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Preface

The solar wind, a continuous stream of charged particles emitted from the very hot
solar corona, represents a great opportunity to study astrophysical plasmas directly
by in situ measurements. As an enormous bubble it extends from the Sun out
beyond the planets to the heliopause where its pressure is balanced by the pressure
of the local interstellar medium. Such a wind should be considered to be easily
explained because the particles in the hot solar atmosphere already have velocities
greater than the local escape velocity. However, after more than fifty years of a
detail discovery by many space-borne instruments, scientists still do not understand
the subtle plasma physics behind the process of the solar wind expansion into the
interplanetary space. The problem boils down to two broad questions: (i) what are
the initial conditions at the base of the solar wind - in the corona, and (ii) how the
expanding solar wind transport the heat from the corona out to the interplanetary
space. In situ observations and recent advances in the theoretical plasma physics
show that kinetic processes could represent the key to most of the unsolved solar
wind puzzles. Therefore, a detail study of observed particle velocity distribution
functions is greatly important.

Solar wind plasmas, made up primarily of protons (∼ 95%) and alpha particles
(∼ 4%) with some trace heavier ions, are found to be quiet tenuous while relatively
hot at once. In such a medium the effect of Coulomb collisions, representing the
basic driving mechanism which maintains a gas locally in the thermodynamic equi-
librium, is quite limited. Moreover, as the mean free path rapidly increases with
particle velocity, particle velocity distribution functions are expected to develop
many non-thermal properties And indeed, in situ observations exhibit deviations
from thermodynamic equilibrium, i.e., from the Maxwellian velocity distribution
function, for protons (drifting beams) as well for solar wind electrons (high-energy
non-thermal tails, skewness along the magnetic field).

Electrons, because of their small mass, do not play a significant role for the overall
transport of solar wind momentum. However, they ensure the local quasi neutral-
ity, produce an ambipolar electric field through their thermal pressure gradient and
above all carry the heat. The electron velocity distribution functions (eVDFs) ob-
served in the solar wind typically consist of a thermal core and non-thermal tails.
The core electrons represent in average roughly 95% of the total number density.
Despite of theoretical predictions, the ratio of the parallel and perpendicular tem-
peratures of the core component is surprisingly observed very close to unity and the
core of observed eVDFs is typically almost isotropic. The high-energy tails consist
actually of two different components: a halo and a strahl. While the halo tails are
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present at all pitch angles, the strahl appears as a beam-like population moving
away from the Sun highly focused along the ambient magnetic field. Since the core
remains almost isotropic or at least symmetric in the rest plasma frame, the strahl
component represents the main factor of the overall heat transport, that is one of
the most important characteristics for understanding the solar wind acceleration and
consequent expansion. What are the main phenomena driving the electron popu-
lations in the course of the solar wind expansion and how much they really affect
the shape of the electron distributions and its components? This is the principal
question and main objective of the current study.

In order to better understand the non-thermal features of observed eVDFs as
well as the transport of the heat in the solar wind, we performed a statistical study
of a substantial amount of measured eVDFs. All the eVDF samples were acquired in
the low ecliptic latitudes covering the heliocentric distance from 0.3 up to 4 AU. In
order to provide a substantial amount of electron observations covering a sufficiently
large heliocentric radial range we combine data acquired on board four spacecraft,
namely Helios I&II, Cluster II and Ulysses.

All electron parameters are estimated by fitting of measured eVDFs with a model
distribution function. For our study, a new model was proposed which, for the first
time, describes all three components of the solar wind eVDFs (i.e. the core, the halo
and the strahl) analytically. Two main goals of the present work are (i) to examine
the radial evolution of main eVDF characteristics, i.e., the density, the tempera-
ture and the heat flux, with increasing heliocentric distance; and (ii) to study the
effect of possible mechanism which can provide some additional heating or energy
dissipation to solar wind electrons and moderate thus the shape of observed eVDFs
during the solar wind expansion. There are two main candidates which can provide
some effective mechanisms cons training the overall shape and properties of elec-
tron distribution functions. These are the wide family of wave-particle interactions,
like kinetic plasma instabilities, and, despite their already described limitations,
Coulomb collisions.

In the present study, we show the radial evolution of the model eVDF. Our find-
ings indicate some indirect proofs of scattering mechanisms of strahl electrons into
halo tails and also the increasing deviations of eVDF non-thermal tails at larger
heliocentric distances. Furthermore, we show that both, kinetic plasma instabilities
and Coulomb collisions, impose effective constraints on observed electron tempera-
ture anisotropies of the core component and also on the observed overall electron
heat flux.
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Chapter 1

Solar Wind

Not only is the Sun a source of wide spectrum of electromagnetic radiation including
the most familiar one - the visible light - but also outburst its own matter. Every
second, one million tonnes of mass is continuously ejected into the interplanetary
space. The solar atmosphere is so hot that it can not be held back neither by the
pressure of the interstellar medium nor even by the own gravity of the Sun. And
it blows out. Due to very high temperatures, about few thousands at the surface
of the Sun and even more than one million degrees in the solar corona, the solar
atmosphere is almost completely ionized. Yet, the ions and electrons are in overall
balance and the gas is therefore electrically neutral as a whole, which we refer to as
plasma - the fourth state of matter. This permanent outflow of charged particles
from the atmosphere of the Sun that fills the whole heliosphere is what we call the
solar wind.

1.1 Discovering the Wind from the Sun

Perhaps the first ideas of charged particles streaming away from the Sun appeared in
the middle of the nineteenth century. A British astronomer Richard C. Carrington
noticed, while observing the sunspots, a sudden outburst of energy from the Sun’s
atmosphere - a phenomenon what we call today a solar flare. Consequently, a day
after, the Earth was hit by a geomagnetic storm. Carrington then correctly sug-
gested a possible connection of the storm event to his observation. The conclusions
of Carrington were than further developed by George Fitzgerald who supposed that
intermittent beams of charged particles are accelerated by a power-full electrostatic
field of the Sun and are consequently reaching the magnetosphere of the Earth.

At the turn of the century, the Norwegian physicist Kristian Birkeland pushed
the concept of sporadic solar streams a little closer to our today’s knowledge. At that
time, the connection between solar particles, the geomagnetic activity and also the
polar auroras was already known and generally accepted. Birkeland, based on his
large geomagnetic surveys showing a nearly permanent auroral activity, introduced
for the first time a concept of a continuous outflow of charged particles of both kinds,
negative electrons and positive ions, emitted from the Sun. However, this idea was
first ignored for many years.
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As lately as in the 1950s, a German scientist Ludwig Biermann explained the
often observed secondary tails of comets, always pointing away from the Sun, by a
steady stream of particles emitted from the Sun pushing the comet’s tail away, and
Birkeland’s idea revived again. However, in contrast with Biermann’s conclusions,
the British mathematician Sydney Chapman concurrently predicted from the kinetic
theory of gases an almost static solar atmosphere reaching well beyond the orbit of
the Earth. A contradiction to Biermann’s suggestions, which had to be explained,
arised.

It was Eugen N. Parker, an American solar astrophysicist, who realised the
Chapman’s model and Biermann’s hypothesis to be a result of the same phenomenon
- the solar wind. Contrary to Chapman, Parker correctly supposed a large heat flux
in the solar corona which results in a very hot solar atmosphere, even at larger
distance. Therefore, the thermal pressure of the particles can overcome at a few
solar radii the gravity of the Sun and particles escape in a form of a supersonic flow.
It was the Parker’s theory that laid the foundations of the moder concept of the
solar wind physics. The existence of a solar wind was subsequently slowly adopted
by the scientific community. Yet the final prove was still missing - direct in situ
measurements.

It was fortunate that at the same time the space age was beginning and the race
between that time Great Powers, the United States and the Soviet Union, rapidly
advanced the explorations of the outer space. First ever direct observations and
measurements of the solar wind, a strong flow of positive ions streaming through
the interplanetary space, were performed in 1959 by the spacecraft Luna 1 and the
same year consequently confirmed by enhanced detectors on board Luna 2. However,
neither Luna 1 nor Luna 2 could resolve the direction of the impacting stream of
particles. The final proof of the solar wind existence was provided three years later
by the spacecraft Mariner 2. By its solar plasma spectrometer, it was shown that
the interplanetary space is indeed filled by a permanent stream of charged particles
continuously flowing outwards from the Sun. Up to now, several tens of different
spacecraft have explored the space in our solar system and acquired a substantial
amount of data. Today, the solar wind is thus almost fully described, yet, still not
fully understood.

1.2 Brief Description

In order to understand the origin of the solar wind we have to examine in the solar
corona - a very tenuous and even more hot top layer of the solar atmosphere. The
solar corona extends from the chromosphere up to a few tens of solar radii with
no definite boundaries. In the transition layer between the chromosphere and the
corona the temperature starts to rise rapidly from a few thousands to more than
one million Kelvins. Leaving the famous puzzle of the solar coronal heating1 behind,

1From basic principals of thermodynamics, the heat from the corona should be conducted
downward to relatively cooler chromosphere and convected at the same time outward in order
to maintain the hot corona. A fundamental question arises - how does the Sun heat the corona?

2



the high temperature in the corona is essential for two reasons. It makes gases in
the corona fully ionized and particularly allows the charged particles of the ionized
atmosphere to escape the gravity of the Sun. More precisely, the thermal pressure
gradient in the solar corona falls off with radial distance slower than the gravitational
force and the solar wind can thus blow out. Its velocity reaches several hundreds
kilometers per second already at few solar radii from the surface.

The energy transported by the solar wind compared to the total energy output of
the Sun represents only a very small fraction, about one millionth that of electromag-
netic radiation. However, the solar wind largely determines the conditions within
the whole heliosphere and plays an crucial role in the interaction with all the bodies
of the solar system. Most of its momentum is carried by positive ions. The solar
wind consists largely (∼ 95%) of ionized hydrogen (protons) with a small (∼ 4%)
admixture of ionized helium (alpha particles) and of a fractional number of ions of
heavier elements. The bulk speed of the protons, as well of the alpha particles which
travel even faster, exceeds their thermal velocity indicating both protons and alphas
to be supersonic. The total number of positive ions is balanced by equal number of
electrons. Both ions and electrons flow together with about the same bulk speed.
Electrons, because of their much smaller mass and still comparable temperature to
protons, have thermal velocities considerably exceeding the speed of the wind and
are therefore subsonic. Furthermore, electrons ensure the local quasi-neutrality and
particularly carry the bulk of the solar wind heat flux, as we will see later, one of
the crucial quantities driving the solar wind expansion.

1.2.1 Main characteristics of solar wind state

For any kind of gas two parameters are essential to characterize its state - the
density and the temperature. For instance, these two quantities further determine
the thermal pressure, which in the case of solar wind plays an important role for the
solar wind acceleration. From indirect measurements the density of both protons
and electrons in the corona is estimated to be about 1014 m−3. Assuming a purely
radial expansion with a constant speed of the flow, the conservation of mass implies
the total mass flux Φm through a sphere of a radius r to be constant (Φm = 4πr2nv =
const). Therefore, the density n of the solar wind in such conditions should fall off as
n ∝ r−2. This theoretical radial profile is indeed in fair agreement with observations.
In situ measurements near 1 AU, i.e., in the proximity of the Earth, show a typical
density of about 5-10 protons/electrons per cubic centimeter.

The radial evolution is more complex in the case of the solar wind temperature.
From the million-degree corona the temperature falls only to about 105 K near
1 AU. For an ideal gas (thus p = nkBT ) expanding as a polytrope flow, i.e., with
the pressure proportional to the density as p ∝ nγ , the exponential decrease of
the temperature with radial distance is given by T ∝ r2(1−γ). If there were neither
sources nor dissipation of energy, the expansion would be purely adiabatic (γ = 5/3)
and the temperature should decrease as T ∝ r−4/3. However, the adiabatic approach

Understanding the source of the coronal heating still remains as one of the most striking phenomena
of the solar physics.
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is not valid neither for electrons nor for protons indicating heating mechanisms to
be present during the solar wind expansion. Furthermore, the general power law
T ∝ r−α is observed to be variable with other solar wind properties. From many
observations the α exponent for protons was estimated to lie approximately between
0.9 and 1.4, thus still quiet close to the adiabatic case. By contrast, electrons are
observed with α covering almost a full range between the adiabatic and isothermal
limits with typical values ranging from 0.4 to 0.8 (see a summarizing Figure 1.1).

Figure 1.1: (Maksimovic (2009), private communication) Temperature gradients
of solar wind electrons were already subjected during the several last decades to
many observational studies. Obviously, there is no single value of the β exponent
of the temperature power law T ∝ r−β. In fact, observations fill almost the whole
range between the adiabatic and isothermal limits.

We already have an overview about the densities and temperatures prevailing
in solar wind plasmas. Now, another question naturally arises. What is the actual
speed of the solar wind? In fact there is more than one correct answer. Early space
missions, all of them with nearly in-ecliptic trajectories, revealed that the solar wind
speed can be as slow as about 200 km/s while also fast streams were observed with
velocities greater than 750 km/s. The origin and topology of this variable velocity
pattern of slow and fast streams was finally clarified by the mission Ulysses. The
Ulysses spacecraft was launched in 1990 and it was the first space mission with
an out-ecliptic trajectory passing over the poles of the Sun. All prior observations
had been made at or near the solar system’s ecliptic plane. The most important
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discovery of Ulysses is summarized in Figure 1.2. The polar diagram shows the
solar wind velocity as a function of the heliographic latitude for two pole-to-pole
passages from years 1995-1996 and 2000-2001. These two periods correspond to the
seasons of minimum and maximum solar activity respectively. The left panel of
Figure 1.2 (solar minimum) clearly shows two different regimes of the solar wind.
First, fast streams are observed in the inactive dark coronal holes located at higher
solar latitudes up to the poles. Here the open magnetic field lines extend almost
radially outward the surface of the Sun. The charged particles, which follow the
magnetic field lines, can thus easily escape. In contrast a more variable slow wind
is observed around the equatorial plane. These slow streams originate from the
edges of temporarily open streamers or from opening loops and active regions of
the Sun’s magnetic field. Obviously the situation dramatically changes when the
solar activity reaches its maximum during which the Sun’s magnetic dipole is highly
distorted. The magnetic topology in the corona becomes much more complex and
the alternating fast and slow streams are observed at all latitudes.

In addition, as a third solar wind regime are usually consider the transient flows.
These are associated with episodic solar events produced by solar eruptions referred
to as coronal mass ejections (CME). CMEs disrupt closed magnetic field lines above
the solar surface and, depending on the energy released, can have low as well as
very high speeds. The occurrence of CMEs is prevailing during the maximum of the
solar cycle.

1.2.2 Interplanetary Magnetic Field

The magnetic field of the Sun is composed of localized strong magnetic structures in
the photosphere with typical intensity of 10−1 T that are superimposed on a much
weaker global dipolar field with an intensity of about 10−4 T . The effect of localized
non-dipolar components becomes smaller with increasing heliocentric distance. A
dipole would be thus a reasonable approximation far away from the Sun. However,
the global structure of the interplanetary magnetic field (IMF) is more complex.

The high conductivity of solar wind plasmas results in magnetic Reynolds num-
bers2 much greater than unity. Therefore, the expanding solar wind causes the
magnetic field lines to move with away from the Sun - we call the magnetic field
to be frozen into the moving plasma. Furthermore, since the Sun is rotating with
respect to the radially expanding solar wind, magnetic field lines, anchored to their
source location, are bent and form the so-called Parker’s spiral (see the left panel of
Figure 1.3). The IMF can be thus considered as radial only up to a limited distance.
The inclination of the magnetic field lines in the equatorial plane to the radial di-
rection is already about 45◦ at 1 AU and is nearly perpendicular beyond 10 AU.
The radial expansion together with conservation of the magnetic flux then yield the
magnetic intensity to decrease as B ∝ r−2 with heliocentric distance. About 1 AU
from the Sun the magnetic field has a strength of approximately 5-10 nT.

2The magnetic Reynolds number describes the ratio between the magnetic diffusion, produced
by conductive losses, and the convection due the plasma motion. It represents an analogy to
Reynolds number for classical fluids which quantities the effect of viscosity.
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Figure 1.2: (From McComas (2003)) Polar diagram of the solar wind speed
as measured by the Ulysses spacecraft within the first two pole-to-pole passes.
The two displayed orbits correspond to the solar minimum (left panel) and solar
maximum (right panel) respectively. During low solar activity a regular pattern
is found with fast streams at higher latitudes and variable slow streams around
the equatorial plane. The pattern of slow and fast streams is more complex in the
case when solar activity reached its maximum.

In order to complete the simplified picture of the IMF, we have to introduce
another important structure called the heliospheric current sheet (Figure 1.3, right
panel). With respect to the approximately dipolar structure of the IMF close to the
Sun, the sense of the solar magnetic field lines is opposite in both hemispheres. From
the Ampere’s law, an electric current thus flows in a thin layer near the equatorial
plane where the magnetic field reverse its orientation. The magnetic dipole is not
exactly parallel to the solar rotation axis and the magnetic equator thus has a small
tilt angle with the solar equatorial plane. As a result, the heliospheric current sheet,
being drawn by the solar wind outward from the rotating Sun, is warped and takes
a wavy spiral form. An observer in the equatorial plane thus sees four magnetic
sectors with alternating positive and negative polarity of the IMF.
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Figure 1.3: Left panel: The magnetic field lines frozen into the radially expand-
ing solar wind are bent due to the rotation of the Sun into to so-called Parker’s
spiral. Right panel (adopted from Jokipii and Thomas (1981)): The heliospheric
current sheet, a thin current layer where the magnetic field reverse its polarity,
is deformed into a wavy plane. Its intersection with the equatorial plane de-
fines four magnetic sectors with the magnetic sense alternating from sunward to
antisunward direction.

1.3 Basic Solar Wind Physics

Addressing the solar wind phenomenon from basic principles introduces several dif-
ficulties. The state of a mechanical system is defined by the position and velocity
of all particles at a given time. We could then exactly determine the evolution of
the system by solving equations of motion for all the individual particles. The solar
wind represents a many-body system of charged particles. These particles feel not
only the gravity but particularly the present electromagnetic fields through the ef-
fect of the Coulomb and Lorentz forces. Moreover, each charged particle generates
its own field and concurrently reacts with microscopic fields of all other particles.
The actual electromagnetic field is thus a sum over all particle-generated micro-
scopic fields and the external ones. Hence, we have to deal with a very complex and
self-consistent physical system. Obviously, with still more than 106 particles per
m3 at 1 AU, the classical mechanical descriptions requires enormous computational
capacity that substantially overcomes even the fastest computers available. In order
to decrease the level of complexity of our problem, descriptions of statistical nature
are required. However, note that by decreasing the original number of variables, the
statistical approaches can provide approximate solutions only.

The closest statistical approach to our problem is the so-called kinetic plasma
theory. The state of the system is defined by the velocity distribution functions
(VDFs) of all particle species that give the probable number density of particles
with certain velocity at a given position and time. The full set of the equations
of motion is then replaced by corresponding equations determining the evolution of
the VDFs. In the absence of collisions, the equation for the velocity distribution
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function fi, called the Vlasov equation, for one single specie i reads as

∂fi

∂t
+ v · ∇

x
fi +

qj

mj
(E + v ×B) · ∇

v
fi = 0 (1.1)

where E and B are the electric and magnetic fields acting on particles of charge qi

and mass mi. The Vlasov equation simply tells that a collisionless plasma behaves as
an incompressible fluid. When collisions become important, a non-zero differential
term of fi appears on the right-hand side of eq. 1.1. In plasmas where collisions
act through the Coulomb force, this yields the Fokker-Planck equation. Similarly, if
gravity or other forces acting on the particles are not negligible a corresponding term
has to be added to the left side of the Vlasov equation. As the closest approach, the
kinetic theory still retains some of properties of individual particles. On the other
hand it leads to tractable solutions only in some simple geometries.

