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Résumé

Le clustering sous contraintes (une généralisation du clustering semi-supervisé) vise

à exploiter les connaissances des experts lors de la tâche de clustering. Ces con-

naissances peuvent prendre des formes diverses : des relations entre instances, des

conditions sur les clusters, telles que leur cardinalité, ... mais aussi des connaissances

plus sémantiques comme par exemple, obtenir des clusters équitables.

Les contraintes peuvent être intégrées à différentes étapes du processus de clus-

tering : en pré-traitement, par exemple en apprenant une nouvelle métrique entre

points, pendant le processus de clustering ou dans une étape de post-traitement.

La plupart des travaux intègrent des contraintes pendant le clustering, et ils peu-

vent être divisés en deux approches: modifier des algorithmes de clustering exis-

tants pour gérer des contraintes spécifiques / modéliser le problème dans des cadres

déclaratifs, tels que la Programmation Linéaire en Nombres Entiers (PLNE), SAT

ou la Programmation par Contraintes.

Dans cette thèse, nous proposons trois contributions: (1) une méthode déclarative

modifiant une partition existante pour satisfaire des contraintes ; (2) un cadre

générique pour intégrer plusieurs types de contraintes dans un modèle de clustering

par apprentissage profond ; (3) la définition et la formulation de nouveaux types de

contraintes.

Notre première contribution porte sur une méthode de post-traitement, en sortie

d’un algorithme de clustering, pour assurer la satisfaction de contraintes. L’originalité

est de considérer une matrice d’allocation qui donne les scores d’attribution des

points à chaque cluster et de trouver la meilleure partition satisfaisant toutes les

contraintes. Nous formulons ce problème comme un problème d’optimisation en

PLNE. Des expérimentations montrent que cette méthode est efficace tout en étant

compétitive en termes de qualité du clustering par rapport à l’état de l’art. Utiliser

une matrice d’allocation permet de post-traiter le résultat de divers algorithmes de

clustering, qu’ils soient probabilistes ou issus d’un modèle d’apprentissage profond.

Alors que dans la première contribution, les contraintes sont traitées après un

algorithme d’apprentissage, notre deuxième contribution vise à exploiter ces con-

traintes directement dans un modèle d’apprentissage profond. Les avancées en

apprentissage profond permettent de trouver une représentation des données dans

des espaces de dimension plus faible grâce à des plongements non linéaires. Elles

ont conduit au développement du Deep Clustering, des méthodes de clustering
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fondées sur l’apprentissage profond. Pour introduire des contraintes lors de l’étape

d’apprentissage, il est courant de disposer d’une fonction de perte pénalisant la non-

satisfaction des contraintes. Les travaux actuels introduisent une fonction différente

pour chaque type de contrainte (contraintes de taille, contraintes par paires, triplet,

. . . ). Dans notre travail, nous proposons un cadre unifié pour intégrer les contraintes

générales en les formalisant en logique et en considérant leurs modèles. A notre con-

naissance, nous sommes les premiers à proposer pour le clustering profond un cadre

générique pour intégrer des contraintes expertes. Nous proposons deux formulations

de la fonction de perte, fondées sur la notion de modèles et nous montrons qu’elles

peuvent être calculées de manière efficace grâce à des techniques de Weighted Model

Counting. Les résultats expérimentaux sur des jeux de données connus montrent

que notre approche est compétitive avec d’autres méthodes spécifiques aux con-

traintes, tout en étant générale.

Outre ces deux méthodes génériques, nous avons défini et formulé de nouveaux

types de contraintes en clustering. Premièrement, la contrainte de couverture de

cluster limite le nombre de clusters auxquels un groupe de points peut appartenir.

Deuxièmement, l’équité combinée prend en compte à la fois l’équité de groupe et

l’équité individuelle.

Introduction générale

0.0.1 Les travaux initiaux du clustering sous contraintes

Le clustering sous contraintes permet d’intégrer des connaissances expertes, sous

forme de contraintes, dans un processus de clustering. Ces connaissances peuvent

être des informations sur l’étiquette des objets, permettant ainsi d’engendrer des

contraintes d’instances, must-link ou cannot-link, suivant que les objets doivent être

ou non dans le même cluster. Ces contraintes d’instances sont les plus populaires

et de nombreuses méthodes en clustering sous contraintes ont été développées pour

les intégrer [96, 97, 12, 24, 98]. Mais les connaissances peuvent aussi porter sur les

clusters et plusieurs méthodes ont été développées pour intégrer de telles contraintes

: contraintes sur la taille minimale des clusters [15], nécessité d’avoir des clusters

équilibrés en taille [35, 91], contraintes sur la densité des clusters [24], . . .Comme

on peut le voir, ces méthodes sont adaptées à un type de contraintes spécifique.

Ces dix dernières années, des méthodes plus générales ont été développées, elles



v

proposent un cadre générique en se fondant sur des formalismes déclaratifs, comme

la programmation linéaire en nombre entiers [3, 67, 76], SAT [25, 65] ou la program-

mation par contraintes [21, 22]. Ces méthodes souffrent cependant du problème de

passage à l’échelle et ne peuvent pas traiter de grandes bases de données.

0.0.2 Le clustering profond

Récemment, des approches de clustering profond ont été largement proposées suite

au succès des réseaux de neurones profonds en apprentissage supervisé. Plusieurs

directions de recherche ont été envisagées : l’adaptation au clustering d’architectures

d’apprentissage supervisé bien connues telles que les réseaux de neurones convolutifs

[16], la modification de la représentation des données par un autoencodeur, puis

l’application de la structure de clustering à l’espace latent [101, 40].

Une autre approche consiste à extraire le plus proche voisin en se basant sur

des caractéristiques prétextes (un encastrement pour une tâche spécifique telle que

l’inpainting des patchs, la prédiction du bruit, la discrimination des instances).

Cela permet de promouvoir les prédictions similaires des voisins, améliorant ainsi

la qualité du clustering [93].

Des approches plus ambitieuses ont été proposées, comme les modèles génératifs

qui regroupent les données et génèrent des échantillons pour un regroupement donné

([47, 68]), mais elles souffrent généralement de performances relativement faibles.

0.0.3 L’apprentissage profond avec les connaissances

L’intégration des connaissances peut être considérée comme une généralisation de

l’apprentissage semi-supervisé. Alors que l’information sur les étiquettes est facile

à représenter, les connaissances des experts peuvent être variées et donc exprimées

de nombreuses façons différentes. Pour résoudre ce problème, plusieurs travaux

[102, 103] ont étudié l’intégration des connaissances exprimées en logique dans

l’apprentissage supervisé profond : les connaissances sont alors appliquées à chaque

instance d’entrée individuelle. [103] donne une formulation précise de la perte quelle

que soit la forme logique (qu’elle soit représentée en CNF, DNF ou sous une forme

arbitraire) au prix d’une complexité computationnelle élevée. [102] apprend une

perte de connaissance (en utilisant un encastrement de graphe logique) pour une

forme logique spécifique (d-DNNF), ce qui est beaucoup plus rapide mais nécessite
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un nombre important de contraintes.

Dans un contexte de clustering, même si chaque point reçoit une étiquette,

la sortie de toutes les données est censée représenter une partition (ou une autre

structure). Cela signifie que les contraintes ne sont pas posées sur la sortie d’un seul

point, mais qu’elles peuvent lier plusieurs sorties, ce qui est beaucoup plus difficile.

[46] intègre des contraintes de triplet dans un cadre de clustering profond. DCC

[110] a proposé un cadre de clustering profond, qui peut intégrer plusieurs types de

contraintes telles que la paire, le triplet ou la cardinalité. Cependant, pour chaque

type de contrainte, une perte spécifique est conçue. Ceci diffère de notre approche,

où la même définition de la perte experte est donnée pour tout type de contraintes,

dès lors que la contrainte peut être exprimée à l’aide d’une formulation logique.

Résumé des chapitres

Résumé du chapitre 1

Tout d’abord, ce chapitre introduit le problème du clustering: la définition, les

critères. Ensuite, il décrit les principaux types de solutions de clustering. Après, ce

chapitre passe en revue les vues traditionnelles du problème de clustering contraint

en tant que problème combinatoire et donne plusieurs solutions classiques (ne pas

utiliser sur les réseaux de neurones). Le premier type de solution, appelé approche

algorithmique spécifique, tente de modifier les algorithmes de clustering originaux.

Ensuite, nous continuons à décrire l’approche déclarative.

Résumé du chapitre 2

Comme nous l’avons introduit dans le chapitre 1, un certain nombre d’études ont

été développées pour résoudre le clustering avec des réseaux de neurones multi-

couches, appelé Deep Clustering. Ces travaux méritent d’être expliqués dans ce

chapitre en raison des performances de clustering élevées sur divers jeux de données

et de l’immense potentiel d’amélioration future. Le chapitre est divisé en deux

parties. La première section 2.1 est consacrée aux l’apprentissage de réseaux de

neurones profonds, tandis que la deuxième section 2.2 présente les travaux actuels

en Deep Clustering.
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Résumé du chapitre 3

Dans le chapitre 2, nous avons passé en revue les techniques générales et détaillé

plusieurs algorithmes de clustering avec des réseaux de neurones. Dans ce chapitre,

nous présentons quelques solutions aux problèmes de clustering sous contrainte

avec l’apprentissage profond. Cependant, pour mieux comprendre les contextes,

nous proposons un aperçu plus général de l’intégration des connaissances dans un

modèle d’apprentissage en profondeur.

Résumé du chapitre 4

Dans ce chapitre, nous proposons une méthode déclarative post-traitement pour

adapter la sortie d’un algorithme de clustering afin de satisfaire les contraintes.

La première section 4.1 donne un aperçu rapide de la méthode de post-traitement

actuelle et de nos nouveautés et contributions à cette approche. Ensuite, la section

4.2 décrit notre cadre : les variables, les exigences et le critère objectif. Dans

la section suivante 4.3, nous donnons les formulations des types de contraintes,

y compris les nouveaux types de contraintes. En outre, nous donnons également

plusieurs scénarios pratiques où un nouveau type de contrainte est nécessaire. La

section 4.4 présente l’étude empirique de notre cadre.

Résumé du chapitre 5

Inspirés par plusieurs travaux sur les réseaux de neurones avec intégration des con-

naissances (Section 3.1), nous transformons les contraintes des experts en un ensem-

ble de formules logiques pour résoudre le problème du clustering sous contraintes.

Ensuite, nous définissons deux formulations pour la perte de connaissances, qui sont

calculées sur la sortie d’un système de clustering profond. Chaque formulation a

une traduction canonique de différents types de contraintes en pertes sémantiques

tout en essayant de s’adapter à la tâche de clustering de différentes manières.

Dans les expériences, nous montrons que notre système peut atteindre des

résultats comparables aux systèmes de pointe dédiés à des contraintes spécifiques

tout en étant flexible pour intégrer et apprendre des contraintes plus complexes.
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Contribution

0.0.4 Le premier cadre

Nous proposons un post-traitement des résultats d’un clustering pour forcer la

réalisation de contraintes. On peut envisager deux cas d’usage : l’algorithme de

clustering n’a pas satisfait toutes les contraintes ou de nouvelles contraintes ont

été introduites et il ne parâıt pas souhaitable de réapprendre le modèle. Nous

nous plaçons dans un cadre probabiliste du clustering où chaque point a une prob-

abilité d’appartenance à un cluster et nous formalisons le problème comme la

recherche d’une partition satisfaisant toutes les contraintes et maximisant la prob-

abilité d’affection des points aux clusters. Notre approche est modélisée en PLNE

et a plusieurs avantages :

• Différents types de contraintes peuvent être intégrés sans changer la fonction

de perte dans le cœur du système d’apprentissage profond.

• La méthode est efficace permettant de traiter de grandes bases de données.

• La satisfaction des contraintes est garantie.

• La méthode prend en entrées une matrice représentant les probabilités d’affectations

des points aux clusters et peut en conséquence être utilisée avec tout algo-

rithme de clustering produisant une telle matrice, algorithme d’apprentissage

profond ou EM par exemple.

0.0.5 Le deuxième cadre

Nos secondes contributions sont

• Nous proposons une formulation logique du problème de clustering sous con-

traintes et une définition unifiée de la perte experte pour intégrer les con-

traintes dans un cadre de clustering profond.

• Étant donné un ensemble de contraintes, la perte experte est basée sur un score

de satisfaction des contraintes, défini grâce à la notion de modèles sémantiques

d’une formule logique, ce qui la rend indépendante du type de contraintes. De

plus, ce score peut être calculé par comptage de modèles pondérés.
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• Nous montrons que notre cadre peut être intégré dans différents cadres de

clustering en considérant deux méthodes de clustering profond bien connues,

à savoir IDEC et SCAN, et en les étendant pour intégrer la connaissance.

• Les expériences menées sur cinq ensembles de données avec des ensembles

de contraintes générés de manière aléatoire montrent que notre cadre est

compétitif avec les systèmes de clustering profond à contraintes de pointe

sur les contraintes par paires et triplets.

• Pour illustrer la généricité de notre approche, nous introduisons un nouveau

type de contraintes, appelé contrainte limitée par l’étendue.

• Nous analysons l’efficacité de notre cadre à la fois sur le temps d’exécution et

sur la satisfaction des contraintes pour les contraintes complexes.

• Nous montrons que la satisfaction des contraintes lors de la formation du

modèle permet d’améliorer la satisfaction des contraintes non vues sur les

données de test.

Conclusion

Le clustering sous contrainte ou clustering semi-supervisé est une application dom-

inante de l’apprentissage automatique. En raison du processus naturel de collecte

de données, les données sont souvent non étiquetées. Par conséquent, la tâche de

clustering de données est répondue sur la connaissance du domaine, qui est ex-

primée par les contraintes de l’expert. L’algorithme de clustering sous contrainte

peut cibler un type spécifique de contrainte, comme les contraintes de paires, de

triplets ou de taille de cluster. L’algorithme peut aussi être un cadre général qui

facilite l’ajout de nouvelles contraintes. Cependant, la complexité du cadre général

est souvent difficile à résoudre.

Dans notre travail, nous nous intéressons à l’intégration de connaissances sous

forme générale dans un processus de clustering. Nous le considérons de deux

manières : un problème d’optimisation classique et un problème d’apprentissage

profond.

Le contexte du premier cadre Dans l’approche classique, les cadres de cluster-

ing sous contraintes sont développés à l’aide d’un outil d’optimisation général, tel
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que la programmation linéaire en nombres entiers (ILP) [3, 67, 76], le problème de

satisfiabilité booléenne (SAT) [25, 65] ou la programmation par contraintes [21, 22].

La plupart de ces méthodes sont des méthodes d’optimisation en cours de pro-

cessus qui tentent de trouver une solution optimale globale satisfaisant toutes les

contraintes. Cependant, elles souffrent d’un manque d’efficacité et de flexibilité car

elles doivent traiter et spécifier à la fois l’objectif de clustering et les exigences des

contraintes. Kuo et al.[58] proposent une approche post-processus où les contraintes

des experts sont traitées après avoir reçu un résultat de clustering. Cette approche

simplifie le problème d’optimisation et peut être appliquée à un algorithme de clus-

tering existant. Néanmoins, la fonction objective, qui est basée sur un résultat de

clustering dur, donne des résultats moins compétitifs que d’autres travaux.

Le premier cadre considère les contraintes des experts comme une connaissance

postérieure. Le cadre modifie le résultat d’un algorithme de clustering pour satis-

faire les contraintes des experts. Alors que le précédent cadre de post-traitement

optimisait le nombre de points réaffectés, nos travaux considèrent le ”score de clus-

tering” - le coût d’une nouvelle partition basée sur l’algorithme de clustering. Nous

proposons deux scores de clustering (voir section 4.1.2), l’un utilisant les scores basés

sur les probabilités (soft scores) et l’autre basé sur les distances. Alors que le calcul

des distances est simple, la formulation des soft scores dépend des méthodes de clus-

tering. Nous avons étudié et formulé différentes manières de calculer l’adaptation

pour chaque ensemble d’algorithmes de clustering, comme le clustering basé sur les

centröıdes, le clustering profond ou le clustering basé sur la densité. Les expériences

montrent une amélioration significative par rapport aux travaux précédents de post-

traitement, car notre méthode utilise mieux les informations dans le processus de

clustering. De plus, nos qualités de clustering pour les différents types de contraintes

sont compétitives par rapport aux meilleurs algorithmes pour chaque type. Dans

le même temps, le temps de calcul est bien inférieur à celui des autres méthodes en

cours de processus. Un certain nombre de scénarios pratiques de combinaison de

différents types de contraintes sont testés pour prouver la capacité de notre cadre à

gérer des contraintes multiples sur un grand nombre de points de données, ce dont

les modèles déclaratifs précédents sont incapables.

Le contexte du deuxième cadre Récemment, le réseau neuronal a gagné en

popularité à la fois dans la représentation des données et dans l’intégration des
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connaissances. La représentation des données est apprise automatiquement par la

machine grâce à des structures neuronales uniques telles que le réseau neuronal con-

volutif (CNN) et l’auto-encodeur. Ainsi, le clustering avec des réseaux neuronaux

(deep clustering) est devenu l’état de l’art pour de nombreux ensembles de données

dans divers domaines. Cependant, pour obtenir les meilleures performances pour un

ensemble de données, il est nécessaire d’ajouter des connaissances humaines perti-

nentes pour les données. L’une des directions les plus prometteuses de l’intégration

des connaissances est d’exprimer les connaissances dans un langage formel tel que

la logique du premier ordre, puis de les apprendre avec une perte régularisée. Cette

approche a normalisé la forme des connaissances, ce qui permet d’intégrer différents

types de connaissances et même des connaissances complexes dans la machine. Il

y a eu quelques travaux [104, 102] pour appliquer cette approche au problème de

classification, mais elle n’a pas seulement été étudiée et adaptée pour le clustering

contraint.

Le deuxième cadre est le premier cadre de clustering sous contraintes à intégrer

des contraintes d’experts en tant que connaissances logiques dans l’architecture des

réseaux neuronaux. Nous proposons deux formulations, toutes deux basées sur

les sorties neuronales d’un modèle de clustering profond. Ainsi, le cadre peut être

appliqué à différentes architectures neuronales et entrâıné avec ou sans processus de

clustering profond. Dans la première formulation, toutes les variables logiques sont

directement liées aux neurones. La condition de clustering doit donc être appliquée.

La deuxième formulation relie les sorties à un ensemble de phrases de sorte que le

contexte de clustering est pris en charge et que les formulations ne concernent que

les contraintes d’experts. Ensuite, les deux formulations sont traduites directement

en une perte sémantique. Par conséquent, les méthodes sont indépendantes de

la représentation de la connaissance. En d’autres termes, les contraintes expertes

présentées, que ce soit sous la forme normale disjonctive (DNF), la forme normale

conjonctive (CNF) ou une forme arbitraire, produisent le même résultat. Notre

utilisation des Diagrammes de Décision Sententiels (DDS) réduit la complexité du

calcul des pertes et permet l’intégration de contraintes complexes telles que les

contraintes d’implication.

Une autre contribution importante est de formuler et d’appliquer de nou-

veaux types de contraintes au problème du regroupement sous contrainte. À partir
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de concepts ou d’idées initiales dans la connaissance du domaine, comme les com-

paraisons relatives, l’équité et le partage des caractéristiques, nous construisons la

formulation des contraintes de triplets logiques, de l’équité combinée et de la con-

trainte de cardinalité des propriétés. Les expériences montrent que l’intégration

de ces contraintes permet d’améliorer le résultat du clustering et d’atteindre nos

propriétés cibles.

Des idées pour de futures directions

Les directions pour les travaux futurs sont :

La construction de la matrice d’allocation. Le premier objectif du cadre

de post-traitement est d’améliorer la construction de la matrice d’allocation frac-

tionnelle de cluster (CFAM). Dans la méthode que nous proposons pour calculer

la CFAM, les paramètres ayant un impact sur le degré de flou, tels que le degré

de liberté v dans la distribution t de Student, sont fixés pour tous les ensembles

de données. Il est important de voir comment cette valeur peut être choisie par

des critères internes sur le clustering : la division maximale, la densité du cluster,

l’indice de Davies-Bouldin.

Différentes façons de modéliser le problème du post-traitement. Le deuxième

objectif pour le cadre postprocessus est d’améliorer l’efficacité de l’algorithme. Il

serait intéressant de trouver différentes manières de modéliser le clustering contraint

à travers différentes variables et équations. Un exemple pourrait être un cadre plus

souple qui permet à certaines contraintes de ne pas être satisfaites.

La généricité de notre deuxième cadre . Pour le deuxième cadre, notre pre-

mier objectif est de consolider la généricité du travail. Nous souhaitons expérimenter

des modèles de clustering plus profonds sur différents jeux de données provenant de

différents domaines. Ensuite, nous pourrons analyser les différences de performance

avec d’autres méthodes afin d’adapter notre cadre et notre schéma de formation à

chaque scénario spécifique.

L’expression de la seule contrainte de clustering, à savoir qu’un point doit être

placé dans un seul cluster, permet de placer toutes les contraintes dans un seul cadre.
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Traiter les contraintes comme si elles étaient indépendantes. Ceci a également

l’avantage de donner un impact plus important de chaque contrainte sur la perte.

Autres méthodes d’intégration des connaissances. En raison de la com-

plexité du comptage de modèles pondérés (WMC), nous avons dû imposer cer-

taines restrictions à notre cadre, comme le traitement séparé des contraintes. Notre

deuxième objectif pour le clustering profond avec connaissances est d’utiliser d’autres

méthodes d’intégration des connaissances. Pour l’apprentissage avec la représentation

logique, la satisfaction des formules peut être apprise par un réseau d’intégration

de graphes au lieu du calcul intraitable avec WMC. Une représentation potentielle

des contraintes d’experts basée sur des équations ou des nombres entiers mérite

également d’être étudiée plus avant.
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Abstract

Clustering is one of the essential topics in data mining. Although it is designed to

work in a fully unsupervised way, its application in real-world data is often regulated

by expert knowledge. Constrained clustering (a generalization of semi-supervised

clustering) aims to exploit this knowledge during the clustering task. Knowledge

is often expressed by a set of constraints and can take various forms. It can be

relations between instances; for example, two points must be or cannot be in the

same cluster (must-link or cannot-link constraints). It can also be some conditions

on the clusters, such as their cardinality, their diameter, etc. It can also express

some more semantic requirements on the clustering as for instance, getting fair

clusters.

Constraints could be integrated at different steps of the clustering process: pre-

processing (for instance, learning a new metric taking into account the constraints),

during the clustering process or in a post-processing step. Most work on Constrained

Clustering integrates constraints during the clustering, and they can be divided into

two main streams: modifying existing clustering algorithms to handle some specific

types of constraints / modeling the problem in declarative frameworks, such as

Integer Linear Programming, SAT or Constraint Programming. As far as we know,

a single work has considered the problem of post-processing the result of a hard

clustering algorithm for integrating new constraints.

In this thesis, our contributions are threefold: (1) a post-process declarative

method for adapting the output of a clustering algorithm to satisfy constraints; (2)

a framework for integrating any kind of constraints during Deep Clustering; (3) the

definition and/or formulation of new kinds of constraints.

Concerning our first contribution, the originality of our approach is to consider

an allocation matrix that gives the scores of assigning points to each cluster and to

find the best hard clustering satisfying all the constraints. The problem (constraints

and objective function) is formulated as an Integer Linear Program. Experiments

on different constraint types and combinations of them show that this method is

efficient while being competitive in terms of Normalized Mutual Information and

Unsupervised Accuracy w.r.t. some state-of-the-art constrained clustering methods.

Recently, clustering based on Deep Neural Networks has been actively studied,

and new methods achieve state-of-the-art performances because of their ability to

extract a low-dimensional representation. The learning method for multiple hid-
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den layers is gradient descent and backpropagation. For introducing constraints

during the learning step, it is necessary to have a loss function penalizing the non-

satisfaction of constraints. Current work introduces a different loss for each kind of

constraint, including pairwise, triplet, and cluster size constraints. To the best of

our knowledge, we are the first ones to propose a framework for dealing with uni-

versal expert constraints in neural-based clustering. The genericity is obtained by

formulating the constraints in propositional logic, defining two versions of seman-

tic loss, and computing them through Weighted Model Counting. Experimental

results on well-known datasets show that our approach is competitive with other

constraint-specific methods while being general.

Besides these two generic methods, we have defined and formulated new kinds

of constraints: fairness, neighborhood constraint, attribute level constraint, and

cluster-overlap constraint.
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Introduction

Context

In our digital era, data has become a valuable resource to our life. Therefore, many
algorithms have been developed to analyze the data better. Clustering analysis
is the first and vital step to understand the nature of the structure of the data.
Clustering aims at grouping the data instances into clusters based on some dissim-
ilarity/similarity measures. Clusters are usually formed by minimizing the dissimi-
larities inside the clusters and/or maximizing the dissimilarities between clusters.

There are two types of solutions for clustering: traditional algorithms such as
K-means[62], spectral clustering[86, 72] and neural-based models for examples Deep
Embedded Clustering (DEC)[101], Clustering using CNN[17]. Traditional cluster-
ing gives a fixed objective to clustering the data and a method to achieve it. In
contrast, the neural-based models learn the representation of data and predict clus-
tering structure through a network of neurons. Therefore, the results of traditional
clustering are understandable and follow its objective; meanwhile, the neural-based
approach is more flexible and can handle complex/high-dimensional data through
the learning process. However, there does not exist a single best clustering method
as it may give good results with some types of data and bad results with other data.

To better improve the clustering results, cluster analysis has integrated the back-
ground (domain) knowledge about the data. The domain knowledge is usually given
in the form of expert constraints. In the early days, most of the research has been
put on simple constraint types such as pairwise constraints[96, 13, 99]. Pairwise
constraints compose must-link constraints, which require the two data points to
belong to the same cluster, and cannot-link constraints that enforce the two points
assigning to different clusters. Later on, the research community has increased their
focus on developing a declarative framework for the constrained clustering problem.
This approach could be less efficient than constraint-specific algorithms, but it is
more flexible to change the clustering process and easy to incorporate new con-
straints. Babaki et al.[4] propose an exact method to find a clustering that satisfies
all expert constraints with minimum the within-cluster sum of squares (WCSS).
The framework are based on Integer Linear Programming, which can integrate
must-link, cannot-link, and any constraints with the anti-monotone property. Dao
et al.[22] propose another framework based on Constraint Programming. Clustering
objectives could be selected amongst WCSS, the maximum diameter of clusters, the
minimum split between clusters. The framework can handle pairwise constraints as
well as cluster-level constraints such as cardinality constraints, density constraints.
The fatal weakness of this approach is the solution complexity; thus, it can not
handle more than a thousand constraints.

Recently, machine learning with neural networks has been a new frontier for
knowledge integration. Unlike the previous method, where we need to enforce all of
the knowledge in the form of expert constraints, the deep learning model can learn

1
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using abstract forms or from few examples. Although there is a huge potential in
the future for a pure knowledge-based model, most applications with knowledge
integration are data-based models with an infusion of knowledge. They design
the neural architecture based on characteristics of data, and integrating knowledge
through the learning process (no modification to the neural network).

The most direct way to integrate expert constraints is to design a loss function for
each type of constraint. The loss can be used to optimize both clustering problems
and constraint satisfaction, such as the Optimal transport[36]. As another option,
the loss focus only on expert constraints[42, 46, 109]. In both cases, the loss can be
fine-tuned based on the neural network, the input dataset, but it is obscure or even
impossible to adapt for other constraint types.

For a more generalized framework, the knowledge is often presented in formal
languages such as first-order logic, mathematical equations. Then, these symbolic
variables are linked with the output of the neural structures in order to regulate the
learning process. This approach has been applied to the classification problem[44,
104], the visual relation prediction problem[102], the structured (physics) prediction
problem[90]. Unfortunately, there exists no neural-based framework to incorporate
constraints as knowledge for a constrained clustering problem.

Contribution

There are three main contributions of this thesis:

• Constrained Postprocess with Clustering Score First, it allows users
to choose a suitable clustering algorithm to compute the cluster allocation
matrix. Then, the declarative framework, based on ILP, allows adding differ-
ent constraint types before optimizing to find the best clustering satisfying
all expert constraints. The results shows that the framework are competitive
to other constraint-specific methods in the clustering quality and much more
efficient in the calculation.

• Deep Clustering with Logical Knowledge The framework can integrate
knowledge in the logical form for any deep clustering model. We have defined
two formulations to represent the expert constraints adapted for the clustering
setting. We also use Sentential Decision Diagrams (SDD) and machine learn-
ing techniques to improve the efficiency of the learning process. Experiment
results are comparable with the state-of-the-art; moreover, it can integrate
high-level constraints such as implication constraints and prove the effect of
knowledge learning by satisfying unseen constraints.

• New constraint types and their applications Both of our framework
allows us to express attribute level constraints and the combined fairness
constraint. The attribute level constraints allows users to state a clustering
condition on a group points which share the same attribute. The combined
fairness constraint are based on the individual fairness and the group fairness
criteria.
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Thesis organization

This dissertation has the following structure:

• Chapter 1 gives a background of clustering and constrained clustering prob-
lems. We present different approaches and several algorithms in detail for
solving the two tasks.

• Chapter 2 is devoted to the basic foundation of deep learning and application
to the clustering problem.

• Chapter 3 brings an overview of knowledge integration in a neural network
before presenting methods and related works of deep constrained clustering.

• Chapter 4 presents our first framework for solving the problem of constrained
clustering through the postprocess.

• Chapter 5 presents our second framework, which is able to learn expert con-
straints in the form of logical formulae in any deep clustering model.

• In the conclusion, the thesis is summarized, and future developments are
discussed.
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Chapter 1

Constrained Clustering

Clustering is an unsupervised task aiming to group data into similar groups. The
clustering process has been a crucial step in data analysis and has been practiced in
many circumstances. The problem extends into constrained clustering, where expert
knowledge is integrated into the clustering process in the form of user constraints.
These constraints help the clustering process acquiring a more meaningful result.

This chapter reviews traditional views of the constrained clustering problem
as a combinatorial problem and gives several classical solutions (not relying on
neural networks). The first type of solution, which is called the algorithm-specific
approach, tries to modify original clustering algorithms. Then, we continue to
describe the declarative approach. We will introduce constrained clustering methods
using neural networks in Chapter 3.

