
HAL Id: tel-03535655
https://hal.science/tel-03535655

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Access Control Policies Verification Over Distributed
Queries
Adel Jebali

To cite this version:
Adel Jebali. Access Control Policies Verification Over Distributed Queries. Cryptography and Security
[cs.CR]. Faculté des sciences de Tunis, 2021. English. �NNT : �. �tel-03535655�

https://hal.science/tel-03535655
https://hal.archives-ouvertes.fr

PHD THESIS

for the degree of

Doctor of Philosophy in Computer Science

Defended by

Adel Jebali

 Access Control Policies Verification Over Distributed

Queries

Publicly defended on December, 30th ,2021

Committee :

President:

Mr. Samir Ben Ahmed Professor FST, Université Tunis El manar

Reviewers:

Mr. Sami Faiz Professor ISAMM, Mannouba Universirty

Mr. Belhassen Zouari Professor Sup'Com, Carthage University

Examiner:

Mr. Kamel KAROUI Associate Professor INSAT, Carthage University

Advisor:

Mr. Abderrazak Jemai Professor INSAT, Carthage Universirty

Realized within SERCOM laboratory, Polytechnic school of Tunisia

 UNIVERSITÉ DE TUNIS EL MANAR

FACULTÉ DES SCIENCES MATHÉMATIQUES, PHYSIQUES ET

NATURELLLES DE TUNIS

École Doctorale de Mathématiques, Informatique, Sciences et

Technologies de la Matière

Dedication

I dedicate this thesis to

My beloved parents and siblings

My sweetheart Manel

My precious friends

And to anyone who believed in me and contributed directly or

indirectly to the accomplishment of this Thesis

i

Acknowledgments

First of all, a very special gratitude goes to my supervisor Prof. Abderrazak Je-

mai who had supported me for the last four years through my ups and downs and

who had sacrificed time and energy to elaborate this Thesis. I am also grateful to

my co-supervisors Prof. Richard Chbeir and Dr. Salma Sassi for their dedication

to achieve this thesis’ goals. Special thanks to Prof. Belhassen Zouari and Prof.

Sami Faiez for accepting to review my thesis manuscript and for their kind efforts

to enhance its quality. My thanks go as well to Prof. Samir Ben Ahmed and Dr.

Kamel Karoui for having accepted to act as examiner of my thesis. Special thanks

are also directed to Dr. Mokhtar Sellami for his valuable advices.

I would also like to thank my father, mother, brother, sisters and all my family.

They have always been supporting and encouraging me with their best wishes.

Their faith in me allowed me to be as ambitious as I wanted and helped me a lot

through the past years.

And finally, last but by no means least, I am very grateful to my fiancee Manel

Sansa who had always supported my decisions and had encouraged me. I am also

grateful to all my friends who have supported me along the way.

Thank you all for your encouragement!

ii

iii

Abstract

In this thesis, we address the problem of data outsourcing in presence of access

control policies. Due to the emergence of Database-as-a-Service paradigm, se-

cure data outsourcing has become one of the crucial challenges which strongly

imposes itself. Indeed, data owners place their data among Cloud Storage Service

Providers (CSSP) in order to increase flexibility, optimize storage, enhance data

manipulation and decrease processing time. In spite of that, access control is con-

sidered as a major barrier to cloud computing and data outsourcing arrangements.

Hence, the central challenge identified in this context is: How access control poli-

cies of data owner are preserved when data is moved to the cloud?

From a security perspective, preserving access control policies means that if

an access was prohibited initially by the owner’s access control policies, it should

be also prohibited when data is externalized to Cloud Storage Service Providers.

Also, the policy in the Cloud Storage Service Providers level should protect data

against indirect access via inference channels. This inference channel is derived

from the combination of legitimate answers received from the system with seman-

tic constraints. Furthermore, to maintain data utility, an optimal data placement

decision should be considered when this latter is moved to the cloud.

In this manuscript, on the basis of vertical partitioning, we propose a graph-

based approach to preserve owner’s access control policies efficiently when data

is externalized to the Cloud Storage Service Providers. To do that, our proposed

approach runs through the following steps: Firstly, it relies on semantic relat-

edness measure between users roles and schema attributes to derive an optimal

vertical partitioning. Optimal partitioning is the minimization of the number of

distributed queries issued from a user role in order to provide higher performance

and speedup. Secondly, by reasoning about functional dependencies as source of

ii

inference, we propose a set of algorithms to detect inference leakage and con-

trol them. Thirdly, on the basis of hypergraph theory, we propose a hypergraph

partitioning algorithm to compute the set of secure partitions stored in Cloud Stor-

age Service Providers level. The proposed partitioning algorithm takes advantage

of the distributed system to enforce access control policies. Then, by consider-

ing access control rules as a set of queries to be revoked, we infer the implicit

combinations of queries that could lead to the violation of owner’s access control

policies. Finally, we propose a monitoring module based on Role-Based Access

Control and History-Based Access Control to monitor users queries at run time

and block suspicious ones.

Keywords: Access control, Inference control, Data dependencies, Distributed

databases, Semantic relatedness, Hypergraph theory, security and privacy.

Resumé

Dans cette thèse, nous abordons le problème de l’externalisation des données en

présence de politiques de contrôle d’accès. En raison de l’émergence du paradigme

Database-as-a-Service, l’externalisation des données est devenue l’un des défis

cruciaux qui s’impose fortement. En effet, les propriétaires de données placent

leurs données auprès des fournisseurs de services de stockage cloud afin d’augmenter

la flexibilité, d’optimiser le stockage, d’améliorer la manipulation des données et

de réduire le temps de traitement. De ce fait, le contrôle d’accès est considéré

comme un problème très potentiel par rapport aux accords de cloud computing

et d’externalisation des données. Par conséquent, le défi majeur identifié dans

ce contexte est: Comment les politiques de contrôle d’accès du propriétaire des

données sont préservées lorsque les données sont déplacées vers le cloud?

Du point de vue sécurité des données, la préservation des politiques de contrôle

d’accès signifie que si un accès a été initialement interdit par les politiques de

contrôle d’accès du propriétaire, il devrait également être interdit lorsque les données

sont externalisées vers les fournisseurs de services Cloud. En outre, la politique

de sécurité au niveau des fournisseurs de services cloud doit protéger les données

contre l’accès indirect à travers les fuites d’inférence. Une fuite d’inférence est

déduite par la combinaison de réponses légitimes reçues du système avec des con-

traintes sémantiques. De plus, pour maintenir l’utilité des données, une décision

de placement optimale des données doit être envisagée lorsque ces dernières sont

déplacées vers le cloud.

Dans ce manuscrit, en s’appuyant sur le partitionnement vertical, nous pro-

posons une approche basée sur la théorie des graphes pour préserver efficacement

ii

les politiques de contrôle d’accès du propriétaire lorsque les données sont exter-

nalisées vers les fournisseurs de services cloud. Pour ce faire, notre approche pro-

posée comporte les étapes suivantes: Premièrement, elle s’appuie sur la mesure

de corrélation sémantique entre les rôles des utilisateurs et les attributs de schéma

de la base de données pour dériver un partitionnement vertical optimal. Le parti-

tionnement optimal consiste à minimiser le nombre de requêtes distribuées émises

à partir d’un rôle utilisateur afin de fournir des performances élevées et accélérer

le temps du traitement. Deuxièmement, en raisonnant sur les dépendances fonc-

tionnelles comme source d’inférence, nous proposons un ensemble d’algorithmes

pour détecter les fuites d’inférence et les contrôler. Troisièmement, en se basant

sur la théorie de l’hypergraphe, nous proposons un algorithme de partitionnement

hypergraphique pour calculer l’ensemble des partitions sécurisées stockées au

niveau des fournisseurs de services cloud. L’algorithme de partitionnement pro-

posé tire parti du système distribué pour enforcer les politiques de contrôle d’accès.

Par la suite, en considérant les règles de contrôle d’accès comme un ensemble

de requêtes à révoquer, nous déduisons les combinaisons implicites de requêtes

qui pourraient conduire à la violation des politiques de contrôle d’accès du pro-

priétaire. Enfin, nous proposons un module de surveillance basé sur le contrôle

d’accès à base des rôles et le contrôle d’accès à base de l’historique pour surveiller

les requêtes des utilisateurs au moment de leurs exécution et bloquer les requêtes

suspectes.

Mots-clés: Contrôle d’accès, Contrôle d’inférence, Dépendances de données,

Bases de données distribuées, Corrélation sémantique, théorie de l’hypergraphe,

sécurité et confidentialité.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 5
1.3 Objectives . 6
1.4 Contributions . 8

1.4.1 Constraints Generation 8
1.4.2 Schema Partitioning . 9
1.4.3 Query Evaluation Model 9

1.5 Thesis Outline . 9
1.6 Publication . 10

2 State of the Art 12
2.1 Introduction . 13
2.2 Data Outsourcing . 14
2.3 Security of Database Systems . 17

2.3.1 Access Control Models 17
2.3.1.1 Discretionary Access Control Model 17
2.3.1.2 Mandatory Access Control Model 18
2.3.1.3 Role-Based Access Control Model 18
2.3.1.4 Attribute-Based Access Control Model 19
2.3.1.5 History-Based Access Control Model 20
2.3.1.6 Advanced Access Control Models 20

2.3.2 Access Control for Relational Database Systems 21
2.3.2.1 The System R Access Control Model 22
2.3.2.2 Oracle Virtual Private Database 22
2.3.2.3 Oracle Label 23
2.3.2.4 Content-based Access Control Model with Au-

thorization View 23
2.3.3 Access Control Verification in Distributed Environment . . 25

iii

CONTENTS iv

2.3.3.1 Distributed Access Control Policies 25
2.3.3.2 Role-Based Access Control for Distributed Database

Systems . 25
2.3.3.3 SQL for Distributed Database Security 26
2.3.3.4 Access Control Through Confidentiality Con-

straints . 26
2.3.3.5 Auditing a Distributed Database System 27
2.3.3.6 Access Control Enforcement in Data Integra-

tion Systems 27
2.4 Data Protection from Insider Threat 30

2.4.1 Access Control vs Inference Control 32
2.4.2 Inference Control in Centralized Database Systems 33

2.4.2.1 Inference Attacks 34
2.4.2.2 Inference Prevention Methods 35
2.4.2.3 Discussion of the Inference Prevention Methods 37

2.4.3 Inference Control in Distributed Environment 38
2.4.3.1 Inference Control in Distributed Data Sources . 38
2.4.3.2 Inference Control in Data Integration Systems . 40

2.5 Data Outsourcing in Presence of Access Control Policies 44
2.5.1 Secure Data Outsourcing with Non-Communicating Servers 45
2.5.2 Secure Data Outsourcing: The Case of Communicating

Servers . 47
2.5.3 Data Outsourcing and the Inference Problem 49

2.6 Optimal Database Schema Partitioning 51
2.7 Discussion . 52

2.7.1 Choice of the Access Control Model 52
2.7.2 Discussion of the Proposed Approaches 53

2.8 Conclusion . 54

3 Preliminaries and Problem Statement 56
3.1 Introduction . 57
3.2 Preliminaries and Basic Concepts 57

3.2.1 Definitions Related to Access Control and Inference Prob-
lem . 57

3.2.2 Definitions Related to Graph Theory 58
3.2.3 Definitions Related to User Role 58

3.3 Problem Statement . 59
3.4 Motivating Scenario . 60
3.5 Discussion of Studied Problem with their Relevant Fields 62

3.5.1 Data Outsourcing . 62
3.5.2 Access Control Model 63
3.5.3 Inference Control . 63

CONTENTS v

3.5.4 Ontology-Based Vertical Database Schema Partitioning . . 64
3.6 Overview of the Proposed Approach 64
3.7 Conclusion . 66

4 Constraints Generation 67
4.1 Introduction . 68
4.2 Visibility Constraints Generation Based on Semantic Relatedness . 68
4.3 Inference Control . 74

4.3.1 Step 1: Building the Functional Dependency Graph G(V,E) 74
4.3.2 Step 2: Generating Join Chain Set 74
4.3.3 Step 3 : Detecting relaxed cut 78
4.3.4 Step 4 : Constraints-based inference control generation . . 79

4.4 Conclusion . 81

5 Schema Partitioning and Query Evaluation Model 83
5.1 Introduction . 84
5.2 Schema Partitioning . 84

5.2.1 Hypergraphs and constraint satisfaction problems 85
5.2.2 Computing K-balanced partitions 87

5.3 Query Evaluation Model . 89
5.3.1 Violating Transactions Detection 90
5.3.2 Query lock . 92

5.4 Conclusion . 93

6 Experimental Study 95
6.1 Introduction . 96
6.2 Experimental Design . 96
6.3 Evaluation . 98

6.3.1 Functional Dependencies Impact on Constraints-Based In-
ference Control Generation 98

6.3.2 Impact of the Number of Attributes on the Partitioning
Algorithm . 99

6.3.3 Impact of the Variation of Confidentiality Constraints and
Visibility Constraints on the Partitioning Algorithm 100

6.3.4 Comparison of Query Execution Time Between MySQL
and SparkSQL . 101

6.3.5 Time Required to Lock a Suspicious Query 102
6.4 Complexity Study . 103
6.5 Conclusion . 105

Conclusion 106

CONTENTS vi

Appendix 110

List of Figures

1.1 Secure data outsourcing . 6

2.1 Literature review process . 14
2.2 Cloud computing scenario . 15
2.3 Full data outsourcing . 16
2.4 Keep a few . 16
2.5 Bypass access control with inference channels 31
2.6 Secure Data Integration System 41

3.1 Hospital-db-schema . 60
3.2 Overview of the studied problem with their relevant fields 62
3.3 The proposed methodology to generate secure partitions and lock

suspicious queries . 65

4.1 An example of a partitioning w.r.t visibility constraints v1, v2 and
v3 . 72

4.2 The functional dependency graph 76

5.1 Hypergraph representation of the partitioning problem 86
5.2 A refined partitioning of the Hospital-db schema w.r.t C, V, BC =

2 and K = 4 . 89
5.3 A query evaluation strategy augmented with a monitoring module 91

6.1 Deployment of the proposed approach on a cloud service 98
6.2 Impact of functional dependencies on the required timings to gen-

erate the constraint-based inference control set 98
6.3 Impact of the number of attributes on the partitioning algorithm . 99
6.4 Computational time varying the number of confidentiality con-

straints and visibility constraints 100

vii

LIST OF FIGURES viii

6.5 Comparison of query execution time between MySQL and Spark-
SQL . 101

6.6 Time required to lock a suspicious query 102

List of Tables

2.1 Keywords used in review search 13
2.2 Access control vs inference control 32
2.3 A comparison between existing works and the proposed model . . 54

5.1 Attribute to vertex mapping . 86

6.1 number of confidentiality constraints C and visibility constraints
V for each run . 101

ix

List of Algorithms

1 Generation of visibility constraints 71
2 Building Functional Dependency Graph G(V,E) 75
3 Join Chain Detection . 77
4 Detecting Relaxed cut . 80
5 Constraints-based inference control generation 81
6 Computing K-balanced partitions 88
7 VT Track . 92
8 Query Lock . 94

x

Chapter 1
Introduction

1.1 Motivation

In light of the fast development of new information technology (e.g Cloud Com-

puting, Big Data, Internet of Things and so on) during the last decades, data en-

gineering systems have been developed and deployed in several sectors. Those

systems design, manage and optimize the flow of data coming from day-to-day

transactions (healthcare systems, social insurance systems, social networks), or

an on-line analytical processing (OLAP systems) to store and analyze everything

-vital or not- to an organization in order to enhance the decision support. Among

these technologies, database system is considered as an elegant and robust part

of data engineering systems with its own identity. This system enables the cre-

ation, maintenance, and use of large amounts of data for modern data application

systems as they are used as a data repository behind an interface (78).

Historically, Early database management systems were based on the network

and hierarchical models. The logical organization of data for those two models is

based respectively on graph and network. However, these representations closely

mirror the physical storage of the data (2). Furthermore, those models focus pri-

marily on navigation through the physically stored data. In the 1970s, Codd’s

relational model revolutionized the field. This proposal succeeded the hierarchi-

cal models and networks, with the aim to define a model that is easy to understand,

based on logic mathematics and set theory. The basic idea of this model is simple:

1

Section 1.1 – Motivation 2

put the data ”flat” in tables, so that every value appearing in the boxes of the table

is atomic. This simplification is the main explanation for the performance of the

relational model, because it avoids recursive processing (cross complex graphs

and trees). The relational databases transactions respect the ACID properties (

Atomicity, Consistency, Isolation, and Durability). These properties are used for

maintaining the integrity of database during transaction processing where:

• Atomicity: A transaction is a single unit of operation.

• Consistency: The content must be consistent at the start and at the end of a

transaction (e.g. with respect to integrity constraints).

• Isolation: Transaction should be executed in isolation from other transac-

tions

• Durability: Once the transaction is successfully completed, the state of the

database is permanent.

In the last decade, due to the huge volume and heterogeneity of data such as

documents, e-mail, multimedia and social media, a growing number of compa-

nies have adopted various types of non-relational databases, commonly referred

to as NoSQL databases (77). NOSQL encompasses a wide range of technolo-

gies and architectures, in order to solve the problems of performance that rela-

tional databases were not designed to cope. NoSQL have adopted other properties

grouped by the acronym BASE: Basically Available, Soft-state and Eventually

consistent.

Recently, with the increasing volume and variety of data collected from di-

verse sources, costs of in-house data storage and highly significant data processing

cost. The database community has been devoted a huge amount of research efforts

to provide new paradigms to manage voluminous and heterogeneous data. Each

research direction has been designed to meet the requirements of new scenarios

and applications. The main directions that have been tackled are:

• Data integration (70): This architecture aims at providing a unique entry

point to distributed and heterogeneous data sources.

Section 1.1 – Motivation 3

• Data exchange (48): It takes data structured under a source schema and

creating an instance of a target schema that reflects the source data as accu-

rately as possible.

• Data fusion (24): It aims at resolving conflicts (e.g., semantic heterogeneity,

duplicate detection) arising in data integration scenarios.

• Data outsourcing (84): It distributes data among Cloud Storage Service

Providers in order to increase flexibility, optimize storage, enhance data

manipulation and decrease processing time.

Nonetheless, protecting database systems is a challenging task because secu-

rity is relatively a diversified concept. This wide use of such database systems

involving that security breaches and unauthorized disclosures threat those sys-

tems and increase the exposure of data and made security more difficult (14). It

has been shown conclusively that threats to databases security can cause the loss

or degradation of some or all of the following (7):

• Loss of integrity.

• Loss of confidentiality.

• Loss of availability.

There is a consensus among security researchers that ensuring the security of a

database system is not straightforward. In fact, several attempts have been made

to do this but no one of them can be considered as the universal solution. This

due to the fact that database security involves several security mechanisms e.g.

access control mechanisms, inference control, privacy preserving methods and so

on. Several studies investigating database security have been carried out since

1970 (93). Based on the survey presented in (93), we present in the following the

impact of database systems’ evolution on the security of such systems since 1970.

• Around 1970s : Development of The system R and INGRES.

• Around the late 1980s : Emergence of multi-level secure relational database

systems including seaview and lock dataview.

Section 1.1 – Motivation 4

• Around the late 1980s : Investigation of the inference problem around MSD.

• Early 1990s : Multi-level secure distributed database and secure object

database as well as security for heterogeneous database systems.

• In the late 1990s : Investigation of security for e-commerce systems and

secure web database systems were investigated.

• Early 2000s : Investigation of privacy preserving data mining.

• Mid 2000s : Development of privacy models : K-Anonymity, L-Diversity

and Differential privacy. Development of data mining tools to handle intru-

sion detection and malware analysis.

• Late 2000 and early 2010 : Securing of the emerging systems such as se-

mantic web, web services and social media systems.

• 2010 until now : Examination of data security in cloud computing, big data

security systems and privacy violation arising due big data analytic.

In this manuscript, we address the security challenges that may arise in data

outsourcing scenarios. In fact, we focus on access control as security mecha-

nism to guarantee CIA (Confidentiality, Integrity, Availability) properties. Indeed,

access control is considered as a major barrier to cloud computing and data out-

sourcing arrangements. Access control policies of the data owner must be pre-

served when data is moved to the cloud. Preserving access control policies means

that a if an access was prohibited initially by the owner’s access control policies,

it should be also prohibited when data is externalized to Cloud Storage Service

Providers. Also, the policy in the Cloud Storage Service Providers level should

protect data against indirect access via inference channels by which one can infer

sensitive data from non-sensitive ones. Furthermore, an optimal data placement

decision should be considered when this data is moved to the cloud while retaining

access control policies of data owner.

Section 1.2 – Problem Statement 5

1.2 Problem Statement

In this thesis, we will focus on the security challenge that mainly arises in data

outsourcing scenarios. Our goal is to develop an approach to enforce the owner’s

access control policies when data is externalized to the cloud (Figure 1.1). In such

type of architecture, data is distributed in separate partitions among CSSP. From

a security perspective, access control is considered as a challenging task. The

first challenge is to specify what access model to adopt in this situation. Next, we

should guarantee the enforcement of the owner’s access control policies when data

is moved to CSSP level. Also, we should protect the system from insider threats

through inference leakages. Furthermore, the distribution of the database among

CSSP should be done while taking some optimality criteria into consideration. In

this context, we are interested in the following issues:

• Security and privacy concerns: We consider owner’s access control poli-

cies which enforces security and privacy regulations. The idea is to preserve

those policies when the database is distributed among CSSP. In other words,

the security policies in the CSSP level should comply with security policies

of the data owner. Complying with owner’s access control policies means

that if an access is prohibited initially by the owner, it should be also pro-

hibited in the CSSP (here we consider CSSP as untrusted parties).

• Protection from insider threat: It is important to point out that using only

the access control may not be sufficient to ensure data protection against

insider threat. This latter occurs when a malicious user combines the le-

gitimate response received from the system with metadata to produce an

inference channel. So, it is crucial and vital to ensure whether a user, even

though is authorized by the access control mechanism, is trying to derive an

inference channel.

• Optimal distribution: From optimality perspective, it would be preferable

to establish an optimal data placement decision in the CSSP level. We be-

lieve that this will provide higher performance and speed-up when data is

processed in the cloud.

Section 1.3 – Objectives 6

Figure 1.1: Secure data outsourcing

1.3 Objectives

In order to be in a position to fully respond to the security requirements arising

in data outsourcing, our primary goal is to develop a methodology, together with

a set of algorithms that can help the database administrator to design a secure

and optimal distributed database schema in the cloud. The proposed approach

allows to preserve owners’ access control policies when the distributed database is

deployed in CSSP level. Also, it helps detect and block insider threat by reasoning

about semantic constraints as source of inference. As well, the proposed approach

relies to an optimal data placement decision to improve throughput and decrease

the degradation of the system.

