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Goals

Intuitive physics is often described as the untrained ability to understand the physical world; it has been commonly observed, and studied among infants, adults and animals. It allows one to catch a ball thrown in the air by anticipating its trajectory, or to build up a pile of dishes in the sink without casualties.

In the field of computer science however, modelling physics largely relies on rigorous mathematics equations which, while excelling at some complex tasks, fail when part of the system is unknown. For example, autopilots accurately land planes using GPS coordinates and environment variables, but robots still struggle to stack piles of objects they see for the first time [START_REF] Furrer | Autonomous robotic stone stacking with online next best object target pose planning[END_REF]).

The goal of this thesis is to explore the ability for a system to learn intuitive physics from experience. Such a system would look at various videos of object interactions to learn the underlying physical regularities.

Motivations

Among applications that would benefit from such intuitive physics, there are:

Robotics. In robotics, consequent efforts have been made to automatically train a system to make a sequence of decisions. In this field, called Reinforcement Learning, model-based approaches consist of anticipating the outcome of different actions before choosing the best one. A model capable of predicting the physical consequences of its actions could achieve its task faster and safer.

Autonomous Driving. To move safely with little or no human input, autonomous vehicles shall anticipate possible obstacles arising in their surrounding environment. In many cases, this requires to understand physical interactions between objects.

Tracking. Video tracking consists of locating and linking moving objects in a video sequence. It has a variety of uses, some of which include: human-computer interaction, security, augmented reality, traffic control. Most tracking systems rely on two components: the data model, which identifies objects in the frames, and the motion model, which accounts for their dynamics. Because the motion model aims at discriminating possible and impossible trajectories, it would largely benefit from more robust priors on physics.

Cognitive Sciences. Besides applications in computer science, reverse engineering intuitive physics acquisition, i.e., building a system that mimics infant's achievements, could help understand the early infant development, and how physical intuitions arise in the human mind (see [START_REF] Dupoux | Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the infant language-learner[END_REF] for a similar approach in language acquisition).

Intuitive Physics of Objects in Infant Development

The process in which human beings acquire these concepts (and others, see [START_REF] Carey | The Origin of Concepts. Oxford Series in Cognitive Development[END_REF]) has been debated for years. For empiricists, like John Locke, William James, or Jean Piaget, the initial state of infant cognition is limited to perceptual or sensory-motor representations:

-John Locke (1632Locke ( -1704) ) thought of the mind as a "blank tablet" (tabula rasa) with sensory perceptions. He argued that ideas come from experience, and that no principle of reason is innate in the human mind [START_REF] Locke | An Essay Concerning Human Understanding[END_REF]).

-William James (1842James ( -1910) ) famously believed that: The baby, assailed by eyes, ears, nose, skin, and entrails at once, feels it all as one great blooming, buzzing confusion; and to the very end of life, our location of all things in one space is due to the fact that the original extents or bignesses of all the sensations which came to our notice at once, coalesced together into one and the same space. There is no other reason than this why "the hand I touch and see coincides spatially with the hand I immediately feel." (James (1890))

-Jean Piaget (1896Piaget ( -1980) ) proposed that infants begin life with a repertoire of sensorimotor representations, achieving truly symbolic representations only at the end of second year of life [START_REF] Piaget | The Construction of Reality in the Child. The Construction of Reality in the Child[END_REF])

In the end of the XX th century, an alternative to this empiricist picture emerged with the work of psychologists like René Baillargeon, Randy Gallistel, Rochel Gelman, Alan Leslie, Elizabeth Spelke or Susan Carey. These writters shared the view that human cognition, like that of all animals, begins with highly structured innate mechanisms designed to build representations with specific content [START_REF] Carey | The Origin of Concepts. Oxford Series in Cognitive Development[END_REF]). In this thesis we investigate such structured mechanisms in artificial systems (see Chapter 2 for a review), in an attempt to understand those that are needed to build physical intuitions. In chapter 3, we draw inspiration from the works of these psychologists to build an evaluation procedure for intuitive physics in artificial intelligence systems.

Violation of Expectation Paradigm

Evaluating the early acquisition of intuitive physics concepts is difficult, as young infants have no access to language or advanced manipulation. Thus one cannot simply "ask" the infant about their understanding or assess their ability to perform complex tasks. For that reason, many infant development experiments rely on violation-of-expectation tasks: given a physical rule, infants are shown normal events (often referred to as possible) versus events breaking the physical rule in question (often referred to as impossible). After an habituation phase where the infant is shown several normal events, we measure their attention time in front of possible and impossible events, which is interpreted as the surprise expressed by the infant. The hypothesis is that infants' attention time is longer when being shown impossible events than possible events. If this hypothesis is statistically true, we (abusively) say the infants "understand" this physical rule.

In Chapter 3, we design such a procedure to evaluate intuitive physics in systems, on three physical rules: Object Permanence, Shape Consistancy and Spatio-Temporal Continuity.

Core Knowledge of Objects

In this section we describe a subpart of the Core Cognition described in [START_REF] Carey | The Origin of Concepts. Oxford Series in Cognitive Development[END_REF], which deals with the notion of Object. Even though we describe it for human beings, this core notion of object has been shown to be shared by other animals [START_REF] Gallistel | The Organization of Learning. The Organization of Learning[END_REF]).

Perception of objects.

Young infants have expectations that objects are bounded and cohesive over time. [START_REF] Cheries | Cohesion as a constraint on object persistence in infancy[END_REF] experiment with a crawling task on 10-month-old infants to demonstrate that they fail to track objects when broken into two pieces, suggesting that violations of cohesion disrupt infants' object tracking abilities. In another experiment, [START_REF] Needham | The role of shape in 4-month-old infants' object segregation[END_REF] show that 4-month-old infants are more likely to use shape rather than color and pattern differences to find object boundaries (it seems to remain the case until around 11 months).

Object permanence. Object permanence is the concept that objects continue to exist when they are occluded. [START_REF] Baillargeon | Object Permanence in Five-Month-Old Infants[END_REF] introduced a method devised to test object permanence in young infants based on the violation-of-expectation procedure described above. In their experiment, five-month-old infants are habituated to a screen that moves back and forth through a 180-degree arc (see figure 1.1). After this habituation phase, a box is centered behind the screen and infants are shown possible and impossible events. In the possible event, the screen stops when it reaches the occluded box; in the impossible event, the screen moves through the space occupied by the box. Results indicated that infants look reliably longer the impossible event, thus authors drew the following conclusion:

Contrary to [START_REF] Piaget | The Construction of Reality in the Child. The Construction of Reality in the Child[END_REF] claims, infants as young as 5 months of age understand that objects continue to exist when occluded. The results also indicate that 5-month-old infants realize that solid objects do not move through the space occupied by other solid objects. (...) This experiment was reconducted in [START_REF] Baillargeon | Object permanence in 3 1 2 -and 4 1 2 -month-old infants[END_REF] with 3.5 to 4.5-monthold infants, showing that the 4.5-month-olds, and a portion of the 3.5-month-olds infants looked reliably longer at the impossible than at the possible event. [START_REF] Aguiar | 2.5-Month-Old Infants' Reasoning about When Objects Should and Should Not Be Occluded[END_REF] also investigated 2.5-month-old infants' reasoning about occlusion events. They focused on infants' ability to predict whether an object remains hidden or becomes temporarily visible when passing behind an occluder with an opening in it. In Chapter 3, we draw inspiration from these experiments to create one of the blocks of our IntPhys Benchmark. [START_REF] Spelke | Origins of knowledge[END_REF] provided evidences for early-developing capacities of young infants to reason about object motion. They showed that infants as young as 2.5 to 3-month-old already exhibit two physical conceptions: continuity and solidity. The term "continuity" refers to the fact that objects move only on connected paths and do not jump from one place and time to another; "solidity" referring to the fact that objects move only on unobstructed paths and no parts of two distinct objects coincide in space and time.

Continuity & solidity

Figure 1.1: Schematic representation of the possible and impossible test events in the object permanence experiment, from [START_REF] Baillargeon | Object Permanence in Five-Month-Old Infants[END_REF].

Inertia & gravity In addition to their experiments on continuity and solidity, [START_REF] Spelke | Origins of knowledge[END_REF] demonstrated that such young infants (3-month-old) fail at expressing intuitions about inertia; the fact that objects do not change their motion abruptly and spontaneously, and gravity; that objects move downward in the absence of support. Other experiments showed that these notions arise later in the development: at around 7 months for gravity [START_REF] Kim | Infants' sensitivity to effects of gravity on visible object motion[END_REF]) and from 8 to 10 months for intertia [START_REF] Spelke | Early knowledge of object motion: Continuity and inertia[END_REF]).

Conservation of properties. Infants don't expect objects' intrinsic properties like size, shape, pattern, or color, to change with no reason. [START_REF] Wilcox | Object individuation: Infants' use of shape, size, pattern, and color[END_REF] demonstrated that 4.5-month-olds use both shape and size to discriminate objects during occlusion events. It is around 7.5-months-old that they use pattern, and only at 11.5 months that they use color to reason about object identity.

Figure 1.2 shows an overview of the acquisition of intuitive physics in infant development. An exhaustive review can be found in [START_REF] Hespos | Physics for infants: Characterizing the origins of knowledge about objects, substances, and number[END_REF]. 

A Bootstrapping Problem

Bottom-up & Top-down Mechanisms

In psychology, we define as bottom-up processes those that arise from sensory reception and do not require any knowledge or prior on the world. For example, in the context of intuitive physics, infants' visual system bounds, locates and identifies objects, resulting in a sequence of object proposals over time. This process is said to be bottom-up, as it arises from the visual system with no prior on the underlying physics.

On the other hand, we define as top-down, processes that are influenced by our knowledge, or prior, about the world. Violation of expection experiments show evidence of these processes: infants express surprise when faced events that contradict their knowledge of the physical world.

From a learning point of view, these bottom-up [START_REF] Needham | The role of shape in 4-month-old infants' object segregation[END_REF]; [START_REF] Cheries | Cohesion as a constraint on object persistence in infancy[END_REF]; [START_REF] Wilcox | Object individuation: Infants' use of shape, size, pattern, and color[END_REF]) and top-down mechanisms [START_REF] Baillargeon | Object Permanence in Five-Month-Old Infants[END_REF]; [START_REF] Baillargeon | Object permanence in 3 1 2 -and 4 1 2 -month-old infants[END_REF]; [START_REF] Spelke | Origins of knowledge[END_REF]) often appear to be interdependant. For instance in the object permanence experiment, infants are shown objects that disappear behind an occluder, then reappear. While they are visible, the visual system catches object cues; but because of changes in illumination or orientation, these object cues are noisy and tracking their identity is already non-trivial: we must understand that objects' position and appearance change smoothly in time. It becomes even harder when an object gets occluded: we assume it continues to exist even if we don't see it, and predict its trajectory to anticipate when it will get out of occlusion. How can these intertwined processes mature together during the first months of life? This computational challenge is often called bootstrapping problem.

Bootstrapping Problem

In psychology, a "bootstrapping" process is a process in which a system uses its initial resources to develop more powerful and complex processing routines, which are then used in the same fashion, and so on cumulatively1 . In language acquisition for example, the term is used to express the complexity of learning the rules for natural languages, given the few observable data and numerous ambiguities the child is being faced (Pinker (1987)).

The developmental psychologist Susan E. Carey proposed the term "Quinian bootstrapping", after the philosopher and logician Willard Van Orman Quine (1908[START_REF] Betke | Real-time multiple vehicle detection and tracking from a moving vehicle[END_REF], to describe the theory that humans build complex concepts (including intuitive physics) out of primitive ones through a bootstrapping process.

Minimum viable physics for autonomous systems

In this introduction, we have presented works from psychologists sharing a similar view of human cognition: it begins with highly structured innate mechanisms, from which it builds specific representations through bootstrapping processes. In the next chapters we investigate what properties are required for a system to build such rich representations about the physical world. In particular, we explore different computational systems and compare their performances on tasks inspired from the infant development studies presented in this introduction.

Contributions

In chapter 3, we create a consistent series of tests to evaluate intuitive physics in systems [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF]). Relying on the Violation Expectation Paradigm described above, we designed a benchmark based on three Intuitive Physics concept: object permanence, shape consistency and trajectory continuity. We also conducted human studies and compared results with two pixel-based baseline models. To our best knowledge, this work was the first to use Violation Expectation Paradigm to evaluate Intuitive Physics in systems and was followed by two other works [START_REF] Piloto | Probing Physics Knowledge Using Tools from Developmental Psychology[END_REF]; [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF]. This work is published in IEEE Transactions on Pattern Analysis and Machine Intelligence and has also been used by the DARPA for its Machine Common Sense project, to evaluate works on Intuitive Physics. We counted more than 20 teams evaluating their models on the benchmark in the last 3 years.

Our experiments from [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF] show that CNN encoder-decoder structure (either trained in an adversarial procedure or not) are not enough to learn the type of physical regularities we considered, especially in the case of occlusions. In chapter 4 we design an object-based model, gifting the system with a notion of objects, interacting together and in which physics is compositional Riochet et al. (2020a). Our experiments on simulated videos showed we are able to perform object tracking and forward modelling, even when there were frequent occlusions. One could compare this structure imposed in the model as the Core Knowledge of Objects described in 1.3.2, in opposition to the pure empiricist hypothesis of a more general model learning the notion of object from visual inputs only.

Finally, in chapter 5, we adapt this approach to the case of a moving camera, applying it to two city driving datasets: one synthetic recorded with Carla [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF]), and the Cityscapes Dataset [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF]) made of real video sequences recorded in streets from 50 cities. In addition, we proposed a method to decouple ego-motion from objects' motion, making it easier to learn long term object dynamics. For centuries, physicists have been describing the world through mathematical equations that matched observations. With this formalism and the emergence of computer science came the possibility to simulate almost any kind of physical system, sometimes with an extreme precision. This allowed human kind to send satellites in orbit, cross an ocean in six hours or forecast weather for several days. These programs are often tailor made for specific problems: involving mathematical tools that differs from one situation to another (e.g. rigid or soft body physics, fluid dynamics, etc.). With the rise of deep learning, researchers have tried to build systems that could discover these regularities from observations. In that scenario, instead of writting down a sequence of instructions, the researcher designs a model capable of learning those instructions from the observed data, through a so-called training phase. This way, [START_REF] Shi Xingjian | Convolutional LSTM network: A machine learning approach for precipitation nowcasting[END_REF] predicted precipitation nowcasting with a deep learning architecture that was later used for biological age estimation (Rahman and Adjeroh ( 2019)), traffic flow prediction [START_REF] Liu | Short-term traffic flow prediction with Conv-LSTM[END_REF]) or video salient object detection [START_REF] Song | Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection[END_REF]).

Articles

While these machine learning approaches are still far less accurate than the traditional ones, showing ability to learn these rules from observations echoes with the mechanisms described in Chapter 1. In this thesis we restrict to the types of physical interactions described in the litterature of infant development, sometimes called intuitive physics. This chapter contains a review of the litterature on Intuitive Physics in Computer Vision and Artificial Intelligence.

Intuitive Physics in Controlled Environments

Modelling intuitive physics is inherently tied to our representation of the physical scene. Such representation may be RGB pictures, point clouds or more structured like object representations. Some of them, like the first one, have the advantage of being applicable to various real-life scenarios as videos are easy and cheap to record. In this section, we present works that were proposed to learn intuitive physics from controlled environments where structured object representation is available.

In such environment, objects are represented by their coordinate vector, either in 2D [START_REF] Michael B Chang | A compositional object-based approach to learning physical dynamics[END_REF]; [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] or 3D [START_REF] Mrowca | Flexible neural representation for physics prediction[END_REF]; [START_REF] Li | Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids[END_REF]. In [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF], authors introduce the Interaction Network, a neural network taking as input objects' physical state at a given time and predicting their trajectory in the near future. To do so, they build a graph where each node is an object (described by its position, velocity and mass) and each edge describes interaction between these objects. By factorizing one model to predict these interactions, this approach is compositional and allows to take a variable number of objects as input. This is also the case for [START_REF] Michael B Chang | A compositional object-based approach to learning physical dynamics[END_REF] where, in addition, authors prune the graph from interactions involving objects that are too distant in space (see examples of scenes they consider in Figure 2.1). While these two works involve rigid objects in the 2D plane, [START_REF] Mrowca | Flexible neural representation for physics prediction[END_REF]; [START_REF] Li | Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids[END_REF] use the same idea to model soft bodies and fluids in the 3D space. In that case, one body is itself described with several atomic parts (see Figure 2.2) which interact together, causing its deformation. This physics engine runs on multiple independent draws sampled from a probability distribution accounting for the observer's belief on some physical quantities (mass of object, precise location of a partially occluded object, etc.). This model shows similar behavior with humans on five distinct psychophysical tasks. 

End-to-End Forward Prediction in Videos

Next-frame prediction

Other works have focused on predicting future frames in videos [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF]; [START_REF] Viorica Pȃtrȃucean | Spatio-temporal video autoencoder with differentiable memory[END_REF]; [START_REF] Wichers | Hierarchical Long-term Video Prediction without Supervision[END_REF]. One motivation for this task was that training a model for forward prediction would require the model to understand objects motion, thus both learn to represent objects and infer their dynamics. Ideally, this would be a way to learn visual features for object detection, without the need for expensive, human annotated, datasets. In practice however, these approaches have not yielded any consistent improvements in object detection, compared to fully-supervised approaches described in Section 2.3.1.

Using additional information

Other works have proposed using more supervision in the task of future frame prediction. [START_REF] Luc | Predicting Deeper Into the Future of Semantic Segmentation[END_REF][START_REF] Luc | Predicting Future Instance Segmentation by Forecasting Convolutional Features[END_REF]; [START_REF] Couprie | Joint Future Semantic and Instance Segmentation Prediction[END_REF] predict future segmentation, allowing to focus on object motion without having to predict textures and changes in lighting.

Keypoints have also been used in forward prediction. [START_REF] Villegas | Learning to Generate Long-term Future via Hierarchical Prediction[END_REF] encode objects in a video as a time series of keypoints, then use a Long Short-Term Memory (LSTM) network [START_REF] Hochreiter | Long Short-Term Memory[END_REF] to predict their future pose. Finally, they train an image generator to predict the future frame from the initial frame and the predicted pose.

Finally, optical flow, the instantaneous velocity of pixels moving in a video; has been used as a cue to infer objects' velocities. [START_REF] Liang | Dual Motion GAN for Future-Flow Embedded Video Prediction[END_REF] propose a generative adversarial network (GAN) to predict both future frame and optical flow.

Intuitive Physics of Objects in Videos

In this section we first describe the notion of object in computer vision, then present works on learning intuitive physics of objects from visual inputs.

Notion of Object in Computer Vision

In computer vision, the notion of object itself varies, along with methods used to detect them. In most cases, an object detection is defined by a bounding box: a rectangle around the object in the picture, and a label specifying the kind of object that is detected. It can be completed with an instance mask which tells, for each pixel, if it is part of the object or not. Additional information, like keypoints, can extend this detection. Examples of such detections can be found in Figure 2.3. Supervised object detection. Supervised object detectors are models trained on large datasets of images paired with the list of visible objects, along with their localization. [START_REF] Girshick | Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[END_REF]; [START_REF] Girshick | Fast R-CNN[END_REF]; [START_REF] Shaoqing Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF] propose a Region-based Convolutional Network (RCNN), that use a pre-trained convolutional neural network to bottom-up region proposals, in order to localize and segment objects. [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF] propose a model that performs detection at a rate faster than 24 images, making it suitable for real time application on videos streams. [START_REF] Lin | Feature Pyramid Networks for Object Detection[END_REF] propose a Feature Pyramid Network (FPN) which efficiently computes pyramid representation. This rich representation can be used in a Faster-RCNN system [START_REF] Shaoqing Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF]) to improve performance with marginal extra cost.

Finally [START_REF] Tan | EfficientDet: Scalable and Efficient Object Detection[END_REF] propose key optimizations to improve efficiency of object detectors, resulting in the current state-of-the-art model.