The structure of this chapter is as follows. First, in Section 1.1, we present the
main notions and different optimization criteria for modeling the clustering problem.
Some of the most well-known algorithms for clustering problem are fully described in
Section 1.2. Then, Section 1.3 will introduce several types of constraints commonly
used in semi-supervised learning. Finally, the main approaches for constrained
clustering are given in Section 1.4 and Section 1.5 with examples and characteristics.

1.1 Clustering Problems

1.1.1 Notations

The following notations and their definitions are used throughout this thesis:

• An observation (point, or feature vector, or data) x is a single data item used
by the clustering algorithm. It is typically represented by a vector of l scalars:
x = (x1, ..., xl).

• A feature (or an attribute) is a single measurable/observable property or char-
acteristic of a point x. The value of feature i for the point x is denoted by
xi.

• l is the dimensionality of the data space (input data).

• n is the number of points and k is the number of clusters.

• A dataset is denoted by X = {x1, ...,xn}.

5
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• A partition is a set of k non-empty non-overlapping clusters (denoted as
C1, ...,Ck) containing all the objects of the dataset. We use clustering and
partition interchangeably because other clustering frameworks such as over-
lapping clustering, fuzzy clustering, . . . are not considered in this thesis. The
requirement for the output to be a partition will be called in Section 5.2 clus-
tering constraints. Another representation of a partition is an index array p =
(p1, ..., pn), where the point i belongs to the cluster Cpi (i ∈ Cpi ,∀i ∈ [1, n]). 1

• A dataset label (ground-truth label) is a classification result given by human
experts. The labels are denoted by L1, ...,Lk. The label of X is defined
as y = (y1, .., yn) where xi ∈ Lyi∀i ∈ [1, n]. It is important to note that
the labels are unknown or partially known in most applications. The ground
truth of the dataset is only used for generating constraints in the experiments
and evaluating clustering methods.

• d (resp. s) represents a dissimilarity (resp. similarity) measure on the feature
(attribute) space used to quantify the dissimilarity (resp. similarity) of two
points. In this report, Dij will be used in short for d(xi,xj), and Sij is for
s(xi,xj).

• An expert constraint (user constraint or in short, constraint ) is a requirement
on clusters or a set of data points. It represents some prior knowledge on the
clustering outputs. This notion will be clearly defined in Section 1.3.

• C is the constraint set that contains all constraints on the dataset X .

• We will use p |= C if the partition p satisfies all constraints in the constrained
set C

a. Properties of similarity/dissimilarity measure

The range of similarity measure often is from 0 to 1 where Sii = 1∀i ∈ [1, n]. On
the contrary, the dissimilarity value is non-negative and equals 0 if the two points
are the same.

• Non-negativity: Dij ≥ 0,∀i, j ∈ [1, n]

• Identity : Dij = 0 ↔ i = j

For some algorithms (for instance, k-means), d must be a distance, that must
satisfy the additional properties [80]:

• Symmetry: Dij = Dji,∀i, j ∈ [1, n]

• Triangle inequality: Dij ≤ Dit +Dtj,∀i, j, t ∈ [1, n]

1In this thesis, [1, n] denotes the set of integers from 1 to n.
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1.1.2 Types of clustering

Clustering can be specific further as:

• Hard clustering : Each point belongs to a single cluster.

• Fuzzy (Soft) clustering : Each point has various degrees of belonging to several
clusters. The soft clustering are often resented by a matrix of membership
scores S = {Sij,∀i ∈ [1, n],∀j ∈ [1, k]} where Sij ∈ R[0,1]. Sij = 1 if the point
i certainly belongs to Cj and the lesser Sij is, the lower membership of i in
cluster Cj.

• Hierarchical clustering : A sequence of partitions is built and organized into a
hierarchy.

In the context of this thesis, we focus on the methods which produce a hard
clustering as the final output. Soft clustering could be used as an intermediate
result in a clustering algorithm.

The clustering objective is either minimize the intra-connectivity between points
within a same cluster or maximize the inter-connectivity between points from dif-
ferent clusters.

Finally, a clustering problem can be formulated as follows:

argmin
p

intra− connectivity(C )

OR: argmax
p

inter − connectivity(C )
(1.1)

such that:

• ∀i ∈ [1, k] : Ci ̸= ∅

• ∀i, j ∈ [1, k] ∧ i ̸= j : Ci ∩ Cj = ∅

• ∪iCi = X

Although not every clustering algorithms has well-defined objective functions
to optimize, the partition always follows some specific clustering criteria. We are
going to give more details about these clustering criteria in the next section.

1.1.3 Criteria

The clustering task aims to find clusters, which have high intra-class similarity and
low inter-class similarity. However, we need specific measures to evaluate the quality
of the clustering.

In this section, we list a number of criteria for clustering. Some clustering
algorithms also use these evaluations as objective functions to find the clustering.
In addition, in Section b., the methods for evaluating the quality of clustering using
ground truth are presented.
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a. Criteria without ground-truth

The split and cut of a cluster are putting an emphase on the separation between
clusters,

• The split of a cluster split(Ch) is the minimum distance between a point of
this cluster Ch and points belonging to other clusters:

split(Ch) = min
xi∈Ch,xj /∈Ch

dij (1.2)

– The split of a partition is the minimum split of its clusters. Clustering
objective is often required to find partition such that the maximum split
of a partition.

argmax
p

split(p) = argmax
p

(
min
h

split(Ch)
)

(1.3)

– Another criterion is maximizing the sum splits of a partition.

argmax
p

sum split(p) = argmax
p

(∑
h

split(Ch)

)
(1.4)

• The cut of a cluster cut(Ch) is the sum of the distances between points of this
cluster and points belonging to other clusters:

cut(Ch) =
∑
xi∈Ch

∑
xj /∈Ch

dij (1.5)

The min-cut objective function for clustering is expressed as follows:

argmin
p

cut(p) = argmin
p

 ∑
h∈[1,k]

cut(Ch)

 (1.6)

The most used criterion for assessing the homogeneity of a partition is the within
cluster sum of squares wcss(p). It requires to be able to compute the centroid of a
cluster. The value is the sum of the sum of the squared Euclidean distances between
each object with his centroid µ.

wcss(p) =
k∑

h=1

∑
xi∈Ch

∥xi − µh∥2 (1.7)
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b. Criteria with ground-truth

The unsupervised accuracy and normalized mutual information are commonly used
measures for dataset with ground-truth labels.

Recall from Section 1.1: data is labelled with k labels and the labels of a point
is denoted by y = (y1, ..., yn), the clustering output is p = (p1, ..., pn).

The first metric is unsupervised clustering accuracy (ACC):

ACC = maxm

∑n
i=1 1[yi = m(pi)]

n
(1.8)

where yi is the ground-truth label, ci is the cluster assignment generated by the
algorithm, and m is a one-to-one mapping function from assignments to labels.

The Hungarian algorithm [56] is often used in order to find the maximal match-
ing.

The second metric is Normalized Mutual Information (NMI) :

NMI =
I(y,p)

1
2
[H(y) +H(p)]

(1.9)

where I is the mutual information metric and H is entropy. Since y and p are
discrete variables, the mutual information is calculated as a double sum using the
joint (p(yi, pj)) and marginal (p(yi), p(pj)) probabilities:

I(y,p) =
n∑

i=1

n∑
j=1

p(yi, pj) log

(
p(yi, pj)

p(yi)p(pj)

)
(1.10)

1.2 Clustering Techniques

In the previous section, we have introduced different objective functions for cluster-
ing. In this section, we will present the main approaches to achieve these objectives.
Then, we select K-means and Spectral clustering algorithm as the two main exam-
ples to give detail steps and their variants. These algorithms have been studied
further and adapted to constrained clustering problem [96, 91, 98].

Another clustering approach is to deal with data that do not have conventional
measures, such as data with categorical attributes and time-series data. Those
topics are not covered due to the scope of this thesis.

1.2.1 Major approaches to clustering

The relations between clusters can be in one of the three types. A cluster in hier-
archical clustering could be a subset or a superset of another clusters. The clusters
could overlap in fuzzy clustering, while a hard clustering produces non-overlapping
clusters. As mentioned earlier, this thesis focuses on hard clustering (partition).
An overview of hierarchical clustering and fuzzy clustering could be found in [69]
and [66].
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Figure 1.1: Taxonomy of clustering approaches

Because there is no precise definition of a cluster, the clustering method could
use different objectives as mentioned in Section 1.1.3. Moreover, the clustering
data are varied in terms of structure and characteristics. Therefore, many clustering
algorithms are proposed, and each has its own application and practice. The general
techniques of clustering can be categorized as follows:

• Distance based clustering: These clustering algorithms try to solve an op-
timization function defined in terms of the distance between points within the
same cluster. The most notable algorithms in this category are K-means[62],
PAM[50], CLARA[49].

• Graph based clustering: The general approach of this type is as follows.
First,is based on the construction of a graph representing the data points
and their relation. Then, graph methods are used to find the optimal graph
cut separating the points, hence obtain the partition. Spectral clustering
(including various specific algorithms) [86, 72] and minimum spanning tree
(MST) based clustering [62] are two examples of this type.

• Density based clustering: The density-based clustering methods find clus-
ters using the idea that a cluster is a contiguous region of high density. There-
fore, an advantage of this method is the ability to discover clusters of arbitrary
shapes and less susceptible to outliers. The well-known algorithms of this ap-
proach are DBSCAN[33], OPTICS[1].

• Grid based clustering: A grid-based clustering method divides the space of
data into grids. The data points are mapped to the corresponding cells on the
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grid. Then the cluster is performed on the grid instead of the points. Hence,
the performance of a grid-based method depends on the size of the grid. This
method has a fast processing time, but it could suffer from irregular data
patterns.

• Model based clustering: This method gives some predefined mathemati-
cal models. Then, the model is fitted by the provided data. The assumption
underlying this method is that data is generated by a mixture of hidden proba-
bility distributions. There are two sub directions for this approach: statistical
and neural network. The statistical approach assumes that the data points
are drawn from a specific distribution. MCLUST[85] is the most well-known
algorithm for this approach. It assumes data is generated from Gaussian dis-
tributions and uses expectation-maximization (EM) to find the local optimum
of cluster distribution. Each instance is assigned to the cluster with the high-
est probability. The neural network approach, called Deep Clustering, models
the distributions through connected neurons. Deep clustering methods will
be introduced in Section 2.2.

K-means and Spectral Clustering will be presented in the following sections
because they have multiple extensions to handle expert clustering constraints.

1.2.2 K-means

K-means is a greedy (heuristic) algorithm for finding a local minimum for the sum
of square distance between points xi and the cluster centers µ.

The main steps of K-means algorithm are [62]:

1. Select an initial set of k points (cluster centers).

2. Generate a partition p by assigning each point i to its closest cluster center
µh

∀i ∈ [1, n] : pi = argmin
h∈[1,k]

∥xi − µh∥2 (1.11)

3. Compute the new cluster centers as the means of all points belonging to this
cluster.

∀h ∈ [1, k] : µh =

∑
i∈[1,n]:pi=h xi

|{i ∈ [1, n] : pi = h}|
(1.12)

4. Terminate if there is no change in the partition. If not, return to step 2.

Although K-means remains one of the most popular clustering algorithms, this
method has several limitations. First, K-means requires the attributes in xi to be
numerical. Second, the performance of K-means is affected by the initial cluster
centers even with improvements such as K-means++ [2]. Last, the clusters are not
well represented by the cluster centers because these centroids do not belong to
dataset X .
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K-Medoids clustering and PAM When we require the cluster centers to be
points in X , the problem is called K-medoids clustering . The Partitioning Around
Medoids (PAM) [50] algorithm solves this problem by giving slight changes to K-
means algorithm. At step 3, cluster centers are updated by:

∀h ∈ [1, k] : µh = argmin
xi:xi∈Ch

∑
xj∈Ch

∥xi − xj∥2

1.2.3 Spectral Clustering

Spectral clustering is based on a graph representation of data. There are several
ways of building a graph. It can be a complete graph constructed from the distance
matrix between two points of data. Alternatively, it can be a neighborhood graph
where the points can be connected to their nearest neighbors.

Notation Let consider a graph G = (X , E) where X = {x1, ...,xn} is the set of
vertices.

The edges of G is presented by the adjacency matrix S = {i, j ∈ [1, n] : Sij}.
The weight Sij > 0 is the similarity between xi and xj.

Let Di =
∑

j∈[1,n] Sij be the degree of node i.

The volume of a set A ⊂ X be V olA =
∑

xi∈A Di. A cut between two sets A
and B is Cut(A,B) =

∑
xi∈A,xj∈B Sij

General steps Spectral clustering algorithm consists of 3 steps:

• Preprocessing: Construct the matrix S which is the adjacency matrix from
the pairwise distance dij.

• Spectral mapping: First, we compute k eigenvectors of S. Let U ∈ Rn×k be
the matrix containing the eigenvectors as columns. Then, each data point i
is represented based on the i-th row of U .

• Postprocess/Grouping: Applying a simple clustering algorithm on the new
representation.

Preprocessing There are three main methods for contructing the graph:

• The ϵ-neighborhood graph: Sij = 1 if Dij < ϵ else Sij = 0.

• k-nearest neighbor graphs: Sij = 1 if xi is among the k-nearest neighbors of
xj or xj is among the k-nearest neighbors of xi; Sij = 0, otherwise.

• The fully connected graph: We given function to convert dij into Sij. An
example is the Gaussian similarity function Sij = exp(−D2

ij/(2σ
2)) where the

parameter σ controls the width of the neighborhoods.
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After the preprocessing step, the Shi and Malik algorithm and the Ng, Jordan,
and Weiss (NJW) algorithm were chosen to introduce. While the first method cuts
the graph multiple times until getting k clusters, the second method made the new
representation and using K-means to have the final clustering.

The Shi and Malik algorithm This algorithm [86] is a heuristic algorithm
intended to minimize the Normalized Cut.

NCut(A,B) = Cut(A,B)

(
1

V olA
+

1

V olB

)
(1.13)

The algorithm is as follows:

1. Compute P = D−1S where D is the distance matrix.

2. Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of P and v1, v2, · · · , vn the
corresponding eigenvectors. Compute v2.

3. Use v2 to bipartition the graph by finding the splitting point such that Ncut
is minimized.

4. Decide if the current partition should be subdivided by checking the stability
of the cut, and make sure Ncut is below a prespecified value.

5. Repeat the process until obtain a k-partition.

The Ng, Jordan and Weiss (NJW) algorithm While the Shi and Malik
algorithm [72] use multiple cuts to obtain the partition, the NJW uses K-means to
cluster the new representation of data.

The algorithm is as follows:

1. Let Ddiag is a diagonal matrix whose (i, i)-element is the sum of i-th row from
S.

2. Compute L = D
−1/2
diag SD

−1/2
diag .

3. Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λk be the k largest eigenvalues of L and u1, u2, · · · , uk

the corresponding eigenvectors. All eigenvectors are normalized to have unit
length. Form the matrix U = [u1u2 · · ·uk]

4. Form the matrix V from U by re-normalizing each rows to have unit length

(Vij = Uij/
√∑

j U
2
ij)

5. Consider each row of V as a new representation of points. Clustering them
using K-means.
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1.3 Expert Constraints for Clustering

In order to better model the clustering task, and also satisfy external requirements
(e.g. cluster-size constraints), constraints are added. The problem is called Con-
strained Clustering and aims at finding a clustering that satisfies (partly or totally)
all the constraints.

The constraints can be classified into cluster-level constraints, specifying require-
ments on clusters, or instance-level constraints, specifying requirements on a small
number of instances.

1.3.1 Instance-level constraints

Pairwise Constraints between two instances xi, xj have two main forms:

• a must-link constraint, denoted by ML(xi,xj), requires both instances xi and
xj to be in the same cluster.

• a cannot-link constraint, denoted by CL(xi,xj), expresses that these two
objects must not be in the same cluster.

Such constraints come from the knowledge of domain experts or even common
sense. They also can be obtained from partially labeled observations. Besides
ML/CL, Together/Apart are notations used for logical formulas. They are logical
statements that can be True or False. So, if there is must-link constraint between xi

and xj (ML(xi,xj)) then Together(xi,xj) must be true and Apart(xi,xj) is must
be false.

Together(xi,xj) ≡ ∃h ∈ [1, k] : xi ∈ Ch ∧ xj ∈ Ch

Apart(xi,xj) ≡ ∀h ∈ [1, k] : ¬(xi ∈ Ch ∧ xj ∈ Ch)

Triplet & Relative Triplet and relative constraint are two main types of con-
straints concerning relations between three points. A triplet constraint among 3
instances xa, xp and xn (respectively called anchor, positive and negative instances)
means that xa is more similar to xp than to xn [57]. This definition is not giving
a direct relation to clustering. So, initial algorithms often have a mechanism for
adjusting the metric distance to follow it and then run a clustering algorithm based
on the new distance between instances.

Let dL denote the learned metrics for this data, constraint Triplet(xa,xp,xn) is
expressed as:

dL(xa,xp) < dL(xa,xn) (1.14)

Similar to triplet constraints, a relative constraint between a, b, and c instances
represents that a and b are the most similarity pair or dL(a, b) is the smallest
distance.

dL(xa,xb) < min(dL(xb,xc), dL(xc,xa)) (1.15)
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Logical triplet constraints Given the fact that the two points within a cluster is
more similar than the two belong to two different clusters, the distance information
in a triplet constraint can be transfer to conditional cluster assignments. If instance
a and instance n is in the same cluster (Together(a, n)), then instance a and instance
p must be in the same cluster as well (Together(a, p)). The logic triplet constraints:

Together(a, n) =⇒ Together(a, p)

≡¬Together(a, n) ∨ Together(a, p)

≡Together(a, p) ∨ Apart(a, n)

(1.16)

Logical relative constraints Applying the similar implication, if Together(a,c)
or Together(b,c), then Together(a,b). The logic relative constraint:

Together(a, c) ∨ Together(b, c) =⇒ Together(a, b))

≡¬(Together(a, c) ∨ Together(b, c)) ∨ Together(a, b)

≡Together(a, b) ∨ (Apart(a, c) ∧ Apart(b, c))

(1.17)

1.3.2 Cluster-level constraints

Figure 1.2: Examples of ML, CL, diameter (γ), split (δ) and neighborhood (ϵ)
constraints
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The cluster-level constraints describe conditions on the clusters. Here are three
main type of constraints which have been stated in the literature:

• A cardinality constraint puts an upper/lower bound on the number of in-
stances in each cluster. Balanced clustering constraint [15] is a special case,
where it is required that the clusters are of approximately equal size.

• A geometric constraint gives an upper/lower bound on the diameter of each
cluster or on the split between the clusters [24].

• A neighborhood constraint expresses the requirements on the neighborhood
of each point.

Cardinality constraint
The cardinality constraint includes the following constraints:

• The minimum cluster size constraint requires that each cluster has a number
of points greater than a given threshold α: ∀h ∈ [1, k], |Ch| ≥ α

• The maximum cluster size constraint requires that each cluster has a number
of points smaller than a given threshold β: ∀h ∈ [1, k], |Ch| ≤ β

• The balance constraint (ratio control) requires all clusters to have approxi-
mately the same size or in other terms that the fraction between the largest

and the smallest clusters be greater than a given threshold θ:
mini∈[1,k] |Ci|
maxj∈[1,k] |Cj | ≥ θ

Geometric constraint

• A maximum diameter constraint gives an upper bound γ on the diameter of
each cluster.

∀j ∈ [1, k],∀u, v ∈ Cj : Duv ≤ γ (1.18)

• A minimum split constraint requires that the clusters must be separated by
at least δ.

∀j, j′ ∈ [1, k], j ̸= j′, ∀u ∈ Cj,∀v ∈ Cj′ : Duv ≥ δ (1.19)

Neighborhood constraint

• An ϵ-constraint states that each point i has in its neighbourhood of radius ϵ
at least one other point in the same cluster

∀j ∈ [1, k],∀u ∈ Cj∃v ∈ Cj : u ̸= v ∧Duv ≤ ϵ (1.20)

• An individual fairness constraint requires that the ratio of neighborhood be-
long to the same cluster as the center point must be greater than or equal α.
Denote N (i) is the set of all neighbor points of point i, we have:

∀j ∈ [1, k],∀u ∈ Cj :
|{v : v ∈ N (u) ∧ v ∈ Cj}|

|N (u)|
≥ α (1.21)
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1.3.3 Brief development of constrained clustering

Early on in the development of constrained clustering, the expert constraints are
proposed independently and depend on the context of the clustering task. There-
fore, related publications often integrate one or few types of constraints to a specific
clustering algorithm. This is called Algorithm Specific Approach, and we present
this approach in Section 1.4. The second approach is the declarative approach,
which uses a general framework to deal with general expert clustering constraints.
The details of this approach are presented in Section 1.5.

1.4 Algorithm Specific Approach

Constrained versions of a variety of different algorithms such as K-means [96, 91],
EM [9], spectral [98] have been developed. Table 1.1 surveys classic well known
constrained clustering algorithms with respect to the constraint types they can
integrate.

Table 1.1: A brief survey of the algorithm specific approaches.

Initial Algorithm Algorithm Constraint types

K-means
COP-Kmeans [96] Must-link/Cannot-link
MPC-Kmeans [13] Must-link/Cannot-link
MSE-Kmeans [91] Balanced Size Constraints

MCLUSTER (EM) Pairwise-EM [9] Must-link/Cannot-link
Spectral Clustering Pairwise-Spectral Clustering [99] Must-link/Cannot-link

1.4.1 COP-Kmeans

Instead of assigning each point to the closest cluster like Step 2 of K-means 1.2.2,
each point is assigned to the closest cluster that does not violate any constraint.
The main steps of COP-Kmeans and the function for checking constrained violation
are presented in Algorithm 1.1.

Step 2 (Line 8-11 in Algorithm 1.1) can be seen a heuristics algorithm to find a
partition p such that it obtains the minimum sum of distances from points to their
cluster centers.

minp:p|=C

n∑
i=1

∥xi − µpi∥ (1.22)

This approach is reasonable given that both optimizing the objective function
and satisfying must-link/cannot-link constraints are intractable [24, 25]. In contrast,
the authors in [91] gives the exact solution for this problem of 1.22 for cluster-size
constraints.
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Algorithm 1.1 COP-Kmeans Algorithm [96]

Input: Data set X , must-link constraints ML ⊂ X ×X , cannot-link constraints
CL ⊂ X × X

Output: Clustering C ;
1: function Violate-Constraints(An instance : xi, a cluster: Ch, must-link

constraints ML, , cannot-link constraints CL)
2: For each j < i, (xi,xj) ∈ ML: If xj /∈ Ch, return True.
3: For each j < i, (xi,xj) ∈ CL: If xj ∈ Ch, return True.
4: Return False.
5: end function
6: Initialize cluster centers µh,∀h ∈ [1, k].
7: repeat
8: for i := 1 to k do
9: Find Ch the closest cluster such that Violate-Constraints(xi,Ch,

ML, CL) is false. If not exist Ch, Return Fail
10: Add xi to Ch

11: end for
12: Update cluster centers µh by averaging all of the points that have been

assigned to it.
13: until Convergence
14: Return {C1, · · · ,Ck}.

1.4.2 MSE-Kmeans

MSE-Kmeans [91] is a clustering method to find a partition satisfying the balanced
cluster constraint. Similar to the approach of COP-Kmeans, the MSE-Kmeans tries
to adjust Step 2 in K-means algorithm. In this step, it find the extract solution
satisfying the balanced constraint.

Let denote A as the partition matrix, where Aij = 1 indicates that the point i
belongs to cluster j. The balanced cluster size constraint requires that each cluster
contains from ⌊n

k
⌋ to ⌈n

k
⌉ instances.

∀1 ≤ j ≤ k : ⌊n
k
⌋ ≤

n∑
i=1

Aij ≤ ⌈n
k
⌉ (1.23)

The initial problem of Step 2 is stated as follows:

Minimize(1/n)
k∑

j=1

n∑
i=1

Aij × ∥xi − µpi∥

such that:

∀1 ≤ j ≤ k : ⌊n
k
⌋ ≤

n∑
i=1

Aij ≤ ⌈n
k
⌉

Aij ∈ {0, 1}, 1 ≤ j ≤ k, 1 ≤ i ≤ n

(1.24)
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Then, by introducing auxiliary variables uj, vj, Gij, the authors formulate the
problem as Integer Linear Programming in a standard form as follows:

Minimize(1/n)
k∑

j=1

n∑
i=1

Aij × ∥xi − µpi∥

such that:
n∑

i=1

Aij + ui = ⌈n
k
⌉, 1 ≤ j ≤ k

−
n∑

i=1

Aij + vi = −⌊n
k
⌋, 1 ≤ j ≤ k

k∑
j=1

Aij = 1, 1 ≤ i ≤ n

Aij +Gij = 1, 1 ≤ j ≤ k, 1 ≤ i ≤ n

uj, vj, Gij, Aij ≥ 0, 1 ≤ j ≤ k, 1 ≤ i ≤ n

uj, vj, Gij, Aij ∈ Z, 1 ≤ j ≤ k, 1 ≤ i ≤ n

(1.25)

Moreover, they have proved the solution of the corresponding Linear Program-
ming (LP) (without integer constraints) is always integral. We could remove integer
constraints to transform into an LP problem. Finally, the problem can be efficiently
solved with the simplex algorithm [54].

1.4.3 MPC-Kmeans

The previous two algorithms produce a clustering output that satisfies all the con-
straints. On the contrary, other algorithms use penalties as a trade-off between
optimizing the clustering criteria and satisfying as many constraints as possible.
MPC-Kmeans is a well-suited example of that. We could also see the differences
compared to COP-Kmeans as both bases on Kmeans and deals with pairwise con-
straints.

First, MPC-Kmeans assumes that the pairwise constraints show the user view
of the similarity of the data. Therefore, the algorithm aims at adapting the distance
metric to be more suitable to the domain knowledge. The matrix Ah is used for
adjusting the distance between a member instance x to the h-th cluster center
µh. This distance is defined ∥xi − µpi

∥Api
=
√

(xi − µpi
)TAh(xi − µpi

). If A is a
diagonal matrix, it scales each dimension by a different weight; otherwise it creates
a new set of features by linear combinations of the original ones. The objective
function for clustering with the parameterized distance is:

Owith−metrix =
n∑

i=1

(∥xi − µpi
∥Api

− log(det(Api
))) (1.26)

where the second term is used for normalization.
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Combining with the constrained cost proposed in [7], the objective function of
MPC-Kmeans is:

OMPC−Kmeans =
n∑

i=1

(∥xi − µpi
∥Api

− log(det(Api
)))

+
∑

(xi,xj)∈ML

wij1[pi ̸= pj] +
∑

(xi,xj)∈CL

w̄ij1[pi = pj]
(1.27)

where 1 is the indicator function, 1[⊤] = 1 and 1[⊥] = 0, wij and w̄ij is the
constraint’s violation cost.

The general steps of the algorithm is shown bellow:

1. Initialize cluster centers µ

2. Find partition p

∀i ∈ [1, n] : pi = argmin
h

OMPC−Kmeans

3. Calculate the cluster centers µ

4. Update the metrics Ah

5. Go back to Step 2 until convergence.

1.4.4 Spectral clustering with pairwise

Most of constrained clustering based on spectral approach has been focus on must-
link (ML) and cannot-link (CL) constraints. In the following paragraph, we give
an example of such an algorithm.

Ding algorithm The idea of Ding et al. [28] is to adjust the similarity matrix
S using the constraint set. The SSCA algorithm modifies NJW algorithm to the
adjustment step before calculating the similarity matrix S.

The pairs in pairwise constraints are adjusted directly on the original distance
matrix D with Dij = 0 if ML(xi,xj) and Dij = ∞ if CL(xi,xj). The distance of
other pairs are revised as the shortest path in the D matrix. The main steps of this
algorithm are:

1. Revise the distance matrix D by pairwise constraints.

2. Construct the similarity matrix S using D and the diagonal matrix Ddiag

whose (i, i)-element is the sum of i-th row from S.

3. Compute L = D
−1/2
diag SD

−1/2
diag .

4. Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λk be the k largest eigenvalues of L and u1, u2, · · · , uk

the corresponding eigenvectors. All eigenvectors are normalized to have unit
length. Form the matrix U = [u1u2 · · ·uk].
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5. Form the matrix V from U by renormalizing each row to have unit length

(Vij = Uij/
√∑

j U
2
ij).

6. Consider each row of V as the new representation of points. Clustering them
using kernel fuzzy c-means (KFCM) clustering.

1.5 Declarative Approaches

These approaches propose a general framework to formalize the problem using vari-
ables, condition equations, and an objective function. Depending on the type of
formalization, it can be solved using various optimization tools. Formulation based
on SAT, Integer Linear Programming (ILP), and Constraint Programming (CP) are
presented in Section 1.5.1, 1.5.2, 1.5.3, respectively. Later, in Section 1.5.4, we re-
view the postprocess approach, which takes a different way to formulate constrained
clustering problems.

1.5.1 SAT-based formulations

Davidson et al [26] has proposed a SAT formulation for constrained clustering prob-
lems with k = 2. The pairwise constraints and the geometry constraints have been
formulated and expressed in boolean formulas. The framework can deal with opti-
mization criteria such as minimizing the maximal diameter, maximizing the minimal
split, etc. The general formulation is as follows:

• Variables

– Logical variables: Xi,∀i ∈ [1, n] where Xi = ⊤ (⊥) if the point xi is
assigned to cluster 1 (0).

– Distance matrix D where Dij is the distance between xi and xj.