In order to reach this objective, we have performed a deep and wide-ranging

literature review to investigate different research fields that could provide the fun-

damental concepts to tackle our research project. Then, we have conducted an

in-depth analysis of the existing approaches in each field to efficiently extract the

correlation between those approaches. Hence, we have formally defined the is-

sues to be addressed in order to design the proposed approach. This approach

Section 1.3 – Objectives 7

runs through three main phases. Each phase is built on top of the previous one.

Most of the proposed approaches have focused on data management and query

processing in data outsourcing scenarios. However, less attention has been de-

voted to security and privacy concerns. Thence, information security is still con-

sidered as a challenging task to be investigated in such system. We have identified

four relevant fields in relation with our research problem. these fields are:

• Data outsourcing (84): Different ways of data outsourcing (Full outsourc-

ing (3) or Keep a few (35)), induce different access control issues. In this

manuscript, we have focused on security and privacy concerns that hap-

pened when data is fully externalized to CSSP.

• Access Control (16): Protecting data from direct access in the CSSP level is

the first step toward preserving owner’s access control policies. Therefrom,

we have reviewed different access control models to protect database sys-

tems from direct access and we have designated the most relevant model in

relation with our problem.

• Inference Control (49): It refers to the ability of a malicious user to exploit

the correlation between non sensitive information to derive sensitive infor-

mation. Typically, this is the most important field in our approach since this

type of security breaches bypass access control mechanism without leaving

a trace to the database administrator. In our work, we will specify how to

capture inference leakage and how to control them.

• Data locality (38): In this field, we will study how to maximize data locality

to increase system throughput. Existing approaches did not treat the case

of maximizing data locality when the query workload. 1 is not available

or the database schema is not loaded with data. Therefore, we propose a

workload-independent approach to maximize data locality in CSSP level.
1Information regarding queries, their frequencies, involved attributes, arrival patterns, and so

on

Section 1.4 – Contributions 8

1.4 Contributions

In this section, we describe the different phases of the proposed methodology (66).

Our approach relies on vertical partitioning (In this manuscript, we are interested

to the relational model), it aims to produce a set of secure sub-schemes, each sub-

schema represents a partition and each partition is stored exactly in one server in

the CSSP. In addition, it introduces a secure distributed query evaluation strategy

to efficiently request data from distributed partitions while retaining access control

policies. The proposed approach is centered around three phases as follows:

1.4.1 Constraints Generation

This phase aims to generate two types of constraints that in addition to the confi-

dentiality constraints, will guide the process of vertical schema partitioning. This

will be done through the following steps:

• Visibility constraints generation: These constraints will be enforced as soft

constraints in the partitioning phase and their severity is less than confi-

dentiality constraints. To generate them, we perform a semantic analysis

of the relational schema in order to measure semantic relatedness between

attributes and users roles. These constraints will be preserved (stay visi-

ble) when the relational schema is fragmented. In other terms, we aim to

maximize intra-dependency between attributes that seem to be frequently

accessed by the same role while minimizing the inter-dependency between

attributes in separate partitions.

• Constraints-based inference control generation: These constraints are en-

forced (like confidentiality constraints) as hard constraints. In this step, we

resort to the method proposed in (99) to build a functional dependencies

graph and generate a set of join chains. Then, we use a relaxed technique to

cut the join chain only at a single point in order to minimize dependencies

loss. We mean by cutting a join chain at a single point, the enforcement of

the attributes in the LHS and RHS of the functional dependency representing

Section 1.5 – Thesis Outline 9

the cut point as a confidentiality constraint. By consequence, we guarantee

that the join chain will be broken.

1.4.2 Schema Partitioning

In this phase, we resort to hypergraph theory to represent the partitioning prob-

lem as a hypergraph constraint satisfaction problem. Then, we reformulate the

problem as a multi-objective function F to be optimized. Therefore, we propose

a greedy algorithm to partition the constrained hypergraph into k partitions while

minimizing the multi-objective function F.

1.4.3 Query Evaluation Model

In this phase, we propose a monitor module to mediate every query issued from

users against data stored in distributed partitions. The monitor module contains

two mechanisms : a Role-Based Access Control mechanism and History-Based

Access Control mechanism. The first mechanism checks the user role who issued

the query and if this latter is not granted to execute distributed queries, then his

query will be forwarded directly to the desired partition. Otherwise, the query is

forwarded to the History Access Control mechanism which takes as input a set of

violating transactions to be prohibited and checks if the cumulative of user past

queries and current query could complete a violating transaction. If it is the case,

the query is revoked.

1.5 Thesis Outline

The structure of this thesis follows the sequence of reported contributions and it

is organized as follows:

• In Chapter 2, we will investigate the state of the art. We start by giving an

overview about important architectures in data outsourcing. Next, we dis-

cuss different access control models in relation with database security, we

highlight research efforts related to secure data outsourcing and the infer-

ence problem. We conclude this chapter with a discussion of these fields.

Section 1.6 – Publication 10

• In Chapter 3, we will introduce a set of relevant concepts and preliminaries.

We will also introduce the studied problem, describe the motivating scenario

and give an overview about the proposed methodology.

• In Chapter 4, we will introduce the first phase of our three-step approach.

We will start by generating the set of visibility constraints and then we will

introduce our technique to detect inference channels caused by functional

dependencies and how to control them.

• In Chapter 5, we will present the second and the third phases of our ap-

proach. We will introduce the schema partitioning phase and how to com-

pute secure and optimal partitions. Next, We will describe our query evalu-

ation model and how to lock suspicious queries.

• In Chapter 6, we will provide an experimental evaluation of our proposed

approach and an analysis of the proposed algorithms.

• In Chapter 7, we will summarize our research contributions and the lessons

learned while developing secure data outsourcing. Finally, we will highlight

the limitations and we will propose potential future extension of our work.

1.6 Publication

The outcomes of this thesis are published in the hereafter list of publications:

International Journals (published)

• Jebali, A., Sassi, S., Jemai, A.,and Chbeir, R. Secure data outsourcing in

presence of the inference problem: A graph-based approach. Journal of Par-

allel and Distributed Computing 160(2022), 1–15, Q1, Impact factor:3.7

• A. Jebali, S. Sassi, A. Jemai, Secure data outsourcing in presence of the in-

ference problem: issues and directions, Journal of Information and Telecom-

munication (2020) 1-19, Indexed Taylor & Francis.

Section 1.6 – Publication 11

International Conferences (published)

• A. Jebali, A. Jemai, S. Sassi, A survey study on the inference problem in

distributed environment (s)., in: SEKE, 2019, pp. 113-152, Class B

• A. Jebali, S. Sassi, A. Jemai, Inference control in distributed environment:

A comparison study, in: International Conference on Risks and Security of

Internet and Systems, Springer, 2019, pp. 69-83, Class C

Chapter 2
State of the Art

12

Section 2.1 – Introduction 13

2.1 Introduction

The purpose of this chapter is to introduce the main related topics and research

areas covered in this thesis investigation. The fundamental issue that we address

is the verification of access control in data outsourcing. From the wide array of

previous research, we examine in this chapter the most representative fields which

directly impact the research of this dissertation, namely data outsourcing ,access

control models, their adaptation to data outsourcing scenarios and protection from

insider threats through inference channels. The last section of this chapter is ded-

icated to the discussion of the proposed works in each of those fields, to motivate

our research challenges.

The selection process of the literature review is done as follows: Firstly, our

advance keyword research was conducted on Google Scholar search engine with

a time filter from 1 January 1970 to 31 December 2019. Table 2.1 lists the used

keywords in different queries search in Google Scholar. The logical operator used

between keywords during our search was the ”AND” operator. begincenter

Table 2.1: Keywords used in review search
Keyword Number of viewed papers

Access control, Data outsourcing 43
Cloud computing , Authorization policies 48

Database, inference leakage 33
Confidentiality constraints, Cloud database 41

Secure data integration 11
Big data, Distributed query processing 39

Privacy, data publishing 24

The methodology of reviewing adopted in this manuscript includes as shown

in Figure. 2.1 three steps: Input literature, processing steps and review output.

Section 2.2 – Data Outsourcing 14

Figure 2.1: Literature review process

2.2 Data Outsourcing

Recently, the emergence of cloud computing technology has facilitated numerous

configurable resources in which the data is stored and managed in a decentral-

ized architecture. According to NIST (74) standard, cloud computing is defined

as ”a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction”. Cloud computing

enables data manipulation and storage to a third-party and gives the ability to the

data owner to access this data from anywhere at any time (Figure 2.2) (8).

It is from this perspective that modern database systems have been moved

from a central repository for record-keeping of internal enterprise data to a dis-

tributed repository. This is due to the fact that in-house storage and processing of

large collections of data has becoming very cost. Hence, this has given emergence

to the Database-as-a–Service (DBaaS) paradigm. Such a service is considered at-

tractive to data owners for two reasons (39):

• Economic concerns: The hardware and energy costs incurred by data owner

are likely to be much lower when they are paying for a share of a service

rather than running everything locally (in-house data processing).

• The costs adopted in a well-designed Database-as-a-Service will be propor-

tional to actual usage (“pay-as-you-go”).

Section 2.2 – Data Outsourcing 15

Figure 2.2: Cloud computing scenario

On the other hand, data outsourcing opens the door to possible security breaches

to the data and introduces therefore new security and privacy concerns to be ad-

dressed. Cloud service providers are considered honest-but-curious: The database

servers answer user queries correctly and do not manage stored data, but they at-

tempt to analyze intelligently data and queries in order to learn as much infor-

mation as possible from them. Two powerful techniques have been proposed to

enforce access control in cloud databases: The first one is by exploiting vertical

database fragmentation to keep some sensitive data separated from each other.

The second one is by resorting to encryption to make single attribute invisible to

unauthorized users. These two techniques can be implemented using the follow-

ing approaches:

• Full outsourcing (3): The hole in-house database is moved to the cloud.

It considers vertical database fragmentation to enforce confidentiality con-

straints with more than two attributes by keeping them separated from each

other among distributed servers. Moreover, it resorts to encryption in order

to hide confidentiality constraints with single attribute (Figure 2.3).

• Keep a few (35): This approach departs from encryption by involving

owner side. The attributes to be encrypted are stored in plain text in the

Section 2.2 – Data Outsourcing 16

Figure 2.3: Full data outsourcing

owner side since this latter is considered as a trusted part. The rest of the

database is distributed among servers while maintaining data confidentiality

through vertical fragmentation (Figure 2.4).

Figure 2.4: Keep a few

In this thesis, we are interested to security issues, particularly, we focus on

access control challenges that arise when data is fully externalized to the cloud.

Next, we discuss the existing access control models, their adaptation to data out-

sourcing scenarios and protection from insider threats through inference channels.

Section 2.3 – Security of Database Systems 17

2.3 Security of Database Systems

Since 1970, a lot of research efforts have been devoted from the database se-

curity research community to develop access control mechanisms and guarantee

CIA properties. Based on the surveys in (16) and (83), we discuss the most known

models and approaches proposed for specifying and enforcing access control poli-

cies in database management systems. We investigate also how those models were

adapted to access control verification in distributed environment.

2.3.1 Access Control Models

Access control consists in mediating every access request issued from the user

against the system, and determining whether this access should be allowed or

denied. Access control system is composed of three main components: Access

control policy, access control model and access control mechanism. A policy

defines a set of rules specifying whether an access request is allowed or denied.

A policy is then formalized through an access control model enforced through an

access control mechanism. Here, we describe the main approaches that have been

proposed.

2.3.1.1 Discretionary Access Control Model

According to (83), Discretionary Access Control Model (DAC) is a model based

on the identity of the subject, identities of object and permissions. The policy is

presented as an authorization rule (S,O,A) where S is the subject, O is the object

and A is the access right. Hence, it is called discretionary because of the delega-

tion principle. Furthermore, DAC has been developed considerably based on the

access matrix (it is considered as the most known framework for describing the

discretionary access control). (87). DAC expands authorization where the condi-

tion can be associated with time, location or the content of object. Also, it supports

the principle of user groups and object groups. Moreover, DAC is enriched with

positive (closed policy) and negative authorization (open policy) and they can be

also combined into one policy. This combination must satisfy incompleteness

Section 2.3 – Security of Database Systems 18

and inconsistency (conflict resolution). In fact, conflict resolution can be resolved

according to the following principle: Denial-take-precedence, most-specific-take-

precedence, strong/weak, priority level,positional, grantor-dependent and time-

dependent.

Nonetheless, it should be noted that DAC model ignores the users originate

process that execute on behalf and accordingly submit request to the system. This

aspect makes DAC vulnerable and can be bypassed by trojan horses embedded in

programs (16).

2.3.1.2 Mandatory Access Control Model

Mandatory Access Control Model (MAC) enforces access control policies on the

basis of regulations mandated by a central authority (83). The most common form

of MAC is the multilevel security policy based on the classification of subject

and object in the system. Furthermore, MAC is based on two principles: The

Bell-LaPadula model and Integrity-based mandatory model. The former model

protects only the confidentiality of the information; no control is enforced on its

integrity, through the No-read-up and No-write-down principles. However, the

second model prevents subjects from enforcing improper indirect modifications to

object they cannot write through the No-read-down and No-write-up principles.

Despite its pedantism, MAC model is vulnerable to covert channel and ag-

gregation problem (90) (29). Another limit for MAC, is the complication called

Polyinstantiation. In such situation, subjects at different levels have different

views on a relation, which is the view composed only of elements they are cleared

to see (83), this may affect the integrity constraints (primary key constraint) of the

database in the update and insert operation.

2.3.1.3 Role-Based Access Control Model

The conventional access control model which is based on the identity of users, and

the mandatory access control model in which users have security clearances and

objects have security classifications are not a good fit (83). Therefrom, Role-

Based Access Control Model (RBAC) tries to fill in this gap by merging the

Section 2.3 – Security of Database Systems 19

flexibility of explicit authorizations with additionally imposed organizational con-

straints. In such a model, a set privileges are grouped into a role, then a user is

assigned to this role by activating his session. Furthermore, the policies regu-

late the access of users to the information on the basis of organizational activities

and responsibility that users have in an organization. A role can be a user’s job

(eg.,manager) or it can be more specific matching a task that user need to per-

form (separation of duty by distinguishing between users roles and users process).

Moreover, roles can be hierarchically organized to exploit the propagation of ac-

cess control privileges along the hierarchy, a user may be allowed to simultane-

ously play more than one role and more users may simultaneously play the same

role (52).

RBAC is a better suits to commercial environment, it reduces the adminis-

tration costs through the role assignment. However, despite this features, RBAC

quite weak. Indeed, it is a time consuming to build a model instance and it lacks

flexibility to efficiently adapt to changing users, objects, and security policies (60).

2.3.1.4 Attribute-Based Access Control Model

Attribute-Based Access Control (ABAC) is based on the concept of constraint

satisfaction (57). In this model, a user is represented by a set of features charac-

terizing her/his profile, and a constraint is associated with a resource. The role

of ABAC is to mediate every request executed by a user against an object in the

system, and to verify if the profile of the user requesting access satisfies the object

constraints. If so, the access is granted. Otherwise, the access is denied. ABAC

is considered as being more flexible than RBAC since it could express different

types of access control policies. It is referred as logic-based access control in some

works (101), while in other works, it is referred as rule-based (6). The features

of RBAC and ABAC are considered to be complimentary, this is what motivate

researchers to show an increasing interest in combining RBAC and ABAC models

like the work proposed in (60).

Section 2.3 – Security of Database Systems 20

2.3.1.5 History-Based Access Control Model

In order to ensure maximal availability of data while guaranteeing the non dis-

closure of sensitive information, History-Based Access Control Model (HBAC)

consists in monitoring the access requests and revokes those that could lead to

the violation of access control policies (1). The main idea of HBAC module is the

following: When a user launches an access request to the system HBAC computes

the cumulative of user past access and current access. If the cumulative can com-

plete a violation of an access control policy, then the access request is revoked.

Otherwise this latter is allowed.

2.3.1.6 Advanced Access Control Models

In recent years, the security breaches’ rate is increasing worldwide. This is due to

the fact that traditional access control models could not keep up with the contin-

uous improvement of bypass techniques. As a consequence, security researchers

were interested in enhancing the existing access control models in order to miti-

gate security breaches. In this section, we will discuss some of these works.

In (72), the authors developed a Cyberspace-oriented access control model.

The objective was to ensure security of users accessing sensitive objects in the

internet via their own devices, with temporal and spatial limitations. The model

deals with seven atomic operations (read, write, store, execute, publish, forward,

and select) that cover most operations in cyberspace. Then, the authors reformu-

lated a suite of security policies for each atomic operation based on the following

criteria : Confidentiality classification, integrity classification, object-related at-

tribute, confidentiality clearance, subject trustworthiness, subject-related attribute,

security range and security risk. Although this access control model gave the pol-

icy for only read and write operations, it seemed to be suitable for cyberspace

especially for social networks.

A Policy Machine Access Control model was developed in (51). This model

is a redefinition of many access control models aiming to provide a unified frame-

work to support a wide range of policies under a single framework. It is com-

posed of a policy machine server containing the policy machine database, the

Section 2.3 – Security of Database Systems 21

policy decision point,the event processing, and the policy administration point.

Furthermore, the policy machine contains a policy machine client in charge of

hosting the OS, the applications, the API and the policy enforcement point. The

policy machine is composed of relations (divided in three types: assignment, pro-

hibitions, obligations and administrative commands) and the reference mediation

function responsible of enforcing the access state. Also, the policy machine con-

siders inter-process communication by preventing illegal information flow. In this

access control model, the authors also highlighted the capability of the policy ma-

chine to express different access control models (DAC, MAC, RBAC and Chinese

Wall Policy), and its ability to preserve security policies. From a commercial

perspective, policy machine looks like a suitable model for client and vendors. In-

deed, policy machine is decoupled from application code and OS, small portion of

the code need to be integrated with the application. This will reduce the amount

of code that needs to be trusted. On the other hand, the clients look like to be

satisfied with this model since it implements their precise policy requirements.

The authors in (83) introduced the access control model used in large scale

networks where remotely located parties may know little about each others (e.g,

world wide web). In such huge networks, traditional access control models do not

hold anymore. So, the authors resorted to Certificate-based access control model

which is based on the use of digital certificates or credential. In such case, every

part (client or server) possesses its own digital certificates and the access control

decision requires a negotiation between these parties. It is important to note that

the server cannot simply return ”allow/deny” decision, but it should inform the

requester with the information of what he should do to get access.

2.3.2 Access Control for Relational Database Systems

In the previous section, we have investigated different access control models exist-

ing in the literature. Those models can be adopted to heterogeneous data structure,

such as relational databases, XML documents, object databases and so on. Since

we are interested in the relational model, we will discuss how access control mod-

els are applied and extended for use to relational databases.

Section 2.3 – Security of Database Systems 22

2.3.2.1 The System R Access Control Model

System R access control model was proposed by IBM for relational databases. It

is based on the GRANT/REVOKE approach to delegate and revoke access rights

from users. Objects to be protected under this system are tables and views. The

possible access modes that subjects can exercise on tables corresponding to the

known SQL operations (SELECT, INSERT, DELETE and UPDATE). System R

pursues DAC model, this is what pushes it to follow the ownership approach. In

other words, the user who created an object became the owner of that object, and

he can execute all access modes on this object. Moreover, the owner has the right

to delegate access rights to other users through GRANT option.

Numerous studies have been developed on the basis of System R model. For

example, in (102), the authors introduced a trigger mechanism by resorting to

specific access control mode allowing a subject to implement a trigger on a table.

Similarly, the introduction of mechanisms for referential integrity, through the use

of foreign keys, has required the introduction of a related access mode allowing a

subject to refer a table from another table (16).

2.3.2.2 Oracle Virtual Private Database

Oracle virtual private database implemented a Fine-grained access control model

where the access can be controlled at table, row and even cell level (16). Oracle

VPD policy is implemented in two steps. In the first step, a function that defines

the restrictions to be enforced is defined. The second step is the creation of actual

policy that associates the function with a table or a view. Oracle VPD policy is

enforced as the following : When a user executes a query against a table or a view,

a where clause containing the Oracle VPD policy is then attached dynamically to

the SQL statement issued by the user. It have been showed that Oracle VPD

provides the following benefits :

• Scalability: Reusability of functions.

• Security: Oracle VPD is enforced at server-level.

Section 2.3 – Security of Database Systems 23

• Simplicity: The policy is added once at the database objects level than to be

embedded repeatedly in the applications using the same database objects.

2.3.2.3 Oracle Label

Oracle Label security is an access control product developed by Oracle (16). It

supports a multilevel relational model with granularity of tuple level. Hence, in

this model, different tuples in the same multilevel relation may have different ac-

cess classes called labels. The tuple-level access control is based on the VPD

mechanism. Oracle Label policy is enforced as the following: When a subject

issues a query against the content of a tuple, the Oracle Label compares the tu-

ple’s label with the subject’s label and privileges. Thereby, the access control in

Labeled Oracle is based on these factors:

• Tuple’s label to which user requests access.

• User’s label requesting access.

• The authorization that a user possesses.

It is important to note that Oracle Label enforces mandatory access control

with discretionary access control, based on authorizations users received on the

data and fine-grained restrictions, based on the VPD mechanism.

2.3.2.4 Content-based Access Control Model with Authorization View

Content-Based Access Control Model with Authorization View, also called View-

Based Access Control Model is considered as the most suitable model for rela-

tional database systems regarding its flexibility in specifying access control poli-

cies (62). Essentially, Content-Based Access Control requires that access control

decisions rely on data contents (16). Declarative languages like SQL, facilitates

the development of this model. According to (53), the most common mechanism

to support Content-Based Access Control is based on views. The view defines a

query called view definition query through the database relations. This latter can

be seen as a dynamic window that specifies which part of data the user is autho-

rized to access, such view is called authorization view. An authorization view

Section 2.3 – Security of Database Systems 24

can be a traditional relational view or a parameterized view. A parameterized au-

thorization view is an SQL view definition which makes use of parameters like

user-id, time, user-location and so on (81). In the following example, we want the

user Bob to access only employees whose salary is lower than 10000 and their job

is programmer, the authorization view to be defined is:

CREAT E AUT HORIZAT ION VIEW Vemp AS S ELECT ? FROM

Employees WHERE S alary < 1000 and Job = programmer;

Content-Based Access Control Model with Authorization View can enforce

fine-grained access control since the portion of data to be accessed specified in

the query can be a row , column or even a cell. Furthermore, to relieve the prob-

lem concerning the truthfulness of results returned to users, the authors in (81)

designated the following models :

• Truman-Model: Applies the query rewriting technique to the user query to

provide only the answers that are authorized to user. This approach max-

imizes the result query returned to the user. The main idea is that when a

user executes a query Q against a database schema, if there exists a query

Q’ expressed in terms of the authorization views and Q’ is included in Q

then the result of Q’ is returned instead of the result of Q.

• Non-Truman-Model: In such model, a query rewriting technique is also

executed, but the difference according to the previous model is in the inter-

pretation of the query. Thereby, when a query Q’ is executed, if there exists

a query Q’ expressed in terms of the authorization views and Q is equiva-

lent to Q’ then Q’ is mentioned as valid and the access to the data is granted.

