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de ce travail. Vous avez tous accepté spontanément, je vous remercie tous sincèrement pour ce geste de 

confiance. 

S’il est impossible de nommer ici toutes les personnes que je souhaite remercier, je tiens à souligner le plaisir que 

j’ai eu de côtoyer l’ensemble des membres du CRMN qui ont su partager leurs savoir-faire, leurs connaissances et 

leur enthousiasme. Le CRMN est un laboratoire unique pour son ambiance à la fois motivée et détendue mais 

aussi pour les recherches qui y sont menées. Je remercie tout particulièrement les personnels administratifs et de 

la plateforme technique, les étudiants, les postdocs, les chercheurs, les responsables et les membres des équipes 

dont j’ai fait partie. Vous avez su transformer le quotidien de ces 10 ans en expérience riche ! Un grand merci 

spécifique pour Sylvie pour son soutien et son aide précieuse ! 
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1. Curriculum vitae  

1.1. Déroulé de carrière 

1.1.1. Formation et diplômes 

2021 Préparation pour l’habilitation à diriger les recherches. CRMN. ENS de Lyon 

2006 Doctorat en Biologie et Biophysique Moléculaires, Bourse MRT. Moniteur à l’Université 

d’Orléans. Thèse sous la direction de Françoise Vovelle. (11 décembre 2006) "Expression, 
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Conway Institute of Biomolecular & Biomedical Research, Dublin, Irlande – Equipe du Dr Neil 

Ferguson : Production et étude des protéines du virus de l'hépatite B pour le développement 

d'agents thérapeutiques nouveaux. Biochimie, Biophysique et Biologie Structurale 
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Walter and Eliza Hall Institute for Medical Research, Melbourne, Australie – Equipe du Dr Mark 
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et cristallographie 

 

2006-2007 : ATER à l’Université d’Orléans 
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1.2. Situation actuelle  

1.2.1. Activités de recherche 

Avec une formation initiale en biochimie et spécialisé dans l’utilisation de la résonance 

magnétique nucléaire (RMN) pour l’étude des biomolécules, j’ai démarré ma carrière avec une 

thèse puis 2 postdocs en biochimie et biologie structurale des protéines, essentiellement par RMN. 

J’ai ensuite changé de domaine de recherche lors de mon recrutement à l’ENS de Lyon pour 

m’orienter vers la métabolomique, je travaille actuellement au Centre de RMN à très hauts champs 

de Lyon (CRMN).  

Depuis mon recrutement à l’ENS de Lyon en 2012, et mon intégration à l’équipe de Bénédicte Elena-

Herrmann, j'ai participé́ à un grand nombre de projets de recherche collaboratifs avec des 

partenaires français et internationaux, privés et publiques en métabolomique par RMN. 

Biochimiste, je me positionne à l’interface entre la chimie analytique, l’enzymologie des systèmes 

complexes, la chimiométrie et la biologie pour offrir des nouveaux outils pour des applications 

biomédicales. Je m’intéresse particulièrement au développement de méthodes en métabolomique 

pour des applications dans les thématiques obésité, diabètes et syndrome métabolique par 

exemple. L’essentiel de mes recherches est réalisé en partenariat avec Baptiste Panthu (MCF UCBL, 

Faculté de Médecine Lyon Sud) et le laboratoire CarMeN (Cardiovasculaire, Métabolisme, 

Diabétologie et Nutrition).  

En 2018, j’ai intégré le groupe de Sami Jannin, leader dans le développement la polarisation 

dynamique par dissolution dDNP. Cela m’a permis d’intégrer la dDNP dans mes projets de 

recherche, notamment pour les approches de métabolomique par RMN en temps réel, par exemple 

pour étudier les réactions métaboliques du sein de mitochondries fraiches et isolées (projet soumis 

à l’ANR 2021). La dDNP permet un gain substantiel en intensité du signal RMN qui permet 

l’observation en temps réel de réactions métaboliques fines au sein des mitochondries intacts. 

1.2.2. Activités d'enseignement  

Je suis Maitre de conférences à l’ENS de Lyon depuis septembre 2012. Parallèlement à mes activités 

de recherche, j’ai assuré un service complet (>220 h eq TD/an), tous les ans depuis mon 

recrutement, en prenant en compte la décharge des deux premières années). L’intégralité de mon 

service est réalisée à l’ENS de Lyon et je n’ai pas bénéficié de période CRCT. 

J’interviens de la L3 au M2 pour enseigner la biochimie, notamment des protéines, et la biologie 

structurale. J’enseigne à l’interface entre le département de biologie (pour les approches plus 

chimie/biochimie pour les élèves biologistes) et le département de chimie (pour des aspects plus 

biologie/biochimie pour des étudiants chimistes).  
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Depuis mon recrutement en 2012, je me suis impliqué dans l’organisation des maquettes de cours 

et je suis maintenant responsable de 4 UE d’enseignement :  

• UE protéines et protéomique (L3, dpt de Biologie, 34h eq TD) 

• UE de TP: chimie et biochimie pour les biologistes (L3, dpt de Biologie, 80h de TP) 

• UE Européenne : Machines Supramoléculaires et cibles thérapeutiques, (co-encadrée avec P. 

Gouet) (M2, dpt de Biologie, 15h eq TD) 

• UE Caractérisation structurale et dynamique par RMN du solide (co-encadrée avec depuis 2019 

avec S. Jannin), (M2, dpt de Chimie, 15h eq TD) 

J’interviens aussi dans d’autres UE dont je ne suis pas responsable (cours, TD, et TP). Enfin, je 

participe à la préparation à l’agrégation en tant que correcteur et tuteur de leçons et de montages. 

Ces dernières années je me suis intéressé́ et formé à la pédagogie inversée et au e-learning.  

Au niveau des responsabilités au niveau de l’ENS, j’ai été élu au conseil d’administration de l’ENS 

de Lyon comme représentant des personnels enseignants et assimilés, et siégé de 2014 à 2019, et 

assumé les fonctions liées : conseils restreints, conseils de discipline, commission des finances. Je 

participe régulièrement aux commissions de recrutement : 2 postes MCF, 7 ATER, 6 AGPR/PRAG. 

J’ai été coordinateur et examinateur pour le concours d’entrée BCPST à l’ENS (2014 à 2017) et je 

suis actuellement évaluateur pour le concours d’entrée médecine-sciences. 

Être enseignant à l’ENS et faire partie du CRMN est un privilège que j’apprécie chaque jour mais qui 

est lié à des attentes importantes, tant du côté enseignement, que du côté recherche. La fonction 

d’enseignant chercheur est parfois complexe, mais je pense que c’est général pour tous les collègues 

qui sont tiraillés entre l’enseignement et la recherche ! et c’est dans le fond un bon problème. 

1.3. Activité pédagogique 

1.3.1. Formation pédagogique. 

J’ai suivi une formation à la pédagogie durant mon contrat de moniteur à l’Université d’Orléans 

(2003-2006, CIES d’Orléans-Tours). Cette formation a eu lieu sur 3 ans, avec un ensemble de 

présentations, séminaires et ateliers, pour un total de 250 heures et l’obtention d’un certificat 

d’aptitude. J’ai de plus été suivi par un tuteur pédagogique à l’Université d’Orléans. Cette formation, 

réelle et efficace, m’a aidé à appréhender ma carrière d’enseignant chercheur avec sérénité. 

J’ai suivi un MOOC de formation à l’enseignement supérieur (« Se former pour enseigner dans le 

supérieur », 2017), dont l’objectif est de soutenir la formation et l'accompagnement des 

enseignants-chercheurs du supérieur dans leurs connaissances des processus d'apprentissage et 

dans leurs pratiques d'enseignement et d'évaluation. Les parties sur la gestion de la pédagogie 

inversée en amphithéâtre et l’utilisation des nouveaux moyens électroniques pour soutenir 

l’apprentissage actif, notamment grâce aux solutions de e-learning, m’ont particulièrement 
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intéressées. Ces stratégies et outils sont largement développées à l’ENS ce qui permet des échanges 

pédagogiques fréquents entre collègues. 

Ces formations ont eu un impact sur ma manière d’enseigner, tant par rapport à la théorie de 

l’apprentissage que pour l’utilisation d’outils pédagogiques. Tout cela a été utile lors des 2 périodes 

de confinement de l’année 2020, durant lesquelles j’ai été contraint de basculer mon enseignement 

vers un enseignement 100% numérique. J’ai réussi à maintenir l’ensemble de mes cours et TD, mais 

aussi et surtout TP. Les retours et évaluation des étudiants ont été excellents. Je suis convaincu que 

leur formation n’a pas souffert de cette adaptation des méthodes pédagogiques. Les ressources que 

j’ai développées seront aussi des outils pour les années qui viennent.   

1.3.2. Présentation de l'activité d’enseignement 

Les modules les plus importants dans lesquels j’interviens et contribue à l’évolution sont détaillés 

dans la suite.  

1.3.2.1. UE protéines et protéomique (L3, dpt de Biologie, cours et TD) 

Il s’agit d’une UE importante pour les étudiants en biologie à l’ENS de Lyon car c’est la seule UE 

dédiée à biochimie fondamentale dans leur cursus à l’ENS. L’objectif est d’aborder les notions en 

biochimie des protéines qui sont indispensables pour tous les biologistes, tant au niveau conceptuel 

que pratique au laboratoire.  

Cette UE était initialement pilotée par le Prof. Sylvie Ricard-Blum. J’en suis intégralement 

responsable depuis 2014. J’assure les 4/5 des cours et je suis aidé par un autre enseignant UCBL 

(Lionel Ballut, MCF).  

Nous couvrons toutes les bases de la biologie structurale, depuis les niveaux d’organisation des 

protéines, jusqu’aux aspects thermodynamique du repliement. Les relations entre structure, 

fonction, activité, régulation, mécanisme d'action et dynamique sont explorés pour des conditions 

normales et pathologiques ainsi que pour les protéines intrinsèquement non repliées. Les 

techniques d'étude et de protéomique sont mises en avant pour assurer la compétence scientifique 

des étudiants face aux enjeux actuels de la biologie.  

1.3.2.2. UE de TP : chimie et biochimie pour les biologistes (L3, dpt de 

Biologie, 2 semaines) 

Ce TP est à l’origine de mon recrutement à l’ENS. J’en ai pris la responsabilité dès mon recrutement 

en 2012. Depuis, le TP a été intégralement repensé, pour passer d’un TP d’enzymologie 

fondamentale, à un TP d’exploration des techniques de biophysique et d’initiation à l’approche 

scientifique expérimentale. Mon objectif est de démontrer aux étudiants qu’un ensemble de 

techniques autrefois réservées à des biochimistes experts sont maintenant non seulement 
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accessibles aux biologistes mais aussi indispensables pour répondre aux questions scientifiques 

modernes de la biologie. Un autre objectif, absolument assumé, est de casser l’image négative et 

ennuyeuse de ces techniques de biophysique auprès des étudiants biologistes.  

En prenant l’exemple concret de la créatine kinase, on analyse les propriétés fonctionnelles et 

structurales des différentes des isoformes, les propriétés d'attachement du substrat au site actif, la 

cinétique de la catalyse enzymatique à deux substrats, la formation de complexes protéiques, les 

interactions protéine-membrane... Ainsi, les techniques de biophysique sont introduites, 

présentées et utilisées directement par les étudiants, parfois au cours de visites au sein de 

laboratoires de recherche comme l’IBCP ou le CRMN : électrophorèse native, photométrie, 

fluorimétrie, dispersion de la lumière, microcalorimétrie (DSC), résonance plasmonique de surface 

(Biacore) et résonance magnétique nucléaire (RMN). L'équipe pédagogique regroupe des chimiste, 

physicien, biochimiste et biologiste moléculaire pour développer une approche interdisciplinaire 

des problématiques biologiques présentées abordées.  

Ce module remporte un franc succès et il est généralement complet (la jauge est limitée à 12 

étudiants, afin de pouvoir réaliser des expériences dans les laboratoires de recherche). L’approche 

pédagogique est de laisser les étudiants déterminer eux même les problématiques scientifiques 

qu’ils souhaitent étudier en utilisant les méthodes disponibles. Ils proposent ensuite une 

approche expérimentale qui est discutée et validée avant d’être appliquée. Ils décident 

complètement des expériences et protocoles à réaliser. Je suis généralement assisté durant le TP 

d’un moniteur ou d’un ATER, et c’est à cette occasion que j’ai rencontré Baptiste Panthu en 2013. 

1.3.2.3. UE Européenne Machines Supramoléculaires et cibles 

thérapeutiques, (M2, dpt de Biologie).  

Les UE européennes du département de biologie se déroulent sur 2 semaines. Chaque jours, 2 

présentateurs extérieurs / étrangers présentent sur une ½ journée chacun leur thématique de 

recherche, en anglais, sous la forme d’un séminaire, légèrement adapté pour améliorer la 

compréhension à nos étudiants. Les séances sont animées par les étudiants eux-mêmes. Je suis co-

responsable de l’UE avec le Prof. Patrice Gouet. Nous avons intégralement construit cette UE et 

l’organisons depuis 2016. 

Les approches génomiques et post-génomiques à haut débit apportent une masse formidable de 

données sur les génomes de nombreux organismes. Un défi majeur proposé désormais aux 

biologistes consiste à comprendre ces données au niveau moléculaire, c’est-à-dire à déterminer la 

structure et les mécanismes biochimiques d’action des différents acteurs : protéines, acides 

nucléiques, cofacteurs, et les complexes supramoléculaires dynamiques que tous ensemble ils 

composent.  

A ces fins, les outils et approches de la biologie structurale sont essentiels et incontournables. Ils 

acquièrent continuellement plus de puissance et de facilité d’utilisation, et les résultats qu’ils 

fournissent sont présents dans une proportion sans cesse croissante des publications. Cette UE 
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s’appuie sur l’excellence internationale des ressources scientifiques régionales avec le Centre de 

Résonance Magnétique Nucléaire à très haut champs (CRMN) à Lyon et le synchrotron européen 

(ESRF) à Grenoble, et présente les techniques les plus modernes de la biologie structurale (RMN, 

cristallographie, cryo-microscopie électronique, microscopie super-résolution), dont la 

connaissance des pouvoirs et des limites est désormais indispensable à tout biologiste soucieux de 

comprendre en profondeur les mécanismes du vivant. 

1.3.2.4. UE Caractérisation structurale et dynamique par RMN du solide 

(co-encadrée avec le S. Jannin), (M2, dpt de Chimie, Cours et TP) 

Je suis responsable de ce module depuis 2012, et co-responsable depuis 2019 avec Sami Jannin. Ce 

cours est destiné aux étudiants de M2 en Chimie de l’ENS et qui ont déjà suivis des cours avancés 

de RMN. Il se présente sous la forme de cours/TP qui ont lieu au CRMN. Il est en constante 

adaptation pour suivre l’évolution des techniques en RMN. 

 

L’idée est de présenter aux étudiants les techniques les plus à la pointe actuellement en RMN, en 

se basant sur les défis scientifiques actuels et les solutions mises en œuvre pour y répondre. Après 

un brainstorming sur les problématiques scientifiques, les techniques sont présentées, discutées et 

accompagnées de démonstrations directement sur les spectromètres du centre. Le CRMN est une 

plateforme européenne qui possède un parc d’instruments unique au monde (spectromètre 1 GHz), 

instrumentation DNP, sondes à rotation ultra rapide pour la RMN du solide etc.), il s’agit d’une belle 

opportunité pour les étudiants pour voir des équipements de pointe et d’un argument solide pour 

leur recherche de stages en RMN. 

 

Les domaines concernés vont de la catalyse à l’étude des matériaux en passant par des applications 

biologiques. Le cours se présente actuellement sous la forme de 5 séances de 3 heures, au CRMN : 

• L’étude des solutions complexes. Application à la métabolomique par RMN.  

• RMN biologique, solide et liquide pour l’étude des protéines (structure et dynamique).  

• RMN solide non-biologique, rotation à l’angle magique (catalyse et matériaux).  

• DNP, polarisation dynamique nucléaire et rotation à l’angle magique (RMN du solide). 

• DNP par dissolution (RMN liquide). 

1.3.2.5. Répartition et organisation des enseignements. 

La répartition de mes activités d’enseignement de cette année universitaire 2020-2021 est détaillée 

dans le tableau ci-dessous, avec un nombre total d’heures d’enseignement de 218 h eq TD. 

L’ensemble de ces heures est réalisé à l’ENS de Lyon :  

Département Formation Heures 

(eq TD) 

Détails 
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1.3.2.6. Responsabilités pédagogiques et montage de formations.  

Comme mentionné précédemment, je suis responsable de 4 UE d’enseignement, et globalement 

coordinateur de l’axe biochimie-biophysique-biologie structurale à l’ENS qui fait l’interface entre 

les départements de Biologie et Sciences de la Matière. Au-delà de l’enseignement des aspect 

moléculaires de la biologie, je suis particulièrement impliqué dans l’élaboration des maquettes 

d’offre de formation (je participe actuellement à la 3e refonte des enseignement et programmes de 

l’ENS), tant au niveau des département Sciences de la Matière et Biologie de l’ENS de Lyon. 

J’assure par ailleurs, comme tous les enseignants permanents de l’ENS, le tutorat individuel de 6 à 

8 étudiants par an. J’apprécie le contact individuel avec les étudiants, et la possibilité d’interagir 

avec eux sur des sujets autres que des aspects purement scientifiques. Nous parlons d’orientation, 

de stages, de stratégie professionnelle qui deviennent exceptionnellement compétitives et difficiles.  

Au niveau recherche, outre le fait que j’organise une UE de RMN pour étudiants en M2 (UE ouverte 

aux étudiants en chimie de l’UCBL, mais aussi des autres structures et écoles lyonnaises, comme la 

faculté de Pharmacie), j’ai participé à la mise en place, avec Bénédicte Elena-Herrmann, d’une 

formation professionnelle dédiée à la métabolomique par RMN, qui a été ouverte de 2015 à 2018 

dans le catalogue de formation CNRS : formation 17292 : RMN HR-MAS pour l'analyse des 

échantillons biologiques. Cette formation d’une journée, avait pour objectif pédagogique de 

permettre d’acquérir les connaissances de base, théoriques et pratiques, spécifiques à l'analyse 

haute résolution à l'angle magique (HR-MAS) pour l'étude des échantillons semi-solides : tissus 

biologiques, cellules ou petits organismes intacts, en vue de leur analyse métabolomique. 

1.3.3. Diffusion, rayonnement, sociétés savantes. 

Je suis impliqué dans les réseaux spécialisés MARS (Métabolomique Auvergne Rhône-Alpes Suisse 

Francophone) et RFMF (Réseau Francophone de Métabolomique et Fluxomique) qui mènent de 

très nombreuses actions (journées scientifiques, écoles chercheurs, ateliers, formations, annuaire 

des sites & compétences, etc.) couvrant l’ensemble des champs d’applications de la 

métabolomique. J’interviens régulièrement autant pour l’organisation des conférences et journées 

scientifiques, que pour la mise en place et l’animation d’ateliers dédiés à la métabolomique par 

Chimie/SDM M2 - Chimie - Caract. struct. par RMN du solide 15 CM-TP 

Biologie M2 Biologie - Molecular and supramolecular machines 15 CM-TD 

Biologie L3 Biologie - S5 TP de biochimie 24 TP 

Biologie L3 Biologie - S6 / Protéines et protéomique 34 CM-TD 

Biologie L3 Biologie S6 - TPs chimie, biochimie pour les biologistes 80 TP 

Chimie & Biologie Préparation à l'agrégation 12  

Chimie/SDM Tutorat d'étudiants 38  
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RMN et au traitement statistique des données obtenues. Enfin je suis membre de la Metabolomics 

Society. 

1.3.4. Encadrement d’étudiants  

J’ai encadré de nombreux étudiants, depuis le niveau BTS jusqu’en M2 ou École d’ingénieur, de plus 

en plus indépendamment avec les années. Voici une liste des étudiants que j’ai encadré à 100% 

depuis mon recrutement à l’ENS.  

