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Introduction

This document is a synthesis of the research that I have been conducting, along with
my co–authors, since the defense of my PhD thesis. This includes several topics, which
are connected by the stochastic calculus (and also by the stochastic control). I have
chosen to regroup them along two different main parts:

I. Monotone backward stochastic differential equations (BSDEs in short) with sin-
gularities.

II. Some contributions in stochastic analysis.

The first part forms a coherent whole. The main questions are: how can a terminal
singularity be handled to obtain a solution ? And which applications are related to
these singular equations ? The second is more disparate, which leads to this vague title.
Here are aggregated different problems on measure solutions for BSDEs, on optimal
switching, on parameter estimation for fractional diffusion and on homogenization of
random partial differential equations (PDEs). If the first two works still deal with
BSDE theory, estimation and homogenization are away from this topic. Nonetheless
the initial motivation of the statistical work was an optimal control problem: how to
design the parameters to obtain the more efficient estimation ? And the study of some
random PDEs with small parameters is a very nice application of the BSDE theory,
although we used completely different tools in our papers.

??

The first part encompasses several works on singularity for BSDEs and is a direct pursuit
of my PhD thesis. The starting question of Étienne Pardoux comes from the following
observation. The function t 7→ (T − t)−1 is the solution of the ordinary differential
equation (ODE) y′ = y2 with terminal value +∞ at time T . This solution is finite
(even bounded) except at time T . Similar results have been already proved for reaction-
diffusion PDE:

∂u

∂t
+ ∆u(t, x)− u(t, x)2 = 0

with a prescribed singular terminal value u(T, ·). Quantity u(T, ·) is a measure, called
the trace of u. This measure is singular in the sense that u(T, ·) can be equal to
+∞ on some closed subset of Rd. Since BSDE are a way to extend the Feynman–
Kac representation to semi-linear PDE, this trace theory explains why we consider a
singular terminal condition also for BSDEs. However if we consider an ODE of the form
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y′ = −f(y) where f is Lipschitz continuous, then it is not possible to obtain a solution
equal to +∞ at time T and finite on [0, T [. Hence generator f has to be super-linear.
This leads to the following two-steps program:

1. Solving a BSDE with a so-called monotone (or one-sided Lipschitz continuous)
generator:

(1) 〈x− x′, f(x)− f(x′)〉 ≤ χ|x− x′|2,

but with integrable terminal value. The map x 7→ −x|x| is a typical example (with
χ = 0).

2. Adding a singularity at the final time: the terminal value can be equal to +∞ or
at least is not integrable.

These two items are the first two sections of the first part.

?

For BSDEs the underlying filtration F = (Ft, t ≥ 0) plays a key role. Let us simply
evoke that the terminal value is supposed to be FT -measurable, whereas the solution
is assumed to be adapted to the filtration, that is Yt depends only on the information
available at any time t, or is Ft-measurable. When there is no generator, the solution
at time t ∈ [0, T ] is the conditional expectation knowing Ft of the terminal value. Thus
it is a martingale1. If F supports a Brownian motion W and a Poisson random measure
π, this martingale can be decomposed into three parts∫ ·

0

ZsdWs +

∫ ·
0

∫
E
Us(e)π̃(de, ds) +M,

M being an additional orthogonal martingale. Combining this representation with the
ODE part yields to the next form for a BSDE:

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E
Us(e)π̃(de, ds)− (MT −Mt).

When ξ belongs to some Lp-space and f is continuous and monotone w.r.t. y (Equation
(1)) and Lipschitz continuous w.r.t. (z, u), the existence and uniqueness of the solution,
together with a comparison result, are proved in the papers [X] and [XV], with Thomas
Kruse. Note that for these BSDEs, we can replace the deterministic terminal time T by
a stopping time τ . For p ≥ 2, the results are obtained using standard technics. However
for p < 2, when the generator f depends on U , there is a real issue. We needed some
new properties for f and new arguments to get the existence of the solution (see [XV]).

We also extend these results:
1Provided some integrability condition is assumed.
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• For backward doubly stochastic differential equations (BDSDEs) without jumps:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs −
∫ T

t

g(s, Ys, Zs)
←−−
dBs

in [XIII], with Anis Matoussi and Lambert Piozin.

• For reflected backward stochastic differential equations (RBSDEs): Yt ≥ Lt and

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs − (MT −Mt) + (KT −Kt),

in [VII] with Saïd Hamadène, and in [XVII] with Chao Zhou.

• For second order backward stochastic differential equations (2BSDEs):

Yt = ξ +

∫ T

t

f̂P
u (Yu, â

1
2
uZu)du−

(∫ T

t

ZudX
c,P
u

)P

−
∫ T

t

dMP
u +

∫ T

t

dKP
u

also in [XVII].

In all these papers, the generator f is supposed to be monotone w.r.t. y and the terminal
value has a r-moment for r > 1. If for the BSDE, we can deal with a general growth
condition for f , some restrictions on the growth of f w.r.t. y are introduced for RBSDEs,
BDSDEs and 2BSDEs. Essentially f should growth at most polynomially w.r.t. y. But
in any case, if g is Lipschitz continuous w.r.t. (y, z, u), and if η is a positive process,
generators of the form

f(y) = − 1

ηt
y|y|q−1 + g(t, y, z, u), q > 1,

are allowed.

?

Singularity is the most original topic of my research. The terminal value ξ doesn’t
belong to some Lp(Ω); for example ξ can be equal to +∞ with a positive probability.
Loosing integrability2 should be compensated by additional properties for generator f .
We suppose3 that f is decreasing sufficiently fast when y is large, namely there exist
q > 1 and a positive process η such that

(2) ∀y ≥ 0, ∀(t, z, u), f(t, y, z, u)− f(t, 0, z, u) ≤ − 1

ηt
y|y|q−1.

The existence of a minimal (super)solution is obtained by a truncation procedure in
[I, II] and in [XI] with Thomas Kruse. Replacing ξ by ξ ∧ L leads to a unique solution
(Y L, ZL, UL,ML) to the BSDE with generator f . The comparison principle implies that

2On the positive part of ξ. We still suppose that ξ− is integrable, even if it can be relaxed.
3The other conditions are more technical and less important.
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the sequence (Y L, L ≥ 0) is non-decreasing. Hence there exists a process Y min which
is the limit of Y L. The key point is the existence of a priori estimate on Y L. Indeed in
classical estimates for BSDEs, Y L at time t is controlled by the conditional expectation
of ξ ∧ L at time t. But this expectation tends to +∞ when L goes to ∞, even if ξ is
not a.s. equal to +∞. For example, if ξ = +∞1WT≥0, then for any 0 ≤ t < T

E(ξ ∧ L
∣∣Ft) = LP(WT ≥ 0

∣∣Ft) = LΦ

(
Wt√
T − t

)
> 0

where Φ is the cumulative distribution function of the standard Gaussian law.
The previous growth condition (2) of f is sufficient to get a suitable a priori estimate4

of the form:

(3) Y L
t ≤

C

(T − t)p

[
E
( ∫ T

t

(
(ηs)

p−1 + (T − s)p(f(s, 0, 0,0))+
)`
ds

∣∣∣∣Ft)]1/`

.

Constant p is the Hölder conjugate of q, C and ` > 1 come from the dependence of f
w.r.t. z and u. This estimate shows that before time T , Y L is finite and belongs to
some L`-integrability space. Thus on any time interval [0, T −ε], it is possible to pass to
the limit on (ZL, UL,ML). The limit process (Y min, Zmin, Umin,Mmin) solves the BSDE
on [0, T [. Moreover if the filtration is left-continuous at time T (T is not a thin time),
then a.s.

(4) lim inf
t→T

Y min
t ≥ ξ = Y min

T .

This is the reason why we call Y min a supersolution. Finally this solution is minimal,
that is every other supersolution dominates it. Note that it implies that any other
truncated approximation converges to the same supersolution Y min. This construction
has been:

• Done if the terminal time is a stopping time τ in [XI]. However an a priori estimate
has been proved only if τ is the exit time of a continuous diffusion process (Keller-
Osserman inequality).

• Extended to BDSDEs in [XIII] and to 2BSDEs in [XVII].

The first immediate question concerns the uniqueness of this supersolution. It is still
an open question, except if ξ = +∞ a.s. In this particular case, a.s.

lim
t→T

Y min
t = ξ = +∞.

Another construction has been developed first by Horst and Graewe, based on the exact
asymptotic of solution Y min. In [XXI] with Paulwin Graewe, if f(t, y, z, u) = g(y)/ηt+γt,
we prove that

Y min
t = φ(At) + ψ(At)Ht,

4If T is a stopping time, the a priori upper bound is very different and more delicate.
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where φ and ψ are given functions depending of g, A is a non-negative process, such
that a.s.

lim
t→T

φ(At) = lim
t→T

ψ(At) = +∞.

The remainder H solves a BSDE with terminal condition equal to zero, but with a
singular generator FH : a.s. ∫ T

0

FH(t, h, 0)dt = +∞.

Nonetheless the advantage of this method is that uniqueness of H and thus of Y min can
be proved if g is concave. And if g(y) = −y|y|q−1, solution H can be obtained using
Picard’s iterations (in the right weighted space), and not only as the increasing limit of
the approximating sequence.

From the definition of a supersolution, a second question concerns the behavior at
time T of solution Y min:

• Does the limit at time T exist ?

• Is the limit (or at least the liminf) equal a.s. to ξ ?

We call this question the continuity problem. Remark that this question is related to the
uniqueness of the solution. Indeed (4) is too weak to ensure the uniqueness. Suppose Y (1)

and Y (2) are minimal supersolutions of the BSDE for two distinct terminal conditions
ξ(1) and ξ(2). With (4), they may be equal on [0, T [ ! Assume now that Y (i) are solutions
to the BSDE with these terminal conditions, such that Y (i) are both continuous at time
T . This and ξ(1) 6= ξ(2) imply that Y (1) and Y (2) are distinct processes.

In [XII], we show that the existence of the limit depends on generator f . The minimal
solution Y min is càdlàg on [0, T ] if there exists a lower bound on generator f :

∀y ≥ 0, ∀(z, u), −btg(y) ≤ f(t, y, z, u)− f(t, 0, z, u).

Then Y min is equal to a function of the difference of two non-negative càdlàg super-
martingales ψ+ and ψ−:

Yt = Θ
(
EFt

[
Θ−1(ξ)

]
+ ψ−t − ψ+

t

)
.

It is known that non-negative supermartingales have a limit and here a.s. lim
t→T

ψ−t = 0.

Thereby from the properties of Θ, Y min has a limit at time T and

lim
t→T

Y min
t ≥ ξ.

Unfortunately we are not able to prove that ψ+ tends to zero, which would lead to the
a.s. equality of the limit and the terminal value ξ. A similar result has been obtained
in [XIII] for singular BDSDEs.

Conversely equality in (4) only depends on ξ. In [I, II, XII], the (half-)Markovian5

setting is considered, that is
ξ = Φ(XT )

5Half-Markovian because there is no similar assumption on generator f .
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is a function of the terminal value of a diffusion process X. Then equality holds6.
In [XIX], Dmytro Marushkevich and I extend this result to smooth functionals of X,
using the functional Itô calculus developed by Dupire, Cont and Fournié. Non smooth
functionals have been considered in [XVI, XXIV] with Thomas Kruse, Devin Sezer and
Mahdi Ahmadi.

The probabilistic representation of a semi-linear PDE is one motivation of my re-
search. For some reaction-diffusion PDE:

∂u

∂t
+ Lu(t, x)− u(t, x)|u(t, x)|q−1 = 0

Marcus and Véron developed the notion of the trace of a non-negative solution u. The
operator L is the infinitesimal generator of a continuous Markov diffusion process. They
show that this trace is in general singular, that is u can explode at time T (or on the
boundary for an elliptic PDE). Legall, Dynkin and Kuznetsov obtain very similar results
with the Brownian snake or superdiffusions. The minimal supersolution Y min of the
BSDE with singular terminal value provides another probabilistic representation of the
solution of this PDE (see [I] for the parabolic case and [II] for the elliptic case). Moreover
this method can be adapted to other types of PDE:

• In [XIV] for integro-partial differential equations: u(T, ·) = Φ and

∂u

∂t
+ Lu(t, x) + I(t, x, u) + f(t, x, u(t, x),∇u(t, x),B(t, x, u)) = 0

where I and B are non-local integro-differential operators.

• In [XIII] for SPDEs:

u(t, x) = Φ(x) +

∫ T

t

[Lu(s, x) + f(s, x, u(s, x), (σ∗∇u)(s, x))] ds

+

∫ T

t

g(s, x, u(s, x), (∇uσ)(s, x))
←−−
dBr.

In all cases, Φ takes values in [0,+∞]. Even if we didn’t check the details, the results of
[XVII] can be used to deal with fully non-linear PDEs with singular terminal conditions.
As far as I know, these types of PDE (IPDE, SPDE or fully non-linear) with singularities
have never been studied before.

?

Let us now tackle an interesting application of BSDEs with terminal singularity. The
basic problem of the calculus of variations consists in minimizing an integral functional
over a set of functions satisfying an initial condition and a terminal constraint:

Minimize J(X) = E
[∫ T

0

j(t,Xt,
.
X t)dt

]
over all absolutely continuous

and progr. mb. processes X satisfying X0 = x0 ∈ R and XT = 0.

6In [XIII], we prove that it also holds for BDSDEs.
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We interpret t as time, Xt as the state and
.
X t as the velocity at time t:

Xt = x+

∫ t

0

.
Xsds.

If instead of the strong constraint on XT at time T we add a terminal cost g(XT )
in J(X), the Pontryagin maximum principle characterizes the optimal control as the
solution of a forward backward SDE:

Xt = x−
∫ t

0

j∗y(s,Xs, Ys)ds,(5)

Yt = g′(XT ) +

∫ T

t

jx(s,Xs, j
∗
y(s,Xs, Ys))ds−

∫ T

t

ZsdWs,

where j∗(t, x, ·) denotes the convex conjugate of the function a 7→ j(t, x, a), j∗y its deriva-
tive w.r.t. y and jx the derivative of j w.r.t. x. If the terminal cost is considered as a
penalty on XT , like L(XT )2, letting L go to +∞ should give an optimal control for the
constrained control problem (XT = 0). Solving an FBSDE is challenging. One method
is based on the existence of a decoupling field u: Yt = u(t,Xt). Roughly speaking the
aim is to separate the forward equation from the backward equation.

One focus of the literature is set on cost functions j that are additive and homo-
geneous: j(t, x, a) = γt|x|p + ηt|a|p, where p > 1 and (η, γ) is a pair of non-negative
progressively measurable processes. The terminal constraint is of the form L|x|p. The
particular form allows to decouple the FBSDE, after a variable change: Yt = pXp−1

t θt,
where θ solves the BSDE

θt = L+

∫ T

t

[
(p− 1)

θqs
ηq−1
s

+ γs

]
ds−

∫ T

t

ζsdWs.

This decoupling method can be also justified as follows: by homogeneity of the running
and terminal costs, the value fonction

v(t, x) = inf.
X,Xs=x+

∫ s
t

.
Xudu

E
[∫ T

t

(
γs|Xs|p + ηs|

.
Xs|p

)
ds+ L|XT |p

∣∣∣∣Ft]
should be v(t, x) = |x|pθt. As the penalty L of any deviation of XT from 0 increases to
infinity, the backward part of the decoupled FBSDE converges to a solution of a BSDE
with singular terminal condition. This additive–homogeneous case has been studied first
by Ankirchner, Kruse and Jeanblanc. In [XI] Thomas Kruse and I extend the result to:

• General filtration F;

• Poisson random measure as an additional source of randomness;

• Random terminal time;

• General terminal condition: we relax the mandatory constraint XT = 0, adding
in J(X) a terminal cost ξ|XT |p where ξ ≥ 0 can be equal to +∞. Finite costs
require that XT = 0 when ξ = +∞.
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The analysis of optimal control problems with state constraints on the terminal
value is also motivated by models of optimal portfolio liquidation under stochastic price
impact. The traditional assumption that all trades can be settled without impact on
market dynamics is not always appropriate when investors need to close large positions
over short time periods. In this framework the state process X denotes the agent’s
position in the financial market. She has two means to control her position. At each
point in time t she can trade in the primary venue at a rate

.
X t which generates costs

ηt|
.
X t|p incurred by the stochastic price impact parameter ηt. Moreover, she can submit

passive orders to a secondary venue ("dark pool"). These orders get executed at the
jump times of the Poisson random measure π and generate so called slippage costs∫
E λt(e)|βt(e)|

pµ(de). The term γt|Xt|p can be understood as a measure of risk associated
to the open position. Thus

J(X) = E
[∫ τ

0

(
ηs|

.
Xs|p + γs|Xs|p +

∫
E
λs(e)|βs(e)|pµ(de)

)
ds+ ξ|Xτ |p

]
represents the overall expected costs for closing an initial position x over the time period
[0, τ ] using strategy X:

Xs = x+

∫ s

0

.
Xudu+

∫ s

0

∫
E
βu(e)π(de, du).

Working with general filtration means that the noise is not necessarily generated by a
Brownian motion. Moreover, the liquidation constraint is relaxed in the following way. If
ξ = +∞ a.s., the position has to be closed imperatively (binding liquidation). Our model
is flexible enough to allow for a specification of a set of market scenarios S ⊂ Fτ where
liquidation is mandatory: Xτ11S = 0. On the complement Sc a penalization depending
on the remaining position size can be implemented. This terminal constraint is described
by the Fτ -measurable non negative random variable ξ such that S = {ξ = +∞}. For
excepted scenarios, we can consider ξ =∞11S with for example S = {maxt∈[0,T ] ηt ≤ H}
or S = {

∫ T
0
ηtdt ≤ H} for a given threshold H > 0. This means that liquidation is only

mandatory if the maximal price impact (or the average price impact) is small enough
throughout the liquidation period. If the illiquidity of the market is too high, the trader
has not obligatorily to close his position. Since the terminal time is a random time
horizon τ , one can consider price-sensitive liquidation periods where the position has
to be closed before the first time when the unaffected market price S (a diffusion) falls
below some threshold level K > 0, i.e. τ = inf{t ≥ 0|St ≤ K}.

In the work [XVII], Chao Zhou and I also consider Knightian uncertainty for this
problem. Instead of a fixed probability measure P, we suppose that there exists a family
of probability measures such that we minimize

sup
P

EP
[∫ T

0

(
γt|Xt|p + ηt|

.
X t|p

)
dt+ ξ|XT |p

]
.

It corresponds for an agent to compute the worst case scenario for the liquidation of her
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portfolio. An optimal control is given by the solution of the related second order BSDE:

Yt = ξ +

∫ T

t

[
− (Yu)

q

(q − 1)(ηu)q−1
+ γu

]
du

−
(∫ T

t

ZsdX
c,P
s

)P

−
∫ T

t

dMP
s + (KP

T −KP
t ), P− a.s.

If there are a large number N of players, each of them minimizes its own cost

JN,i = E

[∫ T

0

(
κit
N

N∑
j=1

ξjtX
i
t + ηit(ξ

i
t)

2 + λit(X
i
t)

2

)
dt

]

where ξi =
.
X i
t . But now the agent has to take into account the control of the other

players. Using a mean-field approach, Guanxing Fu, Ulrich Horst, Paulwin Graewe and
I show in [XX] that

• The mean-field equilibrium is attained by the unique solution of a mean-field type
FBSDE 

dXt =− Yt
2ηt

dt,

−dYt =

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2λtXt

)
dt− Zt dW̃t,

X0 =x, XT = 0.

• The mean-field equilibrium ξ∗ leads to an approximate Nash equilibrium for the
N -players game of order 1/

√
N : for each 1 ≤ i ≤ N and each admissible ξi,

JN,i (ξ∗) ≤ JN,i(ξi, ξ∗,−i) +O

(
1√
N

)
,

where (ξi, ξ∗,−i) = (ξ∗,1, · · · , ξ∗,i−1, ξi, ξ∗,i+1, · · · , ξ∗,N).

Surprisingly the solution of the mean-field type FBSDE cannot be directly obtained by
a penalized scheme. We solve it using an adapted version of the continuation method
and then we prove that the penalized scheme converges to the solution with the terminal
constraint.

In the non-homogeneous case, we have to solve FBSDE (5), which is in general
a difficult issue. We already mention the continuation method. The decoupling field
theory is another way to tackle the problem. Roughly speaking we search Y of the form
Yt = u(ω, t,Xt), where u is the decoupling field. Stefan Ankirchner, Alexander Fromm,
Thomas Kruse and I use this method in [XVIII] to solve the initial control problem:
minimize J(x0) = E

[∫ T
0
j(t,Xt,

.
X t)dt

]
with the terminal constraint XT = 0. Indeed we
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prove that the FBSDE

Xt = x−
∫ t

0

j∗y(s,Xs, Ys)ds,

Yt = LX2
T +

∫ T

t

jx(s,Xs, j
∗
y(s,Xs, Ys))ds−

∫ T

t

ZsdWs,

has a solution with a unique decoupling field uL. The sequence uL is non decreasing
w.r.t. L. Together with an appropriate upper bound7, uL converges to u∞. If X∞ is
the unique solution to the ODE

X∞t := x0 −
∫ t

0

j∗y(s,X
∞
s , u

∞(s,X∞s ))ds, t ∈ [0, T ),

X∞T = 0 and if we define α∞s := j∗y(s,X
∞
s , u

∞(s,X∞s )), for s ∈ [0, T ), while setting
α∞T := 0, then strategy α∞ minimizes J(x0). Moreover if Y ∞ = u∞(·, X∞), we obtain
the solution of the FBSDE: for 0 ≤ t ≤ r < T

X∞t = x0 −
∫ t

0

j∗y(s,X
∞
s , Y

∞
s )ds, X∞T = 0,

Y ∞t = Y ∞r +

∫ r

t

jx(s,X
∞
s , j

∗
y(s,X

∞
s , Y

∞
s ))ds−

∫ r

t

Z∞s dWs.

Similar FBSDEs have been already obtained by Mikami and Thieullen or Tan and
Touzi for optimal transportation problem, but with a different setting. Note that the
singularity is in u∞, which explodes at time T .

??

The second part of this document is less coherent and encompasses different works, which
are not directly related with each other. We start with two papers on BSDEs. In the
first one [IV], Stefan Ankirchner, Peter Imkeller and I introduce a new notion of solution.
Up to now in this document, the solution of a BSDE is a strong solution; the probability
space is a priori given and the solution is constructed on this space. Buckdahn, Engelbert
and Rascanu in 2004 already developed the concept of weak solutions of BSDEs: here
the probability space is a part of the solution. Our definition of solution is somehow in
between. Indeed a BSDE can be written as follows

Yt = ξ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

= ξ −
∫ T

t

Zs

(
dWs −

f(s, Zs)

Zs
ds

)
= ξ −

∫ T

t

ZsdW̃s.

W̃ is a Brownian motion under a new probability measure Q, equivalent to P. Since
we only change the probability measure, we call this solution measure solution. More

7Adapted version of estimate (3). However the bound is on the decoupling field, not on Y here.
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precisely a triplet (Y, Z,Q) is called a measure solution of the BSDE, if Q is a probability
measure on (Ω,F), (Y, Z) a pair of (Ft)–predictable stochastic processes such that∫ T

0
Z2
sds <∞, Q-a.s. and the following conditions are satisfied:

W̃ = W −
∫ ·

0

g(s, Zs)ds is a Q− Brownian motion,

ξ ∈ L1(Ω,F ,Q),

Yt = EQ(ξ|Ft) = ξ −
∫ T

t

ZsdW̃s, t ∈ [0, T ].

Here g(s, z) = f(s, z)/z. In [IV], we show that if f is Lipschitz continuous w.r.t. z,
then we can construct a measure solution from scratch. The quadratic case, |f(s, z)| ≤
c(1 + z2), is more challenging. For bounded terminal value ξ, classical solution and
measure solution are equivalent. But for unbounded terminal condition, under some
integrability conditions on ξ, a measure solution exists whereas uniqueness is lost (we
even construct a continuum of solutions).

?

Optimal switching problem is a class of control problems. In broad terms, a planner
can choose between different modes of production and when she switches from a mode
to another one. The goal is to determine optimal times and optimal modes to maximize
the benefits of the firm. If there are only two modes (start and stop), the problem
reduces to the choice of optimal times and has been solved by Hamadène and Jeanblanc
in 2007. Suppose that the two modes are denoted 1 and 2, that there is a running profit
ψi in mode i and that changing from the mode i to j has a sunk cost `ij. Solving a
reflected BSDE with two barriers:

Yt =

∫ T

t

(ψ1(s,Xs)− ψ2(s,Xs))ds+ (K+
T −K

+
t )− (K−T −K

−
t )−

∫ T

t

ZsdWs,

with
−`12 ≤ Yt ≤ `21,

and defining

Y 1
t = E

[∫ T

t

ψ1(s,Xs)ds+ (K+
T −K

+
t )

∣∣∣∣Ft] ,
Y 2
t = E

[∫ T

t

ψ2(s,Xs)ds+ (K−T −K
−
t )

∣∣∣∣Ft] ,
Hamadène and Jeanblanc proved that

Y 1
t = ess sup

τ
E
[∫ τ

t

ψ1(s,Xs)ds+ (−`12 + Y 2
τ )1τ<T

∣∣∣∣Ft] ,
Y 2
t = ess sup

τ
E
[∫ τ

t

ψ2(s,Xs)ds+ (−`21 + Y 1
τ )1τ<T

∣∣∣∣Ft]
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give a sequence of optimal stopping times. These times are maximizers of the previous
essential suprema.

In [V], Boualem Djehiche, Saïd Hamadène and I consider the case where there are
more than three choices i ∈ {1, · · · , q}. At a switching time, a mode should be optimally
chosen. If we can define

Y i
t = ess sup

τ
E
[∫ τ

t

ψi(s,Xs)ds+ max
j 6=i

(−`ij + Y j
τ )1τ<T

∣∣∣∣Ft] ,
as in the two modes case, we can construct an optimal sequence of stopping times and
modes. Instead of a reflected BSDE with two barriers, the Y i are obtained as solution of
a system of reflected BSDEs with inter-connected obstacles. We also relate this system
to a system of variational inequalities: the Y i are equal to vi(·, X), vi being viscosity
solutions of this system of PDEs with obstacles.

?

The next topic is a collaboration with Alexandre Brouste and Marina Kleptsyna.
In [VI] and [VIII], we study the large sample asymptotic properties of the Maximum
Likelihood Estimator (MLE) for the signal drift parameter ϑ in a partially observed and
possibly controlled fractional diffusion system.

Our model is the following. The signal and the observation are represented by
real-valued processes X = (Xt, t ≥ 0) and Y = (Yt, t ≥ 0) and they are governed
by the following linear system of stochastic differential equation interpreted as integral
equation: {

dXt = −ϑXtdt+ (1− ε)u(t)dt+ εdV H
t , X0 = 0 ,

dYt = µXtdt+ dWH
t , Y0 = 0.

Here, V H = (V H
t , t ≥ 0) and WH = (WH

t , t ≥ 0) are independent normalized fractional
Brownian motions (fBm in short) with the same Hurst parameter H ∈ (0, 1) and the
coefficients ϑ ∈ R∗+ and µ 6= 0 are real constants. Depending on ε = 1 or ε = 0, the
unobserved signal process X = (Xt, t ≥ 0) is respectively stochastic or controlled by
the real-valued function u = (u(t), t ≥ 0).

For the first statement ε = 0 (controlled, deterministic and partially observable
signal) we establish the asymptotic (for large observation time) design problem of the
input signal which gives an efficient estimator of the drift parameter. We separate
the initial problem in two subproblems, when the first subproblem is equivalent to
the explicit computations of the first eigenvalue of a certain self-adjoint operator and
the second one is devoted to the analysis of the asymptotic properties of the MLE.
In contrast with the previous works, we propose to use (for the both subproblems)
Laplace transform computations, in particular, the Cameron-Martin formula and the
link between the Laplace transform and the eigenvalues of a covariance operator.

For the second statement ε = 1, we work with a linear Gaussian system, perturbed
by fBm noises. We suppose that the Hurst parameter H is known and it is the same
for the signal X and for the observations Y , which means that the initial observation
model is not Markovian. Again, our goal is to establish the large sample asymptotic
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properties of the MLE for the signal drift parameter ϑ. To analyze the large sample
asymptotic properties of the MLE, we use the program proposed by Ibragimov and
Khasminski. The main idea of this approach is to deduce strong properties of MLE from
the weak convergence of scaled likelihoods in appropriate functional spaces, especially
the convergence of moments which was not addressed even for discrete time hidden
Markov models.

Although both models are different, the methodology of the proofs is very similar:

1. transform the system using the tools developed by Kleptsyna and Lebreton and
compute the likelihood function and the Fisher information to deduce the MLE;

2. reduce the optimization problem to the resolvent estimation problem;

3. apply the Ibragimov-Khasminskii program.

In both cases the use of the Laplace transform is powerful to prove that the conditions
of this program are satisfied.

In the first model, we maximize the Fisher information

JT (ϑ) = sup
u∈UT
IT (ϑ, u) ,

over a set of controls u. We prove that the asymptotical optimal input in the class of
controls UT is u(t) = uopt(t) = κH√

2λ
tH−

1
2 , where the constants λ and κH only depend on

H. The key point is that uopt does not depend on the parameter ϑ. Then we demonstrate
that when T goes to +∞, the MLE is uniformly consistent on compacts K ⊂ R∗+, is
uniformly on compacts asymptotically normal with a limit variance equal to ϑ4

µ2 which
does not depend on H. Moreover we have the uniform on ϑ ∈ K convergence of the
moments. Finally, the MLE is efficient in the sense that, for any compact K ⊂ R+,

sup
ϑ∈K
JT (ϑ)Eϑ

(
ϑ̂T − ϑ

)2

= 1 + o(1) .

For the second model the MLE ϑ̂T is also uniformly on compacts K ⊂ R∗+ consis-
tent, uniformly on compacts asymptotically normal where I(ϑ) stands for the Fisher
information which does not depend on H:

I(ϑ) =
1

2ϑ
− 2ϑ

α(α + ϑ)
+

ϑ2

2α3

and α =
√
µ2 + ϑ2. We have the uniform on ϑ ∈ K convergence of the moments.

To finish this part, let me mention that in [A] we started to study a similar problem
of the form: {

dXt = −ϑXtdt+ dV H
t , X0 = 0 ,

dYt = µXtdt+ dWt , Y0 = 0.

Here, V H = (V H
t , t ≥ 0) is a normalized fBm with the Hurst parameter H in (0, 1) and

W = (Wt, t ≥ 0) is independent Wiener process and the coefficients ϑ and µ 6= 0 are
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real constants. Observing Y when T goes to +∞, we wanted to estimate the parameter
ϑ. Up to now there are still some issues we cannot overcome. Nonetheless some new
results and technics developed by Chigansky and Kleptsyna could be useful to succeed
in this estimation program.

?

To conclude the second part of this thesis, we come to the homogenization problem
studied in [IX, XXIII, B]. Marina Kleptsyna, Andrey Piatnitski and I deal with a
Cauchy problem that takes the form

∂tu
ε = div

(
a

(
x

ε
,
t

εα

)
∇uε

)
,

with some fixed parameter α > 0, and with the initial condition uε(x, 0) = ı(x). We
assume that the matrix a(z, s) = {aij(z, s)} is uniformly elliptic, (0, 1)d-periodic in z
variable, and random stationary ergodic in s. When ε tends to zero, it is known that uε
converges to the solution u0 of:

∂tu
0 = div

(
aeff∇u0

)
with a constant (non-random) positive definite matrix aeff . The value of aeff depends on
the value of α. In the diffusive case, α = 2, there is an equilibrium between the periodic
component and the random part. For α > 2, the random part is dominating and vice
versa for α < 2.

Our goal was to obtain the asymptotic development of uε − u0, up to a stochastic
remaining term. Namely for suitable positive constants cj and correctors Cj

U ε(x, t) =
1

εα/2

[
uε(x, t)− u0(x, t)−

∑
j≥1

εcjCj

(
x, t,

x

ε
,
t

εα

)]

converges to a solution U0 of a SPDE with constants coefficients and an additive noise:

dU0 = div
(

aeff∇U0 + µ
∂3

∂x3
u0
)
dt+ Λ1/2 ∂

2

∂x2
u0 dWt.

Our results can be summarized as follows:

• For α = 2 (diffusive case, [IX]), the convergence holds with only one corrector,
for any dimension d. We only suppose uniform ellipticity for a and some mixing
condition for the stationary dynamical system.

• For α < 2 and if the dynamical system is smooth in time, the convergence result
remains valid (see [B]). The number of correctors increases when α goes to 2.
However this smooth case excludes the diffusion example: a(y, s) = a(y, ξs) where
ξ is the solution of a SDE driven by some Brownian motion.

• For α 6= 2 and for the diffusion example, in [XXIII] we prove the convergence
result only if the dimension d is equal to one.
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To circumvent the issue, we thought about the properties of the fundamental solution
of the heat equation. This is the reason why we investigate this topic in [C]. If we
found interesting new properties of the fundamental solution and of the solution of the
stochastic heat equation, these features are not sufficient to obtain the convergence for
d > 1.

??

To finish this introduction, I want to mention two other papers, which are not pre-
sented in this document.

In [III] Stefan Ankirchner, Peter Imkeller and I focus on the idea of cross hedging, i.e.
using the potentials that are due to the negative correlation of risk exposure of different
agents on a finance and insurance market. We try to develop a basic understanding of
the impact of the correlation of risk exposure of different agents on prices and hedges
of weather or climate derivatives. On the other hand, we try to keep it simple enough
to obtain explicit solutions for pricing and hedging of financial products designed for
climate or weather risk, which we simply call external risk henceforth. The key ingredient
is the utility indifference price p for the derivative F (XT ):

sup
π

E(U(V π
T + F (XT )− p) = sup

π
E(U(V π

T )).

Paper [XXII] is a by-product of a work in progress with Dmytro Marushkevych and
Thomas Kruse. Evoke that for singular BSDE we suppose that the growth condition (2)
holds. Nonetheless for ODE, it can be weaken: instead of −y|y|q−1, we could consider
any non-increasing function g such that −1/g is integrable on some interval [c,+∞[ (see
also [XXI]). Then the issue is to obtain an a priori estimate. The homogeneity of the
power function allows us to deal only with BSDEs. But for general functions g, the
upper bound has a more complex dynamics, given by a backward stochastic Volterra
integral equation:

Y (t) = Φ(t) +

∫ T

t

f(t, s, Y (s), Z(t, s))ds−
∫ T

t

Z(t, s)dWs.

The terminal value and the generator also depend on the current time t. To solve our
problem, we encountered some issues that have not been studied before. In [XXII], we
extend known results to a widely class of BSVIEs:

Y (t) = Φ(t) +

∫ T

t

f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))dBs

−
∫ T

t

Z(t, s)dX◦s −
∫ T

t

∫
Rm

U(t, s, x)π̃\(dx, ds)−
∫ T

t

dM(t, s).

containing the class of general BSDEs studied in [267]. In the Itô setting, Bs = s,
X◦ = W and π̃\ is a compensated Poisson random measure.
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Outline

In Chapter 1, we fix some notations used in the rest of this report. Monotone BSDEs
(and BDSDE, RBSDE, 2BSDE) are studied in Chapter 2. The results of this chapter
are extension of known results for BSDEs.

The most original part is Chapter 3. Here we develop some new notions and results
when the terminal value of the BSDE is not in some Lp-space; in particular if the
terminal value can be equal to +∞ with positive probability. BSDEs with singular
terminal conditions are applied to

• the probabilistic representation of the solution of some PDEs, IPDEs and SPDEs
in Chapter 4;

• some stochastic control problems with terminal constraint in Chapter 5.

In the second part, we bring together two problems on BSDEs in Chapter 6. Chapters
7 and 8 are concerned respectively estimation problems and homogenization. Some
additional technical results are in the appendix (Chapter 9)
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Chapter 1

Notations

This chapter contains all notations, spaces, etc. used in the rest of this report. No
result is presented here.

Let N∗ := N \ {0} and let R∗+ be the set of real positive numbers. For every
d−dimensional vector b with d ∈ N∗, we denote by b1, . . . , bd its coordinates and for
α, β ∈ Rd we denote by α · β the usual inner product, with associated norm ‖ · ‖, which
we simplify to | · | when d is equal to 1. Moreover when the context is clear, ‖ · ‖ is
sometimes denoted by | · |. Rd×k is identified with the space of real matrices with d rows
and k columns. If z ∈ Rd×k, |z|2 = Trace(zz∗). B(.) is the Borelian sigma-field of the
indicated Banach space. We also let 1d be the vector whose coordinates are all equal to
1. For any (l, c) ∈ N∗×N∗,Ml,c(R) denotes the space of l× c matrices with real entries.
Elements of the matrix M ∈ Ml,c are denoted by (M i,j)1≤i≤l, 1≤j≤c, and the transpose
of M by M>. When l = c, we letMl(R) :=Ml,l(R). We also identifyMl,1(R) and Rl.

Let S≥0
d denote the set of all symmetric positive semi-definite d× d matrices. We fix

a map ψ : S≥0
d −→ Md(R) which is (Borel) measurable and satisfies ψ(a)(ψ(a))> = a

for all a ∈ S≥0
d , and denote a

1
2 := ψ(a).

1.1 Under a single probability measure
Quadruplet (Ω,F ,P,F = (Ft)t≥0) always denotes a filtered probability space. Fil-

tration F is assumed to be complete and right continuous. Without loss of generality we
suppose that all semimartingales have right continuous paths with left limits or càdlàg
paths1. If M is a Rd-valued martingale inM, the bracket process [M ]t is

[M ]t =
d∑
i=1

[M i]t,

where M i is the i-th component of vector M .
On (Ω,F ,P,F = (Ft)t≥0), W denotes a k-dimensional Brownian motion and π a

Poisson random measure with intensity µ(de)dt on space E ⊂ Rm \ {0}. Measure µ is
1French acronym for right continuous with left limits.

22



σ-finite on E such that ∫
E
(1 ∧ |e|2)µ(de) < +∞.

The compensated Poisson random measure π̃(de, dt) = π(de, dt)−µ(de)dt is a martingale
w.r.t. filtration F.

Remark 1.1 All results can be generalized to the case where the compensator of π is
random and equivalent to measure dt⊗µ(ω, de) with a bounded density for example (see
the introduction of [34]).

If X is an adapted process, FX = (FXt )t≥0 is the augmented filtration generated by X,
namely

FXt = σ(Xs, s ≤ t) ∨N

where N is the set of negligible subsets of Ω (w.r.t. P).
Furthermore for a given T ≥ 0, we denote:

• Prog denotes the sigma-field of progressive subsets of Ω× [0, T ].

• P : the predictable σ-field on Ω× [0, T ] and

P̃ = P ⊗ B(E)

where B(E) is the Borelian σ-field on E .

• On Ω̃ = Ω × [0, T ] × E , a function that is P̃-measurable, is called predictable.
Gloc(µ) is the set of P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0 a.s.∫ t

0

∫
E
(|ψs(e)|2 ∧ |ψs(e)|)µ(de) < +∞.

• D (resp. D(0, T )): the set of all predictable processes on R+ (resp. on [0, T ]).
L2
loc(W ) is the subspace of D such that for any t ≥ 0 a.s.∫ t

0

|Zs|2ds < +∞.

• Mloc: the set of càdlàg local martingales orthogonal to W and π̃. If M ∈ Mloc

then
[M,W i]t = 0, 1 ≤ i ≤ k [M, π̃(A, .)]t = 0

for all A ∈ B(U). In other words, E(∆M ∗ π|P̃) = 0, where the product ∗ denotes
the integral process (see II.1.5 in [171]). Roughly speaking, the jumps of M and
π are independent.

• M is the subspace ofMloc of martingales.

We refer to [171] (see also [34]) for details on random measures and stochastic integrals.
Let us simple recall the next result on the decomposition of a local martingale.
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Lemma 1.1 (Lemma III.4.24 in [171]) Every local martingale has a decomposition∫ .

0

ZsdWs +

∫ .

0

∫
E
ψs(e)π̃(de, ds) +M

where M ∈Mloc, Z ∈ L2
loc(W ), ψ ∈ Gloc(µ).

Let ψ ∈ Gloc(µ). Let us recall known results on the (local) martingale N given by

(1.1) Nt =

∫ t

0

∫
E
ψs(e)π̃(de, ds), t ≥ 0.

It follows that the compensator is given by

[N ]t =

∫ t

0

∫
E
|ψs(e)|2π(de, ds)

and its predictable projection by:

〈N〉t =

∫ t

0

∫
E
|ψs(e)|2µ(de)ds.

For t ≥ 0 let

N∗t = sup
r∈[0,t]

∣∣∣∣∫ r

0

∫
E
ψs(e)π̃(de, ds)

∣∣∣∣ .
One fundamental inequality is the Burkholder-Davis-Gundy inequality: For all
p ∈ [1,∞) there exist two universal constants cp and Cp (not depending on N) such
that for any N defined by (1.1) and for any t ≥ 0

(1.2) cpE
(

[N ]
p/2
t

)
≤ E [(N∗t )p] ≤ CpE

(
[N ]

p/2
t

)
.

This inequality is proved for example in [170, Proposition 3.66] or [219, Theorem 2.1].
For p ≥ 2, using [219, Theorem 4.1], the predictable projection can be controlled by its
compensator:

(1.3) E
(
〈N〉p/2t

)
≤ ĉpE

(
[N ]

p/2
t

)
.

In particular (1.2) means that martingale N is well-defined (see Chapter II in [170])
provided we can control [N ] in Lp/2(Ω).

1.1.1 Suitable norms on Gloc(µ)

For some p ≥ 1, let us first define Lpµ = Lp(E , µ;Rd), the set of measurable functions
ψ : E → Rd such that

‖ψ‖pLpµ =

∫
E
|ψ(e)|pµ(de) < +∞.
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If ν is the measure defined on E × [0, T ] by ν = µ ⊗ Leb, Lpν = Lp(E × [0, T ], ν;Rd) as
the set of measurable functions ψ : E × [0, T ]→ Rd such that

‖ψ‖pLpµ =

∫ T

0

∫
E
|ψ(e, t)|pν(de⊗ dt) =

∫ T

0

∫
E
|ψ(e, t)|pµ(de)dt < +∞.

On ψ ∈ Gloc(µ) we consider several norms. Again if ν = µ⊗ Leb, then

‖ψ‖Lp(L2
ν)+Lp(Lpν) = inf

ψ1+ψ2=ψ


(
E

[(∫ T

0

∫
E
|ψ1
s(e)|2µ(de)ds

)p/2])1/p

+

(
E
[∫ T

0

∫
E
|ψ2
s(e)|pµ(de)ds

])1/p
}

and

‖ψ‖Lp(L2
ν)∩Lp(Lpν) = max


(
E

[(∫ T

0

∫
E
|ψs(e)|2µ(de)ds

)p/2])1/p

,

(
E
[∫ T

0

∫
E
|ψs(e)|pµ(de)ds

])1/p
}
.

Note that we can define the equivalent norms for a function φ defined on E (resp.
E×[0, T ]) w.r.t. the measure µ (resp. ν), namely ‖φ‖Lpµ+L2

µ
and ‖φ‖Lpµ∩L2

µ
(resp. ‖φ‖Lpν+L2

ν

and ‖φ‖Lpν∩L2
ν
). With these norms we can define the Banach spaces Lpµ+L2

µ and Lpµ∩L2
µ

(resp. Lpν +L2
ν and Lpν ∩L2

ν) (for the definition of the sum of two Banach spaces, see for
example [202]).

These spaces appear naturally in the Bichteler-Jacod inequality2: there exist two
universal constants κp and Kp such that for any ψ ∈ Gloc(µ), if N is defined by (1.1),
then:

• For p ∈ (1, 2),

(1.4) κp

[
E
(

[N ]
p/2
T

)]1/p

≤ ‖ψ‖Lp(L2
ν)+Lp(Lpν) ≤ Kp

[
E
(

[N ]
p/2
T

)]1/p

.

• For p ∈ [2,+∞),

(1.5) κp

[
E
(

[N ]
p/2
T

)]1/p

≤ ‖ψ‖Lp(L2
ν)∩Lp(Lpν) ≤ Kp

[
E
(

[N ]
p/2
T

)]1/p

.

The proof can be found for example in [242, Theorem 1] and the following comments
pages 297 and 298.

2See the discussion in [242] about the name of this estimate.
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1.1.2 Spaces of processes

Let us introduce the following spaces for p ≥ 1.

• Lp(Ω× [0, T ]) is the space of all processes X such that

E
∫ T

0

|Xt|pdt < +∞.

• Dp(0, T ) is the space of all adapted càdlàg processes X such that

E

(
sup
t∈[0,T ]

|Xt|p
)
< +∞.

For simplicity, X∗ = supt∈[0,T ] |Xt|.

• Hp(0, T ) is the subspace of all processes X ∈ D(0, T ) such that

E

[(∫ T

0

|Xt|2dt
)p/2]

< +∞.

• Mp(0, T ) is the subspace ofM of all martingales such that

E
[
([M ]T )p/2

]
< +∞.

• Lpπ(0, T ) = Lpπ(Ω× (0, T )× E): the set of processes X ∈ Gloc(µ) such that

E

[(∫ T

0

∫
E
|Xs(e)|2π(de, ds)

)p/2]
< +∞.

• T : the set of all finite stopping times and TT the set of all stopping times with
values in [0, T ].

• Sp(0, T ) = Dp(0, T )×Hp(0, T )× Lpπ(0, T )×Mp(0, T ).

We recall that a càdlàg adapted process Y is said to be of class (D) if the collection
{Yτ , τ ∈ T } is uniformly integrable. For a process Y of class (D) we set

‖Y ‖1 = sup{E|Yτ |, τ ∈ T }.

1.2 Conditions of the data of a BSDE
In the rest of the report, p is a fixed number such that p > 1. For this given constant

p > 1, we use the space

(1.6) B2
µ =

{
L2
µ if p ≥ 2,

L1
µ + L2

µ if p < 2.
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For a BSDE there are two data. The generator f depends on ω ∈ Ω, s ∈ [0, T ],
y ∈ Rd, z ∈ Rd×k and on u ∈ B2

µ. It is assumed that f : Ω×[0, T ]×Rd×Rd×k×B2
µ → Rd

is a random function, measurable with respect to Prog × B(Rd) × B(Rd×k) × B(B2
µ).

For simplicity the process f(·, 0, 0,0) is denoted f 0:

(1.7) f 0
t = f(t, 0, 0,0),

where 0 denotes the null application from E to R.
Terminal condition ξ is a FT -measurable random variable (with values in Rd). And

the next integrability condition is supposed to be true:

(A1) ξ ∈ Lp(Ω) and f 0 = f(·, 0, 0,0) belongs to Lp(Ω× [0, T ]):

E
(
|ξ|p +

∫ T

0

|f 0
t |pdt

)
< +∞.

Several assumptions on the generator f will be used hereafter.

(A2) For every t ∈ [0, T ], z ∈ Rd×k and every u ∈ B2
µ, the mapping y ∈ Rd 7→

f(t, y, z, u) is continuous. Moreover there exists a constant χ such that

〈f(t, y, z, u)− f(t, y′, z, u), y − y′〉 ≤ χ|y − y′|2.

(A3) For every r > 0 the mapping (ω, t) 7→ sup|y|≤r |f(t, y, 0,0) − f(t, 0, 0,0)| belongs
to L1(Ω× [0, T ],P⊗ Leb).

(A4) f is Lipschitz continuous w.r.t. z: there exists a constant Kf,z such that for any t
and y, for any z, z′ ∈ Rd×k and u in B2

µ

|f(t, y, z, u)− f(t, y, z′, u)| ≤ Kf,z|z − z′|.

(A5) f is Lipschitz continuous w.r.t. u: there exists a constant Kf,u such that for any t
and y, for any z ∈ Rd×k and u, u′ in B2

µ

|f(t, y, z, u)− f(t, y, z, u′)| ≤ Kf,u‖u− u′‖B2
µ
.

Assumption (Aex). If the four previous conditions (A2) to (A5) are satisfied, we say
that Condition (Aex) on the generator f holds.

We define the constant Kf as

K2
f = K2

f,z +K2
f,u.

The hypothesis (A2) is called monotonicity condition. Sometimes we work under re-
strictive assumptions.

(A2’) f is Lipschitz continuous w.r.t. y: there exists a constant Kf,y such that for any t
and y, y′ ∈ Rd, for any z ∈ Rd×k and u in B2

µ

|f(t, y, z, u)− f(t, y′, z, u)| ≤ Kf,y|y − y′|.
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(A2’) implies (A2) and (A3). Sometimes the following growth assumption w.r.t. y is
supposed.

(A3’) There exists q > 1 and a jointly Borel measurable function Ψ : [0, T ] × Ω → R
such that for any (t, ω, y)

|f(t, ω, y, 0,0)− f 0
t | ≤ Ψ(t, ω)(1 + |y|q), and E

∫ T

0

Ψ(t, ω)dt < +∞.

(A3’) implies (A3) and is called polynomial growth.
If the assumption (Aex) is sufficient to obtain existence and uniqueness, it is in gen-

eral not sufficient to obtain a comparison principle for solutions of BSDE. We reinforce
Assumption (A5) and we assume that

(A5’) For each (y, z, u, v) ∈ R × Rk × (B2
µ)2, there exists a predictable process κ =

κy,z,u,v : Ω× [0, T ]× E → R such that:

f(t, y, z, u)− f(t, y, z, v) ≤
∫
E
(u(e)− v(e))κy,z,u,vt (e)µ(de)

with P⊗ Leb⊗ µ-a.e. for any (y, z, u, v),

• −1 ≤ κy,z,u,vt (e)

• |κy,z,u,vt (e)| ≤ ϑ(e), where ϑ belongs to{
L2
µ if p ≥ 2,

L∞µ ∩ L2
µ if p < 2.

Assumption (Acomp) is satisfied if (A2)–(A3)–(A4) and (A5’) hold.
The function ϑ belongs to the dual space of B2

µ (see [202], Chapter 3, Theorem 3.1)
such that the next result holds.

Lemma 1.2 Assumption (Acomp) implies Condition (Aex), that is f is Lipschitz con-
tinuous w.r.t. u with Kf,u = ‖ϑ‖.
Proof. Indeed we take u and v in B2

µ. Thus since ϑ belongs to the dual space, then we obtain:

|f(t, y, z, u)− f(t, y, z, v)| ≤ ‖ϑ‖‖u− v‖B2
µ
.

Hence f is Lipschitz continuous w.r.t. u. �

Let us emphasize that we only need κ ≥ −1 and not κ ≥ C? > −1 for some constant
C? (see for example [302] and the discussion in Section 2.1.1).

In dimension d = 1, the next linearization procedure is used several times through
this report:

f(t, y, z, u) = [f(t, y, z, u)− f(t, 0, z, u)] + [f(t, 0, z, u)− f(t, 0, 0, u)](1.8)
+ [f(t, 0, 0, u)− f(t, 0, 0,0)] + f 0

t

= υty + ζtz
> + πt(u) + f 0

t .
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Process υ is also progressively measurable:

υt =

{
y−1(f(t, y, z, u)− f(t, 0, z, u)) if y 6= 0
0 if y = 0.

Under (A2), this process is bounded from above: υt ≤ χ. Under (A2’), it is bounded:
|υt| ≤ Kf,y. Note that if y is replaced Yt−, υt is still progressively measurable, but when
Yt is used instead of y, υ is only optional.

Process ζ is progressively measurable with values in Rk, and defined as follows: for
1 ≤ i ≤ k:

ζ it =

{
(zi)−1(f(t, 0, z(i−1), u)− f(t, 0, z(i), u)) if zi 6= 0
0 if zi = 0,

where z(0) = z, z(i) is the k-dimensional vector such that its i first components are equal
to 0 and the k − i last components are equal to those of z. Under Condition (A4),
process ζ is bounded (by Kf,z).

And under (A5), we have |πt(u)| ≤ Kf,u‖u‖B2
µ
, whereas with (A5’),∫

E
u(e)κ0,0,0,u

t (e)µ(de) ≤ πt(u) ≤
∫
E
u(e)κ0,0,u,0

t (e)µ(de).

1.3 SDE and Malliavin’s calculus
In this report, X denotes the solution of the following SDE:

(1.9) dXs = b(s,Xs)ds+ σ(s,Xs)dWs, 0 ≤ s ≤ T,

or, in the coordinate form,

dX i
s = bi(s,Xs)ds+

k∑
j=1

σi,j(s,Xs)dW
j
s .

Coefficients b : Ω × [0, T ] × Rd → Rd, σ : Ω × [0, T ] × Rd → Rd×k are progressively
measurable and satisfy the following standard conditions (uniformly w.r.t. ω):

(B1) There exists a constant C ≥ 0 such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

for any t ∈ [0, T ] and x ∈ Rd.

(B2) b and σ are Lipschitz continuous in x, that is there exists a constant C such that

|σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′|

for any t ∈ [0, T ] and x, x′ ∈ Rd.
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These properties of σ and b imply in particular that process Xx := (Xx
s )0≤s≤T , solution

of (1.9) with initial condition x ∈ Rd, exists and is unique. Its infinitesimal generator
L is given by

(1.10) L =
1

2

d∑
i,j=1

(σ.σ∗)ij(t, x)∂2
ij +

d∑
i=1

bi(t, x)∂i.

Moreover the following estimates hold true (see e.g. [183], [297] or [300] for more details).

Proposition 1.1 Process Xx satisfies:

1. For any θ ≥ 2, there exists a constant C such that

(1.11) E
[

sup
0≤s≤T

|Xx
s |
θ

]
≤ C(1 + |x|θ).

2. There exists a constant C such that for any t ∈ [0, T ] and x, x′ ∈ Rk,

(1.12) E
[

sup
0≤s≤T

∣∣∣Xx
s −Xx′

s

∣∣∣2] ≤ C(1 + |x|2)(|x− x′|2).

If the initial time of the solution of (1.9) is now t ∈ [0, T ], the solution is denoted X t,x

and can be extended to the whole interval: X t,x
s = x if s ≤ t. Then (1.12) can be

written:

(1.13) E
[

sup
0≤s≤T

∣∣∣X t,x
s −X t′,x′

s

∣∣∣2] ≤ C(1 + |x|2)(|x− x′|2 + |t− t′|).

When the context is clear, to lighten the notations, X = X t,x.

The Malliavin calculus is a useful tool in our work (see Sections 3.3.2 or 8.6.1).
In what follows we borrow some notations from Nualart [258]. Recall that W is a k-
dimensional Brownian motion. Let f be an element of C∞p (Rkn) (the set of all infinitely
many times continuously differentiable functions such that these functions and all their
partial derivatives have at most polynomial growth at infinity) with

f(x) = f(x1
1, . . . , x

k
1; . . . ;x1

n, . . . , x
k
n).

We define a smooth random variable F by:

F = f(W (t1), . . . ,W (tn))

for 0 ≤ t1 < t2 < . . . < tn ≤ T . Then the Malliavin derivative DtF is given by

Dj
t (F ) =

k∑
i=1

∂f

∂xji
(W (t1), . . . ,W (tn))1[0,ti](t)
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(see Definition 1.2.1 in [258]). Dt(F ) is the k-dimensional vector Dt(F ) = (Dj
t (F ), j =

1, . . . , k). Moreover, this derivativeDt(F ) is a random variable with values in the Hilbert
space L2([0, T ];Rk). Space D1,p

M , p ≥ 1, is the closure of the class of smooth random
variables with respect to the norm

‖F‖1,p =
[
E(|F |p) + E

(
‖DF‖p

L2([0,T ];Rk)

)]1/p

.

The subscript M is here to emphasize the Malliavin derivative. These spaces should
be not confused with space Dp defined in Section 1.1.2. For p = 2, D1,2

M is a Hilbert
space. Then by induction we can define DN,p

M the space of N -times differentiable random
variables where the N derivatives are in Lp(Ω). Finally

DN,∞
M =

⋂
p≥1

DN,p
M , D∞M =

⋂
N∈N

DN,∞
M .

The next result can be found in [258], Theorems 2.2.1 and 2.2.2.

Proposition 1.2 Under conditions (B1)–(B2), the coordinate X i
s belongs to D1,∞

M for
any s ∈ [t, T ] and i = 1, . . . , d. Moreover for any j = 1, . . . , k and any p ≥ 1

(1.14) sup
t≤r≤T

E
(

sup
r≤s≤T

|Dj
rX

i
s|p
)
< +∞.

The derivative Dj
rX

i
s satisfies the following linear equation:

Dj
rX

i
s = σi,j(ξr) +

∑
1≤`,m≤k

∫ t

r

σ̃`i,m(s)Dj
r(X

m
s )dW `

s +
d∑

m=1

∫ t

r

b̃i,m(s)Dj
r(X

m
s )ds

for r ≤ s a.e. and Dj
rXs = 0 for r > s a.e., where for 1 ≤ i ≤ d and 1 ≤ j, ` ≤ k,

b̃i,j(s) and σ̃li,j(s) are uniformly bounded and adapted processes such that if b and σ are
differential with continuous derivatives, then:

b̃i,j(s) = (∂xjbi)(ξs), σ̃`i,j(s) = (∂xjσi,`)(ξs).

Moreover if b and σ are of class C1 in x with Lipschitz continuous derivatives, pro-
cess X belongs to D2,∞

M and second derivatives Di
rD

j
sX

k
t satisfy also a linear stochastic

differential equation with bounded coefficients.

Note that by induction if coefficients σ and β are infinitely differentiable functions in x
with bounded derivatives of all orders greater than or equal to one, then X i

t belongs to
D∞M for all t ∈ [0, T ] and i = 1, . . . , d.

Sometimes we add a jump component to the forward SDE : for any 0 ≤ s ≤ T and
any x ∈ Rd

(1.15) Xx
s = x+

∫ s

0

b(r,Xx
r )dr +

∫ s

0

σ(r,Xx
r )dWr +

∫ s

0

∫
E
β(r,Xx

r− , e)π̃(de, dr).

Parameters b and σ satisfy conditions (B1) and (B2). β : Ω× [0, T ]× Rd × E → Rd is
supposed to be measurable w.r.t. all variables and satisfy (uniformly in ω):
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(B3) β is Lipschitz continuous w.r.t. x uniformly in e, i.e. there exists a constant Kβ,x

such that for all e ∈ E , for any x and y in Rd:

|β(t, x, e)− β(t, y, e)| ≤ Kβ,x|x− y|(1 ∧ |e|).

(B4) There exists a constant C such that

|β(t, x, e)| ≤ C(1 ∧ |e|).

Under these assumptions, for any x ∈ [0, T ]×Rd, the forward SDE (1.15) has a unique
strong solution Xx = {Xx

s , 0 ≤ s ≤ T}. Moreover for all x ∈ Rd and p ≥ 2

(1.16) E
[

sup
0≤s≤T

|Xx
s − x|p

]
≤ C(1 + |x|p).

These results can be found in [297], chapter V, Theorems 7 and 67.

1.4 Under a family of probability measures
In this part, we introduce the setting used for second order BSDEs (see Sections 2.4,

3.2.2 and 5.2). This framework is defined in [309, 295]. Since it is quite stodgy, the
reader can skip this part if he or she is not interested by second order BSDEs.

Canonical space

Let d ∈ N∗, we denote by Ω := C
(
[0, T ] ,Rd

)
the canonical space of all Rd–valued

continuous paths ω on [0, T ] such that ω0 = 0, equipped with the canonical process
X, i.e. Xt(ω) := ωt, for all ω ∈ Ω. Denote by F = (Ft)0≤t≤T the canonical filtration
generated by X, and by F+ = (F+

t )0≤t≤T the right limit of F with F+
t := ∩s>tFs

for all t ∈ [0, T ) and F+
T := FT . We equip Ω with the uniform convergence norm

‖ω‖∞ := sup0≤t≤T ‖ωt‖, so that the Borel σ−field of Ω coincides with FT . Let P0 denote
the Wiener measure on Ω under which X is a Brownian motion.

Let M1 denote the collection of all probability measures on (Ω,FT ). Notice that
M1 is a Polish space equipped with the weak convergence topology. We denote by
B its Borel σ−field. Then for any P ∈ M1, denote by FP

t the completed σ−field
of Ft under P. Denote also the completed filtration by FP =

(
FP
t

)
t∈[0,T ]

and FP
+ the

right limit of FP, so that FP
+ satisfies the usual conditions. Moreover, for P ⊂ M1, we

introduce the universally completed filtration FU :=
(
FUt
)

0≤t≤T , F
P :=

(
FPt
)

0≤t≤T , and
FP+ :=

(
FP+
t

)
0≤t≤T , defined as follows

FUt :=
⋂

P∈M1

FP
t , FPt :=

⋂
P∈P

FP
t , t ∈ [0, T ], FP+

t := FPt+, t ∈ [0, T ), and FP+
T := FPT .

We also introduce an enlarged canonical space Ω := Ω×Ω′, where Ω′ is identical to Ω. By
abuse of notation, we denote by (X,B) its canonical process, i.e. Xt(ω̄) := ωt, Bt(ω̄) :=
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ω′t for all ω̄ := (ω, ω′) ∈ Ω, by F = (F t)0≤t≤T the canonical filtration generated by
(X,B), and by FX = (FXt )0≤t≤T the filtration generated by X. Similarly, we denote the
corresponding right-continuous filtrations by FX+ and F+, and the augmented filtration

by FX,P+ and FP
+, given a probability measure P on Ω.

Semi-martingale measures

We say that a probability measure P on (Ω,FT ) is a semi-martingale measure
if X is a semi-martingale under P. Then on the canonical space Ω, there is some
F−progressively measurable non-decreasing process (see e.g. Karandikar [182]), de-
noted by 〈X〉 = (〈X〉t)0≤t≤T , which coincides with the quadratic variation of X under
each semi-martingale measure P. Denote further

ât := lim sup
ε↘0

〈X〉t − 〈X〉t−ε
ε

.

For every t ∈ [0, T ], let PWt denote the collection of all probability measures P on
(Ω,FT ) such that

• (Xs)s∈[t,T ] is a (P,F)−semi-martingale admitting the canonical decomposition (see
e.g. [171, Theorem I.4.18])

Xs =

∫ s

t

bPrdr +Xc,P
s , s ∈ [t, T ], P− a.s.,

where bP is a FP−predictable Rd−valued process, and Xc,P is the continuous local
martingale part of X under P.

•
(
〈X〉s

)
s∈[t,T ]

is absolutely continuous in s with respect to the Lebesgue measure,
and â takes values in S≥0

d , P− a.s.

Given a random variable or process λ defined on Ω, we can naturally define its extension
on Ω (which, abusing notations slightly, we still denote by λ) by

(1.17) λ(ω̄) := λ(ω), ∀ω̄ = (ω, ω′) ∈ Ω.

In particular, the process â can be extended on Ω. Given a probability measure P ∈ PWt ,
we define a probability measure P on the enlarged canonical space Ω by P := P⊗P0, so
that X in (Ω,FT ,P,F) is a semi-martingale with the same triplet of characteristics as
X in (Ω,FT ,P,F), B is a F−Brownian motion, and X is independent of B. Then for
every P ∈ PWt , there is some Rd−valued, F−Brownian motion W P = (W P

r )t≤r≤s such
that (see e.g. Theorem 4.5.2 of [313])

(1.18) Xs =

∫ s

t

bPrdr +

∫ s

t

â
1
2
r dW

P
r , s ∈ [t, T ], P− a.s.,

where we extend the definition of bP and â on Ω as in (1.17), and where we recall that
â

1
2 has been defined in the notations above.
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Notice that when âr is non-degenerate P−a.s., for all r ∈ [t, T ], then we can construct
the Brownian motion W P on Ω by

W P
t :=

∫ t

0

â
− 1

2
s dXc,P

s , t ∈ [0, T ], P− a.s.,

and do not need to consider the above enlarged space equipped with an independent
Brownian motion to construct W P.

Remark 1.2 (On the choice of â
1
2 ) The measurable map a 7−→ a

1
2 is fixed through-

out the paper. A first choice is to take a
1
2 as the unique non-negative symmetric square

root of a (see e.g. Lemma 5.2.1 of [313]). One can also use the Cholesky decomposition
to obtain a

1
2 as a lower triangular matrix. Finally the reader can read [295], Remark

2.2, where the sets P(t, ω) are given by the collections of probability measures induced by
a family of controlled diffusion processes. In this case one can take â

1
2 in the following

way:

(1.19) a =

(
σσT σ
σT In

)
and a

1
2 =

(
σ 0
In 0

)
, for some σ ∈Mm,n.

Conditioning and concatenation of probability measures

We also recall that for every probability measure P on Ω and F−stopping time τ
taking value in [0, T ], there exists a family of regular conditional probability distribution
(r.c.p.d. for short) (Pτω)ω∈Ω (see e.g. Stroock and Varadhan [313]), satisfying:

(i) For every ω ∈ Ω, Pτω is a probability measure on (Ω,FT ).

(ii) For every E ∈ FT , the mapping ω 7−→ Pτω(E) is Fτ−measurable.

(iii) The family (Pτω)ω∈Ω is a version of the conditional probability measure of P on Fτ ,
i.e., for every integrable FT−measurable random variable ξ we have EP[ξ|Fτ ](ω) =
EPτω
[
ξ
]
, for P− a.e. ω ∈ Ω.

(iv) For every ω ∈ Ω, Pτω(Ωω
τ ) = 1, where Ωω

τ :=
{
ω ∈ Ω : ω(s) = ω(s), 0 ≤ s ≤ τ(ω)

}
.

Furthermore, given some P and a family (Qω)ω∈Ω such that ω 7−→ Qω is Fτ−measurable
and Qω(Ωω

τ ) = 1 for all ω ∈ Ω, one can then define a concatenated probability measure
P⊗τ Q· by

P⊗τ Q·
[
A
]

:=

∫
Ω

Qω

[
A
]
P(dω), ∀A ∈ FT .

Hypotheses on P(t, ω)

We are given a family P = (P(t, ω))(t,ω)∈[0,T ]×Ω of sets of probability measures on
(Ω,FT ), where P(t, ω) ⊂ PWt for all (t, ω) ∈ [0, T ]× Ω. Denote also Pt := ∪ω∈ΩP(t, ω).
We make the following assumption on the family (P(t, ω))(t,ω)∈[0,T ]×Ω.
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Assumption 1 (i) For every (t, ω) ∈ [0, T ] × Ω, one has P(t, ω) = P(t, ω·∧t) and
P(Ωω

t ) = 1 whenever P ∈ P(t, ω). The graph [[P ]] of P, defined by [[P ]] := {(t, ω,P) :
P ∈ P(t, ω)}, is upper semi-analytic in [0, T ]× Ω×M1.

(ii) P is stable under conditioning, i.e. for every (t, ω) ∈ [0, T ] × Ω and every
P ∈ P(t, ω) together with an F−stopping time τ taking values in [t, T ], there is a family
of r.c.p.d. (Pw)w∈Ω such that Pw belongs to P(τ(w),w), for P− a.e. w ∈ Ω.

(iii) P is stable under concatenation, i.e. for every (t, ω) ∈ [0, T ] × Ω and P ∈
P(t, ω) together with a F−stopping time τ taking values in [t, T ], let (Qw)w∈Ω be a
family of probability measures such that Qw ∈ P(τ(w),w) for all w ∈ Ω and w 7−→ Qw

is Fτ−measurable, then the concatenated probability measure P⊗τ Q· ∈ P(t, ω).