A next step further in the statistical process of averaging is the fluid description.
If we deal with electrically charged fluids subjected to present magnetic fields, the
fluid theory for magnetized plasmas is called the magnetohydrodynamics (MHD).
The fluid approximation assumes the plasma to be treated by examining only the
behavior of several first moments of the velocity distributions. The basic moments
typically involved in the MHD approach, i.e., the density n, the bulk speed vb the
temperature T , the pressure tensor P and the heat flux vector Q, are defined by the
distribution function f(v) as

n =

∫

f(v)d3v, (1.2)

vb =
1

n

∫

vf(v)d3v, (1.3)

T =
m

3nkB

∫

|v − vb|2f(v)d3v, (1.4)

P = m

∫

(v − vb) · (v − vb)f(v)d3v, (1.5)

Q =
m

2

∫

(v − vb)|v − vb|2f(v)d3v. (1.6)

The MHD approach thus significantly decrease the number of the variables, from
an infinity number of parameters, in general needed to describe the whole VDF, to
a more reasonable finite number. However, we are loosing the chance to handle the
microscopic, sometimes very important processes produced by individual particles.
The most general approach of the MHD is the multi-fluid theory treating all particle
species as individual conducting fluids. The evolution equations for the macroscopic
quantities are derived from appropriate moments of the Vlasov equation. The zero-
order moment for the ith specie of plasma particles gives the continuity equation

∂ni

∂t
+ ∇ · (nivb,i) = 0. (1.7)

Analogically the moment of the first order of the Vlasov equation gives the evolution
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equation for the bulk speed of the fluid, i.e., the fluid equation of motion

∂vb,i

∂t
+ (vb,i · ∇)vb,i +

1

ρi
∇Pi −

qi

mi
(E + vb,i ×B) = 0 (1.8)

In the continuity equation, the evolution of the density depends on the fluid velocity.
Equally in the equation of motion the velocity of the fluid evolves under the influence
of the pressure tensor. Repeating the same procedure and calculating the next
moment of the Vlasov equation, we will find that in the resulting equation of energy
conservation the pressure depends on the heat flux. Generally each moment of the
Vlasov equation in the MHD plasma description requires on order higher moment
of the distribution function to be known. The major problem encountered by the
MHD approach is the fact that it is fully valid only if the studied distributions can
be defined by a finite set of their moments. Otherwise the infinite set of MHD
equations has to be truncated by some assumption on the highest order moments of
the VDF. This closure in fluid treatments is often arbitrary and based on analogies
with ideal gases that may not always apply.

In a collisional gas in thermodynamic equilibrium, the phase space distribution
tends toward a Maxwellian distribution. Maxwellians have special properties that
make them simple to use. The Maxwellian distribution is fully described by only
two parameters, namely the density and the temperature. The simplicity of this
model enables one to study the fluid evolution analytically. The MHD approach
is thus for this case highly developed. But plasmas are not always Maxwellian.
One must be therefore very careful about applying theories or equations that may
implicitly assume Maxwellian behavior. Some processes, like collisions, are strongly
required to ensure the local thermodynamic equilibrium, and thus a Maxwellian
distribution. As we will see later, this is hardly achievable in plasmas like the solar
wind. Therefore, there is controversy as to whether the solar wind can be treated
as a Maxwellian or not and even whether fluid theory can be applied.

In the equations of the kinetic plasma theory as well as of the MHD approach
electric and magnetic field are included acting on the charged particles and fluid
elements respectively. As the system evolves the corresponding sets of equations
have to be completed by the set of equations describing the evolution of the fields.
This set of equation describing the properties of the electric and magnetic fields and
relating them to their sources, charges and electric currents, is represented by the
four Maxwell’s equations

∇ · E =
1

ǫ0

∑

i

niqi, (1.9)

∇ · B = 0, (1.10)

∇× E = −∂B

∂t
, (1.11)

∇× B = µ0

∑

i

niqivb,i +
1

c2

∂E

∂t
(1.12)

The full set of equations either of the kinetic or MHD description provides, if
applied correctly, a powerful tool to examine the solar wind plasmas. However, this
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system of integro-differential equations is very difficult to solve. Very often, some
analytical or even numerical solutions are obtained under simplifying assumptions
or approximate descriptions of the original problems.

1.4 Solar Wind Solution

The principal question of the solar wind physics is also the most problematic one.
How does the solar wind blow out into the interplanetary space? From the brief
introduction we know that the basic power providing the acceleration to the solar
atmosphere is the very high temperature in the corona. However, the situation is
much more complex as we will see even from the simplest theoretical approach. For
its simplicity, we will start with the one-fluid description as it was done by E. N.
Parker in the first classical theory of the solar wind expansion.

1.4.1 Fluid description

For a time stationary state (∂/∂t = 0) and an incompressible fluid, the integration
of the equation of motion results in the Bernoulli’s theorem describing the equilib-
rium between the pressure of the fluid and external forces. Neglecting the effect of
electromagnetic fields, the Bernoulli’s theorem for the solar atmosphere reads as

w =
v2

2
+

∫

1

ρ
dp − MSG

r
= constant. (1.13)

where w is the energy per unit mass, v, ρ and p are the speed, mass density and
pressure of the fluid respectively and the negative term in (1.13) expresses the grav-
itational energy of the Sun. For any polytrope flow, the pressure p is related to the
mass density ρ as p ∝ ργ with 1 ≤ γ ≤ 5/3. Let us first examine the upper limit,
i.e., the adiabatic case (γ = 5/3). Substituting the law of a perfect gas p = ρkBT/m
into (1.13) we have

w =
v2

2
+

5

2

kBT

m
− MSG

r
. (1.14)

Now inserting values typically observed at the base of the solar corona we find that
w is negative. The adiabatic flow is to weak to escape the gravity of the Sun and we
end without any wind. The opposite limit of the polytrope relation is the isothermal
flow (γ = 1). In this case the Bernoulli’s equation gives

w =
v2

2
+

kBT

m
ln ρ − MSG

r
. (1.15)

Substituting again the values typical for coronal plasmas we find that the isothermal
flow is able to produce a wind since w is now positive.

Replacing ρ in (1.15) from the conservation of mass in radially expanding atmo-
sphere and taking the derivative with respect to r yields

1

v

dv

dr

(

v2

c2
s

− 1

)

=
2

r

(

1 − rc

r

)

(1.16)
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where cs =
√

kBT/m is the isothermal sound speed and rc = MSG/2c2
s is a critical

radial distance for which the right hand side of (1.16) vanishes. From (1.16) we can
find a solution of v as a function of r. In general, there are five types of solutions from
which only three are relevant for a possible solar wind, see Figure 1.4. Furthermore,
from these three solutions, only one is stable to produce an outwards expanding solar
atmosphere similar to what we observer. It is the transonic solar wind solution. The
transonic wind starts to accelerate from a low speed in the corona, crosses the sound
speed at the critical distance rc and further increases its velocity to infinity with
increasing radial distance.
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Figure 1.4: There are three types of solutions of the isothermal solar atmo-
sphere possibly producing a wind: subsonic (blue), supersonic (red) and transonic
(black). However, only the transonic solution produce a stable outflow, thus a so-
lar wind. The transonic wind starts with a subsonic velocity and continuously
accelerates crossing a critical point C at a critical distance rc with the the sound
speed cs. The position of the critical point is displayed (dotted line) as a function
of the initial temperature.

We have shown that the isothermal flow can produce a solar wind. However,
note that is represents an unphysical approach. In order to keep a constant tem-
perature along the radial expansion, it requires an infinite source of energy as well
as an infinite heat flux to transport this energy from the source to the whole space.
Consequently the isothermal wind therefore also results into the infinite terminal
speed.

Consider now the general polytrope law with 1 < γ < 5/3 excluding the two
limit cases. Contrary to the isothermal expansion, the temperature now decreases
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with increasing heliocentric distance but the cooling of the flow is not so fast as in
the adiabatic case. Namely for a stationary radial expansion (i.e., ρvr2 = constant)
the radial profile of the temperature is given by

T ∝ r−2(γ−1) (1.17)

The heat flux needed to slow down the adiabatic cooling has to be therefore sub-
joined to the overall energy balanced given by (1.14). Neglecting the radiation, the
necessary heat can be conducted by the motion of individual particles in the frame
where the plasma is at rest. The total heat carried by the flow has thus two com-
ponents, the energy transported by the flow and the heat flux Q produced by the
heat conduction. In the absence of additional heating, the total energy crossing a
sphere of radius r is conserved and is equal to

W = 4πr2(ρvw + Q) = constant (1.18)

Using (1.18), we can rewrite (1.14) as

v2

2
+

5

2

kBT

m
− MSG

r
+

Q

ρv
= constant. (1.19)

From (1.19), we can make an estimation of the heat flux Q0 required at the base to
accelerate the solar wind. In order to reach flow speeds at large distance equal to
those observed, the heat flux Q0 has to be at least about 70 Wm−2 or greater. The
classical heat flux (Spitzer and Härm (1953)) derived in the fluid theory is based on
the effect of frequent particle collisions. For an electron gas it can be written as

Qe,col = −κe∇Te(r), (1.20)

where κe is the electron heat conductivity approximately given by (Huba (2007))

κe
.
= 3.2

nkBTe

meνee
(1.21)

where νee is the electron-electron collisional frequency. In the region of solar wind
acceleration (1.20) can be approximated as (Meyer-Vernet (2007))

Qcol
.
= 2.86 · 1010T

7/2
e

r
, (1.22)

which for the observed conditions gives only about 17 Wm−2, a value much smaller
than the required one.

The present simple model of the solar wind expansion can be further improved
and developed, e.g., by introducing multi-fluid description. However, the most im-
portant conclusion won’t change too much. In order to produce a supersonic solar
wind far away from the Sun, a sufficiently large heat flux, or an equivalent source of
energy, must exist in the acceleration region. The theoretical heat flux derived for
a collisional environment is not powerful enough to provide the required amount of
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energy. There are two ways which could possibly solve this discrepancy. One could
try to find some other processes heating the particles, the main ideas are based on
wave-particle interactions, or rather try to define correctly the real heat flux for the
solar wind environment. Furthermore, one should remind that the fluid approach
is developed on the basic assumption of all particle species having Maxwellian dis-
tributions. In the solar wind, the observed VDFs for both ions and electrons show
many non-Maxwellian features. Out of the thermal equilibrium, the proper deriva-
tion of the heat flux has to take into account the effect of individual particles, at
least statistically in the form of VDFs. From the basic principals, purely collisional
fluid models cannot be employed to model the observed VDF since they do not, by
definition, handle the non-Maxwellian suprathermal tails. Therefore, the key issue
of the solar wind acceleration can not be properly addressed by any MHD models.
In order to better understand the solar wind nature, a kinetic description has to be
employed.

1.4.2 Kinetic description

The weakly collisional and turbulent plasmas in the solar wind represent a complex
problem which rather requires a kinetic treatment, i.e., a description of processes
and mechanism produced by individual plasma particles. Solving the problem of
solar wind heat flux correctly, all the particle species, including electrons, have to
be treated separately. Since protons and other ions are relatively heavy and slow,
electrons having much higher thermal speeds are the main candidate to provide
transport of a substantial amount of the heat in the solar wind.

The electrons, thanks to their very small mass, can easily escape from the gravi-
tational attraction of the Sun. They thus tend to displace the charge which sets up
an outward oriented interplanetary electric field. As a consequence, the electric field
serves to balance the higher electron thermal pressure and accelerates the positive
ions. From the kinetic point of view, it is the electric field that drives the solar wind
expansion and drags the ions away against the gravity of the Sun. With gravity
being negligible for the electrons, the electric potential ΦE can be estimated from
the energy balance equation as

eΦE ≈ 5

2
kBTe +

Qe

nev
(1.23)

It is not a big surprise that the electric potential as a function of the radial distance
ΦE(r) depends on the electron temperature Te and the electron heat flux Qe.

In the absence of collisions, only electrons with speeds greater than the local
escape velocity

vE =
√

2eΦE(r)/me (1.24)

can reach higher heliocentric distances. Otherwise, they are trapped by the potential
barrier. This simple idea of a velocity filtration effect applied on electron velocity
distribution functions (eVDFs) represents the basic concept of the exospheric kinetic
models. Within the exospheric approach, the particle VDFs are given at the base
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of the corona and then, according to the Liouville’s theorem and to the Vlasov or
Fokker-Planck equation, they are determined everywhere in the whole heliosphere.

The simplest exospheric approaches completely neglect collisions (Lemaire and
Scherer (1971), Maksimovic et al. (1997a), Lamy et al. (2003), Zouganelis et al.
(2004)). In these models the final eVDF shape results only from velocity filtration
by the interplanetary ambipolar electric field. While these exospheric models can
explain the acceleration of the fast solar wind if non-thermal eVDFs are already
present in the corona (Scudder (1992), Maksimovic et al. (1997a), Zouganelis et al.
(2004)), they fail in predicting the precise eVDF shape in the heliosphere. Indeed,
in these models there are no electrons above the local escape velocity in the sunward
direction and the eVDFs are therefore truncated (Maksimovic et al. (2001)). This
is in contradiction with observations even at 0.3 AU.

Some improvements to the exospheric approach can be achieved by including
the effect of Coulomb collisions. Lie-Svendsen et al. (1997) solved the Boltzmann
equation with the Fokker-Planck approximation of the collision operator for test
particles expanding in a background Maxwellian plasma. Starting their modeliza-
tion at the base of the corona, these authors produced a skewed eVDF at 0.3 AU
qualitatively similar to the observed eVDF shapes. However the suprathermal tails
were completely absent in this model. Pierrard et al. (1999, 2001) adopted this
model with a few modifications. Firstly, they used typical eVDF measured in situ
at 1 AU as boundary condition instead of a Maxwellian deep in the corona (as it
was done in Lie-Svendsen et al. (1997)) where no detailed observation of eVDFs
are available. Secondly, the eVDFs used for the background electrons were more
general Lorentzian functions (see Pierrard and Lemaire (1996), Maksimovic et al.
(1997b)) instead of Maxwellians. Within this scenario, which only includes the ef-
fect of Coulomb collisions, the authors concluded that non-thermal tails, much less
important than at 1 AU, must already be present in the corona in order to explain
the observations and that the sunward part, truncated in the collisionless approach,
is present in the inner heliosphere only if it is imposed as a boundary condition at
1 AU.

Although the exospheric models provide an improved description of the solar
wind expansion, they still have some limitations predicting the observed character-
istics of solar wind plasmas. Above all, their results are highly depend on imposed
boundary conditions in the regions which are critical for the solar wind acceleration.
Mainly the acceleration of the solar wind is achieved assuming sufficiently strong
suprathermal eVDF tails. The heating problem is thus only circumvented, since
again, the existence of the increased number of high-energetic electrons has to be
explained by some heating or accelerating mechanisms. Unfortunately, until now we
do not have any real detailed in situ measurements in the solar corona that could
set the boundary conditions for the exospheric models. The problem of the solar
wind acceleration remains therefore still open.
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1.5 Particle Distribution Functions in the Solar

Wind

Techniques to measure different plasma characteristics, and their spatial and tem-
poral variation, are based on a wide variety of physical principles. In order to fully
describe and examine the local conditions and state of the solar wind plasma one
needs to perform basically two kinds of diagnostics, namely to probe electromagnetic
fields and to detect and analyse surrounding particles. The electric and magnetic
fields are measured by search-coils and flux-gate magnetometers and different elec-
tric antennas which return the intensity of the fields as well as their fluctuations, i.e.,
the electromagnetic wave activity. Regarding the solar wind particles, we measure
their composition (particle detectors) and particularly distributions of the individual
species in the velocity phase-space (energy analyzers).

Although the phase-space distribution function is central to a theoretical inter-
pretation of the behaviour of collections of particles, it is measured only indirectly.
The energy analyzers acquire counts versus energy per charge and provide thereby
the differential directional flux of particles within a range of solid angles and within
an energy band of a given width. Knowing the exact geometry of the detector and
the method of measurement the acquired counts can be consequently transformed
into velocity distribution functions. Most solar wind instruments flown to date were
1-D or 2-D detectors. In the case of of spinning spacecraft one can thus acquire 2-D
or full 3-D distributions respectively. Since charged particle distributions are usually
cylindrically symmetric around the magnetic field (gyrotropic), knowing the 2-D an-
gular distributions displaying the flux parallel and perpendicular to the magnetic
field is usually sufficient to study most of the important properties.

Coulomb collisions are the basic driving mechanism which maintains a plasma
locally in the thermodynamic equilibrium. In the solar wind where the plasma is
hot and tenuous the effect of Coulomb collisions is limited. Moreover, as the mean
free path (m.f.p.) between two collisions rapidly increases with particle velocity
(m.f.p. ∝ v4), the Coulomb collisions above a certain energy are almost negligible
and the particle velocity distribution functions develop high-energy non-thermal
tails. Consequently, significant deviations from an isotropic Maxwellian distribution
may occur in the particle velocity phase space.

In situ measurements of solar wind VDFs are already carried out about more
than four decades and, indeed, the VDF deviations from thermodynamic equilibrium
have been observed by many space instruments for both electrons and protons of the
solar wind plasma. In addition to high-energy non-Maxwellian tails, the observed
VDFs are often misshapen by occurrence of various beams or asymmetric distortions.
It is also the topology of the IMF that has an influence on the shape of solar wind
VDFs. While charged particles can freely flow along the field lines, their motion in
the perpendicular direction to the magnetic field is highly limited. As a result of
this, VDFs in the solar wind may develop different effective kinetic temperatures in
the parallel and perpendicular direction with respect to ambient magnetic field and
the VDF shape in the parallel direction can exhibit more complex structures.
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Figure 1.5: (From Marsch et al. (1982)) Proton VDFs observed by Helios space-
craft at different radial distances and under different solar wind bulk speeds (as
indicated below each plot). The measured VDFs are shown as isodensity contours
of 2-D cuts in the velocity phase space. The dotted line represents the direction
of the local magnetic field.
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We describe here the basic characteristics of the observed VDFs of all main
solar wind species, namely the protons, alpha particles and electrons. We keep the
description of the ion species very brief and focus mainly on the solar wind electrons
which represents the main topic of the current study. In the second part of this
chapter we provide a detail description of our data set. The data set, including
measured electron VDF from several spacecraft, is used for the statistical analysis
on which we base all our conclusions.

1.5.1 Ion Distribution Functions

Thermal velocities of solar wind ions are much smaller than the mean bulk speed
of the solar wind. Therefore, the ions behave as a supersonic flow. Due to their
relatively large mass, the ions carry the majority of the solar wind momentum. In
the solar wind, protons dominates over all other ions representing more than 95%
of the total ion number density. The shape of measured proton VDFs can range
from almost Maxwellian to highly non-thermal one. Figure 1.5 shows a representa-
tive set of proton VDFs acquired under various conditions by the Helios spacecraft.
Two main features typical for solar wind observations are clearly visible. Firstly the
proton VDFs exhibit considerably large temperature anisotropies. The observed
temperature ratios of Tp,||/Tp,⊥ or inversely Tp,⊥/Tp,|| can reach values up to ∼ 10,
here Tp,|| and Tp,⊥ are the parallel and perpendicular proton temperature respec-
tively. Secondly, a faster proton population is often present drifting with respect to
the core along the magnetic field (v|| > 0). The drifting proton population some-
times results in a secondary peak as it is observed for example on panels H and J
of Figure 1.5.

The second most numerous species of the solar wind ions are the alpha particles
(He++). With an abundance of 3-5 per cent they still contribute to the dynamics
of the wind. Alpha particles are also the only other specie for which the full 3-D
VDFs have been acquired. Observations show alphas to stream faster than protons.
The alpha-proton drift can be only a few km/s, however, it can also slightly exceed
the local Alfvén velocity. Compared to protons, alpha particles also exhibit greater
temperature anisotropies.

As it is already difficult to drag out the heavy ions of helium against the gravi-
tational attraction of the Sun, the heavier ions (e.g. C, O, Ne or Fe) represent only
a minor component. Due to their low densities, even the modern spectrometers can
usually resolve only their chemical composition and state of ionization.

1.5.2 Electron Distribution Functions

Although the solar wind electrons exhibit some similar features, they behave in
a different way than ions do. Because of their small mass with respect to ions
(me/mi ≪ 1) and approximately equal temperatures, their thermal speeds largely
exceed the one of the solar wind and the electrons are therefore subsonic. Moreover,
electrons at higher energies (& 100 eV ) are able to easily explore the global structure
of the whole heliosphere within much shorter time scales.
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Figure 1.6: Typical electron velocity distribution function as measured by the
Helios spacecraft. Left panel: the eVDF is displayed as isodensity contours in
the ecliptic plane (vR and vT for radial and tangential velocity respectively).
The eVDF shows a large skewness along the magnetic field (black arrow) which
has been called the strahl. Right panel: The deflections from the Maxwellian
distribution (dashed line), namely the halo tails and the strahl, are shown on the
parallel eVDF cut along the magnetic field.

