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Résume

Les premiers modéles des effets de I'entrainement sur la performance athlétique
sont connus sous le nom de modéles "Fitness-Fatigue" (FFM). Un inconvénient
majeur des FFMs réside dans le fait qu’ils ne sont constitués que d’une seule donnée
d’entrée, bien que la performance athlétique soit multifactorielle. Dés lors, des
approches multivariées propres aux statistiques et a 'apprentissage automatique
ont été proposées pour différentes applications sportives.

La quantification de la charge d’entrainement (CE) pour 'entrainement en résis-
tance constitue une problématique de recherche a part entiére. Dans une premiére
étude, nous avons proposé une nouvelle méthode de quantification de la CE en
accord avec des réponses physiologiques multiples a 'effort. Aprés avoir modélisé
les profils couple-vitesse chez les participants, nous avons évalué des réponses phy-
siologiques lors de 3 sessions d’effort en résistance a intensités variées et de volume
égal. Les hautes intensités ont entrainé une fatigue musculaire plus importante
caractérisée par des altérations neuromusculaires. A I'inverse, la consommation
d’oxygéne ainsi que les modifications métaboliques étaient supérieures lors d’efforts
de plus faible intensité, indiquant des contributions énergétiques différentes. Ainsi,
nous avons proposé un indice de CE basé sur les altérations neuromusculaires obser-
vées a 'effort. Pondérer exponentiellement la CE par une constante de décroissance
du taux d’augmentation de la force a montré de plus grandes corrélations avec les
réponses physiologiques étudiées. Par ailleurs, I'information compressée de données
multivariées dans une seule composante suite a analyse en composantes principales
pourrait représenter un indice de CE.

Dans la deuxiéme étude, nous avons proposé une méthodologie de modélisation
basée sur la généralisation des modeéles. Nous avons comparé un modéle dose-
réponse a des procédures de régularisation et modeéles d’apprentissage automatique
multivariés chez des patineurs élites. Les modéles de régularisation ont montré de
meilleures performances en termes de généralisation et de précision. De plus, des
modeles construits sur I’ensemble du groupe plutdt que par athléte apparaissaient
plus pertinents dans un contexte d’échantillons de petite taille. Enfin, des approches
en apprentissage automatique telles que les méthodes d’apprentissage ensemblistes
pourraient améliorer le pouvoir prédictif des FFMs.

Dans la troisieme étude, nous avons modélisé les profils accélération-vitesse a
partir des mesures de systémes de localisation par satellite (GPS), puis avons tenté



de prédire les coefficients de la relation accélération-vitesse. Tout d’abord, des
modeéles de prévision de séries chronologiques ont constitué une base de modéli-
sation. Nous les avons par la suite comparés & une régression linéaire régularisée
et un réseau de neurones récurrents utilisant des variables propres au GPS. Enfin,
nous avons extrait des variables directement & partir des données GPS brutes pour
effectuer la tache de prédiction. Aucune différence significative n’a été observée
entre les modéles en termes de précision. Etant donné le caractére multifactoriel
de la performance athlétique, les performances prédictives étaient acceptables.
L’utilisation de données extraites des domaines temporels et fréquentiels a partir
des signaux bruts a montré des performances comparables aux autres modéles. Les
données brutes semblent donc avoir un intérét et devraient étre analysées pour
des problématiques relatives a la performance athlétique et a la survenue de blessure.

Enfin, nous avons développé un systéme de suivi de ’entrainement pour des
coureurs de fond. L’application propose un module de suivi de ’entrainement et
un modéle prédictif basé sur une modélisation physiologique de la performance en
course & pied. Un second développement a été réalisé sous la solution SAP analytics
cloud, produisant des rapports automatisés et un suivi de joueurs d’'une équipe de
Rugby.



Abstract

The first models of training effects on athletic performance emerged with the
work of Banister and Calvert through the so-called Fitness-Fatigue model (FFM).
One major drawback of FFMs is that the features stem from a single source of
data. That is not in line with the existing consensus about a multifactorial aspect
of athletic performance. Hence, multivariate modelling approaches from statistics
and machine-learning (ML) emerged.

A research issue arises from the quantification of training Loads (TL) in resistance
training (RT) which lack of physiological evidence. In the first study, we provided
a new method of TL quantification in RT based on physiological observations. To
achieve that, we initially modelled the torque-velocity profiles of fifteen participants
during an isokinetic leg extension task and assessed a set of physiological responses to
various resistance exercises intensities. Each session was volume-equated according
to the formulation of volume load (i.e. the product of the number of repetitions
and the relative intensity).

Higher led to greater muscular fatigue described by neuromuscular impairments.
Conversely, systemic and local pulmonary responses (measured through oxygen
uptake) and metabolic changes (according to blood lactate concentrations) were
more significant at low intensities, suggesting different contributions of metabolic
pathways.

From these results, we provided a new index of TL based on the neuromuscu-
lar impairments observed at exercise. We showed that to exponentially weight
TL by the average rate decay of force development rate yielded better correla-
tions with any of the significant physiological responses to exercise. In addition,
information compressed within a principal component could be a valuable TL index.

In the second study, we provided a robust modelling methodology that relies
on model generalisation. Using data from elite speed skaters, we compared a
dose-response model to regularisation methods and machine-learning models.

Regularisation procedures provided the greatest performances in both generalisa-
tion and accuracy. Also, we highlighted the pertinence of computing one model
over the group of athletes instead of a model per athlete in a context of a small
sample size.

Finally, ML approaches could be a way of improving FFMs through ensemble
learning methods.



In the third study, we modelled acceleration-velocity directly from global posi-
tioning system (GPS) measurements and attempted to predict the coefficients of
the relationship between acceleration and velocity.

First, a baseline model was defined by time-series forecasting using game data
only. Then, we proceeded to multivariate modelling using commercial features. A
regularised linear regression and a long short term memory neural network were
compared. Finally, we extracted features directly from raw GPS data and compared
these features to the commercial ones for prediction purposes.

The results showed only slight differences between model accuracy, and no models
significantly outperformed the baseline in the prediction task. Given the multi-
factorial nature of athletic performance, using only GPS data for predicting such
athletic performance criterion provided an acceptable accuracy. Using time-domain
and frequency-domain features extracted from raw data led to similar performances
compared to the commercial ones, despite being evidence-based. It suggests that
raw data should be considered for future athletic performance and injury occurrence
analysis.

Lastly, we developed an athlete management system for long-distance runners.
This application provided an athlete monitoring module and a predictive module
based on a physiological model of running performance.

A second development was realised under the SAP analytics cloud solution. Team
management and automated dashboards were provided herein, in close collaboration
with a professional Rugby team.
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Glossary

athletic performance

A performance conditioned by physical, technical, physiological, psychological
and cognitive skills under the influence of its environment. 31-36, 41, 59, 60,
64, 65, 73, 75, 77, 78, 80-86, 88, 135, 138, 141, 144, 159, 160, 162-164, 166,
167, 170, 176, 179, 188-192

endurance sports

Any sport in which there is a requirement to sustain an activity level while
enduring a level of physical stress. 38, 46, 161

features

A feature is a measurable property of an object. In our case, it relates to an
exercise-related variable. 32

generalisation

The ability of a trained model to accurately predict on examples that were
not used for training. 138, 191, 217

multivariate

A model or analysis that considers at least two explanatory variables. 34,
163, 179, 180, 183, 184, 187, 217

overfitting
An over-trained model, which tends to memorise each particular observation
thus leading to high error rates when predicting on unknown data. 138

resistance training

Any exercise that causes the muscles to contract against an external resistance
with the expectation of increases in strength, power, hypertrophy, and/or
endurance. 11, 35, 36, 39, 46, 47, 56, 87, 89, 126, 162, 188

RR

Intervals between successive heartbeats. 94

underfitting

An inflexible model unable of capturing noteworthy regularities in a set of
exemplary observations. 138
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Introduction

Relationships between training effects on athletic performance are a great chal-
lenge that coaches, sports scientists, and professionals supervising athletes focus
on. Since the first competitions, athletes trained themselves according to training
plans, sequenced in various development cycles. Training programming came thus
with objectives defined by athletes along with coaches and medical staff. It is
of importance that athletes should be fully involved in their preparation. One
can say that they may consider training programs as a lifeline on which they lay
back on, leaving their fate to the hand’s coach and doing their utmost to reach
the planned goals. That mutual commitment brings a great responsibility for
prescribers (coaches) shoulders when the pursuit of the highest performance is
engaged.

