RÉSUMÉ LONG

Les architectures multi-coeurs présentent aujourd'hui une grande complexité du fait du grand nombre de ressources les constituants. Afin de gérer cette complexité et de répondre à des contraintes de performances ou de consommation d'énergie, il est nécessaire d'implémenter des gestionnaires dynamiques (e.g., mapping de tâches, adaptation dynamique de la fréquence et de la tension). Par exemple, les smartphones ont été conçus en mettant des architectures complexes dans un espace limité tout en s'assurant du bon fonctionnement de l'appareil (i.e., durée de vie de la batterie, température du processeur). Cependant, dans la majorité des cas, ces gestionnaires n'ont pas été conçus pour la sécurité et présentent des vulnérabilités.

Durant les dernières années, un grand intérêt s'est porté sur les vulnérabilités matérielles présentes lors de la conception du circuit. Différents types d'attaques ont fait surfaces (e.g., Meltdown [START_REF] Lipp | Meltdown[END_REF], Spectre [START_REF] Kocher | Spectre Attacks: Exploiting Speculative Execution[END_REF], Clkscrew [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF]) dont le but principal est d'extraire une information cachée (e.g., une clef de chiffrement). Ces attaques s'avèrent de plus en plus dangereuses étant donné que les systèmes embarqués (comme les smartphones) sont aujourd'hui utilisés pour des opérations sensibles, comme par exemple, des applications bancaires, paiement par téléphone, suivi de santé, ou les véhicules autonomes.

Cette thèse vise donc d'une part à étudier les gestionnaires actuels des architectures multi et many-core et à évaluer de possibles vulnérabilités. Il existe peu des travaux étudiant ces gestionnaires dans le cadre de la gestion d'architectures simples qui nous ont servis de base pour étudier leur pertinence/adaptation aux systèmes plus complexes de type many-core. D'autre part ces travaux visent à proposer et évaluer de possibles contre-mesures adaptées à ce type d'architecture. Dans cette thèse, nous nous intéressons à deux types de gestionnaire dynamique : le gestionnaire d'énergie et le gestionnaire de température. Trois attaques différentes sur ces deux gestionnaires sont ainsi présentées ainsi que de possibles contre-mesures.

Dans un premier temps, nous nous sommes intéressés à évaluer les vulnérabilités des gestionnaires d'énergie actuels. Ces gestionnaires permettent de réduire la consommation d'énergie en modifiant dynamiquement la tension et la fréquence de l'architecture, communément appelé DVFS (Dynamic Voltage and Frequency Scaling). Ce gestionnaire est composé de deux parties : i) Une partie logicielle composée d'une application qui gère la consommation énergétique de l'appareil en choisissant un couple de tension et fréquence. On retrouve aussi un driver kernel qui assure la communication entre l'application et la partie matérielle. ii) Une partie matérielle composée de régulateurs fixant les tensions d'alimentation des c/oe urs et de PLLs (Phase Locked Loop) fixant leurs fréquences.

Le contrôle sur la tension et la fréquence joue un grand rôle dans la gestion d'énergie d'un appareil. Cependant, ces deux grandeurs sont liées à la stabilité du système, et un microprocesseur ne peut fonctionner correctement que lorsque la fréquence et la tension respectent certaines conditions. En effet, dans un système combinatoire, la période de l'horloge doit être plus grande que le temps de propagation des signaux dans le circuit ainsi que le temps de setup et de hold des bascules. Une modification malveillante de tension sans adapter la fréquence peut donc rendre le système instable et générer des erreurs. Une première attaque sur la gestion malveillante de régulateurs DVFS a été publié en 2017 [ [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF]] dans une architecture de ARM. Cette attaque se base sur le principe précèdent et a pour but d'injecter des erreurs dans une tâche victime (e.g., chiffrement AES, RSA), ce qui permet de déduire les informations qui nous intéressent notamment la clef cryptographique secrète. Il existe aussi une autre attaque PlunderVolt [START_REF] Murdock | Plundervolt: Software-based Fault Injection Attacks against Intel SGX[END_REF] exploitant la même vulnérabilité sur une architecture Intel.

Le but principal de cette contribution est d'exploiter cette vulnérabilité différemment. En effet, des expérimentations ont démontrés qu'un changement malicieux de tension bloque l'appareil complètement à partir d'un certain seuil. Il est donc possible d'utiliser cette vulnérabilité comme une attaque par déni de service et peut même rendre un appareil inaccessible. Dans un scénario d'exploitation possible, en considérant un smartphone comme cible de l'attaque, un attaquant peut modifier la tension avec une application malicieuse et bloquer l'accès à l'appareil. Par la suite, l'attaquant peut demander une rançon à la victime pour débloquer son appareil.

Cette attaque a été implémentée sur une carte Odroid XU4 [START_REF]Exynos 5422[END_REF] équipée d'un Exynos 5422 (ARM A7, A15) et une carte Hikey 960 équipée d'un Kirin 960 (A73 et A53). Ces deux cartes récentes utilisent la technologie big.LITTLE de ARM. Cette dernière utilise deux clusters séparés physiquement (un cluster big pour les hautes performances, et un cluster LITTLE pour l'optimisation de la consommation) chacun avec un régulateur de tension et un générateur de fréquence.

Finalement, l'implémentation de l'attaque se fait en 4 étapes : 1) Il faut une application malicieuse avec un accès privilégié installée sur l'appareil victime. Cet accès privilégié dans un téléphone peut s'être procuré facilement si la victime utilise une ROM customisée (e.g., Magisk) ou même en utilisant d'autres vulnérabilités classiques des téléphones. Ces utilisateurs seront la cible principale de cette attaque. 2) Un module afin de contrôler la tension est nécessaire, dans un cas général, il suffit d'utiliser l'API kernel pour les régulateurs. Celle-ci nous permet de contrôler les régulateurs justes en utilisant le nom assigné par le constructeur. Dans le cas de la Hikey960, un module permettant de contrôler la tension est déjà présent. 3) En utilisant le module précédent, il est possible de bloquer l'appareil en changeant la valeur de la tension en dessous du seuil nécessaire pour le fonctionnement étant donné qu'il n'y a aucune limite logicielle ou matérielle. 4) Finalement, il suffit de bloquer l'appareil de manière permanente en chargeant le module à chaque démarrage. Pour ce faire, il suffit d'utiliser l'application malicieuse pour détecter le démarrage et de charger le module malicieux avant même que la victime ne puisse débloquer son téléphone.

Cette attaque montre qu'il est possible d'utiliser malicieusement les gestionnaires d'énergie dans le cas où la précision n'est pas nécessaire pour injecter les fautes et extraire de l'information. La contre-mesure la plus directe de cette attaque serait de rajouter des limites aux valeurs de tensions possibles en fonction de la fréquence. Une autre contremesure serait de limiter l'accès aux régulateurs et que seule une application exécutée dans un environnement sécurisé (TEE -Trusted Execution Environment) puisse changer la tension.

Dans une deuxième partie, nous nous sommes intéressés aux gestionnaires de température. Ces gestionnaires sont aujourd'hui présents dans tous les systèmes afin d'assurer que les processeurs restent dans une température idéale et ainsi éviter la surchauffe et la détérioration des circuits intégrés. Normalement, des moyens de refroidissement actif (e.g., radiateur, ventilateur) sont utilisés. Cependant, dans le cas d'un téléphone mobile ou des appareils qui priorisent la portabilité, il n'est pas possible d'implémenter ces moyens. Dans ce cas, des outils de refroidissement passif sont utilisés, généralement, c'est la fréquence qui est réduite afin de refroidir le processeur.

Afin que les gestionnaires de température puissent prendre des décisions, ils doivent être capable de mesurer activement la température du processeur, pour ce faire, des capteurs de température ont été implémentés sur la plupart des processeurs modernes. Les capteurs sont généralement utilisés pour aider les gestionnaires mais dans notre travail, il a été possible de les utiliser afin d'extraire de l'information d'un programme victime. Dans les travaux déjà publiés, la température est généralement utilisée comme canal caché [START_REF] Jayaram | Thermal Covert Channels on Multi-core Platforms[END_REF] afin de transmettre de l'information, dans ce cas aucune information n'est extraite, un autre travail a utilisé la température pour déduire le type d'applications qui est exécutée sur une architecture victime (e.g., explorateur internet, chiffrement RSA, . . . ) mais aucune information au niveau des instructions ou opérandes n'a été extraite.

Dans notre scénario d'attaque, un attaquant doit caractériser l'effet d'une caractéristique d'une information secrète (une clef de chiffrement AES 128 bits dans notre étude) sur la température. Pendant la caractérisation, l'attaquant doit avoir accès à une copie de l'architecture cible et d'être capable de modifier la clef de chiffrement. Pendant l'attaque, il doit réaliser des mesures de températures à distance sur un appareil victime lors de l'exécution d'un chiffrement AES 128 bits avec une clef inconnue. L'attaquant peut par la suite analyser les mesures et les comparer à la caractérisation réalisée afin d'extraire des caractéristiques de la clef lui permettant de réduire l'espace d'exploration et même de réaliser une force brute dans certains cas.

Afin d'implémenter cette attaque, il faut tout d'abord caractériser la cible. Pour ce faire, des mesures ont été réalisés afin d'observer l'effet des instructions et des opérandes sur la température, la cible de cette expérimentation est le microprocesseur STM32F303 [START_REF][END_REF]. Dans ce cas, l'accès au capteur de température a été fait par DMA (Direct Memory Access) afin de limiter les effets de la mesure. Dans le cas d'un processeur multicoeurs, il est possible de réaliser les mesures à partir d'un autre coeur. ce faire, la distance de Hamming (nombre de bits qui ont changé entre deux états d'un registre) a été étudiée. Tout d'abord, l'ADDKEY est calculée entre une valeur fixée (celleci représente un octet de la clef de chiffrement) et une autre qui varie (celle-ci représente un octet du texte à chiffrer), étant donné que les calculs se font sur 8 bits, il était possible de faire les mesures pour toutes les valeurs possibles du deuxième opérande. Le résultat est enregistré dans un registre 'r' qui est par la suite utilisé pour calculer la SBOX et pour enregistrer les résultats de ce calcul. La distance de Hamming caractérisée est donc celle entre les deux états du registre 'r'. Finalement, en observant les mesures de températures effectuées, il est clairement possible de distinguer les 9 distances de Hamming possible pour des opérandes de 8 bits.

La caractérisation a permis de corréler la température aux instructions et aux opérandes, de plus, la dernière expérimentation nous a même permis de caractériser l'effet de certaines instructions d'AES sur la température, dans ce cas la clef de chiffrement étant connue. Afin d'utiliser cette caractérisation dans une attaque sur un chiffrement AES, il faut que l'attaquant soit capable de re-exécuter indifféremment l'ADDKEY pour un octet spécifique comme lors de l'expérimentation réalisée. Pour ce faire, nous avons utilisé des techniques similaires à SGXSTEP [START_REF] Van Bulck | SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control[END_REF], le principe est de déclencher des interruptions périodiquement à la fin de l'exécution des instructions à l'aide d'un compteur matériel. Finalement, l'attaquant doit effectuer des mesures de température à distance sur l'appareil victimes pendant un chiffrement à l'aide d'une application malicieuse ayant accès aux capteurs. Dans ce cas, la clef n'est pas connue, cette mesure est donc comparée à la caractérisation déjà réalisée (la clef était connue) et cette comparaison permet de déduire quelle distance de Hamming à une valeur de température proche ou égale. En utilisant la distance de Hamming déduite, il a été possible de réduire l'espace d'exploration de 98.27% dans le meilleur des cas pour un octet de la clef et 74% dans le pire des cas.

Pour cette attaque, deux contre-mesures ont été proposé. La plus simple est de réduire la précision des capteurs de températures mais cela augmente seulement le nombre de mesures nécessaires pour réaliser l'attaque, la deuxième contre-mesure serait de limiter l'accès aux capteurs à des applications fiables (en TEE par exemple) tout comme pour les régulateurs dans l'attaque sur les gestionnaires d'énergie.

La troisième contribution de cette thèse est de réaliser une attaque similaire avec les capteurs de température sur une architecture plus complexe, la Hikey960 [START_REF]Hikey 960[END_REF] présenté précédemment, et un chiffrement RSA 2048 bits. Le scénario de l'attaque est le même, un attaquant caractérise la cible et identifie l'effet d'une certaine caractéristique de la clef de chiffrement (dans ce cas, la clef est connue) sur la température. Par la suite, il effectue des mesures à distance et utilise ces mesures avec la caractérisation réalisée afin de déduire des caractéristiques de clef et de réduire l'espace d'exploration.

Sur cette architecture complexe, une simple étude et comparaison de température n'était pas suffisante, il a été nécessaire d'utiliser des analyses plus poussées, notamment, de l'apprentissage automatique. Deux algorithmes ont été utilisés : i) un premier algorithme qui filtre les mesures, VAE (Variational Autoencoder), ce dernier est composé de deux réseaux de neurones entièrement connecté dont le but est de compresser l'information et puis de la décompresser. Les neurones d'entrée et de sortie doivent donc avoir la même donnée mais le nombre de neurones diminue progressivement jusqu'à 4 neurones dans notre cas et puis augmente jusqu'à attendre le même nombre de neurones d'entrée. Cette phase permet d'éliminer le bruit. ii) Un deuxième algorithme pour clustériser les données, PCA (Principal Component Analysis), ce dernier traite les données filtrées précédemment par le VAE et forme des clusters en fonction de la caractéristique de la clef. Dans notre cas, la caractéristique utilisée est le poids de Hamming de la clef. Finalement, cette attaque a été validée sur certain poids de Hamming et en utilisant l'analyse proposée, il était possible d'identifier cette caractéristique dans un scénario réel. Cependant, le nombre de cas possible restant ne permet pas de réaliser une brute-force et nécessite d'autres approches additionnelles pour identifier la clé secrète (de 2048 bits pour rappel).

Dans cette thèse, nous avons exploré de possibles vulnérabilités présentes dans les gestionnaires dynamiques requis par les architectures embarquées modernes. Il a été prouvé à travers trois attaques qu'il est possible de malicieusement exploiter ces gestionnaires, et quelques contre-mesures ont été proposés. Les analyses proposées peuvent être poussées plus loin surtout dans la dernière contribution, le VAE peut-être aussi utiliser pour identifier l'effet d'une certaine caractéristique (un poids de Hamming spécifique) même si aucune mesure n'a été fait pour celle-là tant que l'on a assez de mesures pour les autres poids de Hamming. Cette analyse peut être aussi utilisée pour les attaques de consommation dans le cas où le nombre de mesures est limité. 
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INTRODUCTION

Embedded systems architectures are becoming more and more complex to support the ever increase of algorithmic complexity requirements. This led to an increase in the number of transistors within chips, the number of logical cores and their running frequencies which gave rise to an increase in energy consumption and heat generated by the chips. This is problematic for devices such as smartphones, these devices were designed to fit complex architectures in the smallest space while ensuring that the processor runs in stable conditions. This includes maximizing the battery life and making sure that the processor does not overheat (Temperature goes beyond the limit specified by the manufacturer). This phenomenon is even more important for advanced 3D stacking technologies [START_REF] Black | Die Stacking (3D) Microarchitecture[END_REF]. Moreover, overheating also cause chip to age faster [START_REF] Subramanian | Managing the Impact of On-chip Temperature on the Lifetime Reliability of Reliably Overclocked Systems[END_REF], [START_REF] Ayse | Evaluating the Impact of Job Scheduling and Power Management on Processor Lifetime for Chip Multiprocessors[END_REF]. Thus, it was necessary to manage both of the temperature and power consumption, for this different dynamic managers were deployed.

