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The number of points of the design * @param blocks :: Set The design blocks * @param Delta :: Set The delta that generated the design blocks * @return BoolElt Indicates if the block design is a 1-(n ,| delta |,| delta |) block * design and a block design self -dual */ CorrectConstructionKM02 := function (n, blocks , Delta ) return CorrectDesign (blocks ,1,n ,# Delta ,# Delta ) and IsSelfDual (Design <1,n|blocks >); end function ; Magma already has a function IsSymmetric [BCP97] which characterizes a symmetric block design, but according to a different definition than the one used by Key and
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Finally, I want to thank all my friends who kept me motivated: Alexandre Eid, Titouan Carette and Maria Borichev were my long distance correspondents on keeping up with a thesis; Jean-Philippe Gros (aka de Molette de Morangier) for our many thrilling philosophical debates, and the good times we had; Florent Marie, Arthur Hugeat and Antoine Chevrot for the many gaming nights; and every other friend that I came across these past JavaScript vérifié [BRN + 20]. Puisque les programmes quantiques semblent avoir des champs d'application très larges, nous voudrions nous assurer dès le départ qu'ils résolvent le problème pour lequel ils ont été conçus. Cela est d'autant plus vrai que, pour beaucoup, l'informatique quantique a un aspect très peu intuitif, ce qui implique en soi un besoin plus important de correction, la propriété selon laquelle le programme effectue bien la tâche pour laquelle il a été conçu. ix x CONTENTS PROBLÉMATIQUE Dans ce contexte, l'objet de cette thèse est de préparer le transfert de certaines méthodes de l'informatique classique à l'informatique quantique. Nous décomposerons le titre de cette thèse (Études calculatoires de la contextualité et de la non-localité quantiques dans la perspective de leur vérification formelle) en ses composantes afin de pouvoir les décrire une par une. En commençant par le dernier élément : la vérification formelle d'un programme quantique est pour l'instant un idéal lointain. En effet, en raison de la jeunesse des processeurs quantiques fonctionnels, nous -en tant qu'utilisateurs -manquons de pratique sur les langages quantiques. Cette pratique faciliterait grandement la vérification formelle des programmes classiques. En outre, les processus impliqués dans la conception de processeurs quantiques ne passent pas encore à l'échelle en nombre de qubits, ce qui entraîne la création d'outils de vérification de programmes quantiques sans ordinateurs capables d'exécuter lesdits programmes. C'est la raison pour laquelle nous avons concentré nos efforts de vérification sur des propriétés -la contextualité et la non-localité quantiques -plutôt que sur des programmes quantiques, ces propriétés étant une marche pouvant nous mener à la vérification de programmes. De plus, ce domaine étant très actif, nous avions l'opportunité d'utiliser des outils existants -pour la vérification classique et quantique -pour étudier ces propriétés. L'idée étant que nous préparons le terrain pour la vérification formelle des programmes quantiques en étudiant des propriétés qui pourront ensuite être utilisées pour spécifier des programmes quantiques. C'est pour cette raison que le choix des propriétés est particulièrement important, et que nous avons choisi l'intrication et la contextualité. En effet, ces propriétés, en plus d'être mesurables, ont une part importante dans la recherche sur l'explication de la suprématie quantique, ce qui laisse donc penser qu'elles sont essentielles dans l'élaboration de programmes quantiques.

Il convient de noter que, comme indiqué précédemment, les informaticiens quantiques manquent de pratique en programmation pour les processeurs quantiques, mais cette pratique n'est pas complètement inexistante non plus. En effet, ces dernières années, certains processeurs quantiques ont fait la une de l'actualité [START_REF] Quantum | Azure Quantum -Quantum Service | Microsoft Azure[END_REF][START_REF] Porter | Google wants to build a useful quantum computer by[END_REF][START_REF] Matthews | How to get started in quantum computing[END_REF] et, malgré les limitations de ces processeurs, IBM a donné le contrôle de certains de ses processeurs quantiques au public, par le biais de IBM quantum experience [IBM]. C'est un outil précieux pour tester des problèmes suffisamment petits, et il a été utilisé pour cette thèse, malgré ses importantes limitations.
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xi PLAN

La partie présente de ce manuscrit est un résumé de l'ensemble du manuscrit. Chaque section numérotée de ce résumé représente une partie distincte du manuscrit.

Les notions nécessaires à la compréhension globale de la thèse sont exposées dans la section 1. Cette section est suivie de mes contributions dans les sections 2 et 3.

Certaines notions ne sont introduites que lorsque cela est nécessaire, lorsqu'elles ne sont pas pertinentes pour l'ensemble du manuscrit, afin d'éviter de donner au lecteur trop d'informations à la fois.

La section 1 introduit les méthodes formelles classiques puis des éléments d'informatique quantique, telle qu'abordées par un informaticien. Ce dernier point commence par des bases de l'informatique quantique, suivi par les langages utilisés en informatique quantique, quelques notions de vérification de programmes quantiques, et enfin les deux propriétés au coeur de ce manuscrit : l'intrication et la contextualité.

La section 2 présente un simulateur d'exécution de circuits quantiques que j'ai développé pour étudier l'intrication dans l'algorithme de Grover (un algorithme de recherche) et la transformée de Fourier quantique (QFT, une version quantique de la transformée de Fourier discrète). Dans cette section, le lecteur trouvera également la transposition de cette étude à Qiskit, la bibliothèque d'IBM pour la simulation de circuits quantiques fournissant aussi un moyen d'envoyer les circuits localement créés et de les exécuter sur leurs processeurs quantiques, une forme de cloud computing quantique.

La section 3 rassemble des travaux sur les géométries finies intéressantes pour leur lien avec la contextualité quantique. Le premier travail consistait à générer des géométries finies -également appelées systèmes de blocs, et vérifier la correction des algorithmes de génération sous-jacents. Le second travail concernait la génération de géométries finies afin d'étudier l'espace symplectique W(2n -1, 2), un espace géométrique modélisant les relations de commutation du groupe de Pauli.

1/ CONTEXTE

Afin de définir la vérification de programmes quantiques, nous devons d'abord commencer par définir certains termes que nous utiliserons, provenant de la vérification de programmes classiques. De manière générale, la vérification de programme peut être classée en deux catégories : la vérification statique et la vérification dynamique. La vérification statique consiste à raisonner sur le code du programme sans l'exécuter, alors que la vérification dynamique se place à l'opposé, en vérifiant les programmes en les exécutant. Cependant, les tests peuvent prendre de nombreuses formes en fonction de ce qui est testé (test unitaire, test d'intégration, test de non régression...). L'évaluation d'assertion à l'exécution (Runtime Assertion Checking en anglais, ou plus communément RAC) consiste à ajouter des assertions dans le code même du programme, qui seront exécutées en même temps que le reste du programme et qui contiennent des formules logiques dont la validité doit être vérifiée lors de l'exécution de l'assertion. Ces assertions permettent de s'assurer que le code se comporte correctement, même en production. Cette pratique peut être mise en parallèle avec les mécanismes d'exceptions inclus dans certains langages.

Maintenant que les notions de base de vérification de programme sont posées, penchons nous sur celles d'informatique quantique. L'informatique quantique consiste en l'utilisation de propriétés de la physique quantique afin de construire un processeur pouvant faire des opérations inaccessibles aux processeurs classiques. Pour comprendre comment marche un tel processeur, examinons les briques élémentaires portant l'information dans un ordinateur quantique.

Dans un ordinateur classique, l'information est divisée en bits, pouvant avoir une valeur généralement notée 0 ou 1. Pour un ordinateur quantique, cette information est divisée le plus couramment en bits quantique, aussi appelés qubits, et dont les états de A étant une matrice à m lignes et n colonnes et a i, j étant les coefficients de A.
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Ces états sont modifiés par des portes, comme en informatique classique (porte ET, OU, . . .), et ces portes sont modélisées par des matrices unitaires. Un ensemble de portes connu est l'ensemble des portes de Pauli, composé des matrices X = 01 1 0 , Y = 0 i

-i 0 et Z = 1 0 0 -1 .
Les états peuvent aussi être mesurés, mais cette fois, la mesure est très différente de Les portes et les mesures peuvent être représentées sous formes de circuits comme montré dans la figure 1. Mais ces circuits possédant d'importantes limitations comme l'absence de boucles sont eux-mêmes abstraits par des langages comme l'assembleur quantique (QASM [SAC + 06]) permettant de créer des sous-routines. D'autres langages

|x 1 ⟩ H R 2 S WAP |x 2 ⟩ • R n-1
Figure 1: Exemple de circuit quantique plus riches encore ont été créés afin de générer des circuits plus efficacement comme Qiskit, une librairie python développée par IBM afin de générer des circuits, simuler leur exécution, et même soumettre en ligne les circuits à leurs processeurs quantiques. Enfin, certains chercheurs supposent que la circuiterie n'est tout bonnement pas le bon langage pour les algorithmes quantiques, et des langages sur un concept différent sont proposés, comme le ZX-calcul, un autre langage graphique abstrayant les transformations sous forme de noeud de graphe, et fournissant un riche ensemble de règles de réécriture de graphes.

En s'appuyant sur les principes de vérification précédemment présentés et les concepts de l'informatique quantique, des projets de vérification quantique ont déjà été proposés.

Une adaptation de la logique de Hoare à l'informatique quantique a été théorisée [START_REF] Ying | Toward automatic verification of quantum programs[END_REF] même si elle reste peu réalisable en pratique. Des projets concrets ont aussi été publiés Nous avons choisi pour cette thèse de nous concentrer sur deux propriétés quantiques sur lesquelles la vérification quantique pourrait plus tard s'appuyer. La première de ces propriétés est l'intrication. Un état mettant en évidence l'intrication est l'état de Bell

|ψ⟩ = 1 √ 2 (|00⟩ + |11⟩).
Quand on mesure le premier qubit de cet état avec par exemple l'observable Z = 1 0 0 -1 , le second qubit est projeté en même temps que le premier. Ce résultat contre-intuitif est une des démonstrations les plus élémentaires de l'intrication, que l'on définit formellement en disant que l'intrication est la négation de la séparabilité.

Un état est dit séparable s'il peut s'écrire comme le produit tensoriel d'états à un qubit.

L'intrication ainsi définie est un concept binaire, mais des raffinements du concept existent, où l'on parle de degré d'intrication. Par exemple, les polynômes de Mermin sont des opérateurs permettant de mettre en évidence un tel degré d'intrication.

La seconde propriété sur laquelle nous nous sommes penchés est la contextualité.

Une expérience est dite contextuelle si ses résultats ne peuvent pas être expliqués sans que chaque élément de l'expérience ait une "connaissance" du contexte actuel de l'expérience. Telle que nous l'avons abordée, nous avons surtout étudié la contextualité de géométries finies rattachées à des expériences physiques. Une telle géométrie est un ensemble de points et de lignes contenant des points, et nous la paramétrisons en attribuant à chaque point un observable. Dans ce cas, la géométrie est contextuelle si les résultats des mesures ne peuvent pas être expliqués classiquement sans que les points aient accès aux mesures précédemment effectuées.

2/ ÉTUDE DE L'ÉVOLUTION DE L'INTRICATION AU COURS DE L'ALGORITHME DE GROVER ET DE LA QFT

Pour étudier l'intrication, nous avons commencé par construire un simulateur, nous permettant ainsi de maîtriser son comportement bien plus finement que si nous avions utilisé un simulateur déjà existant. Des exemples de finesses permises par notre simulateur sont : du calcul exact, un affichage de l'exécution exportable en L A T E X ou encore un format d'entrée personnalisé. Je me suis entraîné sur ce simulateur en validant l'algorithme de Deutsch puis l'algorithme de Deutsch-Jozsa. L'algorithme de Deutsch consiste à prendre une fonction booléenne f : B → B en entrée, et à déterminer en un seul appel de la fonction si elle est constante ou non. L'algorithme de Deutsch-Jozsa quant à lui prend en entrée une fonction booléenne à n entrées f : B n → B qui doit être équilibrée 

(| f -1 ({0})| = | f -1 ({1})|) ou constante (| f -1 ({0})| = 0 ou | f -1 ({1})| = 0),
         M 1 (a, a ′ ) = a 1 ∀n ≥ 2, M n = 1 2 M n-1 (a, a ′ ) ⊗ (a n + a ′ n ) + 1 2 M n-1 (a ′ , a) ⊗ (a n -a ′ n )
Nous avons tout d'abord appliqué ces polynômes à l'algorithme de Grover. En effet, l'algorithme de Grover présente des particularités propres à rendre l'étude de l'intrication des états qu'il traverse particulièrement intéressante. L'algorithme de Grover consiste à trouver un élément dans une liste de N éléments, et arrive à faire ceci en O( √ N) would have very wide fields of application, we would like to ensure from the beginning that they solve the problem they were conceived to solve. This is especially true since, for most people, quantum computing is not intuitive whatsoever, which implies more mistakes while conceiving a program, which implies a greater need for correctness, i.e. the property for a program to indeed perform the task it is intended to.

opérations

PROBLEMATIC

In this context, the object of this thesis is to prepare the transfer of some methods from classical computing to quantum computing. We will decompose the title of this thesis -Computational studies of quantum contextuality and non-locality properties towards their formal verification -in its components so we can describe them one by one. Starting by the last element: the formal verification of a program running on a quantum system is for now a distant ideal. Indeed, due to the youth of operational quantum processors, we -as users -lack the practice on quantum languages that would greatly facilitate formal verification, as in the case of classical programs. Furthermore, the processes involved when designing quantum processors are yet hard to scale up, resulting in the creation of quantum program verification tools without computers able to run said quantum pro-1 grams. Since reasoning on a program requires properties, such as being positive or even for an integer, we chose to study quantum specific properties in the eventuality that they could be of use for quantum program verification. In addition, these properties may be used to demonstrate that the implemented program could not be efficiently reproduced by a classical computer. This is where the choice of the properties is important, and this is why we chose contextuality and entanglement. Furthermore, this field being quite active, we were partially able to use existing tools -for classical and quantum verification -to study these properties. The idea being that we are preparing the field for quantum programs formal verification by studying properties that can later be used to specify quantum programs, in a similar way to quantum program verification preparing the field for scalable proved programs, once the technical limitations of building a quantum processor will be overcome.

It should be noted that, as stated previously, quantum computer scientists lack practice on writing code for quantum processors, but practice is not completely nonexistent either. In the recent years, some working quantum processors have been making the news [START_REF] Quantum | Azure Quantum -Quantum Service | Microsoft Azure[END_REF][START_REF] Porter | Google wants to build a useful quantum computer by[END_REF][START_REF] Matthews | How to get started in quantum computing[END_REF], but those processors are not yet capable of complex operations. Still, IBM gave control over some of their quantum processors to the people, through the IBM quantum experience [IBM]. This is a valuable tool to test small enough problems, and it has been used for this thesis, despite its important limitations.

PLAN

The notions needed for the global understanding of the thesis are explained in Part I. This is followed by my contributions in Parts II to III. Some notions are only introduced when needed, when they are not relevant for the whole manuscript, to avoid throwing at the reader too much information at once.

Part I is split in two, with Chap. 1 introducing classical formal methods and Chap. 2 covering quantum computing, as seen by a computer scientist. This chapter covers the basics of quantum computing, the languages used in quantum computing, some notions of quantum program verification, and the two properties at the heart on this manuscript: entanglement, a manifestation of non-locality, and contextuality.

Part II covers a quantum circuit execution simulator I developed (Chap. 3) to study entanglement in Grover's algorithm (a search algorithm) and the Quantum Fourier Transform (QFT, a quantum spin on the Discrete Fourier Transform) (Chap. 4). In this part, the reader will also find the transposition of this study to Qiskit, IBM's library for quantum circuit simulation also providing the ability for the user to send the programs to be executed on their quantum processors, a form of quantum cloud computing (Chap. 5).

Finally, Part III is the junction of works on finite geometries interesting for their connection to quantum contextuality. The first work was the generation of finite geometriesalso known as block designs -and checking that the generation algorithms were correct (Chap. 6). The second work (Chap. 7 and 8) was about the generation of finite geometries in order to study the symplectic space W(2n -1, 2), a finite vector space equipped with a function encoding the Pauli operators and their commutation relations.

LIST OF PUBLICATIONS

My Ph.D. works were published or are in the process of being published. For each publication, a short description is given below as well as the chapter in this thesis where it is tackled.

[Cd19], published (national workshop), Chap. 6: preliminary work to study algorithms generating block designs, mathematical objects in relation with quantum contextuality.

[dJH + 20], poster (national conference), Chap. 4: study of entanglement in two famous quantum algorithms: the Grover algorithm and the Quantum Fourier Transform (QFT), the latter being a part of the Shor algorithm.

[dJH + 21], published (Q2 international journal), Chap. 4: article version of [dJH + 20] about entanglement evaluation in Grover's algorithm and the QFT.

[dHGM21b], poster (international conference), Chap. 7: detection of contextuality proofs among subgeometries of binary symplectic polar spaces, with a computer.

[dHGM21a], in progress, Chap. 7: article version of [START_REF] De Boutray | Automated synthesis of contextuality proofs from subspaces of symplectic polar spaces[END_REF] about contextuality proofs among subgeometries of binary symplectic polar spaces.

[SdHG21], published (Q1 international journal), Chap. 8: classification of polar subspaces of W(2N -1, 2) according to several characteristics, such as the number of their negative lines or the distribution of types of observables.

A website aggregating the pieces of code involved in each article was also created [dB21].

It is a hub for quantum verification code distribution for our team, and was also used to host other pages such as the 2019 GT IQ's days web page which we organized, GT IQ being CNRS's task force on quantum information, annually meeting to exchange on quantum information related works. In addition of helping organizing 2019's meeting, I
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presented there some of my work on Mermin's polynomials. It was a global will for me to exchange on quantum computing as broadly as possible: in this effort, in addition to some presentations directly related to my work, I presented quantum computing to quantumagnostic people, such as the team of researchers of my lab, other Ph.D. students, and even motivated high school students. 

QUANTUM INFORMATION

Quantum physics was established at the beginning of the 20th century and progress in the understanding of its core concept -the quantization of energy -triggered revolutionary changes in the understanding of information flow in our universe. From the beginning, information flow was at the heart of the dilemmas about quantum physics, with for example Einstein speaking about spooky actions at a distance: quantum mechanics seemed to break the limit of the speed of light for the transfer of information, which is impossible in the current understanding of the physics of our universe. This very dilemma has since been solved, without requiring us to reconsider Einstein's relativity, but the questions about information flow in quantum mechanics have been the source for a new field, quantum computing: a way to manipulate quantum systems in order to perform computation out of reach for our "classical" computers.

These computations unavailable to our classical computer require the understanding of some elementary mechanics of quantum computing. The elements presented in this chapter will not cover all possible paradigms but they will give the reader a broad understanding of quantum computing. This understanding will be completed as needed in Parts II and III of this manuscript. Sec. sequence of read-write operations. These elements will be presented in this section.

In all this thesis, we work on finite numbers of qubits. A qubit -or quantum bit -is the basic unit for quantum computation. A single qubit is most often represented as a two dimensional unit vector. In this vector space, the canonical basis is the set of vectors 1 0 , 0 1 . Those vectors are denoted |0⟩ -read "ket zero" -and |1⟩ -read "ket one" -, following Dirac's "bra-ket" notation. They are the quantum equivalent to the classical bits and are called the computational basis. But since the space of states is a vector space, any other basis can be chosen to perform computations. This vector representation does not allow for noisy systems. But since my work does not study them, we can consider qubits as vectors without any further loss of generality.

The laws of quantum mechanics dictate that the vector space in which we operate must be a complex Hilbert space, and that states in this space must be normalized. This lets us write a single qubit as |φ⟩ = a |0⟩ + b |1⟩ = a b with a, b ∈ C and |a| 2 + |b| 2 = 1. We can now express a state composed of several qubits. If the qubits are on the computational basis, we write them as |0..0⟩, |0..01⟩, |0..10⟩,... |1..1⟩. The numbers in the ket notation are the integers from 0 to 2 n -1 in binary basis, with n being the number of qubits, so we add some simplifying notations by declaring that the computational basis is the set of vectors {|0⟩ , ..., |N -1⟩} with N = 2 n (there are 2 n combinations of 0's and 1's of length n). With this, a general vector of n qubits is written as |φ⟩ = N-1 i=0 a i |i⟩ with N-1 i=0 |a i | 2 = 1. One can also represent two states side by side, for example if we have two registers 1 with the state |φ 1 ⟩ on the first one and |φ 2 ⟩ on the second one, then the state of the whole system will be defined as |φ⟩ = |φ 1 ⟩ ⊗ |φ 2 ⟩. The ⊗ operator is called the tensor product or the Kronecker product, and it has the following effect: if |a 1 ⟩ and |a 2 ⟩ are two base vectors with a 1 and a 2 the binary representation of some numbers, then |a 1 ⟩ ⊗ |a 2 ⟩ = |a 1 a 2 ⟩ where a 1 a 2 is the concatenation of the two binary representations. The effect of ⊗ on general vectors can be deduced by linearity of the tensor product.

Furthermore, the tensor product can be extended to the whole Hilbert space. Say we have the state |φ⟩ in the Hilbert space The states are modified along the computation, most commonly through gates: like logic gates for classical computers, quantum gates have an effect on the qubits they operate on, which is dictated by their semantics, their formal meaning. The most common way to express the semantics of a gate is by the matrix having the following effect on the state: if the state |φ⟩ goes through a gate of matricial semantics M, then the state evolves to |φ ′ ⟩ = M |φ⟩. From this point on, when this is no cause for confusion, we will call M a gate which has the matricial semantics M. These gates must follow some mathematical restrictions.

H, if |φ⟩ = |φ 1 ⟩ ⊗ |φ 2 ⟩ with |φ 1 ⟩ from H 1 and |φ 2 ⟩ from
In particular, they must be reversible and their inverse is always their conjugate transpose, such matrices are said to be hermitian. Note that the conjugate transpose of an operator is called its adjoint and is noted

O † = O
T where O T is the transpose of O, i.e. the matrix such that the element of the i th line and

j th column is O T (i, j) = O ( j,i) .
Let us consider some examples of gates. The most common gates are the Pauli matrices:

X =         0 1 1 0         , Y =         0 i -i 0         and Z =         1 0 0 -1         .
They generate the Pauli group, containing the matrices {sI, sX, sY, sZ/s ∈ {1, -1, i, -i}}.

These gates are in close relation with the computational basis, as well as other common bases such as

{|+⟩ , |-⟩} = |0⟩+|1⟩ √ 2 , |0⟩-|1⟩ √

2

. The Hadamard gate H lets us switch between these bases, with the following semantics: 

H = 1 √ 2 1 1 1 -1 (|0⟩
CNOT =                      1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0                      It often
R x (θ) = exp(-iXθ/2) = cos(θ/2) -i sin(θ/2) -i sin(θ/2) cos(θ/2) , R y (θ) = exp(-iYθ/2) = cos(θ/2) -sin(θ/2) sin(θ/2) cos(θ/2) , R z (θ) = exp(-iZθ/2) = exp(-iθ/2) 0 0 exp(iθ/2)
. The matricial semantics of the phase shift gate is on the other hand P(θ) = 1 0 0 exp(iθ) .

At this point, the states can be modified, but not returned to the user. In order to be able to read the content of a qubit register we use observables. An observable is a self-adjoint operator in a Hilbert space. It is used to encode the measure of a physical property of a given system. The Pauli gates are examples of such observables. An observable has a basis attached as it is diagonalizable: its basis is composed of its eigenvectors. Similarly, the eigenspaces are sometimes referred to as subspaces of the observable.

A common structure for observables can be given by a family of orthonormal vectors

(|ϕ i ⟩) i (i.e. vectors such that ϕ i ϕ j = δ j i 2 ), then i λ i |ϕ i ⟩ ⟨ϕ i | is an observable, with ⟨ϕ i | -called
"bra ϕ i " -the transpose conjugate of |ϕ i ⟩. In this case (|ϕ i ⟩) i is said to be the basis of the observable.

The possible values returned by a measure are the eigenvalues of the corresponding observable. But a measure has more impact than just returning the measured value to the user. Indeed, if the measured state is a basis state of the observable, then the measure will simply return the proper eigenvalue, but if the state is in a superposition of vectors of the basis, then the measure will be probabilistic.

In the general case, the measure projects the state on an eigenspace of the observable 2 δ j i is the Kronecker operator:

δ j i = 1 ⇐⇒ i = j otherwise δ j i = 0
with a probability equal to the norm of the projected state, then re-normalizes it, and returns the eigenvalue corresponding to this sub-space.

A more detailed explanation would be the following: take the observable O for the measure, let E λ be the eigenspace associated with the eigenvalue λ, and note meas(O, |φ⟩) the measure operation, then the measure will have two effects, one on the state measured |φ⟩, noted →, and the second will be the value returned, noted ⇝. Let also |φ⟩ λ be the

projection of |φ⟩ on E λ , |φ⟩ λ = Pro j (|φ⟩ , E λ ), then meas(O, |φ⟩) :            |φ⟩ → |φ⟩ λ ||φ⟩ λ | ⇝ λ with probability |φ⟩ λ 2 .
Because of normalization, it is reassuringly easy to check that the sum of all probabilities is equal to 1.

For example, the usual observable for the computational basis is Z = 1 0 0 -1 . Its eigenvectors are |0⟩ associated to 1 and |1⟩ associated to -1. From this, we can deduce that the measure of |ϕ⟩ = a |0⟩ + b |1⟩ has a probability |a| 2 to return 1 and a probability |b| 2 to return -1 when it is measured by this observable.

The qubit formalism is the mathematical tool used to describe a physical experiment, like manipulating the spin of electrons, or the polarization of photons or the energy level of an atom. In each of these cases, the details of the implementation are quite different, and they can be found in the literature with different notations, for example instead of |0⟩ and |1⟩ the polarization of light can be denoted as |↑⟩ and |←⟩. The observable represents the measuring instrument used by the entity operating it (the physicist in a lab for example).

Finally, as stated previously, I only consider non-noisy states in this thesis, also called pure states. Pure states are in opposition with mixed states, described by density matrices instead of vectors.

2.2/ ALGORITHMS AND LANGUAGES

A quantum algorithm is a series of statements involving quantum computing notions.

There are several ways to formalize quantum algorithms, a very common one is to sequentially describe all the gates operating on the data. This formalism is called quantum circuitry and consists of wires representing the qubits, on which gates and measures operate. Fig. 2.1 depicts such a circuit, and we can observe on this figure some key features of a circuit: it is generally written from left to right, it has an input, some transformations, and an output. For a given algorithm, some inputs may not be data to be worked on, For many reasons, the use of circuits is very restrictive, both to work with and to think with. Here is a short list of shortcomings of quantum circuits:

|x 1 ⟩ H R 2 S WAP |x 2 ⟩ • R n-1
• they do not allow loops;

• they are not a compact way to store a program;

• the gates involved generally do not allow for registry size change; which implies that each local variable must have its own space in the inputs and outputs.

But all these shortcomings have solutions by extending the language. This direction does not seem that promising though: since circuits were never meant to be a compact and efficient way to represent programs. They are mostly a pedagogic tool to visualize transformations.

Quantum circuits could be compared to assembly language, as it is a basic way of laying down the instruction for the processor to execute them. But even then, most assembly languages allow for subroutines, which is not the case for quantum circuit. This is why an early machine language for quantum programs was QASM [BI17] -quantum assembly -, a language to store basic quantum programs organized sequentially (with the addition of subroutines). This format is practical to transfer program from a computer to an other, but lacks the flexibility of modern languages. For this reason, Domain Specific Languages (DSL) compilable to QASM have been created in these modern languages to ease the creation of complex quantum programs. The python library Qiskit [Cro18] from IBM is an example of such a DSL: it allows its user to build quantum programs, and to run them either on a simulator or on their quantum processors available through internet. In addition to this library, IBM published a web interface to graphically create circuits and run them called Composer shown in Fig. 5.1. These efforts to make quantum computing easily available to beginners is a key point toward making more users at ease with the quantum computing paradigm. Through the rich interface of Qiskit, IBM's computer usage is not limited to beginners. We even used it for some of our experiments, presented in Chap. After learning about Hoare logic and in the path to transferring classical skills to quantum computing, one would logically have the idea of generalizing it as quantum Hoare logic [START_REF] Ying | Toward automatic verification of quantum programs[END_REF]. This work is quite recent and has a limited scope, but is nonetheless an interesting lead on the kind of methods used to reason about quantum programs. We did not follow this lead though because the idea seemed flawed at its root: the authors of this work replaced pre and postconditions by quantum predicates, which are in this case observables of the system. This usage of global observables is problematic because unrealistic: observables' sizes grow exponentially with the number of qubits. And even then, this is assuming than one considers a finite number of qubits: in this work, to simplify the thought process, the system is considered of infinite size, allowing the logic to ignore any size calculation.

