (1.13), term (1AED)′uA8C is a control function for the endogeneity of x8C = xA
8C

while term #AE4�
A
8C
is a control function for the selection of observations characterized

by A8C = A. Error term uA
8C
can be defined as a function of exogenous variables that

include price vector p8C . This vector plays the role of instrumental variables of the
endogenous input use levels xA

8C
in the model of ln HA

8C
. Equation (1.14) shows adding

the usual Mills ratio, �A(�0 + $′Iz8C), is inappropriate for controlling for sample
selection in the yield model with endogenous input uses. Term �A

8C
has error term uA

8C

as an argument and needs to be scaled by parameter (#A44)−1/2. Equations (1.13) and
(1.14) imply that a model of ln H8C can be written as

ln H8C = ln 5 A(x8C , c8C ; #A) + (1AED)′uA8C + #
A
E4�

A
8C + �

A
8C , (1.16)

with�[�A
8C
|x8C , z8C , uA8C ,�

A
8C
, A8C = A] = 0. Error term�A

8C
is definedby�A

8C
= EA

8C
−(1AED)′uA8C−

#AE4�
A
8C
. Equation (1.16) states that ln H8C follows a regressionmodel in (x8C , c8C , uA8C ,�

A
8C
)

conditionally on A8C = A. Accordingly, consistent estimates of parameters #A , 1AED and
#AE4 can be obtained by applying non linear LS to the “augmented” regression model
given in Equation (1.16) based on the sub-sample of farmer using farming system A.
Yet, implementing this approach supposes that error terms uA

8C
and Mills ratio terms

�A
8C
can be estimated a priori. Consistent estimates of error terms vectors uA

8C
, denoted

by ûA
8C
= (D̂A

:,8C
: : ∈  ), are easily obtained by using the residual terms of the input

demand models, that is to say terms DA
:,8C

= ln GA
:,8C
− 
A

:,0 − w′8C"A:,F for : ∈  and
A ∈ {0, 1}.

The second key result on which our estimation is based implies that parameters #A44
17Calculation details leading to this first key result can be found in Appendix 1.6.1.
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and 1A4D can be estimated a priori, implying that terms�A
8C
can also be estimated a priori.

Indeed, given that we can consistently estimate 8A
D4 a priori, definitions of #A44 and

1A4D (cf. Equation (1.15)) show that we just need to obtain a consistent estimate of
A
DD

– i.e. parameters $A
:ℓ ,DD

for : ∈  – for obtaining consistent estimates of parameters
#A44 and 1A4D , and thus of terms �A

8C
. Terms $A

:ℓ ,DD
are marginal covariance parameters.

Howbeit, we can only get estimates of error terms DA
:,8C

when A8C = A. Yet, we can
easily demonstrate that, to obtain $A

:ℓ ,DD
, we just need to correct �[DA

:,8C
DA
ℓ ,8C
|A8C = A]

for yielding �[DA
:,8C
DA
ℓ ,8C
].18 This result is given by:

$A
:ℓ ,DD

= �[DA
:,8C
DAℓ ,8C |A8C = A] + $

A
:,D4

$A
ℓ ,D4�[(�0 + $′Iz8C)�A(�0 + $′Iz8C)|A8C = A], (1.17)

for (:, ;) ∈  2. All parameters involved in the right hand side term of Equation (1.17)
can be estimated a priori. Conditional expectation �[DA

:,8C
DA
ℓ ,8C
|A8C = A] is consistently

estimated in the input demandmodel by its empirical counterpart in the sub-sample
characterized by A8C = A. Consistent estimates of parameters $A

:,D4
and (�0 , $I)

are also obtained when estimating respectively the input demand and technology
choice models. As a result, the sample counterpart of the right hand side term of
Equation (1.17) provides a consistent estimator of parameter $A

:ℓ ,DD
, implying that a

consistent estimate of matrix 
A
DD is easily obtained.

The above key results – which are fully described in Appendices 1.6.1 and 1.6.1
- and insights yield an estimation procedure for estimating an ERS model with en-
dogenous regressors. To summarize this procedure consists of three main steps.
First, we estimate the technology choice model. Results of this estimation step pro-
vide elements for computing control functions that are used in the next step. Second,
we estimate the ERS input use models. Once again, results obtained in this estima-
tion step are used for computing control functions to be used in the next step. The
ERS yield function models are estimated in the last step. Empirical estimates of the
resulting multistep estimator can be obtained based on resampling techniques. The
detailed estimation procedure is detailed thereafter:

(A.1) Compute the ML estimate of (�0 , $I), (�̂0 , $̂I), by estimating the Probit model
of A8C |z8C based on the full sample.

(A.2) Compute the estimates of the Mills ratio terms �A(�0 + $′

Iz8C), �̂
A(0)
8C

= �A(�̂0 +
$̂′

Iz8C), for the sampled farms using CMP A, for A ∈ {0, 1}.

(B.1) Compute the LS estimates of (
A
:,0 , "

A
:,F
, $A

:,D4
), (
̂A

:,0 , "̂
A
:,F , $̂

A
:,D4
), by regress-

ing ln G:,8C on (1,w8C , �̂
A(0)
8C
) based on the sup-sample of farms using CMP r, for : ∈  

and A ∈ {0, 1}.
(B.2) Compute the estimates of error terms DA

:,8C
, D̂A

:,8C
= ln G:,8C − 
̂A:,0 −w′8C "̂A:,F , for

the sampled farms using CMP A, for : ∈  and A ∈ {0, 1}. Construct the estimate of

18Calculation details leading to this result can be found in Appendix 1.6.1.
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vector 8A
D4 , 8̂

A
D4 = ($̂A

:,D4
: : ∈  ), for A ∈ {0, 1}.

(C.1) Compute the estimates of parameters $A
:ℓ ,D

, with
$̂A
:ℓ ,DD

=
(∑

8 ,C 1(A8C = A)
)−1(∑

8 ,C 1(A8C = A)D̂A:,8C D̂
A
ℓ ,8C
+ $̂A

:,D4
$̂A
ℓ ,D4

∑
8 ,C (�̂0 + $̂′

Iz8C)�̂
A(0)
8C
(�0 + $′

Iz8C)
)

for (:, ℓ ) ∈  ×  and A ∈ {0, 1}.
(C.2) Construct the estimate of matrix 
A

DD , 
̂
A

DD = [$̂A
:ℓ ,DD

: (:, ℓ ) ∈  ×  ], that of
term #A44 , #̂A44 = 1 − (8̂A

D4)′(
̂
A

DD)−18̂A
D4 , and that of vector 1A4D , 1̂

A
4D = (
̂

A

DD)−18̂A
D4 , for

A ∈ {0, 1}.
(C.3) Compute the estimates of control terms �A

8C
,

�A
8C
, �̂A

8C
= (#̂A44)−1/2�A

(
(#̂A44)

−1/2[�̂0 + $̂′

Iz8C + (1̂
A
4D)′û

A
8C]

)
, for the sampled farms using

CMP A, for A ∈ {0, 1}.

(D) Compute the nonlinear LS estimates of (#A , 1AED ,#AE4), (#̂
A
, 1̂AED , #̂

A
E4), by consid-

ering the approximate “doubly augmented” model of ln H8C ,
ln H8C = ln 5 A(x8C , c8C ; #A) + (1AED)′û

A
8C + #AE4�̂A8C + �̂

A
8C

with �[�̂A
8C
] = 0, based on the sub-sample of farms using CMP A, for A ∈ {0, 1}.

(E)Use resampling techniques for computing the empirical distribution of the corre-
sponding estimators of parameter vector (#A , 1AED ,#AE4), as well as of parameter vector
(
A

:,0 , "
A
:,F
, $A

:,D4
) for : ∈  , for A ∈ {0, 1}.

1.4.3 Identifying assumptions, model nonlinearity and other estimation
methods

The conditional joint normality assumptions given in Equation (1.10) are necessary to
ensure the consistency of the results obtained with the above estimation procedure.
Indeed, they are the foundations of the control functions we use to account for our
multiple endogeneity issues. Relaxing the independence assumption of error term
vectors (EA

8C
, uA

8C
, 48C) and z8C is very difficult, excepted for allowing heteroscedasticity

of the error terms conditionally on z8C . Relaxing the normality assumptions for vec-
tors (EA

8C
, uA

8C
, 48C) would require substantial adjustments in the estimation procedure

presented above.

Another consistent estimation process for CMP specific yield models can be
derived fromWooldridge (2010). The estimation procedures relies on (i) a set of con-
ditional mean linearity conditions given by �[EA

8C
|z8C , 48C] = �AE48C and �[uA8C |z8C , 48C] =

�AD48C for A ∈ {0, 1} and (ii) the normality assumption for the CMP choice model i.e.
48C |z8C ∼ N(0, 1). Under these assumptions, augmented yield model with control
function $A

E4�
A(�0+$′Iz8C) can be estimated by 2SLS. Mills ratio terms �A(�0+$′Iz8C)

are included in the instrument set of the 2SLS estimator and permit to deal with
the endogenous sample selection issues. Yet, because we consider nonlinear yield
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models, estimators based on orthogonality conditions, such as nonlinear 2SLS, are
more complex to estimate.19 GMM can be a solution to get better estimation results.
Indeed, GMM relies on estimated instruments that are designed for making better
use of the information content of instrumental variables than standard nonlinear
2SLS estimators.20 Let’s consider the yield functions from the second step of the
approach proposed by Wooldridge (2010):

ln H8C = ln 5 A(x8C , c8C ; #A) + $A
E4�

A(�0 + $′Iz8C) + �A8C ,

where �[�A
8C
|z8C , A8C = A] = 0. The efficient instrument corresponding to this model is

given by:

'A(z8C) = �[(�A8C)
2 |z8C , A8C = A]−1 %

%(#A ,$AE4 )
�[ln 5 A(x8C , c8C ; #A)+$A

E4�
A(�0+$′Iz8C)|z8C , A8C = A],

or, equivalently by:

'A(z8C) = +[�A8C |z8C , A8C = A]
−1

[
fA(z8C ; #A)

�A(�0 + $′Iz8C)

]
,

where fA(z8C ; #A) = �
[

%
%#A

ln 5 A(x8C , c8C ; #A)|z8C , A8C = A
]
. Inwhat follows, the conditional

heteroskedasticity correction term +[�A
8C
|z8C , A8C = A]−1 is ignored, as it is usually the

case in practice. When ln 5 A(·) is linear in ln x8C (e.g., standard Cobb-Douglas or
Translog production functions), we have for the following formula for the gradient
term:

fA(z8C ; #A) = (1, c8C , �[ln x8C |z8C , A8C = A]).

In this case, (near)-efficient instrument 'A(z8C) can easily be estimated a priori. It
suffices to observe that the considered ERS model yields �[ln G:,8C |z8C , A8C = A] =

A
:,0 + w′8C"A:,F + $A

:,D4
�A(�0 + $′Iz8C). Yet, in cases where ln 5 A(·) is nonlinear in

ln x8C , computing gradient term fA(z8C ; #A) is much more challenging. Given that
�[ln x8C |z8C , A8C = A] can be computed, a possible solution consists of giving a rough
approximation for the gradient term as

fA(z8C ; #A) ≈ %
%#A

ln 5 A
(
�[ln x8C |z8C , A8C = A], c8C ; #A

)
,

for determining instruments for estimating the model of H8C in the GMM framework.
The structure of efficient instruments depending heavily on the functional form of
the model, we cannot give a general result here.

19For instance, Latruffe et al. (2017) report estimation results that document this point. Standardnon-
linear 2SLS estimators perform poorly when estimating their nonlinear stochastic production frontier
models.

20See, e.g., Chamberlain (1987) and Newey (1990, 1993). The considered instruments need to be
sufficiently close to the efficient instrument of the considered estimation problem, the form of which
was determined by Chamberlain (1987). They can be built based on preliminary estimation steps.
Latruffe et al. (2017) report that GMM estimators based on suitably designed instruments substantially
outperform standard 2SLS estimators when estimating nonlinear stochastic production frontiers.
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On the contrary, easy implementation is one of the benefit of our approach. In-
deed, our approach only involves using nonlinear LS and Probit ML estimators.
These estimators are efficiently coded in standard statistical software and perform
generally well in practice. Another advantage of our approach is its parsimony.
A single control function suffices to deal with the correlation of endogenous ex-
planatory variable with an error term, regardless of how this variable enters in the
considered model (e.g., linearly, polynomial, in logged form, etc.). The cost of such a
simple estimation approach is that it relies on joint normality assumptions that are
stronger than those considered by Wooldridge (2010).

1.5 Discussion

In this paper, we presented a novel estimation approach for an “extended” endoge-
nous regime switching model with endogenous regressors. Previous approaches
were unsatisfactory for our purposes. Because the model we considered entails
nonlinearities, standard instrumental variable approaches are difficult to implement.
We thus consider an approach relying on control functions to control for both en-
dogenous regressors and regime. We develop an estimation approach inspired by
Heckman two-step approach for selection model with a corrected inverse Mills ratio.
The great asset of such estimation approach is its simple implementation combined
with its parcimony. Yet, it comes at the price of (i) a lower efficiency compared to
the ML approach and (ii) more restrictive distributional assumptions compared to
the GMM approach. An interesting extension of this work would be to evaluate how
much findings differ when using each estimation approach.

An empirical application of the extended ERS model to the case of endogenous
covariates is provided in next chapter.
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1.6 Appendices

1.6.1 Calculation details

Calculation details of Equation (1.13)

This appendix demonstrates the following expression of conditional expectation
�[ln H8C |x8C , z8C , uA8C , A8C = A]:

�[ln H8C |x8C , z8C , uA8C , A8C = A] = ln 5 A(x8C , c8C ; #A) + (1AED)′uA8C
+ #AE4(#A44)−1/2�A

(
(#A44)−1/2[�0 + $′

Iz8C + (1A4D)′uA8C]
)
.

It is easily shown that:{
�[EA

8C
|x8C , z8C , uA8C , A8C = A] = �[EA

8C
|z8C , uA8C , A8C = A]

�[EA
8C
|z8C , uA8C , A8C = A] = (1AED)′uA8C + #AE4�

A
8C

The joint normality of vectors (uA
8C
, EA

8C
, 48C)|z8C ∼ N(0,
A) stated in Equation (1.10)

yields (EA
8C
, 48C)|(z8C , uA8C) ∼ N(RAuA

8C
,	A)where:

RA =

[
(1ADE)′

(1AD4)′

]
=

[
(8A

DE)′(
A
DD)−1

(8A
D4)′(
A

DD)−1

]
and

	A =

[
#AEE #AE4
#AE4 #A44

]
=

[
$A
EE − (8A

DE)′(
A
DD)−18A

DE $A
E4 − (8A

DE)′(
A
DD)−18A

D4

$A
E4 − (8A

DE)′(
A
DD)−18A

D4 1 − (8A
D4)′(
A

DD)−18A
D4

]
.

These results imply that terms EA
8C
and 48C can be decomposed as the following:

EA8C = (1
A
DE)′uA8C + �

A
E,8C

48C = (1AD4)′uA8C + �
A
4 ,8C ,

where (�A
E,8C
, �A
4 ,8C
)|(z8C , uA8C) ∼ N(0,	

A).

This also implies that:

�[EA8C |z8C , u
A
8C , A8C = A] = (1

A
ED)′uA8C + �[�

A
E,8C |z8C , u

A
8C , A8C = A].

Observing that A8C = 1[�0 + $′

Iz8C + (1AD4)′uA8C + �
A
4 ,8C
≥ 0], it suffices to apply standard

results on the means of truncated normal variables for obtaining

�[�AE,8C |z8C , u
A
8C , A8C = A] = #AE4(#A44)−1/2�A

(
(#A44)−1/2(�0 + $′

Iz8C + (1A4D)′uA8C)
)
= #AE4�

A
8C .
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Calculation details of Equation (1.17)

This appendix demonstrates that covariance parameter $A
:ℓ ,DD

can be expressed as:

$A
:ℓ ,DD

= �[DA
:,8C
DAℓ ,8C |A8C = A] + $

A
:,D4

$A
ℓ ,D4�[(�0 + $′

Iz8C)�A(�0 + $′

Iz8C)|A8C = A].

Given that 48C |z8C ∼ N(0, 1) and A8C = 1[�0 + $′

Iz8C + 48C ≥ 0], it is well known that:

�[48C |z8C , A8C = A] = �A(�0 + $′

Iz8C),

and

+[48C |z8C , A8C = A] = 1 − (�0 + $′

Iz8C)�A(�0 + $′

Iz8C) − �A(�0 + $′

Iz8C)2 ,

which yields:

�[(48C)2 |z8C , A8C = A] = 1 − (�0 + $′

Iz8C)�A(�0 + $′

Iz8C).

The joint normality of vectors (uA
8C
, EA

8C
, 48C)|z8C ∼ N(0,
A) stated in Equation (1.10)

allows towriteuA
8C
asuA

8C
= 8A

D4 48C+9AD,8C , where 9A
D,8C
|(z8C , 48C) ∼ N (0,
A

DD − 8A
D4(8A

D4)′).

Note the last result shows that terms 9A
D,8C

and 48C are independent conditionally on
z8C , implying in turn that residual terms 9A

D,8C
= (�A

:,D,8C
: : ∈  ) do not depend on A8C

conditionally on z8C . These results also yield that
DA
:,8C
DA
ℓ ,8C

= $A
:,D4

$A
ℓ ,D4
(48C)2 + $A

:,D4
48C�Aℓ ,D,8C + $

A
ℓ ,D4

48C�A:,D,8C + �
A
:,D,8C

�A
ℓ ,D,8C

�[48C�Aℓ ,D,8C |z8C , A8C = A] = �[�
A
ℓ ,D,8C
]�[48C |z8C , A8C = A] = 0

�[�A
:,D,8C

�A
ℓ ,D,8C
|z8C , A8C = A] = �[�A:,D,8C�

A
ℓ ,D,8C
] = $A

:ℓ ,DD
− $A

:,D4
$A
ℓ ,D4

.

Collecting these results gives:

�[DA
:,8C
DAℓ ,8C |z8C , A8C = A] = $A

:,D4
$A
ℓ ,D4�[(48C)

2 |z8C , A8C = A] + $A
:ℓ ,DD
− $A

:,D4
$A
ℓ ,D4 ,

and, finally

�[DA
:,8C
DAℓ ,8C |z8C , A8C = A] = $A

:ℓ ,DD
− $A

:,D4
$A
ℓ ,D4(�0 + $′

Iz8C)�A(�0 + $′

Iz8C).
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Chapter 2

Estimation of production functions
in low- and high-input production
practices1

2.1 Introduction

The need for a more sustainable agriculture is pressing and the reduction of adverse
environmental and health effects of agriculture is on top of the agenda of food-value
chain actors in Europe (Möhring et al., 2020). While current agricultural practices
often have deleterious effects on the environment and on biodiversity, there is a need
to maintain high production levels (see Foley et al., 2005, 2011). Low-input pro-
duction practices have been proposed as a compromise between environmental and
population growth concerns as they are scalable and thus applicable for large shares
of production practices (Aune, 2012; Fess, Kotcon, and Benedito, 2011; Meynard,
2008). Low-input production practices are characterized by the use of adjusted man-
agement, e.g., using agronomic principles and new technologies (e.g., new varieties)
that substantially reduce the use of synthetic pesticides and/or mineral fertilizers
(see, e.g., Bertrand and Doré, 2008; Meynard and Girardin, 1991; Rolland et al., 2003).
Yet, the switch to low-input production practices comes with challenges for farmers
and policy makers. First, the switch in production practices might be costly and
result in more uncertain payoffs, in particular because yields are more volatile (e.g.,
Finger, 2014; Gardebroek, Chavez, and Lansink, 2010; Greiner, Patterson, andMiller,
2009; Matyjaszczyk, 2019). Second, establishing political support may suffer from
windfall effects, possibly reducing the efficacy of such interventions (Finger and El
Benni, 2013; Pedersen et al., 2012). Public policy simulations accounting for farmers’
practices can help to design policies that are more efficient. However, the effects of
inputs on production and production risk might significantly differ across produc-
tion systems. Thismay render some policies (e.g., taxes) less efficient for some groups
of farmers as marginal abatement costs might significantly differ across production
systems. It is therefore important to map these differences and find suitable methods
for their identification.

1This chapter is written in collaboration with Niklas Möhring and Robert Finger.
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Earlier research on low-input production systems, was especially focused on
agronomic aspects, often targeting organic production techniques. For example, to
assess the sustainability of low-input practices some studies investigated into the
soil biology and its microbial composition (e.g., Clark et al., 1998; Kong et al., 2011;
Mäder et al., 2000; Scow et al., 1994) and others looked at the impact in terms of
yields (e.g., (e.g., Clark et al., 1999; Liebhardt et al., 1989; Seufert, Ramankutty, and
Foley, 2012). Economic research in this field addresses the differences between the
low-input and high-input agriculture in terms of production and production risks
(e.g., Gardebroek, 2006; Gardebroek, Chavez, and Lansink, 2010; Serra, Zilberman,
and Gil, 2008), efficiency and performance (e.g., Acs et al., 2007; Lansink, Pietola, and
Bäckman, 2002) as well as trade-offs with respect to the environmental performance
(e.g., Seufert and Ramankutty, 2017; Seufert, Ramankutty, and Foley, 2012). If self-
selection effects and selection biases are well-known when dealing with technology
choice (e.g., Abdulai and Huffman, 2014; Alene and Manyong, 2007; Asfaw et al.,
2012), most studies considering the impact of technology on agricultural production
do not investigate on the differentiated role of inputs in production function. Yet,
not considering these differences may lead to large biases in estimates.

We aim to fill this gap by estimating and comparing the production functions of
high-input and low-input production practices. We consider a case study of Swiss
wheat production, where both a low- and high-input wheat production system exist
in parallel. More specifically, our empirical analysis uses rich, high resolution panel
data on Swiss wheat production (617 observations, from 2009 to 2015), containing
detailed information on output and input use (i.e. on pesticide use, mechanical
weed control, fertilizer use, work and machinery), obtained from field journals. We
consider estimating a primal production function while accounting for self-selection
effects and selection bias. To this end, we consider an endogenous regime switch-
ing (ERS) model for low- and high-input technologies. To circumvent the problem
of traditional instrumental variable (IV) estimation techniques with the significant
nonlinearities in the damage abating part of the production function, we use con-
trol functions. It allows us to directly estimate (i) input use equations and (ii) dif-
ferent production functions for different farming types accounting for technology
heterogeneity. Furthermore, identification of the differences between low-input and
high-input farming through different parameters in the production and input use
functions then allow us to directly estimate the effect of policies, e.g. due to bans
of specific pesticides or taxes on inputs (Böcker, Möhring, and Finger, 2019; Finger
et al., 2017).

Unfortunately, our empirical analysis suffers from weak instruments in the input
use equations, implying that our results need to be interpreted cautiously. Nonethe-
less, our results tend to argue in favor of the production practice choice inducing
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selection biases when estimating yield and input use models. The input-use de-
mand model displays a positive estimated selection bias among high-input farmers,
i.e. their unobserved characteristics seem to boost up their pesticide uses. On the
other hand, the yield level model displays a positive estimated selection bias for
low-input farmers, i.e. their unobserved characteristics allow them to achieve greater
yield levels. Apart from that, the results from the yield model estimates tend also
to show differentiated input effect between low- and high-input farmers. Yet, the
weakness of the instrumental variables for input use encourages us to be very cau-
tious in interpreting the size of the estimated coefficients in our production function.
In particular, it challenges the estimation of the yield response to input use among
both sub-samples. It does not detract from the need to consider the selection issue
in order to evaluate the impact of the Swiss Extenso policy on pesticide uses.

The remainder of this article is structured as follows. The next section provides
an overview of the introduction and adoption of low-input practices. The following
section is dedicated to the methodological framework we used to explore both the
input endogeneity issue and the self-selection resulting from the productionpractices
choice. Once defined themethodological framework, we present the empiricalmodel
and the estimation strategy we use in this paper. Then, before presenting the results
from the production function estimates, we first present the data. Presentation of the
results is twofold. First, we give some insights from the estimation of the technology
choice and input use models. Then, we present the results from the estimation of
the production practices specific production function. Finally, results are discussed
so we can draw conclusions from this work.

2.2 Background

2.2.1 The economic and agronomic principles of low-input production
system

Agricultural policies in past decades encouraged intensive production practices, e.g.
due to price support (Guay, 2012). Since the 1990s, support has been increasingly
decoupled and low-input and integrated production systems have been increasingly
supported. Integrated production relies on the integration of natural resources and
regulation mechanisms to substitute for chemical inputs, e.g. through soil prepara-
tion operations, beneficialmanagement practices or crop rotations. Farmers adopting
low-input practices can also benefit from innovation such as crop breeding (Fess, Kot-
con, and Benedito, 2011; Möhring et al., 2020; Rolland et al., 2003). Instead of being
at the core of crop protection, pesticides in integrated pest management approaches
are one element among others and should only be usedwhen there is no other option
left (Lucas, 2007). Hence a substantial reduction of the use of synthetic pesticides and
mineral fertilizers can be achieved in these production practices (see, e.g., Bertrand



46

and Doré, 2008; Meynard and Girardin, 1991; Rolland et al., 2003). In Switzerland,
a voluntary integrated production program was introduced in 1992 (Boller et al.,
1998; El Benni and Finger, 2013). Farmer participation in the program is incentivized
with a price mark-up of around 5 CHF/100 kg (reflecting a ca. 10% price mark-up)
and federal, direct payments of 400 CHF per hectare. These payments are condi-
tional on farmers not using any fungicides, insecticides, plant growth regulators or
chemical-synthetic stimulators of natural resistance. This low-input wheat produc-
tion currently represents more than 50% of the total Swiss wheat production (Finger
and El Benni, 2013). In this low-input scheme, fungicide and growth regulator use is
substituted by variety choice and adjustment in production practices. Herbicides are
mainly substituted via mechanical weed control. Insecticides play only a minor role
in Swiss wheat production. Note that the use of mineral fertilizer is not restricted
in the low-input scheme. Yet, the marginal effects of input use on wheat yields may
differ across systems.

The impact of low-input production practices on production and the environment
ismultifaceted. Low-input systems tend to be associatedwith higher levels of organic
carbon, soluble phosphorus, exchangeable potassium and potentially mineralizable
nitrogen as well as a higher soil pH (Clark et al., 1998; Scow et al., 1994) and also
impact the soil microbial mass (Mäder et al., 2000; Scow et al., 1994). Such changes
in soil composition and biology are critical for long-term fertility maintainance and
allow for a reduction in chemical input use. The global effect on crop-yield is quite
complex to assess (Savary et al., 2019). Some studies reveal no significant difference
on yields (Lechenet et al., 2017; Mischler et al., 2009) or argue that such differences
are mainly contextual (Seufert, Ramankutty, and Foley, 2012). On the contrary, other
studies demonstrate a decrease in yields for low-input production practices (Clark
et al., 1999; Liebhardt et al., 1989). Yet, even if associated to a yield decrease, low-
input agriculture can show similar returns to high-input agriculture because of lower
costs for inputs and price premia (Clark et al., 1999; Rolland et al., 2003). However,
low-input practices might be riskier than high-input practices (Ridier et al., 2013),
lowering incentives for uptake by farmers and creating inertia in the change of pro-
duction practices.

