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I think Nature’s imagination
is so much greater than
man’s, she’s never going to
let us relax.

(Richard Feynman)
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Chapter 1

Introduction
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1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Goals

Intuitive physics is often described as the untrained ability to understand the
physical world; it has been commonly observed, and studied among infants, adults
and animals. It allows one to catch a ball thrown in the air by anticipating its
trajectory, or to build up a pile of dishes in the sink without casualties.

In the field of computer science however, modelling physics largely relies on
rigorous mathematics equations which, while excelling at some complex tasks, fail
when part of the system is unknown. For example, autopilots accurately land planes
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Chapter 1 Introduction

using GPS coordinates and environment variables, but robots still struggle to stack
piles of objects they see for the first time (Furrer et al. (2017)).

The goal of this thesis is to explore the ability for a system to learn intuitive
physics from experience. Such a system would look at various videos of object
interactions to learn the underlying physical regularities.

1.2 Motivations

Among applications that would benefit from such intuitive physics, there are:

Robotics. In robotics, consequent efforts have been made to automatically train
a system to make a sequence of decisions. In this field, called Reinforcement

Learning, model-based approaches consist of anticipating the outcome of different
actions before choosing the best one. A model capable of predicting the physical
consequences of its actions could achieve its task faster and safer.

Autonomous Driving. To move safely with little or no human input, autonomous
vehicles shall anticipate possible obstacles arising in their surrounding environment.
In many cases, this requires to understand physical interactions between objects.

Tracking. Video tracking consists of locating and linking moving objects in a
video sequence. It has a variety of uses, some of which include: human-computer
interaction, security, augmented reality, traffic control. Most tracking systems rely
on two components: the data model, which identifies objects in the frames, and the
motion model, which accounts for their dynamics. Because the motion model aims
at discriminating possible and impossible trajectories, it would largely benefit from
more robust priors on physics.

Cognitive Sciences. Besides applications in computer science, reverse engi-

neering intuitive physics acquisition, i.e., building a system that mimics infant’s
achievements, could help understand the early infant development, and how physical
intuitions arise in the human mind (see Dupoux (2018) for a similar approach in
language acquisition).

10



1.3 Intuitive Physics of Objects in Infant Development

1.3 Intuitive Physics of Objects in Infant

Development

The process in which human beings acquire these concepts (and others, see Carey
(2009)) has been debated for years. For empiricists, like John Locke, William
James, or Jean Piaget, the initial state of infant cognition is limited to perceptual or
sensory-motor representations:

– John Locke (1632-1704) thought of the mind as a “blank tablet” (tabula rasa)
with sensory perceptions. He argued that ideas come from experience, and
that no principle of reason is innate in the human mind (Locke (1689)).

– William James (1842-1910) famously believed that: The baby, assailed by

eyes, ears, nose, skin, and entrails at once, feels it all as one great blooming,

buzzing confusion; and to the very end of life, our location of all things in

one space is due to the fact that the original extents or bignesses of all the

sensations which came to our notice at once, coalesced together into one and

the same space. There is no other reason than this why "the hand I touch and

see coincides spatially with the hand I immediately feel." (James (1890))

– Jean Piaget (1896-1980) proposed that infants begin life with a repertoire of
sensorimotor representations, achieving truly symbolic representations only at
the end of second year of life (Piaget (1954))

In the end of the XXth century, an alternative to this empiricist picture emerged
with the work of psychologists like René Baillargeon, Randy Gallistel, Rochel
Gelman, Alan Leslie, Elizabeth Spelke or Susan Carey. These writters shared the
view that human cognition, like that of all animals, begins with highly structured
innate mechanisms designed to build representations with specific content (Carey
(2009)). In this thesis we investigate such structured mechanisms in artificial systems
(see Chapter 2 for a review), in an attempt to understand those that are needed
to build physical intuitions. In chapter 3, we draw inspiration from the works of
these psychologists to build an evaluation procedure for intuitive physics in artificial
intelligence systems.

11



Chapter 1 Introduction

1.3.1 Violation of Expectation Paradigm

Evaluating the early acquisition of intuitive physics concepts is difficult, as young
infants have no access to language or advanced manipulation. Thus one cannot
simply "ask" the infant about their understanding or assess their ability to perform
complex tasks. For that reason, many infant development experiments rely on
violation-of-expectation tasks: given a physical rule, infants are shown normal events
(often referred to as possible) versus events breaking the physical rule in question
(often referred to as impossible). After an habituation phase where the infant is
shown several normal events, we measure their attention time in front of possible
and impossible events, which is interpreted as the surprise expressed by the infant.
The hypothesis is that infants’ attention time is longer when being shown impossible
events than possible events. If this hypothesis is statistically true, we (abusively) say
the infants "understand" this physical rule.

In Chapter 3, we design such a procedure to evaluate intuitive physics in systems,
on three physical rules: Object Permanence, Shape Consistancy and Spatio-Temporal

Continuity.

1.3.2 Core Knowledge of Objects

In this section we describe a subpart of the Core Cognition described in Carey
(2009), which deals with the notion of Object. Even though we describe it for human
beings, this core notion of object has been shown to be shared by other animals
(Gallistel (1990)).

Perception of objects. Young infants have expectations that objects are bounded
and cohesive over time. Cheries et al. (2008) experiment with a crawling task on
10-month-old infants to demonstrate that they fail to track objects when broken into
two pieces, suggesting that violations of cohesion disrupt infants’ object tracking
abilities. In another experiment, Needham (1999) show that 4-month-old infants
are more likely to use shape rather than color and pattern differences to find object
boundaries (it seems to remain the case until around 11 months).

12



1.3 Intuitive Physics of Objects in Infant Development

Object permanence. Object permanence is the concept that objects continue to
exist when they are occluded. Baillargeon et al. (1985) introduced a method devised
to test object permanence in young infants based on the violation-of-expectation
procedure described above. In their experiment, five-month-old infants are habituated
to a screen that moves back and forth through a 180-degree arc (see figure 1.1). After
this habituation phase, a box is centered behind the screen and infants are shown
possible and impossible events. In the possible event, the screen stops when it
reaches the occluded box; in the impossible event, the screen moves through the
space occupied by the box. Results indicated that infants look reliably longer the
impossible event, thus authors drew the following conclusion:

Contrary to Piaget (1954) claims, infants as young as 5 months of age

understand that objects continue to exist when occluded. The results

also indicate that 5-month-old infants realize that solid objects do not

move through the space occupied by other solid objects. (...)

This experiment was reconducted in Baillargeon (1987) with 3.5 to 4.5-month-
old infants, showing that the 4.5-month-olds, and a portion of the 3.5-month-olds
infants looked reliably longer at the impossible than at the possible event. Aguiar
and Baillargeon (1999) also investigated 2.5-month-old infants’ reasoning about
occlusion events. They focused on infants’ ability to predict whether an object
remains hidden or becomes temporarily visible when passing behind an occluder
with an opening in it. In Chapter 3, we draw inspiration from these experiments to
create one of the blocks of our IntPhys Benchmark.

Continuity & solidity Spelke et al. (1992) provided evidences for early-developing
capacities of young infants to reason about object motion. They showed that infants
as young as 2.5 to 3-month-old already exhibit two physical conceptions: continuity

and solidity. The term "continuity" refers to the fact that objects move only on
connected paths and do not jump from one place and time to another; "solidity"
referring to the fact that objects move only on unobstructed paths and no parts of
two distinct objects coincide in space and time.

13



Chapter 1 Introduction

Figure 1.1: Schematic representation of the possible and impossible test events in
the object permanence experiment, from Baillargeon et al. (1985).

Inertia & gravity In addition to their experiments on continuity and solidity,
Spelke et al. (1992) demonstrated that such young infants (3-month-old) fail at
expressing intuitions about inertia; the fact that objects do not change their motion
abruptly and spontaneously, and gravity; that objects move downward in the absence
of support. Other experiments showed that these notions arise later in the develop-
ment: at around 7 months for gravity (Kim and Spelke (1992)) and from 8 to 10
months for intertia (Spelke et al. (1994)).

Conservation of properties. Infants don’t expect objects’ intrinsic properties
like size, shape, pattern, or color, to change with no reason. Wilcox (1999) demon-
strated that 4.5-month-olds use both shape and size to discriminate objects during
occlusion events. It is around 7.5-months-old that they use pattern, and only at 11.5
months that they use color to reason about object identity.

Figure 1.2 shows an overview of the acquisition of intuitive physics in infant
development. An exhaustive review can be found in Hespos and Vanmarle (2012).

14



1.3 Intuitive Physics of Objects in Infant Development

Figure 1.2: Approximate timeline of intuitive physics in infant development (from
DARPA Machine Common Sense project presentation).

1.3.3 A Bootstrapping Problem

Bottom-up & Top-down Mechanisms

In psychology, we define as bottom-up processes those that arise from sensory
reception and do not require any knowledge or prior on the world. For example, in
the context of intuitive physics, infants’ visual system bounds, locates and identifies
objects, resulting in a sequence of object proposals over time. This process is said
to be bottom-up, as it arises from the visual system with no prior on the underlying
physics.

On the other hand, we define as top-down, processes that are influenced by
our knowledge, or prior, about the world. Violation of expection experiments
show evidence of these processes: infants express surprise when faced events that
contradict their knowledge of the physical world.

From a learning point of view, these bottom-up (Needham (1999); Cheries et al.
(2008); Wilcox (1999)) and top-down mechanisms (Baillargeon et al. (1985); Bail-
largeon (1987); Spelke et al. (1992)) often appear to be interdependant. For instance
in the object permanence experiment, infants are shown objects that disappear behind
an occluder, then reappear. While they are visible, the visual system catches object
cues; but because of changes in illumination or orientation, these object cues are
noisy and tracking their identity is already non-trivial: we must understand that
objects’ position and appearance change smoothly in time. It becomes even harder

15



Chapter 1 Introduction

when an object gets occluded: we assume it continues to exist even if we don’t see it,
and predict its trajectory to anticipate when it will get out of occlusion. How can
these intertwined processes mature together during the first months of life? This
computational challenge is often called bootstrapping problem.

Bootstrapping Problem

In psychology, a "bootstrapping" process is a process in which a system uses its

initial resources to develop more powerful and complex processing routines, which

are then used in the same fashion, and so on cumulatively 1. In language acquisition
for example, the term is used to express the complexity of learning the rules for
natural languages, given the few observable data and numerous ambiguities the child
is being faced (Pinker (1987)).

The developmental psychologist Susan E. Carey proposed the term "Quinian boot-
strapping", after the philosopher and logician Willard Van Orman Quine (1908–2000),
to describe the theory that humans build complex concepts (including intuitive
physics) out of primitive ones through a bootstrapping process.

Minimum viable physics for autonomous systems

In this introduction, we have presented works from psychologists sharing a similar
view of human cognition: it begins with highly structured innate mechanisms, from
which it builds specific representations through bootstrapping processes. In the
next chapters we investigate what properties are required for a system to build such
rich representations about the physical world. In particular, we explore different
computational systems and compare their performances on tasks inspired from the
infant development studies presented in this introduction.

1American Psychological Association, dictionary.apa.org
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1.4 Contributions

1.4 Contributions

In chapter 3, we create a consistent series of tests to evaluate intuitive physics
in systems (Riochet et al. (2021)). Relying on the Violation Expectation Paradigm
described above, we designed a benchmark based on three Intuitive Physics concept:
object permanence, shape consistency and trajectory continuity. We also conducted
human studies and compared results with two pixel-based baseline models. To our
best knowledge, this work was the first to use Violation Expectation Paradigm to
evaluate Intuitive Physics in systems and was followed by two other works: Piloto
et al. (2018); Smith et al. (2019). This work is published in IEEE Transactions on

Pattern Analysis and Machine Intelligence and has also been used by the DARPA
for its Machine Common Sense project, to evaluate works on Intuitive Physics. We
counted more than 20 teams evaluating their models on the benchmark in the last 3
years.

Our experiments from Riochet et al. (2021) show that CNN encoder-decoder
structure (either trained in an adversarial procedure or not) are not enough to learn
the type of physical regularities we considered, especially in the case of occlusions.
In chapter 4 we design an object-based model, gifting the system with a notion of
objects, interacting together and in which physics is compositional Riochet et al.
(2020a). Our experiments on simulated videos showed we are able to perform object
tracking and forward modelling, even when there were frequent occlusions. One
could compare this structure imposed in the model as the Core Knowledge of Objects
described in 1.3.2, in opposition to the pure empiricist hypothesis of a more general
model learning the notion of object from visual inputs only.

Finally, in chapter 5, we adapt this approach to the case of a moving camera, ap-
plying it to two city driving datasets: one synthetic recorded with Carla (Dosovitskiy
et al. (2017)), and the Cityscapes Dataset (Cordts et al. (2016)) made of real video
sequences recorded in streets from 50 cities. In addition, we proposed a method
to decouple ego-motion from objects’ motion, making it easier to learn long term
object dynamics.

17



Chapter 1 Introduction

Articles

– R. Riochet, M. Ynocente Castro, M. Bernard, A. Lerer, R. Fergus, V. Izard,
and E. Dupoux. IntPhys: A Framework and Benchmark for Visual Intuitive
Physics Reasoning. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2021

– Ronan Riochet, Josef Sivic, Ivan Laptev, and Emmanuel Dupoux. Occlusion
resistant learning of intuitive physics from videos. 2020b

– Ronan Riochet, Mohamed Elfeki, Natalia Neverova, Emmanuel Dupoux, and
Camille Couprie. Multi-Representational Future Forecasting. November
2020a

Patents

Adam Kal Lerer, Robert D. Fergus, and Ronan Alexandre Riochet. Differentiating

Physical and Non-Physical Events. Google Patents, October 2019

Oral presentation

– Intphys: A Benchmark for Visual Intuitive Physics Understanding. Workshop
on Intuitive Physics, NIPS2016, Barcelona, Spain, 22 - December 2016.

– Learning intuitive physics from videos. Journées interdisciplinaires de l’Ecole
Normale Supérieure, Paris, 22 - March 2019.

Open source projects

– Models presented in chapter 3: github.com/rronan/IntPhys-Baselines

– Unreal Engine environment for data generation presented in chapter 3 (partial
contribution): github.com/bootphon/intphys

– Models presented in chapter 4:
github.com/rronan/Recurrent-Interaction-Network

18

github.com/rronan/IntPhys-Baselines
github.com/bootphon/intphys
github.com/rronan/Recurrent-Interaction-Network


Chapter 2

Litterature Review: Intuitive
Physics in Computer Vision and
Artificial Intelligence

Contents

2.1 Intuitive Physics in Controlled Environments . . . . . . . . . . . 20
2.2 End-to-End Forward Prediction in Videos . . . . . . . . . . . . 22

2.2.1 Next-frame prediction . . . . . . . . . . . . . . . . . . . 22
2.2.2 Using additional information . . . . . . . . . . . . . . . . 22

2.3 Intuitive Physics of Objects in Videos . . . . . . . . . . . . . . . 23
2.3.1 Notion of Object in Computer Vision . . . . . . . . . . . 23
2.3.2 Learning the Dynamics of Objects in Videos . . . . . . 27
2.3.3 Inferrence of physical properties . . . . . . . . . . . . . 30

2.4 Beyond Object Tracking: Event Decoding . . . . . . . . . . . . 32

19



Chapter 2 Litterature Review: Intuitive Physics in Computer Vision and Artificial
Intelligence

For centuries, physicists have been describing the world through mathematical
equations that matched observations. With this formalism and the emergence of
computer science came the possibility to simulate almost any kind of physical system,
sometimes with an extreme precision. This allowed human kind to send satellites in
orbit, cross an ocean in six hours or forecast weather for several days.

These programs are often tailor made for specific problems: involving mathemati-
cal tools that differs from one situation to another (e.g. rigid or soft body physics,
fluid dynamics, etc.). With the rise of deep learning, researchers have tried to build
systems that could discover these regularities from observations. In that scenario,
instead of writting down a sequence of instructions, the researcher designs a model
capable of learning those instructions from the observed data, through a so-called
training phase. This way, Xingjian et al. (2015) predicted precipitation nowcasting
with a deep learning architecture that was later used for biological age estimation
(Rahman and Adjeroh (2019)), traffic flow prediction (Liu et al. (2017)) or video
salient object detection (Song et al. (2018)).

While these machine learning approaches are still far less accurate than the
traditional ones, showing ability to learn these rules from observations echoes with
the mechanisms described in Chapter 1. In this thesis we restrict to the types of
physical interactions described in the litterature of infant development, sometimes
called intuitive physics. This chapter contains a review of the litterature on Intuitive
Physics in Computer Vision and Artificial Intelligence.

2.1 Intuitive Physics in Controlled Environments

Modelling intuitive physics is inherently tied to our representation of the physical
scene. Such representation may be RGB pictures, point clouds or more structured
like object representations. Some of them, like the first one, have the advantage of
being applicable to various real-life scenarios as videos are easy and cheap to record.
In this section, we present works that were proposed to learn intuitive physics from
controlled environments where structured object representation is available.

In such environment, objects are represented by their coordinate vector, either in
2D Chang et al. (2016); Battaglia et al. (2016) or 3D Mrowca et al. (2018); Li et al.
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(2018b). In Battaglia et al. (2016), authors introduce the Interaction Network, a neural
network taking as input objects’ physical state at a given time and predicting their
trajectory in the near future. To do so, they build a graph where each node is an object
(described by its position, velocity and mass) and each edge describes interaction
between these objects. By factorizing one model to predict these interactions, this
approach is compositional and allows to take a variable number of objects as input.
This is also the case for Chang et al. (2016) where, in addition, authors prune the
graph from interactions involving objects that are too distant in space (see examples
of scenes they consider in Figure 2.1). While these two works involve rigid objects
in the 2D plane, Mrowca et al. (2018); Li et al. (2018b) use the same idea to model
soft bodies and fluids in the 3D space. In that case, one body is itself described with
several atomic parts (see Figure 2.2) which interact together, causing its deformation.

Figure 2.1: Example of physical scenes modelled in Battaglia et al. (2016) (left) and
Chang et al. (2016) (right).

Battaglia et al. (2013) have also investigated a probabilistic model, which they
call Intuitive Physics Engine. It uses Open Dynamics Engine (www.ode.org) as
a rigid body simulator, running on an object-based representation of a 3D scene.
This physics engine runs on multiple independent draws sampled from a probability
distribution accounting for the observer’s belief on some physical quantities (mass
of object, precise location of a partially occluded object, etc.). This model shows
similar behavior with humans on five distinct psychophysical tasks.
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Figure 2.2: Example of physical scenes modelled in Mrowca et al. (2018) (left) and
Li et al. (2018b) (right).

2.2 End-to-End Forward Prediction in Videos

2.2.1 Next-frame prediction

Other works have focused on predicting future frames in videos Mathieu et al.
(2015); Pătrăucean et al. (2016); Wichers et al. (2018). One motivation for this
task was that training a model for forward prediction would require the model
to understand objects motion, thus both learn to represent objects and infer their
dynamics. Ideally, this would be a way to learn visual features for object detection,
without the need for expensive, human annotated, datasets. In practice however,
these approaches have not yielded any consistent improvements in object detection,
compared to fully-supervised approaches described in Section 2.3.1.

2.2.2 Using additional information

Other works have proposed using more supervision in the task of future frame
prediction. Luc et al. (2017, 2018); Couprie et al. (2018) predict future segmentation,
allowing to focus on object motion without having to predict textures and changes in
lighting.

Keypoints have also been used in forward prediction. Villegas et al. (2018) encode
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objects in a video as a time series of keypoints, then use a Long Short-Term Memory
(LSTM) network Hochreiter and Schmidhuber (1997) to predict their future pose.
Finally, they train an image generator to predict the future frame from the initial
frame and the predicted pose.

Finally, optical flow, the instantaneous velocity of pixels moving in a video; has
been used as a cue to infer objects’ velocities. Liang et al. (2017) propose a generative
adversarial network (GAN) to predict both future frame and optical flow.

2.3 Intuitive Physics of Objects in Videos

In this section we first describe the notion of object in computer vision, then
present works on learning intuitive physics of objects from visual inputs.

2.3.1 Notion of Object in Computer Vision

In computer vision, the notion of object itself varies, along with methods used
to detect them. In most cases, an object detection is defined by a bounding box: a
rectangle around the object in the picture, and a label specifying the kind of object
that is detected. It can be completed with an instance mask which tells, for each
pixel, if it is part of the object or not. Additional information, like keypoints, can
extend this detection. Examples of such detections can be found in Figure 2.3.

Supervised object detection. Supervised object detectors are models trained
on large datasets of images paired with the list of visible objects, along with their
localization. Girshick et al. (2014); Girshick (2015); Ren et al. (2017) propose a
Region-based Convolutional Network (RCNN), that use a pre-trained convolutional
neural network to bottom-up region proposals, in order to localize and segment
objects. Redmon et al. (2016) propose a model that performs detection at a rate faster
than 24 images, making it suitable for real time application on videos streams.

Lin et al. (2017) propose a Feature Pyramid Network (FPN) which efficiently
computes pyramid representation. This rich representation can be used in a Faster-
RCNN system (Ren et al. (2017)) to improve performance with marginal extra cost.
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Finally Tan et al. (2020) propose key optimizations to improve efficiency of object
detectors, resulting in the current state-of-the-art model.

The two main datasets, Pascal VOC Everingham et al. (2010) and Microsoft
COCO Lin et al. (2014) propose a large number of images with annotated object
instances, as well as a test set and evaluation benchmark. Microsoft COCO contains
300 000 fully segmented images, where each image has an average of 7 object
instances from 80 categories. Pascal VOC, on its side, contains only 20 categories.
It is also common to pretrain some parts of the model on large image classification
datasets (e.g., ImageNet Russakovsky et al. (2015)) to improve extracted visual
features.

Figure 2.3: Example of object detections with bounding boxes and labels.
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Figure 2.3: Example of object detections with keypoints.

Figure 2.3: Example of object detections with instance masks and labels, from
www.github.com/facebookresearch/detectron2.