The two main datasets, Pascal VOC Everingham et al. (2010) and Microsoft COCO Lin et al. (2014) propose a large number of images with annotated object instances, as well as a test set and evaluation benchmark. Microsoft COCO contains 300 000 fully segmented images, where each image has an average of 7 object instances from 80 categories. Pascal VOC, on its side, contains only 20 categories. It is also common to pretrain some parts of the model on large image classification datasets (e.g., ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]) to improve extracted visual features. Visual saliency detection aims to discover regions in an image that look the most like a object. We can distinguish bottom-up and top-down approaches. In bottom-up approach (like [START_REF] Tu | Real-Time Salient Object Detection With a Minimum Spanning Tree[END_REF]), low-level visual features (e.g. edges, texture) play a central role, regardless of the semantic content. In contrast, top-down approaches, like [START_REF] Yang | Top-Down Visual Saliency via Joint CRF and Dictionary Learning[END_REF], use priors about object categories and spatial context to make their prediction. In practice, these two mechanisms combine well: the former proposes object region candidates while the latter prune these candidates with respect to a prior knowledge about objects. A litterature review on object detection (in date of 2019) can be found in [START_REF] Zhao | Object Detection With Deep Learning: A Review[END_REF] Detecting objects from videos. Methods presented above detect objects from still images, but videos offer additional information which should help making better predictions (e.g., distinguishing ambiguities due to occlusions and/or lighting conditions). [START_REF] Zhu | Flow-Guided Feature Aggregation for Video Object Detection[END_REF] and Li et al. (2018a) investigate flow guided, endto-end methods for video object detection. [START_REF] Zhu | Flow-Guided Feature Aggregation for Video Object Detection[END_REF] propose to aggregate features from a reference frame with thoses of nearby frames, based on optical flow information. These aggregated features are used to predict more robust object detection in the reference frame. Li et al. (2018a) propose a similar idea, encoding sequential feature evolution with LSTM networks. See also [START_REF] Agarwal | Review of optical flow technique for moving object detection[END_REF] for a review of on optical flow litterature prior to 2016.

Other approaches. Finally, other works have used proxy tasks, like video colorization, to detect and track objects [START_REF] Vondrick | Tracking Emerges by Colorizing Videos[END_REF]). [START_REF] Greff | Multi-Object Representation Learning with Iterative Variational Inference[END_REF] and [START_REF] Burgess | MONet: Unsupervised Scene Decomposition and Representation[END_REF] propose methods to learn -without supervision -to segment images into interpretable objects with disentangled representations. In particular, they train variational autoencoders (VAE) to reconstruct input images, given the prior that they contain several objects. While this method works well on synthetic datasets like [START_REF] Johnson | CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning[END_REF], they fail to generalize on real images like those of ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]).

Learning the Dynamics of Objects in Videos

Several works have attempted to learn physical regularities from videos. Compared to coordinate trajectories, working from a sequence of video frames is challenging, because:

-High dimension: There are more 10×10 distincts images than the total number of images seen by all humans through out history 1 .

-Occlusions and changes in illuminations make information noisy or missing.

-The losses used on pixels only partially reflects the layout of the physical scene (see Figure 2.4).

Figure 2.4: Is image X closer to image A or B? Even though they show two different objects, the L2 distance between A and X is lower than the one between B and X Simple and planar scenes. Some works focus on simple images, with low resolution (usually around 100x100 pixels or lower), with very simple shapes and no changes in illumination. 2018) learn the dynamics of several objects in 64 × 64 pixels videos. Watters et al. (2017) use a visual encoder to estimate the state of every object, then apply an Interaction Network [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF]) to predict future states. [START_REF] Sjoerd Van Steenkiste | Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions[END_REF] explore the use of a Relational Neural Expectation Maximization, a Neural Expectation Maximization [START_REF] Greff | Neural Expectation Maximization[END_REF]) endowed with a relational mechanism also similar to [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF].

Although input videos are a lot simpler than those from real life applications, these works have the advantage of exploring end-to-end approaches, which do not need to be pretrained with annotated data.

Controlled or synthetic realistic scenes. Going forward to learning intuitive physics from real-life videos, many works have tried to simulate simple scenes in 3D virtual environments. They either use game engines like UnrealEngine (Epic Games (2019)) or Unity (Technologies (2005)), or more research oriented libraries like PyBullet [START_REF] Coumans | Pybullet, a python module for physics simulation for games, robotics and machine learning[END_REF]) or MuJoCo [START_REF] Todorov | MuJoCo: A physics engine for model-based control[END_REF]). [START_REF] Lerer | Learning Physical Intuition of Block Towers by Example[END_REF]; [START_REF] Li | To Fall Or Not To Fall: A Visual Approach to Physical Stability Prediction[END_REF]; [START_REF] Mirza | Generalizable features from unsupervised learning[END_REF]; [START_REF] Groth | ShapeStacks: Learning Vision-Based Physical Intuition for Generalised Object Stacking[END_REF]; [START_REF] Zhang | A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural Networks as Accounts of Human Physical Scene Understanding[END_REF] have focused on predicting the stability of piles of blocks from still images (see examples in Figure 2.5). They use CNN based image classifiers taking as input an image of a block tower and returning a probability for the tower to fall. [START_REF] Lerer | Learning Physical Intuition of Block Towers by Example[END_REF]; [START_REF] Mirza | Generalizable features from unsupervised learning[END_REF] also include a decoding module to predict final positions of these blocks. [START_REF] Groth | ShapeStacks: Learning Vision-Based Physical Intuition for Generalised Object Stacking[END_REF] investigate the ability of such a model to actively position shapes in stable tower configurations. Similarly to Chapter 3, [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF] and [START_REF] Janner | Reasoning About Physical Interactions with Object-Oriented Prediction and Planning[END_REF] proposed Violation-of-Expectation based datasets to evaluate intuitive physics understanding. They also investigate models including modules for parsing the scene as objects and predicting their future motion.

Real videos. Finally, we review works that have focused on intuitive physics and forward modelling in real videos. [START_REF] Srivastava | Unsupervised Learning of Video Representations using LSTMs[END_REF] use Long Short Term Memory (LSTM) networks to learn representations of video sequences, also predicting the future sequence. [START_REF] Viorica Pȃtrȃucean | Spatio-temporal video autoencoder with differentiable memory[END_REF]; [START_REF] Lotter | Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning[END_REF]; [START_REF] Sun | Predicting future instance segmentation with contextual pyramid convlstms[END_REF] propose models based on Convolutional Long Short-Term Memory cells (ConvLSTM), similar to [START_REF] Shi Xingjian | Convolutional LSTM network: A machine learning approach for precipitation nowcasting[END_REF], for video forcasting. Rather than focusing on future frame, [START_REF] Sun | Predicting future instance segmentation with contextual pyramid convlstms[END_REF] predict future instance segmentation. This approach allows to focus more on object position and orientation rather than changes in texture or luminosity, and is also the direction we chose in Chapter 5. [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF] investigate different losses for preserving objects' sharpness in video forecasting. [START_REF] Ranzato | Video (language) modeling: A baseline for generative models of natural videos[END_REF] have proposed a baseline inspired by language models to predict future frames in videos. [START_REF] Vondrick | Generating Videos with Scene Dynamics[END_REF] propose a generative adversarial network with a spatio-temporal convolutional architecture that disentangles the foreground and background. [START_REF] Finn | Unsupervised learning for physical interaction through video prediction[END_REF] use a LSTM-based approach for a model-based reinforcement learning task, for robotic manipulation. [START_REF] Xu | Dense-PhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic Interactions[END_REF] propose a model learning physical object properties from dynamics interaction (through a robot's arm) and the resulting visual observations. [START_REF] Wu | Physics 101: Learning Physical Object Properties from Unlabeled Videos[END_REF] construct a dataset, called Physics101, with videos of various objects interacting one with each other. Taking inspiration from [START_REF] Carey | The Origin of Concepts. Oxford Series in Cognitive Development[END_REF], they design four different scenarios:

Inferrence of physical properties

-Ramp: Objects are put on an inclined surface and may either slide down or stay static, due to gravity and friction.

-Spring: Objects are hung to a spring, gravity on the object stretching the spring.

-Fall: Objects are dropped in the air and freely fall onto various surfaces.

-Liquid: Objects are dropped into some liquid and may float or sink at various speeds.

Like in [START_REF] Battaglia | Simulation as an engine of physical scene understanding[END_REF], authors use a hard-coded physical world simulator, predicting object dynamics given their physical properties: mass, volume, friction coefficient, restitution coefficient, elasticity. They train a neural network to estimate these quantities from observations, given the constraints encoded in the physical world simulator.

Summary

We have presented different works on intuitive physics as explored in the artificial intelligence and computer vision litteratures. Although these works agree on the problems they tackle, the models considered as well as the data they evaluate on differ a lot. In this section, we intend to summarize those differences in light of motivations presented in Chapter 1.

The first axis of variation we consider is the type of data that is used for the experiments. It goes from trajectories simulated in the cartesian space to real videos of complex scenes. The main categories are:

(i) Perfect object trajectories in the cartesian plane (2D). Each object is represented by its x-y coordinates and physical intrinsic properties. Typically, such trajectories come from simulated worlds as shown in Figure 2.1.

(ii) Perfect object trajectories in the cartesian space (3D): similar to the previous one, but in 3D (see Figure 2.2). Works like [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF][START_REF] Michael B Chang | A compositional object-based approach to learning physical dynamics[END_REF]; [START_REF] Mrowca | Flexible neural representation for physics prediction[END_REF]; [START_REF] Li | Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids[END_REF] show that neural networks can learn such trajectories and make long term predictions. However, this is to be put in perspective with the fact that traditional physics engines (included those used to simulate these data!) do perform extremely good on these tasks.

(iii) Simple 2D videos: videos with simple objects on a 2D plane, with no occlusion or changes in illumination. This includes videos of billiard boards with distinctly colored balls, as well as synthetic videos created in 2D environments.

(iv) Controlled 3D synthetic videos: recorded in 3D virtual environments with fixed camera, few objects or changes in background and illumination.

(v) 3D synthetic videos: more complex videos with camera in motion and high diversity in objects categories and motion. This includes city-driving datasets like [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF].

(vi) Controlled real videos: recorded with a standard camera, but in an controlled environment. The camera is fixed and the scene involves only few objects with simple appearance. These scenes are almost perfectly segmented by standard object detectors, and simple tracking heuristics successfully compute object trajectories.

(vii) Unconstrained real videos from everyday life. Objects can be of diverse appearance and their motion may induce occlusion, causing standard object detectors to fail at segmenting some objects in some frames. Simple tracking heuristics may fail.

The second axis we consider is the notion of physics, or the prior on physics, that is given to the model. This reflects the choices that are made in the model's design, such as the structure of the neural network, to allow it modelling the physical world. We propose the following partition:

(a) No prior on physics: a general model capable of learning regularities from a training dataset (either videos or trajectories), with no specific design aimed to learn intuitive physics or object dynamics.

(b) Physics is shared per object (but learnt): the model is still general, but is applied to each object individually. To work on videos, this requires the use of a visual encoder (either trained end-to-end or including a pre-trained object detector).

(c) (ii) + Physics is shared per pairwise interaction: factorizing one model to learn all pairwise interactions.

(d) (iii) + Movement is 2nd order (continuity of trajectories): position is the derivative of velocity, which is the derivative of acceleration. Applying constraints on acceleration or velocity helps to smooth trajectories, especially when observations are noisy or partially missing. A notable version, the Kalman filter, can be used in the tracking of objects in videos.

(e) Traditional physics engine inside. The system includes a traditional physics engine to make forward predictions, sometimes using sampling to account for uncertainty in observations.

In Figure 2.6, we classify related works presented above in regards to these two axes of variation.

Beyond Object Tracking: Event Decoding

Multiple Object Tracking (MOT) consists in locating multiple objects, maintaining their identities, and yielding their individual trajectories given an input video. Such "objects" can be pedestrians [START_REF] Yang | Learning affinities and dependencies for multi-target tracking using a CRF model[END_REF][START_REF] Pellegrini | You'll never walk alone: Modeling social behavior for multi-target tracking[END_REF] [START_REF] Koller | Robust multiple car tracking with occlusion reasoning[END_REF]; [START_REF] Betke | Real-time multiple vehicle detection and tracking from a moving vehicle[END_REF], sport players [START_REF] Lu | Learning to Track and Identify Players from Broadcast Sports Videos[END_REF], animals [START_REF] Spampinato | Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos[END_REF], etc. An exhaustive review can be found in [START_REF] Luo | Multiple Object Tracking: A Literature Review[END_REF]. We call event decoding the problem of assigning to a sequence of video frames F = f t=1..T a sequence of underlying object states (i.e., object positions, velocities, appearance, mass, etc.) S = s i=1..N t=1..T that can explain this sequence of frames. Within a generative probabilistic model, we therefore try to find the state Ŝ such that:

Ŝ = argmax S P (S|F, θ) (2.1)
where θ is a parameter of the model. With Bayes rule, P (S|F, θ) decomposes into the product of two probabilities that are easier to compute, P (F |S, θ), the rendering model, and P (S|θ), the physical model. This is similar to the decomposition into an acoustic model and a language model in ASR [START_REF] Neufeld | Review of Statistical methods for speech recognition by Frederick Jelinek[END_REF].

In practice, this optimization problem is difficult because the states are continuous, the number of objects is unknown, and some objects are occluded in certain frames, yielding a combinatorial explosion regarding how to link hypothetical object states across frames.

In chapter 4 we will attempt to make this problem tractable. In first place, we use off-the shelf instance mask detectors presented above to operate in mask space and not in pixel space. Second, we approximate these probabilistic model with two Neural Networks, one rendering model and one physical model. We will design them as compositional, which may be defined as:

-"Compositionality is an embodiment of faith that the world is knowable, that one can tease things apart, comprehend them, and mentally recompose them at will" (Alan Yuille)

-"The world is compositional or God exists" (Stuart Geman)

Chapter 3

IntPhys: A Benchmark for Visual Intuitive Physics Understanding Abstract

In order to reach human performance on complex visual tasks, artificial systems need to incorporate a significant amount of understanding of the world in terms of macroscopic objects, movements, forces, etc. Inspired by work on intuitive physics in infants, we propose an evaluation benchmark which diagnoses how much a given system understands about physics by testing whether it can tell apart well matched videos of possible versus impossible events constructed with a game engine. The test requires systems to compute a physical plausibility score over an entire video. It is free of bias and can test a range of basic physical reasoning concepts. We then describe two Deep Neural Networks systems aimed at learning intuitive physics in an unsupervised way, using only physically possible videos. The systems are trained with a future semantic mask prediction objective and tested on the possible versus impossible discrimination task. The analysis of their results compared to human data gives novel insights in the potentials and limitations of next frame prediction architectures.

This 

Introduction

Despite impressive progress in machine vision on many tasks (face recognition [START_REF] Wright | Robust face recognition via sparse representation[END_REF], object recognition Krizhevsky et al. (2012); [START_REF] He | Deep residual learning for image recognition[END_REF], object segmentation [START_REF] Pedro O Pinheiro | Learning to segment object candidates[END_REF], etc.), artificial systems are still far from human performance when it comes to common sense reasoning about objects in the world or understanding of complex visual scenes. Indeed, even very young children have the ability to represent macroscopic objects and track their interactions through time and space. Just a few days after birth, infants can parse their visual inputs into solid objects [START_REF] Valenza | Perceptual Completion in Newborn Human Infants[END_REF]. At 2-4 months, they understand object permanence, and recognize that objects should follow spatio-temporally continuous trajectories Kellman and [START_REF] Philip | Perception of partly occluded objects in infancy[END_REF]; [START_REF] Elizabeth S Spelke | Spatiotemporal continuity, smoothness of motion and object identity in infancy[END_REF]. At 6 months, they understand the notion of stability, support and causality [START_REF] Saxe | The perception of causality in infancy[END_REF]; [START_REF] Baillargeon | The development of young infants' intuitions about support[END_REF]; [START_REF] Baillargeon | Is the top object adequately supported by the bottom object? Young infants' understanding of support relations[END_REF]. Between 8 and 10 months, they grasp the notions of gravity, inertia, and conservation of momentum in collision; between 10 and 12 months, shape constancy [START_REF] Xu | Infants' metaphysics: The case of numerical identity[END_REF], and so on. Reverse engineering the capacity to autonomously learn and exploit intuitive physical knowledge would help building more robust and adaptable real life applications (self-driving cars, workplace or household robots).

Although very diverse vision tasks could benefit from some understanding of the physical world (see Figure 3.1), modeling of intuitive physics has been mostly developed through some form of future prediction task [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF][START_REF] Michael B Chang | A compositional object-based approach to learning physical dynamics[END_REF], Xue et al. (2016), Fraccaro et al. (2017) and reinforcement learning [START_REF] Veerapaneni | Entity Abstraction in Visual Model-Based Reinforcement Learning[END_REF]. Being presented with inputs that can be pictures, video clips or actions to be performed in the case of a robot, the task is to predict future states of these input variables. Future prediction objectives have a lot of appeal because there is no need for human annotations, and abundant data can be collected easily. The flip side is that it is difficult to find the right metric to evaluate these systems. Even though pixel-wise prediction error can be a good loss function, it is not particularly interpretable, depends on the scale and resolution of the sensors making cross datasets comparison difficult, may not even rank the systems in a useful way: a good physics model could predict well the position of objects, but fail to reconstruct the color or texture of objects. In addition, even though the laws of macroscopic physics are deterministic, in practice many outcomes are stochastic (this is why people play dice). In other words, the outcome of any interaction between object is a distribution of object positions, making the evaluation problem even harder.

Here, we propose to use an evaluation method which escapes these problems by using the prediction error not directly as a metric, but indirectly as informing a forced choice between two categories of events: possible versus impossible events. The intuition is the following. If a model has learned the laws of physics, it should be able to predict relatively accurately the future in video clips that show possible 2016)). 'Motor' tasks aim at predicting the visual outcome of particular actions (e.g., [START_REF] Finn | Unsupervised learning for physical interaction through video prediction[END_REF]) or to plan an action in order to reach a given outcome (e.g. [START_REF] Oh | Action-conditional video prediction using deep networks in atari games[END_REF]). 'Language tasks' requires the artificial system to translate input pixels into a verbal description, either through captioning [START_REF] Farhadi | Every picture tells a story: Generating sentences from images[END_REF] or visual question answering (VQA [START_REF] Zitnick | Bringing semantics into focus using visual abstraction[END_REF]). All of these tasks involve indirectly some notion of intuitive physics. Our proposed test directly measures physical understanding in a taskand model-agnostic way. events, even if these videos are entirely novel. However, the model should give large prediction errors when some unlikely or impossible event happens. In other words, impossible events have a zero probability in the real world, so a model trained only with possible events should be able to generalize to other possible events, while rejecting impossible ones. This is directly inspired by the "violation of expectation" (VOE) paradigm in cognitive psychology, whereby infants or animals are presented with real or virtual animated 3D scenes which may contain a physical impossibility. The "surprise" reaction to the physical impossibility is measured through looking time or other physiological measures, and is taken to reflect a violation of it's internal predictions [START_REF] Baillargeon | Object Permanence in Five-Month-Old Infants[END_REF]. Similarly, our evaluation requires systems to output a scalar variable upon the presentation of a video clip, which we will call a 'plausibility score' (it could be a log probability, an inverse reconstruction error, etc). We expect the plausibility score to be lower for clips containing the violation of a physical principle than for matched clips with no violation. By varying the nature of the physical violation, one can probe different types of physical laws: object permanence (objects don't pop in and out of existence), shape constancy (objects keep their shapes), spatio-temporal continuity (trajectories of objects are continuous)1 . These three physical laws form the three blocks of IntPhys2019.

As in infant's experiments, our tests are constructed in well matched sets of clips, i.e., the possible versus impossible clips differ minimally, in order to minimize the possibility of dataset biases, but are quite varied, to maximize the difficulty of solving the test through simple heuristics. Three additional advantages of this method are that (1) they provide directly interpretable results (as opposed to a prediction error, or a composite score reflecting an entire pipeline), (2) they enable to probe generalization for difficult cases outside of the training distribution, which is useful for systems that are intended to work in the real world, and (3) they enable for rigorous human-machine comparison, which is important in order to quantify how far are artificial system in matching human intuitive physical understanding.

