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Introduction

Machine learning is a subfield of Artificial Intelligence which aims at providing algorithms that

simulate human intelligence to solve complex tasks. A peculiarity of a Machine Learning process

is that it does not require to be explicitly programmed and relies instead on training examples.

These latter are described either directly with features in a vector space (e.g., weight, age,

price,...) or with a structured representation (e.g., picture, text, sound,...). In some applications,

the samples are represented only relatively to each other, for instance in graphs made of pairwise

connections between examples, like in social networks or in molecules. The idea behind Machine

Learning is to design an algorithm that solves a desired task by learning a function from the

available dataset and will generalize well on unseen examples. One of the most common tasks

is supervised binary classification, where the goal is to distinguish between two classes. For

instance, given a training set of labelled pictures of cats and dogs, a classification algorithm

learns to discriminate between the two categories. It will be correct if it predicts well the class of

unseen pictures. This generalization capacity is typically estimated from a so-called test set. In

the last decade, Machine Learning has received a large amount of attention with various target

applications, in computer vision (semantic segmentation, object tracking), arts (image or music

generation), fraud detection, to cite a few.

In many machine learning scenarios, comparing two empirical probability measures is of

great interest. This can occur when evaluating the similarity between two images represented by

point clouds in the RGB space, between two texts encoded through word embeddings or between

two sets of cells whose genome/transcriptome is numerically described in a feature space.

One possible direction to address this task is to use the Optimal Transport (OT) theory,

originally introduced by Gaspard Monge (Monge, 1781), aiming at answering the following

question: How to move resources from some locations to satisfy requirements at others locations

with the least effort, in the sense that the global cost of moving the resources is minimized.

For example, the resources can be soldiers coming from different military bases that should be

sent to different locations of the front line, and the military commander wants to minimize the

average travel cost of the soldiers to avoid unnecessary efforts. As originally introduced, the

Monge problem prevented the possibility to split the soldiers coming from the same military

base, leading to an ill-posed problem with no guarantee of uniqueness and existence of the

solution. More than 200 years later, Leonid Kantorovitch (Kantorovich, 1942) proposed a relaxed

mathematical formulation of the transportation problem which notably defines a real distance

1
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Figure 1: Illustration of the Optimal Transport problem between two discrete distributions.

Cited on page [1]

between probability distributions: the Wasserstein distance. This latter has received a great

attention during the past few years by the Machine Learning community as a powerful tool

to compare probability measures. An example of the Optimal Transport solution is displayed

on Figure 1, where the entire mass of the blue distribution is sent on the top of the red

distribution by the orange arrows. The Wasserstein distance between the two distributions is

the sum of all the orange distances weighted by the corresponding mass transported on each

arrow. It turns out that a crucial element of Optimal Transport is the function used as distance

between the samples of the two point clouds. In such a discrete setting, the OT problem is

entirely defined by a cost matrix, which contains all the pairwise distances between the points

of the two probability measures. This cost matrix is usually referred in OT to as ground metric,

ground function or ground cost. The most common and natural ground distance is the Euclidean

distance, raised to a certain power p, which leads to the so-called p-Wasserstein distance.

The ground metric is at the core of several contributions of this manuscript. In particular,

we exploit the metric learning framework to learn a ground metric in the form of a Mahalanobis

distance used to address Domain Adaptation tasks, i.e. when we observe a shift of distribution

between the training and testing data. We also study, in the first part of this thesis, from a

theoretical perspective how to learn a stable ground metric.

A second series of contributions relies on the scalability of OT. Indeed, some variants aim at

comparing probability measures that do not necessarily lie in the same feature space. This is

the case of the Gromov Wasserstein distance whose algorithmic complexity prevents its use on

large datasets. We propose in this thesis a fast algorithm for this problem based on sampling

strategies. Building upon this algorithm, we further introduce an extension generalizing both

the Wasserstein and the Gromov Wasserstein problems, which allows us to apply OT on high

dimensional tensors.

Funding and context of this thesis. This thesis is part of the TADALoT Project1, funded

by the region Auvergne-Rhône-Alpes (France) with the Pack Ambition Recherche (2017, 17

011047 01). This thesis was carried out in the Data Intelligence team of the Hubert Curien

laboratory. This laboratory is a research unit (UMR 5516) between the Jean Monnet University

1https://twitwi.github.io/tadalot/

2



Introduction

of Saint-Étienne, the CNRS and the Institut d’Optique Graduate School.

Organization The manuscript is composed of 5 chapters.

• The first chapter provides the necessary background for the rest of the document. It

introduces in details the Optimal Transport theory, some solvers and some extensions,

notably the Gromov-Wasserstein problem. Then, some background knowledge is presented

about the standard Machine Learning setting and the Domain Adaptation framework.

This chapter also presents the Frank-Wolfe and the Mirror Descent algorithms as key

optimization elements for the extended OT formulations.

• The second chapter explores the capacity of learning the ground metric of the Optimal

Transport problem for an unsupervised Domain Adaptation task. This latter aims at

deploying on a target distribution a model learned from labelled source data. The choice

of the euclidean distance to compare points might not be the best choice given the task at

hand. Instead, we propose to learn a Mahalanobis distance using a Metric Learning

approach. The advantage of the Mahalanobis distance comes from its ability to reduce the

dimensionality of the feature space by learning a low rank matrix. A generalization bound

on the target error is derived to guide the design of our algorithm, called Metric Learning

for Optimal Transport (MLOT).

• The third chapter theoretically focuses on the stability of OT in the worst case scenario

consisting in selecting the worst possible cost matrix. This leads to a min-max

problem aiming at reducing the distance while looking for the cost matrix, in a possibly

infinite set, that increases this distance the most. The proposed solver, based on an elegant

cutting plane method, finds the saddle points of this min-max problem. Some experiments

highlight the interest of the algorithm compared to the state of the art in terms of time

complexity and noise reduction. Building upon this theoretical framework, we define a

notion of local stability for the cost matrices in order to select the most stable one. We

show that this stability is highly correlated with a noise sensitivity notion. We present

some experiments to select a stable cost matrix in a color transfer task.

• The fourth chapter is dedicated to an extension of the Optimal Transport theory to

incomparable spaces, known as the Gromov-Wasserstein problem. The existing solvers

rely on specific loss functions to compute the gradient efficiently and are not suitable

in a general setting. We propose a fast method to solve the Gromov-Wasserstein

problem for any loss function, which relies on a stochastic approximation of the gradient

by resorting to a sampling scheme. We also analyze the convergence to a stationary point

of the proposed algorithm which notably includes a proof of convergence for existing

Gromov-Wasserstein solvers in the concave case. Lastly, we show that an even better

speed improvement can be achieved when the stochastic approximation is based on only

one example allowing us to make use of the fast one dimensional Optimal Transport solver.

3
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• The fifth chapter is devoted to the definition of a new distance between tensors of

arbitrary orders. In the classical Optimal Transport setting, the cost function compares

vectors that come from points in a vector space; in the Gromov-Wasserstein problem, one

compares vectors (often of size 1) that come from matrices. We propose the Optimal

Tensor Transport (OTT) problem, where the loss can compare vectors coming from tensors

of any orders. To do so, we propose a framework that allows different transport plans to

be used along the different dimensions instead of relying on only one transport plan. With

the introduction of a new notion of barycenter for OTT, we show competitive results in a

comparison-based clustering task. Additionally, some experiments in Domain Adaptation

are conducted on datasets represented as tensors, which highlight the interest of such a

new formulation compared to the state of the art.

For the sake of clarity of the manuscript, some figures, experiments as well as some long

proofs are relegated in the appendices. Two interesting works, related to this thesis, but not

explored to their full potential are available in Appendix E.1 and E.3. Additionally, as a

technical contribution, Appendix E.2 presents a software developed during this thesis which

creates transitions between the slides of a presentation. Those transitions are optimal, in the

sense that they minimize the cost of moving from one slide to another.

4
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Chapter 1

Background

Abstract

This chapter contains most of the necessary background for the manuscript. It starts
with a complete description of the Optimal Transport (OT) theory, as well as a presentation
of the most used solvers and some variants of the original OT problem. Then, the second
section provides some background about Machine Learning, in particular the classification
and Domain Adaptation settings that will be tackled in this manuscript. The last section
shortly explains the Frank-Wolfe and Mirror Descent algorithms which will be useful to
understand the last two chapters of this manuscript.

1.1 Optimal Transport (OT)

When using the expression Optimal Transport (OT), we generally refer to the related theory.

But note that OT can be associated to other terms: the OT problem that should be solved; the

OT plan as the solution of this latter problem; the associated OT solver ; the OT barycenters;

and even the OT distance. An illustration of an OT barycenter, as formally defined later in

Section 1.1.4, is given in Figure 1.1.

1.1.1 Mathematical settings

In its original form, a transport plan allows to map an absolutely continuous probability

distribution µ ∈ P(X ) onto another one ν ∈ P(Y) for two spaces X and Y included in possibly

different vector spaces. The admissible mappings are the joint probability distributions in X × Y
with marginals µ and ν. More formally, the set of all possible transport plans is defined as,

Πµν =
{
π ∈ P(X × Y) |Px#π = µ, Py#π = ν

}
with Px : (X × Y)→ X and Py : (X × Y)→ Y, (1.1)

(x, y) 7→ x (x, y) 7→ y

9



1.1. Optimal Transport (OT)

Figure 1.1: Illustration of the Optimal Transport barycenter (dashed orange line) between two

continuous distributions (blue and red).

Cited on page [9]

where the # symbol corresponds to the push forward operator which intuitively applies a function

on every point of the distribution, ∀A ∈ B(X ), µ ∈ P (X ), g : X −→ X , g#µ(A) = µ(g−1(A)).

This set of transport plans is not empty as the “independent” coupling µ× ν is always in Πµν .

This coupling distribution will be called the uniform distribution as it is the distribution closest

to the uniform one which respects the marginal constraints.

The goal of the OT problem is to find the optimal transport plan, in the sense that it should

reduce the global cost of moving µ on the top of ν. To quantify the cost between two points

(x, y) ∈ (X ,Y), a continuous cost function is defined, c : (X ,Y)→ R. This cost is typically a

distance, a pseudo distance or a divergence but can be any continuous function. While the two

spaces X and Y can in theory be different, they are very often the same to define a meaningful

cost c. This cost function is often called the ground function or ground cost. The Optimal

Transport solvers seek to solve the Kantorovich problem (Kantorovich, 1942), defined as,

min
π∈Πµν

E
x,y∼π

[c(x, y)] = min
π∈Πµν

∫
X×Y

c(x, y)dπ(x, y). (1.2)

The existence of such a minimum is guaranteed for particular cost functions (Villani, 2008,

Theorem 4.1). Notably, for any continuous cost function, the minimum exists.

The Optimal Transport problem defines a distance between distributions as long as the cost

c is a distance (Villani, 2008, theorem 7.3). In fact, the OT problem has the same property as

its ground cost. For pseudo-metric costs, the OT problem also leads to a pseudo metric. Some

other cost functions can define a real metric between distributions, such as a distance to the

power p. Indeed for all p ≥ 1, the p-Wasserstein (Kantorovich, 1942) distance, for any pair of

distributions with finite p-order moments, is defined as,

Wp(µ, ν) =

(
min
π∈Πµν

∫
X×Y

c(x,y)pdπ(x,y)

) 1
p

. (1.3)

In most of the applications, the 2-Wasserstein distance with the Euclidean distance is used,

which notably allows to get rid of the square root of the Euclidean distance. Moreover, the p-

10



Chapter 1. Background

Wasserstein distance at the power p, denoted asWp
p (µ, ν), is often used to compare distributions,

as the power function is a strictly increasing function.

The original Monge formulation (Monge, 1781) is also sometimes used for describing the OT

problem but, as mentioned in the introduction, this formulation have no solution for some pairs

of discrete or semi-discrete distributions. The idea is to find a function fT : X → Y that maps

the distribution µ to the distribution ν while minimizing the global cost,

min
fT#µ=ν

∫
X
c(x, fT (x))dµ(x). (1.4)

This formulation cannot handle well the discrete case as a point x cannot be sent at different

locations. This function fT is called the Monge mapping. The Kantorovich formulation solves

this problem as the distribution π can be seen as some kind of function with stochastic output

(fT (x)↔ π|x).

In Machine Learning, we often have access to empirical distributions µ̂ and ν̂ composed

of sums of Diracs that come from real distributions µ and ν. For this reason, the discrete

formulation based on finite discrete distributions is presented bellow. First, the (R−1) standard

simplex is denoted as ∆R =
{

(cr)r∈J1,RK ∈ RR+|
∑R

r=1 cr = 1
}
. This allows to define a discrete

distribution µ̂ =
∑I

i=1 aiδxi supported by I ∈ N points (xi)i∈J1,IK in X and the associated

probability vector a ∈ ∆I . In the same way, ν̂ =
∑K

k=1 bkδyk is supported by K ∈ N points

(yk)k∈J1,KK in Y associated with the probability vector b ∈ ∆K . A transport plan can now be

represented as a (I ×K) matrix and the set of all transport plans defined as,

Uab =
{
T ∈ RI×K+ |T1K = a,T>1I = b

}
. (1.5)

This set is a convex polytope defined by I ×K + I +K − 1 linear constraints (Brualdi, 2006).

The first I ×K constraints come from the positivity of each element in the matrix; the I +K

constraints come from the marginal constraints, and the minus one comes from the redundancy

of the marginals which both sum to 1. The Optimal Transport problem can now be written as,

min
T∈Uab

I∑
i=1

K∑
k=1

c(xi,yk)Tik = min
T∈Uab

I∑
i=1

K∑
k=1

CikTik = min
T∈Uab

〈C,T 〉 , (1.6)

with C the cost matrix associated with the cost function c: ∀(i, k) ∈ J1, IK × J1,KK Cik =

c(xi,yk). For two fixed distributions, this matrix contains all the necessary information of the

function c. Notice that the OT problem only has to find the best matrix T instead of the

distribution π as T contains all the necessary information to describe π. We will often confuse

π and T , for example using the slightly abusive notation: T ∈ Πµν . The µ̂ notation will be used

essentially to emphasize the fact that the distribution comes from a sampling of a distribution

µ. Thus in the rest of the manuscript, µ can describe both a discrete or continuous distribution,

depending on the context.

Note that for two continuous distributions in the same vector space, if the cost is the squared

Euclidean distance there is an unique solution (Brenier, 1991). Similarly, most of the time in

the discrete case, there is an unique optimal transport plan. However, one can construct cases

11



1.1. Optimal Transport (OT)

C

Πµ̂ν̂T ∗

0

Figure 1.2: Representation in two dimensions of the Optimal Transport problem. The C vector

represents the position of the cost matrix in the space. The best transport plan T ∗ is the one

which is the “most” perpendicular to the vector C because the scalar product has to be minimized.

Cited on pages [12,12]

where two transport plans reach the minimum. An example will be given in the next section

in Figure 1.5. This will be an important point in this manuscript as a learned cost can have a

special form for which one can no longer suppose the uniqueness of the optimal transport plan.

This will notably be the case in the Chapter 3 where a min-max formulation will naturally lead

to multiple optimal transport plans.

An illustration of the OT problem, as defined in Equation 1.6, is provided in Figure 1.2.

The case where the solution is not unique occurred only when an entire face of the polytope is

included in the perpendicular hyperplane drawn in dashed line. As the problem is linear in T ,

at least one of the minima is at the extremal point of the polytope (Bertsimas and Tsitsiklis,

1997). Moreover, this extremal point is sparse i.e., the matrix T has at most I +K − 1 non-null

values (Peyré et al., 2019). This sparse solution is at the edge (or extremal point) of the polytope

in the sense that it cannot be written as a convex combination of the other transport plans (Peyré

et al., 2019). The (brown) limit of the polytope Πµ̂ν̂ represents the non-negative constraints on

the elements of the transport plan. The marginal constraints are not represented in this two

dimensional plot. This notion is illustrated intuitively in the Figure 1.3; the brown polytope is

in a I ×K − (I +K − 1) dimensional subspace, represented as a 2D polytope on the figure, into

the I ×K dimensional matrix space, represented as 3D.1 In addition to those marginal equality

constraints, the set of all transport plans is bounded by the non-negativity of its elements which

are again represented by the edges of the brown polytope in Figure 1.3. While Figures 1.2 and

1.3 try to give as much intuition as possible, there is still some missing information: the edge of

the polytope should be on the axis to represent the non-negativity.

If we suppose that the two probability vectors are uniform and I = K, we will often use the

notation N instead of I and K in such a situation. In this case, the extremal points are simply

the permutation matrices (Birkhoff, 1946).

1Best viewed in 3D: https://www.geogebra.org/3d/k4neb7tw

12

https://www.geogebra.org/3d/k4neb7tw


Chapter 1. Background

Figure 1.3: Representation in three dimensions of the Optimal Transport problem. The polytope

of the possible transport plans is now represented in a subspace of the matrix space.

Cited on pages [12,12,12]

1.1.2 Optimal Transport solvers

In this section, we will discuss about the solvers that address the Optimal Transport problem.

Note that, there is a large literature aiming at improving the computation of the OT problem in

particular cases. For instance, when the dimension of the spaces X and Y is small (2 or 3) and

for the 1-Wasserstein distance (or EMD) Shirdhonkar and Jacobs (2008) approximate the OT

distance in a time complexity of O (N). Three different methods will be used in this manuscript:

(i) an exact solver, (ii) one dealing with the very special case of 1-dimensional OT and (iii) the

Sinkhorn algorithm.

Direct solutions

The 1-Wasserstein distance is also called the Earth Mover’s Distance (EMD), mostly in the

computer vision domain. There exist various solvers for the exact optimal transport prob-

lem (Rubner et al., 1997; Bonneel et al., 2011). In this manuscript, we will use essentially the

EMD algorithm of the POT library (Flamary et al., 2021) originally implemented by (Bonneel

et al., 2011). The main idea is to interpret the OT problem as a particular case of the min cost

flow problem (Ahuja et al., 1988) in a bipartite graph and use the network simplex algorithm

to solve it. The most important element is that the time complexity of this simplex algorithm

is O
(
N3log(N)

)
(Tarjan, 1997) (see also (Peyré et al., 2019, Section 3.5)) in the worst case,

however in practice it is often very fast for a reasonable number of points N .

13



1.1. Optimal Transport (OT)

T ∗

c(x,y) = (x− y)2

x0 y0x1 y1

c(x,y) = |x− y|

T ∗

Figure 1.4: 1D Optimal Transport (Left) Optimal transport plan with any strictly convex cost

function. (Right) Any transport plan is optimal with the absolute cost, which is less intuitive.

Cited on pages [13,13]

1-dimensional Optimal Transport problem

When X = Y = R, the OT problem has a solution in closed form which can be computed

very quickly as the time complexity is drastically reduced. In addition, let us suppose that the

ground function can be written as c(x, y) = l(x− y) where l is a strictly convex function. In

the 1-dimensional continuous case, with Fµ and Fν the two cumulative distribution functions,

the Monge mapping is F−1
ν (Fµ(x)) : R −→ R. In the discrete case, with the same assumption on

c, the OT plan can be computed by sorting the two lists of samples and then matching them

together. This is easy to understand and implement when the two distributions have the same

number of points and uniform weights: the elements of each sorted list are matched one by

one (see the left part of Figure 1.4). In the general case, the weights of the marginal have to

be carefully respected. An efficient implementation is available in the POT library. Note that

if the function c is only convex but not strictly convex, there are potentially many optimal

transport plans as illustrated on the right of Figure 1.4. This is another intuitive justification

of the interest of the p-Wasserstein distance (p > 1), as the Euclidean distance is the absolute

function in 1D which is not strictly convex. As the optimal transport plan is the same for any

strictly convex cost function, this latter has an impact only on the value of the distance. Note

that for the concave 1D case, Caracciolo et al. (2020) propose an upper-bound on the average

cost of the optimal matching but no fast solver is available.

Sinkhorn algorithm

Cuturi (2013) proposes to solve a regularized version of the Optimal Transport problem. The

idea is to add an entropy regularization term to ensure that the OT problem becomes strictly

convex and then solve it efficiently. One can define the entropy of a distribution represented

with a matrix T as,

H(T ) = −
I∑
i=1

K∑
k=1

Tiklog(Tik) (1.7)

The entropy quantifies the uncertainty of a distribution. For example, a Dirac is a distribution

with no uncertainty with a 0 entropy. The entropy criterion is often used when no enough

information to describe a distribution is available (Jaynes, 1957). For instance, in a compact set
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Chapter 1. Background

included in a vector space, the uniform distribution maximizes the entropy. Another example is

the Gaussian distribution, which maximizes the entropy for a fixed mean and variance. In the

OT setting, the uniform transport plan µ× ν ∈ Πµν will be often used as a default choice that

maximizes the entropy.

Cuturi (2013) proposes to add to the Equation (1.6) an entropy regularization term weighted

by a regularization parameter ε ∈ R∗+,

min
T∈Uab

I∑
i=1

K∑
k=1

CikTik − εH(T ). (1.8)

Because the entropy is maximized, the solution of Equation (1.8) will no longer be sparse. This

regularization acts as a barrier function and does not allow any null value in the transport plan.

The regularization does not diverge when an element of T tends to 0 but the slope tends to

infinity while the first term is always linear in T . Thus, close to an edge point of the polytope,

a small modification of T will highly change the entropy term but not really the scalar product.

The optimal transport plan for Equation (1.8) is not anymore an extremal point of the set of

all transport plans. Since Equation (1.8) is strictly convex in T , the solution cannot be on the

extremal point of the polytope, and thus the solution is unique leading to the optimal transport

plan.

An equivalent formulation is obtained when using a Kullback-Leiber (KL) (Kullback and

Leibler, 1951) regularization instead of the entropy regularization. The KL between two

distributions represented as matrices T and T ′ can be defined as,

KL(T ||T ′) =

I,K∑
i,k=1

Tiklog

(
Tik
T ′ik

)
(1.9)

In fact, the entropy regularization is equivalent to a KL divergence between the transport plan

and the uniform distribution µ × ν. As mentioned earlier, this is a natural choice as there

is no particular prior on the optimal transport plan. Replacing the entropy with the KL in

Equation (1.8), gives the following equality,

min
T∈Uab

I,K∑
i,k=1

CikTik + εKL(T ||µ× ν) (1.10)

= min
T∈Uab

I,K∑
i,k=1

CikTik + ε

 I,K∑
i,k=1

Tiklog (Tik)− Tiklog (aibk)

 (1.11)

= min
T∈Uab

I,K∑
i,k=1

CikTik + ε

−H(T )−
I,K∑
i,k=1

Tik (log(ai) + log(bk))

 (1.12)

= min
T∈Uab

I,K∑
i,k=1

CikTik − εH(T )− ε
I∑
i=1

ailog(ai)− ε
K∑
k=1

bklog(bk). (1.13)

The last two terms are independent of T , thus this KL regularization will change the final

minimum but not the argmin compared to the entropy regularization. Note that ab> (the
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Figure 1.5: Representation of the discontinuity of the transport plan for a small modification

of the points. The top row corresponds to the optimal transport plan for the original OT problem,

the bottom row corresponds to the regularized version. From the left to the right, the bottom right

blue point is slightly modified, (1± α,−1) with a small α.

Cited on pages [11,16]

matrix associated with µ× ν) does not modify the final T ∗ because it is a rank 1 matrix and

thus can be separated. And the only rank 1 matrix which respects the marginal constraint is

ab>. This interpretation is interesting as we will see that sometimes there are better priors than

the uniform distribution.

Another advantage of the entropy regularized formulation is that the OT problem becomes

continuous, in the sense that a small modification of the distributions will lead to small

modifications of the transport plan. This is illustrated in Figure 1.5. By slightly moving the

bottom right blue point, the transport plan of the regularized version does not change much.

However the transport plan of the original OT problem is completely modified.

The last advantage of such an entropy regularization comes from the simple and fast algorithm

that can be used to solve it. Let α and β be the dual variables of Equation (1.8). The Lagrangian

La is defined as follows:

La(T ,α,β) =

I,K∑
i,k=1

Ti,kCi,k + εTi,klog(Ti,k) +α>(T1K − a) + β>(T>1I − b). (1.14)

To find the optimal T ∗, setting the derivative with respect to T to 0, we get for all i ∈ J1, IK
and k ∈ J1,KK,

0 = Cik + log(Tik) + 1 +αi + βk ⇒ Tik = e−
1
2
−αi

ε e−
Cik
ε e−

1
2
−βk

ε . (1.15)

The Sinkhorn theorem (Sinkhorn and Knopp, 1967) states that there exists a unique matrix in

Uab of the form diag(u)Kdiag(v) if all the elements of u,v and K are strictly positive. More
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Chapter 1. Background

importantly, this matrix, which corresponds to T , can be computed by using the Sinkhorn

algorithm (see Algorithm 1) which applies alternatively a KL projection of the matrix K = e−
C
ε

to µ and ν (lines 4 and 5). The proof of convergence of this alternated projection is studied

in (Sinkhorn and Knopp, 1967).

Algorithm 1 Sinkhorn algorithm to solve the regularized Optimal Transport problem between

2 discrete distributions µ and ν. Cited on pages [16,17,30]

Input: ε (entropy regularization), a and b (marginals), C (cost matrix)

1: Initialize u,v = 1I ,1K

2: K = exp(−Cε )

3: for p = 1 to P do

4: ∀i ∈ J1, IKui = ai/(Kv)i

5: ∀k ∈ J1,KKvk = bk/(K
>u)k

6: end for

7: return diag(u)Kdiag(v)

The Sinkhorn algorithm for OT has received a lot of attention recently and many fast

variants have been proposed (Altschuler et al., 2017; Schmitzer, 2019). Moreover, there is

a large literature which aims at improving the convergence bounds (Altschuler et al., 2017;

Dvurechensky et al., 2018; Lin et al., 2019). As in practice Algorithm 1 has as finite number of

iterations, the marginals are not totally respected. In fact, only the marginal associated with

ν is satisfied. The difference between the other marginal of T and the real one µ can be used

as an early stopping criterion for the algorithm. To simplify the theoretical analysis in this

manuscript, the number of iterations P will be supposed to be fixed without any early stopping.

Thus we are looking for the worst case in terms of time complexity.

Another interpretation of the Sinkhorn algorithm can be obtained through the lens of the

dual formulation of the original OT problem (Peyré et al., 2019, Proposition 2.4) in the discrete

case,

max
α∈RI ,β∈RK |αi+βk≤Cik

〈α,a〉+ 〈β, b〉 . (1.16)

Both the function to minimize and the constraints are linear in T , α and β, thus the value

obtained by the primal and the dual are equal. Similarly, the dual of the regularized OT problem

(Equation (1.8)) can be written as (Peyré et al., 2019, Proposition 4.4),

max
α∈RI ,β∈RK

〈α,a〉+ 〈β, b〉 − ε
〈
e
α
ε
− 1

2 ,Ke
β
ε
− 1

2

〉
. (1.17)

The key difference is that the dual variables α and β are no longer constrained. This motivates

an alternate gradient ascent of Equation (1.17), where each gradient step can be computed in

closed form. With a fixed β, the optimal value of α is

α∗ = εlog(a)− εlog(Ke
β
ε
− 1

2 ) + ε
1

2
. (1.18)
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Similarly, for a fixed α, the optimal value of β is

β∗ = εlog(b)− εlog(K>e
α
ε
− 1

2 ) + ε
1

2
. (1.19)

It is worth noting that this is equivalent to the Sinkhorn iterations with the change of variables

u = e
α
ε
− 1

2 and v = e
β
ε
− 1

2 .

Lastly, the regularized OT problem can also be seen as a KL projection of the matrix K

into the polytope Πµν (Benamou et al., 2015),

min
T∈Πµν

KL
(
T
∣∣∣∣∣∣e−Cε ) = min

T∈Πµν
KL (T ||K) . (1.20)

This gives an elegant view of this regularized version.

Note that the Sinkhorn algorithm proposed by (Cuturi, 2013) is used in many Machine

Learning applications (Solomon et al., 2015; Frogner et al., 2015; Courty et al., 2017b; Tolstikhin

et al., 2017; Genevay et al., 2018; Caron et al., 2020) as a smooth and differential way to align

distributions with a relatively fast and simple solver.

1.1.3 Gromov Wasserstein

This section describes the Gromov Wasserstein (GW) problem (Memoli, 2007; Mémoli, 2011)

The main motivation is to overcome some limitations of the original OT setting; (i) it is very

complex to define a meaningful cost function c when the two distributions are not in the same

space; (ii) the original OT formulation cannot handle complex structures of data such as graphs.

The idea is to describe the two distributions with two continuous functions CX : (X ,X )→ R
and CY : (Y,Y)→ R. Instead of comparing two points as done in the original OT formulation,

two distances, CX (x,x′) and CY(y,y′), are now compared with a loss function L. Similarly,

instead of matching the point x to y, both x and x′ are now simultaneously matched to y and

y′. Thus, with this matching, the pairwise distances CX (x,x′) and CY(y,y′) should be close.

This leads to the following quadratic problem,

GW
(
CX , CY , µ, ν

)
= min

π∈Πµν

∫
X×Y

∫
X×Y

L
(
CX (x,x′), CY(y,y′)

)
π(x,y)π(x′,y′). (1.21)

The Gromov Wasserstein function is an isometry between metric measure spaces (Memoli, 2007;

Burago et al., 2001) as long as L is a distance. Basically, as both spaces are included in vector

spaces, it is a distance which is invariant to rotation and translation of the distributions: if

GW (µ, ν) = 0 it only means that the two distributions are equal up to a rotation and translation.

Interestingly, the GW problem is also a distance between weighted graphs (Chowdhury and

Mémoli, 2019), only requiring the pairwise matrices CX and CY . This result seems natural as a

graph can be represented with an adjacency matrix and thus is already invariant to rotation

and translation. However, some work is necessary to transform the graphs into a canonical form

to have an actual distance (Chowdhury and Mémoli, 2019). This part is further discussed in

Chapter 5 as similar problems arise in our contributions. Similarly to the p-Wasserstein distance,

one can define the p-GW distance by taking the p-root of Equation (1.21) with Lp. Similarly to
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Tjl

Tik

X
xj

xi

CX (xi, xj)

Y
yl

yk

CY(yk, yl)

L (CX (xi, xj), CY(yk, yl)) TikTjl

Figure 1.6: Illustration of GW, with only one term Lijkl of the quadruple sum of Eq. (1.22).

Cited on page [19]

the OT case, if L is a distance the GW function is also a distance. By abuse of notation, we

will often use throughout this manuscript the term of Gromov Wasserstein distance with any L,
even if all the properties of an actual metric do not always hold.

Since we will mainly work with discrete distributions (or finite weighted graphs), the discrete

formulation of the GW problem reads,

GW
(
CX , CY , µ, ν

)
= min
T∈Πµν

E(T ,T ), (1.22)

with

E(T ,T ) =

I,I∑
i,j=1

K,K∑
k,l=1

L(CX (xi,xj), CY(yk,yl))TikTjl (1.23)

=

I,I∑
i,j=1

K,K∑
k,l=1

LijklTikTjl. (1.24)

The double matching of points (xi � yk, xj � yl), or equivalently the matching of pairs

((xixk)� (yk,yl)), is illustrated in Figure 1.6 for fixed indices i, k, j and l.

The most used solver for GW has been proposed by (Peyré et al., 2016) (EGW). It adapts

the algorithm of (Rangarajan et al., 1999) to non-uniform marginals. The latter was origi-

nally designed for soft-quadratic assignment, which is a particular case of the GW problem.

Interestingly, the Sinkhorn algorithm was already used by Rangarajan et al. (1999) at each

iteration again with uniform marginals. As the GW problem is non-linear and is neither convex

or concave in the general case, the problem is hard to solve. In fact, GW is a generalization of

the Quadratic Assignment Problem which is NP-hard (Loiola et al., 2007). Thus, it is worth

noting that the proposed methods in this manuscript will only aim to approximate the best the

GW distance.

The algorithms used to solve the GW problem will be discussed in Section 1.3 and in

Chapter 4. We will notably propose two interpretations of EGW, either as a Frank-Wolfe (FW)

algorithm (Frank et al., 1956) with an entropy regularized solver for the linear part or as a

Mirror Descent algorithm (Beck and Teboulle, 2003).

The GW distance has several applications in machine learning: due to its invariance to

rotation and translation, it is a relevant tool for matching and partitioning tasks involving
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1.1. Optimal Transport (OT)

Figure 1.7: Illustration of a Wasserstein Barycenter (orange) between two discrete distributions.

Cited on page [20]

graphs (Xu et al., 2019a,b; Vayer et al., 2019a), by allowing e.g. to encode some structure like

the shortest path between two vertices. GW has been further used in various other domains,

such as Heterogeneous Domain Adaptation (Yan et al., 2018), Shape Matching (Mémoli, 2011;

Bronstein et al., 2010; Vayer et al., 2019b), Object Modeling with Deep Learning (Ezuz et al.,

2017), Generative Adversarial Networks (Bunne et al., 2019). The Wasserstein distance and

the GW distance have also been jointly used in (Vayer et al., 2018) leading to the so-called

Fused-Gromov Wasserstein distance that will be introduced in Equation 1.39.

1.1.4 OT barycenter

In this section, we define the notion of barycenter for both the original OT and GW formulations.

The barycenter is the extension of the notion of mean. The usual mean x̄ ∈ X of points

(xi)i∈J1,IK ∈ X I with weights a ∈ ∆I can be defined as,

x̄ = argmin
x∈X

∑
i

ai ‖x− xi‖22 . (1.25)

The idea of the barycenter is to replace the usual Euclidean distance by any other distance. As

both the OT and GW problems define a distance between probability distributions, one can

naturally define the barycenter of such probability distributions. An example of a continuous

Wasserstein Barycenter has been already presented in Figure 1.11. The discrete case is illustrated

in Figure 1.7. On the latter, the points supporting the Wasserstein Barycenter between the two

discrete distributions both weighted by 0.5 are simply located in the middle of each orange arrow.

Moreover, the weight associated to each of those points is simply equal to the mass transported

by each arrow. The Wasserstein Barycenter generalizes the notion of barycenter between points.

Let (µb)b∈J1,BK be B discrete distributions in X with IB points each. The barycenter of these

distributions each associated with weight (λb ∈ ∆IB )b∈J1,BK is defined as:

WB((µb)b∈J1,BK) = min
µ∈P(X )

B∑
b=1

λbW (µ, µb). (1.26)

A closed-form solution of such a problem is available for Gaussian distributions (Dowson and

Landau, 1982), but in general the problem is complex. Under some conditions, the unicity of

the solution can be proven (Agueh and Carlier, 2011). Note that many discrete applications
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Chapter 1. Background

Figure 1.8: Illustration of a Wasserstein Barycenter (Solomon et al., 2015) with potentially

negative weight between four 2 dimensional discrete distributions based on images. The two axis

are independent from each other. For instance, the blue image is associated with a weight of 0.75

for the cow, 0.25 for the bone and 0 for the two other images. The green image is weighted by

0.625 for the cow and the square and −0.125 for the two others, the cow and square share 1.25

of the mass while the bone and the arrow share −0.25.

Cited on page [20]

use some additional constraints on µ. For example, the support of the Diracs of µ can be

fixed (Cuturi and Doucet, 2014), or the number of Diracs limited (Rabin and Peyré, 2011; Cuturi

and Doucet, 2014). Chapter 2 will discuss the Wasserstein Barycenter restricted to a smaller

subspace. Figure 1.8 gives an example of a Wasserstein Barycenter between four 2 dimensional

discrete distributions represented in red (Solomon et al., 2015). This figure extrapolates the

barycenter to value of λb potentially negative. The Gromov Wasserstein Barycenter (GWB)

can be defined in a similar manner, but as the distributions (µb)b∈J1,BK are now in potentially

different spaces (Xb)b∈J1,BK the space of µ can be chosen freely. Generally, this boils down to

choosing the size of the vector space. The GWB problem reads,

GWB((µb)b∈J1,BK) = min
µ∈P (X )

B∑
b=1

λbGW (µ, µb). (1.27)

Note that as the GW problem is invariant to translation and rotation, there is an infinite number

of solutions.

1.2 Machine Learning

In this section, we provide some background knowledge in Machine Learning (ML) and Domain

Adaptation. Our contributions to the OT theory will be exploited in the experiments of this

thesis to address various ML problems.
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1.2.1 Machine Learning setting

Let X be an input space included in a vector space and Y the space of labels generally defined

as {0, 1}C for C ∈ N classes. Let us define a distribution µZ ∈ P(Z) over the joint space

Z = X ×Y . The goal of Machine Learning is to find a function h : X → RC , in a set of functions

H, which predicts y given x where (x,y) ∼ µZ . Note that the function h is not restricted to

Y but can have its output in RC . Even if, for a specific points x, the expected class is 1 or

equivalently (0, 1, 0, ..., 0), the function h can give a soft prediction such as (0.1, 0.8, 0.1, 0, ..., 0).

To quantify if a function h predicts well the label, a cost function c : (H,Z)→ R is defined

so as to measure the disagreement between the prediction and the true label. The goal is then

to minimize the so-called true risk (or generalization risk),

min
h∈H
R(h) = min

h∈H
E

x,y∼µZ
[c(h, (x,y))] . (1.28)

The most natural cost function is the so-called 0− 1 loss which basically counts the number

of misclassifications made by the function h. Since this function is not convex and not smooth,

one usually resorts to surrogates such as the exponential loss, the hinge loss or the sigmoïd loss,

to cite a few.

Since µZ is usually unknown, h is learned from a finite training set S of samples supposedly

drawn independently from µZ . The goal is then to minimize the following empirical risk,

min
h∈H
R̂(h) = min

h∈H
E

x,y∼µ̂SZ
[c(h, (x,y))] . (1.29)

Note that h is often parametrized by some parameters denoted as θ. Problem 1.29, can be

rewritten as follows:

min
θ

E
x,y∼µ̂SZ

[c(hθ, (x,y))] . (1.30)

As the goal is to generalize well on unseen data, some regularizations are often used in addition

to the expectation of Equation (1.30) to avoid an over-fitting on the training data.

A very simple non-parametric ML algorithm, that we will used often in this manuscript, is

the 1-Nearest Neighbors (Cover and Hart, 1967). Given a point (x,y) ∼ µ, the predicted class

of h(x) is simply the class of the closest point in the training set. This classification algorithm

thus relies only on the distance between points in the vector space.

1.2.2 Domain Adaptation

In this section, we present a particular ML task, called Domain Adaptation (DA), which is

a sub-field of Transfer Learning (Torrey and Shavlik, 2010). The main idea is to use labeled

data of a source domain to improve the performance of a classifier deployed on a related target

domain which suffers from a lack of labeled examples. In this manuscript, we address the most

complex setting, called unsupervised DA, where there is only unlabeled data available from the

target distribution. The difference between the source (µs) and the target distributions (µt)
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µt: Unknown
µs: Class 1
µs: Class 2

Figure 1.9: Illustration of a DA task with samples of the source distribution µs composed of

one Gaussian for each class and samples of the target distributions µt linearly shifted from the

source distributions. The linear separator is a SVM (Cortes and Vapnik, 1995).

Cited on page [22]

should be small enough to allow the adaptation. An example of simple shift between the two

distributions is illustrated in Figure 1.9.

In this setting, a classifier learned on a source dataset cannot correctly classify the target

points. As the final goal is to deploy the model on the target distribution, most of the DA

algorithms rely on a two steps procedure (Fernando et al., 2013; Aljundi et al., 2015; Sun et al.,

2016a; Pan et al., 2011; Courty et al., 2017b). First, reduce the divergence between the source

and target distributions. Then learn a classifier on the source data and predict the class of the

target examples. Other methods simultaneously reduce the distance between the distributions

and predict the label (Ganin et al., 2016; Sun and Saenko, 2016; Wang et al., 2018; Courty et al.,

2017a; Bhushan Damodaran et al., 2018). In this case, a Neural Network (NN) h is often used.

The NN is split into 2 parts, h′ and hpred. The output space of h′ is interpreted as a feature

space where the source and target distributions should be close according to a given divergence

or distance function. On the other hand, hpred aims at predicting correctly the class of the

source labels, preventing the global NN from projecting every point on 0. Indeed, doing so will

lead to a divergence of 0 between the two distributions but with a poor classification behavior.

Choosing the hyperparameters of an algorithm is really complex in unsupervised DA as

there is no labeled points in the target space. Those hyperparameters can be the architecture of

the NN, the number of iterations or the regularization parameters, etc... The main approach to

address this task is based on a reverse validation (Zhong et al., 2010). The idea is to predict

the label of the target points, called pseudo-labels, then apply again an adaptation from the

target to the source using the created pseudo-labels. Using this second adaptation, the label

of the source points are predicted and this gives an accuracy score associated with the set of

hyperparameters.

In this thesis, we will used the OT theory to reduce the divergence between the two

23



1.2. Machine Learning

µt: Unknown
µs: Class 1
µs: Class 2
µs: Transported
µs: Transported

µt: Unknown
µs: Class 1
µs: Class 2

Figure 1.10: Illustration of a DA task solved with OT. In the left figure, the distribution µs is

transported to µt using the transport plan, then a linear separator is learned. In the right figure,

the linear separator has a good prediction on the target points.

Cited on pages [23,25]

distributions µs and µt. An illustration of such an adaptation is reported in Figure 1.10.

Chapter 2 will be dedicated to address the DA problem by learning, from the dataset, a specific

ground cost required for the OT problem.

1.2.3 OT-based distances versus Kullback-Leiber divergence in Machine
Learning

In this section, we discuss the advantages of the distance induced by solving the OT problem

over the Kullback-Leiber divergence (KL) in some Machine Learning applications. A common

way to compare probability distributions is to use the KL divergence defined in Equation (1.9)

for the particular discrete case. For two continuous probability distributions µ ∈ P(X ) and

ν ∈ P(X ) and their associated probability density functions fµ and fν , where µ is absolutely

continuous with respect to ν, the KL divergence reads,

KL(µ||ν) =

∫
X
fµ(x)log

(
fµ(x)

fν(x)

)
dx. (1.31)

While being commonly used in ML, this divergence has some drawbacks. First, KL(µ||ν) is

equal to +∞ if the support of ν is not included in the support of µ. This often occurs with

discrete distributions. For instance, the KL divergence between two empirical distributions

µ̂1 and µ̂2 sampled from the same gaussian distribution µ is equal to +∞ almost surely. On

the other hand, the Wasserstein distance relies on a ground distance between points, seen as a

hyperparameter. When this latter is the Euclidean cost, the Wasserstein distance between two

Diracs at position 0 and 1 is equal to 1, while the KL is infinite.

Another difference between the KL divergence and the Wasserstein distance is illustrated

in Figure 1.11. The interpolation based on the KL (figure on the right) leads to a distribution

with two modes while both µ and ν are unimodal Gaussian distributions. On the other hand,
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(a) Wasserstein distance (b) Kullback-Leiber divergence

Figure 1.11: Interpolation (orange with dash) between two Gaussian’s distributions (blue and

red) with either the Wasserstein distance or the KL divergence.

Cited on pages [20,24]

the interpolation based on the Wasserstein distance preservers the geometry of the original

distributions by smoothly sliding along the axis when changing the weights of the interpolations.

Because the KL divergence does not handle well the case where the two supports are

distinct and because the Wasserstein distance preserves the geometry of the distributions,

this latter can advantageously replace the KL distance in some ML applications. The most

famous case is the Wasserstein Generative Adversarial Network (WGAN)(Goodfellow et al.,

2014; Arjovsky et al., 2017) where the use of the Wasserstein distance to compare the real and

the generated distributions allows to have a non vanishing gradient during the gradient descent

(more details about the WGAN is available in Appendix E.3). The KL used in the Variational

Autoencoder (Kingma and Welling, 2013) to generate the latent space can also be replaced with

a Wasserstein distance (Tolstikhin et al., 2017). This latter can also be used as an alternative to

the KL divergence as a loss for multi label prediction (Frogner et al., 2015).

Another key advantage of OT compared to the other standard distances between distributions

is that the OT plan that allows to align the points can be advantageously exploited. This is the

case in DA, as already illustrated in Figure 1.10. Since the Wasserstein distance presents many

advantages compared to other distances, a lot of effort has been made during the past few years

to overcome the problem related to the computational cost of this distance (Cuturi, 2013; Rabin

et al., 2014; Altschuler et al., 2017; Schmitzer, 2019; Peyré et al., 2016).

1.3 First order optimization tools for OT problems

This section briefly presents two methods, the Frank-Wolfe algorithm and the projected Mirror

Descent algorithm, that can be used to solve both the Gromov Wasserstein problem and the

Optimal Tensor Transport problem (see Chapter 5). For both algorithms, the goal is to minimize
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Figure 1.12: Illustration of an iteration of the FW algorithm in the convex setting. Credit to

Stephanie Stutz and Martin Jaggi (Jaggi, 2013).

Cited on page [26]

a function under constraints.

