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Abstract (english)

Among the diverse research fields within computer music, synthesis and generation of audio signals
epitomize the cross-disciplinarity of this domain, jointly nourishing both scientific and artistic practices
since its creation. Inherent in computer music since its genesis, audio generation has inspired numerous
approaches, evolving both with musical practices and scientific/technical advances. Moreover, some syn-
thesis processes also naturally handle the reverse process, named analysis, such that synthesis parameters
can also be partially or totally extracted from actual sounds, and providing an alternative representation of
the analyzed audio signals.
On top of that, the recent rise of machine learning algorithms earnestly questioned the field of scientific
research, bringing powerful data-centred methods that raised several epistemological questions amongst
researchers, in spite of their efficiency. Especially, a family of machine learning methods, called generative
models, are focused on the generation of original content using features extracted from an existing dataset.
In that case, such methods not only questioned previous approaches in generation, but also the way
of integrating this methods into existing creative processes. While these new generative frameworks
are progressively introduced in the domain of image generation, the application of such generative
techniques in audio synthesis is still marginal.

In this work, we aim to propose a new audio analysis-synthesis framework based on these modern gen-
erative models, enhanced by recent advances in machine learning. We first review existing approaches,
both in sound synthesis and in generative machine learning, and focus on how our work inserts itself
in both practices and what can be expected from their collation. Subsequently, we focus a little more
on generative models, and how modern advances in the domain can be exploited to allow us learning
complex sound distributions, while being sufficiently flexible to be integrated in the creative flow of the
user. We then propose an inference / generation process, mirroring analysis/synthesis paradigms that are
natural in the audio processing domain, using latent models that are based on a continuous higher-level
space, that we use to control the generation. We first provide preliminary results of our method applied on
spectral information, extracted from several datasets, and evaluate both qualitatively and quantitatively
the obtained results. Subsequently, we study how to make these methods more suitable for learning audio
data, tackling successively three different aspects. First, we propose two different latent regularization
strategies specifically designed for audio, based on and signal / symbol translation and perceptual
constraints. Then, we propose different methods to address the inner temporality of musical signals, based
on the extraction of multi-scale representations and on prediction, that allow the obtained generative
spaces that also model the dynamics of the signal.

As a last chapter, we swap our scientific approach to a more research & creation-oriented point of view:
first, we describe the architecture and the design of our open-source library, vsacids, aiming to be used
by expert and non-expert music makers as an integrated creation tool. Then, we propose an first musical
use of our system by the creation of a real-time performance, called aego, based jointly on our framework
vsacids and an explorative agent using reinforcement learning to be trained during the performance.
Finally, we draw some conclusions on the different manners to improve and reinforce the proposed
generation method, as well as possible further creative applications.



Abstract (italiano)

Tra i diversi campi di ricerca nell’ambito dell’informatica musicale, la sintesi e la generazione di segnali
audio incarna la pluridisciplinalità di questo settore, nutrendo insieme le pratiche scientifiche e musicale
dalla sua creazione. Inerente all’informatica dalla sua creazione, la generazione audio ha ispirato nu-
merosi approcci, evolvendo colle pratiche musicale e gli progressi tecnologici e scientifici. Inoltre, alcuni
processi di sintesi permettono anche il processo inverso, denominato analisi, in modo che i parametri di
sintesi possono anche essere parzialmente o totalmente estratti dai suoni, dando una rappresentazione
alternativa ai segnali analizzati.
Per di più, la recente ascesa dei algoritmi di l’apprendimento automatico ha vivamente interrogato il
settore della ricerca scientifica, fornendo potenti data-centered metodi che sollevavano diversi episte-
mologici interrogativi, nonostante i sui efficacia. Particolarmente, un tipo di metodi di apprendimento
automatico, denominati modelli generativi, si concentrano sulla generazione di contenuto originale usando
le caratteristiche che hanno estratti dei dati analizzati. In tal caso, questi modelli non hanno soltanto
interrogato i precedenti metodi di generazione, ma anche sul modo di integrare questi algoritmi nelle
pratiche artistiche. Mentre questi metodi sono progressivamente introdotti nel settore del trattamento
delle immagini, la loro applicazione per la sintesi di segnali audio e ancora molto marginale.

In questo lavoro, il nostro obiettivo e di proporre un nuovo metodo di audio sintesi basato su questi
nuovi tipi di generativi modelli, rafforazti dalle nuove avanzati dell’apprendimento automatico. Al primo
posto, facciamo una revisione dei approcci esistenti nei settori dei sistemi generativi e di sintesi sonore,
focalizzando sul posto di nostro lavoro rispetto a questi disciplini e che cosa possiamo aspettare di questa
collazione. In seguito, studiamo in maniera più precisa i modelli generativi, e come possiamo utilizzare
questi recenti avanzati per l’apprendimento di complesse distribuzione di suoni, in un modo che sia
flessibile e nel flusso creativo del utente. Quindi proponiamo un processo di inferenza / generazione,
il quale rifletta i processi di analisi/sintesi che sono molto usati nel settore del trattamento del segnale
audio, usando modelli latenti, che sono basati sull’utilizzazione di un spazio continuato di alto livello, che
usiamo per controllare la generazione. Studiamo dapprima i risultati preliminari ottenuti con informazione
spettrale estratte da diversi tipi di dati, che valutiamo qualitativamente e quantitativamente. Successiva-
mente, studiamo come fare per rendere questi metodi più adattati ai segnali audio, fronteggiando tre
diversi aspetti. Primo, proponiamo due diversi metodi di regolarizzazione di questo generativo spazio
che sono specificamente sviluppati per l’audio : una strategia basata sulla traduzione segnali / simboli, e
una basata su vincoli percettivi. Poi, proponiamo diversi metodi per fronteggiare il aspetto temporale dei
segnali audio, basati sull’estrazione di rappresentazioni multiscala e sulla predizione, che permettono ai
generativi spazi ottenuti di anche modellare l’aspetto dinamico di questi segnali.

Per finire, cambiamo il nostro approccio scientifico per un punto di visto piú ispirato dall’idea di ricerca e
creazione. Primo, descriviamo l’architettura e il design della nostra libreria open-source, vsacids, svilup-
pata per permettere a esperti o non-esperti musicisti di provare questi nuovi metodi di sintesi. Poi,
proponiamo una prima utilizzazione del nostro modello con la creazione di una performance in real-
time, chiamata ægo, basata insieme sulla nostra libreria vsacids e sull’uso di une agente di esplorazione,
imparando con rinforzo nel corso della composizione. Finalmente, tramo dal lavoro presentato alcuni
conclusioni sui diversi modi di migliorare e rinforzare il metodo di sintesi proposto, nonché eventuale
applicazione artistiche.



Abstract (français)

À travers les différents domaines de recherche de la musique computationnelle, l’analysie et la génération de
signaux audio sont l’exemple parfait de la trans-disciplinarité de ce domaine, nourrissant simultanément
les pratiques scientifiques et artistiques depuis leur création. Intégrée à la musique computationnelle
depuis sa création, la synthèse sonore a inspiré de nombreuses approches musicales et scientifiques,
évoluant de pair avec les pratiques musicales et les avancées technologiques et scientifiques de son temps.
De plus, certaines méthodes de synthèse sonore permettent aussi le processus inverse, appelé analyse,
de sorte que les paramètres de synthèse d’un certain générateur peuvent être en partie ou entièrement
obtenus à partir de sons donnés, pouvant ainsi être considérés comme une représentation alternative
des signaux analysés. Parallèlement, l’intérêt croissant soulevé par les algorithmes d’apprentissage au-
tomatique a vivement questionné le monde scientifique, apportant de puissantes méthodes d’analyse
de données suscitant de nombreux questionnements épistémologiques chez les chercheurs, en dépit de
leur effectivité pratique. En particulier, une famille de méthodes d’apprentissage automatique, nommée
modèles génératifs, s’intéressent à la génération de contenus originaux à partir de caractéristiques extraites
directement des données analysées. Ces méthodes n’interrogent pas seulement les approches précédentes,
mais aussi sur l’intégration de ces nouvelles méthodes dans les processus créatifs existants. Pourtant,
alors que ces nouveaux processus génératifs sont progressivement intégrés dans le domaine la génération
d’image, l’application de ces techniques en synthèse audio reste marginale.

Dans cette thèse, nous proposons une nouvelle méthode d’analyse-synthèse basés sur ces derniers
modèles génératifs, depuis renforcés par les avancées modernes dans le domaine de l’apprentissage
automatique. Dans un premier temps, nous examinerons les approches existantes dans le domaine des
systèmes génératifs, sur comment notre travail peut s’insérer dans les pratiques de synthèse sonore
existantes, et que peut-on espérer de l’hybridation de ces deux approches. Ensuite, nous nous focaliserons
plus précisément sur comment les récentes avancées accomplies dans ce domaine dans ce domaine
peuvent être exploitées pour l’apprentissage de distributions sonores complexes, tout en étant suffisam-
ment flexibles pour être intégrées dans le processus créatif de l’utilisateur. Nous proposons donc un
processus d’inférence / generation, reflétant les paradigmes d’analyse-synthèse existant dans le domaine
de génération audio, basé sur l’usage de modèles latents continus que l’on peut utiliser pour contrôler la
génération. Pour ce faire, nous étudierons déjà les résultats préliminaires obtenus par cette méthode
sur l’apprentissage de distributions spectrales, prises d’ensembles de données diversifiés, en adoptant
une approche à la fois quantitative et qualitative. Ensuite, nous proposerons d’améliorer ces méthodes
de manière spécifique à l’audio sur trois aspects distincts. D’abord, nous proposons deux stratégies de
régularisation différentes pour l’analyse de signaux audio : une basée sur la traduction signal/ symbole,
ainsi qu’une autre basée sur des contraintes perceptuelles. Nous passerons par la suite à la dimension
temporelle de ces signaux audio, proposant de nouvelles méthodes basées sur l’extraction de représenta-
tions temporelles multi-échelle et sur une tâche supplémentaire de prédiction, permettant la modélisation
de caractéristiques dynamiques par les espaces génératifs obtenus.

En dernier lieu, nous passerons d’une approche scientifique à une approche plus orientée vers un
point de vue recherche & création. Premièrement, nous présenterons notre librairie open-source, vsacids,
visant à être employée par des créateurs experts et non-experts comme un outil intégré. Ensuite, nous
proposons une première utilisation musicale de notre système par la création d’une performance temps
réel, nommée ægo, basée à la fois sur notre librarie et sur un agent d’exploration appris dynamiquement
par renforcement au cours de la performance. Enfin, nous tirons les conclusions du travail accompli



jusqu’à maintenant, concernant les possibles améliorations et développements de la méthode de synthèse
proposée, ainsi que sur de possibles applications créatives.
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Introduction and background 1
In this PhD thesis, we study the utilization of recent unsupervised
learning techniques, that aroused in the machine-learning domain, to
provide a novel framework for digital audio synthesis. The proposed
techniques, based on the extraction of invertible features with deep
representation learning, can thus be used at the same time for an anal-
ysis purpose, providing a compressed representation of the analyzed
data, and for generation, using the extracted features as defining a
generative space that can be explored and controlled by a human user.
Contrary to most machine-learning applications developed so far in
the domain of digital audio synthesis, we aim to foster an experimental
approach (that we call implicit) to the use of these frameworks, rather
motivated by the emerging behavior of these models than by their
ability to perform external tasks. In this introduction, we will glance
over the related domains broached in this work, from sound synthesis,
generative systems, computational creativity, and summarizing the
motivations underlying this work.

Analysis and synthesis. Sound synthesis is a seminal field of digital
audio processing, that motivated the development of diverse sys-
tems focused on both human creativity and the understanding of
acoustical and perceptual phenomena. While one could anachronis-
tically describe lute-making as a first incarnation of sound synthesis,
involving to understand the physical properties of the instruments
to target a given sound and a specific behavior, the technical pos-
sibility to experiment acoustical phenomenons greatly enhanced the
understanding of human perception and of audio signals, both from a
musical and a scientific point of view. However, dissecting the inner
mechanisms of sound needs to divide the integrity of natural phe-
nomena in interpretable and controllable parts. This process, called
analysis in philosophy, thus aims to extract individual concepts from
an complex observation, that can be then described and experimented
separately. Then, these elements of knowledge have to be gathered
together whether to re-create the original phenomenon, evaluating the
consistency of the analysis method, or to allow new combinations or
transformations of the extracted concepts, that can be respectively be
called reasoning or imagination.

In audio processing, this dichotomy between analysis and synthesis is
seminal, describing accurately the reflexive process between experi-
mentation and abstraction that is specific to natural sciences. Indeed,
while the experimentation of acoustical and percpetual phenomena
was already done with musical instruments through numerous prac-
tices (orchestration, acoustics, lute-making...), the possibility brought
by analog instruments to manipulate even smaller components opened
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significantly the field of experimentation : first, single-frequency oscil-
lators (from analogical theremin to complex additive synthesis), noise
filtering (substractive synthesis), and afterwards micro-sounds (gran-
ular synthesis), recordings (sampling), physical modeling, and many
others. Hence, this analytic process of decomposing complex acoustical
phenomena in smaller components could be whether used to propose
scientific descriptions of audio signals (resp. time-frequency represen-
tations, linear predictive coding, wavelets, acoustics), or to be trans-
formed, altered, composed, and re-synthesized, to allow the generation
of sounds that do not exist in nature. This experimental approach to
sound synthesis was seminal in the work of electro-acoustical pioneers
such as Max Mathews [1], Jean-Claude Risset [2], John Chowning [3]
and many others, that somehow decomposed the real to create the un-
real by extending or transforming its generating rules. And, reversely,
synthesis could also be used to evaluate a given analysis under a set
of criteria method through simulation, hence closing the loop of a
reflexive and iterative discovery process.

Generative systems and artificial intelligence. The cognitive pro-
cess of detecting the existence of structuring regularity patterns of a
given set of observations is fundamental in sciences, and bases the
extraction of rules underlying the corresponding phenomenon. Among
the wide variety of methodologies that exist to describe and under-
stand reality, the difference between the description of a phenomenon,
and the act of modeling it, is seminally different, although comple-
mentary. Indeed, while the first rather targets to find an appropriate
semantic grid or a relevant description to describe a phenomenon, the
second will infer its underlying structure using an external definition.
While numerous modeling methodologies have since been developed
to this end, the generative approach consists in developing a set of
generation rules that describe the construction process of a given set
of data. This approach can consist in defining a set of transformation
rules, such as generative grammars [4–6], mathematical morphology
[7], or generative approaches to music theory [8–13]. In that case, the
likelihood of inferred generative rules is obtained by comparing the
generated outputs to the targeted observations ; then, the model can
be updated whether by changing the underlying model behind rules
(top-down approaches) or, inversely, to extract the generative rules from
the data itself (down-top approaches).

However, the extraction of generative patterns from the data itself is
highly non-trivial. Especially, designing domain-independent algo-
rithms for generative modeling has to rely on objective descriptions of
the observations. A first approach to this purpose, called information
theory, is a seminal signal processing framework brought by Shannon
during the 50’s that quantifies the amount of information transmitted
by a given signal by analyzing its recurring patterns [14]. Fundamental
notions coming from information theory, such as the concept of infor-
mation, quantifying the amount of surprisal of a signal element from
a sequence, or the concept of entropy, quantifying the total disorder
amount of a signal. Such notions porvided the basis to an analytic
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methodology to communication, and have since been extended to
other domains, even in philosophy with the philosophy of information,
that proposes to use this concept as a "first-order phenomena represented
by the world of information, computation, and the information society" [15].
Alternatively, another generic method for structure extraction rather
grounds on statistical inference, aiming to describe a given set of ob-
servations using density estimation techniques based on probabilities.
This methods can be based on an explicit probabilistic parametric
model, whose parameters can be optimized using criteria (such as data
likelihood), and then describe the observed data with the correspond-
ing parameters, at the cost of dropping the exact reversibility of the
model. Advanced statistical inference methods, such as Bayesian or
latent models, allow more the definition of more complex inference
systems that can be used to extract latent representations of a given
dataset, brdiging with representation learning and information theory
[16, 17].
Despite thier differences, these two approaches are related by their
common based of compression , as they are both based on the extrac-
tion of regularity patterns underlying a target process [18]. While
these patterns can have different names or formulations depending
on the domain (syntax in generative grammar, code in information
theory, model in inferential statistics), they all aim to reduce the com-
plexity of a target data by extracting invariant structures, based on
non domain-specific properties of the data. This underlying relation
between compression and complexity motivated criteria for model
selection : based on the idea of Kolmogorov complexity, that defines the
complexity of a signal by the bit length of the smaller code that can
generate it, methods such as Minimum Description Length use this gen-
erative criterion to select the one that achieves the best compression,
as an information-theoretic version of Occam’s razor [19].

This intrinsic correspondence between compressibility and explainabil-
ity is also underlying representation learning methods, that are based on
the representation of a set of high-dimensional data in a smaller space.
While such methods can be beneficially leveraged for visualization,
they also have a seminal interest in machine-learning, a domain based
on the automatic execution of a given set of tasks. This data-centered
approach to automatic feature extraction recently raised a significant
interest in the scientific community, was caused not only by the re-
cent increase of computation power allowed by parallel computing,
enabling the use of connectionist approaches (grounded by cybernet-
ics) such as neural networks that enhanced the modeling abilities of
such methods, but also by the ever growing amount of available data.
While the domain of machine-learning is rather focused on the ex-
traction of optimal representations for a given set of external tasks,
the recent merge of unsupervised approaches with machine-learning
methods allowed to leverage these modern techniques for learning
compressed representations of a given set of data. Such approaches,
mostly grounded on manifold hypothesis [20], assert a given set of
high-dimensional data to lie on a sub-manifold of the embedding
space. These methods are then aiming to the extract this manifold to



4 1 Introduction and background

recover the underlying generative process, and are then related to the
compression-based systems explained above, and bridging representa-
tion learning and generative models [21]. Moreover, recent hybridiza-
tions between generative and machine-learning models gave birth to
a flourishing class of expressive density estimation methods, enabling
the development of powerful data-centered approaches to generative
models (variational auto-encoders [22], generative adversarial nets
[23], and recently generative normalizing flows [24]).

Computational creativity, autonomy and empowerment. While these
recent advances in the domain of data-centered approaches for data
modeling engendered powerful systems for numerous applications,
can generative models be called creative? Indeed, the recent raise of
interest in machine-learning was intrinsically driven by the growing
interest in autonomous systems, that in this case are able to learn a given
set of tasks. However, as generative models are based on the recon-
struction of the original data, their creative aspect may be tempered.
The seminal works of Margaret Boden [25] are enlightening on this
point, grounding an accurate thinking about creativity and machines.
Indeed, the distinction between P-creativity, defining objects that are
only unknown to the generating agent, and H-creativity, defining ob-
jects things are historically new, emphasizes the fact that the creative
dimension of an artifact is in part (if not totally) driven by the con-
text. Furthermore, Boden also underlines the co-existence of several
modalities of creation, distinguishing exploratory creativity, that is the
discovery of new objects by navigating an existing generative space,
or the transformative creativity, that is the creation of new objects by
the transformation of existing ones. Combinatorial creativity, added
afterwards by Pasquier [26], also underlines the distinction between
transforming and composing objects.

Modern machine-learning models that have been developed to directly
address creativity are rather focused on autonomous systems, whose
emerging behavior is generally driven or learned with a set of reward
signals. These models, based on reinforcement or active learning, up-
date their internal state by observing a suitable reward signal, whether
internal and based on an the autonomous analysis on a given creativity
measure, or external, provided by the external world (interaction with
human, active observation with receptors) [18, 27, 28].
However, how to evaluate the creative aspects of non-autonomous
generative models, such as the ones investigated in this thesis? Indeed,
the creative constraints of machine-learning based methods for gen-
eration seems rather driven by another paradox unveiled by Boden
(also addressed by Boulez in his fundamental essay A la limite du pays
fertile) : "The more stylistically fundamental the altered constraint, the more
surprising—even shocking— the new ideas will be.". Indeed, the direct
generation of data judged "realistic" or at least "understandable" for a
human is a very complex task, that is not eased with the computational
power of these methods. Indeed, modern generative models are rather
focused on their ability to reconstruct the original data, in other terms
the performance obtained on their training task. However, at which
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extent can they be used for creation? On this point, the role of represen-
tation seems mandatory : allowing external interaction with the model
(by the human or another model) implies to get a understandable
description of the system’s behavior. Hence, using the Boden modal-
ities summarized above, what are the possibilities offered to explore
the generative abilities of the model, and how can they transform or
compose inner properties of the data?

Towards an experimental approach to machine-learning Audio syn-
thesis methods, that on these creative aspects are not different from
generative models, alleviated this creative evaluation with the close
relationship it maintained with creation and production, being directly
embedded in musical practices since its creation. However, the utiliza-
tion made so far of machine-learning techniques in audio processing
domain are still what we could call extrinsic, i.e. constrained to the
correct execution of a given set of external tasks.
While the integration of machine-learning based generation models
starts to establish in the domain of image creation with well-known
systems like DeepDream, GANs, or the recently released Runway
platform ⇤, there is no similar trend in audio synthesis (apart from
works of Magenta†, interestingly focusing on musical creative flows
[29, 30]). Indeed, machine-learning generative models for music are so
far constrained in the symbolic domain, targeting to model musical
styles such as AIVA ‡. In the signal domain, recent commercial soft-
ware propose to introduce machine learning in mixing or mastering
to target specific aesthetics, such that Lindr § or iZotope Neutron ¶.
However, these algorithms are still leveraging machine-learning to re-
produce existing structures in the musical domain, and do not propose
an explicit relation to the experimental approach that is yet seminal
in musical creation. However, these models can also be used from
an instrisic manner, aiming to really explore the inner behaviour of
this new methods and proposing a new framework for digital syn-
thesis, involving their specificities (complexity, learning, modularity,
stochasticity) in a real creative process. Such approaches could then
address

I transformational creativity, allowing to transform external data
with the system or transforming the system itself

I exploratory creativity, providing an browsable representation
whose design is involved the creative process

I crafting, involving the definition of model and of the desired
properties of the representation into the creative process

aiming to find this combination of mastering and surprise that make
audio synthesis methods really creative and enjoyable. However, to
challenge this objective, we had to tackle several scientific questions
such that the representativeness of these extracted synthesis space, that
led us to the development of regularization strategies for focused on

⇤ https://runwayml.com/
† https://magenta.tensorflow.org/
‡ aiva.ai
§ https://www.landr.com/fr/
¶ https://www.izotope.com/en/products/neutron.html
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audio signals, as well as the introduction of their temporal dimension
in the used frameworks. Then, as this approach also aims to integrate
the developed framework into the creative flow of a human user,
expert or non-expert, we experimented our framework by proposing a
novel musical piece based on this system, ægo, that provided a first step
towards a research and creation approach. We know that this work is
still preparatory, but we hope to propose an accurate way of involving
these systems into music creation with an experimental perspective,
rather than just as way of mocking existing content. Good reading!
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In this work we investigate the use of a recent trend of generative
models, based on advanced machine learning techniques for data
modeling, as a novel method for sound synthesis. Such approaches
could then be complementing the existing sound generation methods,
based on data-centered processes that extract generative patterns di-
rectly from existing data. The recent improvements of these systems
allowed the development of powerful modeling techniques, enhanced
by the use of high-capacity function approximators that increased their
expressiveness. However, the direct use of these methods for creative
applications is still an on-going problem, mainly due to the lack of
ways to control their generation, hence limiting their operability as
artistic tools. Hence, the use of these techniques as interactive audio
generative models also implies to both model the targeted data and
obtain a suitable representation, called a generative space, that the user
could use to control the generated output. Such models could then be
thought as mirroring analysis-synthesis methods in the Digital Signal
Processing (DSP), and then based on the extraction of high-level fea-
tures from the data (analysis) that could then be inverted in the data
domain (synthesis).

However, using data-centered approaches for the extraction of these
generative spaces is a non-trivial task, and can then be obtained
through different approaches. A first way to obtain representations
from a given data is to leverage probabilities, aiming to extract mean-
ingful descriptors by analyzing the global distribution of the observed
samples. This method can be whether based on statistical descriptors
of the data, retrieving indicators about the global distribution of the
data sample (descriptive statistics), or based on its modeling using a de-
fined generative distribution p(x) (then called statistical inference). While
the invertibility of the first approach is non-trivial, making it irrele-
vant for generative purposes, modeling a given set of data as samples
drawn from p(x) allows to obtain new examples from the extracted
structure.
Furthermore, Bayesian approaches to statistical inference allows to
model both the distribution of the data and of the model parameters
(see sec. 2.1), and even conditioning the generative distribution with
an exterior set of random variables, called latent variables (see sec. 2.1.2).
Such statistical inference methods allow to retrieve interpretable fea-
tures from the data, as the obtained parameters and latent variables
have an explicit definition in the corresponding model, and can be
both used for generation and inferred from the data. However, such
methods generally impose strong tractability assumptions, limiting
the complexity and then the expressiveness of the involved models,
requiring approximation schemes to extend their modeling capacities
(see sec. 2.1.3).
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Figure 2.1: Supervised approaches vs. un-
supervised approaches.

Alternatively, some methods drop the probabilistic assumption of the
data distribution and rather analyze geometric or topological prop-
erties from the dataset, providing low-dimensional representations
(see sec. 2.2.1) that aim to reflect information about the data structure.
Differently, some methods leverage the use of high-capacity function
approximators such as neural or convolutional networks (see sec. 2.2.2)
to extract representation from the data, whether based on an external
task that enforce a given structure to the representation (such as classi-
fication or regression), hence called supervised learning, or trained to
act as a compressed space representing the data, hence called unsu-
pervised learning (see sec. 2.2.3). While the first can be very efficient
to obtain representations that can be used for feature extraction, the
high-capacity of the involved feature extractors generally lead to de-
generated representations, that overemphasize the target task at the
cost of not extracting any structural information about the data. Fur-
thermore, supervised methods assume to have the desired outputs
for every sample of the dataset, that can be an important limitation
for the creative applicability of our method. Conversely, unsupervised
learning is appealing because of its independence to externally defined
tasks ; however, the capacity of the involved function often prevent the
extracted representations to represent interpretable generative factors
of the input data.

Going back to our case, what would be the requirements for such ex-
tracted representations in order to be used as a control space for sound
synthesis? ALl the different representations properties described above
could find its place in a framework, especially if the definition of the
model should make part of the creative process. Indeed, it seems
mandatory that the extracted control space should be low-dimensional
and represent structural properties of the data, otherwise the explo-
ration of the provided representation would be insensitive and discour-
aging for the human user. As we described previously, Bayesian latent
models allow to obtain sensitive and interpretable control parameters,
but unfortunately their limited modeling capacity often yield to a weak
expressiveness, that could provoke a diminished interactive interest.
Reversely, representations obtained with high-capacity function ap-
proximators such that neural networks got the target expressiveness
between the control and data space, but are often degenerated and
high-dimensional. Hence, the ideal model for our purpose would be
an hybridization of both, allowing the ensure the consistency of the
extracted representation but that would be also based on expressive
inference and generation processes. Furthemore, the introduction of
explicitly defined tasks could be also interesting, allowing the represen-
tation to represent user-defined factor of variations, but still reflecting
structural properties of the data. The desired framework should then
be flexible enough to allow all of these criteria, but also be light enough
to be easily trained by the human user.
In the last section of this chapter, will described the chosen framework,
called Auto-Encoding Variational Bayes (AEVB), that bridges Bayesian
inference processes and deep representation learning. This framework,
that can be understood as an hybridation between auto-encoders (see
sec. 2.2.3) and Bayesian latent models, advantageously leverages the
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use of neural networks to model expressive relationships between
the data space and the higher-order features. This flexible framework,
proposed simultaneously by Kingma & Welling [31] and Rezende & al.
[32], raised a significant interest in the machine-learning community,
and since gave birth to many developments and further analysis, no-
tably on theoretical and optimization perspectives.
Hence, in this chapter, we will first provide a state of the art of latent
Bayesian models focusing on an approximation scheme, called varia-
tional learning, that allows to drop the strong tractability assumptions
of direct Bayesian inference. In the next section, we will rather focus
on non-probabilistic systems based on the extraction of representa-
tions from the data, then called representation learning, by describing
dimensionality reduction methods, neural networks properties and
optimization, and neural-network based generative models. Finally,
we will present an extensive state of the art of the used framework, that
leverage techniques of these two domains, summarizing the emerg-
ing properties of these systems and various developments that can
be advantageously used for the extraction of interactive generative
spaces.

2.1 Bayesian probabilistic generative models

As we approached in the introduction, a generative model is a system
that can output a finite or infinite set of realizations, whose generation
process is defined by a set of rules (physical, mathematical, logical)
that define the identity of the corresponding model. Hence, extracting a
generative model from a finite set of samples comes back to recovering
the underlying generation rules of the corresponding system, resorting
to various identification methods. While some identification methods
assume strong properties about the structure of the generative model,
developing general methods for model identification resorting the
minimum set of assumptions is a challenging task. A method to ad-
dress this challenge are statistics, resorting to probabilistic models to
describe, or model, a restricted set of data.
Though, there exists different trends in statistics, differing in how they
extract these information, leading to different philosophies (see fig.
2.2)). Descriptive statistics focuses on how to accurately describe a sam-
ple of data, and aims to formulate statistical descriptors of the properties
of the sample (distribution, covariance, dispersion...), without adding
any further assumption on the data structure. While this framework
provides efficient methods for data analysis and representation, the
absence of an underlying probabilistic model prevents to generate new
content from the observed data, and does not infer any explaining fac-
tor that would describe the generative process. Conversely, inferential
statistics rather consider the observed data x as a set of realizations, that
are drawn from a probability distribution p(x). Hence, inferential statis-
tics aims to recover this underlying distribution, then recovering the
inner structure behind the observed data. Furthermore, if we are able
to sample the inferred distribution p(x), we can then generative new
data that matches the extracted structure, then proposing a probabilis-
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tic method for generative modeling. However, extracting the underlying
distribution from a limited amount of data is not a trivial task, as the
exact extraction of the underlying probabilistic model would require
an infinite amount of observations.

Therefore, several strategies can be used to address this challenge,
that are quite philosophically different even if based on the same
mathematical framework. The first strategy is to choose a frequentist
approach, that defines the probability of an event by the number of
its occurrences within the observations. The underlying concept is
that the most probable events of a random process are the ones that
happens the most, then assuming that the process is composed by a lot
of reproducible and independent trials. The frequentist approach then
models the probability distribution underlying a set of observations
by accurately modeling its events’ frequency. This idea, based on the
seminal Law of Large Numbers, ensures the convergence of the obtained
estimation as the number of observed events goes to +1. However,
this approach raises several difficulties : first, the number of samples
needed to accurately model the target distribution can be very high,
and is not able to model probabilities of rare events. Another problem
is that this approach does not model the uncertainty of the model, such
that it may be over-fitting the distribution, and performs badly in case
of noisy distributions.

2.1.1 Bayesian learning for statistical inference

Bayesian inference. The Bayesian philosophy of probabilities is then
rather different from its related frequentist, detaching probability from
the idea of repetition to translate it in the domain of believes, model-
ing the certainty of a given assumption after some observations. While
the first were targeting to uncover the underlying distribution p(x)
without any further assumption on the observed data, Bayesian learn-
ing models a prior knowledge on the process, that is progressively
modified as the number of observed data items increase.

Let be an hypothesis H on an experiment realizing observations O,
that can be observed by the emitter. Given an a-priori probability distri-
bution p(H) defined on the space of hypothesis, the observer will then
expect a distribution p(O|H) over the observations O, given the prior
hypothesis H . However, after an observation O, the emitter will refine
its hypothesis accordingly to p(H |O), then modifying its prior assump-
tions. We can see that this formulation differs from the previous one
by the introduction of a prior knowledge on the observation, that will
be progressively biased by the observed realizations obtained from the
experiment O. Furthermore, the hypothesis H will not be modified to
much if the observation O was already considered as probable, while
an unexpected observation will incite the posterior p(H |O) to deviate
the original hypothesis p(H) more substantially. This trade-off can be
expressed with the Bayes’ rule, that can be easily obtained from the
conditional decomposition of the joint distribution p(O, H)
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p(O, H) = p(O |H)p(H) = p(H |O)p(O) p(H |O)|  {z  }
posterior

=
p(H , O)

p(O) =

likelihoodz  }|  {
p(O|H)

prior
z}|{
p(H)

p(O)|{z}
marginal likelihood

The Bayes’ equation thus identify four terms : the posterior distribu-
tion p(H |O) of the hypothesis H after some observations O, the prior
knowledge p(H), the likelihood p(O |H) of the observation O under the
hypothesis H , and the probability of observation p(O). Bayesian statis-
tics are then more robust under small variance noise over O, as the
posterior distribution p(H |O) won’t be modified if the probability of the
observation p(O) corresponds to the likelihood p(O |H). Furthermore,
this Bayesian formulation allows us to define a probability distribution
over H rather than a point-estimate, such that the posterior process
also gives information about the uncertainty of the prediction.

Likelihood estimation. In statistical inference, we target to recover
the generative distribution p?(x) underlying some finite observations
{xi}i=1...N . As the true distribution is unknown to us, statistical infer-
ence relies on modeling this distribution with a defined model p(x)
that we will force to match with the observations. These methods can
be whether non-parametric, using descriptive statistics estimators to
model the distribution, or parametric, such that the model p(x; ✓) de-
pends on a set of parameters ✓. While the first can perform well on
simple data, the second allows us to define a precise structure for the
distribution p(x), then enforcing some properties of the distribution.
However, estimating the parameters ✓ of a model p(x; ✓) is not straight-
forward, and requires an explicit criterion to optimize. The most com-
mon approach to maximize the likelihood of the data given the model
p✓ , optimizing the parameters ✓ of the model [33]

✓? = max
✓

p(x; ✓) (2.1)

In some cases this optimization is tractable, such that the optimal
parameters ✓? can be directly obtained from the data. Furthermore,
maximum likelihood has been shown to be a consistent (converging in
probability to the real density p(x)), and efficient (having the smallest
variance) estimator when the sample size tends to infinity. However,
tractable models for log-likelihood maximization are often not expres-
sive enough to shape the underlying complexity of the data, such that
more elaborated schemes have to be used such as gradient descent
algorithms (see sec. 2.3.1), normalizing flows (see sec. 2.3.2.1) or con-
trastive estimation (see sec. 4.3.1) to give an estimate of the parameters
✓. Alternatively, we can turn statistical inference into Bayesian prob-
lem, considering parameters ✓ themselves as random variables. In that
case, the hypothesis H are represented by the parameters ✓ with a
corresponding prior distribution p(✓), such that Bayes’ equation can
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be written

p(✓ |z) = p(x |✓)p(✓)
p(x) (2.2)

=
p(x |✓)p(✓)⇤

p(x |✓)d✓
(2.3)

providing a posterior distribution p(✓ |x) over the parameters. Model-
ing the estimation of ✓ with a probability distribution rather than a
point-estimate allows us to access the model uncertainty, from which we
can get an estimate by whether selecting the ✓ with highest probability,
then called the maximum a-posteriori estimation (MAP), or to sample
✓l over a given confidence range of p(✓ |z). Setting a uniform prior for
✓ recovers the ML estimator of 2.1 up to the p(x) term, that can be
excluded from the optimization as it is independent from ✓.

We can now see that Bayesian learning gains from frequentist ap-
proaches by formulating an a-priori knowledge on the parameters’
distribution, that can be thought as a soft regularizer over the parame-
ter estimation. The definition of prior distribution p(✓) can whether be
chosen non-informative (uniform or isotropic normal) or informative,
in the case of available external knowledge or iterative model updat-
ing. Furthermore, this method also allows us two different methods to
predict new values x̂ from the inferred model

ppost (x̂ |x) =
⌅

p(x̂ |✓)p(✓ |X)d✓ (2.4)

pprior (x̂) =
⌅

p(x̂ |✓)p(✓)d✓ (2.5)

(2.6)

The first prediction method, called posterior predictive distribution, pre-
dict new values for x marginalizing out the parameters ✓ using the
posterior distribution while the second, called the prior predictive distri-
bution, rater marginalizes the parameters using the prior information.
The regularization effect brought by the probabilistic distributions
p(✓ |X) and p(✓) can thus be seen by their marginalization over ✓,
meaning that all the possible parameters values modeled by these
distributions are involved in the prediction of x̂. Bayesian learning is
then more robust than its point-estimate counterpart, that would only
take one possible ✓ to perform the prediction.

Conjugate priors. Modeling the posterior distribution p(✓ |x) rather
than obtaining point-estimate values ✓, has then several advantages :
also modeling the uncertainty about the parameters estimation, mod-
eling both parameters’ inference and data generation, and data pre-
diction. However, computing these distributions assumes that all of
the involved terms from 2.2 are tractable, even the marginal likelihood
p(x) that involves the marginalization of the likelihood p(x̂ |✓) over ✓.
The full tractability of this expression can be ensured by formulating



2.1 Bayesian probabilistic generative models 13

0 1
Figure 2.5: Example : a Beta(↵, �) prior
equally distributed between 0 and 1
shots (blue). Conjugate posterior after
one more observation Beta(↵, � + 1). As
beta is a natural mean conjugate of
Bernoulli distribution, after one new "1"
observation the distribution is a new
Beta, with �  � + 1

a generative distribution and its corresponding prior with similar al-
gebraic forms, i.e. taking a conjugate prior as initial distribution p(z). If
the two distributions are conjugate, the posterior distribution will then
have a similar algebraic form, coming back to an update of the prior
parameters after the observation of data samples [34]. The simplest
example is the multivariate normal distribution, that is a self-conjugate
distribution ; indeed, taking a likelihood model N(µ,⌃) with a fixed
covariance matrix ⌃, we can also model the prior of the parameter
µ with a normal distribution, such the corresponding prior and the
posterior distributions can be written

p(µ|µ0,⌃0) =N
�
p(µ|µ0,⌃0)

�
(2.7)

p(µ0 |µ) =N

⇣
(⌃�1

0 + n⌃�1)�1(⌃�1
0 µ0 + n⌃x̄), (2.8)

(⌃�1
0 + n⌃�1)�1

⌘
(2.9)

where x̄ is the sample mean of the n data x1...xn. Intuitively, the pos-
terior of the mean can the been understood as the precision weighting
of the prior mean µ0 and the empirical mean x̄, whose precision is
the sum of both prior and observations distributions. This simple ex-
ample shows how the use of conjugate priors can provide tractable
posteriors with interpretable parameters. Prior distributions are avail-
able for many widely used distributions such as Bernoulli, Dirichlet,
or Gamma functions, and then provide an efficient way to perform
Bayesian inference of model parameters. Furthermore, using conju-
gate distributions allows us to perform whether offline, having all the
observed data in a dataset x, or online, where we successively update
the prior information based on the previously observed data (see fig
2.5).

2.1.2 Latent models and posterior approximation
methods.

Latent variables and graphs. Bayesian learning hence allows a ro-
bust and elegant way to learn generative models, gaining on likelihood-
based methods by inferring posterior distributions over the model
parameters. Despite the elegance of the conjugate prior approach, it
significantly constrains the expressiveness of the generative model
p✓ (x), enforcing the involved distributions to have a similar shape.
Furthermore, conjugate priors can be only used to get posterior dis-
tributions for the parameters of the generative model, and can not be
used for additional random variables that would increase the model
expressiveness.

An alternative approach for statistical inference is to condition the
observations x on auxiliary variables z, then called latent, that are
controlling the generation process of the underlying data distribution
(see fig. 2.6). In this case we maximize the joint distribution p✓ (x, z; ✓)
instead of p✓ (x; ✓). Introducing latent variables to parameters model
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can whether be used to ease the probabilistic formulation of a problem,
such that the overall model p(x, z) is more easy to sample, or to model
the influence of an external factor, observable or hidden, on the data x.
It also provides a way to control the generation of p(x, by choosing a
latent variable z and retrieving corresponding x samples from p(x|z).
Latent variables is then a very convenient tool in statistical inference,
and is now present in most machine learning methods. Similarly, latent
variables can be inferred from a given generative distribution p✓ (x)
with Bayes’ rule

p(✓ |z) = p✓ (x |z)p(z)⇤
p✓ (x, z)d z

(2.10)

where we explicitly condition the generative process on z, ✓ being the
parameters of the conditional distribution. Bayesian learning is though
still probable, providing the tractability of the conditional generation
p✓ (x |z. While this formulation increases the model expressiveness
model, it also makes the integral

⇤
p✓ (x, z)d z intractable, enforcing

whether to have discrete latent variable (so the integral becomes a
summation

P
k p✓ (x, zk)), or to leverage optimization schemes in or-

der to maximize the overall probability p✓ (x, z). While the first can
be very useful for some problems, such as mixture of distributions,
having continuous latent variables z 2 R could allow us to extract
hidden factors from the data, that could be used to retrieve generative
factors from the data. Inference of continuous latent variables can be
achieved with optimization methods, such as expectation-maximization
(EM) or variational inference (VI), that we will discuss in the next section.

Extending this idea to multiple variables [x1, ...xn, z1..., zm], composed
by n observed variables and m latent variables, we can define complex
probabilistic structures by formulating group dependencies between
observed and latent variables, as can be seen fig. 2.7 with the genera-
tive model p(x2 |z1, z2)p(x1 |x1, x2). Such conditioned structures define
an underlying directed graph, such that these methods are called prob-
abilistic directed graphical models. Such structure are widely used in the
machine-learning field, as it allows to define intuitively model rela-
tionships between groups of observed variables that can be explained
by one or several common latent factors. A first occurrence of these
models can be found Bayesian belief networks, that are directed acyclic
graphs modeling conditional dependencies between adjacent nodes.
The overall probability of the observed nodes xn conditioned on its
parent nodes (pa(xn), the set of nodes conditioning the node xn)is then
[35–37]

p(x) =
NY

i=1

p(xi |pa[xi])

such that the system verifies the Markov Blanket Property, assuming
than a node is only conditioned by their direct neighbors. Bayesian
belief networks can then be easily trained with the Bayes’ rule 2.2,
as the marginal likelihood of discrete latent variables can be easily
computed with conditional probability tables. More generally, infer-
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Figure 2.8: Example of Markov random
field, where each node is linked by a
weight wi j . No direction is assumed,
and the probability of the all system is
maximized in turn.

ence in complex graphs can be possible by modeling a chain over
the conditional probabilities using the graph structure, and then to
train with maximum likelihood or Bayesian inference on the observed
nodes. However, defining directed probabilistic graphs can be a too
strong assumption on the model, as it explicitly defines the condition-
ing structure between the variables. Alternative approaches are rather
based on undirected graphical methods, where the total probability of a
set of connected nodes xk is expressed as

p(x) = 1
Z

exp
⇣X

k

X

l2N(k)
wk,l · fk,l(xl)

|                         {z                         }
�E(x)

⌘

with feature functions fk , Nk denotes the neighborhood of a node k,
and wk,l is the weight of the relation between the nodes xk and xl .
These models, also called Markov Random Fields, are then based on
the minimization of the energy E, amounting to maximizing the overall
probability of the model (see fig. 2.8). The undirectivity of the graph
requires to estimate the partition function Z , such that the overall
distribution p(x) sums to 1. However, computing the partition function
Z is a tedious task, forcing whether to constrain the graph architecture
(such as Restricted Boltzmann Machines[38]) or to approximate the
partition function using approximation schemes[39, 40]. However, the
duality between directed and undirected graph motivated message
passing approaches to Bayesian graphical models such as the sum-
product algorithm, that uses the factor decomposition of a graph to
efficiently model the free energy of adjacent nodes [41].

Expectation-Maximization Unfortunately, the graph-based meth-
ods quickly presented above also assume the overall tractability of
the model, therefore constraining the possible dependencies between
involved random variables. Maximizing the model likelihood p✓ (x)
without computing the integral term in 2.10 then involve optimization
schemes, that replaces the direct computation of the posterior by itera-
tive model updates that are perfomed until convergence of the model.
A common optimization scheme, called Expectation-Maximization (EM),
is a framework that proposes an iterative scheme both parameters
and latent variables of a model p(x, z; ✓) provided the tractability of
p(z |x, ✓) [42]. Expectation-Maximization is based on a two-step proce-
dure

I an expectation step, estimating the expectation Ep(z |x,✓)[p(z, x |✓)]
over the latent variables z

I an maximization step, that optimizes the parameters ✓ to maximize
the first expectation.

The in-turn application of these two steps models an implicit lower-
bound of the data likelihood p✓ (x), that converges to a local maximum
of p✓ (x, z). The intuition behind EM optimization if that maximiz-
ing the joint probability p(z |x, ✓) over the the distribution p(z, x |✓)
amounts to optimize the data log-likelihood, without having to cal-
culate the marginal in 2.10. An alternate view, proposed by Neal &
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Figure 2.9: Decomposition of log-
likelihood p(x|✓) with any distribution
q(z). Increasing L(q, ✓) reduces the
divergence DKL

⇥
q(z) k p(z |x, ✓)

⇤
, such

that q(z) = p(z |x, ✓)

Hinton [43], formulates E-M optimization as an example of coordinate
ascent of two estimators. Taking an arbitrary function q(z), we can
derive

log p(x |✓) = log p(x |✓)
f ⌅

q(z)d z
g

=

⌅
q(z) log p(x |✓)d z

=

⌅
q(z) log

p(x, z |✓)
p(z |✓) d z

=

⌅
q(z) log

(
p(x, z |✓)

q(z) · q(z)
p(z |✓)

)
d z

=

⌅
q(z) log

p(x, z |✓)
q(z) d z �

⌅
q(z) log

p(z |✓)
q(z) d z

= L(q, ✓) + DKL

⇥
q(z) k p(z |x, ✓)

⇤
(2.11)

showing the intrinsic decomposition provided by E-M between a
lower-bound L(q), quantifying the expected density ratio between the
joint distribution p(x, z |✓) and the arbitrary q(z), and a KL-divergence
between the distribution q(z) and the posterior distribution p(z |x, ✓)
(see fig. 2.9). Thus, during the expectation step, L(q, ✓) is optimized
with respect to q, updating the current model distribution modeled
on z. Conversely, the maximization step updates the bound L(q, ✓)
respectively to ✓, also increasing L(q, ✓) as both of these terms are
positive. Hence, optimizing L(q, ✓) reduces the divergence DKL

⇥
q(z) k

p(z |x, ✓)
⇤
, then matching q(z) and p(z |x, ✓) at convergence. EM demon-

strates how we can avoid to compute the marginal log-likelihood of
2.10, while still optimizing an implicit distribution to match the poste-
rior. This intuition provides the basis of variational inference, which is
the core of this PhD.