Our tests have also limits, which are the flip side of their advantage: They measure intuitive physics as looked through the prediction errors of a system, but do not measure how well a system might be able to use this kind of understanding. For instance, an end-to-end VQA system may have superb physical understanding (as measured by VOE) but fail miserably in connecting it with language. In this sense, VOE should be viewed as a diagnostic tool, a kind if unit testing for physics that needs to be combined with other measures to fully evaluate end-to-end systems. Similarly these tests do not exhaustively probe for all aspects of intuitive physics, but rather break it down into a small set of basic concepts tested one at a time. Here again, unit testing does not guarantee that an entire system will work correctly, but it helps to understand what happens when it does not. This paper is structured as follows. In Section 3.2, we present the IntPhys Benchmark, which tests for 3 basic concepts of intuitive physics in a VOE paradigm. In Section 3.3, we describe two baseline systems which are trained with a selfsupervised frame prediction objective on the training set, and in Section 3.4 we analyse their performance compared to that of human participants. In Section 3.5 we present related work and conclude in Section 3.6 by discussing the next steps in extending this approach to more intuitive physics concepts and how they could be augmented to incorporate testing of decision and planning.

Structure of the IntPhys benchmark

IntPhys is a benchmark designed to address the evaluation challenges for intuitive physics in vision systems. It can be run on any of machine vision system (captioning and VQA systems, systems performing 3D reconstruction, tracking, planning, etc), be they engineered by hand or trained using statistical learning, the only requirement being that the tested system should output a scalar for each test video clip reflecting the plausibility of the clip as a whole. Such a score can be derived from prediction errors, or posterior probabilities, depending on the system.

In this release we have implemented tests for three basic concepts of the physics of macroscopic solid objects: object permanence, shape constancy, spatio-temporal continuity. Each of these concepts are tested in a series of controlled possible and impossible clips, which are presented without labels, and for which models have to return a plausibility score. The evaluation is done upon submission of these scores in CodaLab, and the results are automatically presented in a leaderboard. This benchmark also contains a training set of videos with random object interactions, in a similar environment as for the test set. This can be used either to train predictive systems or to conduct domain adaptation for systems trained on other datasets (live videos, virtual environments, robots). Obviously, the training set only contains physically possible events. This benchmark will be the first evaluation of the DARPA Machine Common Sense project2 , a research program seeking to address the challenge of machine common sense to enable systems to understand new situations and monitor the reasonableness of their actions. This will allow all teams involved in the program to evaluate their systems on a common ground.

Three basic concepts of intuitive physics

Behavioral work on intuitive physics in infants and animal define a number of core conceptual components which can be tested experimentally using VOE Baillargeon and Carey (2012). Figure 3.2 shows a number of different landmarks in infants. Here, we have selected three of the most basic components and turned them into three test Tracking/predicting object trajectories blocks (see 3.1), each one corresponding to a core principle of intuitive physics, and each raising its particular machine vision challenge. The first two blocks are related to the conservation through time of intrinsic properties of objects. Object permanence (O1), corresponds to the fact that objects continuously exist through time and do not pop in or out of existence. This turns into the computational challenge of tracking objects through occlusion. The second block, shape constancy (O2) describes the tendency of rigid objects to preserve their shape through time. This principle is more challenging than the preceding one, because even rigid objects undergo a change in appearance due to other factors (illumination, distance, viewpoint, partial occlusion, etc.). The final block (O3) relate to object's trajectories, and posit that each object's motion has to be continuous through space and time (an object cannot teleport from one place to another). This principle is distinct from object permanence and requires a to incorporate smoothness constraints on the tracking of objects (even if they are not visible). Future releases of the Benchmark will continue adding progressively more complex scenarios inspired by Figure 3.2, including object interactions and agent motion.

Pixels matched quadruplets

An important design principle of our evaluation framework relates to the organization of the possible and impossible movies in extremely well matched sets to minimize the existence of low level biases. This is illustrated in Figure 3.3 for object permanence. We constructed matched sets comprising four movies, which contain an initial scene at time t 1 (either one or two objects), and a final scene at time t 2 (either one or two objects), separated by a potential occlusion by a screen which is Figure 3.3: Illustration of the minimal sets design with object permanence. Schematic description of a static condition with one vs. two objects and one occluder. In the two possible movies (green arrows), the number of objects remains constant despite the occlusion. In the two impossible movies (red arrows), the number of objects changes (goes from 1 to 2 or from 2 to 1). raised and then lowered for a variable amount of time. At its maximal height, the screen completely occludes the objects so that it is impossible to know, in this frame, how many objects are behind the occluder.

The four movies are constructed by combining the two possible beginnings with the two possible endings, giving rise to two possible (1→1 and 2→2) and two impossible (1→2 and 2→1) movies. Importantly, across these 4 movies, the possible and impossible ones are made of frames with the exact same pixels, the only factor distinguishing them being the temporal coherence of these frames. To verify this, we compute the SHA256 hash of frames for both possible and impossible events, sort them in lexicographic order, and make sure the two lists match3 . Such a design is intended to make it difficult for algorithms to use cheap tricks to distinguish possible from impossible movies by focusing on low level details, but rather requires models to focus on higher level temporal dependencies between frames.

Parametric task complexity

Our second design principle is that in each block, we vary the stimulus complexity in a parametric fashion. In the case of the object permanence block, for instance, stimulus complexity can vary according to three dimensions. The first dimension is whether the change in number of objects occurs in plain view (visible) or hidden behind an occluder (occluded). A change in plain view is evidently easier to detect whereas a hidden change requires an element of short term memory in order to keep a trace of the object's through time. The second dimension is the complexity of the object's motion. Tracking an immobile object is easier than if the object has a complicated motion; we introduce three levels of motion complexity (static, dynamic 1, and dynamic 2). The third dimension is the number of objects involved in the scene. This tests for the attentional capacity of the system as defined by the number of objects it can track simultaneously. Manipulating stimulus complexity is important to establish the limit of what a vision system can do, and where it will fail. For instance, humans are well known to fail when the number of objects to track simultaneously is greater than four [START_REF] Zenon | Tracking multiple independent targets: Evidence for a parallel tracking mechanism[END_REF]. In total, a given block contains 2 by 3 by 3, ie, 18 different scenarios varying in difficulty (see Tables 3.5).

Procedurally generated variability

Our final design principle is that each scenario within each block is procedurally generated in 200 examplars with random variations in objects shapes and textures, distances, trajectories, occluder motion and position of the camera. This is to minimize the possibility of focusing on only certain frames or parts of the screen to solve the task. Note that the dynamic 2 condition contains two violations instead of one. These violations are inverses of one another, such that the first and last segment of the impossible video clips are compatible with with the absence of any violation in the central part of the video (for instance, the initial and final number of objects is the same, but varies in the middle of the clip). This ensures that physical violations occur in unpredictable moments in a video clip.

Figure 3.4: Illustration of the 'dynamic 2' condition. In the two possible movies (green arrows), the number of objects remains constant despite the occlusion. In the two impossible movies (red arrows), the number of objects changes temporarily (goes from 0 to 1 to 0 or from 1 to 0 to 1).

The possible versus impossible discrimination metric

Our evaluation metrics depend on the system's ability to compute a plausibility score P (x) given a movie x. Because the test movies are structured in N matched k-uplets (in Figure 3.3, k = 4) of positive and negative movies S i=1..N = {P os 1 i ..P os k i , Imp 1 i ..Imp k i }, we derive two different metrics. The relative error rate L R computes a score within each set. It requires only that within a set, the positive movies are more plausible than the negative movies.

L R = 1 N i 1 j P (P os j i )< j P (Imp j i ) (3.1)
The absolute error rate L A requires that globally, the score of the positive movies is greater than the score of the negative movies. It is computed as:

L A = 1 -AU C({i, j; P (P os j i )}, {i, j; P (Imp j i )}) (3.2)
Where AU C is the Area Under the ROC Curve, which plots the true positive rate against the false positive rate at various threshold settings. 

Implementation

The training set

The training set contains a large variety of objects interacting one with another, occluders, textures, etc. It is composed of 15K videos of possible events (around 7 seconds each at 15fps), totalling 21 hours of videos. There are no video of impossible events, but the training set contains the objects and occluders presented in the test set. Each video is delivered as stacks of raw image (288 x 288 pixels), totalling 157Gb of uncompressed data. We also release the source code for data generation, allowing users to generate a larger training set if desired.

The dev and test sets

As described above, each of the three blocks contain 18 different scenario. In the dev set, each scenario is instantiated by 20 different renderings resulting in 360 movies per block (30 min, 3.7Gb). In the test set, a scenario has 200 different renderings of these scenarios, resulting in a total of 3600 movies per block (5h,37Gb). All of the objects and textures of the dev and test sets are present in the training set.

The purpose of the dev set released in IntPhys V1.0 is to help in the selection of an appropriate plausibility score, and in the comparison of various architectures (hyperparameters), but it should not serve to train the model's parameters (this should be done only with the training set). This is why the dev set is kept intentionally small. The test set has more statistical power and enables a fine grained evaluation of the results across the different movie subtypes. Video examples of each blocks are available on the project page www.intphys.com.

Metadata

Even though the spirit of IntPhys is the unsupervised learning of intuitive physics, we do provide in the test set additional information which may help the learner. The first one is the depth field for each image. This is not unreasonable, given that in infants, stereo vision and motion cues could provide an approximation of this information [START_REF] Fox | Stereopsis in human infants[END_REF]. The second one is object instance segmentation masks, which are helpful to recover abstract object positions but only provide local low-level information. Importantly, these masks are not linked to a specific object ID, and are randomly shuffled at each time frame. Linking instance segmentation masks to unique object IDs through time is indeed part of the object permanence problem that systems are supposed to solve. Similarly, if an object is partly occluded and appears as two pieces of object the two pieces will receive a different instance mask.

In the train set, we do provide additional metadata about the ground truth 3D position of each object, the position of the camera, and the link between object IDs and instance masks. These metadata are not present in the dev or test sets.

Submission procedure

For each movie in the dev or test set, the model should issue a scalar plausibility score. This number together with the movie ID is then fed to the evaluation software which outputs two tables of results, one for the absolute score and the other for the relative score.

The evaluation software is provided for the dev set, but not the test set. For evaluating on the test set, participants are invited to submit their system and results on CodaLab (see www.intphys.com) and their results will be registered and time-stamped on the website leaderboard.

Two baseline learning models

In this section, we present two learning systems which attempt to learn intuitive physics in an unsupervised/self-supervised observational setting. One can imagine an agent who only sees physical interactions between objects seen from a first-person perspective, but cannot move nor interact with them. Arguably, this is a much more impoverished learning situation than that faced by infants, who can explore and interact with their environment, even with the limited motor abilities of their first year of life. It is however interesting to establish how far one can get with such simplified inputs, which are easy to gather in abundant amounts in the real world with video cameras. In addition, this enables an easier comparison between models, because they all get the same training data.

In a setup like this, a rich source of learning information resides in the temporal dependencies between successive frames. Based on the literature on next frame prediction, we propose two neural network models, trained on a future frame objective. Our first model has a CNN encoder-decoder structure and the second is a conditional Generative Adversarial Network (GAN, [START_REF] Goodfellow | Generative adversarial nets[END_REF]), with a similar structure as DCGAN Radford et al. (2015). For both model architectures, we investigate two different training procedures: in the first, we train models to predict short-future images with a prediction span of 5 frames; in the second, we predict long-future images with a prediction span of 35 frames.

Preliminary work with predictions at the pixel level revealed that our models failed at predicting convincing object motions, especially for small objects on a rich background. For this reason, we switched to computing predictions at a higher level, using object masks. We use the metadata provided in the benchmark training (see section 4.6.2) set to train a semantic mask Deep Neural Network (DNN). This DNN uses a resnet-18 pretrained on Imagenet to extract features from the image, from which a deconvolution network is trained to predict the semantic mask (distinguishing three types of entities: background, occluders and objects). We then use this mask as input to a prediction component which predicts future masks based on past ones.

To evaluate these models on our benchmark, our system needs to output a plausibility score for each movie. For this, we compute the prediction loss along the movie. Given past frames, a plausibility score for the frame f t can be derived by comparing f t with the prediction ft . Like in Fragkiadaki et al. (2015a), we use the analogy with an agent running an internal simulation ("visual imagination"); here we assimilate a greater distance between prediction and observation with a lower plausibility. In subsection 3.3.2 we detail how we aggregate the scores of all frames into a plausibility score for the whole video.

Models

Through out the movie, our models take as input two frames (f i 1 , f i 2 ) and predict a future frame f target . The prediction span is independent from the model's architecture and depends only on the triplets (f i 1 , f i 2 , f target ) provided during the training phase. Our two architectures are trained either on a short term prediction task (5 frames in the future), or a long term prediction task (35 frames). Intuitively, short-term prediction will be more robust, but long-term prediction will allow the model to grasp long-term dependencies and deal with long occlusions.

CNN encoder-decoder

We use a resnet-18 [START_REF] He | Deep residual learning for image recognition[END_REF] pretrained on Imagenet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] to extract features from input frames (f i 1 , f i 2 ). A deconvolution network is trained to predict the semantic mask of future frame f target conditioned to these features, using a L2 loss. See details in Table 3 

Generative Adversarial Network

As a second model, we propose a conditional generative adversarial network (GAN, [START_REF] Mirza | Conditional Generative Adversarial Nets[END_REF]) that takes as input predicted semantic masks from frames (f i 1 , f i 2 ), and predicts the semantic mask of future frame f target . In this setup, the discriminator has to distinguish between a mask predicted from f target directly (real), and a mask predicted from past frames (f i 1 , f i 2 ). Like in [START_REF] Denton | Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks[END_REF], our model combines a conditional approach with a similar structure as of DCGAN Radford et al. (2015). At test time, we derive a plausibility score by computing the conditioned discriminator's score for every conditioned frame. This is a novel approach based on the observation that the optimal discriminator D computes a score for x of The code for all our experiments is available on www.github.com/rronan/ IntPhys-Baselines.

D(x) = P data (x) P G (x) + P data (x) (3.3)

Video Plausibility Score

From forward models presented above, we can compute a plausibility score for every frame f target , conditioned on previous frames (f i 1 , f i 2 ). However, because the temporal positions of impossible events are not given, we must decide of a score for a video, given the scores of all its conditioned frames. An impossible event can be characterized by the presence of one or more impossible frame(s), conditioned to previous frames. Hence, a natural approach to compute a video plausibility score is to take the minimum of all conditioned frames' scores:

Plaus(v) = min (f i 1 ,f i 2 ,ftarget)∈v Plaus(f target |f i 1 , f i 2 ) (3.4)
where v is the video, and (f i 1 , f i 2 , f target ) are all the frame triplets in v, as given in the training phase.

Results

Block O1

Short-term prediction The first training procedure is a short-term prediction task; it takes as input frames f t-2 , f t and predicts f t+5 , which we note (f t-2 , f t ) → f t+5 in the following. We train the two architectures presented above on short-term prediction task and evaluate them on the test set. For the relative classification task, CNN encoder-decoder has an error rate of 0.09 when impossible events are visible and 0.49 when they are occluded. The GAN has an error rate of 0.15 when visible and 0.48 when occluded. For the absolute classification task, CNN encoder-decoder has a L A (see eq. 3.2) of 0.33 when impossible events are visible and 0.50 when they are occluded. The GAN has a L A of 0.38 when visible and 0.50 when occluded. Results are detailed in Supplementary Materials (Tables 1,2,3,4). We observe that our short-term prediction models show good performances when the impossible events are visible, especially on the relative classifications task. However they perform poorly when the impossible events are occluded. This is easily explained by the fact that they have a prediction span of 5 frames, which is usually lower than the occlusion time. Hence, these models don't have enough "memory" to catch occluded impossible events.

Long-term prediction

The second training procedure consists in a long-term prediction task: (f t-5 , f t ) → f t+35 . For the relative classification task, CNN encoderdecoder has an error rate of 0.07 when impossible events are visible and 0.52 when they are occluded. The GAN has an error rate of 0.17 when visible and 0.48 when occluded. For the absolute classification task, CNN encoder-decoder has a L A of 0.37 when impossible events are visible and 0.50 when they are occluded. The GAN has a L A of 0.40 when visible and 0.50 when occluded. Results are detailed in Supplementary Materials (Tables 5,6,7,8). As expected, long-term models perform better than short-term models on occluded impossible events. Moreover, results on absolute classification task confirm that it is way more challenging than the relative classification task. Because some movies are more complex than others, the average score of each quadruplet of movies may vary a lot. It results in cases where one model returns a higher plausibility score to an impossible movie M {imp, easy} from an easy quadruplet than to a possible movie M {pos, complex} from a complex quadruplet.

Aggregated model

On the relative classification task, the aggregated CNN encoder-decoder has an error rate of 0.07 when impossible events are visible and 0.52 when they are occluded. For the absolute classification task, CNN encoderdecoder has a L A of 0.37 when impossible events are visible and 0.50 when they are occluded. Results are detailed in Figures 3.6 and Supplementary Materials (Tables 9,10).

Block O2

Short-term prediction For the first training procedure (f t-2 , f t ) → f t+5 : CNN encoder-decoder has an relactive classification error rate of 0.16 when impossible events are visible and 0.49 when they are occluded. The GAN has an error rate of 0.30 when visible and 0.52 when occluded. For the absolute classification task, CNN encoder-decoder has a L A of 0.40 when impossible events are visible and 0.50 when they are occluded. The GAN has a L A of 0.43 when visible and 0.50 when occluded. Results are detailed in Supplementary Materials (Tables 11,12,13,14).

Long-term prediction For the second training procedure (f t-5 , f t ) → f t+35 : the CNN encoder-decoder has an error rate of 0.11 when impossible events are visible and 0.52 when they are occluded. The GAN has an error rate of 0.31 when visible and 0.50 when occluded. For the absolute classification task, CNN encoderdecoder has a L A of 0.43 when impossible events are visible and 0.50 when they are occluded. The GAN has a L A of 0.33 when visible and 0.50 when occluded. Results are detailed in Supplementary Materials (Tables 15,16,17,18).

Aggregated model

On the relative classification task, the aggregated CNN encoder-decoder has an error rate of 0.11 when impossible events are visible and 0.52 when they are occluded. For the absolute classification task, CNN encoderdecoder has a L A of 0.43 when impossible events are visible and 0.50 when they are occluded. Results are detailed in Figures 3.6 and Supplementary Materials (Tables 19,20).

Block O3

Short-term prediction For the first training procedure (f t-2 , f t ) → f t+5 : CNN encoder-decoder has an relactive classification error rate of 0.28 when impossible events are visible and 0.49 when they are occluded. The GAN has an error rate of 0.26 when visible and 0.48 when occluded. For the absolute classification task, CNN encoder-decoder has a L A (see eq. 3.2) of 0.40 when impossible events are visible and 0.50 when they are occluded. The GAN has a L A of 0.42 when visible and 0.50 when occluded. Results are detailed in Supplementary Materials (Tables 21,22,23,24).

Long-term prediction For the second training procedure (f t-5 , f t ) → f t+35 : the CNN encoder-decoder has an error rate of 0.32 when impossible events are visible and 0.51 when they are occluded. The GAN has an error rate of 0.34 when visible and 0.52 when occluded. For the absolute classification task, CNN encoderdecoder has a L A of 0.46 when impossible events are visible and 0.50 when they are occluded. The GAN has a L A of 0.44 when visible and 0.50 when occluded. Results are detailed in Supplementary Materials (Tables 25,26,27,28).

Aggregated model

On the relative classification task, the aggregated CNN encoder-decoder has an error rate of 0.32 when impossible events are visible and 0.51 when they are occluded. For the absolute classification task, CNN encoderdecoder has a L A of 0.46 when impossible events are visible and 0.50 when they are occluded. Results are detailed in Figures 3.6 and Supplementary Materials (Tables 29,30).