Otherwise, the access request is denied.

However, the view mechanism have some weaknesses (16). In fact, the access

control policies are often different for different users, the number of views would

further increases. Furthermore, application programs would have to code different

interfaces for each user, or group of users to comply with the correct views. In

addition, the modification of access control policy requires the definition of new

views with consequent modifications to application programs.

Section 2.3 – Security of Database Systems 25

In the next section, we will highlight how access control models were adopted

to distributed environment.

2.3.3 Access Control Verification in Distributed Environment

In this section, we discuss security in distributed database systems. A distributed

database system includes a Distributed Database Management System (DDBMS),

a distributed database, and a network for interconnection (92). Access control in

a distributed database system has been previously investigated.

2.3.3.1 Distributed Access Control Policies

According to (92), the access control enforcement in distributed environment

could be centralized, distributed or replicated. In the case where the access con-

trol policy is centralized, a central server is in charge of granting/denying access

to local sources. The central server stores all the access control rules of all users.

If the authenticator is distributed, then the particular rule is located and enforced

for particular access. In some cases, access rules attached to a particular database

are stored in the same site with the database. In the case of replicated rules, each

node of the distributed database system can enforce its proper rules for the data

that it manages.

There is a consensus between security community that the distribution of the

data exacerbates the management of access control. For example, enforcing rules

where the access decision is based on the content of data is a complicated task.

Another point is to ensure the consistency of the rules. When a rule is updated,

this update should be propagated to all nodes in the distributed system.

2.3.3.2 Role-Based Access Control for Distributed Database Systems

Role-based access control model has been investigated for distributed database

systems (92). For example, in (15), the authors developed a model for controlling

access in workflow systems. Traditional role-based access control model can be

extended to distributed environment. The idea is that a user can play different

Section 2.3 – Security of Database Systems 26

roles in different distributed data sources. At this point, user role in different data

sources need to be verified before granting access.

2.3.3.3 SQL for Distributed Database Security

SQL extension can be used to specify access control policies in distributed database

systems. We have seen in the previous section the use of System R (GRANT/RE-

VOKE) and authorization view to enforce access control policies in centralized

database systems. In a distributed system, the access control specified in SQL

for a centralized system remains the same (92). Nonetheless, some works have

been going behind this. In (82), the authors have tackled the problem of how to

automatically derive access control rules for the data warehouse from those of the

sources. The inference of data warehouse permission has been done by extend-

ing the standard SQL GRANT/REVOKE model. The notion of access permission

in this work was split in two types of permissions: permission information (for

views) and physical permission (physical tables). This theory makes the system

easier to administer and its application more robust.

2.3.3.4 Access Control Through Confidentiality Constraints

Access control through confidentiality constraints is an access control model adopted

to guarantee data security and privacy in distributed relational database systems.

According to (3), this access control model could define the privacy requirements

and achieve it. The privacy requirements are specified as a set of confidentiality

constraints C, expressed on the relational database schema. This model is based

on Open Policy (83). This means that a user is allowed to access a resource if

there is no confidentiality constraint denying this access. Each confidentiality

constraint is represented by a subset, denoted c, of the attributes of the relational

schema R. Semantically, this means that the user cannot see the combination be-

tween attributes in c at the same time. However, any proper subset of c may be

revealed. For example, let’s consider a database schema S with a user nurse and

a confidentiality constraint c = {Patient SSN, Patient diagnosis}. According to

this access control policy, the nurse is denied from the combination of attributes

Section 2.3 – Security of Database Systems 27

Patient SSN and Patient diagnosis at the same time. Hence, the privacy is en-

sured by decomposing the database schema vertically, in such a way that the two

attributes Patient SSN and Patient diagnosis are not visible together at the same

partition in the distributed system.

2.3.3.5 Auditing a Distributed Database System

Database auditing can be performed by the database administrator to check the

queries posed, the updates made, and other activities that may be performed.

These activities can be extended to distributed database systems with two ap-

proaches (92). The first one is the central audit manager where all information

are gathered and analyzed centrally. The second one is the distributing auditing

where different sites communicating with each others to form a big picture. Ac-

cording to (13), the audit can be done at a fine-grained level through data mining

techniques. However, this must be done by taking into consideration the privacy

of the users of database system. This can be achieved by reconciling audit and

user privacy (by using privacy-preserving data mining techniques).

2.3.3.6 Access Control Enforcement in Data Integration Systems

In this section, we investigate the main approaches aiming to enforce access con-

trol for data integration systems (DIS) through the mediator/wrapper architecture.

Despite the interesting researches developed for composing access control

policies of distributed parties to ensure their interoperability, these approaches

look like inadequate for data integration systems. This comes from the fact that the

global synthesized policy cannot stand up to aggregation and combination prob-

lems such as second inference channel and privacy attacks. Those approaches are

only interested in establishing connections between the systems to facilitate the

user of one system accessing to another system through these links (87). This is

what motivated researchers in the last two decades to give more interest to this

field (5; 4; 56; 11; 76; 57; 85; 87; 82).

In (5), the authors analysed data leakage threats in DIS architecture. The

threats mentioned were relevant to data level only and treated the following data

Section 2.3 – Security of Database Systems 28

security proprieties : Confidentiality, privacy and trust. The performed analysis is

based on the location threat. Hence, the possible data leakage location identified

by authors are : Data leakage between data sources, data leakage between the

integration location and other entities and data leakage from the data consumer

side. The same authors developed a formal modeling of DIS security policies in

(4) to help DIS designers in mitigating the threats of data leakage. This were

achieved through the minimization of data exposure due to incorrect specification

of the security policies. Their proposed framework applied a formal approach to

model DIS security policies by a process having three steps of refinement :

• Modeling confidentiality

• Modeling privacy

• Modeling trust

Other works were interested in materialized views’ security. In (40), authors

have proposed a framework to effectively and efficiently select fine-grained access

control rules from the physical tables of relational database to the set of material-

ized views derived from this database. The authors pointed out two main contri-

butions: Firstly, they introduced a Datalog-based syntax and relating semantics to

model and express access control rules over relational databases, and to benefice

from the flexibility and expressiveness of such modeling formalism. Secondly, by

resorting to the VSP-Bucket algorithm, which is based on the view-based query

rewriting technique, authors were able to effectively and efficiently derive the set

of access control rules to be attached to the materialized views. Based on this

work, the authors in (11) provided a framework able to infer access control rules

to be attached to materialized views from those attached to physical tables. To

do this, the authors resorted to authorization views as access control rules and ex-

tended the MiniCon algorithm based on query rewriting to HminiCon+. Hence,

they provided a sequence of query rewriting to derive the authorization views to

be attached to materialized views. Nevertheless, the framework was considered

too restrictive because it deals only with authorization views based on selection

rules and conjunctive queries.

Section 2.3 – Security of Database Systems 29

The inference problem and privacy concerns of views have been investigated

through the works of (57; 86; 85). Besides to generating a global security pol-

icy at the mediator level that preserves the security policy of distributed sources,

the authors of these works dealt with the inference problem that exploits seman-

tic constraints to get access to unauthorized data. We will discuss those works

with more details in section 2.4. Privacy-preserving data integration was dis-

cussed in (67). In this work, authors laid out a privacy-preserving framework

for DIS. Firstly, they introduced a privacy framework which contains the follow-

ing components: Privacy view, privacy policies and purpose statements. Then,

they presented a schema matching algorithm that do not expose the source data

and schema. Indeed, this match preserved privacy in two steps: Find matches

and elaborating matches into semantic mappings. This schema matching solution

was followed by human verification of matches and mapping creation. Moreover,

a query across source strategies was elaborated to ensure query results without

violating privacy policy, neither the leakage of information from query answer.

These strategies were summarized through the following query techniques: Sta-

tistical databases, privacy-preserving join computation and privacy-preserving top

K-query.

In the last two decades, security issues in data warehouses also received much

interest from researchers. In (50), the authors introduced a framework that spec-

ifies security measures from the earliest stages of the data warehouse design in

the multidimensional modeling process and enforces them. To the best of our

knowledge, this is the first work that considers security issues in conceptual level

during data warehouse design process. Hence, the authors resorted to an exten-

sion of the Unified Modeling Language for specifying security constraints in the

conceptual multidimensional model. The advantage of this approach, is its in-

dependence from the target platform where the data warehouse has to be imple-

mented. Furthermore, the work of (88) considered also security constraints in

designing data warehouse from the earliest stage of the development process. The

methodology introduced by the authors aimed to establish a framework for the

design of secure data warehouse based on Model Driven Architecture (MDA) and

Query/View /Transformation (QVT). The authors backed up their approach by the

Section 2.4 – Data Protection from Insider Threat 30

fact that MDA and QVT covered all the design phases: Conceptual, logical and

physical, and specified security measures in all of them. Thus, making the security

rules to be closer to the end user.

It is clear to deduce from this review that the objective of access control mod-

els discussed along this section is to protect data from security breaches by in-

tercepting every access request to data. The access decision is then established

based on the profile of the user requesting access. An important point to take into

consideration is the reconciliation between data security and privacy. As already

mentioned, assuring data security requires among other measures creating user

activity profiles for anomaly detection, collecting data provenance, and context

information such as user location (14). In this situation, users may feel uncom-

fortable since data misuses by administrators may lead to privacy breaches. How-

ever, this is not always the case, many techniques have been developed in order to

reconcile data security and privacy such as :

• Privacy-preserving data mining.

• Privacy-preserving data publishing.

• Privacy-preserving attribute-based fine-grained access control for data on a

cloud.

• Privacy-preserving location-based role-based access control.

Next, we will discuss approaches aiming to protect information systems from

insider threats, and how to detect and control security breaches caused by infer-

ence channels.

2.4 Data Protection from Insider Threat

Traditional access control models aim to prevent data leakage via direct accesses.

A direct access occurs when a requester performs his query directly into the de-

sired object. However, these models fail to protect sensitive data from being ac-

cessed with indirect access (49). Indirect accesses via inference channels occur

Section 2.4 – Data Protection from Insider Threat 31

when a malicious user combines the legitimate response that he received from the

system with metadata (Figure 2.5).

Figure 2.5: Bypass access control with inference channels

According to (55), external information to be combined with data in order to

produce an inference channel could be database schema, system’s semantics, sta-

tistical information, exceptions, error messages, user-defined functions and data

dependencies. Detecting and removing inference in database systems guarantee

a high quality design in terms of data secrecy and privacy since the latter is con-

sidered as a new vision of the inference problem. Absolutely, this diversity of

techniques to bypass access control mechanisms with inference channels has at-

tracted considerable attention in recent years. A growing body of literature has

examined the inference problem but no one of those proposed solutions seemed

to be a viable method to resolve the problem. In reality, for each of the underly-

ing techniques, a specific solution has been proposed for handling each particular

attack. There is consensus among security community that data distribution ex-

acerbates inference problem. This is why several attempts have been done in the

last two decades to address this problem.

In this section, we investigate current and emerging research efforts about in-

Section 2.4 – Data Protection from Insider Threat 32

ference control in centralized database systems, then, we highlight inference con-

trol in distributed environment.

2.4.1 Access Control vs Inference Control

Traditional access control models aim to prevent data leakage via direct accesses.

A direct access occurs when a requester poses his query directly on the desired

object. However, these models fail to protect sensitive data from being accessed

via indirect accesses (49). To deal with such situation, several works have aug-

mented access control mechanisms with an inference engine in order to control

both direct and indirect accesses. Although access control and inference control

share the same goal of preventing data from unauthorized disclosure, they differ

in several fundamental aspects (68). We give in table 2.2 the major differences

between them.

Table 2.2: Access control vs inference control
Access Control Inference Control

Direct access control Indirect access control
Deterministic Related to stochastic channels

Static: through a set of rules Dynamic: vary through time and
influenced by user action and queries

Normal expensive More expensive then access control
Computational efficiency and high
accuracy of security control

Efficiency and accuracy
less than access control

Modular: can cover
distributed environment

Adaptability to data distribution
requires complicated techniques

According to our comparison table 2.2, we can note that access control is

more preferable than inference control from a complexity perspective. Conse-

quently, several researchers attempted to replace inference control engines with

access control mechanisms (18; 68; 19).

Section 2.4 – Data Protection from Insider Threat 33

2.4.2 Inference Control in Centralized Database Systems

Classical access control models have not been designed to protect data from infer-

ence. These models have been only designed to protect data from direct accesses.

An inference problem, also called inference aggregation problem, occurs when

a user deduces sensitive information from a sequence of innocuous information

in the database. It has been widely investigated in the literature since 1987 with

the emergence of multilevel database systems. The first works in this field are

presented in (95; 90; 75).

In (95), the authors augmented the relational database with an inference en-

gine, this module acted as an intermediary between the queries and the database.

The inference engine resorted to first order logic to represent queries, security

constraints, environment information and real world information. Hence, the cur-

rent query was converted into a first order logic expression by the inference engine

and then compared against the database constraints to determine if the query could

lead to security constraint violation. If this is the case, and the query is identified

as suspicious, then, it will be rejected. Otherwise, it will be converted to rela-

tional algebra and forwarded to the DBMS for execution. Results returning from

the database were assigned a classification label to ensure the absence of unautho-

rized disclosure.

Morgenstern (75) presented a framework for inference analysis and detection

during design and classification of data in multilevel database. The proposed

methodology aimed to anticipate the inference channels in order to classify data.

Hence, the authors introduced the classification process as a constraint satisfac-

tion, then, they provided a concept called sphere of influence (SOI) to restrict the

scope of possible inferences. In order to prevent these inference channels consist-

ing of a set of objects from being achieved, they presented the following solutions:

safety classification level which consisted of increasing the security clearance of

an inferred object to an appropriate classification. Besides, a data sanitization

process which consists of imposing aggregation classification on the set and clas-

sifies the aggregation in a way that the whole aggregate cannot be inferred from

the individual values given to a lower level user. Furthermore, a third solution

Section 2.4 – Data Protection from Insider Threat 34

was introduced aiming to disturb the inference channels and to prevent precise

inference from being revealed by adding noise data.

The work in (90) investigated the inference problem due to functional de-

pendencies (FD) and multivalued dependencies (MVD) in multilevel relational

databases with attributes and records classification schemes. For inference chan-

nels produced by functional dependencies, the authors proposed a level adjust-

ment algorithm to adjust attributes level with minimum information loss so that

FD compromises are avoided. In the case of inference channels with MVD, au-

thors introduced a level adjustment algorithm that adjusted security levels of tu-

ples in relation instance to eliminate MVD compromises. However, there were

some shortcomings to mention in this work. Firstly, the inference algorithms were

given for each type of dependency separately but not when they were present to-

gether. Secondly, the authors considered only two types of dependencies, FD

and MVD. Thirdly, the access control granularity was restricted to tuple level and

single-attribute level. Finally, since their solution for eliminating a detected infer-

ence channel is based on increasing the classification level of individual attributes,

it restricted the availability of data.

2.4.2.1 Inference Attacks

According to (49), there are three types of inference attacks:

• Statistical attacks: It is considered with statistical databases. The secu-

rity breaches occur when confidential information about an individual is

obtained by correlating different statistics while the security requirement

is to provide access to statics about groups of entities while protecting the

confidentiality of the individual entities (47).

• Semantic attacks: They aim to produce inference channels to bypass an

access control model. In this type of attack, the semantic relationship be-

tween data is used to infer sensitive information. There exists three ways to

produce a semantic inference attack including: Inference from constraints

on queries, inference resulting from the combination of data with metadata

and inference from value constraints (constraints defined over data).

Section 2.4 – Data Protection from Insider Threat 35

• Inference due to data mining: Data mining is considered as one of the

most used techniques for knowledge discovery and process. Nevertheless,

it is considered as a double-edged weapon. From one hand, there is a con-

sensus for the importance of data mining in data engineering and knowledge

discovery. On the other hand, data mining can produce inference channels

through its mining algorithms if the privacy of users is not respected.

For each of the mentioned techniques, researchers devoted a lot of efforts to

deal with inference problems. For statistical attacks, techniques like Anonymiza-

tion and Data-perturbation were developed to protect data from indirect access.

For security threats based on data mining, techniques like privacy-preserving data

mining and Privacy-preserving data publishing were carried out. Furthermore, a

lot of works have investigated the semantic attacks (90; 31; 29).

2.4.2.2 Inference Prevention Methods

There exists in the literature more than one criterion to classify approaches that

deal with inference. One proposed criterion is to classify these approaches ac-

cording to data level and schema level (107). In such classification, inference

constraints are classified into schema constraints level and data constraints level.

Another criterion could be according to the time when the inference control tech-

niques are performed. Therefore, the proposed approaches are classified into three

categories: design time, query run time and at update time.

Design time approaches are considered as proactive techniques. They argue

that since the inference problem is a resources consuming task, it is better to

achieve all consuming processing offline before the system is executed. More-

over, since the inference is examined at a conceptual level in these approaches,

detecting an inference channel is called second path detection (characterized as

multiple paths between two attributes such that the path’s security levels are in-

consistent). In fact, these approaches exploit the semantic relationship between

data and graphs to detect the second path (the inference channel). When an infer-

ence channel is detected, either the classification level of the inferred attributes is

increased or the database schema is modified to block the inference channel from

Section 2.4 – Data Protection from Insider Threat 36

being achieved. Approaches that deal with inference at design time are found in

(80; 44; 58; 90; 79; 91; 59; 100).

Run time inference control techniques belong to reactive categories. these ap-

proaches aim to detect and block inference channels at query run time. For this

purpose, the DBMS should be augmented with an inference engine to control the

queries executed by the users against the database. The run time approaches are

history-based since they combine the query executed by the user with the set of

queries previously executed by the same user in addition to a set of semantic con-

straints to determine if the current query could lead to an inference channel. Sev-

eral approaches supporting run time were developed in the past (31; 94; 9; 29; 95).

It is important to note that users can collaborate to produce an inference chan-

nel based on the query sequences of collaborators. This problem was addressed

in (32) where the authors developed a query-time inference violation detection

model to evaluate collaborative inference based on the query sequences of col-

laborators and their task-sensitive collaboration levels. Besides, the work in (55)

presented a database inference controller in the presence of probabilistic depen-

dencies. Authors of (55) developed a formal language called ATKLOG providing

an expressive and concise way to represent attacker’s beliefs during their inter-

action with the system. By leveraging to this formal language, they developed

AGERONA a secure inference controller mechanism to prevent the disclosure of

sensitive information in presence of probabilistic dependencies.

In addition to design time and query run time categories, inference control can

be performed at update time. To the best of our knowledge, this problem was only

tackled in (96). In this work, the authors built on (29) to introduce a Dynamic

Disclosure Monitor to prevent illegal inferences via database constraints at update

time while maximizing data availability. The authors developed a module called

Update Consolidator which uses the user’s history file in addition to database up-

dates and database constraints to produce a new history file that does not contain

any outdated data values. Then, by resorting to Update Consolidator and Disclo-

sure Monitor, the proposed approach guaranteed the completeness and soundness

properties of the inference algorithm (data security and data availability) in the

presence of updates. Furthermore, the authors proved through the experimental

Section 2.4 – Data Protection from Insider Threat 37

results how their framework can handle collaborative inference.

2.4.2.3 Discussion of the Inference Prevention Methods

The purpose of inference control at design time is to detect inference channels

from earliest stage and eliminate them. These approaches provide a better per-

formance for the system since no monitoring module is needed when the users

query the database, by consequence improving query execution time. Neverthe-

less, design time approaches are too restrictive and may lead to over classification

of the data. Besides, it is required that the designer has a good concept of how the

system will be utilized. On the other hand, run time approaches provide data avail-

ability since they monitor the suspicious queries at run time. However, run time

approaches lead to performance degradation of the database server since every

query needs to be checked by the inference engine. Furthermore, the inference

engine needs to manage a huge number of log files and users. As a result, this

could induce slowing down query processing. In addition, run time approaches

could induce a non deterministic access control behavior (users with the same

privileges may not get the same response).

From this perspective, we can conclude that the main evaluation criteria of

these techniques is a trade-off between availability and system performance. Some

works have been elaborated to overcome these problems especially for run time

approaches. Example in (106) a new paradigm of inference control with trusted

computing was developed to push the inference control from server side to client

side in order to mitigate the bottleneck on the database server. Furthermore, in

(89) the authors developed a run time inference control techniques while retaining

fast query processing. The idea behind this work was to make query processing

time depends on the length of the inference channel instead of user query history.

We assert that the distribution of the data exacerbates the inference and pri-

vacy problems. In the next section, we will investigate the inference problem in

distributed environment.

Section 2.4 – Data Protection from Insider Threat 38

2.4.3 Inference Control in Distributed Environment

Inference control in distributed environment has been investigated from early

2000 until now. This field of study has received the intention from researchers in

database security, due to the fact that distribution aggravates inference problems

and privacy concerns. In this section, we start by investigating research efforts on

inference prevention in distributed data sources, then, we review different works

for mitigating inference in data integration systems. We survey inference problem

in data integration systems through the Mediator/Wrapper architecture for the rea-

son that this is the most suitable design to access distributed, heterogeneous and

autonomous data sources. We note that inference attacks and prevention methods

destined for centralized database systems remain applicable in distributed envi-

ronment.

2.4.3.1 Inference Control in Distributed Data Sources

In (30), the authors considered the inference problem where the data is combined

from distributed database and released to the final users. In this situation of data

dissemination, the problem arised when non-sensitive attributes compromise sen-

sitive attributes. According to presented work, one technique to mitigate infer-

ence was by modifying the non-sensitive data in the database. Nevertheless, even

with this modification, sensitive attributes still deducible when data from other

databases is incorporated. For example, consider a database containing an at-

tribute aids classified as sensitive. In addition, consider another database contain-

ing information about drug abuse, one can deduce from the two databases that

drug abuser’s injections may lead an individual to contract aids. As a result, the

history of drug injection (which is considered non-sensitive), allows to infer with

a higher chance if a user is contracted with aids or not even the diagnosis has

not been released. In order to mitigate the occurrence of inference, the authors

proposed a mechanism called Relational Downgrader that exploits Bayesian net-

work to reason about probabilistic dependencies relationships among attributes of

the distributed database systems. The Downgrader is composed of three compo-

nents: the GUARD, the Decision Maker and the Parsimonious Downgrader. The

Section 2.4 – Data Protection from Insider Threat 39

main idea behind this framework is to not release certain non-sensitive informa-

tion that can lead to probabilistic inference about the sensitive information while

minimizing the loss of functionality. Consequently, the outputs of the Downgrade

are records that have been modified in order to anonymize sensitive attributes.