1.3.1 Frank-Wolfe algorithm

The Frank-Wolfe (FW) algorithm, or Conditional Gradient, has been proposed by Marguerite

Frank and Philip Wolfe in 1956 (Frank et al., 1956), see also (Kerdreux et al., 2019) for a recent

review. The global goal is to find the minimum of a function f on a convex compact set. When f

is a complex function, neither convex or concave, one option is to use a gradient descent scheme,

requiring a projection step onto the convex set as the optimization is constrained. Another

option is to decompose the problem into several easier subproblems that will allow to get closer

to the real solution at each iteration. For instance, the problem can be reduced to a quadratic

convex problem that is often easier to solve. The FW algorithm transforms the problem into a

linear one by relying on a local linear expansion. Through this section, we will see why this

formulation is particularly suitable in the Optimal Transport field.

General settings

Let D be a convex compact set included in a vector space X . This set D can be considered as a

finite convex polytope in the OT setting as it corresponds to the set of all transport plans. One

seeks to minimize a real differentiable function f : X −→ R but only in the set D,

min
x∈D

f(x). (1.32)

The FW algorithm is given in Algorithm 2: it starts from a point x0 then loops over N

iterations. At each iteration n, the gradient of f at the current point xn is computed. This

gradient gives the red hyperplane of Figure 1.12 and its minimization gives the point sn in D.
Then, the current point is partially updated by using a mean between the current point and the

minimizer of the hyperplane weighted by αn. The algorithm can stop after a certain number of
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Algorithm 2 Frank-Wolfe algorithm Cited on pages [26,28,28]

Input: f (function), D (polytope), (αn)n∈J0,N−1K (learning step), x0 (starting point)

1: for n = 0 to N − 1 do

2: sn = argmin
s∈D

〈∇xnf, s〉

3: xn+1 = (1− αn)xn + αnsn

4: end for

5: return xN

iterations N or a stopping criterion can be used by looking at the FW gap at the iteration n,

G(xn) = max
s∈D
〈∇xnf,xn − s〉 = 〈∇xnf,xn − sn〉 . (1.33)

This gap in often called the duality gap as it corresponds to the gap between the primal and

dual problem. When f is convex, this duality gap at the iteration n is an upper bound of the

distance to the optimal value f(x∗). Indeed, using the convexity of f , for any s ∈ D,

f(s) ≥ f(xn) + 〈∇xnf, s− xn〉 ⇒f(x∗) ≥ f(xn) + min
s∈D
〈∇xnf, s− xn〉 (1.34)

⇒f(x∗) ≥ f(xn) + 〈∇xnf, sn − xn〉 (1.35)

⇒G(xn) ≥ f(xn)− f(x∗). (1.36)

This gives a computable stopping criterion: if at the iteration n, the FW gap is smaller than a

threshold, this means that the value xn is close to the global minimum. This is also a justification

for the method, as the FW algorithm minimizes this FW gap at each iteration.

Let us now focus on the general case where f is non necessarily convex. For constrained

problems, one cannot rely on the norm of the gradient to find local minima as these latters could

be on the edge on the convex set D without a gradient norm equal to zero. To generalize the

notion of local minima to constraint problems, the FW gap can be used instead as a criterion to

find local minima (Lacoste-Julien, 2016). A point x∗ is a stationary point (either maximum or

minimum) of Equation (1.32) if and only if G(x∗) = 0 or equivalently if

〈∇x∗f,x∗〉 −min
s∈D
〈∇x∗f, s〉 = 0. (1.37)

Intuitively, if xn, at an iteration n, is a stationary point, the FW algorithm cannot find a better

value.

The partial update weighted by (αn)n∈J0,N−1K has two interests for the optimization. First, it

allows to converge “slowly” to the desired point without changing completely from one iteration

to another. Indeed, the convergence proof, in most cases, requires such a partial update. Second,

as the problem solved at each iteration is linear, there is always an optimal solution on the edge

on the set D. Thus without a partial update, the algorithm may not find the optimal value

if the solution is not on the edge of D. The weights (αn)n∈J0,N−1K associated with the partial

updates are hyperparameters that can be chosen at hand, but there are several ways to find
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good values. The default choice is to set, for all n ∈ J0, N − 1K, αn = 2
n+2 (Freund and Grigas,

2016). Or, as we will see in Chapter 4, some theoretical bound derivations can provide values for

(αn)n∈J0,N−1K. However, such values are often too conservative and thus too small in practice,

except when the function f yields a concave problem, then the optimal value of α is 1. This

is an interesting case as the convergence rate of the Frank Wolfe gap becomes often linear in

the number of iterations N instead of depending on the square root of N . The last method

optimally finds the best value of αn at each iteration n by minimizing the following equation,

min
α∈[0,1]

f ((1− α)xn + αsn) . (1.38)

This line-search of the best value of α can be applied efficiently for some functions f .

To end this section, let us briefly present the stochastic FW algorithm (Lacoste-Julien, 2016),

which will be used in Chapter 4. The idea is to approximate the gradient at line 2 in Algorithm 2

with an unbiased estimate. This is possible when the gradient is an expectation of some random

variable. The stochastic FW algorithm simply samples one or a few times the random variable

instead of computing the expectation entirely. Similarly to stochastic gradient descent, there

is two main advantages. First, it reduces the complexity of computing the gradient at each

iteration. Second, the stochasticity allows more exploration and might avoid being stuck in a

local minimum. We will now discuss why the FW algorithm is interesting in the OT setting.

Relation with Optimal Transport

First of all, the FW algorithm is not useful for the original OT problem as this latter is already

linear but it can be used on a barycentric OT problem (Luise et al., 2019), on some minimax

OT problem (Paty and Cuturi, 2019a) or for some DA variants (Courty et al., 2017b). It has

more applications on the Gromov Wasserstein problem GW is naturally non-linear. The FW

algorithm was notably proposed to solve the Fused-Gromov Wasserstein (FGW) problem (Vayer

et al., 2018, 2019a). The idea of FGW is to simultaneously minimize a GW term and a classical

OT term. It is an interesting tool to compare, align or compute the barycenter of labeled graphs.

With the previous notations and considering β ∈ [0, 1], the FGW problem is defined as

follows:

min
T∈Πµν

(1− β)

I,K∑
i,k=1

C(xi,yk)Tik + β

I,I∑
i,j=1

K,K∑
k,l=1

L
(
CX (xi,xj), CY(yk,xl)

)
TikTjl. (1.39)

Vayer et al. (2019a) used a FW algorithm with a line-search to find the best value of αn at each

iteration n. At each iteration of the FW algorithm for FGW, denoting by T n the last transport

plan found, the line 2 of Algorithm 2 is an OT problem,

T̃ n+1 = argmin
T∈Πµν

〈
(1− β)C + 2β

I,K∑
i,k=1

Li • k •T
n
ik,T

〉
. (1.40)

This gradient expression is correct only if CX and CY are symmetric, the general gradient is

given in Equation C.13.

28



Chapter 1. Background

The most used algorithm to solve GW is called Entropy Gromov Wasserstein (EGW) (Peyré

et al., 2016). It is also highly related to the FW algorithm. The original interpretation of EGW

is given in Section 1.3.2. In EGW, there is no partial update with the step α or equivalently, α

is always set to 1. This is not a huge problem in most of the applications as the GW problem is

often concave. For instance, if CX , CY and L are the squared Euclidean distance functions in

their respective spaces, then L yields a concave problem (Redko et al., 2020). Also, to speed up

the computation, instead of solving perfectly the OT problem at each iteration, EGW solves the

entropy regularized OT,

T n+1 = argmin
T∈Πµν

〈
2

I,K∑
i,k=1

Li • k •T
n
ik,T

〉
− εH(T ). (1.41)

As ε is often chosen very small, this additional entropy term will only slightly modify the next

transport plan T n+1. Thus EGW can be interpreted as a variant of a FW algorithm. The

“2” before the double sum can be omitted as it is equivalent to rescaling ε. We will see that

related convergence bounds to stationary points are also given in (Vayer, 2020), but not for the

regularized problem, and more importantly not for the stochastic setting that will be used in

Chapter 4. Indeed the stochastic FW algorithm is very interesting for solving the GW problem in

comparison to the classical FW algorithm as the gradient can be interpreted as an expectation.

There are other applications of the FW algorithm in OT-related problems, notably OTDA (Courty

et al., 2017b) that will be further discussed in Chapter 2. We will now present the projected

Mirror Descent algorithm: while the idea is completely different from the FW algorithm, both

methods are closely related in the OT context.

1.3.2 Projected Mirror Descent

As explained in Section 1.3.1, one can search for the minimum of the function f by applying

a gradient descent scheme. The projected Mirror Descent (MD) algorithm (Nemirovskij and

Yudin, 1983; Beck and Teboulle, 2003) generalizes the classical gradient descent method by

changing the default Euclidean prior to any Bregman divergence (Bregman, 1967). We first

introduce the general Gradient Descent (GD) method then generalize its formulation and explain

how it can be applied in the OT setting.

Gradient Descent

One possible interpretation of GD is to suppose that the problem is locally linear and thus

approximate the function f by the tangent at a point xn and search for the next best point

xn+1. To ensure that the search is done only locally, a squared Euclidean distance regularization

is added, weighted by α > 0. The GD algorithm starts from a point x0 and then applies the

following step for all n ∈ N,

xn+1 = argmin
x∈X

{
f(xn) + 〈∇xnf,x− xn〉+

1

2α
‖x− xn‖22

}
. (1.42)
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By searching where the gradient is equal to 0, the classical GD formula is recovered,

0 = ∇xnf +
1

α
(xn+1 − xn) =⇒ xn+1 = xn − α∇xnf. (1.43)

The interesting part of this interpretation is that the GD implicitly assumes that the Euclidean

distance is used to ensure the locality of the minimum search. If the problem is constrained to

x ∈ D, either the problem 1.42 can be minimized directly with the constraint, or, equivalently,

the unconstrained problem can be solved to find x̃n+1 which is then projected to D according

to the Euclidean distance,

xn+1 = argmin
x∈D

‖x̃n+1 − x‖ . (1.44)

Mirror Descent

The MDmethod simply replaces the squared Euclidean distance with a Bregman divergence (Breg-

man, 1967). Let φ : X→ R be a strictly convex differentiable function. The Bregman divergence

associated with φ is defined as,

Bφ : (x,y) 7→ φ(x) + φ(y)− 〈∇xφ,x− y〉 . (1.45)

The Bregman divergences are particular cases of divergences, thus contrary to distance it should

not necessarily respect the symmetry property nor the triangular inequality. The Euclidean

distance, the Mahalanobis distance (Mahalanobis, 1936) or the KL divergence are examples of

Bregman divergences.

The Equation (1.42) can be rewritten with the Bregman divergence Bφ instead of the

Euclidean distance,

xn+1 = argmin
x∈D

{
f(xn) + 〈∇xnf,x− xn〉+

1

α
Bφ(x,xn)

}
. (1.46)

Removing the terms that are independent of x, this problem can be equivalently reformulated as

xn+1 = argmin
x∈D

{
〈∇xnf,x〉+

1

α
Bφ(x,xn)

}
. (1.47)

Relation with the Optimal Transport

As the point x corresponds to the transport plan T in the OT setting, the Bregman divergence

should be a divergence between probability distributions. Using the KL as Bregman divergence,

Xie et al. (2020) interprets the Sinkhorn algorithm (Algorithm 1) as a one step proximal point

method. Xie et al. (2020) proposes to apply several times the Sinkhorn algorithm, using a KL

divergence with the previous transport plan T n. Because the original OT problem is linear, one

has for all T ∈ Πµν , 〈∇T f,C〉 = 〈T ,C〉 = f(T ), therefore such a proximal point method is

equivalent to the MD algorithm. For two transport plans (T ,T ′) ∈ Πµν , the KL divergence is
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defined using the entropy H for φ. The KL divergence is a particular case of Bregman divergence

as it can be easily reformulated into,

BH(T ,T ′) =

I,K∑
i,k=1

Tiklog

(
Tik
T ′ik

)
−

I,K∑
i,k=1

Tik +

I,K∑
i,k=1

T ′ik. (1.48)

Because T and T ′ are probability distributions, the last two terms cancel each other and are

thus not useful during the optimization. Starting from the uniform transport plan T 0 = ab>,

the MD algorithm (Xie et al., 2020) with α = 1
ε applies the following step for all n ∈ J0, NK,

T n+1 = argmin
T∈Πµν

〈T ,C〉+ ε

I,K∑
i,k=1

Tiklog

(
Tik
T nik

) . (1.49)

The problem can be reformulated similarly to what was done in Section 1.1.2,

T n+1 = argmin
T∈Πµν

{〈T ,C − εlog (T n)〉 − εH(T )} . (1.50)

As a consequence, the transport plan of the previous iteration only modifies the cost matrix

C, the Sinkhorn algorithm can be applied on this new cost matrix. Intuitively, such iterations

can converge to the OT plan T ∗ as the prior −εlog (T n) becomes more and more important

compared to the entropy as T n gets closer to the edge of the polytope. In fact, assuming that

the Sinkhorn algorithm outputs the exact argmin at each iteration (it would require an infinite

number of Sinkhorn iterations, P = ∞), Xie et al. (2020) proves a linear convergence to the

Optimal Transport plan T ∗. For the original OT problem, such a formulation has little practical

advantage as it requires to apply several times the Sinkhorn algorithm. However it can be used

for the other non-linear OT problems.

A similar approach has been proposed for the Gromov Wasserstein problem (Xu et al.,

2019b), the only difference comes from the gradient of E at the point T n. If L • j • l denotes the

I ×K matrix extracted from L ∈ TI×I×K×K and assumes the symmetry of the function CX and

CY , ∇TnE = 2
∑I,K

i,k=1Li • k •T
n
i,k. The algorithm proposed by (Xu et al., 2019b) starts with a

transport plan matrix T 0 then applies the following step for all n > 0,

T n+1 = argmin
T∈Πµν


〈
T , 2

I,K∑
i,k=1

Li • k •T
n
i,k − εlog (T n)

〉
− εH(T )

 . (1.51)

Similarly to the FW algorithm, this projected MD algorithm is interesting because it reduces a

non-linear problem to several linear problems that can be solved efficiently with the Sinkhorn

algorithm (Cuturi, 2013). Similarly to the FW case, the “2” factor in front of the double sum

can be omitted as it is equivalent to a rescaling of ε by a factor 2.

Peyré et al. (2016) uses the same algorithm but aims at solving a regularized GW problem

defined as,

GW
(
CX , CY , µ, ν

)
= min
T∈Πµν

E(T ,T )− εH(T ), (1.52)
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As shown in (Peyré et al., 2016), this leads to the same step without the prior εlog (T n),

T n+1 = argmin
T∈Πµν


〈
T , 2

I,K∑
i,k=1

Li • k •T
n
i,k

〉
− εH(T )

 . (1.53)

Because the value of ε is often very small in order to stay close to the original GW problem, the

FW algorithm might be a more natural interpretation for this algorithm.

1.4 Conclusion

Most of the necessary background for the manuscript has been explained in this first chapter.

The Optimal Transport theory was presented with the Sinkhorn solver and the 1 dimensional

Optimal Transport case. Other extensions were detailed such as the OT Barycenter or the

Gromov Wasserstein problem. Then, we explained some Machine Learning tasks that can

be tackled using the OT theory, notably the Domain Adaptation task. Lastly, we gave some

details on the Frank-Wolfe and Mirror Descent algorithms that will be useful to solve some OT

extensions. The next chapter focuses on the Domain Adaptation task using a learned ground

distance for the Optimal Transport.
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Chapter 2

Metric Learning for Optimal Transport

Abstract

This chapter is based on the paper “Metric Learning for Optimal Transport” published
at the IJCAI 2020 conference (Kerdoncuff et al., 2020) and tackles the question of learning
the ground metric of the Optimal Transport problem to improve Domain Adaptation tasks.
We recall that Domain Adaptation aims at benefiting from a labeled dataset drawn from a
source distribution to learn an efficient model on examples generated according to a different
but related target distribution. Creating a domain-invariant representation between the two
source and target domains is the most widely used technique. A simple and robust way
to perform this task consists in (i) representing the two domains by subspaces described
by their respective eigenvectors and (ii) seeking a mapping function which aligns these
subspaces. In this chapter, we propose to use Optimal Transport (OT) and its associated
Wasserstein distance to perform this alignment. While the idea of using OT in domain
adaptation is not new, the original contribution of this chapter is two-fold: (i) we derive
a generalization bound on the target error involving several Wasserstein distances. This
prompts us to optimize the ground metric of OT to reduce the target risk. (ii) From
this theoretical analysis, we design an algorithm (MLOT) which optimizes a Mahalanobis
distance leading to a transportation plan that adapts better. Experiments demonstrate the
effectiveness of this original approach.

2.1 Introduction

Domain adaptation (DA) has been shown to be very effective in many real world applications,

e.g., in computer vision, medical diagnosis, or recommender systems, to cite a few. The main

idea is to use labeled data of a source domain to improve the performance of a classifier deployed

on a related target domain which suffers from a lack of labeled examples. In this chapter, we

address a complex setting, called unsupervised DA, where there is only unlabeled data available

from the target distribution.

Different approaches have been proposed to tackle this problem, some of them coming with
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theoretical guarantees (see, e.g. the survey (Redko et al., 2019c)). One classical way is to learn

a common latent space in which the shift between the two distributions is smaller. For instance,

the Subspace Alignment algorithm (SA) (Fernando et al., 2013) learns a classifier in a subspace

obtained after a linear alignment of the source and target eigenspaces. In a similar manner,

the Correlation Alignment (CORAL) (Sun et al., 2016a) uses the covariance of the source and

target distributions to reduce the shift, while Transfer Component Analysis (TCA) (Pan et al.,

2011) looks for common features between the two domains. Some other works directly learn

the target labels but do not gather the two distributions in a common feature space. This is

the case of MEDA (Wang et al., 2018) which learns a domain-invariant classifier in Grassman

manifold. On the other hand, DA with deep learning has received much attention during the

past decade from the computer vision community leading to a substantial amount of research to

address visual tasks for which a large amount of training data or a pre-trained model is available

(see, e.g. the survey (Wang and Deng, 2018)).

1

3 Class 1
Class 2
Target

1

3

1

3

Figure 2.1: Behavior of MLOT on a toy dataset. On the left, the original source and target

examples. In the middle, OTDA fails to transport correctly the blue and red classes. On the

right, the proposed MLOT which combines a learned metric and some per-domain dimensionality

reduction, leads to a perfect transportation plan. Notice the difference in scale between the two

axes.

Cited on pages [34,42]

More recently, Optimal Transport (OT) has been shown to be a very promising tool to

perform DA tasks. We recall that OT consists in mapping two source and target probability

measures with a minimal cost of transportation associated to the so-called Wasserstein distance.

Beyond its use in deep learning to solve visual DA tasks (see, e.g., (Sun and Saenko, 2016;

Bhushan Damodaran et al., 2018)), this idea of reducing the shift by OT has been exploited

in a more generic DA setting by the algorithm OTDA (Courty et al., 2017b). OTDA modifies

the original Kantorovich optimization problem by resorting to a regularization preventing the

transportation plan from moving two source points having different labels onto the same target

example. Then, a classifier is learned from the transported labeled source data and deployed

over the target distribution. Based on this work, (Courty et al., 2017a) ensures that the final

classifier is coherent with the transportation plan.
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Inspired from both SA and OTDA, our contribution aims at using OT for domain adaptation

by aligning the source and target subspaces. The main conjecture we formulate in this chapter

is that the Euclidean distance, usually used, as mentioned in Chapter 1, as the cost matrix in

the OT problem, may not be the best metric to perform the adaptation. While learning a better

metric (especially a Mahalanobis distance) in OT has been recently studied (Cuturi and Avis,

2014; Genevay et al., 2018; Deshpande et al., 2019; Paty and Cuturi, 2019a), optimizing such a

ground metric to address DA tasks has not received attention yet. We fill this gap from both a

theoretical and an algorithmic perspective. First, we formally establish a relation between the

target error and the magnitude of different Wasserstein distances. This prompts us to see the

Wasserstein distance as a parameterized metric that might be minimized, leading to a better

transportation plan for DA. We also formally make a link between the Principal Component

Analysis (PCA) (Wold et al., 1987) and the minimization of the Wasserstein distance. Based

on this theoretical analysis, we propose MLOT, an algorithm which optimizes a Mahalanobis

distance that improves the Optimal Transport between the source and target subspaces generated

by a PCA. Unlike OTDA which does not change the feature space, MLOT jointly optimizes

(i) the dimensionality reduction of the source domain, (ii) the transportation plan between

the source and the target and (iii) the underlying metric used in the transportation. The

intuition behind MLOT is illustrated in Figure 2.1. The original source and target examples are

represented on the left. The second figure shows the limitation of OTDA when the transportation

is performed in the original feature space. The figure on the right gives evidence on the advantage

of performing a PCA before learning jointly the ground metric and the transportation plan.

The rest of the chapter is organized as follows: Section 2.2 introduces the main principles

of OTDA and Metric Learning. Section 2.3 is dedicated to the theoretical contribution of

our chapter which leads to the design of our MLOT algorithm in Section 2.4. An extensive

experimental study is presented in Section 2.5 before our conclusion in Section 2.6.

2.2 OTDA and Metric Learning

In this section, we briefly present OTDA as introduced in (Courty et al., 2017b), and the Metric

Learning theory when the objective is to optimize a Mahalanobis distance.

2.2.1 OTDA

Let X ⊆ RD be a feature space. We consider here a source distribution µs and a target

distribution µt both defined over X with finite p-order moment with p ≥ 1. In practice, we deal

with the empirical measures µs and µt supported on I and K examples respectively. We suppose

that the two empirical measures are uniformly and independently sampled from sampled from

µs and µt. Considering the Euclidean distance as the cost function, we denote by Cp the I ×K
matrix composed of the costs Cp

ik =
∥∥xsi − xtk∥∥p2.

OTDA (Optimal Transport for Domain Adaptation) (Courty et al., 2017b) was the first
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attempt to use Optimal Transport for Domain Adaptation. While the original Optimal Transport

Problem (1.6) is totally unsupervised, OTDA takes into account the labels of the transported

points. Let us suppose that a discrete label Y s
i ∈ Y = J1, cK is associated to each source example

i, with c the number of classes. OTDA adds a lr − l2 group-lasso penalty term (Yuan and

Lin, 2006; Blondel et al., 2018), with r ∈ [0, 1] to prevent two source points of different labels

from being sent to the same target location. This takes the form of the following optimization

problem:

min
T∈Π(µ̂s,µ̂t)

〈T , Cp〉 − εH(T ) + λcΩc(T ), (2.1)

where Ωc(T ) =
∑K

k=1

∑c
cl=1 ‖T (Icl, k)‖r2 and T (Icl, k) is the column k of matrix T with only

the rows corresponding to samples of class cl. Intuitively, for a given target point xtk, the lr

norm between the classes ensures the sparsity between the classes, thus xtk should not received

mass from two points with different classes. Similarly to the entropy regularization, the l2 norm

for each class penalizes strong confidence and prompts smooth predictions. See (Blondel et al.,

2018) for more details on the group-lasso regularization for Optimal Transport. Interestingly, to

solve Equation (2.1), Courty et al. (2017b) proposes to use the generalized conditional gradient

algorithm (Bredies et al., 2009) which is a variant of the Frank Wolfe algorithm presented in

Section 1.3.1.

2.2.2 Metric Learning

As said before, the cost matrix Cp used in OT is usually set to the Euclidean distance. Though

this choice seems natural, it has a direct impact on the quality of the transportation. We suggest

here to optimize this cost matrix by learning a metric that allows us to better match in a DA

setting the source and target distributions, hopefully in a smaller feature space. Metric Learning

(ML), and especially Mahalanobis distance learning, has been widely studied in the literature

during the past decade (see, e.g., the surveys (Bellet et al., 2013, 2015)). It typically boils down

to optimizing the shape and the orientation of an ellipsoid rather than using the Euclidean ball.

More formally, let L ∈ Rd×D with d ∈ J1, DK and M be a PSD matrix such as M = L>L. For

all (i, j) ∈ J1, IK2, the squared Mahalanobis distance D2
M parameterized by M is defined as

D2
M (xsi ,x

s
j) = (xsi − xsj)>M(xsi − xsj) = ‖L(xsi − xsj)‖22. (2.2)

Notice that L defines a unique M but there is more than one Cholesky decomposition of M .

The goal of Metric Learning is to learn either the matrix L or M under semantic constraints,

which typically aim to bring examples of the same class closer while pushing away data with

different labels (see, e.g. LMNN (Weinberger and Saul, 2009) or ITML (Davis et al., 2007)). The

problem is often convex inM but the PSD constraint makes the optimization more complicated.

The minimization in L is not convex but is simpler and gives good results in practice. In the rest

of this chapter, we will denote by Ωl(L) the underlying objective function of the metric learning

problem. Note that learning a Mahalanobis distance for OT has been recently studied (Cuturi

and Avis, 2014; Genevay et al., 2018; Deshpande et al., 2019; Paty and Cuturi, 2019b). Our
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µ̂
g#µ̂

PCA(µ̂) ⇐⇒ min
g
W(µ̂, g#µ̂)

Figure 2.2: Standard PCA projecting a discrete distribution µ̂ (data in orange) onto a one-

dimensional subspace (in purple). This projection is equivalent to finding the optimal mapping

function g that minimizes the Wasserstein distance W(µ̂, g#µ̂).

Cited on page [37]

objective in the rest of this chapter is to show how to optimize such a ground metric when OT

is used to address domain adaptation tasks by the alignment of the source and target subspaces.

2.3 Theoretical analysis of Domain Adaptation with OT

In this section, we derive two theoretical results. First, we establish a strong relation between a

PCA and the minimization of the Wasserstein distance. Then, we derive a generalization bound

on the target error whose terms depend on several Wasserstein distances. By changing the

Euclidean ground distance by a Mahalanobis distance, we can see Wp
p (µ̂s, µ̂t) as a parameterized

distance that might be optimized from training data. This leads to the design of a new Domain

Adaptation algorithm, called MLOT (see Section 2.4), which learns the ground metric allowing

us to optimize the transportation plan while performing the adaptation.

2.3.1 PCA and Wasserstein Distance

As usually done in OT, let us use the push forward notation. For any measurable function

g : X −→ X and distribution µ on X , we define g#µ(B) = µ(g−1(B)) for all Borel B ∈ B(X ).

In practice, this means that we draw a point from µ and then apply the transformation g to that

point. If g is a linear function, it can be assimilated to its associated matrix G. Let Dim(Im(g))

be the dimension of the affine subspace formed by the image of g. This notation allows us to

define the dimension of a non-centered vector space.

The following theorem aims at showing that PCA is the best way to reduce the dimension of

a distribution in the sense of the Wasserstein distance. By dimensionality reduction, we mean

that the transformed distribution lies in a subspace (not necessarily centered) of X , but the
points are still defined in X (see Figure 2.2). For the sake of clarity, we consider here the case of

the 2-Wasserstein with the Euclidean distance as the underlying ground distance. We also focus

on the case of a discrete centered distribution µ̂. The complete derivation for the more general

case can be proved in a similar way.
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Theorem 1. Given a set of I examples {xi}Ii=1 lying in a D dimensional space and i.i.d. from

a distribution µ. Let µ̂ the empirical counterpart of µ defined as µ̂ = 1
I

∑I
i=1 δxi with E(µ̂) = 0.

Let d ∈ J1, DK and V be the d×D matrix formed with the first d normalized eigenvectors of the

covariance matrix of µ̂. Let Gd = {g : RD −→ RD|Dim(Im(g)) ≤ d}. Then, we have

argmin
g∈Gd

W2
2 (µ̂, g#µ̂) = V >V . (2.3)

Proof. Suppose that the minimizer g∗ ∈ Gd of Problem (2.3) exists, we will show that it is equal

to the PCA result. Let Tg∗ be the optimal coupling matrix associated with g∗. With these

notations, we get:

min
g∈Gd

W2
2 (µ̂, g#µ̂) =

I,I∑
i,k=1

‖xi − g∗(xk)‖22(Tg∗)ik. (2.4)

As Tg∗ is a permutation matrix (divided by I), one can reorder the rows to have the identity

matrix (divided by I). We note Tg̃∗ such matrix with g̃∗ the associated function. The function

g̃∗, is defined as,

∀i ∈ J1, IK g̃∗(xi) = g∗(xk) for k such that (Tg∗)ik =
1

I
, (2.5)

and is equal to g∗ elsewhere. As Tg∗ is a permutation matrix, such index k always exists. Using

this new function g̃∗ and the new associated transport plan Tg̃∗ , we get:

min
g∈Gd

W2
2 (µ̂, g#µ̂) =

I,I∑
i,k=1

‖xi − g̃∗(xk)‖22(Tg̃∗)ik

=
1

I

I∑
i=1

‖xi − g̃∗(xi)‖22

≥1

I

I∑
i=1

‖xi − V >V xi‖22.

The last line comes from the PCA definition. It shows that V >V associated with 1
I II is smaller

than the optimal solution g∗. But since V >V ∈ Gd, it is actually the optimal solution.

Theorem 1 tells us that PCA is the best way to reduce the dimension in the sense of the

Wasserstein distance. The next result provides a generalization bound on the target error where

Wasserstein distances are the main terms to minimize.

2.3.2 Upper Bound on the Target Risk

Let H = {h|h : X → Y} be the hypothesis space. We assume the existence of a deterministic

ground-truth function f : X → Y which gives the label associated to each point of X . For all
(h, h′) ∈ H2, we extend the notation of the risk R and define Rt(h, h′) = Px∼µt(h(x) 6= h′(x))

and Rs(h, h′) = Px∼µs(h(x) 6= h′(x)) which represent the disagreement between two classifiers.
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The goal of DA is to find the best h ∈ H which minimizes the target riskRt(h, f) = Px∼µt(h(x) 6=
f(x)). In the same way, Rs(h, f) = Px∼µs(h(x) 6= f(x)) is the source risk. To simplify the

notations, let also use Rt(h, f) = Rt(h) and Rs(h, f) = Rs(h) in which the optimal labeling

function f is implicit.

Lemma 1 (Generalization bound (Shen et al., 2017)). Let µs, µt be two probability measures

on X . Assume the hypotheses h ∈ H are all κ-Lipschitz continuous for some κ ∈ R∗+. Then,

∀(h, h)′ ∈ H2, the following holds:

Rt(h, h′) ≤ Rs(h, h′) + 2κW2(µs, µt). (2.6)

Building on the proof of Redko et al. (2017) based on the seminal works of Ben-David et al.

(2007) and Mansour et al. (2009), we derive the following bound.

Theorem 2. Let gs : X −→ X and gt : X −→ X . Under the assumption of Lemma 1, ∀h ∈ H,
the following holds:

Rt(h) ≤ Rs(h) + 2κ [W2(gs#µ̂s, gt#µ̂t)]

+ 2κ [W2(µ̂s, gs#µ̂s) +W2(gt#µ̂t, µ̂t)]

+ 2κ [W2(µs, µ̂s) +W2(µ̂t, µt)] + λ

(2.7)

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error

Rs(h∗) +Rt(h∗).

Proof. We have :

Rt(h) ≤Rt(h∗) +Rt(h∗, h)

=Rt(h∗) +Rs(h, h∗) +Rt(h∗, h)−Rs(h, h∗)

≤Rt(h∗) +Rs(h, h∗) + 2κW2(µs, µt)

≤Rt(h∗) +Rs(h) +Rs(h∗)

+ 2κ [W2(µs, µ̂s) +W2(µ̂s, µt)]

≤Rs(h) + λ

+ 2κ [W2(µs, µ̂s) +W2(µ̂s, µ̂t) +W2(µ̂t, µt)]

≤Rs(h) + 2κ [W2(gs#µ̂s, gt#µ̂t)]

+ 2κ [W2(µ̂s, gs#µ̂s) +W2(gt#µ̂t, µ̂t)]

+ 2κ [W2(µs, µ̂s) +W2(µ̂t, µt)] + λ.

Note that if gs and gt are linear, gs#µ̂s and gt#µ̂t can be seen as linear projections of the

source and target examples taking the form of two matrices that can be learned by any standard

metric learning algorithm. It is worth noticing that the previous bound is the first one which

jointly relates (i) the target risk in domain adaptation, (ii) the minimization of the Wasserstein
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distance and (iii) the metrics that can be learned to get a better transportation plan. We can

use Theorem 1 to minimize both W2(µ̂s, gs#µ̂s) and W2(gt#µ̂t, µ̂t). Note that W2(µs, µ̂s) and

W2(µ̂t, µt) can be bounded under some assumptions using Theorem 2.1 in (Bolley et al., 2007).

Moreover, λ is supposed to be small to allow the adaptation. A theoretical analysis about λ is

available in (Redko et al., 2019b).

The last term that has to be minimized in the bound of Theorem 2 isW2(gs#µ̂s, gt#µ̂t). We

address this problem from an algorithmic perspective thanks to our algorithm MLOT presented

in the next Section.

Algorithm 3 MLOT Cited on page [40]

Input: η (gradient step) Xs Xt Y s

1: Vs = PCA(Xs), Vt = PCA(Xt)

2: Ls = V >s Vs, Lt = V >t Vt

3: for i = 1 to P do

4: T = argmin
T∈Π(µ̂s,µ̂t)

〈T , C2(Ls,Lt)〉−εH(T )+λcΩcl(T )

5: Ls = Ls − η∇Ls(〈T , C2(Ls,Lt)〉+λlΩl(Ls))

6: end for

7: X̃s = TLtX
t

8: classifier = classifier method(X̃s,Y
s)

9: Ŷ t = classifier(Xt)

10: return Ŷ t

2.4 MLOT: Metric Learning in OT for DA

Inspired from OTDA (Courty et al., 2017b) our algorithm MLOT leverages our previous

theoretical analysis and resorts to an additional term Ωl(Ls) dedicated to optimize a metric

allowing us to get a better transportation plan. Let us consider the cost function C2(Ls,Lt)ij =

‖Lsxsi −Ltxtk‖22. MLOT takes the form of the following joint optimization problem:

min
Ls∈RD×D,T∈Π(µ̂s,µ̂t)

〈T , C2(Ls,Lt)〉 − εH(T ) + λcΩcl(T ) + λlΩl(Ls). (2.8)

Note that MLOT only learns the matrix Ls associated to the source data. The reason is twofold.

First, it prevents the algorithm from leading to a trivial minimal solution W2(Ls#µ̂s,Lt#µ̂t)

where both matrices Ls and Lt are null. By this way, MLOT tends to provide two different

matrices Ls (which is learned) and Lt (set to V >t Vt according to Theorem 1) which better

capture the peculiarities of the two distributions. Second, labels - that are required to learn

a metric - are available only in the source domain. To find the solution of Problem (2.8), we

minimize the objective function w.r.t. T and Ls alternately. From a practical point of view, we

apply one step of gradient descent over Ls and then completely compute the optimal T . Since
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µs µt

Xs X t

LsX
s LtX

t

Samples SamplesML with init PCA PCA

Optimal Transport

Figure 2.3: Workflow of MLOT. Cited on page [41]

the problem is not convex, the initialization of Ls is key. According to Theorem 1, we use a

PCA to set Ls = V >s Vs. At the initialization, Ls is a D ×D matrix of rank d. But note that

along the iterations, this rank can increase if it allows a better adaptation. The pseudo-code of

MLOT is described in Algorithm 3, where Xs and Xt are the source and target datasets, and

Y s is the set of source labels.

Note that any gradient descent-based metric learning algorithm can be used to learn Ls
via the term λlΩl(Ls). Note also that the computation of the barycenter of the transported

points X̃s = TLtX
t makes sense only if the 2-Wasserstein is used. Figure 2.3 summarizes the

workflow of MLOT.

2.5 Experiments

In this section, we perform experiments and demonstrate the effectiveness of MLOT compared

to OTDA and other baselines on various datasets and types of features.

2.5.1 Datasets

We use the Office-Caltech dataset (Gong et al., 2012) which is a classical benchmark on visual

DA. We study the effect of using different features such as SURF features (Bay et al., 2006) and

DeCAF Deep Learning features (Donahue et al., 2014). The Office-Caltech dataset is composed

of 4 different subsets (Amazon, Caltech, DSRL, Webcam) that are combined in a pairwise

manner, to create 12 DA subproblems. The notation A→ C means that Amazon is used as the

source and Caltech as the target. There are the same 10 classes in each dataset containing from

157 to 1,123 images.

We also use the Office31 dataset (Saenko et al., 2010) with features extracted from the 7th

layer of DeCAF Deep Learning network. The dataset is composed of 4,110 images in 3 subsets

(Amazon, DSLR, Webcam) with 31 classes.

2.5.2 Setup and Cross-validation

We compare 10 different methods that are able to handle arbirtary features. We exclude deep

learning methods as they require having the original images and fine tuning a network. We

compare: NA(No Adaptation). The classifier is learned on the source dataset and directly
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applied on the target. LMNN: Large Margin Nearest Neighbor (Weinberger and Saul, 2009).

SA: Subspace Alignment (Fernando et al., 2013). CORAL: CORrelation ALignment (Sun

et al., 2016a). TCA: Transfer Component Analysis (Pan et al., 2011). OT: Optimal Transport

with entropy (Cuturi, 2013). OTDA: Optimal Transport with entropy and class regulariza-

tion (Courty et al., 2017b). OTDAp: OTDA after a PCA. JDOT: Joint Distribution Optimal

Transportation (Courty et al., 2017a). MLOT: our method. Following (Courty et al., 2017b)

the final classification is done with a 1-Nearest Neighbor (1NN), except for JDOT where we use

a SVM (C = 1).

In unsupervised DA, there is no target label and it is impossible to use the classical cross-

validation procedure to choose the best hyper-parameters. To fairly compare methods, we take

inspiration from the work of Zhong et al. (2010), introduced in Section 1.2.2, and apply the

following strategy for all methods. We first assign pseudo-labels to the target points (using the

considered method) and then use these target labels to re-assign labels to the source data, using

a basis DA algorithm. Here, we choose SA (Fernando et al., 2013) which has been shown to be

one of the most robust DA method. We can then compare the actual source labels with the

predicted source ones. We take the set of hyper-parameters that gives the best accuracy over

48 hours, limited to 1000 iterations. This back-and-forth adaptation is done independently for

each pair of datasets. MLOT is parameterized by 5 hyper-parameters: the three regularization

parameters (ε, λc, λl) which control the trade-off between each term in Eq. (2.8), the number

of dimensions kept by the PCA (d) and the number of iterations (P ). Note that in these

experiments, we used arbitrarily LMNN (Weinberger and Saul, 2009) to learn Ls in the term

Ωl(Ls). Therefore, an additional parameter has to be tuned corresponding to the margin used

in this metric learning algorithm. Note that SA and MLOT resort to a PCA. To speed-up the

process, we used a “randomized” -PCA (Halko et al., 2011) and run 10 iterations. This explains

why the variance is indicated for these three methods in the reported results in Table 2.1.

The code of the 10 methods is available1, together with the datasets, the code for the

cross-validation that recreates Table 2.1, and the code that produces automatically Figures 2.1

and 2.4.

2.5.3 Analysis of the Results

The results are reported in Table 2.1. For the SURF features, MLOT outperforms, on average,

all the other methods. MLOT outperforms OTDA 8 times over the 12 DA subproblems and

yields impressive improvements for some cases (e.g. W −→ A and C −→ D) and a clear gain on

average (1.5 points). The results on Office-Caltech DeCAF6 features show the effectiveness

of our method on deep learning features. MLOT outperforms by 1.8 the second best method

(here OT). On the Office31 dataset, the best results are obtained by SA. MLOT is still very

competitive and outperforms OTDA by 0.9 point on average. The entire table in available in

Appendix A.1. In addition, a small experiment about the interest of using jointly a Metric

1https://github.com/Hv0nnus/MLOT
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SURF

Dataset NA LMNN SA CORAL TCA OT OTDA OTDAp JDOT MLOT

A→C 26.0 40.3 40.2±0.2 25.4 40.0 33.9 40.2 39.4±0.5 39.9 42.3±0.6
A→D 25.5 36.9 39.3±2.5 26.8 31.8 30.6 40.1 39.6±1.1 37.6 40.8±0.8
A→W 29.8 38.0 39.9±1.3 26.8 41.7 32.5 37.3 39.8±0.9 38.0 41.3±1.1
C→A 23.7 46.0 41.3±1.1 23.6 39.8 41.0 52.7 48.5±0.7 48.1 51.5±0.8
C→D 25.5 45.9 45.4±1.2 26.1 44.6 36.9 47.8 51.4±1.4 49.7 52.2±1.3
C→W 25.8 41.7 36.6±1.1 23.7 36.9 28.1 46.4 45.8±1.4 43.4 45.9±0.8
D→A 28.5 31.1 35.4±1.0 28.8 32.9 29.3 32.4 37.8±1.0 32.8 37.8±0.7
D→C 26.3 30.7 32.3±0.6 30.0 31.5 31.7 32.0 33.5±0.7 31.7 34.4±0.5
D→W 63.4 77.3 88.5±1.1 84.4 84.7 88.8 88.8 87.5±1.2 82.7 87.8±0.7
W→A 23.0 32.3 32.6±0.5 26.2 29.4 34.1 33.7 37.6±0.6 37.6 38.0±0.8
W→C 19.9 30.4 29.0±0.6 22.6 29.2 30.1 34.1 33.3±0.5 33.1 33.2±0.6
W→D 59.2 86.6 89.5±1.0 84.1 91.7 89.2 92.4 91.8±1.2 89.8 90.8±0.8
AVG 31.4 44.8 45.8±1.0 35.7 44.5 42.2 48.2 48.8±0.9 47.0 49.7±0.8

DeCAF6 AVG 71.0 79.4 83.7±0.5 77.2 83.4 83.9 83.2 82.6±0.5 78.2 84.7±0.3

Office31 AVG 64.3 64.7 66.5±0.2 64.1 64.1 65.3 65.3 65.2±0.1 64.4 66.2±0.1

All datasets AVG 53.8 62.6 65.1 ± 0.6 58.0 64.0 63.5 65.6 65.6 ± 0.6 63.0 67.0 ± 0.5

Table 2.1: Accuracy of all the methods on 3 different types of features. The best method for

each dataset is in bold.

Cited on pages [42,42,42]

Learning and an Optimal Transport algorithm is provided in Appendix A.1.2.

As already mentioned, cross-validating the hyperparameters in unsupervised DA is key

and is still an open problem, since we do not have access to labels from the target domain.

We performed an experimental comparison to show how the cross-validation method used in

this chapter behaves when compared to a scenario where we would select the hyperparameters

using the actual labels of the target examples. Table 2.2 reports the gap between the optimal

hyperparameters and those obtained by our method inspired from (Zhong et al., 2010). We can

see that the ranking of the methods is preserved, even though this experiment shows that there is

still room for improving the way we may tune the parameters in unsupervised DA. Note that the

other datasets show similar behaviors. To show the specific gain brought by MLOT compared

Cross-validation using... OT TCA LMNN SA JDOT OTDA OTDAp MLOT

target true labels 45.3 45.3 47.9 47.4 48.5 52.8 54 55.1
target pseudo-labels 42.2 44.5 44.8 45.8 47.0 48.2 48.8 49.7

Table 2.2: Accuracy comparison on Office-Caltech (SURF features) between a cross-validation

method that uses the true target labels (first line) and the cross-validation method used in this

chapter that exploits pseudo-labels in the unsupervised DA setting (second line). CORAL and

NA are excluded as they do not have hyperparameter.

Cited on page [43]
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Figure 2.4: Absolute difference between the mean accuracy of MLOT and OTDA (on the left).

The rows (resp. columns) correspond to the results with different values of the regularization

parameter λc (resp. ε) on the entire Office-Caltech dataset with SURF features. On the right,

accuracy of MLOT for each pair of parameters.

Cited on pages [42,43,43]

to OTDA, we performed a last experiment where we set the hyper-parameters of MLOT as

follows: λl = 1, P = 10, marginLMNN = 10, d = 70; and we tune ε and λc. The results are

reported in Figure 2.4. It is worth noticing that whatever the set of parameters, MLOT always

yields better accuracy, which confirms the interest of learning a metric and using the PCA to

initialize Ls and Lt. Note that when the entropy term has more importance (last column),

the difference between the two methods is smaller because T tends to be uniform. When the

class regularization is set to 0 (first row), OTDA becomes similar to OT (Sinkhorn algorithm).

This shows the effectiveness of MLOT even without the class regularization. However, the

performances drop without this supervised information which tends to show that the metric

learned and the class regularization are complementary. Notice that the results of MLOT are

quite good for many values of the entropy and class regularizations (Figure 2.4 on the right). The

best performance is 50.9 which is better than the result obtained by the cross-validation method.

Once again, this is an evidence about the difficulty of tuning parameters in unsupervised DA.

2.6 Conclusion

We proposed in this chapter a new Domain Adaptation (DA) method, called MLOT, benefiting

from both Metric Learning (ML) and Optimal Transport (OT). Dedicated to address problems

in the complex unsupervised DA setting, MLOT jointly learns a good metric and the optimal

transportation plan. A theoretical study has driven the design of MLOT. We derived a bound on

the target error which prompts us to learn the ground metric involved in the Wasserstein distance.

The experimental study has shown very competitive results and a significant improvement

compared to OTDA, the first method coupling OT and DA.