In athlete monitoring, individual skills are assessed through various tests, per-
formed either in laboratory or ecological conditions. Evaluations highlight the
strengths and weaknesses of each athlete, constituting a basis for any individual
training programming. Then, a close follow-up of athletes progression over seasons
comes with regular and repeated evaluations, as a requisite for any decent athlete
status monitoring. In order to map the effects of training and the performance
outcomes, we define a TL index that represents a quantitative measure of the effort
done by the athlete and the underpinning induced stress. Accordingly, TL are
commonly dissociated into i) an ezternal load defined by the work completed by the
athlete, independently of his internal characteristics (Wallace, Slattery, and Coutts
2009), and ii) an internal load that corresponds to the psycho-physiological stresses
imposed on the athlete in response to the external load (Impellizzeri, Rampinini,
and Marcora 2005). In other words, TL being quantified in both quantitative and
qualitative ways, it would allow answering the questions: what amount of effort
has been done by the athlete, and what does it really means, among others, in
terms of physiological adaptations? These central questions will be answered all
through the manuscript. Before that, let us define some terms. The term loads has
a mechanical, physical meaning and describes a force. Strictly speaking, it should
be accompanied with the SI-derived unit of the newton (N) and not be used for
describing any training-related variables, which more or less mechanical meaning
(Staunton, Abt, Weaving, et al. 2021). Conversely, a stress might be considered as
state variation in human functions induced by exercise. It is likely more generic
and free of any specific SI unit. However, for conformity with the literature, we will
consistently use the terms of training loads but with a stress connotation behind
them.
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Assessing an athlete performance often requires particular sessions and is, there-
fore, time-consuming. While time may be in-expandable regarding the preparation
for a competition schedule, coaches may benefit from training observations to
evaluate individual progression. In this way, the rise of wearable sensors for mea-
suring accurately the least effort performed by athletes has greatly facilitated and
encouraged athlete status monitoring. Intended to measure an overall activity
during training sessions and competitions, they provide useful insights that may
be used for both TL and performance quantification in any sports and ecological
conditions. Training programs thus become evolutive and daily adjustable in order
to be optimal for each athlete. Yet, wearable sensors such as GPS and inertial
measurement units (IMU) require practitioners to deal with a large amount of data
and to fully understand what and how are the variables measured. Thus, it might
imply a change in usages of coaching, becoming more data-driven or data-informed
and involves close collaborations between training, medical staff and data experts.

Beyond the singular satisfaction brought by athletic performance to athletes,
significant economic issues arise therefrom. On one side, winning world-class
competitions such as world championships and Olympic games raise the sport’s
development within the country, reinforcing national sport organisations while at
the same time improving the nation credibility at an international level. On the
other side, injuries are part of sports performance. In economic terms, injuries
represent major losses for clubs and sports organisations. As an example, Forbes
estimated the cost of injuries in English Premier-League (EPL) of about 267 millions
dollars (McMahon 2019). By considering wage bills and prize money, a recent study
from Eliakim, Morgulev, Lidor, et al. 2020 estimated the financial damages caused
by injuries in EPL only, up to £45 million sterling.

Fortunately, the training effects of athletic performance are a major topic in
exercise physiology researches. Largely studied for years, the theoretical physio-
logical mechanisms related to exercise allows us to understand and estimate what
physiological adaptations are susceptible to occur following a training session and
their aftereffects on athletic performance. Scientists attempted to model the effects
of training on physical performance on a physiological basis, initially using system
model frameworks (Banister, Calvert, Savage, et al. 1975; Calvert, Banister, Savage,
et al. 1976). Sometimes named "biocybernetics" models, they aim at describing
and predicting performance outcomes using states features, built from more or less
elaborated functions intended to represent some basics of biological processes (e.g.
super-compensation process).

However, human is made of complex biological systems acting as a network in
which several processes exchanges between each other at various orders (Bazyler,
Abbott, Bellon, et al. 2015; Lambert, Gibson, and Noakes 2005). Not surprisingly,
traditional system models of training effects lack of descriptive and predictive
powers (Hellard, Avalos, Lacoste, et al. 2006), since they resume training effects to
a very few features if it is not a single one in most cases. That makes such models
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useful for modelling performance trends from TL dynamics but not valuable for
predicting athletic performances with accuracy and finding an optimal training
sequence accordingly.

Beyond models used for athletic performance purposes, information forms the
basis of any modelling process. In sports, information stems from various sources,
being objectively or subjectively measured. While TL are training-related pa-
rameters at the basis of former system models, any other parameters related to
training (e.g. technical, environmental, social, psychological, nutritional) may bring
valuable insights in the modelling under the multifaceted of athletic performance.
Hence, all available information for understanding the relationship between training
and performance should be considered in modelling processes. However, objective
external TL measures are still often used in isolation without any consideration for
other aforementioned information. This might be a significant inherent limitation
of system models used so far, whereas many statistical approaches may benefit
from the richness of available data.

Statistics and computer science show a great attraction over the last two decades
in sports science and sports analytics, with high predictive power in particular
for solving complex non-linear problems (Carrard, Kloucek, and Gojanovic 2020;
Edelmann-Nusser, Hohmann, and Henneberg 2002; Mitchell, Rattray, Fowlie, et al.
2020). Machine-learning modelling approaches seek to approximate a function that
maps the input (e.g. a combination of predictors) to the output (i.e. an athletic
performance), lowering errors between predictions and observations in their way.
Choosing a model (or a class of models) of interest for solving a particular problem
will depend on the structure, properties of the data such as the sample size and
the presence of temporal dependencies between observations.

Despite being extensively used in several domains, one should pay attention to
potential drawbacks behind some machine-learning (ML) approaches. On one side,
system models come with a strong hypothesis and are highly interpretable models
for the benefit of coaches. On the other side, hypothesis-free ML. models might
suffer from direct such interpretation, particularly the so-called black-box models.
To draw an interpretation of model parameters remains essential for practitioners,
aiming at understanding athlete responses to exercise for the optimisation of
training programs. Yet, it does mean that ML should be discredited but rather
used consistently. Also, since system models rely on a hypothesis based on macro-
biological principles, they might be integrated with machine-learning algorithms for
the benefit of bio-physiological expertise along with powerful modelling frameworks.

In summary, sports-related issues are sufficient to consider the relationships
between the effects of training and athletic performances as of major interest,
sitting as a valuable research topic that has already been studied for years but has
not been elucidated so far.

Understanding relationships between training and athletic performance implies:

1. Having rigorously collected data that include all relevant information for
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athletic performance comprehension.

2. Performing a robust and valuable modelling approach for solving complex
problems in which key variables are identified for explaining training outcomes.

Furthermore, in a dose-response framework, training effects were considered
through direct and cumulative principles while considering dissipating effects over
time. However, little is known about delayed training effects, despite the non-linear
aspects of physiological adaptations to training are stated in the literature. Since
system models benefit from control theory, extending the former transfer functions
to more complex functions might better represent physiological adaptations to
exercise and, therefore, athletic performance outcomes.

While the former system models are used for description and prediction purposes,
their ability to predict future performances is rarely robustly assessed. It questions
the pertinence of drawing interpretation from models, which might be partly flawed
and intended for optimising training programs.

Finally, companies that develop sports wearable sensors such as GPS provide
summarised features of measured data, either based on scientific or practical
evidence. It means that customers are restricted to the company’s choice in the
feature provided, whereas new meaningful features might be extracted from the
raw data using signal processing techniques.

The work presented in this manuscript is based on two concurrent objectives.
First, it advances athletic performance modelling by combining exercise physiology
knowledge from theory to practice and using appropriate statistical methods to
solve complex issues. The latter relates to developing a DSS intended for elite
athletes, performance and medical staff.

Therefore, the manuscript reviewed the methods used for athletic performance
modelling and provided more appropriate modelling approaches from statistics
and computer science. In methodological terms, careful attention is paid to the
selection of optimal models (i.e. models that efficiently perform according to a
given context) and their generalisation capability. From an applied perspective,
the method fosters statistical and ML approaches based on training parameters
aggregates for making predictions of athletic performance in ecological conditions.

Since many models may provide similar results for athletic performances predic-
tion purposes (Wolpert and Macready 1997), we provided some robust comparisons
using field data and highlighted both limits of each approach and appropriate
solutions to the problem.

Accordingly, it is hypothesised that multivariate approaches using features from
various sources are better suitable than former system models for predicting athletic
performances. In addition, extracting new information from GPS raw data might
be a valuable alternative, making the most of wearable technologies that are prone
to benefit from future developments.

This manuscript consists of four chapters, each of them addressing particular
issues. The first chapter provides a state-of-the-art of contemporary methods for
quantifying training loads and a narrative review of the models used for athletic
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performance modelling. The second chapter is intended to advance the training load
quantification methods applied to resistance training by conducting investigations
in laboratory conditions. The third chapter is directly related to modelling applied
to athletic performance in elite sports. Various applications provide key insights and
guide further applications in sports. The last chapter provides some DSS intended
for athletes, coaches and sports structures. The DSS includes data-visualisation,
team management and predictive analysis tools applied to various populations and
sports.
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Training load has become a gold standard measure for representing how much
stress is induced by physical exercise. Essential in any monitoring process, TL
stems from various sources of data, and it can be assessed in several ways, according
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to exercise specific properties. Objective and subjective estimates of TL are the
two main approaches used by the community.

In the following sub-sections, we present the main objective and subjective
measures used for quantifying training loads. For each of them, an underpinning
physiological rationale is presented upstream.

1.1.1. Objective measures
1.1.1.1. Quantification in endurance sports

Physiology-based measurements

Heart rate kinetics during and after exercise have been extensively studied so
far (Bunc, Heller, and Leso 1988; Cooper, Berry, Lamarra, et al. 1985; Engelen,
Porszasz, Riley, et al. 1996; Karvonen and Vuorimaa 1988; Knuttgen, Petersen,
and Klausen 1971; Schneider, Wing, and Morris 2002). Since HR correlates with
VO, at several sub-maximal exercise intensities (Cooper, Berry, Lamarra, et al.
1985; Maritz, Morrison, Peter, et al. 1961; Verma, Sidhu, and Kansal 1979), it
has become one of the most used physiological parameters for exercise intensity
prescription and monitoring purposes (Achten and Jeukendrup 2003; Borresen and
Lambert 2009). HR monitoring would thus offer an objective, continuous and
non-invasive measure of exercise intensity through acute cardiopulmonary responses
(Borresen and Lambert 2009).