The authors of (97) built on (30) to develop a work turning around inference

prevention in distributed database systems. They proposed an inference preven-

tion approach that enabled each of the database in a distributed system to keep

track of probabilistic dependencies with other databases and by consequence use

that information to help preserve the confidentiality of sensitive data. The method-

ology is called ”Agent-based” because every node in the distributed system is

augmented with an agent to keep track of other nodes so that single point of fail-

ure and communication bottleneck are avoided. The principle of this framework

is the following: In the first phase, a Rule Generator is developed to reflect the

probability dependency relationship among the databases by the construction of

a Bayesian Network that preserves the individual database dependencies and take

into consideration dependencies between autonomous databases. Then, a set of

rules are derived from the trained Bayesian Net by analyzing the inference of

the sensitive target attributes. In the next phase, an agent which is considered

as a downgrader, is attached to each machine in the distributed system. This

agent blocks the inference in the local machine and the inference from several

distributed machines by keeping track of these machines. However, this approach

have some limits. It treats the case where the distributed databases are overlapped

(similar or have common attributes). Moreover, it assumes that the records in the

distributed databases share the same keys constraints.

Inference problems have been also investigated in Peer-to-Peer environment

through the work in (43). The authors pinpointed the inference that occurred

in homogeneous peer agent through distributed data mining. This process was

called peer-to-peer agent-based data mining systems. They asserted that perform-

ing Distributed Data Mining (DDM) in such extremely open distributed systems

exacerbates data privacy and security issues. As a matter of fact, inference occurs

in DDM when one or more peer sites learn any confidential information (model,

patterns, or data themselves) about the dataset owned by other peers during a data

Section 2.4 – Data Protection from Insider Threat 40

mining session. The authors firstly classified inference attacks in DDM in two

categories:

• Inside Attack Scenario: It occurs when a peer try to infer sensitive informa-

tion from other peers in the same mining group. Depending on the number

of attackers, the authors distinguished single attack (when one peer behaves

maliciously) and coalition attack (when many sites collude ta attack one

site). Moreover, a probe attack was introduced by the authors, which is

independent of the number of peers participating in the attack.

• Outside Attack Scenario: It takes place when a set of malicious peer tries

to infer useful information from other peers in a different mining group. In

this case, eavesdropping channel attack is performed by malicious peers to

steal information from other peers.

After identifying DDM inference attacks, the authors proposed an algorithm to

control potential attacks (inside and outside attacks) to particular schema for ho-

mogeneous distributed clustering, known as KDEC. The main idea behind this

algorithm is to reconstruct the data from the kernel density estimates since a mali-

cious peer can use the reconstruction algorithm to infer non-local data. However,

the proposed algorithm needs to be improved from an accuracy point to expose

further possible weakness of the KDEC schema.

2.4.3.2 Inference Control in Data Integration Systems

Inference control in data integration systems were investigated in the last decade

through the work of (57; 87; 85). In such system, a mediator is defined as a unique

entry point to the distributed data sources. It provides to the user a unique view

of the distributed data. From a security point of view, access control is a major

challenge in this situation. two major security issues have been studied in this

field : access control policies integration (5; 4; 11; 76; 56; 40; 86) and inference

problems (57; 87; 85). In the former, researchers aim to enforce a global security

policy which is deduced from the back-end data sources in addition to possibly

enforcing additional security properties. In this situation, the global policy must

Section 2.4 – Data Protection from Insider Threat 41

comply with the source policies. Figure 2.6 reports that complying with source

policies means that a prohibited access at the source level should be also prohib-

ited at the global level.

Figure 2.6: Secure Data Integration System

In (57; 87; 85), the authors demonstrated that despite the generation of a

global policy at the mediator level that synthesizes and enforces the back-end

data sources policies, security breaches were still possible via inference channel

produced by semantic constraints (data dependencies). The problem is that the

system (or the designer of the system) cannot anticipate the inference channels

that arise due to the dependencies that appear at the mediator level. To the best of

our knowledge, all the works that deal with inference problem in data integration

systems are performed at query run time or at the global policy design time.

The first work attempting to control inference in data integration systems was

introduced in (57). The authors proposed an incremental approach to prevent in-

ference with functional dependencies. The proposed methodology included three

steps:

• Synthesizing global policies: Derives the authorization rule of each virtual

relation individually by the way that it preserves the local authorization of

the local relations involved in the virtual relation.

• Detection phase: Identifies all the violations that could occur using func-

tional dependencies by resorting to a graph based approach. Such violation

Section 2.4 – Data Protection from Insider Threat 42

is called violating transaction that consists of a series of innocuous queries

when it is achieved leads to violation of authorization rule.

• Reconfiguration phase: In this phase, the author proposes two methods to

forbid the completion of each transaction violation. The first one uses a

historic-based access control by keeping track of previous queries to eval-

uate the current query. This method is considered as a run-time approach.

The second one proposes to reconfigure the global authorization policies at

the mediator level in a way that no authorization violation will occur. This

method is considered at design-time of the global security policy.

In this work, the authors discussed only semantic constraints due to functional

dependencies. Neither inclusion nor multi-valued dependencies was investigated.

Besides, other mapping approaches need to be discussed such as LAV and GLAV

approaches.

The authors of (87) were inspired from (57) to propose an approach aiming to

control inference in data integration systems. The proposed methodology resorted

to formal concept analysis as a formal framework to reason about authorization

rules and functional dependencies as a source of inference. The authors adopted

an access control model with authorization views and proposed an incremental

approach with three steps:

• Generation of the global policy, global schema and global FD: This step

takes as input a set of source schema together with their access control poli-

cies and starts by translating the schema and policies to formal contexts.

Then, the global policy is generated in a way that the source rules are pre-

served at the global level. Next, the schema of the mediator (i.e. virtual

relations) is generated from the global policy to avoid useless attributes

combination (every attributes in the mediator schema is controlled by the

global policy). Finally, a global FD is considered from the source FD as a

formal context.

• Identifying disclosure transactions: By resorting to formal concept analy-

sis as a framework to reason about the global policy, the authors identified

Section 2.4 – Data Protection from Insider Threat 43

the profiles to be denied from accessing sensitive attributes at the mediator

level. Then, they extracted the violating transaction by reasoning about the

Global functional dependencies.

• Reconfiguration phase: This step is achieved by two ways. At design time

with a policy healing consisting to complete the global policy with addi-

tional rules in order that no violating transaction is achieved. At query run

time with a monitoring engine to prohibit suspicious queries.

In (85), the authors examined the inference that arised in the web through RDF

store. They proposed a fine-grained framework for RDF data, then they exploited

close graph to verify the consistency propriety of an access control policy when

inference rules and authorization rules interact. Without accessing the data at

policy design-time, the authors proposed an algorithm to verify if an information

leakage will arise given a policy P and a set of inference rules R. Furthermore, the

authors demonstrated the applicability of the access control model using a conflict

resolution strategy (most specific takes precedence).

Since the discussed works are recent, there are a number of concepts associ-

ated to security policies, privacy, data distribution and semantic constraints which

could be considered to ensure better security and prevent inference from occurring

in distributed environment:

• Absence of modularity in data integration systems. In the case where a new

source joins the system, it is necessary to revise the global schema and the

global policy. This is not suitable for distributed environment where the

source joins and leaves the system continuously (e.g. Mobile environment).

• Authors dealt only with semantic constraints represented by functional de-

pendencies and probabilistic dependencies as a source of inference. How-

ever, other semantic constraints, example inclusion dependencies, join de-

pendencies and multi-valued dependencies should be considered as sources

of inference.

• In data integration scenario, all approaches aim to handle inference at query

run time by keeping track of the history of user queries and the current

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 44

query. In the case where the system deals with a large volume of data and

users number, run time approaches will lead to performance degradation

by slowing down query processing, consequently, this may push the server

(mediator) to bottleneck. Hence, design time approach should be adopted

to overcome these problems since it is performed offline.

2.5 Data Outsourcing in Presence of Access Control

Policies

As we discussed in section 2.2, data owners place their data among CSSP in

order to increase flexibility, optimize storage, enhance data manipulation and de-

crease processing time. Nonetheless, security concerns are widely recognized as

a major barrier to cloud computing and other data outsourcing or Database-as-a-

Service arrangements. Users are reluctant to place their sensitive data in the cloud

due to concerns about data disclosure to potentially untrusted external parties and

other malicious parts (105). Being processed and stored externally, owners cannot

take control of their sensitive data anymore. Consequently, users privacy will be

at risk. Two main approaches were adopted in secure data outsourcing: Secure

Data Outsourcing with Non-Communicating Servers and Secure Data Outsourc-

ing with Communicating Servers. Previous studies concentrated primarily on non

communicating cloud servers (3; 34; 45; 35; 41). In this situation, servers were

unaware of each other and did not exchange any information. When a master node

receives a query, it decomposes it and processes it locally without the need to per-

form join query. In recent years, researchers studied the effect of communication

between servers on query execution and secure query evaluation strategies have

been elaborated (23; 22; 42; 46). We give in this paper a review study of current

and emerging researches on privacy and confidentiality concerns in each of those

approaches and discuss data outsourcing in relation with the inference problem.

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 45

2.5.1 Secure Data Outsourcing with Non-Communicating Servers

The first work attempting to enforce access control in database outsourcing using

vertical fragmentation was presented in (3). Under the assumption that servers

do not communicate, the work was aiming to split the database on two untrusted

servers while preserving data privacy with some of the attributes possibly en-

crypted. Hence, a secure fragmentation of a relation R is a triple (F1, F2, E)

where F1, F2 contain attributes in plain text stored in different servers and E is

the set of encrypted attributes. The tuple identifier and the encrypted attributes

are replicated with each fragment. The protection measures was also augmented

by a query evaluation technique defining how queries on the original table can be

transformed into queries on the fragmented table.

The work in (61) introduced an approach to enforce confidentiality and pri-

vacy while outsourcing data to CSSP. The proposed technique relied on vertical

fragmentation and applied only minimal encryption to preserve data exposure to

malicious part. However, the fragmentation algorithm enforced the database logic

schema to be in third normal form to produce a good fragmentation design. Also,

the query execution cost was not proven to be minimal. Authors of (33), addressed

the problem of privacy preserving data outsourcing by resorting to the combina-

tion of fragmentation and encryption. The former was exploited to break sensitive

associations between attributes, while the latter enforced privacy of singleton con-

fidentiality constraints. Furthermore, the authors defined a formal model of min-

imal fragmentation and proposed a heuristic minimal fragmentation algorithm to

efficiently execute queries over fragments while preserving security proprieties.

Meanwhile, when a query is executed over a fragment involving an attribute that

is encrypted, further query will be executed to evaluate conditions of the attributes

and this will lead to a performance degradation by slowing down query process-

ing.

In (36), researchers treated the concept of secure data publishing in pres-

ence of confidentiality and visibility constraints. By modeling these constraints

as boolean formulas and fragment as complete truth assignment, the authors re-

lied on Ordered Binary Decision Diagrams (OBDD) technique to check whether

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 46

a fragmentation satisfied confidentiality and visibility constraints. The proposed

algorithm ran through OBDD and returned a fragmentation that guaranteed cor-

rectness and minimality. Nonetheless, query execution cost was not investigated

in this paper and the algorithm ran only on database schema with single relation.

Authors of (105) studied the problem of finding secure fragmentation with min-

imum cost for query support. Firstly, they defined the cost of a fragmentation F

as the sum of the cost of each query Qi executed on F multiplied by the execution

frequency of Qi. Secondly, they resorted to heuristic local search graph-based ap-

proach to obtain near optimal fragmentation. The search space was modeled as a

fragmentation graph and transformation between fragmentation as a set of edges

E. Then, two search strategies where proposed: a static search strategy which is

invariant with the number of steps in a solution path, in addition to a dynamic

search strategy based on guided local search which guaranteed the safeness of the

final solution while avoiding dead-ends. However, this work did not investigate

visibility constraints which is an important concept for data utility. Moreover,

other heuristic search techniques could be addressed (i.e. Tabu search or simu-

lated annealing).

The work in (35) has put forward a new paradigm to securely publishing data

in the cloud while completely departing from encryption, since this latter is con-

sidered sometimes as a very rigid tool, delicate in its configuration, and may slow

down query processing. The idea behind this work was to engage owner side

(assumed to be a trusted part) to store a limited portion of data (supposed to be

encrypted) in the clear and use vertical fragmentation to break sensitive associa-

tions among data to be stored in the cloud. The proposed algorithm computed a

fragmentation solution that minimized the load for the data owner while guaran-

teeing privacy concerns. Moreover, authors highlighted other metrics that can be

used to characterize the quality of a fragmentation and decide which attribute will

be affected to client side and which attribute will be externalized. Even though,

engaging the client to enforce access control requires the fact to mediate every

query in the system which could lead to bottleneck and impacting performances.

Researchers in (26) proposed a separation of duties’ technique based on ver-

tical fragmentation to address the problem of confidentiality preserving when

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 47

outsourcing data to CSSP. To capture privacy requirement, confidentiality con-

straints and data dependencies where introduced in this work. The separation of

duties problem was treated as an optimization problem to maximize the utility of

the fragmented database and to enhance the query execution over the distributed

servers. However, the optimization problem was addressed only from the point

of minimizing the number of distributed servers. Besides, when collaboration

between servers is established, the separation of duties approach is no longer ef-

ficient to preserve confidentiality constraints. The NP-Hardness proofness of the

separation of duties problem discussed in (26) was proved in (27). The separation

of duties problem was addressed as an optimization problem by the combination

of the two famous NP-Hard problems: Bin packing and Vertex coloring. The

bin packing problem was introduced to take into consideration capacity constraint

of the servers in view that fragments should be placed in a minimum number of

servers without exceeding the maximum capacity. Meanwhile, vertex coloring

was introduced to enforce confidentiality constraints seeing that the association

of certain attributes in the same server violated the confidentiality propriety. We

would like to mention that this work tackled the separation of duties problem for

single relation database and to make the theory applicable in practical scenarios

many relations database should be treated.

Parting from the fact that communication between distributed servers in data

outsourcing scenarios exacerbates privacy concerns, secure query evaluation strate-

gies should be adopted. In the next subsection, we will investigate works turning

around secure data outsourcing with communicating servers.

2.5.2 Secure Data Outsourcing: The Case of Communicating
Servers

In the last years, few works investigated the problem of data outsourcing with

communicating servers (23; 22; 42; 46). Besides to guarantee confidentiality and

privacy preserving when distributing databases in the cloud, these works imple-

mented secure query evaluation strategies to retain access control policy when

servers communicate with each others. It is clear when servers (containing sensi-

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 48

tive attributes whose association is forbidden) interact through join queries, user’s

privacy will be at risk. Therefore, secure query evaluation strategies aim to prevent

linkability between sensitive attributes when a malicious user tends to establish it.

Authors in (23) built on (22) to propose an approach that securely outsourcing

data based on fragmentation and encryption. It also enforced access control when

querying data by resorting to query privacy technique. The approach treated the

case of multi-relations database and a new inter-table confidentiality constraints

was introduced. It assumed that the distributed servers could collude to break

data confidentiality so the connection between servers is supposed to be based on

primary-key/foreign-key. In addition, the query evaluation model which is based

on private information retrieval ensured data unlinkability performed by malicious

user using semi join query. Yet, the proposed technique enforced database schema

to be normalized, and generated a huge number of confidentiality constraints due

to the transformation of inter-table constraints to singleton and association con-

straints which could affect the quality of the fragmentation algorithm. In addition,

more generic queries should be considered.

Join query integrity check was tackled through the work in (42). In this work,

researchers were inspired from (46) to propose a new technique in order to verify

the integrity of join queries computed by potentially untrusted cloud providers.

The authors aimed also in their approach to prevent servers to learn from answered

queries which could lead to breach user’s privacy. To do so, authors showed firstly

how markers, twins, salts and buckets can be adopted to preserve integrity when

a join query is executed as a semi-join. Then, they introduced two strategies to

minimize the size of the verification: limit the adoption of buckets and salts to

twins and markers only and representing twins and markers through slim tuples.

Besides, authors demonstrated through their experiments how the computational

and communication overhead can be limited due to integrity check.

To summarize, we can classify the discussed approaches according to the

following criteria: confidentiality constraints support, optimal distribution sup-

port and secure query evaluation strategy support. We would like to mention

that optimal distribution was treated through secure distributions that guaran-

tee minimum query execution costs over fragments. From this point, it is clear

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 49

that all mentioned approaches supported access control verification through con-

fidentiality constraints. However, query evaluation was not treated in all works

(26; 33; 35; 41). Those approaches differ from the fact that some of them en-

sured minimum query execution costs and data utility for the database applica-

tion, but other ones addressed the problem of data outsourcing with confidential-

ity constraints only. Besides, among the secure database distribution with query

evaluation strategy, we see that the work in (23) provided an integral framework

ensuring secure database fragmentation and communication between distributed

servers. Also, it showed a reasonable query execution cost.

Nevertheless, those works assumed that the threat comes from the cloud ser-

vice providers that try to collude to break sensitive association between attributes,

it does not treat the case of internal threat where a malicious user aims to bypass

access control with an inference channel. This is why we will present in the next

section an insightful discussion about data outsourcing in presence of the infer-

ence problem.

2.5.3 Data Outsourcing and the Inference Problem

Data outsourcing and the inference problem is a research field that researchers

begun to investigate few years ago. Inference leakage is recognized as a major

barrier to cloud computing and other data outsourcing or Database-As-a-Service

arrangements. The problem is that the designer of the system cannot anticipate the

inference channels that arise in cloud level and could lead to security breaches.

In (21), authors resorted to a Controlled Query Evaluation strategy (CQE) to

detect inference based on the knowledge of non-confidential information. Those

information were supposed to be contained in the outsourced fragments and prior

knowledge that a malicious user might have. Regarding that CQE relied on logic-

oriented view on database systems, the main idea of this approach was to model

fragmentation logic-oriented to allow for inference proofness to be proved for-

mally even the semantic database constraints that an attacker may hold. Besides,

vertical database fragmentation technique was considered by authors in (45) to en-

sure data confidentiality in presence of data dependencies among attributes. Those

Section 2.5 – Data Outsourcing in Presence of Access Control Policies 50

dependencies allow unauthorized users to deduce information about sensitive at-

tributes. In this work, three types of confidentiality violations that can be caused

by data dependencies were defined: Firstly, when a sensitive attribute or associa-

tion is exposed by the attributes in a fragment. Secondly, if An attribute appearing

in a fragment is also derivable from some attributes in another fragment, thus en-

abling linkability among such fragments. Thirdly, when an attribute is derivable

(independently) from attributes appearing in different fragments, thus enabling

linkability among these fragments. To tackle these issues, authors reformulated

the problem graphically through a hypergraph representation and then computed

the closure of a fragmentation by deducing all information derivable from its frag-

ments via dependencies to identify indirect access. Nevertheless, the major limit

of this approach is that it explored the problem only in single relational database.

Despite that data outsourcing was not explicitly mentioned in (98; 99), these

two works aimed to control inference problem caused by functional dependencies

and meaningful join proactively by decomposing the relational logical schema

into a set of views (to be queried by the user) where inference channels cannot

appear. In (98), authors proposed a proactive and decomposition based inference

control strategy for relational databases to prevent access to forbidden set via di-

rect or indirect access. The proposed decomposition algorithm controlled both

functional and probabilistic dependencies by breaking down those leading to in-

fer a forbidden attribute set. However, this approach was considered too rigid

by the fact that if the ways of associate forbidden sets attributes are defined as

a chain of functional dependencies, the algorithm broke these chains from both

sides for both attributes. Parting from this limit, the same researchers proposed

a graph-based approach in (99) consisting of proactive decomposition of the ex-

ternal schema, in order to satisfy both the forbidden and required associations of

attributes. In this work, functional dependencies are represented as a graph in

which vertices are attributes and edges are functional dependencies. Inference

channel is then defined as a process of searching a sub-tree in the graph contain-

ing the attributes that need to be related. Compared to the approach (98), in this

one, the cut of the inference channel is relaxed by cutting the chains only at a

single point, consequently minimizing dependencies loss. Nevertheless, like the

Section 2.6 – Optimal Database Schema Partitioning 51

previous technique, it leads to semantic loss and need query rewriting techniques

to query decomposed views.

2.6 Optimal Database Schema Partitioning

In recent years, some researchers devoted their research efforts to address the

problem of vertical database schema partitioning in the CSSP level taking into

consideration optimality constraints. These optimality constraints consist in mini-

mizing the total resource consumption in the CSSP. In (38), the authors elaborated

an experimental study to prove the relation between resource consumption and

the queries distributed over multiple servers. In reality, minimizing the number of

servers invoked in the users queries, enhances throughput and decreases latency

which consequently will decrease resource consumption in CSSP level. Literature

works dealing with this field of study could be classified in two categories :

• Workload-aware approaches (38; 69; 34; 105): These approaches focused

on the workload (information regarding queries, their frequencies, involved

attributes, arrival patterns, and so on) to derive an optimal schema distri-

bution in the CSSP level. For example in (38; 69), authors relied on a hy-

pergraph representation of the database where the tuples are represented by

vertices and transactions (queries) are hyperedges that relate them. Hence,

the partitioning algorithm minimized the number of cross-partition transac-

tion by minimizing cuts of hyperedges in the hypergraph. However, these

approaches are not always applicable since the query workload is not avail-

able in all scenario or it is useless due to errors in physical parameter esti-

mations. For this reason, some workload-independent techniques have been

proposed.

• Workload-independent approaches (104; 25; 103): These approaches at-

tempted to exploit database semantics without queries in order to derive op-

timal vertical schema partitioning. Nonetheless, these approaches were not

in line with our methodology for the following reasons: The work in (25) at-

tempted to exploit the logical database schema by extracting the functional

Section 2.7 – Discussion 52

dependencies from database tables and use them to perform partitioning.

This could produce as discussed in (64; 63; 65) inference leakage by mali-

cious users and then violate access control policies. Moreover, the work in

(104) used an ontology-driven partitioning method to horizontally partition

the data loaded in the relational schema according to their semantic sim-

ilarity. Nevertheless, the adopted Ontology in this work heavily relies on

structure designed primarily for is-a relation and it cannot detects similarity

between concepts connected by other kinds of relations. Authors in (103)

proposed a clustering based fragmentation and use replication technique

to derive semantic fragmentation of data in the database for flexible query

answering. They used medical taxonomy to measure semantic similarity

between medical expressions. But, like the previous discussed approaches,

this methodology requires data to be loaded in the database schema which

is not the case in our situation.

2.7 Discussion

2.7.1 Choice of the Access Control Model

In order to choose the most suitable access control model to our context, we need

to be aware of their adaptability to data outsourcing in order to ensure high level

of data security and utility. Among the discussed models, we need to choose a

model supporting the fallowing properties:

• Relational model support: Since in thus thesis we are interested to the re-

lational model, we need an access control applicable to this model.

• Can cover relational distributed database systems: This is the most impor-

tant property, since the access control model will be enforced in CSSP level

where the database schema is stored in separate partitions.

• Truthfulness: The model should ensure the correctness and Truthfulness of

the results delivered to users.

Section 2.7 – Discussion 53

• Inference control: The adopted model should be able to break inference

channels by exploiting the distribution of the database. This will enable us

to control inference leakage without building an inference control engine.

