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Preface

In the solar system, as well as in outer space, many planets and moons host large amounts of water, much more than Earth's total content. Farther away from stars, the cold space causes the water at the surface to freeze, forming ice. However internal heat sources may melt the water and even induce global oceans underneath an icy crust.

Albeit a simple abundant molecule, water behaves quite peculiarly. For instance cold ice, is a solid less dense than its liquid form, quite different than most molecules in nature. This causes the ice to float on water. For large water contents, an ice shell could completely cover a liquid ocean beneath it, as is theorized for Europa and other icy moons. Therefore the solid ice shell protects the ocean from radiation. One can presume that a warm protected ocean may be a habitable (and even a hospitable) environment for life. Water in direct contact with rocky cores can be richer in complex and organic molecules which increases the probability of life to emerge or to be sustained.

For some icy moons (e.g Ganymede and Titan), the hydrosphere could be excessively large, where the immense volume of the water builds up enormous hydrostatic pressures which crystallize water at warm/hot temperatures. This causes the water to become a different solid, called high pressure ice. There are more than ten forms of high pressure ices that depend largely on the temperature and pressure (hence the depth). These forms of ices are compressed due to excessive pressures, consequently they are denser. Whenever conditions allow it, they are expected to exist at the bottom of the ocean due to their densities. This causes a barrier of material transport between the rich rocky mantle and the ocean.

However, recent studies suggest that transport is possible through the high pressure ice mantle (from the rocky mantle to the ocean) [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. Such a geological transport occurs throughout millions of years and across tens and hundreds of kilometers. The slow activity cannot be directly measured, for this reason planetary scientist rely heavily on numerical modeling, especially with recent computational improvements. A more traditional approach to model geodynamics is to perform analogical experiments, where an alternative similar system is built to induce a similar activity in a laboratory at measurable scales.

Convection in high pressure ice mantles has an important role in increasing the potential habitability in oceans above them. This motivates the current study to investigate convection and exchange processes occurring in deep icy layers. The current PhD thesis is part of the EXPRODIL project (EXchange PRocesses Occuring in Deep Icy Layers) funded by Région Pays de la Loire in France. The main objective of this study is to model this convection using analogical laboratory experiments. This manuscript summarizes the corresponding study, and it is organized as follows.

Chapter 1 introduces the planetary context by explaining where and how water and high pressure ice mantles are present in icy moons. This introductory chapter also reviews some of the convection studies and their prerequisites. Chapter 2 summarizes the scaling of the planetary context to a laboratory model. The modeling materials are fully characterized and the experimental setup is built in the context of this study. Chapter 3 exhibits the experimental results and exploits the measurements to infer the geodynamics of icy moons and scale back the results to the planetary objects. The scaling is then verified with numerical simulations on convection in high pressure ice mantles in chapter 4. Subsequently, clathrate transports are investigated in high pressure ice mantles. Given that, interior models of icy moons rely heavily on thermodynamics of water, in chapter 5, a thermally consistent modeling approach is suggested to better constrain these interior models. The manuscript is then concluded by a brief summary and future perspectives. 

The habitable zone

Habitability of an environment refers to its ability to host life, regardless of its actual existence. Basic conditions must be met for life, as we know it, to exist. The conditions essentially comprise: liquid water, nutrients, energy and time [START_REF] Grasset | JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system[END_REF].

The search for habitable environments was first done in the so-called habitable zone [START_REF] Huang | Occurrence of life in the universe[END_REF], which is defined as the region around a star where planets with an atmosphere have the right conditions to sustain liquid water on its surface. Too close to a star, the water would evaporate, and too far it would freeze. For the solar system, the habitable zone is depicted in figure 1.1. Although many stars have one or more planets orbiting in their habitable zones, this study will only be restricted to the solar system, where more data is available. This classical definition of the habitable zone is based on the surface conditions only. However some life forms, such as chemolithotrophs, do not require light to sustain themselves, and hence do not require to reside on the surface. Therefore, such life forms can possibly exist outside the so-called habitable zone, if the basic requirements are met.

For instance, large quantities of water usually exist farther away from the sun. These planetary objects lie beyond the so called 'H 2 O ice line' (also known as the 'frost line' or 'snow line'), cf. figure 1.1. This threshold exists at a distance from the sun, beyond which, molecules including (but not restricted to) water are able to condense in large quantities during the accretion1 of these objects. The ice line separates the solar system into inner and outer regions. Objects forming in the latter can hold large quantities of water (up to 50 %), given that water on the surface is cold enough to form ice, and remain on the planet/moon. The distance to this line depends on the matter being condensed, as well as, the sun heat flux. While today it is estimated to be 3.5 to 4 a.u. 2 for H 2 O ice, in the sun's early age the distance was 2 a.u., 2 M yr after a possible giant planet formation [START_REF] Dodson-Robinson | Ice lines, planetesimal composition and solid surface density in the solar nebula[END_REF].

Behind the ice line

Examples of such planetary objects hosting large amounts of water are Europa, Ganymede and Callisto, which are icy moons of Jupiter. Orbiting Saturn are the icy moons Titan and Enceladus, among others. For simplicity, this study will focus only on satellites, that lie behind the H 2 O ice line but before the CO 2 ,because the latter adds further complications.

The potential habitability of such icy moons was first suspected from surface images provided by the Voyager mission. These observations hinted the presence of liquid water inside Europa [START_REF] Cassen | Is there liquid water on europa?[END_REF][START_REF] Squyres | Liquid water and active resurfacing on europa[END_REF], however with large uncertainties due to low resolution (> 2km per pixel). Better data was aquired subsequently, with NASA's Galileo mission that targeted Jupiter and its moons. During the last six years of the Galileo mission, higher resolution images (54m per pixel) in figure 1.2 showed more detailed morphological3 features of the terrain. Observations, in particular the discovery of chaotic areas, supported the presence of liquid water at shallow depths [START_REF] Carr | Evidence for a subsurface ocean on Europa[END_REF]. The surface features provide significant indicators of the age and activity: among the most commonly studied Jovian4 icy moons, Europa is hypothesized to be relatively young (owing to the sparsity of craters on its surface), and active (owing to the numerous lineae5 on its surface). Ganymede's images suggest a longer history, yet a current reduced activity. Callisto is even older (as can be deduced from the numerous craters on its surface in figure 1.2), yet with the least present activity among the three [START_REF] Carr | Evidence for a subsurface ocean on Europa[END_REF].

In addition to surface observations, further proof was provided by the detection of a magnetic induction signal measured by the magnetometer during overflights near Europa and Callisto by the Galileo spacecraft. The two aforementioned moons do not have magnetic fields, but they do fall inside the large Jovian magnetosphere. The measured induction suggests the presence of saline liquid water in both moons [START_REF] Khurana | Inducedmagnetic fields as evidence for subsurface oceans in Europa andCallisto[END_REF][START_REF] Neubauer | Oceans inside jupiter's moons[END_REF]. The same magnetometer detected the presence of an internal dipole magnetic field in Ganymede. This field falls inside the large asymmetric [START_REF] Moore | A complex dynamo inferred from the hemispheric dichotomy of jupiter's magnetic field[END_REF] rotating Jovian magnetosphere. Consequently, Ganymede's magnetosphere obscures a direct detection of water by magnetic induction [START_REF] Khurana | Inducedmagnetic fields as evidence for subsurface oceans in Europa andCallisto[END_REF]. In order to accurately measure the magnetic response, five magnetometer flybys were performed on Ganymede. The data fittings hypothesized induction; however, without absolute certainty [START_REF] Kivelson | The Permanent and Inductive Magnetic Moments of Ganymede[END_REF].

Measurements from the aforementioned missions brought insight onto the speed and vigor of Jupiter's magnetic field. Volatiles emitted by Io are energized by the Jovian magnetic field, thus forming a torus of plasma in the vicinity of Io, Europa and even slightly reaching Ganymede. This Jovian magnetosphere is 50 times larger than that of Earth, and completes a full rotation around itself every ∼10 hours. Additionally Ganymede has its own smaller magnetosphere inside the larger Jovian one. Given these circumstances, similar to Earth's northern lights, auroras (or aurorae) appear at the poles of Ganymede where the magnetic shielding is the weakest. Observations by NASA's Hubble Space Telescope in 2015, showed Ganymede's aurora being affected and reacting to its internal magnetic field. This further bolstered the claim that saline liquid water exists inside Ganymede [START_REF] Saur | The search for a subsurface ocean in ganymede with hubble space telescope observations of its auroral ovals[END_REF]. More data on Europa, Ganymede and Callisto will be given from NASA's Europa Clipper [START_REF] Pappalardo | Science from the Europa Clipper Mission Concept: Exploring the Habitability of Europa[END_REF][START_REF] Howell | Nasa's europa clipper-a mission to a potentially habitable ocean world[END_REF] and ESA's JUICE6 [START_REF] Grasset | JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system[END_REF] missions which are expected to launch by 2024 and 2022, respectively.

In the Kronian7 system, Titan (the largest moon of Saturn) was extensively studied in the Cassini-Huygens mission . The joint effort between NASA's Cassini spacecraft and the ESA's Huygens probe, strongly implied that Titan has liquid ocean beneath an icy crust [START_REF] Tobie | Titan's internal structure inferred from a coupled thermal-orbital model[END_REF][START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF]. A nitrogen N 2 rich atmosphere englobes Titan's exterior [START_REF] Tobie | The origin and evolution of Titan[END_REF]. Additionally, liquid methane seas and lakes were recorded near the poles in this mission [START_REF] Porco | Imaging of titan from the cassini spacecraft[END_REF][START_REF] Elachi | Cassini radar views the surface of titan[END_REF], confirming previous speculations from the Voyager mission and the Hubble space telescope observations. The Huygens probe landed near the equator of Titan. No currently existing lakes were observed (in contrast to the poles) but only evidence of previous running fluids [START_REF] Tomasko | Rain, winds and haze during the huygens probe's descent to titan's surface[END_REF]. Titan will be further investigated in NASA's Dragonfly mission which is expected to arrive to Titan in the mid-2030s [START_REF] Barnes | Science goals and objectives for the dragonfly titan rotorcraft relocatable lander[END_REF].

The Cassini mission also made an unexpected discovery that caused major changes in its plans. The sixth largest moon of Saturn: Enceladus was witnessed emitting jets of vapor or liquid from its south pole, most likely with high water content. Although the Cassini spacecraft was not designed primarily for sampling, it was reprogrammed by NASA to perform flybys near Enceladus' south pole and extract samples of these plumes. Heat and similar water composition to that of Earth were measured suggesting a habitable environment. Water H 2 O, molecular hydrogen H 2 , carbon dioxide CO 2 and methane CH 4 among many others were detected from those samples [START_REF] Postberg | A salt-water reservoir as the source of a compositionally stratified plume on enceladus[END_REF][START_REF] Waite | Liquid water on enceladus from observations of ammonia and 40ar in the plume[END_REF]. Researchers, therefore, suggest that under certain conditions this environment could potentially host organisms such as Methanogenic Archaea [START_REF] Taubner | Biological methane production under putative enceladus-like conditions[END_REF] and chemoautotrophic life [START_REF] Sekine | High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of enceladus[END_REF].

The presence of liquid water such as in cold environment can be explained by the various sources of heat acting on each moon. Radiogenic heat emanates from the rock mantles due to the radioactive decay of chemical elements. Another major source of heating can be tidal dissipation; it is due to the eccentricity of the moon's orbit. Given the eccentricity, the gravity acting upon the moon changes depending on the position within the elliptical path. Such gravity changes cause tidal flexing, the energy of which will be dissipated viscously via friction. The latter becomes a significant source of heat. Furthermore, the gravitational tugging depends highly on the distance between the moon and the planets, in addition to the mass of the latter. Considering that each orbit has its own average radius and eccentricity, not all moons orbiting the same planet have the same tidal heating. For instance, Ganymede is a far from Jupiter and its orbit has a low eccentricity of 0.0015 [START_REF] Tobie | Tidal dissipation within large icy satellites: Applications to europa and titan[END_REF], therefore most of its heating is generated solely from the rock mantle radiogenic activity. Whereas Europa8 is closer and has a higher eccentricity 0.010 [START_REF] Tobie | Tidal dissipation within large icy satellites: Applications to europa and titan[END_REF]; consequently its heat budget comprises radiogenic heat from the rock mantle, and a volumetric distribution of tidal heat throughout the ice and silicate mantles.

Classes of habitats

In light of the aforementioned evidence of liquid water at farther distances, the habitability question appears to be more complex than defining a distance at which liquid water can exist on the surface only. To this end, Lammer et al. [START_REF] Lammer | What makes a planet habitable?[END_REF] defined four types of habitats:

• Class I habitats are Earth-like planets, with only one example in the solar system.

• Class II habitats started out similar to Class I where life (in its current understanding) could possibly emerge, with evidence of previously existing liquid water and possibly volcanoes and tectonic activity. However due to different geophysical and stellar conditions the environment and life (if any) have evolved differently than Earth. Examples of such habitats are Mars and Venus.

• Class III consist of subsurface oceans in direct contact with a silicate sea-floor.

• Class IV habitats are subsurface oceans without silicate-rich sea-floors.

In the solar system, space explorations have identified potential Class III and Class IV habitats in moons orbiting Jupiter, Saturn and Neptune (given the evidence in section 1.1.2). These gas giants are orbited by numerous moons, the number of which to this day is still not definite. Objects belonging to Class III and Class IV are not only restricted to moons, counter examples from the solar system are the dwarf planets Pluto and Ceres.

The scope of this study is restricted to Class III and Class IV habitats with a large focus on the latter. However to understand the difference between the two, the interior structure of these icy moons will be explained in the next section.

Internal structures of icy moons

The presence of life conditions is mostly dependent on its interior content, since by definition Class III and Class IV habitats exist under the surface. Models can be built to hypothesize the interior structure of these planetary objects. The subject estimations rely highly on the moment of inertia data and the thermodynamics of water.

Moment of inertia

The moment of inertia is the body's resistance to rotation around its axis. In its mathematical definition it is written as: I = ρ(x,y,z)|| r(x,y,z)|| 2 dx dy dz. I is the moment of inertia, r is the local vector perpendicular to the axis of rotation, and ρ is the local density of an infinitesimal volume (dx dy dz). Therefore, two objects having the same bulk (global) density, could have different moments of inertia depending on the distribution of heavier elements (whether close or far from it axis of rotation).

For a perfectly uniform sphere, the moment of inertia around any chosen axis can be easily obtained as: I = 0.4R 2 M , where R is the radius of the sphere, and M its total mass. Although a planetary object might appear as a sphere, in fact it is bulged outwards near the equator due to centripetal forces from its rotation, as sketched in figure 1.3 (a). Compared to a sphere, a planet (or a moon) has a mass deficit near the poles and excess near the equator. Accurate moment of inertia data take into account the bulge, latitude, centripetal acceleration, and precession9 . The measured moment of inertia with respect to the axis of rotation is called C. A and B are the moments of inertia with respect to the axes orthogonal to the rotation axis. These three are often referred to, as the principle moments of inertia with C > B > A. For a perfect uniform sphere, A = B = C = I.

Measured gravity fields are analytically in function of (C -A). The precession, if measured 10 , is in function of (C -A)/C. The moment of inertia C could therefore be deduced. Normalizing C with the total mass M and average radius of the planetary object R, one obtains the moment of inertia factor C M R 2 . For a perfectly uniform sphere this factor is analytically obtained as 0.4. However, in a heterogeneous body, dissociation is expected given the density stratification of the different components. As a consequence, the moment of inertia factor is usually lower than 0.4; often in the range of [0.22;0.39], depending on the internal structure of the planet or moon. 

C 22 = B-A 4M R 2 . Modified from [1].
However, knowing the moment of inertia factor does not give a single solution. Completely different structures could have equal factors. To explain this, a two-component spherical shell structure is given here as a simple example. To determine the moment of inertia factor, one needs three variables, namely the inner core density, the outer shell density, and the inner core radius. Therefore if neither is fixed, two different configurations such in figures 1.3 (b) and (c) could have the same moment of inertia factor. From geological evidence, one could suppose that the outer shell is ice, and therefore the outer shell density is now known. Additionally, most planetary objects contain rocks, and therefore the range of rock density can now be also constrained. Susbequently, one could deduce the normalized inner core radius from moment of inertia data. This example was published in Nature [START_REF] Anderson | Gravitational constraints on the internal structure of ganymede[END_REF] for Ganymede and is shown in figure 1.3 (d).

Thermodynamics of water

This academic example could be refined to include the phase change of water and the presence of an iron core which explains Ganymede's intrinsic magnetic field. Ganymede's moment of inertia factor is 0.3105±0.0028 [START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF], among the lowest in the solar system, therefore suggesting a very highly differentiated structure. The refined procedure can in fact be applied to most planetary objects. Europa's estimates are 0.346±0.005, Callisto 0.3549±0.0042 [START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF] and more accurately Titan 0.341 [START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF].

Different configurations of ice mantles and global oceans inside these moons are also sketched in figure 1.4. The hydrosphere models are built based on the thermodynamics of water. To this end, it is important to estimate well the thermodynamic boundary conditions. Surface temperatures of the external shells are well defined from measurements. Hydrostatic pressure can be enormous at the bottom, owing to the weight of the large water content. Callisto [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF] and Titan [START_REF] Tobie | Titan's internal structure inferred from a coupled thermal-orbital model[END_REF].

Thermodynamic models were first made proposed on the simplified phase diagram of H 2 O [START_REF] Kirk | Thermal evolution of a differentiated ganymede and implications for surface features[END_REF]. Studying the thermal evolution for Ganymede, the model predicted a differentiated structure consisting of: ice I h11 layer, global ocean, high pressure ice mantle(s), outer rock core and inner core. This preliminary model was later upgraded to consider the effects of the chemical composition inside the water. Results from the Near-Infrared Mapping Spectrometer in the Galileo mission suggest that the icy satellite ocean composition could comprise MgSO 4 hydrates [START_REF] Carlson | Europa's Surface Composition[END_REF][START_REF] Dalton | Europa's icy bright plains and dark linea: Exogenic and endogenic contributions to composition and surface properties[END_REF]. Accordingly, Vance et al. [START_REF] Vance | Thermodynamic properties of aqueous MgSO4 to 800mpa at temperatures from -20 to 100°C and concentrations to 2.5molkg-1 from sound speeds, with applications to icy world oceans[END_REF][START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF] have studied the thermodynamics of MgSO 4 aqueous solutions on icy moons, starting from the thermodynamic representation of pure water by Choukroun and Grasset [START_REF] Choukroun | Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics[END_REF]. The chemical potential of MgSO 4 in water alters its activity, utlimately decreasing the melting temperatures when the MgSO 4 concentration is increased. The phase diagram therefore changes according to this concentration [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF], and is shown in figure 1.5.

Figure 1.5: Water ice phase stability in the presence of MgSO 4 (aq) in concentrations of {0, 3, 5, 10}wt.% as a function of pressure, in MPa, on the vertical axis (increasing downward), and temperature, in K, on the horizontal [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF].

Given the large uncertainties in Ganymede's measurements, a wide range of possible conditions have been investigated. To build their one-dimensional spherical models of the hydrosphere, Vance et al. computed the radial adiabatic profile. Thermal profiles are coupled iteratively with the thermodynamics of water and MgSO 4 hydrates, to consistently obtain the pressure from the depth and densities, that are pressure-temperature dependent. The average surface temperature is fixed, and a range of ice shell -ocean interface temperatures was considered (T b in figure 1.6), to help constrain the pressure dependent melting point, and hence the thickness of the ice shell (z b in figure 1.6). The profile within the ice shell is estimated using empirical relations and the ocean is assumed unstratified and convective. Additionally, a range of heat fluxes from the silicate mantle was assumed in addition to the MgSO 4 composition and the aforementioned interface temperature. The computed thermal profiles with their corresponding phase diagrams are shown in figure 1.6. More accurate measurements are yet to be taken by the next ESA mission JUICE; more specifically, measurements of the moment of inertia [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF] which would better constrain these models. Cold exterior surfaces, heat from the rock core, and long depths are contributing factors to natural convection. Over large geological time scales (millions of years), planetary scientists study convection inside mantles. However, the dynamics of convection remain highly dependent on how the ice flows. Using simple arguments, Parmentier and Head [START_REF] Parmentier | Internal processes affecting surfaces of low-density satellites: Ganymede and Callisto[END_REF] suggested that solid-state convection could occur in ice mantles, near their melting point for viscosities lower than 10 16 (P a.s). To this end, the next section will focus on summarizing the rheology of ice.

Rheology of ice

Rheology, by definition, is the study of material deformation. Subject to a force, matter can behave in two ways: elastically and/or viscously. The former presents a resistance to deformation upon an applied stress 12 . In a purely elastic response, a local displacement is non-permanent and returns back to its initial position upon release of the acting force. The latter behavior however, is a flow dampening dependent on the rate of deformation rather the deformation itself. In mantle convection, stresses are extremely low, yet deformations are high 13 given the large geological scales. To this end, the stress multiplied by the inverse of the strain 14 , in other words the elastic effects, can be neglected with respect to viscous ones which are mostly dominant, at planetary convection timescales.

As stress strains the material, its response can be ductile or brittle. The former provides a continuous deformation, while the latter exhibits a sudden failure beyond a point. Brittleness often appears in materials at high stress and/or low temperatures, where breaking is easier than sustaining continuous deformations at such stresses. In the absence of breaking, ductile deformation is volume conservative and therefore conserves the material strength. On the other hand, brittle deformation is usually not volume conservative. It is often associated with micro and macro cracks or porosity. As the brittle material is deformed, more cracks could propagate (or close, depending on the motion). Therefore the material volume fraction inside an infinitesimal element changes. Consequently, the strength of the material could vary. Planetary convective transports occur mostly in a ductile viscous rheology, but there exists some instances where brittle behavior is expected.

Many factors can influcence the rheology of material, such as: temperature, pressure (hence depth), current phase, molecular lattice structure, partial melt, time and microstructure. The prefix micro here is relative. For instance Ice I h is usually found in nature in polycrystalline form. Grains of ice crystals can range from few millimeters to few meters in size. The interaction between those crystals can have a strong influence on the overall macroscopic rheology of ice. Therefore the grain size is an important contributing factor in the flow. Additionally, the flow behavior also influences the grain size, and hence they are coupled as represented schematically in figure 1.7 [START_REF] Durham | Rheological and thermal properties of icy materials[END_REF]. Creep 15 mechanisms independent of the grain size usually occur at high stresses, which is not applicable to planetary convective flows. Grain size-dependent creeps can occur in processes, which will be elaborated as follows. Grain Boundary Sliding could occur at the joints of the polycrystalline structure. The deformation could also depend on how much Basal Slip is accomodated. A small deformation will allow either of the following two processes in a steady state flow. At lower stresses Diffusion Creep allows the stress concentrated area to relax [START_REF] Raj | On grain boundary sliding and diffusional creep[END_REF] by flowing the material away from the counter flux of lattice vacancies. Diffusion creep, whether in the bulk or at the grain boundaries, is predicted to exhibit a linear behavior of creep with the applied stress [START_REF] Nabarro | Deformation of Crystals by the Motion of Single Lons[END_REF][START_REF] Herring | Diffusional viscosity of a polycrystalline solid[END_REF][START_REF] Coble | A model for boundary diffusion controlled creep in polycrystalline materials[END_REF]. However at higher stresses, the deformation could be dominated by the Dislocation Creep of the lattice, a process often referred to as 'Super-plasticity', the stresses of which fit well on a power law behavior with the strain rate. Very high strains could be achieved in such a process; even necking and failure could be suppressed in tension tests [START_REF] Mukherjee | The rate controlling mechanism in superplasticity[END_REF][START_REF] Langdon | Grain boundary sliding as a deformation mechanism during creep[END_REF].

The rheological behavior of ice is often described by the 'Glen Law' also known as the power law, in equation 1.1. It is named after J.W. Glen, the first researcher who performed systematic laboratory rheological studies on ice subject to terrestrial conditions in the 1950's. The Glen law is not backed up theoretically, but it is rather an empirical law that was made to fit experimental findings.

˙ = A τ τ n d m g exp - E a + P ∆V vol R g T (1.1)
Here, ˙ is the shear rate, τ is the applied stress, A τ the stress prefactor, E a the activation energy, P the pressure, V vol the volume, R g the gas constant, T the temperature, d g the grain size, m the grain size exponent, and n the stress exponent which depends on microscopic creep process.

Taking stress over strain and rearranging the Glen law, one could obtain the apparent viscosity (η = τ ˙ ) in equation 1.2. Figure 1.8 represents a simple, yet informative, representation of the main issues in the rheology of ice I h [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF]. The shear stress exponent being strongly dependent on the type of creep and the stress value. Most importantly, laboratory experiments still lack the instrumental precision to rheologically characterize ice at low shear stresses.

η = 1 A τ τ 1-n d m g exp E a + P ∆V vol R g T (1.2)
To accommodate the various aforementioned creep mechanisms, a widely used constitutive equation relates the total strain rate as a combination of specified rates summarizing the four different creep mechanisms [START_REF] Goldsby | Superplastic deformation of ice: Experimental observations[END_REF], namely Diffusion Creep, Grain Boundary Sliding, Basal Slip and Dislocation Creep, (denoted by subscripts Diff, GBS, Bas & Disl, respectively) as follows:

˙ = ˙ Diff + 1 ˙ GBS + 1 ˙ Bas -1 + ˙ Disl (1.3)
Therefore, the effective viscosity becomes a composite one, described as follows:

η i = 1 η Diff + 1 η GBS + η Bas + 1 η Disl -1
(1.4) 15 Creep is the tendency of a solid material to deform slowly due to persistent stresses.

The parameters of each process were documented by Goldsby and Kohlstedt [START_REF] Goldsby | Superplastic deformation of ice: Experimental observations[END_REF]. Most notably the stress exponent is higher for the dislocation creep ∼ 4 and lower for GBS and Bas, namely 1.8 and 2.4, respectively. As previously established the diffusion law is linear with stress, hence an exponent 1 is used. However the latter mechanism falls below current experimental tolerances and its parameters are purely based on theoretical considerations.

Planetary convections occur predominantly at lower stresses [START_REF] Durham | Rheological and thermal properties of icy materials[END_REF][START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF] τ conv = 10 -4 -10 -3 (M P a). At these stresses measurements have not been well documented experimentally. This questions the accuracy of all studies in this context. The intra-crystalline dislocation slips govern the rheology of ice I h at high stresses, such as in mountain glaciers, where the stress exponent fits to n ≈ 3 [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF][START_REF] Budd | A review of ice rheology for ice sheet modelling[END_REF][START_REF] Durham | Creep of water ices at planetary conditions: A compilation[END_REF]. Figure 1.8, suggests that the rheology for lower stresses (and very low strain rates ˙ < 10 -11 (s -1 )) such as in convection flows, is dominated by linear diffusion creep mechanism with values of viscosity in the range of 10 13 ; 10 15 (P a.s) [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF][START_REF] Montagnat | Rate controlling processes in the creep of polar ice, in£uence of grain boundary migration associated with recrystallization[END_REF], depending on the grain size. The dominant contribution of diffusion creep was later confirmed numerically by Harel et al. [START_REF] Harel | Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology[END_REF] where the contributions of GBS and Basal slip only appear at lower temperatures in the stagnant lid. In such relevant planetary convections, dislocation creep of ice does not have a noticeable contribution [START_REF] Harel | Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology[END_REF]. To mimic the rheological behavior in the planetary context, the experimentally applied strain rate must be very low. However, the strain itself (not its rate) must be quite larger than the ones being currently tested. This is because the momentum transport happens across kilometers, very large dimensions with respect to the grain size. In contrast, the laboratory measurements have much smaller sample sizes (∼10-20 mm) and grain sizes (∈ µm). This is problematic given that the rheology of polycrystalline ice, briefly explained above, depends on the crystal grain size. One could consequently argue that the tested samples are not elementary representative volumes to generally characterize it.

Partial melt can also significantly affect the rheology of the mixture, as was experimentally shown by De La Chapelle et al. [START_REF] De La Chapelle | Compressive creep of ice containing a liquid intergranular phase: Rate-controlling processes in the dislocation creep regime[END_REF]. It should be noted that the rheology of phase change should be better detailed to deduce reliable empirical laws that take into account the changes in each of the creep mechanisms at different stress levels. Such changes could also influence the local volumetric heat generated by friction through processes such as tidal activity. The rheology of ice even in its first hexagonal solid state needs more diverse experimentation, refined characterization and documentation.

Rheological data of high pressure ice are even more scarce and divergent. Two distinct experimental measurement techniques have been investigated. The first, used by Sotin and Poirier [START_REF] Poirier | Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede[END_REF][START_REF] Sotin | Creep of High Pressure Ice VI[END_REF], employs a sapphire cell. Ice VI (and ice V [START_REF] Sotin | Viscosity of ice v[END_REF]) were achieved by means of hydrostatic pressure, and the creep of ice is monitored by observation of marker displacements. The results from this experimental procedure show a stress exponents of n V I = 1.93 ± 0.02 for ice VI, and n V = 2.67 ± 1 for ice V. Furthermore, at a same tested temperature, Sotin and Poirier found that the viscosity of ice V could reach twice the values of viscosity of ice VI.

A second experimental technique was performed by Durham et al. on ice V and VI [START_REF] Durham | Rheology of water ices V and VI[END_REF][START_REF] Durham | Creep of water ices at planetary conditions: A compilation[END_REF]. The technique employs a Griggs-type 16 apparatus with a gas deformation rig. Different stress exponents were measured by this technique: n V I = 4.5 ± 0.02 for ice VI, and n V = 6.0 ± 0.7 for ice V. Furthermore, the viscosity of ice V in Sotin and Poirier's measurements [START_REF] Sotin | Viscosity of ice v[END_REF] was found to be higher than the one in Durham's [START_REF] Durham | Rheology of water ices V and VI[END_REF], by a factor of 10 3 .

It is important to mention that the ranges of temperatures tested by the two approaches are different. The measurements performed by Sotin and Poirier [START_REF] Sotin | Creep of High Pressure Ice VI[END_REF] ranged between 253K and 293K. On the other hand the tests by Durham et al. [START_REF] Durham | Rheology of water ices V and VI[END_REF] were farther from the melting point and ranged from 209K to 270K. The applied differential stresses were in the order of MPa, much higher than expected convection stresses. Noting also that the grain size effect was not much considered in rheological studies on high pressure ice; for this reason the term d m g in equation 1.2 is not documented.

Convection in ice mantles

Ice mantle convection is of striking interest for astrobiologists, and its motivations are twofold. First, in ice I h mantles it transports to the observable surface some of its contents. This reflects to a certain extent the composition of the liquid oceans, and consequently its potentially habitability. Second, in high pressure deep icy layers, it forms a transport mechanism for the nutrients to reach the liquid ocean. As previously mentioned in section 1.1, this is one of the primordial conditions for a Class IV habitat.

Convection in ice I h mantles

As was shown in figure 1.2, surface topographies can be different from one moon to the other. Therefore, studying convection on ice I h mantles could be very interesting given that the surface topography provides a partial solution for the geodynamics problem and could hint what's below the surface. However one must not mistake this for any easy task, while the end result is visible (e.g. topography), there exist many instances where the hypothesized geological activity remains too elusive to explain the observed topography. One such example is Europa's ice shell which has carried excessive interest. The high geological activity and the diverse topography suggest a plethora of physical mechanisms including, but not restricted to, solid state convection [START_REF] Pappalardo | Geological evidence for solid-state convection in europa's ice shell[END_REF]. Images from the Galileo spacecraft shown in figure 1.9 exhibit peculiar surface features. These have been interpreted by Pappalardo et al. [START_REF] Pappalardo | Geological evidence for solid-state convection in europa's ice shell[END_REF] as a result of buoyant warm ice that have moved upwards forming the so called diapirs, as explained in their sub-figure (g) in 1.9.

Figure 1.9: Pits, domes and spots of various specific morphologies (shown to a common scale) on the surface of Europa. North is to the top and illumination is from the east. (a), A dome which has flexed upwards pre-existing plains material without disrupting it; (b), a dome with a median fracture; (c), a disrupted plateau, suggesting a combination of uplift and disruption of material; (d), a depression with disrupted 'micro-chaos' material; (e), a disrupted plateau with a depressed annulus; and (f), a disrupted area with an annulus of dark smooth material. (g), Block diagram illustrating the interpretation of these features as due to diapiric rise of warm ice, and mechanical and thermal alteration of the surface and near surface [START_REF] Pappalardo | Geological evidence for solid-state convection in europa's ice shell[END_REF].

To further explain those surface features, numerical simulations are needed. While the average surface temperature on Europa can be measured, other conditions such as the radiogenic heat, tidal heat, thickness of the shell and the ice rheology have to be estimated. From the moment of inertia factor, one could estimate a range of possible radiogenic heat from the silicate mantle deduced from the internal structure [77]. The eccentricity of Europa's orbit causes internal tidal stresses that generate heat by friction. Models were developped to estimate the volumetric tidal heating, which largely depend on the rheology as well as the orbital frequency of the planetary object. These models either assume a Maxwell [START_REF] Zschau | Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides[END_REF][START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF]79] or Andrade viscoelastic rheology [START_REF] Castillo-Rogez | The tidal history of iapetus: Spin dynamics in the light of a refined dissipation model[END_REF][START_REF] Efroimsky | Tidal dissipation compared to seismic dissipation: In small bodies, earths, and super-earths[END_REF][START_REF] Běhounková | Impact of tidal heating on the onset of convection in enceladus's ice shell[END_REF][START_REF] Mccarthy | Tidal dissipation in creeping ice and the thermal evolution of europa[END_REF], the latter detects viscous heating at higher viscosities which is more appropriate. The elastic effects are considered in such models given that the tidal timescales are in the order of days, much smaller than convection ones.

As elaborated in section 1.2 the internal structure models of the hydrosphere rely heavily on the thermodynamics of water. The heat budget becomes essential to constrain the ice shell thickness. The former is however not uniformly distributed, due to tidal heating which depends highly on the latitude and even the longitude. For instance on Europa's ice shell, where tidal heating is significant, it is estimated to be the maximum at the poles and minimum at the equator mostly at the subjovian and antijovian points. Further complicating the heat budget estimation is the Laplace resonance of Io, Europa and Ganymede, which causes their orbit eccentricities to oscillate in the order of ∼ 100(M yr); this evidently causes the tidal heating to oscillate as well [START_REF] Hussmann | Thermal-orbital evolution of io and europa[END_REF][START_REF] Běhounková | Tidally induced magmatic pulses on the oceanic floor of jupiter's moon europa[END_REF].

While the heat budget can help constrain the thickness, surface observation can also help geologists estimate the elastic lithosphere thickness that could induce such topographies. However this additional constraining conditions did not particularly help in converging to a more likely thickness of the ice shell, but rather it created the "Great Thickness Debate" where estimates of the ice shell thickness ranged from very few kilometers to tens of kilometers [START_REF] Billings | The great thickness debate: Ice shell thickness models for europa and comparisons with estimates based on flexure at ridges[END_REF].

Numerical convection studies often assume an ice shell thickness which may or may not be very coherent with the heat budget of a moon, for instance Europa. Most of these studies impose an isotherm of ∼ 270(K) at the bottom of the ice shell, as a simplication. This could simulate unrealistic scenarios with over/under convective mantles, that otherwise in a thermally consistent system would lead to different ice shell thicknesses. The latter is very important in determining the vigor of convection. In convective shells, episodic upwellings of warm ice (even partially molten up to 2%) are able to reach the bottom part of the rigid ice layer at the top of the shell [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF]79], shown in figure 1.10 (a and b). The Great Thickness Debate could possibly be resolved thanks to the Europa Clipper [START_REF] Howell | Nasa's europa clipper-a mission to a potentially habitable ocean world[END_REF][START_REF] Pappalardo | Science from the Europa Clipper Mission Concept: Exploring the Habitability of Europa[END_REF] and JUICE [START_REF] Grasset | JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system[END_REF] missions, which will both be equipped with ice penetrating radar that will give insight on the thickness of this ice mantle, provided that the radar signal does not attenuate before the ice-ocean interface is reached [START_REF] Kalousová | Radar attenuation in europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure[END_REF]. Computations on the radar attenuation estimate that the interface could be detected if its depth is shallower than 15 km [START_REF] Kalousová | Radar attenuation in europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure[END_REF].

Similar models were used to estimate the influence of convection on the surface topography. One common approach adopted by Showman and Han [START_REF] Showman | Numerical simulations of convection in europa's ice shell: Implications for surface features[END_REF] simulates the ice in a free slip rigid enclosure, and the surface topography was estimated a posteriori by taking the normal stresses normalized by the hydrostatic pressure (cf. figure 1.10). Most of these classical models fail to predict the rich surface topography of Europa's ice shell, despite many attempts and compromises such as imposing very conservative viscosity contrasts which may not be coherent with the rheological measurements. Possible sources of error could be the omission of modeling the brittle thin layer at the top part of the ice mantle. The brittle mechanics are dependent on cracks that alter all physical properties, including the rheology. Therefore brittle mechanics is not volume conservative. Estimates of the brittle layer thickness depend on the mantle dimension, the heat budget, the rheology of ice and its porosity [START_REF] Nimmo | On the origins of band topography, europa[END_REF]. Backscatter radar data suggest a porosity of at least 0.35 on the surface of Europa, much higher than Ganymede and Callisto (porosity ∼ 0.025-0.075) [START_REF] Black | Icy galilean satellites: Modeling radar reflectivities as a coherent backscatter effect[END_REF]. Possible sources of porosity have been explained as a result of tidally driven fractures as well as brine pockets17 [START_REF] Lee | Mechanics of tidally driven fractures in europa's ice shell[END_REF], the latter being similar to ones observed on terrestrial ice [START_REF] Weeks | The Mechanical Properties of Sea Ice[END_REF]. One good example of the importance of brittle mechanics was exhibited by Howell and Pappalardo [START_REF] Howell | Band Formation and Ocean-Surface Interaction on Europa and Ganymede[END_REF], who included brittle failure in their numerical study. The simulated ice shell (thermally bounded between 95 and 270K) is pulled appart at the boundary to simulate plausible opening rates of bands on Europa. Depending on the strength of the lithosphere this approach could explain a spectrum of band formations, from smooth to grooved one, as shown in figure 1.11 

Convection in high pressure ice layers

Fewer studies have addressed the problem of convection in high pressure ice layers. Sotin and Parmentier [START_REF] Sotin | On the stability of a fluid layer containing a univariant phase transition: application to planetary interiors[END_REF] performed a linear stability analysis on two layers of different fluids. The authors of this article accounted for the melt by employing a Rayleigh number associated with phase transition. In other generic studies on layered convection and phase transition [START_REF] Christensen | Layerd convections induced by phase transition[END_REF][START_REF] Fu | The interior dynamics of water planets[END_REF], the problem was addressed differently. A parameter called the boundary Rayleigh number was related to the thermal classical Rayleigh number and to a non-dimensionalized Clapeyron slope in an parameter called 'phase buoyancy parameter'. It is however worthy to note that these above mentioned studies neither did describe the local convection dynamics nor were they targeted specifically to Ganymede, Titan or other known icy satellites.

Only recently, numerical studies were performed to study the dynamics of convection in high pressure ice layers [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. Choblet et al. [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF] performed 3D simulations for different values of basal heat and ice VI mantle thickness. It was shown that plume convection was possible, see figure 1.12 (a), which could facilitate the material transport from the silicates to the ocean. Each of these simulations was run four times, accounting for four different rheological behaviors of ice VI. Among the rheological laws employed, is the one mentioned in section 1.3 by Durham et al. [START_REF] Durham | Rheology of water ices V and VI[END_REF]. Another rheology -referred to as the 'homologous temperature formulation' -considered that the viscosity remains constant with depth for a temperature profile. These profiles were prescribed according to given fractions of the melting temperature. Both these approaches were used with melt and without melt, for every case study (a total of four rheologies for each case). The 'homologous temperature formulation' rheology gave higher viscosities compared to the one based on Durham's experimental measurements [START_REF] Durham | Rheology of water ices V and VI[END_REF]. This in turn affected the velocities, as the Durham rheology resulted in higher velocities compared to the homologous formulation. The melt in simulations of Choblet et al. leads to decreased viscosity and therefore higher local velocities.

The melt was further investigated by the same team in a more recent study [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. Numerically, the problem was tackled by a two phase porous media approach applied to Ganymede's HP ice mantle. Twenty 2D simulations, were carried out for different values of heat flux, ice VI mantle thicknesses, and reference viscosities. A sample of the temperature distribution obtained in this study is shown in figure 1.12 (b).

The uncertainty of the basal heat flux mentioned in section 1.2 did not affect the convection pattern in a significant manner. Kalousova et al. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF] explained that the heat flux value does not vary greatly the order of the Rayleigh number compared to the effect of the mantle thickness. On the other hand, simulations with different values of the mantle thickness exhibited an important effect on the convection. It is worthy to note that while the thickness of the mantle was varied, the aspect ratio of the computational domain was kept the same. However, the corresponding implications, vis-à-vis boundary conditions, were not discussed.

Synthesizing their results, Kalousova et al. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF] observed that 'the connectivity between the silicates and the ocean decreases with the increasing vigor of convection (increasing Rayleigh number).' Quoting also 'For large values of Rayleigh number (i.e. large HP ice layer thickness or small melting point viscosity), the heat transfer by solid-state thermal convection is so efficient that the average temperature at the silicate/HP ice interface is below the melting point ( T s av < T s m ) and no stable temperate layer is formed. Isolated patches of melt may appear transiently but they usually freeze quickly'.

To further understand these results, one could refer to the definition of the Rayleigh number. It represents the time scale ratio of conductive thermal transport over the buoyant advective thermal transport as written in equation 1.5 Ra = time scale for thermal transport by conduction (thermal diffusion) time scale for thermal transport by buoyancy driven velocity (advection) (1.5) This implies that high Rayleigh numbers engender faster convection. The heat is quickly advected away, preventing local melt and plume formation. Consequently, the connectivity between the silicate mantle and the ocean decreases. It is worthy to note that the local Rayleigh number changes with the varying viscosity across depth, as per the pressure contribution. In other words, the time scales of buoyant advection and diffusion are not proportional along the depth. Accordingly, both velocity and melt change radially as was shown in both studies [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. This effect is even more accentuated for polymorph HP ice mantles, such as in Titan, where solid-solid phase transition is expected to occur. Coupled with the thermodynamics of water, estimates of the one dimensional adiabatic pressure-temperature profiles on Titan imply a high pressure ice mantle comprising of ices VI-V and even possibly III. This problem was more recently investigated also by Kalousova and Sotin [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. The melt profile as well as the physical properties of ice change drastically per ice phase; most notably one can mention the density jumps across phases and at the triple points. These changes were accounted for in the model of Kalousova and Sotin. Additionally, scaling laws were derived in this study to relate the heat flux to the melt at the silicate interface, which would improve the solubility of volatiles in liquid water, as opposed to solid ice. Further scaling was done to relate the thickness of the temperate layer of partially molten ice to the viscosity and density contrast of ice and water. Future evolution models could implement these scaling laws to exhibit consistent scales without the need for excessive computations.

Despite the elaborate development in recent modeling of HP ice, transport of volatiles was assumed passive through the thermal plumes. No changes onto the physical properties of ice where considered due to the impurities. This remains to be accounted for in future studies.

Clathrate Hydrates

To this day, most convection studies do not account for the effect of the composition and the nutrients being transported. Therefore, these chemical components are assumed to be passively transported. However, are they really passive? To answer this question, the reader is reminded of two chemical compounds, among many others, that are being transported. One can name carbon dioxide CO 2 and methane CH 4 [START_REF] Postberg | A salt-water reservoir as the source of a compositionally stratified plume on enceladus[END_REF][START_REF] Waite | Liquid water on enceladus from observations of ammonia and 40ar in the plume[END_REF], which consist building blocks for biological organisms that could proliferate in these oceans of icy moons [START_REF] Taubner | Biological methane production under putative enceladus-like conditions[END_REF][START_REF] Sekine | High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of enceladus[END_REF] .

One of the various ways of ice hosting these compounds is Clathrate Hydrates. At certain thermodynamic conditions, the molecular structure of water crystals will change and be rearranged to form a three dimensional cage crystalline structure, inside of which, one or few host molecules will be entrapped. The 'skeleton' structure is sustained by the attraction forces of hydrogen bonds. Weak Van der Waals interactions between the guest molecules and the ice skeleton sustain the cage structure, these forces are repulsive by nature [START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF] Cavities (or cages) of clathrate hydrates may exist in five types. They are distinguished by the following notation: x 1 y 1 , where y 1 is the total number of faces for each cavity, and x 1 is number of sides for each face [START_REF] Soan | Clathrate Hydrates of Natural Gases, 3rd Edition[END_REF]. Very briefly, the types are enumerated as follows: pentagonal dodecahedron (5 12 ), tetrakaidecahedron (5 12 6 2 ), hexakaidecahedron (5 12 6 4 ), irregular dodecahedron (4 3 5 6 6 3 ), and icosahedron (5 12 6 8 ). Having defined the cage type, the stacking of the cages can be done in three different crystalline structures at near-ambient conditions; namely, cubic structure I (CS-I), cubic structure II (CS-II) and hexagonal structure (SH) [START_REF] Sloan | Fundamental principles and applications of natural gas hydrates[END_REF]. Figure 1.14 exemplifies schematically different clathrate hydrate structures and types.

Given the different crystalline structures of clathrate hydrates compared to ice, one would expect that the physical properties of each would differ. Additionally, these properties are also strongly dependent on the pressure, temperature, and the guest gas molecules. Table 1.1 shows a simple comparison of some thermal properties pertaining to H 2 O ice I h and clathrates in cubic structures I and II. The large difference in the thermal conductivities cannot go unnoticed. The values for clathrate cubic structures are four times lower than that of H 2 O ice I h . This would trap the heat inside the clathrate and create local heterogeneities that could eventually lead to instabilities and/or phase change. The linear thermal expansion coefficient of clathrates with cubic structure I is higher than that of pure water ice I h and the second cubic structure. This difference could only be attributed to the stacking structure of CS-I. No excessive changes can be reported on the heat capacity of either.

The density of clathrate hydrates depends highly on the guest gas molecule, as well as its degree of filling [START_REF] Soan | Clathrate Hydrates of Natural Gases, 3rd Edition[END_REF][START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. For instance methane (CH 4 ) clathrate at relevant planetary conditions have densities in the vicinity of ∼900 kg/m 3 . Being lower than that of ice, naturally buoyancy effects are expected. Nitrogen (N 2 ) and Carbon dioxide (CO 2 ) clathrates have densities similar to liquid water (thus lower than high pressure ice). Other guest molecules can induce much higher densities such as Xenon (Xe) with an approximate density in the order of ∼1800 kg/m 3 . Pressure increases the densities of clathrate hydrates. However the rate of increase is not always similar to that of ice. For instance, methane clathrate densities only increase by ∼10-15% [START_REF] Loveday | Stable methane hydrate above 2 gpa and the source of titan's atmospheric methane[END_REF][START_REF] Hirai | High-pressure structures of methane hydrate observed up to 8 gpa at room temperature[END_REF], much lower than the 35% increase in pure ice from 0 to 2 GPa [START_REF] Fortes | Phase behaviour of ices and hydrates[END_REF].

The rheology of clathrate hydrates is more elusive than that of pure water ice explained in section 1.3. Comparatively, for the same strain rate, clathrate hydrates requires applying differential stresses 10 to 30 times larger than that of water ice [START_REF] Durham | The strength and rheology of methane clathrate hydrate[END_REF][START_REF] Durham | Ductile flow of methane hydrate[END_REF][START_REF] Durham | Rheological comparisons and structural imaging of si and sii end-member gas hydrates and hydrate/sediment aggregates[END_REF]. This large difference in mechanical strength could be attributed to the slower diffusion time of water molecules in the hydrate lattice [START_REF] Durham | Ductile flow of methane hydrate[END_REF]. Care must be taken when conducting these experimental measurements, as the clathrate sample could dissociate if the thermodynamic conditions fall into its unstable regions (more information on the stability of clathrate will be given subsequently). Similar to ice rheometry, experimental constraints limit those measurements to stresses not lower than tens of MPa, several orders of magnitudes higher than those experienced in the planetary context.

The chemical stability of clathrate hydrates depends mainly on three factors. The first is the partial pressure of the guest molecule as well as its nature. The second is the possibility of mixtures of two or more guest molecule types. The third is chemical compounds that could alter the stability of hydrogen bonds forming the skeleton of the cage; such compounds could be ammonia, salts and alcohols. As a consequence the phase diagram of water, becomes even more complicated in the presence of impurities. Figure 1.15, shows the state of guest gas molecules and water in the vicinity of the interface between ice, water and vapor states. This shows that clathrate hydrates could dissociate and remain in the state of (gas+ice) instead of (hydrate+ice). The shaded area, which includes all the dissociation curves, separates the domains of stability and instability of clathrate hydrates in general. [START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF].

Experiments on clathrate hydrates were performed on large ranges of pressures. Figure 1.16 shows the stability lines of clathrates hydrate projected onto a part of the water phase diagram that is most relevant to the planetary context. Depending on the guest gas molecule, the hydrate structures seem to be stable at relatively high temperatures and pressures. Therefore their existence in deep icy layers could not be ruled out. Noting here that CH 4 , N 2 and CO 2 clathrates all have lower densities than high pressure ices (such as ice VI). This could potentially induce buoyant transport of clathrates and thus their guest gas molecules upwards to the subsurface ocean. , the stability curves of some clathrate hydrates, and two types of thermal profiles within icy satellites of the giant planets [START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. Modified after [START_REF] Sohl | Subsurface water oceans on icy satellites: Chemical composition and exchange processes[END_REF].

Clathrates could form even on Europa fed by hydrothermal vents [START_REF] Bouquet | The role of clathrate formation in europa's ocean composition[END_REF] or even possibly through the mantle magmatism [START_REF] Běhounková | Tidally induced magmatic pulses on the oceanic floor of jupiter's moon europa[END_REF] forming at the ocean-rock interface (under pressures of 130-150 MPa) [START_REF] Khurana | Inducedmagnetic fields as evidence for subsurface oceans in Europa andCallisto[END_REF][START_REF] Vance | Hydrothermal Systems in Small Ocean Planets[END_REF]. Formation of CH 4 is likely to occur in the presence of SO 2 , CO 2 and reduction of H 2 . Clathrate hydrates could exist under these conditions at the water-rock interface. Depending on the cage occupancy, two possibilities are expected. In methane-poor clathrates, the density could be higher than the density of water (depending on its content), and hydrates would sediment at the bottom of the ocean. Conversely, methane-rich clathrates could have lower densities than that of the ocean, and probably than that of ice. This raises the possibility of clathrate convection through the ice, ultimately affecting the surface topography. Very few quantities of methane were detected at the surface of Europa [START_REF] Carlson | Europa's Surface Composition[END_REF], implying either the absence of methane in the upwellings or a chemical destruction of CH 4 by radiation at the surface [START_REF] Bouquet | The role of clathrate formation in europa's ocean composition[END_REF]. This remains to be clarified in future missions such as Europa Clipper [START_REF] Pappalardo | Science from the Europa Clipper Mission Concept: Exploring the Habitability of Europa[END_REF][START_REF] Howell | Nasa's europa clipper-a mission to a potentially habitable ocean world[END_REF].

On larger bodies with deep icy layers, such as Ganymede and Callisto, pressures are even higher. Such conditions could imply a high content of H 2 forming a chemically reduced environment. This encourages the formation of lower density aqueous solutions such as ammonia-water. An aqueous activity in addition to potential fugacity 18 of volatiles consist a favorable condition for the formation or persistence of clathrate hydrates in these moons. Based on the density of the clathrate samples, buoyancy effects will determine its vertical location [START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. It would be also worthy to note that around 0.6-1 GPa some clathrates could change phase to high pressure condensed forms, and would consequently have higher density due to lower water content [START_REF] Loveday | High-pressure gas hydrates[END_REF]. This is expected to affect the convection of clathrates, if and when it occurs. Titan on the other hand, omitted purposefully in the previous paragraph, has different conditions. Saturn's largest moon has an atmosphere very rich in nitrogen N 2 (∼95%), and methane CH 4 (1.4% in the upper atmosphere [START_REF] Waite | Ion neutral mass spectrometer results from the first flyby of titan[END_REF] and up to 5% near the surface [START_REF] Niemann | The abundances of constituents of titan's atmosphere from the gcms instrument on the huygens probe[END_REF]). In the presence of solar UV radiation, these compounds are used in photochemical processes at very high rates, forming hydrocarbons, cyanides and other organic materials [START_REF] Yung | Photochemistry of the atmosphere of Titan -Comparison between model and observations[END_REF][START_REF] Coustenis | The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra[END_REF]. Given the high rate of this reaction, estimates suggest that in only 10 to 100 million years the methane budget (2.8×10 17 kg [START_REF] Niemann | The abundances of constituents of titan's atmosphere from the gcms instrument on the huygens probe[END_REF]) should disappear [START_REF] Yung | Photochemistry of the atmosphere of Titan -Comparison between model and observations[END_REF]. If the estimates are correct, this could suggest that there exists a replenishment process that compensates the used up methane, for it to exist at present day [START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. Sources of methane storage and replenishment mechanism could potentially be the following. First liquid methane trapped underneath an icy regolith 19 . The melting temperature of methane is much lower than that of water, which is why liquid methane lakes exist on Titan's icy crust. Second, the presence of methane clathrate hydrates which can be thermodynamically stable on Titan's surface, as well as in its interior [START_REF] Choukroun | Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on titan[END_REF].