We notice that for t = 0, we have P0 := P(0, ω) for any ω ∈ Ω.

Spaces and norms

We now give the spaces and norms which will be needed in the rest of the paper.
Fix some t ∈ [0, T ] and some ω ∈ Ω. In what follows, G := (Gs)t≤s≤T will denote an
arbitrary filtration on (Ω,FT ), and P an arbitrary element in P(t, ω). Denote also by
GP the P−augmented filtration associated to G.

For p ≥ 1, Lpt,ω(G) (resp. Lpt,ω(G,P)) denotes the space of all GT−measurable scalar
random variable ξ with

‖ξ‖pLpt,ω := sup
P∈P(t,ω)

EP [|ξ|p] < +∞,
(
resp. ‖ξ‖pLpt,ω(P)

:= EP [|ξ|p] < +∞
)
.

Hp
t,ω(G) (resp. Hp

t,ω(G,P)) denotes the space of all G−predictable Rd−valued pro-
cesses Z, which are defined âsds− a.e. on [t, T ], with

‖Z‖pHpt,ω := sup
P∈P(t,ω)

EP

[(∫ T

t

∥∥∥â 1
2
s Zs

∥∥∥2

ds

) p
2

]
< +∞,(

resp. ‖Z‖pHpt,ω(P)
:= EP

[(∫ T

t

∥∥∥â 1
2
s Zs

∥∥∥2

ds

) p
2

]
< +∞

)
.

Mp
t,ω(G,P) denotes the space of all (G,P)−optional martingales M with P − a.s.

càdlàg paths on [t, T ], with Mt = 0, P− a.s., and

‖M‖pMp
t,ω(P)

:= EP
[
[M ]

p
2
T

]
< +∞.

Furthermore, we say that a family (MP)P∈P(t,ω) belongs to Mp
t,ω((GP)P∈P(t,ω)) if, for any

P ∈ P(t, ω), MP ∈Mp
t,ω(GP,P) and

sup
P∈P(t,ω)

∥∥MP∥∥
Mp
t,ω(P)

< +∞.
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Ipt,ω(G,P) denotes the space of all G−predictable processes K with P − a.s. càdlàg
and non-decreasing paths on [t, T ], with Kt = 0, P− a.s., and

‖K‖pIpt,ω(P)
:= EP [Kp

T ] < +∞.

We will say that a family (KP)P∈P(t,ω) belongs to Ipt,ω((GP)P∈P(t,ω)) if, for any P ∈ P(t, ω),
KP ∈ Ipt,ω(GP,P) and

sup
P∈P(t,ω)

∥∥KP∥∥
Ipt,ω(P)

< +∞.

Dp
t,ω(G) (resp. Dp

t,ω(G,P)) denotes the space of all G−progressively measurable
R−valued processes Y with P(t, ω)− q.s. (resp. P− a.s.) càdlàg paths on [t, T ], with

‖Y ‖pDpt,ω := sup
P∈P(t,ω)

EP
[

sup
t≤s≤T

|Ys|p
]
< +∞,

(
resp. ‖Y ‖pDpt,ω(P)

:= EP
[

sup
t≤s≤T

|Ys|p
]
< +∞

)
.

For each ξ ∈ L1
t,ω(G) and s ∈ [t, T ] denote

EP,t,ω,G
s [ξ] := ess supP

P′∈Pt,ω(s,P,G)

EP′ [ξ|Gs] where Pt,ω(s,P,G) :=
{
P′ ∈ P(t, ω), P′ = P on Gs

}
.

Then we define for each p ≥ κ ≥ 1,

Lp,κt,ω(G) :=
{
ξ ∈ Lpt,ω(G), ‖ξ‖Lp,κt,ω < +∞

}
,

where
‖ξ‖pLp,κt,ω := sup

P∈P(t,ω)

EP
[
ess sup
t≤s≤T

P
(
EP,t,ω,F+

s [|ξ|κ]
) p
κ

]
.

Similarly, given a probability measure P and a filtration G on the enlarged canonical
space Ω, we denote the corresponding spaces by Dp

t,ω(G,P), Hp
t,ω(G,P), Mp

t,ω(G,P), ...
Furthermore, when t = 0, there is no longer any dependence on ω, since ω0 = 0, so that
we simplify the notations by suppressing the ω−dependence and write Hp

0(G), Hp
0(G,P),

... Similar notations are used on the enlarged canonical space.
When there is no ambiguity (only one probability measure P), the Brownian motion

will be denoted by W and for simplicity in the notations of integrability spaces, we
remove the reference to the filtration F, the probability measure and ω: Dp

0,ω(F,P) = Dp

and with the same convention Hp, Mp and Ip. Moreover for α ∈ R, for (Z,M,K) ∈
Hp ×Mp × Ip, we define

‖Z‖pHp,α = E

[(∫ T

0

eαs‖Zs‖2ds

)p/2]
,

‖M‖pMp,α = E

[(∫ T

0

eαsd[M ]s

)p/2]

‖K‖pIp,α = E
[(∫ T

0

eαs/2dKs

)p]
.
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Part I

Singularity for monotone equations
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Chapter 2

Monotone backward stochastic
differential equations

The notion of linear backward stochastic differential equations (BSDE for short)
was introduced by Bismut [38]. This equation describes the dynamics of the adjoint
process of an optimal stochastic control problem (see among others [125, 317, 329]).
Pardoux & Peng [271] extend the result for the non linear case in the Brownian setting.
Let us immediately precise the notations. A solution of this equation, associated with a
terminal value ξ and a generator or driver f(t, ω, y, z), is a couple of stochastic processes
(Yt, Zt)t≤T such that

(2.1) Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs,

a.s. for all t ≤ T , where W is a Brownian motion and processes (Yt, Zt)t≤T are adapted
to the natural filtration of W . In their seminal work [271], Pardoux and Peng proved
existence and uniqueness of a solution under suitable assumptions, mainly square in-
tegrability of ξ and of process (f(t, ω, 0, 0))t≤T , on the one hand, and, the Lipschitz
property w.r.t. (y, z) of generator f , on the other hand. Since this first result, BSDEs
have proved to be a powerful tool for formulating and solving a lot of mathematical
problems arising for example in finance (see e.g. [29, 120, 301]), stochastic control
and differential games (see e.g. [156, 157]), or partial differential equations (see e.g.
[270, 273]). Thereby a lot of papers are devoted to weaken the conditions imposed for
ξ and f in [271].

2.1 Lp-solution under monotone conditions ([X, XV])
A huge part of the literature focuses on weakening the Lipschitz property of the

coefficient f w.r.t. the y-variable. For example, Briand and Carmona [45] and Pardoux
[270] consider the case of a monotone generator w.r.t. y with different growth conditions.
There have been relatively few papers which deal with the problem of the existence and
the uniqueness of solutions in the case where the coefficients are not square integrable.
El Karoui et al. [120] and Briand et al. [48] have proved the existence and uniqueness
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of a solution for the standard BSDE (2.1) in the case where the data only belong to Lp
for some p ≥ 1.

Another strand of research in the theory of BSDEs concerns the underlying filtration.
In [271] filtration F = FW is generated by the Brownian motion W . Since the work of
Tang and Li [315], a lot of papers (see e.g. [24, 34, 256, 269, 302] or the books of
Situ [307] or recently of Delong [91]) treat the case where the filtration is generated
by the Brownian motion W and a Poisson random measure π independent of W . In
most of these papers, the generator f is supposed to be Lipschitz in y, even if the
monotonic case is mentioned (see [302]) and all coefficients are square integrable. The
paper [326] studies the Lp case, p > 1, and gives existence and uniqueness result in the
case where the generator is monotone but with at most linear growth w.r.t. y. [224]
gives existence und uniqueness results for a fully coupled forward backward SDE under
some monotonicity condition and Lp coefficients, p ≥ 2. Note that this monotonicity
condition involves the coefficients of the forward diffusion and is not the same as (A2).
An extension to BSDEs driven by a continuous local martingale X and an integer-valued
random measure π has been studied in [325]. In this paper the author supposes that the
filtration satisfies the representation property with respect to X and π (no additional
orthogonal martingale term M) and that the driver is Lipschitz continuous and square
integrable.

For more general filtrations, the representation property of a local martingale is no
more true (see Section III.4 in [171]) and an additional (orthogonal) martingale term
has to be introduced in the definition of a solution. This approach was developed in
the seminal work of El Karoui and Huang [116] and by Carbone et al. [55] for càdlàg
martingales. The filtration F is supposed to be complete, right continuous (sometimes
with a quasi-left continuity condition). For a given square integrable martingale X (〈X〉
denotes the predictable projection of the quadratic variation), the BSDE (2.1) becomes

(2.2) Yt = ξ +

∫ T

t

f(s, Ys, Zs)d〈X〉s −
∫ T

t

ZsdXs −MT +Mt.

The solution is now the triple (Y, Z,M) where M is a square integrable martingale
orthogonal to X. Øksendal and Zhang [263] analyse BSDE of the form (2.2) where f
does not depend on z, and apply to insider finance (see also Ceci et al. [65]). [226] also
obtains results for a particular class of BSDE (2.2) on an arbitrary filtered probability
space. In these papers, existence and uniqueness of the solution of (2.2) is proved for
a Lipschitz continuous function f and under square integrability condition (in [263] the
monotone case is treated but f does not depend on z). In [120], the authors consider
the Lp-solution. The Hilbertian structure of L2(Ω,FT ,P) is used in [80] (see also [195]).
If L2(Ω,FT ,P) is a separable Hilbert space, then an orthogonal basis of martingales can
be introduced instead of X and there is no orthogonal additional term M in (2.2). Z
becomes a sequence of predictable processes. The special case of a Lévy noise is treated
before by Nualart and Schoutens [260]: the orthogonal basis of martingales is explicitly
given by the Teugels martingales. Klimsiak has developed the results concerning BSDEs
in this general framework in two directions. First for reflected BSDE ([193, 195]), and
secondly for parabolic equations ([196, 194]) with measure data. Finally let us mention
the paper by Papapantolean et al. [267] (and the references in their introduction) where
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a more general setting is considered. The BSDE (2.2) is written under this setting as
follows:

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)dCs

−
∫ T

t

ZsdX
◦
s −

∫ T

t

∫
E
Us(e)π̃

\(de, ds)−
∫ T

t

dMs.(2.3)

Roughly speaking, X◦ is a square-integrable martingale, π̃\ is integer-valued random
measure, such that each component of 〈X◦〉 is absolutely continuous w.r.t. C and the
disintegration property given C holds for the compensator ν\ of π̃\. The process C is
only non-decreasing and càdlàg. The generator f is Lipschitz w.r.t. y, z and u and the
data are square integrable.

2.1.1 Contributions

In [X, XV] we generalize many results from the works [24, 34, 256, 269, 302, 315]
dealing with a filtration generated by the Brownian motion and the Poisson random
measure since we allow for a more general filtration. Namely our filtration F = {F , 0 ≤
t ≤ T} is supposed only to be complete and right continuous.

Moreover we provide existence and uniqueness of solutions in Lp-spaces, p > 1.
In the case where the generator depends on the stochastic integrand w.r.t. a Poisson
random measure, the case when p < 2 has to be handled carefully and can not be treated
as in [48]. Indeed in this case Burkholder-Davis-Gundy inequality with p/2 < 1 does
not apply and the Lp/2-norm of the predictable projection cannot be controlled by the
Lp/2-norm of the quadratic variation (see [219]).

Compared to [55] or [325], our assumptions are in some sense more restrictive as we
assume that the continuous part of the given martingale X of BSDE (2.2) is a Brownian
motion W and the random measure associated to the jumps of X is a Poisson random
measure π (see Equation (2.4)). However we weaken the assumptions on the driver
and on the terminal condition: the generator is only supposed to be monotone and the
terminal condition is allowed to be only Lp-integrable.

Note that our results have been already used in [41] and in [108].

Existence and uniqueness of the solution

We consider the following BSDE:

(2.4) Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

∫
E
Us(e)π̃(de, ds)−

∫ T

t

ZsdWs −
∫ T

t

dMs.

The unknowns are (Y, Z, U,M) such that

• Y is càdlàg with values in Rd;

• Z ∈ L2
loc(W ), with values in Rd×k;

• U ∈ Gloc(µ) with values in Rd;
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• M ∈Mloc with values in Rd.

Our main result is the following.

Theorem 2.1 Under the integrability condition (A1) for ξ and f 0 and Assumptions
(Aex) on f , there exists a unique solution (Y, Z, U,M) in Sp(0, T ) to BSDE (2.4).
Moreover the solution satisfies the estimate:

E

[
sup
t∈[0,T ]

|Yt|p +

(∫ T

0

|Zt|2dt
)p/2

+

(∫ T

0

∫
E
|Us(e)|2π(de, ds)

)p/2
+ ([M ]T )p/2

]

≤ Cp,χ,Kf ,TE
[
|ξ|p +

(∫ T

0

|f(r, 0, 0,0)|pdr
)]

.(2.5)

Some comments on the result. The difference between p ≥ 2 and p < 2 is crucial
to define and to solve properly the BSDE. To illustrate our purpose, let us consider a
stable Lévy process X = (Xt, 0 ≤ t ≤ T ). The Lévy measure is µ(de) = 1

|e|1+αde where
e ∈ E = R \ {0} and 0 < α < 2. Then by the Lévy-Khintchine decomposition:

Xt =

∫ t

0

∫
E
e11|e|<1π̃(de, ds) +

∫ t

0

∫
E
e11|e|≥1π(de, ds)

=

∫ t

0

∫
E
eπ̃(de, ds) + t

∫
E
e11|e|≥1µ(de) =

∫ t

0

∫
E
eπ̃(de, ds).

Now XT ∈ Lp(Ω) if and only if p < α < 2. We take ξ = XT , Yt = Xt, Ut(e) = e and

Yt = ξ −
∫ T

t

∫
E
eπ̃(de, ds).

For any t ∈ [0, T ], p < α, Yt is in Lp(Ω) and Ut 6∈ L2
µ. Nevertheless for any δ > 0,

φ1
t = Ut11|Ut|≤δ belongs to L2

µ and φ2
t = Ut11|Ut|≥δ to Lpµ. Thus Ut is in Lpµ + L2

µ. And it
is easy to check that Ut also belongs to L1

µ + L2
µ.

• Assume that p ≥ 2. A priori estimate (2.5) together with Inequality (1.5) imply
that U is in Lp(L2

ν) and Lp(Lpν): for some constant C depending only on p, α, K
and T

E

[(∫ T

0

∫
E
|Us(e)|2µ(de)ds

)p/2]
≤ CE

[
|ξ|p +

(∫ T

0

|f 0
r |pdr

)]
E
[(∫ T

0

∫
E
|Us(e)|pµ(de)ds

)]
≤ CE

[
|ξ|p +

(∫ T

0

|f 0
r |pdr

)]
.

In particular P ⊗ Leb a.e. on Ω × [0, T ], Us ∈ L2
µ. Hence the generator of our

BSDE will be defined on L2
µ.

• But if p < 2, from (1.4), the solution satisfies:

‖U‖pLp(L2
ν)+Lp(Lpν)

≤ CE
[
|ξ|p +

(∫ T

0

|f 0
r |pdr

)]
.
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By Jensen’s inequality, P ⊗ Leb-a.s. on Ω × [0, T ], Ut is in Lpµ + L2
µ. In [XV], we

show that Ut is then also in L1
µ + L2

µ. Thereby for p < 2, our generator will be
defined on L1

µ + L2
µ.

This justifies why f is defined on B2
µ, given by (1.6).

Let us describe the outline of the proof.

1. For p = 2, the arguments are rather standard. We use a truncation procedure to
obtain bounded data. For bounded data:

(a) If f is Lispchitz continuous w.r.t. y, the solution is obtained by a fixed point
argument in S2.

(b) Then we prove that the result holds for monotone generator with a stronger
growth condition: |f(t, y, 0,0)− f(t, 0, 0,0)| ≤ ϑ(|y|) where ϑ : R+ → R+ is
a deterministic continuous increasing function.

(c) Finally we extend this for the general growth condition (A3).

Existence and uniqueness for L2-data is then deduced using the stability result
(see below) in S2. Roughly speaking we construct bounded data ξn and fn, such
that ξn and fn converge to ξ and f and a sequence (Y n, Zn, Un,Mn) of solutions
associated to ξn and fn, which converges in S2 to the solution.

2. For p ≥ 2, since x 7→ |x|p is a smooth function, we modify the last previous step
to prove that the constructed S2-solution is in fact also in Sp.

3. For p < 2, the arguments are more involved. First of all, as in [48] or [195], we
explain in our setting how to deal with x 7→ |x|p which is not smooth. Then we
want to derive the a priori estimate (2.5). If generator f does not depend on the
integrand in the Poisson stochastic integral ψ, then the result can be obtained
by direct modifications of classical arguments. Nevertheless in general we have to
control the term

pK

∫ t

0

eβs|Ys−|p−1‖Us‖L1
µ+L2

µ
ds

coming from generator f , with the quantity∫ t

0

eβs
∫
E

[
|Ys− + Us(e)|p − |Ys−|p − p|Ys−|p−1Y̌s−Us(e)

]
π(de, ds)

coming from the Itô formula. This point requires some new arguments developed
in [XV] (see Section 4 of this paper and the technical results therein).

Note that as a byproduct of our results we have the stability result:

Proposition 2.1 (Stability) Let (ξ, f) and (ξ′, f ′) be two sets of data each satisfying
the above assumptions (Aex). Let (Y, Z, U,M) (resp. (Y ′, Z ′, U ′,M ′)) denote a Sp-
solution of BSDE (2.4) with data (ξ, f) (resp. (ξ′, f ′)). Define

(dY, dZ, dU, dM, dξ, df) = (Y − Y ′, Z − Z ′, U − U ′,M −M ′, ξ − ξ′, f − f ′).
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Then there exists a constant C depending on p, χ, Kf and T , such that

E

[
sup
t∈[0,T ]

|dYt|p +

(∫ T

0

|dZs|2ds
)p/2

+

(∫ T

0

∫
E
|dUs(e)|2π(de, ds)

)p/2
+ ([dM ]T )p/2

]

≤ CE
(
|dξ|p +

∫ T

0

|df(t, Y ′t , Z
′
t, U

′
t)|pdt

)
.

Comparison principle

We provide a comparison principle ([X, Proposition 4]) for BSDE of type (2.4). We
assume that d = 1 and aim at comparing two solutions Y 1 and Y 2 of BSDE (2.4) with
coefficients (ξ1, f 1) and (ξ2, f 2). As in the papers [24, 302, 307, 299], we have to restrict
the dependence of f w.r.t. ψ. Some monotonicity w.r.t. ψ is necessary, namely (A5’).
We generalize the arguments of [299] to the situation where the filtration is not only
generated by Brownian and Poisson noises. Then we prove:

Proposition 2.2 (Comparison, [X], Proposition 4) We consider a generator f1 sat-
isfying (Aex) and we ask f2 to verify (Acomp). Let ξ1 and ξ2 be two terminal condi-
tions for BSDE (2.4) driven respectively by f1 and f2. Denote by (Y 1, Z1, U1,M1) and
(Y 2, Z2, U2,M2) the respective solutions in some space Sp(0, T ) with p > 1. If ξ1 ≤ ξ2

and f1(t, Y 1
t , Z

1
t , U

1
t ) ≤ f2(t, Y 1

t , Z
1
t , U

1
t ), then a.s. for any t ∈ [0, T ], Y 1

t ≤ Y 2
t .

Again we emphasize that the process κ of the condition (A5’) only satisfies κ ≥ −1.
Thereby a strict comparison principle does not hold in general, that is ξ1 < ξ2 does not
imply that Y 1

t < Y 2
t for all t ∈ [0, T ]. Indeed we cannot use Girsanov’s transform as in

[302]. Moreover it is well known that the monotonicity condition (A2) is not sufficient
to obtain strict comparison (see [276, Proposition 5.34] and the comments just after).

Random terminal time

Finally we extend the previous results when T = τ is a stopping time for filtration
F. τ is not necessarily bounded ([X, Section 6]). We want to solve the following BSDE:
P-a.s., for all 0 ≤ t ≤ T ,

Yt∧τ = YT∧τ +

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us)ds−

∫ T∧τ

t∧τ
ZsdWs

−
∫ T∧τ

t∧τ

∫
E
Us(e)π̃(de, ds)−

∫ T∧τ

t∧τ
dMs(2.6)

with the condition that P-a.s. on the set {t ≥ τ}, Yt = ξ and Zt = Ut = Mt = 0. On the
generator, Assumptions (Aex) still hold with a monotonicity constant χ and a Lipschitz
constant Kf,z w.r.t. z and Kf,ψ = ‖ϑ‖ w.r.t. ψ (see Lemma 1.2). We denote by K the
constant

K2 =
1

2
K2
f =

1

2
(L2

f,z + L2
f,ψ).

However the growth condition (A3) is replaced by:
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(A3”) For any r > 0 and n ∈ N

sup
|y|≤r

(|f(t, y, 0,0)− f(t, 0, 0,0)|) ∈ L1(Ω× (0, n)).

Condition (A1) is replaced by

(A1.1”) For some p > 1

E
[
epρτ |ξ|p +

∫ τ

0

epρt|f(t, 0, 0,0)|pdt
]
< +∞.

Constant ρ satisfies

(2.7) ρ > ν = ν(p) :=


χ+K2 if p ≥ 2,

χ+
K2

p− 1
+

K2
f,u

ε(p,Kf,u)
if p < 2.

Constant 0 < ε(p,Kf,u) < p− 1 only depends on Kf,u and p (see [XV, Section 4]). The
additional term in ν disappears if the generator does not depend on the jump part u
(that is, if Kf,u = 0). Even if we cannot compute ε(p,Kf,u) explicitly, we know that

0 < ε(p,Kf,u) ≤ (p− 1)
(
2(α(p,Kf,u) + 1)2 − 1

)− 2−p
2 ,

and α(p,Kf,u) has to be chosen such that for any x ≥ α(p,Kf,u),

1

2p/2
xp − 2p/2 − 1− p(2Kf,u + 1)x ≥ 0.

The right-hand side is an increasing function w.r.t. p ∈ (1, 2) and decreasing w.r.t.
Kf,u ≥ 0. Hence when p is close to one and Kf,u is large, ε is be very small and thus ρ
becomes large. From the appendix in [XV], one choice for ε(p,Kf,u) is

(2.8) ε(p,Kf,u) =
p− 1(

C
1
p−1
u + 1

)2−p , Cu = (4(2Kf,u + 2) + 1).

We suppose that

(A1.2”) ξ is Fτ -measurable and

E
[∫ τ

0

epρt|f(t, e−νtξt, e
−νtηt, e

−νtγt)|pdt
]
< +∞,

where ξt = E(eντξ|Ft) and (η, γ,N) are given by the martingale representation:

eντξ = E(eντξ) +

∫ ∞
0

ηsdWs +

∫ ∞
0

∫
E
γs(e)π̃(de, ds) +Nτ

with

E

[(∫ ∞
0

|ηs|2ds+

∫ ∞
0

∫
E
|γs(e)|2π(de, ds) + [N ]τ

)p/2]
< +∞.
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Condition (A1.2”) was introduced in [48]. Indeed with (A1.1”), we know that eρτξ
belongs to Lp(Ω), not but ξ itself. However eντξ satisfies the required integrability
condition:

E [epντ |ξ|p] = E
[
epρτ |ξ|pep(ν−ρ)τ

]
≤ E [epρτ |ξ|p] < +∞.

Hence in the proof of the next theorem, E(eντξ|Fn) can be used as an Lp-terminal
condition at time n, but not E(ξ|Fn) in general. This is why the assumption (A1.2”)
is required. Note that if ρ ≥ 0, then (A1.1”) is sufficient.

Theorem 2.2 Under the above conditions (A1.1”), (A1.2”), (A2), (A3”), (A4) and
(A5) , BSDE (2.6) has a unique solution satisfying for any 0 ≤ t ≤ T

E
[
epρ(t∧τ)|Yt∧τ |p +

∫ T∧τ

0

epρs|Ys|pds+

∫ T∧τ

0

epρs|Ys|p−2|Zs|211Ys 6=0ds

]
+E

[∫ T∧τ

0

epρs|Ys−|p−211Ys− 6=0d[M ]cs

]
+E

[∫ T∧τ

t∧τ

∫
E
epρs

(
|Ys−|2 ∨ |Ys− + Us(e)|2

)p/2−1 11|Ys−|∨|Ys−+Us(e)|6=0|Us(e)|2π(de, ds)

]
+E

[ ∑
0<s≤T∧τ

epρs|∆Ms|2
(
|Ys−|2 ∨ |Ys− + ∆Ms|2

)p/2−1 11|Ys−|∨|Ys−+∆Ms|6=0

]
< +∞.

Moreover

E

[(∫ τ

0

e2ρs|Zs|2ds
)p/2

+

(∫ τ

0

e2ρs

∫
E
|Us(e)|2π(de, ds)

)p/2
+

(∫ τ

0

e2ρsd[M ]s

)p/2]

≤ CE
[
epρτ |ξ|p +

∫ τ

0

epρs|f(s, 0, 0, 0)|pds
]
.

The constant C depends only on p, K and χ.

In general (A1.2”) is not easy to check. Nonetheless if ξ is bounded, we can take
ν = 0 in (A1.2”) and assume that:

E
[∫ τ

0

epρt|f(t, ξt, ηt, γt)|pdt
]
< +∞,

where ξt = E(ξ|Ft) and

ξ = E(ξ) +

∫ ∞
0

ηsdWs +

∫ ∞
0

∫
E
γs(e)π̃(de, ds) +Nτ .

2.1.2 Open problems

The generalization of our results for BSDE of the form (2.2) or (2.3) requires some
sophisticated integrability conditions to take account of the predictable projection 〈X〉
of the quadratic variation of X. Therefore it is left for future research.

Another open question concerns L1-condition for ξ or for f 0. This problem is solved
in [48, 46], when the terminal time is deterministic. The extension to a general filtration
for a BSDE with jumps has also to be done. If the terminal time is random, let us simply
remark that constant ρ explodes. These questions are also left for further research.
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2.2 Reflected BSDE ([VII, XVII])
The one barrier reflected BSDEs have been introduced by El Karoui et al. [117]. For

those BSDEs, one of the components of the solution is forced to stay above a given barrier
or obstacle process (Lt)t≤T . Therefore a solution is a triple of processes (Yt, Zt, Kt)t≤T
which satisfies:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdWs, 0 ≤ t ≤ T,(2.9)

Yt ≥ Lt, 0 ≤ t ≤ T and
∫ T

0

(Ys − Ls)dKs = 0, P− a.s..

Here process K is non-decreasing and its role is to push upward Y in order to keep it
above obstacle L. Under square integrability of the data and Lipschitz property of gen-
erator f , the authors of [117] show the existence and uniqueness of the solution. These
types of equations are connected with a wide range of applications especially the pricing
of American options in markets, constrained or not, mixed control, partial differential
variational inequalities, real options (see e.g. [115, 117, 120] and the references therein).
Another example of applications of our results is in connection with mixed control with
only p-integrable coefficients (see e.g. [57]). Actually solving this latter problem turns
into solving appropriate reflected BSDEs.

There have been a lot of works which deal with the issue of existence/uniqueness
results under weaker assumptions than the ones of El Karoui et al [117]. However
before our work, for their own reasons, authors mainly focus on weakening the Lipschitz
property of the coefficient (see for example [220] for monotone assumption on f) or the
regularity of barrier L and not on square integrability of the data ξ and (f(t, ω, 0, 0))t≤T .
When we begun to work on this problem, there have been relatively few papers which
deal with the problem of existence/uniqueness of the solution for BSDEs in the case
when the coefficients are not square integrable. Nevertheless El Karoui et al. [120] or
Briand et al. [48] have proved the existence and uniqueness of a solution for the standard
BSDE (2.1) in the case when the data belong only to Lp for some p ∈]1, 2[. Therefore
the main objective of our paper [VII] was to complete those works and to study the
reflected BSDE (2.9) in the case when the terminal condition ξ and generator f are
only p-integrable with p ∈]1, 2[. In [XVII], we also extend the existence and uniqueness
results for RBSDE with monotone generator and in a general filtration.

2.2.1 Reflected BSDE with Lp-data

In [VII] we show that if ξ, supt≤T (L+
t ) and

∫ T
0
|f(t, 0, 0)|dt belong to Lp for some

p ∈]1, 2[, then BSDE (2.9) with one reflecting barrier associated with (f, ξ, L) has a
unique solution. More precisely here F is the natural filtration of the Brownian motion
W . We suppose that (A1), (A2’) and (A4) hold, that is:

• The FT -measurable random variable ξ is in Lp(Ω);

• Generator f : [0, T ] × Ω × R × Rd → R is measurable with respect to Prog ×
B(R)× B(Rd) and such that:
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(i) Process {f 0
t , 0 ≤ t ≤ T} satisfies E

(∫ T

0

|f(t, 0, 0)|pdt
)
< +∞.

(ii) There exists a constant Kf such that:

P− a.s., |f(t, y, z)− f(t, y′, z′)| ≤ Kf (|y − y′|+ |z − z′|), ∀t, y, y′, z, z′.

Barrier L = {Lt}t∈[0,T ] is a continuous progressively measurable R-valued process such
that LT ≤ ξ and L+ := L ∨ 0 ∈ Dp(0, T ).

Theorem 2.3 The reflected BSDE (2.9) associated with (f, ξ, L) has a unique Lp-
solution, that is

1. {(Yt, Zt), 0 ≤ t ≤ T} belongs to Dp ×Hp;

2. K = {Kt, 0 ≤ t ≤ T} is an adapted continuous non-decreasing process s.t. K0 = 0
and KT ∈ Lp(Ω);

3. Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdWs, 0 ≤ t ≤ T a.s.;

4. Yt ≥ Lt, 0 ≤ t ≤ T ;

5.
∫ T

0

(Ys − Ls)dKs = 0, P-a.s..

We prove existence and uniqueness of the solution using penalization and Snell envelope
methods. Moreover we also obtain the a priori estimate

E

[
sup
t∈[0,T ]

|Yt|p +

(∫ T

0

|Zs|2ds
)p/2

+ (KT )p

]

≤ Cp,KfE

[
|ξ|p +

(∫ T

0

|f(s, 0, 0)|ds
)p

+

(
sup
t∈[0,T ]

(L+
s )p

)]

and the stability result. Assume that (f, ξ, L) and (f ′, ξ′, L′) are two triplets satisfying
the above conditions. Suppose that (Y, Z,K) is a solution of the RBSDE (f, ξ, L) and
(Y ′, Z ′, K ′) is a solution of the RBSDE (f ′, ξ′, L′). Let us set:

df = f − f ′, dξ = ξ − ξ′ dL = L− L′
dY = Y − Y ′, dZ = Z − Z ′ dK = K −K ′

and assume that dL ∈ Dp(0, T ). Then there exists a constant C such that

E

[
sup
t∈[0,T ]

|dYt|p +
p(p− 1)

2

∫ T

0

|dYs|p−21dYs 6=0|dZs|2ds

]

≤ CE
[
|dξ|p +

(∫ T

0

|df(s, Ys, Zs)|ds
)p]

+ C(ΨT )1/p

[
E sup
t∈[0,T ]

|dLt|p
] p−1

p

,
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with

ΨT = E

[
|ξ|p +

(∫ T

0

|f(u, 0, 0)|du
)p

+

(
sup
t∈[0,T ]

(L+
t )p

)

+|ξ′|p +

(∫ T

0

|f ′(u, 0, 0)|du
)p

+

(
sup
t∈[0,T ]

((L′t)
+)p

)]
.

Finally the comparison principle holds: if a.s. ξ′ ≥ ξ, f ′ ≥ f and L′ ≥ L, then a.s.
Y ′t ≥ Yt for every t ∈ [0, T ].

2.2.2 Some extensions of our paper

Let us mention some extensions of our paper. We already cite the work [220] where
p = 2 but f is monotone w.r.t. y. Let us mention the extension for two barriers in
[114]. In [192, 193, 195], Klimsiak assumes that the filtration is only right-continuous,
complete and quasi left-continuous1, p ≥ 1, f is monotone w.r.t. y and barrier L is only
progressively measurable (no regularity condition w.r.t. t). He constructs the unique
solution of the reflected BSDE:

Yt = ξ +

∫ T

t

f(s, Ys)ds+KT −Kt −
∫ T

t

dMs, Yt ≥ Lt.

The case of two barriers and when f depends on z (for p = 2) is also developed in [195].
The minimality condition on K is: for every càdlag̀ process L̂ such that Lt ≤ L̂t ≤ Yt

for a.e. t ∈ [0, T ],
∫ T

0

(Yt− − L̂t−)dKt = 0. The main drawback of this condition is that

Y does not satisfy:

Yt = esssup
τ

E
[∫ τ

t

f(s, Ys)ds+ Lτ11τ<T + ξ11τ=T

∣∣∣∣Ft]
where τ is in the set of stopping times with values in [0, T ]. For a general barrier, in
[149, 150, 197] the authors find a solution satisfying the previous relation when

• the filtration is generated by a Brownian motion W and p ≥ 1 in [197],

• the filtration also supports a Poisson random measure π and p = 2 in [149, 150].

The minimality condition on K is then more delicate.
The case where the filtration is only right-continuous and complete and p > 1 is

considered in [41] (in this paper the barrier L is càdlàg):

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs −
∫ T

t

dMs +KT −Kt, Yt ≥ Lt.

Generator f is Lipschitz continuous in y and z. The main difficulty in this setting
is to control the jumps of the martingale part M and of the process K. Because of

1For any sequence τn of predictable stopping times such that τn ↗ τ , Fτ =
∨
n≥1 Fτn .
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the quasi left-continuity assumption of the filtration, the martingale M cannot jump
at predictable times, and thus the bracket [M,K] is identically equal to 0. This is no
longer true for general filtrations and it turns out to be difficult to control the term
[M,K] (see the introduction of [41]).

2.2.3 Monotone RBSDE and general filtration ([XVII])

As already mentioned, monotone RBSDE have been already studied in [220] or in
[193]. Nevertheless in these papers, the authors assume that the filtration is generated
by the Brownian motion W . If we want to study second-order BSDEs following the
program established in [295], we need to generalize these results to a more general
filtration. RBSDE (2.9) becomes

(2.10) Yt = ξ +

∫ T

t

f(u, Yu, Zu)du−
∫ T

t

ZudWu −
∫ T

t

dMu +

∫ T

t

dKu

with Yt ≥ Lt and
∫ T

0
(Yt− − Lt−)dKt = 0, P-a.s. (Skorokhod condition). L is a càdlàg

process such that L+ = L ∨ 0 belongs to Dp(0, T ).
In [XVII, Appendix A.3], we study RBSDE (2.10) under the monotone condition

(A2) for f , but with the polynomial growth assumption (A3’):

|f(t, y, 0)− f(t, 0, 0)| ≤ Ψt(1 + |y|q).

The next result is [XVII, Proposition A.2].

Theorem 2.4 Assume that (A2), (A3’) and (A4) hold where constant q > 1 is fixed
and Ψ is in some L%((0, T )× Ω) for some % > 1. If

E

[
|ξ|p̄q +

∫ T

0

|f(t, 0, 0)|p̄q + sup
t∈[0,T ]

|L+
t |p̄q

]
< +∞

with p̄ > %
%−1

, then there exists a unique solution (Y, Z,M,K) such that (Y, Z,M) ∈
Dp̄q(0, T )×Hp(0, T )×Mp(0, T ) and E(|KT |p) < +∞ for 1 < p ≤ p̄%

p̄+%
≤ p̄.

Obviously the growth condition (A3’) and this integrability assumption on ξ, f(t, 0, 0)
and L+ are not optimal (compared to Lp-solution for non reflected BSDE); these points
are left for further research.

2.3 Backward doubly stochastic differential equations
([XIII])

Backward Doubly Stochastic Differential Equations (BDSDEs for short) have been
introduced by Pardoux and Peng [272] to provide a non-linear Feynman-Kac formula
for classical solutions of SPDE. The main idea is to introduce in the standard BSDE a
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second nonlinear term driven by an external noise representing the random perturbation
of the nonlinear SPDE. Hence BSDE (2.1) becomes:

(2.11) Yt = ξ +

∫ T

t

f (r, Yr, Zr) dr +

∫ T

t

g (r, Yr, Zr)
←−−
dBr −

∫ T

t

ZrdWr, 0 ≤ t ≤ T,

where B and W are two independent Brownian motions, and
←−−
dBr is the backward Itô

integral. Pardoux and Peng [272] have proven existence and uniqueness for solutions of
BDSDE (2.11) if f and g are supposed to be Lipschitz continuous functions and with
square integrability condition for the terminal condition ξ and for coefficients f(t, 0, 0)
and g(t, 0, 0). Moreover under smoothness assumptions of the coefficients, Pardoux and
Peng prove existence and uniqueness of a classical solution for the related SPDE.

Motivating by singular SPDE, our first goal in [XIII] was to prove the existence and
uniqueness of the solution of a BDSDE with monotone generator f . The existence of a
solution relies on the solvability of the BSDE:

Yt = ξ +

∫ T

t

f (r, Yr) dr −
∫ T

t

ZrdWr, 0 ≤ t ≤ T.

See among others the proofs in [270, 276] or in [X]. To obtain a solution for this BSDE,
the main trick is to truncate the coefficients with suitable truncation functions in order
to have a bounded solution Y . This step cannot be done for a general BDSDE. Indeed
take for example (ξ = f = 0 and g = 1):

Yt =

∫ T

t

←−−
dBr −

∫ T

t

ZrdWr = BT −Bt, 0 ≤ t ≤ T,

with Z = 0. Thereby Y is not bounded and in order to prove existence of a solution for
(2.11), one can not directly follow the scheme of [270].

To realize this project we restrict the class of functions f : they should satisfy a
polynomial growth condition (as in [45]). Until now we do not know how to extend this
to general growth condition as in [48, 270, 276] or [X].

2.3.1 Setting and notations

Let us now precise our notations. W and B are independent Brownian motions
defined on a probability space (Ω,F ,P) with values in Rk and Rm. Let N denote the
class of P-null sets of F . For each t ∈ [0, T ], we define

Ft = FWt ∨ FBt,T
where for any process η, Fηs,t = σ {ηr − ηs; s ≤ r ≤ t} ∨ N , Fηt = Fη0,t. As in [272] we
define the following filtration G = (Gt, t ∈ [0, T ]) by:

Gt = FWt ∨ FB0,T .

ξ is a FWT -measurable and Rd-valued random variable.
We modify a little bit the spaces of processes introduced in section 1.1.2. We define

by Hp
G(0, T ) the set of (classes of dP× dt a.e. equal) N -dimensional jointly measurable

random processes (Xt, t ≥ 0) which satisfy:
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1. E

[(∫ T

0

|Xt|2dt
)p/2]

< +∞

2. Xt is Gt-measurable for a.e. t ∈ [0, T ].

We denote similarly by Dp
G(0, T ) the set of continuous N -dimensional random processes

which satisfy:

1. E

(
sup
t∈[0,T ]

|Xt|p
)
< +∞

2. Xt is Gt-measurable for any t ∈ [0, T ].

Definition 2.1

• SpG(0, T ) denotes the product space Dp
G(0, T )×Hp

G(0, T ).

• (Y, Z) ∈ Sp(0, T ) if (Y, Z) ∈ SpG(0, T ) and Yt and Zt are Ft-measurable.

Let us point out that SpG(0, T ) is the same space as in Section 1.1.2, expect that the
filtration is G. Recall that family (Ft, t ∈ [0, T ]) is not a filtration. This is the reason
why we distinguish SpG(0, T ) (standard integrability space for BSDEs) and Sp(0, T ),
where there is the additional measurability constraint.

Now we precise our assumptions on f and g. Functions f and g are defined on
[0, T ] × Ω × Rd × Rd×k with values respectively in Rd and Rd×m such that f 0 and g0

are progressively measurable. Generator f satisfies Conditions (A2) (monotone w.r.t.
y) and (A4) (Lipschitz continuous w.r.t. z). But we reinforce Assumption (A3’) (and
(A3)):

(A3*) There exist Cf ≥ 0 and q > 0 such that

|f(t, y, z)− f(t, 0, z)| ≤ Cf (1 + |y|q+1).

Concerning function g, we suppose:

(Ag1) There exist a constant Kg ≥ 0 and 0 < ε < 1 such that for any (t, y, y′, z, z′) a.s.

|g(t, y, z)− g(t, y′, z′)|2 ≤ Kg|y − y′|2 + ε|z − z′|2.

Remember that from [272] if f also satisfies (A2’): there exists Kf,y such that for
any (t, y, y′, z) a.s.

|f(t, y, z)− f(t, y′, z)| ≤ Kf,y|y − y′|

and if ξ ∈ L2(Ω) f 0 and g0 are in L2(Ω × [0, T ]), then there exists a unique solution
(Y, Z) ∈ S2(0, T ) to the BDSDE (2.11). Note that (A2’) implies that

|f(t, y, z)− f(t, 0, z)| ≤ Kf,y|y|,

thus the growth assumption (A3*) on f is satisfied with q = 0.
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2.3.2 Results for monotone BDSDE

In [XIII] we prove the following result.

Theorem 2.5 Under assumptions (A2), (A3*) and (Ag1), if the data are square
integrable:

(2.12) E
[
|ξ|2 +

∫ T

0

(
|f(t, 0, 0)|2 + |g(t, 0, 0)|2

)
dt

]
< +∞,

BDSDE (2.11) has a unique solution (Y, Z) ∈ S2(0, T ). Moreover if for some p ≥ 1

(2.13) E
[
|ξ|2p +

(∫ T

0

(
|f(t, 0, 0)|2 + |g(t, 0, 0)|2

)
dt

)p ]
< +∞,

then (Y, Z) ∈ S2p(0, T ).

Using the paper of Aman [9], this result can be extended to the Lp case: for p ∈ (1, 2),
if

E
[
|ξ|p +

∫ T

0

(|f(t, 0, 0)|p + |g(t, 0, 0)|p) dt
]
< +∞,

there exists a unique solution in Sp(0, T ).
We also give (for completeness) a comparison result on the solution of BDSDE (2.11).

Proposition 2.3 Assume that BDSDE (2.11) with data (f 1, g, ξ1) and (f 2, g, ξ2) have
solutions (Y 1, Z1) and (Y 2, Z2) in Sp(0, T ), respectively. Coefficient g satisfies (Ag1).
If ξ1 ≤ ξ2, a.s., and f 1 satisfies Assumptions (A2) and (A3*), for all t ∈ [0, T ],
f 1(t, Y 2

t , Z
2
t ) ≤ f 2(t, Y 2

t , Z
2
t ), a.s. (resp. f 2 satisfies (A2) and (A3*), for all t ∈ [0, T ],

f 1(t, Y 1
t , Z

1
t ) ≤ f 2(t, Y 1

t , Z
1
t ), a.s.), then we have Y 1

t ≤ Y 2
t , a.s., for all t ∈ [0, T ].

Let us explain the ideas of the proof of Theorem 2.5. To obtain Theorem 2.1, we
assume first that f is locally Lipschitz continuous and we use a truncation argument;
which leads to some bounded solution using existence result for Lipschitz continuous
driver. Then we pass to the limit. And if f is only monotone in y, the existence
is obtained using a weak convergence result. This boundedness step is crucial. For
BDSDE, the solution can not be bounded. Instead, we follow the ideas of [45], where
the convergence in L2 is employed, provided that the growth of f is polynomial.

The key step is to prove existence and uniqueness for the special case

(2.14) Yt = ξ +

∫ T

t

f (r, Yr) dr +

∫ T

t

gr
←−−
dBr −

∫ T

t

ZrdWr, 0 ≤ t ≤ T.

Here f only depends on y (not on z) and g does not depend neither on y nor on z. The
general case can be deduced by standard fixed point argument ([XIII, Lemma 2 and
Section 2.2]). We transform BDSDE (2.14):

Yt +

∫ t

0

gr
←−−
dBr = ξ +

∫ T

0

gr
←−−
dBr +

∫ T

t

f (r, Yr) dr −
∫ T

t

ZrdWr, 0 ≤ t ≤ T.
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Let us define:

Ut = Yt +

∫ t

0

gr
←−−
dBr, ζ = ξ +

∫ T

0

gr
←−−
dBr,

and

φ(t, y) = f

(
t, y −

∫ t

0

gr
←−−
dBr

)
.

Then (U,Z) satisfies:

(2.15) Ut = ζ +

∫ T

t

φ (r, Ur) dr −
∫ T

t

ZrdWr, 0 ≤ t ≤ T.

The terminal condition ζ is GT -measurable and generator φ satisfies (A2) and from
(A3*), there exists q > 0 such that

(2.16) |φ(t, y)| ≤ h(t) + Cφ(1 + |y|1+q).

where Cφ = Cf2
q and

h(t) = |f(t, 0)|+ 2q
∣∣∣∣∫ t

0

gr
←−−
dBr

∣∣∣∣q+1

.

On solution (U,Z) we impose the two measurability constraints:

1. Process (U,Z) is adapted to filtration G = (Gt, t ≥ 0).

2. The random variable Ut −
∫ t

0
gr
←−−
dBr is Ft-measurable for any 0 ≤ t ≤ T .

Let us assume the boundedness hypothesis on ξ, g and f(t, 0): there exists a constant
γ > 0 such that a.s. for any t ≥ 0,

|ξ|+ |f(t, 0)|+ |gt| ≤ γ.

Hence for any p > 1

E
[
|ζ|p +

(∫ T

0

|h(t)|pdt
)]

< +∞.

Thus there exists a unique solution (U,Z) ∈ S2
G(0, T ) to BSDE (2.15) such that

E

[
sup
t∈[0,T ]

|Ut|2 +

(∫ T

0

|Zr|2dr
)]

< +∞.

Theorem 3.6 in [45] also gives that

E

[
sup
t∈[0,T ]

|Ut|2(1+q) +

(∫ T

0

|Zr|2dr
)1+q

]
< +∞.

But we cannot directly derive from this result that Ut−
∫ t

0
gr
←−−
dBr is Ft-measurable for any

0 ≤ t ≤ T . Therefore we follow the proof of [45, Proposition 3.5] to prove the existence
and uniqueness of the solution (U,Z) ∈ S2(1+q)

G (0, T ) to BSDE (2.15), with the desired
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measurability conditions (see [XIII, Proposition 2]). Roughly speaking, we construct
an approximating sequence (Un, V n) converging to (U,Z) such that the sequence of
processes

Y n
t = Un

t −
∫ t

0

gr
←−−
dBr

is Ft ∨ σ(h(s)1h(s)≥n, 0 ≤ s ≤ T ) = Ft ∨ Hn-measurable. Passing through the limit,
Ut −

∫ t
0
gr
←−−
dBr is therefore Ft ∨ H∞-measurable. In [XIII, Lemma 1], it is proved that

the σ-algebra H∞ is trivial.

It is natural to deal with a weaker growth condition on f (as for BSDEs). Suppose
that there exists a non decreasing function ψ : R+ → R+ such that

|f(t, y)| ≤ |f(t, 0)|+ ψ(|y|).

Using the same transformation, we have to control:

|φ(t, y)| = |f(t, y +

∫ t

0

gr
←−−
dBr)| ≤ |f(t, 0)|+ ψ(|y +

∫ t

0

gr
←−−
dBr|).

If it is possible to find two functions ψ1 and ψ2 such that ψ(y + z) ≤ ψ1(y) + ψ2(z) and
if ψ2(|

∫ t
0
gr
←−−
dBr|) belongs to L2(Ω) for any bounded process gt, it may be possible to

obtain a solution with the desired properties to the BDSDE (2.11).

2.4 Second order BSDE ([XVII])
The notion of second order BSDE (2BSDE in short) has been introduced in the

paper [309] (together with [308, 310]). Then it has been extended to reflected 2BSDE
in [243, 244], to second order BDSDE in [249], to the jump case in [185, 186].

Our goal is to extend the results in [295] to the case where the generator f is only
monotone w.r.t. y. Compared with [294], we do not assume that f is of linear growth
w.r.t. y. The probabilistic setting is the same as [295]. But to overcome this diffi-
culty induced by monotonicity, we will impose some stronger integrability conditions2
Although the sketch is almost the same as in [295], several technical issues have to be
taken into account in our setting. Moreover the monotonicity of the driver forces us
to change the minimality condition on the non-decreasing process KP. The classical
assumption

essinfP
P′∈P(t,P,F+)

EP′
[
KP′
T −KP′

t

∣∣∣∣F+
t

]
= 0, 0 ≤ t ≤ T, P− a.s., ∀P ∈ P

is replaced by

essinfP
P′∈P(t,P,F+)

EP′
[∫ T

t

exp

(∫ s

t

λP
′

u du

)
dKP′

s

∣∣∣∣F+
t

]
= 0, 0 ≤ t ≤ T, P− a.s., ∀P ∈ P

2Sufficient to solve the related control problem (Section 5.2). Weaker integrability assumptions are
left for future research.
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where λP′s is the increment of the generator evaluated at the solution Y of the 2BSDE
and at the solution yP′ of the classical BSDE under P′. In the Lipschitz setting (A2’),
λP
′ is bounded and thus can be removed, whereas under the monotone assumption, it

is only bounded from above; we discuss this point later. Note that a similar condition
has been introduced for second order RBSDE in [246].

2.4.1 Our assumptions

We shall consider a FT−measurable random variable ξ : Ω −→ R and a generator
function

f : (t, ω, y, z, a, b) ∈ [0, T ]× Ω× R× Rd × S≥0
d × Rd −→ R.

Define for simplicity

f̂P
s (y, z) := f(s,X·∧s, y, z, âs, b

P
s ) and f̂P,0

s := f(s,X·∧s, 0, 0, âs, b
P
s ).

The generator function f is jointly Borel measurable and Conditions (A2), (A3’) and
(A4) become:

(A2?) For any (t, ω, z, a, b), the map y 7→ f(t, ω, y, z, a, b) is continuous and satisfies the
monotonicity assumption w.r.t. y: there exists a constant χ ∈ R such that for
every (t, ω, y, y′, z, a, b)

(f(t, ω, y, z, a, b)− f(t, ω, y′, z, a, b))(y − y′) ≤ χ(y − y′)2.

(A3?) The polynomial growth assumption w.r.t. y holds: there exists q > 1 and a jointly
Borel measurable function Ψ : [0, T ]×Ω× S≥0

d → R such that for any (t, ω, a, b, y)

|f(t, ω, y, 0, a, b)− f 0
t | ≤ Ψ(t, ω, a)(1 + |y|q).

(A4?) f is Lipschitz continuous w.r.t. z uniformly w.r.t. all other parameters, that is
there exists a non-negative constant Kf,z such that for every (t, ω, y, z, z′, a, b),

|f(t, ω, y, z, a, b)− f(t, ω, y, z′, a, b)| ≤ Kf,z‖z − z′‖.

f 0
t is the notation for f(t, ω, 0, 0, a, b). As for the generator, we denote

Ψ̂s := Ψ(s,X·∧s, âs).

Finally for ξ, f 0 and Ψ, we modify the integrability condition (A1) and we impose:

(A1.1?) For some fixed constants % > 1 and p̄ > %/(%− 1), for every (t, ω) ∈ [0, T ]× Ω,

sup
P∈P(t,ω)

EP
[
|ξ|p̄q +

∫ T

t

∣∣f̂P,0
s

∣∣p̄qds+

∫ T

t

∣∣Ψ̂s

∣∣%ds] < +∞.

(A1.2?) There is some κ ∈ (1, p̄q] such that ξ ∈ Lp̄q,κ0 and

φp̄q,κf = sup
P∈P0

EP

 ess sup
0≤s≤T

P

(
ess supP

P′∈P0(s,P,F+)

EP′
[∫ T

0

|f̂P′,0
t |κdt

∣∣∣∣F+
s

]) p̄q
κ

 < +∞.

55



In this section, p denotes any number larger than 1; q denotes the exponent in Condition
(A3’); p̄ and % are used in Assumptions (A1.1?) and (A1.2?) and satisfy p̄ > %/(%−1)
(p̄ is greater than the Hölder conjugate of %). Finally we sometimes assume that p verifies

(2.17) 1 < p ≤ %p̄

%+ p̄
< p̄.

Under this condition, p̂ =
pp̄

(p̄− p)
≤ %.

Remark 2.1 As for BSDEs, we can suppose w.l.o.g. that χ = 0 in (A2?).
Let us explain why we assume Condition (A3?) together with the integrability condi-

tion (A1.1?) on Ψ̂, and not some weaker growth condition. Indeed to prove the existence
of a solution for a 2BSDE we use that the solution (y, z,m) of the standard BSDE with
data f̂P and ξ is obtained by approximation with a sequence of solutions (yn, zn,mn) of
Lipschitz BSDEs. Moreover the fact that Ψ does not depend on b is used for regulariza-
tion of the paths in order to control the downcrossings. Finally notice that this setting is
sufficient to solve the related optimal control problem (see Section 5.2). Existence under
weaker conditions is left for further research.

Compared to the integrability assumption (A1), (A1.1?) looks to be too strong. As
in the previous remark this hypothesis is related to the method we use to obtain existence
of the solution of the 2BSDE; in particular in the Lipschitz approximation procedure
and in the proof of existence of the solution of the reflected BSDE. Weaker integrability
condition is also left for further research.

2.4.2 Definition and existence and uniqueness results

We consider the 2BSDE

(2.18) Yt = ξ +

∫ T

t

f̂P
u (Yu, â

1
2
uZu)du−

(∫ T

t

ZudX
c,P
u

)P

−
∫ T

t

dMP
u +

∫ T

t

dKP
u .

In this equation
(∫ T

t
ZudX

c,P
u

)P
denotes the stochastic integral of Z w.r.t. Xc,P under

P, MP is a martingale orthogonal to Xc,P and KP is a non-decreasing process.

Definition 2.2 (Y, Z,MP, KP) is a solution if (2.18) is satisfied P − q.s. and if family
(KP, P ∈ P) satisfies the minimality condition:
(2.19)

essinfP
P′∈P(t,P,F+)

EP′
[∫ T

t

exp

(∫ s

t

λP
′

u du

)
dKP′

s

∣∣∣∣F+
t

]
= 0, 0 ≤ t ≤ T, P− a.s., ∀P ∈ P

where

λP
′

s =
f̂P′
s (Ys, z

P′
s )− f̂P′

s (yP
′
s , z

P′
s )

Ys − yP′s
11Ys 6=yP′s ≤ L1.
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P-q.s. means quasi-surely, that is P − a.s. for any P ∈ P . In the above definition,
(yP, zP,mP) is the solution under the probability measure P of the following BSDE

(2.20) yt = ξ+

∫ T

t

f(u,X·∧u, yu, â
1
2
u zu, âu, b

P
u)du−

(∫ T

t

zudX
c,P
u

)P

−
∫ T

t

dmu, P−a.s.

where again m is an additional martingale, orthogonal to Xc,P. Moreover for t ≤ s and
an F+

s -measurable random variable ζ , yPt (s, ζ) is the solution of (2.20) with terminal
time s and terminal condition ζ.

Let us begin with the uniqueness result, which corresponds to [295, Theorem 4.2].

Proposition 2.4 Under Conditions (A1.1?), (A1.2?), (A2?), (A3?) and (A4?), let
(Y, Z,MP, KP) be a solution of (2.18) and for any P ∈ P, let (yP, zP,mP) be the solution
of BSDE (2.20) in Dp̄q

0 (FP
+,P)×Hp̄q

0 (FP
+,P)×Mp̄q

0 (FP
+,P). Then for any 0 ≤ t1 ≤ t2 ≤ T

(2.21) Yt1 = ess sup P

P′∈P(t1,P,F+)

yP
′

t1
(t2, Yt2).

Thus uniqueness holds in Dp̄q
0 (FP0

+ ) × Hp
0(FP0

+ ) ×Mp
0((FP

+)P∈P0) × Ip0((FP
+)P∈P0) for any

1 < p satisfying Condition (2.17).

The comparison principle ([295, Theorem 4.3]) , the a priori estimate ([295, Theorem
4.4]) and the stability result ([295, Theorem 4.5]) for 2BSDE remain unchanged here.
Indeed it is a direct consequence of the comparison principle and the stability result on
BSDEs and the formula (2.21). The other arguments follow exactly the proofs in [295].

Now we come to the existence result (equivalent to [295, Theorems 4.1 and 4.4]).

Proposition 2.5 Under Conditions (A1.1?), (A1.2?), (A2?), (A3?) and (A4?),
there exists a solution (Y, Z,MP, KP) to 2BSDE (2.18) in the space Dp̄q

0 (FP0
+ )×Hp

0(FP0
+ )×

Mp
0((FP

+)P∈P0)× Ip0((FP
+)P∈P0) for any p > 1 satisfying (2.17). More precisely there exists

a constant C depending on p̄, q T , χ, Kf,z such that

(2.22) ‖Y ‖p̄qDp̄q0 + ‖Z‖pHp0 + sup
P∈P0

EP (KP
T

)p
+ sup

P∈P0

EP ([MP]
T

)p/2 ≤ C
(
‖ξ‖p̄qLp̄q0 + φp̄q,κf

)
.

Discussion and comparison with [294]

When f is Lipschitz continuous w.r.t. y, process λ is bounded also from below. Thus
our minimality condition is equivalent to the classical one:

(2.23) essinfP
P′∈P(t,P,F+)

EP′
[
KP′
T −KP′

t

∣∣∣∣F+
t

]
= 0, 0 ≤ t ≤ T, P− a.s., ∀P ∈ P0.

In general we only have that the classical condition (2.23) implies (2.19).
If there is only one probablity measure P in P0, the minimality condition (2.19)

imposed on KP should imply that KP is equivalent to zero. In the Lipschitz setting this
is a direct consequence of (2.23). In our setting it is still true but the arguments are
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not direct. From the proof of Proposition 2.4, (2.19) implies uniqueness of the solution.
But if P0 is the singleton, solution (yP, zP, 0) of the classical BSDE (2.20) becomes a
solution of 2BSDE (2.18). By uniqueness, KP ≡ 0.

The monotone case was already studied in [294]. Generator f satisfies Conditions
(A2?) and (A4?), is uniformly continuous in y, uniformly in (t, ω, z, a) and has the
linear growth property:

|f(t, ω, y, 0, a)| ≤ |f(t, ω, 0, 0, a)|+ C(1 + |y|).

Then under some integrability condition for ξ and f̂P,0
s , from [294, Theorem 2.2], there

exists a unique solution of 2BSDE (2.18) such that KP satisfies the minimality condition
(2.23).

Therefore if the generator f satisfies the assumptions of [294] and Conditions (A2?)
and (A4?), then the solution obtained by [294] with minimality condition (2.23) is also
the solution given by Propositions 2.4 and 2.5 with minimality criterion (2.19). Let us
emphasize that the ways to obtain the solution are completely different. Indeed in [294]
the generator is approximated by a sequence of Lipschitz generators fn. For any fixed
n using [309], there exists a unique solution (Y n, Zn,Mn,P, Kn,P) to 2BSDE (2.18) with
generator fn and process Kn,P verifies (2.23). Then the core of the paper [294] consists
to show that sequence (Y n, Zn,Mn,P, Kn,P) converges to (Y, Z,MP, KP) and that (2.23)
is preserved through the limit. The uniform continuity and the linear growth conditions
of f w.r.t. y are crucial there.

2.5 Summary
This chapter extends some existence and uniqueness results when the generator is

monotone for

• BSDEs with jumps and Lp-data;

• BDSDEs, RBSDEs and 2BSDEs without jumps and a polynomial growth assump-
tion on the generator.

These results are the foundation to the next chapter where a terminal singularity is
added.
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Chapter 3

Terminal singularity

This chapter is devoted to the study of backward stochastic differential equations
with singular terminal condition. The basic idea comes from the ODE theory. If the
generator f is a deterministic function of y and if the terminal condition is deterministic,
BSDE (2.4) is in fact an ODE:

y(t) = ξ +

∫ T

t

f(y(s))ds⇐⇒ y′(t) = ẏ(t) = −f(y(t)), y(T ) = ξ.

Assume for example that ξ = x > 0 and f(y) = −y|y|. The explicit solution of this
ODE is:

y(t) =
1

T − t+ 1
x

.

Letting x go to +∞, we obtain

y∞(t) =
1

T − t
.

Let us emphasize that this function is bounded and solves the ODE on any interval
[0, T − ε]. The singularity only appears at time T , since limt→T y

∞(t) = +∞. Direct
computations show that the same property holds if f satisfies for some c ∈ R:∫ +∞

c

− 1

f(y)
dy < +∞.

The natural question in the starting papers [I] and [II] was: is it possible to extend this
result for BSDE such that the terminal condition is singular ? Singular means in the
sense of

Definition 3.1 (Singular terminal condition) The terminal condition ξ is called
singular if the positive part ξ+ of ξ does not belong to any Lp(Ω). In particular if

(3.1) P(ξ = +∞) > 0.

A second motivation was the relation between BSDE and PDE, which is a extension
for semi-linear PDE of the Feynman-Kac formula. If X t,x is the solution of SDE (1.9)
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starting from x at time t, if ξ = g(X t,x
T ), then Y t,x

t = u(t, x) is a deterministic function
and a viscosity solution of the semi-linear PDE

(3.2)
∂u

∂t
(t, x) + Lu(t, x) + f(t, x, u(t, x), σ∗(t, x)∇u(t, x)) = 0,

L being the infinitesimal generator of X t,x. The exact result can be found in [276,
Section 5.4]. Among all semi-linear PDEs, a particular form has been widely studied:
for some q > 1

(3.3)
∂u

∂t
(t, x) + Lu(t, x)− u(t, x)|u(t, x)|q−1 = 0.

Baras & Pierre [21], Marcus & Veron [241] (and many other papers) have given existence
and uniqueness results for this PDE, which is close to the Lane-Emden equation in
astrophysics. In [241] it is shown that every positive solution of (3.3) possesses a uniquely
determined final trace g which can be represented by a couple (S∞, µ) where S∞ is a
closed subset of Rd and µ a non negative Radon measure on R = Rd \ S∞. The final
trace can also be represented by a positive, outer regular Borel measure ν, and ν is not
necessary locally bounded. The two representations are related by:

∀A ⊂ Rd, A Borel,
{
ν(A) =∞ if A ∩ S∞ 6= ∅
ν(A) = µ(A) if A ⊂ R.

The set S∞ is the set of singular final points of u and it corresponds to a “blow-up”
set of u. From the probabilistic point of view, Dynkin & Kuznetsov [106] and Le Gall
[216] have proved similary results for PDE (3.3) in the case 1 < q ≤ 2 using the theory
of superprocesses. Now if we want to represent the solution u of (3.3) using a forward
backward SDE, we have to deal with the generator f(y) = −y|y|q−1 and a singular
terminal condition ξ, where {ξ = +∞} corresponds to the set S∞.

We have already mention that BSDEs have proved to be a powerful tool to solve
stochastic optimal control problems (see e.g. the survey article [118] or the book [288]).
Let us consider the problem of minimizing the cost functional 1

(3.4) J(X) = E
[∫ T

0

(ηs|αs|p + γs|Xs|p) ds+ ξ|XT |p
]

over all progressively measurable processes X that satisfy the dynamics

Xs = x+

∫ s

0

αrdr.

Here p > 1 and the processes η and γ are non negative progressively measurable. Again
the FT -measurable random variable ξ takes the value∞ with positive probability. This
singularity imposes the terminal state constraint on the set of strategies α. Indeed,
any strategy X that does not satisfy this terminal constraint creates infinite costs. In
particular, such a strategy cannot be optimal if there exists some strategy that creates

1We define 0 · ∞ := 0.

60



finite costs (which will always be the case under the assumptions that we impose). The
analysis of optimal control problems with state constraints on the terminal value is
motivated by models of optimal portfolio liquidation under stochastic price impact. In
[10], the filtration is generated by the Brownian motion W and ξ =∞ a.s., that is there
is an a.s. constraint XT = 0. The authors characterize optimal strategies and the value
function of this control problem with the BSDE

(3.5) dYt = (p− 1)
Y q
t

ηq−1
t

dt− γtdt

with lim inf
t→T

Yt = +∞. Here q > 1 is the Hölder conjugate of p. Note that if we modify
ξ, the liquidation constraint is relaxed in the following way. Instead of enforcing the
condition XT = 0 a.s., that is the position has to be closed imperatively, the model is
flexible enough to allow for a specification of a set of market scenarios S∞ ⊂ FT where
liquidation is mandatory: XT1S∞ = 0. On the complement R a penalization depending
on the remaining position size can be implemented.

These previous points motivate the study of BSDE (2.4), but with a singularity at
time T in the sense of Definition 3.1. Our main contribution are the papers [I], [II] and
[XI]. We prove the existence of a minimal (super-) solution (Y min, Zmin, Umin,Mmin).
This supersolution is constructed via approximation from below. For each L > 0 we
consider a truncated version of (2.4) with terminal condition ξ ∧ L. We impose that
driver f satisfies a monotonicity assumption in the y-variable and is Lipschitz continuous
with respect to (z, ψ). Then existence, uniqueness and comparison results for a solution
(Y L, ZL, UL,ML) to the truncated BSDE can be deduced from Section 2.1. We obtain
the minimal supersolution (Y min, Zmin, Umin,Mmin) with singular terminal condition by
passing to the limit L→∞. The crucial task is to establish suitable a priori estimates
for Y L guaranteeing that when passing to the limit the solution Y min does not explode
before time τ . To this end, the generator f cannot be Lipschitz continuous w.r.t. y.
Hence we impose that f is monotone and decreases sufficiently fast in the y-variable.
The detailed results are in Section 3.1.

The next part 3.2 is devoted to BDSDE and 2BSDE with singularity at time T . For
doubly stochastic equations, the study of PDE (3.2) with a random noise (SPDE) was
our motivation. If SPDE have been widely developed, the paper [XIII] was the first
attempt to add a terminal singularity for these equations. For second order BSDEs, we
were motivated by Knightian uncertainty for some control problem (see Section 5.2).
Roughly speaking we need to extend the existence and uniqueness result for solution of
a 2BSDE of [309] and [310] to monotone generators.

From the theoretical point of view, there are two main unclear points concerning this
minimal solution. The first one concerns the behavior of Y min at time T (see Section
3.3). Indeed in general we only know that a.s.

lim inf
t→T

Y min
t ≥ ξ = Y min

T .

Hence there are two questions:
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• Does the limit exist?

• Is there an equality? This question is called “continuity problem”2.

We already studied these questions in [I, II] for a particular setting. Paper [XII] extends
the results. Roughly speaking the limit exists under structural (but rather general)
conditions on the generator f . And the equality holds under the half-Markovian setting,
that is if ξ = g(XT ) where g : Rd → [0,+∞]. The first non-Markovian cases were
considered in [XVI], where we used a stopping time and a PDE with singularity on the
boundary in the first paper; and in [XIX] with the Itô functional calculus to provide
other non-Markovian examples where the equality holds.

The second problem concerns uniqueness. In [148], a uniqueness result is proved
using the link with an optimal control problem. In [XXI] we obtain uniqueness under
weaker conditions. However in the general case, it remains an open question.

In Part 4, we make the link with PDE [I, II], integro-partial differential equations
(IPDE) [XIV] and SPDE [XIII] with terminal singularity. In other words we enlarge the
kind of PDE for which there is a blow-up at time T . Let us emphasize that for SPDE we
use backward doubly stochastic differential equations (BDSDE) with a monotone driver
f and a singular terminal data ξ.