• Expert constraints

– Must-link constraints: ML(i, j) ≡ (Xi ∧Xj) ∨ (¬Xi ∧ ¬Xj)

– Cannot-link constraints: CL(i, j) ≡ (Xi ∧ ¬Xj) ∨ (Xj∧¬Xi)

– Maximum diameter constraints which ensure the diameter of any cluster
to less than or equal to α: ∀1 ≤ i < j ≤ n : Dij > α =⇒ (¬Xi ∨Xj) ∧
(Xi ∨ ¬Xj)

• Objective functions: Constraints deduced from the objective value f are added
to the SAT formulation. For example, the constraint for maximize-separation
objective is ∀1 ≤ i < j ≤ n : Dij < f =⇒ (Xi ∧Xj) ∨ (¬Xi∧¬Xj). Using a
binary search, the algorithm obtains the best value.
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1.5.2 ILP-based formulations

a. Unconstrained Clustering

In 1999, Merle et al was the first work to formalize the unconstrained clustering by
an integer linear program [30]. A cluster C is a subset of X . So, the number of
all possible clusters is 2n. Let T = {1, · · · , 2n} be the set of possible non-empty
clusters. Let ct be the cost of the cluster Ct. The membership constant ait is equal
to 1 if xi ∈ Ct and 0 otherwise. Then, the unconstrained clustering problem is
formalised by:

minimize
∑
t∈T

ctvt

such that:
∑
t∈T

aitvt = 1,∀i ∈ [1, n],∑
t∈T

xt = k,

xt ∈ {0, 1},∀t ∈ T

(1.28)

b. Clustering with anti-monotone expert constraints

Babaki[4] extended this formulation to deal with anti-monotone user-constraints. A
constraint is anti-monotone if when satisfied on a set of instances X then it is also
satisfied on all subsets X ′ ⊆ X . For example, the maximal capacity constraints
are anti-monotone but minimal capacity constraints are not.

1.5.3 Constraint programming based approaches

a. Introduction

In constrained programming, a problem can be stated as a Constraint Satisfaction
Problem (CSP) or a Constraint Optimisation Problem (COP). In CSP, they find the
complete assignment of variables in the set X given Dom(x) the domain of variable
x ∈ X and C the set of constraints. The COP problem has an objective function
to find the optimal solution. The complexity of CSP or COP problem is NP-Hard
in general cases. However, the constraint propagation and search strategies used in
CP solvers help to find the solution effectively for many practical problems.

b. General framework

Dao et al. (2013) [31] has proposed and developed a CP-based framework for
distance-based constrained clustering solution. This framework can model con-
strained clustering problems with different clustering objectives and different ex-
pert constraints. Latter, this framework has been improved by adding devoted
propagation schemes for several optimization criteria[22].

In this model, the number of clusters k can be any value within a given bound,
i.e. Kmin ≤ K ≤ Kmax. For each point i, a variable Gi : i ∈ [1, n] is used to
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represent the cluster assignment with Dom(Gi) = {1, ..., Kmax}. The constraint set
can be broken into three parts.

• Constraints to express a partition. In order to break the symmetry, the con-
straint precede ([G1, ..., Gn], [1, ..., Kmax]) is used. It requires that G1 = 1,
Gi ≤ Kmax, ∀i ∈ [1, n], and ∀Gi > 1,∃j < i : Gj + 1 = Gi. While the maxi-
mum number of clusters is included in the precede constraint, the minimum
number of clusters is expressed by the formulation #{i ∈ [1, n]|Gi = Kmin} ≥
12.

• Constraints to express clustering expert constraints. All constraints in 1.3 can
be easily formulated with G variables. For example, a must-link (or cannot-
link) on xi and xj is expressed as Gi = Gj (or Gi ̸= Gj).

• Constraints to express the objective function. Clustering criteria that the
framework can support are minimising the maximal diameter of the clusters,
maximising the minimal split between clusters, minimising the within-cluster
sum of dissimilarities (WCSD) or minimising the within-cluster sum of squares
(WCSS).

1.5.4 Postprocess approach

The idea of this approach is to find the clustering with minimum change from its ini-
tial group assignment that satisfies the constraints. The advantage of it is that they
can apply to any clustering algorithm. The other constrained clustering approach
using human knowledge as a priori to guide the clustering process. This approach
provides modification after the clustering is found, so the expert constraints are
considered a posteriori.

The general scheme of this approach is shown in Figure 1.3. A clustering al-
gorithm creates a initial clustering p. The constraint set C could be generated
beforehand or after the users/experts receive p or based on the feedback of the user
on p. The post-process modifies p to have a partition p′ satisfying C.

Figure 1.3: A workflow for postprocess approach. The initial clustering p can be
produced by any clustering algorithm.

2#S denotes for the cardinality of the set S.
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Authors in [58] have introduced the problem of Minimal Clustering Modification
(MCM).

Input: Initial clustering p and a constraint set C
Output: A modified clustering p′ that:

min
p′

d(p,p′)

subject to p′ satisfies C
(1.29)

where d(p,p′) is a distance measure between two partitions.
In this work, the distance between p and p′ is defined as the number of points

for which the cluster assignment has changed.

1.6 Summary

The first part of this chapter gives a general view of the clustering problem, including
its definition, evaluation, and overall approaches. We also present in details well-
known algorithms. Clustering is an important topic in data mining and has been
studied for more than 50 years, so it could not be wrapped in a single chapter. More
details on clustering can be found in [105].

In the second half, we present the formulations of the constrained clustering
problem and two directions for the solution: the algorithm-specific approach and
the declarative approach. The first approach is limited in its usage and application,
while the second approach often has a complexity problem.

The next chapter will present the recent advantage of using neural networks for
clustering and constrained clustering.



Chapter 2

Clustering using Deep Learning

As we introduced in chapter 1, a number of researches have been developed for
solving the clustering problem with deep neural networks, which are called Deep
Clustering. These works are worth explaining in this chapter because of the high
clustering performance on various datasets and the immense potential for future
improvement. The chapter is divided into two parts. The first section 2.1 dedicates
to the deep neural networks, while the second section 2.2 presents the current works
in Deep Clustering.

In the first section, we introduce the basics components of the neural network
algorithm, which are the neural structure and the learning process. The rise of
efficient computation, especially using multiple graphics processing units (GPU),
allows the neural architecture to become larger and more complex. While increas-
ing neurons makes the machine more robust, complex networks help the machine
learn more effectively with a specific data type. Since this thesis focuses on the
constrained clustering problem on general data, this chapter does not mention se-
quential data and neural networks with memory. Instead, we put the focus on the
Convolutional Neural Networks (CNNs) and the Autoencoders.

The second section lists the main methods of deep clustering: the naive ap-
proach, the self-training approach, and the cluster-friendly representation learning
approach. We describe the general process and give examples of algorithms for each
method.

2.1 Introduction to Deep Learning

This section is divided into three parts. The first part gives basic concepts of neural
networks and describes the traditional neural network architectures. The next two
parts help us understand Convolutional Neural Network (CNN) and Autoencoder
(AE) architectures.

Our introduction only covers the vital points of deep neural networks related to
deep clustering. For a more comprehensive introduction to neural network archi-
tectures and techniques, we recommend the Deep Learning book [38].

2.1.1 Fundamentals of neural networks

a. Artificial Neuron

The basic element to create a neural network is the artificial neuron. It is a function
fi of the input x = (x1, · · · , xd) weighted by a vector of connection weights wi =

25
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(wi,1, . . . , wi,d), a bias bj, and completed by an activation function ϕ. So, the output
is expressed as follows:

yi = fi(x) = ϕ(x×wi + bi) (2.1)

Activation function The activation function ϕ helps the function f becoming
non-linear. Thus, the neural network is a non linear transformation of the input
data. Several activation functions could be considered.

• Binary Step Function:

ϕ(x) =

{
0 x < 0

1 x ≥ 0

This function mimics the signal of biological nerve cell. However, its derivative
is zero which causes a problem in the learning process.

• Sigmoid function:

ϕ(x) =
1

1 + e−x

The sigmoid used to be the most used activation function because it is dif-
ferentiable and has values from 0 to 1. But one of its problem is that the
derivative value is very close to 0 even if ∥x∥ is not close to 0.

• Rectified Linear Unit (ReLU) function [70]:

ϕ(x) = max(0, x)

The ReLU main advantage is that it is far simpler when compared to other
functions. The drawback of ReLU is that the neuron could remain inactive
because the gradient is equal to 0 for the negative value.

b. Feed Forward Neural Network

Layers A typical neural network comprises an input layer, multiple hidden layers,
and an output layer. Each layer in the hidden layers is a set of artificial neurons
using outputs of the previous layer and forwarding the results to the next layer.

Neural network with feedbacks There exist network structures that could loop
back to previous layers. Those structures which have internal states are often used
to deal with sequential input data. Therefore, we are not going to explain these
types of networks.
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Neural architecture The choice of the activation function for the output layer
depends on the problem. The two main types of problems are:

• Regression: The output is a continuous vector Rk. The activation function
could be the identity function g(x) = x for unbound values, the ReLU function
g(x) = max(x, 0) for R+, or the tanh function for R[−1,1].

• Classification: The most used function is the softmax function.

Figure 2.1: Neural network architecture for digit image of 28× 28 with one hidden
layer. Source: Dima Shulga

Example To illustrate a neural structure, we give an example of image classifi-
cation with a fully connected neural network where each neuron in a layer is fully
connected to all neurons in the following layer. The overall structure is shown in
Figure 2.1.

Each input is a grayscale image with its size of 28× 28 which represents a hand
written digit. So, we need to have 784 neurons in the input layer. Then, they are
all connected to 512 neurons of a hidden layer. Because there is only one hidden
layer in this example, the hidden layer links to ten neurons of the output layer
correspond to the prediction with ten digits.

In the remaining of this subsection, we are going to detail how learn with feed-
forward neural.
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c. Problem and objective function

Problem A general problem of deep learning is to predict an output ŷ given an
input data x. Depending on the type of ŷ, we have a regression problem or a
classification problem.

• The classification problem: ŷ gives the membership to k predefined sets which
are denoted as class L1, . . . ,Lk. ŷ is presented as a vector of k binary values
ŷ = {ŷ1, . . . , ŷk} where ŷi = ⊤ or 1 indicates that the input data x belongs to
class Li.

• The regression problem: ŷ is a quantity which represented by a continuous
vector Rk.

In a supervised setting, X is the input data consist of n points xi,∀i ∈ [1, n]
with their corresponding labels yi,∀i ∈ [1, n]. Both of the problems are trying to
minimize the difference between the predictions and the correct labels.

Objective function The output of a neural network model can be expressed in
the following form: Fθ(x) where F is the network function, θ is the set of parameters,
and x is the input. To improve the function F , we need an objective function to
optimize. The mean squared error (MSE) and the cross-entropy (CE) functions
are the most common functions to be minimized for regression and classification,
respectively.

JMSE(θ;X ) =
n∑

i=1

∥yi − Fθ(xi)∥ (2.2)

JCE(θ;X ) =
n∑

i=1

−
k∑

j=1

yij log(Fθ(xi)[j]) (2.3)

where: X is the input data, yi is the label vector of the point xi.
Note for a classification problem: Fθ(xi) consists of k values belonging to R[0,1].

The j-th value of the output represents the probability of the input to belong to
class Lj. So, we have: Fθ(xi)[j] = p(xi ∈ Lj|xi, θ)

d. Gradient Descent

The gradient descent is a way to minimize the objective function J(θ;X ) by up-
dating the parameters in the opposite direction of the gradient of the objective
function ∇θJ(θ;X ). The learning rate η determines the size of the steps we take
to reach a local minimum.

Batch gradient descent The batch gradient descent computes the gradient of
the cost function with respect to the parameters θ for the entire training dataset.

θ = θ − η ×∇θJ(θ;X ) (2.4)
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Because of the size of the dataset, computing the gradient can be very slow and
even run out of memory. The sole advantage of this method is that it is guaranteed
to converge to the global minimum for convex surfaces and to a local minimum for
non-convex surfaces.

Stochastic gradient descent (SGD) The stochastic gradient descent performs
an update of the parameters for each training point xi.

θ = θ − η ×∇θJ(θ;xi) (2.5)

This method is also not efficient because the parameters θ must be updated n
times. Because the instances xi and xj could be much different from each other, the
updating of θ causes the objective function to fluctuate wildly as shown in Figure
2.2. This behavior could make the model jump to new and possibly better local
minima but the performances may differ from one run to another, thus decreasing
the consistency of the results. In the end, the learning rate η must be reduced to
make the SGD achieve convergence.

Figure 2.2: Fluctuations of the objective values as the parameters updated by
Stochastic Gradient Descent. Source: Researchgate1

Mini-batch gradient descent Mini-batch gradient descent updates the param-
eters for every mini-batch of m training examples:

θ = θ − η ×∇θJ(θ; {xi,xi+1, · · · ,xi+m−1}) (2.6)

This method retains the consistency of the result while achieving the best perfor-
mance through a balance between memory and computation time. The mini-batch

1https://www.researchgate.net/figure/SGD-fluctuation-16_fig11_325311506

https://www.researchgate.net/figure/SGD-fluctuation-16_fig11_325311506
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size m usually ranges from 64 to 1024, depending on the neural network and appli-
cations.

e. Optimizer

In the previous section, we have not explained how the learning rate value is set.
Algorithms for initializing and updating the learning rate are called Optimizers.

Momentum Instead of using the gradient to update directly the parameters, the
Momentum Optimizer adjusts its momentum V (t) by the previous velocity V (t−1)
and the current gradient ∇J(θ).

V (t) = γV (t− 1) + η ×∇J(θ)

Then, the parameter is updated by θ = θ − V (t)

Adam While the velocity is used for adjusting the learning rate in Momentum
Optimizer, Adam (Adaptive Moment Estimation) uses momentums of both first
and second order. The details of the algorithm can be seen in [53].

2.1.2 Convolutional neural networks

Convolutional neural network (CNN), which have been proposed by Lecun et al.
[59] has become one of the most successful methods in the field of pattern recog-
nition. It has been applied in various domains: image classification[61, 55], object
detection[79], natural language processing[48], etc. Besides using fully connected
layers, a CNN has convolutional layers and pooling layers.

Figure 2.3: CNN architecture for digit images of 28×28 with 2 convolutional layers
and 2 pooling layers. Source: https://medium.com/@ sumitsaha
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a. Convolution Layer

Unlike the previous example using the fully-connected neural networks, each neuron
in a convolution layer represents a feature from a local kernel. Traditionally, a kernel
is a fixed matrix which is used for extracting various features of an image such as
blurring, sharpening, edge detection, etc. In CNN, the kernels are defined by the
parameters of the neurons so they are updated/changed after each learning epoch.
In the example shown in 2.3, the original input is a matrix of 28×28. If kernels have
the size of 5× 5, there will be 24× 24 different kernels for each channel. The layer
has n1 channels. So, the number of kernels in this convolution layer is 24×24×n1.

The convolution layer helps the network extracting the feature of data, while
keeping its spatial relation intact.

b. Pooling Layer

The pooling layer reduces the dimensions of the previous layer by combining several
neural inputs. Because the pooling layer summarises the features presented in
different regions, it makes the model invariant with the positional change of the
object in the input image. In Figure 2.3, the pooling combines tiling sizes of 2× 2.
The two common functions for the combination are max and average.

c. Training

Because the CNN describes the structure of a neural network, it can be used for
many tasks with different training schemes. In this short introduction, we explain
the learning process of the multi-class classification problem which is the initial
usage of CNNs. Later, learning with invariance and clustering are mentioned in
2.2.

We denote:

• fθ a mapping from the input space to a feature space with θ the parameters
of f .

• X = {x1, x2, ..., xn} the training set of n instances.

• yi = {0, 1}k is the label vector of the i-th instance. yij = 1 when the i-th
point belongs to class j.

• gW is a classifier to predict labels from feature vectors fθ(xi); W is the pa-
rameters of g.

In the AlexNet model [55], the parameters W and θ are learned by the cross-
entropy loss:

L =
n∑

i=1

k∑
h=1

−yih log gW (fθ(xi)) (2.7)
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d. Conclusion

Designing a good feature extraction requires a lot of knowledge of both data and
neural networks. While the experience with neural architectures could improve
through practice, prior knowledge of data could be absent in some applications. So,
in the following subsection, the autoencoder is introduced as a neural structure to
self-learn the feature representation.

2.1.3 Autoencoders

a. Introduction

The most widely used neural networks in deep clustering algorithms are the Au-
toEncoder (AE) and its variants [77, 101, 40].

An autoencoder consists of two parts: an encoder function z = f(x) and a
decoder function x′ = g(z) that attempts to reconstruct the original input. In
Table 2.1, the common notations used for autoencoder are explaining what is an
autoencoder.

Table 2.1: Notations and their meanings

Notations Meanings
Z The latent representation space of autoencoder

Z = {z1, ..., zn} The corresponding embedded points from input data X
Lreg The regularization loss
Lrec The reconstruction loss
d, dz The dimension of x and z, respectively

θ = {θe, θd} The network parameters

Plain Autoencoder The encoder is a function f that maps the data x ∈ Rd to
Rdz to get a latent representation as:

z = f(x) = sf (Wx+ bz) (2.8)

where sf is a nonlinear activation function, W is the weight matrix and bz is the
bias vector.

The decoder function g maps the outputs of hidden units to the original input
space as:

x′ = g(z) = sg(W
′z+ bo) (2.9)

where sg is a nonlinear activation function which is typically the same as the en-
coder; W ′ and bo are parameters of the decoder.

The model parameters θ = {W, bz,W
′, bo} are learned by minimizing the recon-

struction error on training data. The loss function is given by:

Lrec =
n∑

i=1

L(xi, g(f(xi))) (2.10)
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Figure 2.4: Neural structure of an autoencoder. Source: Prakash [78]

where L is a loss function, usually a mean squared error L(xi,x
′
i) =∥ xi − x′

i ∥2

Training The model is trained in an unsupervised manner by minimizing the
reconstruction error between the decoder output and the original input, typically
using a minibatch gradient descent, following the gradients computed by backprop-
agation.

Stacking The model can be initiated by setting randomly weights for parameters
θ. However, stacking technique [10] is recommended for the autoencoder with multi
hidden layers. The first hidden layer is quickly trained as a shallow autoencoder
(the only layer between the input and output layer). Similarly, the next layer is
trained in the same manner with the previous layer considered as the input layer.

b. Autoencoder taxonomy

Autoencoders can differ according to several dimensions. The four main features
are depicted in Figure 2.5.

Neural architecture Depending on the type of data, the encoder and its mirror
(the decoder) could be fully connected neural networks, CNN for images or Long-
Short-Term Memory (LSTM) for sequences.

Regularization When the learned features (encoded layer) are required to have
a special mathematical property, a penalization is added to the objective function
to enforce that property.
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Figure 2.5: Characteristics of an autoencoder

For instance, in Sparse AE, one of the desired properties for the encoded layer
is the sparsity. It means that most values in the embedding vector are zero or close
to zero. Considering the embedded layer consists of dz neurons: f1, · · · , fdz , the
average activation value for the neuron ft is

ρ̂t =
1

n

n∑
i=1

ft(xi)

Let ρ be the target average activation which usually selected by the expert. The
regularization loss is

Lsparse =
dz∑
t=1

KL(ρ∥ρ̂t)

where KL is the Kullback–Leibler divergence.

Noise tolerance AE The most used technique for learning with noise tolerance
is denoising. Denoising Autoencoder receives corrupted data points as inputs. It
is trained to predict the original, uncorrupted data point as its outputs, allowing
representations to be robust to partial corruption of the input patterns. An artificial
corruption could be an isotropic Gaussian noise (x̃ = x+ ϵ) or a stochastic mapping
that randomly sets a portion of its input dimensions to 0 (x̃ = Dropout(x)). The
general process is shown in Figure 2.6.

Generative AE A normal autoencoder can reconstruct encoded data, but an
output from an arbitrary encoding could be meaningless. Generative models learn
probability distributions that allow to create new input samples following the same
distribution.
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Figure 2.6: Denoising Autoencoder. Source:Jeremy Jordan2

One of the most well-known generative autoencoder is variational autoencoder.
A Variational Autoencoder (VAE) is a type of autoencoder that applies a variational
Bayesian approach to encoding. Its objective is to approximate the distribution of
the latent variables given the observations. Therefore, the input is encoded as a
Gaussian probability density pθe(z|x) represented by a mean µ and a variance σ.
Then, the input of the decoder is z taken from the sample distribution in the latent
space and the output is the probability distribution of the data pθd(x|z). Overall,
the VAE aims at maximizing the probability of generating real data samples:

argmax
θ

n∏
i=1

∫
z

(pθd(x|z)pθe(z)) dz

The process is illustrated in Figure 2.7.

Figure 2.7: Variational Autoencoder

In our work in Chapter 5, we are using a fully connected Autoencoder. The
network is trained with stacking and denoising techniques.

2https://www.jeremyjordan.me/autoencoders/

https://www.jeremyjordan.me/autoencoders/
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2.2 Deep Clustering

In this section, the neural approaches for clustering are introduced. Then, each
approach will be described and given several algorithms as examples. Some of these
methods are the foundations for the constrained clustering solutions in Section 3.2
and our proposal in Chapter 5.

2.2.1 Problem definition and Approaches

Competitive learning Neural networks have been used for clustering for more
than three decades ago. The model structure consists of only two layers which are
the input layer and the competitive layer. The examples of this method are Cluster-
ing of self-organizing map (SOM) [94] and Generalized learning vector quantization
[83]. Because of their inferior clustering performances, they are not in the scope of
this thesis.

Deep learning The deep neural structure or multi-layer network has proven to
be a powerful tool for dimensionality reduction, making the clustering task much
easier. Therefore, in the past, dimensionality reduction and clustering were applied
sequentially [81, 84]. We call it the naive approach. A second approach is to
learn simultaneously new representation of data and clustering structure[40, 106].
The third approach for deep clustering is self-training[101, 17]. The idea of this
approach is that clustering is an unsupervised task of classification. The method
has two phases. The first phase creates a model that is strong enough to produce
a set of pseudo labels. The second phase is a process of creating pseudo labels,
training with those labels, updating the model, and repeat.

General process Because several methods can be combined together, the general
flow of deep clustering is:

1. Initialize the model (or feature space)

2. Train with a loss for representation and/or clustering:

(a) Update clustering parameters

(b) Update network parameters

3. Clustering/Postprocess

2.2.2 Naive approach

One of the challenges of clustering is data representation. Indeed, it has been shown
that higher dimension means less effective distance measure[29]. Thus, it is harder
to do clustering directly on the data. The naive approach performs first a data
transformation before clustering with new representation of data.
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Dimensionality reduction is the most common solution for this problem. It
transforms high-dimensional data into low-dimensional data through linear or non-
linear mapping. Linear mapping methods include principal component analysis [27],
non-negative matrix factorization [92], etc while the NJW algorithm for spectral
clustering introduced in Chapter 1 is an example for a non-linear mapping.

For deep neural algorithms, feature learning or representation learning is the
general process for discovering a better data representation. In most cases, using
representations in the feature space helps improve clustering quality. We present
here two main ways of feature learning. The first method is to use an autoencoder to
learn the embedding representation without losing much information. The second
method is to enforce critical properties such as local invariance on the feature space.

a. Reconstruction loss with Autoencoder

Autoencoders have been introduced in Section 2.1.3. Once we finish training with
an autoencoder, we can apply a classic clustering algorithm on latent embeddings
of the data.

b. Self-augmented loss with Classifier

The idea of this approach is to enforce local invariance of data. It means that small
changes in the original data should lead to small distances in the feature space.
Let T : Rd → Rd be an augmentation function under which the data representation
should be invariant. For image data, T could be a translation, a rotation, or a scale
operation.

Facenet[84] learns local invariance by triplet constraints. A triplet constraint in
Facenet consists of three images: an original image, a positive image and a negative
image. The original image is a face image of a person. Each original image xa is
applied the T function to generate the positive sample xp. An image of a different
person is used as the negative sample xn. The model is trained such that the relative
distance in the feature space f of a triplet (xa,xp,xn) satisfies:

∥f(xa)− f(xp)∥+ α < ∥f(xa)− f(xn)∥

where α is a constant for the triplet margin.

2.2.3 Self-training

In self-training, an initial classifier (a clustering model) is created. Then, the dataset
is labelled with the classifier. The labels which are predicted with high confidence
are used to improve the classifier. In this section, we introduce Deep Embedded
Clustering (DEC) [101] and Clustering using CNN [17] as two methods for the self-
training approach. The first method uses the encoder of a pre-train Autoencoder
and K-means as the initial classifier. At the same time, the second method uses
the classifier of a similar task (also known as transfer learning) as the starting
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model. Both of them use labels of all the samples as training, yet they use different
functions to favor the high-confidence predictions.

a. DEC

Neural architecture The main structure of DEC is an autoencoder. The pa-
rameters for training include the parameters of the autoencoder and the set of k
cluster centers in the feature space Z. DEC algorithm has three steps:

Step 1 : Training the autoencoder

Step 2 : Obtaining the cluster centers µh : ∀h ∈ [1, k] by performing k-means clus-
tering on the embedded points

Step 3 : Optimizing the parameters of the encoder and the cluster centers using a
self-training loss

Figure 2.8 shows the architecture of DEC and the use of the encoder for Step 3.
In the following parts, we explain in more details Step 1 and Step 3.

Figure 2.8: Network structure of DEC. Source: Junyuan Xie[101]

Autoencoder training The autoencoder used in DEC is the stacked (multilayer
fully connected) autoencoder. The autoencoder is trained with the stacking and
denoising techniques which has been explained in Section 2.1.3.

Self-training with KL divergence Applying clustering algorithm on embed-
ding points creates a partition. However, the result can not be improved further.
Xie et al [101] utilizes the cluster centers µ to measure the similarity of a point to
a cluster. Then, they propose an objective function to reinforce the similarity of a
point to the nearby clusters.
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The similarity measure is based on the t-distribution.

qij =
(1+ ∥ zi − µj ∥2)−1∑
j′(1+ ∥ zi − µj′ ∥2)−1

where: zi is the embedding representation of the point xi, qij is the probability for
xi to be assigned to Cj, ∥a− b∥2 is the Euclidean distance between a and b.

The training aims at increasing high probabilities and decreasing low probabil-
ities of the matrix q. Thus, the target distribution pij is computed as follows:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

where fj =
∑n

i=1 qij,∀j = 1, . . . , k are the soft cluster frequencies.
The choice for the target distribution relies on a common technique of self-

training. When the original distribution is close to a uniform distribution qij ≈
1
k
,∀j ∈ [1, k], the target distribution is fairly similar. It implies that the original

distribution has nothing to learn. But when {qi1, · · · , qik} is unbalanced, the target
distribution will further widen these gaps. Finally, the Kullback–Leibler divergence
loss is used to make the original distribution approaching the target one.

L = KL(P ∥ Q) =
∑
i

∑
j

pij log
pij
qij

(2.11)

At each iteration, the gradients of the loss L with respect to the parameters of
the encoders and the cluster centers µh are computed and used to update the model.
The training stops when the percentage of points that change cluster assignment
between two consecutive iterations is less than a predefined value ϵ.

b. Clustering using CNN

Convolutional neural networks have become popular and achieve top benchmarks
for image classification problems. By the nature of the architecture, CNNs can not
learn directly from unlabeled data. So, there are few works on adapting CNNmodels
in a clustering task. The most notable is the work of Caron from the Facebook AI
group in 2019 [17].

First, we will explain the method for supervised classification. Then, the unsu-
pervised learning method for clustering is introduced.

Supervised learning
Let us recall the notations related to training CNNs in Section 2.1.2.

• fθ : a mapping from images to feature spaces with θ the parameters of f .

• X = {x1, x2, ..., xn} : the training set of N images. Each image xi is associated
with a label vector yi = {0, 1}k where yij = 1 if xi belongs to class j.
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• gW : a classifier to predict labels from feature vectors fθ(xi); W is the param-
eters of g.

In this work, the parameters W and θ are learned by the following loss:

L =
n∑

i=1

l(gW (fθ(xi)), yi) (2.12)

where l is the negative log-softmax function.

Unsupervised learning by clustering
The main idea of unsupervised learning is to run a pre-trained CNN to have the

representations of data. The labelled dataset used in pre-training should be similar
to our target data. Thus, we apply a clustering algorithm to have the pseudo-labels.
These labels are used to learn the classification task for the CNN model. The whole
process is shown in Fig. 2.9.

Figure 2.9: Deep Clustering using Convolutional Neural Network. Source: Mathilde
Caron[17]

Initialization
The parameters θ can not be created randomly as the performance for the

clustering task would be inadequate. The common approach for initializing θ is
through transfer learning. The parameters θ are the weights of an image classifier
which has the same network structure and is trained on a labelled image dataset.
In this case, fθ produces good image features and enables a strong partition of the
points.

Clustering
The k-means objective function is used to find the cluster center matrix µ and

the cluster assignment y in the feature space fθ.

min
µ∈Rd×k

1

n

n∑
i=1

min
yi∈{0,1}k

∥fθ(xi)− µyi∥2 (2.13)

such that yTi 1k = 1.
Algorithm
The algorithm for clustering can be outlined as follows:
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1. Initializing θ by transfer weights of a similar task.

2. Solving Eq. 2.13 gives the pseudo-labels y and a cluster center matrix µ.

3. Updating the network parameters θ by reducing classification loss (Eq. 2.12)
with y.

4. If not convergence, go to Step 2.

5. Return the clustering based on y.

Conclusion The advantage of this method is the ability to use solid discrimi-
native neural structures in classification tasks such as AlexNet[55] for image data.
However, there are two weak points. First, the clustering data (unlabeled) must
have a similarly labeled dataset to enable transfer tasks. Second, the process of
alternating between two objectives (Step 2 and Step 3) could get a trivial solution
where it is stuck at a local minimum. Although few mechanisms , proposed in
their work, could reduce this risk, the training with no supervision on the label is
challenging and requires knowledge of the input data. In other words, clustering
performance is sensitive to the choice of network structure and hyper-parameter
setting.

2.2.4 Cluster-friendly representation learning

The process of this approach is similar to the naive approach, which is to learn a new
data representation before clustering. However, our target for the representation
is not only to lower the number of dimensions but also enforce the cluster-like
structures in the embedding space. So, in the next sections, we introduce the two
methods following this approach and give comparisons between them.

a. IDEC

Neural architecture IDEC[40] keeps the same network architecture and parame-
ters as DEC. The main structure of IDEC is a stacked autoencoder. The parameters
are θ = {θe, θd} the parameters of the encoder and the decoder, µ = {µ1, ..., µk} the
cluster centers in the latent embedding space.

Joint training scheme In order to transform the latent representation to better
highlight the clustering structure, a clustering loss is added and the two losses
(clustering and reconstruction) are simultaneously optimized. Therefore, the loss is
as follows:

L(θ) = (1− α)Lrec(θ) + αLc(θ) (2.14)

where α is a coefficient balancing between the two losses.
The training scheme of IDEC has 3 steps which are similar to DEC except Step

3. Step 3 of IDEC algorithm can be outlined as follows:
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Figure 2.10: The learning scheme of IDEC

1. Compute the soft cluster assignments of all points (to all clusters) based on
Student’s t-distribution:

qij =
(1+ ∥ zi − µj ∥2)−1∑
j′(1+ ∥ zi − µj′ ∥2)−1

(2.15)

where ∥a− b∥2 is the Euclidean distance between a and b.