Another promising project is Qbricks, published this year (2021). It uses Why33 to verify quantum algorithms [CBB + 21]. This code was published too late for us to use it, but it allowed us to focus on specific quantum properties to study, in the goal of using them for specifying quantum problems. The idea behind this reasoning being that more information available for specification would enable easier choice of properties used for said specification. Why3 is a platform for deductive program verification providing a language for specification and programming, called WhyML, and relying on external theorem provers, both automated and interactive, to discharge verification conditions. Using Why3, Qbricks was able to automatically prove the correction of several quantum algorithms.

This last point is in fact what we chose to focus on: instead of directly tackle quantum verification, we studied properties that may come useful for specification of quantum programs.

2.4/ QUANTUM PROPERTIES

As mentioned in Sec. 2.3, verifiable quantum properties could be keys to an efficient quantum verification process. In this context, we focused on two widespread and related properties: entanglement and contextuality. Those two properties are historically linked to differentiating quantum experiences from classical ones, but with the advancement in their understanding, they became more granular, which implies that these properties are not only destined to differentiate between quantum and classical situations, but can now differentiate between different classes of quantum states. These properties have also proved themselves to be core components of quantum programs and protocols (quantum teleportation, quantum telepathy games, ...).

2.4.1/ ENTANGLEMENT

Entanglement is defined using separability. A state is separable if it can be decomposed as a tensor product of single qubits states. If a state is not separable, then it is entangled.

In other words, a n-qubits state |φ⟩ ∈ H ⊗n is entangled iff there is no

(|φ i ⟩) i∈[1..n] ∈ H n such that |φ⟩ = |φ 1 ⟩ ⊗ . . . ⊗ |φ n ⟩.
A famous example of entangled state is the Bell state

|ψ⟩ = 1 √ 2 (|00⟩ + |11⟩).
This state is a great example of the strange repercussions of the quantum measure. Indeed, measuring in the computational basis either of the first qubit of this state would project the second qubit to be the same state as the one measured. At this point, the name "entanglement" for this phenomenon should make more sense: entangled particles have effect on one another, no matter what the distance is.

Another phenomenon is of importance: non-locality. It is a phenomenon where action on a part of the system has immediate effects on another part of the system, and it is enabled by entanglement. This is in fact the property that threw Einstein off when he first learnt about it, because it seemed to break the speed of light limit for transfer of information.

But because of the limitations of quantum mechanics, this phenomenon in fact does not allow for information transfer faster than light [START_REF] Eberhard | Quantum Field Theory Cannot Provide Faster-Than-Light Communication[END_REF].

Since the first days of quantum information, the process used to detect entanglement has been refined to return a continuum. I will call in this thesis degree of entanglement -or simply entanglement when there is no possible confusion -this continuous measure of entanglement.

One may think that the entanglement being a continuum, it would allow to discriminate between any two states. But this is in fact false. Indeed, due to how entanglement is defined, some operations on a state do not affect its degree of entanglement. This is formalized by the LU, LOCC and SLOCC classes. The term comes from set theory, where a class or equivalence class is defined for an equivalence relation R as a set of elements C such that ∀a, b ∈ C, aRb.

LU stands for Local Unitary, and it is the group of unitary operators, i.e. operators O such that their adjoint is their inverse OO † = I, that acts separately on all qubits. Mathematically,

an LU transformation is an operator O such that ∃ (O i ) i∈[1..n] ∈ U 2 s.t. O = O 1 ⊗ . . . ⊗ O n
with U 2 being the group of complex unitary matrices of size To recap, we have the following implications:

LU-equivalence =⇒ LOCC-equivalence =⇒ SLOCC-equivalence.
And in the case of pure states, on which I will focus in this manuscript, we even have Let a = a j j≥1 and a ′ = a ′ j j≥1

be two families of one-qubit observables with eigenvalues in {-1, +1}. The Mermin polynomial M n (a, a ′ ) is inductively defined by:

         M 1 (a, a ′ ) = a 1 ∀n ≥ 2, M n (a, a ′ ) = 1 2 M n-1 (a, a ′ ) ⊗ (a n + a ′ n ) + 1 2 M n-1 (a ′ , a) ⊗ (a n -a ′ n ) (2.1)
Note that since we only use this definition for the Mermin polynomial, we will omit the (a, a ′ ) part of the notation when there is no ambiguity, to improve readability.

The reader familiar with the Mermin polynomial may also be surprised by the slightly different definition in comparison to the one introduced in [ACG + 16]. In place of our M n (a ′ , a), they had a second polynomial M ′ n (a, a ′ ) obtained by interchanging all the operators with and without the " ′ " mark of the definition. This is due to a simplification we introduced

noticing that M ′ n (a, a ′ ) = M n (a ′ , a). Example 1: For n = 2, the Mermin polynomial is M 2 = 1 2 (a 1 ⊗ a 2 + a 1 ⊗ a ′ 2 + a ′ 1 ⊗ a 2 -a ′ 1 ⊗ a ′ 2 ). When we chose a 1 = Z, a 2 = (Z + X)/ √ 2, a ′ 1 = X and a ′ 2 = (Z -X)/ √ 2 the operator M 2 is,
up to a factor, the CHSH operator used to prove Bell's Theorem [START_REF] Clauser | Proposed Experiment to Test Local Hidden-Variable Theories[END_REF].

One can note that a one-qubit observable a with eigenvalues in {-1, +1} can be written as a normed linear combination a = αX + βY + γZ of the Pauli matrices

X = 0 1 1 0 , Y = 0 -i i 0 and Z = 1 0 0 -1 , with the constraint |α| 2 + |β| 2 + |γ| 2 = 1.
Mermin's inequalities

⟨M n ⟩ LR ≤ 1 and ⟨M n ⟩ QM ≤ 2 n-1 2 (2.2)
respectively formalize that the expectation value ⟨M n ⟩ of M n is bounded by 1 under the hypothesis LR of local realism, while it is bounded by

2 n-1
2 in quantum mechanics (QM). The hypothesis of local realism (or principle of locality) states that an object is only affected by its immediate surrounding. ⟨M⟩ is the expected value of the observable M, i.e. 

2.4.2/ CONTEXTUALITY

While entanglement is most often approached as an evidence of non local behavior of quantum states, contextuality is rather about properties of compatible measurements in quantum physics and how these measurements satisfy some contextual properties. Since both of these phenomena are still under intensive study, their distinction is in fact quite fuzzy, some works have even pointed toward a common phenomenon at the root of those quantum properties [START_REF] David Mermin | Hidden variables and the two theorems of John Bell[END_REF][START_REF] Abramsky | The sheaf-theoretic structure of non-locality and contextuality[END_REF]. Historically though, entanglement and contextuality have been put into evidence from different considerations, and this difference resulted on different and complementary approached to tackle the studies of these properties. For this reason, I will present contextuality as a completely separate property despite the existing links with entanglement.

Quantum contextuality was first discovered with the work of Kochen and Specker. The Kochen-Specker Theorem [KS67] is a no-go result that states that any classical theory that would reproduce the outcomes of measurements in quantum physics has to be contextual. Here contextual means that if a classical theory predicts the outcomes of a measurement, then these outcomes should depend on the context, i.e. the set of compatible experiments that are performed before or after the measurement. In this manuscript we only consider operator-based proof of quantum contextuality as discovered by Mermin [START_REF] David Mermin | Hidden variables and the two theorems of John Bell[END_REF]. This contradiction shows that, in order to satisfy the constraints, the classical function should be context-dependent, i.e. provide different results according to which context is measured. This argument furnishes a proof of the Kochen-Specker Theorem.

X ⊗ Y Y ⊗ X Z ⊗ Z I ⊗ Y Y ⊗ I Y ⊗ Y X ⊗ I I ⊗ X X ⊗ X
In chapters 7 and 8 we will study configuration of observables, like the Mermin-Peres square, that provide alternative proofs of the Kochen-Specker Theorem. We will call such configurations contextual.
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When considering code behavior, the first idea that comes in mind for checking it is to run it. This is the reason why I started building a simple simulator while starting my state of the art, to be able to easily play with the algorithms I crossed in my readings.

Although many quantum circuit execution simulators already existed, creating my own one allowed me to tweak it to my needs, and this advantage had only a minimal cost, due to the low complexity of building a quantum circuit simulator for such needs. The created simulator and some examples of application are described in Chap. 3. The following work resulting in an article [dJH + 21] composes the Chap. 4. This second chapter, in addition to explaining Grover's algorithm and the QFT, presents our study of entanglement evolution in these algorithms. The specificity of this entanglement study is that our measure of entanglement is realizable on an actual quantum computer, which enabled me in Chap.

5 to rewrite my code to be able to use Qiskit to perform the same computation on IBM's publicly available quantum processor. All the code written for each of these chapters is freely available and documented on [dB21]. 3), and to check experimentally that they both operate as they are supposed to. In addition to the added control over the computation thanks to the homemade simulator, or maybe because of it, I was able to introduce exact computation (in opposition to floating point precision computation) of quantum states using cyclotomic fields. This approach was added as an option to be toggled, and event though it was not used in the published article because of its time execution cost (as implemented, it was more than 100 times slower than using floating point precision) it is promising because it is easier to formally reason on exact computation than on intervals. This could be useful for formal reasoning approaches. A few other additional benefits of creating an in-house simulator are presented along this chapter, such as the freedom of the input format, the ease of interoperability with other in-house software, and custom format for execution logs.

Table of Contents

3.1/ THE SIMULATOR

The simulator is extremely simple, a circuit is given to it as a list L of lists of matrices as well as a initial state V 0 and the simulator will return the list of states between the elements of L. Each element l of L represents a layer of the circuit and each element of l represents an operation carried on one or several wires. All the operations on a layer are considered as ran at the same time. For an example of input circuit, if H is the Hadamard matrix, I2 and I4 are the identity matrix (respectively in dimensions 2 and 4) and X is the first Pauli operator, then the circuit depicted in Figure 3.1 is represented by

the list [[H,I4], [X,X,I2], [I4,H], [H,H,H]].
The identity is present in this formalism to represent the absence of operation at its position.

H X H X H H H Figure 3.1: Circuit representation of [[H,I4],[X,X,I2], [I4,H], [H,H,H]]
The quantum measure presented in Sec. 2.1 can be simulated at any step of the circuit.

For example, in Fig. 3.2, the output of the simulator would contain the five states

[V 0 ..V 4 ],
and the measure would be simulated after the computation of V 3 . In fact, the complete version of this function has one more functionality, used only for experimentation: it also returns the matrix corresponding to each layer (the Kronecker product of all matrices of the layer). In addition to this, the run function has a display option: it can create L A T E X commands for each state and layer matrix as shown in listing 3.2 which is the output of the command run(layers,v,output=True). This is done in order to ease presentation of quantum algorithms by automating them: if one uses this simulator to explain an algorithm, he will be able to add directly in his L A T E X presentation the steps of the algorithm using these commands. As the simulator is a work in progress though, there are obviously things to ameliorate. For example, implementing simplifica-

|V 0 ⟩ |V 1 ⟩ |V 2 ⟩ |V 3 ⟩ |V 4 ⟩ H X H S WAP H H
tions such as 1 |1⟩ → |1⟩ or 1 2 √ 2 → 1 √ 2 .
\newcommand{\Vzero}{\left(1,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right 

√ 2 |000⟩ + 1 2 √ 2 |001⟩ eventually becomes 1 4 √ 2 |000⟩ + 1 4 √ 2 |001⟩ + 1 4 √ 2 |010⟩ + 1 4 √ 2 |011⟩ + 1 4 √ 2 |100⟩ + 1 4 √ 2 |101⟩ + 1 4 √ 2 |110⟩ + 1 4 √ 2 
---H--- ---H-S- -H---|- >>> print_circuit(circuit, to_latex=True) \begin{align*} \Qcircuit @C=1em @R=.7em { & \qw & \gate{H} & \qw & \qw\\ & \qw & \gate{H} & \multigate{1}{S} & \qw\\ & \gate{H} & \qw & \ghost{S} & \qw } \end{align*}
Listing 3.3: Results of the printing function.

3.2/ DEUTSCH'S ALGORITHM

The first example on which I tried the simulator was Deutsch's algorithm [START_REF] Deutsch | Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer[END_REF]. Let us see how I implemented it and how I verified it.

Deutsch's algorithm takes in a binary function f : {0, 1} → {0, 1} and returns in a single call of f whether the function is constant or not. The important part here is that the result is computed in a single evaluation of f , and it will later be developed into a slightly more impressive generalization.

To add some vocabulary, f is said to be a balanced function if

| f -1 ({0})| = | f -1 ({1})| where f -1 (B)
is the inverse image of the set B and |A| is the cardinal of the set A. Given this, Deutsch's algorithm will return true if f is balanced and false if f is constant. In {0, 1} → {0, 1}, f can only be one of those two.

To do so the function is encoded into its quantum equivalent, the oracle gate U f built such as

U f (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ | f (x) ⊕ y⟩ . (3.1)
with ⊕ being the XOR operator.

The function creating the corresponding matrix is U defined in listing 3.4.

def U(f): result=Matrix(4, 4) for i in range(0, 4):

result[i,(i//2)*2 + (i%2)^^(f[i//2])]=1 return result
Listing 3.4: Function creating the oracle for Deutsch's algorithm In this case, f is passed as a dictionary. For example, f={0:0,1:0} is the constant function returning 0.

The oracle building function requires some explanation: the image of each basis vector should be dictated by Eq. 3.1. In order to do this we decompose the index of the basis vector we intend to use: the i th basis vector has its index decomposed as i = 2i 1 + i 0 , i 1 i 0 is the binary representation of i, which means that i 1 corresponds to |x⟩ and i 0 to |y⟩ in Eq. 3.1. The image of this basis vector by the oracle will have its only non null entry in row j = 2i 1 + i 0 ⊕ f (i 1 ), this computation being the core of the content of the for loop in listing 3.4 (in SageMath, ^^is the bitwise XOR operator). The binary representation of j is i 1 (i 0 ⊕ f (i 1 )), which gives us the correspondence with Eq. 3.1.

The U f gate is then used as shown in Fig. 3.3.

|φ 0 ⟩ |φ 1 ⟩ |φ 2 ⟩ φ ′ 2 |φ 3 ⟩ |φ 4 ⟩ |0⟩ H U f H |1⟩ H Figure 3.3: Deutsch's algorithm in circuit formalism
We recall that the matrix semantics of the gate H is equal to

1 √ 2 1 1 1 -1 .
Let us develop the calculus to understand Deutsch's algorithm. For this calculus, each step φ i corresponds to a number i of gates layer passed, and the layers are H ⊗ H, U f and H ⊗ I:

φ 0 = |0⟩ ⊗ |1⟩ φ 1 = 1 2 (|0⟩ + |1⟩) ⊗ (|0⟩ -|1⟩) = 1 2 (|0⟩ ⊗ (|0⟩ -|1⟩) + |1⟩ ⊗ (|0⟩ -|1⟩)) φ 2 = 1 2 (|0⟩ ⊗ (| f (0) ⊕ 0⟩ -| f (0) ⊕ 1⟩) + |1⟩ ⊗ (| f (1) ⊕ 0⟩ -| f (1) ⊕ 1⟩) At this point, if f (0) = 0, | f (0) ⊕ 0⟩ -| f (0) ⊕ 1⟩ = |0⟩ -|1⟩
, and otherwise it is the opposite.

The idea is the same for f (1).

= 1 2 (-1) f (0) |0⟩ ⊗ (|0⟩ -|1⟩) + (-1) f (1) |1⟩ ⊗ (|0⟩ -|1⟩) = (-1) f (0) 2 |0⟩ + (-1) f (0)⊕ f (1) |1⟩ ⊗ (|0⟩ -|1⟩)
At this point we can ignore the last qubit, because it does not change anymore, and the global phase (complex multiplier of norm 1), because it has no effect on the measure.

φ ′ 2 = 1 √ 2 |0⟩ + (-1) f (0)⊕ f (1) |1⟩ φ 3 = 1 2 √ 2 |0⟩ + |1⟩ + (-1) f (0)⊕ f (1) (|0⟩ -|1⟩) = 1 2 1 + (-1) f (0)⊕ f (1) |0⟩ + 1 -(-1) f (0)⊕ f (1) |1⟩ With this, if f is constant then (1 + (-1) f (0)⊕ f (1) ) = 2 and (1 -(-1) f (0)⊕ f (1) ) = 0, which implies
that the measure will have the following effect: φ 4 → |0⟩, and if f is not constant, we have the opposite case and φ 4 → |1⟩. For the reader not used to quantum computing, this is a nice example that shows that, although the measure is probabilistic, a quantum algorithm can be deterministic.

3.3/ A GENERALIZATION OF DEUTSCH'S ALGORITHM, DEUTSCH-JOZSA ALGORITHM

An interesting generalization of Deutsch's algorithm, as stated before, is Deutsch-Jozsa algorithm [START_REF] Deutsch | Rapid solution of problems by quantum computation[END_REF], which, this time, checks if the function is balanced or constant (it is a precondition of the algorithm for f to be one or the other). It operates on boolean functions with n inputs. (Note that if we do not restrict the function to be either constant or balanced, this algorithm becomes semi-deterministic, returning 1 for any constant function, and 0 with a non-null probability for all other functions.)

The formula defining U f in this case is again Eq. 3.1, and it is built by the functions showed in listing 3.5. The proof that the oracle has this shape is shown in Appendix A. 

def U(f): X=matrix([[0, 1], [1, 0]]) I=matrix.identity(2) result=matrix(2*len(f)) for i in range(0, len(f)): if f[i]==0: result[2*i:2*i+2,2*i:2*i+2]=I else: result[2*i:2*i+2,2*i:2*i+2]=X return result
|5⟩ = |5 2 ⟩ = |101⟩ = |1⟩ ⊗ |0⟩ ⊗ |1⟩.
Secondly, when fed |0⟩ ⊗n , the Hadamard gate array is creating a superposition of all states:

H ⊗n |0⟩ ⊗n = 1 √ 2 n
2 n -1 k=0 |k⟩, and for an arbitrary state |φ⟩ = 2 n -1 k=1 α k |k⟩, its Hadamard transform would be

H ⊗n |φ⟩ = 2 n -1 k=1 a k 1 √ 2 n 2 n -1 j=0 (-1) k• j | j⟩ with k • j = k 1 j 1 ⊕ . . . ⊕ k n j n
being the bitwise product of k and j.

Using the same tricks as in Deutsch's algorithm proof, we have the following calculus to prove Deutsch-Jozsa's algorithm:

φ 0 = |0⟩ ⊗n ⊗ |1⟩ φ 1 = 1 √ 2 n+1 2 n -1 k=0 |k⟩ (|0⟩ -|1⟩) φ 2 = 1 √ 2 n+1 2 n -1 k=0 |k⟩ (| f (k)⟩ -|1 ⊕ f (k)⟩) = 1 √ 2 n+1 2 n -1 k=0 (-1) f (k) |k⟩ (|0⟩ -|1⟩) φ ′ 2 = 1 √ 2 n 2 n -1 k=0 (-1) f (k) |k⟩ φ 3 = 1 √ 2 n 2 n -1 k=0 (-1) f (k)          1 √ 2 n 2 n -1 j=0 (-1) k• j | j⟩          = 1 2 n 2 n -1 j=0         2 n -1 k=0 (-1) f (k) (-1) k• j         | j⟩
Given this, the probability of measuring |0⟩ ⊗n is 1

2 n 2 n -1 k=0 (-1) f (k) 2 which is 1 if f is constant and 0 if f is balanced.
This result is validated for system sizes up to 4 qubits by the code available on GitHub. It should be noted that these calculations were performed using the so called exact calculation of SageMath, using cyclotomic fields [START_REF] Birch | Cyclotomic fields and Kummer extensions[END_REF] qubits. We also exhibit non-locality during the QFT in the context of Shor's algorithm.

An initial motivation of this study is the verification of quantum programs. Turning a quantum algorithm into an implementation for a quantum computer with scarce resources often requires highly non-trivial optimizations, which may introduce bugs in the resulting programs. Checking state properties is a way to gain more confidence in these implementations. In this chapter we investigate non-locality as a property of entangled quantum states that could be checked for a quantum algorithm and its implementations. In this respect evaluation of Mermin polynomials is of particular interest: violation of the classical bound has a physical meaning and the evaluation of Mermin polynomials can be implemented on a quantum computer, as it was demonstrated by Alsina et al. [START_REF] Alsina | Experimental test of Mermin inequalities on a 5-qubit quantum computer[END_REF].

In this chapter we make two different uses of Mermin polynomials. In our study of Grover's algorithm we build for each number of qubits a specific Mermin polynomial which achieves maximal violation for the quantum state of highest GME that Grover's algorithm is meant to approach during its execution. Doing so we will not only show that the states generated by the algorithm violate the classical bound but also that the valuations of this specific Mermin polynomial behave similarly to the GME. In our study of the QFT, we propose a different approach by choosing at each step of the algorithm a Mermin polynomial whose valuation is maximal for the given state. We show that this quantity is a local unitary invariant that can be compared to other invariants. In the context of Shor's algorithm for four qubits, we also obtain violation of the Bell-like Mermin inequalities (also called MABK in the literature) during the QFT part of the algorithm. This amount of violation is not constant during the QFT, which shows a qualitative change of the nature of entanglement involved. This differs from the quantitative results obtained with the Groverian's measure of entanglement [START_REF] Shimoni | Entangled Quantum States Generated by Shor's Factoring Algorithm[END_REF] for which it was proved that the amount of entanglement is nearly constant in Shor's algorithm during the QFT. Without being contradictory the present work illustrates the fact that non-equivalent classes of entanglement under local unitary transformations are achieved during the QFT part of Shor's algorithm, as it was shown in [START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF].

The chapter is organized as follows. After Section 4.2 presenting some background on Grover's algorithm, the QFT and Mermin polynomials, Section 4.3 presents our method and results concerning the detection of entanglement in Grover's algorithm and the QFT.

In particular we exhibit Mermin inequalities violations in both algorithms. In this section we also compare the results obtained with the Mermin polynomials to previous results [START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF] using the Cayley hyperdeterminant. Finally, Section 4.4 documents the code developed for this evaluation, in order to make it reusable by anyone wishing to1 . In order to ease the reading of this chapter, we have gathered the more technical parts in the appendix of this manuscript. Firstly regarding a description of the states in Grover's algorithm in Chap. B and secondly the definition of the Cayley hyperdeterminant in Chap. C.

4.2/ BACKGROUND

We recall here some notions. This manuscript relies on pure state formalism: each considered state is a normalized vector of the Hilbert space 

H = C 2 ⊗ C 2 ⊗ • • • ⊗ C 2 ,
i ⟩ = φ i 1 ⊗ φ i 2 ⊗ • • • ⊗ φ i k , with i = 1, . . . , r, such that |φ⟩ = r i=1 α i |φ i ⟩ with α i ∈ C
, and r is minimal for this property. An entangled state is a tensor of rank higher than 1.

The remainder of this section provides necessary background to the reader, regarding Grover's algorithm (4.2.1), some properties of the states during its execution (4.2.2) and the Quantum Fourier Transform (4.2.3).

4.2.1/ GROVER'S ALGORITHM

We summarize here Grover's algorithm, widely described in the literature ([Gro96, LMP03] and [NC10, chapter 6]).

Grover's algorithm aims to find objects satisfying a given condition in an unsorted database of 2 n objects, i.e. to solve the following problem.

Given a positive integer n, N = 2 n , Ω = {0, . . . , N -1} and the characteristic function 

f : Ω → {0, 1} of some subset S of Ω ( f (x) = 1 iff x ∈ S ),
|0⟩ / n H ⊗n+1 U f D • • • U f D |1⟩ • • • Figure 4
.1: Grover's algorithm in circuit formalism registers initialized at |0⟩, it computes the superposition of all states, i.e.,

H ⊗n |0⟩ = 1 √ N N-1 x=0 |x⟩ . After H ⊗n+1 , the dashed box (hereafter called L) is repeated k opt = π 4 N |S | times.
The circuit L is composed of the oracle U f and the diffusion operator D. The gate U f computes the classical function f . It has the following effect on states:

∀(x, y) ∈ {0, . . . , N} × {0, 1}, U f (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩ .
On the circuit of Figure 4.1 one can show that the last register remains unchanged when applying the U f gate. Indeed after the Hadamard gate H, this last register becomes

H |1⟩ = |0⟩ -|1⟩ √ 2 . Now consider a state |x⟩ ⊗ |0⟩ -|1⟩ √ 2
. Then

U f |x⟩ ⊗ |0⟩ -|1⟩ √ 2 =              |x⟩ ⊗ |1⟩ -|0⟩ √ 2 if f (x) = 1 |x⟩ ⊗ |0⟩ -|1⟩ √ 2 otherwise.
In other words,

U f |x⟩ ⊗ |0⟩ -|1⟩ √ 2 = (-1) f (x) |x⟩ ⊗ |0⟩ -|1⟩ √ 2
.

One says that the oracle U f marks the solutions of the problem by changing their phase to -1. To emphasize this, we adopt the usual convention which consists of ignoring the last register and considering that U f has the following effect:

         U f |x⟩ = -|x⟩ , ∀x ∈ S U f |x⟩ = |x⟩ , ∀x S .
The diffusion operator D = 2(|+⟩ ⟨+|) ⊗n -I 2 n performs the inversion about the mean. Indeed

if |φ⟩ = N-1 i=0 α i |i⟩ and ᾱ = 1 N N-1
i=0 α i denotes the mean value of the amplitudes of |φ⟩, then

D |φ⟩ = N-1 i=0 α ′ i |i⟩ with α ′ i -ᾱ = ᾱ -α i .
x 0 (a)

x 0 The final measure yields the index of an element from S with high probability.