 

J’ai été très activement impliqué dans la formation doctorale de plusieurs étudiants : 

Johan Perrier, actuellement en 3e année de thèse (dir: Charles Thivolet/Baptiste Panthu ; ). Titre: 

Metabolic modifications of β cells during glucose and/or palmitate excess). Article: Cell-Free Protein 

Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in 

Hybrid RRL Systems. Panthu B, Ohlmann T, Perrier J, Schlattner U, Jalinot P, Elena-Herrmann B, 

Rautureau GJP. ACS Synthetic Biology. 2017 Oct 2. doi: 10.1021/acssynbio.7b00280 

J’ai activement participé à la formation de plusieurs étudiants en thèse dans le groupe de Bénédicte 

Elena-Herrmann. Notamment pour les thèses de : 

Houda Boumaza (soutenance mars 2019), (encadrement 30%) : détermination par RMN d’une 

signature métabolique liée à une maladie découverte récemment impliquant un récepteur aux 

hormones thyroïdiennes. J’ai suivi Houda durant toute sa thèse et participé à sa formation tant au 

niveau RMN que pour l’analyse des données.  Article : Metabolomic Profiling of Body Fluids in 

Mouse Models Demonstrates that Nuclear Magnetic Resonance Is a Putative Diagnostic Tool for the 

Presence of Thyroid Hormone Receptor α1 Mutations. Boumaza H, Markossian S, Busi B, Rautureau 

GJP, Gauthier K, Elena-Herrmann B, Flamant F. Thyroid. 2019 Sep;29(9):1327-1335. doi: 

10.1089/thy.2018.0730.  

Manhal Mili (soutenance décembre 2019) (encadrement 40%). Elle a beaucoup travaillé sur un 

protocole d’extraction de métabolites et sur un projet d’étude métabolomique de co-cultures 

d’adipocytes et de cellules stromales. Article : Mili, M., Panthu, B., Madec, A. M., Berger, M. A., 

Rautureau, GJP, Elena-Herrmann, B. (2020). Fast and ergonomic extraction of adherent mammalian 

cells for NMR-based metabolomics studies. Analytical and bioanalytical chemistry, 412(22), 5453–

5463. doi : 10.1007/s00216-020-02764-9.  

Nom Prenom Début Fin Niveau Duree (semaine) Titre

Perrin Marion 01/05/2014 31/07/2014 L3 13
Signature métabolique de mutant d'un recepteur aux hormones thryroide 

chez la souris

Furster Eline 05/01/2015 30/05/2015 M1 21

Étude par RMN de l'impact des hormones thyroïdiennes sur le métabolisme 

hépatique dans des souris porteuses de mutations des récepteurs TRα 

et/ou TRβ des hormones thyroïdiennes spécifiquement dans le cerveau.

Busi Baptiste 21/09/2015 18/12/2015 M1 13
Etude métabolomique par RMN des conséquences de mutations sur les 

récepteurs aux hormones thyroïdes.  

Perrier Johan 01/03/2017 01/06/2017 M1 13 Etude de l'effet Warburg et de la lactagénèse par RMN et temps réels

Perrier Johan 01/10/2017 01/06/2018 M2 35 Etude du role des hexokinase HK2 et HK4 dans les cellules cancéreuses

http://www.doi.org/10.1021/acssynbio.7b00280
https://doi.org/10.1089/thy.2018.0730
https://doi.org/10.1007/s00216-020-02764-9
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Enfin, et de manière significative, j’ai été très impliqué dans la formation des étudiants en thèse du 

groupe de Neil Ferguson à Dublin, lors de mon second postdoc. En effet, le groupe était constitué 

de 5 étudiants en thèse (Crispin Alexander, Maike Jurgens, Maggie O'Connor, Annika Urbanek, 

Judith Voros), Neil Ferguson et moi. J’ai été particulièrement sollicité pour encadrer l’équipe. 

Durant 2 années, j’ai assuré le suivi quotidien et la formation pratique en laboratoire des 5 

thésards simultanément (encadrement 50%).  

• Articles 1: Large-scale production and structural and biophysical characterizations of the 

human hepatitis B virus polymerase. Vörös J*, Urbanek A*, Rautureau GJ*, O'Connor M, 

Fisher HC, Ashcroft AE, Ferguson N. (* Contributed equally) Journal of Virology. 2014 Mar; 

88(5): 2584–2599. doi:  10.1128/JVI.02575-13. Spotlight: Articles of Significant Interest 

Selected by the Editors.  

• Article 2: The hepatitis B virus preS1 domain hijacks host trafficking proteins by motif mimicry. 

Jürgens MC, Vörös J, Rautureau GJ, Shepherd DA, Pye VE, Muldoon J, Johnson CM, Ashcroft 

AE, Freund SM, Ferguson N. Nature Chemical Biology, 2013 Sep;9(9):540-7. doi: 

10.1038/nchembio.1294 

1.4. Contrats de recherche  

Je suis intervenu dans un grand nombre de projets de métabolomique appliqués, dont voici une liste 

des dernières années (R : coordinateur, P : partenaire, budget total/budget dédié) 

R : Émergence ENS. 2020. Coupler dDNP et analyses par RMN en temps réel. 20/20 k€. 

R : Convergence ISA. 2017 – soutien pour les analyses par RMN en temps réel 2017. 10/10 k€. 

P : Olga Triballat (Baptiste Panthu, CarMeN). 2019. Études d’exosomes de jus de fruits, 70/5 k€. 

P : INSERM (CHU de Rouen). 2018-2019. Caractérisation d’un nouveau modèle animal. 370/5 k€ 

P : SINFONI INSERM (Cyrielle Caussy, CarMeN). 2018-2022. Microbiote et obésité. 320/40 k€.  

P : SFD (Baptiste Panthu, CarMeN). 2018-2021.Glycine, Metformine et obésité. 30/15 k€.  

P : Glofood INRA (Anne Mey, CarMeN). 2017. Rôle des cellules souches dans l’obésité. 35/5 k€  

P : ANR Thyromut (F. Flamant, IGFL). 2015-2019. Étude d’une maladie due à la mutation d’un 

récepteur aux hormones thyroïde, TRa. 482/115 k€. 

P : Biomérieux – 2014 (B. Elena-Herrmann). Identification de bactéries responsables d’infections 

urinaires. 85/85 k€ 

  

https://dx.doi.org/10.1128%2FJVI.02575-13
http://www.doi.org/10.1038/nchembio.1294
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1.5. Liste des publications 

Mon profil de recherche ORCID est disponible : https://orcid.org/0000-0002-1064-0293 

 

1. Dietary obesity in mice is associated with lipid deposition and metabolic shifts in the lungs 

sharing features with the liver.  

Rautureau GJP, Morio B, Guibert S, Lefevre, Perrier J, Alves A, Chauvin MA, Pinteur C, Monet 

MA, Godet M, Madec AM, Rieusset J, Mey A, Panthu B. 

Scientific Reports volume 11, Article number: 8712 (2021) doi : 10.1038/s41598-021-88097-8 

This article demonstrates how the determination of individual organ metabolite profiles allows to 

evidence metabolic shifts in organs and lipid deposition in the lungs of mice fed an obesogenic diet. 

This unprecedented observation may be important for the observed prevalence of lung diseases 

among obese patients. From a technical point of view, this study presents results from a 

physiological compartment that is rarely examined at the metabolomics level. Those results nourish 

a discussion of the interconnection between compartments and the integrated observations that 

can be done on central biofluids such as serum of urine. 

2. A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances 

innate immunity.  

Perrin-Cocon L, Vidalain PO, Jacquemin C, Aublin-Gex A, Olmstead K, Panthu B, Rautureau GJP, 

André P, Nyczka P, Hütt MT, Amoedo N, Rossignol R, Filipp FV, Lotteau V, Diaz O.  

Commun Biol. 2021 Feb 16;4(1):217. doi: 10.1038/s42003-021-01749-3.  

 

3. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in 

Mammalian Cell Cultures.  

Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP.  

International Journal of Molecular Sciences. 2020;21(18):E6843. doi:10.3390/ijms21186843 

 

4. Use of Nanovesicles from Orange Juice to Reverse Diet-Induced Gut Modifications in Diet-

Induced Obese Mice.  

Berger E, Colosetti P, Jalabert A, Meugnier E, Wiklander OPB, Jouhet J, Errazurig-Cerda E, 

Chanon S, Gupta D, Rautureau GJP, Geloen A, El-Andaloussi S, Panthu B, Rieusset J, Rome S.  

Molecular therapy. Methods & clinical development, 18, 880–892. doi : 

10.1016/j.omtm.2020.08.009 

 

5. Fast and ergonomic extraction of adherent mammalian cells for NMR-based metabolomics 

studies.  

Mili M, Panthu B, Madec AM, Berger MA, Rautureau GJP, Elena-Herrmann B (2020). 

Analytical and bioanalytical chemistry, 412(22), 5453–5463. doi : 10.1007/s00216-020-02764-9 

 

https://orcid.org/0000-0002-1064-0293
https://doi.org/10.1038/s41598-021-88097-8
https://doi.org/10.1038/s42003-021-01749-3
https://doi.org/10.3390/ijms21186843
https://doi.org/10.1016/j.omtm.2020.08.009
https://doi.org/10.1007/s00216-020-02764-9
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6. Discrimination of Escherichia coli and Shigella spp. by Nuclear Magnetic Resonance Based 

Metabolomic Characterization of Culture Media.  

Rautureau GJP, Palama T, Canard I, Mirande C, Chatellier S, van Belkum A, Elena-Herrmann B.  

ACS Infectious Diseases. 2019 Nov 8;5(11):1879-1886. doi: 10.1021/acsinfecdis.9b00199. 

This metabolomics study presents an NMR-based strategy for bacterial identification. We 

demonstrate, using hard to discriminate bacteria species, that the media bacteria metabolites 

consumption or liberation profiles during culture constitutes an excellent signature that can be used 

to discriminate bacteria species. This article emphasizes the potential of NMR to deliver methods 

that are relevant not only for fundamental studies but also for medical and technological 

applications, in this case, microbial identification.  

7. Metabolomic Profiling of Body Fluids in Mouse Models Demonstrates that Nuclear Magnetic 

Resonance Is a Putative Diagnostic Tool for the Presence of Thyroid Hormone Receptor α1 

Mutations.  

Boumaza H, Markossian S, Busi B, Rautureau GJP, Gauthier K, Elena-Herrmann B, Flamant F. 

Thyroid. 2019 Sep;29(9):1327-1335. doi: 10.1089/thy.2018.0730.  

 

8. Metabolic phenotyping of adipose derived stem cells reveals a unique signature and intrinsic 

differences between fat pads.  

Lefevre C, Panthu B, Naville D, Guibert S, Pinteur C, Elena-Herrmann B, Vidal H, Rautureau GJP, 

Mey A. 

Stem Cells International, vol. 2019. doi: 10.1155/2019/9323864.  

We characterized the metabolic differences between stem cells derived from 2 types of adipose 

tissues (subcutaneous adipose tissues (SAT) and visceral adipose tissues (VAT)). This discovery is 

important in the field of stem cells and regenerative medicine as adipose tissues are an abundant 

source of stem cells with important medical applications. Stem cells from the 2 types of adipose 

tissues present significant metabolic differences which may be related to their different 

physiological and differentiation properties. This study emphasizes the potential of NMR for the 

discrimination and characterization of very similar biological objects.  

9. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting 

Energy Fluxes in Hybrid RRL Systems.  

Panthu B, Ohlmann T, Perrier J, Schlattner U, Jalinot P, Elena-Herrmann B, Rautureau GJP. 

ACS Synthetic Biology. 2017 Oct 2. doi: 10.1021/acssynbio.7b00280 

This article describes real-time NMR development for metabolic reaction measurements. This was 

my first scientific study being the principal investigator, from the project establishment to running 

experiments and writing the final article. The NMR methodology was completely novel in the 

institute. This article delivers important results for the field of mammalian cell-free protein 

expression technologies. This article also presents an overlooked NMR method that can deliver 

crucial results for metabolic profiling in complex media. 

https://doi.org/10.1021/acsinfecdis.9b00199
https://doi.org/10.1089/thy.2018.0730
https://doi.org/10.1155/2019/9323864
http://www.doi.org/10.1021/acssynbio.7b00280
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10. Identification of Bacterial Species by Untargeted NMR Spectroscopy of the Exo-metabolome. 

Palama TL, Canard I, Rautureau GJP, Mirande C, Chatellier S, Elena-Herrmann B. 

Analyst, 2016 Aug 7;141(15):4558-61. doi: 10.1039/c6an00393a 

 

11. Large-scale production and structural and biophysical characterizations of the human hepatitis 

B virus polymerase.  

Vörös J*, Urbanek A*, Rautureau GJ*, O'Connor M, Fisher HC, Ashcroft AE, Ferguson N. (* 

Contributed equally) 

Journal of Virology. 2014 Mar; 88(5): 2584–2599. doi:  10.1128/JVI.02575-13 

Spotlight: Articles of Significant Interest Selected from This Issue by the Editors. 

This article presents the production method and characterization of HBV polymerase, the key 

therapeutic target for hepatitis B. Despite 20 years of research, both by academic and private 

groups, the protein was believed to be impossible to produce recombinantly, blocking the 

development of targeted viral inhibitors and structural biology studies. Using state-of-the-art 

automated approaches, we managed to produce for the first time a form of the HBV polymerase 

that is both soluble and active. This constitutes a very important step forward in the field of hepatitis 

B research. This paper finalized a 2-years postdoctoral research project in Dublin (I was in the field 

of structural biology until my recruitment at the ENS).  

 

12. The hepatitis B virus preS1 domain hijacks host trafficking proteins by motif mimicry.  

Jürgens MC, Vörös J, Rautureau GJ, Shepherd DA, Pye VE, Muldoon J, Johnson CM, Ashcroft AE, 

Freund SM, Ferguson N. 

Nature Chemical Biology, 2013 Sep;9(9):540-7. doi: 10.1038/nchembio.1294 

 

13. The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 

protein antagonist.  

Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG. 

Cell Death & Disease, Nature publishing. 2012 Dec 13;3:e443. doi: 10.1038/cddis.2012.178. 

 

14. Detection of Bcl-2 family member Bcl-G in mouse tissues using new monoclonal antibodies.  

Giam M, Mintern JD, Rautureau GJ, Hinds MG, Strasser A, Bouillet P. 

Cell Death & Disease, Nature publishing. 2012 Aug 23;3:e378. doi: 10.1038/cddis.2012.117. 

 

15. CARD-mediated autoinhibition of cIAP1's E3 ligase activity suppresses cell proliferation and 

migration.  

Lopez J, John SW, Tenev T, Rautureau GJ, Hinds MG, Francalanci F, Wilson R, Broemer M, 

Santoro MM, Day CL, Meier P. 

Molecular Cell. 2011 Jun 10;42(5):569-83. doi: 10.1016/j.molcel.2011.04.008. 

 

16. Intrinsically Disordered Proteins in Bcl-2 Regulated Apoptosis.  

Rautureau GJP, Day CL and Hinds MG.  

http://www.doi.org/10.1039/c6an00393a
https://dx.doi.org/10.1128%2FJVI.02575-13
http://www.doi.org/10.1038/nchembio.1294
http://www.doi.org/10.1038/cddis.2012.178
http://www.doi.org/10.1038/cddis.2012.117
http://www.doi.org/10.1016/j.molcel.2011.04.008.
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International Journal of Molecular Sciences. 2010 Apr 16;11(4):1808-24. doi: 

10.3390/ijms11041808. 

 

17. The Structure of Boo/Diva Reveals a Divergent Bcl-2 Protein.  

Rautureau GJP, Day CL, Hinds MG.  

Proteins: Structure, Function, and Bioinformatics. 2010 Jul;78(9):2181-6. doi: 

10.1002/prot.22728. 

 

18. NMR structure of a Phosphatidyl-ethanolamine Binding Protein from drosophila.  

Rautureau GJP, Vovelle F, Schoentgen F, Decoville M, Locker D, Damblon C and Jouvensal L. 

Proteins: Structure, Function, and Bioinformatics. 2010 May 1;78(6):1606-10. doi: 

10.1002/prot.22682. 

 

19. Solution structure of Psb27 from cyanobacterial photosystem II.  

Mabbitt PD, Rautureau GJP, Day CL, Wilbanks SM, Eaton-Rye JJ, Hinds MG. 

Biochemistry. 2009 Sep 22;48(37):8771-3. doi: 10.1021/bi901309c. 

 

20. Expression and characterization of the PEBP homolog genes from Drosophila.  

Rautureau GJP, Jouvensal L, Vovelle F, Schoentgen F, Locker D, Decoville M.  

Archives of Insect Biochemistry and Physiology. 2009 Jun;71(2):55-69. doi: 10.1002/arch.20300. 

 

21. 1H, 15N and 13C Resonance Assignments of CG7054, a new PEBP from Drosophila melanogaster.   

Rautureau GJP, Jouvensal L, Schoentgen F, Vovelle F.  

Journal of Biomolecular NMR. 2007 Jun;38(2):187. DOI: 10.1007/s10858-006-9112-z 

 

22. Cloning, high yield over-expression, purification, and characterization of CG18594, a new 

PEBP/RKIP family member from Drosophila melanogaster.  

Rautureau GJP, Jouvensal L, Decoville M, Locker D, Vovelle F, Schoentgen F 

Protein expression and purification. 2006 Jul;48(1):90-7. DOI: 10.1016/j.pep.2006.01.020 

  

http://www.doi.org/10.3390/ijms11041808.
http://www.doi.org/10.1002/prot.22728.
http://www.doi.org/10.1002/prot.22682.
http://www.doi.org/10.1021/bi901309c
http://www.doi.org/10.1002/arch.20300
https://doi.org/10.1007/s10858-006-9112-z
https://doi.org/10.1016/j.pep.2006.01.020
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2. Research activities  

Biology and biomedical research, from fundamental to applied research, has developed profound 

and timely needs for bio-molecular phenotyping methods able to dissect the extraordinary complex 

processes of Life. In the meantime, analytical chemistry methods have made spectacular progress 

and now offer great solutions and possibilities of development and customization toward the 

quantitative and qualitative analysis of all types of bio-molecules.  

Unfortunately, both communities suffer from a far-from optimal scientific permeability: analytical 

needs and offers, and technological platforms availability are barely aligned: biologists are scarcely 

aware of the analytical solutions available and the possibility to develop custom methods to their 

research needs, and analytical chemists on the other sides have difficulties understanding the needs 

from the bio-medical communities.  

Since my beginnings in the research community, my scientific engagement has consisted in bridging 

the gap between both communities that depend on each other to thrive, but have rough times 

interacting. While I had been doing protein structural biology during my PhD and postdocs, I 

changed of field of research in 2012. Since my recruitment at the ENS de Lyon, I have focussed on 

metabolism profiling using NMR metabolomics approaches and developed a series of applications 

for metabolomics in the team of Bénédicte Elena-Herrmann and then Sami Jannin.  

I am intimately convinced of the value of NMR metabolomics for its exceptional discrimination 

potential, which offers unprecedented applications for example for human health diagnosis, 

prognostic, personalized medicine etc. I believe that we are about to live a bio-medical revolution 

when all -omics technologies will be integrated into routine healthcare. Unfortunately, while 

definite proofs of concept are available and preliminary applications are already integrated into 

research hospitals, we still have much development and validation to work on before metabolomics, 

and other -omics technologies, are rendered accessible to public health. Outside health 

applications, -omics technologies, complemented by many other approaches, are also excitingly 

allowing to reach new layers of comprehension to Biology, and Life in general.  

This document begins with a general discussion of metabolomics approaches for metabolic profiling. 

I then present several applications of NMR for metabolomics projects where I explored a variety of 

biological specimens, from bacteria to full organs studies, and subcellular fractions. An important 

aspect of my work is the profiling of the dynamic processes of metabolism, which I assessed either 

from the measurement of matter fluxes between cells and their culture media or by measuring 

complex enzymatic pathways activities in cell lysates. 
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2.1. An overview of metabolomics and metabolic 

phenotyping in life sciences 

2.1.1. Metabolic phenotypes and metabolic plasticity  

Biological organisms are constantly adapting to their environment that constantly triggers a 

continuous flow of stimuli-dependent adaptations. The diversity of the stimuli contributes to the 

multiplicity of induced biological effects, including activation, stimulation or inhibition of 

physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of 

life, has proven to be acutely sensitive and highly adaptive to stimuli. Studying metabolism not only 

permit us to better apprehend the mechanisms of Life, but also offers an excellent diagnostic of the 

physiological state of an organism.  

The metabolome is defined as the complete ensemble of small molecules (<1.5 kDa), or metabolites, 

present in a biological sample. The biological sample can be a cell, a cellular compartment, an organ, 

a tissue, a tissue extract, a biofluid or an entire organism [1]. The metabolome includes both 

endogenous metabolites that are naturally produced by an organism (such as amino acids, organic 

acids, nucleic acids, fatty acids, sugars, co-factor, etc.) as well as exogenous chemicals (such as 

vitamins, drugs, environmental contaminants, food additives, and other xenobiotics) that are not 

naturally produced by an organism [2,3]. 

Metabolism, as the foremost phenotype and manifestation of life, has proven to be sensitive, 

adaptive and superbly reflective of biological physiology [4]. As metabolites are the final products 

of many levels of interaction et regulation between the environment and genetic material, 

metabolites are considered the most sensitive indicators to probe the phenotype of an organism. 