Among the discussed access control models, we see that access control model

through confidentiality constraints discussed in 2.3.3.4 seems to be a most suite

model for the following reasons: Indeed, this model enforces access control poli-

cies through confidentiality constraint which is a set of attributes of the relational

schema R where their visibility in the same partition is forbidden. So, we can

deduce that this model can be easily adopted to the relational model. Further-

more, it can exploit the database distribution to enforce confidentiality constraints

be keeping attributes belonging to the same constraint in separate partitions. In

addition, since in this thesis we are interested in inference channels produced by

functional dependencies. So, an inference channel is a sequence of attributes that

functionally determine a confidentiality constraint. To block an inference channel,

this access control model can exploit the database distribution to separate those at-

tributes from each other in CSSP level. More over, access control model through

confidentiality constraints has the lowest computational expensive compared to

other models since it exploit the distributed database schema to enforce access

control policies in CSSP level.

2.7.2 Discussion of the Proposed Approaches

The most relevant related works are classified in Table 2.3. The classification

process is based on the following criteria: Confidentiality constraints support

(enforced as hard constraints and guarantee access control rules), visibility con-

straints support (enforced as soft constraints and used to maximize data locality

in CSSP level), inference control support and query evaluation strategy support.

The literature review provided above, highlights research efforts devoted to

ensure data confidentiality when this later is externalized to the cloud. As we can

deduce from Table 2.3, none of the proposed approaches investigated the prob-

lem considering simultaneously the following criteria: Access control support,

inference leakage through semantic constraints, reducing distributed transactions

Section 2.8 – Conclusion 54

Table 2.3: A comparison between existing works and the proposed model
Confidentiality
constraints

Inference
control

Visibility
constraints

Query
evaluation

(23) yes no yes yes
(27) yes no yes no
(105) yes no yes yes
(20) yes yes no no
(36) yes no yes yes
(33) yes no yes yes
(34) yes no yes yes
(46) yes no no yes
(45) yes yes no no

(99; 98) yes yes yes no
(26) yes no yes yes
(3) yes no no yes

(61) yes no no no
Required model yes yes yes yes

through visibility constraints and maintaining a secure query evaluation strategy.

In fact, there is no significant contribution on data outsourcing guaranteeing the

control of inference leakage caused by functional dependencies. Also, none of

the cited works established a secure query evaluation strategy on a big data-based

system. Through this research paper, we will address these limits. In reality, our

contribution is seen through the adoption of vertical partitioning taking into con-

sideration the most extreme situation faced by the database designer. Indeed, we

suppose that neither the query workload is available, nor the database schema is

loaded with data. Only the database schema with its semantic constraints and

users privileges are available to the database designer. This further confirms to us

the novelty of the research we propose.

2.8 Conclusion

In this chapter, we have investigated different works in relation with our research.

First, we have highlighted the approaches of data outsourcing. Next, we discussed

Section 2.8 – Conclusion 55

access control models and their adaptation to distributed environment. Then, we

have outlined existing works which have paid an attention to the inference prob-

lem and its outcomes on data outsourcing. Finally, a discussion was presented to

pick the most suitable access control model and highlight the main issues in ex-

isting approaches. In the next chapter, we will introduce our preliminary concepts

and problem statement.

Chapter 3
Preliminaries and Problem

Statement

56

Section 3.1 – Introduction 57

3.1 Introduction

In order to more explain our research problem, we will start by giving a set of

definitions and concepts that will be needed throughout the next parts of this

manuscript. Second, we will motivate our work through an example. Third, we

will discuss the correlations between our studied problem and the relevant related

fields. Finally, we will describe at an abstract level, our proposed methodology.

3.2 Preliminaries and Basic Concepts

Prior detailing our approach, we would like to introduce basic definitions in rela-

tion with our research.

3.2.1 Definitions Related to Access Control and Inference Prob-
lem

Definition 1. (Confidentiality constraint) (27). Let R(A) be a relation schema

over the set of attributes A. A confidentiality constraint on R(A) is defined by a

subset of attributes c ⊆ Awithc , ∅ stating that a partition is not allowed to store

the combination of attributes contained in c. However, any proper subset of c may

be revealed. Without loss of generality we consider confidentiality constraints

with cardinality greater or equal to 2 (|c| ≥ 2).

Definition 2. (Functional dependency) (2). A functional dependency (FD) over

a schema R is a statement of the form: R : I −→ J where I, J two sets of attributes

⊆ schema R stating that each I value in R is associated with precisely one Y value

in R. We refer to I as the left hand side (LHS) and J as the right hand side (RHS)

of the functional dependency I −→ J.

Definition 3. (Meaningful join) (99). Meaningful join is briefly an equi-join

operation between a foreign and primary keys. The inference problem is defined

on inhibiting all possible meaningful joins, among the attributes of confidentiality

constraints.

Section 3.2 – Preliminaries and Basic Concepts 58

Definition 4. (Violating Transaction) (57). A violating transaction T = {Q1, ...,Qi, ...}

is a set of select queries such that if they are executed and their results combined,

they will lead to disclosure of sensitive information and thus violating the confi-

dentiality constraint.

3.2.2 Definitions Related to Graph Theory

Definition 5. (Graph) (54). A graph G = (V, E) is a mathematical structure con-

sisting of two finite sets V and E. The elements of V are called vertices (or nodes) ,

and the elements of E are called edges . Each edge has a set of one or two vertices

associated to it , which are called its end points.

Definition 6. (Hypergraph) (28). It is a generalization of a graph in which an

edge can connect any number of vertices. Formally, a hypergraph H is a pair

H = (X, E) where X is a set of elements called nodes or vertices, and E is a set of

non-empty subsets of X called hyperedges.

Example:

Let M be a computer science meeting with k ≥ 1 sessions : S 1, S 2, S 3, ..., S k. Let

V be the set of people at this meeting. Assume that each session is attended by

one person at least. We can build a hypergraph in the following way:

• The set of vertices is the set of people who attend the meeting:

• the family of hyperedges (ei), i ∈ {1, 2, ...k} is built in the following way:

ei, i ∈ 1, 2, ...k is the subset of people who attend the meeting S i.

3.2.3 Definitions Related to User Role

Definition 7. (User-role) A role is a database object grouping a set of privileges

and assigned to one or more user. A role is allowed to access a resource if there

is no confidentiality constraint denying this access. To each role ri we associate a

head called headi containing a set of terms headi = {t1, ..., tl} which semantically

describe the role ri.

Section 3.3 – Problem Statement 59

Definition 8. (Role label)
Let r = {r1, ..., rm} be the set of all users roles in the database, and let Lrd and Lrl

be two labels:

• ri(Lrd) states that the role ri is allowed to execute distributed queries over K-

partitions.

• r j(Lrl) states that the role ri is allowed to execute only local queries (every query

issued from this role cross exactly one partition).

.

Definition 9. (Visibility constraint) (36). Let R(A) be a relation schema over

the set of attributes A. A visibility constraint is a monotonic Boolean formula

over attributes in R(A). A Visibility constraint v = {a1, ..., am} states that attributes

a1, ..., am must be jointly visible in the same partition.

3.3 Problem Statement

In this section, we define the tackled problem as follows: ”Given a relational

database schema to which is attached a set of access control polices, a set of

functional dependencies and a set of users roles, our approach should answer the

following questions:”

• How database roles can be exploited to reduce the amount of servers that a

user query has to span in CSSP level?

• How to capture inference leakage caused by functional dependencies and

how to control them?

• What theory should be adopted to generate a partitioning algorithm that

preserves access control polices when data is externalized to CSSP and

reduces the amount of distributed queries?

• How to evaluate distributed queries which are derived from the aggregation

of partial results from distributed partitions while retaining access control

policies?

Section 3.4 – Motivating Scenario 60

3.4 Motivating Scenario

To illustrate the ideas behind our proposed methodology, a hospital database schema

is considered as shown in Figure. 3.1. The schema is designed to store patient’s

medical records about addiction cure. Hence, it is clear that exposing such sensi-

tive information to untrusted parties will bring security breaches.

Figure 3.1: Hospital-db-schema

We consider the roles: R1: doctor and R2: chemical-drug-agent

Relation: Patients(Patient id, Diagnosis id, Admission date, Patient details)

Functional dependencies: FD1 : Patient id −→ Diagnosis id; FD2 : Patient id

−→ Admission date; FD3 : Patient id −→ Patient details;

FD4 : Diagnosis id −→ Patient id; FD5 : Diagnosis id −→ Patient details.

Relation: Drugs(Drug id, Drug code, Drug name, Drug costs)

Functional dependencies: FD6 : Drug id −→ Drug code; FD7 : Drug id −→

Drug name; FD8 : Drug id −→ Drug cost.

Section 3.4 – Motivating Scenario 61

Confidentiality constraint: c1 = {Drug code, Patient details}

We would like to mention that unlike previous works which impose that the

attributes belonging to the same confidentiality constraint must be in the same re-

lation, we authorize in our work the use of inter-relation confidentiality constraints

like constraint c1.

Relation: Consumption(Patient id, Drug id)

Functional dependencies: FD9 : Patient id,Drug id −→ Patient id;

FD10 : Patient id,Drug id −→ Drug id

It is clear that the association of sensitive attributes is the main cause of expos-

ing data in cloud to unauthorized disclosure. According to c1, neither the doctor

nor the chemical-drug-agent are allowed to see at the same time the visibility of

attributes Drug code and Patient details. This confidentiality constraint is speci-

fied according to open policy where the access control rules specify all requests

that are to be denied. Under such a policy, any request that is not denied by the

access control rule is allowed by default. Let’s see now how functional depen-

dencies could be used by a malicious user to produce an inference channel and

violate the confidentiality constraint c1. Let us assume the following queries is-

sued by a doctor: Q1{Patient id, Drug id}, Q2{Patient id, Patient details} and

Q3{Drug id, Drug code}. Combining the results of these queries and using func-

tional dependencies {FD9, FD3, FD10, FD6}, the doctor can derive meaningful

joins to obtain Patient details and Drug code simultaneously which induces the

violation of the confidentiality constraint c1. These observations encourage the

idea of partitioning vertically the relations into fragments in CSSP level to pre-

serve confidentiality constraints and break inference channels while maintaining

some attributes visible together to ensure data utility. Next, we propose an ap-

proach to solve this problem.

Section 3.5 – Discussion of Studied Problem with their Relevant Fields 62

3.5 Discussion of Studied Problem with their Rele-

vant Fields

Security-aware data outsourcing, as shown in Figure 3.2 , is a complex and chal-

lenging task because different fields are involved in such an issue. In this section,

we discuss the different fields that we identified to be relevant to our problem.

The selected fields include data outsourcing and cloud computing, access control

models, inference problem and domain ontology.

Figure 3.2: Overview of the studied problem with their relevant fields

3.5.1 Data Outsourcing

As we discussed previously, data owners place their data among CSSP in order

to increase flexibility, optimize storage, enhance data manipulation and decrease

processing time. In chapter 2, we mentioned that there exists two approaches to

externalize data to CSSP: Keep a few (35) and full outsourcing (3). The former

consists to store portion of the data in the owner side since this later is consid-

ered as a trusted part. The rest of the database is distributed among servers while

maintaining data confidentiality through vertical fragmentation. The latter con-

Section 3.5 – Discussion of Studied Problem with their Relevant Fields 63

sists to externalize the hole in-house database to the cloud. It considers vertical

database fragmentation to enforce confidentiality constraints with more than two

attributes by keeping them separated from each other among distributed servers.

In this thesis, we consider the case where the data owner is outsourcing all his data

to CSSP. We make this choice because the data placed in owner side don’t need

any security mechanism to be protected. Indeed, owner’s access request will be

forwarded directly to these data which are under the owner control. Furthermore,

maintaining a portion of the data in the owner side and involving this latter as a

trusted party will increase the load requested from the owner to query these data.

3.5.2 Access Control Model

Securing data in CSSP level is a challenging task. The main objective is to pre-

serve owner’s access control policies when data is externalized to the cloud. Pre-

serving access control policies means that if an access is initially prohibited by

owner’s access control policies, it should be also prohibited in CSSP level. As

discussed in the previous chapter, several models (DAC, MAC, ABAC, VBAC,

RBAC, HBAC) have been proposed in literature. We saw that access control

model through confidentiality constraints is the most flexible model when we

consider data outsourcing scenario. Indeed, this model exploits the distributed

architecture of the system to enforce access control policies by keeping sensitive

attributes separated from each others.

3.5.3 Inference Control

Access control models protect sensitive data from direct disclosure via direct ac-

cesses, however, they fail to prevent indirect accesses (49). Indirect accesses via

inference channels occur when a malicious user combines the legitimate response

that he received from the system with metadata. In this manuscript, we consider

semantic attacks which happen at CSSP level. In particular, we treat the case

where a malicious user is issuing a set of well chosen queries and taking advan-

tage of functional dependencies to infer sensitive information.

Section 3.6 – Overview of the Proposed Approach 64

3.5.4 Ontology-Based Vertical Database Schema Partitioning

Since we place ourselves in the most extreme situation faced by the database de-

signer, we suppose that neither the query workload is available, nor the database

schema is loaded with data. Hence, deriving an optimal distributed database

schema in this situation is a challenging task. In our approach, we propose an

ontology-based technique to generate the set of visibility constraints which will

guide the process of vertical schema partitioning. Our objective is to reduce the

amount of servers that a user query has to span, so it reduces the communication

cost over sites, avoids excessive network and delays and improves data locality

(38).

3.6 Overview of the Proposed Approach

To achieve the goal of a security-aware data outsourcing, we propose an approach

that relies on the relational model and aims, as shown in Figure 3.3, to pro-

duce a set of secure subschemes. Each subschema is represented by a partition

Pi and each partition is stored exactly in one server in the CSSP. Furthermore,

it introduces a secure distributed query evaluation strategy to efficiently request

data from distributed partitions while retaining access control policies. To do that,

our methodology takes as input a relational schema R to which is attached a set

of confidentiality constraints C, a set of functional dependencies FD and a set of

users roles ri,i∈{1,...,m}, where m is the number of roles in the database, then it runs

through the following phases:

1. Constraints generation: This phase aims to generate two types of con-

straints: Constraints-based inference control and visibility constraints. These

two types of constraints that in addition to the confidentiality constraints

specified initially by data owner, will guide the process of vertical schema

partitioning.

2. Schema partitioning: In this phase, we rely on hypergraph theory to repre-

sent the partitioning problem as a hypergraph constraint satisfaction prob-

Section 3.6 – Overview of the Proposed Approach 65

Figure 3.3: The proposed methodology to generate secure partitions and lock
suspicious queries

Section 3.7 – Conclusion 66

lem. Then, we reformulate the partitioning problem as a multi-objective

function F to be optimized. After that, we propose a greedy algorithm to

partition the constrained-hypergraph into k partitions while minimizing the

multi-objective function F.

3. Query evaluation model: In this phase, we propose a monitoring module

to mediate every access request issued from users against data stored in

distributed partitions and decide whether the access should be allowed or

denied. The monitor module contains two mechanisms: Role-Based Access

Control mechanism and History-Based Access Control mechanism.

3.7 Conclusion

In this chapter, firstly, we presented the definitions and basic concepts related to

our work. Secondly, we introduced the motivating scenario. Thirdly, we discussed

the studied problem in relation with relevant fields. Then, we gave an overview of

our proposed methodology. The next chapter 4 introduces the first phase of our

approach. It draws up how to generate the visibility constraints and constraint-

based inference control constraints that guide the process of schema partitioning.

Chapter 5 presents the second and the third phases. It presents how to vertically

partition the database schema in order derive the optimal and secure partitions.

It highlights also the strategy of evaluating access requests and block suspicious

ones. In chapter 6, we provide an experimental evaluation of our proposed ap-

proach and analysis of the proposed algorithms. Finally, we conclude our work

while also opening new research directions.

Chapter 4
Constraints Generation

67

Section 4.1 – Introduction 68

4.1 Introduction

In this chapter, we will introduce the first phase of our three-step approach. This

phase aims to generate a set of constraints that will guide the process of schema

partitioning and distribution in the cloud. First, in order to maximize data locality,

we generate a set of visibility constraints based on semantic relatedness measure

between users’ roles and attributes in the relational schema. Those constraints

will stay visible during the partitioning process. Second, to deal with inference

channels produced by functional dependencies, we generate a set of constraint-

based inference control to capture inference leakage and control them. Those

constraint that in addition to confidentiality constraints specified initially by the

data owner, will be distributed among partitions to enforce owner’s access control

policies and break inference channels.

To more illustrate our approach, We also apply in this chapter the proposed

algorithms to our motivating scenario.

4.2 Visibility Constraints Generation Based on Se-

mantic Relatedness

Our objective in this section is to demonstrate how to reduce the amount of servers

that a user query has to span, so it reduces the communication cost over sites,

avoids excessive network and improves data locality. To do that, we propose a

technique that relies on semantic relatedness to derive an optimal vertical parti-

tioning schema while preserving access control policies. Preserving access con-

trol policies means that a prohibited access on specified initially by the data owner

should be also prohibited when the schema is fragmented and mapped to the dis-

tributed partitions in the cloud. We adopt vertical partitioning for the reason that

we place ourselves in the most extreme situation that the database designer can

face. In fact, we suppose that neither the query workload is available, neither

the database schema is loaded with data so one can perform horizontal distri-

bution like the work in (104). Our technique performs a semantic analysis of

Section 4.2 – Visibility Constraints Generation Based on Semantic Relatedness69

the database logical schema in order to compute semantic relatedness between

database schema attributes and users roles. Hence, attributes having a high score

of relatedness to a given role are supposed to be frequently accessed by this role.

Consequently these attributes will be assigned to the same visibility constraint

that will be preserved when the database schema is fragmented (provided that this

constraint is not in conflict with a confidentiality constraint).

Let’s try now to apply the ontology-driven approach proposed in (104) to our

scenario. We would like to clarify firstly that despite the ability of ontology to

evaluate the closeness between two concepts from the whole set of their semantic

links (including meronymy, antonomy and so on) by defining a topological sim-

ilarity, the adopted ontology in (104) measures only semantic similarity between

terms designed primarily only for the is-a relation. So, if our database schema

contains the two concepts doctor and gastrologist, the ontology’s measure will

assign a high score of similarity between these two concepts, since a gastrologist

is a doctor. But, for the role doctor and attribute Patient details, the ontology’s

measure cannot detect the semantic relatedness between them, because in this

work the adopted ontology is designed for is-a hierarchy and cannot detect rela-

tion between concepts connected by other kinds of relations. Moreover, according

to this work, if we consider the three roles doctor, gastrologist and cardiologist,

the similarity score between doctor and gastrologist is the same between doctor

and cardiologist because the distance between them is the same. Having much

equality in the similarity score will influence the quality of our algorithms. More-

over, the work in (25) attempted to exploit the logical database schema by extract-

ing functional dependencies from the database schema and using them to perform

partitioning. We would like to clarify that this functional dependency based ap-

proach is not applicable in our scenario, since this technique could produce as

discussed in (64; 63; 65) inference leakage by malicious users and then violate

access control policies which is in contradiction with our proposal. We mention

that we place ourselves in the most extreme case where neither the query work-

load is available, neither the database schema is loaded with data. The database

designer has only the logical schema and users roles as input.

This example highlights the limitation of the proposed systems in answering

Section 4.2 – Visibility Constraints Generation Based on Semantic Relatedness70

users queries. Next, we propose an intuitive approach for solving this problem

while.

Definition 10. (Semantic relatedness) It is a set of semantic relationship names

describing relationships between concepts, i.e., R = {Is − A, Has − A, Part −

O f , Has − Part, etc.}. Hence, the semantic relatedness between a role ri and

an attribute ai is calculated as the average of semantic relatedness between this

attribute and all term tk ∈ headi. Consequently it holds that :

relatedness(ri, a j) =

∑
relatedness((tk ∈ headi), a j)

|headi|
(4.1)

where |headi| denotes the set cardinality

We suppose that each user is assigned at least to one role ri in the database. Our

work aims to maximize intra-dependency between attributes that seem to be fre-

quently accessed by the same role by assigning them to the same partition, while

minimizing the inter-dependency between attributes in separate partitions. The

main idea is to detect semantic relatedness between user role and each attribute in

the logical schema. If the semantic relatedness is greater than a threshold α, then

this attribute will be added to a visibility constraint vi. This constraint represents

attributes that will be frequently accessed by the role ri. We produce the set of

visibility constraints as specified in the following definition:

Definition 11. (Visibility constraints generation) Let R(A) be a relation schema

over the set of attributes A and a j∈{1,...,n} ∈ A. Let ri∈{1,...,m} be the set of users roles

described respectively by headi∈{1,...,l}, and let α be a threshold such that 0 ≤ α ≤ 1.

Then, a set of visibility constraints vi,i∈{1,...,m} holds if:

• Vertical partitioning: for every visibility constraint vi,i∈{1,...,m}, vi ⊆ A

• Completeness: for every attribute a j there is a visibility constraint vi in which a j

is contained

• Reconstructability: A = v1 ∪ ... ∪ vm

• Threshold: for every attribute a j ∈ vi, ∃ ! ri such that relatedness(ri, a j) ≥ α

Section 4.2 – Visibility Constraints Generation Based on Semantic Relatedness71

Algorithm 1 produces the set of visibility constraints based on the semantic

relatedness measure.

Algorithm 1 Generation of visibility constraints
Input: Attribute set A of the relation schema R(A); Database roles ri,i∈{1,...,m};
headi,i∈{1,...,m}; A threshold α, 0 ≤ α ≤ 1
Output: A set of visibility constraints V

Begin

V ← ∅

for each role ri do
for each attribute a j ∈ A do

Compute relatedness(ri, a j)

if relatedness(ri, a j) ≥ α then
vi ← vi ∪ {a j}

A ← A \ {a j}

end if
end for
V ← V ∪ vi

end for
Return V

End

Consider our running example in Figure 3.1 with roles doctor and chemical-

drug-agent. To simplify for database designer the specification of the threshold α

in compliance with his requirements, let’s consider the following ranges:

• Weak relatedness: 0 ≤ α ≤ 0.3

• Medium relatedness: 0.3 < α < 0.7

• Strong relatedness: 0.7 ≤ α ≤ 1

The semantic relatedness measure considered in this example is derived from the

Unified Medical Language System (UMLS) as an ontology and the similarity in-

terface on top of it 1. By considering a threshold α belonging to the medium re-
1nlm.nih.gov/research/umls/index.html

Section 4.2 – Visibility Constraints Generation Based on Semantic Relatedness72

latedness range, the set of generated visibility constraints according to algorithm

1 is represented as the following:

v1 = {Patient id, Diagnosis id, Admission date, Patient details}

v2 = {Drug id, Drug code, Drug name, Drug cost}

v3 = {Patient id, Drug id}

Where v1 is the visibility constraint assigned to role doctor, v2 is the visibility

constraint assigned to role chemical-drug-agent and v3 is used to ensure data loss-

less after the partitioning phase. Hence, under the assumption that the distributed

servers could communicate between each other, a conceivable partitioning of the

logical schema according to constraints v1, v2 and v3 is shown in figure 4.1 .