3.1 BSDE with terminal singularity ([I, II, XI])
In this part, we consider BSDE (2.4)

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

∫
E
Us(e)π̃(de, ds)−

∫ T

t

ZsdWs −
∫ T

t

dMs,

where the driver f satisfies (A2)–(A3)–(A4) and (A5’). Hence the conclusions of
Theorem 2.1 and Proposition 2.2 hold if the integrability condition (A1) is verified.

We are interesting in the case where ξ is such that (3.1) holds:

P(ξ = +∞) > 0,

and ξ−, the negative part of ξ, belongs to L`(Ω) for some ` > 1. But more generally,
our results hold for any singular ξ (Definition 3.1) such that ξ− ∈ L`(Ω).

To deal with a singular terminal condition, we need to modify the definition of a
solution.

Definition 3.2 (Supersolution for singular terminal condition) A triple of pro-
cesses (Y, Z, U,M) is a supersolution to BSDE (2.4) with singular terminal condition
YT = ξ if it satisfies:

2Even if it concerns only the lim inf
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1. There exists some ` > 1 such that for all ε > 0 and all t ≥ 0

E

[
sup

s∈[0,T−ε]
|Ys|` +

(∫ T−ε

0

|Zs|2ds
)`/2

+

(∫ T−ε

0

∫
E
|Us(e)|2π(de, ds)

)`/2
+ [M ]

`/2
T−ε

]
< +∞.

2. Y is bounded from below by a process Ỹ ∈ D`(0, T ).

3. For all 0 ≤ t ≤ s < T :

Yt = Ys +

∫ s

t

f(r, Yr, Zr, Ur)dr −
∫ s

t

ZrdWr −
∫ s

t

∫
E
Ur(e)π̃(de, dr)−

∫ s

t

dMr.

4. A.s.

(3.6) lim inf
t→T

Yt ≥ ξ = YT .

We say that (Y min, Zmin, Umin,Mmin) is the minimal supersolution of BSDE (2.4) if for
any other supersolution (Y ′, Z ′, U ′,M ′), we have a.s.: Y min

t ≤ Y ′t for any t > 0.

Let us precise our setting. Again, f 0
s denotes f(s, 0, 0,0) and we assume that

(C1) There exists a constant ` > 1 such that

E
[
(ξ−)` +

∫ T

0

(
(f 0
s )−
)`
ds

]
< +∞.

This condition is used to control the negative part of the solution. Moreover

(C2) There exists a positive process η and some constant q > 1 such that for any y ≥ 0

f(t, y, z, u)− f(t, 0, z, u) ≤ − 1

ηt
y|y|q−1.

(C3) There exists some ` > 1 such that

E
∫ T

0

[
((p− 1)ηs)

p−1 + (T − s)p
(
f 0
s

)+
]`
ds < +∞

where p is the Hölder conjugate of q.

(C4) There exists k > max(2, `/(`− 1)) such that∫
E
|ϑ(e)|kµ(de) < +∞.

Recall that ϑ appears in (A5’).
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We suppose that the generator (t, y) 7→ −y|y|q−1/ηt satisfies conditions (A2) and
(A3), which means that η satisfies the next integrability condition:

(3.7) E
∫ T

0

1

ηt
dt < +∞.

Note that this bound on η is necessary to have an optimal control in (3.4) (see Example
1.1 in [10]).

Let us stress that generator f can be also “singular” at time T provided Assumption
(C3) holds. Indeed

E
∫ T

0

|f 0
s |ds = +∞

can occur with our framework. Note that BSDEs with singular generator were already
studied in [174] and [175], but the setting is completely different (we come back on this
topic in Section 3.1.1). Several examples are detailled in [XII], among other:

f(t, y) = −(T − t)ςy|y|q−1 +
1

(T − t)$

where ς and $ are two real numbers. Since 1/ηt = (T − t)ς is in L1(0, T ), ς must be
greater than −1. Condition (C3) imposes that∫ T

0

[
(T − t)−`ς/(q−1) + (T − t)`(p−$)

]
dt < +∞.

This implies the following bounds:

−1 < ς < q − 1, $ < 1 +
1

q − 1
+ 1/`,

with 1 ≤ ` and ` < (q − 1)/ς if ς > 0. The singularity ot time T of the generator has
to be not too important (upper bound on $) and the coefficient 1/η before y|y|q−1 can
degenerate at time T , but not too quickly (upper bound on ς).

We prove an existence property of the minimal supersolution.

Theorem 3.1 Under Conditions (A2)–(A5’) and (C1)–(C4) and if the filtration F is
left-continuous at time T , there exists a minimal supersolution (Y min, Zmin, Umin,Mmin)
in the sense of Definition 3.2.

Let us briefly explain how we obtain this solution by a penalization scheme. For any
L ≥ 0 we consider the BSDE

(3.8) dY L
t = −fL(t, Y L

t , Z
L
t , U

L
t )dt+ ZL

t dWt +

∫
E
UL
t (e)π̃(de, dt) + dML

t

with bounded terminal condition Y L
T = ξ ∧ L and where

(3.9) fL(t, y, z, u) = (f(t, y, z, u)− f 0
t ) + f 0

t ∧ L.
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Under our setting, there exists for every L > 0 a unique solution (Y L, ZL, UL,ML) ∈
S`(0, T ) to (3.8). Moreover there exists a process Ỹ in D`(0, T ), independent of L, such
that a.s. for any t ∈ [0, T ], Ỹt ≤ Y L

t . If (f 0
t )− = ξ− = 0, then Ỹt = 0, Y L

t is non-negative
and (Y L, ZL, UL,ML) ∈ S∞(0, T ).

The key point is the existence of a upper bound for family Y L which is independent
of L.

Proposition 3.1 For every t ∈ [0, T ] the random variable Y L
t is bounded from above

by L(1 + T ) and for t ∈ [0, T ) the following estimate holds:

(3.10) Y L
t ≤

K`,ϑ,Kf,z

(T − t)p

[
E
( ∫ T

t

(
((p− 1)ηs)

p−1 + (T − s)p(f 0
s )+
)`
ds

∣∣∣∣Ft)]1/`

where K`,ϑ,Kf,z is a constant depending on constants Kf,z in (A4) and ϑ in (A5’).

Constant K`,ϑ,Kf,z is a non-decreasing function of Kf,z and ϑ and a non-increasing func-
tion of `. Constants K`,ϑ,Kf,z and ` > 1 come from the growth condition on f w.r.t. z
and ψ. If we assume that f(t, 0, z, u) is uniformly bounded from above by κ, in (3.10)
we can take ` = 1 and K`,ϑ,Kf,z = 1 and we add κ

2+1/q
(T − t).

Remark 3.1 This a priori estimate is optimal. Indeed Section 5.1 provides some ex-
ample where Y min is equal to the upper bound in (3.10).

The comparison principle for BSDEs (Proposition 2.2) implies that if L1 ≤ L2, then
a.s.

∀t ∈ [0, T ], Y L1
t ≤ Y L2

t .

Thus we define Y min as the increasing limit of Y L:

∀t ∈ [0, T ], Y min
t = lim

L→+∞
Y L
t .

Proposition 3.1 and Condition (C3) imply that a.s. Y L
t ≤ Y min

t < +∞ on [0, T ).
Then by Itô’s formula we show that for any fixed ε > 0, (Y L, ZL, UL,ML) is a Cauchy
sequence in S`(0, T − ε) and we deduce that limit (Y min, Zmin, Umin,Mmin) verify the
first three properties of Definition 3.2.

To obtain the fourth property, let us remark that in general

lim
t→T

Y L
t = ξ −∆ML

T .

In other words if T is a thin time for the filtration F, the orthogonal martingale may have
a jump at time T . We need to impose an extra condition on the filtration F to ensure
that a martingale cannot have a jump at time T . An usual and enough condition is:
the filtration F is quasi left-continuous. For example if F is generated by the Brownian
motion and the Poisson random measure, this hypothesis is true. A sufficient and
less strong condition is: the filtration F is left-continuous at time T (see the proof of
[181, Proposition 25.19]). The reader could find examples on non quasi left-continuous
filtrations in [3, Remark 1.9] (see also the references therein, in particular [173]). Note
that in [20], the authors assume that ξ is FT−-measurable to avoid this problem.
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The minimality of this solution is proved in [XI, Proposition 4]. This fact implies that
limit (Y min, Zmin, Umin,Mmin) does not depend on the particular choice of our truncation
procedure.

3.1.1 Uniqueness and asymptotic behaviour

Concerning this minimal solution, several questions are still open. The first (and
perhaps the most important) is the uniqueness. This property is known to be an issue
for the related PDE (see [241]). Our method only provides a minimal supersolution.
The asymptotic method developed by Graewe et al. [148] for viscosity solution of the
related PDE doesn’t improve this result. However in the papers [148, 163], uniqueness
is proved for a particular kind of generators.

If ξ = +∞ a.s. in the Brownian framework

Recently [XXI] brings together these ideas (BSDE technics and asymptotic method)
and extends some results. We assume that filtration F is generated by the Brownian
motion, that T is deterministic, and that generator f has the following form:

(3.11) f(ω, t, y) =
1

ηt(ω)
g(y) + λt(ω)

where:

1. Processes η and λ are bounded: there exist three constants 0 < η? < ‖η‖ and
‖λ‖ ≥ 0 such that a.s. for any t

η? ≤ ηt ≤ ‖η‖, 0 ≤ λt ≤ ‖λ‖.

2. Function g is continuous and non-increasing, with g(0) = 0 and with continuous
derivative.

3. For any x > 0, the function

G(x) :=

∫ ∞
x

1

−g(t)
dt

is well-defined on (0,∞).

In [148, 163], the authors consider the particular case g(y) = −y|y|q−1, q > 1. Using the
same arguments as in the proof of Theorem 3.1, we show that there exists a minimal
solution (Y min, Zmin) to the BSDE

(3.12) dYt = −f(t, Yt)dt+ ZtdWt

with singular terminal condition ξ = +∞ a.s. ([XXI, Proposition 1]).
In [148, 163], that is for g(y) = −y|y|q−1, the authors prove that uniqueness holds.

The proof is based of two ingredients. First they show that any solution satisfies the a
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priori estimate (3.10). Secondly they prove that the first component Y of the solution
is the value function of the related control problem (5.8), which proves uniqueness. Our
arguments are different and don’t rely on the control problem. Thus we can deal with
more general functions g. Essentially, g should be concave, together with technical con-
ditions on G. The functions y 7→ exp(−ay) − 1 or y 7→ exp(−ay2) verify the required
conditions. If we also assume some exponential integrability à la Novikov on the Malli-
avin derivative of 1/η, then uniqueness holds. The arguments are based uniquely on
BSDEs technics and on the asymptotic development of Y near the terminal time T .

Let us define the two functions:

(3.13) φ(x) := G−1 (x) > 0, ψ(x) := −φ′(x) > 0.

Function φ being decreasing and C2 on (0,∞) solves φ′ = f ◦ φ. Let us denote

(3.14) At = E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft] .
Note that A satisfies the BSDE:

(3.15) − dAt =
1

ηt
dt+ ZA

t dWt

The main statement of [XXI] is:

Theorem 3.2 The minimal solution (Y min, Zmin) of the BSDE with generator f and
terminal value +∞ is given by:

Y min
t = φ(At) + ψ(At)Ht,

where (H,ZH) is the minimal non-negative solution of the BSDE with terminal condition
0, but with a singular generator F : a.s.∫ T

0

F (t, h, z)dt = +∞.

Such BSDEs with singular generator are studied in [175]. Let us clarify the meaning of
solution for these BSDEs:

• H is non-negative and essentially bounded: for any 0 ≤ t < T , 0 ≤ sups∈[0,t] Hs <
+∞ a.s. and

E
∫ T

0

|F (s,Hs, Z
H
s )|ds < +∞.

• The process ZH belongs to H1(0, T ) ∩Hp(0, T − θ) for any θ > 0 and p > 1.

• For any 0 ≤ t ≤ T

Ht =

∫ T

t

F (s,Hs, Z
H
s )ds−

∫ T

t

ZH
s dWs.

In particular a.s.
lim
t→T

Ht = 0 = HT .
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• For any other solution (Ĥ, Ẑ) of the same BSDE, a.s. for any t ∈ [0, T ], Ĥt ≥ Ht.

Now if (Ŷ , Ẑ) is a solution of the BSDE (3.12), then we define Ĥ = (Ŷ−φ(A))/(−φ′(A)).
We can prove that this process Ĥ and the related ẐH solve the BSDE with generator
F and terminal condition 0, that is it satisfies the previous properties. This one-to-one
correspondence between the solutions of BSDEs with singular terminal condition resp.
with a singular generator allows us to describe precisely the behaviour at time T and as
a by product uniqueness.

Corollary 3.1 If g is concave3, then H, and thus Y min, are unique.

In other words the respective BSDEs have a unique solution.
In the power case g(y) = −y|y|q−1, we even prove that H is obtained by a Picard

iteration procedure in the space

Hδ := {H ∈ L∞(Ω;C([T − δ, T ];R)) : ‖H‖Hδ < +∞}

endowed with the weighted norm

‖H‖Hδ =

∥∥∥∥∥ sup
t∈[T−δ,T )

(T − t)−2|Ht|

∥∥∥∥∥
∞

.

Let us mention that we have no uniqueness result for a general generator.

Back to the general case.

Another question concerns the behavior of Y min at time T on the singular set. In
other words, is it possible to determine the rate of explosion of Y min ? To obtain such
rate, we need a lower bound on Y min. We consider again BSDE (2.4), but the generator
is given by (3.11). Under the previous setting of [XXI], we prove that a.s.

(3.16) Y min
t ≥ φ(At), ∀t ∈ [0, T ].

This estimate together with Theorem 3.2 leads to an explosion rate of order φ((T−t)/η?).
In the power case, we can provide a better estimate. Assume that

f(ω, t, y) = − 1

ηt(ω)
y|y|q−1 + λt(ω)

such that λ and ξ are non-negative and (C3) holds. Following the ideas of [I, Proposition
11] and [10, Proposition 3.1], the minimal supersolution Y min verifies a.s.

Y min
t ≥ E

( 1

(q − 1)
∫ T
t

1
ηs
ds+ ξ1−q

)p−1 ∣∣∣∣∣Ft
 , ∀t ∈ [0, T ].

3Again we skip here the technical conditions. The interested reader can found them in [XXI].
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Hence if the process η is a constant (or is bounded from below by some constant), we
get:

Y min
t ≥ E

( ξq−11ξ<+∞

(q − 1)ξq−1 1
η
(T − t) + 1

)p−1 ∣∣∣∣∣Ft


+ E

( 1

(q − 1) 1
η
(T − t)

)p−1

1ξ=+∞

∣∣∣∣∣Ft
 .

Thereby we deduce that

Lemma 3.1 If η is bounded from below by η?, on the set {ξ = +∞},

lim inf
t→T

(T − t)p−1Y min
t ≥

(
η?

q − 1

)p−1

= ((p− 1)η?)
p−1 .

Since f does not depend neither on z nor on ψ, the upper bound (3.10) can be written:

Y min
t ≤ 1

(T − t)p
E
[ ∫ T

t

(
((p− 1)ηs)

p−1 + (T − s)p(λs)
)
ds

∣∣∣∣Ft] .
Again for constant processes η and λ (or bounded from above), we have:

lim sup
t→T

(T − t)p−1Y min
t ≤ ((p− 1)η)p−1 .

In other words if η is a constant, we have an exact rate of explosion: on the set {ξ =
+∞},

lim
t→T

(T − t)p−1Y min
t = ((p− 1)η)p−1 .

Recall that the terminal condition ξ is related to the minimal supersolution Y min

through the relation: a.s.
lim inf
t→T

Y min
t ≥ ξ.

The upper bound (3.10) or the preceding lower bound don’t lead to any conclusion
concerning the existence of a limit, nor the equality between this limit and the condition
ξ. These problems are studied in Section 3.3.

3.2 BDSDEs and 2BSDEs with singularity ([XIII] and
[XVII])

In [XIII] and [XVII], we study the existence of a minimal solution for BDSDEs and
2BSDEs with singular terminal condition. Roughly speaking, we obtain the same result
but under some restrictions, since the existence of Lp-solution is not proved under a
very general setting and since we need some useful a priori estimate.
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3.2.1 For BDSDEs

In this part, we extend the results concerning singular BSDEs to BDSDEs of the form
(2.11). Let us consider generators f and g such that (A2), (A3?),(A4) and (Ag1)
hold. From now on we assume that the terminal condition ξ is singular (Definition 3.1).
It could satisfy (3.1):

P(ξ = +∞) > 0.

And we suppose that (C1) for ξ and (C2) for f are verified. However to use our
existence theorem 2.5 for monotone BDSDE, we reinforce (C2):

f(t, y, z)− f(t, 0, z) ≤ −1

η
y|y|q−1,

for some positive constant η.
By the comparison principle (Proposition 2.3), we know that for any L, if (Y L, ZL) ∈

S`(0, T ) denotes the solution of the BDSDE (2.11) with terminal condition ξ∧L ∈ L`(Ω),
then for L ≤ L′:

(3.17) Ξ0
t ≤ Y L

t ≤ Y L′

t ≤ ΞL′

t .

Here Ξ0 is the first component of the unique solution (Ξ0,Θ0) in S`(0, T ) of (2.11) with
terminal condition −ξ−. And ΞL is the first component of the unique solution (ΞL,ΘL)
in S`(0, T ) of the BDSDE:

Yt = L− 1

η

∫ T

t

Yr|Yr|q−1dr +

∫ T

t

[f(r, 0, Zr)− f(r, 0, 0)] dr(3.18)

+

∫ T

t

((f 0
r )+ ∧ L)dr +

∫ T

t

g (r, Yr, Zr)
←−−
dBr −

∫ T

t

ZrdWr, 0 ≤ t ≤ T.

In fact (ΞL,ΘL) belongs to any Sr(0, T ), r > 1. In order to have explicit and useful
bound on Y L, we add some restrictions on f and g.

• Assume that f 0 is a deterministic function and that g(t, y, 0) = 0 for any (t, y) a.s.
In this case for L ≥ 1, ΘL = 0 and ΞL solves an ODE, which can be controlled by
an adapted version of (3.10):

ΞL
t ≤

η

(T − t)p−1
+

1

(T − t)p

∫ T

t

(
(T − s)p(f 0

s )+
)
ds.

• If g is linear and does not depend on z:

g(t, y, z) = g0(t) + g1(t)y,

then arguing as in the proof of [10, Proposition 3.1] we have for any y ≥ 0 and
a ≥ 0

(p− 1)yq − paq−1y + aq ≥ 0,
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thus with a = (η/(q − 1))p−1/(T − t)p/q

−1

η
yq + (f 0

t )+ ∧ L ≤ −p 1

(T − t)
y +

(
η

(q − 1)(T − t)

)p
+ (f 0

t )+ ∧ L.

We define the vector ζL(s) = [f(s, 0,ΘL
s )− f(s, 0, 0)]/ΘL

s (see (1.8) for the precise
definition) and

Γt,r = exp

[∫ r

t

−p
T − s

ds+

∫ r

t

g1(s)
←−−
dBs +

∫ r

t

ζL(s)dWs −
1

2

∫ r

t

((ζL(s))2 − g1(s)2)ds

]
=

(T − r)p

(T − t)p
exp

[∫ r

t

g1(s)
←−−
dBs +

∫ r

t

ζL(s)dWs −
1

2

∫ r

t

((ζL(s))2 − g1(s)2)ds

]
=

(T − r)p

(T − t)p
γLt,r.

Let us apply the formula for linear BDSDE (see [18, Proposition 2.1]):

ΞL
t ≤ E

[
εp

(T − t)p
γLt,T−εΞ

L
T−ε

∣∣∣∣Gt]
+ E

[∫ T−ε

t

γLt,r
(T − r)p

(T − t)p

((
η

(q − 1)(T − r)

)p
+ (f 0

r )+ ∧ L+ g1(r)g0(r)

)
dr

∣∣∣∣Gt]
+ E

[∫ T−ε

t

γLt,r
(T − r)p

(T − t)p
g1(r)

←−−
dBr

∣∣∣∣Gt] .
Let ε go to zero with the dominated convergence theorem:

ΞL
t ≤

1

(T − t)p
E
[∫ T

t

γLt,r

((
η

q − 1

)p
+ (T − r)p

(
(f 0
r )+ + g1(r)g0(r)

))
dr

∣∣∣∣Gt]
+

1

(T − t)p
E
[∫ T

t

γLt,r(T − r)pg1(r)
←−−
dBr

∣∣∣∣Gt] .
Since (Ag1) and (A4) hold, g1 and ζL are bounded processes (resp. by Kg and
by Kf,z). The martingale γLt,· has finite %–moments for any % ≥ 1. Thus the right-
hand side is well-defined and finite provided that (T − ·)p((f 0

· )
+ + g0(·)) belongs

to some L`((0, T )× Ω).

To summarize we can find several sufficient non trivial conditions on f and g, such that
sequence Y L has an upper bound independent of L and finite on any interval [0, T − ε],
ε > 0. Then as with BSDEs with singular terminal conditions we prove

Theorem 3.3 Under (A2), (A3?), (A4), (Ag1), (C1) and (C2) with a positive
constant η, if f 0 and g satisfy

• either f 0 is deterministic and g(t, y, 0) = 0 ;

• or g(t, y, z) = g0(t)+g1(t)y with a bounded process g1, and if (T−·)p((f 0
· )

+ +g0(·))
belongs to some L`((0, T )× Ω)
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there exists a process (Y min, Zmin) satisfying:

1. For all t ∈ [0, T [,

E

[
sup

0≤s≤t
|Y min
s |` +

(∫ t

0

|Zmin
r |2dr

) `
2

]
< +∞.

2. There exists a process Ȳ ∈ D`(0, T ) such that a.s. Ȳt ≤ Y min
t .

3. For all 0 ≤ s ≤ t < T :

Y min
s = Y min

t +

∫ t

s

f(r, Y min
r , Zmin

r )dr +

∫ t

s

g(r, Y min
r , Zmin

r )
←−−
dBr −

∫ t

s

Zmin
r dWr.

4. P-a.s. lim inf
t→T

Y min
t ≥ ξ.

Moreover this solution is minimal: if (Ỹ , Z̃) is another supersolution bounded from below
by some process in D`(0, T ), then a.s. for any t, Ỹt ≥ Y min

t .

Let us emphasize that the conditions imposed on f 0 and g are sufficient to obtain an a
priori estimate. But they are surely not necessary.

3.2.2 For second order BSDEs

In [XVII], we study 2BSDEs with singular terminal condition, in order to solve a
robust control problem. Thus our generator is very specific but we remark that the
extension to more general driver is possible. Let us describe here this extension.

We work under the setting described in Sections 1.4 and 2.4. We consider a FT -Borel
measurable random variable ξ such that for any P ∈ P0, ξ is a.s. non-negative4. We
denote by S∞ the singular set {ξ = +∞}. We define a Borel measurable function

η : (t, ω, a) ∈ [0, T ]× Ω× S≥0
d −→ R∗+.

Note that here η does not depend on the drift of X. We define for simplicity

η̂s := η(s,X·∧s, âs).

Finally we assume that there exists % > 1 such that for any (t, ω) ∈ [0, T ]× Ω

(3.19) sup
P∈P(t,ω)

EP
∫ T

t

(
1

η̂s

)%
ds <∞.

We shall also consider a generator function

f : (t, ω, y, z, a, b) ∈ [0, T ]× Ω× R× Rd × S≥0
d × Rd −→ R.

4This condition can be relaxed provided that the negative part of ξ satisfies (C1) uniformly w.r.t.
P. For simplicity we only consider the non-negative case.
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Define for simplicity

f̂P
s (y, z) := f(s,X·∧s, y, z, âs, b

P
s ) and f̂P,0

s := f(s,X·∧s, 0, 0, âs, b
P
s ).

Generator f satisfies all assumptions of Part (2.4.1), together with the growth condition
(C2): there exists a constant q > 1 such that for any y ≥ 0

(3.20) f̂P(t, y, z) ≤ − 1

η̂t
y|y|q−1 + f̂P(t, 0, z).

For simplicity as for the terminal condition ξ, we suppose that f̂P,0 is non-negative for
any P ∈ P0. Since Condition (A2?) should hold also for the generator − 1

η(t,ω,a)
y|y|q−1,

this is the reason why η does not depend on the drift of X (and why (3.19) holds). Also
see Remark 2.1. Now Assumption (C3) takes the following form: there exists ` > 1 and
κ ∈ (1, `) such that for any (t, ω)

(3.21) sup
P∈P(t,ω)

EP
[∫ T

t

[
(p− 1)η̂p−1

s + (T − s)p f̂ 0,P
s

]`
ds

]
<∞,

and

(3.22) sup
P∈P0

EP

[
ess sup
0≤t≤T

P
(
EP
[∫ T

0

[
(p− 1)η̂p−1

s + (T − s)p f̂ 0,P
s

]κ
ds

∣∣∣∣F+
t

]) `
κ

]
<∞.

From the results established in Section 2.4, we deduce that there exists a unique
solution (Y L, ZL,ML,P, KL,P) to the second order BSDE: for any 0 ≤ t ≤ T and any P

Y L
t = (ξ ∧ L) +

∫ T

t

[
f̂P
s (Y L

s , Z
L
s )− f̂ 0,P

u

]
du+

∫ T

t

(f̂ 0,P
u ∧ L)du

−
(∫ T

t

ZL
s dX

c,P
s

)P

−
∫ T

t

dML,P
s + (KL,P

T −KL,P
t ), P− a.s.,(3.23)

such that:

• For any p > 1, Y L belongs to Dp
0(FP0

+ ).

• For any 1 < p < %, (ZL,ML,P, KL,P) is in Hp
0(FP0

+ )×Mp
0((FP

+)P∈P0)× Ip0((FP
+)P∈P0).

• KL,P is a P−a.s. non-decreasing process satisfying the minimality condition (2.19).

Moreover we have the representation formula

(3.24) Y L
t = esssupP

P′∈P(t,P,F+)

yL,P
′

t

where (yL,P, zL,P,mL,P) is the solution under P of the BSDE

dyL,Pt =
[
f̂P
t (yL,Pt , zL,Pt )− f̂ 0,P

t

]
dt− (f̂ 0,P

t ∧ L)dt+ zL,Pt dXc,P
t + dmL,P

t .
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Note that by comparison principle for standard BSDEs, these solutions yL,P satisfy the
inequality: P-a.s.

0 ≤ yL,Pt ≤ L(T + 1), ∀t ∈ [0, T ].

Thus P0-q.s.
0 ≤ Y L

t ≤ L(T + 1) ∀t ∈ [0, T ].

Moreover for L ≤ L′ and any P ∈ P0, we have P− a.s. for any t ∈ [0, T ]

yL,Pt ≤ yL
′,P

t ≤ Y L′

t .

Hence P0-q.s., Y L
t ≤ Y L′

t for t ∈ [0, T ] (also see the comparison result [295, Theorem
4.3]).

In order to pass to the limit on L and to get a finite limit, as for BSDEs or BDSDEs,
we need some a priori estimate of Y L. The estimate (3.10) gives for any P ∈ P0

0 ≤ yL,Pt ≤
K`,Kf,z

(T − t)p

[
EP
( ∫ T

t

(
η̂s + (T − s)p(f̂ 0,P

s )+
)`
ds

∣∣∣∣Ft)]1/`

=
K`,Kz

(T − t)p
(uPt )

1/`.

The process (uP, vP, nP) is the solution of the BSDE

uPt =

∫ T

t

(
η̂s + (T − s)pf̂ 0,P

s

)
ds−

(∫ T

t

vPs dX
c,P
s

)P

−
∫ T

t

dnP
s .

Then using (3.21), (3.22) and [295, Theorem 4.1], there exists a unique solution (U, V,N P,KP)
to the 2BSDE:

Ut =

∫ T

t

(
η̂s + (T − s)pf̂ 0,P

s

)
ds−

(∫ T

t

VsdX
c,P
s

)P

−
∫ T

t

dN P
s + (KP

T −KP
t ),

such that U ∈ D`
0(FP0

+ ) and (V,N P,KP) is in H`
0(FP0

+ ) ×M`
0((FP

+)P∈P0) × I`0((FP
+)P∈P0).

Moreover for any P ∈ P0 and any t ∈ [0, T ], we have the representation formula:

esssupP

P′∈P(t,P,F+)

uP
′

t = Ut, P− a.s.

Thus there exists U ∈ D`
0(FP0

+ ) such that for any 0 ≤ t ≤ T , P0-q.s.

(3.25) 0 ≤ Y L
t ≤

K`,Kf,z

(T − t)p
(Ut)

1/`.

Let us emphasize that the right-hand side does not depend on L and is finite on [0, T ).
From this a priori estimate, we deduce that for any ε > 0, sequence (Y L, ZL,ML,P, KL,P)
converges, when L goes to +∞, to (Y min, Zmin, (Mmin)P, (Kmin)P) in the space D`

0(FP0
+ )×

H`
0(FP0

+ )×M`
0((FP

+)P∈P0)× I`0((FP
+)P∈P0) on [0, T − ε], which means that all processes are

restricted on this time interval. Moreover (Y min, Zmin, (Mmin)P, (Kmin)P) satisfies the
dynamics: for any P ∈ P0, and any 0 ≤ s ≤ t < T :

Y min
s = Y min

t +

∫ t

s

f̂P
u (Y min

u , â
1
2
uZ

min
u )du−

(∫ t

s

Zmin
u dXc,P

u

)P

(3.26)

−
∫ t

s

d(Mmin)Pu + (Kmin)Pt − (Kmin)Ps .
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Finally Y min satisfies the representation property: for any t < T and any P ∈ P0,

Y min
t = esssupP

P′∈P(t,P,F+)

yP
′

t , P− a.s.

where yP is the minimal super-solution of

dyPt = −f̂P
t (yPt , z

P
t )dt+ zPt dX

c,P
t + dmP

t .

Minimality condition (2.19) on (Kmin)P becomes: for any ε > 0

essinfP
P′∈P(t,P,F+)

EP′
[∫ T−ε

t

exp

(∫ s

t

λP
′

u du

)
d(Kmin)P

′

s

∣∣∣∣F+
t

]
= 0, 0 ≤ t ≤ T − ε, P− a.s.,

where

λP
′

u =
f̂P′
s (Y min

s , zP
′
s )− f̂P′

s (yP
′
s , z

P′
s )

Y min
s − yP′s

11Y min
s 6=yP′s .

Recall that for singular BSDEs, we need the left-continuity of the filtration at time
T to avoid the thin time case. Here we require that

• Left-continuity condition: for any probability measure P ∈ Pt, filtration FP
+ is

left continuous at time T .

This condition implies that for any P ∈ P0

lim inf
s→T

yPs ≥ ξ, P− a.s.

Hence from the representation formula, the same inequality holds for Y min. In [XVII],
we give an example of probability measure family P satisfying this hypothesis.

Finally arguing as for the case of BSDEs, we show that:

Theorem 3.4 Process (Y min, Zmin, (Mmin)P, (Kmin)P) is the minimal non-negative su-
persolution of the 2BSDE (3.26) with singular terminal condition ξ.

3.3 Continuity problem
In Sections 3.1 and 3.2, the existence of a minimal super-solution of BSDE (2.4)

(or BDSDEs or 2BSDEs) with singular terminal condition is established under some
conditions. The main requirement is that f decreases w.r.t. y sufficiently fast when y
is large and that the filtration is left-continuous at time T . The final condition on Y min

is (3.6):
lim inf
t→T

Y min(t) ≥ ξ.

In the classical setting (ξ ∈ Lp(Ω)), Y min has a limit as t increases to T since the
process is solution of BSDE (2.4) and thus is càdlàg. Moreover this limit is equal to
ξ a.s. if filtration F is left-continuous at time T . For the related control problem (see
Chapter 5), this weak behaviour (3.6) at time T of the minimal process Y min is sufficient
to obtain the optimal control and the value function. Nevertheless two natural questions
arise here:
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1. Does the limit of Y min at time T exist ?

2. Can the inequality (3.6) be an equality if the filtration is left-continuous at time
T ? We call this question continuity problem.

We call continuity problem the equality: a.s.

(3.27) lim inf
t→T

Y min
t = ξ.

Here we assume again that the underlying filtration F is left-continuous at time T to
avoid the case where T could be a thin time (see the framework of Theorem 3.1).

Despite the very theoretical aspect of these questions, there are several applications.
Minimal supersolutions of BSDE (2.4) with singular terminal conditions can be used to
represent the value function of a corresponding stochastic optimal control problem with
constraints, see Chapter 5 (or [10, X] and [XVI, Section 4]) for the precise formulation
of the optimal control problem and a detailed discussion. In this connection between the
BSDE and its corresponding stochastic optimal control problem, changing the terminal
condition of the BSDE corresponds to changing the terminal payoff and the constraints
of the problem. A natural question: when these change, do the value function and
the optimal control of the control problem change? The continuity results we prove
establishing that a minimal supersolution is a solution in the sense of:

(3.28) lim
t→T

Y min(t) = ξ

provides an answer as follows. Suppose Y (1) and Y (2) are minimal supersolutions of
BSDE (2.4) for two distinct terminal conditions ξ(1), ξ(2). Suppose that Y (i) are solutions
to the BSDE with these terminal conditions in the sense of (3.28), i.e., that Y (i) are both
continuous at time T . This and ξ(1) 6= ξ(2) imply that Y (1) and Y (2) are distinct processes.
To rephrase this in terms of the control interpretation: changing the constraint and
terminal value of the control problem from ξ(1) to ξ(2) leads to distinct value functions
(and hence optimal controls) for the control problem. And in other words, we think
that the continuity problem is a first step (and a necessary condition) for uniqueness of
the solution.

We explain a further implication of the continuity results to optimal control through
the following example. Let X denote the state process of the corresponding optimal
control problem. As explained in [10, X] the terminal condition ξ(1) = ∞ corresponds
to the constraint XT = 0. Let us relax this constraint to requiring XT = 0 only when
{τ > T} where τ is a stopping time of the filtration. The corresponding terminal
condition ξ =∞ · 1{τ>T} belongs to the class we treat in Section 3.3.4. Two questions:

1. Does this relaxation lead to a lower value function? This question is a special
case of the question discussed in the previous paragraph, i.e., whether the same
BSDE with distinct terminal conditions have distinct solutions, and we know that
continuity of the solution implies that the solutions will be distinct.
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2. A more delicate question: is the optimal control tight, i.e., is it the case that,
under the optimal control XT = 0 if and only if {τ < T}? The continuity of the
minimal supersolution implies that the answer to this question is also affirmative.
In finance applications a non-tight optimal control can be interpreted as a strictly
super-hedging trading strategy. Continuity results overrule such strategies.

As a last point in connection with optimal control and optimal liquidation we note
that the continuity of the minimal supersolution at terminal time appears in [20], as a
condition for the solution of an optimal targeting problem.

To summarize the obtained results on this topic, we distinguish the two questions:

1. The existence of a limit at time T is proved under a structural condition on gen-
erator f ([XII, Theorem 3.1]). Roughly speaking Y min is a non-linear continuous
transform of a non-negative supermartingale.

2. The equality in (3.6) is obtained under some sufficient conditions on the terminal
data ξ and on the growth of f w.r.t. y.

In this section, we call Y the solution of a BSDE, even if we should precise the first
component Y of the solution. Indeed we are essentially interested by the behavior of Y
at time T .

Before going into details, we mention

Lemma 3.2 Let Y min be the minimal supersolution of the BSDE with singular terminal
condition ξ. Suppose that continuity condition holds for Y min:

lim
t→T

Y min
t = ξ.

Then we have a.s. on {ξ <∞}

sup
t∈[0,T ]

E[ξ =∞|Ft]
(T − t)p−1

<∞.

This result is related to the notion of fractional smoothness developed by [323, 160], by
[136] for applications in finance and by [135, 137] in the context of BSDEs. Indeed let
A be an element of FT and assume that continuity holds both for ξ = +∞1A and for
ξ = +∞1Ac . From the preceding lemma, we get the following inequality: it holds P-a.s.

∀t ∈ [0, T ], |1A − E(1A|Ft)| ≤ C(T − t)p−1.

Following [135, Definition 1], this means that 1A belongs to B2(p−1)
q,∞ (W ) for any 1 < q <

∞.
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Singularity of the generator

Note that generator f of the BSDE (2.4) can be singular in the sense that Condition
(C3) implies

E
∫ T

0

(T − s)`p((f 0(s))+)`ds < +∞.

Thus (f 0)+ ∈ L1((0, T − ε)× Ω) for any ε > 0, but we could have (f 0
T )+ = +∞ and/or

(f 0)+ 6∈ L1((0, T )×Ω). For example if f 0
t = (T −t)−$ with 1 ≤ ` and $ < 1+1/q+1/`.

Hence for $ ≥ 1, then f 0 6∈ L1((0, T )× Ω). The next result shows that Equality (3.27)

lim inf
t→T

Y min
t = ξ

may be false.

Lemma 3.3 Assume that the generator is given by: f(t, y, z, u) = f(t, y) = −y|y|q−1 +
f 0
t with f 0 non-negative, deterministic and not in L1(0, T ). Then a.s. lim

t→T
Y min
t = +∞.

The proof can be found in [XII]. Hence Equality (3.27) cannot be true whatever the
terminal condition ξ is. Hence in the rest of this section, we assume that

(3.29) (f 0)+ ∈ L1((0, T )× Ω).

Hence with Condition (C1), f 0 belongs to L1((0, T )× Ω).

Sharper estimate on Zmin and Umin

The understanding of the behavior of Y min at time T cannot be separated from the
study of the martingale part (Zmin, Umin,Mmin). However since Mmin does not appear
in the generator, we only focus on (Zmin, Umin). In the construction of the minimal
solution, sequences ZL and UL converge in a suitable integrability space on [0, T −ε] for
any ε > 0. Here we want to obtain an estimate on limits Zmin and Umin on the whole
time interval [0, T ].

To get a better estimate on (Zmin, Umin), we reinforce the condition (C3):

(C3*) There exist $ < 1 and ` > 1 such that

E
∫ T

0

(T − s)−1+$
[
((p− 1)ηs)

p−1 + (T − s)p(f 0
s )+
]`
ds < +∞.

Some remarks concerning this assumption:

• Since 1/η belongs to L1((0, T )× Ω), necessarily

$ > − `

q − 1
.

• If (C3) holds from some `′ > 1, then by Hölder’s inequality for any 1 < ` < `′

and `
`′
≤ $ < 1, (C3*) holds.
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• In particular for bounded coefficients, (C3*) is verified for any 0 < $ < 1.

The key result on (Zmin, Umin) is the following (see [XII, Proposition 3.3]). Recall
that (Y L, ZL, UL,ML) is the solution of the BSDE (3.8).

Proposition 3.2 Under Assumption (C3*), there exists a constant C independent of
L such that process (ZL, UL) satisfies:

E
[∫ T

0

(T − s)ρ
(
|ZL

s |2 + ‖UL
s ‖2

L2
π

)
ds

]`/2
≤ C.

Constant ρ is given by:

(3.30) ρ =
2

q − 1
+ 2

(
1− 1

`

)
+

2$

`
.

Under our general framework, constant C is not explicitly given, but it depends on q, `,
$, the Lipschitz constants Kf,z and Kf,ψ of the generator f , and η and (f 0)+ through
the following integral:

E
∫ T

0

(T − u)−2+η

(∫ T

u

[
((p− 1)ηs)

p−1 + (T − s)p(f 0
s )+
]`
ds

)
du < +∞.

See [XIV, Lemma 3.6] for the finiteness of this quantity. However if f(y) = −y|y|q−1,
we can take ` = 1 and $ = 0, in other words ρ = 2/(q − 1). Constant C is explicitly

given by: C = 16
(

1
q−1

) 2
q−1 (see [I, Proposition 10]). Moreover we extend this result for

BDSDE in [XIII, Proposition 4].

3.3.1 Existence of a limit at time T [XII]

As mentioned before, the existence of a limit essentially depends on generator f . We
assume that all conditions (A2)–(A5’) and (C1)–(C4) hold. But we do not suppose
that the filtration is left-continuous at time T . We prove that the left limit of Y min at
time T exists provided we know the precise behavior of the generator w.r.t. y. In other
words we show that Y min is càdlàg on [0, T ]. In some sense our generator has to be more
specific to control the behaviour of the supersolution at time T .

The main hypothesis is the following: the generator satisfies

(3.31) btg(y) ≤ f(t, y, z, u)− f(t, 0, z, u), ∀y ≥ 0, ∀(t, z, u),

where

• b is positive and b ∈ L1((0, T )× Ω);

• g is a negative, decreasing and of class C1 function and concave on R+ with
g(0) < 0 and g′(0) < 0.
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Since Condition (C2) should hold, from (3.31) we deduce that btg(y) ≤ −aty|y|q−1 (a =
1/η) for any t ∈ [0, T ] and y. Thus w.l.o.g. g(y) ≤ −y|y|q−1 and bt ≥ (−1/g(1))at = Cat
for some positive constant C. We can always add to g a linear function like −y− 1 such
that g(0) < 0 and g′(0) < 0.

We decompose f as follows:

f(t, y, z, u) = φ(t, y, z, u) + π(t, z, u) + f 0
t

where f 0
t = f(t, 0, 0,0) and

φ(t, y, z, u) = f(t, y, z, u)− f(t, 0, z, u)

π(t, z, u) = f(t, 0, z, u)− f(t, 0, 0,0).

Our main result is the following:

Theorem 3.5 Assumptions (A2)–(A5’), (C1)–(C4) and (3.31) hold. Moreover one
of the next three cases holds:

• Case 1. f does not depend on u or π(t, 0, u) ≥ 0;

• Case 2. ϑ ∈ L1
λ(E) and there exists a constant κ∗ > −1 such that κ0,0,u,0

s (e) ≥ κ∗
a.e. for any (s, u, e);

• Case 3. λ is a finite measure on E.

Then the minimal supersolution Y min has a left limit at time T .

Let us add some comments.

1. This result shows that the process Y min is càdlàg on [0, T ] when filtration F is
complete and right-continuous. No additional assumption (left-continuity) on the
filtration is needed here.

2. If Inequality (3.6) holds, then a.s. lim
t→T

Y min
t ≥ ξ.

3. The second condition on κ in Case 2 is quite classical. Indeed a stronger version
is used to prove the comparison principle for BSDE with jumps in [24] or in [302].

In [XI], the control problem leads to a generator f (see BSDE (5.9) and (5.10)) which
satisfies due to the Lipschitz continuity of Θ w.r.t. y, for y ≥ 0:

f(t, y, z, u)− f(t, 0, z, u) = − y|y|q−1

(q − 1)αq−1
t

−Θ(t, y, u) + Θ(t, 0, u)

≥ − y|y|q−1

(q − 1)αq−1
t

− L|y|

≥ −
(

1

(q − 1)αq−1
t

∨ L
)(

y1+q + y
)
≥ btg(y).

80



if
bt =

1

(q − 1)αq−1
t

∨ L, g(y) = −yq − y − 1.

Let us just give the trick of the proof of the previous theorem. If bt is deterministic,
consider the ordinary differential equation y′ = −f(t, y) = −btg(y). To solve it, we can
separate the variables and with G′ = 1/g, we write formally:

G(y(T ))−G(y(t)) = −
∫ T

t

y′(s)

g(y(s))
ds = −

∫ T

t

bsds

which gives:

y(t) = Θ−1

(
G(y(T )) +

∫ T

t

bsds

)
.

We follow the same idea: we apply the Itô formula with functionG to process Y min
t . Then

we cancel the martingale part with the conditional expectation and we have to control
the terms of finite variations. The positive parts give a non negative supermartingale,
which has always a limit at time T . The negative parts have to be more carefully studied
to prove that they have a limit at time T . This is the reason why we impose these extra
conditions on f , κ or λ. Let us emphasize that the same trick was used in [I] or in [XIII]
on singular BDSDEs, for a simpler generator (see therein for more details).

The key step is given in the next lemma.

Lemma 3.4 Assume that the conditions of Theorem 3.5 are satisfied. Then the process
Y min can be written as follows:

Y min
t = G−1

(
EFt [G(ξ)] + ψ−t − ψ+

t

)
where ψ+ and ψ− are two non-negative càdlàg supermartingales with a.s. lim

t→T
ψ−t = 0.

The details of the proof are in [XII]. Theorem 3.5 can be immediately proved. ψ+ being
a non-negative càdlàg supermartingale, we can deduce the existence of the following
limit:

ψ+
T− := lim

t↗T
ψ+
t

And so Y min
T− exists and is equal to:

Y min
T− := lim

t↗T
Y min
t = G−1

(
G(ξ)− ψ+

T−
)
.

Note that we have no idea how to prove that ψ+
T− = 0 (even if filtration F is left-

continuous at time T ). This property would directly give that

Y min
T− := lim

t↗T
Y min
t = ξ = Y min

T .

In [XIII, section 3.2], we show that this idea can easily be adapted to BDSDEs with
singular terminal condition.
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3.3.2 Half-Markovian framework ξ = Φ(XT )

We assume now that ξ is a deterministic function Φ of the terminal value of a diffusion
process X: ξ = Φ(XT ). We call this case half-Markovian since we do not impose some
similar condition on f (as in the classical Markovian setting for BSDEs).

To obtain the desired result (3.27), some quantities of the form:∫ T

0

|φ(s,Xs)Z
L
s |ds

have to be controlled. We use Hölder’s and Young’s inequalities to obtain:∫ T

0

|φ(s,Xs)Z
L
s |ds ≤

[∫ T

0

(T − s)ρ|ZL
s |2ds

]1/2 [∫ T

0

|φ(s,Xs)|2

(T − s)ρ
ds

]1/2

≤ 1

`

[∫ T

0

(T − s)ρ|ZL
s |2ds

] `
2

+
`− 1

`

[∫ T

0

|φ(s,Xs)|2

(T − s)ρ
ds

] `−1
2`

.

For bounded function φ, the last integral is finite if and only if ρ < 1. Hence in this
section, we assume that

(3.32) ρ =
2

q − 1
+ 2

(
1− 1

`

)
+

2$

`
< 1

Condition ρ < 1 is a balance between the non linearity q and the singularity of the
generator f . Let us remark that:
• Under (C3) with constant `′, then (C3*) holds for any 1 < ` < `′ and `

`′
< $ < 1.

And (3.32) holds if
1

q − 1
+

1

`′
<

1

2
,

that is `′ > 2, q − 1 > 2 and (q − 3)(`′ − 2) > 4.

• In particular if η and (f 0)+ are bounded (`′ = +∞), then we can take $ close to
zero and ` close to 1: ρ < 1⇔ q − 1 > 2. This bound on q is also supposed in [I],
in [XIII] and in [XIX].

Now we define the function Φ on Rd with values in [0,+∞] = R+ ∪ {+∞} and with

S∞ = {x ∈ Rd s.t. Φ(x) =∞}
the set of singularity points for the terminal condition induced by Φ. S∞ is supposed to
be closed. We also denoted by ∂S∞ the boundary of S∞.

Our terminal condition ξ satisfies:

(3.33) ξ = Φ(XT ).

and for all closed set K ⊂ Rd \ S∞
(3.34) Φ(XT )1K(XT ) ∈ L1 (Ω,FT ,P) .

Process X is the solution of the SDE (1.15) with jumps:

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs +

∫ t

0

∫
E
β(s,Xs− , e)µ̃(de, ds).

The coefficients b, σ and β satisfy (B1) to (B4).
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Continuity problem for large value of q

In the proof of the continuity of Y min, there is a term due to the covariance between
the jumps of the SDE (1.15) and the jumps of the BSDE (2.4). To control this additional
part, we make a link between the singularity set S∞ and the jumps of the forward process
X. More precisely we assume

(D1) The boundary ∂S∞ is compact and of class C2.

(D2) For any x ∈ S∞, any s ∈ [0, T ] and λ-a.s.

x+ β(s, x, e) ∈ S∞.

Furthermore there exists a constant ν > 0 such that if x ∈ ∂S∞, then for any
s ∈ [0, T ], d(x+ β(s, x, e), ∂S∞) ≥ ν, λ-a.s.

These assumptions mean in particular that if Xs− ∈ S∞, then Xs ∈ S∞ a.s. Moreover
if Xs− belongs to the boundary of S∞, and if there is a jump at time s, then Xs is in
the interior of S∞. Let us now state [XII, Theorem 3.5]:

Theorem 3.6 Under Conditions (3.29), (C3*) with (3.32), (3.33), (3.34) and (D1)-
(D2), the minimal supersolution Y min satisfies a.s.

lim inf
t→T

Y min
t = ξ.

For the details of the proof, we refer to [I] (when there is only the Brownian mo-
tion) and [XII]. We simply give the start and the sketch of the proof. We consider
(Y L, ZL, UL,ML) the solution of the BSDE (3.8) with terminal condition ξ ∧ L and
generator fL. Let φ be a non negative function in C2

b (R), the set of bounded smooth
functions of class C2, with bounded derivatives, and such that the support of φ is in-
cluded in R = Sc∞. We apply Itô’s formula to process Y Lφ(X) between 0 and t and
then take the expectation:

E[Y L
t φ(Xt)] = E[Y L

0 φ(X0)]− E
[∫ t

0

φ(Xs−)fL(s, Y L
s , Z

L
s , U

L
s )ds

]
(3.35)

+E
[∫ t

0

Y L
s−Lφ(s,Xs)ds

]
+ E

[∫ t

0

Y L
s−I(s,Xs−, φ)ds

]
+E

[∫ t

0

∇φ(Xs)σ(s,Xs)Z
L
s ds

]
+ E

[∫ t

0

∫
E
(φ(Xs)− φ(Xs−))UL

s (e)µ(de)ds

]
.

Operators L and I are defined on C2(R) by:

Lφ(t, x) = ∇φ(x)b(t, x) +
1

2
Trace(D2φ(x)(σσ∗)(t, x))

and

(3.36) I(t, x, φ) =

∫
E
[φ(x+ β(t, x, e))− φ(x)− (∇φ)(x)β(t, x, e)]µ(de).
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The linearization argument (w.r.t. z and u, see Equation (1.8)) for BSDE implies that
(3.35) is equal to:

E[Y L
t φ(Xt)] = E[Y L

0 φ(X0)] + E
[∫ t

0

φ(Xs−)(f 0
s ∧ L)ds

]
(3.37)

−E
[∫ t

0

φ(Xs−)(f(s, Y L
s , 0, 0)− f 0

s )ds

]
+E

[∫ t

0

Y n
s−Lφ(s,Xs)ds

]
+ E

[∫ t

0

Y L
s−I(s,Xs−, φ)ds

]
+E

[∫ t

0

(
∇φ(Xs)σ(s,Xs)− φ(Xs)z

L
s

)
ZL
s ds

]
+E

[∫ t

0

[∫
E

[(φ(Xs)− φ(Xs−))]UL
s (e)λ(de)− φ(Xs−)uLs

]
ds

]
.

where zL is a bounded process (byKf,z, (A4)) and uLs = f(s, Y L
s , Z

L
s , U

L
s )−f(s, Y L

s , Z
L
s , 0)

can be controlled uniformly (by Kf,u, (A5)).
First we prove that we can pass to the limit on L in (3.37) and that the limits have

suitable integrability conditions on [0, T ] × Ω. Our assumptions (C3*) and (3.32) are
used to control the last two terms, whereas (3.33) and (3.34) give a uniform (w.r.t. L)
upper bound on the first two terms, and (3.29) on the third one. The expectation with
L can be estimated exactly as in [I] by some technics developed in [241]; the function φ
has to be chosen a little bit more carefully. Finally our hypotheses (D1) and (D2) are
used to give a bound on the term with the non local operator I ([XII, Lemma 3.8]).

Secondly we rewrite (3.37) between t and T and we pass to the limit when t goes to
T . The conclusion comes from Fatou’s lemma.

For small value of q with the Malliavin calculus

If q is too small (that is when (3.32) fails), we loose our control on ZL and UL.
However in the Brownian setting, where X is the solution of (1.9), we have the following
representation of Z: Zs is the Malliavin derivative Ds of Ys. More precisely we consider
the BSDE:

Yt = h(XT ) +

∫ T

t

f(r, Yr, Zr)dr −
∫ T

t

ZrdWr,

where h : Rd → R is a bounded and Lipschitz function. The existence and uniqueness
of the solution (Y, Z) comes from the conditions (A2), (A3) and (A4), and Y is a
bounded process if f 0 is bounded. In [I] or [XIII] we consider deterministic generators
f(y) = −y|y|q−1. The extension of our setting requires additional conditions on f ,
namely:

(A6) For any (t, z), the map y 7→ f(t, y, z) is locally Lipschitz continuous.

(A7) For each (y, z), f(·, y, z) is in La1,2(R) with Malliavin derivative denoted byDθf(t, y, z)

and
∫ T

0
‖Dθf(t, Yt, Zt)‖2

H2(0,T )dθ < +∞.
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(A8) For any t ∈ [0, T ], R ≥ 0 and any (y, y′, z, z′) s.t. |y|+ |y′| ≤ R,

|Dθf(t, y′, z′)−Dθf(t, y, z)| ≤ Kθ(t, ω)(|y − y′|+ |z − z′|)

where for a.e. θ, {Kθ(t, ·), 0 ≤ t ≤ T} is an R+-valued adapted process satisfying∫ T
0
‖Kθ‖4

H4(0,T )dθ < +∞.

La1,2(R) denotes the set of R -valued progressively measurable processes {u(t, ω), 0 ≤
t ≤ T ; ω ∈ Ω} such that:

• For a.e. t ∈ [0, T ], u(t, ·) belongs to D1,2.

• (t, ω) 7→ Du(t, ω) ∈ (L2(0, T ))k admits a progressively measurable version.

• ‖u‖a1,2 =
∫ T

0
|u(t)|2dt+

∫ T
0

∫ T
0
|Dθu(t)|2dθdt < +∞.

(A8) is a locally Lipschitz continuous property of the Malliavin derivative. If f(y) =
−y|y|q−1, these properties are trivially true.

Lemma 3.5 If (A5) to (A8) hold together with

(3.38) E
∫ T

0

|f 0
t |4dt < +∞,

for all 1 ≤ i ≤ k, {Di
sYs, 0 ≤ s ≤ T} is a version of Zi.

Zi = {(Zi
s), 0 ≤ s ≤ T} denotes the i-th component of Z. This result comes from the

[120, Proposition 5.3]. Here, Di
sYs has the following sense:

Di
sYs = lim

r→s
r<s

Di
rYs.

Indeed from Proposition 1.2, we know that XT belongs to D1,∞, and since h is Lipschitz,
with the [258, Proposition 1.2.3], ξ = h(XT ) ∈ D1,2. Moreover, since h is bounded, Y
is also bounded. From (A6), (A7) and (A8), the conclusion of [120, Proposition 5.3]
holds.

Additionally to (B1) and (B2), let us assume the next conditions on the coefficients
of the diffusion process X:

(B5) σ and b are bounded: there exists a constant K s.t.

∀(t, x) ∈ [0, T ]× Rd, |b(t, x)|+ ‖σ(t, x)‖ ≤ K;

(B6) The second derivatives of σσ∗ belongs to L∞:

∂2σσ∗

∂xi∂xj
∈ L∞([0, T ]× Rd).

(B7) σσ∗ is uniformly elliptic, i.e. there exists λ > 0 s.t. for all (t, x) ∈ [0, T ]× Rd:

∀y ∈ Rd, σσ∗(t, x)y.y ≥ λ|y|2.
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The next result is proved in [I, Proposition 16].

Lemma 3.6 Under assumptions (B5) to (B7), for each function φ in the class C2
(
Rd
)

with a compact support, there exists a real Borel function ψ defined on ]0, T ] × Rd s.t.
for all t > 0, E (|Ytψ(t,Xt)|) < +∞ and

E [Zt.∇φ(Xt)σ(t,Xt)] = − E [Ytψ(t,Xt)] .

The function ψ is given by the following formula:

ψ(t, x) =
k∑
i=1

(∇φσ)i(x)
div (pσi)(t, x)

p(t, x)
+ Trace

(
D2φ(x)σσ∗(t, x)

)
(3.39)

+
k∑
i=1

∇φ(x).[(∇σi)σi](t, x);

where σi is the i-th column of the matrix σ and p is the density of the process X.

Now we are able to obtain continuity of Y min at time T . We assume again that our
terminal condition ξ satisfies (3.33) together with (3.34). But we also suppose that Φ is
continuous from Rd to R+ and:

(3.40) ∀M ≥ 0, Φ is a Lipschitz function on the set OM = {|Φ| ≤M} .

This hypothesis implies that Φ ∧ L is a Lipschitz function on Rd. Indeed if we define

KL = sup

{
|Φ(x)− Φ(y)|
|x− y|

; Φ(x) ∨ Φ(y) ≤ L

}
,

then assumption (3.40) implies that Φ ∧ L has a Lipschitz norm smaller than KL+1.
Therefore solution (Y L, ZL) of BSDE (3.8) with terminal condition ξ ∧L and generator
fL satisfies the Lemma 3.5: ZL = D·Y

L. Coming back to (3.37), we have

E[Y L
t φ(Xt)] = E[Y L

0 φ(X0)] + E
[∫ t

0

φ(Xs−)(f 0
s ∧ L)ds

]
−E

[∫ t

0

φ(Xs−)(f(s, Y L
s , 0)− f 0

s )ds

]
+ E

[∫ t

0

Y L
s−Lφ(s,Xs)ds

]
+E

[∫ t

0

(
∇φ(Xs)σ(s,Xs)− φ(Xs)z

L
s

)
ZL
s ds

]
.

where zL is a bounded process (by Kf,z, (A4)). Here we remark that we should add
some restriction on the generator. Indeed the integration by parts works only if zL is a
smooth and bounded function of X, that is if for any (t, y, z)

f(t, y, z)− f(t, y, 0) = z(Xt)z.
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Thus we can apply Lemma 3.6 and (3.37) becomes

E[Y L
t φ(Xt)] = E[Y L

0 φ(X0)] + E
[∫ t

0

φ(Xs)(f
0
s ∧ L)ds

]
−E

[∫ t

0

φ(Xs)(f(s, Y L
s , 0)− f 0

s )ds

]
+ E

[∫ t

0

Y L
s Lφ(s,Xs)ds

]
+E

[∫ t

0

Ψ(s,Xs)Y
L
s ds

]
.

The rest of the proof can be deduced by the same arguments of the case q large.

Proposition 3.3 For q > 1 and if F is generated by W , under conditions (A6) to
(A8) and (B5) to (B7), the minimal supersolution (Y min, Zmin) satisfies: a.s.

lim inf
t→T

Y min
t = ξ.

Extension for BDSDE

For the BDSDE with singular terminal condition (Theorem 3.3), the same questions
appear: does the left limit of Y min at time T exist ? And is the limit equal to ξ ? In
[XIII], we study the case where f(t, y, z) = −y|y|q−1 and we prove that a.s.

lim
t→T

Y min
t = ξ.

We extend the technics of the previous sections to this case: for q > 3 with a suitable
control on Z and for q ≤ 3 with Malliavin’s calculus.

The generalization to different generators f , with the setting of Theorem 3.3 on g,
has not been checked in details. Nevertheless the existence of the limit can be obtained
as for Theorem 3.5 using the assumption (3.31) on f , that is:

btf̂(y) ≤ f(t, y, z)− f(t, 0, z), ∀y ≥ 0, ∀(t, z),

for some negative, decreasing and of class C1 function f̂ which is concave on R+ with
f̂(0) < 0 and f̂ ′(0) < 0. The transformation used for classical BSDE should be suitable
also here. The continuity problem (3.27), lim inft→T Y

min
t = ξ, should be obtained

without a main trouble and with minor modifications.

We guess that we could also apply the same trick for 2BSDEs, where Equation (3.37)
would be computed under any P ∈ P0. But we didn’t verify the details.

3.3.3 Beyond the Markovian setting: smooth functional [XIX]

In the previous cases, ξ is supposed to be given by Φ(XT ). Is it possible to remove
this condition ? For small values of q, we didn’t extend the prior result. However if q is
sufficiently large, we succeeded to enlarge the setting on ξ. In this section, we assume
that (C3*) and (3.32) hold.
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Indeed our proof for large q is essentially based on the Itô formula applied to Y φ(X)
for well-chosen functions φ. As long as Itô’s formula remains valid, the same scheme
can be used. In [XIX], we study the case where ξ is a smooth functional of the paths of
X, namely:

ξ = Φ(F (T,XT , AT )),

for some measurable function Φ : R → [0,+∞] and F ∈ C1,2
b . Let us precise the

notations for this subsection. If φ is a function from [0, T ] to Rd, φ(t) is the value of φ
at time t, whereas φt is the stopped path of φ. Thus it implies that

‖φt − ψt‖∞ = sup{|φ(u)− ψ(u)|, 0 ≤ u ≤ t}.

Now X is the solution of the SDE

(3.41) X(t) = ζ(t) +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dW (s)

The coefficients b(·, ·, φ) : Ω× [0, T ] → Rd and σ(·, ·, φ) : Ω× [0, T ] → Rd×k are defined
for every continuous function φ and satisfy the standard conditions:

• b, σ are Lipschitz continuous w.r.t. φ uniformly in t and ω, i.e. there exists a
constant Kb,σ such that for any (ω, t) ∈ Ω× [0, T ], for any φ and ψ in C([0, T ];Rd):
a.s.

|b(t, φ)− b(t, ψ)|+ |σ(t, φ)− σ(t, ψ)| ≤ Kb,σ‖φt − ψt‖∞.

• b and σ growth at most linearly:

|b(t, 0)|+ |σ(t, 0)| ≤ Cb,σ.

These conditions are extension of (B2) and (B5). Here ζ is a progressively measurable
continuous stochastic process such that ζ ∈ D`∗(0, T ), `∗ being the Hölder conjugate of
` of Condition (C3).

Let us emphasize that compared to the solution of (1.9),X is not a Markovian process
since the drift and the volatility matrix may depend on the whole trajectory ofX. Under
the above assumptions, the forward SDE (3.41) has a unique strong continuous solution
X (see [276, Theorem 3.17]), which is a semimartingale with

[X](t) =

∫ t

0

σ(s,Xs)σ
∗(s,Xs)ds =

∫ t

0

A(s)ds.

Space C1,2
b is defined in [81, 82] and denotes the set of left-continuous functionals F

such that

• F admits a horizontal derivative DF (t, ω) for all (t, ω) ∈ ΛT , and the map
DF (t, ·) : (D([0, T ],Rd), ‖.‖∞)→ R is continuous for each t ∈ [0, T [;

• F is two times vertically differentiable with ∇j
ωF ∈ C0,0

l ;

• DF , ∇ωF and ∇2
ωF belong to B(ΛT ) (boundedness-preserving functionals).

88



Let us recall the change of variable formulas [82, Theorem 4.1]. Let F ∈ C1,2
b such

that F is a non-anticipative functional with predictable dependence with respect to v:
F (t, x, v) = F (t, xt, vt−). Then for t ∈ [0, T ]

F (t,Xt, At) = F (0, X0, A0) +

∫ t

0

DF (u,Xu, Au)du(3.42)

+

∫ t

0

∇ωF (u,Xu, Au)dX(u) +
1

2

∫ t

0

Trace
(
∇2
ωF (u,Xu, Au)d[X](u)

)
.

Hence even if ξ is no more Markovian, the Itô formula can be still applied.
As before R = {Φ < +∞} is supposed to be an open subset of R. We suppose that

P(ξ =∞) > 0 and that for any compact set K ⊂ R, E(ξ1K(F (T,XT , AT ))) < +∞. We
also require some integrability conditions on X = F (·, X,A), continuous semimartingale
for any F ∈ C1,2

b . Let us recall that the classical norm on semimartingales is defined
in [90, Section VII.3 (98.1)-(98.2)] or [297, Section V.2]. Nevertheless this norm is
not sufficient in our case and we follow the ideas of [81, Section 7.5]. For p ≥ 1,
Ap(F) is defined as the set of continuous F-predictable absolutely continuous processes
H = H(0) +

∫ ·
0
h(t)dt with finite variation such that

‖H‖pAp = E
(
|H(0)|p +

∫ T

0

|h(t)|pdt
)
< +∞.

We consider the direct sum

SMp = Mp(0, T )⊕Ap(F).

Any process S ∈ SMp is an F-adapted special semimartingale with a unique decompo-
sition S = M +H, where M ∈Mp(0, T ) with M(0) = 0 and H ∈ Ap(F) with H(0) = 0.
Let us remark that by Jensen’s inequality, the norm defined on SMp is stronger than the
norm of semimartingales defined in [90]. Moreover if S ∈ SMp, then S ∈ Dp(0, T ) by
the Burkhölder-Davis-Gundy inequality. The interested reader can find in [81, Chapter
7] how the vertical and horizontal derivatives can be defined on this space SMp. Our
assumptions are:

• F (·, X,A) is in SMp for p = q
q−1

`∗, where q comes from (C2) and `∗ is the Hölder
conjugate of the constant ` > 1 of Condition (C3).

• ∇ωF is in D`∗(0, T ).

Here we only consider the continuous case, that is we suppose that the truncated
BSDE (3.8) has the form

Y L(t) = ξ ∧ L+

∫ T

t

fL(s, Y L(s), ZL(s))ds−
∫ T

t

ZL(s)dW (s)−ML(T ) +ML(t)

and all martingales have continuous paths. The extension to càdlàg semimartingales is
certainly possible but the Itô formula (3.42) becomes more cumbersome.

89



Note that (C3*) and (3.32) hold. Hence if q > 3, our conditions are true if

p > 2 +
6

q − 3
.

In particular, if q is close to 2, p is large.

Theorem 3.7 Under the previous hypotheses, the minimal supersolution Y min satisfies
a.s.

lim inf
t→T

Y min
t = ξ.

Let us finish this part with some examples. First we can recover the Markovian case if
for some smooth function h ∈ C1,2([0, T ]× Rd)

F (t,Xt, At) = h(t,X(t)),

and if X satisfies the SDE (1.9). Then DF (s,Xs, As) = ∂th(t,X(t)), ∇ωF (s,Xs, As) =
∇xh(t,X(t)) and ∇2

ωF (s,Xs, As) = D2
xh(t,X(t)), where D2

x is the Hessian matrix w.r.t.
x. If we assume that h and its derivatives are of linear growth w.r.t. x, uniformly in
time and ω, then all integrability conditions are satisfied.

As a second example, we consider the case where X is the solution of (3.41) and

F (t,Xt, At) =

∫ t

0

h(s,X(s))A(s)ds

where h is a continuous function on [0, T ]× Rd. Then DF (s,Xs, As) = h(s,X(s))A(s),
∇ωF (s,Xs, As) = 0. Our Itô formula can be simplified:

Y L
t φ(F (t,Xt, At)) = Y L

0 φ(F (0, X0, A0)) +

∫ t

0

φ(F (s,Xs, As))
[
ZL(s)dW (s) + dML(s)

]
−
∫ t

0

fL(s, Y L
s , Z

L
s )φ(F (s,Xs, As))ds+

∫ t

0

Y L
s φ
′(Fs(Xs, As))h(s,X(s))A(s)ds.

The vertical derivatives are vanishing.
Other examples are given by [82, Examples 4 and 5], namely

F (t, xt, vt) = x(t)2 −
∫ t

0

v(u)du, F (t, xt, vt) = exp

(
x(t)− 1

2

∫ t

0

v(u)du

)
.

Conditions on b and σ can be easily found such that the desired integrability conditions
hold, especially if X is given by (1.9).