Study of the radial evolution of the electron velocity distribution functions (eVDFs)
is interesting for several reasons. Electrons play an important role in the solar wind
expansion since they ensure the quasineutrality and carry the bulk of the solar
wind heat flux (Feldman et al. (1975), Marsch (2006)). The knowledge of the pre-
cise shape of the eVDFs is also fundamental in determining the radial profile of
the interplanetary ambipolar electric field which is responsible for the solar wind
acceleration in the exospheric models (Lemaire and Scherer (1971), Maksimovic
et al. (1997a, 2001)). Furthermore, some authors suggest (e.g. Scudder and Olbert
(1979)) that because of the weak collisionality, a lasting influence of the boundary
conditions in the transition region or even in the corona can be found on the col-
lisionless suprathermals even far away from the Sun. A detailed description of the
non-thermal part of the eVDFs can therefore provide clues to better estimate the
solar wind initial conditions and to solve the problem of the solar wind acceleration.

The eVDFs in the solar wind typically exhibit three different components: a core,
a halo and a strahl (Montgomery et al. (1968), Feldman et al. (1975), Rosenbauer
et al. (1977), Pilipp et al. (1987a), Maksimovic et al. (2005)). The core represent
on average about 95% of the total number density. With a still sufficient effect of
collisions, the thermal core electrons are well modeled by a bi-Maxwellian velocity
distribution. The non-Maxwellian suprathermal tails consist of two separate parts:
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the halo and the strahl. While the halo is present at all pitch angles, the strahl
appears as a beam-like population moving predominantly away from the Sun and is
highly focused along the ambient magnetic field. Note that some special configura-
tions when the direction of the magnetic field is locally inverted (see e.g. Crooker
et al. (2004)) may change the strahl propagation. Such observations of sunward
moving or even bidirectional strahl electrons have been also reported (see Gosling
et al. (1987, 1993) for instance). A typical eVDF observed in the ecliptic plane by
the Helios spacecraft is shown in Figure 1.6. The non-thermal components of the
electron distribution, namely the halo tails and the strahl, are visible in the parallel
eVDF cut along the magnetic field (right panel).

From the observational point of view, the solar wind eVDFs were originally
studied in detail by Feldman et al. (1975). The drift of the non-thermal component
of the eVDFs with respect to the thermal core was shown to be in agreement with
the zero-current relation, i.e., in average no electric current flows in the rest frame of
the solar wind plasma. The non-thermal electrons were also indicated as the main
source of the total electron heat flux. Later on, the non-thermal tails were found to
be more important in the fast wind than in the slow one (Rosenbauer et al. (1977),
Pilipp et al. (1987a,b)). Alike solar wind ions, electrons also exhibit temperature
anisotropies with respect to the direction of the magnetic field, however, the observed
values are found much closer to the isotropic state with an average Te,||/Te,⊥ ≃ 1.2
(Feldman et al. (1975) and Pilipp et al. (1987b)).

More recently, Maksimovic et al. (2005) examined the relative importance of the
non-thermal electrons in the fast solar wind as a function of the increasing radial
distance from the Sun. The main result obtained by Maksimovic et al. (2005) for
the fast wind is that the strahl relative density is declining with increasing radial
distance, whereas the halo importance increases. These findings, together with those
of McComas et al. (1992), who showed that the the core relative density remains
almost unaffected during the expansion, and those of Hammond et al. (1996), who
showed that the strahl angular width broadens with increasing radial distance, sup-
port the scenario of strahl electrons being scattered into the halo, probably by waves
processes (Vocks et al. (2005), Gary and Saito (2007) and Saito and Gary (2007)).
However, until now any clear observational evidence of such processes has been re-
ported. In the present work, we extend the Maksimovic et al. (2005) study to the
slow solar wind case, for the results see chapter 4.

1.6 Plan of the Thesis

There is much about the solar wind that we do not understand as well as we would
like to understand. Not only from the theoretical point of view represents the
origin of the solar wind and its acceleration still one of the most striking questions
of the moder solar physics. Neither the MHD fluid approach nor the exospheric
kinetic models give a satisfying answer explaining all the observed features in the
solar wind velocity distribution functions of either protons or electrons. The heat
transport, mostly driven by the electrons, plays a key role in the solar wind dynamics.
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The classical collisional heat flux, based on an assumption of local thermodynamic
equilibrium, is shown to be insufficient to power the solar wind acceleration. In fact,
the observed eVDFs in the solar wind exhibit many non-Maxwellian features and
a correct computation of the heat flux must be performed kinetically. Therefore, a
detail description of the solar wind eVDFs and a study of their radial evolution is
highly important.

In order to better understand the non-thermal features of observed eVDFs as
well as the transport of the heat in the solar wind, we performed a statistical study
of a substantial amount of measured eVDFs. All the eVDF samples were acquired
in the low ecliptic latitudes covering the heliocentric distance from 0.3 up to 4 AU.
All electron parameters are estimated by fitting of measured eVDFs with a model
distribution function. For our study, a new model was proposed which, for the first
time, describes all three components of the solar wind eVDFs (i.e. the core, the halo
and the strahl) analytically. Two main goals of the present work are (i) to examine
the radial evolution of main eVDF characteristics, i.e., the density, the temperature
and the heat flux, with increasing heliocentric distance; and (ii) to study the effect of
possible mechanism which can provide some additional heating or energy dissipation
to solar wind electrons and moderate thus the shape of observed eVDFs during the
solar wind expansion.

Two possible candidates of such mechanism that theoretically act as a possible
mediator for the transport of energy between individual particles are introduced in
chapter 2. Here we present the basic properties of Coulomb collisions and several
kinetic plasma instabilities which are relevant for our further analysis. In chapter 3
we describe in detail the new analytical model distribution function and the complete
data set of measured eVDF samples on which this model was applied. The observed
radial evolution of the eVDFs in the solar wind is studied in chapter 4, where we
summarize the results from Štverák et al. (2009). Based on results reported in
Štverák et al. (2008), we examine in chapter 5 from the observational point of view
the possible constraints imposed by kinetic instabilities and Coulomb collisions on
the electron temperature anisotropy. The properties of the electron heat flux as
obtained from our analysis are described in chapter 6. Finally, conclusions from our
findings and some perspectives for the future work are given in chapter 7.
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Chapter 2

Driving Mechanisms

Without any interactions of charged particles with external fields and forces and be-
tween the particles themselves, the overall shape of the velocity distribution function
would be preserved in time and space. The only way of modifying VDF properties
would be to change the kinetic energy or momentum of individual particles. In a
classical neutral gas such mechanisms are, in principle, limited to binary encoun-
ters between individual particles (mechanic collisions) and to external forces such
as gravity.

The situation is different in plasmas. Firstly, the classical binary collisions are
replaced by Coulomb interactions between electrically charged particles. Since the
Coulomb force acts on (relatively) large distance, close encounters which result in
strong scattering are rather rare. In fact, the trajectories of particles are consecu-
tively deviated by a succession of small interactions. In addition to external forces
and heating mechanism common with neutral gases (like caused by gravity or ra-
diation) charged particles particularly feel the effect induced by the presence of
electromagnetic fields and their oscillations.

The most important family of processes which cause the exchange between the
kinetic energy of charged particles with the energy of electromagnetic oscillations
(and thus constrain or modify the VDF evolution) are the wave-particle interactions.
Various modes of electromagnetic waves can be present in plasmas. There are modes
either propagating or standing with respect to plasma rest frame. If the phase speed
or the cyclotron speed of a wave is comparable to the speed of charged particles, they
become resonant with each other and can exchange their energy. In the following
two sections, we will describe the concept and basic properties of Coulomb collisions
and wave-particle interactions in the solar wind plasmas.

2.1 Coulomb Collisions

As for collisions between neutral particles, collisions in plasmas can be characterized
by a mean free path lf between two encounters or equivalently by the collision
frequency ν which is given by ν = v/lf where v is the speed of the colliding particle.
The mean free path, i.e., the mean distance between two consecutive collisions, can
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be simply derived as

lf =
1

nσcol

(2.1)

where n is the density and σcol the effective cross-section of a single collision. In
plasmas, charged particles interact via Coulomb force and effective collision cross-
sections are very different from those in neutral gases. A rough estimate of the mean
free path can be obtained using the following reasoning. In order to significantly
change the momentum of a colliding particle the potential energy of the interaction
(e2/4πǫ0r) with r being the distance of the colliding particles, must be at least
comparable with their kinetic energy (mv2/2). With σcol ∼ πr2 the mean free path
given in (2.1) can be expressed as

lf =
4

n

(

πǫ0mv2

e2

)2

∝ v4

n
. (2.2)

Thus in plasmas, the mean free path rapidly increases with particle velocity (∝ v4)
and consequently fast particles are almost collisionless. Replacing mv2/2 by the
average thermal energy kBT gives

lf ∝ T 2/n. (2.3)

Relation (2.3) has an important consequence for solar wind plasma which is quite
tenuous and still sufficiently hot. At 1 AU with n ∼ 5e6 m−3 and T ∼ 1e5 K,
the average distance between particles is about 5 mm and the mean free path about
lf ∼ 1e8 km. The collisions in the solar wind are thus rather rare. Note also that
since electrons and protons have roughly the same temperatures and densities their
mean free paths are comparable. It is also important that the formula (2.3) gives
an estimation of the free path for a particle moving with the mean, i.e., thermal,
velocity vthe. In fact, Coulomb collisions still become important for the thermal core
of the electron population for which v . vthe.

The importance of collisions in plasmas can be well evaluated through the Knud-
sen number which is defined as the ratio of the mean free path to the typical scale
height of variation of basic parameters of the system such as the density or the tem-
perature. Since the temperature gradient is less known in the solar wind, therefore,
the density (n) profile is typically used to compute the scale height as

Hn =

∣

∣

∣

∣

d(ln n)

dr

∣

∣

∣

∣

−1

. (2.4)

where the derivation is with respect the the radial heliocentric distance r. For a
stationary radial outflow with n ∝ r−2, the density scale height equals to H = r/2.
Figure 2.1 shows the resulting radial profile of the Knudsen number (Kn = lf/H) as
derived from remote and in situ space observations. While deep in the photosphere
the Knudsen number is still smaller than ∼ 10−10, one can see that Kn ≈ 1 already
in a distance of a few solar radii from the photosphere. In order to keep applicability
of the MHD approach we have to guarantee only small deviations from the thermal
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Figure 2.1: (After Maksimovic (2007)) Variations of the coronal electron density
(light line) and temperature (heavy line) as obtained by interpolating of coronal,
SoHo and Ulysses observations (left panel) and the resulting radial profile of the
Knudsen number for electrons as a function of the heliocentric radial distance.

equilibrium. To do so we need the length scale of the system to be much greater then
the mean free path of the particles (L ≫ lf ). Figure 2.1 shows that this condition is
hardly fulfilled in the solar wind. However, neither collisionless exospheric models
are fully appropriate for which the Knudsen number should be much greater than
unity (Kn ≫ 1).

Even though Coulomb collisions in the solar wind are infrequent, some studies
suggest that they can still affect and moderate the VDF evolution through the so-
lar wind expansion. Especially for denser and colder plasmas (Livi et al. (1986))
the collision frequency is increased and the electron Coulomb collisions can become
important. Numerical simulations of Livi and Marsch (1987) have shown that al-
ready very few collisions may constrain the extreme temperature anisotropies of
the exospheric VDFs. It was also shown by Phillips et al. (1989) that the electron
temperature anisotropy is well correlated with density (see the left panel of Figure
2.2). In denser plasmas the electrons were mostly found closer to the isotropic state
indicating a possible effect of collisions. Consequently, Phillips and Gosling (1990)
have modeled the relaxation of electron temperature anisotropy due to Coulomb
collisions and found a good agreement with the previous observations of ISEE 3
spacecraft.

More recently, another and more sophisticated way to compare the effect of
Coulomb collisions with the observed electron properties was presented in Salem
et al. (2003), when used electron collisional age Ae defined as the most probable
number of collisions suffered by an electron during the expansion of the solar wind.
These results are again in agreement with the expectation that collisionally older
plasmas are typically less anisotropic. The collisional age Ae was computed by
integration of the frequency of electron collisions over the time of the solar wind ex-
pansion. Note however, that this concept does not apply to trapped electrons that
circle on closed magnetic field lines (Bame et al. (1981) and Gosling et al. (1987)).
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Figure 2.2: (Left panel) On ISEE 3 observations, Phillips et al. (1989) has shown
a clear correlation between the electron temperature anisotropy and the electron
density which may indicate a role of Coulomb collisions. (Right panel) Salem

et al. (2003) examined the effect of Coulomb collisions on the solar wind heat flux
through the collisional age Ae (see text). Observations from WIND spacecraft in
the low pressure wind show a net upper bound (blue dashed line) of the electron
heat flux which decreases for an increasing collisional age.

Salem et al. (2003) also used the collisional age to examine whether collisions can
regulate the solar wind heat flux (see the right panel of Figure 2.2). Their findings
show a net upper bound of the electron heat flux which decreases for an increasing
collisional age. Moreover, Salem et al. (2003) concluded from the WIND observa-
tions that the theoretical collisional heat flux derived by Spitzer and Härm (1953)
can be reached in the solar wind for low Knudsen numbers.

Although the theory predicts the Coulomb collisions to be very rare and thus
insufficient to moderate the solar wind eVDFs, the observations indicate an oppo-
site - collisions can not be neglected! We present in chapter 5 some observational
evidence of constraints on the electron temperature anisotropy caused by Coulomb
collisions (based on results of Štverák et al. (2008)). Since our data were acquired
at different radial distances from Sun, we have adopted from Salem et al. (2003) the
concept of collisional age Ae which reflects time evolution of Coulomb collisions in
the expanding solar wind. In chapter 6, we further investigate the role of Coulomb
collisions on the transport of heat in solar wind plasmas.

2.2 Plasma Waves and Instabilities

Collisions are not the only mechanism shaping observed eVDFs in the solar wind.
Another mechanism how charged particles can exchange their kinetic energy is me-
diated by wave-particle interactions. From the theoretical point of view, they are
very effective and are believed to dominate in the solar wind plasmas over Coulomb
collisions. The magnetized plasma of the solar wind represents an environment with
an ubiquitous activity of many different electromagnetic wave modes. A complete
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set of all possible electromagnetic wave modes can be found by solving the system of
Vlasov-Maxwell equations. However, this represents a too difficult task and a linear
approximation to this system is typically applied. For a particular solution in the
form of a planar wave disturbance

δA(x, t) = δA(k, ω) exp[i(k · x − ωt)], (2.5)

we assume the disturbance δA to be much smaller than the undisturbed quantity
A. Consequently, all non-linear terms of δA in the Vlasov-Maxwell equations can
be neglected. This reduces the original system to a set of linear algebraic equations
which determinant D has to vanish in order to get a non-trivial solution

D(ω,k, f) = 0. (2.6)

Equation (2.6) is called the dispersion relation and provides the dependence of the
frequency ω on the wave vector k. The kinetic description of corresponding plasma
species enters the Vlasov-Maxwell system through the initial particle VDF (f). Any
wave function can be then represented by a superposition of an infinity number of
such plane waves.

In plasmas, there are basically two groups of solutions of the general disper-
sion relation. These are electrostatic modes (Langmuir and ion-acoustic waves) and
so-called electromagnetic waves (whistlers, ion-cyclotron modes, Alfvén waves). A
comprehensive list of possible solutions of (2.6) can be found, e.g., in the classical
textbook of Stix (1992). Here we will focus on some particular solutions of modes
which can become unstable (see, e.g., the textbook of Gary (1993)).

The concept of linear plasma instabilities arises from an extension of real solu-
tions of the dispersion relation to the complex domain. Assuming complex solution

ω = ωr + iγ (2.7)

of (2.6) has an important consequence on the resulting planar wave. For a non-
zero imaginary part of the frequency (γ), the real amplitude of the wave becomes an
exponential function of time and the wave is either damped (γ < 0) or exponentially
grows (γ > 0). Parameter case γ is called the growth rate of the unstable mode.
Instabilities can arise only if there is some free energy in the plasma which can
feed their growing amplitude. Both unstable cases, wave damping and growth, thus
require (or result in) an energy exchange with the surroundings.

2.2.1 Wave-particle interactions

A possible source of free energy as well as an energy deposit for the unstable wave
modes can be provided directly by solar wind particles. The process of energy
exchange caused by waves coupling with the motion of particles is what we call the
wave-particle interactions. Taking an average over a sufficient time interval, the
mean effect of a fluctuating electromagnetic field on a randomly moving charged
particle will be negligible. However, this is not true in some special configurations.
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A particle moving in the direction of the wave propagation (along the wave vector
k) with speed close or even equal to the phase velocity of the wave (vph = ω/k)
won’t see a fluctuating field but rather a stationary one. In such a configuration,
the particle can easily exchange its kinetic energy with the wave. Depending on the
field configuration, this may lead to particle acceleration (particles gain energy from
the wave and the wave is damped) or, vice versa, to particle deceleration (when
the wave gains energy from particle and grows). We describe this situation as the
wave being in resonance with the co-moving charged particle. The straightforward
condition for the resonance, called Landau resonance, reads as

ω − k · v = 0 (2.8)

where ω is the frequency of the wave, k is the wave vector and v is the particle’s
velocity.

Contrary to a chaotic motion in neutral gases, the motion of charged particles
in plasmas embodies periodic features with some typical frequencies. These are the
gyration of particles around the magnetic field lines with the cyclotron frequency
for a plasma specie j given as

Ωcj =
qjB

mj

(2.9)

and plasma oscillations with typical plasma frequency

ωpj =

√

njq2
j

mjǫ0

(2.10)

Another possible particle resonance, the cyclotron resonance, is then related to the
periodic gyromotion. The particles become resonant with the wave if the condition

ω − k · v ± Ωc = 0 (2.11)

is fulfilled. In other words, if a field perturbation rotates in the same direction and
frequency of the rotation is similar with the one of the periodic gyration, particles in
their rest frame do not feel a variable field but again a static one. Thus the energy
between wave and particles can be easily exchanged.

In the MHD approach, by definition, all particles of one specie are having the
same mean properties (bulk speed, temperature, etc.). This is not the case in the
(more realistic) kinetic description where the state of all particles is defined through
the VDF. Therefore, for a given wave, only some of the particles can be resonant
while the others are not. Then, depending whether more particles are accelerated or
decelerated by the wave activity, the wave is either damped or becomes unstable and
its amplitude grows. This is mostly determined by the shape of the VDF around
the region of resonance. In other words, if the VDF can convert its free energy to
the unstable mode, the wave will grow, otherwise no instability will arise. This is
the basic driving mechanism of the kinetic plasma instabilities.

Non-drifting isotropic Maxwellian VDFs will always lead to wave damping and
energy absorption. Only departures from purely isotropic Maxwellian distributions,
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Figure 2.3: (Adapted from Baumjohann and Treumann (1996)) In the kinetic
treatment, only particles with speeds close to the condition of resonance feel the
effect of the wave. Depending whether more particles are accelerated or deceler-
ated, the wave is either damped or its amplitude grows.

e.g., beams, temperature anisotropies or skewed VDFs, represent a natural source
of free energy which can excite some unstable wave modes. These generated waves
then in turn can retroactively redistribute their energy and regulate the initial VDF
distortions. For example, wave-particle interactions resulting from temperature
anisotropy driven plasma instabilities represent therefore an effective mechanism
which can constrain the temperature anisotropy of a VDF during its evolution in
the expanding solar wind. More generally, in a stable configuration, there are no
enhanced fluctuations in the plasma which can constrain its macroscopic charac-
teristics. In contrast, if enhanced unstable fluctuations are present, the consequent
wave-particle scattering rapidly leads the unstable configuration of the plasma state
back to a marginal stability.

2.2.2 Temperature anisotropy instabilities

One of possible sources of free energy which may give rise to unstable electromagnetic
fluctuations is the temperature anisotropy of the observed VDFs. In general, the
more anisotropic is the plasma temperature, the higher is the growth rate γ of
the corresponding unstable mode and the larger are field fluctuations caused by
the given instability. The enhanced fluctuations from these instabilities reduce the
anisotropy of the distribution function by wave-particle scattering. The anisotropy
driven instabilities therefore put constraints on the temperature anisotropy T⊥/T||

itself. The unstable modes can be derived from the linear Vlasov theory. In the
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Figure 2.4: (Adapted from Hellinger et al. (2006)) Observations of the pro-
ton temperature anisotropy from WIND spacecraft as a function of the proton
parallel β|| = 8πnkBT||/B

2 in the slow (left panel) and fast solar wind (right
panel). The over plotted curves show the isocontours of the maximum growth
rate for the mirror (dotted line) and oblique propagating fire hose (dash-dotted
line) instabilities.

current study we will examine the effect of two most dominant electron temperature
anisotropy driven instabilities.