2.1.3 Variational methods for posterior approximation

2.1.3.1 Mean-field variational inference

The investigation of Expectation-Maximization thus showed that the
full tractability of Bayes’ rule (2.10) was not necessary to perform
inference on latent variables, replacing the exact computation of the
posterior by a maximization problem. The relaxation of this hypothesis
thus enables the formulation of a wider class of generative distribu-
tions, at the cost of maybe not retrieving the exact posterior. While the
performances achieved by EM are satisfactory, this method requires
the tractability of the posterior p(z |x, ✓, preventing to use more com-
plex generative models.
Variational methods alleviate this problem by rather modeling approxi-
mate posteriors q(z), relaxing the need of a tractable posterior p(z|x).
The tractability of variational methods is achieved by decomposing
the approximate distribution among latent variables, allowing us to
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Figure 2.10: Assuming the Indepen-
dence between z1 and z2 allows to op-
timize separately the components of the
distribution, optimizing in turn until
convergence.

optimize each latent variables independently [44–48]. Variational infer-
ence is based on the same decomposition than E-M (2.11), but rather
explicitly defines the latent distribution q(z) 2 Q in a family of model Q.
A common choice for variational posteriors is the mean-field decomposi-
tion, that enforces the independence between each latent variables and
every latent dimension [49]

q(z) =
dY

i=1

q(zi) (2.12)

in that case, the intractable calculation of the true posterior (2.10) is
replaced by the in-turn optimization of each posterior component q(zi)

qj(z j) =
expEi 6 j [log p(z,x)]

⇤
expEi 6 j [log p(z,x)]dz j

(2.13)

that is tractable, provided the conjugacy between qj(z j) and its re-
spective prior parameters. The approximated posterior can then be
retrieved by introducing q(z) directly in the eq. 2.11, such that we can
optimize the term L(q, ✓) to reduce the divergence DKL

⇥
q(z)kp(z |x, ✓)

⇤
between approximation and true posterior. Using (2.12), we then ob-
tain

L(q, ✓) =
⌅

q(z) log
p(x, z |✓)

q(z) d z

= Eq(z)[log p(x, z |✓)] �Eq(z)

"Y
i

log qi(zi)
#

= Eq(z)[log p(x, z |✓)] �
X

i

Eq(z)[log qi(zi)] (2.14)

the mean-field assumption allowing to factorize the distribution q(z).
As each latent dimension are optimized in turn, we can isolate the
dependencies of each latent dimension z j

L(q, ✓) = Eq(z j )[Eq(z i, j ) log p(x, z |✓)] �Eq(z j )[log qj(z j)] +C (2.15)

= Eq(z j )[log p̃j(x, x j |✓)] �Eq(z j )[log qj(z j)] +C (2.16)

where C =
P

i,j H[qi(z j))] is a constant with respect to z j . Optimization
can thus been made in turn for each log p̃j(z j , z), whose expression is
now tractable as the co-dependencies with other zi have been excluded.
For more examples see [50, 51].

Variational learning is thus very useful to approximate a posterior
distribution over parameters or latent variables, using the mean-field
property of the variational distribution to obtain tractable expressions
for th different components. It also allows to define custom dependen-
cies across parameters, and is compatible with a lot of distributions,
being generalizable to exponential families [52, 53]. This versatility
then motivated the use of variational inference for numerous appli-
cations such as graphs [51], bandits [54], Gaussian processes [55],
and state-space models [56] (see chapter 4). Furthermore, variational
methods can also be used for black-box inference, allowing us to use
neural networks to model generative and inference distributions. This
method, that is mandatory in our work, will be explained section
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2.3.1.

2.1.3.2 Variational sub-optimality.

Despite the versatility and the efficiency of variational learning, it can
still face some sub-optimality issues, that can be unveiled by derivating
further decompositions of the bound (2.14)

L(q, ✓) = �Eq(z)[log
q(z)

p(x, z |✓) ] +H[p(x)] (2.17)

this decomposition, called joint-contrastive, shows that maximizing
the lower-bound L(q) maximizes the joint model p(x, z), up to some
constant that is the entropy of the data. Alternatively, we can also
derive

L(q, ✓) = Eq(z)[log p(x |z) + log p(z)] �Eq(z)[log q(z)]
= Eq(z)[log p(x |z, ✓)] �Eq(z)[log q(z) � log p(z)]
= Eq(z)[log p(x |z, ✓)] � DKL[q(z)kp(z)] (2.18)

this decomposition, that we can call prior-contrastive, clearly shows
the trade-off between the divergence term Eq(z)[log p(x |z)], that evalu-
ates the data likelihood under the model p✓ (x |z), and the divergence
between approximated posterior q(z) and the real prior p(z). In the
optimal case, the second term equals 0, such that the likelihoodp(x |z
is maximal. This decomposition then points out two possible sources
of sub-optimality, that can prevent the divergence to cancel and then
lowering the bound L(q, ✓) : formulating a distribution q(z) is unable
to match the prior p(z), or choosing a prior distribution p(z) that is not
optimal for the overall model p✓ (x, z)). Additionally, sub-optimality
can also emerge from the Kullback-Leibler divergence DKL itself, lead-
ing the variational distribution q(z) to degenerated solutions. In the
following paragraphs, we will shortly detail the origin of these issues,
as well as various solutions that can be taken to alleviate this degener-
acy.

Mean-field approximation. We saw from eq. 2.18 that the lower-
bound L(q, ✓) was penalized by the divergence between the approx-
imated posterior q(z) and the prior p(z). Hence, if the chosen family
variational Q for the distribution q is not able to match the prior p(z),
an unavoidable cost will be added to the lower-bound (2.14), and
providing poorly approximated models. Mean-field distributions, by
example, cannot express any dependency between latent variables and
latent dimensions, can can then provide poor approximations of the
distribution p(z|x).
Researchers then investigated solutions to make these distributions
more expressive, reducing the gap to provide a tighter lower bound.
Tractable variational strategies to express latent covariance was pro-
posed by Saul & al. [57], allowing partial grouping of dimensions
qj . Some authors rather propose to replace the common Gaussian



2.1 Bayesian probabilistic generative models 19

�1

�1,1 �1,2 …

…

…

Figure 2.11: Example of hierarchical
stick-breaking process, allowing to de-
fine arbitrary partitions over a probabil-
ity space

x

z y

a

x

z y

a

p(z) p(y)

p(a|z,x,y)

p(x|z,y)

q(z|x,a,y) q(y|a,x)

q(a|x)

Figure 2.12: Auxiliary variables allow to
increase the expressiveness of the infer-
ence model, bot does not modify yet the
generative distribution.

assumption for both prior and posterior with more complex distri-
butions, such as mean-field exponential families [58, 59], increasing
the expressive power of the involved models. Dirichlet processes[60],
such as Stick-Breaking Processes [61] or nested Chinese Restaurant
Processes (nSCRP) [62] can be beneficially used in variational inference
(see fig 2.11), empowering the flexibility of the variational approxima-
tion. Alternatively, mixture of gaussians [63], Gaussian processes [55]
or graphical models with hierarchical conditioning [64] or auxiliary
variables [65] (see fig. 2.12)can be leveraged to increase the expressive-
ness of the variational family.

While showing the flexibility of variational approaches, the explicit
definition of a given family for the variational distribution can also be
seen as a limitation. Implicit methods rather propose to infer variational
distributions without explicitly modeling their parameters, using dis-
tribution matching methods to regularize the intractable posterior
with the prior. A way to perform implicit distribution matching is to
use implicit distributions, modelled by a function z = f (✏ ) over some
source of noise ✏ , that is learned during training to shape the posterior
[66]. As the expression of its density function is intractable, comparing
the two distributions using respective samples can be achieved with
Density Ratio Estimation (DRE) [67], estimating the ratio between both
densities p(z)/q(z) to evaluate their similarity (see fig. 2.13)

r(x) = p(x))
q(x) =

p̂(x|y = 1)
q̂(x|y = 0) =

D(x)
1 � D(x) (2.19)

Hence, the Kullback-Leibler divergence in (2.18) can be replaced by
a DRE estimator, allowing us to estimate the divergence between the
two implicit distributions. The application of implicit regularization
for latent inference have been proposoed by Dumoulin & al. with
the Adversarially Learned Inference framework [68] (ALI), and was
then proposed in variational learning with by Makhzani & al. [69] and
Mescheder & al. [70] Alternatively, Laplace approximation of implicit
distributions for can be used to compute their DKL [71] ; however,
this method do not alleviate the weaknesses brought by mean field
asymmetries.
While these implicit variational methods are very efficient to generate
expressive distributions, they suffer from two main drawbacks. First,
AVB and ALI are both based on a discriminator, that can is trained to
accurately separate the two distributions, then introducing additional
parameters and replacing the choice of variational distirbution by
the choice of a discriminator. Secondly, implicit methods remove the
interpratibility of the variational distributions, as the underlying distri-
bution between the model q(z) is not explicitly defined. Some methods,
such as Semi-Implicit Variational Inference, addresses the second issue
by formulating a two-stage variational distribution q(z) =

⇤
q(z | )q( ),

where the distribution q( is allowed to be implicit while q(z | ) is held
explicit [72]. The same principle can also be applied to the prior p(z)
[73], allowing to define both both prior and variational distribution as
semi-implicit. Alternatives to DRE can also be chosen, matching the



20 2 Generative models, representation learning and variational inference

f(�)

�

p(z)

discriminator D(z)
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tion from the other, and replaces the orig-
inal probabilities by classification rates
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Figure 2.14: Effect of DKL asymmetry
on with variational distributions. As q(z)
cannot model p(z), the effect of DKL

asymmetry entails a sub-optimal distri-
bution matching, whether mode-focusing
(above) or mass-covering in the other (be-
low)

moments of the two distributions with kernel density ratio fitting [74]
or maximum mean discrepancy [75] (see below).

DKL sub-optimality Kullback-Leibler divergence is the most used
way of computing the divergence between two distributions, as it nat-
urally occurs in information theory (see sec. 2.1.4) and has a tractable
expression for most distributions. However, some properties of the
DKL can also prevent the optimal maximization of the variational
distribution. DKL can be expressed

DKL[p(x)kq(x)] =
⌅

p(x) log
p(x)
q(x)dx (2.20)

DKL is asymmetric, and then has two different behaviors depending
on the order of the involved distributions. Optimizing DKL[q(z)kp(z)],
will enforce q(z to have a mode-seeking behavior, heavily penalizing
zones of q(z) where p(z) is low (hence called zero-forcing). This property
then rather under-evaluate the variance of the original p(z), focusing
on the mode but maybe missing most of the target support. Reversely,
optimizing DKL[p(z)kq(z)] will push q(z) to cover all the support of
p(z) to have a mass-covering behavior, then over-estimating the target
variance (hence zero-focusing). While these properties are inactive if
the chosen variational family Q is able to match the real posterior per-
fectly, this behavior will be decisive in case of sub-optimal variational
approximations (see fig. 2.14).

Hence, while altering the original formulation of variational learning,
alternative divergences have been proposed to replace the original
DKL of (2.18). In addition to the DRE estimation presented above for
implicit distribution matching an important alternative divergence
is the Rényi Divergence (RD), that is derived from an extension of the
original notion of Shannon entropy (see section 2.1.4). This divergence
depends on a parameter ↵, that balances between under- and over-
estimation of the divergence : ↵  1 enforces a zero-forcing behavior,
and reversely ↵  0, enforces a zero-avoiding optimum [76]. Note
that, in that case, L↵ will be a lower bound to p(x) if ↵ > 0, and an
upper-bound if ↵ < 0. Li & al. then propose to sandwich p(x) with
several ↵, ensuring the optimality of the solution [77]. Another diver-
gence, �n-divergence, is based on the same principle, increasing the
its mode-seeking behavior when increasing the power index n. The
�-divergence and �� divergence [78] are rather adjusting the sensitive-
ness of the divergence to low-probability zones of p(x), allowing to
adjust its sensitivity to outliers. The proposed ↵�-divergence propose
to blend Renyi and �-divergences, allowing to trade between both ro-
bustness/sensitivity and mode-seeking/mass-covering behavior [79].

Alternatively, the generalization of divergences using external de-
fined convex functions f were proposed in the literature, providing
a theoretical basis for probability metrics. f -divergences, deriving a
divergence for any convex function f verifying f (0) = 1, such that
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D f [pkq] =
⇤

q(x)) f
⇣
p(x)
q(x)

⌘
dx. By example, choosing f (x) = x log x re-

covers the DKL 2.20 [80]. This divergence can be approximated for
any valid f (·) with a Taylor expansion of the function, or resorting to
DRE. Furthermore, such functions f can be understood as a restricted
class of cost functions used for the optimal transport formulation of
probabilistic inference (see sec 2.1.3.3). Alternatively, Bregman diver-
gences rather defines the divergence D f = f (p)� f (q)� < r f (q), p� q >,
where r f (q) is the first-order Taylor expansion of f (q) and < ·, · > is
the scalar product. A noticeable property of Bregman divergences
is that they can be used as a substitute for affine connections in the
field of information geometry, as they define a dual potential through
Legendre transform. This property of Bregman divergences allow to
generalize many techniques of optimization theory to be performed in
the space of probability distributions, that has been used for example
in audio analysis with Music Information Geometry by Cont & al.
[81].

Finally, alternative divergence methods leverage statistical testing
methods to evaluate the divergence directly using samples for the
distributions, allowing an implicit approach to distribution matching.
Maximum Mean Discrepancy (MMD) is a two-sample test that com-
putes distance between the means of the distributions by projecting
the samples into a kernel Hilbert space (RKHS) [75]. MMD can be
formulated

MMD f (p(z), q(z)) = sup
f 2/mathcalF

✓
Ep(x)[ f (x)] �Eq(x)[ f (y)]

◆
(2.21)

= k
⌅

Z

k(z, ·)dp(z) �
⌅

Z

k(z, ·)dq(z)k (2.22)

where an usual choice for k is the radial-basis function kernel k(·, ·) =
exp (x � x0)2. MMD have been successfully applied to generative model
as a training criterion in the data domain [82, 83], but can also be used
as a dissimilarity measure between the two probabilities p(z) and q(z)
[84, 85] (see sec. 2.1.3.3).

2.1.3.3 Optimal transport.

Some recent approaches propose to address statistical inference un-
der an optimal transport perspective. Optimal Transport (OT) is a
mathematical problem that consists of finding the optimal coupling
between two probability spaces under a give cost function [86]. This
general problem has been extensively studied in various fields such as
biology, fluid dynamics, or physics, even recently in audio processing
[87]) but also in the domain of probabilities, then recently introduced
in the machine learning field. Indeed, statistical inference of latent
from observed variables can be understood as finding a transport map
between x and z, optimized using a given cost function c. Defining
⇤(p, q) the space of joint probabilities whose respective marginals are
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Figure 2.15: Optimal transport studies
the distribution over mappings �(x, z) to
transform p(z) in q(z) that minimizes the
cost c(x,G(x))

p(x, z) and q(x, z), optimal transport can be formulated

Wc(p, q) : inf � 2 ⇤(p, q)
⌅

c(z, x)d�(z, x)

that is a divergence between the two probabilities p and q. Generative
models can then be formulated from an optimal transport point of
view, finding the transport map from the empirical distribution p ⇤ (x)
to a target distribution p(x) and minimizing the above Wasserstein di-
vergence. While some methods are based the direct optimization of this
problem, using Minimum Kantorovitch Estimators or Sinkhorn’s algo-
rithm [88, 89], we can also use OT formulate a latent inference problem
by taking a distribution p(x) that is itself obtained from the transforma-
tion of a variable z, assuming ⇤(p, q) =

⇤
Z

pG(x̂ |z)q(z |x)pX (x)dz, such
that q(z) =

⇤
q(z|x)pX (x)dx = pZ (z) for all z 2 Z [90], such that the

ideal OT optimization problem can be taken as (see fig. 2.15)

Wc(PX , PG)  Wc†(PX , PG) = inf Q : QZ = PZEPX EQ(Z |X)[c(X , G(Z))])
(2.23)

where W†c is optimal if the generative function is atomic, such that
pG(ŷ |z = z). A relaxed formulation can be written

W�(PX , PG) = inf
q(z |x)

EPX EQ(Z |X)[c(X , G(z))] + �F(Q)

where F is a regularizer such that F(Q) = 0 when p(z) = q(z). The
comparison with the ELBO 2.18 is straightforward, taking the cost
c(x, G(z)) as the likelihood function. However, the main difference
with the variational formulation is the regularization term, applied
on the aggregated posterior q(z) instead of p(z). Furthermore, Bousquet
& al. argue that the noise added to the decoder, such as in the case
of VAE where the output is a factorized normal distribution, add a
penalty of

P
D

i=1 �
2 to the objective 2.23 and indubitably yields a non-

optimal solution. This conclusion reinforces the propositions of im-
plicit regularization methods, such as Adversarial Bayes or. Based on
this conclusion, Wasserstein Auto-Encoders (WAE) then propose to use
Maximum-Mean Discrepancy as a latent regularizer (see divergences),
and propose an OT formulation of the Adversarial Auto-Encoder [91].

Alternatively, the Wassertein distance can also be used in variational
inference to optimize the divergence L(, ) = Wc(p(z, x), q(z, x)). This di-
vergence can be approximated with a Monte-Carlo estimator LC(pn, qN ) =
inf�

P
j,k Cp,q(x(j)1 z(j)1 , x(k)2 , z(k)2 ), that generalizes f -divergences taking

Cp,q(x1, x2) = f (p(x2)/q(x2)).

2.1.4 Information theory and latent models

Before moving on to dimensionality reduction and representation
learning methods, we first introduce some important notions of infor-
mation theory, that will help us to bridge the concept of latent variables
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with the one of representation. Information theory, known to be initi-
ated by Shannon in telecommunications [14], is a seminal sub-field of
signal processing that leverages probabilities to quantify the amount
of information brought by a given signal, centered on the notion of
entropy. Information-theory based signal analysis can be seen as a
probabilistic framework that aims to describe global features of the sig-
nal, estimating its probability law and quantifying the amount of order
of the underlying generative process. Information theory then allows
to formulate the notion of latent code, that describes the underlying
structure of the signal by extracting the minimum description of the
system that maximizes the information. The notion of code can thus be
related to the idea of latent variables presented above, and will provide
the essential interface between compression algorithms and Bayesian
learning that grounds the results of this thesis. Furthermore, the code
of a given signal can be understood as a way to describe the inner
structure of a signal, discarding its non-informative content. Hence,
extracting a code from a given signal can be thought as extracting its
structuring laws, bridging with generative models.

2.1.4.1 Information measures

Shannon Entropy. The central notion of information theory is then
the notion of information, that can be defined as the amount of knowl-
edge brought by an observation to the analysed system. This quantity
can the be intuited by the notion of surprise brought by an element of
the signal, considering that an unlikely observation will bring a more
substantial amount of information than an observation that would
be already considered probable. Hence, it also relates the amount of
redundancy of the signal, that is a fundamental notion of compression
algorithms and signal analysis. Information theory then uses a prob-
abilistic framework to quantify the order amount of a signal, taking
inspiration from thermodynamics with the notion of entropy. The en-
tropy of a signal x with possible values {x1...xN } can be given by the
following expression

H[X] = �
NX

i=0
p(xi) log p(xi) (2.24)

that can be seen as the expectation of the information content � log p(xi)
of each symbol. As p(xi) 2 [0; 1], we can see that a very low probability
event will bring an important amount of information, while an almost
certain element will bring very low information. The entropy then
quantifies the amount of disorder of a signal, and then also describes its
uncertainty. By example, the uniform distribution U[a, b] is the maxi-
mal entropy distribution that can be defined on a support ]a, b], while
the entropy of the empirical distribution of a time series 1

N

P
N

i=1 �xi has
a minimum entropy � log N , that tends to 0 when number of elements
tend to 1. A similar notion can be derived in the continuous domain,
called differential entropy)

H[X] =
⌅

p(x) log p(x)dx (2.25)



24 2 Generative models, representation learning and variational inference

that defines a continuous entropy estimator using the probability den-
sity function p(x), replacing the discrete values taken by the previous
p(xi) by infinitesimal interval dx. This notion is thus fundamental, de-
scribing the amount of uncertainty of the continuous signal and then
quantifying is compressibility. The definition of entropy can be extended
to describe the uncertainty of mutual incoming signals, then quantify-
ing their mutual amount of redundancy, even if they are defined on
separate domains. The joint entropy can be then defined

H[X ,Y ] =
⌅

p(x, y) log p(x, y)dxdy (2.26)

describing the entropy of the joint probability of the two signals. If X
and Y are independent, such that p(x, y) = p(x)p(y), the entropy of
both variables are summed : H[X ,Y ] =H[X] +H[Y ]. If the signals are
not independent, meaning that they share some information, the joint
entropy will be lower than their individual sum. Joint entropy then
also quantifies the correlation between two signals, cancelling if they
share the same probability density. Another interesting value is the
conditional entropy, that computes the additional amount of information
brought by a random variable X given a another random variable Y

H[X |Y ] =
⌅

p(x, y) log p(x |y)dxdy (2.27)

such that H[X |Y ] = H[X ,Y ] �H[Y ], meaning that the joint entropy
H[X ,Y ] is given by the individual entropy H[Y ] plus the additional
amount of information H[X |Y ]. A related quantity, that will be im-
portant in the frame of variational methods, is the mutual information

I[X ,Y ] =
⌅

p(x, y) log
p(x, y)

p(x), p(y)dxdy (2.28)

that quantifies how many information can be gained by observing
a variable when the other one is observed, or equivalently how the
amount of independence between X and Y . Unlike conditional entropy,
mutual information is a symmetric estimator, and can be understood
as being the DKL (see 2.20) divergence between the joint probability
p(x, y) and the product p(x)p(y)

I[X ,Y ] = DKL[p(x, y)kp(x)p(y)] (2.29)

such that mutual information cancels if the two variables are indepen-
dent, as p(x, y) = p(x)p(y). Information theory provides us estimators
for quantifying the uncertainty amount of signals, and provides a
framework to evaluate the amount of information shared between
signals. Note that while this theory was initially developed for time
series analysis, there is no explicit assumption relation to time, such
that these estimators can then be also used on other types of data.
Information theory can then be used to describe global properties of
the involved distributions, involving all examples of the target data.
Connecting with the previous section, information-theoretic estima-
tors can then also be used in Bayesian inference, especially with latent
models where it can derive interesting estimators between x and z.
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Figure 2.16: Rate-distortion trade-off :
given a distribution p(x, z), there is an
intrinsic trade-off between optimal rate
R and optimal distortion D, threshold
by the entropy H

Rényi entropy The original formulation of entropy was originally
designed to ensure information extensibility, i.e. the summability of
information given two independent events. H[x, y] = H[x] +H[y].
Shannon’s entropy is only the first solution of this constraint, the
second one being the Rényi Entropy [92]

H↵[p(x)] =
1

1 � ↵ log
⌅

Rd
p(x)↵dx (2.30)

that is then dependent of a parameter ↵, tuning tune to importance
of low-probability events in the divergence. Renyi entropy recovers
the collision entropy for ↵ = 2, that is a well-known entropy estimator
reducing the bias for short series. Rényi entropy also generalizes other
estimators, such as the Hartley entropy H0[p(x)] = log |suppp(x)| or
min-entropy H+1[p(x)] = � log max p(x) [93]. Similarly to Shannon’s
entropy, we can derive a corresponding divergence, thus called Rényi
Divergence [76]

D↵
r
[p(x)kq(x] = 1

↵ � 1

⌅ 1

�1
p(x)↵q(x)1�↵dx (2.31)

that is also dependent of a parameter ↵. Similarly to Rényi entropy,
Rényi divergence is also a generalization of KL divergence (that it
equals at ↵ = 1)) , such that Dr

0[pkq] = � log q(p > 0), and Dr

1[pkq] log esssup p

q
is

the worst-case regret in the minimum description length principle.
Some noticeable values for ↵ are also ↵ = 0.5, where in this case
Dr

0.5[pkq] = �2 log 1 �Hel2[pkq] and ↵ = 2, where Dr

2[pkq] = log 1 + �2[p|q]
Another interesting property is that, R’enyi divergence is also continu-
ous on ↵, with a discontinuity at ↵ = 1.

2.1.4.2 Latent rate-distortion trade-off

Information theory then provides global estimators describing the
amount of uncertainty of given distributions. These estimators can
then be used to provide a interesting understanding of Bayesian mod-
els, analyzing the dependence between latent variables x and z in
terms of information. More precisely, it can quantify how much the
provided latent variables act as a code of the data, then bridging the
Bayesian concept of latent factors and the idea of compressibility of the
observed data. This possible equivalence between latent factors and
data compression will allow us to bridge it to the idea of representation,
that will be seminal in this thesis. Here, we will focus on rate-distortion
theory, that studies the possible amounts of information shared by a
set of data samples and its corresponding latent code.

Rate-distortion theory [94] studies the relation between the length of a
compression code, called the rate, and distortion by retrieving a given
signal from its corresponding code. Given a distribution q(z) for the
code and a generative distribution p(x|z) (then similar to decompres-
sion), the distortion can be expressed as

D[p, q] = Ex⇠p(x),z⇠q(z|x)[d(x)] (2.32)



26 2 Generative models, representation learning and variational inference

given a distortion measure d(·). In Bayesian optimization, this measure
can be seen as the likelihood of the data given z, such that d(x) =
p✓ (x|z). Estimating the rate of the representation is more difficult with
codes defined in R, as the notion of code length does not really exist in
the continuous domain. TIshby & Zaslavsky then propose to define the
rate as the mutual information between the data and the code obtained
from q(z|x) [95]

R[p, q] = Ex⇠p(x)z⇠p(z|x)

"
q(z|x) log

q(z|x)
p(z)

#
(2.33)

Distortion and rate can be used to evaluate the efficiency of the com-
pression, as minimizing the first will reduce the error of the recon-
truction, and minimizing the second will reducte the code length. We
can define the representation mutual information by quantifying the mu-
tual information using the implicit aggregated posterior q(z), that is the
representation obtained by marginalizing the posterior q(z|x) over x
[96]

Irepr [p, q] = Ex,z⇠p(x,z)

"
q(z|x) log

p(x, z)
p(x)q(z)

#
(2.34)

where p(x, z) is defined as p(x)q(z|x). We can show that this value is
lower-bounded by the distortion and upper-bounded by the rate

H[p(x)] �D[p, q]  Irepr [p, q]  R[p, q] (2.35)

such that, if both x and z are independent, Iq = 0 and then R = H

while D = 0, meaning that the code is optimum (auto-encoding limit).
Reversely, R = 0 implies q(z|x) = p(z), showing that the rate is quan-
tifying the extra-cost we pay by not fitting the prior distribution. In
that case, D =H, that is called the auto-decoding limit. Rate-distortion
decomposition can be derived to obtain as minimization criterion to
obtain an optimal representation z

min D + �R

min Ex⇠p(x),z⇠q(z|x)[�p(x|z) + � q(z|x)
p(z) ] (2.36)

that is closely relating to the ELBO (2.18), plus a factor � controlling
the rate/distortion rate. Here, we show that the variational objective
inherently achieves a trade-off between minimum distortion (how can
we achieve maximum likelihood with a model p(x, z)) and minimum
rate (that is the compression of the representation). The rate can then
be defined as the distribution matching between the posterior q(z|x)
and p(z), that can be intuited as the average additional number of bits
we have to add to p(z) to identify p(z|x). A high rate thus means of
lower sensitivity of the latent space to the data, and if the prior p(z)
is an isotropic normal distribution, an higher independence of the
dimensions. This last observation is very important if we want the
extracted latent factors z to be disentangled (see section 2.3.2.4).
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Figure 2.17: Bits-back in MDL formula-
tion of variational inference

2.1.4.3 Minimum description length and bits-back coding.

In information theory, modeling the signal is then related to compres-
sion, leveraging the redundancy of the signal to reduce its code length
whether without altering the contained information (called lossless
compression), or targeting an subset of information. The obtained com-
pression code can be considered as a representation of the signal of
lower dimensionality. Hence, we can presume that, given a subset of
signals, the compression with the best rate is the one that manages to
retrieve the underlying structure of the signal. If we consider the target
data as generated by a set of factors, finding an optimal compression
amounts to recovering these generative factors, retrieving the optimal
representation from the signal. An interesting bridge then happens
between statistical inference and variation theory : optimizing a model
p✓ (x with K parameters on a dataset with N data can then be consid-
ered equivalent as finding an optimal code of length K given a fixed
model, defined by the probability distribution. Defining a latent model
z can then be defined in a similar way, where z acts as the compressed
information about x.

A theoretic framework based on this philosophy is the Minimum De-
scription Length principle (MDL), proposed by Grünwald & al. [19,
97], for a given dataset, the best model is the one that requires the
less amount of bits to be communicated. MDL were developed to use
the model size as a minimization criterion, imposing a code length
constraint to prevent over-fitting of models. An example of such cri-
teria is the Akaike Information Criterion (AIC), that reformulates the
likelihood objective as

AIC = 2K � 2 log p(x|z, ✓)

where K would be the total number of parameters (latent variables
included). AIC then explicitly adds the code length of the model to
the evaluation, and can be used as a criterion for model selection. An
MDL approach then consists in defining a cost that the receiver of the
message will pay to recover the original data, including the cost of the
model itself. Applying MDL to Bayesian learning, we can then define
three different costs : a reconstruction cost, that quantifies the errors
made by the model, the model cost, that describes the number of param-
eters of the model, and the code cost, that quantifies the quality of the
code [98]. An interpretation of the code cost can enlighten a common
point between Bayesian learning and MDL : the more accurately a
given hypothesis explains a data, the lower is the cost paid to face new
incomers. This idea also provides the background of the free energy of
Helmholtz systems, as Markov fields.

An information theoretic formulation of latent models could thus
be described as follows : an emitter sends the code z to a receiver,
who uses the model p(x|z) to recover the data x (here z represents
both latent variables and model parameters). The total code length
of this configuration is then the addition of the model code length,
the reconstruction code �p(x|z), plus the code cost �p(z), such that the
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cost paid for probable event is little. However, this code definition
does not take into account the stochasticity of the code, as z also
contains random bits added during sampling. Then, if the receiver
has the same encoding algorithm q(z|x) than the emitter, it can also
recover these random bits to reduce the total cost, bring the bits-back
(see fig. 2.17). The total cost length of the system is then added a term
q(z|x), the additional cost of random bits that can be recovered. This
learning scheme, called bits-back coding, then amounts to the variational
formulation developed previously. The relation between bits-back
coding and variational learning can helps to understand the behavior
of the system from an information-theoretic point-of-view, such that
the information preference of variational auto-encoders (see section 2.3.2)
and can motivated the development of specific MDL training criteria
[99] [98].

2.2 From dimensionality reduction to deep
unsupervised learning

In the previous section, we investigated statistical inference methods
under a Bayesian perspective, modeling a given set of observations
using a parametric model. We also introduce the idea of latent models,
using external variables can can be used used to condition the genera-
tive distribution. The concept of latent variables is seminal in Bayesian
methods, as it allows to explain the data with higher-order generative
parameters. However, Bayesian inference requires some tractability
assumptions over its terms, and thus limit the possible choices gen-
erative models. Fortunately, we saw that the tractability of all the
involved terms could be bypassed by transforming the closed-form
evaluation of the Bayes’ rule into an optimization problem, allowing to
model more complex generative distributions. More particularly, we
presented variational inference, that allows to maximize the likelihood
by replacing the true posterior p(z|x) by an approximated posterior q(z).
This method relaxes the tractability of the posterior, and then allows
to train more complex generative models. However, the variational
methods presented still relied on the tractability of the ELBO 2.18 to
get closed-forms for optimal variational distributions.

In this section, we will address the extraction of high-level features
from the perspective of representation learning, a domain based on
dimensionality reduction techniques and motivated by automatic dis-
covery of features, visualization, and compression. This approach is
different from statistical inference as it does not assume the invertibil-
ity of the obtained representation, and does not necesseraly resort to
probabilities techniques. Formally, a representation can be simply de-
scribed as a function z = f (x) that embed an input space into another
one with additional constraints, by example on its dimensionality,
organization, or enforced to reflect given properties of the data. The
motivations for representation learning algorithms are then quite di-
verse, and highly depending on the target application. Dimensionality
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reduction techniques are focused on the extraction of representations
that aims to preserve most of the data diversity, extracting intrinsic
sources of variance inside the dataset. This approach can be moti-
vated by manifold hypothesis, stating that high dimensional data lies
in the neighborhood of a low-dimensional sub-manifold of the input
space. Recovering the sub-manifold with dimensionality reduction
techniques then targets to reocver the inner structure of the data, and
hopefully its natural factors of variation [20, 100].

Representation learning is also widely investigated in the field of ma-
chine learning, a family of statistical models based on the optimization
of given set of tasks or criteria. Dimensionality reduction is indeed an
efficient remedy to curse of dimensionality, that can make the application
of machine learning methods impossible in high-dimensional input
space. Indeed, the volume unit of a space R

D grows exponentially
with D, such that Euclidean distances between two points tends to be
less significant, converging to some constant [101]. As almost every
machine-learning methods are based on the optimization of Euclidean
metrics of some values of interest, curse of dimensionality can be criti-
cal and then prevent to directly use these techniques in the data space.
Therefore, resorting to dimensionality reduction techniques can allow
to alleviate this problem, first projecting the data on a space of lower
dimensionality and then applying the target machine learning task .
Conversely, dimension augmentation can also help to sparsify the data,
and then help to separate problems that are not separable in the input
domain.

The recent gain of interest in machine learning has then caused the
development of powerful representation extraction methods, based on
high-capacity function approximators (such as neural networks) that
can be trained to represent a given task. However, defining specific
criteria for the extraction of robust representations, i.e. reflecting under-
lying properties of the data, is a non-trivial task. Indeed, obtaining a
representation trained on explicitly defined tasks such as classification
(hence in a supervised setup) can provide degenerated representations,
focusing too much on the target task at the cost of losing the inner
data structure. An alternative framework, called unsupervised learning,
rather focuses on automatic feature extraction without resorting to an
external task. However, it still need a suitable criteria to be trained,
giving rise to substantially different approaches. In our case, we are
focusing on both inference and generation of audio signals, such that
the invertibility of the obtained representation is mandatory. Hence,
we resort to auto-encoding, an unsupervised framework extracting a
low-dimensional representation based on reconstruction criteria.

In this section, we will first present dimensionality reduction methods,
that are based on the extraction of statistical, geometrical or topological
descriptors of the data to provide low-dimensional representations
of the data. Then, we will shortly introduce neural networks, widely
used high-capacity function approximators that are now grounding
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Figure 2.18: PCA will capture the axis
that maximizes the variance of the origi-
nal data

advanced machine learning techniques. Then, we will present auto-
encoders, and discuss how they are related to manifold hypothesis and
how they can be used to extract meaningful representations of the
data.

2.2.1 Dimensionality reduction

In this section, we summarize methods that intend to reflect structural
properties of the data based on the extraction of statistical, geometrical
or topological descriptors. These dimensionality reduction methods
aim to describe the inner variance of a given dataset based on three
different criteria : preserving the variance of the samples (principal com-
ponent analysis), preserving the distance between the samples (multi-
dimensional scaling), or retrieving the underlying sub-manifold of
the data (manifold learning). In this section, we will shortly summarize
these three different methods.

Principal Component Analysis Principal component analysis is a sem-
inal dimensionality reduction method, first proposed by Wold & al.
[102, 103]. The idea underlying PCA is to identify the projection from
the data space R

D to a linear subplane R
d that retains the maximum

variance of the dataset (see fig 2.18). Mathematically, PCA can be
achieved using Singular Value Decomposition (SVD), that decomposes
the full data matrix X 2 N ⇥ D in three matrices

X = U⌃W>

where the orthogonal vectors U and W are the right- and left- eigen-
vectors along dimensions N and D, and the matrix ⌃ is the diagonal
projection matrix with singluar values �1...�p. The transformation
P : R

D ! R
d that maximizes the covariance XXT can be shown to be

the truncated Wd, such that PCA can be obtained with XPCA = XWd.
PCA can thus be understood as the projection of X on d-principal
components, then maximizing the retained variance. Despite of its sim-
plicity, PCA is a cheap and invertible transformation that is still widely
used for multivariate data analysis. PCA then motivated numerous
improvements such as Robust PCA [104], helping the PCA resisting
to outliers, Sparse PCA that encourages the sparsity of the projecting
axes [105], or probabilistic PCA, that encodes the uncertainty of the
projection using a linear Gaussian model [106].

The main drawback of PCA is that its projection axis can be highly
covariant, thus harnessing the dimensions of the projection to rep-
resent independent factors. Independant Component Analysis (ICA)
reformulates the problem [107, 108] by extracting an orthogonal base
from the data space by first whitening the data, and then perform
PCA analysis. This method provides an interesting alternative as it
enforces the independence of the dimensions, and then to recover
independent variations of the data. The extension of ICA to non-linear
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function spaces have been proposed by Hyvärinen, providing theo-
retical foundations for the uniqueness of solutions [109]. Hence, ICA
is typically used in orthogonal component extraction, such as blind
source separation methods.

Distance regularization. Instead of preserving the variance of the
dataset, some methods rather propose to extract low-dimensional
representations by preserving the pairwise distances of the original
space (see fig. 2.19). These methods then model the distances between
points rather than their absolute position, aiming to approximate the
implicit metrics of a compact manifold. Multi-dimensional scaling
(MDS) is a method based on optimizing the distances on a projected
space D(zi , zi) using a mean-squared error on the original distances
D(xi , xj). Given N points and the corresponding pairwise dissimilarity
measures D(xi , xj) between points xi and x j , the objective MDS is
formulated [110]

min
z1...zN

X

i j
(kxi � x j k � di,j)2 (2.37)

that minimizes the l
2 norm between original and projected distances.

MDS then targets to find isometric projections of the input space, that
can be obtained by whitening the distance matrix D(xi , xj) and taking
the m highest values of its SVD. However, MDS assumes an Euclidean
distances, and does not model the uncertainty of the targeted distances.
A probabilistic approach to MDS is provided by Stochastic Neighbour
Embedding (SNE), that expresses the probability of the point xj to
belong to a given neighbourhood using the conditional distribution
[111]

p(Dx
i j
) =

exp (�kxi � xj k2/2�2)
P

k,i exp (�kxi � xj k2/2�2)
(2.38)

where �2 is the Gaussian variance of the corresponding kernel, and
D

x
i j

represent the distance between the points xi and xj . The probability
p(xj |xi) can then be understood as a multinomial distribution over the
most probable neighbor xj . SNE preserve this conditional distribution
in the target representation z, where a similar density can be defined

q(Dz
i j
) =

exp (�kzi � zj k2/2�2)
P

k,i exp (�kzi � zj k2/2�2)
(2.39)

We can then match these two tractable distributions by minimizing the
DKL between p(Dx

i j
) and q(Dz

i j
)

LSNE =
X

i

DKL[pikqi] =
X

i,j
p(Dx

ij)
p(Dx

i j
)

p(Dz
i j
) (2.40)

whose optimization is tractable using gradient descent. SNE then per-
forms smooth dimensionality reduction method using a probabilistic
model of the input pairwise distances, then providing more robust
representations than MDS. Moreover, MSE intrinsically performs unsu-
pervised clustering by minimizing the distances between close points
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while pushing the others away, sparsifying the obtained representa-
tion. However, SNE is particularly subject to curse of dimensionality
because of the crowding effect, as the Euclidean distance between origi-
nal points, that exponentially grow with the number of dimensions.
This undesirable effect thus tends to cancel out the saliency of the
inter-point distances, and provide degenerated projected representa-
tions where the distances are preserved by projecting every points on a
small support around 0. This undesirable effect can be alleviated using
t-SNE, that rather models the distances using a Student-t distribution

p(x) =
�(⌫+1

2 )
p
⌫⇡�⌫2

 
1 +

x2

⌫

!� ⌫+1
2

(2.41)

where �(x) is the Gamma function, and ⌫ is the degree of liberty of the
distribution. Student-t distribution is a common conjugate distribution
of the normal distribution (see sec 2.3), modeling the uncertainty of its
mean vector once the variance has been marginalized out

p(µ|D) =
⌅

p(µ|D,�2)p(�2 |D)d�2 (2.42)

where p(µ|D,�2) is a normal distribution centred on the approxi-
mated mean of the observations D, and p(�2 |D) is a scaled inverse
chi-squared distribution. The marginalization of the variance provides
an heavier tail than a standard normal distribution, hence giving a
higher probability to distant data points. Taking ⌫ = 1, we can thus
express the probability density of the distances in 2.39 with [112]

q(Dz
i j
) =

(1 + kzi � zj k2)�1
P

k,i(1 + kzi � zj k2)�1 (2.43)

This formulation of SNE, then called t-SNE, is much more robust to
high-dimension input spaces, and is still provides one of the most
used techniques for dimensionality visualization. t-SNE will provide
the inspiration of the Student-t regularization method, that we will
develop section 3.4.

Manifold Learning methods The main flaw of PCA is that it projects
the data onto a linear sub-space, hence unable to accurately represent
dataset that lie on non-linear sub-manifold of the original space. For
example, if the data is organized around a curvated surface (such as a
sphere), the representation provided by the PCA will project points
placed on opposite locations on the same position. Non-linear ap-
proaches to PCAs have also been developed, such as Kernel PCA [113],
but non-linearities often makes the projection basis non-unique and
then intractable with formal calculus.

Some methods propose instead to extract non-linear subspaces using
the concept of a manifold, that is an embedded surface that is locally dif-
feomorphic to an Euclidean plane of dimensions d < D. This manifold
can then be retrieved by taking local linear maps taken from the neigh-
bourhood of each point, and then gluing the maps to infer a system
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of coordinates. This idea was first investigated by Roweis al &. [114]
using local PCAs, and then improved with Laplacian Eigenmaps [115]
and Hessian eigenmaps [116], rather using local Eigenmaps to perform
linear approximation. Alternatively, Local Tangent Space Alignment
aims to find projections that aligns the approximated tangent spaces
of each data point, hence flattening the manifold [117].

Another approach rather consists in estimating the intrinsic metrics of
the underlying manifold by computing pairwise distances along the
manifold’s surface. This can been done by constructing a graph repre-
sentation of the manifold by linking neighbouring data points, such
that each vertex is a data point and each edge is the distance between
the points. The geodesics between two points can then be estimated
finding the shortest path linking them, summing the lengths of the
crossed edges. This construction is used by the ISOMAP method [118],
that proposes to perform a MDS with the estimated geodesics rather
than the Euclidan distances, hence preserving the local geometry of
the underlying manifold. A similar method is used by Uniform Man-
ifold Approximation and Projection (UMAP) [119], that uses fuzzy
topological representations to merge the local projections extracted
from the data.

Manifold learning then provides very interesting methods to extract
representations from an underlying manifold, helping to capture non-
linear axis of variations that would not be represented in linear di-
mensionality reduction techniques. Furthermore, these methods can
provide interesting information about the local structure of the data,
finding more natural interpolation between points. However, these
methods are often heavy to compute, making them hardly applicable
to large and high-dimensional datasets. Additionaly, these methods are
non-invertible, and are then unsuitable for generative purposes. How-
ever, the underlying intuitions behind these methods still nourishes
modern advances of machine learning, as Riemannian approaches to
auto-encoding (see section 2.3.2.4).

2.2.2 Neural networks and back-propagation

While performing well with small datasets, the methods described
above suffers from two major drawbacks. First, most of them are hardly
scalable to lard high-dimensional datasets, as they operate directly on
the entire data matrix x. Secondly, they are based on simple geometric
constraints that may fail to capture the complexity of the data, limiting
the expressiveness of provided representations. These challenges moti-
vated the development of alternative approaches based on stochastic
optimization, allowing to iteratively train systems on random data sub-
sets. A seminal optimization method, called stochastic gradient descent
(SGD), allows to train arbitrarily complex models by only requiring
their derivability, provided a well-defined training criterion. The devel-
opment of SGD, simultaneously with the ever-growing computational
power of modern computers, enabled the efficient integration of neural
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Figure 2.20: A single neuron, by draw-
ing a straight line in a multi-dimensional
space, is able to split it two parts. Adding
a non-linearity allows, a hard tanh in the
above example, to define a function that
equals -1 if far above the line, and +1 far
below.
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Figure 2.21: Several neurons with classi-
fication units can perform complex seg-
mentation of the input space, and can
then perform multi-class classification
with sigmoid units.

networks in machine-learning methods, increasing significantly their
performance. In this subsection, we will shortly describe neural net-
works and how to train them with SGD.

Neural networks. Neural networks (NN), also called Artificial Neural
Networks (ANN), can be described as trainable computation blocks
composed by small units, called neurons, that can be linked to model
complex functions of arbitrary complexity. Formerly inspired from
the cybernetics and cognitive science fields, neural networks now pro-
vides the basis for black-box optimization methods used in modern
machine learning techniques, from the simplest (simple classification
or regression systems) to most complex applications (such as deep
learning). As these systems are now very well documented, we will
try to give a brief but intuitive explanation of these systems.

A neuron is a unit composed by a linear or affine function y = f (x) :
R

n ! R , then corresponding to a linear subplane of the input space. A
neuron is also generally followed by a non-linearity, that will help him
to use this segmentation to model non-linear functions of the input
space. For example, taking a sigmoid activation �(x) = 1/(1+ ex) (also
called logistic as it equals 0 when x ! �1 and 1 when x ! 1), we are
able to split the space in two, where the function equals 1 on the left
of the line and -1 on right of the line, such that the line drawn act as a
decision boundary (fig 2.20).

To give an intuition about the inner working of neural networks, we
will present a modern formulation of the perceptron, one of the old-
est supervised machine learning system. Taking d neurons, we are
then able to simulate functions f (x) : R

n ! R
d. Using sigmoid non-

linearities, the system is then able to split the input space in several
regions, and then to discriminate up to d classes (see fig. 2.21). How-
ever, such classification can only work if the target classes are linearly
separable. We can alleviate this problem by adding a second layer of
neurons, connected to the first, that can increase the modeling capacity
of the network. Indeed, if the number of neurons of the hidden layer
H is lower than the input dimension, the neural network is called a
bottleneck, as it reduces the dimensionality of the input. Reversely, if
the number of hidden neurons is higher, the network is able to dis-
criminate non-linearly separable regions of the input space, as it is
embedded in a space of higher dimension (see fig 2.22) for an example
with the well-known XOR example). Such networks are then called
fully-connected networks, or multi-layer perceptron (MLP). However, the
choice of a sigmoid activation is not optimal for the hidden neurons,
as it bounds the output between �(x) 2 [0; 1], and then can weaken the
expressiveness of the hidden representation. A common alternative
choice is then the Rectifier Linear Unit (ReLU), that can be understood
as a way to bypass the left part of the neuron’s subplane while not
affecting the other. Hence, multi-layer perceptrons can be understood
as systems that embedding the input space to a hidden representa-
tions, that can be trained as an intermediary space used for binary-,
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Figure 2.22: The well-known XOR ex-
ample : a problem that is non-separable
in an input space can become separable
with additional dimensions.

y
w12

w11

L(y)

�L
�y

�L
�w12

=
�L
�y

�y

�w12

�L
�w11

=
�L
�y

�y

�w12

�w12

�w11

Figure 2.23: Schema of gradient back-
propagation through two neuron layers,
using the chain rule to obtain the deriva-
tive of the loss function with respect to a
single neuron weight.

multi-classification, or regression.