2. Compute the target assignment as:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

(2.16)

3. Compute the Kullback–Leibler divergence for self-training.

Lc = KL(P ∥ Q) =
∑
i

∑
j

pij log
pij
qij

(2.17)

4. Compute the reconstruction loss.

Lrec =
n∑

i=1

∥xi − gθd(fθe(xi))∥2 (2.18)

where f and g are the functions of encoder and decoder, resp.

5. Compute gradient descent of L = (1 − α)Lrec(θ) + αLc(θ, µ) with respect to
θ (network parameters) and µ (cluster centers).

6. Update θ and µ.

7. Check convergence. If not, go to step 1.
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Comparison with DEC The experimental results show that the clustering qual-
ity of IDEC is better than DEC, but IDEC takes more time to converge. It suggests
that data representation takes more time when jointly learned with cluster struc-
ture, but it will acquire a more accurate representation.

b. Deep Clustering Network

Neural architecture The neural structure of DCN is a stacked autoencoder. The
parameters in DCN are the parameters of the autoencoder, the matrix of cluster

centers µ =

µ1

· · ·
µk

 in the feature space, and the assignment matrix s =

 s1
· · ·
sn

.

Objective function Deep Clustering Network (DCN) [106] proposed a cost func-
tion, which is a combination of the reconstruction loss for the autoencoder and the
within cluster sum of squares (WCSS) for the clustering task.

min
θ,µ,s

n∑
i=1

[
l(g(f(xi)),xi) +

λ

2
∥f(xi)− µ× si∥2

]
(2.19)

where: si is the assignment vector such that ∀i, j : sij ∈ {0, 1} and 1T si = 1.

Let us recall that f , resp. g is the encoding (resp. decoding) function and that
θ represents the parameters of the auto-encoder.

Training process While IDEC defines a loss function so that all their parameters
can be updated at the same time, DCN defines an objective function for which
is hard to find the optimal values for all variables. Therefore, DCN alternately
optimizes θ, s, and µ in each epoch. The detailed algorithm is shown in Algorithm
2.1.

Algorithm 2.1 DCN Algorithm

Input: Data set X
Output: Clustering p;
1: Pretrain an auto-encoder and run K-means
2: for i := 1 to T do
3: Update the network parameters (θ) using the loss function
4: Update the assignment s = argmin||f(xi)− µi)||2
5: Update centroids µ = µ− η∇µ

6: end for
7: p = {argmax s1, · · · , argmax sn}
8: Return p
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Comparison with DEC/IDEC The experiments show that DCC is better than
DEC but worse than IDEC in terms of clustering quality. It proves again the
superiority of combining learning representation and learning clustering structure.
The difference in performances between IDEC and DCN shows that the result from
a deep learning model strongly depends on its learning method as the two methods
are similar in their ideas and objectives.

2.2.5 Discussion

In this section, we present various methods that rely on deep learning for clustering.
These methods differ on the network architecture and on the learning scheme. But
fundamentally, they differ in how much knowledge about the data is integrated
into the system. Based on data characteristics, the network can learn a better
representation of data through adjusting neural architecture (for example, CNN,
spare autoencoder), enforcing a cluster-like structure in the embedding. Overall,
the more data knowledge a machine can integrate, the better chance of improving
its performance. We will continue this critical point in Chapter 3.



Chapter 3

Knowledge Integration in Deep
Learning and Its Application on

Deep Constrained Clustering

In Chapter 2, we have reviewed the general techniques and detailed several neural
network algorithms for clustering. In this chapter, we present some solutions for
constrained clustering problems with deep learning. However, to better understand
the contexts, we provide a more general overview of integrating knowledge in a deep
learning model.

The first generalization is the integration of knowledge instead of expert con-
straints. While an expert constraint is a fixed set of formally defined conditions
on data that the learning model is required to satisfy, human knowledge is often
loosely defined by abstract concepts and could be independent of specific data.

The second generalization is that we review the works not restricted to only deep
clustering but expends to general deep learning. Unlike traditional algorithms, a
deep learning algorithm has the advantage of being flexible to its applications.
Therefore, the work that uses expert constraints in a supervised problem such as
classification can be transferred into the clustering task. Solutions with one neural
architecture could be adapted to another structure.

In summary, Chapter 3 consists of two sections. Section 3.1 introduces the
fundamentals of deep learning with knowledge and describes several algorithms
which have the potential to be applicable to constrained clustering. In contrast,
Section 3.2 presents works focused directly on constrained clustering using deep
neural networks.

3.1 Deep Learning with Knowledge

3.1.1 Overview

Recently, some artificial intelligence systems have achieved their performance on par
with humans in sensory tasks such as image recognition, object detection, or lan-
guage translation. However, it rather shows the machine as a diligent learner with a
high volume of training data and a huge amount of energy consumption. Moreover,
pure data-driven models can lead to unexpected behaviors such as classification on
the wrong labels with high confidence [39], bias or unfairness [64]. Integrating hu-
man knowledge into machine learning can help reduce the data required and make
the model more reliable and understandable.

45
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Knowledge in machine learning can be categorized as general knowledge and
domain knowledge. General knowledge involves computer science, statistics, neural
science, etc which is independent of the task and data domain. In contrast, domain
knowledge is related to the domain of the data and specific fields such as physics,
economics, and biology.

Because the clustering task often focuses on a specific application, domain knowl-
edge plays an important role in improving the clustering result and making the
algorithm specialize. In the next section, we present the main methods to inte-
grate knowledge in deep learning. Then, several algorithms are described, and our
analysis for application in constrained clustering.

3.1.2 Methods for Knowledge Integration

As stated in [52], prior knowledge can be integrated into: pre-process, construction
of the neural model or learning process. Figure 3.1 shows the general learning
process with the domain knowledge.

Figure 3.1: The workflow of deep learning with prior knowledge. The knowledge
can be infused in one or more of the first three steps.

a. Feature Engineering

Early on the development of machine learning, feature engineering is relied on hu-
man knowledge and experience in the domain of data [111]. For example, there are
rich methods to extracting features in the image task, such as: Local Binary Pat-
terns [75], Histogram Of Oriented Gradient [20], Scale Invariant Feature Transform
[63], etc. However, the feature learning (also known as representation learning),
which let the machine to discover and extract features automatically, has proven
its superiority in many tasks.

Integrating domain knowledge in feature engineering such as invariance [43],
pairwise constraints [6] is shown in the deep clustering (Section 2.2) and the deep
constrained clustering (Section 3.2).

b. Designing Network Structure

As stated in Section 2.1.2, a Convolutional Neural Network (CNN) is a neural
network designed with the knowledge of image properties. The shared weights in
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the convolution layers show that the class/cluster of images should be the same
under the shifting translation of the objects they contain.

Modifications of deep network structures have been proposed for invariance of
rotation [100] and scaling [37] transformations.

c. Regularizing via a knowledge loss

The aforementioned approaches prove the useful application of some specific domain
knowledge. However, a regularizing loss is the most common way to learn domain
knowledge for a deep neural network. This approach utilizes the core advantages
of a deep architecture which is to learn complex tasks using gradient descents and
backpropagation.

Most of the knowledge losses are designed for a specific type of knowledge such
as pairwise, cluster-size. In this chapter, we are more interested in the works to
handle a general form of knowledge, in particular the logical form.

Logical forms of Knowledge Logical representation is a typical representation
from domain knowledge.

Hu et al. propose to express the knowledge in first-order logic and to distill
them into a neural network through regularization [44].

The formulations are based on input variable x ∈ X and target variable y ∈
X . In the clustering problem, Y = {0, 1}k is a one-hot encoding space of the
clusters. The author expresses each knowledge by a set of first-order logic rules
with confidences R = {∀l ∈ [1, L] : (Rl, λl)}. Rl is a logical sentence over the input-
target space (X ,Y) while λl ∈ R[0,∞] is the confidence level (λl = ∞ indicating that
the rule must be true).

The two published works in this research direction are presented in the following
sections. The first method, which appears in ”A Semantic Loss Function for Deep
Learning with Symbolic Knowledge”, is based on logic inference, while the second
method uses a logic embedding to calculate the degree of the system’s output follows
knowledge indirectly.

3.1.3 Semantics loss

The work from [104] defines a knowledge loss, which is able to enforce the constraints
on the target variables (the output layers of a neural network). The interest of this
paper is an unique mechanism for translating knowledge from the representation of
the knowledge in propositional logic to a regularizing loss.

a. General framework

The neural structure of the framework is a feed forward network where each neural
output pi(i ∈ [1, n]) is associated with a logic variable Xi. Then, the knowledge is
represented by a propositional logic formula on the variable set X = {X1, ..., Xn}.
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Compared to the representation of Hu[44], this representation does not include
the logical variables representing the input data. Therefore, knowledge expressed in
this framework is a set of conditions concerning the output of the neural networks
for all the input data.

One-hot encoding is an example for this kind of knowledge. Regardless of the
inputs, the system should predict one and only one class in a classification problem.
This constraint (also called exactly-one constraint) is expressed by the two logical
sentences as follows:

• At most one variable is true: ∀i, j ∈ [1, n] ∧ i ̸= j : ¬(Xi ∧Xj)

• At least one variable is true: X1 ∨ ... ∨Xn

Figure 3.2: Feeding neural outputs into a semantic loss function for one-hot encod-
ing, preference ranking and path in graph constraints. Source: Jingyi Xu[104]

Let α be the logical sentence representing the knowledge related to neural out-
puts p = {pi : i ∈ [1, n]}. α is expressed using X and logical operators, for example:
α = ¬(X1 ∧ X2) ∨ X3. The semantic loss for integrating knowledge in the neural
network is formulated as follows:

L(α,p) ∝ log
∑
x|=α

∏
i:x|=Xi

pi
∏

i:x|=¬Xi

(1− pi) (3.1)

where:

• x is an instantiation to all variables X.

• x |= α means that x satisfies α, for example: when x = X1 ∧ X2 ∧ X3, and
α = ¬(X1 ∧X2) ∨X3

The general framework of the semantics loss is depicted in Figure 3.2.
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Figure 3.3: A SDD representation of exactly-one constraint with three variables.
α = [¬X1 ∧ ((X2 ∧ ¬X3) ∨ (¬X2 ∧X3))] ∨ (X1 ∧ ¬X2 ∧ ¬X3).

b. Constructing the Semantic Loss

The sum of weights for all instantiations of x that satisfied α in 3.1 can be repre-
sented as a Weighted Model Counting (WMC) problem, usually used in automated
reasoning task [18]. Using the technique of circuit compilation in [23], a canonical
representation of α, is called a Sentential Decision Diagram (SDD), can be built.
An example of exactly-one constraint for three points are shown in Figure 3.3.

After the SDD is constructed, the semantic loss can be converted into an arith-
metic circuit by changing AND gates into multiplications (×) and OR gates into
additions (+), as depicted in Figure 3.4. The translation shows that the computa-
tional cost for computing the value and the gradient of the semantic loss is linear
with the size of the circuit. However, the size of a SDD depends on the form and
number of variables of α. Given a Conjunctive Normal Form (CNF) with n variables
and treewidth ω, then the size of the SDD is O(n2ω) [23].

Figure 3.4: The corresponding arithmetic circuit for exactly-one constraint with 3
variables. Source: Jingyi Xu[104]
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c. Application

This framework has been applied to different tasks.

Classification problem with one-hot encoding For classification problem,
they add the semantic loss of the exactly-one constraint to the total loss . So, the
total loss need to be minimized is:

L = Lclassification + ω × Ls(exactly − one,p) (3.2)

Grids Given graph G = (V,E): 4-by-4 grid with randomly removed edges. The
problem is to find a shortest path in the graph G from a source s to a destination
d.

We encode G into a binary vector I = {I1, ..., I|V |+|E|} of length |V |+ |E|, where:
Is = Id = 1 marks the source and destination. Otherwise, ∀v ∈ [1, |V |] ∧ v /∈

{s, d} : Iv = 0.
I|V |+e = 1 for e ∈ [1, |E|] when the edge e is removed.
They put I through 5-layer MLP output |E| neurons indicate wherever edges

are in the shortest path.
The constraints used in Grids are from Nishino et al.[73] for graph substructures.

Preference learning Given a set of user features, the aim is to predict how the
user ranks his preferences over a list of items. For instance in Sushi dataset, the
input is an order of 6 types of sushi and the output is the ordering of 4 other types.

The output is a binary matrix Oij, i, j ∈ [1, n] where Oij = 1 means that item i
is at position j. A set of constraints is put to make sure O is a valid ordering. The
constraint set includes:

• Each item has exactly one position.

∀i ∈ [1, n] :
n∑

j=1

Oij = 1

• Each position has exactly one item.

∀j ∈ [1, n] :
n∑

i=1

Oij = 1

d. Summary

This work defines a semantic loss for logical requirements on the output of a deep
learning model (neurons in the last layer). Their experiments show that the machine
is able to improve the satisfaction of constraints on for instance a basic condition
for classification (exactly-one constraint) or complex constraints such as graph sub-
structures.
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The main weakness of the model is the complexity for calculating the loss.
Even with the support of SDD structures, both complexities for constructing and
computing the derivative of the loss are intractable. They are exponential to the
number of variables in each constraint which is equal to n - number of neural
outputs. The following section 3.1.4 will present another work that can address
this issue through a logic embedding network.

In the context of deep constrained clustering, the expert constraints are condi-
tions on multiple input points. So, they need to be expressed on multiple outputs.
Therefore, this proposal cannot be applied straightforward. We propose an adapta-
tion of this semantics loss for the deep constrained clustering, it will be presented
in Chapter 5.

3.1.4 Embedding symbolic knowledge

a. Introduction

While the previous work constructs the knowledge loss in a direct and intractable
way, Xie et al. in ”Embedding Symbolic Knowledge into Deep Networks” [102] use a
graph embedding network to learn the degree of satisfaction of several propositional
formulae on the output neurons (the neuron can be considered as a fuzzy logic
variable). The solution is applied to a Visual Relation Prediction (VRP): the task
is to detect objects and their spatial relations in an image.

First, a logic embedder is trained to produce a representation of formulae and
their assignments, so that the satisfying assignments of each formula are close to-
gether. After the learning, the actual knowledge is put into the graph embedding
network. Its output can be used to regularize the main network.

b. Network architecture

Let us denote:

• h is the function presenting output prediction of a neural network. h(X) is a
vector output of X.

• G is the logical sentence that predictive system h need to satisfy.

• q is the logic embedder. q(G), q(h(X)) is the embedding points presenting the
constraint formula G and X, respectively.

• Lpred : the prediction loss (or clustering loss in case of unsupervised), and
Llogic : the logic loss of X given G

The general learning scheme with logic embedding is shown in Figure 3.5.

c. Training logic embedder

General steps for embedding logic graph:
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Figure 3.5: Framework for learning with logic embedding

1. Representing the knowledge as a formula G = (V , E) where nodes are either
logic variables (leaf nodes) or logical operator (∧,∨, =⇒ ) (intermediate
nodes).

2. Create a neural network (noted as a q function) based on G with the input is
weights of logic (h(x)) and the output is a embedding point q(h(x)).

Denote by q(F) the embedding result for a given formula. q(τT ), q(τF ) are the
assignment embeddings for a satisfying and unsatisfying assignment, respectively.
The loss for a formula F given a single pair of (τT , τF ) is expressed as a triplet loss:

ltriplet(F, τT , τF ) = max{d(q(F), q(τT ))− d(q(F), q(τF )) +m, 0} (3.3)

where d(x, y) is the Euclidean distance between x and y, m is the margin.
To obtain all τT and τF , they use a SAT solver. Then, pairs of assignments are

randomly sampled for each formula during training. Finally, the embedding loss for
training q is:

Lemb =
∑
F

∑
τT ,τF

ltriplet(F, τT , τF ) + λrlr(F) (3.4)

where F is a formula related to G (the whole G or sub-part of it), ltriplet is the
triplet loss in 3.3, lr is a semantic regularization term, and λr is a hyperparameter
that controls the strength of the regularization.

d. Integrating logic loss into the learning process

The target model h is trained by the predictive loss and the logic loss:

L = Lpred + λLlogic (3.5)

where Lpred is the prediction loss, Llogic = ∥q(FX) − q(h(X))∥ is the embedding
distance between the predictive distribution h(X) and the constraint FX .
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e. Summary

Although the logic embedder is not always correct as of the direct calculation with
WMC, the network is accurate enough to boost the performance of the VRP model.
In their work, the model is only compared with another neural logic embedder.
It outperforms the baseline when all logic clauses are converted into decision -
Deterministic Decomposable Negation Normal Form (d-DNNF). This experimental
result proves the dependency of the logical form they use on the logical embedder.

For a further study, I think that it would be interesting to compare this work of
Xie et al. to the work of the semantics loss[104].

3.2 Constrained Clustering using Deep Learning

3.2.1 Approaches

The common approach for constrained clustering using neural networks is to inte-
grate a constraint loss in the deep clustering learning procedure. Table 3.1 shows a
quick summary of previous published works.

Table 3.1: A brief survey of neural-based constrained clustering algorithms.

Neural structure Algorithm Clustering loss Aux loss Constraint types (losses)
CNN NNC [42] - - Pairwise
AE Ts2DEC [46] Cluster hardening (from DEC[101]) Reconstruction Triplet
AE COT[36] WCSS in the feature space - Cluster size (Optimal Transport)
AE DCC [109] Cluster hardening (from DEC[101]) Reconstruction Pairwise, Triplet, Cluster balance

Notation As mentioned in the previous chapter, common deep clustering meth-
ods provide the distributions of a point to different clusters. It is denoted as
Q = {Qi : i ∈ [1, n]} where Qi = {qi1, · · · , qik} is the distribution of point xi

and qih is the probability of assigning the point i to Ch.

3.2.2 Pairwise constraints

a. Introduction

A pairwise constraint is a relation between the two points xi and xj with respect
to the partition. It has two sub-types: must-link (ML) and cannot-link (CL). The
must-link constraint requires the two points to be in the same cluster, while the
cannot-link constraints demand they are in different clusters.

As the most well-known constraint type, there have been several works on deep
clustering with pairwise constraints [87, 34, 108, 109, 42]. Based on their novelties
and performances, we consider the following works.

• Deep Constrained Clustering (DCC) of Zhang et. al. [109].

• Neural network-based clustering using pairwise constraints (NNC) of Hsu and
Kira [42].
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The point in common between the two models is that both learn with a pairwise
loss. Moreover, the loss is designed based on the similarity/dissimilarity of the
assigned probability Qi, Qj of the two ML/CL points xi, xj.

NNC intends to compare its performance using pairwises (partial labels) with
the result of a classification model using ground-truth data. Therefore, NNC uses
a convolutional network - a common neural structure for image classification. The
learning of NCC involves only the pairwise loss. The neural structure of NCC is
depicted in Fig. 3.6.

DCC aims at learning a new representation of the input data with expert con-
straints. So, the model is based on IDEC, an autoencoder model with a representa-
tion loss (reconstruction of AE) and a clustering loss. DCC adds the expert loss as
a third loss and trains them all together. The general framework of DCC is shown
in Fig. 3.7. Beside the pairwise constraint, DCC also covers triplet and balance
cluster constraint which will be explained in the next sections.

Figure 3.6: NNC model (right) based on a classification network (left). Source:
Yen-Chang Hsu[42]

Figure 3.7: DCC framework based on IDEC (blue area) and adding constrained
losses for several constraint types
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b. Pairwise losses

Dot product Zhang et. al. [109] utilize the product between the two distribu-
tions Qi, Qj of the pairwise points ML/CL(i, j) to define the must-link loss and
the cannot-link loss.

Ldot
ML = −

∑
(i,j)∈ML

log
∑

h∈[1,k]

qihqjh

Ldot
CL = −

∑
(xi,xj)∈CL

log

1−
∑

h∈[1,K]

qihqjh

 (3.6)

KL-divergence The authors in [42] observe that the must-link constraintML(i, j)
should be translated into the similarity of their corresponding distributions Qi, Qj.
Similarly, the cannot-link constraint should enforce the dissimilarity between Qi

and Qj. Therefore, they use the Kullback-Leibler (KL) divergence to measure the
pairwise constraint loss.

LKL
pw =

∑
(i,j)∈ML

KL(Qi∥Qj) +
∑

(i,j)∈CL

max(0,margin−KL(Qi∥Qj)) (3.7)

Unlike Eq. 3.6, the KL-divergence is not symmetric so (i, j) and (j, i) are con-
sidered as two different pairs.

This loss is softer than the loss with the dot product in Eq. 3.6 because Ldot
pw =

0 =⇒ LKL
pw = 0 but the reverse is not true.

c. Training process

Hyper-parameters While the two losses for must-link and cannot-link in Eq.
3.6 have no hyper-parameters, the authors consider these two losses separately but
add coefficients for weighting the losses. In the experiment, they select the two
coefficients based on a validation set.

The value of margin in Eq. 3.7 is also selected from the performances on a
validation set.

Additional losses With a learning scheme similar to IDEC [40], DCC also has
a clustering and reconstruction loss. While Hsu and Kira [42] do not include any
additional loss into the model (we denoted this model as NNC).

Mini-batching technique DCC cuts the set of must-link (cannot-link) into
batches with fixed sizes. All pairs in a group are forwardly computed to get the set
of pairs (Qi, Qj) : (i, j) ∈ ML/CL. Then, the gradient in a mini-batch is computed,
and the back-propagation process updates the network parameters.

NNC has a similar approach with mini-batch gradient descent. But it only
computes once each point that appears in the mini-batch. Therefore, it avoids the
redundancy of calculating the same instances which appear in multiple constraints.
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3.2.3 Triplet constraints

a. Introduction

A triplet constraint on 3 data points xa, xp and xn (respectively called anchor,
positive and negative points) means that xa is more similar to xp than to xn.

To our knowledge, DCC[110] and Ts2DEC[46] are the only works integrating
the triplet constraints in deep networks. Both of them are based on DEC/IDEC
which, we recall, is based on an autoencoder structure with a reconstruction loss
and a cluster hardening loss.

b. Triplet losses

In Ts2DEC, given a triplet constraint (xa, xp, xn), the optimization tries to make the
Euclidean distances in the embedding space between ∥f(xa)− f(xn)∥ and ∥f(xa)−
f(xp)∥ greater than a constant α.

∀(xa, xp, xn) ∈ Triplet : ∥f(xa)− f(xn)∥ − ∥f(xa)− f(xp)∥ ≥ α (3.8)

The triplet loss is the hinge loss.

LTs2DEC
triplet =

∑
(xa,xp,xn)∈T

max(0, ∥f(xa)− f(xp)∥ − ∥f(xa)− f(xn)∥+ α) (3.9)

DCC measures the similarity in terms of the vectors of probability distribution
of a point to the clusters. Given Qa, Qp, Qn the distribution vectors of xa,xp,xn,
the triplet loss is defined as follows:

LDCC
triplet =

∑
(xa,xp,xn)∈T

max(0, d(Qa, Qn)− d(Qa, Qp) + θ) (3.10)

where d(Qi, Qj) =
∑

h∈[1,k] qih ∗ qjh

c. Training process

While DCC jointly trains the reconstruction loss, the clustering loss, and the triplet
loss, Ts2DEC trains the system in two steps. The first step is to train with the
reconstruction loss and the triplet loss. The network is trained with the triplet loss
and the clustering loss in a second step with a parameter λ. The two steps of the
learning are shown in Fig. 3.8.

Hyper-parameters In Zhang et al. [110], there is not ablation study. It means
that they do not report the results with different hyper-parameter settings. So,
we do not know the sensitivity of hyper-parameters with respect to the clustering
quality.

The authors in [46] do a sensitivity study of λ - the coefficient of the triplet loss.
It shows that the triplet constraints do not affect the model when λ is small. In
contrast, a high λ leads to reduce performance.
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Figure 3.8: The learning process of Ts2DEC. Blue color is the original process of
DEC. The constrained learning integrate in both representation learning process
(a) and cluster learning process (b). Source: Dino Ienco[46]

d. Conclusion

A triplet constraint gives information on the similarity between three points. This
is a valuable guideline for learning the representation of the data. Thus, Ts2DEC
translates this information to a distance comparison in the embedding space of
an autoencoder. On the other hand, DCC compares the assignment probabilities.
Therefore, Ts2DEC gives a more natural formulation of triplet constraints than
DCC. In their publication, Zhang et al. do not provide a clear explanation for this
choice. But we assume that it will have more impact on the clustering process,
leading to better clustering quality.

On a broader view, complex constraints can lead to different interpretations.
So, there is a need for a formal way to translating any constraint definition into a
constraint loss.
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3.2.4 Cluster-size constraints

a. Introduction

A clustering size constraint is a type of constraint that puts a requirement on the
cardinality of clusters. This constraint type can take several forms:

• The minimum cluster size constraint requires that each cluster has a number
of points greater than a given threshold α: ∀h ∈ [1, k], |Ch| ≥ α

• The maximum cluster size constraint requires that each cluster has a number
of points lesser than a given threshold β: ∀h ∈ [1, k], |Ch| ≤ β

• The balance constraint (ratio control) requires that all clusters have approxi-
mately the same size or the fraction between the largest and smallest cluster

must be greater than a given threshold θ:
mini∈[1,k] |Ci|
maxj∈[1,k] |Cj | ≥ θ

b. Solutions

DCC proposes a cluster-size loss based on the soft-assignment qij. The loss function
is as follows:

LDCC
csc =

k∑
h=1

(

∑n
i=1 qih
n

− 1

k
)2 (3.11)

This loss regulates the expectation of qih, i ∈ [1, n] values to be 1
k
. This requires

the number of instances to be large enough to be effective when learning the con-
straint. However, in the extreme case, when the loss is 0, the constraint may still
not be satisfied.

In Differentiable Deep Clustering with Cluster Size Constraints [36], the authors
formulate the clustering and the cluster-size constraint as a single problem.

LOT
csc = min

π∈{1, 1
n
}n×k

k∑
h=1

n∑
i=1

∥zi − µi∥ × πih

s.t.π1k =
1

n
1n

πT1n = w

(3.12)

where w = (n1

n
, · · · , nk

n
) is the vector of cluster proportions.

c. Conclusion

Both of the two methods use the loss with a mini-batch gradient descent. So, it
requires the batch size to be large enough comparing to the number of clusters
so that the proportions amongst cluster cardinalities in a batch are similar to the
whole dataset.

Another common point is that they only enforce the balance of cluster sizes.
To learn imbalance proportions, we must find a way to match the indexes of the
clusters with the indexes of the classes.



Chapter 4

Constrained Postprocess with
Clustering Score

As we have introduced in Chapter 1, most constrained clustering algorithms are in-
process methods where the expert constraints are integrated during the clustering
process. However, this approach will limit the flexibility of constructing a solution.
For example, we could find a suitable clustering algorithm for our data, but there
exists no previous work allowing constraint integration with that algorithm. This
issue is even more problematic because different constraint types require different
ways to integrate them, and the most advanced clustering algorithm is unlikely to
have its constrained version yet.

If the expert constraint and the clustering are handled separately, there are two
possible orders. The pre-process methods execute the expert constraint before the
clustering. Because we manipulate the expert requirements without the knowledge
of the partition, only a few constraints can be processed in this way. The relevant
researches of this direction focus on the pairwise/triplet constraints, where they are
used to adjust the presentations of the points or the distances between instances[6,
107].

In contrast, post-processing has a more natural order as it is used after the
clustering process. This scheme has the disadvantage of not fully using the expert
knowledge for learning clusters patterns. However, it has two major advantages.
First, the post-process task is usually less complex than the in-process one. Thus,
finding the result in post-process takes less time and computational power. Second,
it is flexible. The experts can use different clustering algorithms to see which method
is the most suitable for their data. Then, they can apply different constraints to
have the desired grouping. In this case, they can enforce and lessen some constraints
after examining the initial clustering, which is impossible for in-process clustering.

In this chapter, we are going to introduce our framework ”Constrained Post-
process with Clustering Score”. The first section 4.1 gives a quick presentation
of the current post-processing method and our novelties and contributions to this
approach. Then, Section 4.2 describes our framework: the variables, the require-
ments, and the objective criterion. In the next section 4.3, we give the formulations
of constraint types including new constraints types. Moreover, we also give several
practical scenarios where a new constraint type is necessary. Section 4.4 presents
the empirical study of our framework.

59
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4.1 Introduction

From our extensive research, Kuo et al.[58] is the only published work using post-
processing method for the constrained clustering problem. Recalled from Section
1.5.4, they take a hard clustering p as the input of their postprocess.

Figure 4.1: A workflow for a post-processing approach. The initial clustering p can
be produced by any clustering algorithm.

The output clustering is the partition p′ with minimum distance to p such that
p′ satisfies the constraint set C. The distance between two partitions is the number
of points the assignment of clusters differs.

d(p,p′) =
n∑

i=1

1[pi ̸= p′
i]

where 1 is the indicator function, 1[⊤] = 1 and 1[⊥] = 0
This distance measure is simple and straightforward; however, it does not use

any information from the clustering algorithm that produces these partitions. For
example, given a clustering produced by K-means algorithm, the points that are
near the cluster centers should less likely change than the outer points. So, com-
pared to the initial clustering, a partition that changes the assignment of outer
points should be more similar (the distance is closer) than a partition that adjusts
instances near the centers. It is the reason why we introduce an Assignment Score
which is the reward of allocating a point to a cluster.

4.1.1 Assignment Score

The assignment scores of all the input points to all the clusters are represented by a
matrix that we call a cluster fractional allocation matrix (CFAM). As we introduce
in 1.2, there are many techniques for clustering. Each method may or may not have
a direct way to obtain the CFAM. In this section, we are going to present multiple
ways to obtain CFAM for different classes of clustering techniques.

a. Centroid based clustering

Distance-based score In centroid based clustering methods, each cluster is
represented by a center. Hence, the assignment score could be the distance of
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the point to the cluster center. We denote the CFAM with distance scores as
Dij, i ∈ [1, n], h ∈ [1, k]

Dih =∥ xi − µh ∥

where µh is the center of Ch.

Probability-based score Another method to obtain a CFAM is to use a the
probability (soft) assignment. Let Sih, i ∈ [1, n], h ∈ [1, k] denote the probability of
assigning the point xi to cluster Ch. Because each point has to be assigned to one
and only one cluster in hard clustering, the assignment score between Sih and Sih′

are mutual exclusive and
∑k

h=1 Sih is equal 1.