Server 1 can be used to process queries issued from doctors and server 2 can

process queries related to chemical-drug-agents. We mention that this partition-

ing will be refined all along the rest of this paper by considering confidentiality

constraints.

Figure 4.1: An example of a partitioning w.r.t visibility constraints v1, v2 and v3

The Unified Medical Language System is a data warehouse including over

100 different biomedical and clinical data resources. One of the largest individual

sources is the Systematized Nomenclature of MedicineClinical Terms (SNOMED

CT), a comprehensive terminology created for the electronic exchange of clin-

ical health information. It also implements various measures of similarity and

Section 4.2 – Visibility Constraints Generation Based on Semantic Relatedness73

relatedness for WordNet 2. The semantic relatedness measure is derived from

Second order co-occurrence vectors computed from biomedical corpora, UMLS

and WordNet. This method takes advantage of large corpora of medical texts,

the UMLS Metathesaurus and Semantic Network, and concept definitions from

WordNet.

To compute semantic relatedness, we could use the measure proposed in (71).

This measure determines the relatedness between two terms/concepts by counting

the number of overlaps between their two definitions. But, when implementing

this measure in Wordnet, authors found that the definitions were short, and did

not contain enough overlaps to distinguish between multiple concepts. Therefrom,

authors in (73) have extended this measure using second-order co-occurrence vec-

tors. In this approach, a vector is created for every word in the concept’s defini-

tion containing terms that co-occur with it in a corpus. These word vectors are

averaged to create a single co-occurrence vector for the concept. The relatedness

between the concepts is calculated by taking the cosine between the concepts’

second-order vectors.

UMLS compute the strength of semantic relatedness between any pair of con-

cepts c1 and c2 by calculating the cosine of the angle between second-order vectors
−→c1 and −→c2, (73) :

relatednessvector(c1, c2) =
−→c1 .
−→c2

(c1) . (c2)
(4.2)

This formula is applied to our proposal by considering each attribute in R(A) and

each term belonging to role-head as a concept. Therefore, each concept ci de-

scribes a term ti. Hence, to measure semantic relatedness between a role r and an

attribute a, this formula is computed n times between every term t in the role-head

and the attribute a.
2https://wordnet.princeton.edu/

Section 4.3 – Inference Control 74

4.3 Inference Control

In this phase, we were inspired from (99) to propose a set of algorithms which

will help us to identify and block inference channels performed with meaningful

join (joins on key). The proposed technique performs a relaxed cut on the join

chains which will consequently minimize dependency loss.

4.3.1 Step 1: Building the Functional Dependency Graph G(V,E)

The aim of the G(V,E) is to list all the join chains that could be derived from

a confidentiality constraints using functional dependencies. To build G, we resort

to Algorithm 2 as follows :

1. Decompose all functional dependencies in F, such that each functional de-

pendency will have a single attribute in the RHS.

2. Create an individual vertex for all attributes in schema and add to V .

3. Create vertices for the attribute sets with more than one element, which exist

in the LHS side of any functional dependency and does not exist in V .

4. Create for each relation Ri an individual node in V .

5. For each (Ai −→ A j) in F, add an edge to E if Ai and A j are different vertices

in V.

Now let us apply Algorithm 2 to our previous example with the set of func-

tional dependencies given in section 3.4. Then, the functional dependency graph

constructed for this schema is given in Figure 4.2.

4.3.2 Step 2: Generating Join Chain Set

Definition 12. (Common Ancestor of a confidentiality constraint) (99)

It is a vertex in the Functional Dependency Graph, from which there exists simple

paths to each attribute of the confidentiality constraint.

Section 4.3 – Inference Control 75

Algorithm 2 Building Functional Dependency Graph G(V,E)
Input: Attribute set A of the relation schema R(A); The set of functional dependencies F
Output: Functional dependency graph G(V,E)

Begin

V ← {}

E ← {}

. Step 1

for each Fi(Ai −→ A j) in F do

if |A j| > 1 then

remove Fi from F

for each Ak ∈ A j do

Add Ai −→ Ak to F

end for

end if

end for
. Step 2

for each relation Ri ∈ A do

for each A j ∈ Ri do

Add A j to V

end for

end for
. Step 3

for each Fi(Ai −→ A j) in F do

if |A i| > 1 and Ai < V then

Add Ai to V

end if

end for
. Step 4

for each relation Ri ∈ A do

if Ri < V then

Add Ri to V

end if

end for
. Step 5

for each Fi(Ai −→ A j) in F do

if Ai , A j and Ai ∈ V and A j ∈ V then

Add Ai −→ A j to E

end if

end for

End

Section 4.3 – Inference Control 76

Figure 4.2: The functional dependency graph

In Figure 4.2 (Patient id, Drug id) is the common ancestor for the confidentiality

constraint c1.

Definition 13. (Join Chain of a confidentiality constraint) (99)

(Denoted as JC hereafter) is the set of edges of simple paths in the Functional

dependency Graph, from a common ancestor to the confidentiality constraint.

This step aims at identifying the set of join chain that can be used from a

malicious user to derive a confidentiality constraint using meaningful join. The

steps of the join chain detection algorithm are as follows:

1. All edges are reversed.

2. Taking each element of attribute set (A) as starting vertex, apply DFS up to

all connected vertices and all possible simple paths are determined for each

end vertex.

3. If there exists simple paths to the same end vertex, which are common (com-

mon ancestors in original FDG) for all set attributes (assumed to be starting

vertices), all combinations of constructed simple paths, starting from differ-

ent set attribute and ending in the same vertex is a join chain.

4. If a chain composes another, it is discarded.

Section 4.3 – Inference Control 77

Algorithm 3 Join Chain Detection
Input: Functional dependency graph G(V,E) ; Attribute set : A
Output: JC: join chain set

Begin
. Step 1

JC ← {}

for each (Ai −→ A j) ∈ E do

remove Ai −→ A j from E

Add A j −→ Ai to E

end for
. Step 2

Initialize TargetArr as array of array of vertices

Initialize PathArr as array of array of set of edges

for each Ai ∈ A do

CAi ← empty set o f connected vertices

PAi ← emptyseto f pathedgesets

CAi, PAi ← apply DFS to FDG with starting vertex Ai

j← 0

for each C j in CAi do

TargetArr[i][j]← C j

PathArr[i][j]← simple path to C j in PAi

j← j + 1

end for

end for
. Step 3

S haredArr ← array of shared vertices by all Target arrows

for each S i ∈ S haredArr do

Add ∪(PathArr[k][l] as TargetArr[k][l] = S i) to JC

end for
. Step 4

for each JCi ∈ JC do

for each JC j ∈ JC do

if JC j ⊆ JCi then

remove JCi from JC

end if

end for

end for

End

Section 4.3 – Inference Control 78

After applying algorithm 3 to our example with the confidentiality constraint

c1 = {Drug code, Patient details} and common ancestor {Patient id,Drug id},

the following set of join chain is generated (the join chains are emphasized with

red color in Figure 4.2).

JC1 = {Patient id,Drug id −→ Drug id; Drug id −→ Drug code;

Patient id,Drug id −→ Patient id; Patient id −→ Patient details}

JC2 = {Patient id,Drug id −→ Drug id; Drug id −→ Drug code;

Patient id,Drug id −→ Patient id; Patient id

−→ Diagnosis id; Diagnosis id −→ Patient details}

4.3.3 Step 3 : Detecting relaxed cut

Definition 14. (relaxed cut detection)
It consists in detecting the minimum number of functional dependencies in the

FDG in order to cut the join chains of the confidentiality constraints to satisfy

all security requirements (not allowing a malicious user to derive confidentiality

constraint attributes using join chains).

It has been shown in (12) that the relaxed cut problem is equivalent to Min-

imum Hitting Set Problem and thus it is NP-Complete. Hence, we give here al-

gorithm 4 inspired from (99) to greedily resolve this problem. The steps of the

algorithm are as follows:

1. Compute all join chains (JCi) for each confidentiality constraint (Algorithm

3).

2. For each edge in the FDG, determine the number of times (SecurityCount)

it appears in join chains.

3. Sort the edges first according to their SecurityCount in descending order,

then, the number of attributes on the nodes at both sides of the edge, in

ascending order (in order to detect lower chains first to cut).

4. Cross the sorted list and mark each join chain as cut, if the edge is contained.

These edges are selected ones and to be a selected one, an edge should be

Section 4.3 – Inference Control 79

an element of at least one unmarked join chain. A set of selected edges will

be enforced in the next algorithm (phase 4) as new generated confidentiality

constraints.

Now, let’s execute algorithm 4 on the previous example by considering FDG

in Figure 4.2 and the set of join chain {JC1, JC2}. A naive approach could

choose to select the edge e3 as a cut point (since the dependency Patient id −→

Patient details is already enforced as a confidentiality constraint and this will

minimize dependency loss). However, this will break only JC1 and it will not

break the join chain JC2. According to algorithm 4 edge e11 (Drug id −→

Drug code) is the preferred cut point since this will break JC1 and JC2 simulta-

neously while minimising dependency loss (we mean by minimizing dependency

loss breaking JC1 and JC2 by placing the LHS and RHS of the selected edge in

different partitions when processing the partitioning step).

4.3.4 Step 4 : Constraints-based inference control generation

Unlike the technique proposed in (99) to break the join chains which leads to data

loss and needs query rewriting techniques to query decomposed views, we pro-

pose here an algorithm to enforce each cut point selected by algorithm 4 as a con-

fidentiality constraint. This will help the database designer to break join chains by

placing the LHS and RHS of the selected edge in different parts when processing

the partitioning step. Hence, a malicious user will need to perform a distributed

query against the distributed partitions to derive a confidentiality constraint with

a join chain. Indeed, this malicious technique will be treated in chapter 5 when

we will elaborate a secure distributed query evaluation strategy. We would like to

mention also that in order to guarantee data lossless when distributing fragments

over partitions we proceed as the following : When a functional dependency of

the form A −→ B is cut a tuple identifier tid is added to both fragments containing

attributes A and B. Algorithm 5 proceeds as the following :

Applying algorithm 5 to the set of edges generated from algorithm 4 will

extend the set of confidentiality constraints as the following :

C = {c1, c2} ; c1 = {Drug code, Patient details}, c2 = {Drug id,Drug code}

Section 4.3 – Inference Control 80

Algorithm 4 Detecting Relaxed cut
Input: The relational schema R(A); The set of confidentiality constraints C
Output: A minimum set of edges to be cut

Begin

JC ← empty array o f join chain sets
. Step 1

for each ci ∈ C do

JCi ← join chain set f or ci (Algorithm 3)

Add JCi to JC

end for

FDG(V,E)← FDG o f R(A) (Algorithm 2)

S ecurityCount ← array o f integers initialized to 0, size |E|
. Step 2

for each Ei ∈ E do

for each JCk ∈ JC do

for each JCki ∈ JCk do

if Ei ∈ JCki then

S ecurityCount[i] + +

end if

end for

end for

end for
. Step 3

E ← sort edges in descending order (uses S ecurityCount)

S election← empty set o f edges
. Step 4

for each Ei ∈ E do

for each JCk ∈ JC do

for each JCki ∈ JCk do

if Ei ∈ JCki and JCki is unmarked then

mark JCki

add Ei to Selection

end if

end for

end for

end for

End

Section 4.4 – Conclusion 81

Algorithm 5 Constraints-based inference control generation
Input: The set of selected edges to be cut (named Selection)
Output: An extended set of confidentiality constraints

Begin

C ← set o f con f identiality constraints

for each ei ∈ S election do
ci ← {LHS ,RHS } o f the edge ei

C ← C ∪ ci

end for
End

Until now, we have produced from the constraints’ generation step of our pro-

posed methodology three types of constraints : confidentiality constraints, visibil-

ity constraints and constraints-based inference control which will be considered

as confidentiality constraints in the rest of this manuscript. Next, we will prove

how these two constrains’ types will guide the process of schema partitioning to

produce a secure and optimal distribution.

4.4 Conclusion

In this Chapter, we have detailed the first phase of our proposed model, aiming to

generate the constraints which will guide the database schema partitioning. First,

to maximize data locality, we have generated a set of visibility constraints based

on semantic relatedness measure between users roles and schema attributes. The

proposed technique is workload-independent and don’t rely neither on the query

workload nor on the loaded data. Next, to detect inference channels caused by

functional dependencies, we have built a functional dependency graph and we

have proposed a set of algorithms to detect join chains aiming to derive confiden-

tiality constraints through functional dependencies. Furthermore, we have pro-

posed an algorithm to identify the relaxed cut point in order to break join chains

while minimizing dependencies loss.

How to derive a partitioning technique which preserve those constraints, and

Section 4.4 – Conclusion 82

how to securely evaluate users queries is the topic of the next chapter.

Chapter 5
Schema Partitioning and Query

Evaluation Model

83

Section 5.1 – Introduction 84

5.1 Introduction

The objective of this chapter is to introduce the phase 2 and 3 of our approach. In

phase 2, we will detail our partitioning technique to generate a set of secure parti-

tions to be hosted in the distributed system in CSSP level. We will reformulate the

problem as a multi-objective function F to be optimized. Then, we will introduce

a greedy algorithm to partition the constrained hypergraph into k partitions while

minimizing the multi-objective function F. In phase 3, we will propose a monitor

module to mediate every query issued from users against data stored in distributed

partitions and lock suspicious ones.

5.2 Schema Partitioning

In this phase of our approach, we resort to hypergraph theory to produce an opti-

mal attribute placement decision while preserving confidentiality constraints. We

first use hypergraph to model our partitioning problem graphically then we pro-

pose a greedy algorithm to produce an optimal partitioning while retaining access

control constraints.

Hypergraph partitioning have been previously used in database partitioning

(69; 38), In these approaches, authors have used workload based approach to

database partitioning, by relying on a hypergraph representation of the database

where the tuples are represented by vertices (horizontal distribution) and transac-

tions (queries) are hyperedges that relate them. Then, the partitioning algorithm

minimizes the number of cross-partition transaction by minimizing cuts of hyper-

edges in the hypergraph.

Our choice of hypergraph theory was inspired from the comparison study pro-

vided in (38), where authors have assessed the quality of partitioning in terms of

the number of distributed transactions which is the same criterion of optimality

adopted in this thesis. The comparison study has evaluated the number of dis-

tributed transactions produced by hypergraph partitioning algorithm, the manual

partitioning (manual), replication of all tables (replication) and hash partition-

ing on the primary key or tuple id (hashing). The study has been evaluated on

Section 5.2 – Schema Partitioning 85

9 datasets where hypergraph partitioning technique has demonstrated its perfor-

mance compared to other algorithms.

5.2.1 Hypergraphs and constraint satisfaction problems

According to (28), a constraint satisfaction problem, P is defined as a tuple:

P = (W,D,D1(S 1), ...,Dk(S k))

where W is a finite set of variables, D is a finite set of values which is called the

domain of P, Di(S i) is a constraint, S i is an ordered list of ni variables, called the

constraint scope, and Di is a relation over D of arity ni, called the constraint rela-

tion.

To a constraint satisfaction problem, we can associate a hypergraph in the follow-

ing way:

– The vertices of the hypergraph are the variables of the problem.

– There is a hyperedge containing the vertices x1, x2, ..., xt when there is some

constraint Di(S i) with a scope S i = {x1, x2, ..., xt}.

By considering our running example, vertices represent the attribute set A and

hyperedges represent both visibility and confidentiality constraints. Figure. 5.2

illustrates our partitioning problem with respect to visibility constraints vi and

confidentiality constraints ci. Hyperedges e1, e2, e3 represent the set of visibil-

ity constraint v1, v2, v3 while hyperedges e4, e5 represent the set of confidentiality

constraint c1 andc2. For the sake of simplicity, the following table illustrates the

mapping between the attribute set A and the set of vertices xi in the hypergraph.

To each hyperedge ei, we assign a weight wi. (We will explain the utility of

this parameter when we introduce the multiobjective function). The dotted line in

figure. 5.1 states that the two hyperedges e4 and e5 should be cut through the parti-

tioning algorithm since these hyperedges represent the confidentiality constraints.

However, hyperedges e1, e2 and e3 which represent visibility constraints will be

Section 5.2 – Schema Partitioning 86

Table 5.1: Attribute to vertex mapping
Vertex Attribute

a Patient id
b Diagnosis id
c Admission date
d Patient details
e Drug id
f Drug code
g Drug name
h Drug costs

Figure 5.1: Hypergraph representation of the partitioning problem

preserved. Therefrom, we see that our objective function should maximize the hy-

peredges cut that represent confidentiality constraints and minimizes hyperedges

cut representing the set of visibility constraints.

The traditional hypergraph partitioning techniques allow to optimize one of

the objective functions : Minimize the communication cost between parts by min-

imizing hyperedge cut (min-cut), or declustering vertices in the same hyperedge

by maximizing hyperedge cut (max-cut). Thus, we propose a multiobjective func-

tion that joins the two objectives max-cut and min-cut together. We use a priority-

based formulation in which objectives are handled separately, our greedy algo-

rithm computes a k partitions such that it simultaneously optimizes all objectives,

giving preference to the objectives with higher priorities. In our algorithm, we try

to minimize the following function:

Section 5.2 – Schema Partitioning 87

F =
∑
xi∈ec

W(ec) ψ[xi < Pk] +
∑
x j∈ev

W(ev) ψ[x j < Pl] (5.1)

• ec and ev are hyperedges representing confidentiality constraints and visi-

bility constraints respectively.

• Pi(1 6 i 6 k) : K-partitions to be computed.

• ψ[true] = 1 and ψ[f alse] = 0.

• W(ec) and W(ev) are the weights of the hyperedge representing confiden-

tiality constraint and visibility constraint respectively. The first term is the

cost of violating a confidentiality constraint and the second one is the cost

of violating a visibility constraint.

Please note that if a constraint is certain (the case of confidentiality con-

straints), its corresponding hyperedge in H(X,E) should have a large weight. In

such a case, the algorithm will prioritize solutions that do not violate this con-

straint. If a constraint is uncertain (the case of visibility constraints), then its cor-

responding hyperedge in H(X,E) should be given a small weight, so the algorithm

might give priority to solutions with a smaller first term.

5.2.2 Computing K-balanced partitions

We propose a greedy algorithm to compute k balanced partitions while minimiz-

ing the objective function F. Our algorithm is an attribute-to-partition mapping

between individual vertex in H(X,E) and partition labels. We observed later in

our experiments that this greedy approach mostly determines the optimal solution

compared to other state of the art approaches. First, we would like to highlight

the balance constraint parameter. This latter enforces the partitioning algorithm to

generate partitions where the difference in the number of vertices between these

partitions must not exceed a threshold fixed according to the imbalance tolerance.

We tuned our partitioning algorithm to generate balanced partitions according to

the number of vertices in H(X,E) as long as we place ourselves in the most ex-

treme case where the workload is not available.

Section 5.2 – Schema Partitioning 88

Let ε ∈ [0, 1] be the imbalance tolerance. The balance constraint BC is defined

as:

BC : W.(1 − ε) 6 W(Pi) 6 W.(1 + ε)∀ Pi ∈ P and W =
(
∑

xi∈H X)
K

(5.2)

• W is the total number of vertices in the hypergraph divided by the number

of partition K.

• W(Pi) is the number of vertices assigned to partition Pi.

Algorithm 6 Computing K-balanced partitions
Input: Hypergraph H(X;E); number of partitions K; the multiobjective function
F; the balance constraint BC; the set of confidentiality constraints C
Output: K-balanced partitions

Begin

Cutset ← ∅
. Force the algorithm to prioritize confidentiality constraints by assigning large
weights to these latters

Reweight H(X; E) such that Max(W(ev)) ≪ Min(W(ec))

while Cutset , C do
Compute K-partitions by allocating vertices one by one while minimizing F

and satisfying BC

if ∃ (xi, x j) ∈ ec such that xi ∈ Pl and x j ∈ Pk then
Mark ec as Cut

Cutset ← Cutset ∪ {ec}

end if
end while
if BC is not satisfied then

loop back

end if
End

Our algorithm minimizes F by prioritising the cut of hyperedges represent-

ing confidentiality constraints over preserving hyperedges that represent visibility

Section 5.3 – Query Evaluation Model 89

constraints. A cut of a confidentiality constraint is ensured by assigning vertices

of the corresponding hyperedge to different partitions. We follow a greedy method

by assigning vertices one by one while retaining the balance constraint. Consider-

ing our previous example, Figure 5.2 illustrates a possible partitioning according

to algorithm 6 with the confidentiality constraints {c1, c2}, the visibility constraints

{v1, v2, v3}, a balance constraint BC = 2 and a number of partition K = 4.. The

tuple identifier tid is an artificial attribute added to ensure data lossless when a

functional dependency involving a primary key was cut during the partitioning

process.

Figure 5.2: A refined partitioning of the Hospital-db schema w.r.t C, V, BC = 2
and K = 4

5.3 Query Evaluation Model

In this phase, we propose a monitor module to mediate every query issued from

users against data stored in distributed partitions. The monitor module contains

two mechanisms : a Role-Based Access Control mechanism and History-Based

Access Control mechanism. The first mechanism checks the user role who issued

the query and if this latter is not granted to execute distributed queries, then his

query will be forwarded directly to the desired partition. Otherwise, the query is

forwarded to the History Access Control mechanism which takes as input a set of

violating transactions to be prohibited and checks if the cumulative of user past

Section 5.3 – Query Evaluation Model 90

queries and current query could complete a violating transaction. If it is the case,

the query is revoked.

We have developed our querying model, as shown in figure 5.3, based on a

Spark architecture where data is manipulated by users through DataFrames since

this latter support all common relational operators. We use Spark SQL for rela-

tional processing because it provides high performance using established DBMS

techniques and enables extension with advanced analytics algorithms such as

graph processing and machine learning (10). Our querying model is composed

of the following components:

• Monitoring module: It is composed of two sub modules: A Role-Based

Access Control module (RBAC) implemented using Apache Sentry, and

a History-Based Access control module (HBAC). The monitoring module

mediates all user queries and enforces a runtime approach which consists

in monitoring the execution of queries and revokes those queries that could

lead to the violation of access control policies.

• Master node: It contains the cluster manager and it is in charge of de-

composing and forwarding user queries from the monitoring module to the

workers.

• Worker nodes: They contain confidential data and they are responsible for

relational queries processing.

Next, we will introduce our query evaluation model which is composed of the two

following steps: Violating transactions detection and query lock.

5.3.1 Violating Transactions Detection

By exploiting the functional dependency graph from Figure 4.2, we introduce an

algorithm for automatically enumerating the set of queries having the following

property: When all the queries of a given set are combined then the combination of

their results will produce a violating transaction T. These violating transactions oc-

cur using functional dependencies and considering the confidentiality constraints

as queries that need to be forbidden. To cope with this problem, we firstly propose

Section 5.3 – Query Evaluation Model 91

Figure 5.3: A query evaluation strategy augmented with a monitoring module

an algorithm to enumerate all violating transactions. Then, we propose a runtime

approach to prohibit violating transaction completion.