Backpropagation and gradient descent A neural network can thus
be understood as a parametric non-linear function y = NN✓ (x) with
an arbitrary number of inputs and outputs, that has to be trained on
given pairs (x, y) to model the targeted function. Neural networks then
requires the definition of a loss function, that has to be accurately de-
signed to fulfill a given task. By example, in a supervised classification
setting, the training dataset is composed by pairs {x, y}N

i=1, where x is
the input of the network and y is the corresponding label information.
The network is then typically trained on a classification loss function
L( ŷ, y) between the network prediction ŷ

i
and the true label y

i
, as a

cross-entropy loss.

However, given a neural network with parameters wi j and a suitable
loss function L(y), we still need an optimization method to train the
network towards the desired output. Back-propagation algorithms allow
us to derivate the gradient @L

@wi j
of each weight of the network with

respect to the loss function L(y), thus assuming the full derivability
of the system ⇤. Back-propagation is based on a recursive chain rule
that is applied on the full network, as can be shown fig. 2.23 where a
few neurons are shown for simplicity. Once obtained the derivatives
@L
@wi j

for each weight wi j , we can optimize the network using gradient
descent, an optimization scheme that performs iterative updates of the
weights using the corresponding derivative

wi j  wi j � ⌫
@L

@wi j

(2.44)

where the step size ⌫ is generally shrunk during training. Indeed, if
@L
@wi j

> 0, an increase of wi j will lower the loss L, and reversely, if
@L
@wi j

< 0, decreasing wi j will decrease L. This procedure is ithen ter-
ated until convergence L ! 0, or according to a diverse stopping
policies. While the optimization was initially performed on the overall
dataset, this procedure can be very time- and memory-consuming for
large amounts of examples, then limiting the scalability of the method.
An alternative optimization scheme, called stochastic gradient descent
(SGD), rather performs iterations over a small batch of examples cho-
sen randomly in the dataset [120]. This optimization scheme has the
same convergence guarantees as the original gradient descent but is
much more scalable, as it does not imply to perform back-propagation
over the full dataset. Furthermore, it has been shown that the stochastic
nature of SGD increased the robustness of the trained model, prevent-
ing the system to suffer severe over-fitting. Since the creation of SGD,
gradient descent has been a main topic in the optimization field, and
still provides the basis of advanced methods such as Adagrad [121],
RMSProp[122], or ADAM [123], just to cite the most recent ones.

⇤ this hypothesis is not always respected, as for example with the systems using ReLU
activation. To this end, the recently proposed ELU activation is often used instead of
ReLU, because of its derivability.
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Figure 2.24: Example of residual network,
adding skip connections to inject gradi-
ent information in deeper layers

Theoretic guarantees of neural networks. Despite of the concep-
tual simplicity and the efficiency of such connectionist approaches, the
lack of interpretability of the network’s parameters and their high
over-fitting potential, due to their capacity, often provoked the mis-
trust of statisticians. Indeed, neural networks can be dauntingly hard
to approach with analytical methods, especially with the latter raise of
deep learning that could use up to hundreds of stacked hidden layers
(hence called Deep Neural Networks, or DNN). Furthermore, some ex-
periments showed that such models can also trivially record the data,
rather than extracting robust features from it. The over-fitting tendency
of deep neural networks is generally alleviated by learning on very
large datasets, providing efficient yet greedy models. Therefore, the
expressiveness provided by these methods can also be part of their
weaknesses, and then requires a particular attention on the obtained
results.

Studying the intrinsic behavior of neural networks is thus very chal-
lenging. First theoretical guarantees investigated by the researchers
focused on the approximation capacity of these systems, and have
been widely studied since the 90s. A seminal universal approximation
theorem, proposed by Hornik, proved the existence of a single hidden
layer MLP that can approximate arbitrary well any function defined
on some compact set [124–126], independently to the chosen activation
and input dimension. However, this theorem does not state about the
number of hidden units required, or about the training procedure. Re-
cently, Lu & al. proved that any function could be approximated with
a width d , n + 4, regardless of the depth [127]. Hanin showed that it
rather required d  n + 1, and provided a bound on the approximation
error depending on the network depth’s [128]. While these theorems
evaluate the approximation abilities based on an infinite amount of
input examples, Zhang & al. rather study the approximation capacity
of neural networks on finite samples, showing the existence of a two-
layer neural network with ReLU activations and 2n + d weights that
can represent any function on a sample of size n in d dimensions.
Other methods rather foster the expressiveness, i.e. is the diversity of
functions a network can model, and how this diversity evolves with
the network’s depth. By example, Eldan & al. showed that 3-layers
neural networks were able to express functions that a 2-layer network
could not model [129]. Topological analysis of NNs can also provide
interesting results, as shown by Bianchini & al. who proved that topo-
logical capacity of a network increased with its depth [130]., or by
Montufar & al. expressing the number of maximum linear boundaries
of a MLP with arbitrary depth and ReLU non-linearities [131].

While approximation theorems aim to provide theoretical basis on
the modeling capacity of neural networks, some study rather focus
on their learning dynamics. By example, the analytical study of in-
formation propagation in NN underlines a duality between forward
and backward passes [132], preventing to perform SGD in very deep
fully-connected networks (then justifying residual networks, that add
skip-connections between layers [133] as shown fig. 2.24). DNNs have
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also been demonstrated to fail learning simple low cross-predictability
data-label pairs with SGD, underlining the impact of the chosen opti-
mization method [134].
Due to the intractability of neural networks, some authors proposed
to develop black-box analysis methods to gain some insights on the
neural networks’ internal behavior. Saliency maps, for example, esti-
mate the sensibility of each network’s weight with respect to a given
input dimension based on its derivative [135–137]. Alternatively, some
information-theory grounded methods were proposed to study in-
formation propagation in DNNs across layers. However, as neural
networks are deterministic, mutual information between layers can
be whether infinite or constant. Some estimators can ye bet derived
by injecting little amount of noise in the layers’ output, and allows to
demonstrate interesting compression abilities as the number of lay-
ers increase [138]. The information bottleneck framework can also be
leveraged to study neural networks in the case of supervised learn-
ing, showing that during the train process the system first reduces
the empirical error of the task (empirical error minimization), then
compresses its representation [139]. However, such effect has been
mitigated by Saxe & al., arguing that this effect is dependent of the
used non-linearity [140].

Regarding the generalization abilities of DNNs, most validation proce-
dures are based the evaluation of the network’s performance on test
data. However, while over-fitting is an admitted tendency of DNNs,
some authors investigate why DNNs are not over-fitting much more,
unveiling an implicit regularization property pushing them to non-
degenerated solutions [141]. While the compression effect demon-
strated by Tishby & al. could be held responsible, compression can not
be generally held as being related to generalization [140]. This regu-
larization is actually performed by the SGD algorithm, as averaging
gradient among batches of data naturally flattens the error landscape
[142]. Furthermore, it can be shown that with SGD the number of train-
ing examples has much more impact on the generalization than the
model size, explaining why taking very large architectures does not au-
tomatically yield to pathological over-fitting. Despite these theoretical
guarantees generalization of DNNs may be enforced by external meth-
ods, preventing the networks’ to converge on degenerated solution.
Similarly to classical regression approaches, weight-normalization of
the weights can be used to prevent over-fitting. Alternatively, Dropout
is a widely used method for improving generalization, consisting in
randomly zeroing hidden dimensions during training to push covari-
ances between networks’ weight [143]. However, recent analysis show
that such techniques decrease the capacity of the model, while gaining
too little when compared to data augmentation [144]. Finally, weights
of neural networks can also be considered as random variables, and
then be trained with Bayesian inference [145], or even be trained as
Gaussian Processes [146]. Despite the real generalization gain brought
by Bayesian techniques for neural networks, they are barely used in
the actual machine-learning field because of their low scalability and
their high computational cost.
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Figure 2.25: Graph of an auto-encoder,
that is built from two parts : an encoding
function, generally a neural network fol-
lowed by a sigmoid non-linearity, and a
decoding function, that inverts the repre-
sentation to recover the corresponding
data. The system is then trained using
an l

2 loss between the original example
and its reconstruction.

2.2.3 Auto-encoders as invertible representation
extractors

Most of machine learning techniques using neural networks are trained
on explicit tasks, providing efficient methods for regression, classifi-
cation, or reinforcement learning. As we saw in the previous sections,
deep neural networks can be understood as feature extractors whose
layers are progressively transforming the input into a suitable space,
whose emerging topology is trained to represent the targeted task.
However, the retrieved representations are generally task-dependent,
and are not enforced to retrieve structural information about the data
itself. Auto-encoders provide an alternative to such supervised meth-
ods, extracting a representation from the data without the definition
of any external task, but rather trained with a reconstruction objective.
Auto-encoders can then be understood as invertible representation
extractors, based on the joint learning of two processes : an encoding
process, projecting the data in the representation, and the decoding
process, that projects back the representation in the data space. As we
will see, representations provided by standard auto-encoders are often
quite close to the ones obtained with PCAs ; however, the development
probabilistic formulations of auto-encoding allowed the formulation
perform black-box manifold learning techniques, and opens the way
to the Auto-Encoding Variational Bayes that grounds this PhD.

Auto-encoders. The original auto-encoders, proposed by Rumelhart
& al., are built from two distinct 1-layer sigmoid networks : an encoder
that transforms the input x 2 R

D into a code z 2 R
d, and a decoder,

that transforms the output z back to the data x [147] (see fig. 2.25)

z = �(Ax + c) (2.45)

x = �(Bx + d) (2.46)

where the matrices A and B are trained with gradient descent on the
reconstruction error kx, x0k2. Without the sigmoid non-linearity, and
provided that d < D, auto-encoders converge to PCA, as shown by
Baldi & al. [148]. Auto-encoders can then be assumed to perform some-
how non-linear PCA, yet being trained by gradient descent. Moreover,
the system can be trained using alternative objective functions such
as cross-entropy or k · k1 to provide different solutions, showing the
flexibility of the method.

Auto-encoders thus allow invertible representation leaning, both for
encoding an decoding functions f (x) and g(x) are trained by gradi-
ent descent. As the choice of d is arbitrary, we can distinguish two
separate cases. Taking d � D provides an over-complete representa-
tion, embedding the data in a larger space where projections can be
sparse. Sparsity can be used for example to linearly separate data
points that would not be separable in the input space [149]. Reversely,
when d ⌧ D the representation is said under-complete, and the latent
code z can then be seen as a compressed representation of x. In this
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Figure 2.26: The denoising auto-encoder,
by adding a noise with fixed variance
to the input, enforces the auto-encoder
to learn how to project a neighboring
zone of the data manifold to its correct
reconstruction.

case, the auto-encoders weights are forced to share information among
several inputs, entangling the representation. Though, as we are here
interested by low-dimensional representations, we will only consider
the second case.

Manifold learning with auto-encoders While auto-encoding is an
efficient method to learn representations from an unsupervised man-
ner, the extracted features are not very robust and can be very sensitive
to small changes of data, providing degenerated reconstructions [150].
Furthermore, as the representation is only trained on the projection
points of the input data, a direct exploration of the space often pro-
duces unrealistic samples, such that the obtained representation is
unusable for generation purposes. Hence, Vincent & al. proposed to
reinforce the extracted features by adding noise to the input data,
learning the auto-encoder to denoise the input data and then to be less
sensitive to small perturbations [151]. Denoising auto-encoders (DAE)
may then be understood as a stochastic operator p(x|x̂), that learns
to project low-probability noisy observations x✏ = x + ✏ to the closer
high-probability point (see figure 2.26). Therefore, DAEs is inherently
extracting the true underlying manifold p(x) by learning the transition
operator x + ✏ ! x [152]. Alain & al. showed that if ✏ ⇠N(0, œ2

1), the
total loss amounts [153]

LDAE (r�(x)) = E

f
kr�(x) � xk2

2 + �
2k r�(x)
@x

k2
F

g
+ o(�2)

showing that adding a noise of variance �2 penalizes the first-order
derivative of the reconstruction function r�(x) with respect to x, then
also matching also the tangent space of the manifold p(x). This result
caused a surge of interest in auto-encoding systems, as the DAEs
demonstrated some abilities to catch the inner data manifold p(x).
However, DAEs were shown to be robust facing only one type of noise,
then limiting the efficiency of the approach. Similarly, contractive auto-
encoders propose to penalize the input sensitivity of the representation
by penalizing the Jacobian of the encoder’s output [154]

LCAE = kr(x) � xk2
2 +

D,dX

i=0,j=0

@zj(x)
@xi

where the regularization of the Jacobian enforces the representation
to be contracted, and to "whiten" its axis of variations to provide par-
simonious projections. The emerging properties of DAEs and CAEs
provoked a regain of popularity in auto-encoders, showing that these
methods could be used for black-box manifold learning. While auto-
encoders were initially deterministic problems, probabilistic formula-
tions first raised by Renzato & al. and then by Vincent & al. allowed to
turn latent codes to latent spaces, where the full span of the latent space
z is used. Furthermore, as the extracted representation were shown
being closer to the real underlying manifold of p(x), and then signifi-
cantly increasing its consistency, the invertibility of the representation
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allowed to directly explore the extracted manifold and then turn the
DAE into a proper generative model.

2.3 Bridging representation learning and
variational inference

In the previous sections, we summarized two different trends for ex-
tracting useful representations from signals. The first, grounded on
Bayesian learning, formulates a generative distribution p✓ (x|z) and,
based on some prior information p(z), is able to extract a posterior
distribution p(z|x) in order to infer the latent variables z corresponding
to a given data x. The second, grounded on representation learning,
proposes to model functions z = f (x) whether by extracting some
structural information from the data, or based on an explicitly defined
loss. While the first provide robust and interpretable representations,
it requires the tractability of involved terms and then strongly limits
the expressiveness of modeled distributions. Conversely, machine-
learning methods using neural networks are able to model functions
or arbitrary complexity, and can be trained on any derivable loss func-
tions ; however, they do not ensure any representational consistency
except the one indicated by the task, and can suffer from strong over-
fitting. Furthermore, the obtained representations are generally not
invertible, preventing to use the obtained systems as generative mod-
els.
Auto-encoders, presented above, seemed to hint at an interesting way
to combine both of best worlds. Indeed, this system jointly trains
encoding and decoding functions, allowing to train invertible rep-
resentations using neural networks, and then enabling their use as
generative models. We could then take inspiration from auto-encoding
systems but rather use neural networks to model a generative distri-
bution p(z|x) as an decoding process, and another network to model
the variational distribution q(z|x) as an encoding process. This would
allow us to learn expressive relations between the data x and the latent
variables z, while preserving the robustness and the invertibility of
Bayesian inference. This framework, called Auto-Encoding Variational
Bayes (AEVB), will then be introduced in the next sections.

2.3.1 Auto-Encoding Variational Bayes

Stochastic optimization of ELBO Reminding the ELBO (2.18), the
variational lower-bound for the data evidence p(x) can be written

L(q) =
⌅

q(z) log
p(x, z)

q(z) d z (2.47)

= Eq[log p(x, z) � log q(z |�)] (2.48)

where each latent parameters z j is optimized in turn to maximize the
term L(q). However, this approach is still assuming the tractability
of (2.18) for each q(zi), still preventing to optimize the ELBO with
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Figure 2.27: The reparametrization of
samples allows to separate the gradient
coming from the stochastic and deter-
ministic components.

intractable variational distributions. In the previous section, we in-
troduced SGD, that allows to train a parametric model with respect
to a defined criterion using iterative gradient descent optimization.
As the ELBO (2.18) provides a lower-bound of the model evidence
p(x), it could then be used as a training criterion for SGD optimization.
However, contrary to the non-stochastic cases introduced above, here
the involved quantities are distributions, such that the derivation must
be obtained respectively to the distribution parameters. This frame-
work, called Stochastic Variational Inference (SVI), were first proposed by
Hoffman & al. for exponential conjugate priors, successively updating
the ELBO gradient with respect to the natural parameters of exponential
families [155]. Another approach is black-box variational inference
[156], that allows to train a variational distribution q(z|�) given an
arbitrary generative model p(x|z)

r✓L(q) = r✓Eq[(log p(x, z) � log q(z |�))] (2.49)

where � are the parameters of the distribution q(z;�). As the involved
expectation is generally intractable, we can estimate it with Monte-
Carlo approximation, a simple sampling method drawing L samples
from a distribution and then averaging the outputs obtained with a
function f (·)

r✓Eq✓ (z)[ f (z)] = 1
L

LX

l=1

f (z)r✓ql

✓ (z
l) (2.50)

this estimator, called REINFORCE, is unbiased as l ! +1. However,
while its generality makes it applicable to a wide variety of models, its
efficiency is awfully reduced by its high variance, dauntingly slowing
down the training convergence. Several methods can then be used to
reduce this slowdown, such as Rao-Blackwellization [157] and control-
variates [158]. However, these methods are not sufficient to perform
SVI with high-capacity neural networks, and then limits the efficiency
of the variational approximation.

Reparametrization trick & Variational Auto-Encoder Despite the
advances brought by SVI, that allows to perform variational inference
with black-box approximation, the variance of the ELBO estimator
(2.49) makes it inapplicable for complex cases. This problem can be
alleviated under some mild assumptions for the chosen variational
family Q thanks to the reparametrization of the network’s gradient.
Indeed, provided that sampling from q�(z |x) can be split between a
deterministic part and stochastic component ✏ ⇠ p(✏ ), such that g(x, ✏ ),
the expectation in (2.49) can performed with respect to p(✏ ) instead of
E[q�(z |x)] thanks to the Law Of Unconscious Statistician (LOTUS)

Eq� (z |x)[ f (z))] = Ep(✏)[ f (g�(✏ , x))]

so the gradient of the deterministic part is separated from the gradient
of the stochastic part (see fig. 2.27). This method significantly reduces
the variance of the ELBO, and then fastens its convergence rate. This



42 2 Generative models, representation learning and variational inference

x

……
µ
�
x
�

<latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8=">AAAC3HicjVG5TsNAEH0xVwiXgYKCxiJCCk1kJ4RAh0RDCRI5JBIi22zCKr5krxEoSkeHaPkBWvgexB/AXzC7OBIUCNayPfPmvdk5nMjjiTDNt5w2NT0zO5efLywsLi2v6KtrzSRMY5c13NAL47ZjJ8zjAWsILjzWjmJm+47HWs7wSMZb1yxOeBiciduIdX17EPA+d21BUE/f6Phpx+GDUse3xZXTH92MpbvT04tm2VTHMMu16p5Vr5FRP6hWajXDykJFZOck1F/RwSVCuEjhgyGAINuDjYSec1gwERHWxYiwmCyu4gxjFEibEosRwyZ0SN8BeecZGpAvcyZK7dItHr0xKQ1skyYkXky2vM1Q8VRlluhvuUcqp6ztlv5OlssnVOCK0L90E+Z/dbIXgT72VQ+ceooUIrtzsyypmoqs3PjWlaAMEWHSvqR4TLarlJM5G0qTqN7lbG0Vf1dMiUrfzbgpPmSVtODJFo3fjWalbJll63S3eLifrTqPTWyhRPus4xDHOEFD1f+EZ7xoF9qddq89fFG1XKZZx4+jPX4CMPiZKw==</latexit><latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8="></latexit><latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8="></latexit><latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8="></latexit>

�
�
x
�

<latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA=">AAAC33icjVHLSsNAFD2Nr/quutNNsAi6KUlptd0V3LisaFWwIpM4bYfmRTIRSym4cydu/QG3+jfiH+hfeGdMQReiE5Kce+49Z+bOdSJPJNKy3nLGxOTU9Ex+dm5+YXFpubCyepKEaezylht6YXzmsIR7IuAtKaTHz6KYM9/x+KnT31f502seJyIMjuUg4hc+6waiI1wmibosrLePRNdnbUd0t9s+kz2nM7wZqXDnslC0SrWKXa3WTatkV3br9T0FyvVdu2baJUuvIrLVDAuvaOMKIVyk8MERQBL2wJDQcw4bFiLiLjAkLiYkdJ5jhDnSplTFqYIR26dvl6LzjA0oVp6JVru0i0dvTEoTW6QJqS4mrHYzdT7Vzor9zXuoPdXZBvR3Mi+fWIkesX/pxpX/1aleJDqo6R4E9RRpRnXnZi6pvhV1cvNbV5IcIuIUvqJ8TNjVyvE9m1qT6N7V3TKdf9eVilWxm9Wm+FCnpAGPp2j+Dk7KJZumflgpNmrZqPPYwCa2aZ57aOAATbTI+xZPeMaLwYw74954+Co1cplmDT+W8fgJlumafQ==</latexit><latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA="></latexit><latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA=">AAAC33icjVHLSsNAFD2Nr/quutNNsAi6KUlptd0V3LisaFWwIpM4bYfmRTIRSym4cydu/QG3+jfiH+hfeGdMQReiE5Kce+49Z+bOdSJPJNKy3nLGxOTU9Ex+dm5+YXFpubCyepKEaezylht6YXzmsIR7IuAtKaTHz6KYM9/x+KnT31f502seJyIMjuUg4hc+6waiI1wmibosrLePRNdnbUd0t9s+kz2nM7wZqXDnslC0SrWKXa3WTatkV3br9T0FyvVdu2baJUuvIrLVDAuvaOMKIVyk8MERQBL2wJDQcw4bFiLiLjAkLiYkdJ5jhDnSplTFqYIR26dvl6LzjA0oVp6JVru0i0dvTEoTW6QJqS4mrHYzdT7Vzor9zXuoPdXZBvR3Mi+fWIkesX/pxpX/1aleJDqo6R4E9RRpRnXnZi6pvhV1cvNbV5IcIuIUvqJ8TNjVyvE9m1qT6N7V3TKdf9eVilWxm9Wm+FCnpAGPp2j+Dk7KJZumflgpNmrZqPPYwCa2aZ57aOAATbTI+xZPeMaLwYw74954+Co1cplmDT+W8fgJlumafQ==</latexit><latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA="></latexit>

……
……

……
……

……

z
<latexit sha1_base64="5BiyWueWcW5gYiBnPwQkjSRyPso="></latexit><latexit sha1_base64="5BiyWueWcW5gYiBnPwQkjSRyPso="></latexit><latexit sha1_base64="5BiyWueWcW5gYiBnPwQkjSRyPso="></latexit><latexit sha1_base64="5BiyWueWcW5gYiBnPwQkjSRyPso=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0484K9oFtkWQ6bUPzYjIRaq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73dj3EmlZrzljbn5hcSm/XFhZXVvfKG5u1ZMoFYzXWORHouk6Cfe9kNekJ33ejAV3AtfnDXd4quKNGy4SLwov5SjmncDph17PY44k6qodOHLg9sa3k+tiySpbepmzwM5ACdmqRsUXtNFFBIYUAThCSMI+HCT0tGDDQkxcB2PiBCFPxzkmKJA2pSxOGQ6xQ/r2adfK2JD2yjPRakan+PQKUprYI01EeYKwOs3U8VQ7K/Y377H2VHcb0d/NvAJiJQbE/qWbZv5Xp2qR6OFY1+BRTbFmVHUsc0l1V9TNzS9VSXKIiVO4S3FBmGnltM+m1iS6dtVbR8ffdKZi1Z5luSne1S1pwPbPcc6C+kHZtsr2xWGpcpKNOo8d7GKf5nmECs5QRY28QzziCc/GuZEad8b9Z6qRyzTb+LaMhw/M75Of</latexit>

z � q(z|x)

x � p(x|z)
Figure 2.28: The variational auto-encoder,
instead of defining a point-estimate of
data x and latent code z, rather define
the parameter of the generative and vari-
ational distributions.

reparametrization trick available for many distributions such as Normal,
Logistic, Uniform, and Laplace distributions, but also to composition
of these, such as Log-Normal, Dirichlet, Beta, and many others. More
generally, it can also be applied to distributions with tractable inverse
Cumulative Distribution Function, extending this trick to Exponential,
Cauchy, and Gumbel distributions. This application of this trick to
ELBO estimation was first proposed by Kingma & al., allowing a
scalable and fast method for black-box amortized Variational Bayes
with arbitrary encoding / decoding functions [22]. A seminal example
of this method, called the Variational Auto-Encoder (VAE), is a particular
parametrization of this system where both generative distributions
p(x |z) and q(z |x) are defined as mean-field normal distributions (see
fig. 2.28)

p✓ (x |z) =N(x |µ✓ (z),�2
✓ (z)) (2.51)

q�(z |x) =N(z |µ�(x),�2
�(x)) (2.52)

where ✓ and � are respectively the parameters of generative and vari-
ational models, both defined with neural networks. As outlined by
the name, VAE then bridges Bayesian inference with auto-encoders,
and are optimized with SGD on the ELBO (2.18), that can be re-written
from an auto-encoder perspective

L[q] = Eq(z)[log p(x |z)]
|                {z                }
reconstruction error

�DKL[q(z |�)kp(z)]|                 {z                 }
regularization error

The first term can be understood as a reconstruction error, where the
log-likelihood replaces the l

2 loss, while the second is a regulariza-
tion term, preventing the variational model to move away from the
prior p(z). VAEs can then be formulated as a stochastic version of the
auto-encoder, with an additional regularization term that enforces the
approximated posterior distribution to match the prior. Variational
auto-encoders raised a significant enthusiasm in the machine learning
community, because of its efficient trade between simplicity, scalability,
and flexibility. Indeed, the possibility of modeling the dependencies
between data x and latent variables z with neural networks greatly
enhance the expressiveness of Bayesian latent models, relaxing almost
all of the previous tractability assumptions. Also, VAEs gain from
auto-encoders by inferring its latent representation with a Bayesian
learning process, increasing the generalization of the model and the ro-
bustness of the representation. Furthermore, representations obtained
with variational auto-encoders on simple datasets were surprisingly
coherent, pointing out that the VAE successfully retrieved the data
underlying manifold (see fig. for an example with the MNIST dataset
[159]). These appealing properties turned VAE as one of the most
popular recent machine-learning generative model, and were then
consequently widely investigated by the community.
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q�(z|x)

q�
�(z|x)

log p(x) � L(q)

log p(x) � L(q�)

L(q�) � L(q)

approximation

amortization

p(z|x)

Figure 2.29: The KL-divergence between
true and approximated posteriors can
divided in two parts : an amortization
gap, that represent the gap between the
current approximated posterior and the
optimal one, and the gap between the
optimal approximation and the true pos-
terior.

2.3.2 Emerging properties of variational auto-encoders

Since the seminal works of Kingma & Welling [22] and Rezende &
al.[160], emergent properties of AEVB have then been extensively
studied in the domain of probabilistic generative models field. Despite
the surprising consistency of the extracted representations, researchers
unveiled two main drawbacks of VAE, preventing these models to
be extended to datasets of higher complexity. The first issue was the
blurriness of generated samples, pointing out the sub-optimality of the
generation process. A second issue was that, in some cases, the latent
spaces extracted by VAEs were degenerated, indicating that the latent
space was bypassed by the model [161]. In this section we will review
the main sources of degeneracy that occur when training variational
auto-encoders, and provide a state of the art of current solutions and
improvements brought so far by the research community.

Approximation vs amortization gaps. Despite the gain of expres-
siveness brought by parametrizing q(x |z) with neural networks, the
variational model distribution is still defined as normal distribution
with diagonal covariance, then still belonging to the mean-field fam-
ily. Choosing a given family of distributions Q for our variational
model, we can derivate the ELBO 2.18 to outline two possible sources
of sub-optimality [162] (see fig.2.29)

L= log p(x) �L[q]
= log p(x) �L[q?] +L[q?] �L[q]
= DKL[q?(z |x)k[p(z |x)]|                        {z                        }

approximation gap

+DKL[q(z |x)k[p?(z |x)] � DKL[q?(z |x)kp(z |x)]|                                                          {z                                                          }
amortization gap

(2.53)

where q?(z |x)Q is the optimal distribution minimizing the ELBO L.
This reformulation allows to separate the inference gap in two dif-
ferent parts : an approximation gap, that quantifies the loss obtained
from choosing a given a non-optimal family of distributions Q, and the
amortization gap, that quantifies the loss obtained between the actual
inference and optimal distributions (respectively q and q?).
The first term quantifies the loss that occurs when the chosen vari-
ational family Q is unable to approximate the real posterior p(z |x)
distribution. As mean-field normal distributions are unable to match
complex posteriors, the system will not be able to learn the correspond-
ing generative distribution, explaining the blurriness of generated
samples. Approximation gap can be reduced by choosing more ex-
pressive variational families, or normalizing flows (see sec 2.3.2.1), or
rather using implicit variational distribution to match the aggregated
posterior q(z) =

⇤
q(z|x)dx (see sec. 2.3.2.3). The second term rather

quantifies the optimization error, that can be caused by the Monte-
Carlo approximation used to estimate the expected likelihood in (2.18),
or imperfect convergence. This gap can be reduced by using better
ELBO estimators, such as importance-weighting approximations that
provide tighter bounds than AEVB (2.3.2.2).
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Latent over-pruning. Another surprising property of AEVB is latent
over-pruning, an phenomenon observed quite early in the AEVB liter-
ature [161, 163, 164]. Over-pruning describes the tendency of VAEs
to bypass some latent dimensions during training, over-regularizing
the representation by automatically shrinking the number dimensions
used by the decoder. While this effect could be thought desirable,
pointing out that VAE naturally retrieves the true manifold underlying
the data and getting rid of unnecessary dimensions, it was also noticed
in degenerated cases, such that the system was not able to generate
convincing samples. While the exact origins of latent over-pruning
are still unclear, several solutions have been developed to control this
effect, allowing diagnosis and efficient training of VAEs.

2.3.2.1 Approximation gap : towards more expressive inference

Alternative inference distributions. A way to reduce the approxi-
mation gap is then to choose more flexible variational families Q, that
would be able to match the true posteriors more accurately. Even if, the-
oretically, any inference distribution can be chosen, these distributions
must be reparametrizable, samplable, and preferably have a deriv-
able DKL , to be correctly trained . Normal distributions with full-rank
covariance matrices N(z |µ, ⌃) can provide an alternative, allowing to
model dependencies between latent dimensions. However, low-rank
approximation methods have to be used, as sampling from full-rank
covariance normal distributions has O(d3) complexity. Rezende & al.
propose a 1-rank matrix with diagonal correction ⌃�1 = �2

1 + uuT ,
allowing arbitrary rotations along one principal direction u [32]. Al-
ternatively, the Householder flow was proposed by Tomczak & al. to
encode full-rank covariance matrices with a lower computational cost
[165]. However, normal distributions with full-rank covariance could
not be sufficient, as it only allows to fit the first two moment of the
true posterior. Alternatively, the exponential family is a generalization of
many commonly-used distributions that is specified by its base measure
h(x), sufficient statistics Ti(x) and natural parameters ⌫ [59, 166],

p(x |✓) = h(x) exp
sX

i=1

⌫i(✓)Ti(x) � Z(✓) (2.54)

where Z(✓) is the partition function of p(x |✓) that normalizes the dis-
tribution. The exponential family generalizes a lot of well-known
distributions : by example taking the first two moments as sufficient
statistics, T(x) = [x, xx>], (2⇡)�k/2 as base measure, and [⌃�1µ,� 1

2⌃
�1]

as natural parameters, provide a reparamterization of the multivari-
ate normal distribution. The exponential family also extend such as
Bernoulli, Poisson, Multinomial, Gamma, and all conjugate priors and
combinations of these. Exponential families can then provide an inter-
esting framework for generalized inference families, as proposed by
Ranganath & al. [59]. Furthermore, exponential families also have a
natural connection to information geometry [167], with a direct equiva-
lence between its natural parameters and its Fisher information matrix
[166].
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z0

zK

Figure 2.30: Normalizing flows allow to
mode complex posterior distributions
with a transformation chain from z0

Another weakness of normal distributions is their unimodality, that
is hence unable to fit multi-modal posteriors. In this case, modeling
multi-modal posteriors with diagonal normals can provide faulty in-
ference results, worsened by the DKL properties(see sec. 2.20). Some
authors thus investigate Bayesian non-parametric methods, that can
allow arbitrary information capacity for flexible posterior matching.
Serban & al. proposes to define a piecewise parametrization of the
latent space, that is divided in equalparts and modeled using a Piece-
wise Constant Distribution, for both inference and prior distributions.
This approach, inspired by non-parameteric Bayesian inference, is
then able to shape very generic posteriors, but unfortunatelly grows
exponentially with the number of dimensions. Another way to use
non-parametric distributions is to model a Dirichlet process, that is sam-
pled to obtain the posterior distribution. Dirichlet processes can be
built with stick-breaking processes, a sequence of Beta distributions
whose parameters can be inferred by the variational model from the
data [168], or defined hierarchically using nested Chinese Restaurant
Processes, that can allow interesting unsupervised extraction of hi-
erarchical features as shown in some studies in video classification
[168].

Normalizing Flows. Choosing an approximated posterior among an
extended variational family Q can indeed provide more expressive
inference, but also add a significant computational cost to the training.
Alternatively, Normalizing Flows (NF) allow to obtain expressive im-
plicit distributions by transforming samples from a simple distribution,
enriching the expressiveness of posterior with a little computational
cost. Proposed by Tabak-Turner & al., a normalizing flow is a sequence
of local invertible transformations xK = F(x0) = ( fK � ... � f2 � f1)(x)
that is trained to transform a set of input x into an output xK , that we
assume drawn from a simple distribution (such as uniform or isotropic
normal). The key point of NFs is that, provided the invertibility of
maps f i , the log-likelihood still tractable, so we can train the flow
parameters directly on the output space [169, 170]. As normalizing
flows do not perform any dimensionality reduction they can be very
tedious with high-dimensional data, then outshined by deep learning
techniques. However, a recent surge of interest in normalizing flows
has been allowed by the increasing capacity of parallel computing,
providing very convincing generation results [171].

Turning the original idea upside-down, Rezende & al. propose to take
samples drawn from simple distributions, and to transform them into
complex ones with normalizing flows [172]. Hence, taking the out-
put of a variational model z0 ⇠ N(boldsymbolµ, boldsymbol�2), we
can then use a NF to transform the input latent vector to obtained an
implicit posterior distribution, such that zK = F(z0). As each compo-
nent of the flow is invertible, the expression of the ELBO 2.18 is still
tractable (see fig. 2.30)

log q(zK |x) = log q(z0 |x) �
KX

k=1

log |det
@ fk
�zk�1

| (2.55)
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such that NF can be naturally integrated in the ELBO formulation.
In addition to its tractability, the significant strength of this approach
resides in its simplicity. Indeed, taking a simple planar flow and a
isotropic normal prior, we are able to obtain a bi-modal distribution
that can be trained to approximate any mixture of two Gaussian. Then,
even with little chains of flows f (z) = z+ uh(w>z+ b) and simple flow
blocks, we are able to approximate complex posterior distributions
with a very low computation cost. Since the seminal paper of Rezende,
numerous alternative flow blocks have been proposed :Inverse Auto-
Regressive Flows, proposed by Kingma & al., modeling auto-regressive
distributions [173], masked auto-regressive flows [174] , conditional
flows [175], or riemannian normalizing flows, using planar flows to
regularize the curvature of the latent space with respect to the input
[176].

2.3.2.2 Amortization gap : improving variational approximations

As shown by the decomposition (2.53), another source of sub-optimality
in AEVB is the amortization gap, the loss between the optimal distri-
bution for a given variational family q?(z|x) 2 Q and the distribution
q(z|x) fixed after training. While traditional variational methods were
based on tractable solutions, black-box VI is based on gradient-descent
based optimization, such that the obtained solution at convergence
is not necessarily optimal. We leave optimization issues due to gra-
dient descent out of this work, as such problems are not specific to
AEVB. However, some contributions to the amortization gap can be
found in the ELBO itself.r source of sub-optimality in AEVB is the
amortization gap, the loss between the optimal distribution for a given
variational family q?(z|x) 2 Q and the distribution q(z|x) fixed after
training. While traditional variational methods were based on tractable
solutions, black-box VI is based on gradient-descent based optimiza-
tion, such that the obtained solution at convergence is not necessarily
optimal. We leave optimization issues due to gradient descent out of
this work, as such problems are not specific to AEVB. However, some
contributions to the amortization gap can be found in the ELBO itself.
One of the main source of amortization error in AEVB is due to the
Monte-Carlo approximation of the expectations over q(z|x) involved
in the ELBO. Remembering the expression of black-box VI gradient
estimator (ee sec. 2.49)

r✓L(q) = r✓Eq[(log p(x, z) � log q(z |x))]
= r✓Eq[log p(z |x)] � DKL[q(z |x)kp(z)]

the exact formulation of the gradient estimator is using expectations
over q(z|x), that are generally intractable in the black-box VI frame-
work. We then estimated these expectations with Monte-Carlo approx-
imation

r✓Eq✓ (z)[ f (z)] = 1
L

LX

l=1

f (z)r✓ql

✓ (z
l) (2.56)

In practice L is chosen very low, generally taking L = 1, such that this
approximation is computed using only one sample from the recogni-
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Figure 2.31: Importance weighting sam-
ples several samples from the distribu-
tion q(z|x), that are then weighted by
their probability in the final loss.

tion network. Amortization gap can then theoretically be reduced by
taking more samples for the expectation approximation, its precision
increasing with L. However, Monte-Carlo approximation performs
poorly, and the precision gained by increasing L does not worth the
computational cost of decoding L more values.

Importance-Weighted Auto-Encoders A well-known alternative to
VAEs are Importance Weighting Auto-Encoders (IWAE), that replace the
single Monte-Carlo approximation described in previous section by a
importance-weighted estimate of the ELBO, taken over several sam-
ples from the recognition distribution. The new gradient estimate of
the lower-bound Lk(q) then corresponds to the k-sampled importance
weighting of the log-likelihood

r✓,�Lk[q] = Ez1...zn⇠q(z|x)
f

log
1
k

kX

i=1

p(x, z)
q(z|x)

g

= r✓,�E✏1...✏k

f kX

i=1

w̃kr✓,� logw(x, z(x, ✏ ))
g

wi = p(x, z(x, ✏
i
))/q(z(x, ✏

i
)|x)

where we applied the reparametrization trick to obtain k stochastic
components [✏1...✏k]. In the latter expression, wi denotes the density
ratios, and the weight w̃i = wi/

P
k

i
wk is the importance weight of the

corresponding sample. Importance-weighting approximation of the
ELBO improves the quality of the reconstructions, and at the same time
can help to prevent latent over-pruning (see section 2.3.2.3). Cremer &
al. argue that the true recognition model recovered by IWAE is slightly
different the one recovered by the VAE, as it takes into account the real
posterior p(z|x) [177]

qIW = Ez2,...,zk⇠q(z|x)

"
p(x, z)

1
k

✓
p(x,z)
q(z|x) +

P
k

j=2
p(x,z j )
q(z j |x)

◆
#

where the additional term brought by IWAE is
P

k

j=2 p(x, zj)/q(zj |x).
Such methods have then be generalized under the name of Monte-Carlo
objectives for global log-likelihood estimators [178], giving a series of
high-precision estimators such as Filtering Variational Objectives [179]
for sequential variational data.

2.3.2.3 Latent over-pruning and posterior collapse

One of the main reasons of the AEVB success in the machine learn-
ing literature is the emerging structural properties of the extracted
representations [22]. According to manifold hypothesis, this tendency
would point out that VAEs are able to retrieve the underlying man-
ifold of a given dataset, and recovering the true factors of variation
structuring the data. Furthermore, a natural latent pruning effect has
been noticed during training, pointing out that VAEs automatically
prunes latent dimensions that are considered unnecessary for data
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Figure 2.32: (a) an auto-encoder asso-
ciates to a code z to a given example
x, but is not trained between the exam-
ples. (b) a well-balances VAE enforces
the distributions to overlap, being able
to find mixtures between the two distribu-
tions (c) if the recognition model q(z|x)
matches the prior, the variables z and x
are independent.

representation. This would indicate that the VAE retrieves the intrinsic
dimensionality of the data manifold, and would then structurally pro-
tected against over-fitting. However, further investigations of AEVB
training dynamics tempered these observations, exhibiting undesir-
able effects occurring during the training process and mitigating the
natural disentanglement nature of the extracted manifold.

Latent over-pruning While dimensional pruning can be taken as a
desirable property of the system, VAEs has been showed to deactivate
latent dimensions even when the reconstruction quality was insuf-
ficient, over-pruning the latent representation. This deficiency can be
intuited recalling the formulation (2.18) of the ELBO

p(x) � Eq� (z|x)[p✓ (x|z)] � DKL[q�(z|x)kp(z)]

observing that the distribution q�(z|x) is pushed to match the overall
prior p(z) ⇠ N(0, I) for each sample x of the data by the regularization
term. The two terms are then antagonistic, as the reconstruction term
will shrink the latent projections to atomic points (similarly to regu-
lar auto-encoders), while the regularization term enforces each data
point x to cover the whole support of the representation (see section
2.1.4.2). This behavior is due to the amortization of variational infer-
ence, that from one hand confers strong generalization properties to
the system, and from the other hand can also over-regularize some di-
mensions, pushing some axis of the posterior q(z|x) to match the prior
and then being deactivated during the rest of the training process. This
effect, called posterior collapse, has been clearly highlighted, as can be
shown whether by studying the decoder weights [180] or by analyzing
statistics from latent projections[164, 181]. As shown by Yeung & al.,
active dimensions have typically tiny variances in average and a strong
variance in the distributions’ means, while inactive dimensions are
almost perfectly fitted to the prior, projecting means near to zero and
setting the variances to 1. Such regime is then called polarized, as the
distinction between active and inactive dimensions is significant [182].
This observation clearly demonstrates the double bind of the ELBO,
where the inactive units are the dimensions matching the prior.

Bits-back coding Latent over-pruning is particularly sensible to de-
coder’s capacity. Bowman indeed noticed that, when using an auto-
regressive decoder, the information given by the latent space was
totally bypassed, such that almost every dimension was matching the
prior [161]. Chen & al. proposed to explain this strange effect using
a bits-back coding interpretation of the ELBO (2.14). Remembering the
formulation of Bit-Back code length (see section 2.2.3)

CBitsBack) = Ex⇠p(x),z⇠q(z|x)[log q(z|x) � log p(z) � logp(z|x)]
=H[p(x)] +Ex⇠p(x)

⇥
DKL[q(z|x)kp(z|x)]

⇤
the extra-cost is then DKL[q(z|x)kp(z|x), that can be easily avoided
by the system by taking p(z|x) = p(z), such that q(z|x) = p(z). This
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principle, called information preference, is particularly strong at the
beginning of the training, as the encoder can fit much faster the prior
p(z) than the decoder can fit the data p(x), especially if the decoder has
high capacity and thus train more slowly. This information preference
property of the VAE thus weakens the representation learning process
if the decoder has too much capacity, and then somehow weakens the
adaptability of the model.

DKL scheduling and data selection. Different approaches have been
developed to counter over-pruning in VAEs. The most common method
to prevent this effect is to schedule the weight of regularization term
DKL[q(z|x)kp(z|x)], initiated at 0 and raising to 1 during training [183].
This warm-up procedure allows to prevent hasty posterior collapses, es-
pecially in hierarchical models where higher latent layers can converge
really quickly to degenerated solutions [184]. Warm-up is a simple and
efficient way of avoiding latent over-pruning at the beginning of the
training, but unfortunately does not prevent it once the regularization
term is weighted as usual. Another solution if to threshold the regular-
ization term, such as the free bits constraint proposed by Kingma & al.
[173] that replaces the original DKL by a clamped regularization term
max {DKL[q(z|x)kp(z)], �}, such that the encoding model is forced to
not exactly match the posterior.

Alternatively, over-pruning can be alleviated by skewing the amount
of information given to the decoder, such that the decoder cannot
recover the full data x without z. This idea, called by Chen & al. explicit
information placement, can be done by limiting the target scope of the
generative distribution [185], or to train the encoder on the future of
a sequence rather than its past in the case of sequential data [186].
Alternatively, Yeung & al. propose a latent gating mechanism that
automatically selects the latent dimensions used for each example
[164], enforcing the system to use all of its latent dimensions.

Aggregated posterior matching. Over-pruning occurs mainly be-
cause of the term DKL[q(z|x)kp(z)], that tries to fit the approximated
posterior distribution to match the prior for each data sample x, then
over-regularizing the representation z. This can be formally expressed
by another decomposition of the ELBO, aiming to exhibit the informa-
tion loss caused by regularizing q(z|x) instead of q(z) [187]. In order
to express the aggregated posterior q(z) from q(z|x), Hoffman & al.
propose to express the index n as a random variable, that accord-
ing to training procedures are drawn from a uniform distribution
q(n) = p(n) = 1/N
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DKL[q(z|x)�p(z)]

DKL[q(z)�p(z)]

Figure 2.33: Matching the aggregated
prior q(z) instead of q(z|x) allows to pre-
vent over-pruning, as its matching the
overall distribution rather than the pos-
terior.
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where the term
�

log N �Eq(z)[H[q(n|z)]]
�

acts as a regularizer, enforc-
ing the variational distribution q(z|x) to overlap between n. While this
term regularizes the representation, it also prevents the full model to
maximize the ELBO. This decomposition shows an inner trade-off of
amortized variational inference : while conditioning the approximat-
ing distribution q on the data x allows an explicit variational posterior
q(z|x), it also prevents the aggregated posterior q(z) to match the prior
p(z). Some authors have then been investigating methods to match the
aggregated posterior q(x) to the prior q(x) (see fig. 2.33). Aggregated
posterior regularization can also be justified from an optimal transport
perspective, as overlapping projections q(z|x) inevitably results in pro-
ducing blurry samples (see section 2.1.3.3).