For the first possibility to be consistent, the methane has to be released to the surface (and subsequently into the atmosphere). This could be possible through selfcompaction [START_REF] Kossacki | Hiding titan's ocean: densification and hydrocarbon storage in an icy regolith[END_REF] or re-supply of methane lakes if in proximity [START_REF] Hayes | Hydrocarbon lakes on titan: Distribution and interaction with a porous regolith[END_REF]. However many questions could be raised onto the regolith storage capacity, due to lack data to support large replenishment rates. On the other hand, it could be worthy to study the dynamics induced by the second possibility, namely replenishment by methane clathrate hydrates. Starting from this hypothesis, if the results converge to the current state, one may conclude the accuracy of this possibility.

Partial conclusion 1.6.1 Summary of context

In this chapter the evidence of liquid water on icy moons was briefly reviewed from the Galileo and Cassini missions as well as other sources. This naturally raises the question of habitability on these satellites. Planetary scientists have built interior models of these moons based predominantly on the moment of data inertia and some constraints on the density. Water is a phase change material. By considering the thermodynamics changes of the outer hydrosphere, the density data and hence interior models can be refined for icy moons. Due to low temperatures, water freezes to ice I at the outer part of the hydrosphere. However heating sources such as radiogenic decay and tidal dissipation can keep a considerable amount of water in the liquid state which is denser. Some icy moons such as Ganymede, Titan and Callisto, host immense amounts of water which build up excessive hydrostatic pressures. At some pressure and temperature conditions, warm water can crystallize into high pressure ice polymorphs which are denser than liquid water. On these aforementioned moons, thermodynamic estimations suggest that high pressure ice mantles reside at the bottom of the hydrosphere. This could lower the potential habitability of the oceans above, isolating them from a direct contact with a rocky mantle; which otherwise would enrich the ocean with interesting molecules for the formation and sustainability of life.

Recent studies [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF] suggest that convection could commonly occur in the high pressure ice mantles, transporting volatiles from the rocky mantle to the ocean. This evidence motivates this study to investigate more convection in high pressure ice mantles.

To this end, it was first important to review the rheology of ice which is the key to how ice would convect. This was followed by a brief review on convection in ice and high pressure ice mantles.

Objective of this study

Motivated by the above-mentioned recent studies, the objective of this thesis is to further investigate the convection and material transport in high pressure ice mantles. This study will first tackle the problem from an analogical experiments approach. This technique is classical and have led to robust results that explain well various geodynamic processes, such as the works done by the teams of Davaille (e.g. [START_REF] Davaille | Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle[END_REF][START_REF] Davaille | Onset of thermal convection in fluids with temperaturedependent viscosity: Application to the oceanic mantle[END_REF], among others) and Manga [START_REF] Manga | Formation of bands and ridges on europa by cyclic deformation: Insights from analogue wax experiments[END_REF]. However very few studies (if any) have attempted to model convection in high pressure ice mantles with analogical experiments, hence the need for this study. To establish physical similarity, the geological setting will be transformed to a laboratory one, which requires proper scaling and change of materials. Therefore several materials will be characterized to accordingly choose the most appropriate for modeling this problem. This will be followed by the design and building of an experimental setup that will allow measurements of the velocity flow fields using the Particle Image Velocimetry technique.

The scaled analogical experiments will be compared with an elaborate numerical model applied on the high pressure ice mantles to validate the scaling and the extent of its applicability. This study will also consider other aspects of the transport that have not received much attention. Most notably, when some molecules exist with water at some pressure and temperature conditions, they may form clathrate hydrates which have been purposefully reviewed in this section. This crystalline structure behaves differently than ice. This study, especially in the numerical model will consider clathrates and discuss their effects on the transport of diverse molecules to the ocean.

Experimental methods

The aim of this study is to build a laboratory scale experiment that reproduces, to a certain extent, the aforementioned convection in high pressure ice mantles. If relevant similarity criteria are satisfied, experimental modeling can be representative of the physics. Physical modeling comprises three aspects. The first is theoretical and consists of deriving the similarity criteria. The second is finding the suitable modeling material with desirable properties. The third aspect is setting up the experimental conditions to satisfy the theoretical similarity criteria.

Therefore the first section of this chapter represents the similarity criteria that must be accounted for in the modeling. Subsequent sections in this chapter will introduce potential modeling fluids and laboratory setup solutions with their practical aspects and limitations.

Similarity criteria

Considering that the problem at hand is geodynamic, the theoretical ground of the modeling will be based on a geological application to the similarity criteria. The reference used is "Subduction: Insight from Physical Modeling" by [START_REF] Shemenda | Subduction Insight from Physical Modeling[END_REF] [START_REF] Shemenda | Subduction Insight from Physical Modeling[END_REF]. It employs the theory of physical similarity which has been developped in the first half of the twentieth century [START_REF] Buckingham | On physically similar systems; illustrations of the use of dimensional equations[END_REF][START_REF] Bridgman | Dimensional Analysis[END_REF].

The general approach to physical similarity is based on dimensional analysis. If the controlling parameters are well known, the similarity criteria can be deduced mathematically. The following approach is one derived for geodynamic applications. For clarity, parameters with superscripts 'o' and 'm' represent the original phenomenon and experimental model, respectively.

Care must be taken when choosing control parameters, as some may be dependent on previously chosen ones. The number of independent parameters is equal to the number of variables minus the number of SI dimensions involved in the problem, as per the Pi theorem [START_REF] Buckingham | On physically similar systems; illustrations of the use of dimensional equations[END_REF]. In geodynamics, the mechanical aspect is mainly controlled by η, t, ρ, g, H the viscosity 1 , time scale, density, gravity and space scale, respectively. The ther-mal aspect in geological phenomena is mostly governed by buoyant natural convection and phase transition (if applicable), the control parameters of these thermal processes comprise T , α, C p , k and L the temperature, thermal expansion, specific heat, thermal conductivity, and latent heat (if applicable), respectively.

If phase change is included, the total number of variables is therefore ten; if not, the number of variables reduces to nine. All combined, the total number of SI dimensions for these parameters is four, namely kg, m, s and K. Consequently, only six (five if no phase change is involved) dimensionless terms can be constructed as similarity criteria. The first dimensionless parameter chosen in this study is the following, in equation 2.1. The choice is justified by the importance of the hydrostatic pressure ρgH discussed in section 1.2, the rheology η (section 1.3) and the time scale t (sections 1.4.1, 1.4.2). This parameter describes the geodynamics of the process, and should be kept the same in the original phenomenon and the experimental model:

η ρgH t o = η ρgH t m = constant (2.1)
It is essential to note here that the parameter chosen in equation 2.1 contains many common variables with the Reynolds number (Re = ρV H η ). Therefore, if the Reynolds number is also chosen as constant, the non-common elements will be also bound to form a constant parameter by transitivity, namely

g o t o V o = g m t m
V m . This limits the scaling capability because the gravity is not an easy parameter to choose, whereas other parameters can be more easily chosen (e.g. viscosity, density, thickness... etc.). Geodynamic convection flows are buoyantly driven, therefore the Reynolds number does not characterize them directly. For this reason, the equality of Reynolds number should not necessarily be forced, to allow more flexibility for modeling. However it is important to keep the fluid regime the same, namely the laminar one.

To model heat transfer, one has to ensure that the basic aspects of it must be modeled with the right proportions. More specifically, the transient diffusive profile must be the same in the planetary object, as well as in the laboratory model. The similarity will therefore include a conservation of the Fourrier number, 2,3 the second dimensionless parameter:

F o = κt H 2 o = κt H 2 m = constant (2.2)
Motivated by the objective of the study, the third chosen independent parameter is the Rayleigh number which usually characterizes the natural convection (key to connectivity of the silicate mantle to the ocean) as was explained in section 1.4.2.

Ra = αρ 2 C p g∆T H 3 kη (2.3)
pressures and stresses, in addition to their activation energies are not employed in the scaling. This due to the difficulty of finding all such relevant quantities in an existing modeling material to be used in the experiments. From the conductive heat flux equation:

Q = k ∂T ∂y ≈ k ∆T H → ∆T = QH k (2.4)
The main heat source on Ganymede is the radiogenic decay from the bottom4 . However, Titan experiences a higher eccentricity, and therefore a more significant volumetric heating. The latter is experimentally more challenging, and for practical limitations will not be included. Noting here that the expected tidal heating on Titan does not change the order of magnitude of the Rayleigh number, but it could change it by about 10% [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. Following these assumptions and limitations, the Rayleigh number could now be written in function of the heat flux Q from the rock mantle below the high pressure ice.

Ra = αρ 2 C p gQH 4 k 2 η o = αρ 2 C p gQH 4 k 2 η m = constant (2.5)
In many instance, such as in Ganymede's and Titan's high pressure ice mantle, the temperature difference is still not strongly constrained, but only estimated from thermodynamic models. Consequently the choice of equation 2.5 as the Rayleigh number instead of equation 2.3 is justified by two main reasons. Firstly, it represents a conservative approach to the uncertainties of measurements. From section 1.2 heat flux and water composition uncertainties are high. It is important to remind the reader that several potential temperature profiles (shown in figure 1.6) were calculated based on different probable heat fluxes, upper ice shell thicknesses and water compositions (with different thermophysical properties and fusion temperatures) and phase transitions. Therefore, these temperature profiles carry with them the uncertainties of heat flux estimation, multiplied by the uncertainties of the thermal properties. For this reason, the choice of heat flux instead of temperature difference is more conservative, and it is being used in recent articles on convection of high pressure ice [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF].

Secondly, the choice of heat flux, an extensive property, is favored over intensive properties (such as T ) in the presence of such large ranges of pressure. Thermodynamically, speaking the internal energy can be written as follows in equation 2. Changes in a thermodynamic state such as solidification can be usually achieved by means of low temperatures T M and change in entropy dS e (negative due to crystallization). Solidification can also be achieved isothermally under high pressures P which engenders volume compression dV vol (negative). Additionally, the presence of chemical agents, such as MgSO 4 , could act as an antifreeze agent, shifting the phase transition points [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF] (cf. section 1.2). Given the uncertainty of the contribution proportions of these intensive properties (T and P , among others), it remains more conservative to work on the thermal energy (and therefore the heat flux). On the grounds that the energy conservation law remains true for all thermodynamic conditions. Given that two of the similarity criteria involved the viscosity term. It is important to note here that this viscosity is a reference value as was considered in the Rayleigh numbers on convection [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. It is also assumed here that the stress exponent of viscosity is n = 1, as is consistent with the diffusion creep mechanisms. It has been previously established, in section 1.3, that the rheology of high pressure ice is far less documented and lacks agreements on the results. To this end, it seems more appropriate to not include shear thinning effects in this first modeling approach.

For representative modeling, not only should the Rayleigh number be the same, the thermal expansion of the modeling material must be similar. The Rayleigh number contains mechanical (mantle thickness and the rheology) and thermal information. Conversely, the fourth chosen dimensionless number is only related to the latter, namely the material's thermal expansion. The thermal expansion has not been fully exploited in the literature, but the bulk stresses from the thermal expansion may not be negligible in some systems.

[α∆T ] o = [α∆T ] m = constant (2.7)
An important dimensionless parameter that must be considered here is the Prandtl number in 2.8, which is the ratio of momentum diffusivity over that thermal diffusivity.

P r = C p η k m → C p η k o (2.8)
The Prandtl number for high pressure ice is expected to be enormous, in the order of [10 17 ; 10 20 ] due to the immense viscosity of ice. While it is evident that one cannot achieve such high Prandtl numbers in the experimental model, efforts will be made to increase its value as much as possible. The Prandtl number also relates the Rayleigh number to the Grashof number as follows: Ra = P r × Gr. The latter is a dimensionless parameter that describes the inertial buoyant forces over the viscous ones, quite analogous to the Reynolds numbers but to convective problems. Therefore, the Prandtl in this study will be chosen so as to induce convective regimes that are laminar with low inertial effects, to maintain the similarity with planetary convections as much as possible.

The last dimensionless parameters chosen is pertaining, and applicable, only in the case of phase change. The ratio of sensible over latent heat is given by the Stefan number. In this study the phase transition number P h, which is the inverse of the Stefan number [START_REF] Ziegler | The multiple meanings of the stefan-number (and relatives) in refrigeration[END_REF], will be used. This parameter is employed instead of the classical Stefan number for the simple reason of having the latent heat in the numerator. A high phase transition number signifies a higher contribution to the latent heat at phase change. This parameter is mostly related to the latent heat or the material's enthalpy of fusion/crystallization.

P h = 1 St = L C p ∆T o = L C p ∆T m = constant (2.9)
Having laid out the five similarity criteria, a systematic approach will be derived to find the experimental model variables. Otherwise, one would have to estimate values for different parameters, by trial and error, which is not practical. The properties of the modeling fluid are intrinsic and will be assumed known in the derivation. All variables pertaining to the original phenomenon will also be assumed known.

Looking at equation 2.1 and 2.2, one could notice that two unknown variables are common for both parameters, namely t m and H m . Therefore, by isolating the t's and substituting the ratio of H in both equations one could obtain, an equation with only one unknown, t m , as follow:

t m t o = ρ o g o H o η m ρ m g m H m η o & H o2 κ o t o = H m2 κ m t m . . . t m t o = ρ o g o η m ρ m g m η o κ o t o κ m t m 1 2
. . .

t m t o 3 2 = ρ o g o η m ρ m g m η o κ o κ m 1 2
. . .

t m = t o ρ o g o η m ρ m g m η o 2 3 κ o κ m 1 3
(2.10)

With t m known, one could proceed to use either equation 2.1 or 2.2 to compute H m . Here, from the latter one can obtain:

H m = H o κ m t m κ o t o 1 2 (2.11) 
Subsequently, the heat flux triggering natural convection can be obtained from the Rayleigh number equality, as follows:

Q m = αρ 2 C p gQH 4 k 2 η o × k 2 η αρ 2 C p gH 4 m (2.12)
The last three equations will serve for the scaling of the table-top laboratory experimental setup. More onto the scaling and limitations will be detailed, in section 2.3. Prior to the scaling, the modeling material must be chosen and its physical properties must be known, to compute the scaled parameters. To this end, the next section will focus on choosing the modeling fluid based on the physical properties and behavior.

Choice of the working fluid

It is desirable that the modeling material exhibits phase change. This would allow a two-phase similarity, with five dimensionless parameters as defined in the previous section. If phase change materials are not practically suitable for the similarity, the runner up candidates would be thermo-dependent Newtonian fluids for the rheological simplicity. However this would eliminate the phase change and consequently the last parameter, leaving only the first four (in addition to keeping the Prandtl number as high as possible).

Paraffin wax

The primary candidate for the phase change material is paraffin wax. In this study, two commercial paraffin waxes will be tested, having melting temperatures of (54-56) and (60-62)( • C). They will be labeled and differentiated by their melting point. Additionally, paraffin being a hydrocarbon compound can be mixed with mineral oil (330779 CAS-No: 8042-47-5 from Sigma Aldrich) to form waxy oils, which are also phase change materials.

For phase change materials, upon phase transition, the material absorbs5 or releases6 a thermal energy called the latent heat. It is named latent, conversely to sensible, because upon it's release the measured temperature does not change. It takes energy to make the randomly dispersed polymer molecules in the liquid phase more ordered in a compact crystalline structure in the solid state. This energy is the latent heat, in thermodynamics it is often referred to as the enthalpy of crystallization or fusion upon transition from liquid to solid or vice versa, respectively. Throughout the entire study, phase change from liquid to solid will be assumed by crystallization. Strong planetary evidence suggest that the ice, being modeled, is polycrystalline. This is quite a consistent claim given that the time scales of accretion are relatively long enough to allow crystallization (and not amorphous solidification), as discussed in chapter 1. For the laboratory models, the paraffin and waxy oils undergo crystallization in all the current experimental conditions as was checked with static and in-situ polarized microscopy.

The enthalpy of fusion/crystallization could be measured by heating/cooling a sample and melting/solidifying it in a controlled temperature and rate. The sample must be very small in size to minimize natural convection within. Additionally, to contain the molten sample and prevent heat transfer by convection with the surroundings, the sample must be encased in a small capsule. However, the latter naturally has a heat capacity that would absorb some of the imposed heat. To remedy this effect, one ought to perform simultaneously the same procedure with a capsule in the exact same mass and material, but without the sample. Therefore the thermal energy absorbed by the sample could be obtained from the measured heat of the first subtracted by the second that has an empty capsule, therefore subtracting its thermal contribution. This experimental measurement technique is known as the Differential Scanning Calorimetry (DSC).

Differential Scanning Calorimetry was performed on several oil-paraffin mixtures, using two paraffins having different melting points, namely [START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF] The latent heat shown in each plot is obtained experimentally by integrating the differential heat curve with the temperature. The cooling/heating rate and the mass of the sample are subsequently factored out to obtain the latent heat as an energy per unit mass, as follows.

h f = Q DSC dT m • dT dt (2.13)
Differential scanning calorimetry can also be used to measure the specific heat (heat capacity) C p of the material. The differential measurements usually occur at low cooling rates, and are done twice, once with and once without a sample. In the calculation of specific heat C p the differential heat flux is subtracted by Q b DSC the one from a baseline test with two empty capsules. This helps to minimize noise, the signal can be subsequently divided by the sample mass and the rate of heating/cooling to obtain the C p .

C p = Q DSC -Q b DSC m • dT dt (2.14)
The C p measurements are reliable per phase. However during the phase transition, the C p reading are not taken into consideration given that by definition, the heat is not purely sensible, but rather has a large latent contribution.

Having characterized thermally the potential modeling phase change material, one can go back to the dimensional analysis. Specifically the last similarity parameter, the phase transition number was defined as: P h = L/(C p ∆T ). From the literature, one could obtain the latent heat [START_REF] Bridgman | Water, in the liquid and five solid forms, under pressure[END_REF][START_REF] Bridgman | The phase diagram of water to 45,000 kg/cm2[END_REF][START_REF] Hobbs | Ice Physics[END_REF] and the specific heat [START_REF] Vance | Thermodynamic properties of aqueous MgSO4 to 800mpa at temperatures from -20 to 100°C and concentrations to 2.5molkg-1 from sound speeds, with applications to icy world oceans[END_REF][START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF][START_REF] Hobbs | Ice Physics[END_REF] of ices. For the oil-paraffin mixtures, the highest phase transition numbers are shown in figure 2.2 for the most conservative temperature differences ∆T ≥ (T M -T R ). The latter is obtained from the melting point minus the lab room temperature fixed at T R = 16 • (C), well controlled by an air conditioning system. This infers that the data point existing above the horizontal line (planetary data) can be subject to equality in the similarity parameter P h by increasing the ∆T . The temperature difference (denominator) cannot be decreased below (T M -T R ) as no melt would occur in that case. High paraffin concentrations are needed to model the high pressure ice mantle in Ganymede. This is due to the large contribution by latent heat compared to the sensible one. Lower latent heat contribution is expected on Europa's ice I h mantle, as discussed in section 1.4.1. This difference is partly due to the large pressure contribution on high pressure ice mantles, as opposed to the thin ice shell of Europa. Noting however that in convection studies on high pressure ice mantles, only partial melt (≈2%) occurs in the thermal plumes [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. While several cooling rates can be imposed on the sample, the latent heat does not change. However the cooling rate influences other things, most notably the size of the crystals. Lower cooling rates induce larger crystal formation as shown in figure 2.3. While the crystal sizes don't seem to influence much the latent heat, other physical properties could be altered, most notably the rheology. Whether for ices or other ma-terials, the rheology of phase change has not been documented in the literature. This poses a challenge on this study to characterize a complex behavior without supporting evidence from the literature. Additionally, one could question how could the rheology of phase change in paraffin be correlated to that of creep behavior in polycrystalline ice undergoing partial/complete melt.

dT dt = -3 • (C/min) dT dt = -10 • (C/min)
The rheological characterization was performed using a controlled stress rotational rheometer (Mars III, Thermofischer Scientific) equipped with a nano-torque module and a cone and plate geometry with a diameter D c = 60(mm) and an angle of 2 • .

To understand the rheological implications of the cooling/heating rate and the crystal sizes on the rheological behavior, one can take the same paraffin mixture in figure 2.3, namely 50 wt.% paraffin [START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF] and perform rheological measurements at different cooling/rate. Decreasing and increasing temperature ramp protocols are prescribed at a constant shear rate γ = 5(s -1 ). The cooling/heating rates were quasi-statically imposed in the temperature ramp protocols by defining the temperature and period of each step. The rheometer is equipped with a control system that regulates the temperature by means of the Peltier plate below the plane and the electrical oven enclosing the cone. In addition to the measured apparent viscosity (and temperature), in-situ polarized microscopy allowed image acquisition, while shearing. The light reflection from the solid crystals appears brighter than the surrounding fluid. The image acquisition shows locally the melt fraction. The average apparent viscosities and the corresponding volume fraction (from polarized microscopy) are shown in figure 2.4 for two different cooling/heating rates. The apparent viscosity is low when the material is molten and then increases sharply when transition occurs. From figure 2.4 one could notice that the cooling ramp does not superpose the heating one. The phase transition exhibits a hysteresis. The latter is not the same for both cooling rates. To understand how the hysteresis changes with the cooling rate, one could refer to figure 2.5. The hysteresis seems to increase with higher cooling rates. The latter means that the crystals sizes are getting smaller. The primary forming smaller crystals are easier to break than the larger ones. For the same shear rate, the higher cooling rate's phase transition can be delayed upon solidification. Hysteresis area values from increasing and decreasing controlled shear rate ramps for several cooling/heating rates on a mixture sample with 50 wt.% paraffin [START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF]. Black circular markers on the primary axis refer to the hysteresis area on the apparent viscosity. Red triangular markers on the secondary axis refers to the hysteresis area from the image brightness acquired by in-situ microscopy.

Several oil-paraffin mixtures can be measured to understand the effect of paraffin concentration on the rheology. Measurements are now done at a constant shear rate of γ = 5(s -1 ) isothermally during 2000(s) to minimize the effect of the cooling rate, and its hysteresis. The process is repeated for a range of temperatures, with increments of ∆T = 1( • C), decreasingly. Once the temperature is decremented, the material is presheared for a period of 200(s) to stabilize the temperature, within an accuracy of 1%. The rheometer is equipped with a control system that regulates the heat flux for the Peltier plate below the plane and the electrical oven enclosing the cone. The tested temperatures range in T ∈ [25; 70]( • C). The average apparent viscosity of oil-paraffin mixtures is shown in figure 2.6, in circular and triangular markers for [START_REF] Vance | Thermodynamic properties of aqueous MgSO4 to 800mpa at temperatures from -20 to 100°C and concentrations to 2.5molkg-1 from sound speeds, with applications to icy world oceans[END_REF][START_REF] Choukroun | Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics[END_REF][START_REF] Parmentier | Internal processes affecting surfaces of low-density satellites: Ganymede and Callisto[END_REF] and [START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF], respectively.

At high temperatures, all the oil-paraffin mixtures are in the liquid phase and their viscosity may be described by the classical Arrhenius law (cf. figure 2.6). When the temperature is gradually decreased below this point, the pure paraffin (60-62) apparent viscosity increases, with a high slope. A solid-fluid coexistence regime that departs from the Arrhenius law is observed. Upon a further decrease of the temperature, the entire material becomes a"soft" solid. Similar rheology can be observed in figure 2.6 for paraffin [START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF] and other oil-paraffin mixtures, starting from a similar, Arrhenius fitted, thermally activated behavior. Each mixture, has its own melting point depending on the concentration of paraffin, and the melting point of the latter. Over the tested temperature range, this binary system appears to have a monotectic phase behavior. The apparent viscosity naturally decreases with decreasing paraffin content, as less paraffin crystals provide lesser resistance to shear. This is advantageous to control the desired "viscosity" and melting point of the mixture. Note: The apparent viscosity for another phase change material, namely a gelatin aqueous solution with increasing and decreasing temperature ramps, is shown in pentagram markers, figure 2.6. This material has the advantage of having a low melting point and being transparent, in contrast to the opaque paraffin. However its high elastic effects (not shown here) and excessive hysteresis with the temperature ramps are not suitable for the current application. These disadvantages were eliminatory for its choice as a modeling material.

Before phase transition, for molten paraffin, the rheometry exhibits very low uncertainties. However, when transition occurs, the fluctuations increase, which can be seen from the large error bars. This is not expected from rheometric flows, and it is due to an instability, first discovered within the context of this study. This inertia-free instability was characterized and is reported next. The reader may also find it published: Himo R., Castelain, C., & Burghelea, T. (2021). Chaos in a melting pot. Journal of Fluid Mechanics, 918, A47. doi: 10.1017/jfm.2021.367 [START_REF] Himo | Chaos in a melting pot[END_REF]. The published content will be re-iterated here in this manuscript as follows in section 2.2.2.

Chaos in a melting pot

In the absence of inertial contributions, a hydrodynamic system is still prone to losing its hydrodynamic stability when a physical quantity contributing to the momentum balance becomes strongly stratified in space. To help illustrate this point, thermal convection may be triggered by differentially heating a flow cavity from below [START_REF] Bénard | Les tourbillons cellulaires dans une nappe liquide[END_REF] or gravity induced density stratification may sustain internal gravity waves, [START_REF] Landau | Fluid Mechanics[END_REF]. The loss of hydrodynamic stability due to viscosity stratification has been predicted theoretically several decades ago [START_REF] Yih | Instability due to viscosity stratification[END_REF] and investigated both theoretically [START_REF] Hickox | Instability due to viscosity and density stratification in axisymmetric pipe flow[END_REF][START_REF] Valluri | Linear and nonlinear spatiotemporal instability in laminar two-layer flows[END_REF][START_REF] Boomkamp | Classification of instabilities in parallel two-phase flow[END_REF][START_REF] Hooper | Long-wave instability at the interface between two viscous fluids: Thin layer effects[END_REF][START_REF] Hooper | Shear-flow instability at the interface between two viscous fluids[END_REF] and experimentally [START_REF] Charles | An experimental investigation of stability and interfacial waves in co-current flow of two liquids[END_REF][START_REF] Sangalli | Finiteamplitude waves at the interface between fluids with different viscosity: Theory and experiments[END_REF][START_REF] Barthelet | Experimental study of interfacial long waves in a two-layer shear flow[END_REF][START_REF] Charles | The horizontal pipeline flow of equal density oil-water mixtures[END_REF][START_REF] Burghelea | A novel low inertia shear flow instability triggered by a chemical reaction[END_REF][START_REF] Burghelea | Unstable parallel flows triggered by a fast chemical reaction[END_REF]. For a comprehensive review of such instabilities the reader is referred to Ref. [START_REF] Govindarajan | Instabilities in viscosity-stratified flow[END_REF].

There exist several distinct physical mechanisms that lead to a spatially inhomogeneous distribution of viscosity in a low Reynolds number flow. A simple hydrodynamic setting refers to co-flowing Newtonian fluids of different viscosities separated by sharp interfaces. For a Couette flow configuration, a unified view of the instabilities that may arise due to the viscosity stratification is provided in Ref. [START_REF] Charru | phase diagram' of interfacial instabilities in a two-layer couette flow and mechanism of the long-wave instability[END_REF]. A physically similar loss of hydrodynamic stability may be observed in a Poiseuille flow in the presence of viscosity stratification, [START_REF] Yiantsios | Linear stability of plane poiseuille flow of two superposed fluids[END_REF].

The use of complex fluids provides additional avenues towards generating a spatially inhomogeneous viscosity distribution and a subsequent loss of hydrodynamic stability in the absence of inertial contributions. Structural changes induced by shear in supramolecular assemblies have been reported for several self-assembled surfactant systems, [START_REF] Roux | Rheology of lyotropic lamellar phases[END_REF][START_REF] Herle | Stress driven shear bands and the effect of confinement on their structuresa rheological, flow visualization, and rheo-sals study[END_REF]. Such fluids typically exhibit a non-monotonic stress-rate of strain relationship that leads to the emergence of shear banding which may ultimately result in a loss of hydrodynamic stability and the observation of the so called "rheochaos", [START_REF] Sprakel | Shear banding and rheochaos in associative polymer networks[END_REF][START_REF] Gentile | Rheochaos and flow instability phenomena in a nonionic lamellar phase[END_REF].

Phase changing materials represent a broad class of materials that undergo a liquidsolid phase transition when their temperature is gradually decreased. Within this class, oil-paraffin mixtures are typically sought as "model systems" that closely mimic the physical behaviour of crude oils. Consequently, there exists a large body of studies of their rheological behaviour in both iso-thermal and non-isothermal conditions. The presence of wax crystals in crude oils at low temperatures leads to highly non-trivial rheological changes which often prevent optimal field operations during the industrial production stages, [START_REF] Marshall | Asphaltenes, Heavy Oils, and Petroleomics[END_REF]. A number of systematic rheological studies have clearly highlighted the strong thixotropic nature of oil-paraffin mixtures, [START_REF] Chang | The yielding of waxy crude oils[END_REF][START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF][START_REF] Visintin | Rheological behavior and structural interpretation of waxy crude oil gels[END_REF][START_REF] Geri | Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils[END_REF]. It has been recently shown that the complex rheological response of these mixtures is very well described by the Isotropic-Kinematic Hardening (IKH) model, [START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF]. Furthermore, oil-paraffin mixtures can exhibit brittle collapse with irreversible breaking of the microstructure [START_REF] Andrade | Brittle solid collapse to simple liquid for a waxy suspension[END_REF]. Although the flows of phase changing materials are ubiquitous in many industrial settings including polymer processing, oil field industry and food industry, their hydrodynamic stability has received practically no attention.

Measurement protocols

The measurement apparatus is schematically illustrated in figure 2.7. It consists of a 60(mm) diameter and 2 • angle cone mounted on a commercial rheometer (Mars III, ThermoFischer Scientific). The rheometer is equipped with a nano-torque module which, within the range of shear rates explored through this study, ensuring an instrumental accuracy of roughly 2%. The temperature was controlled with an accuracy of ±0.1( • C) by both a Peltier plate (Pe) embedded into the bottom plate of the geometry and a top electrical oven (O) enclosing the cone. The presence of the top oven enclosure helps in minimizing the spatial gradients of temperature, ∇T ≈ 0, which is crucial while measur-ing the rheological response of a phase change material around its melting temperature T m . A commercial paraffin wax is used as working material. Its melting temperature was measured by means of Differential Scanning Calorimetry (DSC),

T DSC m ≈ 57.25( • C).
As the presence of a flow systematically affects the onset and development of crystallization, it is emphasized at this point that no conclusion will be drawn on the relationship between the average volume fraction of crystals and the operating temperature from the DSC measurements. The macro-rheological tests have been performed only after an equilibrium temperature has been reached, ∂T ∂t ≈ 0.

Systematic studies of the rheological response of chemically pure paraffin waxes are rather scarce in the literature, [START_REF] Rossetti | Rheological properties of paraffin as an analogue material for viscous crustal deformation[END_REF]. It is commonly known, however, that above the melting point paraffin waxes exhibit a linear (Newtonian) rheological behaviour whereas below the melting point, a nonlinear response is observed. Oil-paraffin mixtures which, like the pure paraffin yield to both heat7 and stress8 , exhibit a complex rheological behaviour including thixotropy and shear banding that can be described by the Isotropic-Kinematic Hardening (IKH) Model, [START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF].

Two types of measurements have been performed. First, time series of the apparent viscosity η a were measured during 4000(s) at various temperatures T and several imposed shear rates γ. During all the macro-rheological measurements reported herein the Reynolds number never exceeded Re max ≈ 0.0575 meaning that inertial effects were practically absent.

Second, simultaneously with the macro-rheological measurements of the apparent viscosity, the micro-structure of the material is visualized through crossed polarizers using a microscope mounted below the bottom plate of the setup, figure 2.7. The size of the field of view is 200 × 300 (µm 2 ). The analyzer is mounted on a precise micro-stepping motor which allows one to orient its polarizing axis along a direction orthogonal to the axis of the polarizer. Therefore the only light transmitted originates from the presence of wax crystals in the field of view. For each temperature and shear rate explored, a series of 2000 images was acquired with a digital camera, Prosilica GE camera with 16 bit quantization (model GE680C from Allied Technologies), interfaced via Labview. 

Measurement results

Subsequent to reaching temperature equilibrium with a precision of 0.1( • C) during 200(s), measurements of the apparent shear viscosity averaged during 4000(s) performed at a constant shear rate γ = 10(s -1 ) and various temperatures are presented in figure 2 . Upon a gradual decrease of the temperature past the fluid regime a sharp increase of the apparent viscosity is observed. This corresponds to the onset of the shear induced crystallization. Upon a further decrease of the temperature a roughly two orders of magnitude increase of the time averaged apparent viscosity is observed. A rather intriguing feature observed within this range of temperatures relates to the level of fluctuations of the apparent viscosity which has increased drastically up to 20% of the mean value, the insert in figure 2.8. As per the above discussion, within this range of torques the instrumental error does not exceed 2% of the mean value. Thus, the possibility of spurious torque measurements can be safely ruled out and the fluctuations of the apparent viscosity observed around the fluid-solid transition can be interpreted as physical rather than instrumental. Upon a further decrease of the temperature to T = 55( • C) a component varying slowly and seemingly random in time develops on top of the oscillatory part of the apparent viscosity time series, panel (d) in figure 2.9. For now, this macroscopic flow regime will be referred to as "chaotic" only loosely (based on the visual impression provided by figure 2.9(d)). A systematic discussion and a quantitative proof for the choice of this term will be given throughout this section.

Power spectral density (P SD) of the apparent viscosity time series measured for an imposed shear rate γ = 10(s -1 ) and two distinct temperatures corresponding to the oscillatory and chaotic flow regimes are presented in figure 2.10. Within the steady flow regime where the fluctuations of the apparent viscosity are solely due to the instrumental noise, the power spectrum is flat over the entire range of frequencies, (the data set marked by a square ( )) except for several small peaks observed at low frequencies and most probably due to a slight mis-alignment of the rheometric geometry.

Within both the oscillatory and the chaotic flow regimes a fundamental harmonic frequency is observed at f 1 = 0.055(Hz) as well as two higher order harmonics at f = 2f 1 , 3f 1 . In the oscillatory case (the data set marked by a circle ( )), the spectrum decays quickly (at f ≈ 0.8(Hz)) a plateau related to the instrumental noise whereas in the chaotic case (the data set marked by a triangle ( )) it decays algebraically as P SD ∝ f -2 up to f ≈ 2(Hz) when the noise plateau is reached. A power spectrum decaying over a broad range of frequencies is typically associated to complex dynamics, [START_REF] Li | Beyond benford's law: Distinguishing noise from chaos[END_REF][START_REF] Valsakumar | Signature of chaos in power spectrum[END_REF]. 

P SD ∝ f -2 .
The dependence of the fundamental frequency of oscillations f 1 of the time series of the apparent viscosity obtained from the spectral analysis illustrated in figure 2.10 on the driving rate of shear is presented in figure 2.11. The linearity of this dependence indicates that the fundamental frequency of the oscillatory motion is set by the frequency of rotation of the shaft of the rheometer. A broad band power spectrum similar to the one illustrated in figure 2.10 measured at T = 55( • C) does not guarantee a chaotic behaviour. To distinguish between the oscillatory flow states and the seemingly random ones a more systematic analysis is in order.

0-1 Chaos test

The traditional and mathematically sound method of testing if a dynamical system is chaotic or not relates to the computation of the maximal Lyapunov exponent λ Ly , [START_REF] Kantz | Nonlinear Time Series Analysis[END_REF]. A positive Lyapunov exponent is a typical manifestation of chaotic dynamics: if λ Ly > 0, then trajectories initially closed in the phase space separate exponentially in time and, conversely, if λ Ly < 0 then the nearby trajectories remain confined in a close neighbourhood of each other. In the case when the equations governing the dynamical system are unknown and one has to rely on experimental data in order to assess the chaotic nature of the system. The largest Lyapunov exponent λ Ly may be estimated by reconstructing the phase space according to the method proposed by Takens, [START_REF] Takens | Detecting strange attractors in turbulence[END_REF]. The reconstruction of the phase space may become problematic for relatively short data sets and in the presence of instrumental noise.

Alternatively, Gottwald and Melbourne have recently proposed a test that does not require the reconstruction of the phase space, [START_REF] Gottwald | A new test for chaos in deterministic systems[END_REF][START_REF] Gottwald | Testing for chaos in deterministic systems with noise[END_REF]. This test works directly with an experimentally measured discrete time series and has two main advantages. First, this test is binary and thus the issues related to distinguishing small positive numbers from zero are minimized. Second, the nature of the discrete time series and its dimensionality do not matter.

The Matlab implementation of the code published by P. Matthews, [START_REF] Matthews | 0-1 test for chaos[END_REF] is used for this study, which follows the guidelines for discrete data sets given in Ref. [START_REF] Falconer | Application of the 0-1 test for chaos to experimental data[END_REF]. Briefly, the steps of the implementation are as follows. Using the time series of the apparent viscosity η n a = η a (t n ) with 1 ≤ n ≤ N and a scalar c randomly chosen between 0 and π, two sequences p n and q n are constructed iteratively according to:

p(n + 1) = p(n) + η n a cos(cn) q(n + 1) = q(n) + η n a sin(cn) (2.15)
For a given value of the scalar c, p and q can be re-written as follows:

p c (n) = N n=1 η n a cos(cn) q c (n) = N n=1 η n a sin(cn) (2.16)
According to Gottwald and Melbourne, if the time series η n a is regular (non chaotic) the motion of p and q is bounded while p and q exhibit asymptotically a random-walk like motion if the time series η n a is chaotic. The next step is to compute the mean squared displacement of the translational variables for several values of c randomly chosen in (0, π):

M c (n) = lim N →∞ 1 N N k=1 [p c (k + n) -p c (k)] 2 + [q c (k + n) -q c (k)] 2
(2.17)

For regular dynamics (stationary signals, periodic or quasi-periodic), M (n) is a bounded function of n. The asymptotic growth rate K of M (n) can be numerically determined by means of linear regression of log (M (n)) versus log(n). The estimation of the asymptotic growth rate K allows one to distinguish a non-chaotic dynamics where K ≈ 0 from a chaotic one where K ≈ 1.

The results of the 0 -1 test applied for the time series presented in the panels (c-d) of figure 2.9 are summarized in figure 2.12. As one would expect for an oscillatory behavior, for the time series measured at T = 57.4( • C) the phase portrait p -q is bounded and the asymptotic growth rate is K ≈ 0.15, panel (a) in figure 2.12. Corresponding to the seemingly random apparent viscosity time series illustrated in figure 2.9(d) a random walk like behaviour in the space (p, q) is observed, panel (b) in figure 2.12. The computed asymptotic growth rate is now K ≈ 0.97 which, according to 0 -1 test, is the signature of a chaotic behavior which now fully justifies the terminology used in describing the seemingly random dynamics observed at T = 55( • C) and γ = 10(s -1 ).

To obtain a full picture of the hydrodynamic stability of the system, measurements similar to those illustrated in figure 2 -stable flow, -stable flow, crystal formation, -oscillatory flow, -chaotic flow. The full lines delineate the distinct flow regimes. The vertical arrow marks the melting temperature T m obtained via DSC measurements.

For the smallest rate of shear explored γ = 5(s -1 ) and for temperatures in the range T ∈ [55; 60]( • C) no chaotic states are observed. For shear rates γ ≥ 10(s -1 ) chaotic states are systematically observed and occupy in the stability diagram a triangular shaped region which widens as the rate of shear is increased, they are denoted by the up-triangles ( ) in figure 2.9. The oscillatory flow states are confined within a triangular region that becomes more narrow as the shear rates are increased, the circles ( ) in figure 2.9. Corresponding to the largest shear rate investigated γ = 20(s -1 ) the intermediate states characterized by a monotonic increase of the apparent viscosity exemplified in panel (b) of figure 2.9 and marked by down-triangles ( ) in figure 2.13 are no longer observed. As the temperature is gradually decreased, the system transits abruptly from laminar flow states to the chaotic ones.

To characterize the primary bifurcation from the stable hydrodynamic state observed in a molten regime T ≥ T m towards the oscillatory flow states, one can consider as an order parameter the reduced level of fluctuations of the apparent viscosity η Cov defined by η Cov = (ηaηa t )

2 1/2 t ηa t
. Let ξ be η Cov in percent. Its variation will be monitored with respect to the reduced control parameter = T Tm -1, figure 2.14. Here the notation • t refers to the time average of the measured signal. Within a stable flow regime η Cov is small and solely related to the instrumental noise of the measurements but it increases drastically when the primary instability sets in. As already hinted by the data presented in figure 2.9(b) which shows a slow temporal development of oscillations of the apparent viscosity, the primary bifurcation towards oscillatory flow states is smooth. No discontinuity in the dependence of the order parameter on the control parameter is observed, cf. the stars and the diamonds in figure 2.14. The dependence of the reduced level of fluctuations ξ on the control parameter may be described by the stationary Landau-Ginzburg model with a field of an imperfect bifurcation (the full lines in figure 2.14):

ξ -aξ 3 + h = 0 (2.18)
For γ = 20(s -1 ) when upon a decrease of the temperature the system transits abruptly from laminar flow states to the chaotic states the dependence of the reduced order parameter ξ on the reduced control parameter is discontinuous at = 0 which is an indicator of a first order bifurcation, the right triangles in figure 2.14.

In-situ visualization

To gain further insights into the physical origins of both the primary oscillatory instability and the ultimate chaotic behavior observed during the macro-rheological measurements presented in figure 2.9, one can resort to an in-situ visualization of the micro structure by means of polarized light microscopy.

A sequence of images of the micro-structure recorded at T = 58( • C) and γ = 10(s -1 ) which corresponds to a monotonic increase of the apparent viscosity followed by a slow development of oscillations (see figure 2.9(b)) is shown in figure 2.15. The white lines are guides for the eye indicating the azimuthal direction of the flow geometry. The dark background of each micro-graph relates to the molten paraffin while the bright details refer to crystallized paraffin. Within these states one observes solitary crystals being transported by the mean flow along the azimuthal direction. Upon a careful monitoring of a long sequence of images acquired during 4000(s) we observe no secondary motion along a direction orthogonal to the azimuthal direction. Based on this in-situ visualisation of the micro-structure one may unequivocally associate the onset of the primary oscillatory instability to the appearance of crystals in the flow. This leads to a spatial inhomogeneous distribution of the physical properties of the material.

Notably a spatially inhomogeneous distribution of the viscosity in the flow typically leads to a breakdown of the hydrodynamic stability, [START_REF] Yih | Instability due to viscosity stratification[END_REF]. At this point, based on the in-situ visualisation of the micro-structure, a clear distinction between the unstable flows observed in this study and the unstable shear banding flows previously observed in the literature [START_REF] Divoux | Shear banding of complex fluids[END_REF] can be made. Around the onset of crystallization no bands of crystals are observed but only solitary crystals being transported by the mean flow. This indicates that the physical mechanisms underlying the experimentally observed loss of hydrodynamic stability differ from the mechanism of shear banding instabilities.

A decrease of the operating temperature to T = 55.5( • C) corresponding to the chaotic flow regime (in figure 2.9(d)) leads to a more complex microscopic scale dynamics of the solid-fluid interfaces, figure 2.16. The spatial extent of the solid material units is now comparable in size to the size of the entire field of view. Over extended time periods, the dynamics of the solid-fluid interfaces is highly irregular both over space and in time and a radial motion of the structures consistent with the presence of a secondary flow may be observed. To test the degree of similarity between the microscopic dynamics observed herein and shear banding flows, observations were performed at various radial positions between the center of the geometry and its rim. At no instance were crystalline structures observed with a ring or disk shape topology. Solely agglomerations of crystals appeared in the test section, which were transported by the flow alternating with pockets of molten paraffin. These observations clearly indicate that the physical mechanism underlying the loss of hydrodynamic stability is presumably different from that of the shear banding instabilities.

The space-time dynamics of solid-fluid interfaces may be described using space-time diagrams built from an image sequence spanning 4000(s) by extracting from each image the vertical profile of brightness measured at x = 200 (µm). Such space-time diagrams are built within the oscillatory/chaotic flow regimes and illustrated in the top panels of figures 2.17 and 2.18, respectively.

For clarity of the presentation the middle panels of these figures show the time series of the apparent viscosity recorded synchronously with the flow images use to build the space-time diagrams. The bottom panels shows the time series of the volume fraction of solid φ obtained by averaging the brightness of each flow image over the entire field of view.

The space-time diagram built close to the onset of the primary oscillatory instability (T = 57.4( • C) and γ = 10(s -1 )) captures the emergence of the first crystalline structures in the flow which is directly correlated to a monotonic increase of the apparent viscosity followed by a regime where solid/fluid material units coexist and an oscillatory behavior of apparent viscosity slowly develops, top panel in figure 2.17. During the slow development of the oscillations of the apparent viscosity a small drift of the solid material units along the vertical direction y which corresponds to a slowly developing secondary motion may be equally noticed in the space-time diagram. It is interesting to note at this point that an oscillatory behavior is much less obvious in the time series of the solid fraction φ than in that of the apparent viscosity η a though a simple visual inspection of the middle and bottom panels indicate a fair amount of correlation in between the two. Absent a simultaneous visualization of several distinct regions of the flow (note that the observation window in figures 2.15, 2.16 is much smaller than the size of the cone-plate geometry) one can only speculate at this point that this correlation is due to combined long range hydrodynamic interactions between distinct solid elements and material incompressibility.

Bearing in mind that the apparent viscosity is an integral physical quantity in the sense that it reflects the response of the material averaged over the entire fluid volume contained within the cone-plate geometry it is likely that its oscillatory behavior results from the advection and mutual interaction of several isolated crystals and not only the crystals passing through the field of view of the polarized microscope. The local dynamics of the solid/fluid interface reflected by the time series of the solid volume fraction φ is, according to the 0 -1 test regular (non-chaotic), figure 2 According to the 0 -1 test, the volume fraction φ evolves chaotically in time, panel (b) in figure 2. [START_REF] Brooks | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navierstokes equations[END_REF].

The microscopic observations performed around the melting point and the onset of the primary instability detailed above clearly relate the emergence of this instability to the presence of crystals inhomogeneously dispersed in a continuous molten phase. Yet, current microscopic observations do have some limitations which prevents from obtaining a full description of the micro-structure dynamics and its relation with the hydrodynamic stability. First, as direct access to the local velocity field is not possible, as this would have required us to implement an imaging system substantially different from the polarised microscopy system used for this study. Such measurements are possible and have been reported by others [START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF] but they cannot simultaneously provide direct information on the presence of crystals. A second limitation of our microscopic visualization technique relates to the size of field of view which is limited to 200 × 300 µm 2 . Thus, one cannot monitor the interactions and collisions of solid blobs larger than the size of our microscopic observation window.

Simplified numerical model

To circumvent these experimental limitations and gain further insights into the physical origins of the instability observed experimentally, in the following a minimalistic model is proposed, which aims to understand the impact of a spatially in-homogeneous distribution of the viscosity on the hydrodynamic stability of a low Reynolds number flow.

A minimalist way of modeling the crystals emerging in the flow around the melting point is to consider a distribution of blobs of a highly viscous fluid in a matrix of a lower viscosity fluid. The initial distribution of the viscous blobs is generated using a controlled random algorithm that initializes the position of centroids of the highly viscous aggregates randomly within a two dimensional Taylor-Couette geometry. Each blob is constructed by iteratively adding ellipses with semi-axis randomly chosen within pre-chosen bounds. Some of the iteratively added ellipses may coincide which further contributes to the randomness of the microstructure. When the prescribed average volume fraction Φ is reached the microstructure is saved and fed to code solving the governing equations.

The numerical model, discretised in the finite element method, is developped in-house using the FreeFem++ library [START_REF] Hecht | New development in freefem++[END_REF]. The governing equations solved in this model include the mass and momentum conservation in equations 2.19 and 5.2, respectively.

∇ • v = 0 (2.19) Re ∂ v ∂t + v • ∇ v = ∇ • ν ∇ v + ∇ T v -∇p (2.20)
where Re is the Reynolds number based on the smallest viscosity, that is the viscosity of the continuous (molten) phase. ν > 1 is the viscosity ratio between the viscosity of the highly viscous dispersed phase and that of the low viscosity continuous phase. The level set method will be employed to track the aggregates. For simplicity, no molecular diffusion will be considered. Therefore an advection equation in 2.21 will be used to transport the passive scalar φ where φ = 0 refers to the molten phase and φ = 1 to the crystal aggregate.

∂φ ∂t + v • ∇φ = 0 (2.21)
A no slip velocity boundary condition is prescribed at the inner boundary and a constant angular velocity is imposed on the outer. The momentum and mass conservation equations are coupled in a fully implicit approach using the Galerkin method, with Taylor-Hood [START_REF] Taylor | A numerical solution of the navier-stokes equations using the finite element technique[END_REF] elements that satisfy the LBB (or inf-sup) condition. The Advective dominated transport equation (2.21) is discretised using the Streamline Upwind/Petrov Galerkin (SUPG) approach [START_REF] Brooks | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navierstokes equations[END_REF]. A mesh sensitivity analysis has been carried out with two different meshes densities using BAMG the bidimensional anisotropic mesh generator developed by [START_REF] Hecht | Bamg: Bidimensional anisotropic mesh generator[END_REF] with an automatic mesh adaption after each time step based on the hessian of the passive scalar. Thus, it was verified that the results are mesh-independent. The maximum number of vertices for the mesh adaption retained in this study is 200000. The time-dependent discretisation is first order to allow adaptive time stepping controlled by the CFL condition. The numerical method used in this study was validated with several benchmark problems, such as the Rayleigh Taylor instability inside an enclosure with several viscosity ratios [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The highest error on the velocity for all the tested benchmarks never exceeded 2%.

Throughout this study, the Reynolds number will be fixed to Re = 0.05 (based on the lower viscosity of the continuous phase) which is comparable in magnitude to that achieved during the rheological tests. The ratio of viscosity of the highly viscous blobs (where φ = 1) to that of the low viscosity fluid matrix (where φ = 0) is defined by ν = (η p /η s ). The space averaged volume is defined by Φ = φdA dA where dA is the unit surface of the geometry.

Starting from the same initial spatial distribution of the viscous blobs, three distinct viscosity ratios ν are tested, namely 10 2 , 10 3 and 10 4 . The time dependence of the stress averaged over the entire geometry which is physically equivalent to the torque measured during the rheological tests is shown in figure 2.20. For the lowest viscosity ratio tested (ν = 10 2 ) the stress evolves more or less steadily with time, bottom panel in figure 2.20. As the viscosity ratio is gradually increased a monotonic increase of the level of fluctuations of the average stress is observed (middle and top panels in figure 2.20). For the highest viscosity ratio tested the space averaged stress signal exhibits a periodic behavior with the period set by the period of rotation t R of the outer boundary of the geometry which is qualitatively similar to the behavior through the experiments (panels (b-d) in figure 2.9). This first numerical result clearly indicates that the instability originates from the presence of a spatially in-homogeneous distribution of the viscosity in the flow induced by the emergence of the primary paraffin crystals in the flow.

In order to explore the physical mechanism of the instability in relation to the microstructure, different characteristic sizes of the high viscosity fluid blobs are tested. The initial distributions of the highly viscous blobs are shown on the left column of figure 2.21 as binary images (bright detailsφ = 1, dark backgroundφ = 0). It is important to mention here that the viscosity ratio is now fixed at ν = 10 4 and the average volume fraction maintained at Φ = 19%.

For a nearly mono-disperse distribution consisting of small blobs more or less uniformly distributed in the flow, the time series of the space averaged stress is nearly steady. The small fluctuations can be attributed to the numerical accuracy (bottom panel in figure 2.21). As the blob sizes become smaller, their interface tracking becomes increasingly challenging to the adaptive meshing algorithm which is limited by the allocated memory in the computer. This almost steady response is indeed what one would expect for the response of a suspension of non-Brownian and nearly mono-disperse particles.

The larger the average size of the viscous blobs becomes, the stronger fluctuations of the space averaged stress are observed. Corresponding to the initial configuration with the largest blobs which nearly fill the geometry the stress signal becomes periodic, top panel in figure 2.21. This second result suggests a plausible physical mechanism of the instability in terms of the local dynamics of the micro-structure. When initially small paraffin crystals grow in size up to the point they nearly fill the geometry they locally destabilize the flow by both hydrodynamic interactions and collisions of neighboring blobs during the flow which overall translates into an unsteady evolution of the space averaged stress. The periodic motion of the outer boundary of the geometry translates into a periodicity of the inter-blob collisions which ultimately results in the time periodic evolution of the space averaged stress observed during the experiments. Next, one can fix the viscosity ratio ν = 10 4 and the average size of the viscous blobs and monitor the time series of the space averaged stress computed for several values of the average volume fraction Φ ranging from 0% to 25%, figure 2.22.

As one would expect, for small volume fractions Φ ≤ Φ c with Φ c ≈ 5%, no time dependence of the space averaged stress is observed. Beyond this critical value of the volume fraction, the average stress time series becomes time dependent and for Φ = 15% a time periodic behavior is clearly observed. A further increase of the volume fractions leads to an increase of the level of stress fluctuations and a depletion of its periodic behavior. However, as this model is rather minimalist (i. e. the kinetics of formation of crystals during flow is not modeled), no attempt is made at comparing the results obtained for large volume fraction with the experimental ones. The conclusions drawn from the analysis of this model may be summarized as follows. First, the emergence of a time periodic behavior of the space averaged stress qualitatively similar to that observed in the experiments is observed only in the presence of a high viscosity contrast between the dispersed phase and the matrix. Second, the emergence of the oscillatory instability is directly related to the characteristic size of the microstructure: for a given average volume fraction of the dispersed phase the instability is observed only for sufficiently large highly viscous blobs (with sizes of the same order of magnitude as the gap of the geometry). The presence of such large blobs in the flow leads to both strong hydrodynamic interactions and collisions which locally destabilize the flow. Last, the instability is also controlled by the space averaged volume fraction of the highly viscous dispersion in the sense that there exists a critical volume fraction Φ c such that the flow is stable for Φ ≤ Φ c .