The first type arises when the perpendicular electron temperature is greater than
the parallel one (Te,⊥/Te,|| > 1). For an electron population described by a single
bi-Maxwellian distribution and for a sufficiently homogeneous plasma, the fastest
growing instability caused by this type of anisotropy is the whistler one (Kennel
and Petscheck (1966) and Dum et al. (1980)). Electrons are cyclotron resonant with
whistler waves of the left-hand polarisation while protons are not, thus the proton
temperature has no effect on the properties of this instability. Gary and Wang
(1996) further showed that the wave-particle scattering induced by the whistler in-
stability maintains the initial bi-Maxwellian character of the eVDF and confirmed
that Te,⊥/Te,|| can be bounded by the threshold condition of this instability. Maxi-
mum growth rates of the whistler instability correspond to a wave propagation along
the background magnetic field. Oblique propagation is also possible. However, in
this case the growth rate factors are smaller than those derived for the parallel wave
vectors.

In the opposite case when Te,⊥/Te,|| < 1 the electron fire hose instability can
develop (Hollweg and Volk (1970)). This instability is a kinetic extension to higher
frequencies of the MHD fire hose instability, originally described by Parker (1958).
While the MHD fire hose instability is of a completely non-resonant nature, the
kinetic electron fire hose instability is typically proton-resonant and for sufficiently
large anisotropy of the electron distribution also electron-resonant (Pilipp and Benz
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Figure 2.5: (Left panel) Phillips et al. (1989) analysed the electron temper-
ature anisotropies (Tc,⊥/Tc,|| derived from ISEE 3 data with respect to the fire
hose instability threshold defined by the kinetic (Pe,⊥,Pe,||) and magnetic (B2/µ0)
pressures. Obviously most of all observations are found deep in the stable region
far from the instability threshold. (Right panel) First observational evidence of
the effect of whistler instability on the electron temperature anisotropy in the
space plasmas was reported by Gary et al. (2005). The solid dots represent elec-
tron anisotropies measured by the CLUSTER spacecraft in the Earth’s magne-
tosheath. The dashed line represents the corresponding threshold of the whistler
instability as a function of the electron plasma beta.

(1977)). Pilipp and Benz (1977) considered only a parallel wave vector to the mag-
netic field. It was found by Paesold and Benz (1999) (and later confirmed by Li and
Habbal (2000)) that an oblique propagation of the electron fire hose instability leads
to higher growth rates. Note, that since protons are resonant with waves generated
by this instability, growth rates for this instability are also a function of the proton
temperature.

The effect of temperature anisotropy driven instabilities on the temperature
anisotropy has already been studied in the case of solar wind protons from the
observational point of view by Kasper et al. (2003), Hellinger et al. (2006), Marsch
and Tu (2006) and Matteini et al. (2007), see Figure 2.4. These authors have shown
fairly good agreement between the proton temperature anisotropy estimated from
a large amount of WIND/SWE and HELIOS observations and constraints imposed
by several theoretically predicted kinetic instabilities. Some studies of this kind
have been already done also for electrons (see Figure 2.5). Solar wind electrons are
rather observed with Te,⊥/Te,|| < 1. Phillips et al. (1989) have shown on a large
set of ISEE 3 measurements that electrons are typically found in the parameteric
phase space of (T⊥/T||, β||) far away from the fire hose threshold inside the stable re-
gion. First observational evidence of the effect of whistler instability on the electron
temperature anisotropy in the space plasmas was reported by Gary et al. (2005).
Using CLUSTER/PEACE measurements in the Earth magnetosheath, Gary et al.
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Figure 2.6: (From Gary et al. (1975)) Thresholds isocontours for the relative
drift of the core component (normalized to the Alfvén speed) as a function of the
ion plasma beta for different ratio of the electron core to ion temperature.

(2005) have shown that also whistler modes provide a constrain on the electron
temperature anisotropy in the (T⊥/T||, β||) space when Te,⊥/Te,|| > 1. In chapter 5
we provide a summary of results presented in Štverák et al. (2008) where the tem-
perature anisotropy estimated on a large data set was compared with theoretical
constraints imposed by the whistlers and fire hose electron instabilities.

2.2.3 Heat flux instabilities

As well as the temperature anisotropies, the observed skewness of the solar wind
eVDFs, i.e., the strahl component, which is responsible for the bulk of the solar
wind heat flux, represents a source of free energy which can give rise to the plasma
instabilities. Instabilities excited by this source of free energy can theoretically
provide some constraints on the heat flux and consequently on the strahl itself.
Observations indicate that the heat flux in the solar wind is not described by the
conventional collisional conductivity (1.20), see, e.g., Scime et al. (1994a), instead its
magnitude has a maximum limit which depends only on the local plasma parameters.
Naturally, the observed upper bound of the solar wind heat flux can be related to
the effect of corresponding kinetic instabilities.

Based on ideas of Forslund (1970), Gary et al. (1975) concluded from the the
linear Vlasov theory that there are three kinetic instabilities, namely the Alfvén,
magnetosonic and whistler instability, which can arise for a sufficiently large skew-
ness of the eVDF. The model of Gary et al. (1975) used two bi-Maxwellian distri-
butions, one for the core and one for the high-energy tails, and the heat flux was
achieved by the relative drift of these two components. All three modes were shown
to be electron resonant. While the magnetosonic and Alfvén modes resonate with
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Figure 2.7: (From Gary et al. (1999)) Ulysses observations of normalized elec-
tron heat flux as a function of the parallel electron beta of the core component.
The dashed line represents the fit to the data and the solid line represents the
threshold condition for the whistler heat flux instability.

relatively slow electrons, the primary wave-particle interaction for the whistler heat
flux instability is provided by high-energy electrons of non-thermal eVDF tails.

In order to decide which instability is the fastest growing one, we have to compare
their threshold conditions. The value of growth rates factors of these heat flux
instabilities depends on variety of parameters. Gary et al. (1975) showed that the
whistler instability has the lowest threshold for most of the observed solar wind
conditions. The magnetosonic and Alfvén instabilities become competitive only
in some particular configurations (see Figure 2.6). Maximum growth rates of the
whistler instability were examined in detail in Gary et al. (1994) and Gary and Li
(2000). It was shown that the upper bound of the normalized heat flux (see Chapter
6 for explanations) is a function of the parallel plasma beta of the core component.

The numerical estimation of growth rates of the whistler heat flux instability were
compared with in-ecliptic observations of the Ulysses mission by Gary et al. (1999),
see Figure 2.7. It was shown, in agreement with the theoretical predictions, that
the instability threshold provide a statistical constraint on the observed solar wind
heat flux. The effect of whistler waves on strahl electrons was further numerically
examined by Vocks et al. (2005), Gary and Saito (2007) and Saito and Gary (2007)
with particle-in-cell simulations. These authors showed theoretically that whistler
waves are capable of forming both the halo and strahl components and are effective
in scattering of strahl electrons into the halo. In the chapter 6, we will apply
theoretical findings of Gary et al. (1994) and Gary et al. (1999) to see whether the
whistler heat flux instability can impose a constraint on the observed electron heat
flux estimated from our fitting procedures.
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Chapter 3

Data and Fitting Procedures

Observed solar wind eVDFs are typically composed from three different components:
the thermal core, which typically represents more than 95% of the total electron
number density, the hotter supra-thermal halo, representing the non-thermal tails
which are present at all pitch angles, and the highly magnetic field-aligned beam-like
component called the strahl. Several analytical models have been proposed in order
to fit and study these non-trivial velocity distributions.

From the observational point of view, the first detailed solar wind eVDFs char-
acterizations were done originally by Feldman et al. (1975) and later by Pilipp et al.
(1987a,b). Their original model consisted of one bi-Maxwellian distribution for the
core and a second bi-Maxwellian distribution drifting with respect to the solar wind
plasma frame for the halo and strahl altogether. It was shown that the difference
between the core and the halo charge fluxes (due to the relative core-halo drift) are
in a good agreement with the zero-current condition as it is necessary to keep a zero
current in the solar wind. Non-thermal electrons were shown to be the main source
of the total electron heat flux. In addition, the natural choice of a Maxwellian distri-
bution allowed an easier comparison with theoretical predictions. The Maxwellian
VDF corresponds to a medium in local thermodynamic equilibrium which is the
classical assumption in many theoretical approaches, namely in the MHD fluid de-
scriptions. However, note that this is not valid anymore already for a sum of two
Maxwellian distribution.

As an alternative, Maksimovic et al. (1997b) used a single Lorentzian or Kappa
function fκ to fit the entire eVDF

fκ(v) ∝
(

1 +
m

k(2κ − 3)T
v2

)−κ−1

(3.1)

At low speeds a Kappa distribution is nearly Maxwellian. Then It decreases as a
power law at speeds greater than the thermal speed. The Kappa function can thus
describe to a certain degree both the thermal core and the non-thermal tails but it
does not describe the whole eVDF including the strahl.

More recently, Maksimovic et al. (2005) examined the relative importance of the
non-thermal electrons in the fast solar wind as a function of the increasing radial
distance from the Sun. These authors proposed that the best analytical model for
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Figure 3.1: (From Štverák et al. (2009)) Classical eVDF model is not satisfactory
for two reasons. It can not correctly handle the asymmetric strahl component and
the halo component include both, electrons in the thermal equilibrium being the
part of the core and non-thermal electrons at higher energies where tails are
dominant above the Maxwellian core (left panel). The new model should include
a third component for the strahl and separate the whole eVDF into the thermal
(core) and non-thermal part (halo and strahl), giving a better estimation of their
relative densities (right panel).

the core and halo is constituted by the sum of a bi-Maxwellian for the core and a
bi-Kappa function for the halo. Concerning the strahl, they still did not propose
any analytical model but rather computed its characteristics numerically by sub-
tracting the core-halo model from measured eVDF. The complete fitting procedure
of Maksimovic et al. (2005) proposed to model most precisely the solar wind eVDFs
can be summarized as follows. As the first step, the portion of an eVDF, from
which the strahl is absent, is fitted with the sum of one bi-Maxwellian (fc) and one
bi-Kappa function (fh) for the core and halo respectively. fc and fh are defined over
the whole velocity phase space v⊥, v||, where the subscripts || and ⊥ correspond
to the direction with respect to the local magnetic field direction. Once fc and fh

are determined, they are removed from the observed eVDF (fobs) and the strahl
characteristics such as the density are obtained by integrating fobs −fc−fh over the
whole velocity phase space.

Even though the model of Maksimovic et al. (2005) represents an improvement to
the previous models (a sum of two bi-Maxwellians or one single bi-Kappa function),
this fitting procedure is still not fully satisfactory. The main two reasons are sketched
in Figure 3.1. Firstly the missing analytical description for the strahl component
is necessary for more accurate estimation of some fundamental parameters such as
the electron heat flux. Secondly, there is a clear ambiguity when defining the halo
component over the whole velocity phase space. On the left hand side of Fig. 3.1, it
is not possible to decide whether an electron in the thermal velocity/energy range
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belongs to the core population or to the halo one. Therefore, based on measured
eVDFs, it is not possible uniquely define the model function of the halo component in
the thermal energy range. Since the electrons in the thermal energy range represent
a large fraction of the total halo density when fh is defined over the whole velocity
phase space, the resulting characteristics of the halo component in the classical
model do not allow to separate and correctly describe properties of the thermal and
non-thermal part of observed eVDFs.

In order to better compare and study separately properties of thermal electrons
which are still affected by collisions and the suprathermal electrons which are almost
collisionless, we proposed an improved model which analytically describes all three
components of the observed eVDFs. The ambiguity between the thermal and non-
thermal electrons is solved by restricting fc and fh to respectively the thermal and
suprathermal parts of the velocity phase space as illustrated on the right-hand side
of Figure 3.1. By doing so we can characterize more precisely the true difference
between the theoretical Maxwellian distribution predicted for a gas in a local thermal
equilibrium and eVDFs observed in the solar wind.

By use of the proposed analytical model, we perform a statistical study of a
substantial amount of solar wind eVDFs. In our data set we combine measurements
acquired on board three spacecraft (Helios, Cluster II and Ulysses) in the low ecliptic
latitudes covering the heliocentric distance from 0.3 up to 4 AU. The complete
descriptions of data samples and explanations of procedures which are applied on
measured eVDFs before fitting them with the analytical model are given in the last
two section of the current chapter.

3.1 Full Analytical Model

The model proposed for this study is composed of a sum of three analytical forms
for each of the basic eVDF components observed in the solar wind, namely the core
(fc), halo (fh) and strahl (fs)

f = fc + fh + fs. (3.2)

For the core component we use a classical bi-Maxwellian function drifting in the
parallel direction with respect to the magnetic field. Thus fc reads as

fc = Ac exp

[

−m

2k

(

1

Tc⊥
v2
⊥ +

1

Tc||

(v|| − ∆c)
2

)]

(3.3)

where m is the electron mass, k is the Boltzmann constant, Tc⊥ and Tc|| are the core
perpendicular and parallel temperatures respectively and ∆c is the drift velocity in
the proton bulk speed frame. The normalization factor Ac is equal to

Ac = nc

( m

2πk

)3/2 1

Tc⊥

√

Tc||

(3.4)

where nc is the core number density.
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For the halo population, we still use a bi-Kappa function as in Maksimovic et al.
(2005) but drifting with the core. Moreover, we introduce one major modification
in order to reach our requirements, that is the clear separation of the non-thermal
electrons from the thermal ones. We require the inner part of the bi-Kappa function
hidden in the thermal core to be truncated by the use of a flat top like function
(fh,ft). The analytical form for the halo (fh) is then

fh = (1 − fh,ft) · fh,κ. (3.5)

In (3.5), fh,κ is the classical bi-Kappa function defined as

fh,κ = Ah

(

1 +
m

k(2κh − 3)

(

v2
⊥

Th⊥
+

1

Th||
(v|| − ∆c)

2

))−κh−1

(3.6)

where m, k, Th⊥ and Th|| have the analogous meaning as in (3.3), ∆c is the drift speed
which is common for both the core and the halo and the κh parameter determines the
power-law decrease of the suprathermal tails. The bi-Kappa function is normalized
by

Ah = nhκ

(

m

πk(2κh − 3)

)3/2
1

Th⊥

√

Th||

Γ(κh + 1)

Γ(κh − 1/2)
(3.7)

where nhκ is the zero-order moment of the Kappa function and Γ() is the Gamma
function. Because of the truncation, nhκ, however, does not expresses the number
density of the halo.

In (3.5), fh,ft is the so-called ”flat top” function defined in our case as

fh,ft =

[

1 +

(

m

2kδ

(

v2
⊥

Tc⊥
+

(v|| − ∆c)
2

Tc||

))p]−q

. (3.8)

This function is defined in such way that it creates a plateau (at level of one)
symmetric with respect to the origin. At the edge of this plateau fh,ft rapidly falls
with increasing velocity to zero. The width of the flat top is controlled via the
parameter δ. The parameters p and q, which determine the shape of the edge of the
plateau, are constant in this model and are equal to 10 and 1 respectively. These
values are empirically found to be convenient for our analysis. Note that due to
the truncation, the correct density of the halo component has to be computed by
integrating (3.5) over the whole velocity phase space. Also the parameters Th⊥ and
Th|| similarly do not correspond to the halo temperatures as it is the case for the
core component.

Finally for the strahl population we also use a bi-Kappa function modified in
such a way that it models only those high-energy electrons of the measured eVDF
that are streaming away from the Sun and are aligned along the local magnetic field
line. In general, the strahl exhibits properties similar to a beam-like population
overrunning the core and halo electrons. Therefore, we use an analytical model
with a positive drift in the parallel direction with respect to the plasma frame.
More precisely, in the antisunward direction we use a classical bi-Kappa function
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with a parallel temperature corresponding to the measured data. In the sunward
direction the model is truncated by decreasing the parallel temperature with a given
factor. This truncation excludes therefore the thermal core electrons from the strahl
population. The analytical formula for the strahl is then

fs = As

(

1 +
m

k(2κs − 3)

(

v2
⊥

Ts⊥

+ D
(v|| − ∆s)

2

Ts||

))−κs−1

(3.9)

with
D = 1 for v|| ≥ ∆s

D = Θ for v|| < ∆s
(3.10)

where m, k, Ts⊥, Ts|| and κs have analogous meaning as in (3.6), Θ in the case
of v|| < ∆s causes the eVDF to be truncated in the sunward direction and ∆s is
the drift of the beam with respect to the proton plasma frame. The function is
normalized by

As = ns
2
√

Θ√
Θ + 1

(

m

πk(2κs − 3)

)
3

2 1

Ts⊥

√

Ts||

Γ(κs + 1)

Γ(κs − 1/2)
(3.11)

so that ns gives directly the strahl number density. During the fitting we do not
adjust the parameter Θ. Actually the value of Θ is fixed to 10, this ensures a
sufficient cutoff inside the thermal core velocity range. For our needs this value
was empirically found to be convenient over the whole range of the observed eVDF
characteristics.

Altogether, we have fourteen free parameters when adjusting (3.2), i.e. nc, Tc⊥,
Tc||, ∆c, nh, Th⊥, Th||, κh, δ, ns, Ts⊥, Ts||, κs and ∆s. Instead of fitting directly the
measured values (fm), we fit their logarithm (log fm). This is done in order to take
into account the high-energy part of the eVDF, which is some orders of magnitude
smaller than the central thermal part of the velocity distribution. Since our model
eVDF depends non-linearly on the fitted parameters, we use an iterative fitting tech-
nique based on the well known Levenberg-Marquardt algorithm (Marquardt (1963))
to minimize the χ2 function.

The fitting procedure itself consists of several consecutive steps. First the initial
guesses of the parameters for the core, halo and strahl are performed separately
and then a final fine adjusting fitting with all parameters together is accomplished.
An example of an outcome of our fitting procedure is shown in Figure 3.2 for a
sample acquired on board the Helios spacecraft. In these four panels, all of the eight
azimuthal bins measured on board Helios are displayed with asterisks and the model
eVDF and its three components, the core, the halo and the strahl, are represented
with the solid, dashed, dash-dotted and dotted line respectively. The two main
features of our new model are visible. The model functions for the high-energy tails
are truncated on the thermal core velocity range, and the fit describes very well
the complete eVDF including the asymmetric part in the parallel direction, i.e. the
strahl. We chose a Helios data sample for the demonstration of the new model
because of its relative simplicity. For Cluster and Ulysses observations the quality
of our fitting procedure is similar.
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Figure 3.2: (From Štverák et al. (2009)) Sample fit of a measurement from
Helios spacecraft using the analytical model proposed for our study. All three
components of the measured eVDFs are included and both halo and strahl are
truncated in the thermal part of the distribution. The asterisks, dashed line,
dash-dotted line and dotted line represents the measured eVDF, core, halo and
strahl population respectively. In these four panels all cuts through the eight
azimuthal bins measured on board Helios are displayed. The strahl is strongest in
the antisunward parallel direction while it is almost negligible in the perpendicular
one. The halo is presented at all pitch angles.

The present work summarizes our results published in Štverák et al. (2008) and
Štverák et al. (2009), where the already described model was not yet fully developed.
In fact, results reported in Štverák et al. (2008) were obtain with model similar to
the one of Maksimovic et al. (2005) where the strahl component was missing and
the halo was not truncated in the thermal part of the eVDF. In the later work of
Štverák et al. (2009), the model used to fit the measured eVDFs was already very
similar to the current one. The only difference was that the halo component had no
drift velocity with respect to the solar wind frame. One should keep in mind these
differences when reading the discussions in chapters 4 and 5.

3.2 Computing Model eVDF Moments

The fitting parameters of the core component are directly consistent with the mo-
ments of the core itself, i.e., nc, Tc⊥ and Tc|| give the core density and perpendicular
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and parallel temperatures respectively. However, this is not the case for the halo
and the strahl. The analytical form of these two components is not based on the fa-
miliar Maxwellian distribution and the concept of the thermodynamic temperature
becomes violated. For a more general Lorentzian or Kappa distribution function the
fitting parameters are still related to the physical meaning of the thermodynamic
temperature as a measure of mean kinetic energy of individual particles. However,
the bi-Kappa functions in the halo and strahl models are in addition truncated in
the thermal regime and the original parameters of the bi-Kappa function lose their
physical significations. Although we compute the true moments of the non-thermal
components as defined in (1.2)-(1.6), note that the term temperature of the strahl
and especially of the halo component has to be taken with caution compared to the
classical thermodynamic temperature of the core.