As expected, we observe that models' performance decrease when impossible events are occluded. This enlightens the difficulty to perform long-term predictions in videos. We also observe that their performances vary with the types of impossible events tested. Results are the highest when testing presence / absence of object, and the lowest when testing the temporal continuity of trajectories.

Results from other works.

Other works have reported results on IntPhys. Among those works, [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF] and Riochet et al. (2020b) both integrate a visual and a physics module. Their visual modules allows to parse the scene and in an object representation, while the physics modules use this representation to infer physical properties and predict trajectories of objects. While [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF] 2020b) report relative scores of 0.12, 0.21, and 0.37 on blocks O1, O2, and O3 respectively. The performances of those works, compared to our pixel-based models, tend to show the benefits of hybrid architectures combining visual modules and object-based physics models.

Human Judgements Experiment

To give a second reference to evaluate physical understanding in models, and provide a good description of human performance on this benchmark, we presented the 3600 videos from each block to human participants using Amazon Mechanical Turk. Participants were first presented 8 examples of possible scenes from the training set, some simple, some more complex. They were told that some of the test movies were incorrect or corrupted, in that they showed events that could not possibly take place in the real world (without specifying how). Participants were each presented with 40 randomly selected videos, and were asked to score them from 1 (most implausible) to 6 (most plausible). They completed the task in about 7 minutes, and were paid $1. A total of 540 persons participated, such that every video tested was seen by 2 different participants. A mock sample of the AMT test is available on http://129.199.81.135/naive_physics_experiment. The average error rates were computed across condition, number of objects and visibility and are shown in Tables 3.5. In general, observers missed violations more often when the scene was occluded; we observe error rates going from 18% (visible) to 30% (occluded) for block O1, from 22% (visible) to 30% (occluded) for block O2, from 28% (visible) to 47% (occluded) for block O3. An interesting result is that the score of humans on block O3 is close to chance when objects are occluded. This shows that humans have trouble to detect changes in velocity of objects, when these changes occur when the object is occluded. We also observe an increase in error going from static to dynamic 1 (one occlusion) and from dynamic 1 to dynamic 2 (two occlusions), but this pattern was only consistently observed in the occluded condition. For visible scenario, the dynamic 1 appeared more difficult than the dynamic 2. This was probably due to the fact that when objects are visible, the dynamic 2 impossible scenarios contain two local discontinuities and are therefore easier to spot than when one discontinuity only is present. When the discontinuities occurred behind the occluder, the pattern of difficulties was reversed, presumably because participants started using heuristics, such as checking that the number of objects at the beginning is the same as at the end, and therefore missed the intermediate disappearance of an object.

These results suggest that human participants are not responding according to the gold standard laws of physics due to limitations in attentional capacity -and this, even though the number of objects to track is below the theoretical limit of 4 objects. The performance of human observers can thus serve as a reference besides ground truth, especially for systems intended to model human perception.

Interestingly, we observe similar patterns of performance between models and humans (see Figures 3.6), with increasing error rates from blocks O1 to O3. As expected, both humans and models show higher error rates when the considered impossible event is occluded.

Related work

The modeling of intuitive physics has been addressed mostly through systems trained with some form of future prediction as a training objective. Some studies have investigated models for predicting the stability and forward modeling the dynamics of towers of blocks [START_REF] Battaglia | Simulation as an engine of physical scene understanding[END_REF] 2016) follow a supervised approach using Convolutional Neural Networks (CNNs), [START_REF] Zhang | A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural Networks as Accounts of Human Physical Scene Understanding[END_REF] makes a comparison between simulation-based models and CNN-based models, [START_REF] Mirza | Generalizable features from unsupervised learning[END_REF] improves the predictions of a CNN model by providing it with a prediction of a generative model. In [START_REF] Wu | Physics 101: Learning Physical Object Properties from Unlabeled Videos[END_REF], authors propose a dataset and model to estimate object properties from visual inputs. In [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF], authors propose different feature learning strategies (multi-scale architecture, adversarial training method, image gradient difference loss function) to predict future frames in raw videos.

Other models use more structured representation of objects to derive longer-term predictions. In [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] and [START_REF] Michael B Chang | A compositional object-based approach to learning physical dynamics[END_REF], authors learn objects dynamics by modelling their pairwise interactions and predicting the resulting objects states representation (e.g. position / velocity / object intrinsic properties) . In Watters et al. (2017), Fraccaro et al. (2017) and Ehrhardt et al. (2017a) authors combine factored latent object representations, object centric dynamic models and visual encoders. Each frame is parsed into a set of object state representations, which are used as input of a dynamic model. In Fraccaro et al. (2017) and Ehrhardt et al. (2017a), authors use a visual decoder to reconstruct the future frames, allowing the model to learn from raw (though synthetic) videos.

Regarding evaluation and benchmarks, apart from frame prediction datasets, which are not strictly speaking about intuitive physics, one can distinguish the Visual Newtonian Dynamics (VIND) dataset which includes more than 6000 videos with bounding boxes on key objects across frames, and annotated with a 3D plane which would most closely fit the object trajectory [START_REF] Mottaghi | Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images[END_REF] 2019): our dataset is better matched in terms of quadruplets of clips controlled at the level of the pixels, and our dataset has a factorial manipulation of scene and movement complexity.It would be interesting to explore the possibility to merge these datasets, as well as add more blocks in order to increase the diversity and coverage of the physical phenomena.

Discussion

We presented IntPhys, a benchmark for measuring intuitive physics in artificial vision systems inspired by research on conceptual development in infants. To pass the benchmark, a system is asked to return a plausibility score for each video clip. The system's performance is assessed by measuring its ability to discriminate possible from impossible videos illustrating several types of physical principles. Naive humans were tested on the same dataset, to give an idea of what performance could be expected by a good model. These results show error rates increasing with the presence of occlusion, but not with number of objects. This is congruent with data showing that humans can track up to three objects simultaneously. We presented two unsupervised learning models based on semantic masks, which learn from a training set only composed of physically plausible clips, and are tested on the same block as the humans.

The computational system generally performed poorly compared to humans but obtained above chance performance in the visible cases using a mask prediction task. The relative success of the semantic mask prediction system compared to what we originally found with pixel-based systems indicates that operating at a more abstract level is a worthwhile pursuing strategy when it comes to modeling intuitive physics.

We report other works constructing this abstract representation in particular instance masks and object detection bounding boxes, showing better performances, especially in the presence of occlusions. In addition, enriching the training through embedding the learner in an interactive version of the environment could add more information for the learning of the physics of macroscopic objects.

In brief, the systematic way of constructing the IntPhys Benchmark shows that it is possible to adapt developmental paradigm in a machine learning setting, and that the resulting benchmark is a relatively challenging one. The three blocks that we present here could be extended to cover more aspects of object perception, including more difficult ones like interactions between objects, or prediction of trajectories of animated agents. As we discussed in the introduction, this benchmark only provides unit tests regarding the computation of prediction probabilities of object positions based on past frames. Further work will be needed to construct benchmarks testing how theses probabilities can be used by a system to make decision or plan 1) for the relative performance and L A (see Equation 2) for the absolute performance. Chapter 4

Appendix

Model results (detailed)

Occlusion resistant learning of intuitive physics from videos Abstract

To reach human performance on complex tasks, a key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation. This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences. Yet, most of these methods are restricted to the case where no, or only limited, occlusions occur.

In this work we propose a probabilistic formulation of learning intuitive physics in 3D scenes with significant inter-object occlusions. In our formulation, object positions are modelled as latent variables enabling the reconstruction of the scene. We then propose a series of approximations that make this problem tractable. Object proposals are linked across frames using a combination of a recurrent interaction network, modeling the physics in object space, and a compositional renderer, modeling the way in which objects project onto pixel space.

We demonstrate significant improvements over state-of-the-art in the intuitive physics benchmark of [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF]. We apply our method to a second dataset with increasing levels of occlusions, showing it realistically predicts segmentation masks up to 30 frames in the future.

Finally, we also show results on predicting motion of objects in real videos.

This work was led in collaboration with Josef Sivic, Ivan Laptev and Emmanuel Dupoux.

Introduction

Learning intuitive physics has recently raised significant interest in the machine learning literature. To reach human performance on complex visual tasks, artificial systems need to understand the world in terms of macroscopic objects, movements, interactions, etc. Infant development experiments show that young infants quickly acquire an intuitive grasp of how objects interact in the world, and that they use these intuitions for prediction and action planning [START_REF] Carey | The Origin of Concepts. Oxford Series in Cognitive Development[END_REF]; [START_REF] Baillargeon | Object permanence in 3 1 2 -and 4 1 2 -month-old infants[END_REF]. This includes the notions of gravity [START_REF] Carey | The Origin of Concepts. Oxford Series in Cognitive Development[END_REF], continuity of trajectories [START_REF] Elizabeth S Spelke | Spatiotemporal continuity, smoothness of motion and object identity in infancy[END_REF], collisions [START_REF] Saxe | The perception of causality in infancy[END_REF], etc. Object permanence, the fact that an object continues to exist when it is occluded, Kellman and [START_REF] Philip | Perception of partly occluded objects in infancy[END_REF], is one of the first concepts developed by infants.

From a modeling point of view, the key scientific question is how to develop general-purpose methods that can make physical predictions in noisy environments, where many variables of the system are unknown. A model that could mimic even some of infant's ability to predict the dynamics of objects and their interactions would be a significant advancement in model-based action planning for robotics [START_REF] Agrawal | Learning to Poke by Poking: Experiential Learning of Intuitive Physics[END_REF], [START_REF] Finn | Deep visual foresight for planning robot motion[END_REF]. The laws of macroscopic physics are relatively simple and can be readily learned when formulated in 3D cartesian coordinates [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF]; [START_REF] Mrowca | Flexible neural representation for physics prediction[END_REF].

However, learning such laws from real world scenes is difficult for at least two reasons. First, estimating accurate 3D position and velocity of objects is challenging when only their retinal projection is known, even assuming depth information, because partial occlusions by other objects render these positions ambiguous. Second, objects can be fully occluded by other objects for a significant number of frames.

In this paper we address these issues and develop a model for learning intuitive physics in 3D scenes with significant inter-object occlusions. We propose a prob-abilistic formulation of the intuitive physics problem, whereby object positions are modelled as latent variables enabling the reconstruction of the scene. We then propose a series of approximations that make this problem tractable.

In detail, proposals of object positions and velocities (called object states) are derived from object masks, and then linked across frames using a combination of a recurrent interaction network, modeling the physics in object space, and a compositional renderer, modeling the way in which objects project onto pixel space.

Using the proposed approach, we show that it is possible to follow object dynamics in 3D environments with severe inter-object occlusions. We evaluate this ability on the IntPhys benchmark [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF]. We show better performance compared to [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF]; [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF]. A second set of experiments show that it is possible to learn the physical prediction component of the model even in the presence of severe occlusion, and predict segmentation masks up to 30 frames in the future. Ablation studies and baselines [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] evaluate the importance of each component of the model, as well the impact of occlusions on performance.

Our model is fully compositional and handles variable number of objects in the scene. Moreover, it does not require as input (or target) annotated inter-frame correspondences during training. Finally, our method still works with no access to ground-truth segmentation, using (noisy) outputs from a pre-trained object/mask detector [START_REF] He | Mask R-CNN[END_REF], a first step towards using such models on real videos.

Related work

Forward modeling in videos. Forward modeling in video has been studied for action planning [START_REF] Ebert | Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control[END_REF][START_REF] Finn | Unsupervised learning for physical interaction through video prediction[END_REF] and as a scheme for unsupervised learning of visual features [START_REF] Lan | A Hierarchical Representation for Future Action Prediction[END_REF]; [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF]. In that setup, a model is given a sequence of frames and has to generate frames in future time steps. To succeed in this task, such models need to predict object movements, suggesting that they need to learn physical regularities from video. However, models for end-to-end future frame prediction tend to perform poorly on long-term prediction tasks (say more 5-8 frames [START_REF] Lan | A Hierarchical Representation for Future Action Prediction[END_REF]; [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF]; [START_REF] Finn | Unsupervised learning for physical interaction through video prediction[END_REF]), failing to preserve object properties and generating blurry outputs. This suggests that models for intuitive physics may require a more structured representation of objects and their interactions.

Learning dynamics of objects. Longer term predictions can be more successful when done on the level of trajectories of individual objects. For example, in Wu et al. (2017b), the authors propose "scene de-rendering", a system that builds an object-based, structured representation from a static (synthetic) image. The recovered state can be further used for physical reasoning and future prediction using a off-the-shelf physics engine on both synthetic and real data Battaglia et al. ( 2013 In our work, we build on learnable models of object dynamics [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] and Chang et al. ( 2016), which have the key property that they are compositional and hence can model a variable number of objects, but extend them to learn from visual input rather than ground truth object state vectors.

Our work is also related to [START_REF] Janner | Reasoning About Physical Interactions with Object-Oriented Prediction and Planning[END_REF], who combine an object-centric model of dynamics with a differentiable renderer to predict a single image in a future time, given a single still image as input. In contrast, we develop a probabilistic formulation of intuitive physics that (i) predicts the physical plausibility of an observed dynamic scene, and (ii) infers velocities of objects as latent variables allowing us to predict full trajectories of objects through time despite long complete occlusions.

Others have proposed unsupervised methods to discover objects and their interactions in 2D videos van [START_REF] Sjoerd Van Steenkiste | Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions[END_REF]. It is also possible to construct Hierarchical Relation Networks [START_REF] Mrowca | Flexible neural representation for physics prediction[END_REF], representing objects as graphs and predicting interactions between pairs of objects. However, this task is still challenging and requires full supervision in the form of ground truth position and velocity of objects.

Learning physical properties from visual inputs. Related are also methods for learning physical properties of objects. Learning of physical properties, such as mass, volume or coefficients of friction and restitution, has been considered in [START_REF] Wu | Physics 101: Learning Physical Object Properties from Unlabeled Videos[END_REF]. Others have looked at predicting the stability and/or the dynamics of towers of blocks [START_REF] Lerer | Learning Physical Intuition of Block Towers by Example[END_REF]; [START_REF] Zhang | A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural Networks as Accounts of Human Physical Scene Understanding[END_REF]; [START_REF] Li | To Fall Or Not To Fall: A Visual Approach to Physical Stability Prediction[END_REF][START_REF] Li | Visual stability prediction for robotic manipulation[END_REF]; [START_REF] Mirza | Generalizable features from unsupervised learning[END_REF]; [START_REF] Groth | ShapeStacks: Learning Vision-Based Physical Intuition for Generalised Object Stacking[END_REF]. Our work is complementary. We don't consider prediction of physical properties but focus on learning models of object dynamics handling inter-object occlusions at both training and test time [START_REF] Greff | Multi-Object Representation Learning with Iterative Variational Inference[END_REF].

Occlusion resistant intuitive physics

This section describes our model for occlusion resistant learning of intuitive physics. In section 4.3.1 we present an overview of the method, then describe it's two main components: the occlusion-aware compositional renderer that predicts object masks given a scene state representation (section 4.3.2), and the recurrent interaction network that predicts the scene state evolution over time (section 4.3.3). Finally, in section 4.3.4 we describe how these two components are used jointly to decode an entire video clip.

Intuitive physics via event decoding

We formulate the problem of event decoding as that of assigning to a sequence of video frames F = f t=1..T a sequence of underlying object states S = s i=1..N t=1..T that can explain (i.e. reconstruct) this sequence of frames. By object state, we mean object positions, velocities and categories. Within a generative probabilistic model, we therefore try to find the state Ŝ that maximizes P (S|F, θ), where θ is a parameter of the model: Ŝ = argmax S P (S|F, θ). A nice property of this formulation is that we can use P ( Ŝ|F, θ) as a measure of the plausibility of a video sequence, which is exactly the metric required in the Intphys benchmark.

With Bayes rule, P (S|F, θ) decomposes into the product of two probabilities that are easier to compute, P (F |S, θ), the rendering model, and P (S|θ), the physical model. This is similar to the decomposition into an acoustic model and a language model in ASR [START_REF] Neufeld | Review of Statistical methods for speech recognition by Frederick Jelinek[END_REF]. The event decoding problem then becomes:

Ŝ = argmax S P (F |S, θ)P (S|θ). (4.1)
Such a formulation naturally accounts for occlusion through the rendering model which maps underlying positions into the visible outcome in pixel space. During inference, the physical model is used to fill in the blanks, i.e., imagine what happens behind occluders to maximize the probability of the trajectory. As for the learning problem, it can be formulated as follows:

θ = argmax θ P (F |θ).
(4.2)

In this paper we will apply a number of simplifications to make this problem tractable. First, we operate in mask space and not in pixel space. This is done by using an off-the shelf instance mask detector (Mask- RCNN He et al. (2017)), making the task of rendering easier, since all of the details and textures are removed from the reconstruction problem. Therefore F is a sequence of (stacks of) binary masks for different objects in the scene. Second, the state space is expressed, not in 3D coordinates, which would require to learn inverse projective geometry, but directly in retinotopic pixel coordinate plus depth (2.5D, something easily available in RGBD cameras). It turns out that learning physics in this space is not more difficult than in the true 3D space. Finally, the probabilistic models are implemented as Neural Networks. The rendering model (Renderer) is implemented as a neural network mapping object states into pixel space. The physical model is implemented as a recurrent interaction network (RecIntN et), mapping object state at time t as a function of past states.

In practice, computing the argmax in eq. ( 4.1) is difficult because the states are continuous, the number of objects is unknown, and some objects are occluded in certain frames, yielding a combinatorial explosion regarding how to link hypothetical object states across frames. In this paper, we propose a major approximation to help solving this problem by proceeding in two steps. In the first step, a scene graph proposal is computed using bounding boxes to estimate object position, nearest neighbor matching across nearby frames to estimate velocities, and the roll-out of the physics engine to link the objects across the entire sequence (which is critical to deal with occlusions). The second step consists of optimizing S (given by eq. ( 4.1)) by using gradient descent on both models, capitalizing on the fact that both models are differentiable. More precisely, rather than computing probabilities explicitly, we define two losses (that can be interpreted as a proxy for negative log probability): (i) the rendering loss L render that measures the discrepancy between the masks predicted by the renderer and the observed masks in individual frames; and (ii) the physical loss L physics that measures the discrepancy between states predicted by the recurrent interaction network (RecIntN et) and the actual observed states. As in ASR, we will combine these two losses with a scaling factor λ, yielding a total loss:

L render (S, F ) = T t=1 L mask (Renderer(s t ), F ), L physics (S) = T -1 t=1 s t+1 -RecIntN et(s t ) 2 , L total (S, F ) = λL render (S, F ) + (1 -λ)L physics (S). (4.3)
L mask is a pixel-wise loss defined in detail in the supplementary material.

We use the total loss as the objective function to minimize in order to find the interpretation Ŝ of the masks of a video clip F . And it will be used to provide a plausibility score to decide whether a given scene is physically plausible in the evaluation on the IntPhys Benchmark (section 4.4.1). As for learning, instead of marginalizing over possible state, we will just optimize the parameters over the point estimate optimal state Ŝ. The aim of this paper is to show that these approximations notwithstanding, a system constructed according to this set-up can yield good results.

The Compositional Renderer (Renderer)

We introduce a differentiable Compositional Rendering Network (or Renderer) that predicts a segmentation mask in the image given a list of N objects specified by their x and y position in the image, depth and possibly additional properties such as object type (e.g. sphere, square, ...) or size. Importantly, our neural rendering model has the ability to take a variable number of objects as input and is invariant to the order of objects in the input list. It contains two modules (see Figure 4.2). First, the object rendering network reconstructs a segmentation mask and a depth map for each object. Second, the occlusion predictor composes the N predicted object masks into the final scene mask, generating the appropriate pattern of inter-object occlusions obtained from the predicted depth maps of the individual objects.

The Object rendering network takes as input a vector of l values corresponding to the position coordinates (x k , y k , d k ) of object k in a frame together with additional dimensions for intrinsic object properties (shape, color and size) (c). The network predicts object's binary mask, M k as well as the depth map D k . The input vector (x k , y k , d k , c k ) ∈ R l is first copied into a (l + 2) × 16 × 16 tensor, where each 16 × 16 cell position contains an identical copy of the input vector together with x and y coordinates of the cell. Adding the x and y coordinates may seem redundant, but this kind of position field enables a very local computation of the shape of the object and avoids a large number of network parameters (similar architectures were recently also studied in Liu et al.).