Φ = 0% Φ = 3% Φ = 5% Φ = 10% Φ = 15% Φ = 19% Φ = 25%

Setbacks of the paraffin wax

The term apparent viscosity is used here as the time-averaged measured stress over the imposed shear rate. Paraffin in the solid state does not flow in a Newtonian like rheology. A Newtonian rheology suggests that at a certain temperature, the stress is linearly related to the strain from the origin, and that constant slope is the viscosity. In figure 2.23, the stress is shown in function of the strain for two controlled shear rate ramps, increasing (red) and then decreasing (blue). The material used here is 10 wt.% paraffin [START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF], 20( • C), for its desirable apparent viscosity to model high pressure ice. It is quite noticeable that the rheology of paraffin mixture in the solid region does not exhibit a Newtonian-like behavior, especially at low shear rates. It has been well established in Chapter 1 that convection occurs at low shear rates. Starting from the increasing shear rate ramp in red, the curve exhibits several sudden negative slopes which correspond to the brittle collapse, that was reported by Andrade and Coussot [START_REF] Andrade | Brittle solid collapse to simple liquid for a waxy suspension[END_REF]. After the collapse in the increasing ramp, the decreasing ramp exhibits a smoother yet non-monotonic behavior that can be well described using the Isotropic Kinematic Hardening model [START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF]. At lower stresses, the materials could exhibit two possible different shear rates. It should be noted however, that to achieve a predictable behavior, although thixotropic, the material must be pre-sheared. In other words the large microstructure must be subject to the brittle collapse prior to measuring. This is impractical to the current application, because the material must be poured in the liquid phase in the setup, and allowed to solidify. Subsequent homogeneous pre-shearing in the setup is not an easy task. After all, one cannot expect to pre-shear and change the material properties in parts of the domain and not in others, this would compromise the rheology and the global convection flow.

Additionally, one can clearly observe from figure 2.23 that this material has a yield stress, that depends on the shear history. To understand how the yield stress could affect convection, one could estimate the temperature difference across the interface between the solid and the fluid from the rheological curve as ∆T = 2( • C). From PVT-α measurements on the sample, this temperature difference corresponds to density difference of ∆ρ < 4(kg/m 3 ). The buoyant stress across a 1(cm) interface of the solid-liquid transition is (∆ρ g H int ) ≈ 0.4(P a) < τ y is inferior to the yield stress. Despite a thermal gradient and buoyant stresses, the paraffin mixtures remain unyielded. All convection experiments tried on oil-paraffin mixtures were not convective in the solid state. No buoyant liquid paraffin was able to overcome the yield stress.

Recalling from section 1.3, the literature of ice rheology has not yet documented any measured yield stresses due to experimental limitations. The lack of documentation, forces the modeling to eliminate yield stress contributions, because no scientific guesses can be made to speculate the values (or even the order of magnitude). However, unlike in soft matter like gels or oil-paraffin, the ice can still geologically convect in the presence of yield stress. To understand this, one must make clear the difference between the rheology of the two. For soft matter, gels and yield stress fluids, a microstructure (whether solid, liquid or gas) is present in the mixture surrounded by a liquid matrix (e.g. oil in paraffin-oil, or water in carbopol gels). A simplified example can be schematically drawn in figure 2.24 (left). In order to shear the material, some of the solid/liquid/gas inclusions must deform 9 to allow the continuous flow to occur. The shear stress needed to deform the coinciding microstructure is the yield stress. Prior to this threshold motion cannot occur. For some ice rheology mechanisms such as dislocation (power law dislocation), grain boundary sliding, and basal slip, such thresholds do exist for the polycrystaline grains to flow. However below that threshold, dissipative motion can still occur by diffusion creep mechanisms. For instance tension stresses can create vacancies in the crystalline structure. In contrast, compression closes down the vacancies as annotated in figure 2.24. At very low temperatures, vacancy motions are easier at the grain boundaries, by Coble creep. However if the temperature is warm enough, motions in the bulk are possible through the Nabarro-Herring creep. These two diffusion mechanisms are mostly linear with stresses, and they dominantly occur at low stresses. Convection studies on icy moons point out that diffusion creep is the dominant mechanism for the rheology of ice [START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF][START_REF] Harel | Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology[END_REF]. Due to the above mentioned large differences in the rheology of oil-paraffin and polycrystalline ice, in addition to the opacity of paraffin, the latter cannot be used in this study as a modeling material. This also implies that all soft matter phase change materials will also behave as a yield stress fluid in the solid regime, and therefore should not be used in this similarity convection study.

However the stress-strain linear relation of creep mechanisms allows similarity with Newtonian fluids. This implies that the creep mechanism is modeled with a viscous deformation, therefore modeling a process with another. This is much like modeling electric flow using water in pipes, or modeling heat conduction using the electrical analogy. All the analogies are partially valid and can eventually break down if they are over analyzed. For this reason it is important to note that in this study, the modeling of creep mechanisms by Newtonian viscous deformation is limited only to the macroscopic behavior in the solid state convection.

Emkarox aqueous solutions

A Newtonian fluid candidate is Emkarox HV45, from Croda. It is a high viscosity water soluble polyalkylene glycol. The water solubility is an important factor to easily control the viscosity. The experiments summarized in chapter 3 necessitated the use of more than 1200(kg) of water. For convenience, water soluble polymers are therefore favored over oil soluble ones. The viscosity is a very important parameter in this study. For Emkarox aqueous solutions, the viscosity is summarized in figure 2.25 in function of temperature and weight concentration. A decreasing temperature ramp is imposed on every sample using a constant shear rate. For lower concentrations, a deviation from the Arrhenius law is observed due to a partial evaporation of the sample. This problem will not occur in the setup as the fluid is enclosed in a cavity rather than exposed to air. Therefore on can expect an Arrhenius behavior10 for the Emkarox solutions in an enclosed setup. The gridded values in figure 2.6 represents a simple model to predict the viscosity of the Emkarox mixture. Inspired from thermodynamics, the logarithm of the viscosity can be written as a product of the volume fraction (not mass) multiplied by the logarithm of the viscosity. Noting here that the ideal mixture given by Raoult's law is not expected to work since the two components are different on the molecular level.

log [η mix ] = φ m E E log[η E ] + φ m W W log[η W ] (2.22)
Here, φ E and φ W refer to the volume fraction of Emkarox and water respectively. Despite small differences in the density, the volume fraction is used in the model to be theoretically consistent. The mass fraction is easier to measure and identify, for this reason the plotted measurements are shown in the weight concentration. Replacing the viscosity by its the thermo-dependent Arrhenius fit, and choosing the exponents correspondingly, the mixture becomes the following.

log [η mix ] = φ 0.25 E log (2.917 ± 1.048) × 10 -5 exp (36997±906) Rg T (K) +φ 1.5 W log (1.631 ± 0.343) × 10 -6 exp (15772±507) Rg T (K) (2.23)
Noting here, R g is the universal gas constant. Applying the exponential, one obtains the viscosity of the mixture:

η mix = exp   φ 0.25 E log (2.917 ± 1.048) × 10 -5 exp (36997±906) Rg T (K) +φ 1.5 W log (1.631 ± 0.343) × 10 -6 exp (15772±507) Rg T (K)   (2.24)
The results of equation 2.24 are shown on a uniform grid in figure 2.25, with a low opacity. The grid points for the concentration refer to increment by 1 wt.%, to better map the viscosity. This plot is also shown in three dimensions for reference in the subplots on the right. In the top subplot, all axes are linear; one can clearly see the negative deviation from the ideal mixture by Raoult's law. This negative deviation is not surprising given that mixing Emkarox and water is a highly exothermic process which releases a considerable amount of heat 11 . The third subplot shows how this model predicts reasonably well the order of magnitude of the viscosity.

The relevant properties of Emkarox in the pure form are all measured in the context of this study. They can be summarized in Table 2.1 There exists a 0.3% discrepancy between the manufacturer's claim and the current measurement of the density. This difference could exist between one batch and the other, in addition to measurement difficulties in the volumetric flask due to a very high capillary number (viscous over surface tension effects) that modify the shape of the meniscus from standard low viscosity fluids like water. In the computation of the non-dimensional parameters, the manufacturer's value will be retained. Additionally, since all properties except viscosity, do not exhibit changes in magnitude from water, the law of mixture will be used for the density, thermal expansion, specific heat and thermal conductivity. The mass fraction is used for the first three properties, because they highly rely on the conservation of mass.

In this section, several materials/fluids were carefully investigated and considered to model the convecting high pressure ice in the analogical experiments. Paraffin waxes were first considered for their phase changing capabilities which would enrich the modeling. However after careful consideration of the rheology, most notably the presence of a high yield stress, thixotropy, unpredicable brittle behavior and optical difficulties, it was concluded that paraffin waxes could not model convection as it is expected to occur in high pressure ice mantles. This has led to a major setback on the phase change capabilities of the analogical experiments. An alternative material was proposed, namely Emkarox aqueous solutions which are Newtonian thermo-dependent fluids, with a satisfactory control and predictability of viscosity in terms of concentration and temperature, as well as optical transparency. Therefore the Emkarox aqueous solutions were chosen as the modeling fluid for the analogical experiments. Having chosen and characterized the modeling fluid, the scaling of the experimental setup can therefore be resumed in the following section 2.3.

Experimental setup 2.3.1 Scaling of the setup

From the previous section, one could conclude that thermodependent Newtonian fluids remain compromisingly the best modeling material. In this study three examples of such fluids can be employed, namely: Emkarox aqueous solutions 5, 15, and 25 wt.%. Using the thermal and physical properties in table 2.2 one could compute the modeling variables from the scaling arguments, specifically in equations 2.10, 2.11 and 2.12 for the Newtonian fluids chosen. Table 2.3 shows the scaling of Ganymede's high pressure ice mantle, for each of the three above mentioned fluids. Most notably one can notice that as the modeling viscosity decreases, the lab model time and space scales decrease. This can be understood by the linear proportionality given in the first geodynamic similarity dimensionless parameter. However, with those decreases, the need for heating increases to satisfy the equality of the Rayleigh number. Similarly to the previous example, table 2.4 shows the scaling applied on Titan's high pressure ice mantle. Noting here that for present day models of Titan [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF], the high pressure ice mantle could be subject to solid-solid phase transition of ice VI-V, or ice VI-V-III. However due to the divergence in rheological measurements on ice V [START_REF] Sotin | Creep of High Pressure Ice VI[END_REF][START_REF] Sotin | Viscosity of ice v[END_REF][START_REF] Durham | Rheology of water ices V and VI[END_REF] only one reference viscosity value will be considered at a time. Comparing tables 2.3 and 2.4 one can notice that the time scales have not changed, between the Ganymede and Titan, despite the difference in length scales. The ratio of time scales is mainly controlled by the viscosity ratio, among other properties, as per equation 2.10, with absolutely no dependence on the length scale. The latter is however affected by the viscosity and other properties (cf. section 2.1). Due to current uncertainties in Ganymede and Titan's data, there exists a wide range of possible scenario that can be modeled. However, experimentally speaking not all of them are possible. For instance, maximum temperatures must not exceed 90 or 100( • C) to avoid boiling of water content in the aqueous solutions. The heat flux will be imposed, and the equality of the fourth non-dimensional parameter (α∆T ) will be checked a posteriori. Additionally, the Re < 1 condition must be respected and will be checked experimentally a posteriori.

Further limiting the possibilities is the available size for the setup in the lab. While there are no excessive constraining limits on the height, the width however must be limited, to 30 -40(cm). The latter constraint is given by the width of the optical table minus the space needed for the laser and optical arrangement. Given that, the height of the domain can be constrained by determining the aspect ratio of the setup. Two aspect ratios (AR setup =length:width:height) of the setup were tested in the early part of the design. The preliminary tests and simulations employed AR setup = 1 : 1 : 1 and AR setup = 3 : 3 : 1. The former had the advantage of reaching higher Rayleigh numbers, given that the height is thrice the latter. Unfortunately, for that aspect ratio, the flow was forced to rotate in a single cell and not in plumes, even for very large Rayleigh numbers. For an aspect ratio AR setup = 3 : 3 : 1 (or numerically 3 : 1 in 2D similar to Ref. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]) the expected behavior characterized by episodic plumes was recovered. Consequently, hereafter the aspect ratio will be fixed at AR setup = 3 : 3 : 1. Therefore the interior dimensions of the setup will be mainly 30 × 30 × 10 (cm 3 ), fully occupied by the modeling fluid.

Setup assembly, heating and control

To model convection, the setup will be equipped with a uniform heating source at the bottom. The top boundary will be a cold isotherm, fixed 16( • C) obtained using a brass heat exchanger connected to a Lauda thermo-regulator. A water circulation is used in the [thermo-regulator & brass exchanger] system. The heat exchanger has two small holes of 6(mm) in diameter, one for filling the setup and the other for the expansion valve 12 .

The 16( • C) isotherm was chosen to match the ambient air of the experimental room, held constant throughout the year using an air conditioning unit. The fluid will be enclosed in a cavity made of plexi glass with an inner volume of 30 × 30 × 10 (cm 3 ). The whole setup is manufactured and constructed in-house.

The bottom heater is mainly composed of 30 × 30 × 1 (cm 3 ) brass plate. Brass is used here for it's high conductivity, but low corrosion given that the heater will be in direct contact with an aqueous solution. Two thermal resistors are serpentined in grooves on the bottom side of the plate (cf. figure 2.26 on the left). Each resistor has an equivalent electrical resistance of 6.5(Ω), and only one is used at a time, the second is a back-up. Two K-type thermo-couples are engraved on each side (top T 1 and bottom T 2 ) of the brass plate, to monitor the temperature. Noting here that no thermo-couples are protruding in the experimental setup (currently discussed ones and hereafter). After installing the thermo-couples, the thin grooves were shut with Araldite epoxy glue, ground and polished to recover the smooth even surface. This is an important step to ensure that the measured flow fields don't contain intrusive perturbations. A constant voltage source is supplied from a first power supply (B&K Precision model 9115) to one of the main resistors. Much of the supplied power will dissipated not in the face in contact with the fluid. This implies power losses and most importantly a difficulty in the estimation of the heat flux transported to the fluid. To remedy this effect, a method is proposed to counter act all loses by enclosing the main heat with an insulater, the latter is then enclosed with an actively controlled heater (hereafter compensator), as schematically drawn in figure 2.27 that of plastic or metals. Upon heating, the volume of the fluid will increase more than the volume allowed for it. In the absence of an expansion valve or an opening, the hydrostatic pressures can be large enough to break the setup. On the top of the compensator, a thermo-couple denoted by T 3 is engraved. The basic premise of this method, is to actively control the heating of the compensator so that T 3 = T 2 , in other words the temperature difference will be zero. Therefore the temperature gradients surrounding the main heater will all be set to zero, hence the heat flux from those five faces (all except the top) will be practically 0, achieving insulation at all times. For this method to work, it is important to have low conductor between the heater and compensator, here glass foam 13 is used because of its high porosity.

The controller for the compensator is a classical PID (proportional-integral-derivative) one, and it is implemented digitally in LabVIEW ® and connected to another identical programmable B&K Precision power supply. After some calibration the proportionality, integral and derivative constants were retained as follows: K P = 11.8, K I = 0.6 and K D = 0, and the aquisition frequency for the integrals and derivations is 100(Hz). The controller diagram is shown in figure 2.28. All thermo-couples go through a reference box to improve the accuracy of the signal, after which they are read by an Agilent data aquisition/switch unit. The readings are then communicated digitally to the computer running the LabVIEW ® executable. Subsequent to PID control, the new signal command for the actively controlled heater is sent via USB to the second B&K Precision power supply.

The compensator method ensures that the input power to the main heater is supplied fully to the fluid volume at steady state. For practical conveniences, the power is measured at the level of the power supply. The main heater is naturally connected with the cables to the power supply; noting here that metal wires have electrical resistances to the current density. For this reason the heater resistance, and corresponding power 14 , was checked to be 99.2% of the total power supplied by the setup. At the highest recorded temperature, the fraction of power decreases to 99.1% of the supplied power. One could therefore conclude that the measurement method in this case is acceptable.

To apply a uniform heat flux, brass as a good thermal conductor was used to homogenize the temperature. However this ought to be checked. To this end, the heater is turned on until steady state in thin air, and using a Fluke infrared camera, the temperature can be measured. Noting here that the emissivity chosen for the infrared sensor is 0.85, pertaining to dull brass (cf. figure 2.26). This means that the estimated temperature of the non-brass surrounding objects is erroneous. In figure 2.29, the estimated thermal distribution is shown, where the surrounding objects were shaded out. Excluding all the pixels in the shaded area, one is left with the thermal distribution of the thermal brass heater. The latter's coefficient of variation, (i.e. standard deviation over the average measured value), can now be quantified as a measure of uniformity and it was found to be 5.01%. Thermal distribution estimated from the infrared camera.

The shaded area was excluded due to a different emissivity than the main brass heater.

The walls of the cavity are 2(cm) thick plexi-glass plates for transparency, machined with grooves and screw threads for the assembly. It is very important to note here that the plexi walls are neither fixed to the brass exchanger on top, nor the brass heater on the bottom. Brass and plexi-glass have different thermal expansion coefficients. Meaning at a high temperatures, they will deform differently. If fixed (e.g. with screws or glue), the stresses will be large enough to induce cracks and leakages. To avoid the latter, the plexiglass and brass must be allowed to deform freely in the lateral direction. However, they will be seperated by a 2(mm) thick gasket placed inside grooves on the top and bottom of each walls. Additionally, the vertically assembled plexi walls are joined by 1(mm) gasket to seal the enclosure. All four vertical internal contact lines are now sealed, in addition to the eight horizontal contact lines (four on the top and four on the bottom). However, these sealing paths are not connected, meaning that at the corners the fluid can leak in between the gaskets. To remedy this, a silicone elastomer is applied on all eight corners, as exemplified in the schematic in figure 2.30. Once poured in the fluid form, it flows where the leaks can occur; after two hours it thermosets and seals the last remaining leakage sources. A computer aided design (CAD) drawing depicts roughly the assembly of the setup in figure 2.31. The computer, regulator box and the thermo-regulator are not shown because they lie outside the frame. Optical non-intrusive methods will be used in this study to visualize the flow field. The two main methods used here are the particle image velocimetry (PIV) and laser induced fluorescence (LIF), with more explanation subsequently. Both requiring a laser sheet to visualize the flow in two dimensions. For this reason a laser sheet is produced by a laser emitter point source, re-oriented with protected silver mirrors through a 3(mm) thick cylindrical glass rod. The latter will refract the point source to a two dimensional laser sheet orthogonal to axis of the rod. The laser used in this study is a 2000(mW ) green laser with wavelength of 532(nm), beam diameter 1(mm), stability of < 5% and a maximum modulation frequency of 10(kHz). The laser intensity is controlled externally through the power supply, and kept constant throughout each experiment, without any automated shutters. Flow fields are acquired with a camera equipped with a zoom lens EF 24 -70(mm). The focusing is done manually and all digital auto-focusing features are turned off, because it is very important to maintain the focus in the plane of observation, i.e. laser sheet at all times. However the flow is three dimensional, and convection phenomena could appear outside the original plane of focus. For additional capabilities of measurement, herein, the laser emitter and optical arrangement are fixed to a slider mechanism. The camera and lens are also coupled to the same slider mechanism to maintain the optical focus at all times even when the laser sheet has moved. The slider mechanism here is made U-shaped, surrounding the main setup (cf. figure 2.31). The U-shape is favored over an L-shape to maintain the structural integrity and rigidity in the x and z direction, while motion is free in the y direction. The setup, laser and camera are all enclosed in a non-flammable tarpaulin fixed onto the black metallic structure (cf. figure 2.31). This is important to ensure a better contrast for the visualization of the flow field, in addition to it being a measure of security to protect from the high power laser. 

Particle Image Velocimetry

Images are acquired with a Canon EOS 5D Mark III camera using 24×36 (mm) CMOS 15 sensor. The acquisition settings are set the same for all experiments: frame rate of 23.976 (fps) and the resolution is 1920×1080 (pixels) with an 8-bit quantization. The image aquisition is done directly through Canon EOS utility software through the Live shoot mode, to avoid undesired conversion of the data. The aquired movies are then read with Matlab ® for the post-processing.

To monitor the flow kinematics, small tracer particles are added to the fluid, namely polyamid particles of 50(µm) average diameter from Dantec Dynamics. The choice of particle size is a compromise between small enough to minimize the lag, and big enough to be detected. On one hand, given that the particle density is not necessarily the same of the fluid, acceleration will result in lag due to inertial effect. Lag in particle velocity is estimated to be proportional to the square of d p the particle diameter (i.e. v lag ∝ d 2 p a) [17]. Therefore, it seems advantageous to reduce the particle diameter to minimize the lag as much as possible.

On the other hand, particles must be large enough to be detected by the camera. It is important to note here, that the camera (or the naked eye) doesn't see the particle itself, but rather the scattering emitted upon the incident laser beam. The scattering volume is therefore much bigger than the particle itself. Scattering occurs when the particle absorbs some light energy and re-emits some of it in different directions with different intensities. Models for light scattering are threefold. First, Rayleigh scattering for particle sizes much smaller than the incident wavelength. Second, Mie scattering for particle sizes in the same (or close in) order to the wavelength. Third, geometric scattering for particles sizes much larger than the wavelength. For a wavelength of 532(nm) = 0.532(µm) and particle diameter of 50(µm), Mie scattering models can still reasonably describe the scattering in the current context. The scattering of a glass sphere is shown in figure 2.32 in a polar Mieplot. The placement of the camera orthogonal to the laser sheet seems advantageous to capture the high intensity of scattering at an angle of 90 • . Scattering intensity increases with the particle diameter and the incident beam intensity. Hence, a trade off is needed between small lag and high scattering in the choice of particle sizes. Each picture is divided into interrogations areas (or windows), thus forming a uniform grid. The size of each window can range from 8 to 256 pixels, in powers of 2 (i.e. 2 3 to 2 8 ). A good particle concentration is relative to the resolution, light scattering diameter, and chosen window size. As a rule of thumb, each interrogation area must have optimally 5 to 20 particles.

The current PIV method employed is based on the cross correlation between two subsequent images. The time delay between the two is called the interframe period ∆t = t 2 -t 1 . Practical limitations often restrict the choice of the interframe. Among these restrictions are mainly, the acquisition frequency of the camera, resolution, interrogation window size and particle density. The last two are in fact coupled, because an interframe must be large enough to detect motions in particles larger than 5 pixels, but small enough for the particles not to exit the interrogation area.

The basic idea of cross correlation Particle Image Velocimetry is to decompose the acquired image uniformly into interrogation areas. Each of these windows are then cross correlated on the subsequent picture 16 as schematically represented in figure 2.34. It is assumed that the location of maximum cross correlation is the new location of the subject window. Having the position displacement and the interframe period, the velocity could be subsequently computed. In the current study, an iterative multi-grid PIV algorithm [START_REF] Scarano | Advances in iterative multigrid piv image processing[END_REF] is used from the LTeN in-house code developped in Matlab ® . The algorithm consists of multi-pass PIV operations, starting from the coarsest grid (64 (pixels/window) in the current case) to the finest (16 (pixels/window)). If a velocity vector from the fine grid is conformal -to a certain degree -it is kept, otherwise it is rejected and the fine grid vector is simply interpolated from the vector on the larger grid. In other words, the information in the coarser grids are statistically more reliable because of their high signal to noise ratio.

Partial conclusion

This chapter introduced the theoretical basis of the current modeling using the analogical experiments approach. The method relies on dimensional analysis, namely the Pi theorem, to reduce the large geological time and space scales. Most often this approach requires a change in material, which is also needed in this study. To this end, several working fluids were considered for the modeling. Phase change materials were first investigated by thermal and rheological characterization, to potentially model the phase change in convection as well. While thermal characterization is classical for phase change materials, rheological measurements during phase transition are quite scarce in the literature. Surprisingly, rheometric flows at very low Reynolds number could be unstable and even chaotic during phase change. This instability was first discovered in the context of this study and was extensively investigated using rigorous measurement protocols and in-situ microscopic observations. The cause of this instability was also presumed based on a simplified numerical model that matches well the experimental observations. This work was published in the Journal of Fluid Mechanics.

While the rheology of phase change materials (more specifically paraffin) was interesting to investigate, it was shown in this chapter why it is not a good modeling fluid for this problem. This evidently caused a setback on the phase change capabilities of the model. Subsequently, a Newtonian fluid was characterized and chosen for its well behaved rheology and the convenience of control by means of polymer concentration. This Newtonian fluid has a fair amount of transparency which is essential for optical measuring techniques. The Newtonian fluid will model the solid state convecting high pressure. To perform experiments, a suitable experimental setup was designed and conceived within the context of this study. The scientific and technical details with regards to building a robust setup were presented in section 2.3. The main measurement techniques used in this study are the Particle Image Velocimetry and the Laser Induced Fluorescence (which will be explained in the next chapter). The experimental results will be presented in the next chapter which will comprise two main sections. The first summarizes experiments on modeling convection in high pressure ice mantles. The second will focus on efforts to model high pressure ice convection in the presence of clathrate hydrates.

Analogical modeling of high pressure ice mantles

Planetary convection in high pressure ice mantles is characterized by velocity scales of ≈ 1(m/yr) (or ≈ 3.17 × 10 -8 (m/s)) [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. More explicitly, it occurs across tens and hundreds of kilometers with a time scale of thousands and hundred of thousands of years. To model them experimentally, the scales were reduced using the dimensional analysis in section 2.1, chapter 2. The basic premise of the current method is to change the material so as to induce measurable convection velocity vectors, by increasing their speed. On the other hand, the spatial scales are reduced to fit the laboratory limitations. The two above mentioned transformations are made possible predominantly by decreasing the modeling material viscosity, to control the timescales of the flow.

This scaling approach has the disadvantage of compromising the equality of the Reynolds number Re between the planetary mantle and the experimental model, as discussed in section 2.1. It was however stated that a laminar flow must be ensured to avoid excessive inertial contributions. It is the dissipative nature of viscosity which dampens and stops the transfer of energy from larger scales to smaller ones. A decrease in the dissipation naturally raises the question whether a flow remains laminar, especially since the goal is to increase velocity scales. The inertial over viscous contribution in natural convection are usually evaluated a priori using the Grashof number Gr. The latter can be used comparatively between cases to have a rough estimate of the turbulence in a convective flow. The Rayleigh and Grashof numbers are related by the Prandtl number as follows: Ra = Gr × P r. It should be noted however that the Grashof number does not contain any information about the convective velocity.

A more robust approach would be to evaluate the inertial contribution by using the average measured velocity1 in the Reynolds number directly. The thermo-dependence of the viscosity and density are also taken into account in the Reynolds number computation for each tested case. To this end, the experimentally computed Reynolds number for some tested cases are shown here in figure 3.1, in function of the Rayleigh number. Repeating the same experiment led to a 0.99% relative error on the mean value of Re, and to 9.73% relative error on the standard deviation. The aim here is to keep the Reynolds number low, mainly below 1, while keeping the same planetary Rayleigh numbers. Over the tested ranges, each fluid seemingly exhibits a power law dependence of Re and Ra. Several studies in the literature have aimed to deduce scaling laws for Re in function of Ra and P r (e.g. [START_REF] Orvedahl | Prandtlnumber effects in high-rayleigh-number spherical convection[END_REF][START_REF] Wei | Large-scale circulation and oscillation in turbulent rayleigh-bénard convection with a prandtl number pr = 12.3[END_REF][START_REF] Xie | Dynamics of the large-scale circulation in highprandtl-number turbulent thermal convection[END_REF]). It should be noted however that these power laws are none but mere fits. They do not prove to be universal, as they lose their applicability for different setups, fluids and ranges. Furthermore, high Prandtl fluids are usually thermo-dependent2 . These simplified scaling laws do not seem to take into account the latter important aspect, which creates a stronger spatial heterogeniety in the viscosity. Not being the aim of this study, and in the absence of a wide range of parameters, Re = f (Ra) scaling laws will be omitted.

The thermo-dependence of the fluid might seem advantageous to the current application at first glance. The different ice rheologies are thermo-dependent in nature. But they are also pressure dependent. The hydrostratic pressures, at the bottom of high pressure ice mantles, render an increase in the viscosity in the bottom part of the mantle [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF]. In the absence of experimentally large hydrostatic pressures only the temperature can change the rheology of the fluid. Recalling that top boundary in the setup is a colder isotherm, one can clearly deduce from an Arrhenius behaving viscosity, that the latter will be higher in the top part of the setup. This is the opposite of the above-mentioned distribution in high pressure ice mantles. Moreover, a high viscosity contrast3 increases the thickness of the stagnant conductive lid [START_REF] Davaille | Transient high-rayleigh-number thermal convection with large viscosity variations[END_REF], unlike in deep high pressure ice mantles. Therefore, it would be more appropriate to minimize this effect as much as possible by: (1) experimentally reducing the thermo-dependence by using more dilute solutions; (2) modeling smaller mantles to minimize the effect of pressure on the rheology. To this end, experiments with high concentrations of Glycerol, namely data points in magenta and green (figure 3.1), will not be exploited.

Additionally, analysis of all Re > 1 experiments will also be omitted. The rest of this section will mainly focus on the red data points representing experiments with 15 wt.% Emkarox. This solution provides a delicate balance between lower thermo-dependence, desirable viscosity and acceptable transparency for the optical non-intrusive measurement techniques employed in this study. It can be therefore deduced, that following the scaling method and the spatial limitations of the setup, Rayleigh numbers cannot exceed 10 8 without excessive inertial contributions. This implies that modeling convection on Ganymede, with the current method, is more problematic than modeling Titan, as per the present day models [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. One can also infer from models of present day heating on Callisto [START_REF] Kuskov | Models of the internal structure of callisto[END_REF] that Rayleigh numbers are expected to be similar to those experienced on Titan.

At such high Rayleigh numbers (i.e. 10 7 and above), thermal plumes are the hallmark of the unstable natural convection (cf. section 1.4.2). It is to be noted that flow is unstable, even long after the thermal equilibrium is reached (thermal steady state). Geological changes in heating occur in the order of billions of years (Gyr) [START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF]. On the other hand, thermal steady states for ices are usually reached with only few millions years (Myr) [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. Mantle convections can therefore be considered in the thermal steady state. For this reason, experiments considered in this section are only taken long after the thermal steady state is reached, as shown in figure 3.2. An experimental timescale t m of twenty hours has the geological equivalent of t o ≈ 1.2(Gyr) assuming an HP ice reference viscosity of 10 16 (P a.s); consistent with the timescales of the thermal evolution of Titan [START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF]. After the thermal equilibrium was reached, flow fields were acquired at a distance of 7(cm) from the frontal wall, for a period of ∆t m = 20(min). The acquisition frequency was set to the highest limit of the camera as a conservative approach, because the local speeds are not known a priori. The experimental model period ∆t m = 20(min) is equivalent to a geological time of ∆t o ≈ 20(M yr) 4 , a reasonable time for one or more thermal plumes to appear [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. An example of velocity fields associated with the rise of a thermal plume can be shown as follows in figure 3.3. The rise of a thermal plume is seen here (cf. figure 3.3) from the velocity vectors perspective. A pocket of warmer fluid, due to thermal expansion, rises episodically to the top of the setup. Horizontal averages over the vertical velocity component are shown on the right of each velocity vector field. The rise of the plume can be seen in the change of the horizontal mean and the increase in the standard deviation. But most importantly it can be seen in the increase of the standard deviation. This is not very surprising given that transport in plume-dominated convection flows (Ra > 10 6 ) are much more localized as opposed to convection cells appearing at lower Rayleigh numbers. This heterogeneity, and plume convection in general, occurs when the time scale of dissipation and diffusion are much longer than the buoyant one 5 . It is the dissipation that renders homogeneity of temperature. However, when another process (ex: buoyant transport) occurs much before homogeneity is achieved, one can expect heterogeneity to increase in the flow. This heterogeneity in turn can contribute further to the instability.

The velocity vectors and magnitude distributions are similar to the those observed by the works of Davaille and coworkers [START_REF] Davaille | On the transient nature of mantle plumes[END_REF][START_REF] Davaille | Anatomy of a laminar starting thermal plume at high prandtl number[END_REF]. In these cited studies, thermochromic liquid crystals were also used with a monochromatic laser light to show isotherms of laminar starting plumes, induced by a local source. Batchelor has shown that laminar plumes from a local point source are well-behaved and analytically predictable [START_REF] Batchelor | Heat convection and buoyancy effects in fluids[END_REF]. Very much unlike ones from uniform surface fluxes (the current case), which are less predictable due to their high sensitivity to small perturbations (cf. discussion above) [START_REF] Batchelor | Heat convection and buoyancy effects in fluids[END_REF]. Additionally, one cannot forget that these plumes are observed at the thermal steady state. Previous convections and global flow fields also add perturbations to the presently rising plumes. This often causes the thermal plumes to drift horizontally, which can also be seen in simulations on high pressure ice mantles [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. It was also observed experimentally, in figure 3.4 a transient plume is shown drifting horizontally to the left, influenced by the surrounding flow. This visualization is made possible by leaving the bottom 1(cm) without seeding particles. This method is unfortunately inapplicable for steady state convection, given the high mixing at such Rayleigh numbers. Another alternative to visualize the plumes is to use the measured velocity vectors to solve the heat transport equation in equation 3.1. In the absence of direct thermal measurements using thermochromic liquid crystals or differential interferometry [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high prandtl number[END_REF], this method can be used in a thermal steady state. Starting from the horizontal statistical average, described by Ref [START_REF] Shishkina | Mean temperature profiles in turbulent rayleigh-bénard convection of water[END_REF], and using the material properties of the 15% wt. Emkarox solution, the heat equation is solved iteratively to obtain insight onto the transport of heat. The thermal distribution in figure 3.5 is neither an experimental measurement, nor a depiction of the actual thermal distribution. It is merely a qualitative estimation, to understand how thermal plumes may appear in this convective flow, and how they relate to the velocity vector fields.

ρC p ∂T ∂t + ρC p v • ∇T = ∇ • (k∇T ) (3.1)
The statistical thermal average distribution, described by [START_REF] Shishkina | Mean temperature profiles in turbulent rayleigh-bénard convection of water[END_REF] was prescribed at the t+673(s), where the average velocity vector norm was at a temporal local minimum. This signifies that no strong local upwellings occurred at that instant, which implies that the thermal distribution was less spatially heterogeneous than other instances. Homogeneity was also checked locally in the measured vectors, before prescribing the average thermal distribution, the latter being homogeneous along the horizontal direction by definition. The transported hypothetical thermal distribution in figure 3.5 depicts the rise of two thermal plumes with time. Additionally, local thermal anomalies also drift in the bottom part of the setup, as they are influenced by the global flow field, as also discussed above and in figure 3.4. and observed in the works of Kalousova and coworkers [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF].

Thermal plumes are time dependent and intermittent in their nature especially in such unstable flows. It would be of interest to examine the velocity time series to obtain more information on the long term dynamics. In figure 3.6, using a 0.5(s) sampling period, the velocity components as well as the magnitude are shown for 1200(s) or 20(min). This is the geodynamic equivalent of ≈ 5(M yr) and ≈ 20(M yr) assuming a reference viscosities in the vicinity of 10 15 (P a.s) and 10 16 (P a.s), respectively. These timescales are indeed pertinent to convection in high pressure ice layers [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. In figure 3.6, the average horizontal velocity component is relatively close to zero. It could even be considered as an indicator of symmetry along the gravity axis. This is despite the fact that, locally, transport in the horizontal direction is possible. More interestingly, the vertical component of the velocity vectors exhibits long wavelength variations. These are actually episodic upwellings of warm fluids. At time t + 675(s) to t + 740(s) for instance, there exist a clearly positive slope, hence a consistent increase in the average velocity. That corresponding upwelling is in the form of a plume, shown in figure 3.3. After the plume has transported the excess buoyant warm fluid to the top, the velocity decreases. This mechanism is behind the long wave fluctuations in convection problems. Heat, as an entity, is diminished by convection, which itself increases as heat increases. Convection, in turn, reduces locally the excess heat. It is that simple mechanism that is behind oscillations in convection. Beyond the critical Rayleigh number for the onset of convection, supplying more heat subjects the flow to primary instabilities in the form of periodic oscillations. Increasing further the heat, (and convection effects consequently) could lead to period doubling bifurcations which is the route to eventual chaos [START_REF] Gollub | Many routes to turbulent convection[END_REF]. This route takes place at relatively lower Rayleigh numbers. For this reason, in the current application neither one predominant frequency, nor period doublings were detected. The power spectrum density given by the fast Fourier transform renders a high power in the lower end of the spectrum. Power then decays proportional with the frequency to power minus 3 (∝ f -3 ), as can be seen in figure 3.7. If the Taylor frozen flow hypothesis [START_REF] Taylor | The spectrum of turbulence[END_REF] is applicable, one may relate the temporal frequency to a spatial dimension. Subsequently, one may presume that this power spectrum may be coherent with the Batchelor regime [START_REF] Batchelor | Small-scale variation of convected quantities like temperature in turbulent fluid part 1. general discussion and the case of small conductivity[END_REF][START_REF] Batchelor | Small-scale variation of convected quantities like temperature in turbulent fluid part 2. the case of large conductivity[END_REF]. 

Correlation times

A lot of information can be deduced from the average velocity components time series in figures 3.6 and 3.7. Yet, much more is hidden due to the averaging over space. To remedy this effect, one can pick few points in the domain to observe the time series from a local perspective. In figure 3 The question of periodicity, or dominant frequency can also be tackled by a different statistical approach. For instance the auto-correlation of a signal, meaning its correlation with a lagged copy of itself, can give insight onto its periodicity. This is done by examining the lag to which they stop correlating. In figure 3.8 (b), the auto-correlation of the vertical component of the velocity V z is plotted against the lag used in the autocorrelation τ . The lag cannot extend beyond the total aquisition time. The difference between the time series at points A and B appears to be non-negligible. Point B exhibits a much smaller auto-correlation time t corr , as suggested by the first zero crossing. Subsequent fluctuations are often attributed to the signal noise level. For point B, the auto-correlation time t corr = 57(s), which correspond to planetary timescale of ≈ 1(M yr), as per the geodynamic scaling discussed above. This is a very relevant time scale for convection in high pressure ice mantles [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF]. On the other hand, point A's lag is 15 times longer. Although the latter timescale is still relevant to planetary convection, this results could imply that the convection may not be that spatially arbitrary. There could be a spatial predominance for periodic plumes to occur more often in one place than another, despite the homogeneous heating from below. A statistical heterogeneity appears in a homogeneously heated and controlled laboratory setup. By extension one could therefore expect planetary convections to be also heterogeneous in that regards, especially given that geologic settings are usually more heterogeneous than a laboratory setup, in terms of heating and floor topography. Plume convection is expected to transport minerals and volatiles from the silicate-rich mantle to the high pressure ice mantle. Therefore this statistical heterogeneity could also imply that some locations may be richer in minerals and other convected materials. If some of these materials contains ammonia (NH 3 ), sodium chloride (NaCl), or magnesium sulfate (MgSO 4 ), which are strong anti-freeze agents, one could expect local changes in the melting point. This, in turn, may further discriminate convection as per the effect of density changes in case of melt. The auto-correlation times t corr for all the domain are mapped spatially in figure 3.8 (c). One can clearly see longer correlation times near the center and at the boundaries. There may be a large contribution of the boundary conditions and the aspect ratio, however these contributions cannot be quantified with the current experimental setup. Other contributions may also come from heterogeneous heating of the laser light6 used for the PIV, which attenuates longitudinally. For this reason, no strong conclusions can be derived from the spatial distribution of auto-correlation times. It is however complicated to make a convection experiment in a spherical shell (to avoid no-slip walls parallel to the gravity axis), due to obvious experimental complications for generating a radial gravity. A better approach would be to examine this issue numerically in three dimensional numerical simulations on spherical shells, e.g. Ref. [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF].

Singular value decomposition

Given the long acquisition times needed to detect changes in the flow, one comes across a different problem pertaining to data. While every experiment consists of about 4 to 5 GB of raw data, it is impractical to exhibit and investigate the totality of the data as is. Therefore one must find a way to extract the most important information in an efficient, yet insightful way. For instance the Singular Value Decomposition (SVD) could be used to identify the most dominant behaviors. The basic idea relies on factoring the acquired data matrix V z = f (x, z, t), or in other words V z = f (space, time) into an eigen-weighted matrix multiplication. First, the data matrix is restructured into two dimensions, namely space and time. Therefore the data matrix D (containing V z = f (space, time)) is now of size (m × n) where m is the spatial number of points (depends on the resolution of the PIV) and n number of time frames acquired. Second, the compact singular value decomposition is performed to obtain:

D = (D 1 ) (D 2 ) D 3
T (the operator T is the conjugate transpose here). Where D 2 is a square diagonal matrix of size r ≤ min{m, n} (r being the rank of D), containing the non-zero singular values in its diagonal. These values are the square roots of non-negative eigenvalues of the data matrix's Hermitian adjoint multiplied by an original copy of itself, as follows: D T D. The diagonal entries of the matrix D 2 can roughly be considered the eigenvalues of D = f (space, time). The matrices D 1 and D 3 , of sizes (m × r) and (r × r) respectively, contain eigenvectors of DD T and D T D, respectively, in their columns. This eigen-weighted factorization, allows one to subsequently reconstruct basis modes, in terms of the singular (or eigen) values. The latter are naturally sorted decreasingly λ 1 < λ 2 < ... < λ r . Here the singular values λ i of each mode i are normalized by the cumulative sum of all singular values as follows in equation 3.2:

λ = λ i r i=1 (λ i ) (3.2)
The normalized singular values λ can subsequently be shown in figure 3.9. The first singular value consists of 3.5% of the cumulative sum, and subsquent modes decrease rapidly in magnitude. This means that the main information of the flow can be summarized in the first few modes. The inset plot is logarithmic-linear, showing how the singular values decay by one order of magnitude in the first 30 modes, out of the existing 2398 non-negative singular values. The first five modes, exhibit a dominant dispersed plume behavior, the hallmark of convection at Ra > 10 6 . However the magnitude of the reconstructed plumes as well as their anisotropy decay in later modes. The anisotropy is also hinted by the two dimensional spatial correlations of the reconstructed modes, in the right column of figure 3.10. The decrease in magnitude of the reconstructed modes can be seen from the singular values in figure 3.9. The anisotropy however is stronger in earlier modes due to the large coherent structures which themselves are often taken by the first few modes [START_REF] Himo | Coherent flow structures and heat transfer in a duct with electromagnetic forcing[END_REF]. On the other hand, small scale flow structures are often more isotropic and less energetic [START_REF] Richardson | Weather Prediction by Numerical Process[END_REF].

Anisotropy of flow

It is hypothesized here that the main parameter controlling the anisotropy in a natural convection flow, is the Rayleigh number. For lower Ra numbers, the largest scale structures are convection cells, which are more isotropic in nature. On the other hand, for large Ra numbers, the convection is plume-dominated, the latter being evidently more anisotropic. The anisotropy is not merely topological, but it originates from the definition of the Rayleigh number, which is the timescale ratio of dissipation over buoyant transport. While dissipation in its nature is very isotropic, buoyancy on the other hand is mostly oriented by the gravity direction. When the energy is transported by buoyancy at a rate much faster than it could dissipate isotropically, the flow is expected to become more anisotropic. To understand more the effect of the Rayleigh number, two cases can be compared. The current limitations are however reminded from figure 3.1, where a small range of relevant Ra numbers can be tested without exceeding the inertial threshold of Re < 1. First, in figure 3 The anisotropy is therefore more accentuated for higher Rayleigh numbers, as hinted above. This can be further proven by examining the two-dimensional correlations of the vertical velocity components from the vectors fields in figure 3.11. The correlations are overlapped in three iso-countours, each, in figure 3.12 . They are normalized by the span between the maximum and minimum correlations; in other words, the normalized correlations are bounded between 0 and 1. Furthermore, the three contours shown for each case represent equidistant values of: 0.25, 0.5 and 0.75. The latter contours, close to the center, do not exhibit large difference, presumably because the order of the Rayleigh number didn't change over the small range tested in the current study. However, starting from the 0.5 contours, in thick lines, one can clearly observe, how thinner the correlation corresponding to the higher Rayleigh number is. This is a clear indicator of more anisotropy in the flow. For a fairer comparison, one can examine the two dimensional correlation spaces of all the vertical velocity components across time. Not only are the thermal plumes more anisotropic for high Rayleigh numbers, the flow itself is more anisotropic. The former is a result of the latter, and not the inverse. In figure 3.13, vertical and horizontal space-time diagrams are built for the spatial correlation, they are separated on purpose to examine further the anisotropy. Below the space time diagram couples are vertical and horizontal correlation distances obtained from the first zero crossings of the two-dimensional correlations.

During most instances, the vertical correlation distances extend to the height of the setup for both Rayleigh numbers. For optimal transport of materials, the vertical correlation distances should be the size of the mantle (or setup). That would mean that the velocity signal at the bottom does not stop correlating all the way to the top, signaling a strong similarity, and therefore small losses in the information/material transport. Noting however that the horizontal correlation distances are much smaller than the width of the setup. In most instances, the horizontal correlation distances are even smaller than the vertical ones. The ratio of both becomes a quantitative measure of anisotropy. In the last subplot, the ratio of vertical over horizontal correlations distances is shown across time. The aspect ratio of correlation distances is mostly higher for the larger Rayleigh number (cf. bottom of figure 3.13), as suggested by the red shaded areas in opposition to the black ones. Additionally, it would be interesting to revisit the spatial map of the correlation times in figure 3.8 (c), and compare the two Rayleigh numbers. Spatial changes in the correlation times would possibly be influenced by the aforementioned anisotropy of the flow. This is possible by reducing lateral interactions of plumes, which are more vertically oriented at higher Ra numbers. In figure 3.14, the correlation times are compared for two tested cases exploited above. The distribution of the auto-correlation times are visibly different, despite some gen-eral similarities. The anisotropy can also be seen in the higher Rayleigh number case from the correlation times, by the presence of the thinner long time structures. The latter are also more dispersed covering the domain, as opposed to the large patches of low/high correlation times for the lower Ra number case. This somewhat large difference is seen for a relatively marginal difference in the Rayleigh number. To put this into perspective, the difference between the two Rayleigh numbers refers to difference of only 15% in the mantle size. Such a difference can actually exist on Titan at different latitudes caused by the tidal bulge. Additionally, tidal heating, whether in the silicate mantle or ice mantle 7 , can change drastically between the poles and the equator [START_REF] Tobie | Tidal dissipation within large icy satellites: Applications to europa and titan[END_REF], which ultimately changes also the thermal equilibrium of the high pressure mantle. Not to mention the temporal changes in heating on Titan due to the residual eccentricity diminishing in a time scale of billion years [START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF]. Consequently, the changes induced by the marginal difference of the Rayleigh number could imply temporal and spatial differences in the homogeneity of mixing and transport of materials from the silicate mantle.

Scaling of the experimental results

Scaling up these measurements to the planetary scale of Titan, or other icy satellites, one would need to go back to the dimensional analysis in chapter 2, section 2.1. The basic premise of inducing measurable velocity vectors is to change the materials viscous response. Consequently, one can only presume that scaling up (in the opposite direction) would naturally also depend on the viscosity. From a dimensional analysis, scaling the velocity would require using the spatial over the temporal scaling, as suggested in equation 3.3, as a simplest approach. As a reminder, superscripts denoted by o refer to quantities in the planetary objects, m to the laboratory model.

V m V o = H m H o t o t m (3.3)
The viscosity could therefore be used in equations 2.10 and 2.11, to obtain the ratios of H and t. Having V m from the experimental data, one can obtain V o from equation 3.3. In figure 3.15, the velocity ratio is shown in function of a range of high pressure ice viscosities. Noting here that depending on the thermodynamic conditions, ice III, V or VI could be present in the mantle, and even possibly simultaneously [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. Additionally, rheological measurements on high pressure ices remain to this day diverging and inconclusive [START_REF] Sotin | Creep of High Pressure Ice VI[END_REF][START_REF] Sotin | Viscosity of ice v[END_REF][START_REF] Durham | Creep of water ices at planetary conditions: A compilation[END_REF], (more information can be found in section 1.3). Due to this complication, in most geodynamic convection studies, especially on high pressure ice, the reference viscosity of ice remains a "free" parameter [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. In figure 3.15, the color code represents the scaled mantle height from the dimensional analysis, for each corresponding viscosity value. Therefore, one experiment, can be self similar to a set of conditions and not only one, provided that they all fit the dimensional analysis. The wide spectrum of similarity in this method allowed this study to take place, given that physical properties of fluids in nature cannot be all engineered to specific values to fit the specific need. Subsequent to scaling the space, time and the velocity vectors, the orientations are not changed due to linear isotropic scaling. The latter assumption is worth questioning by subsequent studies. On the other hand, magnitudes change drastically to values in the order of 10 -9 and 10 -8 (m/s). More concretely, the scaled velocity magnitudes are in the order of (m/yr), matching those of simulations on the high pressure ice mantle of Titan [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. It is worthy to note here, that not many velocity vector fields were published for high pressure ice mantle convections. Among the few published cases, one cannot easily find a corresponding analogical experimental conditions that would fit the current laboratory limitations discussed in this chapter and the previous one. To this end one cannot make a direct comparison between the current experimental model and the few different cases shown in the literature. Consequently, more one-on-one comparisons can be made within the context of this study. Therefore, this study will subsequently include numerical simulations directly done on high pressure ice mantles, developed during the course of this thesis. The numerical simulations will be detailed in chapter 4.

However, an issue can still be examined experimentally, and it pertains to clathrate hydrates. The presence of clathrate hydrates on Titan has been a long standing explanation of the atmosphere replenishment with methane [START_REF] Choukroun | Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on titan[END_REF], among others. Yet the transport of the clathrate hydrates, which have different physical properties than pure ice, has not taken much attention in geodynamic studies. Understanding the conditions at which transport of clathrates could occur seems a necessary step to verify the validity of this explanation. In the following section, attempts on experimentally modeling such transports will be summarized.

Analogical modeling of high pressure ice mantles in the presence of clathrate hydrates

Experimentally modeling convection in high pressure ice and clathrate hydrates would require respecting the ratios of all relevant properties between the couple (ice-clathrates) and (model ice-model-clathrate). In other words, for each physical property " ", the ratio ( o clathrate / o ice ) must ideally be equal to the model fluids properties ( m b / m t ). One can therefore understand the difficulty of finding in nature fluids that have all such properties complying to the current experimental need. A possible alternative, is to employ dilute solutions of polymers, in the aim of matching the ratios of the main physical properties. However, this solution compromises the modeling by adding diffusion between the two materials. This diffusion is not expected to happen between clathrates and ice. Unfortunately, in the experimental model, it will exist; which will induce undesired mixing, compromising the possibility of long experiments.

Diffusion naturally depends on the concentration of the polymer, and the viscosity, since it happens at the molecular level. In the current study, the main polymer controlling the viscosity is the aforementioned Emkarox, which at room temperature and in the pure form, has a viscosity of 100(P a.s). For reference, the viscosity of 15wt.% Emkarox has a viscosity of 0.058(P a.s) at room temperature. The viscosity ratio expected for clathrates and ice, is between 10 and 40 [START_REF] Durham | The strength and rheology of methane clathrate hydrate[END_REF][START_REF] Durham | Ductile flow of methane hydrate[END_REF][START_REF] Durham | Rheological comparisons and structural imaging of si and sii end-member gas hydrates and hydrate/sediment aggregates[END_REF], for lower pressures. The rheology of clathrates at higher pressure, i.e. above 600(M P a) is not well documented in the literature. The cage-crystalline structure is expected to be more resistant to deformation than pure ice. On the experimental model side, the artifact of the current method, namely diffusion, increased dramatically for concentrations lower than 65% during preliminary tests. For this reason, the lowest concentration to model clathrate hydrates in this study will be 65%, with a room temperature viscosity of 26.1(P a.s). For the high pressure ice, the viscosity has to be increased by using a higher concentration of Emkarox, namely 25% leading to a room temperature viscosity of 0.42(P a.s). The viscosity ratio therefore becomes ≈ 62. This ratio decreases with increasing temperature, as per the difference in the thermo-dependence; reaching a ratio of ≈ 28 at 65( • C). The concentration of the top layer cannot be increased over 25 wt.% Emkarox, due to reduced transparency. Noting here that to maintain the same range of Rayeigh numbers, the heat fluxes were increased correspondingly.

Rayeigh-Taylor laboratory experiments, are difficult to perform without perturbing the flow. Buoyant fluids placed at the bottom of the setup will simply advect in the form of chemical plumes upon filling of the setup, before the experiment starts. Obstructions to control the start of the experiment often induce large perturbations and errors. For this reason, at the start of the experiment, the bottom fluid should be slightly denser than the top one. To control the density, glycerin will be added to the top solution, to minimize the density differences. Upon heating, the bottom fluid, having a higher thermal expansion, will become increasingly more buoyant than the top solution of lower thermal expansion. This could mimic the behavior of some clathrates, having higher thermal expansion coefficients than ices [START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. After a trade-off, the concentration of glycerin was determined (20wt.% Glycerin), so as to induce a thermo-compositional convection upon heating only (cf. Table 3.1). It should be noted however, that the addition of glycerin did not influence the viscosity ratio, as glycerin is 100 times less viscous than Emkarox in the pure form. 