As for the increase of logical cores, it was also necessary to implement resources managers to optimise their usage and have a better scheduling. To summarize, it is necessary to use dynamic managers to fully exploit state-of-art architectures. The goal of these dynamic managers is either to optimize resources usage (e.g., cores, memory) and/or to reduce the energy consumption of the system under performance constraints. However, these managers have not been designed to be secure and present vulnerabilities.

In recent years, there has been an increase in the number of attacks based on hardware vulnerabilities (e.g., Meltdown [START_REF] Lipp | Meltdown[END_REF], Spectre [START_REF] Kocher | Spectre Attacks: Exploiting Speculative Execution[END_REF], Clkscrew [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF]). This type of attacks have shown to be dangerous for everyone including mobile devices for example, this can highly affect the privacy of the users. Moreover, smartphone are used more and more for sensitive operations such as payment, banks applications and healthcare. Furthermore, this is not limited to mobile phone and can be extended to IoT, connected devices (e.g., autonomous car, smartTV) and even health electronics.

In this thesis, we aim at evaluating the security of different dynamic managers used in today's devices, study possible vulnerabilities and finally discuss some countermeasures. We are going to focus on two important managers present in almost every device today: energy and temperature managers. Three different attacks targeting the two managers Introduction are presented in this work and implemented on different target devices. Two of the target devices are processors used by the smartphone industry, the Kirin960 [START_REF]Hikey 960[END_REF] and the Exynos5422 [START_REF]Exynos 5422[END_REF], these targets are heterogeneous octa-cores based on ARM architectures while the third target is an STM32F303 [START_REF][END_REF] single core mainly used for IoT.

The rest of the thesis is divided as follows:

-Chapter I: Background and State of art presents the context of our work and contains the basics functioning of the dynamic managers we target in the other chapters. This chapter also presents related State-of-Art vulnerabilities and previous attacks on the managers.

-Chapter II: Maliciously exploiting energy management presents our first contribution. It presents a case of malicious usage of energy management, more specifically, the Dynamic Voltage & Frequency Scaling mechanism (DVFS). Experimentations shows that it is possible to remotely lock out a device, denying access to all services and data, requiring for example the user to pay a ransom to unlock it. As the main target of this exploit is embedded systems, we demonstrate this work by its implementation on two different commercial ARM-based devices (Odroid XU4 and Hikey960). Finally, some possible countermeasures were discussed.

-Chapter III: HEXotherm presents our second contribution. It targets IoT devices and uses the integrated temperature sensors to extract secret information. We demonstrate the feasibility of this attack and show that it is possible to use the extracted information to deduce characteristics on an AES secret key. Our different experiments on a real hardware platform show a reduction from 74% in the worst case scenario to 98.27% of the exploration space for each byte of the 128 bits key in the best case scenario.

-Chapter IV: Using machine learning with temperature sensors presents the last contribution of this work. It is an extension of the previous work and it target a more complex architecture. In this chapter, we prove through experimentations that it is possible to use machine learning techniques to analyze the temperature issues from embedded sensors and use it to infer the hamming weight of the private key of the RSA algorithm.

-Conclusion: resume all the contributions of this thesis and propose possible further works to perform.

Chapter 1

BACKGROUND AND STATE OF THE ART

Over the years, there has been a continuous increase in microprocessor's performance to follow up with the increase of application complexity as can be seen in Figure 1.1. During a first phase, the focus was on increasing the performance of single cores/processors and mainly through the increase of their frequency. However, due to the technological constraints the increase in frequency stagnated, a second phase started where the focus switched toward the increasing number of logical cores per microprocessor. During both phases, the density of the integrated circuit and its energy consumption continued to increase with the heat emitted. Moreover, with the continuous increase in available resources, it has been necessary to implement dynamic managers. Those managers have 3 main usages and can be separated into the following types:

-Resources manager in order to optimize resources usage and increase general performance.

-Energy manager which intend to reduce energy consumption, improve system portability and increase battery life.

-Temperature manager regulate temperature in order to avoid overheating and increase the chip life time.

Energy managers

In the embedded system industry, energy management has become a necessity to optimize system performance and reduce energy consumption to improve system portability, and increase battery life.

An efficient energy manager is composed of a software part that controls a hardware dedicated block. The software is generally a decision-making algorithm monitoring different parameters of the architecture (e.g., the CPU load, battery level and current energy consumption). On the other hand, the hardware part is responsible for applying the decisions and collecting information on the current state of the microprocessor using embedded sensors.

The amount of energy consumed in a system is the product of power and time. It refers to the total amount of resources utilized by a system to complete a task over time. In the case of an integrated circuit, power P at the instant t is directly proportional to the product of operating frequency F, voltage V and C the switching capacity of the circuit [START_REF]Dynamic Voltage and Frequency Scaling on ARM architectures[END_REF]:

P t ≡ C * V 2 t * F t . (1.1)
It is clear at this point that modifying the frequency and specially the voltage can drastically reduce the power consumption in exchange of reducing the computation speed. Nowadays, the most used energy management mechanism that implements this feature is the Dynamic Voltage & Frequency Scaling (DVFS) [START_REF] Da Patterson | Computer Architecture: A Quantitative Approach[END_REF] DVFS DVFS was first introduced in 1994 [START_REF] Da Patterson | Computer Architecture: A Quantitative Approach[END_REF] and is one of the most used energy saving mechanisms today, especially in embedded systems such as in the smartphone industry where portability and increasing the device's battery life is of most importance.

DVFS relies on the ability to control frequency and voltage levels of a core or a cluster of cores in a System On Chip (SoC) in order to dynamically trade processing speed for energy consumption according to the system requirements. DVFS is based on several part as shown in Figure 1.2 and Figure 1.3. 
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Hardware part

In Figure 1.2, the hardware components required include at least one voltage regulator and Phase Locked Loop (PLL). Voltage regulators are part of the Power Management Integrated Circuit (PMIC), generally a dedicated component outside of the SoC due to analog part in regulators, while PLL are more often within the SoC. There are different implementations of the hardware part depending on the architecture. For example, in ARM big.LITTLE architecture, the PMIC and PLLs use the same voltage and frequency for the 4 cores within each cluster while in most INTEL and AMD processors each core's frequency and voltage values are independent from other core. This choice of having all cores independent is rarer in embedded systems, especially in ARM based architectures. However, it is still possible to find old devices using individual regulators for each core (e.g., Qualcom implementation of Snapdragon 800 [START_REF]Snapdragon 800[END_REF]). The frequency of core or cluster is controlled by the PLL circuit built in the SoC. 

Software part

The software part of the manager is generally composed of two different levels as shown in Figure 1.3. The first layer running in the user space represents the energy aware application which has a set of predefined frequency and voltage couples called Operating Points (OP) predefined by the manufacturer. The application will select between those OP depending on different parameters. For example, when the device is idle or the load is low, both frequency and voltage are reduced to save energy. It also depends on the current level of battery depletion and the energy governor chosen by the user (either prioritizing performance or battery life). The second layer running in the kernel space is composed of a kernel module and a driver responsible for communicating to the hardware the frequency and voltage of the chosen OP. Most of the manufacturers use their own drivers for the PMIC, while the frequency is mostly controlled by open-source software like cpufreq [cpufreq] available in Linux-based Operating Systems (OS).

The frequency and voltage are not independent from each other as they are together 1.1. Energy managers responsible for the stability of the system. In a sequential system, the propagation time T prop in the logic units highly depend on the voltage and the higher its value, the shorter the propagation time is in the circuit. On the other hand, the period of the clock T clock is used by the FlipFlops (FF) to lock on the data. As shown in Figure 1.4, the circuit has logic units between two FFs. For the device to function properly, the second FF at the output of the logic units must lock on the data one tick after the first FF at the input. Thus, T clock must be superior to the maximum T prop in the circuit plus a Constant (to take into account possible variation due to temperature and other factors) to ensure that both FFs are synchronized. In general, a device equipped with DVFS has predefined Figure 1.4 -The time constraints condition is represented through the schematic, by showing how the frequency is dependant on the voltage OP predefined by the manufacturer to guarantee that the processor works in perfect and stable conditions. These OP can be changed in the kernel source code but the frequency and voltage can be modified using specific Kernel API (e.g., Voltage and current regulator API) or functionalities made available by the vendor. This make it possible to maliciously change the voltage or frequency beyond the recommended range. Thus, breaking the timing constraints and introduce faults within a device. Using a type of Side Channel Attack (SCA) called Differential Fault Analysis (DFA) [START_REF] Shamir | The next Stage of Differential Fault Analysis: How to break completely unknown cryptosystems[END_REF] it was possible to exploit those faults to extract secret from a device.

Chapter 1 -Background and state of the art

Side Channel Attacks

Side channel attacks are well known practices which goal aims at using different possible sources of information to extract secret information (e.g., encryption keys). The work [START_REF] Johnson | Introducing The 'Unified Side Channel Attack -Model' (USCA-M)[END_REF] summarize the state-of-art of SCA methods and techniques in Figure 1 -Memory based attacks: attacks based on attacker's ability to monitor cache or memory accesses made by the target in a shared physical system.

-Timing attacks: attacks based on measuring the time required to perform certain computations.

-Power attacks: attacks that make use of the variation of the power consumption induced by the hardware during the computation of target programs like AES and RSA -Electromagnetic attacks: attacks based on leaked electromagnetic radiation during specific operations..

-Differential fault analysis: in which secrets are discovered by introducing faults in a computation.

All those attacks utilize information (leakage) created or induced by certain operations. Those leakages hide information about the current state of the processor and what is 1.2. Side Channel Attacks being computed, thus, using specific analysis, it is possible to infer secret data such as encryption.

In the previous Section 1.1, it was shown that it is possible to inject fault within a device by maliciously exploiting DVFS [START_REF] Murdock | Plundervolt: Software-based Fault Injection Attacks against Intel SGX[END_REF], [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF], [START_REF] Qiu | VoltJockey: Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-Core Frequencies[END_REF]. Thus, we will now focus on DFA as it used to recover secrets by introducing fault within the victim device.

Differential fault analysis

DFA is a type of side channel attacks using cryptanalysis. This attack uses fault injection during the victim program execution, mainly encryption, to obtain faulted cyphertexts, this faulted date are then used to reveal the internal states of the target processor. The fault can be created using different methods such as high temperature, unsupported supply voltage or current, excessive overclocking, strong electric or magnetic fields, or even ionizing radiation to influence the operation of the processor. However, it is important to have a certain control and precision over the fault injection in order to perform this analysis. In [START_REF] Shamir | The next Stage of Differential Fault Analysis: How to break completely unknown cryptosystems[END_REF], the authors recovered an AES secret key using DFA. In this case, the fault must be injected during a specific part of the encryption computation to be able to recover the key. This targeted part varies depending on the byte of the encryption key we wish to infer. For example, to infer the last 4 bytes of the 9th subkey a fault must be introduced during the key expansion during the computation of 9th subkey, just before the computation of the 10th subkey.

In [START_REF] Shamir | The next Stage of Differential Fault Analysis: How to break completely unknown cryptosystems[END_REF], the full AES key of 128 bits was obtained using around 250 faulted cyphertext. However, having the ability to inject faults does not guarantee a successful attack as a certain precision is required. This precision depends on the target device but as seen previously, the fault needs to introduce during dozens of operations within a specific part of the target program. In the case of the AES, the fault is generally injected during the key expansion. Moreover, this type of attack usually requires a physical access to the target device, as most precise fault injection tools can only be used by interacting with the target device, for example, injection by laser. However, recently, a new type of attacks proved that it is possible to successfully execute a remote DFA through the exploration of DVFS capabilities. 

Attacks exploiting DVFS

As shown in Section 1.1, timing constraints conditions are required to ensure the stability and error free sequential circuits. However, when the frequency is too high, or the voltage is too low the constraints can be broken. This will result in the input and output flip-flop desynchronization and in the introduction of faults (meta stability) during the execution of certain instructions in the CPU.

The work presented in [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF] was the first to introduce this vulnerability and to exploit it, to remotely inject faults into a processor core. The authors fixed the voltage of the target device and changed the frequency to break the timing constrains. Using this vulnerability, they prove that it is possible to use DFA to recover secret encryption keys. The target of [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF] is the smartphone Nexus 6, using 4 of Krait 450 cores based on the ARM Cortex A53 architecture. The 4 cores have separate voltage and frequency islands, thus, when the attacker modifies the frequency to cause instability and to inject faults within a certain core (running the encryption), the attacker is not affected and continue running on stable conditions. The study of the fault model is also provided, for this purpose, the authors used delay loops to control when the faults are injected and kept track on where the fault occurred. Using this data, they were able to establish a model showing the most probable part to be affected of the AES encryption algorithm depending on the delay before breaking the time constraints. Finally, the attack is executed as shown in Figure 1.6.

The first target of this work was an AES 128 encryption, using the embedded instruction counter within the ARM cores, the attacker was able to have a certain control over the fault injection. This attack is not guaranteed to work all the time as the fault does not always occur within the specific part of the victim program.

This technique was also used to corrupt the execution of an RSA signature [20] verification algorithm by combining it with a cache side channel attack (Prime+Probe)é [START_REF] Shusterman | Prime+Probe 1, JavaScript 0: Overcoming Browserbased Side-Channel Defenses[END_REF]. Using this second attack, the authors were able to follow the execution of the RSA and fault certain parts of the verification causing it to allow the execution of a malicious application within an ARM TrustZone [22] (trusted execution environment of ARM).

The previous work focused on fixing the voltage of the target core and modifying the frequency, in another work [START_REF] Qiu | VoltJockey: Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-Core Frequencies[END_REF], they proved also the feasibility of this attack by fixing the frequency and modifying the voltage to fault the victim. However, they used the same target device and never proved its feasibility on more recent and complex SoCs. On the other hand, in [START_REF] Murdock | Plundervolt: Software-based Fault Injection Attacks against Intel SGX[END_REF], the authors extended this work to Intel processors as their architecture This kind of fault injection does not require any kind of physical access to the system as DVFS can be remotely manipulated. However, compared to classical fault injection, one of the main challenges of this technique is the necessity for very high fault injection precision. As seen in Section 1.2.1 faults must be injected within specific part during a few instructions. Furthermore, accessing the voltage and frequency regulators requires for the attacker to have root privileges.