Indeed, literature reports multiple examples where alterations in genes or proteins expression do 

not correlate to changes in the organism’s phenotype. For example, changes in the cellular level of 

an enzyme are not automatically linked to a proportional change in metabolic flux [5]. So while 

genomics and proteomics identify what might happen, metabolomics characterizes what is 

happening in the biological system as a result of internal or external factors [6].  

Metabolites are the substrates and products of metabolism and sustain, directly or indirectly, every 

cellular function such as the production of building blocks for biosynthesis, energy production or 

storage. Their concentration and rates of production/consumption reflect the physiological state of 

organisms. Importantly, while some metabolites are produced directly by the host organism, others 

originate from the microbiota, dietary and other exogenous sources. As metabolomic approaches 

aim to identify the ensemble of metabolites present in a biological sample, the presence of 

exogenous metabolites (exometabolites) complexifies not only highly the chemical analysis of the 

living matter, but also the comprehension and reconstitution of the molecular networks of the 

ecosystem of Life.  
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Metabolomics defines the scientific approach that aims to the identification and quantification of 

the metabolites present in a biological system and determines their modification in response to a 

perturbation. Metabolomics relies on high-resolution analytical methods such as Nuclear Magnetic 

Resonance (NMR) and Mass Spectrometry (MS) to deliver metabolic fingerprints of biological 

samples. 

2.1.2. Metabolomics and Systems biology  

At every level, from single cells to full multicellular complex organisms, biological structures are 

immersed in a chemical and physical environment. Life depends on the ability of biological 

structures to adapt to this environment. Cells and organisms do so by controlling every level of 

biological regulation from gene expression to protein regulations, to modulate their physiological 

processes to maintain Life homeostasis. A defy for 21st-century biology is to understand the 

associations and interactions between the multitude of stimuli and the extraordinary ability to adapt 

using a variety of biological responses. Such understanding is expected to shed light on the full 

machinery of Life and deliver concrete applications for human health diagnosis, therapy and 

precision medicine for example [7].  

The phenotype of a biological structure, and its adaptation to conditions, is dictated by the multiple 

layers of regulation, such as the epigenetic, transcriptional, translational and post-translational 

status of its genetic information. To determine functional associations between genotype and 

phenotype, it is hence critical to characterize the intermediate levels of genetic expressions, such as 

transcript, protein or metabolite abundance [8]. Under this objective, numerous initiatives in -omics 

sciences (such as genomics, transcriptomics, proteomics or metabolomics approaches) helped by 

bioinformatic computing, have been developed and are gathering unprecedented volumes of data 

that are being integrated by systems biology analyses. These biological molecular characterising 

methods are expected to deliver critical knowledge over Life adaptability and regulation and stand 

at the forefront of future medicine while supporting the development of systemic molecular 

diagnosis, preventive medicine and personalized treatments [9,10]. 

Metabolomics and metabolic phenotyping play a key role in the translational -omics cascade 

[11,12], and thrive in every area of biology, from bio-medical to environmental studies. 

Metabolomic studies are integral for a vast range of fundamental to pre-clinical studies and proved 

particularly efficient for example to detect the effect of drugs or chemicals on biological systems 

[13,14]. Of interest, the analysis of metabolomes has also developed as a cornerstone approach for 

the development of drug discovery and precision medicine [15]. 

Numerous projects associate multiple -omics studies to profile biological systems. Exposing cells to 

modifications of their environment triggers all biological regulatory systems and impact all types of 

biomolecules. This explains why -omics approaches have become central to all facets of life science. 

The opportunity to operate multi-omics studies to capture the full dynamic range of a biological 

response is an unprecedented opening of research, recently enabled by the development of 

adequate analytical, computational and visualization solutions and strategies [16–18]. Multiple 
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investigations demonstrate that the integration of multiple -omics leads to a considerable increase 

of sensitivity, for example, to detect xenobiotics effects on biological systems. They also open doors 

to complete identification of molecular mechanisms of biological adaptations, providing a systemic 

understanding of stimuli-induced perturbations [19–22]. 

2.1.3. Metabolic phenotyping of biological samples 

Metabolomics methods, mostly based on NMR and mass spectrometry, have greatly progressed to 

accommodate almost every type of biological sample, including tissues, cells and biofluids. Solid 

samples analyses are most often studied after metabolites extraction from the complete tissue 

material [23] but integral biopsies or small model organisms such as C. elegans can also be studied 

without extraction, for example using NMR HR-MAS methods [24,25]. Tissue subregional, cellular 

and even subcellular metabolite profiles can also be studied and provide insight over metabolic 

compartments; this ultrastructural deconstruction can be particularly relevant in complex 

heterogeneous biological structures such as brain and heterogenous cancer tumours [26] and 

appear very attractive when studying localized and specific responses to stimuli and pathogenesis. 

On the other side, metabolomic analyses of body fluids, such as serum or urine, appear as a solution 

of choice to investigate animal physiology or for medical purposes. Body fluids metabolic profiling 

deliver systemic overviews of an organism’s state but at the cost of obtaining an averaged picture 

about the behaviour of cells that underlie changes in the homeostasis of the organism [13,27]. 

Metabolomics analyses are well adapted to study model systems such as cell cultures. The benefits 

of using cell models include low experimental costs, easy condition testing and facilitated biological 

data reproducibility. Cell cultures allow the determination of metabolite biomarkers that 

characterize physiological and pathological states of the cell and importantly provide data easier to 

interpret than those obtained in animal models or human biofluids [27]. Cell culture offers a large 

panel of options regarding the choice of tissues-specific derived cells, allowing to target cell-type-

specific responses [28]. Recent developments in metabolomics technologies take advantage of cell 

culture profiling to extrapolate the results to whole systems [10,29]. So far, metabolomic analyses 

have been used to identify the biochemical response of cells to drugs or xenobiotics in the context 

of pharmaco-toxicological studies [28,30–32], to characterize bioproduction [33,34], cell plasticity 

and carcinogenesis [35], environmental [36,37] or nutritional interventions [38,39]. 

2.1.4. Analytical strategies for metabolic phenotyping 

Comprehensive metabolic profiling requires high-resolution analytical techniques that should 

ideally be able to profile thousands of small molecules of highly variable physical and chemical 

properties [40], with dynamic concentration ranges distributed over 6 to 9 orders of magnitude [25]. 

While stunning technological progress has been achieved over the last decades [41], modern 

analytical platforms still cannot identify and quantify the entire metabolome of a biological 

system/sample [42].  
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Two broad options can be considered for metabolomic investigations of biological samples: targeted 

or untargeted approaches [43]. They differ conceptually and analytically, but the two of them aim 

to the acquisition of quantitative data, determination of the relative abundance, or simple detection 

of metabolites [44]. Targeted approaches focus on a set of predefined metabolites to be measured 

in biological samples, such as metabolites from a given pathway, or belonging to a certain class of 

molecules (e.g. amino acids). Targeted metabolomics relies on hypotheses or preliminary data 

about the mode of action of a perturbator, and have proven useful for assessing the response of 

biological organisms to environmental xenobiotic exposure [45,46]. On the other hand, untargeted 

metabolomics studies rely on comprehensive pictures of biological systems obtained by collecting 

all possible data available from a given technique, without any a priori knowledge on the compounds 

detected. Untargeted analytical approaches provide access to hundreds or thousands of metabolite 

signals [41], and sophisticated statistical methods are required to extract and identify relevant 

metabolite alterations and biomarkers [47,48]. 

To date, NMR spectroscopy and mass spectrometry largely dominate the field of metabolomics 

[41,49], both for targeted or untargeted studies. The two platforms rely on very different physical 

and chemical strategies to generate metabolic profiles from biological samples. Interestingly, their 

outputs only partially overlap in terms of detected metabolites. Both technologies have proven to 

deliver robust results for metabolomics studies, with complementary advantages and disadvantages 

[50]. Recent advances tend to associate MS and NMR through integrated studies to maximize the 

sensitivity and precision of metabolomics studies [41,51,52].  

NMR and MS generate information-dense datasets that necessitate advanced computational and 

statistical analyses to identify event-related metabolite changes and potential biomarkers [53]. The 

signal processing, assignment, and data mining processes are key components of metabolomics 

studies that have seen tremendous progress over the last decade [41].  

2.1.4.1. NMR and MS technologies for metabolomics  

Though metabolomics is conceptually independent of any particular analytical method, two 

analytical techniques dominate the field: Nuclear Magnetic Resonance [54–56] and Mass 

Spectrometry [41,57]. Both have been extensively developed, applied, and validated in the context 

of metabolomics studies [58].  

NMR spectroscopy 

NMR is a fast and highly reproducible analytical technique that is based on the interaction between 

a nuclei spin and an external magnetic field. High magnetic fields generate the strongest nuclei 

polarization levels, which translates into optimal NMR sensitivity and resolution. NMR spectroscopy 

at 600 MHz (1H resonance frequency) is currently considered the gold standard for biomedical 

metabolomics research, offering a good compromise between adequate and cost-effective 

analytical performance and broad access to the scientific community [54,55]. NMR is a non-

destructive technique, where samples are fully recovered after analysis. Its conventional setting in 
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solution requires minimal pre-analytical sample processing [59], with no chemical derivatization, 

and is a robust quantitative technique that offers excellent repeatability and reproducibility across 

large numbers of samples, NMR spectrometers and NMR facilities [60]. Typical NMR analyses for 

metabolic profiling are fast (5 to 30 minutes per sample) and cost-effective. The main limitation of 

NMR is its low intrinsic sensitivity, with a detection limit in the micromolar range for metabolomics 

applications. Typically, NMR can detect between in the order of 100 metabolites in cell extracts 

derived from a few hundred thousand to a few million of eukaryotic cells (typical amount for 5 mm 

NMR tube is a 10 cm culture dish at 80% of confluency), and identify and quantify 50 to 70 of them 

in cell extracts and culture media [61,62]. 

NMR is also a flexible technique that has long been developed to study cell metabolism under 

multiple settings, such as flow-probe perfusion systems or miniaturized bioreactors inside the NMR 

spectrometers that allow profiling cell metabolism in real-time [63]. Whole-cell pellets or intact 

biological tissues can also be investigated using the HR-MAS (high-resolution magic-angle spinning) 

NMR technique, avoiding bias induced by extraction protocols [25]. 

The nuclei observed by NMR and compatible with metabolomics NMR studies are spin 1/2 isotopes 

present at the various natural isotopic abundance in biological material: 1H (proton), 13C, 15N, and 
31P [55]. Protons are the most common NMR observables, due to their relatively high sensitivity, 

99.98% natural abundance and omnipresence in organic compounds. As a consequence, one-

dimensional (1D) 1H NMR spectra sustain most NMR metabolomics studies. 13C NMR is impractical 

for high-throughput metabolomics NMR analyses due to the low natural abundance (1.1%) of 

carbon-13 isotopes in biological material [64]. 31P NMR can be exploited to study intracellular energy 

states, yet 31P signals from phosphorylated compounds shift heavily upon sample conditions, 

making signal assignment tedious [65]. Due to an intrinsic lower sensitivity and scarce natural 

abundance, nitrogen-15 studies rely on isotopic labelling schemes for targeted pathways analysis.  

NMR signals, through their spectral position (chemical shift) and multiplicity, carry a vast amount of 

structural information that is exploited for metabolite annotation, and structure determination of 

unknown compounds in complex matrices [66]. NMR acquisition relies on a variety of radio-

frequency pulse schemes to provide high-throughput detection of 1D metabolic profiles [56,67], 

which either allow absolute quantification of metabolites (1H NOESY scheme), or relative 

quantification when using spectral editing schemes (e.g. 1H CPMG experiment) [55,68,69]. Two-

dimensional (2D) NMR acquisition schemes that require long experimental times (a few hours to 

days) are typically recorded on a representative sample for metabolite annotation purposes. The 

traditional assignment strategy relies on a set of 1D and 2D correlation spectra to determine 

metabolites’ 1H (and 13C) shifts and compare them with spectral reference databases (see section: 

Metabolite identification and quantification, below). 

NMR is quantitative, which means metabolites concentrations can be determined from signal 

integration using a single reference (e.g. lactate) of known concentrations [70]. Metabolites 

concentrations are routinely determined from 1H 1D NOESY spectra, either automatically or 

interactively, by the integration of well-resolved peaks belonging to a metabolite, or using more 

advanced curve-fitting dedicated software or algorithms [48,54,71]. Using more advanced spectral 
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editing NMR techniques, metabolite peaks intensities depend on the specific properties for each 

metabolite, such as relaxation times, and relative metabolite concentrations are obtained following 

equivalent procedures [69]. 

Mass Spectrometry 

Mass spectrometry is a highly sensitive and very high-resolution analytical technique that measures 

mass-to-charge ratios (m/z) of ionized molecules. Mass spectrometry has been a very active 

research field since the 1980s and a wide range of instruments and approaches have been 

developed and adapted for metabolomics [72]. MS now offers diverse solutions for metabolomics 

profiling as various separation techniques, ionization, and mass analyser methods are combined to 

characterize complex mixtures of metabolites and improve analysis and identification [57,73,74]. 

MS is generally preceded by a separation step that aims to simplify the sample complexity and aid 

the mass spectra analysis. Significant advances have occurred in separation-based MS techniques, 

and liquid and gas chromatography (LC and GC, respectively), or capillary electrophoresis (CE) are 

the most frequently used separation techniques. GC has been widely used for metabolomics [75] 

and is most suited for the targeted analysis of volatile compounds, from original or derivatized 

samples [76]. Liquid chromatography and more recently ultra-high-performance liquid 

chromatography (UHPLC) techniques have developed to provide high-resolution and high-

throughput capacities, with the advantage that metabolites are separated in the liquid phase, which 

makes derivatization unnecessary and less prone to introduce bias and artefacts [57]. LC-MS 

coupled to electrospray as an ionization source can now routinely identify and estimate levels of a 

few hundred metabolites within a single extract [77,78]. On the other side, multiple separation-free 

MS techniques have been successfully applied to metabolomics with direct infusion-mass 

spectrometry and matrix-assisted laser desorption ionization (MALDI) mass spectrometry being 

applicable to cell culture studies. While these techniques benefit from fewer analytical steps, they 

suffer from an enhanced complexity in the ions annotation and identification [57].  

Identification of metabolites from dense and information-rich mass spectra is an ongoing challenge 

in MS, but remarkable progress has been made over the past decade with the development of 

hardware strategies, mass databases, and semi-automated or automated computational tools 

integrated into specialized software [57]. MS signals annotation is mostly based either on 

comparisons with libraries of existing experimental or theoretical data (see section 0 below, 

Metabolite identification and quantification) or requires additional experimental data acquisition, 

such as tandem MS-MS or MS-MS-MS spectra, where further fragmentation of a parent ion provides 

additional structural information for metabolite identification [57,79,80]. Yet, a large proportion of 

MS signals remain unidentified. Recent strategies combining NMR and MS show a strong potential 

for the identification of the unknowns [51,81]. 

MS can deliver qualitative or quantitative data in the form of tables of metabolites detected in the 

complex samples [73]. However, the accuracy and reproducibility of the quantitative results are 

usually recognized to be a weakness as mass spectrometers tend to drift over time, and MS analyses 

require extensive quality control monitoring. All steps are known to be susceptible to time variations 
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from the pre-separation steps to the ionization and ion separation steps. Metabolite standards or 

spiking experiments for each metabolite can be used to estimate concentrations, while relative 

metabolite concentrations are usually determined from peak intensities comparison. 

Generally, the pros of MS include are a very high sensitivity for very dilute metabolites and very high 

resolution of sub-unit atomic mass differences, which allows MS to identify much more metabolites 

than NMR while requiring lower amounts of sample [50]. This claim is mitigated by the actual 

diversity of MS instruments and experimental setups, each having dedicated applications and 

properties. MS is a destructive technique, i.e., samples cannot be recovered after analysis and 

requires extensive sample matrix optimization or derivatization.  

What is the best analytical technique for metabolomics? 

Whether the strategy is to carry out targeted or untargeted analysis, both NMR and MS are 

adequate to detect and identify metabolite perturbations both qualitatively and quantitatively. Both 

techniques have their strengths and weaknesses and can deliver largely non-overlapping 

information from the same metabolomic samples [41,50]. There seemingly exists no universal 

answer to the question of the choice of an optimum analytical setup in the context of chemical 

testing of biological samples. Primarily, this choice should depend on the specific focus of the 

research study, but will importantly consider the accessibility of analytical platforms and availability 

of technological and methodological expertise for metabolomics studies. Integrating both 

techniques is an option that may yield the most comprehensive results but requires major resources 

and specific expertise to integrate datasets [52]. NMR is particularly stable and reproducible, and is 

well adapted to evaluate the broad cellular metabolism by identifying small variations of mostly 

common metabolites. NMR is also an excellent tool to discriminate and pre-evaluate metabolic 

profiles before further detailed MS analyses. NMR results are quantitative can be integrated with 

other analytical methods. MS strategies offer wider coverage of the metabolome and the ability to 

assess very low concentration metabolites and are perfectly adapted to identify low concentrated 

biomarkers [57], although they require more extensive setup optimization and lead to higher 

complexity of data analysis.  

2.1.4.2. The metabolomics workflow 

From an analytical point of view, the typical metabolomics workflow for most projects can be 

divided into three consecutive steps: metabolite extraction and sample preparation, NMR or MS 

analysis to collect experimental metabolic profiles, and data analysis including statistics to identify 

the main features associated with a biological perturbator (Figure 2-1) [82]. Unlike other -omics 

approaches, the metabolome is highly chemically diverse, dynamic, and sensitive to both biological 

and analytical conditions. As a consequence, all steps along the full procedure are prone to 

introduce bias and artefacts that will impact the biological conclusions. Experimental design must 

be thought carefully and suitable standardized protocols for sample preparation should be adopted 

with proper training of the experimentalist to ensure smooth and reproducible execution. Same 
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batches of chemicals and consumables are to be used for all samples, and sample handling should 

be carefully randomized across different sample classes (for the date of sample preparation, sample 

collection, chemical analysis, etc.) [83,84]. 

 

 

Figure 2-1. Detection of xenobiotics- or drug-induced metabolism alterations in mammalian cell cultures: a general metabolomics 

workflow. (A) Cell cultures are performed in the presence of a concentration range of xenobiotic or drug. Adequate controls are used: 
dishes without cells to determine consumption/secretion rates, dishes for cell counting, as well as biological parameters determination 
such as viability tests. (B) Metabolomics sample preparation: the culture medium that contains extracellular metabolites is isolated 
by centrifugation; the cell pellet is subjected to metabolism quenching and metabolite extraction protocols to extract the intracellular 
metabolites. (C) The metabolome analysis by MS and/or NMR data acquisition allows for the obtaining of rich experimental data. (D) 
Data processing, metabolite identification, quantification, and normalization of the results. (E) Statistical analyses to identify 
metabolites levels that are altered as a consequence of xenobiotic testing (this step aims to identify individual biomarkers as well as 
complex metabolites signatures). (F) Model reconstruction and integration of the results over metabolic pathways 

Metabolite extraction 

While some biofluids and cell culture supernatants can be studied directly, extracting metabolites 

from biological samples is the first step to most metabolomics studies. Numerous protocols aiming 

at the extraction of metabolites from biological matrices have been developed for NMR and MS 

analyses, some of which have been specifically tuned for particular types of samples, such as culture 

cells [59,61,62,85]. These protocols are quite similar in principle for both analytical platforms but 

suit individual requirements such as avoiding high concentrations of protonated solvent molecules 

as concerns NMR profiling. NMR tolerates a certain number of macromolecules in the sample tube, 

though a lesser number of proteins, lipids, and nucleic acid generate sharper peaks and easier 

spectral interpretation. A complete arrest of metabolism and enzymatic activity as quickly as 

possible after culture medium removal is essential for meaningful profiling of the intracellular 

metabolome [61].  

The existence of numerous metabolite extraction protocols stems from the fact that metabolites 

possess a broad diversity of physical and chemical properties that influence their extraction yields. 
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Hence, fit-for-all protocols result from experimental compromises, and protocols can be fine-tuned 

to optimize specific extraction conditions for different classes of metabolites [62]. Beyond 

differences in metabolites extraction yields, the ergonomics and likely associated reproducibility of 

protocols, as well as the use of toxic reagents, are also key points to consider, especially when a 

large number of cell cultures are involved [61]. Most metabolomic extraction protocols eventually 

target subsets of metabolites, such as water-soluble metabolites or lipids. Various strategies have 

been optimized using a one-phase liquid extraction, which is usually sufficient to remove most 

macromolecules such as proteins or nucleic acids [61,62]. Polar metabolites are mainly extracted 

using methanol or acetonitrile-based solutions followed by centrifugation to precipitate 

macromolecules and hydrophobic metabolites such as lipids. Biphasic extraction protocols, 

generally based on a mixture of chloroform, water and methanol, are also employed for the 

simultaneous extraction of hydrophilic and lipophilic metabolites into two separate phases [59].  