It is important to note that to produce a violating transaction, we push the

malicious user to perform a distributed query since we guarantee through our par-

titioning technique that the confidentiality constraint cannot be violated from a

single partition.

Considering our example with confidentiality constraint c1 = {Drug code,

Patient details}. By running algorithm 7 on the functional dependency graph

G(V,E) with join chains {JC1, JC2}, the following set of violating transactions is

generated: VTs = {T1 = {Qr : {Patient id,Drug id},Q1 : {Patient id,

Patient details},Q2 : {Drug id,Drug code}},T2 = {Qr : {Patient id,Drug id},Q1 :

{Patient id,Diagnosis id, Patient details},Q3 = {Drug id,Drug code}}}.

Hence, it is clear that a malicious user could combine authorized queries with

functional dependencies to evaluate all the queries of a violating transaction and

by consequence violates the confidentiality constraint c1.

Section 5.3 – Query Evaluation Model 92

Algorithm 7 VT Track
Input: Functional dependency graph G(V,E); list of join chains JCi; the set of
confidentiality constraints C
Output: The set of violating transactions VTs

Begin

VTs ← ∅

for each join chain JCi of c j do
Tn ← ∅

Initialise the VT Tracker to the root node Rt

. Rt is the common ancestor node of the attributes in G(V,E) representing the
confidentiality constraint c j

Qr ← Rt . Qr represents the query of the common ancestor node

Tn = Tn ∪ Qr

for each attribute am ∈ JCi ∩ c j do
Qm ← ∅

Move the VT Tracker to the next node until VT Tracker ← am

At each move add VT tracker to Qm

Tn = Tn ∪ Qm

end for
VTs = VTs ∪ Tn

end for
Return VTs

End

5.3.2 Query lock

Our query lock technique heavily relies on Role-Based Access Control Model

(RBAC) and History-Based Access Control Model (HBAC) (83). In RBAC, a set

privileges are grouped into a role. Roles are created for the various job functions

in an organization and users are assigned roles based on their responsibilities and

qualifications. Hence, a user is assigned to this role by activating his session.

HBAC consists in monitoring the access requests and revokes those that could

lead to the violation of access control policies. The main idea of HBAC module

Section 5.4 – Conclusion 93

is the following: When a user launches an access request to the system, HBAC

computes the cumulation of user past access and current access. If the cumulation

can complete a violation of an access control policy, then the access request is

revoked. Otherwise, the access is allowed.

In order to ensure maximal availability of data while ensuring the non disclo-

sure of sensitive information, we propose a runtime approach which consists in

monitoring the execution of queries and revokes those queries that could lead to

the violation of policies. Under the assumption that malicious users cannot col-

lude to produce a violating transaction, the main idea of the monitoring module

is the following: When a user launches a query to the system, this query is auto-

matically mediated by a Role Based Access Control mechanism. Then, the user

role label is verified, if the label indicates that the user is not granted to execute

distributed queries (the user label is equal to Lrl), the query will be forwarded to

the master node for relational processing. Otherwise, if the user label is equal to

Lrd then the query is forwarded from the Role Based Access Control mechanism

to the History Based Access Control mechanism which takes as input the set of

violating transactions to be prohibited and computes the cumulative of user past

queries and current query. If the cumulative can complete a violating transaction

then the query is locked, elseways, the query is forwarded to the master node.

Algorithm 8 describes how the monitoring model processes user queries.

5.4 Conclusion

In this chapter, we have introduced our partitioning technique based on hyper-

graph theory to compute the set of secure partitions while retaining access control

policies. Also, by resorting to RBAC and HBAC, we were able to build a mon-

itoring module aiming to survey user query at runtime and deny those aiming to

derive a violating transaction. The next chapter will be dedicated to experimental

study.

Section 5.4 – Conclusion 94

Algorithm 8 Query Lock
Input: Current user query Qi, Current user role r, the set of violating transactions
VTs and user query cumuli log UQlog

Output: Query state; locked or allowed

Begin

Query state← locked

for each issued query Qi do
if Label r(Qi) = Lrl then

Query state← allowed

else
for each Tn ∈ VTs do

if Qi ∪ UQlog < Tn then
Query state← allowed

Update UQlog

else
Query state← locked

end if
end for

end if
end for
Return Query state

End

Chapter 6
Experimental Study

95

Section 6.1 – Introduction 96

6.1 Introduction

In this chapter, we will demonstrate the applicability of our proposed methodol-

ogy through a set of experiments. In order to demonstrate the performance and the

scalability of our approach as well as the impact of the access control rules, op-

timality constraints, and the query evaluation model, we conducted an evaluation

with different configurations.

6.2 Experimental Design

We provide an experimental study of our proposed approach and analysis of the

proposed algorithms. We have developed a prototype of our methodology written

in Java : An inference control module, a partitioning module and a module for the

access control based on user history. Apache sentry 2.1.0 was used to enforce the

access control based on user role. Apache Hive was used to manage relational data

in distributed storage using SQL. To evaluate the queries execution on a big data

framework, we have used Cloudera Entreprise VM 5.16.1 with Apache Spark 2.

This evaluation was compared to another running MySQL DBMS. Experiments

were conducted on an eight core PC (Inter(R) Core(TM) i5-8CPUs≈1.8GHZ) run-

ning CentOs 6.7 with 12 GB of RAM.

Spark SQL
Spark SQL is a Spark module for structured data processing. Unlike the basic

Spark RDD API, the interfaces provided by Spark SQL provide Spark with more

information about the structure of both the data and the computation being per-

formed. uses this extra information to perform extra optimizations. There are

several ways to interact with Spark SQL including SQL and the Dataset API. One

use of Spark SQL is to execute SQL queries. Spark SQL can also be used to read

data from an existing Hive installation.

Apache Hive
The Apache Hive data warehouse software facilitates reading, writing, and man-

aging large datasets residing in distributed storage using SQL. Structure can be

projected into data already in storage. A command line tool and JDBC driver are

Section 6.2 – Experimental Design 97

provided to connect users to Hive.

Apache Sentry
Apache Sentry is a system for enforcing fine grained role based authorization to

data and metadata stored on a Hadoop cluster. Particularly, Apache Sentry can be

easily integrated to Cloudera and can manage fine grained role based authorization

to data stored in Hive. Apache Sentry is now a Top-Level Apache project.

For our benchmarking, we have used the relational database schema retail db

(downloaded from the following link : [RT]). The relational dataset was converted

to csv and produced the following files:

• customers.csv: containing 12435 records

• order items: containing 172198 records

• orders: containing 68884 records

• products.csv: containing 1345 records

• categories.csv: containing 58 records

• departments.csv: containing 6 records

Figure 6.1 depicts how the proposed approach could be deployed on a cloud based

system. We can see from this figure that a part of our approach is deployed on or-

ganization side and the other part is deployed on cloud level. In the organization

side we found the user terminal and the monitoring module. Every query posed by

the user is mediated by the monitoring module. Then, based on the user role and

history the monitoring module decides whether the query is revoked or forwarded

through the public network. In cloud level, we found the big data cluster respon-

sible for relational query processing. The main advantage of our approach is that

there is no need of an access control mechanism in the cloud. In fact, owner’s

access control polices are already enforced through the generation of secure sub-

schemes hosted in different partitions.

Section 6.3 – Evaluation 98

Figure 6.1: Deployment of the proposed approach on a cloud service

6.3 Evaluation

6.3.1 Functional Dependencies Impact on Constraints-Based
Inference Control Generation

Figure 6.2: Impact of functional dependencies on the required timings to generate
the constraint-based inference control set

Figure 6.2 shows a number of trials we performed so that for each run we con-

sidered a random number (ranging from 10 to 50) of functional dependencies of

Section 6.3 – Evaluation 99

the form X −→ Y . We observed that the running time is proportional to the num-

ber of considered functional dependencies. This can be explained by the fact that

the expansion of the join chain path in the functional dependency graph will push

the algorithm to take more time to identify the relaxed cut. For a scenario where

we could have 50 functional dependencies per join chain, the algorithm will take

6 ms to generate the constraint-based inference control set which we considered

a reasonable timing. Despite that the algorithm shows promising results, we saw

in some tests that, when the number of functional dependencies is greater than

100 (which is probably hard to find in real word scenarios), the algorithm takes an

exponential behavior. This will be investigated in our future works.

6.3.2 Impact of the Number of Attributes on the Partitioning
Algorithm

Figure 6.3: Impact of the number of attributes on the partitioning algorithm

In figure 6.3, we depict the impact of the variation of the number of attributes

on the partitioning algorithms. We compare our algorithm (HyP) to other state

of the art algorithms (Heuristic search HS (34) and complete search (37)). We

observed that when the number of attributes exceeds a threshold (≈15 attributes),

HS and complete search algorithms take an exponential behavior until they be-

came unfeasible. By contrast, the execution time of our algorithm always remains

low, for 100 attributes it takes 200ms and this guarantees its applicability to large

Section 6.3 – Evaluation 100

relational schemas since our algorithm will be performed offline only one time by

the database designer to generate the distributed database schema.

6.3.3 Impact of the Variation of Confidentiality Constraints
and Visibility Constraints on the Partitioning Algorithm

Figure 6.4: Computational time varying the number of confidentiality constraints
and visibility constraints

In Figure 6.4, we fixed the number of attributes at each run and we varied

the number of confidentiality constraints in Trial 1, and the number of visibility

constraints in Trial 2 as shown in table 6.1. After examining the execution time

of our partitioning algorithm, we saw that the increase of the number of confi-

dentiality constraints for the same number of attributes and the same number of

visibility constraints has importantly increased the execution time due to the fact

that a large number of confidentiality constraints will likely result in highly frag-

mented schema. However, increasing the number of visibility constraints while

fixing the number of confidentiality constraints has slightly affected the execution

time of the partitioning algorithm.

Section 6.3 – Evaluation 101

Table 6.1: number of confidentiality constraints C and visibility constraints V for
each run
Trial 1 C=2,V=6 C=4,V=6 C=7,V=6 C=10,V=6 C=12,V=6
Trial 2 C=6,V=2 C=6,V=4 C=6,V=7 C=6,V=10 C=6,V=12

6.3.4 Comparison of Query Execution Time Between MySQL
and SparkSQL

Figure 6.5: Comparison of query execution time between MySQL and SparkSQL

We compared in Figure 6.5 the execution time between MySQL database and

SparkSQL for local and join queries . The database was firstly setup in a central-

ized server running MySQL, and a first trial was performed in which we had com-

puted execution time. The number of queries was ranged from 5 to 100 queries.

In the second trial, we had partitioned the database vertically into 6 partitions

according to our proposed algorithms (we considered 6 visibility constraints and

12 confidentiality constraints) and we deployed it on a Spark cluster running 5

worker nodes. As illustrated in Figure 6.5, when the number of executed queries

is less than 40 the MySQL database shows good performance than SparkSQL, but

when the number of distributed queries becomes large SparkSQL shows less ex-

ecution time than MySQL DBMS. The optimization of local queries was reached

through the maximization of data locality adopted in our partitioning technique

while the optimization of join queries was reached through the parallelization of

Section 6.3 – Evaluation 102

query execution.

6.3.5 Time Required to Lock a Suspicious Query

In Figure 6.6, we performed several runs. For each run, we fixed the number of

issued queries from the user and we evaluated the required time to block a suspi-

cious query. We note that the time required to block a suspicious query increase

with the number of queries issued from the user. Observed results confirmed that

our monitoring module took a reasonable timing to enforce both access control

mechanisms RBAC and HBAC. However, dealing with a very large number of

queries is an open issue which we will investigate in the future.

Figure 6.6: Time required to lock a suspicious query

The conducted experiments have showed the practicability of our methodol-

ogy. Nevertheless, to ensure the usability of the approach, the following parame-

ters should be taken into consideration:

• Number of functional dependencies: The proposed methodology showed

some limitation only when it deals with a large number of functional depen-

dencies. We believe that finding such typical scenario with large number of

functional dependencies is probably hard.

• Value of the threshold α: Indeed, it is very important to choose an adequate

value of α for the simple reason that this parameter direct affects the visi-

Section 6.4 – Complexity Study 103

bility constraints which in turn affect the partitioning process. Some studies

have been performed to determine optimal threshold according to the re-

search domain. For example, in bioinformatics, the work in (17) attempted

to derive an optimal threshold for interpreting semantic similarity and par-

ticularity.

• Since we store every generated partition in exactly one server, the number

of allocated workers in the cloud should be equal to the number of generated

partitions K.

• The relational schema given as an input should be static in all different steps

involved in our methodology. Any change brought to the database schema

will lead to execute the approach from scratch.

6.4 Complexity Study

In this section, we will discuss the complexity of the proposed algorithms used

to achieve the goals of our approach. First we begin algorithm 1. To study

the complexity of algorithm 1 let’s consider the following notations used in this

algorithm:

• |R|: The number of roles in the database.

• |A|: The cadinality of attribute set of the relational schema R(A).

Hence the complexity of algorithm 1 ”Generation of visibility constraints” would

be O (|R| ∗ |A|) which gives us a linear complexity.

In algorithm 3 we consider the following parameters:

• |A|: The cadinality of attribute set of the relational schema R(A).

• |E|: The number of edges generated in the functional dependency graph.

• |S haredArr|: size of the array of shared vertices by all Target arrows.

• |C|: The cardinality of the confidentiality constraints set.

Section 6.4 – Complexity Study 104

• |JC|: The number of generated join chains.

we identify in this algorithm two instruction blocks: block(9-19) and block(24-

30).

• The study of block(9-19) gives that this block is performed in O (|A| ∗ |C|).

• The complexity of the instruction block(24-30) is evaluated to O (|JC2|)

Hence, the complexity of algorithm 3 ”Join chain detection” would be: O ((|A| ∗

|C|) + (|E|) + (|JC2|) + (|S haredArr|)).

To study the complexity of algorithm 4 ”Detecting relaxed cut” we consider

the following notations:

• |C|: The cardinality of the confidentiality constraints set.

• |E|: The number of edges generated in the functional dependency graph.

• |JC|: The set of all join chains sets

• |JCk|: The set of join chains of ck

we identify in this algorithm three instruction blocks: block(3-6), block(9-17)

and block(20-29). The complexity of the block(3-6) is evaluated to O (|C|). The

block(9-17) is performed in O ((|E|) ∗ (|JC|) ∗ (|JCK |)) and the block(20-29) is

performed also in O ((|E|) ∗ (|JC|) ∗ (|JCK |)). Finally, the complexity of algorithm

4 ”Detecting relaxed cut” is O ((|C|) + 2 ∗ ((|E|) ∗ (|JC|) ∗ (|JCK |))). Algorithms

3 and 4 have a polynomial complexity which heavly depends from the number

of generated edges in the functional dependency graph. we observed that when

the number of edges is large the algorithms take an exponential behavior, but we

think that finding such typical scenarios in real cases is probably hard.

The complexity of algorithm 6 ”Computing K-balanced partitions” heavly

depends on the number of considered confidentiality constraints. It shows a rea-

sonable execution time compared to Heuristic search HS (34) and complete search

(37). However, it shows an exponential behavior and becomes unfeasible only

when it deals with a large number of confidentiality constraints. For algorithm 8

we define the parameter |Qi| which represents the number of issued queries from

Section 6.5 – Conclusion 105

the system user, and |VTs| the number of violating transactions. Thus, the com-

plexity of algorithm 8 ”Query lock” is evaluated to O ((|Qi|)∗ (|VTs|)) which gives

a linear complexity. However, the parameter |Qi| is dynamic and in the worst cases

it becomes very large which will directly affects the algorithm complexity. This is

why we considered it as an open issue to be investigated in the future.

6.5 Conclusion

In this chapter, we have analyzed the performance of our approach by conducting

a set of experiments using different configurations. We have implemented our ap-

proach based on a Big Data system. The experimental evaluation of our proposed

approach has presented a prominent results that could be more enhanced in future

work.

Conclusion and Perspectives

Summary

In this Thesis, we have considered the problem of secure data outsourcing in pres-

ence of the inference problem. We have focused on the illicit inferences, which

result from combining semantic constraints with, authorized information to infer

sensitive data. We have started by investigating different research fields relevant

to our problem, namely, access control models, secure data outsourcing, the in-

ference problem and optimal database schema distribution. Based on this study,

we have formally defined our problem. We have selected the full data outsourcing

approach as a strategy of data outsourcing. Then, we have considered access con-

trol model through confidentiality constraints to specify access control rules. We

have focused on considering semantic relatedness between user role and schema

attributes to maximize data locality. We have also pinpointed the role of functional

dependencies in allowing malicious users to infer sensitive information. Finally,

we have developed a monitoring module to lock suspicious queries. In this con-

text, our aim was to partition the database schema and generate a set of partitions

to be hosted in CSSP level. Those partitions have minimized the number of dis-

tributed transactions by maximizing data locality, and preserving owners access

control policies from being bypassed with direct access or indirect access via in-

ference channels. Also, we have been able to securely evaluate user queries while

retaining access control policies.

To achieve this goal, we have proposed a three-phase approach that can be

106

Conclusion 107

highlighted through the following contributions:

• We have first generated a set of visibility constraints that have been enforced

as soft constraints in the partitioning process. Those constraints have aimed

to maximise data locality by minimizing the number of distributed queries

in the distributed database hosted in CSSP level. To generate them, we have

performed a semantic analysis of the relational schema in order to measure

semantic relatedness between attributes and users roles. Attributes that have

a semantic relatedness to a role in the database greater than a threshold α

were assigned to the visibility constraint attached to this role. These con-

straints were preserved when the relational schema was fragmented.

• To deal with inference leakage, we have generated a set of constraints-based

inference control: These constraints are enforced as hard constraints. In this

step, we have resorted to graph theory in order to build the functional depen-

dencies graph and generate a set of join chains. A join chain was considered

as an inference channel that enabled a malicious user to combine functional

dependencies with the legitimate response received from the system to pro-

duce security breaches. Then, We have used a relaxed technique to cut the

join chain only at a single point in order to minimize dependencies loss.

• By relying to hypergraph theory, we have firstly presented the partition-

ing problem as a hypergraph constraint satisfaction problem. Then, based

on this hypergraph, we have reformulated the problem as a multi-objective

function F to be minimized. Therefore, we have proposed a greedy algo-

rithm to partition the constrained hypergraph into k partitions while mini-

mizing the multi-objective function F. Our partitioning algorithm has demon-

strated its performance compared to other state of the art algorithms.

• Regarding that our security model could be broken when a malicious user

performed a join query between distributed partitions to regroup a confi-

dentiality constraint, we have described the way to securely evaluate those

queries at runtime. We have proposed a monitor module to mediate every

query issued from users against data stored in distributed partitions. The

Conclusion 108

monitor module contained two access control mechanisms: A Role-Based

Access Control mechanism and History-Based Access Control mechanism.

The former mechanism was dedicated to check the user role who issued the

query and if this latter was not granted to execute distributed queries, then

his query was forwarded directly to the desired partition. Otherwise, the

query was forwarded to the History Access Control mechanism which has

taken as input a set of violating transactions to be prohibited and checked

if the cumulative of user past queries and current query could complete a

violating transaction. If it is the case, the query was denied.

Future Work

Since our approach is recent, there are a number of concepts associated to security

policies, privacy, query workload and data dependencies which could be consid-

ered to ensure better security level and to enhance query processing in the cloud.

Hence, there are many research directions to pursue:

• When the workload becomes available after the database is set up in the

cloud, the challenge is how to dynamically reallocate the distributed database

fragments among distributed partitions while retaining access control poli-

cies? Indeed, developing a dynamic reallocating algorithm by taking into

consideration the query workload changes and confidentiality constraints

will be a challenging task. We believe that machine learning could be a

suitable technique in this situation towards an intelligent cloud database

system.

• Another interesting issue is the collaborative inference. Indeed, we pro-

posed to block a violating transaction from being achieved to prevent infer-

ence leakage, but what if these violating transactions results from a combi-

nation of a set of queries from more than one user?

• Furthermore, we aim in our future work to consider other semantic con-

straints as a source of inference leakage. So far, we have demonstrated

Conclusion 109

that functional dependencies are considered as the main sources of infer-

ence attacks. But other semantic constraints should be also considered: For

example, inclusion dependencies, join dependencies and multivalued de-

pendencies.

• Another interesting topic of discussion among security issues in data out-

sourcing is to preserve access control policies of the data owner when data

is externalized to the cloud based on the mapping rules. In this situation,

we cannot expect total conformity between two policies, and conflicts may

occur. Indeed, we believe that the adoption of an access control model with

authorization view and query rewriting technique seems to be adequate and

prominent to deal with such issue.

• It is obvious that maintaining the record of user history in the HBAC mech-

anism without an optimal archiving policy has operational drawbacks and

hight costs. Hence, a further interesting research challenge is the establish-

ment of an optimal archiving policy to efficiently record user history in the

HBAC mechanism. Indeed, we believe this will enhance the query runtime

monitoring technique adopted in this thesis.

Bibliography

[1] Abadi, M., and Fournet, C. Access control based on execution history. In

NDSS (2003), vol. 3, pp. 107–121.

[2] Abiteboul, S., Hull, R., and Vianu, V. Foundations of databases, vol. 8.

Addison-Wesley Reading, 1995.

[3] Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K.,

Motwani, R., Srivastava, U., Thomas, D., and Xu, Y. Two can keep a secret:

A distributed architecture for secure database services. CIDR 2005 (2005).

[4] Akeel, F., Fathabadi, A. S., Paci, F., Gravell, A., and Wills, G. Formal

modelling of data integration systems security policies. Data Science and

Engineering 1, 3 (2016), 139–148.

[5] Akeel, F. Y., Wills, G. B., and Gravell, A. M. Exposing data leakage

in data integration systems. In The 9th International Conference for In-

ternet Technology and Secured Transactions (ICITST-2014) (2014), IEEE,

pp. 420–425.

[6] Al-Kahtani, M. A., and Sandhu, R. Rule-based rbac with negative au-

thorization. In 20th Annual Computer Security Applications Conference

(2004), IEEE, pp. 405–415.

110

BIBLIOGRAPHY 111

[7] Al-Sayid, N. A., and Aldlaeen, D. Database security threats: A survey

study. In 2013 5th International Conference on Computer Science and

Information Technology (2013), IEEE, pp. 60–64.

[8] Alsirhani, A., Bodorik, P., and Sampalli, S. Improving database security

in cloud computing by fragmentation of data. In 2017 International Con-

ference on Computer and Applications (ICCA) (2017), IEEE, pp. 43–49.

[9] An, X., Jutla, D., and Cercone, N. Dynamic inference control in pri-

vacy preference enforcement. In Proceedings of the 2006 International

Conference on Privacy, Security and Trust: Bridge the Gap Between PST

Technologies and Business Services (2006), pp. 1–10.

[10] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng,

X., Kaftan, T., Franklin, M. J., Ghodsi, A., et al. Spark sql: Relational

data processing in spark. In Proceedings of the 2015 ACM SIGMOD inter-

national conference on management of data (2015), pp. 1383–1394.