While a simplified relationship between VO, (or indirectly HR) and work rate is
assumed where VO, increases as a linear function of work rate, the same cannot be
said for any exercises performed over lactate threshold (LT) or exercises that involve
a sustained lactic acidosis (Barstow, Casaburi, and Wasserman 1993; Gaesser and
Poole 1996). In those cases and according to the energetic pathways committed,
a slow component of VO, (Henson, Poole, and Whipp 1989; Jones and Poole
2005) takes place in order to supply the energy demand; leading to an increased
oxygen (02) cost per watt expected based on of a linear relationship between work
rate and VO, during an incremental exercise test. The magnitude of that slow
component increases along with the intensity above LT until reaching maximal
oxygen uptake (ml.min~") (VOymax) or exhaustion (Gaesser and Poole 1996).
Hence, for a constant load exercise, a break-point in the linear relationship occurs
at LT that marks the onset of the slow component phase (Barstow and Molé
1991; Henson, Poole, and Whipp 1989; Roston, Whipp, Davis, et al. 1987; Zoladz,
Duda, and Majerczak 1998) identified by an exceeding VO,. That is obviously of
importance when considering exercise intensity prescription through absolute or
relative VO, levels. As regards HR kinetics at exercise, an expected slow increase in
HR is also observed during constant work-rate exercise (Zuccarelli, Porcelli, Rasica,
et al. 2018). Yet, HR time course and magnitude differ from those of VO,, due
to different mechanistic determinants behind HR and VO, regulation processes
(Zuccarelli, Porcelli, Rasica, et al. 2018).
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Typical signatures of HR kinetics are commonly explained according to individual
training states. For instance, trained athletes with lower resting HR value than
untrained counterparts express faster HR kinetics. Similarly, a greater VOsmax
induces a shorter time course and adjustment for both VO, and HR kinetics Bunc,
Heller, and Leso 1988; Hickson, Bomze, and Hollozy 1978 at exercise. On this basis,
using HR as a reflection of VO, and thus exercise intensity has been employed as
a valuable parameter in prescribing sub-maximal exercises performed at constant
work rates (Achten and Jeukendrup 2003; Borresen and Lambert 2009; Karvonen
and Vuorimaa 1988) such as performed in the majority of endurance sports. For
programming purposes and to carry analyses out through athletes comparisons, a
relative measure of HR is usually preferred to absolute measure. A percentage of
maximal HR (% HR,,..) is a common method for calculating exercise intensities
of athletes (see Equation 1.1) (Karvonen and Vuorimaa 1988). Since the resting
heart rate increases with age whereas the maximal heart rate decreases, %H R4z 18
usually the most appropriate method for exercise prescription, preferred to relative
HR to peak value or HR according to a percentage of maximum METs (Karvonen
and Vuorimaa 1988). Notwithstanding this, we can estimate the exercise intensity
of an endurance training session such as

HRwork - HRrest
HR 0o = .
% HRma:c - HRrest

(1.1)

For monitoring purposes, training load indexes are usually calculated from the
product of exercise intensity and training volume. While the calculation of training
volume is quite simple, relying on total distance covered or time spent at exercise,
the determination of exercise intensity remains much difficult. As presented above,
the relationship between work rate and the resulting metabolic stress is non-linearly
related in several cases. This non-linearity may be illustrated by an exponential
increase of blood lactate concentrations ([lact,]) as a function of work rate and VO,
(Davis, Rozenek, DeCicco, et al. 2007; Farrell, Wilmore, Coyle, et al. 1979; Freund,
Oyono-Enguelle, Heitz, et al. 1986; Hughson, Weisiger, and Swanson 1987; Hurley,
Hagberg, Allen, et al. 1984; Wasserman, Beaver, and Whipp 1986). Therefore,
quantifying training loads objectively while depicting the physiological adaptations
to exercises should consider these relationships but remains challenging.

One of the first and most famous system of training quantification relying on
HR comes from the work of Banister and Hamilton 1985, the so-called "training
impulse" (Banister’s training impulses (bTRIMP)). Similarly to (Karvonen and
Vuorimaa 1988) using % H R, for exercise prescription, bTRIMP relies on the
average fractional elevation of the maximum HR range for a measure of intensity
denoted H R,, multiplied by the exercise duration and weighted by a non-linear
coefficient k£ that accounts for the greater taxes and adaptations involved by high
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exercise intensities (see Equation 1.2). Training impulse is defined as following:

bI'RIMP =D HR, k,

(% 27]1\[:1 HR@J»‘ - HRrest) (12)

ith HR, =
o HRmaa: - HRrest

Here, k = 0.64e'92 7% for men, and k = 0.86e"57 % for women. The parameters
D and HR, denote the duration of exercise and the average fractional elevation
of the maximum HR range, respectively. The parameter k positively weights the
effort at high HR in line with the exponential increase in [lacty]. HR,, is the
HR measured at exercise. Both amplitude and time constant of HR kinetics vary
according to gender (Green, Hughson, Orr, et al. 1983).

From this basis, bTRIMP allows for quantify training in continuous situations
(i.e. where intensity of exercise remains quite steady or where HR changes slowly
operates through the exercise / training session). It is also possible to quantify
the training for particular phases of the training session, if intensity is held long
enough to observe valuable changes in HR. In this case, the overall TL would be
given by the sum of each bTRIMP phase scores (Banister and Hamilton 1985;
Garci+a-Ramos, Feriche, Calderdn, et al. 2015).

The bTRIMP method for quantifying TL has several limitations. First, it is
not a valuable estimate of TL neither for intermittent exercises since exercise and
rest phases cannot be discriminated if we refer to Equation 1.2, nor for resistance
training exercises since HR does not increases proportionately with load, that is
resistance exercise intensity (Borresen and Lambert 2009). In addition, the use of
generic parameters in the formulation of the weighting coefficient k neglects the
individual differences in [lact] responses to exercise, in particular when training
levels and [lact,] tolerance greatly vary between athletes.

Alternatives to the original training impulse quantification from Banister and
Hamilton 1985 have been proposed. Instead of weighting high intensities using a
coefficient based on the kinetics of one physiological parameter (i.e. such as given
by Equation 1.2), Edwards 1993 chose to split the Edward’s training impulses
(eTRIMP) span into five equated zones. An exercise training impulse e TRIMP is
calculated by multiplying the accumulated duration in each zone of intensity to its
corresponding weighting factor K., defined in the sequel:
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1if e e 0.5,0.59]
2 if e €0.6,0.69]
3 if e € [0.7,0.79] (1.3)
4 if A= €[0.8,0.89]

5 oif e €0.9,1].

\

Here, K, denotes the score attributed to each HR zone, HR,, denotes the averaged
HR over the phase of interest and H R,,,; is the individual maximum HR. This
method came with the need of an objective estimate of exercise intensity and
thereafter, an objective estimate of training load for intermittent exercises. While
bTRIMP is not suitable for intermittent exercises, eTRIMP would be a more
appropriate method that discriminates exercise according to the aforementioned
zones of intensity (see Equation 1.3). However, it is of importance to note that
eTRIMP weights TL according to intensity zones in a linear way, thus neglecting
the non-linear reflect of physiological responses (HR and VO,) to exercise above
LT (Borresen and Lambert 2009). Yet, an extension of eTRIMP that includes
an exponential weighting factor has been proposed by Stagno, Thatcher, and
Van Someren 2007.

A similar but somewhat simpler has been suggested by Lucia, Hoyos, Carvajal,
et al. 1999 in cycling. The author established three fixed exercise zones based
on HR equivalences to either lactate thresholds (see Equation 1.4, [lact,] values
being measured in mmol.L~') (Lucia, Hoyos, Carvajal, et al. 1999), or ventilatory
thresholds (Lucia, Hoyos, Santalla, et al. 2003), respectively. Again, multiplying
the time spent in each training zone to the corresponding weighting coefficient K,
and then summed for each training bouts gives the total Lucia’s training impulses
(WWTRIMP) score. Compared to eTRIMP method, figuring the exercise intensity
out according to only three zones do not allow for a precise representation of the
real exercise intensity performed (e.g. a same value is given for both LT and
maximal aerobic power or velocity exercise intensities). According to [lacty] or HR
equivalences, the value taken by Kj, also linearly weights the TL index without
considering the exponential nature of the exercise demand at high intensities.

1 if  [lacty) < 2
K, =142 if 2<][lact] <4 (1.4)
3 if  [lacty] > 4.
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Quantification methods of TL based on training impulses come with their re-
spective limits. First, they are dedicated to exercises performed at steady-state
and sub-maximal intensities, and therefore they do not seem to be valuable for
intermittent exercise training (Tschakert and Hofmann 2013). Beyond the nature
of exercise (i.e. continuous or intermittent), none of the aforementioned methods
is expressed as a measure of density that accounts for passive rest or pause time
during sessions. In addition, because they are HR-based methods, a HR monitor is
required whatever the activity. For some sports such as swimming, wearing HR
monitors may be detrimental to the athletic performance, thus questioning such
methods for training load quantification purposes.

While [lacty] let the computation of lnTRIMP scores through HR, equivalences,
some authors opted for sport-specific equivalences (Hellard, Scordia, Avalos, et al.
2017; Mujika, Busso, Lacoste, et al. 1996; Thomas, Mujika, and Busso 2008).
Initiated by Mujika, Busso, Lacoste, et al. 1996, authors asked athletes to perform
a few swimming incremental tests to exhaustion through the season. [lacty] were
measured all along the tests to determine five swimming velocity zones. Then, a
weighting factor K, is attributed individually to each zone, such as :

(

1 if bLact <2
if 2<bLact <4
if 4<bLact<6
if bLact > 6

Ot s W N

if velocity is maximal

\

Then, the session TL (expressed in arbitrary units) is given by the sum of distances
(in kilometres) swam at each training intensity, weighted by their respective factor
K,,. This method allows for weighting TL estimates according to a physiological
basis, even though it is in a linear way. Since this method allows for estimating
TL using a simple chronometer and a few testing sessions for the calibration of
individual intensity zones, it might be applicable in most conditions.