2.2.2 How to integrate technology in farmers’ production function?

Standard production functions assume an homogeneous technology among farmers,
thereby assume that inputs play the same role in the farmers’ production functions,
other heterogeneity sources being accounted for. Thepresence of low- andhigh-input
production practices, which both rely on different agronomic principles, encourages
us to consider heterogeneous technologies. Yet, integrate technology choice in pro-
duction function is not trivial. If farmers face heterogeneous opportunity costs when
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considering technology adoption, arise then endogenous selection issues - in partic-
ular, a self-selection effect here - when comparing new and high-input technologies.
On that matter, Finger and El Benni (2013) found that adopters of low-input prac-
tices tend to be “smaller” farmers with already “lower” yields, which may indicate
that opportunity costs of adopting low-input practices are lower for smaller farms.
Additionally, the choice to adopt practices with more uncertain pay-offs might also
reveal differences in farmers’ attitudes. Mzoughi (2011) shows that farmers adopting
integrated crop protection tend to value the protection of the environment. When
they are not controlled for, such factors that affect both technology choice and other
production choices and outcomes induce endogeneity issues that are known in this
case as selection bias.2 Accounting for such selection bias is fundamental as such
unobserved factors might also affect farmers’ responses to public policy incentives
(Finger and El Benni, 2013; Mzoughi, 2011).

Endogenous regime switching models are the most common strategy to account
for the effects of technology in the agricultural production literature as they address
these selection bias issues. This approach was adopted for instance by Alene and
Manyong (2007) to evaluate the impact of farmer education on the productivity with
traditional and improved technology. Endogenous regime switching models were
also used by Asfaw et al. (2012) and Abdulai and Huffman (2014).3 Yet, unlike most
studies, we aim at studying the effect of technology on the response of crop yield
to chemical input uses, in particular to pesticides. This requires the use of primal
production function and as a consequence handling the issue of input uses endo-
geneity. Thus, the need to extend the standard endogenous regime switching model
for addressing both technology choice and input use endogeneity issues. Plus, in
order to correctly represents the steep decrease in crop protection level induced by
reducing pesticide uses, the use of a damage abatement function as proposed by
Lichtenberg and Zilberman (1986) seems appropriate. Hence, we consider a produc-
tion function that is separated between two parts: a potential yield function and a
damage abatement function. The potential yield function describes how productive
inputs contribute to the potential crop yield level, i.e. the yield level that is free of any
damage due to weeds, pests and/or diseases. The damage abatement function gives
the share of potential yield that is saved by using pesticides, which are chemical crop
protection inputs. To account for the potential complementary of inputs between
them, we allow inputs to have both a productive and damage abating role on crop

2Many common factors impact both technology choices on the one hand, and production choices
and outcomes on the other hand. If many of these factors are observed (e.g. market prices, weather
conditions or general farmer characteristics), many of them are unobserved – including soil quality,
farmer skills or their environmental preferences.

3Other approaches such as propensity score matching (Mayen, Balagtas, and Alexander, 2010)
eventually combined to a difference-in-differences (DiD) approach (Greene and Liu, 2021; Mennig and
Sauer, 2020) can be noted. Yet, they are not adapted in our context, especially the DiD approach,
as we do not have data on the yield levels of farmers before the implementation of the Swiss policy
encouraging extensive practices.
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yields (Saha, Shumway, and Havenner, 1997).

The next two sections are dedicated first to the presentation of the econometric
framework and how it is implemented.

2.3 Methodological framework: from a standard ERS to an
"extended" ERS model

We first introduce the standard endogenous regime switching (ERS) model frame-
work that we use to estimate our production and input demand functions. Let HA

8C
,

respectively xA
8C
= (GA

:,8C
: : ∈  ), denote the wheat yield level, respectively the input

use levels, of farmer 8 in year C under the condition that this farmer uses production
practice A ∈ {0, 1}. Let c8C denote control variables that might impact production
choices (e.g., topographic and weather conditions) and p8C be the vector of relevant
prices (e.g., crop and input prices). We assume that yield and input use levels can be
modelled the following system of yield and input demand functions that are specific
to the considered production practices:{

ln HA
8C

= ln 5 A(xA
8C
, c8C ; #A) + EA8C

ln GA
:,8C

= 
A
:,0 +w′8C"A:,F + D

A
:,8C

for : ∈  
, (2.1)

for A ∈ {0, 1} and where w8C = (p8C , c8C). Function 5 A(·) represents the general
form of the production function for production practice A. Vector #A , respectively

A
:
= (
A

:,0 , "
A
:,F
), is the parameter vector of the yield, respectively of input :, model.

Finally, term EA
8C
, respectively DA

:,8C
, is the error term of the yield model, respectively

of input : demand model.

We define the production technology choice model as a standard linear indexmodel:

A8C = 1(�0 + $′I + 48C ≥ 0). (2.2)

In vector z8C = (w8C , q8C), vector q8C collects farm(er) characteristics that might affect
production practices choice without directly impacting production (e.g., age and ed-
ucation). Vector z8C is used as a vector of instrumental variables for endogenous
technology choice A8C . This dichotomous choice model depends on parameter vector
$ = (�0 , $I) and contains an error term, 48C . Condition A8C = 1 states that farmer 8
chooses the low-input production technology at time C, while condition A8C = 0 states
that s/he chooses the high-input production technology.

We assume that the variables collected in vector z8C , which includes w8C , are ex-
ogenous in themodels given in Equations 2.1 and 2.2. But, we assume that input uses
xA
8C
can be endogenous in the production function of HA

8C
, implying that error terms EA

8C

and uA
8C
= (DA

:,8C
: : ∈  ) may be correlated. Finally, 48C represents the error term of
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the technology choice model. We also assume that the production practices choice
can be endogenous in the production and input demand equations, implying that
error terms 48C and (EA8C , u

A
8C
) may be correlated. Indeed, production practices, input

use and yield levels choices may all be impacted by common unobserved factors.

Since the seminal work of Heckman (1976, 1979) and Lee (1978), most ERS models
considered in applied econometric studies are parametric models based on multi-
variate normality assumptions. Equations 2.1 and 2.2 define an ERS model that
describes a vector of production choices (yield and input use levels), the models
of which depend on a regime (technology) choice. We extend the usual distribu-
tional assumptions on the error term vectors by assuming that vectors (EA

8C
, uA

8C
, 48C)

are multivariate normal and independent of the model information set, z8C :

(uA8C , E
A
8C , 48C)|z8C ∼ #(0,


A) with 
A =



A
DD 
A

DE 
A
D4

(
A
DE)′ $A

EE $A
E4

(
A
D4) $A

E4 1

 for A ∈ {0, 1} (2.3)

where


A
DE = ($A

:,DE
: : ∈  ), 
A

D4 = ($A
:,D4

: : ∈  ) and 
A
DD = [$A

:ℓ ,DD
: (:, ℓ ) ∈  ×  ].

Our assumption stating that error term 48C is normal, with 48C |z8C ∼ N(0, 1), implies
that the production practices choice model is a standard Probit model. The normal-
ization restriction stating that +[48C] = 1 is standard in this context.

Importantly, the Gaussian ERS model given in Equations (2.1) – (2.3) is not stan-
dard since input use levels may be endogenous in the corresponding technology spe-
cific production functions. Input use endogeneity in production function estimation
problems is a long-standing issue that has received much attention in the economet-
ric literature (e.g., Ackerberg, Caves, and Frazer, 2015). Yet, to our knowledge this
issue has not been considered in modelling framework involving ERS models.

2.4 Econometric implementation

2.4.1 ACobb-Douglas cropproduction functionwith adamage abatement
part

First, let describe the functional form we use for our production function. Apart
from using a primal function, we consider a crop production function where input
uses are assumed to be asymmetric. Thus, we consider three type of inputs: (i)
purely productive inputs that increase yields, (ii) purely damage abating inputs that
decrease the impact of damage events on yields, and (iii) interactive inputs that
might suffer from complementary with other inputs and thus cannot be classified as
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purelyproductive (or purelydamage abating). Let denote ℎA(·) (respectively 6A(·)) the
productivepart (respectively thedamageabatingpart) of theproduction functionand
x(ℎ) (respectively x(6)) the productive and interactive inputs (respectively the damage
abating and interactive inputs) that are covariates in function ℎA(·) (respectively 6A(·)).
We can thus rewrite the production practices specific crop yield function as:

5 A(c, x; #A) = BA(c; #A(2))ℎ
A(x(ℎ); #A(ℎ))6

A(x(6); #A(6)), (2.4)

where BA(·) defines the impacts of production conditions and farms’ characteristics c
on crop yields. (#A(2) , #

A
(ℎ) , #

A
(6)) is the set of production practices specific coefficients

from the production function.

Following Zhengfei et al. (2005, 2006) and Möhring et al. (2020), our empirical crop
yield function models combine Cobb-Douglas potential yield functions

ℎ(x(ℎ),8C ; #A(ℎ)) = exp(ln x′(ℎ),8C#A(ℎ),G),

and quadratic damage abatement functions

6A(x(6),8C ; #A(6)) = exp
(
−(�A(6),0 + x′(6),8C#A(6),G)

2
)
.

Quadratic damage abatement functions are convenient as negative estimates of #A(6)
are allowed and thus no particular estimation restrictions are needed. As for the
BA(·) part of the production function, we use a simple linear form. From that we can
derive the detailed yield production function as

ln H8C = �A0 + c′8C#A(2) + ln x′(ℎ),8C#A(ℎ),G − (�
A
(6),0 + x′(6),8C#A(6),G)

2 + EA8C , (2.5)

where EA
8C
still represents the error term.4

2.4.2 An original, multistep, estimation procedure

Our ERS model being fully parametric, it could be estimated in the maximum like-
lihood (ML) framework. Yet, its involving yield functions with nonlinear functional
form and its large parameter vector make the practical computation of maximum
likelihood estimators challenging. The distributional assumptions given in Equa-
tion (2.3) enables us to define an alternative, multistage, estimation approach for our
endogenous regime switchingmodel. This estimation approach is fairly simple since
it is defined as a sequence of estimation problems that are easy to solve, that is to say
Probit model estimation and least squares (LS) problems.

4The log transformation is standard in the agricultural production literature. It is particularly
convenient when using Cobb-Douglas functions as it permits to linearize the model. Yet, in our model,
the log transformation does not permit to linearize the model due to the damage abatement function.
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This estimation approach can be seen as an extension of Heckman’s two-step ap-
proach for estimating standard (i.e. with exogenous explanatory variables) Gaussian
ERSmodels (e.g., Heckman, Tobias, and Vytlacil, 2003; Wooldridge, 2002, 2015) to the
case with endogenous regressors. It relies on two sets of control functions. The first
one is used to deal with the input use endogeneity issue in the production function
while the second one is used to deal with the sample selection issues due to the
production practices choice.

Let consider first the estimation of the input demand models. Standard results due
to Heckman (1976, 1979) yield that:

�[DA
:,8C
|z8C , A8C = A] = $A

:,D4
�A(�0 + $′

Iz8C) for : ∈  and A ∈ {0, 1}. (2.6)

Function �A(·) is defined by

�A(0) = (2A − 1)� ((2A − 1)0) for A ∈ {0, 1}.

Following standard notations, function �(B) = Φ(B)−1!(B) denotes the inverse Mills
ratio at a given that function !(B), respectively Φ(B), denotes the probability, respec-
tively cumulative, distribution function ofN(0, 1) at B. Equation (2.6) is based on the
joint normality of error term pairs (DA

:,8C
, 48C) implied by assumption (2.3), on technol-

ogy choice model (2.2) and on the input use models given in Equation (2.1).

Equation (2.6) yields that equation:

ln G:,8C = 
A
:,0 +w′8C"A:,F + $

A
:,D4

�A(�0 + $′

Iz8C) + �A:,8C , (2.7)

where�[�A
:,8C
|z8C , A8C = A] = 0 defines regressionmodels in the sub-samples defined by

the production practices choices. Term $A
:,D4

�A(�0+$′

Iz8C) defines a control function
for endogenous selection of the observations characterized by A8C = A in the consid-
ered sub-sample. Error term �A

:,8C
is defined by �A

:,8C
= DA

:,8C
− $A

:,D4
�A(�0 + $′

Iz8C),
which implies that exogeneity condition �[�A

:,8C
|z8C , A8C = A] = 0 necessary holds (in

the sub-sample characterized by A8C = A).5

Input demand functions can thus be estimated following Heckman’s two-step ap-
proach. First, the Probit model of A8C |z8C (defined by Equation (2.2)) is estimated by
ML for obtaining a consistent estimate of parameter $, $̂ = (�̂0 , $̂I). This estimate

5In practice, because of zeros among the pesticide input uses, we consider an inverse hyperbolic
sine (IHS) transformation for pesticide use levels. We keep the log transformation for the nitrogen
variable. As the IHS transformation of pesticide use only intervene in the input use demand models
and as residuals in the yield control function, we expect a low impact on the estimation results of the
yield production function. We consider the IHS transformation rather than deleting the zeros because
among the 27 zeros observations, 26 belong to the high-input category. It means wewould loose 10% of
our high-input sub-sample, which is already smaller than the low-input one. Yet, a sensitivity analysis
when deleting these zeros from the observations will be performed.
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can then be used for obtaining consistent estimates ofMills ratio terms, �A(�̂0+ $̂Iz8C).
Second, consistent estimates of parameters (
A

:,0 , "
A
:,F
, $A

:,D4
) can be obtained by ap-

plying standard linear LS to Equation (2.7) in the sub-sample characterized by A8C = A
after replacing terms �A(�0 + $′

Iz8C) by their estimates. Let vectors (
̂A
:,0 , "̂

A
:,F , $̂

A
:,D4
)

denote these parameter estimates.

Let now consider the estimation problem of the yield functions given in Equa-
tion (2.1). The functional form of the models of ln H8C , assumption (2.3) and tech-
nology choice model (2.2) yield that:

�[ln H8C |x8C , z8C , uA8C , A8C = A] = ln 5 A(x8C , c8C ; #A) + (1AED)′uA8C + #
A
E4�

A
8C (2.8)

where
�A8C = (#

A
44)−1/2�A

(
(#A44)−1/2(�0 + $′

Iz8C + (1A4D)′uA8C)
)

(2.9)

and
1AED = (
A

DD)−18A
DE ,

1A4D = (
A
DD)−18A

D4 ,

#AE4 = $A
E4 − (8A

DE)′(
A
DD)−18A

D4 ,

#A44 = 1 − (8A
D4)′(
A

DD)−18A
D4 .

(2.10)

Equations (2.8)–(2.10), which are demonstrated in Chapter 1, describe the first key
result underlying our estimation approach. In Equation (2.8), term (1AED)′uA8C is a
control function for the endogeneity of input choices x8C (with x8C = xA

8C
) while term

#AE4�
A
8C
is a control function for the selection of observations characterized by A8C =

A. Error term uA
8C
can be defined as function of exogenous variables that include

price vector p8C , with uA
8C
= log GA

:,8C
− 
A

:,0 − w′8C"A:,F . This vector plays the role
of instrumental variables of the endogenous input use levels xA

8C
in the model of

ln HA
8C
. Equation (2.9) shows that adding the usual Mills ratios, �A(�0 + $′

Iz8C), is
inappropriate for controlling for sample selection in theyieldmodelwith endogenous
input uses. Term �A

8C
has error term uA

8C
as an argument and needs to be scaled by

parameter (#A44)−1/2. Equations (2.8) and (2.9) imply that a model of ln H8C can be
written as

ln H8C = ln 5 A(x8C , c8C ; #A) + (1AED)′uA8C + #
A
E4�

A
8C + �

A
8C , (2.11)

with �[�A
8C
|x8C , z8C , uA8C ,�

A
8C
, A8C = A] = 0 and where �A

8C
is the residual term defined by

�A
8C
= EA

8C
− (1AED)′uA8C − #AE4�

A
8C
. Equation (2.11) states that ln H8C follows a regression

model in (x8C , c8C , uA8C ,�
A
8C
) conditionally on A8C = A. Accordingly, consistent estimates

of parameters #A , 1AED and #AE4 can be obtained by applying non linear LS to the
“augmented” regression model given in Equation (2.11) based on the sub-sample
of farmer using production practices A. Yet, implementing this approach supposes
that error terms uA

8C
and Mills ratio terms �A

8C
can be estimated a priori. Consistent

estimates of error terms vectors uA
8C
, denoted by ûA

8C
= (D̂A

:,8C
: : ∈  ), are easily ob-

tained by using the residual terms of the input demand models, that is to say terms
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DA
:,8C

= ln GA
:,8C
− 
A

:,0 +w′8C"A:,F for : ∈  and A ∈ {0, 1}.

The second key result on which our estimation is based implies that parameters #A44
and 1A4D can be estimated a priori, implying that terms �A

8C
can also be estimated a

priori. Indeed, given that we can consistently estimate 8A
D4 a priori, conditions on #A44

and 1A4D in Equation (2.10) show that we just need to obtain consistent estimates of
matrices
A

DD – i.e. parameters$A
:ℓ ,DD

for : ∈  and A ∈ {0, 1} – for obtaining consistent
estimates of parameters #A44 and 1A4D , and thus of terms �A

8C
. The following result,

which is demonstrated in Chapter 1, provides moment conditions for estimating the
elements of 
A

DD :

$A
:ℓ ,DD

= �[DA
:,8C
DAℓ ,8C |A8C = A] + $

A
:,D4

$A
ℓ ,D4�[(�0 + $′

Iz8C)�A(�0 + $′

Iz8C)|A8C = A], (2.12)

for (:, ;) ∈  ×  .

Conditional expectation �[DA
:,8C
DA
ℓ ,8C
|A8C = A] is consistently estimated by its sample

counterpart in the sub-sample characterized by A8C = A. All parameters involved in
the right hand side term of Equation (2.12) can also be estimated a priori. As a result,
the sample counterpart of the right hand side term of Equation (2.12) provides a con-
sistent estimator of parameter $A

:ℓ ,DD
, implying that a consistent estimate of matrix


A
DD is easily obtained.

The results and insights given above yield an estimation procedure, which is de-
scribed in Chapter 1, for estimating the ERS model with endogenous regressors
given in Equations (2.1)–(2.3). The technology choice model is estimated first. Re-
sults of this estimation step provide elements for computing control functions that
are used in the next step. The second estimation step consists of estimating the
ERS input use models. Once again, results obtained in this estimation step are used
for computing control functions to be used in the next step. The ERS yield function
models are estimated in the last step. Each estimation step is fairly easy to implement
in practice. Yet, computing the asymptotic distribution of the estimators obtained
by using the considered multiple step estimation procedure is not straightforward.
Bootstrap methods were used so to get the empirical standard errors of the obtained
estimates (Efron and Tibshirani, 1986).

2.4.3 Robustness checks

Following Möhring et al. (2020), we consider work and machinery as purely pro-
ductive inputs and fertilizers as interactive inputs. Effectively, fertilizers tend to
increase weed and disease damages, thereby implying that pesticides and fertilizers
can display complementary effects (Carpentier and Weaver, 1997). Yet, one can ar-
gue that work might also be an interactive input. In particular, tillage can impact
potential yield by impacting the development of the crop root systems or impacting
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soil composition. But tillage can also be used as a substitute for herbicides and thus
can be considered as a damage abating input. To answer such concern, and more
globally the concern expressed by Carpentier and Weaver (1997) on the relevance
to use production function specifications considering separated roles of productive
versus damage abating inputs, we perform asymmetry and separability tests (see
Appendix 2.9.1).

Other robustness checks were performed. The first one considers global pesticide
uses instead of detailed pesticide uses (e.g., herbicides, fungicides, insecticides) in the
yield function so to capture the global effect of pesticides on yield.6 Then, another
robustness check considers the revenue variable as dependent variable instead of
yield. Indeed, revenue variable as the advantage to integrate a quality component
that is not captured by yield. We also consider a Translog function for the production
function instead of the Cobb-Douglas. Indeed, the Translog function is often argued
to be a more flexible functional form than Cobb-Douglas.

2.5 Data

We use an unbalanced panel dataset containing information on each management
operation performed by the sampled farmers (e.g., soil preparation, sowing, fertil-
ization, crop protection operations and harvest) from 2009 to 2015. Data is obtained
fromAgroscope, the Swiss center of excellence for agricultural research andprovided
by the Swiss Central Evaluation of Agri-Environmental Indicators (Baan, Spycher,
and Daniel, 2015). We transform initial data consisting of daily records on cropman-
agement and inputs use as follows (based on Möhring et al., 2020): we (i) calculate
cost-equivalents for used machinery and working time, (ii) convert fertilizer appli-
cations into nitrogen equivalents and (iii) express pesticide use in terms of pesticide
load. To this end, we use the Pesticide Load Index (Kudsk, Jørgensen, and Ørum,
2018; Möhring, Gaba, and Finger, 2019), which accounts for differences in standard
dosages and the heterogeneous properties of pesticides.7 Möhring, Gaba, and Fin-
ger (2019) and Möhring et al. (2020) highlight the importance of pesticide indicator
choice for the estimation of production effects. We combine this first dataset with
farm-level bookkeeping data8 to obtain information on whether or not the farmer
participate in the low-input production system for winter wheat (based on direct
payments they receive).

6In fact, both estimation results are interesting because they tell a different story. Whereas the
detailed pesticide specification permits to see the differentiated impact of each type of pesticides, the
global pesticide specification allows to measure the overall effect of pesticides on yield as a damage
abating input.

7See R Package PesticideLoadIndicator, available at https://CRAN.R-project.org/package=
PesticideLoadIndicator for calculation details.

8This data if from retrieved Agroscope (Mouron and Schmid, 2012).

https://CRAN.R-project.org/package=PesticideLoadIndicator
https://CRAN.R-project.org/package=PesticideLoadIndicator
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The data gathers 617 observations from 151 winter wheat farmers from 2009 to
2015.9 Table 2.1 provides the characteristics of high- and low-input farms in terms
of input use and output. In addition to standard descriptive statistics, we performed
Wilcoxon and Fligner-Killeen non-parametric tests for the equality of mean and vari-
ance, respectively.

Table 2.1: Descriptive statistics for low- and high-input Swiss wheat
farmers

Low-input High-input Mean test Var test
Mean (sd) Mean (sd) (p-value) (p-value)

Dependent variable (H8)
Yield (q/ha) 58.5 (8.9) 64.52 (10.26) *** ***
Revenue (CHF/ha) 3,361 (666) 2,869 (630) *** 0.16
Control variables (x2)
Mountain region 35% 31% - -
French speaking 30.8% 38% - -
Farm surface (ha) 26.16 (11.43) 30.78 (12.33) *** ***
Winter wheat surface 4.651 (3.615) 5.579 (3.760) *** *
Winter wheat share 17.59% (10.07) 18.2% (10.72) 0.26 0.68
Weather variables (�)
Temperatures (°C) 9.251 (1.037) 9.191 (0.832) 0.14 ***
log(Rainfall) (log(1000L m−2)) 6.965 (0.199) 6.974 (0.173) 0.30 **
Productive inputs (x)
Work & machinery (CHF/ha) 1,430 (338) 1,697 (345.5) *** *
Interactive inputs (s)
Fertilizers (kg/ha) 141.8 (48.1) 147.2 (49.7) *** 0.71
Damage abating inputs (z)
Mechanical pest control (CHF/ha) 314.6 (209) 291.4 (186) 0.26 **
Pesticides (LI/ha) 0.903 (1.998) 2.684 (2.027) *** ***
Herbicides (LI/ha) 0.859 (1.987) 0.871 (1.124) *** ***
Insecticides (LI/ha) · 0.093 (0.640) - -
Fungicides (LI/ha) · 1.575 (1.172) - -

N = 381 N = 236
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
LI = Load Index indicator
Source: Authors’ calculations on Agroscope data.

As expected, farmers cultivating low-inputwheat use fewer chemical inputs and face
lower yields than farmers with intensive practices. Yet, their revenues per hectare
are higher, because of the direct payment and the price premium they benefit from.
When removing the direct payment (400 CHF/ha), low-input producers tend to have
revenues similar to their high-input counterpart despite lower yield levels thanks to
the price premium they benefit from. From control variables, we can see that charac-
teristics of low- and high-input farmers tend to differ. Farms located in mountainous
region are more frequent among low-input farms, confirming the findings of Finger
and El Benni (2013) on free-rider effects of the program for farms with a lower yield

9Appendix 2.9.2 gives the frequency of observations from 2009-2015 for both sub-samples.



56

potential. Lastly, farms located in the French speaking part of Switzerland are over-
represented among the high-input farmers. This may be due to differences in farm
characteristics but also cultural differences and/or differences in extension services.
This led us to incorporate a language dummy in our analyses. Weather variables
were introduced as to control for the effects of meteorological event on yields and
input uses. Weather conditions, average annual temperatures in °C and average
annual rainfall in 1000 liter m(−2) here are comparable between the two groups.

As said previously, price variables were used in the models for technology choice
and input uses. Winter wheat prices can differ depending on the chosen variety.
Low-input farmers benefit from a price premium of around 5 CHF/100 kg.10 This
premium was not accounted for when using winter wheat prices. As for pesticide
prices, the initial data we had were prices at the product level (price data from the
largest input provider in Swiss agriculture, Fenaco, were used).11 To control for
the difference of recommended quantities between products, we computed pesticide
costs per hectare. Then, we calculated the annual average of herbicide, insecticide
and fungicide prices of all products that were considered in our data. This price
proxy stands as long as we assume that the pesticide products used by the observed
farmers are representative of what can be found on the pesticide market. Even if not
representative of the overall pesticide prices, we can argue that the products used by
our sample of farmers is representative of the winter wheat pesticide market. Yet,
the fact that price was not available for all products might introduce a bias if data
were not missing at random. When choosing technology and input uses, winter
wheat prices (and input prices on a lesser extent) are not observed by farmers. Price
anticipations are generally used in such situations and the most naïve anticipation is
to use the observed prices at time C − 1. Yet, by doing so, we would have lost more
than 10% of our sample as 2009 is the year when we have the greatest number of
observations. Steadiness of prices over the period encouraged us to use current year
price as price anticipation. As for fertilizer prices, we use national representative
data from Agristat on costs of nitrogen fertilizers in CHF/ha (Agristat, 2009-2015).12

10The actual price mark-up paid to farmers depends on both the quality and the market situation.
11For some products, price was missing when using Fenaco data. Yet, these missing values largely

concerned the "Others" category of pesticides, and we only use price data for the categories "Herbi-
cides","Fungicides" and "Insecticides". Plus, as we calculated a mean value over these three categories,
we expect the impact of the scarce missing values to be marginal.