A different work in [START_REF] Bossuet | DVFS as a Security Failure of TrustZoneenabled Heterogeneous SoC[END_REF] uses the DVFS mechanism as covert channel. The main goal of this usage is to secretly transfer information from a malicious application being executed in the secure world of the ARM TrustZone (or from a non-secure third-party IP), to a malicious task executing in the "normal" (i.e., non-secure) world by using the DVFS mechanism as a hidden channel of communication. The data to be transmitted being encoded into different levels of voltage or frequency. For example, the bit '0' can be encoded into a low level of voltage, while '1' can be encoded into a high level of voltage. The application on the normal world reads the current value of the voltage or the frequency and infer if the transmitted bit is '0' or '1'. This technique does not require any of the previous attack precision as its goal is not to steal information, but an already corrupted task is required to be executed within the secure world of the processor.

Chapter 1 -Background and state of the art

The same researcher group started to work on possible leads to prevent the malicious usage of energy managers. In 2019, they proposed a machine learning algorithm to detect malicious usage of the DVFS [START_REF] Zhang | Blacklist Core: Machine-Learning Based Dynamic Operating-Performance-Point Blacklisting for Mitigating Power-Management Security Attacks[END_REF], this requires to add an integrated circuit which separate malicious changes to voltage and frequency from the rest, thus, protecting the potential target program. Moreover, a different work proposed a chip called Fame [START_REF] Fame | Fault-attack Awareness using Microprocessor Enhancements[END_REF], in order to detect and mitigate hardware faults which also applies to fault introduced by the malicious usage of the DVFS. Both solutions are interesting but require adding an integrated circuit to the SoC. These and other possible countermeasures are further discussed in Chapter 2. In this work we target very recent commercial devices, that do not encompass any additional hardware for fault injection mitigation.

In related works, when maliciously manipulating energy management mechanisms, it is necessary to have high precision to target specific instruction in the victim task when introducing faults. In Chapter 2, we explore the possibilities of a malicious manipulation of DVFS mechanisms on recent commercial devices under realistic conditions. Contrary to these previous works, our goal is not to steal secret information on the device but to take control and make every device service and data inaccessible.

Temperature managers

Same as energy management, temperature management has become a necessity to regulate the heat inside modern chips in order to ensure its functional stability [START_REF] Kikinis | Temperature management for integrated circuits[END_REF] and manage aging issues [START_REF] Subramanian | Managing the Impact of On-chip Temperature on the Lifetime Reliability of Reliably Overclocked Systems[END_REF], [START_REF] Ayse | Evaluating the Impact of Job Scheduling and Power Management on Processor Lifetime for Chip Multiprocessors[END_REF]. This phenomenon is even more true for advanced 3D stacking technologies [START_REF] Black | Die Stacking (3D) Microarchitecture[END_REF]. Thus, maintaining a safe operating temperature is crucial for long-term functioning SoC.

Usually, temperature managers are implemented using active hardware (e.g., fans). However, with continuous increase in-chip density and heat generation, these previous solutions are not enough to keep high performing devices from overheating. Moreover, on embedded systems that prioritize portability (e.g., smartphones and IoT), active cooling cannot be used. Thus, these devices have to rely on other solutions such as passive cooling(e.g., radiators). In this case, the SoC itself monitors its own temperature and provides automatic thermal throttling mechanisms to stay in stable conditions.

In general, modern chip contains multiple thermal sensors (e.g., one sensor per core) to keep track of its internal temperature. When a temperature is higher than the max allowed temperature (junction temperature), the operating frequency is decreased to stay 1.4. Temperature related vulnerabilities within thermal constraints. Mechanisms like DVFS previously introduced are used for this purpose, thus along with frequency, the voltage is also reduced. If the junction temperature is exceeded by a certain amount, a more aggressive throttling (typically to the minimum supported frequency) is performed in order to quickly reduce the chip temperature. This is commonly referred to as a critical temperature event.

Beyond the junction temperature, each core is fused with a catastrophic trip temperature on its hardware. When the temperature exceeds this fused limit, the SoC will immediately signals to the device that an immediate hardware shutdown (without OS intervention) should be performed. A dedicated asynchronous hardware is responsible for this part and has priority over all other tasks. This mechanism is also intended to function in all conditions even if other failures occur.

An example of thermal throttling is given in [START_REF] Steiner | Energy Efficient Servers[END_REF], Figure 1.7 shows the results of their experiments. Core 0 (also called Socket 0 in the figure) is pushed to its limit using heavy load application. The thermal throttling begins when the junction temperature reach 95°C is reached. At this point, the frequency and power are decreased to keep the temperature below its critical level. It is also possible to see that frequency keep fluctuating (up and down) as a way to keep the temperature stable while the core is still running at a the highest frequency. On the other hand, the Socket 1 has a stable frequency and power consumption as temperature never reaches the junction value for this core.

Temperature related vulnerabilities

Attacks based on temperature are rarer compared to power-based attacks. The temperature can always be used to cause faults by overheating and executing DFA strategy. However, only few works focused on extracting information by measuring the temperature. In [START_REF] Hutter | The Temperature Side Channel and Heating Fault Attacks[END_REF], authors showed through experimentation they were only able to distinguish between the Hamming Weight (HW) of the operands manipulated by a 'mov' and an external sensor was used to measure the temperature. Their results are shown in Figure 1.8, it is possible to easily distinguish between 7 of the HWs from the temperature measurements and only the HW of 5 and 6 overlap with each other making it hard to distinguish between them. On other hand, in [START_REF] Jayaram | Thermal Covert Channels on Multi-core Platforms[END_REF], the authors used the temperature to create a covert channel and transmit information from one "core running" in the TEE to another core in the normal world as seen in Figure 1.9. This type of attack requires the secure core to already be infected by a malicious application, this application execute an intensive task to raise the temperature to transmit a '1' or stay idle for the temperature to drop to transmit a '0'. Meanwhile, the application running on the normal world uses sensors to monitor the emitted heat and decode the transmitted information by analyzing the changes in temperature.

Figure 1.8 -Different heat generated depending on the HW of the operand during the operation 'mov' [START_REF] Hutter | The Temperature Side Channel and Heating Fault Attacks[END_REF] The malicious application running in a secure world executes a heat-intensive task to transmit '1' or remains idle to transmit '0'

The malicious application running in a normal world continuously reads the temperature and decodes the information Figure 1.9 -Transmitting data from one "secure" core to another "normal" core using intensive processing to raise the temperature [START_REF] Jayaram | Thermal Covert Channels on Multi-core Platforms[END_REF] In the same work [START_REF] Jayaram | Thermal Covert Channels on Multi-core Platforms[END_REF], it has also been proven that it is possible to use temperature to differentiate between some applications running in a cloud as can be seen in Figure 1.10. In fact, different applications will cause the processor to emit a different amount of heat depending on the instructions and operands. Within the cloud server where the same processor is shared between different users, an attacker can use the integrated temperature sensors to spy on the activity of another user (the victim) using the same processor. This work do not extract any secret information. However, it can be used to affect the privacy of different users in the cloud.

Figure 1.10 -Profiling the type of application the user is running based on the temperature measurements. This figure is one of results that were presented in [START_REF] Jayaram | Thermal Covert Channels on Multi-core Platforms[END_REF] In [START_REF] Xiong | Spying on Temperature using DRAM[END_REF], authors were able to measure the temperature of the SoC without any sensor by using DRAM memory. Authors showed that by deactivating memory refresh there is a correlation between bit flips in memory and the temperature. Same as before, the application of this attack is more focused on the privacy of users as those measurements were used to read the ambient temperature of the room where an IoT device is located. Depending on the variation of the temperature, it was possible to infer whether a person were present in the room where the device is located and detect event like entering and exiting the room.

For these works, the obtained results mainly focused on people privacy and behavior analysis, but they did not extract any critical information from within the device.

Integrated Sensors and hardware counters

As seen in the two previous sections, both temperature and power managers work in a closed loop as shown in Figure .1.11. Constant feedback is required from the hardware part to make the adequate decision and then ensure that the decision is correctly implemented.

Integrated Sensors and hardware counters

Different sources of feedback are usually used but the most popular and straightforward are embedded sensors. The most used sensors are:

-Thermal sensors used to monitor the temperature of the chip to make sure it does not reach junction temperature. Those sensors are found within every device as they are crucial to ensure its operation. Usually, sensors are implemented within every core and important components such as DRAM and GPU. They also require a response time of a few µs to allow the managers to respond within appropriate time.

-Current and voltage sensors are also used often in embedded system. However, compared to thermal sensor, they are rare as they are not as crucial. They are used to improve the response of the energy manager, for example, Odroid Xu3 uses voltage sensor to monitor the energy consumption of each core. Moreover, in the smartphone industry, voltage sensors are used in almost every device to keep track of the battery level. The choice of feedback depends on the manufacturer and the mechanism they implement. For example, Intel Running Average Power Limit (RAPL) [START_REF]Running Average Power Limit -Intel[END_REF] mechanism is a closed loop mechanism that keeps the CPU within desired thermal and power constraints. By design, the mechanism is similar as it modifies the voltage and the frequency. Moreover, it includes power-measurement feedback by estimating the energy consumption in the core using hardware counters. Main CPU manufacturers (e.g., AMD, ARM) have similar mechanisms, either through sensors or hardware counters to estimate the power consumption.

Chapter 1 -Background and state of the art

Those sensors provide crucial information on the current state of the SoCs, this information is available through 3rd party software such as energy and temperature aware applications. However, this information can be maliciously used to extract information. It was already shown and will be discussed in the next chapter, that energy consumption is correlated to instructions and operands manipulated during the execution of victim programs, making extraction of information possible (e.g., encryption keys).

Power analysis based attacks

Using power consumption to extract secrets from a device is not a new practice, as presented previously in Section 1.2, Power Analysis based attack is a well-established field among SCA and different types of attacks were proposed. Those attacks are built upon the observation that the power consumption of CMOS digital circuits is data dependent by design. On any integrated circuit, a bit flip is represented by one or more voltage transitions from low to high (or vice versa). Different data values and operations typically entail different numbers of bit flips and therefore produce very different power traces. In previous work [START_REF] Kocher | Differential Power Analysis[END_REF], it was proved that the power generated by the transistors switching from one level to another is more important than the passive consumption. Additionally, the power variation observed is correlated to execute operations and manipulated operands. Therefore, any circuit not designed to be resistant to power attacks has a datadependent power consumption. However, if the circuit has a high complexity circuit or if an attacker's sampling rate is limited, it becomes harder to extract information from a single power trace. Thus, it becomes important to use more analysis techniques such statistical techniques such as Differential Power Analysis (DPA) [START_REF] Kocher | Differential Power Analysis[END_REF] and Correlation Power Analysis (CPA) [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF] across multiple power traces.

In Simple Power Analysis (SPA) attacks [START_REF] Kocher | Differential Power Analysis[END_REF], the secret key is inferred by analysing the power consumption differences during an operation (e.g., SBox in AES encryption). This attack consists of studying the detectable spike in power consumption as bits in the key will have a different impact depending on their values. In this case, only a small number of traces are required to infer the key. However, this approach is only possible if the secret has a significant impact on the power consumption of the device, and the traces are relatively noise-free. Noise can be averaged by computing the mean of the multiple collected traces.

DPA attacks [START_REF] Kocher | Differential Power Analysis[END_REF] are based on a more complex approach and consists on statistical 1.6. Power analysis based attacks analysing a larger number of traces with varying input data. This attack study the power consumption at fixed instants and how it is a function of the secret data being processed. In this case, smaller and less secret-dependent power variation can be detected even in the presence of noise compared to SPA. However, DPA is also limited within noisy environment, it can be still used to recover parts of the secret key, but it becomes harder to recover the whole key. However, CPA [START_REF] Brier | Correlation Power Analysis with a Leakage Model[END_REF] which is an extension of DPA, provides a more accurate analysis. As it correlates the variations in the set of traces and a leakage model depending on the characteristics of intermediate values.

The usual setup for this type of attacks is shown in Figure 1.12. Most often external power measuring tools are used to provide enough accuracy for this type of attacks, these tools requires a physical access to the target device. Especially with the different countermeasures implemented to reduce the power footprint of key-dependent instruction and the electronics to smooth power traces. However, with the introduction of sensors for energy managers, it was proven that state-of-art sensors have enough precision to use power analysis attack. Allowing to run those attacks remotely. Different works have already shown the feasibility of such attacks. 

Power Analysis Attacks using embedded sensors

Using sensors integrated in modern SoC is not a new practice, and it has been previously exploited to extract different information depending on the used sensor. The most popular target is power sensors as they are more precise and easier to use compared to other sensors (e.g., temperature sensor). In [START_REF] Mantel | How Secure Is Green IT? The Case of Software-Based Energy Side Channels[END_REF], authors were able to distinguish between different RSA keys by measuring the system power consumption using the integrated power sensors. It was proven that depending on the HW of the secret key the power consumption measured is different, however no full key were recovered or other characteristics beyond the HW.

In a more recent work [START_REF] Lipp | PLATYPUS: Software-based Power Side-Channel Attacks on x86[END_REF], the authors went even further and were able to recover secret keys of different encryption algorithms. In this case, the main target was an Intel processor, and they were able to use RAPL [START_REF]Running Average Power Limit -Intel[END_REF]. RAPL provides an approximate average measurement for a period of time thus making the observable effect of the secret-dependent power variation small. However, with enough measurements, they were able to successfully recover the AES secret key in around 10 days using CPA. On the other hand, to recover RSA keys, another technique was used to measure more accurately specific part of the encryption. SGXSTEP [START_REF] Van Bulck | SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control[END_REF] is a technique that allows the attacker to control the flow of the target program by re-executing instructions or pausing between each instruction. This can be achieved by using well timed interruption and it was possible to isolate specific instructions. Thus, instead of measuring the average power consumption of the whole RSA decryption, the authors were able to measure the effect of each bit of the private key on the power keys. Moreover, these attacks can be combined with other types of analysis such as Template Attacks or Deep Learning based attacks.

Template attacks

Another form of SCA that focus on extracting information from power consumption of a SoC is template attacks. It aims at creating a profile for a target device. In other word, the attacker models the variation of power consumption depending on the secret and uses it later to recover the secret. In this case, the attacker needs a copy of the target device and have full control over it. However, this attack requires a lot of traces to create the profile but once the profile is created, it is viable for most of the devices with the same processor model.

There are 3 main steps for a template attack:

Power analysis based attacks

-Creating a template of the device. This part consists of measuring the power for different values of a known secret. For example, in the case of AES, the power is measured for different values of a subkey.

-Measuring the power consumption on the victim device. In this case, the secret is not known, but it is possible to measure the power consumption during an encryption. Only a limited numbers of measurements are required.

-Using the template to infer the secret. By using the measurement on the victim device, it is possible to compute using the previous template the most probably value of the secret key.

This attack requires a more complex setup compared to DPA and CPA. However, the number of traces required during the attack are lower as long as the template is already established. Moreover, the noise is no more an obstacle as templates are created by analyzing the variation of power and models the noise distribution using a Gaussian distribution. The main drawback in this case, the important number of power traces required for the characterization and the creation of the template. For example, in the case of an AES128, each byte secret key is inferred separately, thus, it is necessary to have at least 256 different measurements (1 for each possible value of the byte) for each template. Moreover, a total of 16 templates are required (1 for each byte of the secret key). The number of measurements can be reduced by inferring the HW of the byte instead of its value as there is only 9 possibles values instead of 256.