The points xi are distributed around the cluster centers µh in the centroid based
clustering. This relation is often modeled by Student’s t-distribution.

Sih =
(1+ ∥ xi − µh ∥2 /v)− v+1

2∑
h′∈[1,k](1+ ∥ xi − µh′ ∥2 /v)− v+1

2

(4.1)

where v is the degree of freedom.

Example In the example shown in Figure 4.2, the points are divided into 3 clus-
ters: pink, cyan, and blue. We present the assignment scores of each point with a
star marker. The point which is near its cluster centers has lower chance to assign
to different clusters. For example, the left blue dot has 44% (17% + 27%) chance to
assign to pink (third) cluster or cyan (first) cluster. In comparison, the probabilities
of assigning the right blue point to the cyan cluster and the pink cluster are 21%
and 34%, respectively.

b. Deep clustering

Autoencoder based methods The encoded layer in the Autoencoder are often
a better representation of the data. So, the calculation is similar to the centroid
based clustering but happened on the feature space.

If the embedded cluster centers is not given by the clustering algorithm, they
can be computed based on the embedded points zi and the clustering output p.

µh =

∑
i:pi=h zi

|{i : pi = h}|

Then, the assignment score Sih is expressed using zi and µh.

Sih =
(1+ ∥ zi − µh ∥2 /v)− v+1

2∑
h′∈[1,k](1+ ∥ zi − µj′ ∥2 /v)−

v+1
2

(4.2)

In fact, this soft-assignment score has been used in DEC[101], IDEC[40] for
constructing the clustering loss.
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Figure 4.2: Assignment scores of a clustering using Student’s t-distribution.

Classifier based methods The output of a classifier which is the result of a
softmax function is already the probability of the input point to belong to each
class (cluster). Hence, the CFAM is the concatenation of output vectors from the
all input points.

c. Graph based clustering

A graph based clustering algorithm relies on a graph G that gives the connectivity
between points and is represented by the adjacency matrix A = {i, j ∈ [1, n] : Aij}.
The weight Aij > 0 is the similarity between xi and xj. Therefore, it is natural to
associate the cluster allocation matrix (CFAM) to the connectivity of the nodes.

Given {C1, . . . ,Ck} is the set of output clusters from the graph based clustering
algorithm. The assignment score Sih is the sum of similarity of the point i to other
points in Ch over the total similarity of xi.
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Sih =

∑
j∈Ch

Aij∑
j∈[1,n] Aih′

(4.3)

d. Density based clustering

There has been a number of works concerning Soft/Fuzzy density based clustering
[71, 88, 45]. These algorithms can be used directly to produce the assignment
scores. In order to produce the scores, we could use the Fuzzy Border as defined
in [45]. The clustering of a density based method is consists of the core points and
the border points. First, the core points are associated with hard memberships (no
fuzzy).

∀xi ∈ core(Ch) : Sih = 1

∀xi ∈ core(Ch), ∀h′ ̸= h : Sih′ = 0
(4.4)

Second, the membership function between border points and core points is defined
through two values ϵMin and ϵMax. When the distance is smaller than ϵMin, the
membership degree is equal to 1. While it is greater than ϵMax, its membership is
minimum (equal to 0). It decreases linearly for value between ϵMin and ϵMax.

µ(xi, xj) =


1, if∥xi − xj∥ ≤ ϵMin
ϵMax−∥xi−xj∥
ϵMax−ϵMin

, ifϵMin < ∥xi − xj∥ ≤ ϵMax

0, if∥xi − xj∥ > ϵMax

(4.5)

Then, the score of a border point xi to a cluster Ch is expressed as:

Sih = min
xj∈core(Ch)∧µ(xi,xj)>0

µ(xi,xj) (4.6)

e. Summary

In Table 4.1, we summary possible ways to obtain a CFAM based on different types
of clustering. Our method, therefore, can be used with a wide variety of clustering
algorithms, including centroid-based, probabilistic, and deep learning. However, to
achieve the best clustering, the experts can decide what instances are fixed and the
degree of fuzziness.

4.1.2 Clustering Score

In this section, we propose methods to compute a clustering score from distance-
based and probability-based measures.
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Table 4.1: An overview of how to obtain a cluster fractional allocation matrix from
several algorithm outputs.

Algorithm Method to obtain a CFAM
Centroid based (i.e. K-means) Distance to centroids / Student’s t-

distribution
Deep clustering (i.e. DEC) Student’s t-distribution on embedding

layer / Output layer of the classifier
Graph based (i.e. Spectral Clustering) Connectivity of nodes
Density Based (i.e. DB-Scan) Fuzzy Border DBSCAN [45]

a. Distance-based score

Formulation The clustering score of a partition p is the sum of distances from
all the points to their assigned cluster.

Score(p, D) =
∑
i∈[1,n]

Dipi (4.7)

Properties The important properties of the clustering score are:

• The clustering score is increasing monotonic with respect to the number of
points.

Since Dij ≥ 0, Score((p1, p2, ..., pn−1), D) ≤ Score((p1, p2, ..., pn−1, pn), D).

• The clustering score of any partition (of at most k clusters) is bounded by the
matrix D. ∑

i∈[1,n]

min
h∈[1,k]

Dih ≤ Score(p, D) ≤
∑
i∈[1,n]

max
h∈[1,k]

Dih (4.8)

b. Probability-based score

Formulation Under the assumption of independent cluster selection of each point,
the probabilistic of a partition is the product of individual assignment.

Score(p, S) =
∏

i∈[1,n]

Sipi (4.9)

As we can observe from the previous section, this assumption is reasonable. Al-
though different partitions will lead to altering values of cluster centers or node-cuts,
their changes are relatively minor if only a small percentage of nodes are changed
in their assignment. Fortunately, it is often the case for the constrained clustering
problem because most of the points are either not involved in any constraint or the
constraint they are involved in is already satisfied.
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Properties The important properties of the probability-based score are:

• The clustering score is decreasing monotonic with respects to the number of
points.

Since the bigger the number of points is, the smaller the value of the partition,
with respect to the score. or in other terms Score((p1, p2, ..., pn−1), S) ≥
Score((p1, p2, ..., pn−1, pn), S).

• The sum of all possible partitions (of at most k clusters) scores is equal to 1.

∑
∀p∈[1,k]n

Score(p, S) = 1 (4.10)

where p includes the empty set partition and the number of clusters is less
than or equal k.

• The domain of probability-based score is R[0,1].

This is a direct consequence of previous properties and Score(p, S) ≥ 0,∀p ∈
[1, k]n

Proof on the sum of probability-based scores
Let us denote by fn =

∑
p(n) Score(p(n), S) is total score of partition with n points.

We are going to proof that fn is not depend on S and fn = 1

First, it is easy to see that f1 = 1 so the formula is correct.

Now, assume that the formula is correct up until i − 1. Then, a partition of i
points can be viewed as a partition of i− 1 and assignment of the point i.

So, we have:

fi =
∑

h∈[1,k]

 ∑
p(i−1)

(Score(p(i− 1), S)× Sih)


=
∑

h∈[1,k]

 ∑
p(i−1)

Score(p(i− 1), S)

× Sih

=
∑

h∈[1,k]

1× Sih (From assumption it is correct for fi−1)

=
∑

h∈[1,k]

Sih

= 1

(4.11)

Therefore, it is also correct for i.
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4.2 The framework for Constrained Postprocess

4.2.1 Formulation of the problem

Given a set of points X = {x1, . . . ,xN}, a set of constraints C, an unconstrained
or constrained clustering algorithm M. Our method to give the output partition p
is as follows.

1. Obtain the CFAM matrix (D or S) by a suitable method for M in Table 4.1.

2. Find the partition p that satisfies the constraint set C and achieves the best
clustering score, that may be

either argmin
p satisfies C

Score(p, D) (distance-based score)

or argmax
p satisfies C

Score(p, S) (probability-based score)
(4.12)

4.2.2 ILP formulation

As it is stated in Chapter 1, satisfying all the types of constraints is typically a
NP-Hard problem, we propose a formulation based on Integer Linear Programming
for this problem.

Inputs.

• n - the number of points, k - the number of clusters.

• The set of constraints C that must be satisfied.

Variables.

• A matrix Z representing a hard assignment: Zik = 1 means that instance i is
assigned to cluster k.

Objective. We aim at finding an assignment of instances to the most likely clus-
ters while satisfying all the constraints. The problem is therefore finding a N ×K
matrix Z of {0, 1} with the objective function

argmin
N∑
i=1

K∑
k=1

DikZik

or

argmin
N∑
i=1

K∑
k=1

log(Sik)× Zik

satisfying the constraints in C
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4.3 Constraint Formulations

4.3.1 Previous Constraint Types

The constraints in C can be of different types (see Section 1.3). They can be
formulated as follows.

Pairwise Constraint A must-link (resp. a cannot-link) constraint on two in-
stances i, j is formulated by ∀h = 1, . . . , k, Zih = Zjh (resp. Zih + Zjh ≤ 1, for a
cannot-link constraint).

Logical Triplet Constraint A triplet constraint Triplet(a, p, n) is formulated
by:

∀h = 1, . . . , k, Zph ≥ Zah + Znh − 1

This formulation yields Zph = 1 if Zah = Znh = 1.

Cluster-Overlap Constraint Each instance belongs to at least α and at most
β clusters can be expressed by:

∀i = 1, . . . , n, α ≤
∑
h=1..k

Zih ≤ β

To enforce hard clustering, i.e. each instance belongs to a single cluster, α and β
are set to 1.

Cluster Size Constraint Each cluster must contain at least α and at most β
instances can be expressed by:

∀h = 1, . . . , k, α ≤
∑

i=1..N

Zih ≤ β

Neighborhood Constraint A neighborhood constraint requires that each in-
stance i must be in the same cluster with at least a ratio α of its neighborhood
Ni. Let Ni(j) = 1 if instance j is in the neighborhood of i and 0 otherwise. This
constraint is expressed by: ∀i = 1, . . . , n, ∀h = 1, . . . , k,∑

j=1..n

Ni(j)Zjh ≥ α(
∑
j=1..n

Ni(j))Zih

4.3.2 Attribute level Constraint

Property-Cardinality Constraint Let p(i) be 1 when an instance i has a prop-
erty p and 0 otherwise. The fact that each cluster must have at least α and at most
β instances having the property p can be enforced by:

∀h = 1, .., k, α ≤
∑
i=1..n

p(i)Zih ≤ β
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m-cluster group constraint is a special case of property-cardinality constraint
where α = β = m.

∀h = 1, .., k,
∑

i=1..N

p(i)Zih = m

The constraint such that in each cluster, the ratio of the instances having p over
the size of the cluster is bounded by [α, β] is expressed by:

∀h = 1, .., k, α×
∑
i=1..n

Zih ≤
∑
i=1..n

p(i)Zih ≤ β ×
∑
i=1..n

Zih

Attribute Level Constraint. An attribute-level constraint limits the number
of possible clusters for the instances having a specific property. Let p(i) be 1 when
the instance i has the property and 0 otherwise. We introduce a variable th ∈ {0, 1}
for each cluster h, th = 1 if and only if the cluster h contains some instances having
p. This is expressed by:

th ≤
∑
i

p(i)Zih and ∀i = 1, . . . , n, th ≥ p(i)Zih

The first constraint ensures th = 0 if there is no instance satisfying the property p
in cluster h. The second sets th ≥ 1 as soon as an instance having property p is in
cluster h. Bounds [α, β] on the number of clusters containing the instances having
the property p are given by: α ≤

∑
h=1..k th ≤ β.

4.3.3 Fairness

Fairness in clustering requires the algorithm to ”treat” similar individuals equally
which prevent any ”discrimination” towards their membership in some groups.
From this definition, several works has proposed different constraints to enforce
fairness. However, group fairness [19, 11] and individual fairness[32, 51] are two
main types. The group fairness focus on the similarity in statistical behavior for
different demographic groups while the individual fairness requires individuals who
are close together to be treated in the same way.

a. Group fairness

Definition Given a protected status variable (PSV) P with T values. X can be
partitioned into T demographic groups as {G1, G2, ·, GT}.

The work [19] proposed a measure of fairness for clustering with binary PSV as
follows:

balance(C ) = min
Ch∈C

balance(Ch) = min
Ch∈C

min(
N1

h

N2
h

,
N2

h

N1
h

) (4.13)

where C = {C1,C2, . . . ,Ck} is clustering with K disjoint clusters, N1
h and N2

h

represent the population of the first and second demographic groups in cluster Ch.



4.4. EXPERIMENTS 69

Suman et al. extend the definition for multiple PSV through the two properties:
restricted dominance (RD) and minority protection (MP)[11]. For each group Gi,
we define two parameters βi, αi ∈ R[0,1]. The RD requires that the fraction of
instances from group Gi in any cluster is at most αi while the MP requires that the
fraction of instances from group Gi in any cluster is at least βi

∀i = 1, . . . , T,∀h = 1, . . . , k, βi ≥
∥x ∈ Ch ∩Gi∥

∥Ch∥
≥ αi (4.14)

The choice of βi, αi allows a more flexible usage while it is still able to represent
the previous group fairness defined by [19].

Formulation in ILP Let denote S is the subset of X . The set S are usually
presented a minority group with a common attribute. The constraint for this set
could be:

• Requiring minimum representation in clusters:

∀h ∈ [1, k] : |x ∈ S ∪ Ch| ≥ α

• Requiring maximum representation in clusters:

∀h ∈ [1, k] : |x ∈ S ∪ Ch| ≤ β

b. Individual fairness

An individual fairness constraint requires that the ratio of neighborhood belong to
the same cluster as the center point must be greater than α[51]. Denote N (i) is
the set of all neighbor points of point i, we have:

∀i = 1, . . . , n, ∀h = 1, . . . , k :
∑

j∈N (i)

Zjh ≥ α∥N (i)∥ × Zih (4.15)

4.4 Experiments

4.4.1 Objectives and Outline

Our experiments attempt to address several core questions to understand how our
work can be used in conjunctions with existing algorithms and its limitations and
benefits. We attempt to address the following questions.

• Does our method improve the result/output of unconstrained and constrained
clustering algorithms? (See Table 4.2)

• Is our method comparable with baseline constrained clustering methods? (See
Tables 4.2 and 4.4)

• How useful are the new types of constraints and their use in combination?
(See Tables 4.7 and 4.5)

• How does our method scale to large datasets? (See Tables 4.4, 4.7 and 4.5)
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4.4.2 Experiment Setting

Datasets. We use 3 datasets, which are challenging and also used in a recent deep
constrained clustering method [109].

MNIST : The dataset is composed of 60,000 handwritten single-digits, with a
size of 28-by-28 pixels.

FASHION-MNIST : The dataset contains 60,000 images associated to a label
from 10 classes.

REUTERS-10K : Reuters contains around 810,000 English news stories labeled
with a category tree [60]. Following DEC [101], we consider only the single label doc-
uments belonging to the corporate/industrial, government/social, markets
and economics categories. A subset of 10,000 examples is randomly sampled and
the TF-IDF measure is computed on the 2000 most frequent words.

Baseline Algorithms. The following systems are used in our experiments.
IDEC : (Improved Deep Embedded Clustering) [40] a popular deep clustering

method based on auto-encoder.
Kmeans : the classic algorithm but run on the deep embedding representation

learned by IDEC.
COP-Kmeans : the classic constrained clustering algorithm for pairwise con-

straints but again run on the embedded space [97].
MSE-Kmeans : a modified K-means relying on a minimum-cost flow algorithm

to satisfy cluster size constraints [91], which is run on the embedded space.
MCM : A postprocess algorithm [58] that uses the distance between two parti-

tions as shown in Section 4.1.
DCC : Deep Constrained Clustering [109] which handles pairwise, triplet and

balanced-clustering constraints during the clustering process.
Kmeans-Post, IDEC-Post, DCC-Post : our constraint post-processing method

applied on the results of K-means, IDEC and DCC, respectively. IDEC and DCC
output a cluster fractional allocation matrix (CFAM) which is then used in our
method. For K-means, we generate the CFAM P as described in Section 4.1.1.
Let the cluster centers be µh (1 ≤ h ≤ k), the matrix P is computed by the
t-distribution:

Pih = − log
(1+ ∥ xi − µh ∥2)−1∑
h′(1+ ∥ xi − µh′ ∥2)−1

For fairness, since IDEC is a probabilistic algorithm, we run it once and we
gave the learned embedded representation to all the systems. Moreover, DCC is
initialized with the network and the parameters learned by IDEC. All algorithms are
implemented in Python. We use the ILP solver Gurobi version 8.01. Experiments
are run on a 2.8 GHz Intel Core i7 processor with 16GB of RAM. The source code
is made available and easy to replicate2.

Evaluation Metric. In all the datasets, the true class of objects is available
and we use it as the ground truth to evaluate the accuracy of the clustering. We

1https://www.gurobi.com/
2https://github.com/dung321046/ConstrainedClusteringViaPostProcessing
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consider two measures: Normalized Mutual Information (NMI) and clustering ac-
curacy (ACC), with a one-to-one mapping between clusters and labels, computed
by The Hungarian algorithm [56]. In both cases the higher the better.

4.4.3 Previous Constraint Types

In this section, we compare our performance with other methods for pairwise and
cluster size constraints. In addition, we analyze the results of our framework when
combining the two types of constraints.

a. Pairwise Constraints

We compare our method with baseline systems on MNIST and Fashion datasets
with 3,600, 30,000 and 60,000 pairwise constraints. To measure performance, for
each number of constraints we average performance over five sets of constraints and
report the average and standard deviation over the five trials. Table 4.2 reports the
results on MNIST. Our post-processing method with pairwise constraints always
improves the partition in terms of NMI and accuracy, with the benefit of satisfying
all the constraints. In contrast, postprocessing of MCM nearly does not change
the initial clustering performances. Moreover, our algorithm always obtains better
results compared to COP-Kmeans and comparable results to DCC. Similar results
are also observed on the Fashion dataset (see Table 4.3).

b. Cluster size constraints

Here we compare our method on MNIST and Fashion, with MSE-Kmeans [91],
which is developed specifically for cluster size constraints. We use the minimum
and the maximum of the true class sizes as a lower bound and a upper bound
on the cluster sizes for all the clusters. The results are shown in Table 4.4. The
results show that our general method of incorporating this constraint is competitive
compared to a method which is developed specifically for this type of constraints.

c. Constraint Combinations

Combinations of constraints. One benefit of our framework is that it can inte-
grate and satisfy several types of constraints. Among existing constrained clustering
methods, only declarative methods can integrate several types of constraints [25, 22]
while satisfying them all. However they suffer from scalability and cannot handle
datasets as big as MNIST and Fashion. In this part, we consider both pairwise
(PW) and cluster size (CS) constraints simultaneously. The number of pairwise
constraints is set to 30,000 for both runs.

Table 4.5 reports results for the MNIST and Fashion datasets. It reports the
number of instances that have been assigned to a different cluster by the post-
processing and the number of changes that have lead to the right cluster.

We notice a difference in behavior between MNIST and Fashion. For the first
dataset, adding cluster size constraints improves the results while it is not true for
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Table 4.2: Results with pairwise constraints on MNIST

#Pw Method NMI ACC
0 Kmeans 0.8644 ± 0.0000 0.8838 ± 0.0000

IDEC 0.8539 0.8799
3600 COP-Kmeans 0.8237 ± 0.0324 0.7372 ± 0.0630

DCC 0.8637 ± 0.0012 0.8938 ± 0.0075
Kmeans-Post 0.8649 ± 0.0001 0.8843 ± 0.0001
IDEC-MCM 0.8518 ± 0.0001 0.8795 ± 0.0000
IDEC-Post 0.8547 ± 0.0002 0.8804 ± 0.0001
DCC-Post 0.8640 ± 0.0013 0.8940 ± 0.0077

30000 COP-Kmeans 0.8477 ± 0.0195 0.8302 ± 0.0314
DCC 0.9407 ± 0.0032 0.9786 ± 0.0013
Kmeans-Post 0.8689 ± 0.0003 0.8876 ± 0.0003
IDEC-MCM 0.8458 ± 0.0005 0.8786 ± 0.0002
IDEC-Post 0.8602 ± 0.0007 0.8839 ± 0.0005
DCC-Post 0.9429 ± 0.0026 0.9796 ± 0.0011

60000 COP-Kmeans 0.8146 ± 0.0319 0.8039 ± 0.0644
DCC 0.9549 ± 0.0029 0.9847 ± 0.0012
Kmeans-Post 0.8739 ± 0.0004 0.8917 ± 0.0003
IDEC-MCM 0.8453 ± 0.0005 0.8797 ± 0.0007
IDEC-Post 0.8668 ± 0.0005 0.8887 ± 0.0004
DCC-Post 0.9581 ± 0.0021 0.9860 ± 0.0009

Fashion. It can perhaps be explained by a tighter constraint (upper bound minus
lower bound is smaller) for Fashion than for MNIST.

For the pairwise constraint, adding constraints has been shown in our experi-
ments to consistently improve the quality of cluster, while the use of cluster size
constraints needs more careful consideration. It is worth to study further for a way
to relax this constraint when its impact is too high.
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Table 4.3: Results with pairwise constraints on Fashion

#Pw Method NMI ACC
0 Kmeans 0.6319 ± 0.0000 0.5877 ± 0.0000

IDEC 0.6320 0.5879
3600 COP-Kmeans 0.6222 ± 0.0152 0.5808 ± 0.0092

DCC 0.6403 ± 0.0192 0.6378 ± 0.0277
Kmeans-Post 0.6306 ± 0.0003 0.5877 ± 0.0002
IDEC-MCM 0.6255 ± 0.0004 0.5870 ± 0.0002
IDEC-Post 0.6315 ± 0.0003 0.5880 ± 0.0002
DCC-Post 0.6402 ± 0.0191 0.6377 ± 0.0276

30000 COP-Kmeans 0.6175 ± 0.0043 0.5974 ± 0.0199
DCC 0.7421 ± 0.0158 0.7989 ± 0.0279
Kmeans-Post 0.6253 ± 0.0005 0.5901 ± 0.0005
IDEC-MCM 0.6020 ± 0.0008 0.5851 ± 0.0009
IDEC-Post 0.6293 ± 0.0005 0.5905 ± 0.0003
DCC-Post 0.7446 ± 0.0159 0.8019 ± 0.0282

60000 COP-Kmeans 0.6023 ± 0.0059 0.5853 ± 0.0175
DCC 0.6430 ± 0.2882 0.7180 ± 0.2891
Kmeans-Post 0.6219 ± 0.0007 0.5923 ± 0.0008
IDEC-MCM 0.5883 ± 0.0016 0.5858 ± 0.0009
IDEC-Post 0.6276 ± 0.0008 0.5940 ± 0.0008
DCC-Post 0.6624 ± 0.2705 0.7409 ± 0.2671

Table 4.4: Clustering accuracy and NMI for clustering with cluster size constraints

Data - Method NMI ACC Data - Method NMI ACC
MNIST - IDEC 0.8539 0.8799 Fashion - IDEC 0.6320 0.5879
MNIST - MSE 0.8536 0.8816 Fashion - MSE 0.5363 0.5387
MNIST - Post 0.8520 0.8796 Fashion - Post 0.5301 0.5425

Runtime. We report the runtime in seconds of MCM, COP-Kmeans, DCC
and our method with pairwise constraints in Table 4.6. To have a fair comparison,
we focus only on the computational time for integrating constraints to the initial
clustering provided by IDEC without any constraints.

The runtime of each test mainly depends on the number of pairwise constraints.
Compared to MCM, we use the same formulations and ILP optimizer, so our per-
formances are similar to theirs. The computational time of MCM is slightly better
because MCM function to optimize is simpler than ours.

Our method usually gives comparable results for quality, but it is substantially
faster compared to in-process methods. On average, our computation is more than
ten times faster than COP-Kmeans and 500 times faster than DCC. Indeed, COP-
Kmeans has to compute the distance matrix after updating the cluster centers,
whereas DCC has to apply backpropagation to update all the model parameters.
Moreover, post-processing time has a smaller variance between each test than the
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Table 4.5: Runtime (in seconds) with/without pairwise (PW) and cluster size (CS)
constraints on MNIST and Fashion.

Cases NMI ACC # Changes # Positive changes Runtime (s)

MNIST
No constraint 0.85 0.88 - - -

CS 0.85 0.88 445.00 18.00 3.95 ± 0.12
PW 0.86 ± 0.00 0.88 ± 0.00 878.80 ± 21.50 507.00 ± 25.27 3.86 ± 0.32

PW + CS 0.86 ± 0.00 0.88 ± 0.00 1067.00 ± 18.77 596.20 ± 23.28 3.86 ± 0.32

Fashion
No constraint 0.63 0.59 - - -

CS 0.53 0.54 8748.00 977.00 4.06 ± 0.21
PW 0.63 ± 0.00 0.59 ± 0.00 2747.40 ± 43.51 977.40 ± 13.84 3.51 ± 0.02

PW + CS 0.54 ± 0.00 0.55 ± 0.00 9600.80 ± 38.28 1580.20 ± 28.08 24.78 ± 2.76

Table 4.6: Runtime (in seconds) with pairwise constraints using COP-Kmeans,
DCC and postprocess.

Data #Pairwise MCM IDEC-Post COP-Kmeans DCC

MNIST
3600 0.98 ± 0.04 1.00 ± 0.04 132.38 ± 18.72 1013.76 ± 790.91
30000 3.83 ± 0.17 3.86 ± 0.32 103.77 ± 56.39 1381.73 ± 1067.07
60000 6.58 ± 0.33 6.81 ± 0.39 70.95 ± 38.41 3277.37 ± 1555.83

Fashion
3600 0.96 ± 0.05 0.99 ± 0.02 71.00 ± 57.77 5579.30 ± 2761.33
30000 3.67 ± 0.10 3.51 ± 0.02 103.71 ± 35.26 7359.35 ± 3927.79
60000 6.81 ± 0.44 6.55 ± 0.43 95.28 ± 37.90 3207.00 ± 1057.71

other methods.

Concerning other constraints, as given in Tables 4.7 and 4.5 our method performs
in a very reasonable time.

4.4.4 Attribute level Constraints

This new type of constraints requires that the instances having a specific property
cannot be widespread over a large number of clusters. We consider Reuters-10K
and we require that documents that contain some given words should be covered by
at most s clusters. We consider two cases with 5 (resp. 10) constraints by randomly
selecting 5 (resp. 10) sets of three words, among those whose documents widespread
on at most 2 clusters (s = 2). We post-process the initial clustering given by IDEC.

Table 4.7 reports the quality in NMI and accuracy (ACC), the number of in-
stances involved in all the constraints, the number of constraints that are not satis-
fied by the clustering given by IDEC (it is the input clustering of our system, note
that our system produces a clustering satisfying all the constraints), the number
of documents that have been assigned to a different cluster after post-processing
and the runtime in seconds. The impact of attribute level constraints is quite
high. While a pairwise constraint only affects two instances, the average number
of instances that are concerned in an attribute level constraint is around 200. The
number of instances that have been reassigned is therefore also high. That could
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Figure 4.3: An example for Attribute level Constraints. Documents with ”manu-
facturing” appear in the two clusters: Industrial and Economics.

Table 4.7: Impacts of attribute level constraints on Reuters-10K

#Constraints 0 5 10
NMI 0.5279 0.5253 ± 0.0039 0.5219 ± 0.0055
ACC 0.7452 0.7474 ± 0.0070 0.7499 ± 0.0088

#Involved Inst. - 1168.0000 ± 50.5332 2128.0000 ± 143.6760
#Unsat Constr. - 4.8000 ± 0.4000 9.8000 ± 0.4000
#Changed Inst. - 96.6000 ± 57.4895 212.4000 ± 42.9679

Runtime (s) - 0.0831 ± 0.0147 0.3052 ± 0.3010

explain the slight decrease of NMI and the slight increase of accuracy, the random
constraints without specific domain knowledge could be too strong.

4.4.5 Improving the Fairness of Clustering Algorithms

a. Introduction

The previous section performs standard comparisons to show that our method is
comparable in accuracy to existing methods. Here we show the real interest of our
approach as it allows combining multiple constraints to address challenging prob-
lems such as fairness in clustering. The area of fair clustering has drawn much
recent attention. Fairness in clustering can be classified into group fairness and in-
dividual fairness. Group-level fairness usually represents statistical fairness notions
based on a protected status variable (PSV). Group fairness typically requires that
in each cluster, the ratio of each PSV value is approximately equal to the ratio of
this type in the whole dataset [19].

Individual-level fairness corresponds to requirements made to individuals. An
example of individual fairness requires individuals who are close together to be
treated in the same way [32].
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Existing work usually ensures just one of these types of fairness, either group
fairness [19, 5] or individual fairness [51]. In our best knowledge, no work has
considered both individual fairness and group fairness. Taking advantage that our
constraint post-processing method can integrate different types of constraints, both
types of fairness can be ensured.

Dataset We consider the classic fairness dataset Adult with 48,842 instances.
Data to cluster on is described by continuous attributes such as age or working
hours, and PSV such as gender, education or marital-status.

b. Group and individual fairness

Group fairness is expressed by the requirement that in each cluster, the ratio of each
type of instances is approximately the same as this ratio when computed on the
whole dataset. The ratio of females in the dataset is about 33.15%. To ensure group
fairness, we require that in each cluster, the ratio of females is between 0.3315− ϵ
and 0.3315 + ϵ with ϵ = 0.01. This is ensured by property-cardinality constraints,
as defined in Section 4.2.

To ensure individual fairness, we require that each instance i must be in the
same cluster as at least 50% of the elements in its neighborhood Ni. For each
instance i, the neighborhood Ni is defined by the set of instances having exactly
the same education and occupation, and a difference in age less than or equal to
2. This requirement is ensured by neighborhood constraints, as defined in Section
4.3, with α = 0.5. We prove that with α ≥ 0.5, if x and y have exactly the same
value on the attributes used to define the neighborhood, then to satisfy the fairness
constraints x and y must be in the same cluster.

Baseline individual fairness - Most Votes Greedy Method. In order to
define a method that ensures individual fairness, as a baseline method, we have
implemented a greedy method as follows. We iterate t times the following procedure:
for each unfair instance x, find the cluster h that contains the most instances in
the neighborhood of x and change the assignment of x to the cluster h. In the
experiment t = 10.