12Source: Agristat, Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung.
Swiss Farmers Union. Brugg, Switzerland.
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2.6 Insights from the technology choice and the input uses
equations

Before presenting the results from the production functions accounting for both
technology self-selection and input endogeneity, we present the estimation results
we obtained for the technology choice and input use models.

Table 2.2: Mean estimates of the coefficients from the Probit model
for technology choice

Adopting low-input practices:
Constant 65.332∗∗∗
Price ratios
Herbicide/Wheat 383.684∗∗∗
Fungicide/Wheat −397.322∗∗∗
Insecticide/Wheat 63.730∗∗
Nitrogen/Wheat −11.982∗∗∗
Growth regulator/Wheat −2.997
(Herbicide/Wheat)2 −56.718∗∗∗
(Fungicide/Wheat)2 57.039∗∗∗
(Insecticide/Wheat)2 −11.570∗
(Nitrogen/Wheat)2 0.607∗∗∗
(Growth regulator/Wheat)2 5.114
Control variables
French −0.213
Mountain 0.373∗∗
Wheat share −0.012∗
Farm size −0.0002∗∗∗
Weather variables
log(Rainfall) −0.573
Temperature 0.200∗∗
Extra variables
Age −0.001
In training / apprenticeship 2.706
Training / apprenticeship −1.782∗∗∗
Continuing education −1.468∗∗∗
Technical schooling −0.256
Lagged technology change (%) −0.208∗∗∗
Annual mean size of low-input farms −0.014∗∗

Observations 617
AIC 728.219

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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Table 2.2 presents the estimation results of the technology choice model that
considers low- and high-input wheat production practices. As expected from the de-
scriptive statistics on the low- an high-input sub-samples (cf. Table 2.1) being located
in a mountainous region encourages the adoption of low-input practices whereas
farm size and wheat share in farm acreage impact negatively this adoption.

Most price ratios seem to significantly impact the adoption of low-input practices.13
In particular, high herbicide and insecticide prices (relatively to wheat prices) are
lever to low-input practice adoption, but at a decreasing rate (cf. the negative signs
of the quadratic terms). On the other hand, high nitrogen and fungicide relative
prices are negatively associated to low-input practices adoption (still at a decreasing
rate). These last results are quite surprising. Increases in the prices of fungicides or
fertilizers are expected to favor the adoption of low-input practices, through a relative
profitability effect. Comparison of mean fertilizer use among low- and high-input
farmers only shows a 5.4 kg/ha difference (cf. Table 2.1), implying that fertilizer
prices are expected to have a very limited impact on technology choice.

Other control variables – e.g., age, education and the percentage of technology change
that happened at time C − 1 and the annual mean size of low-input farms – also ap-
pear to significantly impact the production practice choices. In particular, schooling
types appear to decrease the low-input adoption probability, indicating differences in
terms of farmers’ technical abilities as well as differentiate access to the information
on low-input practices. The negative effect associated to technology change and the
annual mean size of low-input farms are difficult to interpret. Indeed, apart from
the price ratios and the weather variables, they are the only variables varying across
time. Thus, they might capture year or time trend effects.14

Parameters estimates of the pesticide and fertilizer use equations for low- and
high-input farms are displayed in Tables 2.3 and 2.14. Except for the high-input
herbicide input use model, price ratios do not seem to affect input use. Fisher tests to
check for the global significance of price ratios in the input use models heads toward
the same direction as p-values are superior to 95%, i.e. price ratios are not statis-
tically significant in the input use levels models. Importantly, these results do not
necessarily demonstrate that input or crop prices don’t impact farmers input choices
(holding production practices fixed). But, they show that the information content of

13A Fisher test on all the price ratios parameters was performed to ensure that our instruments are
significant in our technology choice model. The p-value associated to the test was inferior to 1%, i.e.
relative prices have a significant impact on low-input production practice adoption.

14We actually check on that point. When integrating year dummies in the technology choice model,
the technology change and the mean size of low-input farms are dropped from the model because of
singularities. We rather consider the model without these year dummies because these dummies are
also absorbing the price ratios effects. Hence, our model divides the time effect in two parts: the price
ratio part and a time trend.
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the available data don’t enable us to accurately estimate the effects of prices on input
uses. In particular, prices display limited variability across farms and years in our
dataset. Yet, this limited impact of prices on input uses tends to be confirmed by the
existing literature. For instance, Skevas, Lansink, and Stefanou (2013) and Böcker
and Finger (2017) argue for a price inelasticity of pesticide use.

Table 2.3: Results from detailed pesticide uses models for low- and
high-input production practices

Herbicide Fungicide Insecticide
Low-input High-input High-input High-input

Constant 3.559 −8.344 −0.968 −5.238∗
Price ratios
Herbicide/Wheat −0.311 −13.182 −9.546 −16.572
Fungicide/Wheat · 21.399 10.274 19.850
Insecticide/Wheat · −2.937 2.798 −2.203
Growth regulator/Wheat · 11.497∗∗ −7.024 0.051
Nitrogen/Wheat 0.130 −0.347 0.574 0.762
(Herbicide/Wheat)2 3.529 13.028 1.794 4.189
(Fungicide/Wheat)2 · −5.444 −1.926 −4.854
(Insecticide/Wheat)2 · 1.199 −0.972 0.805
(Growth regulator/Wheat)2 · −8.179∗∗ 3.013 −0.303
(Nitrogen/Wheat)2 0.003 0.048 −0.027 −0.061
Control variables
French 0.025 0.095 −0.056 0.016
Mountain 0.164∗∗ −0.009 −0.096 −0.094∗∗
Wheat share −0.005 0.004 0.018∗∗∗ 0.0005
Farm size −0.0001∗∗ −0.0002 0.0001∗∗ 0.00002
Weather variables
log(Rainfall) −0.326∗ −0.052 −0.053 0.050
Temperatures −0.095∗∗ −0.132∗∗ −0.030 0.025
Selection bias
Inverse Mills ratio 0.038 0.312∗ 0.420∗∗ 0.198∗∗

Observations 381 236 236 236
R2 0.105 0.170 0.162 0.075
Adjusted R2 0.079 0.106 0.096 0.003
Residual Std. Error 0.570 0.542 0.589 0.273

(df = 369) (df = 218) (df = 218) (df = 218)
F Statistic 3.948∗∗∗ 2.633∗∗∗ 2.471∗∗∗ 1.046

(df = 11; 369) (df = 17; 218) (df = 17; 218) (df = 17; 218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.

Another interesting result we get from the input use models is related to selection
bias issues. Indeed, inverse Mills ratios are statistically significant in the pesticide
usemodels for high-input farmers. In particular, inverseMills ratio coefficients in the
herbicide, fungicide and insecticide use demand functions of high-input farmers sug-
gest that that high-input farmers have specific unobserved characteristics that tend
to increase their pesticide uses. These results are also consistent with self-selection
effects.
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Table 2.4: Results from nitrogen uses model for low- and high-input
production practices

Nitrogen
Low-input High-input

Constant 3.006∗ 6.493∗
Price ratios
Herbicide/Wheat −0.587 23.592
Fungicide/Wheat · −28.703
Insecticide/Wheat · 9.657∗
Growth regulator/Wheat · 4.004
Nitrogen/Wheat 0.309 0.038
(Herbicide/Wheat)2 0.213 −5.714
(Fungicide/Wheat)2 · 6.605
(Insecticide/Wheat)2 · −3.451
(Growth regulator/Wheat)2 · −1.837
(Nitrogen/Wheat)2 −0.036 −0.004
Control variables
French 0.003 0.027
Mountain 0.048 −0.019
Wheat share −0.001 0.009∗∗∗
Farm size 0.00003 −0.00002
Weather variables
log(Rainfall) 0.204∗ −0.433∗∗
Temperatures 0.012 −0.085∗
Selection bias
Inverse Mills ratio −0.051 0.139
Observations 381 236
R2 0.028 0.183
Adjusted R2 −0.001 0.119
Residual Std. Error 0.366 0.375

(df = 369) (df = 218)
F Statistic 0.954 2.870∗∗∗

(df = 11; 369) (df = 17; 218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.

Other than inverse Mills ratio, control and weather variables best explain pesticide
uses. In particular, being located in a mountainous region is associated to an in-
crease in herbicide uses for low-input farmers. Indeed, topographical conditions
associated to mountainous areas might make mechanical weeding difficult. On the
other hand, being located in a mountainous region tends to be insecticide saving for
high-input farmers. Additionally, the wheat acreage share impacts positively herbi-
cide and nitrogen use levels of high-input farmers. A greater wheat acreage share
implies greater levels of work if the farmer want to implement mechanical weeding.
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In that case, herbicide use tends to be more appealing so that s/he can save time. As
for weather conditions, high temperatures have negative impacts on herbicide uses
of both low- and high-input farmers as well as negative impacts on nitrogen uses
of high-input farmers. Rainfall also affects negatively herbicide use of low-input
farmers but affects positively their nitrogen uses. On the contrary, rainfall tends to
discourage nitrogen applications among high-input farmers.

Globally, input use demand models are poorly explained by the considered vari-
ables as shown by the very small adjusted '2. Yet, these models tend to demonstrate
that technology selection issues arise when modelling high-input input use levels.
Following Di Falco, Veronesi, and Yesuf (2011), we also estimate the effect of the
treatment “adopting low-input practices” on the treated (T) – i.e. low-input farmers
– and on the untreated (U) – i.e. high-input farmers – input use levels.

Table 2.5: Bootstrapped average treatment effect and the 95% confi-
dence interval on the logarithm of input use levels

Input use levels Treatment
Subsample log Herbicide (LI) log Nitrogen log Yield effect

-0.092 -0.032 -0.097 Naive

Low-input -0.028∗∗∗ -0.010∗∗∗ -0.027∗∗∗ TT
[−0.0318 ; −0.0246] [−0.0120 ; 0.0081] [−0.0292 ; −0.0258]

High-input -0.046∗∗∗ -0.016∗∗∗ -0.044∗∗∗ TU
[−0.0550 ; −0.0356] [−0.0197 ; −0.0127] [−0.0474 ; −0.0413]

Source: Authors’ calculations on Agroscope data.
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Results were obtained using 1000 bootstrap replications.
We considered the IHS transformation for herbicide use due to zero values.

Table 2.5 presents the estimated treatment effects for input use levels. We also es-
timated yield supply functions – i.e. only price ratios and control variables are
considered as covariates – to estimate the average treatment effect on yield levels.15
First, the estimated treatment effects on the treated and untreated are lower than
the naive treatment effect. This confirms the existence of a significant selection bias
between low-input adopters and non-adopters among Swiss farmers. In particular,
low-input adopters seems to have lower input use and yield levels than high-input
farmers due to unobserved characteristics. Accordingly, the naive treatment effect
cannot be considered to evaluate the impact of the adoption of low-input produc-
tion practices on either input uses or yield levels. Additionally, our results show
that low-input adoption has a lower impact on low-input input use and yield levels

15Estimation results for this yield offer functions are available in Appendix 2.9.3.
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of low-input farmers than on those of high-input farmers. According to our results,
low-input adoption reduces yields of low-input adopters by 2.7% on averagewhereas
this reduction reaches almost 4.5% for high-input farmers.

First and foremost, this section tends to confirm the presence of a production
practice selection bias on input uses and yield levels. This encourages us into consid-
ering production practice specific input use demand as well as yield supply models.
Yet, another important result of this section is that prices do not provide reliable
instruments so to explain input use levels. It is important because, undoubtedly,
such instruments’ weakness reverberates on our attempt to account for input use
endogeneity when estimating the production functions.16

2.7 Production function estimation results

Table 2.6 presents the estimation results of various production function specifica-
tions.17 Model (1) assumes that the production technology is homogeneous, except
for a dummy variable indicating the use of low- versus high-input practices (in the
potential yield function and in the damage abatement function). No endogeneity
issue is considered in this model. Model (2) considers two separate functions for
low- and high-input farmers but do not account for any endogeneity issues. Finally,
Model (3) corresponds to the endogenous regime switching model accounting for
both technology selection bias and input endogeneity issues.

As for the productive part, fertilizers play a significant role in increasing the
potential yield in Models (1) and (3). The fact that fertilizer use does not stand out
when we consider separate functions while input endogeneity is not accounted for
– i.e. Model (2) – but does when considering the ERS specification argues in favor of
this last specification – i.e. Model (3). Plus, when considering the ERS specification,
we show that fertilizers play amore important role in the production function of low-
input farmers than in the production function of high-input farmers. As for work
time, its impact on the potential yield stands out in every considered specification.
Yet, Model (3) tends to show that the productive effect of labour is overestimated in
the specifications where input endogeneity is not accounted for. Yet, as in Model (2),
we find that the productive role of labour between low- and high-input production
functions is comparable.

16For the input use models, we consider the pesticide load indicator. We have also estimated the
input use demand models when considering the treatment frequency index as pesticide indicator, in
order to see if the model performs better. Overall, estimation results are similar, e.g., price ratios do not
appear significant. Thus, the remark on the weakness of instruments still holds.

17The results we present thereafter consider the load index for pesticide indicators. Results when
considering the pesticide treatment frequency indicator (TFI) can be found in Appendix 2.9.4.
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Table 2.6: Results from different production function specifications
accounting for production practices

(1) (2) (3)
All Low-input High-input Low-input High-input

Productive part
Fertilizers 0.10∗∗ 0.06 0.08 0.94∗∗∗ 0.36∗∗∗
Work & machinery 0.38∗∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.21∗∗∗ 0.20∗∗
French 0.03∗∗ 0.01 0.08∗∗∗ -0.01 0.02
Mountain -0.01 -0.01 -0.04∗ -0.05∗∗ -0.05∗∗
Winter wheat share 0.001 0.002 -0.001 -0.0003 -0.001
Farm size -0.00001 -0.000003 -0.00001 -0.00004∗∗∗ 0.000001
log(Rainfall) 0.10∗∗ 0.16∗∗∗ 0.13∗∗ -0.29∗∗∗ 0.07
Temperatures 0.03∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.005 0.04∗∗
Production practice dummy 0.33∗∗ · · · ·
Damage abating part
Herbicides 0.002 0.06∗∗ -0.004 0.05∗ 0.04
Insecticides -0.10 · -0.11 · -0.14
Fungicides 0.01 · 0.03 · -0.05
Mechanical pest control -0.0003 -0.001 -0.001 -0.0005 -0.0004
Fertilizers -0.001 -0.0003 -0.001 0.002 0.0005
Constant -0.19 -0.16 -0.04 -0.43 -0.12
Production practice dummy -0.32 · · · ·
Decomposition of the error term
Herbicide endogeneity · · · -0.05 -0.01
Fungicide endogeneity · · · · 0.11
Insecticide endogeneity · · · · 0.18
Nitrogen endogeneity · · · -1.07∗∗∗ -0.34∗∗∗
Inverse Mills ratio · · · 0.25∗∗ 0.27
Specification
Separate functions No Yes Yes Yes Yes
Endogeneity correction No No No Yes Yes
Observations 617 381 236 381 236
R2 0.998 0.998 0.999 0.998 0.999
Residual Std. Error 0.169 0.180 0.162 0.162 0.153

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.

Regarding the control variable, the ERS specification still tends to stand out from the
first two specifications. The negative impact of being located in a mountainous area
on the potential yield level that appears among the high-input farmers in Model (2)
is generalized to all farmers in Model (3). As for the positive impact of belong-
ing to a French canton on the high-input yield showed by Model (2), it disappears
when considering the ERS specification. Moreover, as for the general positive impact
of rainfall on wheat yield levels that is revealed in Models (1) and (2), it becomes
negative among low-input farmers in Model (3) and looses its significance among
high-inputwheat producers. However, temperature seems to positively impact these
high-input yields, an effect that is not observed in the other specifications. We also
notice that, in Model (1), the dummy associated to the production practice suggests
that adopting the low-input production practice increases potential yield levels.



64

As for the damage abatement function, most coefficients are not significant, what-
ever the considered specification. The only exception is the herbicide coefficient for
the low-input production function in both Models (2) and (3). Additionally, both
specifications show a similar effect of herbicide in the low-input damage abatement
function. Such global lack of significance of the damage abatement function for
all considered specifications might come from the input endogeneity that we fail to
adequately control for in our ERS model. More globally, the fact that pesticide use
levels do not stand out in the yield model may render difficult the study of yield
response to pesticide use. Despite that, our ERS framework shows that controlling
for input endogeneity – even if poorly – and technology selection issues affect the
productive part of the yield model. The significant impact of the input endogeneity
and/or selection control functions on the production function tends to confirm this
view. In particular, controlling for nitrogen endogeneity seems warranted in both
the low- and high-input production functions. Selection issues also seem to impact
the low-input production function. Accordingly, unobserved characteristics of low-
input farmers tend to increase the observed yield level. It goes in line with the idea
of self-selection among low-input farmers.

To see to what extent the changes observed between the three specifications are
“yield” impacting, we try and estimate the yield in each sub-sample. Additionally,
to see how each production function responds to diminution in pesticide uses, we
also estimate yield levels for a 5% and 10% decrease in every pesticide use (i.e., for
low-input farmers, we simulate a 5% and 10% decrease in herbicide use and for
high-input farmers, we simulate a 5% and 10% decrease in herbicide, fungicide and
insecticide uses). Once again, results from this simulation work should be inter-
preted with caution as our estimated production functions are questionable due to
our inability to adequately control for input endogeneity issues.18

Table 2.7 shows differences in mean yield levels between models. Using separate
functions rather than a dummy variable for production practices – Model (1) vs.
Model (2) – is associated to a decrease in estimated yield levels for both production
practices. On the contrary, themodel accounting for input endogeneity and selection
issues – Model (3) – shows an increase in estimated yield levels for both production
practices. Not accounting for input endogeneity and selection issues seems to lead
to underestimation of the low-input and high-input yield levels. The yield levels
response to the 5% and 10% pesticide decrease scenarios are rather limited for all
specifications. Unsurprisingly, overlapping 95% confidence intervals show that these
differences are not statistically significant for any of the considered specifications.

18This cautiousness is even more important given that we did not yet compute the associated
confidence intervals.
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Table 2.7: Bootstrapped estimated yield levels (q/ha) and its 95%
confidence interval for the Dummy, Separate and ERS specifications

Baseline Pesticide scenarios
Specification −5% −10%
Low-input
Dummies for production practices 53.13 53.15 53.15

[52.79 ; 53.54] [52.77 ; 53.52] [52.74 ; 53.51]
Separate models 51.45 51.41 51.32

[50.72 ; 52.29] [50.58 ; 52.21] [50.50 ; 52.12]
ERS models 58.00 57.98 57.95

[57.62 ; 58.42] [57.56 ; 58.39] [57.53 ; 58.34]

High-input
Dummies for production practices 57.72 57.70 57.64

[57.02 ; 58.49] [56.97 ; 58.40] [56.96 ; 58.36]
Separate models 54.99 54.88 54.83

[53.91 ; 55.98] [53.86 ; 55.94] [53.78 ; 55.83]
ERS models 65.36 65.49 65.58

[64.47 ; 66.15] [64.59 ; 66.26] [64.79 ; 66.39]

Source: Authors’ calculations on Agroscope data.
Note: Results were obtained using 1000 bootstrap replications.

When considering the observed mean yield levels among each sub-samples (Ta-
ble 2.1), the ERSmodel seems to yieldmore reasonable results for both the high-input
and low-input production functions in comparison to the other models. Indeed, the
empirical mean yield level of the high-input farmers, respectively low-input farm-
ers, is around 64 q/ha, respectively 58 q/ha.19 Still, we need to remain cautious
when interpreting such estimation results for two main reasons. First, the sub-
sample empirical means do not account for selection biases. Second, apart from the
weak-instruments issue, estimated mean yield levels are very sensitive to the chosen
specification.

Robustness checks

In order to evaluate the sensitivity of ourERS specification,weperformed sixdifferent
robustness checks. Robustness check (10), (11) and (2) correspond to the robustness
checks associated to the asymmetry and separability tests (cf. Appendix 2.9.1). In
particular, robustness checks (10) and (11) consider respectivelywork andmachinery
as interactive input and no interactive input at all. Robustness check (2) corresponds
to the model without damage abatement function, i.e. we consider a Cobb-Douglas
production function where all inputs are assumed to play a symmetric role. As

19From that viewpoint, results obtained when considering the pesticide treatment frequency indi-
cator (TFI) rather than the pesticide load index (LI) seem less satisfactory (see Appendix 2.9.4). Indeed,
in particular for low-input farmers, the estimated yield level is quite superior to what is observed in
the sub-sample.
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for robustness check (3), we consider the global pesticide variable instead of the
separate levels of herbicide, insecticide and fungicide. Robustness check (4) considers
a Translog production function instead of the Cobb-Douglas. Finally, robustness
check (5) considers revenue as the explanatory variable. The estimated coefficients
for each robustness checks can be found in Appendix (cf. Appendices 2.9.1, 2.9.5,
2.9.7 and 2.9.6).

Table 2.8: Bootstrapped estimated yield levels (q/ha), or revenue
(CHF/ha), and its 95% confidence interval obtained for the different

robustness checks

Baseline Pesticide Scenarios
Specification −5% −10%
Low-input
Main model 58.00 57.98 57.95

[57.62 ; 58.42] [57.56 ; 58.39] [57.53 ; 58.34]
Robustness check (10) 56.26 56.14 56.02

[55.90 ; 56.63] [55.79 ; 56.51] [55.66 ; 56.38]
Robustness check (11) 63.99 63.97 63.95

[63.55 ; 64.46] [63.55 ; 64.41] [63.51 ; 64.39]
Robustness check (2) 55.68 55.33 54.96

[55.33 ; 56.04] [54.96 ; 55.70] [54.62 ; 55.32]
Robustness check (3) 54.56 54.52 54.44

[54.16 ; 54.99] [54.08 ; 54.93] [54.04 ; 54.89]
Robustness check (4) 46.41 46.34 46.33

[45.66 ; 47.27] [45.60 ; 47.25] [45.50 ; 47.13]
Robustness check (5) 3176.60 3177.20 3176.77

[3143 ; 3210] [3142 ; 3210] [3144 ; 3209]

High-input
Main model 65.36 65.49 65.58

[64.47 ; 66.15] [64.59 ; 66.26] [64.79 ; 66.39]
Robustness check (10) 66.63 66.74 66.84

[65.82 ; 67.43] [65.89 ; 67.54] [66.05 ; 67.59]
Robustness check (11) 66.01 66.00 65.98

[65.14 ; 66.83] [65.17 ; 66.79] [65.20 ; 66.78]
Robustness check (2) 64.35 64.09 63.86

[63.57 ; 65.03] [63.35 ; 64.84] [63.12 ; 64.58]
Robustness check (3) 68.09 67.92 67.80

[67.31 ; 68.86] [67.22 ; 68.74] [67.09 ; 68.50]
Robustness check (4) 83.80 84.73 85.61

[81.99 ; 85.53] [82.84 ; 86.41] [83.79 ; 87.34]
Robustness check (5) 2813.61 2813.55 2812.47

[2755 ; 2878] [2754 ; 2877] [2756 ; 2874]

Source: Authors’ calculations on Agroscope data.
Note: Results were obtained using 1000 bootstrap replications. For robustness check (5), the
unit considered is not q/ha but CHF/ha as we consider revenue as the variable to explain.
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Themost striking result when looking at Table 2.8 is the great variability of the es-
timated yield levels upon the chosen specification. Estimated low-input yield levels,
respectively high-input yield levels, at baseline vary from 46.41 q/ha to 63.99 q/ha,
respectively from 64.35 q/ha to 83.80 q/ha. More specifically, robustness check (4) –
i.e. the onewith the Translog production function – is the robustness check associated
with the greatest changes in estimated yield levels. For the others robustness checks,
the differences with the benchmark specification are less marked. Yet, as for the
benchmark specification, robustness checks display a systematic higher estimated
yield level for high input farmers compared to low-input ones. This feature is shared
by all specifications, as well as the non-significant yield differences when cutting
pesticide uses by 5% or 10%. When considering revenue as the variable to be mod-
elled, our results tend to show a greater revenue for low-input farmers compared to
high-input farmers, which is in linewith the descriptive statistics on the sub-samples.

The variability in estimated yield levels should not hide the robustness of some re-
sults across our specifications.20 First, the larger effects of fertilizers in the low-input
production function in comparison to the high-input one stands out frommost spec-
ifications. Similarly, we find that the role of labour on yield levels is similar across
production practices. More importantly, the results on input endogeneity and selec-
tion biases are also consistent across (most) specifications. In particular, the nitrogen
endogeneity negatively affects all low- and high-input production functions. We
also find that the selection bias impacts positively the low-input production function
across specifications (except when we consider revenue rather than yield as the vari-
able to explain).

Our estimates the technology specific production functions clearly suffer from
identification issues. This is due to our lacking suitable instrumental variables for
instrumenting input use levels. This prevents us from deriving robust conclusions
from our results. Nonetheless, the estimation results we obtain for the input de-
mand and yield supply models strongly suggest that one cannot assess the effects
of the adoption of the low-input practices without considering selection issues. In
other words, important unobserved drivers of the yield and input use levels of Swiss
wheat producers also impact their production practices choice. Neglecting the ef-
fects of these unobserved drivers tends to significantly bias the comparison of the
performances of the considered production technologies.

20The following results applied for all robustness check except the Translog one. Indeed, when
considering the Translog function form for the productive part of the function, we struggle to find
significant effects (cf. Appendix 2.9.7).
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2.8 Discussion and Conclusion

2.8.1 The input endogeneity issue

As said previously, our ERS framework suffers from weak instruments to control for
input endogeneity. For now, as calculated, pesticide prices vary only across year. Yet,
we only have 7 years in our panel dataset, i.e. the variation of the price ratio variables
is rather limited. This issue is with econometric production functions estimated
with short panel data. Instrument variables other than price variables are difficult
to uncover. Farmers adapt their input uses to exogenous factors when these factors
impact their crop yield levels, implying that the exclusion restriction necessary for
characterizing instrumental variables does not hold.

Another solution that can be investigated is to consider a full reduced form for
both the input use demand and the yield demand models. Even if does not allow to
uncover for the yield response to input use variations, full reduced form specification
permits to estimate the difference between low- and high-input yield and input use
levels while accounting for the potential selection issues.

2.8.2 General considerations

Either considering a primal or dual optimization problem, an interesting lead so
to improve the framework we consider in this article is to introduce a dynamic
dimension for the production practices choice. The production practices adopted at
time C − 1 might impact the production practices choice at time C but also input use
levels and achieved yield. In particular, crop rotation is often well-valued among
low-input practices. Crop rotation can affect the input use levels in the future – e.g., it
decreases the need for chemical protection – and thus might affect yield as well. One
could investigate such time-interdependence either by allowing an heteroskedastic
form of the error term or by introducing lagged variables in the production and input
use functions.