While all of the aforementioned methods quantify TL from exercise parameters,
excess post-exercise oxygen consumption (EPOC) has also proved its worth for
estimating "fatigue" induced by exercise and has been commercialised so far (Rusko,
Pulkkinen, Saalasti, et al. 2003). As its name suggests, EPOC comes from an
excess of VO, after exercise, marked by elevated levels above resting values for some
period of time. The concept behind EPOC arises from the very first statement of
Hill and Lupton 1923 in which a post exercise oxygen debt exists in order to repay
the oxygen deficit incurred early at exercise onset, and ascribed to the oxidative
removal of lactate. A little later, Margaria, Edwards, and Dill 1933 attributed the
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oxygen debt to the lactacid component induced by the glycogen synthesis from
lactate and an alactacid caused by other factors. Finally, Gaesser and Brooks
1984 comes with a more realistic causality with EPOC, which is not only the short
component of VO, increases but also a prolonged one that may persists for up to
24 hours (see Figure 1.1).

In their review article, Barsheim and Bahr 2003 reported that the magnitude
of EPOC was curvilinearly related to the intensity of exercise, with a break point
around intensity corresponding to 50-60% of VO,max during constant work rate
exercises. On the other side, the relationship between the magnitude of EPOC
and the exercise duration seems to be mostly linear Bgrsheim and Bahr 2003 all
along the time course. Nevertheless, individual differences in EPOC responses
to a same relative exercise stimulus exist Bgrsheim and Bahr 2003 according to
the heterogeneity of responsiveness to exercise in healthy people (Bouchard and
Rankinen 2001).

Before addressing the effects of different types of training on EPOC, let us lay
the foundations of some mechanisms underpinning EPOC. First, main mecha-
nisms responsible for the short component identified so far come from a global
myocellular homeostasis that includes replenishment of oxygen stores, adenosine
triphosphate (ATP) and phosphocreatine (PCr) resynthesis, lactate oxidation and
removal, restoration of fluid balance and fuel stores, increased body temperature
(Borsheim and Bahr 2003). A note of importance concerns the restoration of fuel
stores according to an increase of lipid oxidation for "saving" carbohydrate energy
sources during recovery (Kiens and Richter 1998). That shift in substrate utilisa-
tion justifies a high priority given to muscle glycogen resynthesis, while the lipid
oxidation from intramuscular triglycerides and free fatty acid is attributed to the
restoration of full requirements (Egan and Zierath 2013). This mostly contributes
to the prolonged component of EPOC, according to plasma concentrations of cate-
cholamines that increase during exercise and which regulates the triglyceride/fatty
acid cycle (Bgrsheim and Bahr 2003).

According to the literature, we can argue that both exercise intensity and duration
impact EPOC. However, for a similar intensity and duration, differences in EPOC
can be observed according to the type of training (e.g. continuous or intermittent
training and the modality of muscle contraction). Substantial increases of EPOC
after intermittent exercise sessions were reported by authors (Almuzaini, Potteiger,
and Green 1998; Kaminsky, Padjen, and LaHam-Saeger 1990). In addition, when
comparing continuous and interval exercises at similar controlled energy expenditure
(kcal) (EE), magnitude and duration of EPOC were significantly greater in interval
training sessions than in continuous ones (Cunha, Midgley, McNaughton, et al. 2016;
Jung, Hwang, Kim, et al. 2019). These results support the hypothesis that EPOC
is greatly dependent on exercise intensity. According to the mechanisms responsible
for EPOC aforementioned, we can logically deduct that increase in EPOC due
to higher exercise intensities may be explained by the energy cost to resynthesise
glycogen from lactate, an increase in core temperature due to a metabolic activity,
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a resynthesis of ATP and PCr stores as well as inflammatory responses through
changes in cytokine release (Bgrsheim and Bahr 2003). Consequently, a greater
exercise intensity may greater affect the homeostasis state, reflected by a larger
EPOC. This result is manifestly of importance when aiming to estimate the effects
of exercise on the body. Off-exercise periods should thus be considered in any
monitoring process for a better estimation of the training effects.

Some authors have compared EPOC in response to aerobic and resistance exer-
cises, according to an equated EE (usually estimated through indirect calorimetry
such as gas exchange analysis) across exercises. Greater EPOC were observed
following intermittent resistance exercise (RE) and high-intensity intermittent
exercises than continuous aerobic exercises (Burleson, O’Bryant, Stone, et al. 1998;
Gillette, Bullough, and Melby 1994; Greer, Sirithienthad, Moffatt, et al. 2015).
However, a precise estimate of EE during both resistance and continuous aerobic
exercises remains challenging and should be considered when interpreting EPOC
kinetics in these conditions.

A simpler method for equating the total work across RE is based on the product
of relative intensity and volume of RE (this method will be further detailed in
this chapter). It eases the balancing of total work in RE in ecological condition
without necessitating the measures of the metabolic pathways. In this way, the
results reported by Thornton and Potteiger 2002 agree with the literature, namely
a significant effect of exercise intensity on the magnitude of EPOC though a similar
EE.

In brief, it is clear that EPOC is impacted by exercise duration, intensity
and modality of muscle contraction. Hence, it may be a valuable parameter for
estimating stress induced by exercise in TL monitoring purposes. In addition, sex
and training status may impact EPOC. Menstrual cycles should thus be considered
when controlling EE in women, and absolute measures of intensity should be
avoided in favour of relative measures of intensity (Bgrsheim and Bahr 2003).
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Figure 1.1. — Excess post-exercise oxygen consumption (EPOC) after exhaustive
submaximal exercise (71-80 minutes at 69-78% of VOymaz), taken
from Bersheim and Bahr 2003. Circles represent the recorded VO,
values and the solid line shows the prolonged component.

Take-home message Heart rate is a key parameter for estimating exercise in-
tensity and therefore training loads. Numerous drawbacks behind the use of HR
still have to be taken in consideration, limiting its usefulness for supra-maximal and
intermittent exercises. In addition, environmental (e.g. temperature, humidity),
psychological and physiological factors are prone to affect the HR — exercise inten-
sity relationship and should also be considered for longitudinal analysis purposes
(Lambert, Mbambo, and Gibson 1998). But be it used through TRIMP calculations
or EPOC estimates according to the VO, — HR relationship, HR allows for an
objective estimate of training loads according to physiological changes occurring
during exercise.

External parameter-based measurements.

By analogy to Banister’s training impulses, training Stress Score (TSS) has
been proposed by Coggan 2003 as an external TL indicator. First developed in
cycling, TSS is based on PO measurements and has become a gold standard for
quantifying TL in cycling and more recently in running (Van Dijk and Van Megen
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2017). Before going deeper with TSS, let us explain why it is based on PO and
why PO taken alone is of limited significance for quantifying TL.

At first glance, instantaneous PO seems to be a valuable measure of exercise
intensity, not impacted neither by elevation, nor by surface quality or any external
factors that can influence velocity. Despite it would logically be of direct interest
within a training monitoring process, it requires practitioner to deal with a large
amount of raw data, in addition to other measurements (e.g. HR). Moreover, basic
summary statistics of power such as session-averaged PO make practitioner to miss
out acute changes of PO, yet being frequent in racing. Hence, it may give only a
little insight into the real stress induced by the training or racing session. On this
basis, some alternatives have been commonly provided. First, quantifying the total
mechanical work would inform about the overall energy demand of the session, but
it neglects any intensity specific effects such as those mentioned in the previous
sub-sections. Otherwise, one could obviously looks at PO distribution per intensity
zones, alike the framework behind eTRIMP and luTRIMP. This approach has two
drawbacks yet:

1. Comparing means of PO presupposes to deal with homogeneous sample sizes
in order to identify subtle differences, whereas the time past at high intensity
remains often few.

2. It neglects time past at each intensity zones, assuming that performing 5
minutes at 300 W induces the same stress as 30 minutes at the same PO.

Back to the TSS, a power-dependent intensity weighting factor I F tackles well
the aforementioned issues, by accounting for the fact that the physiological stress
induced by exercise depends on PO itself. The training stress score is defined in
the sequel:

D P, IF
T = nM T 100.
55 3600 F'T'P 00

Here, D denotes the exercise duration in seconds, P,,., is the normalised PO
using a 30 seconds time bins rolling average (a time close to the half-life of many
physiological responses during and after exercise) (Coggan 2003), FTP is the
functional threshold power such as a PO value that can be theoretically sustained
over 60 minutes (prior determined through a specific test), I'F' is given by dividing
Prorm by FTP. Since the TSS is normalised to the individual’s threshold power, it
allows for comparing T'SS across athletes. Furthermore, a classification of I F' scores
into five incremental levels may arise. The first level has I F' < 0.75 and describes
a low intensity — recovery session, the second with 0.75 < IF' < 0.85 describes
endurance training sessions, the third for 0.85 < I'F' < 0.95 relates intermittent
exercises at moderate intensities. The fourth level is described either by intervals
performed at high intensities and short races with 0.95 < I'F' < 1.05, or by shorter
time trials (1.05 < IF < 1.15). Finally, the last level represents all-out exercises
and track pursuit with 7F > 1.15 (Coggan 2003).
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Training stress score being a generalisable parameter, many adaptations have
been provided (Coggan 2003). It makes such TL quantification method not only
valuable for cycling, but also for running (Van Dijk and Van Megen 2017) and
swimming activities.