Profiling attack with machine learning

Another type of profiling attacks which has gained a lot of popularity is deep learningbased side-channel attacks. This type of attacks are similar to the template attacks as they require to create a profile of the target device for each secret. Moreover, deep learningbased attacks offer several types of analysis, depending on the use cases, different type of machine learning algorithms can be used.

-Unsupervised learning techniques such as clustering (e.g., K-means) and dimensional reduction [START_REF] Heyszl | Clustering algorithms for non-profiled single-execution attacks on exponentiations[END_REF], [START_REF] Souissi | First Principal Components Analysis: A New Side Channel Distinguisher[END_REF](e.g., principal component analysis) were used to perform either key recovery -ML was also used to filter power traces [START_REF] Archambeau | Template Attacks in Principal Subspaces[END_REF], [START_REF] Wu | Remove Some Noise: On Pre-processing of Sidechannel Measurements with Autoencoders[END_REF] and reduce the noise. In this case, the key is not directly guessed but it reduces the number of traces needed for CPA and DPA

Chapter 1 -Background and state of the art -Supervised learning techniques such as support vector machines, self-organizing maps, random forests and different types of artificial neural networks were successful in recovering the key [START_REF] Bartkewitz | Efficient Template Attacks Based on Probabilistic Multi-class Support Vector Machines[END_REF], [START_REF] Heuser | Intelligent Machine Homicide[END_REF], [START_REF] Hospodar | Machine learning in side-channel analysis: a first study[END_REF], [START_REF] Lerman | Power Analysis Attack: An Approach Based on Machine Learning[END_REF], [START_REF] Lerman | A machine learning approach against a masked AES[END_REF], [START_REF] Timon | Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis[END_REF] not only from unprotected, but also from protected implementations of cryptographic algorithms.

-Multilayer perceptron and convolutional neuronal networks were also used to recover secret key [START_REF] Ege | Lowering the bar: Deep learning for side-channel analysis (white paper)[END_REF], [START_REF] Benadjila | Study of deep learning techniques for side-channel analysis and introduction to ASCAD database[END_REF], [START_REF] Kim | Make Some Noise. Unleashing the Power of Convolutional Neural Networks for Profiled Side-channel Analysis[END_REF], they also outperform template attacks on noisy traces.

These methods rely on creating a model by either training neuronal networks to recover a key characteristic (e.g., subkey, HW) or by having a dataset large enough for unsupervised algorithms. This is not a problem for power-based attack as multiple public datasets are available such as DPAContest. These datasets have already been used by different works to prove their implementation.

Conclusion

In the literature, there are different types of physical attacks, some requires physical access, some are even invasive and cause permanent damage to the target devices. However, in this chapter, we only focus on attacks that has the following characteristics.

-Maliciously uses dynamic manages.

-Maliciously uses embedded sensors.

-No additional hardware or physical access was necessary for the attacks.

-Possible usage of ML.

These SCA are highly related to our work as we are going to present 3 different attacks that share the same characteristics and they focus on maliciously exploiting dynamic managers.

Chapter 2

MALICIOUSLY EXPLOITING ENERGY MANAGEMENT

In the works [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF], [START_REF] Murdock | Plundervolt: Software-based Fault Injection Attacks against Intel SGX[END_REF], [START_REF] Qiu | VoltJockey: Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-Core Frequencies[END_REF] presented in Section 1.2.2, DVFS has been used to force the device into an unstable operation mode in order to inject faults into the device. This allows to use DFA to extract information from the device. However, in recent SoC, DVFS does not have the required precision to use DFA.

In this work, we explore malicious usage of DVFS and we show that if stealing secret information exploiting energy management mechanisms is hardly possible in today's commercial devices, it is still possible for an attacker to remotely lock out a device and possibly ask for a ransom to make the device services and data accessible again. This work is demonstrated through its implementation on two current commercial ARM-based devices The main contributions presented in this chapter are:

-The exploration of the feasibility of a malicious manipulation of DVFS in current commercial ARM-based devices for stealing secret data, highlighting the different crucial challenges.

-The introduction of a malicious exploitation of energy management mechanisms able to lock a device making services and data inaccessible.

-The implementation of this technique on two different recent and widely used commercial devices.

The remainder of this chapter is organized as follows: In Section 2.1 we explain the main goal of this chapter and the scenario of the targeted attack. In Section 2.2, the two chosen targeted devices are introduced and the ARM big.Little technology is presented. In Section 2.3 we show how to control the voltage and frequency and then we characterise the effect of changing them on the target device. Next, in Section 2.4 we present an exploit of DVFS by implementing the proposed technique on the two devices as well as the obtained results and possible mitigation. Finally, Section 2.5 concludes this chapter.

Scenario

DVFS vulnerabilities have already been used on previous works to extract information from AES encryption [START_REF] Tang | CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management[END_REF], [START_REF] Murdock | Plundervolt: Software-based Fault Injection Attacks against Intel SGX[END_REF], [START_REF] Qiu | VoltJockey: Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-Core Frequencies[END_REF] or to fault RSA signature verification allowing the execution of a malicious application within a TEE. However, these previous works have targeted Nexus 6 using the Qualcomm Snapdragon 805 quad-cores. While the attacks described in previous works are feasible on this target, they may no longer still feasible on more recent, state-of-the-art SoCs. As the smartphone industry focuses on power saving and portability of the devices, the focus shifted towards heterogeneous octa-cores ARM big.LITTLE technology (used in 90% of SoCs of the smartphones industry). This technology is more complex compared to the Snapdragon 805 as it uses 2 types of core: one has high performances while the other has a lower performance but less power consumption. Thus, this modern SoC offers a better performance and energy trade-off.

In the first part of this chapter, we are going to study the feasibility of maliciously exploiting DVFS on state-of-art SoCs. This is done by characterizing the effect of pushing the voltage and frequency beyond the recommended ranges on the target devices. For this work, we are going to develop a general kernel module, usable on most of UNIX based OS to control the voltage. As we will show that it is not feasible to infer secrets for the targeted devices, this work proposes a Denial-of-service attack (DOS), rendering current sophisticated devices inaccessible (services and data). Possible exploitation scenario is a remote attacker able to remotely lock the target device, a smartphone for instance, and possibly ask the smartphone owner for a ransom. The device owner (the victim) can then whether wipe out all the data and reset the device to factory settings (loosing all its data) or to pay a ransom to gain access to the device back. For the attack, the victim device has to be equipped with a DVFS and the attacker requires privileged access. These conditions will be detailed in later sections. The scenario is summarized in Figure 2.1.

It is worth noting that in this work, the attacker locks out the device by generating a remote hardware fault and not by encrypting any data. This gives a great advantage, as OS and antivirus are more and more resistant to encryption-based cyberattacks such as WannaCry [START_REF]White Paper -The WannaCry Ransomware Attack[END_REF].

Furthermore, in order to explore the possibilities of a normal, yet malicious user, we consider that the targeted device is a black-box for the attacker. This assumption is realistic as SoC companies do not often release information about consumer devices. Therefore, only the publicly available information is used to perform the attack. Moreover,

Target device

Figure 2.1 -Summary of the scenario of the attack from both the attacker and the victim point of view plus the conditions required to implement the attack physical access to the system is not required for the attacker, instead the attacker must be able to execute on the victim's device a corrupted application. In the smartphone domain for instance, this application could be downloaded on the phone. Finally, only access to voltage and frequency regulators is required.

Target device

ARM architecture and big.LITTLE Technology

In today's multi-core systems, cores are generally grouped according to their type into different clusters and one of the most used architecture in industrial SoCs that implements this technology is ARM big.LITTLE. This architecture includes 2 (or more) clusters, each containing homogeneous cores:

-the big cluster includes 4 high performance cores for heavy load tasks. These cores have a high power consumption.

-the LITTLE cluster implements 4 small cores for low load and less power consuming tasks. These cores can save battery energy.

The main advantage of this architecture is it's ability to dynamically swap workload between the two clusters as they have access to the same memory regions. Thus, it can easily adapt the computation load to higher or lower performance cores according to the needs, offering a better resource management and a reduced energy consumption.

Most of the SoCs using ARM big.LITTLE technology are equipped with per cluster DVFS (see Figure 2.2). Consequently, all cores within a cluster share the same voltage and frequency level and are all impacted by voltage/frequency modifications. Implementations that do not use ARM big.LITTLE technology such as Qualcom Snapdragon 800 [START_REF]Snapdragon 800[END_REF], implement per-core DVFS. 

Hikey960 & Odroid XU4

For this work, we chose two different recent commercial SoCs widely used in the smartphone industry to prove the feasibility of our attack: The Odroid Xu4 board that encompasses the Exynos 5422 [START_REF]Exynos 5422[END_REF], an octacore ARM big.LITTLE architecture (chip used in Samsung S5 smartphones), and the Hikey960 board that uses a more recent chip, the Kirin 960 [START_REF]Hikey 960[END_REF] from 2018 (chip used in Huawei Mate P10 smartphones).

We can highlight an important difference between these two SoC related to our work, but that does not affect the results: in Odroid Xu4, it is possible to control the frequency and the voltage independently. As for the Hikey board, the device voltage in the operat-ing points can be modified but the frequency cannot be changed. This allows to choose which voltage value will correspond to a certain frequency. Thus when switching to a new frequency from the predefined value, the voltage will change accordingly to the value configured previously. Moreover, the Hikey board is more recent and sophisticated and includes a co-processor responsible for the dynamic frequency and voltage level selection.

These two environment are evaluation boards from smartphone manufacturers (Samsung and Huawei), we then choose to deploy the attack using an Ubuntu Mate and an Android software stack which is built on an UNIX-based OS (i.e., Linux).

Experimental Setup

After choosing the target devices, it is required to characterize the SoC. In order to maliciously exploit DVFS mechanisms the first step is to determine the voltage and frequency limits. These limits need to be determined experimentally.

For this purpose, the victim and the malicious applications must be executed on two different voltage/frequency islands (cores or clusters). This will allow the malicious application to control the voltage/frequency level of the victim island, while malicious application itself is running in stable conditions without self-faulting. However, the victim application will run in unstable conditions due to the inadequate frequency/voltage couple. For these experiments, the malicious application controls the victim's cluster energy management by fixing the frequency to a certain value while setting the voltage level beyond the vendor limits, this choice will be explained in the following section.

Accessing and controlling the voltage and the frequency

To implement the attack it is required to control the voltage and the frequency.

There are two ways to access voltage (and frequency) regulators in a Unix kernel-based OS:

-By directly accessing the hardware voltage/frequency registers. This requires to have low level information access of the SoC and their regulators such as their addresses. However, in most of the cases, commercial SoCs used in the smartphone industry lack from accessible technical documentation. Consequently, most of the registers addresses are unknown. Moreover each device has its own configuration making it difficult to generalise the access for multiple targets.

Chapter 2 -Maliciously exploiting energy management -By using the Linux regulator APIs [START_REF]Voltage and current regulator API[END_REF]: Linux based OS come with API allowing an application to control the voltage from the kernel space. The manufacturer assigns a name to each regulator on the board, as it makes it easier to access and can be found in /sys/class/devices/regulator/regulator.number/name. This name can be later used by the API to access the regulator and change its settings value (voltage).

In Odroid XU4 board, the regulator for the big and LITTLE cluster are called "vdd_arm" and "vdd_kfc" respectively and the API is used as follows.

1 s t r u c t r e g u l a t o r * r e g ; 2 r e g = r e g u l a t o r _ g e t ( Device , " vdd_arm " ) ; \\ g e t a c c e s s t o t h e r e g u l a t o r 3 r e g u l a t o r _ s e t _ v o l t a g e ( reg , min_v , max_v) ; \\ s e t t h e maximum and minim v o l t a g e i n uV

It is also important for the malicious application to have an exclusive access to the regulators and to ensure that any other thread will not be accessing them (e.g., cpufreq). Exclusive access to regulators is possible with the function regulator_get_exclusive() from the regulators API as long as no other modules are currently using it. In order to ensure this last condition, modules using them must be first disconnected, for instance, by binding and unbinding the PMIC driver. This procedure will reset the regulators class structure, and freed them. Finally, we put all these functions into a kernel module that will be called voltage module for the rest of this chapter and will be used as the main tool for accessing the voltage in the following sections.

The implementation on the Hikey board is slightly different as the regulators are managed by a co-processor. However, it comes with an already set up communication channel between the co-processor and the SoC. Through maiblox it is possible to communicate new values for voltage settings using messages without any further control.

As for accessing the frequency, it can also be done by accessing the PLL registers. However, in the case of a black-box, it is difficult to find the address of the corresponding register. The most common way of controlling the frequency is through modules like cpufreq. This type of module can only be used through the user space which adds more latency when trying to change the frequency compared to a change from the kernel space. Moreover, the transition time between frequency levels on ARM architecture is high and usually between 500µs and 3ms. This delay can not be ignored and for this reason we decided to fix the frequency and focus on changing the voltage for this attack.

Additionally, accessing the voltage on the Hikey 960 can be done directly with built-in system. This system allows to modify the modify voltage for a specific frequency within the operating points. Each cluster has only 5 allowed frequencies values: (533MHz, 999MHz, 1402MHz, 1709MHz, 1844MHz) for the LITTLE cluster and (903MHz, 1421MHz, 1805MHZ, 2112MHz, 2362MHz) for the big cluster. To modify the voltage that goes with the first frequency of the LITTLE cluster, for instance, we need to write the new value in µV to the kernel node located in /sys/devices/platform/soc/soc:hisi_trim/little_state0. The 0 at the end of the kernel node name specifies the index of the frequency (from the lowest to the highest) we are changing the voltage. The same method is used to change the voltage of the big cluster, but the name of the kernel node is big_state.

Characterisation of the targets

After successfully accessing the regulators and changing the voltage values, it is possible to proceed with the experiment. First of all, we execute the voltage module on the big cluster and the victim application on the LITTLE cluster as shown in Figure 2.3.

Figure 2.3 -The experimentation used to characterise the SoC. In this case, we characterise the LITTLE cluster, but with the same methodology we can also characterise the big cluster by switching voltage module to the LITTLE cluster and the victim app to the big cluster.

The target application is a program running an infinite loop that consists on multiplying two fixed operands. In parallel, we do an exhaustive characterisation by fixing the frequency of the LITTLE cluster and changing the voltage until a change on the output of the operation is observed (meaning a fault occurred during the operation) or when the device stops responding. We then restart the same process with the next frequency. Finally, once we have finished characterising the LITTLE cluster, we switch to characterise the big cluster.

Results, gathered in Figure 2.4 for Odroid and Hikey boards, show different behaviors according to two distinct voltage thresholds:

-First critical threshold: the victim application execution is interrupted due to introduced faults, for example, this happen when the voltage reach 1.15V at the frequency 1.5GHz for the LITTLE cluster of Exynos. In most of the cases, the application stop its execution due to segment faults showing an attempt to access files in the memory with a NULL pointer. In rarer cases, the introduced faults entail illegal instructions. Notice that these errors come from system calls and the malicious application is unaffected with no fault during its processing.

