
HAL Id: tel-03520419
https://hal.science/tel-03520419

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation and consideration of security in multi-core
management systems

Safouane Noubir

To cite this version:
Safouane Noubir. Evaluation and consideration of security in multi-core management systems. Elec-
tronics. UNIVERSITE DE NANTES, 2021. English. �NNT : �. �tel-03520419�

https://hal.science/tel-03520419
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE NANTES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Électronique - Génie Électrique

Par

Safouane NOUBIR
Evaluation and consideration of security in multi-core manage-
ment systems

Thèse présentée et soutenue à l’Université de Nantes, le 17 décembre 2021
Unité de recherche : IETR UMR 6164

Rapporteurs avant soutenance :

M. BOSSUET Lilian Professeur, Université Jean Monnet, Saint-Étienne
Mme. ENCRENAZ Emmanuelle Maître De Conférences/ HDR, Sorbonne Université, Paris

Composition du Jury :

Président : M. GOGNIAT Guy Professeur, Université Bretagne Sud, Lorient
Examinateurs : M. BOSSUET Lilian Professeur, Université Jean Monnet, Saint-Étienne

Mme. ENCRENAZ Emmanuelle Maître De Conférences/HDR, Sorbonne Université, Paris
Dir. de thèse : M. PILLEMENT Sébastien Professeur, Ecole polytechnique de Université de Nantes
Encadrante de thèse : Mme. MENDEZ REAL Maria Maître De Conférences, Ecole polytechnique de l’université de Nantes

Les travaux de cette thèse ont été réalisés dans le cadre du projet SECURE IoT sélectionné par le RFI

WISE avec le soutien financier de la Région des Pays de la Loire.

ACKNOWLEDGEMENT

I would like to start this document by expressing my gratitude to all the people I met
and received help during the course of my PhD.

First, I would like to thank both of my thesis supervisor Sébastien Pillement and Maria
Mendez Real for providing me with the opportunity to pursue my PhD. I am highly grate-
ful for the guidance and the support they provided me through my work which helped
me better understand my subject and guided me in the right direction.

I would like to thank the reviewers and the jury committee Guy Gogniat, Lilian
Bossuet and Emmanuelle Encrenaz for reviewing my thesis and accepting to evaluate my
work. I would also like to extend thanks to my CSI members Quentin Meunier and Ar-
naud Tisserand for their constructive remarks that helped me complete my work.

Moreover, I would like to thank all the members of the IETR laboratory for their
administrative and technical support. I would also like to address my gratitude to all my
colleagues and fellow PhD students as they have enriched my daily life during my PhD.

Finally, I would like to thank my parents and brother for their unconditional and
unwavering support that helped greatly through this journey.

3

RÉSUMÉ LONG

Les architectures multi-cœurs présentent aujourd’hui une grande complexité du fait
du grand nombre de ressources les constituants. Afin de gérer cette complexité et de
répondre à des contraintes de performances ou de consommation d’énergie, il est néces-
saire d’implémenter des gestionnaires dynamiques (e.g., mapping de tâches, adaptation
dynamique de la fréquence et de la tension). Par exemple, les smartphones ont été conçus
en mettant des architectures complexes dans un espace limité tout en s’assurant du bon
fonctionnement de l’appareil (i.e., durée de vie de la batterie, température du processeur).
Cependant, dans la majorité des cas, ces gestionnaires n’ont pas été conçus pour la sécurité
et présentent des vulnérabilités.

Durant les dernières années, un grand intérêt s’est porté sur les vulnérabilités matérielles
présentes lors de la conception du circuit. Différents types d’attaques ont fait surfaces (e.g.,
Meltdown [1], Spectre [2], Clkscrew [3]) dont le but principal est d’extraire une information
cachée (e.g., une clef de chiffrement). Ces attaques s’avèrent de plus en plus dangereuses
étant donné que les systèmes embarqués (comme les smartphones) sont aujourd’hui utilisés
pour des opérations sensibles, comme par exemple, des applications bancaires, paiement
par téléphone, suivi de santé, ou les véhicules autonomes.

Cette thèse vise donc d’une part à étudier les gestionnaires actuels des architectures
multi et many-core et à évaluer de possibles vulnérabilités. Il existe peu des travaux
étudiant ces gestionnaires dans le cadre de la gestion d’architectures simples qui nous
ont servis de base pour étudier leur pertinence/adaptation aux systèmes plus complexes
de type many-core. D’autre part ces travaux visent à proposer et évaluer de possibles
contre-mesures adaptées à ce type d’architecture. Dans cette thèse, nous nous intéressons
à deux types de gestionnaire dynamique : le gestionnaire d’énergie et le gestionnaire de
température. Trois attaques différentes sur ces deux gestionnaires sont ainsi présentées
ainsi que de possibles contre-mesures.

Dans un premier temps, nous nous sommes intéressés à évaluer les vulnérabilités des
gestionnaires d’énergie actuels. Ces gestionnaires permettent de réduire la consommation
d’énergie en modifiant dynamiquement la tension et la fréquence de l’architecture, com-
munément appelé DVFS (Dynamic Voltage and Frequency Scaling). Ce gestionnaire est

5

composé de deux parties : i) Une partie logicielle composée d’une application qui gère la
consommation énergétique de l’appareil en choisissant un couple de tension et fréquence.
On retrouve aussi un driver kernel qui assure la communication entre l’application et la
partie matérielle. ii) Une partie matérielle composée de régulateurs fixant les tensions
d’alimentation des c/oe urs et de PLLs (Phase Locked Loop) fixant leurs fréquences.

Le contrôle sur la tension et la fréquence joue un grand rôle dans la gestion d’énergie
d’un appareil. Cependant, ces deux grandeurs sont liées à la stabilité du système, et un
microprocesseur ne peut fonctionner correctement que lorsque la fréquence et la tension
respectent certaines conditions. En effet, dans un système combinatoire, la période de
l’horloge doit être plus grande que le temps de propagation des signaux dans le circuit
ainsi que le temps de setup et de hold des bascules. Une modification malveillante de
tension sans adapter la fréquence peut donc rendre le système instable et générer des
erreurs. Une première attaque sur la gestion malveillante de régulateurs DVFS a été
publié en 2017 [[3]] dans une architecture de ARM. Cette attaque se base sur le principe
précèdent et a pour but d’injecter des erreurs dans une tâche victime (e.g., chiffrement
AES, RSA), ce qui permet de déduire les informations qui nous intéressent notamment la
clef cryptographique secrète. Il existe aussi une autre attaque PlunderVolt [4] exploitant
la même vulnérabilité sur une architecture Intel.

Le but principal de cette contribution est d’exploiter cette vulnérabilité différemment.
En effet, des expérimentations ont démontrés qu’un changement malicieux de tension
bloque l’appareil complètement à partir d’un certain seuil. Il est donc possible d’utiliser
cette vulnérabilité comme une attaque par déni de service et peut même rendre un ap-
pareil inaccessible. Dans un scénario d’exploitation possible, en considérant un smartphone
comme cible de l’attaque, un attaquant peut modifier la tension avec une application mali-
cieuse et bloquer l’accès à l’appareil. Par la suite, l’attaquant peut demander une rançon
à la victime pour débloquer son appareil.

Cette attaque a été implémentée sur une carte Odroid XU4 [5] équipée d’un Exynos
5422 (ARM A7, A15) et une carte Hikey 960 équipée d’un Kirin 960 (A73 et A53). Ces
deux cartes récentes utilisent la technologie big.LITTLE de ARM. Cette dernière utilise
deux clusters séparés physiquement (un cluster big pour les hautes performances, et un
cluster LITTLE pour l’optimisation de la consommation) chacun avec un régulateur de
tension et un générateur de fréquence.

Finalement, l’implémentation de l’attaque se fait en 4 étapes : 1) Il faut une applica-
tion malicieuse avec un accès privilégié installée sur l’appareil victime. Cet accès privilégié

6

dans un téléphone peut s’être procuré facilement si la victime utilise une ROM customisée
(e.g., Magisk) ou même en utilisant d’autres vulnérabilités classiques des téléphones. Ces
utilisateurs seront la cible principale de cette attaque. 2) Un module afin de contrôler la
tension est nécessaire, dans un cas général, il suffit d’utiliser l’API kernel pour les régula-
teurs. Celle-ci nous permet de contrôler les régulateurs justes en utilisant le nom assigné
par le constructeur. Dans le cas de la Hikey960, un module permettant de contrôler la
tension est déjà présent. 3) En utilisant le module précédent, il est possible de bloquer
l’appareil en changeant la valeur de la tension en dessous du seuil nécessaire pour le fonc-
tionnement étant donné qu’il n’y a aucune limite logicielle ou matérielle. 4) Finalement,
il suffit de bloquer l’appareil de manière permanente en chargeant le module à chaque
démarrage. Pour ce faire, il suffit d’utiliser l’application malicieuse pour détecter le dé-
marrage et de charger le module malicieux avant même que la victime ne puisse débloquer
son téléphone.

Cette attaque montre qu’il est possible d’utiliser malicieusement les gestionnaires
d’énergie dans le cas où la précision n’est pas nécessaire pour injecter les fautes et extraire
de l’information. La contre-mesure la plus directe de cette attaque serait de rajouter des
limites aux valeurs de tensions possibles en fonction de la fréquence. Une autre contre-
mesure serait de limiter l’accès aux régulateurs et que seule une application exécutée dans
un environnement sécurisé (TEE – Trusted Execution Environment) puisse changer la
tension.

Dans une deuxième partie, nous nous sommes intéressés aux gestionnaires de tem-
pérature. Ces gestionnaires sont aujourd’hui présents dans tous les systèmes afin d’assurer
que les processeurs restent dans une température idéale et ainsi éviter la surchauffe et la
détérioration des circuits intégrés. Normalement, des moyens de refroidissement actif (e.g.,
radiateur, ventilateur) sont utilisés. Cependant, dans le cas d’un téléphone mobile ou des
appareils qui priorisent la portabilité, il n’est pas possible d’implémenter ces moyens. Dans
ce cas, des outils de refroidissement passif sont utilisés, généralement, c’est la fréquence
qui est réduite afin de refroidir le processeur.

Afin que les gestionnaires de température puissent prendre des décisions, ils doivent
être capable de mesurer activement la température du processeur, pour ce faire, des cap-
teurs de température ont été implémentés sur la plupart des processeurs modernes. Les
capteurs sont généralement utilisés pour aider les gestionnaires mais dans notre travail, il
a été possible de les utiliser afin d’extraire de l’information d’un programme victime. Dans
les travaux déjà publiés, la température est généralement utilisée comme canal caché [6]

7

afin de transmettre de l’information, dans ce cas aucune information n’est extraite, un
autre travail a utilisé la température pour déduire le type d’applications qui est exécutée
sur une architecture victime (e.g., explorateur internet, chiffrement RSA, . . .) mais aucune
information au niveau des instructions ou opérandes n’a été extraite.