1.1.1.2. Quantification in resistance training

While endurance sports —and more generally activities that are based on human
locomotion— benefit from HR and any wearable sensor that captures the slightest
exercise, monitoring the exercise demand objectively in resistance training (RT')
remains challenging so far. As aforementioned, physiological status may inform
how the athlete responds to exercise. This implies to regularly measure some
physiological parameters of importance for a given population (amateurs or elite
athletes), with all the underpinning methodological issues (Davison, Van Someren,
and Jones 2009) to such assessment.

Among the physiological parameters of interest, hormonal responses to RT
have been widely studied so far (Hakkinen and Pakarinen 1995; Hoffman, Im,
Rundell, et al. 2003; Kraemer 1987; Kraemer, Fleck, Dziados, et al. 1993; Kraemer,
Hékkinen, Newton, et al. 1998; Kraemer, Marchitelli, Gordon, et al. 1990; Kraemer
and Ratamess 2005; Pullinen, Mero, Huttunen, et al. 2002; Shaner, Vingren,
Hatfield, et al. 2014; Smilios, Pilianidis, Karamouzis, et al. 2003; Spiering, Kraemer,
Anderson, et al. 2008; Vingren, Kraemer, Ratamess, et al. 2010). A narrative
review conducted by Kraemer and Ratamess 2005 highlighted the most common
hormonal acute responses and chronic adaptations to RT.

At first glance, testosterone may be of primary interest in a monitoring process
according to its potential effects on force production enhancement. Resistance
exercises can significantly increase testosterone concentrations in men through
several factors (Kraemer and Ratamess 2005). Exercise selection in terms of
the amount of muscle mass solicited and the poly-articular nature of exercise
significantly impact acute testosterone elevations (Hansen, Kvorning, Kjaer, et al.
2001). Interaction between volume and intensity parameters drives acute changes
in testosterone, with a predominance on the exercise volume. Indeed, training
sessions that yield to a higher glycolytic component (e.g. characterised by a
moderate intensity, high volume and short inter-set recovery duration) seem to
provide the most considerable acute change (Crewther, Cronin, Keogh, et al.
2008; Kraemer, Gordon, Fleck, et al. 1991; Kraemer, Marchitelli, Gordon, et al.
1990). Furthermore, elevation in insulin concentration such as observed through
high carbohydrate dietary intake showed a decreased circulating concentration of
testosterone (Chandler, Byrne, Patterson, et al. 1994; Volek, Kraemer, Bush, et al.
1997). It implies that nutritional intakes may significantly impact testosterone
changes and support the fact that the nutritional state is a leading parameter in
any training process. Finally, chronic changes in testosterone following RT remain
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inconsistent in the literature since resting levels are impacted by many factors,
external to training (Kraemer and Ratamess 2005).

As for testosterone, concentrations in growth hormones (GH) appear to be
elevated following RT in any population and share the same training related
explanatory factors (e.g. volume, intensity, muscle mass recruited, rest intervals
and training status). Among these, the total work performed seems to be one
of the most determining factor of GH elevation (Hoffman, Im, Rundell, et al.
2003; Smilios, Pilianidis, Karamouzis, et al. 2003; Zafeiridis, Smilios, Considine,
et al. 2003), where GH responses are correlated to [lacty] at and following exercise
(Hakkinen and Pakarinen 1993; Kraemer and Ratamess 2005). However, not any
change in resting values of GH concentrations are observed following traditional RT
protocols. That supports the chronic modulator roles in the homeostatic functions
of the physiological systems such as the regulation of glucose concentrations but
also the acute roles in muscular remodelling process following RT (Kraemer and
Ratamess 2005).

Levels of cortisol may be another parameter of interest for training monitoring.
Briefly, cortisol stimulates lipolysis in adipose cells and takes place in tissue
remodelling while enhancing protein degradation and inhibiting protein synthesis
in muscle cells. The subsequent release of lipids and amino acids into circulation
(Biolo, Maggi, Williams, et al. 1995) thus reflects an increase in cortisol levels,
which becomes a useful parameter to be monitored through resistance training
programs.

Following RT, acute responses of cortisol showed significant elevations along
with adrenocorticotropic hormone —a stimulator of cortisol release (Di Blasio,
[zzicupo, Tacconi, et al. 2014; Hakkinen, Pakarinen, Alen, et al. 1988; Kraemer,
Fleck, Dziados, et al. 1993; Kraemer, Hékkinen, Newton, et al. 1998; Kraemer
and Ratamess 2005; Kraemer, Fry, Warren, et al. 1992; McGuigan, Egan, and
Foster 2004). Like GH responses, changes in cortisol are mostly observed following
high volume RT performed at moderate intensities (Bottaro, Martins, Gentil, et al.
2009; Crewther, Cronin, Keogh, et al. 2008; Leite, Prestes, Rosa, et al. 2011,
McCaulley, McBride, Cormie, et al. 2009; Smilios, Pilianidis, Karamouzis, et al.
2003). Accordingly, acute responses of cortisol showed positive associations with
[lacty] elevation for such RT, usually performed for muscle hypertrophy purposes
(Kraemer, Noble, Clark, et al. 1987; Ratamess, Kraemer, Volek, et al. 2005). Finally,
inter-set recovery duration also weights the magnitude of post-exercise changes in
cortisol concentrations.

Described by changes in resting cortisol concentration, chronic cortisol adap-
tations to RT are mitigated in the literature. Most of the studies reported by
Kraemer and Ratamess 2005 showed either no changes or reductions in cortisol
concentrations. Yet, some elevation in resting cortisol levels may occur after several
weeks of RT (Hékkinen and Pakarinen 1991; Willoughby 2004). In the latter
(Willoughby 2004), untrained people showed elevated cortisol concentrations after
twelve weeks of RT along with significant increases of strength, body mass, fat-free
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mass and muscle size gains. Authors conclude that the serum myostatin expres-
sion in response to cortisol elevation is not related to the training-induced muscle
adaptations. This supports a more complex —at least non-linear— relationship that
includes attenuating effects of follistatin-like related gene levels such as shown by a
down-regulation of the activin IIb receptor.

Hormonal concentrations can be measured either in serum, plasma or saliva. In
case of blood sample collection, the measures may be of great accuracy but also
invasive and inappropriate for daily use (Helms, Kwan, Sousa, et al. 2020). In ad-
dition, sample collection and processing time raise the question of what pertinence
can be ensured for such biochemical measures in a training monitoring process?
Therefore, sports scientists and practitioners have the merit of striving to find out
an indirect estimate of physiological stress induced by RT. In the sequel, we will
present some of the main TL quantification methods used in RT.

Since RT can induce significant striated skeletal muscle adaptations, indirect
biomarkers of muscle damage may be valuable in a monitoring process (Heckel,
Atlasz, Tékus, et al. 2019; Helms, Kwan, Sousa, et al. 2020). Among the ones
commonly measured, creatine kinase (CK), C-reactive protein and cytokines (e.g.
Interleukines IL-15 and interleukines-6 (IL-6), tumour necrosis factora) are po-
tentially the best informative parameters of training effects on skeletal muscle
structure.

Creatine kinase levels and IL-6 are known to raise a few days after training (Chen
and HSIEH 2001; Nosaka and Newton 2002), in particular when exercise intensity
is moderate to high (Baird, Graham, Baker, et al. 2012; Forti, Van Roie, Njemini,
et al. 2017; Tiidus and Ianuzzo 1983) and when volume of exercises increases
(Rodrigues, Dantas, Salles, et al. 2010; Tiidus and Tanuzzo 1983). However, it is
important to consider the surrounding factors that influence biomarkers levels while
attempting to quantify, partly, muscle damages induced by RE. Generally, changes
in CK levels are a normal process, an indicator of energetic enzyme activity and
muscle disturbances (Baird, Graham, Baker, et al. 2012). Beyond ethnic properties
and gender on basal CK levels, hydration status before exercise may have a great
influence on CK levels in response to exercise and lead to within-subject differences
for comparisons (Fielding, Violan, Svetkey, et al. 2000). As an example among
many, it may explain divergent findings in the literature about acute and chronic
changes in such biomarkers due to uncontrolled confounding factors or training
load parameters (Helms, Kwan, Sousa, et al. 2020). Finally, whatever the proxy
marker of muscle damage to be measured, interpretation of these markers should
not be done in isolation but rather along with other physiological, psychological,
nutritional and environmental parameters (Helms, Kwan, Sousa, et al. 2020).

The first and basic training load quantification in RT comes with the volume

load (VL) (Haff 2010; Scott, Duthie, Thornton, et al. 2016), a basic measure of
amount of absolute loads lifted through a training session. Expressed in kilograms
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or tonnes, it is simply calculated by the product of the number of sets, the number
of repetitions and the absolute load such as:

Vi =V 1. (1.5)

In the equation, V' denotes the product of the number of sets and the number of
repetitions performed per set and I, is the absolute load (kg).

The absolute VL is daily easy handling, but it presents several limitations. Firstly,
using absolute values of intensity restricts the comparisons to within individuals
comparisons only since athletes or practitioners have different strength levels.
However, a simple adaptation of Equation 1.5 using relative measures of intensity
rather than absolute would solve this issue. The relative VL is thus defined such as

Vi =V I, (1.6)

with I, being the load relative to the one repetition maximum (RM, %).