(b) x 0 (c) x 0 (d)

4.2.2/ PROPERTIES OF STATES IN GROVER'S ALGORITHM

The evolution of the amplitudes of the state |φ⟩ during the execution of the algorithm is well known [START_REF] Michael | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF]. If we denote by θ the real number such that sin(θ/2) = √ |S |/N, then after k iterations (i.e., after applying k times the circuit L), the state is: In [START_REF] Holweck | Grover's algorithm and the secant varieties[END_REF], it is proven that for states in superposition

|φ k ⟩ = α k x∈S |x⟩ + β k x S |x⟩ (4.1) with α k = 1 √ |S | sin 2k + 1 2 θ and β k = 1 √ N -|S | cos 2k + 1 2 θ .
α |x 0 ⟩ + β |+⟩ ⊗n with α, β ∈ R + ,
the GME is maximal when α = β. Let |φ ent ⟩ hereafter denote the state (|x 0 ⟩ + |+⟩ ⊗n )/K, normalized with the factor K. In the context of Shor's algorithm, the QFT is used to transform a periodic state into another one to obtain its period. The periodic state φ l,r of n qubits with shift l and period r is defined by

φ l,r = 1 √ A A-1 i=0 |l + ir⟩ with A = N -l r and N = 2 n , for 0 ≤ l ≤ N -1 and 1 ≤ r ≤ N -l -1 [SSB05, Eq. 5].
For example, for the periodic 4-qubit states, with shift l = 1 and period r = 5, there are

A = 16-1 5
= 3 basis elements, so:

φ 1,5 = 1 √ 3 |1⟩ + |6⟩ + |11⟩ = 1 √ 3 |0001⟩ + |0110⟩ + |1011⟩ .
When applied to one of the computational basis states |k⟩ ∈ {|0⟩ , |1⟩ , . . . , |N -1⟩} (expressed here in decimal notation), the result of the QFT can be expressed by

QFT |k⟩ = 1 √ N N-1 j=0 ω k j | j⟩ ,
where ω = e 2iπ N is the primitive N-th root of unity. Then, for any n-qubit state |ψ⟩ = N-1 j=0 x j | j⟩, we get

QFT |ψ⟩ = N-1 k=0 y k |k⟩ with y k = 1 √ N N-1 j=0 x j • ω k j . (4.4)
The corresponding matrix is

QFT N = 1 √ N                                    1 1 1 1 • • • 1 1 ω 1 ω 2 ω 3 • • • ω N-1 1 ω 2 ω 4 ω 6 • • • ω 2(N-1) 1 ω 3 ω 6 ω 9 • • • ω 3(N-1) . . . . . . . . . . . . . . . . . . 1 ω N-1 ω 2(N-1) ω 3(N-1) • • • ω (N-1)(N-1)                                    .
In the circuit representation, the QFT can be decomposed into several one-qubit or twoqubit operators. To obtain this decomposition three different kinds of gates are used: the Hadamard gate, the SWAP gate and the controlled-R k gates, defined by the matrices and circuits

S WAP =                      1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1                      |x⟩ • • |y⟩ |y⟩ • |x⟩
and

cR k =                      1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 e 2iπ 2 k                      |x⟩ R k |y⟩ •
The complete circuit of the QFT is provided in Figure 4.4, where the n-qubit SWAP operation consists of swapping |x 1 ⟩ with |x n ⟩, |x 2 ⟩ with |x n-1 ⟩, and so on. 

|x 1 ⟩ H R 2 R 3 . . . R n S WAP |x 2 ⟩ • H R 2 . . . R n

4.3/ METHOD AND RESULTS

In this section we present the main results of this study, obtained by evaluating Mermin polynomials on states generated at different steps of Grover's algorithm and the QFT. As explained in the introduction (see Sec. 4.1) our goal is to exhibit quantum properties of those states that can be experimentally checked. When it violates the classical bound, a Mermin polynomial detects entanglement -a resource that has been proved several times to appear in those algorithms. We obtain those violations in both algorithms. It is also known that the amount of violation of Mermin's inequalities is not in one-to-one correspondence with the quantity of entanglement involved [START_REF] Brunner | Entanglement and nonlocality are different resources[END_REF]. The question of measuring the quantity of entanglement is also a difficult question, as it is known that the notion of absolutely maximally entangled states does not exist already in the four-qubit case [START_REF] Higuchi | How entangled can two couples get?[END_REF]. Here we compare evaluation of Mermin polynomials to different types of entanglement measures. In Grover's algorithm one uses a specific Mermin polynomial, which is fixed once for all the algorithm. By carefully choosing this polynomial one shows that its evaluation behaves like the GME. In the QFT algorithm, previous work [START_REF] Shimoni | Entangled Quantum States Generated by Shor's Factoring Algorithm[END_REF] concluded to small variations of the GME. Here, by choosing differently which Mermin polynomial we evaluate at each state, we show that the entanglement classes change during the QFT, as it was already observed in [START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF].

Once two families (a j ) 1≤ j≤n and (a ′ j ) 1≤ j≤n of observables are chosen, one can define the Mermin test function f M n by f M n (φ) = ⟨φ|M n |φ⟩. Inequalities (2.2) tell that f M n (φ) > 1 implies that |φ⟩ is non-local. We present in this section two approaches to choose the parameters (a j ) 1≤ j≤n and (a ′ j ) 1≤ j≤n of M n to satisfy the previous inequality for some states generated by the quantum algorithm of choice.

The first approach evaluates each state that the algorithm goes through with the same function f M n , with a unique polynomial M n chosen prior to state computation. This approach has the advantage of providing a fast calculation ((a j ) 1≤ j≤n and (a ′ j ) 1≤ j≤n are computed only once), but the function f M n is not a measure of entanglement, since it is not invariant by local unitary transformations, i.e., we do not have f M n (φ) = f M n (g.φ) for all transformations g ∈ LU = U 2 (C) n and all quantum states |φ⟩ (|g.φ⟩ is defined as such: for

g = (g 1 , . . . , g n ) and G = g 1 ⊗ . . . ⊗ g n , |g.φ⟩ = G |φ⟩).
The second approach is to choose a different M n for each state |φ⟩, by optimizing f M n (φ) for each state traversed by the algorithm. This means that we are finding values for (a j ) and (a ′ j ) many times for a single run. This approach was for example used in [BOF + 16]. We use it in Section 4.3.2.1 to define a quantity µ(φ), invariant under the group LU of local unitary transformations (see Proposition 1).

4.3.1/ GROVER'S ALGORITHM PROPERTIES

Hereafter we simplify the calculations by taking S = {x 0 }, i.e., by considering that Grover's algorithm is only searching for a single element x 0 . We want to show two properties:

1. Grover's algorithm exhibits non-locality.

2.

Parameters of the Mermin test function can be computed so that the function values increase and then decrease for the successive states |φ k ⟩ in Grover's algorithm. The maximum is reached at an integer k max in {⌊k opt /2⌋, ⌈k opt /2⌉}.

Property 1 is in contradiction with [BOF + 16], a detailed explanation is given in Remark 2.

Property 2 makes the chosen Mermin test function behave like the Geometric Measure of Entanglement.

Next section details the method we followed for finding a good Mermin polynomial establishing these properties.

4.3.1.1/ METHOD

The definition of Mermin polynomials provides degrees of freedom in the choice of (a j ) j≥1 and (a ′ j ) j≥1 (an infinite number of parameters). We reduce that choice by imposing that the two sequences (a j ) j≥1 and (a ′ j ) j≥1 are constant, i.e. ∀ j, a j = a and a ′ j = a ′ . This restriction strongly reduces calculations, and it will be sufficient to achieve our objectives.

Let us denote by a and a ′ the two one-qubit observables that will be used to write our Mermin polynomial. We have a = αX + βY + γZ and a ′ = α ′ X + β ′ Y + γ ′ Z with the constraints

|α| 2 + |β| 2 + |γ| 2 = 1 and |α ′ | 2 + |β ′ | 2 + |γ ′ | 2 = 1.
The degrees of freedom are the 6 complex numbers α, β, δ, α ′ , β ′ and δ ′ with the two normalization constraints. Let A = (α, β, δ, α ′ , β ′ , δ ′ ) be the six-tuple of these variables.

In order to satisfy Property 2, we search for a six-tuple of parameters A such that f M n reaches its maximum for the state φ k opt /2 . We also would like this choice of A to be independent of the states generated by the algorithm. According to the geometric interpretation presented in Section 4.2.2, the state φ k opt /2 should tend to the state The lower bound for the number n of qubits is set to 4 because for n ≤ 3 the algorithm has no time to show any advantage, is not very reliable and doesn't exhibit non-locality. The upper bound is set to 12 because of technological limitations: computations for 13 qubits or more become too expensive.

|φ ent ⟩ = 1 K (|x 0 ⟩+|+⟩ ⊗n )
We see that the two expected properties hold for all values of n: the classical limit is violated and the Mermin evaluation increases up to the middle of the executions, and then decreases (the maximal values are given in Figure 4 4.5 should be compared to the curve of Figure 1 of [START_REF] Rossi | Scale invariance of entanglement dynamics in Grover's quantum search algorithm[END_REF] where the evolution of the GME of the states generated by Grover's algorithm is given for n = 12 qubits. In our setting it is not a surprise that both curves are similar because in all of our calculations the function f M n is defined by the set of parameters that maximizes its value for |φ ent ⟩. Similar behavior for other invariants in the context of Grover's algorithm have also been observed in [START_REF] Meyer | Global entanglement in multiparticle systems[END_REF][START_REF] Chakraborty | Entanglement in the Grover's Search Algorithm[END_REF][START_REF] Holweck | Grover's algorithm and the secant varieties[END_REF]. 

4.3.2.1/ METHOD

When we apply the QFT to periodic states we have no a priori geometric information about the type of states that will be generated. In fact it depends on two initial parameters that define the periodic state φ l,r : its shift l and its period r. Therefore there are no reasons for restricting the choice of parameters in the calculation of f M n (φ l,r ). For the four-qubit case this implies that our optimization will be carried over the 24 parameters defining M 4 , hereafter denoted α 1 , . . . , α 24 (such that a

1 = α 1 X + α 2 Y + α 3 Z, . . . , a 4 = α 10 X + α 11 Y + α 12 Z, a ′ 1 = α 13 X + α 14 Y + α 15 Z, .
. . , and a ′ 4 = α 22 X + α 23 Y + α 24 Z), and this, for each state generated, in opposition to Section 4.3.1.

For k ≥ 0, let φ l,r k denote the state reached after the first k gates in the QFT (Figure 4.9) initialized with the periodic state φ l,r with shift l and period r (this means that φ l,r We are interested by the evolution of the function q defined for k ≥ 0 by

0 = φ l,r ). H R 2 R 3 R 4 SW AP • H R 2 R 3 • • H R 2 • • • H ϕ l,r 0 ϕ l,r 1 ϕ l,r
q(k) = max α 1 ,...,α 24 f M 4 φ l,r k . (4.5) 
In In [START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF] it was observed that the evolution of entanglement for four-qubit periodic states through QFT shows three different behaviors with respect to ∆ 2222 .

• Case 1. The polynomial ∆ 2222 is nonzero when evaluated on φ l,r and does not vanish during the transformation. In terms of four-qubit classification [START_REF] Verstraete | Four qubits can be entangled in nine different ways[END_REF] it means that the transformed states remain in the so-called G abcd class. This happens for (l, r) ∈ {(1, 3), (2, 3)}.

• Case 2. The polynomial ∆ 2222 is zero for the periodic state φ l,r and is nonzero during the QFT. This happens for (l, r) ∈ {(0, 3), (0, 5), (2, 1), (3, 1), (3, 3), (4, 1), (4, 3), (5, 1),

(5, 3), (6, 1), (6, 3), (7, 1), (9, 1), (10, 1), (11, 1), (12, 1)}.

• Case 3. The polynomial ∆ 2222 is zero for the periodic state φ l,r and it remains equal to zero all along the QFT for all the other (l, r) configurations (with 0 ≤ l ≤ N -1 and

1 ≤ r ≤ N -l -1).
Before presenting the results let us point out that now the calculated quantity is invariant under local unitary transformations, i.e. under the group LU = U 2 (C) n .

Proposition 1: Let |φ⟩ ∈ (C 2 ) ⊗n be a n-qubit state. We recall that the Mermin polynomial M n is a function of families of observables, as defined in Definition 2. With this, we define the function µ as

µ(φ) = max a,a ′ ⟨φ|M n (a, a ′ )|φ⟩ . (4.6) Then µ(φ) is LU-invariant.
Proof. First one recalls that a one-qubit observable A such that S p(A) = {-1, 1} can always be written as A = αX +βY +γZ with α, β, γ ∈ R and α 2 +β 2 +γ 2 = 1. For the action g.A = g † Ag on A by conjugation with a unitary matrix g ∈ U 2 (C), one has g.A = à = αX + βY + γZ with α, β, γ reals such that α2 + β2 + γ2 = 1. Indeed à is also a one-qubit observable such that

S p( Ã) = {-1, 1}. Let us denote by λ = (α 1 , β 1 , γ 1 , α ′ 1 , β ′ 1 , γ ′ 1 , . . . , α n , β n , γ n , α ′ n , β ′ n , γ ′ n ) ∈ R 6n a tuple of 6n real parameters such that α 2 i +β 2 i +γ 2 i = 1 and α ′2 i +β ′2 i +γ ′2 i = 1 that define a Mermin polynomial M n (λ). Then µ(φ) = max λ ⟨φ|M n (λ)|φ⟩ exists, because λ → ⟨φ|M n (λ)|φ⟩ is a continuous function on a dense compact interval.
Let us denote by λ ′ a tuple of parameters that maximizes ⟨φ|M n (λ)|φ⟩, i.e.,

µ(φ) = ⟨φ|M n (λ ′ )|φ⟩ .
Let |ψ⟩ be a n-qubit state LU-equivalent to |φ⟩. Thus there exists g = (g 1 , . . . ,

g n ) ∈ LU such that |ψ⟩ = |g.φ⟩ = G |φ⟩ with G = g 1 ⊗. . .⊗g n . Then ⟨φ|M n (λ ′ )|φ⟩ = ⟨φ| G † GM n (λ ′ )G † G |φ⟩ =
⟨ψ|M n (λ ′′ )|ψ⟩ for some tuple of parameters λ ′′ . To prove this, we first observe that M n (λ) is a sum of tensor products of normed linear sums of Pauli matrices. Since G ∈ LU, GM n (λ ′ )G † is a tensor product of one qubit observables with a specter of {-1, 1}, which means that each of these observables can be expressed as a normed linear sum of Pauli matrices which which gives us λ ′′ such that GM n (λ ′ )G † = M n (λ ′′ ). Therefore µ(φ) ≤ µ(ψ).

But |φ⟩ = G † |ψ⟩ also holds, so a similar reasoning provides the inequality µ(φ) ≥ µ(ψ) and thus the equality.

In the next section we plot and analyze different curves of the approximation q of q in the four-qubit case for different choices of (l, r).

4.3.2.2/ RESULTS

In order to compute the values of the function q defined by (4.5), we find an approximation noted q by optimizing the parameters α 1 , . . . , α 24 defining M n . Curves of q(k) are shown on Figures 4.11 the execution of the QFT. Only some states corresponding to Case 3 produce constant curves with some of them equal to the classical bound (not drawn). It is for instance the case for (l, r) = (2, 4) which is a separable state that remains separa-ble during the algorithm. 2 for n = 4), but this value is nowhere to be approached for (l, r) = (1, 1) where the value of q(k) is close to 1 at all steps of the run. In fact the state |0⟩ This implementation of the simulation of Grover's algorithm has its limits though. It is computationally expensive to multiply matrices beyond a certain number of qubits. To push it a little further, we used another implementation for Grover's algorithm, less versatile but more efficient. This method is presented in Listing 4.3. In this case, two important differences are first that there is no more use for the ancilla qubit (the last wire in the circuit definition of Grover's algorithm, see Figure 4.1), which divides by two the number of elements in a state vector, and second that almost no matrix multiplication is used. Indeed, the loop is now handled by functions operating directly on the state vector. The first function is oracle_artificial, and it only flips the correct coefficient in the running state (this is the behavior explained in Section 4.2.1). The second function diffusion_artificial performs the inversion about the mean.

φ 1,1 = 16 15 |++++⟩ - 1 √ 15 
|0000⟩ (4.
H ⊗n+1 U f D U f D |0⟩ |0⟩ |1⟩ |φ 0 ⟩ |φ 1 ⟩ |φ 2 ⟩ |φ 3 ⟩ |φ 4 ⟩ |φ 5 ⟩

4.4.1.2/ OPTIMIZATION

The grover_optimize function shown in Listing 4.4 computes an approximation of an optimal Mermin operator, as explained in Section 4.3.1.1. The Mermin operator M n is an implicit function of (α, β, δ, α ′ , β ′ , δ ′ ), here implemented as (a,b,c,m,p,q). Because of this, optimizing the Mermin operator is finding the optimal (α, β, δ, α ′ , β ′ , δ ′ ) for our Mermin evaluation (which is done using the optimize function).

To def M_phi(a,b,c,m,p,q): return M_eval(a,b,c,m,p,q, phi) (a,b,c,m,p,q),v=optimize(M_phi, (1,1,1,1,1,1), 5, 10**(-2), 10**2)

return M_from_coef(n,a,b,c,m,p,q)

Listing 4.4: Optimization function for Grover's algorithm implicit function of (α, β, δ, α ′ , β ′ , δ ′ ). This implicit relation is made explicit as M_phi is a function of (a,b,c,m,p,q).

The optimize function takes as input a function (here M_phi), a first point to start the optimization from (here (1,1,1,1,1,1)), the step sizes bounds and a maximal number of iterations on a single step (here 10 2 ). The random walk starts with a step size of 5 and ends with a step size of 10 -2 .

The optimization function proceeds with a random walk. It iterates until it finds a local maximum (for all points p in a neighborhood around the point found p opt , their evaluation by the function given as the first parameter is less than the evaluation of the point found

f (p) ≤ f (p opt )).
To find this optimum, the process starts from an arbitrary point (given as an argument) and at each step, an exploration of the space is done around the current point until the evaluation on the argument function increases. If an increase cannot be found before the fixed maximal number of iterations, the step size is reduced, otherwise the same step is repeated with the same step size. The function ends when the step size reaches the fixed minimal size of the steps.

Remark 5: This optimization can be expensive, so to speed up the calculation, a memoization step is hidden here: if (a,b,c,m,p,q) has already been computed for target_state, this result has been stored on disk at this point and is now loaded.

4.4.1.3/ EVALUATION

The function grover_evaluate shown in the Listing 4.5 is the simplest of the three: it The qft_layers function uses two functions not detailed here. swap returns a matrix corresponding to the swap of two wires wire1 and wire2 and the identity on the other wires concerned. The R method returns the controlled rotation of angle e 2iπ 2 k , with the rotation being performed on the wire target controlled by the wire control. The two matrices built by these functions have a size of 2**size. With these two functions, qft_layers builds the circuit for the QFT using R on the whole width of the circuit when a rotation is needed and using swap only at the end to build the global swap (in fact, swap is also used in R and that is the reason why this implementation of swap on two wires has been chosen instead of a more general arbitrary permutation gate). In this case again, the evaluation is conceptually simpler than in Grover's algorithm. Indeed, since the optimization needs to be performed for each evaluation, the result printed at each step is simply the optimal point reached by the optimize function (the same as described in Section 4.4.1.2). In this case, a notable difference in the usage of optimize is the presence of 3*n*2 coefficients. This is explained by the fact that, this time, we do not want a trend for the evaluation's evolution and a "good enough" M n . This means that we do not stand satisfied by the constant a n = αX + βY + δZ but we have α, β and δ variable as explained in 4.3.2.1 (where they become (α i ) 1≤i≤6n ).

computes f M n (|φ k ⟩) = ⟨φ k |M n |φ k ⟩ for each |φ k ⟩ in
Because of this, the function M_func (Listing 4.11) we optimize is now calling M_eval_all instead of M_eval. The difference is that M_eval took only 3×2 coefficients to compute M n with fixed a i = αX + βY + δZ and a Finally, to conclude this section, we recall the functions reusable in a general context, the run function can be used for general purpose quantum circuit simulation and the Mermin evaluation process can be used for arbitrary state entanglement evaluation. An issue previously mentioned was the correctness between the process and the simulation, and here this issue is tackled by structured and clear code. This structure also helps the code to be more modular, for instance, if the user wants to change the optimization method for more speed or precision, it can be easily achieved.

′ i = α ′ X + β ′ Y + δ ′ Z,
Remark 6: Note that the actual implemented functions have additional parameters that are ignored here for simplicity's sake. For example, each function has a verbose mode, to display more information about its run. In this chapter, we first present the Qiskit ecosystem in Sec. 5.1. We then describe how we compute the Mermin evaluation on Qiskit in Sec. 5.2, and we finally show how we use it to reproduce our study of entanglement for the QFT in Sec. 5.3.

4.5/ CONCLUSION

5.1/ THE QISKIT ECOSYSTEM

The first guided approach to IBM quantum experience is via the composer (available at https://quantum-computing.ibm.com/composer). It is a visual interface to create quantum circuits such as the one depicted in Fig. 5.1.

But as mentioned before, the circuitry has important practical limitations. The first tool to circumvent this limitation is the QASM language, also available on the IBM quantum experience. But since this language aims at mimicking quantum circuitry, most of the problems of the latter remain. The next step suggested by IBM's tutorial is to use Qiskit, For a given circuit, we compute the Mermin evaluation ⟨φ k |Mn|φ k ⟩ of each of its intermediate steps using the evaluate_polynomial function presented in listing 5.2. This function takes as inputs the number of qubits, the circuit to be analyzed (each intermediate step will be evaluated), and the coefficients used to build the families of observables (a i ) and This function itself uses the function evaluate_monomial. This is due to the fact that ⟨φ|M n |φ⟩ cannot be evaluated directly. In order to evaluate it, one has to evaluate each monomial composing the polynomial M n .

(a ′ i ) involved
But before the explanation of the monomials computation, one should understand how the Mermin polynomial itself is computed, because this is a quite interesting trick. First, as a reminder, M n = 2 n -1 i=0 α i a

β 1,i 1 ⊗ . . . ⊗ a β n,i n with α i ∈ {0} ∪ { 1 2 k , k ∈ [0.
.n]} and β is either the prime mark " ′ " or nothing. Furthermore, there is no need to know the a i 's and a ′ i 's for computing the Mermin polynomial at first. Indeed, we first compute the coefficients α i using the formula defining the Mermin polynomial, given in Eq. 2.1. This is done in the function mermin_IBM, with the i th entry of the resulting array corresponding to the monomial a

β 1,i 1 ⊗ . . . ⊗ a β n,i
n where β k,i is " ′ " if the k th digit of i is 1 and " " otherwise. Another trick used in mermin_IBM but not explicitly shown here is that the coefficients of M n (a ′ , a) are simply the coefficients of M n (a, a ′ ) in reverse order. This allows us to have a single recursive function to compute these coefficients, instead of a double recursion. Now that the coefficients of the monomials are computed, let us recall that the rest of the information is contained in the coefficients defining the a i 's and a ′ i 's. Indeed, as explained in Chap. 4, each a j is defined as a j = α j X + β j Y + γ j Z. Those coefficients are stored in the variable a_a_p_coeffs as a pair of lists of triples. The first element of the pair contains the coefficients for the a i 's and the second one the coefficients for the a ′ i 's. Each of these elements is a list of triples, where each element of the list contains the three coefficients defining the corresponding a i or a ′ i .

def evaluate_monomial(n, n_measure, circuit, a_a_p_coeffs, shots, is_simulation=True, local=True): circuit_size=circuit.num_qubits circuit_aux=QuantumCircuit(circuit_size,n) basis_change.U3_gates_placement(n,n_measure,a_a_p_coeffs,circuit_aux) circuit_mesure=circuit + circuit_aux result=run.runCircuit( circuit_mesure,shots=shots,simulation=is_simulation,local=local) measure_monomial=measures_exploitation(result,shots) return measure_monomial Listing 5.3: Function returning the average value of a state prepared by a circuit measured by a given monomial.

We use this information to compute the monomials as shown in listing 5.3. This function prepares the total circuit, made of both the circuit preparing the evaluated state and the evaluation circuit. The evaluation circuit is circuit_aux in the body of the function, and is prepared using the function U3_gates_placement. Indeed, the a n and a ′ n observables can be created using the gate U 3 (θ, ϕ, λ) = cos(θ/2) -e iλ sin(θ/2) e iϕ sin(θ/2) e i(λ+ϕ) cos(θ/2) . This is because, if we set θ = arccos(γ) and ϕ = arccos(α/ sin(θ)) then αX + βY + γZ = U 3 (θ, ϕ, -ϕ -π). Note that in this formula, β does not appear: this is in fact not so strange since |α| 2 + |β| 2 + |γ| 2 = 1. To go into more details, the formula must be adjusted on edge cases, the total computation is shown in listing 5.4. def mermin_coeffs_to_U3_coeffs(x, y, z): theta=np.arccos(z) phi=0 if np.sin(theta)==0 else np.arccos(x/np.sin(theta)) if y/np.sin(theta) < 0: phi=-phi return theta, phi Listing 5.4: Function converting the coefficients of a k to angles to feed to the function building the corresponding U 3 gate.

The measure is performed in the basis associated to the Z Pauli matrix, so an odd number of 1s in the result would yield a global measurement of -1 and an even number of 1s would yield a global measurement of 1. To get the average of the results, one then has to count positively each result that yielded an even number of 1s and negatively each result that yielded an odd number of 1s. This operation is performed by the measure_exploitation function given in listing 5.5.

def measures_exploitation(measures_dictionary, shots): results=0 for measure in measures_dictionary: sign=1 if measure.count('1') % 2==0 else -1 results +=sign*measures_dictionary[measure] return (even_results -odd_results) / shots Listing 5.5: Function computing the results interpretation for a monomial.

5.3/ QFT ON QISKIT

With this, we have finished our diving into the Mermin evaluation in Qiskit, but we haven't seen a concrete example yet. We have created several examples, available in the example section of the git repository, but I will only present a single one here: the Mermin evaluation along the QFT. In order to do this, we need to have a circuit building the state at each step of the QFT, i.e. a truncated QFT circuit. This is precisely the role of the function build_QFT_0_to_k, presented in listing 5.6. This function simply adds successively each gate of the QFT, and breaks when the number of gates is equal to the desired number of gates.

One can easily see the result of the function using the draw method of the Qiskit circuits as such: build_QFT_0_to_k(4,3).draw() which prints the figure shown in Fig. 5.3.

H

U1 ( /4) U1 ( /8) q 0 q 1 q 2 q 3 Once again, the process presented here is slightly simplified, the complete example is available on https://quantcert.github.io/Mermin-eval with code documentation, installation instructions, and many examples.

The only step left is to present the result. The Mermin measurements are represented in Fig. 5.4 showing both the simulation on Qiskit and the run on IBM's quantum processors. This is the disappointing part: to this day, the call of IBMQ, the Qiskit module in charge of interacting with IBM's cloud infrastructure, is quite unstable, and network errors are not rare. This, added to the noise in quantum computation, yield results that are very 4. This leads to believe that both implementations achieve the desired behavior, and that the strange experimental results are only due to quantum noise and network errors. This is a good example of how such measures could be useful to detect the proper implementation of algorithm, or the good behavior of the machine on which the algorithm runs. At this moment though, with our experimental setup, it is more expensive to perform the Mermin measure that to run the original algorithm, so this may be a tool for later use, but for now, it is only a proof of concept.
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This introduction serves to introduce the works presented in this Part. The emphasized words in this introduction are fully defined in the three chapters of this Part.

The first quantum property we studied, entanglement, showed us possible characterizations of the studied quantum algorithms. This property often presented to new comers as a defining property of quantum computing is commonly put in evidence using Bell nonlocality, but those experiences can all be mapped to experiences putting contextuality in evidence [START_REF] Cabello | Bell Non-locality and Kochen-Specker Contextuality: How are They Connected[END_REF]. Knowing this, the study of this new property has a crucial role if we intend to reason on quantum properties. We approach this property from the point of view of quantum geometries, a special kind of finite geometries linked to quantum contextuality.

Finite geometries are also mentioned in the literature as block designs. I use this term in Chap. 6 because this chapter follows previous articles using this terminology, but in the following chapters, I simply call them geometries.

Chap. 6 presents a method found in the literature to build block designs/finite geometries, as well as a thorough check of the validity of this method. Chap. 7 and 8 push further the exploration of finite geometries construction, but this time based on binary symplectic polar spaces. This work is much more implicated in the study of contextuality, since the built geometries are immediate candidates for contextual geometries. In Chap. 7, I explain how I generated contextuality proofs in Magma using the symplectic space, and in Chap. 

FORMALIZATION AND VALIDATION OF A BLOCK DESIGN CONSTRUCTION METHOD

This chapter is the translation of an article written in French for a French conference [START_REF] Colonval | Formalisation et validation d'une méthode de construction de systèmes de blocs[END_REF]. It has been initially written with Jessy Colonval, a master student at this time, currently working as a Ph.D. student. We thank Michel Planat for his help on the matter.

6.1/ INTRODUCTION

In the domain of experimental mathematics, the researchers often write code to discover new results. But this is one of the domains where reproducibility could greatly be improved, since, most often, the programs are either not publicly available or are not sufficiently documented or structured to allow the reader to run said program and reproduce the results. Reproducibility is a major stake that must also be considered in computational mathematics [SBB + 12], in particular to ease the verification and the extension of published results.

A mathematical theorem is often a general statement that must be proven, since the calculation allows to validate only a limited fragment of an infinity of cases covered by this statement. This theorem can be verified by a third party, in a proof assistant, if its publication is accompanied by a formal demonstration. However, the construction of a formal proof is a difficult task, since it requires a formalization of all the mathematical concepts underlying the theorem, and the mastery of a proof assistant. The formal proof of the odd order theorem [GAA + 13] is a good example: it mobilized many researchers over a long period of time. Comparatively, the test of a large number of instances of a theorem is often much simpler to implement and can bring a sufficient level of confidence in the correction of this theorem.