Dans notre scénario d’attaque, un attaquant doit caractériser l’effet d’une caractéris-
tique d’une information secrète (une clef de chiffrement AES 128 bits dans notre étude)
sur la température. Pendant la caractérisation, l’attaquant doit avoir accès à une copie de
l’architecture cible et d’être capable de modifier la clef de chiffrement. Pendant l’attaque,
il doit réaliser des mesures de températures à distance sur un appareil victime lors de
l’exécution d’un chiffrement AES 128 bits avec une clef inconnue. L’attaquant peut par
la suite analyser les mesures et les comparer à la caractérisation réalisée afin d’extraire
des caractéristiques de la clef lui permettant de réduire l’espace d’exploration et même de
réaliser une force brute dans certains cas.

Afin d’implémenter cette attaque, il faut tout d’abord caractériser la cible. Pour ce
faire, des mesures ont été réalisés afin d’observer l’effet des instructions et des opérandes
sur la température, la cible de cette expérimentation est le microprocesseur STM32F303 [7].
Dans ce cas, l’accès au capteur de température a été fait par DMA (Direct Memory Ac-
cess) afin de limiter les effets de la mesure. Dans le cas d’un processeur multicœurs, il est
possible de réaliser les mesures à partir d’un autre cœur.

Une première caractérisation a été d’observer l’effet de différentes instructions lorsque
les opérandes sont fixés, 3 instructions arithmétiques et logiques (multi, add et xor) en plus
de 3 instructions de mémoires (load, write et mov) ont été exécutés dans une boucle et la
température a été mesurée en parallèle afin de caractériser son évolution. Après l’analyse
des mesures, il est possible de distinguer entre les différentes instructions de chaque type.
En effet, même si la variation de température est petite, de l’ordre de 10 m°c, il est
toujours possible de distinguer les instructions en utilisant uniquement la température.
Par la suite, l’effet des opérandes pour certaines instructions a été caractérisée, notamment
l’effet du poids de Hamming dans les multiplications sur 32 bits. La même configuration
de mesures a été réutilisée, en plus, on fixe un opérande de la multiplication et on fait
varier l’autre mais seulement pour des valeurs ayant les 3 poids de Hamming 8, 14 et 24.
Cette limitation a été appliquée pour des raisons de temps de mesures. Après l’analyse
des mesures, il est possible de clairement distinguer entre les 3 poids de Hamming dans
la plupart des cas. Par la suite, nous nous sommes intéressés à caractériser l’effet des
deux premières instructions de l’AES, la SBOX et l’ADDKEY sur la température, pour

8

ce faire, la distance de Hamming (nombre de bits qui ont changé entre deux états d’un
registre) a été étudiée. Tout d’abord, l’ADDKEY est calculée entre une valeur fixée (celle-
ci représente un octet de la clef de chiffrement) et une autre qui varie (celle-ci représente
un octet du texte à chiffrer), étant donné que les calculs se font sur 8 bits, il était possible
de faire les mesures pour toutes les valeurs possibles du deuxième opérande. Le résultat
est enregistré dans un registre ‘r’ qui est par la suite utilisé pour calculer la SBOX et pour
enregistrer les résultats de ce calcul. La distance de Hamming caractérisée est donc celle
entre les deux états du registre ‘r’. Finalement, en observant les mesures de températures
effectuées, il est clairement possible de distinguer les 9 distances de Hamming possible
pour des opérandes de 8 bits.

La caractérisation a permis de corréler la température aux instructions et aux opéran-
des, de plus, la dernière expérimentation nous a même permis de caractériser l’effet de
certaines instructions d’AES sur la température, dans ce cas la clef de chiffrement étant
connue. Afin d’utiliser cette caractérisation dans une attaque sur un chiffrement AES,
il faut que l’attaquant soit capable de re-exécuter indifféremment l’ADDKEY pour un
octet spécifique comme lors de l’expérimentation réalisée. Pour ce faire, nous avons utilisé
des techniques similaires à SGXSTEP [8], le principe est de déclencher des interruptions
périodiquement à la fin de l’exécution des instructions à l’aide d’un compteur matériel. Fi-
nalement, l’attaquant doit effectuer des mesures de température à distance sur l’appareil
victimes pendant un chiffrement à l’aide d’une application malicieuse ayant accès aux
capteurs. Dans ce cas, la clef n’est pas connue, cette mesure est donc comparée à la car-
actérisation déjà réalisée (la clef était connue) et cette comparaison permet de déduire
quelle distance de Hamming à une valeur de température proche ou égale. En utilisant la
distance de Hamming déduite, il a été possible de réduire l’espace d’exploration de 98.27%
dans le meilleur des cas pour un octet de la clef et 74% dans le pire des cas.

Pour cette attaque, deux contre-mesures ont été proposé. La plus simple est de réduire
la précision des capteurs de températures mais cela augmente seulement le nombre de
mesures nécessaires pour réaliser l’attaque, la deuxième contre-mesure serait de limiter
l’accès aux capteurs à des applications fiables (en TEE par exemple) tout comme pour
les régulateurs dans l’attaque sur les gestionnaires d’énergie.

La troisième contribution de cette thèse est de réaliser une attaque similaire avec les
capteurs de température sur une architecture plus complexe, la Hikey960 [9] présenté
précédemment, et un chiffrement RSA 2048 bits. Le scénario de l’attaque est le même, un
attaquant caractérise la cible et identifie l’effet d’une certaine caractéristique de la clef de

9

chiffrement (dans ce cas, la clef est connue) sur la température. Par la suite, il effectue des
mesures à distance et utilise ces mesures avec la caractérisation réalisée afin de déduire
des caractéristiques de clef et de réduire l’espace d’exploration.

Sur cette architecture complexe, une simple étude et comparaison de température
n’était pas suffisante, il a été nécessaire d’utiliser des analyses plus poussées, notamment,
de l’apprentissage automatique. Deux algorithmes ont été utilisés : i) un premier algo-
rithme qui filtre les mesures, VAE (Variational Autoencoder), ce dernier est composé de
deux réseaux de neurones entièrement connecté dont le but est de compresser l’information
et puis de la décompresser. Les neurones d’entrée et de sortie doivent donc avoir la même
donnée mais le nombre de neurones diminue progressivement jusqu’à 4 neurones dans
notre cas et puis augmente jusqu’à attendre le même nombre de neurones d’entrée. Cette
phase permet d’éliminer le bruit. ii) Un deuxième algorithme pour clustériser les données,
PCA (Principal Component Analysis), ce dernier traite les données filtrées précédemment
par le VAE et forme des clusters en fonction de la caractéristique de la clef. Dans notre cas,
la caractéristique utilisée est le poids de Hamming de la clef. Finalement, cette attaque a
été validée sur certain poids de Hamming et en utilisant l’analyse proposée, il était pos-
sible d’identifier cette caractéristique dans un scénario réel. Cependant, le nombre de cas
possible restant ne permet pas de réaliser une brute-force et nécessite d’autres approches
additionnelles pour identifier la clé secrète (de 2048 bits pour rappel).

Dans cette thèse, nous avons exploré de possibles vulnérabilités présentes dans les ges-
tionnaires dynamiques requis par les architectures embarquées modernes. Il a été prouvé
à travers trois attaques qu’il est possible de malicieusement exploiter ces gestionnaires, et
quelques contre-mesures ont été proposés. Les analyses proposées peuvent être poussées
plus loin surtout dans la dernière contribution, le VAE peut-être aussi utiliser pour identi-
fier l’effet d’une certaine caractéristique (un poids de Hamming spécifique) même si aucune
mesure n’a été fait pour celle-là tant que l’on a assez de mesures pour les autres poids de
Hamming. Cette analyse peut être aussi utilisée pour les attaques de consommation dans
le cas où le nombre de mesures est limité.

10

TABLE OF CONTENTS

Introduction 17

1 Background and state of the art 19
1.1 Energy managers . 19
1.2 Side Channel Attacks . 24

1.2.1 Differential fault analysis . 25
1.2.2 Attacks exploiting DVFS . 26

1.3 Temperature managers . 28
1.4 Temperature related vulnerabilities . 29
1.5 Integrated Sensors and hardware counters 32
1.6 Power analysis based attacks . 34

1.6.1 Power Analysis Attacks using embedded sensors 36
1.6.2 Template attacks . 36
1.6.3 Profiling attack with machine learning 37

1.7 Conclusion . 38

2 Maliciously exploiting energy management 39
2.1 Scenario . 40
2.2 Target device . 41

2.2.1 ARM architecture and big.LITTLE Technology 41
2.2.2 Hikey960 & Odroid XU4 . 42

2.3 Experimental Setup . 43
2.3.1 Accessing and controlling the voltage and the frequency 43
2.3.2 Characterisation of the targets . 45
2.3.3 Conclusion on the characterisation 47

2.4 Malicious exploitation of the DVFS . 48
2.4.1 Implementation steps . 48
2.4.2 Implementation of the attack . 50
2.4.3 Discussion and counter-measures 52

11

TABLE OF CONTENTS

2.5 Conclusion . 53

3 Exploiting integrated temperature sensor 55
3.1 Methodology . 56
3.2 Experimental setup . 57

3.2.1 Distinguishing instructions . 58
3.2.2 Distinguishing between operands 60
3.2.3 Distinguishing operands based Hamming Distance 63

3.3 Extracting AES key characteristics using temperature sensors 64
3.3.1 Methodology of the attack main steps 64
3.3.2 AES reminder . 66
3.3.3 Attack implementation and results 66
3.3.4 Offline Phase . 68
3.3.5 Online Phase . 69
3.3.6 Results analysis . 70

3.4 Discussion . 72
3.5 Conclusion . 73

4 Using machine learning to analyze temperature variation and extract
secret information 75
4.1 Attack scenario . 76
4.2 Experimental setup . 77

4.2.1 Distinguishing operands HWs . 78
4.3 Machine learning methods . 80

4.3.1 Variational Autoencoder . 80
4.3.2 Principal Component Analysis . 82

4.4 Inferring the HW of RSA private key . 85
4.4.1 Main implementation steps of attack 85
4.4.2 RSA reminder . 86
4.4.3 Experimental setup . 87
4.4.4 Attack implementation and results 88

4.5 Discussion . 90
4.6 Conclusion . 91

Conclusion 93

12

TABLE OF CONTENTS

Bibliography 97

13

LIST OF FIGURES

1.1 The increase of microprocessor complexity over the years showing two sep-
arate phases, the first phase focus on increasing the frequency while the
second phase focus on increase the number of logical cores [13]. 20

1.2 The hardware implementation of DVFS showing different elements neces-
sary to the control of the frequency and voltage of a core or cluster 21

1.3 A general implementation of the software part of DVFS highlighting the
three different levels and its connection to the hardware part 22

1.4 The time constraints condition is represented through the schematic, by
showing how the frequency is dependant on the voltage 23

1.5 highlighting of two types of SCA, the Physical Extraction and Functional
Extraction [18]. 24

1.6 Clkscrew steps showing how the normal core running the malicious appli-
cation faults the target running the encryption program while the normal
core stays protected from the changes of frequency 27

1.7 Thermal throttling for core 0, frequency and power are decreased to keep
temperature from going beyond junction temperature at 95°C. Results of
this figure were presented in [27] . 30

1.8 Different heat generated depending on the HW of the operand during the
operation ’mov’ [28] . 31

1.9 Transmitting data from one "secure" core to another "normal" core using
intensive processing to raise the temperature [6] 31