As recovering the aggregated posterior p(x) is generally intractable,
we have to use implicit distribution matching D[p, q] to replace the
DKL term in the ELBO 2.18. Moreover, implicit distribution matching
approaches also allow arbitrary priors p(z), providing that we can sam-
ple from it. As we saw section 2.1.3.2, MMD provides an efficient way
to estimate the divergence of implicit distributions [75], as proposed
by the Wasserstein Auto-Encoder (WAE) [84], or leveraging Sinkhorn
distances, computing the transport cost between the two distributions
[188]. Adversarial Auto-Encoders, proposed by Makhzani & al., rather
propose to use density ratio estimation (see sec. 2.19) to address the
classification problem

r(x) = p(x)
q(x) =

p(x|y = 1)
q(x|y = 0) =

D(x)
1 � D(x)

where D(x) is the output of a discriminator. Based on a similar intu-
ition, Mescheder & al. proposed an unified Adversarial Variational
Bayes (AVB) framework, using adversarial methods to rather match
the full joint distributions p(x, z) and q(x, z) ; however, as underlined
by Bousquet & al., the actual formulation of AVB does not implicitly
perform aggregated posterior. While using implicit distribution meth-
ods allows us to match the marginal distribution q(z) to the prior, and
are well-defined from an optimal transport perspective, they can yet
provide degenerated representation as it encourages disjoint encod-
ing distributions q(z|x), as shown by (2.57). Thus, some approaches
propose to optimize both DKL[q(z|x)kp(z)] and DKL[q(z)kp(z)], hence
maximizing the mutual information I[x, z] [189, 190].
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z1

z2

Figure 2.34: Disentangling : given two
factors of variation (running and color),
here neither axis are covariant with axis
of latent space, and are not orthogonal
between them.

Prior learning. Alternative approaches rather suggest to provide
richer priors, assuming that the prior p(z) ⇠N(0, 1) unavoidably yield
to over-regularized representations. Tomczak & al. propose variational
mixtures of posterior priors (VAMP), formulating the prior as a mix-
ture of normal distributions inferred from pseudo-inputs learned with
an auxiliary distribution. Interestingly, the pseudo-inputs inferred by
VAMP priors implicitly represent existing patterns in the dataset, help-
ing to perform unsupervised clustering in the latent representation.
Multi-layer latent approaches, such as Deep Latent Gaussian Mod-
els [160], an also be thought as learning priors on the lower levels
[32], while keeping the regularization term on the top-level. Similarly,
Klushyn & al. propose to use a hierarchical prior model learning to
fit the aggregated posterior q(z). Some methods also propose to auto-
matically adjust the number of latent dimensions, keeping the optimal
dimensionality that is needed to maximize the reconstructions. Finally,
the infinite VAEs proposed by Abbasnejad & al. propose to dynami-
cally create single dimension VAEs once a sufficient number of data
instances is not represented, using random affectation variables drawn
from a Dirichlet process [191].

2.3.2.4 Code efficiency and disentanglement

Disentangling and DKL weighting The natural disentangling prop-
erties of VAE raised an important interest in the machine-learning
community, explaining the popularity of this model. The concept of
disentangling relates to the amount of correlation between the axis of the
representation, assuming that having independent axis means that the
we retrieve independent factors of variation. Disentangling can thus be
related to interpretability, as an interpretable representation would have
dimensions corresponding to independent human-understandable fac-
tors of variation [192]. However, the actual origin of the witnessed
tendency is hard to identify precisely. From a geometric perspective, if
we want two axis of variation to be independent, these axis should be
orthogonal in the representation, and even correspond to its axis (see
fig. 2.34).
The disentangling properties of existing methods such as probabilistic
PCA, robust PCA [180] or non-linear ICA [193] have been investigated,
all of these methods enforcing the orthogonality of representation. Ro-
linek & al. recently demonstrated the role of the stochastic part of the
reconstruction loss, promoting local orthogonality of the decoder. More
specifically, Higgins & al., underlined the role of the regularization
term DKL[q(z |x)kp(z)] in disentangling, investigating the alternative
objective [194]

L�Eq(z)[log p(x |z)] � �DKL[q(z |x)kp(z)] (2.59)

and showing that increasing the � parameter was enhancing the disen-
tangling properties of the representation, recovering factors of variation
from image such as translation, rotation, and shape. Indeed, in VAEs,
the prior is defined as a mean-field normal distribution p(z), such that
each dimension zi of the distribution is independent. Increasing the
weight of DKL[q(z |x])kp(z)] then enforces the variational distributions
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Figure 2.35: Evaluating the true underly-
ing factors of a given dataset implies not
only to extract the exact sub-manifold
from the original space, but also to infer
its underlying metrics.

to match the prior, and then to be factorized among these dimensions.
However, as shown in previous sections, increasing � also favors
posterior-collapse and brings more distortion to the data, then blur-
ring the reconstructions. Indeed, the objective 2.59 is a reformulation
of objective (2.36), such that increasing � lowers the representation
rate, but increases the distortion. Alternative methods then propose to
rather regularize the total covariance of the aggregated posterior [150]

TC(z) = K L
f
q(z)k

Y

i

qi(zi))
g

(2.60)

that enforces the factorization of the aggregated posterior q(z) without
increasing over-pruning. We can also increase mutual information be-
tween x and z by reducing the pair-wise distances between samples in
the encoding space, as proposed in [195], or directly approximating the
mutual information with optimal transport methods [196]. However,
retrieving independent axis does not ensure their interpretability, as
independence is rotation-invariant and may fail to extract accurate
axis of variation from the data.

Disentangling and Riemannian geometry. Further insights on the
disentangling properties of AEVB can be given under the scope of
Riemannian geometry, bridging Bayesian learning and differential ge-
ometry. As summarized previously, disentanglement is closely linked to
the idea of orthogonality, providing that the axis of the representation
correspond to independent factor of variations underlying the data.
In other words, an interpolation in the latent space should then corre-
spond to a flat trajectory on the underlying data manifold. The quality
of interpolations in the latent space are thus related to how much the
representation has caught the inner manifold metrics, that in practice
is rather unsatisfying for complex datasets.

Riemannian geometry can explain why the orthogonality of latent axis
not a sufficient criterion for extracting disentangled representations.
Remembering the definition of a manifold (see sec. 2.2.1), each point
lying on the manifold defines a tangent space, with an infinity of possi-
ble orthogonal coordinates. According to the manifold a given metrics,
the optimal or parallel translation between these two points is given by
its geodesics, that is a property of the manifold. These inner metrics
can be obtained with the intrinsic riemannian metrics, that describe
the manifold curvature. Then, retrieving the ideal translation between
two points in the latent space by making a linear interpolation imply
to have extracted flat coordinates of manifold, providing an additional
criterion for latenet disentanglement (see fig. 2.35). Formulating the
data output x = f (x)+�(z) � ✏ , the corresponding Riemannian metrics
tensor can be obtained by [197]

Mz =
�
Jµz

�>�Jµz � + �
J�
z

�>�J�
z

�
that allows us to get an estimation of the Riemannian metrics de-
fined by the latent representation. Geodesic interpolation between two



2.3 Bridging representation learning and variational inference 53

points can then be obtained by minimizing the curve length in the
manifold, as proposed by Shao & al. [198] [199] using finite-time differ-
ences and arc length optimization. Geodesic interpolations have been
shown to qualitatively improving translations between two points,
indicating that the latent space coordinates are not flat respectively to
the Riemannian metrics of the underlying manifold. To our knowledge,
adding a flatness criterion to the ELBO has not been yet investigated
in the literature, even if this idea is closely related to contrastive auto-
encoders 2.45.

Riemannian approaches to variational auto-encoders then give con-
sequent conclusions on the inner behavior of these algorithms, un-
derlining the role of differential geometry on the emerging properties
of the latent representation. Recent approaches then investigate this
topic further to define non-Euclidean latent spaces such as spheres
or toruses [200] , or investigating hyperbolic geometries [201, 202].
Riemannian metrics have also been investigated to regularize the la-
tent space in a supervised way by Hadjeres & al., enforcing latent
geometrical properties to match with user-defined attribute functions
[203].

Multi-object approaches. Disentangling in VAEs has been mostly
studied in multi-object recognition, where several objects are depicted
in a single image. Multi-object recognition is a seminal machine-learning
task, challenging the model abilities to understand compositionality of
images. While very efficient methods have been developed using deep
convolutional networks architectures [204] [205], these methods still
do not provide interpretable representations such as the one provided
by AEVB. Chazan & al. proposed deep clustering algorithm for ob-
ject recognition by pre-training multiple variational auto-encoders
on every object, and then use these models as a mixture of experts
based on the reconstruction score [206]. However, pre-training specific
auto-encoders for each object can be tedious, and for many objects the
reconstruction procedure can be too slow. Alternatively, Greff & al.
propose a multi-object recognition model using VAEs by splitting the
latent spaces in subsets that are fed to multiple decoders, recomposing
the original image by generating a mask in addition to the image [207].
Multi-object recognition can also be processed in a sequential way,
generating the salient objects one after the other on a canvas, as done
by the DRAW model proposed by Gregor & al. [208]. Similarly, the
Attend, Infer, Repeat procedure proposed by Eslami & al is based on a
single structured decoder, that is used sequentially to recompose all
the objects present in a scene until the inference model stops the proce-
dure. Latent space is then explicitly disentangled to infer separately
spatial and object properties, then enforcing its interpretability [209].
Explicit latent disentanglement can then be enforced by designing
the generation process, and is certainly an interesting perspective for
variational auto-encoding systems.
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Figure 2.36: Relaxation of discrete prob-
ability function : (a) discrete probability
functiion p(x) (b) obtain cumulative dis-
tribution function

⇤
p(x)dx (c) relaxation

by approximating the CDF with a contin-
uous distribution. Provided its tractable
reciprocal, this distribution can be sam-
pled.

2.3.3 Discrete latent spaces

Finally, we will address the problem of discrete latent spaces, that is a
challenging objective as back-propagation through discrete variables is
generally not possible [210]. Indeed, discrete variational distributions
q�(z|x) are not re-parametrizable, and approximating the gradient
with a Monte-Carlo estimator is often too noisy to ensure convergence.
Yet, extracting discrete representations could be useful for several
applications such as unsupervised classification or topic detection
[211]. Discrete representations can also be a very efficient method to
reduce over-pruning when using auto-regressive decoders, as shown
by van den Oord & al [212], or to achieve latent input selection by
inferring a mask [213].

Continuous relaxation. Discrete latent variables are usually mod-
eled using Categorical distributions, that can be thought as a gener-
alization of Bernoulli distributions with k > 2 possible issues. Cate-
gorical distributions are typically used at the end of a classification
network, jointly with a final Softmax non-linearity layer, and directly
back-propagated with cross-entropy estimators. However, categorical
distribution do not allow re-parametrization trick and estimation of
its gradient with REINFORCE converge slowly. A solution to ease
the back-propagation through discrete random variables is continu-
ous relaxation, that consists in projecting the discrete representation
in a continuous space using a smoothing transformation. Categorical
distribution can be smoothed using Gumbel distribution, such that sam-
pling from Categorical distribution can be done using samples from
gi ⇠ Gumbel(0, 1) [214, 215]

z = onehot
⇣
argmax

i
[gi + ⇡i]

⌘

=
exp (log ⇡i + gi)/⌧)

P
k

i=1 exp (log ⇡j + gj)/⌧)

by approximating the argmax function with a Softmax. Such variables
are distributed as Gumbel-Softmax distribution (also called Concrete),
whose probability density function is tractable and can be used to
approximate Categorical variables. The ⌧ parameter is called the tem-
perature of the distribution, such as it tends to be atomic when ⌧ ! 0,
but equals a uniform distribution as ⌧ ! +1. As the Gumbel-Softmax
distribution is obtained from a tractable inverse cumulative distri-
bution, it can the applied the reparametrziation trick, and then be
efficiently integrated into the AEVB framework. The gradient of a Cat-
egorical distribution can then be approximated by using the one from
a Gumbel-Softmax, a method called straight-through Gumbel estimator,
that tends to the real gradient when ⌧ ! 0. While the Gumbel-Softmax
trick can provide efficient approximations to Categorical distributions,
they can be too smooth to accurately perform discrete sampling. Rolfe
& al., followed by Vahdat & al., rather propose spike-and-exponential
smoothing transformations, that only activates the unit if the real
threshold of the corresponding latent unit is passed. Xu & al. also pro-
pose to define the simplicial probabilities by taking planar projections
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Figure 2.37: Semi-supervised learning : a
supervised task is perform in the latent
space, and the extracted label is given to
the decoder for class-dependant genera-
tion.

of samples obtained from a Von-Mises distribution, whose support is
defined on an hyper-sphere S

K [216].

Unsupervised and semi-supervised learning Some approaches rather
extract discrete information from the continuous latent space by quan-
tifying it, then labellng different zones of the latent spaces in a simi-
lar way to clustering. By example, the GM-VAE proposed by Dilok-
thanakul & al. [217] uses a Gaussian-Mixture prior, where the index
of the corresponding mixture is inferred from the latent space. Sim-
ilarly, van den Oord & al. propose to use vector quantization on the
latent space to extract a discrete dictionary of latent centroids, using
straight-through gradient estimation to back-propagate in the encoder. In
that case the regularization constraint then become a l

2 norm between
latent projections and the closest embedding vector, then preventing
over-pruning but enforcing the sparsity of the representation.

Extracting discrete information from continuous latent-space can also
be performed in a supervised manner, adding a discriminator on
the top of the latent space and trained on corresponding symbols y.
Classification can then be processed afterwards, such that the latent
space provide a compressed representation to the discriminator. More
interestingly, the auto-encoder and the discriminator can be jointly
processed, such that the representation is also influenced by the gra-
dient information coming from the discriminator. An advantage over
traditional supervised approach is that, in case of incomplete label
information, the auto-encoder can still be trained by inferring the cor-
responding label. Such methods have been proposed by Kingma &
al. as semi-supervised, and provide a flexible method for task-oriented
representation learning (see fig. 2.37). Probability densities of data x,
labels y and latent variables z can the be described

p(y) = Cat(y |⇡(z)); p(z) =N(z|0, I); p(x|y, z, ✓) = f (x; y, z, ✓)

where p(y) is a prior over discrete variables. Two different bounds are
then derived, depending on if the availability of the label information.
If the label is available, the lower-bound is the direct application of
(2.14) to the generative model :

L(x, y) = Eq� (z|x,y)[log p✓ (x|y, z) + log p✓ (y) + log p(z) � log q�(z|x, y)]

that is generally added an explicit classification cost ↵ ·Epl (x,y)[� log q�(y, x)].
If the label information is missing, we compute the expectation over
the full inference distribution q�(y, z|x, y)

U(x) = Eq� (y,z|x,y)[log p✓ (x|y, z) + log p✓ (y) + log p(z) � log q�(y, z|x)]

where the expectation respectively to y can be used by summing the
possible values of y, y being discrete. As the influence of the discrimi-
nator can be important and remove the unsupervised features of the
latent space, the discrimination step can be proceeded on the second
layer of a multi-layer VAE as proposed by Kingma & al., or using
auxiliary variables [218]. Bouchacourt also propose a disentangling
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method by grouping observations, enforcing the same support for data
items with common label properties [219].



……

……

……

x

……

……

q�(z|x)

p�(x|z)

……

analysis
inference

synthesis
generation

Figure 3.1: The inference/generation
processes of AEVB can be thought as
mirroring a DSP analysis/synthesis sys-
tem, extracting invertible features from
a given corpus of audio signals.

Learning spectral represen-
tations and audio regularization
strategies 3
In the previous chapter, we introduced two different frameworks for
the extraction of invertible representations : Bayesian latent models,
based on modeling the data with a generative distribution p✓ (x|z) that
is conditioned on inferred latent variables z, and methods coming
from representation learning, leveraging high-capacity function ap-
proximators to extract features from the data according to a suitable
loss function. We saw that these two frameworks could be benefi-
cially combined to obtain an hybrid method for generative models,
called Auto-Encoding Variational Bayes (AEVB), that is based on both
Bayesian statistical inference and neural networks to model both the
generative model p✓ (x|z) and the approximated posterior q✓ (z|x).

In this chapter, we will invest AEVB as an generative model for audio
signals. We focus on AEVB because it combines two different processes
: the generation process p✓ (x|z), that generates new samples from the
analysed dataset conditioned on a latent representation z, and an
inference process q✓ (z|x), that extracts this latent representation in
an unsupervised way. This PhD thesis focuses on this idea of using
this framework to mirror audio analysis-synthesis methods, that are
seminal DSP techniques based on two similar steps : a synthesis process,
generating a signal with respect to a set of parameters, and an analysis
process, that extracts the generative parameters from an incoming
audio signal (see 3.1). As an introduction, we will shortly summarize
some analysis and synthesis methods in the DSP domain, linking them
to machine-learning methods, and then reviewing the actual analysis-
synthesis techniques and see how our work takes place in the current
state of the art.

Analysis and inference Analysis methods, in the domain of audio
DSP, are commonly based on the extraction of higher-order features
from the signal, aiming to reflect structural, acoustical or musical
properties of the signal. These high-order features, that can also be
called descriptors in the audio DSP literature, can be based on the ex-
traction of features from intermediate transforms, that are generally
derived from spectral transformations (see 3.10), to reflect perceptual
properties of the signal : statistical or perceptual descriptors such that
fundamental frequency, spectral centroid, and many others. Contrary
to the features extracted with standard machine-learning, that are
not domain-dependant, audio descriptors are generally crafted by re-
searchers to reflect these qualities, linked to perceptual attributes that
can be confirmed with psycho acoustical experiments (see sec. 3.4.1).
While these descriptors are generally short-term, some analysis meth-
ods rather target to model the dynamics of the signal, whether by
tracking the evolution of these descriptors through time [220] or to
model its temporal structure (for speech analysis [221], energy profiles
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time-frequency
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acoustical features

pitch tracking spectral centroidonset detection

…..

high-level 
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Figure 3.2: Most MIR approaches ex-
tract acoustical features from the signal,
and/or from signal representations to
extract higher-level features, as could be
used here from chord detection.
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Figure 3.3: Classical audio synthesis
methods are based on a physical (analog)
or algorithmic (digital) structure, some
parameters being offered to the user to
shape the sound.
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Figure 3.4: Even if a distribution p(x)
perfectly represents the modelled data,
the lack of parameters makes it unus-
able.

[222] or even audio watermarking [223]). The domain of music infor-
mation retrieval (MIR) [224–226] focuses on the extraction of musical
features from an audio signal, that are typically high-order descriptors
mixing temporal and spectral dimensions such as pitch and chord
tracking [227, 228], beat extraction and tempo estimation [229–232],
structural segmentation using similarity matrices [233] or spectral clus-
tering [234–236] and more high-level tasks like emotion recognition
[237, 238], genre recognition [239, 240] and music recommendation
[241–243].

As MIR is focused on high-level tasks that often involve several de-
scriptors on multiple temporal scopes, the resort to machine-learning
techniques for feature extraction can be relevantly introduced to sup-
port audio analysis frameworks. The recent raise of machine learning
techniques based on convolutional neural networks motivated their
direct application on spectrograms, by example on classification/re-
gression tasks [244–247]. However, the lack of interpretability and the
data-centred nature of these algorithms aroused a mixed reception
of the MIR community, despite a substantial increase in the results.
Therefore, hybrid methods between MIR and machine-learning have
since been investigated, combining best of both worlds to address
complex tasks such as source separation [248–251], transcription [252]
or voice recognition [253].

Synthesis and generation Audio synthesis is a one of the most sem-
inal domain of audio DSP since its advent [254, 255], partly due to
the early use of analogical and then numerical devices in music cre-
ation. Digital synthesis appeared almost simultaneously with com-
puters, and is still a flourishing domain of research led by many
different approaches : additive and substractive synthesis [256, 257],
FM synthesis [3], sampling, granular synthesis [258], physical modeling
[Avanzini01controllingmaterial, 259–261] and many other, that are
now widely integrated in modern practices of music production and
performance. Digital synthesis can be loosely defined as a generating
system whose state is defined by a set of parameters, that conditions
the structure of the generated signal (see fig 3.3). Parameters of digi-
tal synthesis techniques are often tied to structural properties of the
generation model, such that the effect of each generative parameter is
explicitly known. Some parameters are then offered to the performer
or producer for direct interaction, providing controls for the generation
model. Therefore, the identity of synthesis method is not only defined
by the range of sounds it can produce, but also by the controls it gives
to the human user.

Machine-learning based generative models are slightly more compli-
cated, as their development come from different origins and initially
bypassed this interaction aspect. As we summarized last chapters,
generation in the machine-learning domain was rather formulated as
the modeling an underlying stochastic process p(x) under a finite set
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of observations {x1x2...xn}Ni=1. However, this distribution can be unsat-
isfactory for musical purposes as it only allows sampling, and do not
allow explicit control (see fig. 3.4). Therefore, we saw in the last section
a way to define an extended model p(x, z) with parameters or addi-
tional inputs z, such that z can shape the density of x and then control
the generation. However, the number of machine-learning generative
method specifically developed for generation is not as flourishing than
in digital audio synthesis, and the generative models can be gathered
in four families : auto-regressive [262, 263], auto-encoder approaches (see
sec. 2.2.3), generative adversarial networks [23, 264, 265]), and recently
flow-based models [171, 266, 267]. However, only auto-encoding and
flow-based approaches are invertible, and can be thus used for our
purpose.

Therefore, a seminal difference between digital audio synthesis and
machine-learning generative models is that, in the first case, the model
shapes the generated sound, while in the second data is shaping the sound.
We think that these solutions are equally good, and that this comple-
mentarity can significantly help human creativity. However, we think
machine-learning based approaches have still to catch up digital audio
synthesis on various aspects, especially in terms of perceptual quali-
ties, usability and interaction. While we investigate the second chapter
5, the two following sections will propose diverse ameliorations of
AEVB generative models for sound synthesis, tackling two different
aspects : latent space regularizations, and temporal modeling.

Analysis-synthesis The complementarity between analysis and syn-
thesis also exists in the signal processing domain, such that powerful
analysis methods do not generally allow direct regeneration of the
signal, and that conversely digital synthesis algorithms do not provide
any way to infer corresponding parameters from a given sound. This
duality then motivated the development of frameworks allowing both
analysis and synthesis, providing bijective methods between audio
and parameters domains. These models, called analysis-synthesis meth-
ods, often rely on invertible transformations that both extract features
from the signal and allow the regeneration of original data. The ob-
tained features can then be used whether for analysis purposes (such
as spectral transforms, that ground most of perceptual descriptors) or
sound transformations, modifying the incoming sound in the obtained
representation. Phase-Vocoder algorithm is a seminal example of such
method, using the invertibiliity of Short-Term Fourier Transform (STFT,
see sec. 3.10) to transform existing sounds (such as transposition, time
stretching, or partial tracking), or for direct generation by designing
sounds directly in the spectral domain. Other analysis-synthesis meth-
ods, such as ESPRIT [268] or cepstrum-based representations [269],
also provides bijective representations that are based on different mod-
eling properties. However, a drawback of these methods is that their
general invertibiliity enforces the bijectivity of the transform, such that
the dimensionalities of data and representation domains are equiv-
alent. Hence, these methods are often used as intermediary signal
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representations for higher-level analysis / generation methods.

Hence, we propose to use the AEVB framework as an analysis-synthesis
method for digital audio synthesis, combining modern probabilistic
generative and latent models to extract high-level invertible audio fea-
tures. This model gains from other generative models such as GANs
by also learning an inference process on the latent representation, thus
allowing the system to structure the space without supervision and to
retrieve the parameters corresponding to an incoming data. We also
think that this framework provides a complementary approach to clas-
sical DSP analysis-synthesis methods, targeting to extract meaningful
features from a restricted set of data rather that requiring the global
invertibility of the representation. The relaxation of this requirement
thus allows us to reduce the input dimensionality, rather focusing to
model a dataset with a finite amount of samples.
This section is divided in three parts. First, we will first provide some
baselines of performances obtained with diverse AEVB systems, that
we train with the magnitude of audio spectra. These baselines, de-
veloped during the early phase of the PhD, were at our knowledge
the first application of AEVB to audio signals. Then, we will present
two latent regularization strategies that we developed specifically for
audio processing and generation : a first method based on external
symbolic information ()such as pitch, octave and dynamics) using the
latent space as a translation space between signal and symbol domains,
and a second method based on perceptual constraints, obtained from
psycho-acoustical measurements.

3.1 Spectral representations of audio signals

In this section, we evaluate the performances obtained with diverse
AEVB systems when trained on audio signals. However, learning
directly audio waveforms is not straightforward, containing short
and long-term temporal dependencies that would involve higher-
order time series models (see section 4). Hence, we rather perform
training on magnitude spectra, that allows us to train on stationary
and parsimonious data that more easily reflects structural perceptual
attributes of audio signals. As such transforms are widely used in
the DSP community and implemented in most audio software, it also
allows to easily develop a real-time audio engine to generate from the
obtained models (see section 5), hence offering a good compromise
between usability and complexity.

3.1.1 Invertible spectral representations of audio
signals

Raw representations. The raw representation of an audio signal is
the direct description of the corresponding physical pressure wave,
that can be represented using one or several signals s(t), or by an
acoustical field s(t, x), x being the position in space. This signal can be
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Figure 3.5: Diagrams showing the three models used in this section. (left) simple AEVB system, trained on audio reconstruction
(middle) AEVB with translating latent space, using audio x and symbol data y 3.3 (right) perceptual regularization of the latent space,
using dissimilarity experiments of instruments sounds from audio perception studies 3.4

(a)

(b)

(c)

Figure 3.6: (a) analog signal x(t) (b) sam-
pled series x[n] (c) aliasing : the discretiza-
tion of the waveform introduces an in-
finite amount of possible frequencies
falias = fs � nf � ⇡

recorded at one or several positions in space using a transducer, or di-
rectly generated with a synthesis engine. In the numerical domain, this
wave is sampled both in time and amplitude in order to be encoded
numerically. The sampling frequency, corresponding to the number of
samples recorded by seconds, thresholds the maximum frequency that
we are able to render by the Shannon-Nyquist equation fs = 2 fmax

(see fig 3.6). The standard value fs for CD audio recordings, that is
44100 Hz, thus means that we can restore the original frequency con-
tent of the signal up to 22050 Hz, that is the standard upper perceptive
threshold of human audition. The number of bits used to encode the
numerical value of each sample, called the bit rate, defines the range
of dynamics that the recording is able to render. This bit rate is usually
expressed in decibels (dB), such that a 16 bits resolution allows a 90dB
range.

Individual raw waveforms are then 1-dimensional discrete time se-
ries arbitrarily, that are defined onto a range [�1; 1]. These signals
can be modelled through time with several analysis methods such as
auto-regressive, integrated, or moving-average models (see sec 4.1).
However, the high temporal density and non-stationary nature of these
signals make most of these methods cumbersome on the long-term,
such that their direct use for audio feature extraction is difficult. More-
over, the temporal scope needed to observe some high-level audio
features (from beat detection to genre recognition) can be very large,
and then make their extraction from time series dauntingly hard.
Modern machine learning techniques, based on the modeling of com-
plex auto-regressive distributions p(xt |xt , h) such as Hidden Markov
Models, are also trained with difficulties, then requiring more subtle
approaches (see chapter 4). As most time series analysis are defined
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Figure 3.7: Decomposition of a square
signal over the 15 first spectral compo-
nents.
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Figure 3.8: A complex number can be
whether expressed in Cartesian coordi-
nates ()a, b) or polar coordinates (r , ✓).

in the real domain, some machine-learning algorithms rather use the
underlying binarization of numerical signals to define a classifica-
tion problem, sparsifying the data and speeding up the convergence
[262]. µ-law is a common non-linear encoding scheme that encodes
more precisely high amplitude values, thus reducing the signal/noise
ratio

F(x) = sgn(x)
log 1 + µ|x|
log (1 + µ)

However, this methods also significantly increase the dimensionality
of the input space, transforming each sample into a R

d vector whose
dimensionality scales exponentially with the number of bits (16 bits
amounts to 65 536). Therefore, some downsampling is required, alter-
ing the quality of the audio signal. Raw waveform learning is then
one of the most difficult machine-learning challenge, is cannot be tack-
led on sufficiently large time scales with standard AEVB frameworks.
Hence, we rather resort to alternative representations with smoother
properties, defined in the spectral domain, that significantly ease the
training of the proposed models on audio information.

Fourier transform and time-frequency trade-off While raw audio
waveforms is the closest representation of the corresponding acousti-
cal phenomenon, it is difficult to model with the proposed techniques.
Furthermore, this representation does not provide explicit informa-
tion about the frequency content of the signal, that provides a more
direct interpretation of several properties of human perception such
as pitch, harmonicity, or timbre-related attributes. Given a continuous
signal x(t),] its frequency content can be extracted using the Fourier
transform, a representation defined in the complex domain X( f ) 2 C

X( f ) =
⌅ 1

�1
x(t)e�2⇡x f dx (3.1)

that can be thought as the projection of the signal onto an infinite
function space, whose basis are the complex exponentials exp ix =
cos x + i sin x (see fig. 3.7). The Fourier transform then describes the
signal as a function of frequencies f instead of time t, and can be
intuited as the convolution of the signal with a complex exponential
of frequency f . As X( f ) is defined in the complex plane X( f ) 2 C,
it is composed by a real part a and an imaginary part b, such that
X( f ) = a+ bi. The complex frequencies X( f ) can then also be expressed
using polar coordinates r =

p
x2 + y2 and ✓ = atan y

x
(see fig. 3.8)

X( f ) = rei✓

where r is the radius and ✓ is the angle of X( f ). Expressing spectral
components in polar coordinates provides a more explicit interpreta-
tion of X( f ) : the radius is the magnitude of the spectral component
X( f ), while the angle ✓ corresponds to its phase, the relative position of
the component relatively to its period (see fig. 3.9). This decomposition
is widely used in audio signal processing, as it allows us to detach the
magnitude of each spectral component from its temporal information.
Furthermore, this transformation is entirely invertible, such that we
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Figure 3.9: (top) signal x[n] (middle)
magnitude spectrum |x[ f ]|, with the
aliasing k > fs/2 and (down) the phase
]X[ f ].

can recover the original temporal x(t) from X( f ) by performing inverse
Fourier transform

x(t) =
⌅ 1

�1
X( f )e2⇡x f df (3.2)

who is defined on the real domain R, as the Fourier transform of a real
signal is an even function.

The expression of Fourier transform defined in 3.1 allows us to get
an invertible and decomposable representation of a signal x(t) in the
frequency space f 2 C, and is then a seminal transformation in sig-
nal processing. However, in the numerical domain, the signal is a
discrete time series x[n] sampled at rate fs, such that transforms 3.1
and 3.2 are not applicable. The discrete Fourier transform (DFT), that is
an extension of continuous Fourier decomposition to discrete signals
x[n] = {x0, x1...xN�1}, can be expressed as

X[k] =
N�1X

i=0
x[n]ė� i2⇡

N knx[n] =

N�1X

k=0

X[k]ė� i2⇡
N kn (3.3)

that defines a finite complex vector X 2 CN , that is periodic with
period N because of the aliasing caused by sampling. The discrete
frequencies k can be converted back in Hertz using the identity fk =
fs/k, as the period N of the transform is the sampling frequency fs of
the signal.

An seminal property of spectral representations is their inherent du-
ality between time and frequency. Indeed, the exact estimation of the
frequency content requires the observation of the signal over an infinite
time range, while conversely the exact invertibility of the spectral rep-
resentation needs to integrate the spectrum over an infinite frequency
domain. Therefore, the higher we want the estimated spectrum to be
precise, the larger we will have to integrate the signal, hence discard-
ing its dynamics. This time-frequency trade-off, also called Gabor limit,
is seminal in spectral representation, implying that the spectral resolu-
tion of a signal is complementary to the time range of the observation.
The hypothesis underlying this duality is the stationarity of the signal,
assuming that its spectral content stays the same over an infinite time.
In addition to being difficult in practical applications, the key point of
audio signal analysis is also to retrieve the dynamics of these spectral
features, such that this trade-off is problematic for signal analysis.

A trade-off between time and frequency resolution can be found by
slicing the signal in short temporal windows, that are then used for
spectral analysis. This can obtained by the Short-Term Fourier Transform
(STFT), that is then dependent of both time and frequency

STFT[x(t)](⌧, f ) =
⌅ +1

�1
x(t)w(t � ⌧)e�j!tdt

where w(t) is a window function with finite time support, such that the
corresponding spectral content is extracted around t = ⌧. If the sum of
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Figure 3.10: Windowing the signal and
performing FFT on each segment al-
low to represent the frequency evolving
through time.
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Figure 3.11: Examples of wavelets. The
input wave is decomposed in wavelets, al-
lowing to perform multi-resolution anal-
ysis.
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Figure 3.12: Discrete Cosine Transform
(DCT) encodes the phase in the negative
components of the spectrum. It can be
understood as a DFT in a different base.

windowing functions sums to one over time, such that 8t P⌧ w(t � ⌧) =
1, the original signal can be exactly recovered by inverting each fre-
quency slice and performing the same windowing function (then called
overlap-add reconstruction). STFT allows us to disentangle frequencies
and time, and then to describe the evolution of spectral content over
time (see fig 3.10). STFT then provides the baseline of most digital
audio analysis techniques developed so far, and allowed the devel-
opment of analysis-synthesis techniques such as the phase vocoder,
providing an efficient method to both represent and generating signals
[270].

Alternative time-frequency representations. Several others time-
frequency representations based on the same principle have been
developed. Discrete Cosine Transform, that is an alternative formulation
of STFT defined on the real domain [271]. DCT allows to represent
the phase by introducing the idea of negative magnitude, then entan-
gling phase and magnitude. However, we found that machine-learning
were struggling to learn this representation, as this disentanglement
of phase and magnitude was preventing the algorithm to catch salient
features.

A well-known alternative to Fourier transforms are wavelet transforms,
that project the signal on arbitrary families of multi-resolution fre-
quency bands. Wavelets allow to avoid the time-frequency trade-off of
STFT, as the different frequency bands are defined on multiple time
scales (see fig. 3.11). Contrary to DFT, that assumes a linear frequency
scale, wavelet transforms allow to model an arbitrary range of frequen-
cies, allowing to be arbitrarily precise over a specific spectral span.
Constant-Q transform is an example of wavelet-based transform widely
used in musical signal processing, defining a logarithmic frequency
range centred on octave fractions, providing an precise representation
for the analysis of pitched audio signals [272]. Unfortunately, this multi-
resolution property makes wavelet transforms non-invertible, and then
not suitable for generation. However, the recent Non-Stationary Gabor
Transform (NSGT) alleviate this problem by proposing an invertible
wavelet representation, using multi-resolution alignment of windows
for accurate offline inversion [273]. This transform is used for the
proposed perceputal regularization method of latent spaces (see sec.
3.28).

Learning complex representations. Time-frequency representations
are then an efficient solution for training machine-learning methods
on audio signals, providing a parsimonious representation that extract
relevant features in terms of structure and human perception. How-
ever, most time-frequency are defined on a complex domain, such that
the usual gradient-based methods based on derivability are not appli-
cable. Neural networks developed specifically for complex-domain
learning have been investigated [274–276], that could be combined
with complex normal distributions over spectra [250, 277] ; however,



3.2 Audio analysis-synthesis with variational auto-encoders 65

we leave this investigation for future works.

We take a more straightforward solution by rather resorting to the
polar decomposition described above, decomposing a spectral compo-
nent X( f ) into a positive real magnitude vector |X( f )| 2 R

+ and a
phase vector, bounded between ✓( f ) 2 [0; 2⇡(. In the audio domain,
the information provided by the spectrum magnitude contains most
of perceputal properties, corresponding to the amplitude of all the
frequency component. Furthermore, magnitude spectrum of simple
signals are generally sparse, then providing a suitable input space for
machine learning algorithms.

Conversely, the phase information is difficult to learn because of its
high variance and its invariance through time. Indeed, phase repre-
sents the temporal part of the spectral transform, and is seminal to
preserve the temporal consistency of a given sequence of spectral
frames. However, as in this chapter we will perform training on in-
dividual frequency frames, direct interaction from the model’s latent
space will not preserve the temporal coherency of initial samples, so it
seems reasonable to drop the information contained in the phase.
However, as phase is important when inverting a sequence of several
spectral frames, we have to leverage phase reconstruction algorithms
to reconstruct the correct shape of the obtained generation. Phase
reconstruction is a difficult task, as it implies recovering half of the
information lost from the original spectrum. A standard method for
phase reconstruction is the Griffin-Lim algorithm, based on iterative
STFT and ISTFT passes to retrieve the phase distribution ensuring the
consistency of the transformation [278, 279]. Several methods have
then been proposed, such as phase gradient-heap integration proposed
by Pruša and Søndergaard [280]. In this work, we use Griffin-Lim re-
construction with 30 iterations for offline examples.

3.2 Audio analysis-synthesis with variational
auto-encoders

In this section, we will then provide a first baseline of AEVB perfor-
mances when trained on spectrum magnitudes. As we propose to
use AEVB as an analysis-synthesis method, our objective is twofold.
First, we have to evaluate the generation capacities of the model, i.e.
evaluating the reconstruction ability of the model over data samples.
As usual in the machine-learning domain, this evaluation is performed
on another set, called the test set, that is different from the train set, to
measure the generalization ability of the model. We also have to study
the emerging properties of the extracted representation z, and if the
obtained space is explaining the underlying structure of the data. As
we summarized last section, the flexibility of AEVB techniques pro-
vide numerous possibilities in terms of architecture, regularizations,
and training criteria ; we then propose to evaluate the influence of
these choices on the emerging properties of the obtained latent spaces.
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Furthermore, as machine-learning methods are highly dependent on
the involved data, we also evaluate these methods on three datasets,
with separated generative factors and different complexity.

3.2.1 Datasets.

The data-centred approach proposed by machine learning then re-
quires a particular attention on the choice of evaluation datasets, as
their design will condition the properties we will observe. Moreover,
the comparison of different models involves to be applied on the same
dataset, thus requiring reference datasets that are designed to reflect the
main challenges of the targeted task. A typical example of such dataset
is the MNIST corpus used in image processing, containing over 80,000
examples of hand-written digits [159]. This dataset still provides a very
efficient baseline for evaluation purposes, as it encompasses most of
the image processing challenges : classification of digits, style recogni-
tion, and limited variability (limited number of lines, 10 classes, and
black & white). The comparison of different machine-learning models
is then straight-forward, providing a direct feedback on how the con-
cerned models are behaving on these different factors of variations.

While some reference datasets for machine learning are established
in the image processing domain for decades, such datasets are unfor-
tunately missing in the audio processing domain. Valuable reference
datasets exist for main MIR domains such as pitch extraction, structural
segmentation or style recognition, but datasets focused on evaluating
the generative models performance are, to our knowledge, missing.
Hence, we built different datasets for the purpose of this thesis, focus-
ing on different factors of variation. The proposed datasets are split in
two types : first, we designed toy datasets using sound synthesis, allow-
ing us to focus on seminal generative factors such as pitch, harmonics,
and spectral content. Then, we evaluate the proposed models on audio
data coming from real audio recordings, then having more variance
and allowing us to evaluate the credibility of generated samples.

3.2.1.1 Toy datasets.

As we aim to study the performances of AEVB on spectral magnitudes,
we have to design our toy datasets on generative factors that are trans-
parent under this representation. The proposed toy datasets, that can
be easily generated using simple synthesizers, are very convenient to
rapidly evaluate the VAE performances over a short range of audio
factors with an arbitrary number of data samples. These toy datasets
are available here here, and can be synthesized with the vschaos tool-
box.

Additive dataset. The toy_additive dataset has been obtained by
synthesizing harmonic sounds over a range of 100 different funda-
mental frequencies, then focusing on the pitch and harmonic content
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of the sound. Additive synthesis is based on the following generative
process

x[n] =
LX

l=1

exp
 �ld

L

!
cos

�
2⇡ f0l

n
fs
+ �

�
s (3.4)

where fs is the sampling frequency of the target signal. This genera-
tor has 3 parameters : the fundamental frequency f0, the number of
partials L, and the harmonic decay d. The fundamental frequencies
are chosen between 64 and 1024 Hz, the number of partials between
1 and 7, and the harmonic decay between 0.2 and 4. The phase is
sampled individually from a normal distribution, and the sound is
then enveloped with simple linear ramps of 100 milliseconds to avoid
discontinuities. The total number of examples then amounts to 3500,
and provides a simple dataset to grasp the VAE performances on
fundamental properties of sounds.

FM dataset. We also provide a more complex toy dataset, toy_fm,
based on FM synthesis, that is a widely used technique in signal pro-
cessing and digital sound synthesis. This method allows us generate
sounds covering a wider space of frequencies and inharmonic rela-
tions with a limited number of parameters, based on the generative
process

xcarrier [n] = cos
�
2⇡m ⇤ f0

n
fs
+ �c

�
(3.5)

x[n] = cos
�
↵xcarrier [n] ⇤ f0

n
fs
+ �

�
(3.6)

where f 0 is the carrier frequency of the signal, m the ratio of the
modulating frequency, and ↵ the modulation amplitude. Indeed, if m 2
N, the obtained will be harmonic, producing an amount of frequency
components that is controlled by the modulation amplitude. However,
for non integer values of m, the generator will produce complex spectra
involving non harmonic partials, whose strength can be controlled
by ↵. We then generated a total amount of 21 250 examples, with 25
center frequencies from 60 to 600Hz, 25 FM ratios from 0 to 3, and 34
modulation amplitudes from 0 to 30.

3.2.1.2 Ground-truth datasets.

To evaluate the capabilities of the models on real-life examples, in this
PhD we selected two datasets: a first one, acidsInstruments-ordinario
consisting of orchestral instruments samples, and a second one, diva_-
dataset, consisting of sounds coming from presets of a commercial
synthesizer, Diva⇤.

Orchestral ordinario sounds.

⇤ https://u-he.com/products/diva/
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Figure 3.13: Examples of spectra generated by the toy dataset. (top) : examples from toy_additive, generated from a fundamental
frequency and a given number of partials, whose decay are paramatrized with the exponential decay parameter. (down) : examples
from toy_fm, that are typically much more complex than the ones from toy_additive, where the partials are not spread according to
harmonic relationships.
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Figure 3.14: Examples of spectra from
the acidsInstruments-ordinario
dataset.

The first dataset, acidsInstruments-ordinario, is built from orches-
tral instruments samples coming from the Studio On Line database
[281]. This sample bank offers a wide variety of instruments playing
in various modes, and is thus a precious source for building datasets.
However, to restrict this bank to a tractable database for our VAE, we
only retrieved the samples taken from ordinario playing modes of the
following instruments : English-Horn, French-Horn, Tenor-Trombone,
Trumpet-C, Piano, Violin, Violoncello, Alto-Sax, Bassoon, Clarinet-Bb,
Flute, and Oboe. The dataset contains samples from the full span of
the tessitura for each instrument, and is available in four different
dynamics : pp, p, mf, ff, amounting to 1885 files. The size of this dataset
is reasonable, quite small compared to most image processing datasets
(80000 for MNIST), seems realistic for practical applications, reflecting
how the system would be have if the user wanted to train it on a
custom set of sounds (such as sample banks).

Diva dataset The second dataset, diva_dataset, is built from the
audio signals generated with the synthesizer Diva from U-He, that is
a cutting-edge polyphonic virtual synthesizer widely used in music
production. Diva is based on the simulation of a analogue synthesizers,
offering many features and a generous set of parameters allowing to
generate a wide diversity of different sounds. This dataset was chosen
because most of its parameters are MIDI CC controllable, allowing us
to automatically generate samples according to a sampling scheme,
and because of the amounts of presets available online.
We manually established the correspondence between the synth and
MIDI parameters, as well as their values range and distributions. We
only kept the continuous parameters, normalizing all their values to [0,
1], the other being set to their fixed default value. We used RenderMan⇤

to batch-generate all the audio files by playing the note for 3 sec. and
recording for 4 sec. to capture the note release. The files are saved
in 22050Hz and 16bit floating point format. This procedure allowed
us to gather a total amount of 11,000 presets, providing a precious
ground-truth database for synthesized sounds. We use this dataset in
the chapter 4, as we more interested into the temporal evolution of
these sounds than into their spectral content.

3.2.2 Evaluation of generative and representational
properties.

In this section, we provide preliminary results on the performances
achieved by VAE when trained on magnitude spectra. The evaluation
of generative models is a difficult task, especially in music where the
creative and perceptive dimensions of the generated sounds are sub-
ject dependant. While we let the the creative evaluation to a further
work (yet initiated, see chapter 5), we follow the function-behavior on-
tology of Gero & Kannegiesser [282, 283] as a first evaluation of our
model, implying first to define an expected behaviour and then how
to measure it.

⇤ https://github.com/fedden/RenderMan
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As our method targets both in generation and inference, we propose a
twofold evaluation procedure. The first expected behaviour of the sys-
tem is being able to reconstruct the samples from the original dataset.
Hence, we evaluate the reconstruction performances performed by the
models with different spectral losses, on a test set that has not been
used for training.
The second aims to evaluate the emerging properties of the obtained la-
tent representation. This is a rather hard task, this multi-dimensionality
of this space preventing to obtain accurate visualizations. In addition
to measure how much the obtained representation differs from the
prior p(z), that is a training criterion, we also perform independence
measures, disentanglement measures, and descriptor-based topology
maps, to get additional insights on the organization of the latent space.
Regarding baselines, the originality of inference and generation pro-
cess of AEVB systems make them difficult to compare with other
models. Therefore, we use invertible dimension reduction methods
(PCA and ICA) to mirror the encoding / decoding processes, the latent
space corresponding to the obtained projection.

Models. The flexibility of AEVB framework allows the full parametriza-
tion of both inference and generation processes, granting the right to
choose almost every architecture parameters : encoding/decoding
distributions, relative loss weights, and regularization loss. Moreover,
we reviewed during last chapter the numerous evolutions proposed
in the literature to tackle different aspects of the system, providing a
plenteous amount of design choices.
As we can not obviously test all the models presented in the last chap-
ter, we first chose to study the impact of latent space dimensionality
(hence the compression performance of the model), the DKL weighting
� (hence, the impact of the representationr rate), and the regulariza-
tion strategy. To isolate the respective effects of these design choices
we start from a standard VAE, and vary these factors one by one. We
obtain the following experiments

I latent dimensions : four different VAEs of respectively 2, 4, 8 or
16 latent dimensions

I regularization weighting : three different �-VAEs, comparing
� 2 [1, 4, 10]

I regularization divergence : three different explicit divergences
(DKL , Renyi with ↵ = 2, Jensen-Shannon divergence) an two
implicit divergences (MMD, Adversarial).

all of these experiments are applied to the three datasets toy_additive,
toy_fm, and acidsInstruments-ordinario. The encoders and decoders
are symmetric 4-layers convolutional auto-encoders, with respectively
3, 7, 9 and 11 kernels, 64, 32, 16 and 8 channels, ReLU non-linearities
[284] and batch-norm normalization [285]. The models were all trained
using the ADAM optimizer [123], with an initial learning rate of 1e � 4
and a batch size of 64. For the adversarial loss, the classifier is defined
as a fully-connected two-layer discriminator with 500 linear units,
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Table 3.1: Results obtained on test data
with the acidsInstruments-ordinario
dataset, for different latent space dimen-
sionalities.