In the next chapter, we will keep analyzing new ways for choosing a good ground metric. It
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will not be restricted to DA task as we will explore the interest of robust ground metric in any

OT problem by solving a complex min-max problem.
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Chapter 3

A Swiss Army Knife for Minimax

Optimal Transport

Abstract

In the previous chapter, a new method that jointly learns the ground metric and the
transport plan was proposed to solve a Domain Adaptation task. This chapter is based on
the following contribution “A Swiss Army Knife for Minimax Optimal Transport” published
at ICML 2020 (Dhouib et al., 2020). This work was done in collaboration with Sofiane
DHOUIB whose PhD thesis also addressed OT problems. Thus another description of this
work is available in his manuscript (Dhouib, 2020). The Optimal transport (OT) problem
and its underlying optimization problem is known to have two major restrictions: (i) it
strongly depends on the choice of the cost function and (ii) its sample complexity scales
exponentially with the dimension. In this chapter, we propose a general formulation of
a minimax OT problem that can tackle these limitations by jointly optimizing the cost
matrix and the transport plan, allowing us to define a robust distance between distributions.
We propose to use a cutting-set method to solve this general problem and show its links
and advantages compared to other existing minimax OT approaches. Additionally, we use
this method to define a notion of stability allowing us to select a ground metric robust to
bounded perturbations. Finally, we provide an experimental study highlighting the efficiency
of our approach.

3.1 Introduction

In this chapter, we study a general formulation of the OT problem with a minimax objective

function where one seeks an OT plan with respect to (w.r.t.) the worst possible ground metric

belonging to an arbitrary and possibly infinite convex set. Such a minimax formulation is of

a particular interest as it has been shown previously (i) to reduce the sample complexity and

increase the robustness to noise of the original OT problem for high-dimensional data (Paty and

Cuturi, 2019a), (ii) to allow to consider submodular cost functions (Alvarez-Melis et al., 2018)
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and (iii) to use it as a loss in generative models (Genevay et al., 2018). We advance the study

of the minimax OT further by providing the following contributions. First, for an infinite set

of cost functions defined by a Mahalanobis distance, we reformulate the minimax OT problem

as a minimization of the arbitrary dual norm of the matrix of second-order displacements and

show how one can use it to smoothly interpolate between the original OT problem and the

minimax formulation of (Paty and Cuturi, 2019a) included as a special case. Second, we provide

a generic solver for minimax OT for both regularized and unregularized minimax OT problems

and for both finite and infinite families of cost functions contrary to previous work (Paty and

Cuturi, 2019a; Alvarez-Melis et al., 2018) that considered the differentiable and strictly convex

regularized OT problem only. Finally, we introduce the notion of cost matrix stability and solve

its underlying optimization problem. It consists in finding a cost function from a list of possible

candidates that leads to a stable transportation cost in its unit ball neighborhood.

The rest of this chapter is organized as follows. In Section 3.2, we provide some preliminary

knowledge as well as the notations used throughout the chapter. We then present in Section 3.3

the main contributions of this chapter including a general minimax formulation for the OT

problem with an arbitrary convex compact set of cost matrices and discuss an optimization

procedure that can be used to solve it as well as its theoretical guarantees. We further proceed

by considering the important special cases of the previously introduced problem and showing

their relationship to other works on subject. Finally, in Section 3.4, we present an experimental

evaluation of our approach for several considered use-cases.

3.2 Preliminary Knowledge

Let µ and ν be two distribution with finite p-order moment on two vector spaces X and Y.
As we will not use any labeled points, we will keep the usual OT notations and use (xi)i∈J1,IK

and (yk)k∈J1,KK for the support of the empirical distributions µ and ν. The probability vector

associated are a ∈ ∆I and b ∈ ∆K respectively. To simplify the notation of the polytope, we

will often use Π instead of Πµν when it is clear from the context.

Minimax OT Two other studies considered the minimax formulation of the OT problem in

a setting similar to ours. In the first one, Paty and Cuturi (2019a) showed that one can see

the OT problem, with c taken to be the squared Euclidean distance, as a trace minimization

problem of the second-order displacement matrix defined for any π ∈ Πµν defined as:

W2
2 (µ, ν) = min

π∈Πµν
Tr(Vπ),

Vπ :=

∫
X×Y

(x− y)(x− y)>dπ(x,y).
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Paty and Cuturi (2019a) further used this expression of the 2-Wasserstein distance to introduce

the Subspace Robust Wasserstein (SRW) distance as follows:

S2
d(µ, ν) := min

π∈Π
Trd(Vπ) = min

π∈Π

d∑
r=1

λr(Vπ), (3.1)

where λr are the d ≤ D largest eigenvalues of Vπ. Note that considering only the maximization

over the d ≤ D largest eigenvalues allows to learn a cost matrix of a reduced rank thus tackling

the curse of dimensionality issue of calculating the Wasserstein distance for high-dimensional

data.

A somehow different way of using the minimax formulation of OT was proposed in (Alvarez-

Melis et al., 2018) for c taken to be a submodular function F : 2V → R with V denoting a

certain set of available items. In this case, taking the Lovász extension f of F leads to the

following optimization problem:

StrOT(µ, ν) := min
T∈Π

max
C∈BF

〈T ,C〉 ,

where BF is the base polytope of F defined as BF = {y ∈ R|V ||y(V ) = F (V ); y(S) ≤ F (S), ∀S ⊆
V }. A game-theoretic interpretation of this formulation is to consider two players, where Player

1 aims at aligning the two distributions by picking a coupling matrix T , while Player 2 resists

to it by choosing the cost matrix C from the set of admissible costs BF . When F is a modular

function, the size of BF is 1 thus recovering the original OT problem.

Other related work Three other papers presented an OT-based minimax formulation dis-

tantly related to ours. In (Genevay et al., 2018), the authors studied a generative model that

uses Sinkhorn divergence as a fitting criterion and proposed to learn a cost function in this

framework. Their problem is intrinsically different from ours as we do not consider the density

fitting problem where one optimises the parameters of the fitted distribution. On the other

hand, in (Li et al., 2019), the authors reduced the regularized OT formulation with relaxed

marginal constraints into a minimax problem. Their formulation, however, is also different from

ours as it does not seek to learn a cost matrix. Finally, the line of work on the Wasserstein

distributionally robust optimization (Kuhn et al., 2019) is also very dissimilar to this chapter as

this latter considers finding the best estimator of a density from a Wasserstein ball of a certain

radius. We now proceed to the presentation of our contributions.

3.3 Robust Optimal Transport with a convex set of cost Matrices

Below, we formulate the general robust OT problem and highlight its properties in several cases

of interest. We further propose and theoretically analyze a general algorithm that can be used

to solve it.
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3.3.1 Problem formulation

Let C be an arbitrary set of cost functions defined over X × Y → R. This set may represent,

for instance, a convex combination of cost function candidates provided by several experts, or

it can be described by an infinite set of parameters. We impose no particular constraints on

the cost functions belonging to C as long as the corresponding Kantorovich problems admit a

solution. We now consider the following minimax problem:

RKP(Π, C) = min
π∈Π

max
c∈C

E
x,y∼π

[c(x,y)] , (3.2)

where we look for a coupling π∗ that is robust to the choice of a cost function c ∈ C, by considering

the worst achievable transportation cost. We denote the value at the solution of this problem by

RKP(Π, C) where RKP stands for robust Kantorovich problem. We abuse the notation and use

RKP(P, C) for any set P ⊂ Π (even non convex) to denote RKP(conv(P), C), i.e., , solving for

π ∈ Conv (P). We also extend the Wasserstein notation W to any set of function C instead of

only the Euclidean distance at the power p, by defining WC(µ, ν) := RKP(Π, C).

3.3.2 Choice of C

Below, we consider two possible choices for the convex set C. First, we study the infinite family

of Mahalanobis distance cost matrices widely used in the metric learning literature (Bellet et al.,

2015). Second, we consider a convex hull of a finite family of cost functions as in the example

given above.

Infinite family of Mahalanobis distances

For any u = (u1, ...,uD) ∈ RD and any M ∈ RD×D, we define their respective p-norm and

Schatten p-norm as

‖u‖pp =
∑

1≤d≤D
|ud|p, ‖M‖pp =

∑
1≤d≤D

σpd(M),

where p ∈ [1,+∞] and (σd (M))d∈J1,DK are M’s singular values. In particular, if M ∈ SD×D+ ,

where SD×D+ denotes the set of symmetric positive semi-definite matrices (PSD), then ‖M‖p =

Tr(Mp)
1
p . We also recall that the dual of a p−norm (resp. Schatten p−norm) is the q−norm

(resp. the Schatten q−norm) with q equal to p
p−1 if p > 1, to ∞ if p = 1 and to 1 if p =∞.

We now define C as a family of Mahalanobis cost functions, indexed by bounded matrices M:

C={cM :(x,y) 7→ (x−y)>M(x−y); ‖M‖p≤1}. (3.3)

We can now state the following proposition.1

Proposition 1. Let C be defined as in (3.3) for M ∈ SD×D+ . Then, C is a convex compact set

of cost functions and for any p ∈ [1,+∞], q = p
p−1 the following holds:

1All detailed proofs are provided in Appendix B.

50



Chapter 3. A Swiss Army Knife for Minimax Optimal Transport

Figure 3.1: Interpolation between OT and SRWd=1 on a binary toy classification problem with

each class consisting of 5 points sampled from Gaussians centered on the edge of a 10-dimensional

hypercube with σ = 1 with 10 additional random noise features. The transport is computed

between the 2 classes using the setting of Proposition 1 with q ∈ {1, 1.1, 2, 5,∞}. (top row)

Mahalanobis matrices M∗ and their rank; (bottom row) Couplings T ∗ and the associated value

of the Wasserstein distance.

Cited on pages [51,57,102,182,182]

1. RKP(Π, C) = min
π∈Π

‖Vπ‖q. In particular, we have:

RKP(Π, C) =

{
W2

2 (µ, ν), if q = 1,

S2
1 (µ, ν), if q =∞.

2. For any π∈Π, ‖M∗‖p=1 and

M∗ = argmax
M∈SD×D

+ , ‖M‖p≤1
〈Vπ,M〉 =

(
Vπ

‖Vπ‖q

) q
p

.

Proof idea. We use the fact that C is the image of a convex compact set of RD×D by a linear

mapping to prove its convexity and compactness. Point 1 is a consequence of the equality case

of Hölder’s inequality, the positive semi-definiteness of matrix Vπ and the fact that the Schatten

p-norm is the classic p-norm for the vector of a matrix’s singular values, which tends to the

∞−norm as q →∞. The second point is a direct consequence of the equality case of Hölder’s

inequality for Schatten p-norms (Magnus, 1987) using the fact that Vπ is PSD.

This theorem highlights several novel insights. First, it provides a different point of view for

a general minimax OT problem with the infinite family of Mahalanobis distances. In particular,

it shows that the original OT problem can be seen as a minimax problem when one takes the

least restrictive infinity norm for the bound on the matrix parameterizing the Mahalanobis

distance, while SRW with d = 1 corresponds to the case of the || · ||1 norm2. This observation
2Other values of d for SRW are also covered when using a truncated Schatten p-norm.

51



3.3. Robust Optimal Transport with a convex set of cost Matrices

is illustrated in Figure 3.1 where we smoothly interpolate between the two boundary cases

by solving (3.2) with intermediate values of q. We note that such an interpolation may have

interesting implications in practice when one seeks for an explicit control between the original and

the minimax OT problems. Second, the optimal expression for M∗ shows that it is proportional

to Vπ and if this latter captures the displacement in lower dimensions, then M∗ is expected to

do so too. This follows from M∗ being a linear combination of (xi−yk)(xi−yk)>, where {i, k}
are indices for which πik > 0, making its image included in the span of {(xi − yk);πik > 0}, i.e.,
the span of displacement directions. This intuition is confirmed in our experiments where we

show that even without the rank constraint, solving (3.2) results in a matrix of a reduced rank.

Finally, below we use this result to show that in the case of the Frobenius norm, the PSD

property of the learned matrix M is obtained for free without imposing any additional constraint

on the set C.

Corollary 1 (Euclidean norm case). Let C be defined with p = 2 in (3.3) and let M∗ =

argmax‖M‖2≤1 〈Vπ,M〉. Then M∗ =
Vπ

‖Vπ‖2
, thus M∗ is PSD and ‖M∗‖2 = 1.

This corollary shows that the case p = 2 (Frobenius norm) can be very convenient in practice

as PSD constraints increase considerably the computational burden of any optimization problem,

yet they are necessary for the obtained cost function to be a true metric.

To conclude the theoretical analysis of the considered case for the minimax problem, we

establish a general bound on RKP(Π, C) in terms of the original 2-Wasserstein distance.

Corollary 2. With the assumptions from Proposition 1, the following inequality holds for any

p ∈ [1,+∞]:
1

D
1
p

W2
2 (µ, ν) ≤ WC(µ, ν) ≤ W2

2 (µ, ν).

Note that compared to a similar bound given in (Paty and Cuturi, 2019a, Proposition 2)

for the SRW distance, our result does not involve the k term in the left-hand side as we do not

impose any explicit constraint on the rank of M.

Finite set of cost functions

Let {c1, ..., cM} denote a family of candidate cost functions, and let C = Conv ({c1, ..., cM})
meaning that C is a convex compact space as it is the convex combination of a finite set. As

mentioned in Section 3.2, the optimization of the OT problem with a submodular function F

taken as a cost function can be equivalently seen as a minimax OT problem of the following

form:

min
T∈Π

max
C∈BF

〈T ,C〉 ,

where BF is the base polytope of F . We note that the number of vertices of BF is finite and

thus one can show that the StrOT distance is a particular case of our problem (3.2) when C is a
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finite set of cost functions, i.e.,

RKP(Π,Conv (BF )) = StrOT(µ, ν).

This result establishes the link between our general formulation and that considered in (Alvarez-

Melis et al., 2018).

3.3.3 Proposed optimization strategy

We now propose a general solution for optimising (3.2) in the discrete case where X and Y are

identified respectively with finite sets (xi)i∈J1,IK and (yk)k∈J1,KK, while C is identified with an

arbitrary convex set of cost matrices with entries Cik = c(xi,yk). Since X and Y are finite,

hence bounded, all results from Section 3.3.2 hold in the discrete case.

To proceed, we first note that in our case we cannot apply the optimization techniques used

in (Paty and Cuturi, 2019a; Alvarez-Melis et al., 2018) as they both consider the differentiable

regularized OT problem in their minimax formulations contrary to our non-differentiable

unregularized one. To deal with the latter, we propose to adapt the cutting set method presented

in (Mutapcic and Boyd, 2009) for robust optimization to Problem (3.2) that allows us to

cover both unregularized and regularized minimax OT problems. In a nutshell, this method

consists in alternating between solving a worst-case problem and the corresponding sampled

robust minimization problem w.r.t. a set of constraints that grows linearly with iterations and

requires for optimized functions to be convex only. In application to Equation (3.2), the high

level idea of the proposed algorithm thus would be to solve the maximization problem over

C w.r.t. a small set P ⊂ Π and add one transportation matrix to P at each iteration. The

implementation of this idea, however, is not straightforward and requires two obstacles to be

addressed. First, the original algorithm presented by the authors allows to solve a minimax

problem of the form minC∈C maxT∈Π = −maxC∈C minT∈Π and thus requires from us to prove

minT∈Π maxC∈C = maxC∈C minT∈Π in order to apply it. Second, and similar to the projected

supergradient algorithm proposed for SRW, the authors of (Mutapcic and Boyd, 2009) disregard

the optimal solution for the variable over which the minimization is performed, i.e., , T ∗ in our

case, and provide a solution for C∗ only. To address these issues, we now present the following

result.

Proposition 2. Let P be a finite subset of Π. Then, the following holds:

1. RKP(P, C) := RKP(Conv (P) , C) has a saddle point (T ∗,C∗) verifying:

〈T ∗,C∗〉F = min
T∈Conv(P)

max
C∈C
〈T ,C〉 = max

C∈C
min
T∈P
〈T ,C〉 . (3.4)

2. RKP(P, C) is equivalent to

C∗ ∈ argmax
C∈C,ω≥0

ω,

s.t. 〈T ,C〉 ≥ ω, ∀T ∈ P. (3.5)
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3. T ∗ =
∑|P|

l=1 qlTl, where Q = (ql)l∈J1,|P|K,
∑|P|

l=1 ql = 1, are dual variables of Equation (3.5).

Proof idea. Point 1 is an application of Sion’s minimax theorem (Sion, 1958). Point 2 is a

reformulation of the right hand side of Equation (3.4). The last point, T ∗’s expression, is a

consequence of the Lagrange duality.

Several remarks are in order here. First, we note that solving Problem (3.5) directly is

intractable in practice for sufficiently large I and K as its number of constraints (size of P) grows
extremely fast with the number of points (e.g., equal to N ! for I = K = N). This motivates the

use of the cutting set algorithm that gradually increases the size of the set P with iterations and

allows to solve intermediate problems with a reduced number of constraints efficiently. Second,

the theorem is valid for any finite subset P of Π so that 1) solving RKP(Π, C) can be done

by setting P to the set of vertices of Π and 2) solving the regularized minimax formulation

with added convex regularizer on T is covered by considering RKP(Π̃, C), where Π̃ is a convex

compact subset of Π (Cuturi, 2013).
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Figure 3.2: Illustration of a saddle point on a minimax problem. The scalar product between

the transport plan and the cost matrix is displayed on the third axis. The α axis allows to move

from C1 to C2. Similarly the β axis allows to move from T ∗1 to T ∗2 . In both axes, all the possible

matrices are represented.

Cited on page [55]

Third, contrary to the original OT problem, the optimal transport plan T ∗ is often a convex

combination of the edge point of the polytope. We can clearly see such behavior on a very

simple example. We consider uniform marginals and a finite set of cost matrices: let C1 and C2
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be two cost matrices defined as,

C1 =

(
1 0

0 1

)
,C2 =

(
0 1

1 0

)
. (3.6)

With either C1 or C2, we obtain to a Wasserstein distance of 0, with T ∗1 and T ∗2 defined as,

T ∗1 =

(
0 0.5

0.5 0

)
,T ∗2 =

(
0.5 0

0 0.5

)
. (3.7)

As shown on Figure 3.2, if we note the convex set generated by the two cost matrices αC1 +

(1 − α)C2, the best value is obtained for α = 0.5. Similarly, the best choice for the optimal

transport plan is T ∗ = βT ∗1 + (1− β)T ∗2 with β = 0.5. Thus, the third point in Proposition 2 is

key to have access to the exact transport plan T ∗ as it is (often) not simply on the edge of the

polytope.

Algorithm 4 Cutting set method for RKP(Π, C) with constraint elimination. Cited on pages

[59,59,113]

1: Input: maxIt, C, P0⊂Π, thd1, thd2

2: t, l← 0

3: err, ω−1 ←∞
4: while t<maxIt and err>thd1 and ωt−1−ωt

ωt−1
>thd12 do

5: Solve (3.5) to obtain (ωt,Ct),Q

6: for l in {0, ..., |Pt| − 1} do
7: if ql ≤ thd2 then

8: Pt ← Pt \ {Tl}
9: Q← Q \ {ql}

10: end if

11: end for

12: Find Tt ∈ argminT∈Π 〈T ,Ct〉
13: l← max(l, 〈Tt,Ct〉)
14: err ← (ωt − l)/l
15: Pt+1 = Pt ∪ {Tt}
16: t← t+ 1

17: end while

18: return
∑|Pt|−1

l=0 qlTl, Ct

Our final algorithm, inspired by (Mutapcic and Boyd, 2009, Section 5.1), takes advantage

of Proposition 2 and boils down to alternately performing the following two steps for t ∈
{0, . . . ,maxIt}:

Step 1. Find Ct solving (3.5) over (Pt, C), where Pt is a finite subset of Π; let ωt be the value at

the solution.
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Step 2. For a fixed matrix Ct obtained at Step 1, find Tt ∈ argminT∈Π 〈T ,Ct〉.

Step 2 of each iteration can make use of any efficient algorithm for solving the classic unregularized

optimal transport. Empirically, we observed that even the approximate solutions obtained

by solving the entropy regularized formulation of the optimal transport problem ensure the

convergence. We further use the constraint dropping strategy (Mutapcic and Boyd, 2009,

Sec. 5.3.2) and provide a complete pseudo-code for our algorithm in Algorithm 4, where thd1 and

thd2 respectively control the stopping criterion and the constraint elimination. The proposed

algorithm is generic and can also be used to solve the problems underlying the SRW and StrOT

distances seen previously. Moreover, it acts as a meta-algorithm by implicitly choosing (or

learning depending on the construction of the set C) the “right” cost function. This differs from

other existing methods on learning the cost matrix in the OT framework (Cuturi and Avis, 2014;

Zhao and Zhou, 2018) that usually learn this latter using the a priori similarity between the

histograms.

Finally, Algorithm 4 is guaranteed to converge in a finite number of iterations with the latter

being upper-bounded thanks to the following proposition.

Proposition 3. Let T be the number of iterations required by Algorithm 4 to reach error

err(T ) ≤ thd1. Then,

T ≤
(

diam∞ (C) + RKP(P0, C)
2.thd1

+ 1

)dim(C)+1

where diam∞ (C) := supC1,C2∈C,i,j
∣∣C1

ik −C2
ik

∣∣ and dim(C) is the dimension of the affine hull of

C. Also, ∀t ≥ 0, we have that 0 ≤ RKP(Pt, C)− RKP(Π, C) ≤ err(t).

Proof idea. We adapt the proof technique presented in (Mutapcic and Boyd, 2009, Section 5.2)

to our case, after re-writing the right hand side of Equation (3.4) as

min
C∈C

max
T∈Pt

(−〈T ,C〉)

to make our problem coincide with the authors’ formulation.

This theorem offers interesting insights regarding the convergence speed of the proposed

algorithm. First, it introduces the dependence of the latter on diam∞ (C), which can be

interpreted as a degree of disagreement between the cost matrices in C so that one may need

more iterations to reach precision err when they disagree. Second, the presence of the value of

the initial nominal problem RKP(P0, C) reflects the influence of the initialization P0. Finally,

when C lies in a subspace of a much smaller dimension than I×K (i.e., in case of the Mahalanobis

distance, C is the image of D ×D matrices by a linear mapping, while for the finite number of

matrices, dim(C) is dim(span(C1, ...,CM )) − 1) , the algorithm needs much less iterations as

highlighted by the presence of dim(C) in the exponent.
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3.3.4 Variations for different choices of C

Below, we express the maximization problem (3.5) over Pt × C at step t ≥ 0 of Algorithm 4, for

both choices of C considered in Section 3.3.2, in a more convenient way.

Proposition 4 (Finite set C). Let C = Conv ({C1, ...,CM}). Then, for t ≥ 0, solving the

problem given in Equation (3.5) over Pt × C is equivalent to the following linear program

min
p∈RM+

1
>
Mp

s.t.Gp ≥ 1|Pt|, (3.8)

where G ∈ R|Pt|×M with Glm = 〈Tl,Cm〉. Moreover,

C∗ =

∑M
m=1 p∗mCm∑M
m=1 p∗m

, T ∗ =

∑|Pt|
l q∗l Tl∑|Pt|
l q∗l

,

where p∗ and q∗ are optimal solutions of (3.8) and its dual.

For the case of the infinite family of Mahalanobis distances, we propose a more general result

that considers the following set of non-centered Mahalanobis distances:

CC = {C + EM ∈RI×K |EM
ik = (xi − yk)>M(xi − yk); M ∈ SD×D+ ; ‖M‖p≤r}. (3.9)

for an arbitrary radius r > 0.

Proposition 5 (Non centered family of Mahalanobis distances). For a fixed C, let CC be defined

as in Equation (3.9). Then, for t ≥ 0, solving Equation (3.5) over Pt × CC, is equivalent to

solving the following convex program,

min
T∈Conv(Pt)

r ‖VT ‖q +
∑
ik

TikCik. (3.10)

Moreover, if T ∗ is an optimal solution of (3.10), then M∗ is as in Equation (1) with π replaced

by T ∗.

In the following, we consider the case of p = 2 and in this case, by Corollary 1, M∗ is

PSD even without imposing such a constraint. We keep p = 2 mainly because it is the most

common setting and the efficient library CVXPY (Diamond and Boyd, 2016; Agrawal et al.,

2018), used to solve Equation (3.10) at each iteration, covers only the Schatten q-norm for q = 2

or q = 1. For the other values of q we use a Frank Wolfe algorithm (Frank et al., 1956) to solve

Equation (3.10) at each iteration. We can see some results with such a method on Figure 3.1.

3.3.5 Towards the notion of stability of cost matrices

In this section, we define a new notion of OT stability for a cost matrix C based on a non-centered

convex set CC.
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Figure 3.3: Illustration of the notion of matrix cost stability. Every matrix Cm is normalized

so as to get a matrix C̃m which lies on the norm-2 sphere. C̄m is the minimizer of Problem 3.4.

The stability (Definition 1) comes from the difference of the cost transports induced by C̄m and

C̃m.

Cited on page [58]

Definition 1. For a cost matrix C and its associated convex set CC introduced in (3.9), for

some r > 0, we define the stability WSC,r as follows:

WSC,r =WCC(µ, ν)−WC(µ, ν)

=min
T∈Π

max
‖M‖≤r

〈
T ,C + EM

〉
−min
T∈Π
〈T ,C〉 .

Roughly speaking, Definition 1 tells us that the Wasserstein distance between µ and ν

associated with a stable cost matrix C should not differ much from the Wasserstein distance

calculated based on the worst cost matrix in the neighborhood of C. Note that the latter is

defined as a Mahalanobis ball allowing us to define the stability of C w.r.t. the finite sets X
and Y . To be able to compare different stabilities for a family of cost matrices (Cm)m∈J1,MK, we

normalize each Cm either by diving its elements by its Frobenius norm or by the associated

transport cost WCm(µ, ν). Figure 3.3 illustrates the intuition behind the notion of cost matrix

stability where the Frobenius norm is used for the normalization.

3.4 Experiments

In this section, we first illustrate our algorithm’s speed of convergence and compare it to solving

the original LP problem from (3.5). Then, we reproduce a simulated problem from (Paty and

Cuturi, 2019a) to assess the algorithm’s ability to correctly identify the subspace of a lower

dimensionality in which the transformation between the two samples lies. In what follows, we

concentrate on comparing our approach with the authors’ implementation of SRW while leaving

aside the comparison with StrOT for which the implementation is not publicly available. The

second part of our experiments is related to the notion of stability defined in Section 3.3.5.

We first bring to light a correlation between the stability and the noise resistance of a cost
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matrix. Then, we show that selecting the most stable matrix allows to efficiently transport

colors between two images in a color transfer task. The code for the different experiments is

available on this link3.

3.4.1 Convergence and execution time

We consider the case where C is the set of convex combinations of a given number of cost matrices

denoted as |C|. The convergence of Algorithm 4 is illustrated in Figure 3.4 (left) by plotting

the evolution of the quantity err(t) := |ωt − 〈Tt,Ct〉| along the iterations for |C| ∈ {10, 40, 90}.
From this plot, we see that the convergence becomes slower as |C| grows, which is expected

because ωt is the value at the solution of Problem (3.5) over Conv (Pt) × C. Second, for

|C| = 10, Algorithm 4 already achieves an error err(t) ≤ 10−10 after t = 100 iterations. This

confirms that Pt does not have to grow until it becomes the whole set of vertices of Π, as

|P100| ≤ |P0|+ 100� N ! = 100!. We also test our algorithm with the entropic regularization

of the transport matrix with ε ∈ {1, 0.1, 0.01} as regularization parameter, using Sinkhorn

algorithm (Cuturi, 2013) for |C| = 40. For this setting, we initialize it with P0 = ab> for any

ε > 0, as this set P0 is included in the feasible set of entropy-regularized transport (as suggested

in the discussion of Proposition 2). Interestingly, we have noticed that the algorithm does

not converge if P0 is a subset of the vertices of transportation polytope Π in the regularized

case. The results of this experiment are reported in Figure 3.4 (middle), where we observe the

convergence even with the entropy regularization. Additionally, we note that due to the linearity

of the mapping 〈·,T 〉 for all T ∈ Π, Problem (3.2) can be reformulated as the following LP:

min
T∈Π,η≥0

η,

s.t. 〈T ,Cl〉 ≤ η ∀1 ≤ l ≤ d.

It turns out that this is nothing more than the dual of Problem (3.5). Under this formulation,

solving RKP(Π, C) becomes tractable for m = n = 100 and |C| ∈ {10, 20, ..., 90} and allows us

to compare the execution time of solving the LP problem to that of our algorithm in Figure 3.4

(right). As the number of candidate matrices grows, our algorithm becomes much more efficient

than solving the full LP problem. This is rather expected since at each iteration, it solves a

linear program with much less constraints (the problem is restricted to Conv (Pt)× C instead of

Π× C) and it leverages efficient algorithms for solving the OT problem (1.6).

3.4.2 Comparison to SRW

In this series of experiments, we consider the fragmented hypercube dataset studied in (Paty

and Cuturi, 2019a) and earlier in (Forrow et al., 2019) and compare RKP to both the SRW

and the Wasserstein distances. To proceed, let (el)l∈J1,DK be the canonical basis of RD and

let (xi)i∈J1,IK and (yk)k∈J1,KK be two finite sets drawn i.i.d. from the uniform distribution over

3https://github.com/sofiendhouib/minimax_OT.
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Figure 3.4: (left) Evolution of the error along the iterations for |C| ∈ {10, 40, 90}; (middle)

Evolution of the error with a regularization parameter ε ∈ {1, 0.1, 0.01}; (right) Execution time

of our algorithm vs solving the original LP problem with |C| ∈ {10, 20, ..., 90} and n = m = 100.

The experiments are repeated 30 times. The median and the interval between the first and third

quartiles are reported.

Cited on pages [59,59,59]

the D-dimensional hypercube U([−1, 1]D) and its pushforward distribution under the mapping

f : x 7→ x+ 2 sgn (x)� (
∑d

r=1 er), where � denotes elementwise multiplication and d ∈ J1, DK,
respectively. Therefore, by construction, there are d relevant features and D − d features that

contain no useful information. Depending on the choice of C, two cases of our algorithm are

tested: 1) squared Euclidean distance after projecting on all combinations of two vectors of

the canonical basis C = {Cs,l ∈ RI×K |(Cs,l)ik = ((xi − yk)>(es + el))
2; 1 ≤ s < l ≤ D} and 2)

the Mahalanobis ball centered at 0 as defined in Section 3.3.2. Note that in this latter case

rank(M∗) = d.

Figure 3.5 (left) reproduces the experiments of (Paty and Cuturi, 2019a) and shows that the

original OT (bottom left) is sensitive to noise, while both SRW and RKP (for the 2 configurations

considered) are able to recover the true pushforward transformation. However, while SRW

requires a hyperparameter d to constrain the rank of the Mahalanobis matrix, our method is

parameter-free since d is found automatically as illustrated in Figure 3.5 (middle). In this figure,

we plot the eigenvalues of M∗ for different values of d and observe that the eigengap between

the d largest eigenvalues and the (d+ 1)th eigenvalue clearly reveals that rank(M∗) = d.

3.4.3 Stability and noise sensitivity

Below, we illustrate the correlation between the cost matrix stability and the sensitivity of the

Wasserstein distance to the presence of noise using both toy and a real-world datasets. The

latter one is composed of 100 zeros and 100 ones coming from the MNIST dataset, after reducing

its dimensionality to 10 with UMAP (McInnes et al., 2018). The former consists of 100 points

drawn from two 10-dimensional Gaussian distributions centered at 010 and 3× 110 respectively

with unit variance. For both datasets, we generate a family of cost matrices (Cm)m∈J1,50K based

on random Mahalanobis distances with different norms, normalize them so that their Frobenius

norm equals 1 and compute WSCm,r=0.01 from Definition 1 for all m. To introduce noise to

each Cm, we add a random Mahalanobis cost matrix EN with ‖N‖2 = r to it and compute the
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Figure 3.5: (left) Results obtained on the fragmented hypercube for I = K = 250, D = 30 and

d = 2 with (top row) our approach with 2D projections and Mahalanobis distances; (bottom

row) Original OT problem and SRW method of (Paty and Cuturi, 2019a); (middle) Sorted

eigenvalues of M∗ obtained using RKP averaged over 100 runs for different values of k reveals a

phase transition between d dominant and the d+ 1 eigenvalues; (right) Correlation between the

stability and the sensitivity to noise.

Cited on pages [60,60,61]

Figure 3.6: Source (ocean) and target (sky) images considered as probability distributions.

Cited on page [61]

noise sensitivity defined as:

NSCm =

∣∣∣∣min
T∈Π
〈T ,Cm〉 −min

T∈Π

〈
T ,Cm + EN

〉∣∣∣∣ .
Note that we apply a Mahalanobis noise which has the advantage of taking into account the

point distributions and can be applied on any matrix Cm. Figure 3.5 (right) presents the results

of this experiment averaged over 200 runs and shows a clear correlation between the stability

and noise sensitivity indicating that the most stable matrices are more noise tolerant. Other

experiments on the MNIST dataset provided in Appendix B show a similar behavior.

3.4.4 Color transfer

In this last experiment, we show how we can benefit from the notion of stability to address

a color transfer task where the goal is to transfer the colors from a blueish sky image to the

reddish ocean image shown in Figure 3.6. Here, we use OT between the sets of pixels in the

RGB space extracted from both images. For the sake of efficiency, we consider only 200 pixels

from each image and generalize the obtained OT mapping to the remaining pixels following
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Figure 3.7: Cost matrices sorted by Wasserstein stability. The first 50 are Mahalanobis cost

matrices, while the last 50 are random cost matrices.

Cited on pages [61,61]

the method detailed in (Ferradans et al., 2014). As before, we use (Cm)m∈J1,50K as meaningful

cost matrices and add 50 completely random matrices that are unrelated to the considered task.

The results of this experiment given in Figure 3.7 show a significant gap in terms of stability

between the Mahalanobis matrices (the first 50 matrices on the x-axis) and the random ones

(the last 50). This tends to highlight the fact that the stability can be used as a criterion to

select a good cost matrix, and therefore to induce a relevant Mahalanobis distance. This also

holds in terms of visual perception as illustrated in Figure 3.7. Even if the most stable matrix is

visually very similar to the Euclidean one, a finer evaluation reveals more discontinuities in the

center of the picture, on the water.

3.5 Conclusion

In this chapter, we studied a general formulation of the minimax OT problem that consists in

optimizing over the coupling matrix w.r.t. the worst cost function from a certain convex set

of cost functions. When the latter is given by an infinite family of Mahalanobis distances, we

highlight the relation of the considered problem with the existing formulations and characterize

the different features of its solutions. We further showed how the underlying optimization

problem can be solved in practice using a variation of a cutting set algorithm with theoretical

guarantees regarding its convergence speed. Finally, we defined a new notion of stability for

cost matrices in OT based on the studied minimax problem and revealed a correlation between

this stability and the noise resistance of the matrices. This leads to a criterion that can be

used to select a relevant cost function which has been shown to be efficient on both toy and

real-world data. A promising line of research might be to find the most stable cost matrix from

a continuous set.
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Chapter 2 and Chapter 3 both proposed a way to find a good cost matrix for the OT problem.

In the next chapter, we focus on the Gromov-Wasserstein (GW) extension. Before learning

any loss function for the GW problem, we can notice that the existing solvers are inefficient to

approximate the GW distance with complex losses. The next chapter aims to fill this gap.
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Chapter 4

Sampled Gromov Wasserstein

Abstract

The two previous chapters focused on providing a good ground metric for the standard
Optimal Transport setting. This chapter addresses the Gromov Wasserstein (GW) problem
as an extension of the Wasserstein distance to incomparables spaces. It is based on the
paper “ Sampled Gromov Wasserstein” published in the Machine Learning Journal and
presented at the ECML-PKDD 2021 conference (Kerdoncuff et al., 2021). To deal with
probability measures lying in different spaces, the Gromov Wasserstein distance, presented
in Section 1.1.3, only considers intra-distribution pairwise (dis)similarities. However, for
two (discrete) distributions with N points, the state of the art solvers have a O

(
N4
)

time complexity when using an arbitrary loss function, making most of the real world
problems intractable. In this chapter, we introduce a new iterative way to approximate GW,
called Sampled Gromov Wasserstein, which adapts the stochastic Frank-Wolfe algorithm to
the GW case. This simple idea, supported by theoretical convergence guarantees, comes
with a O

(
N2
)
solver. A special case of Sampled Gromov Wasserstein, which can be seen

as the natural extension of the well known Sliced Wasserstein to distributions lying in
different spaces, reduces even further the complexity to O (N log(N)). This chapter ends
with experiments on synthetic and real datasets.

4.1 Introduction

Even though the square Euclidean distance is used most of the time to compare points of the

distributions in an OT problem, we have seen in the two previous chapters that various other

ground metrics can be naturally used or learned to better capture the idiosyncrasies of the

application at hand: the Mahalanobis distance (Paty and Cuturi, 2019a), the Earth mover’s

distance in computer vision tasks, or concave functions in economy such as the square root of the

Euclidean distance (Delon et al., 2012), etc. Whatever the cost function, it is worth noting that

the OT problem has been originally formulated so as to deal with distributions that are required

to lie in the same space. To relax this constraint, we have seen in Chapter 1 a distance between
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metric spaces, named Gromov Wasserstein (GW), has been introduced in (Memoli, 2007). It

takes the form of the generalization of the well-known Quadratic Assignment problem (Beckman

and Koopmans, 1957) with any distribution (Mémoli, 2011) and any loss function (Peyré et al.,

2016). The intuition is still to align points between two distributions but the method only relies

on pairwise distances, in each space separately. This allows notably to take into account the

structure of each distribution while being invariant to rotation and translation.

From an algorithmic perspective, most of the methods used to solve the GW problem resort

to the entropic approximation (EGW) of the original GW formulation introduced in (Peyré et al.,

2016) and based on a projected Mirror Descent according to the Kullback Leibler divergence.

While a naive implementation of the original GW problem leads to a O
(
N4
)
complexity, Peyré

et al. (2016) further show that one can compute GW in O
(
N3
)
operations for a certain class of

losses. Some other attempts have been recently proposed in the literature to speed-up the GW

calculation. Sliced Gromov-Wasserstein (SGW) (Vayer et al., 2019b) takes inspiration from the

Sliced Wasserstein distance (Rabin and Peyré, 2011) by projecting each distribution in a 1D line

and then solving the 1D Gromov-Wasserstein problem efficiently in O (N log(N)). The Anchor

Energy (AE) distance from Sato et al. (2020) , is also related to the GW distance but simplifies

the problem into N2 linear sub-problems and thus does not approximate the GW distance. The

overall time complexity for solving AE is O
(
N2 log(N)

)
. Scalable Gromov-Wasserstein Learning

(S-GWL) (Xu et al., 2019a) decomposes recursively the two large probability measures into a set

of small pairwise aligned distributions using a common Gromov-Wasserstein barycenter (Peyré

et al., 2016). The final transport plan of S-GWL is the aggregation of the result of GW on

each small aligned distributions. Instead of using a GW barycenter, (Blumberg et al., 2020)

simply uses a classical partition clustering on the points in a vector space. A recent variant of

this algorithm, proposed by Chowdhury et al. (2021), uses a 1D Optimal Transport method to

approximate the alignment on each small distribution instead of relying on the GW distance. As

those three methods are highly related, we will only adapt S-GWL to any loss in the experimental

part.

In this chapter, we aim at overcoming the main algorithmic bottleneck of EGW: the

multiplication of a 4D tensor with a 2D matrix, which we interpret as an expectation over

matrices. We leverage this interpretation, using sampling to approximate the expectation instead

of computing it entirely, reducing the complexity to O
(
N2
)
. Unlike SGW and AE which

propose simplified distances, we optimize the original GW distance. Unlike EGW and S-GWL

which have speedups for specific loss functions, we lower the complexity with any loss function.

We obtain a generic algorithm, called Sampled Gromov Wasserstein, supported by theoretical

convergence guarantees. We further show that when the number of sampled matrices is 1, the

particular 1D case of the OT can be used to compute an update in O (N log(N)). This version,

called Pointwise Gromov Wasserstein, overcomes most of the limitations of SGW (Vayer et al.,

2019b) detailed in Section 4.3, while still being very fast. Our contributions are supported by

experiments on synthetic and real datasets. Interestingly, those experiments show evidence that
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our method outperforms the state of the art when it comes to finding the best compromise

between the computation time and the quality of the distance. This behavior takes its origin

from (i) the stochastic nature of our method which can reduce the risk to get stuck in local

minima and (ii) the fact that the other approaches do not scale well. An experiment on a graph

classification task shows that being able to change the loss function without degrading the

algorithm complexity is of high interest for finding the one that best fits the problem at hand.

This chapter is organized as follows: Section 4.2 details the notations and the necessary

background on GW. Section 4.3 covers the state of the art approaches for solving the underlying

problem. Section 4.4 presents our Sampled Gromov Wasserstein algorithm, derives convergence

guarantees for it, and introduces our very fast specialized variant called Pointwise Gromov

Wasserstein. Experiments are detailed in Section. 4.5.

4.2 Background on Gromov Wasserstein (GW)

In this chapter, the notations defined in Chapter 1 still hold but we shortly remind the main

elements of the GW distance. Let (X , CX ) be a compact metric space where X is a set included

in a vector space and CX its associated metric. Let µ be a distribution with finite p-moment

on (X , CX ). Similarly, (Y, CY) denotes another compact metric space and ν a distribution with

finite p-moment on that space. While the OT problem requires the two distributions to lie in

the same space, the GW distance allows to compare distributions in different metric spaces. Let

L be a bounded loss function which allows the comparison of two distances. GW (Mémoli, 2009,

2011; Peyré et al., 2016) is defined as follows:

GW
(
CX , CY , µ, ν

)
= min

π∈Πµν

∫
(X×Y)2

L
(
CX (x, x′), CY(y, y′)

)
dπ(x, y)dπ(x′, y′). (4.1)

The discrete case (see Fig. 4.1) can be formulated as:

GW
(
CX , CY , a, b

)
= min
T∈Πµν

I,I∑
i,j=1

K,K∑
k,l=1

LijklTikTjl, (4.2)

where Lijkl = L
(
CX (xi, xj), CY(yk, yl)

)
. The bounded property of L is always verified as

long as CX , CY and L are real value functions and both X and Y are bounded. Assuming

that the two cost functions CX and CY are symmetric, we recall the following notations:

E(A,A′) := E(A′,A) :=
∑I,I

i,j=1

∑K,K
k,l=1LijklAikA

′
jl and E(A) := E(A,A).

4.3 Approaches to solve GW

We describe here the most used method for solving GW, namely Entropic Gromov Wasserstein,

as well as two other approaches that aim at lowering the time complexity of the former. As all

these methods use an iterative optimization, for the sake of simplicity, we omit in this section

the number S of iterations (of the outer loop).
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L (CX (xi, xj), CY(yk, yl)) TikTjl

Figure 4.1: Illustration of GW, with only one term Lijkl of the quadruple sum of Eq. (4.2).
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Entropic Gromov Wasserstein (EGW) As explained in Section 1.3, to solve an approx-

imation of Problem (1.22), the authors of (Peyré et al., 2016) generalize the idea introduced

in (Solomon et al., 2016) by using a gradient descent step followed by a projection, both according

to the Kullback Leibler (KL) divergence. This Mirror Descent algorithm is applied on the

regularization GW problem:

GW
(
CX , CY , µ, ν

)
= min
T∈Πµν

I,I∑
i,j=1

K,K∑
k,l=1

LijklTikTjl − εH(T ). (4.3)

This boils down to a two-step loop. First, from the current estimation of the transport plan T ,

a new matrix defined as Λjl =
∑I,K

i,k=1LijklTik is computed, and which can be seen as a cost

matrix induced by the current matching T . Second, a new estimate of the transport plan is

obtained by solving the following entropy regularized OT problem:

min
T∈Πµν

〈Λ,T 〉 − εH(T ). (4.4)

When the loss L(CX , CY) can be decomposed as f1(CX ) + f2(CY) − h1(CX )h2(CY) for some

functions (f1, f2, h1, h2), it is shown that the Λ matrix can be computed in O
(
N3
)
. This notably

holds for the square loss and the KL divergence. However, in the general case, the complexity is

O
(
N4
)
, making this method intractable as N grows, as shown in our experiments.

Sliced Gromov-Wassertein (SGW) In (Rabin and Peyré, 2011), the authors introduce an

alternative metric, called Sliced Wasserstein distance, which uses random 1D-projections. The

advantage of this method lies in the fact that the 1D OT Problem (1.6) can be simply solved

by sorting both empirical distributions (in O (N log(N))) and matching the sorted lists (see

Section 1.1.2 for further details). In a similar manner, Sliced Gromov-Wasserstein (SGW) (Vayer

et al., 2019b) projects each distribution in a common 1D space and solve the Gromov-Wasserstein

problem (4.2) in this 1D space efficiently. While being very fast to compute, SGW comes with

some limitations: (i) it cannot be used in general on graphs because a feature representation

is needed to allow the 1D projection, (ii) it does not output an explicit transport plan which

can be a pitfall in some applications like domain adaptation, (iii) it does not approximate the

original GW distance and (iv) it is not naturally invariant to rotation (although the authors
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propose a solution by repeatedly calling SGW). Note that while SGW’s theoretical result and

the O (N log(N)) time complexity are relying on the square loss, its algorithmic approach can

be adapted to handle arbitrary losses. This adaptation results in a O
(
N2
)
time complexity.