1.10 Profiling the type of application the user is running based on the tem-
perature measurements. This figure is one of results that were presented
in [6] . 32

1.11 Dynamic manager functions as an autonomous closed loop. The decision is
made based on the sensor’s measurement, the CPU switch to a new state
and the manager keeps monitoring ensuring the desired state is reached . . 33

1.12 The different steps and tools necessary to execute a classical power based
attack . 35

14

LIST OF FIGURES

2.1 Summary of the scenario of the attack from both the attacker and the
victim point of view plus the conditions required to implement the attack 41

2.2 ARM big.LITTLE technology and DVFS implementation 42
2.3 The experimentation used to characterise the SoC. In this case, we char-

acterise the LITTLE cluster, but with the same methodology we can also
characterise the big cluster by switching voltage module to the LITTLE
cluster and the victim app to the big cluster. 45

2.4 Characterization of Exynos 5422 and Kirin 960 clusters effects of the the
modification of voltage for each frequency level. 47

2.5 The measured voltage at the output of PMIC for the Exynos shows an
average minimum time of 2.5ms between each voltage changes 48

2.6 Required steps from the attacker point of view 49
2.7 Summarized usage of intent used by android to ensure communication be-

tween applications . 51
2.8 Summarized steps performed by the attacker on the victim device 51

3.1 Required steps for the proposed temperature driven attack from the at-
tacker point of view. 57

3.2 Comparison of the integrated temperature values generated by each con-
sidered arithmetic and logic instruction with the same operands 59

3.3 Comparison of the integrated temperature values generated by each con-
sidered memory instruction with the same operands 60

3.4 The main steps used for measuring the effect of the operands on the tem-
perature . 61

3.5 Comparison of the temperature generated by 32-bit width multiplication,
with the non-constant operand having HW of [8,16,24] and multiplied by
the constant value 23 . 62

3.6 Comparison of the temperature depending on the HD between two states
of the same register after a xor and a load operation. 64

3.7 Operations in the first round of AES . 67
3.8 For the STM32F303 platform, the temperature characterization for two

arbitrary HDs of r (4 and 5) during the Offline Phase. There are 500 dots
in each graph and each point represents the mean value of 30,000 tem-
perature measurements. The blue dotted line represents the temperature
measurement during the Online Phase. 69

15

LIST OF FIGURES

4.1 The main steps of the proposed temperature separated into the Offline
Phase where the attacker characterize the victim device and Online phase
where the attacker access the temperature sensor on the victim device and
measure the temperature remotely . 76

4.2 The 5 different temperature sensors on the Hikey960 board 78
4.3 Comparison of the integrated temperature values generated by different

HW values of the secret (hidden operand). 79
4.4 The classic structure of an Autoencoder were the Encoder compress the

data into a 3 dimension layer Code (also called latent space), meanwhile,
the Decoder reconstruct the data from the latent space. The reconstructed
data has its insignificant information filtered 81

4.5 The structure of the VAE used during this work 82
4.6 Comparison of the integrated temperature values generated by different

HW values of the secret after being filtered using a VAE 83
4.7 Different clusters are formed depending on the HW of the hidden operand

after using PCA on the dataset filtered by the VAE 83
4.8 All the steps used in the characterization of the 2048 bits multiplication,

from measurement to identifying the HW of a fixed operand 84
4.9 The main step to generate the public and private key of the RSA algorithm 87
4.10 Temperature characterization of RSA2048, each trace shows a different HW

from (80 to 2000 with a step of 80). 88
4.11 Clusters for each HW (250, 650, 1050, 1450, 1850) of the private key formed

after executing the PCA on the dataset of RSA2048 using 200 keys per HW. 89

16

INTRODUCTION

Embedded systems architectures are becoming more and more complex to support the
ever increase of algorithmic complexity requirements. This led to an increase in the num-
ber of transistors within chips, the number of logical cores and their running frequencies
which gave rise to an increase in energy consumption and heat generated by the chips. This
is problematic for devices such as smartphones, these devices were designed to fit complex
architectures in the smallest space while ensuring that the processor runs in stable condi-
tions. This includes maximizing the battery life and making sure that the processor does
not overheat (Temperature goes beyond the limit specified by the manufacturer). This
phenomenon is even more important for advanced 3D stacking technologies [10]. More-
over, overheating also cause chip to age faster [11],[12]. Thus, it was necessary to manage
both of the temperature and power consumption, for this different dynamic managers
were deployed.

As for the increase of logical cores, it was also necessary to implement resources man-
agers to optimise their usage and have a better scheduling. To summarize, it is necessary
to use dynamic managers to fully exploit state-of-art architectures. The goal of these
dynamic managers is either to optimize resources usage (e.g., cores, memory) and/or to
reduce the energy consumption of the system under performance constraints. However,
these managers have not been designed to be secure and present vulnerabilities.

In recent years, there has been an increase in the number of attacks based on hardware
vulnerabilities (e.g., Meltdown [1], Spectre [2], Clkscrew [3]). This type of attacks have
shown to be dangerous for everyone including mobile devices for example, this can highly
affect the privacy of the users. Moreover, smartphone are used more and more for sensitive
operations such as payment, banks applications and healthcare. Furthermore, this is not
limited to mobile phone and can be extended to IoT, connected devices (e.g., autonomous
car, smartTV) and even health electronics.

In this thesis, we aim at evaluating the security of different dynamic managers used in
today’s devices, study possible vulnerabilities and finally discuss some countermeasures.
We are going to focus on two important managers present in almost every device today:
energy and temperature managers. Three different attacks targeting the two managers

17

Introduction

are presented in this work and implemented on different target devices. Two of the tar-
get devices are processors used by the smartphone industry, the Kirin960 [9] and the
Exynos5422 [5], these targets are heterogeneous octa-cores based on ARM architectures
while the third target is an STM32F303 [7] single core mainly used for IoT.

The rest of the thesis is divided as follows:

— Chapter I: Background and State of art presents the context of our work
and contains the basics functioning of the dynamic managers we target in the other
chapters. This chapter also presents related State-of-Art vulnerabilities and previous
attacks on the managers.

— Chapter II: Maliciously exploiting energy management presents our first
contribution. It presents a case of malicious usage of energy management, more
specifically, the Dynamic Voltage & Frequency Scaling mechanism (DVFS). Experi-
mentations shows that it is possible to remotely lock out a device, denying access to
all services and data, requiring for example the user to pay a ransom to unlock it. As
the main target of this exploit is embedded systems, we demonstrate this work by
its implementation on two different commercial ARM-based devices (Odroid XU4
and Hikey960). Finally, some possible countermeasures were discussed.

— Chapter III: HEXotherm presents our second contribution. It targets IoT de-
vices and uses the integrated temperature sensors to extract secret information. We
demonstrate the feasibility of this attack and show that it is possible to use the
extracted information to deduce characteristics on an AES secret key. Our different
experiments on a real hardware platform show a reduction from 74% in the worst
case scenario to 98.27% of the exploration space for each byte of the 128 bits key in
the best case scenario.

— Chapter IV: Using machine learning with temperature sensors presents the
last contribution of this work. It is an extension of the previous work and it target
a more complex architecture. In this chapter, we prove through experimentations
that it is possible to use machine learning techniques to analyze the temperature
issues from embedded sensors and use it to infer the hamming weight of the private
key of the RSA algorithm.

— Conclusion: resume all the contributions of this thesis and propose possible further
works to perform.

18

Chapter 1

BACKGROUND AND STATE OF THE ART

Over the years, there has been a continuous increase in microprocessor’s performance
to follow up with the increase of application complexity as can be seen in Figure 1.1. Dur-
ing a first phase, the focus was on increasing the performance of single cores/processors
and mainly through the increase of their frequency. However, due to the technological
constraints the increase in frequency stagnated, a second phase started where the focus
switched toward the increasing number of logical cores per microprocessor. During both
phases, the density of the integrated circuit and its energy consumption continued to
increase with the heat emitted. Moreover, with the continuous increase in available re-
sources, it has been necessary to implement dynamic managers. Those managers have 3
main usages and can be separated into the following types:

— Resources manager in order to optimize resources usage and increase general
performance.

— Energy manager which intend to reduce energy consumption, improve system
portability and increase battery life.

— Temperature manager regulate temperature in order to avoid overheating and
increase the chip life time.

1.1 Energy managers

In the embedded system industry, energy management has become a necessity to opti-
mize system performance and reduce energy consumption to improve system portability,
and increase battery life.

An efficient energy manager is composed of a software part that controls a hard-
ware dedicated block. The software is generally a decision-making algorithm monitoring
different parameters of the architecture (e.g., the CPU load, battery level and current
energy consumption). On the other hand, the hardware part is responsible for applying

19

Chapter 1 – Background and state of the art

First phase focus on
the frequency

Second phase
focus on number
of logical cores

Figure 1.1 – The increase of microprocessor complexity over the years showing two sepa-
rate phases, the first phase focus on increasing the frequency while the second phase focus
on increase the number of logical cores [13].

the decisions and collecting information on the current state of the microprocessor using
embedded sensors.

The amount of energy consumed in a system is the product of power and time. It
refers to the total amount of resources utilized by a system to complete a task over time.
In the case of an integrated circuit, power P at the instant t is directly proportional to
the product of operating frequency F, voltage V and C the switching capacity of the
circuit [14]:

Pt ≡ C ∗ V 2
t ∗ Ft. (1.1)

It is clear at this point that modifying the frequency and specially the voltage can
drastically reduce the power consumption in exchange of reducing the computation speed.
Nowadays, the most used energy management mechanism that implements this feature is
the Dynamic Voltage & Frequency Scaling (DVFS) [15]

20

1.1. Energy managers

DVFS

DVFS was first introduced in 1994 [15] and is one of the most used energy saving
mechanisms today, especially in embedded systems such as in the smartphone industry
where portability and increasing the device’s battery life is of most importance.

DVFS relies on the ability to control frequency and voltage levels of a core or a cluster
of cores in a System On Chip (SoC) in order to dynamically trade processing speed for
energy consumption according to the system requirements. DVFS is based on several part
as shown in Figure 1.2 and Figure 1.3.

Core or
cluster

Core or
cluster

Core or
cluster

PLLs

Registers

PMIC

SPMI

Reg Reg Reg

Freq 1 Freq 3Freq 2

Vo
lta

ge
 1

Vo
lta

ge
 2

Vo
lta

ge
 3

Figure 1.2 – The hardware implementation of DVFS showing different elements necessary
to the control of the frequency and voltage of a core or cluster

Hardware part

In Figure 1.2, the hardware components required include at least one voltage regulator
and Phase Locked Loop (PLL). Voltage regulators are part of the Power Management
Integrated Circuit (PMIC), generally a dedicated component outside of the SoC due to
analog part in regulators, while PLL are more often within the SoC. There are different
implementations of the hardware part depending on the architecture. For example, in
ARM big.LITTLE architecture, the PMIC and PLLs use the same voltage and frequency
for the 4 cores within each cluster while in most INTEL and AMD processors each core’s
frequency and voltage values are independent from other core. This choice of having all
cores independent is rarer in embedded systems, especially in ARM based architectures.
However, it is still possible to find old devices using individual regulators for each core

21

Chapter 1 – Background and state of the art

(e.g., Qualcom implementation of Snapdragon 800 [16]). The frequency of core or cluster
is controlled by the PLL circuit built in the SoC.