-Second critical threshold: after a second threshold reached, the entire system no longer responds making all services and data inaccessible until the system reboots, for example, this happen when the voltage reach 1.1V at the frequency 1.5GHz for the LITTLE cluster of Exynos.

We can see through these results that it is possible to inject faults using DVFS. Before the first threshold, the fault does not affect the victim application in any crucial way. However, after the second threshold, it is possible to inject faults within the device. If we can precisely control this fault and precisely inject it during the execution of the target program (e.g., AES encryption), we can eventually use DFA to extract information. For this purpose, we need to determine the precision of the fault that we can inject. To investigate, this point, we developed a kernel module to periodically modify the voltage level for a fixed frequency value and we monitored the SoC supply voltage with an oscilloscope to determine the latency required between two consecutive voltage changes and measure the minimal possible time between those two successive changes.

Figure 2.5 shows that a time of 2.5 ms is needed to change the voltage twice in a row. This period represents the duration of the fault during an attack, in this case, it does not change even if we change the value of the frequency or the targeted cluster. If the victim program is an AES encryption, we would have no control over the fault injection as AES takes dozens of µs to execute one encryption while the unstable state of the SoC will last 2.5ms on the Odroid XU4. Thus, it is impossible to limit the faults to the targeted appli- cation. Additionally, at the lowest frequency (200 MHz) around 500.000 instructions are executed during this time. This is 10 times higher than the required amount of instructions needed to succeed in classical fault injection attack. This experiment shows that there is no control nor high precision possible over the fault injection in this scenario.

Making attack like Clkscrew impossible on the target SoC.

Conclusion on the characterisation

According to the previous experiments we show that, it is not possible to use the DVFS with DFA to extract information, as the precision of the fault injection is way below the required conditions for this type of attack to succeed. However, after further investigation we show that it is still possible to maliciously exploit DVFS on these devices. Indeed, if the device voltage is set to a value between the two thresholds in Figure 2.4, this will prevent some applications from working properly, and after the second voltage Figure 2.5 -The measured voltage at the output of PMIC for the Exynos shows an average minimum time of 2.5ms between each voltage changes threshold, for example the 1.1V for the LITTLE cluster at 1.5Ghz, all system's services and applications stop working and become inaccessible until the system reboots. In the following section, we are going to exploit the second threshold to implement a successful attack.

Malicious exploitation of the DVFS

The previous section showed that stealing secret information with DVFS technique is unlikely in the devices using modern technology. In this section, we are going to implement the proposed attack in Section 2.1.

This attack requires conditions and some important implementation challenges that are discussed in the following sections.

Implementation steps

The main steps to implement the proposed attack are summarized in Figure 2.6.

-Installing malicious application: the proposed attack does not require any physical access to the victim device. Instead the access to the device is done through a corrupted application which executes into the device. This application can be installed by the user (the victim), downloaded on an app's store for example, the application will act as a Trojan.

either by changing them during boot or just after the booting phase. Thus, gaining the ability to modify the voltage once the device just finishes booting.

Implementation of the attack

For the implementation of the attack, the voltage module developed previously (see Section 2.3.1) for the characterisation is going to be reused as it allows to control the voltage in most Unix based OS. As for the Hikey 960, we are going to continue using the built-in system to change the voltage. The malicious application must be able to load the kernel module, consequently, the attacker application must have privileged access.

In android systems, the root mode is deactivated. However, rooting an android or jailbreaking an iPhone is a common and popular practice for users who want to gain full control on their smartphones and push them beyond their limits. This practice is a type of hacking of consumer electronics.

For this purpose a great number of applications or custom ROMs were developed (e.g., magisk [START_REF]Magisk costum ROM[END_REF]), able to unlock root privileges in the system without requiring any password. This consumer community can count up to hundreds of thousand users (e.g., up to 25 million magisk downloads in the last 5 years [START_REF]Download counts of Magisk[END_REF]). These users can all be considered as potential targets of this malicious usage of DVFS.

Finally, in order to prevent the device owner from taking control of the device after rebooting, solutions were developed for each targeted board. First, for Odroid running Ubuntu OS, the malicious kernel module responsible for accessing the system regulators is permanently loaded during the booting process. This was implemented without any control nor further required rights. Second, within the Hickey running Android Open Source Project, it is not possible to permanently load a kernel module. However it can successfully be loaded just after the booting process each time the system reboots preventing the user to take control of the system. This has been implemented through the Android Intent functionality which allows communication between threads. Intent is an abstract description of an operation to be performed, it is used with the startActivity function to launch an activity when a specific action is performed, this action can be detected through the BroadcastReceiver. Usually, intents are used to communication between different applications and background services, they work similarly to signal and in our case the malicious application use this functionality to detect the action broadcasted when the booting phase is complete providing the ACTION_BOOT_COMPLETED signal intent as shown in Figure 2 A exploitation of the malicious manipulation of DVFS presented in this work is illustrated in Figure 2.8. After detecting the end of the booting phase, the load of the malicious kernel module is triggered. At the same time, the attacker can verify if a ransom for instance has been payed which will allow the user to take control of the device back again. Otherwise, the malicious application take the control of the energy management of the system in order to manipulate the voltage and frequency levels and force the system to freeze until it reboots again. 

Discussion and counter-measures

The main objective of this work is to highlight the security flaws in the usage of energy management of today's commercial devices. In the case where stealing information is not possible through the usage of DVFS, it was shown that it is still possible to implement a simple yet sophisticated attack to permanently lock a device, ideally until the user pays a ransom.

As we targeted a black-box, the necessary SoC documentation to access voltage and frequency registers directly are not available, limiting the potential attack. In case these registers information are available, it is possible to deploy a more sophisticated and precise attack. Notice that Unix cpufreq does not provide the required control for setting frequency values (the minimum frequency step being 100 MHz). Moreover there is a higher access delay compared to a direct access to the PLL register if it was possible.

However, since we do not require the register addresses, it is thus possible to deploy the attack with the developed kernel module to any UNIX based OS and architecture using DVFS, or similar energy managers, as long as the attacker can control the voltage and frequency and drive regulators beyond the recommended voltage/frequency operating points through a kernel API. Therefore, the most straightforward countermeasure is to add hardware or software limits. However, chips usually have different operating limits and there are factors that might affect the critical path (e.g., temperature). Therefore, margins must be taken into account when voltage limits are fixed. Moreover, these limits would require to be bond to given values of frequency for each board.

A second possible countermeasure would be to add more protection over the control of the DVFS. For example only trusted applications running on a higher privileged level than the root user or OS (in case TEE is supported) could access the voltage and frequency regulators. In [START_REF] Rosay | Method of DVFS-Power Management and Corresponding System[END_REF] a similar method is proposed to limit the access to the DVFS giving only an application from a secure environment the right to change the frequency and voltage of a core running in a TEE. This countermeasure will protect applications running in the TEE from leaking any secrets. However, the malicious usage of DVFS proposed in this chapter is still possible as it does not target TEE and can even be used during normal execution.

On the other hand, some efforts have been done to propose more general solutions as adding additional chips in order to detect potential faults injections ( [START_REF] Zhang | Blacklist Core: Machine-Learning Based Dynamic Operating-Performance-Point Blacklisting for Mitigating Power-Management Security Attacks[END_REF][25]), they aim at classifying malicious glitches into different classes to distinguish the malicious glitch that tries to gain access to secret data. However they do not aim at preventing them, and therefore they do not have any impact on malicious manipulation of DVFS able to lock the device such as the technique presented in this chapter.

Conclusion

Today's embedded devices generally support advanced energy management mechanisms. The main objective of this work is to investigate the feasibility and the capabilities of malicious manipulation of DFVS in today's commercial devices. We considered the example of smartphones. After the implementation of a technique on two recent, widespread ARM-based multi-core boards (Odroid and Hikey), our experiments show that it is possible to maliciously manipulate DVFS mechanisms through software in order to introduce faults into the system operation, that can result in the lock out of a device making all system services and data completely inaccessible. With this work we highlighted important security flaws in the energy management supported by most energy constrained embedded systems and the necessity to address them.

Chapter 3

EXPLOITING INTEGRATED TEMPERATURE SENSOR

In Section 1.6.1, energy consumption models have been maliciously used to infer information from a victim program (e.g., AES, RSA) executed on a remote SoC. Few works have tried to exploit temperature sensors to extract sensitive information as shown in Section 1.4, such as inferring the current status of the device, which application within a specific set of applications is being executed on the target (e.g., Internet browser, RSA encryption) or using the temperature as a covert channel. Nonetheless, to the best of our knowledge, this work is the first that shows the feasibility of distantly using embedded temperature sensors to infer information on the executed instructions and manipulated operands. Finally, in this chapter we demonstrate that on-chip temperature sensors can be used to extract information on the execution of an AES encryption process, which can allow to deduce secret key characteristics for instance. The experiments presented in Section 3.3 show that it is possible to reduce the key exploration space down to 74% of all the possible values of each bytes of the 128 bits key in the worst case scenario.

The key contributions of this chapter are:

-Showing through multiple experiments that different information (e.g., executed instructions, manipulated operands) can be inferred through measurement of temperature using on-chip sensors.

-Maliciously exploiting temperature measurements though on-chip sensor to distinguish important information during the execution of AES encryption. This information allows to reduce the exploration space and eventually, to brute-force the key.

The remainder of this chapter is as follow. Section 3.1 presents the methodology with the scenario of the proposed attack and its threat model. Section 3.2 presents the experimental setup with the chosen target followed by necessary experimentation to prove the feasibility of this work and the possibility to correlate the temperature to specific instructions and operands. Section 3.3 elaborates on the possibility of using the previous methodology against AES encryption algorithm in order to extract specific characteristics of the secret key. Section 3.4 discusses the limitations of this work and gives some leads for possible countermeasures. Finally, Section 3.5 draws some conclusions.

Methodology

The attack presented in this chapter, is the malicious exploitation of temperature sensors data to infer information from a victim program. In our case, the victim program is an AES encryption and the objective is to significantly reduce the number of the possible values of the secret key in the search space. In the best case scenario, it is possible to brute-force the key and completely recover it.

To implement this attack, it is necessary to characterise the chosen target device. As each instruction and operand have different effects on the temperature, these effects depend on the target device, the voltage and frequency levels. Therefore, the characterisation has to be done for a set of specific parameters and is unique to the model of the targeted device.

The main goal of this step is to correlate the temperature to a certain characteristic (e.g., Hamming Weight) of manipulated operands. The next step is to use this characterisation to implement a complete attack. The attacker in this case, knows the effect of certain characteristics on the temperature. During the attack, the temperature is measured during the execution of the victim program and is compared to characterisation previously done. Using statistical methods, secret information can be inferred.

Threat model

For this attack to be successful, the attacker requires:

-To have remote access to the embedded temperature sensors of the targeted embedded device. Accessing the sensor from a 3rd party program is quite easy and realistic on nowadays SoCs as there is no limitation on reading the temperature value. However, if possible, it is recommended to access temperature registers through a kernel module as it provides a lower latency.

Experimental setup

-To be able to take temperature measurements while executing the victim algorithm (e.g., AES encryption). This point will be discussed later in Section 3.2.

-To be able to trigger the encryption of any chosen plaintext. This condition is quite classical and realistic.

-To be able to stop the execution of the encryption at any point(e.g., the ability to use interruption). The scenario summarized in Figure 3.1, shows both phases of the attack. During the first phase, the attacker characterise the victim device and study the effect of different characteristics on the encryption key. In this phase, the attacker has access to a copy of the target device and control the encryption key and the plaintext. During the online phase, the attacker remotely measures the temperature during the victim process, in our case an AES encryption, and correlates it with the characterisation measurements to infer characteristics on the encryption key.

All these points and their implementation on an actual embedded system are described and discussed in Section 3.3.

Experimental setup

In this part of the work, we consider the STM32F303 single core microprocessor [START_REF][END_REF] which is widely used in IoT systems and well documented. It uses the ARM Cortex M4 architecture and encompasses a single temperature sensor with a response time of 1.6 µs and a resolution of 18 m°C [START_REF][END_REF]. Finally, for these experiments, we consider that the device is running in bare metal and uses the HAL (Hardware Abstraction Layer) library [START_REF]Description of STM32F4 HAL and low-layer drivers[END_REF] to access temperature sensors. The STM32 HAL is an abstraction layer embedded software that provides drivers to interact with an upper level software (i.e., application, libraries).

We access the temperature level by directly reading the value from the corresponding analog-to-digital converter (ADC) register. Temperature measurements have to be taken during the execution of the victim program and the measurement application is required to have a minimum impact on the temperature. In order to achieve this objective, we used DMA access on our single core target to save the measurements directly to the memory and minimize the processor activities overhead. On sophisticated SoCs (e.g., Hikey960 with big.LITTLE technology), a temperature sensor is usable for each cluster or core. Thus, we can simply execute the victim program on a specific cluster and read its temperature from another cluster to minimize interaction and optimize the performance of the method. It is worth to say that the attacker have a more accurate temperature read if the impact of the measurement is minimised. On the other hand, as the temperature has a high response time, it is necessary to re-execute the program multiple times until the temperature stabilises, then compute the mean of all measurements. This step statistically reduces the standard error in the distribution, accounting for low sensors accuracy. For this work, we are mainly targeting specific instructions within the program. During the characterisation, it is important to re-execute them, however, during the complete attack, techniques like zero-steping [START_REF] Van Bulck | SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control[END_REF] can be used to isolate the targeted instruction and re-execute it as many times as required. For the target device, we found out that a loop of 30,000 iterations is required to observe the effect of the instruction on the temperature. Finally, between each characterisation, a cooling time is required to avoid temperature saturation and/or previous experiments impact on the current measurements. By experiments, we defined that 300s are enough to have the same starting temperature for all the measurements. It is also important to note that the experiments presented in the reminder of this chapter were executed on different boards of the same model to account for the difference between each die during the manufacturing process. These setups are the same throughout the whole chapter.

Distinguishing instructions

To investigate which characteristics of a program can have an effect on the temperature, different experimentation were realised. The first step is to investigate the impact of executing different instructions, For these experiments we considered 3 arithmetic and logic instructions: multi, add and xor, and 3 memory instructions: load, write and mov. These instructions were chosen as they are used within the AES encryption, except for the multi, and this characterisation would help us decide which part of the AES to target. From these two figures, it can be seen that it is possible to distinguish most of the executed instructions depending on the measured temperature. For instance, at the highest temperature 42.9°C, the most likely executed instruction is the multiplication as it has a higher load compared to other instructions (i.e., the greatest frequency of appearance compared to the others). Moreover, xor and add instructions induce close temperatures making them harder to distinguish but still possible as their temperature values vary around 42.836°C and 42.852°C for xor and add respectively. The xor also generates the least heat as it is a binary instruction and has the lowest load on the processor. On the other hand, for memory instructions, it is possible to see a clear distinction as mov, write and load instructions entail temperature mean of 43.01°C, 43.15°C and 43.22°C respectively. As the temperature difference is higher, compared to the considered arithmetic the operand from one experiment to another. Since the target is an arithmetic instruction that uses two operands, one of them has been fixed during the whole experimentation.