Let us finish with the weak Euler-Maruyama scheme as in [83]. We still consider the
SDE (3.41) with b = 0 and the non-anticipative functional Xn given by the recursion

Xn(tj+1) = Xn(tj) + σ(tj, X
n
tj

)(W (tj+1)−W (tj)).

For a Lipschitz functional g : D([0, T ],Rd) → R, consider the “weak Euler approxima-
tion”

Fn(t) = E
[
g(Xn

T )|FWt
]
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of the conditional expectation E
[
g(XT )|FWt

]
, where FW is the filtration generated by

the Brownian motion W . This weak approximation is computed by initializing the
scheme on [0, t] with ω (a path of the Brownian motion) and then iterating the scheme
with the increments of the Wiener process between t and T . Then Fn ∈ C1,∞

loc (see [83,
Theorem 3.1]). Under our setting and thanks to [83, Theorem 4.1], the first integrability
condition on F (·, X,A) holds. The second one does not hold on the whole interval
[0, T ]. Nevertheless this functional is locally regular ([83, Definition 7]) and on our
neighbourhood of T , one can easily get this hypotehsis provided that g is bounded for
example.

3.3.4 Other non-Markovian cases [XVI, XXIV]

In [XVI], we study also the continuity problem but for a non smooth functional and
using a different scheme. We consider only the Brownian setting, the dimension d = 1
and the generator f(y) = −y|y|q−1. In [XXIV], the general BSDE (2.4) is considered.

We consider the following class of terminal conditions:

ξ1 =∞ · 1{τ1≤T}
where τ1 is any stopping time with a bounded density in a neighborhood of T and

ξ2 =∞ · 1AT
where At, t ∈ [0, T ] is a decreasing sequence of events adapted to the filtration F that
is continuous in probability at T (equivalently, AT = {τ2 > T} where τ2 is any stopping
time such that P(τ2 = T ) = 0). We prove that the minimal non-negative supersolutions
of the BSDE are in fact solutions, i.e., they attain almost surely their terminal values:

lim
t→T

Y min
t = ξ.

We note that the first exit time from a time varying domain of a d-dimensional diffusion
process driven by the Brownian motion with strongly elliptic covariance matrix does
have a continuous density. Therefore such exit times can be used as τ1 and τ2 to define
the terminal conditions ξ1 and ξ2.

Let us go into details. We assume that Conditions (A2) to (A5’) and (C2) to (C4)
hold. To avoid extra technical problems, we suppose that ξ and f 0 are non-negative,
such that (C1) is verified. And f 0 satisfies

E
∫ T

0

(
f 0
s

)`
ds < +∞.

where ` > 1 is the constant in assumption (C3). The next result is [XXIV, Theorem 1]
and generalizes the continuity result [XVI, Theorem 2.1]

Theorem 3.8 Under the prior conditions, if the distribution of the stopping time τ is

given by a bounded density in a neighborhood of T , ` > 2 and q > 2 +
2

`− 2
, then the

minimal supersolution with terminal condition ξ1 satisfies

(3.43) lim
t→T

Y min
t = ξ1
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almost surely.

If the filtration F is assumed to be generated byW and π alone then we can describe
the solution Y min as follows. Let Y ∞ be the minimal supersolution of BSDE (2.4) with
terminal condition YT =∞ (if f(y) = −y|y|q−1, then Y ∞t = ((q−1)(T−t))−

1
q−1 ). Define

ξ
(τ)
1

.
= 1{τ<T}Y

∞
τ .

Let Y 1,τ be the solution of BSDE (2.4) in the time interval [[0, τ ∧ T ]] with terminal
condition ξ(τ)

1 (again we can apply Theorem 2.2). Following the idea of [XVI, Theorem
2.1], let us define

Ŷt
.
=

{
Y 1,τ
t , t ≤ τ ∧ T
Y ∞t , τ < t ≤ T

where we assume that τ is an FW stopping time, that is it just depends on the paths
of W , and is predictable (exit times of a diffusion process X solution of (1.9) are a
particular case). The jump times of Y 1,τ

t and of Y ∞ coincide with the jump times of the
Poisson random measure or of the orthogonal martingale component. A consequence of
the Meyer theorem (see [297, Chapter 3, Theorem 4]) implies that the jump times of π
are totally inaccessible, hence a.s. cannot be equal to τ . However we cannot exclude
that the orthogonal martingale may have a jump at time τ if filtration F is general. The
second issue is the definition of the martingale part (Z,U). For the first two components,
we can easily paste them together

Ẑt
.
=

{
Z1,τ
t , t ≤ τ ∧ T

Z∞t , τ < t ≤ T
, Ût(e)

.
=

{
U1,τ
t (e), t ≤ τ ∧ T

U∞t (e), τ < t ≤ T
.

Since τ is predictable, these two processes are also predictable and the stochastic inte-
grals ∫ ·

0

ẐtdWt,

∫ ·
0

∫
E
Ût(e)π̃(de, dt)

are well-defined and are local martingales on [0, T ). Nonetheless if we define M̂ similarly,
we cannot ensure that this process is still a local martingale. For the parts with Z and
U , the local martingale property is due to the representation as a stochastic integral.
Based on these observations we provide the following result on the pasting method under
the assumption that the filtration is generated by W and π alone; the approach in the
proof of this proposition is the generalization of the approach used in [XVI].

Proposition 3.4 Assume that filtration F is generated by W and π. Then Ŷt solves
BSDE (2.4) on [0, T ] with terminal condition ŶT = ξ1 and satisfies the continuity prop-
erty at time T . Moreover Ŷ = Y min.

To illustrate this result, let us consider the Markovian framework of [XVI]. Here f(y) =
−y|y|q−1:

(3.44) Ys = Yt −
∫ t

s

Yr|Yr|q−1dr +

∫ t

s

ZrdWr, 0 < s < t < T.
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The random time τ is the exit time:

τ
.
= inf{t ∈ [0,∞) : Wt ∈ {0, L}}, W0 = x, x ∈ (0, L).

Then Y ∞ is deterministic and equal to

Y ∞t = yt := ((q − 1)(T − t))1−p, Z∞t = 0, t ∈ (τ, T ].

Hence (Y 1,τ , Z1,τ ) is described with the solution of the parabolic equation:

(3.45) ∂tV +
1

2
∂xxV − V q = 0;

with the following boundary conditions to accompany the PDE:

(3.46) V (0, t) = V (L, t) = yt, t ∈ [0, T ], V (x, T ) = 0, 0 < x < L.

This result is contained in [XVI] and is equivalent to the previous proposition.

Proposition 3.5 If q > 2 then there is a function u which is C∞ in the x variables
and C1 in the t variable and continuous on D̄ \ {(L, T ), (0, T )} satisfying PDE (3.45)
with the boundary condition (3.46) such that

1.

(3.47) Yt =

{
u(Wt, t) , t < τ ∧ T,
yt , τ ≤ t ≤ T,

Zt =

{
ux(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T.

solve BSDE (3.44) with terminal condition ξ = ξ1 =∞ · 1τ≤T ; in particular, Y is
continuous on [0, T ],

2. The minimal supersolution (Y min, Zmin) is equal to (Y, Z); in particular the conti-
nuity problem holds.

The main part of the proof is devoted to the construction of the smooth function u,
obtained by approximation and regularization as the limit of un,m. The density of the
stopping time τ is also a key ingredient.

Let us give several numerical examples and simulation of our results. The left side of
Figure 3.1 shows the graph of um,n with L = 3 and T = 1,m = 100 and n = 50 computed
using a finite difference approximation of the PDE with ∆x = 0.1 and ∆t = 0.01. The
right side of the same figure shows the graph of um,n over the line x = L/2 = 1.5 for
m = 100 and n = 10 and n = 150 as well as the graph of yt; note u100,10(1.5, t) <
u100,1000(1.5, t) < yt in the figure, as expected. Figure 3.2 shows two randomly sampled
sample paths of the Brownian motion W with W0 = L/2 = 3/2 and the corresponding
path for Y , computed using (3.47) where we use a numerical approximation of um,n with
m = 100 and n = 1000 to approximate u.

In [XVI, XXIV], we also study the case

ξ = ξ2 =∞ · 1AT ,

where At is a decreasing sequence of events adapted to our filtration: for any s ≤ t,
At ⊂ As and At ∈ Ft. If τ0 is a stopping time, the set At = {τ0 > t} provides an
example. We also assume that:
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Figure 3.1: On the left, the graph of um,n with m = 100 and n = 50; on the right, the
graph of um,n over x = 1.5 for m = 100, n = 10 (thin) and n = 1000 (thick), and yt
(dashed line). In all computations L = 3 and T = 1
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Figure 3.2: Numerically computed trajectories ofW (thin light path) and Y (thick dark)
(left with explosion, right without); Y is computed using (3.47) with um,n approximating
u with m = 100 and n = 1000; L = 3 and T = 1
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• The sequence is left continuous at time T in probability:

P

(⋂
t<T

At \ AT

)
= 0.

If At is defined as At = {τ0 > t} through a stopping time τ0, the first assumption is
equivalent to: P(τ0 = T ) = 0. In particular if τ0 has a density this condition is satisfied.
Therefore, as in the previous section, if τ0 is the jump time of an F-adapted compound
Poisson process, then it generates a sequence At satisfying the first condition. The same
comment applies to the exit times of some diffusion processes X.

On filtration F, we suppose that

• There exists an increasing sequence (tn, n ∈ N), tn < T for all n, limn→+∞ tn = T ,
and the filtration F is left continuous at time tn for any n. Recall that we already
assume left continuity of F at time T .

If filtration F is quasi left-continuous, then this condition holds for any sequence tn. In
particular our hypothesis is valid if F is generated by W and π. The notion of jumps for
a filtration has been studied in [173] (see also [298, Section 2]). Let us note that we are
not able to construct a counter example, that is a filtration such that this hypothesis
does not hold.

Theorem 3.9 Under the previous conditions, the minimal supersolution with terminal
condition ξ2 satisfies

(3.48) lim
t→T

Y min
t = ξ2

almost surely.

Let us emphasize that no particular condition is required on q here. In the particular
case of BSDE (3.44), we consider PDE (3.45) with the boundary condition

(3.49) V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) =∞, 0 < x < L.

Then we prove:

Proposition 3.6 There exists a function v̄ which is C∞ in the x variable and C1 in
the t variable and continuous on D̄ \ {(L, T ), (0, T )} and which solves the PDE (3.45)
with the boundary condition (3.49) such that

1. The processes

(3.50) Yt =

{
v̄(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T,

Zt =

{
v̄x(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T.

solve BSDE (3.44) with terminal condition ξ = ∞ · 1B(0,L), and in particular, Y
is continuous on [0, T ],
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Figure 3.3: On the left, graph of ū50; on the rights graphs of ū5(1, t), ū50(1, t) and yt,
t ∈ [0, 1]; T = 1 and L = 2

Figure 3.4: Two trajectories of W and Y (left with explosion, right without).

2. Again (Y min, Zmin) is equal to (Y, Z) and the continuity problem holds.

We illustrate the computations above with several numerical examples in Figures
3.3 and 3.4. The left side of Figure 3.3 shows the graph of ū50, computed numerically
using finite differences; the right side of the same figure shows the graphs of ū5(1, t)
and ū50(1, t) and yt. Figure 3.4 shows two sets of sample paths of W and Y with
W0 = L/2 = 1 and where Y is approximated by ū50(Wt, t) for t < τ ; in all computations
L = 2 and T = 1.
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3.4 BSDE with singular terminal condition and ter-
minal stopping time

We also study the case of a random terminal time, that is the BSDE (2.6)

Yt∧τ = YT∧τ +

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us)ds−

∫ T∧τ

t∧τ
ZsdWs

−
∫ T∧τ

t∧τ

∫
E
Us(e)π̃(de, ds)−

∫ T∧τ

t∧τ
dMs

with the condition that P-a.s. on the set {t ≥ τ}, Yt = ξ and Zt = Ut = Mt = 0. The
assumptions (A2)–(A3”)–(A4) and (A5’), together with the integrability conditions
(A1.1”) and (A1.2”), hold such that the existence and uniqueness results stated in
Theorem 2.2 are true.

We first need to adapt the definition of a solution when there is a singularity at time
τ . Very recently in [E], we develop the following notions.

Definition 3.3 (Supersolution for singular terminal condition) We say that a pro-
cess (Y, Z, U,M) is a supersolution to BSDE (2.6) with singular terminal condition
Yτ = ξ if it satisfies:

1. There exists some ` > 1 and an increasing sequence of stopping times τn converging
to τ such that for all n > 0 and all t ≥ 0

E

[
sup
s∈[0,t]

|Ys∧τn|` +

(∫ t∧τn

0

|Zs|2ds
)`/2

+

(∫ t∧τn

0

∫
E
|Us(e)|2π(de, ds)

)`/2
+ [M ]

`/2
t∧τn

]
< +∞;

2. Y is bounded from below by a process Ỹ ∈ D`(0, T ∧ τ) for any T .;

3. for all 0 ≤ t ≤ T and n > 0:

Yt∧τn = YT∧τn +

∫ T∧τn

t∧τn
f(s, Ys, Zs, Us)ds−

∫ T∧τn

t∧τn
ZsdWs

−
∫ T∧τn

t∧τn

∫
E
Us(e)π̃(de, ds)−

∫ T∧τn

t∧τn
dMs.(3.51)

4. On the set {t ≥ τ}: Yt = ξ, Z = U = M = 0 a.s. and

(3.52) lim inf
t→+∞

Yt∧τ ≥ ξ, a.s.

We say that (Y, Z, U,M) is a minimal supersolution to the BSDE (2.4) or (2.6) if for
any other supersolution (Y ′, Z ′, U ′,M ′) we have Yt ≤ Y ′t a.s. for any t > 0.
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We next introduce a concept that we think provides a general and natural framework
for the study of BSDE (2.6) with singular terminal conditions when the terminal time
is a stopping time:

Definition 3.4 A stopping time τ will be called solvable with respect to BSDE (2.6) if
the filtration F is left-continuous at time τ and if BSDE (2.6) has a supersolution on
the time interval [[0, τ ]] with terminal condition Yτ =∞ that is defined as the limit of the
solution of the same BSDE with terminal condition equal to the constant k, as k tends
to ∞.

From [XI] and Section 3.1, we know that every deterministic time τ is solvable. [XI,
Example 1] show that any stopping time that has a strictly positive density around 0 is
non-solvable. And we will show below that first exit times of classical diffusion processes
from smooth bounded domains are also solvable.

The case of random terminal time is considered in [II] where the generator f is equal
to f(y) = −y|y|q−1 for some q > 1 and the filtration is generated by a Brownian motion.
The paper [XI] is an extension of this first paper. Compared to the deterministic case,
there are two main issues:

• The truncation procedure has to be done carefully since the integrability conditions
(A1.1”) and (A1.2”) mix ξ and τ and are not true for any bounded value ξ.

• The derivation of the a priori estimate is more involved than in the deterministic
case (see (3.10)).

In other words, solvability of a random terminal time is much more complex (no sur-
prise!).

We already saw in Section 2.1.1 that some assumptions have to be modified if the
terminal time is random. Here we suppose that (A2), (A3”), (A4) and (A5’) hold.
and we denote by Kf,ψ = ‖ϑ‖.

Bounded terminal value

The first step consists to obtain the existence of a solution (Y L, ZL, UL,ML) to the
BSDE (3.8) with terminal condition Yτ = ξ ∧ L. More precisely for any 0 ≤ t ≤ T

Y L
t∧τ = Y L

T∧τ +

∫ T∧τ

t∧τ
fL(s, Y L

s , Z
L
s , U

L
s )ds

−
∫ T∧τ

t∧τ
ZL
s dWs −

∫ T∧τ

t∧τ

∫
E
UL
s (e)π̃(de, ds)−

∫ T∧τ

t∧τ
dML

s ,

and Y L
t = ξ∧L on the set {t ≥ τ}. Since we also want an a priori estimate independent

of L, we will assume that (C2) holds and:

(C5) The data ξ− and f 0 and the process η are bounded.

(C6) There exists δ > δ∗ such that E
[
eδτ
]
< +∞. The constant δ∗ depends on χ, Kf,z

and Kf,u.
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(C7) There exists m > m∗ such that for any j

E
∫ τ

0

|Ut(j)|mdt < +∞.

Here Ut(j) = sup|y|≤j |f(t, y, 0, 0) − f 0
t |. The value of m∗ depends on χ, Kf,z and

Kf,u and also on δ and δ∗.

Note that (C5) implies that (C1), (C3) and (C4) hold immediately. We can take f
instead of fL in (3.8). Furthermore Hypotheses (C2) and (C7) imply that

(3.53) E
∫ τ

0

1

ηms
ds < +∞.

Let us roughly explain the conditions (C6) and (C7). They are sufficient to get the
integrability assumptions (A1.1”) and (A1.2”) with ξ ∧ L for any constant L. Let us
consider the simple case where ξ = +∞ and f 0 ≡ 0 a.s.. Then (A1.1”) becomes: for
some r > 1 and ρ > ν (due to (2.7)):

E [erρτ ] < +∞.

In other words if in (A1.1”) ξ and τ are related, here we need to assume some integra-
bility on τ , whatever ξ is. For (A1.2”), we need:

E
[∫ τ

0

erρt|Ut(L)|rdt
]
< +∞.

By Hölder’s inequality, we obtain

E
[∫ τ

0

erρt|Ut(L)|rdt
]
≤
[
E
∫ τ

0

erρhtdt

] 1
h
[
E
∫ τ

0

|Ut(L)|rh̄dt
] 1
h̄

If there exists m sufficiently large (related to r and ρ) such that

E
∫ τ

0

|Ut(L)|mdt < +∞,

then the conclusion follows. If we summarize, we need to find δ and m such that there
exists r > 1, ρ > ν(r) (Hypothesis (2.7)) such that rρ < δ, and h > 1 such that

rh̄ < m which is equivalent to
rδ

δ − rρ
< m. The computational difficulty comes from

the expression of ν(r) in (2.7). However we can find δ∗ and m∗ such that the next
lemma, namely [X, Proposition 5], holds.

Lemma 3.7 Under Conditions (A2), (A3”), (A4) and (A5’), together with (C2),
(C5), (C6), (C7), BSDE (3.8) with terminal condition Yτ = ξ ∧ L has a unique
solution (Y L, ZL, UL,ML) in Sr(0, τ). The value of r depends on the coefficients χ,
Kf,z and Kf,ψ (but not on L).

The values of δ∗ and m∗ are postponed and discussed in 9.1.
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A priori estimate and convergence

We can use the comparison principle to obtain the existence of a limit process Y
such that a.s. lim

L→+∞
Y L
t = Yt. In the deterministic case, the key point is the a priori

estimate (3.10). For a general random time τ , we show (see [XI, Example 1]) that the
limit process Y may be infinite before time τ : for example if τ is the first jump time of
a Poisson process or if E(1/τ) = +∞, then lim inf

L→+∞
Y L

0 = +∞.

In order to ensure the finiteness of Yt∧τ on the set {t < τ}, we prove a Keller-
Osserman type inequality ([XI, Proposition 6]). In the proof we compare the solution
(Y L, ZL, UL,ML) with the solution (Y ,Z, 0,M) of a BSDE with generator:

g(t, y, z) = − y
ηt
|y|q−1 + f(t, 0, z,0).

Note that g satisfies (A2) since y 7→ g(t, y, z) is non-increasing and the conditions
(Hcomp) hold for g with the same constant Lg,z = Lf,z, but with χ = 0 and Lg,ψ = 0. If
for generator f , constant χ in (A2) is negative, then we can modify g in a neighborhood
of zero (add a linear trend), such that we keep this negative constant χ. In other words
from (3.53), (C7) holds also for g. And we also use (C6) with the same constants δ∗
and m∗. Thereby the constants δ∗ and m∗ only depend on χ,, Lf,z and Lf,ψ.

Let us assume that process Ξ in Rd is the unique solution to SDE (1.9)

dΞt = b(Ξt)dt+ σ(Ξt)dWt

with some initial value Ξ0 ∈ Rd. Functions b : Rd → Rd and σ : Rd → Rd × Rd satisfy
(B1) and (B2). Let D be an open bounded subset of Rd, whose boundary is at least
of class C2 (see for example [140], Section 6.2, for the definition of a regular boundary).
We introduce the signed distance function dist : Rd → R of D, which is defined by
dist(x) = infy/∈D ‖x−y‖ if x ∈ D and dist(x) = − infy∈D ‖x−y‖ if x /∈ D. Let us denote
by R the diameter of D:

R = sup{‖x− y‖, (x, y) ∈ D2},

by ‖σ‖ the spectral norm of σ

‖σ‖ = sup
x∈Rd

sup
v∈Rd, |v|≤1

v.(σ(x)σ∗(x))v,

and by ‖b‖ the sup norm of b:
‖b‖ = sup

x∈Rd
|b(x)|.

Remark that the regularity of b and σ imply that they are bounded functions on the
compact set D. Since we will only consider Ξ on the random time interval [[0, τ ]], that
is when Ξ belongs to D, using a truncation argument outside D, we can assume w.l.o.g.
that: ‖b‖+ ‖σ‖ < +∞.

From now on, Ξ0 is fixed and supposed to be in D. We define stopping time τ as
the first exit time of D, i.e.

(3.54) τ = τD = inf{t ≥ 0, Ξt /∈ D}.
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The condition (C6) imposes some implicit hypotheses between the generator f , the set
D and the coefficients of the SDE (1.9). Define jd to be equal to π2/4 if d = 1 and to
be equal to the first positive zero of the Bessel function of first kind Jd/2−1 if d ≥ 2 (for
d = 2, j2 ≈ 2.4048). The next lemma is [XI, Lemma 2].

Lemma 3.8

1. Assume that there exists b? > 0 and v ∈ Rd such that for all x ∈ Rd it holds that
b(x).v ≥ b? > 0. If δ∗ < b2?

‖σ‖ , then Condition (C6) holds for all δ ∈ (δ∗, b2?
‖σ‖).

2. Assume that b = 0 (there is no drift) and σσ∗ is uniformly elliptic, that is there
exists a constant α > 0 such that (σσ∗)(x) ≥ αIdd for all x ∈ Rd. If δ∗ < 2α

R2 (jd)
2,

then Condition (C6) holds for all ρ ∈ (δ∗, 2α
R2 (jd)

2).

Remark that the bound b2?
‖σ‖ respectively

2α
R2 (jd)

2 gives a minimal value for the parameter
m∗ in (C7).

The next result is a Keller-Osserman type inequality (c.f. (3.55) and see [187, 264]).
Using analytical properties of the diffusion near boundary ∂D, allows us to bound at
each time t the value of process Y L

t against the distance of diffusion Ξ to boundary ∂D,
denoted dist(Ξt).

Proposition 3.7 If τ is the exit time given by (3.54), under the assumptions of Lemma
3.7, the solution processes Y L are bounded uniformly in L: there exists a process Ȳ ∈
Sr(0, τ) and a constant C such that:

(3.55) Ȳt∧τ ≤ Y L
t∧τ ≤

C

dist(Ξt∧τ )2(p−1)
.

Following Definition 3.3 we set

(3.56) τn = inf{t ≥ 0, dist(Ξt) ≤ 1/n}.

Hence on the random interval [[0, τn]], Y L is bounded uniformly w.r.t. L by Cn2(p−1).
From this proposition and passing to the limit, we prove the main result of this part:

Theorem 3.10 If τ is the exit time given by (3.54), there exists a minimal supersolution
(Y min, Zmin, Umin,Mmin) to the BSDE (2.6) with singular terminal condition Y min

τ = ξ.

Behavior at time τ

Evoke that we already have the a priori estimate (3.55) on solution Y min:

Y min
t∧τ ≤

C

dist(Ξt∧τ )2(p−1)
.

If driver f is equal to −y|y|q−1, in [II, Proposition 5] we derive a lower bound on Y : if

Υt = EFt

( 1

(q − 1)(τ − τ ∧ t) + 1
ξq−1

)p−1
 ,
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then a.s. for all t ≥ 0, Υt ≤ Yt. Furthermore if ρ(x) denotes the distance of x ∈ D to
the boundary ∂D and if τ is the exit time from D of the diffusion X, then we show in
[II, Lemma 3] that under the conditions (B1), (B2) and (B7), there exist two positive
constants C1 and C2 which depend on D, q, σ and b such that for all x ∈ D,

C1 ≤ ρ(x)2(p−1)Ex

[(
1

τ

)p−1
]
≤ C2.

Remark that if the diffusion matrix σ is degenerate, the result on the lower bound may
be false. Suppose that σ ≡ 0 and b is bounded by k. Then

ρ(x)2(p−1)Ex
(

1

τ p−1

)
≤ kρ(x)p−1

and the limit, as ρ(x) goes to zero, is zero. Under the same setting, we deduce that
on {ξ = +∞} the explosion rate of Y is in the order of ρ−2(p−1)(Xt∧τ ): there exists a
positive constant C̃ depending on D, q, the bound on b and σ in (B1) and on the
constant λ in (B7), such that

lim inf
t→+∞

ρ2(p−1)(Xt∧τ )Yt∧τ ≥ C̃ a.s. on {ξ = +∞} .

Remark that we cannot prove that constants C in (3.55) and C̃ are equal. However it
proves that the rate of explosion is of order 1/ρ2(p−1)(X).

Continuity problem when the terminal time is random

Uniqueness and a similar asymptotic behavior as in [XXI] are still open questions.
And as for a deterministic terminal time, concerning the terminal condition (3.52)

lim inf
t→+∞

Y min
t∧τ ≥ ξ, a.s.

existence of the left-limit and equality are natural questions. They have been investi-
gated in [II] for f(y) = −y|y|q−1 in the Brownian framework. In the working paper [E],
we try to obtain similar results as in Section 3.3.

3.5 Summary
If ξ is singular (in the sense of Definition 3.1), there exists a minimal supersolution

to BSDE (2.4) with deterministic final time T (Theorem 3.1) or to BSDE (2.6) with
a random time τ given by (3.54) (Theorem 3.10). The key conditions are (C2) and
the left-continuity of filtration F at time T or τ and the main ingredient is the a priori
estimate (3.10) or (3.55).

For a deterministic final time T , the condition

lim
t→T

Y min
t = ξ

holds under structural conditions on generator f (Theorem 3.5, existence of the limit)
and for a large class of terminal value ξ:
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• Markovian setting ξ = Φ(XT ) (Theorem 3.6 for large values of q and Proposition
3.3 in the Brownian setting for q small).

• Smooth functional of X (Theorem 3.7).

• Some specific cases (Theorems 3.8 and 3.9).

The general case is still an open question. The same questions where T is replaced by
τ , are investigating.

Uniqueness and asymptotic behavior are essentially developed for a deterministic
time T and in the Brownian setting (Theorem 3.2 and Corollary 3.1).

For BDSDE and 2BSDE, existence of a minimal supersolution is proved in Theorems
3.3 and 3.4.
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Chapter 4

Related (I)PDE and SPDE
([XIII, XIV])

We already mentioned that one particular interest for the study of BSDE is the
application to partial differential equations (PDEs). Indeed as proved by Pardoux &
Peng in [273], BSDEs can be seen as generalization of the Feynman-Kac formula for
non linear PDEs. Roughly speaking, if we can solve a system of two SDEs with one
forward in time and one backward in time, then the solution is a deterministic function
and is a (weak) solution of the related PDE. This is a method of characteristics to solve
the parabolic PDE. The converse assertion can be proved provided we can apply Itô’s
formula, that is if the solution of the PDE is regular enough. Since then a large literature
has been developped on this topic (see in particular the books [91], [118], [276], [331]
and the references therein).

In [24], Barles, Buckdahn & Pardoux show that we can add in the system of forward
backward SDE a Poisson random measure and if we can find a solution to this system,
again the solution is a weak solution of a IPDE:

(4.1)
∂

∂t
u(t, x) + Lu(t, x) + I(t, x, u) + f(t, x, u, (∇u)σ,B(t, x, u)) = 0

with terminal condition u(T, .) = h. Here L is a local second-order differential operator
corresponding to the infinitesimal generator of the continuous part of the forward SDE
and I and B are two integro-differential operators. I is the discontinuous part of the
infinitesimal generator of the forward SDE, and B is related to the generator of the
BSDE. In [24], weak solution means viscosity solution. Since this paper, several authors
have weaken the assumptions of [24]. The book [91] (Chapter 4) gives a nice review of
these results (and several references on this topic).

Among all semi-linear PDEs, the particular form (3.3) has been widely studied:

∂u

∂t
(t, x) + Lu(t, x)− u(t, x)|u(t, x)|q−1 = 0.

Baras & Pierre [21], Marcus & Veron [241] (and many other papers) have given existence
and uniqueness results for this PDE. In [241] it is shown that every positive solution
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of (3.3) possesses a uniquely determined final trace g which can be represented by a
couple (S∞, µ) where S∞ is a closed subset of Rd and µ a non-negative Radon measure
on R = Rd \ S∞. The final trace can also be represented by a positive, outer regular
Borel measure ν, and ν is not necessary locally bounded. The two representations are
related by:

∀A ⊂ Rd, A Borel,
{
ν(A) =∞ if A ∩ S∞ 6= ∅
ν(A) = µ(A) if A ⊂ R.

Set S∞ is the set of singular final points of u and it corresponds to a “blow-up” set of
u. From the probabilistic point of view Dynkin & Kuznetsov [106] and Le Gall [216]
have proved similary results for PDE (3.3) in the case 1 < q ≤ 2 using the theory of
superprocesses. Now if we want to represent the solution u of (3.3) using a FBSDE,
we have to deal with a singular terminal condition ξ in the BSDE, which means that
P(ξ = +∞) > 0. This singular case and the link between the solution of the BSDE
with singular terminal condition and the viscosity solution of the PDE (3.3) have been
studied first in [I]. Recently it was used to solve a stochastic control problem for portfolio
liquidation (see [10] or [147]). In [X] we enlarge the known results on this subject for
more general generator f .

In the first section of this chapter, our goal is to present the results of [I, XIV] on
IPDE (4.1) when the terminal condition u(T, .) = h is singular in the sense that h takes
values in R+ ∪ {+∞} and the set

S∞ = {x ∈ Rd, h(x) = +∞}

is a non empty closed subset of Rd. Again in the non singular case, if the terminal
function h is of linear growth, the relation between the FBSDE and the IPDE is obtained
in [24]. Moreover several papers have studied the existence and the uniqueness of the
solution of such IPDE (see among others [8], [27], [35] or [159]). The novelty is that
we gather the papers [24], [X], [I] and [XII] and we obtain non trivial conditions (for
example between I and S∞) for the existence and minimality of the viscosity solution
of (4.1) with singularity at time T .

In the second section, we present similar results obtained in [XIII] concerning stochas-
tic PDEs (SPDEs) with singularity:

u(t, x) = h(x) +

∫ T

t

[Lu(s, x) + f(s, x, u(s, x), ((∇u)σ)(s, x))] ds

+

∫ T

t

g(s, x, u(s, x), ((∇u)σ)(s, x))
←−−
dBs.

Here there is no integro-differential operator, but a random noise given by the backward
Itô integral

←−
dB.

In Section 4.3, BSDE with terminal stopping time (see Part 3.4) and elliptic PDEs
with singularity on the boundary are studied, following the papers [107, 215, 239, 240].
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4.1 BSDE and (Integro) Partial Differential Equation
Let us emphasize that in this section, filtration F is generated by the Brownian

motion W and the Poisson random measure π, that is there is no additional martingale
term M in the BSDEs.

Since the paper of [273] and the extension to the jump case in [24], it is well known
that a system of a SDE and a BSDE provides a probabilistic representation of the
solution of a PDE (if there is no jump) or a IPDE (when there is a jump part). More
precisely, we consider the forward SDE (1.15) starting at time t from the point x ∈ Rd:
for t ≤ s ≤ T

(4.2) X t,x
s = x+

∫ s

t

b(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dWr +

∫ s

t

∫
E
β(r,X t,x

r−, e)π̃(de, dr).

Coefficients b, σ and β satisfy Assumptions (B1) to (B4). We consider BSDE (2.4):
for t ≤ s ≤ T

Y t,x
s = h(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr(4.3)

−
∫ T

s

∫
E
U t,x
r (e)π̃(de, dr)−

∫ T

s

Zt,x
r dWr.

System (4.2) and (4.3) is called a forward backward SDE (FBSDE in short). Generator
f of BSDE (4.3) is a deterministic function from [0, T ] × Rd × R × Rk × B2

µ to R and
has the special structure for ψ: there exists a function γ from Rd × E to R such that

(4.4) f(t, x, y, z, u) = f

(
t, x, y, z,

∫
E
u(e)γ(x, e)µ(de)

)
.

For simplicity we denote with the same function f the right and the left hand side and
for notational convenience f 0

r = f 0,t,x
r = f(r,X t,x

r , 0, 0,0).

Setting on f

Structure (4.4) holds and in the rest f is the function on the right-hand side of this
structural hypothesis. We still assume that (A2) and (A4) hold: there exists χ ∈ R
such that for any t ∈ [0, T ], x ∈ Rd, z ∈ Rk and u ∈ R

(f(t, x, y, z, u)− f(t, x, y′, z, u))(y − y′) ≤ χ(y − y′)2;

and there exists Kf,z ≥ 0 such that for any (t, x, y, u), z and z′:

|f(t, x, y, z, u)− f(t, x, y, z′, u)| ≤ Kf,z|z − z′|.

Condition (A3) is replaced by the stronger one: f is locally Lipschitz continuous w.r.t.
y: for all R > 0, there exists LR such that for any y and y′ and any (t, x, z, u)

|y| ≤ R, |y′| ≤ R =⇒ |f(t, x, y, z, u)− f(t, x, y′, z, u)| ≤ LR|y − y′|.
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Hypothesis (A5) becomes here: the function u ∈ R 7→ f(t, x, y, z, u) is Lipschitz con-
tinuous and non decreasing for all (t, x, y, z) ∈ [0, T ]× Rd × R× Rk:

∀u ≤ u′, 0 ≤ f(t, x, y, z, u′)− f(t, x, y, z, u) ≤ L(u′ − u).

And finally there exists a function ϑ ∈ L2
µ such that for all (x, e) ∈ Rd × E

0 ≤ γ(x, e) ≤ ϑ(e).

Now to deal to the singularity at time T , (C2) still holds: there exists a constant
q > 1 and a positive measurable function η : [0, T ]× Rd → R such that

f(r,X t,x
r , y, z, u) ≤ − 1

η(r,X t,x
r )

y|y|q−1 + f(r,X t,x
r , 0, z, u).

To avoid extra difficulty to manage the negative part of the solution, we suppose that
the process f 0,t,x is non negative for any (t, x) ∈ [0, T ] × Rd and ξ ≥ 0 a.s. Thus (C1)
holds. To derive the a priori estimate, the following assumptions hold:

• The function
(t, x) 7→ η(t, x)

1
q−1 + f(t, x, 0, 0,0)

belongs to Πpg(0, T ), the space of functions φ : [0, T ] × Rd → Rk of polynomial
growth, i.e. for some non-negative constants δ and C

∀(t, x) ∈ [0, T ]× Rd, |φ(t, x)| ≤ C(1 + |x|δ).

• There exists ` > 1 such that the function ϑ belongs to L`∗µ with `∗ = `/(`− 1).

Note that (C3) and (C4) are consequences of these hypotheses. Sometimes to lighten
the notations, η(r,X t,x

r ) is denoted ηr or ηt,xr if we do not need to precise the variables t
and x.

Since we want to work on the link with IPDE, in order to use the work [24], we need
extra assumptions on the regularity of f w.r.t. t and x.

• The function t 7→ f(t, x, y, z, u) is continuous on [0, T ].

• For all R > 0, t ∈ [0, T ], |x| ≤ R, |x′| ≤ R, |y| ≤ R, z ∈ Rk, u ∈ R,

|f(t, x, y, z, u)− f(t, x′, y, z, u)| ≤ $R(|x− x′|(1 + |z|)),

where $R(s)→ 0 when s↘ 0.

• There exists Cγ > 0 such that for all (x, x′) ∈ (Rd)2, e ∈ E ,

|γ(x, e)− γ(x′, e)| ≤ Cγ|x− x′|(1 ∧ |e|2).

In the rest of this part, we assume that f satisfies all preceding conditions. Note that
under this setting, the condition (C3*) holds for any $ > 0.

107



Viscosity solution

Our IPDE contains three operators:

• L is the local second-order differential operator, due to the continuous part of the
forward SDE:

(4.5) L(t, x, φ) =
1

2

d∑
i,j=1

((σσ∗)(t, x))i,j
∂2φ

∂xi∂xj
+

d∑
i=1

(b(t, x))i
∂φ

∂xi
.

• I is an integro-differential operator and comes from the jump part of the forward
SDE:

I(t, x, φ) =

∫
E
[φ(t, x+ β(t, x, e))− φ(t, x)− (∇φ)(t, x)β(t, x, e)]µ(de).

• B is also an integral operator coming from the generator of the BSDE:

B(t, x, φ) =

∫
E
[φ(t, x+ β(t, x, e))− φ(t, x)]γ(x, e)µ(de).

The equation is now (4.1):
∂

∂t
u(t, x) + Lu(t, x) + I(t, x, u) + f(t, x, u, (∇u)>σ,B(t, x, u)) = 0

with terminal condition u(T, .) = h.
For a locally bounded function v in [0, T ] × Rd, we define its upper (resp. lower)

semicontinuous envelope v∗ (resp. v∗) by:

v∗(t, x) = lim sup
(s,y)→(t,x)

v(s, y) (resp. v∗(t, x) = lim inf
(s,y)→(t,x)

v(s, y)).

We introduce the notion of viscosity solution as in [8] (see also Definition 3.1 in [24]
or Definitions 1 and 2 in [27]). Since we do not assume the continuity of the involved
function u, we adapt the definition of discontinuous viscosity solution (see Definition 4.1
and 5.1 in [159]).

Definition 4.1 A locally bounded function v is

1. a viscosity subsolution of (4.1) if it is upper semicontinuous (usc) on [0, T )×Rd

and if for any φ ∈ C2([0, T ]×Rd) wherever (t, x) ∈ [0, T )×Rd is a global maximum
point of v − φ,

− ∂

∂t
φ(t, x)− Lφ(t, x)− I(t, x, φ)− f(t, x, v, (∇φ)σ,B(t, x, φ)) ≤ 0.

2. a viscosity supersolution of (4.1) if it is lower semicontinuous (lsc) on [0, T )×
Rd and if for any φ ∈ C2([0, T ] × Rd) wherever (t, x) ∈ [0, T ) × Rd is a global
minimum point of v − φ,

− ∂

∂t
φ(t, x)− Lφ(t, x)− I(t, x, φ)− f(t, x, v, (∇φ)σ,B(t, x, φ)) ≥ 0.

3. a viscosity solution of (4.1) if its upper envelope v∗ is a subsolution and if its
lower envelope v∗ is a supersolution of (4.1).
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4.1.1 IPDE with singular terminal condition

If our terminal condition ξ satisfies (3.33) and (3.34):

ξ = h(XT ), h(XT )1K(XT ) ∈ L1 (Ω,FT ,P)

for every closed set K ⊂ Rd \ S∞, and if h is a continuous function from Rd to [0,+∞],
then the solution1 (Y L,t,x, ZL,t,x, UL,t,x) of the BSDE (3.8) provides a function uL defined
by

uL(t, x) := Y L,t,x
t .

Moreover from [24, Theorems 3.4 and 3.5], we directly have the next result.

Lemma 4.1 Function uL(t, x) := Y L,t,x
t , (t, x) ∈ [0, T ]× Rd, is the unique bounded (by

L(T + 1)) continuous viscosity solution of (4.1) with generator fL and with terminal
condition uL(T, .) = h(·) ∧ L.

Now the minimal solution Y t,x of the singular BSDE (2.4) is obtained as the increas-
ing limit of Y L,t,x: for any t ≤ s ≤ T

lim
L→+∞

Y L,t,x
s = Y t,x

s .

And it is well known that viscosity solutions are stable by monotone limit. That is the
reason why we use this notion of weak solutions.

We define the function u by:
u(t, x) = Y t,x

t .

Therefore sequence uL(t, x) converges to u(t, x). Since η and f 0 only depend on X t,x,
the a priori estimate (3.10) becomes: there exists two constants K > 0 and δ > 0 such
that for all (t, x) ∈ [0, T ]× Rd:

(4.6) 0 ≤ uL(t, x) ≤ u(t, x) ≤ K

(T − t)
1
q−1

(1 + |x|δ).

Since uL is a continuous function, the function u is lower semi-continuous on [0, T ]×Rd

and satisfies for all x0 ∈ Rd:

(4.7) lim inf
(t,x)→(T,x0)

u(t, x) ≥ h(x0).

The next theorems were proved in [I] in the Brownian setting (no jump) and for the
generator f(y) = −y|y|q−1. In [XIV] we generalize them. The first result is:

Theorem 4.1 Under our framework, u(t, x) = Y t,x
t is a viscosity solution of the IPDE

(4.1) on [0, T [×Rd. Moreover u is the minimal viscosity solution among all non-negative
solutions satisfying (4.7).

1Again there is no martingale part M due to the restriction imposed on the filtration.
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Note that we do not prove the continuity of u because of the lack of uniform conver-
gence of the approximating sequence uL. But we are also not able to show that u is
discontinuous (see below more results on regularity of u).

As for the singular BSDE (2.4), the main difficulty is to show that

lim sup
(t,x)→(T,x0)

u(t, x) ≤ h(x0) = u(T, x0).

On the set S∞ = {h = +∞}, we already have (4.7). Hence we concentrate ourselves on
R = {h < +∞}. We overcome this problem in two steps:

• We prove that u∗ is locally bounded on a neighbourhood of T on the open set R.

• We deduce that u∗ is a subsolution with relaxed terminal condition and we apply
this to demonstrate that u∗(T, x) ≤ h(x) if x ∈ R.

To obtain the local boundedness of u∗, we add a link between the singularity set S∞ and
the jumps of the forward process X. More precisely we assume that (D1) and (D2)
hold. As for the continuity problem, hypothesis (3.32) is supposed to be true.

Theorem 4.2 Under all these conditions, we have

lim
(t,x)→(T,x0)

u(t, x) = h(x0).

4.1.2 Regularity of the viscosity solution

Function u is the minimal non-negative viscosity solution of the IPDE (4.1). From
(4.6) we know that u is finite on [0, T [×Rd, and for ε > 0 u is bounded on [0, T−ε]×Rd by
K(1+|x|δ)ε−1/(q−1). We cannot expect regularity on [0, T ]×Rd, but only on [0, T−ε]×Rd

for any ε > 0. In order to obtain a smoother solution u, some assumptions are imposed
on the coefficients. We distinguish three different conditions.

• Sobolev regularity. The viscosity solution is a weak solution in the Sobolev sense
if the coefficients on the forward SDE (4.2) are smooth and if the linkage operator
x 7→ x + β(x, e) is a C2-diffeomorphism. These extra assumptions are used to
control the stochastic flow generated by X t,x (see [249, Proposition 2]).

• Hölder regularity. There have been several papers [25, 26, 52, 67, 68, 306] (among
many others) dealing with Cα estimates and regularity of the solution of the
IPDE (4.1). We need some non degeneration assumption on the operators L
or I. Roughly speaking, the viscosity solution is locally Hölder continuous if h is
Hölder continuous function on the set OM = {|h| ≤M} for all M ≥ 0.
The classical assumption is the uniform ellipticity of L (B7): there exists λ > 0
s.t. for all x ∈ Rd

∀y ∈ Rd, σσ∗(x)y · y ≥ λ|y|2.
Nevertheless when the local second order differential operator L becomes degen-
erated, the non-local operator I can take over from L. In [XIV] we give some
assumptions on I such that the strict ellipticity is involved by the non local terms
and such that the assumptions denoted by (J1) to (J5) in [25] hold.
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• Strong regularity. Under the uniform ellipticity condition of L, u can be a classical
solution under different settings.

– If the measure µ is finite we can transform the IPDE (4.1) into some PDE
without non local operator (arguments developed in [237] or [287]) and then
use regularity arguments for such PDE.

– In the setting of [131], i.e. for some γ < 2

(4.8)
∫
E
(1 ∧ |e|γ)µ(de) < +∞

and the linkage operator satisfies

(4.9) det(Idd +∇xβ(x, e)) ≥ c1 > 0,

the existence of a Green function with suitable properties will ensure a reg-
ularizing effect of the operator L+ I.

Of course, none of these settings gives necessary conditions and other sufficient assump-
tions could be exhibited.

4.2 Stochastic PDE with singularity at time T
One of the goal of [XIII] was to study non linear SPDE with explosion at time T .

In some sense we wanted to obtain similar results2 as [241], but for PDE with noise.
Pardoux and Peng [272] have proven existence and uniqueness for solutions of BDSDE

(2.11) if f and g are supposed to be Lipschitz continuous functions and with square in-
tegrability condition on the terminal condition ξ and on the coefficients f(t, 0, 0) and
g(t, 0, 0). Moreover under smoothness assumptions of the coefficients, Pardoux and Peng
prove existence and uniqueness of a classical solution for the SPDE: for (t, x) ∈ [0, T ]×Rd

u(t, x) = h(x) +

∫ T

t

[Lu(s, x) + f(s, x, u(s, x), (σ∗∇u)(s, x))] ds(4.10)

+

∫ T

t

g(s, x, u(s, x), (∇uσ)(s, x))
←−−
dBr.

L is again the second-order differential operator defined by (4.5)

Lφ = b∇φ+
1

2
Trace(σσ∗D2).

and they also establish connection with solutions of BDSDE (2.11). Several general-
izations to investigate the weak solution of SPDE (4.10) have been developed following
different approaches:

• The technics of stochastic flow (Bally and Matoussi [18], Matoussi et al. [248, 250],
Kunita [210], El Karoui and Mrad [119]);

2Let us stay humble, the notion of trace developed in [241] is much more intricate.
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• The approach based on Dirichlet forms and their associated Markov processes
(Denis and Stoica [94], Bally et al. [19], Stoica [312]);

• Stochastic viscosity solution for SPDEs (Buckdahn and Ma [50, 51], Lions and
Souganidis [227, 228]).

Above approaches have allowed the study of numerical schemes for the Sobolev so-
lution of semilinear SPDEs via Monte-Carlo methods (time discretization and regres-
sion schemes: [13, 14, 247]). For some general references on SPDE, see among others
[85, 208, 296, 322].

One goal of [XIII] is to extend the results of [18] and of [I] for the SPDE with singular
terminal condition h: for any 0 ≤ t ≤ T

u(t, x) = h(x) +

∫ T

t

(
Lu(s, x)− u(s, x)|u(s, x)|q−1

)
ds

+

∫ T

t

g(s, x, u(s, x), σ(s, x)∇u(s, x))
←−−
dBs(4.11)

where we will assume that S∞ = {h = +∞} is a closed non empty set. Roughly speaking
we want to show that there is a (minimal) solution u in the sense that

• u belongs to some Sobolev space and is a weak solution of the SPDE on any
interval [0, T − δ], δ > 0,

• u satisfies the terminal condition: u(t, x) goes to h(x) also in a weak sense as t
goes to T .

Of course we use all results contained in Section 3.2.1 on BDSDE. Under monotonicity
assumption on f , we also prove that the SPDE (4.10) has a unique weak solution (as
in [18]), given by the solution of the BDSDE (2.11), if h is in L2q(Rd, ρ−1dx) or if
ξ = h(X t,x

T ) belongs to L2q(Ω). Then we extend the existence of a solution when S∞ is
non empty.

Let us summarize the setting (similar to [18]) and our results. In order to define
the space of solutions, we choose a continuous positive weight function ρ : Rd → R.
We require only that the derivatives of ρ are in C1

b (Rd;R) on the set {|x| > R} for
some R. For example ρ can be (1 + |x|)κ, κ ∈ R. We assume that functions f :
[0, T ]×Rd×RN×RN×d → RN and g : [0, T ]×Rd×RN×RN×d → RN×m are measurable
in (t, x, y, z) and w.r.t. (y, z). Recall that k (resp. m) is the dimension of the Brownian
motion W (resp. B) (in the forward (resp. backward) Itô integral) in BDSDE (2.11). d
is the dimension of the solution X t,x of the forward SDE (4.2) (without the jump part
β):

(4.12) X t,x
s = x+

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr, for s ∈ [t, T ],

whereas N is the dimension of Y t,x: for t ≤ s ≤ T

Y t,x
s = h(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr(4.13)

+

∫ T

s

g(r,X t,x
r , Y t,x

r , Zt,x
r )
←−−
dBr −

∫ T

s

Zt,x
r dWr.
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Coefficients f and g satisfy Assumptions (A2), (A3?), (A4) and (Ag1). The only
difference with [18] is that we do not assume that f is Lipschitz continuous w.r.t. y. We
also assume that

(4.14)
∫
Rd

[
|h(x)|2q +

∫ T

0

(
|f(t, x, 0, 0)|2q + |g(t, x, 0, 0)|2q

)
dt

]
ρ−1(x)dx < +∞.

We define space H(0, T ) as in [18].

Definition 4.2 H(0, T ) is the set of the random fields {u(t, x); 0 ≤ t ≤ T, x ∈ Rd}
such that u(t, x) is FBt,T -measurable for each (t, x), u and σ∗∇u belong to L2((0, T ) ×
Ω× Rd; ds⊗ dP⊗ ρ−1(x)dx). On H(0, T ) we consider the following norm

‖u‖2
2 = E

∫
Rd

∫ T

0

(
|u(s, x)|2 + |(σ∗∇u)(s, x)|2

)
ρ−1(x)dsdx.

Let us also evoke the definition of a weak solution.

Definition 4.3 u is a weak solution of SPDE (4.10) if the following conditions are
satisfied.

1. For some δ > 0

(4.15) sup
s≤T

E
[
||u(s, .)||1+δ

L2
ρ−1 (Rd)

]
<∞.

2. For every test-function φ ∈ C∞(Rd), dt⊗ dP a.e.

(4.16) lim
s↑t

∫
Rd
u(s, x)φ(x)dx =

∫
Rd
u(t, x)φ(x)dx.

3. Finally u satisfies for every function Ψ ∈ C1,∞
c ([0, T ]× Rd;R)∫ T

t

∫
Rd
u(s, x)∂sΨ(s, x)dxds+

∫
Rd
u(t, x)Ψ(t, x)dx−

∫
Rd
h(x)Ψ(T, x)dx(4.17)

−1

2

∫ T

t

∫
Rd

(σ∗∇u)(s, x)(σ∗∇Ψ)(s, x)dxds

−
∫ T

t

∫
Rd
u(s, x)div

((
b− Ã

)
Ψ
)

(s, x)dxds

=

∫ T

t

∫
Rd

Ψ(s, x)f(s, x, u(s, x), (σ∗∇u)(s, x))dxds

+

∫ T

t

∫
Rd

Ψ(s, x)g(s, x, u(s, x), (σ∗∇u)(s, x))dx
←−−
dBs.

Here

Ãi =
1

2

d∑
j=1

∂(σσ∗)j,i
∂xj

.
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Concerning SPDE with monotone coefficient f , we get the following result.

Proposition 4.1 Under this setting and if Condition (4.14) holds, then the random
field defined by u(t, x) = Y t,x

t is in H(0, T ) with

(4.18) E
∫
Rd

∫ T

0

|u(s, x)|2qρ−1(x)dsdx.

Moreover u is the unique weak solution of the SPDE (4.10).

Note that Condition (4.14) is important to ensure that (4.18) holds and therefore the
quantity Fs = f(s, x, u(s, x), (σ∗∇u)(s, x)) is in H′0,ρ, the dual space of L2(Rd, ρ(x)dx)
(see [18]), which is crucial to prove the existence of a weak solution. To prove the
proposition, we use the existence theorem 2.5 and we sketch the proof of [18, Theorem
3.1] step by step.

Now suppose that the conditions of Theorem 3.3 hold. Condition (4.14) now be-
comes:

(4.19)
∫
Rd

[∫ T

0

(
|f(t, x, 0, 0)|2q + |g(t, x, 0, 0)|2q

)
dt

]
ρ−1(x)dx < +∞.

For any L ∈ N∗, let (Y L,t,x, ZL,t,x) be the solution of the BDSDE (4.13) with terminal
condition h(X t,x

T ) ∧ L. From (3.17) if L ≤ L′

Ξ0,t,x
s ≤ Y L,t,x

s ≤ Y L′,t,x
s ≤ ΞL′,t,x

s .

If we assume that (3.40) holds for h, then h∧L is a Lipschitz and bounded function on
Rd. Hence h ∧ L belongs to L2(Rd, ρ−1(x)dx) provided the function ρ−1 ∈ L1(Rd, dx).
From the preceding proposition 4.1, we have

Proposition 4.2 There exists a unique weak solution uL ∈ H(0, T ) of SPDE (4.11)
with terminal function h ∧ L. Moreover uL(t, x) = Y L,t,x

t and

Y L,t,x
s = uL(s,X t,x

s ), ZL,t,x
s = (σ∗∇uL)(s,X t,x

s ).

Remember that we have defined a process (Y t,x, Zt,x) solution of the backward doubly
stochastic differential equation (4.13) with singular terminal condition h (see Theorem
3.3). Process Y is obtained as the increasing limit of processes Y L:

Y t,x
s = lim

L→+∞
Y L,t,x
s a.s..

Therefore we can define the following random field u as follows: for all (t, x) ∈ [0, T ]×Rd

u(t, x) = Y t,x
t = lim

L→+∞
Y L,t,x
t = lim

L→+∞
uL(t, x).

The result obtained is a direct extension of [XIII]:

114



Theorem 4.3 Under the conditions of Theorem 3.3 and with Hypothesis (4.19), the
random field u defined by u(t, x) = Y t,x

t belongs to H(0, T − δ) for any δ > 0 and
is a weak solution of SPDE (4.11) on [0, T − δ] × Rd. At time T , u satisfies a.s.
lim inft→T u(t, x) ≥ h(x).

Moreover under the same assumptions of Theorem 3.6 or Proposition 3.6 (see also
the subsection on the continuity problem for BDSDE), for any function φ ∈ C∞c (Rd)
with support included in R = Rd \ S∞, then

lim
t→T

E
(∫

Rd
u(t, x)φ(x)dx

)
=

∫
Rd
h(x)φ(x)dx.

Finally u is the minimal non-negative solution of (4.11).

The almost sure continuity of u at time T is still an open question. In [I, XIV], this
property is proved using viscosity solution arguments (relaxation of the boundary con-
dition). Here we cannot do the same trick. This point will be investigated in further
publications.

In [XIII], we only study the case f(y) = −y|y|q−1 and g(t, y, 0) = 0. Then the proof
is based on the a priori estimate

0 ≤ Y L,t,x
s ≤

(
1

(q − 1)(T − s) + 1
Lq−1

) 1
q−1

≤
(

1

(q − 1)(T − s)

) 1
q−1

.

In particular for any (t, x)

0 ≤ uL(t, x) ≤
(

1

(q − 1)(T − t)

) 1
q−1

and hence u satisfies the same estimate. Thus u is bounded on [0, t]×Rd and in L2
ρ(Rd).

By dominated convergence theorem, for any δ > 0, u satisfies (4.15) and (4.16) for any
0 ≤ s ≤ t ≤ T − δ. Moreover we have ZL,t,x

s = (σ∗∇uL)(s,X t,x
s ) and from the proof on

Theorem 3.3, the sequence of processes (ZL,t,x
s , s ≥ t) converges in L2((0, T −δ)×Ω) for

any δ > 0 to Zt,x. Hence the sequence uL converges in H(0, t) to u. As for Proposition
3.2 we have the a priori estimate:

E
∫ T

0

(T − s)
2
q−1 |ZL,t,x

s |2ds ≤ 8 +KgT

1− ε

(
1

q − 1

) 2
q−1

(as usual ZL,t,x
s = 0 if s < t). Therefore using [18, Proposition 5.1] we deduce

E
∫
Rd

∫ T

0

(T − s)
2
q−1 |(σ∗∇uL)(s, x)|2ρ−1(x)dxds ≤ C

where the constant C does not depend on L. With the Fatou lemma we have the same
inequality for u. Now for every function Ψ ∈ C1,∞

c ([0, T ] × Rd), uL satisfies (4.17),
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therefore for every 0 ≤ r ≤ t < T , uL satisfies also:∫ t

r

∫
Rd
uL(s, x)∂sΨ(s, x)dxds+

∫
Rd
uL(r, x)Ψ(r, x)dx−

∫
Rd
uL(t, x)Ψ(t, x)dx(4.20)

−1

2

∫ t

r

∫
Rd

(σ∗∇uL)(s, x)(σ∗∇Ψ)(s, x)dxds

−
∫ t

r

∫
Rd
uL(s, x)div

((
b− Ã

)
Ψ
)

(s, x)dxds

= −
∫ t

r

∫
Rd

Ψ(s, x)uL(s, x)|uL(s, x)|q−1dxds

+

∫ t

r

∫
Rd

Ψ(s, x)g(s, x, uL(s, x), σ∗∇uL(s, x))dx
←−−
dBs.

But using monotone convergence theorem or the convergence of uL to u in H(0, t), we
can pass to the limit as L goes to +∞ in (4.20) and we obtain that u is a weak solution
of (4.11) on [0, T − δ]× Rd for any δ > 0.

To extend the conclusion to more general generators, from (3.17), it is sufficient to
have an upper bound on ΞL,t,x uniformly in (L, x). In (4.20), the term

−
∫ t

r

∫
Rd

Ψ(s, x)uL(s, x)|uL(s, x)|q−1dxds

should be replaced by∫ t

r

∫
Rd

Ψ(s, x)f(s, x, uL(s, x), , σ∗∇uL(s, x))dxds.

Again we do not claim that it can be done for all generators f and g. But we easily can
obtain sufficient conditions for other generators such that the conclusion of the previous
theorem holds.

The only trouble concerns the behavior of u near T . By monotonicity we obtain
easily that a.s.

(4.21) lim inf
t↑T

∫
Rd
u(t, x)ψ(x)dx ≥

∫
Rd
h(x)ψ(x)dx.

To get the converse inequality, evoke that we have proved for the BDSDE with suitable
integrability condition on all terms:

E(h(X t,x
T )θ(X t,x

T )) = E(u(t, x)θ(x))− E
∫ T

t

θ(X t,x
r )f(r,X t,x

r , Y t,x
r , Zt,x

r )dr

+ E
∫ T

t

Y t,x
r Lθ(X t,x

r )dr + E
∫ T

t

Zt,x
r .∇θ(X t,x

r )σ(r,X t,x
r )dr

for any smooth functions θ such that its compact support is strictly included in R =
{h < +∞}. Integrate this w.r.t. dx and letting t go to T , together with the dominated
convergence theorem and Fatou’s lemma, yield to:

E
(

lim inf
t→T

∫
Rd
u(t, x)θ(x)dx

)
≤ lim

t→T
E
(∫

Rd
u(t, x)θ(x)dx

)
=

∫
Rd
h(x)θ(x)dx
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for any function θ ∈ C2
c (Rd) with supp(θ) ∩ S∞ = ∅. With Inequality (4.21), we obtain

that for any ψ ∈ C∞c (Rd) a.s.

lim inf
t→T

∫
Rd
u(t, x)ψ(x)dx =

∫
Rd
h(x)ψ(x)dx.

Remark 4.1 If g does not depend of Z (or on ∇u), and if g ∈ C0,2,3
b ([0, T ]×Rd×R;Rd),

then from [50], uL is a stochastically bounded viscosity solution of the SPDE (4.11) on
[0, T ]× Rd and u is also a stochastically bounded viscosity solution of the SPDE (4.11)
on [0, T − δ]× Rd for any δ > 0.

Minimality is deduced from the minimality of the solution of the BDSDE.

4.3 Elliptic PDE with singularity on the boundary
Considering the system of SDEs (4.2) and (4.3), but with the random terminal time

τ corresponding to the exit time of the diffusion process X, leads to an elliptic PDE
with Dirichlet condition (see among many others [87, 276]).

In [II] we restrict ourselves to the continuous case. Let D be an open bounded subset
of Rd, whose boundary is at least of class C2 (see [213] for the definition of a regular
boundary). For all x ∈ Rd, let Xx denote the solution of the SDE:

(4.22) Xx
t = x+

∫ t

0

b(Xx
r )dr +

∫ t

0

σ(Xx
r )dWr, for t ≥ 0.

The functions b and σ are defined on Rd, with values respectively in Rd and Rd×k, and
are measurable such that:

• (B2) holds for σ:

∀(x, y) ∈ Rd × Rd, ‖σ(x)− σ(y)‖ ≤ K|x− y|;

• The boundedness condition (B5) is verified:

∀x ∈ Rd, |b(x)|+ ‖σ(x)‖ ≤ K;

• Uniform ellipticity (B7): there exists a constant λ > 0 such that

∀x ∈ Rd, σσ∗(x) ≥ λId.

Under these assumptions, from a result of Veretennikov [320] and [321], the equation
(4.22) has a unique strong solution Xx. For each x ∈ D, we define the stopping time

(4.23) τ = τx = inf
{
t ≥ 0, Xx

t 6∈ D
}
.

Our stopping time satisfies the following two properties. Since D is bounded and from
our setting

(4.24) every point x ∈ ∂D is regular.
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In particular, if x ∈ ∂D, τx = 0 a.s. (see [31, Corollary 3.2]). Assumption (4.24) is
important to define a singular solution. Moreover we have the following result (see [290,
Theorem 2.1] and [270, Remark 5.6]): for all x ∈ D, τx < +∞ a.s. and there exists
β > 0 such that

(4.25) sup
x∈D

E
(
eβτx

)
<∞.

This property is used to construct solutions of the BSDE for bounded terminal conditions
ξ.

From the papers [87, 270, 281], we know that the BSDE:

(4.26) Yt = ξ +

∫ τ

t∧τ
f(Yr, Zr)dr −

∫ τ

t∧τ
ZrdWr,

with terminal time equal to τ = τx and final data equal to ξ = h(Xx
τx) is associated with

the following elliptic PDE with Dirichlet condition h:

(4.27)
{
−Lu− f(u, σ>∇u) = 0 on D,

u = h on ∂D;

where L is defined by (4.5): for all φ ∈ C2
0(Rd),

∀x ∈ Rd, Lφ(x) =
1

2
Trace

(
σσ∗(x)D2φ(x)

)
+ b(x)∇φ(x).

If (Y x, Zx) denotes the solution of BSDE (4.26) with terminal data h(Xx
τx), the connec-

tion is given by the formula
u(x) = Y x

0 .

The particular case f(y, z) = −y|y|q−1 has been extensively studied. Le Gall [215]
succeeded in describing all solutions of the equation ∆u = u2 in the unit disk D in
R2 by a purely probabilistic method. He established a 1-1 correspondence between all
solutions and all pairs (S∞, ν), where S∞ is a closed subset of ∂D and ν is a Radon
measure on ∂D \S∞. S∞ is the set of singular points of ∂D where the solution explodes
badly: roughly speaking, near points of S∞, the solution behaves like the inverse of
the squared distance to the boundary. Measure ν can be interpreted as the “boundary
value” of u on ∂D \ S∞. The solution corresponding to (S∞, ν) is expressed in terms of
the Brownian snake (a path-valued Markov process). In [215] the results announced in
[217] are proved in detail and are extended to a general smooth domain in R2.

Pair (S∞, ν) is called the boundary trace for positive solution of the PDE (4.27). The
definition of boundary trace in general was provided by Marcus and Véron [240] who
showed by analytic methods that every positive solution of (4.27) posseses a unique
trace. The trace can be described by a (possibly unbounded) positive regular Borel
measure ν̃ on ∂D. The correspondence between (S∞, ν) and ν̃ is given by

ν̃(A) =

{
ν(A) if A ⊆ (∂D \ S∞)
∞ if A ∩ S∞ 6= ∅
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for every Borel subset A of ∂D.
The corresponding boundary value problem is presented in [240] in the subcritical

case 0 < q − 1 < 2/(d − 1) and in [239] in the supercritical case q − 1 ≥ 2/(d − 1). In
the subcritical case, for every pair (S∞, ν), the problem has a unique solution. Remark
that in [215, 217], q = 2 and d = 2, that is, the subcritical case is studied: q − 1 = 1 <
2/(2− 1) = 2/(d− 1). In the supercritical case, Marcus and Véron derive necessary and
sufficient conditions for the existence of a maximal solution. Similar conditions were
obtained by Dynkin and Kuznetsov [107] for q ≤ 2. Their method relies on probabilistic
techniques and is not extendable to q > 2, because the main tool is the q-superdiffusion
which is not defined for q > 2. In our case there is no restriction on q > 1.

Here we provide another probabilistic representation of the solution of PDE (4.27)
in terms of the solution of related BSDE (4.26). In general, a solution of the PDE has
a “blow-up” set S∞. Therefore, the final data ξ of the BSDE must be allowed to be
infinite with positive probability and the set {ξ = +∞} corresponds to S∞. Hence, we
use Section 3.4, where a solution of (4.26) is defined when ξ is infinite with positive
probability.

We already define viscosity solution for a parabolic PDE in Definition 4.1. Let us
adapt the definition of a viscosity solution in the elliptic case (which can be found in
[22, 23] or [270], [84] for v continuous). If v is a function defined on D, we denote by v∗
(respectively v∗) the upper- (respectively lower-) semicontinuous envelope of v: for all
x ∈ D

v∗(x) = lim sup
x′→x, x′∈D

v(x′) and v∗(x) = lim inf
x′→x, x′∈D

v(x′).

Definition 4.4

• v : D → R is called a viscosity subsolution of (4.27) if v∗ < +∞ on D and if
for all φ ∈ C2(Rd), whenever x ∈ D is a point of local maximum of v∗ − φ,

−Lφ(x)− f(v∗(x), σ>(x)∇φ(x)) ≤ 0 if x ∈ D;

min
(
−Lφ(x)− f(v∗(x), σ>(x)∇φ(x)), v∗(x)− h(x)

)
≤ 0 if x ∈ ∂D.

• v : D → R is called a viscosity supersolution of (4.27) if v∗ > −∞ on D and
if for all φ ∈ C2(Rd), whenever x ∈ D is a point of local minimum of v∗ − φ,

−Lφ(x)− f(v∗(x), σ>(x)∇φ(x)) ≥ 0 if x ∈ D;

max
(
−Lφ(x)− f(v∗(x), σ>(x)∇φ(x)), v(x)− h(x)

)
≥ 0 if x ∈ ∂D.

• v : D → R is called a viscosity solution of (4.27) if it is both a viscosity sub-
and supersolution.

The [270, theorem 5.3] states that:

Proposition 4.3 Under our setting, if h is continuous on ∂D, if Y x is the solution of
BSDE (4.26) with terminal condition h(Xx

τx), then u(x) = Y x
0 is continuous on D and

it is a viscosity solution of the elliptic PDE (4.27) with boundary data h.
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In particular we can apply this result for the truncated case.
For unbounded boundary condition, we cannot apply this result. Moreover the

condition v∗ < +∞ in the definition of a viscosity solution cannot be satisfied on D.
Therefore we restrict ourselves to the case where f only depends on y ( for example
f(y) = −y|y|q−1) and we change the definition of a solution.

Definition 4.5 (Unbounded viscosity solution) We say that v is a viscosity solu-
tion of PDE (4.27) {

−Lv − f(v) = 0 on D;
v = h on ∂D;

with unbounded terminal data h if v is a viscosity solution on D in the sense of the
previous definition and if

h(x) ≤ lim
x′→x

x′∈D, x∈∂D

v∗(x
′) ≤ lim

x′→x
x′∈D, x∈∂D

v∗(x′) ≤ h(x).