Energy aware application

User
Space

Kernel
Space

Software part

Kernel module, responsible
for switching between
operating points

Kernel driver, responsible
for communicating changes
to the hardware

PMIC switch to the new
voltage level and PLLs to
the new frequency

Hardware part

Figure 1.3 – A general implementation of the software part of DVFS highlighting the
three different levels and its connection to the hardware part

Software part

The software part of the manager is generally composed of two different levels as
shown in Figure 1.3. The first layer running in the user space represents the energy aware
application which has a set of predefined frequency and voltage couples called Operating
Points (OP) predefined by the manufacturer. The application will select between those
OP depending on different parameters. For example, when the device is idle or the load
is low, both frequency and voltage are reduced to save energy. It also depends on the
current level of battery depletion and the energy governor chosen by the user (either
prioritizing performance or battery life). The second layer running in the kernel space is
composed of a kernel module and a driver responsible for communicating to the hardware
the frequency and voltage of the chosen OP. Most of the manufacturers use their own
drivers for the PMIC, while the frequency is mostly controlled by open-source software
like cpufreq [cpufreq] available in Linux-based Operating Systems (OS).

The frequency and voltage are not independent from each other as they are together

22

1.1. Energy managers

responsible for the stability of the system. In a sequential system, the propagation time
Tprop in the logic units highly depend on the voltage and the higher its value, the shorter
the propagation time is in the circuit. On the other hand, the period of the clock Tclock

is used by the FlipFlops (FF) to lock on the data. As shown in Figure 1.4, the circuit
has logic units between two FFs. For the device to function properly, the second FF at
the output of the logic units must lock on the data one tick after the first FF at the
input. Thus, Tclock must be superior to the maximum Tprop in the circuit plus a Constant
(to take into account possible variation due to temperature and other factors) to ensure
that both FFs are synchronized. In general, a device equipped with DVFS has predefined

Figure 1.4 – The time constraints condition is represented through the schematic, by
showing how the frequency is dependant on the voltage

OP predefined by the manufacturer to guarantee that the processor works in perfect and
stable conditions. These OP can be changed in the kernel source code but the frequency
and voltage can be modified using specific Kernel API (e.g., Voltage and current regulator
API) or functionalities made available by the vendor. This make it possible to maliciously
change the voltage or frequency beyond the recommended range. Thus, breaking the
timing constraints and introduce faults within a device. Using a type of Side Channel
Attack (SCA) called Differential Fault Analysis (DFA) [17] it was possible to exploit
those faults to extract secret from a device.

23

Chapter 1 – Background and state of the art

1.2 Side Channel Attacks

Side channel attacks are well known practices which goal aims at using different pos-
sible sources of information to extract secret information (e.g., encryption keys). The
work [18] summarize the state-of-art of SCA methods and techniques in Figure 1.5

SCA method

Physical extraction

Functional extraction

Power Analysis

Fault injection
EM Analysis

Thermal Analysis
Timing analysis

Branch Prediction
Speculative Execution

Reverse Engineering
Cryptoanalysis
Memory Translation

Figure 1.5 – highlighting of two types of SCA, the Physical Extraction and Functional
Extraction [18].

The most established methods among SCA are:

— Memory based attacks: attacks based on attacker’s ability to monitor cache or mem-
ory accesses made by the target in a shared physical system.

— Timing attacks: attacks based on measuring the time required to perform certain
computations.

— Power attacks: attacks that make use of the variation of the power consumption
induced by the hardware during the computation of target programs like AES and
RSA

— Electromagnetic attacks: attacks based on leaked electromagnetic radiation during
specific operations..

— Differential fault analysis: in which secrets are discovered by introducing faults in a
computation.

All those attacks utilize information (leakage) created or induced by certain operations.
Those leakages hide information about the current state of the processor and what is

24

1.2. Side Channel Attacks

being computed, thus, using specific analysis, it is possible to infer secret data such as
encryption.

In the previous Section 1.1, it was shown that it is possible to inject fault within a
device by maliciously exploiting DVFS [4],[3],[19]. Thus, we will now focus on DFA as it
used to recover secrets by introducing fault within the victim device.

1.2.1 Differential fault analysis

DFA is a type of side channel attacks using cryptanalysis. This attack uses fault injec-
tion during the victim program execution, mainly encryption, to obtain faulted cypher-
texts, this faulted date are then used to reveal the internal states of the target processor.
The fault can be created using different methods such as high temperature, unsupported
supply voltage or current, excessive overclocking, strong electric or magnetic fields, or even
ionizing radiation to influence the operation of the processor. However, it is important
to have a certain control and precision over the fault injection in order to perform this
analysis. In [17], the authors recovered an AES secret key using DFA. In this case, the
fault must be injected during a specific part of the encryption computation to be able to
recover the key. This targeted part varies depending on the byte of the encryption key
we wish to infer. For example, to infer the last 4 bytes of the 9th subkey a fault must be
introduced during the key expansion during the computation of 9th subkey, just before
the computation of the 10th subkey.

In [17], the full AES key of 128 bits was obtained using around 250 faulted cyphertext.
However, having the ability to inject faults does not guarantee a successful attack as a
certain precision is required. This precision depends on the target device but as seen
previously, the fault needs to introduce during dozens of operations within a specific part
of the target program. In the case of the AES, the fault is generally injected during the
key expansion. Moreover, this type of attack usually requires a physical access to the
target device, as most precise fault injection tools can only be used by interacting with
the target device, for example, injection by laser. However, recently, a new type of attacks
proved that it is possible to successfully execute a remote DFA through the exploration
of DVFS capabilities.

25

Chapter 1 – Background and state of the art

1.2.2 Attacks exploiting DVFS

As shown in Section 1.1, timing constraints conditions are required to ensure the
stability and error free sequential circuits. However, when the frequency is too high, or
the voltage is too low the constraints can be broken. This will result in the input and
output flip-flop desynchronization and in the introduction of faults (meta stability) during
the execution of certain instructions in the CPU.

The work presented in [3] was the first to introduce this vulnerability and to exploit it,
to remotely inject faults into a processor core. The authors fixed the voltage of the target
device and changed the frequency to break the timing constrains. Using this vulnerability,
they prove that it is possible to use DFA to recover secret encryption keys. The target
of [3] is the smartphone Nexus 6, using 4 of Krait 450 cores based on the ARM Cortex
A53 architecture. The 4 cores have separate voltage and frequency islands, thus, when
the attacker modifies the frequency to cause instability and to inject faults within a
certain core (running the encryption), the attacker is not affected and continue running
on stable conditions. The study of the fault model is also provided, for this purpose,
the authors used delay loops to control when the faults are injected and kept track on
where the fault occurred. Using this data, they were able to establish a model showing
the most probable part to be affected of the AES encryption algorithm depending on the
delay before breaking the time constraints. Finally, the attack is executed as shown in
Figure 1.6.

The first target of this work was an AES 128 encryption, using the embedded instruc-
tion counter within the ARM cores, the attacker was able to have a certain control over
the fault injection. This attack is not guaranteed to work all the time as the fault does
not always occur within the specific part of the victim program.

This technique was also used to corrupt the execution of an RSA signature [20] veri-
fication algorithm by combining it with a cache side channel attack (Prime+Probe)é[21].
Using this second attack, the authors were able to follow the execution of the RSA and
fault certain parts of the verification causing it to allow the execution of a malicious
application within an ARM TrustZone [22] (trusted execution environment of ARM).

The previous work focused on fixing the voltage of the target core and modifying the
frequency, in another work [19], they proved also the feasibility of this attack by fixing
the frequency and modifying the voltage to fault the victim. However, they used the same
target device and never proved its feasibility on more recent and complex SoCs. On the
other hand, in [4], the authors extended this work to Intel processors as their architecture

26

1.2. Side Channel Attacks

Figure 1.6 – Clkscrew steps showing how the normal core running the malicious application
faults the target running the encryption program while the normal core stays protected
from the changes of frequency

uses separate frequency and voltage islands for each core and proved that it is possible to
extract data using the same vulnerability.

This kind of fault injection does not require any kind of physical access to the system
as DVFS can be remotely manipulated. However, compared to classical fault injection,
one of the main challenges of this technique is the necessity for very high fault injection
precision. As seen in Section 1.2.1 faults must be injected within specific part during a
few instructions. Furthermore, accessing the voltage and frequency regulators requires for
the attacker to have root privileges.

A different work in [23] uses the DVFS mechanism as covert channel. The main goal of
this usage is to secretly transfer information from a malicious application being executed
in the secure world of the ARM TrustZone (or from a non-secure third-party IP), to
a malicious task executing in the "normal" (i.e., non-secure) world by using the DVFS
mechanism as a hidden channel of communication. The data to be transmitted being
encoded into different levels of voltage or frequency. For example, the bit ‘0’ can be
encoded into a low level of voltage, while ‘1’ can be encoded into a high level of voltage.
The application on the normal world reads the current value of the voltage or the frequency
and infer if the transmitted bit is ‘0’ or ‘1’. This technique does not require any of the
previous attack precision as its goal is not to steal information, but an already corrupted
task is required to be executed within the secure world of the processor.

27

Chapter 1 – Background and state of the art

The same researcher group started to work on possible leads to prevent the malicious
usage of energy managers. In 2019, they proposed a machine learning algorithm to de-
tect malicious usage of the DVFS [24], this requires to add an integrated circuit which
separate malicious changes to voltage and frequency from the rest, thus, protecting the
potential target program. Moreover, a different work proposed a chip called Fame [25],
in order to detect and mitigate hardware faults which also applies to fault introduced
by the malicious usage of the DVFS. Both solutions are interesting but require adding
an integrated circuit to the SoC. These and other possible countermeasures are further
discussed in Chapter 2. In this work we target very recent commercial devices, that do
not encompass any additional hardware for fault injection mitigation.

In related works, when maliciously manipulating energy management mechanisms, it
is necessary to have high precision to target specific instruction in the victim task when
introducing faults. In Chapter 2, we explore the possibilities of a malicious manipulation
of DVFS mechanisms on recent commercial devices under realistic conditions. Contrary
to these previous works, our goal is not to steal secret information on the device but to
take control and make every device service and data inaccessible.

1.3 Temperature managers

Same as energy management, temperature management has become a necessity to
regulate the heat inside modern chips in order to ensure its functional stability [26] and
manage aging issues [11],[12]. This phenomenon is even more true for advanced 3D stacking
technologies [10]. Thus, maintaining a safe operating temperature is crucial for long-term
functioning SoC.

Usually, temperature managers are implemented using active hardware (e.g., fans).
However, with continuous increase in-chip density and heat generation, these previous
solutions are not enough to keep high performing devices from overheating. Moreover, on
embedded systems that prioritize portability (e.g., smartphones and IoT), active cooling
cannot be used. Thus, these devices have to rely on other solutions such as passive cool-
ing(e.g., radiators). In this case, the SoC itself monitors its own temperature and provides
automatic thermal throttling mechanisms to stay in stable conditions.