We propose to apply intensive testing to computational mathematics, as well as other good programming practices, such as structuring, code factoring, documentation and free distribution of the source code. In particular, we aim at theorems dealing with infinite families of mathematical structures with a size. In this case, we propose to verify the theorem for all structures, by increasing size, up to a maximal size considered as sufficient to give confidence in the correctness of the theorem. This work is part of the research on finite geometries called quantum geometries, because of their link to quantum contextuality. Planat et al. [START_REF] Planat | Quantum contextual finite geometries from dessins d'enfants[END_REF] have shown how to construct these geometries from groups of permutations, but without publishing a program for this construction. These geometries are special cases of block designs (defined in Sec. 6.2) and the article of Planat et al. presents a method to build them.

A bibliographical search on the origin of this method led us to a previous reference [START_REF] Key | Codes, designs and graphs from the Janko groups J 1 and J 2[END_REF], which presents a simpler method, which builds block designs from primitive permutation groups. This article is completed by a program, but the latter does not contain any code to validate this method. We formalize this method, and then validate it by enumeration. More precisely, we validate that the block designs built according to this method have all the characteristics announced in a proposition of this article. We use the Magma [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF] environment, composed of a structured imperative language and a large library of mathematical functions, in particular for group theory and designs. Our source code is freely distributed on GitHub1 . Sec. 6.2 presents our implementation of the block design construction method of Key and Moori [START_REF] Key | Codes, designs and graphs from the Janko groups J 1 and J 2[END_REF]. Sec. 6.3 deals with our intensive testing of this implementation. Sec. 6.2.1 explains this proposition, but the reader unfamiliar with these concepts can admit its content. Sec. 6.2.2 presents our implementation of the computational content of this proposition. A block is a subset of Ω and a block design is a set of blocks. An incidence structure is a triple D = (P, B, I) where P = {1, . . . , n} is a set of elements, B = {1, . . . , b} indexes the blocks in a block design on P and I ⊆ P × B is an incidence relation, which defines the membership of an element to a block. Its dual structure is the incidence structure D t = def (B, P, I t ) where (y, x) ∈ I t if and only if (x, y) ∈ I. The incidence relation allows to associate a block design with an incidence structure, and to define the dual of a block design. A block design is symmetric if it has as many elements as blocks. It is self-dual if it is moreover isomorphic to its dual. A t-(v, k, λ) block design has v blocks of cardinality k, such that each subset of λ blocks has exactly t distinct elements in common.

6.2/ BLOCK DESIGNS CONSTRUCTION

Prop. 2 states that, for any element α of Ω and for any orbit ∆ of the stabilizer of α under the action of G different from the orbit {α}, the block design B = def {∆ g : g ∈ G} contains n blocks and has the regularity of a 1-(n, |∆|, |∆|) self-dual system. The following example illustrates these definitions from a given group. 

6.2.2/ IMPLEMENTATION

Magma has functions to build primitive groups [BCP97, PrimitiveGroups], orbits of a group [BCP97, Orbits], the stabilizer of an element by the action of a group [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF]Stabilizer] and the creation of a block design from an incidence structure [BCP97, Design], but does not propose an implementation of the method of Key and Moori to build block designs from a primitive permutation group.

The article [START_REF] Key | Codes, designs and graphs from the Janko groups J 1 and J 2[END_REF] is completed by Magma code (in its appendix) which does not formalize the computational content of Prop. 2 by a function, but only applies it to two particular cases of primitive groups of permutations. Thus, this code is not structured. Moreover, it does not contain any instruction to validate the property of the constructed systems announced in Prop. 2. Finally, the results returned by this code are mixed with the latter, without being placed in a comment block. All these points make the code quite unconvincing and not very reusable. This is why we propose an implementation of Prop. 2 by two functions, reproduced in the listings 6.1 and 6.2. In order to facilitate their use, they are commented following the Javadoc formatting (since Magma does not offer a tool allowing to generate a documentation2 ). Magma variables are named and the functions are structured in such a way that the code resembles as much as possible to the text of Prop. 2.

The listing 6.1 presents a function that computes the set of orbits ∆ defined in Prop. 2.

It takes as parameter the primitive permutation group G and returns an associative array

Deltas of the orbits ∆ indexed by the corresponding α. For all elements α of the set Ω = {1, . . . , n}, the loop computes the stabilizer group G alpha in the variable Galpha, and its orbits in the variable orbits, then associates to index α the sequence of orbits ∆ different from the singleton {α}. The orbits ∆ are converted into sets thanks to the Magma function IndexedSetToSet [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF] so that the results are in usable form for the creation of some Magma objects useful for the upcoming functions. Listing 6.1: Function computing the orbits ∆ from a primitive permutation group. The listing 6.2 presents a function that builds block designs from a primitive group. It takes as parameter a primitive permutation group G and returns an associative array of block designs indexed by the associated orbit ∆. The orbits ∆ are constructed using the previous function, then each block design is constructed by applying each permutation of the group G to an orbit ∆. The result is associated to the index ∆ in the associative array blocks.

Listing 6.2: Function for computing block designs from a primitive group of permutations. 

[. . . ]

This section tries to validate Prop. 2 and 3 using an exhaustive test, bounded by the number of primitive groups used. We first present three Boolean functions that implement creasing cardinality (number of permutations). The code goes through this sequence and computes all the block designs from the current group thanks to the function presented in listing 6.2. For each block design, the code checks that it respects the conditions of Prop. 2 and 3, with the two interpretations of symmetry for Prop. 3. The results are saved in a file with the number of elements n, the index of the parent group in the sequence, the associated orbit ∆ and the construction time of the tested block design. The calculations were performed on the computer of the Mésocentre de calcul de Franche-Comté, for the 74 first primitive groups, in 574 107 seconds(about 7 days), up to the degree n = 14 included. This is the maximal degree that can be reached within the time limit of the Mesocentre, limited to 8 days. These calculations can be reproduced freely for the first 48 primitive groups, up to degree n = 10, on the online calculator of Magma From the first 74 primitive groups of permutations, this program constructs 926 block designs, that is, all possible block designs for all primitive permutation groups of degree less than or equal to 13 and two groups of degree 14. The program found no counterexamples for Prop. 2 and 3. On the other hand, it did find 398 counterexamples for the erroneous interpretation of Prop. 3. This is a high number for a small difference between the two definitions of symmetry. The smallest counterexample is the symmetric group S 2 with α ∈ {1, 2}.

Example 4: Let S 2 = {Id, (1, 2)} be the symmetric group on Ω = {1, 2} and α = 1. The stabilizer of element 1 in S 2 is the group G 1 = {Id} and the orbits of this group are the sets {1} and {2}. The only possible orbit ∆ is the set {2}. The constructed block design is

B = {∆ Id , ∆ (1,2) } = {{2} Id , {2} (1,2) = {{2}, {1}}.
The block design B is composed of 2 blocks of size 1 and 1 distinct element is found in exactly 1 block, so it is a 1-(2, 1, 1) block design.

It is not a 2-(v, k, λ) block design, which makes it non-symmetric according to Magma.

But it is symmetric according to the definition of Key and Moori, because it has as many elements as blocks.

6.4/ CONCLUSION

We have given an example of the application of programming and intensive testing to the verification of mathematical properties. We have applied bounded exhaustive testing to two propositions for the construction of block designs, according to two different interpretations, which allowed us to validate these propositions and to remove an ambiguity about their possible interpretations. In addition to documenting the code, we also identified a good practice: reducing the distance between the program and the theorem it formalizes reassures the reader on the coherence between the two.

A global perspective would be to establish and disseminate further general principles for the reproducibility and verification of mathematical publications of a computational nature.

A closer goal at the end of this work was to explore more finite geometries construction methods and to link them back to a study of contextuality. This is achieved in the following chapter.

AUTOMATED SYNTHESIS OF CONTEXTUALITY PROOFS FROM SUBSPACES OF SYMPLECTIC POLAR SPACES

This chapter presents a work posted on arXiv [START_REF] De Boutray | Automated synthesis of contextuality proofs from subspaces of symplectic polar spaces[END_REF] and presented at the international conference on Quantum Physics and Logic (QPL) in 2021 [START_REF] De Boutray | Automated detection of contextuality proofs with intermediate numbers of observables[END_REF]. We expect to complete it further and submit it for publication in the coming months.

7.1/ INTRODUCTION

In quantum information theory, many paradoxes of the early years of quantum physics, like superposition or entanglement, have turned on to be considered as resources for the development of quantum technologies when they exhibit non-classical behavior. One of these resources is quantum contextuality. The Kochen-Specker Theorem [START_REF] Kochen | The Problem of Hidden Variables in Quantum Mechanics[END_REF], also proved by Bell [START_REF] Bell | On the Problem of Hidden Variables in Quantum Mechanics[END_REF], is a fundamental result that establishes that no non-contextual hidden variables theories can reproduce the outcomes of quantum mechanics. First demonstrated as a mathematical result, quantum contextuality has since been tested experimentally [ARBC09, KZG + 09] and very recently checked on an online quantum computer [START_REF] Dikme | Measuring the Mermin-Peres magic square using an online quantum computer[END_REF][START_REF] Holweck | Testing Quantum Contextuality of Binary Symplectic Polar Spaces on a Noisy Intermediate Scale Quantum Computer[END_REF]. The importance of contextuality in quantum computation has been shown in [START_REF] Howard | Contextuality supplies the magic for quantum computation[END_REF].

The original proof of the Kochen-Specker Theorem was based on the impossibility to color bases of rays in a 3 dimensional space according to some constraints imposed by the law of quantum physics. This proof involves 117 rays. Many other proofs intending to simplify the initial argument have also been proposed [START_REF] Cabello | Bell-Kochen-Specker theorem: A proof with 18 vectors[END_REF][START_REF] Waegell | Parity Proofs of the Kochen-Specker Theorem Based on the 24 Rays of Peres[END_REF][START_REF] Planat | On small proofs of the Bell-Kochen-Specker theorem for two, three and four qubits[END_REF].
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In the 90's David Mermin [START_REF] David Mermin | Hidden variables and the two theorems of John Bell[END_REF] and Asher Peres [START_REF] Peres | Incompatible results of quantum measurements[END_REF] introduced a different kind of argument to prove quantum contextuality. Their observable-based approach is the one that we consider in this chapter. We restate their argument, also known as the "Mermin-Peres magic square", as an example of contextual geometry, in Sect. 7.2.

The Mermin-Peres magic square and the Mermin pentagram, a three-qubit observablebased proof of the Kochen-Specker Theorem, have been investigated in the past 15 years from the perspective of finite geometry. In [START_REF] Holweck | Contextuality with a Small Number of Observables[END_REF] it was proven by geometric arguments that these two proofs are the "smallest" ones in terms of number of observables and contexts. In [START_REF] Saniga | The Veldkamp Space of Two-Qubits[END_REF] it was shown that the 10 possible Mermin-Peres magic squares were hyperplanes of a point-line geometry known as the doily (see details in Sect. 7.3) and in [START_REF] Planat | Distinguished threequbit 'magicity' via automorphisms of the split Cayley hexagon[END_REF] the number of different Mermin pentagrams was obtained and explained latter in [START_REF] Lévay | Magic three-qubit Veldkamp line: A finite geometric underpinning for form theories of gravity and black hole entropy[END_REF]. Mermin-Peres magic squares have also been considered from the perspectives of graph theory and binary constraint system games [START_REF] Arkhipov | Extending and Characterizing Quantum Magic Games[END_REF][START_REF] Cleve | Characterization of Binary Constraint System Games[END_REF].

In this chapter we address automatic checking of observable-based proofs of the Kochen-Specker Theorem with higher numbers of contexts and observables. In particular we check that the symplectic polar spaces W n of rank n and order 2 are contextual for n = 2, 3, 4, when seen as point-line geometries encoding the commutation relations in the n-qubits Pauli group. We also prove that all hyperbolic and elliptic quadrics, which are subgeometries of W n defined by quadratic equations, are contextual, again for n = 2, 3, 4. Despite the fact that elliptic and hyperbolic quadrics and their connection with multiple qubits Pauli observables have already been studied in the quantum information literature [SGL + 10, LHS17], the contextuality property of those configurations has not been established before. Because those configurations involve a lot of observables and contexts (for instance 135 observables and 1575 contexts for n = 4), we use a computer software to check their contextuality. Looking at observable-based proofs of contextuality with large numbers of observables and contexts can be interesting to build macroscopic state-independent inequalities that violate non-contextual hidden variables inequalities [START_REF] Cabello | Experimentally testable state-independent quantum contextuality[END_REF][START_REF] Holweck | Testing Quantum Contextuality of Binary Symplectic Polar Spaces on a Noisy Intermediate Scale Quantum Computer[END_REF]. Another motivation comes from quantum game theory, as more sophisticated proofs could lead to more complex game scenarios than for instance the Magic square game [START_REF] Brassard | Quantum Pseudo-Telepathy[END_REF].

In Sect. 7.2 we recall the perspective of finite geometry on observable-based proofs of the Kochen-Specker Theorem, and we explain how these proofs translate to the resolution of a linear system over the two-elements field F 2 . In Sect. 7.3 we recall how the symplectic polar space W n of rank n and order 2 encodes the commutation relations in the n-qubits Pauli group, and we explain how contextual configurations of observables live in W n as subgeometries. In Sect. 7.4 we precisely define the subgeometries characterized by quadratic equations, and we provide the contextuality results established by our program for these geometries. Sec. 7.5 is dedicated to concluding remarks. The code mentioned in this article is publicly available at https://quantcert.github.io/Magma-contextuality.

7.2/ CONTEXTUAL GEOMETRIES

We first propose a precise definition of the notion of contextual geometry, based on previous work on the geometrical perspective on observable-based proofs of the Kochen-Specker Theorem. Our definition may not be as general as possible, but it is sufficient for the present work. We illustrate it with the well-known example of the Mermin-Peres magic square. Then we reformulate the contextuality property as inconsistency of a linear system with coefficients in the field of modulo-2 arithmetic. A contextual geometry is a quantum geometry such that there is no (observable) valuation

f : O → {-1, 1} such that ∀c ∈ C, M∈c f (M) = e(c). (7.1) 
Otherwise, the geometry is said to be non-contextual.

7.2.1/ EXAMPLE: MERMIN-PERES MAGIC SQUARE

This section presents the Mermin-Peres square completed with some notions specific to this chapter. The content of this chapter is broadly already presented in Sec. 2.4.1, but is kept here for ease of reading.

We recall that the usual Pauli matrices are 

X =         0 1 1 0         , Y =         0 -i i 0         and Z =         1 0 0 -1         . (7.2) X ⊗ Y Y ⊗ X Z ⊗ Z I ⊗ Y Y ⊗ I Y ⊗ Y X ⊗ I I ⊗ X X ⊗ X
= {X ⊗ I, I ⊗ X, X ⊗ X, I ⊗Y, Y ⊗ I, Y ⊗Y, X ⊗Y, Y ⊗ X, Z ⊗Z} and C = {c 1 , c 2 , c 3 , c 4 , c 5 , c 6 }, with c 1 = {X ⊗ I, I ⊗ X, X ⊗ X}, c 2 = {I ⊗ Y, Y ⊗ I, Y ⊗ Y}, c 3 = {X ⊗ Y, Y ⊗ X, Z ⊗ Z}, c 4 = {X ⊗ I, I ⊗ Y, X ⊗ Y}, c 5 = {I ⊗ X, Y ⊗ I, Y ⊗ X} and c 6 =
{X ⊗ X, Y ⊗Y, Z ⊗Z}. These six sets of observables are contexts, since they contain mutually commuting observables whose product is ±Id. In this example the context valuation e is such that e(c 1 ) = . . . = e(c 5 ) = 1 and e(c 6 ) = -1. In Figure 7.1 the 5 positive contexts c 1 to c 5 whose product of observables is +Id are depicted as simple lines, whereas the negative context c 6 whose product of observables is -Id is depicted as a double line.

Since the eigenvalues of each observable are ±1 and the measurements on each context are compatible (because the observables are mutually commuting) the product of the observed eigenvalues should be equal to the eigenvalue of the product of observables.

In other words when a context is positive (resp. negative), i.e., when the product of its observables is +Id (resp. -Id), then quantum mechanics says that the product of the observed measurements should be +1 (resp. -1). Now, a simple argument shows that there is no non-contextual, i.e. not contextdependent, deterministic function f that can assign an outcome ±1 to each observable and satisfy at the same time the 6 constraints: if one multiplies all together the outcomes of the 6 contexts given by a non-contextual deterministic function, the result will be +1

because each node will show up twice in the product. However, because there is only one negative context in the Meres-Peres magic square, this product should be -1 if all constraints are satisfied.

The observable valuation f in the contextuality property (7.1) formalizes the noncontextual hidden variables hypothesis. If there were to be a deterministic non-contextual theory explaining the outcomes of quantum physics, there would be some processes in Nature, hidden from us, that would allow us to calculate these outcomes. Those hidden processes are generally called hidden variables and here f is a non-contextual function which could depend on those hidden variables: for a set of hidden variables λ, f (M) is a shortcut for f (λ, M).

7.2.2/ CONTEXTUALITY AS A LINEAR PROBLEM

Let F 2 = ({0, 1}, +, ×) be the two-elements field of modulo-2 arithmetic. Let (O, C) be a quantum geometry with a set O = {M 1 , . . . , M p } of p = |O| observables/points and a set

C = {c 1 , . . . , c l } of l = |C| contexts/lines. Its incidence matrix A ∈ F l×p 2 is defined by A i, j = 1 if the i-th context c i contains the j-th observable M j . Otherwise, A i, j = 0. Its valuation vector E ∈ F l 2 is defined by E i = 0 if e(c i ) = 1 and E i = 1 if e(c i ) = -1
, where e is the context valuation of (O, C).

With these notations, the quantum geometry (O, C) is contextual iff the linear system

Ax = E (7.3) 
has no solution in F p 2 . The matrix A being of size l × p with l ≤ p, Eq. 7.3 can be efficiently solved with a complexity O(p 3 ), e.g. by Gaussian elimination.

Finally note that A is built from the incidence structure of the quantum geometry (O, C) while the vector E comes from the signs of the contexts. In other words the left-hand side of Eq. 7.3 only depends on the geometric structure -that will be revisited in the next section -while the left-hand side depends on the outcomes predicted by quantum physics.

7.3/ CONTEXTUAL CONFIGURATIONS OF THE SYMPLECTIC POLAR SPACE

We aim to automate the generation of quantum geometries and the detection of their contextuality, with observables restricted to the elements of the n-qubits Pauli group P n , i.e. the group of the n-fold tensor products of Pauli matrices. We study them through their encoding as vectors from a vector space over the two-elements field F 2 . This encoding does not preserve all information, in particular we loose the commutation relations and the signs of the contexts. At the geometrical level, the commutation relation will be recovered by introducing a nondegenerate symplectic form (Sect. 7.3.1). The signs of the contexts will be determined as detailed in Sect. 7.3.2.

7.3.1/ THE SYMPLECTIC POLAR SPACE W n

Let V n = F 2n 2 be the vector space of dimension 2n over the two-elements field F 2 . Let denote the (generalized) tensor product. An element of the n-qubits Pauli group P n is an operator O which can be factorized as O = s i∈[1..n] Z a i X b i with a i , b i ∈ F 2 and a phase s ∈ {±1, ±i}. We denote by C n the center of P n , i.e. C n = {±I, ±iI}. The surjective map π :

P n → V n defined by π(s i∈[1..n] Z a i X b i ) = (a 1 , b 1 , . . . , a n , b n ) factors to the isomorphism π : P n /C n → V n such that π(O) = (a 1 , b 1 , . . . , a n , b n ), where O is the class of O in P n /C n [Hol21, Sect. 2].
The map π has several crucial aspects: its images are more elementary than the original objects (binary vectors replace Hermitian matrices), and π preserves some key properties about P n . As defined, π already transforms the matrix product into the sum in V n . In order to encode commutation relation, we define the inner product (also called symplectic form) on V n as ⟨x|y⟩ = xJy ⊺ , with

J =            0 1 1 0 . . . 0 1 1 0            .
One can also define the inner product by developing the previous formula: for two vectors

x = (a 1 , b 1 , . . . , a n , b n ) and y = (a ′ 1 , b ′ 1 , . . . , a ′ n , b ′ n ), their inner product is defined as ⟨x|y⟩ = n i=1 a i b ′ i + a ′ i b i .
Using this inner product, we have

π(O) π(O ′ ) = 0 iff the operators in O and O ′ com- mute [Hol21, Sect. 2].
Since the trivial n-qubits Pauli operator I does not correspond to a measurement, we eliminate its class I from P n /C n and the corresponding neutral element π(I) = (0, . . . , 0) from V n . This restriction of π is a bijection between the set of non trivial n-qubits Pauli observables and the projective space PG(2n -1, 2), whose points are nonzero vectors in

V n .
We can now define a counterpart to a quantum geometry in PG(2n -1, 2). A quantum configuration is a pair (P, L) where P is a finite set of points of PG(2n -1, 2) and L is a finite set of subsets of P, such that S.1 any two vectors V and W in the same element of L are commuting, i.e. ⟨V|W⟩ = 0; S.2 the sum of all vectors in each element of L is (0, . . . , 0).

One can see that this definition of a quantum configuration corresponds through π to that of a quantum geometry given in Sect. A totally isotropic subspace of PG(2n-1, 2) is a linear subspace S of PG(2n-1, 2) such that ⟨a|b⟩ = 0 for any a, b ∈ S . The name comes from the quadratic forms which are said to be isotropic when they are annihilated on a non null point. Thus, Condition S.1 rewrites as "all elements of L are totally isotropic subspaces". The space of totally isotropic subspaces of PG(2n-1, 2) for ⟨|⟩ is called the symplectic polar space of rank n and order 2 and is denoted by W(2n -1, 2) (abbreviated as W n ). The symplectic space W n is a set of subspaces of different dimensions: the most elementary ones are the points of W n , they are the totally isotropic subspaces of dimension 0. In all rigor they are the singletons {v}, for all points v ∈ PG(2n -1, 2), but we identify them with their element v. They do not satisfy Condition S. 2, whereas all other totally isotropic subspaces (of positive dimension) satisfy it.

In this work, we only consider the pairs (P, L) such that P is a set of points in W n and L is a subset of W n composed of totally isotropic subspaces with the same positive dimension. By construction, such a (P, L) satisfies Conditions S.1 and S.2, so it is a quantum configuration. (0, 0, 1, 1)

(1, 1, 1, 1)

(1, 1, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 1, 1, 0) (0, 1, 0, 1)

(1, 0, 1, 1)

(1, 1, 1, 0)

(1, 0, 1, 0) (0, 1, 1, 1)

(1, 1, 0, 1) (1, 0, 0, 0) (0, 0, 0, 1)

(1, 0, 0, 1) Notice an importance difference compared to traditional geometry: two points are not necessarily aligned in finite geometry. For instance, the points (0, 1, 1, 1) and (1, 0, 1, 1) are not on the same line since ⟨(0, 1, 1, 1)|(1, 0, 1, 1)⟩ = 1 0.

In W 2 , the pair (P, L) may have the following content: P = {(0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1),

(1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1),

(1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 0)} and L = {{(0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1)}, {(1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)}, {(1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 0)}, {(0, 0, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)}, {(0, 1, 0, 0), (0, 0, 1, 1), (0, 1, 1, 1)}, {(0, 1, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0)}} This is in fact the Mermin-Peres square, presented in Fig. defined by A i, j = 1 if the i-th element of L contains the j-th point in P. However, it provides no context/line valuation e, on which its contextuality however depends. A context valuation can be derived as follows from an interpretation of points in W n as Pauli operators, in other words from a right inverse ρ of the map π (π • ρ = id). Among all these inverses, we consider here the map ρ :

PG(2n -1, 2) → P n defined by ρ (a 1 , b 1 , . . . , a n , b n ) = k O k with O k = (-i) a k b k Z a k X b k .

One can develop this expression as

O k =                          I if (a k , b k ) = (0, 0) X if (a k , b k ) = (0, 1) Y if (a k , b k ) = (1, 1) Z if (a k , b k ) = (1, 0) .
The corresponding context valuation is the map e ρ : L → {-1, 1} such that p∈l ρ(p) = e ρ (l) Id for all l ∈ L. It results from the commutation relations on each context line that the values of e ρ (l) can only be ±1. The corresponding valuation vector E ρ is defined from e ρ as in Sect. 7.2.2. Finally, a contextual configuration is a triple (P, L, ρ) composed of a quantum configuration (P, L) and an interpretation ρ such that the linear system Ax = E ρ has no solution in F p 2 (in this definition, A is the incidence matrix of (P, L)). The product of all observables on each line is I (marked as a single black line) or -I (marked as a doubled red line). It determines the values 1 and -1 of e ρ . With these elements, it is well-known that the Doily is a contextual configuration (see e.g. [START_REF] Cabello | Experimentally testable state-independent quantum contextuality[END_REF]). 

I ⊗ Y Y ⊗ Y Y ⊗ I X ⊗ I I ⊗ Z X ⊗ Z X ⊗ X Z ⊗ Y Y ⊗ Z Z ⊗ Z X ⊗ Y Y ⊗ X Z ⊗ I I ⊗ X Z ⊗ X

7.4/ CONTEXTUAL SUBSPACES OF SYMPLECTIC POLAR SPACES

In order to automate the detection of a large number of contextual configurations, we first fix some programmable criteria to characterize the candidate geometries. We first define these geometries. Then we sum up the results obtained.

A line of W n is a totally isotropic subspace of W n of dimension 1. An element of W n of maximal dimension (n -1) is called a generator. A quadric of W n is the set of points that annihilate a given quadratic form. The most elementary quadratic form that we could define is Q 0 (x) = x 1 x 2 + . . . + x 2n-1 x 2n if x = (x 1 , x 2 , . . . , x 2n ). A form is an homogeneous This remark motivates our choice to study the contextuality of all types of hyperplanes in

I ⊗ Y Y ⊗ Y Y ⊗ I X ⊗ I I ⊗ Z X ⊗ Z X ⊗ X Z ⊗ Y Y ⊗ Z Z ⊗ Z X ⊗ Y Y ⊗ X Z ⊗ I I ⊗ X Z ⊗ X
W n .
Given these definitions, we consider the following families of geometries:

G.1 all points and all lines of W n ;

G.2 all points and all generators of W n ;

G.3 all points and all lines in one hyperbolic quadric in W n , for all hyperbolic quadrics in W n ;

G.4 all points and all lines in one elliptic quadric in W n , for all elliptic quadrics in W n ;

G.5 all points and all lines in one perpset in W n , for all perpsets of a given point of W n .

Example 8: For W 2 , the single element of the family G.1 is represented by the Doily (Fig. 7.2): the set of points P is the set of points of W 2 and the set of lines L is the set of lines represented in the Doily. There is always a single geometry in this family.

In the 2 qubits case, the lines are the same as the generators (the lines are the subspaces of maximal dimension). This is not the case for n > 2 though. This means that the single element of the family G.2 is also represented by the Doily in the two qubits case.

In the 2 qubits case, the Mermin-Peres square is an example of hyperbolic quadric, this means that Fig. 7.4 is an example of element of the family G.3 (this particular quadric is generated by the point X ⊗ X).

Until now, I have not shown any example of elliptic quadric. To do so, let's take a point that does not annihilate Q 0 , for instance p = Z ⊗ X. The set of points that annihilate Q p is

P = {X ⊗ I, Y ⊗ X, Y ⊗ Z, Z ⊗ I, Y ⊗ Y}.
The corresponding element of the family G.4 is the geometry (P, L) where P is given above and L is the set of all lines such as each line is both a line of W n and a subset of P. This set L is always empty for 2 qubits, which explains the N/A in table 7.2.

Finally, the family G.5 is the set of all perpsets of W n , which means that we can exhibit an to the characteristics of each geometry, to build an incidence matrix. For G.2 the totally isotropic subspaces of dimension (n -1) and the incidence matrix are built on the fly. For all these geometries, we compute their line valuation, thanks to an implementation of ρ.