A major drawback to both absolute and relative VL is the fact that volume
and intensity are reciprocal. For example, VL considers that performing N sets
of M repetitions at 70% of 1RM equals performing M sets of N repetitions at the
same load, which is obviously not realistic. In terms of training responses, such an
assumption is theoretically incorrect due to the specific effects of exercise intensity
on tissues (e.g. fibre types I and II hypertrophic responses Fry 2004), hormonal (e.g.
growth hormone Ahtiainen, Pakarinen, Kraemer, et al. 2003; Vanhelder, Radomski,
and Goode 1984 and cortisol responses Ahtiainen, Pakarinen, Kraemer, et al. 2003,
chronic insuline-like growth factor-1, S-Endorphins and fluid regulatory hormones
changes Kraemer and Ratamess 2005) and metabolic changes (e.g. blood lactate
concentrations) Lagally, Robertson, Gallagher, et al. 2002.

Some authors attempted to solve this issue by planning sets of RE by holding
some repetitions in reserve (i.e. shortening sets by a few repetitions before failure)
(Genner and Weston 2014). This practice allows for practitioners to increase training
volume compared to sets performed to failure. Aside from bringing subjective
information to the calculation (subjective methods will be presented further),
it may also result in a disproportionate reduction of volumes between sets. For
example, performing 8 repetitions at a 10RM load results in a 20% volume reduction
(according to the definition of volume given in Equation 1.5), whereas the same
shortening over a 4RM set results in a 50% reduction of volume.

Another adaptation of the aforementioned VL, is based on RM prediction
equations for a given number of repetitions (LeSuer, McCormick, Mayhew, et al.
1997) and 1RM predictions (Brzycki 1993). Defined in the sequel (see Equation
1.7), the athlete has a specific load for each RM of interest and consequently, an
overall VL estimate that is not reciprocal and that varies across sets.

Vi =V I, (1.7)
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Here, I, denotes the load relative to the RM for a given repetition range. However,
the method relies on equations only appropriate for certain exercises, and which do
not assume individual differences in the relationship between 1RM and repetitions
that can be performed at a given load.

Despite these extensions of the former VL calculation sought to overcome some
practical issues, it remains several limitations that may discredit the use of VL as
an objective TL quantification method of external TL. Indeed, the travel of the load
should be considered in any objective TL quantification, discarding the simplest
formulations of VL where no differentiation can be made between resistance exercises.
Otherwise, a rough depiction of the overall TL encountered may be expected when
different resistance exercises are performed. One solution would include the barbell
travelling or the centre of mass displacement in the equation, be it within an
external mechanical work calculation (Fenn 1930; Marston, Peiffer, Newton, et al.
2017; McBride, McCaulley, Cormie, et al. 2009) or an extension of the original VL
Haff 2010. For this purpose, RT benefits from the latest technological improvement
that makes kinematic measures relatively simple through linear position transducer
(LPT) and IMU (Pérez-Castilla, Piepoli, Delgado-Garci+a, et al. 2019; Weakley,
Morrison, Garci+a-Ramos, et al. 2021).

Furthermore, the sessional intensity in which all exercises contribute is greatly
affected by the session design. It would be safe to state that inter-set recovery
duration impacts training outcomes in several ways Bird, Tarpenning, and Marino
2005. A systematic review conducted by Grgic, Schoenfeld, Skrepnik, et al. 2018
that included twenty-three studies for a total of 491 participants showed that inter-
set recovery duration could impact the potential of muscular strength improvement
in both amateurs and athletes. According to their findings, recovery durations
over two minutes may allow for the greatest muscular strength gains. However,
the influence of variability between recovery duration within a training session
(which is common in practice) on training outcomes remains unclear. In terms
of hormonal responses to volume equated RE, shorter is the recovery duration,
greater is the magnitude of growth hormone (Boroujerdi and Rahimi 2008; Bottaro,
Martins, Gentil, et al. 2009; De Salles, Simao, Miranda, et al. 2009; Rahimi, Qaderi,
Faraji, et al. 2010) and serum cortisol acute responses (Rahimi, Ghaderi, Mirzaei,
et al. 2010). Acute Blood lactate concentrations were also impacted by small
rest intervals for a given load (Abdessemed, Duche, Hautier, et al. 1999; Kraemer
and Ratamess 2005). As a final example, the energetic metabolism benefits from
longer rest periods by better recovering of the ATP and PCr energy sources Harris,
Edwards, Hultman, et al. 1976. Summing up, inter-set recovery duration has to be
considered in the TL quantification in order to estimate better the response of the
body to RT (Marston, Peiffer, Newton, et al. 2017).

Finally, none of the TL calculation methods presented so far considers neither
the time that muscle is under tension or the repetition-velocity performed. Yet,
time under tension (TUT) remains a key factor of the exercise response. It impacts
muscle contractile properties, and yields to chronic neuromuscular adaptations

20



1. State of the art — 1.1. Training load, definition and quantification

Burd, Andrews, West, et al. 2012; Tran, Docherty, and Behm 2006.

Beyond these specific issues related to methods for quantifying training loads, to
prescribe training on RT percentage might also be problematic. To be the more
possibly accurate, regular evaluations of 1RT should be performed since fluctuations
in real RT operate through training cycles. In practice, such assessment may be
time consuming and might interfere with the training prescription. In addition, the
number of repetitions that can be performed at a given percentage of 1RM differs
between individuals according to their own load-velocity (L-V) profiles (Banyard,
Nosaka, Vernon, et al. 2018; Banyard, Nosaka, Sato, et al. 2017; Banyard, Tufano,
Delgado, et al. 2018; Conceigao, Fernandes, Lewis, et al. 2016; Garci+a-Ramos,
Pestana-Melero, Pérez-Castilla, et al. 2018). From this basis, velocity-based training
(VBT) comes as a contemporary method for training programming in respect of
individual L-V profiles for a more accurate prescription of RT.

Velocity-based training comes as feedback to drive the practitioner on his move-
ment or as an essential parameter integrated to the whole training prescription,
alternatively to the traditional method based on 1RM percentage (Weakley, Mann,
Banyard, et al. 2021). In the latter, determination of L-V profiles upon each move-
ment of interest allows for prescribing absolute loads according to the individual
L-V properties. In doing so, the daily variability in 1RM would not be an issue
anymore since the velocity at each 1RM percentage seems to be stable enough
(Banyard, Nosaka, Vernon, et al. 2018). The velocity of execution itself could
thus be used as a valuable indicator of the effort done by practitioners. It could
be directly integrated into a RT monitoring process (Balsalobre-Fernandez and
Torres-Ronda 2021).

Velocity-based training implies collecting data from every single repetition over
each exercise, using measurement systems such as LPT or IMU. These systems
have the benefit of measuring forces produced at exercise, external mechanical
power and work. These variables represent objective measures of intensity and
volume of RE, and may be directly considered in any monitoring process. Finally,
VBT has a particular financial cost, but accurate and ecological measures of the
least effort may be worth it.

1.1.1.3. Quantification in field sports: contribution of micro-technology

Contemporary approach for measuring the exercise demand in field sports is also
marked by the raise of wearable sensors. As they are mainly based on running and
cycling exercises, we retrieve the physiological principles underpinning to exercise,
described in Section 1.1.1.1. Naturally intermittent, HR-based TL estimates remain
a valuable parameter to be measured all through a training session or a game.
Nevertheless, the quantification of TL in field sports remains mostly based on
external TL estimates.

Global navigation satellite system coupled with inertial measurement units such as
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common sport GPS has become the gold standard in team sports practiced outdoor.
For indoor team sports, local positioning systems (LPS) overtake infrastructure
related issues using base stations and radio-frequency signal for communicating
between athletes and the positions of reference. The literature has also extended the
last decade, assessing concurrent validity and reliability (Coutts and Duffield 2010;
Crang, Duthie, Cole, et al. 2020; Fischer-Sonderegger, Taube, Rumo, et al. 2021;
Jennings, Cormack, Coutts, et al. 2010; Rico-Gonzalez, Los Arcos, Clemente, et al.
2020; Scott, Scott, and Kelly 2016) of such wearable sensors and providing areas of
application in terms of training quantification (Gémez-Carmona, Bastida-Castillo,
Ibanez, et al. 2020; Jones, West, Crewther, et al. 2015; Rago, Brito, Figueiredo,
et al. 2020; Ravé, Granacher, Boullosa, et al. 2020; Varley, Jaspers, Helsen, et al.
2017) for monitoring purposes. However, a thorough knowledge of how GPS, LPS
and IMU estimate position data are still necessary in order to consider data at their
fair value (Varley, Jaspers, Helsen, et al. 2017). For example, speed-derived data
are usually measured through GPS signal source, whereas the number of collision
or direction changes are usually estimated through IMU (Howe, Aughey, Hopkins,
et al. 2017). While IMU benefit from much more sampling frequency (over 100 Hz),
more accurate estimate would be expected. Yet, the reason for the use of GPS data
instead of only IMU though being potentially more precise for tracking an athlete
position and estimating the exercise demand (Vanwanseele, De Beéck, Schiitte,
et al. 2020) is that using IMU continuously remain a computational challenge in
order to get low measurement errors (Zihajehzadeh, Loh, Lee, et al. 2015). On the
other side, the use of GPS for quantifying exercise demand over short distances
covered at high speed, including sharp turns suffer from error rates, according to
the relatively low GPS sampling frequency (Crang, Duthie, Cole, et al. 2020; Scott,
Scott, and Kelly 2016; Varley, Fairweather, and Augheyl 2012).