Substituting analytical forms of halo and strahl components into (1.2)-(1.6) and
computing the moments of these non-thermal components introduces some com-
putational difficulties. While the high-energy tails of the Maxwellian distribution
decrease exponentially with the increasing velocity, the tails of the Kappa distribu-
tion follow a power-law decrease

fκ ∼ (1 + v2)−(κ+1). (3.12)

The VDF moments for the Kappa function can be thus written in a general integral
form as

mn,κ ∼
∫ ∞

−∞

xn(1 + x2)−(κ+1)dx. (3.13)

which is convergent only if

κ >
1 + n

2
. (3.14)

In the solar wind, the κ parameter can reach the values κ . 2 (Maksimovic et al.
(1997b)). Therefore, from (3.14) the higher eVDF moments are not defined for the
full range of κ observed in the solar wind plasmas.

One possible way how to solve this inconvenience is to restrict the integrating
domain to a finite volume of the velocity phase space. The restrictions can be
achieved by setting an maximum velocity vmax for the upper limit of the integration.
Thus the general form of the moment definitions (1.2)-(1.6) will transform to

∫∫∫

|v|<vmax

vnf(v)dv. (3.15)

A natural limit for the maximum velocity can represent for instance the speed of
light. We have constrained the integration domain by the maximum velocity vmax =
2.5e7 m/s which slightly exceeds the maximum energy range of all three instruments
used in our data set. The main reason for this choice of the velocity constraint is
that such restriction of the integrating domain does not add any substantial artificial
information to the measured eVDFs. The resulting moments then describe only
what we really observe.
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S/C Instrument Period Distance (AU) Samples
HELIOS I2 1975-78 0.3-1.0 ≈ 200 000
CLUSTER II PEACE 2002-03 1.0 ≈ 25 000
ULYSSES SWOOPS 1990-91 1.2-3.95 ≈ 15 000

Table 3.1: The measurements of eVDFs used in this study include data from
several spacecraft: Helios 1 & 2, Cluster II and Ulysses. The data set includes
roughly 240 000 samples covering the radial distances from the Sun from 0.3 up
to 4 AU.

Because of the complicated analytical description of the strahl and especially of
the halo, the definite integrals resulting from application of (3.15) on (1.2)-(1.6) are
computed numerically on a discrete velocity grid. Although the core component
have the bi-Maxwellian form, for which the moments are convergent and also very
easy to evaluate, we used the truncated moments given by (3.15) for all three eVDF
components. This procedure ensures a reasonable comparison of the resulting mo-
ments between all three components. Also note that the difference between the full
and truncated moments for a bi-Maxwellian distribution is almost negligible which
make this procedure acceptable when comparing our results with some previous
studies of the core component.

3.3 eVDF Data Set

For our statistical study of electron properties in the solar wind, we have gathered
a large number of measured eVDFs combining observations from three different
space missions. In order to cover a sufficiently large spatial (radial distance) and
temporal (different solar wind conditions) range we combine electron measurements
obtained by the Helios 1 & 2, the Cluster and the Ulysses spacecraft. An overall
description of the full data set and of the associated space instruments is given in
Table 3.1. All measured data were acquired in the low ecliptic latitudes and cover
altogether radial distances from 0.3 up to almost 4 AU. The data set thus represents
the largest possible range of heliocentric distances in the ecliptic. Each one of the
three spacecraft operated in a different time period, the data set thus combines
several solar cycles and different periods of the solar activity.

On board the two Helios spacecraft electrons were measured with almost identi-
cal electron analyzers (Schwenn et al. (1975), Rosenbauer et al. (1977)). The probes
continuously spun around an axis oriented perpendicular to the ecliptic plane. By
use of the spacecraft rotation, the electron analyzer placed in the equatorial plane
of the spacecraft recorded 2-D electron distribution functions. These velocity dis-
tributions cover an energy range between 0.5 and 1658 eV in 32 energy channels
and 8 angular bins uniformly distributed in the polar plane. The radial coverage
of both Helios probes ranges from 0.3 to 1 AU. For our analysis we use only those
measurements for which the magnetic field vector is close enough to the ecliptic
plane, that is when Bz/|B| < 0.1 (see Štverák et al. (2008) for more details). We
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also require the magnetic field vector to be very close, with a maximum deviation
of 10◦, to the axis of one of the angular bins. These conditions guarantee to have a
good estimate of the eVDF in the (v⊥, v||) plane, where the directions ⊥ and || are
with respect to the local magnetic field vector.

The four satellites of the Cluster II mission (Escoubet et al. (1997)) measure
electrons thanks to the PEACE instruments which are identical on each spacecraft
(see Johnstone et al. (1997) for a detail description). The full energy range of all
PEACE instruments scales from 0.6 eV to 26.5 keV. For our data set we use the
SPINPAD data product which provides 2-D eVDFs covering one half of the (v⊥, v||)
plane in 13 angular bins. In this study we use only data from Cluster 3. Since
the spacecraft spends a part of its orbit in the Earth’s magnetosphere we selected
only periods when the satellite was in the unperturbed solar wind, not magnetically
connected to the Earth’s bow shock.

The data set is completed with measurements from the Ulysses spacecraft cover-
ing a radial range from 1.2 to 4 AU. On board Ulysses the eVDFs were measured by
the SWOOPS instrument (Bame et al. (1992)). Its construction enables both 2-D
and also full (95% of the unit sphere) 3-D electron measurements covering an energy
range from 1.6 to 862 eV. We take data acquired only during the first part of the
mission when the spacecraft traveled in the ecliptic plane towards Jupiter. The out
of ecliptic fast solar wind measurements have already been analysed by Maksimovic
et al. (2005). The 3-D eVDFs are projected in the (v⊥, v||) plane and then analysed
in the same way as it is done for eVDFs from Helios and Cluster. Examples of
measured eVDFs from the three space missions are displayed in Figure 3.3.

3.4 Corrections on Measured eVDFs

The space-born energy analyzers do not measure directly the eVDF but the counts
of impacting electrons in corresponding energy/spatial bins of the instrument. By
it self, this indirect technique of eVDFs acquisition represents a possible source of
inaccuracy of the measurements. Based on the statistical nature of this measur-
ing technique, a sufficient number of particle counts is needed to get a reasonable
discrete approximation of the eVDF. With only a few counts per given measured
energy bin the resulting value of the eVDF represents a non-negligible uncertainty.
This problem becomes important at higher energies where the number of counts is
rapidly decreasing. For samples in our data set, we exclude from further analysis all
measured energy bins where the number of detected counts was two or less.

It is not only important to measure eVDFs with a good precision but also to
interpret the measurements correctly. Not only is the measuring technique of eVDFs
indirect, it is either interferenced by several other disturbing effects. The problem of
a perfect plasma detector was already studied by Song et al. (1997). More recently,
Génot and Schwartz (2004) and Geach et al. (2005) has shown that moments cal-
culated directly from measured eVDFs can be overestimated up to more than 50%
with respect to the real ones. Therefore, in order to get proper estimation of the
electron properties, one has to first apply some corrections on the measured eVDFs
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Figure 3.3: (From Štverák et al. (2008)) Examples of measured electron dis-
tributions acquired by the electron analyzer on board Helios I, Cluster II and
Ulysses. The asterisks/dots represent the measured energy bins. For presentation
purpose, the measured values are interpolated to a gray scale map. The arrow in
the Helios sample shows the direction of the local interplanetary magnetic field.
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before the main analysis can be performed.
In the solar wind, any object is exposed to a continuous flux of charged parti-

cles. An object with a conducting surface thus collects charge. At the same time
photoelectrons are emitted from the surface by the effect of the solar radiation. As
a result, the surface has a non-zero potential difference with respect to the ambient
plasma. In the solar wind, this potential for a spacecraft (S/C) is typically posi-
tive and can reach up to a few tens of volts. Regarding the energy analyzers, this
potential naturally leads to particle acceleration in the vicinity of the spacecraft.
Measured eVDFs are thus distorted from those in the unperturbed plasma.

An electron with an initial kinetic energy E0 = 1
2
mv2

0 accelerated towards the
analyzer by a potential ΦS/C is detected with energy Eacc = E0 + eΦS/C . For 1-D
detectors we may assume that only the radial component of the velocity is modi-
fied and the correction of the measured eVDF is quite straightforward. However,
this scalar correction has limitations for 2-D instruments since the electric field
(not strictly isotropic) produced by the potential around the spacecraft modifies not
only the particle energies but also their trajectories. A corresponding, more sophis-
ticated, vector correction was introduced by Scime et al. (1994b) for the Ulysses
measurements. The authors mapped all the electron trajectories using the planar
sheath approximation of the S/C electric field and consequently corrected not only
the initial energy of the impacting electrons but also their actual velocity direction
before entering the S/C sheath.

Without an a priori knowledge, correcting eVDFs to the effect of the potential is
quite delicate since its value depends itself on the values we are estimating (the den-
sity and temperature). Estimation of the spacecraft potential is possible assuming
the plasma to be locally neutral. Since estimation of ion densities is almost unaf-
fected by the S/C potential (Eion ≫ qionΦS/C) we can set the real electron density
ne,r to the measured ion density nion,m. For a Maxwellian the measured eVDF fe,m

distorted by the S/C potential ΦS/C will be

fe,m = ne,r

( m

2πkT

)3/2

exp
[

− m

2kT
v2
||

]

exp

[

eΦS/C

kT

]

. (3.16)

Obviously the S/C potential does not change in this simple case the temperature
of the electron population which can be estimated from the slope of log |fe,m|. The
S/C potential can be then computed by comparing the real and measured electron
density as

ne,m = ne,r exp

[

eΦS/C

kT

]

. (3.17)

In our data set, the S/C potential was not measured on board Helios spacecraft.
For its estimation, we used a generalized form of equation (3.17) for a sum of two
bi-Maxwellian distributions. For the Cluster data, the S/C potential is available
from in-situ measurements (Gustafsson et al. (1997)). Ulysses data samples were
already corrected with a more sophisticated procedure. A complete description of
this method is given in Scime et al. (1994b).

In addition, the measured eVDFs are at low energies polluted by photoelectrons
emitted from the spacecraft itself. With a positive S/C potential, the relatively
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cold photoelectrons (Ee,ph < eΦS/C) are attracted back to the S/C surface and
disallow measurements of pure solar wind electrons at lowest energies. The influence
of photoelectrons has to be removed by introducing a given threshold energy and
cutting off the whole part of the eVDF below this chosen energy limit. Consequently,
the central part of the eVDF at low energies has to be recovered by fitting the
unperturbed higher energy bins to some theoretical models. Otherwise one will
loose important part of the distribution and the estimation of the eVDF moments
will be incorrect. For our data set we set the energy threshold to 8 eV. This value
was empirically shown to be sufficient in order to remove all possible photoelectron
effects while keeping enough information for the subsequent fitting.

Finally it is convenient to apply a coordinate transformation from the S/C ref-
erence frame into the solar wind plasma frame where the desired moments of the
eVDF should be computed. The S/C velocity is small with respect to the mean
electron velocities and can be neglected. The transformation therefore consists in
subtracting the solar wind bulk speed, usually taken from ion measurements, from
the measured electron velocities. Note that this velocity transformation has to be
applied after the corrections to the S/C potential.
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Chapter 4

Radial Evolution of eVDFs

We have gathered more than 240 000 various solar wind eVDFs acquired in the low
ecliptic latitudes. However, not all of the available samples were fitted by the model
(3.2). In order to exclude measurements inappropriate for our analysis we imposed
on our data set several restrictions.

For the Helios data, we analyse only measurements where the angle between the
magnetic field vector and the axis of some of the eight azimuthal bins is sufficiently
small. We impose an upper limit value of 10◦. Less than 40% of Helios data set obeys
this strong restriction. This approach however guarantees that at least one of the
measured angular bins gives a good description of the strahl component. We apply
a similar condition also to the Ulysses data: only measurements with enough data
points in the strahl direction are taken for further analysis. For the Cluster data
the first and last angular bins of the SPINPAD data product are always parallel
to the local magnetic field line. Therefore, no restriction with respect to strahl
characteristics are needed.

Next, the S/C potential was not measured directly on-board Helios, therefore,
we first estimated its value for our further analysis. Consequently, we restricted the
Helios data to samples with S/C potential estimated to be positive as it should be
for spacecraft illustrated by the solar radiation. Finally, roughly only 50 000 samples
from our initial data set satisfied all these restrictions and were processed by our
fitting procedure.

We evaluate also the goodness of the fit, in order to better compare samples
from different instruments. We compute a standard-error-like parameter ǫ defined
by ǫ = (χ2/(N −1))1/2, where χ2 is the sum of the squared deviations of the fit from
the measured eVDF and N is the number of fitted points for the corresponding data
sample. For further analysis, we keep only fits where this standard error satisfies
ǫ ≤ [µ(ǫ) + 2/3 std(ǫ)], here µ(ǫ) is the mean value of ǫ over all eVDF samples and
std(ǫ) is the standard sample deviation of the mean value. Furthermore, some of the
samples are removed from the analysis by reason of unrealistic resulting parameters.
For these samples, the standard error ǫ fulfills our condition for the quality of the
fit but the resulting characteristics of the measured eVDF are considerably different
from those typically observed, and the estimated moments do not correspond to
expected conditions in the solar wind (e.g. core temperatures larger than 106 K
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Figure 4.1: (From Štverák et al. (2009)) Radial evolution of the density pro-
files in the slow solar wind. Symbols represent mean values as computed from
the fitting results in several radial bins. The error bars are of the order of the
symbol size. Two theoretical reference profiles for a pure radial expansion and an
expansion following the spiral magnetic field are plotted with dots and triangles
respectively. The solid line with squares, dashed line with diamonds, dotted line
with circles and dash-dotted line with stars represents the radial evolution of the
core, halo, strahl and of the sum of the strahl and halo, respectively.

which is comparable to the temperature in the solar corona). Finally, only those
results satisfying all these conditions imposed on the quality of the fit and on the
resulting moments, about 70% of all fitted samples, are used for our final statistics.

By use of data from three different spacecraft we cover a heliocentric distance
from 0.3 AU up to almost 4 AU. In this range we examine the radial profiles of
the main characteristics of all three eVDF components, that is their densities and
temperatures. We mainly focus on the radial evolution of the relative densities of the
three eVDF components. Furthermore, by computing averages from all parameters,
we provide an overview of the variation of the model eVDF shape with increasing
radial distance. As a by-product of our analysis, we study the break-point energy
of the electron population, i.e., the energy at which the eVDF loose its thermal
(Maxwellian) properties and starts to develop the non-thermal tails. We examine
also verify whether our model as applied on the large data set is in agreement with
the zero-current condition in the solar wind.

Typically, three major regimes of solar wind flows are observed by space missions
(Marsch (2006)). The first one is the steady fast wind originating from the open
magnetic field lines in the coronal holes. The second is the unsteady slow wind
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Figure 4.2: (From Štverák et al. (2009)) Radial evolution of the relative densities
of the eVDF components for the slow solar wind observations. Symbols represent
mean values with their error bars. The solid line with squares, dashed line with
diamonds, dotted line with circles and dash-dotted line with stars represents the
core, halo, strahl and a sum of strahl a halo, respectively. The total number of non-
thermal electrons remains almost constant along the observed range. The strahl
density decreases while the halo one concurrently grows - indicating electrons
scattering between these two components.

coming from edges of temporarily open streamers or from opening loops and active
solar regions. And finally, as a last solar wind regime we consider transient flows
that are dominated by the so called coronal mass ejections (CMEs) prevailing during
solar maximum cycle. In our study we focus on the main two regimes, i.e. the slow
and fast solar wind. These two regimes are examined separately in the following
two subsection.

We omit the transient disturbances for several reasons. The transient regime of
the solar wind is associated with episodic solar events like ejections of material into
interplanetary space from coronal regions. Therefore, for a large data set covering
a sufficiently long time interval, the effect of such events on the overall average
characteristics of the solar wind is assumed not to be significant.

4.1 eVDF radial evolution in the slow wind

We classify as a slow wind all the samples with a proton bulk speed lower than
500 km/s. This represents more than 90% of our whole data set. The density
profiles for all three eVDF components and for the sum of the non-thermal parts
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(i.e. the halo and the strahl) are shown in Figure 4.1. The whole data set is divided
into radial bins in which the mean values of the respective densities are computed.
The mean values are represented by squares for the core, diamonds for the halo,
circles for the strahl and stars for the sum of the halo and the strahl. Error bars are
of the order of the symbols size in this case.

For an isotropic steady state expansion the solar wind density should decrease as
r−2. In the solar wind, this should be the case of the core component. In Figure 4.1
we plot this theoretical profile (dots) for reference. It can be seen that this profile is
in a good agreement with the radial evolution of the core density as expected. We
find that this latter varies as r−2.03±0.08, which indicates that the mean core density
follows well, within the uncertainties, a steady state radial outflow. The halo and
strahl profiles show different trends. While the strahl slope is slightly steeper, the
halo density profile is flatter up to 1 AU. This difference demonstrates that the
evolution of the non-thermal electron densities is more complex than a pure radial
expansion.

For the strahl component we can not use the simplified approach of an isotropic
expansion. Contrary to the core, the strahl is rather expanding along the magnetic
field which can be approximated as radial only up to a limited distance. Scime et al.
(1994a) has shown that a quantity expanding along the magnetic field in a spiral
configuration (Parker (1963)) is rather proportional to

∝ 1

r2

√

1 +

(

rω

vsw

)2

(4.1)

where r is the heliocentric distance, ω is the angular speed of the Sun’s rotation
and vsw is the solar wind speed. For a sufficiently small distance, (4.1) can still be
replaced by ∼ r−2 but with increasing r this formula tends more to ∼ r−1. The
theoretical profile (4.1) for a slow solar wind with vsw = 400 km/s is plotted in
Figure 4.1 with triangles. However, obviously neither this theoretical approach is
matching with our observations. It is important to note that even by adjusting vsw

in (4.1) we can not achieve the observed characteristics. Therefore, other processes
must explain the radial scaling of the density of the non-thermal eVDF components.

In addition to the radial profiles of the densities themselves, it is very useful
to compute the radial variations of the relative number densities, i.e. the ratio of
the density of individual eVDF components to the total electron density. In Figure
4.2 we plot these relative densities n∗,rel = n∗/ne of the eVDF components with
respect to the total one ne, that is the sum of the core, halo and strahl (ne =
nc + nh + ns), again as a function of the heliocentric distance. The relative density
of the core, halo, strahl and the sum of the halo and strahl are represented by solid
line with squares, dashed line with diamonds, dotted line with circles and dash-
dotted line with stars respectively. The vertical lines represent the error bars of the
corresponding mean values in every radial bin. The most interesting result shown on
this figure is the clear opposite trend between the halo and strahl relative densities.
While the fractional number density of the strahl decreases with the radial distance,
starting approximately at 6% at 0.3 AU and being less than 2% beyond 3 AU, the
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Figure 4.3: Radial evolution of the parallel temperatures of the three eVDF
components in the slow wind. As for the density, the symbols represent mean val-
ues with their error bars. The solid line with squares, dashed line with diamonds
and dotted line with circles represent the core, halo and strahl respectively. The
mean values are overplotted with empirical power-law profiles (dotted lines). The
core temperature gradient is in agreement with previous studies. For all three
components, the cooling process slightly slows down beyond 1 AU.

halo relative density increases from less than 1% at 0.3 AU to more than 3% at the
end of the observed radial range. There is another important result in Figure 4.2: by
extrapolating the relative density of the halo component below 0.3 AU closer to the
Sun, the contribution of halo electrons seems to be almost negligible with respect
to the total electron density. The relative density of the summed non-thermal parts
remains however more or less constant during the solar wind expansion as it is
the case of the relative density of the thermal core. From our fitting it appears
that the non-thermal electrons represent roughly 5-7% of the total electron number
density, this fraction being constant with distance. These findings are similar to
those observed by Maksimovic et al. (2005) in the fast wind except for the nominal
values of the relative densities, which is due to the use of different fitting procedures.
Our observations therefore support theories (Gary et al. (1994), Vocks et al. (2005),
Gary and Saito (2007), Saito and Gary (2007)) proposing mechanisms which can
be responsible for the scattering of the strahl electrons into the halo while keeping
the thermal core unaffected.

Actually, the scattering of the strahl electrons can also partly explain the dis-
agreement between the theoretical profile (4.1) and the observed one plotted in
Figure 4.1. While in (4.1) we suppose the rarefaction of the strahl due to the ex-
pansion only, in Figure 4.2 we show that the decrease of the strahl density is also
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Figure 4.4: (From Štverák et al. (2009)) The parameter κ can serve as a measure
of the non-thermal state of an electron population. Here we plot the mean κ
parameter of the halo (dashed line with diamonds) and strahl component (dotted
line with circles) in the slow solar wind as a function of the radial distance. Both
of them are decreasing indicating stronger eVDF tails at larger distances from the
Sun.

caused by the transfer of strahl electrons into other eVDF components.