Scalable GW Learning (S-GWL) Scalable Gromov-Wasserstein Learning (Xu et al., 2019a)

aims at making GW tractable to large scale graph analysis. It recursively decomposes the two

original graphs into a set of smaller sub-graph pairs, using Gromov-Wasserstein barycenters (Peyré

et al., 2016). Then, these sub-graphs are matched. The transport plan is updated with a proximal

gradient method regularized with a KL divergence. The time complexity is O
(
N2 log(N)

)
when the cost matrices CX and CY are not sparse and L is the square loss. However, with an

arbitrary L, the gain in complexity does not hold anymore because S-GWL cannot leverage the

closed-form solution for the barycenter calculation.

4.4 Scalable GW optimization

We aim to address, in this section, the algorithmic bottleneck of EGW (Peyré et al., 2016) which

prevents its use on large scale problems. We propose to compute the GW distance by applying a

Frank-Wolfe (FW) algorithm which requires to solve an OT problem from a cost matrix seen as

the expectation of a random variable. This allows us to propose a sampling strategy and thus to

use a stochastic FW, to drastically reduce the algorithmic complexity of GW. We introduce our

algorithm, called Sampled Gromov Wasserstein (SaGroW), and then derive its convergence

guarantees.

We also present some special cases and a variant of SaGroW: Pointwise Gromov Wasserstein

(PoGroW) which leverages very efficient 1D OT solvers but does not exhibit the drawbacks of

SGW, and SaGroWKL a version using a Kullback-Leibler regularization. We finally show that

an appropriate sampling strategy can be also be used to accurately and efficiently approximate

the GW distance from a known transport plan.

4.4.1 Sampled Gromov Wasserstein (SaGroW)

It is known that the GW problem as described in Eq. (4.2) is not convex in general and thus

difficult to solve. We propose to use a FW algorithm, which has the advantage of reducing the

problem to several linear ones. At a given point T , to find the direction given by the gradient,

we need to find T ′ such as,

min
T ′∈Πµν

〈
∇T E(T ),T ′

〉
= min
T ′∈Πµν

〈
I,K∑
j,l=1

TjlL·j • l,T
′

〉
(4.5)

where L.j.l is an extracted matrix i.e., (L.j.l)ik = Lijkl.

As the transport plan T sums to 1, we can interpret it as (the parameters of) a categorical dis-

tribution on pairs of points (j, l), or equivalently on the associated matrices L.j.l. We thus define
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a random variable Λ on matrices, defined1 by the distribution P(Λ = L.j.l) = Tjl ∀(j, l) ∈ J1, NK2.
Leveraging this random variable, the cost matrix

∑
j,l TjlL.j.l used in problem (4.5) can be seen

as the expectation of Λ. Therefore, the problem can be rewritten as follows:

min
T ′∈Πµν

〈
E [Λ] ,T ′

〉
. (4.6)

While solving this problem is still in O
(
N4
)
in general, it presents the advantage of opening

the door to a sampling strategy allowing a reduction of the complexity. Indeed, rather than

computing the entire expectation E [Λ], we suggest here to calculate an approximation by

sampling M matrices {Cm}Mm=1. To get a matrix Cm drawn according to the distribution of Λ,

it suffices to sample two indices (jm, lm) following the weights of the matrix T . Consequently,

Cm takes the form of the matrix L.jm.lm . Using these sampled matrices, Problem (4.6) can be

approximated as follows:

min
T ′∈Πµν

〈
1

M

M∑
m=1

Cm,T ′

〉
. (4.7)

This approximation comes with two main advantages: (i) it allows a reduction of the computation

time of the GW problem and (ii) similarly to a mini batch gradient descent, it might avoid

being stuck in local minima and thus might lead to a better transport plan. Even though

Problem (4.7) can be solved efficiently with any OT solver, our approach resorts to the Sinkhorn

method (Cuturi, 2013) leading to a time complexity of O
(
(M + P )N2

)
due to summing over

M matrices and P iterations of the Sinkhorn algorithm. Due to the Sinkhorn method used, our

approach is not totally a stochastic FW method. However the provided convergence proof to

stationary point will still follow the same lines as the FW proofs (Reddi et al., 2016).

Algorithm 5 gives the pseudo-code of Sampled Gromov Wasserstein (SaGroW). In the

absence of prior, the transport plan T0 is initialized to the joint distribution ab> (line 1). At

each iteration, M pairs of indices (jm, lm) are sampled from the current transport plan Ts
(line 3). Then Λ̂, the approximation of the gradient E [Λ], is computed (line 4) and used in an

entropic regularization-based OT problem (4.4) solved using the Sinkhorn algorithm, yielding

the plan T ′s (line 5). Similarly to the FW algorithm and to ensure that T ′ stays close to T , line 6

performs a partial update (1−α)Ts +αT ′s. This update, inspired by the Frank-Wolfe algorithm,

allows us to derive theoretical guarantees (see next section). Notice that Algorithm 5 returns a

single transport plan and thus aims at minimizing the original GW problem. In practice, other

strategies can be used: as the previous plan Ts and the optimized T ′s can be interpreted as

distributions, line 6 can be omitted and replaced by a KL regularization (on line 5) between

them, as detailed in Section 4.4.4.

We can notice, that for a new loss L that would be used, only the simple definition of L is

needed. On the other hand, EGW requires (i) to know if the function L can be decomposed in

a certain way and, if possible, (ii) to implement each of the 4 functions (f1, f2, h1, h2) separately.

The simplicity of SaGroW can be useful for further use in practical applications.
1The definition is not rigorous: two matrices L.j.l and L.j′.l′ may be equal, and then the probabilities add up.
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We end this section by noting that when the expectation is fully computed in SaGroW (i .e.,

M = ∞ and “M = N2” in terms of complexity as sampling becomes useless) and α is set to

1, our method is strictly equivalent to the two steps loop of EGW described in Section 4.3.

This connection will be used advantageously in the next section by deriving new convergence

guarantees for EGW when the GW problem is concave. In the theoretical results and the

experiments we use the sampling with replacement but for values of M close to N2 the sampling

without replacement should be a better choice.

Algorithm 5 SaGroW Cited on pages [70,70,71,72,76,121,122,124]

Require: a, b (probability vectors of µ and ν), CX , CY (cost matrices), L (loss function), M

(number of samples), ε (entropy regularization), α (partial update weight)

1: T0 = ab>

2: for s= 0 to S-1 do

3: (jm, lm) ∼ Sample(Ts) ∀m ∈ J1,MK

4: Λ̂ik = 1
M

∑M
m=1 L(CXi,jm ,C

Y
k,lm

) ∀i, k ∈ J1, NK
5: T ′s = solve the regularized OT problem (a, b, Λ̂, ε)

6: Ts+1 = (1− α)Ts + αT ′s

7: end for

8: return TS−1

4.4.2 Convergence analysis

In this section, we aim at studying the convergence of Algorithm 5. Note that convergence

guarantees have been already derived for EGW in (Peyré et al., 2016). However, based

on Rangarajan et al. (1999), this convergence has been proven only when L produces a convex

problem or when the entropy regularization term in really high. Unlike Peyré et al. (2016), the

guarantees presented in this section have two main advantages: (i) they hold whatever the loss

function, (ii) they are tight for small entropy regularization. Note that other results related to

the GW problem have been recently derived in the literature. The authors of Xu et al. (2019b)

prove the convergence of their proximal point method to a stationary point as long as their

regularized GW problem can be solved perfectly at each iteration. Thus, the we don’t know how

to use such a result as the GW problem can only be approximated in practice. On the other

hand, Redko et al. (2020) provides a guarantee on the convergence of Problem (4.2) under the

condition that L yields a concave problem.

Our goal is to minimize (4.2), i.e., to minimize E(T ) under constraints on the marginals of

T . Let us now define the FW gap G(T ) as follows: G(T ) := E(T ,T )−minT ′∈Uµν E(T ,T ′). In

a non convex setting, T is a stationary point of E(T ) if and only if G(T ) = 0 (Reddi et al.,

2016). The goal of our Theorem 3 is to provide a guarantee on the convergence of G(T ) with T

uniformly sampled from (Ts)s∈J0,S−1K. The convergence is proven on average over these sampling.

A practical implementation will naturally take only the last transport plan, TS−1, and avoid
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unnecessary computations.

Theorem 3. (Based on Reddi et al. (2016)) For any Lijkl ∈ [0, B], for any distributions µ and

ν with uniform weights a and b respectively, for any optimal solution T ∗ of Problem (4.2), on

average for the transport plan T uniformly sampled from (Ts)s∈J0,S−1K, on average over all the

samplings, the following bound holds:

E
[
G
(
T
)]
≤
√

2B (E(T0)− E(T ∗))N

S
+B

√
2N

M
+ ε log(N).

Proof. The complete proof is available in the Appendix C.1.1. It requires a novel lemma that

quantifies the difference between the Wasserstein distances obtained with and without the

entropic regularization: 0 ≤ 〈C,T ε〉 −
〈
C,T 0

〉
≤ ε log(N). We also prove that E(T ) is 2N2-

smooth and we bound the difference between two transport plans: ‖T − T ′‖F ≤
√

2
N . Those

two results allow us to adapt the proof of Theorem 2 in (Reddi et al., 2016) where our new

Lemma is useful as the entropy regularized solvers do not find the exact OT minimum.

While our bound cannot be explicitly computed as T ∗ is unknown, it gives meaningful

information about Algorithm 5. First of all, it prompts us to initialize T0 so as to get E(T0) as

close to E(T ∗) as possible. Without any prior information, ab> (the uniform plan) appears to

be a reasonable choice to avoid degenerated cases. Regarding the regularization parameter, if ε

is not small enough, the convergence to a stationary point is not guaranteed. On the other hand,

we can note that the number of sampled matrices M appears in only one term of the bound.

Therefore, the costly complete computation of the expectation (M =∞) would not guarantee

the convergence while leading to a O
(
N4
)
complexity. Thus, our bound prompts us to find a

compromise between the number of samples M and the number of iterations S.

As the GW problem has been shown in (Redko et al., 2020) to be often concave, especially

with the square loss and the euclidean distance on both spaces, the following Theorem 4 gives a

second bound dedicated to address the specific concave case. This result presents the major

interest of providing an asymptotic convergence to a stationary point for EGW in this concave

case, as the proofs proposed in (Peyré et al., 2016) only cover the convergence of EGW and only

for high values of ε.

Theorem 4. With the same notations as in Theorem 3 with the entropy regularization parameter

εs that may now change along the iterations s, when L yields a concave GW problem, the following

bound holds:

E
[
G
(
T
)]
≤ E(T0)− E(T ∗)

2S
+B

√
2N

M
+

1

S

S−1∑
s=0

εslog(N)

We can make the following comments from this bound. First, the convergence is better in

the concave case as, unlike in Theorem 3, the first term is now linear in S. Second, as it can be

seen in the proof (see Appendix C.1.1), it can be shown that in this concave scenario, the best
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Figure 4.2: Intuition behind PoGroW when j, l = 0, 1 are sampled from T : only the distances

to x0 in X (on the left) and to y1 in Y (on the right) characterize a pair, and then T ′ can be

computed in O (N logN) like in 1D OT.

Cited on page [73]

value for α is 1. Thus, if we completely compute the matrix Λ (M =∞), this bound applies

to EGW. For any sequence (εs)s∈N such that
∑S−1

s=0 εs is o(S), the convergence of EGW to a

stationary point is guaranteed.

When the regularization parameter ε = 0, SaGroW is strictly equivalent to a Stochastic

Frank-Wolfe (Reddi et al., 2016). Thus for ε > 0, the convergence analysis of this general

non-convex setting is very similar, except for the term that depends on ε which quantifies

the error due to the entropy regularization. Moreover, note that if ε = 0, EGW becomes also

equivalent to the Frank-Wolfe algorithm (Frank et al., 1956) when its step size α is set to 1. Since

the α parameter in our algorithm plays the same role as that of the step size of the Frank-Wolfe

algorithm, we might wonder why SaGroW does not compute the optimal value using a line

search. To the best of your knowledge, in this general non convex setting, there is no convergence

guarantees towards a stationary point for a stochastic Frank-Wolfe algorithm that would make

use of the optimal step. Moreover, it is worth noting that this optimal step is expensive (O
(
N4
)

complexity) to calculate without approximation. Considering an approximation would make the

derivation of theoretical guarantees even more challenging.

4.4.3 Particular case: Pointwise GW

We focus in this section on the special case of SaGroW where only one matrix C is sampled

(i.e., M = 1) at each iteration. This variant, called Pointwise Gromov Wasserstein (PoGroW),

makes it possible to leverage a dedicated solver to reduce the algorithmic complexity of GW.

When M = 1, if we sample a position j, l from T , then we seek to minimize the following

problem:

min
T ′∈Πµν

I,K∑
i,k=1

L(CX (xi,xj), CY(yk,yl))T
′
ik. (4.8)

As illustrated in Fig. 4.2, each point in X (resp. Y) is simply defined by its distance to xj (resp.

yl), as done in papers that define a distribution using a distance to a point (Gelfand et al., 2005;

Sato et al., 2020). With a single feature per point, Problem (4.8) can be solved very efficiently
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in O (N log(N)) like a 1D OT problem: the two lists of distances can be sorted and matched.

With non-convex losses, this sorting approach is only an approximation. PoGroW can be seen

as a natural GW extension of Sliced Wasserstein where each point is described by its distance

to a chosen “anchor” (instead of a position on a line). Recall that the output of Problem (4.8) is

a transport plan. And if needed for the application at hand, the GW value can be computed in

O
(
N2
)
(see Section 4.4.5).

In summary, PoGroW has the same low complexity as Sliced Gromov Wasserstein (Vayer

et al., 2019b) but it overcomes its main limitations: PoGroW is naturally invariant to rotation; it

returns a transport plan; it approximates the actual GW distance; it works with graphs (without

having the coordinates for the vertices).

Details of the continuous version of PoGroW

In this section, we explain how to adapt PoGroW to handle continuous distributions. This addi-

tional section has not been published in the paper “Sampled Gromov Wasserstein” (Kerdoncuff

et al., 2021). The key element of this algorithm is that the continuous one dimensional OT can

be solved easily. The continuous GW distance and transport plan have already been studied

in (Vayer, 2020; Salmona et al., 2021; Le et al., 2021) in particular cases, but this is the first

attempt to approximate the transport plan and the distance for any distribution, cost matrix

and convex loss. However, we will see that the resulting GW distance is far from the optimal

one.

Let denote fµ and fν the two density functions associated with µ ∈ P(X ) (X ⊂ RD) and
ν ∈ P(Y) (Y ⊂ RD′). We will note F the cumulative density function associated with any

density function f . In addition, we note Sx,rD the D − 1 dimensional sphere centered on x ∈ X
with radius r ∈ R.

We start the algorithm with two points x0 and y0, for instance the respective mean of the

two distributions. We also set π0 to the uniform distribution. Similarly to the discrete case, at

given points xn and yn with n ∈ N, we create two one dimensional density functions fxn and

fyn such that:

fxn : R+ −→ R+

r 7→
∫
Sxn,rD

fµ(θ)d(θ)
, (4.9)

and similarly for fyn .

Then we have to apply the OT between those two functions, and as we are in a one

dimensional case, the solution can be obtained in closed form for two continuous distributions µ

and ν and with L a convex loss function. As explained in Section 1.1.2, the Optimal Transport

plan can also be described as a Monge mapping which reads F−1
yn ◦ Fxn . Both Fxn and Fyn can

be evaluated at a specific point easily by integrating fxn and fyn . Given y, the inverse F−1
yn (y)

can also be evaluated by a dichotomy search. In practice, the evaluation of the three functions

Fyn , Fxn and F−1
yn are only approximations. However, we can set a very high precision value.
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At this point, F−1
yn ◦ Fxn is only a R+ −→ R+ function, but we can use it to define the transport

plan πn+1 = (1− α)πn + απ̃n+1 between the two distributions µ and ν. We define the transport

plan π̃n with its conditional density fπ̃xn+1
for all fixed x ∈ X ,

fπ̃xn+1
(y) =


0 if ‖y − yn‖ 6= F−1

yn ◦ Fxn(‖x− xn‖)
fν(y)∫

Syn,‖y−yn‖
D′

fν(θ)d(θ)
if not . (4.10)

In other words, the conditional density fπ̃xn+1
(y) is 0 if r = ‖x− xn‖ is not matched by the

Monge mapping F−1
yn ◦ Fxn to r′ = ‖y − yn‖. If the two radius match, then the mass at this

point y is divided by all the masses in the sphere with radius r′, to have fπ̃xn+1
that sum to one.

To find the next xn+1 and yn+1 points, we sample xn+1 ∼ µ and sample yn+1 ∼ π
xn+1

n+1 .

Note that only one call to each of Fxn and F−1
yn is required at each iteration. Figure 4.3 provides

an example of mapping between two continuous distributions.

xn

x

fµ
fν

yn y′y
πn+1

fxn

r = ‖xn − x‖

fyn

r′ = ‖yn − y‖ = ‖yn − y′‖

r′ = F−1
yn ◦ Fxn(r)

Figure 4.3: (Top) Representation of the two unimodal Gaussian distributions µ and ν in their

respective space. xn and yn are the two sampled points from the previous transport plan πn and

they induce a new transport plan πn+1. This new transport plan will spread on a sphere the

mass of a point x, thus in this 1D case half of the mass is sent to y and half to y′. (Bottom)

Representation of the two density functions fxn and fyn to explain why πn+1 send the mass of

x to y and y′.

Cited on page [75]

4.4.4 A KL regularization-based variant

As the transport plan T is a distribution and most GW algorithms progressively update T , an

interesting idea is to encourage the next plan T ′ to be close (in terms of KL divergence) to the
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current estimate T . This idea, already used in (Xu et al., 2019b) based on (Xie et al., 2020), can

be applied to our SaGroW algorithm: we name this approach SaGroWKL and describe it below.

In Algorithm 5, we used partial updates to explore the transport plan space while encouraging

the new value of T to be close to the preceding one, as reflected in line 6. We suggest here a

slight modification, consisting in using a Kullback Leibler (KL) regularization between T and T ′

in line 5 and removing line 6. We showed in Section 1.3.2 that both (Peyré et al., 2016; Xu et al.,

2019b) can be seen as a projected Mirror Descent algorithm. Similarly to (Xu et al., 2019b),

SaGroW is equivalent to a stochastic projected Mirror Descent algorithm (Zhou et al., 2017;

Zhang and He, 2018; Hanzely and Richtárik, 2021), where the KL divergence is used. The only

difference comes from the stochastic approximation of the gradient. This leads to the following

sampled optimization problem,

min
T ′∈Πµν

〈
1

M

M∑
m=1

Cm,T ′

〉
+ εKL(T ′||T ), (4.11)

which can be rearranged into,

min
T ′∈Πµν

〈
1

M

M∑
m=1

Cm − εlog(T ) ,T ′

〉
− εH(T ′). (4.12)

This regularization allows to take advantage of the Sinkhorn-Knopps solver (Cuturi, 2013)

as it is similar to equation (1.8) with a cost function modified to take into account the current

prior T . Even if ε is high, the optimization might lead to a solution close to the edge of the

polytope with enough iterations which is not the case with a classical entropy regularization

without prior. The time complexity does not increase as it is still O
(
(P +M)N2

)
. As this

regularization is not specific to our method, we will also use it for EGW during the experiments

to allow a fair comparison. On the other hand, note that this regularization cannot be used

with PoGroW as it currently does not seem possible to solve 1D entropy-regularized OT in

O (Nlog(N)) (Cuturi et al., 2019). Note also that the convergence Theorem 3 does not hold

anymore with this regularization.

4.4.5 Efficient computation the GW distance from a transport plan

This section introduces and evaluates a low-complexity high-accuracy method for the estimation

of E(T ). Indeed, while SaGroW and PoGroW provide important complexity improvements,

one might argue that they only find a good transport plan T and do not provide a value for

E(T ). An exact computation of E(T ) has a O
(
N4
)
time complexity, and it would dominate

the complexity of our algorithms in applications where E(T ) is required, for example when

GW is used as a dissimilarity measure between graphs. Additionally, having an efficient way of

estimating E(T ) opens the door to selecting the best transport plan among a set of plans, e.g.,

obtained by varying the hyper-parameters or the random seed of an algorithm.

We address this issue in this section. Similar to Equation (4.6), we propose to interpret the

sums in the definition of E(T ) as the expectation of a random variable R (this time real-valued

76



Chapter 4. Sampled Gromov Wasserstein

0.0 0.005 0.01 0.05 0.1 0.5 1.0
Entropy: ε

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
GW

 v
al

ue
 : 


 (T

)

Real
Sampled
Sparse

10 20 50 100 200 500
Number of points: N

10−4

10−3

10−2

10−1

100

101

102

Co
m

pu
ta

tio
na

l t
im

e 
(s

)

Real
Sampled
Sparse

Figure 4.4: Estimated value of E(T ) as sparsity decreases due to an increasing ε regularization

in EGW (left) and evolution of the time required for its estimation as N grows (right). The

absolute loss is used in these experiments and the distributions take the form of two graphs

generated using a gaussian random partition graph (Brandes et al., 2003). For a given ε and N ,

the same T (obtained using EGW) is passed to the three considered methods: Real) an exact one

which computes completely E(T ), Sampled) our sampling method described in Section 4.4.5, and,

Sparse) a sparse approximation which keeps only the 2N largest values of T and sets the other

entries to 0. The mean and 2 standard deviations over 10 runs are displayeded on both figures.

When the standard deviation is not visible, it corresponds either to a deterministic method or a

value very close to 0.

Cited on pages [77,77,129]

instead of matrix-valued, so with a quadruple sum), with P [R = Lijkl] = TikTjl:

E [R] =

I,I,K,K∑
i,j,k,l=1

LijklTikTjl. (4.13)

Instead of simply sampling this expectation, we propose to stratify by each index i, j to improve

the quality of the estimate. Let Ui be the event “i is chosen for the first dimension of L” and

U ′j be the event “j is chosen for the second dimension of L”. Based on the marginal a and using

the law of total expectation, E [R] can be rewritten as:

E [R] =

I,I∑
i,j=1

P(Ui ∩ U ′j)E
[
R|Ui ∩ U ′j

]
=

I,I∑
i,j=1

aiajE
[
R|Ui ∩ U ′j

]
. (4.14)

For each (i, j), the conditional expectation is approximated using M samples of a random

variable Xik, defined by P(Xij = Lijkl) = P
[
R = Lijkl|Ui ∩ U ′j

]
= TikTjl. Finally, R̂ =∑

ij aiaj
1
M

∑M
m=1X

m
ij defines an unbiased estimate of the GW distance which can be computed

in O
(
MN2

)
(details about the variance estimate are provided in the Appendix C.1.3).

As shown in Figure 4.4 (left), the prediction is perfect for a sparse transport plan (ε = 0),

while still being almost perfect and much better than a naive sparse approximation of the OT

plan as ε increases. Figure 4.4 (right) confirms that this approximation is clearly faster than the

exact computation which becomes quickly intractable as N grows.
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Table 4.1: Complexity of each method with an arbitrary loss function, with S iterations, P

Sinkhorn iterations, N points in the dataset and M matrix samples. Note that the complexity

can be different for specific loss functions.

Cited on page [77]

Methods GW approximation Transport Plan E(T ) Total

EGW Yes S(P +N2)N2 N4 S(P +N2)N2

SaGroW Yes S(P +M)N2 N2 S(P +M)N2

S-GWL Yes Unknown SN2 Unknown
SGW No Unavailable SN2 SN2

PoGroW Yes SN log(N) N2 N2

Having at our disposal an efficient method for estimating E(T ), we can now fully compare, in

Table 4.1, the complexity of the state of the art methods with that of SaGroW and PoGroW, for

the general case of an arbitrary loss function. From this table, we have evidence that SaGroW

leads to a drastic reduction of the algorithmic complexity of EGW. On the other hand, PoGroW

fully benefits from the 1D projections, but unlike SGW, it provides a transport plan and does

approximate the original GW problem.

4.5 Experiments

In this section2, we first compare different GW methods on both their speed and their accuracy.

We use here the term accuracy to express the capability of the methods to minimize E(T ).

Indeed, as the exact (optimal) GW distance is unknown for a given dataset (solving this problem

is known to be NP-hard), the best method will be the one with the smallest value of E(T ).

Then, we analyze the impact of the hyperparameters, illustrating that our approach covers a

range of very good trade-offs between speed and accuracy. Using a real graph-classification task,

we finally illustrate why being able to solve GW for various loss functions is important.

Two efficient implementations of SaGroW and PoGroW are available in the Python for

Optimal Transport (POT) library (Flamary et al., 2021).

4.5.1 General setup and methods

We compare SaGroWKL and PoGroW with: (I) EGW (Peyré et al., 2016); (II) EGWKL, a KL

regularized version of EGW described in Xu et al. (2019b); (III) EMD-GW, which is similar to

EGW0, but uses the OT solver of (Bonneel et al., 2011) as the Sinkhorn algorithm (Cuturi,

2013) cannot handle a null value for ε; (IV) S-GWL (Xu et al., 2019a), adapted for arbitrary

loss functions using the optimizer of Wright (1996) to update the barycenter; (V) SGW when

2The code to reproduce all the experiments, figures and tables is available in the GitHub https://github.

com/Hv0nnus/Sampled-Gromov-Wasserstein
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Figure 4.5: Computational time of various methods to compute the distance between samples

from two mixtures of gaussians. The mean and the standard deviation over 10 runs are reported.
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the points are available, with an adaptation to arbitrary losses; (VI) the uniform transport plan,

used as a baseline.

While Section 4.5.3 will detail the impact of the hyperparameters, the next section reports, for

each method, the results obtained by the set of parameters with the lowest GW estimation. To

take into account the stochasticity of some methods the GW estimation for each hyperparameter

set is taken on average over 10 runs. ε is chosen among {0.001, 0.005, 0.01, 0.005, 0.1} for

EGW and EGWKL, and in {0.001, 0.01, 0.1, 1, 10, 100} for S-GWL. To have comparable sets

of hyperparameters, we fix some of our parameters: in PoGroW, a step of α = 0.8, and in

SaGroW, the number of samples M = 10 and a KL regularization ε = 1. Experiments in the

Appendices C.2.5 and C.2.6 show that: SaGroW is much less sensitive to ε than EGW and

α = 0.8 is a reasonable choice. The number of iterations S is chosen among {10, 100, 500, 1000}

to obtain a reasonable accuracy-speed trade-off.

This experiment compares the quality of the transport plan and the computational time

of the methods for an increasing number of points N . Each method minimizes Problem (4.2)

and returns a transport plan T (besides SGW, see below). In order to assess the quality of this

transport plan, E(T ) is then computed exactly. Notably, our GW distance approximation (see

Section 4.4.5) is not used in this first experiment. The mean and standard deviation of E(T )

over ten runs are reported.

The loss L chosen here is the absolute loss in order to show the capacity of our methods to

deal with any arbitrary loss function. We remind that EGW, S-GWL and SGW are much faster

(with speeds that are comparable to our approach) for some specific losses, such as the squared

Euclidean loss (see Appendix C.2.2 and Section 4.5.4).

To include SGW (which needs points to project) in this comparative study, a first dataset

uses µ and ν that are composed of N points sampled from two different mixtures of gaussians.

Details about the generation of the datasets are available in the Appendix C.2.1.
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Figure 4.6: GW distance estimation between samples from two mixtures of gaussians. The

mean and standard deviation over 10 runs are reported for the stochastic methods.
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mean and standard deviation over 10 runs are reported for the stochastic methods.
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4.5.2 Speed and accuracy of the GW estimate

Figure 4.5 shows, in a log-log representation, that EGW and EMD-GW become quickly in-

tractable when the number of points increases and that S-GWL is slightly faster. We exclude

EGWKL for the clarity of the figure as it has a computational time similar to EGW. SaGroW,

PoGroW and SGW behave better, with a quadratic complexity (linear slope of 2 in log-log) but

with different multiplicative factors (offsets in the log-log plot).

Figure 4.6 reports the quality of the obtained GW value. Comparing SGW to other methods

is complicated as it does not return a transport plan, nor aims at computing an approximation

of the GW distance. We thus report the distance it computes and also the same rescaled by a

factor 25. With rescaling, we see that SGW seems to behave more like the uniform transport

plan than like the GW methods (which produce better-than-uniform plans). While all other

methods predict very similar GW distances, EGW-based methods have often the best accuracy.

However, when N reaches 1000 points, we can observe interesting behaviors: EGW is not able

to provide any result, PoGroW is the fastest with a lesser accuracy than S-GWL, and SaGroW

provides the best value while being much faster than S-GWL.

In a second series of experiments, we make use of graphs that are generated using a gaussian

random partition graph (Brandes et al., 2003). On this more difficult dataset, we see in Figure 4.7

that SaGroW is very competitive with the best method EGWKL while being able to scale to

more than 200 nodes, which is the limit for all EGW-based methods. With more nodes, SaGroW

is as accurate as S-GWL but remains much faster and scalable (computation times are similar

to the ones from the first dataset). In this experiment, a key factor of success seems to be the

KL regularization, used in EGWKL, S-GWL and SaGroW. This can explain why PoGroW stays

close to the uniform baseline.

4.5.3 Hyperparameters analysis

We now focus on the impact of the numbers of iterations S and samples M , showing that

these allow our approach to cover a variety of trade-offs between speed and accuracy. More

experiments (in the Appendix C.2) consider other parameters such as different loss functions or

dataset sizes. We also study in this experiment the impact of the ε parameter of other methods.

Figure 4.8 shows that increasing the number of iterations S yields a strong improvement for

SaGroW, independently of the number of samples M . Interestingly, the accuracy of SaGroW is

similar regardless the value of M . This remark supports the key assumption of this chapter that

the entire computation of the expectation is not needed. The standard deviation displayed in

Figure 4.8 shows that most runs provide similar GW distances, with enough iterations. However,

there is a high variance with less iterations which tends to highlight that the different runs of

SaGroW take different paths during the optimization. As shown in Figure 4.9, the speed of

EGW and S-GWL does not vary much with ε but this parameter needs to be chosen carefully

for those methods to reach a good accuracy.

On Figure 4.10 we can see that PoGroW is even faster than SaGroW: it can provide a
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Figure 4.8: Impact of the number of samples M and the number of iterations S for SaGroW

on the GW distance estimation and computational time, for two sets of 500 points sampled from

two mixtures of gaussians. The mean and standard deviation over 10 runs are displayed.
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Figure 4.10: Impact of the number of iterations S for PoGroW on the GW distance estimation
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reasonable approximation in a second, compared to the three hours required by EGW. Because

PoGroW does not resort to a KL regularization, it is more impacted by stochasticity: two

runs can yield very different results. This can be used advantageously by keeping the plan

that gives the lowest GW estimation among ten runs (crosses on Fig. 4.10). The distance can

be approximated using Section 4.4.5 to keep the same time complexity. The combination of

SaGroW and PoGroW allows to obtain a good trade-off between speed and accuracy.

Beyond the algorithmic advantages shown above, one last key question remains: is it useful,

in an application, to compute the GW distance for other losses than the widely used square loss?

4.5.4 Graph classification

We illustrate here the usefulness of using different loss functions in a context of graph classification.

We take the FIRSTMM-DB graph dataset (Neumann et al., 2013) which is the one with the

biggest average nodes number (1377) over the database of (Kersting et al., 2016). Each of

the 41 graphs of the dataset describes an object from one of the 11 classes (cup, knife, etc.).

The distance matrix of each graph CX and CY is computed using the shortest path length,

similarly to Mémoli (2011). For each method, we compute the pairwise GW distance matrix.

Finally, a 1-Nearest-Neighbor classifier is used to predict the class of each graph (using a

leave-one-graph-out scheme).
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Table 4.2: Classification accuracy and computation time of various methods on a 11-class graph

classification task. In this summary table, only the hyperparameters yielding the best classification

accuracy are reported, for each considered method.

Cited on page [84]

Methods Accuracy Time (s)

S-GWL5 0.44 23.4

EGWKL
0.005 0.24 41.1

EMD-GW 0.37 16.6

EGW0.001 0.22 36.2

Uniform 0.07 0.1

SaGroWp=1 0.49 11.6

SaGroWp=2 0.39 12.7

PoGroWp=2 0.39 0.5

Section 4.5.2 showed that EGW, EGWKL and S-GWL are very slow with arbitrary loss

functions on graphs (with around 1000 nodes). Therefore, we use for them the square loss to

allow them to be competitive from a time complexity perspective. We consider ten values for the

entropic regularization, ε ∈ [10−4, 102]. SGW is excluded as it is unable to handle graphs. For

our methods, we set ε = 0.1 for SaGroW and α = 0.8 for PoGroW and keep M = 1, S = 100

for both methods. However, ten different loss functions L are tested, notably |CXij −C
Y
kl|
p for

different values of p ∈ [0.5, 3].

The results are reported in Table 4.2. Looking at SaGroW, we see that the classical square

loss (p = 2) is outperformed, e.g., by the absolute loss (p = 1) which yields a better classification

accuracy. Beyond that, the ability of SaGroW to handle arbitrary losses allows it to get the

best overall accuracy, across all the methods. The explanation can be that the L1 loss is more

robust to outlier nodes, which might be important on this real dataset. Note that while EGW

and S-GWL are fast as they are computed with the square loss for L, SaGroW is still slightly

faster. PoGroW has a competitive accuracy and even outperforms EGW while being very fast.

The complete table with every hyperparameter run is available in the Appendix C.2.7.

While the goal of this experiment is to correctly classify graphs, we can still compare the

GW distances obtained from the transport plans returned by all methods. This comparison only

makes sense with the same (square) loss for all methods. Averaged over 412 distances, SaGroW

gets the lowest value of 336, followed by EMD-GW with 341. This highlights the fact that, on a

real dataset, the stochasticity used by our method can lead to a better GW distance estimation.

4.5.5 Continuous Gromov Wasserstein

In this section, we propose a last (small) experiment, to illustrate that PoGroW can provide a

transport plan for the GW problem between two bounded continuous distributions with known

density.
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Figure 4.11 provides an example of GW distance estimations between µ and ν, two Gaussians

with variance equal to

(
1 0

0 v

)
and

(
1
)
respectively. The Euclidean distance is used for CX

and CY , and the squared Euclidean distance is used for L.
The uniform baseline uses the uniform distribution µ× ν as transport plan. The projection

baseline projects the first dimension of the distribution µ onto ν and discards the other axis. This

transport plan might not be the best one in general, but it has been proven, with the squared

Euclidean distance for CX , CY ,L, to be at least the best linear Monge mapping (Vayer, 2020, The-

orem 4.2.6) or equivalently, the best transport plan restricted to Gaussian distributions (Salmona

et al., 2021, Theorem 4.1).

To compute the GW estimation, we sample pairs of points in µ, then apply the transport

plan on each point, and compute the loss L with the initial pair and the transported pair of

points. If the transport plan is not a deterministic function, we simply sample again the position

in ν according to the distribution given by the transport plan. We can see on Figure 4.11 that

Pointwise Gromov Wasserstein is clearly better than the uniform baseline, however still far from

the projection baseline.

4.6 Conclusion

In this chapter, we presented both algorithmic and theoretical contributions to address the still

open problem related to the calculation of the Gromov Wasserstein distance. We propose a
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method to drastically reduce the time complexity of GW for arbitrary loss functions. To do so, we

tackle the bottleneck of the mostly used GW solver, namely EGW, by using a sampling strategy

to efficiently approximate the costly sum of N2 matrices. Our SaGroW algorithm is supported

with theoretical convergence guarantees to a stationary point in the general non-convex setting.

We also introduce PoGroW, an algorithm which samples only one matrix and allows us to benefit

from a very low complexity by using 1D OT. We show that PoGroW overcomes the main issues

related to SGW. Experiments on synthetic datasets show that our methods are tractable for

a large number of points and offer a good trade-off between speed and accuracy. Finally, a

real world experiment on graph classification illustrates the interest of choosing different loss

functions. In order to deal with potential outliers, we show that the absolute loss associated with

SaGroW gives the highest classification accuracy. This capacity to choose ad-hoc loss functions

could push the state of the art in various graph applications by unlocking their use with large

graphs.

In this chapter, we saw that GW can handle points described with a distance function applied

only pairwise. However, other types of point descriptions, for instance based on a “distance”

between 3 points, are not handle with the existing OT or GW formulations. We will propose a

new OT-based formulation to tackle this problem in the next chapter, allowing us to solve the

OT problem on tensors of any order.
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Chapter 5

Optimal Tensor Transport

Abstract

This chapter is based on the paper “Optimal Tensor Transport” published at the AAAI
2022 conference (Kerdoncuff et al., 2022), and proposes a general framework which can align
tensors of any order. This new formulation encompasses several OT-based problems. We
have seen in the previous chapters that OT is a useful tool in machine learning to align
finite datasets lying in the same vector space. Based on a similar formulation, Co-Optimal
Transport (Co-OT) jointly estimates two distinct transport plans, one for the rows (points)
and one for the columns (features), to match two data matrices that use different features.
On the other hand, Gromov Wasserstein (GW) looks for a single transport plan from two
pairwise distance matrices. Both Co-OT and GW can be seen as specific extensions of OT
to more complex data. In this chapter, we propose a new framework, called Optimal Tensor
Transport (OTT), which takes the form of a generic formulation that includes OT, GW and
Co-OT and can handle tensors of any order by learning possibly multiple transport plans.
We derive theoretical results for the resulting new distance and present an efficient way for
computing it. We further illustrate the interest of such a formulation in Domain Adaptation
and Comparison-based Clustering.

5.1 Introduction

Some extensions of the original OT problem have been proposed in the literature to tackle

more complex settings. Chapter 4 highlighted the interest of the Gromov Wasserstein (GW)

distance to handle graphs or to compare distributions lying in different spaces. A second variant

is Co-Optimal Transport (Co-OT) (Redko et al., 2020) which recently extended OT to datasets

lying in different vector spaces, that is with potentially distinct features. The underlying idea is

to jointly learn two transport plans. The first one aligns the examples as in standard OT while

the second one aligns the most similar features. This has been shown to be of particular interest

in heterogeneous DA.
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Motivation of this work. While Co-OT and GW already cover a wide range of problems,

it is worth noticing that there are still other settings that do not fall into the aforementioned

categories (see Figure 5.2). For example, assume that, in each dataset, several distance matrices,

or adjacency matrices, or graphs, are available (Figure 5.2). It is then necessary to learn two

transport plans as in Co-OT but based on pairwise matrices as in GW. The first transport plan

aligns the examples while the second one matches the distance matrices. Similarly, comparison-

based learning (Vikram and Dasgupta, 2016; Ukkonen, 2017; Emamjomeh-Zadeh and Kempe,

2018; Ghoshdastidar et al., 2019; Perrot et al., 2020) addresses the problem of learning when

neither an explicit representation nor a pairwise distance matrix is available. Instead, only

ordinal comparisons, that can be stored in a third order tensor, are available (Figure 5.2).

Unfortunately, the existing OT formulations are unable to compute the distance between two

datasets represented in this way.

Contributions. In this chapter, we propose Optimal Tensor Transport (OTT), a new OT

formulation that can handle datasets represented as tensors of any order while potentially learning

multiple transport plans. The underlying idea is to jointly match the different dimensions of

each tensor with respect to their weights. Depending on the structure of the dataset, different

mappings can be forced to be equal. We illustrate the capabilities of our new OTT formulation

in Figure 5.1 where we use our approach to align subsets of the MNIST (LeCun et al., 1998) and

the USPS datasets (Friedman et al., 2001). Both are represented as 3D-tensors by concatenating

the 2D images and OTT is used to match the points (first mapping), pixel rows (second mapping)

and pixel columns (third mapping) jointly. One can notice that our approach efficiently matches

the digits of the same class (0 and 1) while only using supervision from the MNIST dataset.

Furthermore, the pixel-level transport plans are both close to the identity. From a theoretical

perspective, we show that OTT subsumes the previous formulations including standard OT,

Co-OT, and GW (the top row of Figure 5.2 illustrates how our new OTT setting covers OT,

Co-OT and GW). We also show that OTT can be seen as a distance between tensors of any

order and thus that it can be used to compute tensor barycenters. From an algorithmic point of

view, we rely on the efficient optimization scheme based on sampling as described in Chapter 4,

that allows us to drastically reduce the practical complexity of our formulation. Empirically, we

demonstrate the interest of OTT in DA as well as in Comparison-based Clustering.

It is worst mentioning that a related problem has been tackled in the literature: the D-regular

hypergraphs (Berge, 1984) matching. Such a problem is indeed equivalent to the particular case

of OTT where all the transport plans are forced to be the same. But it has either a different

formulation or different constraints on the matching. Zass and Shashua (2008) proposes to find

a soft matching between D-regular hypergraphs, with uniform inequality constraints, using a

Kullback-Leibler objective function. Duchenne et al. (2011) also matches hypergraphs, with a

formulation similar to OTT but uses only row constraints for the matching matrix.
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Figure 5.1: (Left) Transport plan T 1 between 400 images (only digits 0 and 1) of MNIST and

USPS datasets; (Middle and Right) (top left) An example from MNIST and (bottom right)

an example from USPS with a 90° right rotation; (top right) the OT plan T 2 between the rows

of MNIST and USPS; (bottom left) the OT plan T 3 between the columns of MNIST and USPS;

the arrows explain how to match the pixels between the two datasets using T 2 and T 3 obtained

with OTT.

Cited on pages [88,91,139]

5.2 Preliminary knowledge

To facilitate the comprehension of our general framework, we recall the standard Optimal

Transport and Gromov Wasserstein formulations, and explain the Co-OT (Redko et al., 2020)

problem. For the sake of clarity, we only consider here the discrete case. Nevertheless, all the

formulations presented in this section, as well as OTT, can be straightforwardly extended to

the continuous case by replacing the sums by integrals over the compared distributions. To

adhere to the visual intuition given in Figure 5.2 and prepare for our generalization, we unify

the formulations below. In particular, we introduce subscripts and superscripts that are usually

not used in the standard formulations.

Optimal Transport (Villani, 2008). Let X and Y be two datasets defined over the

same feature space X (for example X = RF ), with respectively I1 ∈ N and K1 ∈ N points with

weights a1 ∈ ∆I1 and b1 ∈ ∆K1 . The optimal transport plan between X and Y can be obtained

by solving the following optimization problem:

OT = min
T 1∈Ua1b1

I1∑
i1=1

K1∑
k1=1

L(Xi1 ,Yk1)T 1
i1k1 . (5.1)

Here, we replace the usual ground cost c by a loss function L which measures the cost of aligning

two examples Xi and Yk. Note that an extension of OT which is orthogonal to (and could

be combined with) everything we cover in this chapter is the multi-marginal OT (Carlier,

2003; Moameni, 2014; Pass, 2015; Friedland, 2020) that aligns R ≥ 3 datasets simultaneously: L
becomes a function of R parameters and T 1 an R-order tensor.

Co-Optimal Transport (Redko et al., 2020). Co-Optimal Transport also aims at

transporting points from two datasets X and Y . However, contrary to standard OT, these
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datasets may have different feature spaces X ⊆ RI2 and Y ⊆ RK2 of respective dimensions I2

and K2 and equipped with weights a2 ∈ ∆I2 and b2 ∈ ∆K2 . The goal is to jointly match the

points with a first transport plan T 1 and the features with a second transport plan T 2. The

Co-OT formulation is as follows:

Co-OT = min
T 1∈Ua1b1T 2∈Ua2b2

I1,I2∑
i1,i2=1

K1,K2∑
k1,k2=1

L(Xi1i2 ,Yk1k2)T 1
i1k1T

2
i2k2 . (5.2)

Gromov Wasserstein (Memoli, 2007). Instead of having features describing the ex-

amples, let us consider that we only have access to within-dataset pairwise similarities or

dissimilarities, that is X and Y are now square matrices of dimensions I1 × I1 and K1 ×K1. It

means that the two datasets may have different feature spaces, as in Co-OT, but since these

feature spaces are implicit, it is sufficient to learn a single transport plan T 1. The Gromov

Wasserstein (GW) formulation is defined as follows:

GW = min
T 1∈Ua1b1

I1,I1∑
i1,i2=1

K1,K1∑
k1,k2=1

L(Xi1i2 ,Yk1k2)T 1
i1k1T

1
i2k2 . (5.3)

It is typical, for both Co-OT and GW, to use a loss function L (often the squared difference)

that operates on two numbers: in Co-OT, L compares the value of a feature from a point in

X with one feature from a point in Y. In GW, it compares an entry of the pairwise matrix

X to one in Y . Both these formulations can be extended by allowing L to compare more

complex entries such as F -dimensional vectors in RF . As illustrated in the top row of Figure 5.2,

corresponding to the formulations of Equations (5.1), (5.2), and (5.3), all these approaches solve

different problems but still share common principles. Below, we propose a new OT formulation

that subsumes all of them.