Remark that this definition implies that v∗ < +∞ and v∗ > −∞ on D.
Our main result is the following:

Theorem 4.4 Let us assume:

• Function h : Rd → R+ is such that S∞ = {h = +∞} ∩ ∂D is a closed set.

• On Rd \ S∞, h is locally bounded, that is, for all compact set K ⊂ Rd \ S∞,

h1K ∈ L∞(Rd).

• Boundary ∂D belongs to C3.

• Generator f only depends on y and satisfies (C2) with a deterministic constant
η.

Minimal solution (Y x, Zx) of BSDE (4.26) exists and is continuous:

lim
t→+∞

Y x
t∧τ = ξ = h(Xx

τx) P− a.s.

Moreover if we define
u(x) = Y x

0 ,

u is the minimal non-negative viscosity solution of PDE (4.27) with Dirichlet condition
Φ.

Here we do not suppose that a viscosity solution is continuous. But under some stronger
assumptions on the operator L, we also give some regularity properties of the solution
u.
Proof. The existence of Y x can be deduced from the results in Section 3.4. The continuity problem
can be solved using a local version of the Keller-Osserman inequalilty (Proposition 3.7). �
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Note that there are some differences between our work and the results of Le Gall or
Dynkin and Kuznetsov. With the superprocesses (see [217, 107]), it should be assumed
that q ≤ 2. Moreover, the Dirichlet boundary condition for PDE (4.27) is not taken in
the same sense in the two approaches. With the notion of the boundary trace (see [107],
[217], [240] and [239]), there always exists a maximal positive solution; if q < 2/(d− 1),
this solution is unique, and if q ≥ 2/(d− 1), problem (4.27) may possess more than one
positive solution. More precisely, assume that D is the unit ball in Rd, that q ≥ 2/(d−1)
and denote by µ∞ the Borel measure on ∂D which assigns the value +∞ to every
nonempty set. Then for every ε > 0, there exists a positive solution of (4.27) such that
u(0) < ε and the trace of u is µ∞ (see [239, Proposition 5.1]). In our case the Dirichlet
condition in (4.27) is taken in the viscosity sense (Definition 4.5). The results are rather
different: there exists a minimal positive viscosity solution. But we are unable to give
conditions to ensure uniqueness of the solution.

Remark that the condition (B7) can be relaxed. For example we can work under the
condition: b is continuous and satisfies the monotonicity condition: there exists µ ∈ R
such that

∀(x, y) ∈ Rd × Rd, 〈x− y|b(x)− b(y)〉 ≤ µ|x− y|2;

here 〈.|.〉 denotes the scalar product in Rd. Under these assumptions, equation (4.22)
has a unique strong solution Xx. For each x ∈ D, we define the stopping time

τ = τx = inf
{
t ≥ 0, Xx

t 6∈ D
}
.

We also assume that the conditions (4.24) and (4.25) hold. However under these condi-
tions, we are unable to control the explosion rate of Y , nor to prove that the viscosity
solution u is continuous on D without the ellipticity condition. Indeed, we use this
assumption in order to control the Green function G(x, .) associated to the process Xx

killed at τx. Under (B7), this function G(x, .) is continuous on D except at the point
x, and is integrable on D. This assumption on G can replace (B7) (see, for example,
[290] for more details on G).

4.4 Some open problems
Here we address two questions concerning PDE with singularity. In [XVI], we study

the parabolic PDE (3.45):

∂tV +
1

2
∂xxV − V |V |q−1 = 0

for (t, x) ∈ [0, T ]× [0, L] with the boundary conditions (3.46):

V (0, t) = V (L, t) = ((q − 1)(T − t))1/(1−q), t ∈ [0, T ], V (x, T ) = 0, 0 < x < L

or (3.49)
V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) =∞, 0 < x < L.

In Propositions 3.5 and 3.6, the existence of a smooth solution v is proved. The extension
to more general domain or generators should be possible and is investigating in [E].
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In [XVII] (see Section 3.2.2), existence of a minimal solution to 2BSDE (3.26) is
obtained. It is known that this type of BSDEs is related to fully non-linear PDE; see
among others [331, Chapter 11], [282, 283, 284] or [110, 111, 112]. It could be interesting
to develop singularity for these fully non-linear PDEs.
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Chapter 5

Related control problems

The basic problem of the calculus of variations consists in minimizing an integral
functional over a set of functions satisfying an initial and terminal condition. Let us
consider a version of the basic problem, where the Lagrangian is convex and subject to
random influences supported by a Brownian motionW on a probability space (Ω,F , P ).
More precisely, let T ∈ (0,∞) and f : Ω × [0,∞) × R2 → R be a function, convex in
the last two variables, such that for all (x, a) ∈ R2, mapping (ω, t) 7→ j(ω, t, x, a) is
progressively measurable with respect to FW = (FWt )t∈[0,∞), the augmented filtration
generated by the Brownian motion W . The goal is to show the existence of a solution
of the following problem:

Minimize J(X) = E
[∫ T

0

j(t,Xt,
.
X t)dt

]
over all absolutely continuous

and progr. mb. processes X satisfying X0 = x0 ∈ R and XT = 0.

(5.1)

We interpret t as time, Xt as the state and
.
X t as the velocity at time t.

Minimizing J(X) is a classical problem with many applications e.g. in physics, eco-
nomics and engineering. We refer to the scripts of Clarke [79], Evans [124] and Gelfand
and Fomin [138] for explicit applications and an overview on the deterministic version
of the basic problem. Stochastic examples of problem (5.1) have been recently analyzed
in the context of closing financial asset positions in illiquid markets (see e.g. the intro-
duction in [203] for an overview). In these applications j includes transaction costs,
depending on the liquidation rate

.
X; moreover j can incorporate measures of the risk

exposure, depending on the volume Xt of the remaining position.
In order to prove existence of a process X minimizing the functional J(X) we study

also a related control problem without the constraint XT = 0, but with an additional
term in the cost functional penalizing any deviation of XT from zero. Let g : Ω×R→ R
be a function, convex in the second variable, such that for all x ∈ R the mapping
ω 7→ g(ω, x) is FT -measurable. Under some nice analytic assumptions, the following
unconstrained control problem is considered:

Minimize J̃(X) = E
[∫ T

0

j(t,Xt,
.
X t)dt+ g(XT )

]
over all absolutely

continuous and progr. mb. processes X satisfying X0 = x0.

(5.2)
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In the following, we explain that by setting the penalty function equal to g(x) = Lxp

and letting L→∞ one can reduce the constrained problem (5.1) to the unconstrained
one (5.2).

By following a classic Bellman approach for solving (5.2) (at least if j and g are deter-
ministic functions), one obtains a non-linear Hamilton-Jacobi-Bellman (HJB) equation
that is difficult to solve. By the Pontryagin maximum principle an optimal solution of
(5.2) can be characterized in terms of a forward-backward stochastic differential equa-
tion (FBSDE), where the forward component describes the optimal state dynamics and
the backward component the dynamics of the so-called costate. The FBSDE for (5.2)
takes the form

Xt = x−
∫ t

0
j∗y(s,Xs, Ys)ds,

Yt = g′(XT )−
∫ T
t
ZsdWs +

∫ T
t
jx(s,Xs, j

∗
y(s,Xs, Ys))ds,

(5.3)

where j∗(t, x, ·) denotes the convex conjugate of the function a 7→ j(t, x, a), j∗y its deriva-
tive w.r.t. y and jx the derivative of j w.r.t. x. Notice that the FBSDE (5.3) is fully
coupled, i.e. the forward dynamics depend on the backward component Y , and the back-
ward dynamics on the forward part X. It is a longstanding challenge to find conditions
guaranteeing that a fully coupled FBSDE possesses a solution. Sufficient conditions are
provided e.g. in [233, 277, 236, 285, 89, 234] (and the references therein). The method
of decoupling fields, developped in [128] (also see the precursor articles [235], [129] and
[234]), is practically useful for determining whether a solution exists. A decoupling field
describes the functional dependence of the backward part Y on the forward component
X. If the coefficients of a fully coupled FBSDE satisfy a Lipschitz condition, then there
exists a maximal non-vanishing interval possessing a solution triplet (X, Y, Z) and a
decoupling field with nice regularity properties. The method of decoupling fields con-
sists in analyzing the dynamics of the decoupling field’s gradient in order to determine
whether the FBSDE has a solution on the whole time interval [0, T ].

Solutions of problem (5.1) and (5.2) have been obtained under some additional struc-
tural assumptions on the function j. One focus of the literature so far is set on cost
functions j that are additive and homogeneous. In [10] it is assumed that j takes the
form j(t, x, a) = γt|x|p + ηt|a|p, where p > 1 and (η, γ) is a pair of non-negative pro-
gressively measurable processes. The particular form allows to decouple the FBSDE
(5.3), after a variable change. As the penalty of any deviation of XT from 0 increases to
infinity, the backward part of the decoupled FBSDE converges to a solution of a BSDE
with singular terminal condition. This additive–homogeneous case has been studied in
the linear-quadratic case in [11] and [20]. It has been extended to

• Poisson random measure as an additional source of randomness in [148, 147] and
in [XI];

• Random terminal time or general filtration or terminal condition in [XI].

These results are developed in the next subsection 5.1. But let us present already the
model. For some p > 1, we want to minimize the functional cost

J(X) = E
[∫ T

0

(
ηs|αs|p + γs|Xs|p +

∫
E
λs(e)|βs(e)|pµ(de)

)
ds+ ξ|XT |p

]
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over all progressively measurable processes X that satisfy the dynamics

Xs = x+

∫ s

0

αrdr +

∫ s

0

∫
E
βr(e)π(de, dr)

This model is motivated by the analysis of optimal control problems with state con-
straints on the terminal value and is a theoretical model for optimal portfolio liquidation
under stochastic price impact. The traditional assumption that all trades can be settled
without impact on market dynamics is not always appropriate when investors need to
close large positions over short time periods. In recent years models of optimal portfolio
liquidation have been widely developed, see, e.g. [5, 6, 126, 133, 162, 201], among many
others. The book [151] is a nice survey on this topic. Variants of the position targeting
problem (3.4) have been studied in [10, 11, 147, 148, 304].

Here the state processX denotes the agent’s position in the financial market. She has
two means to control her position. At each point in time t she can trade in the primary
venue at a rate αt which generates costs ηt|αt|p incurred by the stochastic price impact
parameter ηt. The term γt|Xt|p can be understood as a measure of risk associated to
the open position. Moreover, she can submit passive orders to a secondary venue ("dark
pool"). These orders get executed at the jump times of the Poisson random measure π
and generate so called slippage costs

∫
Z λt(z)|βt(z)|pµ(dz). We refer to [201] for a more

detailed discussion. J(X) thus represents the overall expected costs for closing an initial
position x over the time period [0, T ] using strategy X.

This terminal constraint is described by the FT -measurable non-negative random
variable ξ such that S = {ξ = +∞}. Thus for a binding liquidation XT = 0, we
take ξ = +∞ a.s. For excepted scenarios, we can consider ξ = ∞1S with for example
S = {maxt∈[0,T ] ηt ≤ H} or S = {

∫ T
0
ηtdt ≤ H} for a given threshold H > 0. This

means that liquidation is only mandatory if the maximal price impact (or the average
price impact) is small enough throughout the liquidation period. If the illiquidity of the
market is too high, the trader has not obligatorily to close his position.

For more general convex costs (but in the Brownian setting), the FBSDE (5.3) can
be shown to possess a solution by using the so-called continuation method, developed
in [164, 285, 327]. In particular the problem (5.2) has been solved already using this
method (see e.g. [59, Section 5]). The continuation method, however, does not provide
the existence of a decoupling field, which is fundamental for passing to the limit as the
penalty converges to infinity and for solving Problem (5.1). Indeed in [XVIII] we use
decoupling fields since they provide an additional structure enabling to pass to the limit
when the constant L of the penalty function g(x) = Lx2 converges to infinity. Indeed,
we show that the corresponding decoupling fields uL are non-decreasing in L. We can
thus identify a limit u∞, which we further use for solving Problem (5.1). In addition,
from the convergence of uL we infer convergence of the corresponding solution processes
(XL, Y L, ZL) to a process triplet (X∞, Y ∞, Z∞). We show that (X∞, Y ∞, Z∞) can be
characterized as the unique solution of a pair of stochastic differential equations, where
an initial and terminal condition is imposed on the forward equation, but no condition on
the second. One can interpret the system as an FBSDE with a free backward component.
To the best of our knowledge, this type of FBSDE is new since it cannot be reduced
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to the case studied in [328]. Moreover this FBSDE characterizes an optimal control for
problem (5.1) as (5.3) does for problem (5.2) (see Part 5.3)

Let us mention that the articles [252, 314] reformulate mass transportation problems
as control problems imposing a constraint on the terminal state and hence bearing
similarities with Problem (5.1). In contrast to the present article, the position process in
both articles is assumed to be disturbed by some Brownian noise; in [252] with constant
and in [314] with freely controllable diffusion coefficient. In addition, [252] links the
unique optimal control to an FBSDE related to the FBSDE (5.3). In contrast to our
approach, the authors derive the FBSDE from the existence of an optimal control, but
do not use it for proving existence in the first place.

Coming back to the additive-homogeneous case, we add some uncertainty on the
model. For some p > 1, we want to minimize the functional cost

J(X,P) = EP
[∫ T

0

(ηs|αs|p + γs|Xs|p) ds+ ξ|XT |p
]

over all progressively measurable processes X that satisfy the dynamics

Xs = x+

∫ s

0

αudu.

When there is only one probability measure P, the optimal strategies and the value
function of this control problem are characterized in [10] and [XI] by the minimal su-
persolution (Y min,Mmin) of the BSDE (3.5) with singular terminal condition:

dYt =
Y q
t

(q − 1)ηq−1
t

dt− γtdt+ dMt

with lim inf
t→T

Yt ≥ ξ. Here q > 1 is the Hölder conjugate of p and Mmin is a martin-
gale. By the verification theorem based on a penalization argument, it is proved that
infX J(X,P) = Y min

0 .
When P is not unique, we need to solve

(5.4) Ĵ(X) = sup
P∈P

J(X,P) = sup
P∈P

Y P
0

where Y P is the minimal supersolution of (3.5) under the probability measure P. Min-
imizing (5.4) corresponds for an agent to compute the worst case scenario for the liq-
uidation of her portfolio. From the theory of second order BSDE (2BSDE in short)
introduced by [309, 310] (see Sections 2.4 and 3.2.2), our problem can be solved with
this useful tool. From our results on 2BSDEs (Section 2.4), we can now obtain di-
rectly the value function and an optimal control for the unconstrained problem. For
the constrained problem, a known difficulty concerns the filtration. Indeed to avoid the
possibility of an uncontrolled jump for the orthogonal martingale part at the terminal
time T , some additional hypothesis on the filtration is needed (see Theorem 3.1). Un-
der this technical condition on the filtration, we prove that the 2BSDE with singular
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terminal condition has a minimal super-solution and that we can solve (5.4) using this
super-solution.

Mean field games (MFGs) are a powerful tool to analyse strategic interactions in
large populations when each individual player has only a small impact on the behavior
of other players. In the economics literature, mean-field-type (or anonymous) games
were first considered by Jovanovic and Rosenthal [179] and later analyzed by many
authors including [39, 88, 161]. In the mathematical literature MFGs were independently
introduced by Huang, Malhamé and Caines [167] and Lasry and Lions [214]. MFGs
have been successfully applied to various economic problems, ranging from systemic risk
management [62] to principal agent problems [122, 261] and from portfolio optimization
[211] to optimal exploitation of exhaustible resources [66].

In the last section of this part, corresponding to [XX], we analyze a novel class of
MFGs that arise in models of optimal portfolio liquidation. For single-player portfolio
liquidation models, the controlled state sequence follows a dynamics of the form

Xt = x−
∫ t

0

αs ds,

where x > 0 is the initial portfolio that a trader needs to unwind, and α is the trad-
ing rate. The set of admissible controls is confined to those processes α that satisfy
almost surely the liquidation constraint XT = 0. It is typically assumed that the unaf-
fected benchmark price process follows a one-dimensional Brownian motion W (or some
Brownian martingale) and that the trader’s transaction price is given by

St = s0 +

∫ t

0

σs dWs −
∫ t

0

κsαs ds− ηtαt

where σ is a (sufficiently regular) stochastic volatility process. The integral term ac-
counts for permanent price impact, i.e. the impact of past trades on current prices,
while the term ηtαt accounts for the instantaneous impact that does not affect future
transactions. The expected cost functional is typically of the linear-quadratic form

E
[∫ T

0

(
κsαsXs + ηsα

2
s + γsX

2
s

)
ds

]
where κ, η and γ are one-dimensional bounded adapted and non-negative processes. The
process γ describes the trader’s degree of risk aversion or her belief about the volatility
process; it penalizes slow liquidation. The process η describes the degree of market
illiquidity; it penalizes fast liquidation. The process κ describes the impact of past
trades on current transaction prices. This problem is studied in the next section 5.1.
If the transactions are not directly observable, then it is natural to assume that the
permanent impact is driven by the markets expectation about the traders transactions
as in [30], given the publicly observable information. It leads to a mean field control
problem, which is not the focus of our paper.

We consider a MFG of optimal portfolio liquidation among asymmetrically informed
players. Each player observes the realization of her initial portfolio and knows the
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distribution of all the other initial portfolios. The transaction price for each player
i = 1, ..., N is given by

Sit = si0 +

∫ t

0

σis dW
0
s −

∫ t

0

κis
N

N∑
j=1

αjs ds− ηitαit.

In particular, the permanent price impact depends on the players’ average trading rate.
Given her initial portfolio X i = xi the optimization problem of player i = 1, ..., N is to
minimize the cost functional

JN,i (~α) = E

[∫ T

0

(
κit
N

N∑
j=1

αjtX
i
t + ηit(α

i
t)

2 + γit(X
i
t)

2

)
dt
∣∣X i = xi

]

subject to the state dynamics

dX i
t = −αit dt,

X i
0 = X i, X i

T = 0.

Our game is different from the majority of the MFG literature in at least three respects.
First, as in [63, 146] the players interact through the impact of their strategies rather
than states on the other players’ payoff functions. Second, all players observe the com-
mon Brownian motion W 0 that drives the benchmark price process. Hence, ours is a
MFG with common noise. While MFGs with common noise have been investigated
before (see, e.g. [61]) the nature of both the common and the idiosyncratic noise in our
model is very different from the existing literature. Third, the individual state dynam-
ics are subject to a terminal state constraint arising from the liquidation requirement.
MFGs with terminal state constraint have been considered before in the literature by
means of so-called mean field (game) planning problems (MFGP) introduced by Lions
in his lectures at Collège de France (2009–2010). In these problems the terminal state
constraint is given by a target density of the state at the terminal time. While our
problem formally belongs to the literature on MFGP, see e.g. [1, 145, 293] and the
references therein, ours seems to be the first paper that considers a MFG with strict
terminal state constraint.

We apply the probabilistic method to solve the MFG with terminal constraint (5.35).
In a first step we show how the analysis of our MFG can be reduced to the analysis
of a conditional mean-field type FBSDE. The forward component describes the optimal
portfolio process; hence both its initial and terminal condition are known. The backward
component describes the optimal trading rate; its terminal value is unknown. Making an
affine ansatz, we show that the mean-field type FBSDE with unkown terminal condition
can be replaced by a coupled FBSDE with known initial and terminal condition, yet
singular driver. Proving the existence of a small time solution to this FBSDE by a fixed
point argument is not hard. The challenge is to prove the existence of a global solution
on the whole time interval. Under a weak interaction condition that has been used in
the game theory literature before (see, e.g. [161]) we prove the existence and uniqueness
of a global solution by a generalization of the method of continuation established in
[165, 286] to linear-quadratic FBSDE systems with singular driver. Under the additional
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assumption that all players share the same cost structure, we prove that each player’s
best response to the mean-field equilibrium µ∗ is of the form ξ∗,i = φ(X i,W 0,W i) for
some function φ and that the resulting homogeneous action profile forms an ε-equilibrium
in the original N -player game.

The common information case where all the cost coefficients are measurable with
respect to the common factor can be analysed in greater detail. When different players
hold different initial portfolios, then the optimal portfolio processes are given as weighted
averages of the players’ initial portfolios and the differences of their own and the average
initial portfolio. In this case, we show that if the average initial portfolio is positive and
a player holds an above average initial portfolio, then her optimal portfolio process is
always positive. If, however, a player holds a positive yet well below average initial
portfolio, then it is optimal to quickly unwind the position, to then take a negative
position and to buy the stock back by the end of the trading period. This is intuitive
as players with negative portfolios benefit from the negative price trends generated by
other players while the cost of unwinding a small portfolio is low. As such, our result
suggests that traders with small portfolios act as liquidity providers in equilibrium even
if their initial holds are positive.

The benchmark case of deterministic coefficients can be solved in closed form. For
this case we show that when the strength of interaction κ in (5.35) is large and all
players share the same initial portfolio, the players initially trade very fast in equilibrium
to avoid the negative drift generated by the mean field interaction. Our model thus
provides a possible explanation for large price drops in markets with many strategically
interacting homogenous investors. We also show that the deterministic case is equivalent
to a single player model with suitably adjusted cost terms.

The three papers closest to our model are Cardaliaguet and Lehalle [56], Carmona
and Lacker [63], Huang, Jaimungal and Nourin [168]. In [63], the authors propose a
specific portfolio liquidation model where each players portfolio is subject to exogenous
fluctuations (customer flow) described by independent Brownian motions. As such,
their model is much closer to a standard MFG than ours, but no liquidation constraint
is possible in their framework. The papers [56] and [168] consider mean field models pa-
rameterized by different preferences and with major-minor players, respectively. Again,
no liquidation constraint is allowed. The model introduced in [56] is extended to port-
folios of correlated assets in [218] where the effect of trading flows on naive estimates of
intraday volatility and correlations is analyzed.

5.1 Additive-homogeneous control problem ([XI])
The results of this section were already obtained in [10] in a more restricted setting.

We consider the additive-homogeneous problem (5.1), but in a general filtration. Let us
now describe exactly the stochastic control problem.

We assume that the framework of Sections 1.2 and 3.1 is given. Moreover, we suppose
that the measure µ is finite. As in Section 3.1 we fix some p > 1 and denote by
q = 1/(1− 1/p) its Hölder conjugate. Let τ be a F stopping time. For any t ∈ R+ and
x ∈ R, we denote by A(t, x) the set of progressively measurable processes (Xs)s≥0 that
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satisfy the dynamics

(5.5) Xs = x+

∫ s∨t

t

αrdr +

∫ s∨t

t

∫
E
βr(e)π(de, dr)

for any s ≥ 0 and for some α ∈ L1(t,∞) a.s. and β ∈ Gloc(π). Observe that for all
X ∈ A(t, x) it holds that Xs = x for all s ≤ t. We consider the stochastic control
problem to minimize the functional1

(5.6) J(t,X) = E
[∫ τ

t∧τ

(
ηs|αs|p + γs|Xs|p +

∫
E
λs(e)|βs(e)|pµ(de)

)
ds+ ξ|Xτ |p

∣∣∣∣Ft]
over all X ∈ A(t, x). The random variable ξ is supposed to be non-negative and may
take the value ∞ with positive probability. Observe that if for x > 0 there exists
X ∈ A(t, x) such that J(t,X) <∞, then τ > t a.s. and X satisfies almost surely that

(5.7) Xτ11ξ=∞ = 0.

This way we impose implicitly a terminal state constraint on the set of admissible
controls. As before we define the set S∞ by S∞ = {ξ = +∞}. Coefficient processes
(ηt)t≥0, (γt)t≥0 and (λt)t≥0 are non-negative progressively measurable càdlàg processes.
The process λ is P̃-measurable with values in [0,+∞].

We introduce the random field v that represents for each initial condition (t, x) the
minimal value of J

(5.8) v(t, x) = essinfX∈A(t,x) J(t,X).

A formal stochastic maximum principle for (5.6) leads to a FBSDE similar to (5.3).
However the homogeneity of the control problem implies that the forward and the back-
ward equations can be decoupled and that the value function v is of the form

v(t, x) = |x|pYt,

where Y is the solution of a BSDE with singular terminal condition ξ of the form:

(5.9) dYt = (p− 1)
Y q
t

ηq−1
t

dt+ Θ(t, Yt, Ut)dt− γtdt+

∫
E
Ut(e)π̃(de, dt) + dMt,

where the function Θ is given by

(5.10) Θ(t, y, ψ) =

∫
E
(y + ψ(e))

(
1− λt(e)

((y + ψ(e))q−1 + λt(e)q−1)p−1

)
11y+ψ(e)≥0 µ(de).

See the discussion in [10, Section 2] and in [148, Section 2.2], when τ = T is deterministic.
The scheme is the following. First we show that the BSDE (5.9) has a minimal

solution using the results in Section 3.1. Then a verification argument proves that this
minimal solution gives the value function and an optimal control. We distinguish two

1We use the convention that 0 · ∞ := 0
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cases. In the first case we assume that τ is deterministic and impose some integrability
assumptions on the coefficient processes (ηt)t≥0 and (γt)t≥0.
Deterministic case. Stopping time τ is a.s. equal to a deterministic constant T > 0.
Process η is positive, process γ is non-negative, such that for some ` > 1

E
[∫ T

0

(ηt + (T − t)pγt)`dt
]
<∞ and E

[∫ T

0

1

ηq−1
t

dt

]
<∞.

�
In the second case we assume that τ = τD is given by (3.54) as the first hitting time

of a diffusion. We need to impose some stronger boundedness conditions on η and γ
compared to the deterministic case.
Random case. We have τ = τD and there exists ρ > µ(E) such that Eeρτ < ∞.
Processes η and γ are bounded from above, η is positive and satisfies the integrability
conditions

(5.11) E
[∫ n

0

1

ηq−1
t

dt

]
+ E

[∫ τ

0

1

η
m(q−1)
t

dt

]
<∞

for all n ∈ N and for some m satisfying:

m >
2ρ

ρ− µ(E) + (
√
ρ−

√
2µ(E))1ρ>2µ(E)

.

Process γ is non-negative. �
Lemma 3.8 gives sufficient conditions on the coefficients of the forward SDE (1.9) such

that Eeρτ <∞ holds. From Theorems 3.1 and 3.10, there exists a minimal supersolution
(Y min, Umin,Mmin) to (5.9) with singular terminal condition Yτ = ξ. Set Ys = ξ for all
s ≥ τ .

Theorem 5.1 For all (t, x) ∈ R+×R it holds P-a.s. that v(t, x) = Y min
t |x|p. Moreover,

for every (t, x) ∈ R+ × R, process X satisfying the linear dynamics

Xs = x−
∫ s∨t

t

(
Y min
r

ηr

)q−1

Xrdr −
∫ s∨t

t

Xr−

∫
E
ζr(e)π(de, dr),

with

ζr(z) =
(Y min

r− + Umin
r (e))q−1

[(Y min
r− + Umin

r (e))q−1 + λr(e)q−1]

belongs to A(t, x), satisfies the terminal state constraint (5.7) if t < τ and is optimal in
(5.8).

The optimal process X∗ is given explicitly by

(5.12) X∗s = x exp

[
−
∫ s∨t

t

(
Y min
r

ηr

)q−1

dr

]
exp

[∫ s∨t

t

∫
E

ln (1− ζr(e))π(de, dr)

]
.
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Proof. To prove Theorem 5.1, we consider a variant of the minimization problem (5.8), where we
penalize any non-zero terminal state by (ξ ∧ L)|Xτ |p and thus omit the constraint Xτ11S∞ = 0 on the
set of admissible controls. Moreover precisely by Theorems 2.1 and 2.2, there exists a unique solution
(Y L, UL,ML) of the truncated BSDE

(5.13) dY Lt = (p− 1)
(Y Lt )q

ηq−1
t

dt+ Θ(t, Y Lt , U
L
t )dt− (γt ∧ L)dt+

∫
E
ULt (e)π̃(de, dt) + dML

t

with terminal condition Y Lτ = ξ ∧ L. Process (Y min, Umin,Mmin) is the limit as L goes to +∞ of
(Y L, UL,ML) and is the minimal (super-)solution of the BSDE (5.9). We show that optimal controls
for this unconstrained minimization problem: for L > 0 and (t, x) ∈ R+ × R

vL(t, x) = essinfX∈A(t,x) J
L(t,X)

= essinfX∈A(t,x) E
[∫ τ

t∧τ

(
ηs|αs|p + (γs ∧ L)|Xs|p +

∫
E
λs(e)|βs(e)|pµ(de)

)
ds

+(ξ ∧ L)|Xτ |p
∣∣∣∣Ft] .(5.14)

admit a representation in terms of the solutions Y L of a truncated version of (5.9):

Proposition 5.1 Let (Y L, UL,ML) be the solution to (5.13) with terminal condition Yτ = ξ ∧ L. Let
Y Ls = L ∧ ξ for all s ≥ τ . Then for all (t, x) ∈ R+ × R the process XL satisfying the linear dynamics

XL
s = x−

∫ s∨t

t

(
Y Lr
ηr

)q−1

XL
r dr −

∫ s∨t

t

XL
r−

∫
E
ζLr (e)π(de, dr),

with

ζLr (e) =
(Y Lr− + ψr(e))

q−1[
(Y Lr− + ψLr (e))q−1 + λr(e)q−1

]
is optimal in (5.14). Moreover, we have vL(t, x) = Y Lt |x|p.

To prove this proposition we make use of the two following auxiliary results ([XI, Lemmata 3 and
4]). Firstly we show that in the case x ≥ 0 we can without loss of generality restrict attention to
monotone strategies2. We introduce set D(t, x), the subset of A(t, x) containing only processes X that
have non-increasing sample paths (i.e. αt ≤ 0 and βt(z) ≤ 0), and that remain non-negative. We
prove that for x ≥ 0, every control X ∈ A(t, x) can be modified to a control X ∈ D(t, x) such that
JL(t,X) ≥ JL(t,X) (see Lemma 5.2 below). In particular, vL(t, x) = essinfX∈D(t,x) J

L(t,X). Secondly
we provide the dynamics of two auxiliary processes: η|αL|p−1 and Y L(XL)p.

We then use this result to derive an optimal control for (5.8), by a verification argument. We use
the auxiliary processes to get a non-negative local martingale, thus a non-negative supermartingale θ,
such that

0 ≤ X∗s ≤
(

θs
pY min

s

)q−1

.

Since Y min satisfies the terminal condition lim infs↗τ Y
min
s 11S∞ = ∞ we have a.s. on the set {t <

τ} ∩ S∞:

0 ≤ X∗s ≤
(

θs
pY min

s

)q−1

→ 0

when s goes τ . It follows that X satisfies the terminal constraint if t < τ .

2It is straightforward to show that v(t, x) = v(t,−x) for all (t, x) ∈ R+×R+. Therefore, we restrict
attention to the case x ≥ 0 in the sequel.
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Appealing once more our result on auxiliary processes, we observe that for all n > 0 (τn is given
by (3.56)):

Y min
t |x|p ≥ 11{t<τ}EFt

[∫ τn∨t

t

{
ηu|α∗u|p + γu(X∗u)p +

∫
E
λu(e)|β∗u(e)|pµ(de)

}
du+ 11{ξ<∞}Y min

τn∨t|X
∗
τn∨t|

p

]
+11{t≥τ}J(t,X∗)

Appealing to monotone convergence theorem yields

lim
n→∞

11{t<τ}EFt
[∫ τn∨t

t

{
ηu|α∗u|p + γu(X∗u)p +

∫
E
λu(e)|β∗u(e)|pµ(de)

}
du

]
= 11{t<τ}EFt

[∫ τ

t

{
ηu|α∗u|p + γu(X∗u)p +

∫
E
λu(e)|β∗u(e)|pµ(de)

}
du

]
We want to show that lim infn→∞ 11{t<τ}EFt

[
Y min
τn∨t|Xτn∨t|p

]
≥ 11{t<τ}EFt [ξ|Xτ |p], where ∞ · 0 := 0.

By Fatou’s lemma it suffices to show that lim infn→∞ Y min
τn |Xτn |p ≥ ξ|Xτ |p a.s. From the definition

of the supermartingale θ and since the limit limn→∞ θτn ∈ R exists, it follows that also the limit
limn→∞ Y min

τn |Xτn |p−1 ∈ R exists and that Xτ = limn→∞ |Xτn | = 0 if lim infn→∞ Y min
τn = ∞. Let us

distinguish two cases. First assume that lim infn→∞ Y min
τn =∞. Then

lim inf
n→∞

Y min
τn |Xτn |p = ( lim

n→∞
Y min
τn |Xτn |p−1)( lim

n→∞
|Xτn |) = 0 = ξ|Xτ |p

(for the last equality we use that ∞ · 0 := 0). Next assume that lim infn→∞ Y min
τn < ∞. Then it

follows that lim infn→∞ Y min
τn |Xτn |p ≥ ξ|Xτ |p. This proves the claim and altogether we obtain that

Y min
t |x|p ≥ J(t,X∗).

Next, note that for every X ∈ A(t, x) we have J(t,X) ≥ JL(t,X). This implies v(t, x) ≥ vL(t, x)
for every L > 0. By the previous proposition: Y Lt |x|p = vL(t, x). Minimality of Y min implies

Y min
t |x|p = lim

L↗∞
Y Lt |x|p = lim

L↗∞
vL(t, x) ≤ v(t, x).

Consequently we obtain
Y min
t |x|p ≥ J(t,X∗) ≥ v(t, x) ≥ Y min

t |x|p

and thus optimality of X∗. �

Note that for deterministic final time T we only know (in general) that

lim inf
t→T

v(t, x) ≥ |x|pξ.

However since µ is finite, from Theorem 3.5, we obtain the existence of the limit at time
T . The value function v is càdlàg on [0, T ]. But there may be is an extra cost at time
T . The continuity problem corresponds to the question: is the left limit of the value
function v at time T equal to the penalization cost ξ ? A positive answer is assumed in
[20]. The section 3.3 provides several examples of penalty ξ such that we have continuity
at time T .

5.2 Extension to Knightian uncertainty ([XVII])
Here we want to minimize the functional cost

(5.15) J(X ) = sup
P∈P

J(X ,P) = sup
P∈P

EP
[∫ T

0

(ηs|αs|p + γs|Xs|p) ds+ ξ|XT |p
]
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over all progressively measurable processes X that satisfy the dynamics

Xs = x+

∫ s

0

αudu.

State process is denoted by X whereas X is the canonical process (see Part 1.4). Min-
imizing (5.15) corresponds for an agent to compute the worst case scenario for the
liquidation of her portfolio. For a fixed P, we know that the infimum of J(X ,P) is given
by the solution Y P of a BSDE. Then up to the inversion of a supremum (over P) and
an infimum (over α), the solution of (5.15) should be given by supP Y

P, that is by the
solution of a 2BSDE.

The general setting is the same as in Section 3.2.2. We consider a FT -Borel measur-
able random variable ξ such that for any P ∈ P0, ξ is a.s. non-negative. We denote by
S∞ the singular set {ξ = +∞}. We define the two Borel measurable functions

η : (t, ω, a) ∈ [0, T ]× Ω× S≥0
d −→ R∗+,

γ : (t, ω, a) ∈ [0, T ]× Ω× S≥0
d −→ R+.

Here η and γ (and thus the generator of our BSDE) do not depend on the drift of X.
This condition is sufficient to obtain an optimal control independent of the probability
measure P. This hypothesis is similar to the setting in [245]. We define for simplicity

η̂s := η(s,X·∧s, âs) and γ̂s := γ(s,X·∧s, âs).

Finally we assume that there exists % > 1 such that for any (t, ω) ∈ [0, T ]× Ω

(5.16) sup
P∈P(t,ω)

EP
∫ T

t

(
1

η̂s

)%(q−1)

ds <∞.

To simplify we only consider the case x ≥ 0 and we define the following control sets:

• A(t, x) is the set of processes X = (Xs, 0 ≤ s ≤ T ) such that Xs = x if s ≤ t and
for any P ∈ Pt, P−a.s., X is absolutely continuous, that is: Xs(ω) = x+

∫ s
t
αu(ω)du

with
∫ T
t
|αu(ω)|du < +∞.

• For a fixed P ∈ Pt, AP(t, x) is the set of processes X = (Xs, 0 ≤ s ≤ T ) such
that Xs = x if s ≤ t and P − a.s., X is absolutely continuous, that is: Xs(ω) =

x+
∫ s
t
αu(ω)du with

∫ T
t
|αu(ω)|du < +∞.

Set AP(t, x) depends of P, whereas A(t, x) depends only on the probability set Pt. Of
course A(t, x) is included in AP(t, x). Next for any L ≥ 0 we define the following
unconstrainted control problems
(5.17)

JL(t, x) = essinf
X∈A(t,x)

ess sup
P∈Pt

EP
[∫ T

t

(η̂s|αs|p + (γ̂s ∧ L)|Xs|p) ds+ (L ∧ ξ)|XT |p
∣∣∣∣F+

t

]
,

together with

IL(t, x) = ess sup
P∈Pt

essinf
X∈A(t,x)

EP
[∫ T

t

(η̂s|αs|p + (γ̂s ∧ L)|Xs|p) ds+ (L ∧ ξ)|XT |p
∣∣∣∣F+

t

]
,
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and

HL(t, x) = ess sup
P∈Pt

essinf
X∈AP(t,x)

EP
[∫ T

t

(η̂s|αs|p + (γ̂s ∧ L)|Xs|p) ds+ (L ∧ ξ)|XT |p
∣∣∣∣F+

t

]
.

Immediately HL(t, x) ≤ IL(t, x) ≤ JL(t, x). From the standard formulation (see Section
5.1) we have

HL(t, x) = xp ess sup
P∈Pt

yL,Pt = xp Y L
t .

Indeed from Propositions 2.4 and 2.5, we deduce that there exists a unique solution
(Y L, ZL,ML,P, KL,P) to the second order BSDE: for any 0 ≤ t ≤ T and any P

Y L
t = (ξ ∧ L)−

∫ T

t

|Y L
u |q−1Y L

u

(q − 1)(η̂u)q−1
du+

∫ T

t

(γ̂u ∧ L)du

−
(∫ T

t

ZL
s dX

c,P
s

)P

−
∫ T

t

dML,P
s + (KL,P

T −KL,P
t ), P− a.s.,(5.18)

such that:

• For any p > 1, Y L belongs to Dp
0(FP0

+ ).

• For any 1 < p < %, (ZL,ML,P, KL,P) is in Hp
0(FP0

+ )×Mp
0((FP

+)P∈P0)× Ip0((FP
+)P∈P0).

• KL,P is a P−a.s. non-decreasing process satisfying the minimality condition (2.19).

Lemma 5.1 For any (t, x), JL(t, x) ≤ HL(t, x).

Proof. We define
βLs = −

(
Y Ls /η̂s

)q−1
, dX ∗,Ls = βLs X ∗,Ls ds = αLs ds.

Let us apply the Itô formula under the probability P to Y L(X ∗,L)p, we integrate the result from t to T
and we take the conditional expectation w.r.t. P:

EP

[
(ξ ∧ L)(X ∗,LT )p +

∫ T

t

[
η̂s
(
αLs
)p

+ (γ̂s ∧ L)(X ∗,Ls )p
]
ds

∣∣∣∣F+
t

]

= Y Lt x
p − EP

[∫ T

t

(X ∗,Ls )pdKL,P
s

∣∣∣∣F+
t

]
≤ Y Lt xp

since KL,P is non-decreasing. Therefore

ess sup
P∈Pt

EP

[
(ξ ∧ L)(X ∗,LT )p +

∫ T

t

[
η̂s
(
αLs
)p

+ (γ̂s ∧ L)(X ∗,Ls )p
]
ds

∣∣∣∣F+
t

]
≤ Y Lt xp.

Moreover the process X ∗,L is in A(t, x):

X ∗,Ls = x−
∫ s

t

(
Y Lu
η̂u

)q−1

X ∗,Lu du.

This implies that
JL(t, x) ≤ Y Lt xp = HL(t, x).
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Therefore we deduce that HL(t, x) ≤ IL(t, x) ≤ JL(t, x) ≤ HL(t, x) and the first
result:

Proposition 5.2 The unconstrainted problem (5.17) satisfies

essinf
X∈A(t,x)

ess sup
P∈Pt

EP
[∫ T

t

(η̂s|αs|p + γ̂s|Xs|p) ds+ (ξ ∧ L)|XT |p
∣∣∣∣F+

t

]
= ess sup

P∈Pt
essinf
X∈AP(t,x)

EP
[∫ T

t

(η̂s|αs|p + γ̂s|Xs|p) ds+ (ξ ∧ L)|XT |p
∣∣∣∣F+

t

]
and the solution of the 2BSDE (5.18), denoted by Y L, gives the optimal process X ∗,L:

dX ∗,Ls =
[
−
(
Y L
s /η̂s

)q−1X ∗,Ls

]
ds.

For the constrained problem under uncertainty, we denote by A0(t, x) the set of
admissible controls X ∈ A(t, x) such that XT11S = 0, Pt-q.s. (Pt-q.s means P−a.s. ∀P ∈
Pt) and AP

0(t, x) the set of admissible controls X ∈ AP(t, x) such that XT11S = 0 P−a.s.
Now consider

(5.19) J(t, x) = essinf
X∈A0(t,x)

ess sup
P∈Pt

EP
[∫ T

t

(η̂s|αs|p + γ̂s|Xs|p) ds+ ξ|XT |p
∣∣∣∣F+

t

]
.

Again we use the convention that 0×∞ = 0. As mentioned for the standard formulation,
a left-continuity condition is imposed on the underlying filtration to have the desired
terminal condition3. In our present setting we add the next assumption on our set of
probability measures PWt :

• Left-continuity condition: for any probability measure P ∈ PWt , the filtration
FP

+ is left-continuous at time T .

As in Section 3.2.2, let us now assume that there exists ` > 1 and κ ∈ (1, `) such
that for any (t, ω)

(5.20) sup
P∈P(t,ω)

EP
[∫ T

t

[η̂s + (T − s)p γ̂s]` ds
]
<∞,

and

(5.21) sup
P∈P0

EP

[
ess sup
0≤t≤T

P
(
EP
[∫ T

0

[η̂s + (T − s)p γ̂s]κ ds
∣∣∣∣F+

t

]) `
κ

]
<∞.

Then there exists U ∈ D`
0(FP0

+ ) such that for any 0 ≤ t ≤ T , P0-q.s.

(5.22) 0 ≤ Y L
t ≤

1

(T − t)p
Ut,

3This technical condition can be avoided if ξ is FT−-measurable (see for example [20]).
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where U is the first part of the solution of the 2BSDE:

Ut =

∫ T

t

(η̂s + (T − s)pγ̂s) ds−
(∫ T

t

VsdX
c,P
s

)P

−
∫ T

t

dN P
s + (KP

T −KP
t ).

Let us emphasize that the right-hand side of (5.22) does not depend on L and is finite on
[0, T ). Hence for any ε > 0, the sequence (Y L, ZL,ML,P, KL,P) converges, when L goes
to +∞, to (Y, Z,MP, KP) in the space D`

0(FP0
+ )×H`

0(FP0
+ )×M`

0((FP
+)P∈P0)×I`0((FP

+)P∈P0)
on [0, T−ε], which means that all processes are restricted on this time interval. Moreover
(Y, Z,MP, KP) satisfies the dynamics: for any P ∈ P0, and any 0 ≤ s ≤ t < T :

(5.23) Ys = Yt−
∫ t

s

Y q
u

(q − 1)(η̂u)q−1
du+

∫ t

s

γ̂udu−
(∫ t

s

ZudX
c,P
u

)P

−
∫ t

s

dMP
u +KP

t −KP
s .

Finally Y satisfies the representation property: for any t < T and any P ∈ P0,

Yt = esssupP

P′∈P(t,P,F+)

yP
′

t , P− a.s.

We can now obtain an optimal solution for the control problem (5.19).

Proposition 5.3 The constrainted problem (5.19) has an optimal state process X ∗ de-
fined by

X ∗s = x−
∫ s

t

(
Yu
η̂u

)q−1

X ∗udu,

Moreover the value function is given by: J(t, x) = |x|pYt.

The proof is similar to the case without uncertainty.

5.3 Extension to convex cost ([XVIII])
Now we come back to the initial problem (5.1), together with the unconstrained

control problem (5.2) and the FBSDE (5.3). Let us explain the setting. Here T ∈ (0,∞)
is a deterministic finite time horizon. LetW = (Wt)t∈[0,T ] be a d - dimensional Brownian
motion on a complete probability space (Ω,F ,P) and denote by F = FW = (Ft)t∈[0,T ] the
smallest filtration satisfying the usual conditions and containing the filtration generated
by W .

Let A ⊆ R be a closed and connected set of possible control values satisfying inf A ≤
0 < supA. Let

g : Ω× R→ R

be measurable and
j : Ω× [0, T ]× R× A→ R

be measurable such that for all (x, a) ∈ R × A the mapping (ω, t) 7→ j(ω, t, x, a) is
progressively measurable. We make the following additional assumptions on j and g:
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(E1) For every fixed pair (ω, t) ∈ Ω×[0, T ] the mappings (x, a) 7→ j(t, x, a) and x 7→ g(x)
are convex4, with j being strictly convex in a.

(E2) The mappings A 3 a 7→ j(t, x, a) and R 3 x 7→ j(t, x, a) attain a minimum at zero
(for all ω, t, x and all ω, t, a respectively). We also assume that j(t, 0, 0) = 0 for
all t ∈ [0, T ]. Observe that j is then non-negative.

(E3) j is coercive, i.e. there exist p > 1 and b > 0 such that

∀(ω, t, x, a) ∈ Ω× [0, T ]× R× A : j(t, x, a) ≥ b|a|p.

(E4) g(·) restricted to [0,∞) is twice continuously differentiable, j(t, ·, ·) restricted to
[0,∞)× (A∩ [0,∞)) is continuously differentiable, while jx(t, ·, ·) and ja(t, ·, ·) are
continuously differentiable on [0,∞) × A+, where A+ := A ∩ (0,∞). All second
derivatives are bounded on compacts in [0,∞) × A+ and all first derivatives are
bounded on compacts in [0,∞)× (A ∩ [0,∞)), uniformly in (ω, t).

(E5) The mapping x 7→ g(x) attains its minimum at zero (for all ω). We also assume
that g(0) = 0. Observe that g is then non-negative.

Remark 5.1 The assumptions that j(t, 0, 0) = 0 for all t ∈ [0, T ] and g(0) = 0 can
be relaxed to the assumptions that j(·, 0, 0) ∈ L1(Ω × [0, T ]) and g(0) ∈ L1(Ω). Indeed,
in this case one can consider the problems (5.1) and (5.2) with j̃(t, x, a) = j(t, x, a) −
j(t, 0, 0) and g̃(x) = g(x) − g(0) instead of j and g and add E

[∫ T
0
j(t, 0, 0)dt+ g(0)

]
outside the minimization problem.

For t ∈ [0, T ] we define A(t) as the set of all progressively measurable α : Ω× [t, T ]→
A such that a.s. u 7→ α(·, u) is integrable. Hence for (t, x) ∈ [0, T ]× R, the process

X t,x,α
s := x−

∫ s

t

αudu

is well-defined for all s ∈ [t, T ]. The dynamic version of problem (5.2) then reads

(5.24) Minimize J(t, x, α) := E
[∫ T

t
j(s,X t,x,α

s , αs)ds+ g(X t,x,α
T )

∣∣Ft]
over all α ∈ A(t).

The value function v : Ω × [0, T ] × R → [0,∞] is the random field that satisfies for all
(t, x) ∈ [0, T ]× R

v(t, x) = essinfα∈A(t) J(t, x, α).

The next result shows that when starting with a non-negative initial position, then
it can not be optimal to choose α such that the position process is increasing or negative
at some time point. This result is coherent with the absence of transaction-triggered
price manipulation (see [4]).

4Note that here and in the sequel we follow the usual convention and omit the function argument
ω.
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Lemma 5.2 Let (t, x) ∈ [0, T ] × [0,∞). If α ∈ A(t) is optimal in (5.24), then Xα
s =

x−
∫ s
t
αrdr, s ∈ [0, T ], is non-increasing and non-negative. Moreover, for any α ∈ A(t)

there exists β ∈ A(t) such that Xβ is non-increasing and non-negative and J(t, x, β) ≤
J(t, x, α).

Observe that by symmetry, when starting in a negative position, one can restrict the
analysis to non-positive controls and positions, with straightforward adjustments in
the hypotheses (differentiability condition for non-positive values). In the following we
consider only the positive case and always assume that any positions and controls are
non-negative.

The so-called Hamiltonian of the control problem is defined by

H(t, x, a, y) := −ay + j(t, x, a),

for t ∈ [0, T ] and (x, a, y) ∈ R× A× R. Notice that

min
a∈A
H(t, x, a, y) = −j∗(t, x, y),

where j∗(t, x, ·) is the convex conjugate of j(t, x, ·). The properties of j∗ (definition,
continuity, differentiability) are detailed in [XVIII, Remarks 1.3 and 1.4].

Next we consider for (t, x) ∈ [0, T ] × [0,∞) the so-called adjoint forward-backward
stochastic differential equation (FBSDE) for the control problem (5.24), given by

(5.25)
X t,x
s = x−

∫ s
t
j∗y(r,X

t,x
r , Y t,x

r )dr,

Y t,x
s = g′(X t,x

T )−
∫ T
s
Zt,x
r dWr +

∫ T
s
jx(r,X

t,x
r , j∗y(r,X

t,x
r , Y t,x

r ))dr,

for all s ∈ [t, T ]. To simplify the notations, when there is no ambiguity, (X t,x, Y t,x, Zt,x)
will be denoted by (X, Y, Z). In this section we mean by a solution to (5.25) a triplet
(X, Y, Z) = (X t,x, Y t,x, Zt,x) of progressively measurable processes with values in R ×
R× Rd such that

1. X and Y are continuous and non-negative processes,

2. the processes X, Y and s 7→ j∗y(s,Xs, Ys) are bounded and, finally,

3. the two equations (5.25) are satisfied a.s. for every fixed s ∈ [t, T ].

Note that under our framework, the stochastic integral
∫ ·

0
Zt,x
r dWr is a BMO martingale

(see e.g. Proposition 1.1 in [28]). In particular for any p ≥ 1 it holds that

(5.26) E

[(∫ T

0

|Zt,x
r |2dr

)p/2]
< +∞.

Constructing solutions to the above FBSDE is important for the following reason.

Lemma 5.3 Let (t, x) ∈ [0, T ] × [0,∞). If there exists a solution (X t,x, Y t,x, Zt,x) of
(5.25), then process α = (αs)s∈[t,T ] satisfying αs = j∗y(s,X

t,x
s , Y t,x

s ), s ∈ [t, T ], is an
optimal control for problem (5.24) with finite expected costs, i.e.

v(t, x) = J(t, x, α) <∞.
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It is a longstanding challenge to find conditions guaranteeing that a fully coupled
FBSDE possesses a solution. The method of decoupling fields, developped in [128] is
practically useful for determining whether a solution exists. A decoupling field describes
the functional dependence of the backward part Y on the forward component X:

Yt(ω) = u(ω, t,Xt(ω)).

If the coefficients of a fully coupled FBSDE satisfy a Lipschitz condition, then there
exists a maximal non-vanishing interval possessing a solution triplet (X, Y, Z) and a
decoupling field with nice regularity properties. The method of decoupling fields con-
sists in analyzing the dynamics of the decoupling field’s gradient in order to determine
whether the FBSDE has a solution on the whole time interval [0, T ].

The FBSDE (5.25) can be shown to possess a solution by using the so-called contin-
uation method, developed in [165, 285, 327]. In particular the problem (5.24) has been
solved already using this method (see e.g. [59, Section 5]). The continuation method,
however, does not provide the existence of a decoupling field, which is fundamental in
the present article for passing to the limit as the penalty converges to infinity and for
solving Problem (5.1).

Concerning this unconstrained problem, we prove in [XVIII, Theorem 2.10] that

Proposition 5.4 Under Assumptions (E1) to (E5), the maximal interval associated
with FBSDE (5.25) satisfies Imax = [0, T ]. Furthermore, the unique weakly regular
decoupling field u on [0, T ] satisfies u(t, x) = 0 for all x ≤ 0 and t ∈ [0, T ]. For all
t ∈ [0, T ] and x ∈ [0,∞) there exists a unique solution (X, Y, Z) of FBSDE (5.25). The
processes X and Y are both bounded and non-negative (and Z is BMO).

In the additive-homogeneous case (see Section 5.1), the decoupling field is given by:

u(ω, t, x) = pY min
t (ω)x|x|p−1,

where Y min is the solution of the BSDE (5.13) (or the BSDE (5.9) in the constrained
case). In other words, we have an explicit decoupling field and thus we can separate the
forward and the backward SDE.

Now we consider the dynamic version of the constrained problem (5.1)

Minimize Ĵ(t, x, α) = E
[∫ T

t

j(s,X t,x,α
s , αs)dt

∣∣∣∣Ft]
over all α ∈ A(t) such that X t,x,α

T = 0.

(5.27)

In the rest of this part, for all (t, x) ∈ [0, T )× R let

A0(t, x) := {α ∈ A(t) |X t,x,α
T = 0 a.s.}.

As written in the introduction we solve this problem via a penalization method.
Using Proposition 5.4, tor every (t0, x0) ∈ [0, T ) × (0,∞) and every penalty function
gL(x) = Lx2, L > 0, we have a unique solution (XL, Y L, ZL) to the FBSDE (5.25)
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with initial condition Xt0 = x0, as well as a unique weakly regular decoupling field uL
associated with (5.25). For every L ∈ (0,∞) let vL : Ω × [0, T ] × R → R be the value
function of problem (5.24) with penalty function gL. The strategy αLt := j∗y(t,X

L
t , Y

L
t ),

t ∈ [t0, T ], minimizes the cost JL, i.e. it holds that

(5.28) vL(t0, x0) = JL(t0, x0, α
L)

for non-negative x0.
In order to pass to the limit on L, we assume that the next conditions are verified.

(E6) The functions (x, y) 7→ j∗y(t, x, y) and (x, y) 7→ jx(t, x, f
∗
y (t, x, y)) are Lipschitz

continuous on [0,∞)× [0,∞), uniformly in (ω, t) ∈ Ω× [0, T ].

(E7) It holds that jx(t, 0, 0) = 0 for all (ω, t) ∈ Ω× [0, T ].

(E8) It holds that supA =∞ and ja(t, x, 0) = 0 for all (ω, t, x) ∈ Ω× [0, T ]× [0,∞).

(E9) The whole Hessian matrix D2j(t, x, a) of j w.r.t. (x, a) ∈ [0,∞) × (0,+∞) is
uniformly bounded independently of (ω, t, x, a) ∈ Ω× [0, T ]× [0,∞)× (0,+∞).

Roughly speaking, these conditions imply that the coefficients of the FBSDE are Lips-
chitz continuous.

Under the above assumptions, αL converges for L → ∞ to an admissible strat-
egy α∞ ∈ A0(t0, x0), which minimizes Ĵ(t0, x0, ·), i.e. provides an optimal strategy for
problem (5.27). We do so by first proving convergence of uL to some limit u∞ and
then showing convergence of XL to a limit X∞. This will finally lead us to the limit
α∞ ∈ A0(t0, x0). Let us summarize the main result.

Theorem 5.2 Under Assumptions (E1) to (E9), the decoupling field uL converges to
u∞. If X∞ is the unique solution to the ODE

X∞t := x0 −
∫ t

0

j∗y(s,X
∞
s , u

∞(s,X∞s ))ds, t ∈ [0, T ),

and if Y ∞ = u∞(·, X∞), then (XL, Y L, ZL) converges to (X∞, Y ∞, Z∞) and for any
0 ≤ t ≤ r < T

Y ∞t = Y ∞r +

∫ r

t

jx(s,X
∞
s , j

∗
y(s,X

∞
s , Y

∞
s ))ds−

∫ r

t

Z∞s dWs.

Process (X∞, Y ∞, Z∞) is the unique solution of the preceding FBSDE satisfying
X∞, Y ∞ ≥ 0, Z∞ ∈ L2((t0, t)×Ω,Rd) for all t ∈ [t0, T ) and j∗y(·, X∞, Y ∞) ∈ L2((t0, T )×
Ω,R).

Finally X∞T = 0 and if we define α∞s := j∗y(s,X
∞
s , u

∞(s,X∞s )), for s ∈ [0, T ), while
setting α∞T := 0, then strategy α∞ minimizes Ĵ(x0, ·).
Proof. Let us give the main steps of the proof. To get the convergence of uL, the two key lemmas
are the following. The first one is equivalent to the a priori estimate (3.10) of Proposition 3.1 and the
lower bound (3.16) for Y min.
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Lemma 5.4 There exist constants C1, C2 ∈ (0,∞), which depend on T and the norm of the second
derivatives of f∗ and f only and are monotonically increasing in these values, such that for all L > 0
we have the following estimates for uLx :

1

C1

(
1

2L + (T − t)
) =: κLt ≤ uLx (t, x) ≤ γt := C2

(
1 +

1

T − t

)
,

for all t ∈ [0, T ) and a.a. x > 0. As a consequence

x · κLt ≤ uL(t, x) ≤ x · γt,

for all t ∈ [0, T ) and x > 0.

Again note that these bounds correspond to the estimates on the solution Y min of a singular BSDE
(2.4) with generator f controlled by −y|y| in (C2). It means that expect close to the terminal time,
the Lipschitz constant of uL is bounded w.r.t. L (and we could apply the Arzelà–Ascoli theorem). The
second result is:

Lemma 5.5 The mapping (t, ω, L, x) 7→ uL(t, ω, x) is progressively measurable while being continuous
and non-decreasing in L.

Now we can define u∞ : Ω × [0, T ) × R via u∞(s, x) := limL→∞ uL(s, x). Note that u∞ inherits
progressive measurability from uL. Also note that for all s < T the mapping uL(s, ·) is Lipschitz
continuous w.r.t. x with Lipschitz constant γs, which does not depend on L. Therefore, u∞(s, ·) is also
Lipschitz continuous with the same Lipschitz constant. Finally, note that for all s < T and all x > 0

u∞(s, x) ≥ x · lim
L→∞

κLs =
x

C1(T − s)
.

Now let x0 > 0. Since u∞ restricted to Ω× [0, T − ε]×R is progressively measurable and uniformly
Lipschitz continuous in the last component for every ε ∈ (0, T ), we can define X∞ as the unique solution
to the ODE

X∞t := x0 −
∫ t

0

j∗y(s,X∞s , u
∞(s,X∞s ))ds, t ∈ [0, T ),

which is motivated by passing to the limit L→∞ in

XL
t = x0 −

∫ t

0

j∗y(s,XL
s , u

L(s,XL
s ))ds.

Note that X∞ is defined on [0, T ) only. It holds that limL→∞XL = X∞ and limL→∞ uL(·, XL
· ) →

u∞(·, X∞· ) almost everywhere on Ω × [0, T ). Note that XL and therefore X∞ is non-negative. Fur-
thermore, X∞ is non-increasing, since j∗y is non-negative. Therefore, limt→T X

∞
t exists and we can

continuously extend the process X∞ to the whole of [0, T ] via X∞T := limt→T X
∞
t . Remark that

X∞T ≥ 0 a.s. It holds that X∞T = 0. If we define α∞s := j∗y(s,X∞s , u
∞(s,X∞s )), for s ∈ [0, T ), while

setting α∞T := 0, then α∞ ∈ A0(x0).

Lemma 5.6 The strategy α∞ minimizes Ĵ(x0, ·).

Let Y∞ : [0, T ) × Ω → R satisfy for all t ∈ [0, T ) a.s. that Y∞t = u∞(t,X∞t ). Then sequence ZL
converges in L2((0, t)×Ω) for any t < T to Z∞ and process (X∞, Y∞, Z∞) satisfies for all 0 ≤ t ≤ r < T
a.s. that

X∞t = x0 −
∫ t

0
j∗y(s,X∞s , Y

∞
s )ds, X∞T = 0

Y∞t = Y∞r +
∫ r
t
jx(s,X∞s , j

∗
y(s,X∞s , Y

∞
s ))ds−

∫ r
t
Z∞s dWs.

�
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Remark 5.2 From the lower estimate of uL, and thus on u∞, we obtain

lim inf
t→T

(
Y ∞t
X∞t

)
= +∞.

This behaviour is similar to the weak terminal condition (1.3) in [10]. Moreover from
the preceding system, the process

Y ∞ +

∫ .

0

jx(s,X
∞
s , f

∗
y (s,X∞s , Y

∞
s ))ds

is a non-negative local martingale on [0, T ). Hence its limit at time T exists in [0,∞)
a.s. By the monotone convergence theorem, the integral has also a limit. Since both
terms are non-negative, we deduce that Y ∞ has a limit at time T a.s. and Y ∞T is finite
a.s. Note that here Y ∞T is not a given terminal condition, but part of the solution.

Let us give an example. Let C ∈ (1,∞) and let η, γ : [0, T ] × Ω → [0,∞) be
progressively measurable stochastic processes such that for all t ∈ [0, T ] it holds a.s. that
ηt ≥ 1

C
and max(ηt, γt) ≤ C. Assume that for all t ∈ [0, T ], x ∈ R and a ∈ R it holds that

j(t, x, a) = ηt
|a|3+2|a|2
|a|+1

+ γt|x|2. Then all required conditions are satisfied. In particular
it holds for all t ∈ [0, T ], x ∈ R and a ∈ R a.s. that 2

C
≤ 2ηt ≤ jaa(t, x, a) ≤ 4ηt ≤ 4C.

And thus [0,∞)2 3 (x, y) 7→ j∗y(t, x, y) is uniformly Lipschitz continuous. Therefore, it
follows from the preceding theorem that α∞ is an optimal control in Problem (5.27).

Our assumptions essentially imply that j is almost quadratic. Removing or weaken-
ing these conditions is still an open question.

5.3.1 A more abstract setting

We consider the FBSDE

X t,x
s = x+

∫ s

t

µ(r,X t,x
r , Y t,x

r )dr,

Y t,x
s = ξ(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r )dr −
∫ T

s

Zt,x
r dWr.

(5.29)

We assume throughout that:

• (µ, f) are Lipschitz continuous in (x, y) with Lipschitz constant L,

• ‖(|µ|+ |f |) (·, ·, 0, 0)‖∞ <∞,

• ξ : Ω× R→ R is measurable such that ‖ξ(·, 0)‖∞ <∞ and Lξ,x <∞.

Moreover, we impose the following conditions.

• For all x, x̄, y, ȳ ∈ R, t ∈ [0, T ] it holds a.s. that

(µ(t, x, y)− µ(t, x, ȳ))(y − ȳ) ≤ 0, (f(t, x, y)− f(t, x̄, y))(x− x̄) ≥ 0,

and
(ξ(x)− ξ(x̄))(x− x̄) ≥ 0.
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• The coefficients µ, f and ξ are either continuously differentiable or at least differ-
entiable such that we can use the chain rule argument developed in [128, Lemma
A.3.1].

Theorem 5.3 Under the previous conditions, there exists a unique strongly regular de-
coupling field u on Imax = [0, T ]. In particular, for all t ∈ [0, T ] and x ∈ R there exists
a unique solution (X, Y, Z) of FBSDE (5.29).

The proof is based on the dynamics of Ψt = ux(t,Xt) and we show that Ψ is non-
negative and bounded.

Remark 5.3 The first condition is sufficient to get that the maximal interval is equal
to [0, T ]. This assumption is equivalent to Condition (H2.2) in [285] with G = 1 and
β1 = β2 = 0. Notice, however, that in [285] it is required that β1 + β2 > 0.

In the setting of the control problem, it is natural to add conditions on (ξ, (µ, f)) to
get the desired sign for the solutions X and Y . We assume

• For all t ∈ [0, T ], x ≤ 0, it holds a.s. that ξ(x) = µ(t, x, 0) = f(t, x, 0) = 0.

• For all x, y ∈ R, t ∈ [0, T ] it holds a.s. that µ(t, x, y) ≤ 0, f(t, x, y) ≥ 0.

Theorem 5.4 The unique weakly regular decoupling field u on [0, T ] satisfies u(t, x) = 0
for all x ≤ 0, t ∈ [0, T ]. For all (t, x) ∈ [0, T ] × [0,+∞), processes X and Y from the
solution of (5.29) are both bounded and non-negative.

As before we obtain the positivity of Xs on [t, T ]. Now we assume that the terminal
condition ξ is of the form ξ(x) = ξL(x) = 2Lx, x ≥ 0, for L > 0. Hence we obtain
a solution (XL, Y L, ZL, uL) and we want to pass to the limit on L. We require the
following condition, which partly strengthens (A1).

• There exists η > 0 such that for all x, y ∈ (0,∞), t ∈ [0, T ] it holds a.s. that
µy(t, x, y) ≤ −η < 0.

Under this setting we get the same a priori estimate on uL independent of L and that
the mapping (t, ω, L, x) 7→ uL(t, ω, x) is progressively measurable while being continuous
and non-decreasing in L. Hence we can define

(5.30) u∞(s, x) := lim
L→∞

uL(s, x), (s, x) ∈ [0, T )× R.

XL converges to X∞ and we obtain

Theorem 5.5 Let (t0, x0) ∈ [0, T )× (0,∞). For every L ∈ (0,∞) let (XL, Y L, ZL) be
the solution of the FBSDE (5.29) with initial condition XL

t0
= x0 and terminal condition

ξL and let uL be the associated decoupling field. Let u∞ and X∞ be the limits of uL
and XL as L → ∞. Let Y ∞ : Ω × [0, T ) → R satisfy for all t ∈ [0, T ) a.s. that Y ∞t =
u∞(t,X∞t ). Then the sequence ZL converges in L2((t0, t)× Ω,Rd) for any t ∈ [t0, T ) to
Z∞ and the process (X∞, Y ∞, Z∞) satisfies for all t0 ≤ t ≤ r < T a.s. that

(5.31) X∞t = x0 +
∫ t
t0
µ(s,X∞s , Y

∞
s )ds, X∞T = lims→T X

∞
s = 0

Y ∞t = Y ∞r +
∫ r
t
f(s,X∞s , Y

∞
s )ds−

∫ r
t
Z∞s dWs.
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Note that Remark 5.2 also holds in this case. However the uniqueness of (5.31) remains
an open question.

5.4 A mean field liquidation problem ([XX])
In [XX], we consider a mean field game (MFG in short) of optimal portfolio liq-

uidation among asymmetrically informed players. In order to introduce the game,
we fix a probability space (Ω,G,P) that carries independent standard Brownian mo-
tions W 0,W 1, ...,WN and independent and identically distributed random variables
X 1, ....,XN with law ν that are independent of the Brownian motions. The Brown-
ian motionW 0 describes a commonly observed random factor that drives the unaffected
benchmark price process; the Brownian motionW i is private information to player i and
determines that player’s cost function. We may think ofW i as measuring a player’s indi-
vidual degree of market impact or as capturing hedging effects when computing the risk
of the portfolio that the player intends to liquidate. The random variables X 1, ....,XN

specify the respective players’ initial portfolios. We assume that each player observes
the realization of her initial portfolio and knows the distribution of all the other initial
portfolios.