Figure 4.3 shows the radial profile of parallel temperatures for the core (squares),
halo (diamonds) and strahl (circles) respectively. We fitted the mean values in
the radial bins up to 1 AU with a power-law profiles T∗,|| ∝ r−β. The resulting
profiles overplot the mean temperatures as a dotted lines with indicated values of
the exponent β. For the core component the results with Tc,|| ∝ r−0.70 are consistent
with the previous findings of Pilipp et al. (1990), see Figure 1.1. Compared to the
core the halo and strahl component are cooling slightly faster and slower respectively.
The computation of the halo temperature, as described in the chapter 3, is different
with respect to the previous studies where halo was modeled typically as a bi-
Maxwellian or a bi-Kappa distribution functions. Therefore comparisons are rather
irrelevant. Also for the strahl component, no observational results of the strahl
temperature with a model comparable with our study have been yet reported. An
important result clearly visible in Figure 4.3 is the deceleration of the cooling process
beyond 1 AU. This may be related to the changing orientation of the IMF (Scime
et al. (1994b)). There is no clear explanation for the jump in the strahl temperature
around 1 AU. We suppose that it can be rather an artificial product related to
different instruments used to acquire the eVDFs.

Another information about the non-thermal state of the observed eVDFs can be
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Figure 4.5: (From Štverák et al. (2009)) Radial evolution of a model eVDF
function in the slow solar wind. Model functions are plotted using average values
of all parameters as resulting from the fitting at four different radial distances:
0.35 AU (dotted line), 0.55 AU (dashed line), 0.75 AU (dash-dotted line) and
2.5 AU (solid line). Except the upper left panel, the model eVDF functions
are normalized so that the value at the peak equals to 1 and the velocity is
scaled by vth,c in order to remove the core radial trends. In the lower panels,
the halo and strahl component evolution is compared with the normalized core.
With increasing radial distance, the strahl electrons close to the thermal core are
scattered, and the same time, the halo develops stronger tails and its relative
importance is growing.
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obtained from the parameter κ for both the halo and strahl components. The κ
distribution is defined such as that with increasing κ, the function is becoming more
and more Maxwellian (actually the distribution is almost Maxwellian for κ ≥ 10).
Therefore, we can use κ as a measure of the non-thermal character of the eVDF
tails. The larger is κ the less pronounced are the tails. The radial evolution of κ is
displayed in Figure 4.4. Here the dashed line with diamonds and dotted line with
circles represent the κ parameter of the halo and strahl components respectively.
For both of them, κ is decreasing with increasing radial distance. This means that
as the solar wind expands, both the halo and the strahl become more and more
non-Maxwellian.
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Figure 4.6: (From Štverák et al. (2009)) Radial evolution of the density profiles
in the fast solar wind. As for the slow wind, the symbols represents the mean
values as computed from the fitting results in several radial bins. The error
bars are of the order of the symbol size. A theoretical reference profiles for an
isotropic radial expansion and spiral expansion are plotted with dots and triangles
respectively. The solid line with squares, dashed line with diamonds, dotted line
with circles and dash-dotted line with stars represents the core, halo, strahl and
a sum of strahl and halo, respectively.

In Figure 4.5, we summarize the radial evolution of the observed eVDFs in the
slow solar wind. We display the radial evolution of the model distribution function
(3.2) computed using the average parameters from the fitting process. Four different
radial distances are compared: 0.35 AU (dotted line), 0.55 AU (dashed line), 0.75 AU
(dash-dotted line) and 2.5 AU (solid line). Figure 4.5 thus gives very nice picture
of the radial evolution of a typical eVDF shape in the slow solar wind. For every
radial bin, we plot the cut of the model eVDF along the velocity parallel to the
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Figure 4.7: (From Štverák et al. (2009)) Fast wind radial evolution of the relative
densities of the eVDF components. Symbols represent mean values and their error
bars. The solid line with squares, dashed line with diamonds, dotted line with
circles and dash-dotted line with stars represents the core, halo, strahl and a sum
of strahl a halo, respectively. The total number of non-thermal electrons remains
almost constant along the observed range, strahl density is decreasing while halo
grows at the same time. The sum of non-thermal components seems to be more
variable than in the slow wind.

magnetic field. In the upper left panel we plot the model eVDF as it results from
the fitting procedure. One can see the natural cooling and rarefaction caused by
the solar wind expansion. In order to better compare the radial evolution of the
shape of the eVDF, we plot the normalized model functions in the remaining three
panels. The normalization is done in such a way that the maximum of f is set to
1 and the velocity is given in vth,c units, where vth,c =

√

2kTc||/m is the parallel
thermal speed of core electrons. Such normalizations remove the radial trends (the
cooling and rarefaction) of the core component caused by the solar wind expansion.
The core component is represented in these three panels with dots. The upper right
panel represents the whole model eVDF while the lower panels show the halo and
strahl components respectively. All the properties discussed in Figures 4.1, 4.2 and
4.4 are also visible in Figure 4.5. The halo tails density is increasing at the expense
of the strahl (as in Fig. 4.2). The non-thermal character of both the halo and the
strahl increases with the heliocentric distance (as in Fig. 4.4). The lower right panel
of Figure 4.5 is very interesting. It allows to better visualize the strahl scattering.
From this figure it appears that strahl electrons around the core boundary, where the
core electrons are still enough numerous, thus close to the thermal regime, decreases
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Figure 4.8: Radial evolution of the parallel temperatures of the three eVDF
components in the fast wind. The symbols represent mean values in several radial
bins. The solid line with squares, dashed line with diamonds and dotted line with
circles represent the core, halo and strahl parallel temperature respectively. The
mean values are overplotted with empirical power-law fits (dotted lines) up to
1 AU. There is a lack of fast wind observations at higher radial distances

significantly during the expansion and probably scattered in other pitch angles into
the halo population. This behaviour can mean that Coulomb collisions could also
act as one of the strahl scattering mechanisms.

4.2 eVDF radial evolution in the fast wind

The fast solar wind is in general considered as a steady-state outflow compared to
the less stationary slow wind regime. It is typically less dense than the slow wind
and the eVDF non-thermal features are thus observed to be more important. For
our statistics we have selected only eVDF samples with measured proton bulk speed
greater than 600 km/s. In our data set which includes in-ecliptic observations, only
roughly 10% of the total number of eVDF samples represent the fast solar wind
regime. Moreover, there are only about one hundred samples with the given bulk
speed condition in the Ulysses radial range (1.2-4 AU). This can yield therefore
larger uncertainties in the estimation of the mean eVDF properties. Nevertheless,
in order to make the study complete, we present here the results concerning the
fast solar wind, even though the statistical conclusions, in this case, will have to be
taken with caution.

All figures concerning the fast wind are analogous to the previous subsection 4.1
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Figure 4.9: (From Štverák et al. (2009)) The parameter κ can serve as a measure
of the non-thermal state of an electron population. Here we plot the mean κ
parameter in the fast wind of the halo (dashed line with diamonds) and strahl
component (dotted line with circles) as a function of the radial distance. Both of
them are decreasing, indicating stronger eVDF tails at larger distances from the
Sun.

describing the slow wind. The radial evolution of the electron number densities is
shown in Figure 4.6. As for the slow wind, we plot all three eVDF components plus
the sum of the two non-thermal parts. Again, the core density decreases as ∼ r−2.
The exact law for the core density in the fast wind is proportional to ∝ r−2.11±0.17,
with the exponent slightly smaller compared to Maksimovic et al. (2005). The radial
trends of the halo and strahl densities are also similar to the slow wind case. At
0.3 AU the strahl density is higher than the density of the halo but it falls faster with
radial distance. Therefore, the halo density overcomes at certain distance, around
1 AU, the strahl one. The radial profile of the strahl density decreases still slightly
more steeply than the prediction for an expansion along the spiral oriented magnetic
field. The theoretical profile for a spiral expansion (4.1), plotted with triangles in
Figure 4.6, is now computed for the solar wind speed vsw = 650 km/s.

The relative densities of the eVDF components are displayed in Figure 4.7. Glob-
ally as for the slow wind case, the results for the fast wind tend to support the theory
of strahl electrons being scattered into the halo, however, with two noticeable differ-
ences. First the sum of the halo and strahl relative densities is more variable with
radial distance compared to the almost constant trend observed in the slow wind
case. This could be due to either a statistical effect caused by a lack of fast wind
samples, or to some possible interplay between the core and strahl/halo electrons
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as well. Secondly, as already reported by several previous studies (Feldman et al.
(1975), Pilipp et al. (1987a) and Pilipp et al. (1987b)) the relative densities of the
non-thermal parts in the fast wind case are slightly higher compared to the slow
wind one. The strahl relative density starts at 0.3 AU between 7 and 8% and falls
to about 2% at 3 AU. The halo relative density, being less than 1% at the closest
observed radial range to the Sun, reaches about 7% at 3 AU, i.e. about 4% more
compared to the slow solar wind results.

The radial profiles of the parallel temperatures in the fast wind are shown in
Figure 4.8 again for the core (squares), halo (diamonds) and strahl (circles) respec-
tively. The empirical power-law profiles T∗,|| ∝ r−β which fit the mean values up to
1 AU, now mainly because of the lack of fast wind observations from the Ulysses
spacecraft, are displayed with dotted lines. The core profile Tc,|| ∝ r−0.55 is still in
the range reported by Pilipp et al. (1990). In general, the cooling in the fast wind of
the core, and as well of the halo and strahl components, is found to be much slower
than in the slow wind (compare with Figure 4.3). However, the main trends are the
same. The strongest gradient is observed for the halo component while the slowest
cooling is again observed for the strahl and the core is in between. Contrary to the
slow wind, we do not have enough observations beyond 1 AU in order to make any
conclusions about larger heliocentric distances.

Regarding the non-Maxwellian character of eVDF tails in the fast wind, the
radial evolution of the parameter κ for both the halo and the strahl components
is qualitatively similar to the slow wind case. However, Figure 4.9 shows that at
0.3 AU the halo eVDF tails are already more non-Maxwellian than in the slow wind
(compare Figure 4.4), while the relative densities are roughly the same.

As for the slow wind case, we plot in Figure 4.10 the radial evolution of the
model distribution function (3.2) for the fast wind. We compute the average values
of all parameters at four radial bins: 0.35 AU (dotted line), 0.55 AU (dashed line),
0.75 AU (dash-dotted line) and 3 AU (solid line). Because of the lack of fast wind
data samples, the furthest radial bin differs from Figure 4.5. The upper left panel
displays the overall model distribution, while in the other panels the model function
and its components are normalized with respect to the total density (y-axis) and
to the core thermal parallel velocity (x-axis) again in order to remove the effects of
the cooling and the rarefaction of the wind. The relative growth of the halo and
the damping of the strahl as well as the decrease of the parameter κ for both of the
non-thermal components are clearly visible on the lower-left and lower-right panel
respectively. The basic trends in the radial evolution for the fast solar wind are
actually very similar to those we have shown for the slow wind regime. However,
the nominal values of the relative densities indicate on average stronger non-thermal
tails.

4.3 Break-point energy

Due to the properties of Coulomb collisions the solar wind electrons can be treated
as a gas in a thermal equilibrium only up to certain energy level. Particles beyond
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Figure 4.10: (From Štverák et al. (2009)) Radial evolution of a model eVDF
function in the fast solar wind. Model functions are plotted using average values
of all parameters as resulting from the fitting at four different radial distances:
0.35 AU (dotted line), 0.55 AU (dashed line), 0.75 AU (dash-dotted line) and
3 AU (solid line). Except for the upper left panel, the model eVDF functions
are normalized in such a way, that the value at the peak equals to unity and the
velocity is scaled by vth,c. In the lower panels, only the halo and strahl component
evolution is compared with the normalized core. With increasing radial distance,
the strahl electrons close to the thermal core are scattered while the halo develops
stronger tails - slightly stronger than in the slow wind.
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Figure 4.11: (From Štverák et al. (2009)) Radial evolution of the break-point
energy Ebp normalized by kBTc||. The halo break-point energy (dashed line with
diamonds) is decreasing and reaching a theoretical limit (dots) around 0.8 AU.
In this radial range, no upper limit is reached by the strahl break-point energy
(dotted line with circles).

this break-point energy Ebp have a minimal local interaction with surroundings and
create non-thermal tails of the observed eVDFs. In Scudder and Olbert (1979) the
authors proposed that the observed eVDF in the solar wind are shaped primarily
by Coulomb collisions. They conclude that the effect of Coulomb collisions by itself
is sufficient to determine the shape of the eVDFs in both the thermal (E < kT ) and
suprathermal (E > kT ) energy regimes. Furthermore, they theoretically predicted
that the break-point energy scales with local temperature as

Ebp(r) ≈ 7kTC(r). (4.2)

where k is the Boltzmann constant and TC(r) is the local core electron temperature
at the radial distance r.

In this study we define two energy-normalized break points, both in the parallel
direction. One is defined in the sunward part of the eVDF: the halo energy break
point Ebp,h, and one in the antisunward direction: the strahl energy break point
Ebp,s. These normalized energies in units of [kTc,||] are given as

Ebp,∗ =
mv2

bp,∗

2kTc||

(4.3)

where the velocity vbp,∗ for halo and strahl is determined by

fh(vbp,h) = fc(vbp,h)
fs(vbp,s) = fc(vbp,s) + fh(vbp,s)

(4.4)
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respectively. Results from our eVDF analysis are displayed in Figure 4.11. The
dashed line with diamonds and the dotted line with circles represent the mean halo
and strahl break-point energy, respectively, as a function of the heliocentric radial
distance. The error bars of the mean values are expressed by vertical lines. The halo
break-point energy slowly decreases with the increasing radial distance reaching the
theoretical value of Scudder and Olbert (1979) between 0.7 and 0.8 AU. At larger
distance it seems that this theoretical value represents a lower constraint, similar
results are reported also in McComas et al. (1992). An inverse trend is observed
for the strahl break-point energy. The strahl break-point energy grows up with
increasing radial distance and the slope of this growth is slowly decreasing. However,
from this radial interval it is not clear whether the strahl break-point energy has
some upper limit smaller than in the case of the halo. That is to say whether the
strahl at a certain distance completely disappears or not. Actually, Figure 4.11
describes the radial evolution of competing halo and strahl components already
demonstrated in the lower panels of Figures 4.5 and 4.10.

4.4 Charge flux

In the solar wind, both ions and electrons are flowing together in the same direction.
In order to maintain the global charge neutrality, no electric currents can exist in
such an environment. This means that the ion and electron charge flux through
a given area (larger than the Debye radius) has to be equal. If the core and halo
components would be flowing with the same velocity as the ions, the strahl electrons
would break this equality and produce a non-zero current in the direction parallel
with respect to the magnetic field. In order to satisfy the zero-current condition, i.e.

vbulk,ene = vbulk,ionnion, (4.5)

in our model eVDF we allow not only the strahl drift ∆s in (3.9) for v|| but also
a drift of the core ∆c in (3.3). For the model eVDF in the ion plasma frame the
condition (4.5) can be thus rewritten as

vbulk,cnc + vbulk,sns = 0. (4.6)

During the fitting procedure we do not impose any dependence between ∆c and ∆s,
both are completely independent. From the result we then compute the core charge
flux Φc and strahl charge flux Φs as

Φc/s = |vbulk,c/s|nc/s (4.7)

According to (4.6), both Φc and Φs have to be equal. These fluxes are compared
in Figure 4.12. Here we plot the correlation between Φc and Φs separately for all
three instruments used in our data set. We compute the mean values of Φs in
several bins defined over the Φc range. Both slow and fast solar wind regimes are
mixed in Fig. 4.12 since the zero-current condition has to be valid in any case.
For all three instruments, the fluxes are well correlated. However, except Φc &
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Figure 4.12: (From Štverák et al. (2009)) The charge flux of core Φc and strahl
Φs is compared separately for all three spacecraft. We plot the mean values of Φs

over all eVDF samples in several bins defined over the Φc range with circles, stars
and diamonds for Helios, Cluster and Ulysses respectively. The fluxes are well
correlated for all three instruments. However, namely for Cluster and Ulysses, the
correlation slightly deviates from the theoretical zero-current condition Φc = Φs.
The figure represents all analyzed data samples including observation of both slow
and fast solar wind.

1012e m−2s−1 for Helios spacecraft, the fluxes do not exactly match the theoretical
zero-current condition Φc = Φs. These discrepancies can result from many reasons.
First, one should note that we use as a reference frame the proton bulk speed and
that we neglect the alpha particles velocity. We are not therefore in the exact zero-
current frame. Second, because of the large electron thermal speeds, the estimation
of the drift velocities, namely for the core, can already contain a non-negligible
error. Also the estimation of the density itself, especially for the strahl, can be
inaccurate as well. Finally we have to take into account different designs of the
instruments. For example, in Figure 4.12 we can see larger deviations from the
mean values with decreasing charge flux which can be due to limited sensitivity
of the individual sensors. All these facts put together make our fitting procedure
acceptable corresponding to the zero-current condition and indicate that the strahl
charge flux is balanced by the oppositely drifting core.

Finally note that in this case we did not allow any drift for the halo component.
If we suppose that the halo drifts together with the core, the halo contribution to
the total electron charge flux will be negligible since the core drift is much smaller
then the strahl drift while the densities of strahl and halo are comparable. Also
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the estimate of the halo drift would be highly inaccurate because of the very large
thermal speeds of halo electrons. Therefore an assumption of a non-drifting halo
is acceptable. Furthermore, this assumption also makes the model and its analysis
less complicated.
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Chapter 5

Electron Temperature Anisotropy

In the absence of some mechanisms for interchange of the parallel and perpendicular
kinetic energy, the application of the classical CGL relations (Chew et al. (1956)) to
the solar wind electrons expanding in the spiral structured interplanetary magnetic
field predicts large temperature anisotropies. Starting with an isotropic electron dis-
tribution close to the Sun, this simple model predicts, for a typical slow solar wind
at 1 AU, a temperature ratio between the parallel T|| and perpendicular T⊥ temper-
ature (the directions are with respect to the ambient magnetic field) of more than 30
(Phillips and Gosling (1990)). However, the observed solar wind at this distance is
found much closer to the isotropic state with an average Te,||/Te,⊥ of 1.2 (Feldman
et al. (1975) and Pilipp et al. (1987b)). In order to explain these observations some
physical processes that can effectively transfer the internal kinetic energy of the so-
lar wind electrons from the parallel to the perpendicular directions are needed to
counteract the adiabatic expansion and thereby maintain the plasma close to the
isotropic state. There are two main kinetic processes able to cause these effects:
kinetic plasma instabilities driven by temperature anisotropy itself and Coulomb
collisions.

In the present study, we analyse a large number of solar wind eVDFs acquired
by three different spacecraft in the low-ecliptic latitudes from 0.3 up to to 4 AU.
We estimate the electron temperature anisotropy by fitting of the measured velocity
distributions with an analytical model. We fit the core component with the bi-
Maxwellian distribution and the halo with a bi-Kappa function. The model and
the fitting procedure are described in detail in Štverák et al. (2008). In this case,
we do not truncate the halo in the thermal regime as it is done for the analysis of
the relative densities in chapter 4. Therefore, we obtain directly the second order
moments of the eVDFs corresponding to the parallel and perpendicular temperatures
directly from the parameters of the analytical model function.

Based on the observations and parameters obtained from the fitted eVDFs, we
provide a statistical study of possible constraints imposed on the electron tempera-
ture anisotropy by kinetic instabilities and Coulomb collisions. In the case of kinetic
instabilities, we examine all the acquired data in terms of temperature anisotropy
vs. parallel electron plasma beta which is predicted by the linear dispersion theory
to be related to growth rates of unstable modes. Both fitted eVDF components, the
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core and the halo, are studied separately. The effect of Coulomb collisions on the
electron temperature anisotropy is studied in terms of the electron collisional age
Ae defined as the number of collisions suffered by an electron during the expansion
of the solar wind. We show that both instabilities and collisions are strongly related
to the isotropisation process of the electron core population while the answer to this
question for the halo component is still open.

5.1 Kinetic instabilities

The fastest growing modes of electron temperature anisotropy instabilities are the
whistler and the fire hose instability (see chapter 2). For the whistler instability and
as well for the fire hose instability, Gary and Wang (1996) and Gary and Nishimura
(2003) have shown that the threshold conditions for each of these instabilities, as
predicted by the linear dispersion theory, can be written as

T⊥

T||

= 1 +
a

βb
||

, (5.1)

where the parameter a is positive for the whistler instability and negative for the
fire hose and b is always positive. The parameter β|| = 2µ0nkBT||/B

2 is the elec-
tron parallel plasma beta. The equation (5.1) thus represents a relation between
the electron temperature anisotropy and the ratio between the particle kinetic and
magnetic field pressure. The values we have used in our study for the parameters
a and b for the whistler and fire hose instability are given in table 1 of Gary and
Wang (1996) and table I of Gary and Nishimura (2003) respectively.