2.8.3 Conclusion

Despite our attempt to control for input endogeneity, we only haveweak instruments,
i.e. input endogeneity control functions in the yield level model are not expected to
correct for input endogeneity. The limited effect of prices on input uses iswell-known
among economists (see, e.g., Böcker and Finger, 2017; Skevas, Lansink, and Stefanou,
2013).

Still, even if not accounting correctly for the input endogeneity issue, the ERS
specification shows differences in comparison to the specification where technology
selection bias is not accounted for. In particular, it shows a larger productive role of
fertilizers among low-input farmers. Additionally, estimation results from both the
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production and input use demand models tend to argue in favor of a selection bias.
As for high-input farmers, this selection bias affects positively their input uses, i.e.
their unobserved characteristics force them into use greater input use levels. On the
other side, low-input farmers show a positive selection bias in the yield model, i.e.
their unobserved characteristics allow them to obtain greater yield levels than the
average when using low-input production practices. Our results also tend to show
that the naive estimation of the treatment effect is not adequate to estimate the impact
of low-input adoption on both input use and yield levels. All results combined are
very interesting to understand the low-input adoption process. In that sense our
findings, even if they have to be considered very cautiously, confirm the findings
from Finger and El Benni (2013) on the characteristics of the low-input adopters and
more globally the adverse selection issue pointed out by Pietola and Lansink (2001)
for AEP adopters.

Overall, we can consider Swiss wheat as an example of a successful diffusion of
low-input practices with more than 50% of adoption rate. Further research could
consider performing a cost-benefit analysis to see how much the diffusion of low-
practices cost to the government and what are the benefit in terms of pesticide re-
duction. In particular, as the high-input farmers are farmers with the most intensive
use of pesticide, the impact on such policy on pesticide reduction might be rather
limited in comparison to the deployed efforts. Another arising question concerns the
diffusion dynamics of these low-input practices. As said before, low-input practices
are successfully adopted by a large share of wheat farmers. Yet, as the remaining
high-input farmers tend to have unobserved specific characteristics boosting up their
pesticide use, we could wonder how to incentivize them to adopt these low-input
practices. In particular, driving a parallel between the low-input diffusion among
Swiss wheat farmers and the technology diffusion theory of Rogers (1962), the re-
maining high-input farmers could be considered as “laggards” that remained to be
convince to adopt the low-input technology.
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2.9 Appendices

2.9.1 Results from the separability and asymmetry tests

Results from separability test and associated robustness check

Separability tests are performed in order to determine whether inputs have a purely
productive or damage abatement function or if they have an interactive effect (see
Saha, Shumway, and Havenner, 1997). Let x(3) be the vector of purely damage
abating inputs, i.e. pesticide uses and mechanical pest control. Let x(?) be the vector
of productive inputs, i.e. fertilizers and work. Yet, as mentioned previously, one
could think that fertilizers and/or can interact with pesticide uses. To test for their
interactive effect, we estimate the productive part of the yield function ℎ(·)with x(?),
x(3) i.e. both productive and protective inputs and their interactions. Thus we can
write the following yield function

H8C = B(c, #(2)) ℎ(x(?) , x(3); #(?) , #(3) , #(?3)), (2.13)

where #(?) (resp. #(3)) represents the vector associated to x(?) (resp. x(3)) and #(?3)
denotes the vector of the coefficients associated to the interactive terms between. To
check for the separability of inputs, we test for the significance of all interactive terms
at the same time i.e. {

�0 : #?3 = 0
�1 : ∃ :(?) , #?3 ≠ 0

,

where :(?) corresponds to the index of potentially interactive input (here work and
fertilizers). If the hypothesis that all interactive terms are equal to zero (�0) is re-
jected then we consider the input with the greatest test statistic. Once removed from
�0, we check if the remaining interactive variables are equal to 0. If so, the only
interactive input is the one we removed. If not, it means in our case that both work
and fertilizers can be considered as interactive inputs. the corresponding input will
be considered as interactive. To have robust results, different functional form were
used to perform those separability tests: a Cobb-Douglas, a quadratic and a Translog
functional form.21 Results are gathered in Table 2.9.

Table 2.9: Results from separability tests

Specification All farms Low-input High-input
Cobb-Douglas work work & fert work
Quadratic ∅ fert ∅
Translog ∅ ∅ ∅
Source: Authors’ calculations on Agroscope data.

21To avoid 0 issues when considering the Cobb-Douglas and Translog functional forms, we consid-
ered the IHS transformation instead of the standard logarithmic to linearize the yield function (see,
Bellemare, Barrett, and Just, 2013 for instance).
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When considering all farms, the only variable that seems to have a potential interac-
tive effect is work. Results are similar for high-input production practices farmers.
Yet, when considering low-input production practices farmers, separability tests tend
to show that fertilizers should be considered as an interactive input. As the main
analysis was performed considering fertilizers as an interactive input, we present
thereafter the result when considering (i) no interactive inputs in both production
practices as well as (ii) work and fertilizers as interactive inputs for low-input farmers
and work as an interactive input for high-input farmers.

Table 2.10: Asymmetry robustness check - Production function esti-
mates with different interactive inputs

Low-input High-input
(i) (ii) (i) (ii)

Productive part
Fertilizers 0.98∗∗∗ 0.84∗∗∗ 0.36∗∗∗ 0.32∗∗∗
Work & machinery 0.21∗∗∗ 0.28∗∗∗ 0.21∗∗∗ 0.30∗∗
French -0.02 -0.02 0.03 0.01
Mountain -0.06∗∗ -0.05∗∗ -0.05∗ -0.06∗∗
Winter wheat share 0.0004 -0.00004∗ -0.002 -0.0006
Farm size -0.00003∗∗∗ -0.00003∗∗∗ -0.000004 0.000007
log(Rainfall) -0.28∗∗∗ -0.28∗∗∗ 0.06 0.02
Temperatures 0.007 0.004 0.04∗∗ 0.04∗∗
Damage abating part
Herbicides 0.07∗∗ -0.07∗∗ 0.01 -0.08∗
Insecticides · · -0.14 0.11
Fungicides · · -0.03 0.02
Mechanical pest control -0.0002 0.0002 -0.0004∗ 0.0001
Fertilizers · -0.002 · ·
Work & machinery · 0.0001 · 0.0001
Constant -0.63∗ 0.40 -0.04 0.15
Decomposition of the error term
Herbicide endogeneity -0.13∗∗ -0.07 0.01 -0.10
Fungicide endogeneity · · 0.10 0.08
Insecticide endogeneity · · 0.22 0.13
Nitrogen endogeneity -0.99∗∗∗ -1.001∗∗∗ -0.32∗∗∗ -0.31∗∗∗
Inverse Mills ratio 0.22∗∗ 0.24∗∗ 0.33 0.02
Observations 381 236
R2 0.998 0.998 0.999 0.999
Residual Std. Error 0.163 0.162 0.153 0.153

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.



72

Results from asymmetry test and associated robustness check

Asymmetry tests are aimed to see whether or not it is relevant to consider that
inputs have an asymmetric role on the crop production (i.e. we need to separate the
productive and damage abatement parts) or if their role is symmetric (i.e. we just
need to estimate the productive part with all inputs) (see, Zhengfei et al., 2006).22 To
do so, we consider both the productive and damage abating part of the production
function and assign each input to its corresponding part. Then, purely damage
abating inputs are included in the productive part and associated coefficients are
tested to zero. At the same time, we test whether or not coefficients in the damage
abating part are simultaneously equal to zero. Let x(?/8) (resp. x(3/8)) represents the
set of purely productive (resp. protective) inputs and x(8) the set of interactive inputs.
We thus have

H8C = B(c, #(2)) ℎ(x(?/8) , x(8) , x(3/8); #(?/8) , #
?

(8) , #
?

(3/8)) 6(x(3/8) , x(8); #
3
(3/8) , #

3
(8)), (2.14)

where #?(3/8) (resp. #
3
(3/8)) represents the vector of parameters associated to the purely

protective inputs in the productive (resp. protective) part of the yield function. Then,
the two tests that are performed are{

�0 : #
?

(3/8) = 0
�1 : ∃ :(3/8) , #

?

(3/8) ≠ 0
,

and {
�0 : #3(3/8) = #3(8) = 0
�1 : ∃ (:(3/8) , :(8)), (#

?

(3/8) , #
?

(8)) ≠ 0
.

If we accept the first test and reject the second test then we can conclude that there is
asymmetry among inputs. On the contrary, if we reject the first test and accept the
second one, it means that inputs play a symmetrical role in the production function.
Similarly to what we have done with separability tests, we used several specification
for the productive functional form (e.g., Cobb-Douglas, quadratic and Translog).
Results are gathered in Table 2.11. We emphasized the cases where asymmetry was
confirmed (i.e. cases where we have {�0 , �1}).
Whatever the chosen specification, those asymmetry tests tend to show that the

asymmetry hypothesis is poorly verified. The only cases when asymmetry seems
to hold is when we consider a Translog function and (i) when we consider work as
interactive input or (ii) when we consider only the low-input production practices
farms.

22Asymmetry test is to be performed after the separability test to ensure a correct allocation of inputs
to their respective role.
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Table 2.11: Results from the asymmetry test

Specification All farms
Fert Work ∅

Cobb-Douglas {�1 , �1} {�1 , �1} {�1 , �1}
Quadratic {�1 , �1} {�1 , �1} {�1 , �1}
Translog {�1 , �1} {H0 ,H1} {�1 , �1}

Specification Low-input High-input
Fert Fert & Work ∅ Fert Work ∅

Cobb-Douglas {�1 , �1} {�1 , �1} {�1 , �1} {�1 , �1} {�1 , �1} {�1 , �1}
Translog {H0 ,H1} {H0 ,H1} {H0 ,H1} {�1 , �1} {H0 ,H1} {�1 , �1}
Source: Authors’ calculations on Agroscope data.

In line with these results, we perform a robustness check considering a symmetrical
role for inputs and using a Cobb-Douglas production function i.e.

H8C = B(c, #(2)) ℎ(x; #) = exp

(∑
2

�(2)2

) ∏
G

G�

where c represents the vector of control variable and x the vector of inputs. Results
are presented thereafter in Table 2.12.
When using a yield function with no damage abatement part, results tend to

be similar for both production practices and endogeneity issues are not relevant
anymore in our model. Hence, a correct specification of the production function
is critical if we want to account for the effect of technology choice on production
function.
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Table 2.12: Symmetry robustness check - Production function esti-
mates with symmetry of inputs

Low-input High-input
Cobb-Douglas production function
log Fertilizers 1.03∗∗∗ 0.51∗∗∗
log Work & machinery 0.09 0.12
log Herbicides 0.31∗∗∗ 0.21∗∗
log Insecticides · -0.18
log Fungicides · -0.03
log Mechanical pest control -0.02∗∗∗ -0.006
French -0.04∗ -0.006
Mountain -0.09∗∗∗ -0.06
Winter wheat share 0.002∗ -0.002
Farm size -0.00001 0.00002
log(Rainfall) -0.28∗∗∗ 0.14∗∗∗
Temperatures 0.01 0.03∗
Decomposition of the error term
Herbicide endogeneity -0.31∗∗∗ -0.25∗∗
Fungicide endogeneity · 0.02
Insecticide endogeneity · -0.11
Nitrogen endogeneity -0.99∗∗∗ -0.55∗∗∗
Inverse Mills ratio 0.12 -0.36
Observations 381 236
R2 0.999 0.999
Residual Std. Error 0.164 0.167

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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2.9.2 Additional descriptive statistics

In Table 2.13 we present the frequency of observations and the sample composi-
tion between Extenso and Intenso from 2009–2015. Intenso farms are always less
represented than Extenso ones and this phenomenon increases over years.

Table 2.13: Repartition of Low-input /High-input farms among
years

Low-input High-input
N (%) N (%)

2009 65 (53%) 57 (47%)
2010 59 (59%) 41 (41%)
2011 53 (54%) 45 (46%)
2012 60 (68%) 28 (32%)
2013 51 (65%) 27 (35%)
2014 47 (65%) 25 (35%)
2015 46 (78%) 13 (22%)
Total 381 236
Source: Authors’ calculations
on Agroscope data.
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2.9.3 Estimation results from yield offer functions

Table 2.14: Results from yield offer model for low- and high-input
production practices

Yield
Low-input High-input

Constant 4.638∗∗∗ 7.348∗∗∗
Price ratios
Herbicide/Wheat 0.582 8.694
Fungicide/Wheat · −11.775
Insecticide/Wheat · 2.585
Nitrogen/Wheat 0.341∗∗ 0.261
Growth regulator/Wheat · 0.202
(Herbicide/Wheat)2 −0.196 −1.703
(Fungicide/Wheat)2 · 2.379
(Insecticide/Wheat)2 · −0.882
(Nitrogen/Wheat)2 −0.029∗∗ −0.030
(Growth regulator/Wheat)2 · 0.220
Control variables
French −0.048∗∗ −0.030
Mountain 0.027 −0.018
Wheat share 0.001 0.003∗∗
Farm size −0.00000 −0.00002∗
Weather variables
log(Rainfall) −0.266∗∗∗ −0.278∗∗∗
Temperatures −0.016 −0.020
Selection bias
Inverse Mill’s ratio 0.038 −0.163∗∗∗

Observations 381 236
R2 0.100 0.162
Adjusted R2 0.073 0.096
Residual Std. Error 0.162 0.172

(df = 369) (df = 218)
F Statistic 3.739∗∗∗ 2.474∗∗∗

(df = 11; 369) (df = 17; 218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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2.9.4 Estimation results when considering the TFI pesticide indicator

Table 2.15: Results from detailed pesticide uses models for low- and
high-input production practices, with TFI pesticide indicator

Herbicide Fungicide Insecticide
Low-input High-input High-input High-input

Constant 1.088 −0.940 4.296 −0.366
Price ratios
Herbicide/Wheat 0.532 49.568∗ −20.063 −14.840
Fungicide/Wheat · −49.288∗ 19.196 16.243
Insecticide/Wheat · 6.392 −0.190 −1.824
Growth regulator/Wheat · 11.364∗∗ −8.534∗ −4.728∗
Nitrogen/Wheat 0.126 −1.994∗∗ 1.091 0.625
(Herbicide/Wheat)2 −0.169 −12.704∗ 3.763 3.270
(Fungicide/Wheat)2 · 12.154∗ −3.440 −3.478
(Insecticide/Wheat)2 · −2.292 −0.283 0.512
(Growth regulator/Wheat)2 · −7.342∗∗∗ 4.904 3.121∗∗
(Nitrogen/Wheat)2 −0.005 0.177∗∗ −0.078 −0.052
Control variables
French −0.128∗∗∗ 0.058 −0.135∗ −0.099∗∗
Mountain 0.098∗∗ 0.077 −0.082 −0.038
Wheat share 0.002 0.005 0.015∗∗∗ 0.002
Farm size −0.00002 −0.00004 0.00005 −0.00000
Weather variables
log(Rainfall) −0.095 0.069 −0.407∗ −0.138
Temperatures −0.027 −0.024 −0.003 0.073∗∗∗
Selection bias
Inverse Mills ratio −0.030 0.068 0.076 0.090
Observations 381 236 236 236
R2 0.081 0.144 0.248 0.201
Adjusted R2 0.054 0.077 0.189 0.139
Residual Std. Error 0.328 0.420 0.459 0.234

(df = 369) (df = 218) (df = 218) (df = 218)
F Statistic 2.975∗∗∗ 2.157∗∗∗ 4.223∗∗∗ 3.228∗∗∗

(df = 11; 369) (df = 17; 218) (df = 17; 218) (df = 17; 218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.

Table 2.15 seems to indicate when considering TFI pesticide indicator rather than
LI, some price ratios gain significance in the input demand models, in particular
for the high-input herbicide demand model. Yet, when realizing the Fisher test for
the global significance of the price instruments, we still reject the null hypothesis, i.e.
price ratios are not statistically significant in ourmodels. Plus, coefficients associated
to the inverseMills ratio loose their significance, i.e. selection issue does not stand out
in this specification. We also performed the production function estimation with the
TFI pesticide indicator in order to see inwhat extent results changewhen considering
another pesticide indicator. Results are presented in Tables 2.16 and 2.17.
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Table 2.16: Results from different production function specifications
accounting for production practices, with TFI indicator for pesticide

use

(1) (2) (3)
All Low-input High-input Low-input High-input

Productive part
Fertilizers 0.10∗∗ 0.12∗ 0.09∗ 1.01∗∗∗ 0.53∗∗∗
Work & machinery 0.37∗∗∗ 0.42∗∗∗ 0.23∗∗∗ 0.21∗∗∗ 0.10
French 0.04∗∗ 0.005 0.05 0.04 -0.04
Mountain -0.01 0.01 -0.03 -0.08∗∗ -0.01
Winter wheat share 0.001 0.001 -0.0001 -0.001 -0.002∗
Farm size -0.00001 -0.00001 -0.00001 -0.00003∗∗∗ -0.000004
log(Rainfall) 0.11∗∗∗ 0.08∗ 0.21∗∗∗ -0.29∗∗∗ 0.05
Temperatures 0.03∗∗∗ 0.03∗∗∗ 0.07∗∗∗ 0.006 0.06∗∗∗
Production practices 0.28∗ · · · ·
Damage abating part
Herbicides 0.002 0.02 -0.13 -0.23 -0.16∗
Insecticides 0.18∗ · -0.42 · -0.50∗
Fungicides 0.01 · 0.15∗∗ · 0.14∗∗
Mechanical pest control -0.0003 0.0003∗∗∗ -0.00001 0.0002 -0.0001
Fertilizers -0.001 0.001∗∗ -0.002∗∗ -0.0001 -0.0017∗∗
Constant -0.16 0.38∗∗∗ 0.17 0.84 0.24
Production practices -0.29 · · · ·
Decomposition of the error term
Herbicide endogeneity · · · -0.51∗ 0.04
Fungicide endogeneity · · · · 0.02
Insecticide endogeneity · · · · 0.19
Nitrogen endogeneity · · · -1.05∗∗∗ -0.43∗∗∗
Selection bias · · · 0.18 0.21
Specification
Separate functions No Yes Yes Yes Yes
Endogeneity correction No No No Yes Yes
Observations 617 381 236 381 236
R2 0.998 0.998 0.998 0.998 0.998
Residual Std. Error 0.169 0.174 0.182 0.163 0.170

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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Table 2.17: Bootstrapped estimated yield levels and its 95%confidence
intervals obtained with our Dummy, Separate and ERS specifications,

with TFI indicator for pesticide use

Baseline Pesticide scenarios
Specification −5% −10%
Low-input
Model (1) 46.25 46.24 46.24

[45.93 ; 46.56] [45.94 ; 46.54] [45.93 ; 46.52]
Model (2) 56.80 56.90 57.00

[56.41 ; 57.21] [56.51 ; 57.31] [56.60 ; 57.42]
Model (3) 63.10 62.09 61.04

[62.70 ; 63.50] [61.70 ; 62.46] [60.68 ; 61.42]

High-input
Model (1) 51.94 51.81 51.67

[51.16 ; 52.65] [51.09 ; 52.53] [50.97 ; 52.47]
Model (2) 66.29 66.43 66.56

[65.43 ; 67.18] [65.61 ; 67.32] [65.82 ; 67.41]
Model (3) 67.46 67.73 67.97

[66.70 ; 68.31] [66.92 ; 68.52] [67.19 ; 68.74]

Source: Authors’ calculations on Agroscope data.
Note: Results were obtained using 1000 bootstrap replications.
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2.9.5 Results when using global pesticide use variable in the production
function

We present here the results from the production function accounting for both self-
selection and endogeneity when using a global pesticide variable instead of separate
variables for fungicides, insecticides and herbicides.

Table 2.18: Global pesticide robustness check - Production function
estimates with global pesticide indicator

Low-input High-input
Productive part
Fertilizers 0.93∗∗∗ 0.40∗∗∗
Work & machinery 0.21∗∗∗ 0.22∗∗∗
French -0.01 0.04
Mountain -0.05∗ -0.03
Winter wheat share -0.0002 -0.004∗∗
Farm size -0.00004∗∗∗ -0.00001
log(Rainfall) -0.28∗∗∗ 0.06
Temperatures 0.005 0.04∗∗∗
Damage abating part
Pesticides 0.06∗∗ -0.08∗
Mechanical pest control -0.0005 0.0004
Fertilizers 0.001 -0.0003
Constant -0.42 0.33
Decomposition of the error term
Pesticide endogeneity -0.02 -0.02
Nitrogen endogeneity -1.05∗∗∗ -0.41∗∗∗
Inverse Mills ratio 0.23∗∗ 0.10
Observations 381 236
R2 0.998 0.998
Residual Std. Error 0.162 0.170

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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2.9.6 Results when using revenue instead of yield in the production func-
tion

We present here the results from the production function accounting for both self-
selection and endogeneitywhen using revenue as explained variable instead of yield.

Table 2.19: Revenue robustness check - Production function estimates
with revenue as the explained variable

Low-input High-input
Productive part
Fertilizers 1.97∗∗∗ 0.90∗∗∗
Work & machinery 0.21∗∗∗ 0.20∗
French 0.01 0.05
Mountain -0.13∗∗∗ -0.08∗∗
Winter wheat share -0.002 -0.004∗∗
Farm size -0.00006∗∗∗ 0.00005∗∗
log(Rainfall) -0.38∗∗∗ 0.27∗∗∗
Temperatures -0.005 0.09∗∗∗
Damage abating part
Herbicides -0.0004 0.10∗∗
Insecticides · -0.10
Fungicides · -0.03
Mechanical pest control -0.0005 -0.0003
Fertilizers 0.002 0.0002
Constant -0.39 -0.43
Decomposition of the error term
Herbicide endogeneity -0.009 -0.20∗
Fungicide endogeneity · -0.02
Insecticide endogeneity · -0.05
Nitrogen endogeneity -2.04 -1.02∗∗∗
Inverse Mills ratio -0.33∗∗ -0.79∗∗∗

Observations 381 236
R2 0.999 0.999
Residual Std. Error 0.207 0.196

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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2.9.7 Results when using a Translog specification for the productive part

We present here the results from the production function accounting for both self-
selection and endogeneitywhenusing aTranslog specification for theproductive part
instead of a Cobb-Douglas. Translog functions are known for being more flexible
than Cobb-Douglas.

Table 2.20: Translog robustness check - Production function estimates
with Translog specification for the productive part

Low-input High-input
Productive part
Fertilizers -0.34 0.34
Fertilizers2 -0.01 0.09
Work & machinery 1.64∗∗∗ 0.97
Work & machinery2 -0.27∗∗ -0.08
Fertilizers & Work -0.01 -0.15
French -0.03 0.03
Mountain -0.02 -0.06∗∗
Winter wheat share 0.0009 0.0007
Farm size -0.00001 -0.00001
log(Rainfall) -0.23∗∗∗ -0.12
Temperatures -0.003 0.004
Damage abating part
Herbicides -0.05∗ 0.04
Insecticides · -0.15
Fungicides · -0.10∗∗
Mechanical pest control 0.0004 0.00004
Fertilizers -0.002 0.001
Constant 0.56 -0.06
Decomposition of the error term
Herbicide endogeneity -0.05 0.03
Fungicide endogeneity · 0.08
Insecticide endogeneity · 0.15
Nitrogen endogeneity -0.25 -0.08
Inverse Mills ratio 0.15 0.23
Observations 381 236
R2 0.999 0.999
Residual Std. Error 0.159 0.149

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on Agroscope data.
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Chapter 3

Crop production models
accounting for latent CMP choices 1

3.1 Introduction

Regulation of pollutions due to the use of chemical inputs,2 pesticides in partic-
ular, in agricultural production is a major policy objective in the European Union
(EU) (see, Directive 2009/128/EC3). However, most regulation policies implemented
until now have achieved limited reductions in the use of these polluting inputs, espe-
cially regarding pesticides. Within the EU, these policies have been mainly based on
market access restrictions, funding public research efforts on chemical fertilization
and crop protection alternatives as well as subsidies aimed to disseminate chemical
input saving crop production practices. While economists generally advocate for
implementing taxes to internalize the negative external effects of input uses, public
decisionmakers are reluctant to use taxes owing to their potential impact on farmers’
income.4 As a matter of fact, chemical inputs are key production factors in the crop
production technologies used by farmers in industrialized countries (e.g., Lin, 2011;
Matson et al., 1997; Tilman et al., 2002 and Aubertot et al., 2007 for a focus on France).
Production practices targeting high yield levels and based on short crop rotation
schemes require high chemical fertilization levels. They generate high potential
yield levels, which are worth protecting, and increase pest, disease and weed risks
(e.g., Boquet and Johnson, 1987; Howard, Chambers, and Logan, 1994; Roth et al.,
1984). As a result, these practices call for high protection levels that can be achieved
by farmers relatively easily and at reasonable (private) costs by relying on chemical
pesticides.5 Hence, the political reluctance to tax these inputs as it is expected to

1This chapter is written in collaboration with Obafémi Philippe Koutchadé and Alain Carpentier.
2Production and use of mineral nitrogen emit greenhouse gases and excess nitrogen uses pollute

water bodies. Mineral phosphorus is a nonrenewable resource with rapidly decreasing stocks that
generate eutrophication of surface when used in excess.

3Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a
framework for Community action to achieve the sustainable use of pesticides 2009.

4For instance, pesticide taxes were considered by the European Commission but have not been
implemented. In the few countries where they are, pesticide taxes are generally implemented with low
tax rates and mostly for fund raising (Finger et al., 2017; Skevas, Lansink, and Stefanou, 2013).

5Indeed, conventional crop production practices have been designed while taking for granted that
high crop protection levels can be achieved at reasonable (private) cost with chemical pesticides (see,
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significantly impact farmers’ income with limited impact on their uses and the need
for a policy scheme impacting chemical input uses rather than farmers’ income.

Econometric results which demonstrate that farmers’ pesticide uses generally
display very limited responsiveness to pesticide price increases (see, e.g., Böcker
and Finger, 2017; Skevas, Lansink, and Stefanou, 2013), seem to provide support to
the hypothesis stating that the current agricultural production technology “heavily
depends" on pesticide uses and thus justify such political reluctance. Yet, micro-
econometric analyses of farmers’ chemical input uses are generally based on panel
data with short time dimension and assume that farmers’ production technology re-
mains unchanged throughout the considered period. Hence, these analyses mostly
reveal the inelasticity of farmers’ chemical input choices given their current technol-
ogy choice, a result consistent with the view of agricultural scientists. According to
them, farmers cannot significantly modify their chemical input uses without chang-
ing their cropping management practices (CMPs) or cropping systems. Properties
of CMPs, which consist in ordered sequence of operations aimed to produce a given
crop, are only guaranteed to hold in a limited range of chemical input uses (in a
given production area). Adopting alternative production practices is necessary for
farmers to significantly reduce their use of chemical inputs with limited impact on
their income.