Unseen/Salient object detection. While supervised models offer state of the
art results on detection and segmentation benchmarks ( Everingham et al. (2010);
Lin et al. (2014)), they fail to detect objects that are too different from those of the
training set. Other approaches propose to detect and segment objects of any shape
by focusing on cues like contours, saliency, depth estimation.
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Visual saliency detection aims to discover regions in an image that look the most
like a object. We can distinguish bottom-up and top-down approaches. In bottom-up
approach (like Tu et al. (2016)), low-level visual features (e.g. edges, texture) play a
central role, regardless of the semantic content. In contrast, top-down approaches,
like Yang and Yang (2017), use priors about object categories and spatial context to
make their prediction. In practice, these two mechanisms combine well: the former
proposes object region candidates while the latter prune these candidates with respect
to a prior knowledge about objects. A litterature review on object detection (in date
of 2019) can be found in Zhao et al. (2019)

Detecting objects from videos. Methods presented above detect objects from
still images, but videos offer additional information which should help making
better predictions (e.g., distinguishing ambiguities due to occlusions and/or lighting
conditions). Zhu et al. (2017) and Li et al. (2018a) investigate flow guided, end-
to-end methods for video object detection. Zhu et al. (2017) propose to aggregate
features from a reference frame with thoses of nearby frames, based on optical
flow information. These aggregated features are used to predict more robust object
detection in the reference frame. Li et al. (2018a) propose a similar idea, encoding
sequential feature evolution with LSTM networks. See also Agarwal et al. (2016)
for a review of on optical flow litterature prior to 2016.

Other approaches. Finally, other works have used proxy tasks, like video col-
orization, to detect and track objects (Vondrick et al. (2018)). Greff et al. (2019) and
Burgess et al. (2019) propose methods to learn - without supervision - to segment
images into interpretable objects with disentangled representations. In particular,
they train variational autoencoders (VAE) to reconstruct input images, given the
prior that they contain several objects. While this method works well on synthetic
datasets like Johnson et al. (2016), they fail to generalize on real images like those
of ImageNet (Russakovsky et al. (2015)).
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2.3.2 Learning the Dynamics of Objects in Videos

Several works have attempted to learn physical regularities from videos. Compared
to coordinate trajectories, working from a sequence of video frames is challenging,
because:

– High dimension: There are more 10×10 distincts images than the total number
of images seen by all humans through out history 1.

– Occlusions and changes in illuminations make information noisy or missing.

– The losses used on pixels only partially reflects the layout of the physical scene
(see Figure 2.4).

Figure 2.4: Is image X closer to image A or B? Even though they show two different
objects, the L2 distance between A and X is lower than the one between
B and X

Simple and planar scenes. Some works focus on simple images, with low
resolution (usually around 100x100 pixels or lower), with very simple shapes and
no changes in illumination. Fraccaro et al. (2017) investigate a Kalman filter based
variational auto-encoder, that simultaneously learns two disentangled representations

1Number of 10× 10 distincts images 25610·10 = 6.7 · 10240 vs images seen by 50 billion people,
during 20 billion seconds, with 30 images per second: 3 · 1021. From http://helper.ipam.
ucla.edu/publications/gss2011/gss2011_9841.pdf
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for videos: one accounting for object recognition and the other for their dynamics.
Experiments are done on 32× 32 binary pixels videos, with only one object.

Watters et al. (2017) and van Steenkiste et al. (2018) learn the dynamics of several
objects in 64×64 pixels videos. Watters et al. (2017) use a visual encoder to estimate
the state of every object, then apply an Interaction Network (Battaglia et al. (2016))
to predict future states. van Steenkiste et al. (2018) explore the use of a Relational

Neural Expectation Maximization, a Neural Expectation Maximization (Greff et al.
(2017)) endowed with a relational mechanism also similar to Battaglia et al. (2016).

Although input videos are a lot simpler than those from real life applications, these
works have the advantage of exploring end-to-end approaches, which do not need to
be pretrained with annotated data.

Controlled or synthetic realistic scenes. Going forward to learning intuitive
physics from real-life videos, many works have tried to simulate simple scenes in
3D virtual environments. They either use game engines like UnrealEngine (Epic
Games (2019)) or Unity (Technologies (2005)), or more research oriented libraries
like PyBullet (Coumans and Bai (2016)) or MuJoCo (Todorov et al. (2012)).

Lerer et al. (2016); Li et al. (2016); Mirza et al. (2017); Groth et al. (2018); Zhang
et al. (2016) have focused on predicting the stability of piles of blocks from still
images (see examples in Figure 2.5). They use CNN based image classifiers taking
as input an image of a block tower and returning a probability for the tower to fall.
Lerer et al. (2016); Mirza et al. (2017) also include a decoding module to predict
final positions of these blocks. Groth et al. (2018) investigate the ability of such a
model to actively position shapes in stable tower configurations.
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Figure 2.5: Examples of input images from Lerer et al. (2016); Li et al. (2016);
Mirza et al. (2017); Groth et al. (2018); Zhang et al. (2016) (from left to
right).

Other works have investigated more complex physical scenes in synthetic videos.
Wu et al. (2017a) rely on a shallow object detector estimating position and physical
states of simple shapes. The resulting object trajectories are used by a neural physics
engine like in Chang et al. (2016).

Similarly to Chapter 3, Smith et al. (2019) and Janner et al. (2019) proposed
Violation-of-Expectation based datasets to evaluate intuitive physics understanding.
They also investigate models including modules for parsing the scene as objects and
predicting their future motion.

Real videos. Finally, we review works that have focused on intuitive physics
and forward modelling in real videos. Srivastava et al. (2015) use Long Short
Term Memory (LSTM) networks to learn representations of video sequences, also
predicting the future sequence. Pătrăucean et al. (2016); Lotter et al. (2017); Sun
et al. (2019) propose models based on Convolutional Long Short-Term Memory
cells (ConvLSTM), similar to Xingjian et al. (2015), for video forcasting. Rather
than focusing on future frame, Sun et al. (2019) predict future instance segmentation.
This approach allows to focus more on object position and orientation rather than
changes in texture or luminosity, and is also the direction we chose in Chapter 5.
Mathieu et al. (2015) investigate different losses for preserving objects’ sharpness
in video forecasting. Ranzato et al. (2016) have proposed a baseline inspired by
language models to predict future frames in videos. Vondrick et al. (2016) propose
a generative adversarial network with a spatio-temporal convolutional architecture
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that disentangles the foreground and background.
Finn et al. (2016) use a LSTM-based approach for a model-based reinforcement

learning task, for robotic manipulation. Xu et al. (2019b) propose a model learning
physical object properties from dynamics interaction (through a robot’s arm) and the
resulting visual observations.

2.3.3 Inferrence of physical properties

Wu et al. (2016) construct a dataset, called Physics101, with videos of various
objects interacting one with each other. Taking inspiration from Carey (2009), they
design four different scenarios:

– Ramp: Objects are put on an inclined surface and may either slide down or
stay static, due to gravity and friction.

– Spring: Objects are hung to a spring, gravity on the object stretching the
spring.

– Fall: Objects are dropped in the air and freely fall onto various surfaces.

– Liquid: Objects are dropped into some liquid and may float or sink at various
speeds.

Like in Battaglia et al. (2013), authors use a hard-coded physical world simulator,
predicting object dynamics given their physical properties: mass, volume, friction
coefficient, restitution coefficient, elasticity. They train a neural network to estimate
these quantities from observations, given the constraints encoded in the physical
world simulator.

Summary

We have presented different works on intuitive physics as explored in the artificial
intelligence and computer vision litteratures. Although these works agree on the
problems they tackle, the models considered as well as the data they evaluate on
differ a lot. In this section, we intend to summarize those differences in light of
motivations presented in Chapter 1.
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The first axis of variation we consider is the type of data that is used for the
experiments. It goes from trajectories simulated in the cartesian space to real videos
of complex scenes. The main categories are:

(i) Perfect object trajectories in the cartesian plane (2D). Each object is repre-
sented by its x-y coordinates and physical intrinsic properties. Typically, such
trajectories come from simulated worlds as shown in Figure 2.1.

(ii) Perfect object trajectories in the cartesian space (3D): similar to the previous
one, but in 3D (see Figure 2.2). Works like Battaglia et al. (2016); Chang et al.
(2016); Mrowca et al. (2018); Li et al. (2018b) show that neural networks can
learn such trajectories and make long term predictions. However, this is to be
put in perspective with the fact that traditional physics engines (included those
used to simulate these data!) do perform extremely good on these tasks.

(iii) Simple 2D videos: videos with simple objects on a 2D plane, with no occlu-
sion or changes in illumination. This includes videos of billiard boards with
distinctly colored balls, as well as synthetic videos created in 2D environments.

(iv) Controlled 3D synthetic videos: recorded in 3D virtual environments with
fixed camera, few objects or changes in background and illumination.

(v) 3D synthetic videos: more complex videos with camera in motion and high
diversity in objects categories and motion. This includes city-driving datasets
like Dosovitskiy et al. (2017).

(vi) Controlled real videos: recorded with a standard camera, but in an controlled
environment. The camera is fixed and the scene involves only few objects with
simple appearance. These scenes are almost perfectly segmented by standard
object detectors, and simple tracking heuristics successfully compute object
trajectories.

(vii) Unconstrained real videos from everyday life. Objects can be of diverse
appearance and their motion may induce occlusion, causing standard object
detectors to fail at segmenting some objects in some frames. Simple tracking
heuristics may fail.
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The second axis we consider is the notion of physics, or the prior on physics, that
is given to the model. This reflects the choices that are made in the model’s design,
such as the structure of the neural network, to allow it modelling the physical world.
We propose the following partition:

(a) No prior on physics: a general model capable of learning regularities from a
training dataset (either videos or trajectories), with no specific design aimed to
learn intuitive physics or object dynamics.

(b) Physics is shared per object (but learnt): the model is still general, but is
applied to each object individually. To work on videos, this requires the use of
a visual encoder (either trained end-to-end or including a pre-trained object
detector).

(c) (ii) + Physics is shared per pairwise interaction: factorizing one model to learn
all pairwise interactions.

(d) (iii) + Movement is 2nd order (continuity of trajectories): position is the deriva-
tive of velocity, which is the derivative of acceleration. Applying constraints
on acceleration or velocity helps to smooth trajectories, especially when ob-
servations are noisy or partially missing. A notable version, the Kalman filter,
can be used in the tracking of objects in videos.

(e) Traditional physics engine inside. The system includes a traditional physics
engine to make forward predictions, sometimes using sampling to account for
uncertainty in observations.

In Figure 2.6, we classify related works presented above in regards to these two
axes of variation.

2.4 Beyond Object Tracking: Event Decoding

Multiple Object Tracking (MOT) consists in locating multiple objects, maintaining
their identities, and yielding their individual trajectories given an input video. Such
"objects" can be pedestrians Yang et al. (2011); Pellegrini et al. (2009), vehicles
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Figure 2.6: Scatter plot of works on intuitive physics in computer vision and artificial
intelligence.
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Koller et al. (1994); Betke et al. (2000), sport players Lu et al. (2013), animals
Spampinato et al. (2008), etc. An exhaustive review can be found in Luo et al.
(2017).

We call event decoding the problem of assigning to a sequence of video frames
F = ft=1..T a sequence of underlying object states (i.e., object positions, velocities,
appearance, mass, etc.) S = si=1..N

t=1..T that can explain this sequence of frames. Within
a generative probabilistic model, we therefore try to find the state Ŝ such that:

Ŝ = argmax
S

P (S|F, θ) (2.1)

where θ is a parameter of the model.
With Bayes rule, P (S|F, θ) decomposes into the product of two probabilities that

are easier to compute, P (F |S, θ), the rendering model, and P (S|θ), the physical

model. This is similar to the decomposition into an acoustic model and a language
model in ASR Neufeld (1999).

In practice, this optimization problem is difficult because the states are continuous,
the number of objects is unknown, and some objects are occluded in certain frames,
yielding a combinatorial explosion regarding how to link hypothetical object states
across frames.

In chapter 4 we will attempt to make this problem tractable. In first place, we
use off-the shelf instance mask detectors presented above to operate in mask space
and not in pixel space. Second, we approximate these probabilistic model with two
Neural Networks, one rendering model and one physical model. We will design
them as compositional, which may be defined as:

– "Compositionality is an embodiment of faith that the world is knowable, that

one can tease things apart, comprehend them, and mentally recompose them

at will" (Alan Yuille)

– "The world is compositional or God exists" (Stuart Geman)
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Chapter 3

IntPhys: A Benchmark for Visual
Intuitive Physics Understanding

Abstract

In order to reach human performance on complex visual tasks, artifi-
cial systems need to incorporate a significant amount of understanding
of the world in terms of macroscopic objects, movements, forces, etc.
Inspired by work on intuitive physics in infants, we propose an evalua-
tion benchmark which diagnoses how much a given system understands
about physics by testing whether it can tell apart well matched videos
of possible versus impossible events constructed with a game engine.
The test requires systems to compute a physical plausibility score over
an entire video. It is free of bias and can test a range of basic physical
reasoning concepts. We then describe two Deep Neural Networks sys-
tems aimed at learning intuitive physics in an unsupervised way, using
only physically possible videos. The systems are trained with a future
semantic mask prediction objective and tested on the possible versus
impossible discrimination task. The analysis of their results compared
to human data gives novel insights in the potentials and limitations of
next frame prediction architectures.

This work was led in collaboration with Mario Ynocente Castro, Math-

ieu Bernard, Adam Lerer, Rob Fergus, Véronique Izard and Emmanuel

Dupoux. The preprint is currently under review for TPAMI.
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3.1 Introduction

Despite impressive progress in machine vision on many tasks (face recognition
Wright et al. (2009), object recognition Krizhevsky et al. (2012); He et al. (2016),
object segmentation Pinheiro et al. (2015), etc.), artificial systems are still far from
human performance when it comes to common sense reasoning about objects in
the world or understanding of complex visual scenes. Indeed, even very young
children have the ability to represent macroscopic objects and track their interactions
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through time and space. Just a few days after birth, infants can parse their visual
inputs into solid objects Valenza et al. (2006). At 2-4 months, they understand object
permanence, and recognize that objects should follow spatio-temporally continuous
trajectories Kellman and Spelke (1983); Spelke et al. (1995). At 6 months, they
understand the notion of stability, support and causality Saxe and Carey (2006);
Baillargeon et al. (1992); Baillargeon and Hanko-Summers (1990). Between 8 and
10 months, they grasp the notions of gravity, inertia, and conservation of momentum
in collision; between 10 and 12 months, shape constancy Xu and Carey (1996),
and so on. Reverse engineering the capacity to autonomously learn and exploit
intuitive physical knowledge would help building more robust and adaptable real life
applications (self-driving cars, workplace or household robots).

Although very diverse vision tasks could benefit from some understanding of
the physical world (see Figure 3.1), modeling of intuitive physics has been mostly
developed through some form of future prediction task Battaglia et al. (2016),Chang
et al. (2016),Xue et al. (2016),Fraccaro et al. (2017) and reinforcement learning
Veerapaneni et al. (2020). Being presented with inputs that can be pictures, video
clips or actions to be performed in the case of a robot, the task is to predict future
states of these input variables. Future prediction objectives have a lot of appeal
because there is no need for human annotations, and abundant data can be collected
easily. The flip side is that it is difficult to find the right metric to evaluate these
systems. Even though pixel-wise prediction error can be a good loss function, it is not
particularly interpretable, depends on the scale and resolution of the sensors making
cross datasets comparison difficult, may not even rank the systems in a useful way: a
good physics model could predict well the position of objects, but fail to reconstruct
the color or texture of objects. In addition, even though the laws of macroscopic
physics are deterministic, in practice many outcomes are stochastic (this is why
people play dice). In other words, the outcome of any interaction between object is a
distribution of object positions, making the evaluation problem even harder.

Here, we propose to use an evaluation method which escapes these problems
by using the prediction error not directly as a metric, but indirectly as informing a
forced choice between two categories of events: possible versus impossible events.
The intuition is the following. If a model has learned the laws of physics, it should
be able to predict relatively accurately the future in video clips that show possible
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Figure 3.1: Popular end-to-end applications involving scene understanding and proposed
evaluation method based on physical plausibility judgments. ’Visual’ tasks
aim at recovering high level structure from low level (pixel) information: for
instance, recovering 3D structure from static or dynamic images (e.g., Chang
et al. (2015); Choy et al. (2016)) or tracking objects (e.g., Kristan et al. (2016);
Bertinetto et al. (2016)). ’Motor’ tasks aim at predicting the visual outcome
of particular actions (e.g., Finn et al. (2016)) or to plan an action in order to
reach a given outcome (e.g. Oh et al. (2015)). ’Language tasks’ requires the
artificial system to translate input pixels into a verbal description, either through
captioning Farhadi et al. (2010) or visual question answering (VQA Zitnick and
Parikh (2013)). All of these tasks involve indirectly some notion of intuitive
physics. Our proposed test directly measures physical understanding in a task-
and model-agnostic way.

events, even if these videos are entirely novel. However, the model should give large
prediction errors when some unlikely or impossible event happens. In other words,
impossible events have a zero probability in the real world, so a model trained only
with possible events should be able to generalize to other possible events, while
rejecting impossible ones.

This is directly inspired by the "violation of expectation" (VOE) paradigm in
cognitive psychology, whereby infants or animals are presented with real or virtual
animated 3D scenes which may contain a physical impossibility. The "surprise"
reaction to the physical impossibility is measured through looking time or other
physiological measures, and is taken to reflect a violation of it’s internal predictions
Baillargeon et al. (1985). Similarly, our evaluation requires systems to output a scalar
variable upon the presentation of a video clip, which we will call a ’plausibility score’
(it could be a log probability, an inverse reconstruction error, etc). We expect the
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plausibility score to be lower for clips containing the violation of a physical principle
than for matched clips with no violation. By varying the nature of the physical
violation, one can probe different types of physical laws: object permanence (objects
don’t pop in and out of existence), shape constancy (objects keep their shapes),
spatio-temporal continuity (trajectories of objects are continuous) 1. These three
physical laws form the three blocks of IntPhys2019.

As in infant’s experiments, our tests are constructed in well matched sets of clips,
i.e., the possible versus impossible clips differ minimally, in order to minimize
the possibility of dataset biases, but are quite varied, to maximize the difficulty of
solving the test through simple heuristics. Three additional advantages of this method
are that (1) they provide directly interpretable results (as opposed to a prediction
error, or a composite score reflecting an entire pipeline), (2) they enable to probe
generalization for difficult cases outside of the training distribution, which is useful
for systems that are intended to work in the real world, and (3) they enable for
rigorous human-machine comparison, which is important in order to quantify how
far are artificial system in matching human intuitive physical understanding.

Our tests have also limits, which are the flip side of their advantage: They measure
intuitive physics as looked through the prediction errors of a system, but do not
measure how well a system might be able to use this kind of understanding. For
instance, an end-to-end VQA system may have superb physical understanding (as
measured by VOE) but fail miserably in connecting it with language. In this sense,
VOE should be viewed as a diagnostic tool, a kind if unit testing for physics that
needs to be combined with other measures to fully evaluate end-to-end systems.
Similarly these tests do not exhaustively probe for all aspects of intuitive physics,
but rather break it down into a small set of basic concepts tested one at a time. Here
again, unit testing does not guarantee that an entire system will work correctly, but it
helps to understand what happens when it does not.

1This has a direct parallel in ’black box’ evaluation of language models in NLP. Language models
are typically trained with a future prediction objective (predicting future characters or words
conditioned on past ones). However, instead of evaluating theses models directly on the loss func-
tion or derivatives like perplexity, an emerging research direction is to the models on artificially
constructed sentences that violate certain grammatical rules (like number agreement) measure the
ability of the system to detect these violations Linzen et al. (2016)
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This paper is structured as follows. In Section 3.2, we present the IntPhys Bench-
mark, which tests for 3 basic concepts of intuitive physics in a VOE paradigm.
In Section 3.3, we describe two baseline systems which are trained with a self-
supervised frame prediction objective on the training set, and in Section 3.4 we
analyse their performance compared to that of human participants. In Section 3.5
we present related work and conclude in Section 3.6 by discussing the next steps in
extending this approach to more intuitive physics concepts and how they could be
augmented to incorporate testing of decision and planning.

3.2 Structure of the IntPhys benchmark

IntPhys is a benchmark designed to address the evaluation challenges for intuitive
physics in vision systems. It can be run on any of machine vision system (captioning
and VQA systems, systems performing 3D reconstruction, tracking, planning, etc),
be they engineered by hand or trained using statistical learning, the only requirement
being that the tested system should output a scalar for each test video clip reflecting
the plausibility of the clip as a whole. Such a score can be derived from prediction
errors, or posterior probabilities, depending on the system.

In this release we have implemented tests for three basic concepts of the physics
of macroscopic solid objects: object permanence, shape constancy, spatio-temporal
continuity. Each of these concepts are tested in a series of controlled possible and
impossible clips, which are presented without labels, and for which models have
to return a plausibility score. The evaluation is done upon submission of these
scores in CodaLab, and the results are automatically presented in a leaderboard. This
benchmark also contains a training set of videos with random object interactions, in
a similar environment as for the test set. This can be used either to train predictive
systems or to conduct domain adaptation for systems trained on other datasets (live
videos, virtual environments, robots). Obviously, the training set only contains
physically possible events.

This benchmark will be the first evaluation of the DARPA Machine Common
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Figure 3.2: Landmark of intuitive physics acquisition in infants. Each box is an experiment
showing a particular ability at a given age.

Sense project 2, a research program seeking to address the challenge of machine
common sense to enable systems to understand new situations and monitor the
reasonableness of their actions. This will allow all teams involved in the program to
evaluate their systems on a common ground.