Then, contextuality is detected by a call to the Magma function IsConsistent which determines whether a linear system has a solution. The code ran on the supercomputer of the Mésocentre de calcul de Franche-Comté.

For 2 qubits, the computation takes less than 0.1s, for 3 qubits the computation takes around 5s. But for 4 qubits, the computation already takes around 10min, and for 5 qubits, the computation takes around 24h.

These durations are consistent with the algorithmic complexity of the functions computing the families of geometries, presented in Tab. 7.1. These complexities are calculated as follows: the symplectic space contains 2 2n points, so iterating over it takes O(2 2n ) steps.

Each line contains three points, the third one being the sum of the other two, so the complexity to generate all lines (for G.1) is O 2 2n × 2 2n = O 2 4n . This is consistent with the number (4 n -1)(4 n-1 -1)/3 of lines in the symplectic space. To compute the set of all quadrics, we iterate over all the points. For each point we generate its quadratic form and we iterate over all the points to find those who annihilate this quadratic form. These points are the points of the quadric. The complexity of these two operations is negligible compared to that of the next one: iteration over all the lines of the symplectic space, a line being selected if it is a subset of the points of the quadric. This yields a complexity Table 7.1: Algorithmic complexity for each geometry family Table 7.2 presents the contextuality results in a table. Each entry yields the contextuality as well as the number of elements in the family. Note that the elliptic quadrics for n = 2, also known as ovoids, do not contain any line. Therefore there are no contexts in this case and that is why we indicate here "N/A". We also could have skipped the computation of the generators for n = 2, because their dimension is n -1 = 1, so they are lines, already computed for (G.1). We kept it as it is reassuring to see that we indeed obtain the same result for both families.

The cells in bold font represent the results that were not previously known. In each cell, "C" means that the geometries are contextual and "N" means they are not.

The number of objects in each class was previously known, [START_REF] Vrana | The Veldkamp space of multiple qubits[END_REF] gives a good overview of these numbers, which we recall and complete in Tab. 7.3 for convenience.

Remark 8:

The contextuality of the configurations (G.1) has been established in [START_REF] Cabello | Experimentally testable state-independent quantum contextuality[END_REF].

We notice that the contextual nature of a given configuration remains the same among all From the preceding paragraph it is obvious that revealing finer traits of the structure of binary symplectic polar spaces of small rank can be vital for further physical applications of these spaces. Having this in view, we will focus on sets of W(2n -3, 2)'s located in W(2n -1, 2), for n = 2, 3, 4, providing their comprehensive observable-based taxonomy.

Key parameters of our classification of such subspaces of W(2n -1, 2) will be: the number of negative lines they contain (which is also an important parameter when it comes to quantum contextuality), the distribution of different types of observables they feature, the character of the geometric hyperplane a subspace of a given type shares with the distinguished (non-singular) quadric of W(2n -1, 2) and, in the case of refined 'decomposition' of three-qubit W(3, 2)'s, also the very structure of their Veldkamp lines.

The chapter is organized as follows. Sec. 8.2 provides the reader with the necessary finite-geometric background and notation. Sec. 8.3 deals with W(3, 2) and the hierarchy of its triads, Sec. 8.4 -the central subsection of the chapter -addresses the threequbit W(5, 2) and its doilies and Sec. 8.5 classifies W(5, 2)'s living in the four-qubit W(7, 2).

Finally, Sec. 8.6 is devoted to concluding remarks.

8.2/ FINITE GEOMETRY BACKGROUND

Given a d-dimensional projective space PG(d, 2) over F 2 , a polar space P in this projective space consists of the projective subspaces that are totally isotropic/singular with respect to a given non-singular bilinear form; PG(d, 2) is called the ambient projective space of P. A projective subspace of maximal dimension in P is called a generator; all generators have the same (projective) dimension r -1. One calls r the rank of the polar space.

Polar spaces of relevance for us are of three types (see, for example, [START_REF] Hirschfeld | General Galois Geometries[END_REF][START_REF] Peter | Projective and Polar Spaces[END_REF]): symplectic, hyperbolic and elliptic. Recall (Chap. 7) the symplectic polar space W(2n -1, 2), for n ≥ 1, consists of all the points of PG(2n -1, 2), {(x 1 , x 2 , . . . , x 2n ) : x j ∈ {0, 1}, j ∈ {1, 2, . . . , 2n}}\{(0, . . . , 0)}, together with the totally isotropic subspaces with respect to the standard symplectic form

σ(x, y) = x 1 y n+1 -x n+1 y 1 + x 2 y n+2 -x n+2 y 2 + • • • + x n y 2n -x 2n y n . (8.1)
This space features

|W| p = 4 n -1 (8.2)
points and

|W| g = (2 + 1)(2 2 + 1) • • • (2 n + 1) (8.3) 
generators. The standard hyperbolic orthogonal polar space (sometimes referred simply as hyperbolic space) Q + (2n -1, 2), for n ≥ 1, is formed by all the subspaces of PG(2n -1, 2)

that lie on a given non-singular hyperbolic quadric, with the standard equation

x 1 x n+1 + x 2 x n+2 . . . + x n x 2n = 0. (8.4) 
The standard hyperbolic space as well as each hyperbolic space obtained by symplectic transformation (variable change of the coordinates maintaining the standard equation) of the standard hyperbolic space contains

|Q + | p = (2 n-1 + 1)(2 n -1) (8.5) 
points and there are

|W| Q + = |Q + | p + 1 = (2 n-1 + 1)(2 n -1) + 1 (8.6)
copies of them in W(2n -1, 2). Finally, the standard elliptic orthogonal polar space Q -(2n -1, 2), for n ≥ 2, comprises all points and subspaces of PG(2n -1, 2) satisfying the standard equation

(x 1 x n+1 + x 2 1 + x 2 n+1 ) + x 2 x n+2 + • • • + x n x 2n = 0, (8.7) 
XY + X 2 + Y 2 being the only irreducible polynomial of degree 2 over F 2 . The standard elliptic space as well as each elliptic space obtained by symplectic transformation (variable change of the coordinates maintaining the standard equation) of the standard elliptic space contains

|Q -| p = (2 n-1 -1)(2 n + 1) (8.8)
points and there are

|W| Q -= |Q -| p + 1 = (2 n-1 -1)(2 n + 1) + 1 (8.9)
copies of them in W(2n -1, 2). For both symplectic and hyperbolic polar spaces r = n, whereas for the elliptic one r = n -1. The smallest non-trivial symplectic polar space is the n = 2 one, W(3, 2), often referred to as the doily. It features 15 points (see Eq. 8.2)

and the same number of lines (that are also its generators, see Eq. 8.3), with three points per line and three lines through a point; it is a self-dual 15 3 -configuration and the only one out of 245 342 such configurations that is triangle-free, being, in fact, isomorphic to the generalized quadrangle of order two (GQ(2, 2)). This symplectic polar space features ten The n-qubit observables we will be dealing with belong to the set 

Q + (3,
S n = {G 1 ⊗ G 2 ⊗ • • • ⊗ G n : G j ∈ {I
context, G 1 ⊗G 2 ⊗ • • • ⊗G n will be short-handed to G 1 G 2 • • • G n .
For a particular value of n, the 4 n -1 elements of S n can be bijectively identified with the same number of points of W(2n -1, 2) in such a way that the images of two commuting elements lie on the same line of this polar space, and generators of W(2n-1, 2) correspond to maximal sets of mutually commuting elements. If we take the symplectic form defined by Eq. 8.1, then this bijection acquires the form

G j ↔ (x j , x j+n ), j ∈ {1, 2, . . . , n}, (8.11) 
assuming that I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), and Z ↔ (1, 0). (8.12)

Employing the above-introduced bijection (for more details see, e. g., [START_REF] Lévay | Mermin pentagrams arising from Veldkamp lines for three qubits[END_REF]), it can be shown that given an observable O, the set of symmetric observables commuting with O together with the set of skew-symmetric observables not commuting with O will lie on a certain non-degenerate quadric of W(2n-1, 2), this quadric being hyperbolic (resp. elliptic)

if O is symmetric (resp. skew-symmetric). We can express this important property by making, whenever appropriate, this associated observable explicit in a subscript, Q ± (O) (2n-1, 2), note that there exists a particular hyperbolic quadric associated with I:

Q + (I) (2n -1, 2) := {(x 1 , x 2 , . . . , x 2n ) ∈ W(2n -1, 2) | x 1 x n+1 + x 2 x n+2 + . . . + x n x 2n = 0}. (8.13)
This definition is a qualitative one, but it can also be fully formalized, as it was in Chap.

7. Another way to describe Q ± (O) (2n -1, 2) can be given as such: for a single qubit,

Q (O) (x 1 , x 2 ) = x 1 x 2 + ix 2 1 + jx 2 2
where O → (i, j) is given in Eq. 8.12. With this, we define for any operator O

1 O 2 . . . O n Q ± (O 1 O 2 ...O n ) (2n -1, 2) = {(x 1 , x 2 , . . . , x 2n ) ∈ W(2n -1, 2) | Q (O 1 ) (x 1 , x n+1 )+ Q (O 2 ) (x 2 , x n+2 ) + . . . + Q (O n ) (x n , x 2n ) = 0}.
Given a point-line incidence geometry Γ(P, L), a geometric hyperplane of Γ(P, L) is a subset of its point set such that a line of the geometry is either fully contained in the subset or has with it just a single point in common. The Veldkamp space V(Γ) of Γ(P, L) is the space in which [BC13]:

(i) a point is a geometric hyperplane of Γ and (ii) a line is the collection, denoted H ′ H ′′ , of all geometric hyperplanes H of Γ such that

H ′ ∩ H ′′ = H ′ ∩ H = H ′′ ∩ H or H = H ′ , H ′′
, where H ′ and H ′′ are distinct points of V(Γ).

For a Γ(P, L) with three points on a line, all Veldkamp lines are of the form {H ′ , H ′′ , H ′ ∆H ′′ } where H ′ ∆H ′′ is the complement of symmetric difference of H ′ and H ′′ , i.e. they form a vector space over F 2 . As demonstrated in [START_REF] Vrana | The Veldkamp space of multiple qubits[END_REF], V(W(2n -1, 2)) PG(2n, 2). Its points are both hyperbolic and elliptic quadrics of W(2n -1, 2), as well as its perpsets. Given a point x of W(2n -1, 2), the perpset Q (x) (2n -1, 2) of x consists of all the points collinear with it,

Q (x) (2n -1, 2) := {y ∈ W(2n -1, 2) | σ(x, y) = 0};
the point x being referred to as the nucleus of Q (x) (2n -1, 2).

Example 9: [START_REF] Holweck | On the Projective Geometry of Entanglement and Contextuality[END_REF] Let us take the Veldkamp space of the Mermin-Peres square as an example. First of all, some of the hyperplanes are highlighted in red in Fig. 8.1. With this, an example of line of the corresponding Veldkamp space is shown in Fig. 8.2.

As stated previously, this set is indeed of the shape {H ′ , H ′′ , H ′ ∆H ′′ }.

We shall briefly recall basic properties of the Veldkamp space of the doily, V(W(3, 2)) ≃ PG(4, 2), whose in-depth description can be found in [START_REF] Saniga | The Veldkamp Space of Two-Qubits[END_REF]. The 31 points of

V(W(3, 2 
)) comprise 15 perpsets, ten grids and six ovoids -as also illustrated in Fig. In what follows we will mainly be focused on W(2N -3, 2)'s that are located in W(2n -1, 2).

These are, in general, of two different kinds [START_REF] Vrana | The Veldkamp space of multiple qubits[END_REF]. A W(2N -3, 2) of the first kind, to be called linear, is isomorphic to the intersection of two perpsets with non-collinear nuclei and their number in W(2n -1, 2) is

|W| W l = 1 3 4 n-1 (4 n -1). ( 8 

.14)

A W(2n -3, 2) of the second kind, to be called quadratic, is isomorphic to the intersection of a hyperbolic quadric and an elliptic quadric and W(2n -1, 2) features The 27 observables of type B lie on an elliptic quadric of W(5, 2), which can be defined as follows:

|W| W q = 4 n-1 (4 n -1) (8 
Q - (YYY) (5, 2) := x 2 1 + x 1 x 4 + x 2 4 + x 2 2 + x 2 x 5 + x 2 5 + x 2 3 + x 3 x 6 + x 2 6 = 0.
Here, we took a coordinate basis of W(5, 2) in which the symplectic form σ(x, y) is given by Eq. 8.1, σ(x, y) = (x 1 y 4x 4 y 1 ) + (x 2 y 5x 5 y 2 ) + (x 3 y 6x 6 y 3 ), so that the correspondence between the 63 three-qubit observables (see Eq. 8.10)

S 3 = {G 1 ⊗ G 2 ⊗ G 3 : G j ∈ {I, X, Y, Z}, j ∈ {1, 2, 3}}\I 3
and the 63 points of W(5, 2) is of the form (see Eq. 8.11)

G j ↔ (x j , x j+3 ), j ∈ {1, 2, 3},
taking also into account Eq. 8.12.

This special quadric Q - (YYY) (5,2), like any non-degenerate quadric, is a geometric hyperplane of W(5, 2). As a doily is also a subgeometry of W(5, 2), it either lies fully in Q - (YYY) (5, 2) (Type 8), or shares with Q - (YYY) (5, 2) a set of points that form a geometric hyperplane; an ovoid (Types 3, 4, 6 and 11), a perpset (Types 1, 5, 9 and 12) and a grid (Types 2, 7, 10 and 13). One also observes that no quadratic doily shares a grid with Q - (YYY) (5,2).

In addition to the distinguished elliptic quadric, there are also three distinguished hyperbolic quadrics in W(5, 2), namely: the quadric whose 35 observables feature either two X ′ s or no X, 

Q + (ZZZ) (5, 2) := x 2 4 + x 2 5 + x 2 6 + x 1 x 4 + x 2 x 5 + x 3 x 6 = 0,
Q + (XXX) (5, 2) := x 2 1 + x 2 2 + x 2 3 + x 1 x 4 + x 2 x 5 + x 3 x 6 = 0.
Accordingly, there are three distinguished doilies of Type 8, namely the ones the quadric and all doilies of type 9A can be regarded as 'genuine' three-qubit guys, 9 doilies of type 8 that originate from grids (henceforth referred to as Type 8 ′ ) and all doilies of types 9B to 13 can be viewed as 'built from the two-qubit guy'; with Type 13 doilies being even more two-qubit-like.

I X X I Y Y X X X X Y I Z Z Y X Y Y Y Y X X X Z Z Z Z I I I Y X Z Y Y Y Z X X Z
This stratification of three-qubit doilies can also be spotted in a different way. Take a representative doily of a particular type, for example that of Type 3 depicted in We see that the last three observables are mutually anticommuting, whereas the first observable commutes with each of them. This property is found to hold for each of 5 3 = 10 triads contained in an ovoid. Hence, the top doily of Fig. 8.7 has indeed a different footing than the remaining three. A similar 3 + 1 split up is also observed in any quadruple of doilies having a grid in common because a point of the doily is also collinear with three points of a grid that form a unicentric triad. However, when the shared hyperplane is a perpset, one gets a different, namely 2 + 2 split, because in this case the corresponding triple of points forms a tricentric triad.

1 --- 2 - --- 2 - 3 ---- --- 3 --1 1 1 - --- 4 - 1 2 --- --- 5 1 -- 2 -- --- 6 1 -1 1 -- --- 7 - 3 ---- --- 8 3 ----- --- 9A 1 -- 2 -- --- 8 ′ --2 --- -1 - 9B --2 --1 --- 10 --2 --- 1 -- 11 --2 --- 1 -- 12 --2 --- -1 - 13 --2 --- --1 Table 8.
Among the 13 different types of three-qubit doilies, there is one type, namely Type 3, which has two remarkable properties. The first property is that there is one point (to be called a deep point) such that all three lines passing through it are negative. Let's take a representative doily of such a type shown in Fig. 8.5, 1st row right. The deep point is ZIZ. Then one sees that there are just two points (to be called zero-points) such that neither of them lies on a negative line; one is IIY and the other is XIZ. These two points and the deep point form in the doily a tricentric triad, hence a copy of 'linear' and 81 ones of type D lie on a particular hyperbolic quadric in W(7, 2), to be referred to as the distinguished hyperbolic quadric Q + (YYYY) (7,2), which is also a geometric hyperplane in the latter space. A W(5, 2) either lies fully in this quadric (Types 2 and 21) or shares with it a set of points that forms a geometric hyperplane. Hence, the sum of O B and O D in each row of Tab. 8.5 must be one of the following numbers: 27 (when the hyperplane of W(5, 2) is an elliptic quadric), 31 (a perpset) and/or 35 (a hyperbolic quadric); for the reader's convenience, the type of such geometric hyperplane is explicitly listed in column 9 of Tab. 8.5. One sees that no linear W(5, 2) shares with Q + (YYYY) (7, 2) a perpset and no quadratic W(5, 2) cuts this distinguished quadric in an elliptic quadric. Comparing Tab. 8.5 with Tab. 8.3 one readily discerns that whereas W(3, 2)'s in W(5, 2) are endowed with both an even and odd number of negative lines, for W(5, 2)'s in W (7,2) this number is always even; in addition, the difference in C -for any two distinct types of four-qubit W(5, 2)'s is a multiple of four.
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Let us have a closer look at W(5, 2)'s featuring 90 (i.e., the smallest possible number of) negative lines. We can easily show that almost all of them originate from the three-qubit W(5, 2). .

Comparing with Tab. 8.5 we see that this is a four-qubit W(5, 2) of Type 28.

As the second example we shall take the case when the geometric hyperplane of W(5, 2)

is an elliptic quadric generated by an antisymmetric observable of type B, say Y XI. This quadric, Q - (Y XI) (5,2), consists of all symmetric observables that commute with Y XI and all antisymmetric observables that anticommute with Y XI. In particular, it contains 4 

8.6/ CONCLUSION

We have introduced a remarkable observable-based taxonomy of subspaces of W(2n -1, 2), 2 ≤ n ≤ 4, whose rank is just one less than that of the ambient space. Alongside the distribution of various types of observables, an important parameter of the classification was the number of negative lines contained in a subspace. As already mentioned in the introduction, this latter parameter is essential in checking whether a given finite geometric configuration is contextual or not. For example, our preliminary analysis shows that all three-qubit and four-qubit doilies are, like their two-qubit sibling, contextual. As a future work we plan to address this question in more detail, employing also the degree of contextuality, for a variety of other symplectic subspaces. However, when approaching this way subspaces of higher rank, it would be natural to include as parameters the number of negative linear subspaces of every viable dimension from 1 to n -2, i.e. consider negative lines, negative planes, . . . , negative generators; so, already in the case of n = 4 we can add one more parameter, the number of negative planes a four-qubit W(5, 2) is endowed with, to get an interesting refinement of our Tab. 8.5. As the three-qubit W(5, 2) features 54

negative planes [START_REF] Saniga | Taxonomy of Three-Qubit Mermin Pentagrams[END_REF], each composite four-qubit W(5, 2) must have the same number of negative planes; in connection with this fact it would be interesting to check whether also each irreducible four-qubit W(5, 2) having 90 lines (Type 23) enjoys this property.

Another interesting extension/variation of our taxonomy would be to take into account the number of negative lines passing through a point of the subspace. Let us call this number the order of a point and for each subspace W(2s -1, 2) define the following string of parameters [p 0 , p 1 , p 2 , . . . , p 2 s -1 ], where p k , 0 ≤ k ≤ 2 s -1, stands for the number of points of order k the subspace contains. Applying this to three-qubit doilies (s = 2), we find the following five patterns (as readily discerned from Fig. 8. A slightly different possibility of employing our strategy is to analyse other distinguished subgeometries of W(2n -1, 2) like, for example, the split Cayley hexagon of order two [START_REF] Polster | Generalized Flatland[END_REF]. This generalized polygon can be embedded into W(5, 2), and in two different ways at that [START_REF] Coolsaet | The smallest split Cayley hexagon has two symplectic embeddings[END_REF], called classical and skew. We have already discerned two distinct kinds of the former, and as many as 13 different types of the latter. Yet, a full understanding of the case requires a more rigorous computer-assisted approach and will, therefore, be treated in a future work.

a warm-up in finite geometries generation with Magma, followed up by the generation of finite geometries said to be quantum for their link with Mermin-Peres geometries. These geometries were thoroughly studied in Chap. 7 and 8. We first worked on families of geometries, assessing if their members were contextual geometries or not (Chap. 7, [START_REF] De Boutray | Automated detection of contextuality proofs with intermediate numbers of observables[END_REF][START_REF] De Boutray | Automated synthesis of contextuality proofs from subspaces of symplectic polar spaces[END_REF]). We found out that, for n ∈ [2..5] qubits, the lines of W(2n -1, 2)

-the symplectic space of n qubits, a space encoding the commutation relations in the nqubits Pauli group-, their restrictions to hyperbolic quadrics and their restrictions to elliptic quadrics are all contextual, but W(2n -1, 2)'s generators and W(2n -1, 2)'s lines restricted to the perpsets are never contextual. Then, we studied the structure of W(2n -1, 2), using a newly defined signature for the geometries, being made up of the number of negative lines and the number of observables with i identities with i ∈ [0..n -1] for each geometry (Chap. 8, [START_REF] Saniga | Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank[END_REF]). This study is complemented by correspondences between W(2n -1, 2), W(2(n -1) -1, 2) and W(2(n -2) -1, 2) increasing geometries of a given number of qubits with strategically placed operators to obtain geometries of the size above, and is specifically performed for geometries using 2 to 5 qubits observables. These studies aim at better understanding contextuality in order to find remarkable properties that could be used for specifying contextuality in quantum programs, but they are only a first step on a long road.

PERSPECTIVES

Many of the tackled subjects are begging for a follow-up. In particular, Chap. 4 -evaluation of entanglement and non-locality in Grover's algorithm and the QFT with Mermin's polynomials -led us to a work in progress on formalizing Mermin's polynomials and the QFT in the proof assistant Coq 1 . An example of the tasks from this work is given in Appendix D where I show some Coq code proving that Mermin's polynomials are Hermitian operators. Once finished, this work could be extended by a formal proof of the growing-then-falling aspect of entanglement during Grover's algorithm. The QFT seems harder to study on that regard because of its irregular behavior, but Grover's algorithm is a good candidate. Furthermore, since our study, Grover's algorithm was implemented and its correctness as of finding the searched element was proven in SQIRE (a Coq library for quantum circuits formalization), which means we could heavily rely on this work, and focus on Mermin's polynomials implementation. This could also be tackled on another formal verification software, such as Why3 where automation may help speed up the process. In particular, a recent Why3 library called Qbricks [CBB + 21] would fit in very well in this project.

We also started to formalize quantum geometries in Why3, with the aim of proving general properties for all numbers of qubits. This work is also in progress, and should be finished.

Additionally, the space containing the geometries has a very rich structure, that could be further explored. We keep in mind that, even though we studied quantum contextuality through these geometries, contextuality can also be highlighted in a more general way by protocols, like those used in quantum games. This means that programs could be studied under this aspect, allowing us eventually to specify them using contextuality. In this case, studying the link between our approach of contextuality and protocols involving contextuality may allow us to use our work in quantum geometries for quantum programs specification.

Furthermore, our work gives rise to several conjectures, that we validated only for small numbers n of qubits. This could be proven for all n, but if close enough of a formal representation of the problem, this is also a place where formal proof softwares would

shine. An example of such conjecture is the fact that all W(2n-1, 2)'s lines and its quadrics form contextual geometries for all numbers n of qubits.

Visually,

U f =                C 0 0 . . . 0 C 2 n -1               
, and we can summarize the formula as such: U f is a null matrix except on the diagonal blocks where it can be either I or X depending if f (x) is equal to 0 or 1 respectively.

Yet another way to write this is to see that U f = i∈I e i ⊗ C i with e i = |i⟩ ⟨i|.

A.2/ PROOF ∀(x, y) ∈ I × B, |x⟩ ⊗ |y⟩ is the vector with 1 being its single entry at position 2x + y. This implies that, given that U f |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |y ⊕ f (x)⟩, (u i,2x+y ) i∈I ′ is such a vector where the 1 is in position 2x + (y ⊕ f (x)).

We thus have u 2x+(y⊕ f (x)),2x+y = 1 and ∀i ∈ I -{2x + (y ⊕ f (x))}, u i,2x+y = 0

From this, we deduce that there is only one '1' per column: on the 2x + y th column, it is at the 2x + (y ⊕ f (x)) th line. Which yields the following result:

f (x) = 0 =⇒          U f (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0⟩ U f (|x⟩ ⊗ |1⟩) = |x⟩ ⊗ |1⟩ =⇒          u 2x,2x = 1 u 2x+1,2x+1 = 1 =⇒ C x = I and f (x) = 1 =⇒          U f (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |1⟩) U f (|x⟩ ⊗ |1⟩) = |x⟩ ⊗ |0⟩) =⇒          u 2x+1,2x = 1 u 2x,2x+1 = 1 =⇒ C x = X A.3/ PROOF 2
A more calculation oriented proof is given below, using the Kronecker operator (δ of the quadrilinear form A = i, j,k,l∈{0,1} a i, j,k,l x i y j z k t l with respect to the variables y and z.

This quadratic form with variables x and t can be interpreted as a bilinear form on the three-dimensional space Sym 2 (C 2 ), i.e., there is a 3 × 3 matrix B xt satisfying

b xt = [x 2 0 , x 0 x 1 , x 2 1 ] B xt               t 2 0 t 0 t 1 t 2 1              
.

Then D = det(B xt ) is an invariant of degree 6.
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Although current quantum computers are limited to the use of a few quantum bits, the foundations of quantum programing have been growing over the last 20 years. These foundations have been theorized as early as in the 80's but the complexity of their implementation caused these leads to be out of reach until very recently. In this context, the objective of this thesis is to contribute to the adaptation of the methods of formal specification and deductive verification of classical programs to quantum programs. I thus present my contributions to the study of quantum properties with the end goal of formalizing them. I study in particular quantum entanglement and quantum contextuality. These properties allow to classify quantum states and protocols, and in particular to differentiate them from classical ones.

My study of entanglement is based more specifically on the evolution of entanglement during two quantum algorithms: the Grover algorithm and the Quantum Fourier Transform. To quantify entanglement along those algorithms, I use Mermin's polynomials, which have the advantage of being implementable in actual quantum computers. My study of contextuality, on the other hand, relies on finite geometries representing experiments, which are said to be contextual when no non-contextual classical theory can predict the results. These geometries are associated with the binary symplectic polar spaces. We study their structure, and eventually use this structure to get insights on quantum protocols using contextuality. The study of these properties led to interesting conjectures which we started to formalize in proof environments, such as Coq and Why3, but are left as perspective as these works have not reach a conclusion yet. Titre : Études calculatoires de l'intrication et de la contextualité quantiques dans la perspective de leur vérification formelle Mots-clés : Informatique quantique, Intrication, Contextualité, Spécification formelle, Vérification

Résumé :

Bien que les ordinateurs quantiques actuels se limitent à l'utilisation de quelques qubits, les fondations de la programmation quantique se sont développées au cours des 20 dernières années. Ces fondations ont été théorisées dès les années 80 mais la complexité de leur mise en oeuvre a rendu ces pistes inaccessibles jusqu'à très récemment.

Dans ce contexte, l'objectif de cette thèse est de contribuer à l'adaptation des méthodes de spécification formelle et de vérification déductive des programmes classiques aux programmes quantiques. Je présente donc mes contributions à l'étude des propriétés quantiques dans le but de les formaliser. J'étudie en particulier l'intrication quantique et la contextualité quantique. Ces propriétés permettent de classifier les états et les protocoles quantiques, et en particulier de les différencier des états et protocoles classiques. Mon étude de l'intrication est fondée plus spécifiquement sur l'évolution de l'intrication au cours de deux algorithmes quantiques : l'algorithme de Grover et la transformée de Fourier quantique. Pour quantifier l'intrication le long de ces algorithmes, j'utilise des polynômes de Mermin, qui ont l'avantage de pouvoir être implémentables dans des ordinateurs quantiques réels. Mon étude de la contextualité s'appuie, elle, sur des géométries finies représentant des expériences, qui sont dites contextuelles quand aucune théorie classique non-contextuelle ne peut en prédire les résultats.