The input tensor is processed with 1 × 1 convolution filters. The resulting 16channel feature map is further processed by three blocks of convolutions. Each block contains three convolutions with filters of size 1 × 1, 3 × 3 and 1 × 1 respectively, and 4, 4 and 16 feature maps, respectively. We use ReLU pre-activation before each convolution, and up-sample (scale of 2 and bilinear interpolation) feature maps between blocks. The last convolution outputs N + 1 feature maps of size 128 × 128, the first feature map encoding depth and the N last feature maps encoding mask predictions for the individual objects. The object rendering network is applied to all objects present, resulting in a set of masks and depth maps denoted as {( M k , Dk ), k = 1..N }.

The Occlusion predictor takes as input the masks and depth maps for N objects and aggregates them to construct the final occlusion-consistent mask and depth map. To do so it computes, for each pixel i, j 128 and object k the following weight:

c k i,j = e λ Dk i,j N q=1 e λ Dq i,j , k = 1..N, (4.4)
where λ is a parameter learned by the model. The final masks and depth maps are computed as a weighted combination of masks M k i,j and depth maps Dk i,j for individual objects k:

Mi,j = N k=1 c k i,j M k i,j , Di,j = N k=1 c k i,j
Dk i,j , where i, j are output pixel coordinates ∀i, j 128 and c k i,j the weights given by (5.8). The intuition is that the occlusion renderer constructs the final output ( M , D) by selecting, for every pixel, the mask with minimal depth (corresponding to the object occluding all other objects). For negative values of λ, equation (5.8) is as a softmin, that selects for every pixel the object with minimal predicted depth. Because λ is a trainable parameter, gradient descent forces it to take large negative values, ensuring good occlusion predictions. Also note that this model does not require to be supervised by the depth field to predict occlusions correctly. In this case, the object rendering network still predicts a feature map D that is not equal to the depth anymore but is rather an abstract quantity that preserves the relative order of objects in the view. This allows Renderer to predict occlusions when the target masks are RGB only. However, it still needs depth information in its input (true depth or rank order).

The Recurrent Interaction Network (RecIntN et)

To model object dynamics, we build on the Interaction Network [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF], which predicts dynamics of a variable number of objects by modeling their pairwise interactions. Here we describe three extensions of the vanilla Interaction Network model. First, we extend the Interaction Network to model 2.5D scenes where position and velocity have a depth component. Second, we turn the Interaction Network into a recurrent network. Third, we introduce variance in the position predictions, to stabilise the learning phase, and avoid penalizing too much very uncertain predictions. The three extensions are described below.

Modeling compositional object dynamics in 2.5D scenes. As shown in [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF], Interaction Networks can be used to predict object motion both in 3D or in 2D space. Given a list of objects represented by their positions, velocities and size in the Cartesian plane, an Interaction Network models interactions between all pairs of objects, aggregates them over the image and predicts the resulting motion for each object. Here, we model object interactions in 2.5D space, since we have no access to the object position and velocity in the Cartesian space. Instead we have locations and velocities in the image plane plus depth (the distance between the objects and the camera). [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] is trained to predict position and velocity of each object in one step into the future. Here, we learn from multiple future frames. We "rollout" the Interaction Network to predict a whole sequence of future states as if a standard Interaction Network was applied in recurrent manner. We found that faster training can be achieved by directly predicting changes in the velocity, hence:

Modeling frame sequences. The vanilla Interaction Network

[p 1 , v 1 , c] = [p 0 + δtv 0 + δt 2 2 d v , v 0 + d v , c], (4.5)
where p 1 and v 1 are position and velocity of the object at time t 1 , p 0 and v 0 are position and velocity at time t 0 , and δt = t 1t 0 is the time step. Position and velocity in pixel space (p = [p x , p y , d] where p x , p y are the position of the object in the frame), d is depth and v is the velocity in that space. Hence d v can be seen as the acceleration, and

(v 0 + d v ),(p 0 + δtv 0 + δt 2 2 d v )
as the first and second order Taylor approximations of velocity and position, respectively. Assuming an initial weight distribution close to zero, this gives the model a prior that the object motion is linear.

Prediction uncertainty. To account for prediction uncertainty and stabilize learning, we assume that object position follows a multivariate normal distribution, with diagonal covariance matrix. Each term σ 2

x , σ 2 y , σ 2 d of the covariance matrix represents the uncertainty in prediction, along x-axis, y-axis and depth. Such uncertainty is also given as input to the model, to account for uncertainty either in object detection (first prediction step) or in the recurrent object state prediction. The resulting loss is negative log-likelihood of the target p 1 w.r.t. the multivariate normal distribution, which reduces to:

L ( p1 , τ1 ), p 1 = ( p1 -p 1 ) 2 exp τ1 + τ1 , (4.6)
where τ1 = ln σ2 1 is the estimated level of noise propagated through the Recurrent Interaction Network, where σ 1 concatenates σ 2

x , σ 2 y , σ 2 d , p 1 is the ground truth state and p1 is the predicted state at time t + 1. The intuition is that the squared error term in the numerator is weighted by the estimated level of noise τ1 , which acts also as an additional regularizer. We found that modeling the prediction uncertainty is important for dealing with longer occlusions, which is the focus of this work.

Event decoding

Given these components, event decoding is obtained in two steps. First, scene graph proposal gives initial values for object states based on visible objects detected on a frame-by-frame basis. These proposed object states are linked across frames using RecIntN et and a nearest neighbor strategy. Second, this initial proposal of the scene interpretation is then optimized by minimizing the total loss by gradient descent through both RecIntN et and Renderer on the entire sequence of object states, yielding the final interpretation of the scene, as well as it's plausibility score (inverse of the total loss). The details of this algorithm are given in the supplementary material.

Experiments

In this section we present two sets of experiments evaluating the proposed model. The first set of experiments (section 4.4.1) is on the IntPhys benchmark that is becoming the de facto standard for evaluating models of intuitive physics 1 Riochet et al. (2021), and is currently used as evaluation in the DARPA Machine Common Sense program. The second set of experiments (section 4.4.2) evaluates the accuracy of the predicted object trajectories and is inspired by the evaluation set-up used in [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] but here done in 3D with inter-object occlusions.

Evaluation on the IntPhys benchmark

Dataset. The Intphys Benchmark consists in a set of video clips in a virtual environment. Half of the videos depict possible event and half impossible. They are organized in three blocks, each one testing for the ability of artificial systems to discriminate a class of physically impossible events. Block O1 contains videos where objects may disappear with no reason, thus violating object permanence. In Block O2, objects' shape may change during the video, again without any apparent physical reason. In Block O3, objects may "jump" from one place to another, thus violating continuity of trajectories. Systems have to provide a plausibility score for each of the 12960 clips and are evaluated in terms of how well they can classify possible and impossible movies. Half of the impossible events (6480 videos) occur in plain sight, and are relatively easy to detect. The other half occurs under complete occlusion, leading to poor performance of current methods [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF]; [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF].

Along with the test videos, the benchmark contains an additional training set with 15000 videos, with various types of scenes, object movements and textures. Importantly, the training set only consists in possible videos. Solving this task therefore cannot be done by learning a classifier or plausibility score from the training set.

System training. We use the training set to train the Compositional Rendering

Network and a MaskRCNN object detector/segmenter from groundtruth object positions and segmentations. We also train the Recurrent Interaction Network to predict trajectories of object 8 frames in the future, given object positions in pairs of input frames. Once trained, we apply the scene graph proposal and optimization algorithm described above and derive the plausibility score which we take as the inverse of a plausibility loss.

Results. Table 4.1 reports error rates (smaller is better) for the three above mentioned blocks each in the visible and occluded set-up, with "Total" reporting the overall error. We compare performance of our method with two strong baselines [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF] and the current state-of-the-art on Block O1 [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF]. We observe a clear improvement over the two other methods, mainly explained by better predictions when impossible events are occluded (see Occluded columns). In particular, results in the Visible case are rather similar to [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF], with a slight improvement of 2% on O1 and 6% on O3. On the other hand, improvements on the Occluded reach 33% on O1 and 21% on O2 clearly demonstrating our model can better deal with occlusions. We could not obtain the Visible/Occluded split score of [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF] by the time of the submission, thus indicating question marks in the Table 4.1. On O3/Occluded, we observe that our model still struggles to detect correctly impossible events. Interestingly, the same pattern can be observed in human evaluation detailed in [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF], with a similar error rate in the Mechanical Turk experiment. This tends to show that detecting object "teleportation" under significant occlusions is more complex than other tasks in the benchmark. It would be interesting to confirm this pattern with other methods and/or video stimuli. Overall results demonstrate a clear improvement of our method on the IntPhys benchmark, confirming its ability to follow objects and predict motion under long occlusions. 2019), demonstrating large benefits of our method in scenes with significant occlusions ("Occluded"). V stands for Visible and O for Occluded. Lower is better.

Evaluation on Future Prediction

In this section we investigate in more detail the ability of our model to learn to predict future trajectories of objects despite large amounts of inter-object occlusions. We first describe the dataset and experimental set-up, then discuss the results of object trajectory prediction under varying levels occlusion. Next, we report ablation studies comparing our model with several strong baselines. Finally, we report an experiment demonstrating that our model generalizes to real scenes.

Dataset. We use pybullet2 physics simulator to generate videos of a variable number of balls of different colors and sizes bouncing in a 3D scene (a large box with solid walls) containing a variable number of smaller static 3D boxes. We generate five datasets, where we vary the camera tilt and the presence of occluders. In the first dataset ("Top view") we record videos with a top camera view (or 90°), where the borders of the frame coincide with the walls of the box. In the second dataset ("Top view+occ"), we add a large moving object occluding 25% of the scene. Finally, we decrease the camera viewing angle to 45°, 25°and 15°degrees, which results in an increasing amount of inter-object object occlusions due to perspective projection of the 3D scene onto a 2D image plane. Contrary to the previous experiment on IntPhys benchmark, we use the ground truth instance masks as the input to our model to remove potential effects due to errors in object detection. Additional details of the datasets and visualizations are given in the supplementary material.

Trajectory prediction in presence of occlusions. In this experiment we initialize the network with the first two frames. We then run a roll-out for N consecutive frames using our model. We consider prediction horizons of 5 and 10 frames, and evaluate the position error as a L2 distance between the predicted and ground truth object positions. L2 distance is computed in the 3D Cartesian scene coordinates so that results are comparable across the different camera tilts. Results are shown in Table 4.3. We first note that our model (e. RecIntNet) significantly outperforms the linear baseline (a.), which is computed as an extrapolation of the position of objects based on their initial velocities. Moreover, the results of our method are relatively stable across the different challenging setups with occlusions by external objects (Top view+occ) or frequent self-occlusions in tilted views (tilt). This demonstrates the potential ability of our method to be trained from real videos where occlusions usually prevent reliable recovery of object states.

Ablation Studies.

As an ablation study we replace the Recurrent Interaction Network (RecIntN et) in our model with a multi-layer perceptron (b. MLP baseline in Table 4.3). This MLP contains four hidden layers of size 180 and is trained the same way as RecIntN et, modeling acceleration as described in equation 5.4.1. To deal with the varying number of objects in the dataset, we pad the inputs with zeros.

Comparing the MLP baseline (a.) with our model (e. RecIntNet) we observe that our RecIntN et allows more robust predictions through time.

As a second ablation study, we train the Recurrent Interaction Network without modeling acceleration (eq. 5.4.1). This is similar to the model described in [START_REF] Janner | Reasoning About Physical Interactions with Object-Oriented Prediction and Planning[END_REF], where object representation is not decomposed into position / velocity / intrinsic properties, but is rather a (unstructured) 256-dimensional vector. Results are reported in table 4.3 (c. NoDyn-RecIntNet). Compared to our full approach (e.), we observe a significant loss in performance, confirming that modeling position and velocity explicitly, and having a constant velocity prior on motion (given by 5.4.1) improves future predictions.

As a third ablation study, we train a deterministic variant of RecIntN et, where only the sequence of states is predicted, without the uncertainty term τ (please see more details in the Supplementary). The loss considered is the mean squared error between the predicted and the observation state. Results are reported in table . The results are slightly worse than our model handling uncertainty (d. NoProba-RecIntNet), but close enough to say that this is not a key feature for modeling 5 or 10 frames in the future. In qualitative experiments, however, we observed more robust long-term predictions with uncertainty in our model.

Generalization to real scenes. We test the model trained on top-view synthetic Pybullet videos (without finetuning the weights) on a dataset of 22 real videos containing a variable number of colored balls and blocks in motion recorder with a Microsoft Kinect2 device. Example frames from the data are shown in figure 4.7. Results are reported in the supplementary and demonstrate that our model generalizes to real data and show clear improvements over the linear and MLP baselines.

Additional results in the supplementary material. In addition to the forward prediction, we evaluate our method on the task of following objects in the scene. Details and results can be found in the supplementary material (section 5).

Discussion

Learning the physics of simple macroscopic object dynamics and interactions is a relatively easy task when ground truth coordinates are provided to the system, and techniques like Interaction Networks trained with a future frame prediction loss are quite successful [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF]; [START_REF] Mrowca | Flexible neural representation for physics prediction[END_REF]. In real-life applications, the physical state of objects is not available and has to be inferred from sensors. In such case inter-object occlusions make these observations noisy and sometimes missing.

Here we present a probabilistic formulation of the intuitive physics problem, where observations are noisy and the goal is to infer the most likely underlying object states. This physical state is the solution of an optimization problem involving i) a physics loss: objects states should be coherent in time, and ii) a render loss: the resulting scene at a given time should match with the observed frame. We present a method to find an approximate solution to this problem, that is compositional (does not restrict the number of objects) and handles occlusions. We show its ability to learn object dynamics and demonstrate it outperforms existing methods on the intuitive physics benchmark IntPhys.

A second set of experiments studies the impact of occlusions on intuitive physics learning. During training, occlusions act like missing data because the object position is not available to the model. However, we found that it is possible to learn good models compared to baselines, even in challenging scenes with significant interobject occlusions. We also notice that projective geometry is not, in and of itself, a difficulty in the process. Indeed, when an our dynamics model is fed, not with 3D Cartesian object coordinates, but with a 2.5D projective referential such as the xy position of objects in a retina (plus depth), the accuracy of the prediction remains unchanged compared with the Cartesian ground truth. Outcomes of these experiments can be seen in the anonymous google drive ( link). This work, along with recent improvement of object segmentation models Ren et al. ( 2017) put a first step towards learning intuitive physics from real videos.

Further work needs to be done to fully train this system end-to-end, in particular, by learning the renderer and the interaction network jointly. This could be done within our probabilistic framework by improving the initialization step of our system (scene graph proposal). Instead of using a relatively simple heuristics yielding a single proposal per video clip, one could generate multiple proposals (a decoding lattice) that would be reranked with the plausibility loss. This would enable more robust joint learning by marginalizing over alternative event graphs instead of using a single point estimate as we do here. Finally object segmentation itself could be learned jointly, as this would allow exploiting physical regularities of the visual world as a bootstrap to learn better visual representations. 

Appendix

This supplementary material: (i) describes the provided supplementary videos (section 4.6.1), (ii) provides additional training details (section 4.6.2), (iii) explains in more depth the event decoding procedure defined in section 3.4 in the main paper (section 4.6.2) (iv) gives details of the datasets used in the subsection 4.2 (section 4.6.2), (v) provides additional ablation studies and comparisons with baselines (sections 4.6.2, 4.6.3, 4.6.4, 4.6.5).

Description of supplementary videos

In this section we present qualitative results of our method on different datasets. We first show videos from IntPhys benchmark, where inferred object states are depicted onto observed frames. Then we show differents outputs on the pybullet datasets, for different levels of occlusions. Finally we present examples of predictions from our Recurrent Interaction Network on real scenes.

The videos are in the anonymous google drive: https://drive.google. com/open?id=1Qc8flIAxUGzfRfeFyyUEGXe6J5AUGUjE in the videos/ subdirectory. Please see also the README slideshow in the same directory.

IntPhys benchmark

The Intphys Benchmark consists in a set of video clips in a virtual environment. Half of the videos are possible event and half are impossible, the goal being to discriminate the two.

In the following we show impossible events, along with outputs of our event decoding method. Our dynamics and rendering models predict future frames (masks) in the videos, which are compared with the observed masks (pre-trained detector). This allows us to derive a plausibility loss used to discriminate possible and impossible events (see section 4.1).

-occluded_impossible_*.mp4 show examples of impossible videos from the IntPhys benchmark, along with visualization of our method. Each video contains four splits; on top/left is shown the raw input frame; on bottom/left is the mask obtained from the raw frame with the pre-trained mask detector (which we call observed mask); on top/right is the raw frame with superimposed output physical states predicted by our method; on bottom/right is the reconstructed mask obtained with the Compositional Renderer (which we call predicted mask). Throughout the sequence, our method predicts the full trajectory of objects. When an object should be visible (i.e. not behind an occluder), the renderer predicts correctly its mask. If at the same time the object has disappeared from the observed mask, or changed too much in position or shape, it causes a mismatch between the predicted and the observed masks, hence a higher plausibility loss. This plausibility loss is use for the classification task of IntPhys benchmark (see quantitative results in main paper, section 4.1).

-visible_impossible_*.mp4 show similar videos but with impossible events occurring in the "visible" (easier) task of the IntPhys benchmark.

-intphys_*.mp4 show object following in the IntPhys training set.

Pybullet experiments

We present qualitative results on our Pybullet dataset. We construct videos including a various number of objects with different points of view and increasing levels of camera tilts introducing inter-object occlusions. First, we show predicted physical states drawn on object states, to demonstrate the ability of the method to track objects under occlusions. Then we show videos of long rollouts where, from one pair of input frames, we predict a full trajectory and render masks with the Compositional Neural Renderer.

-scene_overview.mp4 shows raw videos of the entire environment.

-tracking_occlusions_*.mp4 show examples of position prediction through complete occlusions, using our event decoding procedure. This shows that our model can keep track of the object identity through complete occlusions, mimicking "object permanence".

-one_class*.mp4 show different examples of our model following motion of multiple objects in the scene. All balls have the same color which makes them difficult to follow in case of mutual interactions. Videos come from tilted 25°experiments, which are the most challenging because they include inter-object occlusions. Dots represent the predicted position of each object, the color being its identity. Our model shows very good predictions with small colored markers (dots) well centered in the middle of each object, with marker color remaining constant for each object preserving the object identity during occlusions and collisions. one_class_raw*.mp4 show rendered original views of the same dynamic scenes but imaged from a different viewpoint for better understanding.

- -rollout_pybullet_*.mp4 show free roll-outs (no event decoding) on synthetic dataset.

Real videos

-rollout_real_*.mp4 show generalization to real scenes.

Training details

This section gives details of the offline pre-training of the Compositional Rendering Network and detailed outline of the algorithm for training the Recurrent Interaction Network.

Pre-Training the Compositional Rendering Network. We train the neural renderer to predict mask and depth Mt , Dt from a list of objects [p x , p y , d, c] where p x , p y are x-y coordinates of the object in the frame, d is the distance between the object and the camera and c is a vector for intrinsic object properties containing the size of the object, its class (in our experiments a binary variable for whether the object is a ball, a square or an occluder) and its color as vector in [0, 1] 3 . In IntPhys benchmark, occluders are not modeled with a single point [p x , p y , d, c] but with four points [p k

x , p k y , d k ], k = 1..4 corresponding to the four corners of the quadrilateral. These four corners are computed from the occluder instance mask, after detecting contours and applying Ramer-Douglas-Peucker algorithm to approximate the shape with a quadrilateral.

The target mask is a 128 × 128 image where each pixel value indicates the index of the corresponding object mask (0 for the background, i ∈ 1..N for objects). The loss on the mask is negative log-likelihood, which corresponds to the average classification loss on each pixel

L mask ( M , M ) = i h,j w n N 1(M i,j = n)log( Mi,j,n ), (4.7) 
where the first sum is over individual pixels indexed by i and j, the second sum is over the individual objects indexed by n, ∀ M ∈ [0, 1] h×w×N are the predicted (soft-) object masks, and ∀M ∈ [[1, N [] h×w is the scene ground truth mask containing all objects.