Thus our considering of CMP choice in this article. Farmer’s CMP choice can be
considered as a short run choice that is not affected by huge investment costs. From
that perspective, it shares much more similarities with crop variety choice, which is
usually considered andmodelled as a short run choice (e.g., Michler et al., 2018; Suri,
2011), than with irrigation technology choice, which is modelled as an investment
choice (e.g., Genius et al., 2014). Purchasing and installing irrigation equipment
entails significant sunk costs. The (switching) costs related to CMP or seed variety
changes are rather limited. Indeed, CMP change mostly entails intangible learning
andopportunity costs related to crop return loss risks.6 Thepresence of such learning
and opportunity costs implies that, even if CMP choice can be considered as being
a short run choice, switching from one CMP to another is not so straightforward.
If they have no particular incentive to change – either coming from the economic
context or given by public policies instruments – farmers tend to keep using the

e.g., Aubertot et al., 2007). The economic efficiency of chemical crop protection also explains the focus
of plant breeding on productivity rather than on resistances during the past decades (Vanloqueren and
Baret, 2009).

6Suitably implementing a newCMP supposes to gather information, and possible to run small scale
experiments. The related costs are partly sunk when farmers finally decide to switch back from the
new CMP to the usual one, for instance when implementing the CMP appears to yield unsatisfactory
returns. Opportunity loss costs can occur when failing to suitably adapt the new CMP to the farm
context or when the new CMP is less profitable than the usual one given wheat price levels. For
instance, implementing a low-input CMP instead of a high yielding one implies lowering expected
wheat yields by about 0.7 t/ha, which means an opportunity loss exceeding 140 =C/ha in the yield
value when wheat price exceeds 200 =C/ha.
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same CMP. Studying the dynamic feature of CMP choice and the determinants of
CMP change is essential so that public authorities can implement an efficient policy
instrument to reduce the use of chemical inputs.

Unfortunately, data sets that areusuallyusedbyagricultural production economists,
whichmostly come from farm accountancy data, do not contain relevant information
for revealing farmers’ CMP choice. The main objective of this article is to propose
modelling andmicro-econometric approaches for uncovering CMPs used by farmers
from farm accountancy data. These data document input purchases, crop yield levels
and the related prices. However, they do not provide information on important com-
ponents of CMPs such as seeding dates and densities, seed variety, tillage practices,
etc. Given that intensity in the use of chemical inputs of a CMP is directly related
to the yield level targeted by this CMP, our methods aim to identify CMPs used by
farmers based on their yield and chemical input use levels. Following Féménia and
Letort (2016), we take advantage of the conceptual similarity between agronomists’
CMPs and economists’ production functions. While CMPs describe in details how
various inputs and cropping operations are combined to produce a given output,
production functions focus on the role of purchased inputs. Assuming that a yield
production function corresponds to a given CMP, it describes how crop production
levels respond to purchased input use levels when this CMP is implemented. The
functional formof this function, including its parameter value in a parametric setting,
accounts for the unobserved components of the considered CMP.

The pioneering work of Griliches (1957) originated an abundant literature on
the adoption of agricultural production technologies, in economically developed or
developing countries. Micro-econometric studies rely on data in which the adoption
decisions of the considered techniques are observed. They generally focus on the
adoption of specific techniques or practices (e.g., use of a cultivar, tillage techniques,
integrated pest management) and put emphasis on specific determinants such as
learning processes and the role of uncertainty (e.g., Bernard et al., 2016; Chavas and
Nauges, 2020; Foster and Rosenzweig, 2010; Marra and Pannell, 2003), heterogeneity
in return to adoption (e.g., Michler et al., 2018; Suri, 2011) or labour constraints (e.g.,
Fernandez-Cornejo, Hendricks, and Mishra, 2005). Specific analyses aim to assess
the impacts of new technologies on yields, input uses and income (e.g., Fernandez-
Cornejo, 1996; Khanna, 2001; Teklewold et al., 2013).

Our use of “latent technologies” relates our modelling framework to that used
in the strand of studies originated by the work of Orea and Kumbhakar (2004) and
Greene (2005) on latent class stochastic frontier models (e.g., Alvarez and Corral,
2010; Dakpo et al., 2021; Martinez Cillero et al., 2018). Yet, our modelling approach
also intends to integrate elements that come from othermodelling frameworks. First,
to investigate the determinants of CMP choice we explicitly define the expected eco-
nomic returns of the CMPs as key drivers of farmers’ CMP choice (following here
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Griliches, 1957). It casts our study into the aforementioned economic literature deal-
ing with the adoption and the diffusion of agricultural technologies. Additionally,
we assume that the current CMP choice of a farmer depends, among other factors,
on its previous CMP choice. Hence, CMP choice is a dynamic process that can be
modelled as a Markovian process. Our model can thus be seen as an example of
hidden Markov models designed for longitudinal data (e.g., Altman, 2007; Maruotti,
2011). Moreover, we decide to account for unobserved farm heterogeneity and to
consider farm specific random parameters (following the work of Koutchadé, Car-
pentier, and Féménia, 2018, 2020). This implies that the two main components of
our modelling framework – that is to say its dynamic CMP choice sub-model and
its yield and input use levels CMP specific sub-models – share common random
parameters. More generally, these sub-models depend on (possibly) correlated ran-
dom parameters. Accordingly, our model can be considered as a specific example of
endogenous Markov switching models (e.g., Hwu, Kim, and Piger, 2019; Kim, Piger,
and Startz, 2008) or of mixed hidden Markov models with heterogeneous transition
probabilities (e.g., Lavielle, 2018).

To our knowledge, our study is the first combining the latent technology frame-
work with all those elements in a single model. There are two main reasons why
suchmodelling framework is of special interest. First, production practices are rarely
documented in datasets typically used by agricultural production economists. Sec-
ond, considering production practice changes is crucial when assessing the long run
impacts of agri-environmental policies. Indeed, some studies tend to show that the
adoption decision and its determinants are not homogeneously distributed among
CMPs. For instance, Mzoughi (2011) shows that economic, social and moral con-
cerns do not matter equally for conventional, integrated pest management (IPM)
and organic farmers and Finger and El Benni (2013) find that economic incentives to
adopt extensive production scheme are benefiting to already less intensive farmers.
Recovering CMP might be a way (i) to better assess policy impacts that can differ
across type of farms and (ii) to design more effective policy instruments according
to the subpopulation we are aiming at. We illustrate our approach by investigating
French farmers’ CMPs for winter wheat based on a panel dataset from 1998 to 2014
covering la Marne, a (highly productive) arable crop production area located in east-
ern France. La Marne area is of special interest here because it is among the first
areas in which low-input CMPs were tested with on-farm experiments (Loyce and
Meynard, 1997). Moreover, la Marne is a small area characterized by rather homoge-
neous agro-climatic and economic conditions. We consider three main CMP types
in this article: “high-yielding” CMPs (HY-CMPs), intermediate CMPs (Int-CMPs)
and “low-input” CMPs (LI-CMPs). HY-CMPs can be seen as the conventional CMPs
in France whereas LI-CMPs were designed as chemical inputs, especially pesticide,
saving CMPs (Meynard, 1985; Meynard, 1991). Additionnally, in a context of high
wheat prices our simulations show that, even when imposing a 100% pesticide tax,
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the share of farmer switching to low-input practices is very small. Yet, when sim-
ulating a price premium for low-input wheat producers, we observe an important
increase in the share of wheat producers switching to low-input practices.

The rest of the article is organized as follows. The second section of the arti-
cle discusses in more details LI-CMPs, their history and their underlying agronomic
principles. From that, wederive general insights on how to account forCMP choice in
economists’ production functions. The third section presents our micro-econometric
framework which combines random parameters model to account for farmers’ indi-
vidual heterogeneitywith anhiddenMarkovmodel to answer forCMPheterogeneity.
Then, we give the sketch of our estimation procedure. Fifth and sixth sections are
dedicated respectively to the data presentation and to the description of the results
of the exploratory analysis we performed to unreveal CMPs in the data. The seventh
section is dedicated to the presentation of the results from the random parameter
hidden Markov model. Lastly, we discuss the obtained results and provide some
concluding remarks.

3.2 Agronomic principles and brief history of “Low Input”
CMPs

CMPs are defined by agronomists as ordered sequence of yield production decisions
or decision rules aimed to produce a given crop. CMPs include soil preparation op-
erations, seed variety, date and density, fertilization and pesticide applications, etc.
We are interested in specific CMPs, the LI-CMPs proposed by agronomists in the late
1980s and, then, developed and promoted by agronomists and extension agents since
themid 1990s. LI-CMPswere developed by INRA starting in themid 1980s and com-
binedwithmulti-resistantwheat cultivars in the late 1990s (Larédo andHocdé, 2014).

LI-CMPs can be interpreted as technological innovations aiming at providing
answers to two main issues raised by conventional HY-CMPs. First, HY-CMPs are
intensive in chemical input uses, which are polluting inputs. HY-CMPs are conceived
to achieve high target yield levels but rely on high levels of chemical input uses, pre-
cisely because the techniques implemented for achieving high target yield levels tend
to trigger the need of high fertilization and crop protection levels. Indeed, HY-CMPs
aim to increase grain potential yield by increasing seeding densities, choosing early
seeding dates, relying on productive seed varieties and applying large amounts of,
especially nitrogen, fertilizers. Importantly, these HY techniques tend to increase
pest and weed pressures and, consequently, call for efficient crop protection. Early
seeding dates tend to expose crops to pest outbreaks. Nitrogen fertilizer use tends
to trigger competition by weeds (Appleby, Olson, and Colbert, 1976; Henson and
Jordan, 1982; Lintell Smith et al., 1992; Sexsmith and Pittman, 1963). High seed den-
sities, productive – but susceptible to diseases – cultivars and high loads of nitrogen
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fertilizer tend to increase wheat susceptibility to diseases (e.g., Boquet and Johnson,
1987; Howard, Chambers, and Logan, 1994; Roth et al., 1984). Yet, availability of
efficient chemical pesticides enables farmer to control the pest and weed pressures
triggered by HY techniques. The basic principle of the conception of LI-CMPs is to
lower target yield levels in order to lower chemical input uses, pesticides in particular.
Lowering target yield levels directly reduces crop nutrition needs and, thereby, ni-
trogen fertilization uses. LI-CMPs lower crop protection needs by avoiding cropping
techniques that increase pest and weed pressures. Therefore, they allow reducing
pesticide uses. Second, the decrease in grain prices induced by the – progressive for
cereals while sudden for oilseeds – removal of the common agricultural policy (CAP)
price support in 1992 called into question the profitability of grain production in the
EU from the late 1990s to the mid 2000s. Due to the low grain prices during this
period, HY-CMPs appeared to be much less profitable than they were in the early
2000s. The price support implemented by the CAP until the so-called McSharry
reform in 1992 led most agricultural scientists to develop HY-CMPs to be adopted
by European grain producers. Indeed, due to the relative scarcity of arable land in
Western Europe, adopting HY-CMPs appeared to be the most profitable technologi-
cal option for farmers, especially considering the price of pesticides whichwas rather
low, to benefit from high grain prices (Mahé and Rainelli, 1987; Meynard, 1991). De-
spite a constant price for pesticides, lower grain prices can be an incentive to LI-CMPs.

The HY-CMPs and LI-CMPs considered by agronomists vary across time and
production areas, depending on economic and agro-climatic conditions (Bouchard
et al., 2008; Loyce and Meynard, 1997; Loyce et al., 2008, 2012; Rolland et al., 2003).
On average, yield levels obtained with LI-CMPs are 10% lower than those obtained
with HY-CMPs. Nitrogen fertilizer loads decrease by 10% from the HY-CMPs to the
LI-CMPs while the use of (mostly) fungicides and insecticides is reduced by around
30%. Finally, due to the lower sowing densities in LI-CMPs seed uses decrease by
around 50% when using these CMPs. Also, hardy wheat cultivars are complemen-
tary to the agronomic principles underlying the design of LI-CMPs (Larédo and
Hocdé, 2014; Loyce et al., 2008). These cultivars are resistant to multiple diseases but
slightly less productive than the ones typically used in HY-CMPs.

Finally, LI-CMPs are labor and fuel saving thanks to their lower expectedpesticide
application numbers. Hence, even if (i) no data exist on the adoption of LI-CMPs by
French farmers and (ii) farm accountancy data do not contain any indicator enabling
us to identify farmers using LI-CMPs, it is possible to track the economic conditions
that weremore or less favorable to the adoption of LI-CMPs by farmers. In particular,
economic conditions tended to favor the adoption of LI-CMPs from the late 1990s to
2006, mostly due to the low grain prices observed during this period and stable prices
for fungicides and insecticides from1990 to 2016. On the contrary, thehighgrainprice
levels observed since 2007 have tended to favor conventional HY-CMPs, although
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these effects of high grain prices on the profitability of HY-CMPs are partially offset
by the high levels of fuel and fertilizer prices.

3.3 A Random Parameter Hidden Markov Model for mod-
elling production choices accounting for CMPs

3.3.1 Crop production models accounting for CMP choices

The differences between the low-input and high-yielding CMPs described in the pre-
vious section suggest that these different CMPs need to be considered as different
crop production technologies. A single production function – a function that mostly
describes how yield levels respond to input uses – cannot account for the variety of
CMP responses to input uses. In the absence of information characterizing CMPs,
the CMP choice needs to be considered as a latent variable. Even if they are mostly
characterized by their target yield levels and their congruent chemical input use
levels, observed yield levels and chemical input use levels do not contain sufficient
information for uncovering CMPs (as confirmed by the exploratory analyses). In-
deed, farmers’ yield and chemical input use levels are impacted by factors and events
that make their direct comparison across farms largely irrelevant for identifying the
CMPs that generated these levels. For instance, a farm with good soils generally
obtains higher yields and uses more chemical inputs than a farm with moderate
quality soils if both farms use the same CMP. A high-yielding CMP may target 9.5
tonnes per hectare of wheat in a good plot while it may only target 7.5 tonnes per
hectare in a plot with poor soil quality. Similarly, climatic events as well as pest and
disease infestations can impact yields and input uses in ways that significantly differ
across farms. Across farm heterogeneity has significant effects on crop production
and on farmers’ choices even within areas of limited size (e.g., Koutchadé, Carpen-
tier, andFéménia, 2018, 2020). This justifies the choice of a randomparametersmodel.

Yet, combining a model with latent technology and random parameters rises
challenging identification issues. The fact that farmers are observed for several
consecutive years (at least 3 in our dataset) plays a major role in the identification
strategy of our empirical approach. Our model assumes that the observed series of
input use and yield levels are generated each year by a single CMP and that farmers
can change the CMP they use across time according to a Markov process. First
asset of Markov processes is that they evolue relatively smoothly. Plus, modelling
explicitly farmers’ CMP choices sequence as Markov process allows to disentangle
the effects of unobserved random events from a change in CMPs. As for the effects
unobserved heterogeneity (e.g., soil quality), they are disentangled from those of
CMPs by assuming that production conditions are persistent at the farm level, with
a fixed probability distribution at the farm population level, while CMPs can evolve
over time. Next sections are dedicated to the presentation of our modelling choices
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so that we can identify in our production function what can be attributed to (i) latent
CMPs, (ii) unobserved heterogeneity or (iii) unobserved random events.

3.3.2 Latent CMPs models

Accounting for the specific features of CMPs and for their use in farmer production
choice models requires a specific framework, even if our panel dataset is quite rich
owing to its reporting cost accounting elements as well as its length and size. Let H8C
denote the wheat yield level of farmer 8 in year C, and let x8C = (G 9 ,8C : 9 ∈ �) denote the
related vector of chemical input uses, where � = {1, ..., �} is the considered set of in-
puts. As our dataset is a unbalanced panel, we also need to define�8 = {C(8), ..., )(8)}
as the observation period of farmer 8, where 8 = 1, ..., # and �8 ⊆ {1, ..., )}. We as-
sume that farmers can produce wheat by using a CMP among the C ones collected
in set � = {1, ..., �}. CMP indices, 2 ∈ �, are ordered such that CMP 1 is the most
intensive CMP – in the sense that it is designed to achieve the highest target yield
level and, thus, relies on the highest chemical input use levels – while CMP � is the
least intensive one – i.e. the one that relies on the lowest chemical input use levels for
achieving the least target yield level. The CMP used by farmer 8 in year C, denoted
by A8C ∈ �, is unobserved. Accordingly, variable A8C is considered as latent in our
modelling framework.

Variable H2
8C
denotes the wheat level obtained by farmer 8 considering that this

farmer used CMP 2 in year C. Vector x2
8C
= (G2

9,8C
: 9 ∈ �) denotes the corresponding

input use levels. The model chosen for the (H2
8C
, x2
8C
) vectors is given by{

H2
8C
= 12

H,8
+ 3H,C,0 + %′H,0z8C + �2H,8C

x2
8C
= b2

G,8
+ dG,C,0 + �G,0z8C + 92

G,8C

, for 2 ∈ �, (3.1)

where vector z8C contains farm characteristics (e.g., arable land area, capital stock).
Year specific fixed effects dC ,0 = (3H,C,0 , dG,C,0) capture the effects of factors or events
that mostly vary across years.7 The estimates of year specific terms dC ,0 can be used
for uncovering the effects of price ratios on the CMP specific yield and input use
levels. We assume that z8C impacts, through matrix �0 = (%′H,0 ,�G,0), yield and input
use levels in ways that depend neither on farms and nor on CMPs. Similarly, we
assume that the effects of factors or events that mostly vary across farms, which are
modelled through parameters dC ,0, depend neither on farms and nor on CMPs.8

7For instance, features of meteorological events or technological changes (such as the ones included
in pesticides or in seed varieties) that impact the whole farm sample. These year effects also capture the
effects of crop and input prices, implying that our reduced form models share common features with
dual models of crop production choices that are widespread in the agricultural production literature.

8These homogeneity assumptions are admittedly restrictive as latent vector netput levels q2
8C
=

(H2
8C
, x2
8C
) are related to production functions that may significantly differ across CMPs. This assumption

is imposed mainly for practical reasons. First, identifying CMP specific effects of year specific factors
is difficult in a latent CMP framework. Second, as will be seen below, this assumption significantly
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Farm and CMP specific terms b2
8
= (12

H,8
, b2

G,8
), where b2

G,8
= (12

G,9,8
: 9 ∈ �), account for

the effects of CMP and production conditions on wheat yields and input uses. Term
12
H,8

is designated, for short, as the wheat target yield level of CMP 2 as this practice
is implemented by farmer 8. Similarly, term 12

G,9,8
is designated as the requirement in

input 9 of CMP 2. Error terms 92
8C
= (�2

H,8C
, 92
G,8C
) capture the effects of random events

on wheat yield and input use levels that may depend on farms, years and CMPs.

We assume that vectors b2
8
, z8C and 92

8C
are mutually independent.9 We also assume

that error terms 92
8C
are independent across farms and years. These assumptions im-

ply that vectors q8C are independent across time conditionally on b2
8
and z8C . Finally

we assume that 92
8C
is normally distributed, with 92

8C
∼ #(0,�20).

To ensure that our latent CMP framework empirically identifies CMPs, we adopt
a specific parameterization of the random parameters of our model based on the
relative properties of high-yielding versus low-input CMPs. This parameterization
defines terms 12

H,8
and 12

G,9,8
based on simple recursive schemes, 12

H,8
= 02

H,8
12−1
H,8

and
12
G,9,8

= 02
G,9,8

12−1
G,9,8

. It implies that 12
H,8

and 12
G,9,8

are given by the following simple
formulae:

12H,8 = 1
1
H,8

∏2

3=2
03H,8 , for 2 ∈ �0 ,

and
12G,9,8 = 1

1
G,9,8

∏2

3=2
03G,9,8 , for 2 ∈ �0 and 9 ∈ � ,

where �0 = {2, ..., �}. The conditions stating that 11
H,8
≥ 0, 02

H,8
∈ [0, 1], 11

G,9,8
≥ 0 and

02
G,9,8
∈ [0, 1], for 2 ∈ �0 and 9 ∈ �, guarantee that expected yield and chemical input

use levels 12
H,8

and 12
G,9,8

are non-negative and decrease in 2. Hence, they ensure the
identification of more or less intensive production technologies and fit our defining 2
as an index that decrease with target yield level (i.e., CMP intensity in chemical input
uses). These conditions can be enforced by using suitable probability distributions
for random parameter vectors $8 = (b1

8
, aH,8 , aG,8), where aH,8 = (02H,8 : 2 ∈ �0),

a2
G,8
= (02

G,9,8
: 9 ∈ �) and aG,8 = (a2H,8 : 2 ∈ �0).10 Under the considered assumptions,

the probability distribution function ofq8C = (H8C , x8C) conditional on z8C , $8 and A8C = 2
is given by:

5 (q8C |A8C = 2, $8 , z8C) = !(q8C − b28 − dC ,0 − �0z8C ;�20), (3.2)

simplifies our CMP choice model. Third, and more importantly, the effects of CMPs are captured in
other parts of the model of q2

8C
.

9Vector z8C containing quasi-fixed input quantities, our assuming that z8C is (strictly) exogenous
with respect to 92

8C
and that b2

8
and z8C are independent appears reasonable (and is fairly standard).

10Interestingly, our initial intention was to consider terms aH,8 and aG,8 as fixed parameters, which
is equivalent to imposing that aH,8 = aH,0 and aG,8 = aG,0 for 8 = 1, ..., # . The purposes of this
“fixed parameter” specification were (i) to secure the identification of the model parameters and (ii) to
facilitate the comparison of the yield levels and chemical input uses across CMPs. Surprisingly enough,
we couldn’t estimate the model with fixed parameters aH,0 and aG,0 due to convergence issues while
the estimated probability distributions of random parameters aH,8 and aG,8 display limited (although
statistically significant) variability.
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where !(a; Ξ) is the probability distribution function of #(0,Ξ) at a. The only thing
we need so we can define the unconditional probability distribution of q8C , is the
probability distribution of A8C = 2 as farmers’ CMP choice is unobserved (and we
already assume a probability distribution for $8).

3.3.3 A model with dynamic CMP choice

The following regime switching equation provides the link between the observed
input use and yield levels on the one hand, and the set of their latent CMP specific
counterparts:

q8C =
∑

2∈�
1(A8C = 2)q28C =

∑
2∈�

A28Cq
2
8C , (3.3)

where dummy variable A2
8C
indicates whether farmer 8 chose CMP 2 (A2

8C
= 1) or not

(A2
8C
= 0) in year C. We define a structural model for A8C in the sense that it explicitly

describes how the characteristics of the latent CMP specific netput levels impact the
CMP choice of expected profit maximizing farmers. Such structural model allows
us to investigate how farmers choose which CMP to use.11 Let FH,C denote wheat
price paid to farmers and FG,9,C denotes the price paid by farmers for input 9 in year
C. The return to chemical inputs of wheat production obtained by farm 8 is given
by �̃2

8C
= FH,CH

2
8C
−w′G,Cx28C , when CMP 2 is used on this farm. But, if input purchase

prices wG,C = (FG,9,C : 9 ∈ �), farm specific parameters $8 and farm characteristics z8C
can safely be assumed to be known to farmers, most of the other terms that are part of
returns �̃2

8C
are unknown to farmers at the beginning of the cropping season. Let �2

8C

denote the expectation of �̃2
8C
by farmer 8 at the beginning of cropping season C. This

expectation can be defined by �2
8C
= �[�̃2

8C
|$8C]where $8C denotes the information set

of farmer 8 at the time he sows wheat to be harvested in year C. It is easily shown
that:

�28C = �[FH,C |$8C]12H,8 −w′G,Cb2G,8 + �8C , (3.4)

where

�8C = �[FH,C |$8C](�[3H,C,0 |$8C] + %′H,0z8C) −w′G,C(�[dG,C,0 |$8C] + �G,0z8C).

Terms �[dG,C,0 |$8C] and �[3H,C,0 |$8C] capture the effects of wheat prices and meteoro-
logical conditions on chemical input uses and wheat yield to be expected in year C.
Importantly, term �8C does not depend on the CMP used by the considered farmer,
implying that this term is irrelevant for investigating farmers’ CMP choice. We sim-
ply assume here that farmers rely on naive expectations with respect to the crop
price, that is to say we assume that �[FH,C |$8C] = FH,C−1 (e.g., Koutchadé, Carpentier,

11In the production frontier literature using latent class models, the probability of farmer 8 using
CMP 2 in year C is defined either as a fixed probability parameter or as a probability function that
depends on exogenous variables including farm characteristics or economic factors. Yet, this approach,
which is focused on identifying the characteristics of latent variables q2

8C
, does not fit our objective to

identify the CMP choice determinants.
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and Féménia, 2018, 2020). It implies that �2
8C
= FH,C−11

2
H,8
−w′G,Cb2G,8 + �8C .12

We do not expect farmers to change their CMP frequently, even if we expect the
relative profitability levels of the CMPs under consideration to significantly vary
across years. Because of transition costs, farmers are expected to tend to stick to the
CMP they are used to. CMP choice can thus be considered as a dynamic process,
in the sense that the current choice depends on the past ones. The sequence of
CMP choices A8C is assumed to follow a (possibly) farmer specificMarkov chain given
the expected crop returns 08C . We use a first order Markov chain so we have that
%8[A8C = 3 |A8C−1 , ...., A8C(8) ,08C] = %8[A8C = 3 |A8C−1 ,08C].13

To link the economic profitability of the considered CMPs and their choice by
farmers, we define the transition probabilities of the CMP choice process as functions
of expected returns 08C and of implicit CMP switch costs. Three main types of
switch costs can be defined. First, expected returns 08C only consider chemical input
costs. Yet, costs such as implementation costs of pesticide sprays or monitoring
costs, argue for systematic differences in CMPs costs. These systematic differences
have to be accounted for by the farmer when considering a CMP change. Second,
CMP change entails chemical input uses adjustments together with adjustments
in agronomical techniques, such as sowing dates and densities or seed cultivars.
Finally, CMP choice can depend on farmers’ attitude toward risk (e.g., Chavas and
Nauges, 2020) or environmental issues (e.g., Howley et al., 2015). Such “behavioral
differences” impact their willingness to pay for CMPs that are either seen as more
risky or more environmental-friendly. To account for the fact that adjustment costs
can vary across farmers and can also depend on the considered CMP, we incorporate
farm and CMP specific random parameters in our modelling framework. Let vector
"8 stack all the farm specific random parameters of the entire model and function
?(3 |2, "8 ,wC) denote probability of farmer 8 using CMP 3 in year C conditionally on
this farmer using CMP 2 in year C − 1, on random terms "8 and on expected price
levels wC = (FH,C−1 ,wG,C). This probability function is defined by ?(3 |2, "8 ,wC) =
%[A8C = 3 |A8C−1 = 2,wC , "8] and its assumed functional form is given by:

?(3 |2, "8 ,wC) =
exp

(
�8(�38C − �

3 |2
8
)
)

∑
:∈� exp

(
�8(�:8C − �

: |2
8
)
) , for (2, 3) ∈ � × �. (3.5)

The functional formof transitionprobability function ?(3 |2, "8 ,wC) is that of a (mixed)

12Considering adaptive anticipation schemes (e.g., Chavas and Holt, 1990) instead of the simple
naive one slightly impact the quantitative estimation results but does not modify the main conclusions
drawn from these results.