3.2.1 Three basic concepts of intuitive physics

Behavioral work on intuitive physics in infants and animal define a number of core
conceptual components which can be tested experimentally using VOE Baillargeon
and Carey (2012). Figure 3.2 shows a number of different landmarks in infants. Here,
we have selected three of the most basic components and turned them into three test

2www.darpa.mil/program/machine-common-sense
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Table 3.1: List of the conceptual blocks of the Intuitive Physics Framework.
Block Name Physical principles Computational challenge
O1. Object perma-
nence

Objects don’t pop in and
out of existence

Occlusion-resistant object
tracking

O2. Shape constancy Objects keep their shapes Appearance-robust object
tracking

O3. Spatio-temporal
continuity

Trajectories of objects are
continuous

Tracking/predicting object tra-
jectories

blocks (see 3.1), each one corresponding to a core principle of intuitive physics, and
each raising its particular machine vision challenge. The first two blocks are related
to the conservation through time of intrinsic properties of objects. Object permanence
(O1), corresponds to the fact that objects continuously exist through time and do not
pop in or out of existence. This turns into the computational challenge of tracking
objects through occlusion. The second block, shape constancy (O2) describes the
tendency of rigid objects to preserve their shape through time. This principle is more
challenging than the preceding one, because even rigid objects undergo a change in
appearance due to other factors (illumination, distance, viewpoint, partial occlusion,
etc.). The final block (O3) relate to object’s trajectories, and posit that each object’s
motion has to be continuous through space and time (an object cannot teleport from
one place to another). This principle is distinct from object permanence and requires
a to incorporate smoothness constraints on the tracking of objects (even if they are
not visible). Future releases of the Benchmark will continue adding progressively
more complex scenarios inspired by Figure 3.2, including object interactions and
agent motion.

3.2.2 Pixels matched quadruplets

An important design principle of our evaluation framework relates to the orga-
nization of the possible and impossible movies in extremely well matched sets to
minimize the existence of low level biases. This is illustrated in Figure 3.3 for object
permanence. We constructed matched sets comprising four movies, which contain
an initial scene at time t1 (either one or two objects), and a final scene at time t2
(either one or two objects), separated by a potential occlusion by a screen which is
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Figure 3.3: Illustration of the minimal sets design with object permanence. Schematic
description of a static condition with one vs. two objects and one occluder. In
the two possible movies (green arrows), the number of objects remains constant
despite the occlusion. In the two impossible movies (red arrows), the number
of objects changes (goes from 1 to 2 or from 2 to 1).

raised and then lowered for a variable amount of time. At its maximal height, the
screen completely occludes the objects so that it is impossible to know, in this frame,
how many objects are behind the occluder.

The four movies are constructed by combining the two possible beginnings with
the two possible endings, giving rise to two possible (1→1 and 2→2) and two
impossible (1→2 and 2→1) movies. Importantly, across these 4 movies, the possible
and impossible ones are made of frames with the exact same pixels, the only factor
distinguishing them being the temporal coherence of these frames. To verify this, we
compute the SHA256 hash of frames for both possible and impossible events, sort
them in lexicographic order, and make sure the two lists match 3. Such a design is
intended to make it difficult for algorithms to use cheap tricks to distinguish possible
from impossible movies by focusing on low level details, but rather requires models
to focus on higher level temporal dependencies between frames.

3This experiment can but found here: www.github.com/rronan/
IntPhys-verify-quadruplets
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3.2.3 Parametric task complexity

Our second design principle is that in each block, we vary the stimulus complexity
in a parametric fashion. In the case of the object permanence block, for instance,
stimulus complexity can vary according to three dimensions. The first dimension
is whether the change in number of objects occurs in plain view (visible) or hidden
behind an occluder (occluded). A change in plain view is evidently easier to detect
whereas a hidden change requires an element of short term memory in order to
keep a trace of the object’s through time. The second dimension is the complexity
of the object’s motion. Tracking an immobile object is easier than if the object
has a complicated motion; we introduce three levels of motion complexity (static,
dynamic 1, and dynamic 2). The third dimension is the number of objects involved
in the scene. This tests for the attentional capacity of the system as defined by the
number of objects it can track simultaneously. Manipulating stimulus complexity is
important to establish the limit of what a vision system can do, and where it will fail.
For instance, humans are well known to fail when the number of objects to track
simultaneously is greater than four Pylyshyn and Storm (1988). In total, a given
block contains 2 by 3 by 3, ie, 18 different scenarios varying in difficulty (see Tables
3.5).

3.2.4 Procedurally generated variability

Our final design principle is that each scenario within each block is procedurally
generated in 200 examplars with random variations in objects shapes and textures,
distances, trajectories, occluder motion and position of the camera. This is to
minimize the possibility of focusing on only certain frames or parts of the screen to
solve the task. Note that the dynamic 2 condition contains two violations instead of
one. These violations are inverses of one another, such that the first and last segment
of the impossible video clips are compatible with with the absence of any violation
in the central part of the video (for instance, the initial and final number of objects is
the same, but varies in the middle of the clip). This ensures that physical violations
occur in unpredictable moments in a video clip.
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Figure 3.4: Illustration of the ’dynamic 2’ condition. In the two possible movies
(green arrows), the number of objects remains constant despite the occlu-
sion. In the two impossible movies (red arrows), the number of objects
changes temporarily (goes from 0 to 1 to 0 or from 1 to 0 to 1).

3.2.5 The possible versus impossible discrimination
metric

Our evaluation metrics depend on the system’s ability to compute a plausibil-

ity score P (x) given a movie x. Because the test movies are structured in N

matched k-uplets (in Figure 3.3, k = 4) of positive and negative movies Si=1..N =

{Pos1i ..Poski , Imp1i ..Impki }, we derive two different metrics. The relative error rate
LR computes a score within each set. It requires only that within a set, the positive
movies are more plausible than the negative movies.

LR =
1

N

∑
i

1∑
j P (Posji )<

∑
j P (Impji )

(3.1)

The absolute error rate LA requires that globally, the score of the positive movies
is greater than the score of the negative movies. It is computed as:

LA = 1− AUC({i, j;P (Posji )}, {i, j;P (Impji )}) (3.2)

Where AUC is the Area Under the ROC Curve, which plots the true positive rate
against the false positive rate at various threshold settings.
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Figure 3.5: Examples of frames from the training set.

3.2.6 Implementation

The video clips in IntPhys are constructed with Unreal Engine 4.0 ((UnrealEnginePython
4.19; See Figure 3.5 for some examples). They are accessible in www.intphys.
com.

The training set

The training set contains a large variety of objects interacting one with another,
occluders, textures, etc. It is composed of 15K videos of possible events (around 7
seconds each at 15fps), totalling 21 hours of videos. There are no video of impossible
events, but the training set contains the objects and occluders presented in the test set.
Each video is delivered as stacks of raw image (288 x 288 pixels), totalling 157Gb
of uncompressed data. We also release the source code for data generation, allowing
users to generate a larger training set if desired.
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The dev and test sets

As described above, each of the three blocks contain 18 different scenario. In
the dev set, each scenario is instantiated by 20 different renderings resulting in
360 movies per block (30 min, 3.7Gb). In the test set, a scenario has 200 different
renderings of these scenarios, resulting in a total of 3600 movies per block (5h,37Gb).
All of the objects and textures of the dev and test sets are present in the training set.

The purpose of the dev set released in IntPhys V1.0 is to help in the selection of an
appropriate plausibility score, and in the comparison of various architectures (hyper-
parameters), but it should not serve to train the model’s parameters (this should
be done only with the training set). This is why the dev set is kept intentionally
small. The test set has more statistical power and enables a fine grained evaluation
of the results across the different movie subtypes. Video examples of each blocks
are available on the project page www.intphys.com.

Metadata

Even though the spirit of IntPhys is the unsupervised learning of intuitive physics,
we do provide in the test set additional information which may help the learner.
The first one is the depth field for each image. This is not unreasonable, given that
in infants, stereo vision and motion cues could provide an approximation of this
information Fox et al. (1980). The second one is object instance segmentation masks,
which are helpful to recover abstract object positions but only provide local low-level
information. Importantly, these masks are not linked to a specific object ID, and
are randomly shuffled at each time frame. Linking instance segmentation masks to
unique object IDs through time is indeed part of the object permanence problem that
systems are supposed to solve. Similarly, if an object is partly occluded and appears
as two pieces of object the two pieces will receive a different instance mask.

In the train set, we do provide additional metadata about the ground truth 3D
position of each object, the position of the camera, and the link between object IDs
and instance masks. These metadata are not present in the dev or test sets.
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Submission procedure

For each movie in the dev or test set, the model should issue a scalar plausibility
score. This number together with the movie ID is then fed to the evaluation software
which outputs two tables of results, one for the absolute score and the other for the
relative score.

The evaluation software is provided for the dev set, but not the test set. For
evaluating on the test set, participants are invited to submit their system and results
on CodaLab (see www.intphys.com) and their results will be registered and
time-stamped on the website leaderboard.

3.3 Two baseline learning models

In this section, we present two learning systems which attempt to learn intuitive
physics in an unsupervised/self-supervised observational setting. One can imagine
an agent who only sees physical interactions between objects seen from a first-person
perspective, but cannot move nor interact with them. Arguably, this is a much more
impoverished learning situation than that faced by infants, who can explore and
interact with their environment, even with the limited motor abilities of their first
year of life. It is however interesting to establish how far one can get with such
simplified inputs, which are easy to gather in abundant amounts in the real world
with video cameras. In addition, this enables an easier comparison between models,
because they all get the same training data.

In a setup like this, a rich source of learning information resides in the temporal
dependencies between successive frames. Based on the literature on next frame
prediction, we propose two neural network models, trained on a future frame ob-
jective. Our first model has a CNN encoder-decoder structure and the second is a
conditional Generative Adversarial Network (GAN, Goodfellow et al. (2014)), with
a similar structure as DCGAN Radford et al. (2015). For both model architectures,
we investigate two different training procedures: in the first, we train models to
predict short-future images with a prediction span of 5 frames; in the second, we
predict long-future images with a prediction span of 35 frames.

Preliminary work with predictions at the pixel level revealed that our models
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failed at predicting convincing object motions, especially for small objects on a rich
background. For this reason, we switched to computing predictions at a higher level,
using object masks. We use the metadata provided in the benchmark training (see
section 4.6.2) set to train a semantic mask Deep Neural Network (DNN). This DNN
uses a resnet-18 pretrained on Imagenet to extract features from the image, from
which a deconvolution network is trained to predict the semantic mask (distinguishing
three types of entities: background, occluders and objects). We then use this mask as
input to a prediction component which predicts future masks based on past ones.

To evaluate these models on our benchmark, our system needs to output a plau-
sibility score for each movie. For this, we compute the prediction loss along the
movie. Given past frames, a plausibility score for the frame ft can be derived by
comparing ft with the prediction f̂t. Like in Fragkiadaki et al. (2015a), we use the
analogy with an agent running an internal simulation (“visual imagination”); here
we assimilate a greater distance between prediction and observation with a lower
plausibility. In subsection 3.3.2 we detail how we aggregate the scores of all frames
into a plausibility score for the whole video.

3.3.1 Models

Through out the movie, our models take as input two frames (fi1 , fi2) and pre-
dict a future frame ftarget. The prediction span is independent from the model’s
architecture and depends only on the triplets (fi1 , fi2 , ftarget) provided during the
training phase. Our two architectures are trained either on a short term prediction
task (5 frames in the future), or a long term prediction task (35 frames). Intuitively,
short-term prediction will be more robust, but long-term prediction will allow the
model to grasp long-term dependencies and deal with long occlusions.

CNN encoder-decoder

We use a resnet-18 He et al. (2016) pretrained on Imagenet Russakovsky et al.
(2015) to extract features from input frames (fi1 , fi2). A deconvolution network
is trained to predict the semantic mask of future frame ftarget conditioned to these
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features, using a L2 loss. See details in Table 3.2

Table 3.2: CNN for forward prediction (13941315 parameters). BN stands for batch-
normalization.

Input frames
2 x 3 x 64 x 64

7 first layers of resnet-18 (pretrained, frozen weights)
applied to each frame
Reshape 1 x 16384
FC 16384→ 512
FC 512→ 8192

Reshape 128 x 8 x 8
UpSamplingNearest(2), 3 x 3 Conv. 128 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 64 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 3 - 1 str., BN, ReLU

3 sigmoid
Target mask

Generative Adversarial Network

As a second model, we propose a conditional generative adversarial network
(GAN, Mirza and Osindero (2014)) that takes as input predicted semantic masks
from frames (fi1 , fi2), and predicts the semantic mask of future frame ftarget. In this
setup, the discriminator has to distinguish between a mask predicted from ftarget

directly (real), and a mask predicted from past frames (fi1 , fi2). Like in Denton
et al. (2016), our model combines a conditional approach with a similar structure
as of DCGAN Radford et al. (2015). At test time, we derive a plausibility score
by computing the conditioned discriminator’s score for every conditioned frame.
This is a novel approach based on the observation that the optimal discriminator D
computes a score for x of

D(x) =
Pdata(x)

PG(x) + Pdata(x)
(3.3)
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For non-physical events x̂, Pdata(x̂) = 0; therefore, as long as PG(x̂) > 0, D(x̂)

should be 0 for non-physical events, and D(x) > 0 for physical events x. Note
that this is a strong assumption, as there is no guarantee that the generator will ever
have support at the part of the distribution corresponding to impossible videos. The
generator and discriminator are detailed in Table 3.3 and 3.4, respectively.

Table 3.3: Generator G (14729347 parameters). SFConv stands for spatial full
convolution and BN stands for batch-normalization.

Input masks
2 x 3 x 64 x 64

4 x 4 conv 64 - 2 str., BN, ReLU
4 x 4 conv 128 - 2 str., BN, ReLU
4 x 4 conv 256 - 2 str., BN, ReLU
4 x 4 conv 512 - 2 str., BN, ReLU

4 x 4 conv 512, BN, ReLU

Noise ∈ R100

∼ Unif(−1, 1)

stack input and noise
4 x 4 SFConv. 512 - 2 str., BN, ReLU
4 x 4 SFConv. 256 - 2 str., BN, ReLU
4 x 4 SFConv. 128 - 2 str., BN, ReLU
4 x 4 SFConv. 64 - 2 str., BN, ReLU
4 x 4 SFConv. 3 - 2 str., BN, ReLU

3 sigmoid
Target mask

Training Procedure

We separate 10% of the training dataset to control the overfitting of our forward
predictions. All our models are trained using Adam (Kingma and Ba (2014)). For
the CNN encoder-decoder we use Adam’s default parameters and stop the training
after one epoch. For the GAN, we use the same hyper-parameters as in Radford et al.
(2015): we set the generator’s learning rate to 8e− 4 and discriminator’s learning
rate to 2e− 4. On the short-term prediction task, we train the GAN for 1 epoch; on
the long-term prediction task we train it for 5 epochs. Learning rate decays are set to
0 and beta1 is set to 0.5 for both generator and discriminator.
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Table 3.4: Discriminator D (7629698 parameters). BN stands for batch-
normalization.

history input
2 x 3 x 64 x 64 3 x 64 x 64

Reshape 3 x 3 x 64 x 64
4 x 4 convolution 512 - 2 strides, BN, LeakyReLU
4 x 4 convolution 254 - 2 strides, BN, LeakyReLU
4 x 4 convolution 128 - 2 strides, BN, LeakyReLU
4 x 4 convolution 64 - 2 strides, BN, LeakyReLU
4 x 4 convolution 5 - 2 strides, BN, LeakyReLU

fully-connected layer
1 sigmoid

The code for all our experiments is available on www.github.com/rronan/
IntPhys-Baselines.

3.3.2 Video Plausibility Score

From forward models presented above, we can compute a plausibility score for
every frame ftarget, conditioned on previous frames (fi1 , fi2). However, because the
temporal positions of impossible events are not given, we must decide of a score for
a video, given the scores of all its conditioned frames. An impossible event can be
characterized by the presence of one or more impossible frame(s), conditioned to
previous frames. Hence, a natural approach to compute a video plausibility score is
to take the minimum of all conditioned frames’ scores:

Plaus(v) = min
(fi1 ,fi2 ,ftarget)∈v

Plaus(ftarget|fi1 , fi2) (3.4)

where v is the video, and (fi1 , fi2 , ftarget) are all the frame triplets in v, as given
in the training phase.
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3.3.3 Results

Block O1

Short-term prediction The first training procedure is a short-term prediction
task; it takes as input frames ft−2, ft and predicts ft+5, which we note (ft−2, ft)→
ft+5 in the following. We train the two architectures presented above on short-term
prediction task and evaluate them on the test set. For the relative classification task,
CNN encoder-decoder has an error rate of 0.09 when impossible events are visible
and 0.49 when they are occluded. The GAN has an error rate of 0.15 when visible
and 0.48 when occluded. For the absolute classification task, CNN encoder-decoder
has a LA (see eq. 3.2) of 0.33 when impossible events are visible and 0.50 when
they are occluded. The GAN has a LA of 0.38 when visible and 0.50 when occluded.
Results are detailed in Supplementary Materials (Tables 1, 2, 3, 4).
We observe that our short-term prediction models show good performances when
the impossible events are visible, especially on the relative classifications task. How-
ever they perform poorly when the impossible events are occluded. This is easily
explained by the fact that they have a prediction span of 5 frames, which is usually
lower than the occlusion time. Hence, these models don’t have enough "memory" to
catch occluded impossible events.

Long-term prediction The second training procedure consists in a long-term
prediction task: (ft−5, ft)→ ft+35. For the relative classification task, CNN encoder-
decoder has an error rate of 0.07 when impossible events are visible and 0.52 when
they are occluded. The GAN has an error rate of 0.17 when visible and 0.48 when
occluded. For the absolute classification task, CNN encoder-decoder has a LA of
0.37 when impossible events are visible and 0.50 when they are occluded. The GAN
has a LA of 0.40 when visible and 0.50 when occluded. Results are detailed in
Supplementary Materials (Tables 5, 6, 7, 8). As expected, long-term models perform
better than short-term models on occluded impossible events. Moreover, results on
absolute classification task confirm that it is way more challenging than the relative
classification task. Because some movies are more complex than others, the average
score of each quadruplet of movies may vary a lot. It results in cases where one
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model returns a higher plausibility score to an impossible movie M{imp, easy} from
an easy quadruplet than to a possible movieM{pos, complex} from a complex quadruplet.

Aggregated model On the relative classification task, the aggregated CNN
encoder-decoder has an error rate of 0.07 when impossible events are visible and
0.52 when they are occluded. For the absolute classification task, CNN encoder-
decoder has a LA of 0.37 when impossible events are visible and 0.50 when they are
occluded. Results are detailed in Figures 3.6 and Supplementary Materials (Tables 9,
10).

Block O2

Short-term prediction For the first training procedure (ft−2, ft)→ ft+5: CNN
encoder-decoder has an relactive classification error rate of 0.16 when impossible
events are visible and 0.49 when they are occluded. The GAN has an error rate of
0.30 when visible and 0.52 when occluded. For the absolute classification task, CNN
encoder-decoder has a LA of 0.40 when impossible events are visible and 0.50 when
they are occluded. The GAN has a LA of 0.43 when visible and 0.50 when occluded.
Results are detailed in Supplementary Materials (Tables 11, 12, 13, 14).

Long-term prediction For the second training procedure (ft−5, ft) → ft+35:
the CNN encoder-decoder has an error rate of 0.11 when impossible events are
visible and 0.52 when they are occluded. The GAN has an error rate of 0.31 when
visible and 0.50 when occluded. For the absolute classification task, CNN encoder-
decoder has a LA of 0.43 when impossible events are visible and 0.50 when they are
occluded. The GAN has a LA of 0.33 when visible and 0.50 when occluded. Results
are detailed in Supplementary Materials (Tables 15, 16, 17, 18).

Aggregated model On the relative classification task, the aggregated CNN
encoder-decoder has an error rate of 0.11 when impossible events are visible and
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0.52 when they are occluded. For the absolute classification task, CNN encoder-
decoder has a LA of 0.43 when impossible events are visible and 0.50 when they are
occluded. Results are detailed in Figures 3.6 and Supplementary Materials (Tables
19, 20).

Block O3

Short-term prediction For the first training procedure (ft−2, ft)→ ft+5: CNN
encoder-decoder has an relactive classification error rate of 0.28 when impossible
events are visible and 0.49 when they are occluded. The GAN has an error rate of
0.26 when visible and 0.48 when occluded. For the absolute classification task, CNN
encoder-decoder has a LA (see eq. 3.2) of 0.40 when impossible events are visible
and 0.50 when they are occluded. The GAN has a LA of 0.42 when visible and 0.50
when occluded. Results are detailed in Supplementary Materials (Tables 21, 22, 23,
24).

Long-term prediction For the second training procedure (ft−5, ft) → ft+35:
the CNN encoder-decoder has an error rate of 0.32 when impossible events are
visible and 0.51 when they are occluded. The GAN has an error rate of 0.34 when
visible and 0.52 when occluded. For the absolute classification task, CNN encoder-
decoder has a LA of 0.46 when impossible events are visible and 0.50 when they are
occluded. The GAN has a LA of 0.44 when visible and 0.50 when occluded. Results
are detailed in Supplementary Materials (Tables 25, 26, 27, 28).

Aggregated model On the relative classification task, the aggregated CNN
encoder-decoder has an error rate of 0.32 when impossible events are visible and
0.51 when they are occluded. For the absolute classification task, CNN encoder-
decoder has a LA of 0.46 when impossible events are visible and 0.50 when they are
occluded. Results are detailed in Figures 3.6 and Supplementary Materials (Tables
29, 30).

As expected, we observe that models’ performance decrease when impossible
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events are occluded. This enlightens the difficulty to perform long-term predictions
in videos. We also observe that their performances vary with the types of impossible
events tested. Results are the highest when testing presence / absence of object, and
the lowest when testing the temporal continuity of trajectories.