The target depth map is a 128 × 128 image with values being normalized to the [-1,1] interval during training. The loss on the depth map prediction is the mean squared error

L depth ( D, D) = i h,j w ( Di,j -D i,j ) 2 , (4.8)
where ∀ D and D ∈ R h×w are the predicted and ground truth depth maps, respectively. The final loss used to train the renderer is the weighted sum of losses on masks and depth maps, L = 0.7 * L mask + 0.3 * L depth . We use the Adam optimizer with default parameters, and reduce learning rate by a factor 10 each time the loss on the validation set does not decrease during 10 epochs. We pre-train the network on a separate set of 15000 images generated with pybullet and containing similar objects as in our videos.

Training details of the Recurrent Interaction Network. From a sequence of L frames with their instance masks we compute objects position, size and shape (see section 3.2 in the main body). Initial velocities of objects are estimated as the position deltas between the first two positions. This initial state (position, velocity, size and shape of all objects) is given as input of the Recurrent Interaction Network to predict the next L-2 states. The predicted L-2 positions are compared with observed object positions. The sum of prediction errors (section 3.3 in core paper) is used as loss to train parameters of the Recurrent Interaction Network. Optimization is done via gradient descent, using Adam with learning rate 1e -3, reducing learning by a factor of 10 each time loss on validation plateaus during 10 epochs. We tried several sequence lengths (4, 6, 10), 10 giving the most stable results. During such sequence, when an object was occluded (thus position not being observed), we set its loss to zero.

Event Decoding

The detailed outline of the event decoding procedure described in section 3.4 of the main paper is given in Algorithm 1. Two example figures (Figure 4.5 & 4.6) gives an intuition behind the render and physics losses.

Datasets

To validate our model, we use pybullet 3 physics simulator to generate videos of variable number of balls of different colors and sizes bouncing in a 3D scene (a large box with solid walls) containing a variable number of smaller static 3D boxes. We generate five dataset versions, where we vary the camera tilt and the presence of occluders. All experiments are made with datasets of 12,000 videos of 30 frames (with a frame rate of 20 frames per second). For each dataset, we keep 2,000 videos separate to pre-train the renderer, 9, 000 videos to train the physics predictor and 1, 000 videos for evaluation. Our scene contains a variable number of balls (up to Unif ([-25, 25]) units per frame, initial velocity along z-axis is set to 0. The radius of each ball is sampled uniformly in [10,40]. Scenes also contain a variable number of boxes (up to 2) fixed to the floor, against which balls can collide. Contrary to [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] where authors set a frame rate of 1000 frames per second, we sample 30 frames per second, which is more reasonable when working with masks (because of the computation cost of mask prediction).

Top-view.

In the first dataset we record videos with a top camera view, where the borders of the frame coincide with the walls of the box. Here, initial motion is orthogonal to the camera, which makes this dataset very similar to the 2D bouncing balls datasets presented in [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] and Watters et al. (2017). However, our dataset is 3D and because of collisions and the fact that the balls have different sizes, balls can jump on top of each other, making occlusions possible, even if not frequent.

Top-view with Occlusions.

To test the ability of our method to learn object dynamics in environments where occlusions occur frequently, we record the second dataset including frequent occlusions. We add an occluder to the scene, which is an object of irregular shape (an airplane), occluding 25% of the frame and moving in 3D between the balls and the camera. This occluder has a rectilinear motion and goes from the bottom to the top of the frame during the whole video sequence. Sample frames and rendered predictions can be found in the supplementary material.

Tilted-views.

In three additional datasets we keep the same objects and motions but tilt the camera with angles of 45°, 65°and 75°degrees. Increasing the tilt of the camera results in more severe inter-object occlusions (both partial and complete) where the balls pass in front of each other, and in front and behind the static boxes, at different distances to the camera. In addition, the ball trajectories are becoming more complex due to increasing perspective effects. In contrary to the top-view experiment, the motion is not orthogonal to the camera plane anymore, and depth becomes crucial to predict the future motion.

Ablation studies

For the purpose of comparison, we also evaluate three models trained using ground truth object states. Results are shown in table . Our Recurrent Interaction Network trained on ground truth object states gives similar results to the model of [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF]. As expected, training on ground truth states (effectively ignoring occlusions and other effects) performs better than training from object masks and depth. 

Roll-out results

We evaluate our model on object following, applying an online variant of the scene decoding procedure detailed in 4.6.2. This online variant consists in applying the state optimization sequentially (as new frames arrive), instead of on the full sequence. For each new frame, the state prediction ŝt+1 given by RecIntN et is used to predict a resulting mask. This mask is compared to the observation, and we apply directly the final step in Algorithm 1 (Differentiable optimization). It consists in minimizing λLoss physics (s) + (1λ)Loss visual (s) via gradient descent over the state s. During full occlusion, the position is solely determined by RecIntN et, since Loss render has a zero gradient. When the object is completely or partially visible, the Loss render in the minimization make the predicted state closer to its observed value. To test object following, we measure the accuracy of the position estimates across long sequences (up to 30 frames) containing occlusions. Table 4.4 shows the percentage of object predictions that diverge by more than an object diameter (20 pixels) using this method. The performance is very good, even for tilted views. In Figure 4.8, we report the proportion of correctly followed objects for different rollout lengths (5, 10 and 30 frames) as a function of the distance error (pixels). Note that the size of the smallest object is around 20 pixels. 

Experiment with real videos

We construct a dataset of 22 real videos, containing a variable number of colored balls and blocks in motion. Videos are recorded with a Microsoft Kinect2 device, Figure 4.8: Proportion of correctly followed objects (y-axis) as a function of the distance error in pixels (x-axis) for our approach using online event decoding. The different plots correspond to rollout lengths of 5 (left), 10 (middle) and 30 (right) frames. Different curves correspond to different camera view angles (top-view, tilted 45 degrees and tilted 25 degrees). In this experiment, all objects have the same shape and color making the task of following the same object for a long period of time very challenging.

The plots demonstrate the success of our method in this very challenging scenario with object collisions and inter-object occlusions. For example, within a distance threshold of 20 pixels, which corresponds to the size of the smallest objects in the environment, our approach correctly follows more than 90% of objects during the rollout of 30 frames in all three considered camera viewpoints (top-view, 45 degrees and 25 degrees).

Please see also the supplementary videos "one_class*.mp4". including RGB and depth frames. The setup is similar to the one generated with Pybullet, recorded with a top camera view and containing 4 balls and a variable number of static blocks (from 0 to 3). Here again, the borders of the frame coincide with the walls of the box. Taking as input object segmentation of the first two frames, we use our model to predict object trajectories through the whole video (see Figure 4.7). We use the model trained on top-view synthetic Pybullet videos, without fine-tuning weights. We measure the error between predictions and ground truth positions along the roll-out. Results are shown in Table 4.5 and clearly demonstrate that out approach outperforms the linear and MLP baselines and makes reasonable predictions on real videos. Aggregate pixel reconstruction error for mask and depth, for a prediction span of two frames. This error is the loss used for training (described in the supplementary material). It is a weighted combination of mask error (per-pixel classification error) and the depth error (mean squared error).

Future prediction (pixels): Comparison with baselines

We evaluate the error of the mask and depth prediction, measured by the training error described in detail in 4.6.2. Here, we compare our model to a CNN autoencoder [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF], which directly predicts future masks from current ones, without explicitly modelling dynamics of the individual objects in the scene. Note this baseline is similar to [START_REF] Lerer | Learning Physical Intuition of Block Towers by Example[END_REF]. Results are shown in Table S1. As before, the existence of external occluders or the presence of tilt degrades the performance, but even in this case, our model remains much better than the CNN autoencoder of [START_REF] Riochet | IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning[END_REF].

Chapter 5

Multi-Representational Future Forecasting Abstract

Understanding the dynamics of an environment from a visual input is an essential component of reasoning. Improving intuitive physics skills of machine models is therefore important, however models are often validated using toy datasets, with static cameras. To ease the complex task of future prediction in a real-world context, we combine in this work the use of different representations: objects bounding boxes, keypoints, instances, and background masks. We study predicting each representation separately as well as conditioning complex representations on simpler ones for a more accurate prediction. Possible influences between objects are modeled via an interaction network. We first utilize synthetic labels for learning to predict ideal state representations, and investigate a domain transition using real data with labels obtained by an automatic detection system. Our interaction modeling followed by geometric projection allows us to outperform the state-of-the-art in future instance segmentation, with more than 15% of relative improvement. Our prediction and data generation codes will be made publicly available.

This work was led in collaboration with Mohamed Elfeki, Natalia Neverova, Emmanuel Dupoux and Camille Couprie.

Introduction

Providing intelligent agents with the ability to predict and anticipate has been a topic of extensive research for a long time Kitani et al. ( 2012 2019), and building intelligent assistants, to name a few. Meanwhile, the natural order of events presented in dynamic visual sequence provides a source of unlimited natural supervision for learning powerful spatiotemporal representations that are transferable to other downstream problems, such as action recognition [START_REF] Lee | Unsupervised representation learning by sorting sequences[END_REF]; Xu et al. (2019a).

The task of forecasting the visual future encompasses a variety of sub-tasks, from simply extrapolating trajectories of objects in the scene, to a full-fledged generation of high resolution frames for extending observed video sequences. The latter problem of video prediction directly in the pixel space is known to be notoriously hard and requires scaling the training process to massive amounts of data and compute to achieve a modest degree of realism even over a short prediction range [START_REF] Weissenborn | Scaling Autoregressive Video Models[END_REF]; [START_REF] Clark | Adversarial Video Generation on Complex Datasets[END_REF]. In addition, there exists no appropriate evaluation metric for identifying and interpreting shortcomings of such systems, as well as quantifying their reasoning capabilities. For this reason, many works have attempted to constrain the task by introducing inductive biases, such as decomposing the scene into a set of entities, or agents, to model their respective trajectories and pairwise interactions [START_REF] Ye | Compositional Video Prediction[END_REF]; [START_REF] Baradel | COPHY: Counterfactual Learning of Physical Dynamics[END_REF]. Another popular strategy is shifting the reconstruction from RGB space to semantic spaces, such as semantic segmentation [START_REF] Luc | Predicting Deeper Into the Future of Semantic Segmentation[END_REF], object masks [START_REF] Luc | Predicting Future Instance Segmentation by Forecasting Convolutional Features[END_REF]; [START_REF] Ye | Compositional Video Prediction[END_REF] or human keypoints [START_REF] Walker | The pose knows: Video forecasting by generating pose futures[END_REF]; [START_REF] Kim | Unsupervised Keypoint Learning for Guiding Class-Conditional Video Prediction[END_REF]. This is based on the intuition that a model performing reconstruction of object dynamics should be invariant to object appearance, which is thus irrelevant to the prediction task. At the same time, recent works in generative modeling have indicated that having a semantic representation of a scene (such as parsing Wang et al. (2018), scene graph [START_REF] Ashual | Specifying Object Attributes and Relations in Interactive Scene Generation[END_REF] or object skeleton [START_REF] Walker | The pose knows: Video forecasting by generating pose futures[END_REF]; [START_REF] Kim | Unsupervised Keypoint Learning for Guiding Class-Conditional Video Prediction[END_REF]) in a new frame is indeed sufficient to perform realistic texture transfer from past observations. A crucial aspect of future prediction is the modeling of object interactions. In intuitive physics, the Interaction networks of [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] were introduced to perform such predictions. The work of Riochet et al. (2020b) goes one step further and applies it to higher dimension simulated images of moving balls. In the context of real world datasets, graph-based modelings are for now limited to trajectory forecasting [START_REF] Alahi | Social LSTM: Human trajectory prediction in crowded spaces[END_REF]; [START_REF] Ma | TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents[END_REF].

The goal of the present study is to address the problem of semantic video prediction in a systematic way, combining different representations, modeling their relationships and building on the progress in the field so far. We consider this task in a setting of semantic multi-modality, by considering a set of semantic representations (shown in Fig. 5.1) ordered by their expressive power (from object locations to keypoints and masks). We also model objects interactions and render them spatially. We start by conducting the experiments by adapting the synthetic CARLA environment for autonomous driving [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] to generate a large scale dataset for multi-modal visual forecasting. Then we generalize the framework's performance on the real-life Cityscapes dataset [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF] using a state-of-the-art semantic content extractor, here Mask- RCNN He et al. (2017). By gathering all major pieces: conditioning complex modality prediction on simpler ones, decoupling objects' relative motion from background, and generalizing framework's performance on real-data in a self-supervised setting, we aim at taking a first stride towards a precise multi-modal environment dynamic modeling.

We present a forecasting model that decomposes the visual input into foreground Figure 5.2: Our multi-representational prediction pipeline. A recursive interaction network is trained to predict future bounding box locations, that are then fed to an LSTM along with past keypoints to predict the future keypoints.

Then our re-projection module corrects these prediction using a geometric projection when camera information is available. Corrected bounding boxes and keypoints are fed to our renderer, along with previous masks to generates future instance masks. *: optional.

instance representations, object bounding boxes, keypoints, and masks. We demonstrate the positive impact of conditioning predictions in different semantic spaces on each other in increasing order of complexity of representations and expressive power (from bounding boxes to keypoints and masks).

Our method effectively decouples egomotion from objects' motion in the scene by implementing a dedicated correction module using perspective projection of camera information. This is necessary for most robotic applications, where both the camera and the environment may be in motion.

Related work

Most prior literature on video prediction focuses on a single modality at a time, including these that we consider in this work. Below we briefly review the existing works on visual semantic forecasting. [START_REF] Bhattacharyya | Long-Term On-Board Prediction of People in Traffic Scenes Under Uncertainty[END_REF] proposes a method to predict the boxes around pedestrians using a non deterministic loss and a LSTM on the ego-centric Cityscapes sequences. The framework of [START_REF] Yao | Egocentric vision-based future vehicle localization for intelligent driving assistance systems[END_REF] includes a multi-stream recurrent neural network (RNN) encoderdecoder model to predict bounding boxes for vehicles. Additionally, the authors use dense optical flow to capture motion and appearance changes. Segmentation forecasting. Among the many representations in the descriptive spaces (i.e., non-RGB spaces), segmentation is the most complex. It has a pixelto-pixel mapping of each object, and sometimes of the background as well, and is hence modeling position, size, orientation and appearance changes only without coloring. [START_REF] Luc | Predicting Deeper Into the Future of Semantic Segmentation[END_REF] propose predicting future semantic segmentations without a clear distinction of instances using a CNN architecture. Going beyond basic CNN architectures used for segmentation forecasting, [START_REF] Nabavi | Future Semantic Segmentation with Convolutional LSTM[END_REF] employ bidirectional -LSTMs to segment all instances together, and perform very near future forecasting (next single frame prediction). The works of [START_REF] Terwilliger | Recurrent flow-guided semantic forecasting[END_REF]; [START_REF] Saric | Warp to the Future: Joint Forecasting of Features and Feature Motion[END_REF] successively improve the state-of-the-art by jointly inferring future optical flow and using warping to predict future semantic segmentations. Finally, [START_REF] Qi | 3D Motion Decomposition for RGBD Future Dynamic Scene Synthesis[END_REF] end-to-end, resulting in weak performance.

Bounding box forecasting. The recent work of

Semantically multi-modal datasets

Collecting long-sequences of data, with labels of different modalities, and in abundance, is an extremely hard task that might be rendered impractical. Only a limited number of in-the-wild datasets contain several ground-truth annotation streams recorded simultaneously, and those labels are offered in scarcity. In particular, there exist no standard benchmark offering ground truth information for object tracking, depth estimation, object detection, keypoint detection, instance segmentation and semantic segmentation. For instance, the Cityscapes dataset of [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF] provides semantic and instance segmentation, center locations, but no keypoints, and sequences of at most 1.5 seconds contain single labeled frames. To cope with this, we gathered synthetic and pseudo ground truth real annotations as described in Table 5.1. Synthetic data. We use the Carla self-driving engine [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] to generate 450 driving sequences of long range (120 frames per sequence, corresponding to two minutes) and accurate labels representing multiple semantic modalities for every frame. Carla is a video generation engine that simulates a virtually-infinite number of realistic scenarios of an autonomous car driving in urban and rural areas as well as highways. It offers simulation for multiple types of moving agents, including cars, trucks, bicycles, bikes, pedestrians, with several subcategories of each agent. Another crucial importance of using a synthetic engine is acquiring access to simultaneously recorded ground-truth annotations for different modalities, which is impractical and cost-ineffective to be done in real life. We modified the engine to produce: 2D relative locations, bounding boxes, keypoints for cars and pedestrians, depth maps, semantic and instance segmentations. We also provide meta information about each instance such as object-id, which is useful for tracking. Further details about the data collection are reported in the Supplementary material.

Real-world data. On both Carla and Cityscapes sequences, we use pseudo detection labels predicted by a panoptic segmentation network from [START_REF] Kirillov | Panoptic Feature Pyramid Networks[END_REF] implemented within the Mask-RCNN framework [START_REF] He | Mask R-CNN[END_REF]. Specifically, we use Detectron2 [START_REF] Xu | Dense-PhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic Interactions[END_REF] to obtain tracking information (using a heuristic to match similar instances), bounding box detection, instance segmentation, and keypoints for pedestrians.

Models

An overview of our future prediction system is depicted in Figure 5.2. To predict better instance segmentation, we start predicting object's locations and sizes in the scene, through a bounding box forecasting model. Objects motion being strongly linked to inter-object interactions, we model their trajectories with a Recurrent Interaction Network [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF]; Riochet et al. (2020b)). Keypoints also provide useful information for instance segmentation, such as object orientation / deformation. Because they are often more complex to model (e.g., legs of walkers, bicycles), we help the model catching these regularities by conditioning to the object bounding box.

Modeling interactions for object bounding box forecasting

Taking inspiration from the work of Riochet et al. Riochet et al. (2020b), we model relationships between different objects via a Recurrent Interaction Network.

Interaction Network. An interaction network [START_REF] Battaglia | Interaction networks for learning about objects, relations and physics[END_REF] consists in a graph neural network where objects are nodes and their interactions are vertices. A four-layers Multi-Layer Perceptron (MLP), with hidden states of length 150 and ReLU activation units predicts the result of all interactions: for each object pair, it takes as input the concatenation of both object states and returns a latent representation of the interaction, encoded as a vector of size 100. To predict object motion, we aggregate all interactions involving this object by summing their latent representations, and apply a second 4-layers MLP with hidden states of length 100 and ReLU activation units.

Object state. An object state consists in its bounding box position p t = [x, y, w, h] t , velocity v t and the predicted object category encoded as a one-hot vector l. Like in Riochet et al. (2020b), we "rollout" the Interaction Network to predict a whole sequence of future states as if a standard Interaction Network was applied in recurrent manner. We predict changes in velocity d v = v tv t-1 , reconstructing object state as follow:

[p 1 , v 1 , l] = [p 0 + δtv 0 + δt 2 2 d v , v 0 + d v , l], (5.1) 
where p 1 and v 1 are position and velocity of the object at time t 1 , p 0 and v 0 are position and velocity at time t 0 , and δt = t 1t 0 is the time step. Hence d v can be seen as the acceleration, and (v 0 + d v ),(p 0 + δtv 0 + δt 2 2 d v ) as the first and second order Taylor approximations of velocity and position, respectively. The bounding box is augmented with the distance of the object to the camera: p t = [x, y, w, h, d] t , to help the model catch object dynamics. This distance can be either the ground truth depth of the object (e.g. in Carla) or estimated as the median of the depth map in the object's instance map.