13The underlying assumption being that the last CMP choice, A8C−1, sums up the information content
of the CMP choice history, (A8C−1 , ...., A8C(8)), that is relevant for modelling CMP choice A8C given 08C .
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Multinomial Logit model. This discrete choice model describes the choice of a CMP
from set � in year C by farmer 8 assuming that this farmer used CMP 2 in year C − 1.14
The underlying discrete choice model is an expected return maximization problem
given by A8C = arg max:∈�{�:8C − �

: |2
8
+ (�8)−14

: |2
8C
}. To go from this model on A8C to

the probability functions displayed in Equation (3.5), we need to assume that the
elements of error term vector e|2

8C
= (43 |2

8C
|3 ∈ �), which are known to farmer 8 but

unobserved by the analyst, are mutually independent and follow a standard Gumbel
distribution. Random parameter �8 is a positive scale parameter for the effects of
error terms 43 |2

8C
. Hence, the larger �8 is, the more extended returns �:

8C
− �: |2

8
matter

in the considered CMP choice. As specified in Equation (3.5), farmers’ CMP choice
depends on the relative expected returns of the CMPs, 08C , as well as on farmer
specific switching costs -8 = (�

3 |2
8

: (2, 3) ∈ �2).15

Equation (3.5) defines the transition probabilities of the CMP choice process. To
be able to determine the probability function of the (unobserved) sequence of CMP
choices for the sampled farmers, we also need to define the probability for a farmer
to have chosen CMP 2 at his entrance year in the panel C(8). Let ?0(2 |"8 ,wC(8)) denote
suchprobability given"8 andwC(8). We assume that the functional form ?0(2 |"8 ,wC(8))
is given by:

?0(2 |"8 ,wC(8)) =
exp

(
�8(�28C(8) − �

2
8
)
)

∑
:∈� exp

(
�8(�:8C(8) − �

:
8
)
) , for 2 ∈ �. (3.6)

This functional form is chosen to account for the effects of the CMP relative profitabil-
ity levels08C(8). It is inspired by theMultinomial Logit probability function associated
to the expected profitmaximization problemgiven bymax:∈�{�:8C(8)−�

:
8
+(�8)−14 :

8C(8)}.
Term �8 is a positive farm specific parameter scaling the effects of error terms 4 :

8C(8)
and terms (8 = (�28 : 2 ∈ �) capture the effects of farmer specific costs or motives
that tend to direct farmers’ choice toward particular CMPs.16 When presenting the
low-input CMPs, we emphasize that there are particular economic conditions that
might discourage the adoption of such practices. Notably, high wheat prices tend to
discourage the use of low-input practices. Thus, one could introduce a time trend in
�2
8
to account for the fact that, depending on when farmer 8 arrives in the panel, his

probability to adopt a specific CMP might changes.17

14This probability function ensures that terms ?C (3 |2; "8) strictly lie in the unit interval, and that
terms ?(3 |2, "8 ,wC ) sum to 1 over 3 ∈ �.

15We impose the normalization constraints stating that �1|2
8

= 0 for 2 ∈ �. We choose CMP 1, the
most intensive CMP, as the benchmark choice because we expect most farmers to use high yielding
CMPs. Term �3 |2

8
denotes the switching cost incurred by farmer 8 when adopting CMP 3 while leaving

CMP 2 relatively to (i.e., minus) the switching cost incurred when adopting CMP 1. It is negative if
adopting CMP 3 entails lower switching costs than adopting CMP 1 for farmer 8.

16Condition �1
8
= 0 is chosen as the normalization constraint for the elements of (8 .

17This point is discussed further in the Discussion/Conclusion section.
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Combining Equations (3.5) and (3.6), we can finally define the probability function
of the (unobserved) sequence of CMP choices for the sampled farmers. Let r(8) =
(A8C : C ∈ �8) define the sequence of latent CMP choices of farmer 8. Let function
%(r(8) |"8 ,w(8)) denote the probability function of r(8) given "8 and w(8) = (wC : C ∈ �8).
Under our assumption set, computing the probability function %8(r(8) |"8) of CMP
choice sequence r(8) given "8 and wC(8) yields:

ln%8(r(8) |"8) =
∑

2∈�
A2
8C(8) ln ?0(2 |"8 ,wC(8)) (3.7)

+
∑)(8)

C=C(8)+1

∑
2∈�

∑
3∈�

A28C−1A
3
8C ln ?(3 |2, "8 ,wC).

Equation (3.7) corresponds to the likelihood of the considered CMP choice model
for our panel dataset, with "8 = ($8 , �8 , -8 , �8 , (8). If we assume that error terms
e8C = (e|28C |2 ∈ �) and 98C are independent, we can easily derives the unconditional
likelihood associated to q8C .18

3.4 Sketch of the estimation procedure

For estimation purpose, we consider a fully parametric version of our model. We
assume here, for simplicity, that the probability density function of random param-
eter "8 is multivariate normal, with "8 ∼ #("0 ,
0), where variance matrix 
0 is
left unrestricted. Since our model is fully parametric, we consider estimating its
parameters, )0 = (d0 ,�0 , "0 ,
0 , (�20 : 2 ∈ �)), using the Maximum Likelihood (ML)
approach. The contribution of farmer 8 to the sample likelihood function given "8 at
) is given by:

ℓ8() |"8) =
∑

28C(8)∈�
....

∑
28)(8)∈�

?0(28C(8) |"8 ,wC(8)) (3.8)∏)(8)

C=C(8)+1
?(28C |28C−1 , "8 ,wC)

∏)(8)

C=C(8)
!(u28C ;�

28C ),

where u2
8C
= q8C − b2

8
− dC − �z8C . The related contribution to the sample likelihood

function at ) is given by:

ℓ8()) =
∫
ℓ8() |=)!(= − ";
)3=. (3.9)

18Such assumption implies that CMP choices on the one hand, and input use and yield levels on the
other hand are independent conditional on "8 . Yet, return08C is a function of $8 , the randomparameters
characterizing the CMPs. Also, we allow switching cost random parameters -8 to be correlated with
$8 . Explicitly specifying the effects of "8 in the CMP choice and crop production choice models allows
us to control the endogeneity of CMP choices with respect to the crop production choices, which
we assume to only depend on unobserved farm heterogeneity which is explicitly modelled through
random parameters "8 .
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The computation of likelihood terms ℓ8()) is particularly challenging.19 Hence the use
of extensions of the Expectation-Maximization (EM) algorithm of Dempster, Laird,
and Rubin (1977).20

The StochasticApproximate EM (SAEM) algorithmproposed byDelyon, Lavielle,
andMoulines (1999) is a computationally efficient alternative to the Monte Carlo EM
(MCEM) algorithm (Wei and Tanner, 1990), especially when the probability distri-
butions involved in the likelihood function of the model belong to the exponential
family (see, e.g., Kuhn and Lavielle, 2005; Lavielle and Mbogning, 2014). It relies
on a stochastic approximation approach for solving the E step. Let define vectors
q(8) = (q8C : C ∈ �8) and z(8) = (z8C : C ∈ �8). The complete data of our model consists
of (i) the observed variable vectors '(8) = (q(8) ,w(8) , z(8)), (ii) the latent CMP choices
sequence r(8) and (iii) the random parameters vector "8 , for 8 = 1, ..., # . The complete
data log-likelihood function is the sample log-likelihood function of the joint model
of the dependent and missing variables, (q(8) , r(8) , "8), given the exogenous variables
of the model, (w(8) , z(8)). The complete data log-likelihood function at ) of our model
is given by:

ln !�()) =
∑#

8=1
ln ℓ�8 () |r(8) , "8), (3.10)

where:

ln ℓ�8 () |r(8) , "8) =



∑
2∈� A

2
8C(8) ln ?0(2 |"8 ,wC(8))

+∑)(8)
C=C(8)+1

∑
3∈�

∑
2∈� A

3
8C−1A

2
8C

ln ?(2 |3, "8 ,wC)
+∑)(8)

C=C(8)
∑
2∈� A

2
8C

ln!(q8C − b2
8
− dC − �z8C ;�2)

+ ln!("8 − ";
)


.

At iteration = of an EM type algorithm, the objective of the E step is to integrate
ln !�()) over the probability distribution of the missing data (r(8) , "8) conditional on
the observed data '(8) evaluated at )(=), the last available estimate of )0. This consists
of computing the conditional expectations �(=)[ln ℓ�

8
() |r(8) , "8)|'(8)], for 8 = 1, ..., # .

The computation of conditional expectations �(=)[ln ℓ�
8
() |r(8) , "8)|'(8) , "8] consists

of computing the conditional expectations of terms A2
8C(8), A

2
8C
and A3

8C−1A
2
8C
. Under our

model assumptions we can show that �(=)[A2
8C(8) |'(8) , "8] = ?0(2 |"8 ,wC(8)). Likewise,

expectation terms ?C(2 |"8 ,w(8)) = �(=)[A28C |'(8) , "8]and BC(2, 3 |"8 ,w(8)) = �(=)[A3
8C−1A

2
8C
|'(8) , "8]

19This problem combines two issues. As it stands in Equation (3.8) the expression of ℓ8() |"8) is of
little or no computational use. It quickly becomes intractable as � or/and ) grows to moderate levels.
Second, the integration problem involved in Equation (3.9) can rarely be solved either analytically or
numerically. Computing ℓ8()) requires simulation methods. Solving these issues leads to an awkward
simulated sample log-likelihood function that is particularly challenging to maximize in ).

20EM type algorithms are particularly well suited for maximizing the log-likelihood functions of
models involving missing variables. The latent CMP choices A8C and the random parameters "8 of our
model are examples of missing variables. This algorithm allows solving a complicated ML problem
by iteratively solving a sequence of much simpler problems. Each iteration of an EM type algorithm
involves an expectation (E) step, which consists of integrating a conditional expectation, and a maxi-
mization (M) step.
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can be defined as functions of initial probability functions ?0(2 |"8 ,wC(8)) and of tran-
sition probability functions ?(2 |3, "8 ,wC). As neither functions ?0(2 |"8 ,wC(8)) nor
functions ?(2 |3, "8 ,wC) depend on elements of fixed parameter ), the same observa-
tion holds for functions ?C(2 |"8 ,w(8)) and BC(2, 3 |"8 ,w(8)).

Given these results and observations, computing �(=)[ln ℓ�
8
() |r(8) , "8)|'(8)] consists of

computing:

�(=)[ln ℓ�
8
() |r(8) , "8)|'(8)]
=

�(=)['("8 ,w(8))|'(8)]
+∑)(8)

C=C(8)
∑
2∈� �

(=)[BC(2, 3 |"8 ,w(8)) ln!(q8C − b2
8
− dC − �z8C ;�2)|'(8)]

+�(=)[ln!("8 − ";
)|'(8)]

 ,
(3.11)

where term:

'("8 ,w(8)) =
{ ∑

2∈� ?0(2 |"8 ,wC(8)) ln ?0(2 |"8 ,wC(8))
+∑)(8)

C=C(8)+1
∑
3∈�

∑
2∈� BC(2, 3 |"8 ,w(8)) ln ?(2 |3, "8 ,wC)

}
,

does not involve any element of ).
The expectations conditional on the observed data '(8) involved in Equation (3.11)
can be integrated using simulation methods. Whatever the simulation method,
these expectations are approximated by weighted means of functions of simulations
of random parameters "8 . Let

⌢
"
(=), 9
8 denote the considered random draws of "8 and

⌢
$
(=), 9
8 their related weights, for 9 = 1, ..., �(=), where �(=) denote the draw number

considered for iteration =. The conditional expectation of ln !�()) is approximated
by:

�(=)[ln !�())|']
'

∑#
8=1


�(=)['("8 ,w(8))|'(8)]

+∑)(8)
C=C(8)

∑
2∈�

∑�(=)

9=1
⌢
$
(=), 9
8 BC(2, 3 |

⌢
"
(=), 9
8 ,w(8)) ln!(q8C −

⌢

b
2,(=), 9
8 − dC − �z8C ;�2)

+∑�(=)
9=1

⌢
$
(=), 9
8 ln!(⌢"(=), 98 − ";
)

.
(3.12)

In our empirical application, we used the SAEM version of this E step and an im-
portance sampling approach for integrating terms �(=)[ln ℓ�

8
() |r(8) , "8)|'(8)]. We used

the probability density of N("(=+1) ,
(=+1)) as the proposal density for the random
draws of "8 .21

Solving the M step at iteration = then consists of maximizing �(=)[ln !�())|'] in
) for obtaining )(=+1). In our case, this maximization problem can be solved in two

21The whole SAEM procedure and its explicit forms can be found in Appendix 3.9.1.
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steps. Solving problem:

max
(d,�,�)

∑#

8=1

∑)(8)

C=C(8)

∑
2∈�

∑�(=)

9=1
⌢
$
(=), 9
8 BC(2, 3 |

⌢
"
(=), 9
8 ,w(8)) ln!(q8C −

⌢

b
2,(=), 9
8 − dC − �z8C ;�2),

(3.13)
yields (d(=+1) ,�(=+1) , (�2,(=+1) : 2 ∈ �)), the first part of )(=+1).

On the other hand, solving problem:

max
(",
)

∑#

8=1

∑�(=)

9=1
⌢
$
(=), 9
8 ln!(⌢"(=), 98 − ";
), (3.14)

yields ("(=+1) ,
(=+1)), the second part of )(=+1). Both problems are equivalent to
weighted ML problems of linear multivariate Gaussian models.

The E and M steps described above are iterated until numerical convergence (see
Appendix 3.9.1 for more details on the estimation procedure).

3.5 Data

We use an unbalanced panel data set that considers, from 1998 to 2014, input uses
and yields of winter wheat for a sample of farmers located in La Marne, a French
department. These data have been extracted from cost accounting data provided
by the CDER, the main accounting agency dealing with farming operations in the
considered area. Among this cost accounting data are the received wheat prices. As
our approach requires to build price anticipation to evaluate the anticipated revenue
associated to each technology, data from year 1998 was dropped from the final data
set so we can build the anticipated wheat price variable. Additionnally, farms that
were observed less than four times in the panel were dropped. This constraint comes
from the fact we are using a model with random parameters, i.e. we need to observe
each farms multiple times so we can estimate those random parameters. Overall,
the data set gathers 1351 farmers that are observed for 10 years on average. Number
of farms observed each year is reported in Table 3.1. Number of observed farms is
steady between 2002 and 2009 and is more fluctuating at the beginning and at the
end of the time period. To evaluate the effect of the yearly changing composition
of the panel, the table also provides the average size of the farms and of the winter
wheat cropped surface. Farm size and cropped wheat surface tend to increase over
years. The phenomenon of increased farm size is not specific to our data, it is a global
trend in France that is highlighted by Agreste (see Poullette, 2018). Yet, the share
of the surface allocated to winter wheat is stable, around 30%. Provided that farm
size is expected to affect technology choice through time constraint, the normalized
arable land area was integrated in the set of d8C .
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Table 3.1: Annual mean (and standard deviation) of arable land area
and wheat acreage, from 1999 to 2014

Year N Arable land area (in ha) Wheat acreage (in ha)
1999 678 172.61 (86.54) 52.40 (29.31)
2000 824 179.11 (89.92) 57.42 (33.41)
2001 829 176.60 (90.98) 53.91 (30.33)
2002 959 181.89 (92.45) 56.42 (33.24)
2003 946 184.96 (92.36) 53.74 (32.49)
2004 924 185.40 (93.46) 55.10 (33.32)
2005 923 184.84 (91.20) 57.12 (33.72)
2006 943 188.66 (97.36) 58.29 (35.69)
2007 959 191.10 (99.18) 59.06 (36.38)
2008 933 193.10 (101.04) 60.52 (38.09)
2009 930 193.67 (99.40) 58.52 (36.99)
2010 823 191.34 (95.56) 60.51 (34.40)
2011 651 186.83 (87.57) 61.86 (36.12)
2012 773 196.33 (97.97) 55.85 (36.81)
2013 739 198.32 (103.19) 65.40 (38.45)
2014 694 202.06 (102.77) 64.19 (39.08)

Source: CDER data.

Apart fromreceivedwheatprices, our applicationprimarilymakesuseof recorded
winter wheat yields and fertilizer and pesticide expenditures devoted to wheat pro-
duction. Because pesticide uses are not available in the data (and rarely are at the
farm level), pesticide expenditures are used as proxy for pesticide uses, even if recent
studies tend to show that the correlation between input expenditures and input use
is relatively low (e.g., Uthes et al., 2019). Even if fertilizer uses are recorded in the
data, to treat both inputs symmetrically we also use a fertilizer expenditure variable.
Yet, as the quantities of the Big-Three nutrients – nitrogen (N), phosphorus (P) and
potassium (K) – are available in the dataset, the correlation between expenditures
and uses can be investigated.

Figure 3.1 shows that until 2008-2009, fertilizer expenditures and NPK quanti-
ties seem to be well correlated. Then, in 2008, we observe a decrease in fertilizers
expenses before they peak in 2009. On the other hand, quantities of NPK are quite
steady over the whole period. Such disconnection between fertilizer uses and expen-
ditures can be explained by the 2007 economic crisis. During that period, oil prices
have increased and have impacted fertilizer prices (e.g., Baffes, 2007; Chen et al.,
2012) and farmers might have delayed their fertilizer expenditures in 2008, relying
on their stock, and have had to compensate in 2009. To overcome such pitfall, NPK
quantities were regressed on fertilizers expenses to get price proxies that account for
inventories effect. The build price index corresponds to the nutrient price associated
to the global fertilizer expenses given the quantities of nutrients that were really
used by the farmer. The nitrogen fertilizer expenditures is better related to the used
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quantities than the original fertilizer expenditure variable and thus will be used in
the main analysis as proxy for fertilizer uses.

Figure 3.1: Annual mean fertilizers expenses and nutrients uses from
1999 to 2014

Source: CDER data.

Mean yield, fertilizer and pesticide expenses are reported in Figure 3.2. Fertilizer
expenses are steadier than pesticide expenses. This might be due to the fact that
pesticide uses are dependent from weather conditions and pest invasion, i.e. they
are more likely to vary across time. Yet, the most time dependent variable remains
yields that are deeply subjected to weather conditions. They vary from 7.57 tonnes
per hectare in 2003 to 9.55 tonnes per hectare in 2014 with an overall mean around
8.6 tonnes per hectare.

As for pesticide price indices, they were obtained from the French department of
Agriculture. Figure 3.3 represents the different price variables. Pesticide prices are
quite steady whereas wheat and nitrogen prices are following the same trend. They
increase after 2007 crisis and are volatile since then. Given the economic context
prevailing from 1999 to 2007, i.e. low wheat prices, and the promotion process of
LI-CMPs during this period, we expect a small share of farmers using LI-CMPs in
the late 1990s and an increase in this share until 2006.
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Figure 3.2: Annual mean yields and input expenses from 1999-2014

Source: CDER data.

Figure 3.3: Wheat, pesticide and nitrogen annual prices from 1999-
2014

Sources: IPAMPA data from Agreste/INSEE for pesticides prices ; calculations on CDER data to get mean wheat
prices and a proxy for nitrogen prices.
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The effects on the adoption of LI-CMPs of the combination of high wheat and
fertilizer prices since 2007 is difficult to predict, notwithstanding the effects of these
prices volatility. If the wheat price effects dominate those of the input prices, it
is possible that farmers having adopted LI-CMPs switch back to HY-CMPs. Re-
sults from our HMM framework might help us weight the effect of such economic
considerations on the adoption of low-input practices.

3.6 Insights from “exploratory” analyses

3.6.1 Presentation of the exploratory approaches

Before presenting the results of the hiddenMarkovmodel, we provide some insights
based on exploratory analyses that were performed on the data. We called them “ex-
ploratory” because these analyses are simpler and are performed on sub-samples.
Their purpose is to confirm the coexistence of CMPs in the data. If the interest of
differentiating CMP choice has been evoked previously, nothing guarantees that dif-
ferent CMPs do coexist among our French farmers of the Marne area.

Clustering analysis, generally defined as the “art of finding groups in data” (Kauf-
man and Rousseeuw, 2009), might allow us to distinguish for farmers’ CMPs based
on their yield and input use levels. If we define by s8 = (H8 , x8) the vector of yield
and input uses from farmer 8, we need to define a distance metric 3 to evaluate how
similar (respectively dissimilar) are farmers 8 and 9 based on their characteristics s8
and s9 . Clustering algorithms aim at maximizing the dissimilarity between the built
groups. Suppose that there are 2 = 1, ..., � groups among the data, each group
being characterized by a vector of average yield and input uses -2 . Then, farmer 8
is allocated to its closest group 2, i.e. 28 = arg min2∈� 3(s8 , -2). This is the general
principle of clustering algorithms. Depending on the type of algorithm we use –
hierarchical and partitioning are the two main algorithm types – the stop criterion
is different (seeAppendix 3.9.2 for a description of the k-means andAHCalgorithms).

Standard clustering models are static, i.e. there is no cluster switching. This is
not an issue when considering cross-sectional data but can became one when hav-
ing panel data as we do. In the panel data case, we have two main possibilities to
perform a clustering analysis. First, we can perform the clustering analysis by inte-
grating multiple time periods in the algorithm. Thus, we assume that for the length
of the time period considered, an individual belongs to the same group. Another
possibility is to consider the yearly data and perform a clustering analysis for each
year separately. Yet, by doing so, the group belonging is independent between years.
Both situations generate pitfalls in the case of technology adoption. Indeed, the larger
the period considered, the less the assumption that a farmer has the same technology
implemented on the whole period might stand. On the other hand, assuming that
technology adoption is independent at each period is unsatisfactory as well. CMP
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choice can be considered as a rather short term choice that does not require heavy
investment in terms of machinery. However, it is highly unlikely that CMP choice
observed at time C is not correlated to the CMP choice done at time C − 1. Moreover,
by performing cluster analysis on yearly yields and input levels, the risk would be to
separate farmers only based on their efficiency.

We choose an in-between solution which is to divide the data set into 4 years sub-
panels.22 The 4-year length was chosen arbitrarily but seems a rather good compro-
mise between (i) a too short period not permitting to identify underlying structure
in the conjoint evolution of yield and input use levels, (ii) a too long period that
will endanger the hypothesis of CMP stability. Additionnally, to avoid the prob-
lem of missing data, we only consider farmers that were observed during the four
considered years. As input uses - pesticides and fertilizers - and yield levels were
observed multiple times - once each year - a principal component analysis was run
to get summarized information and denoise data (Husson, Josse, and Pagès, 2010).
Clustering analysis was then performed on the resulting principal components.

The second step of the exploratory approach consists in the use of a latent class
model (seeBartholomew,Knott, andMoustaki, 2011). Latent classmodelling consists
in specifying and estimating statistical models of farmers’ yield supply and input
demand functions while allowing farmers to use CMPs to be selected from a finite
set of “latent CMPs”. Let define a simple yield supply and input demand functions
that depend on the implemented CMP 2:{

H8C = 12H,C + �2H,8C
x8C = b2G,C + 92

G,8C

,

with 12H,C and b2G,C representing respectively the objective yield and input uses asso-
ciated to CMP 2 given the weather conditions observed during year C. �2

H,8C
and 92

G,8C

correspond to the stochastic part of yield and input uses that are creating a gap be-
tween the targeted levels and the observed ones. Assuming that (i) 92

8C
= (�2

H,8C
, 92
G,8C
)

and b2C = (12H,C , b2G,C) are independent and (ii) the probability density function of 92
8C

is known up to a parameter to be estimated, ,20, the probability density function of
s8C = (H28C , x

2
8C
) conditionally on b2C and on farmer 8 choosingCMP 2 can be derived. Let

�(s8C , b2C ;,
2
0) denote this probability density function. This model is quite standard as

long as the CMP 2 is observed. When technology is latent, as in our case, writing the
probability density function �(s8C , b2C ;,

2
0) requires to recover the distribution of the

22Sub-panels were built on a restrictive data set. We considered only farms that were located in La
Marne crayeuse area, which is characterized by homogeneous agro-climatic and economic conditions.
We choose to restrict ourself to this area because effects of exogeneous factors such soil fertility and
climate on yields and chemical inputs can be confounded with CMP choices, especially as we do not
give any structure to those CMP choices. Restricting ourself to this area for the exploratory analyses
prevents us for such confusion.
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latent variable 28 . Here, to keep things simple in this exploratory approach, we look
for �2

8
= %[28 = 2] and do not introduce covariates in the discrete choice of 28 .23 The

modelling assumptions described above yield that the probability density function
of sequence B8(ℎ) conditionally on zB,8 (i.e., ignoring the unobserved CMP choice of
farmer 8) is given by:

�(s8 , zB,8 ;,0) =
∑
2∈�

�8�(s8 , zB,8 ;,20).

This probability density function is a suitable basis for estimating parameters based
onamaximumlikelihoodapproach. Inparticular,weuse theExpectation-Maximization
algorithm (Dempster, Laird, and Rubin, 1977). As for the clustering analysis, this
simplified latent class model was performed on the 4 years sub-panels and we hold
the assumption that the CMP class is constant over the period.24

3.6.2 Insights from results and comparison with the HMM approach

In this subsection, we present the results from these exploratory approaches and the
insights they provide on CMP choice. First, we decide to check for the coexistence
of a low-input and a high-yielding CMP among the French wheat producers. The
results we show in there are results from the latent class model.25

Several points can be drawn from Figures 3.4 and 3.5. The first is the relative stability
of the built groups across sub-panels. As the latent class model was run indepen-
dently on each sub-panels, we could have fear that their composition across sub-
panels vary a lot. The fact that the groups’ characteristics in terms of yield and input
expenses are not “bouncing” between sub-panels is reassuring and might indicate
that we have distinguished for different production practices. The second interesting
fact is the parallel trend we observe through time between the two groups. Indeed,
either for yield or input use levels, low-input and high-yielding groups seem to react
in the same way to weather and economic conditions. Such observation strengthens
the modelling choice we have made for the HMM relatively to the year specific fixed
effect that are common to all CMPs, assuming that the groups we observed here can
be considered as CMP classes.

23The estimation procedure will remain the same when introducing covariates. The only difference
would be that we need to introduce a parametric model for 28 andwrite the probabilistic discrete choice
model of 28 as A2(zA,8 ;-0) = %[28 = 2 |zA,8] with zA,8 the covariates that are affecting the choice of 28 . In
our case, it will correspond to CMP choice potential drivers.

24Given the basic specification we use for s8 and because we do not include covariates in 28 choice,
this latent class model can be compared to a partitioning approach with the likelihood as a distance
metric. The major difference is that we suppose here a multivariate Gaussian distribution whereas in
our clustering analysis we apply no formal constraint on the data.