The same previous setup is used, each experiment consists on running the multi instruction 30,000 times with two fixed operands while taking the temperature measurements. After the 30,000 iterations the second operand is changed while the first one remains constant, and a new experiment is conducted. Figure 3.4 summarizes the measurement algorithm used for this experiment. As the temperature has a high response time, it is not possible to distinguish between all possible values of the operand as their effect would be filtered. In this case, operand with same or close characteristics has to be grouped into a set of values. One way to group the non-constant operand is by their Hamming Weight (HW, i.e., the number of '1' in the binary value) and it is expected that the higher HW the higher the effect on the temperature.

As we used the STM32 processor, we worked with 32-bit width operands. For these measurements, we choose to multiply a constant operand arbitrarily chosen (fixed to the decimal value 23). It is important to notice that further experiments with different constant values for the first operand showed that this latter has no impact on the obtained results. The second operand is variable, and without loss of generality, and to limit the experiments time, we have chosen values that have certain selected HW. Indeed, considering all HW values is not feasible as performing all experiments will be unreasonably time consuming. Therefore, we arbitrarily choose HWs of 8, 16, 24 as they allow to study very different classes of values.

All the measurement are reported in Figure 3.5, with each dot representing the frequency of appearance of a specific temperature. It can be seen that different HW of the variable operands induces different temperature values. For example, we can see on the figure that a temperature of 42,952°C corresponds to the highest probability of a non-constant operand HW of 8, as it is the highest frequency of appearance for this temperature. The same can be said for temperatures 42.968°C and 42.987°C as they both correspond to HW 16 and 24 respectively. As expected the temperature grows up with the HW of the variable operand. Through this simple experiments, it is shown that operands HW has an impact on the heat generated by the instruction, and that the difference in temperature is observable through the integrated sensor. But the HW is not sufficient if we consider multiple instructions.

Distinguishing operands based Hamming Distance

Finally, even if the previous experiments prove that there is information leaked through temperature sensors measurements, it is not enough to conclude on the possibility of using these measurements as a basis for a side channel attack. The next experimentation consists on executing two consecutive instructions. In this case, classifying the results according to operands' HW does not have any sense if the executed instructions are completely independent. However in the typical case, both instructions' results are written in the same register. This is for example the typical case in many algorithms (e.g., AES encryption). In this case we can use the Hamming Distance (HD, the number of bits' values that have changed from one state of the register to another) to evaluate the impact on the temperature generated by a sequence of instructions. In the same conditions as the previous experiments, we consider the first two operations of the first round of the AES algorithm in order to investigate the feasibility of the proposed approach on this algorithm. We thus execute a xor instruction between a fixed and a variable operand, followed by the Subbyte operation (a load instruction) as the two consecutive instructions. Both instructions were executed in the same 30,000 iterations loop before changing the second operand at the input of the xor instruction. In this experiment, the operands have a width of 8 bits as it allows us to test all the possible operand values.

In Figure 3.6, it is possible to observe clear differences between the temperatures measured depending on the HD after the second operation result is written in the same register. Different HDs generate different amounts of heat. As can be seen, HDs of 3, 4 and 5 have distinctive peaks at 42.907°C,42,92°C and 42.932°C respectively, making possible to distinguish them. However, even if their frequency of appearance is high on their respective temperature peak, it is always possible to get a false positive as some other HDs generate the same temperature value in some cases. On the other hand, 1,2,6 and 7 HDs are harder to distinguish as their peaks have almost the same appearance rate, if not lower, compared to neighbour HDs. This can be due to a low number of values having these HDs (only seven measures for a HD=7 for instance). The number of measurements being too small to be representative This experience consisting on executing two instructions, shows that it is possible to use the temperature measured with the embedded sensors to infer information such as the HD between two successive operations. Thus, knowing this property of the register values allows the deduction of possible values of the operands that lead to the results saved in the register. Indeed, classic attacks such as Differential Power Analysis (DPA) and Cor- relation Power Analysis (CPA), presented in Section 1.6, are based on the principle of correlating the HD between the AddRoundKey (xor) and the Subbyte (load) instructions of the AES algorithm with the energy consumption that could be measured. Therefore, by distinguishing the HD from one state to another of the used register, we show that temperature can be used as a side channel to extract secret information in specific conditions. Using a strategy similar to DPA and CPA, we used our approach to infer some information on the secret key of the AES algorithm.

Extracting AES key characteristics using temperature sensors

As seen before, it is clearly possible to use the temperature of the chip to infer certain information. In this section, the implementation of an attack based on the use of the integrated temperature sensors is detailed. The main objective is to investigate the feasibility of significantly reduce the number of possible secret keys on AES encryption algorithm to eventually perform a brute-force attack to reveal the secret key.

Methodology of the attack main steps

The main steps of this attack are:

Accessing the temperature sensors: The proposed attack does not require any physical access to the victim device. The only requirement is a remote access to the temperature embedded sensor measurement results. This is possible through a 3rd party malicious application or module installed on the targeted device. Under an embedded OS, accessing the temperature sensor may require privileged access.

Measuring the temperature during AES encryption: It is required that the target device has the capabilities to take temperature measurements in parallel with the AES encryption execution. In order to fulfil this condition, it is either required to have a multi-core SoC in which one core executes the victim AES encryption and a second core execute the attacker code responsible for triggering the temperature measurements, or having the ability to use a DMA controller to save measurements in parallel with the AES encryption execution.

Re-executing the targeted instruction(s) multiple times:

The temperature needs time to propagate through the chip, it is thus important to be able to re-execute the same targeted instruction(s) multiple times as described in Section 3.2. In this work, we are going to focus on attacking the Subbyte operation on the first round of the AES encryption as the secret key has the most impact on this operation. One of the techniques that can be used for this purpose is the zero-stepping [START_REF] Van Bulck | SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control[END_REF] as it was used in [START_REF] Lipp | PLATYPUS: Software-based Power Side-Channel Attacks on x86[END_REF].

Offline Phase; Characterization of the device: The attacker has to first characterize the target device as well as the effect of specific keys characteristics (e.g., HW, intermediate result's HD) on the temperature of the targeted device. The impact on temperature needs to be characterized in a first phase where the used key is known before performing the actual attack (see Figure 3.1 in Section 3.1). This phase requires the attacker to have the same hardware as the victim targeted device. It has to be noticed that this characterization phase has to be driven only once for a specific device. Online Phase; Deducing the possible secret key values: In the second phase, which actually corresponds to the attack, the used key is secret and thus not known by the attacker. The objective is to deduce indirect characteristics of the key which result on a certain HD after two specific consecutive operations of the algorithm (e.g., AddRoundKey and Subbyte). This deduction will allow the attacker to infer the possible values of the encryption key significantly reducing the key exploration space. If the solution space is sufficiently reduced, recovering the final key can be done through a brute-force attack. In this phase the encryption of a controlled message with the unknown secret key is triggered, and the temperature measurements are simultaneously taken. Finally, a comparison of the measurements during the actual attack with the Offline characterization phase results allows to deduce a classification of the most probable keys.

In the following sections the implementation of these steps is presented and obtained results are discussed.

AES reminder

In this work, we target an AES128 encryption and more specifically, the first round as described in Figure 3.7. The diffusion of the cipher does not happen until the second operation of this round, thus, the complexity to infer information and recover the key is minimum at this stage. The first round takes as input a 4 by 4 matrix of 16 bytes and go through four operations SubBytes,ShiftRows,MixColumns and AddRoundKey.

-SubBytes uses a known 8-bit substitution box to substitutes each byte of the matrix with another byte from the box.

-ShiftRows shifts the rows of the input matrix by a fixed offset, the offset depends on which row is being shifted.

-MixColumns transforms each column using a fixed matrix. This operation provides, with the ShiftRows operation, the diffusion of the cipher.

-AddRoundKey add the subkey K1 to the bytes of the matrix with the xor operation.

The plaintext goes through AddRoundKey before the first round starts as seen in the Figure 3.7 which makes the results directly linked to the subkey K1. The plaintext is known and controlled by the attacker and the complexity is the lowest during this stage as the diffusion does not happen until the ShiftRows operation. Thus, during the attack, we target the first AddRoundKey and SubBytes. If we infer the HD between the input and output of SubByte operation, we will be able to directly link it to only certain possible values of the input, thus reducing the possible values of the subkeys.

Attack implementation and results

We continue using the same target device as for the previous experiments (i.e., the STM32F303 device). We assume that the attacker can access the embedded temperature sensor through DMA and is able to run temperature measurements during AES encryption targeted program. We assume that the attacker can also configure interruptions as they Figure 3.7 -Operations in the first round of AES are crucial to isolate the target instruction and repeat it indefinitely. In this case, the attacker needs to configure a periodic interruption using, for example, an APIC (Advanced Programmable Interrupt Controller) timer. The interruption needs to happen during the execution of the targeted instruction and before the program counter is updated. As we re-execute the same instruction, delay between each interruption is the same. We focused on the instruction Subbyte as explained before and shown in Algorithm 1.

Algorithm 1 Malicious application execution steps

1: DMA initialization 2: DMA start #Start measurement 3: foreach plaintext p_i 4: AES encryption #Start AES with an arbitrary plaintext p_i 5: wait to reach the targeted instruction 6: while Measurements do #e.g.., 30,000 temperature measurements for this instruction in our case, while execution of targeted instruction 7: trigger interruption #An interruption stops the execution of the targeted instruction and thus it will be re-executed, e.g., zero stepping

As previously explained, this attack requires two main phases.

Offline Phase

The whole process described in the previous section represents the Offline characterization. We use known keys and plaintexts to characterise their effect on the temperature. In this case, we already observed a difference of temperature when the HD between two consecutive states of register r (i.e., the register where the results of the AddRoundKey are written followed by the results of the SubBytes) varies. For the rest of the chapter, this Hamming Distance is designated by HD of r. During the Online Phase, the attacker will use these observations and will compare them with the run-time measurements.

During the Offline Phase, an exhaustive characterization is done by measuring the temperature of each possible plaintext/key combination for one byte which is a total of 65536 possible values. This is a time consuming process and lasts approximately 3 weeks. However, the characterization will not change for the same target device model and can be reused for the proposed attack on devices of the same model.

As we are using the same target as in Section 3.2.2, the previously measurements targeting the instructions used in the AES 128bits are considered. The experiments are limited to two HDs 4 and 5 of r as the attack can be easily generalised later. Figure 3.8 shows two extracted HD from Figure 3.6 the characterisation of these two HDs and three different areas can be distinguished:

-A first area (Area A) with temperature values of different plaintexts and keys, but resulting for the great majority of the cases on a HD of 4 between the two states of the register r.

-A second area (Area B) with temperature values of different plaintexts and keys where the resulting HD, of 4 or 5, is much harder to distinguish.

-A third area (Area C) with temperature values of plaintexts and keys where the resulting HD is predominantly 5.

During the implementation of the complete attack, all the zones (8 for each HDs plus the mingled zones) for the 8 possible HDs need to be distinguished. Finally, as Figure 3.8 shows the frequency of appearance for each temperature values, it is possible to statistically compute the probability of the most likely HD of r as:

P (HD i ) =
Samples(HD i ) Where Samples(HD i ) represents the number of measurements of the same temperature for the tested HD i over all the measurements for all the HDs.

Online Phase

Once the correlation between the temperature and the HD of r has been shown, it is possible to move to the second part of the attack which is the Online Phase. In this case, the attacker takes multiple temperature measurements with an unknown secret key but with a known plaintext. These measurements are then projected on the offline characterization areas, to finally compute the probability of having a specific HD, this is done for each HD. This process can be repeated with different known plaintexts. Thus, it is possible to rank each possible HD by the highest probability (the most probable) each time. For the sake of understanding the presentation of this attack here, is limited to only two HDs: 4 and 5. In Figure 3.8 the Offline Phase characterisation as well as the temperature measurements during the Online Phase (the blue dotted line) of the attack are shown. In this example, the attacker measures a temperature of 42.833°C, for this measured value, there is a total of 61 offline measurements with the same temperature, In this case, the HD between the two states of the register r has a high probability of being 5, by repeating the measurement and the process with different plaintexts, it is possible to infer the possible values of HD of the register. As the plaintext is known by the attacker, the possible value of the key can be computed. The final step to deduce the correct AES key is by using a brute-force approach. The possible keys to test during this final step depend on the HD of each byte found in the previous steps of the attack. As the operation of the Subbyte in AES is a substitution with known values, it is possible to only select the inputs that lead to a specific HD. Therefore, it is possible to find all possible values of the register r that could have resulted in a given HD. Table 3.1 shows the number of the possible values of the register r depending on the HDs previously deduced. The HD of 4 represents the greater number of possible values of r (67). To find the correct value, all the 67 different numbers should be tested. On the other hand, HD 7 represents the easiest case since there are only 7 possible values of r that need to be tested. To recover the entire key, the same operation on all the bytes of the subkeys need to be repeated, 16 times in the case of AES128. For sake of simplicity and in order to study the feasibility of the attack, the example was separated into two cases, the worst and the best case scenario. The worse case scenario is when all the keysub bytes lead to a HD of 4 (the greater number of values to test) while the best case scenario is when all the bytes lead to a HD of 7. With the data shown in Table 3.1, the time it will take to brute-force a key for each scenario can be inferred. An AES encryption would approximately take 1.3 clock cycles/byte according to [START_REF] Akdemir | Breakthrough AES Performance with Intel® AES New Instructions[END_REF]. This estimation is based on recent Intel processors and it takes ≈ 433 ps to test one key using a CPU with a frequency of 3 Ghz. In the best case scenario, it will take 1.6E -1 days to brute-force the entire key, and 8.26E 18 days in the worst case scenario. The process can be generated to compute the time needed for all possible combinations, but there is no simple representation to show the data as there is a lot of possibilities. We give a simplified example in the case where all the bytes leads to the same HD. The computation effort estimations are gathered in Table 3 The process of brute-forcing the key can be further simplified. The attacker is able to change the plaintext used during the Online Phase. As the key is fixed and does not change during the attack, the value of the register r will mainly depend on the plaintext that is controlled by the attacker. This gives the attacker the possibility to change the resulting HD of r by choosing each time a different plaintext. And for each plaintext and HD of r, there is a set of identified possible keys. The intersection of these sets represents a reduced set of the possible keys. For example, finding two plaintexts, leading to a HD of 4 and 5 respectively, will give a set of 67 and 59 possible keys respectively. Therefore, the intersection of these sets will reduce the possible keys down to 23. In the same way, three plaintexts leading to HDs of 3, 4 and 5 respectively, will further reduce the number of possible keys to only 9, making it possible to brute-force it in 9 days in our case using the same AES encryption speed in [START_REF] Akdemir | Breakthrough AES Performance with Intel® AES New Instructions[END_REF] used to compute the results of Table 3.2. It is also important to note that these results were computed using the information of one desktop CPU. It is thus possible to significantly reduce the time of brute-forcing if the tests are parallelized (e.g., using multiple CPUs, GPU).