3.3.4 Results from other works.

Other works have reported results on IntPhys. Among those works, Smith et al.
(2019) and Riochet et al. (2020b) both integrate a visual and a physics module.
Their visual modules allows to parse the scene and in an object representation, while
the physics modules use this representation to infer physical properties and predict
trajectories of objects. While Smith et al. (2019) use an hand-crafted stochastic
physics engine, Riochet et al. (2020b) train a graph neural network on observations
from our training set. Smith et al. (2019) evaluate on block O1 only, with a reported
average relative score of 0.27. Riochet et al. (2020b) report relative scores of 0.12,
0.21, and 0.37 on blocks O1, O2, and O3 respectively. The performances of those
works, compared to our pixel-based models, tend to show the benefits of hybrid
architectures combining visual modules and object-based physics models.

3.4 Human Judgements Experiment

To give a second reference to evaluate physical understanding in models, and
provide a good description of human performance on this benchmark, we presented
the 3600 videos from each block to human participants using Amazon Mechanical
Turk. Participants were first presented 8 examples of possible scenes from the
training set, some simple, some more complex. They were told that some of the
test movies were incorrect or corrupted, in that they showed events that could not
possibly take place in the real world (without specifying how). Participants were
each presented with 40 randomly selected videos, and were asked to score them
from 1 (most implausible) to 6 (most plausible). They completed the task in about
7 minutes, and were paid $1. A total of 540 persons participated, such that every
video tested was seen by 2 different participants. A mock sample of the AMT test is
available on http://129.199.81.135/naive_physics_experiment.
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Table 3.5: Average error rate on plausibility judgments collected in humans us-
ing MTurk for IntPhys test set. * EDIT July 2021: these experiments
present a flaw and the results do not accurately reflect human judgement
on block O3/Occluded/Dynamic. For more information, please contact
ronan.riochet@inria.fr.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Block O1

Static 0.13 0.14 0.09 0.12 (±0, 018) 0.32 0.34 0.28 0.31 (±0.026)
Dynamic (1 violation) 0.15 0.29 0.27 0.24 (±0, 024) 0.24 0.30 0.33 0.29 (±0.026)
Dynamic (2 violations) 0.14 0.20 0.23 0.19 (±0.022) 0.28 0.26 0.36 0.30 (±0.026)
Total 0.14 0.21 0.20 0.18 (±0.013) 0.28 0.30 0.32 0.30 (±0.015)

Block O2

Static 0.13 0.18 0.15 0.16 (±0.021) 0.22 0.33 0.28 0.28 (±0.025)
Dynamic (1 violation) 0.29 0.24 0.27 0.27 (±0.025) 0.29 0.35 0.29 0.31 (±0.026)
Dynamic (2 violations) 0.21 0.27 0.26 0.24 (±0.024) 0.32 0.32 0.29 0.31 (±0.026)
Total 0.21 0.23 0.23 0.22 (±0.014) 0.28 0.33 0.29 0.30 (±0.015)

Block O3

Static 0.29 0.32 0.27 0.29 (±0.026) 0.36 0.36 0.45 0.39 (±0.028)
Dynamic (1 violation) 0.28 0.33 0.30 0.30 (±0.026) 0.49 * 0.55* 0.49* 0.51* (±0.028)
Dynamic (2 violations) 0.23 0.23 0.26 0.24 (±0.024) 0.47* 0.53* 0.55* 0.52* (±0.028)
Total 0.27 0.29 0.28 0.28 (±0.015) 0.44* 0.48* 0.50* 0.47* (±0.016)

The average error rates were computed across condition, number of objects and
visibility and are shown in Tables 3.5. In general, observers missed violations more
often when the scene was occluded; we observe error rates going from 18% (visible)
to 30% (occluded) for block O1, from 22% (visible) to 30% (occluded) for block
O2, from 28% (visible) to 47% (occluded) for block O3. An interesting result is that
the score of humans on block O3 is close to chance when objects are occluded. This
shows that humans have trouble to detect changes in velocity of objects, when these
changes occur when the object is occluded. We also observe an increase in error
going from static to dynamic 1 (one occlusion) and from dynamic 1 to dynamic 2 (two
occlusions), but this pattern was only consistently observed in the occluded condition.
For visible scenario, the dynamic 1 appeared more difficult than the dynamic 2. This
was probably due to the fact that when objects are visible, the dynamic 2 impossible
scenarios contain two local discontinuities and are therefore easier to spot than when
one discontinuity only is present. When the discontinuities occurred behind the
occluder, the pattern of difficulties was reversed, presumably because participants
started using heuristics, such as checking that the number of objects at the beginning
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is the same as at the end, and therefore missed the intermediate disappearance of an
object.

These results suggest that human participants are not responding according to the
gold standard laws of physics due to limitations in attentional capacity - and this,
even though the number of objects to track is below the theoretical limit of 4 objects.
The performance of human observers can thus serve as a reference besides ground
truth, especially for systems intended to model human perception.

Interestingly, we observe similar patterns of performance between models and
humans (see Figures 3.6), with increasing error rates from blocks O1 to O3. As
expected, both humans and models show higher error rates when the considered
impossible event is occluded.

3.5 Related work

The modeling of intuitive physics has been addressed mostly through systems
trained with some form of future prediction as a training objective. Some studies have
investigated models for predicting the stability and forward modeling the dynamics
of towers of blocks (Battaglia et al. (2013); Lerer et al. (2016); Zhang et al. (2016);
Li et al. (2016); Mirza et al. (2017); Li et al. (2017)). Battaglia et al. (2013) proposes
a model based on an intuitive physics engine, Lerer et al. (2016) and Li et al. (2016)
follow a supervised approach using Convolutional Neural Networks (CNNs), Zhang
et al. (2016) makes a comparison between simulation-based models and CNN-based
models, Mirza et al. (2017) improves the predictions of a CNN model by providing
it with a prediction of a generative model. In Wu et al. (2016), authors propose a
dataset and model to estimate object properties from visual inputs. In Mathieu et al.
(2015), authors propose different feature learning strategies (multi-scale architecture,
adversarial training method, image gradient difference loss function) to predict future
frames in raw videos.

Other models use more structured representation of objects to derive longer-term
predictions. In Battaglia et al. (2016) and Chang et al. (2016), authors learn objects
dynamics by modelling their pairwise interactions and predicting the resulting objects
states representation (e.g. position / velocity / object intrinsic properties) . In Watters
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et al. (2017), Fraccaro et al. (2017) and Ehrhardt et al. (2017a) authors combine
factored latent object representations, object centric dynamic models and visual
encoders. Each frame is parsed into a set of object state representations, which
are used as input of a dynamic model. In Fraccaro et al. (2017) and Ehrhardt et al.
(2017a), authors use a visual decoder to reconstruct the future frames, allowing the
model to learn from raw (though synthetic) videos.

Regarding evaluation and benchmarks, apart from frame prediction datasets,
which are not strictly speaking about intuitive physics, one can distinguish the Visual
Newtonian Dynamics (VIND) dataset which includes more than 6000 videos with
bounding boxes on key objects across frames, and annotated with a 3D plane which
would most closely fit the object trajectory Mottaghi et al. (2016). Bakhtin et al.
(2019) and Allen et al. (2020) propose two benchmarks for physical reasoning
involving action-reward setups in a 2D environments. There are also two recent
datasets proposed by a DeepMind team Piloto et al. (2018), and a MIT team Smith
et al. (2019). These last datasets seem very similar to ours, they are inspired by the
developmental literature and based on the violation of expectation principles and are
structured around similar intuitive physics blocks. Piloto et al. (2018) have 3 blocks
similar to ours (object permanence, shape constancy, continuity) and two other ones
on solidity and containment. Differently to our work, they have one training set per
block with consistent examples: explicitly designed to be similar as possible videos
in the test set (with higher variability), and controls: designed to mitigate biases for
these block. Like our work, Smith et al. (2019) design one single training set, where
object motion are not specifically constrained. In our work, two differences emerge
from Piloto et al. (2018); Smith et al. (2019): our dataset is better matched in terms
of quadruplets of clips controlled at the level of the pixels, and our dataset has a
factorial manipulation of scene and movement complexity.It would be interesting to
explore the possibility to merge these datasets, as well as add more blocks in order
to increase the diversity and coverage of the physical phenomena.
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3.6 Discussion

We presented IntPhys, a benchmark for measuring intuitive physics in artificial
vision systems inspired by research on conceptual development in infants. To
pass the benchmark, a system is asked to return a plausibility score for each video
clip. The system’s performance is assessed by measuring its ability to discriminate
possible from impossible videos illustrating several types of physical principles.
Naive humans were tested on the same dataset, to give an idea of what performance
could be expected by a good model. These results show error rates increasing with
the presence of occlusion, but not with number of objects. This is congruent with
data showing that humans can track up to three objects simultaneously. We presented
two unsupervised learning models based on semantic masks, which learn from a
training set only composed of physically plausible clips, and are tested on the same
block as the humans.

The computational system generally performed poorly compared to humans but
obtained above chance performance in the visible cases using a mask prediction task.
The relative success of the semantic mask prediction system compared to what we
originally found with pixel-based systems indicates that operating at a more abstract
level is a worthwhile pursuing strategy when it comes to modeling intuitive physics.

We report other works constructing this abstract representation in particular in-
stance masks and object detection bounding boxes, showing better performances,
especially in the presence of occlusions. In addition, enriching the training through
embedding the learner in an interactive version of the environment could add more
information for the learning of the physics of macroscopic objects.

In brief, the systematic way of constructing the IntPhys Benchmark shows that it
is possible to adapt developmental paradigm in a machine learning setting, and that
the resulting benchmark is a relatively challenging one. The three blocks that we
present here could be extended to cover more aspects of object perception, including
more difficult ones like interactions between objects, or prediction of trajectories
of animated agents. As we discussed in the introduction, this benchmark only
provides unit tests regarding the computation of prediction probabilities of object
positions based on past frames. Further work will be needed to construct benchmarks
testing how theses probabilities can be used by a system to make decision or plan
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trajectories.
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O1 visible O1 occluded

O2 visible O2 occluded

O3 visible O3 occluded

Figure 3.6: Results of our baselines on blocks O1, O2, O3, in cases where the
impossible event occurs in the open (visible) or behind an occluder (oc-
cluded). Y-axis represents the losses LR (see Equation 1) for the relative
performance and LA (see Equation 2) for the absolute performance.
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3.7 Appendix

3.7.1 Model results (detailed)

Table 3.6: Block O1 | Model: CNN (short-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.49 0.52 0.41 0.47
Dynamic (1 violation) 0.00 0.22 0.27 0.17 0.51 0.47 0.49 0.49
Dynamic (2 violations) 0.00 0.13 0.20 0.11 0.50 0.50 0.49 0.50

Total 0.00 0.12 0.16 0.09 0.50 0.50 0.46 0.49

Absolute classification (LA)

Static 0.15 0.17 0.19 0.17 0.50 0.50 0.49 0.50
Dynamic (1 violation) 0.32 0.44 0.47 0.41 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.33 0.43 0.47 0.41 0.50 0.50 0.50 0.50

Total 0.26 0.35 0.38 0.33 0.50 0.50 0.50 0.50
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Table 3.7: Block O1 | Model: GAN (short-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.44 0.45 0.53 0.48
Dynamic (1 violation) 0.00 0.35 0.39 0.25 0.44 0.50 0.47 0.47
Dynamic (2 violations) 0.00 0.21 0.39 0.20 0.51 0.50 0.49 0.50

Total 0.00 0.18 0.26 0.15 0.46 0.48 0.50 0.48

Absolute classification (LA)

Static 0.23 0.31 0.32 0.28 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.33 0.47 0.50 0.43 0.49 0.49 0.50 0.49
Dynamic (2 violations) 0.34 0.44 0.46 0.41 0.50 0.50 0.50 0.50

Total 0.30 0.41 0.43 0.38 0.49 0.50 0.50 0.50

Table 3.8: Block O1 | Model: CNN (long-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.52 0.55 0.51 0.53
Dynamic (1 violation) 0.00 0.13 0.22 0.12 0.49 0.53 0.48 0.50
Dynamic (2 violations) 0.00 0.06 0.20 0.09 0.53 0.48 0.60 0.54

Absolute classification (LA)

Static 0.30 0.34 0.36 0.33 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.30 0.43 0.44 0.39 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.32 0.40 0.43 0.39 0.50 0.50 0.50 0.50

Total 0.31 0.39 0.41 0.37 0.50 0.50 0.50 0.50
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Table 3.9: Block O1 | Model: GAN (long-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.01 0.00 0.00 0.41 0.58 0.57 0.52
Dynamic (1 violation) 0.00 0.28 0.45 0.24 0.39 0.56 0.54 0.50
Dynamic (2 violations) 0.01 0.29 0.46 0.25 0.43 0.46 0.40 0.43

Total 0.00 0.19 0.30 0.17 0.41 0.54 0.50 0.48

Absolute classification (LA)

Static 0.26 0.33 0.37 0.32 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.36 0.46 0.49 0.44 0.49 0.50 0.50 0.50
Dynamic (2 violations) 0.35 0.47 0.48 0.43 0.50 0.50 0.50 0.50

Total 0.32 0.42 0.45 0.40 0.50 0.50 0.50 0.50

Table 3.10: Block O1 | Model: CNN aggregated

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.52 0.55 0.51 0.53
Dynamic (1 violation) 0.00 0.13 0.22 0.12 0.49 0.53 0.48 0.50
Dynamic (2 violations) 0.00 0.06 0.20 0.09 0.53 0.48 0.60 0.54

Total 0.00 0.06 0.14 0.07 0.51 0.52 0.53 0.52

Absolute classification (LA)

Static 0.30 0.34 0.36 0.33 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.30 0.43 0.44 0.39 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.32 0.40 0.43 0.39 0.50 0.50 0.50 0.50

Total 0.31 0.39 0.41 0.37 0.50 0.50 0.50 0.50
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Table 3.11: Block O2 | Model: CNN (short-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.48 0.49 0.47 0.48
Dynamic (1 violation) 0.18 0.26 0.40 0.28 0.50 0.49 0.50 0.50
Dynamic (2 violations) 0.12 0.16 0.32 0.20 0.50 0.50 0.50 0.50

Total 0.10 0.14 0.24 0.16 0.49 0.49 0.49 0.49

Absolute classification (LA)

Static 0.22 0.29 0.28 0.26 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.46 0.48 0.48 0.48 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.46 0.47 0.48 0.47 0.50 0.50 0.50 0.50

Total 0.38 0.42 0.42 0.40 0.50 0.50 0.50 0.50

Table 3.12: Block O2 | Model: GAN (short-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.54 0.55 0.47 0.52
Dynamic (1 violation) 0.44 0.38 0.47 0.43 0.56 0.52 0.54 0.54
Dynamic (2 violations) 0.38 0.52 0.51 0.47 0.50 0.50 0.48 0.49

Total 0.27 0.30 0.33 0.30 0.53 0.52 0.50 0.52

Absolute classification (LA)

Static 0.29 0.30 0.32 0.30 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.48 0.49 0.50 0.49 0.50 0.50 0.50 0.50

Total 0.42 0.43 0.44 0.43 0.50 0.50 0.50 0.50
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Table 3.13: Block O2 | Model: CNN (long-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.01 0.00 0.50 0.47 0.52 0.50
Dynamic (1 violation) 0.13 0.22 0.25 0.20 0.51 0.50 0.55 0.52
Dynamic (2 violations) 0.11 0.10 0.17 0.13 0.56 0.49 0.53 0.53

Total 0.08 0.11 0.14 0.11 0.52 0.49 0.54 0.52

Absolute classification (LA)

Static 0.34 0.41 0.40 0.38 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.43 0.45 0.46 0.45 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.43 0.44 0.46 0.45 0.50 0.50 0.50 0.50

Total 0.40 0.43 0.44 0.43 0.50 0.50 0.50 0.50

Table 3.14: Block O2 | Model: GAN (long-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.02 0.02 0.00 0.01 0.49 0.55 0.53 0.52
Dynamic (1 violation) 0.35 0.42 0.54 0.44 0.50 0.40 0.45 0.45
Dynamic (2 violations) 0.44 0.51 0.53 0.50 0.56 0.44 0.53 0.51

Total 0.27 0.32 0.36 0.31 0.52 0.46 0.51 0.50

Absolute classification (LA)

Static 0.40 0.39 0.38 0.39 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.47 0.49 0.50 0.49 0.50 0.49 0.50 0.50
Dynamic (2 violations) 0.47 0.50 0.50 0.49 0.50 0.50 0.50 0.50

Total 0.45 0.46 0.46 0.46 0.50 0.50 0.50 0.50
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Table 3.15: Block O2 | Model: CNN aggregated

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.01 0.00 0.50 0.47 0.52 0.50
Dynamic (1 violation) 0.13 0.22 0.25 0.20 0.51 0.50 0.55 0.52
Dynamic (2 violations) 0.11 0.10 0.17 0.13 0.56 0.49 0.53 0.53

Total 0.08 0.11 0.14 0.11 0.52 0.49 0.54 0.52

Absolute classification (LA)

Static 0.34 0.41 0.40 0.38 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.43 0.45 0.46 0.45 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.43 0.44 0.46 0.45 0.50 0.50 0.50 0.50

Total 0.40 0.43 0.44 0.43 0.50 0.50 0.50 0.50

Table 3.16: Block O3 | Model: CNN (short-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.48 0.43 0.46 0.46
Dynamic (1 violation) 0.34 0.38 0.46 0.39 0.47 0.48 0.50 0.49
Dynamic (2 violations) 0.47 0.45 0.45 0.45 0.52 0.51 0.53 0.52

Total 0.27 0.27 0.30 0.28 0.49 0.47 0.49 0.49

Absolute classification (LA)

Static 0.22 0.21 0.23 0.22 0.50 0.49 0.50 0.50
Dynamic (1 violation) 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.49 0.49 0.50 0.49 0.50 0.50 0.50 0.50

Total 0.40 0.40 0.41 0.40 0.50 0.50 0.50 0.50
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Table 3.17: Block O3 | Model: GAN (short-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.00 0.00 0.00 0.00 0.47 0.43 0.37 0.43
Dynamic (1 violation) 0.31 0.45 0.43 0.40 0.50 0.47 0.54 0.50
Dynamic (2 violations) 0.34 0.42 0.43 0.40 0.48 0.52 0.54 0.51

Total 0.22 0.29 0.29 0.26 0.48 0.48 0.48 0.48

Absolute classification (LA)

Static 0.29 0.33 0.30 0.31 0.50 0.49 0.50 0.50
Dynamic (1 violation) 0.46 0.49 0.49 0.48 0.50 0.50 0.51 0.50
Dynamic (2 violations) 0.44 0.47 0.47 0.46 0.50 0.50 0.50 0.50

Total 0.40 0.43 0.42 0.42 0.50 0.50 0.50 0.50

Table 3.18: Block O3 | Model: CNN (long-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.02 0.00 0.00 0.01 0.48 0.49 0.47 0.48
Dynamic (1 violation) 0.45 0.52 0.43 0.47 0.54 0.48 0.53 0.52
Dynamic (2 violations) 0.56 0.45 0.44 0.48 0.51 0.59 0.52 0.54

Total 0.35 0.32 0.29 0.32 0.51 0.52 0.51 0.51

Absolute classification (LA)

Static 0.35 0.36 0.40 0.37 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Total 0.45 0.45 0.47 0.46 0.50 0.50 0.50 0.50

69



Chapter 3 IntPhys: A Benchmark for Visual Intuitive Physics Understanding

Table 3.19: Block O3 | Model: GAN (long-term prediction task)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.01 0.00 0.00 0.00 0.53 0.53 0.59 0.55
Dynamic (1 violation) 0.53 0.50 0.60 0.54 0.55 0.55 0.48 0.53
Dynamic (2 violations) 0.42 0.51 0.54 0.49 0.43 0.52 0.52 0.49

Total 0.32 0.34 0.38 0.34 0.50 0.53 0.53 0.52

Absolute classification (LA)

Static 0.29 0.33 0.35 0.32 0.50 0.50 0.51 0.50
Dynamic (1 violation) 0.50 0.49 0.52 0.50 0.50 0.51 0.50 0.50
Dynamic (2 violations) 0.50 0.49 0.50 0.50 0.50 0.50 0.50 0.50

Total 0.43 0.44 0.46 0.44 0.50 0.50 0.50 0.50

Table 3.20: Block O3 | Model: CNN aggregated

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Relative classification (LR)

Static 0.02 0.00 0.00 0.01 0.48 0.49 0.47 0.48
Dynamic (1 violation) 0.45 0.52 0.43 0.47 0.54 0.48 0.53 0.52
Dynamic (2 violations) 0.56 0.45 0.44 0.48 0.51 0.59 0.52 0.54

Total 0.35 0.32 0.29 0.32 0.51 0.52 0.51 0.51

Absolute classification (LA)

Static 0.35 0.36 0.40 0.37 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Total 0.45 0.45 0.47 0.46 0.50 0.50 0.50 0.50
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3.7.2 Human results (detailed)

Table 3.21: Block O1 | Human evaluation | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.01 0.06 0.00 0.02 0.12 0.22 0.20 0.18
Dynamic (1 violation) 0.04 0.19 0.18 0.14 0.06 0.12 0.17 0.12
Dynamic (2 violations) 0.04 0.25 0.09 0.13 0.26 0.10 0.13 0.16

Total 0.03 0.17 0.09 0.10 0.15 0.15 0.17 0.15

Table 3.22: Block O2 | Human evaluation | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.03 0.02 0.02 0.14 0.18 0.17 0.16
Dynamic (1 violation) 0.16 0.04 0.22 0.14 0.12 0.23 0.09 0.15
Dynamic (2 violations) 0.17 0.25 0.33 0.25 0.20 0.23 0.18 0.20

Total 0.11 0.11 0.19 0.14 0.15 0.21 0.15 0.17

Table 3.23: Block O3 | Human evaluation | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.23 0.10 0.24 0.19 0.32 0.17 0.40 0.30
Dynamic (1 violation) 0.24 0.29 0.32 0.28 0.44 0.60 0.50 0.51
Dynamic (2 violations) 0.06 0.21 0.20 0.16 0.38 0.57 0.44 0.46

Total 0.18 0.20 0.25 0.21 0.38 0.45 0.45 0.42
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Detailed mask predictor

Table 3.24: Mask predictor (9747011 parameters). BN stands for batch-
normalization.