25The EM algorithm requires initial values for parameters (b2
C
,�2). We use the clustering result from

an AHC analysis to define them. We assess the results robustness to this set of initial values by using
the results from a k-means analysis. Results can be found in Appendix 3.9.3.
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Figure 3.4: Estimated annual mean yield of high-yielding and low-
input farmers, from 1999 to 2014

Source: Authors’ calculations on CDER data.

Results in terms of estimated yield and input use levels for the two clusters are
also very interesting and in line with the CMPs characteristics as described by
agronomists. On average, we observe that LI-CMPs yield level is lower by 7% in
comparison to the HY-CMPs one. As for input expenses, differences are of 5% for
nitrogen and 20% for pesticide expenses between LI-CMPs and HY-CMPs. Such
difference in yields combined to the difference in input uses tends to show that our
groups do not distinguish for farmer efficiency but for different production practices.
The assumption that observed groups correspond to CMP groups is reinforced by
the fact that the average differences we found between what appear to be a low-input
groups and a high-yielding one are coherent with the figures given by Loyce and
Meynard (Loyce and Meynard, 1997; Loyce et al., 2008, 2012) when experimenting
low-input practices.
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Figure 3.5: Estimated annual mean input uses of high-yielding and
low-input farmers, from 1999 to 2014

(a) Estimated annual mean pesticide expenses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.

(b) Estimated annual mean nitrogen uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.



3.6. Insights from “exploratory” analyses 107

Regarding the size of the LI-CMP cluster over time, results are very encouraging
as well. LI-CMP adoption is expected to be favored by economic conditions in the
late 1990s until 2007 approximately. However, with the 2007 crisis and the associated
increase in wheat prices, attractiveness of low-input practices should decrease by
then. This is the global trend we can observe in Figure 3.6, with a slight increase of
low-input attractiveness at the end of the period. 26

Figure 3.6: Estimated share of farmers who adopted a low-input CMP,
from 1999 to 2014

Source: Authors’ calculations on CDER data.

Overall, the consistencyof the results obtainedwith the “exploratory” approaches
across time and methodology (see Appendix 3.9.3 for clustering results) plus the
conformity of the LI and HY clusters’ characteristics to the literature are supportive
elements for the use of latent class methods on the data set. Yet, the size of the low-
input group we obtained here is quite surprising as they represent more than 50%
of farmers for most time periods. Even if such practices were experimented during
those years in this area by INRA, we doubt that low-input practices were adopted
by up-to three-quarter of farmers. The hypothesis we can formulate here is that the
latent class model allows us to distinguish farmers with very high-yield targets from
farmers who are targeting slightly lower yields and “true” low-input farmers.

Thus, we tried to compute the same latent class model with three classes, as to
distinguish for farmers who have an “intermediate” CMP and the real low-input

26This result tends to strengthen the idea that, in ourHMMframework,we should consider including
a time trend in the initial probability to adopt a CMP 2 for a farmer. This choice is justified by the
previous economic considerations on CMP adoption and is reinforced by the results of the exploratory
analyses which tend to show that adoption of low-input practices vary with time.
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farmers. Yet, the results we obtained with the latent class model for three classes
are disappointing. Figure 3.7 show that, as for yield levels, results are quite time
consistent.

Figure 3.7: Estimated annual mean yields of high-yielding, interme-
diate and low-input CMPs, from 1999 to 2014

Source: Authors’ calculations on CDER data.

Yet, Figure 3.8 displays a lack of consistency when considering fertilizer and pesti-
cide expenses. In particular, we can observe some “bounces” between sub-panels.
Additionally, if differences in yield are effective, for input expenses we can observe
some group collapsing especially for the last sub-panels. Plus, what we called the
LI-CMP has greater nitrogen expenses than the intermediate CMP for lower yield
levels. It might indicates that we distinguish here for farmers’ efficiency rather than
production practices. Hence, the results from this three-class approach cannot be
considered as uncovering CMPs’ groups. The “exploratory approaches” display
their limits and justify the use of a more structured model as the hidden Markov
model we presented previously. Especially, we put constraints to make sure we dis-
tinguish for CMPs rather than for efficiency groups or other heterogeneity factors.
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Figure 3.8: Estimated annual mean input uses of high-yielding, inter-
mediate and low-input CMPs, from 1999 to 2014

(a) Mean nitrogen expenses in high-yielding, intermediate and low-input CMPs

Source: Authors’ calculations on CDER data.

(b) Mean pesticide expenses in high-yielding, intermediate and low-input CMPs

Source: Authors’ calculations on CDER data.
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3.7 Results

In this section we present the results from the random parameter hidden Markov
model (RPHMM). Before presenting the characteristics of the resulting CMP cate-
gories, we should check for the obtained random parameters’ ex-post distribution.
We finish by presenting the results from simulations that were performed in order
to evaluate the impact of prices on CMP choice.

3.7.1 Random parameters ex-post distribution27

First, we investigate the random parameters from the technology choice model i.e.
�2 and �2; , and �0 and �. Estimation standard errors as well as mean and standard
deviation of the ex-post distribution of these random parameters are gathered in
Table 3.2. Overall, estimation standard errors are small i.e. ex-post distribution of
these random parameters benefit from precise estimates. �2 and �2; are respectively
the cost parameters – economical and non-economical costs (e.g., environmental con-
cerns) – from the initial and transition probability functions. The reference CMP
being the most intensive one (i.e. �1 ≡ 0), �2 and �3 represent the relative cost of
the intermediate and low-input technology in the initial probability function of CMP
choice. On average, the intermediate CMP is less expensive than the high-yielding
one as it has a negative sign. On the other hand, the low-input CMP appears as more
expensive. We might think about the learning and opportunity costs associated to
the low-input CMP.

Likewise, in the transition probability we set the most intensive CMP as reference
and thus fixed �21 ≡ 0, ∀2 ∈ C. It implies that �2: corresponds to the cost to switch
from CMP 2 to : relatively to a switch to the most intensive CMP. First, we can ob-
serve that it is systematically more expensive to switch to the low-input CMP (both
�13 and �23 are positive). Yet, when adopted, the low-input CMP is meant to be
stable as �33 is negative i.e. staying in this CMP is the least costful option. As for the
intermediate technology, we can observe that �12 is negative, i.e. it is on average less
expensive to switch from a high-yielding CMP to an intermediate one than to keep
the high-yielding CMP. On the other hand �22 is positive, meaning that changing
to the high-input technology is less expensive than keeping the intermediate CMP.
Such findings are a little bit surprising as one could expect that staying in the same
CMP might be the dominant strategy. Yet, as mentioned previously, the switching
costs are rather limited. Thus, random parameters �2: also capture the systematic
cost differences between CMP. Then, one can argue that the high-yielding CMP has
larger systematic costs than the intermediate one, hence the negative mean for pa-
rameter �12.

27Plotted distribution from these random parameters can be found in Appendix 3.9.4.
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Table 3.2: Estimation standard errors, mean and standard deviation
from the ex-post distribution of the CMP choice probability functions

random parameters

Estimation se Mean sd
Scale parameters
�0 0.001 1.099 0.062
� 0.001 0.976 0.034
Cost parameters
�1 · 0 0
�2 0.002 −0.039 0.134
�3 0.002 0.038 0.106
�11 · 0 0
�12 0.003 −0.364 0.174
�13 0.002 0.238 0.178
�21 · 0 0
�22 0.003 0.382 0.288
�23 0.004 0.255 0.162
�31 · 0 0
�32 0.002 0.160 0.229
�33 0.003 −0.289 0.181

Note: se = standard error; sd = standard deviation.
Source: Authors’ calculations on CDER data.

As for �0 and �, they measure the size of the error term in the initial and transi-
tion probabilities of CMP choice. The higher these parameters are, the lower is the
size of the error term and the more expected returns and costs play a big role in CMP
choice probabilities. As �0 > � on average, latest factors tend to have a greater role in
the initial probability than in the transition one. This means that technology change
is more exposed to random events than the baseline technology choice. Meaning
that, even if another technology would seem to be more profitable on a specific time
period, a change in technology requires more than a temporary increase in profit.
Yet, �0 is more dispersed with a standard error twice as much as the one observed
for �. It might mean that farmers’ behavior is more homogeneous when considering
a change in technology than when considering the initial technology choice. Oth-
erwise, it can indicate that the model for transition probability is better adapted to
data than the model for initial choice.28 More generally, scale parameters are less
dispersed than the cost parameters, i.e. farmers’ heterogeneity is greater when con-
sidering technology costs.

Overall, what stands out from the study of the random parameters from the
probability of CMP choice is the peculiarity of the low-input CMP. Indeed, there is
no apparent interest in switching to the low-input technology when a farmer use the

28In particular, we might consider initial probabilities that are time-dependent, as suggested before.
It might provide a better adjustment to the data.
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high-input or intermediate CMP. Plus, the initial cost for adopting the low-inputCMP
is higher than for the high-yielding and intermediate CMPs. One could thus won-
der why any farmer would adopt this low-technology. Yet, when one has adopted
low-input technology, they have no incentive to change technology. This can be ex-
plained that the adoption of low-input technology is mainly driven by non-economic
consideration i.e. if the farmer does not have such environmental consideration, he
has no interest in adopting such technology. Farmers who value greatly the ecologi-
cal impacts of their production choices have no interest switching to more intensive
technologies.

Last random parameters we need to explore are 11 and 02 . Their respective mean
and standard deviation are listed in Table 3.3. Parameters 11 represent input use
and output levels of the reference technology, i.e. the high-yielding one. Parameters
02 represent the discount when changing technology. In particular, 02 (respectively
03) represents the discount from the high-yielding CMP to the intermediate one
(respectively from the intermediate to the low-input CMP). When considering the
switch from the high-yielding CMP to the intermediate one, the greater discount is
associated to pesticides with an average discount parameter around 9.5%. The mean
discount for fertilizers is about 6% and is around 5% for yields. Except for pesticides,
the mean discounts between the intermediate and the low-input CMP are greater
and are all around 7%. A more global remark is that discount parameters 02 are
rather concentrated, which argues in favor of the stability of the built classes.

Table 3.3: Estimation standard errors, mean and standard deviation
from the ex-post distribution of random parameters from the yield

and input use models

Estimation se Mean sd
Input use & output levels
11
fert 0.006 2.240 0.135
11
pest 0.002 1.957 0.299
11
yield 0.004 7.973 0.799

Discount parameters
02
fert 0.003 0.937 0.012
02
pest 0.006 0.906 0.021
02
yield 0.005 0.952 0.009
03
fert 0.004 0.929 0.008
03
pest 0.005 0.929 0.010
03
yield 0.005 0.925 0.012

Note: se = standard error; sd = standard deviation.
Source: Authors’ calculations on CDER data.
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More generally, from the review of the random parameters, we can say that our
model (i) provides precise estimations of random parameters and (ii) most of them
are coherent with what was expected.

3.7.2 Characteristics of the three CMP categories

Let now consider in more details the three categories that were distinguished thanks
to the RPHMM: (i) high-input CMPs that are associated to larger levels of yield and
input use (for both fertilizer and pesticide uses), (ii) intermediate CMPs with slightly
lower yield and pesticide use levels but similar fertilizer use levels, (iii) low-input
CMPs with lower yield and input use levels. The mean yield series from 1999 to
2014 – respectively the mean input uses series – observed in each of those three CMP
categories are depicted in Figure 3.9 – respectively Figure 3.10.29 From these two
figures, we can see that pesticide use and yield levels characterize the three CMP
categories. On average, intermediate CMPs are using 1.8% less nitrogen and 16.5%
less pesticide than high-input CMPs for a 6.7% decrease in yields. Low-input CMPs
use on average 3.4% (respectively 5.2%) less nitrogen, 15.4% (respectively 29.3%) less
pesticides than intermediate CMPs (respectively high-input CMPs) for an average
decrease of 13.4% (respectively 19.2%) in yields. These averages on the whole time
period hide significant differences across years.

Figure 3.9: Annualmean yields for the three CMP categories obtained
with RPHMM, from 1999 to 2014

Source: Authors’ calculations on CDER data.

29Actually, it corresponds to �[12
8
] + 30

C
+ �

′�[z8C |A]
0 .
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Figure 3.10: Annual mean input uses for the three CMP categories
obtained with RPHMM, from 1999 to 2014

(a) Mean nitrogen use in each CMP type

Source: Authors’ calculations on CDER data.

(b) Mean pesticide use in each CMP type

Source: Authors’ calculations on CDER data.
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In addition to overall pesticide uses, we investigate insecticide, fungicide and
herbicide uses. From Figures 3.11 and 3.12, we can see that fungicide uses discrimi-
nate the three CMP categories. As for herbicides and insecticides, the discrimination
is well-marked for high-input CMPs versus intermediate and low-input CMPs. Yet,
uses among intermediate and low-input CMPs tend to overlap, implying a lower
discrimination power of herbicides and insecticides than fungicides. A closer look at
the relative differences between high- and low-input fungicide, herbicide and insec-
ticide uses is also insightful. On average, fungicide and herbicide uses are 33% lower
in low-input CMPs than in high-input ones. When targeting lower yields, farmers
can use more resistant crop varieties and lower their sowing density, hence reducing
their need in fungicides. As for herbicides, they can be – at least partially – substi-
tuted for by mechanical weeding. Differences in insecticide uses are smaller as on
average, low-input CMPs use 21% less insecticides than high-input ones. Even if pest
infestations can be partially avoided by a well-designed crop rotation scheme and
more resistant crop varieties they cannot be totally avoided. And insecticides remain
the most efficient way to get rid of them. This could explain why the difference is
less marked for insecticide uses compared to herbicide and fungicide uses.

Figure 3.11: Annualmean fungicide uses for the three CMP categories
obtained with RPHMM, from 1999 to 2014

Source: Authors’ calculations on CDER data.
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Figure 3.12: Annualmean herbicide uses for the three CMP categories
obtained with RPHMM, from 1999 to 2014

(a) Mean herbicide use in each CMP category

Source: Authors’ calculations on CDER data.

(b) Mean insecticide use in each CMP category

Source: Authors’ calculations on CDER data.
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Overall, these results tend to show that our RPHMM uncovers contrasted CMPs
that are close to the “maximumyield”, “conventional” and“low-input/multi-resistant
varieties” CMPs considered in Rolland et al. (2003) and Loyce et al. (2012). First, use
of LI-CMPs reduces yield and fertilizer use levels by around 10% and pesticide use
levels by around 30%. Second, the reduction in the use of pesticides is mostly due to
fungicide uses.

Differences in input uses and in yields impact the expected profit associated to
each CMP category. Figure 3.13 shows the evolution of the estimated share of farm-
ers of our sample using each CMP category. Until 2007 crisis, these shares are steady
with approximately 10% of farmers using low-input techniques, 60% using interme-
diate techniques and around 30% using high-input techniques. The estimated share
of farmers using LI CMPs after 2007 is slightly inferior but is quite steady around
5%. Changes are observed among the shares of high-input and intermediate CMPs
with a sharp increase in the use of high-input techniques in 2007/2008. These results
tend to confirm the idea that high-input techniques are more profitable when wheat
prices are high.

Figure 3.13: Estimated annual share of farmers who adopted a low-
input CMP, from 1999 to 2014

Source: Authors’ calculations on CDER data.
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Figure 3.14 displays that, as for the expected return associated to each CMP
categories, 2007 is a pivotal year given that wheat prices suddenly increased in 2007
and remained relatively high, on average, since then. This increase in the price of
wheat is associated with larger gaps in terms of expected return associated to each
technology, explaining why high-input CMPs became more attractive. When wheat
prices are lower, as in 2009, the gaps between expected returns of eachCMPcategories
tend to be smaller and intermediate CMPs are more attractive to farmers. Figure 3.14
shows that expected returns are strongly linked to wheat prices with a 1-year delay
(due to the fact we use wheat price of year C − 1 as anticipated price for year C). And
higher prices tend to increase the differences between CMP technologies. The idea
that low-input practices are more returnable in a context of low crop prices is also
pointed out in the agronomic literature on CMPs (e.g., Loyce et al., 2012; Rolland
et al., 2003). Yet, in our case, the share of low-input practices is quite steady for the
whole period. This argues in favor of the theory that choosing low-input practices is
not only a choice that obey to economic reasons but is also linked to farmer personal
values (e.g., environmental and societal concern, see Frey and Stutzer, 2006; Howley
et al., 2015; Mzoughi, 2011 for instance).
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Figure 3.14: Estimated annual expected return for each CMP type (a)
versus observed annual wheat prices (b)

(a) Annual expected return for the three CMP categories obtained with RPHMM, from 1999 to 2014

Source: Authors’ calculations on CDER data.

(b) Annual wheat prices

Source: RICA database.
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3.7.3 Simulations results

Simulations were conducted as to investigate how farmers’ CMP choice reacts to
price changes. First, we simulate a 50% and 100% tax on chemical inputs. Figure 3.15
shows the respective size of each CMP categories at baseline and after simulating a
100% tax.30

Figure 3.15: Annual change in the CMP adoption share after simulat-
ing a 100% tax on chemical inputs

Source: Authors’ calculations on CDER data.

This 100% tax on chemical inputs entails a reduction in the high-input share in favor
to the intermediate CMP. On average, the size of the high-input CMP decreases by
10.25% each year whereas the intermediate CMP size tends to increase by 6.30%. For
the low-input CMP, the increase is even greater with a 15.70% annual increase on
average. Yet, despite this rate, the low-input CMP remains marginal among wheat
producers.

We also simulate differentiated wheat prices for low-input CMPs, i.e. low-input
wheat producers benefit from a price premium. We consider three levels of price
premium: a 5%, 10% and 20% price premium for low-input wheat prices. We present
thereafter the results from the 10% price premium simulation.31

30Results for the 50% tax simulation can be found in Appendix 3.9.5.
31Results for the 5% and 20% price premium can also be found in Appendix 3.9.5.
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Figure 3.16: Annual change in the CMP adoption share after simulat-
ing a 10% price premium for low-input wheat producers

Source: Authors’ calculations on CDER data.

In Figure 3.16 are the results from the 10% price premium. Compared to the tax sim-
ulation, the impact on the respective CMP adoption shares appears larger, especially
from the low-input point of view. Indeed, with this 10% price premium, the share
of farmers using the low-input CMP increases by more than 80% on average each
year. On the contrary, the share of farmers using the high-yielding and intermediate
CMP is barely impacted. When considering the 20% price premium, the size of the
low-input CMP increases by more than 300% (annual average) whereas the high-
yielding and intermediate CMP sizes decrease by respectively 6% and 51%. On that
matter, we notice that the switches are mainly occurring from the intermediate to the
low-input CMPs.

Overall, these simulations tend to show that the CMP adoption responsiveness to
the tax instrument is rather limited. This is in linewith previous studies on pesticides
elasticity that tend to show that price elasticity of pesticide is low, i.e. price changes
have little impact on pesticide use and on technology adoption to a larger extent.
Regressing the relative prices of pesticides and fertilizers on the mean level on input
use obtained from the model led to results demonstrating low responsiveness of
these uses to price changes (or limited information content of our data for estimating
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this responsiveness).32

Our simulation results tend to show that chemical input savings associated to
the low-input CMP are too small to compensate the revenue loss associated to lower
yield levels. Even a 100% tax is insufficient to fill this gap. Price premiums tend to in-
centivize farmers to switch from intermediate to low-input CMPs. Thus, in a context
of (i) high wheat prices, (ii) pesticide tax and (iii) in the absence of price premiums
for low-input crops, it might be more appropriate from a policy perspective, to target
farmers’ switching directly to organic production as they would then benefit for a
price premium on organic products.

3.8 Discussion and Conclusion

The random parameter hidden Markov model implemented in this article allowed
us to identify three different cropping management practices among winter wheat
producers of La Marne. Those cropping management practices are associated to
different intensity levels that are designed to achieve different yield levels. Ourmod-
elling also allows to assess the effects of economic drivers on CMP choice. As we
expected purely economic considerations, that is to say expected profit criteria, not
to be the only drivers of CMP choices we accounted for possible effects of other, eco-
nomic or non-economic, considerations in our model of farmers’ CMP choice. These
potential drivers of farmers’ choice include unmeasured production costs, transition
costs from a CMP to another or farmers’ attitude toward risk or the environment.
Not being able to disentangle the effects of this wide variety of CMP choice drivers
limits our ability to analyze their effects in farmers’ production choices and to pro-
vide insights on public policies aimed to foster the adoption of chemical input saving
production practices by farmers. Yet, assessing the effects of purely economic drivers
of CMP choices enables us to run simulations of public policies and to draw interest-
ing conclusions regarding the efficiency of economic incentives, which is a unique
feature of our micro-econometric modelling framework.

We proposed a random parameters model with endogenous regimes that follow
a hidden Markov chain for uncovering the latent CMPs in a cost accounting panel
dataset describing the production choices of a large sample of farmers. This model
explicitly considers the latent CMP expected returns (to chemical inputs) as farmers’
CMP choices. It is designed as a random parameters to account for farmer and farm
unobserved heterogeneity. Farmers’ CMP choice is defined as a Markov process to
account for eventual CMP switching costs and farmers’ possible reluctance to change
their production practices. Our application on a panel dataset describing the wheat

32Results from these regressions can be found in Appendix 3.9.6.
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production choices of farmers located in the Marne area yields very interesting re-
sults.

First, this modelling framework allowed us to uncover three different CMP types
used in the Marne area from 1999 to 2014. High-yielding CMPs are used by farmers
seeking to achieve high yield levels. It relies on large nitrogen and pesticide uses.
Intermediate CMPs allow to achieve slightly lower yield levels that those achieved
based on the high-yielding CMPs. It also relies on slightly lower nitrogen and pesti-
cide use levels. High-yielding and intermediate CMPs are standard, or conventional,
crop production practices in France. By contrast, low-input CMPs are innovative
production practices. Low-input practices were designed by agronomists for lower-
ing chemical input uses, especially pesticide uses, by lowering the target yield levels
(e.g., Loyce et al., 2008, 2012; Meynard, 1991). Importantly, the characteristics of
the low-input CMPs uncovered by our modelling framework are very close to those
tested by agronomists in the Marne area during the mid 1990s (Larédo and Hocdé,
2014). Their yield and nitrogen use levels is about 10% lower than those of conven-
tional CMPs, and their pesticide use levels are 30% lower. Also, our estimates reveal
that most of the difference in pesticide uses is due to a reduction in fungicide uses in
the low-input CMPs, which is consistent with the features of the low-input tested by
agronomists in the Marne area (Loyce et al., 2008, 2012).

Second, the estimated model enable us to assess the expected returns of the con-
sidered CMPs, and their evolution during the considered period. The evolution of
the differences in the CMP return is consistent with those of the adoption rates of
the considered CMPs. In particular, the upward shift of wheat prices after 2006 led
farmers to switch from intermediate CMPs to high-yielding CMPs and to switch
from low-input CMPs to more intensive ones. Yet, the post 2007 wheat price levels
significantly increased the differences in expected returns between the low-input
CMPs and the other ones, with gaps ranging from 200 to 400 =C/ha, but they did not
fully deterred the use of low-input CMPs. This strongly suggests that non-economic
motives impact farmers’ production choices, at least those of some farmers (at least
5% in our case). Non-financial drivers of farmers’ choices may include attitude to-
ward the environment, health concerns and taste for agronomy and tend to play a
great role in technology adoption (see, e.g., Howley et al., 2015).

Lastly, the simulations we performed tend to show that input uses differences
between low-input and more conventional CMPs are too small for taxes on chem-
ical inputs to imply large relative profitability effects. This limited responsiveness
of input uses to prices is in line with the literature showing low price elasticity of
pesticides. Our finding that CMP choice is more responsive to a low-input price pre-
mium suggests that the decrease in expected yields implied by the use of low-input
CMPs leads to reductions in revenues that cannot be compensated by the implied
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savings in chemical input expenditures, especially when wheat prices are relatively
high. This suggests in turn that taxes on chemical inputs may lead farmers to directly
switch to organic production practices. The significant yield reduction induced by
organic practices can be compensated by both significant “organic product” price
premiums and large reductions in chemical input expenditures. In other words,
low-input CMPs may entail too small chemical input savings and too large drops in
expected yields for being a viable alternative to either conventional CMPs or organic
production practices.

The specific features of the diffusion dynamics of agricultural production tech-
nologies are ignored in our modelling framework. Learning-by-doing and learning-
by-others mechanisms are empirically documented by economists, especially in de-
veloping countries (e.g., Chavas and Nauges, 2020; Foster and Rosenzweig, 2010;
Marra and Pannell, 2003). These features are also often discussed by agronomists.
The French pesticide use reduction program, the so-called EcoPhyto plan, launched
the DEPHY farm network for fostering learning-by-others mechanisms and data col-
lection on the characteristics and performances of pesticide saving practices. Even if
some of these features are implicitly accounted for in our modelling framework, the
model we consider largely overlook them. Indeed, the fact that the adoption of the
considered technologies is unobserved in our case makes it particularly difficult to
account for them. Yet, the adoption rate of low-input CMPs is likely to be rather lim-
ited in France, implying in turn that the effects of the congruent learning processes
are likely to be limited as well.

We consider implementing some extensions to the actual modelling framework.
First, in our Markov model the initial adoption probabilities of the considered CMPs
are defined as functions of CMP expected returns and of time invariant (though
farm specific) CMP specific costs. This raises specific issues in our application since
the farmers joined (and quitted) our sample in various years. Farmers’ initial CMP
choices in our data may depend on unobserved factors that vary across time, includ-
ing unmeasured financial costs. For instance, dissemination of information on the
implementation of low-input CMPs may lead to decreases in their implicit imple-
mentation costs. We are currently considering a version of our model that includes
time trends in the probability functions of the initial CMP choice and in the transi-
tion probability functions.33 Giving more structure to the latent yield and input use
models considered in our modelling framework could also be fruitful, for further
investigating these CMP specific production choices.

33We are currently investigation such extension. Yet, the introduction of such time trend in the
initial probability of adoption entails convergence issues.
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We also consider applying our approach to other crops, which is possiblewith our
dataset. Considering other crops is of particular interest as low-input CMPs have not
been explicitly designed and promoted by agronomists for crops other than wheat.
For instance, this would enable us to investigate if farmers using low-input CMPs
for their wheat production extended the principles of the low-input CMPs to other
crops. Taking a step further would lead us to multi-crop models, as in Koutchadé,
Carpentier, and Féménia (2018, 2020). Our model is defined at the crop level while
farmers also consider their other crops when choosing their production practices for
a given crop, due to cropping systems effects and crop rotation effects in particular.
Yet, considering a multi-crop framework with unobserved CMP choice appears to be
particularly challenging.
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3.9 Appendices

3.9.1 Detailed estimation procedure

SAEM algorithm explicit forms

Terms �(=)[ln ℓ�
8
() |r(8) , "8)|'(8)] involve to compute expectations condition on the

observed data '(8). We use simulation methods to integrate those conditional ex-
pectations. The stochastic EM algorithm we use here is an extension of the SAEM
algorithm proposed by Delyon, Lavielle, and Moulines (1999). It consists in divising
the E-step of the standard EM algorithm into three steps: a simulation step (S), an
(intra) expectation step (E) and a stochastic approximation step (SA). We describe
these steps in what follows.