5.3 Optimal Tensor Transport (OTT)

Given the notational complexity involved in our generic formulation, let us first explain the

intuition behind the subscripts associated with OTT as illustrated in Figure 5.2. Both Co-OT

and GW work on matrices (that is tensors with D = 2 dimensions) and thus will be represented

with 2 digits. Since Co-OT uses E = 2 different transport plans, T 1 for the first dimension, and

T 2 for second one, computing Co-OT will boil down to solving OTT12 as defined below. On the

other hand, GW uses a single (E = 1) plan T 1 for both the first and the second dimensions,

thus corresponding to OTT11. Note that two dimensions that share a transport plan must have

the same sizes. For instance, GW (OTT11) deals with square matrices.

Starting to generalize, when working with D dimensions, a given OT extension considers

E ≤ D transport plans and associates a transport plan (index) to each dimension. This is done

by specifying an affectation function f : J1, DK � J1, EK or equivalently, a D-tuple of transport

plan indices, that is f ∈ J1, EKD. For instance, Co-OT uses f = (1, 2) which corresponds to the

subscript in OTT12.
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c) OTT11 (GW)b) OTT12 (Co-OT)

d) OTT111 (triplets) f) OTT112 (GW collections)e) OTT123 (triCo-OT)

T1
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T2

T1

T1

T1

T1

T1

T1

T2
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full
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a) OTT1 (OT) (F=5 features)
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Figure 5.2: Representation of various formulations of OTT with, each time, the two datasets

and the different transport plans (best viewed in color).

Cited on pages [87,87,87,88,88,90,90,91,91]

For a given f ∈ J1, EKD, we can now detail our OTTf formulation (denoted OTT when

no ambiguity arises) that defines a distance between two datasets X and Y , represented as

order D+1 tensors of respective size (If(1), ..., If(D), F ) and (Kf(1), ...,Kf(D), F ). The first D

dimensions will be matched between the two datasets using the transport plans, while the last

dimension (F ) is the feature dimension used to compare 2 points with the loss L. To simplify

the rest of the chapter, we will suppose that F = 1, as done in Co-OT and GW above. The

OTT distance between X and Y relies on finding a list of optimal transport plans (T e)e∈J1,EK

under some constraints (on the marginal) defined respectively by the weight vectors (ae)e∈J1,EK

and (be)e∈J1,EK. OTT is defined as follows:

OTTf (X,Y , (ae)e∈J1,EK, (b
e)e∈J1,EK) = min

∀eT e∈Uaebe
Ef
(
X,Y , (T e)e∈J1,EK

)
(5.4)

where Ef
(
X,Y , (T e)e∈J1,EK

)
=

If(1),...,If(D)∑
i1,...,iD=1

Kf(1),...,Kf(D)∑
k1,...,kD=1

L(Xi1...iD ,Yk1...kD)

D∏
d=1

T
f(d)
idkd

.

From this general formulation and looking at Equations (5.1), (5.2) and (5.3) with the

support of Figure 5.2, one can check that OT corresponds to OTT1 (with F possibly > 1),

Co-OT is equivalent to OTT12 and GW corresponds to OTT11. Our OTT formulation makes it

possible to handle new forms of datasets as illustrated in the second row of Figure 5.2. In the

experiments (see Section 5.6), we will specifically consider two versions of OTT, each with order

3 tensors: (i) OTT111 corresponds to datasets of triplets (like GW but with triplets instead of

pairs); (ii) OTT112 works with datasets that are collections of adjacency matrices. Figure 5.1

gives an illustration of a third kind of datasets, where OTT123 has been applied on collections

of images, like Co-OT but with three dimensions. Even though we will focus on 3D-tensors in

our experiments, it is worth noticing that the theoretical results derived in Section 5.5 and the

proposed algorithm presented in the next section hold for any tensor order and might be used
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with higher tensor dimension (D = 4) in comparison based learning tasks (Ghoshdastidar et al.,

2019) or to match hypergraphs (Berge, 1984).

5.4 Algorithm to solve OTT

In this section, we detail how to efficiently solve the main optimization problem behind Equa-

tion 5.4. As described in the previous chapter and in Section 1.3.2, the most used method

for solving GW, EGW (Peyré et al., 2016), can be seen as a Mirror Descent scheme (Beck

and Teboulle, 2003) with the Kullback-Leibler divergence on a regularized version of GW:

minT∈Ua1b1 E(T ) + KL(T ,a1b1>). Thus, at a point T 1, Peyré et al. (2016) shows that the

Mirror Descent step is equivalent to the entropy regularization OT problem (Cuturi, 2013):

min
T∈Ua1b1

〈∇T 1E ,T 〉+ εKL(T ,a1b1>). (5.5)

Xu et al. (2019b) based on (Xie et al., 2020) changes the uniform distribution a1b1> in

Equation (5.5) to the previous transport plan T 1. In fact, this is equivalent to applying a Mirror

Descent algorithm on the original GW problem (Equation (5.3)) instead of the regularized one.

Based on this analysis, we will also use a Mirror Descent algorithm to solve the OTT problem.

When the goal is to find multiple transport plans, we propose to use an alternating approach,

similar to Co-OT, where each transport plan is optimized in turn while the others remain fixed.

In summary, we combine the idea of the existing solver of Co-OT and GW and apply an alternate

Mirror Descent algorithm with the KL divergence for OTT, with the main bottleneck being the

computation of the gradient of E . The pseudo-code of our approach is presented in Algorithm 6.

The main steps are the following:

Algorithm 6 OTT Cited on pages [92,94,96]

Require: datasets X,Y , weights (ae)e∈J1,EK, (b
e)e∈J1,EK, loss function L, nb. of samples M , regulariza-

tion ε
1: ∀e ∈ J1, EK, T e = aebe>

2: for s= 0 to S-1 do
3: for e = 1 to E do
4: ∇̂T eE = M samples of the gradient using Equation (5.7).
5: T e = minT∈Uaebe

〈
∇̂T eE ,T

〉
+ εKL(T ,T e)

6: end for
7: end for

Step 1: We initialize the transport plans (line 1) with the marginal product.

Step 2: We compute the gradient of E . For the sake of clarity, we assume that the aligned

tensors are “cubic”, that is all their dimensions are of the same size N . In this case, the overall
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gradient with respect to T e is a N2 matrix:

∇T eE =
∑

{d′|f(d′)=e}

If(1),...,If(d′−1)

If(d′+1),...,If(D)∑
i1,...,id′−1=1
id′+1,...,iD=1

Kf(1),...,Kf(d′−1)

Kf(d′+1),...,Kf(D)∑
k1,...,kd′−1=1
kd′+1,...,kD=1

L

(
Xi1...id′−1, • ,id′+1...iD

Yk1...kd′−1, • ,kd′+1...kD

)
D∏
d=1
d6=d′

T
f(d)
idkd

. (5.6)

Unfortunately, computing the overall gradient exactly would be too expensive. Indeed, a naive

approach leads to a complexity of O
(
N2D

)
operations which is prohibitively high. To simplify

the computation, a first idea would be to generalize the approach used for GW by Peyré et al.

(2016) to our problem. This would reduce the complexity to O
(
ND+1

)
for a particular class of

functions L, notably the square loss. We provide a proof of this approach in the supplementary

material. Nevertheless, the latter remains too expensive as soon as D = 3. Thus, instead, we will

rely on the idea explore in the previous chapter, and uses a stochastic Mirror Descent. Similarly

to the GW case, we can notice that the gradient of E with respect to T e can be seen as a sum

of expectations over matrices of size N2, (Λd
′
){d′|f(d′)=e} such that:

P

(
Λd
′

= L

(
Xi1...id′−1, • ,id′+1...iD ,

Yk1...kd′−1, • ,kd′+1...kD

))
=

D∏
d=1|d 6=d′

T
f(d)
idkd

with

If(1),...,If(d′−1)

If(d′+1),...,If(D)∑
i1,...,id′−1=1
id′+1,...,iD=1

Kf(1),...,Kf(d′−1)

Kf(d′+1),...,Kf(D)∑
k1,...,kd′−1=1
kd′+1,...,kD=1

D∏
d=1
d6=d′

T
f(d)
idkd

= 1

since ∀e ∈ J1, EK,
∑Ie,Ke

i,k=1 T
e
ik = 1. The gradient can then be reformulated as:

∇T eE =
∑

{d′|f(d′)=e}

E
(

Λd
′
)
. (5.7)

It means that it is possible to obtain an unbiased estimate of the gradient in O
(
MN2

)
operations

where M is the number of elements sampled to estimate the expectation in Equation (5.7). Note

that we assume that D is negligibly small compared to N.

Step 3: The last step (line 5) requires to solve a regularized OT problem, that can be efficiently

solved using the Sinkhorn solver (Xu et al., 2019b; Cuturi, 2013).

5.5 Theoretical results

In this section, we derive two main theoretical results. We first show through Theorem 5 that

as long as the cost function is a proper distance, then OTT is a distance between D-order

tensors. As a consequence, we can naturally define the OTT barycenters between tensors. Then,

Theorem 6 states that the optimal barycenter can be found in closed form for particular loss

functions.

Theorem 5. OTT is a distance between weighted tensors (X, (ae)e∈J1,EK) and (Y , (be)e∈J1,EK),

represented in canonical form, for any affectation function f , as long as L is a proper distance.
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The proof is provided in the supplementary material. This result notably extends the distance

proof of Co-OT (Redko et al., 2020) to matrices of different sizes and to non-uniform weights.

Even though their comparison with OTT is out of the scope of this chapter, notice that other

distances exist between higher-order tensors (De Lathauwer et al., 2000; Lai et al., 2013; Liu

et al., 2010).

We can then define the OTT barycenter of several tensors with any affectation function f .

Definition 2. (OTT barycenter) Given B ∈ N weighted tensors of sizes ((Kb
e)e∈J1,EK)b∈J1,BK,(

Xb ∈ RK
b
f(1)

...Kb
f(D) , (be,b ∈ ∆Kb

e
)e∈J1,EK

)
b∈J1,BK

. Let (λ1, ..., λB) ∈ ∆B be the weights quantify-

ing the importance of each tensor. For fixed size (Ie)e∈J1,EK and fixed marginals (ae ∈ ∆Ie)e∈J1,EK,

the OTT barycenter is defined as follows:

min
X∈RIf(1)...If(D)

B∑
b=1

λbOTT(X,Xb, (ae)e∈J1,EK, (b
e,b)e∈J1,EK). (5.8)

Note that the barycenter could also be defined in a similar manner with the marginals

(ae)e∈J1,EK not fixed.

To solve Problem (5.8), we propose to minimize alternatively the objective function w.r.t. X

and (T e,b)e∈J1,EK, the transport plans betweenX andXb. The latters can be found independently

for each b ∈ J1, BK using Algorithm 6. Interestingly, X can be found in closed form for particular

loss functions, which generalises, notably to Co-OT, a known result for OT and GW (Peyré

et al., 2016). This is summarized in the next theorem.

Theorem 6. Assume that the loss L is continuous and can be written as L(x, y) = f1(x) +

f2(y)− h1(x)h2(y) with four functions (f1, f2, h1, h2) such that f ′1
h′1

is invertible. Further assume

that L(x, y) −→
x→±∞

+∞. For fixed ((T e,b)e∈J1,EK)b∈J1,BK, the optimal solution X∗i1,...,iD of Problem

(5.8) reads,

X∗i1,...,iD =

(
∇f1

∇h1

)−1
 B∑
b=1

λb

Kb
1,...,K

b
D∑

k1,...,kD=1

h2(Xb
k1,...,kD

)
D∏
d=1

T
f(d),b
id,kd

a
f(d)
id

 , (5.9)

for all (id ∈ J1, If(d)K)d∈J1,DK. In particular, when L is the squared euclidean distance,

X∗i1,...,iD =
B∑
b=1

λb

Kb
1,...,K

b
D∑

k1,...,kD=1

Xb
k1...kD

D∏
d=1

T
f(d),b
idkd

a
f(d)
id

.

Note that to obtain a barycenter using loss functions that are not covered by Theorem 6, for

example the absolute loss, one can resort to a gradient based optimization scheme.

5.6 Experiments

In this section, we illustrate the interest of the OTT formulation on two different tasks1. First,

following the success of OT in Domain Adaptation (Courty et al., 2017b), we propose to predict
1The code to reproduce all the experiments will be available on the github:https://github.com/Hv0nnus
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the genres of recent movies based on labeled older movies by relying only on users preferences.

We advantageously use a 3D-tensor formulation to take into account the particularity of each

user. In a second experiment, we use the OTT barycenter formulation in a Comparison-Based

Clustering task.

Even if the computation of the exact value of the distance is never necessary in the experiments,

the sampling scheme used to approximate the gradient can be used to approximate this distance,

as done and explained in Chapter 4 for GW.

Because the interest of the stochastic Mirror Descent algorithm was already widely explored

in the previous chapter, we focus on providing interesting applications to our OTT formulation.

Nevertheless, an experiment specific to our new formulation is available in the Appendix D.5.1,

which shows that the gradient is well approximated with a few samples even when D > 2.

5.6.1 Domain Adaptation (DA)

We address here a DA task on the Movielens dataset (Harper and Konstan, 2015). The goal is

to adapt a model learned on old movies (source) to predict the genres of new movies (target).

Datasets. We build a 3D-tensor X1 based on the ratings of the users. The entry (i, j, k)

of X1 is 1 if the user i preferred the movie j over the movie k, −1 if the movie k is preferred

over the movie j and 0 if the user i cannot choose. As the users of the database did not rate

every movie, we use the 0.33 percentile of their personal rates as a default rating. For both

the new and old movies, we identify 4 different groups of movies: Thriller/Crime/Drama (T ),

Fantasy/Sci-Fi (F ), War/Western (W ), and Children’s/Animation (C). We then create 6

pairwise binary classification datasets of 200 movies each by selecting 2 classes among the four

aforementioned ones. We assume that we have access to all the labels for the old movies (source)

but only to a single label per class, randomly selected, for the new movies (target). The goal is

to learn a model that is as accurate as possible on the target. Since many movies have a small

number of ratings and many users only rated a few movies, we focus on the 100 users with the

highest number of ratings and the 200 most rated films for those users.

Baselines. Even though OTT, to the best of our knowledge, is the first algorithm that allows

a direct DA on such tensor-based datasets, we still propose various baselines by reducing the

3D-tensors into matrices by averaging along one dimension. Rdm is a first naive baseline that

simply outputs random labels. SVM applies a SVM (Cortes and Vapnik, 1995) classifier only

on the target domain, by using the average pairwise movies matrix as features. S-GWL (Xu

et al., 2019a) interprets the average pairwise movies matrix as an adjacency matrix of a graph

and matches the nodes of the two graphs. GW (Peyré et al., 2016) solves the GW problem

on the average pairwise movies matrix. Co-OT takes the average over one movie dimension,

contrary to the three baselines above, which leads to a 2D-tensor (movies, users). The two axes

are then mapped jointly between the new and old movies. For every method that provides

a transport plan T between the movies, the class of a target movie ytj is predicted via label

propagation (Redko et al., 2019a) of the source label ys: ytj = T 2
j • y

s. The stochastic methods
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Table 5.1: Accuracy on 6 DA tasks with the hyperparameters found using the unsupervised

proposed method. To evaluate the best possible performance reachable by each method, AVGbest

displays the accuracy with the best hyperparameters using the ground truth of the target domain.

Cited on pages [96,96,96]

Datasets Rdm SVM S-GWL GW Co-OT OTT

T,F 50.4±3.5 62.5 63.0 62.0 72.0 80.8±0.7
T,C 50.6±3.0 69.0 77.0 78.0 83.0 97.0±0.2
T,W 51.2±4.0 32.5 61.0 63.0 65.5 71.3±5.0
F,C 49.4±2.3 74.5 72.0 74.0 74.0 70.2±4.0
F,W 49.6±3.4 53.0 53.0 60.5 47.0 67.9±2.3
C,W 49.2±3.3 60.0 57.0 52.0 67.5 76.8±6.4

AVG 50.0±3.3 58.6 63.8 64.9 68.2 77.3±3.1

AVG (best) 50.0±3.3 58.6 66.3 71.0 70.7 78.9±2.9

are run 10 times and the mean and standard deviation are reported.

Experimental setup and hyperparameter tuning. As the initialization is key to avoid

local minima, we take advantage of both the labels and our stochastic algorithm by sampling

only the labelled points in the source and target for the first gradient estimation. The squared

euclidean loss is used for L and we estimate the gradient of OTT using M = 1000 samples. P

is set to 1000 iterations in Algorithm 6. For each method that uses the OT Sinkhorn solver,

notably OTT, we replace it with the semi-supervised algorithm OTDA proposed by Courty et al.

(2017b), which adds a lp − l1 regularization to benefit from the available source labels. In DA,

tuning the hyperparameters is often key as there is not enough target labeled movies. As the

goal of DA is to reduce the divergence between the two datasets (Ben-David et al., 2007; Redko

et al., 2019c), we can use the distance between the source and the target as a criterion to choose

the hyperparameters for each method. The Kullback-Leibler regularization parameter ε of the

Sinkhorn method (Cuturi, 2013) is selected in the range [10−5, 102] and the class regularization

η of OTDA (Courty et al., 2017b) in [10−4, 101]. The hyperparameters selection is limited to 24

hours for each method and dataset.

Results. The accuracy of each method is reported in Table 5.1. OTT achieves better

performances than the other baselines on 5 out of 6 datasets. This result was expected as OTT

is the only method which takes full advantage of the 3D structure of the data. Interestingly, even

by using the ground truth over the target domain to tune the hyperparameters of the baselines

(that would be cheating), the line AVG (best) of Table 5.1 shows that OTT still behaves better.

We now analyze the impact of the different hyperparameters on the accuracy. We report

the results on each dataset in the supplementary material and only consider the average,

representative, trend in Figure 5.3. The leftmost plot displays the accuracy for increasing values

of the KL regularization parameter ε. The black markers correspond to the lowest achieved

distance for each method. It is worth noting that this usually corresponds to a reasonable
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Figure 5.3: Target accuracy averaged over all the datasets. The shadow area represents the

standard deviation for the stochastic methods. (Left) Target accuracy for various values of ε.

The black symbols correspond to the value of ε associated with the lowest distance on average of

each method. (Middle) Target accuracy for an increasing target supervision. (Right) Target

accuracy for an increasing number of similar known users who rated both old and new movies.

Again, the black symbols correspond to the lowest distances.

Cited on pages [96,96,96]

accuracy, which supports our hyperparameter tuning procedure. We notice a similar behaviour

for the η parameter of OTDA as reported in the supplementary material. In Figure 5.3 (middle),

we report the target accuracy with respect to the number of target labels available. We can

notice that OTT is always better, even in the completely unsupervised scenario. Lastly, in

the experiments reported in Table 5.1, we never use the fact that the users comparing the

movies are the same for both old and new movies. Here, we study the impact of making this

information available. To this end, we fix the transport plan for an increasing number of users.

Figure 5.3 (right) shows that such an additional information can greatly improve the target

accuracy of the methods that can handle it, especially OTT. Interestingly, as indicated with the

black marker, the smallest distance is achieved with the highest number of similar users, which

corresponds to the highest number of constraints on the users transport plan. This supports the

key assumption of this experiment: a good matching between users leads to a better matching

of similar movies. This also highlights the limit of the proposed solver as it may struggle to find

the global minimum.

5.6.2 Comparison based clustering using OTT barycenters

In this second series of experiments, we show that OTT is competitive for addressing an

unbalanced comparison-based clustering task. Comparison-based learning deals with the problem

of learning from examples when neither an explicit representation nor a pairwise distance matrix

is available (Vikram and Dasgupta, 2016; Ukkonen, 2017; Emamjomeh-Zadeh and Kempe,

2018; Ghoshdastidar et al., 2019; Perrot et al., 2020). Instead, it is assumed that only triplet

comparisons of the form “is xi closer to xj than to xk?” are available. This field stems from the

fact that relative judgments are usually easier than absolute ones for human observers (Shepard,
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Table 5.2: ARI for unbalanced comparison-based clustering tasks on MNIST dataset. Each line

corresponds to the average over 10 different combinations of classes, each run 10 times.

Cited on page [99]

nb. examples per class AddS3 AddS3s t-STE t-STEs OTT

200,20,20 0.43±0.12 0.8±0.17 0.56±0.07 0.91±0.04 0.91±0.04
30,3,1 0.28±0.09 0.82±0.17 0.49±0.14 0.91±0.14 0.89±0.14
30,3,3 0.37±0.13 0.78±0.23 0.52±0.09 0.93±0.19 0.87±0.19

300,30,10 0.28±0.04 0.83±0.07 0.48±0.1 0.89±0.04 0.89±0.04
AVG 0.34±0.09 0.81±0.16 0.51±0.1 0.91±0.08 0.89±0.1

1962; Young, 1987; Stewart et al., 2005). For example, triplet-based queries are easier to

answer than exact distance estimations. Given a set of examples and a given number of triplet

comparisons, a dataset can be represented as a third order tensor where the entry (i, j, k)

contains 1 if example xi is closer to xj than to xk and −1 otherwise. In comparison based

clustering, the goal is to identify relevant groups in the examples, using only the information

contained in the aforementioned tensor. As the three dimensions of the cubic tensor correspond

to the same points we will use OTT111

Setting. To show the interest of our method for clustering unbalanced triplet datasets, we

take inspiration from the experimental setup of Perrot et al. (2020). For a given dataset, we

find the OTT111 barycenter (b = 1) of size (I1, I1, I1) where I1 is the number of clusters that we

are looking for. The intuition is that similar examples should be sent by the transport plan to

the same point in the barycenter since the latter summarizes the initial points.

In this experiment, we consider some 3-class unbalanced subsamples of the MNIST dataset (Le-

Cun et al., 1998). For a given number of examples per class (for example, 200,20,20), we consider

10 random draws for the 3 classes and for each of these, further consider 10 random draws for

the actual images. Given N points in each unbalanced dataset, we randomly select N log(N)3

triplets of the form d(xi, xj) > d(xi, xk) as suggested by Perrot et al. (2020). The distance

between two digits is the euclidean distance after an UMAP projection in 2 dimensions. To

simulate a real dataset, some noise is artificially added by randomly flipping d(xi, xj) > d(xi, xk)

to d(xi, xj) < d(xi, xk) with probability 0.1 for each triplet selected.

Baselines. We use two main triplet clustering baselines: (i) t-STE which projects the

triplets into a vector space followed by k-means (Lloyd, 1982), and (ii) AddS3 (Perrot et al.,

2020) which estimates a pairwise similarity matrix also followed by k-means (Lloyd, 1982).

As the OT formulation requires the marginal as prior, we assume that the proportions of the

different clusters are known. To stay fair in the comparison, we propose two variants (AddS3s,

t-STEs) of the baselines where we replace the k-means step by an OT barycenter step which

takes the marginal information into account.

We use the squared euclidean loss for OTT to take advantage of the closed form derived in
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Theorem 6. We use default hyperparameters, reported in the supplementary material, for t-STE,

AddS3, and OTT with the KL regularization parameter set to ε = 0.1. To ensure convergence,

we also set the number of samples M = 100 and the number of iteration S = 500 between each

of the 20 barycenter updates.

The Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) between the prediction and the

ground truth is displayed in Table 5.2. The choice of the unbalanced setting is motivated by

the fact that the two other baselines do not take into account this unbalancedness information

during their first step, while OTT directly uses the entire information as it has only one step.

Results. Overall, OTT has better performances than AddS3s on average on every dataset

while being slightly worse than t-STEs. Furthermore, for both AddS3 and t-STE, using the

unbalancedness information improves the performances. The closeness between our approach

and t-STEs is further investigated in the supplementary material, where we show a theoretical

connection between t-STE and the OTT barycenter when the cross entropy is used as a loss and

the transport plan is fixed.

5.7 Conclusion

In this chapter, we presented Optimal Tensor Transport (OTT), a new OT formulation. It can

be used to align high dimensional tensors using one or several transport plans. This formulation

generalizes various existing OT problems, such as GW and Co-OT. Furthermore, we proved that

OTT is a proper distance which may be of great interest for tensor comparison. We also proposed

an efficient algorithm to solve the underlying problem and demonstrated the competitiveness of

OTT in Domain Adaptation and Comparison-based clustering.

While our new approach unlocks new applications, this comes with a cost. First, despite

having access to a solver that drastically reduces the computational complexity of the formulation,

it still does not scale so well empirically and may not be practical for larger datasets. Furthermore,

it requires access to weights for each of the tensor dimensions, which might not always be available

in practice. Finally, we leave for future work a natural extension, Fused-OTT, inspired by Vayer

et al. (2018), that would combine several OTT problems together. This approach could allow us

to align datasets that are independently represented by multiple tensors of potentially different

orders.
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Conclusion

This thesis explores the interest of using the Optimal Transport theory in Machine Learning.

More specifically, it focuses on the ground metric of the Optimal Transport problem. The choice

of this ground metric is a key element in any OT-based application and our claims is that the

(squared) Euclidean distance is too often selected as a default choice. The first part of this thesis

tackles this problem by learning a Mahalanobis distance in the context of a Domain Adaptation

task. In this particular setting, we show that OT can use advantageously the available labels of

the source domain to learn a suitable distance. This joint learning process between the transport

plan and the metric leads to an algorithm called Metric Learning for Optimal Transport (MLOT).

We perform experiments in Domain Adaptation that show the interest of optimizing such a

ground metric. While MLOT has been designed in the context of a DA setting, it is worth

noting that in any Machine Learning application, choosing the right cost function is tricky. To

address this task, we propose a general way to handle several cost functions, or cost matrices,

by looking at the worst case scenario. In this setting, the transport plan found does not rely

upon only one cost matrix and is more robust to noise. Based on this formulation, a notion of

stability for cost matrices is proposed in order to be able to choose the most stable cost matrix.

It corresponds to is a matrix with an associated Wasserstein distance that does not change much

when looking at the worst case in a Mahalanobis ball around it. Experiments show a correlation

between this notion of stability and the noise sensitivity of the considered matrices.

In the second part of the thesis, we focus on extensions of the OT formulation, notably the

Gromov Wasserstein distance able to compare distributions that do not necessarily lie in the

same space. To approximate efficiently the (hard) Gromov Wasserstein problem, the existing

solvers rely on particular loss functions. To address this limitation, we propose a fast stochastic

algorithm, able to handle arbitrary losses. This method comes with a convergence bound to a

stationary point which covers the existing EGW method in the concave case. When the number

of samples is reduced to one, a very fast variant can be used, relying on the efficient 1D OT

solver. We highlight the interest of using various losses in a graph classification experiments.

Based on this scalable algorithm, we introduce a generalization scheme encompassing both the

Wasserstein distance and the Gromov Wasserstein distance as well as the Co-OT distance. The

resulting formulation is called Optimal Tensor Transport. This new distance can handle tensors

of arbitrary size instead of using only positions in a vector space or pairwise distances. We

perform experiments including comparison-based learning tasks in a triplet-based setting where
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the points are defined only by theirs relations with two other points.

As often in research, this thesis might open more questions than it answers. Some possible

promising research directions are given below, for each of the different chapters of the manuscript.

Metric Learning for Optimal Transport A natural extension of our method would be a

“Deep” version of MLOT to allow its use directly on the original images in computer vision

tasks. Instead of minimizing the objective function with respect to the Mahalanobis metric, we

could instead minimize the entire Deep Neural Network (NN) that generates the feature space.

Thus, the metric learned would be the entire NN instead of only a linear function. Generally,

an existing NN, already trained on a huge dataset such as Image Net (Deng et al., 2009), is

used and then the weights of this NN are only fine-tuned. With this setting, the choice of the

hyperparameters are more complex. First, there might be more hyperparameters due to the NN.

But more importantly, the computational time would increase a lot and the reverse validation

used in this chapter might take too long to reasonably cover the large hyperparameter grid.

Even if several hyperparameters have to be set by default, such an approach would probably

lead to better results for the classification of images.

The second possible extension is to use an automatic differentiation software for the OTDA

algorithm, at each iteration of MLOT, to keep track of the impact of L on the transport plan T .

In this case, instead of simply alternating the optimization between the transport plan T and

L, T would be a non-fixed variable depending on L. Such an approach might lead to a better

minimum than a naive alternate optimization as the problem is non convex. The main problem

is the time and the memory required, as OTDA uses several calls of the Sinkhorn algorithm.

A last possible extension of MLOT would be to handle the semi-supervised setting where

some labels are available in the target domain. In this case, the same ML algorithm could be

used in the target domain.

A Swiss Army Knife for Minimax Optimal Transport While the cutting-set method

proposed is very general, a “small” minimax problem has still to be solved at each iteration. In

practice, we use only specific sets of cost matrices (Mahalanobis-based set or finite number of

matrices) and for other type of sets, the algorithm has to be modified. For instance, one might

resort to a Frank-Wolfe algorithm as used to generate Figure 3.1, while we used only linear

solver for the experiments. Thus, a general method to solve such a part of the algorithm would

be interesting to explore.

The proposed notion of Wasserstein stability might be more interesting if the search for a

stable cost matrix was not reduced to a finite number of cost matrices. Indeed, in practice, we

only select a certain number of cost matrices and test the stability for each of them. We could

imagine to search for the most stable cost matrix in an infinite set, for instance in the polytope

generated by some matrices.
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Sampled Gromov Wasserstein One of the main issues of the convergence proof to a

stationary point provided in this chapter is the assumption that the Sinkhorn algorithm outputs

the exact T ∗ of the entropy regularized OT Problem 1.8. In practice, as the number of iterations

is limited, the result is only an approximation which does not fully respect the marginal

constraints. Thus, the bound is not totally correct and might be improved in a future work.

Moreover, as the speed of convergence heavily depends on ε, we might replace the Sinkhorn

maximum number of iterations P by a tighter value depending on ε. To finish, the bound related

to the sampling part can be greatly improved, instead of relying on the worst case scenario, we

could use some tight concentration inequalities.

In a very short period of time, during the publications of the paper associated with this

chapter, two other works (Sato et al., 2020; Chowdhury et al., 2021) used the 1D OT solver

by defining each point by their distance to another point. Thus, this general idea might be a

promising future line of research in the Gromov Wasserstein field.

Optimal Tensor Transport An interesting line of work would be to prove the convergence of

the proposed algorithm to stationary points. One of the convergence proof for the Mirror Descent

algorithm, in the wide literature, might cover the particular case of the proposed algorithm.

Such a proof would also cover the Sampled Gromov Wasserstein algorithm as a particular case.

A straightforward extension of the OTT formulation is the “Fused”-OTT, similarly to the

Fused-Gromov Wasserstein (Vayer et al., 2018). It would allow to align datasets that are

represented by several tensors with different orders instead of only one. The algorithm to solve

such a problem would not change much, as the gradient could still be interpreted as a sum of

expectations.

We hope that this thesis was interesting and more importantly will allow the emergence of

new ideas and create new links between the different fields of statistics, optimization, Machine

Learning and Optimal Transport.
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Appendix A

Appendix of Metric Learning for

Optimal Transport

A.1 Domain Adaptation experiments

This section is dedicated to give further details on the Domain Adaptation experiment of

Chapter 2.

A.1.1 Complete table of the main DA experiment

Table A.1 shows the entire result of the main DA experiments of Chapter 2.

A.1.2 Metric Learning and OTDA separately

To show the advantage of jointly optimizing the metric and the transport, we compare MLOT

against a Metric Learning algorithm (LMNN) followed by some Optimal Transport method

(OTDA). Those experiments have been run with the default hyperparameters and are not

cross-validated. Table A.2 shows the corresponding results with and without randomized-PCA.

In both cases, the alternate optimization is better than a simple combination of Metric Learning

and Optimal Transport.

Non-linear version of MLOT

In MLOT, the transformations learned are linear, Ls and Lt are matrices. In this paragraph,

we shortly explore the use of non-linear transformations instead of Ls and Lt. To do so, a new

implementation using the automatic differentiation of PyTorch (Paszke et al., 2017) framework

has been designed. To allow a fair comparison, the two versions, MLOTlinear and MLOTnon-linear

as been run with Pytorch. The optimizer used is Adam (Kingma and Ba, 2014) with default

momentum, the learning rate is cross-validated. The two matrices Ls and Lt are replaced by a 4
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SURF

Dataset NA LMNN SA CORAL TCA OT OTDA OTDAp JDOT MLOT

A→C 26.0 40.3 40.2±0.2 25.4 40.0 33.9 40.2 39.4±0.5 39.9 42.3±0.6
A→D 25.5 36.9 39.3±2.5 26.8 31.8 30.6 40.1 39.6±1.1 37.6 40.8±0.8
A→W 29.8 38.0 39.9±1.3 26.8 41.7 32.5 37.3 39.8±0.9 38.0 41.3±1.1
C→A 23.7 46.0 41.3±1.1 23.6 39.8 41.0 52.7 48.5±0.7 48.1 51.5±0.8
C→D 25.5 45.9 45.4±1.2 26.1 44.6 36.9 47.8 51.4±1.4 49.7 52.2±1.3
C→W 25.8 41.7 36.6±1.1 23.7 36.9 28.1 46.4 45.8±1.4 43.4 45.9±0.8
D→A 28.5 31.1 35.4±1.0 28.8 32.9 29.3 32.4 37.8±1.0 32.8 37.8±0.7
D→C 26.3 30.7 32.3±0.6 30.0 31.5 31.7 32.0 33.5±0.7 31.7 34.4±0.5
D→W 63.4 77.3 88.5±1.1 84.4 84.7 88.8 88.8 87.5±1.2 82.7 87.8±0.7
W→A 23.0 32.3 32.6±0.5 26.2 29.4 34.1 33.7 37.6±0.6 37.6 38.0±0.8
W→C 19.9 30.4 29.0±0.6 22.6 29.2 30.1 34.1 33.3±0.5 33.1 33.2±0.6
W→D 59.2 86.6 89.5±1.0 84.1 91.7 89.2 92.4 91.8±1.2 89.8 90.8±0.8
AVG 31.4 44.8 45.8±1.0 35.7 44.5 42.2 48.2 48.8±0.9 47.0 49.7±0.8

DeCAF6

A→C 71.7 80.6 81.1±0.3 72.2 77.7 82.2 80.5 79.7±0.3 83.1 81.6±0.4
A→D 73.9 81.5 83.4±0.7 72.0 84.1 77.7 76.4 73.9±1.3 70.7 75.3±0.8
A→W 68.1 72.5 74.7±1.0 64.1 71.9 71.2 71.9 75.0±0.6 76.9 72.1±0.3
C→A 87.3 91.4 87.9±0.4 81.3 89.1 90.4 86.8 87.6±0.4 90.5 90.8±0.1
C→D 79.6 79.0 87.1±0.7 80.3 82.8 82.8 80.9 80.1±0.5 85.4 83.3±0.7
C→W 72.5 78.0 85.9±0.7 68.8 79.7 78.0 80.3 78.5±0.4 76.9 79.7±0.3
D→A 49.9 70.1 84.3±0.5 78.0 86.0 84.4 84.2 82.6±0.4 64.9 85.0±0.3
D→C 42.0 63.7 72.2±0.4 71.8 75.2 81.2 80.9 81.0±0.3 64.8 83.2±0.3
D→W 91.5 95.6 99.2±0.2 99.3 99.0 99.3 99.3 98.9±0.3 98.6 98.6±0.1
W→A 62.5 73.4 76.1±0.6 69.7 81.8 81.5 81.3 77.4±0.3 64.4 85.8±0.4
W→C 55.3 67.0 72.7±0.4 69.1 73.6 78.6 75.7 78.0±0.4 62.0 81.1±0.2
W→D 98.1 100. 100.±0.0 100. 100. 100. 100. 99.0±0.3 100. 99.4±0.0
AVG 71.0 79.4 83.7±0.5 77.2 83.4 83.9 83.2 82.6±0.5 78.2 84.7±0.3

Office31

A→D 59.6 50.6 60.6±0.5 55.6 58.0 56.8 55.4 53.6±0.0 58.6 54.7±0.1
A→W 54.0 51.8 56.3±0.2 56.1 52.7 49.2 50.8 53.3±0.1 51.9 54.1±0.2
D→A 42.4 48.0 45.0±0.1 42.2 44.0 48.8 48.1 48.3±0.1 45.7 50.4±0.0
D→W 90.9 94.7 93.2±0.1 91.7 91.7 92.1 95.0 94.0±0.1 90.9 92.6±0.1
W→A 40.8 43.8 45.0±0.1 41.0 42.5 48.3 46.9 46.1±0.1 44.4 47.6±0.1
W→D 97.8 99.0 98.6±0.0 98.0 95.6 96.8 95.4 96.0±0.0 94.6 97.7±0.1
AVG 64.3 64.7 66.5±0.2 64.1 64.1 65.3 65.3 65.2±0.1 64.4 66.2±0.1

All datasets AVG 53.8 62.6 65.1 ± 0.6 58.0 64.0 63.5 65.6 65.6 ± 0.6 63.0 67.0 ± 0.5

Table A.1: Accuracy of all the methods on 3 different types of features. The best method for

each dataset is in bold.

Cited on pages [42,105]

layers neural network with sigmoid as activation function for MLOTnon-linear. Compared to the

setting of MLOT, the number of iterations is no longer cross-validated but two regularization

terms are added which compute the squared Frobenius norm between the initial space after the

PCA and the space transform by the two networks. This regularization ensures to stay close to

the initialization. Similarly to the initial MLOT setup, both networks are learned between each
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Table A.2: Comparison between MLOT and ML + OTDAp on Office-Caltech dataset with

SURF features with default hyperparameters.

Dataset ML + OTDAp MLOT ML + OTDAp (rdm) MLOT (rdm)

AVG 48.9 50.2 49.2 ± 0.9 50.6 ± 0.9

Table A.3: Linear and non-linear version of MLOT with Pytorch on SURF features.

Cross-validation using target pseudo-labels target true labels

Dataset MLOTlinear MLOTnon-linear MLOTlinear MLOTnon-linear

A→C 40.5 38.9 43.1 42.9
A→D 39.5 40.1 45.9 49
A→W 42.7 40 52.9 52.5
C→A 53.1 52.9 53.4 55.7
C→D 51.6 49 51.6 55.4
C→W 43.1 43.1 56.6 56.9
D→A 36.6 37.3 43.2 40.9
D→C 34.3 34.4 36.7 37.1
D→W 89.2 88.1 90.8 90.8
W→A 34.8 36.1 44.5 43.8
W→C 31.8 33.6 36.6 37.2
W→D 89.8 91.1 92.4 92.4

AVG 48.9 48.7 54.0 54.6
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Optimal Transport computation. Table A.3 reports the result for the Office-Caltech dataset on

SURF features. This PyTorch version has worst performances than the initial setup of MLOT

which could be due to the optimizer or the two regularization terms or the optimization of Lt
that was initially fixed. However, this method still gives competitive result. More importantly,

Table A.3 shows that a non-linear network does not give better result on average. An advantage

of those deep formulations is the ability to fine tune the Neural Network that extract the features.

But the comparison with the other classical methods would be complex as they would not rely

on the same feature space.
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Appendix of Swiss-Army Knife for

Optimal Transport

This appendix contains the proofs for the different theoretical results of the chapter, as well as

more details on the experimental part provided for the sake of reproducibility.

B.1 Proofs from Section 3.3.2

Claim (footnote 1 in Chapter 3) C defined in (3.3) is a convex compact set.

Proof. Denoting F(X × Y,R) the set of real valued functions on X × Y, let:

Φ : RD×D 7→ F(X × Y,R)

M 7→ cM : (x,y) 7→ (x− y)>M(x− y)

Notice that Φ is linear and its domain is a finite dimensional vector space, hence Φ is continuous.

Moreover, we have C = Φ
(
BDp
)
where

BDp := {M ∈ RD×D; ‖M‖p ≤ 1}

is the unit ball of norm ‖.‖p, which is compact and convex. As a result, C is a convex compact

set.

Proposition 6. Let C be defined as in (3.3) for M ∈ SD×D+ . Then, C is a convex compact set

of cost functions and the following holds:

max
c∈C

E
x,y∼π

[c(x,y)] = max
M∈SD×D+ ‖M‖p≤1

〈Vπ,M〉 = ‖Vπ‖q

implying RKP(Π, C) = minπ∈Π ‖Vγ‖q. Furthermore, for any π ∈ Π,

M∗ = argmax
M∈SD×D+ ‖M‖p≤1

〈Vπ,M〉 =

(
Vγ

‖Vγ‖q

) q
p

(B.1)
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verifies ‖M∗‖p = 1. In particular, for p =∞, minπ∈Π ‖Vπ‖1 =W2
2 (µ, ν), i.e., , we recover the

classic 2-Wasserstein distance.

Proof. With the notations used to prove that C is a convex compact, adding the PSD constraint

on M can be done by considering the image of BDp+ := BDp ∩ SD×D+ by mapping Φ. BDp+ is a

convex compact set as it is the intersection of a convex compact set and a convex cone (the PSD

cone). For fixed π ∈ Π, we compute the maximum of E
x,y∼π

[
cM(x,y)

]
over M ∈ BDp+.

max
M∈BDp+

E
x,y∼π

[c(x,y)] = max
M∈BDp+

E
x,y∼π

[
(x− y)>M(x− y)

]
= max

M∈BDp+
E

x,y∼π

[
Tr
(

(x− y)(x− y)>M
)]

= max
M∈BDp+

E
x,y∼π

[〈
(x− y)(x− y)>,M

〉]
= max

M∈BDp+
〈Vπ,M〉 .

where we used properties of the trace operator, the linearity of the expectation and the definition

of Vπ.

This maximum is achieved for M∗ verifying ‖M∗‖p = ‖M∗‖pp = Tr{(M∗)p} = 1. In fact,

supposing this is not the case, i.e., ‖M∗‖p < 1, then M∗∗ = M∗

‖M∗‖ verifies 〈Vπ,M
∗∗〉 > 〈Vπ,M

∗〉,
which contradicts M∗’s optimality.

Using the equality case of the Hölder inequality for Schatten p-norms (Magnus, 1987, Theorem

5), the only PSD matrix achieving this maximum is:

M∗ =

(
Vq
π

Tr{Vq
π}

) 1
p

=

(
Vπ

‖Vπ‖q

) q
p

and the value of the maximum is ‖Vπ‖q. Taking the minimum over π ∈ Π, we obtain:

min
π∈Π

max
M∈BDp+

E
x,y∼π

[c(x,y)] = min
π∈Π
‖Vπ‖q .

In particular, for p =∞, the corresponding dual norm is ‖·‖1, and we have:

min
π∈Π
‖Vπ‖1 = min

π∈Π
Tr{Vπ}

= min
π∈Π

E
x,y∼π

[
‖x− y‖2

]
=W2

2 (µ, ν).

This concludes the proof.

Corollary 3 (Euclidean norm case). Let C be defined with p = 2 in (3.3) and let M∗ =

argmax‖M‖2≤1 〈Vπ,M〉. Then M∗ =
Vπ

‖Vπ‖2
, thus M∗ is PSD and ‖M∗‖2 = 1.

Proof. sup‖M‖2≤1 〈Vπ,M〉 is achieved, without imposing that M is PSD, for M = Vπ
‖Vπ‖ (by the

equality case of the Cauchy-Schwartz inequality). This matrix is PSD as Vπ is PSD, and has

unit norm.
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Corollary 4. With the assumptions from Proposition 1, the following inequality holds for any

p ∈ [1,+∞]:
1

D
1
p

W2
2 (µ, ν) ≤ WC(µ, ν) ≤ W2

2 (µ, ν). (B.2)

Proof. Let π ∈ Π. We have for any p ≥ 1, ‖Vπ‖p ≤ ‖Vπ‖1 by the monotonicity of Schatten

p−norm, and we have minπ∈Π ‖Vπ‖1 = W2
2 (µ, ν). Taking the infimum over π ∈ Π yields the

right hand side inequality in (2). To obtain the left hand side, notice that A := D
− 1
p ID verifies

‖A‖p ≤ 1, and that A is PSD, so that cA ∈ C. Thus,

min
π∈Π
〈Vπ,A〉 ≤ WC(µ, ν).

Finally, notice that the left hand side in the previous inequality equals 1

D
1
p
W2

2 (µ, ν), thus

concluding the proof.

B.2 Proofs from Section 3.3.3

Let X and Y are identified respectively with finite sets {xi}Ii=1 and {yk}Kk=1, hence C is identified

with a convex compact set of cost matrices with entries (C)ik = c(xi,yk).

Proposition 7. Let P be a finite subset of Π. The problem RKP(P, C) := RKP(Conv (P) , C)
has a saddle point (T ∗,C∗) verifying

〈T ∗,C∗〉 = min
T∈Conv(P)

max
C∈C
〈T ,C〉 (B.3)

= max
C∈C

min
T∈P
〈T ,C〉 . (B.4)

Moreover, solving RKP(P, C) is equivalent to solving

C∗ ∈ argmax
C∈C,ω≥0

ω

s.t. 〈T ,C〉 ≥ ω, ∀T ∈ P. (B.5)

Also, T ∗ =
∑|P|

l=1 qlTl, where {ql}
|P|
l=1,

∑
l ql = 1, are dual variables of (3.5). In particular,

solving RKP(Π, C) can be done by setting P as the set of vertices of Π.