In general, modern chip contains multiple thermal sensors (e.g., one sensor per core)
to keep track of its internal temperature. When a temperature is higher than the max
allowed temperature (junction temperature), the operating frequency is decreased to stay

28

1.4. Temperature related vulnerabilities

within thermal constraints. Mechanisms like DVFS previously introduced are used for this
purpose, thus along with frequency, the voltage is also reduced. If the junction temperature
is exceeded by a certain amount, a more aggressive throttling (typically to the minimum
supported frequency) is performed in order to quickly reduce the chip temperature. This
is commonly referred to as a critical temperature event.

Beyond the junction temperature, each core is fused with a catastrophic trip tem-
perature on its hardware. When the temperature exceeds this fused limit, the SoC will
immediately signals to the device that an immediate hardware shutdown (without OS
intervention) should be performed. A dedicated asynchronous hardware is responsible for
this part and has priority over all other tasks. This mechanism is also intended to function
in all conditions even if other failures occur.

An example of thermal throttling is given in [27], Figure 1.7 shows the results of their
experiments. Core 0 (also called Socket 0 in the figure) is pushed to its limit using heavy
load application. The thermal throttling begins when the junction temperature reach 95°C
is reached. At this point, the frequency and power are decreased to keep the temperature
below its critical level. It is also possible to see that frequency keep fluctuating (up and
down) as a way to keep the temperature stable while the core is still running at a the
highest frequency. On the other hand, the Socket 1 has a stable frequency and power
consumption as temperature never reaches the junction value for this core.

1.4 Temperature related vulnerabilities

Attacks based on temperature are rarer compared to power-based attacks. The tem-
perature can always be used to cause faults by overheating and executing DFA strategy.
However, only few works focused on extracting information by measuring the tempera-
ture. In [28], authors showed through experimentation they were only able to distinguish
between the Hamming Weight (HW) of the operands manipulated by a ’mov’ and an
external sensor was used to measure the temperature. Their results are shown in Fig-
ure 1.8, it is possible to easily distinguish between 7 of the HWs from the temperature
measurements and only the HW of 5 and 6 overlap with each other making it hard to
distinguish between them. On other hand, in [6], the authors used the temperature to
create a covert channel and transmit information from one "core running" in the TEE to
another core in the normal world as seen in Figure 1.9. This type of attack requires the
secure core to already be infected by a malicious application, this application execute an

29

Chapter 1 – Background and state of the art

Memory Allocation Execution-Heating Up Execution-Socket 0 Throttling

Fr
eq

ue
nc

y
(G

H
z)

Te
m

pe
ra

tu
re

 (C
)

Time (Seconds)

Time (Seconds)

Time (Seconds)

Thermal throttling

Socket 1 not
impacted

DTSMAX = 95°C

Power decrease to
reduce temperatureSo

ck
et

 P
ow

er
 (W

)

Socket 0 Socket 1

Figure 1.7 – Thermal throttling for core 0, frequency and power are decreased to keep
temperature from going beyond junction temperature at 95°C. Results of this figure were
presented in [27]

30

1.4. Temperature related vulnerabilities

intensive task to raise the temperature to transmit a ‘1’ or stay idle for the temperature
to drop to transmit a ‘0’. Meanwhile, the application running on the normal world uses
sensors to monitor the emitted heat and decode the transmitted information by analyzing
the changes in temperature.

Figure 1.8 – Different heat generated depending on the HW of the operand during the
operation ’mov’ [28]

The malicious application running in a secure
world executes a heat-intensive task to
transmit '1' or remains idle to transmit '0'

The malicious application running in a normal
world continuously reads the temperature and
decodes the information

Figure 1.9 – Transmitting data from one "secure" core to another "normal" core using
intensive processing to raise the temperature [6]

In the same work [6], it has also been proven that it is possible to use temperature to
differentiate between some applications running in a cloud as can be seen in Figure 1.10.
In fact, different applications will cause the processor to emit a different amount of heat
depending on the instructions and operands. Within the cloud server where the same
processor is shared between different users, an attacker can use the integrated temperature

31

Chapter 1 – Background and state of the art

sensors to spy on the activity of another user (the victim) using the same processor. This
work do not extract any secret information. However, it can be used to affect the privacy
of different users in the cloud.

Figure 1.10 – Profiling the type of application the user is running based on the temperature
measurements. This figure is one of results that were presented in [6]

In [29], authors were able to measure the temperature of the SoC without any sensor
by using DRAM memory. Authors showed that by deactivating memory refresh there
is a correlation between bit flips in memory and the temperature. Same as before, the
application of this attack is more focused on the privacy of users as those measurements
were used to read the ambient temperature of the room where an IoT device is located.
Depending on the variation of the temperature, it was possible to infer whether a person
were present in the room where the device is located and detect event like entering and
exiting the room.

For these works, the obtained results mainly focused on people privacy and behavior
analysis, but they did not extract any critical information from within the device.

1.5 Integrated Sensors and hardware counters

As seen in the two previous sections, both temperature and power managers work in a
closed loop as shown in Figure.1.11. Constant feedback is required from the hardware part
to make the adequate decision and then ensure that the decision is correctly implemented.

32

1.5. Integrated Sensors and hardware counters

Different sources of feedback are usually used but the most popular and straightforward
are embedded sensors. The most used sensors are:

— Thermal sensors used to monitor the temperature of the chip to make sure it does
not reach junction temperature. Those sensors are found within every device as
they are crucial to ensure its operation. Usually, sensors are implemented within
every core and important components such as DRAM and GPU. They also require
a response time of a few µs to allow the managers to respond within appropriate
time.

— Current and voltage sensors are also used often in embedded system. However,
compared to thermal sensor, they are rare as they are not as crucial. They are
used to improve the response of the energy manager, for example, Odroid Xu3 uses
voltage sensor to monitor the energy consumption of each core. Moreover, in the
smartphone industry, voltage sensors are used in almost every device to keep track
of the battery level.

Figure 1.11 – Dynamic manager functions as an autonomous closed loop. The decision is
made based on the sensor’s measurement, the CPU switch to a new state and the manager
keeps monitoring ensuring the desired state is reached

The choice of feedback depends on the manufacturer and the mechanism they im-
plement. For example, Intel Running Average Power Limit (RAPL) [30] mechanism is a
closed loop mechanism that keeps the CPU within desired thermal and power constraints.
By design, the mechanism is similar as it modifies the voltage and the frequency. More-
over, it includes power-measurement feedback by estimating the energy consumption in
the core using hardware counters. Main CPU manufacturers (e.g., AMD, ARM) have
similar mechanisms, either through sensors or hardware counters to estimate the power
consumption.

33

Chapter 1 – Background and state of the art

Those sensors provide crucial information on the current state of the SoCs, this in-
formation is available through 3rd party software such as energy and temperature aware
applications. However, this information can be maliciously used to extract information.
It was already shown and will be discussed in the next chapter, that energy consumption
is correlated to instructions and operands manipulated during the execution of victim
programs, making extraction of information possible (e.g., encryption keys).

1.6 Power analysis based attacks

Using power consumption to extract secrets from a device is not a new practice, as
presented previously in Section 1.2, Power Analysis based attack is a well-established field
among SCA and different types of attacks were proposed. Those attacks are built upon
the observation that the power consumption of CMOS digital circuits is data dependent
by design. On any integrated circuit, a bit flip is represented by one or more voltage
transitions from low to high (or vice versa). Different data values and operations typically
entail different numbers of bit flips and therefore produce very different power traces. In
previous work [31], it was proved that the power generated by the transistors switching
from one level to another is more important than the passive consumption. Addition-
ally, the power variation observed is correlated to execute operations and manipulated
operands. Therefore, any circuit not designed to be resistant to power attacks has a data-
dependent power consumption. However, if the circuit has a high complexity circuit or if
an attacker’s sampling rate is limited, it becomes harder to extract information from a
single power trace. Thus, it becomes important to use more analysis techniques such sta-
tistical techniques such as Differential Power Analysis (DPA) [31] and Correlation Power
Analysis (CPA) [32] across multiple power traces.

In Simple Power Analysis (SPA) attacks [31], the secret key is inferred by analysing
the power consumption differences during an operation (e.g., SBox in AES encryption).
This attack consists of studying the detectable spike in power consumption as bits in
the key will have a different impact depending on their values. In this case, only a small
number of traces are required to infer the key. However, this approach is only possible if
the secret has a significant impact on the power consumption of the device, and the traces
are relatively noise-free. Noise can be averaged by computing the mean of the multiple
collected traces.

DPA attacks [31] are based on a more complex approach and consists on statistical

34

1.6. Power analysis based attacks

analysing a larger number of traces with varying input data. This attack study the power
consumption at fixed instants and how it is a function of the secret data being processed.
In this case, smaller and less secret-dependent power variation can be detected even
in the presence of noise compared to SPA. However, DPA is also limited within noisy
environment, it can be still used to recover parts of the secret key, but it becomes harder
to recover the whole key. However, CPA [32] which is an extension of DPA, provides a
more accurate analysis. As it correlates the variations in the set of traces and a leakage
model depending on the characteristics of intermediate values.

The usual setup for this type of attacks is shown in Figure 1.12. Most often external
power measuring tools are used to provide enough accuracy for this type of attacks,
these tools requires a physical access to the target device. Especially with the different
countermeasures implemented to reduce the power footprint of key-dependent instruction
and the electronics to smooth power traces. However, with the introduction of sensors
for energy managers, it was proven that state-of-art sensors have enough precision to
use power analysis attack. Allowing to run those attacks remotely. Different works have
already shown the feasibility of such attacks.

Modify plaintexts

Energy probe

Side-channel
Traces

Low Noise
Amplificator

Target device running
an encryption

Power traces
analysis

Infering the
correct secret

Figure 1.12 – The different steps and tools necessary to execute a classical power based
attack

35

Chapter 1 – Background and state of the art

1.6.1 Power Analysis Attacks using embedded sensors

Using sensors integrated in modern SoC is not a new practice, and it has been previ-
ously exploited to extract different information depending on the used sensor. The most
popular target is power sensors as they are more precise and easier to use compared to
other sensors (e.g., temperature sensor). In [33], authors were able to distinguish between
different RSA keys by measuring the system power consumption using the integrated
power sensors. It was proven that depending on the HW of the secret key the power con-
sumption measured is different, however no full key were recovered or other characteristics
beyond the HW.

In a more recent work [34], the authors went even further and were able to recover
secret keys of different encryption algorithms. In this case, the main target was an Intel
processor, and they were able to use RAPL [30]. RAPL provides an approximate average
measurement for a period of time thus making the observable effect of the secret-dependent
power variation small. However, with enough measurements, they were able to successfully
recover the AES secret key in around 10 days using CPA. On the other hand, to recover
RSA keys, another technique was used to measure more accurately specific part of the
encryption. SGXSTEP [8] is a technique that allows the attacker to control the flow of
the target program by re-executing instructions or pausing between each instruction. This
can be achieved by using well timed interruption and it was possible to isolate specific
instructions. Thus, instead of measuring the average power consumption of the whole
RSA decryption, the authors were able to measure the effect of each bit of the private key
on the power keys. Moreover, these attacks can be combined with other types of analysis
such as Template Attacks or Deep Learning based attacks.