� log p(x|z) l
2 SC

2d VAE 334.34 68.12 21.5
Baseline - 104.76 16.47

4d VAE 287.0 31.93 18.21
Baseline - 92.7 17.02

8d VAE 269.9 20.11 12.28
Baseline - 71.54 16.79

16d VAE 276.69 23.67 20.13
Baseline - 48.65 15.16

(a)

(b)

Figure 3.15: Examples or reconstructions
obtained from a latent space with (a) 2
dimensions (b) 8 dimensions. While the
system performs honourably with two
dimensions, it cannot generate some ex-
amples.

trained separately with the same optimization parameters.

3.2.2.1 Reconstruction evaluation.

We evaluate the performances our model in reconstruction on both
train and test partitions of our model. The table containing the full
results can be consulted in appendix A.1. As evaluating the recon-
struction loss on the same criterion than the one used for training, we
provide several spectral losses :

I log-density, the likelihood of the data under the generative model
p✓

�
x|µ

p
(z),�2

p
(z)

�
(training loss)

I l
2 loss, the mean-squared error between k · k2 the generated

spectrum and the target
I spectral convergence (SC) : kx� x̂kF/kxkF , where k · kF is the Frobe-

nius norm of the magnitude spectra x. This loss is mainly focused
on the large frequency components [286]

I Itakura-Saito divergence (ISD) : a divergence specifically used for
audio signals, related to perceptual divergence [287]

I log-l1 , the absolute k · k1 loss between the generated spectrum
and the target

I log-l2 , the Euclidean k · k2 loss between the generated spectrum
and the target

As our systems model the generative distribution p(x|z) and that most
of these criteria are taking definite values, we always choose the MAP
estimation, that is the mean µ

p
of N(µ

p
(z); ,�2

p
(z).

Influence of dimensionality. To study the influence of latent dimen-
sionality on reconstruction results, we train models on each dataset
with different latent shapes. A short results table is given 3.1 for the
acidsInstruments-ordinario dataset, showing the log-density (train-
ing criterion), mean-squared error, and spectral convergence obtained
with the test dataset.
The influence of latent dimensionality on reconstruction can be clearly
observed, decreasing sharply from 2 to stagnate around 8 dimen-
sions. This indicates that the model requires enough space to organize
the whole dataset, emphasizing the role of VAE as a compression al-
gorithm. However, even if the performances of two dimensions are
clearly lower, reconstructions shown fig. 3.15 indicate that the VAE
still honourably generates the given examples, showing that it is able
to compress data with a very high rate (2 vs. 1024 dimensions). We also
indicate the performances obtained with our baselines (PCA and ICA
provide similar results in terms of reconstructions), that are clearly
outperformed by the proposed model.

Impact of regularization. The divergence used to regularize the la-
tent space has also an impact on the reconstruction, as shown by table
3.2. As suggested by the theoretical analysis of AEVB exposed in the
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� log p(x|z) l
2 SC

additive

DKL 488.37 13.21 11.07
M MD 474.75 6.06 6.67
D↵=2 487.84 13.01 9.03
JSD 519.1379 24.36 7.60
Adv 485.88 10.18 10.0

Baseline - 137.29 160.42

fm

DKL 910.10 340.40 15.81
M MD 766.8 221.78 62.19
D↵=2 210.86 3.40e16 218.86
JSD 259.07 242.90 27.60
Adv 789.56 525.16 6.46

Baseline - 859.12 527.28

aIns-o

DKL 276.69 23.67 20.13
M MD 248.19 8.43 5.31
D↵=2 255.74 12.38 10.53
JSD 259.07 14.22 7.60
Adv 246.7 7.71 10.0

Baseline - 48.65 15.16

Table 3.2: Reconstruction scores ob-
tained for different regularization di-
vergences, using test partition of the
datasets.

� log p(x|z) l
2 SC

toy_additive

� = 1 276.69 23.67 20.13
� = 4 518.12 31.43 19.46
� = 10 553.48 57.91 37.85

PCA - 137.29 160.42

toy_fm

� = 1 825.75 262.16 15.817
� = 4 897.32 316.24 15.61
� = 10 1099.0 453.92 15.97

PCA - 859.12 527.28

aIns-o

� = 1 261.37 15.34 13.74
� = 4 279.83688 27.77 16.56
� = 10 304.09 45.21 44.54

PCA - 859.12 527.28

Table 3.3: Reconstruction scores ob-
tained for different �, using test partition
of the datasets.

last section, using implicit regularizations strategies (MMD, Adver-
sarial) indeed achieve better reconstruction results, outperforming
methods using explicit divergences DKL , Renyi, JSD. However, this
gap is lower on test examples, pointing out that implicit methods may
be more subject to over-fitting. Indeed, adversarial regularization per-
forms very well with datasets of low variability (toy_additive_mini,
acidsInstruments-ordinario) but performs badly with toy_fm, indi-
cating that this regularization method prevents to efficiently compress
the dataset. This may be explained by the inherent discriminating of
this regularization process, isolating each individual example. Con-
strastly, MMD regularization (similar to WAE [84], see sec. 2.3.2.3)
seems to avoid this over-fitting tendency, achieving good performances
in any case.
Regarding explicit regularization methods, Rényi divergence with
↵ = 2 seems to perform slightly better than DKL , suggesting that
enforcing a little the zero-avoiding behaviour of the regularization
may help the system to reconstruct the examples. However, Jenson-
Shannon divergence seems to performs very badly, having the worst
reconstruction scores for alle the datasets. This may be due to the two-
side construction of the JSD, that may be unsuitable as an optimization
criterion.

Impact of DKL weighting. We also evaluated the effect of the � term,
that weighs the regularization term in the ELBO formulation (2.59),
that can be used to control the rate of the representation (see sec. 2.16).
In figure . , we can verify that increasing the rate of the representation,
that is here the divergence DKL[q�(z|x)kp✓ (z))], reduces the quality
of the reconstruction. A short table is displayed fig. 3.3, showing the
results obtained with the test set. We can thus verify that rate and
distortion are complementary, the quality of reconstructions decreas-
ing as � is increased. However, as shown by the work of Higgins &
al., increasing � should increase the significance of the representation,
enforcing it to represent factors of variation underlying the data. We
will investigate that in the following section, studying the emerging
properties of the latent space.

3.2.2.2 Representation evaluation

While evaluating the quality of reconstructions is a rather easy task,
evaluating the emerging properties of the obtained latent spaces is
more difficult. Indeed, the relatively high amount of dimensions pre-
vents us to get a direct visualization of the latent space, and the projec-
tions applied to PCA or ICA dimensionality reduction methods may
flatten the intrinsic latent organization. Therefore, we rely on different
evaluators to describe the organization of latent projections, aiming to
provide additional descriptors of its topology.

Evaluation strategies. As we said, visualizing the space is an hard
task, as the number of dimensions is relatively high and that common
dimensionality reduction techniques flatten the inner organization of
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Figure 3.16: PCA represen-
tation of a VAE trained in
acidsInstruments-ordinario, each
point being a data point projection
coloured by its pitch class. We can
see that the extracted representation
has been successfully shaped as an
isotropic normal distribution, but that
this visualization does not provide any
information on the classwise repartition.

the latent space (see fig. 3.16). A first possible evaluation is to measure
how much the encoding distribution fits the prior using four different
divergences : DKL[qkp], DKL[pkq], D↵=2[qkp], JSD[qkp], and M MD.
Remembering sec. 2.1.3.2, note that the four first divergences fit indi-
vidual projections q(z|x), while the last one fit the aggregated posterior
q(z), and hence evaluates the global projection.

Another desired property of the representation is disentanglement, quan-
tifying how much the axis of the obtained representation is reflecting
the generative factors of variation of the dataset. However, we do
not always have the required information to track the corresponding
organization in the latent space. A way of measuring the disentangle-
ment of a representation is to compute the total covariance (TC) of the
representation, that is the DKL between the full posterior distribution
and the product of its components [150]

TC(z) = DKL[q(z)k
Y

i

qi(zi))] (3.7)

However, the computation of the aggregate posterior q(z) is impossible,
as its expression is intractable [69, 288]). A way to estimate it is to
marginalize on x, q(x) being the empirical distribution of the data :

q(z) =
⌅

q(z|x)q(x)dx =

⌅
q(z|x) 1

N

NX

n=1

�[x = xn]dx =
1
N

NX

n=1

q(z|xn)

(3.8)

However, the DKL of total correlation is still intractable, as q(z) is a mix-
ture of normal distributions. Another way to estimate TC[q(z)] is to use
DRE (see 2.13), that is the density ratio between the estimated aggre-
gated posterior and the product of its components q̂(z) = Q

N

n=1 qi(zi)
[289]. In that case, the contrasting distribution q̂(z) is obtained by ran-
domly shuffling batches across the latent dimensions. Total correlation
can thus be estimated with

ˆTC[q(z)] = Eq(z)
D(ztrue)

1 � D(z f alse)
(3.9)

where the discriminator D is also learned during learning. An ad-
ditional whitening procedure is also proposed in [290] using PCA
decomposition, such that the total covariance is rather processed in
the PCA space.

While Total Covariance estimate the independence between repre-
sentation axis, they do not explicitly link them to existing factors of
variation of the data. In their �-VAE paper, Higgins et al. propose a
validation procedure using external label information [194]. Based on
the intuition that variance of latent projections should be lower when a
factor is fixed, this procedure trains a linear classifier to predict the tar-
geted labels when given the pairwise distances of their corresponding
projections. While the original paper uses a data generator to perform
this validation procedure, this evaluation can still be performed with
the corresponding metadata. This procedure is based on the following
steps :
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(a)

(b)

(c)

(d)

Figure 3.17: Statistics of latent projec-
tions obtained with two VAEs, one
trained with DKL and one trained with
adversarial criterion. (a) variances of la-
tent means, obtained with DKL regular-
ization (b) means of variances obtained,
with DKL regularization (c) variance of
means, obtained with adversarial reg-
ularization (d) means of variances, ob-
tained with adversarial regularization

Table 3.4: Latent organization descrip-
tors obtained from the three datasets.

JSD0.5[pkq] M MD[p, q] TC[p, q]
additive

DKL 104.05 159.52 22.89
M MD 521.5e9 588.83 22.67
Adv 8.81e+31 117231 211.75

Baseline - 759.39 400.13

fm

DKL 2176 2406 65.32
M MD 9.67e27 405.44 35.98
Adv 1.13e+29 143165 409.4

Baseline - 207162 406.33

aIns-o

DKL 59.63 35.72 23.36
M MD 65.98e12 588.83 19.35
Adv 4.37e30 471229 535

Baseline - 39409 204.82

I create K classifiers for each of the K independent factors of vari-
ations

I randomly choose a factor of variation k 2 [0, K]
I obtain two sets {x1} and {x2}, with a factor K fixed to given

value k
I obtain corresponding latent vectors z1 and z2

I compute the average L1 norms zdi f f = |z1 � z2 |
I train classifier K on zdi f f to predict the corresponding factor k

Concomitantly, a related procedure was proposed by Eastwood &
Williams, where all the input z is directly used to feed each factor-
wise classifier. This way, we can directly obtain the responsibilities
of each axis, and identify the corresponding permutation of the axis
to get the desired representation [291]. A disentanglement score can
then be computed using the entropy of each axis responsibility Di =

(1 +P
K

k=0 Pik log
K

Pik)), where Pi j = Ri j/
P

K

k=0 Rik is the responsibility
of zi for the corresponding factor. This approach allows to evaluate
the completeness of the representation, evaluating simultaneously the
different tasks.

Impact of divergence strategies. The full results table is displayed
in appendix A.2. A summarized table is provided 3.4, where we show
three different latent descriptors

I the Jensen-Shannon divergence, that is a symmetrized version of
DKL that measures the average distance between q�(z|x) and (z),

I the M MD, that computes the divergence between the aggregated
posterior q(z) and p(z)

I the total covariance TC[q(z)], obtained with the method pre-
sented in (3.9)

We can see that the divergence obtained with JSD on models trained
with implicit distributions is very high. This can be observed by com-
paring the statistics of the obtained latent projections with two different
regularizations, one with DKL and the other with adversarial (see fig
3.17). In the case of DKL , the variances of the variational distributions’
means are very close to 1, while their variance varies between 0 and
1, showing that the space is well regularized. Conversely, the latent
space obtained with an adversarial criterion is atomic, such that no in-
formation is shared between examples. However, the total covariance
shows that the MMD regularization efficiently provides orthogonal
axis, showing that it successfully matched the aggregated posterior
with the prior.

Impact of � strategies. Table 3.18 show the divergence obtained
when varying the � factor with three different estimators : the training
criterion DKL[qkp], plus two divergences M MD[p, q] and TC[p, q], that
describe how the aggregate posterior fits the prior N(0, I). We can see
that, as expected, increasing the � factor will reduce the DKL ; however,
more surprisingly, we can see that increasing � does not decrease the
TC, showing that it does not necessarily enforce the independence of
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Figure 3.18: Statistics obtained from a
VAE trained with � = 10. (a) variances
of means obtained with DKL (b) means
of variances obtained with DKL (c) vari-
ances of means obtained with adversar-
ial (d) means of variances with adversar-
ial

DKL[qkp] M MD[p, q] TC[p, q]
additive

� = 1 35.20 159.52 22.89
� = 4 18.28 143.10 19.83
� = 10 12.47 140.6 20.10

PCA - 759.39 202.13
ICA - 8875.41 6.77e-4

toy_fm

� = 1 49.20 2406 65.33
� = 4 34.77 2534 89.76
� = 10 24.87 2419.8 113.10

PCA - 205598 405.70
ICA - 7594.93 6.10e-4

aIns-o

DKL 19.28 2840.25 50.27
� = 4 9.36 2527.10 50.90
� = 10 5.423 1807.7 45.52

PCA - 39409 204.82
ICA - 7881.27 3.92e-4

Table 3.5: Table of results for latent de-
scriptors obtained with models with var-
ious �. As we can see, increasing � does
not lead to reduce the total covariance
TC

latent axis (the TC is even increasing with toy_fm). A further analysis of
the latent statistics indeed points out that increasing � does not seem to
orthogonalize the latent representation but rather to polarize it, at least for
magnitude spectra. Indeed, as can be seen fig. 3.18, all the dimensions
of models trained with � = 1 seem to bring an equal contribution of
the latent code, while with � = 10 seems to clearly deactivate some
dimensions, where the mean variances of the corresponding latent
dimension z j equals 1 (see section 2.3.2.3). Therefore, increasing the
regularization weight does not spread the latent representation, but
rather concentrates the information on a fewer number of axis.

Disentangling. While the estimators used so far allow to measure
the performance of the regularization and the latent axis independence,
it does not quantify if the obtained dimensions reflect the generative
factors of each dataset. We show table 3.6 the disentanglement results
obtained with the dataset acidsInstruments-ordinario, using the
Higgins’ disentangling measure. To ensure the consistency of these
measurements, we also perform prediction from the trained classifier
on random labels, and compare the scores with the ones obtained with
true labels.
While the best results are obtained, for octave and pitch, with the model
with 8 latent dimensions, we can see that the difference with the results
taken with random labels is little, showing that the classifier could
have learn the distribution of the point-wise distances. We also see
that increasing the � do not especially lead to better disentanglement
measures, even worsening it in the case of the instrument class, that is
surprisingly best disentangled by ICA. We obtain similar behaviours
with other dataset, showing that the latent spaces do not automatically
disentangle the generative factors of audio datasets, at least with the
Higgins evaluation method.

Perceptive maps. Finally, another method to analyse the properties
of the latent space is rather to explore its topology in the data domain,
performing grid sampling of the latent space and computing acoustical
descriptors of the corresponding generation. However, grid-sampling
scales exponentially with the number of dimensions, and can then be
expensive to compute. Hence, we resort to invertible dimensionality
reduction algorithms (PCA and ICA) to project the latent space in three
dimensions, and then obtain the perceputal maps for the correspond-
ing model. These projections are computed on the latent variables

octave random pitch random instrument random
2d 2.52 2.46 2.72 2.74 2.74 2.72
4d 2.55 2.42 2.41 2.67 2.79 2.76
8d 2.51 2.47 2.60 2.65 2.75 2.65

DKL 2.77 2.47 2.76 2.66 2.46 2.69
M MD 2.4 2.35 2.50 2.64 1.68 1.75
Adv 6.94 7.52 10.112 10.03 8.74 8.25
� = 4 2.64 2.45 2.75 2.62 2.38 2.61
� = 10 2.33 2.33 2.65 2.58 2.78 2.57

PCA 3.00 3.04 3.35 3.27 3.19
ICA 2.41 2.265 2.53 2.53 1.61 2.53

Table 3.6: Disentanlgment scores
for tasks octave, pitch, instru-
ment obtained with the dataset
acidsInstruments-ordinario.
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obtained from examples of the dataset, and provide an interesting
analysis of the local behaviour of the latent space. These perceptive
maps provide intuitive feedback of the latent organization, and could
be advantageously used for interactive exploration.

First, we use the spectral centroid, that is the weighted-mean of frequen-
cies according to their corresponding amplitude [292]

Centroid[X( f )] =
P

N�1
i=0 f (i)Xi( f )
P

N�1
i=0 f (i)

(3.10)

that has a connection with the perception of brightness of the corre-
sponding sound. The second descriptor is bandwidth, that is defined
[293]

Bandwidth[X( f )] =
" N�1X

i=0
X( f )

✓
f (i) �Centroid

⇥
X( f )

⇤◆p#1/p

(3.11)

that estimates the width of a the spectra over its frequency range, and
is related to the perception of narrowness of a sound. Finally, we also
compute the flatness descriptor [294]

Flatness[X( f )] =
exp 1

2⇡
⇤ ⇡
�⇡ log X( f )df

1
2⇡

⇤ ⇡
�⇡ X( f )df

(3.12)

that can be roughly described as the difference between the marginal
entropy E[X( f )] of the spectrum distribution X( f ) and the Kolmogorov-
Sinai entropy, that estimates the entropy of the conditional distribution
E[X( f )k |X( f )k�1]. Flatness is then related to the noisiness of the spec-
trum, where signals close to noise will verify Flatness[X( f )]! 0, while
signal with a more deterministic structure such that pure sounds will
rather have high values.

An example of such maps are given fig. 3.19 for toy_additive and
acidsInstruments-ordinario using PCA and ICA. These maps allow
us to draw very interesting conclusions on the perceptual organization
of this space. First, we can see that perceptual maps obtained with PCA,
that lies close to the projected points, provides perceptually smooth
maps, showing the regularization effect of the VAE. However, this
contrasts with the maps obtained with ICA, showing rather complex
latent structures. While the maps obtained with ICA are sufficiently
smooth when trained with toy_additive with DKL regularization,
the ones obtained on acidsInstruments-ordinario, with adversarial
divergence are more irregular. We can explain this by the fact that ICA,
contrary to PCA, enforces the orthogonality of its axis and thus can
represent untrained zone of the latent space.

Overall conclusions. These experiments then allow to draw impor-
tant conclusions on how vanilla auto-encoders behave with magnitude
spectrum. First, we can see that VAEs can compress the dataset very
efficiently, even providing convincing reconstruction results with only
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Figure 3.19: Descriptor plots obtained from (left) toy_additive with DKL , with PCA (above) and ICA (below), and from (right)
acidsInstruments-ordinario with adversarial, with PCA.

two latent dimensions. Regarding the impace of regularization meth-
ods, MMD and adversarial divergences allow to reduce even more
the reconstruction error, at the cost of developing atomic representa-
tions that discourage information sharing between examples. We also
showed that the � parameter, at least for magnitude spectra, does not
encourage the orthogonality of latent axis but rather the sparsity of the
latent dimensions, encouraging fewer active latent units at the cost
of lower reconstruction abilities. However, regardless of the chosen
divergence, the system manages to regularize the representation on
the chosen prior, showing the efficiency of the regularization process.
However, we saw that VAE did not disentangle inner factors of varia-
tion for audio data, at least for this standard configuration⇤. Further
investigations of disentanglement abilities for audio signals could
be pursued by taking even simpler datasets and black-box analysis
approaches, such as the Riemannian approaches such as the ones pro-
posed in [197] ; however, we leave that to future work. In this PhD, this
disentanglement issues rather motivated us to develop regularization
strategies specific to audio signals, relying on the flexibility of varia-
tional process. Such strategies would allow us to specify externally
latent organization policies for the system, that would be beneficial
from a design point of view. We thus propose two different regulariza-
⇤ we did similar experiments with fully-connected instead of convolutional networks,

and obtained similar conclusions
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tion strategies: one based on symbol-signal translation spaces, allowing
the user to define custom vocabularies that would be reflected in the
latent space, and another one based on metrics matching, based on the
perceptual regularization of the latent space.

3.3 Bijective signal-symbol regularization

In the previous section, we studied the emerging properties of the la-
tent representations extracted with AEVB trained on magnitude spec-
tra. We concluded that, while the obtained representations were able
to drastically reduce the dimensionality of data, the interpretability
of latent features was still difficult and not representing inner factors
of variation. However, in some applications, we can access complete
or partial metadata on the dataset, such that we may want to enforce
the representation to reflect these properties. Furthermore, some meth-
ods take inspiration of domain transfer to propose multi-modal latent
spaces, such that we can infer the symbolic information from the signal
and reversely, using the latent space as a translation space. Such models
can be very beneficial for the proposed approach, as this could allow
us to explicitly model generation parameters without interfering too
much with the unsupervised learning process of AEVB. In this sec-
tion, we will summarize the most common methods to influence the
latent representation with external information, from full supervised
approaches such as conditioning to loose semi-supervised methods
such as domain translation (see fig. 3.20). We will then propose an ap-
plication of such methods to musical signals, using the latent space as
signal-symbol translation spaces between some orchestral instruments
and symbolic information (pitch, octave, and dynamics).

3.3.1 (Semi-)supervised methods for latent
regularization

Several methods can be used to introduce external symbolic informa-
tion in the learning process of AEVB models. Some approaches are
based on conditioning, where the symbols are directly provided to the
encoding/decoding modules ; however, these methods are entirely
supervised, such that the model is untrainable if we miss some label
information. Other methods propose to alleviate this constraint with
semi-supervised learning, where an symbolic inference module is added
to AEVB such that the system is able to recover the missing informa-
tion. Finally, some methods take inspiration from domain transfer to
provide shared representation between the data and corresponding
symbols.

Conditioning. We can influence the latent representation by con-
ditioning whether the variational or generative distributions on the
label information. Given a dataset {x, y}i=0...N composed by data x and
corresponding symbols y, provided as class labels, we can condition
the encoder by providing the label information as a additional input,
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Figure 3.20: Four different approaches
for conditioned data generation. (a) un-
conditioned system (b) direct conditioning
: the label information is directly given to
the decoder, making the latent represen-
tation independent to the corresponding
task. (c) semi-supervised learning : an addi-
tional classification system is added on
the top of latent space, predicting the la-
bel it is missing (d) translation : the latent
space is used as a translation space, that
is shared between labels and data

modeling a variational distribution q(z|x, y). Hence, the symbol infor-
mation can directly influence the latent space through the encoder.
Similarly, we can also condition the decoder to model the generative
distribution p( x|z, y), where we also add the label information to the
module’s input. As the variables z and y are assumed independent,
conditioning the generation model on symbols enforces the invariance
of the latent representation to the corresponding label, then disentan-
gling the space from the class information. The obtained latent space
is thus shared between classes, and we can then conditionally generate
from the decoder to obtain samples belonging to the target label. These
models can then be used for between-class translation, encoding a sam-
ple and decoding the corresponding latent vector with another class
label. This translation have been showed to also transfer the stylistic
properties of the encoded data to the decoded sample, thus proving the
consistency of the obtained representation [295]. Furthermore, Yan &
al. showed that model was able to perform class interpolation, interpo-
lating between the two one-hot vectors y1 and y2 [296].
This method, that we call concatenative conditioning, allows us to effi-
ciently obtain class-invariant latent representations. However, concate-
nating the symbolic information to the data may be not sufficient to
accurately condition the decoder to the class information. Conditional
Normalization methods rather propose to condition the normaliza-
tion layers of neural networks, then to directly condition some of the
network parameters to the class information. The Conditional Instance
Normalization proposed by Dumoulin, Shlens & al., have been suc-
cessfully applied to style transfer in the image processing domain,
providing interesting translation results [297]. This method have then
been extended by Perez, Strub & al. with Feature-wise Linear Modula-
tion (FiLM),that uses embeddings extracted from class information to
directly modulate the features provided by each layer of the network
[298]. While these conditioning methods are widely used in image
processing, their use in the audio domain is still marginal. However,
FiLM modulators have been successfully applied to many-to-many
instrument translation, showing the efficiency of these methods for
audio [299].

Semi-supervised learning. Despite the efficiency of advanced con-
ditioning methods described above, the availability of symbolic in-
formation for the whole dataset can sometimes be burdensome. We
can circumvent this requirement by modeling the label information
y as a random variable, and adding an inference model q(y|x, z) to
the system that is able to predict the class information in the case of
incomplete data. The symbolic variables y can also be modelled as
additional latent variables, that are extracted with a second recognition
model q(y|x). The latent representation is then disentangled between
class-related and class-insensitive features [300].
Alternatively, we can infer the symbol information using the latent
space, running a discrimination task on a high-level representation
of the data. This framework, called semi-supervised learning, combines
the benefits of both supervised and unsupervised approaches, and
allow us to train the model on data even if the corresponding label
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information is missing. This framework was first proposed by Kingma
& al. [295], proposing a 2-layer variational model where label infor-
mation was extracted from the first latent layer, and the given to the
decoder for concatenative conditioning. Provided the low capacity of
the discriminator (such as a simple linear classifier), the variational
distribution will then be enforced to linearly separate the latent pro-
jections of the different classes. Semi-supervised learning is then also
an efficient way to regularize the latent space of the variational model
on external symbolic information, influencing the representation to
discriminate examples belonging to different classes. However, the
original model from Kingma & al. does not explicitly model the dis-
tribution p(z|y), limiting the interpretability of the process. We then
take inspiration from domain-translation, a more general framework
that can be applied for multi-modal inference.

Multi-modal domain-translation. The different approaches described
in the last paragraphs can be considered as a particular case of multi-
modal learning. Multi-modal learning addresses the problem of mod-
eling a dataset composed by K different views of a same example
X = {x1, x2...xK }, that can possibly be incomplete when some views are
missing. A way to extract useful features from multi-modal datasets is
to infer a representation q(z|X) = q(z|x1) = ... = q(z|xK ) shared by the
different views, such that all views x1, x2...xK are represented by the
same latent vector z. Provided the corresponding generation models
p(xk |z), this shared representation can be then used as a translation
space by modeling the distribution q(xk |xm) = p(xk |z)q(z|xm), using the
same vector z. Sharing latent representations then allow to perform
both domain translation and direct generation, by directly sampling
all the views from a latent vector z.
Hence, a variational formulation of this setting would require a set of
encoders q(z|x1), q(z|x2), ..., q(z|xK ) and a set of decoders p(xK |z1), p(xK |z2), ..., p(xK |zK ),
and formulating the overall loss by accumulating the individual EL-
BOs of each domain

Ltotal = L1(q1, p1) +L2(q2, p2) + ... +LK (qK , pK )

however, this criterion does not provide any explicit transfer objec-
tive between different views. Taking two domains x and y, Veden-
tam proposes to model both single-domain encoders q(z|x) and q(z|y)
and joint encoder q(z|x, y), and learn on the triple ELBO objective
L[q(z|x, y)] +L[q(z|x)] +L[q(z|x, y)] with shared decoders p(x|z) and
p(z|x) [301]. This objective ensures the symmetry of the inference pro-
cess between x and z, and enforces the single-domain encoders to
match the joint encoder. Alternatively, the SCAN method proposed
by Higgins & al. bypass the addition of a supplementary by adding a
explicit transfer penalty to the ELBO, giving [302]

LSCAN =L1(q1, p1) +L2(q2, p2) + DKL[q1kq2] (3.13)

where the sense of the additional DKL between the two posterior
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Figure 3.21: Two VAEs, one in the signal
domain x, one in the signal domain y,
that share the same representation.

approximations has been chosen to encourage the mass-covering be-
haviour of q(z|y) with respect to q(z|x), such that the symbolic posterior
q(z|y) does not under-match any example x of the class. Adding this
transfer term then allows us to directly match the latent representa-
tions of both models without any additional module, thus speeding
up the process. Suzuki & al. propose to match both approaches, mod-
eling the joint distribution and adding an explicit transfer term [303].
Liu & al. also propose to enforce even more this transfer by sharing
the weights of upper layers of each encoder-decoder pairs, and use
an additional adversarial criterion to evaluate the transferred data
[304].

3.3.2 Signal-symbol translation with latent space
matching

Motivations. Our motivation for investigating latent regularization
strategies based on external symbolic information is twofold. From
an analysis perspective, recovering symbols from latent spaces ob-
tain from audio signals encompass most of MIR techniques such as
instrument recognition, pitch extraction, and many others. However,
most machine-learning based MIR methods are entirely supervised,
such that the system is untrainable if the data-symbol pairs are incom-
plete. Furthermore, models trained from an supervised manner often
provide representations that are too task-specific, such that extracted
features can represent poorly the underlying structure of data and can-
not be used for other tasks. Semi-supervised methods then alleviate
this drawbacks, being able to both extract robust representations from
data and efficiently extract the corresponding symbol information.
These methods can then allow us to perform multi-task learning, where
the latent space provide efficient representations that is enforced to
represent diverse modalities of the data.
Moreover, using latent representations as a bijective translation space
between symbols audio signals is interesting from a creative point of
view. Indeed, considering symbolic information as alternative modal-
ities of the data then allows to learn on arbitrary data/symbol pairs,
and can be customized by the user during the training process. The
method can thus be used for constrained generation, where the signal
generator is conditioned on complete or partial symbol information,
but also reversely for inferring the corresponding symbols from a given
audio signal. Furthermore, this framework still allows free navigation
in the latent space, such that both data and symbols are generated
from z, then providing useful symbolic feedback for generation.

Formulation. We then extend the audio data x with symbol labels
y1, ...yK to obtain our multi-modal dataset {x, y1, ...yK }Ni=1.

q(z|y) =N
�
µ
q
(y),�2

q
(y)

�

p(y|z) =
LY

i=1

B
�
µp,i(z)) or

LY

i=1

Cat(µ
p,i(z))
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where we model the label density with a Bernoulli distribution B
�
µp,i(z))

if the label is a binary vector, or a Categorical distribution Cat(µ
p,i(z))

if the label correspond to a given class. Note that, in the Bernoulli case,
each dimension of a label information [µk,1, µk,2...µk,i] is independent
while in the Categorical case class probabilities [µk,1, µk,2...µk,i] sum to
one. Taking inspiration from the SCAN model proposed by Higgins &
al. [302], we train our auto-encoders on the multi-modal data dataset
{x, y1, ...yK }Ni=1 using a VAE for the signal domain x, and another VAE
on the joint label {y1, ...yK } space, on that we train on individual ELBO
plus an additional transfer term DKL[q(z|x)kq(z|y)] (see 3.13).

We propose to evaluate the performance of this framework on bijective
audio-signal translation by addressing an audio transcription challenge,
where label information is a triplet [pitch, octave, dynamics]. The cor-
responding generative distribution is then

p(y|z) =
KY

i=1

p(yp

i
|z)p(yo

i
|z)p(yd

i
|z) (3.14)

where the index i denotes the number of target instruments. In this
case, we use a single symbolic VAE to output the concatenated symbols
[yp

1 , yo

1 , yd

1 ...yp

K
, yo

K
, yd

K
] to lighten the process, and such that sharing

the encoding/decoding functions allows the VAE to internally model
correlations between the different symbols. The total loss of the joint
model is then, reformulating 3.13

LSCAN =Ez⇠q(z|x)
⇥
log p(x|z) � �DKL[q(z|x)kp(z)]

⇤
data-domain ELBO

(3.15)

+Ez⇠q(z|y)
⇥
log p(y|z) � �DKL[q(z|y)kp(z)]

⇤
symbol-domain ELBO

(3.16)

�↵DKLq(z|x)kq(z|y)] weighted transfer penalty
(3.17)

Experiment details. We evaluate the proposed approach on two
datasets. We first perform training on the proposed acidsInstruments-
ordinario dataset, composed by individual samples from classical in-
struments, where the corresponding symbolic information is entirely
available. In the multi-instrument detection case, we obtain the mix-
tures of audio signals by randomly sampling data samples over differ-
ent instruments and sum the obtained spectra, provided the linearity
of the spectral transform. In this study, we selected five different in-
struments (violin, alto-sax, flute, piano, and trumpet-C) and evaluate
the model on each individual domain, and on instruments mixtures
up to three different sources (saxophone + violin, and saxophone +
violin + trumpet-C). We obtained the spectral representation from
audio signals using an NSGT transform, based on a Constant-Q scale
with 48 bins per octave. We only take the stationary part of each sound
for training, that we obtain by cropping each spectra from the 20th to
the 50th frame. We also evaluate our models on a validation dataset,
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ensuring the robustness of obtained representation. However, datasets
of single instruments recordings with corresponding annotations are
uncommon, such that we could not provide validation measures for
every instruments. Fortunately, Cantos & al. proposed a dataset of
annotated flute recordings ⇤ gathering single notes, arpeggios, and im-
provisation fragments, that we can use to validate our models trained
on flute sounds [305].

Regarding the models, the models used for both data and symbolic
domains are simple VAEs with 32 dimensions, with MLPs modules
as encoding/decoding functions. For the data domain, the MLPs are
given 2 layers of 2000 units when learning single instruments, and
5000 units when learning mixtures of two instruments or above, using
in both cases ReLU non-linearity and batch-normalization. For the
symbol domain, networks’ architectures was set to 2 layers of 1000
units, regardless of the instruments number. Both systems were jointly
optimized using ADAM gradient descent with an initial learning rate
of 1e-3, progressively shrunk during training depending on the loss
derivative. The � weighting ot the regularization term is set to 1, with
a warm-up procedure during the first 100 epochs. The ↵ weight of the
transfer loss is set to 10, as recommanded in the original SCAN article.
We also compared the obtained results in symbolical inference with a
baseline model that mimicking the VAE procedure from audio to data,
first applying a PCA with 32 dimensions and then using a two-layer
MLP for classification.

3.3.3 Evaluation of domain transfer and further
applications.

Our evaluation strategy is split in three parts : we first obtain the
performances achieved in data domain, both on reconstruction and
transfer, and comparing the two to catch the consistency of translation
space. We then do the same analysis in the symbolic domain, focusing
more on transfer as the reconstruction quality of the symbolic part
is quite secondary in this application. Then, we evaluate the perfor-
mances of the proposed model on a validation dataset made of flute
samples, and provide examples of the diverse creative applications us-
ing the proposed system. This article has been submitted and accepted
at DaFX 2019 conference, and will be released soon through the arXiv
plateform. The corresponding code and support page can found on
github.

Audio reconstruction results. Reconstruction results are shown ta-
ble 3.7, where we compare the log-likelihood and Itakura-Saito Diver-
gence (ISD) obtained of reconstructions � log p(x|z) and transferred
data from symbols � log p(x|y) (see 3.2). Both scores are presented for
signal-to-signal reconstruction (left) and symbol-to-signal inference

⇤ The dataset is available at : https://zenodo.org/record/1408985
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Figure 3.22: Reconstruction and transfer performed by the system. We can see that both transfer and reconstructions are perfect with
one instrument. While the performances are still satisfactory with two instruments, they decrease with three instruments, showing that
the system struggles to disentangle correctly the sources. This can be observed by observing the reconstructions and transfers in the
symbolic domain : while the most symbols are accurately found, they are affected to the wrong instrument, showing the limitations of
the followed approach.

Table 3.7: Signal reconstruction and
transfer performances

� log p(x|z) ISD � log p(x|y) ISD
Alto-Sax (Sax) -694.1 0.093 -416.6 0.177

Violin (Vn) -671.4 0.104 -551.1 0.151
Trumpet-C (TpC) -706.9 0.073 276.71 0.35

Flute (Fl) -706.2 0.076 -379.2 0.147
Piano (Pn) -813.5 0.044 -361.13 0.112
Sax + Vn -358.71 0.364 -27.37 0.852

Sax + Vn + Fl -268.7 0.624 692.4 3.813

(right). We can see that performances in both signal reconstruction
and transfer decrease with the number of instruments, as the complex-
ity of the incoming signal increases. Both reconstruction and signal-
to-transfer scores are almost perfect in the case of solo instruments,
providing convincing and high-quality sound samples generation. In
the case of mixtures of two or more instruments, reconstruction scores
maintain an acceptable performance, but symbol-to-signal transfer
scores clearly decrease. This observation correlates with the decrease
of performance observed in the symbolic domain, as discussed in the
following sub-section.

Symbolical inference. Results obtained in the symbolic domain are
displayed table 3.8. We provide three different evaluations : the log-
density of the generated symbol, the classification ratio performed
by the symbolical generator, and then the corresponding classifica-
tion scores obtained from our baseline. The results within parenthe-
sis are the scores achieved by transfer, when available. In the multi-
instrument case we also provide a loose classification ratio, that consider
a given label correct regardless of the corresponding instrument.

In the single-instrument case, both generation and transfer scores are
near to perfection, proving the efficiency of the proposed method. Our
model also clearly outperforms the baseline model, especially with
dynamics. However, the performances degrade with the number of
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� log p(y|z) Success Ratio (%) loose (%) Baseline (loose)

Sax
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)
-1.0 (-1.0)

100% (100%)
100% (100%)
100% (100%)

-
-
-

94%
97%
46%

Vn
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)
-1.0 (-1.0)

100% (100%)
100% (100%)
100% (100%)

-
-
-

89.8%
99.0%
35.3%

TpC
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)

-0.998 (-1.0)

99.9% (100%)
100% (100%)
99.7% (100%)

-
-
-

76.1%
99.8%
47.8%

Fl
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)
-1.0 (-1.0)

100% (100%)
100% (100%)
100% (100%)

-
-
-

52.4%
81.8%
41.4%

Pn
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)

-1.0 (-0.999)

100% (100%)
100% (100%)

99.9% (100.0%)

-
-
-

51.6%
63.9%
40.0%

Sax + Vn
p
o
d

-0.534 (-0.871)
-0.782 (-0.980)
-0.712 (-0.939)

54.0% (87.9%)
84.6% (99.2%)
74.4% (95.9%)

62.6% (81.6%)
94.9% (88.7%)
82.4% (66.3%)

65.3%
79.1%
52.0%

Sax + Vn + TpC
p
o
d

-0.381 (-0.725)
-0.377 (-0.641)
-0.347 (-0.616)

38.6% (75.0%)
42.4% (67.8%)
34.6% (62.4%)

62.6% (84.5%)
79.3% (88.7%)
66.9% (69.5%)

56.6%
62.3%
41.2%

Table 3.8: Symbolic inference recon-
struction and classification results (suc-
cessively pitch, octave and dynamics).
Scores without parenthesis are recon-
struction scores obtained within the sym-
bolic domain, while scores in parenthesis
are obtained when performing transfer
from the signal domain

involved instruments, being still acceptable in the two-instruments
mixtures case but clearly insufficient with more. This can be explained
by observing the loose ratio classification scores : indeed, the results are
significantly increased if we compare the obtained symbols regardless
of the instrument, even outperforming the baseline. This shows that
the VAE is facing a permutation problem, where the accurate symbols
are retrieved from the mixture but given to the wrong instrument. This
issue then prevent the actual formulation of the problem to be applied
on instrument mixture ; we leave that to a future work, restraining
ourselves for the moment to monophonic signals.

Likelihood ISD Class. Ratio Baseline

2648 (1057) 1.065 (0.632) 65.4%
81.9%

63.8%
76.8%

Table 3.9: Results obtained with the vali-
dation flute dataset.

Validation results. We then evaluate the performance of our ap-
proach on a validation dataset, to challenge the robustness of the
translation processed by our method when facing unknown data. This
validation step is important, as checking if the system still performs
accurately on different instruments and/or recordings ensures that
the extracted features are meaningful. To this end, we take the anno-
tated flute recordings dataset given by Cantos & al. [305], and evaluate
the performance of our model trained on monophonic flute signals
from the acidsInstruments-ordinario. As the annotations provided by
the dataset are given in a MIDI format, we then extracted a piano-roll
representation that we converted into a symbolic activation matrix,
where we sliced the time scale accordingly to the time positions of the
corresponding audio spectrum. Unfortunately, dynamics annotations
were not provided, so we could not evaluate the robustness of the cor-
responding inference. Results are shown table 3.9, among with those
obtained with the corresponding baseline.

We can observe the achieved performances are still decent, proving
that our model is able to generalize on new datasets. More interestingly,
the performances obtained in the signal domain are better in transfer
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Figure 3.23: Reconstruction obtained
from a MIDI file converted in audio with
our model, trained on flute sounds.

Figure 3.24: Functional graph of the
symbol-signal translation system.

MIDI 

Labelling 

Original spectrum

Reconstruction

Symbol-to-signal
generation

z � q(z|y)

z � q(z|x)

Signal-to-symbol
generation

than reconstruction, showing that our system successfully managed to
"abstract" the learned symbolic information. Also, the obtained results
have to be contextualized on two points. First, the reconstruction
results in table 3.9 have been obtained by forwarding full sounds
into the model, while the system was only trained on the stationary
parts of the recording. Then, an analysis of spectrograms showed that
the flute used in the validation dataset presented a stronger octave-
lower harmonic that is not present in the acidsInstruments-ordinario
dataset, and may explain the drop in octave classification. However,
these problems have to be alleviated in order to develop robust signal-
symbol translation with this method, with more complete datasets
involving several instruments, and training on the full range of the
signal. Furthermore, a more complete approach would be to model
full sounds rather than single spectral bins, and then model more
accurately temporal features such as dynamics ; this precise point
motivates the models developed in the chapter 4 of this PhD.

Creative applications. In addition to allow efficient multi-modal
modeling, this system allows additional creative application than with
uni-modal variational auto-encoders. Indeed, this system then allows
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Figure 3.25: Example of random trajec-
tory navigating the latent space obtained
from a model trained on violin.

the user to use custom symbolic information to regularize the latent
space, and can be then provided explicit control parameters for the
generation of feedback during free exploration. The smooth regular-
ization method performed by domain translation then opens up the
system to novel possible interactions that direct supervision methods
would not allow. We summarize below the new features allowed by
using such framework :

I free trajectory: we can directly sample the latent spaces to gener-
ate the corresponding spectrum. The symbolic decoder can thus
been used the provide interesting feedback to the user, relaxing
the lack of interpretability of the latent representation. Examples
are provided

I sequence generation: the navigation in the latent space can be
constrained by an external sequence of symbols, such that the
user can navigate the distribution q(z|y while specifying some
of the attributes of the target sounds (see fig. 3.23)

I spectral morphing: we can retrieve smooth interpolations be-
tween two sounds or two symbols in the latent space, then
achieving a spectral morphing between these two sources.

Fig. 3.24 provides a graphical summary of the interactions allowed
by the system, with example taken from the validation flute datasets.
Audio examples of these different generation methods are available
on the support page.

3.4 Perceptual regularization of orchestral
instruments

As we saw in section 3.2, the latent representation provided by the
AEVB when trained on ordinario orchestral instruments is not imme-
diately interpretable, as pointed out by the obtained perceptual maps
3.19. This difficult interpretability can not only make the direct explo-
ration of the latent space unsatisfactory, but also limit the use of the
obtained representation as an high-order feature space for analysis.
Hence, we may need an additional regularization constraint to enforce
the space to match properties of the human perception, making this
exploration more intuitive and the representation more likely to en-
code relevant features about the audio content of incoming signals. To
this end, we propose in this section a regularization based on timbre, a
seminal notion in audio perception.

3.4.1 Audio perception and timbre spaces

The notion of timbre is central in numerous music-related domains
such as composition, orchestration, musical analysis, instrument mak-
ing, or digital synthesis. However, giving a formal definition of timbre
is a hard task, as this notion is intrinsically linked tp human perception
and then vary significantly among individuals and musical practices.
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Figure 3.26: MDS can be leveraged to ob-
tain an Euclidean space, whose distances
are enforced to matching a given set of
dissimilarity measures.

However, the discovery of digital audio synthesis in the early 60s en-
abled an experimental approach to timbre understanding, underlining
the connection of between the perceived timbre properties of a signal
and its spectral envelopes, as investigated by Risset & al. [2] and Grey
& al. [306]. The link between spectral content and timbre thus moti-
vated the development of quantitative descriptors based on spectral
representations, hand-crafted to correspond given timbre properties
such as brillance, that can be described using spectral centroid, or the
attack quality, that can be evaluated using slope time estimation [307].
Alternative methods rather derive descriptions for the cepstrum of a sig-
nal, that takes the inverse Fourier transform of the spectrum logarithm
of the signal, estimating the variation rate [308]. Cepstral analysis thus
provide an interesting representation of the spectrum envelope and
led to very compressed timbre representation, such as Mel-Frequency
Cepstrum Coefficients (MFCC) that are still widely used in speech
processing and timbre analysis [309, 310]. Timbre analysis being an
interesting bridge between digital signal processing and audio percep-
tion, this field has then been extensively investigated and provided
an impressive number of different features, up to 300 as MIR toolbox
[311].

While the development of these audio descriptors is helpful to evaluate
timbre properties of a given signal, we also have to ensure that the
proposed descriptors correspond to actual perceptual properties of
the human hearing [312, 313]. Such psychological approaches then
study the consistency of these descriptors on perception by organizing
perceptive tests, aiming to find a correlation between the proposed
descriptor and the target timbre property [292, 314]. However, an
issue raised by such approaches is the problem of vocabulary, that can
vary a lot depending on the social and psychological context of the
human subject. A way to remove this bias is to rather obtain measures
of global dissimilarity of sounds, and then analyse the respective
pairwise similarity distances between the different types of sounds
[315]. This approach is very interesting has it subsumes the idea of an
underlying perceptive measure behind similarity judgement, opening
the idea of a continuous space behind human perception.