Metabolic profiles may also be impacted by metabolites stability in various conditions during 

processing, storage and analysis, such as drying state, storage temperature (freezing), experimental 

temperature, pH and buffer conditions, but also by potential chemical cross-reactions between 

metabolites or oxidation processes, etc. [86,87]. Thus, it appears critical to standardize every step 

of the protocol and randomize sample handling to minimize biologically irrelevant bias related to 

sample processing [88]. Under standardized conditions, reliable and reproducible results can be 

obtained [83,89]. Biofluids, cell supernatants and metabolite extracts are typically stable for a few 

hours on ice or at 4°C, weeks at -20°C and months at -80 °C [90].  

Metabolite identification and quantification 

Once NMR or MS spectra have been acquired, metabolite identification is a crucial step and the 

current limitation to many metabolomic studies. Detailed metabolite annotation strategies are 

specific to the analytical techniques and instrumental setup. Metabolite assignment is generally 

obtained by the comparison of peak features (such as multiplicity, coupling constants and chemical 

shifts for NMR; and m/z ratios, isotope pattern, element composition, fragmentation and/or 

retention time for (LC-) MS) against the public, commercial or in-house spectral libraries of known 

metabolites [48,91–93].  

The main difficulty lies in the immense repertoire of metabolites in the order of tens to hundreds of 

thousands for mammalian culture cells, which largely exceeds the size of current databases and the 

numerous ambiguities for chemical identification [88,94]. Moreover, the use of databases to 

identify metabolites is specifically limited in the case of unknown molecules, such as most 

xenobiotics and xenobiotics-derived metabolites. A rigorous approach to both identification and 

quantification of metabolites in a complex sample remains the use of standards, for example using 

spiking in NMR [66] or MS experiments [95]. In the latter case, spiking experiments often rely on 

isotopically labelled compounds [73]. Globally, due to its higher sensitivity and resolution, MS can 

identify many more metabolites than NMR [96]. 
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Data normalisation and scaling 

Metabolite quantitative evaluation is essential to biological interpretations and has been a focus of 

many studies [25,68,69,73,97]. Normalization aims to allow the comparison of samples of different 

concentrations. Numerous approaches of normalization for different types of samples have been 

proposed but normalization remains a very delicate task that can introduce intrinsic bias in the 

analysis and lead to errors in data interpretation [98,99]. While some biological samples are under 

strict homeostatic control (e.g. serum and plasma), others are subjected to significant dilution 

effects (such as urine) [100]. Cell and tissue extract concentrations depend on the quantity of 

biological from which they were extracted: metabolite concentration is assumed to have a linear 

correlation to total cell number. As concerns cellular profiles, normalization of the data is essential. 

Intracellular metabolite quantities are usually normalized to cells number, yet the protein or DNA 

content can also be used as an alternative [85]. As the exometabolomes are often interpreted in the 

form of consumption/production rates, normalization should take into account the growth and 

division of the cells over the experiment time. To count cells, at least one extra seeded culture dish 

should be added to the experiment for each group [101]. If a condition significantly perturbs the 

growth capacity of cell culture, collecting supernatants over shorter periods and using smaller 

volumes of culture media to accentuate metabolites variations, can overcome the difficulty of 

dealing with different growth rates, moderate normalization issues and facilitate comparison with 

controls [102]. 

Since metabolites concentrations vary over multiple orders of magnitude in biological samples, the 

statistical analysis suffers from variables weighting issues. Without scaling variables to comparable 

ranges, the most concentrated metabolites would dominate the results of multivariate statistical 

analysis and outshine low concentrated metabolites. Pareto and Unit Variance scaling are the most 

widely used scaling approaches. The Pareto scaling offers a good compromise between reducing the 

influence of highly concentrated metabolites, maintaining the influence of low concentrated 

metabolites and downgrading the importance of noise [103]. 

Multivariate data analyses and model construction 

Both NMR- and MS-based metabolomics studies generate large amounts of data, from which 

important features that are associated with a perturbator must be identified among hundreds or 

thousands of spectral variables. This process of data mining is traditionally achieved using 

multivariate statistical analyses that include unsupervised and supervised approaches [104,105]. 

Metabolomics studies aim to identify altered metabolites and metabolic pathways implicated in the 

response to a perturbation. Metabolites are then considered as individual potential biomarkers 

alone or in combination, by composing a metabolic signature. These complexes metabolic 

signatures offer unprecedented classification potential with disruptive innovations and applications, 

for example in medical diagnosis, prognosis, treatment efficiency follow up or personalized 

medicine[106]. Furthermore, as identified metabolites are related to pathways that are modified 

these data not only allow to classify the state of a biological system but also often deliver knowledge 

about the biological adaptation mechanisms [40]. 
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Unsupervised multivariate statistical analyses approaches, which mainly consist of principal 

component analysis (PCA) and hierarchical clustering analysis (HCA), examine the global variance 

over a dataset without knowledge of any class membership. This type of approach is often 

conducted in the early stages of data analysis and used to check the homogeneity of the dataset, 

identify the main sources of variation, and pinpoint outlier samples. When the biological effect of 

the perturbator is strong, it may be readily identified at this early step. Further supervised 

techniques, such as orthogonal projection onto latent structures (O-PLS) discriminant analysis, 

exploit information of samples class membership to optimize their discrimination. Such enhanced 

features detection implies higher risks of overfitting the statistical models and requires careful use 

of validation methods [104,105,107]. Multivariate data analyses (MVDA) can be employed to 

examine either unassigned spectral raw datasets or tables of relative or absolute metabolite 

concentrations. The use of unassigned spectral data tends to offer the highest discrimination 

potential as the full spectral fingerprint contributes to the statistical model. Yet, discriminatory 

spectral variables can remain challenging to annotate [49]. On the other hand, MVDA from 

metabolite concentration tables tend to generate more meaningful results, but miss the 

discrimination potential of potentially important unassigned signals [104]. Although MVDA are 

validated statistical tools that have delivered solid results in the field of metabolomics, new 

algorithms and statistical approaches emerge intending to further improve group separation and 

reconstruct metabolic models. These exciting methods include machine learning developments 

such as random forest, support vector machines (SVM) and self-organizing map (SOM) algorithms 

[108].  

Despite the availability of free and commercial computational solutions with user-friendly software, 

the statistical analyses of metabolomics datasets remain a tedious step in the analytic workflow. No 

statistical method can yet pretend to offer a universal solution to the metabolomics investigations 

and work for every dataset [109]. Indeed, over the intrinsic difficulty of identifying weak correlations 

between metabolites and a perturbator, all computation methods rely on different intrinsic 

hypotheses. Each method displays unique pros and cons, require method-specific fine data 

manipulations and handlings, such as normalization or weighting. These manipulations, yet 

essential, are prone to produce highly variable and possibly false results, artefacts or model overfit, 

and require dedicated validation. For example, multivariate data analyses are built on linear 

regression models that hypothesize linearity between stimuli intensity and the biological response, 

which may not be verified in all cases [6]. 

Once significant metabolites features are identified, most studies aim at understanding the 

underlying biological mechanisms and conceptualize a mode of action of the stimuli upon metabolic 

pathways [40]. This is a challenge as the problem is intrinsically mathematically under-determined 

(too little data are available to reconstruct a comprehensive or even simplified metabolic model). A 

single modification of an impacted metabolite at homeostasis in the cell can be explained by 

multiple metabolic hypotheses, such as upstream or downstream modification of a metabolic 

enzymatic reaction [110,111]. Also, many complex sensing systems are constantly regulating cellular 

metabolism at every level, from gene expression to protein activity to compensate for dysregulation 

[13,112]. However, novel exciting computational tools progress toward this goal to identity 
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mechanistic models of perturbation, for example by mapping graphically the impacted metabolites 

onto metabolic pathways or by using elaborate strategies that integrate various levels of 

experimental and theoretical data [53,113–117]. These rapidly developing approaches can integrate 

metabolite enrichment estimation on metabolic pathways maps (integrated into databases such as 

the Kyoto Encyclopaedia of Genes and Genomes (KEGG)) but also data fusion with other -omics 

datasets and reconstruction of complete metabolic networks based on genome-scale data from 

transcriptomic analysis [118–120]. 

2.1.5. Conclusion 

As metabolites represent the final expression of all levels of genomic, transcriptomic and proteomic 

regulations, their measurement offers a fantastic snapshot of cellular physiology. Multiple well-

validated methods in metabolomics, from sample preparation, NMR and MS analytical solutions, 

data processing, statistical analysis and model reconstruction techniques allow us to efficiently 

identify the perturbation of metabolic and cellular functions and their associated biomarkers. 

Ongoing developments concerning all these steps constantly open new possibilities, with more 

metabolites profiled, better precision and accuracy and integration into more precise biological 

models.  

Metabolomics has immensely progressed over the last decade, with developments of analytical 

methods and computational solutions, to offer disruptive innovations in systems biology for medical 

research, disease diagnostic, or personalized medicine. However, many challenges remain in 

experimental methodology to characterize the full chemical complexity of biological samples while 

diminishing sample-to-sample variability. Much research is active in the field of mass spectrometry 

and concern all aspects of the analysis, from the pre-separation to ionization, ion separation, and 

detection steps and too many approaches are being explored to be discussed here. As concerns 

NMR, dissolution dynamic nuclear polarization (dDNP) opens exciting future perspectives for high-

sensitivity NMR metabolomic detection [121,122]. 

Integration of analytical methods such as MS and NMR should be promoted to potentiate their 

strengths. This strategy is rendered accessible not only by the compatibility of sample preparation 

protocols for both methods, but also by the development of integrated analytical platforms. 

Integrating both NMR and MS results allows for covering a wider range of the metabolome. Cell 

cultures are ideally appropriate for multi-omics investigations (genomics, transcriptomics, 

proteomics and metabolomics), and the development of high-throughput automation solutions 

adapted to most approaches, from cell culture to final integration of results, enables such multi-

omics studies. However, beyond the analytical pipeline that relies on well-trained experts to run 

analyses, handle datasets and computational methods, and integrate results from multiple sources, 

the achievement of fine metabolomics characterization relies on a deep understanding of 

metabolism and broad biological processes, their intricate regulations and adaptations. Such 

complementary expertise is key to the success of metabolomics investigations. 
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2.2. Applications: metabolic phenotyping at different scales, 

from bacteria to mice organs and biofluids. 

Since my recruitment at the ENS de Lyon, I have focussed on metabolism profiling using NMR 

metabolomics approaches and developed a series of applications for metabolomics in the team of 

Bénédicte Elena-Herrmann and then Sami Jannin. This has corresponded to a complete shift of my 

research field, transitioning from structural biology of drug target proteins to metabolomics studies. 

My background in biochemistry and NMR has allowed this enriching scientific transition. Since 2012, 

I have participated in a wild variety of projects and collaborated with researchers from very diverse 

horizons, from industry, academic laboratories and medical practitioners.  

Since my beginnings in metabolomics in the research group of Bénédicte Elena-Herrmann, I have 

explored many types of scientific questions related to metabolomics and NMR-based analytical 

chemistry, profiled the metabolites in a wide range of biological specimens, and developed 

numerous procedures and tools to obtain valuable insights for bio-medical questions. My 

participation to this variety of projects has opened up my scientific expertise and network. I have 

met Baptiste Panthu at the ENS in 2012. Baptiste is a biologist with a great interest in cellular 

metabolism, he now works as a Maitre de Conférences at the CarMeN (Cardiovascular, Metabolism, 

Diabetes and Nutrition) laboratory. He is now implicated in most, if not all, my research projects. 

Our work together has seeded interest and collaborations with other researchers from the CarMen 

(Anne Mey, Béatrice Morio, Jennifer Rieusset, Hubert Vidal, an others) 

In this chapter, I have chosen to present 4 projects for which we used NMR-metabolomics 

approaches to answer very different and specific aims and questions. This chapter emphasizes the 

relevance of metabolomics to assess a variety of sample types from bacteria to eucaryote cells and 

organs, and complex reconstituted biological media: 

• The identification of bacterial species using NMR metabolomics approaches. 

• The metabolic phenotyping and discrimination of adipose-derived stem cells in cell cultures. 

• The study of tissues and biofluids to determine the impact of a high-fat high-sucrose diet on 

mice organs. 

• The use of Real-Time NMR to characterize the energy fluxes in eucaryotic Cell-Free Protein 

Synthesis systems. 
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2.2.1. Identification of Bacterial Species using NMR metabolomics 

approaches 

2.2.1.1. Introduction  

In this project, we aimed to use NMR to discriminate bacteria species of medical relevance. We were 

more interested to achieve a discrimination and classification of bacteria strains responsible for 

urinal infections, rather than determining the molecular metabolism details at the origin of this 

classification.  

This work was realized with the cooperation of Biomérieux, the world leader industry for microbial 

identification. Biomérieux has developed and commercialized numerous methods for bacterial 

identification, ranging from biochemical tests, to genomic and mass spectrometry-based solutions. 

However, the complexity of microbial species is such that some species remain challenging to 

identify using state-of-the-art solutions and new approaches are needed.  

Biomérieux financed the study and the 16-months postdoctoral fellowship of Tony Palama. The 

work was led by Bénédicte Elena-Herrmann and I was strongly implicated all along with the 

realization of the project, from the preliminary data acquisition to the final redaction.  

Two articles and one patent were derived from this study: 

• Rautureau, G. J. P., Palama, T. L., Canard, I., Mirande, C., Chatellier, S., van Belkum, A., & Elena-

Herrmann, B. (2019). Discrimination of Escherichia coli and Shigella spp. by Nuclear Magnetic 

Resonance Based Metabolomic Characterization of Culture Media. ACS Infectious Diseases, 

5(11), 1879–1886. doi: 10.1021/acsinfecdis.9b00199 

• Palama, T. L., Canard, I., Rautureau, G. J. P., Mirande, C., Chatellier, S., & Elena-Herrmann, B. 

(2016). Identification of bacterial species by untargeted NMR spectroscopy of the: Exo -

metabolome. Analyst, 141(15). doi: 10.1039/c6an00393a  

 

• Patent WO2016198789A1:  Method for the differentiation of Escherichia coli and Shigella 

bacteria by means of NMR spectrometry. 

https://patents.google.com/patent/WO2016198789A1/en. Canard, I., Elena-Herrmann, B., 

Mirande, C., Palama, T., Rautureau, G., & Sprugnoli, C. (2016). 

2.2.1.2. Scientific context 

Despite intense developments in microbiology, the identification of bacterial species remains a 

major challenge in many areas such as clinical diagnosis or industrial microbiological control, 

motivating a constant search for rapid, precise, accurate and low-cost techniques [123]. Improving 

the characterization of bacterial isolates is of key interest to public health to be able to adapt 

https://pubs.acs.org/doi/10.1021/acsinfecdis.9b00199
https://pubs.rsc.org/en/content/articlelanding/2016/an/c6an00393a#!divAbstract
https://patents.google.com/patent/WO2016198789A1/en
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suitable antibiotherapies to infections and thus prevent the development of multiple-drug 

resistance.  

Bacterial identification by phenotypic approaches is usually limited by time-consuming preliminary 

bacterial growth and biochemical reactions. Nevertheless, technological developments have given 

birth to automated systems (Vitek2, bioMérieux; BD Phoenix, Becton Dickinson) [124,125]. MALDI-

TOF mass spectrometry has evolved into a rapid and highly reliable analytical tool for the 

characterization of micro-organisms in clinical laboratories [126], and other emerging diagnostic 

approaches have been applied to bacterial studies like genomic analysis [127,128], biochemical 

sensors [129–132], optical scattering technology [125], or infrared [133] and Raman spectroscopy 

[134–136].  

NMR spectroscopy has been used multiple times to study bacteria, for example, to investigate intra- 

and extracellular bacterial composition [137–141] or metabolic pathways [137,142,143]. Metabolic 

footprinting approaches, i.e. extracellular metabolomics analyses that depict the detailed uptake 

and excretion of nutrients was proposed for microbial clinical diagnosis [144] and several NMR-

based strategies have been developed. Tailored analysis for the detection of given species in culture 

media or bio-fluids from urinary tract infection (UTI) patients have been described, which relies on 

the targeted detection of one or several metabolite markers [145–147]. Gupta and coworkers have 

also proposed a targeted strategy based on the NMR profiling of four metabolites in culture media 

to discriminate Gram-positive vs. negative bacteria [148] without species identification. Intracellular 

bacterial content has also been described for strain classification, either exploiting low-resolution 

NMR profiles of bacterial isolate suspensions [149], or high-resolution fingerprints recorded on cell 

extracts [150].  

2.2.1.3. Experimental approach 

The collaboration aimed to focus on the discrimination potential of NMR profiles to identify bacteria 

implicated in urinal infections, an area of interest for Biomérieux. We proposed a generic strategy 

by untargeted investigation of their exo-metabolome, i.e. the metabolite footprints detected in 

culture media. Culture media are straightforward to obtain in large quantity using a simple 

centrifugation at low speed, easy to standardize using appropriate culture media and the intensity 

of the biological signal can be examined as a function of the culture length. 

A schematic workflow of our proposed NMR-based metabolomics approach is depicted in Figure 

2-2.  
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Figure 2-2. Schematic workflow for metabolomics investigation of the bacterial exo-metabolome. Frozen bacteria are first re-isolated 

on solid media before setting up cultures in Mueller Hinton medium. After a period of growth, bacteria are centrifuged and the culture 

media samples are profiled using NMR. The metabolite footprints are then processed and discrimination is evaluated using untargeted 

multivariate data analyses 

Studying supernatants allows to evaluate the consumption/production patterns of the different 

bacteria species, which we demonstrated to allow a strong differentiation of bacteria types. We also 

examined the length of culture to determine the shortest culture leading to potential discrimination. 

The biological samples were prepared at Biomérieux’ microbiology facilities at La Balme.  

2.2.1.4. Identification of Bacterial Species by Untargeted NMR 

Spectroscopy of the Exo-metabolome.  

This study was the first part of our collaboration with Biomérieux and consisted of evaluating the 

potential of NMR to discriminate the various bacterial species responsible for urinary infections. Six 

bacterial species were chosen. Gram-negative: Escherichia coli, Pseudomonas aeruginosa, Proteus 

mirabilis and Gram-positive: Enterococcus faecalis, Staphylococcus aureus, Staphylococcus 

saprophyticus 

All strains were cultured in a Mueller Hinton medium until their specific exponential phase times 

(1.5 to 6 hours). The 1H NMR profiles were acquired on the culture supernatants at 600 MHz and 

576 samples were profiled in this study. Metabolite identification was achieved by comparing 

spectra with international reference databases [151], and confirmed using two-dimensional NMR 
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spectroscopy. 43 metabolites were identified. A representative 1H NMR spectrum of an E. coli 

supernatant culture media sample is detailed in Figure 2-3.  

 

Figure 2-3. Representative one-dimensional 1H NMR spectrum of an Escherichia coli sample (culture supernatant) at exponential 

growth, i.e. after 1.5 hours of culture in a Mueller Hinton medium. 

Unsupervised multivariate data analyses of the NMR profiles, including principal component 

analysis (PCA) and hierarchical clustering analysis (HCA), were applied to evaluate the datasets and 

discriminate sample classes.  

Strong species-based discrimination was observed at different time points after the bacterial mid-

exponential phase was reached (Te, Te + 1 h and Te + 2 h). The results for the earliest time-point 

(Te), more relevant for efficient bacterial identification are presented in Figure 2-4. Strain samples 

of the same species cluster together into six well-defined branches of the dendrogram. Interestingly, 

additional levels of similarities are detected between species such as the P. aeruginosa and S. 

saprophyticus groups that merge to form a new branch. Similar proximities are observed between 

S. aureus and E. faecalis, or E. coli and P. mirabilis, the latter two consistently belonging to the same 

Enterobacteriaceae family. To further analyse the discrimination between bacterial species, a PCA 

model (N = 144) is presented in panels B and C of Figure 2-4. The first two principal components of 

this model explain 62.6% of the variance within the dataset. A clear discrimination of the species 

groups can be observed on the score plot (Figure 2-4 panel B) except for E. faecalis and S. aureus 

samples that are both overlapping but are still distinct from the rest of the species. However, the 

separation between E. faecalis and S. aureus samples occurs along with the third principal 

component.  



- 38 - 

 

Figure 2-4. Unsupervised multivariate data analysis based on the 144 culture media samples collected at Te and the 947 variables of 

the NMR 1D profiles.(A) Dendrogram from the hierarchical clustering analysis (HCA), (B) score plot and (C) loading plot of the PCA 

model (PC1 and PC2) showing the discrimination between the samples and the variables involved in this discrimination, respectively. 