1.6.2 Template attacks

Another form of SCA that focus on extracting information from power consumption
of a SoC is template attacks. It aims at creating a profile for a target device. In other
word, the attacker models the variation of power consumption depending on the secret
and uses it later to recover the secret. In this case, the attacker needs a copy of the target
device and have full control over it. However, this attack requires a lot of traces to create
the profile but once the profile is created, it is viable for most of the devices with the
same processor model.

There are 3 main steps for a template attack:

36

1.6. Power analysis based attacks

— Creating a template of the device. This part consists of measuring the power for
different values of a known secret. For example, in the case of AES, the power is
measured for different values of a subkey.

— Measuring the power consumption on the victim device. In this case, the secret is not
known, but it is possible to measure the power consumption during an encryption.
Only a limited numbers of measurements are required.

— Using the template to infer the secret. By using the measurement on the victim
device, it is possible to compute using the previous template the most probably
value of the secret key.

This attack requires a more complex setup compared to DPA and CPA. However,
the number of traces required during the attack are lower as long as the template is
already established. Moreover, the noise is no more an obstacle as templates are created
by analyzing the variation of power and models the noise distribution using a Gaussian
distribution. The main drawback in this case, the important number of power traces
required for the characterization and the creation of the template. For example, in the
case of an AES128, each byte secret key is inferred separately, thus, it is necessary to
have at least 256 different measurements (1 for each possible value of the byte) for each
template. Moreover, a total of 16 templates are required (1 for each byte of the secret key).
The number of measurements can be reduced by inferring the HW of the byte instead of
its value as there is only 9 possibles values instead of 256.

1.6.3 Profiling attack with machine learning

Another type of profiling attacks which has gained a lot of popularity is deep learning-
based side-channel attacks. This type of attacks are similar to the template attacks as they
require to create a profile of the target device for each secret. Moreover, deep learning-
based attacks offer several types of analysis, depending on the use cases, different type of
machine learning algorithms can be used.

— Unsupervised learning techniques such as clustering (e.g., K-means) and dimensional
reduction [35],[36](e.g., principal component analysis) were used to perform either
key recovery

— ML was also used to filter power traces [37],[38] and reduce the noise. In this case,
the key is not directly guessed but it reduces the number of traces needed for CPA
and DPA

37

Chapter 1 – Background and state of the art

— Supervised learning techniques such as support vector machines, self-organizing
maps, random forests and different types of artificial neural networks were suc-
cessful in recovering the key [39],[40],[41],[42],[43],[44] not only from unprotected,
but also from protected implementations of cryptographic algorithms.

— Multilayer perceptron and convolutional neuronal networks were also used to recover
secret key [45],[46],[47], they also outperform template attacks on noisy traces.

These methods rely on creating a model by either training neuronal networks to re-
cover a key characteristic (e.g., subkey, HW) or by having a dataset large enough for
unsupervised algorithms. This is not a problem for power-based attack as multiple public
datasets are available such as DPAContest. These datasets have already been used by
different works to prove their implementation.

1.7 Conclusion

In the literature, there are different types of physical attacks, some requires physi-
cal access, some are even invasive and cause permanent damage to the target devices.
However, in this chapter, we only focus on attacks that has the following characteristics.

— Maliciously uses dynamic manages.

— Maliciously uses embedded sensors.

— No additional hardware or physical access was necessary for the attacks.

— Possible usage of ML.

These SCA are highly related to our work as we are going to present 3 different attacks
that share the same characteristics and they focus on maliciously exploiting dynamic
managers.

38

Chapter 2

MALICIOUSLY EXPLOITING ENERGY

MANAGEMENT

In the works [3],[4],[19] presented in Section 1.2.2, DVFS has been used to force the
device into an unstable operation mode in order to inject faults into the device. This
allows to use DFA to extract information from the device. However, in recent SoC, DVFS
does not have the required precision to use DFA.

In this work, we explore malicious usage of DVFS and we show that if stealing se-
cret information exploiting energy management mechanisms is hardly possible in today’s
commercial devices, it is still possible for an attacker to remotely lock out a device and
possibly ask for a ransom to make the device services and data accessible again. This
work is demonstrated through its implementation on two current commercial ARM-based
devices The main contributions presented in this chapter are:

— The exploration of the feasibility of a malicious manipulation of DVFS in current
commercial ARM-based devices for stealing secret data, highlighting the different
crucial challenges.

— The introduction of a malicious exploitation of energy management mechanisms
able to lock a device making services and data inaccessible.

— The implementation of this technique on two different recent and widely used com-
mercial devices.

The remainder of this chapter is organized as follows: In Section 2.1 we explain the
main goal of this chapter and the scenario of the targeted attack. In Section 2.2, the two
chosen targeted devices are introduced and the ARM big.Little technology is presented. In
Section 2.3 we show how to control the voltage and frequency and then we characterise the
effect of changing them on the target device. Next, in Section 2.4 we present an exploit of
DVFS by implementing the proposed technique on the two devices as well as the obtained
results and possible mitigation. Finally, Section 2.5 concludes this chapter.

39

Chapter 2 – Maliciously exploiting energy management

2.1 Scenario

DVFS vulnerabilities have already been used on previous works to extract informa-
tion from AES encryption [3],[4],[19] or to fault RSA signature verification allowing the
execution of a malicious application within a TEE. However, these previous works have
targeted Nexus 6 using the Qualcomm Snapdragon 805 quad-cores. While the attacks
described in previous works are feasible on this target, they may no longer still feasible on
more recent, state-of-the-art SoCs. As the smartphone industry focuses on power saving
and portability of the devices, the focus shifted towards heterogeneous octa-cores ARM
big.LITTLE technology (used in 90% of SoCs of the smartphones industry). This technol-
ogy is more complex compared to the Snapdragon 805 as it uses 2 types of core: one has
high performances while the other has a lower performance but less power consumption.
Thus, this modern SoC offers a better performance and energy trade-off.

In the first part of this chapter, we are going to study the feasibility of maliciously
exploiting DVFS on state-of-art SoCs. This is done by characterizing the effect of pushing
the voltage and frequency beyond the recommended ranges on the target devices. For this
work, we are going to develop a general kernel module, usable on most of UNIX based
OS to control the voltage. As we will show that it is not feasible to infer secrets for the
targeted devices, this work proposes a Denial-of-service attack (DOS), rendering current
sophisticated devices inaccessible (services and data). Possible exploitation scenario is a
remote attacker able to remotely lock the target device, a smartphone for instance, and
possibly ask the smartphone owner for a ransom. The device owner (the victim) can then
whether wipe out all the data and reset the device to factory settings (loosing all its data)
or to pay a ransom to gain access to the device back. For the attack, the victim device has
to be equipped with a DVFS and the attacker requires privileged access. These conditions
will be detailed in later sections. The scenario is summarized in Figure 2.1.

It is worth noting that in this work, the attacker locks out the device by generating a
remote hardware fault and not by encrypting any data. This gives a great advantage, as
OS and antivirus are more and more resistant to encryption-based cyberattacks such as
WannaCry [48].

Furthermore, in order to explore the possibilities of a normal, yet malicious user,
we consider that the targeted device is a black-box for the attacker. This assumption
is realistic as SoC companies do not often release information about consumer devices.
Therefore, only the publicly available information is used to perform the attack. Moreover,

40

2.2. Target device

Figure 2.1 – Summary of the scenario of the attack from both the attacker and the victim
point of view plus the conditions required to implement the attack

physical access to the system is not required for the attacker, instead the attacker must be
able to execute on the victim’s device a corrupted application. In the smartphone domain
for instance, this application could be downloaded on the phone. Finally, only access to
voltage and frequency regulators is required.

2.2 Target device

2.2.1 ARM architecture and big.LITTLE Technology

In today’s multi-core systems, cores are generally grouped according to their type into
different clusters and one of the most used architecture in industrial SoCs that implements
this technology is ARM big.LITTLE.

This architecture includes 2 (or more) clusters, each containing homogeneous cores:

— the big cluster includes 4 high performance cores for heavy load tasks. These cores
have a high power consumption.

— the LITTLE cluster implements 4 small cores for low load and less power consuming
tasks. These cores can save battery energy.

The main advantage of this architecture is it’s ability to dynamically swap workload

41

Chapter 2 – Maliciously exploiting energy management

between the two clusters as they have access to the same memory regions. Thus, it can
easily adapt the computation load to higher or lower performance cores according to the
needs, offering a better resource management and a reduced energy consumption.

Most of the SoCs using ARM big.LITTLE technology are equipped with per cluster
DVFS (see Figure 2.2). Consequently, all cores within a cluster share the same voltage and
frequency level and are all impacted by voltage/frequency modifications. Implementations
that do not use ARM big.LITTLE technology such as Qualcom Snapdragon 800 [16],
implement per-core DVFS.

big cluster
LITTLE cluster

Core 8Core 7

Core 5 Core 6
Core 1 Core 2

Core 4Core 3

Software

PMIC

Reg Reg Reg

PLLs

Other devices

Hardware

Figure 2.2 – ARM big.LITTLE technology and DVFS implementation

2.2.2 Hikey960 & Odroid XU4

For this work, we chose two different recent commercial SoCs widely used in the
smartphone industry to prove the feasibility of our attack: The Odroid Xu4 board that
encompasses the Exynos 5422 [5], an octacore ARM big.LITTLE architecture (chip used
in Samsung S5 smartphones), and the Hikey960 board that uses a more recent chip, the
Kirin 960 [9] from 2018 (chip used in Huawei Mate P10 smartphones).

We can highlight an important difference between these two SoC related to our work,
but that does not affect the results: in Odroid Xu4, it is possible to control the frequency
and the voltage independently. As for the Hikey board, the device voltage in the operat-

42

2.3. Experimental Setup

ing points can be modified but the frequency cannot be changed. This allows to choose
which voltage value will correspond to a certain frequency. Thus when switching to a
new frequency from the predefined value, the voltage will change accordingly to the value
configured previously. Moreover, the Hikey board is more recent and sophisticated and
includes a co-processor responsible for the dynamic frequency and voltage level selection.

These two environment are evaluation boards from smartphone manufacturers (Sam-
sung and Huawei), we then choose to deploy the attack using an Ubuntu Mate and an
Android software stack which is built on an UNIX-based OS (i.e., Linux).

2.3 Experimental Setup

After choosing the target devices, it is required to characterize the SoC. In order
to maliciously exploit DVFS mechanisms the first step is to determine the voltage and
frequency limits. These limits need to be determined experimentally.

For this purpose, the victim and the malicious applications must be executed on two
different voltage/frequency islands (cores or clusters). This will allow the malicious ap-
plication to control the voltage/frequency level of the victim island, while malicious ap-
plication itself is running in stable conditions without self-faulting. However, the victim
application will run in unstable conditions due to the inadequate frequency/voltage cou-
ple. For these experiments, the malicious application controls the victim’s cluster energy
management by fixing the frequency to a certain value while setting the voltage level
beyond the vendor limits, this choice will be explained in the following section.

2.3.1 Accessing and controlling the voltage and the frequency

To implement the attack it is required to control the voltage and the frequency.
There are two ways to access voltage (and frequency) regulators in a Unix kernel-based

OS:

— By directly accessing the hardware voltage/frequency registers. This requires to have
low level information access of the SoC and their regulators such as their addresses.
However, in most of the cases, commercial SoCs used in the smartphone industry
lack from accessible technical documentation. Consequently, most of the registers
addresses are unknown. Moreover each device has its own configuration making it
difficult to generalise the access for multiple targets.