[11] Bahloul, S. N., Coquery, E., and Hacid, M.-S. Securing materialized

views: a rewriting-based approach. 29emes Journées BDA (2013), 1–25.

[12] Bailey, J., and Stuckey, P. J. Discovery of minimal unsatisfiable subsets

of constraints using hitting set dualization. In International Workshop on

Practical Aspects of Declarative Languages (2005), Springer, pp. 174–186.

[13] Bertino, E. Data protection from insider threats. Synthesis Lectures on

Data Management 4, 4 (2012), 1–91.

[14] Bertino, E. Data security–challenges and research opportunities. In Work-

shop on Secure Data Management (2013), Springer, pp. 9–13.

[15] Bertino, E., Ferrari, E., and Atluri, V. The specification and enforce-

ment of authorization constraints in workflow management systems. ACM

Transactions on Information and System Security (TISSEC) 2, 1 (1999),

65–104.

BIBLIOGRAPHY 112

[16] Bertino, E., Ghinita, G., and Kamra, A. Access control for databases:

Concepts and systems. Now Publishers Inc, 2011.

[17] Bettembourg, C., Diot, C., and Dameron, O. Optimal threshold determi-

nation for interpreting semantic similarity and particularity: application to

the comparison of gene sets and metabolic pathways using go and chebi.

PloS one 10, 7 (2015), e0133579.

[18] Biskup, J., Embley, D. W., and Lochner, J.-H. Reducing inference control

to access control for normalized database schemas. Information Processing

Letters 106, 1 (2008), 8–12.

[19] Biskup, J., Hartmann, S., Link, S., and Lochner, J.-H. Efficient inference

control for open relational queries. In IFIP Annual Conference on Data

and Applications Security and Privacy (2010), Springer, pp. 162–176.

[20] Biskup, J., and Preuß, M. Database fragmentation with encryption: Under

which semantic constraints and a priori knowledge can two keep a secret?

In IFIP Annual Conference on Data and Applications Security and Privacy

(2013), Springer, pp. 17–32.

[21] Biskup, J., Preuß, M., and Wiese, L. On the inference-proofness of

database fragmentation satisfying confidentiality constraints. In Interna-

tional Conference on Information Security (2011), Springer, pp. 246–261.

[22] Bkakria, A., Cuppens, F., Cuppens-Boulahia, N., and Fernandez, J. M.

Confidentiality-preserving query execution of fragmented outsourced

data. In Information and Communication Technology-EurAsia Conference

(2013), Springer, pp. 426–440.

[23] Bkakria, A., Cuppens, F., Cuppens-Boulahia, N., Fernandez, J. M., and

Gross-Amblard, D. Preserving multi-relational outsourced databases con-

fidentiality using fragmentation and encryption. J. Wirel. Mob. Networks

Ubiquitous Comput. Dependable Appl. 4, 2 (2013), 39–62.

BIBLIOGRAPHY 113

[24] Bleiholder, J., and Naumann, F. Data fusion. ACM computing surveys

(CSUR) 41, 1 (2009), 1–41.

[25] Bobrov, N., Chernishev, G., and Novikov, B. Workload-independent data-

driven vertical partitioning. In European Conference on Advances in

Databases and Information Systems (2017), Springer, pp. 275–284.

[26] Bollwein, F., and Wiese, L. Separation of duties for multiple relations in

cloud databases as an optimization problem. In Proceedings of the 21st

International Database Engineering & Applications Symposium (2017),

pp. 98–107.

[27] Bollwein, F., and Wiese, L. On the hardness of separation of duties prob-

lems for cloud databases. In International Conference on Trust and Privacy

in Digital Business (2018), Springer, pp. 23–38.

[28] Bretto, A. Hypergraph theory. An introduction. Mathematical Engineer-

ing. Cham: Springer (2013).

[29] Brodsky, A., Farkas, C., and Jajodia, S. Secure databases: Constraints,

inference channels, and monitoring disclosures. IEEE Transactions on

Knowledge and Data Engineering 12, 6 (2000), 900–919.

[30] Chang, L., and Moskowitz, I. A study of inference problems in dis-

tributed databases. In Research Directions in Data and Applications Se-

curity. Springer, 2003, pp. 191–204.

[31] Chen, Y., and Chu, W. W. Database security protection via inference detec-

tion. In International Conference on Intelligence and Security Informatics

(2006), Springer, pp. 452–458.

[32] Chen, Y., and Chu, W. W. Protection of database security via collabora-

tive inference detection. In Intelligence and security informatics. Springer,

2008, pp. 275–303.

[33] Ciriani, V., Di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S.,

and Samarati, P. Fragmentation and encryption to enforce privacy in data

BIBLIOGRAPHY 114

storage. In European symposium on research in computer security (2007),

Springer, pp. 171–186.

[34] Ciriani, V., di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S.,

and Samarati, P. Fragmentation design for efficient query execution over

sensitive distributed databases. In 2009 29th IEEE International Confer-

ence on Distributed Computing Systems (2009), IEEE, pp. 32–39.

[35] Ciriani, V., Di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S.,

and Samarati, P. Keep a few: Outsourcing data while maintaining con-

fidentiality. In European Symposium on Research in Computer Security

(2009), Springer, pp. 440–455.

[36] Ciriani, V., di Vimercati, S. D. C., Foresti, S., Livraga, G., and Samarati,

P. Enforcing confidentiality and data visibility constraints: An obdd ap-

proach. In IFIP Annual Conference on Data and Applications Security and

Privacy (2011), Springer, pp. 44–59.

[37] Ciriani, V., Vimercati, S. D. C. D., Foresti, S., Jajodia, S., Paraboschi,

S., and Samarati, P. Combining fragmentation and encryption to protect

privacy in data storage. ACM Transactions on Information and System

Security (TISSEC) 13, 3 (2010), 1–33.

[38] Curino, C., Jones, E., Zhang, Y., and Madden, S. Schism: A workload-

driven approach to database replication and partitioning. Proc. VLDB En-

dow. 3, 1–2 (Sept. 2010), 48–57.

[39] Curino, C., Jones, E. P., Popa, R. A., Malviya, N., Wu, E., Madden, S.,

Balakrishnan, H., and Zeldovich, N. Relational cloud: A database-as-a-

service for the cloud.

[40] Cuzzocrea, A., Hacid, M.-S., and Grillo, N. Effectively and efficiently se-

lecting access control rules on materialized views over relational databases.

In Proceedings of the Fourteenth International Database Engineering &

Applications Symposium (2010), pp. 225–235.

BIBLIOGRAPHY 115

[41] De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., and

Samarati, P. Fragments and loose associations: Respecting privacy in data

publishing. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1370–

1381.

[42] De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., and

Samarati, P. Efficient integrity checks for join queries in the cloud 1. Jour-

nal of Computer Security 24, 3 (2016), 347–378.

[43] de Mantaras, R. L., and Saina, L. Inference attacks in peer-to-peer homo-

geneous distributed data mining. In ECAI 2004: 16th European Conference

on Artificial Intelligence, August 22-27, 2004, Valencia, Spain: Including

Prestigious Applicants [sic] of Intelligent Systems (PAIS 2004): Proceed-

ings (2004), vol. 110, IOS Press, p. 450.

[44] Delugach, H. S., and Hinke, T. H. Wizard: A database inference analysis

and detection system. IEEE Transactions on Knowledge and Data Engi-

neering 8, 1 (1996), 56–66.

[45] di Vimercati, S. D. C., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,

and Samarati, P. Fragmentation in presence of data dependencies. IEEE

Transactions on Dependable and Secure Computing 11, 6 (2014), 510–523.

[46] di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S., and Sama-

rati, P. Integrity for join queries in the cloud. IEEE Transactions on Cloud

Computing 1, 2 (2013), 187–200.

[47] Domingo-Ferrer, J. Advances in inference control in statistical databases:

An overview. Inference Control in Statistical Databases (2002), 1–7.

[48] Fagin, R., Kolaitis, P. G., and Popa, L. Data exchange: getting to the core.

ACM Transactions on Database Systems (TODS) 30, 1 (2005), 174–210.

[49] Farkas, C., and Jajodia, S. The inference problem: a survey. ACM SIGKDD

Explorations Newsletter 4, 2 (2002), 6–11.

BIBLIOGRAPHY 116

[50] Fernández-Medina, E., Trujillo, J., Villarroel, R., and Piattini, M. De-

veloping secure data warehouses with a uml extension. Information Sys-

tems 32, 6 (2007), 826–856.

[51] Ferraiolo, D., Atluri, V., and Gavrila, S. The policy machine: A novel

architecture and framework for access control policy specification and en-

forcement. Journal of Systems Architecture 57, 4 (2011), 412–424.

[52] Gertz, M., and Jajodia, S. Handbook of database security: applications

and trends. Springer Science & Business Media, 2007.

[53] Griffiths, P. P., and Wade, B. W. An authorization mechanism for a rela-

tional database system. ACM Transactions on Database Systems (TODS)

1, 3 (1976), 242–255.

[54] Gross, J. L., and Yellen, J. Graph theory and its applications. CRC press,

2005.

[55] Guarnieri, M., Marinovic, S., and Basin, D. Securing databases from

probabilistic inference. In 2017 IEEE 30th Computer Security Foundations

Symposium (CSF) (2017), IEEE, pp. 343–359.

[56] Haddad, M., Hacid, M.-S., and Laurini, R. Data integration in presence

of authorization policies. In 2012 IEEE 11th International Conference on

Trust, Security and Privacy in Computing and Communications (2012),

IEEE, pp. 92–99.

[57] Haddad, M., Stevovic, J., Chiasera, A., Velegrakis, Y., and Hacid, M.-S.

Access control for data integration in presence of data dependencies. In

International Conference on Database Systems for Advanced Applications

(2014), Springer, pp. 203–217.

[58] Hinke, T. H., and Delugach, H. S. Aerie: An inference modeling and detec-

tion approach for databases. In Sixth Working Conference on DATABASE

SECURITY (1992), p. 187.

BIBLIOGRAPHY 117

[59] Hinke, T. H., Delugach, H. S., and Wolf, R. P. Protecting databases from

inference attacks. Computers & Security 16, 8 (1997), 687–708.

[60] Huang, J., Nicol, D. M., Bobba, R., and Huh, J. H. A framework integrat-

ing attribute-based policies into role-based access control. In Proceedings

of the 17th ACM symposium on Access Control Models and Technologies

(2012), pp. 187–196.

[61] Hudic, A., Islam, S., Kieseberg, P., and Weippl, E. R. Data confidentiality

using fragmentation in cloud computing. Int. J. Communication Networks

and Distributed Systems 1, 3/4 (2012), 1.

[62] Jbali, A., and Sassi, S. Access control policies for relational databases

in data exchange process. In International Conference on Database and

Expert Systems Applications (2017), Springer, pp. 264–271.

[63] Jebali, A., Jemai, A., and Sassi, S. A survey study on the inference problem

in distributed environment (s). In SEKE (2019), pp. 113–152.

[64] Jebali, A., Sassi, S., and Jemai, A. Inference control in distributed envi-

ronment: A comparison study. In International Conference on Risks and

Security of Internet and Systems (2019), Springer, pp. 69–83.

[65] Jebali, A., Sassi, S., and Jemai, A. Secure data outsourcing in presence of

the inference problem: issues and directions. Journal of Information and

Telecommunication (2020), 1–19.

[66] Jebali, A., Sassi, S., Jemai, A., and Chbeir, R. Secure data outsourcing in

presence of the inference problem: A graph-based approach. Journal of

Parallel and Distributed Computing 160 (2022), 1–15.

[67] Kantarcioglu, M., and Clifton, C. Privacy-preserving distributed mining

of association rules on horizontally partitioned data. IEEE transactions on

knowledge and data engineering 16, 9 (2004), 1026–1037.

BIBLIOGRAPHY 118

[68] Katos, V., Vrakas, D., and Katsaros, P. A framework for access control

with inference constraints. In 2011 IEEE 35th Annual Computer Software

and Applications Conference (2011), IEEE, pp. 289–297.

[69] Kumar, K. A., Quamar, A., Deshpande, A., and Khuller, S. Sword:

workload-aware data placement and replica selection for cloud data man-

agement systems. The VLDB Journal 23, 6 (2014), 845–870.

[70] Lenzerini, M. Data integration: A theoretical perspective. In Proceedings

of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Princi-

ples of database systems (2002), pp. 233–246.

[71] Lesk, M. Automatic sense disambiguation using machine readable dictio-

naries: how to tell a pine cone from an ice cream cone. In Proceedings of

the 5th annual international conference on Systems documentation (1986),

pp. 24–26.

[72] Li, F., Li, Z., Han, W., Wu, T., Chen, L., and Guo, Y. Cyberspace-oriented

access control: Model and policies. In 2017 IEEE Second International

Conference on Data Science in Cyberspace (DSC) (2017), IEEE, pp. 261–

266.

[73] Liu, Y., McInnes, B. T., Pedersen, T., Melton-Meaux, G., and Pakhomov,

S. Semantic relatedness study using second order co-occurrence vectors

computed from biomedical corpora, umls and wordnet. In Proceedings of

the 2nd ACM SIGHIT international health informatics symposium (2012),

pp. 363–372.

[74] Mell, P., Grance, T., et al. The nist definition of cloud computing.

[75] Morgenstern, M. Controlling logical inference in multilevel database sys-

tems. In Proceedings. 1988 IEEE Symposium on Security and Privacy

(1988), IEEE Computer Society, pp. 245–245.

[76] Nait-Bahloul, S., Coquery, E., and Hacid, M.-S. Authorization policies for

materialized views. In IFIP International Information Security Conference

(2012), Springer, pp. 525–530.

BIBLIOGRAPHY 119

[77] Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., and Abramov, J. Security

issues in nosql databases. In 2011IEEE 10th International Conference on

Trust, Security and Privacy in Computing and Communications (2011),

IEEE, pp. 541–547.

[78] Özsu, M. T., and Valduriez, P. Principles of distributed database systems,

vol. 2. Springer, 1999.

[79] Qian, X., Stickel, M. E., Karp, P. D., Lunt, T. F., and Garvey, T. D. Detec-

tion and elimination of inference channels in multilevel relational database

systems. In Proceedings 1993 IEEE Computer Society Symposium on Re-

search in Security and Privacy (1993), IEEE, pp. 196–205.

[80] Rath, S., Jones, D., Hale, J., and Shenoi, S. A tool for inference detection

and knowledge discovery in databases. In Database security IX. Springer,

1996, pp. 317–332.

[81] Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. Extending query

rewriting techniques for fine-grained access control. In Proceedings of

the 2004 ACM SIGMOD international conference on Management of data

(2004), pp. 551–562.

[82] Rosenthal, A., and Sciore, E. View security as the basis for data warehouse

security. In DMDW (2000), p. 8.

[83] Samarati, P., and de Vimercati, S. C. Access control: Policies, models, and

mechanisms. In International School on Foundations of Security Analysis

and Design (2000), Springer, pp. 137–196.

[84] Samarati, P., and Di Vimercati, S. D. C. Data protection in outsourcing

scenarios: Issues and directions. In Proceedings of the 5th ACM Symposium

on Information, Computer and Communications Security (2010), pp. 1–14.

[85] Sayah, T., Coquery, E., Thion, R., and Hacid, M.-S. Inference leakage de-

tection for authorization policies over rdf data. In IFIP Annual Conference

BIBLIOGRAPHY 120

on Data and Applications Security and Privacy (2015), Springer, pp. 346–

361.

[86] Sellami, M., Gammoudi, M. M., and Hacid, M. S. Secure data integration:

a formal concept analysis based approach. In International Conference on

Database and Expert Systems Applications (2014), Springer, pp. 326–333.

[87] Sellami, M., Hacid, M.-S., and Gammoudi, M. M. Inference control in data

integration systems. In OTM Confederated International Conferences” On

the Move to Meaningful Internet Systems” (2015), Springer, pp. 285–302.

[88] Soler, E., Trujillo, J., Blanco Bueno, C., Fernández-Medina Patón, E.,

et al. Designing secure data warehouses by using mda and qvt.

[89] Staddon, J. Dynamic inference control. In Proceedings of the 8th ACM

SIGMOD workshop on Research issues in data mining and knowledge dis-

covery (2003), pp. 94–100.

[90] Su, T.-A., and Ozsoyoglu, G. Controlling fd and mvd inferences in mul-

tilevel relational database systems. IEEE Transactions on Knowledge and

Data Engineering 3, 4 (1991), 474–485.

[91] Thuraisingham, B. Handling security constraints during multilevel

database design. Burns, R.(ed.) Research Directions zn Database Securt

(v, IV, Mitre Technical report, M92B0000 118, Mitre Corp., McLean, Va

(1992).

[92] Thuraisingham, B. Database and applications security: Integrating infor-

mation security and data management. CRC Press, 2005.

[93] Thuraisingham, B. Database security: Past, present, and future. In 2015

IEEE International Congress on Big Data (2015), IEEE, pp. 772–774.

[94] Thuraisingham, B., Ford, W., Collins, M., and O’Keeffe, J. Design and

implementation of a database inference controller. Data & knowledge en-

gineering 11, 3 (1993), 271–297.

BIBLIOGRAPHY 121

[95] Thuraisingham, M. Security checking in relational database management

systems augmented with inference engines. Computers & Security 6, 6

(1987), 479–492.

[96] Toland, T. S., Farkas, C., and Eastman, C. M. The inference prob-

lem: Maintaining maximal availability in the presence of database updates.

Computers & Security 29, 1 (2010), 88–103.

[97] Tracy, J., Chang, L., and Moskowitz, I. S. An agent-based approach to

inference prevention in distributed database systems. International Journal

on Artificial Intelligence Tools 12, 03 (2003), 297–313.

[98] Turan, U., Toroslu, İ. H., and Kantarcıoğlu, M. Secure logical schema

and decomposition algorithm for proactive context dependent attribute

based inference control. Data& Knowledge Engineering 111 (2017), 1–21.

[99] Turan, U., Toroslu, I. H., and Kantarcioglu, M. Graph based proactive

secure decomposition algorithm for context dependent attribute based in-

ference control problem. arXiv preprint arXiv:1803.00497 (2018).

[100] Wang, J., Yang, J., Guo, F., and Min, H. Resist the database intru-

sion caused by functional dependency. In 2017 International Conference

on Cyber-Enabled Distributed Computing and Knowledge Discovery (Cy-

berC) (2017), IEEE, pp. 54–57.

[101] Wang, L., Wijesekera, D., and Jajodia, S. A logic-based framework for

attribute based access control. In Proceedings of the 2004 ACM workshop

on Formal methods in security engineering (2004), pp. 45–55.

[102] Widom, J., and Ceri, S. Active database systems: Triggers and rules for

advanced database processing. Morgan Kaufmann, 1996.

[103] Wiese, L. Clustering-based fragmentation and data replication for flexible

query answering in distributed databases. Journal of Cloud Computing 3,

1 (2014), 1–15.

BIBLIOGRAPHY 122

[104] Wiese, L. Ontology-driven data partitioning and recovery for flexible query

answering. In Database and Expert Systems Applications (2015), Springer,

pp. 177–191.

[105] Xu, X., Xiong, L., and Liu, J. Database fragmentation with confidentiality

constraints: A graph search approach. In Proceedings of the 5th ACM

Conference on Data and Application Security and Privacy (2015), pp. 263–

270.

[106] Yang, Y., Li, Y., and Deng, R. H. New paradigm of inference control with

trusted computing. In IFIP Annual Conference on Data and Applications

Security and Privacy (2007), Springer, pp. 243–258.

[107] Yip, R. W., and Levitt, E. Data level inference detection in database sys-

tems. In Proceedings. 11th IEEE Computer Security Foundations Work-

shop (Cat. No. 98TB100238) (1998), IEEE, pp. 179–189.

BIBLIOGRAPHY 123

	Introduction
	Motivation
	Problem Statement
	Objectives
	Contributions
	Constraints Generation
	Schema Partitioning
	Query Evaluation Model

	Thesis Outline
	Publication

	State of the Art
	Introduction
	Data Outsourcing
	Security of Database Systems
	Access Control Models
	Discretionary Access Control Model
	Mandatory Access Control Model
	Role-Based Access Control Model
	Attribute-Based Access Control Model
	History-Based Access Control Model
	Advanced Access Control Models

	Access Control for Relational Database Systems
	The System R Access Control Model
	Oracle Virtual Private Database
	Oracle Label
	Content-based Access Control Model with Authorization View

	Access Control Verification in Distributed Environment
	Distributed Access Control Policies
	Role-Based Access Control for Distributed Database Systems
	SQL for Distributed Database Security
	Access Control Through Confidentiality Constraints
	Auditing a Distributed Database System
	Access Control Enforcement in Data Integration Systems

	Data Protection from Insider Threat
	Access Control vs Inference Control
	Inference Control in Centralized Database Systems
	Inference Attacks
	Inference Prevention Methods
	Discussion of the Inference Prevention Methods

	Inference Control in Distributed Environment
	Inference Control in Distributed Data Sources
	Inference Control in Data Integration Systems

	Data Outsourcing in Presence of Access Control Policies
	Secure Data Outsourcing with Non-Communicating Servers
	Secure Data Outsourcing: The Case of Communicating Servers
	Data Outsourcing and the Inference Problem

	Optimal Database Schema Partitioning
	Discussion
	Choice of the Access Control Model
	Discussion of the Proposed Approaches

	Conclusion

	Preliminaries and Problem Statement
	Introduction
	Preliminaries and Basic Concepts
	Definitions Related to Access Control and Inference Problem
	Definitions Related to Graph Theory
	Definitions Related to User Role

	Problem Statement
	Motivating Scenario
	Discussion of Studied Problem with their Relevant Fields
	Data Outsourcing
	Access Control Model
	Inference Control
	Ontology-Based Vertical Database Schema Partitioning

	Overview of the Proposed Approach
	Conclusion

	Constraints Generation
	Introduction
	Visibility Constraints Generation Based on Semantic Relatedness
	Inference Control
	Step 1: Building the Functional Dependency Graph G(V,E)
	Step 2: Generating Join Chain Set
	Step 3 : Detecting relaxed_cut
	Step 4 : Constraints-based inference control generation

	Conclusion

	Schema Partitioning and Query Evaluation Model
	Introduction
	Schema Partitioning
	Hypergraphs and constraint satisfaction problems
	Computing K-balanced partitions

	Query Evaluation Model
	Violating Transactions Detection
	Query lock

	Conclusion

	Experimental Study
	Introduction
	Experimental Design
	Evaluation
	Functional Dependencies Impact on Constraints-Based Inference Control Generation
	Impact of the Number of Attributes on the Partitioning Algorithm
	Impact of the Variation of Confidentiality Constraints and Visibility Constraints on the Partitioning Algorithm
	Comparison of Query Execution Time Between MySQL and SparkSQL
	Time Required to Lock a Suspicious Query

	Complexity Study
	Conclusion

	Conclusion
	Appendix