Results analysis

Discussion

The work presented in this chapter shows that it is possible to maliciously exploit the temperature measurements from embedded sensors to extract crucial information and significantly reduce the AES key exploration space. In the considered scenario, we were able to reduce the exploration space down to 96.47% for one byte in the best case scenario (9 out of all 255 possible values, requiring only 9 days to brute-force the key, see Section 3.3.6). As for the worst case scenario, the reduction of exploration space is reduced by 74% (67 possible values over 255, see Table 3.1). These results can be extrapolated to deduce the worst case scenario for the 16 bytes in AES128 in which the reduction of the exploration space could be theoretically reduced down to 99.9999999515% (16 bytes leading to the HD=4 of r) 67 16 / 255 16 which will theoretically take 8.26E 18 days to bruteforce the whole key according to Table 3.2. However, with further measurements using different plaintexts, the time to bruteforce the key can be reduced even further to less then a day in the best case scenario. This work can be extended to other platforms as today's embedded devices generally come with temperature (and other) embedded sensors. There are possibly further ways to use sensors information. For example, in systems with multiple sensors, it is possible to observe delays in the heat propagation as the sensors are geographically in different positions in the chip. This could be used to pin-point where certain registers are located or where certain instructions are executed. Finally, this work can be further extended by studying its feasibility on protected AES algorithm and AES dedicated bloc (cryptography cores).

The most straightforward countermeasure would be to add access limitations to the integrated sensors. In devices with an operating system, a limitation can be for example to always limit sensor data access to privileged users only. Additionally, it is also possible to reduce the accuracy of the measurements as the attack requires to distinguish an average of 100 m°C difference between the temperature peaks of each HD observed in Section 3.2.2, in order to distinguish the different HD values. Thus, reducing the measurement precision will make the number of false positive considerably increase, to the point where it is impossible to find the correct HD. In case where there is no need to share the temperature with the user or the consumer, the access to the temperature sensor can be limited to trusted execution environment only.

Conclusion

Today's embedded devices generally support temperature management mechanisms. This work investigates the feasibility of a remote malicious exploitation of embedded temepraturesensors used in these management systems. We considered the example of IoT devices. The proposed technique was fully implemented in a real platform. Our experiments showed that integrated sensors can be remotely and maliciously exploited as measurements are sufficiently precise to extract information. Operands and executed instructions are clearly distinguished in some cases. Finally, our technique has been used in order to deduce AES encryption secret key characteristics reducing the key exploration space down to 74% per key byte (in the worst case) making it feasible to brute force the remaining possible key values to deduce the exact key. With this work we highlighted important security flaws in the temperature management systems and the necessity to address them.

using them to improve the analyze of the data. Section 4.4 elaborates on the possibility to use the previous methodology against RSA decryption algorithm to extract the HW of the private key. Section 4.5 discusses the limitations of this work and gives some leads for possible countermeasures. Finally, Section 4.6 draws conclusion and future work directions to this work.

Attack scenario

In this chapter, we also try the previous method on a more complex platform, we focus on inferring the HW of the key from an RSA2048 decryption algorithm. The objective is to significantly reduce the number of the possible values for the secret key. This attack is similar to the one described in Chapter 2 and its methodology is summarized in The attacker needs to know beforehand the effect of some characteristics (operands and instructions) on the heat generated within the chip. Thus, it is necessary to characterize the target device and the effect instructions and operands have on the temperature. As the intended victim algorithm is an RSA-2048 decryption, the focus will be on characterization of multiplications and exponents operations. Once this step is done, the attacker can measure temperature on the target device and infer secret information using the previous characterization.

For this attack to be successful, the attacker requires:

-to have a remote access to the embedded temperature sensors of the targeted embedded device core. This a classic and simple requirement for remote attacks as already shown.

-to be able to take temperature measurements while executing the victim algorithm (e.g., RSA decryption). On the targeted MPSoC, it is possible to use one core or cluster running the malicious application to measure the temperature of another core or cluster running the victim program. This allows us to reduce the effects of the measurement on the heat emitted by the core or cluster running the victim program.

-to be able to trigger the encryption of any chosen plaintext.

All these points and their implementation on the Kirin960 embedded system are described and discussed in Section 4.4.

Experimental setup

In this work we used the Hikey960 [START_REF]Hikey 960[END_REF] evaluation board which embed the Kirin960 SoC, an octa-cores based on arm big.LITTLE technology. It uses the armv8 architecture and encompasses 3 temperature sensors within the SoC as shown in Figure 4.2 and another 2 outside the SoC, within the Random Access Memory (RAM) and the modem. For the rest of this chapter, the focus will be on the two sensors within each cluster. They both have a response time of 500ns and a resolution of 220m°C. For the following experimentation, the target device is running the Android Open Source Project (AOSP).

A kernel module was developed to access the temperature, it is done by reading the value from the register of the thermal sensor ADC of the cluster running the victim program. This kernel module must be executed in parallel of the target program as measurement requires minimum impact on the temperature compared to the victim program. In fact, both of the cluster are physically separated on the chip, plus the temperature has a slow propagation time, making it easily to fulfil the previous condition. In order to implement this, the main kernel module launches two threads, the first one is responsible for measurements while the second starts the victim program and waits for it to finish. As the Kirin960 has a sensor for each cluster, the two threads are running on two different clusters, this will further minimize the effect of the measurements on the temperature. For the rest of this chapter, we arbitrary choose the LITTLE cluster to execute the target program while the big cluster is executing the measurements.

Distinguishing operands HWs

The first step toward the characterization of the RSA encryption is to study the effect of multiplications on the temperature, the first experimentation consists in characterizing the 2048 bits multiplications, for this, the Multiple Precision Integer (MPI) kernel library was used. This library is part of GnuPG which is a cryptographic tool and contains functions that allow to do arithmetic operations on large integers. For this experiments, two functions were used, the first one is mpi_alloc which sets the size of the used integer and allocates a portion of memory to the operands. The second one is mpi_mul which multiplies two MPI variables (MPI is the base structure of the MPI library and mainly contains the value of the operands and its size) and saves the result into a 3rd variable. As the size of each operand is 2048 bits, it is impossible to characterize all the values as it will take years to finish executing all the iterations. Thus, one operand will be fixed In fact, different groups of overlapping temperature could be formed, it is possible to distinguish them visually and statistically but it would be difficult or near impossible to distinguish HWs within the same group. For this, a different method had to be used to analyze the temperature measurements. Moreover, as it is not possible to test all the values, it is important to interpolate the results based on the available data. Thus, it has been decided to use dimension reduction algorithm and classification methods to imporve data analysis.

Machine learning methods

Principal component analysis (PCA) is one of the techniques used to analyze large and difficult to interpret dataset. This method is used to reduce the dimension of these datasets and make them more interpretive while minimizing information loss. It does so by creating new uncorrelated variables (principal components) that successively maximize the variance of the data.

Variational Autoencoder

Before applying the PCA to our dataset, it is necessary to preprocess it to reduce the noise. For this, different other methods were tested and we choose Variational Autoencoder (VAE) as it was the most efficient and fits our requirements.

VAE is an artificial neuronal network and a variation of the Autoencoder (AE). Both are based on fully connected neuron networks. They can also be implemented using convolution layers but the results using the first model were satisfactory and the convolution neuronal network was not necessary. AE is composed of two parts as shown in Figure 4.4:

-Encoder : a fully connected neuron network which compresses the data and encodes it unto a smaller space by gradually reducing the number of neurons after each layers. the encoder generates a latent space (code).

-Decoder : a fully connected neuron network which decompresses the code and tries to reconstruct the encoded data to match the original data.

Both parts are linked as the output of the encoder is the input of the decoder. Thus, the data is forced to go through a smallest layer and then reconstructed it and doing so, reduces the non-significant information (noise). The neuron layer shared by the Encoder and Decoder is called latent space (Also referred to as Code in the Figure 4.4) as it For the VAE, the latent space is not formed by a layer of neurons. In fact, the output of the encoder is encoded into multivariate distribution (namely a Gaussian distribution) as shown in Figure 4.5. In the later, the mean µ and the variance σ are processed to compute the distribution, then, random samples are selected from the distribution (the number of samples depends on the dimension of the latent space and the degree of compression) and are used as the input of the decoder.

For our work, the VAE shown in Figure 4.5 was used to filter the input dataset. Different layer models have been tested experimentally and the most efficient one had an input layer of 250 neurons, 2 hidden layers of 64 and 32 neurons and a latent layer of 4 samples (randomly extracted from the distribution σ, µ). This model is used for the rest of the experimentation. The dataset consist of the measurements done for the 2048 bits multiplication. Each input set is composed of 250 of the 1000 values. The VAE model was constructed using Keras library on python, the activation function of the neurons is the ReLU (Rectified Linear Unit) which defined by equation 4.1. As for the optimizer (Optimizers are algorithms used to minimize the error function) Adam [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF] is used. This process can help distinguishing between operand's HW using temperature measurements. The steps are summarized in Figure 4.8 as it will be used and described in detail again in the following section. It is also important to be able to process the decision boundaries of the clusters. In the presented case, it is possible to visually distinguish them, however, when most of the different HW are present, it is expected to become much more difficult. For this, decision algorithms can be used:

f (x) = max(0, x) (4.1)
-K-nearest neighbors algorithm (k-NN) [START_REF] Altman | An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression[END_REF]: is a type of classification algorithm that identifies the clusters by studying the distance between the projected dataset -Support-vector machine (SVM) [START_REF] Boser | A Training Algorithm for Optimal Margin Classifiers[END_REF]: is a supervised learning model that analyzes data for classification and regression analysis. It is one of the most robust prediction methods
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-Neuronal networks for classification [START_REF] Freund | Large Margin Classification Using the Perceptron Algorithm[END_REF]: it is also possible to use a classical perceptron for automatically classifying the output of the PCA These methods were not used in this chapter but represents future possible work to increase the accuracy of finding the correct HW.

Inferring the HW of RSA private key

As seen in Section 4.2, it is possible to use the temperature of the chip to infer information. The main objective of this section is then to infer information from an RSA decryption and implement an attack on modern MPSoC (Hikey960 board as an example). Same as in the previous section, the focus will be on extracting the HW of the secret key.

Main implementation steps of attack

The main steps of this attack are similar to the attack presented in Chapter 3 with slight differences.

Accessing the temperature sensors: Accessing the temperature sensors does not require a physical access to the system. In modern MPSoC the devices run under an OS and it is still possible to access the sensors without privilege. However, having a privileged access allows to read the temperature value directly from the register, thus, it reduces the latency and has higher sampling rate. Moreover, a privileged access will also allow the attacker to modify the working frequency. Running at the minimal frequency is recommended for this attack as the junction temperature will not be reached and more measurements can be done within the same time span.

Measuring the temperature during RSA: In the target platform, the system has multiple cores and two clusters as opposite to the targeted platform of the previous Chapter 3. Techniques like DMA are not necessary as measurements can be done from one core while the target program is being executed on another one. For this attack, the measurements are done from a big cluster core running at the highest frequency, while the victim target program is executed on a LITTLE cluster core running at its minimum frequency (Similar to Chapter 2).

Launching an RSA decryption:

It is important to be able to re-execute the RSA decryption with the same ciphertext and the same key. Multiple iterations are necessary as we need a sufficient number of measurements. The mean temperature for at least 100 iterations were needed in our rest case scenario.

Offline Phase; Characterization of the device: In the first phase, the attacker is required to characterize the target device. Since the main objective is to uncover the HW of the private key, a characterization for every HW and its effect on the temperature of the targeted device is necessary. This process is time consuming but needs to be accomplished only once per platform model. In this phase, the private key is known. Moreover, it is recommended to have different target hardware of the same model to take into consideration the variation introduced during the manufacturing process. Finally, the dataset obtained in this phase is used to train the VAE model previously presented.

Online Phase; Uncovering the HW for the private key: The second step represents the real attack and its objective is to uncover the HW of the private key. In this phase, few measurements need to be done using a malicious application. These measurements are used with the previously trained VAE and are added to the Offline Phase dataset for clustering with PCA. The final step is to identify which cluster is the closest to the measurements done during the Online Phase. The distance between the measurement and the cluster represents the probability of the key being of a specific HW.

RSA reminder

The main target of this part of the work is RSA 2048. It uses exponentiation operation to encrypt and decrypt information with both operands of the operation being long binary number (from 1024 bits and up to 4096 bits). Thus, it has long processing time and a high load on the SoC making it the perfect target for our proposed temperature attack. RSA is a public-key cryptosystem used to secure transmissions. In this case, a public key is released and used to encrypt the information. However, this same key cannot be used to decrypt the cipher, to decrypt the information, a private key, which is kept secret, is used. It is also important to note that both private and public keys are computed using two distinct prime numbers (p and q). Any person in possession of these two numbers can recreate the private key.

The creation of both, a private and public key, is shown in Figure 4.9 and the main steps are as follow:

-Choosing two distinct prime numbers p and q. They should be random and kept secret.

Inferring the HW of RSA private key

-Computing n = pq. n is the modulo for both the private and public key, it will be used during the encryption and decryption processes.

-Computing λ(n) where λ is Carmichael's totient function. λ(n) should be kept secret.

-Choosing e where 1 < e < λ(n) and e should be coprime with λ(n). (e,n) is released as the public key.

-Computing d ≡ e -1 (modλ(n)). (d,n) is the private key and kept secret. The decryption of a ciphertext c into the plaintext m is computed as follow:

c d ≡ m * mod(n) (4.3)
In this work, the main goal is to infer the HW of the private key d. Thus, the main target is the decryption phase where d is used as an exponent of c, d being the secret.

Experimental setup

The target device is the Hikey board, as for the RSA implementation, the library MPI was used. This library was originally created to be used for cryptography applications and contains all the mathematical tools necessary for this case. For the RSA implementation, the function mpi_powm (MPI m, MPI c, MPI d, MPI n) is used. It is equivalent to m = c d * mod(n). n was arbitrary chosen and fixed for the whole attack. As for measurements, the previous setup used for the multiplication in Section 4.2 is reused.

Attack implementation and results

The first step toward implementing the attack is to complete the characterization. The objective of this phase, as previously stated, is to identify the effect of the RSA decryption on the temperature when the private key HW is known. In our case, the size of d is 2048 bits width meaning that there are 2048 possible HWs. As it is too time consuming to characterize all of them, it was decided to characterize 25 HW only. Moreover, enough measurements are needed for training the VAE.