Baseline group fairness - Fairlet We use the code produced by [5] which is an
improvement of the method ensuring group fairness using fairlets [19]. Fairlets are
subsets of objects that respect the given ratio between the two values of a binary
attribute. They are computed first then clustering is achieved on them to ensure
group fairness. For the dataset Adult, we require the minimum ratio of females over
males is higher than 49.37% so that the lower bound for the percentage of females
in each cluster is 33.05%.

Our post-processing method after K-means Let µh (1 ≤ h ≤ k) be the
cluster centers obtained from K-means with the input X = {xi : i ∈ [1, n]}. Then,
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Figure 4.4: The ratio of females in each of the five clusters by different methods.

the allocation matrix P is computed using the t-distribution.

Pih = − log
(1+ ∥ xi − µh ∥2)−1∑
h′(1+ ∥ xi − µh′ ∥2)−1

Finally, we optimize P under three scenarios: only with individual constraints
(Post-Ind.), only with group constraints (Post-Group), and both (Post-Combine).

c. Results and analysis.

Table 4.8 reports the result obtained on 10 runs with k = 5. It reports the clustering
quality in terms of the within cluster sum WCS, the number of instances that are
unfairly grouped according to individual fairness, the number of clusters that are
unfair according to group fairness and the runtime in seconds. The within cluster
sum WCS is defined by the sum of squared distances from each instance to the
centroid of its cluster.

K-means gives a clustering that is unfair with respect to both group fairness
and individual fairness. As expected, ensuring fairness decreases the clustering
quality measured by WCS. However, post-processing achieves better quality than
the greedy method. We can observe that group fairness and individual fairness are
not compatible, ensuring one type of fairness does not ensure the other type, but
even worsen. For instance, Figure 4.4 shows that clusters computed while ensuring
only individual fairness (Post-Ind.) are group unfair (see for instance Cluster 4 with
a very low rate of females).

On the other hand, Table 4.8 shows that Fairlet and Post-Group methods that
ensure group fairness do not ensure individual fairness, even the number of unfair
individuals is higher than the traditional K-means (around 7812 and 5809 respec-
tively, compared to 5686). For group fairness, without an upper-bound constraint,
Fairlet sometimes produces unfair groups (averaging 0.6 group per test case) while
Post-Group ensures both bounds.

In terms of efficiency, the post-processing performs with a very reasonable run-
time.
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Table 4.8: Runtime and constraint satisfaction with individual fairness or/and
group fairness.

Method WCS # Indiv. unfair inst. # Group unfair clust. Runtime (s)
K-means 8477.14 ± 1.89 5685.60 ± 21.12 5.00 ± 0.00 2.62 ± 0.30

Individual-level fairness
Most-vote 9071.63 ± 1.84 113.10 ± 5.68 4.70 ± 0.46 18.06 ± 0.71
Post-Ind. 9064.86 ± 1.83 0 4.00 ± 0.00 3.93 ± 0.11

Group-level fairness
Fairlet 9587.47 ± 113.95 7812.30 ± 1102.79 0.60 ± 0.49 36.90 ± 0.84
Post-Group 8581.52 ± 1.30 5809.40 ± 41.81 0 3.16 ± 0.17

Both individual-level and group-level fairness
Post-Combine 9175.91 ± 1.50 0 0 6.66 ± 1.23

4.5 Conclusion

Constrained clustering methods can integrate prior knowledge in term of con-
straints, but they are usually limited on the type of constraints. Moreover, they do
not guarantee the satisfaction of the constraints. Declarative methods can handle
several types of constraints and satisfy all of them, but they suffer from a lack of
efficiency, which prevent them to handle large datasets. In our work, we propose
the novel direction of post-processing the results of an unconstrained or constrained
clustering algorithm to enforce the constraints a posteriori. Given a matrix that
presents the cluster fractional allocation of instances to clusters, our method as-
signs instances to the most likely clusters while satisfying all the constraints. Our
method can handle large datasets, it can integrate all types of popular constraints
as well as a variety of new styles of constraints. It can be used with a wide variety
of clustering algorithms, including deep learning and we demonstrated its use in
the complex setting of ensuring group and individual level fairness using multiple
constraints which to our knowledge has not been attempted.



Chapter 5

Deep Clustering with Logical
Knowledge

Inspirés par plusieurs travaux sur les réseaux de neurones avec intégration des con-
naissances (Section 3.1), nous transformons les contraintes des experts en un ensem-
ble de formules logiques pour résoudre le problème du clustering sous contraintes.
Ensuite, nous définissons deux formulations pour la perte de connaissances, qui sont
calculées sur la sortie d’un système de clustering profond. Chaque formulation a
une traduction canonique de différents types de contraintes en pertes sémantiques
tout en essayant de s’adapter à la tâche de clustering de différentes manières.

Dans les expériences, nous montrons que notre système peut atteindre des
résultats comparables aux systèmes de pointe dédiés à des contraintes spécifiques
tout en étant flexible pour intégrer et apprendre des contraintes de haut niveau.

5.1 Introduction

5.1.1 Reason for our proposal

Inspired by several works on neural networks with knowledge integration (Section
3.1), to address the constrained clustering problem, we transform the constraint
into a set of logical formulae and we introduce a semantic loss. Then, we define
two formulations for the knowledge loss, which are computed on the output of a
deep clustering system. Each formulation has a canonical translation of different
constraint types into semantic losses while trying to adapt for the clustering task
in different ways.

Therefore, our method can integrate domain knowledge in the clustering prob-
lem while having the advantage of being independent of the neural architecture.
Experiments are conducted to compare our unified framework to the state-of-the-
art systems for together/apart and triplet constraints in terms of computational
cost and clustering quality. We show that our system can achieve comparable re-
sults with the state-of-the-art systems dedicated to specific constraints while being
flexible to integrate and learn from high-level domain constraints.

5.1.2 Chapter Organization

The remainder of the chapter is structured as follows. First, our general frame-
work for learning expert constraints in a deep clustering model is introduced in
Section 5.2. It is called DC-LK. In Section 5.3, we present implementation details

79
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of IDEC-LK algorithm, which is the integration of our framework into IDEC - an
autoencoder-based clustering. Next, we provide details of the experimental setup,
empirical results, and our analysis in Section 5.4. Section 5.5 concludes with our
contribution and further discussion.

5.2 Logical Knowledge Integration for Deep Clus-

tering

5.2.1 Overview

Given X a set of n points, k a number of clusters, a deep clustering model M
computes a cluster assignment p = {p1, p2, ..., pn}, pi ∈ [1, k] expressing that point
i belongs to cluster pi.

In this section, we propose a method to modify the modelM based on C, a set of
constraints expressing expert knowledge. Together with the clustering algorithm,
we have a framework called DC-LK (Deep Clustering with Logical Knowledge),
whose general scheme is shown in Figure 5.1.

The process of DC-LK is as follows. First, we compute the allocation matrix S
from the deep clustering model M. The methods for defining S have been specified
in Section 4.1.1. Second, we translate a set of expert constraints C into the set of
logical formulae PC = {Pc : c ∈ C} where Pc is a constrained partition problem for
the expert constraint c. The definition of Pc will be given in the next paragraph.
Then, we compute a Constrained Score for each Pc using S. The formulation
for constrained scores is based on Weighted Model Counting (WMC). Finally, the
expert constrained loss is calculated with the scores and is backpropagated into the
deep clustering M through S.

Constrained partition problem

We distinguish two kinds of constraints: partition constraints and expert con-
straints. Partition constraints enforce the result to express a partition while expert
constraints represent expert knowledge, such as pairwise constraints. All these
constraints are described by logical propositional formulae, and thus complex con-
straints that represent more complex knowledge can be expressed. Our partition
constraint requires each point to belong to a single cluster. We do not put con-
straints on the number of clusters because this regulation can be handle by the
deep clustering network. A constrained partition problem Pc is defined by the
expert constraint c and the partition constraints for all points in c.

For complexity reasons, the problem of satisfying expert constraints is decom-
posed into a set PC of sub-problems Pc, one for each expert constraint c ∈ C.

Constrained scores

Let S be the soft assignment computed by a deep clustering system. For each
sub-problem Pc, we define a constrained score CS(Pc, S), which measures how likely
the soft assignment S satisfies the constraints in Pc. The formulation Pc and the
constrained score will be developed in Section 5.2.2.
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Figure 5.1: Overview of our framework function. A deep clustering framework is
used to compute a soft assignment S of data points X to clusters. The set of
expert constraints C are used to formulate a set of constrained partition problems
PC = {Pc : c ∈ C}. Constrained scores are computed based on S and PC and are
used to defined the constrained loss. This constrained loss is backpropagated to the
deep clustering network.

Expert constraint loss We define the expert constraint loss for C based on
the constrained scores:

Lexpert = −
∑
c∈C

logCS(Pc, S) (5.1)

where: CS(Pc, S) ∈ R[0,1] is the constrained score for constraint c in the constraint
set C.

5.2.2 Constrained Score

While a label gives a direct expectation for the outputs, expert constraints give a
condition on the outputs which could be translated into a set of possible answers.

Example Given p = {p1, p2, . . . , pn} ∈ [1, k]n be the outputs of a clustering/clas-
sification model with k clusters/classes for the data X = {x1,x2, . . . ,xn}.

Let yi be the label for the point xi. With this knowledge, we only have one valid
answer pi ∈ {yi}.

In contrast, a must-link constraint between xi and xj will reduce the outputs of
(xi,xj) to k possible answers (pi, pj) ∈ {(h, h) : h ∈ [1, k]}.

Definition Let c be an expert constraint. The constrained clustering problem
Pc is defined by the expert constraint c and the partition constraints enforcing
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the points involved in c to belong to a single cluster. It defines therefore a set of
partitions Pc satisfying Pc.

Suppose we can define a partition score Score(p, S) which is a score of a partition
p based on the allocation matrix S. Then, the constrained score CS(Pc, S) is the
sum of all partition scores Score(p, S) such that p ∈ Pc:

CS(Pc, S) =
∑
p∈Pc

Score(p, S) (5.2)

where Score(p, S) is a partition score of p and will be defined in Section 5.2.3.
Equation (5.2) shows a universal way to define a constrained score for any expert

constraint.

Explanation for separating constraints We can extend Equation (5.2) to find
a single constrained score for a constraint set C.

CS(PC, S) =
∑
p∈PC

Score(p, S) (5.3)

where PC is the set of partitions that satisfy the constraint set C.
However, in our framework, we opt for using multiple constrained scores {CS(Pc, S) :

c ∈ C} because of complexity and for having a more effective learning.

Comparison with the post-processing framework In chapter 4, we define
the objective function to find the best partition as follows:

max
p satisfies C

Score(p, S)

which is equivalent to: max
p∈PC

Score(p, S)
(5.4)

Both Equations (5.2) and (5.4) are defined by partition scores Score(p, S) on
partitions that satisfy the constraint set C. However, the aim of the post process is
to find immediately the best answer so it needs to find a single best partition for all
the constraints. Meanwhile, the deep constrained clustering tries to improve grad-
ually through combined optimization between clustering structure and constraint
satisfaction. Consequently, the expert loss wants to retain as much as possible the
information of the constraints and reduce bias from the current clustering struc-
ture. Therefore, the deep learning framework can separately learn to satisfy each
constraint and it needs the sum of all valid partitions for a better learning loss.

5.2.3 Partition score

a. Formulations

Recall from previous section 4.1.2 that most clustering algorithms could produce an
assignment score Sij which is the likelihood of point i to belong to cluster j. Then,
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the likelihood of a partition p to be the output of the model M could be expressed
through S.

We propose two definitions for the scores: ScoreA and ScoreB. They are defined
as follows:

ScoreA(p, S) =
∏

i∈[1,n]

[
Sipi

∏
j ̸=pi

(1− Sij)

]
(5.5)

ScoreB(p, S) =
∏

i∈[1,n]

Sipi (5.6)

where pi is the cluster of point i in the partition p.
Equation (5.5) takes into account not only the likelihood of the assignment of

points to their clusters but also the likelihood of the exclusion of a point to other
clusters. While in Equation (5.6), the likelihood of a partition is the product of
each assignment of points.

Combined with the definition of constrained scores (5.2), we have two formula-
tions (5.7) and (5.8) to calculate constrained scores.

CSA(Pc, S) =
∑
p∈Pc

∏
i∈[1,n]

[
Sipi

∏
j ̸=pi

(1− Sij)

]
(5.7)

CSB(Pc, S) =
∑
p∈Pc

∏
i∈[1,n]

Sipi (5.8)

b. Interpretation of the two formulations

With ScoreA, we assume that any pair of Sij and Sij′ (with i ∈ [1, n] and j ̸= j′) is
independent, so the likelihood of a point i to belong only to cluster j is

L

i ∈ Cj

∧
j′∈[1,k]:j′ ̸=j

i /∈ Cj′

 = Sij

∏
j′∈[1,k]:j′ ̸=j

(1− Sij′) (5.9)

where Cj denote the set of points belonging to cluster j.
In other words, the output of learning model M does not limit the number of

clusters a point can be assigned to. Therefore, we can even calculate the likelihood
of a point to belong to a set of clusters C = {Cu1 , ...,Cum} as follows:

L

∧
Cj∈C

i ∈ Cj

∧
j′ /∈C

i /∈ Cj′

 =
∏

j:Cj∈C

Sij

∏
j′:Cj′ /∈C

(1− Sij′) (5.10)

As a consequence, the likelihood that the output of model M to be a partition
with at most k clusters is not certain.

∀S :
∑

p∈[1,k]n
ScoreA(p, S) ≤ 1 (5.11)
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In contrast, the ScoreB exploits the fact that each point must belong to exactly
one cluster. So, adding the terms 1− Sij′ into the formulation is redundant.

The effect of two score formulations on constrained score The constrained
score with Equation (5.5) is the sum of the partition scores that satisfy Pc over all
possible assignments (allowing arbitrary assignments); while, for Equation (5.6) it
is the sum score of satisfied partitions over all possible partitions. It means that
∀p : ScoreA(p, S) ≤ ScoreB(p, S) and ∀Pc : ScoreA(Pc, S) ≤ ScoreB(Pc, S).

5.2.4 Weighted Model Counting

a. Introduction

The complexity of calculating a single constrained score using (5.2) is exponential
(O(kn)). Given that the form is similar to Weighted Model Counting (WMC)
formulation, which has an efficient way to compute through SDD representation,
we will translate this problem into a WMC problem. In this section, we present the
WMC problem.

Notations We denote uppercase letters Y,A,B for Boolean variables and low-
ercase letters y, a, b for their instantiation to ⊤ (true) or ⊥ (false). The bold
uppercase letters Y,A,B represent sets of variables while the bold lowercase let-
ters y, a,b sets of their instantiations. Given a formula α which is defined on a set
Y, we call y satisfies α, denoted as y |= α if α is interpreted to ⊤ by y. A sentence
α is logically equivalent to sentence β, denoted α ≡ β, if {y : y |= α} = {y : y |= β}

Let α be a logical formula defined on a set of variables Y, where each variable
Yi is associated with a weight wi. The weighted model counting (WMC) of α is
defined by [82]:

WMC(α) =
∑
y|=α

∏
i:y|=Yi

wi

∏
i:y|=¬Yi

(1− wi) (5.12)

Decomposition and SDD structure In Equation (5.12), the atomic terms wi

and (1− wi) could occur in multiple instantiations of y. Moreover, if α ≡ α1 ∨ α2

and α1 ∧ α2 ≡ ⊥ then the WMC could be decomposed by:

WMC(α) = WMC(α1) +WMC(α2) (5.13)

Therefore, we can use any logical decomposition method to break down the
calculation of calculate WMC(α). In this work, we rely on SDD which is currently
the best decomposition for logical interference tasks[23]. The SDD decomposition
method is described more in depth in Appendix A.1.
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b. Formulations

In order to calculate a constraint score CSA or CSB of a constrained partition
problem using WMC, we need to declare a set of logical variables and their weights.
For the calculation of CSA, we introduce a set of logical variables A with their
weights. The details will be given in Section 5.2.5. Similarly for CSB, we introduce
the logical variable set B in Section 5.2.6. Then, the score will be computed using
decomposition and SDD construction. Examples of SDD construction for some
constraints will be presented in in Appendix A.1.4.

5.2.5 Formulation A

a. Variables

Let us define A = {Aij|i ∈ [1, n], j ∈ [1, k]} a set of propositional variables where
Aij = ⊤ represents the assignment of instance i to cluster j and Aij = ⊥ means that
i does not belong to cluster j. Let us recall that for each instance i, Sij (0 ≤ Sij ≤ 1)
represents the probability of assigning instance i to cluster j. Therefore we define
the weights wA for each variable by wA(Aij) = Sij and therefore wA(¬Aij) = 1−Sij.
With this definition of weights, formulas (5.2) and (5.5) can be computed by a
Weighted Model Counting.

b. Constrained Partition Formulations

Partition Constraints Using the variables A, the partition constraint in Pc can
be expressed as follows. Each point is assigned to at least one cluster is expressed
as:

∧i∈[1,n]
(
∨j∈[1,k]Aij

)
(5.14)

and each point is assigned to at most one cluster:

∧i∈[1,n]
(
∧j,t∈[1,k];j ̸=t(¬Aij ∨ ¬Ait)

)
(5.15)

Expert Constraints The expert constraint c can be expressed by a logical for-
mula. If c is a must-link (Together) constraint on two instances u and v then it is
expressed by:

∧i∈[1,k] (Aui ∨ ¬Avi) ∧ (¬Aui ∨ Avi) (5.16)

and if c is a cannot-link (Apart) constraint between u and v:

∧i∈[1,k] (¬Aui ∨ ¬Avi) (5.17)

Using together and apart constraints as elementary constraints and logical operators
such as implication, we can express more complex constraints. For instance a triplet
constraint between three points (a, p, n) that states that the anchor a is more similar
to the positive point p than to the negative point n can be expressed by:

Together(a, n) =⇒ Together(a, p) (5.18)
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More complex implication constraints can also be expressed, as for instance:

Together(a, b) ∧ Together(c, d) ∧ Apart(a, e) =⇒ Together(e, f) ∧ Apart(c, e)

New kinds of constraints can also be introduced. We define a new constraint, called
m-cluster group constraint that states that instances in a subset I can only belong
to some defined clusters j ∈ J , and it can be expressed by:

∧i∈I ∨j∈JAij (5.19)

Conclusion Let us denote α be a joined formulation of the partition constraint
and the expect constraint c. Then, the constrained score A of the constrained
partition problem Pc is equal to the Weighted Model Counting of α.

ScoreA(S, Pc) = WMC(α)

5.2.6 Formulation B

The score ScoreA(p, S) given by (5.5) allows to measure the likelihood between S
and a partition p. However it does not exploit the fact that for any point i, if i is
likely to belong to a cluster j (Sij is close to 1), then i is less likely to belong to
other clusters (Sil close to 0, for l ̸= j). We propose another formulation of the
constrained clustering problem Pc to enforce this dependency.

a. Variables

For each point i, we will define the formulas βi1, ..., βik, such that βij interpreted
to ⊤ means that the point i is assigned to cluster j and is not assigned to cluster
j′ ̸= j. Let B be a set of logical variables {Bij : i ∈ [1, n], j ∈ [1, k]}. The formula
βij is defined as follows:

βij
def
= Bij ∧

∧
t∈[1,j−1] ¬Bit for all j ∈ [1, k − 1],

βik
def
=
∧

t∈[1,k−1] ¬Bit

(5.20)

We define the weight wB for the variables as follows:

wB(Bij) =

{
Sij

1−
∑

t∈[1,j−1] Sit
if
∑

t∈[1,j−1] Sit < 1

1 otherwise
(5.21)

b. Constrained Partition Formulations

Partition Constraints The partition constraint stating that each point belongs
to one cluster is expressed by:

∧
i

(βi1 ∨ . . . ∨ βik)
∧

j,l∈[1,k]:j ̸=l

(¬βij ∨ ¬βil)

 (5.22)
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We prove that with definition (5.20) the clustering condition is a tautology, that is
(5.22) ≡ ⊤. It means that any instantiation of B represents an assignment where
each point belongs to a single cluster. We also prove that the weighted model
counting of any constrained problem Pc defined on B will give the ScoreB(p, S)
given in (5.6) (all the proofs are given in Appendix A.2).

Expert Constraints For the expert constraints, the forms are similar to the for-
mulation A, where Aij is replaced by βij. The following examples are the substituted
(and shorted if possible) formulations.

• Must-link constraint between u and v:

∧i∈[1,k] (βui ∨ ¬βvi) ∧ (¬βui ∨ βvi)

⇐⇒ ∧i∈[1,k] ((∧t∈[1,i−1]¬But ∧Bui) ∨ ¬(∧t∈[1,i−1]¬Bvt ∧Bvi))

∧i∈[1,k] (¬(∧t∈[1,i−1]¬But ∧Bui) ∨ (∧t∈[1,i−1]¬Bvt ∧Bvi))

⇐⇒ ∧i∈[1,k] ((∧t∈[1,i−1]¬But ∧Bui) ∨t∈[1,i−1] Bvt ∨ ¬Bvi)

∧i∈[1,k] (∨t∈[1,i−1]But ∨ ¬Bui ∨ (∧t∈[1,i−1]¬Bvt ∧Bvi))

(5.23)

Presenting in another form:

∨i∈[1,k] (βui ∧ βvi)

⇐⇒ ∨i∈[1,k] (∧t∈[1,i−1]¬But ∧Bui ∧t∈[1,i−1] ¬Bvt ∧Bvi)

⇐⇒ ∨i∈[1,k] (Bui ∧Bvi ∧t∈[1,i−1] (¬But ∧ ¬Bvt))

⇐⇒ (Bu1 ∧Bv1) ∨ (¬Bu1 ∧ ¬Bv1 ∧ (...))

(5.24)

• Cannot-link constraint between u and v:

∧i∈[1,k] (¬βui ∨ ¬βvi)

⇐⇒ ∧i∈[1,k]
(
¬(∧t∈[1,i−1]¬But ∧Bui) ∨ ¬(∧t∈[1,i−1]¬Bvt ∧Bvi)

)
⇐⇒ ∧i∈[1,k]

(
(∨t∈[1,i−1]But ∨ ¬Bui) ∨ (∨t∈[1,i−1]Bvt ∨ ¬Bvi)

)
⇐⇒ ∧i∈[1,k]

[
¬Bui ∨ ¬Bvi ∨t∈[1,i−1] (But ∨Bvi)

] (5.25)

5.2.7 Notes for non-empty cluster condition

The clustering requirement of non-empty cluster has not been integrated into the
formulations. The reason is that this constraint substantially increases the compu-
tation cost while its impact on the total model weight is insignificant. The number
of interpretations with an empty cluster is often reduced by the expert constraints.
Besides, the model learned by the deep clustering network is a clustering without
empty cluster, as the number of clusters is given before the training.
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Figure 5.2: Deep Clustering with Logical Knowledge Framework

5.2.8 General training scheme

We propose a general training scheme that integrates our loss for expert constraints
(see Figure 5.2). It can be used with any deep clustering method and we give in
Section 5.3 how it is instantiated with IDEC. In the general scheme, the inputs are
the set X of n points and the set C of constraints. The constrained loss is the sum
of the loss of each constrained score (presented as Pc(A) or Pc(B)) in the constraint
set C:

Lexpert = −
∑
c∈C

logScore(Pc, S) (5.26)

The output is the cluster assignment p. There are 7 steps to produce the final
output:

Step 1: Express the constraint set in form of logical formulas (either PC(A)
or PC(B)).

Step 2: Convert the formulas in arithmetic circuits T using SDD.

Step 3: Train a deep clustering network M on X.

Step 4: Run M to produce the soft cluster assignment S.

Step 5: Calculate the constrained scores Score(Pc, S) for all c ∈ C using
arithmetic circuits T and S.

Step 6: Update M using the loss defined by Eq. (5.26) (and existing loss M,
optional).

Step 7: Check stopping condition such as the learning convergence, compu-
tation limit. If not go back to Step 4.
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Because of this general strategy, the proposed method can be applied to a variety
of deep clustering methods. Besides, Step 6 is quite general and could cover different
approaches depending on the objective function: the model M is learned using
solely the constrained score, or with a combination of it with existing model losses.

5.3 IDEC-LK

The previous section shows the process of learning expert constraints with logical
knowledge. It can be applied to any deep clustering model. In this section, we
present the IDEC-LK framework, which is based on IDEC - a clustering algorithm
using an autoencoder. We carefully describe the neural architecture, the training
scheme, and hyper-parameter settings. We also give our technical improvement and
analysis for the complexity of the framework.

5.3.1 IDEC-LK training scheme

IDEC-LK extends IDEC [40] to integrate the expert loss. The training scheme is
given in Figure 5.3. The details of our training process are presented in Algorithm
5.1.

Based on the outlined algorithm from Section 5.2.8, in order to integrate IDEC,
the steps 3, 4 and 6 are defined, as follows:

• Step 3: Train a deep clustering network M

– Use an autoencoder on the original data X to get embedded points Z
and reconstruction points X̃

– Use k-means clustering for embedded points Z to have K centers (µ1, . . . , µk)

• Step 4: Compute the soft cluster assignments of all points (to all clusters)
based on Student’s t-distribution:

Sij =
(1+ ∥ zi − µj ∥2)−1∑
j′(1+ ∥ zi − µj′ ∥2)−1

(5.27)

• Step 6: Update M using the loss defined by Eq. (5.26) and IDEC loss,
computed as follows:

– Compute the target assignment as:

pij =
S2
ij/fj∑

j′ S
2
ij′/fj′

(5.28)

where fj =
∑n

i=1 Sij, ∀j = 1, . . . , k are the soft cluster frequencies.

– Compute the clustering loss as the difference between the two probability
distributions using Kullback–Leibler formulation.

Lclustering =
∑
i

∑
j

pij log
pij
Sij

(5.29)
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– Compute the reconstruction loss as the mean square distance between X
and X̃

Lrecon =
n∑

i=1

∥xi − x̂i∥2 (5.30)

– Compute the loss L1 = λr × Lrecon + λc × Lclustering where λr, λc are
coefficients.

– Compute the expert loss using Eq. (5.26) and let L2 = λe × Lexpert.

– Backpropagate L1 and L2 and update the parameters θ of the autoen-
coder and the cluster centers µ

Let us notice that during training, we separate the expert loss and the other
losses for backpropagation at each epoch. This helps to reduce the size of the
formula to backpropagate. The two losses of IDEC-LK model are defined as:

L1 = λr × Lrecon + λc × Lclustering

L2 = λe × Lexpert

(5.31)

where λr, λc and λe are coefficients controlling each loss.

Figure 5.3: The general process of IDEC-LK consists of IDEC - a deep clustering
on the left and an expert constraint learner on the right.

a. Network architecture

We denote by dimX the dimension of input data. The structure of the autoencoder
is as follows: [dimX , 500, 500, 2000, 10, 2000, 500, 500, dimX ] (the same architecture
as IDEC [40], DCC [109], SDCN [14]). We train the pretrained model using Stacked
Denoising Autoencoder [95].
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Algorithm 5.1 Training process of IDEC-LK

Input: Input data: X, Number of clusters: k, Constraint set: C, Maximum itera-
tions: MaxIter; Coefficients: λr, λe, λc

Output: Cluster assignment p
1: Initialize parameters with pre-trained autoencoder
2: Initialize µ with K-means on the representations learned by pre-trained autoen-

coder
3: Generate PC = {Pc : c ∈ C} from the constraint set C ▷ A or B formulation
4: Generate T - a set of SDD structures from all Pc

5: for iter := 1 to MaxIter do
6: Input X to the encoder: Z
7: for batch := 1 to NumConstrainedBatches do
8: Xbatch = {x : x ∈ Cbatch}
9: Forward embedded point Zbatch from the set of points x ∈ Xbatch

10: Forward distribution S via t-distribution with Z, µ; (Eq. (5.27)) from
the set of points x ∈ Cbatch

11: Feed S to SDD structures T to calculate Lbatch
expert

12: Backpropagate L2 and update parameters
13: end for
14: for batch := 1 to BatchAllInputs do
15: Forward embedded point Zbatch from the set of points x ∈ Xbatch

16: Forward distribution Sbatch via t-distribution with Zbatch, µ (Eq. (5.27))
17: Calculate target distribution Pbatch (Eq. (5.28))
18: Feed Zbatch to the decoder to obtain the reconstruction X̃batch

19: Calculate Lbatch
recon, L

batch
clustering, (Eq. (5.30), (5.29), respectively)

20: Backpropagate L1 and update parameters
21: end for
22: end for
23: p = {argmaxj∈[1,k] Qij : i ∈ [1, n]}
24: Return p
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Optimizer and hyperparameter settings We use Relu for the activation func-
tion. The number of epochs for training each layer is 300, follows by 500 epochs
training the whole network. The optimizer is stochastic gradient descent (SGD) op-
timizer with a momentum equal to 0.9. Its learning rate is set to 0.1 and decreased
by one-tenth after every 100 epochs.

For efficiency reasons, we use mini-batch learning with a batch size of 256.
Because the clustering and reconstruction losses are on all the points, so the number
of batches is ⌈ n

256
⌉ where n is the total number of training samples.

For each type of expert constraints, the number of batches is ⌈∥Ctype∥∗size(type)
256

⌉
where ∥Ctype∥ is the number of constraints, size(type) is the number of points
involved in each constraint.

With this implementation, we omit any relation between constraints (neither
same type nor not). The disadvantage is that it removes any possible joint in-
terpretation between constraints. But there are two major advantages. First, it
simplifies the construction of SDDs. In details, we only need to construct one SDD
for each constraint type; otherwise we need to decompose the constraint sets into
independent subset of variables and construct SDDs for each subset (which could
be impossible because of time to compile SDDs). Second, the implementation can
be vectorized. Constraints in the same mini-batch share the same arithmetic circuit
so we can stack values of these constraints into vectors and run arithmetic operator
between vectors.

5.3.2 Handling contradictory constraints and noisy constraints

Contradictory As we separate the constraint set, contradictory constraints can
be optimized by the model. In the simplest case, when two constraints C1 and C2
are contradictory, the loss function is − logScore(PC1, S)− logScore(PC1, S). The
convergence of the loss will be achieved when Score(PC1, S) = Score(PC2, S) = 0.5.
Without any additional information, it seems to be a logical objective.