3.4.2 Defining perceptual regularization and similarity
space matching

Timbre spaces from similarity matrices. Dissimilarity measurements
then led to the idea of timbre space equipped from a similarity measure,
such that two near points correspond to perceptually similar sounds
while two distant ones would be very contrasting. Such spaces can be
obtained using Multi-Dimensional Scaling (MDS), a method that project
a set of points in an Euclidean space provided the pairwise distances
between the points [110]. Remembering section 2.2.1, given N points
and the corresponding pairwise dissimilarity measures dn,m between
the points xn and xm, performing MDS comes back to the optimization
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problem
min
x1...xN

X

i j
(kxi � x j k � di,j)2 (3.18)

to obtain a space x1...xN that minimizes the mean-squared error be-
tween the dissimilarity measures and the Euclidean measures of each
pair of points (see fig.3.26). MDS then allows to extract continuous sim-
ilarity spaces from human dissimilarity measurements, then providing
valuable analysis spaces where the relative properties of acoustical
instruments could be easily visualized [316, 317]. Timbre spaces ob-
tained from dissimilarity measurements have been first propose by
Grey, using 16 samples from classical instruments rated by 22 subjects
over a scale from 0 (similar) to 1 (dissimilar). Consequently, similar
experiments were conducted by Krumhasnl [318] using 21 instruments
sounds rated by 9 subjects using a discrete scale, Iverson & al. [319]
with 16 samples and 10 subjects that was specifically targetting the
role of dynamics in timbre perception, McAdams & al. with 18 instru-
ments and 24 instruments [320], and Lakatos & al. with 17 subjects
and several sets of instruments [321].
In these studies, the dimensions obtained from MDS were generally
semantically annotated after visualization and qualitative analysis of
the space, as the brightness-roughness two-dimensional timbre space
obtained by Grey or the spectral centroid / spectral flux / rise-time
space obtained by McAdams & al [320]. A strength of this approach
is then to extract continuous timbre spaces directly from similarity
measurements, without further structural assumptions on the signals
nor using specific vocabularies that could bias the experiments. How-
ever, while these spaces are very interesting for analytic purposes,
they are also limited because of their static construction, implying the
re-computation of the MDS for each additional input data, and does
not allow perceptual inference of external sounds nor direct generation
from the inferred timbre space.

Latent perceptual regularization. As we saw in the previous sec-
tions, perception of timbre is strongly correlated to the spectral content
of the perceived signal. We could then beneficially use the latent spaces
extracted with AEVB from classical instrument sounds to infer their
perceptual properties. AEVB framework would then allow not only
to infer the perceptual properties of instruments unknown from the
dissimilarity measurements, but also to generate new spectra directly
from the timbre space, that would be regularized with perceptive cri-
teria. To this end, we thus have to find a regularization strategy to
enforce our latent space to represent whether the pairwise percep-
tual dissimilarity between two encoded latent vectors, whether more
global properties of the timbre space obtained with MDS. To this end,
we propose different methods to enforce the geometry of the latent
space z to match some properties of the similarity space T obtained
with MDS. To our knowledge, we proposed the first regularization
strategies based on external metric constraints.

Prior regularization. The idea underlying prior regularization is to en-
code the perceptual information given by the MDS directly in the prior
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p(z of the latent space, then replacing the uninformative isotropic nor-
mal N(0, 1) by an informative prior N(z|µ

i
,�2

i) where the mean µ
i

and
variances �2 are conditioned by some information relating the target
instrument. Therefore, we model the distribution of each instrument
in the dissimilarity MDS with a normal distribution N(µ(Ci),�2(Ci)),
where the mean µ(Ci) is the average and �(Ci) is the estimated vari-
ance of the same corresponding projections. We then condition the
prior p(z) on the instrument class during training, then regularizing
the inference distribution q(zi |xi) on the corresponding distribution
p(zi). This regularization allows to directly embed the information
given by the perceptive space T in the ELBO, and then naturally inte-
grates into the Bayesian formulation of the AEVB.

l
2 regularization. In a similar way to the MDS criterion, the l

2 strategy
regularizes the distance of two inferred latent positions D(zi , zj) on
their distance in the perceptive space D(Ti , Tj). We thus add another
criterion C(z) to the ELBO L(q) (2.18)

Ll2 (q) = Eq(z|x)[ p(x|z)] + �DKL[q(z|x), p(z)] + ↵Cl2 (z) (3.19)

where Cl2 (z) = kD(Ti , Tj) � D(zi , zj)k2, such that this regularization
enforces distances in the latent space to match those of the perceptual
space using mean-squared error. The ↵ hyper-parameter is the weight
controlling the perceptive regularization weight. However, this cri-
terion does not model the uncertainty over the perceptual distances
D(Ti , Tj), and thus may be subject to over-fitting.

Gaussian regularization. Extending the idea of l2 regularization, we
rather assume the distances D(Ti , Tj) as drawn from a normal dis-
tribution {DT

i,j}inst ⇠ N(µi,j ,�i,j), where the parameters µi,j and �i,j
are estimated on the mean and variances of inter-class perceptual dis-
tances. This regularization method thus model the uncertainty of the
distances D(Ti , Tj). We similarly add this criterion to the ELBO 2.18

LN(q) = Eq(z|x)[ p(x|z)] + �DKL[q(z|x), p(z)] + ↵
X

i,j
p(D(zi , zj)|µt

,�2
t
)

(3.20)

Student-t regularization. Pushing further the idea of Gaussian regu-
larization, with the Student-t regularization we also target to model
the uncertainty of both mean and variances of the normal distribution
N(µi,j ,�i,j). To this end, we then replace this distribution by a Student-
t distribution and, taking inspiration from t-SNE, (see sec. 2.2.1) we
rewrite the density probability of the perceptual distance as

D(Ti , Tj) =
(1 + kzi � zj k2)�1

P
k,l(1 + kzi � zk k2)�1 (3.21)

and the density probability in the latent space as

D(zi , zj) =
exp (�kzi � zj k2/2�2)

P
k,l exp (�kzi � zk k2/2�2

i
)

(3.22)



3.4 Perceptual regularization of orchestral instruments 91

we then formulate the additional objective Ctsne as the DKL between
these two distributions, then providing the ELBO

LN(q) = Eq(z|x)[ p(x|z)] + �DKL[q(z|x), p(z)] + ↵
X

i,j
D(zi , zj)

D(zi , zj)
D(Ti , Tj)

(3.23)

The three first regularization strategies were accepted to ISMIR2018
conference, where it gained the best presentation award. The further re-
sults regarding the student-t regularization, that obtained the better re-
sults, have been also accepted in DaFX2018. The corresponding paper
is availbale on arXiv⇤ [322].The code and corresponding page can be
found here : https://github.com/acids-ircam/variational-timbre/.

3.4.3 Evaluation, perceptual inference and
descriptor-based generation

3.4.3.1 Experiment details.

For this experiment, we then had not only to get a suitable set of audio
data, but also the corresponding similarity ratings. In this section we
describe precisely the chosen experimental protocol, and evaluate
the performance of both the AEVB and the effect of the perceptual
regularization, comparing the different methods proposed in the last
section.

Dissimilarity ratings. For this study, we gathered a collection of per-
ceptual dissimilarity measurements from the different sources cited
in the previous sections. We ensured the statistical consistency of
the overall ratings by only selecting the instruments that were fairly
represented across the different studies, and normalized their respec-
tive similarity evaluation scales to get uniform ratings between 0
and 1. Despite these constraints, we managed to obtain a consistent
set of 12 instruments (Piano, Cello, Violin, Flute, Clarinet, Trombone,
French Horn, English Horn, Oboe, Saxophone and Trumpet), for a
total amount of 11845 ratings coming from an overall number of 1217
subjects. We then perform a MSD over d dimensions on these nor-
malized perceptual ratings, whose PCA can be visualized fig. 3.27.
We can see that the obtained representation is perceptually consistent,
gathering family of instruments together (brass, woodbrass, strings,
and piano as an outlier), and resemblant to the timbre spaces obtained
from previous studies.)

⇤ 322.
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Figure 3.27: Obtained perceptual spaces
from 11845 dissimilarity measures, repre-
senting averages human perceptive dis-
tances between orchestral instruments.
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Audio datasets. As the dissimilarity measurements have been ob-
tained on classical instruments, we then used the acidsInstruments-
ordinario dataset collected from the Studio On-Line database (see sec. )
as audio dataset. Indeed, this database contains samples of all the 12
required instruments over the full range of their respective tessiture,
and additionaly provides for each three dynamical ranges (pp, mf, and
ff ). Furthermore, as within the scope of this study we only train on
individual spectral bins, the amount of data available for each pitch
and instruments is comfortably sufficeint, ensuring enough variability
to overcome over-fitting. The total number of sample then amounts
to 2,200 samples, that we randomly split across notes to obtain two
different datasets for training and testing, with a respective balance
of 90%-10%. Moreover, the additional instruments contained in this
database can be projected in the extracted timre space, allowing us
to evaluate the perceptual inference performance of our models.. Re-
garding the transformation, we trained our models on four different
transforms, computed on signal resampled at 22050Hz. First, we used
STFT and DCT time-frequency representations, using a Hamming win-
dow of 40ms and an hop size of 10ms. We then used NSGT on three
different scales: a Constant-Q scale, using 48 bins per octave, a Mel
scale, and an ERB scale of 400 bins, defined over a range form 30 to
11000 Hz. As training is performed on spectral magnitude, we ued
Griffin-Lim procedures to reconstruct the corresponding phase.

Models. In this experiment we used a simple VAE with 64 latent
dimensions, using 3-layer MLP with 2000 hidden units. The � weight
of the DKL regularization was set to 2 to encourage the rate of the
representation, scheduled with a warm-up procedure on the first 100
epochs. The system is jointly trained with an ADAM gradient-descent
algorithm, setting the learning rate to 1e-5. We adopted a two-step
training procedure, such that the system is trained without perceptive
regularization during the first 5000 epochs. This schedule enforces
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Method log p(x) |x � x̃|2

PCA - 2.2570
AE -1.2008 1.6223

VAE -2.3443 0.1593
Prior -2.7143 0.1883
l

2 17.8960 0.1223
Gaussian 0.2894 0.1749
Student-T -2.8723 0.1610

Table 3.10: Generative capabilities eval-
uated on the log likelihood and recon-
struction error over the test set.

the perceptual regularization to adapt to the unsupervised features
extracted from the data, ensuring that the additional criterion does
not interfere too much with the learning process. We further observed
that this two-step procedure was mandatory to the success of the
procedure.

3.4.3.2 Evaluations.

Generative evaluations. We evaluate the generation abilities of the
trained systems with two different criteria : we first evaluate the likeli-
hood of the encoded example over the generative model p(x|z), and
then the mean-squared error of the encoded signal with the mean of
the generated distributions. While the first allows us to validate the
probability of the generated signal given a certain uncertainty, the sec-
ond allows us to evaluate the precision of the maximum a-posteriori
estimation of the targeted signal. We also compared the obtained re-
sults with two baseline PCA and unregularized auto-encoder, whose
architecture can be compared with the proposed model. For clarity
purposed, we divided the results table in two : in table 3.10 are written
the results obtained across the different regularization strategies, while
the results obtained across different transforms are shown fig. .

The results table 3.10 show that methods based on Bayesian formu-
lations, that are the prior and student-t regularizations, achieve the
better likelihood results. Conversely, the l

2 regularization method
is providing the worst likelihood performance, but provide the best
reconstruction over the mean-squared error criterion. As will be con-
firmed in the following sections, these results are coherent with the
uncertainty trade-off of Bayesian methods : as l

2 does not model the
uncertainty of the perceptual distances it performs better on individual
examples, but has the worse performances when the variance of the
generated distribution p(x|z) is taken into account. However, we can
see that the reconstructions obtained across the different regularization
strategies are all satisfactory.

Latent space evaluation The observation of the respective latent for
each representation confirm the assumptions developed in the prece-
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Figure 3.28: PCAs of perceptually regularized latent spaces for the different regularization techniques (a) un-regularized (b) prior (b) l2

(d) Student-t
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Table 3.11: Discriminative capabilities in
classifying family, instrument, pitch and
dynamics of the test set.

Method Family Instrument Pitch Dynam.
PCA 0.790 0.697 0.167 0.527
AE 0.973 0.957 0.936 0.597

VAE 0.978 0.993 0.963 0.941
Prior 0.975 0.991 0.993 0.936

Euclidean 0.972 0.990 0.990 0.943
Gaussian 0.982 0.991 0.989 0.948

Figure 3.29: Perceptive features inferred
by the model from unknown instru-
ments.

Figure 3.30: Perceptual maps obtained
from PCA planes of the model.

dent paragraph. Indeed, the over-fitting behaviour of the l
2 is clearly

visible, the latent projections being shrunk towards the instruments
centroid. Conversely, regularization methods modeling the uncertainty
of the perceptual distances and are then providing smoother distribu-
tions, a the cost of slightly reducing the MSE performance. Moreover,
the prior regularization indicates an over-regularization effect, that can
be taken similar to the results obtained with vanilla VAEs taking non-
informative prior. The results obtained with Gaussian regularization
naturally lie between both methods, as it assumes a distribution over
the distance spaces but without modeling the uncertainty of its param-
eters. However, regardless of the chosen regularization, we can see
that the structure of the perceptual MDS is successfully enforced onto
the latent spaces, proving the validity of our approach.

We further evaluate the representational properties of the extracted
latent space by training low-capacity discriminators over a bunch of
tasks corresponding to inner criteria of variation of the data : pitch,
dynamics, instrument, and family. The discriminators all have the same
architecture, composed from a single-layer network of 512 ReLU units
with batch normalization and softmax non-linearity. Corresponding
results are provided in table 3.11. We can see that the performances of
every proposed methods are highly satisfactory, and significantly gain
from the proposed baselines, especially on dynamics. This indicates
that the VAE successfully use its latent representation to express the
variety of data, while providing consistency across these different tasks
to make the problem linearly separable.

Perceptual inference. Unlike pure MDS approaches to timbre space
extraction, the proposed models allow to project signals unknown to
the model onto the extracted perceptual space, allowing us to achieve
perceptual inference. We then selected samples from the acidsInstruments
database not present neither in the training nor test sets (Contrabass,
Guitar, Harp, Piccolo, Viola), and projected them onto the perceptual
space. We can see that the inferred centroids of the obtained projections
are consistent, each instrument being close to ones with similar timbre
properties : the piccolo lie in the wind part of the space, close to
flute and oboe, viola and contra-bass are projected close, and the
guitar is projected close to piano. The location of harp however seem a
little hazardous, lying between trombone and english horn. Further
investigations are then required to describe furthers the capacities of
the model.
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Figure 3.31: Example of descriptor synthesis

Topology of audio descriptors. As summarized section 3.4, some
perceptual characteristics of sound have been successfully correlated
with audio descriptors, that are DSP measures applied on a given slice
of spectrum. We can then evaluate the global perceptual properties
of the extracted representation by studying the repartition of these
descriptors across the latent space. Similarly to section 3.2.2.2 , we
generate the spectral distributions from the space following a grid
sampling procedure of the PCA showed in 3.29, and then compute
the corresponding descriptors to obtain a topology map of the provided
representation. Here we provide topology maps of three different
descriptors, whose correlation with definite perceptual attributes ws
confirmed by human tests : spectral centroid, spectral bandwidth, spectral
flatness, and roll-off.

The obtained maps are shown fig 3.30, where we split the space in
four planes among the x axis on positions �.75,�.25, .25, .75, that we
sample on a 50 ⇥ 50 grid between [�1; 1] over the y and z dimensions.
We can see that the repartition of audio descriptors in the latent space
is quite non-linear but smoothly evolving, such as the spectrum are
coherently spread across the latent space. Interestingly, sound with
high flatness seems to be concentrated around the origin of the repre-
sentation, that correspond to the latent space with higher probability
p(z). Furthermore, this non-linear repartition of the audio descriptors
confirms the idea of a non-linear relationship between timbre spaces
and the corresponding descriptors. We can see that, contrary to the
maps fig. 3.19, the descriptors are more parsimoniously spread, and
seem to correspond to the features of the target perceptive space.

Descriptor-based synthesis. The smoothness of topology maps pre-
viously observed points out that the descriptors are behaving locally
in a linear way. Writing a descriptor function as a function of z such
that Desc[z] = Desc[µ

p
(z)], where µ

p
is the mean function of the

decoder, this observation comes back to assuming the local deriv-
ability of Desc[z]. Given a starting point z0, we can obtain a rough
estimation of this derivative by taking a neighbourhood N around
z0, evaluating the descriptor Desc[z], and computing the local evolu-
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tions Desc[z0]�Desc[N]. We can thus derivate a path search algorithm
to retrieve the optimal path that matches a target descriptor profile
t[n], from a point z0. While quite rudimentary, this method allows
us to perform descriptor-based synthesis, and provides a very intuitive
way of sampling new sounds from the latent space. This algorithm is
presented in Alg. 1, and an example is shown fig. 3.31.

Algorithm 1: Descriptor-based path synthesis
Data: space z, encoder q�(z|x), decoder p✓ (x|z)
Data: origin spectrum x0, target series t1..N , descriptor d
Result: spectral distrib. S 2 R

N⇥F

1 // Find origin position in latent space
2 z0 = q�(x0)
3 // Evaluate origin descriptor
4 d0 = evaluate(x0, d)
5 for i 2 [1, N] do
6 // Latent 3-d neighbourhood of current point
7 Ni = neighborhood(zi�1)
8 // Sample and evaluate descriptors
9 Xi = q�(Ni)

10 Di = evaluate(Xi , d)
11 // Compute difference to target
12 �i = |(Di � di�1) � (t[i] � t[i � 1])|2
13 // Find next latent point
14 zi = argmin(�i)
15 // Decode distribution
16 S[i] = p✓ (zi)
17 end

3.4.4 Conclusion

In this section, we then investigated the use of variational auto-encoders
and variants (Wasserstein Auto-Encoders, Adversarial Auto-Encoders,
Renyi Auto-Encoders) for magnitude spectrum learning. Despite ef-
ficient reconstruction abiilities, we saw that the unsupervised latent
space extracted from spectral features were not organized to corre-
spond main audio factors of data, while seeming to get a smooth
(but not sufficient) perceptual organization. Unfortunately, main ap-
proaches proposed in the literature to increase the disentangling abil-
ities of the latent representation, such as increasing the � parameter,
did not seem to be efficient with audio factors of variation.
Therefore, we proposed two different regularization strategies to make
variational spaces more compliant to audio features : a method based
on external symbol information, that used the latent representation
as a translation space between audio data and musical labels, and a
method based on perceptual regularization using human similarity
experiments. Both approaches significantly increased the represen-
tational properties of the latent space for audio analysis, and can
also provide smoother and controllable latent topologies for creative
uses. Furthermore, we saw that the proposed processes allowed nu-
merous applications, as perceptual inference, constrained generation,
descriptor-based syntheses, direct interaction, instrument morphing,
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providing a complete analysis-synthesis framework.
However, there is still an important aspect missing in this system : time.
Indeed, time is fundamental in sound and music, and so far we were
not able to model the temporal shape of the addressed signals. How-
ever, this spectral approach provided interesting results, such that we
would like to keep this process while modeling time at a higher level.
This is also coherent with the temporal multi-scale nature of musical
signals, that can be modelled as stacked levels of temporal hierarchies,
from the spectral bin to the full signal. This approach would also allow
us to directly perform raw audio signals, that is still a challenge for most
machine-learning methods. We address time and sequentiality in the
next chapter.



Time and prediction in
generative models 4

“I am sure that i lost my keys, but when...?"
(30 september 2012)

In the previous section, we investigated the capacity of Auto-Encoding
Variational Bayes to learn single spectral frames obtained from time-
frequency representations, that can be seen as a local snapshot of the
signal frequency content. This allowed us to model incoming signals
on a short time range (about 100ms, taking 2048 samples with a sample
rate of 22050Hz). However, these frames are learned individually, such
that the dynamical structure of each individual is not modeled by the
system. This limitation prevents not only to extract dynamical features
from the representation, but also to represent the true underlying man-
ifold involving the time dimension, that is yet mandatory if we target
to model audio information.
Hence, we have to develop AEVB-inspired models that are able to
model the dynamical aspect of the incoming audio files, such that the
obtained representation also reflect the temporal evolution of a given
signal. However, modeling time in AEVB models requires an addi-
tional step, as these systems are developed on data sets composed
from singletons x rather than sequences {x1...xT }. In this work, we
model this input sequence in the latent space by a trajectory {z1...zT },
hence using the latent representation as a state space. This state space,
that is independent to time, is then used to model the sequence dy-
namics, corresponding to a higher-level features of much lower dimen-
sionality. Recalling the manifold hypothesis underlying variational
auto-encoders (see sec. 2.2.2), this means that a full sound x1:T corre-
sponds to a trajectory curve in the manifold underlying all the possible
realizations of the modeled dataset.

However, we still need a way to encode the dynamics of the original
sequence in the system. We address this shortage with two original
contributions, targeting to model the sequence {xt}t 20...T by only mod-
eling the corresponding {zt}t 20...T . The first contribution is to model
the distribution p(zt<⌧ |zt�⌧), that can be seen as an extended version
of the transition model p(zt |zt�1) used in state-space models. The mod-
eling of this distribution, that we call the prediction task, allows to learn
the latent trajectories of the corresponding time series, and then to
perform the dynamical modeling of the data. As this prediction task is
performed jointly with inference and generation, the chosen prediction
method will shape the topology of the latent space, performing implic-
itly a temporal regularization of the representation. We then proposed
three different prediction methods, based on separate mathematical
backgrounds : a first method based on contrastive predictive coding, a
representation framework used for slow-feature analysis, a second
based on normalizing flows, modeling deformations of the latent space
across time index t, and a third based on Gaussian processes, a powerful
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continuous regression method.

However, while modeling the predictive distribution p(zt<⌧ |zt�⌧) al-
lows to model the dynamics of the input sequence directly in the latent
space, the extraction of dynamical features from this trajectory is still
impossible. Hence, we propose a new model, called ShrubVAE, based
on the progressive encoding/decoding of increasing time scales. The
interest of the proposed model is twofold : first, it provides a new
method to use AEVB for time series modeling, enabling to generate
entire sequences using a single latent vector, while preventing the
undesired degeneracies that occur with auto-regressive decoders (see
ref. 2.3.2.3). Secondly, ShrubVAE leverages multi-layered latent ar-
chitectures to model latent dynamics of increasing temporal scopes,
enabling analysis and generation of multiple time granularities from
the lower (single spectral frames) to the highest (in this work, up to 150
frames) level of temporal modeling. Moreover, this consecutive down-
sampling tasks during inference allow to greatly extend the scope
of time steps model by a single latent state, hence also significantly
extending the scope of the prediction methods proposed previously.

4.1 Time series analysis and prediction

Time series analysis is a seminal field of statistics, that have been
extensively studied for decades and gave rise to numerous diverse
approaches. As we will not be able to give an exhaustive state of the
art of such a large research field, we will focus on models that are
related to our purpose. First, we will shortly summarize stochastic
processes, that are widely used in the audio signal processing (es-
pecially auto-regressive processes, that are related to linear systems
modeling). Then, we will review dynamical Bayesian systems, lever-
aging statistical Bayesian learning (see sec. 2.1.1)for sequence analysis,
that provided popular models such as Hidden Markov Models and
State-Space Models. Finally, we will review Gaussian Processes, a pow-
erful Bayesian modeling method that can be used for regression or
classification, that we use in one of our prediction method.

4.1.1 Stochastic processes and model identification

Formally, a time series is a sequence of dimensional vectors x =
[x1, x2...xN ], here defined on R

D , generally assumed to be taken over
regular time steps. Time series analysis consists in extracting statistics
or modeling the underlying process of one or multiple time series, gen-
erally assuming an underlying structure between time steps, that can be
used for feature extraction or prediction. The complexity of this task
gave rise to many different methods, targeting distinct applications
and series types. By example, some approaches propose to model time
series with a parametric function of t such that x(t) = f✓ (t), coming back
to regression techniques (see 4.1.3). Alternatively, a flourishing class
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Figure 4.1: Example of a continuous
Weiner process, that can be obtained
from a cumulative sum of centered nor-
mal distributions.

.  .  . xt�1xt�2xt�3 xtx1

Figure 4.2: Graph of a probabilistic auto-
regressive process

of models rather model the transition function xt = f✓ (xt�1), obtained
from initial conditions. Such approaches are much more powerful,
as they can be understood as the discrete identification of a differen-
tial equation of arbitrary order (more details are given next paragraph).

Stochastic processes. Time series can also be defined using prob-
abilities with the notion of stochastic process, formally defined as a
collection of random variables {x(t)}t2T defined on an index set T, that
can also be taken stochastic. In that case, a given signal is considered
as a realization or sample path of the corresponding process. The notion
of stochastic process is central in time series analysis, grounding the
probabilistic approach to time series analysis. Particularly, the Wiener
process has a special role in stochastic analysis, that is normally dis-
tributed noise continuous everywhere but differentiable nowhere (see
fig. 4.1). A Wiener process, sampled with discrete index set T =N, is
then called gaussian noise, and is often added to deterministic system
to model them using probabilities. (see fig. 4.1)

An interesting property of Weiner processes is that their mean µ =
E[x(t)] = 0 (or first-order moment) is constant, and that their corre-
lation function E[(xt � µt )(xu � µt )] (or second-order moment) only
dependant from the distance |u � t |. Furthermore, a Weiner process
verifies p(xt1 , xt2 , xtn ) = p(xt1+⌧ , xt2+⌧ , xtn+⌧) for any ⌧ 2 , verifying the
stationarity of the process. Stationary is a seminal property of stochastic
processes, meaning that its properties do not change over time, and
therefore can be learned by a given model. As stationarity is a strong
assertion, weaker definitions can be given, as the wide-sense station-
arity that only requires the first- and second-order moments of the
process to be constant. The concept of stationary is of central impor-
tance in time series analysis, as is it conditions the learnability of the
process. However, it may be too restrictive to model complex signals,
such that some stochastic models propose to bypass this assumption
by proposing alternative formulations.

4.1.1.1 Moving-Average and Auto-Regressive processes.

The two notions of moving-average auto-regressive process are semi-
nal in time series analysis, and furthermore find a natural application
in digital audio processing for system identification. A moving-average
process can be described

xt = µ+ c + ✏ t +
pX

i=0
bi✏ t�i (4.1)

The model parameters are thus the p coefficients bi , then defining a
MA-process M A(p) of order p. Analysing a time series with MA then
implies to identify the parameters b, that can understood as a local
linear regression of the new step under a fixed temporal scope p. A re-
alization of such process can be then generated by iteratively applying
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Figure 4.3: Auto-correlation allow to
give estimates of the intern regularities
of the signal (here, original frequencies
in red)
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Figure 4.4: Digital filter equivalent to
ARMA model 4.3, where z

�1 is a unit
delay. Poles and zeros can be extracted
from coefficients a0...aN and b1...bM ,
representing the frequency response on
the unit circle.

the equation 4.1 with a given set of initial conditions [x0...xp]. However,
MA-processes have a limited expressiveness, and the identifying of
the coefficients is non-trivial, as we cannot access the stochastic com-
ponents ✏ i . Another family of processes, called auto-regressive processes,
are defined

xt = c + ✏ t +
pX

i=0
aixt�i (4.2)

where the parameters are the coefficients ai , defining a AR-process
AR(p) of order p. AR-processes are very expressive processes that
are widely used in practical applications for time series modeling,
the mean-squared error between the modelled and the target signals
decreasing with order p. The coefficients a can be easily retrieved
using Yule-Walker equations, or using the estimated auto-correlation
function of the signal

Rf f (⌧) =
X

n2Z

x[n]x[n � l]

the describes the signal auto-correlation depending on lag ⌧. Further-
more, the auto-correlation function is an efficient method to detect
periodicities in the signal, and then to estimate the optimatal order p
necessary to accurately model the signal x[n] without over-fitting (see
fig. 4.3). Alternative schemes, such as Akaike-Information Criterion or
Minimum Description Length, provide information-theory criteria that
can be used to optimally retrieve the optimal order p of the model.

The two processes 4.1 and 4.2 can be combined, giving the following
Auto-Regressive Moving-Average (ARMA) process

xt = c + ✏ t +
pX

i=0
aixt�i +

mX

i=0
bi✏ t�i (4.3)

whose parameters a and b can be fully extracted with the Box-Jenkins
method. ARMA processes still provide a strong baseline for time se-
ries analysis, and are still widely used in numerous domains. Further
evolutions of this models can be found in literature, such that Autore-
gressive Conditional Heteroskedasticity models that updates the variance
of stochastic components based on previous errors, or auto-regressive
modules with exogeneous inputs that allows to model ARMA processes
depending on external inputs.

An interesting property of ARMA models is their natural incidence
in digital processing. Indeed, the equation 4.3 can be formulated as
the difference equation of a infinite impulse response (IIR) digital filter,
plus an additional source of noise. Hence, identifying the coefficients
{a, b} of an ARMA process can thought as finding the coefficients of
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the digital filter (see fig. 4.4)

H(z) =
b0 +

Pp

i=1 bi z�i

a0 +
Pq

i=1 ai z�i
(4.4)

=

Qq

i=0(1 � qi z�1)
Qp

i=0(1 � pi z�1)
(4.5)

(4.6)

where qi and pi are respectively the zeros and poles of the filter, the
zeros being given by the MA coefficients and the poles by the AR
coefficients. ARMA thus provides a stochastic framework for linear
model identification, such as the signal was obtained by forwarding a
white noise in the linear system identified by coefficients a, b. Model
identification can be whether performed by averaging these coeffi-
cients on windows of data, assuming the ergodicity of the signal, or
successively updated to provide a representation of the signal across
time. The second method, called Linear Predictive Coding (LPC) [323,
324], is a well-known representation for audio source-filter separation,
and can be used to speech processing [325] and harmonic-noise separa-
tion [326]. Furthermore, LPC can be understood as an estimation of the
Discrete Fourier Transform of size T whose approximation is optimal
when p ! T , under some assumed noise and up to an amplitude
coefficient proportional to the variance of the noise. Auto-regressive
approaches are thus fundamental in digital audio processing, and
still provide the basis of more recent algorithms as WaveNet (see sec.
4.2.1).

4.1.2 State-space models.

Auto-regressive approaches are powerful methods for time series anal-
ysis, performing model identification at the data level. However, the
structure of the underlying process strongly conditions the model
identification, and does not allow to model the uncertainty of the
extracted parameters. Alternatively, some methods rather model the
observed data xt as being generated from an unknown system with
an hidden state zt , taking inspiration from continuous state-spaces
representations in automation theory that model

8><>:
dz/dt = F(t)z(t) +B(t)u(t)
x(t) = H(t)z(t)

where u(t)) is an external action modifying the system state at time t.
In discrete time, the continuous derivative can be replaced with a first-
order difference, such we aim to model the transition from zt to zt�1.
If some normal noise ✏ t is added to both transition and observation
models, and all functions as linear transforms, we obtain the Kalman
filter
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Figure 4.5: General graph of a state-
space model (SSM), with observed vari-
ables x, hidden variables z and actions
u

x1 x2 x3

z3z2z1

Figure 4.6: Example of a Hidden Markov
Model, a generalized acyclic graph where
temporality is driven in hidden discrete
latent variables.

8><>:
zt = Fkzt�1 +Btut + �

z

t
�2

z
✏ t transition model

xt = Htzt + �zt�2
z
✏ tobservation model

(4.7)

that is a classical probabilistic formulation of state-space models (SSM,
see fig. 4.5). Provided the linearity of transition and observation func-
tions, the system is fully tractable with Bayesian inference, assuming
the following generative model

p(z0) =N(µ0,�2
0)

p(zt |zt�1) =N(µz,t (zt�1, ut ,�t ),�z,t (zt�1, ut ,�zt ))
p(xt |zt ) =N(µx,t (zt�1),�xt )

hence inferring the posterior p(zt |zt�1, xt ). Kalman filters are then an
example of dynamic Bayesian learning, that aims to perform Bayesian
inference to model the transition function. The availability of such
models to accurately describe the target time series is based on Markov
hypothesis, that assumes

p(xt |xt�1, xt�2, . . . , x0) = p(xt |xt�1) (4.8)

such that the corresponding process is memoryless. Such processes,
then called Markov chains, ensure the Bayesian tractability of dynamical
models. Despite this strong assumption, Bayesian dynamical models
can be expressive enough to model complex relationships on probabil-
ity graphs of arbitrary shape. Hidden Markov Models (HMM) [327] is an
example of dynamical Bayesian learning, modeling the dependencies
between the series time steps with higher-level latent variables (see
fig. 4.6. Unlike state-space models, the underlying Bayesian graph of
HMMs is not necessarily causal, allowing to infer more expressive
models. However, the tractability of HMMs requires discrete latent
variables, then estimating the probability p(xt |z1 = z1, ...zN = zN ) =
p(xt |zN = zN ) and a set of transition probabilities . HMMs are then
usually trained using Expectation-Maximization or MCMC techniques
on the log-likelihood of the data. Similarly to non-dynamical Bayesian
systems, variational approaches to HMMs have been proposed [328,
329], allowing to infer continuous latent spaces. However, inference in
Hidden Markov Models is quite computationally heavy, and scale to
long time series with difficulty.

4.1.3 Gaussian processes.

Formulation. Finally, Gaussian Processes is a commonly used method
for continuous time regression over finite observations. While classical
regression models use a finite number of K basis functions {�1(x), �2(x), ..., �K (x)},
Gaussian processes can be proven to be equivalent to a regression with
an infinite basis of functions, and is thus appealing because of its ex-
pressive power. Given a collection of random variables X =

�
(ti , xi)

 N
i=1,
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Figure 4.7: Example of Gaussian Process
regression performed on a noisy curve.
The input signal is the noisy black line,
the bold red line is the MAP posterior of
the GP, and all the other little little lines
are functions drawn from the GP.

where t is the continuous time index and x the corresponding out-
put, Gaussian processes define a probability density over the function
space f defined by x = f (t) + �2

n
+ ✏ t [330]

p(f|X) =N(f|m(X), k(X, X)) (4.9)

where the mean vector can be taken as the empirical mean m(X) =
1
N

P
i xi and k(·, ·) is the kernel function defining the process. Hence,

provided new observations
�
(t?
i

, x?
i
)
 N
i=1, we can tractably obtain the

Bayesian posterior distribution over f, that is

8><>:
µ? = k(t?, t)(K + �2

n
I)�1x

�? = k(t?, t?) � k(t?, t)>(K + �2
n
I)�1k(t?, t)

(4.10)

such that we can update the prior GP(f) after each new arriving values
(see fig. 4.7). The ability of Gaussian processes to perform continuous-
time regression on N basis on function is based on the kernel trick, that
models the N ⇥ N correlation in input space using a kernel function,
rather than in the K ⇥ K feature space. Several kernels k(·, ·) are pro-
vided in the literature, that can be also parametric and then learned
during training on some criteria. In this work we use a simple radial
basis kernel k(x, x0) = |x�x0 |2

l2 where the parameter l is the scale of the
kernel.

Sparse methods. While Gaussian processes is an efficient framework
for continuous-time regression, it unfortunately suffers from scalabil-
ity problems, as the complexity of the kernel matrix grows with the
number N of examples. As the posterior computation requires the
inversion of a N ⇥ N matrix, the complexity of this regression is O(n3)
and can thus become prohibitive for big datasets. A method to alleviate
this heavy computation is then to perform the regression on a reduced
number of points, allowing to enlighten the heavy inversion of Kxx.
Several methods have then been proposed to reduce this computa-
tional cost, such as Projected Process Approximation that approximates
the covariance matrix with a matrix Qxx = diag[Kxx �KxuK�1

uu
Kux],

where u are M inducing points [331]. Alternatively, Sparse Posterior
Gaussian Process use a matrix Qxx = diag[Kxx �KxuK�1

uu
Kux]+KxuK�1

uu
Kux ,

enforcing the Nystörm approximation to be exact on the diagonal.
These methods allow to reduce the complexity up to O[nm2], but do
not ensure finding the optimal inducing points u that minimizes the
approximation error.
Alternatively, Titsias propose to use variational methods to approx-
imate a light Gaussian process fq depending on independent aux-
iliary inputs u, whose variational distribution is defined q(fq , f) =
p(f|fq)q(fm) [332]. The full model is then trained to reduce the distance
between approximated and true posteriors, that is DKL[q(f, fq)kq(f, fq , x)].
This variational approximation performs significantly better with a
lower number of points than previous sparse methods, and is then a
common scheme for scaling GP to heavy datasets. Sparse GP methods
can also advantageously be used in Bayesian Neural Networks [333],
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allowing to model a GP prior over the network parameters, or used to
perform probabilistic non-linear PCA [334].

GP for SSM modeling. As the linearity of the functions involved
in usual state-space formulations prevents them to model expressive
relations between the observations x and the hidden states z, Gaussian
processes can provide a solution to model richer relationships without
dropping the tractability of the posterior. Wang & al. then propose a
GP formulation for both observation and dynamical models, using a
radial basis kernel for modeling p(y|x) ⇠ GP(0, Kzz) and a transition
model [335]

p(x|f) = p(x1)
⌅ NY

t=2
p(xt |xt�1, f)p(f)df

using a linear + RBF kernel kz = kRBF (z, z0) + ↵xTx to add an auto-
regressive component to the prediction. However, the method pro-
posed by Wang & al. have the same drawbacks than standard GP
when applied to big datasets, thus limiting their applications. A more
flexible method is provided by Frigola & al., leveraging variational
learning to infer the optimal GP inputs u [56]

p(x, z, f, u) = p(x0)
TY

t=1

p(yt |xt )p(xt |ft )p(ft |f1:t�1, x0:t�1, u)

q(z, f, u) = q(u)q(z)
TY

t=1

p(ft |f1:t�1, x0:t�1, u)

that is fully tractable and trainable with stochastic variational infer-
ence, and can be sampled using MCMC particles. However, in this
model the approximated transition function q(z|z�1) is not explicitly
modelled, and the MCMC-based particle sampling procedure can
be heavy to run. Subsequent similar models alleviate this constraint
: Eleftheriadis & al. explicitly model q(z|z�1) using LSTM networks
(see sec. 4.2.1) allowing to model expressive transition functions and
to train the model using black-box VI methods [336]. Doerr & al.,
rather suggest to use the real transition model p(z|z�1), and also use
stochastic gradient descent to train the overall model [337]. Mattos &
al. also propose a hierarchical state-space framework using Gaussian
processes, also resorting to variational GP sparse approximations [338].

All of these recent advances in GP processing provided powerful
models for Bayesian time series analysis, and have been proven to
model complex behaviours. However, their scalability to large and
multi-dimensional datasets is still very demanding, and GPs are still
designed to model only one sequence, being deprived of a conditioning
latent model. However, its appealing properties are still encouraging
researchers to work develop similar approaches, and GPs will ground
one of the proposed prediction methods.
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Figure 4.8: Example of an Recurrent
Neural Network, that uses an hidden
representation updated at each step with
a specific operation.

4.2 Neural methods for time series modeling

The approaches developed in the previous sections are based on the
modeling of time series according to explicit structures, whether based
on model identification or likelihood methods using tractable Bayesian
posteriors. However, the development of connectionist approaches
also allowed to address time series analysis with specific neural net-
works using gradient descent methods, then providing an alternative
approach to this domain. These methods have been now extensively
investigated in the literature, and motivated the development of nu-
merous frameworks that are whether entirely based on neural pro-
cessing, or based on hybrid models that use both the flexibility of
these methods and the constrained architectures of previous modeling
approaches.

4.2.1 Recurrent Neural Networks

Neural networks, that have been briefly introduced section 2.2.2, are
powerful function approximators that can be trained with given loss
criterion, using a stochastic gradient-descent optimization algorithm.
However, standard neural networks are not able to naturally handle
time series, and have to be given a memory to keep information about
previous states. Such networks, called Recurrent Neural Networks, are
embedded with an hidden memory mathb f ht�1 updated at each time-
step [339]. The classical formulation for RNNs is the one formulated
by Elman [340]

ht = tanh
�
Wihxt +Whhzt

�
(4.11)

where the hidden representation given at time t also depends on the
last output by adding a transition matrix Whh to the standard neu-
ron (see fig. 4.8). RNNs can thus be thought as modeling a non-linear
Markov Chain that learning its transition matrix. Despite the sim-
plicity of this method, training RNNs over long time scales is very
difficult, as the iterative update for each sequence step can whether
make the gradient vanish, preventing the system to learn, whether
to explode, providing degenerated functions. Indeed, performing an
iterative map on high-capacity parameteric function such as RNNs
can show a chaotic behaviour, and can then present hysteresis cycles
or instability [341]. Several methods have then been developed to
regularize RNNs during training such as l2 weight regularization,
teacher forcing [342], or leaky integration [343]. The professor forc-
ing learning schedule also help to increase the consistency of RNN
units, using an adversarial method to match the generations obtained
by feedback with those directly generated from the sequence [344].
However, while these methods can help to alleviate their instability,
they do not address the problem of learning long-term dependencies.
Subsequent models, such as hierarchical RNNs, can be used to model
longer timescales, limiting the scope of individual units to prevent the
degeneracy of gradients [345]. Alternatively, a decisive milestone was
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Figure 4.9: Graph of LSTM unit. Layer
here is a sum of each input multiplied
by a specific parameter matrix, and the
gate is just a sigmoid unit allowing to
mask given dimensions with Hadamard
product �.

the Long Short-term Memory networks by Hochreiter & Schmidhuber
[346], allowing the system to forget information by gating before and
after each subsequent step (see fig. 4.9)

it = �g(Wixt +Uiht�1 + bi) input gate (4.12)

ot = �g(Woxt +Uoht�1 + bi) output gate (4.13)

ct = it � tanh(Wcxt +Ucht�1 + bc) gated recurrent input (4.14)

ht = ot � ct gated recurrent output (4.15)

An additional forget gate can be added [347], such that c f

t
= ft � c f

t�1 + ct,
where ft is an additional gating mechanism. These recurrent units are
then able to forget data, allowing to free some memory in the retained
representation to learn new features during iteration. The LSTM can
also be added a reverse process, learning features ht from ht+1, then
also learning information from the backward sequence [348].

Gating mechanisms allow to accurately train recurrent neural units
over large time spans, and are then commonly used for neural time
series modeling. Their efficiency have then been extended to non-
temporal purposes, providing efficient gradient selection methods as
attention mechanisms [349, 350] and transformers [351, 352]. Alternative
gating mechanisms have been proposed since such as Gated Recurrent
Units (GRU) [353], that are used in this thesis. Some approaches also
perform recurrent modeling in the spectral domain, that have been
shown to accurately describe chaotic processes such as Lorentz attrac-
tors [354]. Finally, the recently proposed Neural Processes propose to
combine neural networks and stochastic processes to infer probabili-
ties directly in the function space, providing a very efficient framework
for Bayesian learning of stochastic processes [355–357]. Time series
modeling using neural networks is still an active field of research, that
is likely to be further improved in the near future.

4.2.2 Dynamical Bayes and AR-models

Recurrent neural networks are then powerful units to model functions
yt = f t (xt ) with an independent recurrent mechanism. Hence, neural
networks can be used in Dynamical Bayes to model observation or tran-
sition functions, empowering the expressiveness of these systems. In
that case, neural networks can be used whether to model the transition
functions of the latent variables, or directly generating new data sam-
ples, conditioned on a definite range of observed steps. Provided the
causality of the system, meaning that the probability density of a step
xt is conditioned over the previous ones xt , these systems can be used
to model the underlying auto-regressive process xt = f (xt�1...xt�T ) of
the series.
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Figure 4.10: The Neural Autoregressive
Distribution Estimator [358]
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Figure 4.11: The WaveNet auto-
regression module, that transform
auto-regressive neural modules (top)
using dilated convolutions (down) to
extend the temporal scope using less
connections.
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Figure 4.12: SampleRNN hierarchical
modeling used to learn the underlying
auto-regressive distribution p(x)

The Neural Auto-regressive Distribution Estimator [358, 359] network,
proposed by Larochelle & al., aims to model the auto-regressive distri-
bution of a binary data vector x 2 [0; 1]N (see fig. 4.10)

p(xi = 1|x<i) = �(bi +W>
i

hi)
hi = �(c +W<ix<i)

that can be understood as an hybrid between recurrent neural net-
works, also using a memory h, and an auto-encoder with hidden
representation hi (see fig. 4.10). As we summarized sec. 4.1.1.1, auto-
regressive distributions are very expressive models, and are widely
used outside the scope of temporal models. In that case, auto-regressive
distributions are used to successively model the dimensions of a multi-
dimensional vector xn, such that xn =

Q
D

i
p(xd |x<d). In that case, the

ordering of dimensions d1, d2...dN does not have to be causal, and
an arbitrary ordering can be chosen. Based on the NADE model, the
Masked Auto-Regressive Distribution Estimator (MADE) rather uses the
full matrix W rather than W<t during generation, but uses mask to
perform automatic dimension selection for the auto-regressive models.

However, auto-regressive models such as NADE and MADE can be
slow to converge, and assume weight matrices whose size matches the
sequence length, and can then become prohibitive with long-term se-
quences. Another method for auto-regressive modeling is the WaveNet
model, proposed by van den Oord & al., that provides so far the base-
line for raw waveform synthesis. WaveNet is based on stacked 1d
dilated convolution networks with exponentially growing dilation factors,
that significantly increase the receptive field of the context xti ...x�1t
used to generate the next step xt (see fig. 4.11). The operation processed
by a dilated convolution unit is

hc = bc +

cin�1X

k=0

wcout ,k ?d xk (4.16)

wn ?d xn =
X

n

wnxd ·n+m (4.17)

that can be described as a spaced convolution operation, such that a
kernel of m samples will be applied over a time range of m ⇥ d samples
of the sequence. The use of dilated convolutions allowed WaveNet to
extend its receptive field up to 300 milliseconds, that is sufficient to
ensure the perceptual consistency of the generated signal. A similar
method is the SampleRNN model proposed by Mehri & al., that uses
structured hierarchical RNNs to predict windows of samples, thus
fastening the generation process [360] (see fig. 4.12). Both methods are
compatible with teacher forcing and professor forcing, that can help the
robustness of prediction.
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While WaveNet and SampleRNN are the first machine-learning models
able to generate convincing audio waveforms, an impressive success
regarding the complexity of the challenge, these models rely on heavy
conditional architectures that makes their learning tedious. Indeed,
these models requires weeks of training on single GPUs, and the gen-
eration is still far from being real-time. Haque & al. recently proposed
reduce WaveNet architectures using attention LSTMs, fastening a little
computation during generation time [361].
In addition to this performance issues, another weakness of such auto-
regressive networks is the lack of latent representation inferred from
the data, then deprived of higher-level space that could use the ex-
tracted features for audio analysis. While systems such as WaveNet
can be conditioned during training to allowing class-dependent gen-
eration, the number of possible classes is limited, and the scale of
the datasets needed to train such algorithms can make their anno-
tation discouraging. A step towards controlling WaveNet decoders
have been proposed by Engel & al., based on the extraction of la-
tent features extracted from variational auto-encoders to condition a
WaveNet decoder [362]. However, these features are obtained from
spectral information, and the do not extract a representation based
on the raw information itself. Hence, real-time raw signal synthesis is
still a challenging task, and developing models that are able long-term
dependencies with an acceptable computational cost is an on-going
active research problem.