During the characterization, a set of 250 ciphertexts was arbitrary chosen and will not change for the rest of the attack. For each HW, 20 private keys of this HW were arbitrary chosen. The characterization consists of re-executing the decryption ciphertext until 40.000 temperature measurements are obtained (same setup as in Section 4. With the PCA and identification of each clusters the Offline Phase is finished. Once the cluster are formed and distinguished, it is possible to move to the Online Phase. During this part, the attacker measure remotely the temperature during the decryption of a set of ciphertexts. The set should be the same one that is used during the Offline Phase. Measurements are also done in the same way, however, this time there is only one key and it is not known. By the end of this phase, a vector of 250 measurements for the private key is obtained. It is then filtered using the VAE and added to the previous dataset for PCA. This projects the measurements done during the attack on the clusters previously formed. The HW is inferred by computing the closest cluster to this specific measurement. It has to be noticed that we need 250 measurements only in this phase. It is 4.6. Conclusion a general variation of temperature depending on the HW of the private key. However, this may not be the case for encryption like AES as it requires to detect variation at a few instructions granularity level and before the key is diffused. However, it is possible to isolate the target instructions, but the variation of temperature is small compared to the noise from the OS and other applications.

This attack also requires a lot of measurements, and the characterization is time consuming. However, once it is done, it is viable for most of the devices using the same platform model.

Finally, it may also be possible to use machine learning techniques to complete characterization for certain HW if the dataset is large enough. One of the reasons VAE was used is because of its ability to generate new data. However, this was not tested on the dataset created during this work.

Conclusion

Temperature management mechanisms are nowadays omnipresent in every device. A first work proved the possibility of maliciously remotely using temperature sensors to extract information during AES encryption. That work mainly targeted IoT devices as they are simple and was not proven on complex architectures. However, in this chapter, it is shown on a state-of-art high-end architecture used on the smartphone industry, that it is still possible to maliciously exploit temperature sensors. Machine learning techniques were used to filter the measurements, reduce the noise and remove irrelevant information. Finally, PCA was used for clustering. The private key was not recovered but this work may be combined with other works such us factorization of the key [START_REF]Factorization of RSA-250[END_REF] as it may reduce the exploration space.

CONCLUSION

In this thesis, we evaluated possible vulnerabilities in today's dynamic managers and their hardware implementation. We focused on the two most used managers: energy manager and thermal managers.

First, the importance of evaluating the security of those systems is highlighted in Chapter 1. Previous vulnerabilities proven in different works in the literature are presented. Energy managers were maliciously used to inject faults and extract secrets while works on thermal managers are limited. Most of the works have used heat as a covert channel to transmit information. In Chapter 2, we presented a different way of exploiting the same vulnerability presented using energy managers. In this case no secret information was extracted. However, it is possible to lock out the targeted device and to make its data inaccessible and service unusable, this was presented as a possible ransomware on smartphone, but it can be extended to other targets such as autonomous car, IoT devices or even temporally lock out companies' servers with a DOS attack.

In Chapter 3, the internal temperature sensors present in today's SoCs were used to characterize a target device and extract crucial information. This was done by measuring the heat generated by different instructions and operands and was used to infer a characteristics of a secret key of an AES encryption. It was possible to reduce the exploration space by 74% for each byte of the encryption key, and it was proven that it can be reduced even further, making possible to bruteforce the encryption key within 9 days theoretically. This attack was implemented on an IoT SoC, as the temperature has a low propagation time, thus, a lot of information is lost and filtered due to the high frequency of in state-of-art SoC. However, with application that has high load and generates more heat it would be still possible to extract information for its execution and temperature, this possibility was explored in the following chapter.

In Chapter 4, we explored the possibility of using the temperature sensors in a more complex architecture running an OS. In this case, we target RSA encryption as it has a higher load on the SoC and generate more energy than the AES encryption. However, it was not enough to observe a correlation between operands and the temperature. Machine learning techniques (VAE and PCA) are then used to analyze the temperature measure-ments. The HW of the private key was inferred from the heat emitted during an RSA decryption, .

Future possible work

This work focused on studying two different dynamic managers. Future work may also focus on other types of managers such as resource managers in order to identify further vulnerabilities. This work can also be extended to different hardware performance counters and use them to extract information as different works [START_REF] Economou | Full-System Power Analysis and Modeling for Server Environments[END_REF][62][63] [START_REF] Kenneth | A Survey of Power and Energy Predictive Models in HPC Systems and Applications[END_REF] have studied their use in order to model the energy consumption from the obtained data. It is likely that this information can be used to study data-dependency and to extract secrets from the device.

It would also be important to study the feasibility of the approach presented in this work on different protected encryption systems integrating classical side-channel attacks countermeasures (e.g., AES with mask, random delays or RSA exponent blinding). The study of the approach against dedicated hardware blocks for encryption is also a future work. This work can also be extended and studied on different architectures (i.e., Intel, AMD).

Another interesting research lead would be extending the machine learning analysis using VAE. Some literature work has already used AE to filter measurements and reduce the number of traces needed to recover secret information. However, VAE may also be used to predict the characterization of certain HW. For example, in our work we required the characterization of every Hamming Weight (HW) of the private encryption key. In this case, VAE can be used to interpolate the characterization of a HW if we have enough traces for other characterized HWs. Finally, this approach could be applied to other template attacks in order to reduce the time required for their characterization phase. Title: Evaluation and consideration of security in multi-core management systems Keywords: Energy manager, Thermal manager, Denial of Service Attack, Thermal Side-Channel Attack Abstract: Architectures have become more and more complex to keep up with the increase of algorithmic complexity. To fully exploit those architectures, dynamic managers are required. The goal of dynamic managers is either to optimize the resource usage (e.g., cores, memory) or to reduce energy consumption under performance constraints. Taking as example, smartphones, those devices were designed to fit complex architectures in the smallest space while ensuring the device runs in stable conditions. This includes keeping the SoC (System-on-Chip) in low temperature level and maximizing the battery life. Thus, different dynamic managers are deployed for this purpose. However, managers were developed with performance optimization being their main goal, they have not been designed to be secure and present security vulnerabilities. In this work, we evaluate the security of both, energy and thermal managers. Three different attacks are presented and validated by an implementation on a state-of-art SoCs. Finally, for each attack, possible countermeasures were discussed.
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  2.1. The mean of those measurements is computed before moving on to the next ciphertext. At the end of this experiments, a matrix of 25*20*250 (25 HW, 20 private key and 250 ciphertexts) measurements is obtained, it will represent the dataset for the rest of the chapter. The next step is to train the VAE. The structure from Secion 4.2 shown in Figure 4.5 is reused. The input of the VAE is the 250 measurements of each ciphertext for each key.
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 3 .2. 2 -Time to test all keys if all the bytes of the secret key lead to the same HD

	Hamming distance	0 1 2 3 4 5 6 7 8
	Time to test all keys in days	0	9.26 E2	3.64 E9	3.97 E12	8.26E 18	1.08 E18	6.05 E13	1.6 E-1	0

Une première caractérisation a été d'observer l'effet de différentes instructions lorsque les opérandes sont fixés, 3 instructions arithmétiques et logiques (multi, add et xor) en plus de 3 instructions de mémoires (load, write et mov) ont été exécutés dans une boucle et la température a été mesurée en parallèle afin de caractériser son évolution. Après l'analyse des mesures, il est possible de distinguer entre les différentes instructions de chaque type. En effet, même si la variation de température est petite, de l'ordre de 10 m°c, il est toujours possible de distinguer les instructions en utilisant uniquement la température. Par la suite, l'effet des opérandes pour certaines instructions a été caractérisée, notamment l'effet du poids de Hamming dans les multiplications sur 32 bits. La même configuration de mesures a été réutilisée, en plus, on fixe un opérande de la multiplication et on fait varier l'autre mais seulement pour des valeurs ayant les 3 poids de Hamming 8, 14 et 24. Cette limitation a été appliquée pour des raisons de temps de mesures. Après l'analyse des mesures, il est possible de clairement distinguer entre les 3 poids de Hamming dans la plupart des cas. Par la suite, nous nous sommes intéressés à caractériser l'effet des deux premières instructions de l'AES, la SBOX et l'ADDKEY sur la température, pour

3.2. Experimental setup

j=0 Samples(HD j )

Malicious exploitation of the DVFS

Installing the application

Installing the malicious application.

Loading

the kernel module into the OS to control the voltage.

Manipulating the voltage

Accessing regulators and PLLs.

Modifiying the voltage frequency beyond vendor operating limits.

Freezing the device

Introducing errors into the OS execution causing it to freeze until it reboots.

Locking the device

Detecting when the boot ends.

Verifying if the user payed the ransom or reexecute previous steps. -Manipulating the voltage: target devices are equipped with and support DVFS, granting the user the ability to modify the voltage and frequency. Usually the vendor specifies multiple operating voltage and frequency points (operating points) where the device runs in perfect and stable conditions. However, these operating points are not hardware enforced. Our purpose is to manipulate the voltage beyond these limits, while the frequency is fixed in order to force the system into an unstable operating mode. This step can also be done by fixing voltage and modifying the frequency. However, the target device is a black-box and most of the registers are unknown. Thus, modifying the frequency can only be done through the cpufreq tool which make it harder to change the frequency beyond the limits set by the manufacturer. However, there is also no safeguard limit when choosing a voltage level due to the high difference of critical paths between different chips, even between dies on the same wafer, making it very difficult to set a physical limit for the regulators.

-Freezing the device: modifying the voltage beyond the SoC operating limits results in the introduction of faults that might be critical in the execution of the OS. These cause the device to freeze and to be unable to recover until it reboots. As shown in previous Section 2.3.2.

-Repeatedly locking the device: in order to lock the device, the attacker must have the ability to permanently keep the device outside its stable Voltage/Frequency zone instructions, it is easier to distinguish these 3 instructions. Additionally, it can be noticed here that these measurements enable also to distinguish between the type of instructions (i.e., separating arithmetic and memory instructions).

Therefore, we can conclude that for certain cases, instructions can be confidently distinguished through the integrated temperature sensor measurements. Moreover, it can be seen that multi is the arithmetic instruction that statistically generates more heat as it requires more energy compared to the add and the xor instructions. This is an expected result as the binary operation xor is the instruction that has the lowest complexity out of the three instructions, thus, it generates the least amount of heat compared to the two other instructions. From these measurements, we can also see that we can distinguish between simple instructions executed on the SoC using only temperature measurements from the embedded sensors. In the next section, we focus on the investigation of the possibility of distinguishing operands.

Distinguishing between operands

The second characteristic to study is the effect of the operands of the instructions. In previous experimentations, the same set of operands were used. Thus, their effect was the same on the different instructions. In this part, the instruction is fixed, we choose the multiplication as this arithmetic operation provides the highest heat based on the previous experiments and therefore we expect it to be the easiest to be distinguished. We then vary Chapter 4

USING MACHINE LEARNING TO ANALYZE TEMPERATURE VARIATION AND EXTRACT SECRET INFORMATION

In the work presented in Chapter 3, thermal sensors are used to extract information from an STM32 micro-controller. Experiments shows that it is possible to infer certain characteristics from the execution of an AES128 and to use it to eventually brute-force the encryption key. In this chapter we also focus on extracting secret information using thermal sensors. However, the target is the kirin960 a much more complex architecture. This target is a heterogeneous SoC with 8 cores and each core is more complex than the STM32 single core. The Kirin was designed for high end computing on smartphone devices, contrary to the STM32 which was mainly designed for IoT. The main target algorithm of this chapter is the RSA2048 algorithm as its operations have a higher load and generate more heat compared to AES. Thus, its thermal print is more visible when measuring temperature. These experiments also show that the attack can be implemented on a different cryptography algorithm. Machine learning algorithms are used to analyse the measurements.

The key contributions of this chapter are:

-Using on-chip thermal sensors to infer some operands HW in 2048 bits multiplications.

-Using machine learning with on-chip thermal sensors to distinguish HW of the private key during RSA decryption.

The remainder of this chapter is as follows: Section 4.1 presents the scenario of the attack and its threat model. In Section 4.2 the experimental setup is presented with the chosen target and the necessary experimentation to prove the feasibility of this work. Section 4.3 extends the previous section by presenting machine learning techniques and

Experimental setup

wile the other will be varying within an arbitrary chosen set of HW. The first operand represents the hidden information and the goal of this experiments is to characterize the effect that this operand's HW has on the temperature. Thus, the value of the first operand is fixed depending on the HW while the second one vary within a set of 1000 arbitrarily chosen values. Finally, for each couple, the multiplication is repeated in a 40,000 measurements loop (enough measurements are done until the temperature stabilize) and the mean of those measurements is computed to reduce the error and noise from OS other background programs affecting the temperature. This provides 1000 mean of temperatures measurement for each hidden operand value. This process is repeated for each hidden value in the evaluation set. In this figure, it can be clearly seen that it is possible to distinguish the HW-768 and HW-1792. However, it is harder to distinguish the HW-256 and HW-1280 as they are superposed but it is still possible to separate them from the HW of 768 and 1792. This phenomenon is expected to occur more often as other HW graphs are added to the results even if the variation range of the temperature is large (between 34.620°C and 59.220°C). information The results of using the VAE to filter the measurements are shown in Figure 4.6. It is possible to see a clear difference compared to the previous figure. The first main and important difference is the absence of mingled graphs and all of the 4 HW traces are distinguishable. Additionally, we can observe that the difference between the temperature of the traces is smaller. This makes it harder to distinguish them visually and increases the error of guessing the correct HW. However, when using a machine learning mechanism to differentiate between the traces, the effect is reduced and neglectable. As we will see in the following Section 4.3.2, the dataset is now ready to be used with PCA.

Principal Component Analysis

PCA is an orthogonal linear transformation that reduce the dimension of the data by projecting them to a new dimension where the variance is maximized. The coordinates in the new dimension are called principal component and the first coordinates (the first principal component) represents the one with the maximal variance, the second coordinate corresponds to the second greatest variance, and so on.

To implement this technique, the sklearn [START_REF]scikit-learn: Machine Learning in Python[END_REF] library from python was used. The dimension of our data was reduced to 250 to adapt it to the previously used VAE and it was projected to a 2-dimensional space. At first, the goal was to increase the dimension if it proved not enough to distinguish between the HW but, it was not necessary.

Figure 4.7 shows the results of the dimension reduction on the filtered data. It is possible to see clusters forming depending on the HW of the hidden operand. The clusters Chapter 4 -Using machine learning to analyze temperature variation and extract secret information still possible to increase the number of measurements in order to obtain a more accurate results.

During the Online Phase, we did 50 tests of 250 measurements of the temperature with different keys and it was possible to infer the HW of the private key 95% of the time. Some measurements contained too much noise and were projected outside of the expected clusters and when computing the closest cluster it leads to false-positive. Finally, further tests were conducted to compare the recovery rate that is dependent on the HW of the secret keys. The results summed up in Table 4.1 and Table 4.2 consist on comparing the recovery rate for keys with high HW to keys with low HW. This shows that there is no main difference, and that all recovery rate are higher than 90% with the highest being 96.8%. Those results were obtained by reducing the number of measurements per ciphertext 30.000 instead of 40.000 and using the same setup as before (200 private keys per HW), we were able to collect enough measurement to form the table in 

Discussion

In this chapter we showed that it is possible to use integrated temperature sensors to infer information over complex architectures. The victim program of this work is the RSA2048 algorithm, as this program has a high load on the cpu, it was possible to detect Conference & Exhibition (DATE), 2020, pp. 1043-1048, doi: 10.23919/DATE48585.2020.9116420.