Ces géométries sont associées à des espaces polaires symplectiques binaires dont nous explorons la structure, avec comme objectif d'utiliser cette structure pour obtenir des intuitions sur les protocoles quantiques en utilisant la contextualité. L'étude de ces propriétés a conduit à des conjectures intéressantes que nous avons commencé à formaliser dans des environnements de preuve tels que Coq et Why3, mais qui sont laissées en perspective car ces travaux n'ont pas encore abouti.

FRENCH

  , l'informatique quantique est très présente dans les communications publiques. Depuis les initiatives nationales (France, UK, USA, et plus... [Fel21, Pre20, Smi18]), jusqu'à l'intérêt des chercheurs individuels. Cet intérêt provient des énormes promesses de l'informatique quantique [GKS + 21], mais également des défis techniques qui donnent lieu à un riche champ de travail. Mais comme pour l'informatique classique auparavant, l'informatique quantique est confrontée à une problématique très humaine : comment faire confiance au programme ? Cette question est prédominante dans certains domaines vitaux, où toute erreur du programme peut coûter des vies humaines, comme l'aérospatial, les réacteurs nucléaires ou le réseau ferroviaire parisien [CM14, MLL19, INT99, LSP + 07]. Mais elle tend à s'étendre à tous les domaines : en tant qu'utilisateur, nous voudrions nous assurer que le site de notre banque est digne de confiance, ce qui implique par exemple le besoin d'un

  xii CONTENTS Un exemple de vérification statique est la vérification déductive. Elle se base sur les préconditions (conditions d'entrée du programme) et les postconditions (conditions de sortie du programme), et consiste à montrer que les postconditions peuvent être déduites des préconditions. Deux exemples de vérification dynamique sont le test et l'évaluation d'assertions à l'exécution. Le test consiste à exécuter le programme avec certaines entrées prédéterminées et valider que la sortie du programme correspond bien à une valeur attendue.

  base sont |0⟩ et |1⟩. Mais la différence la plus importante et qu'un qubit peut être une superposition de ces deux états de base, un tel état peut être noté |φ⟩ = α |0⟩ + β |1⟩ avec α, β ∈ C et |α| 2 + |β| 2 = 1. Continuons le parallèle entre l'informatique quantique et l'informatique classique : pour l'informatique classique, plusieurs bits regroupés forment un registre, qui pourrait par exemple prendre la valeur r = 001101; à cause de la superposition, une telle concaténation des valeurs n'est pas aussi simple en informatique quantique. Pour résoudre ce problème, nous utilisons l'opérateur ⊗ appelé produit tensoriel ou produit de Kronecker. Les états peuvent être notés sous forme vectorielle, et dans ce cas, on aura |0⟩ = 1 0 et |1⟩ = 0 1 . En notation vectorielle, le produit tensoriel a l'effet suivant : 1 B ... a 1,n B . . . . . . a m,1 B ... a m,n B

  comme un outil d'optimisation de circuit vérifiée avec Coq 1 [HRH + 21] et un outil de preuve xiv CONTENTS de programmes quantiques avec Why3 2 [CBB + 21].

  et détermine si elle est équilibrée ou constante en un seul appel de f .

  2. L'INTRICATION AU COURS DES ALGORITHMES xv J'ai ensuite utilisé ce simulateur pour valider l'utilisation des polynômes de Mermin [dJH + 21] en tant qu'opérateurs de mesure de la non-localité. Definition 1: Polynômes de Mermin, [ACG + 16] Soit a = a j j≥1 et a ′ = a ′ j j≥1 deux familles d'observables à un qubit avec pour valeurs propres {-1, +1}. Le polynôme de Mermin M n (a, a ′ ) est défini récursivement par

H 2 ,

 2 then we can write H = H 1 ⊗ H 2 . And we also use the power notation: for any objects, O ⊗ O ⊗ . . . ⊗ O with n O's can be written O ⊗n .

Figure 2 . 1 :

 21 Figure 2.1: Example of quantum circuit

⇐Definition 2 :

 2 == ⇒ LOCC-equivalence.Several ways to evaluate entanglement of a state have come up along the years.For instance entanglement variations during the execution of Grover's algorithm have been studied either by computing the evolution of the Geometric Measure of Entanglement[START_REF] Rossi | Scale invariance of entanglement dynamics in Grover's quantum search algorithm[END_REF][START_REF] Wei | Geometric measure of entanglement and applications to bipartite and multipartite quantum states[END_REF], or by computing other measures of entanglement like the concurrence or measures based on invariants [BOF + 16, WG03, HJN16]. Among those measures of entanglement, only the last one is presented in this manuscript, in Appendix C defining the Cayley hyperdeterminant. Similarly, for Shor's algorithm and in particular to study the variation of entanglement within the QFT, numerical computation of the Geometric Measure of Entanglement was carried out in[START_REF] Shimoni | Entangled Quantum States Generated by Shor's Factoring Algorithm[END_REF]. Let us also mention[START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF] where the evolution of entanglement in Grover's and Shor's algorithms is studied qualitatively by considering the classes of entanglement reached during the execution of the algorithms.The authors of [BOF+ 16] proposed to exhibit the non-local behavior of the states generated by Grover's algorithm by testing a generalization of Bell's inequalities known as Mermin's inequalities, based on Mermin polynomials [ACG + 16, CGP + 02]. Let us define these polynomials that we will use in Part II. Mermin polynomials, [ACG + 16]

a 2 (

 2 real number depending on the measured state. For the state |φ⟩, the expected value of M is ⟨M⟩ φ = ⟨φ|M|φ⟩ and it represents the average of multiple measurements of |φ⟩ by M. This value is here refined by adding a condition on |φ⟩: ⟨M⟩ LR means that |φ⟩ follows the hypothesis of local realism, and ⟨M⟩ QM means that |φ⟩ follows the laws of quantum mechanics. The violation of the first Mermin inequality shows non-locality which is only possible under the hypothesis of quantum mechanics and if the quantum state is entangled. More precisely the maximal violation of Mermin's inequalities occurs for GHZ-like states [Mer90, CGP + 02, ACG + 16], i.e. states equivalent to |GHZ⟩ = 1 √ |0⟩ ⊗n + |1⟩ ⊗n ) by local transformations. One of the advantages of Mermin's inequalities over other methods for evaluating entanglement, such as the hyperdeterminant, is that they can be tested by a physical experiment. Recently the violation of Mermin's inequalities was tested for n ≤ 5 qubits on a small quantum computer [AL16, ABJ + 20].
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 24 Figure 2.4: The Mermin-Peres magic square.
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3 A

 3 SIMULATOR FOR QUANTUM VERIFICATION To start studying quantum verification, we first build a small quantum circuit simulator in Python, using a mathematics software system called SageMath, built on top of existing packages such as NumPy, SciPy and others... It was used to simulate Deutsch and Deutsch-Jozsa algorithms (resp in Sec. 3.2 and Sec. 3.
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 32 Figure 3.2: Example of mid circuit measure

Listing 3 . 5 :Figure 3 . 4 :

 3534 Figure 3.4: Deutsch-Jozsa algorithm in circuit formalism

  find in Ω an element of S only by applying f to some elements of Ω.Grover's algorithm provides a quadratic speedup over its classical counterparts. Indeed, assuming that each application of f is done in one step, it runs in O( √ N) instead of O(N).

Figure 4 .

 4 Figure 4.1 shows this algorithm as a circuit composed of several gates that we now describe. H ⊗n+1 is simply the Hadamard gate on each wire. When applied on the first n

Figure 4 . 2 :

 42 Figure 4.2: First iteration of loop L in Grover's algorithm

4 NFigure 4 . 3 :

 443 Figure 4.3: States in Grover's algorithm and the separable states [HJN16, Figure 2]

Figure 4 .

 4 Figure 4.3 provides a graphical interpretation of Equation (4.3). The "curve" X represents the variety (set defined by algebraic equations) of separable states. This figure illustrates the fact that during the execution of Grover's algorithm, the quantum state |φ k ⟩ evolves as follows: it starts from the separable state |+⟩ ⊗n and moves on the dotted secant line until it gets close to the searched state |x 0 ⟩ when k = k opt . All states on the secant line are entangled (rank-two tensors).

  Figure 4.3 suggests that the search should come close to the state |φ ent ⟩, around the step k opt /2. Thus, a maximum of entanglement is expected close to this pivot step.

4. 2 . 3 /

 23 QUANTUM FOURIER TRANSFORM (QFT)The quantum analogous of the Discrete Fourier Transform (DFT) is the Quantum Fourier Transform (QFT). It acts linearly on quantum registers and is a key step in Shor's algorithm, permitting to reveal the period of the function defining the factorization problem[START_REF] Shor | Algorithms for quantum computation: Discrete logarithms and factoring[END_REF][START_REF] Michael | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF].

Figure 4 . 5 :

 45 Figure 4.5: Mermin evaluation during Grover's algorithm for 4 ≤ n ≤ 12 qubits

Figure 4 . 6 :Remark 3 :Figure 4 . 7 :Remark 4 :

 463474 Figure 4.6: Maximums of f M n (φ k ) for 4 ≤ n ≤ 12 qubits Remark 3: In [BOF + 16] similar curves (Figure 3) were obtained for n ∈ {2, 4, 6, 8} qubits showing the increasing-decreasing behavior, but the violation of Mermin's inequalitiesthe non-locality -was not established for n = 6 and n = 8, whereas it is obtained in our calculation. Recall from Remark 2 that the calculation of [BOF + 16] is not exactly the same as the one performed in this chapter. The curves of [BOF + 16] are obtained by maximizing f M n (φ k ) at each step of the algorithm with a larger number of parameters. Therefore as we obtain violation of Mermin's inequalities via a restricted calculation, the authors of [BOF + 16] should also have observed it. We suspect errors in the implementation of the calculation of Equations (19) of [BOF + 16] as we have redone this calculation for n = 6 based on Equations (18) and (20) of [BOF + 16], and we have obtained the violation of Mermin's inequalities shown in Figure 4.7.

Figure 4 .

 4 Figure 4.8 provides another argument explaining why we expected violation of Mermin's inequalities in Grover's algorithm when n increases. The curve with points as dots corresponds to the evaluation of f M n (φ ent ) and the curve with points as crosses corresponds

Figure 4 . 8 : 3 .

 483 Figure 4.8: Numerical results compared to theoretical boundary of the Mermin evaluation

Figure 4 . 9 :

 49 Figure 4.9: Circuit representation of the QFT for 4 qubits with its numbered states

Figure 4 .

 4 Figure 4.10: Evaluation of entanglement during the QFT of φ 9,1 using the hyperdeterminant and Mermin evaluation

Figure 4 .

 4 Figure 4.11: Mermin evaluation of states during the QFT of two states φ (l,r) from Case 1 of[START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF] 

, 4 .Figure 4 . 12 :

 4412 Figure 4.12: Mermin evaluation of states during the QFT of four states φ (l,r) from Case 2 of [JH19]

Figure 4 .

 4 Figure 4.13: Mermin evaluation of states during the QFT of four states φ (l,r) from Case 3 of [JH19]

Figure 4 . 2 √ 2 ≈ 2

 4222 13 illustrates different possible behaviors of the states in Case 3. These variations were not detected in [JH19] by the evaluation of |∆ 2222 |. The amount of violation of non-locality measured during the QFT is not connected to the change of SLOCC classes computed in [JH19] for the same algorithm and input state. Indeed, states in the same SLOCC class reach different values of the maximal violation of the Mermin inequality. For instance, if one considers the periodic states φ l,r for (l, r) = (2, 2) and (l, r) = (0, 11) (Figures 4.13a and 4.13b), it is shown in [JH19] that these two states are SLOCC equivalent (i.e. can be inter-converted by a reversible local operation), but their evolution during the QFT is quite different. The value of q(k) fluctuates around 1.10 for (l, r) = (2, 2), whereas it is in the interval [1.65, 2.18] for (l, r) = (0, 11). Similarly the cases (l, r) = (0, 15) and (1, 1) (Figures 4.13cand 4.13d) correspond to two states SLOCC equivalent to |GHZ 4 ⟩ at the beginning of the algorithm. It is clear for (l, r) = (0, 15) because φ 0,15 = |GHZ 4 ⟩ and q(k) reaches the maximal possible value at the beginning of the algorithm. The maximal violation of Mermin inequality for four qubits is

Figure 4 .

 4 Figure 4.14: End loop counting example
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 5152 Figure 5.1: Decomposition of the Toffoli gate using IBM's composer
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 52 Figure 5.2: Introduction to Qiskit on Jupyter

Figure 5 . 3 :

 53 Figure 5.3: Partial QFT containing the first 3 gates of the QFT on 4 wires

Listing 5 . 7 :

 57 Main function computing the Mermin evaluation along each step of the QFT.

Figure 5 . 4 :

 54 Figure 5.4: Simulated and actual quantum runs of our implementation of QFT of φ 1,1 on Qiskit

8 I

 8 present a joint work with Metod Saniga, in which we classify certain subgeometries of the symplectic spaces, when the points of these spaces canonically encode n-qubit observables, for n = 2, 3, 4.

Proposition 2 :

 2 Through the following proposition, Key and Moori [KM02] define a method for constructing block designs: Excerpt from Prop. 1 on page 3 of [KM02] Let G be a finite primitive permutation group acting on the set Ω of size n. Let α ∈ Ω, and let ∆ {α} be an orbit of the stabilizer G α of α. If B = {∆ g : g ∈ G} [. . . ] then B forms a self-dual 1-(n, |∆|, |∆|) design with n blocks [. . . ].

6. 2

 2 .1/ DEFINITIONS Prop. 2 holds for any natural number n and for any group of permutations G on a finite set Ω of cardinality n, noted here as the set {1, . . . , n}. By nature, this group G is finite. The application of the permutation g of G to the element α of the set Ω is denoted g • α. The image of a part ∆ of Ω by the permutation g of G is noted ∆ g = def {g • x : x ∈ ∆}. The following definitions from group theory and block designs theory allow us to understand the rest of the proposition, where |∆| denotes the cardinality of the orbit ∆. The group of permutations G on Ω is transitive if, for all elements x and y of Ω, there exists a permutation g of G such that g • x = y. The group G is primitive if it is transitive and if it preserves no non-trivial partition of Ω (the trivial partitions of Ω are the partition {Ω}, whose only element is Ω, and the partition {{x} : x ∈ Ω}, composed of all singletons in Ω). The stabilizer G α = def {g ∈ G : g • α = α} of an element α of Ω (under the action of G) is the set of permutations of G which leave α invariant under their action. The orbit O x = def {g • x : g ∈ H} of an element x of Ω according to a group H of permutations on Ω is the set of the images of x by the permutations of H.

Example 3 :

 3 Let n = 5 and G = {Id, (1, 2, 3, 4, 5), (1, 5, 4, 3, 2), (1, 3, 5, 2, 4), (1, 4, 2, 5, 3),(2, 5)(3, 4), (1, 2)(3, 5), (1, 5)(2, 4), (1, 3)(4, 5), (1, 4)(2, 3)} a primitive permutation group on Ω = def {1, 2, 3, 4, 5}. In addition to the identity permutation, noted Id, its permutations are given as their product of disjoint cycles. The fixed points (the cycles of length 1) are not explicitly written. With α = 1, the stabilizer of G on α is the group G 1 = {Id, (2, 5)(3, 4)}.The orbits of G 1 are the sets {1}, {2, 5} and {3, 4}. For ∆ = {2, 5}, the block design is B = {{2, 5}, {1, 3}, {1, 4}, {2, 4}, {3, 5}}. It is a 1-(5, 2, 2) block design on 5 elements, composed of 5 blocks of cardinality k = 2, where each element (t = 1) is present in exactly λ = 2 distinct blocks.

  of stabilizers of a primitive group [KM02 , Proposition 1]. * * @param G:: GrpPerm A primitive group * @return Deltas :: Assoc An associative array indexed by alpha * and containing the corresponding delta set */ AllDelta := function (G) n := Degree (G); Omega := {1..n}; Deltas := AssociativeArray (); for alpha in Omega do Galpha := Stabilizer (G, alpha ); orbits := Orbits ( Galpha ); Deltas [ alpha ] := { IndexedSetToSet ( Delta ) : Delta in orbits | Delta ne { alpha } }; end for; return Deltas ; end function ;

Proposition 3 :

 3 /** * Builds all block designs from a primitive group [KM02 , Proposition 1] * * @param G:: GrpPerm A primitive group * @return blocks :: Assoc An associative array indexed by orbits delta * and containing corresponding block designs */ BlckDsgnsFromPrmtvGrp := function (G) Deltas := AllDelta (G); blocks := AssociativeArray (); for alpha in Keys( Deltas ) do for Delta in Deltas [ alpha ] do blocks [ Delta ] := { Delta ^g : g in G }; end for; end for; return blocks ; end function ; 6.3/ VALIDATION A bibliographic search revealed the existence of a correction of Prop. 2, by the same authors [KM08]. This correction does not question the computation of block designs but only their nature: they must be symmetric, and not self-dual, as summarized in Prop. 3. Extract from Prop. 1, page 1 of [KM08] Let G be a finite primitive permutation group acting on the set Ω of size n. Let α ∈ Ω, and let ∆ {α} be an orbit of the stabilizer G α of α. If B = {∆ g : g ∈ G} [. . . ] then D = (Ω, B) forms a symmetric 1-(n, |∆|, |∆|) design.

A

  quantum geometry is a pair (O, C) where O is a finite set of observables (unitary finitedimensional Hermitian operators) and C is a finite set of subsets of O, called contexts, such that O.1 each observable M ∈ O satisfies M 2 = Id (so, its eigenvalues are in {-1, 1}); O.2 any two observables M and N in the same context are commuting, i.e., MN = N M; O.3 the product of all observables in each context is either Id or -Id. The elements of O and C are the points and lines of the geometry. Let the context valuation associated to (O, C) be the function e : C → {-1, 1} defined by e(c) = 1 if the product of all the observables in the context c is Id, and -1 if it is -Id.

Figure 7 . 1 :

 71 Figure 7.1: The Mermin-Peres magic square

7 . 2 .

 72 Indeed condition O.1 is satisfied by the elements of P n , so the fact that we use only points from PG(2n -1, 2) satisfies it. Condition O.2 is in correspondence with Condition S.1 and Condition O.3 is in correspondence with Condition S.2.

Example 5 :

 5 The symplectic polar space of rank 2 and order 2, W 2 = W(3, 2), corresponds to Pauli operators acting on two qubits. It has 15 points (the subspaces of dimension 0) and 15 lines (the subspaces of dimension 1), and no subspace of higher dimension. It is represented in Fig.7.2 as a finite geometry, where each point of the symplectic space is a point of the geometry and the three elements of each isotropic subspace of dimension 1 are shown as a line.

Figure 7 . 2 :

 72 Figure 7.2: The Doily, a point-line representation of W 2 = W(3, 2)

7 . 1 Example 6 :

 716 Another example of symplectic space may be the even more elementary W 1 . It contains only three points, (0, 1), (1, 0) and (1, 1) and no subspaces of positive dimension. 7.3.2/ CONTEXT VALUATION, VALUATION VECTOR AND CONTEXTUAL CONFIGU-RATIONS Any quantum configuration (P, L) in W n with p = |P| points and l = |L| (context) lines determines an incidence matrix A ∈ F l×p 2

Example 7 :

 7 After replacing each point in W 2 by its image by ρ, Fig. 7.2 becomes Fig. 7.3.

Figure 7 . 3 :

 73 Figure 7.3: The Doily with Pauli operators

Figure 7 . 4 :Remark 7 :

 747 Figure 7.4: The Mermin-Peres square as a subgeometry of the Doily

  example by taking a specific perpset. Let us consider the perpset generated by Y ⊗ X, if is composed of all points non collinear with Y ⊗ X, i.e.P = {I ⊗ X, Z ⊗ Y, Y ⊗ X, Y ⊗ I, X ⊗ Z, X ⊗ Y, Z ⊗ Z}.As is previous examples, we are looking for lines of W 2 which are subsets of P, this gives usL = {I ⊗ X, Y ⊗ X, Y ⊗ I}, {Y ⊗ X, X ⊗ Y, Z ⊗ Z}, {Z ⊗ Y, Y ⊗ X, X ⊗ Z} .7.4.1/ RESULTSOur contextual configurations detection program is implemented in the language of the well-established tool Magma for theoretical mathematics. In particular, Magma provides us with F 2 and PG(2n -1, 2) equipped with the symplectic form. From this, our program generates the incidence structure of the generators of W n -using the commutation relations of the points of W n viewed as a graph and the integrated Magma function for buildings incidence structures from graphs -and uses it to compute all totally isotropic subspaces of dimension 1 with an in-house algorithm. For G.1, G.3, G.4 and G. 5 the totally isotropic subspaces of dimension 1 are scanned and possibly filtered according

in O 2

 2 2n × 2 4n = O 2 6n . The computation for the perpsets is very similar. For the family G.2 of generators, we use the property that they are the blocks of the incidence structure whose elements are the points of the symplectic space and such that two points are incident if and only if they commute. The most expensive operation is the generation of the i∈[1..n] (2 i +1) blocks of this incidence structure, resulting in a complexity in O 2 n(n+1)/2 . Geometries Complexity Lines (G.1) O 2 4n Generators (G.2) O 2 n(n+1)/2 Quadrics and Perpsets (G.3 + G.4 + G.5) O 2 6n

  TAXONOMY OF POLAR SUBSPACES OF MULTI-QUBIT SYMPLECTIC POLAR SPACES OF SMALL RANKThis chapter presents parts of a published article[START_REF] Saniga | Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank[END_REF] closely following the content of Chap. 7. Various notions are redefined in this chapter, to make it self-contained. The reader might be surprised to see that some notions are defined differently, this is the case because different definitions fit better different needs, this is for example the case for the symplectic form. But the various definitions are in the end equivalent. Another notation difference is kept to fit the original paper: a quantum configuration (P, L) is the same as a point-line incidence geometry Γ(P, L). I did not include some elements (most notably section 5) of the published article because I mostly participated in the early sections.Furthermore, the latter sections of the article, although very interesting, do not add new material considering the big picture of this manuscript: they do not seem to add new possibilities of formal proof of protocol contextuality.8.1/ INTRODUCTIONSome fifteen years ago it was discovered (see, e.g., [SP07, PS08, HOS09, Tha09]) that there exists a deep connection between the structure of the n-qubit Pauli group and that of the binary symplectic polar space of rank n, W(2n -1, 2), where commutation relations between elements of the group are encoded in collinearity relations between points of W(2n -1, 2). This connection has subsequently been used to get a deeper insight into, for example, finite geometric nature of observable-based proofs of quantum contextuality (for a recent review, see[START_REF] Holweck | Geometric constructions over C and F 2 for Quantum Information[END_REF]), properties of certain black-hole entropy formulas[START_REF] Lévay | Black hole entropy and finite geometry[END_REF] and the so-called black-hole/qubit correspondence[START_REF] Borsten | The black-hole/qubit correspondence: An up-to-date review[END_REF], leading to finitegeometric underpinning four distinct Hitchin's invariants and the Cartan invariant of form 105 theories of gravity[START_REF] Lévay | Magic three-qubit Veldkamp line: A finite geometric underpinning for form theories of gravity and black hole entropy[END_REF] and even to an intriguing finite-geometric toy model of spacetime[START_REF] Lévay | Finite geometric toy model of spacetime as an error correcting code[END_REF]. This group-geometric connection was further strengthened by making use of the concept of geometric hyperplane and that of the Veldkamp space of W(2n -1, 2) [VL10]. As per quantum contextuality, famous two-qubit Mermin-Peres magic squares were found to be isomorphic to a special class of geometric hyperplanes of W(3, 2) called grids [SPPH07], whereas three-qubit Mermin pentagrams were found to have their natural settings in the magic Veldkamp line of W(5, 2) [LS17], being also isomorphic -under the grassmannian correspondence of type Gr(2, 4) -to ovoids of W(3, 2) [SL12]. Concerning the black-hole/qubit correspondence, here a key role is played by the geometric hyperplane isomorphic to an elliptic quadric of W(5, 2). Interestingly, form theories of gravity seem to indicate that also a certain part of the magic Veldkamp line in the four-qubit symplectic polar space, W(7, 2), and the associated extended geometric hyperplanes are of physical relevance.

  2)'s (by Eq. 8.6) and six Q -(3, 2)'s (by Eq. 8.9). A Q + (3, 2) contains nine points and six lines forming a 3×3 grid, so it is also called a grid. A Q -(3, 2) features five pairwise noncollinear points, hence it is an ovoid. A triple of mutually non-collinear points of W(3, 2) is called a triad and a point collinear with all the three points of a triad is called a center of the triad; W(3, 2) contains 60 unicentric and 20 tricentric triads.

8. 3

 3 that depicts the three kinds of geometric hyperplanes of W(3, 2). The 15 points of the doily are represented by small circles and its 15 lines are illustrated by the straight to all the three hyperplanes forming the line) and the types of geometric hyperplanes featured by a generic line of a given type. The last column gives the total number of lines per each type. This is depicted in Fig.8.4, an illustrative portrayal of representatives (rows) of the five(numbered consecutively from top to bottom) different types of lines of V(W(3, 2)), each being uniquely determined by the properties of its core (black bullets). (Tab. 8.1, as well as Fig.8.3 and Fig.8.

Figure 8 . 4 :

 84 Figure 8.4: Representatives of the lines types of V(W(3, 2))

Figure 8 . 5 :

 85 Figure 8.5: Representatives of the types of three-qubit doilies

Figure 8

 8 Figure 8.6: Three-qubit doily decomposition into three single-qubit residuals

Fig. 8

 8 .6, top. From its three-qubit labels, keep first only the left mark (bottom left figure), then the middle mark (bottom middle figure) and, finally, the right mark (bottom right figure). In each of these three 'residual' doilies it is easy to see that if you take the points featuring a given non-trivial mark (i.e., X, Y or Z) together with the points featuring I, these always form a geometric hyperplane, and the whole set form a Veldkamp line of the doily where T 2cl le ttr utr pt ov ps gr fl 1

Figure 8 . 7 :

 87 Figure 8.7: Four different doilies sharing an ovoid

  First, by adding I to each three-qubit observable at the same position we get the four trivial four-qubit W(5, 2)'s of Type 29. Next, adding to each observable at the same position a mark from the set {X, Y, Z}, picking up a geometric hyperplane in this four-qubit labeled W(5, 2) and replacing by I the added mark of each observable in the geometric hyperplane one gets a four-qubit W(5, 2) with 90 negative lines. Now, there are 28 (# of elliptic quadrics) + 36 (# of hyperbolic quadrics) + 63 (# of perpsets) = 127 geometric hyperplanes in the W(5, 2), three possibilities (X, Y, Z) to pick up a mark, and four possibilities (left, middle-left, middle-right, right) where to insert the mark. So, there will be 127 × 3 × 4 = 1524 four-qubit W(5, 2)'s created this way, which only falls short by 36 the total number of W(5, 2)'s endowed with 90 negative lines (the four guys of Type 29 being, of course, disregarded). A concise summary is given in the last column of Tab. 8.5, where the type of geometric hyperplane is further specified by the character/type of the associated (three-qubit) observable. One observes that Type 23 is the only irreducible type of W(5, 2)'s having 90 negative lines. We shall illustrate this process by a couple of examples. Let us start with the perpset of the three-qubit W(5, 2) whose nucleus is an observable of type A, say XII. Out of 31 observables commuting with this observable there are 7 of type A (XII, IXI, IIX, IY I, IIY, IZI and IIZ), 15 of type B (IXX, IXY, IXZ, XXI, XIX, IY X, IYY, IYZ, XY I, XIY, IZX, IZY, IZZ, XZI, and XIZ) and 9 of type C (XXX, XXY, XXZ, XY X, XYY, XYZ, XZX, XZY, and XZZ). Hence, out of 32 observables off the perp, there will be 9 -7 = 2 of type A, 27 -15 = 12 of type B and 27 -9 = 18 of type C: Q (XII) O A O B O C observable of the perpset acquires a trivial mark I and hence goes into the four-qubit observable of the same type. However, an observable lying off the perpset gets a non-trivial label X, Y or Z and so yields the four-qubit observable of the subsequent type; that is, O (3) A → O (4) B , O (3) B → O (4) C and O (3) C → O (4) D . Hence, in our case we get:( Q (XII) )

  observables of type A (IXI, IIX, IIZ and IY I), 11 observables of type B (XZI, ZZI, Y IY, IXX, IXZ, YZI, IY X, IYZ, XIY, ZIY and IZY) and 12 observables of type C (XZX, ZZX, XZZ, ZZZ, Y XY, XYY, ZYY, YZX, YZZ, XXY, ZXY and YYY). So, out of 36 observables off the quadric, there will be 5, 16 and 15 of type A, B and C, respectively. In a succinct form, follows that the corresponding four-qubit W(5, 2) is of Type 25: (Q - (Y XI) (5, 2))

  3): [0, 9, 6, 0] (Types 1 and 2), [2, 9, 3, 1] (Type 3),[5, 5, 5, 0] (Types 4 and 5), [6, 6, 3, 0] (Type 6) and [6, 9, 0, 0] (Types 7 to 13).

j i = 1 .fProposition 5 : 4 N 2 if k opt = π 4 N|S | -1 2 = π 4 N 4 N|S | -1 2 .