Proof. Since the set P is finite, Conv (P) is a convex compact set. Also, by definition, C is a

convex compact set. Moreover, we note that for any (T ,C) ∈ Π× C, the functions 〈T , ·〉 and
〈·,C〉 are linear. By applying Sion’s min-max theorem (Sion, 1958), problem RKP(P, C) :=

RKP(Conv (P) , C) has at least a saddle point, and any saddle point (T s,Cs) verifies:

〈T s,Cs〉 = min
T∈Conv(P)

max
C∈C
〈T ,C〉

= max
C∈C

min
T∈Conv(P)

〈T ,C〉 . (B.6)

111



B.2. Proofs from Section 3.3.3

However, for any fixed C ∈ C, the linearity of 〈·,C〉 implies that its minimum on Conv (P) is

achieved on one of its vertices, i.e., :

∀C ∈ C min
T∈Conv(P)

〈T ,C〉 = min
T∈P
〈T ,C〉 ⇒ max

C∈C
min

T∈Conv(P)
〈T ,C〉 = max

C∈C
min
T∈P
〈T ,C〉 . (B.7)

Combining (B.6) and (B.7) yields Equation (B.4).

Moreover, by the saddle point’s definition, we have: C∗ ∈ argmaxC∈C minT∈P 〈T ,C〉. Using

the fact that P is finite, we obtain the equivalent Problem (B.5). What is left is computing T ∗’s

value. To this end, let us introduce IC , the convex indicator function of set C, defined by:

IC : C 7→ 0 if C ∈ C

+∞ otherwise

Also, notice that ω is nonnegative even without imposing this condition. In fact, assuming

that the cost matrices in C have positive values, we have minT∈P 〈T ,C〉 ≥ 0, for all C ∈ C.
If ω∗, the value of ω at the solution was negative, its maximality contradicts the condition

minT∈P 〈T ,C〉 ≥ 0. Hence, Problem (B.5) is equivalent to the following:

max
C∈RI×K ,ω∈R

ω − IC(C),

s.t 〈T ,C〉 ≥ ω ∀T ∈ P.

The Lagrangian of the previous problem is:

La(q,C, ω) = ω − IC(C) +

|P|∑
l=1

ql(〈Tl,C〉 − ω), (B.8)

where l indexes the finite set of matrices P , ql ≥ 0 for all l ∈ {1, ..., |P|} denote the dual variables
of the constraints, and q = (q1, ..., q|P|). A known optimization result (Boyd and Vandenberghe,

2004, Section 5.4.2) implies that that the solution to the primal, (C∗, ω∗) and the solution to

the dual, q∗ = (q∗1, ..., q
∗
l ) form a saddle point of the Lagrangian, which implies:

La(q∗,C∗, ω∗) = max
C,ω
La(q∗,C, ω) (B.9)

Deriving the Lagrangian with respect to ω yields:∑
l

q∗l = 1. (B.10)

In addition to this condition, knowing that the value of the Lagrangian is finite at the solution,

we have IC(C∗) = 0. Substituting the last two conditions in Equation (B.9) yields:

La(q∗,C∗, ω∗) = 〈T ∗,C∗〉

= max
C∈RI×K

〈T ∗,C〉 − IC(C)

= max
C∈C
〈T ∗,C〉 (B.11)
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where T ∗ is defined as in the proposition. Also, Equation (B.10) implies that there is at least

one l′ ∈ {1, ..., |P|} verifying ql′ > 0, and hence

ω∗ = 〈Tl′ ,C∗〉 = min
T∈P
〈T ,C∗〉 = min

T∈Conv(P)
〈T ,C∗〉 (B.12)

Moreover, by the Lagrangian’s definition, we have ω∗ = La(q∗,C∗, ω∗). This latter equation

combined with (B.12) and (B.11) yields:

〈T ∗,C∗〉 = max
C∈C
〈T ∗,C〉 = min

T∈Conv(P)
〈T ,C∗〉 (B.13)

i.e., (T ∗,C∗) is a saddle point of RKP(P, C).

Proposition 8. Let T be the number of iterations required by 4 to reach error err(T ) ≤ thd1.

Then,

T ≤
(

diam∞ (C) + RKP(P0, C)
2.thd1

+ 1

)dim(C)+1

where diam∞ (C) := supC1,C2∈C,i,j
∣∣C1

ik −C2
ik

∣∣ and dim(C) is the dimension of the affine hull of

C. Also, ∀t ≥ 0, we have that 0 ≤ RKP(Pt, C)− RKP(Π, C) ≤ err(t).

Proof. In this proof, we use the notation ‖A‖1 =
∑

ik |Aik| and ‖A‖∞ = supik |A|ik. We note

that these notations are only used in this proof and do not apply to the rest of the appendix, as

they do not correspond to the Schatten-1 and ∞ norms.

We apply the result given in (Mutapcic and Boyd, 2009, Section 5.2) to our case. To this

end, since our nominal problem corresponds to P0, we define its feasible set F0 as:

F0 = {(ω,C) ∈ R+ × C|ω ≤ min
T∈P0

〈T ,C〉}.

Also, we define

‖(ω,C)‖∞ := |ω|+ ‖C‖∞ . (B.14)

For every (ω,C1), (γ,C2) ∈ F0 and for every constraint, i.e., , for every T ∈ P0, we have:

|(
〈
T ,C1

〉
− ω)− (

〈
T ,C2

〉
− γ)| ≤

∣∣〈T ,C1
〉
−
〈
T ,C2

〉∣∣+ |ω − γ| (B.15)

≤‖T ‖1
∥∥C1 −C2

∥∥
∞ + |ω − γ| (B.16)

≤
∥∥C1 −C2

∥∥
∞ + |ω − γ| (B.17)

=
∥∥(ω,C1)− (γ,C2)

∥∥
∞ (B.18)

where (ω,C1)− (γ,C2) := (ω − γ,C1 −C2). (B.15) is due to the triangle inequality, followed

by the Hölder inequality to obtain (B.16). Then, since P0 ⊂ Π and any matrix in Π has all of

its entries bounded by 1, we obtain (B.17). Lastly, we used definition (B.14) to obtain (B.18).

To establish the bound as done in (Mutapcic and Boyd, 2009), we also need to find the

radius R of a ball that contains the feasible set F0, and we consider the affine hull of C instead

of RI×K as the space containing C. It is then sufficient to bound the diameter of F0, denoted

diam∞ (F0) and to take half of the bound for R. To this end, for any (ω,C1), (γ,C2) ∈ F0,∥∥(ω,C1)− (γ,C2)
∥∥
∞ =

∥∥(ω − γ,C1 −C2)
∥∥
∞
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=
∥∥C1 −C2

∥∥
∞ + |ω − γ|

≤ diam∞ (C) + |ω − γ|.

We have:

ω − γ ≤ ω ≤ min
T∈P0

〈T ,C〉 ≤ RKP(P0, C).

We can obtain this bound also for γ − ω, hence for |γ − ω|. Taking the supremum over

(ω,C1), (γ,C2) ∈ F0 (the definition of a diameter), we obtain:

diam∞ (F0) ≤ diam∞ (C) + RKP(P0, C).

We can then set radius R as half of the previous upper bound, leading to the bound on the

number of iterations T . For the second result of the proposition, for any t ≥ 0, we have:

min
T∈Π
〈T ,C〉 ≤ RKP(Π, C) ≤ RKP(Pt, C),

where the left inequality is due to taking the maximum over C, while the right one is due to the

set inclusion Pt ⊂ Π. Thus,

0 ≤ RKP(Pt, C)− RKP(Π, C) ≤ RKP(Pt, C)−min
T∈Π
〈T ,C〉 .

In Algorithm 4, the right hand side is equal to err(t), which yields the result.

B.3 Proofs from Section 3.3.4

We first prove the following lemma that will be helpful in the following proofs.

Lemma 2. Let c and d be two positive integers. The dual of the linear program

max
p∈∆d,ω≥0

ω

s.t. Gp ≥ ω1c, (B.19)

is the linear program

min
q∈∆c,γ≥0

γ

s.t.G>q ≤ γ1d,

Proof. We will transform (B.19) to a standard LP formulation. To this end, let v = (p1, ..., pd, ω),

i.e the concatenation of p and ω. Also, we transform the equality condition 1
>
d p = 1 into the

two inequalities 1>d p ≤ 1 and −1>d p ≤ −1. We construct the following matrix:

F =


−G 1c

1
>
d 0

−1>d 0
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Having c+ 2 rows and d+ 1 columns. Then, (B.19) can be re-written under the standard form:

max e>d+1v

s.t Fv ≤ ec+1 − ec+2

v ≥ 0

where ei denotes the vectors of Rd+1’s canonical basis. This latter problem has the following

dual:

min (ec+1 − ec+2)>w

s.t F>w ≥ ed+1

w ≥ 0

Using the fact that

F> =

[
−G> 1d −1d
1
>
c 0 0

]
and denoting w = (q1, ..., qc, γ1, γ2), and q = (q1, ..., qc), the dual is written:

min γ1 − γ2 (B.20)

s.t G>q ≤ (γ1 − γ2)1d (B.21)

1
>
c q ≥ 1 (B.22)

q ≥ 0 (B.23)

γ1, γ2 ≥ 0 (B.24)

Setting γ = γ1 − γ2, from (B.21) and the fact that G has positive elements (Frobenius products

between cost matrices and transport matrices), we have γ ≥ 0. Also, for γ∗, q∗ the solution of

the dual, we necessarily have 1>c q∗ = 1. In fact, assuming that 1>c q∗ > 1 and dividing (B.21)

by 1>c q∗, we see that γ∗∗,q∗∗ defined by q∗∗ = q∗

1>c q∗
and γ∗∗ = γ∗

1>c q∗
verify all the constraints,

whereas γ∗∗ < γ∗. This latter inequality contradicts the minimality of γ. Hence, the dual

formulation is proven.

Proposition 9 (Finite set C). Let C = Conv ({C1, ...,CM}). Then, for t ≥ 0, solving the

problem given in (3.5) over Pt × C is equivalent to the following linear program

min
p∈RM+

1
>
Mp

s.t. Gp ≥ 1|Pt|, (B.25)

where G ∈ R|Pt|×M is defined by Glm = 〈Tl,Cm〉.
Moreover,

C∗ =

∑M
m=1 p

∗
mCm∑M

m=1 p
∗
m

, T ∗ =

∑|Pt|
l q∗l Tl∑|Pt|
l q∗l

,

where p∗ and q∗ are optimal solutions of (3.8) and its dual.
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Proof. Since C is the convex hull of matrices {C1, ...,CM}, i.e the set of their convex combinations,

problem (3.5) can be formulated as follows:

max
p∈∆M ,ω≥0

ω

s.t. ω ≤
∑
m

pm 〈Tl,Cm〉 ∀1 ≤ l ≤ |Pt|

Let Glm be the matrix whose elements are: Glm = 〈Tl,Cm〉. The previous problem can be

re-written:

max
p∈∆d,ω≥0

ω

s.t. Gp ≥ ω1|Pt|, (B.26)

Since the probability simplex ∆M can be expressed as:

∆M =

{
p

1
>
Mp

; p ∈ RM+ \ {0}
}

the previous problem is equivalent to

max
p∈RM+ ,ω≥0

ω

s.t. Gp ≥ ω1>Mp1|Pt|.

By setting ω1>Mp = 1 (same technique used to derive primal SVM optimization problem as a

constrained norm minimization problem), which proves formulation (3.8). Also, from the change

of variables that we made on p, we obtain

C∗ =

∑M
m=1 p∗mCm∑M
m=1 p∗m

,

where p∗ is the solution of Problem (3.8).

Now we focus on the second part of the proof, to obtain the expression of T ∗, the other

component of the saddle point. By the result in Lemma 2, denoting q̃∗ the dual variables of

Problem (B.26), q̃∗ is a solution to the following dual problem:

min
q∈∆|Pt|,γ≥0

γ

s.t. G>q ≤ γ1M , (B.27)

By the same argument used to obtain the equivalent formulation (B.25), Problem (B.27) is

equivalent to:

max
q∈RD+

1
>
|Pt|q

s.t. G>q ≤ 1M , (B.28)

where the components of the solution q̃∗ by normalizing solution q∗ of the previous problem,

which yields the expression of T ∗. Finally, it is sufficient to notice that Problems (B.28)

and (B.25) are each the dual of the other, to conclude the proof.
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To proceed for the next proposition, we recall the definition of the set

CC = {C + EM ∈ RI×K |EM
ik = (xi − yk)>M(xi − yk); M ∈ SD×D+ ; ‖M‖p≤r}

for given cost matrix C and radius r > 0.

Proposition 10 (Non centered family of Mahalanobis distances). For a fixed C, let CC be

defined as in (3.9). Then, for t ≥ 0, solving (3.5) over Pt × CC, is equivalent to solving the

following convex program

min
T∈Conv(Pt)

r ‖VT ‖q +
∑
ik

TikCik. (B.29)

Moreover, if T ∗ is an optimal solution of Equation (B.29), then M∗ is given by Equation (B.1)

with γ replaced by T ∗.

Proof. C in this case is convex compact, as it is the same as C presented in Proposition 6, up to

a translation by a matrix C.

By Proposition 7, solving Problem (3.5) is equivalent to solving

min
T∈Conv(Pt)

max
D∈CC

〈T ,D〉

However for any matrix T ∈ Conv (Pt), and for rBDp+ = {rM,M ∈ BDp+} (BDp+ is defined as in

the proof of 6), we have:

max
D∈CC

〈T ,D〉 = max
M∈rBDp+

∑
ik

Tik((xi − yk)M(xi − yk) + (C)ik)

= max
M∈BDp+

r
∑
ik

Tik((xi − yk)M(xi − yk)) +
∑
ik

Tik(C)ik

=r ‖VT ‖q +
∑
ik

TikCik

where in the last line, we used the developments done in Proposition 6, from which we also get

the expression of M∗. For the case p = 2, we use the result of Corrolary 3, where the PSD

constraint is not needed.

B.4 Experimental evaluations

In this section, we add the details needed to reproduce the experiments from the chapter using

the code provided1. We also provide more experimental results for the considered evaluation

scenarios and full-size figures presented in a reduced size in the main appendix. For all of the

experiments, threshold thd2 used for constraint elimination is set to 10−12.

Section 3.4.1: Convergence and execution time Convergence curves for first two plots

are obtained for threshold value thd1= 0. The value for the first threshold is to let the algorithm
1https://github.com/sofiendhouib/minimax_OT.
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perform all of the iterations, set to 100. As for the right figure, we set the maximum number of

iterations to 1000 and thd1 to 10−8, and we use MOSEK solver to solve the LP formulation, for

which we set all tolerance values to 10−8.

Section 3.4.2 Hypercube We set maxIter to 10, P0 is set to the uniform distribution and

thd1= 10−8. The experiment is reproduced 100 times.

Section 3.4.3: Stability and noise sensitivity The parameters used in this experiment

for all additiional data sets are the same as for the MNIST 0-to-1 dataset and the two Gaussians.

The maximum number of iterations of the cutting set method, maxIter is set to 10. P0 is set

to the uniform distribution, thd1= 10−20. The Mahalanobis ball has the radius r = 0.01. The

50 cost matrices are created with random Mahalanobis projections and different norms taking

values in (2, 3, 4, 5, 10). We also add the cost matrix associated with the squared Euclidean

distance. Each cost matrix is divided by its Frobenius norm. The noise sensitivity is computed

over 200 runs. In all examples of Figure B.1, the sensitivity to noise is correlated to the stability
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Figure B.1: Left to right, top to bottom: Gaussians, MNIST 0-to-1, MNIST 3-to-0, MNIST

6-to-5, MNIST 7-to-1, MNIST 7-to-4 data sets. Y-axis (left) is the difference between the OT

cost with Ci and Ci + EM. Y-axis (right), the Wasserstein stability defined in Section 3.5. Each

column is a different cost matrix, the matrices are ordered by the Wasserstein stability.

Cited on page [118]

of the cost matrix. The cost matrix associated with the squared Euclidean distance is often

stable and robust to noise which is predictable as it is the most used distance in OT. However,
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it is never the best cost matrix in terms of our notion of stability.

Section 3.4.4: Color transfer We use the same setting as above with the following

parameters: maxIter is set to 200, thd1= 10−8, r = 0.001 and we divide each cost matrix

element-wise by its corresponding transport cost. On Figure B.2, we first provide images from

Chapter 3 in a bigger size in order to see more fine-grained details.

Figure B.2: Top row: Original images of ocean sunset and ocean sky. Middle row: (left)

most stable cost matrix, (right) squared Euclidean based cost matrix. Bottom row: (left) least

stable Mahalanobis cost matrix, (right) least stable cost matrix. Notice the quality difference

between the most stable matrix and the squared Euclidean based one in the area just under the

cloud.

Cited on page [119]
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Figure B.3 presents additional visualizations for a new pair of images. The obtained results

are in line with experiments shown in the main appendix and exhibit similar behaviour.

Figure B.3: Top row: Original images of woods and autumn. Middle row: (left) most stable

cost matrix, (right) Euclidean based cost matrix. Bottom row: (left) least stable Mahalanobis

cost matrix, (right) least stable cost matrix.

Cited on page [120]
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Appendix C

Appendix of Sampled Gromov

Wasserstein

C.1 Scalable GW optimization

C.1.1 Detailed derivations for the convergence

This section gives the (very) detailed derivations used to obtain the convergence properties of

Section 4.4.2 of Algorithm 5 (from the Chapter 4).

Goal and context

First, let’s give a few reminders of the context and the final result. The proposed algorithm

runs for S iterations, and averages M sampled cost matrices (obtained by sampling pairs of

indices), at each iteration. We provide here a proof of convergence to a stationary point for any

arbitrary loss L. Previous algorithms relied on having some particular loss L to be efficient.

When M =∞ and α = 1, the proposed algorithm is equivalent to EGW.

We are interested in G(T )
def
= E(T ,T ) − minT ′ E(T ,T ′). In a non-convex setting, T is a

stationary point of E(T ) if and only if G(T ) = 0 (Reddi et al., 2016). We recall the assumptions

and notations:

• We suppose CX and CY symmetric. This assumption is notably satisfied if CX and CY

are metrics.

• We define E(A,A′)
def
= E(A′,A) =

∑I,I
i,j=1

∑K,K
k,l=1LijklAikA

′
jl

• We overload the notation if the two parameters are the same: E(A)
def
= E(A,A)

• We assume that 0 ≤ Lijkl ≤ B. This value B can be found in O
(
N2
)
with any losses

L that increase when |CXij - CYkl| increases, by looking at the extreme values of the two

matrix CY and CX .

121



C.1. Scalable GW optimization

More precisely, the bound that we will prove here is the following (Theorem 3 in Chapter 4):

E
(
G
(
T
))
≤
√

2B (E(T0)− E(T ∗))N

S
+B

√
2N

M
+ ε log(N).

Where T ∗ is the optimal (unknown) solution of GW, i.e., T ∗ = argmin
T∈Πµν

E(T ) and the

expectation is taken on all the sampling done during the algorithm and on T .

The notation of the Algorithm 5 are slightly different in this appendix, as we make the

distinction between T ′εs and T ′s. T ′εs is the transport plan given by the OT-Sinkhorn solver,

while T ′s is the exact minimum transport plan.

Our proof is inspired by the Theorem 2 from (Reddi et al., 2016) but we additionally consider

the entropy regularization with notably the lemma 3 which is specific to the OT problem. To

give all details while trying to improve readability, we first prove some intermediate results.

Necessary intermediate results

We first prove the following new lemma which quantifies the difference between the Wasserstein

distance with and without the entropy regularization, for a generic OT problem with a cost

matrix C. Note that a related bound was proposed by Genevay et al. (2019) or Blondel et al.

(2018) but include the entropy regularization while, here, we are only concerned about the

difference between the scalar product.

Lemma 3. Let T ε (resp. T 0) be the optimal solution of a discrete OT problem with (resp.

without) entropy regularization. We suppose the simplified case with N points in each empirical

distribution and with uniform marginal distributions. We will note C the N ×N cost matrix of

this problem.

0 ≤ 〈C,T ε〉 −
〈
C,T 0

〉
≤ ε log(N) (C.1)

Proof. The positivity is obtained by definition of T 0 (it minimizes 〈C,T 〉). The right-hand side

inequality can be derived as follows (where H(T ) denotes the entropy of T ):

〈C,T ε〉 −
〈
C,T 0

〉
= 〈C,T ε〉 −

〈
C,T 0

〉
− εH(T ε) + εH(T ε) (C.2)

≤
〈
C,T 0

〉
−
〈
C,T 0

〉
− εH(T 0) + εH(T ε) (C.3)

≤εH(T ε)− εH(T 0) (C.4)

≤− ε log
(
N−2

)
+ ε log

(
N−1

)
(C.5)

=ε log(N) (C.6)

Line C.3 : by definition, T ε minimizes 〈C,T 〉 − εH(T ). Line C.5 T 0 is a permutation and T ε is

at worse (in terms of H()) uniform.

Interestingly, this bound does not depend directly depend on C (still, C impacts the value

of T 0, T ε). A scale increase of C will virtually reduce ε in comparison, thus T ε will be closer to
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T 0. Note that the bound can be adapted to the general case (arbitrary distributions), then the

bound is ε(H(µ) +H(ν)) as we bound H(T 0) by 0 and H(T ε) by H(µ× ν).

Let (T ,T ′) ∈ Π2
µν . We now derive several intermediate results with these arbitrary transport

plans T and T ′, in a simplified case when I = K = N (same number of points in each empirical

distribution).

We start with a bound on the maximal distance between these transport plans (in terms of

Frobenius norm):

∥∥T − T ′∥∥
F

=

√
‖T − T ′‖2F (C.7)

≤
√
‖T ‖2F + ‖T ′‖2F (C.8)

≤

√√√√ I,K∑
i,k=1

T 2
ik +

I,K∑
i,k=1

T ′2ik (C.9)

≤

√
N

(
1

N

)2

+N

(
1

N

)2

(C.10)

=

√
2

N
. (C.11)

Line C.8 : the triangular inequality is used. Line C.10 : for doubly stochastic matrices, the

highest Frobenius norm is obtained with a permutation (fewer and thus bigger values give a

bigger norm), the permutation has N non-zero values equal to 1
N .

For completeness, we prove that the gradient of E(T ) is expressed in terms of T . We prove

it with L symmetric, in the sense that Lijkl = Ljilk, which is implied if the cost matrices are

symmetric. For all indices (a, b) ∈ (J1, IK, J1,KK), we have:

∂E
∂Tab

(T ) =
∂

∂Tab

I,I∑
i,j=1

K,K∑
k,l=1

LijklTik Tjl (C.12)

=
∂

∂Tab

Laabb T 2
ab +

2
∑
cd6=ab

LacbdTcd

Tab
 (C.13)

= 2 LaabbTab + 2
∑
cd6=ab

LacbdTcd (C.14)

= 2
∑
cd

LacbdTcd (C.15)

∇E(T ) = 2
∑
jl

L.j.lTjl (C.16)

=
∑
jl

(L.j.l +Lj.l.)Tjl in the case where L is not symmetric. (C.17)
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We can also prove that E is 2BN2-smooth, as follows:

∥∥∇E(T )−∇E(T ′)
∥∥
F

=

∥∥∥∥∥∥2
∑
jl

L.j.lTjl − 2
∑
jl

L.j.lT
′
jl

∥∥∥∥∥∥
F

(C.18)

=

∥∥∥∥∥∥2
∑
jl

L.j.l
(
Tjl − T ′jl

)∥∥∥∥∥∥
F

(C.19)

=

√√√√√∑
ik

2
∑
jl

Lijkl

(
Tjl − T ′jl

)2

(C.20)

=

√∑
ik

(2 〈Li.k.,T − T ′〉)2 (C.21)

≤
√∑

ik

(2 ‖Li.k.‖F ‖T − T ′‖F )2 (C.22)

≤
√

4
∑
jl

B2N2 ‖T − T ′‖2F (C.23)

≤ 2B

√
N4 ‖T − T ′‖2F (C.24)

≤ 2BN2
∥∥T − T ′∥∥

F
. (C.25)

Line C.22 uses the Cauchy–Schwarz inequality. Line C.23 uses 0 ≤ Lijkl ≤ B.

The following Lemma 4 is the same as the one provided in Reddi et al. (2016) and will allow

to start the proof.

Lemma 4. If f : RD −→ R is L-smooth, then for all x,y ∈ RD.

f(x) ≤ f(y) + 〈∇f(y),x− y〉+
L

2
‖x− y‖2

Proof of the theorem

Theorem 7 (Based on (Reddi et al., 2016)). For any Lijkl ∈ [0, 1], for any distributions µ and

ν with uniform weights a and b respectively, for any optimal solution T ∗ of Problem (4.2), on

average for the transport plan T uniformly sampled from (Ts)s∈J0,S−1K, on average over all the

samplings, the following bound holds:

E
(
G
(
T
))
≤
√

2B (E(T0)− E(T ∗))N

S
+B

√
2N

M
+ ε log(N).

Proof. Ts and T ′εs are the transport plan obtain in the Algorithm 5. T ′s = T ′0s is the solution

without entropy regularization.

Let T̂ ′s = argmin
T ′s∈Uµν

〈T ′s,∇E(Ts)〉 = argmax
T ′s∈Uµν

〈T ′s,−∇E(Ts)〉 and Λ̂s the sum of matrices sampled

M times at iteration s.
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E(Ts+1) ≤ E(Ts) + 〈∇E(Ts),Ts+1 − Ts〉+
2BN2

2
‖Ts+1 − Ts‖2 (C.26)

≤ E(Ts) +
〈
∇E(Ts), α(T ′εs − Ts)

〉
+BN2‖α(T ′εs − Ts)‖2 (C.27)

≤ E(Ts) +
〈
∇E(Ts), α(T ′εs − Ts)

〉
+BN2α2

√
2

N

2

(C.28)

= E(Ts) + α
〈

2Λ̂s,T
′ε
s − Ts

〉
+ α

〈
∇E(Ts)− 2Λ̂s,T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(C.29)

= E(Ts) + α
〈

2Λ̂s,T
′ε
s − Ts + T ′s − T ′s

〉
+ α

〈
∇E(Ts)− 2Λ̂s,T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(C.30)

= E(Ts) + α
〈

2Λ̂s,T
′
s − Ts

〉
+ α2

〈
Λ̂s,T

′ε
s − T ′s

〉
+ α

〈
∇E(Ts)− 2Λ̂s,T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(C.31)

≤ E(Ts) + α
〈

2Λ̂s, T̂
′
s − Ts

〉
+ α2ε log(N) + α

〈
∇E(Ts)− 2Λ̂s,T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(C.32)

= E(Ts) + α
〈
∇E(Ts), T̂

′
s − Ts

〉
+ α

〈
∇E(Ts)− 2Λ̂s,T

′ε
s − T̂ ′s

〉
+ α2ε log(N)

+BN2α2

√
2

N

2

(C.33)

= E(Ts)− 2αG(Ts) + α
〈
∇E(Ts)− 2Λ̂s,T

′ε
s − T̂ ′s

〉
+ α2ε log(N) +BN2α2

√
2

N

2

(C.34)

≤ E(Ts)− 2αG(Ts) +

√
2

N
α‖∇E(Ts)− 2Λ̂s‖+ α2ε log(N) +BN2α2

√
2

N

2

(C.35)

The line C.26 uses the smoothness of E . The line C.27 uses the definition of the update. The

line C.28 uses the bound between transports plans. The line C.29 adds artificially the 2Λ̂s term.

The line C.30 adds artificially the T ′s term. The line C.31 separate two terms. The line C.32

uses the Lemma 3 with Λ̂s as cost matrix and use the definition of T ′s. The line C.33 uses the

following equalities,〈
2Λ̂s, T̂

′
s − Ts

〉
+
〈
∇E(Ts)− 2Λ̂s,T

′ε
s − Ts

〉
(C.36)

=
〈

2Λ̂s, T̂
′
s − Ts − T ′εs + Ts

〉
+
〈
∇E(Ts),T

′ε
s − Ts + T̂ ′s − T̂ ′s

〉
(C.37)

=
〈

2Λ̂s, T̂
′
s − T ′εs

〉
+
〈
∇E(Ts),T

′ε
s − T̂ ′s

〉
+
〈
∇E(Ts), T̂

′
s − Ts

〉
(C.38)

=
〈
∇E(Ts)− 2Λ̂s,T

′ε
s − T̂ ′s

〉
+
〈
∇E(Ts), T̂

′
s − Ts

〉
. (C.39)

The line C.34 uses the definition of G(Ts). The line C.35 applies Cauchy Schwartz inequality

and bound the difference between OT plan.

To bound the difference between the real expectation ∇E(Ts) and the sampling 2Λ̂s, the

following result is needed. Let defineM random variable, zm = L.jm.lm−
∑

jlL.j.lTjl. They have
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0 mean and each zm are independent from each other. Moreover, ‖zm‖=‖L.jm.lm−
∑

jlL.j.lTjl‖≤√∑
ik B

2 = BN .

E(‖∇E(Ts)− 2Λ̂s‖) = E(‖2
∑
jl

L.j.lTjl −
2

M

M∑
m=1

L.jm.lm‖) (C.40)

=
1

M
2E(‖

M∑
m=1

zm‖) (C.41)

=
2

M

√√√√(E(‖
M∑
m=1

zm‖))2 (C.42)

≤ 2

M

√√√√E(‖
M∑
m=1

zm‖2) Jensen Inequality (C.43)

=
2

M

√√√√ M∑
m=1

M∑
r=1

E(〈zm, zr〉) (C.44)

=
2

M

√√√√ M∑
m=1

E(‖zm‖2) (C.45)

≤ 2

M

√√√√ M∑
m=1

E(B2N2) (C.46)

=
2

M

√√√√ M∑
m=1

B2N2 (C.47)

=
2

M

√
MB2N2 (C.48)

=
2BN√
M

(C.49)

This result can be used directly on the bound, after averaging over all the sampling.

E(E(Ts+1)) ≤ E(E(Ts))− 2αE(G(Ts)) +

√
2

N
αE(‖∇E(Ts)− 2Λ̂s‖) + α2ε log(N)

+BN2α2

√
2

N

2

(C.50)

≤ E(E(Ts))− 2αE(G(Ts)) +

√
2

N
α

2BN√
M

+ α2ε log(N) +BN2α2

√
2

N

2

(C.51)

Thus,

2αE(G(Ts)) ≤ E(E(Ts))− E(E(Ts+1)) + 2

√
2

N
α
BN√
M

+ α2ε log(N) +BN2α2

√
2

N

2

. (C.52)

We set sum over all s on both side.

2α

S−1∑
s=0

E(G(Ts)) ≤ E(T0)− E(E(TS−1)) + S2

√
2

N
α
BN√
M

+ Sα2ε log(N) + SBN2α2

√
2

N

2

(C.53)
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≤ E(T0)− E(E(TS−1)) + S2

√
2

N
α
BN√
M

+ Sα2ε log(N) + SBN2α2

√
2

N

2

(C.54)

We use the definition of T for G(T ). Notice that the following line is correct only on average for

the random variable T . This part is not clearly specified in the original proof of Reddi et al.

(2016). We use also the definition of T ∗ for the second inequality.

E(G(T )) ≤ E(T0)− E(E(TS−1))

2Sα
+

√
2

N

BN√
M

+ ε log(N) +BN2α

√
1

N

2

(C.55)

≤ E(T0)− E(T ∗)

2Sα
+B

√
2N

M
+ ε log(N) +BNα (C.56)

We derive the function f(α) = E(T0)−E(T ∗)
2Sα +B

√
2N
M + ε log(N) +BNα with respect to α.

df

dα
(α) = 0 ⇐⇒ − E(T0)− E(T ∗)

2Sα2
+BN = 0 (C.57)

⇐⇒ 1

α2
=

2S

E(T0)− E(T ∗)
BN (C.58)

⇐⇒ α =

√
E(T0)− E(T ∗)

2SBN
(C.59)

As E(T0)− E(T ∗) ≥ 0, the second derivative is positive, thus f is convex, therefore we have the

minimum. We can replace α and find the final bound,

E(G(T )) ≤ E(T0)− E(T ∗)

2S

√
E(T0)−E(T ∗)

2BSN

+B

√
2N

M
+ ε log(N) +BN

√
E(T0)− E(T ∗)

2BSN
(C.60)

≤ E(T0)− E(T ∗)

2S

√
2BSN

E(T0)− E(T ∗)
+B

√
2N

M
+ ε log(N) +

√
(E(T0)− E(T ∗))BN

2S

(C.61)

≤
√

(E(T0)− E(T ∗))BN

2S
+B

√
2N

M
+ ε log(N) +

√
(E(T0)− E(T ∗))BN

2S
(C.62)

≤
√

2(E(T0)− E(T ∗))BN

S
+B

√
2N

M
+ ε log(N). (C.63)

We will now prove the second theorem using the same proof.

Theorem 8. With the same notations as in Theorem 7 with the entropy εs that may now change

along the iterations, when L yields a concave GW problem the following bound holds:

E
(
G
(
T
))
≤ E(T0)− E(T ∗)

2S
+B

√
2N

M
+

1

S

S−1∑
s=0

εs log(N)
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Proof. The first difference is line C.53, the sum from 0 to S − 1 cannot be changed to S as

εs may change along the iterations and is now a sum over
∑S−1

s=0 . The second difference is in

Lemma 4, were the last term disappear as GW is concave. Thus, in line C.56, as the last term

is not present the optimal value of α is 1, which gives the proposed bound.

C.1.2 A KL regularization-based variant

In this section, we will discuss the convergence of the KL variant. A related convergence proof

is proposed in (Xu et al., 2019b) were the authors aim at solving GW using a proximal point

method,

min
T∈Πµν

E(T ,T ) + εKL(T ||T n).

However, it does not cover our case where minT∈Πµν E(T ,T n) + εKL(T ||T n) is minimized

at each iteration with the expectation approximated by a sampling. Without sampling, this

optimization can be seen as a Majorization-Minization method (Sun et al., 2016b),

E(T ) ≤ E(T n) + 〈∇E(T n),T − T n〉+
2BN2

2
‖T − T n‖2 (C.64)

≤ E(T n) + 〈∇E(T n),T − T n〉+BN2|T − T n|21 (C.65)

≤ E(T n) + 〈∇E(T n),T − T n〉+BN2KL(T ||T n). (C.66)

Were the first line is the line C.26 in the proof of Theorem 7. The second line use the fact that

the L2 norm is bigger than the L1 norm. The last line uses the Pinsker’s inequality.

While the last inequality seems to be a good starting point, we could not directly derive (or find

in the literature) a bound that applies with sampling and the KL term (that makes the use of

Sinkhorn-Knopps possible). Thus, while this interpretation seems interesting, the question of

the convergence is left open and would need to be studied in a future work.

C.1.3 Approximating the Gromov Wasserstein distance

This section gives mathematical details for the estimation of the Gromov Wasserstein distance

from a given transport plan. Our approach to compute the GW distance will take inspiration

from the idea of sampling T ∈ Πµν (i.e., with marginals a and b).

Let define a new random variable P (R = Lijkl) = TikTjl. This definition is not totally

rigorous: two values Lijkl and Li′j′k′l′ may be equal, the actual probability is then the sum of

the probabilities. The GW distance can now be seen as an expectation,∑
ijkl

LijklTikTjl = E(R). (C.67)

Instead of simply sampling this expectation, we propose to stratify by each index i, j to improve

the quality of the estimator. Let Ui be the event “i is chosen for the first dimension of L” and

U ′j be the event “j is chosen for the second dimension of L”. Using the rule of total expectation,
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the expectation can be transformed to,

E(R) =
∑
ij

P(Ui ∩ U ′j)E(R|Ui ∩ U ′j) (C.68)

=
∑
ij

aiajE(R|Ui ∩ U ′j). (C.69)

For any (i, j) ∈ J1, NK2, we denote as Xij the random variable defined by: P(Xij = Lijkl) =

P(R = Lijkl|Ui ∩ U ′j). Thus, we use R̂ =
∑

ij aiaj
1
M

∑M
m=1X

m
ij to estimate the Gromov

Wasserstein distance. This estimator is unbiased and comes with a tight estimator of the

standard deviation as shown on the Figure 4.4 of Chapter 4,

σ̂R̃ =

√√√√√∑
ij

a2
ia

2
j

1

M − 1

M∑
m=1

(
Xm
ij −

(
1

M

M∑
m′=1

Xm′
ij

))2

. (C.70)

We recommend taking at least M = 2, to have access to the standard deviation. Note that

we can look only at a sub-sample of the indices i, k (
√
N log(N) instead of all the N points), to

have an approximation of the distance in N log(N). This is useful when coupled with Pointwise

Gromov Wasserstein, however, the predicted distance might be far from the real one without

any standard deviation to quantify the error.

C.2 Experiments

C.2.1 General setup and methods

We remind that the code to reproduce all the experiments, figures and tables is available in the

GitHub repository: https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein.

Gaussians mixtures

This section explains how the Gaussians mixtures are created with a Gaussian Random Partition

Graph (Brandes et al., 2003) based on Stochastic Block Model (Holland et al., 1983). The

Algorithm 7 describe how to sample N points. This algorithm will create some Gaussians

separated from each other and some values will be sample from those Gaussians.

For the experiment, the dimension space D is set to 10 and 20 for the distributions µ and ν.

The Euclidean distance is used on both spaces to compute CX and CY .

Gaussian Random Partition Graph

For the second experiment, we generate graphs using a Gaussian Random Partition Graph (Bran-

des et al., 2003) with intra-cluster probability of 0.5, extra-cluster probability of 0.1, the number

of nodes in each cluster is sampled from a Gaussian with mean min(N2 , 200) and a variance of 5.

The adjacency matrix of each graph is used for CX and CY . We set a and b to the uniform

distribution.
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C.2. Experiments

Algorithm 7 Gaussians mixtures dataset. Cited on page [129]

Require: N , D, vin = 2, vout = 10, vpoints = 5, c = min(200, N2 )

1: n = 0

2: Positions = [ ]

3: while n < N do

4: mean = N (0, vout × ID)

5: n′ = N (c, vpoints)

6: Add n′ sample of N (mean, vin × ID) to Positions

7: n = n+ n′

8: end while

9: return N first points of Positions

C.2.2 Speed and accuracy of the GW estimate

We reproduce the figures available in Chapter 4 in Figure C.1 and Figure C.2. The left part of

Figure C.2 is omitted from the paper: it shows similar time complexity compared to the left

part of Figure C.1.
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Figure C.1: Computational time (left) and GW distance estimation (right) between points

sampled from mixtures of Gaussians.
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Figure C.2: Computational time (left) and GW distance estimation (right) on synthetic

graphs (Brandes et al., 2003).
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Figure C.3 shows that the computation time is clearly different with the square loss. To
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facilitate the comparison, we keep, for every method, the same hyperparameter used for the

absolute loss. Those parameters may not be optimal, especially S-GWL which seems to perform

poorly. On the left Figure C.3, SGW is faster that PoGroW because the distance can be

computed in O (N log(N)), and the entire algorithm is efficiently parallelized. Because of its

O
(
N2
)
complexity, SaGroW is still faster than S-GWL and EGW for a high number of points.
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Figure C.3: Computational time (left) and GW distance estimation (right) between sampled

points from mixtures of Gaussians with the square loss.

Cited on pages [130,130]

C.2.3 Hyperparameter analysis

In this section, we plot figures similar to Figures 4.8, 4.9 and 4.10 from Chapter 4.

Figure C.4 shows the difference between the square loss and the absolute one, to compare

computational times. While our method remains the same, the other method improve their

computational time.

10−1 100 101 102 103 104

Computational time (s)

130

140

150

160

170

180

190

Gr
om

ov
 W

as
se

rs
te

in
 v

al
ue

: 
 (T

)

SaGroWKL

PoGroW
Minimum
over
10 runs
 

1 sample
10 samples
100 samples
1000 samples

10 iterations
50 iterations
100 iterations
500 iterations

EMD−GW
S−GWL
EGW
EGWKL

Low ε
Medium ε
High ε
Uniform

10−1 100 101 102 103

Computational time (s)

25000

30000

35000

40000

45000

50000

55000

Gr
om

ov
 W

as
se

rs
te

in
 v

al
ue

: 
 (T

)

SaGroWKL

PoGroW
Minimum
over
10 runs
 

1 sample
10 samples
100 samples
1000 samples

10 iterations
50 iterations
100 iterations
500 iterations

EMD−GW
S−GWL
EGW
EGWKL

Low ε
Medium ε
High ε
Uniform

Figure C.4: Similar to the Figures 4.8, 4.9 and 4.10 in Chapter 4. (Left) Absolute loss.

(Right) Square loss.
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Figure C.5 shows similar expected behavior for a graphs dataset.

Figure C.6 shows a very easy situations, where every method probably finds the right GW

distance. In this case, PoGroW is very competitive even for the square loss.
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Figure C.5: Hyperparameters analysis on a Stochastic Block Model dataset with 200 nodes for

each graphs. (Left) Absolute loss. (Right) Square loss.
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Figure C.6: Hyperparameters analysis on a mixture of Gaussians with 200 points sampled for

each distributions. (Left) Absolute loss. (Right) Square loss.
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Figure C.7 highlights the interest of our method even for a very small N (20 nodes in each

graph). In this case, SaGroW obtains the best transport plan for the square loss.
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Figure C.7: Hyperparameters analysis on a Stochastic Block Model dataset with only 20 nodes

for each graphs. (Left) Absolute loss. (Right) Square loss.
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Figure C.8 (left) shows an interesting example when every method seems stuck in the same
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local minimum and S-GWL finds a better transport plan which is probably the global minimum.
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Figure C.8: Hyperparameters analysis on a mixture of Gaussians with 100 points sampled for

each distributions. (Left) Absolute loss. (Right) Square loss.

Cited on page [132]

Lastly, Figure C.9 shows that even with 1000 iterations, SaGroW doesn’t seem to converge.

The value of ε is too high in this case and needed to be lowered to avoid too many iterations.

However, SaGroW still obtains a better plan than S-GWL for the absolute loss.
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Figure C.9: Hyperparameters analysis on a Stochastic Block Model dataset with 1000 nodes

for each graphs. (Left) Absolute loss. (Right) Square loss.
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C.2.4 Small experiment on SaGroW without the KL regularization

In this experiment, we replace SaGroWKL by SaGroW and reproduce Figures 4.8, 4.9 and 4.10

in Chapter 4. We use ε = 0.1 for this experiment and α = 0.8. The Figure C.10 shows that the

value of ε = 0.1 is too high on this dataset. Section C.2.5 highlights the difficulty to choose a

good value of entropy regularization while the KL regularization is much more robust to this

choice.

As the number of sample increases, the performance of SaGroW tend to EGW0.1, which

is the left-most point. This behaviour is expected as SaGroW become similar to EGW when

the expectation is completely computed. However, the performance improves slowly with the

number of iterations. This might be due to the lack of memory from one iteration to the other,
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as the transport plan Ts may vary a lot between two iterations. This illustrates the advantage

of the KL regularization which completely take into account the previous transport plan.
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Figure C.10: Similar to the Figures 4.8, 4.9 and 4.10 in Chapter 4, with SaGroWKL replaced

by SaGroW.
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C.2.5 Small experiment on the entropy parameter

Table C.1 shows that EGW is really sensitive to the entropy regularization, with only 4 values

of ε that give a Gromov Wasserstein distance different from 0.75. This value of 0.75 corresponds

to the uniform matrix. In contrast, due to the KL regularization instead of the classical entropy,

SaGroWKL never returns the uniform matrix. Moreover, SaGroWKL gives a reasonable value

for a wide range of parameters (from 0.05 to 1).

The entropy regularization ensure to stay close to the uniform. Thus, for high value of ε it

will always stay close to the uniform. The KL regularization ensure that the next value will be

close to the previous one. In such a case, with enough iterations, one can still converge to a

local minimum. This is intuition was given in (Xu et al., 2019b) based on (Xie et al., 2020).

C.2.6 Small experiment on the α parameter

Tables C.2 and C.3 analyze the impact of α and the number of iterations. The most important

information is that a high value of α seems a good choice. A high value of α ensure to always

be close to the edge of the polytope, were the optimal value is assumed to be. For a concave

problem (Table C.3), the best value to choose is 1. In Table C.2 the best value around 0.75 -

0.9. Thus, it might not be very interesting to cross validate this parameter, and a value around

0.8 seems a reasonable choice.

On average, it is better to apply many iterations. This is especially true for small value

of α were the GW distance changes very slowly. We see on this experiment, the limit of the

convergence proof. In practice, we will never use a small value of α, even if the convergence is

ensured.
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Table C.1: Gromov Wasserstein estimation for different values of ε. The dataset is composed of

2 graphs created with a Gaussian Random Partition Graph (Brandes et al., 2003) with 50 points

each. The mean cluster size is set to 25 and the variance to 5. The probability of intra-cluster

connection is 0.5 while the inter-cluster is set to 0.1. The GW distances reported are averaged

over 10 iterations. The absolute distance is used for L. The number of iteration of SaGroWKL

is 1000 with one sample per iteration.