We compare the curves of constant growth rates of both dominant unstable
modes with the electron temperature anisotropy obtained from the fitting process
in the (T⊥/T‖, β‖) space. These isocontours of growth rate factors represent in the
(T⊥/T‖, β‖) plane threshold conditions of the marginal stability and should thus
constrain the observed electron temperature anisotropies.

Results obtained from fitted eVDFs for the thermal core population are shown
in Figure 5.1. Results for the slow wind (upper panel) and fast wind (lower panel)
are presented separately. For the slow solar wind we consider the samples with
electron bulk speed less then 500 km/s and for fast wind we consider samples with
bulk speed greater than 600 km/s. The dash-dotted and the dashed line represent
the isocontours of growth rates for the whistler and fire hose instability respectively.
The counts of the observed ratio between the core perpendicular temperature Tc,⊥

and parallel temperature Tc,|| are represented by a logarithmic scale.
The temperature anisotropy of thermal core population in the slow wind seems

to be fairly well constrained by instability thresholds predicted by the linear the-
ory because. The core represents the majority of the total electron number density
and is well described by a single bi-Maxwellian velocity distribution. A single bi-
Maxwellian distribution is also assumed in the theoretical model used in Gary and
Wang (1996) and Gary and Nishimura (2003) to compute the instability thresholds.
Namely for higher β||, the slow wind is well constrained by predicted thresholds of
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Figure 5.1: (From Štverák et al. (2008)) Occurrence rates in our large data set
of the temperature anisotropy T⊥/T|| as a function of β|| for the core population
in the slow (upper panel) and fast (lower panel) solar wind. The curves represent
the isocontours of growth rates for the whistler (dash-and-dot line) and the fire
hose (dashed line) instability.
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Figure 5.2: (From Štverák et al. (2008)) Counts histogram of the T⊥/T|| vs. β||

from our data set for the halo population in the slow (upper panel) and fast (lower
panel) solar wind. The curves represent the contours of constant growth rates for
the whistler (dash-and-dot line) and the fire hose (dashed line) instability. Here,
the theoretical model does not correspond to the analytical model used for the
data analysis.
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Figure 5.3: (From Štverák et al. (2008)) The dependence of the electron tem-
perature anisotropy of the core population on the Coulomb collisions represented
by the electron collisional age Ae.

both the whistler and also fire hose instability. For the fire hose instability, there
is still a small gap between the observed plasma conditions and the isocontour of
even very low growth rate. This little disagreement between observations and pre-
dictions of the linear theory can results from the simplified model used in Gary and
Nishimura (2003). Observed electron distributions in the solar wind exhibit more
complicated properties including the supra thermal halo and the strahl populations.
These deviations from the simple bi-Maxwellian shape of the velocity distribution
could have an influence on the predicted shape of the isocontours of the growth rate
factors.

For the core population in the fast solar wind (lower panel of Figure 5.1) the
situation is quite different. Here the electron temperature anisotropies are well
localized far away from the unstable regions with a mean T⊥/T|| ratio of 0.75±0.15.
This can be explained as a consequence of insufficient number of samples in our data
set with a electron bulk speed greater than 600 km/s, which we have selected as a
lower limit for the fast solar wind or that the instability thresholds have no relevance
in the fast wind. The bulk speed condition for the fast solar wind is satisfied for
roughly 10% of Helios and Cluster data while it is less then 1% from all the Ulysses
samples. From the theory, confirmed by observations, greater anisotropies develop
at larger distances from the Sun. The fact that we do not have sufficient amount
of data from larger distances from the Sun can be a reason why we do not see any
evolution of the electron temperature anisotropy for the fast solar wind in our data
set.
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core halo
slow wind 0.5
fast wind 0.6 0.3

Table 5.1: The power-law decrease of the electron temperature ∝ r−α is observed
to be different for the slow and the fast solar wind. For the computation of the
electron collisional age we have used for the core and halo electron populations
values displayed in this table.

Analogous results for the halo population are shown in Figure 5.2. The upper
and lower panels show results obtained for the slow and fast solar wind respectively.
Note, however, two restrictions in this case. Firstly, the theoretical model used in
the linear prediction of the growth rates of the instabilities (bi-Maxwellian) and
the analytical model used for the data analysis (bi-Kappa) are different. Secondly,
when computing the theoretical predictions for the halo component, we completely
neglect the possible effect of the core. One can thus expect disagreement between
the results predicted by the theoretical model and the results based on the analysis
of real data. The isocontours of growth rate are here plotted mainly for better
comparison with figure 5.1. Nevertheless, results obtained for the halo population are
similar to results of the core population. We find the observed electron temperature
anisotropy fairly constrained by thresholds predicted by the linear theory as in the
slow solar wind. For T⊥ > T|| the data are almost consistent with the growth rates
of the whistler instability predicted for a bi-Maxwellian plasma. In the opposite
of T⊥ > T||, similar processes to the fire hose instability seem to take an effect. If
we would use a bi-Kappa rather than a bi-Maxwellian velocity distribution for the
computation of the instability threshold, we could possibly find the result closer to
the observations. For the fast wind, we again observe the plasma relatively far from
the predicted thresholds in the (T⊥/T||,β||) plane.

5.2 Coulomb Collisions

In the following we shall examine the effect of Coulomb collisions which also can
participate in exchanging of internal kinetic energy between the plasma particles.
Since our data were sampled at different radial distances, we have compared the
temperature anisotropy with the electron collisional age Ae (Salem et al. (2003)).
The advantage of expressing the effect of Coulomb collisions by the collisional age
is that it does not only take into account the current in situ properties of the
plasma but it also in a certain manner reflects the time already spent during the
expansion of the solar wind from the corona. The collisional age is obtained by
integrating the collision frequency from some initial distance up to location of the
measurement. The density and temperature heliospheric gradients are assumed to
be given by the power laws r−2 and r−α respectively. This computation supposes
electrons expanding along open magnetic field lines with a constant flow speed. It
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Figure 5.4: (From Štverák et al. (2008)) The radial evolution of the core T⊥/T||

vs. β|| correlation in the slow solar wind. The lines represent contours circum-
scribing 70% of all samples at a given radial distance.

does not therefore distinguish trapped electrons bouncing back and forth on closed
trajectories which already spent more time in the expanding solar wind.

The formula for the electron collisional age reads

Ae = νe⊥
R

vsw

(

1 − (R/r0)
1−1.5α

1.5α − 1

)

. (5.2)

Here R is the radial distance at which the data sample was acquired, r0 is the initial
distance from which we count the collisions, vsw is the solar wind bulk speed and
νe⊥ represents the total transverse collision frequency of electrons (see Phillips and
Gosling (1990)) at the place where the data are acquired (thus at the distance R
from the Sun). The parameter α in (5.2) depends on the solar wind properties and
it varies for the slow and fast wind and also for the core and halo population (see
Issautier et al. (1998), Maksimovic et al. (2000), Fludra et al. (1999), Marsch et al.
(1989)). Because of a large number of various studies published on this topic, we
have used some average values from all these results. These values of α are displayed
in Table 5.1. The initial distance r0 was set to 0.2 AU, a small step back from the
minimum distance R of our data samples in order to keep the term in the brackets
on the right hand side of (5.2) positive.

The correlation between the electron collisional age and the temperature anisotropy
of the core population is shown in figure 5.3. All samples are represented by a gray
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Figure 5.5: (From Štverák et al. (2008)) Correlation of electron anisotropy in-
stabilities and electron Coulomb collisions. The electron temperature anisotropy
is plotted as a function of the electron parallel plasma beta. All the samples are
divided into three bins corresponding to different levels of the electron collisional
age.

scale 2D histogram. The results are in good agreement with our expectations and
also with previous results of Phillips et al. (1989) and Salem et al. (2003). With in-
creasing number of collisions, the observed electron distribution functions are closer
to the isotropic state. We have also divided the resulting Ae into several bins and
computed the corresponding mean collisional age (squares) and the standard de-
viations (triangle error bars) of the temperature ratio. There is a clearly visible
trend of the mean temperature anisotropy tending to 1.0 with increasing number of
collisions.

We have also examined the electron temperature anisotropy in the frame of in-
stabilities as a function of the radial distance. According to our expectations based
on the theory of the expanding solar wind, higher temperature anisotropies are ob-
served at greater distances with parallel temperature exceeding the perpendicular
one. Our data set enables us to examine the relation between the electron temper-
ature anisotropy and the parallel plasma beta as a function of the increasing radial
distance from 0.3 AU up to almost 4 AU. The radial evolution is presented (for the
core population only) in figure 5.4. The lines represent contours circumscribing 70%
of all samples at a given radial distance. No visible path in the (T⊥/T||, β||) plane
can be clearly seen. Only a gentle spreading of the temperature anisotropy with
increasing distance can be noticed. Since our statistics for the fast solar wind is
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insufficient, it is more difficult to perform such an analysis in this case.
We have shown that both, the instabilities as well as the Coulomb collisions, can

influence the temperature anisotropy of the solar wind electrons. The final question
is whether these effects act independently or are somehow correlated. In general
higher plasma beta implies more collisions but nearly isotropic electron distributions
are also observed for lower beta. Actually these isotropic distributions with low
beta are a consequence of the Coulomb collisions rather than instabilities. This
correlation of instabilities and collisions is demonstrated in Figure 5.5. On this
figure all the samples are divided into three bins corresponding to different levels of
the electron collisional age. For the bin where collisional age Ae is greater than 60,
we find only nearly isotropic electron distributions not only at high electron parallel
plasma beta but as well at low values of this parameter. Here the instabilities do
not play any role, or are very weak, thus electrons have most likely been isotropized
mainly via collisions. The figure 5.5 gives another important result. While there was
no clear correlation between the temperature anisotropy in the parallel beta frame
with increasing radial distance (figure 5.4), we can see a nice trend with increasing
number of collisions. Instead of a radial trend we may rather speak of a collisional
evolution of the temperature anisotropy for the solar wind electrons.
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Chapter 6

Electron Heat flux in the Solar
Wind

The heat flux is a fundamental quantity in the solar wind. It is the consequence of
mechanisms which transport the energy from the hot solar source to the cold outer
heliosphere. In particular, the way the heat is transported is probably strongly linked
to the way how the wind is accelerated and heated. A complete understanding of
the solar wind would thus require a thorough understanding of how the heat flux
evolves and how it is controlled during the whole process of the solar wind expansion.
However, this energy flow and the associated issue of the solar wind heating are still
not well understood.

In the solar corona, the heat flux required to produce the observed solar wind
(see e.g. Meyer-Vernet (2007)) is estimated to values which are greater than it can
be provided by the collisional electron heat flux given by (1.20) as

Qe,col = −κe∇Te(r).

On the other hand, already early observations (Montgomery et al. (1968), Hund-
hausen (1969) or Hollweg (1974)) have shown that in the solar wind near 1 AU
the heat flux is significantly smaller than predicted by Spitzer and Härm (1953).
Since the theory based on the effect of frequent Coulomb collisions can not explain
the observations, a kinetic treatment, i.e. a detailed study of VDFs, is needed to
correctly describe the true mechanism transporting the heat from the corona out to
the whole heliosphere.

The bulk of the solar wind heat flux is transported by electrons (Feldman et al.
(1975)) and is observed to flow along the local background magnetic field (e.g. Scime
et al. (1994a)). From the kinetic point of view, the heat flux is produced by the
skewness of observed eVDFs represented by the strahl component. We present an
observational study of the heat flux properties based on our large data set which
combines measured eVDFs from three spacecraft. The measured eVDFs are fitted
with the 3-component model described in chapter 3 where all three components are
described by fully analytical forms. The heat flux is then estimated by numeri-
cal integration of the model distribution functions, performed for each component,
namely the core, the halo and the strahl, separately. Resulting estimations of the
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Figure 6.1: The observed radial evolution of average absolute electron heat
fluxes as result from our analysis of the large eVDF data set. We plot the partial
heat flux of the core (squares), halo (diamonds), and strahl (circles) as a function
of the radial distance from Sun. Note that the core and halo electron heat fluxes
represent a negative contributions to the total electron heat flux. Dotted lines
represent the empirical power law for the strahl heat flux as derived from our
analysis.

heat flux should thus be more precise than a direct discrete integration of measured
eVDFs. In this chapter we present the observed radial evolution of the electron heat
flux throughout the solar wind expansion from 0.3 up to 4 AU. Consequently, we
examine some possible theoretical constraints imposed on the solar wind heat flux
by wave-particle interactions and Coulomb collisions.

We use an analytical model in which two components, the core and the halo, may
be drifting in the plasma rest frame along the magnetic field in the sunward direction
(Q negative), while an antisunward drift is imposed on the strahl component (Q
positive). The heat flux for each of the three components is calculated in the rest
frame of the whole distribution function, therefore, the total electron heat flux equals
to

Qtot = Qc + Qh + Qs = Qs − |Qc| − |Qh| (6.1)

where Qc, Qh and Qs are partial heat fluxes of the core, halo, and strahl respectively.
Since the drift of the core is typically much smaller than the drift of the strahl, the
core and particularly the halo sunward oriented heat flux are expected to be much
smaller than the antisunward oriented heat flux of the strahl.
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Q ∝ rα Core Halo Strahl Total
r < 1AU −2.43 ± 0.12 −0.45 ± 0.24 −2.75 ± 0.10 −2.90 ± 0.13
r > 1AU −1.93 ± 0.14 −1.47 ± 0.07 −1.61 ± 0.06 −1.51 ± 0.03

Table 6.1: List of power law gradients as deduced from our large data set by
fitting of the measured eVDFs to the proposed analytical model. Exponents α of
the empirical power law Q ∝ rα are listed for the core, halo and strahl components
and for the total electron heat flux for samples acquired in radial distance r from
the Sun below and above 1 AU respectively.

6.1 Radial Evolution

In the classical collisional theory for the energy transport in plasmas the heat flows
against the local temperature gradient as given by equation (1.20). The magnitude
of the heat flux further depends on the thermal conductivity κcol of the transport
medium represented by electrons. The electron thermal conductivity depends on
the electron temperature as

κe,col ∝ T 5/2
e (6.2)

while it is almost independent on the electron density1 (Spitzer and Härm (1953)).
For a radially expanding general polytrope flow (p ∝ ργ), the radial profile of the
polytropic temperature is given by (1.17). Substituting (6.2) and (1.17) into (1.20),
we find the theoretical collisional heat flux to decrease with the heliocentric radial
distance r as

Qe,col ∝ Q0r
−7γ+6 (6.3)

thus for the adiabatic and isothermal flow we have Qe,col ∝ r−17/3 and Qe,col ∝ r−1

respectively. Note that for the isothermal case, Q0 will in fact limit to zero. In
order to have a non-zero isothermal heat flux, we have to assume that the thermal
conductivity depends also on the polytropic index as κe ∝ 1/(γ − 1). However,
the thermal conductivity derived in Spitzer and Härm (1953) is independent on the
polytropic index.

Since the heat flows along the magnetic field lines, the radial expansion is valid
only up to a limited distance. Assuming the model of Parker (1963) for the IMF,
Scime et al. (1994a) derived that the radial gradient in (1.20) should be replaced by

∇ =

(

1 +

(

rω

vsw

)2
)−1/2

∇r (6.4)

where ω is the angular speed of the Sun’s rotation and vsw is the solar wind speed.
Therefore, at a larger radial distance r the heat flux profile given in (6.3) will change
to

Qe,col ∝ r−7γ+5 (6.5)

1In fact, the thermal conductivity depends on the density only indirectly through the Coulomb
logarithm which variation in the solar wind plasmas is very small and is thus usually considered
to be constant.
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Figure 6.2: Radial evolution of average partial electron heat fluxes of the core
(squares), halo (diamonds) and strahl (circles) normalized to the total electron
heat flux Qtot plotted as a function of the heliocentric radial distance. As expected,
the most important for the overall electron heat flux is the strahl component while
the smallest portion in our model represents the heat flux of the halo component.

The adiabatic expansion (γ = 5/3) thus predicts a radial scaling of the collisional
heat flux to be Qe ∝ r−17/3 and to have even steeper gradient, Qe ∝ r−20/3, at larger
distance. However, as already indicated, for instance, by the observed temperature
gradients, the solar wind expansion can not be described as an ideal adiabatic pro-
cess. And, indeed, also the observations of the radial scaling of the electron heat flux
indicate a different power law from the one predicted for the adiabatic expansion.
Based on the Helios and Ulysses observations, Pilipp et al. (1990) and Scime et al.
(1994a) found the electron heat flux that decreases with the heliocentric distance
slower, namely as Qe ∝ r−3. Obviously, the observed radial profile of Qe is neither
in agreement with the adiabatic expansion but nor with theoretical predictions for a
freely expanding quantity along the spiral oriented magnetic field lines (Scime et al.
(1994a)).

The observed radial evolution of the average electron heat flux as it results from
our analysis of the large eVDF data set is summarized in Figure 6.1 for all three
eVDF components. The squares, diamonds and circles represent mean absolute
values of the core, halo and strahl partial heat fluxes respectively. Two dotted lines
indicate the radial evolution as suggested by a deduced empirical power law using
the data for the strahl heat flux. A complete list of all observed power laws for
the three components and for the total electron heat flux is given in Table 6.1. For
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Figure 6.3: The radial evolution of the total electron heat flux as observed
from our data set (blue dots) is compared with five theoretical profiles which are
computed for different values of the electron temperature gradient using a general
form of the collisional heat flux. It seems that the observed heat flux as a function
of the radial distance is driven by the local temperature gradient.

observations below 1 AU the results are consistent with those of Pilipp et al. (1990).
However, the analysis of data samples above 1 AU gives a less steep gradient than
it was observed by Scime et al. (1994a). Furthermore, mean heat fluxes seem to
be slightly inconsistent with each other when crossing 1 AU. It is likely caused by
different calibration or interpretation of data acquired on board Helios and Ulysses
spacecraft. However, there is no clear reasonable explanation for this observed
disagreement between the Helios and Ulysses observations.

We further compare all three partial heat fluxes of the three components to the
total heat flux (6.1). Corresponding results are plotted in Figure 6.2. Here the
three symbols (squares, diamonds and circles) represent the same components as
in Figure 6.1, i.e. the core, halo and strahl respectively. All three ratios of the
partial heat fluxes to the total electron heat flux are again displayed as a function
of the heliocentric distance r. As expected, in our model the least important for
the overall heat flux is the halo component, although the relative heat flux of the
halo reaches about 10% at the upper limit of the observed radial range. Naturally,
the most important portion of the total heat flux represents the heat transported
by the strahl component. The positive strahl heat flux is then partly balanced with
the negative sunward oriented heat flux of the core component which builds only
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about 10% of Qtot close to the Sun (about 0.3 AU) but can reach up to about 30%
at larger distances. In general, increasing relative sunward heat fluxes associated
with the core and the halo as well as the increasing heat flux associated with the
strahl indicates an increasing separation (relative drift) of the core and halo with
respect to the strahl in the solar wind rest frame.

Finally, we examine the total electron heat flux, i.e., the sum of partial heat
fluxes of the core, halo and strahl components, with respect to the theoretically
predicted radial distance dependency of the classical collisional transport of the
heat. Following equations (6.3) and (6.4), we use a general form of the theoretical
heat flux given as

Qe,col = Q0r
−α

(

1 +

(

rω

vsw

)2
)−1/2

(6.6)

to compute consecutively five radial profiles based on different temperature gradi-
ents. These are namely the adiabatic and isothermal limits, heat fluxes for the two
typical limits of the observed temperature gradients (Te ∝ r−0.4 and Te ∝ r−0.8) and
finally the empirical heat flux profile which behaves close to the Sun as Qe ∝ r−3.0.
All profiles are normalized by Q0 so that each of them is equal to 1 Wm−2 at 5 RS

above the surface of the photosphere. In Figure 6.3 we overplot these five radial
profiles over the observed total electron heat flux (blue dots), as it was estimated
from the fitting of the analytical eVDF model to measured eVDFs. Obviously, the
observed radial evolution of the electron heat flux seems to be well constrained by
the two theoretical profiles computed for the two limits of the typical temperature
gradients. The radial profile observed by Pilipp et al. (1990) and Scime et al. (1994a)
is well correlated with our observations namely in the Helios radial range. The most
important conclusion from Figure 6.3 is following. Although the observed electron
heat flux in the solar wind does not reach the theoretical limit of Spitzer and Härm
(1953), it still seems to be driven by the local temperature gradient and can be
thus expressed in a form similar to (1.20) with an appropriate term for the heat
conductivity.