Given her initial portfolio X i = xi the optimization problem of player i = 1, ..., N is
to minimize the cost functional

(5.32) JN,i (~α) = E

[∫ T

0

(
κit
N

N∑
j=1

αjtX
i
t + ηit(α

i
t)

2 + γit(X
i
t)

2

)
dt
∣∣X i = xi

]

subject to the state dynamics

dX i
t = −αit dt,

X i
0 = X i, X i

T = 0.
(5.33)

Here, ~α = (α1, · · · , αN) is the vector of strategies of all the players. We assume that the
cost coefficients (κi, ηi, γi) have the same distribution across players and are adapted to
the filtration

(5.34) Fi := (F it , 0 ≤ t ≤ T ), with F it := σ(X i,W 0
s ,W

i
s , 0 ≤ s ≤ t).

The MFG

In order to specify the resulting MFG, let W 0 and W be independent Brownian
motions of dimension 1 and m − 1, respectively, and X be an independent random
variable with law ν defined on some probability space, again denoted (Ω,G,P). Let
F0 := (F0

t , 0 ≤ t ≤ T ) with F0
t = σ(W 0

s , 0 ≤ s ≤ t) be the filtration generated by W 0

and let F := (Ft, 0 ≤ t ≤ T ) with Ft := σ(X ,W 0
s ,Ws, 0 ≤ s ≤ t). The MFG associated
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with the N -player game (5.32) and (5.33) is then given by:

(5.35)



1. fix a F0 progressively measurable process µ (in some suitable space);
2. solve the corresponding constrained stochastic control problem :

infα E
[∫ T

0
(κsµsXs + ηsα

2
s + γsX

2
s ) ds

∣∣∣X ]
subsect to
dXt = −αt dt,X0 = X and XT = 0;

3. search for the fixed point µt = E[α∗,Xt |F0
t ], for a.e. t ∈ [0, T ]

where α∗,X is the optimal strategy from 2 and the processes (κ, η, γ) are adapted to the
filtration F.

The set of admissible controls for the representative player’s liquidation problem is
given by

AF(X ) :=

{
α ∈ L2

F([0, T ]× Ω;R),

∫ T

0

αs ds = X a.s.
}
.

For a given process µ ∈ L2
F0([0, T ] × Ω;R), the corresponding cost and value functions

are given by

J(X , α;µ) := E
[∫ T

0

(
κsXsµs + ηsα

2
s + γsX

2
s

)
ds

∣∣∣∣X] ,
and

V (X ;µ) = inf
α∈AF(X )

J(X , α;µ),

respectively. We denote by Y the adjoint process to the controlled state process X. The
Hamiltonian is

H(t, α,X, Y ;µ) = −αY + κtµX + ηtα
2 + γtX

2,

and the stochastic maximum principle suggests that the solution to the optimization
problem can be characterised in terms of the FBSDE

(5.36)


dXt =− αt dt,
−dYt = (κtµt + 2γtXt) dt− Zt dW̃t,

X0 =X
XT =0,

where W̃ = (W 0,W ) is a m-dimensional Brownian motion. The liquidation constraint
XT = 0 results in a singularity of the value function at liquidation time; see [10, 148].
As a result, the terminal condition for Y cannot be determined a priori (see [XVIII] and
the previous section). In particular, the first equation holds on [0, T ] while the second
equation holds on [0, T ). A standard approach (see Theorem 5.1) yields the candidate
optimal control

(5.37) α∗t =
Yt
2ηt

.
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Taking the equilibrium condition into account suggests that the analysis of the MFG
reduces to the analysis of the following conditional mean-field type FBSDE:

(5.38)



dXt =− Yt
2ηt

dt,

−dYt =

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2γtXt

)
dt− Zt dW̃t,

X0 =X
XT =0.

We establish the existence and uniqueness of a solution to the preceding FBSDE in the
following space of weighted stochastic processes.

Definition 5.1 For ` ∈ R, we introduce the space

H` := {Y ∈ PF([0, T ]× Ω;R ∪ {∞}) : (T − .)−`Y· ∈ S2
F([0, T ]× Ω;R ∪ {∞})},

which we endowed with the norm

‖Y ‖H` := ‖Y ‖` :=

(
E

[
sup

0≤t≤T

∣∣∣∣ Yt
(T − t)`

∣∣∣∣2
]) 1

2

,

and the space

M` := {Y ∈ PF([0, T ]× Ω;R ∪ {∞}) : (T − .)−`Y· ∈ L∞F ([0, T ]× Ω;R ∪ {∞})},

which we endowed with the norm

‖Y ‖M`
:= ess sup (t,ω)∈[0,T ]×Ω

|Yt|
(T − t)`

.

Let us remark that such space is similar to the space used in [XXI] and defined after
Corollary 3.1.

We assume throughout that the cost coefficients are bounded and that the depen-
dence of an individual player’s cost function on the average action is weak enough. The
weak interaction condition is consistent with the game theory literature on mean-field
type games where some form of moderate dependence condition is usually required to
prove the existence and uniqueness of Nash equilibria; see [161] and references therein.
The condition is also consistent with the monotonicity condition for FBSDE systems
originally proposed by [165, 285] and slightly weaker than the generalizations to mean-
field type FBSDEs established in [36, 58]. Specifically, we assume that the following
condition is satisfied.

(F1) The processes κ, γ, 1/γ, η and 1/η belong to L∞F ([0, T ]×Ω; [0,∞)) and X ∈ L2(Ω)
is independent of W and W 0.

(F2) There exists a constant θ > 0 such that

(5.39)
‖κ‖
4η?

< θ <
4γ?
‖κ‖

.
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The following quantity will be important in our subsequent analysis:

(5.40) λ := η?/‖η‖ ∈ (0, 1].

We are now ready to state our first major result.

Theorem 5.6 Under Assumptions (F1) and (F2), there exists a unique solution

(X, Y, Z) ∈ Hλ × L2
F([0, T ]× Ω;R)× L2

F([0, T−]× Ω;Rm)

to the FBSDE (5.38). Moreover, the process

α∗ =
Y

2η

is an optimal control for the representative player and the aggregation effect given by

µ∗ := E[α∗|F0], t ∈ [0, T )

is the solution to the MFG (5.35).

Proof. Decoupling the FBSDE (5.38) by Y = AX + B yields the following system of Riccati type
equations:

(5.41)



−dAt =

(
2γt −

A2
t

2ηt

)
dt− ZAt dW̃t,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt− ZBt dW̃t,

AT =∞
BT =0.

The existence of a unique solution A ∈M−1 to the first equation is established in Theorem 3.1, together
with [148, Theorems 6.1 and 6.3]. Namely, there exists a unique process (A,ZA) such that A ∈ M−1,
ZA ∈ L2

F ([0, T−];Rm), the dynamics is given on any interval [0, τ ], τ < T by the first equation of (5.41)
and lim

t→T
At = +∞ = AT . Moreover A satisfies the a priori estimate (3.10), namely in this case

(5.42)
1

E
[∫ T

t
1

2ηs
ds
∣∣∣Ft] ≤ At ≤

1

(T − t)2
E

[∫ T

t

2ηs + 2(T − s)2γs ds

∣∣∣∣∣Ft
]
.

The upper estimate is the same as (3.10) adapted to this particular setting. The lower bound is given
by (3.16).

Hence we need to solve the following FBSDE:

(5.43)



dXt =− 1

2ηt
(AtXt +Bt) dt,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt− ZBt dW̃t,

X0 =X
BT =0.

Our approach is based on an extension of the method of continuation that accounts for the singularity
of the process A at the terminal time and hence for the singularity in the driver of the FBSDE. We
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apply to the method of continuation to the triple (X,B, Y = AX + B) rather than the pair (X,B),
and search for solutions

(X,B, Y = AX +B) ∈ Hλ ×Hζ × L2
F([0, T ]× Ω;R),

where λ was defined in (5.40) and ζ is any constant such that: 0 < ζ < λ∧1/2. Specifically, the method
of continuation will be applied to the FBSDE

(5.44)



dXt =− 1

2ηt
(AtXt +Bt) dt,

−dBt =

(
κtpE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
+ ft −

AtBt
2ηt

)
dt− ZBt dW̃t,

dYt =

(
−2λtXt − κtpE

[
AtXt +Bt

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ ZYt dW̃t,

X0 =X
BT =0,

where p ∈ [0, 1], f ∈ L2
F([0, T ]× Ω;R). We emphasise that the first two equations hold on [0, T ], while

the third equation holds on [0, T ).
Note that we have an a priori estimate on the processes ZB and ZY . Indeed assume that f ∈

L2
F([0, T ]× Ω;R) and that there exists a solution (X,B, Y, ZB , ZY ) to (5.44) such that

(X,B, Y ) ∈ Hλ ×Hζ × S2
F([0, T−]× Ω,R).

Then
(ZB , ZY ) ∈ L2

F([0, T ]× Ω;Rm)× L2
F([0, T−]× Ω;Rm)

and there exists a constant C > 0 such that

E

[∫ T

0

|ZBt |2 dt

]
≤ C

(
‖B‖2ζ + ‖X‖2λ + E

[∫ T

0

|ft|2 dt

])
and such that for each τ < T

E

[∣∣∣∣∫ τ

0

|ZYs |2 ds
∣∣∣∣2
]
≤ C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2λ + ‖B‖2ζ + E

[∫ T

0

|ft|2 dt

])
.

In particular,
∫ ·

0
ZBs dW̃s is a true martingale on [0, T ] and

∫ ·
0
ZYs dW̃s is a true martingale on [0, τ ], for

each τ < T . Hence in the proof, we “forget” ZB and ZY .
Now for p = 0 there exists for every given data f ∈ L2

F([0, T ]×Ω;R) a unique solution (X,B, Y, ZB , ZY ) ∈
Hλ ×Hζ × D2

F([0, T ]× Ω;R)×L2
F([0, T ]× Ω;Rm)× L2

F([0, T−]× Ω;Rm) to (5.44). It is given by

Bt = E

[∫ T

t

fse
−

∫ s
t

(2ηr)−1Ar dr ds

∣∣∣∣∣Ft
]
, t ∈ [0, T ]

Xt = X e−
∫ t
0

(2ηr)−1Ar dr −
∫ t

0

(2ηs)
−1Bse

−
∫ t
s

(2ηr)−1Ar dr ds, t ∈ [0, T ]

Yt =AtXt +Bt, t ∈ [0, T ),

and ZB ∈ L2
F([0, T ]×Ω;Rm) and ZY ∈ L2

F([0, T−]×Ω;Rm) are given by the martingale representation
theorem.

Then we prove that if for some p ∈ [0, 1] the FBSDE (5.44) is for every data f ∈ L2
F([0, T ]× Ω;R)

uniquely solvable in Hλ ×Hζ ×D2
F([0, T ]× Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm), then this

holds also for p + d with d > 0 small enough (independent of p and f).
Using our a priori estimates on ZB and ZY , and by induction on p, we obtain that there exists a

unique solution (X,B, Y, ZB , ZY ) ∈ Hλ×Hζ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm)
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to the FBSDEs (5.38) and (5.43). Moreover, there exists a constant C > 0 depending on η, γ, κ, T and
‖X‖L2 , such that

‖X‖Hλ + ‖B‖Hζ + E

[∫ T

0

|Yt|2 dt

]
≤ C.

From the equation (5.37) we obtain the following candidates of the optimal portfolio process and
the optimal trading strategy for the representative player:

X∗t = X e−
∫ t
0
Ar
2ηr

dr −
∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds,

ξ∗t = X e−
∫ t
0
Ar
2ηr

dr At
2ηt

+
Bt
2ηt
− At

2ηt

∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds.

(5.45)

By construction, X∗T = 0 and hence ξ∗ is an admissible liquidation strategy. We need to show that
it is indeed the optimal liquidation strategy and that its conditional expectation defines the desired
equilibrium for our MFG, to finish the proof of the theorem. The arguments are somehow similar to
[10, 148]. �

Our verification argument implies that the value function is given by

(5.46) V (X ;µ∗) =
1

2
A0X 2 +

1

2
B0X +

1

2
E
[∫ T

0

κsX
∗
sµ
∗
s ds

∣∣∣∣X] .
Particular cases

The benchmark case where all players share the same information, except for their
initial value can be analyzed in greater detail. In this section we therefore assume that
all randomness is generated by the common Brownian motion W 0 and the initial value
X .

(F3) The processes κ, γ, η and 1/η belong to L∞F0([0, T ]× Ω; [0,∞)).

The weak interaction condition (5.39) is not required here. Under the common infor-
mation assumption the conditional mean-field FBSDE (5.38) reduces to the following
FBSDE:

(5.47)



dXt = − Yt
2ηt

dt,

−dYt =

(
κt
2ηt

E
[
Yt
∣∣F0

t

]
+ 2γtXt

)
dt− Zt dW 0

t ,

X0 = X ,
XT = 0.

If we further assume that the initial portfolio is common to all players, i.e. X =
x ∈ R, then all processes are F0-adapted and the consistency condition reads µ = α∗.
The mean-field FBSDE (5.47) simplifies to a regular FBSDE. The linear decoupling
Y = AκX yields to a BSDE with singular terminal condition:

(5.48) − dAκt =

(
2γt +

κtA
κ
t

2ηt
− (Aκt )

2

2ηt

)
dt− ZAκ

t dW 0
t , AκT =∞.
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This equation has a unique solution (see [XX]). And

X∗t = xe−
∫ t
0
Aκr
2ηr

dr.

The processes Aκ, X∗, Y ∗ = AκX∗ and α∗ = µ∗ = Y ∗

2η
have the same sign as x. α∗(= µ∗)

is an admissible optimal control as well as the equilibrium to MFG (5.35).
Let us now return to the problem (5.47). From the solution to the complete common

information problem, we deduce that

µ∗t =
1

2ηt
E(Yt

∣∣F0
t ) =

E[X ]

2ηt
Aκt e

−
∫ t
0
Aκr
2ηr

dr,

where Aκ solves the BSDE (5.48). Making the affine ansatz that Y = AX + B, we
obtain (see equation (5.41) below) that

(5.49)


−dAt =

(
2γt −

A2
t

2ηt

)
dt− ZA

t dW
0
t , AT = +∞

−dBt =

(
κtµ

∗
t −

AtBt

2ηt

)
dt− ZB

t dW
0
t , BT = 0.

Note that A and B are F0-adapted and that A = A0. Thereby we have an explicit
solution: for t ∈ [0, T ]

Bt = E
[∫ T

t

κsµ
∗
se
−

∫ s
t (2ηr)−1Ar dr ds

∣∣∣∣Ft] ,
X∗t = X e−

∫ t
0 (2ηr)−1Ar dr −

∫ t

0

(2ηs)
−1Bse

−
∫ t
s (2ηr)−1Ar dr ds,

Y ∗t =AtX
∗
t +Bt.

From Theorem 5.6 the system (5.49) has a unique solution from which we deduce that
the optimal state process for a given initial position X = x ∈ R is given by:

(5.50) X∗,xt = (x− E[X ])e−
∫ t
0 (2ηr)−1Ar dr + E[X ]e−

∫ t
0 (2ηr)−1Aκr dr.

Thus, if different players hold different initial portfolios, then a trader’s optimal position
consists of a weighted sum of the competitors’ average portfolio size E[X ] and the
deviation of the own initial position from that average.

Note that the process Aκ is increasing in κ. In particular, Aκ ≥ A. Moreover
Aκ0 > A0 if κ > 0 on some set of positive measure. Hence the dependence of the optimal
portfolio process decreases if E[X ] > 0. It also suggests that - contrary to the previous
case - the sign of the optimal portfolio process X∗ may change on the interval [0, T ]. In
fact, if E[X ] > 0 and x ≥ E[X ], then X∗,x remains non-negative on [0, T ]. However, if
0 < x < ζE[X ] where ζ := 1 − exp

(
A0−Aκ0

2‖η‖ t
)
> 0, then X∗,x becomes negative shortly

after the initial time.

Here we consider a deterministic benchmark example that can be solved explicitly.
Assume that processes λ, κ, η are positive constants. The Riccati equation (5.48) can
be solved:

Aκt = 2ηθ coth (θ(T − t)) +
κ

2
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where

θ :=

√
γ

η
+

κ2

16η2
.

If all players share the same initial portfolio, then

(5.51) X∗t = exp

(
− κ

4η
t

)
sinh(θ(T − t))

sinh(θT )
x

and the optimal liquidation rate is given by

ξ∗t =

(
θ coth(θ(T − t)) +

κ

4η

)
X∗t

= exp

(
− κ

4η
t

)(
θ cosh(θ(T − t))

sinh(θT )
+
κ sinh(θ(T − t))

4η sinh(θT )

)
x.

When κ→ 0, then ξ∗t →
θ̃ cosh(θ̃(T−t))

sinh(θ̃T )
x with θ̃ =

√
γ
η
. This corresponds to the benchmark

model in [6]. This convergence can also be seen from Figure 1. Furthermore, we see
that—as in the corresponding single player models—the optimal liquidation rate is al-
ways positive, i.e., round trips are not beneficial. Moreover, we notice that the portfolio
process (5.51) corresponds to the optimal portfolio process in an Almgren–Chriss model
with adjusted risk aversion γ̃ = γ + κ2

16η
and with additional exponential decay of rate

κ
4η
.
When κ → ∞, then ξ∗0 → ∞ while ξ∗t → 0 for t > 0. That is, when the impact

of interaction is very strong, then the players trade very fast initially and very slowly
afterwards. The intuitive reason is that in this case an individual player would benefit
from trading fast slightly before his competitors start trading in order to avoid the
negative drift generated by the mean-field interaction. As all the players are statistically
identical, they “coordinate” on an equilibrium trading strategy as depicted in Figure 2.
Thus, our model provides a possible explanation for large price increases or decreases in
markets with strategically interacting players with similar preferences.

If the players hold different initial portfolios, then (5.50) shows that the optimal
portfolio process is given by

X∗,xt = (x− E[X ])
sinh(θ̃(T − t))

sinh(θ̃T )
+ exp

(
− κ

4η
t

)
sinh(θ(T − t))

sinh(θT )
E[X ].

Figure 5.2 confirms that the sign of X∗ is indeed changing when x is small.

5.4.1 Approximation by unconstrained MFGs

The solvability of the control problem with constraint in the preceding sections 5.1,
5.2 and 5.3 has been proved using a penalization scheme. Let us show a similar result
here, namely the solution to our singular MFG can be approximated by the solutions

152



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

O
pt

im
al

 s
ta

te
 p

ro
ce

ss

Almgren-Chriss
κ=10
κ=100
κ=1000

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Time
O

pt
im

al
 ra

te

Almgren-Chriss
κ=10
κ=100
κ=1000

Figure 5.1: Current state X∗ (left) and optimal liquidation rate α∗ (right) corresponding
to parameters T = 1, x = 1, γ = 5 and η = 5. The solid line corresponds to κ = 0, that
is the Almgren-Chriss model with temporary impact.
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Figure 5.2: Current state X∗,x corresponding to parameters T = 1, E[X ] = 1, γ = 5,
η = 5 and κ = 100 for different values of the initial portfolio x.
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to non-singular MFGs under additional assumptions on the market impact parameter.
Specifically, we consider the following unconstrained MFGs:

(5.52)



1. fix a process µ;

2. solve the standard optimization problem: minimize

Jn(ξ;µ) = E

[∫ T

0

(
κtµtXt + ηtα

2
t + γtX

2
t

)
dt+ nX2

T

∣∣∣∣∣X
]

such that dXt = −αt dt, X0 = X ;

3. search for the fixed point µt = E[α∗,Xt |F0
t ], for a.e. t ∈ [0, T ]

We will need the following assumption on the solution A ∈ M−1 to the first equation
in (5.41) with the terminal condition +∞. It implies in particular that X∗ ∈ H1.

(F4) There exists a constant C such that for any 0 ≤ r ≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤ C

(
T − s
T − r

)
.

In [XX], we provide several conditions on η such that this condition holds.
Using the same arguments as previously, the unconstrained control problem leads to

the following conditional mean field FBSDE:

(5.53)



dXn
t =

(
−A

n
tX

n
t +Bn

t

2ηt

)
dt,

−dBn
t =

(
−A

n
tB

n
t

2ηt
+ κtE

[
AntX

n
t +Bn

t

2ηt

∣∣∣∣F0
t

])
dt− ZBn

t dW̃t,

dY n
t =

(
−2γtX

n
t − κtE

[
AntX

n
t +Bn

t

2ηt

∣∣∣∣F0
t

])
dt+ ZY n

t dW̃t,

Xn
0 = X ,

Bn
T = 0,

Y n
T = 2nXn

T ,

where

(5.54)

−dAnt =

{
2γt −

(Ant )2

2ηt

}
dt− ZAn

t dW̃t,

AnT = 2n.

The existence of a solution (An, ZAn) to the BSDE (5.54) can be deduced from stan-
dard results on monotone BSDEs (for example Theorem 2.1). Sequence (An, n ≥ 1)
is a non-decreasing sequence converging pointwise to A. Using similar arguments as
in the proof of Theorem 5.6, leads to the existence and uniqueness of the solution
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(Xn, Bn, Y n, ZBn , ZY n) to the following FBSDE system:

(5.55)



dXn
t = − 1

2ηt
(AntX

n
t +Bn

t ) dt,

−dBn
t =

(
κtpE

[
1

2ηt
(AntX

n
t +Bn

t )

∣∣∣∣F0
t

]
+ ft −

AntB
n
t

2ηt

)
dt− ZBn

t dW̃t,

dY n
t =

(
−2γtX

n
t − κtpE

[
AntX

n
t +Bn

t

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ ZY n

t dW̃t,

Xn
0 = X

Bn
T = 0,

Y n
T = 2nXn

T .

Moreover if f ∈ L2
F([0, T ]× Ω;R), there exists a constant C > 0 such that

(5.56) ‖Xn‖n,λ + ‖Bn‖n,ζ + E
[∫ T

0

|Y n
t |2 dt

]
≤ C,

for any n. The key result about the convergence of the optimal position and control is
the following:

Lemma 5.7 Under Assumptions (F1), (F2) and (F4)

lim
n→+∞

{
E
[∫ T

0

|Xn
t −X∗t |2 dt

]
+ E

[∫ T

0

|Bn
t −B∗t |2 dt

]
+ E

[∫ T

0

|Y n
t − Y ∗t |2 dt

]}
= 0.

Let us denote by V n(X ;µn) the value function associated with the penalized problem
(5.52). The next theorem shows the convergence of V n(X ;µn) := V n(X ) to the value
function V (X ;µ) := V (X ) associated with the constrained MFG.

Theorem 5.7 Under Assumptions (F1), (F2) and (F4), the value function V n(X )
converges to V (X ) in L1(Ω).

The proof of convergence of the value function simplifies substantially under the
common information assumption. In particular, Assumption (F4) is not necessary here.

5.4.2 Approximate Nash Equilibrium

We show that an ε-Nash equilibrium for the N player portfolio liquidation game can
be constructed from the solution to the MFG (5.35) when the number of players is large
if all players share the same cost structure.

(F5) Assume for any i = 1, · · · , N , κi, ηi and λi admit the following expression

κit = κ(t,X i,W i
·∧t,W

0
·∧t), ηit = η(t,X i,W i

·∧t,W
0
·∧t), γit = γ(t,X i,W i

·∧t,W
0
·∧t)

for some non-negative deterministic bounded and measurable functions κ, η and
λ.
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Under this condition, adapting the Yamada-Watanabe argument (e.g. [60] and [15])
leads to the existence of a function φ independent of (X ,W,W 0) such that

α∗ = φ(X ,W,W 0),

where α∗ is given by Theorem 5.6. Thus under Assumption (F5) each player’s unique
best response α∗,i to the mean-field equilibrium µ∗ can be represented in terms of the
function φ as

α∗,i := φ(X i,W 0,W i).(5.57)

In particular, each individual action has the same distribution as the mean-field equi-
librium:

(5.58) µ∗t = E[α∗,it |F0
t ], a.s. a.e.

The proof of Theorem 5.6 guarantees the existence of a constant C such that

(5.59) E
[∫ T

0

|α∗,it |2 dt
]
≤ C,

and the proof of (5.57) yields a real-valued function ψ, which is independent of i, such
that

(5.60) E
[∫ T

0

|α∗,it |2 dt
∣∣∣∣X i = xi

]
= ψ(xi),

Before we prove the main result of this section, we recall the cost functional JN,i
(
~ξ
)

from (5.32).

Theorem 5.8 Assume that Assumption (F5) is satisfied and that the admissible control
space for each player i = 1, . . . , N is given by

Ai :=

{
α ∈ AFi(x

i) : E
[∫ T

0

|αt|2 dt
∣∣∣∣X i = xi

]
≤M(xi)

}
for some fixed positive function M such that ψ ≤ M . Then, for each 1 ≤ i ≤ N and
each αi ∈ Ai,

JN,i
(
~α∗
)
≤ JN,i(αi, α∗,−i) +O

(
1√
N

)
,

where (αi, α∗,−i) = (α∗,1, · · · , α∗,i−1, αi, α∗,i+1, · · · , α∗,N) and O
(

1√
N

)
is to be interpreted

as g(xi)√
N

for some real-valued function g independent of i.
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Part II

Some problems in stochastic calculus
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Chapter 6

Two other works on BSDEs

6.1 Measure solution ([IV])
The generally accepted natural framework for the most efficient formulation of pricing

and hedging contingent claims on complete financial markets, for instance in the classical
Merton-Scholes problem, is given by martingale theory, more precisely by the elegant
notion of martingale measures. Martingale measures represent a view of the world
in which price dynamics do not have inherent trends. From the perspective of this
world, pricing a claim amounts to taking expectations, while hedging boils down to
pure conditioning and using martingale representation.

At first glance, hedging a claim is, however, a problem calling upon stochastic control:
it consists in choosing strategies to steer the portfolio into a terminal random endowment
the portfolio holder has to ensure. Solving stochastic backward equations (BSDE) is a
technique tailor-made for this purpose. Its particular significance for the field of utility
maximization in financial stochastics was clarified in El Karoui, Peng and Quenez [120].
To fix ideas, we restrict our attention to a Wiener space probabilistic environment.
Recall that in this framework, the BSDE (2.1) with terminal variable ξ at time horizon
T and generator f is solved by a pair of processes (Y, Z) on the interval [0, T ] satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ].

In the case of vanishing generator, the solution just requires an application of the mar-
tingale representation theorem in the Wiener filtration, and Z will be given as the
stochastic integrand in the representation, to which we will refer as control process in
the sequel.

Here we are looking for a notion in the context of BSDE that plays the role of the
martingale measure in the context of hedging claims. Our main interest is directed to
BSDE of the type (2.1) with generators that are non-Lipschitzian, and depend on the
control variable z quadratically, typically f(s, y, z) = z2 b(s, z), s ∈ [0, T ], z ∈ R, with
a bounded function b. These generators were given a through treatment in Kobylanski
[199], Briand & Hu [46], and Lepeltier & San Martin [221]. While [199] and [221]
consider existence and uniqueness questions for bounded terminal variables ξ, [46] goes
to the limit of possible terminal variables by considering ξ for which exp(γ|ξ|) has finite
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expectation for some γ > 2||b||∞. All these papers employ different methods of approach
following the classical pattern of arguments mentioned above. In contrast to this, we
shall investigate an alternative notion of solution of BSDE, the generators of which fulfill
similar conditions. In analogy with martingale measures in hedging which effectively
eliminate drifts in price dynamics, we shall look for probability measures under which the
generator of a given BSDE is seen as vanishing. Given such a measure Q which we call
measure solution of the BSDE and supposing that Q ∼ P, the processes Y and Z are the
results of projection and representation respectively, i.e. Y = EQ(ξ|F·) = Y0 +

∫ ·
0
ZsdW̃s,

where W̃ is a Wiener process under Q. The first main finding of our paper roughly states
that provided the terminal variable ξ is bounded, all classical solutions can be interpreted
as measure solutions. More precisely, we show that if the generator satisfies the usual
continuity and quadratic boundedness conditions, classical solutions (Y, Z) exist if and
only if measure solutions with Q ∼ P exist. So existence theorems obtained in the papers
quoted are recovered in a more elegant and concise way in terms of measure solutions.
We do not touch uniqueness questions in general. Of course, determining a measure Q
under which the generator vanishes amounts to doing a Girsanov change of probability
that eliminates it. We therefore have to look at the BSDE in the form

(6.1) Yt = ξ −
∫ T

t

Zs

[
dWs −

f(s, Ys, Zs)

Zs
ds

]
, t ∈ [0, T ],

define g(s, y, z) =
f(s, y, z)

z
, and study the measure

Q = exp

(
M − 1

2
〈M〉

)
· P

for the martingale M =
∫ ·

0
g(s, Ys, Zs)dWs. One of the fundamental problems that took

some effort to solve consists in showing that Q is a probability measure. Here one has
to dig essentially deeper than Novikov’s or Kazamaki’s criteria allow. We successfully
employed a criterion which is based on the explosion properties of the quadratic variation
〈M〉, which we learnt from a conversation with M. Yor, and has been latent in the
literature for a while, see Liptser & Shiryaev [229], or the paper by Wong & Heyde
[324]. This criterion allows a simple treatment of the problem of existence of measure
solutions in the case of bounded terminal variable, and a still elegant and efficient one in
the borderline case of exponentially integrable terminal variable considered by Briand
& Hu [46]. If ξ is only exponentially bounded, things turn essentially more complex
immediately. Specializing to a very simple generator, we find a wealth of different
situations looking confusing at first sight. Just to quote three basic scenarios exhibited
in a series of examples of different types: in the first type we obtain one solution which
is a measure solution at the same time; in the second one we find two different solutions
both of which are measure solutions; in the third one we encounter two solutions one of
which is a measure solution, while the other one is not. We even combine these basic
examples to develop a scenario in which there exists a continuum of measure solutions,
and another one in which a continuum of non-measure solutions is given.
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Measure solutions: definition and first examples

Throughout the Brownian motion (Wt)0≤t≤T is one-dimensional, which generates the
filtration F = (Ft, t ∈ [0, T ]), and let f : Ω× [0, T ]× R→ R be a measurable function
such that for all z ∈ R the mapping f(·, ·, z) is predictable. If ξ is square integrable
and f satisfies a Lipschitz condition (A2’) and (A4), then we already know that there
exists a unique pair (Y, Z) ∈ D2 ×H2 solving the BSDE (2.1). Recall that the solution
process Y has a nice representation as a conditional expectation with respect to a new
probability measure if f is a linear function of the form

(6.2) f(s, z) = bsz,

where b is a predictable and bounded process. More precisely, if Dt = exp(
∫ t

0
bsdWs −

1
2

∫ t
0
b2
sds), and Q is the probability measure with density Q = DT · P, then

(6.3) Yt = EQ[ξ|Ft].

In the following we will discuss whether Y still can be written as a conditional expecta-
tion of ξ if f does not have a representation as in (6.2) with b bounded, but satisfies only
a quadratic growth condition in z. We aim at finding sufficient conditions guaranteeing
that the process Y of a classical solution of a quadratic BSDE has a representation as a
conditional expectation of ξ with respect to a new probability measure. For this purpose
we consider the class of generators f : Ω× [0, T ]×R→ R, satisfying for some constant
c ∈ R+,

(G1) f(s, z) = f(·, s, z) is adapted for any z ∈ R,

(G2) g(s, z) = f(s,z)
z

, z ∈ R, is continuous in z, for all s ∈ [0, T ],

(G3) |f(s, z)| ≤ c(1 + z2) for any s ∈ [0, T ], z ∈ R,

(G4) there exists ε > 0 and a predictable process (ψs)s≥0 such that
∫ .

0
ψsdWs is a BMO-

martingale and for every |z| ≤ ε, |g(s, z)| ≤ ψs.

We introduce for BSDEs with generators satisfying (G1) to (G4), our concept of mea-
sure solutions.

Definition 6.1 A triplet (Y, Z,Q) is called measure solution of BSDE (2.1), if Q is a
probability measure on (Ω,F), (Y, Z) a pair of F–predictable stochastic processes such
that

∫ T
0
Z2
sds <∞, Q-a.s. and the following conditions are satisfied:

W̃ = W −
∫ ·

0

g(s, Zs)ds is a Q− Brownian motion,

ξ ∈ L1(Ω,F ,Q),

Yt = EQ(ξ|Ft) = ξ −
∫ T

t

ZsdW̃s, t ∈ [0, T ].
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We want to thank Jianfeng Zhang who told us of the paper [238]. Indeed [238, Definition
2.3] with ĥ = 0 and b̂ = g, is the same as the previous definition.

It is known from the literature that if the terminal condition ξ is bounded and the
generator f satisfies Assumptions (G1) to (G4), then BSDE (2.1) has a classical solu-
tion (Y, Z) (see for example [199]). We show that in this case there exists a probability
measure Q, equivalent to P, such that (Y, Z,Q) is a measure solution.

Theorem 6.1 Assume that ξ is bounded, and that f satisfies Assumptions (G1) to
(G4). Then for every classical solution (Y, Z), there exists a probability measure Q,
equivalent to P, such that (Y, Z,Q) is a measure solution of (2.1).

It is straightforward to see that every measure solution gives rise to a classical solution.
Consequently, under the assumptions of Theorem 6.1, measure solutions exist if and if
only classical solutions exist. More precisely, we obtain the following.

Corollary 6.1 Assume that ξ is bounded, and that f satisfies Assumptions (G1) to
(G4). Then (Y, Z) is a classical solution if and only if there exists a probability measure
Q, equivalent to P, such that (Y, Z,Q) is a measure solution of (2.1).

We remark that the previous results can be extended to the case where W is a d-
dimensional Brownian motion. Let f : Ω × [0, T ] × Rd → R be a generator for which
there exists a constant c ∈ R+ such that

|f(s, z)| ≤ c(1 + |z|2), s ∈ [0, T ], z ∈ Rd,

and assume that g : Ω × [0, T ] × Rd → Rd is a function that is continuous in z and
satisfies

(6.4) 〈z, g(s, z)〉 = f(s, z), for all z ∈ Rd and s ∈ [0, T ].

If ξ is bounded and FT -measurable, then one can show with similar arguments that,
starting from a classical solution (Y, Z), there exists a probability measure Q such that
W −

∫ ·
0
g(s, Zs) ds is a Q-Brownian motion, and Yt = EQ(ξ|Ft).

Notice that the relation (6.4) may be satisfied by more than one continuous g, and
consequently there may exist more than one measure solution in the multidimensional
case. For example, let d = 2, f(s, z) = z1z2, and observe that |f(z)| ≤ 1

2
|z|2. For

any a ∈ (0,∞) let ga(z) = (az1,
1
a
z2). Then, we have 〈z, ga(s, z)〉 = f(s, z), and thus

there exist more than one measure solution for a BSDE with generator f and a bounded
terminal condition ξ.

6.1.1 Measure solutions of quadratic BSDEs with unbounded
terminal condition

Here we discuss quadratic BSDEs with terminal conditions that are not bounded.
As is known from literature, see for example Briand & Hu [46, 47], this case is by
far more complex. For example, it is here that even if the generators are smooth,
solutions stop to be unique. We shall exhibit examples below which complement the
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result shown in [47], according to which uniqueness is granted in case the generator of
the BSDE possesses additional convexity properties, and the terminal variable possesses
exponential moments of all orders. This fact underlines that also variations in the
generator affect questions of existence and uniqueness of solutions a lot. For this reason,
and also to keep better oriented on a windy track with many bifurcations, in the next
section we shall choose a simpler generator, and assume that our generator is given by

f(s, z) = αz2.

We shall further assume without loss of generality that α > 0. This can always be
obtained in our BSDE by changing the signs of ξ, and the solution pair (Y, Z).

Exponentially integrable lower bounded terminal variable

Nonetheless, it turns out that positive and negative terminal variables need a separate
treatment. We first show the existence of measure solutions for terminal conditions ξ
bounded from below. Note that by a linear shift of Y we may assume that ξ ≥ 0.
We shall further work under exponential integrability assumptions in the spirit of [46].
According to this paper, exponential integrability of the terminal variable of the form

(6.5) E(exp(γ|ξ|)) <∞

for some γ > 2α is sufficient for the existence of a solution.
Under the exponential integrability assumption E(exp(2αξ)) < ∞, we now derive

measure solutions from given classical solutions. Leaving the difficult question of unique-
ness apart for a moment, we remark that with our simple generator, we obtain an explicit
solution given by the formula

(6.6) Yt =
1

2α
lnMt −

1

2α
lnM0, Zt =

1

2α

Ht

Mt

,

where

Mt = E(exp(2αξ)|Ft) = M0 +

∫ t

0

HsdWs, t ∈ [0, T ].

In the sequel, we shall work with this explicit solution. In the following lemma, we prove
integrability properties for the square norm of Z which will be crucial for stating the
martingale property of M and other related processes later.

Lemma 6.1 For any p ≥ 1 we have

E
[(∫ T

0

Z2
sds

)p ]
<∞.

In particular,
∫ ·

0
ZsdWs is a uniformly integrable martingale.

We prove that (Y, Z) gives rise to a measure solution.

Theorem 6.2 Assume that ξ is non-negative and satisfies E(exp(2αξ)) <∞. Suppose
that (Y, Z) are defined as in (6.6). Then there exists a probability measure Q, equivalent
to P, such that (Y, Z,Q) is a measure solution of (2.1).
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As a by-product of our main result, we obtain the exponential integrability of the
quadratic variation of Z.

Corollary 6.2 Under the conditions of Theorem 6.2 we have

E exp

(
1

2
α2

∫ T

0

Z2
s ds

)
<∞.

Let us exhibit an example to show that one cannot go essentially beyond this condi-
tion without losing solvability. Let T = 1 and α = 1

2
. Let us first consider

ξ =
(W1)2

2
.

It is immediately clear from the fact that W1 possesses the standard normal density,
that E exp(2α|ξ|) =∞, hence of course also for γ > 2α, (6.5) is not satisfied. To find a
solution (Y, Z) of (2.1) on any interval [t, 1] with t > 0 define

Zs =
Ws

s
, s > 0,

and set for completeness Z0 = 0. Let t > 0 and use the product formula for Itô integrals
to deduce ∫ 1

t

ZsdWs =
1

2

W 2
s

s
|1t +

1

2

∫ 1

t

W 2
s

s2
ds

= ξ − 1

2

W 2
t

t
+

1

2

∫ 1

t

Z2
sds.

This means that, if we set for convenience again Y0 = 0, the pair of processes

(Ys, Zs) =

(
1

2

W 2
s

s
,
Ws

s

)
, s ∈ [0, 1],

solves the BSDE (2.1) on [t, 1] for any t > 0. Of course, the definition of Y0 is totally
inconsistent with the BSDE. Worse than that, Z is not square integrable on [0, 1], as is
well known from the path behavior of Brownian motion. Hence (Y, Z) is not a solution
of (2.1). To put it more strictly, there is no classical solution of (2.1) on [0, 1], since,
due to local Lipschitz conditions, any such solution would have to coincide with (Y, Z)
on any interval [t, 1] with t > 0.

According to Jeulin & Yor [177], transformations of this type are related to a phe-
nomenon they call appauvrissement de filtrations. In fact, if 1

2
is replaced with a param-

eter λ, they show that the natural filtration of the transformed process gets poorer than
the one of the Wiener process, if and only if λ > 1

2
. Hence in the case we are interested

in the Wiener filtration is preserved.
Let us now reduce the factor of (W1)2 in the definition of ξ a bit, to show that

solutions exist in this setting. For k ∈ N, let

ξk =
W 2

1

2(1 + 1/k)
,
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and consider the BSDE (2.1) with the generator f chosen above, and terminal condition
ξk. In this setting, we clearly have

E exp(γξk) <∞ for 2α ≤ γ < 2α(1 + 1/k).

This shows that the condition of [46] is satisfied. It is not hard to construct the solutions
of the corresponding BSDEs explicitly, in the same way as above. In fact, for k ∈ N we
may define fk(t) = 1

k
+ t, t ∈ [0, 1], and set

Zk
t =

Wt

fk(t)
, t ∈ [0, 1].

We may then repeat the product formula for Itô integrals argument used above to obtain
for t ≥ 0 ∫ 1

t

Zk
s dWs =

1

2

W 2
s

fk(s)
|1t +

1

2

∫ 1

t

W 2
s f
′
k(s)

fk(s)2
ds

=
1

2

W 2
1

fk(1)
− 1

2

W 2
t

fk(t)
+

1

2

∫ 1

t

(Zk
s )2ds.

Hence we set
Y k
t =

1

2

W 2
t

fk(t)
, t ∈ [0, 1],

to identify the pair of processes (Y k, Zk) as a solution of the BSDE

(6.7) Y k
t = ξk −

∫ 1

t

Zk
s dWs +

1

2

∫ 1

t

(Zk
s )2ds, t ∈ [0, 1].

We do not know at this moment whether (2.1) possesses more solutions.

Exponentially integrable upper bounded terminal variable

Sticking with the positivity of α in the generator

f(s, z) = αz2, s ∈ [0, T ], z ∈ R

we shall now consider terminal variables ξ that fulfill the exponential integrability con-
dition (6.5), but are bounded above by a constant. Again, by a constant shift of the
solution component Y , we can assume that the upper bound is 0, i.e. ξ ≤ 0. So fix a
non-positive terminal variable ξ satisfying (6.5) for some γ > 2α, and denote by (Y, Z)
the pair of processes given by the explicit representation of (6.6) solving our BSDE
according to [46]. With respect to the following probability measure, ξ will effectively
change its sign, so that we can hook up to the previous discussion. Recall S =

∫ ·
0
ZsdWs.

Lemma 6.2 Let V = exp(2αS − 2α2〈S〉). Then V is a martingale of class (D), and
consequently

R = VT · P
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is a probability measure equivalent to P. Moreover,

WR = W − 2α

∫ ·
0

Zsds

is a Brownian motion under R.

Now consider our BSDE under the perspective of the measure R with respect to the
Brownian motion WR. We may write

(6.8) Y = ξ −
∫ T

·
ZsdWs + α

∫ T

·
Z2
sds = ξ −

∫ T

·
ZsdW

R
s − α

∫ T

·
Z2
sds.

But this just means that by switching signs in (Y, Z), we may return, under the new
measure R, to our old BSDE with ξ replaced with −ξ. So our measure change puts us
back into the framework of the previous subsection, and we may resume our arguments
there by setting

SR = −
∫ ·

0

ZsdW
R
s .

We need an analogue of Lemma 6.1 to guarantee that R is a uniformly integrable
martingale.

Lemma 6.3 For any p ≥ 1 we have

ER
[(∫ T

0

Z2
sds

)p ]
<∞.

In particular, SR is a uniformly integrable martingale under R.

We are in a position to prove the main result of this subsection.

Theorem 6.3 Assume that that f satisfies f(s, z) = αz2, z ∈ R, s ∈ [0, T ], and that ξ
is bounded above and satisfies (6.5). Then there is a measure solution of (2.1) with a
measure Q that is equivalent to P.

Remark 6.1 The results of the preceding two subsections clearly call for similar ones
for our BSDE with exponentially integrable terminal variable that are not bounded. Due
to the nonlinearity of the generator of the BSDE, it seems impossible to derive such
properties by combining the results of Theorems 6.2 and 6.3.

6.1.2 Uniqueness: quadratic BSDE with two solutions

Let us now come back to the question of uniqueness of solutions, and their measure
solution property. In [46], the existence of solutions (Y, Z) in the usual sense is proved,
given that (6.5) is satisfied. In a setting with more general generators the nonlinear
z-part being bounded by αz2, they provide pathwise upper and lower bounds for Y ,
given by the known explicit solution for this generator(

1

2α
logE

[
exp(2αξ)

∣∣∣∣Ft])
t∈[0,T ]
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used above, and its negative counterpart(
− 1

2α
logE

[
exp(−2αξ)

∣∣∣∣Ft])
t∈[0,T ]

.

Briand & Hu [47] also provide a uniqueness result for the same setting, which is satisfied
under the stronger integrability hypothesis

(6.9) E(exp(γ|ξ|)) <∞

for all γ > 0 and a convexity assumption concerning the generator. Let us start our
discussion of uniqueness and the measure solution property by giving some examples.

For b > 0, let τb = inf{t ≥ 0 : Wt ≤ bt− 1}. We first consider a BSDE with random
time horizon τb. Let the generator be further specified by α = 1

2
. Let ξ = 2a(b−a)τb−2a,

where a > 0. It will become clear along the way why this choice of terminal variable is
made. In the first place, it is motivated by the striking simplicity of the solutions we
shall construct. We shall in fact give two explicit solutions of the BSDE

(6.10) Yt∧τb = ξ −
∫ τb

t

ZsdWs +

∫ τb

t

1

2
Z2
sds.

Appropriate choices of a and b allow for terminal variables that are bounded below
as well as bounded above. The fact that the time horizon is random is not crucial.
Indeed, by using a time change, any solution of Equation (6.10) can be transformed
into a solution of a BSDE with the same generator and with time horizon 1. Define
ρ−1(t) = t

1−t , t ∈ [0, 1].

Lemma 6.4 Let (Yt, Zt) be a solution of the BSDE (6.10), and let ξ̂ = 2a(b−a) τ̂b
1−τ̂b
−2a.

Then (yt, zt) = (Yρ−1(t), h(t)Zρ−1(t)) is a solution of the BSDE

(6.11) yt = ξ̂ −
∫ 1

t

zsdW̃s +

∫ 1

t

1

2
z2
sds.

Let us first assess exponential integrability properties of ξ. For this, let γ > 0 be
arbitrary. Then we have

Eeγ|ξ| = Eeγ|2a(b−a)τb−2a| ≤ e2aγEeγ2a|b−a|τb .

Define the auxiliary stopping time

σb = inf{t ≥ 0 : Wt ≤ t− b}.

It is well known and proved by the scaling properties of Brownian motion that the laws
of τb and σb

b2
are identical (see Revuz & Yor [300]). Moreover, the Laplace transform of

σb is equally well known. According to [300] we therefore have for λ > 0

(6.12) E(exp(−λτb)) = E
(

exp(− λ
b2
σb)

)
= exp(−b[

√
1 +

2λ

b2
− 1]).
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Moreover, it is seen by analytic continuation arguments that this formula is even valid
for λ ≥ − b2

2
. Now choose λ = −2a|b− a|γ. Then the inequality

−2a|b− a|γ ≥ −1

2
b2

amounts to

(6.13) γ ≤ b2

4a|b− a|
.

This in turn means that we have exponential integrability of orders bounded by b2

4a|b−a| ,
in particular we may reach arbitrarily high orders by choosing a and b sufficiently close.
But no combination of a and b allows exponential integrability of all orders. In the light
of [47] this means that the entire field of pairs of positive a and b promises multiple
solutions, and this is precisely what we will exhibit.

The first solution

It is clear from the definition that the pair (Yt, Zt), defined by

Yt = 2aWt∧τb − 2a2(τb ∧ t), and Z = 2a1[0,τb],

is a solution of (6.10). To answer the question whether this defines a measure solution,
we have to investigate

E exp

[∫ τb

0

1

2
ZsdWs −

1

8

∫ τb

0

Z2
sds

]
= E exp

[
aWτb −

a2

2
τb

]
= E(exp(a(b− a

2
)τb − a)).

Due to (6.12) we have

E(exp(a(b− a

2
)τb− a)) = exp(−b[

√
1− 2

b2
a(b− a

2
)− 1]− a) = exp(−b[|1− a

b
| − 1]− a),

and the latter equals 1 in case b ≥ a and exp(2(b − a)) < 1 in case a > b. This simply
means that our first solution is a measure solution of (6.11) provided b ≥ a, and it fails
to be one in case a > b.

The second solution

We now show that the BSDE (6.10) with the same terminal variable as above pos-
sesses a second solution. By Lemma 6.4 there exists a second solution of (6.11) as
well. Once this is shown, for any possible degree γ of exponential integrability we will
have exhibited a negative random variable satisfying E(exp(γ|ξ|)) <∞ for which (6.10)
possesses at least two solutions. This in turn will underline that Briand & Hu’s [47]
uniqueness result, valid under (6.9) cannot be improved by much.

Note that the solution we will exhibit is again of the explicit form (6.6) encountered
earlier. Let Mt = E[eξ|Ft] for all t ≥ 0. Due to the martingale representation property
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there exists a process H such thatMt = M0 +
∫ t

0
HsdWs. We know that (lnMτb∧t,

Hτb∧t
Mτb∧t

)

is a solution of (6.10). We show that

lnMτb∧t = 2b− 4a+ 2(b− a)Wτb∧t − 2(b− a)2(τb ∧ t), if 2a > b,

lnMτb = 2aWτb∧t − 2a2τb ∧ t, if 2a ≤ b.

This implies that the solution (lnMτb∧t,
Hτb∧t
Mτb∧t

) is different from the solution (2aWτb∧t −
2a2(τb ∧ t), 2a) obtained above in case 2a > b. Note that in case 2a ≤ b we recover the
solution already obtained as the first solution. Hence by Lemma 6.4 we obtain a second
solution of (6.11) in this case.

Let us finally show that this second solution is in fact a measure solution for any
possible combination of parameters.

Lemma 6.5 (lnMτb∧t,
Hτb∧t
Mτb∧t

) can be extended to a measure solution of (6.10), hence
provides a measure solution of (6.11).

Remarks:

1. We can summarize the findings of our investigations of the examples by stating
that there are three basic scenarios:

(a) for b ≥ 2a we obtained one solution which is a measure solution at the same
time;

(b) in the range 2a > b ≥ a we found two different solutions both of which are
measure solutions;

(c) if a > b we finally encountered two solutions one of which is a measure
solution, while the other one is not.

2. Note that our examples exhibiting solutions of (6.10) that are not measure solu-
tions are all for negative terminal variables ξ. Positive terminal variables arise in
scenarios (a) or (b), and therefore only produce multiple measure solutions.

A continuum of solutions

Let us now combine the first and second solutions to obtain a continuum of solutions
of our BSDE (6.10). To do this, we have to consider a still somewhat more general class
of stopping times. For c ∈ R, let

ρc = inf{t ≥ 0 : Wt ≤ t− c}.

We investigate the terminal variables

ξ = 2a(a− 1)ρc + d

with further constants a 6= 0, d ∈ R. Note first that the integrability properties of ξ are
the same as those obtained before for b = 1. According to the preceding paragraphs, our
BSDE (6.10) possesses the following two solutions

(6.14) Z1 = 2a1[0,ρc], Y 1 = d1 + 2aWρc∧· − 2a2ρc ∧ ·,
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(6.15) Z2 = 2(1− a)1[0,ρc], Y 2 = d2 + 2(1− a)Wρc∧· − 2(1− a)2ρc ∧ ·,

with d1 = −2ac resp. d2 = −2(a − 1)c. Let us now take c = 1 and combine the two
solutions to obtain a continuum of new ones. To do this, we start with the equation

ρ1 = ρc + ρ1−c ◦ θρc ,

where θt is the shift on Wiener space defined by

θt(ω) = Wt+·(ω)−Wt(ω),

and c ∈]0, 1[. It describes the first time to reach the line with slope 1 that cuts the vertical
at level −1, by decomposition with the intermediate time to reach the line with slope
1 cutting the vertical at −c. We mix the two solutions on the two resulting stochastic
intervals, more precisely we put for c ∈]0, 1[, l ∈ R

Zc = 2a1[0,ρc] + 2(1− a)1[ρc,ρ1],(6.16)
Y c = l + 2aWρc∧· − 2a2ρc ∧ ·+ 2(1− a)[Wρ1∧· −Wρc∧·]

−2(1− a)2[ρ1 ∧ · − ρc ∧ ·].

Since we have

Y c
ρ1

= l + 2aWρc − 2a2ρc + 2(1− a)[Wρ1 −Wρc ]− 2(1− a)2[ρ1 − ρc]
= l + 2a(1− a)ρ1 − 2ac− 2(1− a)(1− c),

we have to set
l − 2ac− 2(1− a)(1− c) = d

in order to obtain a solution of (6.10) with c = 1. According to the treatment of the
first and second solution, the constructed mixture is a measure solution if and only if
both components of the mixture are. This is the case for 2a(1 − a) > 0, whereas for
2a(1− a) < 0 we obtain a continuum of solutions that are no measure solutions.

Remarks:

1. This time, we may summarize our results by saying that there are two scenarios:
for 2a(1 − a) > 0 there is a continuum of measure solutions of (6.10), while for
2a(1− a) < 0 a continuum of non measure solutions is obtained.

2. Note that the initial conditions of our solutions continuum vary in a convex way
between −2a and −2(1− a) as c varies in ]0, 1[, spanning the whole interval.

We shall now point out that the measure solution property of the second solution in
case a > b exhibited in the example above is not a coincidence. In fact, it will turn
out that also for negative exponentially integrable ξ, solutions given by (6.6) provide
measure solutions. To prove this, we will reverse the sign of ξ by looking at our BSDE
from the perspective of an equivalent measure.
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6.1.3 Some extensions

In the appendix (Section 9.2), we provide from scratch a construction of measure
solutions for Lipschitz continuous generators f (also see [IV]).

In [130], the authors extend some results for more general functions g (given by
(G2)). See Zhang’s Diplomarbeit “Measure solutions of BSDEs and a Feynman-Kac
formula” for further details.

6.2 Optimal switching ([V])
Optimal control of multiple switching models arise naturally in many applied dis-

ciplines. The pioneering work by Brennan and Schwartz [44], proposing a two-modes
switching model for the life cycle of an investment in the natural resource industry,
is probably first to apply this special case of stochastic impulse control to questions
related to the structural profitability of an investment project or an industry whose
production depends on the fluctuating market price of a number of underlying com-
modities or assets. Within this discipline, Carmona and Ludkosvki [64] and Deng and
Xia [92] suggest a multiple switching model to price energy tolling agreements, where
the commodity prices are modeled as continuous time processes, and the holder of the
agreement exercises her managerial options by controlling the production modes of the
assets. Target tracking in aerospace and electronic systems (see [102]) is another class
of problems, where these models are very useful. These are often formulated as a hybrid
state estimation problem characterized by a continuous time target state and a discrete
time regime (mode) variables. All these applications seem agree that reformulating
these problems in a multiple switching dynamic setting is a promising (if not the only)
approach to fully capture the interplay between profitability, flexibility and uncertainty.

The optimal two-modes switching problem is probably the most extensively studied
in the literature starting with above mentioned work by Brennan and Schwartz [44],
and Dixit [96] who considered a similar model, but without resource extraction - see
Dixit and Pindyck [97] and Trigeorgis [319] for an overview, extensions of these models
and extensive reference lists. Brekke and Øksendal [42, 43], Shirakawa [305], Knudsen,
Meister and Zervos [198], Duckworth and Zervos [104, 105] and Zervos [330] use the
framework of generalized impulse control to solve several versions and extensions of this
model, in the case where the decision to start and stop the production process is done
over an infinite time horizon and the market price process of the underlying commodity
is a diffusion process, while Trigeorgis [318] models the market price process of the
commodity as a binomial tree. Hamadène and Jeanblanc [155] consider a finite horizon
optimal two-modes switching problem in the case of Brownian filtration setting while
Hamadène and Hdhiri [154] extend the set up of the latter paper to the case where
the processes of the underlying commodities are adapted to a filtration generated by a
Brownian motion and an independent Poisson process. Porchet et al. [291] also study
the same problem, where they assume the payoff function to be given by an exponential
utility function and allow the manager to trade on the commodities market. Finally, let
us mention the work by Djehiche and Hamadène [98] where it is shown that including
the possibility of abandonment or bankruptcy in the two-modes switching model over
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a finite time horizon, makes the search for an optimal strategy highly nonlinear and is
not at all a trivial extension of previous results.

An example of the class of multiple switching models discussed in Carmona and
Ludkovski [64] is related to the management strategies to run a power plant that converts
natural gas into electricity (through a series of gas turbines) and sells it in the market.
The payoff rate from running the plant is roughly given by the difference between the
market price of electricity and the market price of gas needed to produce it. Suppose
that besides running the plant at full capacity or keeping it completely off (the two-
modes switching model), there also exists a total of q−2 (q ≥ 3) intermediate operating
modes, corresponding to different subsets of turbines running.

6.2.1 Our contribution

The setting is the same as in Section 2.2.1. Let J := {1, ..., q} be the set of all
possible activity modes of the production of the commodity. A management strategy
for the power plant is a combination of two sequences:

1. a nondecreasing sequence of stopping times (τn)n≥1, where, at time τn, the manager
decides to switch the production from its current mode, say i, to another one from
the set J −i ⊆ {1, . . . , i− 1, i+ 1, . . . , q} ;

2. a sequence of indicators (ξn)n≥1 taking values in {1, . . . , q} of the state the pro-
duction is switched to. At τn for n ≥ 1, the station is switched from its current
mode ξn−1 to ξn. The value ξ0 is deterministic and is the state of the station at
time 0. Therefore, we assume that for any n ≥ 1, ξn is a r.v. Fτn-measurable with
values in J .

For i ∈ J , let Ψi := (Ψi(t))0≤t≤T be a stochastic process such that for some p > 1

E
[∫ T

0

|Ψi(s)|pds
]
<∞.

In the sequel, it stands for the payoff rate per unit time when the plant is in state i.
On the other hand, for i ∈ J and j ∈ J −i let `ij := (`ij(t))0≤t≤T be a continuous
process of Dp(0, T ). It stands for the switching cost of the production at time t from its
current mode i to another mode j ∈ J −i. For completeness we adopt the convention
that `ij ≡ +∞ for any i ∈ J and j ∈ J − J −i (j 6= i). This convention is set in order
to exclude the switching from the state i to another state j which does not belong to
J −i. Moreover we suppose that there exists a real constant γ > 0 such that for any
i, j ∈ J , and any t ≤ T , `ij(t) ≥ γ.

When the power plant is run under a strategy S = ((τn)n≥1, (ξn)n≥1), over a finite
horizon [0, T ], the total expected profit up to T for such a strategy is

J(S, i) = E

[∫ T

0

∑
n≥0

(
Ψξn(s)1(τn,τn+1](s)

)
ds−

∑
n≥1

`ξn−1,ξn (τn)1[τn<T ]

]
where we set τ0 = 0 and ξ0 = i. The optimal switching problem we investigate is to find
a management strategy S∗ such that J(S∗, i) = supS J(S, i).
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Assume that a strategy of running the plant S := ((τn)n≥1, (ξn)n≥1) is given and
w.l.o.g that the plant is in production mode 1 at t = 0 . We denote by (ut)t≤T its
associated indicator of the production activity mode at time t ∈ [0, T ], given by:

ut = 1[0,τ1](t) +
∑
n≥1

ξn1(τn,τn+1](t).

Note that τ := (τn)n≥1 and the sequence ξ := (ξn)n≥1 determine uniquely u and con-
versely, the left continuous with right limits process u determine uniquely τ and ξ.
Therefore a strategy for our multiple switching problem will be simply denoted by u. A
strategy u =: ((τn)n≥1, (ξn)n≥1) will be called admissible if it satisfies

lim
n→∞

τn = T P− a.s.

and the set of admissible strategies is denoted byA. When a strategy u := ((τn)n≥1, (ξn)n≥1)
is implemented the optimal yield is given by

J(u) = E

[∫ T

0

Ψus(s)ds−
∑
n≥1

`uτn−1 ,uτn
(τn)1[τn<T ]

]
.

We can now formulate the multi-regime starting and stopping problem as follows: find
a strategy u∗ ≡ ((τ ∗n)n≥1, (ξ

∗
n)n≥1) ∈ A such that

J(u∗) = sup
u∈A

J(u).

An admissible strategy u is called finite if, during the time interval [0, T ], it allows the
manager to make only a finite number of decisions, i.e. P[ω, τn(ω) < T, for all n ≥ 0] =
0. Hereafter the set of finite strategies will be denoted by Af . A first immediate result
(due to `ij(t) ≥ γ) is that the suprema over admissible strategies and finite strategies
coincide:

(6.17) sup
u∈A

J(u) = sup
u∈Af

J(u).

Using purely probabilistic tools such as the Snell envelop of processes and backward
stochastic differential equations, inspired by the works [155], the paper [64] suggests
a powerful robust numerical scheme based on Monte Carlo regressions to solve this
optimal switching problem when the payoff rates are given as deterministic functions of
a diffusion process. They also list a number of technical challenges, such as the continuity
of the associated value function, that prevent a rigorous proof of the existence and a
characterization of an optimal solution of this problem. Our objective of this work was to
fill in this gap by providing a solution to the optimal multiple switching problem, using
the same framework. We were able to prove existence and provide a characterization of
an optimal strategy of this problem.

172



A verification Theorem

We first provide a Verification Theorem that shapes the problem, via the Snell en-
velope of processes. We show that if the verification theorem is satisfied by a vector of
continuous processes (Y 1, . . . , Y q) such that, for each i ∈ {1, . . . , q},

(6.18) Y i
t = ess sup

τ≥t
E
[∫ τ

t

Ψi(s)ds+ max
j 6=i

(−`ij(τ) + Y j
τ )1[τ<T ]

∣∣Ft] ,
then each Y i

t is the value function of the optimal problem when the system is in mode
i at time t:

Y i
t = ess sup

S∈Ait
E

[∫ T

t

∑
n≥0

(
Ψξn(s)1(τn,τn+1](s)

)
ds−

∑
n≥1

`ξn−1,ξn (τn)1[τn<T ]

∣∣Ft] .
where Ait is the set of admissible strategies such that τ1 ≥ t a.s. and ξ0 = i. More
preciselt, for τ an F-stopping time and (ζt)0≤t≤T , (ζ ′t)0≤t≤T two continuous F-adapted
and R−valued processes let us set:

Dτ (ζ = ζ ′) := inf{s ≥ τ, ζs = ζ ′s} ∧ T.

We have the following:

Theorem 6.4 (Verification Theorem) Assume there exist q Dp-processes (Y i := (Y i
t )0≤t≤T , i =

1, . . . , q) that satisfy (6.18). Then Y 1, . . . , Y q are unique. Furthermore :

1.

(6.19) Y 1
0 = sup

v∈A
J(v).

2. Define the sequence of F-stopping times (τn)n≥1 by

(6.20) τ1 = D0

(
Y 1 = max

j∈J−1
(−`1j + Y j)

)
and, for n ≥ 2,

(6.21) τn = Dτn−1

(
Y uτn−1 = max

k∈J−τn−1

(−`τn−1k + Y k)

)
,

where

• uτ1 =
∑
j∈J

j1{maxk∈J−1 (−`1k(τ1)+Y kτ1 )=−`1j(τ1)+Y jτ1}
;

• for any n ≥ 1 and t ≥ τn, Y
uτn
t =

∑
j∈J

1[uτn=j]Y
j
t ;
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• for n ≥ 2, uτn = l on the set{
max

k∈J−uτn−1

(−`uτn−1k
(τn) + Y k

τn) = −`uτn−1 l
(τn) + Y l

τn

}
,

where

`uτn−1k
(τn) =

∑
j∈J

1[τn−1=j]`jk(τn) and J −uτn−1 =
∑
j∈J

1[τn−1=j]J −j.

Then, the strategy u = ((τn)n≥1, (ξn)n≥1) is optimal i.e. J(u) ≥ J(v) for any
v ∈ A.

Then we prove the existence of the unique solution of the verification theorem. This
solution is obtained as the limit of sequences of processes (Y i,n)n≥0, where for any t ≤ T ,
Y i,n
t is the value function (or the optimal yield) from t to T , when the system is in mode
i at time t and only at most n switchings after t are allowed. More precisely for i ∈ J ,
let us set, for any 0 ≤ t ≤ T ,

(6.22) Y i,0
t = E

[∫ T

0

Ψi(s)ds

∣∣∣∣Ft]− ∫ t

0

Ψi(s)ds,

and for n ≥ 1,
(6.23)

Y i,n
t = ess sup

τ≥t
E
[∫ τ

0

Ψi(s)ds+ max
k∈J−i

(−`ik(τ) + Y k,n−1
τ )1[τ<T ]

∣∣∣∣Ft]− ∫ t

0

Ψi(s)ds.

In the next proposition we collect some useful properties of Y 1,n, . . . , Y q,n. In particular
we show that, as n → ∞, the limit processes Ỹ i := lim

n→∞
Y i,n exist and are only càdlàg

but have the same characterization (6.18) as the Y i’s.

Proposition 6.1

1. For each n ≥ 0, the processes Y 1,n, . . . , Y q,n are continuous and belong to Dp(0, T ).

2. For any i ∈ J , the sequence (Y i,n)n≥0 converges increasingly and pointwisely P-
a.s. for any 0 ≤ t ≤ T and in Lp(Ω × [0, T ]) to a càdlàg processes Ỹ i. Moreover
these limit processes Ỹ i = (Ỹ i

t )0≤t≤T , i = 1, . . . , q, satisfy

(a) E
[

sup
0≤t≤T

∣∣∣Ỹ i
t

∣∣∣p] <∞, i ∈ J .

(b) For any 0 ≤ t ≤ T we have,

Ỹ i
t = ess sup

τ≥t
E
[∫ τ

t

Ψi(s)ds+ max
k∈J−i

(−`ik(τ) + Ỹ k
τ )1[τ<T ]

∣∣∣∣Ft] .
The existence proof of the Y i’s will consist in showing that Ỹ i’s are continuous and

hence satisfy the Verification Theorem.
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Theorem 6.5 The limit processes Ỹ 1, . . . , Ỹ q satisfy the Verification Theorem 6.4.

As a consequence of the previous results we also obtain the convergence in Dp(0, T ): for
any i ∈ J ,

E
[
sup
s≤T

∣∣Y i,n
s − Y i

s

∣∣p]→ 0 as n→ +∞.

A penalization scheme

The previous part is based on the properties of the Snell envelop. Here we focus on
a penalization scheme, which could be used for numerical simulations. First using the
result by El Karoui et al. ([117], Proposition 5.1) which characterizes a Snell envelope
as a solution of a one barrier reflected BSDE we deduce that the q-uplet of processes
(Y 1, . . . , Y q) solution of the Verification Theorem 6.4 satisfies also a system of BSDEs
with oblique reflections. Indeed for any i ∈ J , there exists a pair of Ft-adapted processes
(Zi, Ki) with value in Rd × R+ such that:

• Y i, Ki ∈ Dp and Zi ∈ Hp ;

• Ki is non decreasing with Ki
0 = 0 ;

• for any 0 ≤ s ≤ T

(6.24) Y i
s =

∫ T

s

Ψi(u)du−
∫ T

s

Zi
udBu +Ki

T −Ki
s ;

• together with the oblique reflection: for all 0 ≤ s ≤ T

(6.25)


Y i
s ≥ max

j∈J−i
{−`ij(s) + Y j

s },

∫ T

0

(
Y i
u − max

j∈J−i
{−`ij(u) + Y j

u }
)
dKi

u = 0.

Now we know that the solution of a reflected BSDE can be obtained as a limit of sequence
of solutions of standard BSDE by approximation via penalization. Therefore, for any
n ∈ N, let us define the following system:

(6.26) ∀i ∈ J , ∀t ∈ [0, T ], Y i,n
t =

∫ T

t

Ψi(s)ds+ n

∫ T

t

(Li,ns − Y i,n
s )+ds−

∫ T

t

Zi,n
s dBs

where for every i ∈ J ,

∀t ∈ [0, T ], Li,nt = max
k∈J−i

(−`ik(t) + Y k,n
t ).

Remark that if we define the generator f := (f 1, . . . , f q) : [0, T ]× Rq → Rq by

∀i ∈ J , f i(s, y) = Ψi(s) + n( max
k∈J−i

(−`ik(s) + yk)− yi)+,
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then f is a Lipschitz function w.r.t. y uniformly w.r.t. t and the Rq-valued process
Y n = (Y 1,n, . . . , Y q,n) satisfies the following BSDE:

(6.27) ∀t ∈ [0, T ], Y n
t =

∫ T

t

f(s, Y n
s )ds−

∫ T

t

Zn
s dBs.