Input frame
3 x 64 x 64

7 first layers of resnet-18 (pretrained, frozen weights)
Reshape 1 x 8192
FC 8192→ 128
FC 128→ 8192

Reshape 128 x 8 x 8
UpSamplingNearest(2), 3 x 3 Conv. 128 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 64 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 3 - 1 str., BN, ReLU

3 sigmoid
Target mask
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Figure 3.7: Output examples of our semantic mask predictor. From left to right:
input image, ground truth semantic mask, predicted semantic mask.
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Chapter 4

Occlusion resistant learning of
intuitive physics from videos

Abstract

To reach human performance on complex tasks, a key ability for
artificial systems is to understand physical interactions between objects,
and predict future outcomes of a situation. This ability, often referred to
as intuitive physics, has recently received attention and several methods
were proposed to learn these physical rules from video sequences. Yet,
most of these methods are restricted to the case where no, or only limited,
occlusions occur.

In this work we propose a probabilistic formulation of learning intu-
itive physics in 3D scenes with significant inter-object occlusions. In our
formulation, object positions are modelled as latent variables enabling
the reconstruction of the scene. We then propose a series of approxi-
mations that make this problem tractable. Object proposals are linked
across frames using a combination of a recurrent interaction network,
modeling the physics in object space, and a compositional renderer,
modeling the way in which objects project onto pixel space.

We demonstrate significant improvements over state-of-the-art in the
intuitive physics benchmark of Riochet et al. (2021). We apply our
method to a second dataset with increasing levels of occlusions, showing
it realistically predicts segmentation masks up to 30 frames in the future.
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Finally, we also show results on predicting motion of objects in real
videos.

This work was led in collaboration with Josef Sivic, Ivan Laptev and

Emmanuel Dupoux.

4.1 Introduction

Learning intuitive physics has recently raised significant interest in the machine
learning literature. To reach human performance on complex visual tasks, artificial
systems need to understand the world in terms of macroscopic objects, movements,
interactions, etc. Infant development experiments show that young infants quickly
acquire an intuitive grasp of how objects interact in the world, and that they use these
intuitions for prediction and action planning Carey (2009); Baillargeon and Carey
(2012). This includes the notions of gravity Carey (2009), continuity of trajectories
Spelke et al. (1995), collisions Saxe and Carey (2006), etc. Object permanence, the
fact that an object continues to exist when it is occluded, Kellman and Spelke (1983),
is one of the first concepts developed by infants.

From a modeling point of view, the key scientific question is how to develop
general-purpose methods that can make physical predictions in noisy environments,
where many variables of the system are unknown. A model that could mimic even
some of infant’s ability to predict the dynamics of objects and their interactions
would be a significant advancement in model-based action planning for robotics
Agrawal et al. (2016),Finn and Levine (2017). The laws of macroscopic physics
are relatively simple and can be readily learned when formulated in 3D cartesian
coordinates Battaglia et al. (2016); Mrowca et al. (2018).

However, learning such laws from real world scenes is difficult for at least two
reasons. First, estimating accurate 3D position and velocity of objects is challenging
when only their retinal projection is known, even assuming depth information,
because partial occlusions by other objects render these positions ambiguous. Second,
objects can be fully occluded by other objects for a significant number of frames.

In this paper we address these issues and develop a model for learning intuitive
physics in 3D scenes with significant inter-object occlusions. We propose a prob-

76



4.2 Related work

abilistic formulation of the intuitive physics problem, whereby object positions
are modelled as latent variables enabling the reconstruction of the scene. We then
propose a series of approximations that make this problem tractable.

In detail, proposals of object positions and velocities (called object states) are
derived from object masks, and then linked across frames using a combination
of a recurrent interaction network, modeling the physics in object space, and a
compositional renderer, modeling the way in which objects project onto pixel space.

Using the proposed approach, we show that it is possible to follow object dynamics
in 3D environments with severe inter-object occlusions. We evaluate this ability on
the IntPhys benchmark Riochet et al. (2021). We show better performance compared
to Riochet et al. (2021); Smith et al. (2019). A second set of experiments show that
it is possible to learn the physical prediction component of the model even in the
presence of severe occlusion, and predict segmentation masks up to 30 frames in the
future. Ablation studies and baselines Battaglia et al. (2016) evaluate the importance
of each component of the model, as well the impact of occlusions on performance.

Our model is fully compositional and handles variable number of objects in
the scene. Moreover, it does not require as input (or target) annotated inter-frame
correspondences during training. Finally, our method still works with no access to
ground-truth segmentation, using (noisy) outputs from a pre-trained object/mask
detector He et al. (2017), a first step towards using such models on real videos.

4.2 Related work

Forward modeling in videos. Forward modeling in video has been studied
for action planning Ebert et al. (2018); Finn et al. (2016) and as a scheme for
unsupervised learning of visual features Lan et al. (2014); Mathieu et al. (2015).
In that setup, a model is given a sequence of frames and has to generate frames
in future time steps. To succeed in this task, such models need to predict object
movements, suggesting that they need to learn physical regularities from video.
However, models for end-to-end future frame prediction tend to perform poorly on
long-term prediction tasks (say more 5-8 frames Lan et al. (2014); Mathieu et al.
(2015); Finn et al. (2016)), failing to preserve object properties and generating blurry
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outputs. This suggests that models for intuitive physics may require a more structured
representation of objects and their interactions.

Learning dynamics of objects. Longer term predictions can be more success-
ful when done on the level of trajectories of individual objects. For example, in Wu
et al. (2017b), the authors propose "scene de-rendering", a system that builds an
object-based, structured representation from a static (synthetic) image. The recov-
ered state can be further used for physical reasoning and future prediction using a
off-the-shelf physics engine on both synthetic and real data Battaglia et al. (2013);
Wu et al. (2017b); Smith et al. (2019). Future prediction from static image is often
multi-modal (e.g. car can move forward or backward) and hence models able to pre-
dict multiple possible future predictions, e.g. based on variational auto-encoders Xue
et al. (2016), are needed. Autoencoders have been also applied to learn the dynamics
of video Kosiorek et al. (2018); Hsieh et al. in restricted 2D set-ups and/or with a
limited number of objects.

Others have developed structured models that factor object motion and object
rendering into two learnable modules. Examples include Watters et al. (2017); Frac-
caro et al. (2017); Ehrhardt et al. (2017a,b) that combine object-centric dynamic
models and visual encoders. Such models parse each frame into a set of object state
representations, which are used as input of a "dynamic" model, predicting object
motion. However, Fraccaro et al. (2017) restrict drastically the complexity of the
visual input by working on binary 32x32 frames, and Ehrhardt et al. (2017a,b); Wat-
ters et al. (2017) still need ground truth position of objects as input or target Watters
et al. (2017) for training. However, modeling 3D scenes with significant inter-object
occlusions, which is the focus of our work, still remains an open problem.

In our work, we build on learnable models of object dynamics Battaglia et al.
(2016) and Chang et al. (2016), which have the key property that they are composi-
tional and hence can model a variable number of objects, but extend them to learn
from visual input rather than ground truth object state vectors.

Our work is also related to Janner et al. (2019), who combine an object-centric
model of dynamics with a differentiable renderer to predict a single image in a future
time, given a single still image as input. In contrast, we develop a probabilistic
formulation of intuitive physics that (i) predicts the physical plausibility of an
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observed dynamic scene, and (ii) infers velocities of objects as latent variables
allowing us to predict full trajectories of objects through time despite long complete
occlusions.

Others have proposed unsupervised methods to discover objects and their inter-
actions in 2D videos van Steenkiste et al. (2018). It is also possible to construct
Hierarchical Relation Networks Mrowca et al. (2018), representing objects as graphs
and predicting interactions between pairs of objects. However, this task is still
challenging and requires full supervision in the form of ground truth position and
velocity of objects.

Learning physical properties from visual inputs. Related are also methods
for learning physical properties of objects. Learning of physical properties, such as
mass, volume or coefficients of friction and restitution, has been considered in Wu
et al. (2016). Others have looked at predicting the stability and/or the dynamics of
towers of blocks Lerer et al. (2016); Zhang et al. (2016); Li et al. (2016, 2017); Mirza
et al. (2017); Groth et al. (2018). Our work is complementary. We don’t consider
prediction of physical properties but focus on learning models of object dynamics
handling inter-object occlusions at both training and test time Greff et al. (2019).

4.3 Occlusion resistant intuitive physics

This section describes our model for occlusion resistant learning of intuitive
physics. In section 4.3.1 we present an overview of the method, then describe it’s
two main components: the occlusion-aware compositional renderer that predicts
object masks given a scene state representation (section 4.3.2), and the recurrent
interaction network that predicts the scene state evolution over time (section 4.3.3).
Finally, in section 4.3.4 we describe how these two components are used jointly to
decode an entire video clip.

4.3.1 Intuitive physics via event decoding

We formulate the problem of event decoding as that of assigning to a sequence
of video frames F = ft=1..T a sequence of underlying object states S = si=1..N

t=1..T that
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can explain (i.e. reconstruct) this sequence of frames. By object state, we mean
object positions, velocities and categories. Within a generative probabilistic model,
we therefore try to find the state Ŝ that maximizes P (S|F, θ), where θ is a parameter
of the model: Ŝ = argmaxS P (S|F, θ). A nice property of this formulation is that
we can use P (Ŝ|F, θ) as a measure of the plausibility of a video sequence, which is
exactly the metric required in the Intphys benchmark.

With Bayes rule, P (S|F, θ) decomposes into the product of two probabilities that
are easier to compute, P (F |S, θ), the rendering model, and P (S|θ), the physical

model. This is similar to the decomposition into an acoustic model and a language
model in ASR Neufeld (1999). The event decoding problem then becomes:

Ŝ = argmax
S

P (F |S, θ)P (S|θ). (4.1)

Such a formulation naturally accounts for occlusion through the rendering model
which maps underlying positions into the visible outcome in pixel space. During
inference, the physical model is used to fill in the blanks, i.e., imagine what happens
behind occluders to maximize the probability of the trajectory. As for the learning
problem, it can be formulated as follows:

θ̂ = argmax
θ

P (F |θ). (4.2)

In this paper we will apply a number of simplifications to make this problem
tractable. First, we operate in mask space and not in pixel space. This is done
by using an off-the shelf instance mask detector (Mask-RCNN He et al. (2017)),
making the task of rendering easier, since all of the details and textures are removed
from the reconstruction problem. Therefore F is a sequence of (stacks of) binary
masks for different objects in the scene. Second, the state space is expressed, not
in 3D coordinates, which would require to learn inverse projective geometry, but
directly in retinotopic pixel coordinate plus depth (2.5D, something easily available
in RGBD cameras). It turns out that learning physics in this space is not more
difficult than in the true 3D space. Finally, the probabilistic models are implemented
as Neural Networks. The rendering model (Renderer) is implemented as a neural
network mapping object states into pixel space. The physical model is implemented
as a recurrent interaction network (RecIntNet), mapping object state at time t as a
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function of past states.

In practice, computing the argmax in eq. (4.1) is difficult because the states are
continuous, the number of objects is unknown, and some objects are occluded in
certain frames, yielding a combinatorial explosion regarding how to link hypothetical
object states across frames. In this paper, we propose a major approximation to help
solving this problem by proceeding in two steps. In the first step, a scene graph

proposal is computed using bounding boxes to estimate object position, nearest
neighbor matching across nearby frames to estimate velocities, and the roll-out of
the physics engine to link the objects across the entire sequence (which is critical to
deal with occlusions). The second step consists of optimizing S (given by eq. (4.1))
by using gradient descent on both models, capitalizing on the fact that both models
are differentiable. More precisely, rather than computing probabilities explicitly, we
define two losses (that can be interpreted as a proxy for negative log probability): (i)
the rendering loss Lrender that measures the discrepancy between the masks predicted
by the renderer and the observed masks in individual frames; and (ii) the physical
loss Lphysics that measures the discrepancy between states predicted by the recurrent
interaction network (RecIntNet) and the actual observed states. As in ASR, we
will combine these two losses with a scaling factor λ, yielding a total loss:

Lrender(S, F ) =
T∑
t=1

Lmask(Renderer(st), F ),

Lphysics(S) =
T−1∑
t=1

‖st+1 −RecIntNet(st)‖2,

Ltotal(S, F ) = λLrender(S, F ) + (1− λ)Lphysics(S).

(4.3)

Lmask is a pixel-wise loss defined in detail in the supplementary material.

We use the total loss as the objective function to minimize in order to find the
interpretation Ŝ of the masks of a video clip F . And it will be used to provide
a plausibility score to decide whether a given scene is physically plausible in the
evaluation on the IntPhys Benchmark (section 4.4.1). As for learning, instead of
marginalizing over possible state, we will just optimize the parameters over the point
estimate optimal state Ŝ. The aim of this paper is to show that these approximations
notwithstanding, a system constructed according to this set-up can yield good results.
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4.3.2 The Compositional Renderer (Renderer)

We introduce a differentiable Compositional Rendering Network (or Renderer)
that predicts a segmentation mask in the image given a list of N objects specified by
their x and y position in the image, depth and possibly additional properties such
as object type (e.g. sphere, square, ...) or size. Importantly, our neural rendering
model has the ability to take a variable number of objects as input and is invariant to
the order of objects in the input list. It contains two modules (see Figure 4.2). First,
the object rendering network reconstructs a segmentation mask and a depth map
for each object. Second, the occlusion predictor composes the N predicted object
masks into the final scene mask, generating the appropriate pattern of inter-object
occlusions obtained from the predicted depth maps of the individual objects.

The Object rendering network takes as input a vector of l values correspond-
ing to the position coordinates (xk, yk, dk) of object k in a frame together with
additional dimensions for intrinsic object properties (shape, color and size) (c). The
network predicts object’s binary mask, Mk as well as the depth map Dk. The input
vector (xk, yk, dk, ck) ∈ Rl is first copied into a (l+2)× 16× 16 tensor, where each
16× 16 cell position contains an identical copy of the input vector together with x
and y coordinates of the cell. Adding the x and y coordinates may seem redundant,
but this kind of position field enables a very local computation of the shape of the
object and avoids a large number of network parameters (similar architectures were
recently also studied in Liu et al.).

The input tensor is processed with 1 × 1 convolution filters. The resulting 16-
channel feature map is further processed by three blocks of convolutions. Each
block contains three convolutions with filters of size 1 × 1, 3 × 3 and 1 × 1 re-
spectively, and 4, 4 and 16 feature maps, respectively. We use ReLU pre-activation
before each convolution, and up-sample (scale of 2 and bilinear interpolation) fea-
ture maps between blocks. The last convolution outputs N + 1 feature maps of
size 128 × 128, the first feature map encoding depth and the N last feature maps
encoding mask predictions for the individual objects. The object rendering network
is applied to all objects present, resulting in a set of masks and depth maps denoted
as {(M̂k, D̂k), k = 1..N}.

82



4.3 Occlusion resistant intuitive physics

The Occlusion predictor takes as input the masks and depth maps for N
objects and aggregates them to construct the final occlusion-consistent mask and
depth map. To do so it computes, for each pixel i, j 6 128 and object k the following
weight:

cki,j =
eλD̂

k
i,j∑N

q=1 e
λD̂q

i,j

, k = 1..N, (4.4)

where λ is a parameter learned by the model. The final masks and depth maps
are computed as a weighted combination of masks M̂k

i,j and depth maps D̂k
i,j for

individual objects k: M̂i,j =
∑N

k=1 c
k
i,jM̂

k
i,j , D̂i,j =

∑N
k=1 c

k
i,jD̂

k
i,j , where i, j are

output pixel coordinates ∀i, j 6 128 and cki,j the weights given by (5.8). The intuition
is that the occlusion renderer constructs the final output (M̂, D̂) by selecting, for
every pixel, the mask with minimal depth (corresponding to the object occluding all
other objects). For negative values of λ, equation (5.8) is as a softmin, that selects
for every pixel the object with minimal predicted depth. Because λ is a trainable
parameter, gradient descent forces it to take large negative values, ensuring good
occlusion predictions. Also note that this model does not require to be supervised
by the depth field to predict occlusions correctly. In this case, the object rendering
network still predicts a feature map D̂ that is not equal to the depth anymore but is
rather an abstract quantity that preserves the relative order of objects in the view.
This allows Renderer to predict occlusions when the target masks are RGB only.
However, it still needs depth information in its input (true depth or rank order).

4.3.3 The Recurrent Interaction Network (RecIntNet)

To model object dynamics, we build on the Interaction Network Battaglia et al.
(2016), which predicts dynamics of a variable number of objects by modeling their
pairwise interactions. Here we describe three extensions of the vanilla Interaction
Network model. First, we extend the Interaction Network to model 2.5D scenes
where position and velocity have a depth component. Second, we turn the Interaction
Network into a recurrent network. Third, we introduce variance in the position
predictions, to stabilise the learning phase, and avoid penalizing too much very
uncertain predictions. The three extensions are described below.
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Modeling compositional object dynamics in 2.5D scenes. As shown in
Battaglia et al. (2016), Interaction Networks can be used to predict object motion
both in 3D or in 2D space. Given a list of objects represented by their positions,
velocities and size in the Cartesian plane, an Interaction Network models interactions
between all pairs of objects, aggregates them over the image and predicts the resulting
motion for each object. Here, we model object interactions in 2.5D space, since we
have no access to the object position and velocity in the Cartesian space. Instead we
have locations and velocities in the image plane plus depth (the distance between the
objects and the camera).

Modeling frame sequences. The vanilla Interaction Network Battaglia et al.
(2016) is trained to predict position and velocity of each object in one step into the
future. Here, we learn from multiple future frames. We "rollout" the Interaction
Network to predict a whole sequence of future states as if a standard Interaction
Network was applied in recurrent manner. We found that faster training can be
achieved by directly predicting changes in the velocity, hence:

[p1, v1, c] = [p0 + δtv0 +
δt2

2
dv, v0 + dv, c], (4.5)

where p1 and v1 are position and velocity of the object at time t1, p0 and v0 are
position and velocity at time t0, and δt = t1 − t0 is the time step. Position and
velocity in pixel space (p = [px, py, d] where px, py are the position of the object in
the frame), d is depth and v is the velocity in that space. Hence dv can be seen as the
acceleration, and (v0 + dv),(p0 + δtv0 +

δt2

2
dv) as the first and second order Taylor

approximations of velocity and position, respectively. Assuming an initial weight
distribution close to zero, this gives the model a prior that the object motion is linear.

Prediction uncertainty. To account for prediction uncertainty and stabilize
learning, we assume that object position follows a multivariate normal distribution,
with diagonal covariance matrix. Each term σ2

x, σ2
y , σ

2
d of the covariance matrix

represents the uncertainty in prediction, along x-axis, y-axis and depth. Such un-
certainty is also given as input to the model, to account for uncertainty either in
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object detection (first prediction step) or in the recurrent object state prediction. The
resulting loss is negative log-likelihood of the target p1 w.r.t. the multivariate normal
distribution, which reduces to:

L
(
(p̂1, τ̂1), p1

)
=

(p̂1 − p1)2
exp τ̂1

+ τ̂1, (4.6)

where τ̂1 = ln σ̂2
1 is the estimated level of noise propagated through the Recurrent

Interaction Network, where σ1 concatenates σ2
x, σ2

y , σ
2
d, p1 is the ground truth state

and p̂1 is the predicted state at time t + 1. The intuition is that the squared error
term in the numerator is weighted by the estimated level of noise τ̂1, which acts also
as an additional regularizer. We found that modeling the prediction uncertainty is
important for dealing with longer occlusions, which is the focus of this work.

4.3.4 Event decoding

Given these components, event decoding is obtained in two steps. First, scene
graph proposal gives initial values for object states based on visible objects detected
on a frame-by-frame basis. These proposed object states are linked across frames
using RecIntNet and a nearest neighbor strategy. Second, this initial proposal of
the scene interpretation is then optimized by minimizing the total loss by gradient
descent through both RecIntNet and Renderer on the entire sequence of object
states, yielding the final interpretation of the scene, as well as it’s plausibility score
(inverse of the total loss). The details of this algorithm are given in the supplementary
material.

4.4 Experiments

In this section we present two sets of experiments evaluating the proposed model.
The first set of experiments (section 4.4.1) is on the IntPhys benchmark that is
becoming the de facto standard for evaluating models of intuitive physics1 Riochet

1www.intphys.com
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et al. (2021), and is currently used as evaluation in the DARPA Machine Common
Sense program. The second set of experiments (section 4.4.2) evaluates the accuracy
of the predicted object trajectories and is inspired by the evaluation set-up used
in Battaglia et al. (2016) but here done in 3D with inter-object occlusions.

4.4.1 Evaluation on the IntPhys benchmark

Dataset. The Intphys Benchmark consists in a set of video clips in a virtual
environment. Half of the videos depict possible event and half impossible. They
are organized in three blocks, each one testing for the ability of artificial systems
to discriminate a class of physically impossible events. Block O1 contains videos
where objects may disappear with no reason, thus violating object permanence. In
Block O2, objects’ shape may change during the video, again without any apparent
physical reason. In Block O3, objects may "jump" from one place to another, thus
violating continuity of trajectories. Systems have to provide a plausibility score for
each of the 12960 clips and are evaluated in terms of how well they can classify
possible and impossible movies. Half of the impossible events (6480 videos) occur
in plain sight, and are relatively easy to detect. The other half occurs under complete
occlusion, leading to poor performance of current methods Riochet et al. (2021);
Smith et al. (2019).

Along with the test videos, the benchmark contains an additional training set
with 15000 videos, with various types of scenes, object movements and textures.
Importantly, the training set only consists in possible videos. Solving this task
therefore cannot be done by learning a classifier or plausibility score from the
training set.