From a training monitoring point of view, GPS/ LPS sensors with embedded
IMU allow for quantifying exercise intensity and volume objectively. A systematic
review from Crang, Duthie, Cole, et al. 2020 retraces the main intensity and volume
parameters that are commonly measured through these wearable devices and their
validity regarding systems of reference. Placed between scapulae and fixed in an
anatomically adjusted harness, they allow for measuring exercise intensity through
pace, running velocity, running acceleration, mechanical power, and metabolic power
— an EE representation— derived from acceleration (Osgnach, Poser, Bernardini,
et al. 2010). Velocity and acceleration are usually divided into several zones,
individualised according to MAS tests or arbitrary set (Rago, Brito, Figueiredo,
et al. 2020).

On another note, the volume is essentially characterised as a time spent at running
or the total distance covered. The sessional TL may be estimated by the product of
intensity and volume parameters, or through accelerometers derived features. In the
latter, common features raised from IMU are Dynamic Stress Load (i.e. the total
of weighted impacts, Statsports, Ireland) (Gaudino, Taia, Strudwick, et al. 2015),
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New Body Load (i.e. the accumulation of forces; Catapult, Australia) (Ehrmann,
Duncan, Sindhusake, et al. 2016), Force Load (i.e. the sums the forces produced
from both foot strikes and collisions) (Colby, Dawson, Heasman, et al. 2014) and
PlayerLoad™™ (the sum of the norm of accelerations; Catapult, Australia) (Barrett,
Midgley, and Lovell 2014; Boyd, Ball, and Aughey 2013; Nicolella, Torres-Ronda,
Saylor, et al. 2018). To date, PlayerLoad remains one of the most used feature for
quantifying a session TL (Goémez-Carmona, Bastida-Castillo, Ibanez, et al. 2020).
It is defined in the sequel:

T 2 2 2
Player Load™ = Z\/ (@) = Ga1)” + (g = aye-1)” + (@) = Gze)
100 ’
t=0

where a,, a, and a, denote the acceleration in the antero-posterior, lateral and
vertical axis. In any cases, these features are aggregated according to a summation
of accelerometer signal and aim at representing a "biomechanical" constraint sudden
by an athlete at exercise.

There is indeed interest for estimating concurrently physiological and biomechan-
ical adaptations to exercise through GPS— IMU sensors, in particular for injury
prevention purposes (Vanrenterghem, Nedergaard, Robinson, et al. 2017). However,
the relationship between both adaptations is not straightforward since physiological
and bio-mechanical changes often rely on different time-frames. That is important
when we attempt to understand the body’s response to exercise for future training
prescriptions. As an example, let consider a mechanical adaptation such as musculo-
articular tissue adaptation (e.g. muscle thickness, fascicle length, pennation angle,
tendon stiffness) (Wisdom, Delp, and Kuhl 2015) and underpinning physiological
changes to given mechanical stimuli (e.g. changes in cell volume, muscle glycogen
availability). According to the super-compensation principle (Bompa and Haff 2009;
Viru 1984), injury may occur when biomechanical properties raise a critical point.
At the same time, physiological states may have returned to a baseline level due to
a shorter time course. In brief, different periodisation should be planned according
to on one side, bio-mechanical and on the other side physiological stresses induced
by exercise (Vanrenterghem, Nedergaard, Robinson, et al. 2017).

Finally, wearable GPS sensors allow for linking a planned TL to what TL has
really been achieved by athletes and how the upcoming training should be ad-
justed regarding the collected data. However, rigour guidelines exist in order to
ensure robustness in data collection and meaningful interpretation drawn for data.
For example, each athlete should wear its own sensor to limit variability in the
measurement and mistakes in data collection. In addition, these sensors do not
measure everything. Tactics, environment, psychological and nutritional athlete
status should be concurrently considered when interpreting training and game
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outcomes from data.

Objective measures of TL are valuable for accurately estimating stresses imposed
on the body. Measuring internal (i.e. physiological) stresses is not always possible
and give away to external (i.e. physical) load measurements. Yet, relationships
between physiological responses at exercise and training load in physical terms are
not straightforward and may lead to misunderstanding how an athlete responds
to a particular training session. For that reason, subjective measures of TL may
bring additional and valuable information being appropriate in any context.

1.1.2. Subjective measures
1.1.2.1. Rate of perceived exertion

To date, acute body responses to training are alternatively and often estimated
through the use of subjective rate of perceived exertion (RPE), as a substitute
to the objective exercise intensity assessments. In the field of sports sciences,
it has been initiated by Borg 1970. The first RPE came with the need for a
single term that may represent how strenuous was the exercise or the sequence
of exercises and how physiological systems respond to exercise. With that self-
evaluation, physiological and psychological stresses are concurrently estimated to
evaluate an overall response to exercise and allow further inter-individual and
inter-process comparisons. Such an indirect measure of exercise difficulty (which
combines intensity as well as exercise duration) was also intended to be part of
any training monitoring process, in replacement or additionally to other objective
measures of exercise intensity. Ratings of perceived exertion had to be theoretically
supported by physiological responses to exercise. However, they also had to be
robust, applicable and generalisable to any training situations (i.e. to any intensity
levels, exercise location, levels of expertise and more generally to any sports without
necessitating any specific material).

Some scales have been provided since the first formulation of RPE (Borg 1970).
The former —so-called Borg RPE scale— was designed to grow linearly with HR
and exercise intensity during incremental exercises (r € [0.8,0.9])(Borg 1970, 1985,
1998). It came with a numerical fifteen graded-scale that ranges from 6 to 20 (see
Table 1.1 for details) and allows for intra-individual numerical interpretation and
comparisons of how difficult and strenuous was the exercise. Translated in many
languages, that scale remains very popular so far.
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Table 1.1. — Original Borg rating of perceived exertion scale by Borg 1998

Rating Descriptor
6 No exertion at all
7 Extremely light
8
9 Very light
10
11 Light
12
13 Somewhat hard
14
15 Hard (heavy)
16
17 Very hard
18
19 Extremely hard
20 Maximal exertion

A few years later, a 0-10 category-ratio scale (CR10) has been provided by Borg
1990, described in Table 1.2. Scaling allows using more generalisable scales through
several domains (e.g. physics, medicine), including an absolute zero and equivalent
distances between levels. In the CR10, intensity descriptors are appropriately
anchored to a particular number making the scale valuable not only for inter-
individual but also inter-modal comparisons (e.g. stress, pain, difficulty) in any
application and population.

Unlike the Borg RPE scale, the CR10 provides a non-linear growth function of
intensity characterised by a positively accelerating increase such as an exponential
curve (Borg 1990; Noble, Borg, Jacobs, et al. 1983). On the psycho—physiological
side, CR10 was better correlated with accumulation of muscle lactate concentrations
at exercise than the Borg RPE scale, the latter being more appropriate in regards
to HR responses and RPE relationship. The CR10 has thus become a reference in
RPE scales since it appears to be more appropriate for maximal, supra-maximal
and intermittent exercises Borg and Borg 2010.
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Table 1.2. — Original category-ratio scale of perceived exertion by Borg 1990

Rating Descriptor Attribute
0 Nothing at all
0.5 | Very, very weak | just noticeable
1 Very weak
2 Weak light
3 Moderate
4 | Somewhat strong
5 Strong heavy
6
7 Very strong
8
9
10 | Very, very strong almost max
Maximal

One drawback with the CR10 is that it may be a too simple scale for assessing the
stress induced by exercise properly due to a limited number of possible scores. For
that reason, an extension of CR10 scale, the "centiMax" or 0-100 "centimax" scale
(CR100) scale, has been further developed (Borg 1998; Borg and Borg 2010) while
conserving the non-linear function but improving the number of possible ratings. To
date, the choice of the scale to be used partly remains of personal conviction since
both CR10 and CR100 scales appear to be inter-changeable (Fanchini, Ferraresi,
Modena, et al. 2016) and commutable (Borg and Borg 2010). However, no matter
how accurate is the rating, using a larger scale allows for more sensitive rates and,
consequently, more variability when exploring psycho-physiological relationships.
It is not a drawback for such, but it has to be taken into consideration when
reporting or looking for correlations between physiological changes and RPE, or
when exploring the reliability of various scales together (Scott, Black, Quinn, et al.
2013).

A sessional TL can be estimated through a valuable subjective measure of exercise
intensity regarding psycho-physiological responses to exercise. Foster, Florhaug,
Franklin, et al. 2001 initially proposed a modification of the CR10 scale (see Table
1.3) that only uses integers and provides modified verbal anchors to better reflect
American idiomatic English. Using that scale, the product of the overall difficulty
perceived by the end of a training session and the session duration in minutes
let estimate session rate of perceived exertion (sRPE). In the case of resistance
training, the overall RPE is preferably multiplied by the number of repetitions
(Borresen and Lambert 2009). Alternatively, one may report RPE for each group
of exercises, to be further added and multiplied by the total duration of the session.
Still compared with HR based methods, using sSRPE showed strong correlation with
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TL quantification methods based on HR data (e.g. TRIMP) (Foster, Florhaug,
Franklin, et al. 2001; Scott, Black, Quinn, et al. 2013). It makes sSRPE a promising

method for quantifying TL in any context and without any material requirements
(Singh, Foster, Tod, et al. 2007).