Now, from Gobet et al. [143, 144], we know that the multidimensional BSDE (6.26)
can be solved numerically. Therefore, if the sequence (Y i,n)n converges to Y i, for any
i ∈ J , this provides a way to simulate the value function Y i. Therefore we focus on this
convergence. First of all we obtain

Proposition 6.2 For every i ∈ J and all t ∈ [0, T ], the sequence (Y i,n
t )n∈N is non

decreasing and a.s. Y i,n
t ≤ Y i

t .

From this result we can prove that:

Theorem 6.6 For every i ∈ J

E
[
sup
t≤T
|Y i,n
t − Y i

t |p
]
→ 0 as n→∞.

In our paper we added the next remark.

Remark 6.2 It seems to be difficult to obtain a convergence rate in Theorem 6.6. In
[155], Proposition 4.2 gives such a convergence rate because the lower barrier is constant
and negative.

Numerical results can be obtained when q = 2 (see [155] or [291]). For q ≥ 3,
[64] suggest a numerical scheme when the switching costs are constant. The case of
non-constant switching costs seems out of reach.

Actually new results have given some answers to this remark (see Section 6.2.2).

Connection with systems of variational inequalities

Let us assume that the switching processes `ij are deterministic functions of the time
variable. An example of such a family of switching costs is

`ij(t) = e−rtaij,

where, aij are constant costs and r > 0 is some discounting rate. We moreover assume
that the payoff rates are given by Ψi(ω, t) = ψi(t,Xt) where ψi are deterministic func-
tions and X = (Xt)t≥0 is a vector of stochastic processes that stands for the market
price of the underlying commodities and other financial assets that influence the pro-
duction of energy. When the underlying market price process X is Markov, the classical
methods of solving impulse problems (cf. Brekke and Øksendal [43], Guo and Pham
[152], and Tang and Yong [316]) formulates a Verification Theorem suggesting that the
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value function of our optimal switching problem is the unique viscosity solution of the
following system of quasi-variational inequalities (QVI) with inter-connected obstacles.

(6.28)


min

{
vi(t, x)− max

j∈J−i
(−`ij(t) + vj(t, x)),

−∂tvi(t, x)− Lvi(t, x)− vi(t, x)
}

= 0,

vi(T, x) = 0, i ∈ J ,

where L is the infinitesimal generator of the driving process X.
By means of yet another characterization of the Snell envelope in terms of systems of

reflected backward SDEs, due to El Karoui et al. [117] (Theorems 7.1 and 8.5), we are
able to show that the vector of value processes (Y 1, . . . , Y q) of our switching problem
provides a viscosity solution of the system (6.28). Actually we show that under mild
assumptions on the coefficients ψi(t, x) and `ij(t),

Y i
t = vi(t,Xt), 0 ≤ t ≤ T, i ∈ J ,

where v1(t, x), . . . , vq(t, x) are continuous deterministic functions viscosity solution of
the system of QVI with inter-connected obstacles (6.28). We note that there are works
which deal with the same problem in using the dynamic programming principle or/and
other methods such as the stochastic target problem [40, 316]. In [316], the solution is
obtained under rather stringent assumptions than ours, while in [40], Bouchard provides
a solution for (6.28) in a weak sense since he faces an issue in connection with a lack of
continuity of the solution. In this section, in using the well known link between BSDEs
and variational inequalities, we obtain the existence of a continuous solution for (6.28)
in a more general framework as e.g. the one of [316]. However we should point out that
at the same time the viscosity solution approach of the switching problem is handled
with weaker assumptions on the switching costs `ij in El Asri and Hamadène [113].
Actually, they consider the case when `ij depend also on x and they show existence
and uniqueness of a continuous solution for (6.28). Their proof of continuity is quite
technical.

Let us give the setting and the result. Now for (t, x) ∈ [0, T ]× Rk, let (X t,x
s )s≤T be

the solution of the following Itô diffusion (1.9)

dX t,x
s = b(s,X t,x

s )ds+ σ(s,X t,x
s )dBs, t ≤ s ≤ T ; X t,x

s = x for s ≤ t,

where the functions b and σ, with appropriate dimensions, satisfy the conditions (B1)
and (B2). Thus the process X t,x := (X t,x

s )0≤s≤T exists, is unique and satisfies (1.11)
and (1.12)

Let us now introduce the following assumption on the payoff rates ψi and the switch-
ing cost functions `ij.

• The running costs ψi, i = 1, . . . , q, are jointly continuous and are of polynomial
growth, i.e. there exist some positive constants C and δ such that for each i ∈ J ,

|ψi(t, x)| ≤ C(1 + |x|δ), ∀(t, x) ∈ [0, T ]× Rk.
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• For any i, j ∈ J , the switching costs `ij are deterministic continuous functions of
t and there exists a real constant γ > 0 such for any 0 ≤ t ≤ T , min{`ij(t), i, j ∈
J , i 6= j} ≥ γ.

Taking into account Proposition 1.1, the processes (ψi(s,X
t,x
s ))0≤s≤T belong to Lp(Ω×

[0, T ]).
Recall the notion of viscosity solution of the system (6.28).

Definition 6.2 Let (v1, . . . , vq) be a vector of continuous functions on [0, T ]× Rk with
values in Rq and such that (v1, . . . , vq)(T, x) = 0 for any x ∈ Rk. The vector (v1, . . . , vq)
is called:

1. a viscosity supersolution (resp. subsolution) of the system (6.28) if for any (t0, x0) ∈
[0, T ]× Rk and any q-uplet functions (ϕ1, . . . , ϕq) ∈ (C1,2([0, T ]× Rk))q such that
(ϕ1, . . . , ϕq)(t0, x0) = (v1, . . . , vq)(t0, x0) and for any i ∈ J , (t0, x0) is a maximum
(resp. minimum) of ϕi − vi then we have: for any i ∈ J ,

min
{
vi(t0, x0)− max

j∈J−i
(−`ij(t0) + vj(t0, x0)),

−∂tϕi(t0, x0)− Lϕi(t0, x0)− ψi(t0, x0)
}
≥ 0 (resp. ≤ 0)

2. a viscosity solution of the system (6.28) if it is both a viscosity supersolution and
subsolution.

Let now (Y 1;t,x
s , . . . , Y q;t,x

s )0≤s≤T be the vector of value processes which satisfies the
Verification Theorem 6.4 associated with (ψi(s,X

t,x
s ))s≤T and (`ij(s))s≤T . The vector

(Y 1;t,x, . . . , Y q;t,x) exists through Theorem 6.5 combined with the estimates of X t,x of
Proposition 1.1 and our conditions on ψi and `ij.

Theorem 6.7 Under our setting, there exist q deterministic functions v1(t, x), . . . , vq(t, x)
defined on [0, T ]× Rk and R-valued such that:

(i) v1, . . . , vq are continuous in (t, x), are of polynomial growth and satisfy, for each
t ∈ [0, T ] and for every s ∈ [t, T ],

Y i;t,x
s = vi(s,X t,x

s ), for every i ∈ J .

(ii) The vector of functions (v1, . . . , vq) is a viscosity solution for the system of varia-
tional inequalities (6.28).

Remark 6.3 The viscosity solution (v1, . . . , vq) is unique in the class of continuous
functions with polynomial growth (cf. [113], Theorem 4).
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6.2.2 Further extensions

Our paper was a first attempt to solve the optimal switching problem in a non
Markovian framework with probabilistic tools when there are q ≥ 3 modes. Note that
Pham et al. [289] also solve this control problem, but using PDE arguments. These two
approachs are mainly the two different ways to tackle such switching optimal problems.
The first one consists in dealing with systems of obliquely reflected backward stochas-
tic differential equations with inter-connected obstacles (Eq. (6.24) and (6.25)). The
studied system becomes: for all 0 ≤ t ≤ T and i ∈ J

(6.29)



Y i
t = ξi +

∫ T

t

fi(s, Ys, Z
i
s)ds−

∫ T

t

Zi
sdBs +Ki

T −Ki
t ,

Y i
t ≥ max

j∈J−1
hij(t, Y

j
t ),

∫ T

0

(
Y i
u − max

j∈J−1
hij(u, Y

j
u )

)
dKi

u = 0.

If [155, 64, 291] and [V] are the pioneer papers, the results have been deeply extended
by Hu & Tang [166], Hamadène & Zhang [158], Chassagneux et al. [69]. The second
method consists in considering rather the QVI (6.28). Let us mention Lundström et
al. [232]. Of course those methods are deeply related and both can be combined in
the so-called Markovian context: that is when the randomness of the parameters comes
from an exogenous process (which may be, for instance, the electricity or oil price in the
market). In this context, (6.29) becomes

(6.30)



Y i
t = gi(XT ) +

∫ T

t

fi(Xs, Ys, Z
i
s)ds−

∫ T

t

Zi
sdBs +Ki

T −Ki
t ,

Y i
t ≥ max

j∈J−1
{Y j

t − `ij(Xt)},

∫ T

0

(
Y i
u − max

j∈J−1
{Y j

u − `ij(Xu)}
)
dKi

u = 0.

where X is the solution of the forward SDE (1.9). The paper of Djehiche et al. [99]
successfully combines the two approaches to obtain existence and uniqueness of solutions
in viscosity sense. Contrary to normally reflected BSDEs [134], existence and uniqueness
result available in the literature requires structural conditions, both on the driver f and
the function h or `. This problem of obliquely reflected BSDEs is studied in [72].

Several directions have been also explored:

1. The case when switching costs may be non positive. It has been considered by
Lundström [231].

2. The case when we only have partial information about the system (see Li et al.
[225]). Such a situation may occur when the manager (or controller) cannot access
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to the real data but only to a data mixed with a noise. In that case, the partial
information is modelled by some new filtration and the profit index has to be
computed with respect to this new filtration. Thus this problem requires the use
of advanced filtering methods.

3. The case when the filtration is generated by a discontinuous process. This setting is
more adapted to model unpredictable random phenomena. When the process is a
Lévy one, switching problems driven by Teugels martingales have been considered
(see [231] or [159]).

4. The case when the strategy of the manager may affect the dynamic is not consid-
ered. From a practical point of view, this is of great importance and needs to be
tackled. This subject is partially treated in Porchet et al. [291] for example. In
Elie & Kharroubi [121] the case of controlled volatility has been considered.

5. The case of switching games. The modelling of the (economic) issue of purchasing
right to emit carbon can lead to some nonzero-sum switching game (see e.g. M.
Ludkovski [230]). Djehiche et al. [100] have studied the systems of PDEs with
two inter-connected obstacles of min-max and max-min types. Those systems are
related to the value function of a zero-sum switching game. A lot of assumptions
have to be imposed to ensure that the solutions of the two systems of PDEs exist
and coincide.

Let us now present some results concerning numerical algorithms of the solution.
Indeed there are some studies on such numerical schemes for switching problems. Let
us mention Gassiat et al. [132], Chassagneux et al. [70], Aïd et al. [2], Kharroubi et al.
[188], Chassagneux & Richou [71]. Roughly speaking, in [188] the idea is to solve HJB
equations based on BSDEs with jump constraints and randomization of the control.
And in [70, 71], the authors obtained the missing rate of convergence for Theorem 6.6
(in fact the numerical approximation is based on a discretely reflected version of (6.30)).

It would be interesting to introduce uncertainty in the model. The theory of second
order BSDE is now well posed and is booming. It would be interesting to use this tool
in the optimal switching context.
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Chapter 7

Estimation in fractional diffusion
([VI, VIII, A])

The drift parameter estimation problem with partial observations has been given a
great deal of interest over the last decades. Numerous results have been already reported
in specific models, specially around Hidden Markov models (HMM). Let us mention
papers [33, 37, 101, 123, 139, 176, 222, 303] where the consistency and the asymptotic
normality of the Maximum Likelihood Estimator (MLE) have been discussed. Of course,
this list is far from being complete (see also the references therein).

This chapter and the related papers [VI, VIII, A] are devoted to the large sample
asymptotic properties of the Maximum Likelihood Estimator (MLE) for the signal drift
parameter ϑ in a partially observed and possibly controlled fractional diffusion system.
Actually we consider two problems. For the first statement (controlled, deterministic
and partially observable signal) we establish the asymptotic (for large observation time)
design problem of the input signal which gives an efficient estimator of the drift pa-
rameter. This kind of optimization problem has been treated by many authors, see e.g.
[223, 251, 265] and references therein. Following paper [265], we can separate the ini-
tial problem in two subproblems, when the first subproblem is equivalent to the explicit
computations of the first eigenvalue of a certain self-adjoint operator and the second one
is devoted to the analysis of the asymptotic properties of the MLE. In contrast with the
previous works, we propose to use (for the both subproblems) Laplace transform com-
putations, in particular, the Cameron-Martin formula and the link between the Laplace
transform and the eigenvalues of a covariance operator.

For the second statement we work with a linear Gaussian system, perturbed by fBm
noises. We suppose that the Hurst parameterH is known and it is the same for the signal
X and for the observations Y , which means that the initial observation model is not
Markovian. Again, our goal is to establish the large sample asymptotic properties of the
Maximum Likelihood Estimator (MLE) for the signal drift parameter ϑ. Unfortunately,
the method proposed in [37, 176] can not be applied directly for continuous-time models.

To analyze the large sample asymptotic properties of the MLE, we use the program
proposed in [169]. The main idea of this approach is to deduce strong properties of
MLE from the weak convergence of scaled likelihoods in appropriate functional spaces,
especially the convergence of moments which was not addressed even for discrete time
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HMM.
The explicit expression of the likelihood can be written using the “transformation of

the observation model” method proposed in [189]. Even in our particular situation, this
approach is reduced to the analysis of a non homogeneous non ergodic signal. To pass
this obstacle, again we proposed to use Laplace transform computations based on the
Cameron-Martin formula.

7.1 The setting
We consider real-valued processes X = (Xt, t ≥ 0) and Y = (Yt, t ≥ 0), representing

the signal and the observation respectively, governed by the following linear system of
stochastic differential equation interpreted as integral equation:{

dXt = −ϑXtdt+ u(t)dt+ dV H
t , X0 = 0 ,

dYt = µXtdt+ dWH′
t , Y0 = 0.

Here, V H = (V H
t , t ≥ 0) andWH′ = (WH′

t , t ≥ 0) are independent normalized fractional
Brownian motions (fBm in short) with Hurst parameters H and H ′ in (0, 1) and the
coefficients ϑ ∈ R∗+ and µ 6= 0 are real constants. The unobserved signal process
X = (Xt, t ≥ 0) is controlled by the real-valued function u = (u(t), t ≥ 0). Previous
system has a uniquely defined solution process (X, Y ) which is, due to the well known
properties of the fBm, Gaussian but neither Markovian nor a semimartingale for H 6= 1

2

(see, e.g., [229], page 238).
Suppose that parameter ϑ > 0 is unknown and is to be estimated given the observed

trajectory Y T = (Yt, 0 ≤ t ≤ T ). For a fixed value of the parameter ϑ, let PTϑ denote
the probability measure, induced by (XT , Y T ) on the function space C[0,T ] × C[0,T ] and
let FY be the natural filtration of Y , FYt = σ (Ys, 0 ≤ s ≤ t). Let L(ϑ, Y T ) be the
likelihood, i.e. the Radon-Nikodym derivative of PTϑ , restricted to FYT with respect to
some reference measure on C[0,T ]. The explicit representation of the likelihood function
can be written thanks to the transformation of observation model proposed in [189].

In [VI] we focus on the model where H = H ′:

(7.1)

{
dXt = −ϑXtdt+ u(t)dt , X0 = 0 ,

dYt = µXtdt+ dWH
t , Y0 = 0.

In [VIII] we also present the results concerning the system of stochastic differential
equations: {

dXt = −ϑXtdt+ dV H
t , X0 = 0 ,

dYt = µXtdt+ dWH
t , Y0 = 0.

Since this model was studied by Brouste & Kleptsyna in [49], we don’t discuss this
model here. Finally in the working paper [A], we actually study

(7.2)

{
dXt = −ϑXtdt+ dV H

t , X0 = 0 ,

dYt = µXtdt+ dWt , Y0 = 0.

Here W = (Wt, t ≥ 0) is independent Wiener process, that is H ′ = 1/2.
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Remark 7.1 Note that (7.1) without control u can always be transformed into (7.2).
In other words supposing H ′ = 1/2 in (7.2) can be done w.l.o.g.

7.2 Observation model (7.1)

Let IT (ϑ, u) be the Fisher information,i.e. IT (ϑ, u) = −Eϑ ∂2

∂ϑ2 lnLT (ϑ, Y T ) . The
explicit representation of the likelihood function LT will be written later (see Equation
(7.6)). Let us note here that in order to have the finite Fisher information we should
suppose that the admissible control u belongs to some functional space of controls UT .
Let us therefore note

JT (ϑ) = sup
u∈UT
IT (ϑ, u) .

Our main goal is to find estimator ϑT of the parameter ϑ which are asymptotically
efficient in the sense that, for any compact K ⊂ R+,

(7.3) sup
ϑ∈K
JT (ϑ)Eϑ

(
ϑT − ϑ

)2
= 1 + o(1) ,

as T →∞.

Proposition 7.1 The asymptotical optimal input in the class of controls UT is uopt(t) =
κH√

2λ
tH−

1
2 , where the constants λ and κH are defined in Section 7.2.

As the optimal input does not depend on ϑ, a possible candidate is the Maximum
Likelihood Estimator (MLE) ϑ̂T defined as the maximizer of the likelihood:

ϑ̂T = argmax
ϑ>0
L(ϑ, Y T ) ,

with optimal input u = uopt. MLE reaches efficiency and we deduce its large samples
asymptotic properties:

Theorem 7.1 The MLE is uniformly consistent on compacts K ⊂ Θ, i.e. for any
ν > 0,

lim
T→∞

sup
ϑ∈K

PTϑ
{∣∣∣ϑ̂T − ϑ∣∣∣ > ν

}
= 0 ,

uniformly on compacts asymptotically normal: as T tends to +∞,
√
T
(
ϑ̂T − ϑ

)
=⇒ N

(
0,
ϑ4

µ2

)
which does not depend on H and we have the uniform on ϑ ∈ K convergence of the
moments: for any p > 0,

lim
T→∞

Eϑ
∣∣∣√T (ϑ̂T − ϑ)∣∣∣p = E

∣∣∣∣ϑ2

µ
ζ

∣∣∣∣p
where ζ ∼ N (0, 1). Finally, the MLE is efficient in the sense of (7.3).

The classical case H = 1
2
have been treated in [265]. These results have been proved

in [VI], for H ≥ 1
2
and extended to H ∈ (0, 1) in [VIII].

In the rest of this section, we give some ideas and tricks of the proof of Theorem 7.1.
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Preliminaries

In what follows, all random variables and processes are defined on a given stochastic
basis (Ω,F , (Ft)t≥0, P) satisfying the usual conditions and processes are (Ft)-adapted.
Moreover the natural filtration of a process is understood as the P-completion of the
filtration generated by this process. Here we focus on the case H > 1/2. Nevertheless,
the result is valid for any H ∈ (0, 1) (see Section 7.2.1).

Even if fBm are not martingales, there are simple integral transformations which
change the fBm to martingales (see [257, 262]). In particular, defining for 0 < s < t,

kH(t, s) = κ−1
H s

1
2
−H (t− s)

1
2
−H , KH(t, s) = 2H

d

dt

∫ t

s

rH−
1
2 (r − s)H−

1
2dr,

wH(t) =
1

2λ(2− 2H)
t2−2H

and the constants:

κH = 2HΓ

(
3

2
−H

)
Γ

(
1

2
+H

)
, λ = λH =

HΓ(3− 2H)Γ(H + 1
2
)

2(1−H)Γ(3
2
−H)

and the process

Mt =

∫ t

0

kH(t, s)dWH
s ,

then the process M = (Mt, t ≥ 0) is a Gaussian martingale, called in [257] the funda-
mental martingale whose variance function is nothing but the function wH . Moreover,
the natural filtration of the martingale M coincides with the natural filtration of the
fBm WH .

Following [189], let us introduce Z = (Zt, t ≥ 0) the fundamental semimartingale
associated to Y , namely

Zt =

∫ t

0

kH(t, s)dYs .

Note that Y can be represented as Yt =
∫ t

0
KH(t, s)dZs and therefore the natural filtra-

tions of Y and Z coincide. It can be proved that the following representation holds:

dZt = µQtd〈M〉t + dMt , Z0 = 0 ,

where

Qt =
d

d〈M〉t

∫ t

0

kH(t, s)Xsds .

Moreover, the following equation holds (see e.g. [189]):

dZt = µλ`(t)∗ζtd〈M〉t + dMt , Z0 = 0 ,

where ζ = (ζt, t ≥ 0) is the solution of the ordinary differential equation

(7.4)
dζt

d〈M〉t
= −ϑλA(t)ζt + b(t)v(t), ζ0 = 0 ,
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where v(t) =
d

d〈M〉t

∫ t

0

kH(t, s)u(s)ds and with

`(t) =

(
t2H−1

1

)
, A(t) =

(
t2H−1 1
t4H−2 t2H−1

)
and b(t) =

(
1

t2H−1

)
.

Let us note, for this problem, VT the class of admissible controls

VT =

{
v | 1

T

∫ T

0

|v(t)|2d〈M〉t ≤ 1

}
.

Remark that the following relations between control u(t) and its transformation v(t)
hold:

(7.5) v(t) =
d

d〈M〉t

∫ t

0

kH(t, s)u(s)ds, u(t) =
d

dt

∫ t

0

KH(t, s)v(s)d〈M〉s.

At the first glance, we can set the admissible controls as UT = {u | v ∈ VT}. Note that
these sets are non empty.

Likelihood function and the Ibragimov–Khasminskii program

Let us note ZT = (Zt, 0 ≤ t ≤ T ). We are interested in the explicit representation
of the likelihood function LT (ϑ, ZT ). The classical Girsanov theorem gives the following
equality

(7.6) LT (ϑ, ZT ) = exp

(
µλ

∫ T

0

`(t)∗ζtdZt −
µ2λ2

2

∫ T

0

ζ∗t `(t)`(t)
∗ζtd〈M〉t

)
where ζ = (ζt, t ≥ 0) is the solution of the ordinary differential equation (7.4). In this
case, the Fischer information stands for

IT (ϑ, v) = −Eϑ
∂2

∂ϑ2
lnLT (ϑ, ZT )

= Eϑ
∫ T

0

µ2λ2

(
∂

∂ϑ
`(t)∗ζt

)2

d〈M〉t

=

∫ T

0

µ2λ2

(
∂

∂ϑ
`(t)∗ζt

)2

d〈M〉t (ζ is deterministic)

=

∫ T

0

(
∂ζt
∂ϑ

)∗
µ2λ2`(t)`(t)∗

∂ζt
∂ϑ

d〈M〉t .

The proof is based on the properties of the likelihood ratio [169, Theorem I.10.1]. It
is defined by:

ZT (ϑ1, ϑ2, Z
T ) =

LT (ϑ2, Z
T )

LT (ϑ1, ZT )
.

In the following, we will denote by ZT (h, ZT ) the perturbation of ZT (ϑ, ϑ2, Z
T ), when

ϑ2 = ϑ+ h√
T
. Namely, ZT (h, ZT ) = ZT (ϑ, ϑ+ h√

T
, ZT ).

In order to prove both theorems, it is sufficient to check the three following conditions:
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•
ZT (h, ZT )

law
=⇒ exp

{
h.η − u2

2
I(ϑ)

}
with η ∼ N (0, I(ϑ)) ,

• for some χ > 0:
Eϑ
√
ZT (h, ZT ) ≤ exp

(
−χh2

)
,

• there exists C > 0 such that

Eϑ
(√
ZT (h1, ZT )−

√
ZT (h2, ZT )

)2

≤ C|h1 − h2|2 ,

where I(ϑ) =
µ2

ϑ4
,

Uses of the Laplace transform

From Equation (7.4), this ratio can be written in the following form:

ZT (ϑ1, ϑ2, Z
T ) = exp

(
µλ

∫ T

0

`∗δϑ1,ϑ2dν
ϑ1
t −

µ2λ2

2

∫ T

0

δ∗ϑ1,ϑ2
``∗δϑ1,ϑ2d〈M〉t

)
where δϑ1,ϑ2(t) is the difference ζϑ2

t − ζϑ1
t and (νϑ1

t , t ≥ 0) is defined by:

dνϑ1
t = dZO

t − µλ`(t)∗ζ
ϑ1
t d〈M〉t , νϑ1

0 = 0 .

The behaviour of the likelihood ratio is deduced directly from the computation of the
Fisher information for the optimal input (see [VI]). In the following we explain how we
obtained the asymptotical Fisher information.

From (7.4), we get

ζt = ϕ(t)

∫ t

0

ϕ−1(s)b(s)v(s)d〈M〉s

where ϕ(t) is the fundamental matrix, i.e.

dϕ(t)

d〈M〉t
= −ϑλA(t)ϕ(t) , ϕ(0) = Id ,

and Id is the 2× 2 identity matrix. Therefore

IT (ϑ, v) = µ2λ2

∫ T

0

(
∂ζt
∂ϑ

)∗
`(t)`(t)∗

∂ζt
∂ϑ

d〈M〉t

=

∫ T

0

∫ T

0

KT (s, σ)
s

1
2
−H
√

2λ
v(s)

σ
1
2
−H
√

2λ
v(σ)dsdσ,

where

KT (s, σ) =

∫ T

max(s,σ)

G(t, s)G(t, σ)dt ,
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and
G(t, σ) =

∂

∂ϑ

(µ
2
t

1
2
−H`(t)∗ϕ(t)ϕ−1(σ)b(σ)σ

1
2
−H
)
.

Then

JT (ϑ) = sup
v∈VT
IT (ϑ, v)

= T sup
v∈L2[0,T ], ||v||≤1

∫ T

0

∫ T

0

KT (s, σ)v(s)v(σ)dsdσ

= T sup
v∈L2[0,T ], ||v||≤1

(KTv, v) .

Proposition 7.2

lim
T→+∞

sup
v∈L2[0,T ], ||v||≤1

(KTv, v) =
µ2

ϑ4
.

We obtain that vopt(t) =
√

2λtH−
1
2 , 0 ≤ t ≤ T is optimal in the class VT . As in

[265],
1

T

∫ T

0

|vopt(t)|2d〈M〉t = 1

Using (7.5) we have

uopt(t) =
d

dt

∫ t

0

KH(t, s)vopt(s)d〈M〉s =
κH√
2λ
tH−

1
2 .

7.2.1 From H > 1/2 to H < 1/2

Thanks to [178, Corollary 5.2], for H < 1/2, we have the relation between fBm
processes of indexes H and 1−H:

(7.7) WH
t = ℵH

∫ t

0

(t− s)2H−1 dW 1−H
s , with ℵH =

(
2H

Γ(2H)Γ(3− 2H)

) 1
2

.

Using this relation, we can transform the observation model (7.1) to the following ob-
servation model:

(7.8)

{
dX̃t = −ϑX̃tdt+ ũ(t)dt , X̃0 = 0 ,

dỸt = µX̃tdt+ dW 1−H
t , Ỹ0 = 0 ,

with

X̃t = ℵ1−H

∫ t

0

(t− s)1−2H dXs, Ỹt = ℵ1−H

∫ t

0

(t− s)1−2H dYs ,

and

ũ(t) = ℵ1−H
d

dt

∫ t

0

(t− r)1−2Hu(r)dr = (1− 2H)ℵ1−H

∫ t

0

(t− r)−2Hu(r)dr.

Then, 1 −H > 1
2
and the results of Proposition 7.1 and Theorem 7.1 are valid for any

H ∈ (0, 1). In fact we have to prove that the set of controls UT remains unchanged after
transformation (7.7). In other words we prove
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Lemma 7.1 If ṽ is defined by

ṽ(t) =
d

d〈M1−H〉t

∫ t

0

k1−H(t, s)ũ(s)ds,

then
1

T

∫ T

0

ṽ(s)2d〈M1−H〉s =
1

T

∫ T

0

v(s)2d〈MH〉s.

Proof. Indeed we have

ṽ(t) =
2λ1−H(1− 2H)ℵ1−H

κ1−Ht2H−1

d

dt

∫ t

0

sH−
1
2 (t− s)H− 1

2

(∫ s

0

(s− r)−2Hu(r)dr

)
ds

=
CH
t2H−1

d

dt

∫ t

0

u(r)F

(
r

t− r

)
dr = − CH

t2H−1

∫ t

0

u(r)F ′
(

r

t− r

)
r

(t− r)2
dr

with CH = 2λ1−H(1−2H)ℵ1−H
κ1−H

. Now

F ′ (z) =
(H − 1/2)Γ(1− 2H)Γ(H + 1

2 )

Γ( 3
2 −H)

(1 + z)2H−1

zH+ 1
2

.

Hence

ṽ(t) = − CH
t2H−1

(H − 1/2)Γ(1− 2H)Γ(H + 1
2 )

Γ( 3
2 −H)

∫ t

0

u(r)
r

(t− r)2

(
t

t− r

)2H−1(
t− r
r

)H+1/2

dr

= C̃H

∫ t

0

u(r)r1/2−H(t− r)−1/2−Hdr

=
C̃HκH

1/2−H
t1−2H

2λH

d

d〈MH〉t

∫ t

0

kH(t, r)u(r)dr =
C̃HκH

2λH(1/2−H)
t1−2Hv(t).

Therefore we have:

ṽ(t)
tH−1/2√
2λ1−H

= ĈHv(t)
t1/2−H√

2λH

with

ĈH =
C̃HκH

2
√
λHλ1−H(1/2−H)

.

Straightforward calculus gives ĈH = 1, that achieves the proof. �

For H < 1/2, if u ∈ UT , then ũ is also in UT . Moreover using Proposition 7.1, we ob-
tain that the asymptotical optimal input ũopt for (7.8) will be ũopt(t) =

κ1−H√
2λ1−H

t1/2−H .

Therefore the optimal input for (7.1) will be

uopt(t) = ℵH
d

dt

∫ t

0

(t− r)2H−1ũopt(r)dr = ℵH
κ1−H√
2λ1−H

d

dt

∫ t

0

(t− r)2H−1r1/2−Hdr

= ℵH
κ1−H√
2λ1−H

Γ(2H)Γ(3/2−H)

Γ(1/2 +H)
tH−1/2 =

κH√
2λH

tH−1/2.

Remark that in the case H < 1/2, limt→0 uopt(t) = +∞ (but uopt is still integrable).
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7.3 Observation model (7.2)
The problem is similar to (7.1): parameter ϑ > 0 is unknown and is to be estimated

given the observed trajectory Y T = (Yt, 0 ≤ t ≤ T ). The sketch of the proof is similar.
Using Laplace’s transform and the conditional expectation πt(X) = Eϑ

(
Xt|FYt

)
, we

define LT (a, ϑ1, ϑ2) the Laplace transform of the integral of the quadratic form of the
difference δϑ1,ϑ2(t) = µπϑ2

t (X)− µπϑ1
t (X):

LT (a, ϑ1, ϑ2) = Eϑ1 exp

{
−a

2

∫ T

0

δ2
ϑ1,ϑ2

dt

}
.

The aim is to obtain asymptotic results on this Laplace transform. Since it is difficult
to work with πt(X), we replace it by π∗t (X) the stationnary approximation of πt(X)
defined by

π∗t (X) =

∫ t

0

f1(t− s)dYs,

where f1 minimizes the filtering error

arg inf
f1∈L2(R+)

lim
t→∞

E (Xt − π∗t (X))2 .

Up to now we are blocked by some technical issues1. But recently in a series of papers
[74, 75, 76, 77], Chigansky et al. provide some new and deep results concerning the
asymptotic of several fractional kernels. We hope that these results can help us to
overcome the difficulties concerning this model.

1We do not develop them here.
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Chapter 8

Homogenization ([IX, XXIII, B])

In this chapter we describe the results obtained with Marina Kleptsyna and Andrey
Piatnitski. The goal is to characterize the rate of convergence in the homogenization
problem for a second order divergence form parabolic operator with random stationary
in time and periodic in spatial variables coefficients. We also aim at describing the limit
behaviour of a normalized difference between solutions of the original and homogenized
problems.

To avoid boundary effects we study a Cauchy problem that takes the form

(8.1)

 ∂tu
ε = div

(
a

(
x

ε
,
t

εα

)
∇uε

)
, x ∈ Rd, t > 0,

uε(x, 0) = ı(x).

with α > 0. We assume that the matrix a(z, s) = {aij(z, s)} is uniformly elliptic, (0, 1)d-
periodic in z variable, and random stationary ergodic in s. We denote Y = (0, 1)d and
in what follows identify Y -periodic function with functions defined on the torus Td.

It is known (see [332], [191]) that under these assumptions problem (8.1) admits
homogenization. More precisely, for any ı ∈ L2(Rn), almost surely (a.s.) solutions uε of
problem (8.1) converge, as ε→ 0, to a solution of the homogenized problem

(8.2)

{
∂tu

0 = div
(
aeff∇u0

)
u0(x, 0) = ı(x)

with a constant (non-random) positive definite matrix aeff . The convergence is in L2(Rd×
(0, T )). More detailed description of the existing homogenization results is given in
Section 8.1.

This chapter focuses on the rate of this convergence and on higher order terms of
the asymptotics of uε. Our goal is to study the limit behaviour of the difference uε−u0,
as ε tends to zero.

In the existing literature there is a number of works devoted to homogenization of
random parabolic problems. The results obtained in [200] and [266] for random diver-
gence form elliptic operators also apply to the parabolic case. In the presence of large
lower order terms the limit dynamics might remain random and show diffusive or even
more complicated behaviour. Parabolic operators with random coefficients depending
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both on spatial and temporal variables have been considered in [332]. The papers [53],
[274], [190], [191] focus on the case of time dependent parabolic operators with periodic
in spatial variables and random in time coefficients. The fully random case has been
studied in [275], [16], [17], [153]. One of the important aspects of homogenization theory
is estimating the rate of convergence and optimal estimates for the rate of convergence
is an open issue. For random operators the first estimates have been obtained in [180].
Further important progress in this direction was achieved in the recent works [142],
[141].

8.1 Setting and homogenization result
Let (Ω,F ,P) be a standard probability space equipped with a measure preserving

ergodic dynamical system Ts, s ∈ R. Given a measurable matrix function ã(z, ω) =
{ãij(z, ω)}di,j=1 which is periodic in z variable with a period one in each coordinate
direction, we define a random field a(z, s) by

a(z, s) = ã(z, Tsω).

Then a(z, s) is periodic in z and stationary ergodic in s. A very important particular
case is the diffusion case where a(z, s) has the form

(8.3) a(z, s) = a(z, ξs),

where a = a(z, y) is a matrix periodic in z and (ξs, s ∈ R) is a stationary diffusion
process in Rn.

We consider the Cauchy problem (8.1) in Rd × (0, T ], T > 0:
∂uε

∂t
= div

(
a
(x
ε
,
t

εα

)
∇uε

)
uε(x, 0) = ı(x)

with a small positive parameter ε, α > 0 being a fixed number. We assume that the
coefficients in (8.1) possess the following properties.

(H1) The matrix a(z, s) = {aij(z, s)}d
i,j=1

is symmetric and satisfies uniform ellipticity
condition, that is there exists λ > 0 such that for all (z, s) the following inequality
holds :

λ|ζ|2 ≤ a(z, s)ζ · ζ ≤ λ−1|ζ|2, ζ ∈ Rd.

Now we remind of the existing homogenization results for Problem (8.1). To this
end we first introduce the so-called cell problem. For α = 2 it reads

(8.4) ∂sχ(z, s) = div
(
a(z, s)(I +∇χ(z, s)

)
, (z, s) ∈ Td × (−∞,+∞)

with I being the unit matrix; here χ = {χj}dj=1 is a vector function. In what follows for
the sake of brevity we denote diva = div(aI) = ∂

∂zi
aij(z). Also, we assume summation
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over repeated indices. Under our setting this equation has a stationary periodic in y
vector-valued solution. This solution is unique up to an additive constant. We define

(8.5) aeff = E
∫
Td
a(z, s)

(
I +∇χ(z, s)

)
dz.

Notice that due to stationarity the expression on the right-hand side does not depend
on s.

If α < 2, the cell problem reads

(8.6) div
(
a(z, s)(I +∇χ(z, s)

)
= 0, z ∈ Td;

here s is a parameter. This equation has a unique up to a multiplicative constant
solution. We then set

(8.7) aeff
− = E

∫
Td
a(z, s)

(
I +∇χ(z, s)

)
dz.

For α > 2 we first define a(z) = E(a(z, s)), then introduce a deterministic function
χ(z) as a periodic solution to the problem

(8.8) div
(
a(z)(I +∇χ(z)

)
= 0, z ∈ Td,

and finally define

(8.9) aeff
+ =

∫
Tn

a(z)
(
I +∇χ(z)

)
dz.

The following statement has been obtained in [332], [190] and [95].

Theorem 8.1 Let ı ∈ L2(Rd), and assume that Condition (H1) holds. Then a solution
uε of problem (8.1) converges a.s. in L2(Rd × (0, T )) to a solution of the limit problem
(8.2) with

• aeff given by (8.5) if α = 2 ;

• aeff = aeff
− defined in (8.7) if α < 2 ;

• aeff = aeff
+ defined in (8.9) if α > 2.

Intuitively or roughly speaking, if α < 2, the lower diffusive scaling implies that we first
homogenize the space part (Equation (8.6)) and then we take the expectation to get aeff .
In the upper diffusive scaling (α > 2), we do the converse: first we take the expectation
and then we homogenize the matrix a (Equation (8.9)). For the diffusive scaling (α = 2)
the two operations are done simultaneously (Equation (8.5)).
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8.1.1 The diffusion case

In this section we consider the case (8.3), namely

a(z, s) = a(z, ξs),

and we consider the particular case of (8.1):

(8.10)


∂uε

∂t
= div

(
a
(x
ε
, ξ t

εα

)
uε
)

uε(0, x) = ı(x)

with a diffusion process ξs, s ∈ (−∞,+∞), with values in Rn (or on a compact manifold).
This process is defined on a probability space (Ω,F ,P). The corresponding Itô equation
reads

dξt = b(ξt)dt+ σ(ξt)dBt,

here B stands for a standard n-dimensional Wiener process. The infinitesimal generator
of ξ is denoted by L:

Lf(y) = qij(y)
∂2

∂yi∂yj
f(y) + b(y) · ∇f(y), y ∈ Rn,

with a n× n matrix q(y) = 1
2
σ(y)σ∗(y). We also introduce the operator

Af(x) = divx (a (x, y)∇xf) ;

here y is a parameter. Applied to a function f(z, y), L acts on the function y 7→ f(z, y)
for z fixed, and A acts on the function z 7→ f(z, y) for y fixed.

In the diffusion case, we suppose that the following conditions hold true.

(I1) The coefficients a and q are uniformly bounded as well as their first order deriva-
tives in all variables:

|a(z, y)|+ |∇za(z, y)|+ |∇ya(z, y)| ≤ C1,

|q(y)|+ |∇q(y)| ≤ C1.

The function b as well as its derivatives satisfy polynomial growth condition:

|b(y)|+ |∇b(y)| ≤ C1(1 + |y|)N1 .

(I2) Both A and L are uniformly elliptic:

C2I ≤ a(z, y), C2I ≤ q(y), with C2 > 0,

where I stands for a unit matrix of the corresponding dimension.

(I3) There exist N2 > −1, R > 0 and C3 > 0 such that

b(y)
y

|y|
≤ −C3|y|N2

for all y, |y| > R.
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Remark that (I1) and (I2) imply (H1).
Let us recall that according to [275] (see also [278, 279]), under our setting, a diffusion

process ξ with the generator L has an invariant measure in Rn that has a smooth density
ρ = ρ(y). For any N > 0 it holds

(1 + |y|)Nρ(y) ≤ CN

with some constant CN . The function ρ is the unique up to a multiplicative constant
bounded solution of the equation L∗ρ = 0; here ∗ denotes the formally adjoint operator.
We assume that the process ξt is stationary and distributed with the density ρ. Then

Ef(z, ξs) =

∫
Rn
f(z, y)ρ(y)dy.

In the rest of this chapter

• f denotes the mean w.r.t. the invariant measure ρ;

• 〈f〉 is the mean on the torus.

Let us recall the result of [190] (see also [54]).

Theorem 8.2 (Theorem 8.1 for the diffusion case) Under Assumptions (I1)–(I3),
the solution uε of (8.10) converges almost surely in the space L2(Rd × (0, T )) to the so-
lution of Problem (8.2) with

• for α = 2, Equation (8.5) becomes

aeff =

∫
Rn

∫
Td

a(I +∇zχ̂)π(y) dzdy,

χ̂ being the solution of the following equation

(8.11) (A+ L)χ̂ = −divza(z, y).

• for 0 < α < 2, the formula (8.7) for aeff remains unchanged, and χ̂ satisfies:

(8.12) Aχ̂ = −divza(z, y);

• for α > 2, the formula (8.9) becomes

aeff = 〈a(1 +∇zχ̂)〉,

and χ̂ is a solution of

(8.13) Aχ̂ = div (a (z)∇χ̂) = −diva(z).

Remark 8.1 We emphasize that all formulae defining aeff are consistent. For example
for α = 2 we have:

E
∫
Td
∇zχ

i(z, s) · a(z, ξs)e
j dz = E

∫
Td
∇zχ̂

j(z, ξs) · a(z, ξs)e
i dz,

where ej stands for the j-th coordinate vector in Rd.
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8.2 Description of our results
The key point of Theorems 8.1 and 8.2 is that the homogenized equation (8.2) is the

same for any α and is deterministic. Only the effective matrix aeff changes. Our aim is
to study the difference uε − u0. Formally we define

(8.14) U ε(x, t) =
1

εα/2

[
uε(x, t)− u0(x, t)−

∑
j≥1

εcjCj

(
x, t,

x

ε
,
t

εα

)]

where cj are positive constants and Cj are correctors such that U ε converges in law in
L2(Rd × (0, T ))1 to a solution of a SPDE with constants coefficients and an additive
noise. This SPDE reads

(8.15)

 dU0 = div
(

aeff∇U0 + µ
∂3

∂x3
u0
)
dt+ Λ1/2 ∂

2

∂x2
u0 dWt,

U0(x, 0) = 0;

where U0 is a scalar-valued function of x and t, aeff is the homogenized coefficients
matrix, u0 is a solution of (8.2),Wt = Wt,ij is a standard d2-dimensional Wiener process,
and µ = µijk and Λ1/2 = (Λ1/2)ijkl are constant tensors with three and four indices,
respectively, so that the two driving terms in (8.15) take the form

µ
∂3

∂x3
u0 = µijk

∂3u0

∂xi∂xj∂xk
, Λ1/2 ∂

2

∂x2
u0 dWt = (Λ1/2)ijkl

∂2u0

∂xi∂xj
dWt,kl;

Recall that here and in what follows we assume summation over repeated indices.
Remark that the coefficient µ in the SPDE only appears for α = 2. The power

constants cj and the correctors Cj depend on the value of α.

8.2.1 First additional conditions

If Theorem 8.1 holds under the only assumption (H1), the rate of convergence is
proved with some additional conditions. Some of them depend on α and are precised in
the related next sections. But other hypotheses hold for any α.

The first assumption concerns the initial condition. We suppose that ı ∈ C∞0 (Rd).
In fact, this condition can be essentially relaxed. We can only suppose that ı is J0 + 1
times continuously differentiable, and for any K > 0 there is CK > 0 such that∑

|j|≤N0

∣∣∣ ∂jı

(∂x1)j1 . . . (∂xd)jd
(x)
∣∣∣ ≤ CK(1 + |x|)−K

for all x ∈ Rd, where the sum is taken over all j = (j1, . . . , jd) with
d∑
i=1

ji ≤ J0. The

integer J0 is equal to2 3 if α = 2, b α
2(2−α)

c + 1 if α < 2 and bα
2
c if α > 2. It should be

1The topology depends in fact on the value of α.
2b·c stands for the integer part.
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noted that under this condition on ı, for any K > 0 and N0 ∈ N, there is CK,N0(T ) > 0
such that a solution of problem (8.2) satisfies the estimate

(8.16)
∑
|j|≤N0

∣∣∣ ∂j

(∂x1)j1 . . . (∂xd)jd
u0(x, t)

∣∣∣ ≤ CK,N0(T )(1 + |x|)−K

for all (x, t) ∈ Rd × [0, T ]. Hence in the sequel the regularity of u0 is never discussed.
But we will see that the derivatives of u0 appear in the correctors of U ε. Therefore this
condition cannot be weaken.

The second hypothesis is a mixing condition. In the SPDE (8.15), the Brownian part
follows from an invariance principle and thus from a mixing property. As the regularity
condition on ı, this assumption cannot be easily weaken. In order to formulate this
condition we introduce F≤s and F≥s the σ-algebras generated by {a(z, t) : z ∈ Td, t ≤ s}
and {a(z, t) : z ∈ Td, t ≥ s}, respectively. We define the strong mixing coefficient3 γ
by:

γ(r) = sup
∣∣P(A ∩B)− P(A)P(B)

∣∣,
where the supremum is taken over all A ∈ F≤0 and B ∈ F≥r. We then assume that

(H2) γ1/2 is integrable: ∫ ∞
0

(γ(r))1/2dr < +∞.

Remark 8.2 Condition (H2) is somehow implicit. In applications various sufficient
conditions are often used.

For more properties concerning mixing coefficients and the related results, see [103, 172].

Remark 8.3 Notice that conditions (I1)–(I3) need not imply condition (H2). In gen-
eral, mixing properties that follow from (I1)–(I3) are weaker than those stated by (H2).
However, in the diffusive case these conditions are sufficient for the CLT type results
used in the proofs below. This makes the diffusive case interesting. It should also be
noted that in this case the conditions are given in terms of the process generator, which
might be more comfortable in applications.

The third condition concerns the smoothness of the parameters. We assume that

(H3) The realizations aij(z, s) are smooth. For any N ≥ 1 and k ≥ 1 there exist CN,k
such that

E ‖aij‖kCN (Td×[0,T ]) ≤ CN,k;

Let us emphasize that Condition (H3) cannot be satisfied in the diffusion case, since
we require also regularity in time. For the diffusion case (Equation (8.3)), we add the
next condition.

3Often called α-mixing, but here α denotes the time scaling.
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(I4) The matrix a, the matrix function σ and vector-function b are smooth. Moreover,
for each N > 0 there exists CN > 0 such that

‖a‖CN (Td×Rn) ≤ CN , ‖σ‖CN (Rn) ≤ CN , ‖b‖CN (Rn) ≤ CN .

Definition 8.1 We say that

• For the dynamical system, Condition (H) (resp. (H*)) holds if ı is regular and
(H1), (H2) (resp. (H) and (H3)) are fulfilled.

• For the diffusion case, Condition (I) (resp. (I*)) holds if ı is regular and (I1) –
(I3) (resp. (I) and (I4)) are satisfied.

8.2.2 Comparison between the three cases

But more important is the scheme to obtain the convergence of U ε.

• For the diffusive case (α = 2), we are able to prove convergence for a very general
dynamical system, provided that (H) or (I) holds (see Theorems 8.3 and 8.4).
There is only one corrector in U ε with c1 = 1 and

C1

(
x, t,

x

ε
,
t

εα

)
= χ

(
x

ε
,
t

ε2

)
· ∇u0(x, t).

Note that the proof is similar in both cases (dynamical system and diffusion case)
since the regularity condition is not implied.

• When α < 2, we distinguish two sub-cases. Either the dynamical system is smooth
(condition (H*)), especially in time and the proof of Theorem 8.6 is similar to the
diffusive case (α = 2). Or the diffusion case holds, that is a(z, s) = a(z, ξs) with
assumption (I*). Under this setting, we can give a complete proof when α ≤ 1 or
in dimension d = 1.

In any case (diffusion or not), the constants cj are equal to j(2 − α) and the
correctors take the form

Cj

(
x, t,

x

ε
,
t

εα

)
= uj(x, t),

where uj are smooth functions (defined by (8.47)). The number of correctors is
equal to J0 = b α

2(2−α)
c + 1 and increases when α goes to 2. Let us mention that

according to the result of Theorem 8.1, the first correctors χ coincide in both
sub-cases. It is interesting to observe that the higher order correctors need not
coincide4.

4In (8.47), the matrices ak,eff need not to be equal.
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• For α > 2, we can prove the convergence only for the diffusion case and in dimen-
sion d = 1 (Theorem 8.5). The formal expansion of uε leads to a SPDE with a
large term5, basically of the form

1

ε
Kj

(
x, t,

x

ε
,
t

εα

)
dBt.

Unfortunately to control this term, we use a trick valid only in dimension 1. And
we don’t have any other hint in mind.

In U ε there are two different scales. In the first one, the constants are integers
cj = j and the correctors are:

Cj

(
x, t,

x

ε
,
t

εα

)
= uj(x, t) +

j∑
`=1

χ`
(x
ε

)
∂`xu

j−` (x, t) .

The number of such terms is given by J0 = bα
2
c and increases when α tends to

+∞. The second scale contains J1 = b 1
α−2

+ 1
2
c terms with powers cj equal to

j(α− 2) and with smooth correctors vj(x, t). To better understand the role of α,
let us distinguish three cases:

– 2 < α < 4: J0 = 1 and J1 ≥ 1. J1 tends to +∞ when α goes to 2. The
powers j(α− 2) of ε are non integer (except if α = 3).

– α = 4 (kind of a critical value): J0 = 2 and J1 = 1. There are only two
correctors in U ε with cj = 1 or 2.

– α > 4: J1 = 0. The scaling is given by the powers εj only.

In the rest of this chapter we give more details on those results. To understand the
restrictions when α 6= 2, we give an idea of the proof when α = 2 for a general dynamical
system. Since the time regularity is not used in this case, we deduce almost immediately
the same result for the diffusion case. Then for α < 2, if the regularity condition (H3)
holds, a similar result is proved. However when there is no time regularity, we can
prove convergence only in dimension 1. And for α > 2, a similar issue appears, which is
overcome again only in dimension 1. The key problem is due to some large martingale
terms. To control them we use some trick valid only in dimension one. Finally we
present a result concerning the fundamental solution of a heat SPDE. This result is new
and interesting by itself. At the beginning we hoped we could use it to fill the gap for
α < 2.

8.3 The case α = 2 ([IX])
We begin with the general dynamical system and Equation (8.1). We recall that the

equation (8.4)
∂sχ(z, s) = divz

(
a(z, s)

(
∇zχ(z, s) + I

))
5For α < 2, we have a similar term but with ε1−α in front, instead of ε−1.
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has a unique up to an additive (random) constant periodic in z and stationary in s
solution (see [191], [95]). Thus, the gradient ∇zχ is uniquely defined. The principal
corrector takes the form εχ

(
x
ε
, t
ε2

)
· ∇u0(x, t). We study the limit behaviour of the

expression

(8.17) U ε(x, t) :=
uε(x, t)− u0(x, t)

ε
− χ

(
x

ε
,
t

ε2

)
· ∇u0(x, t).

For generic stationary ergodic coefficients a(z, s) the family {U ε} needs not be compact
or tight in L2(Rd × (0, T )). Nevertheless we prove the next result.

Theorem 8.3 Under the assumption (H), the function U ε converges in law, as ε goes
to 0, in the space L2(Rd × (0, T )) to the solution U0 of SPDE (8.15) dU0 = div

(
aeff∇U0 + µ

∂3

∂x3
u0
)
dt+ Λ1/2 ∂

2

∂x2
u0 dWt,

U0(x, 0) = 0.

Notice that under proper choice of an additive constant the mean value of χ(z, s) is
equal to zero. Therefore, the function χ

(
x
ε
, t
ε2

)
∇u0(x, t) converges a.s. to zero weakly in

L2(Rd× (0, T )), as ε→ 0. Therefore, in the weak topology of L2(Rd× (0, T )), the limit
in law of the normalized difference ε−1(uε(x, t)− u0(x, t)) coincides with that of U ε.

Let us give the explicit value of the parameters of (8.15). Recall that aeff is defined
by (8.5). Letting

(8.18) Ψ1(s) =

∫
Tn

{a(z, s)(I +∇zχ(z, s))− aeff} dz,

the tensor Λ1/2 is defined as the square root of the d2 × d2 symmetric and positive
semi-definite matrix Λ:

(8.19) Λijkl =

∞∫
0

E
(
Ψij

1 (0)Ψkl
1 (s) + Ψkl

1 (0)Ψij
1 (s)

)
ds.

We also define

(8.20) Ψ2(z, s)={a(z, s)(I +∇zχ(z, s))−aeff}−Ψ1(s) + divz
(
a(z, s)⊗ χ(z, s)

)
with

divz
(
a(z, s)⊗ χ(z, s)

)
=
{ ∂

∂zi
(
aij(z, s)χk(z, s)

)}d
i,j,k=1

,

and χij2 (z, s) is a stationary zero mean solution of the equation

(8.21) ∂sχ
ij
2 (z, s)− divz

(
a(z, s)∇zχ

ij
2 (z, s)

)
= Ψij

2 (z, s).

Then the constant tensor µ = {µijk}di,j,k=1 is defined by

(8.22) µ = E
∫
Td

{
− aeff ⊗ χ(z, s) + a(z, s)⊗ χ(z, s) + a(z, s)∇zχ2

(z, s)
}
dz

199



where
a(z, s)⊗ χ(z, s) =

{
aij(z, s)χk(z, s)

}d
i,j,k=1

and
a(z, s)∇zχ2

(z, s) = {aij(z, s)∂z`χ`k2 (z, s)}di,j,k=1.

8.3.1 Idea of the proof

We deal with the formal asymptotic expansion of a solution of Problem (8.1). We
use it in order to understand the structure of the leading terms of the difference uε−u0.
As usually in the multi-scale asymptotic expansion method we consider z = x/ε and
s = t/ε2 as independent variables and use repeatedly the formulae

∂
∂xj
f
(
x, x

ε

)
=
(

∂
∂xj
f(x, z) + 1

ε
∂
∂zj
f(x, z)

)
z=x

ε

,

∂
∂t
f
(
t, t
ε2

)
=
(
∂
∂t
f(t, s) + 1

ε2
∂
∂s
f(t, s)

)
s= t

ε

.

We represent a solution uε as the following asymptotic series in integer powers of ε:

(8.23) uε(x, t) = u0(x, t) + εu1
(
x, t,

x

ε
,
t

ε2

)
+ ε2u2

(
x, t,

x

ε
,
t

ε2

)
+ . . . ;

here all the functions uj(x, t, z, s) are periodic in z. The dependence in s is not always
stationary.

Substituting the expression on the right-hand side of (8.23) for uε in (8.1) and
collecting power-like terms in (8.1) yields

(ε−1) : ∂su
1 − divz

(
a(z, s)∇zu

1
)

= −divz
(
a(z, s)∇xu

0
)
.

(ε0) :
∂su

2 − divz
(
a(z, s)∇zu

2
)

= −∂tu0 + divx
(
a(z, s)∇xu

0
)

+divz
(
a(z, s)∇xu

1
)

+ divx
(
a(z, s)∇zu

1
)
.

(ε1) :
∂su

3 − divz
(
a(z, s)∇zu

3
)

= −∂tu1 + divx
(
a(z, s)∇xu

1
)

+divz
(
a(z, s)∇xu

2
)

+ divx
(
a(z, s)∇zu

2
)
.

In equation (ε−1) the variables x and t are parameters. The fact that the right-hand
side of the equation is of the form [divz

(
a(z, s)] · ∇xu

0 suggests that

u1(x, t, z, s) = χ(z, s)∇xu
0(x, t)

with the vector-function χ = {χj(z, s)}nj=1 solving equation (8.4). And we obtain the
formal form (8.17) of U ε. It can be proved that χ ∈ (L∞(R×Td))d∩ (L2

loc(R;H1(Td)))d,
and

(8.24) ‖χj‖L∞(R×Td) ≤ C, ‖χj‖L2(R;H1(Td)) ≤ C, j = 1, . . . , d.

with a deterministic constant C. For the sake of definiteness we assume from now on
that ∫

Td
χ(z, s)dz = 0.
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We turn to the terms of order ε0. Recall that u0 satisfies problem (8.2) with aeff

given by (8.5). Then using the quantities Ψ1 and Ψ2 defined respectively by (8.18) and
(8.20), we rewrite equation (ε0) as follows

(8.25) ∂su
2 − divz

(
a(z, s)∇zu

2
)

=
(
Ψij

1 (s) + Ψij
2 (z, s)

) ∂2

∂xi∂xj
u0.

Up to now we follow the same strategy as in the periodic case. But since the process∫ s
0

Ψ1(r)dr need not be stationary, we cannot follow any more this scheme. Instead, we
consider the equation

(8.26)


∂V ε

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇V ε

)
+ Ψij

1

( t
ε2

) ∂2

∂xi∂xj
u0(x, t)

V ε(0, x) = 0.

This suggests to replace ε2u2 in (8.23) by

ε2u2(x, t) = V ε(x, t) + ε2χ2

(x
ε
,
t

ε2

) ∂2

∂x2
u0(x, t)

where χij2 (z, s) is a stationary zero mean solution6 of the equation (8.21) with

(8.27) ‖χij
2
‖L2([0,1];H1(Td)) + ‖χij

2
‖L∞((−∞.+∞);L2(Td)) ≤ C, i, j = 1, . . . , d,

By its definition, Ψ1(s) is a stationary zero mean process. Denote

ζ ij(s) =

∫ s

0

Ψij
1 (r)dr.

Estimates (8.24) imply that

‖Ψij
1 ‖L2(0,1) ≤ C, i, j = 1, . . . , d.

It follows that under the mixing condition (H2) it holds∫ ∞
0

‖E{Ψ1(s) | FΨ2,1

≤0 }‖(L2(Ω)) d2
ds ≤ C

∫ ∞
0

(
e−νs/2 + ρΨ1(s/2)

)
dy <∞.

Therefore, the invariance principle holds for this process (see [172, Theorem VIII.3.79]),
that is for any T > 0

(8.28) εζ
( ·
ε2

)
−→
ε→0

Λ1/2W·

in law in the space (C[0, T ])
d2

where Λ is given by (8.19). Here W is a standard d2-
dimensional Wiener process. The next result describes the behavior of V ε and is a
consequence of (8.28) and the fact that u0(x, t) is a smooth deterministic function that
satisfies estimate (8.16).

6Again the existence of χ2 can be proved as for χ.
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Lemma 8.1 The functions ε−1V ε converge in law, as ε→ 0, in the space C((0, T );L2(Rd))
to the unique solution of the following SPDE with a finite dimensional additive noise:

(8.29)

 dV 0 = div(aeff∇V 0)dt+
(
Λ1/2

)ijkl ∂2

∂xi∂xj
u0(x, t)dWt,kl

V 0(0, x) = 0.

Now we proceed with Equation (ε1). Its right-hand side can be rearranged as follows:

Ψ3(z, s)
∂3

∂x3
u0(x, t)

=
{
− aeff ⊗ χ(z, s) + a(z, s)⊗ χ(z, s) + divz[a(z, s)⊗ χ2(z, s)]

+a(z, s)∇zχ2(z, s)
} ∂3

∂x3
u0(x, t)

here and in what follows the symbol ∂3

∂x3u
0(x, t) stands for the tensor of third order

partial derivatives of u0, that is ∂3

∂x3 =
{

∂3

∂xi∂xj∂xk

}d
i,j,k=1

; we have also denoted

a(z, s)⊗ χ(z, s) =
{
aij(z, s)χk(z, s)

}d
i,j,k=1

and
divz[a(z, s)⊗ χ2(z, s)] =

{
∂zi [a

ij(z, s)χkl2 (z, s)]
}d
j,k,l=1

.

We introduce the tensor µ by (8.22) and consider the following problems:

(8.30)


∂Ξε

1

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Ξε

1

)
+
(

Ψ3

(x
ε
,
t

ε2

)
− µ

) ∂3

∂x3
u0(x, t)

Ξε
1(x, 0) = 0,

and

(8.31)


∂Ξε

2

∂t
= div

(
a
(x
ε
,
t

ε2

)
∇Ξε

2

)
+ µ

∂3

∂x3
u0(x, t)

Ξε
2(0, x) = 0

with

µ
∂3

∂x3
u0 = µijk

∂3u0

∂xi∂xj∂xk
, Ψ3

(x
ε
,
t

ε2

) ∂3

∂x3
u0 = Ψijk

3

(x
ε
,
t

ε2

) ∂3u0

∂xi∂xj∂xk
.

Notice that Ξε
1 and Ξε

2 are scalar-valued functions and we replace ε3u3 in (8.23) by
ε(Ξε

1 + Ξε
2).

According to [332], problem (8.31) admits homogenization. In particular, Ξε
2 con-

verges a.s. in L2(Rd × (0, T )) to a solution of the following problem:

(8.32)


∂Ξ0

∂t
= div

(
aeff∇Ξ0

)
+ µ

∂3

∂x3
u0(x, t)

Ξ0(0, x) = 0.

The process Ξε
1 does not contribute in the limit.
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Lemma 8.2 The solution of problem (8.30) tends to zero a.s., as ε → 0, in L2(Rd ×
[0, T ]). Moreover,

lim
ε→0

E
(
‖Ξε

1‖2
L2(Rd×[0,T ])

)
= 0.

Now let us summarize what we have obtained up to now. Coming back to (8.23),
we have

uε(x, t) = u0(x, t) + εχ
(x
ε
,
t

ε2

)
∇u0(x, t) + V ε(x, t) + εΞε

2(x, t)

+ ε2χ2

(x
ε
,
t

ε2

) ∂2

∂x2
u0(x, t) + εΞε

1(x, t) + . . .

To finish the story with the asymptotic expansion, we need to observe the initial con-
dition at the level ε1. In order to fix this problem we introduce one more term of order
ε1 in the previous expansion:

εI
(x
ε
,
t

ε2

)
∇u0(x, t)

where

(8.33)
∂I
∂s

= div
(
a(z, s)∇I

)
, I(0, z) = −χ(0, z).

Lemma 8.3 The solution of problem (8.33) decays exponentially as s→∞. We have

‖I(·, s)‖
L∞(Td)

≤ Ce−νs, ‖I‖
L∞([s,s+1];H1(Td))

≤ Ce−νs

Proof. The desired statement is an immediate consequence of the fact that
∫
Td I(z, s)dz =

∫
Td I(z, 0)dz =

0, the maximum principle and the parabolic Harnack inequality (see [191] for further details). �

To finish the proof, we define

Rε(x, t) =
1

ε

(
uε(x, t)− u0(x, t)− εχ

(x
ε
,
t

ε2

)
∇u0(x, t)

)
− 1

ε
V ε(x, t)− Ξε

2(x, t)

− I
(x
ε
,
t

ε2

)
∇u0(x, t)− εχ2

(x
ε
,
t

ε2

) ∂2

∂x2
u0(x, t)− Ξε

1(x, t).

We prove that Rε converges to zero7 a.s. in L2(Rd × (0, T )) and with Estimate (8.27),
Lemmata 8.2 and 8.3, the last three terms in the definition of Rε tend to zero and from
Lemma 8.1 and the convergence to Ξ0 satisfying (8.32), we deduce the conclusion of
Theorem 8.3.

Now we can formulate the same result as Theorem 8.3 under the diffusion setting
(8.3):

a(z, s) = a(z, ξs).

Recall that χ̂ is the solution of (8.11).
7The proof does not follow directly but is somehow similar to the arguments for Lemma 8.2.
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Theorem 8.4 (Theorem 8.3 for the diffusion case) Let assumption (I) be fulfilled.
Then the function U ε defined by:

U ε(x, t) :=
uε(x, t)− u0(x, t)

ε
− χ̂

(x
ε
, ξ t

ε2

)
· ∇u0(x, t)

converges in law, as ε→ 0, in the space L2(Rd × (0, T )) to the solution of (8.15).

Proof. The arguments used in the proof of Theorem 8.3 also apply in the case under consideration.
We used assumption (H2) only once, when justified convergence (8.28). Thus, this convergence should
be reproved under our standing assumptions.

Lemma 8.4 Under assumptions (I1)–(I3) for any K > 0 there exists CK such that the following
estimate holds

‖E{Ψ1(s) | F≤0}‖L2(Ω)
≤ CK

(
e−νs/2 + (1 + s)−K

)
, ν > 0;

the function Ψ1 has been defined in (8.18).

From the previous lemma it follows that the invariance principle holds for the process ζ(s) (see
[171, Theorem VIII.3.79]), that is (8.28) holds for any T > 0. The rest of proof of Theorem 8.4 is
exactly the same as that of Theorem 8.3. �

To summarize the diffusive case α = 2, we need only one corrector χ to obtain the
convergence of

U ε(x, t) :=
1

ε

[
uε(x, t)− u0(x, t)− εχ

(
x

ε
,
t

ε2

)
· ∇u0(x, t)

]
to a non trivial random limit, namely the solution of SPDE (8.15).

8.4 The diffusion case for α 6= 2 ([XXIII])
We also consider the special case of diffusive dependence on time. We assume in

this case that (8.3) holds, that is a(z, s) = a(z, ξs), where (ξt, t ≥ 0) is a stationary
diffusion process in Rn and a(z, y) is a periodic in z smooth deterministic function. It
should be emphasized that Theorem 8.6 does not apply because the coefficients aij do
not possess the required regularity in time. That is why in the diffusive case we have to
use a different approach and provide another proof of convergence.

Let us give some ideas of the proof. First we define the expansion Eε of solution uε
and the discrepancy

Rε(x, t) = ε−α/2 [uε(x, t)− Eε(x, t)] .
The goal is to prove the convergence of Rε in a suitable space to some non trivial and
random limit U0. The convergence of U ε can be deduced easily from Rε (we add extra
small terms in Eε to ensure the proof of convergence).

This formal expansion of uε gives the sequences of constants ak,eff and ak,eff and of
smooth functions vk and uk. Note that the functions wk in the definition of vk will be
left as free parameters in this first part. The rest Rε contains with large parameters (as
ε tends to zero), both in its dynamics and, for α > 2, in its initial condition.Therefore
Rε is split into five terms Rε = rε + řε + r̂ε + r̃ε + ρε such that:
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• The dynamics of rε contains a large martingale term with a power ε1−α if α < 2
and ε−1 if α > 2. This term converges to zero for α < 2 and to U0 for α > 2.

• řε appears only for α < 2 and converges to U0.

• r̂ε exists only when α > 2 and converges in a weak topology to zero.

• r̃ε converges in a strong topology to zero.

• The last term ρε deals with the initial condition on Rε and contains large order
terms when α > 2. We prove that it also converges to zero.

Let us emphasize that in this section the dimension d plays no role and some terms in
Eε may be negligible depending on the value of α.

The main trouble comes from the convergence of rε. In the dynamics of Rε, there
is a martingale term with large parameters, at least when α > 1. The free parameters
wk are used here to obtain the weak convergence to zero if α < 2 or to the limit U0

if α > 2. Roughly speaking, we need wk to obtain a uniform bound in H1(R) of the
indefinite integral of Rε. Here we widely use the fact that d = 1.

For α > 2, a second issue comes from the initial condition on Rε. Again we give a
development of these terms and together with the properties of these expansions. Then
we prove that from our particular choice of the initial condition on uk, it is possible
to define some constants Ik such that the initial condition of Rε does not contribute
in the limit equation, that is ρε converges to zero in a strong sense. For this part, the
dimension d could be any positive integer.