System training. We use the training set to train the Compositional Rendering
Network and a MaskRCNN object detector/segmenter from groundtruth object
positions and segmentations. We also train the Recurrent Interaction Network to
predict trajectories of object 8 frames in the future, given object positions in pairs
of input frames. Once trained, we apply the scene graph proposal and optimization
algorithm described above and derive the plausibility score which we take as the
inverse of a plausibility loss.
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Results. Table 4.1 reports error rates (smaller is better) for the three above men-
tioned blocks each in the visible and occluded set-up, with “Total" reporting the
overall error. We compare performance of our method with two strong baselines
Riochet et al. (2021) and the current state-of-the-art on Block O1 Smith et al. (2019).
We observe a clear improvement over the two other methods, mainly explained by
better predictions when impossible events are occluded (see Occluded columns). In
particular, results in the Visible case are rather similar to Riochet et al. (2021), with a
slight improvement of 2% on O1 and 6% on O3. On the other hand, improvements
on the Occluded reach 33% on O1 and 21% on O2 clearly demonstrating our model
can better deal with occlusions. We could not obtain the Visible/Occluded split score
of Smith et al. (2019) by the time of the submission, thus indicating question marks
in the Table 4.1. On O3/Occluded, we observe that our model still struggles to
detect correctly impossible events. Interestingly, the same pattern can be observed in
human evaluation detailed in Riochet et al. (2021), with a similar error rate in the
Mechanical Turk experiment. This tends to show that detecting object "teleportation"
under significant occlusions is more complex than other tasks in the benchmark. It
would be interesting to confirm this pattern with other methods and/or video stim-
uli. Overall results demonstrate a clear improvement of our method on the IntPhys
benchmark, confirming its ability to follow objects and predict motion under long
occlusions.

Block O1 Block O2 Block O3

V O Total V O Total V O Total

Ours 0.05 0.19 0.12 0.11 0.31 0.21 0.26 0.47 0.37
Riochet et al. (2021) 0.07 0.52 0.29 0.11 0.52 0.31 0.32 0.51 0.41
Smith et al. (2019) - - 0.27 - - - - - -

Table 4.1: Results on the IntPhys benchmark. Relative classification error of
our model compared to Riochet et al. (2021) and Smith et al. (2019),
demonstrating large benefits of our method in scenes with significant
occlusions ("Occluded"). V stands for Visible and O for Occluded. Lower
is better.
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4.4.2 Evaluation on Future Prediction

In this section we investigate in more detail the ability of our model to learn to
predict future trajectories of objects despite large amounts of inter-object occlusions.
We first describe the dataset and experimental set-up, then discuss the results of
object trajectory prediction under varying levels occlusion. Next, we report ablation
studies comparing our model with several strong baselines. Finally, we report an
experiment demonstrating that our model generalizes to real scenes.

Dataset. We use pybullet2 physics simulator to generate videos of a variable
number of balls of different colors and sizes bouncing in a 3D scene (a large box with
solid walls) containing a variable number of smaller static 3D boxes. We generate
five datasets, where we vary the camera tilt and the presence of occluders. In the first
dataset (“Top view") we record videos with a top camera view (or 90°), where the
borders of the frame coincide with the walls of the box. In the second dataset (“Top
view+occ"), we add a large moving object occluding 25% of the scene. Finally, we
decrease the camera viewing angle to 45°, 25° and 15° degrees, which results in an
increasing amount of inter-object object occlusions due to perspective projection of
the 3D scene onto a 2D image plane. Contrary to the previous experiment on IntPhys
benchmark, we use the ground truth instance masks as the input to our model to
remove potential effects due to errors in object detection. Additional details of the
datasets and visualizations are given in the supplementary material.

Trajectory prediction in presence of occlusions. In this experiment we
initialize the network with the first two frames. We then run a roll-out for N
consecutive frames using our model. We consider prediction horizons of 5 and 10
frames, and evaluate the position error as a L2 distance between the predicted and
ground truth object positions. L2 distance is computed in the 3D Cartesian scene
coordinates so that results are comparable across the different camera tilts. Results
are shown in Table 4.3. We first note that our model (e. RecIntNet) significantly
outperforms the linear baseline (a.), which is computed as an extrapolation of the

2https://pypi.org/project/pybullet
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Top view Top view+occ. 45° tilt 25° tilt 15° tilt
a. Linear baseline 47.6 / 106.0 47.6 /106.0 47.6 / 106.0 47.6 / 106.0 47.6 / 106.0
b. MLP baseline 13.1 / 15.7 17.3 / 19.2 18.1 / 23.8 17.6 / 24.6 19.4 / 26.2
c. NoDyn-RecIntNet 21.2 / 46.2 23.7 / 46.7 22.5 / 42.8 23.1 / 43.3 24.9 / 44.4
d. NoProba-RecIntNet 6.3 / 11.5 12.4 / 14.7 8.0 / 15.9 8.12 / 16.3 11.2 / 19.6
e. RecIntNet (Ours) 6.3 / 9.2 11.7 / 13.5 8.01 / 14.5 8.1 / 15.0 11.2 / 18.1

Table 4.2: Object trajectory prediction in the synthetic dataset. Average Eu-
clidean L2 distance in pixels between predicted and ground truth positions,
for a prediction horizon of 5 / 10 frames (lower is better). To compute the
distance, the pixel-based x-y-d coordinates of objects are projected back
in an untilted 200x200x200 reference Cartesian coordinate system.

position of objects based on their initial velocities. Moreover, the results of our
method are relatively stable across the different challenging setups with occlusions
by external objects (Top view+occ) or frequent self-occlusions in tilted views (tilt).
This demonstrates the potential ability of our method to be trained from real videos
where occlusions usually prevent reliable recovery of object states.

Ablation Studies. As an ablation study we replace the Recurrent Interaction
Network (RecIntNet) in our model with a multi-layer perceptron (b. MLP baseline
in Table 4.3). This MLP contains four hidden layers of size 180 and is trained the
same way as RecIntNet, modeling acceleration as described in equation 5.4.1. To
deal with the varying number of objects in the dataset, we pad the inputs with zeros.
Comparing the MLP baseline (a.) with our model (e. RecIntNet) we observe that
our RecIntNet allows more robust predictions through time.

As a second ablation study, we train the Recurrent Interaction Network without
modeling acceleration (eq. 5.4.1). This is similar to the model described in Janner
et al. (2019), where object representation is not decomposed into position / velocity /
intrinsic properties, but is rather a (unstructured) 256-dimensional vector. Results
are reported in table 4.3 (c. NoDyn-RecIntNet). Compared to our full approach (e.),
we observe a significant loss in performance, confirming that modeling position and
velocity explicitly, and having a constant velocity prior on motion (given by 5.4.1)
improves future predictions.

As a third ablation study, we train a deterministic variant of RecIntNet, where
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only the sequence of states is predicted, without the uncertainty term τ (please see
more details in the Supplementary). The loss considered is the mean squared error
between the predicted and the observation state. Results are reported in table 4.3
(d. NoProba-RecIntNet). The results are slightly worse than our model handling
uncertainty (d. NoProba-RecIntNet), but close enough to say that this is not a key
feature for modeling 5 or 10 frames in the future. In qualitative experiments, however,
we observed more robust long-term predictions with uncertainty in our model.

Generalization to real scenes. We test the model trained on top-view syn-
thetic Pybullet videos (without finetuning the weights) on a dataset of 22 real videos
containing a variable number of colored balls and blocks in motion recorder with a
Microsoft Kinect2 device. Example frames from the data are shown in figure 4.7.
Results are reported in the supplementary and demonstrate that our model generalizes
to real data and show clear improvements over the linear and MLP baselines.

Additional results in the supplementary material. In addition to the for-
ward prediction, we evaluate our method on the task of following objects in the scene.
Details and results can be found in the supplementary material (section 5).

4.5 Discussion

Learning the physics of simple macroscopic object dynamics and interactions
is a relatively easy task when ground truth coordinates are provided to the system,
and techniques like Interaction Networks trained with a future frame prediction
loss are quite successful Battaglia et al. (2016); Mrowca et al. (2018). In real-life
applications, the physical state of objects is not available and has to be inferred from
sensors. In such case inter-object occlusions make these observations noisy and
sometimes missing.

Here we present a probabilistic formulation of the intuitive physics problem, where
observations are noisy and the goal is to infer the most likely underlying object states.
This physical state is the solution of an optimization problem involving i) a physics
loss: objects states should be coherent in time, and ii) a render loss: the resulting
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scene at a given time should match with the observed frame. We present a method to
find an approximate solution to this problem, that is compositional (does not restrict
the number of objects) and handles occlusions. We show its ability to learn object
dynamics and demonstrate it outperforms existing methods on the intuitive physics
benchmark IntPhys.

A second set of experiments studies the impact of occlusions on intuitive physics
learning. During training, occlusions act like missing data because the object position
is not available to the model. However, we found that it is possible to learn good
models compared to baselines, even in challenging scenes with significant inter-
object occlusions. We also notice that projective geometry is not, in and of itself,
a difficulty in the process. Indeed, when an our dynamics model is fed, not with
3D Cartesian object coordinates, but with a 2.5D projective referential such as
the xy position of objects in a retina (plus depth), the accuracy of the prediction
remains unchanged compared with the Cartesian ground truth. Outcomes of these
experiments can be seen in the anonymous google drive ( link). This work, along
with recent improvement of object segmentation models Ren et al. (2017) put a first
step towards learning intuitive physics from real videos.

Further work needs to be done to fully train this system end-to-end, in particular,
by learning the renderer and the interaction network jointly. This could be done
within our probabilistic framework by improving the initialization step of our system
(scene graph proposal). Instead of using a relatively simple heuristics yielding a
single proposal per video clip, one could generate multiple proposals (a decoding
lattice) that would be reranked with the plausibility loss. This would enable more
robust joint learning by marginalizing over alternative event graphs instead of using
a single point estimate as we do here. Finally object segmentation itself could be
learned jointly, as this would allow exploiting physical regularities of the visual
world as a bootstrap to learn better visual representations.
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O3
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O1
O3

O2

O1
RecIntNet

Lrender

Lphysics
Graph Proposal

Renderer

RecIntNet

MaskRCNN

Predicted mask sequence

Input video sequence

Figure 4.1: Overview of our occlusion resistant intuitive physics model. A pre-trained
object detector (MaskRCNN) returns object detections and masks (top). A
graph proposal matching links object proposals through time: from a pair of
frames the Recurrent Interaction Network (RecIntNet) predicts next object
position and matches it with the closest object proposal. If an object disappears
(e.g. due to occlusion - no object proposal), the model keeps the prediction as an
object state, otherwise this object state is updated with the observation. Finally,
the Compositional Rendering Network (Renderer) predicts masks from object
states and compares them with the observed masks. The errors of predictions
of RecIntNet and Renderer on the full sequence are summed into a physics
and a render loss, respectively. The two losses are used to assess whether the
observed scene is physically plausibility.
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Figure 4.2: Compositional Rendering Network (Renderer).
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Figure 4.3: Illustration of event decoding in the videos of the IntPhys dataset. A
pre-trained object detector returns object proposals in the video (bound-
ing boxes). An initial match is made across two seed neighbouring
frames, also estimating object velocity (left, white arrows). The dynamic
model (RecIntNet) predicts object positions and velocities in future
frames, enabling the match of objects despite significant occlusions
(right, bounding box colors and highlights).
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2

3

Figure 4.4: Images from the Future Prediction experiment 1: An overview of
the pybullet scene. 2: Sample video frames (instance mask + depth
field) from our datasets (top) together with predictions obtained by our
model (bottom), taken from from the tilted 25° experiments. 3: example
of prediction for a real video, with a prediction span of 8 frames. The
small colored dots show the predicted positions of objects together with
the estimated uncertainty shown by the colored “cloud”. The same
colored dot is also shown in the (ground truth) center of each object. The
prediction is correct when the two dots coincide. (see additional videos).
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4.6 Appendix

This supplementary material: (i) describes the provided supplementary videos
(section 4.6.1), (ii) provides additional training details (section 4.6.2), (iii) explains
in more depth the event decoding procedure defined in section 3.4 in the main paper
(section 4.6.2) (iv) gives details of the datasets used in the subsection 4.2 (sec-
tion 4.6.2), (v) provides additional ablation studies and comparisons with baselines
(sections 4.6.2, 4.6.3, 4.6.4, 4.6.5).

4.6.1 Description of supplementary videos

In this section we present qualitative results of our method on different datasets.
We first show videos from IntPhys benchmark, where inferred object states are
depicted onto observed frames. Then we show differents outputs on the pybullet
datasets, for different levels of occlusions. Finally we present examples of predictions
from our Recurrent Interaction Network on real scenes.

The videos are in the anonymous google drive: https://drive.google.
com/open?id=1Qc8flIAxUGzfRfeFyyUEGXe6J5AUGUjE in the videos/
subdirectory. Please see also the README slideshow in the same directory.

IntPhys benchmark

The Intphys Benchmark consists in a set of video clips in a virtual environment.
Half of the videos are possible event and half are impossible, the goal being to
discriminate the two.

In the following we show impossible events, along with outputs of our event de-
coding method. Our dynamics and rendering models predict future frames (masks) in
the videos, which are compared with the observed masks (pre-trained detector). This
allows us to derive a plausibility loss used to discriminate possible and impossible
events (see section 4.1).

– occluded_impossible_*.mp4 show examples of impossible videos from the
IntPhys benchmark, along with visualization of our method. Each video con-
tains four splits; on top/left is shown the raw input frame; on bottom/left is
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the mask obtained from the raw frame with the pre-trained mask detector
(which we call observed mask); on top/right is the raw frame with superim-
posed output physical states predicted by our method; on bottom/right is the
reconstructed mask obtained with the Compositional Renderer (which we call
predicted mask). Throughout the sequence, our method predicts the full trajec-
tory of objects. When an object should be visible (i.e. not behind an occluder),
the renderer predicts correctly its mask. If at the same time the object has
disappeared from the observed mask, or changed too much in position or shape,
it causes a mismatch between the predicted and the observed masks, hence a
higher plausibility loss. This plausibility loss is use for the classification task
of IntPhys benchmark (see quantitative results in main paper, section 4.1).

– visible_impossible_*.mp4 show similar videos but with impossible events
occurring in the "visible" (easier) task of the IntPhys benchmark.

– intphys_*.mp4 show object following in the IntPhys training set.

Pybullet experiments

We present qualitative results on our Pybullet dataset. We construct videos includ-
ing a various number of objects with different points of view and increasing levels of
camera tilts introducing inter-object occlusions. First, we show predicted physical
states drawn on object states, to demonstrate the ability of the method to track objects
under occlusions. Then we show videos of long rollouts where, from one pair of
input frames, we predict a full trajectory and render masks with the Compositional
Neural Renderer.

– scene_overview.mp4 shows raw videos of the entire environment.

– tracking_occlusions_*.mp4 show examples of position prediction through
complete occlusions, using our event decoding procedure. This shows that
our model can keep track of the object identity through complete occlusions,
mimicking “object permanence".

– one_class*.mp4 show different examples of our model following motion of
multiple objects in the scene. All balls have the same color which makes
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them difficult to follow in case of mutual interactions. Videos come from
tilted 25° experiments, which are the most challenging because they include
inter-object occlusions. Dots represent the predicted position of each object,
the color being its identity. Our model shows very good predictions with small
colored markers (dots) well centered in the middle of each object, with marker
color remaining constant for each object preserving the object identity during
occlusions and collisions. one_class_raw*.mp4 show rendered original views
of the same dynamic scenes but imaged from a different viewpoint for better
understanding.

– rollout_0.mp4, rollout_1.mp4 show three different prediction roll-outs of the
Recurrent Interaction Network (without event decoding procedure). From
left to right: ground truth trajectories, our model trained of state, our model
trained on masks, our model trained on masks with occlusions during training.
Rollout length is 20 frames.

– rollout_tilt*_model.mp4 and rollout_tilt*_groundtruth.mp4 show the same
dynamic scene but observed with various camera tilts (e.g. tilt45_model.mp4
show a video for a camera tilt of 45 degrees). *_model.mp4 are predicted
roll-outs of our Recurrent Interaction Network (RecIntNet), without event de-
coding. *_groundtruth.mp4 are the corresponding ground-truth trajectories,
rendered with the Compositional Rendering Network.

– rollout_pybullet_*.mp4 show free roll-outs (no event decoding) on synthetic
dataset.

Real videos

– rollout_real_*.mp4 show generalization to real scenes.

4.6.2 Training details

This section gives details of the offline pre-training of the Compositional Ren-
dering Network and detailed outline of the algorithm for training the Recurrent
Interaction Network.
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Pre-Training the Compositional Rendering Network. We train the neural
renderer to predict mask and depth M̂t, D̂t from a list of objects [px, py, d, c] where
px, py are x-y coordinates of the object in the frame, d is the distance between the
object and the camera and c is a vector for intrinsic object properties containing
the size of the object, its class (in our experiments a binary variable for whether the
object is a ball, a square or an occluder) and its color as vector in [0, 1]3. In IntPhys
benchmark, occluders are not modeled with a single point [px, py, d, c] but with four
points [pkx, p

k
y, d

k], k = 1..4 corresponding to the four corners of the quadrilateral.
These four corners are computed from the occluder instance mask, after detecting
contours and applying Ramer–Douglas–Peucker algorithm to approximate the shape
with a quadrilateral.

The target mask is a 128× 128 image where each pixel value indicates the index
of the corresponding object mask (0 for the background, i ∈ 1..N for objects).
The loss on the mask is negative log-likelihood, which corresponds to the average
classification loss on each pixel

Lmask(M̂,M) =
∑

i6h,j6w

∑
n6N

1(Mi,j = n)log(M̂i,j,n), (4.7)

where the first sum is over individual pixels indexed by i and j, the second sum is
over the individual objects indexed by n, ∀M̂ ∈ [0, 1]h×w×N are the predicted (soft-)
object masks, and ∀M ∈ [[1, N []h×w is the scene ground truth mask containing all
objects.

The target depth map is a 128× 128 image with values being normalized to the
[-1,1] interval during training. The loss on the depth map prediction is the mean
squared error

Ldepth(D̂,D) =
∑

i6h,j6w

(D̂i,j −Di,j)
2, (4.8)

where ∀D̂ andD ∈ Rh×w are the predicted and ground truth depth maps, respectively.
The final loss used to train the renderer is the weighted sum of losses on masks
and depth maps, L = 0.7 ∗ Lmask + 0.3 ∗ Ldepth. We use the Adam optimizer with
default parameters, and reduce learning rate by a factor 10 each time the loss on
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the validation set does not decrease during 10 epochs. We pre-train the network on
a separate set of 15000 images generated with pybullet and containing similar
objects as in our videos.

Training details of the Recurrent Interaction Network. From a sequence
of L frames with their instance masks we compute objects position, size and shape
(see section 3.2 in the main body). Initial velocities of objects are estimated as the
position deltas between the first two positions. This initial state (position, velocity,
size and shape of all objects) is given as input of the Recurrent Interaction Network to
predict the next L-2 states. The predicted L-2 positions are compared with observed
object positions. The sum of prediction errors (section 3.3 in core paper) is used as
loss to train parameters of the Recurrent Interaction Network. Optimization is done
via gradient descent, using Adam with learning rate 1e− 3, reducing learning by a
factor of 10 each time loss on validation plateaus during 10 epochs. We tried several
sequence lengths (4, 6, 10), 10 giving the most stable results. During such sequence,
when an object was occluded (thus position not being observed), we set its loss to
zero.

Event Decoding

The detailed outline of the event decoding procedure described in section 3.4 of
the main paper is given in Algorithm 1. Two example figures (Figure 4.5 & 4.6)
gives an intuition behind the render and physics losses.

Datasets

To validate our model, we use pybullet3 physics simulator to generate videos of
variable number of balls of different colors and sizes bouncing in a 3D scene (a large
box with solid walls) containing a variable number of smaller static 3D boxes. We
generate five dataset versions, where we vary the camera tilt and the presence of
occluders. All experiments are made with datasets of 12,000 videos of 30 frames

3www.pypi.org/project/pybullet

100

www.pypi.org/project/pybullet


4.6 Appendix

Algorithm 2: Event decoding procedure
Data:

T : length of the video;
ft,mt t = 1..T : videos frames, segmentation masks;
Detection(mt): returns centroid and size of instance masks;
RecIntNet: Pre-trained Recurrent Interaction Network;
Rend: Pre-trained Neural Renderer;
ClosestMatch(a,b): for a, b two lists of objects, computes the optimal
ordering of elements in b to match those in a ;
0 < λ < 1: weighting physical and visual losses;

Result:
Estimated states s1...T ;
Plausibility loss for the video;

Initialization:
dt=1..T = Detection(ft);
nt ← (#{dt},meantsize(dt)) ;
t∗ ← argmaxt(nt + nt+1);
//(t∗, t∗ + 1) is the pair of frames containing the maximum
number of objects (with the max number of visible
pixels in case of equality).

(pt∗ , pt∗+1)← (dt∗ ,ClosestMatch(dt∗ , dt∗+1));
//Rearange dt∗+1 to have same object ordering as in dt∗ .
Graph Proposal:
//t∗ is a good starting point for parsing the scene
(because we observe most of the objects during two
consecutive frames). We use RecIntNet to predict the
next position of each object, which we link to an
object detection. Repeating this step until the end of
the video returns object trajectory candidates.
vt∗+1 ← pt∗+1 − pt∗ ;
st∗+1 ← [pt∗+1, vt∗+1];
for t ∈ {t∗ + 1, .., T} do

ŝt+1 ← RecIntNet(st);
st+1 ← ClosestMatch(ŝt+1, dt+1);
//Backward: do the same from t∗ to 1.

Differentiable optimization:
//ŝt=1..T is a sequence of physical states. At every time
step t it contains the position, velocity, size and
shape of all objects, in the same order. Due to
occlusions and detection errors, it is sub-optimal and
can be refined to minimize equation 3 in the main
paper.