No compositional plumes

No compositional plumes

Thermocompositional plumes

Compositional plumes

Emkarox, in its pure form, has a lower thermal conductivity than water (0.18 < 0.6(W/mK), respectively). Therefore increasing the concentration of Emkarox can lead to a lower conductivity, as can be seen in table 3.1. In comparison with clathrate hydrates, at lower pressures, the conductivity could be four times lower than that of ice. However at higher pressures, and depending on the guest gas molecule, the conductivity contrast can decrease. It should be noted that the conductivity behavior of some clathrates is peculiar. For instance, the tetrahydrofuran (THF) clathrates conductivites at high pressures (1.5GPa) were found to increase with temperature, in contrast with all organic crystalline materials in nature [START_REF] Ross | Unusual pt dependence of thermal conductivity for a clathrate hydrate[END_REF]. For this reason, accurate scaling of the conductivity ratio cannot be ensured. It should however be noted that the phenomenological picture is conserved by keeping the thermal conductivity of the bottom layer (modeling clathrates) lower than that of the upper one (modeling the ice).

The above mentioned fluids are prepared one day before, to allow full degassing of the air bubbles upon mixing. The setup is opened from the top exchanger, and rigorously cleaned. Susbequently, filling can begin by the bottom fluid (65wt. % Emkarox) dyed with 5(p.p.m) of molecular fluorescein (Fluoresceinnatrium, Catalog Number: 16,630-8 from Sigma). It takes about 30(min) for the highly viscous fluid to spread evenly, before its thickness z b is measured in five different locations using a regular millimetric metal ruler. The measured locations are the center, and ≈ 5cm near each corner, to ensure that this layer of fluid is well orthogonal to the gravity direction. The setup is then closed, and filling is done using a pump through one of the two available holes in the top exchanger. The pumping of top fluid (with the 15(p.p.m) of 50(µm) polyamid particles) is done slowly at rate of ≈ 6(L/hr) so as to minimize as much as possible the distortion of the interface. The latter is allowed to relax and get back to its equilibrium position for two hours. The efficacy of these efforts to restore a perfectly orthogonal interface, at this point, can neither be measured mechanically nor visually (due to the attenuation of the laser sheet through the fluorescent medium). Noting however that the interface cannot be left for a much longer time, due to slow mixing by diffusion. In other words, the experiment must be prepared and performed in the same day; if left overnight, diffusion will occur and compromise the material property ratios.

The problem of diffusion limits the possibility for this part of the study. Upon heating, convection will occur, which will accelerate the mixing. Depending on the case, the bottom layer could completely mix with the top one after about two hours. This means that experiments in the thermal steady state are not possible with this approach. For this reason, the current part of this study had to be limited to the onset of convection, which itself depends on the imposed flux. To elaborate more on that, one could look at the bottom thermo-couple reading of the temperature in figure 3.17 for different heat fluxes. It is to be noted however, that this is not the average temperature, but merely only one reading from thermo-couple engraved near the surface of the main brass heater, located at the center of the horizontal (x, y) plane. The results in figure 3.17 are obtained for the same thickness of the bottom layer, namely z b = 4% of the setup height. Before the onset of convection, when the dominant heat transfer mode is conduction, the heat flux is reflected into the slope of the temperature with time. After a certain time, the onset of the thermo-compositional plume convection occurs. This onset is highlighted in the large markers and corresponds to a short term local maximum. At which the hot now-buoyant bottom layer starts to form plumes. This plume-onset time (onset time, hereafter) must not be confused with the onset of convection, prior to plume formation, defined as the deviation from the conductive profile [START_REF] Davaille | Two-layer thermal convection in miscible viscous fluids[END_REF][START_REF] Bars | Large interface deformation in two-layer thermal convection of miscible viscous fluids[END_REF]. The plume formation happens earlier for higher heat fluxes, which heat up to hotter temperatures before convecting. There exists a monotone trend to the onset temperature in function time, and it is highlighted by the decaying exponential fit in the dashed line. The contribution of the heat flux onto the onset time and temperatures are isolated in figure 3.18. It can be clearly noticed that the onset time depends highly on the heat flux. The dependence decreases with the latter; in other words, strong differences can be seen for lower fluxes. This further complicates the undesired effect of diffusion. The convection onset time was rigorously characterized by the team of Davaille through extensive studies over several orders of magnitudes of Ra numbers [START_REF] Davaille | Two-layer thermal convection in miscible viscous fluids[END_REF][START_REF] Bars | Large interface deformation in two-layer thermal convection of miscible viscous fluids[END_REF]. It statistically decays with the Ra number of the layer to the power (-2/3), as consistent with the studies of Howard [START_REF] Howard | Convection at high rayleigh number[END_REF]. This power law dependence on the Ra number was also observed herein for the plume onset times (cf. figure 3.18 on the right), where the dashed black line represent the least squares fit, and the blue solid line shows the t onset ∝ Ra -2 3 trend. Despite the narrow range of Rayleigh's tested here (targetting only Titan), the onset time abides well by the scaling of t onset ∝ Ra -2 3 derived in [START_REF] Davaille | Onset of thermal convection in fluids with temperaturedependent viscosity: Application to the oceanic mantle[END_REF].

On the other hand, the onset temperature increases with the flux and occurs after 40( • C). This is could be due to more rapid capacitive heating, faster than the development of the onset. Just because convection is possible at 40( • C) does not mean that it will instantaneously occur once this temperature is reached. Some of the heat and potential energy recuperated by changes in buoyancy is dissipated by diffusion and viscous dissipation, respectively. Additionally, despite the small thickness of the layer, vertical temperature differences in the thin bottom layer can differ with the imposed heat flux. Therefore the temperature reading on the bottom is not necessarily the one at the interface.

Laser induced fluorescence and image processing

Measurements in this section will include simultaneous particle image velocimetry (PIV) and laser induced fluorescence (LIF). The former method was elaborated previously in section 2.3. On the other hand, laser induced fluorescence, as the name suggests relies on the excitation of fluorescein by the laser light8 , to appear brighter. This means that whatever fluorescein lies outside the plane of the laser sheet will not be excited. Therefore both measurement techniques are two-dimensional and will occur in the same plane, that of the laser sheet. The results in the previous section where all presented in the same plane. However, in the current one, for thermo-compositional convection, the first appearance of the plume cannot be predicted. Consequently the observation plane will be actively moved as per observation during each experiment so as to capture a rising plume. As discussed in section 2.3, the camera and laser sheet are coupled and movable along the y direction. This ensures that the optical focus is always maintained even after the observation plane has changed. Due to the unpredictability of the thermo-compositional plumes, the first seconds of the rise of a plume may not be acquired, as the laser sheet rarely happens to be in the same plane as the rising plume. Further complicating the visualization, are rising plumes between the plane of observation and front wall. These do not fluoresce, so they appear somewhat transparent; however their axisymmetric shapes create a lense effect, distorting the image behind them. For this reason, capturing the first plume, often provides a cleaner visualization and lower diffusion effects; to this end, the results in this section will mostly focus on first rising plumes. An example of a section of the flow is given in figure 3.19 on the left. The LIF data are isolated by creating a binary mask. Outside that mask, where the seeding particles follow the flow, the PIV method is applied. The procedure to create the mask will be described in the following steps:

1. The red channel is stored in a matrix R 1 . The red channel is specifically chosen because lower background noise as per the definition of relative luminance Lum = 0.2126 Red + 0.7152 Green + 0.0722 Blue. The blue channel is not chosen due to its very low sensitivity to details.

2.

From R 1 , all closed areas smaller than 100 pixels are set to 0.

3. R 1 is then self-convoluted with a uniform kernel of size 32 × 32.

4. Subsequently, the contrast of R 1 is heavily increased.

5. Self-convoluting again the new result, with a uniform kernel of size 32 × 32.

6. The image is normalized next.

7. A binary/boolean operator is applied by keeping all the normalized pixels above 0.5.

8. Finally all closed areas smaller than 100 pixels are set to 0, to remove potential artefacts that may have resulted from the above step.

It is to be strictly noted however, that for each time step, despite having two frames to compute the velocity, only one mask will be applied for both frames. This is important to ensure that no false velocities are generated from small changes in the detection of the interface. For the PIV, the masked raw image will be used, unless in very rare cases of shadows obscuring the particles. Obscuring the particles is yet less harmful to the PIV than the shadow itself moving. In figure 3.20, two snapshots show how the light-shadow interface moves with the speedy plume. This effect usually creates spurious high velocity lines on the interface caused by a naturally high correlation there. To remedy this effect, an image processing method has been developed here specifically for this application. It should be noted however, that image processing prior to PIV is only used in the rare case of shadows, and this will be signaled to the reader upon presenting the corresponding results. For the rest of the results in this section, if not specified, the PIV was computed classically from the masked raw acquired images.

The raw image is tricolor with an 8-bit quantisation, meaning that the image consists of three digital ones: red, green and blue. For each of these three monochromatic channels, the pixels brightness is discretely quantified between 0 and (2 8 -1). Therefore, even if not visible by eye, details exist and can be recovered. The main objective of the following efforts is to remove the shadows and recover some of the details in it. The procedure developed to recover the details in figure 3.20 are as follows:

1. The green channel is self-convoluted with a uniform kernel of 10 × 10 and stored it in a matrix I 1 .

2. The red channel is divided with 95% of the I 1 , and saved in a matrix I 2 . Constant weights, such as 95% are only used because the mean value of the green channel is often larger than the red one, as per the definition of relative luminance.

3. Let I 3 be the self-convolution of I 2 with a uniform kernel of size 20 × 20. Notice here that a large kernel is used. This detail is important for the following step.

4. Let I 4 = (0.25 × I 2 /I 3 ) 0.3 . Raising to a power less than one, is an important step to improve the contrast of only small brightness details. This can be easily understood by looking at plot of lower power (e.g. square root) and comparing them to a linear function (power 1); in the former the slope is higher for lower values. Notice here that I 2 was divided twice by convoluted results, this is very beneficial to surround peaks of bright particles with troughs (created by the division with a smoother, wider, but lower peak).

5. Finally the contrast of I 4 is improved.

Effect of heat flux on the transport

Subsequent to elaborating the measurement technique, one can look now at the results. In figure 3.21, the results obtained for a heat flux Q m = 265(W/m 2 ) and an initial thickness z b = 4% of the height of the setup. The horizontal coordinates are centered at the plume x p . Noting here that the initial interface deforms well upon heating and before the onset of plume convection. The thermo-compositional plume is surrounded by high velocity that decrease with distance away from the plume. This implies that the plume is faster than the classical thermal convection, not quite surprising given that the thermal expansion of the bottom fluid is higher than the top one. Yet, this result remains interesting in the sense that convection could be more vigorous as initially estimated [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. From the LIF mask, one can see that the thermo-compositional plume rises, and then starts to fall down. The fall of the plume can also be seen in the vectors of the third snapshot, below the plume head. From the laser induced fluorescence mask, longitudinal space time diagrams can be built at different heights, such as in figure 3.22. The heights here will model the hydrostatic pressures. Depending on the composition of clathrate hydrates, the thermo-dynamic dissociation is in function of temperature and pressure [START_REF] Choukroun | Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on titan[END_REF]. These space time diagram could give insight onto the dissociation of the clathrates depending on their composition. However, the quantification using this method cannot be accurate, this is because the visualization is two-dimensional, yet the flow is three dimensional. Therefore the masked quantity detected is not conserved. To elaborate more on that, one can examine the middle and bottom space-time diagrams in figure 3.22. The quantity in the middle one is higher than the bottom one, this is because during the fall of the plume, it partially exited the plane of visualization. Furthermore, the thermo-compositional plume does not reach the top of the setup. Extrapolating this information to Titan, means that for some heating rates, the clathrates may not reach the ocean, or their thermodynamic pressure-temperature conditions to dissociate. Away from the source of heat, the thermo-compositional plume cools down and becomes denser. The buoyancy forces reverse, and the plume falls down. This can be visualized qualitatively in a different experiment done in white light. In figure 3.23, no PIV or LIF is used, only the bottom fluid is seeded with a thermochromic pigment that turns black below 31( • C). The experimental conditions such as Q m and z b are different here, but the qualitative comparison remains. The semi-transparent plume highlighted by a red circle is warmer than 31 degrees during its rise, and then reaches the colder top of the setup. It cools down, to below 31 degrees which can be seen in the thermochromic change of color. At this temperature, from figure 3.17, it is unlikely that buoyant effects are favorable. The plume then falls down due to the change of density. This explanation using figure 3.23 will be concluded by stating that the subsequent analysis will be cut-off once the plume touches the boundary. This is because the experimental model boundary condition is a no-slip one. However above the high pressure ice mantle, an ocean exists which of course is prone to deformation. Resuming the PIV and LIF results, one can examine the flow for a higher heat flux, namely Q m = 415(W/m 2 ) in figure 3.24. The plume development is undoubtedly faster as per the time stamp on the top of each subfigure. The velocity scales are also much higher, about double in magnitude, compared to the previous case. This is partially due to excessive buoyant forces at the higher onset temperature. Additionally, the thermodependent viscosity decreases with temperature, allowing faster deformation to occur. Once again, the thermo-chemical plume is the main source of the high velocities, which decay away from the plume. Owing to the excessive buoyancy and high velocities, the plume reaches to the top of the setup, as can be seen in top space-time diagram in figure 3.25. The efficient transport of clathrates through the high pressure ice mantle therefore depends highly on the heat from the silicate mantle. Additionally, from figure 3.25, the timescale of the buoyant transport is cut down by half. High heat areas could also imply more mantle magmatism which could promote further formation of clathrates subsequent to their convection. Noting here that the plume head seemingly decreases in speed in the upper 75% of the setup, as can be compared from the first appearance in each of the three space time diagrams. To better quantify the speed of the plume and not the surrounding fluid, at each frame one can track the highest position of the mask, denoted by z p . The plume heads for the two aforementioned experiments in figure 3.21 and 3.24 are plotted in figure 3.26. As previously mentioned, acquisition in the early instances of the rising plume is difficult, and would require the laser sheet to coincide with the rising plume. For this reason the plume head z p /H m doesn't start at the initial position 0.04 or 4%. The rise and fall of the plume corresponding to the lower heat flux is confirmed also in figure 3.26, as opposed to the higher flux, where the plume reaches the top of the setup. It can also be noticed that the higher heat flux exhibits a steeper increase. The temporal derivative of the position gives a velocity scale of the plume head, which is plotted on the right, in figure 3.26. As heat increases, the velocity peaks at a higher value, and the total time under the dome-shaped curve is much smaller than that of the lower heat flux. There exists a partial contribution to the high velocity in helping the plume reach the top, faster than it could lose its heat, and consequently its buoyancy. Noting here that this velocity is neither an average one, nor is it located at the center of mass of the plume. It is merely the vertical velocity of the head of the interface. This is should be sufficient for the analysis, given that the main interest here is the possibility of clathrate dissociation at some pressures. Further decreasing the heat flux, reduces the maximum position of the thermo-chemical plumes, as can be seen in figure 3.27. This simple information is very informative to Titan's geological history. Heat generation on Titan reduces with time in the order of (Gyr) [START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF]. By transition, one could extrapolate that the heavy clathrate hydrate transport may have reduced accordingly. This also means that the outgassing of some heavy volatiles, may also have reduced.

From a thermo-evolution timescale analysis, one can imply that the overall transport of volatiles reduced with time. This leads to a current thinner atmosphere which would decrease the pressure and shift the condensation temperature of molecules. This simplified model could possibly explain why there is geological evidence of previously running fluids on Titan (near the equator), but no current fluid during the Huygens' descent. However shorter time scale variations such a seasonal changes cannot be ruled out. Additionally, the cooling of Titan, has a thermodynamic implication on the pressure of dissociation of clathrate, which will also decrease. In other words, as Titan cools down, the clathrates need to reach a higher radial position to reach lower hydrostatic pressures matching once of dissociation, as per methane clathrate data [START_REF] Choukroun | Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on titan[END_REF]. This further reduces recent transports of clathrates as Titan cools down.

Effect of layer thickness on the transport

Furthermore, past and/or current lateral differences of heating in the silicate mantle, specifically between the poles and the equator, could lead to different rates of melting and magmatism. The latter imply an exchange of complex molecules between the silicate mantle and the hydrosphere, which could ultimately induce clathrate formation. To this end, herein, several quantities of the clathrate model are tested by using a different thickness z b of the bottom fluid, whereas the heat flux is fixed at Q m = 415(W/m 2 ). In At the start of the experiments, having all the same heat flux, the behavior is similar in the first five minutes. Due to the lower conductivity of the bottom layer, the thicker it is, the more efficient it can trap the heat and raise the temperature locally. At the onset of plume convection, for z b = 10% the bottom layer hosting a significant part of the heat begins convecting. As warm plumes rise, they are replaced locally with colder fluids, which is why there is a decrease of 1( • C) after the onset. This effect is more significant for thicker layers, and as the bottom layer conductivity decreases. It must be strictly noted however, that these readings are from one thermo-couple, located in the center of the (x, y) plane and at z = 0. Therefore, one cannot rule out the dependency of this behavior on the location of the rising plume. The closer the plume is to the thermo-couple, the stronger this effect can be measured. To this end, changes due to small increments of z b cannot be tested with great accuracy.

Locally, one can look at the PIV and LIF results. For z b = 7%, the experiment was done without lasers but rather with white light and thermochromic pigments, and it was shown in figure 3.23. For z b = 2%, z b = 4% and z b = 10%, snapshots of the PIV and LIF mask are compared side by side in figure 3.30. For z b = 2%, the onset time was significant, and diffusion effects cannot be ruled out. The thermo-chemical plume is quite thin, and qualitatively similar to the convective-diffusive conduit observed by Davaille [START_REF] Davaille | Two-layer thermal convection in miscible viscous fluids[END_REF]. Consequently, no further conclusions will be drawn from z b = 2% experiment hereafter. Comparing cases z b = 4% and z b = 10%, one can clearly see the increase in velocity scales. Case z b = 10% was the one prone to image processing before PIV, as elaborated in figure 3.20. It was advantageous to recover the information in the shadows and between the two plumes, where the velocity is reasonably high, due to the entrainement of the top layer fluid by the convecting two connected heads of the plume. To obtain more information on the dynamics, one can also examine visually the spacetime diagram of the LIF masks. On the right top subplot, one can see that larger quantities reach the top of the setup; hinting that the larger the reservoir of clathrates is, the more likely it is to reach to the ocean or the pressure-temperature conditions of dissociation. As for the same time scales, one can see that the thicker layer exhibits faster dynamics and shorter rise times. The rise of the plume from the 50% to 100% of the setup happened approximately three times faster. Local differences in the convection dynamics on Titan, could advect more efficiently anti-freeze agents, further enhancing convection in more places than others. For the above mentioned reasons, polar-equatorial9 differences in the surface content (due to convection below it) should not be surprising. An example of such a difference has been confirmed by Cassini-Huygens mission, where large lakes of liquid methane were detected in the polar region, as opposed to the currently dry equatorial region. More on the evolution of the plumes can be given by tracking the LIF mask with time. In figure 3.31, the two initial thicknesses z b = 4 and 10% are shown. It was quite fortunate that the plume in the latter, emerged in the initial plane of observation, allowing to record the full evolution of rise. The development pertains to the onset of convection inside the bottom layer, prior to plume formation by 100 -150(s). Recalling from the thermo-couple reading in figure 3.28, this last 150(s) is paralleled by an increase of about 4( • C). This excess temperature allows the plume to convect with more buoyant vigor and less dissipation, as per the thermo-dependence of viscosity. The speed can also be estimated by the temporal derivative of the plume head, on the right of figure 3.31. The dome-shaped velocity evolution is quite thinner in time, yet peaks higher than the z b = 4% case, confirming the conclusions drawn above, along with the corresponding implications on Titan. 

Partial conclusion

The experimental results on the convection analog model were exhibited in this chapter which comprised two sections. The first one focused mainly on a single convection problem measured using the PIV method at Rayleigh numbers relevant to Titan's high pressure ice mantle. Larger Rayleigh numbers engendered Reynolds numbers larger than one, and therefore such measurements were not fully exploited to avoid inertial contribution effects. The convection flow fields were analyzed progressively starting from a general descriptive manner to a more detailed statistical approach that could efficiently summarize the flow fields. Correlation times and distances were mainly used to infer conclusions onto the anisotropy of the plume dominated convection with respect to the Rayleigh number. Thermal plumes are intermittent and time dependent, to perform reliable statistics, measurements had to be done for long acquisition time. This naturally complicates the description of the totality of the flow. To this end, a singular value decomposition was applied on the measured flow fields, to reconstruct the data in terms of the singular values (or eigenvalues). This allows the reader to identify the most energetic modes contributing to the transport, which happen to be plume dominated for this convection problem.

Inspired by the dimensional analysis developed in the previous chapter, the measured results in the current one were used to extrapolate planetary equivalent solution based on the very same dimensional analysis. The scaled/extrapolated flow fields appear to be within reasonable velocity ranges for planetary convections published in the literature. The comparison between the analogical experiments and planetary convection simulations will be more systematically done in the next chapter which will focus on numerical developments on the high pressure ice convection problems with tidal heating and phase change (solid-liquid and solid-solid) by accounting for the thermodynamics of pure water.

In the second section of this chapter, attempts to model clathrate transport via thermo-compositional convection are reported. The modeling was flawed predominantly due to molecular diffusion between the two available modeling fluids. Furthermore the range of parameters tested was constrained by experimental limitations, most notably the inability to perform experiments with initial buoyant layers at bottom of the domain. Given that the density of high pressure ices is significantly large, many clathrate compositions are expected to be more buoyant than HP ice. Therefore, the current experimental limitations constrain the validity of these results only to heavier clathrates with lower conductivities. Consequently no scaling will be derived using data from the second section of this chapter, only qualitative behavior is inferred. A more systematic approach will be considered in the next chapter, where the parameters can be controlled numerically to assess their influence onto the timescales of transport of biologically interesting molecules to ocean.

Numerical modeling of high pressure ice mantles

In the previous chapter, the analogical experiments yielded measurable velocity values. Using the derived dimensional analysis, the velocities were extrapolated to planetary scales. To verify the validity of this scaling, this chapter aims at modeling numerically the original problem of convection in high pressure ice mantles. By comparing the scaled analogical experiments with the numerically solved problems on HP ice mantles, one may conclude the degree of validity of the former method. Furthermore, the investigation of clathrate transport was not fully possible in analogical experiments due to practical limitations, in this chapter a more controlled investigation will be exhibited to characterize the timescales of clathrate transport with respect to their physical properties. This chapter is organized as follows. The governing equations will be derived in section 4.1 to clarify all the assumptions the model adopts. Given that the numerical code was developed in the context of this thesis, the numerical method will then be explained in 4.2. This followed by the numerical results in section 4.3 which will first setup the cases by employing the thermodynamics of pure water to determine the mantle thickness, HP polymorph ice phases and their properties. Test cases are then exhibited and compared with their scaled experimental analogs. Subsequently the clathrate transport is investigated in a parametric approach to obtain their transport timescales. The chapter is concluded with a brief summary.

Governing equations

In this study, the convection in high pressure ice will be modeled with a two-phase porous approach. This approach yielded interesting results by Kalousova and co-workers [START_REF] Souček | Water transport in planetary ice shells by two-phase flow -a parametric study[END_REF][START_REF] Kalousová | Dynamics of icy satellites with a liquid phase 210[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. Modeling should be done with respect to certain assumptions, these will be defined and subsequently translated into mathematical equations in this section.

It should be noted that in this chapter, all variables are taken in the Eulerian reference frame, meaning that the spatial reference is fixed at all times. All physical vectors will be denoted by an arrow above them such as v. On the other hand numerical vectors will be denoted in bold small letters. Capital bold letter will be restricted to numerical tensors.

Porosity transport equation

In this study, a two phase approach is used and therefore the common mass conservation is not applicable. To include two phases, one must define how they will be implemented. The liquid water will be assumed to occupy a volume fraction in a porous approach. Due to the pressure effects, in this chapter, all porosities φ w will be fully occupied by the liquid water. From a macroscopic perspective the porosity is therefore the volume occupation/fraction of water in the elementary volume, but not the physical mass of water.

The effect of density differences between phases can be schematically simplified in two volume fractions (cf. figure 4.1). It can be clearly seen that for 75% mass fraction of ice, the volume fraction of ice is less than 75%. However for 75% water mass fraction, the volume fraction is more than 75%. Hence the mass fraction is not equal to the volume fraction. This volume fraction is therefore a non-inertial field that contains the information of the volumetric quantity of water in each control volume. Having no physical inertia, its acceleration does not induce any forces. Additionally since it pertains to the control volume and not the fluid material, the relative velocity with respect to the control volume is always zero, therefore porosity cannot be simply advected. While the porosity may not be advected, it can however still be fluxed (i.e. altered by the flux of different porosity to/from the control volume). Mathematically, ( v • ∇) φ w = 0, however ∇ • ( vφ w ) = 0. While the difference may appear to be subtle at first glance, it is important to make the distinction that the porosity herein is a volumetricaly active entity pertaining to the elementary volume and not a physical one. This is very important to define, because there exists a difference in density between liquid water and high pressure ice. The difference in the density between the phases will be accounted for in the equations, but the changes due to thermal expansion per phase, will only be considered in the Boussinesq approximation (affecting only the gravity term).

Mass Fraction

The mass conservation will be split in two volumetric domains, water and ice 1 . For 1 All variable with subscript w refer to the liquid water, and i refer to high pressure ice.

water in the pores, the equation can be written as follows:

Dφ w ρ w Dt = ρ i ṙ -ρ w ∇ • (φ w v w ) (4.1)
The distinction between ice VI, V and III will be made clear in the local properties assigned later. Here ṙ is the volumetric rate of melt. Noting here that the mass of ice exhibits the latent heat upon melting. Yet melting itself will modify the volume fraction, as per the difference of density. Expanding equation 4.1, one gets:

ρ w Dφ w Dt + ¨¨¨B 0 φ w Dρ w Dt = ρ i ṙ -ρ w ∇ • (φ w v w ) (4.
2)

The Boussinesq approximation per phase simplifies the change in density to zero. Applying the chain rule on the global derivative in an Eulerian reference frame leads to

D Dt = ∂ ∂t + v • ∇ .
Therefore one can obtain:

ρ w ∂φ w ∂t + $ $ $ $ $ $ $ X 0 ρ w v w • ∇φ w = ρ i ṙ -ρ w ∇ • (φ w v w ) (4.3)
As previously discussed, the porosity is a volumetric non inertial entity that cannot be advected. It is however fluxed, as can be seen in the last term of equation 4.3. Reordering the latter on the left hand side of the equation and normalizing by the density of water, the equation reduces to:

∂φ w ∂t + ∇ • (φ w v w ) = ρ i ρ w ṙ (4.4)

Mass conservation equation

Similarly, the equation can be derived for the volume fraction of ice 1 -φ w . The phase change is in the opposite direction for the crystallization, given that the later decreases the volume fraction of liquid water.

Dρ i (1 -φ w ) Dt = -ρ i ṙ -ρ i ∇ • [(1 -φ w ) v i ] (4.5)
Expanding the global derivative

ρ i D (1 -φ w ) Dt + $ $ $ $ $ $ $ X 0 (1 -φ w ) Dρ i Dt = -ρ i ṙ -ρ i ∇ • [(1 -φ w ) v i ] (4.6)
Applying the chain rule to the global derivative:

ρ i ∂ (1 -φ w ) ∂t + $ $ $ $ $ $ $ $ $ X 0 ρ i v i • ∇ (1 -φ w ) = -ρ i ṙ -ρ i ∇ • [(1 -φ w ) v i ] (4.7)
Deriving a constant (namely 1) yields 0. Additionally, the porosity, as previously discussed cannot be advected. Normalizing with the density of ice, and rearranging the flux term on the left hand side of the equation:

- ∂φ w ∂t + ∇ • [(1 -φ w ) v i ] = -ṙ (4.8)
Having the two volumetric partitions, the total mass can be simply obtained by adding equations 4.4 and 4.8 as follows:

∂φ w ∂t + ∇ • (φ w v w ) - ∂φ w ∂t + ∇ • [(1 -φ w ) v i ] = ρ i ρ w ṙ -ṙ (4.9)
The temporal derivatives of the porosity cancel out, and the terms on the right hand side of the equation are set on the same denominator, namely ρ w . Let the local density difference of phases be ∆ρ = ρ i -ρ w . The mass conservation becomes:

∇ • [(1 -φ w ) v i ] + ∇ • (φ w v w ) = ∆ρ ρ w ṙ (4.10)
Conveniently, the porosity transport equation has already been derived in equation 4.4.

Momentum equation

From Newton's second law of motion ( F = m a) one can easily obtain the momentum equation in 4.11. This is textbook material and will not be derived herein.

ρ ∂ v ∂t + ρ v • ∇ v = ρ g -∇p + ∇ • τ (4.11)
Given the very low inertial effect, the left hand side of the equation is usually set equal to zero, as per the infinite Prandtl hypothesis. In such planetary problem, the left hand side is in fact many orders of magnitude lower than the other terms in the equation. Therefore the use of the infinite Prandtl hypothesis is justified in the current context.

Essentially, the momentum equation implies that the buoyancy stresses and pressure gradients, i.e. the mechanical work can be dissipated by the viscous stress (in a purely viscous flow). This mechanical work, upon viscous dissipation, is transformed into heat and exits irreversibly the momentum. Viscous dissipation is generated upon deformation and is proportional to its rate. Noting here that a normal deformation is a motion parallel to a reference direction. On the other hand, shear deformation is orthogonal to the reference direction. In a three dimensional domain, a force acting on the elementary volume can be three-dimensional. Each of these three force components, can act upon three directions. For this reason, three motion components engender nine reactions. In a two dimensional system, two components cause four reactions (number of directions to the power two). These motions can be normalized by the unit vector deformation and are named the strain. The rate of deformation for an infinitesimal period of time, is called the strain rate. Mathematically, the strain rate can be written in the form of a tensor as follows: ˙

= 1 2 ∇ v + ∇ T v .
The reader can now notice that the normal and shear strain rate are mixed in ˙ . It should however be noted, in a compressible flow, as is the case here due to phase change, the shear and bulk strains do not dissipate similarly. One might recall form Landau and Lifshitz [184], the bulk/dilatational viscosity ζ is different than the shear viscosity η.

Isolating the shear from the dilatational strain, one obtains the deviatoric strain, which the shear viscosity purely acts upon. N d is the number of dimensions, being 3. The trace operator is the sum of the first diagonal, which conveniently corresponds here to the divergence of the velocity vector projected onto each normal direction, via the 3×3 identity tensor I.

˙ d = ˙ - 1 N d tr ( ˙ ) I = 1 2 ∇ v + ∇ T v - 1 3 ∇ • v I (4.12)
The deviatoric shear stress is simply written as follows:

τ d = 2η ˙ d = η ∇ v + ∇ T v - 2 3 (∇ • v) I (4.13)
For simplicity, the current formulation assumes an isotropic behavior, which could be valid because the polycrystaline ice grain size is expected to be smaller than the elementary volume. The reader might also recall ζ = λ η + 2 3 η from the Lamé parameters for isotropic stresses. For a purely deviatoric viscous stress, equation 4.13 is the equivalent to setting the bulk modulus ζ equal to zero, since the deviatoric deformation is by definition non-dilataional. This would imply that λ = -2 3 η for the shear stresses, which evidently appears in equation 4.13.

The dilatational/bulk stresses can be written as follows, with a bulk viscosity taken from Ricard et al. [START_REF] Ricard | A two-phase model for compaction and damage: 2. applications to compaction, deformation, and the role of interfacial surface tension[END_REF]. However, in this study, the denominator of the bulk viscosity model is penalized by constant iota ι = 10 -6 chosen here very small, to avoid the ill-posed division when φ w = 0. This penalization means that the bulk viscosity will be 6 orders of magnitude larger than the shear one, instead of infinity, when the volume is fully occupied by ice.

τ b = ζ (∇ • v) I ≈ η φ w + ι (∇ • v) I (4.14)
The total viscous stress is simply the addition of both viscous and bulk.

τ = τ d + τ b = η ∇ v + ∇ T v - 2 3 (∇ • v) I + (1 -φ w ) η φ w + ι (∇ • v) I (4.15)
For ice, replacing τ by its assumed behavior in equations 4.15, one obtains the expanded momentum equation. The resistance of deformation is mostly done by the ice volume fraction (1 -φ w ), since water is of a very low viscosity. Therefore the tensor τ is only taken for (1 -φ w ). For high pressure ice mantle, the excess water pressure above the mantle does not contribute to the momentum since it is canceled out by the difference in pressure, inside the pressure gradient. For this reason, p here is considered the excess pressure at the ocean interface p t = p + p ocean . This method is different from the one in references [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF][START_REF] Souček | Water transport in planetary ice shells by two-phase flow -a parametric study[END_REF], where in the current one, the pressure accounts for the hydrostatic build up exceeding the pressures at the ocean-HP ice interface.

∇ • (1 -φ w ) η i ∇ v i + ∇ T v i -2 3 (1 -φ w ) η i (∇ • v i ) I +∇ • (1-φw)η i φw+ι (∇ • v i ) I + ρ g -∇p = 0 (4.16)
Here ρ is the local density, which depends on the phase and comprises the thermal expansion contribution and the density jump upon phase change. The local density depends on the temperature and pressure (in addition to the phase, volume fraction of water and the thermal expansion).

Simplified Darcy's law

Upon partial melt, liquid water is assumed here to be inside the ice pores. Furthermore, liquid water is less dense than high pressure ices, in all three subject phases in this study (VI, V and III). If the medium is porous enough (beyond a critical value φ c ), the buoyant liquid water could percolate through the pores. In a macroscopic and continuum mechanics perspective, the percolation can be statistically described using Darcy's law 2 . In its general form the percolation velocity v p of a fluid through a porous medium can be written as function of the permeability K, the pressure gradient and the viscosity as follows:

v p = - K η ∇p (4.17)
Noting however that the porous medium itself is moving, therefore v p is a relative velocity of liquid water with respect to the moving ice as follows v p = v w -v i . In porous ice, Kalousova et al. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF] approximated the pressure gradient of the percolating water in function of the density jump per phase as ∇p w = (1-φw) φw ∆ρ g. Therefore the liquid water velocity can be computed from this simplified version of the Darcy's law as follows:

v w = v i - K (1 -φ w ) η w φ w ∆ρ g (4.18)

Heat transport equation

The change in thermal energy of an elementary volume can be made through conduction or by internal sources such as tidal heating or latent heat upon phase change. Latent heat can exist upon melting and solidification, as well as solid-solid phase transition (e.g. ice VI to V, or V to III). Noting here that melting is an endothermic process, as opposed to crystallization which is an exothermic process. For a positive rate of melt, the endothermy exhibits a negative source energy on the control volume. Additionally, viscous deformation transforms the mechanical momentum to thermal heat. Due to large viscosities in the planetary context, one ought to include those effects.

D (ρC p T ) Dt = ∇•(k∇T )+ Ξ Tidal heating - ρ i h f ṙ Fusion latent heat -(1 -φ w ) ρ i h s v i • ∇c Solid-Solid latent heat + τ : ˙ Viscous dissipation (4.19)
Here c is a scalar variable that signals the ice phase, which will allow one to account for the solid-solid phase change. The volumetric tidal heat Ξ depends on the local tidal strain rate and on the dissipation function, which depends on the visco-elastic properties of ice. To estimate the volumetric tidal heat Ξ from local viscosity, we use the Andrade 2 Darcy's law is a gross simplification of the momentum equation without inertial effects. The viscous dissipation is largely simplified by a homogenized behavior that depends on the porous medium, with a constant viscosity and an incompressible behavior. This behavior can be described by the permeability which acts as a simplification of the second derivative of the strain rate, as div (τ

) = ∇• η ∇ v + ∇ T v ≈ η∇ 2 v ≈ η -K v.
The negative sign is used to keep the permeability K, as positive physical entity. The momentum equation becomes τ -∇p = 0, replacing the simplified τ , one getsη K v = ∇p, or as commonly known as v = -K η ∇p rheological model, which is more appropriate than the classic Maxwell model [START_REF] Castillo-Rogez | The tidal history of iapetus: Spin dynamics in the light of a refined dissipation model[END_REF][START_REF] Efroimsky | Tidal dissipation compared to seismic dissipation: In small bodies, earths, and super-earths[END_REF][START_REF] Běhounková | Impact of tidal heating on the onset of convection in enceladus's ice shell[END_REF][START_REF] Mccarthy | Tidal dissipation in creeping ice and the thermal evolution of europa[END_REF]. The Andrade model better represents the anelastic response of ice on a broad range of frequencies and temperatures than the simple Maxwell model. In the Andrade model, the volumetric tidal heat, Ξ, can be expressed as a function of local viscosity, η, using the same formulation of Ref. [START_REF] Kalousová | Water generation and transport below europa's strike-slip faults[END_REF]:

Ξ = 2 Ξ max 1 + ν αa-1 Γ (1 + α a ) sin(α a π/2) ν -1 + ν + ν αa-1 Γ (1 + α a ) [ν αa Γ (1 + α a ) + 2 cos(α a π/2) + 2 ν sin(α a π/2)]
(4.20) where ν = ηmax η , with η max = µ/ω, the viscosity at which tidal heating is maximal, µ is the shear modulus, ω is the tidal angular frequency, Γ(•) is the Gamma function, and α a is an empirical parameter characterizing the transient viscoelastic response. α A usually varies between 0.2 and 0.3 for water ice [START_REF] Castillo-Rogez | The tidal history of iapetus: Spin dynamics in the light of a refined dissipation model[END_REF][START_REF] Mccarthy | Tidal dissipation in creeping ice and the thermal evolution of europa[END_REF][START_REF] Tobie | Tidal response of rocky and icerich exoplanets[END_REF], and is set to 0.25 in the present study. The maximum tidal heat production is estimated using Ξ max = µ( ˙ : ˙ )/ω.

The viscosity has the role of dissipating the mechanical work into a thermal heat. The heat production rate depends on the rate at which the material is strained. In the most general form it is the double contraction of the stress tensor with the rate of strain. For the current study, having defined τ in both deviatoric and dilatational manner, one could expand this term.

τ : ˙ = (τ d + τ b ) : 1 2 ∇ v + ∇ T v (4.21)
Being an extensive thermodynamic properties, the total contribution can be simply obtained from the addition of the deviatoric (τ d : ˙ ) and dialatational (τ b : ˙ ) dissipation. Separating the former from the latter, one obtains for the deviatoric part:

τ d : ˙ = η ∇ v + ∇ T v -2 3 (∇ • v) I : 1 2 ∇ v + ∇ T v τ d : ˙ = η ∇ v + ∇ T v : 1 2 ∇ v + ∇ T v Part 1 -η 2 3 (∇ • v) I : 1 2 ∇ v + ∇ T v Part 2 (4.22)
For Part 1 of the deviatoric viscous heating one could expand as follows:

Part 1 = η ∇ v + ∇ T v : 1 2 ∇ v + ∇ T v = 1 2 η ∇ v : ∇ v + ∇ v : ∇ T v + ∇ T v : ∇ v + ∇ T v : ∇ T v (4.23) with ∇ T v : ∇ T v = ∇ v : ∇ v due to the symmetry of ∇ v. Part 1 = 1 2 η 2∇ v : ∇ v + 2∇ v : ∇ T v = η ∇ v : ∇ v + ∇ v : ∇ T v (4.24)
Factoring out ∇ v one obtains the compact form in equation 4.25

Part 1 = η ∇ v + ∇ T v : ∇ v (4.25)
For Part 2 of the deviatoric contribution, the presence of the identity matrix simplifies things by reducing all the elements outside the first diagonal to zero after the double contraction.

Part 2 = -2 3 (∇ • v) I : 1 2 ∇ v + ∇ T v = -2 3 1 2 (∇ • v) I : (∇ v) + (∇ v) I : ∇ T v = -2 3 1 2 [(∇ • v) I : (∇ v) + (∇ • v) I : (∇ v)] = -2 3 1 2 [2 (∇ • v) I : (∇ v)] Part 2 = -2 3 (∇ • v) I : (∇ v) (4.26)
Conveniently, the heating rate from the deviatoric stresses reduces from equation 4.22 to the following

τ d : ˙ = η ∇ v + ∇ T v -2 3 (∇ • v) I : ∇ v (4.27)
The heat from the dilatational/bulk deformations can be written as follows:

τ b : ˙ = (1 -φ w ) η i φ w + ι (∇ • v i ) I : 1 2 ∇ v + ∇ T v (4.28)
Expanding, one gets:

τ b : ˙ = 1 2 (1 -φ w ) η i φ w + ι (∇ • v i ) I : ∇ v + (∇ • v i ) I : ∇ T v (4.29)
Further expanding the compact form one gets: Interestingly, the bulk stress double contracted with the whole strain rate tensor, finally yields an equivalent of the bulk stress double contracted with the bulk deformation only (∇ • v i ) I, as can be deduced from the equation 4.31; confirming mathematically the isotropy of the bulk/dilatational process.

τ b : ˙ = 1
τ b : ˙ = (1-φw)η i φw+ι (∇ • v i ) I : (∇ • v i ) I = τ b : ˙ b (4.32)
Having defined all terms in equation 4.19 the derivation of the heat equation can now be resumed. In the Eulerian reference frame, the global derivative can be written as the local temporal change plus the advection. Splitting the global derivative in terms of ice and liquid water volume fractions one gets the thermal heat transport.

ρ i c p,i (1 -φ w ) ∂T ∂t + ρ i c p,i (1 -φ w ) v i • ∇T + ρ w c p,w φ w ∂T ∂t + ρ w c p,w φ w v w • ∇T = ∇ • (k∇T ) -ρ i h f ṙ -(1 -φ w ) ρ i h s v i • ∇c + 2 Ξ max [1+ν αa-1 Γ(1+αa) sin(αaπ/2)] ν -1 +ν+ν αa-1 Γ(1+αa) [ν αa Γ(1+αa)+2 cos(αaπ/2)+2 ν sin(αaπ/2)] +η ∇ v + ∇ T v -2 3 (∇ • v) I : ∇ v + (1-φw)η i φw+ι (∇ • v i ) I : (∇ • v i ) I (4.33)

Summary of the equations

All the final governing equations were enclosed in a box. For clarity, they will be summarized as follows:

∂φ w ∂t + ∇ • (φ w v w ) = ρ i ρ w ṙ (4.34) ∇ • [(1 -φ w ) v i ] + ∇ • (φ w v w ) = ∆ρ ρ w ṙ (4.35) ∇ • (1 -φ w ) η i ∇ v i + ∇ T v -2 3 (1 -φ w ) η i (∇ • v i ) I +∇ • (1-φw)η i φw+ι (∇ • v i ) I + ρ g -∇p = 0 (4.36) v w = v i - K (1 -φ w ) η w φ w ∆ρ g (4.37) ρ i c p,i (1 -φ w ) ∂T ∂t + ρ i c p,i (1 -φ w ) v i • ∇T + ρ w c p,w φ w ∂T ∂t + ρ w c p,w φ w v w • ∇T = ∇ • (k∇T ) -ρ i h f ṙ -(1 -φ w ) ρ i h s v i • ∇c + 2 Ξ max [1+ν αa-1 Γ(1+αa) sin(αaπ/2)] ν -1 +ν+ν αa-1 Γ(1+αa) [ν αa Γ(1+αa)+2 cos(αaπ/2)+2 ν sin(αaπ/2)] +η ∇ v + ∇ T v -2 3 (∇ • v) I : ∇ v + (1-φw)η i φw+ι (∇ • v i ) I : (∇ • v i ) I (4.38) ∂ψ ∂t + ( v i • ∇) ψ = 0 (4.39)
The last equation is a simple transport equation, for clathrates. The behavior of the formers will be tracked using ψ and will be implemented in the local properties of ice.

The simulation setup is schematically simplified in figure 4.2. The boundary conditions are annotated, and will be explained in the numerical method of each governing equation. Having defined the governing equations based on the assumptions taken in this study, one can subsequently define the numerical method used to discretize and solve these equations. The numerical method will be detailed in the following section.

Numerical method

The numerical method used in this study is Finite Element Method (FEM). It consists of discretizing the computational domain into discrete elements. These could have three dimensions or lower, and their collective entity is the well-known mesh. Each governing equation will therefore be discretized and solved on every node of the mesh. The number of nodes inside the element depends on its dimension and type. In transient simulations, the time is also discretized into time steps. This requires solving each equation, on every nodes at each time step.

The discrete methods rely on modeling derivatives on infinitesimal scale by taking their approximations on finite scales, namely the discretized elements. In other classical methods such as the finite difference and the finite volume, infinitesimal differences δx are approximated by discontinuous ones, ∆x, between neighboring nodes. Therefore, in these other methods the derivatives employ several nodes outside the local cell, and the number of nodes employed depends on the discretization scheme order.

In contrast, finite element derivatives and integrals are done inside the element. The latter is analytically continuous, and the discretization order can be controlled by the order of interpolation element. First order elements provide a linear interpolation, second order a quadratic interpolation, and so forth. One can therefore choose the order of element (and thus the discretization) for each variable independently. Finite elements can also be non-uniformly weighted ones such as the Bubble elements, or discontinuous as in the Discontinuous Galerkin approach.

In the finite element method, the original form of the equation (also known as the strong from) is not solved. Let equation 4.40 be the one to be the strong form.

f (a, b, c) = 0 (4.40)
The equation is then transformed to a weighted residual problem (weak form) to be numerically minimized. In the classical Galerkin method, all terms are brought to the left hand size of the equation and multiplied by a test function having the same discrete order of a variable in that equation. The equation is then integrated over the whole computational domain Ω. The weak form is therefore written as follows, where a * is a test function of the same order of a.

Ω a * • f (a, b, c) = 0 (4.41)
It is essential that the equation is linear. If not, it should be explicitly linearized by a previously known entity. Every analytical equation is to be discretized and solved on every node. With n nodes being the number of nodes, every analytical equation will therefore render a system of n nodes equations. From linear algebra, systems of equations can be written in the following matrix form Ax m = b m , where A is a matrix containing the variable coefficients, x m is the vector containing the variable at each node, and b m is the vector containing the right hand side of each equation. Noting here that the aforementioned vectors are not geometrical or physical entities but rather purely numerical. Unlike geometrical vectors where each component represent a direction; here in the numerical vectors, each component represents a value on each discretized node of the mesh. After assembling each linear system, the latter is solved either directly or iteratively.

Direct solvers are based on generalized algorithms containing operations between rows of the matrix A in the aim of solving for the vector x m . Despite the name being not 'iterative', every mathematical row operation in direct solvers is digitally done using iterations.

From classical direct solvers one can name: Gaussian elimination, LU decomposition, Cholesky. On the other hand, iterative solvers consist of starting from an initial guess and iterating the same algorithm of operations to update the previous solution. In a convergent system, the exact solution is never reached, but the residual is minimized below as certain limit defined by the user, often in the order of 10 -6 . Classical examples of iterative solvers are: Jacobi, Conjugate gradient and the Generalized Minimum Residual Method (GMRES). To avoid guesses on appropriate residual values for a planetary convection problem, the choice of solvers will be restricted to direct solvers only. Subsequent to testing several solvers, the direct Sparsesolver [START_REF] Hecht | New development in freefem++[END_REF] provided the fastest computing time due to its optimized algorithm that runs on the sparse matrix skipping the zero entries of the assembled matrix. Conveniently the Sparsesolver is chosen for this study.

Weak form of the mass conservation and momentum equations

In order to apply the finite element method in this current study, one has to derive the weak or variational form of the governing equations inside the domain Ω as well as on its boundaries Γ. For this reason, one has to define the vector space V which is a Hilbert space (H 1 ) containing all the vector trial approximate solutions v. All values in this vector space must indeed satisfy the essential (Dirichlet) boundary condition on Γ D :

V := { v ∈ H 1 (Ω) | v = v D on Γ D Ω } (4.42)
Subsequently, one defines the vector space W containing the weighting functions w. This vector space must have the same characteristics as V, except on the boundaries Γ D where the weighting functions w must be zero, to ensure that the boundary conditions are satisfied.

W := H 1 Γ D Ω (Ω)) = { w ∈ H 1 (Ω) | w = 0 on Γ D Ω } (4.43)
The pressure p and its weighting function q are defined in spaces, namely P and Q. However the pressure and its weight spaces could be defined differently in the absence of boundary conditions. Given that p is a scalar and not a vector, its associated space is square integrable Lebesgue3 spaces L 2 , and not first order Hilbert H 1 .

One could therefore proceed by multiplying the momentum equation (4.36) by the weighting vector w, and integrating inside the domain Ω:

Ω w • ∇ • (1 -φ w ) η i ∇ v i + ∇ T v i -2 3 (1 -φ w ) η i (∇ • v i ) I dΩ + Ω w • ∇ • (1-φw)η i φw+ι (∇ • v i ) I dΩ + Ω w • ρ g dΩ -Ω w • ∇p dΩ = 0 ∀ w ∈ W (4.44)
Integrating by parts the viscous terms and the pressure gradient 4 and adding the natural boundary conditions of the stresses (without any constraints on the pressure), one could obtain:

Ω p∇ • w dΩ + Ω ρ w • g dΩ -Ω (1 -φ w ) η i ∇ w : ∇ v i dΩ -Ω (1 -φ w ) η i ∇ w : ∇ T v i dΩ + Ω 2 3 (1 -φ w ) η i (∇ • w) I : (∇ • v i ) I dΩ -Ω (1-φw) φw+ι η i (∇ • w) I : (∇ • v i ) I dΩ + Γ 2,4 N w • n • (1 -φ w ) η i ∇ v i + ∇ T v i -2 3 (1 -φ w ) η i (∇ • v i ) I dΓ = 0 ∀ w ∈ W (4.45)
where n is the normal to the side boundaries Γ 2,4 Ω (or Γ 2 Ω , and Γ 4 Ω ). The last term being the Von Neumann boundary conditions, it is a N d -1 dimensional5 weighted cyclic integral of the stresses on the domain boundaries. The Von Neumann condition on boundaries Γ 2,4 Ω in this case is equal to zero. The Dirichlet, or essential, boundary conditions are as follows:

v i →      v i = 0 Bottom boundary Γ 1 Ω v i • n = 0 Side boundaries Γ 2,4 Ω (4.46)
Together with the Von-Neumann conditions above, the physical meaning of these boundary conditions are: no slip condition on the HP ice mantle & silicate rock interface. Free slip is prescribed on the side boundaries, and the HP ice mantle & ocean interface.

The reason for integrating by part is for weakening the second derivative in the diffusive term (hence the name: weak form), and building a symmetrical matrix structure that includes the continuity equation. This symmetrical matrix structure is desired to, later on, numerically invert the stiffness matrix of the coupled momentum and continuity equation, as will be elaborated subsequently.

For a good matrix conditioning, the mass conservation equation can be multiplied by the pressure weighting function. This is done to keep a symmetry in the order of magnitudes inside the matrices, more specifically, in the second submatrix diagonal. The reader will find more elaborate explanations on this matter throughout this section.

Ω q • ∇ • [(1 -φ w ) v i ] + ∇ • (φ w v w ) - ∆ρ ρ w ṙ dΩ = 0 ∀q ∈ Q (4.47)
The momentum and mass conservation equations will be used to solve for v i and p. All other variables will be assumed calculated from the other equations. Having established the unknowns to be solved in this equation, one can subsequently separate the bi-linear from the linear forms as follows:

Ω (1 -φ w ) [q∇ • v i ] dΩ+ Ω q• v i • ∇ (1 -φ w ) + ∇ • (φ w v w ) - ∆ρ ρ w ṙ dΩ = 0 ∀q ∈ Q (4.48)

Coupling of mass and momentum equations

The mass and momentum equations are strongly coupled. Two main approaches are often used in the literature, implicit and semi-implicit (which consists of a momentum predictor and corrector). In this context, the former will be used as it is more accurate, hence the coupling of these equations could be shown in a matrix form.

K G G T 0 v p = f h (4.49)
Here the letters in bold refer to the matrices (in capital bold) and the numerical vectors (in lower case bold letters) containing the integrals of the governing equation's variational form. Analytically speaking, these integrals are done on infinitesimal control volumes, however when the computational domain will be later on discretized, these matrices and vectors will have a finite size equal to the 4 n nodes × 4 n nodes and 4 n nodes , respectively 6 . These are summarized in Table 4.1. The variational forms of both equations, being equal to zero, were taken in the opposite sign for convenience. Matrix/ Vector Integral term

K Ω (1 -φ w ) η i ∇ w : ∇ v i dΩ + Ω (1 -φ w ) η i ∇ w : ∇ T v i dΩ -Ω 2 3 (1 -φ w ) η i (∇ • w) I : (∇ • v i ) I dΩ + Ω (1-φw) φw+ι η i (∇ • w) I : (∇ • v i ) I dΩ G -Ω p∇ • w dΩ G T -Ω (1 -φ w ) [q∇ • v i ] dΩ f Ω ρ w • g dΩ + Γ 2,4 N w • n • (1 -φ w ) η i ∇ v i + ∇ T v i -2 3 (1 -φ w ) η i (∇ • v i ) I dΓ h -Ω q • v i • ∇ (1 -φ w ) + ∇ • (φ w v w ) -∆ρ ρw ṙ dΩ
Further clarifying, the matrix comprising all the bi-linear terms K, G and G T contains the implicit discretization of these terms excluding the unknown variables, namely v i and p. The linear terms with the test function of v i (i.e. w) are grouped under the numerical vector f . Similarly, the numerical vector h contains the linear form with q the test function of p.

One could therefore notice from equation 4.49 the advantage of integrating by parts the pressure gradient term, and multiplying the continuity equation by the pressure weighting function, to have a symmetric matrix structure. For a matrix to be invertible, it must be full rank. A brief linear algebra reminder, the rank is given by the largest order of a square matrix with non-zero determinant.

Given the zero submatrix on the first diagonal as shown in equation 4.49, one must therefore be sure that the whole matrix is not rank deficient. Consequently, the kernel (null space) of the submatrix G must be equal to zero: ker G = {0}.