6.2 Regulation of Electron Heat Flux

Observations in the solar wind show the electron heat flux to be typically smaller
than the predicted one by Spitzer and Härm (1953). The lower values of the ob-
served heat flux are addressed to the limited effect of the Coulomb collisions. The
magnitude of the electron heat flux seems to reach rather another upper bound
which value is given only by local plasma parameters. As we have shown in the
previous section, the decrease of Qe with radial distance can be related to the slower
decrease of the electron temperature which implies an electron heating in addition to
the adiabatic cooling of the expanding plasma. As for the temperature anisotropies,
there is one candidate which can drive the heat flux through the solar wind expan-
sion and transfer the energy to particles reducing the effect of the adiabatic cooling.
Kinetic plasma instabilities represent the most plausible mechanism. In addition,
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the observed upper bound of the solar wind heat flux is still expected to depend on
the local frequency of Coulomb collisions. In this paragraph we examine the possible
effect of both kinetic instabilities and Coulomb collisions on the electron heat flux
derived from our data set.

The electron heat flux, i.e. the skewness of the eVDF along the magnetic field,
represents by itself a source of free energy which may give rise to several unstable
wave modes. Gary et al. (1975) derived from the linear dispersion theory three un-
stable modes, namely modes corresponding to the Alfvén, magnetosonic and whistler
heat flux instabilities, and found that the whistler heat flux instability has the low-
est threshold in the typically observed range of electron parallel plasma beta of the
core electron population (βc,|| = 2µ0nckBTc,||/B

2). For isotropic core and halo pop-
ulations, Gary et al. (1994) showed that the threshold for the whistler heat flux
instability has the following form

Qe

Qmax
=

a

βb
c,||

(6.7)

where a and b are fitting parameters and

Qmax =
3

2
menev

3
the,c (6.8)

is the free-streaming heat flux (Hundhausen (1972)) defined as the internal kinetic
energy convected at the parallel thermal speed of the core vthe,c =

√

kBTc,||/me.
Gary et al. (1999) numerically solved the threshold condition for the mean values
of the observed solar wind parameters. Consequently, the βc,||-dependent expression
(6.7) was used to fit the isocontour of the constant growth rate factor γ = 10−2Ωp,
where Ωp is the proton cyclotron frequency. The median values of fitting parameters
a and b yielded

a = 1.0 , b = 0.8 (6.9)

for 0.1 < βc,|| < 5.0. In addition, Gary et al. (1999) presented an observational
evidence that (6.7) with (6.9) can correspond to an upper bound on the solar wind
heat flux.

In Figure 6.4 we compare the findings of Gary et al. (1999) expressed in (6.7)
with the total electron heat flux computed on our data set. The color scale histogram
displays the observed heat flux normalized by (6.8) as functions of βc,|| and the blue
line represents the threshold condition (6.7) with the fitting parameters given by
(6.9). The Figure 6.4 is completed with an empirical threshold (dashed line) which
represents a true upper bound for our observations. The observed normalized heat
flux is not completely constrained by predictions of Gary et al. (1999). However,
Gary et al. (1999) used a different eVDF model than we use for our analysis. The
core was described also by a single bi-Maxwellian distribution but the halo together
with the strahl were modeled by one drifting bi-Maxwellian distribution function
producing the heatflux. On the other hand, the empirical threshold found in our
data set has the same parameter b = 0.8 as given in (6.9). The different parameter
a found empirically in our data set could be caused by the normalization which was
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Figure 6.4: The whistler heat flux instability impose on the normalized heat
flux a possible upper bound in the (Qe/Qmax,βc,||) space. The observed upper
bound (dashed line) is found slightly above the one predicted by the linear theory
for a given growth rate of the unstable mode (blue line). However, the observed
upper bound has the same form as the theoretical one.

computed from our data set, or by the fact that this constraint may be provided by
a plasma mode other than the whistler heat flux instability. In general we conclude
from Figure 6.4 that a heat flux instability may represent a significant constraint on
the solar wind heat flux. However, the exact threshold conditions imposed on the
normalized heat flux, probably not only by this type of kinetic instability, should be
further investigated.

In order to quantify the role of Coulomb collisions on the overall transport of
the heat in the expanding solar wind, we compere the total electron heat flux (6.1)
as estimated from our data set normalized to the collisional heat flux of Spitzer and
Härm (1953) with the theoretical electron-electron collision frequency νee. While
the relaxation of the temperature anisotropy is related to temporal evolution, the
heat flux should depend rather on local parameters. Therefore we do not use the
concept of the electron collisional age which we have applied in the study of electron
temperature anisotropies but rather the electron-electron collision frequency. The
formula for the electron-electron collision frequency was originally derived in Spitzer
(1956) and can be approximated as

νee ≃ 2.9 × 10−6neT
−3/2
e ln Λ s−1 (6.10)

where the electron density ne is given in cm−3 and the electron temperature Te in
eV , ln Λ is the Coulomb logarithm. The collisional heat flux QSH is computed from
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Figure 6.5: Electron heat flux Qe estimated from our data set and normalized to
the collisional heat flux QSH predicted by Spitzer and Härm (1953) as a function
of the electron-electron collisional frequency. The theoretical limit is not reached
in the solar wind. However, the heat flux is fouind closer to this limit with
increasing collision frequency (as indicated by the blue dashed line).

(1.20) assuming an empirical radial profile of the electron temperature decreasing
with the radial distance r as Te ∝ r−0.7 which is similar to what we observe in our
data set in the slow solar wind for the core component (see Fig. 4.3).

The correlation between the observed electron heat flux Qe normalized by QSH

and the electron-electron collision frequency νee is shown in Figure 6.5. The color
scale represents histogram of all eVDF samples in the (Qe/QSH ,νee) plane and the
blue dash-dotted line shows an empirical trend of the of the Qe/QSH as a function
of the electron-electron collision frequency. As expected, the observed electron heat
flux in the solar wind does not reach the theoretical collisional heat flux. However, it
is approaching closer to the QSH limit with increasing frequency of electron collisions.
Coulomb collisions thus seem to be one of the mechanism which regulate the overall
transport of the heat, even their effect in the solar wind is limited. These conclusions
are consistent with Salem et al. (2003) where authors have examined the solar wind
heat flux in terms of the Knudsen number which was defined through the empirical
temperature gradient. Salem et al. (2003) also showed that the observed heat flux
is closer to the collisional one when Coulomb collisions become more important, i.e.,
when the Knudsen number is sufficiently smaller than one.
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Chapter 7

Conclusions and Perspectives

We have performed a statistical study of a substantial amount of solar wind electron
velocity distribution functions (eVDFs). The large data set combines measured
eVDF samples acquired in situ on board different spacecraft, namely Helios I&II,
Cluster II and Ulysses, in the low ecliptic latitudes. Altogether, eVDF samples in the
data set cover the radial heliocentric distance from 0.3 up to 4 AU. The aim of the
present study was (i) to propose and validate an analytical model to fit separately for
the first time all three components of the solar wind eVDFs (i.e. the core, the halo
and the strahl) which are typically observed; (ii) to apply the proposed analytical
model on the whole eVDF data set and provide the radial evolution of the main
characteristics of solar wind electrons; (iii) to study the non-thermal character of
the high-energy eVDF tails; and (iv) to examine the possible constraints imposed
on electron temperature anisotropies and on the overall electron heat flux by the
wave-particle interactions and Coulomb collisions.

The proposed analytical form of the eVDF model comprises a bi-Maxwellian
distribution for the core and modified bi-Kappa distributions for the halo and strahl
respectively. One of the main properties of the new model is to fit the thermal
and the non-thermal part of the observed eVDF separately since halo and strahl
components are truncated in the thermal velocity range of the core. The model was
applied on a large data set of eVDF samples and was shown to be convenient to fit
the observed eVDFs in the whole heliocentric radial range. Electron characteristics,
namely the density, the temperature and the heat flux, were estimated either directly
from the fitting parameters of the model eVDF (electron temperature anisotropies)
or by the numerical integration of the fitted eVDFs (the eVDF radial evolution.and
electron heat flux). The radial evolution of eVDFs was examined for the slow wind
and for the fast solar wind separately. It is important to note that all conclusions
concerning the fast wind case have to be taken with caution since only about 10% of
the total number of all eVDF samples (and even less per cent above 1 AU) represent
the fast solar wind regime.
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7.1 Radial Evolution

The radial evolution of solar wind electrons was first focused on electron densities and
temperatures. All three eVDF components were analysed separately and compared
to each other. The decrease of th electron density of the core was shown to follow the
law of a steady radial expansion. The radial evolution of halo and strahl densities
was found more complex and neither agreed to the observed power law of the core
nor to a steady expansion along the spiral oriented magnetic field lines. The cooling
of the electron temperature caused by the solar wind expansion is observed to be
highly variable. We have found the core parallel temperature to decrease as ∝ r−0.7

in the slow solar wind and to decrease slightly slower as ∝ r−0.55 in the fast solar
wind. These findings are in the range of observed temperature gradients already
presented in many previous studies. Although we present the radial evolution of
halo and strahl temperatures, note that they have to be perceived rather as the
corresponding second order moments of the model functions.

The non-thermal character of the observed eVDFs was examined through relative
densities of the three eVDF components as a function of the radial distance from
the Sun. We have shown that with increasing radial distance the relative density
of the strahl decreases while the relative density of the halo increases, for both
the slow fast solar wind regimes. For the slow wind, the total relative density of
the non-thermal electrons, i.e. the sum of the halo and the strahl, remains almost
constant in the whole observed radial range. The ratio of non-thermal electrons in
the slow wind is found to be about 5-7%. In the fast wind the relative density of
non-thermal electrons is more variable and grows up to about 10% close to 1 AU.
The relative density of non-thermal electrons in the fast solar wind seems to be
slightly higher compared to the slow wind. This can be caused by typically lower
densities observed in the fast wind, which makes the effect of Coulomb collisions less
effective. The relatively stronger non-thermal eVDF tails in the fast wind can be,
however, attributed to the slightly steeper gradient of the core density with respect
to the slow wind case.

As another characteristic which can quantity character of non-thermal eVDF
tails, we have examined the κ parameter of model functions used to fit the halo
and strahl components. κ is decreasing with increasing radial distance from Sun for
both the halo and the strahl. This indicates that deflections of non-thermal tails
of eVDFs from the bi-Maxwellian core rise further from the Sun. In the slow wind
the κ halo starts at 0.3 AU with a value of roughly 9.5 while in the fast wind the κ
parameter is already less than 7. This shows that the fast wind has already more
important non-thermal tails close to the Sun compared to the slow one (Pilipp et al.
(1987a,b)). Smallest values, with a lower limit of 2, are observed at the largest
radial distances. For the halo component in the fast wind, our results are again in
fair agreement with Maksimovic et al. (2005) (see the lower left panel in Fig. 5 of
the concerned paper).

In order to summarize how the shape of observed eVDFs changes with increasing
radial distance from Sun, we have also displayed the radial evolution of a mean model
function, that is a model function computed from mean values of all its parameters.
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In general our results are in agreement with those reported by Maksimovic et al.
(2005) where only the fast solar wind was examined. Our results also support the
scenario proposed by several authors (see Gary et al. (1994), Vocks et al. (2005), Gary
and Saito (2007), Saito and Gary (2007)) of strahl electrons being scattered into
the halo. Adopting the scattering mechanisms, the observed radial evolution of non-
thermal eVDF components likewise agrees with the numerical modeling of Owens
et al. (2008) describing the expansion of non-thermal electrons on a background of
spiral oriented magnetic field.

We have also analysed the break-point energy, i.e. the limit energy where the
non-thermal tails start to deviate from the Maxwellian core. The halo break-point
energy normalized to the thermal energy of the core population was shown to ap-
proach with increasing radial distance the theoretical limit predicted by Scudder
and Olbert (1979). Furthermore, we have examined the agreement between relative
velocity drifts of the eVDF components in the rest frame of the solar wind and the
zero-current condition. We found the sunward electron flux approximately equal to
the oppositely oriented antisunward flux of the strahl component.

In addition to the results provided in this paper, we can make a prediction con-
cerning the properties of a eVDF outside the observed radial range. This prediction
holds for both solar wind regimes, the slow one and the fast one. The more inter-
esting edge of the interval, regarding the initial solar wind conditions, is the one
pointing toward the Sun. Even though we cannot make any real conclusions about
eVDFs in the coronal regions which are critical for the solar wind acceleration, our
results seem to indicate that closer to the Sun, less than 0.3 AU, the fraction of
halo electrons in high-energy tails tends to vanish. Vice-versa, the strahl beam is
possibly even stronger than what we observe beyond 0.3 AU. From our observations
it is not clear whether or not the strahl will completely disappear, being after certain
distance absorbed by the halo at the farther limit of the observed radial range.

7.2 Electron Temperature Anisotropies

In contradiction to the classical CGL relations, the solar wind electrons are typically
observed in a nearly isotropic state. We have studied two possible mechanisms
which can constrain the electron temperature anisotropy in the solar wind plasma,
namely kinetic plasma instabilities and Coulomb collisions. For this purpose, we
have fitted eVDF samples in our data set with a simplified two component model
for the core and halo populations and excluded the removed the antisunward part
of the eVDF, which includes the strahl, from the fitting procedure. The electron
temperature anisotropy was then estimated by the fitting parameters of analytical
core/halo models of velocity distribution functions. We have then examined the
effect of electron temperature anisotropy instabilities and Coulomb collisions and
have shown that both, the instabilities as well as Coulomb collisions, influence the
temperature anisotropy of the solar wind electrons.

In the case of the slow solar wind having higher electron parallel plasma beta
(i.e. β|| & 1), the temperature anisotropy of the core population is well constrained
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by thresholds of the whistler and fairly well of the fire hose electron instabilities pre-
dicted by the linear theory. Similar mechanisms may also act for the non thermal
halo component of the solar wind electrons. However, in this case the prediction of
the instability thresholds from the linear theory has to be recomputed using a cor-
responding model for the distribution function. For the fast wind, electron popula-
tions are quite well localized far away from unstable regions in the (T⊥/T||, β||) space.
Consequently, it is hard to make any conclusions about the electron anisotropy con-
straints in the fast solar wind, neither for the core nor for the halo population. This
is because our statistics in this case is not sufficient. For further studies this part of
the data set has to be completed.

Even though the solar wind is usually considered to be a collisionless medium, our
results show that electron Coulomb collisions still may have an effect to maintain the
temperature anisotropy of the core population. This was demonstrated by use of the
electron collisional age and it is in agreement with already published results (Phillips
et al. (1989) and Salem et al. (2003). With an increasing number of collisions suffered
by electrons the temperature ratio T⊥/T|| tends to unity.

Since the measurements cover a large range of radial distances, we are also able to
examine the radial evolution of the electron temperature anisotropy. We have shown
that, in agreement with theoretical predictions, greater temperature anisotropies can
develop at larger distances from the Sun. However, there is no clear evolution of the
data in the (T⊥/T||, β||) space as a function of the radial distance. The situation is
more interesting if we look at the evolution in the (T⊥/T||, β||) space as a function
of collisions. There is a clear trend in the evolution of the core electron populations
in dependence upon the collisional age. By virtue of these results, we suggest the
core electron Coulomb collisions to be the basic mechanism driving the electron
temperature anisotropy of the solar wind electron population. The importance of
kinetic instabilities is increasing for higher parallel electron plasma betas.

Note that the electron collisional age used in our study is not the only way
to express the importance of collisions in a medium. Furthermore the collisional
age does not apply to the trapped electrons that circle on closed magnetic field
lines. Another way of judging the collision state of the environment is to use the
Knudsen number Kn, which is defined as the ratio between the mean free path and
the typical density or temperature scale height of the medium. In order to verify
the conclusions based on the collisional age, we have followed the same analysis of
the temperature anisotropy with the Knudsen number Kn. The results based on the
usage of the Knudsen number are qualitatively the same as obtained by using the
electron collisional age. This supports our conclusions about the effect of collisions
on the electron temperature anisotropy.

7.3 Electron Heat Flux

As the last, however, the most important parameter from the basic eVDF moments,
we have studied the properties of the electron heat flux. We estimate the electron
heat flux by numerical integration of our model eVDF fitted to eVDF samples in
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our data set. The model eVDF was shown to well describe all components of eVDFs
observed in the solar wind. The numerical integration thus should provide a more
precise estimation of the electron heat flux than direct discrete integration of the
measured eVDF samples. We have computed the electron heat flux separately for
core, halo and strahl components. We have shown, that, in our model, the bulk of
the overall electron heat flux is carried by the strahl. The strahl heat flux is than
only fractionally balanced by sunward heat flux of the core and halo components.

The observed radial evolution of the total electron heat flux was found to be
consistent with early observations of Pilipp et al. (1990) in the Helios radial range.
However, the power law deduced from our data set above 1 AU is found to be less
steep than it was reported in Scime et al. (1994a). We have further compared the
estimated heat flux to a general theoretical law derived for the theoretical predictions
of Spitzer and Härm (1953) applied to an expansion along spiral oriented magnetic
field lines (Scime et al. (1994a)). Our findings indicate that although the heat flux
magnitude does not reach the predicted value for collisional transport it seems to
be still driven by the local temperature gradient.

We have further examined, whether the observed values of the electron heat flux
are constrained by imposed threshold conditions of some kinetic plasma instabilities
and how is the heat flux biased from the theoretical predictions by the limited effect
of Coulomb collisions. We provide an observational evidence, that the normalized
electron heat flux has a net upper bound which is very close to the threshold con-
dition estimated in Gary et al. (1999) for the whistler heat flux instability. The
role of Coulomb collisions in regulation of the solar wind heat flux was expressed
in terms of the electron collision frequency. Our estimation of the electron heat
flux confirm that the theoretical collisional heat flux of Spitzer and Härm (1953)
represents an upper limit which is not reached in the solar wind plasmas. However,
with increasing collision frequency the observed electron heat flux draw nearer the
collisional one.

7.4 Summary and Perspectives

We provided a quite comprehensive observational insight on the radial evolution of
electron populations in the solar wind as they were measured in situ in low latitudes
near the ecliptic plane. By fitting of the measured eVDF samples with a new fully
analytical model, we first examined the density and temperature of the core, halo
and strahl eVDF components respectively. As a summary of all fitting parameters
of our model, averaged over the whole data set, we presented the radial evolution
of the model eVDF in both slow and fast solar wind regimes. We confirmed by
our analysis that observed radial profiles of electron characteristics do not follow
a pure adiabatic radial expansion. These findings imply other mechanisms provid-
ing some additional heating or energy dissipation seem to be effective during the
radial evolution of solar wind eVDFs. Therefore, we analysed possible constraints
of electron temperature anisotropies and the electron heat flux imposed by kinetic
plasma instabilities and Coulomb collisions. We presented an observational evidence
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that both kinetic plasma instabilities and Coulomb collisions can possibly explain
observed eVDF properties.

However, there are still other aspects concerning the properties of the measured
eVDFs in the solar wind (especially of the high-energy tails) which we did not
examine in current study. For example we did not study the angular broadening of
the velocity distribution of strahl electrons as it was done, for instance, by Hammond
et al. (1996). The majority of our data set comes from Helios measurements. In this
case only eight angular bins are acquired which makes angular analysis less accurate.
We have also presented most of the results only as a function of the heliocentric
radial distance. In order to better understand the mechanisms responsible for the
scattering of strahl electrons, we will also need to examine the evolution of the non-
thermal eVDF tails with respect to Coulomb collisions and, if possible, with the
observed intensity of electromagnetic oscillations.

In the case of electron temperature anisotropies, we have to notice that we omit-
ted possible effects of the strahl population. In particular, we did not examine
whether the electron heat flux, provided by the strahl component, have some re-
lation with the observed ratio of parallel and perpendicular electron temperatures.
Since both temperature anisotropies and electron heat flux give rise to several un-
stable wave modes which in turn can constrain the eVDF properties, they should
be better studied altogether. However, this involve first some (probably numerical)
solution of linear dispersion theory applied on true eVDFs observed in the solar
wind.

Finally, one should remind that most of our conclusions are relevant for the slow
solar wind near the ecliptic plane only since in our data set the number of fast wind
observations is considerably limited. Furthermore more the present study should be
also extend to out-ecliptic observations and it would be desirable to provide similar
analysis for some shorter periods and special events. Obviously, there are still open
questions and issues which we would like to examine in our future studies.
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