Lossphysics(s)←
∑T

t=1 ‖ŝt+1 − st+1‖2;
Lossvisual(s)←

∑T
t=1 NLL(Rend(st),mt);

Lossplausibility(s)← λLossphysics(s) + (1− λ)Lossvisual(s);
(Estimated states, plausibility loss)← SGDs(Lossplausibility(s));
//with lr = 1e− 3 and nsteps = 1000; 101
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Renderer computes render loss 

Figure 4.5: Video example from the IntPhys benchmark. Four frames from a
video in block O1, with superimposed heatmaps. Heatmaps (colored
blobs) correspond to the difference, per pixel, between the predicted and
the observed object mask. In these video, a cube moves from left to right
but disappears behind the occluder. The Recurrent Interaction Network
predicts correctly its motion behind the occluder and the Compositional
Renderer reconstructs its mask. The fact that the object is absent in
the observed mask leads to a large render loss, illustrated by the high
heatmap values (violet) at the position where the ball is expected to be.

RecIntNet computes physics loss

Figure 4.6: Video example from the IntPhys benchmark. Three frames from a
video in block O2, where an object "jumps" from one place to another.
The graph proposal phase returns the right trajectory of the object but the
Recurrent Interaction Network returns a high physics loss at the moment
of the jump, because the observed position is far from the predicted one.

(with a frame rate of 20 frames per second). For each dataset, we keep 2,000 videos
separate to pre-train the renderer, 9, 000 videos to train the physics predictor and
1, 000 videos for evaluation. Our scene contains a variable number of balls (up to
6) with random initial positions and velocities, bouncing against each other and the
walls. Initial positions are sampled from a uniform distribution in the box [1, 200]2,
all balls lying on the ground. Initial velocities along x and y axes are sampled in

102



4.6 Appendix

Ground
Truth

Predictions

Top view             Occluded            Tilt 45                Tilt 65                Tilt 75

Figure 4.7: Sample video frames (instance mask + depth field) from our
datasets (top) together with predictions obtained by our model
(bottom). Taken from the top-view, occluded and tilted exper-
iments. Please see additional video results in the anony-
mous google drive https://drive.google.com/open?id=
1Qc8flIAxUGzfRfeFyyUEGXe6J5AUGUjE.

Unif([−25, 25]) units per frame, initial velocity along z-axis is set to 0. The radius
of each ball is sampled uniformly in [10, 40]. Scenes also contain a variable number
of boxes (up to 2) fixed to the floor, against which balls can collide. Contrary to
Battaglia et al. (2016) where authors set a frame rate of 1000 frames per second, we
sample 30 frames per second, which is more reasonable when working with masks
(because of the computation cost of mask prediction).

Top-view. In the first dataset we record videos with a top camera view, where
the borders of the frame coincide with the walls of the box. Here, initial motion is
orthogonal to the camera, which makes this dataset very similar to the 2D bouncing
balls datasets presented in Battaglia et al. (2016) and Watters et al. (2017). However,
our dataset is 3D and because of collisions and the fact that the balls have different
sizes, balls can jump on top of each other, making occlusions possible, even if not
frequent.

Top-view with Occlusions. To test the ability of our method to learn object
dynamics in environments where occlusions occur frequently, we record the second
dataset including frequent occlusions. We add an occluder to the scene, which is an
object of irregular shape (an airplane), occluding 25% of the frame and moving in 3D
between the balls and the camera. This occluder has a rectilinear motion and goes
from the bottom to the top of the frame during the whole video sequence. Sample
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frames and rendered predictions can be found in the supplementary material.

Tilted-views. In three additional datasets we keep the same objects and motions
but tilt the camera with angles of 45°, 65° and 75° degrees. Increasing the tilt of the
camera results in more severe inter-object occlusions (both partial and complete)
where the balls pass in front of each other, and in front and behind the static boxes,
at different distances to the camera. In addition, the ball trajectories are becoming
more complex due to increasing perspective effects. In contrary to the top-view
experiment, the motion is not orthogonal to the camera plane anymore, and depth
becomes crucial to predict the future motion.

Ablation studies

For the purpose of comparison, we also evaluate three models trained using ground
truth object states. Results are shown in table . Our Recurrent Interaction Network
trained on ground truth object states gives similar results to the model of Battaglia
et al. (2016). As expected, training on ground truth states (effectively ignoring
occlusions and other effects) performs better than training from object masks and
depth.

Top view 45° tilt 25° tilt 15° tilt

NoProba-RIN 4.76 / 9.72 6.21 / 10.0 5.2 / 12.2 7.3 / 13.8
RIN 4.5 / 9.0 6.0 / 9.6 5.2 / 12.2 7.3 / 13.2
2016** 3.6 / 10.1 4.5 / 9.9 4.5 / 11.0 5.3 / 12.3

Table 4.3: Average Euclidean (L2) distance (in an untilted 200x200x200 reference
Cartesian coordinate system) between predicted and ground truth posi-
tions, for a prediction horizon of 5 frames / 10 frames, trained on ground
truth positions. **Battaglia et al. (2016) is trained with more supervision,
since target values include ground truth velocities, not available to other
methods.
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4.6.3 Roll-out results

We evaluate our model on object following, applying an online variant of the scene
decoding procedure detailed in 4.6.2. This online variant consists in applying the
state optimization sequentially (as new frames arrive), instead of on the full sequence.
For each new frame, the state prediction ŝt+1 given by RecIntNet is used to predict
a resulting mask. This mask is compared to the observation, and we apply directly
the final step in Algorithm 1 (Differentiable optimization). It consists in minimizing
λLossphysics(s) + (1 − λ)Lossvisual(s) via gradient descent over the state s. During
full occlusion, the position is solely determined by RecIntNet, since Lossrender has
a zero gradient. When the object is completely or partially visible, the Lossrender

in the minimization make the predicted state closer to its observed value. To test
object following, we measure the accuracy of the position estimates across long
sequences (up to 30 frames) containing occlusions. Table 4.4 shows the percentage
of object predictions that diverge by more than an object diameter (20 pixels) using
this method. The performance is very good, even for tilted views. In Figure 4.8, we
report the proportion of correctly followed objects for different rollout lengths (5, 10
and 30 frames) as a function of the distance error (pixels). Note that the size of the
smallest object is around 20 pixels.

Synthetic videos 5 fr. 10 fr. 30 fr.
Ours, top view 100 100 100
Ours, 45° tilt 99.3 96.2 96.2
Ours, 25° tilt 99.3 90.1 90.1
Linear motion baseline 81.1 67.8 59.7

Table 4.4: Percentage of predictions within a 20-pixel neighborhood around the
target as a function of rollout length measured by the number of frames.
20 pixels corresponds to the size of the smallest objects in the dataset.

4.6.4 Experiment with real videos

We construct a dataset of 22 real videos, containing a variable number of colored
balls and blocks in motion. Videos are recorded with a Microsoft Kinect2 device,
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Figure 4.8: Proportion of correctly followed objects (y-axis) as a function of the
distance error in pixels (x-axis) for our approach using online event
decoding. The different plots correspond to rollout lengths of 5 (left), 10
(middle) and 30 (right) frames. Different curves correspond to different
camera view angles (top-view, tilted 45 degrees and tilted 25 degrees). In
this experiment, all objects have the same shape and color making the task
of following the same object for a long period of time very challenging.
The plots demonstrate the success of our method in this very challenging
scenario with object collisions and inter-object occlusions. For example,
within a distance threshold of 20 pixels, which corresponds to the size of
the smallest objects in the environment, our approach correctly follows
more than 90% of objects during the rollout of 30 frames in all three
considered camera viewpoints (top-view, 45 degrees and 25 degrees).
Please see also the supplementary videos “one_class*.mp4".
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4.6 Appendix

Model Linear MLP Proba-RecIntNet (ours)
L2 dist. to target 28/71 19/43 12/22

Table 4.5: Trajectory prediction on real videos. Average Euclidean (L2) distance
(in pixels in a 200 by 200 image) between predicted and ground truth
positions, for a prediction horizon of 5 frames / 10 frames.

Figure 4.9: Example of prediction for a real video, with a prediction span of 10
frames. The small colored dots show the predicted positions of objects
together with the estimated uncertainty shown by the colored “cloud”.
The same colored dot is also shown in the (ground truth) center of each
object. The prediction is correct when the two dots coincide. (see
additional videos).

including RGB and depth frames. The setup is similar to the one generated with
Pybullet, recorded with a top camera view and containing 4 balls and a variable
number of static blocks (from 0 to 3). Here again, the borders of the frame coincide
with the walls of the box. Taking as input object segmentation of the first two
frames, we use our model to predict object trajectories through the whole video (see
Figure 4.7). We use the model trained on top-view synthetic Pybullet videos, without
fine-tuning weights. We measure the error between predictions and ground truth
positions along the roll-out. Results are shown in Table 4.5 and clearly demonstrate
that out approach outperforms the linear and MLP baselines and makes reasonable
predictions on real videos.
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Chapter 4 Occlusion resistant learning of intuitive physics from videos

Top view Top view+ 45° tilt 25° tilt 15° tilt
occlusion

CNN autoencoder Riochet et al. (2021) 0.0147 0.0451 0.0125 0.0124 0.0121
NoProba-RIN 0.0101 0.0342 0.0072 0.0070 0.0069
Proba-RIN 0.0100 0.0351 0.0069 0.0071 0.0065

Aggregate pixel reconstruction error for mask and depth, for a prediction span of
two frames. This error is the loss used for training (described in the supplementary
material). It is a weighted combination of mask error (per-pixel classification error)
and the depth error (mean squared error).

4.6.5 Future prediction (pixels): Comparison with
baselines

We evaluate the error of the mask and depth prediction, measured by the train-
ing error described in detail in 4.6.2. Here, we compare our model to a CNN
autoencoder Riochet et al. (2021), which directly predicts future masks from current
ones, without explicitly modelling dynamics of the individual objects in the scene.
Note this baseline is similar to Lerer et al. (2016). Results are shown in Table S1.
As before, the existence of external occluders or the presence of tilt degrades the
performance, but even in this case, our model remains much better than the CNN
autoencoder of Riochet et al. (2021).
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Chapter 5

Multi-Representational Future
Forecasting

Abstract

Understanding the dynamics of an environment from a visual input
is an essential component of reasoning. Improving intuitive physics
skills of machine models is therefore important, however models are
often validated using toy datasets, with static cameras. To ease the
complex task of future prediction in a real-world context, we combine in
this work the use of different representations: objects bounding boxes,
keypoints, instances, and background masks. We study predicting each
representation separately as well as conditioning complex representa-
tions on simpler ones for a more accurate prediction. Possible influences
between objects are modeled via an interaction network. We first uti-
lize synthetic labels for learning to predict ideal state representations,
and investigate a domain transition using real data with labels obtained
by an automatic detection system. Our interaction modeling followed
by geometric projection allows us to outperform the state-of-the-art in
future instance segmentation, with more than 15% of relative improve-
ment. Our prediction and data generation codes will be made publicly
available.

This work was led in collaboration with Mohamed Elfeki, Natalia

Neverova, Emmanuel Dupoux and Camille Couprie.
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Figure 5.1: Can we use a multi-modal state representation to reduce the accumulating
entropy within future prediction? We investigate different modalities
and their sequential conditioning to perform long-range predictions.
Additionally, we model objects relationships using an interaction network
and perform dense instance masks predictions through a renderer.

5.1 Introduction

Providing intelligent agents with the ability to predict and anticipate has been
a topic of extensive research for a long time Kitani et al. (2012)Mathieu et al.
(2015)Alahi et al. (2016)Zhang et al. (2017), and can be directly applicable in the
domains of robotics Koppula and Saxena (2015), autonomous driving McAllister
et al. (2017); Henaff et al. (2019), and building intelligent assistants, to name a
few. Meanwhile, the natural order of events presented in dynamic visual sequence
provides a source of unlimited natural supervision for learning powerful spatio-
temporal representations that are transferable to other downstream problems, such as
action recognition Lee et al. (2017); Xu et al. (2019a).

The task of forecasting the visual future encompasses a variety of sub-tasks, from
simply extrapolating trajectories of objects in the scene, to a full-fledged generation
of high resolution frames for extending observed video sequences. The latter problem
of video prediction directly in the pixel space is known to be notoriously hard and
requires scaling the training process to massive amounts of data and compute to
achieve a modest degree of realism even over a short prediction range Weissenborn
et al. (2019); Clark et al. (2019). In addition, there exists no appropriate evaluation
metric for identifying and interpreting shortcomings of such systems, as well as
quantifying their reasoning capabilities. For this reason, many works have attempted
to constrain the task by introducing inductive biases, such as decomposing the scene
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5.1 Introduction

into a set of entities, or agents, to model their respective trajectories and pairwise
interactions Ye et al. (2019); Baradel et al. (2019). Another popular strategy is
shifting the reconstruction from RGB space to semantic spaces, such as semantic
segmentation Luc et al. (2017), object masks Luc et al. (2018); Ye et al. (2019)
or human keypoints Walker et al. (2017); Kim et al. (2019). This is based on
the intuition that a model performing reconstruction of object dynamics should be
invariant to object appearance, which is thus irrelevant to the prediction task. At the
same time, recent works in generative modeling have indicated that having a semantic
representation of a scene (such as parsing Wang et al. (2018), scene graph Ashual
and Wolf (2019) or object skeleton Walker et al. (2017); Kim et al. (2019)) in a new
frame is indeed sufficient to perform realistic texture transfer from past observations.

A crucial aspect of future prediction is the modeling of object interactions. In
intuitive physics, the Interaction networks of Battaglia et al. (2016) were introduced
to perform such predictions. The work of Riochet et al. (2020b) goes one step
further and applies it to higher dimension simulated images of moving balls. In
the context of real world datasets, graph-based modelings are for now limited to
trajectory forecasting Alahi et al. (2016); Ma et al. (2019).

The goal of the present study is to address the problem of semantic video prediction

in a systematic way, combining different representations, modeling their relationships
and building on the progress in the field so far. We consider this task in a setting of
semantic multi-modality, by considering a set of semantic representations (shown
in Fig. 5.1) ordered by their expressive power (from object locations to keypoints
and masks). We also model objects interactions and render them spatially. We start
by conducting the experiments by adapting the synthetic CARLA environment for
autonomous driving Dosovitskiy et al. (2017) to generate a large scale dataset for
multi-modal visual forecasting. Then we generalize the framework’s performance on
the real-life Cityscapes dataset Cordts et al. (2016) using a state-of-the-art semantic
content extractor, here Mask-RCNN He et al. (2017). By gathering all major pieces:
conditioning complex modality prediction on simpler ones, decoupling objects’
relative motion from background, and generalizing framework’s performance on
real-data in a self-supervised setting, we aim at taking a first stride towards a precise
multi-modal environment dynamic modeling.

We present a forecasting model that decomposes the visual input into foreground
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Figure 5.2: Our multi-representational prediction pipeline. A recursive interaction
network is trained to predict future bounding box locations, that are then
fed to an LSTM along with past keypoints to predict the future keypoints.
Then our re-projection module corrects these prediction using a geomet-
ric projection when camera information is available. Corrected bounding
boxes and keypoints are fed to our renderer, along with previous masks
to generates future instance masks. *: optional.

instance representations, object bounding boxes, keypoints, and masks. We demon-
strate the positive impact of conditioning predictions in different semantic spaces on
each other in increasing order of complexity of representations and expressive power
(from bounding boxes to keypoints and masks).

Our method effectively decouples egomotion from objects’ motion in the scene by
implementing a dedicated correction module using perspective projection of camera
information. This is necessary for most robotic applications, where both the camera
and the environment may be in motion.

5.2 Related work

Most prior literature on video prediction focuses on a single modality at a time,
including these that we consider in this work. Below we briefly review the existing
works on visual semantic forecasting.

Bounding box forecasting. The recent work of Bhattacharyya et al. (2018)
proposes a method to predict the boxes around pedestrians using a non deterministic
loss and a LSTM on the ego-centric Cityscapes sequences. The framework of Yao
et al. (2019) includes a multi-stream recurrent neural network (RNN) encoder-
decoder model to predict bounding boxes for vehicles. Additionally, the authors use
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5.2 Related work

dense optical flow to capture motion and appearance changes.

Keypoint forecasting. For their representative power, keypoint predictions have
been used immensely for activity recognition Walker et al. (2017); Jain et al. (2016).
Various methods have been introduced to predict the human-pose whether as action-
agnostic such as Chiu et al. (2019), or learning the human dynamics such as Fragki-
adaki et al. (2015b); Villegas et al. (2018). Nonetheless, most prior literature focuses
on human-based keypoint extraction and prediction, which is not well-generalized
to a generic scene that contains other foreground dynamic instances such as cars
and bicycles. Unlike human pose estimation Toshev and Szegedy (2014); He et al.
(2017), there is a lack of generic and applicable keypoint extraction methods for
non-human objects. The handful of vehicle keypoint extraction may assume extra
supervisory signals such as Wu et al. (2019a)’s work that also predicts six degrees of
freedom in 3D assuming monocular RGB images.

Segmentation forecasting. Among the many representations in the descriptive
spaces (i.e., non-RGB spaces), segmentation is the most complex. It has a pixel-
to-pixel mapping of each object, and sometimes of the background as well, and is
hence modeling position, size, orientation and appearance changes only without
coloring. Luc et al. (2017) propose predicting future semantic segmentations without
a clear distinction of instances using a CNN architecture. Going beyond basic
CNN architectures used for segmentation forecasting, Nabavi et al. (2018) employ
bidirectional -LSTMs to segment all instances together, and perform very near future
forecasting (next single frame prediction). The works of Terwilliger et al. (2019);
Saric et al. (2020) successively improve the state-of-the-art by jointly inferring future
optical flow and using warping to predict future semantic segmentations. Finally,
Qi et al. (2019) uses optical flow and depth estimation to infer 3D point clouds and
improve future segmentations before frames predictions.

Future instance segmentation was introduced by Luc et al. (2018), where the
convolutional features obtained by a Mask-RCNN backbone He et al. (2017) are
forecasted. Sun et al. Sun et al. (2019) build on this by modifying the architecture to
use convolutional LSTMs. While combining both instance and semantic forecasting
ideas is suggested by Couprie et al. (2018), the instance segmentations are not learned
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RGB Instance Semantic car & bi- human depth camera object
frames segm. segm. cycle kp kp info tracks

Carla GT recording X X X X X X X X
Carla infered annotations X X X X
Cityscapes infered annotations X* X X X* X* X

Table 5.1: Summary of our dataset. *: provided by the Cityscapes dataset.

end-to-end, resulting in weak performance.

5.3 Semantically multi-modal datasets

Collecting long-sequences of data, with labels of different modalities, and in
abundance, is an extremely hard task that might be rendered impractical. Only a lim-
ited number of in-the-wild datasets contain several ground-truth annotation streams
recorded simultaneously, and those labels are offered in scarcity. In particular, there
exist no standard benchmark offering ground truth information for object tracking,
depth estimation, object detection, keypoint detection, instance segmentation and
semantic segmentation. For instance, the Cityscapes dataset of Cordts et al. (2016)
provides semantic and instance segmentation, center locations, but no keypoints,
and sequences of at most 1.5 seconds contain single labeled frames. To cope with
this, we gathered synthetic and pseudo ground truth real annotations as described in
Table 5.1.

Synthetic data. We use the Carla self-driving engine Dosovitskiy et al. (2017) to
generate 450 driving sequences of long range (120 frames per sequence, correspond-
ing to two minutes) and accurate labels representing multiple semantic modalities
for every frame. Carla is a video generation engine that simulates a virtually-infinite
number of realistic scenarios of an autonomous car driving in urban and rural areas
as well as highways. It offers simulation for multiple types of moving agents, in-
cluding cars, trucks, bicycles, bikes, pedestrians, with several subcategories of each
agent. Another crucial importance of using a synthetic engine is acquiring access to
simultaneously recorded ground-truth annotations for different modalities, which is
impractical and cost-ineffective to be done in real life. We modified the engine to
produce: 2D relative locations, bounding boxes, keypoints for cars and pedestrians,
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5.4 Models

depth maps, semantic and instance segmentations. We also provide meta information
about each instance such as object-id, which is useful for tracking. Further details
about the data collection are reported in the Supplementary material.

Real-world data. On both Carla and Cityscapes sequences, we use pseudo detec-
tion labels predicted by a panoptic segmentation network from Kirillov et al. (2019)
implemented within the Mask-RCNN framework He et al. (2017). Specifically, we
use Detectron2 Wu et al. (2019b) to obtain tracking information (using a heuristic
to match similar instances), bounding box detection, instance segmentation, and
keypoints for pedestrians.

5.4 Models

An overview of our future prediction system is depicted in Figure 5.2. To predict
better instance segmentation, we start predicting object’s locations and sizes in the
scene, through a bounding box forecasting model. Objects motion being strongly
linked to inter-object interactions, we model their trajectories with a Recurrent
Interaction Network (Battaglia et al. (2016); Riochet et al. (2020b)). Keypoints also
provide useful information for instance segmentation, such as object orientation /
deformation. Because they are often more complex to model (e.g., legs of walkers,
bicycles), we help the model catching these regularities by conditioning to the object
bounding box.

5.4.1 Modeling interactions for object bounding box
forecasting

Taking inspiration from the work of Riochet et al. Riochet et al. (2020b), we
model relationships between different objects via a Recurrent Interaction Network.

Interaction Network. An interaction network Battaglia et al. (2016) consists in
a graph neural network where objects are nodes and their interactions are vertices.
A four-layers Multi-Layer Perceptron (MLP), with hidden states of length 150

and ReLU activation units predicts the result of all interactions: for each object
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pair, it takes as input the concatenation of both object states and returns a latent
representation of the interaction, encoded as a vector of size 100. To predict object
motion, we aggregate all interactions involving this object by summing their latent
representations, and apply a second 4-layers MLP with hidden states of length 100

and ReLU activation units.