8.4.1 The case α < 2

Here we assume that (I*) hold. Then χ0 = χ̂ = χ̂(z, y) is a periodic solution of the
equation

(8.34) divz
(
a(z, y)∇zχ̂(z, y)

)
= −divza(z, y);

here y ∈ Rn is a parameter. We choose an additive constant in such a way that∫
Td χ̂(z, y) dz = 0. Let us emphasize that it follows from (8.6) and (8.34) that the
zero order correctors χ and χ̂ coincide in both settings: χ(z, s) = χ̂(z, ξs). The effective
matrix is again given by (8.7):

aeff = E
∫
Td

(
I + a(z, ξs)

)
∇zχ̂(z, ξs) dz.

Recall that the process ξt is stationary and distributed with the density ρ. The effective
matrix can be written here as follows:

aeff =

∫
Rn

∫
Td

(
a(z, y) + a(z, y)∇zχ

0(z, y)
)
ρ(y) dzdy.

Higher order correctors are defined as periodic solutions of the equations

(8.35) divz
(
a(z, y)∇zχ

j(z, y)
)

= −Lyχj−1(z, y), j = 1, 2, . . . , J0.
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Notice that
∫
Td χ

j−1(z, y) dz = 0 for all j = 1, 2, . . . , J0, thus the compatibility condition
is satisfied and the equations are solvable. Here (I4) is used.

Remark 8.4 The solutions χj defined by (8.35) satisfy the estimate: for any N > 0
there exists CN such that

‖χj‖CN (Td×Rn) ≤ CN .

Remark 8.5 We have already mentioned that according to (8.6) and (8.34) the zero
order correctors coincide in both studied cases. It is interesting to compare the correctors
defined in (8.35) with the ones given by (8.47) and to observe that the higher order
correctors need not coincide.

We introduce the matrices

ak,eff =

∫
Rn

∫
Td

[
a(z, y)∇zχ

k(z, y) +∇z

(
a(z, y)χk(z, y)

)]
ρ(y) dzdy, k = 1, 2, . . . ,

and the functions uj = uj(x, t) are defined again by (8.50) with an additional free
parameter wj: uj(x, 0) = 0 and

∂

∂t
uj = div(aeff∇uj) +

j∑
k=1

{ak,eff}im ∂2

∂xi∂xm
uj−k + wj

The functions wj are smooth functions and defined recursively by w1 = 0 and

(8.36) ∀k ≥ 0, wk+2(x, t) = −
k∑

m=0

Ck,mumxx(x, t)−
k∑

m=1

wm+1(x, t).

The role of the free parameters wj and the choice of the triangular array of constants
(Ck,m)0≤m≤k will be precised after. All properties of Remark 8.8 still hold.

Finally, we consider the equation

(8.37) LQ0(y) = 〈a〉0(y).

According to [279, Theorems 1 and 2], this equation has a unique up to an additive
constant solution of at most polynomial growth. Denote

(8.38) Λ = {Λijml} =

∫
Rn

[ ∂

∂yr1
(Q0)ij(y)

]
qr1r2(y)

[ ∂

∂yr2
(Q0)ml(y)

]
ρ(y) dy.

The matrix Λ is non-negative. Consequently its square root Λ1/2 is well defined.

Our goal is to prove that the conclusion of Theorem 8.6 holds under this setting. We
begin with the same ansatz

Rε(x, t) = ε−α/2
{
uε(x, t)−

J0∑
k=0

εkδ
(
uk(x, t) +

J0−k∑
j=0

ε(jδ+1)χj
(x
ε
, ξ t

εα

)
∇uk(x, t)

)}
,
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we substitute Rε for uε in (8.1) and we obtain for Rε a SPDE:

dRε(x, t)− div
[
a
(x
ε
, ξ t

εα

)
∇Rε(x, t)

]
dt(8.39)

=
(
ε−α/2

J0∑
j=0

J0−j∑
k=0

ε(k+j)δ
[
âk
(x
ε
, ξ t

εα

)
− ak,eff

]im ∂2uj

∂xi∂xm

)
dt+Rε(x, t) dt

+
J0∑
k=0

J0−k∑
j=0

ε(1−α+(k+j)δ)σ(ξ t
εα

)∇yχ
j
(x
ε
, ξ t

εα

)
∇uk(x, t) dBt,

with a0,eff = aeff and the initial condition

Rε(x, 0) =
J0∑
k=0

J0−k∑
j=0

ε(jδ+1−α/2)χj
(x
ε
, ξ0

)
∇uk(x, 0);

and

Rε(x, t) = ε−α/2
J0∑
j=0

ε1+jδϑj
(x
ε
, ξ t

εα

)
Φj(x, t)

with periodic in z smooth functions ϑj = ϑj(z, y) of at most polynomial growth in y,
and smooth functions Φj. We represent Rε as the sum Rε = rε + r̃ε + řε + ρε. Note that
in Rε(x, 0), there are only positive powers of ε. Hence we can handle these two terms
as in the smooth case:

Proposition 8.1 The solution řε converges in law, as ε goes to 0, in L2(R × (0, T ))
equipped with strong topology, to the solution of (8.15). The last terms r̃ε satisfies for
some δ > 0:

E‖r̃ε‖2
L2(R×(0,T )) + E‖ρε‖2

L2(R×(0,T )) ≤ Cεδ.

But the last term rε solves the SPDE:

drε(x, t)− div
[
a
(x
ε
, ξ t

εα

)
∇rε(x, t)

]
dt(8.40)

=
J0∑
k=0

J0−k∑
j=0

ε(1−α+(k+j)δ)σ(ξ t
εα

)∇yχ
j
(x
ε
, ξ t

εα

)
∇uk(x, t) dBt

with initial condition rε(x, 0) = 0. In (8.40), the largest term is

ε(1−α)σ(ξ t
εα

)∇yχ
0
(x
ε
, ξ t

εα

)
∇u0(x, t) dBt

and it creates the main trouble to obtain the convergence of Rε (and thus of U ε). Let
us distinguish three cases:

1. If α < 1, then there are only positive powers and thus we obtain the convergence
of rε to zero in L2(Rd × (0, T )).
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2. If α = 1, the convergence of rε to zero remains true, but in the weak topology of
L2(Rd × (0, T )).

3. If 1 < α < 2, we can prove the same result (convergence in the weak topology)
if the dimension d is equal to 1. The trick is the same as for α > 2 (see section
8.4.2). Our first attempt using the fundamental solution of the heat equation (see
section 8.6) for any dimension d is not complete now.

Let us emphasize that the free parameters wj (and the choice of Ck,m) are defined exactly
to obtain the convergence of zero of rε when 1 < α < 2. We give more details in the
case α > 2; the arguments are similar. Let us also remark that for α < 4/3, J0 = 1,
that is we only need w1 = 0.

8.4.2 The case α > 2

We assume that (8.3) and (I*) hold. The function ρ is the density of the invariant
measure of L and we assume that the process ξt is stationary and distributed with the
density ρ. The effective matrix aeff is defined by (8.9) which can be written as follows:

aeff = 〈a + a∇zχ〉 = 〈a + (a∇χ1 +∇(aχ))〉,

and χ is the solution of (8.8):

Āχ = div [ā∇χ] = −div āi

where ā is the mean value of a w.r.t. y:

ā(z) =

∫
Rn

a(z, y)ρ(y)dy.

Now

• δ = |α− 2| > 0,

• J0 = b α
2δ
c+ 1, where b·c stands for the integer part,

• J1 = bα
2
c.

As for α < 2, we construct a sequence of constants ak,eff , k ≥ 1, and a sequence of
functions uj, j ≥ 1, as solutions of problems

(8.41)
∂

∂t
uj = div(aeff∇uj) +

j∑
k=1

ak,eff ∂2

∂x2
uj−k + wj

with initial condition uj(x, 0) = 0. The functions wj are still smooth functions and
defined recursively by

(8.42) ∀k ≥ 0, wk+1(x, t) = −
k∑

m=0

Ck,mumxx(x, t)−
k∑

m=1

wm(x, t).
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Note that these constants Ck,m are not the same if α > 2 or if α < 2 since the correctors
used in their definition are different.

To obtain the desired convergence we need a second sequence of functions with a
different scaling. We construct two other sequences of constants (ak,eff)k≥1 and (Ik)k≥1

such that we can define v0 = u0 and

(8.43) vjt = aeffvjxx + Sj, vj(x, 0) = Ij∂jxu0(x, 0),

with for j ≥ 1

(8.44) Sj(x, t) =

j∑
k=1

ak,eff(∂k+2
x vj−k) .

Indeed in the expansion of uε, we need to take into account the initial value of the
remainder. For α < 2, this additional term is negligible. But for α > 2, it contains
negative powers of ε and thus it should be controlled. This is the role of this sequence
Ik.

Our main result is the following.

Theorem 8.5 Under Condition (I*), there exists a non-negative constant Λ such that
the normalized functions

U ε = ε−α/2

{
uε(x, t)− u0(x, t)−

J0∑
k=1

εkδuk(x, t)

−
J1∑
k=1

εk

[
vk(x, t) +

k∑
`=1

χ`−1
(x
ε

)
∂`xv

k−` (x, t)

]}

converge in law, as ε→ 0, in L2
w(R× (0, T )) to the unique solution of SPDE (8.15)

dU0 = div(aeff∇U0) dt+ (Λ1/2)

(
∂2

∂x2
u0

)
dWt

U0(x, 0) = 0;

driven by a standard one-dimensional Brownian motion W .

Let us precise a little bit what happens for U ε in the three cases: 2 < α < 4, α = 4
and α > 4.

• 2 < α < 4: J1 = 1 and

U ε = ε−α/2

{
uε(x, t)− u0(x, t)−

J0∑
k=1

εkδuk(x, t)

−ε
[
v1(x, t) + χ0

(x
ε

)
∂xu

0 (x, t)
]}
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• α = 4: J0 = 1 and J1 = 2. Thereby U ε becomes

U ε = ε−2

{
uε(x, t)− u0(x, t)− ε

[
v1(x, t) + χ0

(x
ε

)
∂xu

0 (x, t)
]

−ε2
[
u1(x, t) + v2(x, t) + χ0

(x
ε

)
∂2
xu

0(x, t) + χ1
(x
ε

)
∂xv

1 (x, t)
]}

.

α = 4 is a kind of critical value, since here u1 and v2 coexist.

• α > 4: J0 = 1 and for any m ≥ 2

J1 = m⇔ 2m ≤ α ≤ 2(m+ 1).

Hence

U ε = ε−α/2

{
uε(x, t)− u0(x, t)− εδu1(x, t)

−
J1∑
k=1

εk

[
vk(x, t) +

k∑
`=1

χ`
(x
ε

)
∂`xv

k−` (x, t)

]}
.

Remark 8.6 (When J0 = 1) For α > 4 or α < 4/3, we have δ > α/2 and J0 = 1.
Thus we may remove u1 in the quantity U ε: εδ−α/2u1 tends to zero for the strong topology
and thus does not contribute directly to the limit U0 of U ε. Nevertheless we emphasize
that u1 and w1 are used to obtain the weak convergence of U ε.

Let us give some ideas of the proof. The beginning is very similar to the case α < 2.
We define the expansion Eε of solution uε and the discrepancy

Rε(x, t) = ε−α/2 [uε(x, t)− Eε(x, t)] .

Rε is decomposed into four terms Rε = rε + r̂ε + r̃ε + ρε+ such that:

• r̂ε (resp. r̃ε) converges in a weak (resp. strong) topology to zero.

• The dynamics of rε contains a large martingale term with a power ε−1.

• The last term ρε deals with the initial condition on Rε and contains large order
terms.

Let us detail the properties of rε. We have: rε(x, 0) = 0 and its dynamics contains the
terms with large parameters:

drε = (Aεrε)dt+

N0∑
k=1

εkδ−α/2wk(x, t)dt− 1

ε

[
κ1
y

(x
ε
, ξt/εα

)
u0
x(x, t)(8.45)

+

N0∑
k=1

εkδΘk
(x
ε
, ξt/εα , x, t

)]
σ(ξt/εα)dBt.
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The precise definitions of N0, Θk and κ1 are not given here. The crucial point is the
power ε−1. Recall that for α < 2, we only have ε−α+1, hence the contribution of these
large martingale terms is zero when ε tends to zero. However for α > 2, the limit of rε
is equal to U0, if we carefully choose the free parameters wk (see [XXIII, Section 4]).

To obtain this convergence, we use the next trick. We define vε as the solution of

dvε = a
(x
ε
, ξt/εα

)
vεxxdt−

N0∑
k=1

εkδ−α/2w̃k(x, t)dt

−
N0∑
k=0

εkδΥ̃k
(x
ε
, ξt/εα

)
ukx(x, t)σ(ξ t

εα
)dBt,

such that vεx = rε + v̌ε. This can be done only in dimension 1. Then it is not difficult
to prove that v̌ε tends to 0 in L2(R× (0, T )) and in probability. We prove that we can
choose Ck,m such that vε is bounded in H1(R), together with a tightness result. Hence
the sequence vε weakly converges to the unique solution r̃0 of the SPDE:

dr̃0 = 〈P 0a〉r̃0
xxdt+

(
‖〈P 0Υ̃0〉σ‖2

)1/2

u0
xdWt.

Thereby we conclude that rε = vεx converges to U0.

When α > 2, the second issue comes from the initial condition of the discrepancy
Rε. Indeed ρε satisfies

dρε = (Aερε)dt,

and has the initial condition

ρε(x, 0) = −
J1∑
k=1

εk−α/2

[
Ik +

k∑
`=1

Ik−`χ`−1
(x
ε

)]
∂kxu

0(x, 0).

Contrary to the case α > 2, this initial condition may have large terms when ε goes to
zero. However in [XXIII, Section 5], we show that a particular choice of the constants
Ik leads to the convergence of ρε to zero. Let us emphasize that the proof is true even
if the dimension d is not equal to one.

8.5 The smooth case for α < 2 ([B])
In the present section we consider the case 0 < α < 2 for Problem (8.1). In other

words, bearing in mind the diffusive scaling, we assume that the oscillation in spatial
variables is faster than that in time. In this case the principal part of the asymptotics
of uε − u0 consists of a finite number of correctors, the oscillating part of each of them
being a solution of an elliptic PDE with periodic in spatial variable coefficients. The
number of correctors increases as α approaches 2. After subtracting these correctors,
the resulting expression divided by εα/2 converges in law to a solution of the limit SPDE
(8.15) (Theorem 8.6).
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In contrast with the diffusive scaling, for α < 2 the interplay between the scalings in
spatial variables and time and the necessity to construct higher order correctors results
in additional regularity assumptions on the coefficients. The result mentioned in the
previous section 8.3 holds if the coefficients aij(z, s) in (8.1) are smooth enough functions.
Hence we assume that Conditions (H*) holds: regularity of the initial condition φ, (H1)
(uniform ellipticity), (H2) (mixing condition) and (H3) (regularity of the dynamical
system).

Due to ellipticity of the matrix a, Equation (8.6) has a unique, up to an additive
constant vector, periodic solution, χ ∈

(
L∞(Td) ∩ H1(Td)

)d. This constant vector is
chosen in such a way that

(8.46)
∫
Td
χ(z, s) dz = 0 for all s and ω.

We then set
aeff = E

∫
Td
a(z, s)

(
I +∇χ(z, s)

)
dz

(see Equation (8.7)).
In order to formulate the main result we need a number of auxiliary functions and

quantities. Denote χ0 = χ and for j = 1, 2, . . . , J0 with J0 = b α
2(2−α)

c + 1, the higher
order correctors are introduced as periodic solutions to the equations

(8.47) div
(
a(z, s)∇χj(z, s)

)
= ∂sχ

j−1(z, s),

where b·c stands for the integer part. Due to (8.46) for j = 1 this equation is solvable in
the space of periodic in z functions. A solution χ1 is uniquely defined up to an additive
constant vector. Choosing the constant vector in a proper way yields∫

Td
χ1(z, s) dz = 0 for all s and ω

and thus the solvability of the equation for χ2. Iterating this procedure, we define all
χj, j = 1, 2, . . . , J0. Note that (H3) is used several times here.

Remark 8.7 Since χ0(·, s) only depends on a(·, s), the solution with zero average is sta-
tionary and the strong mixing coefficient of the pair (a(·, s), χ0(·, s)) coincides with that
for a(·, s). The same statement is valid for any finite collection (a(·, s), χ0(·, s), χ1(·, s), . . .).
By the classical elliptic estimates, under our standing assumptions we have

(8.48) ‖χ0‖L∞(Td×[0,T ]) ≤ C, E‖χ0‖NCk(Td×[0,T ]) ≤ Ck,N .

Indeed, multiplying equation (8.6) by χ0, using the Schwartz and Poincare inequalities
and considering (8.46), we conclude that ‖χ0(·, s)‖H1(Td) ≤ C for all s ∈ R. The first
estimate in (8.48) then follows from [140, Theorem 8.4]. The second estimate follows
from the Schauder estimates, see [140, Chapter 6]

By the similar arguments, the solutions χj of equations (8.47) are stationary, satisfy
strong mixing condition with the same coefficient γ(r), and the following estimates hold:
for any N ≥ 1 and k ≥ 0

(8.49) E‖χj‖NCk(Td×[0,T ]) ≤ Ck,N , j = 0, 1, . . . , J0.
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Next, we introduce the functions uj = uj(x, t), j = 1, . . . , J0. They solve the following
problems: uj(x, 0) = 0 and

(8.50)
∂

∂t
uj = div(aeff∇uj) +

j∑
k=1

{ak,eff}im ∂2

∂xi∂xm
uj−k

with

(8.51) ak,eff = E
∫
Td
a(z, s)∇χk(z, s) dz.

Again we assume summation from 1 to d over repeated indices.

Remark 8.8 Solutions u0 and uj of Problems (8.2), (8.50) are smooth functions. More-
over, for any k = (k0, k1, . . . , kd) and N > 0 there exists a constant Ck,N such that

(8.52) |Dkuj| ≤ Ck,N(1 + |x|)−N ,

where Dkf(x, t) =
∂k0

∂tk0

∂k1

∂xk1
1

. . .
∂kd

∂xkdd
f(x, t).

To characterize the diffusive term in the limit equation we introduce the matrix

Ξ(s) =

∫
Td

[(
a(z, s) + a(z, s)∇χ0(z, s)

)
− E

{
a(z, s) + a(z, s)∇χ0(z, s)

}]
dz.

By construction the matrix function Ξ is stationary and its entries satisfy condition
(H2) (mixing condition). Denote

Λ =
1

2

∫ ∞
0

E
(

Ξ(s)⊗ Ξ(0) + Ξ(0)⊗ Ξ(s)
)
ds, Λ = {Λijkl},

where (Ξ(s)⊗Ξ(0))ijkl = Ξij(s)Ξkl(0). Under condition (H2) the integral on the right-
hand side converges.

The first main result of this section is

Theorem 8.6 Let Condition (H*) be fulfilled, and assume that α < 2. Then the
functions

U ε = ε−α/2
(
uε − u0 −

J0∑
j=1

εj(2−α)uj
)

converge in law, as ε→ 0, in L2(Rd× (0, T )) to the unique solution of the SPDE (8.15)

dU0 = div(aeff∇U0) dt+ (Λ1/2)ijkl
∂2

∂xi∂xj
u0 dW kl

t

U0(x, 0) = 0;

where W· = {W ij
· } is the standard d2-dimensional Brownian motion.
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Remark again that the number of correctors J0 = b α
2(2−α)

c + 1 tends to +∞ when α
tends to 2.
Proof. The proof is similar to the ideas of Section 8.3.1. We give only some tricks used in the complete
proof. We write down the following ansatz

Vε(x, t) = ε−α/2
{
uε(x, t)−

J0∑
k=0

εkδ
(
uk(x, t) +

J0−k∑
j=0

ε(jδ+1)χj
(x
ε
,
t

εα

)
∇uk(x, t)

)}
,

here and in what follows the symbol δ stands for 2 − α. Then we substitute Vε for uε in (8.1) and
we obtain for Vε a PDE with random coefficients. We prove that Vε converges in law in the suitable
functional space to the solution of (8.15). We combine the definition of correctors, formula (8.50) and
the Cental Limit Theorem for stationary mixing processes. �

8.6 A result on the heat SPDE ([C])
In the proof of our convergence result, we obtain two SPDEs (8.40) (α < 2) and

(8.45) (α > 2) of the form

(8.53) dv(x, t)− div
[
a
(
x, t
)
∇v
]
dt = G (x, t) dBt

with the initial condition v(x, 0) = 0. The matrix a is supposed to be measurable from
Rd × [0,+∞[×Ω into Rd×d and for each (x, t) ∈ Rd × [0,+∞[, a(x, t) is Ft-measurable.
Our aim is to prove that the solution v is given by:

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G (y, s) dydBs,(8.54)

where Γ is the fundamental solution of the PDE:

(8.55)
∂u

∂t
(x, t) = div

[
a
(
x, t
)
∇u
]
.

The stochastic integral in (8.54) has to be defined properly since Γ(x, t, y, s) is measur-
able w.r.t. the σ-field Ft generated by the random variables Bu with u ≤ t.

The existence of the fundamental solution Γ and the description of its properties is
an old story that has given rise to a vast literature (see among others [127, 212, 292,
109, 206] and the references therein). One of the most famous result in this field is the
Aronson estimate (see [12, Theorem 7] or [109]). Under (H1) (boundedness and uniform
ellipticity of a), there exist two constants ς and $ depending only on the constant λ in
Assumption (H1) and the dimension d, such that

(8.56) 0 ≤ Γ(x, t, y, s) ≤ gς,$(x− y, t− s).

Here and in the sequel of this section, for two positive constants c and C, the function
gc,C(x, t) is defined as follows:

gc,C(x, t) =
c

t
d
2

exp

(
−C|x|

2

t

)
, t > 0, x ∈ Rd.
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This inequality is called the Aronson estimate8. Let us empahsize that no regularity
assumption on the coefficients of a is required.

To obtain similar estimates on the spatial derivatives of Γ, it is usually assumed in
the existing literature that the matrix a is Hölder continuous w.r.t. both x and t (see
[212], Chapter IV, sections 11 to 13 or [127], Chapter I): for some ~ ∈ (0, 1)

|a (x, t)− a (x′, t′)| ≤ Ka

(
|x− x′|~ + |t− t′|~/2

)
.

Notice that this setting is not well adapted to the stochastic framework, for example
if a(x, t) = a(x, ξt) where ξ is a diffusion process. Indeed, in this case the constant
Ka depends on the continuity properties of ξ and is random (see for example [32] for
details). Hence the constants in the estimate of ∇xΓ need not be uniformly bounded if
we follow directly this construction.

Our first goal is to obtain Aronson type estimates for the spatial derivatives of Γ,
without any regularity assumption on the dependence t 7→ a(x, t). We impose only a
uniform Lipschitz continuity condition on the dependence x 7→ a(x, t). Then the upper
bounds only depend on the ellipticity constants and L∞ norm of the gradient of the
coefficients (see Theorem 8.7).

When our paper was submitted we learnt that a number of results closely related
to that of Theorem 8.7 have been obtained in the recent work [73]. In this work,
for parabolic operators in non-divergence form with time dependent coefficient, the
regularity of heat kernel and solutions w.r.t. spatial variables is studied. In particular,
the result of our Theorem 8.7 can be derived from the results of this work. However,
the approach used in [73] is rather different.

In our homogenization problem, we deal with the stochastic heat equation (8.53).
with the initial condition v(x, 0) = 0 (see Remark 8.11 for more general initial value).
B is a standard Brownian motion, generating the filtration F = (Ft, t ≥ 0). The matrix
a is supposed to be a measurable function from Rd × [0,+∞[×Ω into Rd×d and for
each (x, t) ∈ Rd × [0,+∞[, a(x, t) is Ft-measurable. This stochastic partial differential
equation (SPDE in short) in divergence form is somehow classical and among many
other we refer to the books [127, 212] on PDE in divergence form, [85, 86, 209, 268, 322]
and the references therein on SPDE. The results of these works have than been extended
in several directions, among them are: Hörmander’s condition [205, 207], Hölder spaces
[78, 254], Lp-spaces [93, 204, 253, 255], Laplace-Beltrami operator [311].

Our aim is to prove that the SPDE in (8.53) admits a mild solution v given by (8.54),
where Γ is the fundamental solution of equation (8.55). If the matrix a is deterministic,
Γ is also deterministic and the existence of a mild solution v given by (8.54) is well known
(see [322, Chapter 5]). However, when a is random, the stochastic integral in (8.54) has
to be defined properly since Γ(x, t, y, s) is measurable w.r.t. the σ-field Ft generated
by the random variables Bu with u ≤ t. In other words Equation (8.54) involves an
anticipating integral. To our best knowledge, there is only one work on this topic by

8The function Γ has a lower bound similar to the upper bound (see [12, Theorem 7]).
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Alos et al. [7]. Compared to our setting, the authors in [7] consider a space-time Wiener
process, but the matrix a is Hölder continuous in time9 (condition (A3) in [7]).

We already know that Γ and its spatial derivative admit Aronson’s type upper bounds
and we extend these bounds to the Malliavin derivatives of Γ, again without regularity
assumption on a w.r.t. t (see Theorem 8.8 and, in the diffusion case, Corollary 8.1).
Finally, since our noise is a one parameter Brownian motion, we also want to obtain a
regular mild solution v on Rd × (0, T ) in the sense of Definition 8.2 of Equation (8.53).
Compared to [7], since we have no space noise, we do not impose any condition on the
dimension d and our solution is derivable w.r.t. x (see Theorem 8.9 and Corollary 8.2).

In a recent paper paper [280] a similar subject is handled with a parametrix con-
struction. However, since the studied operator is not in the divergence form, the authors
have to impose more regularity assumptions on the diffusion matrix a. Also, the SPDEs
investigated in this paper are rearranged in such a way that the anticipating stochastic
calculus can be avoided.

Let us remark that our initial motivation was that for the two SPDEs (8.40) or
(8.45), we can show that the solution is of the form

vε(x, t) =

∫ t

0

[∫
Rd

Γε(x, t, y, s)G
(y
ε
, ξ s

εα
, y, s

)
dy

]
dBs,(8.57)

where Γε is the fundamental solution of the following parabolic equation:

(8.58)
∂uε

∂t
(x, t) = div

[
a
(x
ε
, ξ t

εα

)
∇uε

]
.

Then using integration by parts and some uniform estimates on Γε, we could obtain the
desired convergence result in the case α < 2. However our estimation (of the derivative
on Γε) still depends on ε and is not sufficient to get the result with this method.

8.6.1 Estimate for the spatial and Malliavin derivative of the
fundamental solution

Surprisingly if there are a lot of works on fundamental solution, the question stud-
ied in our paper has not been raised, except in the recent work [73]. In this work, for
parabolic operators in non-divergence form with time dependent coefficient, the regu-
larity of heat kernel and solutions w.r.t. spatial variables is studied. In particular, our
result on Γ can be derived from the results of this work. However, the approach used in
[73] is rather different.

Let us assume that (H1) holds, that is for any (t, x, ζ) ∈ R+ × Rd × Rd

λ−1|ζ|2 ≤ a(x, t)ζ · ζ ≤ λ|ζ|2.

We also suppose that
9At the end of [7, section 5], the authors make a remark and give an example on this time regularity

assumption.
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(J1) The matrix a is measurable on Rd×R+, and for any t ≥ 0 the function a(·, t) is of
class C1 w.r.t. x ∈ Rd. Moreover, there is a constant Ka such that for all t and x

|∇a(x, t)| ≤ Ka.

Theorem 8.7 If the matrix a = a(x, t) satisfies the uniform ellipticity condition (H1)
and the above regularity condition (J1), then the (weak) fundamental solution Γ of
equation (8.55) admits the following estimate: there exist two constants % > 0 and
$ > 0 such that

(8.59) |∇xΓ(x, t, y, s)| ≤ 1√
t− s

g%,$(x− y, t− s);

here $ depends only on the uniform ellipticity constant λ and the dimension d, while %
might also depend on Ka and on T .

Weak fundamental solution is defined in [109, Definition VI.6]. Let us emphasize that
these estimates are coherent with [109, Theorem VI.4]. The novelty is that the regularity
of a w.r.t. t is not required.

Now assume that a = a(x, t) are random fields defined on a probability space
(Ω,F ,P) that carries a d-dimensional Brownian motion B and that the filtration F =
(Ft, t ≥ 0) is generated by B, augmented with the P-null sets. The matrix a :
Rd × [0,+∞) × Ω → Rd×d depends10 also on ω and we assume that conditions (H1)
and (J1) are fulfilled uniformly w.r.t. ω. In particular the ellipticity constant λ and
the bound Ka do not depend on ω. Since (H1) and (J1) hold, by Theorem 8.7 the
fundamental solution Γ of (8.55) and its spatial derivatives satisfy estimates (8.56) and
(8.59).

For the Malliavin differentiability property of Γ, we use the approach developed in
Alòs et al. [7]. We assume that, in addition to (H1) and (J1), the matrix a possesses
the following properties:

(J2) For each (x, t) ∈ Rd × [0,+∞), a(x, t) is a Ft-measurable random variable.

(J3) For each (x, t) ∈ Rd × [0,+∞) the random variable a(x, t) belongs to D1,2
M .

(J4) There exists a non negative process ψ such that for any t ∈ [0, T ] and any x ∈ Rd,

|Dra(x, t)|+ |Dr∇a(x, t)| ≤ ψ(r).

Moreover, ψ satisfies the integrability condition: for some p > 1

E
(∫ T

0

ψ(r)2pdr

)
< +∞.

10Note that here and in the sequel we follow the usual convention and omit the function argument
ω.
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Note that if (J4) holds, then for all (x, x′, t) ∈ Rd × Rd × R+

|Dra(x, t)−Dra(x′, t)| ≤ ψ(r)|x− x′|.

Indeed

aij(x, t)− aij(x′, t) =

∫ 1

0

∇aij(x′ + θ(x− x′), t)dθ(x− x′).

We differentiate both sides in the Malliavin sense and we use the estimate on Dr∇a. It
is important to remark that we don’t require any regularity condition w.r.t. the time
variable. In particular we can use the results in the case (8.3): a(z, s) = a(z, ξs). Our
second main result is

Theorem 8.8 Under conditions (H1), (J1)–(J4), the fundamental solution Γ of (8.55)
and its spatial derivatives belong to D1,2

M for every (t, s) ∈ [0, T ]2, s < t and (x, y) ∈
(Rd)2. Moreover, there exist two constants % and $ that depend only on the uniform
ellipticity constant λ, the dimension d, on Ka and on T , such that

(8.60) |DrΓ(x, t, y, s)| ≤ ψ(r)g%,$(x− y, t− s),

and

(8.61) |Dr∇xΓ(x, t, y, s)| ≤ ψ(r)√
t− s

g%,$(x− y, t− s).

Finally Γ and DrΓ are continuous w.r.t. (x, y) ∈ R2d and 0 ≤ s < t ≤ T .

Let us emphasize that the constant $ depends only on the uniform ellipticity constant
λ and the dimension d, whereas the constant % also depends on Ka and T .

Remark 8.9 Estimate (8.59) holds under assumptions (H1) and (J1). The other
derivatives of a in (J3) and (J4) are used to control the Malliavin derivatives.

Here we consider the special case for any (x, t) ∈ Rd × [0,+∞) a(x, t) = a(x, ξt),
with a matrix-valued function a defined on Rd ×Rd such that (I1) and (I2) hold, that
is

• a is uniformly elliptic: for any (x, y, ζ) ∈ Rd × Rd × Rd

λ−1|ζ|2 ≤ a(x, y)ζ · ζ ≤ λ|ζ|2.

• a is continuous on Rd×Rd and of class C1 w.r.t. x with a bounded derivative: for
any (x, y)

|∇xa(x, y)| ≤ Ka.

The process ξ is given as the solution of the SDE (1.9)

dξt = b(t, ξt)dt+ σ(t, ξt)dBt.

We assume that the matrix-function σ and vector-function b satisfy (B1), are globally
Lipschitz continuous (condition (B2)) and are at least two times differentiable w.r.t. x
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with uniformly bounded derivatives (assumption (B6)). From Proposition 1.2, ξ is the
unique strong solution of the SDE (1.9) and for any T ≥ 0 and any p ≥ 2

E
(

sup
t∈[0,T ]

|ξt|p
)
≤ C.

Moreover the process ξ belongs to D2,∞
M and the second derivatives Di

rD
j
sξ
k
t satisfy also

a linear stochastic differential equation with bounded coefficients. For any r ∈ [0, T ] we
define

(8.62) ψ(r) = sup
t∈[r,T ]

‖Drξt‖.

From Lemma 1.2 we have for any p ≥ 2

(8.63) sup
r∈[0,T ]

E (ψ(r)p) < +∞.

Our setting implies that Conditions (H1), (J1) and (J2) hold. Moreover let us assume
that the matrix a is smooth w.r.t. y and satisfies the following regularity condition (I4):
for any 1 ≤ j, k ≤ d

|∇ya(x, y)|+
∣∣∣∣ ∂2

∂xj∂yk
a(x, y)

∣∣∣∣ ≤ Ka.

Then we obtain that
Dj
rai,`(x, t) =

∑
k

∂ai,`
∂yk

(x, ξt)D
j
rξ
k
t .

Thus Dra(x, t) = 0 if r > t, while for r ≤ t we have

(8.64) |Dk
raij(x, t)| ≤

∣∣∣∣∂aij
∂y`

∣∣∣∣ |Dr(ξt)| ≤ Kaψ(r).

The same computation shows that

Dk
r

∂aij
∂x`

(x, t) =
∑
k

∂2ai,`
∂x`∂yk

(x, ξt)D
j
rξ
k
t .

Hence ∣∣∣Dk
r

∂aij
∂x`

(x, t)
∣∣∣ ≤ Kaψ(r).

We deduce that a(x, t) belongs to D1,2
M , and that (J3) and (J4) hold. From Theorems

8.7 and 8.8 we deduce immediately the following result.

Corollary 8.1 If a(x, t) = a(x, ξt), then the fundamental solution Γ of equation (8.55)
and its spatial derivatives belong to D1,2 and satisfy Estimates (8.56), (8.59), (8.60) and
(8.61).
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8.6.2 Mild solution of the heat SPDE (8.53)
Now we deal with the stochastic heat equation (8.53):

dv(x, t)− div
[
a
(
x, t
)
∇v(x, t)

]
dt = G (x, t) dBt

with the initial condition v(x, 0) = 0 (see Remark 8.11 for more general initial value).
The next definition is very closed to [7, Definition 5.9].

Definition 8.2 Let v = {v(x, t), (x, t) ∈ Rd× [0,+∞)} be a random field. We say that
v is a weak solution of Equation (8.53) if

• v is continuous on Rd × (0,+∞) with a.s. for any x ∈ Rd,

lim
t↓0

v(x, t) = 0 ;

• v has all first derivatives w.r.t. x on Rd × (0,+∞) ;

• for any test function φ ∈ C∞0 (Rd) and for all t ∈ [0, T ] we have∫
Rd
v(x, t)φ(x)dx+

∫ t

0

∫
Rd
a(x, s)∇φ(x)∇v(x, s)dx

=

∫ t

0

∫
Rd
G(x, s)φ(x)dxdBs.

Our aim is to prove that the SPDE (8.53) admits a weak solution v given by (8.54),
where Γ is the fundamental solution of the equation in (8.55). The stochastic integral
in (8.54) has to be defined properly since Γ(x, t, y, s) is measurable w.r.t. the σ-field Ft
generated by the random variables Bu with u ≤ t. The correct definition can be found
in [259] and is based on Malliavin’s calculus. Let us assume the following conditions.

(K1) The function G : Rd × [0,+∞) × Ω → Rd is a progressively measurable function
such that

(1 + |x|)N |G(x, t)| ≤ G(t)

for some constant N > d/2 and some adapted process G s.t. for some q > 1

E
(∫ T

0

G(t)2qdt

)
< +∞.

(K2) For each (x, t) ∈ Rd × [0,+∞), the random variable G(x, t) belongs to D1,2
M and

for any t ∈ [0, T ] and any x ∈ Rd,

|DrG(x, t)| ≤ G̃(x, t)ψ(r).

The process ψ is the same as in Condition (J4) and G̃ verifies the growth assump-
tion

(1 + |x|)N |G̃(x, t)| ≤ G(t).
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(K3) The constants p of (J4) and q satisfy the relation

p > q > 2d+ 4.

(K4) The process G verifies

P

(
sup
t∈[0,T ]

G(t) < +∞

)
= 1.

Remark 8.10 Note that considering the same process ψ in (J4) and (K2) and the
same growth estimate for G and G̃ can be assumed without loss of generality.

Under this setting we prove that

Theorem 8.9 If Conditions (H1), (J1)–(J3) and (K1) – (K4) hold, then on Rd ×
(0,+∞), the random field v is continuous w.r.t. (x, t) and has first derivatives w.r.t. x
such that

E
[
sup
x,t

(
|v(x, t)|

2pq
p+q + |∇v(x, t)|

2pq
p+q

)]
< +∞.

Moreover a.s. for any x ∈ Rd

lim
t↓0

v(x, t) = 0.

And v is a weak solution of the SPDE (8.53).

In the first step of the proof, using [259], we prove that for any (t, x) ∈ [0, T ]× Rd,
the stochastic integral

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G (y, s) dydBs

is well defined and

E
[∫ T

0

∫
Rd

(v(x, t))2dxdt

]
< +∞.

Then we show that (x, t) 7→ v(x, t) is continuous and x 7→ v(x, t) is differentiable. We
cannot directly use [259, Theorem 5.2] since Γ also depends on t. Even if Γ is continuous
on {0 ≤ s < t ≤ T}, the singularity at time t should be handled carefully. We follow
some ideas contained in [7, Section 3] and the regularity results concerning the volume
potential. The main trick is to transform the anticipating stochastic integral v into a
Lebesgue integral.

Remark 8.11 If the initial condition for v is given by a function ı, then by linearity of
the SPDE, we should add in (8.54) one term:

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G (y, s) dydBs +

∫
Rd

Γ(x, t, y, 0)ı(y)dy

Under the setting of Theorem 8.7, this additional term is well defined provided that the
function ı increases no faster than a function exp(cx2) (see [127, Theorem I.7.12]).
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Remark 8.12 Under (K3), we have the weaker condition 1
p

+ 1
q
≤ 1. From the proofs,

we are aware that this condition (K3) is a little bit too strong. But a relation between
p, q and d is needed with our arguments. In [7], this relation is implicitly given: for
example in Theorem 3.5, the authors impose p > 8 (for d = 1). (K1) and (K4) is a
little bit more general than in [7] where G is bounded with respect to (x, t).

If we assume that a(x, t) = a(x, ξt) where ξ is the solution of the SDE in (??). Let
us fix a measurable function g : Rd× [0,+∞)×Rd → Rd such that g is of class C1 w.r.t.
the last component and

G (x, t) = g(x, t, ξt)

Then the Malliavin derivative ofG can be computed by a chain rule argument: DrG (x, t) =
∇yg(x, t, ξt)Drξt. Hence

|DrG (x, t) | ≤ |∇yg(x, t, ξt)|ψ(r).

Let us assume that for some N > d/2:

|g(x, t, y)|+ |∇yg(x, t, y)| ≤ C
|y|

(1 + |x|)N
.

Then G(t) = |ξt| is continuous w.r.t. t, thus (K4) holds. And, for any q > 1,

E

(
sup
t∈[0,T ]

|ξt|2q
)
≤ C.

Therefore, (K1) and (K2) are also satisfied. From Theorem 8.9 we get

Corollary 8.2 If the previous assumptions are satisfied, then the conclusion of Theorem
8.9 holds in the diffusion case.
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Chapter 9

Appendix

9.1 On the constants δ∗ and m∗ of (C6) and (C7)
In the proof of Lemma 3.7, the existence and uniqueness of the solution is guaranteed

by Theorem 2.2. We only need to check the assumptions (A1.1”) and (A1.2”) of this
result. Recall that ν = ν(r) is defined by (2.7):

ν = ν(r) :=

{
χ+K2 if r ≥ 2,

χ+ K2

r−1
+

K2
f,u

ε(r,Kf,u)
if r < 2.

Here we correct some computations of [XI] for r < 2.
First for some r > 1 and ρ > ν(r) such that rρ ≤ δ, from (C5) and (C6)

E
[
erρτ |ξ ∧ L|r +

∫ τ

0

eδt|f 0
t |rdt

]
≤ CE [erρτ ] < +∞.

In other words (A1.1”) holds with p = r.
If ξ(L)

t = E(ξ ∧ L|Ft), (η(L), γ(L), N (L)) are given by the martingale representation:

ξ ∧ L = E(ξ ∧ L) +

∫ ∞
0

η(L)
s dWs +

∫ ∞
0

∫
E
γ(L)
s (e)π̃(de, ds) +N (L)

τ

with for any p > 1 and % such that p% ≤ δ

E

[(∫ ∞
0

e2%s|η(L)
s |2ds+

∫ ∞
0

e2%s

∫
E
|γ(L)
s (e)|2π(de, ds) +

∫ ∞
0

e2%sd[N (L)]s

)p/2]
< +∞.

We consider
E
[∫ τ

0

erρt|f(t, ξ
(L)
t , η

(L)
t , γ

(L)
t )|rdt

]
.

From (A3) and (A4), we obtain

|f(t, ξ
(L)
t , η

(L)
t , γ

(L)
t )| ≤ Kf,z|η(L)

t |+Kf,u‖γ(L)
t ‖B2

µ
+ |f 0

t |+ |f(t, ξ
(L)
t , 0, 0)− f 0

t |

≤ Kf,z|η(L)
t |+Kf,u‖γ(L)

t ‖B2
µ

+ |f 0
t |+ Ut(L).
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Using Hölder’s inequality with r ≤ 2 and ρ such that rρ ≤ δ yields to

E
[∫ τ

0

erρt|f(t, ξ
(L)
t , η

(L)
t , γ

(L)
t )|rdt

]
≤ CE

[∫ τ

0

erρt|η(L)
t |rdt

]
+ CE

[∫ τ

0

erρt‖γ(L)
t ‖rB2

µ
dt

]
+ CE

[∫ τ

0

erρt|f 0
t |rdt

]
+ CE

[∫ τ

0

erρt|Ut(L)|rdt
]

≤ CE
[
τ

2−r
2

]
E

[(∫ τ

0

e2ρt|η(L)
t |2dt+

∫ τ

0

e2ρt

∫
E
|γ(L)
t (e)|2π(de, dt)

) r
2

]

+ CE [erρτ ] + CE
[(
eh̄rρτ

) 1
h̄

]
E

[(∫ τ

0

|Ut(L)|rhdt
)1/h

]

Hence if we summarize, we need to find three parameters 1 < r ≤ 2, h > 1 and ρ > ν(r)
such that if h̄ is the Hölder conjugate of h, rh ≤ m and h̄rρ ≤ δ. δ∗ and m∗ are chosen
such that we can solve all these conditions. Thus (A1.2”) holds (again with p = r) and
we can apply Theorem 2.2 to get Lemma 3.7.

To satisfy all wanted conditions, we need in particular that rν(r) < δ. Let us denote

f(r) = rν(r) =

{
r(χ+K2) if r ≥ 2,

r
(
χ+ K2

r−1
+

L2
f,u

ε(r,Lf,u)

)
if r < 2,

Remark that ν(r) ≥ χ + K2 for any r > 1 and that f(1) = +∞. Hence if χ ≤ −K2

(Case 1), then

min f = δ∗ = 2(χ+K2), argmin (f) = r∗ = 2.

Moreover if χ < −K2, Condition (C6) is satisfied for any stopping time τ (including
τ = +∞ a.s.) since one can choose δ < 0 in this case. Conversely, if χ + K2 > 0, then
ν(r) > 0, hence δ∗ > 0.

Let us distinguish the two cases, Kf,u = 0 and Kf,u > 0. The first case is developed
in [XI, Lemma 10].

9.1.1 If f does not depend on u.

Then the constant Kf,u is equal to zero. Generator g(t, y) = −y|y|q−1/ηt in (C2)
gives us an example. This case was studied in Lemma 10 in the appendix of [XI]. Note
that K2 = K2

f,z/2 in this case.

Proposition 9.1 If Kf,u = 0, then δ∗ is equal to:

δ∗ =


2(χ+K2) if χ ≤ K2

χ

(
1 +

K
√
χ

)2

if χ > K2.
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And m∗ verifies m∗ < 0 if χ < −K2, and

m∗ =


2δ

δ − 2(K2 + χ) + (
√
δ − 2K)21δ>4K2

if |χ| ≤ K2,

δ√
δ +
√
χ−K

× 1√
δ −
√
δ∗

if χ > K2.

The interesting point is that if χ < −K2, then m∗ < 0. Thus taking m = 0 in
Condition (C7), this assumption becomes: E(τ) < +∞; which is true if δ > 0 in (C6).

If f is non-increasing w.r.t. y, we have:

Corollary 9.1 If χ = Kf,u = 0, then δ∗ = 2K2 and m∗ =
2δ

δ − δ∗ + (
√
δ − 2K)21δ>4K2

.

Hence δ∗ and m∗ in (C6) and (C7) should be greater than these values.

If K2 = 0, that is if f only depends on y, we have:

δ∗ =

{
2χ if χ ≤ 0

χ if χ > 0.

And m∗ verifies m∗ < 0 if χ < 0, and for χ ≥ 0, m∗ =
δ

δ − χ
≥ 1.

Corollary 9.2 If f depends only on y, with χ = 0 (non-increasing function), then
δ∗ = 0 and m∗ = 1.

9.1.2 If f depends on u, that is Kf,u > 0

This case was not written in [XI]. The computations for Kf,u > 0 are more tedious.
We use the values defined by (2.8):

ε(r) =
r − 1(

C
1
r−1
u + 1

)2−r , Cu = (4(2Kf,u + 2) + 1).

Hence for r < 2

f(r) = rχ+
r

r − 1

(
K2 +K2

f,uζ(r)
)
, with ζ(r) =

(
C

1
r−1
u + 1

)2−r

.

Note that for r ∈ (1, 2), f(r) ≥ χ+K2 +K2
f,u.

Proposition 9.2 Value δ∗ is equal to

δ∗ =

{
2(χ+K2) if χ ≤ κ(K2, Kf,u),

f(r∗) if χ > κ(K2, Kf,u)
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where r∗ ∈ (1, 2) satisfies f ′(r∗) = 0 and κ(K2, Kf,u) is a threshold such that f(r∗) <
f(2) if χ > κ(K2, Kf,u). This threshold can be defined by:

(9.1) κ(K2, Kf,u) =
1

(r† − 1)2

(
K2 +K2

f,ug(r†)ζ(r†)
)
,

where r† is the unique root of the equation:

(9.2) (2− r†)2K2 +K2
f,uζ(r†)

[
g(r†)(2− r†)− r†(r† − 1)

]
= 0.

Proof. Indeed the derivative of f is given by:

f ′(r) = χ− 1

(r − 1)2

(
K2 +K2

f,ug(r)ζ(r)
)

where

g(r) =

1 + r(r − 1) ln

(
1 + C

1
r−1
u

)
+ r(2− r) ln

(
C

1
r−1
u

)
C

1
r−1
u

C
1
r−1
u + 1

 .

with g(2) = 1 + 2 ln (1 + Cu). Moreover gζ is a non-increasing function, thus g(r)ζ(r) ≥ g(2) > 0 on
the interval (1, 2]. Thereby

f ′′(r) =
2

(r − 1)3

(
K2 +K2

f,ug(r)ζ(r)
)
−

K2
f,u

(r − 1)2
(gζ)′(r) > 0.

The function f is convex on (1, 2).
In particular if χ ≤ K2 + K2

f,ug(2), again δ∗ = 2(χ + K2) and r∗ = 2 (Case 2). But if χ >

K2 +K2
f,ug(2), then the minimum of f on (1, 2) is attained at a unique point r] ∈ (1, 2).

On the next graph, we draw r 7→ f(r) − f(2) with L2
z = 1 and K2

f,u = 3 for different values of χ.
Note that lim

r→2
f(r)− f(2) = 2K2

f,u and that here K2 +K2
f,ug(2) = 5 + 6 ln(1 + Cu) ≈ 24.03.

Note that
χ =

1

(r] − 1)2

(
K2 +K2

f,ug(r])ζ(r])
)
⇐⇒ r] = φ(χ).

When χ goes on +∞, then r] tends to one. Moreover the implicit function theorem shows that φ is a
decreasing function. Now

f(r]) = φ(χ)

[
χ+

1

φ(χ)− 1

(
K2 +K2

f,uζ(φ(χ))
)]

= f̃(χ).
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Hence

f̃ ′(χ) = φ′(χ)

[
χ+

1

φ(χ)− 1

(
K2 +K2

f,uζ(χ)
)]

+ φ(χ)

[
1− φ′(χ)

(φ(χ)− 1)2

(
K2 +K2

f,uζ(χ)
)]

+ φ(χ)

[
φ′(χ)

(φ(χ)− 1)

(
K2
f,uζ

′(φ(χ))
)]

= φ(χ) + φ′(χ)

[
χ+

1

φ(χ)− 1

(
K2 +K2

f,uζ(χ)
)
− φ(χ)

(φ(χ)− 1)2

(
K2 +K2

f,uζ(χ)
)

+
φ(χ)

(φ(χ)− 1)

(
K2
f,uζ

′(φ(χ))
)]

= φ(χ).

Therefore if we compare f(2)−f(r]) = 2(χ+K2)− f̃(χ) = f̌(χ), the derivative of this function is equal
to 2− φ(χ) > 0 and its second derivative is equal to −φ′(χ). Hence the function f̌ is an increasing and
convex function. Thus there exists a unique threshold κ(K2,Kf,u) > K2 +K2

f,ug(2) such that for any
χ > κ(K2,Kf,u), f(r]) < f(2).

The next graph illustrates these properties with K2
f,z = 1 and K2

f,u = 3. On the left side, we
draw χ 7→ r] = φ(χ), and on the right side, the function χ 7→ f̌(χ) = f(2) − f(r]), both of them for
χ ≥ K2 +K2

f,ug(2).

To summarize we have three cases.

• Case 1 if χ ≤ −K2. Then

δ∗ = 2(χ+K2), argmin (f) = r∗ = 2.

• Case 2 if −K2 < χ ≤ κ(K2,Kf,u). Then

0 < δ∗ = 2(χ+K2), argmin (f) = r∗ = 2.

• Case 3 if κ(K2,Kf,u) < χ. f attains a minimum at some point r∗ ∈ (1, 2) such that f(r∗) <
f(2).

Let us remark that κ(K2, 0) = K2. And note that in the Case 2, there are two different situations:
χ ≤ K2 +K2

f,ug(2) (f is decreasing on (1, 2]), and χ > K2 +K2
f,ug(2) (f has a minimum on (1, 2) but

this minimum is greater than f(2)).
For χ = κ(K2,Kf,u), we denote by r† ∈ (1, 2) the value such that min f = f(r†) = f(2). Then r†

verifies: f ′(r†) = 0, that is

κ(K2,Kf,u) = χ =
1

(r† − 1)2

(
K2 +K2

f,ug(r†)ζ(r†)
)
,

and f(r†) = f(2), namely:

r†χ+
r†

r† − 1

(
K2 +K2

f,uζ(r†)
)

= 2(χ+K2).
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Hence we deduce the implicit definition (9.2) of r†, and the value (9.1) of κ(K2,Kf,u):

κ(K2,Kf,u) =
1

(r† − 1)2

(
K2 +K2

f,ug(r†)ζ(r†)
)

=
K2

r† − 1
+K2

f,uζ(r†)
r†

(r† − 1)(2− r†)
.

�

We already know that

κ(K2, Kf,u) > K2 +K2
f,ug(2) = K2 +K2

f,u + 2K2
f,u ln (1 + Cu) .

The following table gives some values of κ(K2, Kf,u).

PPPPPPPPPK2
f,u

K2
f,z 0 0.5 1 1.5 2 2.5 5 10

0 0 0.25 0.5 0.75 1 1.25 2.5 5
0.5 11.39 11.71 12.02 12.33 12.64 12.95 14.51 17.59
1 23.59 23.90 24.21 24.52 24.83 25.14 2§.69 29.78
1.5 36.20 36.52 36.82 37.13 37.44 37.75 39.29 42.37
2 49.12 49.43 49.74 50.04 50.35 50.66 52.2 55.27
3 75.61 75.91 76.22 76.53 76.83 77.14 78.67 81.73
5 130.44 130.75 131.05 131.36 131.66 131.97 133.49 136.53
10 274.18 274.49 274.79 275.09 275.39 275.69 277.20 280.22

Using the convexity of f̌ , we can prove that

κ(K2, Kf,u) ≤
1

0.9
K2 +

19

0.9
K2
f,uζ(1.9) =

1

0.9
K2 +

19

0.9
K2
f,u

(
1 + C

1
0.9
u

)0.1

.,

and

(9.3) κ(K2, Kf,u) ≥ K2 +K2
f,ug(2) +K2

f,u.

Indeed let us consider the straight line going from (K2+K2
f,ug(2),−2K2

f,u) to (κ(K2, Kf,u), 0).
This line is crossing zero at some point χ† such that by convexity of f̌ , χ† ≤ κ(K2, Kf,u).
Solving the equation we have:

χ† = K2 +K2
f,ug(2) +

2K2
f,u

p

where slope p is given by:

p =
f̌(κ(K2, Kf,u))− f̌(K2 −K2

f,ug(2))

κ(K2, Kf,u)−K2 −K2
f,ug(2)

=
2K2

f,u

κ(K2, Kf,u)−K2 −K2
f,ug(2)

.

Since 0 ≤ f̌ ′ ≤ 2, the slope is bounded by 2. Thus

χ† ≥ K2 +K2
f,ug(2) +K2

f,u.
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Nonetheless the explicit value of threshold κ(K2, Kf,u) is not attainable.

As for Kf,u = 0, there is an interval (R1, R2) such that for any r ∈ (R1, R2), δ∗ ≤
f(r) = rν(r) ≤ δ and on this interval we need to study the function

h(r) =
rδ

δ − rν(r)
=

rδ

δ − f(r)

and we try to obtain its minimum m∗. In the Case 1, R1 > 1 et R2 = 2. We can choose
δ < 0, such that h(r) < 0. And m∗ < 0 ≤ m.

Lemma 9.1 The quantity m∗ verifies again m∗ < 0 if χ < −K2, and in the Case 2
for χ,

m∗ =


2δ

δ − 2(K2 + χ)
if δ ≤ $(K2, Kf,u),

h(r\) if δ > $(K2, Kf,u),

where r\ ∈ (1, 2) satisfies h′(r\) = 0 and

$(K2, Kf,u) = 4K2 + 4K2
f,u + 4K2

f,u ln(1 + Cu).

In Case 3, we always have m∗ = h(r\).

Proof.
For 1 < r < 2, the derivative of h (expect for r = 2) is equal to

h′(r) =
δ

(δ − f(r))2
(δ − f(r) + rf ′(r))

=
δ

(δ − f(r))2

(
δ − r2

(r − 1)2
K2 −

rK2
f,u

(r − 1)2
(r − 1 + g(r)) ζ(r)

)

=
δ

(δ − f(r))2

(
δ − r2

(r − 1)2

(
K2 +K2

f,u

(
C

1
r−1
u + 1

)2−r

g̃(r)

))
with

g̃(r) = 1 + (r − 1) ln

(
1 + C

1
r−1
u

)
+ (2− r) ln

(
C

1
r−1
u

)
C

1
r−1
u

C
1
r−1
u + 1

.

And since

h′′(r) =
2δ

(δ − f(r))3
r (f ′(r))

2
+

δ

(δ − f(r))2
(rf ′′(r) + 2f ′(r)) ,

with

2f ′(r) + rf ′′(r) = 2χ− 2

(r − 1)2

(
K2 +K2

f,ug(r)ζ(r)
)

+
2r

(r − 1)3

(
K2 +K2

f,ug(r)ζ(r)
)
− r

K2
f,u

(r − 1)2
(gζ)′(r)

= 2χ− 2

(r − 1)2

(
K2 +K2

f,ug(r)ζ(r)
)

+
2(r − 1) + 2

(r − 1)3

(
K2 +K2

f,ug(r)ζ(r)
)
− r

K2
f,u

(r − 1)2
(gζ)′(r)

= 2χ+
2

(r − 1)3

(
K2 +K2

f,ug(r)ζ(r)
)
− r

K2
f,u

(r − 1)2
(gζ)′(r)
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we deduce that h is still a convex function.
The structure of h′ is similar to the expression of f ′, since the sign of h′ only depends on

δ − r2

(r − 1)2

(
K2 +K2

f,u

(
C

1
r−1
u + 1

)2−r

g̃(r)

)
.

Note that g(2) = 1 + 2 ln(1 + Cu) and g̃(2) = 1 + ln(1 + Cu); thus 2g̃(2) = g(2) + 1. Moreover if

δ ≤ 4(K2 +K2
f,ug̃(2)) = 4K2 + 2K2

f,ug(2) + 2K2
f,u = $(K2,Kf,u),

then h′(r) ≤ 0 and thus m∗ = h(2). In the case δ > 4(K2 +K2
f,ug̃(2)), there exists a unique r\ ∈ (1, 2)

such that h′(r\) = 0.

• Case 2 (χ ≤ κ(K2,Kf,u)). Then δ∗ = 2(χ + K2). Thus we can have δ ≤ 4(K2 + K2
f,ug̃(2)) if

and only if

2(χ+K2) ≤ 4K2 + 2K2
f,ug(2) + 2K2

f,u =⇒ χ ≤ K2 +K2
f,ug(2) +K2

f,u.

Thus we have two subcases:

– If χ ≤ K2 +K2
f,ug(2) +K2

f,u and if δ ≤ 4(K2 +K2
f,ug̃(2)), then m∗ = h(2).

– Else m∗ = h(r\).

• Case 3 (χ > κ(K2,Kf,u)). Recall that the map χ 7→ δ∗ = f(r]) is non decreasing. Then
δ∗ = f(r∗) ≥ f(κ(K2,Kf,u)) = 2(κ(K2,Kf,u) +K2). Thereby from (9.3)

δ > δ∗ ≥ 2(κ(K2,Kf,u) +K2) ≥ $(K2,Kf,u).

This achieves the proof of the Lemma. �

The following table gives some values of

$(K2, Kf,u) = 2L2
z + 6K2

f,u + 4K2
f,u ln(1 + Cu).

PPPPPPPPPK2
f,u

K2
f,z 0 1 2 5 10

0 0 2 4 10 20
0.5 8.50 10.50 12.50 18.50 28.50
1 17.56 19.56 21.56 27.56 37.56
2 36.47 38.47 40.47 46.47 56.47
3 56.06 58.06 60.06 66.06 76.06
5 96.56 98.56 100.56 106.56 116.56
10 202.55 204.55 206.55 212.55 222.55

9.2 The existence of measure solutions in the Lipschitz
case

In Section 6.1, the notion of measure solution for a BSDE is introduced (see Definition
6.1).
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We shall now construct measure solutions from first principles. In particular, we
shall not assume any knowledge about strong solutions. We shall give a complete self-
contained construction for measure solutions with Lipschitz continuous generator for
which the Lipschitz constant may be time dependent. Our construction provides the
measure solution along an algorithm which just iterates the procedures of projecting
the terminal variable by a given measure. The martingale representation theorem with
respect to the measure Qn in step n will produce a control process Zn which is then
plugged into the generator of the BSDE. The resulting drift is taken off by applying
Girsanov’s theorem which produces a new measure Qn+1 with which we continue along
the lines just sketched in step n + 1. The sequence (Qn)n∈N thus produced has to be
shown to possess at least an accumulation point in the weak topology. This is seen by
a simple argument using the Lipschitz and boundedness properties. The extension to
a continuous or quadratic generator and bounded terminal condition is straightforward
from this perspective, and uses monotone approximations following the scheme in [221].
But this result is already contained in the results of [199] and Theorem 6.1. Hence we
do not write the details here. The extension of our intrinsic construction of measure
solutions to unbounded terminal conditions is left for future research.

In order to obtain a self-contained theory that is not using any knowledge on classical
solutions, we first construct measure solutions in a setting for which they have been
studied mostly: for generators that increase at most linearly and possess Lipschitz
properties with time dependent and random Lipschitz constants. More formally, in
this section we consider the following class of generators. Let

f : Ω× [0, T ]× R→ R

such that f(s, z) = f(·, s, z) is adapted for any z ∈ R and satisfy (A1) and a weaker
version of (A4):

• for some γ ≥ 1

E|ξ|γ + E
(∫ T

0

|f(s, 0)|γds
)
<∞.

• for some non-negative process φ,

|f(s, z)− f(s, z′)| ≤ φs|z − z′|, ∀s ∈ [0, T ], (z, z′) ∈ R2.

We add the next condition:

(G5) The set {s ∈ [0, T ], f(s, .) is not continuous} is of Lebesgue measure zero;

We shall assume in the following that f(s, 0) = 0 for all s ∈ [0, T ]. This can be done
without loss of generality, since we may replace ξ with the γ-integrable random variable

ξ̃ = ξ +

∫ T

0

f(s, 0)ds.
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Now we define the function g : Ω × [0, T ] × R → R by the requirement that for all
s ∈ [0, T ], z ∈ R:

g(s, z) =


f(s, z)

z
, if z 6= 0,

0, if z = 0.

Therefore we have defined the function g with values in R and g is bounded by the
process φ.

The process φ verifies either

(9.4) ∃κ > 1, E
[
exp

(
κ

2

∫ T

0

φ2
rdr

)]
< +∞

or

(9.5) the martingale
(
Lt =

∫ t

0

φrdWr

)
t∈[0,T ]

is BMO.

We denote by ‖L‖ the BMO2-norm of L. From [184, Theorem 2.2], (9.5) implies (9.4),
with 1/κ = 2‖L‖2. Remark that (9.4) is a stronger Novikov condition. From these
assumptions (see [184, Theorem 2.3]), we know that for 0 ≤ t ≤ T ,

E(φW )t = exp

(∫ t

0

φrdWr −
1

2

∫ t

0

φ2
rdr

)
is a uniformly integrable martingale.

We define the process Φ by

∀t ∈ [0, T ], Φt =

∫ t

0

φ2
sds,

and we assume that there exists two constants α > Ψ and δ > Ψ such that

(9.6) E(eαΦT |ξ|δ) < +∞.

The constant Ψ > 1 is given for (9.4) by:

Ψ(κ) = Ψ(9.4)(κ) = 1 + 4

√
κ

(
√
κ− 1)2

=

(
1 +

2
√
κ+ 1

κ

)
κ

(
√
κ− 1)2

,

and for (9.5) by:

Ψ(‖L‖) = Ψ(9.5)(‖L‖) =

(
1 +
‖L‖

2

)
θ−1 (‖L‖)

θ−1 (‖L‖)− 1
.

The function θ :]1,+∞[→ R∗+ is the continuous decreasing function given by

∀q ∈]1,+∞[, θ(q) =

{
1 +

1

q2
ln

2q − 1

2(q − 1)

} 1
2

− 1.

We can check that Ψ(9.5) :]0,+∞[→]1,+∞[ is an increasing function such that Ψ(0) = 1
and Ψ(∞) =∞.
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Remark 9.1 If (A4) holds, that is f is a Lipschitz continuous function:

|f(t, z)− f(t, z′)| ≤ K|z − z′|,

then φ is the constant K. Then (9.4) is satisfied for all κ > 1, and (9.6) holds if γ > 1.

We are now in a position to state our existence Theorem.

Theorem 9.1 Suppose Assumptions (A1), (A4) and (G5), (9.4) or (9.5), and (9.6)
hold. There exists a probability measure Q equivalent to P and an adapted process Z
such that E

∫ T
0
|Zs|2ds <∞ such that, setting

RT = exp

(∫ T

0

g(s, Zs)dWs −
1

2

∫ T

0

g(s, Zs)
2ds

)
, WQ = W −

∫ ·
0

g(s, Zs)ds,

we have
Q = RT · P,

and such that the pair (Y, Z) defined by

Y = EQ(ξ|F·) = EQ(ξ) +

∫ ·
0

ZsdW
Q
s

solves BSDE (2.1).

Let us give some parts of the proof (for details, see [IV]). The solution algorithm for
our BSDE (2.1)

Yt = ξ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

is based on a recursively defined change of measure. Let Q0 = P, and W 0 = W , the
coordinate process which is a Wiener process under Q0. Set

Y 1 = E(ξ|F·) = E(ξ) +

∫ ·
0

Z1
sdW

0
s ,

and

Q1 = exp

(∫ T

0

g(s, Z1
s )dWs −

1

2

∫ T

0

g(s, Z1
s )2ds

)
· P = R1

T · P.

Then
W 1 = W −

∫ ·
0

g(s, Z1
s )ds

is a Wiener process under Q1. Indeed under (9.4), the Novikov condition is satisfied,
and under (9.5), the martingale

M1
t =

∫ t

0

g(s, Z1
s )dWs

is BMO. Now since (Q1,Q0) is a Girsanov pair, it is well known that the predictable
representation property is inherited from the Brownian motion W 0 to the Brownian
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motion W 1. See for example [300], p. 335. Hence there exists a pair (Y 2, Z2) of
processes such that for all t ∈ [0, T ]

Y 2
t = EQ1

(ξ|Ft) = EQ1

(ξ) +

∫ t

0

Z2
sdW

1
s .

Assume that Qn is recursively defined, along with the Brownian motion

W n = W −
∫ ·

0

g(s, Zn
s )ds

under Qn. Then the results in [300] may be applied to obtain two processes (Y n+1, Zn+1)
such that

Y n+1 = EQn(ξ|F·) = En(ξ|F·) = En(ξ) +

∫ ·
0

Zn+1
s dW n

s .

Now set

Qn+1 = exp

[∫ T

0

g(s, Zn+1
s )dWs −

∫ T

0

g(s, Zn+1
s )2ds

]
· P = Rn+1

T · P

to complete the recursion step. Then from our assumptions on φ, and from the bounded-
ness of g by φ, the sequence of probability measures (Qn)n∈N is well defined and consists
of measures equivalent with P. It is not hard to show tightness for this sequence.

Lemma 9.2 Under (9.4) or (9.5), the sequence (Qn)n∈N is tight.

In a second step, we shall now establish the boundedness in L2 of the control sequence
(Zn)n∈N obtained by the algorithm. Before let us give some estimates.

Lemma 9.3 If δ > Ψ and (9.6) holds, there exist two constants β > 0 and p > 1 such
that

(9.7) ∀n ∈ N∗, En−1
(
eβΦT |ξ|p

)
< +∞.

Moreover there exists a constant C such that for every n ∈ N∗,

En−1

[
sup
t∈[0,T ]

(eβΦt |Y n
t |p) +

(∫ T

0

eβΦt |Zn
t |2dt

)p/2]
≤ CEn−1

[
exp

(
βΦT max

(p
2
, 1
))
|ξ|p
]
.

And

E

(
sup
t∈[0,T ]

eβΦt(Y n
t )p

)
and E

[(∫ T

0

eβΦs(Zn
s )2ds

) p
2

]
are bounded sequences.

Corollary 9.3 There exists a subsequence of Zn (still denoted Zn) which converges
P⊗ λ-a.e. to some process Z.

The sequence Rn
T converges also P-a.s. to

RT = exp

(∫ T

0

g(s, Zs)dWs −
1

2

∫ T

0

(g(s, Zs))
2ds

)
.

The conclusion of the theorem follows.
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