Cited on page [134]

ε SaGroWKL EGW

0.001 0.73 0.75

0.005 0.59 0.63

0.01 0.55 0.62

0.05 0.51 0.67

0.1 0.51 0.71

0.5 0.52 0.75

1 0.52 0.75

5 0.62 0.75

10 0.68 0.75

Table C.2: Gromov Wasserstein distance for PoGroW with different values of α and different

number of iterations. The dataset is composed of 2 graphs created with a Gaussian Random

Partition Graph (Brandes et al., 2003) with 50 points. The absolute distance is used for L.
Cited on pages [134,134]

S\α 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999 1

1 74.87 74.87 74.82 74.63 74.03 73.07 72.33 71.82 71.77 71.76

10 74.87 74.82 74.73 74.52 74.88 74.69 72.28 71.84 71.80 71.79

100 74.82 74.35 73.36 73.94 74.67 68.34 68.76 71.91 71.93 71.94

1000 74.37 73.76 72.90 73.32 73.09 72.12 70.62 72.97 73.01 70.69

C.2.7 Graph classification

Tables C.4 and C.5 gives the complete table of the graphs’ classification experiment. The best

parameter taken for each of the method is not of the edge on the parameter range. Thus, a good

parameter is found for each method. Notice that the performance of PoGroW are very similar

for different value of power p. This can be explained by the fact that the transport plan found

does not depend on the loss used. The 1D optimal transport plan is the same for all convex

loss functions. For the case p = 0.5, PoGroW does not find the perfect transport plan at each

iteration as we suppose the loss convex. For p = 1 the problem might be degenerated, many
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Table C.3: Gromov Wasserstein distance for PoGroW with different values of α and different

number of iterations. The dataset is composed of 2 samples of 50 points of mixtures of Gaussians.

The absolute distance is used for L.
Cited on pages [134,134]

S\α 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999 1

1 166.88 166.87 166.28 163.53 154.03 138.40 126.08 117.62 116.73 116.63

10 166.83 166.37 163.81 160.98 117.23 85.41 85.27 85.24 79.84 79.84

100 166.48 163.31 105.36 90.42 137.56 76.93 79.02 73.80 73.64 73.62

1000 163.38 134.57 86.59 80.47 79.43 78.28 77.45 77.14 77.11 77.11

different transport plans can be optimal. We can suppose p slightly higher than one to avoid

the problem. Caracciolo et al. (2020) proposes a bound for the 1D OT concave case.

Other losses than the absolute loss at power p have been tested. Only the exponential square

(1− e−(CX−CY )2) has a reasonable accuracy.
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Table C.4: Complete table of the classification experiment (1/2).

Cited on page [134]

Dataset Accuracy GW Distance Time (s)

S-GWL0.005 0.1 400 14.7

S-GWL0.01 0.1 400 13.9

S-GWL0.05 0.1 400 13.9

S-GWL0.1 0.1 400 12.6

S-GWL0.5 0.17 390 12.0

S-GWL1 0.29 374 11.0

S-GWL5 0.44 362 23.4

S-GWL10 0.41 377 27.8

S-GWL50 0.41 374 34.1

S-GWL100 0.39 372 33.2

EGW0.0001 0.07 430 0.1

EGW0.0005 0.07 429 4.5

EGW0.001 0.22 412 36.2

EGW0.005 0.22 375 42.6

EGW0.01 0.12 383 25.1

EGW0.05 0.15 408 6.2

EGW0.1 0.12 420 2.0

EGW0.5 0.07 429 0.3

EGW1 0.07 429 0.3

EGWKL
0.0001 0.07 430 0.1

EGWKL
0.0005 0.07 429 0.1

EGWKL
0.001 0.15 419 0.2

EGWKL
0.005 0.24 375 41.1

EGWKL
0.01 0.12 383 25.8

EGWKL
0.05 0.15 408 7.1

EGWKL
0.1 0.12 420 2.4

EGWKL
0.5 0.07 429 0.4

EGWKL
1 0.07 429 0.4

EMD-GW 0.37 341 16.6
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Table C.5: Complete table of the classification experiment (2/2.

Cited on page [134]

Dataset Accuracy GW Distance Time (s)

SaGroWp=0.5 0.41 12.3

SaGroWp=1 0.49 11.6

SaGroWp=1.5 0.49 13.6

SaGroWp=2 0.39 336 12.7

SaGroWp=2.5 0.37 12.3

SaGroWp=3 0.27 11.8

SaGroW (1− e−|CX−CY |) 0.05 0.7

SaGroW (1− e−
|CX−CY|

10 ) 0.05 0.8

SaGroW (1− e−(CX−CY )2) 0.27 13.9

SaGroW (1− e
(CX−CY )2

100 ) 0.05 0.8

PoGroWp=0.5 0.37 0.5

PoGroWp=1 0.37 0.5

PoGroWp=1.5 0.37 0.5

PoGroWp=2 0.39 373 0.5

PoGroWp=2.5 0.32 0.6

PoGroWp=3 0.27 0.5

PoGroW (1− e−(CX−CY )2) 0.2 0.5

PoGroW (1− e|CX−CY |) 0.05 0.5

PoGroW (1− e
|CX−CY|

10 ) 0.05 0.5

PoGroW ( 1

e−(CX−CY )2
− 1) 0.1 0.2

Uniform 0.07 430 0.1
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Appendix of Optimal Tensor Transport

Notations

To simplify the notations, we will sometime use the following shortcuts:

∑
∀d id

=

If(1),...,If(D)∑
i1,...,iD=1

(D.1)

∑
∀d 6=d′ id

=

If(1),...,If(d′−1)

If(d′+1),...,If(D)∑
i1,...,id′−1=1
id′+1,...,iD=1

(D.2)

∏
d 6=d′

=
D∏
d=1
d 6=d′

(D.3)

D.1 Illustration of the difference between OTT and Co-OT

In this section, we provide the same pixel transportation image provided in (Redko et al., 2020)

for both Co-OT and OTT123. This pixel transportation is illustrated Figure D.1, where the

transport plans used for OTT are the ones displayed Figure 5.1.

For Co-OT, many pixels have no information as we use only 0 and 1 labels, thus the colored

USPS image has some coherence only in the middle of the image. On the other hand, with

OTT123 we force columns to be mapped on (whole) columns and rows to be mapped on (whole)

rows. By doing so, OTT can extrapolate using the row/column structure inherent to images

and the color visualization is much smoother than for Co-OT.
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Figure D.1: (Left) MNIST image with a color associated with each pixel. (Middle and Right)

USPS image colored by the transportation of the left image by the transport plan found with

Co-OT and OTT123 respectively. Few rows and columns are deleted in this representation as

they have no mass.

Cited on page [139]

D.2 Mirror Descent

In this section, we prove that the method proposed by Xu et al. (2019b) is a Mirror Descent

algorithm on the original GW problem. More specifically, we prove that Equation (7) in their

Section 3.1 is the same step as the step used in a Mirror Descent algorithm with Kullback-Leibler

divergence. The Mirror Descent method, at a given point Ts at the iteration s, searches for the

next minimum Ts+1 with,

Ts+1 = argmin
T∈Πµν

〈∇TsE ,T 〉+ εKL(T ,Ts). (D.4)

Which is equivalent to,

Ts+1 = argmin
T∈Πµν

〈∇TsE − εlog(Ts),T 〉+ ε 〈T , log(T )〉 . (D.5)

The only difference is the missing factor 2 in (Peyré et al., 2016) that should be here due to the

derivative, but both problem are equivalent with a re-scaling of ε by a factor 2.

D.3 Complexity of the gradient computation of OTT

We prove in this section that the gradient of OTT, which is necessary for the Mirror Descent

algorithm (Beck and Teboulle, 2003), can be computed in a time complexity of O
(
ND+1

)
for

particular loss functions. This generalizes a known result for GW (Peyré et al., 2016). Note

that in the associated Chapter, we propose a more efficient approach based on sampling. We

only mention this result for the sake of comparison with state-of-the-art approaches.

Here, we assume that the feature dimension F is small and that every other dimension of

the tensor is N to simplify the notations. We also assume that the order of the tensor D is fixed
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and small. We analyze the time complexity only with respect to N . First, we recall the gradient

of E using the notations introduced at the start of this supplementary material:

∇T eE =
∑

{d′|f(d′)=e}

∑
∀d6=d′ id

∑
∀d6=d′ kd

L(Xi1...id′−1, • ,id′+1...iD ,Yk1...kd′−1, • ,kd′+1...kD
)
∏
d6=d′

T
f(d)
idkd

.

(D.6)

We suppose that the loss L is continuous and can be written as L(x, y) = f1(x)+f2(y)−h1(x)h2(y)

with four functions (f1, f2 : RF � R) and (h1, h2 : RF � RF ). This is notably the case for the

square euclidean distance or the Kullback-Leibler divergence. As each element of the first sum

of Equation (D.6) will be computed independently, we can fix d′. We thus have to compute the

following term,∑
∀d6=d′ id

∑
∀d 6=d′ kd

f1(Xi1...id′−1, • ,id′+1...iD)
∏
d6=d′

T
f(d)
idkd

+
∑

∀d6=d′ id

∑
∀d6=d′ kd

f2(Yk1...kd′−1, • ,kd′+1...kD
)
∏
d 6=d′

T
f(d)
idkd

+
∑

∀d6=d′ id

∑
∀d6=d′ kd

h1(Xi1...id′−1, • ,id′+1...iD)h2(Yk1...kd′−1, • ,kd′+1...kD
)
∏
d6=d′

T
f(d)
idkd

. (D.7)

Note thatXi1...id′−1, • ,id′+1...iD is a vector of size (N, 1, F ) and as f1 is applied only on the features

dimension, f1(Xi1...id′−1, • ,id′+1...iD) is a vector of size (N, 1). Similarly, f2(Yk1...kd′−1, • ,kd′+1...kD
)

is a vector of size (1, N). As the gradient is a (N ×N) matrix, the sum between the first two

terms should be understood as a broadcasting sum. The same holds for h1(Xi1...id′−1, • ,id′+1...iD)

and h2(Yk1...kd′−1, • ,kd′+1...kD
) of size (N × F ) and (F × N), the product is a matrix of size

(N ×N) The first two double sums can be computed as,∑
∀d 6=d′ id

f1(Xi1...id′−1, • ,id′+1...iD)
∏
d6=d′

a
f(d)
id

+
∑

∀d6=d′ kd

f2(Yk1...kd′−1, • ,kd′+1...kD
)
∏
d 6=d′

b
f(d)
kd

. (D.8)

There is D− 1 sums, each of them operating over N indices. Hence, the complexity of each sum

is O
(
ND−1N

)
. As a consequence, the overall complexity of Equation (D.8) is O

(
ND

)
.

The last term requires several tensor/matrix multiplications as it can be reformulated as,

∑
∀d6=d′ id

h1(Xi1...id′−1, • ,id′+1...iD)

 ∑
∀d6=d′ kd

h2(Yk1...kd′−1, • ,kd′+1...kD
)
∏
d6=d′

T
f(d)
idkd

 . (D.9)

The D− 1 internal sums can be seen as D− 1 tensor/matrices multiplications, each between the

index d of the tensor and the second index of the matrix T f(d). Each of these multiplications

have a time complexity of O
(
ND+1

)
. We provide an example, after the proof, for D = 3. If we

call this new tensor H, we can reformulate the problem as,∑
∀d 6=d′ id

h1(Xi1...id′−1, • ,id′+1...iD)Hi1...id′−1, • ,id′+1...iD . (D.10)

This can be seen as a standard multiplication of two tensors on every dimension except on the

dimension d′ for both tensor. This is equivalent to the multiplication of two matrices of size

(N,ND−1) and (ND−1, N). The time complexity is again O
(
N ×ND−1 ×N

)
= O

(
ND+1

)
.

Finally, the entire time complexity is O
(
ND+1

)
, which is better than the naive O

(
N2D

)
.
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Example for D = 3. Let us explain how to compute Equation (D.9) with D = 3 in a

O
(
N3+1

)
time complexity. We will suppose, without loss of generality, that d′ = 3 in this

example. We are interested in the tensor H of Equation (D.10) or equivalently of the inner sum

of Equation (D.9) for all (i1, i2) ∈ J1, NK2,

N∑
k1=1

N∑
k2=1

h2(Yk1,k2, • )T
f(1)
i1,k1

T
f(2)
i2,k2

= Hi1,i2, • . (D.11)

We rearrange the terms to make the multiplication between a 3-order tensor and a transport

plan appear,

∀(i1, i2) ∈ J1, NK2
N∑

k1=1

 N∑
k2=1

h2(Yk1,k2, • )T
f(2)
i2,k2

T
f(1)
i1,k1

. (D.12)

For all (k1, i2) ∈ J1, NK2 we note H ′k1,i2, • =
∑N

k2=1 h2(Yk1,k2, • )T
f(2)
i2,k2

. H ′ can be computed

with N2 ×N ×N operations as a multiplication between a tensor (N,N,N, F ) and a matrix

(N,N) along the second dimension on both sides. We have now a similar formulation as in

Equation (D.12) but with only one transport plan left,

∀(i1, i2) ∈ J1, NK2
N∑

k1=1

H ′k1,i2, •T
f(1)
i1,k1

. (D.13)

We apply the same process, and define for all (i1, i2) ∈ J1, NK2, Hi1,i2, • =
∑N

k1=1H
′
k1,i2, •

T
f(1)
i1,k1

.

This new tensor H can be computed with N2 ×N ×N operations. The difference is that the

dimension of the sum is the first one for the tensor H ′.

We finally have to compute,

N∑
i1=1

N∑
i2=1

h1(Xi1,i2, • )Hi1,i2, • , (D.14)

which is equivalent to the Equation (D.9). We can see it as a multiplication between two tensors

of size (N,N,N, F ) along the first two dimensions as well as the last dimension. Thus, the time

complexity is O
(
N ×N2 ×N

)
, that is O

(
N4
)
.

D.4 Theoretical results

We prove that OTT is a distance for weighted tensors using (Villani, 2008; Chowdhury and

Mémoli, 2019; Redko et al., 2020).

Theorem 9. OTT is a distance between weighted tensors represented in canonical form (X,

(ae)e∈J1,EK) and (Y , (be)e∈J1,EK) for any affectation function f , as long as L is a proper distance.

Proof. We fix a tensor order D, an affectation function f : J1, DK � J1, EK and a loss L.
We start the proof by explaining the natural canonical form of a dataset. Let (X, (ae)e∈J1,EK)

be a weighted tensor.
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• For all e ∈ J1, EK and for all i ∈ J1, IeK such that aei = 0 we delete this weighted and all

the corresponding value in the tensor X. This is a natural reduction as if the weight is 0

this is equivalent to no point.

• Duplicated points should be merged together. Two points that would be transported by

the same transport plan T e for a fixed e ∈ J1, EK, describe by (ie, i
′
e) ∈ J1, IeK2 are equal

if,

∀d′ ∈ J1, DK|f(d′) = e : X • 1,..., • d′−1,ie, • d′+1,..., •D = X • 1,..., • d′−1,i
′
e, • d′+1,..., •D . (D.15)

Those extracted (D − 1)-order tensors define entirely each of those points. If two points

are equal, then we delete one of them and add the two probability aeie and aei′e . Notice

that we look at every dimension of the tensor associated with the transport plan T e and

delete simultaneously the points in every dimension. This result is quite logical in a vector

space, if two points are in the same location, they should be merged.

• The weighted dataset is invariant to any permutation of its points. To create a canonical

form, we can reorder it using any rules. We propose a “minimum” rule that will put

the smallest point first. We only have to define an inequality, that respect at least the

converse and the transitivity proprieties, to compare two points (ie, i
′
e) ∈ J1, IeK2 for a

fixed e ∈ J1, EK. Using the description of a point above, we simply compare the real value

one by one. First, we take the smallest dimension, d′ = min({d′ ∈ J1, DK|f(d′) = e}), and
compare the first value,

X1,...,1,ie,1,...,1 and X1,...,1,i′e,1,...,1, (D.16)

then, if they are equal, we move to the next and compare,

X2,...,1,ie,1,...,1 and X2,...,1,i′e,1,...,1), (D.17)

and so on. If the two entire extracted tensors are equal, we do it again with the second

smallest dimension d′′. If all the extracted tensors are equal, the two points should be

merged according to the canonical form describe above. Thus, we can reorder the points,

notice that the same permutation should be made also for the weights ae.

None of those three modifications of the tensor X will change the transport plan nor the OTT

distance that depend on X. All those reductions to canonical form could be avoided if we

suppose that the tensor X is generated from distributions in vector space. But in this chapter,

we have focused on the practical part and suppose only the existence of the tensor X. We will

now prove that OTT is a distance.

Symmetry As L is symmetric, OTT is also symmetric.

Positiveness As L and T are always positive, OTT is always positive.
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Identity of indiscernibles To prove that OTT (X,X, (ae)e∈J1,EK, (a
e)e∈J1,EK) = 0, we set

every transport plan T e to the identity matrix. As ∀x L(x, x) = 0, the entire sum is 0. But

because the minimum is smaller than this particular case and also always positive, we have the

desired result OTT (X,X, (ae)e∈J1,EK, (a
e)e∈J1,EK) = 0.

We will now prove the opposite, let (X, Y ) be D-order tensors datasets of sizes (If(1)× ...×
If(D)×F,Kf(1)× ...×Kf(D)×F ) with weights (ae ∈ ∆Ie , be ∈ ∆Ke)e∈J1,EK in a canonical form.

The canonical form is inspired from the proof that GW is a distance for graphs (Chowdhury and

Mémoli, 2019). Let us suppose that OTT (X,Y ) = 0, we will show that X = Y . Furthermore,

we will note (T e)e∈J1,EK the optimal transport plans.

We will proceed by contradiction and suppose that there exist two strictly positive values in

the same row of a transport plan, more precisely we suppose that there exist e ∈ J1, EK, i ∈ J1, IeK,
(k, k′) ∈ J1,KeK2 such that T ei,k > 0 and T ei,k′ > 0. Let us fix d′ ∈ {d′ ∈ J1, DK|f(d′) = e} and all

the indices

(k1...kd′−1, kd′+1...kD) ∈ (J1,Kf(1)K...J1,Kf(d′−1)K, J1,Kf(d′+1)K...J1,Kf(D)K). (D.18)

As all the marginal are strictly positive, there exist

(i1...id′−1, id′+1...iD) ∈ (J1, If(1)K...J1, If(d′−1)K, J1, If(d′+1)K...J1, If(D)K) (D.19)

such that T f(d)
id,kd

> 0 for all d ∈ J1, DK with d 6= d′. As the transport plans are strictly positive

on those indices and T ei,k > 0 and T ei,k′ > 0, the transport plans’ product is strictly positive,

thus the loss should be equal to 0,

L
(
Xi1...id′−1,i,id′+1...iD ,Yk1...kd′−1,k,kd′+1...kD

)
= 0, (D.20)

L
(
Xi1...id′−1,i,id′+1...iD ,Yk1...kd′−1,k

′,kd′+1...kD

)
= 0. (D.21)

As the loss is a distance, we have Yk1...kd′−1,k,kd′+1...kD
= Yk1...kd′−1,k

′,kd′+1...kD
. This is true for

all d′ ∈ {d′ ∈ J1, DK|f(d′) = e} and all the indices

(k1...kd′−1, kd′+1...kD) ∈ (J1,Kf(1)K...J1,Kf(d′−1)K, J1,Kf(d′+1)K...J1,Kf(D)K), (D.22)

thus, those two points should have been merged, this is in contradiction with the canonical form

supposition. We can do the same for the columns of the transport plans instead of the rows.

We know that the transport plans have only one element in each of its rows and columns,

thus they are necessary squared matrices as all the marginal are strictly positive. Let α be

the smallest strictly positive values of the transport plans (T e)e∈J1,EK. We also define the

permutation matrices P e associated to each T e by replacing each strictly positive value in T e

to 1 in P e. We have αIeP e ≤ T e elements-wise, thus

0 ≤
∑
∀d id

∑
∀d kd

L(Xi1,...,iD ,Yk1,...,kD)
D∏
d=1

αIf(d)P
f(d)
id,kd

(D.23)

≤
∑
∀d id

∑
∀d kd

L(Xi1,...,iD ,Yk1,...,kD)

D∏
d=1

T
f(d)
id,kd

(D.24)
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=0. (D.25)

If we note σe the permutation function associated with P e, we have,

0 =
∑
∀d id

L(Xi1,...,iD ,Yσf(1)(i1),...,σf(D)(iD)). (D.26)

As we have decided that the datasets are invariant to any points permutations, if both X and

Y are in canonical form, they are equal. Since those permutations correspond to the transport

plans (T ee∈J1,EK, we have a
e
i = beσe(i) for all e ∈ J1, EK and i ∈ J1, IeK. Thus, we have also a

e = be.

We prove that:

OTT (X,Y , (ae)e∈J1,EK, (b
e)e∈J1,EK) = 0 ⇐⇒ (X, (ae)e∈J1,EK) = (Y , (be)e∈J1,EK). (D.27)

Triangle inequality We now prove the triangle inequality. Let (X, Y , Z) be D-order tensors

datasets of sizes (If(1) × ... × If(D) × F,Kf(1) × ... ×Kf(D) × F, Jf(1) × ... × Jf(D) × F ) with

weights (ae ∈ ∆Ie , be ∈ ∆Ke , re ∈ ∆Je)e∈J1,EK. We suppose ∀d ∈ J1, DK rf(d) > 0 as we can

delete the corresponding (D − 1)-order tensor in the tensor Z if one term is 0 and it would not

alter the transport plan nor the distance. We note (T exy)e∈J1,EK the optimal transport plans

between X and Y and (T eyz)e∈J1,EK the optimal transport plans between Y and Z. Similarly to

Redko et al. (2020) we will use the gluing lemma (Villani, 2008) to construct a coupling between

X and Z,

∀e ∈ J1, EK (T exz) = (T exy) diag
(

1

be

)
(T eyz). (D.28)

Let e ∈ J1, EK, we show that (T exz) ∈ Uaere :

∀j ∈ J1, JaK
Ie∑
i=1

(T exz)ij =

Ie∑
i=1

Ke∑
k=1

(T exy)ik
1

bek
(T eyz)kj (D.29)

=

Ke∑
k=1

(T eyz)kj (D.30)

= raj , (D.31)

∀i ∈ J1, IaK
Je∑
j=1

(T exz)ij =

Je∑
j=1

Ke∑
k=1

(T exy)ik
1

bek
(T eyz)kj (D.32)

=

Ke∑
k=1

(T exy)ik (D.33)

= aai . (D.34)

We now prove the triangle inequality:

OTT (X,Z, (ae)e∈J1,EK, (r
e)e∈J1,EK) (D.35)
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≤
If(1),...,If(D)∑
i1,...,iD=1

Jf(1),...,Jf(D)∑
j1,...,jD=1

L(Xi1,...,iD ,Zj1...,jD)
D∏
d=1

(T f(d)
xz )id,jd (D.36)

=

If(1),...,If(D)∑
i1,...,iD=1

Jf(1),...,Jf(D)∑
j1,...,jD=1

Kf(1),...,Kf(D)∑
k1,...,kD=1

L (Xi1,...,iD ,Zj1,...,jD)
D∏
d=1

(T
f(d)
xy )idkd(T

f(d)
yz )kdjd

b
f(d)
kd

(D.37)

≤
∑
∀d id

∑
∀d jd

∑
∀d kd

L (Xi1,...,iD ,Yk1,...,kD)

D∏
d=1

(T
f(d)
xy )idkd(T

f(d)
yz )kdjd

b
f(d)
kd

+
∑
∀d id

∑
∀d jd

∑
∀d kd

L (Yk1,...,kD ,Zj1,...,jD)
D∏
d=1

(T
f(d)
xy )idkd(T

f(d)
yz )kdjd

b
f(d)
kd

(D.38)

=
∑
∀d id

∑
∀d kd

L (Xi1,...,iD ,Yk1,...,kD)
D∏
d=1

(T f(d)
xy )idkd

∑
∀d jd

D∏
d=1

(T
f(d)
yz )kdjd

b
f(d)
kd

+
∑
∀d jd

∑
∀d kd

L (Yk1,...,kD ,Zj1,...,jD)

D∏
d=1

(T f(d)
yz )kdjd

∑
∀d id

D∏
d=1

(T
f(d)
xy )idkd

b
f(d)
kd

(D.39)

=
∑
∀d id

∑
∀d kd

L (Xi1,...,iD ,Yk1,...,kD)

D∏
d=1

(T f(d)
xy )idkd

D∏
d=1

Jf(d)∑
jd=1

(T
f(d)
yz )kdjd

b
f(d)
kd

+
∑
∀d jd

∑
∀d kd

L (Yk1,...,kD ,Zj1,...,jD)

D∏
d=1

(T f(d)
yz )kdjd

D∏
d=1

If(d)∑
id=1

(T
f(d)
xy )idkd

b
f(d)
kd

(D.40)

=
∑
∀d id

∑
∀d kd

L (Xi1,...,iD ,Yk1,...,kD)
D∏
d=1

(T f(d)
xy )idkd

+
∑
∀d jd

∑
∀d kd

L (Yk1,...,kD ,Zj1,...,jD)
D∏
d=1

(T f(d)
yz )kdjd (D.41)

=OTT (X,Y , (ae)e∈J1,EK, (b
e)e∈J1,EK) +OTT (Y ,Z, (be)e∈J1,EK, (r

e)e∈J1,EK). (D.42)

In Equation (D.39), the product/sum inversion is possible as no element in the product depend

on (jd)d∈J1,DK. Similarly, in Equation (D.40), the sum product inversion is allowed as only one

term in the product depends on the sum. In addition, each of those sums are equal to 1 by

definition of (T exy)e∈J1,EK, this leads to Equation (D.41).

OTT respects the triangle inequality.

We now propose to prove Theorem 10 with a more general formulation than Theorem 6

proposed in Chapter 5. We extend to the case where the loss in a function of RF � R for F , not

necessarily restricted to 1 as supposed in Chapter 5 to simplify the notations. First, we recall

the definition of OTT barycenter.

Definition 3. (OTT barycenter) Given B ∈ N weighted tensors of sizes ((Kb
e)e∈J1,EK)b∈J1,BK,(

Xb ∈ RK
b
f(1)

...Kb
f(D)
×F
, (be,b ∈ ∆Kb

e
)e∈J1,EK

)
b∈J1,BK

. Let (λ1, ..., λB) ∈ ∆B be the weights quan-

tifying the importance of each tensor.

For fixed size (Ie)e∈J1,EK and weights (ae ∈ ∆Ie)e∈J1,EK, the OTT barycenter is defined as

follows:
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min
X∈RIf(1)...If(D)×F

B∑
b=1

λbOTT(X,Xb, (ae)e∈J1,EK, (b
e,b)e∈J1,EK). (D.43)

Theorem 10. Assume that the loss L is continuous and can be written as L(x,y) = f1(x) +

f2(y)− h1(x)h2(y) with four functions (f1, f2 : RF � R) and (h1, h2 : RF � RF ) such that the

function (∇h1)−1l∇f1 : RF −→ RF is invertible, where the F ×F matrix (∇h1)−1l(x) is the left

inverse of the F ×F matrix ∇h1(x), ∀x ∈ RF . We also suppose that, ∀r ∈ J1, F KL(x,y) −→
xr→±∞

+∞. For fixed (T e,b)e∈J1,EK, the optimal solution X∗ of Problem (D.43) reads,

X∗i1,...,iD =
(

(∇h1)−1l∇f1

)−1

 B∑
b=1

λb

Kb
1,...,K

b
D∑

k1,...,kD=1

h2(Xb
k1,...,kD

)

D∏
d=1

T
f(d),b
idkd

a
f(d)
id

 (D.44)

for all (id ∈ J1, If(d)K)d∈J1,DK.

In particular, when L is the squared euclidean distance,

X∗i1,...,iD =

B∑
b=1

λb

Kb
1,...,K

b
D∑

k1,...,kD=1

Xb
k1...kD

D∏
d=1

T
f(d),b
idkd

a
f(d)
id

. (D.45)

Proof. For fixed ((T e,b)e∈J1,EK)b∈J1,BK, we are looking for the derivative of Equation (5.8) with

respect to Xi1,...,iD and we equate it to 0 to find the optimal solution. Xi1,...,iD might be a

vector if the features dimension is not reduced to 1. Each gradient in the following equation is a

vector of size F .

0 =
B∑
b=1

λb

Kb
1,...,K

b
D∑

k1,...,kD=1

∇Xi1,...,iD
L(Xi1,...,iD ,X

b
k1,...,kD

)
D∏
d=1

T
f(d),b
idkd

(D.46)

⇐⇒ 0 =
B∑
b=1

λb
∑
∀d kd

(
∇f1 (Xi1,...,iD)−∇h1(Xi1,...,iD)h2(Xb

k1,...,kD
)
) D∏
d=1

T
f(d),b
idkd

(D.47)

⇐⇒ 0 =

B∑
b=1

λb
∑
∀d kd

(
∇f1 (Xi1,...,iD)−∇h1(Xi1,...,iD)h2(Xb

k1,...,kD
)
) D∏
d=1

T
f(d),b
idkd

(D.48)

⇐⇒ 0 = ∇f1 (Xi1,...,iD)
B∑
b=1

λb
∑
∀d kd

D∏
d=1

T
f(d),b
idkd

−∇h1(Xi1,...,iD)

B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD

)

D∏
d=1

T
f(d),b
idkd

(D.49)

⇐⇒ ∇f1 (Xi1,...,iD)

B∑
b=1

λb

D∏
d=1

a
f(d)
id

= ∇h1(Xi1,...,iD)
B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD

)

D∏
d=1

T
f(d),b
idkd

(D.50)

⇐⇒ (∇h1)−1l(Xi1,...,iD)∇f1(Xi1,...,iD)

D∏
d=1

a
f(d)
id

=

B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD

)

D∏
d=1

T
f(d),b
idkd

(D.51)

⇐⇒Xi1,...,iD =
(

(∇h1)−1l∇f1

)−1

 B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD

)

D∏
d=1

T
f(d),b
idkd

a
f(d)
id

 (D.52)
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Table D.1: Error for the gradient approximation for an increasing number of samples.

Cited on page [148]

M ||∇̂E − ∇E||F /||∇E||F

1 1.036 ± 0.1068

5 0.472 ± 0.0247

10 0.353 ± 0.0298

50 0.157 ± 0.0184

100 0.112 ± 0.0108

500 0.050 ± 0.0048

1000 0.034 ± 0.0023

5000 0.017 ± 0.0027

10000 0.011 ± 0.0008

50000 0.005 ± 0.0004

There is only one vector Xi1,...,iD found as (∇h1)−1l∇f1 is invertible. Thus, if we suppose that

Xi1,...,iD is a maxima or an inflection point, then there is no minimum in RIf(1)×...×If(D)×F as

OTT is continuous. This is in contradiction with the hypothesis that the loss tends to +∞ when

xr −→ +∞ for any r ∈ J1, F K. Thus, the value obtained is a minima.

For the squared euclidean distance, for any x,y ∈ RF , ∇h1(x) is the identity matrix,

h2(y) = 2y and ∇f1(x) = 2x.

D.5 Experiments

D.5.1 The number of samples M

In this section, we will discuss how we choseM in practice for all the experiments. The main idea

is to chose M to obtain the best trade-off between the computational efficiency of each iteration

and the precision of the gradient approximation. Hence, from a time complexity point of view,

assuming that the tensors are cubic (with each dimension of size N), the main bottleneck in

terms of efficiency (excluding the gradient approximation) would be the Sinkhorn algorithm with

a complexity O(PN2), independent of D, where P is the number of Sinkhorn iterations which is

usually of the order of 100 or 1000. Thus, since the gradient approximation step has a complexity

of O(MN2), M should be of the same order as P to avoid a needless increase in terms of time

complexity. From a precision of the gradient approximation point of view, choosing M as large

as possible is always beneficial. This is illustrated in the following experiment where we apply

OTT122 between two datasets of the DA experiments, “Thriller” and “Fantasy” (without any

label information). We evaluate the precision of the gradient approximation during the 50th

iteration with increasing values of M in Table D.1 The results correspond to the means and

standard deviations obtained over 10 runs. In this experiment, D = 2, I1 = 100, and I2 = 200,
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thus the number of possible samples is 1002 × 2002 = 4× 108. Here, we notice that choosing M

close to S, that is 1000, already leads to good approximations. Choosing larger values would

only lead to marginal improvements. Figure D.16 also shows that the target accuracy in a

Domain Adaptation task increase with a higher number of samples M .

D.5.2 Domain Adaptation (DA)

Hyperparameters

This section will describe the key hyperparameters used by all the methods for reproductibility

purpose. Except for the Kullback-Leibler regularization ε and class regularization η, we keep

the default parameters provided with the code of each algorithm.

S-GWL

• Loss: squared euclidean distance

• Outer iteration: 4000

• Max iteration for the barycenter: 4

• We use the automatic update of the marginal a proposed by S-GWL. Similar results were

obtained without any automatic update of the marginal.

OTT

• Loss: squared euclidean distance

• Number of samples M : 1000

• Number of iterations S: 1000

• Number of outer iterations of OTDA (Courty et al., 2017b): 10

• Number of inner iterations of OTDA (Courty et al., 2017b): 200

Co-OT

• Loss: squared euclidean distance

• Number of iterations S: 10

• Number of outer iterations of OTDA (Courty et al., 2017b): 10

• Number of inner iterations of OTDA (Courty et al., 2017b): 200
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GW

• Loss: squared euclidean distance

• Number of iterations S: 1000

• Number of outer iterations of OTDA (Courty et al., 2017b): 10

• Number of inner iterations of OTDA (Courty et al., 2017b): 200

SVM

• Square L2 penality C: 1.0 (Any value will give the same result has there is only 1 point

per class)

Figures for each parameter and datasets

In this section we present the Figures evoked in Section 5.6.1 for each dataset instead of the

average. We also display in Figures D.2 to D.8 the values of the various computed distances

rescaled between 0 and 1 for every transport method to more clearly demonstrate the correlation

between the distance and the target accuracy. This support the choice of using the distance to

select the hyperparameters on this Domain Adaptation task. In addition, we also plot similar

figures related to the class regularization η and quickly analyze the performance for an increasing

number of samples for the gradient estimation.

Kullback-Leibler and classes regularization We show on Figures D.2 to D.8 the impact

of the Kullback-Leibler and classes regularization.
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Figure D.2: (Top row) Average target accuracy for an increasing Kullback-Leibler and classes

regularization values. (Bottom row) Distances of the different methods for an increasing

Kullback-Leibler and classes regularization values. The distances have been re-scaled between 0

and 1.

Cited on pages [150,150]
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Figure D.3: (Top row) Target accuracy for an increasing Kullback-Leibler and classes

regularization values with the dataset composed of the two classes Thriller/Crime/Drama

and Fantasy/Sci-Fi. (Bottom row) Distances of the different methods for an increasing

Kullback-Leibler and classes regularization values with the dataset composed of the two classes

Thriller/Crime/Drama and Fantasy/Sci-Fi. The distances have been re-scaled between 0 and 1.
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Figure D.4: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regular-

ization values with the dataset composed of the two classes Children’s/Animation and Fantasy/Sci-

Fi. (Bottom row) Distances of the different methods for an increasing Kullback-Leibler and

classes regularization values with the dataset composed of the two classes Children’s/Animation

and Fantasy/Sci-Fi. The distances have been re-scaled between 0 and 1.
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Figure D.5: (Top row) Target accuracy for an increasing Kullback-Leibler and classes

regularization values with the dataset composed of the two classes Thriller/Crime/Drama

and War/Western. (Bottom row) Distances of the different methods for an increasing

Kullback-Leibler and classes regularization values with the dataset composed of the two classes

Thriller/Crime/Drama and War/Western. The distances have been re-scaled between 0 and 1.
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Figure D.6: (Top row) Target accuracy for an increasing Kullback-Leibler and classes

regularization values with the dataset composed of the two classes Fantasy/Sci-Fi and Chil-

dren’s/Animation. (Bottom row) Distances of the different methods for an increasing Kullback-

Leibler and classes regularization values with the dataset composed of the two classes Fantasy/Sci-

Fi and Children’s/Animation. The distances have been re-scaled between 0 and 1.
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Figure D.7: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regu-

larization values with the dataset composed of the two classes Fantasy/Sci-Fi and War/Western.

(Bottom row) Distances of the different methods for an increasing Kullback-Leibler and

classes regularization values with the dataset composed of the two classes Fantasy/Sci-Fi and

War/Western. The distances have been re-scaled between 0 and 1.
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Figure D.8: (Top row) Target accuracy for an increasing Kullback-Leibler and classes reg-

ularization values with the dataset composed of the two classes Children’s/Animation and

War/Western. (Bottom row) Distances of the different methods for an increasing Kullback-

Leibler and classes regularization values with the dataset composed of the two classes Chil-

dren’s/Animation and War/Western. The distances have been re-scaled between 0 and 1.

Cited on pages [150,150]
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Figure D.9: (Top row) Average target accuracy for an increasing number of users known and

labels available in the target domain. (Bottom row) Distances of the different methods for an

increasing number of users known and labels available in the target domain. The distances have

been re-scaled between 0 and 1.

Cited on page [158]

Increasing the supervision We show in Figures D.9 to D.15 the impact of an increase in

terms of supervision with respect to the pairwise information that the same users rated old and

new movies and the number of labels available for the target.
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Figure D.10: (Top row) Target accuracy for an increasing increasing number of users

known and label available in the target domain with the dataset composed of the two classes

Thriller/Crime/Drama and Fantasy/Sci-Fi. (Bottom row) Distances of the different methods

for an increasing increasing number of users known and label available in the target domain

with the dataset composed of the two classes Thriller/Crime/Drama and Fantasy/Sci-Fi. The

distances have been re-scaled between 0 and 1.
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Figure D.11: (Top row) Target accuracy for an increasing increasing number of users

known and label available in the target domain with the dataset composed of the two classes

Children’s/Animation and Fantasy/Sci-Fi. (Bottom row) Distances of the different methods

for an increasing increasing number of users known and label available in the target domain with

the dataset composed of the two classes Children’s/Animation and Fantasy/Sci-Fi. The distances

have been re-scaled between 0 and 1.

160



Appendix D. Appendix of Optimal Tensor Transport

0 20 40 60 80 100
30

40

50

60

70

80

Number of similar users known

T
ar
ge
t
ac
cu
ra
cy

OTT
Co-OT
GW
S-GWL
SVM
Rdm

0 10 20 30 40 50

40

60

80

Number of labels in target

T
ar
ge
t
ac
cu
ra
cy

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Number of similar users known

D
is
ta
nc
es

re
sc
al
ed

be
tw

ee
n

0
an

d
1

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of labels in target

D
is
ta
nc
es

re
sc
al
ed

be
tw

ee
n

0
an

d
1

Figure D.12: (Top row) Target accuracy for an increasing increasing number of users

known and label available in the target domain with the dataset composed of the two classes

Thriller/Crime/Drama and War/Western. (Bottom row) Distances of the different methods

for an increasing increasing number of users known and label available in the target domain with

the dataset composed of the two classes Thriller/Crime/Drama and War/Western. The distances

have been re-scaled between 0 and 1.
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Figure D.13: (Top row) Target accuracy for an increasing increasing number of users

known and label available in the target domain with the dataset composed of the two classes

Fantasy/Sci-Fi and Children’s/Animation. (Bottom row) Distances of the different methods

for an increasing increasing number of users known and label available in the target domain with

the dataset composed of the two classes Fantasy/Sci-Fi and Children’s/Animation. The distances

have been re-scaled between 0 and 1.

162



Appendix D. Appendix of Optimal Tensor Transport

0 20 40 60 80 100

50

60

70

80

Number of similar users known

T
ar
ge
t
ac
cu
ra
cy

OTT
Co-OT
GW
S-GWL
SVM
Rdm

0 10 20 30 40 50

50

60

70

80

90

Number of labels in target

T
ar
ge
t
ac
cu
ra
cy

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Number of similar users known

D
is
ta
nc

es
re
sc
al
ed

be
tw

ee
n

0
an

d
1

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of labels in target

D
is
ta
nc
es

re
sc
al
ed

be
tw

ee
n

0
an

d
1

Figure D.14: (Top row) Target accuracy for an increasing increasing number of users known

and label available in the target domain with the dataset composed of the two classes Fantasy/Sci-

Fi and War/Western. (Bottom row) Distances of the different methods for an increasing

increasing number of users known and label available in the target domain with the dataset

composed of the two classes Fantasy/Sci-Fi and War/Western. The distances have been re-scaled

between 0 and 1.
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Figure D.15: (Top row) Target accuracy for an increasing increasing number of users

known and label available in the target domain with the dataset composed of the two classes

C2hildren’s/Animation and War/Western. (Bottom row) Distances of the different methods

for an increasing increasing number of users known and label available in the target domain with

the dataset composed of the two classes C2hildren’s/Animation and War/Western. The distances

have been re-scaled between 0 and 1.

Cited on page [158]
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Figure D.16: Average target accuracy and distance over all the dataset for an increasing

number of samples for the estimation of the gradient.

Cited on pages [148,165]
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Increasing number of samples Figure D.16 shows that having a higher number of samples

M for the estimation of the gradient improves the performances of OTT.

D.5.3 Comparison based clustering using OTT barycenter

Theoretical link between t-STE and OTT

In this section, we show that t-STE (Van Der Maaten and Weinberger, 2012) is just a OTT111

barycenter with fixed transport plan. While in the closed form presented in Theorem 6 we

minimized directly the value of the tensor X, we could also minimize another related variable,

such as points in a vector space x which generate X(x). This is the principle of many triplet

embedding methods, which are looking for points x in a vector space that respect as closely

as possible the triplets provided in X1. Theorem 11 shows that a widely used method for

triplet embedding, t-STE (Van Der Maaten and Weinberger, 2012), is a particular case of OTT

barycenter.

Theorem 11. We suppose that T is a list of triplets which can also be represented with a cubic

3-order tensor X1 of size (I1, I1, I1) with, at the position i1, i2, i3 the number of occurrences of

the triplet (i1, i2, i3) in T . Let x = (xi)i∈J1,I1K be I1 points in a vector space Rq. We can then set

the tensor X to the t-STE or the STE formula as given in (Van Der Maaten and Weinberger,

2012), for STE: Xi1,i2,i3 =
exp(−‖xi1−xi2‖

2)

exp(−‖xi1−xi2‖2)+exp(−‖xi1−xi3‖2)
. If L is the cross-entropy and f is

the constant function (all the 3 transport plans are similar), then STE is a particular case of

OTT with the identity matrix Id (divided by I1) of size I1 as the transport plan,

max
x∈RI1×q

∑
(i1,i2,i3)∈T

log(Xi1i2i3(x)) = I3
1 min
x∈RI1×q

1∑
b=1

E
(
X(x),X1,

Id

I1

)
. (D.53)

Proof. We start from the STE formulation and reformulate the problem,

max
x∈RI1×q

∑
(i1,i2,i3)∈T

log(Xi1,i2,i3(x)) (D.54)

= max
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

X1
i1,i2,i3 log(Xi1,i2,i3(x)) (D.55)

= min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

−X1
i1,i2,i3 log(Xi1,i2,i3(x)) (D.56)

= min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

I1,I1,I1∑
k1,k2,k3=1

−X1
i1,i2,i3 log(Xk1,k2,k3(x))Idi1,k1Idi2,k2Idi3,k3 (D.57)

= min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

I1,I1,I1∑
k1,k2,k3=1

L
(
X1
i1,i2,i3 ,Xk1,k2,k3(x)

)
Idi1,k1Idi2,k2Idi3,k3 (D.58)

= I3
1 min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

I1,I1,I1∑
k1,k2,k3=1

L
(
X1
i1,i2,i3 ,Xk1,k2,k3(x)

) Idi1,k1
I1

Idi2,k2
I1

Idi3,k3
I1

. (D.59)
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Note that, all the permutations are equivalent to the identity as xi and xj can be exchanged.

In addition, the identity matrix is not necessarily the optimal value, thus the OTT barycenter

might lead to a better optimal, but loses the pairwise connection that can be useful for

interpretation.

Interestingly, this new interpretation of t-STE in the light of Theorem 11 gives a good

theoretical justification of the choice of the log function in t-STE which is nothing more than a

cross entropy between 3D-tensor. One specificity of OTT barycenter, compared to t-STE, is

that the size of the barycenter X is not necessarily the size of X1. Thus, it is notably possible

to use a small size for X which will aggregate similar points from X1. This idea has been used

advantageously in the experiment to apply a direct clustering of a triplet dataset.

Hyperparameters used

In this section, we detail the hyperparameters used in the experiment.

OTT

• Loss type: squared euclidean distance

• Number of samples M : 100

• Number of iterations S: 500

• Kullback-Leibler regularization: 0.1

AddS3

• Number of iterations of the k-means: 300

t-STE

• Degrees of freedom in student T kernel: 0

• Number of iterations of k-means: 300

• Maximum number of iterations: 1000

• L2 regularization constant: 0

Detailed tables of the experiment

We display the ARI for comparison based clustering in Table D.2 which is similar to the one

provided in Chapter 5, without averaging the different classes. This table shows similar behaviour,

OTT is very often better than AddS3s while being comparable to t-STEs on most datasets.