To have a zero kernel of the submatrix, one ought to satisfy the LBB (also known as: inf sup) compatibility condition, developped by Ladyzhenskaya [START_REF] Ladyzhenskaya | the mathematical theory of viscous incompressible flow[END_REF], Babuska [START_REF] Babuska | Error-bounds for finite element method[END_REF] and Brezzi [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers[END_REF]. This condition states that the existence of a stable finite element approximate solution v h , p h consists of choosing a pair of spaces W h and Q h such that:

inf sup Ω q h ∇ • w h dΩ ||q h || || w h || ≥ β LBB > 0 (4.50)
where the superscripts "h" refer to the finite element approximation of the solution. When the LBB compatibility condition is met, a unique solution is guaranteed. To ensure this condition, the discretization order of the velocity field must be superior to that of the pressure one. In this study, the velocity and pressure fields will be discretized with Taylor-Hood P2 and P1 elements, respectively. More specifically anisotropic triangular Taylor-Hood elements are used in this study, an example is depicted in figure 4.3 

PS:

In this chapter no analytic solutions are possible, all solutions are approximate ones obtained numerically from the finite element method. Having established that, all subsequent functions are approximate ones with a superscript "h". For conciseness, the superscript "h" will be omitted hereafter.

Coupling of the velocity with pressure throughout this study is done by solving the mixed finite element formulation, in a fully implicit approach. This approach is more accurate than the standard, easy to implement, approach where the continuity equation is penalized by a pressure coefficient (∇ • v = -p λ where λ is a very large number). The solving in the penalty method is done only on the velocity vector field.

On the other hand, the current numerical study aims to solve both velocity and pressure and coupling them. Therefore, one has to consider once again the matrix to be solved in equation 4.49. To numerically stabilize a system containing a zero submatrix on its first diagonal, one has to ensure its positive definiteness. Consequently, to ensure its positive definiteness, a small non-zero term is introduced to the system's first diagonal in the pressure term. The fully coupled system of equations is written as follows:

                                               Ω p∇ • w dΩ + Ω ρ w • g dΩ -Ω (1 -φ w ) η i ∇ w : ∇ v i dΩ -Ω (1 -φ w ) η i ∇ w : ∇ T v i dΩ + Ω 2 3 (1 -φ w ) η i (∇ • w) I : (∇ • v i ) I dΩ -Ω (1-φw) φw+ι η i (∇ • w) I : (∇ • v i ) I dΩ + Γ 2,4 Ω w • n • (1 -φ w ) η i ∇ v i + ∇ T v i -2 3 (1 -φ w ) η i (∇ • v i ) I dΓ Ω = 0 ∀ w ∈ W Ω (1 -φ w ) [q∇ • v i ] dΩ + Ω q • v i • ∇ (1 -φ w ) + ∇ • (φ w v w ) -∆ρ ρw ṙ dΩ -Ω ε p q dΩ = 0 ∀q ∈ Q (4.51)
where ε is a very small number with the sole purpose of stabilizing the numerical procedure and induce positive definiteness in the matrix.

Weak form of advective dominated equations

Numerical modeling is often challenging in the presence of advection and fluxes. The non-linear first order derivative term enduces asymmetries in the discretized matrix. Solving these systems often generates spurious node-to-node numerical oscillations, that don't exist physically. It can be easily understood that the Galerkin formulation will evidently converge to a central difference approach given that the weighted residual form is in the same order of the variable solved, and the weight is uniformly distributed. More specifically, the central difference produces spurious oscillations in first order derivatives and not in second order ones. To understand this, the reader is reminded below of the introductory finite difference three-node stencils, first and second order, respectively: First order :

d dx ∼ 1 2h (-1 0 1) (4.52)
Second order :

d 2 dx 2 ∼ 1 h 2 (1 -2 1) (4.53)
One could therefore see the asymmetry induced by the first order derivative stencil. Generally, physics governing equations can include first and second order derivatives at once, such as in advection-diffusion equations. Let the ratio of advective over diffusive transport be the Peclect number P e = Lv/κ. Additionally one can define the element Peclet number, which is computed on the level element as follows P e e = L e v e /κ e , where L is the characteristic length, v is the velocity magnitude, κ the diffusivity, and the subscript e refers to the element. It is well known that the central difference, and hence the Galerkin approach, work for element Peclet numbers below 1. If that value is exceeded, spurious oscillations will be induced as shown in the example in figure 4.4 (a). Given the numerical constraints on the local Peclet number, for the Galerkin formulation to work one has to decrease the element size L e enough to have a P e e < 1. Another solution is Upwinding. Briefly, upwinding consists of giving more weight to the upstream or downstream condition, depending on the flow direction, hence the name Upwind. In an introductory manner, the first order upwind is given by the following.

d dx ∼ 1 h (-1 1 0) for v > 0 (4.54) d dx ∼ 1 h (0 -1 1) for v < 0 (4.55)
First order upwind results are shown in figure 4.4 (b). The results are more stable than those of central difference. However the values seem more diffused than the exact solution. Noting here that a purely diffusive profile is linear. On the other hand, the stable central difference solutions in figure 4.4 (a) exhibited even lesser diffusion than the exact solution. One could say that the first order Upwind has numerical diffusion, and the central difference has 'negative numerical diffusion'. To understand why this effect is interpreted and named numerical/artificial diffusion one could consider the first order central difference stencil. Subsequently one could add a diffusive term, which is usually a second order derivative. Let the coefficient of diffusion in that case be κ = vh/2, the addition of both stencils would lead to the first order upwind formulation, as shown below.

v 1 2h (-1 1 0) First order central difference (advection) + vh 2 1 h 2 (-1 2 1) Second order central difference (artificial diffusion) __________ v 1 h (-1 1 0) First upwind difference (4.56) 
The additional artificial diffusion from the upwinding scheme is often critized by numericians. By upwinding, the numerician compromises the accuracy to achieve stability. It comes as no surprise that upwinding is often associated with suspicion and contempt by many researchers. The latter claim that the only way to obtain accurate non-oscillatory solutions is to apply the Galerkin formulation on appropriately refined meshes. Given the controversy of this method, and the lack of accuracy in it, upwinding by numerical diffusion will not be employed in this study. On the other hand, there exist methods to stabilize and upwind without adding numerical diffusion. One of the most successful methods is the Streamline Upwind/Petrov Galerkin approach [START_REF] Brooks | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navierstokes equations[END_REF].

The Streamline Upwind/Petrov Galerkin approach (SUPG) or (SU/PG) consists of modifying the weighted residual formulation, rather than adding non-physical diffusive terms. The modification is done on the weight of the weak/variational formulation by accounting for advection in the test function rather than the equation itself. The SUPG test function therefore comprises two terms. The first being the Galerkin test function, and the second being the upwind term that includes the velocity and the gradient of the test function. The second term may remind the reader of the analytical advective term in a transport equation. This formulation would help restore numerical symmetry in otherwise non symmetric advective terms. As opposed to the Galerkin weak form in equation 4.41, the simple example in a SUPG approach would appear as follows in equation 4. [START_REF] Kirk | Thermal evolution of a differentiated ganymede and implications for surface features[END_REF].

Ω a * • f (a, b, c) dΩ + α e e∈Ω Ωe τ e v h e • ∇a * • f (a, b, c) dΩ e = 0 (4.57) 
Advection transport varies spatially, and therefore upwinding must be done locally. To this end, the SUPG approach is done at the level of each node. The weight of the upwinding τ e = (L e κ e )/(2|| v h e || L 2 ), is function of the L 2 norm of the velocity at the level of the node, as well as the diffusion coefficient and the element size. α e is an empirical parameter optimized by the numerician to control the level of upwinding.

One could therefore notice that equation 4.57 is analytically correct and is still conservative towards its strong form in equation 4.40, despite upwinding. This is not true for other upwinding methods that employ the addition of non-physical diffusive terms. One could notice how SUPG's mathematical consistency further motivates its use.

Upwinding is done by modifying the weight distribution inside the element but in a conservative manner, so that the conservation equations are not fundamentally altered. To understand how the weight modification is done, one could compare the weight distribution of a node shared by two one dimensional linear elements using the Galerkin and the SUPG approaches, in figure 4.5. One could notice how the summation/integral of the entity solved, i.e. the area under the curves is equally conserved in both methods. The reader is reminded here that the integral variational formulation is solved in the finite element method. The weak form of the thermal transport in the SUPG method can be written as follows. Subsequently, one better integrates by part the thermal diffusive transport in the Galerkin part of the weak formulation to induce a symmetry in the numerical matrix. T s is the test function of T that belongs to the square integrable Lebesguian space. It is of the same order of that of T , except on the borders having Dirichlet conditions, where the test function must be 0 to satisfy the essential conditions (cf. equation 4.63). Namely the Dirichlet condition is prescribed at the top boundary, where the melting point at that total pressure must be prescribed to achieve the ocean-HP ice interface.

T := L 2 Γ Ω (Ω)) = {T ∈ L 2 (Ω) | T = T M on Γ 3 Ω } (4.58) 
T s := L 2 Γ Ω (Ω)) = {T s ∈ L 2 (Ω) | T s = 0 on Γ 3 Ω } (4.59) 
Ω T s • ρ i c p,i (1 -φw) ∂T ∂t + ρ i c p,i (1 -φw) v i • ∇T + ρwcp,wφw ∂T ∂t + ρwcp,wφw vw • ∇T dΩ - Ω T s • [∇ • (k∇T )]
Integrate by parts

dΩ + Ω T s • ρ i h f ṙ + (1 -φw) ρ i hs v i • ∇c dΩ - Ω T s • 2 Ξ max [1+ν αa -1 Γ(1+αa) sin(αaπ/2)] ν -1 +ν+ν αa -1 Γ(1+αa) [ν αa Γ(1+αa)+2 cos(αaπ/2)+2 ν sin(αaπ/2)] dΩ - Ω T s • η ∇ v + ∇ T v -2 3 (∇ • v) I : ∇ v -(1-φw )η i φw +ι (∇ • v i ) I : (∇ • v i ) I dΩ + Γ 1 Ω T s • [ n • (k∇T )] dΓ 1 Ω +αe e∈Ω Ωe τe v h i • ∇T s • ρ i c p,i (1 -φw) ∂T ∂t + ρ i c p,i (1 -φw) v i • ∇T + ρwcp,wφw ∂T ∂t + ρwcp,wφw vw • ∇T dΩ +αe e∈Ω Ωe τe v h i • ∇T s • -∇ • (k∇T ) + ρ i h f ṙ + (1 -φw) ρ i hs v i • ∇c dΩ -αe e∈Ω Ωe τe v h i • ∇T s • 2 Ξ max [1+ν αa-1 Γ(1+αa) sin(αaπ/2)] ν -1 +ν+ν αa-1 Γ(1+αa) [ν αa Γ(1+αa)+2 cos(αaπ/2)+2 ν sin(αaπ/2)] dΩ -αe e∈Ω Ωe τe v h i • ∇T s • η ∇ v + ∇ T v -2 3 (∇ • v) I : ∇ v -(1-φw )η i φw +ι (∇ • v i ) I : (∇ • v i ) I dΩ + Γ 1 Ω τe v h i • ∇T s • [ n • (k∇T )] dΓ 1 Ω = 0 ∀T s ∈ T s (4.60)
For conciseness, all the mathematical operations will be done in one step. The patient reader who has reached this point can surely figure out all the intermediate steps. The superscript p refers to the previously computed solution, and δt is the time step.

Ω T s • ρ i c p,i (1 -φw ) T δt + ρw cp,w φw ∂T δt Bi-linear form dΩ + Ω k ∇T s • ∇T Bi-linear form dΩ + Ω T s • ρ i h f ṙ + (1 -φw ) ρ i hs v i • ∇c Linear form dΩ + Ω T s • -ρ i c p,i (1 -φw ) T p δt + ρ i c p,i (1 -φw ) v i • ∇T p -ρw cp,w φw T p δt + ρw cp,w φw vw • ∇T p Linearized linear form dΩ - Ω T s •   2 Ξ max 1 + ν αa -1 Γ (1 + αa) sin(αaπ/2) ν -1 + ν + ν αa -1 Γ (1 + αa) [ν αa Γ (1 + αa) + 2 cos(αaπ/2) + 2 ν sin(αaπ/2)]   Linear form dΩ - Ω T s • η ∇ v + ∇ T v - 2 3 (∇ • v) I : ∇ v - (1 -φw ) η i φw + ι (∇ • v i ) I : (∇ • v i ) I Linearized linear form dΩ + Γ 1 Ω T s • [ n • (k∇T )] Γ 1 Ω Von-Neuman +αe e∈Ω Ωe τe v h i • ∇T s • ρ i c p,i (1 -φw ) T δt + ρw cp,w φw ∂T δt Bi-linear form dΩ -αe e∈Ω Ωe τe v h i • ∇T s • ρ i c p,i (1 -φw ) T p δt + ρw cp,w φw T p δt Linear form dΩ -αe e∈Ω Ωe τe v h i • ∇T s • ρ i c p,i (1 -φw ) v i • ∇T p + ρw cp,w φw vw • ∇T p Linear form with balanced first order derivatives dΩ -αe e∈Ω Ωe τe v h i • ∇T s • [∇ • (k∇T )] 0 if P1 dΩ + αe e∈Ω Ωe τe v h i • ∇T s • ρ i h f ṙ + (1 -φw ) ρ i hs v i • ∇c Linear form dΩ -αe e∈Ω Ωe τe v h i • ∇T s •   2 Ξ max 1 + ν αa -1 Γ (1 + αa) sin(αaπ/2) ν -1 + ν + ν αa -1 Γ (1 + αa) [ν αa Γ (1 + αa) + 2 cos(αaπ/2) + 2 ν sin(αaπ/2)]   Linear form dΩ -αe e∈Ω Ωe τe v h i • ∇T s • η ∇ v + ∇ T v - 2 3 (∇ • v) I : ∇ v - (1 -φw ) η i φw + ι (∇ • v i ) I : (∇ • v i ) I Linearized linear form dΩ +αe e∈Ω Γ 1 Ω τe v h i • ∇T s • [ n • (k∇T )] dΓ 1 Ω Von-Neuman = 0 ∀T s ∈ T s (4.61)
Hereafter, the heat flux [ n • (k∇T )] from the silicate mantle will be referred to as Q for simplicity. The heat flux at the side boundaries Γ 2 and Γ 4 are set to zero. The top boundary represent the HP ice-ocean interface. To achieve this condition at all times, an essential Dirichlet condition on the temperature is set to the melting point at the pressure at which the interface exists.

The Streamline Upwind/ Petrov Galerkin approach should be used wisely, by calibrating the empirical α e to stabilize node-to-node spurious oscillations but keeping it as small as possible to avoid over smoothing the solution. While it is more mathematically consistent than other upwinding technique, it remains an upwinding one. The main strategy here is to rely mostly on the adaptive mesh refinement and use the SUPG technique as a complement. The thermal transport equation is not heavily advective dominated, and many cases it can be solved without any spurious oscillations in the Galerkin method, which can be simply obtained from equation 4.61 by setting α e = 0.

While the thermal transport can be solved without stabilization, the porous transport is more heavily governed by first order derivatives. The latter require also SUPG to eliminate the spurious oscillations. As mentioned above, the main strategy here as well is to deal with this problem first in the mesh refinement, and the SUPG will act as a complement. The streamline upwind test function could therefore be multiplied by the porosity transport equation 4.34. The test function of the porosity is ϕ of the same order as φ.

F := L 2 (Ω)) = {φ ∈ L 2 (Ω)} (4.62) F s := L 2 (Ω)) = {ϕ ∈ L 2 (Ω)} (4.63)
Taking the strong form and multiplying it by the SUPG test function, one obtains:

Ω ϕ • ∂φw ∂t + ∇ • (φ w v w ) -ρ i ρw ṙ dΩ +α e e∈Ω Ωe τ e v h i • ∇ϕ • ∂φw ∂t + ∇ • (φ w v w ) -ρ i ρw ṙ dΩ = 0 ∀ϕ ∈ F s (4.64)
As for the thermal transport equation, the functions with superscript p refer to the previously computed solution. Expanding further, one gets the following. where φ ex w is the estimated excess melt per iteration and it is computed based on a energetic simple argument. The melt mass fraction γ ex m is computed from the sensible over latent heat fraction.

Ω ϕ • φw δt dΩ - Ω ϕ • φ p w δt dΩ + Ω ϕ φ w ∇ • ( v w ) dΩ + Ω ϕ • [ v w • ∇φ w ] dΩ - Ω ϕ • ρ i ρw ṙ dΩ + α e e∈Ω Ωe τ e v h i • ∇ϕ • φw δt dΩ -α e e∈Ω Ωe τ e v h i • ∇ϕ • φ p w δt dΩ +α e e∈Ω Ωe τ e v h i • ∇ϕ • [φ w ∇ • ( v w )] dΩ + α e e∈Ω Ωe τ e v h i • ∇ϕ • [ v w • ∇φ w ] dΩ -α e e∈Ω Ωe τ e v h i • ∇ϕ • ρ i ρw ṙ dΩ = 0 ∀ϕ ∈ F s
γ ex m = c p,i (T -T M ) L (4.67)
The mass fraction is then transformed into a volume fraction to be consistent with the above elaborated methodology in section 4.1

φ ex w = ρ i ρ w 1 γ ex m -1 + ρ i (4.68)
The melt volume fraction is bounded between 0 and 1. That means that all negative volume fraction issuing from crystallization are overwritten with the value of 0.

The weak form of the transport equation 4.39 can be written as follows in the SUPG method, for a test function ψ s belonging to the space

C s := L 2 (Ω)) = {ψ s ∈ L 2 (Ω)} of the tracer ψ belonging to C := L 2 (Ω)) = {ψ ∈ L 2 (Ω)} Ω ψ s • ∂ψ ∂t + ( v i • ∇) ψ dΩ + α e e∈Ω Ωe τ e v h i • ∇ψ s • ∂ψ ∂t + ( v i • ∇) ψ dΩ = 0 ∀ψ s ∈ C s (4.
69) Expanding further for the previous equations one gets:

Ω ψ s • ψ δt dΩ - Ω ψ s • ψ p ∂t dΩ + Ω ψ s • ) v i • ∇ψ) dΩ +α e e∈Ω Ωe τ e v h i • ∇ψ s • ψ δt dΩ -α e e∈Ω Ωe τ e v h i • ∇ψ s • ψ p ∂t dΩ +α e e∈Ω Ωe τ e v h i • ∇ψ s • ( v i • ∇ψ) dΩ = 0 ∀ψ s ∈ C s (4.70)

Modeling strategy

The scalar fields are discretized with P2 elements, however projection to P1 elements is done if needed throughout the code. All the weak forms are solved sequentially on a single thread. Efforts to parallize the code were successful, however the mesh adaption algorithm is not reliable on parallel processors. For this reason, it was found more robust to run each simulation sequentially. Solving of the matrices is done in a direct manner, with the Sparsesolver algorithm already implemented in FreeFem++. All entities solved are well within the machine precision which cuts off at 2 1024 and 2 -1024 . In other words, multiplying or dividing by 2 1023 (i.e. 8.9885 × 10 307 ) yields a finite value, however multiplying by 2 1024 yields infinity and dividing by it reduces the entity to 0.

As previously said, the main strategy adopted here, for first order derivative numerical problems, is to rely as much as possible on the mesh refinement. Refining the mesh remains the most precise method to stabilize first order derivatives as compared to upwinding methods (cf. discussion above). For this reason, mesh adaption is done using the Bidimensional Anisotropic Mesh Generator BAMG, developed by Hecht [START_REF] Hecht | Bamg: Bidimensional anisotropic mesh generator[END_REF]. The refinement is done based on the Hessian of the temperature, porosity and ice phase. The time discretization is first order accurate and the time step is also adapted based on the minimum of the two criteria, namely the local CFL and the Fourrier numbers as follows, to decently discretize transport and diffusion within elements, as follows:

δt = min [δt CF Le ; δt F oe ] (4.71) 
The Courant-Friedrichs-Lewy (CFL) condition relies on limiting the transport to no more than one element per time step. Mathematically, in its most conservative form, this condition can be written as: CF L e = The numerical method was validated with several benchmarks [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF][START_REF] Blankenbach | A benchmark comparison for mantle convection codes[END_REF], with a maximum error of 2%. The validation is detailed in Appendix B (cf. section 6.2). In the next section, some case studies will be exhibited and analyzed.

Numerical results

Simulation setup and thermodynamics

Interior models of Titan and other icy moons, rely on the thermodynamics of water. The use of thermodynamics is justified for its simplicity, given that the complete thermodynamic state can be determined by fixing only two variables, e.g. temperature and pressure. Identifying these two would allow one to know the density among other variables. And density itself affects the hydrostatic pressure. The density depends on the phase, which recalling from the phase diagram of water (cf. section 1.2) depends on temperature and pressure. Ice I h is less dense than water, which itself is less dense than high pressure ices. Thermodynamic properties of water can be either obtained classically from tabulated measured data, or more practically using equations of state (EoS) which are mere analytical fits to the experimental data. Here the Mie-Grüneisen equation of state for water is used for each ice phase state, used from the open-source library SeaFreeze, developed by Journaux [START_REF] Journaux | Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity, and the water phase diagram to 2,300 mpa[END_REF].

Having the thermodynamic properties, one needs to identify radially two intensive thermodynamic properties to fix the states. Here the approach of Vance et al. [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF] is followed by assuming a radial adiabatic profile. Knowing the average temperature at the surface, and assuming the melting temperature of the upper ice shell, one can obtain the heat flux. Noting here that the melting point changes with the pressure (hence the depth). The coupling of the profile and the equation of state is done iteratively. The ocean is assumed unstratified for simplicity with a convective adiabatic thermal profile. Having the temperature and the depth, the pressure is directly related with the density in the coupling. Knowledge of the state density can be determined from the Gibbs energy. The iterations ensure that the profile converges to a thermodynamically consistent one. The gravity also changes with the density, which itself changes with the depth, and this is accounted for in the current approach used in the open-source library Planet-Profile, developed by Vance [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF].

The depth of the ice I h 7 shell is currently not well constrained, therefore the pressure dependent melting point is not currently known. For this reason, a range of values will be tested. The assumed melting point, and therefore depth, can later on be indirectly verified with radar measurements from future mission, provided that the signal does not fully attenuate [START_REF] Kalousová | Water generation and transport below europa's strike-slip faults[END_REF]. The melting point can also shift with salt contents acting as antifreeze 7 All ice I in this study will be assumed in the form of hexagonal ice I h for simplicity.

agents [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF], however in the absence of confident salt compositions and for simplicity, pure water will be used herein. For water on Titan four main types of profiles can be identified here and they are enumerated from top to bottom as follows: 0. Ice I h -Ocean -Rocky mantle/Hydrated silicates 1. Ice I h -Ocean -HP Ice VI -Rocky mantle/Hydrated silicates 2. Ice I h -Ocean -HP Ice V -HP Ice VI -Rocky mantle/Hydrated silicates 3. Ice I h -Ocean -HP Ice III-HP Ice V -HP Ice VI -Rocky mantle/Hydrated silicates Since in this context the convection in high pressure ice is studied to hint exchange processes occurring between the rocky mantle and the ocean through HP ice, type 0 is obsolete and the exchange is assumed maximal. Noting here that given the very warm past of Titan, this possibility may have existed in the distant past on Titan. In this study, the focus will be on type 1, 2 and 3. Using the above-mentioned approach in the beginning of this section, some examples of the radial profile can be projected onto a section of the pressure-volume-temperature8 (PVT) data in figure 4.6.

As heating on Titan decreases, (in the order of Gyr [START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF]) the thermal equilibrium shifts. This can be seen from the melting point (P,T) which shifts to lower temperatures and higher pressures as one moves from type 0 to type 3. This is mostly due to the increase in the ice shell thickness which will buildup hydrostratic pressure at the ice I -ocean interface, thereby shifting the melting point. Depending on the Pressure-Temperature (P-T) profile, the latter can either terminate at rock interface (type 0, or class III habitat), or could transition to polymorph high pressure ice. As heat decreases, the adiabatic P-T profiles intersect more phases (i.e. VI, V-VI, III-V-VI) due to lower temperatures, cf. figure 4.6. This implies that the ice-ice transition depth is not the same. Consequently for every tested case, this thermodynamic calculation must be done to identify the phases and the thermodynamic properties.

While it may be obvious, the total mass of the hydrosphere must be coherent with the moment of inertia data of Titan. Given that the density of each is different, the hydrosphere-rock interface for these models occur at r H-R ∈ [2097; 2106] (km) consistent with previous studies on Titan [START_REF] Castillo-Rogez | Evolution of titan's rocky core constrained by cassini observations[END_REF][START_REF] Fortes | Titan's internal structure and the evolutionary consequences[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. The moment of inertia data along with the mass can be coupled to compute the rock density and infer its contents. However this is outside the scope of this study, and hereafter, the focus will be directed only to the high pressure ice mantle(s). Having the temperature and pressure, two intensive thermodynamic entities, the whole thermodynamic state can now be unraveled and fixed. The density can be obtained from the equation of state. As per the above elaboration, from the density profile the gravitational acceleration can be easily computed subsequently. An example of the physical properties in the high pressure ice mantles can be given for type 3 in figure 4.7. Here, the melting point, pressure, ice density, and gravity are shown per phase. The phase transition depth is case-dependent9 and could vary by 15 km, which accounts for about 30% of the size of HP ice VI mantle. To this end, the properties and profiles are computed for each case. In figure 4.7, for the largest combined HP ice mantle of 250(km) the curvature of the profiles is negligeable; consequently, it seems reasonable to approximate these properties with piece-wise linear fits as they are exported to the finite element code developed in this study. Every phase has its melting point which can be determined experimentally or from the Gibbs energy. The pressure profile corresponds to the adiabatic P-T profile projected onto the PVT data of ice. More interestingly is the density of high pressure ice phases, which depends highly on the pressure and the phase. In cyan, the density of water is also shown which will be partially exhibited by the melt fraction. The density contrast therefore changes with pressure are discontinuous at the triple points (VI-V-Liquid) and (V-III-Liquid). Owing to the different densities, the gravitational acceleration changes the slope. All these properties are implemented from the thermodynamics to the finite element code. Additionally other properties can be summarized in table 4.2. [START_REF] Tchijov | Heat capacity of high-pressure ice polymorphs[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF] Thermal conductivity
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The distribution of the excess temperature with respect to the melting points are shown in figure 4.8 for the examples pertaining to each of the three types of configurations studied herein. The time steps shown here are ones that exhibit thermal plumes to better exemplify the convection and transport. The physical properties of these simulated cases are chosen in way to obtain the same dimensionless parameters as with the experiments in chapter 3. Namely, these dimensionless parameters are:

ρgH t η , F o = κ t H 2
and the Rayleigh number Ra (more details on the dimensional entities will be given in table 4.3, following further elaboration). The fourth dimensionless parameter α ∆T cannot be always equal since the thermal expansion of ice is constrained and the temperature difference is set by the thermodynamic equilibrium of each case. The temperature difference from the melting point is shown in the color bar. The melt areas are signaled in dark red contours, having positive values of [T -T M ].

For the first case, where pressure-temperature conditions allow only ice VI to occur, classical plume convection is practically dominant. This can be seen in the thermal distribution, where occasionally, warm buoyant ice convect upwards. At the top of the mantle, the melting point decreases due to lower hydrostatic pressure, this statistically induces more melt as the warm plumes become much closer to the melting conditions (cf. figure 4.7). The dominance of plumes can also be seen from the velocity vectors which trace well the path of the plume, resembling ones observed in analogical experiments in chapter 3. For the second case, the solid-solid transition occurs between ice VI and V (highlighted by the dashed line). The melting point of ice V is much lower than that of ice VI. This can be also seen from the average thermal profile of the second case in figure 4.9, where ice V is considerably closer to the melting line. Consequently, the relatively warm plumes in the bottom mantle, are much closer to the melting point of the ice V layer. This induces melt in many instances in the top layer as opposed to the bottom one. This phenomenon is even more accentuated if the presumed reference viscosity of ice V is higher than that of ice VI. Following the aforementioned divergences in the rheological measurements of ice V between two teams [START_REF] Sotin | Viscosity of ice v[END_REF][START_REF] Durham | Rheology of water ices V and VI[END_REF], Kalousova and Sotin recently studied the effect of larger viscosities of ice V which leads to more melt as the more viscous ice dissipates the energy much slower, in addition to having a lower melting point [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. For the third case, one clearly see that the temperature ranges are larger, especially at the bottom of the mantle, where ice VI has a much higher melting point due to the corresponding pressure. This naturally influences the rheology where colder ice becomes more viscous at colder relative temperatures to the melting point (cf. table 4.2). However at the top of the mantle, the temperature is quite close to the melting point of ice III, engendering much larger velocity vector fields at the top of the mantle, as compared to previous cases. Increasing the heat flux from the silicate mantle would induce more melt in ice III, much before melt at the bottom occurs. This can also be seen in the average thermal profiles in figure 4.9.

Owing to the density jumps upon the solid-solid phase transition, the interfaces highlighted by a dashed and dash-dotted lines readjust themselves to be tangential to the center of the moon. However, the very density difference between solid-solid also alters the density contrast of liquid and solid. At the thermodynamic triple points (VI-V-L) or (V-III-L), there exists a discontinuity in the density which could affect locally the velocity field, as can be seen in density profiles of figure 4.7. Noting here that the magnitude of velocity is consistent with the predicted scaling in the experimental chapters.

Comparison between analogical experiments and the numerical model

Comparing velocities

To appropriately compare velocities between the experimental model and simulations on Titan, one must test cases of equal dimensionless parameters (cf. section 2.1). The velocity scale, as a dimensional entity depends on the spatial and temporal scales; the latter can be obtained from the first two dimensionless parameters, namely ρgH t η and F o = κ t H 2 . These two must be held the same for the experimental model and the simulations on Titan, at least in their reference values. As a first example, one can recall from the experimental results in section 3.1, figure 3.16, the vectors being scaled up to a 75(km) mantle with a reference viscosity of 1.05 × 10 15 (P a.s). This extrapolation is evoked here in figure 4.10 on the left. On the right, a snapshot of the computed velocity vectors is shown here for the HP ice mantle of Titan, with the same height and reference viscosity. The velocity vectors showing thermal plumes for each of the cases are plotted on a color scale with a maximum value corresponding to maximum velocity magnitude for each case. Despite the difference, the scales are quite close in magnitude. There exists a 3.3% relative error on the maximum velocity magnitude between the extrapolation from the experiments and the numerical simulations. It should be noted however that presenting data in such a manner is evidently biased (in either direction) since the velocity fluctuates with time, and one could possibly choose snapshots that would favor the similarity. For this reason, the temporal and spatial average values must be compared. Additionally, several cases must be tested, and will be presented next.

Due to the presumed similarity, every experimental case, has an infinite set of variables that satisfies the equality of the two dimensionless parameters. Here several cases applicable for Titan will be chosen to verify the scaling. Testing several cases allows one to identify sources of discrepancies. 1) If the solutions do not match the scaling, it can be deduced that the errors come from the scaling itself. 2) However if the self-similar solutions are scattered around the scaling, it means that discrepancies come from particularities of each case that were not accounted for in the scaling. 3) Finally if all the solutions match exactly the scaling, it can be deduced that the latter included all control parameters. The last option is very idealistic hence it is not expected to be the case in this study, given the many experimental limitations (cf. chapters 2 and 3).

Prior to exhibiting the Titan simulations, herein, the area and time weighted averages of the velocity magnitude (L 2 norm) for the laboratory model are evoked from the results in chapter 3. They are shown in the top left part of figure 4.11, as per the annotation. These experiments were naturally done in a three dimensional domain, additionally they were also simulated in two-dimensional simulations. The simulations on the lab model were done, to further validate the code, as well as to check if the three-dimensional configuration diverges from the two-dimensional assumption in the simulations. Additionally, higher Rayleigh numbers could be achieved numerically, by suppressing the inertial effects via the infinite Prandtl formulation. The lab model data points (both experimental and numerical) appear superposed at the left hand side of figure 4.11 under the annotation 'Lab Model'. The average error between the two dimensional numerical simulations and the three dimensional experiments on the lab model is 21% for the average norm of the velocity and 5% for its standard deviation. The low error on the standard deviation is reassuring in terms of the fluctuations, however the larger error on the mean can signal a systematic error either on the physical properties or the two dimensional physics that might differ from the three dimensional one measured at 7 30 (cm) from the frontal plane (cf. chapter 3). Furthermore, top and side slip wall boundary conditions are prescribed in addition to perfectly isolated side walls, which are practically different from the experimental conditions (no slip & side losses). Noting however that for the current application, both sets of velocities are in the same order of magnitude, consequently the error is still lower than what is expected with many geological simplifications on the planetary side.

To perform the scaling, one needs to keep the first two dimensionless parameters constants (namely, ρgH t η and F o = κ t H 2 ). Having the properties of ice, equivalent self similar solutions can be generated, as was elaborated in chapter 3 (cf. figure 3.15). Due to the well established uncertainties regarding the rheology of HP ice, the viscosity is a weakly constrained parameter, the effect of which could be studied in this context. Consequently, a plausible wide range of viscosities is supposed here as follows: η i,0 ∈ 10 13 ; 10 18 (P a.s). Using the measured velocities of the lab model V m , in addition to the Ho Hm and tm to ratios from the dimensional analysis, the planetary scales could be extrapolated within the context of simple dimensional analysis i.e. V o = V m Ho Hm tm to . This scaling of V o in function of H o is shown in the rainbow surface (cf. bottom right of figure 4.11) that was generated by assuming a range of viscosities between 10 13 (left limit) and 10 18 (P a.s) (right limit).

To verify the scaling, one needs to perform numerical simulations on Titan, for cases that respect the equality of the first two dimensionless parameters. Here, several self similar cases will be simulated by maintaining ρgH t η and F o = κ t H 2 constant while varying the viscosity, and the total mantle height. Noting however that realistic simulations on Titan will be performed herein, to this end, the maximum tidal heating will be estimated coherently depending on the reference viscosity of each case [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF][START_REF] Tobie | Tidal dissipation within large icy satellites: Applications to europa and titan[END_REF]. The height, reference viscosity and maximum tidal heating for the tested cases are summarized in table 4.3. For each of these six configurations in table 4.3, three heat fluxes will be used, rendering a total of 18 simulations for Titan. The three heat fluxes are chosen as follows: 1) Q = 5(mW/m 2 ) same for all, rendering different Rayleigh numbers; 2) Adapted Q to obtain the same Rayleigh number for all simulations; 3) Adapted Q (mostly 15(mW/m 2 ) for all except H = 250(km)) to induce melt at the silicate interface. All tested cases for Titan exhibit melt, due to the pressure-temperature conditions, however, the cases with melt at the silicate interface will be distinguished with different markers. The data points corresponding to Titan shown in the circular markers (cf. inset of figure 4.11) fall reasonably close to the predicted scaling area. Needless to mention that the scaling could not possibly be exact, given the many simplifications done on the lab models and its differences with the elaborate Titan simulations. However the velocity scales are somewhat close to the scaling that was done on a 10(cm) table top experiment. The reader is reminded here that the scaling of the velocities were scaled down by four to six orders of magnitude. For the data points in circular markers, the deviation from the scaling is smaller than one order of magnitude. Decoupling the Rayleigh number from the melt is not straightforward, given that they are subject to implicit strong coupling [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF] (refer to the discussion in section 1.4.2). However one can identify cases of high Rayleigh numbers without melt at the silicate interface. One such example is the second to last set of data points, pertaining to a 153(km) mantle, were two close data points are shown. One is ten times the Rayleigh of the other, yet the velocity scale does not exhibit such a large increase.

It should be noted here that for the same Rayleigh number, e.g. the blue circle markers showing simulations at Ra = 2.2 × 10 7 , the velocities from the numerical simulations appear steeper than the scaling. This is due to many factors, some notable ones can be enumerated as follows. The temperature deviation from the melting curve ranges more widely for large mantle sizes as can be seen in figures 4.8 and 4.9. Combining this information with the rheological equation used in this study (cf. table 4.2 & Ref. [START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]) which relates the viscosity to the temperature and the melting point. This viscosity equation is a simplification of the general Arrhenius behavior described by the teams of Sotin and Durham [START_REF] Sotin | Creep of High Pressure Ice VI[END_REF][START_REF] Sotin | Viscosity of ice v[END_REF][START_REF] Durham | Rheology of water ices V and VI[END_REF][START_REF] Durham | Creep of water ices at planetary conditions: A compilation[END_REF], in function of both temperature and pressure. The viscosity equation used in this study incorporates the pressure effects in the melting curve which depends on the pressure T M = f (P, phase), rather than using the absolute pressure itself. This results in an increase in the viscosity at the bottom of the mantle, which mimics the viscosity increase due to hydrostatic pressure. For larger mantles, the hydrostatic pressures becomes increasingly important, equivalently the deviation from the melting curve increases coherently. This generally increases the viscosities, rendering slower convection for larger mantles 10 . Further contributing to this effect is the rheological dependence of tidal heating [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF]. To satisfy the similarity, the viscosity is increased at larger mantle sizes, this in turn induces lower tidal dissipations as shown in table 4.3.

The excessive increase in the velocity scales can be identified for the triangular markers, which are attributed for the cases with melt at the silicate interface. These cases do exhibit a considerable increase in velocity scales predominantly owing to the melt at the bottom, which would otherwise be governed by a high viscosity distribution as per the above elaboration. Additionally the buoyant stresses can increase with partial phase change due to density jumps. However this is not the main contributing factors as the melt in these cases is still partial around 2%, quite consistent with previous studies [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. From an astrobiological point of view, the melt at the bottom is advantageous to the question of habitability as it promotes the solution of volatiles and ionic compounds in the plumes convecting to the ocean.

Comparing correlation distances and times

The comparison of the analogical experiments with the numerical simulations can further be supported by another level of statistical methods, namely correlations. The latter help identify patterns and similarities and therefore could be presumably useful to determine if two systems are similar or not. Correlation distances and times were discussed in details for the experiments in chapter 3, they are evoked here also to compare with the numerical results.

To scale the correlation distance of the experiments, the dimensional analysis will be used as follows: The numerical correlation distances match quite well the scaled experimental one.

The fluctuations of the vertical correlation distances are smaller given that they are most often equal to the mantle size, in both experiments and simulations, which is rather a good sign of connectivity between the bottom and top of the HP ice mantle. The horizontal distances also match decently well the scaled experimental one, despite some minor scattering in some cases. This evidently means that the ratio of vertical over horizontal correlation distances is also in agreement between the analogical experiments and simulations on HP ice. This ratio could be considered as a rough measure of the anisotropy of the flow and its behavior with respect to the Rayleigh number was described from the experiments in chapter 3. However this effect cannot be simply applied to the full problem of HP ice due to the many other factors that can influence anisotropy. Most notably, the Rayleigh number neither does include the degree of melting, nor the excessive pressuretemperature depedence of the viscosity of ice. These factors can significantly influence the anisotropy of the flow, hence the zcorr xcorr ratio. Therefore, one cannot simply claim that the increase of the Rayleigh in this complex system will eventually lead to definite increase in the degree of anisotropy. In some instances, the increase in the Rayleigh number could suppress melt altogether, as was discussed by Kalousova et al. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF] for Ganymede. Hence the Rayleigh number, in its current simple definition, cannot solely drive this buoyancy driven anisotropy since it could suppress one other source of buoyancy. It is however re-assuring to this study that all the complexity of the HP ice system does not excessively change the statistical similarity with the developed analogical experiments.

It would be also interesting to verify the time scales from a correlation perspective. Scaling of the experimental results is done by means of the dimensional analysis. The spatial distribution of the scaling times fall within the same range for both the scaled experiment and the numerically computed ones, and therefore they are comparable. Some differences in the distribution are evidently present, but these differences can appear from one case to the other, as was shown for the experimental results in chapter 3 (cf. figure 3.14). Both exhibit some elongated structures of high correlation times in between others of shorter correlation times. What is also useful to mention is that high correlation times appear at the boundaries on the numerical side. These have also appeared in the experimental results, and some concerns were raised in chapter 3 onto whether the no slip condition in the experimental setup has caused these structures at the boundaries. It is however reassuring to see these high correlation times at the boundaries of the free-slip walls in the numerical simulations, which reduces the concern onto the experimentally-bound no slip conditions.

One could evoke here the discussion on the spatial heterogeneity of the time scales which could hint a spatial predominance for plumes to occur, despite the uniform heating. While the numerical model did include phase change and was proven to be also heterogeneous, it is still not the complete picture of Titan's HP ice mantle. Plume convection is expected to transport slight traces of minerals and volatiles from the silicate-rich mantle. If some of these materials contain anti-freeze agents (e.g. NH 3 ), sodium chloride (NaCl), or magnesium sulfate (MgSO 4 ), one could expect local changes in the melting point. This in turn may further spatially discriminate the appearance of plumes due to preferred melting in previously salted areas. However modeling this requires further thermodynamic developments to cover eutectic melts for mixtures of various salts, in a consistent manner. For simplicity, the transport of anti-freeze agents will not be covered in this study. However the next section will consider the transport of some other molecules, specifically ones that form clathrate hydrates.

Transport of clathrates through the high pressure ice mantle

At certain pressure-temperature conditions, molecules -most notably ones from the silicate mantle -can get entrapped in the water molecules and forms a cage-like crystalline structure. This crystal form is called clathrate hydrates which was briefly reviewed in section 1.5. Clathrates hydrates are often discussed for Titan as one standing theory to explain its atmosphere replenishment. The cage-like structure modifies the physical and thermal properties compared to those water ice, which can include changes in the rheology, density, thermal conductivity, thermal expansion and specific heat [START_REF] Soan | Clathrate Hydrates of Natural Gases, 3rd Edition[END_REF][START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. Noting however that while characterization of ice is not fully complete, clathrates are yet even more poorly characterized. The scarcity of measurements is much more significant for higher pressures due to obvious measurement complications. The density among many other properties changes drastically depending on the guest molecule and cage occupancy. Furthermore, the composition of clathrates is not very constrained due to lack of abundant evidence, especially for heavier clathrates that would never reach the surface [START_REF] Tobie | Titan s bulk composition constrained by cassinihuygens: Implication for internal outgassing[END_REF]. Therefore it is judicious to begin such a study in a parametric manner, after which subsequent studies with further evidence can employ results from the current one to infer conclusions.

One ought to start with the simplest case, i.e. type 1 mantle (cf. figure 4.6). This would eliminate the density jumps across ice phases. The latter will influence the local density contrast between ice and clathrates which will induce slower transport in the upper mantles. This assumption is based on the absence of solid-solid transition within the clathrates, which depends on the guest molecule. The reader can swiftly notice why clathrate transport is still an uncharted territory, which requires a plethora of prerequisite data. For simplicity, no solid-solid transition for clathrates will be included here for lack of better knowledge.

The effect of the density contrast on the transport of an initially uniform distribution of clathrates

First, a thermal steady state solution is imported, and the simulation is started by depositing a uniform layer of clathrates using the same physical properties of HP ice but with a specified density difference. The clathrate-rich-ice are signaled by setting the field ψ = 1, on the other hand ψ = 0 refers to pure ice. Therefore one can simply quantify them at any instant t by performing area weighted integrals as follows: ψ x,z (t) = x,z ψ ∂x∂z and the volume/area fraction is given by: Ψ(t) = x,z ψ ∂x∂z

x,z ∂x∂z . Practically, the transport of clathrates to the ocean is simply given by

ψ x,z (t 0 )-ψ x,z (t) ψ x,z (t 0 )
in a normalized manner and it is shown in figure 4.14 with time for several density contrasts. For simplicity, let z b = Ψ(t 0 ) refer to the initial uniformly deposited volume fraction. The volume fraction of clathrates transport across the top boundary increases at a very large rate in the first 25(kyr) and then become much slower, converging asymptotically to the totality of the initially deposited volume. The rapid transport is mostly dominated by the density difference, which contribution is further clear in the inset plot showing several density contrasts. However as the remaining clathrate thickness decreases, the velocities become much slower because they are simply driven by the same strain rate11 engendered by similar buoyant stresses per unit length. This is the main mechanism responsible for the asymptotic behavior of the cumulative transport. It can be clearly seen from the inset plot that most of the dynamics occur at a faster pace ≈ 0.025(M yr) which is much more rapid than pure ice convection. For this reason, most of the analysis here will focus on the early part of the transport which is the most important in terms of quantity and dynamics. Much longer times may possibly include new clathrate formation which will not be modeled here to avoid poorly constrained guesses on their rate of formation. To compare cases, one could choose the time to transport half of the initial content as a characteristic time, denoted by t half and highlighted in large markers (cf. inset of figure 4.14).

The half times are summarized in figure 4.15 with respect to the density difference and for two initial contents. Noting here that the contribution of thermal plumes can play a small effect in creating dominant pathways where the thermo-dependent viscosity is lower. Yet, this contribution is mostly superseded by warm clathrates rising much faster than their rate of cooling, whereby they create their own warm plumes and hence softer pathways. For this reason the direct comparison with only the density difference could be representative of the dominant time scales. The density difference is also shown nondimensionally in terms of Atwood number At = ρ i -ρc ρ i +ρc classically used in Rayleigh Taylor problems (cf. top horizontal axis in figure 4.15). The half time evidently decreases with increasing density contrast, due to a linear increase in the buoyancy forces. However this linear change induces a non-linear one in the half time. The latter appears to decrease in a power law behavior with the density contrast, as hinted by the logarithmic inset plot.

Noting however, that rudimentary dimensional analysis would suggest an inverse linear scaling (hyperbolic, or power (-1)) with the density contrast; whereby using the first dimensionless parameter: t scaling = C te ×η ∆ρ g Hc . However the scaling obtained from the numerical model suggests a power of (-0.88), less steep than the dimensional analysis one. This implies a relatively shorter half time for the lower density contrasts. One possible explanation for this is the thermo-dependence of viscosity whereby warm clathrates from the bottom can be diffuse their heat to the surrounding ice for slower times. In turn this warm ice becomes slightly less viscous, convecting faster the clathrates. This effect is less pronounced for high density contrast, as they convect much faster than they diffuse their heat to the surrounding ice. The solid lines refer to a power law fit for both data. The blue fit is merely double the of the red one. The inset plot is the same as the main one but in logarithmic scaling.

The inverse algebraic scaling of time with a characteristic length t ∝ H -1 c seems to be respected within the initial height values tested here. The power law fit of z b = 5% is merely twice in value of z b = 10%. The linearity is not lost for the inverse of the length scale H c because the latter will mostly influence the viscous stress which are predominantly linear, in the current context. For smaller clathrate layers, the velocities becomes slower under the same buoyant stresses (hence for the same strain rate). Therefore the scaling of time becomes empirically t scaling ∝ f (η) (∆ρ) -0.88 (g) -1 (H c ) -1 .

The effect of the viscosity contrast on the transport of an initially uniform distribution of clathrates

So far, the viscosity of clathrates was assumed similar to that of HP ice, with a reference viscosity of η c, 0 = 10 15 (P a.s). However clathrates can have different rheological responses as was measured for lower pressures [START_REF] Durham | The strength and rheology of methane clathrate hydrate[END_REF]. Unfortunately, measurements on high pressure clathrates are still not well documented. Due to lack of measurements on the viscosity of clathrates, its effect will be tested for viscosity ratios of 0.1, 1 and 10, shown in figure 4.16 respectively. The contours in yellow show snapshots of the clathrate hydrate distributions within the HP ice, for three reference viscosities η c = 10 14 , 10 15 and 10 16 (P a.s). The HP ice reference viscosity here is 10 15 (P a.s). The morphology and characteristic width of the thermo-compositional plumes depends highly on the viscosity ratio. Lower viscosities tend to agglomerate swiftly at the head of the plume, while higher viscosity fluids tends to extend within filaments. The influence of viscosity on this thermo-compositional convection is not only mechanical, but the change in the plume velocity and shapes will also affect the thermal distribution which ultimately influences the rheology. Less viscous agglomerated warm clathrates at the head of the thermo-compositional plume (cf. top of figure 4.16) can improve heat transfer with the ice above, rendering it softer to deformation. This would increase the speed of the convection not only because the clathrates can deform faster, but also because the ice above has become less viscous due to thermal effects. To fathom how the less viscous clathrates control less the timescale of convection, one needs to examine the latter for different reference viscosities for clathrates η c, 0 , while keeping that of ice fixed, namely η i, 0 = 10 15 (P a.s). In figure 4.17 the half time is shown in function of η c, 0 , where the tendency of the former depends highly on whether the reference viscosity of clathrates is larger or smaller than that of HP ice. is set to 10 15 (P a.s). The plot is divided twofold, on the left in blue refers to the reference viscosity of clathrates being lower than that of ice, and on the right in green is the opposite. The solid lines in blue and green represent power law fits for the data in their corresponding divisions.

For larger viscosities, an almost linear dependence can be seen in green part of the plot, as hinted by the dimensional analysis. However for lower clathrate viscosities (lower than HP ice) the dependence of the time scale on η c, 0 is reduced to a power of 0.37. To convect, clathrate volumes need to deform themselves and the ice above them. By decreasing their viscosities, one could more easily achieve the former deformation. However, the deformation of the HP ice above them, remains predominantly at the same rate, controlled mainly by the viscosity of HP ice. The softening of HP ice can hence be achieved by increasing the heat transfer from the clathrates. Owing to the bubble shape of low viscosity clathrates convecting in the more viscous HP ice, heat transfer from the warm convecting clathrates can increase due to wider contact area, as η c, 0 is decreased.

An non-uniform distribution of clathrates

Clathrate formation and accumulation requires a large amount of molecules to be trapped in the H 2 O crystalline structure. Possible sources of these molecules could be hydrothermal vents and even magmatism. In most geological settings, heterogeneity is expected. To this end, a systematic heterogeneous distribution will be studied here in the form of domes. For instance magmatism could occur in the form of patches which could form more clathrates at the source. The effect of heretogeneity on the timescales of clathrate transport can be simplified by testing several numbers of domes while keeping the initial volume fraction constant, namely at 5%. The half times for several density ratios in function of the number of domes are summarized in figure 4.18. The half time of the clathrate transport, for the tested cases, appears to be shorter for the dome-like initial distributions as opposed to uniform layers. The non-uniform interface provides a mechanical advantage to initiate thermo-compositional plume, that would otherwise require more time to develop. The domes however impose a number of plumes, that may not be same if the initial layer was uniform. This ultimately alters the timescale of convection, because there exists a number of domes that yields the fastest half time (cf. figure 4.18). This optimal number does depend on the density contrast, and it appears to decrease with increasing density contrast. This is much in opposition to the simplified linear stability analysis on a small sinusoidal perturbed interface, where the growth rate peaks appear at higher wavenumbers for larger Atwood numbers [START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF]. Possible reasons for this disparity are the relatively large amplitudes of the perturbation and the shape of the dome comprising only peaks as opposed to the peaks and troughs of a sinusoidal signal. The troughs are often overlooked, but they do play a role in increasing the vorticity by facilitating the down-welling of the denser substance. While the distribution of clathrates cannot be predicted, it should be noted that the morphology of its formation can speed up the transport timescale by up to threefold.

More data is needed for the formation and composition of clathrate hydrates on Titan. This may be challenging and quite possibly out of reach, at the level of the ocean and high pressure ice mantles. Methane is detected at the surface because it is light enough to convect through the low density ice I. However heavier clathrates, may host more astrobiologically interesting molecules, that may enrich the ocean, but never reach the surface of the ice shell. Knowledge of the guest molecules is important to determine the physical properties of clathrates and their phase change conditions. To this end, diverse laboratory measurements are needed to characterize more clathrates, especially at the higher pressures, which evidently is a demanding setup. Until then, one is only left with the possibility of a parametric approach, such as this one, which could be later on used in geological analysis following more data on clathrates and Titan, or other icy worlds.

Solid-solid phase change was not modeled for the clathrates simulations herein. The phase change of clathrates, depends highly on the guest molecules. This topic was omitted from the current study for lack of knowledge on the composition of clathrates and their guest molecules, which can drastically change the clathrate solid-solid transition. This problem was circumvented by modeling only a smaller mantle (type 1), which is appropriate for the past and possibly the present of Titan's HP ice mantle. As the heat budget of Titan decreases, the mantle size is expected to increase, which would lead to HP ice phase changes. Reminding the reader that the HP ice mantle thickness was obtained from the approach of Vance et al. [START_REF] Vance | Ganymede´s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice[END_REF] which required guessing the ice I and ocean interface temperature, consequently guessing the thickness of the ice shell. A more thermally coherent approach for determining the outer ice shell thickness will be presented in the next chapter.

Partial conclusion

A two-phase porous approach was derived in this chapter, strongly inspired from previous studies by Kalousova et al. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF][START_REF] Souček | Water transport in planetary ice shells by two-phase flow -a parametric study[END_REF]. In the first section, the physical assumptions were first stated and then they were translated into mathematical equations for clarity and transparency. The basic premise of this method is to allow partial melt to exist within percolating pores inside the solid high pressure ice. This was followed by a section to explain the numerical method implemented to solve the aforementioned equations. A finite element code was developed and validated within the context of this study.

In section 4.3, interior structure models were constructed for the hydrosphere of Titan, based on the thermodynamics of pure water. Depending on the heat budget, adiabatic radial profiles could intersect high pressure ices on the water phase diagram which implies the presence of HP ice mantles. The problem is weakly constrained, and therefore multiple plausible solutions are considered, namely high pressure ice mantles ranging from 49 to 250(km) which would either exist in the form of ice VI, or ices VI-V, and even possibly ices VI-V-III depending on the temperature and pressure conditions which were computed for each case. Interior structure models of the hydrosphere are in accordance with previous studies [START_REF] Castillo-Rogez | Evolution of titan's rocky core constrained by cassini observations[END_REF][START_REF] Fortes | Titan's internal structure and the evolutionary consequences[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF].