A consistent differentiation of bacterial species was obtained at Te + 1 h and Te + 2 h, while samples 

at all time points were also well separated from those collected at T0. Interestingly, equivalent 

discrimination of bacterial species is obtained when considering a fixed collection time point after 

the start of bacterial cultures (e.g., T0 + 3h) for all bacterial species, independently of their 

respective growth status (data not shown).  

Our results show that the concentration of end-products of fermentation in the culture media 

(acetate, lactate, formate, succinate and ethanol) under anaerobic conditions significantly 

contribute to the discrimination of bacterial species, notably discriminating groups of strains sharing 

common sugar fermentation mechanisms, e.g., S. aureus/E. faecalis vs. E. coli/P. mirabilis, producing 

respectively either lactate or succinate among other end-products. These five metabolites have 

already been identified as broad markers of UTI in the urine of patients against controls 

[148,152,153], while lactate, succinate and formate were shown to discriminate Gram-positive and 

negative infections [148]. Additional microbial-mammalian co-metabolites were also shown to 

characterize E. coli infection in urines [147]. Here, robust individual discrimination of the six studied 

species is based on the full metabolic profiles considered in our multivariate models, notably 

involving a range of other metabolites such as tyramine, aspartate, leucine, alanine, arginine, 

threonine, lysine and serine. Further analyses of the data will be carried out in the future to provide 

a comprehensive picture of the metabolic pathways involved in this bacterial discrimination.  

The approach introduced here demonstrates the potential of NMR footprinting for rapid bacterial 

species discrimination. We have exploited a large-spectrum culture medium that does not restrict 
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the proposed strategy to a limited set of bacterial species. This rapid and functional approach could 

be straightforwardly extended to broader selections of bacterial species and/or strains, and provide 

direct methods for bacterial identification from a single culture footprint. The proposed approach 

opened up new prospects for accurate and cost-effective microbial clinical diagnosis.  

2.2.1.5. Discrimination of Escherichia coli and Shigella spp. by Nuclear 

Magnetic Resonance Based Metabolomic Characterization of Culture 

Media 

This study was achieved in collaboration with Biomérieux and corresponds to an extension of the 

previous work that demonstrated that NMR metabolomics methods of culture media were able to 

discriminate multiple types of bacteria strains. The next step was to evaluate whether this 

observation holds true for species that are a struggle to identify, even with modern techniques. We 

chose to work on the discrimination of lactose negative E. coli and Shigella spp. that have 

traditionally been difficult to discriminate using classical (biochemical) techniques as well as more 

modern ones such as mass spectrometry and nucleic acid amplification and sequencing. 

Various pathogenic agents cause dysentery, such as Shigella spp. and Escherichia coli. Dysentery is 

a major health threat that dramatically impacts childhood morbidity and mortality in developing 

countries. Sensitive and precise detection of the infectious agent is important to target the best 

therapeutic strategy, but the differential diagnosis of these two groups remains a challenge using 

conventional methods.  

Shigella spp. and Escherichia coli belong to the family Enterobacteriaceae. They represent species 

with very high genetic relatedness [154,155]. They could even be classified as one distinctive species 

in the genus Escherichia [156–158]. Shigella and E. coli remains a challenge for clinical laboratories 

[156,159]. In particular, a subgroup of E. coli isolates that does not ferment lactose, usually termed 

lactose negative, is the most difficult to separate from Shigella [159]. Only recent advances in next-

generation sequencing open opportunities for identification [160–162]. However, such analyses still 

need to be translated into easy-to-use diagnostic tests available in routine settings. 

Experimental approach 

We studied a total of 144 samples of bacterial growth media collected after 1.5 h (Te) of culture 

initiation, corresponding to 48 cultivated strains from the bioMérieux collection, with three 

independent cultures (biological replicates) each. The aim was to classify three main groups: Shigella 

spp., E. coli lactose (+), and E. coli lactose (−) strains, with 16 strains per group. The group of Shigella 

species included sets of Shigella boydii, Shigella flexneri, and Shigella sonnei strains. A blind 

investigation was conducted on an additional cohort of 60 E. coli lactose (−) and Shigella growth 

media samples, as independent validation of this work. 

Based on our previous results, bacteria were cultured in classical, rich Mueller–Hinton medium for 

1.5 h, a delay sufficient to reach exponential growth for both Shigella spp. and E. coli. As metabolites 
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were consumed or produced, a complex metabolic footprint was detected by untargeted NMR 

analysis. Well-resolved 1H NMR metabolic profiles were obtained for each sample of bacterial 

culture medium (Figure 2-5a).  

Results and discussion 

 

 
Figure 2-5. NMR analyses of the exometabolomes from Escherichia coli and Shigella spp.(a) Typical 1H NMR spectrum of a S. boydii 

sample (culture supernatant) at exponential growth (i.e., after 1.5 h of culture in Mueller–Hinton medium). The 950 variables derived 

from the NMR 1D spectra of the culture media samples (centred variables, with no scaling) were used for unsupervised multivariate 

data analysis. (b) Scores plot of the PCA model (PC1 and PC2) including E. coli lactose (+) and (−) and Shigella samples (N = 138, R2 = 

0.986, and Q2 = 0.92 on 32 principal components). E. coli lactose (−) and Shigella cannot be discriminated. (c) Scores plot of the PCA 

model (PC1 and PC2) of E. coli lactose (+) and Shigella samples (N = 91, R2 = 0.95, and Q2 = 0.854 on 15 principal components). The 

discrimination between those samples is straightforward. 

PCA of the bucketed NMR profiles was first used to evaluate the data set homogeneity and the 

potential of unsupervised sample class discrimination concerning Shigella spp. and E. coli footprints. 

No strong outliers were identified on the PCA scores plot (Figure 2-5b), confirming the 

reproducibility of our experimental approach. Straightforward species-based discrimination could 

be observed on this unsupervised model between E. coli lactose (+) and Shigella spp. but not 

between E. coli lactose (−) and Shigella. An independent PCA model of E. coli lactose (+) and Shigella 

samples is presented in Figure 2-5c to highlight the corresponding discrimination. The first two 

principal components of this model explain 57.1% of the variance within the data set, and this model 

soundly represents the data structure as attested by high values of the goodness-of-fit parameters 

R2 (0.985) and Q2 (0.915), related respectively to the variance explained and predicted by the 

model. In contrast, E. coli lactose (−) and Shigella could not be discriminated from the unsupervised 
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analysis. Altogether, these results confirm our previous observations that NMR analysis of culture 

supernatants can be adapted to distinguish bacterial species [163], but they also illustrate, at the 

exometabolome level, the detailed phenotype resemblances between E. coli lactose (−) and Shigella 

spp. that lead to identification issues using regular analytical techniques. 

To address the discrimination challenge between E. coli lactose (−) and Shigella spp., a supervised 

analysis of the NMR metabolic profiles was conducted by O-PLS-DA [107,164]. We obtained a robust 

predictive O-PLS-DA model (R2(X) = 0.861, R2(Y) = 0.962, and Q2 = 0.893) based on the full NMR 

fingerprint, as shown in Figure 2-6. (The model validation from permutations of the Y values is 

provided in the original article [165]). 

 

Figure 2-6. Supervised multivariate discriminant analysis (O-PLS-DA) of S. boydii, S. flexneri, S. sonnei, and E. coli lactose (−) culture 

supernatants. The two-class model is built from the full NMR data matrix (950 variables, no scaling) (R2(X) = 0.861, R2(Y) = 0.962, and 

Q2 = 0.893). 

This analysis, carried out using the 950 NMR variables to exploit the full dynamic range of spectral 

information, was then repeated on a set of 26 quantified metabolites to broaden the applicability 

of our study as metabolite concentrations can be determined without NMR using a wide range of 

biochemical methods. The metabolites concentrations were determined using ChenomX software.  

Significant discrimination was obtained from the O-PLS-DA scores plot between the E. coli lactose 

(−) and Shigella samples (Figure 2-7a), associated with high values of the goodness-of-fit model 

parameters (R2(X) = 0.99, R2(Y) = 0.75, and Q2 = 0.639). The robustness of the model was validated 

by permutation testing (1000 permutations) under the null hypothesis, showing clear decreases of 

R2 and Q2 with correlations between the original and permuted class information in the Y matrix 

(Figure 2-7b). The reliability of the multivariate model was also assessed by analysis of variance (CV-

ANOVA), resulting in a p-value of 7.53 × 10–11. Out of the 26 quantified metabolites, 7 metabolites 

(succinate, acetate, aspartate, formate, lysine, propionate, and threonine) appeared to contribute 

significantly to the statistical model, as shown by the variable importance in projection for 

independent variables (VIP) values being >1. Most of these metabolites were secreted differently in 
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the medium by the two species (succinate, acetate, formate, and propionate), lysine and threonine 

were only secreted by Shigella spp., and one (aspartate) was consumed by both at different levels. 

 

 

Figure 2-7. O-PLS-DA model based on 26 exometabolite concentrations derived from 1H NMR profiles of Shigella and E. coli lactose (−) 

culture supernatants. (a) Scores plot of the (1 + 7) O-PLS-DA model discriminating 46 Shigella samples (in purple) and 45 E. coli lactose 

(−) samples (in blue) (R2(X) = 0.99, R2(Y) = 0.75, and Q2 = 0.639; CV-ANOVA p = 7.53 × 10–11). (b) Validation of the O-PLS model by 

resampling under the null hypothesis. (c) VIP value of each metabolite. 

This proof-of-concept work demonstrates that untargeted proton NMR metabolomics of bacterial 

culture supernatants can robustly classify E. coli lactose (+) and Shigella spp. by unsupervised data 

analysis, and E. coli lactose (−) and Shigella spp. via supervised approaches. Those are not trivial nor 

expected results. Our results demonstrate the relevance of NMR footprinting in the field of bacterial 

identification and discrimination, even in the case of traditionally challenging bacterial species 

discrimination. This approach, which was patented by Biomérieux, opens up new prospects for 

accurate microbial clinical diagnosis and demonstrate the potential of NMR metabolomics methods 

for the discrimination of biological groups.  
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2.2.2. Studying cell cultures: Metabolic phenotyping of adipose-derived 

stem cells reveals a unique signature and intrinsic differences between 

fat pads.  

2.2.2.1. Introduction  

We have shown in the previous chapter that NMR metabolomics methods were particularly 

effective to discriminate biological groups, even of significant resemblance. We also demonstrated 

the relevance and power of untargeted investigation of their exo-metabolome, i.e., the metabolite 

footprints detected in culture media. Studying supernatants permit to evaluation the 

consumption/production patterns of fluxes of exo-metabolites. Culture media are straightforward 

to obtain in large quantity using a simple centrifugation at low speed, easy to standardize using 

appropriate culture media and the intensity of the biological signal can be examined as a function 

of the culture length. 

In this chapter, we applied a similar approach to discriminate eucaryote cells: adipose stem 

originating from two different tissues (subcutaneous adipose tissues (SAT) and visceral adipose 

tissues (VAT)). The results demonstrated that we could discriminate both groups. The 

interestingness of this project lies in the fact that we then used modified culture media to induce 

metabolic stresses to the cells and evidence differences in metabolic adaptations. These differences 

allowed us to get deeper insights over both cell types intrinsic metabolic physiology concerning their 

functional differences. 

This work was performed in cooperation with Anne Mey, Baptiste Panthu and others from the 

CarMeN laboratory and resulted in the publication of an article:  

• Lefevre, C., Panthu, B., Naville, D., Guibert, S., Pinteur, C., Elena-Herrmann, B., … Mey, A. (2019). 

Metabolic Phenotyping of Adipose-Derived Stem Cells Reveals a Unique Signature and Intrinsic 

Differences between Fat Pads. Stem Cells International, 2019, 1–16. doi: 

10.1155/2019/9323864 

2.2.2.2. Scientific context 

White adipose tissues are functionally heterogeneous and differently manage the excess of energy 

supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of 

visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Adipose stem 

cells (ASC) are stem cells that are maintained in fat pads throughout life. ASC from distinct fat pads 

have long been reported to present distinct proliferation and differentiation potentials that are 

maintained in culture, yet the origins of these intrinsic differences are still unknown.  

For a long time, ASC properties have been used in regenerative medicine and for cell therapy [166] 

with an increasing interest in the use of their secretome [167]. Adipose tissue represents a 500 folds 
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larger pool of stem cells than bone marrow, which makes ASCs an attractive source of stem cells. 

ASCs present numerous therapeutic properties, for example on angiogenesis, wound healing, and 

the immune regulatory system [168]. In 2019, 187 clinical trials using adipose stem cells were 

registered for the treatment of skeletal diseases, gastrointestinal diseases, skin diseases, nervous 

disorders, autoimmune diseases, diabetes mellitus, lung and heart diseases [169]. ASCs are usually 

isolated from the patient’s adipose tissues and directly re-injected into the wounds or bloodstream. 

ASCs can directly differentiate into specific cell lineages such as keratinocytes, fibroblast-like cells, 

and endothelial cells, together with the release of growth factors and cytokines, all that promote 

angiogenesis, development, migration of fibroblasts, and production of fibronectin and collagen 

[168]. Many studies have demonstrated that ASC can increase the healing rate and decrease healing 

time with dramatic clinical applications [169]. 

White adipose tissue is split into different body regions with two main areas, the subcutaneous (SAT) 

and the visceral (VAT) white adipose depots that play distinct roles in the control of energy 

metabolism. SAT expansion is protective in obesity while VAT expansion promotes the metabolic 

complications of obesity such as resistance to insulin and type 2 diabetes [170]. SAT and VAT have 

distinct functional properties regarding their capacity of fatty acid storage and the control of 

inflammation [171]. The metabolic protection by SAT is attributed to its ability to trap free fatty 

acids through triglyceride esterification (lipogenesis) protecting other organs from lipotoxicity [172] 

while the deleterious effect of expanding VAT is attributed to its higher lipolytic activity favouring 

the release of free fatty acids [170] and the delivery of proinflammatory cytokines such as IL6 [173]. 

It has been shown that VAT expansion occurs when the storage capacity of SAT is saturated [174]. 

Functional differences exist between ASC from distinct depots, with ASC from SAT (S-ASC) showing 

higher abilities to proliferate [171], to survive [171,175] , to accumulate lipids [171], and to 

differentiate into adipocytes [171,175,176] than ASC from VAT (V-ASC). This study aimed to evaluate 

and compare the metabolic phenotype of both cell lines to better apprehend their functional 

differences. 

2.2.2.3. Experimental approach 

While not developed in this document, an important part of this study was to develop an efficient 

isolation and culture conditions of ASC allowing the amplification of stem cells from SAT and VAT 

collected from mice. This delicate biological work and the obtention of metabolomics samples was 

accomplished at the CarMeN by Anne Mey and collaborators. 

We performed NMR metabolomic profiling of ASC culture supernatants at 600 MHz to characterize 

their metabolic phenotype in culture. By quantifying the metabolites in the extracellular culture 

medium, we were able to determine the consumption and secretion rates of a variety of 

metabolites. We quantified 29 ASC exometabolites over 72 h of cell culture. Our results indicate that 

V- and S-ASC presented significant metabolic differences among which the role of glutaminolysis 

and glycolysis were noticeable. To get more details on the metabolic differences between ASC, we 

examined the role of pyruvate, glucose, and glutamine supplies. Cells were seeded as previously and 
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cultivated for 72 h. The culture medium was then replaced by a culture medium without pyruvate 

nor HEPES and supplemented with the indicated concentrations of glucose and glutamine for the 

last 24h.  

2.2.2.4. Results and discussion 

Culture supernatants of ASC cultivated during 72 h were analysed by NMR spectrometry and 

delivered well-resolved 1H-NMR metabolic profiles of the exometabolomes (Figure 2-8). At 72 h, the 

steady-state in metabolite changes was not reached even for the most proliferative population.  

 

Figure 2-8. Typical 1H-NMR NOESY spectrum of ASC supernatant (600 MHz, 30.0°C). Spectrum from 72 h culture of S-ASC supernatant 

is represented. Major metabolite peak assignments are indicated. 

We conducted multivariate data analyses of their exo-metabolome to identify the NMR spectra 

features that correlate with cell types followed by peak identification. Multivariate data analyses 

were conducted on the absolute value of the NMR spectra bins after subtraction of the original 

culture medium (0.001 ppm; 9700 NMR spectral variables). PCA unsupervised multivariate data 

analyses were first used to evaluate the dataset homogeneity and potential sample class 

discrimination. The dataset showed good homogeneity and straightforward discrimination between 

S-ASC and V-ASC was observed on the PCA unsupervised model (Figure 2-9a). Remarkably, the first 

principal component of this model could explain alone 68.4% of the variance within the dataset, 

indicating significant differences in the metabolic profile between both cell types. 
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Figure 2-9. Multivariate statistical analyses of the differences between S- and V-ASC. (A) Untargeted principal component analysis 

(PCA) readily evidences the cell type as a major origin of the dataset variance. Score plot of the PCA model (PC1 and PC2) (n=11, 

R2=0.962, and Q2=0.843 on 5 principal components). (B, C) Supervised multivariate data analysis (O-PLS-DA). The strong discrimination 

of the multivariate model is shown by the high values of goodness-of-fit model parameters R2 and Q2 (R2(X) = 0.796, R2(Y)=0.991, and 

Q2=0.969). The discrimination robustness was validated by resampling 1000 times the model under the null hypothesis (data not 

shown), and the analysis of variance (CV-ANOVA) of the model led to a p-value of 1.20 × 10−4. (B) Score plot of the (1 + 1) O-PLS-DA 

model. (C) O-PLS-DA loading plot after SRV analysis and Benjamini–Hochberg multiple testing correction. Highlighted candidate 

biomarkers are (1) leucine, (2) valine, (3) lactate, (4) alanine, (5) acetate, (6) glutamine, (7) citrate, (8) glucose, (9) tyrosine, and (10) 

phenylalanine.  

To specifically target the NMR regions discriminating S-ASC and V-ASC, a supervised analysis by O-

PLS-DA [107,164] was conducted. We obtained a strongly discriminating O-PLS-DA model (Figure 

2-9b). Glucose, leucine, valine, glutamine, tyrosine, phenylalanine, lactate, and acetate appeared to 

vary more in V-ASC than in S-ASC culture supernatants, while citrate and alanine varied more in S-

ASC than in V-ASC culture supernatants (Figure 2-9c). These results define distinct metabolic 

footprints of V- and S-ASC on their microenvironment and suggest metabolic differences between 

both cell types.  

We did not detect cell type-specific metabolites, but concentrations determined using the Chenomx 

software revealed quantitative differences. Glucose and glutamine were the most consumed 

substrates, and their transformation products, lactate and glutamate, were among the most 

secreted metabolites, along with citrate and alanine (Figure 2-10). When considering glycolysis, the 

consumption of glucose mirrored the production of lactate indicating active glycolysis in ASC. The 

high level of lactate secretion demonstrates a high aerobic glycolytic activity in both S- and V-ASC. 

This singularity was previously described as the Warburg-like effect, a type of noncancer cell 

metabolism associated with self-renewing stem cells [177]. 
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Figure 2-10. Quantitative comparison of S- and V-ASC secretomes. S- and V-ASC at 75% confluency were cultivated for 72 h. 

Metabolites representing glycolysis (left panel) and other metabolites (right panel) showing significant differences between S- and V-

ASC (n =6).  

On the opposite, the consumption of glutamine generated few amounts of glutamate, indicating 

that the carbons generated from glutaminolysis were directed elsewhere, most probably towards 

the production of additional metabolites and cell growth, as suggested by the strong amino acid 

consumptions supporting the anabolism associated with protein synthesis.  

 

Figure 2-11. Representation of the main carbon metabolic pathways in actively dividing cells. Anabolic and catabolic pathways are 

represented in italics in relation to the metabolite secretome. Colours identify the metabolic pathways analysed in this study. TCA: 

tricarboxylic acid cycle; EAA: essential amino acids. 

Lactate and citrate are features of highly proliferating stem cells and are, respectively, 

representative of the use of pyruvate in glycolysis and the mitochondrial TCA cycle. A high level of 

glycolysis is the signature of undifferentiated cells [178] while citrate can be used for de novo 

lipogenesis to support the synthesis of new cell membranes [179]. Altogether, our results show that 

ASC presents the characteristics of proliferating stem cells, with a Warburg-like effect, associated 

with active amino acid consumption and a specific feature concerning both an elevated citrate 

secretion and a high glutamine consumption/low glutamate secretion. 
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To decipher the respective contributions of glucose and glutamine as sources of carbon in ASC, we 

performed end-point experiments with cells cultivated for 96 h in culture media completely or 

partially depleted in glucose and/or glutamine during the last 24 h. The replacement of the medium 

and the measurement on a short period and on cells at confluency was chosen to avoid the 

depletion of other metabolites than glutamine or glucose. Because pyruvate is the end product of 

glycolysis and a substrate for the TCA cycle, these experiments were performed in a pyruvate-free 

medium. 