Noisy constraints In practical applications, the constraints are generated by
humans, so it could be susceptible to human-error, especially for through crowd-
sourcing. If the constraint set contains incorrect constraints (which completely
contradict the expert knowledge), the losses for these constraints could extremely
impact the model and it could make the learning unpredictable and unable to
converge. Our solution for this problem is to remove the constraints with the lowest
constrained score. As based on the learning model M, the constraints with lowest
scores are the most likely to be the noisy one. Because of its practical application,
this technique has been implemented in IDEC-LK framework.

5.3.3 Restrict logic formulation from learning model

Up until now, the learning modelM does not have any impact on the SDD structure
T . However, the score S given from M could help to limit the possible models in T .
In fact, since M has already been learned with the clustering process then adding a
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small set of constraints would not make M change significantly. The benefit of this
restriction is to reduce the number of solutions from the logic tree T and potentially
reduce the tree size.

We introduce a hyper-parameter ϵ for limiting the number of logic models.
For formulation A, we add the following sentence to α:

∀i ∈ [1, n], j ∈ [1, k] : Sij < ϵ → ¬Aij (5.32)

For formulation B, we have

∀i ∈ [1, n], j ∈ [1, k] : Sij < ϵ → ¬βij (5.33)

5.3.4 Complexity Analysis

Compared to unconstrained approaches that do not handle constraints, we have
two additional steps: SDD construction and computation the expert loss.

a. Complexity in SDD construction

As mentioned in [23], the cost of the SDD construction is exponential in the
SDD treewidth w, which is linear to the number of variables, in our case n × k
(w ∈ O(n× k)). In practice, to reduce w, we consider each expert constraint inde-
pendently. Moreover, each SDD is precomputed only once before the training, so
the computation cost is much less than the training complexity, which requires to
use the SDD structure to compute the loss on every batch and epoch.

b. Complexity of the expert loss

After the SDD is constructed, we can convert a single constraint loss into an arith-
metic circuit by changing AND gates into multiplication (×) and OR gates into
addition (+). The translation shows that the computational cost for computing the
value and the gradient of the loss is linear with the size of the circuit. Therefore,
in each epoch, the cost of computing the expert constraint loss is equal to the size
of the SDD structure times the number of constraints.

In addition, the size of a SDD depends on the form and number of variables
of α. Given a Conjunctive Normal Form (CNF) with n variables and treewidth ω,
then the size of SDD is O(n2ω).

For pairwise/triplet constraints, the SDD is fixed for each constraint type and
their sizes are small constants (< 200 nodes for triplet, and < 100 nodes for pair-
wise). So, the expert loss is linear to the number of constraints.

For implication constraints, an experiment has been performed to measure the
mean size of SDD. It is given in Appendix A.6.

Needless to say, the addition of the expert loss usually makes the convergence
of the model slower. So, it takes more epochs to finish its training. The runtime
compared to unconstrained clustering and other constrained clustering method has
been shown in Appendix A.6.
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5.4 Experimental Setup and Objectives

5.4.1 Objectives

The objectives of the experiments:

• To evaluate and compare the performances of clustering quality our solutions
and other works with various datasets, constraint types (See Section 5.4.3).

• To evaluate and compare the performances of constraint satisfaction our so-
lutions and other works with various datasets, constraint types (See Section
5.4.4).

• To evaluate complexity each step in our systems (See Section 5.4.5).

5.4.2 Experimental Setups

a. Datasets

We use four datasets, which are challenging and also used in a recent deep con-
strained clustering method [46, 109].

MNIST : The dataset is composed of 60,000 handwritten single-digits, with a
size of 28-by-28 pixels.

Fashion: The dataset contains 60,000 images associated to a label from 10
classes.

CIFAR10 : consists of 50,000 color images in 10 classes.
Reuters : Reuters contains around 810,000 English news stories labeled with a

category tree [60]. Following DEC [101], we consider only the single label doc-
uments belonging to the corporate/industrial, government/social, markets
and economics categories. A subset of 10,000 examples is randomly sampled and
the TF-IDF measure is computed on the 2000 most frequent words.

b. Baselines

Deep clustering models
SDAE+Kmeans : Stacked Denoising Autoencoder (SDAE) learns the represen-

tation of data. Then, K-means is applied to find the clustering in the embedded
space of SDAE.

IDEC : Deep clustering method that learn both the representation and the clus-
ter structure of data[40].

Constrained clustering models
PCK-means, MPCK-means: The classic constrained clustering algorithms for

pairwise constraints[8, 12].
DCC : Deep Constrained Clustering[109] which can handles pairwise, triplet con-

straints.
IDEC-LK : Our framework in Section 5.3.
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c. Experiment setting

The hyper-parameters are selected through a grid search to make the model converge
and achieve the highest constrained score. To prove our model robustness, we use
a single set of hyperparameter values for multiple datasets. For a fair comparison,
this principle also applies to DCC and IDEC. For DCC, we use their default settings
of MNIST.

The optimizer is Adam, with a 0.001 learning rate. The stopping condition is
either it reaches the maximum number of epochs (50) or getting a percentage of
assignment different from the previous epoch less than 0.01%.

Pretraining clustering model In Table 5.1, we report the performance of
SDAE+Kmeans and IDEC on the three datasets. The stacked training and denois-
ing technique in SDAE helps to create strong pretrained autoencoders for IDEC,
Cop-Kmeans, DCC, and IDEC-LK. On the other hand, IDEC shows the effect of
reinforcing the clustering structure to the autoencoder. It helps to improve signifi-
cantly on MNIST while seeing slight improvement or lightly worse in Fashion and
Reuters.

Table 5.1: SDAE+Kmeans and IDEC performance on MNIST, Fashion and Reuters

Data Model NMI ACC
MNIST SDAE+Kmeans 0.7607 ± 0.0001 0.8202 ± 0.0001
MNIST IDEC 0.8667 ± 0.0013 0.8827 ± 0.0009
Fashion SDAE+Kmeans 0.5842 ± 0.0000 0.5168 ± 0.0003
Fashion IDEC 0.5945 ± 0.0008 0.5163 ± 0.0031
Reuters SDAE+Kmeans 0.5474 ± 0.0008 0.7364 ± 0.0005
Reuters IDEC 0.5310 ± 0.0015 0.7124 ± 0.0009

d. Constraint Generation

For the experiments, we need to generate constraints. We explain in this section
how they are generated depending on the type of constraint.

Pairwise constraint To generate N pairwise constraints, we randomly select N
pairs of points. Each pair presents a must-link or cannot-link constraint according
to the ground-truth label.

Triplet constraint To generate a triplet constraint, we randomly select 3 points
and the triplet constraint is satisfied when

• Case 1: Together(a, p) ∧ Apart(a, n) (it means ya = yp ∧ ya ̸= yn)

• Case 2: Apart(a, p) ∧ Apart(a, n) ∧ Apart(p, n) (it means ya ̸= yp ∧ ya ̸=
yn ∧ yp ̸= yn)
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m-Clusters Group Constraint The details of this constraint have been stated
in Subsection 4.3.2. This constraint ensures a group of instances, which share the
same characteristics, spreads to exactly m clusters. m-clusters group constraint is
strongly linked with hierarchical clustering. In some applications, we could know a
group of points not to belong to a single cluster but to a group of clusters correspond-
ing to a upper node in hierarchical clustering. In comparison with classification,
m-clusters group constraint appears when a class contains multiple ”sub-classes”
but the subclass labels are unavailable[74, 89].

Figure 5.4: Examples of m-clusters group constraint. The upper blue area is a group
of instances that belong to two clusters, while the lower blue area is a 3-clusters
group.

In this experiment, we test on MNIST dataset. We selected 4 groups:
G(3, 9), G(6, 8), G(0, 9), G(2, 5). They are pairs of digits that share some similar
shapes. For a group (u, v), we select randomly m = 100 images of either u digit or
v digit.

Implication Constraint Our constraint has the following form:

∧ Together/Apart =⇒ ∧Together/Apart (5.34)

The first part (if-clause) is denoted as P. The second part (then-clause) is desig-
nated as Q. The maximum number of Together/Apart of if-clause in each constraint
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is 5. The maximum number of Together/Apart of then-clause in each constraint is
5. Because of the random selection, the logical forms of implication constraint are
highly diverse. Figure 5.5 shows the various examples for the implication constraint.

P-Q distribution: We generate 100 constraints P =⇒ Q randomly based on
the ground truth for each test. Around 50% of the constraints do not satisfy P ,
therefore P =⇒ Q is valid, the remaining 50% satisfy both P and Q (P = ⊤,
Q = ⊤).

Figure 5.5: Examples of implication constraints. A single line shows Apart relation,
and a double line is for Together. Solid lines belong to the hypothesis P, while dash
lines refer to the conclusion Q. In this case, the constraints enforce the consistency
of the clustering process.
Left (clustering by shape): Apart(A,C) ∧ Apart(F,C) ∧ Together(C,E) =⇒
Apart(C,B) ∧ Together(C,D).
Right (clustering by color): Together(A,C) ∧ Together(E,C) =⇒ Apart(F,C) ∧
Together(C,B) ∧ Apart(C,D).
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5.4.3 Experiments and Analysis for Clustering Quality

In this section, we study the impact of pairwise and triplet constraints on the
clustering quality.

a. Evaluation criteria

In all the datasets, the true class of the objects is available and we use it as the
ground truth to evaluate the accuracy of the clustering. We consider two measures:
Normalized Mutual Information (NMI) and clustering accuracy (ACC), with a one-
to-one mapping between clusters and labels, computed by The Hungarian algorithm
[56]. In both cases the higher the better.

b. Results

For testing the influence of pairwise constraints in MNIST, Fashion and Reuters
dataset, we consider 4 numbers of pairwise constraints (10, 100, 500, 1000). For
each test case, we randomly generate five sets of constraints, we run the system only
once for each set of constraints and we report the mean and the standard deviation
in Figure 5.6. We do the same for triplet constraints (see Figure 5.7, 5.8). In the
figures, we do not report the performance of COP-Kmeans, which gives the worst
result. All results are given in Appendix A.5.

c. Analysis

Pairwise In the MNIST and Fashion datasets, DCC, IDEC-LK-A and IDEC-
LK-B have a similar performance, while IDEC-LK-A has the best performance
with Reuters. The results of IDEC-LK-A and IDEC-LK-B are better than the deep
clustering baseline - IDEC when the number of constraints is greater than 500.

The loss for pairwise constraints in IDEC-LK-B has a similar formulation to the
one of DCC. However, in DCC, the losses have different weights for must-link and
cannot-link constraints. These weights must be tuned with a validation set, which
is usually not available in clustering problems. In our method, the single parameter
for the constrained loss, λc, can be tuned through its ability to satisfy the given
constraints. We made some experiments on the effects of λe on the number of
satisfied constraints and on the value of the Weighted Model counting, which have
both to be maximized. See Appendix A.8. From these experiments, the default
value of λe has been set to 0.1.

Triplet The triplet constraints have less impact on the clustering quality than
the pairwise because it conveys conditional information on the points. Relying on
a Kolmogorov-Smirnov test with p = 0.05 [41], IDEC-LK-A and IDEC-LK-B have
better clustering quality in Reuters while they have similar performance with DCC
in the others datasets.
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Figure 5.6: Clustering performance of pairwise on Fashion (left) and Reuters (right)
dataset

Figure 5.7: Clustering performance of triplet on MNIST dataset
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Figure 5.8: Clustering performance of triplet on Reuters dataset
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5.4.4 Experiments and Analysis for Constraint Satisfaction

In this section, we aim at illustrating two points: first our method can leverage
complex domain knowledge as introduced in a., second, it can learn from it, that is,
it does not only aim at satisfying the constraints but it is also able to satisfy unseen
constraints of the same type (shown in b.). The second point is crucial because
acquiring constraints is expensive, and the set of training constraints is only a small
fraction of all possible interpretations of the domain knowledge.

a. Implication constraint

As introduced in Section 5.2.5, an implication constraint has the form P =⇒ Q,
the first part (if-clause) is denoted as P and the second part (then-clause) as Q. To
study the interest of such constraints, we generate 5 sets of 100 constraints at ran-
dom based on the ground truth. For each constraint, the number of Together/Apart
constraints in P is 3, the number of Together/Apart in Q is 1 and we define the
notion of P-Q distribution: around 20% constraints satisfy P = ⊥ (that means that
the left member is false), the remaining 80% is (P = ⊤, Q = ⊤). We run IDEC-
LK-B with these constraints, since it is more efficient in terms of computation time
than IDEC-LK-A (See more on Section 5.4.5).

Table 5.2: Comparison between IDEC and IDEC-LK-B on the satisfaction of im-
plication constraint.

Data Models ScoreB #Unsat
MNIST IDEC 0.8777 ± 0.0118 13.6 ± 1.5
MNIST IDEC-LK-B 0.8856 ± 0.0130 12.4 ± 1.7
Fashion IDEC 0.7620 ± 0.0442 24.8 ± 4.6
Fashion IDEC-LK-B 0.7743 ± 0.0449 23.2 ± 4.5
Reuters IDEC 0.8290 ± 0.0376 17.8 ± 4.7
Reuters IDEC-LK-B 0.8357 ± 0.0381 17.0 ± 5.0

In Table 5.2, IDEC-LK-B shows the improvement of average constrained scores
(ScoreB) compared to the value of IDEC. So, the number of unsatisfied constrained
is reduced in all three datasets.

b. m-Clusters Group Constraint

In this experiment, we run IDEC-LK-B algorithm with MNIST with m-Clusters
group constraints. Let us recall the definition of a m-cluster group constraint: a
group of points which share some common features are required to belong to at
most m clusters.

We selected 4 groups: G = {G(3, 9), G(6, 8), G(1, 7), G(2, 5)}. They are pairs of
digits that share some similar shapes. For a group G(u, v), we selected randomly
100 images of either u digit or v digit. To observe the change clearer, we chose
them so that a quarter of them have been assigned to a wrong cluster by Stacked
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Denoising Autoencoder (SDAE) and K-Means. For each set of images, we determine
two major clusters (clusters that contain the most points) and put constraints for
each image to belong to one of these two clusters.

Improvement on the training data Figure 5.9 and Figure 5.10 show the train-
ing results of IDEC-LK. Each image is annotated by three numbers. The first num-
ber is the true label of the image. The second number is the clustering results of
IDEC. We use Hungarian mapping [56] to match image labels. The last number is
the clustering results of IDEC-LK.

After the training, all the input constraints are satisfied. In the two figures,
images with black texts, which are already satisfied, do not change. In comparison,
images with green texts have changed their assignments to one of the two specified
clusters after IDEC-LK.

Improvement on the validation data For testing the generalization of our
constraints, we generate all m-clusters group constraints from a validation set of
10,000 images. These constraints have not been used for learning. The number of
unsatisfied constrained in the validation is significantly reduced by 85.7%. Figure
5.11 shows the change the number of satisfied constraints (blue parts) in G(3,9),
G(6,8), G(1,7), G(2,5) after learning with IDEC-LK.

5.4.5 Experiments and Analysis for Complexity

Implication constraints Before computing the loss, we need to compile and op-
timize the SDD structure of each constraint. It is the main bottleneck for learning
with more complex knowledge. Table 5.3 shows the differences between A and B
formulation for implication constraints. We generate 100 Horn clauses of Togeth-
er/Apart. The length is the number of Together/Apart constraints appearing in the
clause. For each clause, we measure the time to construct and to optimize its SDD
structure and the final size of the structure. Formulation B shows a smaller size
and a better compiled time than formulation A. For 4-length constraints in MNIST
dataset, the compilation for formulation A runs out of time, so in the following
experiments, we will use only formulation B.

Table 5.3: Average SDD sizes and compilation times of a Horn clause using formu-
lation A/B

Data Length Formulation SDD size Time (s)
MNIST 4 A - -
MNIST 4 B 415.92 ± 169.54 0.502 ± 0.327
Reuters 10 A 481.09 ± 103.96 0.284 ± 0.128
Reuters 10 B 272.40 ± 79.43 0.131 ± 0.056
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Figure 5.9: Training results of G(1,7). Each image has three numbers from left
to right: Label, Initial cluster assignment from IDEC, assignment after training
with IDEC-LK. Black numbers mean that the initial assignment satisfies G(1,7)
constraint. All of them do not change after the training. Green text is for the
images that have changed their assignments to meet the requirement.
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Figure 5.10: Training results of G(6,8). Each image has three numbers from left
to right: Label, Initial cluster assignment from IDEC, assignment after training
with IDEC-LK. Black numbers mean that the initial assignment satisfies G(6,8)
constraint. All of them do not change after the training. Green text is for the
images that have changed their assignments to meet the requirement.
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Figure 5.11: The constraint learning of m-clusters group constraint validated on
unseen data
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5.5 Conclusion

In this chapter, we present a general framework for integrating knowledge in con-
strained clustering problems. Because of the clustering context, the association
between logical symbols and neurons of each point needs to consider the depen-
dence of outputs and the partition constraints. Hence, we propose two scores for
integrating expert constraints, and we show how these scores can be computed
through Weight Model Counting. Relying on logic allows us to express many kinds
of constraints. We show the flexibility and adaptability of our method by consider-
ing new constraints such as implication constraints or m-cluster group constraints.
Next, IDEC-DK, which is a deep constrained clustering system based on a deep
clustering model (IDEC), has been introduced. Our details in implementation and
learning scheme help improve the learning efficiency in practical usages and easy
for reusable/reproducible purposes. In our experiments, we obtain similar perfor-
mance to other systems with well-known constraint types, but we also show the
ability to integrate new constraints and even generalize the constraints to unseen
points. We plan to embed our proposal in other deep clustering architectures to
show the generality of our approach.

The main limitation of this work is the complexity for computing SDD trees. So,
it prevents us from incorporating cluster-level constraints or constructing a single
loss for the whole constraint set. So we aim at reducing complexity by introducing
new formulations or approximation schemes. However, let us notice that SDD trees
are computed only once at the beginning of the learning process.



Conclusion and outlook

Contribution

Constrained clustering or semi-supervised clustering is a dominant application of
machine learning. Because of the natural process of data collection, the data are
often unlabeled. Therefore, the task of clustering data is replied on the domain
knowledge, which is expressed by the expert constraints. The constrained clustering
algorithm could be targeting a specific type of constraint such as pairwise, triplet,
or cluster-size constraints. Alternately, the algorithm could be a general framework
that makes adding new constraints easy.

In our work, we are interested in integrating knowledge in general form in a
clustering process. We consider it in two ways: classical optimization problem and
deep learning problem.

The context of the first framework In classical approach, constrained clus-
tering frameworks are developed using a general optimization tool, such as Integer
Linear Programming (ILP) [3, 67, 76], Boolean satisfiability problem (SAT) [25, 65]
or Constraint Programming [21, 22]. Most of these methods are in-process optimiza-
tion which they try to find a global optimal solution that satisfies all the constraints.
However, they suffer from a lack of efficiency and flexibility as they need to handle
and specify both the clustering objective and the constraint requirements. Kuo et
al.[58] propose a postprocess approach where the expert constraints are handled af-
ter receiving a clustering result. This approach simplifies the optimization problem
and can be applied to an existing clustering algorithm. Nevertheless, the objective
function, which is based on a hard clustering result, yield less competitive results
than other works.

The first framework considers expert constraints as a posterior knowledge. The
framework modifies the result from a clustering algorithm to satisfy the expert con-
straints. While the previous postprocess framework optimized the number of reas-
signed points, our works consider the ”clustering score” - the cost of a new partition
based on the clustering algorithm. We propose two clustering scores (see Section
4.1.2), one using the probability-based scores (soft scores) and one based on the
distances. While the calculation of distances is straightforward, the formulation
soft scores depend on the clustering methods. We have surveyed and formulated
different ways to compute adapting for each set of clustering algorithms, such as
centroid-based clustering, deep clustering, or density-based clustering. The exper-
iments show a significant improvement from the previous postprocess work as our
method better utilizes the information in the clustering process. Moreover, our
clustering qualities for individual constraint types are competitive compared with
the best algorithms for each kind. At the same time, the computational time is
much less than the other in-process methods. A number of practical scenarios of
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combining different constraint types are tested to prove the ability of our framework
to handle multiple constraints on a large number of data points that the previous
declarative models are incapable of.

The context of the second framework Recently, the neural network has
gained popularity in both data representation and knowledge integration. The
data representation is learned automatically by the machine through unique neural
structures such as Convolutional Neural Network (CNN) and Autoencoder. So,
clustering with neural networks (deep clustering) has become state-of-the-art for
many datasets in various domains. However, to achieve the best performance for a
dataset, it is necessary to add the human knowledge relevant to the data. One of
the most promising directions of knowledge integration is to express the knowledge
in a formal language such as first-order logic and then learn them with a regular-
ized loss. This approach standardized the form of the knowledge, which integrates
different types and even complex knowledge into the machine. There have been few
works [104, 102] to apply this approach to the classification problem, but it has not
only been studied and adapted for the constrained clustering.

The second framework is the first constrained clustering framework to integrate
expert constraints as logical knowledge in neural network architecture. We propose
two formulations, both of which are based on the neural outputs of a deep clustering
model. So, the framework can be applied to different neural architectures and
trained with/without a deep clustering process. In the first formulation, all of the
logical variables are directly linked to the neurons. So the clustering condition
needs to be enforced. The second formulation connects the outputs with a set of
sentences so that the clustering context is taking care of and the formulations are
only for expert constraints. Then, both of the formulations are translated directly
into a semantics loss. Therefore, the methods are independent of the representation
of knowledge. In other words, the expert constraints presented, whether in the
disjunctive normal form (DNF), the conjunctive normal form (CNF), or an arbitrary
form, produce the same result. Our use of the Sentential Decision Diagrams (SDD)
reduces the complexity of loss calculation and enables the integration of complex
constraints such as implication constraints.

Another important contribution is to formulate and apply new constraint
types to the constrained clustering problem. From concept or initial ideas in
the domain knowledge such as relative comparisons, fairness and feature sharing,
we construct the formulation for logical triplet constraints, combined fairness and
property-cardinality constraint. The experiments shows that integrating these con-
straints helps to improve the clustering output and achieve our target properties.

Future Work

Directions for future work are:
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The construction of the allocation matrix. The first goal for the postprocess
framework is to improve the construction of the cluster fractional allocation matrix
(CFAM). In our proposed method for computing CFAM, the parameters impacting
the degree of fuzziness such as v degree of freedom in Student’s t-distribution are
fixed for all datasets. It is important to see how this value can be chosen by internal
criteria on clustering: maximum split, density of the cluster, Davies-Bouldin index.

Different ways to model the postprocess problem. The second goal for the
postprocess framework is to improve the efficiency of the algorithm. It would be
interesting to find different ways of modelling the constrained clustering through
different variables and equation. An example could be a softer framework that
allows some constraints to be not satisfied.

The genericity of our second framework. For the second framework, our first
target is to consolidate the genericity of the work. We aim at experimenting with
more deep clustering model on various datasets from different domains. Then, we
can analyze the different in performance with other methods so that we can adapt
our framework and our training scheme to each specific scenario.

Other methods for knowledge integration. Because of the complexity of
Weighted Model Counting (WMC), we have had to make some restrictions on our
framework such as handling constraints separately. Our second target for deep
clustering with knowledge is to use other knowledge integration methods. For the
learning with logical representation, the satisfaction of formulae can be learn by a
graph embedding network instead of intractable calculation with WMC. A potential
of equation-based or integer representation of expert constraints are also worth to
further investigate.
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Appendix A

Appendix

A.1 Sentential Decision Diagrams for Probabilis-

tic Reasoning

A.1.1 Introduction

Given a scenario where the presentation of knowledge is in propositional logic (de-
noted as f). Probabilistic reasoning is method to indicate the uncertainty of the
knowledge based on the uncertainty of the predicates.

In this section, we are going to introduce methods for probabilistic reasoning
task for independent predicates.

Through out this section, upper case letters (e.g., X) will be used to denote
variables and lower case letters to denote their instantiations (e.g., x). Bold upper
case letters (e.g., X) will be used to denote sets of variables and bold lower case
letters to denote their instantiations (e.g., x)

We denotes the probability when variable X instantiate to True (⊤) is P (X).
Then, the probability of a Boolean function α defined over a set of independent
variables X = {X1, · · · , Xn} is

P (α) =
∑
x|=α

∏
i:x|=Xi

P (X)
∏

i:x|=¬Xi

(1− P (X)) (A.1)

In literature, the right-hand side of A.1 is called Weighted Model Counting.

A.1.2 Shannon decomposition

The main approach to calculate the probability of a Boolean function f is through
the decomposition. The simplest decomposition is the Shannon decomposition.

First, we define the following notations. The conditioning of f on instantiation
x, written f |x, is a subfunction that results from setting variables X to their values
in x. A function f essentially depends on variable X iff f |X ̸= f |¬X. We write
f(Z) to mean that f can only essentially depend on variables in Z.

The decomposition process is as follows. First, select a variable X to decompose
f: f = f |X ∨ f |¬X. Next, if f |X depends on other variables, decompose it further.
Apply the same procedure with f |¬X.

Example Given a Boolean function is f = (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).
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The Shannon decomposition of f is

f = (A ∧ f |A) ∨ (¬A ∧ f |¬A)
= (A ∧ [B ∨ (C ∧D)]) ∨ (¬A ∧ [(B ∧ C) ∨ (C ∧D)])

= (A ∧ [B ∨ (¬B ∧ C ∧D)]) ∨ (¬A ∧ [(B ∧ C) ∨ (¬B ∧ C ∧D)])

= · · ·

(A.2)

A.1.3 Theory and method

a. (X,Y)-decomposition

If a Boolean function f can be expressed as: f(X,Y) = (p1(X)∧s1(Y)∨· · ·∨(pn(X)∧
sn(Y)) then the set {∀i ∈ [1, n] : (pi, si)} is called an (X,Y)-decomposition of the
function f.

A special case of decomposition is the partition. (X,Y) is a partition iff (∀i :
pi ̸= false) ∧ (∀i ̸= j : pi ∧ pj = false) ∧ (∨ipi = true)

b. Vtree for variable X

There exist multiple ways to obtain (X,Y)-decomposition. However, if the decom-
position of X follows a vtree which is a full binary tree with its leaves correspond-
ing to the variables in X then (X,Y)- decomposition is uniquely determined. The
structure of this decomposition is called Sentential Decision Diagram (SDD). An
example of vtree and its corresponding SDD is shown in Figure A.1.

Figure A.1: A vtree (left) and its corresponding SDD (right) for function f =
(A ∧B) ∨ (B ∧ C) ∨ (C ∧D). Source: Darwiche[23].

c. SDD structure and optimization

Algorithm for optimizing the decomposition (SDD):
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1. Constructing a vtree (a dissection of variable order)

2. Computing SDD

3. Optimizing vtree and adjusting SDD after each operation on v-tree

A.1.4 Examples in constrained clustering

Pairwise constraints Figure A.2, A.3 present the SDD structure of cannot −
link(u, v) using formulation A and B, respectively.

9

¬Au[2] Au[3] Au[2] ⊥

9

¬Au[2] ¬Au[3] Au[2] ⊥

9

Au[2] ¬Au[3] ¬Au[2] ⊥

9

Au[2] ¬Au[3] ¬Au[2] Au[3]

7

¬Au[1] Au[1]  

7

¬Au[1]Au[1]  

7

¬Au[1] Au[1] ⊥

5

¬Av[3] Av[3] ⊥

5

Av[3]  ¬Av[3] ⊥

5

¬Av[3] Av[3] ⊥

3

Av[2]  ¬Av[2]

3

¬Av[2] Av[2] ⊥

1

¬Av[1] Av[1]  

Figure A.2: The presentation of cannot-link constraint between u and v for k = 3
using formulation A
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9

Bu[2] ¬Bv[2] ¬Bu[2] Bv[2]

7

¬Bv[1]  Bv[1] ⊤

5

  ¬Bv[1] ¬Bu[3] ⊥

3

¬Bu[1] Bu[3] Bu[1] ⊥

3

Bu[1] Bu[3] ¬Bu[1] ⊥

1

Bv[3]  ¬Bv[3] ⊥

Figure A.3: The presentation of cannot-link constraint between u and v for k = 3
using formulation B
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Triplet constraints

9

Bₐ[2] Bₚ[1] ¬Bₐ[2] ⊥

9

Bₐ[2] ¬Bₚ[1] ¬Bₐ[2] ⊥

7

Bₐ[1]  ¬Bₐ[1] Bₐ[2]

7

¬Bₐ[1]  Bₐ[1] Bₐ[2]

5

Bₙ[1] ¬Bₙ[1]  

3

Bₙ[2] ¬Bₙ[2] ⊥

1

Bₚ[2] ¬Bₚ[2] ⊥

Figure A.4: Triplet constraint for k = 2 presented by B formulation
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A.2 Propositions for B formulation

Definition In our main paper, we give the definitions of β and B as follows:
For each point i, we will define the formulas βi1, ..., βik, such that βij interpreted

to ⊤ means that the point i is assigned to cluster j. Let B be a set of logical
variables {Bij : i ∈ [1, n], j ∈ [1, k]}. The formula βij is defined as follows:

βij
def
= Bij ∧

∧
t∈[1,j−1] ¬Bit for all j ∈ [1, k − 1],

βik
def
=
∧

t∈[1,k−1] ¬Bit

(A.3)

We define, as follows, the weight wB for the variables:

wB(Bij) =

{
Sij

1−
∑

t∈[1,j−1] Sit
if
∑

t∈[1,j−1] Sit < 1

1 otherwise
(A.4)

a. Proposition 1.

For any constrained problem Pc, we have WMC(Pc) =
∑

p∈Mc

∏
i∈[1,n] Sipi.

Proof. We have: WMC(Pc) =
∑

p∈Mc
WMC(p) =

∑
p∈Mc

WMC(∧i∈[1,n]βipi).
With the definition given in (A.3), we can observe that for i ̸= i′, the formulas

βipi and βi′pi′
do not share any common variables. Using axiom 6 in [104], we have

WMC(∧i∈[1,n]βipi) =
∏

i∈[1,n] WMC(βipi).

According to Lemma 2, we have WMC(βipi) = Sipi . Therefore WMC(Pc) =∑
p∈Mc

∏
i∈[1,n] Sipi .

b. Proposition 2.

The clustering condition is always satisfied with any instantiation of B.