Multiple scenarios were considered in this chapter to exhibit their differences and infer the past and present of Titan's high pressure ice mantles. Subsequent to cases studies, the scaling results of the experimental model in the previous chapter were compared with numerical simulations on Titan, which included various complex effects such as tidal heating and phase change (solid-liquid and solid-solid). Furthermore, the transport of clathrates was considered in a systematic approach to test the influence of parameter onto the timescales of clathrate transport to the ocean. Owing to the clathrates cage-like crystalline structure, heavy molecules forming clathrates may be less dense than high pressure ices, allowing convection to the ocean. This would be very interesting from an astrobiological point of view by improving the ocean's habitability at faster geological timescales than mere volatiles dissolved in water.

Constraining the equilibrium thickness of outer ice shells

General context

In the previous chapter, the high pressure ice mantle thickness was estimated from adiabatic profiles by fixing the temperature at the surface and the melting point at the outer ice shell and ocean interface. The fusion of ice depends on the hydrostatic pressure, so in essence fixing the melting point fixes the ice shell thickness. In the absence of radar evidence on the thickness, scientist are left with educated guesses. These educated guess, comprising geological and thermal evidence, to this day remain insufficient to determine the ice shell thickness. The problem becomes more difficult for larger shells, which have thicker lithospheres that hide the activity beneath. A more accessible option is thinner ice shells such as the one estimated on Europa. This however does not solve the problem, as planetary scientist are still debating to this day on the thickness of Europa's ice shell (cf. the Great Thickness Debate in section 1.4.1). This chapter will contribute some insight to the Great Thickness Debate, where the ice shell thickness will not be assumed but rather obtained as a result from convection simulations that account for the heat sources of icy moons. While this method is applicable to most icy moons, this study will focus more on Europa, as it provide more surface evidence and is likely to be thinner. The latter is important because more evidence to confirm the results will be provided at the end of this decade, by the radar and other instruments such as the magnetometers equipped on both spacecrafts of the Europa Clipper [START_REF] Howell | Nasa's europa clipper-a mission to a potentially habitable ocean world[END_REF] and the JUICE [START_REF] Grasset | JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system[END_REF] missions.

Backscatter radar data from the Galileo mission suggest a high porosity on Europa's surface of at least 0.35 on the surface of Europa, much higher than Ganymede and Callisto (porosity ∼ 0.025-0.075) [START_REF] Black | Icy galilean satellites: Modeling radar reflectivities as a coherent backscatter effect[END_REF]. As was briefly discussed in section 1.4.1, possible sources of porosity have been explained as a results of tidally driven fractures as well as brine pockets [START_REF] Lee | Mechanics of tidally driven fractures in europa's ice shell[END_REF], the latter being similar to ones observed on terrestrial ice [START_REF] Weeks | The Mechanical Properties of Sea Ice[END_REF]. However considering the water phase diagram, brine pockets are highly unlikely to occur at the surface of Europa, since at such low pressures warm ice is more likely to sublimate rather than melt. For this reason, the porosity on Europa's surface in this study will be considered as a dry compaction. The effects of the porosity will be included on the thermal and physical properties of the ice, which may influence the convection and the ice shell thickness.

To determine the ice shell thickness a section of the ice shell will be modeled herein in a rectangular domain. Using the heat budget of Europa, the convection problem will be solved in this chapter to determine the equilibrium thickness at which the bottom boundary reaches the melting conditions T M = f (P ), and hence the ocean. Additionally an initial superficial porous brittle layer is prescribed at the top of the mantle with a thickness of t P or , to study its effects on the ice shell thickness.

Governing equations and numerical methods

The computational domain is discretized in cartesian coordinates and the frame of reference is Eulerian. The governing equations solved in this model include the mass and momentum conservation using the Boussinesq approximation in equations 5.1 and 5.2, respectively. The inertial contribution in the momentum equation had no detectable effect on the velocity, and therefore is not included in equation 5.2. The thermal transport in equation 5.3 is also solved. The brittle mechanics transport will be derived throughout this section.

∇ • v = 0 (5.1) ∇ • η ∇ v + ∇ T v -∇p + ρ g = 0 (5.2) ρc p ∂T ∂t + ρc p v • ∇T = ∇ • (k∇T ) -ρ ṙ h f + Ξ (5.3)
where v is the velocity vector, ρ is the local density, g the gravity acceleration, p the pressure, T the temperature, c p the specific heat, k the local thermal conductivity, ṙ the volume fraction rate of melt, h f latent heat of melting the ice, η is the apparent viscosity and Ξ is the local tidal heating.

The volume fraction of melt, locally constrained between 0 and 1, is obtained from the computed temperature field. The excess melt/crystallization per iteration is estimated by:

cp(T -T M ) h f
. The temporal gradient of the melt volume fraction represents ṙ, the volumetric melting rate, used in equation 5.3. The pressure dependent melt curve T M = f (P ) is quadratically fitted from the thermodynamic data in the open-source library SeaFreeze, by Journaux [START_REF] Journaux | Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity, and the water phase diagram to 2,300 mpa[END_REF].

Tidal heating

The hydrosphere of icy satellites comprise mostly of water. So determining the solid ice shell thickness relies heavily on the heat budget of the moon. Heat primarly comes from either radiogenic decay of elements in the silicate mantle, or tidal dissipation. The latter primarily depends on the distance to Jupiter, and the rheology of the material inside the mantle, given that the tidal flexing is presumably visco-elastic. The tidal dissipation is therefore different from one moon to the other, and within each mantle of a given moon.

For instance on Ganymede, tidal heating could be neglected due to the low eccentricity of Ganymede. On the other hand Europa and Enceladus are subject to excessive tidal heating, which is thought to explain many of its geological activity.

Given that the orbits are not fixed with respect to the long geological time scales, as a result, tidal heating is expected to change with time, mostly in the order of ∼ 100(M yr) or ∼ 1(Gyr). For Titan the tidal heating is decreasing with time, as suggested by Tobie et al. [START_REF] Tobie | Episodic outgassing as the origin of atmospheric methane on titan[END_REF], due to the decrease in a remnant eccentricity. On the other hand, Europa is tidally locked with Io and Ganymede in a 4:2:1 Laplace resonance (Io:Europa:Ganymede). Thermo-orbital evolution models predict significant oscillations in the eccentrities of Io and Europa, and consequently significant oscillations in the tidal dissipation [START_REF] Hussmann | Thermal-orbital evolution of io and europa[END_REF][START_REF] Běhounková | Tidally induced magmatic pulses on the oceanic floor of jupiter's moon europa[END_REF]. This in turn influences the heat budget, and therefore the ice shell thickness on Europa.

The volumetric tidal heat Ξ depends on the local tidal strain rate and on the dissipation function, which depends on the visco-elastic properties of ice. For the present-day eccentricity, the tidal strain rate, ˙ , varies between 10 -10 s -1 near the equator to 2.10 -10 (s -1 ) at the poles [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF], and is only weakly sensitive to the ice shell thickness. This results in a maximum heat production, Ξ max = µ ˙ 2 /ω, varying between 2 and 8.10 -6 (W/m 3 ), from the equator to the poles, with µ being the shear modulus (=3.3(GP a)) and ω the tidal angular frequency (=2π/3.55(days)). The tidal strain rate being proportional to the orbital eccentricity, reduction or increase of the orbital eccentricity by a factor of 2 result in a reduction or increase of volumetric tidal heat by a factor of 4.

To estimate the volumetric tidal heat Ξ from local viscosity, an Andrade rheological model is employed here, which is more appropriate than the classic Maxwell model [START_REF] Castillo-Rogez | The tidal history of iapetus: Spin dynamics in the light of a refined dissipation model[END_REF][START_REF] Efroimsky | Tidal dissipation compared to seismic dissipation: In small bodies, earths, and super-earths[END_REF][START_REF] Běhounková | Impact of tidal heating on the onset of convection in enceladus's ice shell[END_REF][START_REF] Mccarthy | Tidal dissipation in creeping ice and the thermal evolution of europa[END_REF]. The Andrade model better represents the anelastic response of ice on a broad range of frequencies and temperatures than the simple Maxwell model. In the Andrade model, the volumetric tidal heat, Ξ, can be expressed as a function of local viscosity, η as follows as is [START_REF] Kalousová | Water generation and transport below europa's strike-slip faults[END_REF]:

Ξ = 2 Ξ max 1 + ν α-1 Γ (1 + α) sin(απ/2) ν -1 + ν + ν α-1 Γ (1 + α) [ν α Γ (1 + α) + 2 cos(απ/2) + 2 ν sin(απ/2)] (5.4) 
where ν = ηmax η , with η max = µ/ω = 1.5 × 10 14 (P a.s), the viscosity at which tidal heating is maximal, Γ(•) is the Gamma function, and α is an empirical parameter characterizing the transient viscoelastic response. α usually varies between 0.2 and 0.3 for water ice [START_REF] Castillo-Rogez | The tidal history of iapetus: Spin dynamics in the light of a refined dissipation model[END_REF][START_REF] Mccarthy | Tidal dissipation in creeping ice and the thermal evolution of europa[END_REF][START_REF] Tobie | Tidal response of rocky and icerich exoplanets[END_REF], and is set to 0.25 in the present study. A second empirical parameter, usually noted β, is not shown in equation 5.4 as it is assumed to be equal to µ -(1-α) η -α following the approximation adopted by Castillo et al. [START_REF] Castillo-Rogez | The tidal history of iapetus: Spin dynamics in the light of a refined dissipation model[END_REF].

Physical properties of ice

The physical and thermal properties of ice used in the current simulations are summarized in table 5.1. [START_REF] Kirk | Thermal evolution of a differentiated ganymede and implications for surface features[END_REF].
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Within the context of planetary convection, the rheology of polycrystalline I h is considered purely viscous, and predominantly occurring by diffusion creep [START_REF] Barr | Onset of convection in the icy galilean satellites: Influence of rheology[END_REF][START_REF] Harel | Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology[END_REF], at least for grain size comprised between 0.5 and 5 (mm). The associated viscosity with each mechanism has been briefly reviewed in section 1.3, and evoked here in equation 5.5. Reminding that d g is the average grain size of polycrystalline, A the stress prefactor, τ II the equivalent stress which could be taken from the square root of the second invariant of the stress tensor, n the stress exponent, m the grain size exponent, E a the activation energy and R the universal gas constant.

η i = d m g A τ τ n-1 II exp E a RT ( 5.5) 
It should be noted that the rheology was measured at ambient pressures where the melting point is 273(K), considered as a reference temperature. However as hydrostatic pressure increases, melt shifts to lower temperature. Consequently one must correct the thermo-dependence of the rheology, since the stress prefactor and the grain size dependencies were derived for ice near melting point at ambient pressure, and not for specified temperature regardless of the pressure. To account for the pressure changes one must compute the reference viscosity from the terrestrial ice measured conditions and then employ once again the Arrhenius law, but this time relative to the pressure-dependent melting curve as follows:

η i,mech = d m g A τ τ n-1 II exp E a R g × 273 exp E a R g 1 T - 1 T M (5.6)
To include the composite rheology comprising the main mechanisms introduced in section 1.3 (Diffusion creep, Grain Boundary Sliding, Basal Slip and Dislocation creep), herein a common constitutive equation is used to include the four main mechanism:

η i = 1 η Diff + 1 η GBS + η Bas + 1 η Disl -1 (5.7)
It should be noted that Dislocation creep doesn't not contribute to the effective rheology at convection stresses relevant to Europa and Ganymede as was shown by Harel et al. [START_REF] Harel | Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology[END_REF] and confirmed by several test cases within this study. To optimize the computational time, the dislocation creep will not be computed herein. Recently Kalousova and Sotin have used a more elaborate constituive equation that includes a temperature piecewise dependence of GBS and dislocation, in addition to differentiating between the diffusion creep at the boundary and in the bulk [START_REF] Kalousová | The insulating effect of methane clathrate crust on titan's thermal evolution[END_REF]. It should be noted that the stress
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pre-factor A τ for the diffusion at the boundary is eight orders of magnitude lower than that of bulk diffusion creep. Therefore its contribution is far from dominant, and for this reason, diffusion at the grain boundaries will not be separately accounted for in this study.

The constitutive equation used herein can be written as follows in equation 5.8, with the properties of each mechanism summarized in table 5.2. A more detailed discussion on the dominance of diffusion creep is provided in the appendix (cf. 6.2).

η i =        1 η Diff + 1 η GBS +η Bas -1 (Composite rheology) η Diff
(For cases with only diffusion creep)

(5.8) Note that the diffusion creep regime has never been determined experimentally, the rheological parameters are based on theoritical considerations [START_REF] Goldsby | Superplastic deformation of ice: Experimental observations[END_REF].

A superficial porous brittle layer

A superficial porous brittle layer is considered in this study, which should alter the effective physical properties, from a continuum mechanics perspective. While most properties could be computed from the law of mixtures, such as the density, as per mass conservation. It has been however shown recently that the thermal conductivity does not abide by the linearity with the ice volume fraction. Therefore this study will incorporate the fitted recent experimental data [START_REF] Calonne | Thermal conductivity of snow, firn, and porous ice from 3-d image-based computations[END_REF], in equation 5.9. 

k snow-f irn (ρ) = (1 -θ) k(T ) k(T ref ) k ref snow (ρ) + θ k(T ) k(T ref ) k ref f irn (ρ) (5.

Brittle mechanics

As previously mentioned in section 1.3, brittle rheology is not volume conservative. The subject material contains microscopic and mesoscopic cracks and pores. Depending on the flow, such cracks can open (upon tension) or close (upon compression). From a continuum mechanics perspective, the volume fraction inside the brittle element is subject to change. As an evident consequence, the strength of the material will change. One could anticipate a weaker rheology if the volume fraction inside the element decreases, less material will lead to lower internal resistance to deformation.

The scope of this method necessitates that each discretized element is a representative elementary volume. This means that cracks modelled have individual sizes much smaller than the discretized element, for the porous assumption and continuum mechanics to be valid. On the sub-element level, the rheology will be treated isotropically viscous due to lack of information on the anisotropy of brittle polycrystalline ice and the negligeable effects of elasticity within the planetary context (refer to section 1.3 for more elaborations).

The brittle ice volume fraction d v may change ( Ddv Dt )1 , from either mechanical failure (S m < 0) or from thermodynamic healing of ice (S t > 0). The previous statement can be writen mathematically as follows:

D (d v ) Dt = S m + S t (5.13)
The mechanical sink term S m within this context will be based on the classical Coulomb-Mohr theory from continuum mechanics. Failure in materials occurs when the applied stresses are above the material's critical strength. In brittle materials, the compression strength is usually higher than that of tension. This can be easily understood by imagining how compression helps close the voids inside the material and consequently rendering it stronger due to more internal resistance. The opposite occurs when tensile forces open up the cracks and increase the voids in the material.

In a viscous flow with the abscence of elastic effects (previously explained in 1.3), the Cauchy stress tensor can be computed from the velocity and pressure fields. The stress tensor could therefore be obtained in the cartesian plane. However the highest stresses are not necessarily oriented on either reference axis. Therefore, the failure criterion must be applied on the highest stresses and not on the cartesian one. For this reason, the principal stresses (τ 1 > τ 2 > τ 3 ) must be obtained from the computed cartesian ones. This could be done by solving the eigenvalue problem, as shown in 5.14, where 'I' is the well known identity matrix.

  τ xx τ xy τ xz τ yx τ yy τ yz τ zx τ zy τ zz   → det(τ -λI) = 0 →   τ 1 0 0 0 τ 2 0 0 0 τ 3   (5.14)
The principal stress could therefore be obtained by solving the characteristic equation given by det(τ -λI) = 0. In a three-dimensional framework, this equation is cubic, and one obtains ∇(dv v) = v • ∇dv + dv $ $ $ X 0 ∇ • v due to the simplified continuity equation 5.1.
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in a two-dimensional one it reduces to a quadratic equation. It can be classically written in function of the first 2 , second 3 and third 4 stress invariants; I 1 , I 2 and I 3 ,respectively. det(τ -λI) = -λ 3 + I 1 λ 2 + I 2 λ + I 3 = 0 (5.15) where

I 1 = tr(τ ) = τ xx + τ yy + τ zz (5. 16 
)

I 2 = 1 2 (tr(τ )) 2 -tr τ 2 = τ xx τ yy + τ xx τ zz + τ yy τ zz -τ 2 xy -τ 2 xz -τ 2 yz
(5.17)

I 3 = det (τ ) = τ xx τ yy τ zz + τ xy τ xz τ yz -τ 2 yz τ xx -τ 2 xz τ yy -τ 2 xy τ zz (5.18)
Subsequent to solving characteristic equation 5.15, the principle stresses can be easily obtained for the first and the third from the largest and smallest: τ 1 = max (λ 1 , λ 2 , λ 3 ) = λ 1 and τ 3 = min (λ 1 , λ 2 , λ 3 ) = λ 3 . Given that the first invariant is the trace of the tensor, the second principle stress can be deduced as follows: τ 2 = I 1 -τ 1 -τ 3 . In two-dimensional system, there are only two principle stresses 5 because the third invariant trivially reduces to zero. Consequently one λ can be factored out from the characteristic equation rendering a trivial zero third principle stress in the direction that was not accounted (due to the assumed symmetry in that third direction).

Having determined the principal stresses, these entities will be compared locally with the failure criteria. In this study the Coulomb-Mohr theory will be employed, which is the simplified Mohr theory. Briefly, Mohr's theory consists of comparing the principal stresses to three main tests: Pure tension, pure compression and pure torsion. In Coulomb-Mohr, the principal shear is not attributed to the pure torsion test, as the latter is not employed in this theory (hence the simplification from Mohr's theory). The shear strength is obtained from the intersection of the shear axis with a linear relation between the tensile τ t > 0 and compressive τ c < 0 strengths.

To test the failure, the principal stresses are compared to the material tensile and compressive strengths. The Coulomb-Mohr criterion therefore forms the limits beyond which stresses induce mechanical failures. These limits can be drawn on the principal stress diagram as shown in figure 5.1. Stresses inside the green area don't induce failures. 2 The first invariant is the sum of normal stresses. 3 The second invariant is sum of the principal minors (submatrices) of the Cauchy stress tensor, which makes this invariant strongly reflectant of the shear in the octahedral plane. 4 The third stress invariant is determinant of the Cauchy stress tensor. 5 In a two dimensional system the eigenvalues can be reduced in the form of the classical two-dimensional Mohr's circle representation: Once superseded, the stresses will not instantly destroy the totality of the material. The damage is done progressively through a characteristic time for mechanical destruction t d . The sink term S m modeling mechanical failure in equation 5.13, from the Coulomb-Mohr criterion, can be defined mathematically as follows:

S m = min 1, τ t τ 1 , τ c τ 2 -qτ 1 , τ c τ 2 -1 1 t d d v (5.19)
where q = -τc τt is the slope connecting linearly the compressive and tensile strength in the Coulomb-Mohr failure criterion as shown in the second and fourth quadrants of figure 5.1. In their formulation, Dansereau et al. [START_REF] Dansereau | A maxwell elasto-brittle rheology for sea ice modelling[END_REF] have not used the truncation term on the compressive side (i.e. τc τ 2 ), however they included it in some test cases and did not detect any differences. To stay in accordance with the classical Coulomb-Mohr theory, in this study the compressive truncation is included in the formulation; despite the fact that failure by compression rather than tension or shear is highly unlikely to occur.

On the other hand, the thermal healing source term S t is assumed linear in time, and therefore simply normalized by a characteristic healing time t h . This means that a completely fractured volume fraction, will re-consolidate by thermal healing of ice after a time t h . The characteristic time for thermal healing is taken as t h = η ρg|zs| [START_REF] Nimmo | On the origins of band topography, europa[END_REF], where |z s | is the absolute value of the depth from the surface. As previously done for other equations in chapter 4, the global time derivative in equation 5.13 is replaced by its Eulerian form. The brittle dynamics could therefore be written as follows:

∂d v ∂t + v • ∇d v = min 1, τ t τ 1 , τ c τ 2 -qτ 1 , τ c τ 2 -1 1 t d d v + 1 t h (5.20)
The effective viscosity of the brittle fracture material can subsequently be computed from the Maxwell model in [START_REF] Dansereau | A maxwell elasto-brittle rheology for sea ice modelling[END_REF]. The tensile and compressive strengths could be obtained from experimental measurements. Having these values, the slope q connecting them on the principal stress diagram (figure 5.1) can subsquently be calculated. Alternatively these values can also be obtained

η = (η i -η min ) d β d v + η min →      η i for d = 1 (i.

Determining the equilibrium thickness

To determine the ice shell thickness a section of the ice shell will be modeled herein in a rectangular domain with an aspect ratio 4:1 (width:height) cf. figure 5.2. The mass conservation, momentum, heat transport and brittle mechanics equations are solved on a bidimensional anisotropic adaptive mesh. Tidal heating is computed considering an Andrade rheology model and melt is accounted for in the thermal transport equation. An initial superficial porous brittle layer is prescribed at the top of the mantle with a thickness of t P or . Free-slip velocity is prescribed at the boundaries. An isotherm is prescribed at the top boundary T top = 100 (K), zero flux on the left and right boundaries. Heat flux Q from the silicate mantle (comprising both radiogenic and tidal heat) is prescribed at the bottom boundary of the computational domain. The initial temperature distribution is prescribed by a conductive profile between 100(K) and T M = f (P ) , depending on the local thermal conductivity (for a given the porous layer thickness), the initial profile changes.

As the simulations progress, and depending whether the heat budget of the initial mantle thickness is self sufficient or not, the bottom of the mantle could melt or cool down, to a state of thermal equilibrium in the presence of convection (if any). Thermal equilibrium was reached before 1(M yr) for most simulations. However, the total simulation time for each case study was at least 5(M yr) to ensure that a quasi steady-state was reached. If the mantle cools down due to an insufficient heat budget, the simulation is repeated with a larger height. After obtaining the equilibrium thickness, the simulation is repeated with the equilibrium thickness as the initial height, to avoid simulating the ocean with the ice, for numerical purposes. 

Convection and equilibrium thickness Effect of the porous brittle layer thickness

The dynamics of Europa's ice shell and its equilibrium thickness depend strongly on several parameters controlling the thermo-mechanical properties of ice and the available heat sources. In this study, the control parameters are the porous brittle layer thickness t P or , the polycrystaline ice grain size d g , the heat flux coming for the silicate mantle, Q b (comprising both radiogenic and tidal contribution) and the maximal value of tidal heating in the ice shell Ξ max .

In order to illustrate the role played by a brittle porous layer, figure 5.3 compares simulations obtained for three porous layer thicknesses t P or = 0, 1 and 2(km), using a grain size of 3.5(mm), corresponding to a rheology that induces the maximum tidal heating at the melting conditions. For simplicity a diffusion creep rheology is used here, the dominance of which is discussed in the appendix. The results in figure 5.3 are all shown after 5(M yr) of simulation time. Current estimates of the grain size on Europa are between 1 and 10(mm), the former corresponds to the lowest possible viscosity. For these simulations, the heating parameters, Ξ max = 2(µW/m 3 ) and Q = 5(mW/m 2 ), are representative of current heat budget at the sub-jovian/anti-jovian equatorial points. A plethora of geodynamic processes appear near that region hinting a vigorous convection of the ice shell. Without a porous brittle layer, the equilibrium thickness after 5(M yr) at the aforementioned heating source is ∼ 65(km) larger than initially estimated from the magnetometer induction data. This case represents a thermally consistent system for pure water ice. However, a considerable salinity is expected for Europa's ocean, therefore if one included a saline composition of ice, equilibrium thickness could be reduced considerably. For a fixed grain size, these values represent the largest likely ice shell thickness, due to lowest heating at the sub-jovian and anti-jovian points. It should be noted that at the poles, tidal heating is expected to be larger by four folds.

The inclusion of a surface porous layer t P or = 1 or 2(km) results in a steeper nearsurface gradient due to the reduced thermal conductivity, increasing the temperature in the entire layer allowing a larger convective layer. The thicker the porous layer the thinner the ice shell becomes. The equilibrium thickness for these cases dropped significantly, by 9(km) due to the suppression of the highly conductive cold ice layer. This layer is mostly taken by the porous layer which acts as an efficient insulator, as can be seen in the thermal conductivity distributions.

The green lines represent the 240(km) isotherms which could hint to the elastic lithosphere thickness. The latter is about 20(km) for the case without the porous layer. However with t P or = 1&2(km) the stagnant lid reduces to only 5 and 4(km), respectively. Such a smaller lithosphere is indeed in accordance with the surface observation near the equator where chaos regions and very diverse topography suggests a thin elastic and brittle lithosphere. As illustrated in figure 5.4 (d), the excessive convection induces a significant increase in the surface heat flux which locally reaches 70(mW/m 2 ) for t P or = 1, and even exceed 80(mW/m 2 ) for t P or = 2(km). The first eutectic melts may be generated at 238(K) [START_REF] Kargel | Europa's crust and ocean: origin, composition, and the prospects for life[END_REF], the isotherm of which reaches very shallow depths (e.g 4(km) locally weakening the ice, while in absence of a porous brittle layer this isotherm remains at depth of about 19(km).

Effect of the polycrystalline grain size

The polycrystalline ice grain size d g directly influences the viscosity and therefore the convection and tidal heating. This parameter is weakly constrained. On the left of figure 5.4, three ice grain sizes are tested for t P or = 1(km) and the same aforementioned heating values, where it can be noticed that larger grain sizes significantly reduce the convection. As the latter decreases, the quasi-isothermal convecting layer becomes smaller which ultimately reduces the equilibrium thickness. However, the stagnant lid itself becomes thicker for larger grain sizes due to the reduced convective activity.

Noting here that one cannot overlook the dependence of tidal heating on the viscosity. The grain size d g = 3.5(mm) is chosen here because it induces that maximum tidal heating at the viscosity near the melting point [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF]. This maximum is therefore suppressed for larger grain sizes. However it appears at colder temperatures for smaller grain sizes. This is one other contributing factor to a reduced rigid lithosphere, where the maximum tidal heating occurs at the interface of the convective layer and stagnant lid, reducing the latter due to heating, as was shown in figure 5.3. This effect is also very visible in the average tidal heating profiles (cf. figure 5.4(g)), where cases with d g = 1(mm), in solid lines, exhibit the maximum tidal heating at the interface between the convective and conductive layers.

The equilibrium thickness is visually clarified in figure 5.4 (e), where the horizontally averaged thermal profile is projected onto the relevant section of the pure water phase diagram. The intersection with the liquid water is highlighted with an arrow, signaling the equilibrium thickness of the ice shell, obtained after 5(M yr) of simulation time. The effect of the porous brittle layer can be seen in steeper gradients in the superficial layer which induce a piece-wise linear profile in the stagnant conductive lid (cf. figure 5.4 (e)), and the relatively warmer ice becomes less viscous (cf. figure 5.4 (f)) which would correlate better with the surface observations. 

Changes in the equilibrium thickness with space and time

Noting however that this equilibrium thickness is not expected to be the same all across Europa, due to major differences in tidal activity and heating depending on the latitude. Present day models for Europa's ice shell, imply that heating is the maximum at the poles (Ξ max ≈ 8 × 10 -6 W/m 3 ) and the minimum at the sub-jovian and anti-jovian points at the equator (Ξ max ≈ 2 × 10 -6 W/m 3 ) [START_REF] Tobie | Tidally heated convection: Constraints on Europa's ice shell thickness[END_REF][START_REF] Nimmo | The global shape of europa: Constraints on lateral shell thickness variations[END_REF]. The bottom heat flux may also vary laterally due to variations in tidal heating in the silicate mantle and ocean dynamics. Seafloor heat flux is expected to be larger at the poles due to tidal heating [START_REF] Běhounková | Tidally induced magmatic pulses on the oceanic floor of jupiter's moon europa[END_REF], while for the dynamical regime expected in Europa's ocean [START_REF] Soderlund | Ocean-driven heating of europa's icy shell at low latitudes[END_REF][START_REF] Soderlund | Ocean dynamics of outer solar system satellites[END_REF], numerical simulations predicted enhanced oceanic heat flux in the equator. Taking into account the uncertainty on radiogenic production in the mantle and the heterogeneity due to tidal heating and oceanic dynamic, the heat flux reaching the bottom of the ice shell should typically vary between 5 and 10(mW/m 2 ).

Further complicating the heat budget is that Io, Europa, and Ganymede are in a Laplace 1:2:4 resonance which causes the eccentricities of Io and Europa to oscillate with a period in the order of 100(M yr). The tidal heating depends on the eccentricity, hence it is evidently bound to similar oscillations. Europa may have experienced periods with higher eccentricity in a recent past, possibly twice the present-day value [START_REF] Hussmann | Thermal-orbital evolution of io and europa[END_REF], thus potentially increasing Ξ max to 30 × 10 -6 (W/m 3 ) in polar regions and bottom heat flux to ∼ 15(mW/m 2 ) [START_REF] Běhounková | Tidally induced magmatic pulses on the oceanic floor of jupiter's moon europa[END_REF].

CONSTRAINING THE EQUILIBRIUM THICKNESS OF OUTER ICE SHELLS151

In order to quantify the effect of varying heat budget, the parameters of the latter (i.e. Ξ max and Q b ) are systematically varied to monitor their effect on the thermal equilibrium, for each of the three values of grain size and the three porous layer thicknesses considered above (cf. figures 5.3 & 5.4). Figure 5.5 summarizes 72 simulations run at 5(M yr) of simulation time, showing the horizontal average temperature profiles, projected onto the relevant phase diagram of pure water. Each subplot in figure 5.5, refers to a specific grain size and porous brittle layer thickness. The heating values in each of the subplots are color coded for the heat flux from the mantle and the maximum tidal heating is annotated next to the equilibrium position (ice-ocean interface). The grain size is changed in the row of subplot and the porous brittle layer is varied in the columns and shown in grey where applicable. The importance of finding the equilibrium thickness is very well exemplified in the first subplot of figure 5.5 (the reader is invited to zoom in). For the three cases with maximum tidal heating of 8 × 10 -6 (W/m 3 ), the grain size is the same and there exists no porous brittle layer. Increasing the heat flux (blue to red) reduces and suppresses the convective layer. This is due to a reduced overall ice shell thickness, which would decrease the Rayleigh number much more considerably than the flux increases it. This is much in opposition to the general approach, where the ice shell thickness is fixed, and increasing the heating leads to better convection upon heating. For this reason, it is essential to find the equilibrium thickness to coherently model the ice shell.

The porous brittle layer has the ultimate effect of reducing the equilibrium thickness, but does not decrease the convective activity. Convection is however considerably affected by the polycrystalline ice grain size, where smaller d g results in larger convective layers and therefore larger shells for a given porous layer thickness and heat conditions. Increasing the heat, reduces the ice shell thickness and hence the convection itself. At the peak of the thermo-orbital resonance cycle, tidal heating is maximal. As a result, the equilibrium thickness could be reduced to only a few kilometers. This along with tidal stresses could possibly lead to local fractures in the thin ice shell, exposing the ocean and spilling its salt content onto its surface. This could explain the excessive salt content on Europa's surface. At the trough of the cycle however, the orbit is less eccentric limiting the tidal activity and its dissipation. This ultimately influences the heat budget and a larger part of the hydrosphere is subject to freezing. The largest mantle size recorded in the simulations is 130(km) after 5(M yr), which could imply that the entire hydrosphere may freeze at some point in the cycle. The latter idea depends on the moment of inertia data which to this day has only constrained the hydrosphere to 127 ± 21(km) [START_REF] Anderson | Europa's differentiated internal structure: Inferences from four galileo encounters[END_REF][START_REF] Kuskov | Internal structure of europa and callisto[END_REF][START_REF] Gomez Casajus | Updated europa gravity field and interior structure from a reanalysis of galileo tracking data[END_REF]. Noting however that while this method is thermally coherent, it is still a local analysis. A full three dimensional map of the hydrosphere cannot be constructed with these results because azimuthal and lateral heat fluxes were not accounted in this two dimensional model. The global ice shell would be an intermediate solution between the two extremes. To solve this full problem, a three dimensional large scale modeling of the hydrosphere is required, one that includes also ocean currents which could transport the heat to the equator more efficiently. This is outside the scope of the resources and time allocated for this study.

Thickness of the elastic lithosphere

Determining a thermally coherent ice shell is also useful for geologists investigating the surface topography. Given that the rheology is highly dependent on the temperature, the mechanical lithosphere was often estimated as the depth to a certain isotherm [START_REF] Mcnutt | Lithospheric flexure and thermal anomalies[END_REF][START_REF] Nimmo | Effective elastic thickness and heat flux estimates on ganymede[END_REF][START_REF] Ruiz | The heat flow of europa[END_REF]. Taking this simple criterion, for the isotherm T = 240(K) in figure 5.7, various thicknesses in the context of this study are shown in function of the total thickness of the icy mantle.

Figure 5.6: Depth to the 240(K) isotherm in function of the ice shell thickness. Black, blue and red markers refer to the porous brittle layer thickness t P or = 0, 1 and 2(km), respectively. Circular, square and triangular markers refer to grain sizes d g = 5, 3.5 and 1(mm) respectively. Filled markers correspond to convecting ice shell and empty one to purely conductive shells. The numerical data are projected onto the Monte Carlo 10 7 1D estimations performed by Howell [START_REF] Howell | The likely thickness of europa's icy shell[END_REF]. (The image is cropped, and the colors are inverted for convience).

Roughly, figure 5.6 shows the thickness of the lithosphere in function of the ice shell thickness. Given that the problem is poorly constrained, one must consider a range of plausible lithosphere thickness. Furthermore, multiple lithosphere thicknesses are considered here, not only due to uncertainties and under-constrained variables; but also due to the diversity of Europa's surface. This implies that the lithosphere thickness changes depending on the location and time in the thermo-orbital cycle. The set of results from the current simulation fall well in the likely conductive lid thickness estimation by Howell [START_REF] Howell | The likely thickness of europa's icy shell[END_REF]. The latter shown in the background are a set of 10 7 Monte Carlo 1D estimations to help constrain the likely thickness of Europa from a statistical perspective. However, in order to analyze these results, they will be broken down with respect to their parameters to better identify the effect of each (cf. figure 5.7). (Top row) Ice shell thickness in function of the maximum tidal heating. (Bottom row) Depth to the 240(K) isotherm in function of the maximum tidal heating. The subplot columns refers to the grain size d g = 5, 3.5, 1(mm) from left to right, respectively. The colors black blue and red refer to the porous brittle layer thicknesses t P or =0, 1 and 2(km), respectively. Empty symbols shows purely conductive profiles.

First and foremost, smaller grain sizes lead to weaker viscosities, and in turn induce large convective shells. Convection therefore cools down some water content, and eventually leads to larger ice shells which can be clearly seen in the top row of figure 5.7. However due to excessive convection, the lithosphere can become thinner, despite the larger overall ice shell (cf. bottom row). From the color code, one can easily understand that the porous brittle layer reduces, not only the size of the ice shell, but also the lithosphere thickness. This was exemplified for three cases in figure 5.3 by illustrating the conductivity distribution, and here this effect is shown for all the simulations.

Excessive heating can lead to thinner ice shells, which are otherwise less convective.

To understand this, one can simply refer to the Rayleigh number which is proportional to the heat flux, but also to the fourth (or third6 ) power of the ice shell thickness. From the current results, one can infer that increasing the heat flux is more likely to eventually result in weaker convection. This may seem counter intuitive if one considers a fixed ice shell thickness and studies the effect of the flux alone, which would result in a false increase in convection. This is one of the reasons why the current approach of determining the thermally consistent equilibrium thickness is important to studying the ice shells and building interior models of hydrospheres.

The geological evidence hints that the mechanical lithosphere is only a few kilometers thick. Classical models were not able to yield such values for larger ice shells (e.g. [START_REF] Showman | Numerical simulations of convection in europa's ice shell: Implications for surface features[END_REF]) however in the presence of a porous brittle layer, mechanical lithospheres can be as thin as 4(km), even for large ice shells. Additionally, as can be deduced from figure 5.7, the lithosphere depends heavily on the grain size, which itself depends on the stress. This dependency was not coupled here for simplicity (and to avoid more free parameters), but also because tidal stress are not considered here, which would otherwise further decrease the grain size.

While it cannot be constrained with high precision, a thin lithosphere is expected near the equator, especially in chaos areas that are highly deformed. These area are highly fractured and hence highly likely to be porous. However thicker lithospheres are expected at the poles where heating is higher causing the ice shell to be less convective. The observations correlate well with the results presented in figure 5.7 if one compares a thin porous lithosphere near the equator which may be thinner than one induced by more significant heating at the poles. This could be the first step to understand the diverse topography of Europa's surface. To this end, the next section will introduce some early efforts to deduce the surface topography of the current modeling of Europa's ice shell.

Topographical implications

Numerical method for computing the surface topography

Several studies in the literature have attempted to explain the surface topography of Europa. Some methods employ using a slip box, and inferring a posteriori the topographical variation from the normal stress normalized by the hydrostatic one (i.e. z T opo = τzz ∆ρ g or z T opo = τzz ρ g ), for instance used by Showman and Han [START_REF] Showman | Numerical simulations of convection in europa's ice shell: Implications for surface features[END_REF]. This method is based on Zhong and Gurnis' assumption of no traction [START_REF] Zhong | Controls on trench topography from dynamic models of subducted slabs[END_REF]. Another approach is to assume space is a medium, with a low viscosity and density that occupies the top part of the cartesian slip box. This method is often referred to as sticky space, and its application yielded interesting results by Howell and Pappalardo [START_REF] Howell | Band Formation and Ocean-Surface Interaction on Europa and Ganymede[END_REF]. However some dissipation in the sticky space cannot be ruled out. Additionally, an incompressible space may be slightly problematic as it could potentially create artificial compression. This effect is undesired in the current application were the stresses affect the porosity. Furthermore, the ice is expected to deform freely in space, rather than in an incompressible medium of a finite viscosity (often chosen a bit too high for numerical purposes).

A theoretically consistent method to compute the topographical variations is to descretize the domain in a Lagrangian reference frame. This essentially means that the frame of reference (numerically the elements) will follow the material motion (cf. figure 5.8). However this causes another problem, in the highly convective part of the domain, where the mesh would highly deform causing numerical problems due to potential negative volumes. A good compromise is the Arbitrary Lagrangian Eulerian method (ALE) which is highly used fluid-structure interaction problems. It combines the advantages of both methods and removes the inconveniences of both if properly used. This method relies on descretizing the domain to be tracked in a Lagrangian reference frame, and the highly deforming one in an Eulerian domain. The transition between the two can be smooth.

For the current application, the surface of the shell is ought to be fully Lagrangian, and the convective layer fully Eulerian. This implies that a transition between the two should take place in the lithosphere and the upper part of the shell. Therefore the current problem can be simplified to a predetermined transition from the Lagrangian to the Eulerian reference frame, as shown in figure 5.8. However, it is important to note that the change of the reference frame affects directly the global time. The latter is influenced by the reference frame, because not in all configurations does the reference frame (numerically, the mesh) follow the material transport (cf. figure 5.8). This means that the time dependence of a field requires tracking through time and space, given that the latter also changes with time relative to the transported material. This could be further clarified mathematically through the classical chain rule from calculus. The global derivative of field/function can be written as follows, in its general form.

D Dt = ∂ ∂t + ∂ ∂x ∂x ∂t + ∂ ∂y ∂y ∂t + ∂ ∂z ∂z ∂t (5.25)
Here it is very important to note that ∂x is the material change in position with respect to the reference point (i.e. mesh), in the x direction. Simlarly, this is applied to all spatial direction in the system. In a purely Lagrangian approach this term is zero since the material is always transported with its mesh, therefore the change in its position with respect to its moving reference is always zero.

Noting here that ∂x ∂t is in fact a velocity. In the Eulerian approach, since the mesh does not move at all with time, this velocity ∂x ∂t is actually the material velocity v. In any arbitrary approach, this advective term is the relative velocity of the material v with the mesh v m7 ; defined as follows: v r = ∂ x ∂t = v -v m . Therefore, in its general form, the global derivative is given in equation 5. [START_REF] Davidson | Ripmeester, Xenon-129 nmr and the thermodynamic parameters of xenon hydrate[END_REF].

D Dt = ∂ ∂t local term + ∂ ∂x v x,r + ∂ ∂y v y,r + ∂ ∂z v z,r
advective term (5.26) Alternatively written in the compact in form:

D Dt = ∂ ∂t local term + ( v r • ∇)
advective term

(5.27)

Therefore the heat and brittle mechanics transport equations can be re-written in their general form as follows:

ρc p ∂T ∂t + ρc p v r • ∇T = ∇ • (k∇T ) -ρ ṙ h f + Ξ (5.28) ∂d v ∂t + v r • ∇d v = min 1, τ t τ 1 , τ c τ 2 -qτ 1 , τ c τ 2 -1 1 t d d v + 1 t h (5.29)

An example of a convection-driven topography

The surface topography of Europa's ice shell suggests a thin mechanical lithosphere. For this reason, one can test here the case with the thinnest lithosphere to verify that one can recover some surface features and the amplitude of the topographical variations. It should be noted that convection alone cannot explain all the morphological features of Europa. Important aspects such as tidal stresses contribute a great deal to the surface morphology. In the previous simulations (d g = 1(mm), t P or = 1, 2(km), Ξ max = 2(µW/m 3 ), Q = 5(mW/m 2 )), a very thin lithosphere appeared for near present day heating on Europa which lead to an equilibrium thickness of 70(km), while the lithosphere was only 4 -5(km) deep. The computed solution is therefore imported and fed to the new code with the ALE approach to simulate for another 1(M yr) but with a lagrangian topography as per the above explained ALE method. The thermal distribution of the computational domain is shown in figure 5.9.

Figure 5.9: Thermal distribution using the ALE approach with d g = 1(mm), t P or = 2(km), Q = 5(mW/m 2 ) and Ξ max = 2 × 10 -6 (W/m 3 ). The inset picture is a photograph of Thynia Linea, from the Galileo mission [START_REF] Prockter | Morphology of europan bands at high resolution: A mid-ocean ridge-type rift mechanism[END_REF].

Changes in the surface topography are quite visible, first and foremost in the formation of a double ridge which appears to be qualitatively in agreement with some observed on Europa. These results could explain the origin and formation of these features. The latter however cannot be fully rendered herein, due to the absence of the tidal stresses, which occur at a timescale of days. This simulated field in figure 5.9 could induce a predominant folding mechanism for tidal stresses to further refine those feature which are expected to become thinner (and possibly taller) upon successive compression and tension. Howell and Pappalardo [START_REF] Howell | Band Formation and Ocean-Surface Interaction on Europa and Ganymede[END_REF] had previously simulated band topography by employing outward strain as boundary conditions that help induce the upwelling and band formation. Furthermore, in figure 5.9 one can also notice other small amplitude undulations in the topography, which also may have originated from downwellings of cold dense ice from the lithosphere. Besserer et al. have predicted convection driven long wave oscillations in the topography due to a superficial porous layer on Enceladus [START_REF] Besserer | Convection-driven compaction as a possible origin of enceladus's long wavelength topography[END_REF]. The current simulations open the question also to the possibility of shorter wavelength topographical variations. The latter can play a key role in determining the folding morphology of secondary small amplitude ridges and bands.

To explain more these phenomena, one has to eventually simulate the tidal stresses at their respective rates. Such simulations must be run for longer times and would require employing a visco-elastic rheology, preferably with the Andrade constitutive equation. Another potential solution would be to circumvent the short timescales by applying a Fourrier transform to tidal stresses and employing such terms, not only as heating sources, but also in the momentum and the brittle mechanics transport equations. These evidently requires reflection and theoretical development.

Partial conclusion

This chapter aimed to provide a thermally consistent estimation of the outer ice shell thickness. This is essential to build interior models of hydrosphere as was explained in the previous chapter. While this method could be applied to all icy moons, upon constraining their heat budget, in this chapter the main focus was shifted to Europa's ice shell due to excessive recent interest in preparations for the Europa Clipper mission.

A range of different local heat budgets was considered to account for differences in the tidal dissipation across latitudes, as well as different instances in Europa's thermo-orbital cycle. An equilibrium thickness was obtained for every case by simulating at the thickness where the heat budget is enough to sustain a temperature at the bottom of the ice shell equal to that of water, and hence the ocean. The melting conditions of water depend on the pressure hence the depth, and this has been accounted for in the current model. Furthermore, different grain sizes were considered which ultimately affects the rheology, in addition to three different porous brittle layer thicknesses.

The effect of a thin porous brittle layer was observed to be very important in reducing the equilibrium thickness, by increasing the thermal gradients in the said-layer. Smaller stagnant lid lithospheres were obtained with only 1 or 2(km) of a porous brittle layer. These results correlate well with the active and diverse topography of Europa that suggests a very thin lithosphere. This small chapter was then concluded by foreshadowing some perspectives and current work in progress to attempt to explain some surface features of Europa's ice shell. Much more work is needed to explain the plethora of phenomena occurring on this intriguing icy moon and its potential habitability, which explains the large budgets dedicated for its related space missions. The current work on the porous brittle layer approach has only scratched the surface.

Conclusion and perspectives

Summary and conclusions

Water and other essential requirements for life may exist in large icy moons, which motivates this study to investigate the geodynamic conditions of these habitats. Examples of such habitats in the solar system include the moons Europa, Enceladus, Ganymede, Titan and Callisto. Due to different thermodynamics conditions, these moons can be split into two classes. One has an ocean in direct contact with a silicate rich mantle (e.g. Europa and Enceladus), and the other has an ocean without direct contact (e.g. Ganymede, Titan and Callisto). The direct contact with a silicate rich mantle allows easier and more accessible chemical exchange with the ocean. This could enhance the habitability of the ocean by introducing more complex molecules to the water, which could be building blocks for life to emerge. For oceans without a direct contact with a silicate mantle, a high pressure ice layer could form at the bottom of the ocean due to excessive hydrostatic pressures. This is theorized for moons hosting very large quantities of water, such as Ganymede and Titan. Therefore this high pressure ice mantle is thought to be a barrier to the exchange processes with the silicate-rich mantle and the ocean.

However recent studies [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF] showed that a transport of material could be possible through the high pressure ice mantle by means of thermal plumes. This motivated the current study to further investigate this plume dominated convection. In order to do so, it was essential to introduce how interior models of these moons were obtained to infer the presence of liquid water and high pressure ice mantles. These models rely heavily on the moment of inertia as well as the thermodynamics of water, to resolve the states in the hydrosphere. Despite it being a solid, ice upon stresses can deform at low rates. The rheology of ice was therefore reviewed with its uncertainties and scarce characterization due to experimental limitations. Given that ice deforms, studies show that geodynamic convection is possible in ice I h as well as in high pressure ice mantles. Some of these studies provided the basis for our study and have been summarized in chapter 1 with their challenges and their interesting results. The first chapter was concluded with a review on clathrate hydrates (a crystalline water-based material) which may form within ice in the presence of some molecules and at certain thermodynamic conditions. Clathrate hydrates have different properties than high pressure ice, which may improve the transport of complex molecules to the ocean. This possibility was not much investigated and documented in the literature, therefore in this study the transport of clathrates will be considered along side thermal convection.

The convection problem in high pressure mantles was first tackled from the analogical experiments approach. This is a classical method that was long used to explain complex geological settings. The system is reduced to a similar one in a controlled laboratory environment to understand and study the phenomenon at hand. In order to properly model this large geodynamic setting, a consistent scaling approach was derived based on dimensional analysis. This theoretical framework allows one to transform the large space scales (ten and hundreds of kilometers) and the long time scale (millions of year), to practical and measurable values of distances (in cm) and time scales (seconds and minutes). This transformation required exchanging the ice with a material that deforms faster in order to obtain measurable velocities. Therefore the choice of the modeling material was of great importance. First, phase change materials were investigated with paraffin waxes (among others) for their capabilities of phase change. It is ideal to have partial phase change, similar to that experienced in convecting ices. An extensive thermal and rheological characterization of the phase change was performed in this study. While the former is quite classical, the rheology of phase change material have not received much attention in the literature. Interestingly, it was observed that a hydrodynamic instability appears in rheometric flows, without inertial contribution, in the presence of phase change. This novel hydrodynamic instability was first discovered in the context of this study and was systematically characterized. It was also published in the Journal of Fluid Mechanics under the title Chaos in a Melting Pot.

While the rheology of phase change materials was interesting to investigate, it was shown however in chapter 2 that paraffin waxes are not appropriate modeling materials for the current application. Their solid state rheology exhibits hysteresis, thixotropy and brittle collapse, in addition to the presence of a high yield stress. This is much in opposition to the ices which can still convect at lower stresses due to diffusion creep. Furthermore, high pressure ice mantles are relatively warm and therefore are not expected to exhibit brittle behavior. Owing to all the differences in the rheological behavior between paraffin waxes and high pressure ices, the analogy was not possible because even fully molten paraffin was not buoyant enough to exceed the high yield stress of paraffin and convect upwards. Consequently a different class of fluids was investigated, one that does not have a yield stress, namely Newtonian fluids. The reason behind investigating Newtonian fluids relates to modeling the diffusion creep mechanisms, which appears to be the dominant rheological mechanism in convection of ice I h at warm temperatures. Diffusion creep relates linearly the stress with the strain rate, much like the viscosity in Newtonian fluids. Assuming a similar dominance of diffusion creep for the rheology of high pressure ices, the choice was adopted. However this caused a setback on the phase change capabilities of the analogical experiments. Once the working fluid was chosen, the scaling was resumed using the physical properties of the said-fluid. An experimental setup was designed, constructed and instrumented within the context of this study. The main flow measurement techniques that were used were the Particle Image Velocimetry and the Laser Induced Fluorescence.

In chapter 3, the experimental results were exhibited first from a descriptive manner. Flow fields were acquired for a long time to capture the long wave time-dependence of the flow behavior. Instead of exhibiting endless amounts of raw data, a more synthetic and quantitative approach adopted by means of various statistical methods. For instance correlation distances and correlation times were used to infer conclusions onto the anisotropy of the plume dominated convection with respect to the Rayleigh number. The anisotropy at such Rayleigh numbers is plumed dominated, which was demonstrated using the Singular Value Decomposition. This method allowed to restructure the whole long timeand-space-dependent flow fields in terms of singular values (∼ eigenvalues), which showed that the largest eigenvalues, pertaining to the most energetic modes, were actually due to thermal plumes. Furthermore, from the derived dimensional analysis, the flow fields were extrapolated to their equivalent geodynamic scales pertinent to high pressure ice mantles. The extrapolation fell into relevant velocity scales for high pressure ice convection. This chapter also included some efforts to model clathrate convection. Due to experimental limitations and molecular diffusion, experimental modeling was only restricted to cases with initially dense clathrate-like layers that can get more buoyant upon heating. Initially buoyant layers of clathrate-like fluids could not be modeled without perturbation of the flow, given that the start of the experiment cannot be controlled. Qualitative conclusions were inferred from these attempts, but no scaling was performed on these experiments. This issue was later on revisited numerically, where Rayleigh-Taylor-like problems could be better controlled.

The analogical experiments ought to be compared with a model directly applied on high pressure ice. For this reason, a numerical model based on the two phase porous approach was developed, in the finite element method, within the context of this study. The aim of this development was to simulate cases of high pressure ice mantles and compare them with the scaled analogical experiments. First, interior structure models are built for the hydrosphere of Titan, based on the thermodynamics of water. Depending on the heat budget, adiabatic radial profiles could intersect high pressure ices on the water phase diagram and hence there will be HP ice mantles. A range of plausible solutions is considered, namely high pressure ice mantles ranging from 49 to 250(km) which would either exist in the form of ice VI, or ices VI-V, and even possibly ices VI-V-III depending on the temperature and pressure conditions which were computed for each case. The convection is studied for cases of equal dimensionless parameters with the analogical experiments. Subsequently, the numerical simulations are compared with the scaled analogical experiments. This chapter also included a systematic characterization of the time scales of clathrate transports with respect to their physical properties, namely the density, viscosity, thickness, and initial shape. This showed that clathrates can be transported in relatively short time scales.

The interior models of the hydrosphere require constraints to compute an adiabatic radial profile. The standard approach is to consider/assume an ice shell and ocean interface temperature. By assigning the interface temperature, hence the melting point, one can constrain the thickness of the ice shell because the melting curve depends on the pressure, hence the depth. The adiabatic profile could subsequently be computed if the outer surface temperature is known. In chapter 5, this basic approach is substituted by a more thermally coherent one. No assumptions were made onto the ice shell thickness. For every simulated cases, only the heat budget was considered comprising of volumetric tidal heating and a heat flux from the mantle. The convection problem is solved for an ice shell thickness, the bottom of which reaches the pressure-dependent melting point of ice. If the initial mantle size is small, the heat budget (due to tidal heating) won't be sufficient to sustain an ocean interface, and the ice shell would cool down. In such a case, the simulation is discarded and a larger shell is considered until the equilibrium thickness is reached and the ice-ocean interface appears. The focus of these simulations was shifted to Europa, in preparation for the Europa Clipper mission. The same method could however be applied to all icy moons. Several heat budgets were considered to account for the thermal changes Europa experiences (with latitude and time). Three poly-crystalline ice grain sizes were considered, and three thin porous brittle layer thicknesses were also considered. The effect of a thin porous brittle layer was observed to be very important in reducing the equilibrium thickness, by increasing the thermal gradients in the said-layer. Smaller stagnant lid lithospheres were obtained with only 1 or 2(km) of a porous brittle layer. These results correlate well with the active and diverse topography of Europa that suggests a very thin lithosphere. The chapter was concluded with some future perspectives and implications on the topography which were computed using the Arbitrary Lagrangian Eulerian method. While a passive attitude prefers to wait for more evidence from the Europa Clipper mission, a more responsible one would call out for much more work in preparation for the Europa Clipper mission. Identifying where interesting undersurface phenomena could occur may give the Europa Clipper team more clues on where to look for more supporting and intriguing evidence.