 15424442 if i = j and δ j i = 0 otherwise).As seen previously ∀(x, y) ∈ I × B, |x, y⟩ = k∈I ′ δ 2x+y k |k⟩. Given that U f = (i, j)∈I ′2 u i, j |i⟩ ⟨ j|, we get:U f (|x⟩ ⊗ |y⟩) = i, j,k∈I ′ |i⟩ Given that |x⟩ ⊗ |y ⊕ f (x)⟩) = k∈I ′ δ 2x+(y⊕ f (x)) k |k⟩ and U f (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩), we have ∀(i, x) ∈ I ′ × I, u i,2x+y = δ 2x+(y⊕ f (x)) i (x) = 0 =⇒ ∀k ∈ {2x, 2x + 1}, u k,2x+y = δ 2x+y k f (x) = 1 =⇒ ∀k ∈ {2x, 2x + 1}, u k,2x+y = δ 2x+(y⊕1) kHence the result. This second proof was added because it may be easier to formalize. B EXPLICIT STATES FOR GROVER'S ALGORITHM Proposition 4: [HJN16, Observation 1] The state |φ k ⟩ after k iterations of Grover's algorithm can be written as follows: |φ k ⟩ = αk x∈S |x⟩ + βk |+⟩ ⊗n (B.1) With |φ 0 ⟩ = |+⟩ ⊗n , we can write:|φ k ⟩ = L k |φ 0 ⟩ = a k √ |S | x∈S |x⟩ + b k √ N -|S | x S |x⟩where L is the loop (oracle and diffusion operator) in Grover's algorithm.The oracle is a reflection about( x∈S |x⟩) ⊥ = x S |x⟩and the diffusion operator is a reflection about |+⟩ ⊗n . The composition of these two symmetries is a rotation whose angle θ is the double of the angle between x S |x⟩ and |+⟩ ⊗n . So, The fact that L is a rotation of angle θ gives a k = sin (θ k ) and b k = cos (θ k ) with θ k = kθ + θ/2. Equation (4.1) then comes from α k = 1 √ |S | sin 2k+1 2 θ and β k = 1 √ N-|S | cos 2k+1 2 θ . 137 APPENDIX B. EXPLICIT STATES FOR GROVER'S ALGORITHM With this, we can now take αk = α k -β k and βk = 2 n/2 β k which gives us |φ k ⟩ = α k x∈S |x⟩ + β k x S |x⟩ = (α k -β k ) x∈S |x⟩ + β k N-1 x=0 |x⟩ = αk x∈S |x⟩ + βk |+⟩ ⊗n since |+⟩ ⊗n = 1 In Proposition 4, αk increases for k between 0 and π |S | -1 2 and βk decreases on the same interval. Proof. The optimal number of iterations of the loop L in Grover's algorithm is the smallest value k opt of k such that a k = 1, i.e., θ k opt = π/2. With |S | ≪ N, sin (θ/2) = √ |S |/N gives θ ≈ 2 √ |S |/N and θ k ≈ (2k + 1) √ |S |/N. Finally (2k opt + 1) √ |S |/N optimally approximates π/|S | . Moreover, a k = sin (θ k ) and α k = 1 √ |S | a k are increasing and b k = cos (θ k ) and β k = 1 √ N-|S | b k are decreasing for k from 0 to π From the expressions αk = α k -β k and βk = 2 n/2 β k , we get the result of the proposition. C CAYLEY HYPERDETERMINANT ∆ 2222 Let |φ⟩ = i, j,k,l∈{0,1} a i, j,k,l |i jkl⟩ be a four-qubit state. The algebra of polynomial invariants for the four-qubit Hilbert space can be generated by the four polynomials H, L, M and D defined as follows [LT03]: H = a 0000 a 1111a 1000 a 0111a 0100 a 1011 + a 1100 a 0011 -a 0010 a 1101 + a 1010 a 0101 + a 0110 a 1001a 1110 a 0001 is an invariant of degree 2. L = a 0000 a 0010 a 0001 a 0011 a 1000 a 1010 a 1001 a 1011 a 0100 a 0110 a 0101 a 0111 a 1100 a 1110 a 1101 a 1111 and M = a 0000 a 0001 a 0100 a 0101 a 1000 a 1001 a 1100 a 1101 a 0010 a 0011 a 0110 a 0111 a 1010 a 1011 a 1110 a 1111 are two invariants of degree 4. Consider the partial derivative b xt := det ∂ 2 A ∂y i ∂z j

  

  son équivalent classique. En effet, un état classique peut être observé à tout instant sans perturber l'état global du système. La mesure d'un état quantique est modélisée par une matrice auto-adjointe appelée observable. Un état s'écrivant |φ⟩ = α |a⟩ + i β i |b i ⟩ mesuré par un observable ayant {|a⟩ , |b 1 ⟩ , . . . , |b k ⟩} comme base de vecteurs propres aura une probabilité |α| 2 d'être projeté sur |a⟩. Dans ce cas, la mesure retournera la valeur propre de l'observable associée à son vecteur propre |a⟩. Cet effet de la mesure est valable pour tous les vecteurs propres de l'observable, il en résulte donc que la mesure est dite destructive en quantique: l'état global du système est affecté par la mesure d'un qubit.

  Dans cette section je me focalise sur les géométries dites quantiques, dans le but d'étudier la contextualité. Je commence par étudier une méthode de génération de géométries établie par Key et Moori[START_REF] Key | Codes, designs and graphs from the Janko groups J 1 and J 2[END_REF], en expliquant le lexique spécifique à ce domaine. Cette méthode avait été implémentée en Magma dès l'article initial, mais le code correspondant était très peu fonctionnel. De plus, un erratum mentionnait que la des géométries qui sont toutes identiques si on ne prend pas en compte leur paramétrisation, mais qui sont différenciées par cette signature. Par exemple, les formes quadratiques générant des géométries se classent en deux types, elliptiques ou hyperboliques. Pour un type donné, toutes les géométries sont isomorphes si on ignore la valeur des points. En revanche, leurs signatures étant différentes, elles ne sont pas isomorphes quand on garde la valeur des points. En partant de ce constat, nous avons remarqué que certaines géométries de l'espace symplectique à n qubits peuvent générer des géométries de l'espace symplectique à n + 1 qubits. Plusieurs algorithmes sont proposés prenant en compte différentes géométries.
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au lieu de O(N) pour le cas classique. Nous démontrons que l'algorithme part d'un état séparable, et arrive à un état séparable à la fin de son exécution, mais qu'il s'approche au milieu de son exécution d'un état non séparable. La conjecture était donc que l'intrication augmenterait jusqu'à un point proche du milieu de l'exécution, point à partir duquel l'intrication diminuerait. Et c'est bien ce que nous avons observé pour des exécutions entre 4 et 12 qubits. Nous avons ensuite comparé l'évolution de la mesure de l'intrication par les polynômes de Mermin à des résultats obtenus en utilisant l'hyperdéterminant

[START_REF] Jaffali | Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case[END_REF] 

pour la QFT

(Quantum Fourier Transform)

. La QFT est une version quantique de la transformée de Fourier discrète. Pour un nombre encodé sur n bits, elle opère cette transformée en O(n 2 ) opérations contre O(n2 n ) pour le cas classique.

Cette comparaison a mis en évidence que certaines portes ne changent jamais le niveau d'intrication, ce qui était un résultat attendu, car ces portes sont locales et inversibles. En revanche, un résultat plus surprenant est que, dans certains cas, l'hyperdéterminant et les polynômes de Mermin ne concordaient pas sur l'évolution de l'intrication. Forts de cette connaissance, nous avons ensuite implémenté ces mêmes calculs sur Qiskit, la bibliothèque de circuiterie d'IBM. Nous avons obtenu des résultats très similaires sur les simulations. En revanche, il semble que le bruit sur leur processeur quantique est encore trop important pour obtenir des résultats aussi fins que ce que nous souhaitions.

Le bilan de cette étude est que les polynômes de Mermin sont bien un moyen d'évaluer l'intrication, et qui plus est, un moyen implémentable physiquement, contrairement à d'autre mesures de l'intrication comme la mesure par l'hyperdéterminant. méthode initialement présentée serait fausse, nous avons donc ré-implémenté le code en question, pour réaliser que la différence observée correspondait en fait à une erreur dans l'interprétation de certaines notions. Pour vérifier tout cela, nous avons appliqué des méthodes de vérification automatisée et de génie logiciel qu'il serait probablement bon de transmettre aux mathématiques expérimentales pour éviter les erreurs telles que celle que nous avons observée.

Une fois cette première expérience sur Magma acquise, nous avons implémenté des méthodes de génération de géométries fondées sur les espaces symplectiques. Ces espaces permettent d'encoder les opérateurs de Pauli efficacement, ainsi que leur relations de commutation. Pour cela, nous nous plaçons dans un espace projectif dont le corps des coefficients a deux éléments. Nous notons les points p = [0, 1, 1, 1, 0, 0, 1, 0], par exemple. L'exemple précédent peut être vu comme la représentation d'un opérateur de Pauli, en prenant l'équivalence suivante : 0, 0 → I; 0, 1 → X; 1, 0 → Z; 1, 1 → Y. Dans ce cas, on obtient p → X ⊗ Y ⊗ I ⊗ Z. La relation de commutation entre deux opérateurs est encodée dans la forme symplectique f (p, q) = i∈[0..(n-1)/2] p 2i q 2i+1 + p 2i+1 q 2i : si la forme symplectique de deux points est nulle, alors ils commutent. En utilisant cela, nous pouvons construire des géométries complexes, comme l'ensemble des lignes de l'espace symplectique, ou des sous géométries définies par des formes quadratiques.

Nous évaluons la contextualité des géométries construites en montrant qu'un système linéaire correspondant n'a aucune solution. Les résultats de ces calculs semblent indiquer des résultats vrais pour tout nombre n de qubits, il serait donc intéressant d'essayer de prouver ces conjectures.

Enfin, nous utilisons des fonctions de génération de géométries de l'espace symplectique pour mettre en évidence la structure des espaces symplectiques. Pour cela, nous développons une fonction calculant la signature d'une géométrie. Signature que nous avons nous-mêmes définie comme étant le (n + 1)-uplet -où n est le nombre de qubits de l'expérience -contenant le nombre de lignes négatives de la géométrie, et le nombre d'opérateurs contenant i fois l'identité, pour tout i entre 0 et n-1. L'espace symplectique à n qubits contient CONCLUSION La vérification des programmes est un élément clé pour leur bon fonctionnement. À ce jour, la vérification des programmes quantiques n'en est qu'à ses débuts. Dans cette thèse, j'ai exploré des manières de spécifier et d'évaluer deux propriétés quantiquesl'intrication et la contextualité -préparant leur formalisation dans un outil de vérification de programmes quantiques. Dans un premier temps, un simulateur de circuit quantique a été développé dans Sage-Math, permettant d'évaluer les propriétés des états quantiques à n'importe quelle étape d'exécution intermédiaire, selon la méthode de vérification connue sous le nom de "runtime assertion checking". Ce prototype offre également la possibilité de choisir entre le calcul en virgule flottante et le calcul exact, pour des résultats plus rapides ou plus précis. Avec ce simulateur j'ai expliqué deux exemples d'algorithmes -l'algorithme de Deutsch et l'algorithme de Deutsch-Jozsa. L'algorithme de Deutsch a été validé à l'aide de tests exhaustifs -une méthode où toutes les entrées possibles sont testées. L'algorithme de Deutsch-Jozsa a été validé jusqu'à n = 5 qubits en utilisant le test exhaustif borné. Ces deux méthodes sont des moyens très élémentaires de valider un logiciel, disponibles uniquement pour certains cas simplistes. Ce même simulateur a été utilisé afin d'étudier la variation de l'intrication dans l'algorithme de Grover et la QFT, en utilisant les polynômes de Mermin [dJH + 20, dJH + 21]. Dans ce travail, nous avons conclu que les polynômes de Mermin sont un outil approprié pour mesurer dynamiquement l'intrication à chaque étape d'un algorithme quantique. De plus, l'intrication a un comportement intéressant dans l'algorithme de Grover : elle augmente jusqu'à un point médian, puis diminue jusqu'à la fin de l'algorithme. Cette propriété pourrait être utilisée pour vérifier la validité d'une implémentation de l'algorithme de Grover par exemple. La QFT a un comportement d'intrication moins régulier, mais ce comportement avec les polynômes de Mermin a été comparé à l'hyperdéterminant de Cayley, montrant certaines similitudes, mais aussi quelques différences. Ce travail a ensuite été transposé avec Grâce Amouzou xviii CONTENTS sur Qiskit afin d'évaluer si ces résultats pouvaient être transposés aux processeurs NISQ (Noisy Intermediate-Scale Quantum), ce qui a donné lieu à un article sur le sujet par G. Amouzou, J. Boffelli, H. Jaffali, K. Atchonouglo et F. Holweck [ABJ + 20]. À l'heure actuelle, de géométries finies avec Magma, suivi par la génération de géométries finies dites quantiques pour leur lien avec les géométries de Mermin-Peres. Ces géométries ont été étudiées en détail : nous avons d'abord travaillé sur des familles de géométries, en évaluant si leurs membres étaient des géométries contextuelles ou non [dHGM21a, dHGM21b]. Nous avons découvert que, pour n ∈ [2..5] qubits, les lignes de W(2n -1, 2) -l'espace symplectique des n qubits, un espace codant les relations de commutation dans le groupe de Pauli sur n qubits -, leurs restrictions aux hyperboliques et leurs restrictions aux ellipses sont toutes contextuelles, mais les générateurs de W(2n -1, 2) et les lignes de W(2n -1, 2) restreintes à certaines sous-géométries appelées perpsets ne sont jamais contextuelles. Ensuite, nous avons étudié la structure de W(2n -1, 2) en utilisant une signature nouvellement définie [SdHG21]. Cette étude est complétée par des correspondances trouvées entre les espaces symplectiques de différentes tailles, et a été réalisée spécifiquement pour des géométries utilisant des observables de 2 à 5 qubits. Ces études visent à mieux comprendre la contextualité afin de trouver des propriétés remarquables qui pourraient être utilisées pour spécifier la contextualité dans les programmes quantiques, mais elles ne sont que la première étape d'un long chemin. PERSPECTIVES Bon nombre des sujets abordés durant cette thèse mériteraient un suivi. L'évaluation de l'intrication dans l'algorithme de Grover et la QFT à l'aide des polynômes de Mermin pourrait mener à une preuve formelle de la croissance puis décroissance de l'intrication pendant l'algorithme de Grover. La QFT semble plus difficile à étudier à cet égard à cause de de son comportement irrégulier, mais l'algorithme de Grover est un bon candidat. Par ailleurs, depuis cette étude, l'algorithme de Grover a été implémenté et son exactitude quant à la recherche de l'élément recherché a été prouvée dans SQIRE. Ceci signifie que nous pourrions nous appuyer sur ce travail, et nous concentrer sur l'implémentation INTRODUCTION MOTIVATIONS These days, quantum computing is very present in public communications. From the national initiatives (France, UK, USA, and more... [Fel21, Pre20, Smi18]), up to the interest of individual researchers, this interest comes from the huge promises of quantum computing [GKS + 21], but also from the technical challenges which yields a rich field of work. But as for classical computing before, the quantum computing faces a particularly human problematic: how can we trust the program? Nowadays, this question is predominant in some vital fields, where any error of the program could cost human lives, such as the aero-spacial, the nuclear reactors or the subways [CM14, MLL19, INT99, LSP + 07]. But it tends to spread to all domains: for example, we would like to ensure that our bank's website is trustworthy, implying the need for verified JavaScript [BRN + 20]. Since, if they are used in the future, quantum programs
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 of This part aims at presenting some basic notions necessary for understanding the work accomplished during these last three years. Not every notion studied are presented here though, since some notions are needed only for the understanding of a restricted part of my work. Such notions are introduced, where they are needed, in order to avoid having an unreadable block of definitions, followed by some work far from the definitions, such as one may need to go back to the present part to recall the definitions. This approach though has the disadvantage that the definitions are not centralized, which results in the fact that they may be hard to find if need be. The solution to this problem is an Index on page 145. The present part presents an introduction to formal methods in Chap. 1 and an introduction to quantum computing in Chap. 2.

	1.3. TESTING		CHAPTER 1. FORMAL METHODS
	programs can be seen as mathematical functions, operating on the memory of the com-has been previously tested, and the behavior of the software is known ahead of time. 1 puter. This gives us an intuition on the reason why proving properties about a program is But this is almost never possible as the number of combinations of the inputs of the
	even possible. There are several ways to achieve such proofs [Flo67, Hoa69, Dij75]. In software is very often considerable. For this reason, various methods of testing have
	Hoare logic (also called Floyd-Hoare logic), a program has a precondition (a logic formula been introduced to cover a spectrum of situations as wide as possible. Some examples of
	on the inputs of the program), and a postcondition (a logic formula on the outputs of the test method are unitary testing (where functions are tested independently of each other, FORMAL METHODS program), the aim being to prove the postcondition if the precondition is met. Each atomic as a form of divide and conquer strategy), model based testing (where a model of the
	statement composing the program having its own pre and post condition (the core of the world is theorized around the software to synthesize tests close to real world situations),
	proof is to find them), the proof is complete when the prover (be it a human or a program) analysis of tests coverage (to assess what parts of the code have been tested), ...
	is able to stitch them together. More information about software testing and RAC can be found in reference manuals,
	In order to prove properties of a program using Hoare logic, one presents all the needed such as [UL07]. But beyond those specific practices, verification always focuses on prop-
	information as a triple {P}p{Q} where P is the precondition, p the program, and Q the post-erties. Most commonly, those properties are about correctness, speed or efficiency, but
	condition. This way, reasoning about the program is quite straight forward, the program this rises the question of quantum properties: which one will eventually be central in quan-
	being decomposed as a sequence of operations, and each operation having some known tum programs? A first lead would be about accessing which properties could be verified,
	effects on the logic. For example, combining sequentially two programs p and p ′ is done such property should be decidable, but other conditions may need to be added.
	as follows:		
	        	{P}p{Q} {Q}p ′ {R}	=⇒ {P}p; p ′ {R}.
	1.2/ RUNTIME ASSERTION CHECKING
	Unfortunately, it can be very hard to prove a program. This is why a software engineer has
	other tools on his belt to ensure that a software is doing what it is meant to do. Runtime
	Assertion Checking (RAC in short) is the process of evaluating various properties while
	suffice to definitively certify the correctness of a program, I consider some applications of the program is running. It ensures that the program is not misbehaving and sends a signal
	three of the above mentioned methods: one static -deductive verification in Sec. 1.1 -when it is. The mechanism of exceptions(in Python, Java, and more...) can be seen as
	and two dynamics -runtime assertion checking in Sec. 1.2 and program testing in Sec. an example of RAC. RAC is most often used in development to help the programmer to
	1.3. have a clear vision of the state of the memory, and assertions are generally dropped in
	production (once the program is executed by its end users). This means that RAC has
	a positive influence on the behavior of the code, but contrary to deductive verification,
	1.1/ DEDUCTIVE VERIFICATION it does not provide any guarantee. This brings us to a very broad category of software
	development methods, which can use RAC but are not limited to it: testing.
	When considering software engineering, some may only think about writing the intended
	software, but a task at least as important is to ensure that the software does what it is
	supposed to do. In mathematics, the only way to tell that an equation is valid is to prove 1.3/ TESTING
	it. Computer science has its roots in mathematics, as the Pascal's Pascaline [VPL19]
	for restricted calculations, the Babbage's analytical engine [Bro82] for more general cal-Testing in software design has a huge role in designing well behaving software. Testing
	culation and Turing's Bombe [Gre14] for cryptography are testimonies. This embedding is also a common practice in many other engineering domains. Software testing can be
	of computer science in mathematics from the very beginning gives us an insight of why automated, to be as extensive as possible. Ideally, any situation presented to a software
			11
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The aim of this thesis being to work toward quantum program verification, one needs to

first establish a baseline for general program verification. A program can be said to be verified if some methods ensuring that it fulfills its objectives have been applied. These methods can be classified in two broad categories: they can either be static or dynamic. Static analysis of the code does not run the code, and analyses it without execution, and dynamic, on the other hand, does run the code. Some methods of static analysis are deductive verification, where the code and its specifications are used to generate proof obligations; or abstract interpretation, where domains for the variables are considered instead of their exact values, in order to obtain information about the domain of the output. These methods are complementary: because of their real-world implementation, even though the program may not have any undesired behavior in theory, it may behave unexpectedly when confronted to other surrounding systems. Since a single method does not

  for all classical states) of some states generated by these algorithms.Knowing that a state exhibits non-local properties allows us to conclude that the state is entangled. In this respect one uses Mermin polynomials as entanglement witnesses as suggested in [TG05, GT09]. Batle et al. [BOF + 16] previously investigated non-local properties during Grover's algorithm using Mermin polynomials. However they concluded to the absence of non-locality. In the present work we setup the Mermin polynomials in such a way that we exhibit, on the contrary, violation of the classical inequalities in Grover's algorithm. Moreover our evaluation techniques are more efficient, allowing us to reach 12

	field=UniversalCyclotomicField()
	e8=field.gen(8)	
	sqrt2=e8 + conjugate(e8)	
	Listing 3.6: Snippet of code enabling exact calculation
	3.4/ CONCLUSION	MERMIN POLYNOMIALS FOR
	In these experiments, the results were quite trivial (since both of those algorithms are ENTANGLEMENT DETECTION IN
	themselves quite trivial), but this proof of concept showed us that it was possible to use
	this simulator on harder problems. This is exactly what we did when using it to study Grover's algorithm and the Quantum Fourier Transform (QFT) with Mermin polynomials. GROVER'S ALGORITHM AND QUANTUM
		FOURIER TRANSFORM
	We focus on Grover's algorithm [Gro96] and the Quantum Fourier Transform
	(QFT) [NC10, Chap. II-Sec. 5] which plays a key role in Shor's algorithm [Sho94]. We
	choose these two examples because they both provide quantum speed-up (quadratic for
	Grover's algorithm and exponential for the QFT) and are well understood and described
	in the literature [NC10]. Previous work tackled entanglement in Grover's algorithm and
	the QFT from two perspectives: quantitatively, with the Geometric Measure of Entangle-
	ment (GME) [Shi95, BNO02, WG03], separately for Grover's algorithm [RBM13] and the

simply by adding the snippet of code shown in listing 3.6 and by replacing √ 2 by the newly defined sqrt2 in the code. We went no further than 4 qubits because the code at this point was still a proof of concept.

This chapter reports on the content of [dJH + 20, dJH + 21], with some notions previously defined in this manuscript not repeated here.

4.1/ INTRODUCTION

Quantum entanglement has been identified as a key ingredient in the speed-up of quantum algorithms

[START_REF] Jozsa | On the role of entanglement in quantum computational speed-up[END_REF]

, when compared to their classical counterparts. Our work is in line with previous works on a deeper understanding of the role of entanglement in this speed-up [EJ98, BP02, CBAK13, KM06]. QFT [SSB05], and qualitatively, by observing the different entanglement SLOCC classes traversed by an execution, for both algorithms [JH19]. Instead of directly measuring entanglement we use Mermin polynomials [Mer90, ACG + 16, AL16] defined in Sec. 2.4 to demonstrate the non-locality (breaking of an up-per bound holding

  One of the reasons that explain the exponential speed-up in Shor's quantum algorithm, is the complexity of the QFT which is quadratic with respect to the number of registers. By comparison, classically, the complexity of the Fast Fourier Transform algorithm that computes the DFT of a vector with 2 n entries is in O(n2 n ).
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H Figure 4.4: Circuit representation of the Quantum Fourier Transform for a n-qubit register Remark 1:

  when n tends to infinity (the approximation improves as n increases). Moreover the state |φ ent ⟩ is a tensor of rank two with an overlap ⟨x 0 |+⟩ ⊗n = 1/ √ 2 n between the states |x 0 ⟩ and |+⟩ ⊗n which tends to 0 as n increases, i.e., we expect the state |φ ent ⟩ to behave like a GHZ-like state when n is large (by definition the GHZ state is SLOCC equivalent to any non-biseparable rank-two tensor). This point is important because GHZ-like states are the ones that maximize the violation of classical inequalities by Mermin polynomials [Mer90, CGP + 02, ACG + 16]. Therefore by choosing a tuple of parameters A maximizing f M n (φ ent ) we expect to satisfy Properties 1. and 2..We use a random walk in R 6 to maximize f M n (φ ent ). We operate the walk for a fixed number of steps, starting from an arbitrary point. At each step, we choose a random direction, When searching the state |0000⟩, the highest value of f M 4 (φ ent ) obtained by this random walk is for A = (-0.7, -0.3, -0.7, -0.5, 0.7, -0.5). Then, A is used to compute M 4 , and then f M 4 (φ k ), ∀k ∈ {0, . . . , k opt }. Some comments are in order at this point to compare our approach with the work of [BOF + 16]. First in [BOF + 16] all calculations are done using the density matrices formalism instead of the vector/tensor approach we use here. But this difference is meaningless, because we are only considering pure states, so, every computation in the density matrix formalism can be done equivalently within the vector state formalism.Moreover in [BOF + 16] the optimization is done at each step of the algorithm with respect to the state computed by the algorithm, while we compute the parameters only once with respect to a targeted state |φ ent ⟩. Finally, as mentioned at the beginning of Section 4.3.1.1, we also restrict ourselves to two operators a and a ′ and thus all optimizations are performed on six parameters instead of 6n. This allows us to perform the calculation for a larger number of qubits (up to 12).
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and move toward it to a new point. If the value of f M n (φ ent ) at that new point is higher than at the previous one, then that point is the start point for the next step, otherwise a new point is chosen.

Once the proper coefficient for M n found, we compute the values of each f M n (φ k ) for k in {0, . . . , k opt } to validate Properties 1. and 2.. Example 2: 4.3.1.2/ RESULTS Thanks to our implementation of this method in SageMath, described in Section 4.4, we obtain the values depicted in Figure 4.5, for n from 4 up to 12 qubits. The searched element x 0 is always the first element |0⟩ of the canonical basis, but other searched elements would give similar results, by symmetry of the problem.

  .6).

	n	4	5	6	7	8	9	10	11	12
	⌊k opt /2⌋	1	1	2	3	5	8	12	17	24
	k max	1	2	3	4	6	9	12	18	25
	f M n (φ k max ) 1.21 1.72 2.05 2.69 3.37 4.17 4.83 6.36 7.71

  This function operates in two steps. The first step is to build the circuit for Grover's algorithm, which is achieved by the function grover_layers_kopt. The circuit format is described in Sec. 3.1. Then the circuit is executed, which is achieved by the function run that returns the list of the states after each layer. The function run is also described in Sec. 3.1.The for-loop then filters out all the intermediate states which are not at the end of a loop iteration. For example, if we consider Grover's algorithm on three qubits shown in Figure4.14, we would have the first state |φ 0 ⟩, and the states |φ 3 ⟩ and |φ 5 ⟩ in end_loop_states.