For both ASC, no lactate was secreted in the absence of glucose (Figure 2-12a) and cells even 

consumed the little amount of lactate initially present in the medium. More importantly, glutamine 

privation completely switched the metabolism of S-ASC, but not V-ASC, towards lactate synthesis. 

Indeed, in glutamine-free medium, lactate secretion by S-ASC increased from 6.0 ± 0.7 mM to 11.0 

± 1 mM while glucose uptake decreased from 12.1 ± 1.1 mM to 8.0 ± 0.15 mM (Figure 2-12-a). This 

indicated that glycolysis S-ASC, but not in V-ASC, was highly sensitive to glutamine availability. 



- 49 - 

 

Figure 2-12. Role of glutamine and glucose in the secretome of ASC. ASC was cultivated for 72 h in fresh culture medium containing 

pyruvate. For an additional 24 h of culture, the medium was replaced by pyruvate-free medium and supplemented with 0, 5, or 25mM 

glucose in the presence of 0, 0.5, or 4mM glutamine as indicated in the figure. Concentrations in culture supernatants were measured 

by 1H-NMR. Results (mean ± SEM; n =3) are the difference between concentrations in cell culture supernatants and the concentration 

in the initial medium placed in the same conditions (control). Values were not normalized to the cell number. Negative values represent 

metabolite consumptions and positive values the secretions at concentrations above the control. (a) The glycolysis pathway is 

evidenced by monitoring glucose uptake and lactate secretion. (b) Pyruvate, citrate, and alanine secretions and uptakes. (c) The 

glutaminolysis pathway is evidenced by monitoring glutamine uptake and glutamate secretion. Statistics are from the one-way 

ANOVA test followed by Tukey’s multiple comparison test: ∗p <0 05, ∗∗p <0 01, and ∗∗∗p <0 001 and comparison of the partially 

depleted medium conditions with the complete medium condition (25mM glucose and 4mM glutamine).  

Modulating glutamine and/or glucose supply revealed that the secretion of pyruvate, citrate and 

alanine was correlated with glutamine concentration but not with glucose concentration. Only 

complete glucose deprivation decreased pyruvate secretion but to a lesser extent than in the 
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absence of glutamine (Figure 2-12b). The partial (V-ASC) or total (S-ASC) independence of citrate 

and alanine secretions regarding glycolysis underlines anaplerosis and the contribution of 

glutaminolysis for glucose consumption. We did not detect a clear dose-response relationship 

between glutamate secretion and glutamine uptake, indicating that glutamate secretion in ASC is 

not exclusively linked to glutamine metabolism. Glucose depletion in the medium did not affect 

glutamate secretion nor glutamine consumption. This indicated that glycolysis was not involved in 

the control of glutaminolysis (Figure 2-12c). These results also indicate that glutaminolysis is central 

to the use of pyruvate in the TCA cycle and the synthesis of alanine in ASC. In S-ASC only, glutamine 

privation led to a drastic switch of pyruvate consumption towards lactate production, exacerbating 

the Warburg-like effect.  

Our results reveal that sensitivity to glutamine availability is a key feature discriminating both ASC 

populations. Further analyses involving fluxomics experiments and isotope labelling will be required 

to finely dissect the underlying mechanisms involved. Our results also demonstrate that ASC have a 

mixed metabolism based on both glycolysis and mitochondrial activity, similar to what was already 

reported for bone marrow mesenchymal stem cells [180]. Interestingly, we show that glutaminolysis 

controls pyruvate consumption for use in TCA cycle and alanine synthesis. Importantly, 

glutaminolysis prevents the use of pyruvate for lactate production in S-ASC, but not in V-ASC. As a 

consequence, S- and V-ASC can be discriminated by their relative secretion of lactate and citrate, 

lactate being more secreted by V-ASC and citrate by S-ASC.  

This discrimination demonstrates the potential of NMR metabolomics approaches not only for the 

identification of biologically very similar entities, but also to deliver insights over the molecular 

mechanisms at the origin of fine physiological differences. Using metabolic stresses induced by 

culture media deleted in key nutriments, we reinforce metabolic phenotypes. To our knowledge, 

this study is the first one to describe at the metabolic level the differences between adipose-derived 

stem cells isolated from distinct adipose depots. Our results raise the possibility that mechanisms 

controlling the flux of pyruvate towards the synthesis of either lactate in the cytoplasm or citrate in 

the mitochondria could be related to the reported differences between S- and V-ASC in their 

proliferation and differentiation potentials.  
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2.2.3. Tissues and biofluids study: Dietary obesity in mice is associated with 

lipid deposition and metabolic shifts in the lungs sharing features with 

the liver 

2.2.3.1. Introduction  

In the previous chapters, we have presented examples where NMR metabolomics approaches were 

applied to bacterial and cellular models. By studying the cell footprint on their culture media, we 

obtained strong group-discrimination models, even of significant biological resemblance. We 

demonstrated the importance of profiling the exo-metabolome that allow us to determine the 

consumption/production patterns of fluxes of exo-metabolites. These data not only allow 

discriminate groups but also shed light on molecular metabolic mechanisms at the origin of this 

discrimination. 

In this chapter, we jump a step higher, going from cell cultures to the study of entire organs and 

biofluids. We describe a project where we evaluated the impact of a high-fat high-sucrose diet over 

the lungs and other individual organs of mice to apprehend the metabolic modifications and 

disorders associated with the development of obesity, at the organ level. The examination of 

multiple organs adaptation to the diet coupled with serum profiles permitted to compare the 

metabolic evolution of multiple biological compartments. As expected, we measured important 

diet-induced modifications differences between organs, for example, the liver is more impacted by 

the diet than the brain, but importantly, we evidenced unexpected effects, for example on the lung 

physiology. This work is also noteworthy as it presents reference quantification tables of 

metabolites in organs. 

This work implicated Béatrice Morio, Sylvie Guibert, Baptiste Panthu and many people from the 

CarMeN laboratory. The obtention and preparation of NMR samples from mice organs is a multiple 

months-long and difficult process, from mice breeding and caring, to sacrifice, organ harvesting and 

metabolite extraction. The ability of metabolomics methods to obtain insights over fine metabolic 

details directly depends on the quality of the biological samples that require the precise execution 

along the entire process and perfect coordination between many expert operators. NMR spectra 

were acquired through the TGIR infrastructure at 800 MHz. 

A first article has been published about this project but a large amount of data is still under 

examination. 

• Rautureau, G. J. P., Morio, B., Guibert, S., Lefevre, C., Perrier, J., Alves, A., … Panthu, B. (2021). 

Dietary obesity in mice is associated with lipid deposition and metabolic shifts in the lungs 

sharing features with the liver. Scientific Reports, 11(1), 8712. doi: 10.1038/s41598-021-

88097-8 
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2.2.3.2. Scientific context 

Obesity has reached epidemic proportions worldwide and affects the metabolism of all organs, 

impacting therefore whole-body homeostasis. As a consequence, obesity increases the risk of 

important chronic pathologies such as type 2 diabetes and cardiovascular diseases [181]. 

Epidemiological studies have long shown that obesity is associated with both chronic and acute 

respiratory complications such as asthma, infectious diseases or chronic obstructive pulmonary 

disease (COPD) [182–186]. This topic has gained outstanding relevance with the Covid-19 (SARS-

CoV-2) pandemic and its severe pulmonary complications that particularly affect obese patients 

[187]. 

Recent studies evidenced lung-localized metabolic alterations that may contribute to the 

pathophysiology of lung diseases in obesity, such as alterations of the lipid metabolism and the 

secretion of cytokines, or changes of the arginine metabolism leading to nitric oxide synthesis [182–

184,188–190]. At the cellular level, impaired mitochondrial metabolism has also been observed 

[191,192], and stressed mitochondria have been reported in the airway epithelial cells of high-fat 

and high-fructose fed mice [193].  

2.2.3.3. Experimental approach 

Male C57Bl/6J mice were fed either with a standard diet (SD) or a high-fat and high sucrose diet 

(HFHSD) for 14 weeks, a classical nutritional model of obesity [194]. HFHSD mice gained 65% more 

weight than SD animals (p<0.0001, n=12 per group) with a 57% increase in the weight of the liver 

(p<0.0001). The 14-weeks HFHSD diet induced significant alterations in body composition and 

systemic glucose homeostasis in mice, in favour of a progression towards type 2 diabetes [195].  

Mice were sacrificed, serum and five other organs (liver, heart, skeletal muscle, kidneys and brain) 

were harvested and snap-frozen in liquid nitrogen for both SD and HFHSD mice (n=8 per group). 

Metabolites were extracted from organs using methanol [196]. The 1H 1D NMR profiles were 

acquired at 800 MHz at the CRMN. The careful analysis of the 1H 1D NOESY spectra and the two-

dimensional 1H-1H and 1H-13C NMR led to the identification and quantification of 44 metabolites in 

organs and 32 metabolites in serum. The relative lipid content could be also evaluated [197] and 

results were confirmed by triglyceride (TG) biochemical quantification. 

2.2.3.4. Results and discussion 

We analysed the metabolome of the lung by NMR spectroscopy and compared it with the 

metabolome of serum and five other organs (liver, heart, skeletal muscle, kidneys and brain) in both 

SD and HFHSD mice (n = 8 per group). We determined the absolute quantification of multiple 

metabolites which let us perform a detailed inter-organ comparison of HFHSD-induced metabolic 

alterations.  
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NMR analysis of the lung showed that HFHSD induced significant changes in 9 out of 32 metabolites 

compared to SD mice (Figure 2-13). The metabolites that varied significantly (p<0.05) with the diet 

were serine, sn-glycero-3-phosphocholine, glutamine, valine and taurine that increased, while 

Betaine, myo-inositol, phenylalanine and o-phosphocholine decreased in HFHSD lung compared to 

SD lung (Figure 2-13-b). Interestingly, broad peaks were modified on lung NMR spectra, that could 

be assigned to the CH3, CH2 and CH2-CO moieties of heterogeneous lipid species [197]. Their peak 

area was quantified in Figure 2-14 (panels a and c). To confirm these results, we measured 

biochemically TG levels in the lung of SD and HFHSD mice (Figure 2-14-b). TG levels were 94% higher 

in the lungs of HFHSD-fed animals compared to SD controls (p<0.001), confirming lipid accumulation 

in the lung of HFHSD mice.  

 

Figure 2-13. Metabolite modifications identified by NMR in the lung of HFHSD mice. (a) 1H-NMR representative spectra from lung 

from SD (blue) and HFHSD (red) fed mice. (b) List of metabolites differentially found in the lung of HFHSD mice compared to SD mice. 

Results are expressed as mean ± standard deviation (SD) and are in nmol/100 mg of the lung. Data are mean of n = 8 mice per group; 

Results of unpaired two-tailed t-test are indicated p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****). Percentages of 

variation between HFHSD and SD fed mice are indicated. 
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Figure 2-14. Lipids and specifically triglycerides accumulation in the lung in comparison with the liver or all other organs of SD and 

HFHSD mice. (a) 1H-NMR representative spectra from the lung (at bottom) and the liver (at top) from SD (blue) and HFHSD (red) fed 

mice. Spectra zoom highlights fatty acid (FA) areas of –CH2–CO (1.6 ppm), (CH2)n (1.3 ppm) and CH2–CH3 moieties (0.9 ppm). (b) 

Triglyceride contents in liver, lungs, heart, gastrocnemius muscles, kidneys and brain. (c) Relative abundance of each typical lipid 

moieties –CH2–CO (triangle), (CH2)n (diamond) and CH2–CH3 (square) of SD (blue empty) or HFHSD (red full) fed mice estimated by 

integration of the 1H-NMR spectra. Data are mean of n = 8 mice per group; Results of unpaired two-tailed t-test are indicated as non-

significant (NS) p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****). 

The serum had glucose concentration increased by 31% in HFHSD mice compared to SD mice 

(p<0.02, n=8 per group). NMR also evidenced lower serum concentrations for allantoin, creatine 

and phenylalanine, and higher concentrations for alanine and 3-hydroxybutyrate in HFHSD-fed mice 

compared to controls (p<0.05). Citrate and succinate concentrations were 28% and 32% higher in 

the serum of HFHSD-fed mice compared to controls, respectively (p<0.02). Inversely, glycine, 

dimethylglycine (DMG) and betaine that derive from the 1C cycle metabolism were 34%, 68% and 

54% lower in the serum of HFHSD-fed mice compared to controls, respectively (p<0.01). No 

significant alteration of branched-chain amino acid concentrations was observed in serum.  

The HFHSD displayed tissue-specific perturbations. Among the 44 quantified metabolites, 16, 8, 8 

and 7 were significantly altered in the liver, heart, gastrocnemius muscle and kidneys, respectively. 

The less impacted organ was the brain which displayed only 2 altered metabolites following HFHSD. 

All the organs studied harboured one or several unique metabolite alterations which could 

constitute potential biomarker candidates of the organ physiology adaptation to diet. For example, 
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pantothenate was 34% lower (p<0.05) in the brain; citrate and acetone were 66% (p<0.01) and 28% 

(p<0.05) respectively lower in the kidney. Liver showed the most unique metabolite alterations with 

a notable concentration increase by 3,499% of 2-hydroxybutyrate from 4.8 ± 1.5 nmol/100 mg of 

tissue to 172.4 ± 61.4 nmol/100 mg (p<0.0001). Important variations in the 1C pathway were 

observed in several tissues of HFHSD-fed mice. For example, the liver evidenced the strongest 

decrease in the methionine cycle with 38% lower concentrations in glycine, 60% in sarcosine, 84% 

in DMG and 93% in betaine in HFHSD-fed mice compared to controls (p<0.003). Similarly, in 

gastrocnemius muscle, both glycine and DMG concentrations were 30% and 50% lower in HFHSD-

fed mice compared to controls, respectively (p<0.002). In kidneys, betaine was 50% lower in HFHSD-

fed mice compared to controls (p<0.0003), as observed above in the lung. As observed for the lung, 

broad peaks on NMR spectra of some tissues (Fig. 2a and 2b), could be assigned to heterogeneous 

lipid species and evaluated. TG levels were also quantified biochemically in all organs. As showed in 

Figure 2-2-b, TG levels were 378% higher in the liver of HFHSD mice compared to SD mice but 

unaltered in other organs than lungs. [198]. 

2.2.3.5. Conclusion 

The lung displayed both specific and shared metabolic changes following HFHSD, compared to 

serum and/or other organs and was the second most affected organ after the liver. Lung and liver 

shared reduced one-carbon (1C) metabolism and increased lipid accumulation. Altered 1C 

metabolism was found in all organs and in the serum. Lastly, tricarboxylic acid (TCA)-derived 

metabolites were specifically and oppositely regulated in the serum and kidneys but not in other 

organs. Collectively, our data highlighted that HFHSD induced specific metabolic changes in all 

organs, the lung being the second most affected organ, the main alterations affecting metabolite 

concentrations of the 1C pathway and, to a minor extend, TCA.  

Lipid content is increased both in the liver and lung of the HFHSD mice, but not in the other organs 

considered in this study. Lipid accumulation in the liver is well documented, contrary to the lung 

where a single lipid-targeted metabolomics study showed significant quantitative and qualitative 

differences in neutral lipids, fatty acids, phospholipids and sphingolipids content in lung between 

HFHSD and very high-fat diets [184]. As lipotoxicity contributes to the development of non-alcoholic 

fatty liver diseases, an involvement of the lung lipid storage is possibly involved in obesity-associated 

complications such as asthma and COPD, or increased susceptibility to infectious diseases such as 

seasonal flu or SARS-CoV-2. 

One important observation of our study is that HFHSD-fed mice presented serum- and organ-

specific metabolomics adaptations. Caution should be taken as some metabolic adaptations in 

organs may not only be a consequence of the diet. Indeed, obesity per se, rather than overnutrition, 

can induce organ-specific metabolic adaptations. This question was raised by Mora-Ortiz et al. who 

examined db/db mice organs [199], a natural genetic model of obesity and also reported a decrease 

of 1C related metabolites in many organs. Unfortunately, they did not include lung in their study. 
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2.2.4. Subcellular metabolic machinery characterization using Real-Time 

NMR: Cell-Free Protein Synthesis Enhancement from Real-Time NMR 

Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.  

2.2.4.1. Introduction  

Metabolomics aims to the identification and quantification of the metabolites present in a biological 

system and determines their modification in response to a perturbation. In most studies, 

metabolomics profiles are obtained as a snapshot of the steady-state, the metabolites are evaluated 

either in stable biological samples, such as some biofluids or are extracted from a fixated biological 

sample. Metabolite concentrations are determined and conclusions are drawn from the variations 

of concentration of metabolites between two or more conditions. The knowledge obtained from 

metabolomics studies most often stands as the possibility to distinguish groups (using either 

individual biomarkers or complex signatures of metabolites), and eventually, mechanistic models 

explaining the origin of the discrimination. Another approach to defining models of metabolism 

depends on the obtention of dynamic information such as measures of matter fluxes along 

metabolic pathways.  

Real-time NMR (RT-NMR) is a strategy developed to study composition-evolving solutions. RT-NMR 

consist in acquiring a series of spectra over time, from which the sample composition, concentration 

and evolution can be characterized (Figure 2-15) [200]. Real-Time NMR is gaining popularity in the 

field of metabolism and complex media enzymology due to its unique capacity to measure 

simultaneously multiple metabolic reactions in one experiment, which allows characterizing whole 

enchained reactions and metabolic pathways.  

 

 

Figure 2-15. RT-NMR allows following the evolution of metabolites in complex enzymatic systems such as cell lysates in which activity 

is reactivated by adding an energy source (such as phosphocreatine and creatine phosphokinase), and metabolic substrates. NMR 

spectra are acquired on the active mix. The sample composition, concentration and evolution can then be characterized  
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In this chapter, we describe how we used RT-NMR to investigate a particular cell-free protein 

synthesis system (CFPS). CFPSs are cell lysates in which particular cellular functions, such as the 

translation of recombinant proteins or RNA transcription, are reactivated in vitro for technological 

applications or scientific research. CFPS require a very delicate formulation to run and even with 

highly optimised conditions, for example, protein translating, CFPS remain productive for at most a 

few hours before stopping, as substrates are consumed and waste products accumulate. Cell lysates 

require complementation with many cofactors (energy sources (in the form of an ATP regenerating 

system), cellular substrates, metabolites and salts) to be productive. 

In this study, we were interested in studying a counter-intuitive cell-free protein synthesis (CFPS) 

strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL) [201]: reducing 

the amount of ribosomes allowed to produce higher protein yields. This strategy is at the origin of 

the development of hybrid systems composed of RRL ribosome-free supernatant complemented 

with ribosomes from different mammalian cell types. These Hybrid RRL systems present the 

important advantage of maintaining translational properties of the original ribosome cell types, 

while delivering protein expression levels similar to RRL.  

We followed the CFPS translation reaction using RT-NMR, and managed to determine why a lower 

amount of ribosome approach was beneficial: persistent ATP energy-consuming metabolic activities 

associated with the ribosome fraction expends most of the energy supply, independently of protein 

synthesis. We evidenced that energy metabolism is the most crucial factor for efficient CFPS, and 

demonstrated that optimising energy supply is essential to sustain long-lasting translation. Using 

concentrations of ribosomal fractions lower than their native ratios significantly optimises this issue. 

This work was performed with Baptiste Panthu, who was studying eucaryote CFPS systems, and with 

the support of Bénédicte Elena-Herrmann and others. This work led to my first last author article:  

• Panthu, B., Ohlmann, T., Perrier, J., Schlattner, U., Jalinot, P., Elena-Herrmann, B., & Rautureau, 

G. J. P. (2018). Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite 

Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems. ACS Synthetic Biology, 7(1), 218–

226. doi: 10.1021/acssynbio.7b00280 

2.2.4.2. Scientific context 

Cell-free protein synthesis (CFPS) systems have become central tools for protein research or 

biotechnology [202,203]. For example, they can be used to produce therapeutic proteins such as 

antibodies, vaccine components or cytokines [204–207], but also key pharmaceutical targets for 

drug design assays and structural biology [208], or viral particles [209]. CFPS also constitutes 

excellent opportunities for direct sampling and screening of molecules in a close-to-physiological 

context, e.g. for numerous in vitro translational assays such as ribosome display techniques [210].  
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Yet, the development of CFPS systems to their full potential has been hampered by the complexity 

of their molecular machinery, which involves many cellular processes and regulatory circuits [211]. 