Additionally, we present several experiments in the balanced case in Table D.3 where the

proportion of classes are similar. In this case, OTT is slightly worse than the two other baselines
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Table D.2: ARI for unbalanced comparison-based clustering tasks on MNIST dataset. Each

line corresponds to the average over 10 runs.

Cited on page [166]

nb. examples per class|classes AddS3 AddS3s t-STE t-STEs OTT

200,20,20|0,1,2 0.35±0.02 0.89±0.19 0.36±0.02 0.97±0.02 0.96±0.02
200,20,20|1,3,4 0.35±0.02 0.92±0.03 0.34±0.01 0.94±0.03 0.94±0.03
200,20,20|1,9,4 0.35±0.02 0.92±0.03 0.34±0.01 0.94±0.03 0.94±0.03
200,20,20|2,9,8 0.32±0.03 0.8±0.05 0.72±0.21 0.82±0.06 0.8±0.06
200,20,20|3,4,0 0.72±0.32 0.52±0.25 0.94±0.02 0.88±0.18 0.87±0.06
200,20,20|3,4,9 0.38±0.06 0.83±0.18 0.39±0.16 0.9±0.05 0.9±0.04
200,20,20|5,7,0 0.57±0.34 0.76±0.35 0.93±0.04 0.94±0.04 0.93±0.05
200,20,20|6,4,8 0.35±0.03 0.89±0.2 0.33±0.01 0.96±0.02 0.97±0.02
200,20,20|6,8,5 0.36±0.03 0.81±0.24 0.4±0.18 0.93±0.04 0.94±0.03
200,20,20|7,1,9 0.53±0.35 0.69±0.22 0.86±0.05 0.8±0.06 0.8±0.05

30,3,1|0,1,2 0.32±0.08 0.8±0.33 0.35±0.17 0.93±0.12 0.93±0.12
30,3,1|1,3,4 0.28±0.08 0.85±0.33 0.37±0.21 1.0±0.01 0.96±0.09
30,3,1|1,9,4 0.27±0.1 0.96±0.09 0.3±0.03 0.99±0.01 0.95±0.09
30,3,1|2,9,8 0.29±0.08 0.87±0.15 0.35±0.17 0.9±0.14 0.84±0.15
30,3,1|3,4,0 0.2±0.1 0.61±0.24 0.9±0.12 0.85±0.15 0.84±0.21
30,3,1|3,4,9 0.29±0.06 0.84±0.21 0.33±0.17 0.87±0.15 0.84±0.21
30,3,1|5,7,0 0.25±0.06 0.7±0.01 0.85±0.22 0.88±0.15 0.9±0.15
30,3,1|6,4,8 0.31±0.03 0.94±0.12 0.29±0.03 0.96±0.09 0.9±0.13
30,3,1|6,8,5 0.31±0.05 0.9±0.14 0.29±0.03 0.97±0.1 0.9±0.14
30,3,1|7,1,9 0.27±0.23 0.76±0.12 0.84±0.23 0.81±0.15 0.84±0.16
30,3,3|0,1,2 0.4±0.11 0.85±0.19 0.38±0.11 0.89±0.12 0.83±0.19
30,3,3|1,3,4 0.37±0.05 0.85±0.24 0.35±0.03 0.99±0.01 0.93±0.18
30,3,3|1,9,4 0.37±0.05 0.85±0.25 0.36±0.03 0.99±0.01 0.92±0.18
30,3,3|2,9,8 0.34±0.06 0.8±0.24 0.38±0.17 0.87±0.12 0.81±0.24
30,3,3|3,4,0 0.47±0.38 0.5±0.25 0.94±0.07 0.95±0.09 0.8±0.17
30,3,3|3,4,9 0.38±0.1 0.83±0.21 0.37±0.17 0.89±0.12 0.85±0.19
30,3,3|5,7,0 0.27±0.21 0.73±0.29 0.91±0.09 0.95±0.09 0.89±0.19
30,3,3|6,4,8 0.36±0.04 0.89±0.19 0.36±0.03 0.96±0.07 0.92±0.18
30,3,3|6,8,5 0.36±0.04 0.89±0.19 0.36±0.03 0.98±0.07 0.93±0.18
30,3,3|7,1,9 0.38±0.27 0.59±0.23 0.81±0.19 0.77±0.17 0.8±0.2

300,30,10|0,1,2 0.3±0.02 0.96±0.02 0.3±0.01 0.96±0.03 0.96±0.02
300,30,10|1,3,4 0.29±0.01 0.93±0.02 0.28±0.0 0.89±0.1 0.93±0.03
300,30,10|1,9,4 0.29±0.01 0.94±0.03 0.28±0.01 0.93±0.03 0.93±0.04
300,30,10|2,9,8 0.28±0.03 0.8±0.05 0.42±0.26 0.77±0.04 0.73±0.06
300,30,10|3,4,0 0.25±0.04 0.59±0.23 0.92±0.03 0.91±0.06 0.85±0.06
300,30,10|3,4,9 0.3±0.04 0.85±0.1 0.4±0.22 0.9±0.04 0.91±0.03
300,30,10|5,7,0 0.3±0.19 0.68±0.02 0.9±0.04 0.91±0.04 0.88±0.06
300,30,10|6,4,8 0.3±0.02 0.93±0.09 0.28±0.01 0.92±0.09 0.96±0.03
300,30,10|6,8,5 0.3±0.02 0.9±0.1 0.34±0.19 0.94±0.03 0.93±0.03
300,30,10|7,1,9 0.25±0.03 0.69±0.04 0.65±0.27 0.76±0.05 0.78±0.05

AVG 0.34±0.09 0.81±0.16 0.51±0.1 0.91±0.08 0.89±0.1
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D.5. Experiments

Table D.3: ARI for balanced comparison-based clustering tasks on MNIST dataset. Each line

corresponds to the average over 10 different combinations of classes, each run 10 times.

Cited on page [166]

nb. examples per class AddS3 AddS3s t-STE t-STEs OTT

10,10,10 0.9±0.08 0.9±0.1 0.88±0.13 0.93±0.11 0.9±0.11
20,20,20 0.88±0.06 0.87±0.07 0.86±0.11 0.91±0.08 0.86±0.08
30,30,30 0.91±0.05 0.9±0.05 0.87±0.1 0.92±0.07 0.91±0.07
40,40,40 0.92±0.06 0.91±0.05 0.86±0.1 0.92±0.06 0.9±0.06
50,50,50 0.92±0.06 0.92±0.06 0.85±0.11 0.92±0.06 0.9±0.06
60,60,60 0.92±0.05 0.91±0.04 0.86±0.09 0.92±0.05 0.9±0.05
70,70,70 0.92±0.05 0.92±0.05 0.85±0.07 0.92±0.05 0.88±0.05
80,80,80 0.92±0.06 0.91±0.03 0.85±0.1 0.92±0.06 0.86±0.06
90,90,90 0.92±0.11 0.92±0.11 0.87±0.09 0.92±0.11 0.8±0.11

100,100,100 0.92±0.13 0.92±0.13 0.85±0.09 0.92±0.13 0.73±0.13

AVG 0.91±0.04 0.91±0.05 0.86±0.1 0.92±0.05 0.86±0.08

while still being competitive. This is not surprising since OTT, contrary to AddS3 and t-STE,

was not specifically designed to handle triplet comparisons. Instead, it is a general purpose

Optimal Transport formulation between tensors of potentially high order that can be used to

solve multiple kind of tasks.
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Appendix E

Unfinished research related to the

contributions of this thesis

This last appendix covers two interesting subjects related to the thesis but which were not

completely explored. In addition, it present the software “Optimal Slide Transition” that can be

used for a presentation.

E.1 Pointwise Wasserstein and Sliced Wasserstein

While Pointwise Gromov Wasserstein was originally designed for GW, we can still adapt it for

the original OT problem. Contrary to the GW problem, and similarly to Sliced Wasserstein,

Pointwise Wasserstein defines a new problem.

First, let us explain the Sliced Wasserstein (SW) distance (Pitié et al., 2007; Rabin and Peyré,

2011). This is a distance that takes the average over all the Wasserstein distances computed

after projection on 1D lines. In theory, all the lines that cross 0 should be used to have the

complete distance. In practice, only some of them are sampled. With the usual notations and Ω

being the (D − 1)-dimensional unit sphere, the Sliced Wasserstein distance is defined as,

SW(µ, ν) =

∫
Ω
W(〈 • ,θ〉#µ, 〈 • ,θ〉#ν)dθ. (E.1)

Here 〈 • ,θ〉#µ means that the distribution µ is pushed forward by the function x −→ 〈x,θ〉.
The SW distance has some applications in GAN (Nadjahi et al., 2019; Nguyen et al., 2020;

Deshpande et al., 2018). Some extensions have been proposed in the literature, e.g., Generalized

Sliced Wasserstein (Kolouri et al., 2019) considers the scalar product as a particular case of

function used in a Generalized Radeon transform (Kuchment, 2006).

Instead of comparing the points by their distance to a line, we propose to compare them by

their distance to a point. With now Ω any subset of RD, we can define the Pointwise Wasserstein
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E.2. Optimal Slide Transition

as,

PW(µ, ν) =

∫
Ω
W(‖ • − θ‖#µ, ‖ • − θ‖#ν)dθ. (E.2)

The most natural choice for Ω will be the support of both µ and ν. In this case, with two discrete

distributions, the points are defined only by their respective distances, which can be useful if

the points do not lie in a known vector space. If we set Ω to the (D − 1)-dimensional sphere

of radius r, as r tends to ∞: PWr −→ SW. Indeed, for a given x ∈ RD, the other directions,

orthogonal to the direction given by θ, become negligible: ‖x−θ‖r −→
〈
x, θr

〉
. In other words, the

Pointwise Wasserstein distance generalizes the Sliced Wasserstein distance.

Note that the Pointwise Wasserstein formulation is not covered by the Generalized Sliced

Wasserstein (Kolouri et al., 2019) as ‖ • − θ‖ is not homogeneous of degree one in θ.

E.2 Optimal Slide Transition

This section presents Optimal Slide Transition (OST), which is a software that allows to have

transitions between your PDF pages. A specific type of transitions is used: it applies the optimal

transport mapping between the two consecutive pages1. This work was done in collaboration

with Rémi EMONET who implemented the html code to launch the presentation. Note that

this code has been tested on a few computers but might not work correctly on some others as it

uses some bash commands.

E.2.1 Algorithm details

First of all, OST transforms each PDF into a PNG image. Thus, each slide can be represented

as a distribution with Dirac at each non-white pixel. All the Dirac have uniform weights. Then

OST computes each transport plan between slides separately. To apply the OT between two

images, we need to apply a hierarchical Optimal Transport (Mérigot, 2011) as there is too many

Diracs in each image (approximately 1 million per image).

The idea is to apply a K-means clustering (with the hyperparameter K chosen by the user)

in the two images separately. Then we apply the OT between the centroid of each cluster with

a mass proportional to the number of points. For each cluster matched together, we don’t know

the detailed transport plan between the two clusters. So we simply apply again a hierarchical

OT between all the points of the two clusters. If the number of Diracs in the distributions are

smaller than K, then a simple OT algorithm is applied. We can easily see on an example that

the transport is not truly optimal, the Voronoi cells generated by the K-means clustering being

matched in blocks. Every time the OT algorithm is used, the Euclidean distance between the

points are used plus (with a small weight) the euclidean distance in RGB color.

In addition to the hierarchical OT methods, an adapted version of Sliced Wasserstein (see

Section E.1 for details about Sliced Wasserstein) method was tested but did not provide a

good-looking transport.
1You can have a look at https://hv0nnus.github.io/TransitionPDF/pres.html for an example.
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E.2.2 Practical details on how to use OST

You have to clone the github repository: https://github.com/Hv0nnus/TransitionPDF. Then

you have to replace the PDF file Presentation_OT.pdf with your own presentation and run

the following command: python main.py - -qualityx 25 - -qualityy 25 - -qualityx_pres 50

- -qualityy_pres 50 - -K 100. Wait the end, then launch pres.html and use the arrow of the

keyboard for your presentation. The hyperparameters can be tuned as follows:

• Use a higher value for qualityx/y (250) to increase the quality of transition between slides.

This values will increase the time required to compute the transport plan and the necessary

memory to store the transport plan.

• Use a higher value for qualityx_pres and qualityy_pres (500) to increase the quality of

the slide itself (it will be a PNG). Both of those values are more or less the number of

pixels in the x and y axes.

• K is a hyperparameter of the method used for OT on such big images. The bigger it is,

the closer it gets to the real transport.

E.3 Gromov Wasserstein and Wasserstein GAN

This section explains why we can see the Gromov Wasserstein problem as a linear Wasserstein

Generative Adversarial Network (GAN).

Let first present the Wasserstein GAN (WGAN) (Arjovsky et al., 2017). Given a theoretical

distribution µ ∈ P(X ), one would like to be able to sample new elements from µ. The idea is

to learn a generator function g : Y −→ X , that will try to simulate µ with point sampled from

a simple distribution (often Gaussian) ν ∈ P(Y). To compare g#ν and µ, one can either use

a KL divergence (Goodfellow et al., 2014), or a Wasserstein distance (Arjovsky et al., 2017).

Instead of using the classical Wasserstein distance, the dual formulation of the OT is used. The

general Kantorovich dual (Villani, 2008) of the classical OT problem reads,

min
|f(x)−h(z)|≤c(x,z)

E
x∼µ

[f(x)]− E
z∼ν′

[h(z)] , (E.3)

for two µ and ν ′-integrable functions f and h. As a distance is used for the cost function:

f = h (Villani, 2008, Particular Case 5.4). Thus, only one 1-Lipschitz function f , called

discriminator, should be computed. Denoting Lipc = {f | |f(x)−f(z)|
c(x,z) ≤ 1} the set of 1-Lipschitz

function, the Kantorovich dual formulation reads,

min
f∈Lipc

E
x∼µ

[f(x)]− E
z∼ν′

[f(z)] . (E.4)

As in practice it is complex to select all the existing functions, both the generator g and the

discriminator f are parametrized by Neural Networks. To introduce the GAN formulation,
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the distribution ν ′ should be seen as the distribution g#ν, and equivalently “z = g(y)”. The

objective function of a Wasserstein GAN reads,

min
g

max
f∈Lipc

E
x∼µ

[f(x)]− E
y∼ν

[f(g(y))] . (E.5)

In practice, the entire distribution µ is not available but only the associated empirical distribution

µ̂. To solve this problem by alternate gradient descent, ν is also sampled a few times at each

iteration.

The link between GW and WGAN is essentially based on the Lemma 4.1 and Lemma 4.3

in (Alvarez-Melis et al., 2019), which show the relation between Gromov Wasserstein and their

invariant OT formulation. A related Theorem, 4.2.1 available in (Vayer, 2020, Theorem 4.2.1)

proposes a similar theorem. We provide in Theorem 12 the link between the GW and GAN

in the discrete case, which is useful in practice. A similar theorem can be obtained in the

continuous case.

Theorem 12. We first define X ⊆ RD and Y ⊆ RD′ . Let µ =
∑I

i=1 aixi be a discrete distribu-

tion with (xi)i∈J1,IK ∈ X I and Let ν =
∑K

k=1 bkyk be a discrete distribution with (yi)k∈J1,KK ∈ YK .

We additionally suppose that ν is whitened,
∫
y>ydν(y) = ID′. We denote X ∈ RD×I and

Y ∈ RD′×K the matrices defined as ∀i ∈ J1, IKX • i = xi and ∀k ∈ J1,KKX • k = xk. Let define

the cost functions and the loss as, CX (xi,xj) = x>i xj, CY(yk,yl) = y>k yl and L(x,y) = |x− y|2.
We set f and h the two dual functions associated with the OT problem defined by µ, ν and the

cost matrix Cik = ‖xi − g(yk)‖22. If we confuse a linear function g and its associated matrix G

and denote F = {G ∈ RD×D′ | ‖G‖F = 1} the set of linear functions, we have:

min
T∈Πµν

I,I,K,K∑
i,j,k,l=1

L(CX (xi,xj)− CY(yk,yl))TikTjl (E.6)

= min
g∈F

max
f(xi)−h(g(yj))≤‖xi−g(yj)‖22

C1

[
E
x∼µ

[f(x)]− E
y∼ν

[h(g(y))]

]
+ C2, (E.7)

with C1 and C2 both independent of g and T .

As the two constants C1 and C2 are independent of g and T , they will not change the

optimization and the final generator g. We recover the classical WGAN formulation with some

constraints on ν and g. The whitening property of ν is not a huge problem for GAN as in

practice, ν can be chosen arbitrarily. Additionally, there are two different discriminator functions

f and h, instead of one (Villani, 2008, Particular Case 5.4), as the squared euclidean distance

does not respect the triangle inequality. To handle WGAN with the squared Euclidean distance

or on even more complex cost function one can rely on existing methods (Liu et al., 2019;

Laschos et al., 2019). Let us now prove the theorem:

Proof. We start from the GW formulation,

min
T∈Πµν

I,I,K,K∑
i,j,k,l=1

|CX (xi,xj)− CY(yk,yl)|2TikTjl (E.8)
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= min
T∈Πµν

I,I,K,K∑
i,j,k,l=1

−2CX (xi,xj)CY(yk,yl)TikTjl + C ′′2 (E.9)

= min
T∈Πµν

−2

I,K∑
i,l=1

 I∑
j=1

CX (xi,xj)Tjl

( K∑
k=1

TikCY(yk,yl)

)
+ C ′′2 (E.10)

= min
T∈Πµν

−2

I,K∑
i,l=1

(
X>XT

)
il

(
TY >Y

)
il

+ C ′′2 (E.11)

= min
T∈Πµν

−2
〈
X>XT ,TY >Y

〉
+ C ′′2 (E.12)

= min
T∈Πµν

−2
∥∥∥XTY >∥∥∥2

F
+ C ′′2 (E.13)

= max
T∈Πµν

2
∥∥∥XTY >∥∥∥2

F
+ C ′′2 (E.14)

= max
G∈F

max
T∈Πµν

2C1

〈
XTY >,G

〉
+ C ′′2 (E.15)

= max
G∈F

max
T∈Πµν

2C1

〈
T ,X>GY

〉
+ C ′′2 (E.16)

= max
G∈F

max
T∈Πµν

C1

[
−

I,K∑
il=1

Til ‖xi −Gyl‖22 +

I∑
i=1

ai ‖xi‖22 +

K∑
k=1

bk ‖Gyk‖22

]
+ C ′′2

(E.17)

= max
G∈F

max
T∈Πµν

−C1

I,K∑
i,k=1

‖xi −Gyk‖22 Tik + C ′2 +

K∑
k=1

bk tr
(
y>k G

>Gyk

)
(E.18)

= max
G∈F

max
T∈Πµν

−C1

I,K∑
i,k=1

‖xi −Gyk‖22 Tik + C ′2 + tr

(
G>G

K∑
k=1

bky
>
k yk

)
(E.19)

= max
G∈F

max
T∈Πµν

−C1

I,K∑
i,k=1

‖xi −Gyk‖22 Tik + C ′2 + tr
(
G>G

)
(E.20)

= min
G∈F

min
T∈Πµν

C1

I,K∑
i,k=1

‖xi −Gyk‖22 Tik − C
′
2 − ‖G‖

2 (E.21)

= min
g∈F

min
T∈Πµν

C1

I,K∑
i,k=1

‖xi − g(yk)‖22 Tik + C2 (E.22)

= min
g∈F

max
f(xi)−h(g(yj))≤‖xi−g(yj)‖22

C1

[
E
x∼µ

[f(x)]− E
y∼ν

[h(g(y))]

]
+ C2. (E.23)

Line (E.9) transforms the square absolute loss into the negative scalar product with two additional

terms that do depend on the marginal a and b but not anymore on T . Line (E.16), which is

quite artificial, uses the maximum closed form of the matrix G under the squared Frobenius

norm constraint. Line (E.23) uses the dual formulation of the OT, as the equality is true for all

g ∈ F , this is also true for the minimum.

This type of linear GAN has probably not a huge interest in practice, but this strong

connection might be used to propose new WGAN or GW variants. While this has not been
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explored in this thesis, we propose the Fused-WGAN which can be proved similarly to Theorem 12.

The Fused Gromov Wasserstein formulation (Vayer et al., 2018, 2019a) uses both the original

OT problem and the GW problem, as shown on Equation (1.39) in Section 1.3.1. In addition to

the notations of Theorem 12, c is any real value function X × Y −→ R. Fused-WGAN is defined

as,

min
T∈Πµν

I,I,K,K∑
i,j,k,l=1

L(CX (xi,xj)− CY(yk,yl))TikTjl + β

I,K∑
i,k

c(xi,yk)Tik (E.24)

= min
g∈F

max
f(xi)+h(g(yj))≤‖xi−g(yj)‖22+βc(xi,yk)

C1

[
E
x∼µ

[f(x)]− E
y∼ν

[h(g(y))]

]
+ C2,

(E.25)

with β a regularization parameter.

The idea behind this formulation is to decide in which parts of the space Y will generate

specific parts of the distribution µ. Similarly to Fused Gromov-Wasserstein, the function c will

use additional labels of µ. For instance, we can use the first axis of Y to separate the generation

of men and women people,

c(x,y) =

{
y, if men(x)

−y, otherwise
(E.26)

This will ensure that if y is positive, it will be matched to women examples, thus generating

women examples. This notion is highly related to the conditional GAN (Mirza and Osindero,

2014).
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Appendix F

Résumé en Français

L’apprentissage automatique est un sous-domaine de l’intelligence artificielle, il vise à créer des

algorithmes qui simulent l’intelligence humaine pour résoudre des tâches complexes. La particu-

larité d’un processus d’apprentissage automatique est qu’il ne nécessite pas d’être programmé

explicitement et s’appuie plutôt sur des exemples d’entraînement. Ces derniers sont décrits

soit directement avec des caractéristiques dans un espace vectoriel (e.g., poids, âge, prix...)

soit avec une représentation structurée (e.g., image, texte, son...). Dans certaines applications,

les échantillons ne sont représentés que relativement les uns aux autres, par exemple dans

des graphes constitués de connexions entre noeuds, comme dans les réseaux sociaux ou les

molécules. L’idée derrière l’apprentissage automatique est de concevoir un algorithme qui résout

une tâche souhaitée en apprenant une fonction à partir de l’ensemble des données disponibles

et qui généralisera bien sur des exemples non vus. L’une des tâches les plus courantes est la

classification binaire supervisée, où l’objectif est de distinguer deux classes. Par exemple, étant

donné un ensemble d’apprentissage de photos étiquetées de chats et de chiens, un algorithme de

classification apprend à faire la distinction entre les deux catégories. Il sera bon s’il prédit bien

la classe des images non vues. Cette capacité de généralisation est généralement estimée à partir

d’un ensemble dit de test. Au cours de la dernière décennie, l’apprentissage automatique a fait

l’objet d’une grande attention avec diverses applications cibles, dans la vision par ordinateur

(segmentation sémantique, suivi d’objets), les arts (génération d’images ou de musique), la

détection des fraudes, pour n’en citer que quelques-unes.

Dans de nombreux scénarios d’apprentissage automatique, la comparaison de deux ensemble

de points ou plus généralement de mesures de probabilité présente un grand intérêt. Cela

peut se produire lorsqu’on évalue la similarité entre deux images représentées par des nuages

de points dans l’espace RVB, entre deux textes codés par des mots incorporés ou entre deux

ensembles de cellules dont le génome/transcriptome est décrit numériquement dans un espace

de caractéristiques.

Une direction possible pour aborder cette tâche est d’utiliser la théorie du Transport Optimal
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Figure F.1: Illustration du problème du Transport Optimal entre deux distributions discrètes.

Cited on page [175]

(OT), introduite à l’origine par Gaspard Monge (Monge, 1781), visant à répondre à la question

suivante : comment déplacer des ressources à partir de certains endroits pour satisfaire des

exigences à d’autres endroits avec le moins d’effort possible, en ce sens que le coût global du

déplacement des ressources est minimisé. Par exemple, les ressources peuvent être des soldats

venant de différentes bases militaires qui doivent être envoyés à différents endroits de la ligne de

front, et le commandant militaire veut minimiser le coût moyen de déplacement des soldats pour

éviter les efforts inutiles. Tel qu’il a été introduit à l’origine, le problème de Monge empêchait la

possibilité de répartir les soldats provenant de la même base militaire, ce qui conduisait à un

problème mal posé sans garantie d’unicité et d’existence de la solution. Plus de 200 ans plus

tard, Leonid Kantorovitch (Kantorovich, 1942) a proposé une formulation mathématique relaxée

du problème de transport qui définit notamment une distance réelle entre des distributions de

probabilité : la distance de Wasserstein. Cette dernière a fait l’objet d’une grande attention au

cours des dernières années par la communauté de l’apprentissage automatique en tant qu’outil

puissant pour comparer des mesures de probabilité. Un exemple de la solution de Transport

Optimal est visible sur la Figure F.1, où la masse entière de la distribution bleue est envoyée

sur la distribution rouge par les flèches orange. La distance de Wasserstein entre les deux

distributions est la somme de toutes les distances orange pondérées par la masse correspondante

transportée sur chaque flèche. Il s’avère qu’un élément crucial du Transport Optimal est la

fonction utilisée comme distance entre les échantillons des deux nuages de points. Dans un tel

cadre discret, le problème du Transport Optimal est entièrement défini par une matrice de coûts,

qui contient toutes les distances par paire entre les points des deux mesures de probabilité. Dans

le domaine du Transport Optimal, cette matrice de coûts est généralement appelée métrique de

terrain, fonction de terrain ou coût de terrain. La distance la plus courante et la plus naturelle est

la distance euclidienne, augmentée d’une certaine puissance p, ce qui conduit à la p-Wasserstein

distance.

La métrique de terrain est au cœur de plusieurs contributions de ce manuscrit. En particulier,

nous exploitons le cadre d’apprentissage métrique pour apprendre une métrique du terrain

sous la forme d’une distance de Mahalanobis utilisée pour traiter les tâches d’adaptation au

domaine, c’est-à-dire lorsque nous observons un changement de distribution entre les données

d’apprentissage et de test. Nous étudions également, dans la première partie de cette thèse,
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d’un point de vue théorique comment apprendre une métrique de terrain stable.

Une deuxième série de contributions repose sur l’évolutivité du Transport Optimal. En

effet, certaines variantes visent à comparer des mesures de probabilité qui ne se trouvent pas

nécessairement dans le même espace de caractéristiques. C’est le cas de la distance de Gromov

Wasserstein dont la complexité algorithmique empêche son utilisation sur de grands jeux de

données. Nous proposons dans cette thèse un algorithme rapide pour ce problème basé sur

des stratégies d’échantillonnage. A partir de cet algorithme, nous introduisons une extension

généralisant les problèmes de Wasserstein et de Gromov Wasserstein, ce qui nous permet

d’appliquer le Transport Optimal sur des tenseurs de haute dimension.

Financement et contexte de cette thèse. Cette thèse s’inscrit dans le cadre du projet

TADALoT1, financé par la région Auvergne-Rhône-Alpes (France) avec le Pack Ambition

Recherche (2017, 17 011047 01). Cette thèse a été réalisée au sein de l’équipe Data Intelligence

du laboratoire Hubert Curien. Ce laboratoire est une unité de recherche (UMR 5516) entre

l’Université Jean Monnet de Saint-Étienne, le CNRS et l’Institut d’Optique Graduate School.

Organisation Le manuscrit est composé de 5 chapitres.

• Le premier chapitre fournit le contexte nécessaire pour le reste du document. Il introduit

en détail la théorie du Transport Optimal, certains solveurs et certaines extensions,

notamment le problème de Gromov-Wasserstein. Ensuite, quelques connaissances de

base sont présentées sur le cadre standard de l’apprentissage automatique et le cadre de

l’adaptation au domaine. Ce chapitre présente également les algorithmes Frank-Wolfe

et Mirror Descent en tant que méthodes d’optimisation clés pour les formulations du

Transport Optimal étendues.

• Le deuxième chapitre explore la capacité d’apprentissage de la métrique de base du

problème de Transport Optimal pour une tâche d’adaptation de domaine non supervisée.

Cette dernière vise à déployer sur une distribution cible un modèle appris à partir de

données sources étiquetées. Le choix de la distance euclidienne pour comparer des points

peut ne pas être le meilleur choix compte tenu de la tâche à accomplir. Nous proposons

plutôt d’apprendre une distance de Mahalanobis en utilisant une approche d’apprentissage

de métrique. L’avantage de la distance de Mahalanobis vient de sa capacité à réduire la

dimensionnalité de l’espace des caractéristiques en apprenant une matrice de faible rang.

Une limite de généralisation de l’erreur cible est dérivée pour guider la conception de notre

algorithme, appelé Apprentissage de Métrique pour le Transport Optimal (MLOT).

• Le troisième chapitre se concentre d’un point de vue théorique sur la stabilité du Transport

Optimal dans le pire scénario consistant à sélectionner la pire matrice de coûts possible.

Ceci conduit à un problème min-max visant à réduire la distance tout en recherchant
1https://twitwi.github.io/tadalot/
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la matrice de coûts, dans un ensemble éventuellement infini, qui augmente le plus cette

distance. Le solveur proposé, basé sur une méthode élégante de “Cut in Plane”, trouve

les points-selle de ce problème min-max. Quelques expériences soulignent l’intérêt de

l’algorithme par rapport à l’état de l’art en termes de complexité temporelle et de réduction

du bruit. En nous appuyant sur ce cadre théorique, nous définissons une notion de stabilité

locale pour les matrices de coûts afin de sélectionner la plus stable. Nous montrons

que cette stabilité est fortement corrélée avec une notion de sensibilité au bruit. Nous

présentons quelques expériences pour sélectionner une matrice de coût stable dans une

tâche de transfert de couleur.

• Le quatrième chapitre est consacré à une extension de la théorie du Transport Optimal

aux espaces incomparables, connue sous le nom de problème de Gromov-Wasserstein. Les

solveurs existants reposent sur des fonctions de perte spécifiques pour calculer efficacement

le gradient et ne sont pas adaptés à un cadre général. Nous proposons une méthode rapide

pour résoudre le problème de Gromov-Wasserstein pour n’importe quelle fonction de perte,

qui repose sur une approximation stochastique du gradient en recourant à un schéma

d’échantillonnage. Nous analysons également la convergence vers un point stationnaire de

l’algorithme proposé qui inclut notamment une preuve de convergence pour les solveurs

de Gromov-Wasserstein existants dans le cas concave. Enfin, nous montrons qu’une

amélioration encore plus rapide peut être obtenue lorsque l’approximation stochastique est

basée sur un seul exemple, ce qui nous permet d’utiliser le solveur rapide unidimensionnel

du Transport Optimal.

• Le cinquième chapitre est consacré à la définition d’une nouvelle distance entre

tenseurs d’ordres arbitraires. Dans le cadre classique du Transport Optimal, la

fonction de coût compare des vecteurs qui proviennent de points dans un espace vectoriel ;

dans le problème de Gromov-Wasserstein, on compare des vecteurs (souvent de taille 1)

qui proviennent de matrices. Nous proposons le problème du Transport Optimal entre

Tenseurs (OTT), où la perte peut comparer des vecteurs provenant de tenseurs d’ordres

quelconques. Pour ce faire, nous proposons un cadre qui permet d’utiliser différents plans

de transport le long des différentes dimensions au lieu de s’appuyer sur un unique plan

de transport. Avec l’introduction d’une nouvelle notion de barycentre pour OTT, nous

montrons des résultats compétitifs dans une tâche de clustering basée sur la comparaison.

De plus, quelques expériences d’adaptation de domaine sont menées sur des jeux de données

représentés sous forme de tenseurs, ce qui souligne l’intérêt de cette nouvelle formulation

par rapport à l’état de l’art.

Pour des raisons de clarté du manuscrit, certaines figures, expériences ainsi que de longues

preuves sont reléguées dans les annexes. Deux travaux intéressants, liés à cette thèse, mais qui

n’ont pas été explorés à leur plein potentiel sont disponibles en annexe E.1 et E.3. De plus,

comme contribution technique, l’appendice E.2 présente un logiciel développé pendant cette
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thèse qui crée des transitions entre les diapositives d’une présentation. Ces transitions sont

optimales, dans le sens où elles minimisent le coût du passage d’une diapositive à une autre.
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Conclusion

Cette thèse explore l’intérêt d’utiliser la théorie du Transport Optimal en Apprentissage Au-

tomatique. Plus précisément, elle se concentre sur la métrique de terrain du Transport Optimal.

Le choix de cette métrique de terrain est un élément clé dans toute application basée sur la

théorie du Transport Optimal et nous pensons que la distance euclidienne (au carré) est trop

souvent choisie par défaut. La première partie de cette thèse aborde ce problème en apprenant

une distance de Mahalanobis dans le contexte d’une tâche d’adaptation au domaine. Dans ce

contexte particulier, nous montrons que le Transport Optimal peut utiliser avantageusement les

étiquettes disponibles du domaine source pour apprendre une distance appropriée. Ce processus

d’apprentissage conjoint entre le plan de transport et la métrique conduit à un algorithme appelé

Metric Learning for Optimal Transport (MLOT). Nous réalisons des expériences d’adaptation

de domaine qui montrent l’intérêt d’optimiser une telle métrique de terrain. Bien que MLOT

ait été conçu dans le contexte de l’adaptation de domaine, il est intéressant de noter que dans

toute application de Machine Learning, le choix de la bonne fonction de coût est délicat. Pour

résoudre cette tâche, nous proposons une manière générale de traiter plusieurs fonctions de coût,

ou matrices de coût, en examinant le scénario le plus défavorable. Dans ce contexte, le plan de

transport trouvé ne dépend pas d’une seule matrice de coûts et est plus robuste au bruit. Sur la

base de cette formulation, une notion de stabilité pour les matrices de coûts est proposée afin de

pouvoir choisir la matrice de coûts la plus stable. Elle correspond à une matrice à laquelle est

associée une distance de Wasserstein qui ne change pas beaucoup lorsqu’on regarde le pire cas

dans une boule de Mahalanobis centrée autour de cette matrice. Les expériences montrent une

corrélation entre cette notion de stabilité et la sensibilité au bruit des matrices considérées.

Dans la deuxième partie de la thèse, nous nous concentrons sur les extensions de la for-

mulation du Transport Optimal, notamment la distance de Gromov Wasserstein capable de

comparer des distributions qui ne se trouvent pas nécessairement dans le même espace. Pour

approximer efficacement le problème (difficile) de Gromov Wasserstein, les solveurs existants

s’appuient sur des fonctions de perte particulières. Pour remédier à cette limitation, nous

proposons un algorithme stochastique rapide, capable de gérer des fonctions de pertes arbitraires.

Cette méthode est accompagnée d’une borne de convergence vers un point stationnaire qui

couvre notamment une méthode existante (EGW) dans le cas concave. Lorsque le nombre

d’échantillons est réduit à un, une variante très rapide peut être utilisée, en s’appuyant sur le

solveur unidimensionnel du Transport Optimal. Nous soulignons l’intérêt d’utiliser différentes
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pertes dans des expériences de classification de graphes. Sur la base de cet algorithme évolutif,

nous introduisons un schéma de généralisation englobant à la fois la distance de Wasserstein et la

distance de Gromov Wasserstein ainsi que la distance Co-OT. La formulation qui en résulte est

appelée Transport Optimal entre tenseurs. Cette nouvelle distance permet de traiter des tenseurs

de taille arbitraire au lieu d’utiliser uniquement les positions dans un espace vectoriel ou les

distances paire à paire. Nous réalisons des expériences incluant des tâches d’apprentissage basées

sur la comparaison dans un cadre basé sur les triplets où les points sont définis uniquement par

leurs relations avec deux autres points.

Comme souvent dans la recherche, cette thèse pourrait ouvrir plus de questions qu’elle n’offre

de réponse. Quelques directions de recherche prometteuses possibles sont données ci-dessous,

pour chacun des différents chapitres du manuscrit.

Apprentissage métrique pour le Transport Optimal Comme ce chapitre se concentre

principalement sur une application pratique, les trois extensions proposées sont des algorithmes.

Une extension naturelle de notre méthode serait une version “Deep” de MLOT pour permettre

son utilisation directement sur les images originales dans les tâches de vision par ordinateur.

La méthode MLOT peut être utilisée pour des tâches de vision par ordinateur, du moins pour

tout ensemble de données basées sur des images. Au lieu de minimiser la fonction objectif par

rapport à la métrique de Mahalanobis, nous pourrions plutôt minimiser l’ensemble du réseau

neuronal profond (NN) qui génère l’espace des caractéristiques. Ainsi, la métrique apprise serait

l’ensemble du réseau neuronal au lieu d’une simple fonction linéaire. Généralement, un réseau

neuronal existant, déjà formé sur un énorme ensemble de données tel que Image Net (Deng

et al., 2009), est utilisé et les poids de ce réseau sont seulement ajustés. Dans ce cas, le choix des

hyperparamètres est plus complexe. Tout d’abord, il pourrait y avoir plus d’hyperparamètres en

raison du Réseau de Neurone utilisé. Mais surtout, le temps de calcul augmente considérablement

et la validation inverse, utilisée dans ce chapitre, peut prendre trop de temps pour couvrir

raisonnablement la grande grille d’hyperparamètres. Même si plusieurs hyperparamètres doivent

être définis par défaut, une telle approche conduirait probablement à de meilleurs résultats pour

la classification d’images.

La deuxième extension possible consiste à utiliser un programme de différenciation automa-

tique de l’algorithme OTDA, à chaque itération de MLOT, pour suivre l’impact de L sur le

plan de transport T . Dans ce cas, au lieu de simplement alterner l’optimisation entre le plan de

transport T et L, T serait une variable non fixe dépendant de L. Une telle approche pourrait

conduire à un meilleur minimum qu’une optimisation naïve alternée car le problème n’est pas

convexe. Le principal problème est le temps et la mémoire nécessaires, car OTDA utilise plusieurs

appels de l’algorithme de Sinkhorn.

Une dernière extension possible de MLOT serait de traiter le cadre semi-supervisé où certains

labels sont disponibles dans le domaine cible. Dans ce cas, le même algorithme d’apprentissage

de métrique pourrait être utilisé dans le domaine cible.
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Un couteau suisse pour le Transport Optimal Minimax Bien que la méthode de “ Cut

in Plane” proposée soit très générale, un problème de minimax “petit” doit toujours être résolu à

chaque itération. En pratique, nous n’utilisons que des ensembles spécifiques de matrices de coûts

(ensemble basé sur Mahalanobis ou nombre fini de matrices) et pour d’autres types d’ensembles,

l’algorithme doit être modifié. Par exemple, on pourrait avoir recours à un algorithme de

Frank-Wolfe comme celui utilisé pour générer la Figure 3.1, alors que nous n’avons utilisé qu’un

solveur linéaire pour les expériences. Ainsi, une méthode générale pour résoudre une telle partie

de l’algorithme serait intéressante à explorer. L’algorithme de Frank-Wolfe qui a été utilisé pour

générer la Figure 3.1 pourrait être une bonne direction pour fournir une approximation générale

de minimax pour tout ensemble.

La notion proposée de stabilité de Wasserstein pourrait être plus intéressante si la recherche

d’une matrice de coût stable n’était pas réduite à un nombre fini de matrices de coût. En effet,

en pratique, on ne sélectionne qu’un certain nombre de matrices de coûts et on teste la stabilité

pour chacune d’entre elles. On pourrait imaginer de chercher la matrice de coût la plus stable

dans un ensemble infini, par exemple dans le polytope généré par certaines matrices. Cela

conduira à un min maxmin très complexe.

Sampled Gromov Wasserstein L’un des principaux problèmes de la preuve de convergence

vers un point stationnaire fournie dans ce chapitre est l’hypothèse selon laquelle l’algorithme

de Sinkhorn produit le T ∗ exact du problème OT régularisé par l’entropie 1.8. En pratique,

comme le nombre d’itérations est limité, le résultat n’est qu’une approximation qui ne respecte

pas totalement les contraintes marginales. Ainsi, la borne de convergence n’est pas totalement

correcte et pourrait être améliorée dans un travail futur. De plus, comme la vitesse de convergence

dépend fortement de ε, nous pourrions remplacer le nombre maximal d’itérations de Sinkhorn P

par une valeur plus petite dépendant de ε. Pour finir, la borne liée à la partie échantillonnage peut

être grandement améliorée, au lieu de se baser sur le pire scénario, nous pourrions utiliser certaines

inégalités de concentration. Plus généralement, la limite proposée peut être considérablement

réduite.

Dans un laps de temps très court, pendant les publications de l’article associé à ce chapitre,

deux autres travaux (Sato et al., 2020; Chowdhury et al., 2021) ont utilisé le solveur unidimen-

sionnel du Transport Optimal en définissant chaque point par sa distance à un autre point.

Ainsi, cette idée générale pourrait être une ligne de recherche future prometteuse dans autour

du problème de Gromov Wasserstein.

Du point de vue de l’application, tout problème qui repose sur GW pourrait utiliser SaGroW

pour permettre plus de choix pour la fonction de perte ou PoGroW pour avoir une approximation

très rapide.

Transport Optimal entre Tenseurs Une piste de travail intéressante serait de prouver

la convergence de l’algorithme proposé vers des points stationnaires. Comme il existe une

importante littérature sur la convergence des algorithmes de Mirror Descent, l’une des preuves
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de convergence pourrait être utilisée ou adaptée au cas particulier des OTT. L’une des preuves

de convergence pour l’algorithme de Mirror Descent, dans la vaste littérature, pourrait couvrir

le cas particulier de l’algorithme proposé. Une telle preuve couvrirait également l’algorithme

Sampled Gromov Wasserstein comme cas particulier.

Une extension directe de la formulation OTT est le “Fused”-OTT, de manière similaire au

Fused-Gromov Wasserstein (Vayer et al., 2018). Il permettrait d’aligner des ensembles de données

qui sont représentés par plusieurs tenseurs d’ordres différents au lieu d’un seul. L’algorithme

pour résoudre un tel problème ne changerait pas beaucoup, car le gradient pourrait toujours

être interprété comme une somme d’espérance.

Nous espérons que cette thèse a été intéressante et surtout qu’elle permettra l’émergence de

nouvelles idées et créera de nouveaux liens entre les différents domaines de la statistique, de

l’optimisation, du Machine Learning et du Transport Optimal.
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Abstract The Optimal Transport theory not only defines a notion of distance between probability

measures, but can also align two distributions. During the past few years, Optimal Transport

found many applications in Machine Learning, such as the approximation of a distribution in

GANs for the generation of new points or the adaptation of labeled source data to unlabeled

target examples to solve transfer learning tasks. Given a ground metric that allows to compare

two points of a vector space, the transport between distributions is said to be optimal when

it minimizes the global cost for moving one distribution to another. Although often difficult

to compute, the corresponding Wasserstein distance intuitively generalizes the usual metrics

between points on a vector space to the space of probability measures. In Machine Learning, the

Euclidean distance is the most used ground metric despite the wide variety of possible candidates.

In this thesis, we study the interest of learning more complex metrics to solve Machine Learning

problems with two distinct ideas. The first one uses additional label information to improve

the transportation for a classification task, while the second one proposes to choose the most

stable metric in a set of functions to perform the Optimal Transport between two distributions.

Based on a sampling strategy, we also propose an efficient algorithm for the Gromov Wasserstein

problem, an extension of Optimal Transport which handles similarity matrices computed in

incomparable vector spaces. Finally, based on this latter, we present a generalization of the

Optimal Transport problem that defines a distance between tensors of arbitrary dimension.

Résumé La théorie du Transport Optimal permet non seulement de définir une notion de

distance entre distributions de probabilité, mais propose aussi une correspondance entre celles-ci

sous la forme d’un plan de transport. Cette théorie a été à la base de nombreux récents travaux

en Apprentissage Machine, notamment dans les GANs pour l’approximation de distributions

à des fins de génération de nouveaux exemples ou en adaptation de domaine. Étant donnée

une métrique permettant de comparer deux points d’un espace vectoriel, le transport entre

distributions est dit optimal si il minimise le coût global pour déplacer une distribution vers une

autre. Bien que souvent difficile à calculer, la distance obtenue de Wasserstein généralise de

manière intuitive les métriques usuelles entre points d’un espace vectoriel. En Apprentissage

Machine, la distance Euclidienne est souvent exploitée par défaut comme métrique de base

malgré la grande variété d’autres fonctions candidates possibles. Dans cette thèse, nous abordons

tout d’abord l’intérêt d’apprendre des métriques plus complexes pour résoudre des problèmes

d’Apprentissage Machine. La première contribution utilise des informations additionnelles

d’étiquettes pour optimiser une métrique de Mahalanobis, tandis que la seconde propose de

choisir la métrique la plus stable dans un ensemble de fonction candidates pour effectuer le

Transport Optimal entre deux distributions. Nous proposons également un algorithme efficace

pour résoudre le problème difficile de Gromov Wasserstein, une extension du Transport Optimal

permettant de comparer des matrices de similarité venant d’espaces vectoriels différents. Enfin,

en s’appuyant sur ce nouvel algorithme, nous présentons une nouvelle extension du problème du

Transport Optimal qui définit une distance entre tenseurs de dimension quelconque.
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