Correcting forecasting using perspective projection. Optionally, we correct bounding box predictions using ego-motion information. Using camera position and orientation during the observation sequence, we apply an inverse perspective projection to all objects, decoupling their trajectories from ego-motion. For inference, we can project back these objects in the scene, applying a perspective projection conditioned by the new (or predicted) state of the camera. Importantly, this inverse perspective projection does not require absolute camera position but camera displacements between each frame. For Cityscapes, we compute this information by 

Keypoints forecasting

Keypoints are represented as xy-coordinates in the scene: kp = [x, y]. We condition these keypoints to their corresponding bounding box, by removing box center and dividing by box size: kp *

x,y = kp x,y -(bbox x,y + bbox w,h 2 ) bbox w,h , (5.6)

where bbox x,y is the top-left corner of the bounding box, bbox w,h its width and height, kp x,y the position of the keypoint and kp * x,y the position of the keypoint, conditioned by the bounding box. We use a linear LSTM to estimate the coordinates of each keypoint or position using a sequence-to-sequence model [START_REF] Venugopalan | Sequence to sequence-video to text[END_REF]. For each instance, we incorporate the category information as a onehot encoder. Unlike [START_REF] Villegas | Learning to Generate Long-term Future via Hierarchical Prediction[END_REF], we choose to predict these representations in the coordinate space instead of the heatmap spatial space since it is a simpler representation, thus easier to learn by the network. The LSTM network is trained using an 2 loss between the prediction and the targets. At test time, the keypoints locations are reconstructed as follow: kp x,y = k p *

x,y bbox w,h + bbox x,y + bbox w,h

2

(5.7)

where k p * is the predicted keypoint conditioned to object bounding box, and bbox is the predicted object bounding box.

Instance mask forecasting: occlusion aware neural renderer

To predict future instance segmentation we use a similar model as Riochet et al. (2020b), predicting each instance individually and applying an occlusion predictor generating the appropriate pattern of inter-object occlusions. Compared to Riochet et al. (2020b), we enrich the input object representation with its last observed mask, allowing to predict much more complex object shapes.

The Object rendering network takes as input the bounding box bbox k t , category l k and previous binary mask M k t-1 of object k at time t. The previous instance mask M k t-1 is centered in the bounding box bbox k t and concatenated to a features map encoding for object category: a C × H(= 128) × W (= 256) binary map where each pixel is the l vector of length C. If object depth is available, it is copied into another H × W array and concatenated to the feature map. Similarly, if object keypoints are available, they are represented as a binary H × W array filled with 1 at the location of every keypoint, and concatenated to the feature map.

The input feature map is processed with eight 3 × 3 convolution filters with a pyramidal number of channels (going from 16 to 256 and backward), padding of size 1 and interlaced with ReLU activation functions. The last convolution outputs a 2 × H × W array, the first channel being the predicted instance mask M k , the second encoding its depth Dk . Note that if ground-truth object depth is not available, the relative position of differents objects to render can be inferred by the model given for example its size, category, keypoints, etc.

The object rendering network is applied to all objects present, resulting in a set of masks and depth representation, denoted as {( M k , Dk ), k = 1..N }.

The Occlusion predictor takes as input the instance mask and depth representation for N objects and aggregates them to construct the final occlusion-consistent mask. To do so it computes, for each pixel i, j and object k the following weight: M k i,j , where i, j are output pixel coordinates and w k i,j the weights given by Eq. 5.8. The intuition is that the occlusion renderer constructs the final output M by selecting, for every pixel, the mask with minimal depth (corresponding to the object occluding all other objects), and discarding all other objects at this pixel.

w k i,j = e -λ Dk

Training details

We train all models with Adam optimizer and its default parameters. For bounding boxes and keypoints predictions, we use a batch size of 3 sequences, which includes a variable number of detected objects, for 400 epochs. For instance mask prediction, we use batch size of 2 and train for 100 epochs. Following [START_REF] Luc | Predicting Deeper Into the Future of Semantic Segmentation[END_REF], we downsample the segmentation representations to 256 × 128. On Carla our models are trained to predict 12 outputs from 8 inputs, and on Cityscapes, 5 outputs from 4 inputs. We augment data using horizontal flips with probability 0.5.

Results

We assess our performance by measuring the mean Intersection over Union (IoU) and mean Average Precision averaged over IOU (AP-50) for segmentations, and the Euclidean distance for keypoints predictions, against ground truth annotations. We begin by validating our approach on the Carla dataset using synthetic annotations, and then show that our results hold on Cityscapes without relying to ground truths.

Ablation studies on Carla

We first highlight the importance of every component of our approach in Table 5.2. Specifically, we remove successively for instance segmentation forecasting: (i) the re-projection step, (ii) the bounding box input, (iii) the keypoint input and report the performance in term of IoU. We first note a large performance gap with the copy baseline that consists in predicting the last observed input, showing the difficulty of the long range predictions we aim to perform. Conditioning on keypoints helps, improving the IoU by two points, and our geometric re-projection helps considerably, bringing almost 6 points. Finally, we also demonstrate the advantage offered by our interaction network modeling by comparing to a ConvLSTM baseline that we detail in the Sup. Mat.

The advantage of conditioning keypoint predictions using bounding boxes is quantified in Table 5 optimal we could get by using Ground truth bounding boxes.

Qualitative examples on Carla are provided in Figure 5.4, that presents predictions with and without using our perspective correction and conditioning. We display, for 3 sequences, the last input at time t, predictions at times t + 6 and t + 12 without using keypoint conditioning nor re-projection, and the result at t + 12 using the full pipeline. We observe that using keypoints and re-projection helps achieve more accurate prediction, in particular on the forehead object of each sequence.

Results on Cityscapes

We adopt a similar setting to [START_REF] Luc | Predicting Deeper Into the Future of Semantic Segmentation[END_REF] and following works that use inputs from frames 8, 11, 14, 17 for short term prediction of frame 20, and 2, 5, 8, 11 for mid term prediction of frames 14, 17 and 20. In these experiments, we do not use keypoint conditioning and leave this study as future work.

In Table 5 approaches. We note that the other methods of this table focus on semantic segmentation forecasting and do not delineate instance contours nor track object identities. In terms of moving objects, our method improves the state-of-the-art [START_REF] Saric | Warp to the Future: Joint Forecasting of Features and Feature Motion[END_REF] for the short-term semantic segmentation prediction.

Conclusion

We introduce a novel multi-representational forecasting pipeline that builds upon different visual semantic inputs. The modeling of object trajectories via interaction networks helps achieve results that are outperforming the state of the art for the challenging task of future instance segmentation. We hope by providing such a generic approach and analyzing a novel aspect of the forecasting problem to serve as a building block for a better state modeling, and hence realistic forecasting. We invite the reader to view examples of our predictions in the supplementary materials. For each of the maps, we ran simulations of length 120 time-steps, that is recorded by 50 cameras simultaneously and provides GT labels for many attributes including semantic segmentation, instance segmentation, tracking information, keypoint detection, position and bounding boxes. The camera vehicles are chosen randomly among the vehicles that are spawned in the simulation.

We extracted a variable number of keypoints per agent category: 5 for vehicles, 15 for bicycles, and 12 for pedestrians. For pedestrians, we used MaskRCNN and selected the subset of keypoints that is shared with the ones defined in Carla. Thus, results on Carla represent all moving agents category, while results on Detectron labels only considers the keypoints of humans.

To obtain automatic labels, we ran the Detectron2 predictors for panoptic segmentation and human keypoints on both Cityscapes dataset and our generated Carla data (see Figure 5.8 for the panoptic segmentation predictions). Automatic labels provide weak supervision for the same attributes provided in the GT labels. 

Correcting forward predictions from ego-motion

We focus on predicting future location of objects in video frames, in the case where the camera is moving. We want to take account for camera displacement in order to improve predictions.

-Step 1: given camera rotation θ, compute the camera transform: This linear application consists in three consecutive rotations, each one along one axis.

-Step 2: given camera location (c x , c y , c z ) and object location (x, y, z), compute the intermediate quantity: 

   f x f y f z    = K × M(θ) ×       x y z    -   

Inverse perspective projection

Matrices K and M(θ) are invertible, so is pproj c,θ (). We write the inverse perspective projection: (x, y, z) = pproj -1 c,θ (p x , p y , d).

Additional ablation for segmentation prediction

To compare segmentation results obtained with our renderer with a classical convLSTM, we implement the alternative architecture described in Figure 5.9.

Chapter 6 Conclusion

In this thesis we attempted to draw a bridge between Infant Development and Artificial Intelligence studies on intuitive physics. After introducing challenges and states of the art in both litteratures, we described in chapter 3 a consistent series of tests to evaluate intuitive physics in artificial intelligence systems, the same way cognitive scientists evaluate it among infants.

This benchmark, called IntPhys (see chapter 3), is based on the Violation Expectation Paradigm and investigates three intuitive physics concepts: object permanence, shape consistency and trajectory continuity. We also conducted human performances and compared with two pixel-based baseline models. In the last 3 years, we counted more than 20 teams which evaluated their models on the benchmark, and two other teams used a similar Violation Expectation Paradigm to evaluate Intuitive Physics in systems [START_REF] Piloto | Probing Physics Knowledge Using Tools from Developmental Psychology[END_REF]; [START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF].

Our experiments on IntPhys showed that pixel-based CNN encoder-decoder structures -with no accountability for object instances -struggle to learn the type of physical regularities we consider. This is especially true for predicting long trajectories with frequent occlusions. In chapter 4, we designed an object-based model, gifting the system with a notion of objects, interacting together and which physics is compositional. Our experiments on simulated videos showed we were able to perform object tracking and forward modelling, even when there were frequent occlusions. In chapter 5, we adapted this approach to predict future instance masks in city driving videos. We showed that decoupling objects' position and appearance allows to predict longer sequences. In addition, we proposed a method to decouple ego-motion from objects' motion, making it easier to learn long term object dynamics.

To disentangle the appearance of objects and their motion, we relied on object detectors that are pre-trained on hundreds of thousands images with extensive annotation. Infants, of course, don't need such data to acquire intuitive physics and it seems likely that the mechanisms described in introduction still work with categories of objects they have not been used to before. How could we adapt these methods to a broader class of objects? And what is exactly an "object"? We used the notion of "object" that is the commonly considered in computer vision, but a body itself can be seen with various levels of granularities. Our understanding of physics looks to be more hierarchical, and to adapt to more complex scenarios, including soft bodies, liquids, etc. Finally, other senses seem to play an important role in our perception of the physical world (e.g., touch, hearing, proprioception); these have not been explored in this thesis, but I hope it will encourage future students to spend their own on it.
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 12 Figure 1.2: Approximate timeline of intuitive physics in infant development (from DARPA Machine Common Sense project presentation).

Figure 2

 2 Figure 2.1: Example of physical scenes modelled in Battaglia et al. (2016) (left) and Chang et al. (2016) (right).

Figure 2

 2 Figure 2.2: Example of physical scenes modelled in Mrowca et al. (2018) (left) and Li et al. (2018b) (right).
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 23 Figure 2.3: Example of object detections with bounding boxes and labels.
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 2 Figure 2.3: Example of object detections with keypoints.
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 2 Figure 2.3: Example of object detections with instance masks and labels, from www.github.com/facebookresearch/detectron2.
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 25 Figure 2.5: Examples of input images from Lerer et al. (2016); Li et al. (2016); Mirza et al. (2017); Groth et al. (2018); Zhang et al. (2016) (from left to right).
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 31 Figure 3.1: Popular end-to-end applications involving scene understanding and proposed evaluation method based on physical plausibility judgments. 'Visual' tasks aim at recovering high level structure from low level (pixel) information: for instance, recovering 3D structure from static or dynamic images (e.g., Chang et al. (2015); Choy et al. (2016)) or tracking objects (e.g., Kristan et al. (2016); Bertinetto et al. (2016)). 'Motor' tasks aim at predicting the visual outcome of particular actions (e.g., Finn et al. (2016)) or to plan an action in order to reach a given outcome (e.g.[START_REF] Oh | Action-conditional video prediction using deep networks in atari games[END_REF]). 'Language tasks' requires the artificial system to translate input pixels into a verbal description, either through captioning[START_REF] Farhadi | Every picture tells a story: Generating sentences from images[END_REF] or visual question answering (VQA[START_REF] Zitnick | Bringing semantics into focus using visual abstraction[END_REF]). All of these tasks involve indirectly some notion of intuitive physics. Our proposed test directly measures physical understanding in a taskand model-agnostic way.

Figure 3

 3 Figure 3.2: Landmark of intuitive physics acquisition in infants. Each box is an experiment showing a particular ability at a given age.
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 35 Figure 3.5: Examples of frames from the training set.

  The video clips in IntPhys are constructed with Unreal Engine 4.0 ((UnrealEnginePython 4.19; See Figure 3.5 for some examples). They are accessible in www.intphys. com.

  ; Lerer et al. (2016); Zhang et al. (2016); Li et al. (2016); Mirza et al. (2017); Li et al. (2017)). Battaglia et al. (2013) proposes a model based on an intuitive physics engine, Lerer et al. (2016) and Li et al. (

  [START_REF] Bakhtin | PHYRE: A New Benchmark for Physical Reasoning[END_REF] and[START_REF] Allen | Rapid trial-anderror learning with simulation supports flexible tool use and physical reasoning[END_REF] propose two benchmarks for physical reasoning involving action-reward setups in a 2D environments. There are also two recent datasets proposed by a DeepMind team[START_REF] Piloto | Probing Physics Knowledge Using Tools from Developmental Psychology[END_REF], and a MIT team[START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF]. These last datasets seem very similar to ours, they are inspired by the developmental literature and based on the violation of expectation principles and are structured around similar intuitive physics blocks.[START_REF] Piloto | Probing Physics Knowledge Using Tools from Developmental Psychology[END_REF] have 3 blocks similar to ours (object permanence, shape constancy, continuity) and two other ones on solidity and containment. Differently to our work, they have one training set per block with consistent examples: explicitly designed to be similar as possible videos in the test set (with higher variability), and controls: designed to mitigate biases for these block. Like our work,[START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF] design one single training set, where object motion are not specifically constrained. In our work, two differences emerge from[START_REF] Piloto | Probing Physics Knowledge Using Tools from Developmental Psychology[END_REF];Smith et al. (

  Figure 3.6: Results of our baselines on blocks O1, O2, O3, in cases where the impossible event occurs in the open (visible) or behind an occluder (occluded). Y-axis represents the losses L R (see Equation1) for the relative performance and L A (see Equation2) for the absolute performance.
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 37 Figure 3.7: Output examples of our semantic mask predictor. From left to right: input image, ground truth semantic mask, predicted semantic mask.

  );Wu et al. (2017b);[START_REF] Smith | Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations[END_REF]. Future prediction from static image is often multi-modal (e.g. car can move forward or backward) and hence models able to predict multiple possible future predictions, e.g. based on variational auto-encodersXue et al. (2016), are needed. Autoencoders have been also applied to learn the dynamics of videoKosiorek et al. (2018); Hsieh et al. in restricted 2D set-ups and/or with a limited number of objects. Others have developed structured models that factor object motion and object rendering into two learnable modules. Examples include Watters et al. (2017); Fraccaro et al. (2017); Ehrhardt et al. (2017a,b) that combine object-centric dynamic models and visual encoders. Such models parse each frame into a set of object state representations, which are used as input of a "dynamic" model, predicting object motion. However, Fraccaro et al. (2017) restrict drastically the complexity of the visual input by working on binary 32x32 frames, and Ehrhardt et al. (2017a,b); Watters et al. (2017) still need ground truth position of objects as input or target Watters et al. (2017) for training. However, modeling 3D scenes with significant inter-object occlusions, which is the focus of our work, still remains an open problem.
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 4142 Figure 4.1: Overview of our occlusion resistant intuitive physics model. A pre-trained object detector (MaskRCNN) returns object detections and masks (top). A graph proposal matching links object proposals through time: from a pair of frames the Recurrent Interaction Network (RecIntN et) predicts next object position and matches it with the closest object proposal. If an object disappears (e.g. due to occlusion -no object proposal), the model keeps the prediction as an object state, otherwise this object state is updated with the observation. Finally, the Compositional Rendering Network (Renderer) predicts masks from object states and compares them with the observed masks. The errors of predictions of RecIntN et and Renderer on the full sequence are summed into a physics and a render loss, respectively. The two losses are used to assess whether the observed scene is physically plausibility.
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 43 Figure 4.3: Illustration of event decoding in the videos of the IntPhys dataset. A pre-trained object detector returns object proposals in the video (bounding boxes). An initial match is made across two seed neighbouring frames, also estimating object velocity (left, white arrows). The dynamic model (RecIntNet) predicts object positions and velocities in future frames, enabling the match of objects despite significant occlusions (right, bounding box colors and highlights).
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  www.pypi.org/project/pybullet 100 Renderer computes render loss
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 45 Figure 4.5: Video example from the IntPhys benchmark. Four frames from avideo in block O1, with superimposed heatmaps. Heatmaps (colored blobs) correspond to the difference, per pixel, between the predicted and the observed object mask. In these video, a cube moves from left to right but disappears behind the occluder. The Recurrent Interaction Network predicts correctly its motion behind the occluder and the Compositional Renderer reconstructs its mask. The fact that the object is absent in the observed mask leads to a large render loss, illustrated by the high heatmap values (violet) at the position where the ball is expected to be.
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 46 Figure 4.6: Video example from the IntPhys benchmark. Three frames from a video in block O2, where an object "jumps" from one place to another. The graph proposal phase returns the right trajectory of the object but the Recurrent Interaction Network returns a high physics loss at the moment of the jump, because the observed position is far from the predicted one.

6Figure 4

 4 Figure 4.7: Sample video frames (instance mask + depth field) from our datasets (top) together with predictions obtained by our model (bottom). Taken from the top-view, occluded and tilted experiments. Please see additional video results in the anonymous google drive https://drive.google.com/open?id= 1Qc8flIAxUGzfRfeFyyUEGXe6J5AUGUjE.

  Trajectory prediction on real videos. Average Euclidean (L2) distance (in pixels in a 200 by 200 image) between predicted and ground truth positions, for a prediction horizon of 5 frames / 10 frames.

Figure 4 . 9 :

 49 Figure 4.9: Example of prediction for a real video, with a prediction span of 10 frames. The small colored dots show the predicted positions of objects together with the estimated uncertainty shown by the colored "cloud". The same colored dot is also shown in the (ground truth) center of each object. The prediction is correct when the two dots coincide. (see additional videos).

  )Mathieu et al. (2015)Alahi et al. (2016)Zhang et al. (2017), and can be directly applicable in the domains of robotics Koppula and Saxena (2015), autonomous driving McAllister et al. (2017); Henaff et al. (

  Keypoint forecasting. For their representative power, keypoint predictions have been used immensely for activity recognition[START_REF] Walker | The pose knows: Video forecasting by generating pose futures[END_REF];[START_REF] Jain | Structural-RNN: Deep Learning on Spatio-Temporal Graphs[END_REF]. Various methods have been introduced to predict the human-pose whether as actionagnostic such as Chiu et al. (2019), or learning the human dynamics such as Fragkiadaki et al. (2015b); Villegas et al. (2018). Nonetheless, most prior literature focuses on human-based keypoint extraction and prediction, which is not well-generalized to a generic scene that contains other foreground dynamic instances such as cars and bicycles. Unlike human pose estimation Toshev and Szegedy (2014); He et al. (2017), there is a lack of generic and applicable keypoint extraction methods for non-human objects. The handful of vehicle keypoint extraction may assume extra supervisory signals such as Wu et al. (2019a)'s work that also predicts six degrees of freedom in 3D assuming monocular RGB images.

Figure 5 . 3 :

 53 Figure 5.3: Benefit of re-projection for bounding box forecasting. In green the observed bounding boxes at time t = 0, in red and blue the prediction with and without re-projection, respectively, at time t = 6, 12, 18.

  a parameter learned by the model. The final masks are computed as a weighted combination of masks M k i,j for individual objects k: M k i,j = w k i,j

Figure 5 . 4 :

 54 Figure 5.4: Comparison of results on Carla with or without help from keypoints conditioning and re-projection. Results are overlayed with ground truth images to emphasise different predictions.

Figure 5 . 5 :

 55 Figure 5.5: Output example on a video sequence from Cityscapes. The model takes as input panoptic segmentations for frame at t = 2, 5, 8, 11 (the first two frames beeing omitted here) and predict forward segmentation for frames at t = 14, 17, 20, 23.