Only a few active CFPS systems have been successfully developed so far, with lysates derived from 

E. coli, wheat germ, insect cells or rabbit reticulocytes being the most commonly used [202]. E. coli 

and wheat germ can produce large amounts of a given protein but sometimes suffer from problems 

related to expression, folding and post-translational modifications of eukaryotic proteins [202].  

Mammalian CFPS systems are still believed to provide the most adequate machinery for bona fide 

eukaryotic protein production and downstream processing. Disappointingly, rabbit reticulocyte 

lysate (RRL), the main commercialized mammalian CFPS system (along with Chinese hamster ovary 

(CHO) and Hela systems), is so far not optimal to deliver high protein production yield [202]. B. 

Panthu et al. and others have proposed a CFPS system [212–215] based on rabbit reticulocyte 

ribosome-free lysate supernatant (ribFreeRRL) complemented with purified ribosomal fractions, 

either from rabbit reticulocytes (reconstituted RRL or recRRL) or from diverse other cell types 

(hybrid RRL) (Figure 2-16a). This hybrid RRL approach allows a wide range of biological observations 

as it maintains cellular properties such as specific mRNA translation regulation.  

Interestingly, hybridRRL and recRRL produced higher yields of protein expression when a lower 

amount of ribosome was used. They initiate translation with the same rate as native RRL but are 

capable to maintain it for several hours, while translation rapidly levels off after 30mn in native RRL, 

an effect that is not due to mRNA stability [213]. We aimed to investigate why smaller amounts of 

ribosomes were beneficial for protein expression. 

 

 

Figure 2-16. CFPS energy consumption monitoring by real-time NMR. (a) RRL-derived CFPS reconstitution approach and nomenclature 

used in this article. Ribosomal fractions are easily isolated through ultracentrifugation under sucrose cushion. (b) Typical 1H NMR 

spectrum of a translating nativeRRL mix. Active CFPS reactions (200 μL) were monitored in real-time inside the NMR spectrometer at 

30 °C.  
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2.2.4.3. Experimental approach 

The standard CFPS mix is constituted by commercial untreated RRL (RRL) (Promega) supplemented 

with 25 µM hemin, 25 µg creatine kinase, 5 mg/mL phosphocreatine, 50 µg/mL of bovine liver tRNAs 

and 2 mM of D-glucose. The 200 µl in vitro CFPS translation assay was contained 50 % v/v RRL, 27nM 

of in vitro transcribed mRNAs, 75 mM KCl, 0.75 mM MgCl2 and 20 µM amino acids mix. The CFPS 

reaction was realised in the NMR spectrometer at 30°C. The gloRenilla construct (a standard 

reporter of protein translation) was used for every protein translation assays. 

For reconstituted CFPS mixes, the strategy and nomenclature are illustrated in Figure 2-16a. 

Ribosomes were isolated by centrifugation of 1 ml of RRL for 2h15 min at 75000 rpm, 900 µl of 

ribosome free RRL was collected, frozen and stored at -80 °C. The ribosomal pellet was then rinsed 

three times and resuspended in 100 µL of buffer to get a 10 X final concentration. The reconstituted 

lysate is then assembled by mixing 100 µl of ribosome free RRL with a fraction of scale from 0.02 to 

1 X ribosomal pellet. Typically, the standard reaction for NMR contains 100 µl of ribosome free RRL 

with 20 µg ribosomal pellet (annotated 0.1 X) in a final volume of 200 µl.  

RT-NMR was performed on a Bruker 600 MHz NMR spectrometer equipped with a 5 mm TCI 

cryoprobe, at 30.0°C, with 200 μL CFPS sample in 3 mm NMR tubes. All the solutions were strictly 

kept on ice until NMR acquisition. Time series of standard 1H 1D NMR pulse sequence Carr-Purcell-

Meiboom-Gill (CPMG) with water presaturation (Bruker pulse program cpmgpr1d) were acquired. 

32 free induction decays (FIDs) were collected with 48074 data points and an acquisition time of 

1.99 s. The relaxation delay was set to 4s. The total acquisition time for each spectrum was 3min 

27sec. The acquisition was repeated for 2 to several hours. Metabolite concentrations were 

determined using ChenomX. 

2.2.4.4. Results and discussion 

To study RRL CFPS reactions, we used a quantitative real-time NMR strategy to monitor intact, 

translating CFPS samples over two hours. As a primary energy source, an ATP regenerating system 

was used (the CFPS mix is supplemented with 10 mM phosphocreatine (PCr) in the presence of 

creatine kinase (CK: ADP + PCr -> ATP + Cr)). From the complex CFPS 1H-NMR fingerprint (Figure 

2-16b), numerous peaks could be unambiguously assigned to specific metabolites and the evolution 

of their relative concentration followed over time, characterizing production, consumption, or 

steady-state behaviour. This included PCr consumption and creatine production, but also the time 

course of other energy intermediates (ATP, GTP, glucose) and other metabolites such as amino-

acids.  

Classical RRL translation (native RRL) was run as a control experiment. It revealed that the given PCr 

pool could maintain maximal energy supply for about 60 min, keeping ATP and also GTP 

concentrations globally stable during this time period (Figure 2-17a). At that time point, glucose was 

also entirely exhausted, and a drop in ATP and GTP occurred. Protein yield indicated very active 
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translation during the first 30 min, which then slowed down and ceased after 45 min (Figure 2-17b). 

These data evidenced a considerable energy flux occurring during CFPS.  

 

Figure 2-17. Native RRL monitoring by real-time NMR. (a) Evolution of metabolite concentrations quantified by real-time NMR during 

2 h and normalized to their initial or final concentration. (b) Protein production yield based on luciferase activity measurement through 

a Renilla reporter gene expression. Each batch is supplemented by 27 nM of in vitro transcribed mRNA. Error bars represent the 

standard deviation of three experiments. 

We investigated the respective importance of PCr and glucose for protein yield. Removing PCr (or 

CK) precluded glucose utilization (Figure 2-18a) and protein synthesis (Figure 2-18c). In the absence 

of an efficient ATP regenerating system, the low net ATP production of glycolysis is insufficient to 

fuel both glycolysis initial steps and competitive RRL metabolism. Consistently, glucose removal had 

no apparent effect on steady-state ATP and GTP levels (data not shown), confirming that the PCr/CK 

system is the primary and essential energy source. Interestingly glucose reduction lowered protein 

synthesis by about 30% (Figure 2-18c). Glycolysis thus appears to contribute to protein translation, 

either through NADH regeneration or via production of intermediate metabolites that may 

indirectly benefit translation. Notably, this is contrary to bacterial lysates, where glucose can be 

used as the major source of energy [216].  

To better understand energy expenditure related to protein synthesis, we conducted experiments 

in which protein synthesis was blocked by cycloheximide (CHX), which inhibits the elongation 

process, and RNAse A, to induce mRNA degradation. Astonishingly, PCr consumption was only 

slightly reduced, by less than 20% at 60 minutes of reaction time compared to control (Figure 2-18a, 

bottom panel). This showed that protein translation was not the main consumer of ATP in the CFPS 

system. A slight reduction of glucose consumption was also detected and pyruvate and lactate 

production were reduced (data not shown), indicating that inhibition of translation reduces 

glycolytic flux.  
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Figure 2-18. Energy consumption in CFPS is maintained even when translation is blocked. (a) Phosphocreatine and glucose evolution 

during 2 h of in vitro translation: nativeRRL control (△) versus nativeRRL without glucose (□) or without CK and phosphocreatine (○) 

supplementation (bottom panel) (top panel) ; comparison of a nativeRRL control (△) versus an elongation-blocked nativeRRL (□) by 

addition of cycloheximide (CHX) and RNase A; (bottom panel) . (b) Comparison of a nativeRRL translating (△) versus a ribFreeRRL (□) 

system: phosphocreatine and glucose evolution during 2 h of in vitro translation. Error bars represent the standard deviation of three 

experiments. (c) Protein production yield based on luciferase activity measurement through a Renilla reporter gene expression in 

nativeRRL (left) or without addition of amino acids and tRNA, glucose, CK, phosphocreatine or ribosomal fraction (ribosome). Absolute 

luminescence intensity is plotted on left y-axis. Concentration was determined using methionine 35S labeling and is plotted on right 

y-axis. Error bars represent the standard deviation of three experiments. 

Finally, we conducted an experiment that omitted the ribosomal fraction, thus avoiding protein 

synthesis. Under these conditions, PCr and glucose were still consumed, but at a much lower rate 

compared to the native RRL (Figure 2-18b) or to native RRL after CHX inhibition of protein synthesis 

(Figure 2-18a). Therefore, translation-independent free energy consumption seems to be largely 

driven by components co-purified with the ribosomal fraction, or by the ribosome itself.  

Our data indicate that while a significant amount of free energy is directed toward protein synthesis 

(at most 40%), a majority supports alternative pathways that are associated with the ribosomal 

fraction. The ribosomal fraction has recently been shown to be strikingly complex, with more than 

1000 proteins associated to the ribosome machinery, constituting the riboproteome [217] . Those 

proteins are believed to create in vivo a favourable microenvironment necessary for driving, 

regulating, and securing specificity of the translation process. Interestingly, the riboproteome 
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contains also many enzymes involved in common metabolic pathways [217–219], consistent with 

the free energy-consuming processes that we found associated with the ribosomal fraction. 

We then explored the effect of riboproteome concentration on both translation-independent 

metabolism and protein synthesis in our CFPS system. Reducing the amount of the ribosomal 

fraction in ribosome free RRL (recRRL; Figure 2-16a) directly correlated with reduced free energy 

consumption of the system (Figure 2-19a), while protein synthesis was reduced in a more complex 

manner: reducing the ribosomal fraction of to only 10% (0.1X) the original lysate increased protein 

yield after 90 min of synthesis by about 4-fold (Figure 2-19b). Further reduction of the ribosomal 

fraction to 2% (0.02X) reduced protein yield. Under this condition, the yield was nonetheless higher 

than the one of the 1X controls. At native concentrations, the translation apparatus seems therefore 

saturated. These differences in protein yield were not apparent at shorter reaction times (30 min), 

suggesting similar initial translation rates (Figure 2-19b). In fact, the different mixtures differed in 

the time course, with nativeRRL and 1X recRRL ceasing protein synthesis after 30-45 minutes, while 

recRRL, depending on the ribosome dilution, remained productive for longer reaction times.  

 

 

Figure 2-19. Lowering the ribosome ratios increases the protein production yield. (a) Phosphocreatine and glucose evolution during 2 

hours of in vitro translation in nativeRRL (△), ribFreeRRL (□), recRRL with 0.02× (○), 0.1× (×), 0.5× (−) and 1× (+) ribosomal fraction 

addition. (b) Protein production yield evaluated as luciferase activity by luminometry at different time of incubation (30, 45, 60, and 

90 min). Protein production was normalized to nativeRRL (RRL). RecRRL was supplemented with an increasing amount of ribosomal 

fraction from 0.02× to 1×.  

These results demonstrate that the metabolic activities associated to the ribosomal fraction 

contribute to the reduced translation yield in CFPS reactions by competing for energy supply. Using 

lower ribosomal fraction ratios than native systems appeared to be very beneficial: diluting the 

competing free energy-consuming processes liberated energy reserves, which were then efficiently 
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used by the ribosome translational machinery because of its saturated translation capacity down to 

concentration ratios of 0.1X.  

2.2.4.5. Conclusion 

Altogether, we demonstrated that dilution of the ribosomal fraction slows the waste of energy by 

translation-independent ATP-consuming pathways, promotes significantly longer lasting CFPS 

reactions, and thus maximises ribosome activity and protein yield. While competing energy-

consuming activities of the ribosomal fraction do not appear to contribute to translation, they may 

be necessary for translation in vivo, but appear non-limiting under the conditions tested. 

Manipulating the ribosome ratio was already used to enhance protein production in yeast CFPS 

[220], but the underlying energetic aspects were not investigated. The hybrid system approach 

investigated in this study appears therefore as an accessible, solid and pragmatic tool to improve 

protein yield and could present a breakthrough for the elaboration of cell-free protein synthesis 

systems.  

This study also illustrates the potential of RT-NMR to follow complex active bio-molecular systems 

for technological applications. While we concentrated on energy management during the CFPS 

reaction, a large amount of data was collected about the time evolution of many components of the 

reaction. Most data were not used in this study but offered a detailed portrayal of the reaction. Such 

potential is significant and probably overlooked, both from the NMR methodological point of view, 

but also from the research, development and industrial applications.  

Many metabolites were modified during the CFPS reaction, showing that numerous metabolic 

pathways are still active in the lysate. This led us to postulate that such CFPS and lysates are 

incredible systems adequate to explore the functional state of the cellular metabolic machinery. 

Such information would be exceptionally useful to complement standard metabolomics data at it 

would allow generating more accurate metabolic models by alleviating ambiguities. 
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3. Research Projects  

After being consecutively a member of Françoise Vovelle’s, Mark Hinds’s, Neil Ferguson’s, Bénédicte 

Elena-Herrmann’s, and finally Sami Jannin’s groups, I now aim to develop and organize my own 

scientific exploration along my objective to promote the use of NMR in life sciences and develop 

NMR analytical solutions to the needs of biologist and biomedical researchers, to push back 

exploration barriers in life sciences. The CRMN constitutes a perfect environment for that goal, and 

offers research conditions for which I have been grateful since my recruitment. Not only the CRMN 

hosts world-class state-of-the-art NMR equipment and unique prototypes, but it also gathers a wide 

variety of world-recognised researchers and projects that offer complementary expertise in the field 

of NMR. 

I plan to organize my future projects around developments and applications of metabolomics for 

life-sciences, exploiting the vast possibilities offered by high-field and high-throughput NMR data 

acquisition: 

• On one side I seek to develop and promote my novel approaches and methods for metabolic 

phenotyping, for example based on RT-NMR. Among the various projects in which I have been 

involved over the last years, we have developed with Baptiste Panthu Real-Time NMR 

approaches to measure the biochemical reactions in cell-free systems and established a proof 

of concept for the use of RT-NMR to determine metabolic fluxes through metabolic pathways. 

I believe RT-NMR studies of biologically active samples constitute an overlooked area in 

metabolomics research, which can deliver otherwise inaccessible dynamic metabolic fluxes 

data. Developing such an approach will constitute a very unique metabolism phenotyping tool. 

This project has been proposed at the ANR call 2021 (vide infra.). 

 

• On the other side, I seek to collaborate with biomedical researchers and tailor NMR 

applications to their needs, to deliver at full potential the results that metabolomics promise. 

Such collaborations are critical to maintain the CRMN in Lyon bio-medical community, and the 

demand for collaborations in metabolomics is high. Lyon is a European capital for medical 

research and hosts numerous prestigious research centres. Some collaborations are already 

active, for example with the CarMeN laboratory of the Faculté de Médecine Lyon-Sud, with 

which we have active projects, such as the follow up of the study of the organs. Thanks to 

former collaborations implicating Bénédicte Elena-Herrmann, we have direct contacts with the 

Hospices Civils de Lyon (HCL), the Centre de recherche en Cancérologie de Lyon (CRCL), Centre 

Léon Bérard, Centre International de Recherche en Infectiologie (CIRI), Biomérieux, Mérial, 

etc.).  

 

In the next part, I will present a project proposed to the ANR call 2021, as a collaborative project 

(PRC) between the CRMN and the CarMeN laboratories. This project aims to profile isolated 

mitochondria metabolism using RT-NMR. This project integrates a new NMR technology to enhance 
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NMR sensitivity, that is being developed at the CRMN by Sami Jannin: dissolution dynamic nuclear 

polarization (dDNP). dDNP constitutes a revolution in NMR as it allows to augment NMR nuclei 

polarization, leading to a massive signal enhancement. The gigantic gain in signal intensity permits 

to reduce the acquisition time to single pulsed experiments on a single second timescale, in perfect 

alignment with RT-NMR approaches. dDNP will allow the characterization of both fast metabolic 

reactions and low populated metabolic intermediates [122]. The combination RT-NMR and dDNP 

for metabolic profiling is expected to provide a disruptive technology in the field of metabolism 

studies and the accessibility at the CRMN of the world-unique equipment’s of Sami Jannin’s team 

will allow us to be at the forefront of this field of research. 

This project includes 2 partners and 4 participants: at the CRMN, myself and Sami Jannin and at the 

CarMen: Baptiste Panthu and Hubert Vidal. This project represents the strong collaboration 

between the CRMN and the CarMen, not only to collaborate along a scientific project but more 

importantly to develop and integrate new technologies in the biomedical research. Many 

researchers at the CarMeN, convinced by the active promotion of Baptiste Panthu, have understood 

the potential of NMR for Life-Sciences and fully support our initiative.  

3.1. Mitochondrial metabolism profiling in real-time and 

application to mitochondrial diversity and drug screening 

by NMR  

The Mitoprofile project concerns the development of an analytical strategy to investigate 

mitochondria metabolism in real-time: our approach aims to deliver rapid, high-resolution and cost-

effective results, with a biomedical community-accessible technology.  

We propose to use real-time nuclear magnetic resonance (RT-NMR) to assess the metabolism of 

freshly isolated mitochondria placed in test media. The RT-NMR approach will deliver a quantitative 

description of the active metabolic reactions in mitochondria placed in standard conditions. We will 

use the dissolution dynamic nuclear polarization (dDNP) technic to hyperpolarize substrates and 

significantly augment their NMR-signal intensity. This gain in sensitivity will let us assess fine and 

rapid metabolic reactions but also low-populated reactional intermediates. The MitoProfile strategy 

will offer a versatile and potent tool, that will permit to determine not only the activation level of 

various metabolic pathways in mitochondria but also the impact of altering conditions or adding 

chemicals or drugs on mitochondrial metabolism. 

To demonstrate the potential of our analytical strategy, we propose to (1) explore the metabolic 

diversity of mitochondria from various origins and (2) evaluate the activity of well-known drugs 

targeting mitochondria metabolism. 
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3.1.1. Objectives and research hypothesis 

3.1.1.1. Introduction: Why is studying mitochondria metabolism timely 

and important? 

Long considered the cell's energy powerhouse, mitochondria are nowadays recognized as active 

organelles that accomplish critical cellular functions and regulate the entire cell physiology 

[221,222]. Mitochondrial dysfunction has been associated with numerous human diseases, for 

example, metabolic disorders such as type 2 diabetes and cancer [7]. Deepening our understanding 

of the role of mitochondria in cell death, oncogenic transformation, cancer metabolism but also to 

metabolic diseases and response to therapies for example, will open opportunities for diagnosis, 

therapy and precision medicine [7]. 

3.1.1.2. The scientific and technical barriers to studying mitochondria 

metabolism 

Mitochondria are symbiotic entities nested in eukaryotic cells. They contain their own DNA, 

encoding a small number of vital genes, and partially house their own metabolic reactions, 

regulation and homeostasis. Characterizing mitochondria metabolism inside their host cell, in a 

comprehensive manner and at the molecular level, is then challenging as their subtle metabolism is 

hindered in the cytosolic environment. Furthermore, some mitochondrial metabolic reactions are 

localized inside the mitochondria while others can occur both inside and/or outside the 

mitochondrial compartment, with complex metabolite transporters and shuttles regulating the 

chemical fluxes between the cytoplasm and mitochondria. Finally, mitochondria metabolism is 

complexified by its intermembranous, cristae and matrix sub-compartments that host localized 

metabolic reactions. 

Altogether, despite fantastic progress in analytical technologies, assessing mitochondria 

metabolism is still challenging, and most biomedical research projects remain limited to the 

measurement of few parameters, such as 02 and pH variations, and are constrained to a limited 

number of samples measured by day (medium-throughput capacity). High-resolution methods, that 

are based on complex isotope tracing experiments using NMR or mass spectrometry, are restricted 

to a limited number of samples and require advanced equipment, expertise and resources while 

lacking real-time and short kinetic potential.  

3.1.1.3. The objectives and the research hypothesis 

Our objective is to develop a physiologist-accessible analytical approach to obtain high-resolution 

metabolic profiles of mitochondria, with a medium-throughput capacity. Besides studying 

metabolite content and concentrations, we seek to portray the dynamic and functional state of 
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isolated mitochondria metabolism in real-time. Specifically, we aim to provide quantitative data 

about the main metabolic pathways activity in mitochondria (Krebs cycle, fatty acid oxidation, 

ketogenesis, transamination, folate cycle, and cardiolipin, quinone and steroid biosyntheses) [221].  

To reach this objective, we propose to develop a full new NMR-based methodology, scientific 

workflow and protocols combining biological sample preparation, real-time Nuclear Magnetic 

Resonance (RT-NMR) measurements and optional hyperpolarization-based NMR-signal 

sensitivity enhancement (up to 10,000 times), to enable monitoring real-time metabolic processes 

in isolated mitochondria, with medium throughput potential, high resolution and high sensitivity. 