Perspectives

This manuscript has summarized efforts to model convection in high pressure ice mantles as well as some modeling of outer ice shells. However much more work is needed to obtain a more complete picture of icy worlds. Herein, some perspectives and reflections will be discussed on how could the modeling be improved to further understand and characterize geodynamic process occuring in icy worlds. This seems like an important step for future space missions that facilitate the search for habitable environments.

To perform analogical experiments, one cannot emphasize enough the importance of the choice of the working fluid/material. Exhaustive efforts were spent onto finding and characterizing a suitable phase change material, that would be an analog for high pressure ice. Not all of these efforts were mentioned in this manuscript, and three different setups were built to test a combination of phase change materials such as paraffins and gelatins among others. While a phase change material without a yield stress was not yet found, the search should not necessarily stop. It should be noted however that this search is quite risky for a PhD project, especially since the setup dimensions highly depend on the rheology of the fluid. Therefore, neither experiments nor even the construction of the setup can begin prior to the choice of the fluid/material. For the current particular case, one and half years were spent on these efforts prior to converting to Newtonian fluids. Consequently the time scales for this search should be planned ahead along with some risk assessment.

On the instrumental and measurement side, thermographic measurement techniques would have been very useful to observe thermal plumes, such as thermochromic liquid crystals and differential interferometry successfully implemented by the team of Davaille [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high prandtl number[END_REF]. Furthermore, three dimensional PIV could have been very useful to statistically study the appearance and distribution of thermal plumes in the plane orthogonal to the gravity direction. Finally on the instrumental perspectives, a larger observation field for the in-situ polarized microscopy on the rheometer test section would have also yielded interesting insight onto the rheology of the phase change and the inertia-free instability that was first reported in this study. This evidently requires very precise apparati that would preserve the heating and geometric precision in the rheometer, but also allows for a wider field of view.

A possibly interesting aspect to investigate is the effect of heterogeneous topography and heating of the bottom surface on the statistical behavior of plume dominated convections. This is highly relevant for geological settings which are rarely ever homogeneous, especially in low gravity objects such as moons. The results of these studies could infer the degree of heterogeneity in the mantle below, and thus infer conclusions onto the dynamics of the rocky mantle and whether magmatism has a significant effect on high pressure ice mantles.

On the numerical side, more interesting aspects could be tested on the high pressure ice mantles. This study focused on convection which occurs at very large time scales. However, upon working on certain convection configurations, one can notice that exchange processes could occur at a much faster pace. For instance, within a partially molten plume along all the depth of the mantle, liquid water can percolate within the porous ice (cf. figure 6.1). Considering tidal flexing the pores would be the first to compress and extend. When compressed, the liquid water would be pumped to the ocean, the turbulence of which would mix quite efficiently. Later on when the pores would extend, a negative pressure will cause a suction of fresh water from the ocean which would allow more water to mix with rich material content from the mantle and arrive to the ocean much faster. Tides occur in the order of days, and investigating this possibility, especially for the past and current state of Titan would open more avenues onto the habitability of Titan. Investigating tidal activity is also very important to understand geodynamics of Europa's ice shell, not only thermally but also mechanically. A good example is the wax experiments done by the team of Manga [START_REF] Manga | Formation of bands and ridges on europa by cyclic deformation: Insights from analogue wax experiments[END_REF] where tidal flexing was modeled experimentally. Having studied the complex rheology of paraffin wax, one cannot but appreciate how the brittle behavior of paraffin was put to good use in the upper part of the shell which helped explain the appearance of bands on Europa. Near-future plans are set to simulate tides on Europa's ice shell using the Andrade constitutive equation. This, along with the brittle mechanics and the Arbitrary Lagrangian Eulerian approach could help better explain the surface morphology of Europa, and infer its subsurface activity, which is not readily available in opaque wax experiments. It would also be very interesting to test the effect of each parameter onto the surface topography, this could also help constrain the physical properties of ice. Such important insight may possibly help the Europa Clipper team focus on specific areas during the mission, where a more prominent activity could bolster the claim for its habitability (e.g. flybys near an area where geysers are most likely to occur, and thus perform direct measurements). To this end, plans for future models are set to include salt migration and their influence on the phase change of water.

∂T ∂t

+ v • ∇T = ∇ 2 T (6.3)

∂ψ ∂t + v • ∇ψ = 0 (6.4)
with the thermal and compositional Rayleigh numbers are given by: Ra vk = αρg∆T h 3 κη r Rb vk = ∆ρgh 3 κη r (6.5)

For the first three cases representing the Rayleigh-Taylor problem in an enclosure, Rb is set equal to one, and Ra to zero. The validation of the first isovicous case is shown in figure 6.3. A generally good global agreement is shown between the marker chain method employed in the benchmark and the full finite element approach in this study. A marker chain method consists of tracking the interface between the two fluids with a very refined chain. The numerical method herein is the classical finite element method. At the start of the simulation, given the predefined geometric perturbation, the buoyant black fluid advects upwards in a plume like behavior. This is very common in Rayleigh-Taylor instabilities, where the density gradients at the interface are typically high enough to advect vigourously the fluids in a plume rather than recirculating in a convection cell. non dimensional times t = 500; 1000; 1500; 2000 [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The middle row represents the corresponding results from the finite element method, where the black fluid is the buoyant one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].

The quantitative validation of this benchmark is done with respect to two variables namely V rms the root mean square of the velocity, and e the entrainment factor. The root mean square of the velocity is simply defined as follows: . The top row represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, at non dimensional times t = 500; 1000; 1500; 2000 [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The middle row represents the corresponding results from the finite element method, where the black fluid is the buoyant one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].

V rms = 1 V V || v|| 2 dV (6.
Case 3 results are shown in figure 6.4, where buyouant fluid is a hundred times less viscous than the denser one. One can therefore notice how the higher the viscosity ratio, the thinner the filaments become, and the more vigorous the transient response becomes. Additionally, the low viscosity fluid tends to advect in a buble-like shape. Higher but earlier peaks are observed on the root mean square of the velocity as the ratio increases. In parallel, the entrainment e increases more abruptly with the increase of the viscosity ratio, a behavior quite consistent with the V rms data.

Excessive refinements are used here with at least 200,000 adaptive nodes. These results are mesh independent with a high resolution showing very detailed interactions between the two immiscible fluids. In all three cases there is a good agreement on the V rms response with time. Additionally, the entrainement values evolve coherently with the benchmark in time. Quantitative relative errors on V rms are quite below 2%, and the relative ones on e do not exceed 10%. . The top row represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, at non dimensional times t = 500; 1000; 1500; 2000 [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The middle row represents the corresponding results from the finite element method, where the black fluid is the buoyant one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].

The fourth case to be validated is shown schematically in figure 6.2 (b), where the aspect ratio is 1:2. The top and bottom boundaries are slip walls and the side ones are symmetry planes. The computational domain is a rectangular setup containing two fluids of the same viscosity. The bottom fluid here is denser, and is set, without a geometric perturbation on the bottom of the setup at a thickness of d b = 0.02. The fluids are stable and at rest, without thermal thermal convection which begins at the start of the simulation. The governing equations solved for the first three cases of the Rayleigh taylor instability are the mass, momentum conservation, thermal transport in addition to multi-component transport, in equations 6.1, 6.2, 6.3 and 6.4, respectively.

In the fourth case he thermal and compositional Rayleigh numbers are chosen respectively as follows: Ra vk = 3 × 10 5 and Rb vk = 4.5 × 10 5 . The results are shown in figure 6.6 and compared to the benchmark data. One can notice that there is a general agreement in the marker distribution and the V rms at the start of the simulation until t = 0.01. The consistency between the several authors among themselves, as well as with the current study. Lesser agreement is found in the entrainement factor, which could be to due to the post-processing numerical integration inside the very thin filament as shown at t = 0.01. Beyond that point, the results are divergent, the authors don't obtain the same results. Unfortunately, the authors' most accurate solvers diverged, namely PvK and CND, both using markerchains diverged due to an exponential growth in the need to refine the markerchain. The same need also applies to other methods, which has lead the current solver to crash as well. The solvers who did not refine well, were able to carry on their simulations however without unanimous results where beyond a certain point, each solver gives a different value for V rms and e. The top row left represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, at non dimensional times t = 0.01 [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The top row right represents the corresponding results from the finite element method, where the black fluid is the denser one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].The purple circular markers show where the different solvers diverged and stopped.

Given that the rheology of ice is thermodependent (see section 1.3), its thermodependence can influence the flow in a non-negligible manner. To this end, a fifth benchmark comprising a thermodependent rheology will be validated next. The following case study is given by Blakenbach et al. [START_REF] Blankenbach | A benchmark comparison for mantle convection codes[END_REF] comparison benchmark, where a square computational domain is heated from the bottom engendering a Rayleigh number of 10 4 . The viscosity follows the following law:

η b = η 0 b exp - bT ∆T (6.8)
where b = log(1000) ≈ 6.907755279 the activation energy for the rheology thermodependency.

The temperature distribution is shown comparatively, and with good agreement the benchmark and the current study in figure 6.7. Figure 6.7: Thermal convection with a thermodepedent viscosity [START_REF] Blankenbach | A benchmark comparison for mantle convection codes[END_REF]. Twenty equidistant isotherms are shown in both pictures. On the left the benchmark by [START_REF] Blankenbach | A benchmark comparison for mantle convection codes[END_REF] is shown, and on the right is the validation by the current numerical method.

Additionally the case can be validated quantitatively with several variables. Among the many documented ones, the current benchmark was chosen to be validated on the basis of two variables namely the root mean square of the velocity V rms and the Nusselt number N u. The former was previously used in the Van Keken et al. benchmarks and was defined in equation 6.6. The latter is defined as follows. Best estimates of the benchmark's Nusselt number and velocity root mean square are the following, respectively: N u b = 10.0660 ± 0.00020 and V rms b = 480.4334 ± 0.1. The current numerical approach lead to N u c = 10.0332 and V rmsc = 478.882. Therefore, the relative errors are 0.33% and 0.32% on the Nusselt number and the velocity root mean square, respectively. Des études récentes [START_REF] Choblet | Heat transport in the high-pressure ice mantle of large icy moons[END_REF][START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF] suggèrent que la convection pourrait se produire couramment dans les manteaux de glace à haute pression, transportant des substances volatiles du manteau rocheux vers l'océan. Ces travaux nous ont encouragés à analyser plus finement la convection dans les manteaux de glace à haute pression. Pour cette raison, il était important de commencer par une étude bibliographique de la rhéologie de la glace, dans le premier chapitre, rhéologie qui est la clé d'une meilleure compréhension des mouvements convectifs dans la glace. Cette partie a été suivie ensuite d'une revue rapide de la convection dans la glace et les manteaux de glace à haute pression.

Motivé par les études récentes mentionnées ci-dessus, l'objectif de cette thèse est d'approfondir l'étude de la convection et du transport de matière dans les manteaux de glace à haute pression. Cette étude abordera d'abord le problème à partir d'une approche d'expériences par similitude d'échelle. Cette technique est classique et conduit à des résultats intéressants qui expliquent divers processus géodynamiques, comme les travaux réalisés par Davaille et al. [START_REF] Davaille | Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle[END_REF][START_REF] Davaille | Onset of thermal convection in fluids with temperaturedependent viscosity: Application to the oceanic mantle[END_REF]. Cependant, très peu d'études (voire aucune) ont tenté de modéliser la convection dans les manteaux de glace à haute pression avec des expériences par similitude d'échelle, d'où l'intérêt de cette étude. Pour établir la similitude physique, le cadre géologique sera transformé en un dispositif expérimental dans un laboratoire, ce qui nécessite une mise à l'échelle et un changement de matériaux approprié. C'est pourquoi plusieurs matériau seront caractérisés afin de choisir le plus approprié pour modéliser ce problème. Ceci sera suivi par la conception et la construction d'un dispositif expérimental qui permettra de mesurer les champs d'écoulement de vitesse en utilisant la technique de 'Particle Image Velocimetry'. L'approche adoptée dans cette étude est d'utiliser l'analyse de similitude pour extrapoler les données expérimentales et les comparer à celles d'un modèle numérique complexe appliqué sur les manteaux de glace à haute pression. Cette étude examinera également d'autres aspects du transport qui n'ont pas reçu beaucoup d'attention. Plus particulièrement, lorsque certaines molécules existent avec de l'eau à certaines conditions de pression et de température, elles peuvent former des hydrates de clathrate dont l'effet a été examiné dans cette partie. Cette structure cristalline se comporte différemment de la glace. Cette étude, en particulier dans le modèle numérique, considérera les clathrates et discutera de leurs effets sur le transport de diverses molécules vers l'océan.

Chapitre 2: Méthodes expérimentales

Le deuxième chapitre introduit les bases théoriques de la modélisation actuelle en utilisant l'approche des expériences par similitude d'échelle. La méthode s'appuie sur l'analyse dimensionnelle, à savoir le théorème de Pi, pour réduire les grandes échelles géologiques de temps et d'espace. Le plus souvent, cette approche nécessite un changement de matériau, ce qui est également nécessaire dans cette étude. Pour cela, plusieurs fluides modèles ont été considérés pour la modélisation. Les matériaux à changement de phase ont d'abord été étudiés par caractérisation thermique et rhéologique, pour éventuellement modéliser également le changement de phase dans la convection. Alors que la caractérisation thermique est classique pour les matériaux à changement de phase, les mesures rhéologiques pendant la transition de phase sont assez rares dans la littérature. Bizarrement, les écoulements rhéométriques à très faible nombre de Reynolds pourraient être instables et même chaotiques pendant le changement de phase. Cette instabilité a été découverte pour la première fois dans le cadre de cette étude et a été largement étudiée à l'aide de protocoles de mesure rigoureux et d'observations microscopiques in situ. La cause de cette instabilité a également été analysée sur la base d'un modèle numérique simplifié qui correspond bien aux observations expérimentales. Ce travail a été publié dans le 'Journal of Fluid Mechanics' [START_REF] Himo | Chaos in a melting pot[END_REF].

Même si la rhéologie des matériaux à changement de phase (plus spécifiquement la paraffine) était intéressante à étudier, il a été montré dans ce chapitre pourquoi ce n'est pas un bon fluide de modélisation pour ce problème. Cela a évidemment causé une difficulté quant aux capacités de changement de phase du modèle. Par la suite, un fluide newtonien a été caractérisé et choisi pour sa rhéologie adaptée pour la modélisation et la commodité du contrôle de la rhéologie au moyen de la concentration en polymère. Ce fluide newtonien a une transparence acceptable qui est essentielle pour les techniques de mesure optique. Pour réaliser des expériences, un dispositif expérimental adapté a été entièrement dimensionné et réalisé dans le cadre de cette étude. Les détails scientifiques et techniques concernant la construction du dispositif expérimental ont été présentés dans la section 2.3. Les principales techniques de mesure utilisées dans cette étude sont la 'Particle Image Velocimetry' et la 'Laser Induced Fluorescence'. Les résultats expérimentaux seront présentés dans le chapitre suivant qui comprendra deux sections principales. La première résume les expériences de modélisation de la convection dans les manteaux de glace à haute pression. La seconde résumera les efforts de modélisation de la convection glaciaire à haute pression en présence d'hydrates de clathrate.

Chapitre 3: Résultats expérimentaux

Les résultats expérimentaux sur le modèle de convection par similitude d'échelle ont été présentés dans le troisième chapitre. La première partie de ce chapitre est concentrée principalement sur l'étude de la convection monophasique avec une caractérisation de l'écoulement par PIV, pour des nombres de Rayleigh pertinents pour le manteau glaciaire à haute pression de Titan. Des nombres de Rayleigh plus grands (pertinents pour Ganymède par exemple) ont engendré des nombres de Reynolds supérieurs à un, et donc de telles mesures n'ont pas été pleinement exploitées pour éviter une grande contribution inertielle. Les écoulements ont été analysés progressivement en partant d'une manière descriptive générale vers une approche statistique plus détaillée. Les temps et les distances de corrélation ont été principalement utilisés pour obtenir des conclusions sur l'anisotropie de la convection dominée par des panaches en fonction du nombre de Rayleigh. Les panaches thermiques sont dépendants du temps et non pas périodiques. Donc pour réaliser des statistiques fiables, les mesures devaient être effectuées pendant une longue durée d'acquisition. Ceci complique naturellement la description de la totalité de l'ecoulement. Pour cela, la méthode de 'Singular Value Decomposition' a été appliquée sur les champs d'écoulement mesurés, pour reconstruire les données en termes de valeurs singulières (ou valeurs propres). Cela a permi d'identifier les modes les plus énergétiques contribuant au transport, qui se trouvent être dominés par les panaches pour ce problème de convection.

En utilisant l'analyse dimensionnelle développée dans le deuxième chapitre, les résultats mesurés dans le troisième chapitre ont été utilisés pour extrapoler des solutions équivalentes planétaires. Les champs d'écoulement extrapolés semblent se situer dans des plages de vitesse raisonnables pour les convections planétaires publiées dans la littérature. La comparaison entre les expériences par similitude d'échelle et les simulations de convection planétaire se fera plus systématiquement dans le prochain chapitre qui s'intéressera aux développements numériques sur les problèmes de convection glaciaire haute pression avec chauffage de marée et changement de phase (solide-liquide et solide-solide) en prenant en compte la thermodynamique de l'eau pure.

Dans une deuxième partie de ce chapitre, des tentatives de modélisation du transport du clathrate par convection thermique à multicomposants ont été présentées. La modélisation était imparfaite principalement en raison de la diffusion moléculaire entre les deux fluides de modélisation disponibles. De plus, la gamme de paramètres testés était contrainte par des limitations expérimentales, notamment l'incapacité d'effectuer des expériences avec des couches moins denses initiales au fond du domaine. Étant donné que la densité des glaces à haute pression est considérablement élevée, de nombreuses compositions de clathrate devraient être plus flottantes que la glace HP. De ce fait, les limitations expérimentales actuelles limitent la validité de ces résultats uniquement aux clathrates plus lourds avec des conductivités plus faibles. Par conséquent, aucune mise à l'échelle ne sera dérivée des données de la deuxième section de ce chapitre, seul le comportement qualitatif est présenté. Une approche plus systématique sera envisagée dans le prochain chapitre, où les paramètres peuvent être contrôlés numériquement pour évaluer leur influence sur les échelles de temps de transport des molécules biologiquement intéressantes vers l'océan.

Chapitre 4: Modélisation numérique des manteaux de glace à haute pression

Le quatrième chapitre avait pour objectif principal de modéliser numériquement la convection dans les manteaux de glace à haute pression et de comparer les résultats avec ceux extrapolés expérimentalement. Pour cela une approche poreuse biphasique a été dérivée dans ce chapitre, inspirée des études précédentes de Kalousova et al. [START_REF] Kalousová | Two-phase convection in Ganymede's high-pressure ice layer -Implications for its geological evolution[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF][START_REF] Souček | Water transport in planetary ice shells by two-phase flow -a parametric study[END_REF]. Dans la première section, les hypothèses physiques ont d'abord été énoncées, puis elles ont été traduites en équations mathématiques. Le principe de base de cette méthode est de permettre l'existence d'une fonte partielle dans les pores, où l'eau liquide peut se percoler à l'intérieur des pores en glace solide à haute pression. Ceci a été suivi d'une section pour expliquer la méthode numérique mise en oeuvre pour résoudre les équations. Un code éléments finis a été développé et validé dans le cadre de cette étude.

Dans la section 4.3, des modèles de structure intérieure ont été construits pour l' hydrosphère de Titan, basés sur la thermodynamique de l'eau pure. Selon le bilan thermique, les profils radiaux adiabatiques pourraient croiser des zones de glaces à haute pression sur le diagramme de phase de l'eau ce qui implique la présence de manteaux de glace HP. Le problème est faiblement contraint, et donc de multiples solutions sont envisageables, à savoir des manteaux de glace à haute pression allant de 49 à 250(km) qui existeraient soit sous forme de glace VI, soit de glaces VI-V, et même éventuellement de glaces VI-V-III en fonction des conditions de température et de pression qui ont été calculées pour chaque cas. Les modèles de structure intérieure de l'hydrosphère sont conformes aux études précédentes [START_REF] Castillo-Rogez | Evolution of titan's rocky core constrained by cassini observations[END_REF][START_REF] Fortes | Titan's internal structure and the evolutionary consequences[END_REF][START_REF] Kalousová | Dynamics of titan's high-pressure ice layer[END_REF]. Plusieurs scénarios ont été considérés dans ce chapitre pour montrer leurs différences et déduire le passé et le présent des manteaux de glace à haute pression de Titan. À la suite d'études de cas, les résultats de mise à l'échelle du modèle expérimental du chapitre précédent ont été comparés à des simulations numériques sur Titan, qui incluaient divers effets complexes tels que le réchauffement des marées et le changement de phase (solideliquide et solide-solide). Un bon accord entre les deux a été trouvé pour les normes de vitesse ainsi que pour les distances et temps de corrélation, ce qui a permis de confirmer la similitude d'un point de vue statistique. De plus, le transport des clathrates a été considéré dans une approche systématique pour tester l'influence du paramètre sur les échelles de temps du transport des clathrates vers l'océan. En raison de la structure cristalline en forme de cage des clathrates, les molécules lourdes formant les clathrates peuvent être moins denses que les glaces à haute pression, permettant la convection vers l'océan. Ceci est très intéressant d'un point de vue astro-biologique, car ce phénomène permetterait d'améliorer l'habitabilité de l'océan à des échelles de temps géologiques plus rapides.

Chapitre 5: Contraindre l'épaisseur d'équilibre des couches extérieures de glace

Le cinquième chapitre avait pour but de fournir une estimation thermiquement cohérente de l'épaisseur de la couche de glace externe. Ceci est essentiel pour construire des modèles intérieurs d'hydrosphère comme cela a été expliqué dans le chapitre précédent. Bien que cette méthode puisse être appliquée à toutes les lunes glacées en contraignant leur bilan thermique, dans ce chapitre, l'accent a été mis sur la couche extérieure de glace d'Europe en raison de l'intérêt récent compte tenu de la preparation de la mission Europa Clipper. Une gamme de différents bilans thermiques locaux a été considérée pour prendre en compte les différences de dissipation des marées à travers les latitudes, ainsi que les différents moments dans le cycle thermo-orbital d'Europe. Une épaisseur d'équilibre a été obtenue pour chaque cas en simulant à une épaisseur où le bilan thermique est suffisant pour maintenir une température au fond de la glace égale à celle de l'eau liquide, et donc de l'océan. Les conditions de fonte de l'eau dépendent de la pression donc de la profondeur, et cela a été pris en compte dans le modèle actuel. De plus, différentes tailles de grains ont été prises en compte, ce qui affecte finalement la rhéologie, en plus de trois épaisseurs différentes de couche poreuse fragile (brittle). L'effet d'une mince couche poreuse et fragile s'est avéré très important pour réduire l'épaisseur d'équilibre, en augmentant les gradients thermiques dans ladite couche. Des lithosphères plus petites ont été obtenues avec seulement 1 ou 2(km) d'une couche fragile poreuse. Ces résultats sont bien corrélés avec la topographie active et diversifiée d'Europe qui suggère une lithosphère très mince. Ce chapitre s'est ensuite conclu en préfigurant quelques perspectives et travaux en cours pour tenter d'expliquer certaines caractéristiques de surface de la couche extérieure de glace d'Europe. Beaucoup plus de travail est nécessaire pour expliquer la pléthore de phénomènes qui se produisent sur cette lune glacée intriguante et son habitabilité potentielle, ce qui explique les budgets importants consacrés à ses missions spatiales.

Le manuscrit s'est conclu par un résumé et des perspectives. An experimental approach by similitude analysis and numerical modeling Keywords: Geodynamic convection, high pressure ice, Titan, clathrate hydrates, habitability Abstract: On large icy moons such as Titan and Ganymede, high pressure ice mantles can form at the bottom of the ocean, isolating it from the rocky mantle beneath. However internal heat sources can generate geodynamic convections that could transport biologically interesting molecules to the ocean above, improving its potential habitability. The aim of this thesis is to model such exchange processes using two main approaches. First, by means of properly scaled analogous experiments and second, using numerical modeling. In the former approach the high pressure ice is replaced by another material that corresponds well to the theoretical scaling arguments. Velocity flow fields are measured using the PIV technique which are then extrapolated to the planetary scales us-ing the same scaling arguments. These results are later on compared with an elaborate FEM numerical model on high pressure ice mantles. The numerical model is developed in this thesis and it is based mainly on a twophase porous approach, which includes tidal and viscous heating, phase change (solidsolid and solid-liquid), with percolating pores. The experimental and the numerical models are in good agreement. Furthermore, the transport of complex molecules is also considered in the case of clathrate hydrate formation, which could transport heavy molecules to the ocean, at a fast rate. Finally the interior models of some hydrospheres are refined by considering the convection-driven equilibrium thicknesses of outer ice shells with a thin brittle porous layer, such as on Europa.
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 1 Schematic representation of the solar system. The distances are logarithmic measured from the sun in astronomical units (a.u.). The planet sizes are logarithmically scaled from the center of each planet. Planet images are generated using the free software Celestia and the sun image is taken from an extreme ultraviolet part of the spectrum (false color), credit: NASA's Solar Dynamics Observatory. . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 (Top and middle rows) Enhanced surface images of Europa, Ganymede and Callisto. (Bottom row) Surface images from the Galileo mission showing surface features of the Galilean moons. Cropped from the figure available in the public domain created by NASA. Courtesy NASA/JPL-Caltech, in accordance with NASA's JPL Image Use Policy. . . . . . . . . . . . . . . 1.3 (a) Perfect and bulged spheres in the dashed and solid lines respectively. (b) and (c) Two component spherical model (b) and (c) having both the same moment of inertia, with densities ρ r > ρ y and ρ b > ρ c . (d) Two-component model of Ganymede. The values corresponding to the constraints by the moment of inertia is the factor C 22 = B-A 4M R 2 . Modified from [1]. . . . . . . 1.4 Schematically represented internal structure models of: Europa, Ganymede, Callisto [2] and Titan [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Water ice phase stability in the presence of MgSO 4 (aq) in concentrations of {0, 3, 5, 10}wt.% as a function of pressure, in MPa, on the vertical axis (increasing downward), and temperature, in K, on the horizontal [4]. . . 1.6 Depths of fluid and ice layers in Ganymede for a pure water (a) and bulk 10 wt % MgSO 4 ocean (b), in km, based on temperature profiles shown for T b from 250 to 270K. For the pure water case, Ice VI is the only highpressure phase present when T b > 260K. [4] . . . . . . . . . . . . . . . . . 1.7 Computer generated microstructure mimicking a cross-polarized reflection showing the grain size reduction understress in addition to crystal grain growth with time [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 (Left) Ice viscosity versus differential stress at constant temperature and grain size. The lower the differential stress, the smaller the stress exponent (Equation 1.2) [2]. (Right) Strain rate in function of the applied stresses for different dominant creep mechanisms, as annotated by Goldsby and Kohlstedt [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES viii 1

  . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Temperature dependence of the apparent viscosity for different potential modeling fluid candidates. The dash-dotted line is a fit by the Arrhenius law. Circle markers refer to mixture with paraffin (60-62) whereas triangular ones include paraffin (54-56) instead. Mixtures with the same concentrations have the same marker colors. Pentagram markers refer to gelatin aqueous solutions, red and blue color signal a heating and cooling ramps respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Schematic representation of the rheometer setup (not in scale): (C) -cone, (O) -electrically heated oven enclosure, (Pe) -Peltier heating element, (GP) -glass plate, (S) -sample, (WLS) -white light source, (CL) -collimating lens, (M 1 ) -semi-transparent mirror, (M 2 ) -plane mirror, (P)polarizer, (MO) -microscope objective, (CCD) -charged-coupled device, (EP) -eye piece, (A) -analyzer. . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Dependence of the time averaged apparent viscosity η a t on the temperature T measured at a constant rate of shear γ = 10(s -1 ). Corresponding to each temperature the apparent viscosity was averaged during ∆t = 4000(s). The error bars are defined by the standard deviation of each individual viscosity time series which is plotted in the inset. The full line is a nonlinear fit by the Arrhenius law. The empty symbols designate different flow regimes: -laminar and steady, -onset of crystal formation, • -oscillatory behavior, -chaotic behavior. . . . . . . . . . . . . . . . . . . . . . . . 2.9 Viscosity time series measured at several temperatures and revealing several distinct macroscopic flow regimes: (a) T = 62( • C) Laminar ( ), (b) T = 57.8( • C) Crystal formation ( ), (c) T = 57.4( • C) Oscillatory behavior ( ), (d) T = 55( • C) Chaotic behavior ( ). . . . . . . . . . . . . . . . . . LIST OF FIGURES x 2.10 Power spectral density (P SD) of the apparent viscosity time series measured at γ = 10(s -1 ) and three distinct temperatures: T = 62( • C) within the laminar regime ( ), T = 57.4( • C) within the oscillatory flow regime ( ) and T = 55( • C) within the chaotic flow regime ( ). The vertical dotted lines highlight the first three harmonics. The insert presents the same power spectra plotted on a logarhitmic-linear scale. The dash dotted lines mark the high frequency noise plateaus whereas the dashed lines are guides for the eye, P SD ∝ f -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 Dependence of the frequency f 1 of the fundamental harmonic of the apparent viscosity signal measured within the oscillatory and chaotic regimes on the driving shear rate γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 Phase space behavior obtained according to the 0 -1 chaos test performed with the oscillatory times series shown in figure 2.9(c) (panel (a)) and the seemingly random time series shown in figure 2.9(d) (panel (b)). The operating temperatures and the value of the asymptotic growth rate are given in the inserts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 Hydrodynamic stability diagram: -stable flow, -stable flow, crystal formation, -oscillatory flow, -chaotic flow. The full lines delineate the distinct flow regimes. The vertical arrow marks the melting temperature T m obtained via DSC measurements. . . . . . . . . . . . . . . . . . . . . 2.14 Dependence of the order parameter ξ on the control parameter obtained from the rheological measurements (see text for description). Red diamonds, blue stars and green triangles refer to constant shear rates γ = 10, 15 and 20(s -1 ), respectively. The full line is a Vandermonde fit by the stationary Landau-Ginzburg equation, using the same colour code. . . . 2.15 Crystal observations performed at T = 58( • C), γ = 10(s -1 ) and six subsequent time instants indicated in the top inserts. The white lines delineate the azimuthal direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16 Crystal observations performed at T = 55.5( • C), γ = 10(s -1 ) and six subsequent time instants indicated in the top inserts. The white lines delineate the azimuthal direction. . . . . . . . . . . . . . . . . . . . . . . 2.17 (Top) Space time diagram measured within the oscillatory flow regime at T = 57.4( • C) and γ = 10(s -1 ). (Middle) Time series of the apparent viscosity η a . (Bottom) Time series of the local volume fraction of solid φ. 2.18 (Top) Space time diagram measured within the chaotic flow regime at T = 55( • C) and γ = 10(s -1 ). (Middle) Time series of the apparent viscosity η a .(Bottom) Time series of the local volume fraction of solid φ. . . . . . 2.19 Phase space behaviour obtained according to the 0-1 chaos test performed on the average image brightness φ time series: (a) at T = 57.4( • C) shown in figure 2.17 and (b) at T = 55( • C) previously shown in figure2.18. . . . 2.20 Time series of the area weighted average of the stress using three different viscosity ratio ν, namely 102 , 10 3 and 10 4 ; in black, blue and red, respectively. The time axis is normalized with the period of rotation of the outer disk. The average volume fraction is Φ = 19%. . . . . . . . . . . . . . . . 2.21 On the left, four randomly generated micro-structures are shown in yellow surrounded by the less viscous solvent in black. On the right, are the corresponding stress time series for each given initial micro-structure. The volume fraction is kept the same here, namely 19%. . . . . . . . . . . . . . LIST OF FIGURES xi 2.22 Stress time series for several average volume fractions Φ indicated in the left inserts. The time axis is normalized by the period of rotation t R . . . . 2.23 Increasing and decreasing controlled shear rate ramps with logarithmic spacing on a mixture sample with 10 wt.% paraffin (54-56) at 20( • C). The red and blue markers refer to increasing and decreasing the shear rate, respectively. Three theoretical Newtonian curves are shown on the log-log scale, as a guide for the eye. The newtonian viscosity straight lines are dotted, dashed and solid for η = 0.1; 1; 10 (P a.s), respectively. . . . . . 2.24 (Left) Schematic representation of typical microstructures in soft matter. The circles is a mere simplification of solid elastic microstructures in a matrix of low viscosity fluid. Double-headed-arrows represent the point of contact where elastic deformation is need to allow the material to shear. (Right) Schematic representation of grains. τ t and τ c are tensile and compressive stresses, which can create and absorb atomic vacancies, respectively. 2.25 (Left) Emkarox viscosity in function of temperature. (Right) Emkarox viscosity in function of temperature and weight concentration (Top and bottom are the same plot with the viscosity shown in logarithmic and linear scaling, respectively). In both plots, the color code refers to the weight concentration. The gridded values are the model in equations 2.22, 2.23 and 2.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.26 (Left) Top and bottom views of the main brass heater. (Middle) Top and bottom views of the aluminum compensator. (Right) Assembled main heater and compensator separated by 5(mm) of insulating glass foam. . . 2.27 Schematic representation of the bottom heater with the actively controlled compensator by means of the PID. The top of the setup is equipped with a heater exchanger with cold water circulation. . . . . . . . . . . . . . . . 2.28 Heater and compenstor assembly with the PID controller diagram. (DAQ: Data aquisition.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.29 Thermal distribution estimated from the infrared camera. The shaded area
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 32 Temperature time series acquired at the bottom of the interior part of the setup in function of time. Aquisition of flow fields are only taken after steady state is reached. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 On the left velocity vectors exemplify the rise of a primary plume, and a secondary one next to it with a smaller magnitude. On the right, the horizontal average of vertical velocities are shown. The error bars represent the horizontal standard deviation pertaining to the corresponding velocity vectors on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Snapshots showing the rise of a transient thermal plume. Particles were added everywhere in the domain except for a 1(cm) layer at the bottom of the setup, to visualize the rise of the first plumes. . . . . . . . . . . . . . . 3.5 (Left) Velocity vectors from figure 3.3. (Right) Corresponding two-dimensional transported thermal evolution starting from a statistical average and using the measured velocity vector field and the established boundary conditions. 3.6 Time series of the area average velocity components: horizontal V x (top), vertical V z (middle), and magnitude || V || (bottom). . . . . . . . . . . . . . 3.7 Power spectrum density on the area weighted average of the vertical velocity ( V z x,z ) computed from the fast Fourrier transform. The slope in red refers to the (-3) slope. The instrumental noise level is shaded in gray. . 3.8 (a) Time series of the vertical velocity component V z for the two points A and B. (b) Normalized auto-correlation of the corresponding (in (a)) vertical velocity components V z in function of the lag. The large markers represent the first zero crossing, which lag is taken a reference correlation time. (c) A spatial map of the auto-correlation times, obtained in the same method as in (b). The large markers represent the coordinates of points A and B with the same color and shape code. Data for point A are in red and for B are in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Normalized singular values λ in function of the increasing modes. The plot insert is logarithmic-linear showing the early decay of the singular values. 3.10 (Left) Reconstruction of the V z from the singular value decomposition, using modes: 1, 2, 3, 5, 10 and 15 respectively from top to bottom. (Right) Corresponding two-dimensional normalized correlation space of the SVD reconstruction on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 Snapshot of the velocity vectors distribution during the rise of a plumes for two cases: (Top) Ra = 1.25 × 10 7 and (Bottom) Ra = 2.20 × 10 7 . . . . 3.12 Contours showing the normalized two dimensional correlation of the vertical velocity components from figure 3.11. The color code refers to the Rayleigh number, (black): Ra = 1.25 × 10 7 , (red) Ra = 2.20 × 10 7 . The correlation function is normalized by the span between the maximum and the minimum. The contour values shown here are: 0.25, 0.5, 0.75. Thick lines refer to the 0.5 contour. . . . . . . . . . . . . . . . . . . . . . . . . . LIST OF FIGURES xiii 3.13 Space-time diagram of vertical and horizontal spatial correlations for Ra = 1.25 × 10 7 (Left subplots) and Ra = 2.20 × 10 7 (right subplots).
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 31446 Spatial map of the correlations times for two cases: (Top) Ra = 1.25 × 10 7 and (Bottom) Ra = 2.20 × 10 7 . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 Velocity scaling ratio of the experimental setup over the scaled in planetary convection, in function of the assumed high pressure ice viscosity. The color code refers to the thickness of the high pressure ice mantle denoted by H o . 3.16 Scaling of the velocity vectors for the Ra = 2.20 × 10 7 , corresponding to a high pressure ice mantle of H o = 75(km) with a reference viscosity of η o = 1.05 × 10 15 (P a.s). The same color bar is shown in two different units, namely SI (m/s) and geologic (m/yr) . . . . . . . . . . . . . . . . . . . . 3.17 Bottom thermo-couple readings in time for different fluxes, in blue, orange, yellow and purple; for fluxes Q m = 105, 150, 265 and 415(W/m 2 ) respectively. The large markers refer to the onset of plume convection given by a local peak. The dashed line is a mere decaying exponential fit of the onset points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 (Left) Onset of plume convection, introduced in figure 3.17 as a function of the heat flux. On the top, the time of onset is shown in function of the flux. The dashed black line is mere decaying exponential fit. On the bottom, the thermo-couple reading of the onset temperature in function of the flux. The fit here is a slowly growing exponential, a linear fit lead to a similar result. (Right) Onset time and temperature in function of the Rayleigh number, shown in the top and bottom subplots, respectively. The dashed black lines are least squares power law fits. The blue solid line is the theoretical Ra -2 3 trend. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.19 On the left, as section of the raw image to be analyzed. On the right, the two measuring techniques applied. The white mask refers to the laser induced fluorescence (LIF) mask applied on the fluorescein died bottom fluid. Outside the mask is the particle image velocimetry (PIV) grid used in the respective resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.20 On the left, as section of the raw image to be analyzed. The transport of the light-shadow is clearly dependent on the location of the plume. On the right, the recovered details in the shadowed area are shown in gray scale. 3.21 Three snapshots of velocity vectors surrounding a plume, highlighted in the white mask. This case corresponds to the heat flux Q m = 265(W/m 2 ). 3.22 Space-time diagrams of the laser induced fluorescence mask constructed longitudinally at 50%, 75% and 100% height of the setup, shown on the right from bottom to top respectively. The colored arrows from the left, in red, green and yellow, in the same order point visually to the corresponding space time diagram. t = 0 does not refer to the beginning of the experiment. This case corresponds to the heat flux Q m = 265(W/m 2 ). . . . . . . . . . 3.23 Snapshots of the rise and fall of plumes observed in white light, without a laser sheet. The bottom fluid is dyed with a thermochromic pigment that is transparent above 31( • C) and black below that temperature threshold. xiv 3.24 Three snapshots of velocity vectors surrounding a plume, highlighted in the white mask. This case corresponds to the heat flux Q m = 415(W/m 2 ). 3.25 Space-time diagrams of the laser induced fluorescence mask constructed longitudinally at 50%, 75% and 100% height of the setup, shown on the right from bottom to top respectively. The colored arrows from the left, in red, green and yellow, in the same order point visually to the corresponding space time diagram. t = 0 does not refer to the beginning of the experiment. This case corresponds to the heat flux Q m = 415(W/m 2 ). . . . . . . . . . 3.26 (Left) Head of the plume obtained from the laser induced fluorescence mask in function of the time of aquisition. (Right) The speed of the head of the plume obtained by deriving the dimensional form of the data on the left by the time of aquisition. t = 0 does not refer to the beginning of the experiment. Blue and red refer respectively to Q = 265 and 415(W/m 2 ). . 3.27 Normalized maximum height of the plume head identified using the mask on the laser induced fluorescence, in function of the heat flux. . . . . . . . 3.28 Bottom thermo-couple reading in time for different fluxes, in black, blue and red; for the bottom fluid thickness of z b = 2%, 7% and 10% respectively. The inset plot is a focus on the onset of convection for the z b = 10% case. 3.29 Three snapshots of velocity vectors surrounding a plume, highlighted in the white mask. From left to right are cases: z b = 2%, 4% and 10% respectively. 3.30 Space-time diagram of the cases with z b = 4% (left) and z b = 10% on the right. From bottom to top are longitudinally acquired space-time diagrams at heights 50%, 75% and 100% of the setup. t = 0 does not refer to the beginning of the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 3.31 (Left) Head of the plume obtained from the laser induced fluorescence mask in function of the time of aquisition. (Right) The speed of the head of the plume obtained by deriving the dimensional form of the data on the left by the time of aquisition. Blue refers to z b = 4% and red to z b = 10% . . . 4.1 Schematic representation of mass and volume fraction of ice and water. . 4.2 Schematic representation of the computational domain being a section of the high pressure ice mantle of Titan. The boundary conditions are annotated next to each boundary. . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 A schematic representation of the anisotropic triangular Taylor-Hood element. The velocity and pressure nodes are shown here in full and empty markers, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 (a) Spurious node-to-node oscillations on a one dimensional steady state advection-diffusion equation. Solid lines and dotted lines represent the exact and central difference solutions, respectively. (b) First order upwind differences on a one dimensional steady state advection diffusion equation. Solid lines and dotted lines represent the exact and first order upwind difference solutions, respectively. For (a) and (b), the element Peclet numbers are 0.5; 1.0; and 2.5 from top to bottom. Adapted from Brooks and Hughes [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Two one dimensional linear elements sharing a single node (A). The weighting function of (A) for each element, using the Galerkin and the Streamline Upwind/Petrov Galerkin (SU/PG) approaches are shown in dashed and solid lines respectively [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . LIST OF FIGURES xv Radial thermal profiles projected onto the PVT data of water. The color code refers to the depth from the surface. The large brown marker refers to the interface of the rock mantle. . . . . . . . . . . . . . . . . . . . . . . 4.7 Melting point, pressure, ice density, and gravity are shown per phase. Red, blue and black curves, refer to ice phases III, V and VI. The cyan line refers to the liquid water density in case of phase change at the corresponding depth. Dashed and dotted gray lines represent the ice-ice phase transition of VI-V and V-III, respectively. . . . . . . . . . . . . . . . . . . . . . . . 4.8 (Left) Exmaples of the thermal distribution minus the melting point for cases of type 1, 2 and 3, from top to bottom respectively. The dark red corresponds to temperature above the melting point. (Right) The corresponding velocity vector fields to the examples on the left. All the cases share the same dimensionless parameters ρgH t η , F o = κ t H 2 and Ra = 2.2×10 7 .124 4.9 Average temperature profile with depth, for the three cases, in the solid black curves. The dotted red line refers to the melting point. The gray dashed and dashed dotted lines refer to the solid-solid transition VI-V and V-III, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 (Left) Extrapolation of the experimentally measured vectors for a mantle height of 75(km) and a reference viscosity 1.05×10 15 (P a.s). (Right) Velocity vectors obtained from numerical simulations on Titan's high pressure ice mantles using the same mantle height and reference viscosities. . . . . 4.11 Space and time weighted average velocity magnitude for the laboratory model and the numerical simulations on Titan. The scaling surface is obtained from the dimensional analysis introduced in section 2.1. The color code refers to the logarithm base 10 of the Rayleigh number. The error bars refer to the fluctuation with time. Triangular markers refer to case with melt at the silicate interface, while the rest are plotted using circular markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 (Left and Middle respectively) Horizontal and vertical correlation distances with respect to the mantle size. (Right) The Ratio of vertical over the horizontal correlation distances with respect to the mantle size. The color code refers to the logarithm base 10 of the Rayleigh number. The error bars refer to one standard deviation of the fluctuation with time. Triangular markers refer to cases with melt at the silicate interface, while the rest are plotted using circular markers . . . . . . . . . . . . . . . . . . . . . 4.13 (Left) Scaling of the experimentally measured correlation times. (Right) Corresponding numerically computed correlation times. . . . . . . . . . . 4.14 Cumulative time series of the total clathrate transport with time for a density offset of 300(kg/m 3 ), for type 1 mantle (H = 49(km)) using an initial uniform layer of clathrates of thickness 10% at the bottom of the mantle. The inset plot shows the early transport of the clathrates for several density offsets, which can be deduced from the color code on the right. The grey dashed horizontal line refers to transport of 50% of the initial clathrate content. . . . . . . . . . . . . . . . . . . . . . . . . . . .

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.16 (Left) Clathrates in yellow and HP ice in white. (Middle) Temperature minus the melting point distribution. (Right) The corresponding anisotropically adapted mesh at the relevant time step. From top to bottom are clathrates reference viscosities of 1014 , 10 15 and 10 16 (P a.s), respectively. The density offset is 50(kg/m 3 ) and the reference viscosity of high pressure ice is 10 15 (P a.s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.17 Half time t half in function of the reference viscosity of clathrates η c, 0 . The HP ice reference viscosity η i, 0 is set to 10 15 (P a.s). The plot is divided twofold, on the left in blue refers to the reference viscosity of clathrates being lower than that of ice, and on the right in green is the opposite. The solid lines in blue and green represent power law fits for the data in their corresponding divisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.18 Half time t half in function of the number of domes N D , for several density contrasts as per the color code on the right. The data points for N D > 0 from top to bottom correspond to [ρ i -ρ c ] = 50, 100, 200 & 400(kg/m 3 ), respectively. The inset plots exemplify some of the initial clathrate distributions with their corresponding number of domes. A uniform layer is shown here as N D = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Schematic representation of a stress-stress diagram, with the Coulomb-Mohr criterion delimited in red. The area in green represents the safe from failure. Stresses of τ 2 > τ 1 shaded out in grey because they are mathematically obsolete by the sorted definition of eigenvalues where τ 1 > τ 2 . Figure not drawn to scale. . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Schematic representation of the computational domain being a section of Europa's ice shell. The boundary conditions are annotated next to each boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 (Column 1) Thermal distribution of three cases using near present day heating on Europa with a heat flux from the silicate mantle Q = 5(mW/m 2 ) and a maximum tidal heating of Ξ max = 2(µW/m 3 ). The green line refers to the 240(K) isotherm. Columns 2,3 and 4 refer to the viscosity, thermal conductivity and tidal heating distributions, respectively. Rows (a), (b) and (c) refer to a brittle porous layer thickness t P or of 0, 1 and 2(km), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 (Left) Thermal distribution of three cases using near present day heating on Europa with a heat flux from the silicate mantle Q b = 5(mW/m 2 ) and a maximum tidal heating of Ξ max = 2(µW/m 3 ) with grain sizes (a) d g = 5, (b) d g = 3.5 and (c) d g = 1(mm). The green line refers to the 240(K) isotherm. (d) The surface heat fluxes from cases in figure 5.3 and 5.4. (e)

  is shown, and on the right is the validation by the current numerical method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.8 (Left) Temperature distributions of two cases. (Right) The contribution of diffusion creep for the corresponding simulations on the left. The simulation parameters are specified above their corresponding thermal distribution.171
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 11 Figure 1.1: Schematic representation of the solar system. The distances are logarithmic measured from the sun in astronomical units (a.u.). The planet sizes are logarithmically scaled from the center of each planet. Planet images are generated using the free software Celestia and the sun image is taken from an extreme ultraviolet part of the spectrum (false color), credit: NASA's Solar Dynamics Observatory.
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 12 Figure 1.2: (Top and middle rows) Enhanced surface images of Europa, Ganymede and Callisto. (Bottom row) Surface images from the Galileo mission showing surface features of the Galilean moons. Cropped from the figure available in the public domain created by NASA. Courtesy NASA/JPL-Caltech, in accordance with NASA's JPL Image Use Policy.
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 13 Figure 1.3: (a) Perfect and bulged spheres in the dashed and solid lines respectively. (b) and (c) Two component spherical model (b) and (c) having both the same moment of inertia, with densities ρ r > ρ y and ρ b > ρ c . (d) Two-component model of Ganymede. The values corresponding to the constraints by the moment of inertia is the factor C 22 = B-A 4M R 2 . Modified from [1].
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 14 Figure 1.4: Schematically represented internal structure models of: Europa, Ganymede,Callisto[START_REF] Sotin | Internal structure and dynamics of the large icy satellites[END_REF] and Titan[START_REF] Tobie | Titan's internal structure inferred from a coupled thermal-orbital model[END_REF].
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 16 Figure 1.6: Depths of fluid and ice layers in Ganymede for a pure water (a) and bulk 10 wt % MgSO 4 ocean (b), in km, based on temperature profiles shown for T b from 250 to 270K. For the pure water case, Ice VI is the only high-pressure phase present when T b > 260K. [4]
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 17 Figure 1.7: Computer generated microstructure mimicking a cross-polarized reflection showing the grain size reduction understress in addition to crystal grain growth with time [5].
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 18 Figure 1.8: (Left) Ice viscosity versus differential stress at constant temperature and grain size. The lower the differential stress, the smaller the stress exponent (Equation 1.2) [2]. (Right) Strain rate in function of the applied stresses for different dominant creep mechanisms, as annotated by Goldsby and Kohlstedt [6].
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 1 Figure 1.10: (a) Temperature distribution from the convection study by Tobie et al. [8] showing the upwelling of the warm ice. (b) The heterogeneous tidal heat computed by the Maxwell model from [8]. (c) Temperature (normalized by the melting point) distribution from the convection study by Showman and Han [9]. (d) The induced topography by the simulation shown in (c), computed from normal stresses over the hydrostatic pressure [9].

Figure 1 .

 1 Figure 1.11: (Top) Images from the Galileo spacecraft for Europa (a-c) and Ganymede (d). (Bottom) Numerical simulations by Howell and Pappalardo [10] that correlate well with the surface observations above.

Figure 1 .

 1 Figure 1.12: (a) Plume convection represented in an isotherm 1K below the melting point inside the spherical shell of ice VI by Choblet et al. [11]. (b) Temperature distribution from the two-phase convection study on Ganymede's high pressure ice mantle [12].

Figure 1 . 13 :

 113 Figure 1.13: Schematic representation of examples on two simple clathrate hydrate molecular structures. In (a), one methane CH 4 guest molecule is entrapped in a (5 12 ) cage. In (b), one carbon dioxide CO 2 guest molecule is entrapped in a 5 12 cage. The color code represents the atoms. Green: Carbon. Red: Oxygen. Cyan: Hydrogen [13].
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 114 Figure 1.14: The three common clathrate hydrate crystal unit cell structures and their properties. a) Cage structures, spatial arrangements, and guest examples for the unit cells. b) Crystallographic characteristics of the clathrate hydrate structures CS-I, CS-II, and SH [14].

Figure

  Figure 1.15: Pressure-temperature plot comparing the phase diagram of H2 O (black lines) with the stability curves of some major, single-guest, clathrate hydrate species. Q1: quadruple point clathrate -H 2 O ice -H 2 O liquid -guest gas. Q2 (CO 2 , H 2 O): quadruple point clathrate -H 2 O liquid -guest gas -guest liquid.The shaded area, which includes all the dissociation curves, separates the domains of stability and instability of clathrate hydrates in general.[START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF].

Figure 1 .

 1 Figure 1.16: Comparison of the phase diagram of H 2 O, the stability curves of some clathrate hydrates, and two types of thermal profiles within icy satellites of the giant planets[START_REF] Choukroun | Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System[END_REF]. Modified after[START_REF] Sohl | Subsurface water oceans on icy satellites: Chemical composition and exchange processes[END_REF].

  and (60-62)( • C). The experimental measurement protocol consists of 4 temperature ramps in the range of [0( • C); 80( • C)]. The first two ramps, increasing then decreasing, are disregarded as the sample geometry is irregular inside the testing capsule. The differential heat flux from the last two ramps of each sample is shown in figure 2.1 (heating ramp in red, and cooling in blue). The rate of increase and decrease are |dT/dt| = 3( • C/min) and |dT/dt| = 10( • C/min), the former being shown in figure 2.1.

Figure 2 . 1 :

 21 Figure 2.1: The differential heat flux measured for different concentrations of two oil-paraffin mixtures, with several concentrations. The integration of the differential heat for each ramp is delimited by the two large markers on each curve.

Figure 2 . 2 :

 22 Figure 2.2: Highest possible phase transition numbers for different in oil-paraffin mixtures, compared to ice I h and VI with two different water compositions. Circle markers refer oil paraffin (60-62) mixtures, whereas triangular ones contain paraffin (54-56) instead. The solid, and dashed lines refer to pure ice and 10 wt.% MgSO 4 aqueous ice solution, respectively. The line colors refer to the moons, where the black and navy blue refer to Ganymede and Europa, respectively; red markers are for oil paraffin mixtures.

Figure 2 . 3 :

 23 Figure 2.3: Static polarized microscopy with two cooling rates controlled by a Peltier cell. The field of view width is ∼1.25(mm). Both pictures show the same phase change material, an oil-paraffin mixture having 50 wt.% paraffin (54-56).

Figure 2 . 4 :

 24 Figure 2.4: Each plot represents two subsequent temperature ramps cooling and heating respectively on samples of 50 wt.% paraffin[START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF]. The primary axis shows the measured apparent viscosity. The secondary axis in red shows the normalized average brightness from in-situ polarized microscopy.

  Figure 2.5:Hysteresis area values from increasing and decreasing controlled shear rate ramps for several cooling/heating rates on a mixture sample with 50 wt.% paraffin[START_REF] Lammer | What makes a planet habitable?[END_REF][START_REF] Schubert | Interior composition, structure and dynamics of the Galilean satellites[END_REF][START_REF] Durante | Titan's gravity field and interior structure after cassini[END_REF]. Black circular markers on the primary axis refer to the hysteresis area on the apparent viscosity. Red triangular markers on the secondary axis refers to the hysteresis area from the image brightness acquired by in-situ microscopy.