4.2.3 Variational auto-encoding for time-series

AEVB methods for inference/generation of time series were investi-
gated shortly after the publication of the original article. However,
addressing time series analysis with AEVB-inspired methods can be
divided in two different approach (see fig. 4.13). The first consists
in modeling the full sequence {x1...xT } with a single latent vector z,
that we call dynamical compression. A first approach using VAEs with
auto-regressive decoders was investigated by Bowman for language
processing, targeting to generate full phrases from a single latent vec-
tor[183]. However, this approach unveiled some undesirable proper-
ties of AEVB, such as latent over-pruning, that showed the inherent
trade-off between the capacity of the decoding module and the infor-
mation represented in the latent space (see sec. 2.3.2.3). Hence, Chen &
al. then proposed to rather encode local features of the input, that were
decoded and then assembled by an additional auto-regressive mod-
ule. The second approach is rather based on representing the input
{x1...xT } with a latent sequence z = z1, ..., zT , modeling one different
latent position for each step. Hence, this approach rather considers the
variational auto-encoder as a state-space model, using the generative
distribution p(x|z) as the observation model (see sec. 4.5). Hence, the
different solutions proposed in the literature for sequential AEVB will
design different structures for the transition model p(zt |zt�1), whether
by explicitly modeling this distribution in the variational process, or by
modeling recurrence directly in the encoding and decoding modules
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namical compression rather extracts a sin-
gle latent vector for a given sequence, us-
ing a RNN-like feature extractor, while
the state-space approach used previ-
ously models one latent vector by incom-
ing observation.

using RNNs.

Latent auto-regressive modeling. Considering AEVB as an obser-
vation model p(xt |zt ) with a corresponding approximated posterior
q(zt |xt ), we thus only miss to model the corresponding transition op-
erator p(z|zt�1) to turn the system into a full state-space system. In a
recent paper Razavi & al. proposed to model a prior p(zt )|p(zt�1) =
N(↵zt�1,�✏ ), such that the correlation between successive latent steps
can be controlled with the parameter ↵. Similarly, Rochemore & al. pro-
pose to model the latent dynamics using Dynamical Movement Primi-
tives, that is a point attractor system described by second-order dynam-
ics ⌧z̈ = ↵(�(g � y) � ż) + f, g being the position goal of the movement
and f enforcing the trajectory dynamics. The work proposed by Archer
& al. is the first one to explicitly bridge AEVB and state-space models,
modeling the posterior distribution q(z|x) = q(z1, ..., zT |x1) as a prod-
uct of normal distributions, such that q(z|x) =N(z|0, C)N(z|µ(x),⌃(x)),
hence separating the covariance matrix obtained from amortization
and the desired temporal deviation of the sequence [363]. A variational
derivation of Kalman processes 4.7 was also proposed by Krishnan &
al, relaxing the linear assumptions of transition and observation matri-
ces using variational inference. This model enabled to use variational
learning for counter-factual inference, allowing to predict the reaction
of the system’s behavior over a different set of external actions [364].

RNN-based approaches. Another way to introduce recurrence in
AEVB models is to define encoding and decoding functions as RNNs
modules, generating a vector of hidden variables [h1...hT ] for each step
x1...xT . If we aim to model the full sequence using a single latent vector
z, we can then use the last hidden state hT as a context vector, that is
fed to an additional layer to obtain the parameters of the distribution
p(z|x1...xT ). In that case, we can generate a full sequence x1...xt from a
single vector z by giving a replicated sequence [z...z] as input for the
decoding RNN. This method differs from auto-regressive decoders by
using z as an input for each step of decoding, preventing over-pruning
of the latent space. This model, called recurrent variational auto-encoder,
does not change the expression of ELBO 2.18 and then can be trained
as a regular auto-encoder [365].

Alternatively, we can also choose a state-space approach to variational
auto-encoding, using the vector [h1...hT ] given by the encoding RNN
to compute a sequence z = [z1, ..., zT ]. Hence, the difference with
standard AEVB is that the encoding module is using both the past
state ht�1 in addition to xt , then inferring the latent state zt using
the module memory. Assuming an auto-regressive distribution for
the model evidence p(x) = Q

T

i=1 p(xt |x<t ), we then derive a sequential
lower-bound such that [366, 367]

log p(x0...T ) = Ez1...zT⇠q(z|x)
f TX

i=0
log p(xt |zt )

g
� DKL[q(z)kp(z)] (4.18)
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Figure 4.14: Different propositions of variational recucrrent networks : RVAE [365], STORN [372], VRNN [373], SRNN [369], Z-forcing
[370]

using the Markov hypothesis of the decoding function log
Q

T

t=1 p(xt |x<t ) =
log

Q
T

t=1 p(xt |ht ). Bayer & al. propose to define the prior p(z) as Gaus-
sian process GP(0, k(min r , t)), regularizing the latent sequence [z0, z1�
z0, ..., zT � zT�1] on p(z) ⇠N(0, I) [366]. However, in this case the tran-
sition model p(zt |zt�1) does not explicitly appear in the variational
process. Chung & al. then proposed Variational Recurrent Neural Net-
work (VRNN), defining inference and generation processes as

p(zt ) =N
�
µ
p
(ht�1),�2

p
(ht�1)

�
p(xt |zt ) =N

�
µ
p
(ht�1, zt ),�2

p
(ht�1, zt )

�
q(zt |xt ) =N

�
µ
q
(ht�1, xt ),�2

p
(ht�1, xt )

�
where the transition model is modeled in the prior, using an additional
MLP module. A similar model was recently proposed by Gregor &
al., performing random time jumps between states to reinforce the
temporal robustness of the learned transition function [368].
Another way to reinforce the temporal features learned by sequential
AEVB is to train the encoder using the future steps of the sequence,
splitting the information used by the encoding and decoding modules
to prevent latent over-pruning. Fraccaro & al. propose to directly mode
the transition q(zt |zt�1, ht>T , x)t performing variational approximation
of the transition model using an anti-causal RNN for inference [369].
This system can then be understood as a stochastic bi-directional RNN,
with an additional latent space that joins the information between
backward and inference processes. This proximity to LSTMs brought
some authors to directly use these models as LSTM units in more
complex architectures, where additional variational models can infer
anti-causal features from causal features [370] and vice-versa [371].
A summarizing table showing probabilistic graphs for inference and
generation models for all these systems can be seen fig. 4.14.
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Figure 4.15: Separating the latent space
between static (red) and dynamical
(green) dimensions can enforce the dis-
entangling between global and local fea-
tures of the sequence.

Disentangling temporal and static features. The methods introduced
in previous paragraphs are then split in two different approaches, mod-
eling a full sequence x0:T whether by a single latent state z, or by a
sequence of states z0:T . However, performing both could provide a
way to disentangle dynamical from static features, splitting the latent
variables in two kinds : dynamical latent variables zt = [zt1..zt

N
], that

encode dynamics of the input series, and static features zd that are
invariant across the whole sequence (see fig. 4.15). Hsu & al. recently
proposed to disentangle these latent variables using a structured prior
p(zt

t
, zd

t
, µ) = p(µ)p(zd

t
|µ)p(zd

t
) where the variables zd

t
is conditioned

on a feature vector µ that is extracted from the whole sequence. A
version of this model was consequently proposed by Li & al., where
an explicit transition model between zt and zt�1 in both variational
and generation models [374]. In a similar manner, Grathwohl & al. dis-
entangled the two latent variables zd and zt between space and time
by using different generation priors, the first modeling independent
variables across time and the second with an explicit transition model
[375]. These experiments show that AEVB is able to shape its varia-
tional distribution on sequential data depending on its architecture,
motivating our temporal hierarchical approach developed in section
4.4.

4.3 Variational methods for latent space
prediction

In the last section we described two different approaches for time
series analysis, that are somehow reflecting to the two first sections
of chapter 2. The first rather model a given time series {xt}t2[0...T ] as a
sample of a stochastic process, using model identification or dynamical
Bayesian inference to infer higher-order parameters of the underlying
model, while the second rather rely on high-capacity series models
such as RNNs to whether extract high-level features using a suitable
loss function, or to model an auto-regressive process that learns by
predicting the next inputs over a short time range. While the first are
still commonly used in the domain of DSP, they do not allow to model
long-term temporal scales, and the tractability assumption of Bayesian
models often prevent to model complex time series, and enforce the
definition of discrete latent spaces. Reversely, the second approach
provided powerful modeling tools for time series, the recent models
being able to generate convincing raw audio waveform with a ex-
tended temporal field compared to former auto-regressive techniques.
However, the prohibitive computational cost of these models, as well
as their lack of interpretability and control make these models very
difficult to involve in creative processes.

We saw that AEVB could be beneficially used to mix both approaches,
whether by performing dynamical compression (identifying a full se-
quence with a single vector z) or by defining a state-space model (iden-
tifying the series with a latent sequence z1, zT ). Sequential approaches
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Figure 4.16: We add a prediction task in
addition to analysis and synthesis pro-
cess, modeling the dynamics of the data.

with AEVB, contrary to most neural methods to time series modeling,
allow to perform both analysis and generation sequences, thus gaining
in terms of control and interpretability. Furthermore, as they allow
expressive relations between the data and latent spaces, they also pro-
vide an alternative to most Bayesian dynamical approaches, whose
tractability requirement often reduced the scope of possible models.
We summarized sec. 4.2.3 the models proposed so far to perform time
series modeling with the AEVB framework, that whether rely on the
explicit definition of a transition model, or resorting to RNNs as en-
coding and decoding functions. A full definition of recurrent AEVB
objectives can be then described

I analysis, extracting useful local features from a time series for a
supervised objective

I generation, using the extracted features to generate the corre-
sponding data

I temporal modeling, retrieving the latent dynamics

then adding an additional task to standard AEVB methods. In this
section, we propose to add a fourth objective to recurrent AEVB, that is
the prediction of the future latent states of the series. Indeed, most of the
described models are not able to predict future values of the time series,
except the ones from Chung & al. and Bayer & al. [372, 373]. However,
even these two systems are modeling recurrence directly in the encod-
ing and decoding modules, preventing the dynamical information to
be entirely represented in the latent space. In this work we rather pro-
pose to model the series dynamics entirely in the latent space, relying
on the idea that performing prediction only using then latent space will
enforce it to get a temporal consistency. Moreover, performing dynam-
ics modeling in the latent space is much cheaper computationally than
in the data or hidden layers because of its much lower dimensionality,
allowing to predict much longer temporal scopes than previous mod-
els, only predicting one step at a time (except for SampleRNN). Hence,
in this section we do not model one-step transition models p(zt |zt�1)
but extended predictive distributions p(z>t |zt ), that are jointly trained
with the VAE. As the joint training of the model and of the predictor
will apply an implicit regularization of the latent space, its topology
will be strongly influenced by the chosen prediction method.

We then propose three different prediction methods, each of them
relying on diverse theoretical backgrounds. The first proposed method
is based on Contrastive Predicting Coding, a prediction technique that is
based on mutual information maximization between extracted contexts
and the predicted latent features. The second method uses Normalizing
Flows (see sec. 2.3.2.1), that uses a sequence of invertible local trans-
formations to model the temporal evolution of the predicted latent
sequences. Finally, we propose a Gaussian Process prediction method,
that performs a continuous regression on the encoded sequences to
predict the next latent states.
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Figure 4.17: In the CPC prediction
method, we extract higher-level vari-
ables, named contexts, that are enforced
to model slow features that are used to
predict the next step using linear predic-
tors.
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4.3.1 Contrastive Predictive Coding

Contrastive Predicting Coding (CPC) is a framework proposed by
van den Oord to extract context variables from a given set of latent
features, based on maximizing the mutual information between the
extracted contexts and the feature vector [376]. CPC is based on Noise-
Contrastive Information (NCI), a framework proposed by Gutmann &
Hyvärinen used for density estimation, allowing to train a parametric
model p(x; ✓) on log-likelihood using a contrastive data distribution n.
Density estimation formally aims to find the optimal parameters ✓ of a
generative distribution p(x; ✓) that maximizes the overall likelihood of
the data. As the generative p(x; ✓) is a probability density function it is
constrained by the equality

⇤
p(x; ✓)dx = 1, that is often reformulated

p(x) = p̂(x; ✓)
Z(✓)

where Z(✓) = intp(x; ✓)dx is the partition function of p̂(x; ✓), that is the
unnormalized density function, or free energy, of p(x; ✓). This decomposi-
tion, that is often used in undirected probabilistic graphs such as Boltz-
mann Machines [377, 378] (see sec. 2.1.2), allows to model probabilities
with arbitrary score functions without caring about the normalization.
However, modeling this partition function is often problematic, requir-
ing estimation methods that are often tedious. NCI rather propose to
train the parameters of p(x; ✓) by using the density ratio trick (see sec.
2.3.2.3) transforming a density estimation to a classification task

LNCE = Ex log r(x; ✓) + log 1 � r(n; ✓) (4.19)

where r(x; ✓ = �( q(x)
p(x,✓) ) is the density ratio between p(x, ✓) and a con-

trastive distribution p(x. This framework then allows to optimize
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p̂(x; ✓) without Z(✓), optimizing the parameters ✓ to maximize the
density p(x, ✓) on data x while minimizing it when drawn from the
contrastive distribution q(x).

The prediction method proposed by CPC is to extract context variables
ct from a sequence of latent variables [z0...zt ] that is then used to pre-
dict latent variables zt+1...zt+K with K simple linear predictors (see fig
4.17). The context variables and the predictors are based on InfoNCE,
that derives the NCE criterion to maximize the mutual information
between latent vectors [zt ...zt+k] and contexts ct

LInf oNCE = �Ex
fk(zt+k , ct )P
z j

fk(zj , ct )
(4.20)

where fk models the density ratio between variables zt+k and ct , and
zj are randomly taken contrastive sequences. InfoNCE intrisically opti-
mizes the mutual information between predictions zt+k and the context
ct , as it lower-bounds I(zt+k ; ct ) � log N �LInf oNCE . Maximizing this
mutual information then enforces the context variables ct to represent
slow features of the evolution of z, such that ct represents robust local
states that are not sensitive about the latent dynamics. Contexts ct
are obtained using an auto-regressive model ct = g(zt ), generally
modeled with GRUs (see sec. 4.2.1).

While CPC is a light method to extract slow-feature context vectors
from latent variables, the original framework can only be used to
extract the context variables ct from the hidden vectors h, that can be
used to obtain non-invertible representations of opaque models (such
as WaveNet). Here, we involve the latent states predicted by the CPC
module in the generation process, and evaluate how the predicted
states can be used to generate the future steps x>t . This prediction
method can thus be understood as modeling an implicit distribution
q(zt>⌧ |z<⌧)) (see sec. 2.1.3.2). The overall model can then be described
with

q(zt⌧ |xt⌧) =
⌧Y

i=0
q(zt |xt ) (4.21)

ct = g(z<t ) ; zt+k =Wkct (4.22)

p(x|z) =
⌧Y

i=0
p(xt |zt ) (4.23)

where the full latent sequence is obtained by concatenating the en-
coded and predicted vectors z = [zt⌧ ; zt+1...zT ]. We then derive the
following lower-bound to train the overall model

LCPC = Ez0...z⌧⇠q(zt⌧ |xt⌧ )[p(x|z)] + DKL

⇥
q(zt⌧ |xt⌧)kp(z)

⇤
(4.24)

+LInf oNCE (ct , zt ...t+k) +R[zt>⌧ , p(z)] (4.25)

where R[zt>⌧] is an optional regularization term enforcing the im-
plicit distribution of zt>⌧ to match the prior p(z), such as MMD or an
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Figure 4.18: With this prediction meth-
ods we use normalizing flows to model
filtrations of the latent space, modeling
complex multi-modal distributions to en-
code the evolution through time.
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adversarial criterion.

4.3.2 Filtration learning with temporal normalizing
flows

In this section we rather rely on another framework, normalizing flows
(see sec. 2.3.2.1), to derive a flexible yet powerful method for latent
state prediction. This approach is inspired by the concept of filtrations
of the stochastic process literature, that can be intuited by the idea that
the more a stochastic process is observed, the more we can accurately
describe its underlying properties. More formally, we consider stochas-
tic process {X(t)}t2T (Thaving a total order ) where every X(t) is a
random variable from a probability space (⌦, A, P) with sample space
⌦, �-algebra A and probability measure P. A stochastic is said fil-
trated if the �-algebra Ft induced by the successive X(t) are ordered
non-increasingly, i.e. Fk ✓ Fl ✓ A for k  l. The notion of filtration is
central in modern probabilities, expressing that the more information
we have on a process, the finer we can identify a partition of its sample
space ⌦.

With this prediction method we aim to represent this concept of fil-
tration in the latent space with normalizing flows, a sequence of in-
vertible transformations xK = fK � fK�1 � ... � f1(z) that can be used
to model tractable expressive posteriors qK (zk |x) from simple distri-
butions q0(z|x). Here, we rather propose using normalizing flows to
model the local temporal deviation of a starting latent point z⌧ that
evolves through time. Therefore, we use all the successive z⌧+k =
fk�1(zk) to predict the missing time steps, that we then give to the
generative model to recover the data xt>⌧ .
This method is related to the idea of filtration as the entrance point z⌧ ,
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which has an uninformative prior p(z ⇠N(0, 1)) will be progressively
refined by the flow across time steps, shaping the uniform Gaussian to
a complex distribution modelled by the latent dynamics. The locality
of the deformations fk also regularize the temporal consistency of
the latent space, such that wide moves in the latent space will con-
sequently model important deformations. Furthermore, normalizing
flows are able to transform uni-modal variational distributions q(z⌧ |x⌧)
to multi-modal ones, such that flow is able to model the uncertainty of
latent dynamics over multiple possible solutions. Normalizing flows
can then be a powerful framework for latent prediction, that is able to
model complex chains z⌧ ! z⌧+1 ! ... ! z⌧+K , while preserving the
local consistency of the latent space. In this prediction method, we use
a simple planar flow for each time step, that is expressed [172]

f (z) = z + uh(w>z + b)

that has a tractable log-jacobian, and is very cheap to compute. How-
ever, applying the flow to a single z⌧ to obtain the following latent
vectors zt2[⌧;T ] would only give a one-step back prediction of the input
sequence, and is thus unlikely to accurately model the information
given by the entire sequence. We thus propose to amortize the flow by
a feature extractor such as RNNs, such that flow is conditioned by a
memory vector that embeds the past sequence

zk = fk(h⌧) � fk�1(h⌧) � ... � f1(h⌧)[z⌧]
ht = RNN[zt , zt�1]

Each flow fk is amortized, such that its parameters are obtained from
the last state of the RNN with a single-layer network with a ReLU
non-linearity. Flow amortization then allows to condition the flow on
past steps z1...z⌧ , and is not restricted to a given context size because
of the RNN underlying process. Amortized temporal flows can then
be naturally integrated in the ELBO, as the distributions q(zt |zt�1) are
tractable. The complete ELBO is then expressed

Lf low = Ez0...z⌧⇠q(zt⌧ |xt⌧ )[p(x|z)] + DKL

⇥
q(zt⌧ |xt⌧)kp(z)

⇤
(4.26)

+

KX

k=1

log |det
@ fk(h⌧)
@z⌧+k�1

| (4.27)

that is entirely tractable.

4.3.3 Gaussian processes regularization

Finally, the third prediction method is to use Gaussian processes as a
prior for zt>⌧ , using a continuous time regression to model the trajec-
tory [z0....z⌧�1] and then predict the consecutive steps zt>⌧ . Gaussian
processes are used to get a probability distribution over functions f
verifying z(t) = f(t), where the t are fake inputs representing the index
of sequence zt<⌧ , normalized between 0 and 1. Remembering section
4.9, we then use a Gaussian prior GP(0, Ktt ) to model the regression
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Figure 4.19: We can use the obtained the
regression performed by the Gaussian
process to infer the following states of
the trajectory, using the predictive poste-
rior distribution with non-observed val-
ues of t.
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z3
z4

t � [0, 1, ..., T ] f � GP(f |z<t, t)

function f conditioned on pairs {(zt , t)}, and obtain the regression over
inputs t? by using the posterior distribution

q(z|f, Z, t?) =N(k(t?, t)(Ktt +�
2
n
I)�1z, (4.28)

k(t?, t?) � k(t?, t)>(Ktt +�
2
n
I)�1k(t?, t)>) (4.29)

to obtain the predictions z>⌧ on prediction times t? = ⌧...⌧ + k.

This Gaussian Processes regression does not suffer from the scalability
issues of standard Gaussian processes, at is only involves the inversion
of a matrix ⌧ ⇥ ⌧, and performs fast as it does not involve any addi-
tional module as previous prediction methods. Furthermore, it is also
the only method that gives an explicit distribution over q(zt>⌧ |zt⌧),
allowing to directly model an overall normal distribution over the full
vector z. Introducing the posterior distribution q(z|f, Z, t?), we obtain
the ELBO

LGP =Eq(z)[log p(x |z)] � DKL[q(z |x)kp(z)] (4.30)

= Eq(z)[log p(x |z)] � DKL[q(z<⌧ |x<⌧)kp(z)] (4.31)

� DKL[q(z>⌧ |f, Z, t?)kp(z)] (4.32)

that is entirely tractable, as the distribution q(z>⌧ |f, Z, t?) is a multi-
variate normal distribution. In this study, we use a simple radial basis
function kernel with time length lRDF =

p
3 and an input noise vari-

ance �2
n
= 1e�2. Note that we could have used the noise variance given

from the variational distribution q(z|x), obtaining a precise estima-
tion of the variances �2

q
. Moreover, another interesting feature of the

proposed GP prediction is to be defined on real time indices t 2 R,
allowing a sample random latent positions on the predicted curve for
continuous time prediction, or to upsample the trajectory to perform
time-stretching operations and enforce the temporal consistency of
the latent space. Unfortunately, due to a lack of time, we leave this
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Figure 4.20: Examples taken from the
diva_dataset database

improvement to a future work.

4.3.4 Learning and evaluation framework.

Database As we want to evaluate the performances of the proposed
prediction methods on modeling temporal evolutions, the datasets
previously used are not relevant, being mostly composed by static
sounds. Hence, we rather rely on the diva_dataset, described section
3.2.1, that contains more than 11 thousands of synthesizer sounds with
many different dynamical shapes (see fig. 4.20). In this experiment, the
models were trained on STFT representations of 60 steps on spectral
frames of 2048 bins, pre-processed with a log1p non-linearity.

Models Similarly to previous experiments, we split the dataset be-
tween train and tests sets with a balance of 0.8. The architecture of
both encoding and decoding functions are defined using convolu-
tional networks of [64, 32, 16, 8] channels and [3, 5, 7, 9] kernels, using
ELU non-linearities and batch-norm normalization. For the CPC auto-
regressive modules, we chose a GRU with one layer of 200 units,
and the amortized flows are obtained from simple linear layers with a
ReLU non-linear units. The VAEs and prediction modules were trained
jointly on 100 epochs with an ADAM optimizer a learning rate of 1e� 4,
with a DKL regularization with � = 1 and a warm-up of 10 epochs.
We also found beneficial to add a teacher warm-up procedure during
the first 5 epochs, initially decoding the latent positions coming from
the encoder and progressively replaced by the ones provided by the
prediction module. This procedure allows to train the latent space
directly on the signal during the first epochs, increasing the robustness
of the latent process. The number of predicted steps is 30, for 30 input
steps, amounting to a total sequence length of 60.

Table 4.1: Table of the results obtained with the proposed prediction methods on the overall sequence. The error is normalized stepwise,
to be compared with the results obtained in section 3. The results out of parenthesis are the obtain with train partition of the dataset,
while numbers within are the errors obtained with the test partition.

� log p(x|z) SC ISD DKL[qkp] M MD[p, q] TC[p, q]
CPC prediction 693.61 (705.45) 0.671 (0.682) 4.22e-5 (1.58e-4) 21.49 (21.87) 4675 1075.73) 347.04 (360.74)
Flow prediction 680.84 (677.58) 2.00e-2 (2.04e-2) 4.32e-5 (1.63e-4) 24.45 (23.72) 5570 1198.32 ) 393.52 (361.23)
GP prediction 677.00 (692.59) 3.16e-2 (3.31e-2) 4.29e-5 (1.63e-4) 24.58 (24.04) 3476 (772.40) 231.94 (232.67)
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� log p(x|z) l
1

l
2

CPC 673.63 (685.73) 105.5 (102.03) 98.40 (111.53)
Flow 661.06(658.36) 94.67 (91.90) 94.60 (97.87)
GP 674.53 (702.00) 89.83 (105.9) 106.93 (106.76)

Table 4.2: Table of the results obtained
with the proposed prediction methods,
only on the predicted part.

a)

b)

c)

Figure 4.21: reconstruction examples
(top) and original spectra (bottom) for
(a) CPC (b) Flow (c) GP prediction meth-
ods.

Reconstruction evaluation. We show the results obtained with the
overall sequence in table 4.1, providing reconstruction and regulariza-
tion estimators, and the reconstruction results obtained only on the
prediction part 4.2.
We observe that the reconstruction results obtained by the three meth-
ods are close, flow and GP methods performing slightly better results
than the CPC. If we only observe the prediction part, the best per-
formance is achieved by the flow prediction method, even if all the
results are also very close. To study qualitatively the reconstruction
probabilities, pairs of obtained reconstructions are depicted fig. 4.21.
We can see that the predictions manage to catch inner variations of the
spectra, showing that the modules efficiently model inner the inner
dynamics of each data examples. Though, we can see that CPC has
a certain tendency to produce undesired artifacts, as can be seen on
the second example that are absent of other prediction methods. Con-
versely, GP predictions seem to smooth the generated sound, that is
coherent with the inner smoothing effect of Gaussian process (see next
paragraph). Finally, flow predictions are almost perfect, managing to
catch even subtle variations of the data. The qualitative properties of
these predictions methods are thus a little different, and can then be
optimally chosen depending on the nature of the dataset.

Latent evaluation. Regarding latent spaces, we can see from the
results table 4.1 that the GP prediction method provides the best reg-
ularization result. However, the Kullback-Leibler divergence are low
and for the three methods, showing that all of them provide accurately
regularized latent spaces. Differences between the methods can be still
observed with the MMD and to Total Covariance, the best scores being
obtained by the GP while the worst are obtained with the temporal
flows. This points that the GP prediction method, the most restrictive
in terms of geometrical constraints, manage to successfully regularize
the latent space without (or a little) altering the reconstruction abilities
of the model.
To get more qualitative insights of the temporal organization of the space,
we can observe the paths obtained by forwarding two different sounds
from the dataset, and to generate from several interpolation steps be-
tween the two obtained trajectories. Examples of trajectories for the
three methods are depicted fig. 4.23, providing interesting insights
on their respective behavior (projected on a PCA extracted from the
latent projects of the full dataset). First, we can see that the trajectories
obtained with the CPC method are favoring stable latent "nodes", the
distribution of projection points corresponding to the stationary part
of the signal lying on a narrow latent region. This is enforced by the
slow-feature encourages by the CPC training (see fig. 4.22), and then
show that CPC influences the topology of the latent space around
attractors representing specific spectral distributions. Regarding tem-
poral flows, we can see that the high capacity modeling abilities of
NFs allow to model arbitrary trajectories of the latent space, showing
that an expressive prediction method does not regularize the repre-
sentation and rather fits the latent topology ; however, this flexibility
allow to provide the best reconstruction results. Finally, we can see that
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Figure 4.22: CPC curves obtained for 5
random examples, each dimension plot-
ted apart. We can see that the CPC are
evolving slowly, contrary to the corre-
sponding latent curves.

GP prediction is the one that conditions the most the latent topology,
providing very smooth trajectories that correspond to curves sam-
pled from a GP process. This method is then the one that perform the
strongest regularization of the latent space, hence explaining its high
generalization scores but also its lowest (albeit satisfactory) reconstruc-
tion results.

Hence, we can see that these three prediction methods, while providing
satisfying results, are qualitatively different, and apply diverse implicit
regularization about the temporal behavior of the latent space. These
methods can be then wisely chosen depending on the desired structure
of the representation, from the less restraining and the more efficient
in terms of reconstruction (flows) to the most regularizing (GP), or
providing compact latent evolutions (CPC). However, while allowing
to regularize the latent space on temporal criteria, prediction methods
do not yet allow to model the trajectories of the dataset. Hence, an
additional modeling is required, that would allow us to extract features
from the obtained trajectories.
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CPC

Flow

GP

Figure 4.23: Examples of morphing between an original (blue) and target (yellow) trajectories (through PCA) obtained from dataset
examples for (top) CPC (middle) Flow (bottom) GP prediction modules.
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4.4 Hierarchical latent spaces and raw
waveform learning

In the previous section, we investigated three different methods to
perform prediction directly on the latent space, modeling dynamics
q(zt>⌧ |p(zt⌧) with a broader prediction scope than the one provided
by state-space models approaches. The inner idea of these methods
was that training jointly the model on inference, generation and pre-
diction objective was constraining the latent space to reflect temporal
features of the data. We saw that these three prediction methods was
providing substantially different behaviors, that could thus be chosen
depending of the target application or dataset. However, these predic-
tion methods do not help us to really extract temporal features of the
data, as each state vector zt represents a single data step xt .

Reminding section 4.2.3, there are two different manners to encode
temporal features in the latent representation : whether formulating
the VAE as a state-space model, then having one latent vector zt per
data input xt and a suitable transition model p(zt |zt�1), or using re-
current encoders / decoders to obtain a global latent vector z for the
whole sequence. We investigated the first approach during previous
section, showing the ability of latent spaces to incorporate temporal
features with a given prediction model. However, the second is also
interesting, as it extracts global features from a target sequence and
then also implicitly models its dynamics.

We then propose to combine both approaches with hierarchical latent
spaces, modeling the trajectories observed in the obtained representa-
tion. This approach, called ShrubVAE, allows us to represent different
temporal scales of the input, encoding the overall structure of the
sequence at top-level, and progressively model the local temporal
structure by upsampling across layers. This method then allows to
considerably extend the scope of prediction process, as a single vec-
tor corresponds to several steps of the sequence. Furthermore, this
architecture allows us to access the retrieved features corresponding
to different time scales, then performing multi-scale analysis. We can
then analyze and generate with different temporal scopes by choos-
ing the interaction layer, from a low-level state-space model to a full
sequence at the top.

4.4.1 ShrubVAE : Multi-layered models for multi-scale
learning

We then propose a hierarchical latent model performing multi-scale
analysis and generation of data signals, that is based on a progressive
down-sampling of the incoming time series using variational learn-
ing. This approach models long-term dependencies with a few latent
vectors in the top layer of the model, while intermediate layers extract
local dynamical information. We also perform the prediction methods
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Figure 4.24: Prediction is performed at the higher level of temporality, allowing to significantly reduces the number of prediction states
needed to predict the signal.

proposed on the top layer of this model, and requiring less predic-
tion steps as each top latent features correspond to several samples of
the sequence. These prediction methods should perform better, as it
requires a fewer number of steps and are supposedly performed on
features containing high-level temporal information. We then evaluate
the proposed model by comparing this model to the previous predic-
tion performances obtained with single-layered VAEs, evaluating it
the proposed hierarchical architecture is easing the prediction.

Hierarchical latent spaces. While AEVB convincingly extracts com-
pressed representations from high-dimensional data, the number of
latent dimensions is often constrained by the reconstruction capac-
ity of the model. Some approaches then proposed to alleviate this
issue by adding stochastic layers on top of the variational models, ex-
tracting higher-level latent features directly from z0. Such approaches
where popularized by ladder networks, a deterministic auto-encoder
composed from multiple stacks of latent codes, that were trained on
a reconstruction error between each top-down and down-top pro-
cesses [379]. In the domain of variational approaches, this was devel-
oped by Rezende & al. with Deep Latent Gaussian Models, proposing a
multi-layer approach to AEVB using a deterministic encoder across
successive layers. A full variational approach to multi-layer models
were consequently proposed by Kaae & al., based on the conditional
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inference & generation processes with L layers [184]

q(zL , ...z1 |x) = q(z1 |x)
LY

l=2

q(zl |zl�1) (4.33)

p(zL , ...z1, x) = p(zL)p(x|z1)
L�1Y

l=1

p(zl�1 |zl) (4.34)

where each conditioned model is parametrized as a diagonal normal
distribution, similarly to the VAE. The obtained ELBO is then

p(x) � Ez1,...zL⇠q(z)[p(x|z1)] + DKL[q(z)kp(zL)] (4.35)

+

L�1X

l=2

DKL[q(zl |zl�1)kp(zl |zl+1)] (4.36)

The L regularization terms DKL[q(zl |zl�1)kp(zl |zl+1)], that are all tractable,
can then be understood as a criterion that matches the layer-wise distri-
butions provided by encoders and decoders, ensuring the consistency
of the representation. Unfortunately, further investigations of these
hierarchical models showed that these higher-level latent variables
were rather inexpressive, and barely used by the low-level decoding
model p(x|z1). Information sharing between encoding and decoding
processes was consequently proposed by Kaae with Ladder Variational
Networks, improving the inference of higher-level latent variables zl

[380] by explicit information sharing between encoders and decoders.
However, the gradient dissipation across higher levels often weakens
their representativeness, requiring an additional criterion as semi-
supervised task to be non-degenerated.

Multi-scale inference with hierarchical spaces. ShrubVAE rather
proposes to use hierarchical latent layers to model different time scales,
amounting to successive down-/up-sampling (resp. during inference
/ generation) steps of the latent sequences. This progressive dilation
task prevents the higher-level representations to be data-insensitive,
as each feature vector has to represent the temporal information of the
incoming sequence. We use simple generative and inference models as
above, excepting a window zl

tl ,...tl+⌫l of size ⌫l is encoded to one single
latent vector zl+1

tl+1
using a RNN encoder. The inference distribution can

then be formulated as

q(z0
t
|xt ) =N(µ

q,0(xt0 ),�q,0(xt0 )) (4.37)

q(zl
tl
|zl�1
tl⌫l :(tl+1)⌫0

) =N(µ
q,l(zl�1

tl⌫l :(tl+1)⌫l ),�q,l(zl�1
tl⌫l :(tl+1)⌫l ) (4.38)

q(zL |zL�1) =N
�
µ
q,L(zL�1),�q,L(zL�1)

�
(4.39)

such that a downsampling of factor ⌫l is applied at each layer l. We
choose to not perform any downsampling on the first layer z0, model-
ing it as a state-space representation of the incoming data, that can be
accessed directly to generate data elements separately. The parameters
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Figure 4.25: Probabilistic graph explaining the hierarchical multi-scale architecture of ShrubVAE. This architecture is based on multi-layer
dynamical compression, thus performing Bayesian down/up-sampling that allows to efficiently model the temporal structure of the
incoming signal.

µ
q,l(·),�q,l(·) are obtained in a similar manner to the RVAE encoding

model (see sec. 4.2.3), such that

ht = RN N(zl�1
t

, ht�1) t 2 [tl⌫l ...(tl + 1)⌫l] (4.40)

µ
q,l

⇣
zl�1
t

⌘
= A>µh(tl+1)⌫l (4.41)

�q,l
⇣
zl�1
t

⌘
= A>�h(tl+1)⌫l (4.42)

so we take the final hidden vector of a RNN to encode zl , trained on a
⌫l-sized window of zl�1. The temporal scope taken by the RNN is quite
restricted, such that we do not suffer any of the gradient degeneracy
problems evoked in sec. 4.2.1. Intuitively, the vector zl can thus bee
understood as encoding the local dynamics of the sequence fragment
zl�1
t :t+⌫l , projected on a higher-level latent space. Note that, with this

system, a window ⌫l is held fixed during the training process, but can
be arbitrarily set when performing inference or generation.

The generation model is mirroring the encoding process, and upsamples
an incoming vector zl+1

tl+1
of a factor ⌧l , obtaining a vector zl

tl+1
...zl

tl+1+⌧l
,
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through the following generative process

p(zL) =N(0, I) (4.43)

p
�
zl�1
tl⌫l :(tl+1)⌫L |z

l

tl

�
=

⌫lY

⌧=1

N

⇣
µ
p,l(zltl , ⌧),�p,l(zltl , ⌧)

⌘
(4.44)

p(xt0 |zt0 ) =N
�
µ
p,0(zt0 ),�p,0(zt0 )

�
(4.45)

(4.46)

such that the joint distribution of the upsampled vector zl�1 is fac-
torized over time steps tl�1. Similarly, the parameters of successive
distributions µ

p,l(·, ⌧),�p,l(·, ⌧) is obtained with a RNN, such that

ht = RN N(zl+1
tl+1

, ht�1) t 2 [tl+1⌫l+1...(tl+1 + 1)⌫l+1] (4.47)

µ
p,l

⇣
zl+1
t

⌘
= B>µht (4.48)

�p,l
⇣
zl+1
t

⌘
= B>�ht (4.49)

where the successive distributions for the steps [t..t + ⌧] are obtained
by iterating a RNN ⌧ times using the replicated input zl+1

tl+1
. This system

then allows to generate several latent variables from a single one, each
step being conditioned on the previous with a recurrent mechanism,
then generating local dynamics of the curve. Despite the down-/up-
sampling procedures performed by stacked latent layers, the ELBO
(4.35) is not modified, as the shape of latent trajectories are the same
during encoding and decoding processes, and the distributions are
factorized across time steps.

4.4.2 Learning procedure and progressive hierarchical
warm-up

All the parameters of the ShrubVAE are trained end-to-end using back-
propagation algorithms, similarly to regular variational auto-encoders.
As both generative and inference models are defined as normal distri-
butions with normal covariances, the reparemetrization trick applied
by Kingma & al. is still applicable, such that the convergence of the
whole training is fast and guaranteed [22]. In this article, we resort to
the ADAM optimization scheme [123], using a learning rate of 10e�4.
However, despite the use a warm-up procedure for the top layer and
the use of the MMD at the lower level, the training process of the
ShrubVAE can still encounter difficulties, due to the network depth.
During experiments, we observed that this was due to the balance
between inference and generation process, where the effect of the reg-
ularization where canceling the information coming from the data
during early-training. While similar to the latent pruning shown in
standard and multi-layered VAEs, this effect is emphasized by the
down-/up-sampling process of the model.

To counter this unwanted tendency, we add to the top warm-up layer
an additional procedure, called progressive hierarchical warm-up, that



128 4 Time and prediction in generative models

schedules the information fed into the different decoders. This scheme
aims at introducing the information provided by higher latent layers
progressively during early training, such that each encoder / decoder
pairs are suitably trained before being given to the lower levels. This
is done by regularly increasing the parameter ↵ of a Bernoulli dis-
tribution, that is sampled to select whether the input of the decoder
p(zl |zl+1) comes from the higher decoding layer or from the corre-
sponding encoding distribution as follows:

ml ⇠ Bernoulli(↵) (4.50)

zl ⇠
8><>:

q(zl |zl�1) if ml = 0
p(zl |zl+1) if ml = 1

(4.51)

This procedure enforces each decoder to use the information coming
from the encoder during early training, and are progressively led
to use the information from above layers. In this article, we linearly
increment the ↵ parameter from 0 to 1 during the first 20 epochs, that
corresponds to approximately the mid-term of the training process
with the used datasets.

Experimental procedure. To evaluate the ShrubVAE performances,
we chose a similar experimental framework than the one used in the
previous section. Hence, we first evaluate the generation abilities of
the model, comparing it with the results obtained on single-layered
VAE (described in the previous section), to ensure that the reconstruc-
tion loss does suffer from the down-/up-sampling processes. We then
observe the results obtained by each of the three proposed prediction
methods above, analyzing how it gains from the temporal hierarchy
provided by the model. To compare accurately on these criteria, we
then take sequences of the same length than in the previous experi-
ment, such that the total sequence length is 60 with a predictive scope
of 30, performed on magnitude spectral bins R

2048. All the recurrent
modules used to perform dynamical compression are 1-layer units of
100 hidden units, chosen to be very light. We thus trained a total of
6 models, corresponding to the three prediction methods with two
different hierarchical architectures:

I a two-layered ShrubVAE-2l with 10⇥ down-sampling, such that
the top latent vector sequence z1 has a total step amount of 6
elements, reducing the amount of predicted states to 3

I a three-layered ShrubVAE-3l with respective 5⇥ and 3⇥ down-
sampling, the first latent sequence z1 then having a total step
amount of 12 and the second latent sequence z2 a total amount
of 4 elements, reducing the amount of predicted states to 2.

we used the same prediction settings than in the previous sections,
using a 10 epochs prediction warm-up over a total amount of 80 epochs.
A DKL divergence were used in every layer l > 1, while a MMD loss
was used in the first latent layer to provide the best reconstruction
results.
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Table 4.3: Full table of results obtained with 1-layer (previous section), 2-layer and 3-layer ShrubVAEs, for all models. For regularization
losses, the layer-wise divergences are sorted in increasing order.

� log p(x|z) SC ISD DKL[qkp] M MD[p, q] TC[p, q]
CPC prediction

1-layer 693.61 (705.45) 0.671 (0.682) 4.22e-5 (1.58e-4) 21.49 (21.87) 4675 1075.73) 347.04 (360.74)

ShrubVAE-2l 722.76 (730.17) 0.394 (0.391) 4.28e-5 (1.61e-4) 2.81e25 (2.8e25)
3.91 (3.934)

5158 (1253.5)
913.30 (222.24)

775.12(865.78)
52.83 (58.05)

ShrubVAE-3l 783.58 (771.37) 0.165 (0.168) 4.47e-5 (1.64e-4)
5.59e25 (5.51e25)
1.01e+09 (80.87)

1.78 (1.78)

12539 (2775.7)
98.86 (21.47)

303.15 (68.723)

1308.3 (1168.79)
82.31 (85.39)
12.64 (13.04)

Flow prediction
1 -layer 680.84 (677.58) 2.00e-2 (0.204) 4.32e-5 (1.63e-4) 24.45 (23.72) 5570 ( 1198.32 ) 393.52 (361.23)

ShrubVAE-2l 720.37 (730.66) 2.60e-2 (2.61e-2) 4.46e-5 (1.67e-4) nan (nan)
4.08 (3.49)

4289 (908.56)
976.48 (205.68)

572.23 (537.48)
46.87 (58.05)

ShrubVAE-3l 716.14 (732.47) 0.120 (0.117) 4.22e-5 (1.58e-4)
5.59e25 (5.51e25)
1.01e+09 (80.87)

1.78 (1.78)

12539 (2775.7)
98.86 (21.47)

303.15 (68.723)

1308.3 (1168.79)
82.31 (85.39)
12.64 (13.04)

GP prediction
1-layer 677.00 (692.59) 3.16e-2 (3.31e-2) 4.29e-5 (1.63e-4) 24.58 (24.04) 3476 (772.40) 231.94 (232.67)

ShrubVAE-2l 666.09 (667.4) 4.03e-2 (4.30e-2) 4.14 e-5 (1.56e-4) nan (nan)
4.12 (4.06)

4437.7 (975.94)
780.61 (174.0)

568.3(491.68)
39.11 (35.72)

ShrubVAE-3l 695.00 (707.97) 6.44e-2 (6.26e-2) 4.34e-5 (1.62e-4)
2.32+25(2.30e25)

3.69 (80.87)
2.86 (2.88)

7437 (2775.7)
39.8 (9.01)

607.3 (68.723)

546.79 (550.02)
162.07 (158.92)

20.63 (18.49)

� log p(x|z) l
1

l
2

CPC
1l 673.63 (685.73) 105.5 (102.03) 98.40 (111.53)
2l 676.36 (680.16) 106.8 (117.16) 66.40 (117.23)
3l 673.63 (734.67) 105.5 (136.03) 98.40 (129.5)

Flow
1l 661.06(658.36) 94.67 (91.90) 94.60 (97.87)
2l 666.94 (660.6) 106.8 (98.5) 99.13 (99.16)
3l 697.10(713.7) 112.6 (120.67) 117.2 (125.5)
GP
1l 674.53 (702.00) 89.83 (105.9) 106.93 (106.76)
2l 642.23 (646.6) 93.40 (93.4) 89.80 (92.10)
3l 707.97 (662.32) 99.16 (105.37) 99.87 (107.07)

Table 4.4: Results obtained with the
ShrubVAE with the three prediction
methods, only on the predicted part of
the sequence.

Reconstruction results. The results obtained for the full sequence
are listed table 4.3, and the reconstruction of only the predicted vectors
are displayed fig. 4.4. We can see that the ShrubVAE the down-sampling
process across layers does not impact significantly the reconstruction
error. The overall uncertainty � log p(x|z) of the model globally in-
crease, but the deterministic spectral losses slightly change, and are
even decreasing in the case of CPC. A interesting fact is that, while the
best reconstruction performance of all the sequence is given by using
flow prediction method, similarly to single-layered VAEs, it is the GP
prediction method that has the best performances on the predicted se-
quence, and is barely influenced by the number of added layers. These
results then confirm the intuition given previously about the gener-
alization abilities of this method. Nevertheless, for every method the
ShrubVAE accurately performs dynamical compression, identifying
the overall sequences with only one latent vector without influencing
too much the reconstruction loss. However, we do not especially gain
in terms of reconstruction from predicting a lower amount of steps, we
ensure that the system preserves the overall consistency of the input
sequence.

Regularization results. Latent losses are also depicted table 4.3, al-
lowing us to describe the overall structure of the latent space of each
layer. As we are using multi-layer latent architectures, only the last
layer is regularized with an isotropic normal distribution N(0, I), such
that lower level latent losses rather reflect the divergence between en-
coding and decoding distributions q(zl |zl�1) and p(zl |zl+1). We can see
that, as we are using MMD to regularize the first latent layer, the DKL

is very high. By analysing the decoding projections, we found that the
decoding distributions p(z1 |z2) had very low variance, while inference
distributions q(z1 |x) where much broader, explaining the very high
values taken by the divergence. However, we can see that higher-level
latent spaces are well regularized, especially in ShrubVAE with three
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layers where the top latent space seems to be very close to an isotropic
normal distribution, without providing degenerated representations.
This can be seen by observing the latent interpolations depicted figure
4.26, where we can see that the trajectories are significantly smoother
for each model. This seems to point out that, in addition to down-
sampling, hierarchical latent spaces allow to regularize the temporal
behavior of the sequences, thus accurately providing a regularized
representation of its inner dynamics. This results are very encouraging,
and are worth to be investigated on higher temporal scopes.
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CPC

Flow

GP

Figure 4.26: Examples of trajectory morphing between two examples of the dataset for (top) CPC (middle) Flow (bottom) GP prediction
modules.