43

Chapter 2 – Maliciously exploiting energy management

— By using the Linux regulator APIs [49]: Linux based OS come with API allowing an
application to control the voltage from the kernel space. The manufacturer assigns
a name to each regulator on the board, as it makes it easier to access and can
be found in /sys/class/devices/regulator/regulator.number/name. This name can be
later used by the API to access the regulator and change its settings value (voltage).

In Odroid XU4 board, the regulator for the big and LITTLE cluster are called “vdd_arm”
and “vdd_kfc” respectively and the API is used as follows.

1 s t r u c t r e gu l a t o r ∗ reg ;
2 reg = regu la tor_get (Device , "vdd_arm") ; \\ get a c c e s s to the r e gu l a t o r
3 r egu la tor_set_vo l tage (reg , min_v , max_v) ; \\ s e t the maximum and minim

vo l tage in uV

It is also important for the malicious application to have an exclusive access to the reg-
ulators and to ensure that any other thread will not be accessing them (e.g., cpufreq).
Exclusive access to regulators is possible with the function regulator_get_exclusive() from
the regulators API as long as no other modules are currently using it. In order to ensure
this last condition, modules using them must be first disconnected, for instance, by binding
and unbinding the PMIC driver. This procedure will reset the regulators class structure,
and freed them. Finally, we put all these functions into a kernel module that will be called
voltage module for the rest of this chapter and will be used as the main tool for accessing
the voltage in the following sections.

The implementation on the Hikey board is slightly different as the regulators are man-
aged by a co-processor. However, it comes with an already set up communication channel
between the co-processor and the SoC. Through maiblox it is possible to communicate
new values for voltage settings using messages without any further control.

As for accessing the frequency, it can also be done by accessing the PLL registers.
However, in the case of a black-box, it is difficult to find the address of the corresponding
register. The most common way of controlling the frequency is through modules like
cpufreq. This type of module can only be used through the user space which adds more
latency when trying to change the frequency compared to a change from the kernel space.
Moreover, the transition time between frequency levels on ARM architecture is high and
usually between 500µs and 3ms. This delay can not be ignored and for this reason we
decided to fix the frequency and focus on changing the voltage for this attack.

44

2.3. Experimental Setup

Additionally, accessing the voltage on the Hikey 960 can be done directly with built-in
system. This system allows to modify the modify voltage for a specific frequency within the
operating points. Each cluster has only 5 allowed frequencies values: (533MHz, 999MHz,
1402MHz, 1709MHz, 1844MHz) for the LITTLE cluster and (903MHz, 1421MHz, 1805MHZ,
2112MHz, 2362MHz) for the big cluster. To modify the voltage that goes with the first
frequency of the LITTLE cluster, for instance, we need to write the new value in µV to
the kernel node located in /sys/devices/platform/soc/soc:hisi_trim/little_state0. The 0
at the end of the kernel node name specifies the index of the frequency (from the lowest to
the highest) we are changing the voltage. The same method is used to change the voltage
of the big cluster, but the name of the kernel node is big_state.

2.3.2 Characterisation of the targets

After successfully accessing the regulators and changing the voltage values, it is pos-
sible to proceed with the experiment. First of all, we execute the voltage module on the
big cluster and the victim application on the LITTLE cluster as shown in Figure 2.3.

Figure 2.3 – The experimentation used to characterise the SoC. In this case, we charac-
terise the LITTLE cluster, but with the same methodology we can also characterise the
big cluster by switching voltage module to the LITTLE cluster and the victim app to the
big cluster.

The target application is a program running an infinite loop that consists on multi-
plying two fixed operands. In parallel, we do an exhaustive characterisation by fixing the

45

Chapter 2 – Maliciously exploiting energy management

frequency of the LITTLE cluster and changing the voltage until a change on the output
of the operation is observed (meaning a fault occurred during the operation) or when the
device stops responding. We then restart the same process with the next frequency. Fi-
nally, once we have finished characterising the LITTLE cluster, we switch to characterise
the big cluster.

Results, gathered in Figure 2.4 for Odroid and Hikey boards, show different behaviors
according to two distinct voltage thresholds:

— First critical threshold: the victim application execution is interrupted due to in-
troduced faults, for example, this happen when the voltage reach 1.15V at the
frequency 1.5GHz for the LITTLE cluster of Exynos. In most of the cases, the ap-
plication stop its execution due to segment faults showing an attempt to access files
in the memory with a NULL pointer. In rarer cases, the introduced faults entail il-
legal instructions. Notice that these errors come from system calls and the malicious
application is unaffected with no fault during its processing.

— Second critical threshold: after a second threshold reached, the entire system no
longer responds making all services and data inaccessible until the system reboots,
for example, this happen when the voltage reach 1.1V at the frequency 1.5GHz for
the LITTLE cluster of Exynos.

We can see through these results that it is possible to inject faults using DVFS. Before
the first threshold, the fault does not affect the victim application in any crucial way.
However, after the second threshold, it is possible to inject faults within the device. If we
can precisely control this fault and precisely inject it during the execution of the target
program (e.g., AES encryption), we can eventually use DFA to extract information. For
this purpose, we need to determine the precision of the fault that we can inject. To inves-
tigate, this point, we developed a kernel module to periodically modify the voltage level
for a fixed frequency value and we monitored the SoC supply voltage with an oscilloscope
to determine the latency required between two consecutive voltage changes and measure
the minimal possible time between those two successive changes.

Figure 2.5 shows that a time of 2.5 ms is needed to change the voltage twice in a row.
This period represents the duration of the fault during an attack, in this case, it does not
change even if we change the value of the frequency or the targeted cluster. If the victim
program is an AES encryption, we would have no control over the fault injection as AES
takes dozens of µs to execute one encryption while the unstable state of the SoC will last
2.5ms on the Odroid XU4. Thus, it is impossible to limit the faults to the targeted appli-

46

2.3. Experimental Setup

1

1.
1

1.
2

1.
3

1.
4

1.
5

1

1.2

1.4

V
ol
ta
g
e(
V

)

a) LITTLE cluster - Exynos

Freeze Unstable Stable

1.
5

1.
6

1.
7

1.
8

1.
9 2

0.8

1

1.2

1.4

b) Big cluster - Exynos

1.4 1.6 1.8

0.6

0.8

1

1.2

Frequency(GHz)

V
ol
ta
g
e(
V

)

c) LITTLE cluster - Kirin

1.4 1.6 1.8

0.6

0.8

1

1.2

Frequency(GHz)
d) Big cluster - Kirin

Figure 2.4 – Characterization of Exynos 5422 and Kirin 960 clusters effects of the the
modification of voltage for each frequency level.

cation. Additionally, at the lowest frequency (200 MHz) around 500.000 instructions are
executed during this time. This is 10 times higher than the required amount of instruc-
tions needed to succeed in classical fault injection attack. This experiment shows that
there is no control nor high precision possible over the fault injection in this scenario.
Making attack like Clkscrew impossible on the target SoC.

2.3.3 Conclusion on the characterisation

According to the previous experiments we show that, it is not possible to use the
DVFS with DFA to extract information, as the precision of the fault injection is way
below the required conditions for this type of attack to succeed. However, after further
investigation we show that it is still possible to maliciously exploit DVFS on these devices.
Indeed, if the device voltage is set to a value between the two thresholds in Figure 2.4,
this will prevent some applications from working properly, and after the second voltage

47

Chapter 2 – Maliciously exploiting energy management

Figure 2.5 – The measured voltage at the output of PMIC for the Exynos shows an average
minimum time of 2.5ms between each voltage changes

threshold, for example the 1.1V for the LITTLE cluster at 1.5Ghz, all system’s services
and applications stop working and become inaccessible until the system reboots. In the
following section, we are going to exploit the second threshold to implement a successful
attack.

2.4 Malicious exploitation of the DVFS

The previous section showed that stealing secret information with DVFS technique is
unlikely in the devices using modern technology. In this section, we are going to implement
the proposed attack in Section 2.1.

This attack requires conditions and some important implementation challenges that
are discussed in the following sections.

2.4.1 Implementation steps

The main steps to implement the proposed attack are summarized in Figure 2.6.

— Installing malicious application: the proposed attack does not require any physical
access to the victim device. Instead the access to the device is done through a cor-
rupted application which executes into the device. This application can be installed
by the user (the victim), downloaded on an app’s store for example, the application
will act as a Trojan.

48

2.4. Malicious exploitation of the DVFS

Installing the
application

Installing the malicious
application.

Loading the kernel
module into the OS to
control the voltage.

Manipulating the
voltage

Accessing regulators and
PLLs.

Modifiying the voltage
frequency beyond vendor
operating limits.

Freezing the device

Introducing errors into the
OS execution causing it to
freeze until it reboots.

Locking the device

Detecting when the boot
ends.

Verifying if the user payed
the ransom or reexecute
previous steps.

Figure 2.6 – Required steps from the attacker point of view

— Manipulating the voltage: target devices are equipped with and support DVFS,
granting the user the ability to modify the voltage and frequency. Usually the vendor
specifies multiple operating voltage and frequency points (operating points) where
the device runs in perfect and stable conditions. However, these operating points
are not hardware enforced. Our purpose is to manipulate the voltage beyond these
limits, while the frequency is fixed in order to force the system into an unstable
operating mode. This step can also be done by fixing voltage and modifying the
frequency. However, the target device is a black-box and most of the registers are
unknown. Thus, modifying the frequency can only be done through the cpufreq
tool which make it harder to change the frequency beyond the limits set by the
manufacturer. However, there is also no safeguard limit when choosing a voltage level
due to the high difference of critical paths between different chips, even between dies
on the same wafer, making it very difficult to set a physical limit for the regulators.

— Freezing the device: modifying the voltage beyond the SoC operating limits results
in the introduction of faults that might be critical in the execution of the OS. These
cause the device to freeze and to be unable to recover until it reboots. As shown in
previous Section 2.3.2.

— Repeatedly locking the device: in order to lock the device, the attacker must have
the ability to permanently keep the device outside its stable Voltage/Frequency zone

49

Chapter 2 – Maliciously exploiting energy management

either by changing them during boot or just after the booting phase. Thus, gaining
the ability to modify the voltage once the device just finishes booting.

2.4.2 Implementation of the attack

For the implementation of the attack, the voltage module developed previously (see
Section 2.3.1) for the characterisation is going to be reused as it allows to control the
voltage in most Unix based OS. As for the Hikey 960, we are going to continue using the
built-in system to change the voltage. The malicious application must be able to load the
kernel module, consequently, the attacker application must have privileged access.

In android systems, the root mode is deactivated. However, rooting an android or
jailbreaking an iPhone is a common and popular practice for users who want to gain full
control on their smartphones and push them beyond their limits. This practice is a type
of hacking of consumer electronics.

For this purpose a great number of applications or custom ROMs were developed (e.g.,
magisk [50]), able to unlock root privileges in the system without requiring any password.
This consumer community can count up to hundreds of thousand users (e.g., up to 25
million magisk downloads in the last 5 years [51]). These users can all be considered as
potential targets of this malicious usage of DVFS.