Table 1.3. — Modification of the CR10 scale by Foster, Florhaug, Franklin, et al.
2001

Rating Descriptor
0 Rest
Very, very easy
Easy
Moderate
Somewhat hard
Hard

Very hard

© 00 O U= Wi

—
]

Maximal

However, none method of TL quantification is perfect. The main limitations to
the use of sSRPE for training monitoring purposes are that RPE is mainly influenced
by intensity rather than by volume. That means performing several repetitions or
practising for a long time at low intensity is perceived to be easier than performing
few repetitions at high intensities (Borresen and Lambert 2009; Sweet, Foster,
McGuigan, et al. 2004). In addition, one may note that RPE already account for
the time past at exercise in its definition. Multiplying RPE with either a time or a
number of repetitions might bring noise and question the theoretical basis behind
sRPE (Agostinho, Philippe, Marcolino, et al. 2015). Many factors contribute to
the individual perception of the effort, such as personal traits, environmental condi-
tions, psychological states, ventilation rate, neurotransmitter levels, hormone and
substrate concentrations (Borresen and Lambert 2008). It might explain the poor
reliability found in RPE measurements across standardised sessions (Scott, Black,
Quinn, et al. 2013). The decrease in sSRPE reliability might also be exacerbated
by using larger scales for its calculation (Arney, Glover, Fusco, et al. 2019; Scott,
Black, Quinn, et al. 2013; Wallace, Slattery, Impellizzeri, et al. 2014).

Rating of perceived exertion remains a gold standard for quantifying TL across
various training sessions so far. It is commonly considered as an internal training
load indicator since it aims to represent psycho-physiological responses to exercise
(Bourdon, Cardinale, Murray, et al. 2017; Foster, Rodriguez-Marroyo, and De
Koning 2017; Haddad, Stylianides, Djaoui, et al. 2017; Helms, Kwan, Sousa, et al.
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2020; Lupo, Ungureanu, Frati, et al. 2019). Despite some lack of reliability and, in
some way, a restrictive approach, its ease of use in any condition and application
makes sSRPE a valuable method to be accounted for in any training monitoring
process, along with other objective and subjective training load indicators.

1.1.2.2. Athlete self-report measures

Another way to estimate the body’s response to training came recently with
the use of wellness and health questionnaires. They share the same advantages as
sRPE such as being suitable in any sports, ease of use, as well as limitations (i.e.
factors that influence the perception of exertion). In the meantime, they account
for multiple items, mainly regarding mood states (e.g. tension, depression, fatigue,
motivation).

A recent systematic review from Jeffries, Wallace, Coutts, et al. 2020 highlighted
the most common athlete self-report measures (ASRM) for monitoring training
responses. In their review, authors categorised instruments of ASRM into multiple
items (Profile of Mood States (POMS); Recovery-Stress Questionnaire Athletes
(RESTQ)) and single item instruments (single items or self-developed multiple-item
measures with or without a combined score, including Hooper wellness items).
The initial POMS questionnaire relies on the evaluation of six different mood
dimensions (tension-anxiety, depression-rejection, anger-hostility, vigor-activity,
fatigue-inertia and confusion-bewilderment), defined by seven to fifteen adjectives
per mood factors (McNair, Lorr, Droppleman, et al. 1971). The mood score for
each factor is given by the sum of the ratings obtained from adjectives. The
RESTQ (Kallus 1995; Kallus and Kellmann 2016) is declined into several versions,
including one for sports in which two versions were provided using 76 and 52 items,
respectively. While POMS and RESTQ require attention among athletes in order
to complete questionnaires, it might be at the expense of boredom, fatigue and
frustration due to time-consuming and redundant questionnaires (Jeffries, Wallace,
Coutts, et al. 2020). On the opposite, single items ASRM comes with a more
suitable, reproducible rating, preserving athlete buy-in in the monitoring process
and ensuring good ratings. Therefore, it is unsurprisingly that single items appear
to be the most practical ASRM system for athletes or teams who attend to collect
measures daily.

The so-called wellness items stem from the work of Hooper et al. (Hooper
and Mackinnon 1995; Hooper, Mackinnon, Howard, et al. 1995) for monitoring
undertraining and overtraining, including the first four items (fatigue, sleep quality,
muscle soreness and stress) and then four additional items (enjoyment of training,
irritability, health causes of stress and unhappiness). The authors supported the
first four items by highlighting correlations between disturbances in mood state
and physiological changes in swimmers (Hooper, Mackinnon, Howard, et al. 1995).
A Hooper index or score has also been further provided, such as the summation
of each rating using a 1-7 levels Likert scale (Hooper, Mackinnon, Howard, et al.
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1995). Over time, several adaptations or the original wellness grid were provided,
mainly without any additional validation. Plenty of appellations were also used for
referring to the wellness items, which might have brought some confusion about
the wellness definition (Jeffries, Wallace, Coutts, et al. 2020).

To conclude, ASRM are valuable methods for a training load monitoring purpose.
The main advantage of using ASRM and psychometric questionnaires is that they do
not require any specific material and can be used in any situation. Basically of easy
use, recent software development makes ASRM daily collectable using smartphones
or tablet computers, without bringing not any time constraint to staff and athletes.
On this basis, monitoring TL is conceivable through a combination of objective
and subjective measures, or external and internal TL estimates. This opens up
the possibility for exploring the effects of training on athlete performance and
injury in a systemic way, by accounting for both psychological and physiological
responses to exercise (Burgess 2017). As a key point, be the TL measures of
objective or subjective nature, they should always be collected and appreciated
together including various training load indicators.

1.2. Modelling the effects of training

Previously, we described the primary methods for quantifying training loads
with their benefits and drawbacks. As a final note, aiming at understanding the
relationship between training and athletic performance is a matter of a systemic
issue since athletic performance is a complex system in which many systems interact
with each other (Bazyler, Abbott, Bellon, et al. 2015). Hence, two goals arise from
the modelling with:

1. To describe training effects on performance using interpretable models.

2. To make accurate predictions from these models, intended for optimising
future training protocols for sports performance

The modelling comes from various scientific domains such as biology, physics,
statistics, and computer science from this statement.

In this section, we sequentially present the main models used for elucidating
the effects of training on athletic performance. Initiated by physiologists and
further empowered by statisticians, modelling of athletic performance is becoming
increasingly attractive for scientists, be they intend to advance the theoretical or
applied research.

1.2.1. A collection of Fithess-Fatigue models

The first models of training effects were developed in the seventies, notably
with the work of Banister, Calvert, Savage, et al. 1975 and Calvert, Banister,
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Savage, et al. 1976. Initially, Calvert, Banister, Savage, et al. 1976 designed a
system model of the effects of training on physical performance using a general
transfer function that applies on various inputs. Being a multi-component model
in which determinants of physical performance such as endurance, strength, skill
and psychological factors were accounted for as input of the system, it would allow
for modelling a physical performance in any sports. However, this system model
requires to measure training according to each of the aforementioned factors. It
more reflects a mere system model rather than an applicable one that would be
valuable in practice. In addition, the model only relies on features that affect
positively performance outcomes, neglecting all the negative and inevitable but
transient psycho-physiological states that occur in response to training. As a
consequence, it does not consider any limit of performance that could be reachable,
making its progression somehow infinite which is obviously unrealistic.

A simplification of that system model of training effects on performance is the
so-called FFM (Calvert, Banister, Savage, et al. 1976). The model came with a
single input but two transfer functions providing two antagonistic features (fitness
and fatigue states) that affect positively and negatively performance outcomes,
respectively. Any training session induces a positive long-lasting and low magnitude
fitness effect and a negative short-lasting and high magnitude fatigue effect. The
Fitness-Fatigue model is tailored to be fitted per individual, according to the
singularity of training responses among athletes. Usually, fitness-fatigue models
(FFMs) are fitted on historical data (i.e. retrospectively) for describing and
predicting the effects of training on physical performance. Fitness-fatigue models
would allow for optimising training protocols in order to enhance the greatest
physical performance, using analytical solutions given by the system (i.e. the
optimal "training dose" and the optimal rest time between consecutive training
bouts). It is a matter of seeking the optimal command for adjusting states variables
to reach the highest athletic performance. Some authors resumed how FFM could
be used for that purpose by predicting performances from a given training load and
conversely and by finding the training load for a given athletic performance (see
Figure 1.2) (Busso and Thomas 2006). Therefore, modelling the effect of training
using FFMs would provide some insights about how programming training cycles
should be constructed within a given timeframe, including quantitative progressions
of sessional training loads through overloading and tapering cycles.
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Figure 1.2. — Schematic representation about the use of FFM for making predictions

and determining the optimal command , taken from Busso and
Thomas 2006.

Several limitations of FFMs regarding the model stability, parameter inter-
pretability, ill-conditioning and predictive accuracy have been reported (Hellard,
Avalos, Lacoste, et al. 2006; Ludwig, Asteroth, Rasche, et al. 2019). For that reason,
some extensions of FFMs have been further provided, attempting to improve the
performances of the original FFM framework (Busso 2003; Busso, Denis, Bonnefoy,
et al. 1997; Kolossa, Azhar, Rasche, et al. 2017; Ludwig, Asteroth, Rasche, et al.
2019). System models of training effects on performance thus relate to a collection
of FFMs rather than a unique model.

1.2.1.1. Original fitness-fatigue model: a two-components model

In its original form, FFM framework relies on first-order differential equations
(see Figure 1.3) and constitutes a linear time invariant model (see Equation 1.8). It
allows for estimating a performance at any time ¢, according to fitness and fatigue
responses to a training bout.

Dpan(t) = g + kyg(t) — kph(t)  with g(t) > 0and h(t) > 0. (1.8)

In Equation 1.8, oy denotes a basic level of performance (i.e. a model intercept).
In practice, ap may be included as a model parameter to be optimised along with
the scaling factors k, and kj and time