  Figure 5.7: Simulated trajectories of pedestrians, cyclists, and vehicles in the first map.

Figure 5

 5 Figure 5.8: Examples of panoptic segmentation results using Detectron2 on Carla frames.
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  Fraccaro et al. (2017) investigate a Kalman filter based variational auto-encoder, that simultaneously learns two disentangled representations 1 Number of 10 × 10 distincts images 256 10•10 = 6.7 • 10 240 vs images seen by 50 billion people, during 20 billion seconds, with 30 images per second: 3 • 10 21 . From http://helper.ipam. ucla.edu/publications/gss2011/gss2011_9841.pdf for videos: one accounting for object recognition and the other for their dynamics. Experiments are done on 32 × 32 binary pixels videos, with only one object.
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Table 3 .

 3 1: List of the conceptual blocks of the Intuitive Physics Framework.

	Block Name	Physical principles	Computational challenge
	O1. Object perma-	Objects don't pop in and	Occlusion-resistant	object
	nence	out of existence	tracking	
	O2. Shape constancy Objects keep their shapes Appearance-robust	object
			tracking	
	O3. Spatio-temporal	Trajectories of objects are		
	continuity	continuous		

Table 3

 3 

	.4: Discriminator D (7629698 parameters).	BN stands for batch-
	normalization.	
	history	input
	2 x 3 x 64 x 64 3 x 64 x 64
	Reshape 3 x 3 x 64 x 64
	4 x 4 convolution 512 -2 strides, BN, LeakyReLU
	4 x 4 convolution 254 -2 strides, BN, LeakyReLU
	4 x 4 convolution 128 -2 strides, BN, LeakyReLU
	4 x 4 convolution 64 -2 strides, BN, LeakyReLU
	4 x 4 convolution 5 -2 strides, BN, LeakyReLU
	fully-connected layer
	1 sigmoid	

  use an hand-crafted stochastic physics engine, Riochet et al. (2020b) train a graph neural network on observations from our training set. Smith et al. (2019) evaluate on block O1 only, with a reported average relative score of 0.27. Riochet et al. (

Table 3 .

 3 5: Average error rate on plausibility judgments collected in humans using MTurk for IntPhys test set. * EDIT July 2021: these experiments present a flaw and the results do not accurately reflect human judgement on block O3/Occluded/Dynamic. For more information, please contact ronan.riochet@inria.fr.

			Visible				Occluded		
	Type of scene	1 obj. 2 obj. 3 obj.	Total	1 obj.	2 obj. 3 obj.	Total
					Block O1			
	Static	0.13	0.14	0.09	0.12 (±0, 018)	0.32	0.34	0.28	0.31 (±0.026)
	Dynamic (1 violation)	0.15	0.29	0.27	0.24 (±0, 024)	0.24	0.30	0.33	0.29 (±0.026)
	Dynamic (2 violations)	0.14	0.20	0.23	0.19 (±0.022)	0.28	0.26	0.36	0.30 (±0.026)
	Total	0.14	0.21	0.20	0.18 (±0.013)	0.28	0.30	0.32	0.30 (±0.015)
					Block O2			
	Static	0.13	0.18	0.15	0.16 (±0.021)	0.22	0.33	0.28	0.28 (±0.025)
	Dynamic (1 violation)	0.29	0.24	0.27	0.27 (±0.025)	0.29	0.35	0.29	0.31 (±0.026)
	Dynamic (2 violations)	0.21	0.27	0.26	0.24 (±0.024)	0.32	0.32	0.29	0.31 (±0.026)
	Total	0.21	0.23	0.23	0.22 (±0.014)	0.28	0.33	0.29	0.30 (±0.015)
					Block O3			
	Static	0.29	0.32	0.27	0.29 (±0.026)	0.36	0.36	0.45	0.39 (±0.028)
	Dynamic (1 violation)	0.28	0.33	0.30	0.30 (±0.026)	0.49 *	0.55*	0.49*	0.51* (±0.028)
	Dynamic (2 violations)	0.23	0.23	0.26	0.24 (±0.024)	0.47*	0.53*	0.55*	0.52* (±0.028)
	Total	0.27	0.29	0.28	0.28 (±0.015)	0.44*	0.48*	0.50*	0.47* (±0.016)
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	.6: Block O1 | Model: CNN (short-term prediction task)	
			Visible			Occluded	
	Type of scene	1 obj. 2 obj. 3 obj. Total	1 obj. 2 obj. 3 obj. Total
				Relative classification (L R )	
	Static	0.00	0.00	0.00 0.00	0.49	0.52	0.41 0.47
	Dynamic (1 violation)	0.00	0.22	0.27 0.17	0.51	0.47	0.49 0.49
	Dynamic (2 violations) 0.00	0.13	0.20 0.11	0.50	0.50	0.49 0.50
	Total	0.00	0.12	0.16 0.09	0.50	0.50	0.46 0.49
				Absolute classification (L A )	
	Static	0.15	0.17	0.19 0.17	0.50	0.50	0.49 0.50
	Dynamic (1 violation)	0.32	0.44	0.47 0.41	0.50	0.50	0.50 0.50
	Dynamic (2 violations) 0.33	0.43	0.47 0.41	0.50	0.50	0.50 0.50
	Total	0.26	0.35	0.38 0.33	0.50	0.50	0.50 0.50

Table 3 .

 3 11: Block O2 | Model: CNN (short-term prediction task)

			Visible			Occluded	
	Type of scene	1 obj. 2 obj. 3 obj. Total	1 obj. 2 obj. 3 obj. Total
				Relative classification (L R )	
	Static	0.00	0.00	0.00 0.00	0.48	0.49	0.47 0.48
	Dynamic (1 violation)	0.18	0.26	0.40 0.28	0.50	0.49	0.50 0.50
	Dynamic (2 violations) 0.12	0.16	0.32 0.20	0.50	0.50	0.50 0.50
	Total	0.10	0.14	0.24 0.16	0.49	0.49	0.49 0.49
				Absolute classification (L A )	
	Static	0.22	0.29	0.28 0.26	0.50	0.50	0.50 0.50
	Dynamic (1 violation)	0.46	0.48	0.48 0.48	0.50	0.50	0.50 0.50
	Dynamic (2 violations) 0.46	0.47	0.48 0.47	0.50	0.50	0.50 0.50
	Total	0.38	0.42	0.42 0.40	0.50	0.50	0.50 0.50
	Table 3.12: Block O2 | Model: GAN (short-term prediction task)
			Visible			Occluded	
	Type of scene	1 obj. 2 obj. 3 obj. Total	1 obj. 2 obj. 3 obj. Total
				Relative classification (L R )	
	Static	0.00	0.00	0.00 0.00	0.54	0.55	0.47 0.52
	Dynamic (1 violation)	0.44	0.38	0.47 0.43	0.56	0.52	0.54 0.54
	Dynamic (2 violations) 0.38	0.52	0.51 0.47	0.50	0.50	0.48 0.49
	Total	0.27	0.30	0.33 0.30	0.53	0.52	0.50 0.52
				Absolute classification (L A )	
	Static	0.29	0.30	0.32 0.30	0.50	0.50	0.50 0.50
	Dynamic (1 violation)	0.49	0.49	0.49 0.49	0.50	0.50	0.50 0.50
	Dynamic (2 violations) 0.48	0.49	0.50 0.49	0.50	0.50	0.50 0.50
	Total	0.42	0.43	0.44 0.43	0.50	0.50	0.50 0.50

Table 4 . 1 :

 41 Results on the IntPhys benchmark. Relative classification error of our model compared to Riochet et al. (2021) and Smith et al. (

			Block O1			Block O2			Block O3	
		V	O	Total	V	O	Total	V	O	Total
	Ours	0.05 0.19 0.12	0.11 0.31 0.21	0.26 0.47 0.37
	Riochet et al. (2021)	0.07 0.52 0.29	0.11 0.52 0.31	0.32 0.51 0.41
	Smith et al. (2019)	-	-	0.27	-	-	-	-	-	-

  Table 4.2: Object trajectory prediction in the synthetic dataset. Average Euclidean L2 distance in pixels between predicted and ground truth positions, for a prediction horizon of 5 / 10 frames (lower is better). To compute the distance, the pixel-based x-y-d coordinates of objects are projected back in an untilted 200x200x200 reference Cartesian coordinate system.

		Top view Top view+occ.	45°tilt	25°tilt	15°tilt
	a. Linear baseline	47.6 / 106.0	47.6 /106.0 47.6 / 106.0 47.6 / 106.0 47.6 / 106.0
	b. MLP baseline	13.1 / 15.7	17.3 / 19.2	18.1 / 23.8	17.6 / 24.6	19.4 / 26.2
	c. NoDyn-RecIntNet	21.2 / 46.2	23.7 / 46.7	22.5 / 42.8	23.1 / 43.3	24.9 / 44.4
	d. NoProba-RecIntNet	6.3 / 11.5	12.4 / 14.7	8.0 / 15.9	8.12 / 16.3	11.2 / 19.6
	e. RecIntNet (Ours)	6.3 / 9.2	11.7 / 13.5	8.01 / 14.5	8.1 / 15.0	11.2 / 18.1

  rollout_0.mp4, rollout_1.mp4 show three different prediction roll-outs of the Recurrent Interaction Network (without event decoding procedure). From left to right: ground truth trajectories, our model trained of state, our model trained on masks, our model trained on masks with occlusions during training. Rollout length is 20 frames. -rollout_tilt*_model.mp4 and rollout_tilt*_groundtruth.mp4 show the same dynamic scene but observed with various camera tilts (e.g. tilt45_model.mp4 show a video for a camera tilt of 45 degrees). *_model.mp4 are predicted roll-outs of our Recurrent Interaction Network (RecIntN et), without event decoding. *_groundtruth.mp4 are the corresponding ground-truth trajectories, rendered with the Compositional Rendering Network.

Table 4 .

 4 4: Percentage of predictions within a 20-pixel neighborhood around the target as a function of rollout length measured by the number of frames. 20 pixels corresponds to the size of the smallest objects in the dataset.

	Synthetic videos	5 fr. 10 fr. 30 fr.
	Ours, top view	100 100	100
	Ours, 45°tilt	99.3 96.2 96.2
	Ours, 25°tilt	99.3 90.1 90.1
	Linear motion baseline 81.1 67.8 59.7

  uses optical flow and depth estimation to infer 3D point clouds and improve future segmentations before frames predictions. Future instance segmentation was introduced by Luc et al. (2018), where the convolutional features obtained by a Mask-RCNN backbone He et al. (2017) are forecasted. Sun et al. Sun et al. (2019) build on this by modifying the architecture to use convolutional LSTMs. While combining both instance and semantic forecasting ideas is suggested by Couprie et al. (2018), the instance segmentations are not learned

		RGB	Instance Semantic car & bi-human depth camera object
		frames	segm.	segm.	cycle kp	kp	info	tracks
	Carla GT recording						
	Carla infered annotations						
	Cityscapes infered annotations	*				*	*
	Table 5.1: Summary of our dataset. *: provided by the Cityscapes dataset.

Table 5 .

 5 .3. Here, we observe that providing boxes in inputs to forecast keypoints helps reduce the error by 57%. The error that is reached is close to the Table 5.2: Instance forecasting ablation study on Carla, in terms of IoU of moving objects, of the 12 th predicted masks. The full model uses geometric reprojection, the Recurrent Interaction Network and keypoints to perform instance masks predictions. 3: Keypoints forecasting error using conditioning: average Euclidean distance between prediction and Ground Truth, in pixels, in the 960 × 540 frame.

		IoU
	Copy baseline	23.5
	Conv-LSTM baseline 44.1
	Full model	54.3
	without keypoints	52.3
	without projection	48.4
			pix. err.
	Standard LSTM		64
	GT bbox conditioned LSTM		22
	Predicted bbox conditioned LSTM	27

  .4 we compare the IoU on moving objects, compared with previous

	Last input	Pred w/o kp+proj Pred w/o kp+proj Pred with kp+proj
	t	t + 6	t + 12	t + 12

  Table 5.4: Instance forecasting: Mean IoU MO (Moving objects) on cityscapes val set. Comparison to semantic segmentation forecasting approaches.

		IoU Moving Objects
		Short term Mid term
	Copy last input	48.	29.7
	Oracle	64.7	
	Luc et al ICCV'17	55.3	40.8
	Saric et al. (2019) Oracle	71.5	
	Saric et al. (2019)	63.8	49.9
	Saric et al. (2020) Oracle	75.2	
	Saric et al. (2020)	67.7	54.6
	D2 oracle	75.7	
	Ours	69.5	49.5
	Ours, no re-proj	67.3	44.7

American Psychological Association, dictionary.apa.org

This has a direct parallel in 'black box' evaluation of language models in NLP. Language models are typically trained with a future prediction objective (predicting future characters or words conditioned on past ones). However, instead of evaluating theses models directly on the loss function or derivatives like perplexity, an emerging research direction is to the models on artificially constructed sentences that violate certain grammatical rules (like number agreement) measure the ability of the system to detect these violations[START_REF] Linzen | Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies[END_REF] 

www.darpa.mil/program/machine-common-sense

This experiment can but found here: www.github.com/rronan/ IntPhys-verify-quadruplets

www.intphys.com 

https://pypi.org/project/pybullet

Remerciements

For non-physical events x, P data (x) = 0; therefore, as long as P G (x) > 0, D(x) should be 0 for non-physical events, and D(x) > 0 for physical events x. Note that this is a strong assumption, as there is no guarantee that the generator will ever have support at the part of the distribution corresponding to impossible videos. The generator and discriminator are detailed in Table 3.3 and 3.4, respectively. 

Training Procedure

We separate 10% of the training dataset to control the overfitting of our forward predictions. All our models are trained using Adam (Kingma and Ba (2014)). For the CNN encoder-decoder we use Adam's default parameters and stop the training after one epoch. For the GAN, we use the same hyper-parameters as in [START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF]: we set the generator's learning rate to 8e -4 and discriminator's learning rate to 2e -4. On the short-term prediction task, we train the GAN for 1 epoch; on the long-term prediction task we train it for 5 epochs. Learning rate decays are set to 0 and beta1 is set to 0.5 for both generator and discriminator. Graph Proposal: //t * is a good starting point for parsing the scene (because we observe most of the objects during two consecutive frames). We use RecIntNet to predict the next position of each object, which we link to an object detection. Repeating this step until the end of the video returns object trajectory candidates.

Detailed mask predictor

//Backward: do the same from t * to 1. Differentiable optimization: //ŝ t=1..T is a sequence of physical states. At every time step t it contains the position, velocity, size and shape of all objects, in the same order. Due to occlusions and detection errors, it is sub-optimal and can be refined to minimize equation 3 in the main paper. Loss physics (s) ← T t=1 ŝt+1s t+1 2 ; Loss visual (s) ← T t=1 NLL(Rend(s t ), m t ); Loss plausibility (s) ← λLoss physics (s) + (1λ)Loss visual (s); (Estimated states, plausibility loss) ← SGD s (Loss plausibility (s)); //with lr = 1e -3 and n steps = 1000; car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > panoptic segmentation and tracking < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > observed sequence, t = 0, . . . , n 1 < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > predicted semantic sequence, t = n, . . . , m < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > conditional semantic forecasting < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > Additionally, we model objects relationships using an interaction network and perform dense instance masks predictions through a renderer.

car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > car < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > person < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > instance masks, time t2

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > renderer < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > RecIntNet < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > re-proj.* < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > bounding boxes, time t2

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > panoptic output, time t2

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > panoptic input, time t1

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > R < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > background segmentation, time t2

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > keypoints, time t2

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > keypoint predictor

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > background predictor

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > integrating speed and yaw rate along the sequence, which is available in the Cityscapes dataset.

We consider a sequence of m frames, in which n -1 are observed . For t < n, we observe: -c t : camera location θ t : camera orientation r t c t ,θ t = (p x , p y , d) t c t ,θ t : relative position of the object in the frame (e.g., from object detection) for camera (c t , θ t ).

We detail in the Supplementary material how to define the transformation pproj and inverse transformation proj -1 . We compute the following:

which is the trajectory which would be observed if the camera was fixed at its initial position/rotation. Note that the resulting trajectory is in a inertial space. Consider a dynamic model Dyn (e.g., LSTM, Interaction Network, Fixed-Velocity baseline).

rn c 0 ,θ 0 = Dyn(r n-1 c 0 ,θ 0 ).

(5.3)

We predict the future sequence from this observation:

(5.4)

We project back this prediction w.r.t. the actual position of the camera.

(5.5)

Finally, we have a predicted sequence rt c t ,θ t , n t < m which we can compare with the ground truth r t c t ,θ t , n t < m. We show on Figure 5.3 predictions with and without correction for egomotion.

Appendix

Data collection

We adapted the Carla research driving simulator of [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] to generate sequences of images together with their corresponding semantic labels in the form of background segmentations, instance trajectories and masks, and instance keypoints. Vehicles in Carla belong to one of 42 different models that can be assigned random colors increasing the variability of the scene. Similarly, a pedestrian belongs to one of five types, of which each vary in measurement characteristics. At each run simulation, we spawn 300 vehicles, pedestrians and bicycles at a randomly selected map. Each of the agents (vehicles, bicycles, pedestrians) is moving autonomously, with 50 of the vehicles having installed cameras that record their surroundings in

Setup

The camera parameters are defined by the camera's intrinsic properties:

-H frame height in pixels (e.g. 

Perspective projection

In this section we describe the perspective projection, which computes (p x , p y , d) from (x, y, z), c, θ:

(p x , p y , d) = pproj c,θ (x, y, z) -Step 0 (done one time only): given camera intrinsic properties, compute calibration matrix:

(5.9)

This linear application "rescales" relative object location:
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< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

R50

< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > input 1
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< l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > Figure 5.9: Architecture of the spatial prediction module used in our ablation studies. A convolutional R50 encoder followed by a recurrent ConvLSTM that propagates spatio-temporal features that are finally converted back to spatial domain using a deconvolutional R50 decoder.

It represents the spatial encoder-decoder Conv-LSTM architecture we use in our ablations for the background and instance prediction modules. The encoder architecture is a non-recurrent ResNet-50 applied to each frame independently. The extracted spatial features are jointly processed with the spatio-temporal features that are being propagated through time by the Conv-LSTM. Then, the output spatiotemporal features for each step are processed by a decoder (deconvolutional ResNet-50). We used a convolutional LSTM with the following number of hidden channels: 16, 32, 64, 32, 16.
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ABSTRACT

To reach human performance on complex tasks, a key ability for artificial intelligence systems is to understand physical interactions between objects, and predict future outcomes of a situation. In this thesis we investigate how a system can learn this ability, often referred to as intuitive physics, from videos with minimal annotation.

Our first contribution is an evaluation benchmark, named IntPhys, which diagnoses how much a system understands intuitive physics. Inspired by works in infant development, we propose a Violation-of-Expection procedure in which the system must tell apart well matched videos of possible versus impossible events constructed with a game engine. We describe two Convolutional Neural Networks trained on a forward prediction task, and compare their results with human data acquired with Amazon Mechanical Turk.

The analysis of these results show limitations of CNN encoder-decoders with no structured representation of objects when it comes to predict long-term object trajectories, especially in case of occlusions. In a second work, we propose a probabilistic formulation of learning intuitive physics in 3D scenes with significant inter-object occlusions, in which object positions are modelled as latent variables, enabling the reconstruction of the scene. We propose a series of approximations that make this problem tractable and introduce a compositional neural network demonstrating significant improvements on the intuitive physics benchmark IntPhys. We evaluate this model on a second dataset with increasing levels of occlusions, showing it realistically predicts segmentation masks up to 30 frames in the future.

In a third work, we adapt this approach to a real life application: predicting future instance masks of objects in the Cityscapes Dataset, made of video sequences recorded in streets from 50 cities. We use a state-of-the-art objects detector to estimate object states, then apply the model presented above to predict objects instance masks up to 9 frames in the future. In addition, we propose a method to decouple ego-motion from objects' motion, making it easier to learn long term object dynamics.
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