Composing and performing
with generative spaces 5
In this chapter, we tackle a different aspect of our work that fosters the
creative use of the methods developed previously for musical appli-
cations. Indeed, while machine-learning techniques are now widely
investigated in numerous scientific domains, our main motivation was
to develop a framework design a generation tool for sound synthesis.
Our objective in then two-sided : from one hand, designing machine-
learning techniques that are able to opens new technical possibilities
for sound synthesis, and from the other hand starting from musical
practices to motivate the development of new models. This joint scien-
tific and musical approach is to us seminal in computer music, such
that we also aim to develop an usable toolbox, that could be used by
both expert and non-export users, and the creation of a musical piece,
to explore the creative abilities of the proposed framework.
Thus, in this section we will invest another approach, and adopt a
research & creation method to the framework development. Indeed, the
proposed analysis/synthesis technique differ from synthesis methods
developed so far by three aspects : the control space it automatically
extract from the data, providing an alternative representation even
in the case of sounds synthesized with simple techniques (such as
additive synthesis), the diversity sounds it can produce from a limited
amount of examples, and the data-centered approach of these meth-
ods, integrating the choice of the dataset and of the model architecture
in the creative workflow. We will first introduce the developed tool-
box, vsacids, and the various features it implements. We will then
experiment this workflow with the composition of a performance,
ægo, exploring the latent space with a reinforcement-learning agent
interacting with a human performer. This work, done jointly with
Hugo Scurto, was accepted at the CMMR2019 conference as both as a
musical performance and technical paper.

5.1 vsacids : a toolbox for variational
generation of musical signals

As we aim to provide an analysis-synthesis framework than can be
use by both expert and non-expert users, we have to develop several
layers of interaction to allow both customization of the algorithm and
high-level usage. We then developed a library, called vsacids, that al-
lows easily to train models and to use it real-time or non real-time use
cases. This library was conceived in a modular way, allowing deeper
customization of models, easily implementation of model improve-
ments. The library also provide methods audio data import, model
definitions, and training routines, such that the implemented models
can be easily trained by just defining a signature. It also implements
high-level methods for non-expert usage, automatically proposing an
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ing data and metadata from audio trans-
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Figure 5.2: The Model class, encoding
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architecture for a given dataset with high-level descriptors. This library
is using the Python language, and is based on the open-source frame-
work PyTorch⇤ [381], an elegant machine learning framework that
allows dynamical definitions of machine-learning models. This library
is distributed as a python package, that is open-source be available
here : https://github.com/domkirke/vschaos_package.

5.1.1 Architecture and design

The vschaos library is based on three seminal classes, Dataset, Model,
and Loss, that can be sub-classed to implement new models or specific
behaviors for particular applications. The architecture of vsacids is
built around three main classes:

Data format. The Dataset class is an high-level class for collecting
data that allow useful routines for data import, transformation, meta-
data processing, and asynchronous data loading for big datasets. This
object assumes a formatted dataset format, that allows it to build a
data structure that holds various formats of metadata, so it naturally
integrates with the other modules. This dataset structure is defined
as shown in figure 5.1, sorted in three folders : a data folder, that con-
tains the audio files, the analysis folder, that contains a list of audio
transforms used for training, and a metadata folder, that contains a list
of tasks. This simple structure allows the Dataset object to organize
the dataset, and to automatically retrieve an efficient data structure
for model training. We also provide a toy dataset generator, based on
the grid sampling of parameters of a digital synthesizer, to provide a
fast method methods to evaluate the emerging properties of a model
configuration.

Model definition. The Model class is the base of all the models train-
able by the library, and implements the three methods encode, decode
and forward that are used to train and use the model. All the models
of the library can be defined by a signature [input_params, latent_-

parms] , plus model dependent arguments, that defines the variational
and generative distributions of the model. These two specifications are
defined by an attribute dim, that specifies their dimensions, and dist,
that specifies the distribution of the layers. The model can be easily
multi-layered by defining a list of latent parameters, and every input
or layer can be split in an arbitrary number of parts. Each encoding
and decoding functions are defined as the conjugation of an hidden
module and of a distribution module, such that each transformation is
defined on the encoded distribution (see figure 5.2).
The model is also attached two additional objects : a list of optimiz-
ers, that are used to optimize the model during training, and a list
of manifolds, that are low-dimensional transformations saved during
interaction. Model also provides specific load and save functions, such
that the model can be saved with the performance parameters and
other diverse useful information.
⇤ https://pytorch.org/
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Figure 5.3: The Loss class implements
different loss functions, providing addi-
tional features such as loss history track-
ing, and simple algebra.

Algebraic losses. The Loss object is used for defining the objective
criteria of the training. These objects are also defined as models, al-
lowing to embed discriminative criteria such that DRE or adversarial
regularization directly in the loss object, then lightening the model.
In the case of trainable losses, the optimizer is then embedded in the
Loss object. Also, as the training criterion is a determinant parameter
for the obtained model, we wanted to make manipulation of losses
convenient and intuitive. We therefore implemented basic arithmetic
operators between loss objects (sum, subtraction, multiplication, divi-
sion, power), such that an additional criterion to the ELBO object can
be easily formulated by ELBO+ Discriminator[task], and can then be
experimented by the user without to much effort 5.3. The Loss object
also provides automatic loss tracking, such that each individual loss
can write the values into its memory.

Overall training process. The overall process given a Dataset, a
Model and a Loss objects is performed by a Trainer, that also imple-
ments common machine-learning routines to train the given model.
The Trainer object takes care of processing the usual steps of training
such as data loading, loss optimization, model saving, loss tracking,
and test / train procedures. It can also regularly plot the state of the
model using an intern Monitor object, that synthesizes audio files and
plots specific to variational learning regularly during training to pro-
vides an accurate monitoring of the process. The plot routines are also
conceived hierarchically from low-level to high-level functions, to ease
the definition of new monitoring methods for specific models.

Max interface for real-time generation To experiment the capabili-
ties of the proposed framework, we implemented a real-time interface
with the vsacids library using the Max software⇤, a audio program-
ming widely used in the computer music community. Max is then
used a both as a sound engine, inverting in real-time the magnitude
spectrograms sent by the generative model, and as a user interface,
sending to the model the generative coordinates sent by the user (see
fig. 5.4). The communication between Max & vsacids is done with
the OSC protocol using a dedicated Python server, that interfaces the
Model instance with Max. As we argued, the lightness of obtained
models allows us to interact in real time with the latent space, and can
thus be efficiently used as a generative synthesis algorithm. Real-time
generation also provides a way to evaluate the properties of extracted
spaces directly through interaction. Furthermore, the recent coupling
between Max and the digital audio workstation Ableton Live † allows
to use vsacids directly into a Live work session, and then enter the
creative workflow of most musicians. Navigation in the latent space
can thus be processed with automation and MIDI controlling, trans-
forming the vsacids models in real synthesizers.

⇤ cycling74.com
† https://www.ableton.com/
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Figure 5.4: Schematics of the vsacids
real-time environment.

5.1.2 Workflow

The creative flow of the vsacids framework then decomposes in three
steps : training, exploration, and exploitation. Indeed, as the various
parameters and models of the framework are of prime importance for
the obtained properties of the representation, we involve the training of
the algorithm as part of the framework’s practical use. Some machine
learning algorithms focused on interaction and usabiliity, such as the
Wekinator of Fiebrink & al., opened a new way to investigate the
development of this techniques under a different perspective [382].
Similarly, the use of variational methods could allow such uses, as it
scales well to little datasets and models that train quite fast, even on
CPU. We then separate the exploration of the representation, using the
real-time interface developed with Max, and the exploitation of the
model, based on several techniques that exploits the representation
offline.

Training options. As the training step is involved in the creative
process, the choice of the model in terms of architecture, losses, and of
some training criterion parameters are determinant for the interaction
with the developed synthesis method. While our library is opened to
developers and researchers that may want to investigate the proposed
synthesis method, we also have to model a user-compliant procedure
for non-expert users. We define these conception steps as follows :

I fix a dataset D, that can be taken in a sample bank or generated
using the toy dataset generator

I fix the desired dimensionality of the latent space, and the resolu-
tion of the STFT (trading efficiency and sound quality)

I define the desired regularization, and some additional criteria to
shape the latent space (semi-supervised learning, conditioning,
geometric constraints)

I train the model on a defined number of epochs

This process allows for each user to develop heuristics on the train-
ing methods, that he will then validate though experimentation. The
input parameters are the most relevant for the final shape of the rep-
resentation, filtrating the parameters of less importance to avoid the
over-parametrization of the tool. Thus, grounded by the theoretical
analysis of section 1 and by the benchmark performed section 2, we
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can design a set of heuristics to set the training parameters according
to high-level features

I narrowness, that defines the capacity of the involved neural net-
works, trading between bottleneck and sparse modelling of the
encoding / decoding fuctions,

I coarseness, that can trade between explicit (Kullback-Leibler, Renyi
or Jensen-Shannon divergences) and implicit regularizations
(MMD or adversarial), and tuning the � parameter, to implicitly
define on the amount of mutual information between examples
in the representation

I influence, setting the relative weight of the external criteria to the
unsupervised loss.

These compliant high-level features can then allow non-expert users
to intuition the underlying of these parameters, and still experiment
with the system without being enforced to enter the details of the
methods.

Interaction methods. The interface with Max software then opens
the framework to online interaction, such that user can experiment in
real-time with the previously trained model. The most straightforward
method for latent navigation is to access separately every dimensions
of the input space, with a set of sliders that it can perform during play-
ing. However, the number of latent dimensions can be high, and then
provide an over-parametrized interface that can make its use tedious,
not helped by the non-linear behavior of the latent space. Hence, the
user can rather navigate on sub-sets of the latent space, whether by
dimension selection or with dimensionality reduction techniques such
as PCA or ICA. The creative process is then leaded by the choice of
these representations, that the user can save with the model.

As blind navigation in this space can be an unsatisfactory, additional
visualization of the space can provide a useful feedback for bettering
the performance. We can then provide a global representation of the
currently explored subspace, annotated with training points to inform
the user if he is exploring trained or untrained zone of the representa-
tion, and possibly with labelling information, provided its availability.
The descriptor plots used previously can also provide precious infor-
mation, allowing the user to target some zones with desired perceptual
properties. If such visual feedback is provided, we can thus provide
additional controllers to allow the user to navigate more freely into the
space, as for example with a rotation knob that allows to rotate the ex-
plored representation. Alternatively, we can also rely on collaborative
human-machine interaction techniques to explore the space over its
full span, using reinforcement learning methods to reduce the number
of parameters to a single reward. This was explored with ægo, that is
presented below.

Offline methods. Finally, another way to use the framework is to
consider it as a offline synthesizer, that can generate some sounds
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Figure 5.5: An example of cross-
synthesis, with a sample of voice
passed through a model trained on
toy_additive dataset. We can see that
the voice is somehow "recomposed" by
the features learned by the model.

based on some requests. The user then explores the possibility of the
algorithm by experimenting the several generation methods provided
by the flexibility of the framework. We summarize these possible
offline interactions below :

I trajectory generation : using a trajectory generator to obtain a
multi-dimensional curve in the latent space, and sample the
corresponding audio distribution

I sound morphing : taking two or more target points, performing
an interpolation in the latent space, and generate the correspond-
ing audio distribution.

I full sound morphing : is the same than below, but with hierarchi-
cal temporal models, then performing "full sound" interpolation

I cross-synthesis : encoding and decoding an out-of-domain sound,
and listen how it is "filtered" by the model 5.5

I cross-modal translation : if the model has a symbolic counter-
part (see sec. 3.3), performed transfer between different domains

I context translation : if the model is conditioned by external in-
formation, regenerate a sound with an different context

I auto-run : if a model has a prediction model, let the prediction
run over several time spans

I prediction translation : performs prediction of a model with a
different temporal context (as a different context vector in CPC)

we see that the possibilities of generation with the proposed method
are numerous, and are quite different from other synthesis techniques.
We then hope that this framework could be found inspiring in the com-
puter music community, and maybe can motivate other applications
we did not suppose or being deviated from its original purpose.

5.2 A step towards research and creation
process : aego

To experiment the creative framework proposed above we presented
ægo, an improvisational piece with interactive sound and image for
one performer. One of our intentions was to explore the representa-
tions extracted with AEVB by focusing on the emerging properties of
its internal organization, without focusing on the technical aspects of
the generating model but rather on the feedback loop created by the
performer, the interactive agent, and the synthesis engine.
To represent this idea of exploration, the dimensionality of the nav-
igated projection is increasing through time, making the growing
complexity of the space perceptible, such that the audience is directly
witnessing the progressive discovery of the space. In addition, we pro-
jected the generated sound spectra on stage to provide the audience
with a visual representation that accentuate, not disrupt, the sonic
perception of the piece, and emphasize the impression of movement.
Another intention was to display the exploration behavior of the re-
inforcement learning agent in front of the audience. To do this, we
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Figure 5.6: Reinforcement learning for
sonic exploration. The agent learns
which actions to take on a sound synthe-
sis environment based on reward given
by the musician. The agent implements
an exploration method to foster discov-
ery along interaction.

wanted to challenge the skills and abilities usually at stake in perfor-
mance, by summoning an ecological approach and evoking a sense
of reciprocal interaction between the human and the machine. In this
sense, rather than using it for control purposes, we used the body of
the performer to convey kinesthetic information about how machine
exploration may be internally experienced by a human. In parallel, we
added raw textual information about the exploration agent’s internal
state at top left of the image projection to emphasize the machine’s
encoded perception of the performer.
Finally, this piece was created to make a first step towards a research
& creation approach to the development of the proposed framework.
Hence, we aimed to use it in a real-time performance, identifying
first the technical & compositional challenges of using such mod-
els in creative applications, then to propose a musical realization of
this method to an audience, allowing us to get some feedback about
the global æsthetics emerging from the proposed system. While this
"creativity-oriented" part of the evaluation would clearly demand a
more extensive methodology, involving external artists and perform-
ers, and the development of well-defined usability studies, the creation
of this piece was very beneficial to us, and helped us to focus more on
these aspects in our respective works.

5.2.1 Reinforcement Learning for Sonic Exploration

Sonic exploration is a central task in music creation [383]. Specifi-
cally, exploration of digital sound synthesis consists in taking multiple
steps and iterative actions through a large number of technical pa-
rameters to move from an initial idea to a final outcome. Yet, the
mutually-dependent technical functions of parameters, as well as the
exponential number of combinations, often hinder interaction with the
underlying sound space. A way to support exploration of large sound
synthesis spaces can be found in reinforcement learning, that defines a
statistical framework for the interaction between a learning agent and
its environment [27]. The agent can learn how to act in its environment
by iteratively receiving some representation of the environment’s state
S, taking an action A on it, and receiving a numerical reward R. The
agent’s goal, roughly speaking, is to maximize the cumulative amount
of reward that it will receive from its environment.

For our case of sonic exploration, we propose that the musician would
listen to the agent exploring the space, and teach it how to explore
by giving reward data (Fig. 5.6). Formally, the environment’s state
is constituted by the numerical values of all synthesis parameters.
The agent’s actions are to move one of the parameters up or down
at constant frequency. Finally, the musician communicates positive or
negative reward to the agent as a subjective feedback to agent actions.
We implemented a deep reinforcement learning model to support
learning from human reward signal in high-dimensional parametric
spaces [384]. A crucial requirement for reinforcement learning agents
is to autonomously explore their environment, to keep on discovering
which actions would yield the most reward. We developed a statistical
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Figure 5.7: Interaction diagram of the
ægo instrument. The reinforcement mod-
ule monitors the reward given by the
user and the current latent state to de-
cide a future action A, that is used to
control the navigation.

method, based on intrinsic motivation, which pushes the agent to
“explore what surprises it”. The resulting interactive learning workflow
was found to be useful to relax musicians’ control over all synthesis
parameters, while also provoking discoveries by exploring uncharted
parts of the sound space.

5.2.2 Instrument Design

For this piece, we conceived a dedicated musical instrument combining
latent-based generative models and reinforcement-based parameter
exploration, and leverages their learning capabilities from a design
perspective. This instrument is based both on software, interfacing the
system presented in the first section and the parameter exploration
framework proposed by Scurto & al. [385, 386], and on hardware,
using a movement recognition device. The exploration agent then acts
as an expressive partner [387], that adapts to the feedback given by the
user and navigates in the high-dimensional variational space. Hence,
the latent space can be seen as a creative interface, that allows the
user to experiment with high the non-linearity of the representation
topology.

Workflow. The interactive workflow of the instrument is then twofold,
as shown in Fig. 5.7. The setup phase allows musicians to configure the
instrument, create a customized sound dataset for the unsupervised
learning model, experiment with various training parameters, or also
load a previously-built latent sound space. They can also change di-
mensionality of the reinforcement learning agent to explore specific
dimensions of the latent sound space, as well as the frequency at which
it would take actions inside the latent space. During this setup phase,
we followed the creative workflow developed in the first section. We
thus trained several models on different datasets, varying the architec-
ture, and tested them in our real-time implementation to select which
one was the most satisfactory in terms of interaction. Then, the play-
ing phase allows musicians to improvise with the agent by means of
feedback. The agent produces a continuous layer of sound from the
spectrum output of the VAE. Musicians can either cooperate with its
learning by giving consistent feedback data to attain a sonic goal. Or,
they can obstruct its learning by giving inconsistent feedback data to
improvise through sonic exploration.

5.2.3 Engineering

Technically (see Fig. 5.7), the reinforcement learning agent receives a
representation of the environment’s state S as a position in the latent
space z. Then, it takes an action A corresponding to a displacement
along some dimension of the latent space. The resulting position has
the unsupervised learning model generate a sound spectrum x. Based
on the sound, the musician would communicate reward R to the agent.
The latter would progressively learn to explore the latent space in
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relation to the musician’s feedback data.

Hardware. To support embodied musical interaction, we designed
a hardware prototype that consists in two velcro rings, each of them
equipped with a wireless inertial measurement unit⇤. We took each
unit angular rotation about each forearm axis and summed them to
compute a single, normalized numerical reward signal. This, combined
with the lightweight, nonintrusive velcro rings, lets musicians experi-
ment with a wide range of gesture vocabulary [388] to communicate
positive or negative feedback to the agent.

Software. Both machine learning models are implemented in Python,
based on vsacids and the coexplorer† library provided by Scurto &
al. We developed a Max/MSP patch to implement a user interface
for the setup phase, as well as a hardware data converter for the
playing phase. The communication between the synthesis engine, the
exploration agent and the audio renderer is leveraged with the OSC
protocol.

5.2.4 Aesthetics and writing

Our artistic motivation for ægo was to open a sensitive reflection on
what may actually be learned on a musical level through interaction
with machine learning, both by the human and its artificial alter ego—
the machine. To share this reflection with members of an audience, we
opted for a performance format that displays a human and a machine
mutually learning to interact with each other—on an embodied level
for the human, and on a computational level for the machine—through
live improvization.

The learning machine possesses a distinctive musical behavior, as well
as two latent sound spaces, that are all originally unknown to the hu-
man performer. The latter will expressively negotiate control of these
spaces with the machine, communicating positive or negative feed-
back using our instrument and its motion sensors placed in both hands.
The slowly-evolving spectromorphologies, synthesized and projected
in real-time on stage, create a contemplative, minimalist atmosphere
intended to let members of the audience freely consider potential
learnings of musical qualities by the human and the machine.

Composition. The piece is based on the exploration of two differ-
ent latent spaces, the first obatined with the toy_additive and toy_-

fm datasets, built from synthetic sounds obtained with additive and
FM synthesis, and the second with the acidsInstrument-ordinario

dataset obtained with the sounds of classical instruments [281]. The
representations were obtained using simple VAEs, using 3-layered
convolutional networks, and have a total amount of 8 dimensions. The
⇤ http://ismm.ircam.fr/riot/
† https://github.com/Ircam-RnD/coexplorer
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Figure 5.8: Temporal structure com-
posed for the piece. The dimensions
are progressively increased and then de-
creased when the dataset is changed.

performers explore a sub-plane to this latent space whose dimensions
are increased through time (1, 2, 4 and 8), whether by the performer
or by an external operator. We empirically found that ICA was more
satisfactory than PCA (see section 2.2.1), as it progressively opens axis
that are orthogonal to the previously explored ones (see fig. 5.8).

Once the full dimensionality of the additive latent space is reached, we
change the representation, and reversely progressively shrink the num-
ber of projected dimensions to 1. This enables to write form within dif-
ferent soundscapes, allowing the building of a narrative from elemen-
tary sinusoidal spectra to richer instrumental timbres. The narration of
the piece then distinguish two different phases. An exploration phase,
that makes perceptible the exploration of an unknown space of increas-
ing complexity, and a decaying phase, where the performer is suddenly
projected in a richer space, whose complexity is progressively reduced
to be fixed in one dimension. The performance is stopped when the
performer manages to stay in a fixed point, concluding the perfor-
mance. The exploration then consists in the improvisational paths
taken by the reinforcement learning agent following the performer’s
feedback data. We set the frequency of agent actions between 30 and
100 milliseconds. This choice allowed for slow, continuous evolution
of spectromorphologies, which enables to grasp the behaviour of the
agent inside the latent spaces.

Performance. While the piece is intended to be improvised, our sole
instruction toward the stage performer is that he or she globally per-
forms with the machine with an overall sense of attentiveness⇤. We
propose that the performer would start the piece facing the audience,
relaxed, using the instrument with small forearm rotations only. As
the piece would unfold over time, the performer would be free to
adapt its gestures in response to the slowly evolving complexity of the
explored spaces, focusing on embodied interaction with the machine.
A second contributor is required to manage the two remaining tempo-
ral scales of the piece—i.e., changing dimensionalities, and switching
latent spaces.

⇤ See the following video recording of a rehearsal: https://youtu.be/gCzOoNChlJQ
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Figure 5.9: Pictures taken from the live setup of the piece, showing different moments of the performance.



Conclusion

The current work investigated the use of unsupervised / semi-supervised
methods for audio synthesis and generation using Auto-Encoding Vari-
ational Bayes, a hybrid approach based on deep representation learning
and Bayesian inference. The development of these methods thus al-
lowed to jointly address the problem of high-level feature extraction,
focusing on the automatic discovery of the underlying structure of
a given dataset, and the problem of generation, inverting this repre-
sentation to generate back the data in the audio domain. To this end,
we leveraged expressive probability distribution modelers, based on
neural networks, to model complex dependencies between the audio
domain and the obtained representation, that we trained using black-
box variational inference methods.
Starting from this ground, the work achieved in this PhD first tar-
geted the development of latent regularization strategies specifically
addressed to the audio domain, providing first steps of using meth-
ods derived from AEVB in the audio signal processing domain. First,
we proposed a method to use this latent space as a translation space
between audio and symbols, allowing to associate sounds and custom
vocabularies in the latent representation. This regularization method
then allowed us to perform in parallel symbol extraction and con-
strained audio generation, that we experienced by matching sounds
from orchestral instruments with their corresponding pitches and dy-
namics. Then, we proposed a method to topologically enforce the
latent space to reflect high-level audio properties, using dissimilarity
distances obtained from perceptual measurements. This regulariza-
tion method allowed us to propose a new approach of timbre spaces,
a fundamental notion of audio perception, allowing the perceptual
inference of sounds coming from instruments unknown to the system,
and audio generation based on high-level properties, opening the way
to descriptor-based synthesis.

Consequently, we addressed the temporality of audio signals, propos-
ing to use this latent representation as expressive state-space models. We
first modeled the dynamics of these audio signals by performing a
prediction task in the latent space, that is trained jointly with overall
model to intrinsically regularize its organization on temporal con-
straints. We provided three different prediction methods : a method
based on contrastive predictive coding, that allows the extraction of slow
features from the latent space, a method based on normalizing flows,
allowing to model complex latent dynamics grounded on the idea of
stochastic filtrations, and finally a method based on Gaussian processes,
performing a Bayesian regression task that allows the continuous
modeling of the latent trajectories. After showing the efficiency and
respective properties of these prediction methods, we also proposed
a Bayesian multi-scale architecture, ShrubVAE, that performs progres-
sive downsampling of incoming data, then allowing to hierarchically
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model the temporal structure of the learned sequence and to generate
a signal up to custom temporal scales. The hierarchical refinement of
the temporal information represented by the latent layers were shown
to not reduce the reconstruction of the signals, opening the way to
fast long-term analysis and generation of audio time series, that is still
missing in the current state of the art.

Finally, we addressed the creative use of the developed methods by
proposing a full audio synthesis framework, allowing off-line and on-
line exploration of the extracted latent spaces, that could be hopefully
used in music production or in real-time performances. Therefore, we
provided first steps for a research and creation approach, by develop-
ing this new instrument and by the composition of a new musical
piece, ægo, based on multi-dimensional latent space navigation using
a reinforcement-learning exploratory agent. The creation of this piece
allowed us to experience the musical use of these methods and to de-
velop a specific creative workflow, that we implement in an framework
usable for experts and non-expert users. Doing that, we addressed
the intrinsic exploration of machine-learning generation methods, fo-
cusing on the structural behavior of the models rather than on their
performance towards an explicit task, and allowing an experimental
approach similar to digital audio synthesis practices.

Future works and perspectives. We understand this thesis as a pre-
liminary work of using deep generative models both for high-level
feature analysis, extracting representations reflecting underlying prop-
erties of the data that could be used for visualization or explicit tasks,
and for an intrinsic creative use of these models, discovering their
underlying properties to allow a fruitful creative interaction with a
human user. We now that most of the works initiated in this PhD could
be beneficially detailed and precised, and that the number of possible
ameliorations and further investigations are numerous. We will here
shortly describe the points that we find the most important, and that
we target to develop in the future.

Phase and raw-waveform learning. The main issue that prevent the
generation of involved models to be entirely satisfactory from a audio
quality perspective is the use of magnitude spectra, that require phase
reconstruction algorithms during inversion. This problem could be
alleviated in two ways : whether also learning the phase of the spectro-
gram, resorting to complex neural networks or complex distributions,
to prevent the use of extensive Griffin-Lim iterations, or directly model
the raw waveform of the signal. While both solutions are non-trivial,
the second seems to us be the best option, and is one of our main
motivation for addressing the temporal aspect of AEVB methods.

Regularization strategies. The regularization aspect of these models
is seminal, as it allows to enforce the latent properties of the model
to be organized for a specific analytic or creative purpose. The two
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regularization methods we proposed verified the flexibility of Auto-
Encoding Variational Bayes to shape custom constraints, showing the
flexibility of these methods. Hence, the development of additional reg-
ularization constraints addressing different motivations could allow
further creative uses of this model, as for example to model high-level
synthesis macro-parameters of existing synths (a parallel work was
recently proposed by Esling & al., that also involves this work [389]),
custom vocabularies for specific creative uses, explicit axis disentangle-
ment of desired audio properties, and of course detailing the temporal
regularizations that we initiated in this work.

Temporality. Due to time constraints, we could not address the mod-
eling of long-time dependencies, that could allow to extend the ap-
proaches described above to significant temporal scopes. Furthermore,
the efficient downsampling performed by the proposed ShrubVAE

could be investigated more intensively, as the obtained generation
results are surprisingly good regarding the temporal scope of the top
latent representation (approximatively between one and two seconds
per latent vector). Even the simple use of ShrubVAE developed in
this thesis multiplies by three times the temporal scope of algorithms
such as WaveNet, while using only two layers and involving neural
networks of reasonable shapes. Also, the developed multi-scale ap-
proach to time series modeling could be used to perform constrained
generation on multiple temporal scales, and thus be able to efficiently
perform analysis / generation based on high-level musical features
(several seconds). With such systems, we can then hope to be able
to generate at the raw waveform level, hopefully in real time, then
preventing to use spectral transforms and allowing us to extract dy-
namical features from audio signals.

Usabiliity. Despite being only approached in the last section of this
manuscript, the development of a research & creation method, that is
a flourishing dialog between scientific topics and musical creation,
seems to us mandatory as we aim to develop creative tools from the
studied models. Therefore, further developments should also investi-
gate more deeply the usability of the proposed framework, involving
the collaboration with external artists, composers, and performers, as
well as well-defined usability studies that could opening this work
to design and human-computer interaction. Also, the integration of
alternative media (image, video) and movement in the process was also
very beneficial, allowing to provide a physicality to the system that
is also mandatory for live performance purposes. Finally, the parallel
development of a framework usable in dedicated software for music
production could also spread this new method onto musical practices,
and could in turn point out specific scientific, design and musical ques-
tions on the use of machine-learning based generation processes for
creativity.
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Figures and tables for baseline results A
In this appendix we show all the complete results tables for the preliminary results of
section 2. The number in parenthesis are obtained with the test set, while the results in
regular characters are obtained with train tests.

A.1 Benchmark reconstruction results.

A.1.1 Dimensions benchmark

A.1.1.1 toy_additive table

� log p(x|z) l
2 SC ISD log-l1

2d
VAE 910.64 (910.10) 340.71 (340.40) 92.75 (90.57) 3.435e-4 (1.27e-3) 217.21 (216.93) )
PCA - 368.17 111.68 nan 253.27

ICA - 368.17 111.68 nan 253.27

4d
VAE 550.13 (551.74) 49.25 (50.14) 31.99 (32.02) 3.78e-4 (1.38e-4) 85.25 (86.61)
PCA - 338.72 117.94 nan 251.66

ICA - 338.72 117.83 nan 251.66

8d
VAE 510.78 (510.56) 25.52 (25.45) 13.60 (14.03) 3.16e-4 (1.18e-3) 64.82 (64.46)
PCA - 289.12 127.40 nan 245.70

ICA - 289.12 127.34 nan 245.71

16d
VAE 488.37 (488.37) 13.33 (13.21) 11.26 (11.07) 1.08e-3 (2.92e-4) 47.79 (48.20)
PCA - 137.29 160.42 nan 139.35

ICA - 137.29 160.42 nan 139.35
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A.1.1.2 toy_fm table

� log p(x|z) l
2 SC ISD log-l1

2d
VAE 1816.64 (1820.59) 1070.21 (1073.57) 347.40 (349.29) 3.72e-4 (1.40e-3) 617.31 (619.38)
PCA - 1087.64 469.06955 nan 650.80

ICA - 1087.64 469.1 nan 650.80

4d
VAE 1996.2 (1989.7) 1187.8 (1179.9) 2003.321 (2036.61) 4.18e-4 (1.57e-3) 837.52 (833.86)
PCA - 1039.62 469.07 nan 641.61

ICA - 1087.64 469.1 nan 650.8

8d
VAE 1003.5 (994.03) 427.81 (419.91) 54.24 (54.40) 4.32e-4 (1.62e-3) 289.95 (285.81)
PCA - 1039.62 453.68 nan 641.61

ICA - 950.35 453.7558 nan 650.8

16d
VAE 820.670 (825.75) 258.13 (262.16) 15.59 (15.817) 3.70e-4 (1.37e-3) 190.71 (193.48)
PCA - 859.12 527.28 nan 608.13

ICA - 859.00 527.74 nan 608.13

A.1.1.3 acidsInstruments-ordinario table

� log p(x|z) l
2 SC ISD log-l1

2d
VAE 334.41 (334.34) 68.12 (68.12) 21.72 (21.5) 8.53e-5 (3.15e-4) 84.14 (84.03)
PCA - 104.76 16.47 nan 107.22

ICA - 104 16.48 nan 107.22

4d
VAE 286.55 (287.0) 31.90 (31.93) 17.45 (18.21) 8.53e-5 (3.15e-4) 66.27 (66.17)
PCA - 92.7 17.02 nan 104.82

ICA - 92.7 17.03 nan 104.82

8d
VAE 270.1 (269.9) 20.23 (20.11) 12.10 (12.28) 8.30e-5 (3.06e-4) 51.56 (51.28)
PCA - 71.54 16.79 nan 98.40

ICA - 71.54 16.79 nan 98.40

16d
VAE 276.56 (276.69) 23.49 (23.67) 22.96 (20.13) 1.31e-3 (4.79e-3) 56.74 (56.72)
PCA - 48.65 15.16 nan 219.70
PCA - 48.65 15.16 nan 85.34
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A.1.2 Divergences benchmark

� log p(x|z) l
2 SC ISD log-l1

toy_additive_mini

DKL 488.37 (488.37) 13.33 (13.21) 11.26 (11.07) 1.08e-3 (2.92e-4) 47.79 (48.20)
M MD 474.46 (474.75) 5.90 (6.06) 6.78 (6.67) 3.12e-4 (1.16e-3) 33.66 (34.39)
D↵=2 487.89 (487.84) 13.035 (13.01) 9.03 (9.03) 2.95e-4 (1.09e-3) 46.75 (46.72)
JSD 519.41 (519.1379) 28.07 (24.36) 24.34 (7.60) 3.22e-4 (1.20e-3) 70.70 (70.36)
Adv 485.78 (485.88) 11.69(10.18) 10.25(10.0) 2.91e-4 (1.075e-3) 46.44 (46.49)
PCA - 137.29 160.42 nan 139.35

ICA - 137.29 160.42 nan 139.35

toy_fm

DKL 910.64 (910.10) 340.71 (340.40) 15.59 (15.81) 3.435e-4 (1.27e-3) 190.71 (193.48)
M MD 771.6 (766.8) 225.08 (221.78) 62.14 (62.19) 4.00e-4 (1.50e-3) 205.46 (202.95)
D↵=2
JSD 792.52 (259.07) 244.99 (242.90) 27.83 (27.60) 8.28e-05 (3.06e-4) 199.34 (0.63)
Adv 1273.90 (789.56) 524.03 (525.16) 6.28 (6.46) 4.24e-4 (1.59e-3) 253.13 (197.16)
PCA - 859.12 527.28 nan 608.13

ICA - 859.95 527.28 nan 608.13

aIns-o

DKL 276.56 (276.69) 23.49 (23.67) 22.96 (20.13) 1.31e-3 (4.79e-3) 56.74 (56.72)
M MD 248.19 (248.19) 8.43 (8.43) 5.25 (5.31) 8.25e-05 (3.04e-4) 35.37 (35.26)
D↵=2 255.66 (255.74) 12.33 (12.38) 10.23 (10.53) 8.27e-05 (3.05e-4) 43.39 (43.40)
JSD 259.36 (259.07) 7.75 (14.22) 7.74 (7.60) 8.28e-05 (3.06e-4) 43.19 (43.07)
Adv 246.8 (246.7) 7.76 (7.71) 9.97 (10.0) 8.26e-5 (000) 35.83 (35.83)
PCA - 48.65 15.16 nan 219.70
ICA - 48.65 15.16 nan 85.34
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A.1.3 � benchmarks

� log p(x|z) l
2 SC ISD log-l1

toy_additive

� = 1 276.56 (276.69) 23.49 (23.67) 22.96 (20.13) 1.31e-3 (4.79e-3) 56.74 (56.72)
� = 4 518.45 (518.12) 31.57 (31.43) 19.33 (19.46) 3.11e-4 (1.15e-3) 68.58 (68.03)
� = 10 554.01(553.48) 58.18 (57.91) 37.34 (37.85) 3.09e-4 (1.14e-3) 89.51 (88.79)

PCA - 137.29 160.42 nan 139.35

ICA - 137.29 160.42 nan 139.35

toy_fm

� = 1 820.670 (825.75) 258.13 (262.16) 15.59 (15.817) 3.70e-4 (1.37e-3) 190.71 (193.48)
� = 4 901.00 (897.3193) 319.03 (316.24) 17.094276 (15.61) 3.96e-4 (1.47e-3) 211.48 (208.22)
� = 10 1098.0 (1099.0) 451.97 (453.92) 16.15 (15.97) 4.24e-4 (1.59e-3) 248.34 (250.49)

PCA - 859.12 527.28 nan 608.13

ICA - 859.95 527.28 nan 608.13

aIns-o

� = 1 261.37 (261.37) 15.24 (15.34) 14.384189 (13.74) 8.294699e-5 (3.06e-4) 56.74 (47.81 )
� = 4 279.98 (279.83688) 27.82 (27.77) 17.26 (16.56) 8.30e-05 (3.07e-4) 56.96 (56.77)
� = 10 303.88 (304.09 ) 45.06 (45.21) 41.46 (44.54) 8.3674e-05 (3.09e-04) 72.98 (73.11)

PCA - 859.12 527.28 nan 608.13

ICA - 859.12 527.28 nan 608.13

A.2 Regularization benchmarks.

A.2.1 Dimensions benchmark

A.2.1.1 toy_additive

DKL[qkp] DKL[pkq] D↵
2 [qkp] JSD0.5[pkq] M MD[p, q] TC[p, q]

2d
VAE 6.78 (6.78) 745.24 (744.37) 7.80 (7.80) 184.83 (184.61) 5287.61 (1338.22) 8.29 (7.56)
PCA - - - - 48961 32.85

ICA - - - - 20020 1.65e-4

4d
VAE 13.87(13.89) 44620.4 (4449.24) 15.87 (15.89) 179.54 (1109.28) 21510 (125.44) 11.72 (10.78)
PCA - - - - 22944 56.711

ICA - - - - 4587.23 1.0826e-4

8d
VAE 20.64 (20.64) 1658.67 (1647.13) 24.63 (24.62) 410.29 (407.40) 840.89(212.56) 19.00 (18.83)
PCA - - - - 141890 118.63

ICA - - - - 13725 2.66e-4

16d
VAE 35.15 (35.20) 438.08 (440.41) 49.45 (49.50) 103.48 (104.05) 673.49 (159.52) 22.75 (22.89)
PCA - - - - 759.39 400.13

ICA - - - - 34.193 4e-2
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A.2.1.2 toy_fm

DKL[qkp] DKL[pkq] D↵
2 [qkp] JSD0.5[pkq] M MD[p, q] TC[p, q]

2d
VAE 6.31 (6.31) 612.88 (629.59) 7.32 (7.32) 151.85 (156.02) 3648.16 (869.68) 29.82 (23.33)
PCA - - - - 12620 19.62

ICA - - - - 4209.7 1.04e-3

4d
VAE 15.47 (15.46) 11962 (11883) 17.47 (17.46) 2987 (2967) 2987 1470) 30.53 (31.69)
PCA - - - - 43748 158.63

ICA - - - - 2871.0 1.65e-3

8d
VAE 28.44 (28.46) 9854.3 (9735.94) 32.44 (32.46) 2457.2 (2427.7) 5010.1 (1252.14) 40.31 (43.71)
PCA - - - - 102061 86.44

ICA - - - - 15727 3.22e-3

16d
VAE 48.98 (49.20) 8632 (8750.4) 56.98 (57.20) 2147.54 (2176) 10081 (2406) 71.43 (65.32)
PCA - - - - 207162 406.33
ICA - 7628 1.76e-3

A.2.1.3 acidsInstruments-ordinario

DKL[qkp] DKL[pkq] D↵
2 [qkp] JSD0.5[pkq] M MD[p, q] TC[p, q]

2d
VAE 5.97 (5.97) 1042 (1042) 6.97 (6.98) 259.2 (259.2) 16054 (4025) 25.68 (24.46)
PCA - 104.76 16.47 nan nan 107.42

ICA - 104 16.48 nan nan 107.42
4d

VAE -694.1 (9.84 ) 726.39 (000) 11.83 (11.81) 179.54 (180.04) 110.60 (5549) 57.23 (56.79)
PCA - - - nan 161016 148.2

ICA - - - - 65115 6.12e-5
8d

VAE 13.88 (13.9) 353.27 (351.9) 17.734 (17.72) 85.62 (85.29) 26389 (6529) 81.51 (84.46))
PCA - - - nan 188622 148.2

ICA - - - - 48852 1e-4
16d
VAE -694.1 (000) 0.093 (000) -416.6 (000) 0.177 (000) 0.177 (000) 0.177 (000)
PCA - - - - 39409 204.82
ICA - 48.68 15.19 7881 3.9e-4
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A.2.2 Divergence regularization results

DKL[qkp] DKL[pkq] D↵
2 [qkp] JSD0.5[pkq] M MD[p, q] TC[p, q]

toy_additive

DKL 35.15 (35.20) 438.08 (440.41) 49.45 (49.50) 103.48 (104.05) 673.49 (159.52) 22.75 (22.89)
M MD 279.43 (279.86) 22.49e11 (86.10e9) 295.43 (295.86) 16.46e9 (521.5e9) 729.60 (588.83) 20.13 (22.67)
D↵=2 35.40(35.42) 456.00 (458.25) 49.77 (49.78) 107.87 (108.42) 689.97 (174.62) 21.82 (22.25)
JSD 341.51 (340.71) 13.67e6 (13.22e6) 357.52 (356.72) 3418281 (3.30e6) 43200 (3.30e6) 206.66 (205.71)
Adv 947.45 (948.73) 3.70e32 (3.53e32) 955.44 (956.72) 9.24e31 (8.81e31) 470097 (117231) 213.88 (211.75)
PCA - - - - 759.39 400.13
ICA - - - - 34.193359375 4e-2

toy_fm

DKL 48.98 (49.20) 8632 (8750.4) 56.98 (57.20) 2147.54 (2176) 10081 (2406) 71.43 (65.32)
M MD 359.16 (359.16) 3.91e28 (3.87e28) 367.16 (295.86) 9.77e27 (9.67e27) 1659.7 (405.44) 36.33 (35.98)
D↵=2 210.4 (210.86) 3.31e16 (3.40e16) 218.40 (218.86) 8.26e15 (8.51e15) 63233 (15523) 157.91 (155.37)
JSD 153.88 (153.00) 277.95 (276.26) 243.02 (241.64) 61.25 (60.88) 178043 (43708) 200.24 (197.73)
Adv 2178.50 (2179.06) 4.55e29 (4.51e29) 2186.50 (2187.07) 1.14e29 (1.13e+29) 585633 (143165) 411.74 (409.4)
PCA - - - - 207162 406.33
ICA - 48.68 15.19 7628 1.76e-3

acidsInstruments-o

DKL 18.69 (18.82) 247.97(252.12) 25.65 (25.80) 58.63 (59.63) 155.60 (35.72) 25.35 (23.36)
M MD 141.91 (141.70) 22.49e11 (26.39e12) 149.92 (149.70) 5.622e11 (65.98e12) 2399.50 (588.83) 20.13 (19.35)
D↵=2 18.12 (18.08) 398.89 (399.56) 24.41 (24.35) 96.35 (96.52) 4124.59 (1012.24) 27.83 (28.28)
JSD 32.92 (32.84) 49.64 (49.53) 57.69 (57.55) 11.144 (11.12) 105911 (26344) 130.77 (130.11)
Adv 1302.11 (1303.22) 1e+31 (1.75+31) 1310.11 (1311.22) 4.7e30 (4.37e30) 1.88e6 (000) 542.7 (535)
PCA - - - - 39409 204.82
ICA - 48.68 15.19 7881 3.9e-4

A.2.3 �-benchmarks.

DKL[qkp] DKL[pkq] D↵
2 [qkp] JSD0.5[pkq] M MD[p, q] TC[p, q]

toy_additive

� = 1 35.15 (35.20) 438.08 (440.41) 49.45 (49.50) 103.48 (104.05) 673.49 (159.52) 22.75 (22.89)
� = 4 18.30 (18.28) 155.44 (155.22) 25.72 (25.71) 35.75 (35.70) 605.64(143.10) 20.34 (19.83)
� = 10 12.48 (12.47) 60.37 (60.04) 19.30 (19.29) 13.30 (13.22) 550.72 (140.6) 19.93 (20.10)

PCA - - - - 759.39 202.13
ICA - - - - 8875.41 6.77e-4

toy_fm

� = 1 34.94 (49.20) 8632 (8750) 56.97 (57.20) 2147 (2176) 10081 (2406) 71.43 (65.33)
� = 4 34.94 (34.77) 1791.2 (1736.4) 43.06 (42.9) 440.84 (427.29) 10163 (2534) 85.73 (89.76)
� = 10 24.86 (24.87) 500.77 (504.15) 33.09 (33.09) 121.5 (121.8) 10053 (2419.8) 108.52 (113.10)

PCA - - - - 205598 405.70
ICA - - - - 7594.93 6.10e-4

acidsInstruments-o

DKL 19.19 (19.28) 282.62 (284.09) 26.29 (26.39) 67.20 (67.54) 11557 (2840.25) 51.95 (50.27)
� = 4 9.36 (9.36) 57.24 (57.50) 14.67 (14.66) 13.00 (12.98) 10473 (2527.10) 51.63 (50.80)
� = 10 5.424(5.423) 26.63 (26.67) 8.78 (8.78) 5.90 (5.912) 7539.1 (1807.7) 45.781 (45.52)

PCA - - - - 39409 204.82
ICA - - - - 7881.27 3.92e-4
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A.3 Disentangling.

A.3.1 toy_additive

f_0 random n_partials random decay random
2d 4.90 4.97 2.29 2.26 1.75 1.75
4d 4.79 4.87 2.10 2.15 1.69 1.68
8d 4.75 4.81 2.011 2.09 1.70 1.71

DKL 4.97 4.79 2.22 2.12 1.73 1.72
M MD 4.77 4.82 2.14 2.13 2.50 2.63
D↵=2 4.79 4.78 2.17 2.12 1.72 1.72
JSD 6.99 7.13 3.63 3.49 2.91 2.91
Adv 12.02 7.52 6.97 6.38 5.31 5.32

� = 4 4.86 4.78 2.10 2.09 1.72 1.70
� = 10 4.73 4.78 2.06 2.09 1.69 1.70

PCA 5.55 7.13 3.94 4.02 2.51 2.51
ICA 4.61 4.61 1.95 1.95 1.61 1.61

A.3.2 toy_fm

f_carrier random f_multiplier random fm_ratio random
2d 3.54 3.54 3.93 3.90 3.44 3.48
4d 3.31 3.31 3.60 3.63 3.23 3.25
8d 3.49 3.49 3.77 3.76 3.42 3.46

DKL 3.58 3.55 3.82 3.85 3.54 3.58
M MD 3.46 3.43 3.78 3.71 3.29 3.37
D↵=2
JSD 5.68 5.60 5.68 6.00 5.97 5.50
Adv 14.32 14.34 16.12 16.40 14.44 15.49

� = 4 3.62 3.52 3.82 3.82 3.33 3.46
� = 10 3.43 3.48 3.90 3.81 3.61 3.48

PCA 6.40 6.04 5.81 7.02 4.84 6.34
ICA 3.22 3.22 3.54 3.53 3.17 3.18
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A.3.3 acidsInstruments-ordinario

octave random pitch random dynamics random instrument random
2d 2.52 2.46 2.72 2.74 1.73 1.69 2.74 2.72
4d 2.55 2.42 2.41 2.67 1.77 1.98 2.79 2.76
8d 2.51 2.47 2.60 2.65 1.70 1.66 2.75 2.65

DKL 2.77 2.47 2.76 2.66 1.70 1.72 2.46 2.69
M MD 2.4 2.35 2.50 2.64 2.50 2.63 1.68 1.75
D↵=2 2.27 2.33 2.61 2.60 1.74 1.72 2.73 2.61
JSD 2.733 2.6653 3.02 2.97 1.97 2.06 3.12 3.07
Adv 6.94 7.52 10.112 10.03 6.08 7.42 8.74 8.25

� = 4 2.64 2.45 2.75 2.62 1.80 1.73 2.38 2.61
� = 10 2.33 2.33 2.65 2.58 1.65 1.68 2.78 2.57

PCA 3.00 3.04 3.35 3.39 2.04 2.04 3.27 3.19
ICA 2.41 2.265 2.53 2.53 2.53 1.65 1.61 2.53





What doth life ?
- Xavier Renegade Angel
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