Proof. The clustering condition states that all points must be assigned to at
most one cluster and all points must be assigned to at least one cluster. The first
statement is proven in Lemma 3 and the second in Lemma 4.

The proofs are the same for all points i. Therefore, for sake of simplicity we
remove the index i. This leads to the definitions as follow.

Let B be a set of logical variables {Bj : j ∈ [1, k]}. The formula βj is defined as
follows:

βj
def
= Bj ∧

∧
t∈[1,j−1] ¬Bt for all j ∈ [1, k − 1],

βk
def
=
∧

t∈[1,k−1] ¬Bt

(A.5)

If we call s the row Si (corresponding to i) in the matrix S, the weight wB is
corresponding to:

wB(Bj) =

{
sj

1−
∑

t∈[1,j−1] st
if
∑

t∈[1,j−1] st < 1

1 otherwise
(A.6)
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A.2.1 Lemmas and proofs

a. Lemma 1.

For all j ∈ [1..k], there exists an assignment b for each Bl such that b |= βj.

Proof. For j = 1, β1
def
= B1. Let b be such that B1 = true. We have b |= β1.

For 2 ≤ j ≤ k − 1, βj
def
= Bj ∧

∧
l<j ¬Bl. Let b be such that Bj = true and

Bl = false for all l < j. We have b |= βj.

For j = k, βj
def
=
∧

l<k ¬Bl. Let b = {¬Bl : 1 ≤ l ≤ k − 1}. We have b |= βk

b. Lemma 2.

The weighted model counting of βj is equal to sj.

∑
b|=βj

∏
B∈b

wB(B)
∏

¬B∈b

(1− wB(B)) = sj (A.7)

Proof. We consider two cases: j ∈ [1, k − 1] and j = k. For j ∈ [1, k − 1], we
denote bprefix = {bp : p ∈ [1, j]} and bpostfix = {bp : p ∈ [j + 1, k − 1]}.
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∑
b|=βj

∏
B∈b

wB(B)
∏

¬B∈b

(1− wB(B))

=
∑

bprefix|=βj

 ∏
B∈bprefix

wB(B)
∏

¬B∈bprefix

(1− wB(B))
∑

bpostfix|=βj

∏
B∈bpostfix

wB(B)
∏

¬B∈bpostfix

(1− wB(B))


=

∑
bprefix|=βj

 ∏
B∈bprefix

wB(B)
∏

¬B∈bprefix

(1− wB(B))
∑

bpostfix|=⊤

∏
B∈bpostfix

wB(B)
∏

¬B∈bpostfix

(1− wB(B))


(because no variables of bpostfix appear in βj)

=
∑

bprefix|=βj

 ∏
B∈bprefix

wB(B)
∏

¬B∈bprefix

(1− wB(B))× 1


(because WMC(⊤) = 1)

=
∑

bprefix={({¬Bl:l∈[1,j−1]},Bj})

 ∏
B∈bprefix

wB(B)
∏

¬B∈bprefix

(1− wB(B))


=wB(Bj)

∏
l∈[1,j−1]

(1− wB(Bl))

=
sj

1−
∑

t∈[1,j−1] st

∏
l∈[1,j−1]

(
1− sl

1−
∑

t∈[1,l−1] st

)

=
sj

1−
∑

t ∈ [1, j − 1]st
× (1− s1)×

1− s1 − s2
1− s1

× . . .×
1−

∑
t∈[1,j−1] st

1−
∑

t∈[1,j−2] st

=sj
(A.8)

For j = k, ∑
b|=βk

∏
B∈b

wB(B)
∏

¬B∈b

(1− wB(B))

=
∏

j∈[1,k−1]

(1− wB(Bj))

=
∏

j∈[1,k−1]

(
1− sj

1−
∑

t∈[1,j−1] st

)

=(1− s1)×
1− s1 − s2

1− s1
× . . .×

1−
∑

t∈[1,k−1] st

1−
∑

t∈[1,k−2] st

=1−
∑

t∈[1,k−1]

st

=sk

(A.9)
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c. Lemma 3.

A point is assigned to at most one cluster. That means that for all i, j ∈ [1, k], i ̸= j
we have:

¬βi ∨ ¬βj ≡ ⊤ (A.10)

Proof. Without loss of generality, we assume i < j. We consider two cases: when
j < k and when j = k.

Case 1: i < j < k, we have ¬βi ∨ ¬βj

¬βi ∨ ¬βj ≡ ¬(∧t∈[1,i−1]¬Bt ∧Bi) ∨ ¬(∧t∈[1,j−1]¬Bt ∧Bj)

≡ ∨t∈[1,i−1]Bt ∨ ¬Bi ∨t∈[1,j−1] Bt ∨ ¬Bj

≡ ∨t∈[1,i−1]Bt ∨ ¬Bi ∨Bi ∨t∈[i+1,j−1] Bt ∨ ¬Bj

≡ ⊤

Case 2: i < jandj = k, we have ¬βi ∨ ¬βk

¬βi ∨ ¬βk ≡ ¬(∧t∈[1,i−1]¬Bt ∧Bi) ∨ ¬(∧t∈[1,k−1]¬Bt)

≡ ∨t∈[1,i−1]Bt ∨ ¬Bi ∨t∈[1,k−1] Bt

≡ ∨t∈[1,i−1]Bt ∨ ¬Bi ∨Bi ∨t∈[i+1,k−1] Bt

≡ ⊤

d. Lemma 4.

A point must be assigned to at least one cluster, that means:

∨i∈[1,k] βi ≡ ⊤ (A.11)

Proof. We have:

∨i∈[1,k]βi ≡ ∨i∈[1,k−1](∧t∈[1,i−1]¬Bt ∧Bi) ∨ (∧t∈[1,k−1]¬Bt)

≡ (B1 ∨ (¬B1 ∧B2)) ∨i∈[3,k−1] (∧t∈[1,i−1]¬Bt ∧Bi) ∨ (∧t∈[1,k−1]¬Bt)

≡ (B1 ∨B2) ∨i∈[3,k−1] (∧t∈[1,i−1]¬Bt ∧Bi) ∨ (∧t∈[1,k−1]¬Bt)

≡ . . .

≡ (B1 ∨B2 ∨ . . . ∨Bk−1) ∨ (∧t∈[1,k−1]¬Bt)

≡ (∨t∈[1,k−1]Bt) ∨ ¬(∨t∈[1,k−1]Bt)

≡ ⊤
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A.3 Performance of SDAE+Kmeans

In Table A.1, A.2, and A.3, we use the same set of hyper-parameters.
In SDAE, IDEC, DCC and EDEC, we use the same neural architecture for the

autoencoder. The encoder network is a fully connected multi-layer perceptron with
dimensions d-500-500-2000-10 for all datasets, where d is the dimension of input
data. The decoder network is a mirror of the encoder. All the internal layers are
activated by the ReLU [70] function.

The number of epochs for training each layer is 300. The number of epochs for
training the whole autoencoder is 500. The optimizer is Stochastic Gradient Descent
(SGD) with a momentum of 0.9. The initial learning rate is 0.1 and decreases by
one-tenth every 100th epoch. In all the training, the ratio of corruption is 0.2,
meaning that 20% of inputs are set to 0.

Table A.1: Raw training results on MNIST with SDAE + Kmeans

Data Run NMI ACC
MNIST 0 0.7653 0.8270
MNIST 1 0.7652 0.8290
MNIST 2 0.7554 0.8141
MNIST 3 0.7597 0.8173
MNIST 4 0.7615 0.8198
MNIST Average 0.7614 ± 0.0037 0.8214 ± 0.0057

Table A.2: Raw training results on Fashion with SDAE + Kmeans

Data Run NMI ACC
Fashion 0 0.5842 0.5170
Fashion 1 0.5723 0.5089
Fashion 2 0.5688 0.4979
Fashion 3 0.5885 0.5312
Fashion 4 0.5899 0.5224
Fashion Average 0.5807 ± 0.0086 0.5155 ± 0.0114

Table A.3: Raw training results on Reuters with SDAE + Kmeans

Data Run NMI ACC
Reuters 0 0.5484 0.7371
Reuters 1 0.5222 0.7162
Reuters 2 0.5229 0.7138
Reuters 3 0.5171 0.7626
Reuters 4 0.4473 0.6612
Reuters Average 0.5116 ± 0.0339 0.7182 ± 0.0335
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A.4 Performance of IDEC

In Table A.4, we report IDEC results (with five trials as well) using the same pre-
trained model computed by SDAE. Compared to SDAE+Kmeans, IDEC improved
significantly on the MNIST dataset and has modest or no improvement on other
datasets.

The optimizer is Adam with the learning rate of 0.001 [53]. The maximum
number of epochs is 200 but it can stop before if the change of cluster assignment
compared to the last epoch is less than 0.1%.

Table A.4: SDAE+IDEC performance on MNIST, Fashion and Reuters

Data Model NMI ACC
MNIST SDAE+IDEC 0.8668 ± 0.0005 0.8814 ± 0.0011
Fashion SDAE+IDEC 0.5966 ± 0.0027 0.5183 ± 0.0033
Reuters SDAE+IDEC 0.5309 ± 0.0015 0.7121 ± 0.0010

A.5 Constrained Clustering Results

A.5.1 Pairwise constraints

In Table A.5, we report Normalized Mutual Information (NMI), Accuracy (ACC),
comparison to IDEC (vsIDEC), number of unsatisfied constraints and time running
(in seconds). For each dataset and one specific number of constraints, we generate
five random sets of constraints (we called them test cases). Then, we run each
method once for each test case to measure the average and standard deviation of
the metrics mentioned above. In the NMI and ACC columns, we highlight the best
performance by green color and the competitive performances (p-value of the same
hypothesis > 0.05) by blue color. In the vsIDEC column, the first number is the
p-value of the KS test [41] testing if the NMI of IDEC is similar to the compared
method, the second number is the comparison with accuracy. We highlight in bold
when the average value of the constrained clustering method is better than IDEC
value.

Table A.6 shows how differs each run of IDEC-LK with the same test case (i.e.
the same set of constraints). The difference between runs of the same test case is
less than the difference between different test cases (different sets of constraints).
Overall, IDEC-LK shows a relatively small change between each run.

A.5.2 Triplet constraints

The performances with triplet constraints are reported similar to those of pairwise
constraints in Table A.7.
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Table A.5: Comparison on clustering quality between the baselines and our IDEC-
LK with pairwise constraints. Green and blue numbers are for the best and second-
best values, respectively.

Data N Models NMI ACC vsIDEC #Unsat Time (s)
CIFAR10 100 DCC 0.1211 ± 0.0015 0.2489 ± 0.0015 0.01 0.01 0.8000 ± 0.7483 103 ± 6
CIFAR10 100 MPCK-means 0.1139 ± 0.0022 0.2380 ± 0.0066 0.01 0.36 0 ± 0 63.66 ± 0.35
CIFAR10 100 PCK-means 0.1183 ± 0.0009 0.2413 ± 0.0044 0.36 0.87 10.00 ± 3.58 53.87 ± 15.47
CIFAR10 100 IDEC-LK-A 0.1167 ± 0.0014 0.2419 ± 0.0026 0.36 0.36 0.2000 ± 0.4000 511 ± 18
CIFAR10 1000 DCC 0.1202 ± 0.0014 0.2448 ± 0.0051 0.01 0.36 26.40 ± 4.36 93.03 ± 25.83
CIFAR10 1000 MPCK-means 0.1145 ± 0.0064 0.2363 ± 0.0114 0.36 0.08 0 ± 0 247 ± 3
CIFAR10 1000 PCK-means 0.1175 ± 0.0027 0.2423 ± 0.0056 0.87 0.36 81.60 ± 2.24 69.91 ± 20.72
CIFAR10 1000 IDEC-LK-A 0.1189 ± 0.0009 0.2424 ± 0.0013 0.08 0.36 3.40 ± 1.74 475 ± 17
CIFAR10 1000 IDEC-LK-B 0.1199 ± 0.0009 0.2426 ± 0.0017 0.01 0.36 1.80 ± 0.75 631 ± 16
MNIST 100 DCC 0.8682 ± 0.0011 0.8817 ± 0.0017 0.36 1.00 0.2000 ± 0.4000 288 ± 8
MNIST 100 MPCK-means 0.7154 ± 0.0198 0.7356 ± 0.0313 0.01 0.01 0 ± 0 58.53 ± 1.37
MNIST 100 PCK-means 0.7477 ± 0.0199 0.7743 ± 0.0509 0.01 0.01 3.60 ± 2.33 44.31 ± 15.60
MNIST 100 IDEC-LK-A 0.8677 ± 0.0010 0.8815 ± 0.0005 0.36 0.87 0 ± 0 240 ± 7
MNIST 100 IDEC-LK-B 0.8672 ± 0.0012 0.8814 ± 0.0011 0.87 1.00 0 ± 0 263 ± 9
MNIST 1000 DCC 0.8689 ± 0.0008 0.8815 ± 0.0007 0.01 0.87 5.60 ± 1.36 277 ± 9
MNIST 1000 MPCK-means 0.7589 ± 0.0171 0.7788 ± 0.0413 0.01 0.01 0 ± 0 211 ± 3
MNIST 1000 PCK-means 0.7463 ± 0.0228 0.7698 ± 0.0543 0.01 0.01 26.00 ± 5.80 32.97 ± 15.90
MNIST 1000 IDEC-LK-A 0.8682 ± 0.0013 0.8825 ± 0.0011 0.36 0.87 0 ± 0 240 ± 10
MNIST 1000 IDEC-LK-B 0.8680 ± 0.0017 0.8826 ± 0.0012 0.08 0.36 0 ± 0 388 ± 27
Fashion 100 DCC 0.5945 ± 0.0032 0.5183 ± 0.0037 0.87 0.87 1.40 ± 1.02 176 ± 45
Fashion 100 MPCK-means 0.5747 ± 0.0124 0.5122 ± 0.0403 0.08 0.36 0 ± 0 60.12 ± 1.34
Fashion 100 PCK-means 0.5756 ± 0.0110 0.5228 ± 0.0067 0.01 0.87 4.80 ± 1.17 38.59 ± 11.26
Fashion 100 IDEC-LK-A 0.5984 ± 0.0010 0.5205 ± 0.0016 0.36 0.36 0.2000 ± 0.4000 247 ± 0
Fashion 100 IDEC-LK-B 0.5976 ± 0.0013 0.5210 ± 0.0030 0.36 0.36 0.2000 ± 0.4000 270 ± 23
Fashion 1000 DCC 0.6000 ± 0.0019 0.5241 ± 0.0039 0.08 0.36 26.80 ± 4.12 140 ± 16
Fashion 1000 MPCK-means 0.5749 ± 0.0138 0.5312 ± 0.0292 0.08 0.36 0 ± 0 205 ± 4
Fashion 1000 PCK-means 0.5714 ± 0.0212 0.5314 ± 0.0293 0.08 0.36 44.40 ± 7.39 37.02 ± 13.19
Fashion 1000 IDEC-LK-A 0.6024 ± 0.0013 0.5259 ± 0.0024 0.08 0.08 1.0000 ± 1.5492 248 ± 1
Fashion 1000 IDEC-LK-B 0.6009 ± 0.0019 0.5230 ± 0.0034 0.08 0.36 1.40 ± 1.85 358 ± 17
Reuters 100 DCC 0.5450 ± 0.0050 0.7248 ± 0.0039 0.01 0.01 1.40 ± 1.02 2.90 ± 0.55
Reuters 100 MPCK-means 0.5086 ± 0.0357 0.6943 ± 0.0744 0.36 0.36 0.2000 ± 0.4000 53.27 ± 0.62
Reuters 100 PCK-means 0.5224 ± 0.0218 0.7557 ± 0.0425 0.36 0.08 9.40 ± 1.36 14.82 ± 5.72
Reuters 100 IDEC-LK-A 0.5376 ± 0.0033 0.7148 ± 0.0021 0.01 0.36 0 ± 0 5.17 ± 0.53
Reuters 100 IDEC-LK-B 0.5337 ± 0.0049 0.7133 ± 0.0028 0.87 0.87 0 ± 0 7.33 ± 2.23
Reuters 1000 DCC 0.5655 ± 0.0086 0.7477 ± 0.0030 0.01 0.01 48.00 ± 6.20 3.46 ± 0.41
Reuters 1000 MPCK-means 0.5262 ± 0.0330 0.7251 ± 0.0412 0.36 0.36 0 ± 0 167 ± 2
Reuters 1000 PCK-means 0.5174 ± 0.0288 0.7343 ± 0.0377 0.87 0.08 104 ± 17 14.80 ± 2.34
Reuters 1000 IDEC-LK-A 0.6317 ± 0.0120 0.7786 ± 0.0072 0.01 0.01 0.4000 ± 0.8000 17.19 ± 20.09
Reuters 1000 IDEC-LK-B 0.5927 ± 0.0105 0.7563 ± 0.0079 0.01 0.01 0.2000 ± 0.4000 27.52 ± 9.88

Table A.6: Stability of pairwise IDEC-LK for five different runs for one test case

Data N Models NMI ACC vsIDEC #Unsat Time (s)
MNIST 1000 IDEC-LK-A 0.8675 ± 0.0008 0.8834 ± 0.0003 0.36 0.08 0 ± 0 234 ± 5
MNIST 1000 IDEC-LK-B 0.8671 ± 0.0009 0.8824 ± 0.0008 0.87 0.36 0 ± 0 396 ± 20
Fashion 1000 IDEC-LK-A 0.6019 ± 0.0006 0.5261 ± 0.0038 0.08 0.08 1.0000 ± 0.6325 248 ± 1
Fashion 1000 IDEC-LK-B 0.6013 ± 0.0008 0.5273 ± 0.0011 0.08 0.01 0.6000 ± 0.4899 362 ± 5
Reuters 1000 IDEC-LK-A 0.6202 ± 0.0026 0.7746 ± 0.0020 0.01 0.01 0 ± 0 8.77 ± 2.08
Reuters 1000 IDEC-LK-B 0.5870 ± 0.0024 0.7519 ± 0.0020 0.01 0.01 0 ± 0 27.25 ± 3.76
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Table A.7: Comparison on triplet constraints with DCC and IDEC-LK

Data N Models NMI ACC vsIDEC #Unsat Time (s)
MNIST 10 DCC 0.8662 ± 0.0003 0.8805 ± 0.0004 0.08 0.87 0 ± 0 133 ± 6
MNIST 10 IDEC-LK-A 0.8676 ± 0.0009 0.8813 ± 0.0005 0.36 0.87 0 ± 0 235 ± 3
MNIST 10 IDEC-LK-B 0.8665 ± 0.0012 0.8800 ± 0.0006 0.36 0.36 0 ± 0 253 ± 3
MNIST 100 DCC 0.8659 ± 0.0002 0.8805 ± 0.0011 0.01 0.87 0 ± 0 127 ± 5
MNIST 100 IDEC-LK-A 0.8678 ± 0.0020 0.8815 ± 0.0017 0.87 0.87 0 ± 0 252 ± 12
MNIST 100 IDEC-LK-B 0.8666 ± 0.0016 0.8812 ± 0.0011 0.87 1.00 0 ± 0 436 ± 2
MNIST 500 DCC 0.8669 ± 0.0005 0.8817 ± 0.0016 0.87 1.00 1.80 ± 0.75 151 ± 11
MNIST 500 IDEC-LK-A 0.8631 ± 0.0020 0.8792 ± 0.0012 0.01 0.08 0 ± 0 296 ± 14
MNIST 500 IDEC-LK-B 0.8685 ± 0.0010 0.8815 ± 0.0008 0.01 0.87 0 ± 0 1263 ± 2
MNIST 1000 DCC 0.8692 ± 0.0006 0.8855 ± 0.0015 0.01 0.08 2.40 ± 1.36 191 ± 21
MNIST 1000 IDEC-LK-A 0.8588 ± 0.0017 0.8771 ± 0.0013 0.01 0.01 0.8000 ± 0.7483 315 ± 1
MNIST 1000 IDEC-LK-B 0.8682 ± 0.0013 0.8812 ± 0.0011 0.08 1.00 0 ± 0 2398 ± 74
Fashion 10 DCC 0.5934 ± 0.0008 0.5119 ± 0.0032 0.08 0.08 0 ± 0 98.69 ± 8.97
Fashion 10 IDEC-LK-A 0.5981 ± 0.0005 0.5222 ± 0.0027 0.36 0.36 0 ± 0 246 ± 1
Fashion 10 IDEC-LK-B 0.5965 ± 0.0020 0.5194 ± 0.0040 1.00 0.87 0 ± 0 266 ± 5
Fashion 100 DCC 0.5927 ± 0.0013 0.5111 ± 0.0026 0.08 0.08 1.80 ± 1.33 90.90 ± 7.01
Fashion 100 IDEC-LK-A 0.5990 ± 0.0010 0.5236 ± 0.0034 0.36 0.36 0 ± 0 254 ± 1
Fashion 100 IDEC-LK-B 0.5969 ± 0.0014 0.5175 ± 0.0021 1.00 0.87 0.2000 ± 0.4000 456 ± 3
Fashion 500 DCC 0.5989 ± 0.0020 0.5219 ± 0.0067 0.36 0.36 8.80 ± 2.32 141 ± 26
Fashion 500 IDEC-LK-A 0.5989 ± 0.0014 0.5241 ± 0.0028 0.36 0.08 1.20 ± 1.17 285 ± 0
Fashion 500 IDEC-LK-B 0.5992 ± 0.0015 0.5228 ± 0.0022 0.08 0.36 1.20 ± 1.17 1312 ± 1
Fashion 1000 DCC 0.6009 ± 0.0042 0.5370 ± 0.0048 0.36 0.01 15.20 ± 4.40 270 ± 38
Fashion 1000 IDEC-LK-A 0.5981 ± 0.0028 0.5286 ± 0.0053 0.87 0.08 8.80 ± 0.98 329 ± 0
Fashion 1000 IDEC-LK-B 0.6003 ± 0.0013 0.5283 ± 0.0065 0.08 0.08 4.60 ± 3.38 2413 ± 9
Reuters 10 DCC 0.4687 ± 0.0094 0.4590 ± 0.0165 0.01 0.01 0 ± 0 4.52 ± 0.58
Reuters 10 IDEC-LK-A 0.5329 ± 0.0056 0.7140 ± 0.0034 0.36 0.08 0 ± 0 5.86 ± 1.92
Reuters 10 IDEC-LK-B 0.5337 ± 0.0034 0.7143 ± 0.0028 0.08 0.36 0 ± 0 6.31 ± 1.26
Reuters 100 DCC 0.4839 ± 0.0091 0.4698 ± 0.0066 0.01 0.01 0 ± 0 4.62 ± 0.55
Reuters 100 IDEC-LK-A 0.5285 ± 0.0044 0.7102 ± 0.0026 0.36 0.36 0 ± 0 8.43 ± 2.77
Reuters 100 IDEC-LK-B 0.5306 ± 0.0043 0.7118 ± 0.0040 0.87 0.87 0 ± 0 15.12 ± 3.90
Reuters 500 DCC 0.4829 ± 0.0087 0.4791 ± 0.0062 0.01 0.01 0.8000 ± 0.7483 5.71 ± 0.74
Reuters 500 IDEC-LK-A 0.5277 ± 0.0176 0.7065 ± 0.0121 0.36 0.36 0.4000 ± 0.8000 10.60 ± 2.38
Reuters 500 IDEC-LK-B 0.5278 ± 0.0069 0.7099 ± 0.0051 0.87 0.36 0 ± 0 43.06 ± 15.99
Reuters 1000 DCC 0.4936 ± 0.0145 0.4922 ± 0.0211 0.01 0.01 0.6000 ± 0.4899 10.80 ± 1.70
Reuters 1000 IDEC-LK-A 0.5790 ± 0.0119 0.7544 ± 0.0088 0.01 0.01 4.40 ± 3.50 16.31 ± 5.27
Reuters 1000 IDEC-LK-B 0.5359 ± 0.0075 0.7142 ± 0.0074 0.36 0.36 0.2000 ± 0.4000 102 ± 29
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A.6 Complexity and Runtime of IDEC-LK

A.6.1 Complexity in training

The runtimes are reported in the Table A.5, A.7. Our performance is worse than
COP-Kmeans and DCC but it is still reasonable. The runtime is less than 10
minutes for 100 pairwise/triplet constraints and less than 1 hours for 1000.

A.6.2 Complexity in constructing implication constraints

Before computing the loss, we need to compile and optimize the SDD structure of
each constraint. It is the main bottleneck for learning with more complex knowl-
edge. Table A.8 shows the differences between A and B formulation for implication
constraints. We generate 100 Horn clauses of Together/Apart. The length is the
number of Together/Apart constraints appearing in the clause. For each clause,
we measure time to construct and optimize its SDD structure and the final size of
the structure. Formulation B shows a smaller size and a better compiled time than
formulation A.

Table A.8: Comparison of compile times of implication constraints

Data Length Formulation SDD size Time (s)
Reuters 10 A 481.09 ± 103.96 0.284 ± 0.128
Reuters 10 B 272.40 ± 79.43 0.131 ± 0.056

A.7 Method to calculate WMC

First, we represent the logical knowledge α in Sentential Decision Diagram, a hier-
archical structure. Each node in the diagram is either a terminal node (containing
a constant or literal) or a decomposition.

We use a recursive method to compute the root node’s value (equivalent to
WMC(α)). If a node is a terminal node, we return its value directly. Otherwise,
we calculate and sum all of its children nodes. During the calculation, we keep the
results of all decompositions in case of revisiting them. The detailed algorithm is
shown in Algorithm A.1.

A.8 Sensitivity experiments for hyper-parameters

The impact of λe on the final partition has been measured using IDEC-LK-A and
IDEC-LK-B systems with the Fashion and Reuters dataset. The test scenario has
5 cases, each with 1,000 randomly selected pairwise constraints. For each test
scenario, λe is tested with 0.01, 0.1, 1.0 values.

In all cases, when λe increases, the average value of WMC and the number of
satisfied constraints increase.
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Algorithm A.1 Method to calculate WMC

class ProbCalculator:

def init(self , probs):

# Weights of all variables

self.probs = probs

# Keep the values of calcuated noded during the

search

self.cal_nodes = dict()

# Recursive method to calculate WMC of a node using its

children

def calculate_re(self , node):

# If node has already computed , take it from

cal_nodes

if node.id in self.cal_nodes:

return self.cal_nodes[node.id]

# If it is a simple node , return its value

if node.node_size () == 0:

if node.literal >= 0:

return self.probs[node.literal - 1]

return 1.0 - self.probs[- node.literal - 1]

# If not , decompose them

t = node.elements ()

ans = 0.0

for i in range(len(t)):

if t[i][1]. is_false ():

continue

# Recursively calculate the children nodes

u = self.calculate_re(t[i][0])

v = self.calculate_re(t[i][1])

# Adding them to the final result

ans += u * v

# Save the result to cal_nodes and return it.

self.cal_nodes[node.id] = ans

return ans

# Public method for external use

def calculate(self , node):

if node.is_false ():

return 0.0

if node.is_true ():

return 1.0

return self.calculate_re(node)
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For the clustering performance, in the Fashion dataset, the NMI and Accuracy
are relatively unchanged. In contrast, the NMI and Accuracy of both IDEC-LK-A
and IDEC-LK-B achieve the best values when λe = 0.1 for the Reuters dataset.

Figure A.5: Effect of λe on clustering performance (NMI, Acc) and constraint sat-
isfaction (WMC, #violated constraints) with IDEC-A for Fashion dataset
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Figure A.6: Effect of λe on clustering performance (NMI, Acc) and constraint sat-
isfaction (WMC, #violated constraints) with IDEC-B for Fashion dataset
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Figure A.7: Sensitivity analysis of the λe hyperparameter with IDEC-A for Reuters
dataset
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Figure A.8: Sensitivity analysis of the λe hyperparameter with IDEC-B for Reuters
dataset
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Nguyen Viet Dung NGHIEM

Clustering et intégration de connaissances

Résumé :

Le clustering sous contraintes (une généralisation du clustering semi-supervisé) vise à exploiter les
connaissances des experts lors de la tâche de clustering. La connaissance s'exprime souvent par un
ensemble de contraintes et peut prendre des formes diverses. Dans cette thèse, nous développons deux
mécanismes pour intégrer des contraintes dans la tâche de clustering. Dans la première partie, nous
proposons une méthode déclarative post-traitement pour adapter la sortie d'un algorithme de clustering pour
satisfaire les contraintes. L'originalité est de considérer une matrice d'allocation qui donne les scores
d'attribution des points à chaque cluster et de trouver la meilleure partition satisfaisant toutes les contraintes.
Dans la deuxième partie, nous proposons un cadre unifié pour intégrer les contraintes générales dans un
modèle de clustering avec l'apprentissage profond. La généricité se représente en formalisant des
contraintes en logique et en considérant leurs modèles. Les résultats expérimentaux sur des jeux de
données connus montrent que notre approche est compétitive avec d'autres méthodes spécifiques aux
contraintes tout en étant générale. De plus, nous avons défini et formulé de nouveaux types de contraintes
en clustering : la contrainte de couverture de cluster limitant le nombre de clusters auxquels un groupe de
points peut appartenir, et la contrainte d'équité combinée prenant en compte à la fois l'équité de groupe et
l'équité individuelle.

Mots clés : clustering sous contraintes, apprentissage profond, approche déclarative

Clustering and knowledge integration
Summary :

Clustering is one of the essential topics in data mining. Although it is designed to work in a fully unsupervised
way, its application in real-world data is often regulated by expert knowledge. Constrained clustering (a
generalization of semi-supervised clustering) aims to exploit this knowledge during the clustering task. In this
thesis, we develop two frameworks to integrate expert constraints in the clustering task. In the first work, we
propose a declarative post-processing method to adapt the output of a clustering algorithm to satisfy the
constraints. The originality is to consider an allocation matrix that gives the scores for attribution of points to
each cluster and to find the best partition satisfying all the constraints. In the second work, we propose a
unified framework to integrate general constraints in a clustering model with deep learning. The genericity is
obtained by formulating the constraints in propositional logic, defining two versions of semantic loss, and
computing them through Weighted Model Counting. Experimental results on well-known datasets show that
our approach is competitive with other constraint-specific methods while being general. In addition, we have
defined and formulated new types of constraints in clustering: the cluster coverage constraint limiting the
number of clusters to which a group of points can belong and the combined fairness constraint taking into
account both the group fairness and individual fairness.

Keywords : constrained clustering, deep learning, declarative programming
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