Object state. An object state consists in its bounding box position pt = [x, y, w, h]t,
velocity vt and the predicted object category encoded as a one-hot vector l. Like
in Riochet et al. (2020b), we “rollout" the Interaction Network to predict a whole
sequence of future states as if a standard Interaction Network was applied in recurrent
manner. We predict changes in velocity dv = vt − vt−1, reconstructing object state
as follow:

[p1,v1, l] = [p0 + δtv0 +
δt2

2
dv,v0 + dv, l], (5.1)

where p1 and v1 are position and velocity of the object at time t1, p0 and v0 are
position and velocity at time t0, and δt = t1 − t0 is the time step. Hence dv can be
seen as the acceleration, and (v0 + dv),(p0 + δtv0 +

δt2

2
dv) as the first and second

order Taylor approximations of velocity and position, respectively. The bounding
box is augmented with the distance of the object to the camera: pt = [x, y, w, h, d]t,
to help the model catch object dynamics. This distance can be either the ground truth
depth of the object (e.g. in Carla) or estimated as the median of the depth map in the
object’s instance map.

Correcting forecasting using perspective projection. Optionally, we cor-
rect bounding box predictions using ego-motion information. Using camera position
and orientation during the observation sequence, we apply an inverse perspective

projection to all objects, decoupling their trajectories from ego-motion. For inference,
we can project back these objects in the scene, applying a perspective projection

conditioned by the new (or predicted) state of the camera. Importantly, this inverse
perspective projection does not require absolute camera position but camera dis-
placements between each frame. For Cityscapes, we compute this information by
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integrating speed and yaw rate along the sequence, which is available in the
Cityscapes dataset.

We consider a sequence of m frames, in which n − 1 are observed . For t < n,
we observe:

– ct: camera location

– θt: camera orientation

– rtct,θt = (px, py, d)
t
ct,θt: relative position of the object in the frame (e.g., from

object detection) for camera (ct, θt).

We detail in the Supplementary material how to define the transformation pproj
and inverse transformation proj−1. We compute the following:

rtc0,θ0 = pprojc0,θ0(pproj
−1
ct,θt(r

t
ct,θt)), ∀t < n, (5.2)

which is the trajectory which would be observed if the camera was fixed at its initial
position/rotation. Note that the resulting trajectory is in a inertial space. Consider a
dynamic model Dyn (e.g., LSTM, Interaction Network, Fixed-Velocity baseline).

r̂nc0,θ0 = Dyn(rn−1c0,θ0). (5.3)

We predict the future sequence from this observation:

r̂t+1
c0,θ0 = Dyn(r̂tc0,θ0), ∀n 6 t < N − 1. (5.4)

We project back this prediction w.r.t. the actual position of the camera.

r̂tct,θt = pprojct,θt(pproj
−1
c0,θ0(r̂

t
c0,θ0)), ∀n 6 t < m. (5.5)

Finally, we have a predicted sequence r̂tct,θt , n 6 t < m which we can compare
with the ground truth rtct,θt , n 6 t < m. We show on Figure 5.3 predictions with and
without correction for egomotion.
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Figure 5.3: Benefit of re-projection for bounding box forecasting. In green the
observed bounding boxes at time t = 0, in red and blue the prediction
with and without re-projection, respectively, at time t = 6, 12, 18.
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5.4.2 Keypoints forecasting

Keypoints are represented as xy-coordinates in the scene: kp = [x, y]. We
condition these keypoints to their corresponding bounding box, by removing box
center and dividing by box size:

kp∗x,y =
kpx,y − (bboxx,y +

bboxw,h

2
)

bboxw,h
, (5.6)

where bboxx,y is the top-left corner of the bounding box, bboxw,h its width and
height, kpx,y the position of the keypoint and kp∗x,y the position of the keypoint,
conditioned by the bounding box. We use a linear LSTM to estimate the coordinates
of each keypoint or position using a sequence-to-sequence model Venugopalan et al.
(2015). For each instance, we incorporate the category information as a onehot
encoder. Unlike Villegas et al. (2018), we choose to predict these representations
in the coordinate space instead of the heatmap spatial space since it is a simpler
representation, thus easier to learn by the network. The LSTM network is trained
using an `2 loss between the prediction and the targets. At test time, the keypoints
locations are reconstructed as follow:

k̂px,y = ˆkp∗x,y ˆbboxw,h + ˆbboxx,y +
ˆbboxw,h
2

(5.7)

where ˆkp∗ is the predicted keypoint conditioned to object bounding box, and
ˆbbox is the predicted object bounding box.

5.4.3 Instance mask forecasting: occlusion aware neural
renderer

To predict future instance segmentation we use a similar model as Riochet et al.
(2020b), predicting each instance individually and applying an occlusion predictor
generating the appropriate pattern of inter-object occlusions. Compared to Riochet
et al. (2020b), we enrich the input object representation with its last observed mask,
allowing to predict much more complex object shapes.
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The Object rendering network takes as input the bounding box bboxkt , cate-
gory lk and previous binary mask Mk

t−1 of object k at time t. The previous instance
mask Mk

t−1 is centered in the bounding box bboxkt and concatenated to a features
map encoding for object category: a C ×H(= 128)×W (= 256) binary map where
each pixel is the l vector of length C. If object depth is available, it is copied into
another H × W array and concatenated to the feature map. Similarly, if object
keypoints are available, they are represented as a binary H ×W array filled with 1

at the location of every keypoint, and concatenated to the feature map.

The input feature map is processed with eight 3 × 3 convolution filters with a
pyramidal number of channels (going from 16 to 256 and backward), padding of
size 1 and interlaced with ReLU activation functions. The last convolution outputs a
2×H×W array, the first channel being the predicted instance mask M̂k, the second
encoding its depth D̂k. Note that if ground-truth object depth is not available, the
relative position of differents objects to render can be inferred by the model given
for example its size, category, keypoints, etc.

The object rendering network is applied to all objects present, resulting in a set of
masks and depth representation, denoted as {(M̂k, D̂k), k = 1..N}.

The Occlusion predictor takes as input the instance mask and depth represen-
tation for N objects and aggregates them to construct the final occlusion-consistent
mask. To do so it computes, for each pixel i, j and object k the following weight:

wki,j =
e−λD̂

k
i,j∑N

q=1 e
−λD̂q

i,j

, k = 1..N, (5.8)

where λ is a parameter learned by the model. The final masks are computed as
a weighted combination of masks M̂k

i,j for individual objects k: M̂k
i,j = wki,jM̂

k
i,j ,

where i, j are output pixel coordinates and wki,j the weights given by Eq. 5.8. The
intuition is that the occlusion renderer constructs the final output M̂ by selecting, for
every pixel, the mask with minimal depth (corresponding to the object occluding all
other objects), and discarding all other objects at this pixel.
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5.4.4 Training details

We train all models with Adam optimizer and its default parameters. For bounding
boxes and keypoints predictions, we use a batch size of 3 sequences, which includes
a variable number of detected objects, for 400 epochs. For instance mask prediction,
we use batch size of 2 and train for 100 epochs. Following Luc et al. (2017), we
downsample the segmentation representations to 256× 128. On Carla our models
are trained to predict 12 outputs from 8 inputs, and on Cityscapes, 5 outputs from 4
inputs. We augment data using horizontal flips with probability 0.5.

5.5 Results

We assess our performance by measuring the mean Intersection over Union (IoU)
and mean Average Precision averaged over IOU (AP-50) for segmentations, and the
Euclidean distance for keypoints predictions, against ground truth annotations. We
begin by validating our approach on the Carla dataset using synthetic annotations,
and then show that our results hold on Cityscapes without relying to ground truths.

5.5.1 Ablation studies on Carla

We first highlight the importance of every component of our approach in Table
5.2. Specifically, we remove successively for instance segmentation forecasting: (i)
the re-projection step, (ii) the bounding box input, (iii) the keypoint input and report
the performance in term of IoU. We first note a large performance gap with the copy
baseline that consists in predicting the last observed input, showing the difficulty
of the long range predictions we aim to perform. Conditioning on keypoints helps,
improving the IoU by two points, and our geometric re-projection helps considerably,
bringing almost 6 points. Finally, we also demonstrate the advantage offered by our
interaction network modeling by comparing to a ConvLSTM baseline that we detail
in the Sup. Mat.

The advantage of conditioning keypoint predictions using bounding boxes is
quantified in Table 5.3. Here, we observe that providing boxes in inputs to forecast
keypoints helps reduce the error by 57%. The error that is reached is close to the
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IoU

Copy baseline 23.5
Conv-LSTM baseline 44.1
Full model 54.3
without keypoints 52.3
without projection 48.4

Table 5.2: Instance forecasting ablation study on Carla, in terms of IoU of moving
objects, of the 12th predicted masks. The full model uses geometric re-
projection, the Recurrent Interaction Network and keypoints to perform
instance masks predictions.

pix. err.

Standard LSTM 64
GT bbox conditioned LSTM 22
Predicted bbox conditioned LSTM 27

Table 5.3: Keypoints forecasting error using conditioning: average Euclidean dis-
tance between prediction and Ground Truth, in pixels, in the 960× 540
frame.

optimal we could get by using Ground truth bounding boxes.

Qualitative examples on Carla are provided in Figure 5.4, that presents predictions
with and without using our perspective correction and conditioning. We display, for
3 sequences, the last input at time t, predictions at times t + 6 and t + 12 without
using keypoint conditioning nor re-projection, and the result at t+ 12 using the full
pipeline. We observe that using keypoints and re-projection helps achieve more
accurate prediction, in particular on the forehead object of each sequence.

5.5.2 Results on Cityscapes

We adopt a similar setting to Luc et al. (2017) and following works that use inputs
from frames 8, 11, 14, 17 for short term prediction of frame 20, and 2, 5, 8, 11 for
mid term prediction of frames 14, 17 and 20. In these experiments, we do not use
keypoint conditioning and leave this study as future work.

In Table 5.4 we compare the IoU on moving objects, compared with previous
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Last input Pred w/o kp+proj Pred w/o kp+proj Pred with kp+proj
t t+ 6 t+ 12 t+ 12

Figure 5.4: Comparison of results on Carla with or without help from keypoints
conditioning and re-projection. Results are overlayed with ground truth
images to emphasise different predictions.

Figure 5.5: Output example on a video sequence from Cityscapes. The model takes
as input panoptic segmentations for frame at t = 2, 5, 8, 11 (the first two
frames beeing omitted here) and predict forward segmentation for frames
at t = 14, 17, 20, 23.
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IoU Moving Objects

Short term Mid term

Copy last input 48. 29.7
Oracle 64.7
Luc et al ICCV’17 55.3 40.8

Saric et al. (2019) Oracle 71.5
Saric et al. (2019) 63.8 49.9

Saric et al. (2020) Oracle 75.2
Saric et al. (2020) 67.7 54.6

D2 oracle 75.7
Ours 69.5 49.5
Ours, no re-proj 67.3 44.7

Table 5.4: Instance forecasting: Mean IoU MO (Moving objects) on cityscapes val
set. Comparison to semantic segmentation forecasting approaches.

approaches. We note that the other methods of this table focus on semantic segmenta-
tion forecasting and do not delineate instance contours nor track object identities. In
terms of moving objects, our method improves the state-of-the-art Saric et al. (2020)
for the short-term semantic segmentation prediction.

5.6 Conclusion

We introduce a novel multi-representational forecasting pipeline that builds upon
different visual semantic inputs. The modeling of object trajectories via interaction
networks helps achieve results that are outperforming the state of the art for the
challenging task of future instance segmentation. We hope by providing such a
generic approach and analyzing a novel aspect of the forecasting problem to serve
as a building block for a better state modeling, and hence realistic forecasting. We
invite the reader to view examples of our predictions in the supplementary materials.
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5.7 Appendix

5.7.1 Data collection

We adapted the Carla research driving simulator of Dosovitskiy et al. (2017) to
generate sequences of images together with their corresponding semantic labels in
the form of background segmentations, instance trajectories and masks, and instance
keypoints.

The simulator includes five open-world environments approximating real-life
driving conditions and allows for randomization of traffic and weather conditions.
We show two examples of maps used in our simulations in Figure 5.6.

Map 1

Map 2

Figure 5.6: Examples of environment maps from the Carla driving simulator.

Vehicles in Carla belong to one of 42 different models that can be assigned random
colors increasing the variability of the scene. Similarly, a pedestrian belongs to one
of five types, of which each vary in measurement characteristics. At each run
simulation, we spawn 300 vehicles, pedestrians and bicycles at a randomly selected
map. Each of the agents (vehicles, bicycles, pedestrians) is moving autonomously,
with 50 of the vehicles having installed cameras that record their surroundings in
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an egocentric manner. We show an example of the trajectories created by spawning
bicycles, vehicles and pedestrians on Map 1 in Figure 5.7.

Vehicles

Bicycles

Walkers

Figure 5.7: Simulated trajectories of pedestrians, cyclists, and vehicles in the first
map.
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For each of the maps, we ran simulations of length 120 time-steps, that is recorded
by 50 cameras simultaneously and provides GT labels for many attributes including
semantic segmentation, instance segmentation, tracking information, keypoint detec-
tion, position and bounding boxes. The camera vehicles are chosen randomly among
the vehicles that are spawned in the simulation.

We extracted a variable number of keypoints per agent category: 5 for vehicles,
15 for bicycles, and 12 for pedestrians. For pedestrians, we used MaskRCNN and
selected the subset of keypoints that is shared with the ones defined in Carla. Thus,
results on Carla represent all moving agents category, while results on Detectron
labels only considers the keypoints of humans.

To obtain automatic labels, we ran the Detectron2 predictors for panoptic segmen-
tation and human keypoints on both Cityscapes dataset and our generated Carla data
(see Figure 5.8 for the panoptic segmentation predictions). Automatic labels provide
weak supervision for the same attributes provided in the GT labels.

Figure 5.8: Examples of panoptic segmentation results using Detectron2 on Carla
frames.

5.7.2 Correcting forward predictions from ego-motion

We focus on predicting future location of objects in video frames, in the case
where the camera is moving. We want to take account for camera displacement in
order to improve predictions.
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Setup

The camera parameters are defined by the camera’s intrinsic properties:

– H frame height in pixels (e.g. 540 on Carla)

– W frame width in pixels (e.g. 960 on Carla)

– F camera fovea angle (π/4)

and its position/orientation:

– c = [cx, cy, cz] absolute location of camera in the world

– θ = [θx, θy, θz] camera orientation as [roll, pitch, yaw].

Object are defined by

– [x, y, z] absolute location

– [px, py] relative location in number of pixels, [0, 0] being the top-left corner

– d depth or distance to the camera

Perspective projection

In this section we describe the perspective projection, which computes (px, py, d)
from (x, y, z), c, θ:

(px, py, d) = pprojc,θ(x, y, z)

– Step 0 (done one time only): given camera intrinsic properties, compute
calibration matrix:

K =


W

2 tan(F )
0 0

0 W
2 tan(F )

0
W
2

H
2

0

 (5.9)

This linear application “rescales" relative object location: [−1, 1]2 → [0,W ]×
[0, H].

128



5.7 Appendix

– Step 1: given camera rotation θ, compute the camera transform:

M(θ) =

1 0 0

0 cos(θx) sin(θx)

0 − sin(θx) cos(θx)


cos(θy) 0 − sin(θy)

0 1 0

sin(θy) 0 cos(θy)


 cos(θz) sin(θz) 0

− sin(θz) cos(θz) 0

0 0 1


(5.10)

This linear application consists in three consecutive rotations, each one along

one axis.

– Step 2: given camera location (cx, cy, cz) and object location (x, y, z), compute
the intermediate quantity:

fxfy
fz

 = K×M(θ)×


xy
z

−
cxcy
cz


 (5.11)

– Step 3: the result is given by:

pxpy
d

 =

fx/fzfy/fz

fz

 (5.12)

Inverse perspective projection

Matrices K and M(θ) are invertible, so is pprojc,θ(). We write the inverse
perspective projection:

(x, y, z) = pproj−1c,θ(px, py, d).

5.7.3 Additional ablation for segmentation prediction

To compare segmentation results obtained with our renderer with a classical
convLSTM, we implement the alternative architecture described in Figure 5.9.
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Figure 5.9: Architecture of the spatial prediction module used in our ablation studies.
A convolutional R50 encoder followed by a recurrent ConvLSTM that
propagates spatio-temporal features that are finally converted back to
spatial domain using a deconvolutional R50 decoder.

It represents the spatial encoder-decoder Conv-LSTM architecture we use in
our ablations for the background and instance prediction modules. The encoder
architecture is a non-recurrent ResNet-50 applied to each frame independently. The
extracted spatial features are jointly processed with the spatio-temporal features that
are being propagated through time by the Conv-LSTM. Then, the output spatio-
temporal features for each step are processed by a decoder (deconvolutional ResNet-
50). We used a convolutional LSTM with the following number of hidden channels:
16, 32, 64, 32, 16.
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Conclusion

In this thesis we attempted to draw a bridge between Infant Development and
Artificial Intelligence studies on intuitive physics. After introducing challenges and
states of the art in both litteratures, we described in chapter 3 a consistent series of
tests to evaluate intuitive physics in artificial intelligence systems, the same way
cognitive scientists evaluate it among infants.

This benchmark, called IntPhys (see chapter 3), is based on the Violation Expecta-
tion Paradigm and investigates three intuitive physics concepts: object permanence,
shape consistency and trajectory continuity. We also conducted human performances
and compared with two pixel-based baseline models. In the last 3 years, we counted
more than 20 teams which evaluated their models on the benchmark, and two other
teams used a similar Violation Expectation Paradigm to evaluate Intuitive Physics in
systems (Piloto et al. (2018); Smith et al. (2019)).

Our experiments on IntPhys showed that pixel-based CNN encoder-decoder struc-
tures - with no accountability for object instances - struggle to learn the type of
physical regularities we consider. This is especially true for predicting long trajec-
tories with frequent occlusions. In chapter 4, we designed an object-based model,
gifting the system with a notion of objects, interacting together and which physics
is compositional. Our experiments on simulated videos showed we were able to
perform object tracking and forward modelling, even when there were frequent
occlusions. In chapter 5, we adapted this approach to predict future instance masks
in city driving videos. We showed that decoupling objects’ position and appearance
allows to predict longer sequences. In addition, we proposed a method to decou-
ple ego-motion from objects’ motion, making it easier to learn long term object
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dynamics.
To disentangle the appearance of objects and their motion, we relied on object

detectors that are pre-trained on hundreds of thousands images with extensive an-
notation. Infants, of course, don’t need such data to acquire intuitive physics and it
seems likely that the mechanisms described in introduction still work with categories
of objects they have not been used to before. How could we adapt these methods to
a broader class of objects? And what is exactly an "object"? We used the notion of
"object" that is the commonly considered in computer vision, but a body itself can
be seen with various levels of granularities. Our understanding of physics looks to
be more hierarchical, and to adapt to more complex scenarios, including soft bodies,
liquids, etc. Finally, other senses seem to play an important role in our perception
of the physical world (e.g., touch, hearing, proprioception); these have not been
explored in this thesis, but I hope it will encourage future students to spend their own
on it.
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MOTS CLÉS

Vision par Ordinateur, Physique Intuitive, Apprentissage non-supervisé.

RÉSUMÉ

Pour effectuer des tâches complexes de manière autonome, les systèmes d’intelligence artificielle doivent pouvoir com-
prendre les interactions physiques entre les objets, afin d’anticiper les conséquences de situations diverses. L’objectif de
cette thèse est d’étudier l’acquisition de cette notion (souvent appelée physique intuitive), pour un système, de manière
autonome et non supervisée à partir de vidéos.
La première contribution consiste en un protocole de test, IntPhys, dont le but est d’évaluer les capacités d’un tel système
à comprendre la physique intuitive. Inspiré de la littérature en sciences cognitive, ce protocole consiste à en évaluer la
capacité à différencier les évèvement physiques possibles et impossibles au sein de vidéos. Après avoir décrit en détail
cette procédure, nous évaluons les performances de deux réseaux de neuronnes convolutifs et les comparons avec les
performances humaines.
L’analyse de ces résultats montre les limites des réseaux de neuronnes convolutifs pour prédire la trajectoire des objects
à long terme, notamment en présence d’occlusions. Pour cette raison, nous proposons une formulation probabiliste du
problème dans laquelle chaque object a sa propre représentation en variables latentes. Nous proposons également une
série d’approximations pour trouver une solution acceptable à ce problème d’optimisation.

Dans un dernier chapitre, nous proposons d’appliquer cette approche à un cas pratique: l’anticipation du mouvements

des objets alentours lors de la conduite en ville. Nous y montrons qu’il est possible d’entraîner un système à anticiper

les futurs masques d’instance d’objets, au sein de séquences vidéos enregistrées lors de la conduite dans 50 villes

europénnes.

ABSTRACT

To reach human performance on complex tasks, a key ability for artificial intelligence systems is to understand physical
interactions between objects, and predict future outcomes of a situation. In this thesis we investigate how a system can
learn this ability, often referred to as intuitive physics, from videos with minimal annotation.
Our first contribution is an evaluation benchmark, named IntPhys, which diagnoses how much a system understands
intuitive physics. Inspired by works in infant development, we propose a Violation-of-Expection procedure in which the
system must tell apart well matched videos of possible versus impossible events constructed with a game engine. We
describe two Convolutional Neural Networks trained on a forward prediction task, and compare their results with human
data acquired with Amazon Mechanical Turk.
The analysis of these results show limitations of CNN encoder-decoders with no structured representation of objects
when it comes to predict long-term object trajectories, especially in case of occlusions. In a second work, we propose
a probabilistic formulation of learning intuitive physics in 3D scenes with significant inter-object occlusions, in which
object positions are modelled as latent variables, enabling the reconstruction of the scene. We propose a series of
approximations that make this problem tractable and introduce a compositional neural network demonstrating significant
improvements on the intuitive physics benchmark IntPhys. We evaluate this model on a second dataset with increasing
levels of occlusions, showing it realistically predicts segmentation masks up to 30 frames in the future.

In a third work, we adapt this approach to a real life application: predicting future instance masks of objects in the

Cityscapes Dataset, made of video sequences recorded in streets from 50 cities. We use a state-of-the-art objects

detector to estimate object states, then apply the model presented above to predict objects instance masks up to 9

frames in the future. In addition, we propose a method to decouple ego-motion from objects’ motion, making it easier to

learn long term object dynamics.

KEYWORDS

Computer Vision, Intuitive Physics, Unsupervised Learning.
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