	This section is divided in two parts: we first explain the code used for Grover's algorithm in
	Section 4.4.1, and then the code used for the Quantum Fourier Transform in Section 4.4.2.
	4.4.1/ GROVER'S ALGORITHM IMPLEMENTATION
	For Grover's algorithm, the main function grover is reproduced in Listing 4.1. The pa-
	rameter target_state_vector is the searched state |x 0 ⟩. The function first executes an
	implementation grover_run of Grover's algorithm, detailed in Section 4.4.1.1, and stores
	def grover(target_state_vector):
	end_loop_states=grover_run(target_state_vector)
	M_opt=grover_optimize(target_state_vector)
	grover_evaluate(end_loop_states, M_opt)
	Listing 4.1: Main function for Grover's entanglement study
	4.4.1.1/ EXECUTION
	4.4/ IMPLEMENTATION
	The function grover_run given in Listing 4.2 takes as input the target state and returns a
	This section explains the code developed for this chapter and relates it to the notations list of states composed of the states at the end of each loop iteration.
	from Section 4.2. This code can be found at https://quantcert.github.io/Mermin-eval . It def grover_run(target_state_vector):
	uses the open-source mathematics software system SageMath 2 based on Python. The layers, k_opt=grover_layers_kopt(target_state_vector)
	N=len(target_state_vector) code is a module named mermin_eval, and usage examples can be found in the GitHub V0=vector([0, 1] + [0]*(2*N-2))
	repository. Note that all the results of this chapter have been double checked, by first
	being obtained on Maple 3 and then only being generalized on SageMath. states=run(layers, V0)
	end_loop_states=states[0] The code is provided and presented for several reasons: so the readers can see how for i in range(k_opt):
	end_loop_states.append(states[2*i+1])
	return end_loop_states
	Listing 4.2: Function running Grover's algorithm

7) is a state on the secant line joining |++++⟩ and |0000⟩, as described in Section 4.2.2. This state is indeed SLOCC equivalent to |GHZ 4 ⟩ but it is closer to a separable state if one considers the GME.

we obtained the results presented in Section 4.3.1.2, and they can reproduce our computations by running the code. But the code can also be extended to other evaluation methods of Grover's algorithm, or adapted to other quantum algorithms, since it is structured in several well-documented functions. in the list end_loop_states the states after each iteration of the loop L. Then but independently, a call to the function grover_optimize (Section 4.4.1.2) optimizes Mermin operator. The result is stored in the matrix M_opt. Finally both these results are used to evaluate entanglement after each iteration of L with a call to the function grover_evaluate (Section 4.4.1.3), also responsible of printing the evaluations at each step.

  process is included in the evaluation process: each evaluation requires an optimization. The evaluation process is thus performed by the function qft_evaluate (Section 4.4.2.2), printing the evaluation as well.

	def qft_main(state):
	states=qft_run(state)
	return qft_evaluate(states)
	Listing 4.7: Main function for QFT entanglement study
	def periodic_state(l,r,nWires):
	N=2**nWires
	result=vector(N)
	for i in range(ceil((N-l)/r)):
	result[l+i*r]=1
	return result.normalized()
	Listing 4.8: Function used to generate the periodic state φ l,r
	4.4.2.1/ EXECUTION
	The function qft_run (Listing 4.9) uses the same circuit format as grover_run presented
	in Section 4.4.1.1. This circuit is built by qft_layers (Listing 4.10) and run by run. In this
	case however, the states do not need to be filtered, resulting in an almost trivial qft_run
	function.
	def qft_run(state):
	>>> grover(string_to_ket("0000")) layers=qft_layers(state)
	0.173154027401573 states, _=run(layers, state)
	1.01189404012534 return states
	-0.469906068136016
	Listing 4.6: Mermin evaluation in Grover's algorithm example Listing 4.9: Function running the QFT
	4.4.2/ QUANTUM FOURIER TRANSFORM IMPLEMENTATION
	For the QFT, the main function qft is reproduced in Listing 4.7. The parameter state is
	the state ran through the QFT, generally a periodic state φ l,r generated by the function

the end_loop_states list with M n here being M_opt, and prints them. def grover_evaluate(end_loop_states, M_opt): for state in end_loop_states: print((state.transpose().conjugate()*M_opt*state)) Listing 4.5: Evaluation function for Grover's algorithm To overview the code as a whole, we can exhibit the link with Figure 4.5. For this figure, each graph has been obtained by using a code line such as in Listing 4.6 (where string_to_ket is a function used to convert a string of a specific format into a vector, in this case the vector |0000⟩). So, for four qubits, we set the target state as |0000⟩, for five qubits as |00000⟩, and so on. This is enough for symmetry reasons (searching for |1001⟩ instead of |0000⟩ yields similar results). periodic_state (Listing 4.8). The function qft first calls an implementation qft_run of the QFT, detailed in Section 4.4.2.1, and stores the computed states in the list states.

Then the states are directly evaluated. The important difference compared to Grover's algorithm implementation is the fact that we are not using a separate optimization step, the optimization

  such as entanglement or violation of classical Bell inequality, or temporal properties, such as the increase or decrease of a quantity related to non-locality, during the execution of a quantum program. In the present work we check properties during the execution of the program, for a fixed number of qubits. A promising possibility is to check properties statically, without executing the program and once for all numbers of qubits.

	A theoretical foundation for this static verification is the quantum Hoare logic [Yin11], an IMPLEMENTATION AIMED AT
	adaptation of the Hoare logic [Hoa69] to quantum programs. Mermin polynomials studied in this chapter seem promising to check properties during program execution, since Mer-EXECUTION ON A QUANTUM
	min evaluation corresponds to an experimental measurement that could be performed on
	a quantum computer (see for instance [AL16] for examples of Mermin evaluation on a PROCESSOR
	5-qubit computer, Chap. 5 presents another such implementation).
	In this chapter, we have shown that both Grover's algorithm and the QFT generate states
	that violate Mermin's inequalities. We provided, for different settings, curves measuring
	the evolution of the non-local behavior of the states through the algorithms. Evaluation
	of Mermin polynomials detects entanglement when it violates the classical bound and
	we compared our numerical results on non-locality evolution with the evolution of values
	obtained from several measures of entanglement for the same algorithms. Understanding
	the connection between entanglement and non-local properties of quantum states is a

difficult question and we did not intend to provide new theoretical perspectives on this subject. Instead our goal was more to focus on an operational level by studying how specific properties of quantum states generated by those algorithms behave. This work is a step towards contributions in quantum program verification, by checking state properties, One of the motivations for developing Mermin's polynomials as a tool for studying entanglement is that they have the potential to be executed on an actual quantum computer. This means that the simulator developed to obtain the results presented in Chap. 3 and 4 can now be replaced by a counterpart running on a quantum computer. In order to do this, we turn to the IBM quantum experience, and more specifically to the Qiskit library, an extensive python library offering an interface with either a local simulator, a cloud accessible simulator, or the quantum processors made accessible through internet by IBM. This work was done in cooperation with Grâce Amouzou, another PhD student working with Frédéric Holweck. This work was in fact not published on my side, but Grâce published some results coming from our common work [ABJ

+ 20]

.

  Aer provides the simulator and IBMQ the access to IBM's quantum experience computation nodes (classical simulators and quantum processors).

	def runCircuit(qc, simulation=True, local=True, shots=1024):
	n=qc.num_qubits
	if local:
	backend=Aer.get_backend('qasm_simulator')
	else:
	backend=least_busy(IBMQ.get_provider(group='open').backends(
	simulator=simulation,
	filters=lambda x: x.configuration().n_qubits > 4))
	job_exp=execute(qc, backend=backend, shots=shots)
	return job_exp.result()
	Listing 5.1: Wrapper around circuit execution

5.2/ MERMIN IMPLEMENTATION ON QISKIT I started by implementing a wrapper for the circuit execution in order to simplify this process. A simplified version of this wrapper is shown in listing 5.1 where Aer and IBMQ are classes from the Qiskit library.

  in the implementation of the Mermin polynomial, as presented in Sec. 2.4.1. Listing 5.2: Function computing the Mermin evaluation of a state prepared by a circuit.

	def evaluate_polynomial(n, circuit, a_a_p_coeffs,
	shots=1024, is_simulation=True, local=True):
	mermin_polynomial=mermin_IBM(n)
	total_result=0
	for i in range(2 ** n):
	if mermin_polynomial[i] !=0:
	measure_monomial=evaluate_monomial(n,i,circuit,a_a_p_coeffs,
	shots=shots,is_simulation=is_simulation,local=local)
	total_result+=mermin_polynomial[i]*measure_monomial
	return abs(total_result)

  4 , whose use is limited to 120 seconds. Listing 6.6: Code implementing a bounded exhaustive testing of Prop. 2 and 3.

	/**
	* Validation of Proposition 1 in [KM02] and [KM08]
	*
	* @param nbGrp :: RngIntElt Number of smallest first primitive groups tested
	*/
	procedure verifProp ( nbGrp )
	allG := PrimitiveGroups (: Warning := false );
	assert nbGrp le #allG;
	printf "degree ,numGrp ,delta ,isKM02 ,isKM08 ,isKM08_v2 ,time\n";
	for numGrp := 1 to nbGrp do
	G := allG[i];
	n := Degree (G);
	beginBlck := Realtime ();
	allBlck := BlckDsgnsFromPrmtvGrp (G);
	tBlck := Realtime ( beginBlck );
	for Delta in Keys( allBlck ) do
	block := allBlck [ Delta ];
	printf "%o ,%o ,%o ,%o ,%o ,%o ,%o\n",
	n, numGrp , Sprintf ("\"%o\"", Delta ),
	CorrectConstructionKM02 (n, block , Delta ),
	CorrectConstructionKM08_MagmaSym (n, block , Delta ),
	CorrectConstructionKM08_KMSym (n, block , Delta ),
	tBlck ;
	end for;
	end for;
	end procedure ;

  , X, Y, Z}, j ∈ {1, 2, . . . , n}}\{I n } (8.10) where I n ≡ I 2 ⊗ . . . ⊗ I 2 , X, Y and Z are the Pauli matrices, I is the identity matrix and

'⊗' stands for the tensor product of matrices. S n , whose elements are simply those of the n-qubit Pauli group if the global phase is disregarded, features two kinds of observables, namely symmetric (i.e., observables featuring an even number of Y's) and skewsymmetric; the number of symmetric observables is (2 n-1 + 1)(2 n -1). We shall further employ a finer classification where an observable having n-1, n-2, n-3, . . . I's will be, respectively, of type A, B, C, . . . ; also, whenever it is clear from the

Table 8 .

 8 

		4, were taken from [SLPP09].)		
	Type	Core	Perps Ovoids Grids #
	I	Two Secant Lines	1	0	2	45
	II	Single Line	3	0	0	15
	III	Tricentric Triad	3	0	0	20
	IV	Unicentric Triad	1	1	1	60
	V	Single Point	1	2	0	15

1: Properties of the lines types of V(W(3, 2)) in terms of the core

Table 8 .

 8 Among the 15 lines only the three lines {XX, YY, ZZ}, {XY, YZ, ZX} and {XZ, Y X, ZY} are negative, forming also one system of generators of Q + (YY)(3, 2).It is worth noticing that the six quadratic W(1, 2)'s (i.e., unicentric triads) of Type 1 lie on the distinguished quadric Q + (YY)(3, 2), being in fact its six ovoids.8.4/ W(5, 2) AND ITS THREE-QUBIT DOILIESThe space W(5, 2) contains 63 points, 315 lines and 135 generators, the latter being all Fano planes. Among the 63 canonical three-qubit observables associated to the points, nine are of type A, 27 are of type B and 27 are of type C. Through an observable of type C there pass six negative lines, all being of type C -C -B; the total number of negative lines of this type thus is 27×6 2 = 81. Through an observable of type B there pass four negative lines. Of them, three are of the above-mentioned type and the fourth one is of type B -B -B; the total number of negative lines of the latter type is 27×1 3 = 9. As no negative line features an observable of type A, one finds that the W(5, 2) accommodates as many as (81 + 9 =) 90 negative lines.

	.15)

In the sequel, when referring to W(2n -1, 2) and its subspaces we will always have in mind the W(2n -1, 2) and its subspaces whose points are labelled by n-qubit observables from the set S n as expressed by Eqs.

(8.11

) and (8.12). Moreover, a linear subspace of such W(2n -1, 2) will be called positive or negative according as the (ordinary) product of the observables located in it is +I n or -I n , respectively. Let us illustrate this point taking again the n = 2 case. Up to isomorphism, there is just one type of the two-qubit doily.

Its six observables of type

A are IX, XI, IY, Y I, IZ, and ZI and its nine ones of type B are XX, XY, XZ, Y X, YY, YZ, ZX, ZY and ZZ, the latter lying on a particular hyperbolic quadric, Q + (YY) (3, 2).

8.3/ W(3, 2) AND ITS TWO-QUBIT W(1, 2)'S This is a rather trivial case. As already mentioned in Sec. 2, the doily contains three negative lines, of the same (B -B -B) type. Among its W(1, 2)'s, we find two types 2: Classification of W(1, 2)'s living in W(3, 2)

Table 8 .

 8 3: Classification of doilies living in W(5, 2) , respectively, the number of 'linear' and 'quadratic' doilies of a given type. It is also pictorially illustrated in Fig.8.5, a depiction of representatives -numbered consecutively from left to right, top to bottom -of the 13 different types of three-qubit doilies; Type 1

	When we pass to W(3, 2)'s, we find a (much) richer structure, because alongside the types
	of observables we can employ one more parameter, namely the number of negative lines
	a given W(3, 2) contains. In fact, we find that the 336 linear doilies (see Eq. 8.14) fall
	into six different types and the 1008 quadratic ones (see Eq. 8.15) into seven types; we
	note in passing that Type 9 splits further into two subtypes depending on whether the
	two observables of type A do (Type 9A, 162 members) or do not (Type 9B, 54 members)

commute. This classification is summarized in Tab. 8.3 which gives a classification of doilies living in W(5, 2). Column one (T ) shows the type, column two (C -) the number of negative lines in a doily of the given type, columns three to fiven(O A to O C ) indicate the number of observables of corresponding types, and columns six (D l ) and seven (D q ) yield

Table 8 . 5

 85 

	1 130	9	33 18	108	-ell	---
	2 126 24	0	39	-	108 full	---
	3 126 13 27 22	-1944 hyp	---
	4 126 10 30 21	-1620 perp	---
	5 122 15 27 20	972	-hyp	---
	6 122 10 30 21	-	648 perp	---
	7 118 16 32 15	-	324 perp	---
	8 118	9	33 18	648	-ell	---
	9 118 11 25 24	-1296 hyp	---
	10 114 15 27 20	324	-hyp	---
	11 114 17 27 18	-	216 hyp	---
	12 114 13 25 22 1944	-hyp	---
	13 114 12 28 19	-1944 perp	---
	14 110 15 25 20	-1944 hyp	---
	15 110 11 23 24	648	-hyp	---
	16 106 13 23 22	-1944 hyp	---
	17 102 21 27 14	-	648 hyp	---
	18 102 18 30 13	-	324 perp	---
	19 102 15 25 20	-	648 hyp	---
	20 102 12 28 19	-1944 perp	---
	21 90	36	0	27	-	12 full	ell: O = YYY
	22 90	22 30	9	-	108 perp hyp: all 9 O's featuring two Y's
	23 90	9	33 18	36	-ell	---
	24 90	21 25 14	324	-hyp	perp: all 27 O's of type C
	25 90	16 28 15	-	324 perp ell: all 27 O's featuring one Y
	26 90	15 31 12	324	-ell	perp: all 27 O's of type B
	27 90	18 26 13	-	324 perp hyp: 26 O's having no Y + III
	28 90	17 21 18	108	-hyp	perp: all 9 O's of type A
	29 90	27 27	0	4	-ell	full W(5, 2)

: Classification of W(5, 2)'s living in W

(7, 2) 

https://coq.inria.fr/

http://why3.lri.fr/

des polynômes de Mermin. Ceci pourrait également être abordé avec un autre logiciel de formalisation, tel que Why3 où l'automatisation pourrait aider à accélérer le processus.Une autre direction prometteuse est l'étude des géométries quantiques contextuelles. En effet, il semble que l'espace contenant les géométries ait une structure très riche, qui pourrait être explorée davantage. Ces géométries représentent des expériences mettant en évidence la contextualité quantique, mais la contextualité peut aussi être mise en évidence de manière plus générale par des protocoles, comme ceux employés dans les jeux quantiques. Cela signifie que des programmes pourraient être étudiés sous cet aspect, nous permettant peut être un jour de les spécifier en utilisant la contextualité.De plus, nos travaux relèvent plusieurs conjectures, validées seulement pour un petit nombre de qubits. C'est un endroit où les logiciels de preuve formelle nous permettraient de prouver ces propriétés pour tout nombre de qubits. Un exemple d'une telle conjecture serait le fait que toutes les lignes de W(2n -1, 2) forment des géométries contextuelles pour tout nombre n de qubits.

A register is a figurative location for information to be stored. In our quantum computing context, we say that a register contains one or several qubits. The states can be seen as snapshots of the registers at a given time.

http://why3.lri.fr/

The source code is available at https://quantcert.github.io/Mermin-eval .

http://www.sagemath.org

https://www.maplesoft.com

https://quantcert.github.io/Designs

There is however a GitHub project, "magdoc", aiming at fulfilling this functionality

http://magma.maths.usyd.edu.au/calc/

block design, 83 self-dual, 83 symmetric, 83 computational basis, 16 context valuation, 93 contextual configuration, 99 contextual geometry, 93 correctness, 1 degree of entanglement, 23 diffusion operator, 46 entangled, 23, 45 equivalence class, 23 expected value of an observable, 25 form, 99 group of permutations, 83 primitive, 83 transitive, 83 hermitian matrix, 17 Hilbert space, 45 Hoare logic, 12 incidence matrix, 95 incidence relation, 83 incidence structure, 83 inner product, 96 isotropic quadratic form, 97 local realism, 25 LOCC, 24 LU, 23 Mermin polynomial, 25 Mermin test function, 51 mixed states, 19 negative context, 94 non-contextual, 93 non-locality, 23 observable, 18 observable basis, 18 observable subspace, 18 oracle, 46 orthonormal family, 18 periodic state, 49 polar space, 106 generator, 106 rank, 106 positive contexts, 94 postcondition, 12 precondition, 12 projective space, 96 pure states, 19 QASM, 20 Qiskit, 20 Composer, 20 quadratic form, 100 quantum circuitry, 19

INDEX quantum configuration, 96 quantum gate, 16 quantum geometry, 93 contexts, 93 lines, 93 points, 93 qubit, 16 RAC, 12 Runtime Assertion Checking, 12 register, 16 semantics, 16 separable, 23, 45 SLOCC, 24 symplectic form, 96 symplectic polar space, 97, 107 elliptic orthogonal polar space, 107 generator, 99 hyperbolic orthogonal polar space, 107 hyperplane, 100 interpretation, 98 line, 99 linear, 111 perpset, 100 points, 97 quadratic, 112 quadratic form elliptic, 100 hyperbolic, 100 quadric, 99 elliptic, 100 hyperbolic, 100 totally isotropic subspace, 97 transpose, 17 unitary operator, 23 universal set of gates, 18 valuation vector, 95 Veldkamp space, 109 core, 110 ZX-calculus, 20

the properties of the block designs of Prop. 2 and 3.

The listing 6.3 presents a Boolean Magma function that characterizes the t-(v, k, λ) block designs. It converts the set of sets blocks into an incidence structure, to determine with the Magma function IsDesign [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF] if it is a t-block design. If so, it builds this block design to extract its characteristics with the Magma function Parameters [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF], then it checks that these characteristics are indeed those expected. Listing 6.3: Characteristic function of a t-(v, k, λ) block design.

/** * Characterization of t -(v,k, lambda ) block designs . * * @param blocks :: Set The design blocks . * @param t:: RngIntElt The number of distinct elements in lambda blocks . * @param v:: RngIntElt The number of blocks . * @param k:: RngIntElt The cardinality of blocks . * @param lambda :: RngIntElt The number of blocks contains the t elements . * @return BoolElt Indicates that blocks is a t -(v,k, lambda ) block design . */ CorrectDesign := function (blocks , t, v, k, lambda ) incidence := IncidenceStructure <v | blocks >; if not IsDesign (incidence , t) then return false ; end if; record := Parameters ( Design (incidence , t)); return record v eq v and record k eq k and record lambda eq lambda ; end function ;

Prop. 2 indicates that the constructed block design is a self-dual 1-(n, |∆|, |∆|) block design.

The listing 6.4 presents a boolean Magma function to check this condition. The function has as parameters the number of elements of the block design, the block design itself and its orbit ∆. It returns true if the constructed block design is a 1-(n, |∆|, |∆|) block design (checked with the previous function) and if it is self-dual (checked with the function Magma IsSelfDual [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF]). Listing 6.4: Properties of the block designs of Prop. 2.

Moori [START_REF] Key | Codes, designs and graphs from the Janko groups J 1 and J 2[END_REF]. The Magma documentation does not specify it, but after some tests, it seems that Magma implements the BIBD definition of symmetry. A BIBD (Balanced Incomplete Block Design) is a 2-(v, k, λ) block design. A BIBD is symmetric if it has as many elements as blocks [START_REF] Colbourn | CRC Handbook of Combinatorial Designs[END_REF]. Thus, Magma considers as symmetrical only block designs whose parameter t is equal to 2.

The listing 6.5 presents two Boolean Magma functions to verify the condition of Prop. 3 according to these two interpretations of the symmetry definition. The functions have as parameters the number of elements of the block design, the block design itself and its orbit ∆. Listing 6.6 presents a validation function for Prop. 2 and 3. Magma proposes a database composed of all the primitive permutation groups of degree 3 less than or equal to 2 500, that is 16 916 groups, and 7 643 primitive groups of higher degree. These groups contain between 1 and 4 095 permutations. The Magma function PrimitiveGroups [START_REF] Bosma | The Magma Algebra System I: The User Language[END_REF] returns the sequence of these primitive groups, sorted by increasing degree, then by in- 3 The degree of a group of permutations on a finite set Ω is the cardinality of this set Ω. 

Elliptics (G.4)

Perpsets (G.5)

Table 7.3: Cardinalities for each geometry family and their members the geometries in the same family, and for all sizes. For instance all hyperbolic quadrics are contextual. The only exception is G.2 where this is not the case for n = 2, but as explained earlier, this comes from the fact that, in this case, generators are in fact lines.

From the geometry construction it is clear that for a fixed n, the matrix A in Eq. 7.3 is the same (up to a change of basis) for all geometries in the same family (it can also be seen from the fact that the symplectic group Sp(2n, 2) acts transitively on the set of geometric hyperplanes [START_REF] Vrana | The Veldkamp space of multiple qubits[END_REF]). However the vector E of the right-hand side of Eq. 7.3 is not the same for all hyperbolic quadrics. To get a better understanding of this, it will be interesting to understand for instance how the symplectic group Sp(2n, 2) acts on the labeling of the contexts of W n .

7.5/ CONCLUSION

To sum up, Sect. 7.2 introduced observable-based contextuality proofs and a way to detect them by solving a single linear system per proof. Sect. 7.3 showed how to generate these proofs using a simpler representation of the observables and how to translate these proofs into objects from Sect. 7. This study also raised interesting questions about the structure of the geometries sets.

Indeed, if some families of geometries are contextual and others are not, it would be interesting to discover an underlying structure justifying this fact. This lead us to the work presented in the following chapter.

.1: Representation of some hyperplanes of the Mermin-Peres square. 

GENERAL CONCLUSION

Program verification is a key element for assessing that programs behave in accordance with some formalized requirements. So far, quantum program verification is at its very early stages. In this thesis, I have explored ways of specifying and evaluating two quantum properties, entanglement and contextuality, that prepare their formalization in a quantum program verification tool.

At first, a quantum circuit simulator has been developed in SageMath, allowing us to evaluate quantum state properties at any intermediate execution step, in a similar way to verification method known as runtime assertion checking. This prototype also offers the nice feature of optional choice between floating-point and exact computation, for either faster or more accurate results. With this simulator I presented two example algorithms -Deutsch's algorithm and Deutsch-Jozsa's algorithm (Chap. 3). Deutsch's algorithm was validated using exhaustive testing -a method where every possible input is tested -and Deutsch-Jozsa's algorithm was validated up to n = 5 qubits using bounded exhaustive testing. Both of these methods are elementary ways to validate software, only available in some simple cases. This same simulator was used in order to study the variation of entanglement in Grover's algorithm and the QFT using Mermin's polynomials (Chap. 4, [dJH + 20, dJH + 21]). In this work, we concluded that Mermin's polynomials are a suitable tool to dynamically measure entanglement at each step of a quantum algorithm. Furthermore, entanglement has an interesting behavior in Grover's algorithm: it increases up to a middle point, and then decreases until the end of the algorithm. This property could be used to check the validity of an implementation of Grover's algorithm for example. The behavior of the QFT in that regard is less regular, but we draw a comparison between the measure of entanglement using Mermin's polynomials and using the Cayley hyperdeterminant, showing some similarities, but also some differences. This work was then transposed with Grâce Amouzou to IBM's Qiskit library (Chap. 5) in order to assess whether these results could be transposed to NISQ (Noisy Intermediate-Scale Quantum)

processors, resulting in an article on the subject by G. Amouzou, J. Boffelli, H. Jaffali, K. Atchonouglo and F. Holweck [ABJ + 20]. At this time, the noise in IBM's quantum processors is still too important for obtaining results corresponding to the simulated ones, but the execution on their simulator yielded the same results as ours. The study of the QFT validated that some gates would affect entanglement, and others wouldn't. This gate property could be used in specification and validation.

Motivated by previous works by two of my thesis supervisors, we then tackled contextuality from the point of view of finite geometry. Jessy Colonval and I introduced ourselves to the field by implementing some known geometries generation algorithms in Magma (Chap. 6, [START_REF] Colonval | Formalisation et validation d'une méthode de construction de systèmes de blocs[END_REF]). We noticed that the mathematical community still lacked some important coding practices, resulting in imprecise results that we outlined. This work was A DEUTSCH-JOZSA ORACLE This chapter gives a formula to quickly compute the matrix corresponding to the oracle used in the Deutsch-Jozsa algorithm. This formula is followed by its proof, detailed enough to be formalized in a proof language later on if need be.

A.1/ FORMULA

First of all, let's introduce some notations :

• n ∈ N * is the number of bits for the input of the function

-1] are intervals that will be regularly used f : I → B is the function for which we want to know if it is constant or balanced.

Definition 3: Deutsch-Jozsa oracle

The oracle

With this definition, we can now introduce

, where the C i are defined as such:

And we'll use {C i } as the set of the coefficients of C i .

Let's recall that I = 1 0 0 1 and X = 0 1 1 0 . Theorem 1 (Deutsch-Jozsa oracle formula): We can compute U f with the following formula ∀x ∈ I,

Then the Cayley hyperdeterminant is [START_REF] Luque | The polynomial invariants of four qubits[END_REF]:

D COQ PROOFS

This chapter presents two Coq proofs the first one (listing D.1) showing that Mermin polynomials are well formed operators in the sense of SQIRE, and the second (listing D.2) that they are Hermitian. These proofs are not here to be understood entirely, but rather to show what efforts must be made to prove "simple" properties in Coq+SQIRE.

In SQIRE, an operator is a function taking two integers as input, are returning a complex number. This is a way to represent matrices using functions. an operator also has bounds:

we are only working in finite spaces. In order to be well formed, an operator must return 0 if any of its inputs are less that zero or outside its bounds. In listing D.1, we show the well formed-ness of the Mermin polynomials using induction on the size of the operators, we are furthermore doing this proof at the same time for M n and M ′ n (for the definition of the Mermin polynomials, see Sec. 2.4.1). The reader can see in this proof one difficulty of Coq proofs: each theorem must be explicitly used, for example, the fact that the Kronecker product of two well formed operators is a well formed operator (called by the command apply WF_kron) is quite trivial for a human, but not so for Coq.

The proof that Mermin polynomials are Hermitian is quite similar in spirit, the difference this time is that the calculation for the coefficients of the matrices must be perform, adding a layer of difficulty. But the proof is still quite compact thanks to the theorems and tactics implemented by the creators of SQIRE (the tactic unify_pows_two was a real life savior!).