At iteration =, given observed data '(8) and the current value of parameter ), )(=−1):

1. S-step: Simulate
{
"̂(=,<)
8

: < = 1, ..., '
}
according to the conditional distribu-
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), for 8 = 1, ..., # , C = C(8) , ..., )(8), 2 ∈ C and 3 ∈ C.

3. SA-step: update sufficient statistics according to
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From those three step we can deduce the approximation of �(=)[ln ℓ�
8
() |r(8) , "8)|'(8)]

given by:
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Then, we can realize the last step, i.e. theM-step that consists in updating parameter
) according to:
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Decreasing positive sequence

{�(=)} sequence from (SA) step must be a decreasing positive sequence such that (i)
�(1) = 1, (ii)

∑+∞
==1 �(=) = +∞ and (iii)

∑+∞
==1 �

2
(=) < +∞. This sequence defines the

step of the stochastic approximation, impacts the speed of convergence as well as the
algorithm’s convergence to theML. Kuhn and Lavielle (2005) proposes to set �(=) = 1
for the first =1 iterations and then gradually reduce �(=). We set here:

�(=) =

{
1 for 1 ≤ = ≤ =1

(= − =1 + 1)3/4 for = > =1
,

and =1 is chosen very large to guarantee that the algorithm reaches the neighborhood
of the ML before �(=) starts to decrease.

Simulation step procedure

To perform (S) step at iteration =, we use a few Markov chain Monte-Carlo (MCMC)
iterations with ?(" |'(8) , )(=−1)) as stationary distribution, and we retain ' MCMC
draws for each 8, 8 = 1, ..., # .34 We use Metropolis-Hastings (MH) algorithm with a
randomwalk proposal distribution to simulate the chainwith length '+'burn draws,
i.e. we draw "̂8 ,< such that "̂8 ,< ∼ #("̂8 ,<−1 ,Ψ) for 1 ≤ 8 ≤ # and 1 ≤ < ≤ '+'burn.
We defined the acceptance rate as:

�("̂8 ,<−1 , "̂8 ,<) = min

(
1,

?(q(8) , "̂8 ,< |)(=−1))
?(q(8) , "̂8 ,<−1 |)(=−1))

)
.

Diagonal matrix Ψ is adaptively adjusted such as �("̂8 ,<−1 , "̂8 ,<) ∈ [0.24, 0.40]. After
' + 'burn iterations, the first 'burn draws are discarded as burn-ins and we only
consider the last ' draws.

34In our case, we set ' = 1 as we have many individuals.
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Stopping rule of the algorithm and diagnostic plots

As in Koutchadé, Carpentier, and Féménia (2018, 2020) we use a standard stopping
rule based on the relative changes in the values of the estimated parameters between
two iterations (e.g., Booth and Hobert, 1999; Booth, Hobert, and Jank, 2001). If the
condition

max9

( ���9 ,= − �9 ,=−1
�����9 ,= �� + �1

)
< �2 , (3.15)

holds for three consecutive iterations for chosen positive values of convergence pa-
rameters �1 and �2, the algorithm stops. In our case, we set up �1 = 0.01 and
�2 = 0.0001. To ensure that parameters )= achieved, at least approximately, the
maximum of the considered likelihood function when the condition (3.15) is met,
we implement three safeguards. First, we implement this stopping rule only once
we have reached an iteration index greater than =1 (cf. the part on {�(=)} sequence).
Second, we check that the scores are null and that the Hessian matrix is negative
definite at the estimated value of ) (Gu and Zhu, 2001). Third, we check graphically
the convergence of parameters by plotting their values along iterations.

Estimation of the variance of the estimates

To estimate the variance of the estimated parameters ), we use the procedure de-
scribed by Ruud (1991). We use the MH algorithm to draw the sequence {"̂8 ,A : A =
1, ..., '} from ?(" |'(8) , )̂), for 8 = 1, ..., # , where )̂ are the estimates we obtained
from the SAEM algorithm. Then, we can approximate the information matrix �()̂)
by:

�̃()̂) = #−1
∑#

8=1

(
'−1

∑'

A=1
%� log ?(q(8) , "̂8 ,A ; )̂)

) (
'−1

∑'

A=1
% log ?(q(8) , "̂8 ,A ; )̂)

)′
,

and the variance of estimates by:

+()̂) = �̃()̂)−1.

Estimation of the likelihood and model selection

To estimate the likelihood and select themodelwe rely onMonolixMethodology (2014).
Given the estimate )̂ of ), the log-likelihood of the model is given by:

ℓ ()̂) =
#∑
8=1

log ?(q(8); )̂),

with ?(q(8); )̂) =
∫
?(q(8) , "8 ; )̂)3"8 =

∫
?(q(8) |"8 ; )̂)!("8 − "̂; Ω)3"8 .

?(q(8); )̂)hasno closed form, soweuse the importance-sampling approach to estimate
it. Fromprior distribution!("8−"̂; 
̂) as importancedensity,wedraw independence
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sequence {"8 ,A : A = 1, ..., '} and then approximate ?(q(8); )̂) by

?(q(8); )̂) ' '−1
∑'

A=1
?(q(8) |"̂8 ,A ; )̂),

where ?(q(8) |"̂8 ,A ; )̂) is obtained using the Forward-Backward algorithm.35 This esti-
mator is unbiased and consistent as it variance decreases as 1/'.

We also define the −2!!, AIC and BIC criteria as:
−2!! = −2;()̂)
AIC = 2;()̂) + 2%
BIC = 2;()̂) + log(#)%

,

where % is the total number of parameter to be estimated and # the number of
observations.

Forward-Backward algorithm

Let start by defining the forward variable $8C(2, "8):

$8C(2, "8) = ?(q8C(8) , ..., q8C , A8C = 2 |"8),

for 8 = 1, ..., # , C = C(8) , ..., )(8) and 2 ∈ C. $8C(2, "8) denotes the probability for indi-
vidual 8 to adopt CMP 2 at time C after seeing the partial sequence (q8C(8) , ..., @8C) given
the random parameter "8 .

We can show that (see Maruotti, 2011):

ℓ8() |"8) =
∑

2∈�
$8)(8)(2, "8).

Terms $8C(2, "8) can be computed iteratively. Thus, $8C(2, "8) is given by:{
$8C(8)(2, "8) = ?0(2 |"8 ,wC(8))!(q8C(8) − b2

8
− dC(8) − �z8C(8);�2)

$8C+1(2, "8) =
∑
;∈� $8C(; , "8)?C+1(2 |; , "8 ,wC+1)!(q8C+1 − b2

8
− dC+1 − �z8C+1;�2)

.

Now, let start by defining the backward variable �8C(2, "8):

�8C(2, "8) = ?(q8C+1 , , ..., q8)(8) |A8C = 2, "8),

for 8 = 1, ..., # , C = C(8) , ..., )(8) and 2 ∈ C. �8C(2, "8) denotes the probability of the
partial sequence (q8C+1 , ..., q8)(8)) given that farmer 8 chooses CMP 2 at time C and

35We present the Forward-Backward algorithm at the end of this Appendix.
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given the random parameter "8 . We can compute this term iteratively by:{
�8)(8)(2, "8) = 1
�8C(2, "8) =

∑
;∈� ?C+1(; |2, "8 ,wC+1)!(q8C+1 − b;

8
− dC+1 − �z8C+1;�;)�8C+1(; , "8)

.

We can show that, using the forward variable $8C(2, "8), we have (seeMaruotti, 2011):


?C(2 |w(8) , "8) =

$8C (2,"8)�8C (2,"8)∑
2∈� $8C (2,"8)�8C (2,"8)

BC(2, ; |"8 ,w(8)) =
$8C−1(2,"8)?C (; |2,"8 ,wC )!(q8C−b;

8
−dC−�z8C ;�;)�8C (; ,"8)∑

2∈�
∑
;∈� $8C−1(2,"8)?C (; |2,"8)!(q8C−b;

8
−dC−�z8C ;�;)�8C (; ,"8)

.

We also show that:

ℓ8() |"8) =
∑

2∈�
$8C(2, "8)�8C(2, "8)

=

∑
2∈�

∑
;∈�

$8C−1(2, "8)?C(; |2, "8)!(q8C − b;8 − dC − �z8C ;�;)�8C(; , "8)

Estimation of the individual parameters and sequences of CMP

Given the estimate )̂ of ) computed with the SAEM algorithm, we estimate individ-
ual parameters "̂8 and the CMP sequence r(8) using the two-step procedure as in De-
lattre and Lavielle, 2012. We make use of the condition distribution ?(r(8) , "8 |'(8) , )̂)
to first estimate parameters "̂8 with the Maximum A Posteriori (MAP) approach:

"̂8 = arg max
"8

?("8 |'(8) , )̂)

= arg max
"8

?('(8) |"8 , )̂)?("8 |)̂),

since ?("8 |'(8) , )̂) ∝ ?('(8) |"8 , )̂)?("8 |)̂). We use R package optim to numerically
optimize "̂8 .

We use the same MAP approach to estimate the unknown CMP sequence as

r(8) = arg max
r(8)

?(r(8) |'(8) , "̂8 , )̂).

Yet, to compute this equation, we need to use the Viterbi algorithm (Rabiner, 1989).36

Viterbi algorithm

Let start by defining the following Viterbi path probability:

E8C(2, "8) = max
A8C(8) ,...,A8C−1

?(A8C(8) , ..., A8C−1 , q8C(8) , ..., q8C , A8C = 2 |"8).

36As for the Forward-Backward algorithm, it is presented below.
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This term can be computed iteratively by:{
E8C(8)(2, "8) = ?0(2 |"8 ,wC(8))!(q8C(8) − b2

8
− dC(8) − �z8C(8);�2)

E8C+1(2, "8) = max
;∈�

E8C(; , "8)?C+1(2 |; , "8 ,wC+1)!(q8C+1 − b2
8
− dC+1 − �z8C+1;�2) .

As taken from Rabiner, 1989, the best path of CMP, A∗
8C
, C = C(8) , ..., )(8), can be found

recursively by: 
A∗
8)(8)

= arg max
2∈�

E8)(8)(2, "8)

A∗
8C

= arg max
2∈�

E8C+1(2, "8)?C+1(A∗8C+1 |2, "8 ,wC+1)
.
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3.9.2 Insights about k-means and AHC algorithms

As said previously, clustering techniques allow to uncover groups among a data set.
Two major elements to define in a clustering analysis are (i) the distance metric and
(ii) the type of algorithm one wants to use. Indeed, there exists two main types of
algorithms: partitioning and hierarchical algorithms.

Partitioning algorithms rely on the iterative reallocation of each observation to
its closest cluster and k-means is amongst the most popular partitioning algorithms.
There are two main ways to describe the k-means algorithm, depending on whether
we use the one defined byMacQueen et al. (1967) or the one defined byHartigan and
Wong (1979). Both require to define the number of clusters we want to partition the
data into and the distance metric to use a priori. Assuming the number of clusters to
be :, step 0 of both algorithms is to define : initial centroids (i.e. the cluster “typi-
cal” observation). Then, MacQueen and Hartigan & Wong algorithms tend to differ
slighty. Once : initial centroids have been assigned, at each iteration MacQueen
algorithm assigns the observations to the closest cluster. Once this assignation done,
clusters’ centroids are recalculated. The algorithm keeps going as long as (i) obser-
vations are not stabilized within a cluster or (ii) when the changes between centroids
are still above a preliminary defined tolerance criterion.

As for Hartigan & Wong algorithm, a few differences can be highlighted even if
the overall principle is similar. At step 0, once the : centroids are defined and before
starting the iteration process, each observation is assigned to the closest centroid
and clusters’ centroid are recalculated. Then, the reallocation during the iteration
process relies on the notion of the within-cluster sum of squares. For each cluster
whose centroid has changed between iteration = − 1 and =, we compute the within-
cluster sum of squares. Then, for each observation among this cluster, we calculate
the within-cluster sum of squares of the remaining clusters when including this
observation. If we find that the within-cluster sum of squares of another cluster is
inferior to the current one when including this particular observation, we reallocate
it to this new cluster. Let consider the cluster 1 and the observation G81 within this
cluster. G81 will be reallocated to another cluster 9 if:

SSE9 =
#9

#9∑
8=1
| |G8 9 − 2 9 | |2

#9 − 1 <

#1
#1∑
8=1
| |G81 − 21 | |2

#1 − 1 = SSE1.

Algorithm keeps going as long as there are observations that keep changing cluster.

Other than partitioning algorithms are hierarchical algorithms. Hierarchical al-
gorithms can either be ascending or descending. We only describe the ascending
approach there as the descending approach can easily be deducted from that. As for
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the k-means algorithm, a distance metric needs to be defined a priori. At step 0, each
observation is considered as a cluster. Then, step 1 consists in (i) calculating the dis-
tance between each observations and (ii) gathering the two closest observations. The
algorithm keeps going this way – except that instead of observations, we calculate
the distance between clusters – until thewhole dataset is gathered in a unique cluster.
The number of clusters to keep can then be defined either a priori by the researcher
or a statistical criteria can be used to define the optimal number of clusters to keep.37

Unlike for k-means, hierarchical clustering results are not sensitive to the initial-
ization step, as the initial step consists either in thewhole dataset or each observation
being a cluster. Yet, time complexity of hierarchical clustering increases quickly with
the size of the data set as time complexity equals O(=2). A solution is to reduce
data dimensionality (or “denoise” data) by performing a preliminatory principal
component analysis (PCA) and perform the ascendant hierarchical clustering on the
obtained components (Husson, Josse, and Pagès, 2010).

3.9.3 Additional results for the "exploratory analyses"

First, we present the results from the latent class model using k-means results as
initial values (instead of AHC).

37This can also be done with k-means algorithms by comparing results obtained with different
values of :.
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Figure 3.17: Latent class model with k-means initials – Annual mean
yield in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.
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Figure 3.18: Latent class model with k-means initials – Annual mean
input uses in high-yielding and low-input CMPs

(a) Annual mean nitrogen uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.

(b) Annual mean pesticide uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.
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Then, we present the results we obtained from the clustering analyses meaning (i)
AHC and (ii) k-means.

Figure 3.19: AHC clustering – Annual mean yield in high-yielding
and low-input CMPs

Source: Authors’ calculations on CDER data.
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Figure 3.20: AHC clustering – Annual mean input uses in high-
yielding and low-input CMPs

(a) Mean nitrogen uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.

(b) Mean pesticide uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.
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Figure 3.21: K-means clustering – Annualmean yield in high-yielding
and low-input CMPs

Source: Authors’ calculations on CDER data.
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Figure 3.22: K-means clustering – Annual mean input uses in high-
yielding and low-input CMPs

(a) Annual mean nitrogen uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.

(b) Annual mean pesticide uses in high-yielding and low-input CMPs

Source: Authors’ calculations on CDER data.
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3.9.4 Distribution of random parameters from RPHMM

Figure 3.23: Distribution of cost parameters from the technology
choice models

(a) Distribution of �2 (b) Distribution of �3

(c) Distribution of �12 (d) Distribution of �13

(e) Distribution of �22 (f) Distribution of �23

(g) Distribution of �32 (h) Distribution of �33

Source: Authors’ calculations on CDER data.
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Figure 3.24: Distribution of scale parameters from the technology
choice models

(a) Distribution of �0 (b) Distribution of �

Source: Authors’ calculations on CDER data.

Figure 3.25: Distribution of the input use andoutput levels parameters

(a) Distribution of 11
fert

(b) Distribution of 11
pest

(c) Distribution of 11
yield

Source: Authors’ calculations on CDER data.
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Figure 3.26: Distribution of discount parameters from the input use
and output level models

(a) Distribution of 02
fert

(b) Distribution of 03
fert

(c) Distribution of 02
pest

(d) Distribution of 03
pest

(e) Distribution of 02
yield (f) Distribution of 03

yield

Source: Authors’ calculations on CDER data.
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3.9.5 Simulation results

As evoked in the core of the article, we performed two types of simulations. First,
we simulate a 50% and 100% tax on chemical inputs. We present in Figure 3.27 the
results from the 50% tax on chemical inputs.

Figure 3.27: Annual change in the CMP adoption share after simulat-
ing a 50% tax on chemical inputs

Source: Authors’ calculations on CDER data.

Second, we simulated price premiums for low-input wheat farmers. We consid-
ered a 5%, 10% and 20% price premium for low-input farmers. Results from the 5%
and 20% simulations are presented in Figure 3.28.
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Figure 3.28: Annual change in the CMP adoption share after simulat-
ing price premiums for low-input wheat producers

(a) Results from the 5% price premium

Source: Authors’ calculations on CDER data.

(b) Results from the 20% price premium

Source: Authors’ calculations on CDER data.
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3.9.6 Determinants of input uses and yield

Regressions were performed in order to see to what extent relative price of inputs
(compared to output price, i.e. wheat price) are determining the mean yield and
mean input use levels obtained with the RPHMM. Results from those regressions
are gathered in Table 3.4 and tend to show no significant effect of relative prices on
mean yield or input use levels.

Table 3.4: Relative prices as non-determining factors of input and
yield mean levels

Yield Nitrogen Pesticides
Fertilizer relative price 56.59 -5.44 -8.21
Pesticide relative price 61.59 12.04 20.09
Constante 0.08 0.15 -0.11
Observations 15 15 15
R2 0.12 0.14 0.08
Residual Std. Error 0.56 (df = 12) 0.06 (df = 12) 0.13 (df = 12)
F Statistic 0.83 (df = 2; 12) 0.95 (df = 2; 12) 0.53 (df = 2; 12)

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Source: Authors’ calculations on CDER data.





147

General Conclusion

Assessing the impact of technology choice on agricultural production choices or out-
comes is a long tradition in the literature. In particular, we chose to assess the impact
of two types of cropping management practices (CMPs): a low-input and a high-
yielding (or equivalently a high-input) one. Low-input practices were developed
in response to the multifaceted noxiousness of pesticides. They rely on agronomic
principles that tend to decrease the crop dependence upon chemical inputs. Because
they rely on different agronomic principles, we might think that the low-input yield
does not respond in the same way to input uses variations than high-input yield
levels. Thus, cropping management practices (CMPs) are not only associated to a
shift in netputs (e.g., yield and input uses) but rather impact all the parameters in the
crop production functions. This encourages us to estimate CMP specific production
functions. At the same time, we investigate the determinants of the CMP choice.

The first research question we tried to answer in this PhD thesis is how yield
respond to input uses, especially pesticide uses. To answer such question, we con-
sidered an extended endogenous regime switching framework for endogenous co-
variates to estimate CMP specific production functions. In particular, in Chapter 1,
we camewith an easy to implement, multi-step estimation procedure relying on con-
trol functions. This estimation procedure is of particular interest when themodelling
framework entails non-linearity issues, as it is the case in Chapter 2. Effectively, in a
context where we are particularly interested in pesticides – pesticides being the main
target of public authorities – damage abatement functions allow to account for their
protective (vs. productive) role on yields. Yet, common damage abatement functions
entail non-linearity estimation issues. Such non-linearities issues combined to input
endogeneity and technology selection issues make the common estimating approach
challenging to implement. Hence the proposed estimation approach by Chapter 1
that can be considered as an extension of the well-known two-step approach pro-
posed by Heckman (1976, 1979).

Yet, this estimation procedure deeply relies on the quality of the instrumental
variables we use to control for the selection biases and the input use demandmodels.
Unfortunately, our empirical application on Swiss wheat data in Chapter 2 suffers
from a weak instrument problem that endanger the control of input endogeneity
issues. Thus, estimation results for the production functions are not very reliable.
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Results have to be considered cautiously, in particular one should not conclude in
terms of how yield respond to input uses variations. Yet, some interesting general
results arise from our endogenous regime switching framework. In particular, selec-
tion biases seem to affect both the input use and yield models. High-input farmers
seem to have larger pesticides uses at baseline because of some specific unobserved
characteristics. On the other hand, unobserved specific characteristics of low-input
farmers permit them to have higher yield levels. The presence of such selection
biases is robust to the different specifications we considered. From a public policy
perspective it implies that, to evaluate adequately the impact of the Swiss Extenso
policy on the reduction of pesticide use and the associated yield loss, this selection
bias issue has to be considered.

The second challenge regarding the estimation of CMP specific production func-
tions is how to account for CMPs when they are not observed by economists. Agro-
nomic practices are scarcely available in the data economists usually have at their
disposal (e.g., cost accounting data). In Chapter 3, we develop a CMP identifica-
tion strategy based on yield and input use levels. We also take advantage of the
technology adoption dynamics to model technology choice as a Markov process. In
particular, we use an hidden Markov model with endogenous switching to identify
three CMPs among the winter wheat producers of La Marne area. Not only the
characteristics of the obtained CMP types are coherent with what is described by
agronomists, but also our model informs us about the dynamics of CMP adoption.
As expected, the profitability of CMPs heavily depends on wheat prices: the share of
profit that is lost to variable input cost is quite insignificant in particular in a context
of high crop prices. Indeed, expenses are representing hundred euros per hectare
whereas revenues stand at thousand euros. Hence the limited – yet simulated – im-
pact of a pesticide tax on the adoption of low-input practices. Such finding is quite in
line with the literature arguing for a low price elasticity of pesticides. From that per-
spective, to significantly affect farmers’ profit, authorities should rely on the revenue
part. Indeed, when introducing a price premium for low-input producers, simula-
tions show a greater share of farmers switching to this type of production practices.
This revenue strategy was the one adopted by Switzerland with a price premium
and a 400 CHF/ha direct payment for Extenso wheat producers who make no use
of insecticides, fungicides or growth regulators. This strategy king be considered
as being quite successful as low-input practices are widely diffused among wheat
producers (more than 50% of adoption). From Rogers (1962) innovation adoption
theory, one could consider than Swiss wheat farmers that are still using conventional
production practices are “laggards” whereas as conventional production practices
are still the rule among Frenchwheat producers. Such difference in the adoption rate
of low-input practices between France and Switzerland might come from the differ-
ent public policy strategy they adopted: whereas France chose a pesticide tax scheme
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and a voluntary program in the DEPHY network to share information, Switzerland
chose to incentivize low-input practices by acting directly on the revenue of wheat
producers.

Another interesting result we can derive from Chapter 3 is the role of non-
economical drivers in technology adoption. Indeed, even if low-input practices
are not interesting from an economic point of view because they are systematically
associated to lower profit levels compared to other CMPs, there is still an irreducible
small share of farmers choosing them. The importance of non-economical consider-
ations in technology adoption has already been emphasized in the literature by Frey
and Stutzer (2006) – for societal/environmental considerations – andMzoughi (2011)
– for social considerations – for instance. Non-economic considerations being great
adoption drivers, Frey, Neckermann, et al. (2009) derive the fact that rather than
monetary compensation, one should consider award as an instrument to encourage
agri-environmental practices.

More generally, this limited difference between low-input and high-input prac-
tices in terms of input use questions us about the appeal of low-input production
practices, at least for wheat producers. From a benefit-cost point of view, the benefit
of low-input practices – i.e. a decrease in pesticide use – might appear as being rather
limited in comparison to the economical cost it implies for public authorities. The
benefit-cost ratio of organic farming might be more interesting in that regard as the
decrease in input uses is greater and price premiums for organic farming already ex-
ist. In the current economic context, low-input practices are not a viable in-between
for wheat producers. We might consider to evaluate the relative benefit-cost ratios
of low-input practices versus organic practices for wheat producers as well as other
crops. Indeed, if the low-input cost-benefit ratio appears to be limited for wheat
producers, we might think that for other crops, pesticide use savings are larger and
thus might compensate for the revenue loss. In that way, the yield loss might be
compensated by public authorities at a lower cost and low-input practices be a viable
in-between to conventional or organic production practices.
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Titre :  Modélisation micro-économétrique des choix de pratiques de production et des 
utilisations d’intrants chimiques des agriculteurs : une approche par les fonctions de production 
latentes. 

Mots clés : Fonction de production (duale et primale), pesticides, biais de sélection, modèle à                  
changement de régime endogène, modèle de Markov caché. 

Résumé : La notion d’itinéraire technique est 
une notion agronomique qui nous permet 
d’appréhender l’imbrication entre les 
rendements objectifs et les niveaux d’utilisation 
d’intrants associés. Dès lors, on peut admettre 
qu’à différents types d’itinéraires techniques 
correspondent différentes fonctions de 
production. Modéliser ces différentes fonctions 
est une des clés pour mieux comprendre la 
dépendance de certaines pratiques culturales 
aux pesticides et de ce fait constitue un enjeu 
majeur pour concevoir les futures politiques 
publiques. 
Intégrer cette notion d’itinéraire technique 

nécessite de tenir compte de l’interdépendance 
entre le choix de ces pratiques, leur rendement 
et les utilisations d’intrants associées. Pour ce 
faire, on considère des modèles à changement 
de  régime endogène qui permettent de contrô- 

ler des biais de sélection. Lorsque ces 
pratiques sont inobservées, on définit la 
séquence de choix comme un processus 
Markovien. Le modèle résultant nous permet 
de recouvrir les pratiques culturales, leurs 
niveaux de rendement et d’utilisation d’intrants 
ainsi que la dynamique de choix des dites 
pratiques. Lorsque ces pratiques sont 
observées, on décide de considérer un modèle 
primal afin de pouvoir vérifier le rôle différencié 
des pesticides et évaluer l’effet des politiques 
publiques conjointement sur les rendements et 
les niveaux d’utilisation d’intrants chimiques.  

En bref, cette thèse vise à donner des outils 
pour évaluer au mieux les effets des politiques 
agro-environnementales sur les utilisations de 
pesticides, les rendements et les choix de 
pratiques culturales des agriculteurs. 

 

Title: Modelling farmers’ production choices and chemical inputs demand with a latent function                         
approach 

Keywords: Production function (dual and primal), pesticides, selection bias, endogenous regime        
switching model, hidden Markov model. 

Abstract: Cropping management practices is 
an agronomic notion grasping the 
interdependence between targeted yield and 
input use levels. Subsequently, one can 
legitimately assume that different cropping 
management practices are associated to 
different production functions. To better 
understand pesticide dependence – a key point 
to encourage more sustainable practices – one 
have to consider modelling cropping 
management practices specific production 
functions. 
Because of the inherent interdependence 

between those practices and their associated 
yield and input use levels, we need to consider 
endogenous regime switching models. 

When unobserved, the sequence of cropping 
management practices choices is considered 
as a Markovian process. From this modelling 
framework we can derive the cropping 
management choices, their dynamics, their 
associated yield and input use levels. When 
observed, we consider primal production 
functions to see how yield responds differently 
to input uses based on the different cropping 
management practices. Thus, we can assess 
jointly the effect of a public policy on input use 
and yield levels. 

In a nutshell, in this PhD we are aiming at 
giving some tools to evaluate the differentiated 
effect of agri-environmental public policies on 
production choices and on the associated yield 
and input use levels. 
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