Figure 2 . 6 :

 26 Figure 2.6: Temperature dependence of the apparent viscosity for different potential modeling fluid candidates. The dash-dotted line is a fit by the Arrhenius law. Circle markers refer to mixture with paraffin (60-62) whereas triangular ones include paraffin (54-56) instead. Mixtures with the same concentrations have the same marker colors. Pentagram markers refer to gelatin aqueous solutions, red and blue color signal a heating and cooling ramps respectively.
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 27 Figure 2.7: Schematic representation of the rheometer setup (not in scale): (C) -cone, (O)electrically heated oven enclosure, (Pe) -Peltier heating element, (GP) -glass plate, (S) -sample, (WLS) -white light source, (CL) -collimating lens, (M 1 ) -semi-transparent mirror, (M 2 ) -plane mirror, (P) -polarizer, (MO) -microscope objective, (CCD) -charged-coupled device, (EP) -eye piece, (A) -analyzer.

. 8 .

 8 In a fluid regime (T > 61( • C)) the time averaged viscosity follows a classical Arrhenius dependence with the temperature, η = (1.309 ± 0.758) × 10 -5 exp 1964±195 T
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 2829 Figure 2.8: Dependence of the time averaged apparent viscosity η a t on the temperature T measured at a constant rate of shear γ = 10(s -1 ). Corresponding to each temperature the apparent viscosity was averaged during ∆t = 4000(s). The error bars are defined by the standard deviation of each individual viscosity time series which is plotted in the inset. The full line is a nonlinear fit by the Arrhenius law. The empty symbols designate different flow regimes: -laminar and steady, -onset of crystal formation, • -oscillatory behavior, -chaotic behavior.
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 210 Figure 2.10: Power spectral density (P SD) of the apparent viscosity time series measured at γ = 10(s -1 ) and three distinct temperatures: T = 62( • C) within the laminar regime ( ), T = 57.4( • C) within the oscillatory flow regime ( ) and T = 55( • C) within the chaotic flow regime ( ). The vertical dotted lines highlight the first three harmonics. The insert presents the same power spectra plotted on a logarhitmic-linear scale. The dash dotted lines mark the high frequency noise plateaus whereas the dashed lines are guides for the eye, P SD ∝ f -2 .
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 211 Figure 2.11: Dependence of the frequency f 1 of the fundamental harmonic of the apparent viscosity signal measured within the oscillatory and chaotic regimes on the driving shear rate γ.
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 212 Figure 2.12: Phase space behavior obtained according to the 0 -1 chaos test performed with the oscillatory times series shown in figure 2.9(c) (panel (a)) and the seemingly random time series shown in figure 2.9(d) (panel (b)). The operating temperatures and the value of the asymptotic growth rate are given in the inserts.

  .9 have been performed for several values of the imposed shear rate γ and operating temperature T . The results are summarized in the stability diagram presented in figure 2.13.
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 213 Figure 2.13: Hydrodynamic stability diagram:-stable flow, -stable flow, crystal formation, -oscillatory flow, -chaotic flow. The full lines delineate the distinct flow regimes. The vertical arrow marks the melting temperature T m obtained via DSC measurements.
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 214 Figure 2.14: Dependence of the order parameter ξ on the control parameter obtained from the rheological measurements (see text for description). Red diamonds, blue stars and green triangles refer to constant shear rates γ = 10, 15 and 20(s -1 ), respectively. The full line is a Vandermonde fit by the stationary Landau-Ginzburg equation, using the same colour code.
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 215 Figure 2.15: Crystal observations performed at T = 58( • C), γ = 10(s -1 ) and six subsequent time instants indicated in the top inserts. The white lines delineate the azimuthal direction.
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 216 Figure 2.16: Crystal observations performed at T = 55.5( • C), γ = 10(s -1 ) and six subsequent time instants indicated in the top inserts. The white lines delineate the azimuthal direction.

Figure 2 .Figure 2 .

 22 Figure 2.17: (Top) Space time diagram measured within the oscillatory flow regime at T = 57.4( • C) and γ = 10(s -1 ). (Middle) Time series of the apparent viscosity η a . (Bottom) Time series of the local volume fraction of solid φ.

  .19(a).As compared to the oscillatory case, the space-time diagram built within the chaotic flow regime (T = 55( • C) and γ = 10(s -1 )) reveals dramatic changes of the solid-fluid interface as well as a clear secondary flow motion, top panel in figure2.18. The temporal variations of the apparent viscosity and the locally measured volume fraction of solid remain correlated (middle and bottom panel in figure2.18).

Figure 2 . 19 :

 219 Figure 2.19: Phase space behaviour obtained according to the 0 -1 chaos test performed on the average image brightness φ time series: (a) at T = 57.4( • C) shown in figure 2.17 and (b) at T = 55( • C) previously shown in figure2.18.
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 220 Figure 2.20: Time series of the area weighted average of the stress using three different viscosity ratio ν, namely 10 2 , 10 3 and 10 4 ; in black, blue and red, respectively. The time axis is normalized with the period of rotation of the outer disk. The average volume fraction is Φ = 19%.
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 221 Figure 2.21: On the left, four randomly generated micro-structures are shown in yellow surrounded by the less viscous solvent in black. On the right, are the corresponding stress time series for each given initial micro-structure. The volume fraction is kept the same here, namely 19%.
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 222 Figure 2.22: Stress time series for several average volume fractions Φ indicated in the left inserts.The time axis is normalized by the period of rotation t R .
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 2 Figure 2.24: (Left) Schematic representation of typical microstructures in soft matter. The circles is a mere simplification of solid elastic microstructures in a matrix of low viscosity fluid. Double-headed-arrows represent the point of contact where elastic deformation is need to allow the material to shear. (Right) Schematic representation of grains. τ t and τ c are tensile and compressive stresses, which can create and absorb atomic vacancies, respectively.

Figure 2 .

 2 Figure 2.25: (Left) Emkarox viscosity in function of temperature. (Right) Emkarox viscosity in function of temperature and weight concentration (Top and bottom are the same plot with the viscosity shown in logarithmic and linear scaling, respectively). In both plots, the color code refers to the weight concentration. The gridded values are the model in equations 2.22, 2.23 and 2.24.
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 2 Figure 2.26: (Left) Top and bottom views of the main brass heater. (Middle) Top and bottom views of the aluminum compensator. (Right) Assembled main heater and compensator separated by 5(mm) of insulating glass foam.

Figure 2 . 27 :

 227 Figure 2.27: Schematic representation of the bottom heater with the actively controlled compensator by means of the PID. The top of the setup is equipped with a heater exchanger with cold water circulation.

Figure 2 . 28 :

 228 Figure 2.28: Heater and compenstor assembly with the PID controller diagram. (DAQ: Data aquisition.)

Figure 2

 2 Figure 2.29:Thermal distribution estimated from the infrared camera.The shaded area was excluded due to a different emissivity than the main brass heater.

Figure 2 . 30 :

 230 Figure 2.30: Top view of two vertical walls assembled. In blue, the 2(mm) thick gasket is placed inside the horizontal groove. In red, the vertical 1(mm) gasket is positioned in the vertical grooves of one of the two plexi walls. The location of the silicone elastomer is highlighted in yellow. Figure not drawn to scale.

Figure 2 .

 2 Figure 2.31: (Top) CAD drawing roughly depicting part of the assembly setup. (Bottom) A section of the experimental setup under the tarpaulin.

Figure 2 . 32 :

 232 Figure 2.32: Mie scattering of an incident laser beam of 532(nm) wavelength around a glass sphere having a diameter of 10(µm) in water. The axis is polar, and the circles are logarithmic gridlines, where the two subsequent gridlines represents a multiplication in intensity by the 100 times [17].
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 233 Figure 2.33: Three examples of particle densities: (a) low concentration (suitable for PTV), (b) moderate concentration (suitable for PIV) and (c) High concentration (suitable for LSV) [17].

Figure 2 . 34 :

 234 Figure 2.34: Schematic representation showing the light scattering of particles illuminated by a green laser sheet. Close ups on an interrogation window are shown at two subsequent time steps t 1 and t 2 . The red outline shows the highest cross correlation of the window at t 1 in the vicinity of one in t 2 .
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 31 Figure 3.1: Reynolds number Vs Rayleigh number for some tested case. Red circles are measurements with 15 wt.% Emkarox. Blue triangles are measurements with 5 wt.% Emkarox. Magenta and green data points are measurements with 99.5 and 90 wt.% Glycerol, respectively. The inset plot is a qualitative probability distribution function (pdf ) of the Rayleigh numbers on Titan and Ganymede in near present day heating. The mean of the relevant Rayleigh numbers for Titan and Ganymede are taken from Refs. [18, 12].
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 32 Figure 3.2: Temperature time series acquired at the bottom of the interior part of the setup in function of time. Aquisition of flow fields are only taken after steady state is reached.
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 33 Figure 3.3: On the left velocity vectors exemplify the rise of a primary plume, and a secondary one next to it with a smaller magnitude. On the right, the horizontal average of vertical velocities are shown. The error bars represent the horizontal standard deviation pertaining to the corresponding velocity vectors on the left.
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 34 Figure 3.4: Snapshots showing the rise of a transient thermal plume. Particles were added everywhere in the domain except for a 1(cm) layer at the bottom of the setup, to visualize the rise of the first plumes.

Figure 3

 3 Figure 3.5: (Left) Velocity vectors from figure 3.3. (Right) Corresponding two-dimensional transported thermal evolution starting from a statistical average and using the measured velocity vector field and the established boundary conditions.

4 Figure 3 . 6 :

 436 Figure 3.6: Time series of the area average velocity components: horizontal V x (top), vertical V z (middle), and magnitude || V || (bottom).

Figure 3 . 7 :

 37 Figure 3.7: Power spectrum density on the area weighted average of the vertical velocity ( V z x,z ) computed from the fast Fourrier transform. The slope in red refers to the (-3) slope. The instrumental noise level is shaded in gray.

  .8 (a) the vertical component of the velocity V z is shown for two chosen points of the same vertical position, namely halfway from the top. Point A is chosen at the center of the domain, and point B is chosen randomly, at 3.5(cm) to its left. At a first glance, the time series looks qualitatively similar. Peaks are upwellings of warm buoyant fluids in the form of local plumes. The vectors corresponding to the highest peak in point A, namely around t + 700(s), were shown previously in details (cf. figure 3.3). Similar behaviors can be seen at other times for point B.
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 38 Figure 3.8: (a) Time series of the vertical velocity component V z for the two points A and B. (b) Normalized auto-correlation of the corresponding (in (a)) vertical velocity components V z in function of the lag. The large markers represent the first zero crossing, which lag is taken a reference correlation time. (c) A spatial map of the auto-correlation times, obtained in the same method as in (b). The large markers represent the coordinates of points A and B with the same color and shape code. Data for point A are in red and for B are in blue.

Figure 3 . 9 :Figure 3 .

 393 Figure 3.9: Normalized singular values λ in function of the increasing modes. The plot insert is logarithmic-linear showing the early decay of the singular values.

  .11, the velocity vectors fields are compared for two different Rayleigh numbers. While it is evident that the global velocity scale increases with the Ra, as per figure 3.1. The plume itself is more elongated suggesting a more continuous upwelling of warm fluids. Ra = 1.25 × 10 7 Ra = 2.20 × 10 7
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 311 Figure 3.11: Snapshot of the velocity vectors distribution during the rise of a plumes for two cases: (Top) Ra = 1.25 × 10 7 and (Bottom) Ra = 2.20 × 10 7 .

Figure 3 . 12 :

 312 Figure 3.12: Contours showing the normalized two dimensional correlation of the vertical velocity components from figure 3.11. The color code refers to the Rayleigh number, (black): Ra = 1.25×10 7 , (red) Ra = 2.20×10 7 . The correlation function is normalized by the span between the maximum and the minimum. The contour values shown here are: 0.25, 0.5, 0.75. Thick lines refer to the 0.5 contour.

Figure 3 .

 3 Figure 3.13: Space-time diagram of vertical and horizontal spatial correlations for Ra = 1.25 × 10 7 (Left subplots) and Ra = 2.20 × 10 7 (right subplots). The curves in the subplots, below the space-time diagrams, refer to the vertical and horizontal correlation distances, in full and dashed lines, respectively. The wide plot at the bottom refers to the ratio of vertical over horizontal correlation distances with time. The red and black shaded areas refer to larger ratios for the larger and smaller Rayleigh numbers, respectively.

Ra = 1 Figure 3 . 14 :

 1314 Figure 3.14: Spatial map of the correlations times for two cases: (Top) Ra = 1.25 × 10 7 and (Bottom) Ra = 2.20 × 10 7 .

Figure 3 . 15 :

 315 Figure 3.15: Velocity scaling ratio of the experimental setup over the scaled in planetary convection, in function of the assumed high pressure ice viscosity. The color code refers to the thickness of the high pressure ice mantle denoted by H o .

Figure 3 . 16 :

 316 Figure 3.16: Scaling of the velocity vectors for the Ra = 2.20 × 10 7 , corresponding to a high pressure ice mantle of H o = 75(km) with a reference viscosity of η o = 1.05 × 10 15 (P a.s). The same color bar is shown in two different units, namely SI (m/s) and geologic (m/yr)

Figure 3 . 17 :

 317 Figure 3.17: Bottom thermo-couple readings in time for different fluxes, in blue, orange, yellow and purple; for fluxes Q m = 105, 150, 265 and 415(W/m 2 ) respectively. The large markers refer to the onset of plume convection given by a local peak. The dashed line is a mere decaying exponential fit of the onset points.

Figure 3 .

 3 Figure 3.18: (Left) Onset of plume convection, introduced in figure 3.17 as a function of the heat flux. On the top, the time of onset is shown in function of the flux. The dashed black line is mere decaying exponential fit. On the bottom, the thermo-couple reading of the onset temperature in function of the flux. The fit here is a slowly growing exponential, a linear fit lead to a similar result. (Right) Onset time and temperature in function of the Rayleigh number, shown in the top and bottom subplots, respectively. The dashed black lines are least squares power law fits. The blue solid line is the theoretical Ra -2 3 trend.
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 319 Figure 3.19: On the left, as section of the raw image to be analyzed. On the right, the two measuring techniques applied. The white mask refers to the laser induced fluorescence (LIF) mask applied on the fluorescein died bottom fluid. Outside the mask is the particle image velocimetry (PIV) grid used in the respective resolution.
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 320 Figure 3.20: On the left, as section of the raw image to be analyzed. The transport of the light-shadow is clearly dependent on the location of the plume. On the right, the recovered details in the shadowed area are shown in gray scale.
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 321 Figure 3.21: Three snapshots of velocity vectors surrounding a plume, highlighted in the white mask. This case corresponds to the heat flux Q m = 265(W/m 2 ).
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 322 Figure 3.22: Space-time diagrams of the laser induced fluorescence mask constructed longitudinally at 50%, 75% and 100% height of the setup, shown on the right from bottom to top respectively. The colored arrows from the left, in red, green and yellow, in the same order point visually to the corresponding space time diagram. t = 0 does not refer to the beginning of the experiment. This case corresponds to the heat flux Q m = 265(W/m 2 ).

Figure 3 . 23 :

 323 Figure 3.23: Snapshots of the rise and fall of plumes observed in white light, without a laser sheet. The bottom fluid is dyed with a thermochromic pigment that is transparent above 31( • C)and black below that temperature threshold.

Figure 3 . 24 :

 324 Figure 3.24: Three snapshots of velocity vectors surrounding a plume, highlighted in the white mask. This case corresponds to the heat flux Q m = 415(W/m 2 ).
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 325 Figure 3.25: Space-time diagrams of the laser induced fluorescence mask constructed longitudinally at 50%, 75% and 100% height of the setup, shown on the right from bottom to top respectively. The colored arrows from the left, in red, green and yellow, in the same order point visually to the corresponding space time diagram. t = 0 does not refer to the beginning of the experiment. This case corresponds to the heat flux Q m = 415(W/m 2 ).

3 Figure 3 .

 33 Figure 3.26: (Left) Head of the plume obtained from the laser induced fluorescence mask in function of the time of aquisition. (Right) The speed of the head of the plume obtained by deriving the dimensional form of the data on the left by the time of aquisition. t = 0 does not refer to the beginning of the experiment. Blue and red refer respectively to Q = 265 and 415(W/m 2 ).
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 327 Figure 3.27: Normalized maximum height of the plume head identified using the mask on the laser induced fluorescence, in function of the heat flux.

figure 3 .Figure 3 . 28 :

 3328 figure 3.28, bottom thermocouple readings with time are shown for three initial thicknesses.

Figure 3 . 29 :

 329 Figure 3.29: Three snapshots of velocity vectors surrounding a plume, highlighted in the white mask. From left to right are cases: z b = 2%, 4% and 10% respectively.

Figure 3 . 30 :

 330 Figure 3.30: Space-time diagram of the cases with z b = 4% (left) and z b = 10% on the right. From bottom to top are longitudinally acquired space-time diagrams at heights 50%, 75% and 100% of the setup. t = 0 does not refer to the beginning of the experiment.
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 3 Figure 3.31: (Left) Head of the plume obtained from the laser induced fluorescence mask in function of the time of aquisition. (Right) The speed of the head of the plume obtained by deriving the dimensional form of the data on the left by the time of aquisition. Blue refers to z b = 4% and red to z b = 10% .
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 41 Figure 4.1: Schematic representation of mass and volume fraction of ice and water.
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 2121 that resulted from the double contraction of the identity tensor, one getsτ b : ˙ = 1 2

Figure 4 . 2 :

 42 Figure 4.2: Schematic representation of the computational domain being a section of the high pressure ice mantle of Titan. The boundary conditions are annotated next to each boundary.

Figure 4 . 3 :

 43 Figure 4.3: A schematic representation of the anisotropic triangular Taylor-Hood element. The velocity and pressure nodes are shown here in full and empty markers, respectively

Figure 4 . 4 :

 44 Figure 4.4: (a) Spurious node-to-node oscillations on a one dimensional steady state advection-diffusion equation. Solid lines and dotted lines represent the exact and central difference solutions, respectively. (b) First order upwind differences on a one dimensional steady state advection diffusion equation. Solid lines and dotted lines represent the exact and first order upwind difference solutions, respectively. For (a) and (b), the element Peclet numbers are 0.5; 1.0; and 2.5 from top to bottom. Adapted from Brooks and Hughes [19].
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 45 Figure 4.5: Two one dimensional linear elements sharing a single node (A). The weighting function of (A) for each element, using the Galerkin and the Streamline Upwind/Petrov Galerkin (SU/PG) approaches are shown in dashed and solid lines respectively [19].

(4. 65 )

 65 No boundary conditions are needed for the porosity transport equation. Porosity is generated upon partial melt. The rate of production of the melt can be estimated energetically as follows:

≤ 1 .

 1 max(|| v||) δt CF Lemin(he) The Fourrier number characterizing the transient diffusion must also be appropriately discretized. The Fourrier condition can be written as follows: F o e = κ δt F oe min(h 2 e ) ≤ 1. Therefore the most conservative time step is chosen at the end of each iteration as follows:
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 46 Figure 4.6: Radial thermal profiles projected onto the PVT data of water. The color code refers to the depth from the surface. The large brown marker refers to the interface of the rock mantle.

Figure 4 . 7 :

 47 Figure 4.7: Melting point, pressure, ice density, and gravity are shown per phase. Red, blue and black curves, refer to ice phases III, V and VI. The cyan line refers to the liquid water density in case of phase change at the corresponding depth. Dashed and dotted gray lines represent the ice-ice phase transition of VI-V and V-III, respectively.

Figure 4 . 8 :

 48 Figure 4.8: (Left) Exmaples of the thermal distribution minus the melting point for cases of type 1, 2 and 3, from top to bottom respectively. The dark red corresponds to temperature above the melting point. (Right) The corresponding velocity vector fields to the examples on the left. All the cases share the same dimensionless parameters ρgH t η , F o = κ t H 2 and Ra = 2.2 × 10 7 .

Figure 4 . 9 :

 49 Figure 4.9: Average temperature profile with depth, for the three cases, in the solid black curves. The dotted red line refers to the melting point. The gray dashed and dashed dotted lines refer to the solid-solid transition VI-V and V-III, respectively.

Figure 4 .

 4 Figure 4.10: (Left) Extrapolation of the experimentally measured vectors for a mantle height of 75(km) and a reference viscosity 1.05 × 10 15 (P a.s). (Right) Velocity vectors obtained from numerical simulations on Titan's high pressure ice mantles using the same mantle height and reference viscosities.

Figure 4 . 11 :

 411 Figure 4.11:Space and time weighted average velocity magnitude for the laboratory model and the numerical simulations on Titan. The scaling surface is obtained from the dimensional analysis introduced in section 2.1. The color code refers to the logarithm base 10 of the Rayleigh number. The error bars refer to the fluctuation with time. Triangular markers refer to case with melt at the silicate interface, while the rest are plotted using circular markers .

  z o corr = z m corr H o H m , for each direction. An example of the scaling of the vertical and horizontal correlation distances is shown in the solid lines in figure 4.12, for one case with Ra = 2.2×10 7 . The shaded areas are plus and minus one standard deviation from the time series fluctuations. The correlations distances obtained from the numerical data are plotted in markers with the same color and shape code from figure 4.11.

Figure 4 .

 4 Figure 4.12: (Left and Middle respectively) Horizontal and vertical correlation distances with respect to the mantle size. (Right) The Ratio of vertical over the horizontal correlation distances with respect to the mantle size. The color code refers to the logarithm base 10 of the Rayleigh number. The error bars refer to one standard deviation of the fluctuation with time. Triangular markers refer to cases with melt at the silicate interface, while the rest are plotted using circular markers

Figure 4 .

 4 Figure 4.13: (Left) Scaling of the experimentally measured correlation times. (Right) Corresponding numerically computed correlation times.

Figure 4 . 14 :

 414 Figure 4.14: Cumulative time series of the total clathrate transport with time for a density offset of 300(kg/m 3 ), for type 1 mantle (H = 49(km)) using an initial uniform layer of clathrates of thickness 10% at the bottom of the mantle. The inset plot shows the early transport of the clathrates for several density offsets, which can be deduced from the color code on the right. The grey dashed horizontal line refers to transport of 50% of the initial clathrate content.

Figure 4 .

 4 Figure 4.16: (Left) Clathrates in yellow and HP ice in white. (Middle) Temperature minus the melting point distribution. (Right) The corresponding anisotropically adapted mesh at the relevant time step. From top to bottom are clathrates reference viscosities of 10 14 , 10 15 and 10 16 (P a.s), respectively. The density offset is 50(kg/m 3 ) and the reference viscosity of high pressure ice is 10 15 (P a.s).

Figure 4 . 17 :

 417 Figure 4.17: Half time t half in function of the reference viscosity of clathrates η c,0 . The HP ice reference viscosity η i,0is set to 10 15 (P a.s). The plot is divided twofold, on the left in blue refers to the reference viscosity of clathrates being lower than that of ice, and on the right in green is the opposite. The solid lines in blue and green represent power law fits for the data in their corresponding divisions.

Figure 4 . 18 :

 418 Figure 4.18: Half time t half in function of the number of domes N D , for several density contrasts as per the color code on the right. The data points for N D > 0 from top to bottom correspond to [ρ i -ρ c ] = 50, 100, 200 & 400(kg/m 3 ), respectively. The inset plots exemplify some of the initial clathrate distributions with their corresponding number of domes. A uniform layer is shown here as N D = 0.

9 ) with θ = 1 /

 91 (1 + exp (-2a (ρ -ρ transition ))) (5.10)k ref f irn (ρ) = 2.107 + 0.003618(ρ -ρ i ) (5.11) k ref snow (ρ) = 0.024 -1.23 × 10 -4 ρ + 2.5 × 10 -6 ρ 2(5.12)where a = 0.02 (m 3 /kg) and ρ transition = 450 (kg/m 3 )
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 22222251 Figure 5.1: Schematic representation of a stressstress diagram, with the Coulomb-Mohr criterion delimited in red. The area in green represents the safe from failure. Stresses of τ 2 > τ 1 shaded out in grey because they are mathematically obsolete by the sorted definition of eigenvalues where τ 1 > τ 2 . Figure not drawn to scale.

  e. No fractures) η min for d = 0 (i.e. Completely damaged) (5.21)

Figure 5 . 2 :

 52 Figure 5.2: Schematic representation of the computational domain being a section of Europa's ice shell. The boundary conditions are annotated next to each boundary.

Figure 5 . 3 :

 53 Figure 5.3: (Column 1) Thermal distribution of three cases using near present day heating on Europa with a heat flux from the silicate mantle Q = 5(mW/m 2 ) and a maximum tidal heating of Ξ max = 2(µW/m 3 ). The green line refers to the 240(K) isotherm. Columns 2,3 and 4 refer to the viscosity, thermal conductivity and tidal heating distributions, respectively. Rows (a), (b) and (c) refer to a brittle porous layer thickness t P or of 0, 1 and 2(km), respectively.

Figure 5 . 4 :

 54 Figure 5.4: (Left) Thermal distribution of three cases using near present day heating on Europa with a heat flux from the silicate mantle Q b = 5(mW/m 2 ) and a maximum tidal heating of Ξ max = 2(µW/m 3 ) with grain sizes (a) d g = 5, (b) d g = 3.5 and (c) d g = 1(mm). The green line refers to the 240(K) isotherm. (d) The surface heat fluxes from cases in figure 5.3 and 5.4. (e) Horizontally averaged thermal profile projected onto the relevant section of the pure water phase diagram. (f, g) Horizontally averaged viscosity and tidal heating profiles. Solid, dashed and dotted lines refer to d g = 1, 3.5 and 5(mm), respectively. Black, blue and red lines indicate the porous brittle layer thickness t P or = 0, 1 and 2(km), respectively.

Figure 5 . 5 :

 55 Figure 5.5: Horizontally averaged temperature profiles for the various parameters tested, projected onto the relevant section of the pure water phase diagram. Subplots on the left, center and right correspond to porous brittle layer thicknesses t P or = 0, 1 and 2(km), respectively. Top, centre and bottom correspond to grain sizes d g = 5, 3.5 and 1(mm), respectively. The maximum tidal heating Ξ max is annotated next to each equilibrium position. The color code refers to the heat flux from the silicate mantle Q b , as per the legend below.

  Figure 5.7:(Top row) Ice shell thickness in function of the maximum tidal heating. (Bottom row) Depth to the 240(K) isotherm in function of the maximum tidal heating. The subplot columns refers to the grain size d g = 5, 3.5, 1(mm) from left to right, respectively. The colors black blue and red refer to the porous brittle layer thicknesses t P or =0, 1 and 2(km), respectively. Empty symbols shows purely conductive profiles.

Figure 5 . 8 :

 58 Figure 5.8: Eulerian, Lagrangian and Arbitrary reference frames from left to right, respectively. The material is shown in grey and the mesh in black. The plot on the right refers to the simplified transition from Lagrangian to Eulerian implemented here.

Figure 6 . 1 :

 61 Figure 6.1: Relative convective velocity of percolating liquid water with respect to the already convecting ice velocity.

Figure 6 . 3 :

 63 Figure 6.3: Rayleigh-Taylor inside an inclosure, case 1: Isoviscous. The top row represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, atnon dimensional times t = 500; 1000; 1500; 2000[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The middle row represents the corresponding results from the finite element method, where the black fluid is the buoyant one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].

6 )

 6 Van Keken et al. defined the entrainement factor as follows: d e = d b . In the first three cases of the Rayleigh-Taylor instability, the height of the buoyant fluid is d b = 0.2.

Figure 6 .

 6 Figure 6.4 shows the results of the second Rayleigh-Taylor instability test, where the buyouant fluid is ten times less viscous than the denser one.

Figure 6 . 4 :

 64 Figure 6.4: Rayleigh-Taylor inside an inclosure, case 2: Viscosity ratio 10 (Buoyant fluid less viscous). The top row represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, at non dimensional times t = 500; 1000; 1500; 2000[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The middle row represents the corresponding results from the finite element method, where the black fluid is the buoyant one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].

Figure 6 . 5 :

 65 Figure 6.5: Rayleigh-Taylor inside an inclosure, case 3: Viscosity ratio 100 (Buoyant fluid less viscous). The top row represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, at non dimensional times t = 500; 1000; 1500; 2000[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The middle row represents the corresponding results from the finite element method, where the black fluid is the buoyant one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].

Figure 6 . 6 :

 66 Figure 6.6: Thermochemical convection, case 4: Isoviscous multi-component thermal convection.The top row left represents the marker chain distribution which tracks the interface between the denser and buoyant fluid, at non dimensional times t = 0.01[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The top row right represents the corresponding results from the finite element method, where the black fluid is the denser one. In the bottom row, are the V rms (left) and the entrainment e (right) of the current simulations with time. The present numerical results are shown in red, compared with the benchmark in black for different authors of the article[START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF].The purple circular markers show where the different solvers diverged and stopped.
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  Processus d'échanges entre les couches de glace profondes et les océans liquides dans les corps riches en eau (satellites de glace) : Une approche expérimentale par analyse de similitude et modélisation numérique Mot clés : Convection géodynamique, glace haute pression, Titan, clathrates, habitabilité Résumé : Sur des grandes lunes glacées telles que Titan et Ganymède, des manteaux de glace à haute pression peuvent se former au fond de l'océan. La convection géodynamique dans ces manteaux pourrait transporter diverses molécules vers l'océan au-dessus, améliorant ainsi son habitabilité potentielle. L'objectif de cette thèse est de modéliser de tels processus d'échange en utilisant deux approches principales. Premièrement, au moyen d'expériences par similitude d'échelle et deuxièmement, en utilisant la modélisation numérique. Expérimentalement, la glace à haute pression est remplacée par un autre matériau respectant la similitude d'échelle. Les vitesses de convection sont mesurés avec la PIV et elles sont ensuite extra-polées aux échelles planétaires. Ces résultats sont alors comparés à un modèle numérique sur des manteaux de glace à haute pression. Le modèle numérique est développé dans cette thèse en se basant principalement sur une approche biphasique poreuse. Les résultats montrent une bonne cohérence entre les deux approches. De plus, le transport de molécules complexes est pris en compte dans le cas de la formation d'hydrate de clathrate, qui pourrait plus rapidement transporter des molécules lourdes vers l'océan. Enfin, le modèle intérieur des hydrosphères est affiné. Celui-ci considère les épaisseurs d'équilibre induites par la convection des couches de glace externes en incluant également une fine couche poreuse fragile, comme sur Europe. Title: Exchange processes occurring in the deep icy layers of water-rich bodies (ice satellites):

  

  .15 Pressure-temperature plot comparing the phase diagram of H 2 O (black lines) with the stability curves of some major, single-guest, clathrate hydrate species. Q1: quadruple point clathrate -H 2 O ice -H 2 O liquid -guest gas. Q2 (CO 2 , H 2 O): quadruple point clathrate -H 2 O liquid -guest gasguest liquid. The shaded area, which includes all the dissociation curves, separates the domains of stability and instability of clathrate hydrates in general. [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.16 Comparison of the phase diagram of H 2 O, the stability curves of some clathrate hydrates, and two types of thermal profiles within icy satellites of the giant planets [15]. Modified after [16]. . . . . . . . . . . . . . . . . 2.1 The differential heat flux measured for different concentrations of two oilparaffin mixtures, with several concentrations. The integration of the differential heat for each ramp is delimited by the two large markers on each Highest possible phase transition numbers for different in oil-paraffin mixtures, compared to ice I h and VI with two different water compositions. Circle markers refer oil paraffin (60-62) mixtures, whereas triangular ones contain paraffin (54-56) instead. The solid, and dashed lines refer to pure ice and 10 wt.% MgSO 4 aqueous ice solution, respectively. The line colors refer to the moons, where the black and navy blue refer to Ganymede and Europa, respectively; red markers are for oil paraffin mixtures. . . . . . . 2.3 Static polarized microscopy with two cooling rates controlled by a Peltier cell. The field of view width is ∼1.25(mm). Both pictures show the same phase change material, an oil-paraffin mixture having 50 wt.% paraffin (54-56). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Each plot represents two subsequent temperature ramps cooling and heat-

. . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 Schematic representation of examples on two simple clathrate hydrate molecular structures. In (a), one methane CH 4 guest molecule is entrapped in a (5 12 ) cage. In (b), one carbon dioxide CO 2 guest molecule is entrapped in a 5 12 cage. The color code represents the atoms. Green: Carbon. Red: Oxygen. Cyan: Hydrogen [13]. . . . . . . . . . . . . . . . . . . . . . . . . 1.14 The three common clathrate hydrate crystal unit cell structures and their properties. a) Cage structures, spatial arrangements, and guest examples for the unit cells. b) Crystallographic characteristics of the clathrate hydrate structures CS-I, CS-II, and SH [14]. . . . . . . . . . . . . . . . . . . 1curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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  . . . . . . . . . . . . . . . . . . . . . . . . . 2.34 Schematic representation showing the light scattering of particles illuminated by a green laser sheet. Close ups on an interrogation window are shown at two subsequent time steps t 1 and t 2 . The red outline shows the highest cross correlation of the window at t 1 in the vicinity of one in t 2 . . Reynolds number Vs Rayleigh number for some tested case. Red circles are measurements with 15 wt.% Emkarox. Blue triangles are measurements with 5 wt.% Emkarox. Magenta and green data points are measurements with 99.5 and 90 wt.% Glycerol, respectively. The inset plot is a qualitative probability distribution function (pdf ) of the Rayleigh numbers on Titan and Ganymede in near present day heating. The mean of the relevant Rayleigh numbers for Titan and Ganymede are taken from Refs. [18, 12].
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Table 1 .1: Some thermal properties of H 2 O ice I h compared with clathrate hydrate structures

 1 

	I

6, where P & V vol are the pressure and the volume, T & S e are temperature and entropy, µ chem & N mol the chemical potential and number of moles and X ext external forces acted upon systems da sys .

  

	dU = P dV vol -T dS e +	µ chem dN mol -	X ext da sys	(2.6)

Table 2 .

 2 1: Physical and thermal properties of Emkarox HV45 in the pure form at room temperature.

	Property	Symbol	Value	Unit	Method	Instrument	
	Density	ρ	1090.5	(kg/m 3 )		Croda's safety sheet
	Density	ρ	1087 ± 0.2	(kg/m 3 ) 50mL Volumetric flask		
					& weighting machine		
	Specific heat	Cp	2000	(J/kgK) Differential Scanning	TI instruments
					Calorimetry		
	Thermal conduc-	k	0.184	(W/mK) TCi thermal conduc-	C-Therm TCi
	tivity				tivity analyser		
	Thermal expansion	α	7.75 × 10 -4	(K -1 )	PVT-α	LTeN in-house PVT-α
	Viscosity	η	figure 2.25	(P a.s)	Rotational rheometry	Thermo	Scientific,
						HAAKE Mars III

Table 2 .

 2 2: Reference values for thermal and physical properties of high pressure ice. The same properties are shown also for three Newtonian fluids that will be employed in this study, namely Emkarox aqueous solutions 5, 15, and 25 wt.%.

	Property	HP	ice	Property	Emkarox 5	Emkarox 15	Emkarox 25
		(Ganymede		wt.% aq.	wt.% aq.	wt.% aq.
		/ Titan)					
	η o (P a.s)	[10 14 ;10 17 ]	η m (P a.s)	[0.0017;0.003] [0.026;0.058]	[0.056; 0.419]
	ρ o (kg/m 3 )	[1250;1390]	ρ m (kg/m 3 )	1004	1014	1022
	C o p (J/kgK)	2850		C m p (J/kgK)	4070	3858	3639
	k o (W/mK)	1.58		k m (W/mK)	0.58	0.53	0.495
	α o (K -1 ) × 10 6	146		α m (K -1 ) × 10 6	235	292	349
	g o (m/s 2 )	[1.4;1.6]		g m (m/s 2 )	9.81	9.81	9.81

Table 2 . 3 :

 23 Variable ranges expected on Ganymede, and their corresponding scaling for 5, 15, and 25 wt.% aqueous solutions. The range boundaries are based on presumable planetary data with lowest and highest Rayleigh numbers, respectively.

	Variable	Ganymede's	Variable	Emkarox 5 wt.%	Emkarox 15 wt.%	Emkarox 25 wt.%
		HP ice			aq.	aq.	aq.
	t o (M yr)	1	t m	(s)	36 ∈ [1.6;167]	232 ∈ [10;1080]	376 ∈ [17;1746]
			Eq.2.10			
	H o (km)	200 ∈ [100;400]	H m	(cm)	10 ∈ [1;45]	26 ∈ [2.8;112]	32 ∈ [3;140]
			Eq.2.11			
	Q o (mW/m 2 ) 10 ∈ [4;40]	Q m (kW/m 2 )	6.59 ∈ [1;100]	1.9 ∈ [4.6;59.9]	1.2 ∈ [0.22;22.5]
			Eq.2.12			
	(∆T ) o (K)	20 ∈ [15;25]	(∆T ) m (K)	12.4 ∈ [9.3;15.5]	10 ∈ [7.5;12.5]	8.4 ∈ [6.3;10.5]
			Eq.2.7				

Table 2 .

 2 4: Variable ranges expected on Titan, and their corresponding scaling for 5, 15, and 25 wt.% aqueous solutions. The range boundaries are based on presumable planetary data with lowest and highest Rayleigh numbers, respectively.

	Variable	Titan's HP ice	Variable	Emkarox 5 wt.%	Emkarox	15	Emkarox	25
					aq.	wt.% aq.		wt.% aq.
	t o (M yr)	1	t m	(s)	36 ∈ [1.6;167]	232 ∈ [10;1080]	376 ∈ [17;1746]
			Eq.2.10				
	H o (km)	100 ∈ [50;200]	H m	(cm)	5 ∈ [0.5;22]	13 ∈ [1.4;56]		16 ∈ [1.7;70]
			Eq.2.11				
	Q o (mW/m 2 ) 5 ∈ [3;10]	Q m (kW/m 2 )	3.3 ∈ [0.18;18]	0.9 ∈ [0.27;9.1]	0.61 ∈ [0.16;5.6]
			Eq.2.12				
	(∆T ) o (K)	12 ∈ [6;20]	(∆T ) m (K)	8 ∈ [3.7;12.4]	6.5 ∈ [3;10]		5.4 ∈ [2.5;8.4]
			Eq.2.7					

Table 3 .

 3 1: Effect of the glycerin concentrations on the density, thermal expansion, thermal conductivity ratios as well as the convection type.

	Property ratio	0wt.% Glycerin	10wt.% Glycerin	20wt.% Glycerin	25wt.% Glycerin
	ρ b ρ t α b α t k b k t	1.0367 1.6434 0.6606	1.0204 1.5181 0.7055	1.0046 1.4105 0.7569	0.9968 1.3622 0.7856
	Experimentally				
	determined con-				
	vection type				

Table 4 . 1 :

 41 Variational form term corresponding to each matrix and vectors in the general matrix form (Equation4.[START_REF] Postberg | A salt-water reservoir as the source of a compositionally stratified plume on enceladus[END_REF] 

Table 4 .

 4 2: Physical properties of ice considered in the simulations.

	Property	Symbol	Value / Method of Computing	Unit	Reference
	Density	ρ i || ρw	equation of State	(kg/m 3 ) SeaFreeze [190]
	Specific heat	C p,i	2650	(J/kgK) [193, 18]
		Cp,w	3850	(J/kgK)	

Table 4 .

 4 3: Mantle heights, reference viscosities and maximum tidal heating for the self similarity test cases.

	Mantle height H(km) Reference viscosity ηo(P a.s) Maximum tidal heating Ξ max (W/m 3 ) Ice phases
	49	2.93 × 10 14	430 × 10 -9	VI
	75	1.05 × 10 15	235 × 10 -9	VI-V
	96	2.21 × 10 15	71 × 10 -9	VI-V
	110	3.26 × 10 15	47 × 10 -9	VI-V
	153	9.01 × 10 15	25 × 10 -9	VI-V
	250	3.90 × 10 16	6 × 10 -9	VI-V-III

Table 5 .

 5 1: Physical properties of I h used in the simulations.

	Property	Symbol	Value	Units
	Reference ice density	ρ i	920	(kg/m 3 )
	Water density	ρ w	1000	(kg/m 3 )
	Thermal expansion coefficient † Specific heat † Enthalpy of fusion	α c p h f	1.56 ×10 -4 × T 250 1925 T 250 333	(K -1 ) (J/kg.K) (kJ/kg)
	Ice grain size	d g	[1;3.5;5]	(mm)
	Surface porosity	(1 -d v )	0.6	-
	Thermal conductivity	k	equation 5.9	(W/m.K)
	† Kirk and Stevenson			

Table 5 .

 5 2: Mechanism properties of the composite rheology of ice I[START_REF] Goldsby | Superplastic deformation of ice: Experimental observations[END_REF][START_REF] Kalousová | Water generation and transport below europa's strike-slip faults[END_REF][START_REF] Harel | Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology[END_REF].

	Creep mechanism	A τ (P a -n m m s -1 ) n E a (kJ/mol) m
	Diffusion (Diff)	3.3 × 10 -10	1.0	50	2.0
	Grain Boundary sliding (GBS)	6.2 × 10 -14	1.8	49	1.4
	Basal Slip (Bas)	2.2 × 10 -7	2.4	60	0
	Dislocation (Disl) (Omitted)	4.0 × 10 -19	4.0	60	0

Accretion is the coming together and cohesion of matter under the influence of gravitation to form larger bodies.

Astronomical unit (a.u.): the average distance between the sun and Earth.

Morphology: the study of planetary landforms.

Jovian: related to the planet Jupiter.

Lineae: intersecting ridges and dark bands.

JUICE: JUpiter ICy moons Explorer, with Ganymede as the main target while Callisto and Europa are secondary targets.

Kronian or Cronian also known as Saturnian are the adjectives referring to Saturn. The ethymology of this word is derived from the Ancient Greek mythology: Cronus or Kronos.

Europa is a tidally locked with Io and Ganymede in an orbital 1:2:4 Laplace resonance. This contributes to the eccentricity of Europa as it is less massive than Ganymede, consequently it's orbit is more affected.

Precession is the orientation change of the rotation axis. Similar to a rotating gyroscope, a planetary body is subject to precession.

If the precession is not measured, a hydrostatic model can be derived to give an approximation.

Ice I h or simply ice I is the hexagonal ice formed at atmospheric pressure. Most ice on Earth is present in the form of ice I h .

Stress is defined as the force over and acting on a surface area inside an elementary volume. The mathematical expression of a general stress is expressed as a tensor to comprise the different directions of forces (i.e. components) and the different elementary surfaces being acted upon by each force component.

It is essential to note here that even though deformations are high, their rates are extremely low. Geomantle convections occur at timescales in the order of millions of years.

Strain is the deformation normalized by the unit length. Strain is also mathematically expressed as a tensor accounting for different displacement directions over different unit length directions.

Brine pockets occur when salt water freezes and the salt is locally expelled as it does not fit into the crystal structure. Brine pockets usually have a cylindrical shape as the denser salt water sinks inside a matrix of ice

Fugacity in chemical thermodynamics refers to an effective partial pressure in real gases that could replace the mechanical partial pressure.

Regolith is a layer of loose, heterogeneous superficial deposits on top of the lithosphere.

For simplicity other variables such as the thermo-dependence of the properties, their changes with

PS: Mathematically, ∂ 2 T and ∂T are of the same order. Not to be confused with ∂T 2 .

As explained in section 1.2 Ganymede's heating is mostly governed by the radiogenic decay from the rock mantle. The low eccentricity in Ganyemde's orbit results in mild tidal heating that can be neglected in the modeling

If the material absorbs the heat, the reaction is called endothermic

The release of heat often comes from an exothermic reaction. Crystallization is a relevant example of an exothermic reaction

Yield to heat: they become fluid when heated above the melting temperature Tm

Yield to stress: their micro-structure gets destroyed when sufficiently large stresses are applied onto them

Depending on the material, the deformation could be plastic/elastic/viscous/capillary, or a combination of these mechanisms.

As a reminder, the Arrhenius behavior appears a straight line in a logarithmic-linear plot.

Mixing Emkarox and water releases a lot of heat; gases become trapped in the mixture. It is important to allow degassing prior to use, which could take a few hours.

Glass foam consists of numerous small closed cells, meaning that wetting, due to possible leakage, does not compromise its insulation properties.

The resistor with the wire resistances are connected in series and therefore they share the same current. Power isP el = U el × I el = R el × I 2el . Therefore in this case, the resistance fraction is equal to the power fraction.

Because the flow fields are slow and the aquisition frequency is much faster than the flow, the rolling shutter used by CMOS sensors, as opposed to global shutters by CCD ones, in this case is acceptable.

The interrogation area is cross-correlated only in its vicinity at the new time step. The correlation area is often delimited by an overlap factor. Here, a 0.5 overlap factor is chosen. This means that the window is cross-correlated an additional 0.5 times its size in each direction.

The velocity fields are all measured in the same plane, namely 7(cm) from the frontal wall, and not the middle plane for optical purposes.

The viscosities and consequently the velocities vary spatially as per the thermo-dependence of each fluid.

By "contrast" here, it is referred to the high viscosity at lowest temperature over the low viscosity at the highest temperature.

The equivalent geological time depends on the assumed viscosity, as per the scaling arguments in section 2.1

The Rayleigh number can be seen at the time of dissipation over the time of buoyant convection.

The laser source was emitted from the left to the right. The light intensity is slightly smaller on the right.

The distribution of the tidal heating across the latitude depends on whether the ice mantle is in contact with the silicate mantle, or decoupled from it by a liquid ocean[START_REF] Tobie | Tidal dissipation within large icy satellites: Applications to europa and titan[END_REF]. For a high pressure ice mantle in contact with the silicate mantle, the tidal heat is maximal near the equator. On the other hand, the decoupled ice I h shell generates a maximal tidal heating at the poles[START_REF] Tobie | Tidal dissipation within large icy satellites: Applications to europa and titan[END_REF]. This could contribute to further difference in the equilibrium thickness with the latitude.

For each fluorescent materials, there exist ranges of wavelengths for which absorption, excitation and emission are high. The laser used in the current is of 532(nm).

The heat in the silicate mantle can largely differ between the poles and the equator, which also means a difference magmatism and the evacuation of CH4, CO4 and other molecules that could form clathrate hydrates.

Note here that the divergence (∇•) operator for instance reduces the first order Hilbert space to a simple Lebesgue space L 2 .

Notice here that by shifting the gradient operator from the pressure, to the divergence on the velocity weight vector field, both terms under the integral, namely p and ∇ • w, have become in the same order vector space.

N d is the number of dimensions. In a two dimensional system, the cyclic integral reduces to a one dimensional one.

The system matrix and vector sizes are thrice the size of the number of nodes n nodes in a 2D system, and four times in a 3D one, because four variables at every node are solved, namely vx, vy, vz and p

Volume in PVT, refers to the specific volume which is the inverse of the density.

Each case exhibits different outer ice shell and ocean thicknesses. Given that liquid water and ice have different densities, the hydrostatic pressure at the same depth will be different for each case. The pressure directly affects the melting point as well as other properties; for this reason, all the properties must be computed for each simulated case.

This issue was also discussed at the beginning of chapter 3 where the thermo-dependence of the modeling fluid was purposefully limited by employing dilute solutions.

The buoyant stress per unit length ∆ρg will engender the same divergence of the viscous stresses, as per the momentum equation. The latter are linearly proportionally to the strain rate. The strain rate i.e. ˙ =[START_REF] Anderson | Gravitational constraints on the internal structure of ganymede[END_REF] 2 ∇ v + ∇ T v ] itself must therefore be similar for the same density contrast. However when the length scales are reduced, the velocities must decrease to maintain the maximum ˙ = 1 2 ∇ v + ∇ T v ] allowed by the stresses.

Note that in the absence of source terms and phase change, the volume fraction equation can be written as ∂(dv ) ∂t + ∇(dv v) = 0 (as per the derivation in the previous chapter). Expanding the flux term,

This depends on the definition of the Rayleigh number if it is taken with respect to the temperature difference or the heat flux (cf. discussion in section 2.1).

Note here that the mesh is a mathematical and numerical entity, taken as a spatial reference, it is not physical. Consequently it has no inertia, and therefore the acceleration of the mesh has no dynamic implications.

Certaines lunes glacées telles que Ganymède, Titan et Callisto, contiennent d'immenses quantités d'eau qui créent des pressions hydrostatiques excessives. Dans certaines conditions de pression et de température, l'eau chaude peut cristalliser en polymorphes de glace à haute pression qui sont plus denses que l'eau liquide. Pour ces lunes, les estimations thermodynamiques suggèrent que des manteaux de glace à haute pression résident au fond de l'hydrosphère. Cela pourrait réduire l'habitabilité potentielle des océans au-dessus, en les isolant d'un contact direct avec un manteau rocheux. Ce manteau empêcherait l'enrichissement de l'océan de molécules intéressantes pour la formation et le maintien de la vie.
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from models as discussed by Dansereau et al. [START_REF] Dansereau | A maxwell elasto-brittle rheology for sea ice modelling[END_REF]. The slope q can be estimated as a function of the internal friction coefficient µ d as follows:

Subsequently one could estimate the compressive and tensile strengths, τ c and τ t respectively, as a function of q, µ d and the cohesion C d (in table 5.3): (5.23) and 

Numerical approach

The numerical model is developed within the context of this study in the Finite Element method, using the FreeFem++ library [START_REF] Hecht | New development in freefem++[END_REF]. The momentum and mass conservation equations are coupled in a fully implicit approach using the Galerkin approach, with Taylor-Hood [START_REF] Taylor | A numerical solution of the navier-stokes equations using the finite element technique[END_REF] elements that satisfy the well-known LBB (or inf-sup) condition. This choice of element order, naturally constrains the stress elements to be P1. Advective dominated transport equations (5.3 and 5.20) are however discretized using the Streamline Upwind/Petrov Galerkin (SUPG) approach, and P2 elements are chosen for the temperature field and the porous volume fraction of ice. The numerical method was detailed in section 4.2, for conciseness it will not be re-iterated in this chapter as well. The validation of the numerical method is in Appendix 6.2. The results presented herein are mesh independent, whereby a mesh sensitivity analysis has been carried out with three different meshes using BAMG the bidimensional anisotropic mesh generator developed by [START_REF] Hecht | Bamg: Bidimensional anisotropic mesh generator[END_REF] with an automatic mesh adaption after each time step based on the hessian of the temperature and porous volume fraction of ice. The maximum number of vertices for the mesh adaption retained in this study is 100,000.

Appendix A: Numerical Validation

The developed numerical code must be validated with well known benchmarks to acquire a decent credibility. In this study, several cases are validated to check the robustness and accuracy of the numerical method. The well known classical benchmarks for buoyancy driven flows are the Rayleigh-Bernard and Rayleigh Taylor instabilities. These cases are validated with varying viscosities and temperature dependent ones.

The first benchmark in this study is the Rayleigh Taylor problem with two immiscible fluids. This case will be studied thrice. The first case is isoviscous; whereas the second and third have viscosity ratios of 10 and 100 respectively. The computational domain is shown in figure 6.2 (a) where the fluid on the bottom is the buoyant (less viscous in the second and third case). The computational domain is a two dimensional rectangle with and aspect ratio of 1:λ w . The initial perturbation is a cosinusoidal function as follows: 0.02 × cos(πx/λ w ). The value of λ w = 0.9142 is chosen as a constant for the three cases and it correspond to the harmonic wavelength generating the largest growth rate for the isoviscous case [START_REF] Van Keken | A comparison of methods for the modeling of thermochemical convection[END_REF]. The governing equations solved for the first three cases of the Rayleigh-Taylor instability are the mass conservation, momentum equation in addition to the thermal and multi-component transport, in equations 6.1, 6.2, 6.3 and 6.4, respectively.

Appendix B: Diffusion creep and composite rheology

In chapters 1 and 5, the dominance of diffusion creep in the composite rheology of ice I was evoked from a previous study by Harel et al. [29]. This dominance was also checked and confirmed in this study, where it appears mostly in the convective layer. The other mechanisms mainly, Grain Boundary Sliding (GBS) and Basal Slip appear only in the conductive stagnant lid. Figure 6.8 shows two simulated cases of near present day heating on Europa, using the lowest grain size d g = 1(mm). The example on the top exhibits excessive tidal heating pertinent to the poles of Europa. This example shows a relatively large stagnant lid. The example on the bottom refers to lower tidal heating, pertinent to the equator, with a brittle porous layer of 2(km). This example shows a very small stagnant lid, which could explain the surface morphology of Europa. The isotherm of 150(K) is purposefully highlighted in the thin purple line, around which the dominance of the diffusion creep ceases to be important. For larger temperatures, the diffusion creep effect is mostly taken by the constituitive equation 1.3 by Goldsby and Kohlstedt [START_REF] Goldsby | Superplastic deformation of ice: Experimental observations[END_REF]. It should however be noted that the Goldsby and Kohlstedt's measurements were done at temperatures larger than 170(K). Unfortunately their dominance appears here at ranges of temperature that were not directly measured. This is important to mention because ice, like most material, becomes excessively brittle at colder temperatures. This causes large changes in the rheology that have been documented for ice. For this reason, efforts should focus on characterizing the rheology, especially at lower temperatures and relevant stresses. This is currently not a trivial matter, due to experimental constraints. This diffusion creep dominance at warmer temperatures was also reflected upon for simulations in chapter 4, where only an Arrhenius diffusion creep rheology was prescribed. High pressure ice mantles are relatively much warmer than outer ice shells, where the temperature does not deviate from the melting curve by more than 30(K). Using ice I as an analogy, one could presume that diffusion creep is the dominant rheological mechanism for convection at high pressure ices.