Importantly, our setup will offer facilitated access to conditions and molecules testing. 

To demonstrate the ability of our methodology to deliver state-of-the-art data for biological and 

biomedical sciences, we will (i) perform a complete metabolic profiling of well-characterized 

mitochondria from Hela-cells, as a model system, and then expand to (ii) explore the metabolic 

diversity of mitochondria from various cell origins and (iii) evaluate the activity of well-known 

drugs targeting mitochondria metabolism. 

Living cell-lines-derived mitochondria will be placed inside the NMR spectrometer, in the presence 

of adequate metabolic substrates and in suitable conditions to sustain mitochondrial metabolism 

[223]. Working on isolated mitochondria will allow to:  

• focus on mitochondria metabolism while eluding other compartments metabolic activities. 

• reduce the limitations related to a selective plasma membrane. 

• design a versatile setup offering unique opportunities for chemicals and conditions testing. 

We will use RT-NMR to follow the metabolic faith and matter fluxes of unlabelled or 13C-isotopically-

labelled substrates. RT-NMR delivers a series of time-resolved spectra, from which about 60 

metabolite concentrations and time-evolutions can be determined simultaneously [34,200]. RT-

NMR is well-suited to obtain a broad view of metabolic reactions and a quantitative measure of 

both the metabolome dynamics and the functional state of the mitochondria. 13C NMR 

spectroscopy provides larger signal dispersion than 1H NMR but at the cost of a loss of sensitivity, 

hindering the detection of low-populated metabolic intermediates in real-time.  

We propose to use hyperpolarized 13C-isotopically labelled substrates to enhance sensitivity, 

selectivity and time resolution and overcome 13C-isotope related limitations. Dissolution dynamic 

nuclear polarization (dDNP), a revolution in NMR, augments NMR nuclei polarization, allowing a 

massive signal enhancement (up to 10,000 folds) [224]. The enormous gain in signal intensity 

permits to reduce the acquisition time to single pulsed experiments on a single second timescale 

and allows the detection of both fast metabolic reactions and low populated metabolic 

intermediates [122]. DNP polarization also augments the specificity, as only the polarized 

substrate(s) and derived product(s) will benefit from signal enhancement [225], producing a very 

significant intensity gap between polarized and non-polarized metabolites signals. The acquisition 

time is reduced from 30 minutes using classical 1H RT-NMR to minutes using 13C dDNP. The recent 
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installation at the CRMN of a dDNP polarizer will allow us to be at the forefront of this field of 

research.  

3.1.1.4. The expected results and the final products developed 

The concrete results and deliveries of this project will be: 

1. A complete series of protocols for metabolic profiling of freshly isolated mitochondria, from 

biological sample preparation, real-time Nuclear Magnetic Resonance (RT-NMR) acquisition and 

optional dDNP hyperpolarization-based signal enhancement, and data exploitation guidelines. 

2. A comprehensive dataset constituted of the metabolic profiles acquired for mitochondria from 

Hela-cells and a series of the most widely used cell lines (CHO, JURKAT, Huh7, CaCo2, A549) but 

also from non-immortalized primary cells. 

3. A comprehensive dataset evidencing the action of commercialized drugs on mitochondria 

metabolism. 

4. The proposal of our methodology to academics and industries at CRMN, through the IRICE 

research infrastructures. 

3.1.1.5. Position of the project as it relates to the state of the art 

Analytical methods able to portray mitochondrial metabolism are frustratingly few and present 

important limitations, creating bottlenecks for biomedical research. State-of-the-art high-

resolution studies, essentially based on isotope tracing strategies using NMR or mass spectrometry, 

offer molecular and sometimes atomic resolution but require state-of-the-art non-routine 

spectrometers, expertise, human resources and important funding. They are most often based on 

cellular metabolite extracts and cannot portray dynamic processes through real-time 

measurements, high-temporal kinetic resolution or high-throughput capacities. Those high-

resolution methods are mainly restricted to low-throughput, highly detailed research studies.  

On the opposite, analytical methods able to characterize the dynamic aspects of living 

mitochondrial metabolism, such as oximetry assays, or that offer medium-throughput capacities, 

such as the widely used Seahorse technology, are few, relatively expensive to run and offer a 

deceiving resolution.  

Our methodology will allow obtaining high-resolution profiles of mitochondria dynamic metabolic 

processes. These results will be obtained from a simplified and versatile setup where the isolated 

mitochondria test medium can be easily altered, constituting a unique analytical platform for 

conditions and drug testing on mitochondria. Of interest, as the measurement time requirements 

for a sample is around 30 minutes using widely accessible 1H-NMR spectrometers, our method is 

amenable to medium-throughput for drug screening, toxicity or pharmaceutical projects. NMR 

running costs per sample (estimated in our case to 25-50€/sample for widely accessible 1H-NMR at 

600 MHz) are cost-competitive with both high- and even low-resolution methods such as mass 
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spectrometry and the Seahorse technologies [226]. The coupling of dDNP-hyperpolarized 13C 

labelled substrates with RT-NMR will constitute a technological step forward that will allow reaching 

high-resolution, enlightening selected mitochondrial metabolic pathways, even low-populated. 

Our methodology, which is based on an unexplored analytical strategy to study mitochondria, is 

expected to impact biology and biotechnology innovation and have a strong potential for 

valorisation. Applications extend to cellular and molecular biology, metabolism research, precision 

medicine, in vitro diagnostics where novel analytical strategies are essential and awaited. 

3.1.2. Methodology and risk management 

3.1.2.1. Organization of the project 

The project is divided in 4 workpackages (WP) to reach our objectives:  

• WP1: obtention of high-quality biological samples, setup of RT-NMR and dDNP 

hyperpolarization.  

• WP2: acquisition of a dataset on a well-characterized mitochondria model (HeLa); testing the 

effect of technological drugs on mitochondria metabolism. 

• WP3: obtention of medium-throughput results for biological and pharmaceutical research. 

• WP4: promotion to the scientific community, seeding of the methodology to biomedical 

projects. 

WP1/ The mitochondria and substrates samples setup  

Task 1.1 The isolation of mitochondria (CarMeN). The quality of the biological material, and 

procedures, is crucial for our project and particular care will be taken to ensure the toughness and 

reproducibility of the protocols, from mitochondria isolation, purity assessment and storage 

conditions. The experimental approach to isolate mitochondria is well-validated [223,227] and is 

routinely employed at the CarMeN: the crude mitochondrial fraction from cell cultures or tissues is 

purified by differential centrifugation and loaded on a discontinuous Percoll density gradient to 

obtain pure mitochondria [228]. Cytochrome c (0.05 mg/mL) will be added to test the outer 

mitochondrial membrane integrity. The inner membrane integrity will be assessed by measuring the 

respiratory control ratios (state 3/state 4) as previously described [229] . 

Task 1.2 Determination of the sample conditions and RT-NMR parameters (CarMeN/CRMN). The 

sample conditions (buffers, salts, additives, substrates) in which the mitochondria metabolism can 

be maintained and evaluated have long been determined and optimized by Seahorse or Clark 

electrodes oximetry studies. We have validated the composition of a NMR-compatible mitochondria 

medium for NMR that allowed both mitochondria maintenance and metabolic measurements in a 

preliminary RT-NMR setup. We will use Hela-cells mitochondria and 1H RT-NMR at 600 MHz to 

measure the influence of the main substrate concentrations (pyruvate/lactate, NADH, glutamate, 
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malate, ADP) to delineate their impact on mitochondria metabolism. Even though the isolation 

protocol requires further optimizations (task 1.1), isolated Hela-cells mitochondria are already 

available at the CarMeN laboratory. The metabolic substrates will be injected using an in-house 

[230] or commercial injector (Bruker Insight Express) directly into the NMR spectrometer where the 

isolated mitochondria sample will be temperature equilibrated. Substrate concentrations that allow 

reaching maximal rates will be chosen to obtain comparable data. We will also determine the ideal 

number of mitochondria in the NMR sample to acquire sensible data. Task 1.2 will also allow the 

optimization of RT-NMR parameters such as the optimal number of scans and the number of kinetic 

data points. 

Task 1.3 Preparing hyperpolarized metabolites; optimizing the injection of the hyperpolarized 

substrates into the isolated mitochondria samples (CarMeN/CRMN). Our methodology will be 

developed on one side using easily accessible 1H-NMR with unlabelled and unpolarized substrates, 

and on the other side with dDNP-boosted signal enhancement. To obtain hyperpolarized 13C-labeled 

substrates and to avoid the effect of contaminants on sensitive enzymatic reactions, we will use 

hyperpolarising matrices (HYPOP) made up of microporous polymers containing stable radicals 

[231]. They deliver high levels of 13C polarisation and a highly repeatable hyperpolarisation without 

any need for extra radicals or glass forming agents. Based on our preliminary results by RT-NMR and 

literature [232], we aim to produce hyperpolarized 13C-pyruvate, lactate, malate and oxaloacetate 

in the first approaches. The relaxation parameters of the hyperpolarized molecules will be 

determined. 

The injections of hyperpolarized substrates and external molecules into fragile NMR biological 

samples may need optimization to maintain mitochondria delicate metabolism and ensure the best 

NMR signal linewidth. Many injection parameters are available for optimization, such as the 

injection velocity, volume, substrate concentrations, temperature, or mixing parameters to avoid 

bubble formation and ensure homogeneity and reproducibility inside the measurement NMR tube. 

Mitochondria integrity and biochemical properties will be carefully assessed during this 

optimisation. 

The scientific risk associated with task 1.3 is minimal as the substrates have already been 

hyperpolarized and used for other in vitro or even in vivo applications [233,234]. A complete 

injection system is already in use at the CRMN to transfer and inject liquid hyperpolarized molecules 

into NMR samples placed inside the spectrometers and has already been tested to delicate 

experiments such as measurement of the interactions of natively folded proteins with ligands. We 

have already optimized the most critical parameters, such as the temperature of the injected 

solution, to rule out any major issue and ensure the do-ability of the injection into fragile biological 

samples. 

WP2/ Real-time NMR acquisition on standard mitochondria model isolated from HeLa cells.  

Task 2.1 Acquisition of RT-NMR data (CRMN). Our methodology will be developed both using 

widely accessible 1H-NMR, and using 13C dDNP techniques where 13C-labeled substrates will be 

hyperpolarized externally and injected into the cell lysate before real-time NMR analysis [231,235]. 
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We will use easy-to-isolate, robust and well-characterized mitochondria from HeLa cells [232]. 

Mitochondria will be placed into the adequate buffers, inside the NMR spectrometer, at a controlled 

temperature and substrates will be injected into the NMR sample before starting the RT-NMR 

measurements. RT-NMR will deliver a series of time-resolved spectra, from which a variety of 

metabolite concentrations and time-evolutions can be determined simultaneously [34,200]. The 

reproducibility of the results will be evaluated and optimized, both from the biological and technical 

points of view. 

For unlabelled tests, the experiments will be straightforward: we will inject the mix of substrates 

necessary to sustain mitochondrial metabolism [227]. 1H-RT-NMR acquisitions will allow quantifying 

substrates consumption (and metabolic pathways downside products) evolution. 

For dDNP-enhanced experiments, the hyperpolarization will augment both the substrate(s) and 

product(s) signal intensities, improving the sensitivity and simplifying the NMR spectra, as only the 

polarized compounds will benefit from signal enhancement, producing a very significant intensity 

gap between polarised and non-polarised signals. Moreover, low-populated reaction products and 

metabolic downside intermediates may become detectable (contrary to classical 1H NMR spectra 

where peak crowding, lower sensitivity and low intermediates concentration often hinder 

intermediates detection). We will test central 13C-labelled substrates (such as pyruvate and lactate, 

which can fuel almost the entirety of mitochondrial carbon metabolism), but also pathway-specific 

substrates such as 13C-labelled malate and oxaloacetate, that target the TCA cycle. The other non-

hyperpolarized substrates, that are still essential to allow the mitochondria metabolism, will be 

added as for unlabelled tests. Hyperpolarized substrates will be tested one by one. We will also 

attempt to enlighten multiple pathways simultaneously by adding mixes of hyperpolarized 

substrates.  

Scientific task 2.1 is probably the most central to this proposal. Yet, given our preliminary results, 

experience and the optimizations obtained from previous tasks, the scientific risks are managed. 

The biological feasibility (the maintenance of isolated mitochondria in a metabolically active and 

measurable state) has long been validated and is routinely performed [223,227]. We have the 

expertise for RT-NMR measurement of complex biological systems [34] and dDNP-enhanced 

substrate polarization for biological RT-NMR measurements has been described in numerous 

studies for in vitro and even in vivo applications [233,234,236]. Preliminary data have demonstrated 

that we can detect many metabolites in purified mitochondria extracts, all of them constituting 

chemical probes of individual metabolic reactions. The main interrogation resides in how many 

active reactions we will be able to witness. This is essentially a question of threshold detection of 

metabolite concentration variations over time, which can be modulated either by (i) varying the 

concentration of mitochondria (more mitochondria will consume substrates faster) or (ii) use signal 

enhancement (dDNP). Both aspects will be explored. 

Task 2.2 Exploitation and metabolomic mapping of the RT-NMR results (CARMEN/CRMN). 

Metabolites NMR peak will be assigned using both chemical shifts databases and NMR spectra of 

metabolite standards. Multiple metabolic rates will constitute together a fingerprint of 

mitochondria metabolism. The results will be submitted to metabolomics webservers such as 
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MetaboAnalyst and MetExplore, to benefit from computation analyses and obtain quantitative 

metabolic models. 

Task 2.3 Evaluation of integrating drugs to deepen our results (CarMeN/CRMN). Oximetry 

approaches use sequential technological compounds (activators and inhibitors; oligomycin, FCCP, 

rotenone, antimycin) to challenge the respiration properties of mitochondria [237]. This allows 

determining in real-time various physiological and metabolic parameters. We plan to evaluate this 

strategy in our setup to deliver a comparison of RT-NMR and oximetry measurements realized on 

identical samples. The successive addition of the drugs on a single RT-NMR experiment may not be 

doable, but sequential measurements on different samples are realistic. This task will also allow us 

to evaluate the potential of our methodology for chemical and drug testing on mitochondria 

metabolism. 

WP3/ Methods and model transposition, biological applications.  

Multiple applications will demonstrate the phenotyping potential of our setup for biomedical 

research, its medium-throughput capacity and value for chemicals, drugs and conditions testing. 

Task 3.1 Comparison of metabolic profiles of mitochondria from multiple cellular origins 

(CarMeN/CRMN). We aim to profile mitochondria from the most widely used cell lines (CHO, HeLa, 

JURKAT, Huh7, A549, CaCO2) but also from non-immortalized primary cells, all of which are available 

at the CarMeN laboratory. This will allow us to discuss the diversity and adaptability of mitochondria 

metabolic profiles upon various cellular contexts and provide high-resolution data to confront and 

complement the available literature. These data will address key scientific questions, such as the 

comparison of mitochondria from healthy and cancer cells, using healthy liver-derived hepatocytes 

and hepatocarcinoma derived cells (Huh7).  

Exploring the metabolic diversity of mitochondria originating from various cells will deliver an 

important dataset and demonstrate that our work brings an operational approach for life scientists, 

rather than a proof-of-concept. This latter point is central to our proposal. 

Task 3.2 Evaluation of the effect of mitochondrial-targeting drugs (CarMeN/CRMN). We aim to 

demonstrate the relevance of our approach to pharmaceutical research. We will evaluate the effect 

of well-characterized mitochondrial-targeting drugs [7] on HeLa mitochondria, in their active 

concentration range. We aim to study metformin, nicotinamide mononucleotide, MitoQ, Bendavia, 

coenzyme Q10 and cyclosporin A to produce a pharmaceutical-relevant portray of a panel of drugs 

over mitochondrial metabolism. Some of these drugs are studied at the physiological level in the 

CarMeN laboratory [228,238]. 

WP4/ Promotion and seeding of our methodology. 

The concrete translation of our analytical approaches to real biomedical research projects is 

integral to our proposal. We are not seeking to deliver a proof of concept but rather a usable and 

tangible method to investigate mitochondria metabolism. Our approach will be integrated into a 
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series of biological projects at the CarMeN, seeding its use in the scientific community. The rapid 

and high impact dissemination of results will be ensured by publications in high impact factor 

journals and by oral communications at appropriate meetings (the consortium is regularly invited 

to international conferences). The Postdoc fellow will be strongly encouraged to present their work 

to the international community and will receive financial support to attend conferences. 

Additionally, we will publicize our work and its objectives through the non-specialist scientific press 

and newspaper articles.  

Task 4.1 Promotion of our methodology to the biomedical community (CRMN/CarMeN). 

Website. A project website with an open access area will offer a lively platform for public 

dissemination for specialists and non-specialists (including reports on past, current and future 

activities, blogs for discussion and sharing raw data). We will frequently communicate on the 

progress of the Mitoprofile project, which will enhance its visibility and will boost and help research 

more globally. 

Publications. To maximize impact, our scientific results (developments and applications) will be 

disseminated via articles in international high-impact peer-reviewed journals such as Cell, Cell 

Metabolism and Nature methods. Special attention will be given to open publication and sharing of 

raw data among the scientific community. 

Conferences. Results will also be presented at international conferences where both partners are 

regularly invited to deliver plenary lectures and presentations (Euromar, Ismar, ICMBRS, World 

mitochondria society)  

Task 4.2 Seeding and integration of our methodology to real biomedical projects (CarMeN). 

Integration to biomedical projects. Hubert Vidal (Director of the CarMeN) will be in charge to 

integrate our methodology into the mitochondria-related projects available at the CarMeN 

laboratory to seed its use in the biomedical community. 

TGIR access. We expect to offer access to our methodology through the IRICE (for commercial 

service) and TGIR (for academic researchers) infrastructures that allow external users to access the 

CRMN unique NMR platform. 

3.1.3. Preliminary data and project feasibility and risk assessment.  

We have the expertise for both RT-NMR but also cell compartments fractionation [34]. The 

mitochondria isolation protocols have been validated as well as the conditions allowing their 

metabolic functions. Fresh isolated mitochondria samples have already been successfully produced. 

Preliminary RT-NMR and oximetry experiments have confirmed their metabolic fitness and the 

complete do-ability of this proposal, as we were able to monitor both respiration and key 

mitochondrial metabolic reactions in real-time using NMR (lactate to pyruvate conversion, the 
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NAD/NADH coenzymes metabolism and the TCA cycle (succinate, fumarate, malate, citrate) (Figure 

3-1, infra.) 

For the dDNP aspects of the project, we can produce hyperpolarized substrates and mix of 

substrates using a new generation of hyperpolarizing polymers (HYPOP) to avoid the contamination 

of the samples with hyperpolarizing radicals, while obtaining excellent hyperpolarization levels 

[239]. The CRMN dDNP polarizer is coupled to an injection system adapted to inject hyperpolarized 

samples into biological samples located inside the NMR spectrometers (benchtop, 600 and 700 

MHz). The project will benefit from the CRMN's unique NMR resources and worldwide recognized 

expertise.  

 

Figure 3-1. Preliminary results obtained for the Mitoprofile project. Hepatocyte mitochondria were isolated and metabolic fitness 

assessed. A. Real-time O2 consumption measurement using a Clark electrode confirms the metabolic fitness of the mitochondria. B. 

RT-NMR results at 600 MHz showing the evolution of key metabolites during the measurement period, demonstrating the 

consumption and production of metabolites by isolated mitochondria. These results confirm our ability to isolate functional 

mitochondria and detect mitochondrial metabolism using RT-NMR. 

3.1.4. Project follow up and perspectives.  

A limitation associated with working with isolated mitochondria is that they lose their critical 

interaction with the host cell and potential regulations. As a consequence, the rates we aim to 

measure in this project will not reflect endogenous fluxes, as neither the substrate concentrations 

will match physiologically identical conditions, nor the regulations by the host-cell will be active. Our 

project rather aims at assessing the mitochondria metabolic machinery functional status per se, in 

standard conditions, as an objective phenotyping method.  

The determination of physiologically relevant metabolic rates using our approach could be obtained 

by placing mitochondria in cytoplasmic-like environments after cell fractionation [34], or using 

permeabilised cells (in situ mitochondria) to allow substrates to reach the mitochondria while 

avoiding the limitations of the plasmic membrane barrier. Cell permeabilization can be produced 
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using digitonin (100 μg/mL) for example. Alternative methods using electroporation have been 

proposed [240]. All these approaches constitute fascinating projects and offer valuable options to 

extend further our methodology. They may be explored in WP4/, depending on their need and 

relevance for real biomedical projects, or as perspectives to this ANR project.   
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