Finally, in order to prevent the device owner from taking control of the device after
rebooting, solutions were developed for each targeted board. First, for Odroid running
Ubuntu OS, the malicious kernel module responsible for accessing the system regulators
is permanently loaded during the booting process. This was implemented without any con-
trol nor further required rights. Second, within the Hickey running Android Open Source
Project, it is not possible to permanently load a kernel module. However it can success-
fully be loaded just after the booting process each time the system reboots preventing
the user to take control of the system. This has been implemented through the Android
Intent functionality which allows communication between threads. Intent is an abstract
description of an operation to be performed, it is used with the startActivity function
to launch an activity when a specific action is performed, this action can be detected
through the BroadcastReceiver. Usually, intents are used to communication between dif-
ferent applications and background services, they work similarly to signal and in our case
the malicious application use this functionality to detect the action broadcasted when the
booting phase is complete providing the ACTION_BOOT_COMPLETED signal intent
as shown in Figure 2.7.

50

2.4. Malicious exploitation of the DVFS

System

Broadcast receiver

Load kernel module

Device locked out
before the user

performs any action

Malicious application

ACTION_BOOT_COMPLETED

Figure 2.7 – Summarized usage of intent used by android to ensure communication be-
tween applications

A exploitation of the malicious manipulation of DVFS presented in this work is illus-
trated in Figure 2.8. After detecting the end of the booting phase, the load of the malicious
kernel module is triggered. At the same time, the attacker can verify if a ransom for in-
stance has been payed which will allow the user to take control of the device back again.
Otherwise, the malicious application take the control of the energy management of the
system in order to manipulate the voltage and frequency levels and force the system to
freeze until it reboots again.

Figure 2.8 – Summarized steps performed by the attacker on the victim device

51

Chapter 2 – Maliciously exploiting energy management

2.4.3 Discussion and counter-measures

The main objective of this work is to highlight the security flaws in the usage of energy
management of today’s commercial devices. In the case where stealing information is not
possible through the usage of DVFS, it was shown that it is still possible to implement a
simple yet sophisticated attack to permanently lock a device, ideally until the user pays
a ransom.

As we targeted a black-box, the necessary SoC documentation to access voltage and
frequency registers directly are not available, limiting the potential attack. In case these
registers information are available, it is possible to deploy a more sophisticated and precise
attack. Notice that Unix cpufreq does not provide the required control for setting frequency
values (the minimum frequency step being 100 MHz). Moreover there is a higher access
delay compared to a direct access to the PLL register if it was possible.

However, since we do not require the register addresses, it is thus possible to deploy
the attack with the developed kernel module to any UNIX based OS and architecture
using DVFS, or similar energy managers, as long as the attacker can control the voltage
and frequency and drive regulators beyond the recommended voltage/frequency operating
points through a kernel API. Therefore, the most straightforward countermeasure is to
add hardware or software limits. However, chips usually have different operating limits
and there are factors that might affect the critical path (e.g., temperature). Therefore,
margins must be taken into account when voltage limits are fixed. Moreover, these limits
would require to be bond to given values of frequency for each board.

A second possible countermeasure would be to add more protection over the control of
the DVFS. For example only trusted applications running on a higher privileged level than
the root user or OS (in case TEE is supported) could access the voltage and frequency
regulators. In [52] a similar method is proposed to limit the access to the DVFS giving only
an application from a secure environment the right to change the frequency and voltage
of a core running in a TEE. This countermeasure will protect applications running in the
TEE from leaking any secrets. However, the malicious usage of DVFS proposed in this
chapter is still possible as it does not target TEE and can even be used during normal
execution.

On the other hand, some efforts have been done to propose more general solutions as
adding additional chips in order to detect potential faults injections ([24][25]), they aim
at classifying malicious glitches into different classes to distinguish the malicious glitch
that tries to gain access to secret data. However they do not aim at preventing them, and

52

2.5. Conclusion

therefore they do not have any impact on malicious manipulation of DVFS able to lock
the device such as the technique presented in this chapter.

2.5 Conclusion

Today’s embedded devices generally support advanced energy management mecha-
nisms. The main objective of this work is to investigate the feasibility and the capabilities
of malicious manipulation of DFVS in today’s commercial devices. We considered the ex-
ample of smartphones. After the implementation of a technique on two recent, widespread
ARM-based multi-core boards (Odroid and Hikey), our experiments show that it is possi-
ble to maliciously manipulate DVFS mechanisms through software in order to introduce
faults into the system operation, that can result in the lock out of a device making all sys-
tem services and data completely inaccessible. With this work we highlighted important
security flaws in the energy management supported by most energy constrained embedded
systems and the necessity to address them.

53

Chapter 3

EXPLOITING INTEGRATED TEMPERATURE

SENSOR

In Section 1.6.1, energy consumption models have been maliciously used to infer in-
formation from a victim program (e.g., AES, RSA) executed on a remote SoC. Few works
have tried to exploit temperature sensors to extract sensitive information as shown in
Section 1.4, such as inferring the current status of the device, which application within a
specific set of applications is being executed on the target (e.g., Internet browser, RSA
encryption) or using the temperature as a covert channel. Nonetheless, to the best of our
knowledge, this work is the first that shows the feasibility of distantly using embedded
temperature sensors to infer information on the executed instructions and manipulated
operands. Finally, in this chapter we demonstrate that on-chip temperature sensors can
be used to extract information on the execution of an AES encryption process, which
can allow to deduce secret key characteristics for instance. The experiments presented in
Section 3.3 show that it is possible to reduce the key exploration space down to 74% of
all the possible values of each bytes of the 128 bits key in the worst case scenario.

The key contributions of this chapter are:

— Showing through multiple experiments that different information (e.g., executed
instructions, manipulated operands) can be inferred through measurement of tem-
perature using on-chip sensors.

— Maliciously exploiting temperature measurements though on-chip sensor to distin-
guish important information during the execution of AES encryption. This infor-
mation allows to reduce the exploration space and eventually, to brute-force the
key.

The remainder of this chapter is as follow. Section 3.1 presents the methodology with
the scenario of the proposed attack and its threat model. Section 3.2 presents the ex-
perimental setup with the chosen target followed by necessary experimentation to prove

55

Chapter 3 – Exploiting integrated temperature sensor

the feasibility of this work and the possibility to correlate the temperature to specific
instructions and operands. Section 3.3 elaborates on the possibility of using the previous
methodology against AES encryption algorithm in order to extract specific characteristics
of the secret key. Section 3.4 discusses the limitations of this work and gives some leads
for possible countermeasures. Finally, Section 3.5 draws some conclusions.

3.1 Methodology

The attack presented in this chapter, is the malicious exploitation of temperature
sensors data to infer information from a victim program. In our case, the victim program
is an AES encryption and the objective is to significantly reduce the number of the possible
values of the secret key in the search space. In the best case scenario, it is possible to
brute-force the key and completely recover it.

To implement this attack, it is necessary to characterise the chosen target device.
As each instruction and operand have different effects on the temperature, these effects
depend on the target device, the voltage and frequency levels. Therefore, the characteri-
sation has to be done for a set of specific parameters and is unique to the model of the
targeted device.

The main goal of this step is to correlate the temperature to a certain characteristic
(e.g., Hamming Weight) of manipulated operands. The next step is to use this charac-
terisation to implement a complete attack. The attacker in this case, knows the effect of
certain characteristics on the temperature. During the attack, the temperature is mea-
sured during the execution of the victim program and is compared to characterisation
previously done. Using statistical methods, secret information can be inferred.

Threat model

For this attack to be successful, the attacker requires:

— To have remote access to the embedded temperature sensors of the targeted embed-
ded device. Accessing the sensor from a 3rd party program is quite easy and realistic
on nowadays SoCs as there is no limitation on reading the temperature value. How-
ever, if possible, it is recommended to access temperature registers through a kernel
module as it provides a lower latency.

56

3.2. Experimental setup

— To be able to take temperature measurements while executing the victim algorithm
(e.g., AES encryption). This point will be discussed later in Section 3.2.

— To be able to trigger the encryption of any chosen plaintext. This condition is quite
classical and realistic.

— To be able to stop the execution of the encryption at any point(e.g., the ability to
use interruption).

Figure 3.1 – Required steps for the proposed temperature driven attack from the attacker
point of view.

The scenario summarized in Figure 3.1, shows both phases of the attack. During the
first phase, the attacker characterise the victim device and study the effect of different
characteristics on the encryption key. In this phase, the attacker has access to a copy
of the target device and control the encryption key and the plaintext. During the online
phase, the attacker remotely measures the temperature during the victim process, in our
case an AES encryption, and correlates it with the characterisation measurements to infer
characteristics on the encryption key.

All these points and their implementation on an actual embedded system are described
and discussed in Section 3.3.

3.2 Experimental setup

In this part of the work, we consider the STM32F303 single core microprocessor [7]
which is widely used in IoT systems and well documented. It uses the ARM Cortex M4
architecture and encompasses a single temperature sensor with a response time of 1.6 µs

57

Chapter 3 – Exploiting integrated temperature sensor

and a resolution of 18 m°C [7]. Finally, for these experiments, we consider that the device
is running in bare metal and uses the HAL (Hardware Abstraction Layer) library [53] to
access temperature sensors. The STM32 HAL is an abstraction layer embedded software
that provides drivers to interact with an upper level software (i.e., application, libraries).

We access the temperature level by directly reading the value from the corresponding
analog-to-digital converter (ADC) register. Temperature measurements have to be taken
during the execution of the victim program and the measurement application is required
to have a minimum impact on the temperature. In order to achieve this objective, we used
DMA access on our single core target to save the measurements directly to the memory
and minimize the processor activities overhead. On sophisticated SoCs (e.g., Hikey960
with big.LITTLE technology), a temperature sensor is usable for each cluster or core.
Thus, we can simply execute the victim program on a specific cluster and read its tem-
perature from another cluster to minimize interaction and optimize the performance of
the method. It is worth to say that the attacker have a more accurate temperature read
if the impact of the measurement is minimised. On the other hand, as the temperature
has a high response time, it is necessary to re-execute the program multiple times until
the temperature stabilises, then compute the mean of all measurements. This step statis-
tically reduces the standard error in the distribution, accounting for low sensors accuracy.
For this work, we are mainly targeting specific instructions within the program. During
the characterisation, it is important to re-execute them, however, during the complete
attack, techniques like zero-steping [8] can be used to isolate the targeted instruction and
re-execute it as many times as required. For the target device, we found out that a loop
of 30,000 iterations is required to observe the effect of the instruction on the temperature.
Finally, between each characterisation, a cooling time is required to avoid temperature
saturation and/or previous experiments impact on the current measurements. By experi-
ments, we defined that 300s are enough to have the same starting temperature for all the
measurements. It is also important to note that the experiments presented in the reminder
of this chapter were executed on different boards of the same model to account for the
difference between each die during the manufacturing process. These setups are the same
throughout the whole chapter.

3.2.1 Distinguishing instructions

To investigate which characteristics of a program can have an effect on the tempera-
ture, different experimentation were realised. The first step is to investigate the impact

58

3.2. Experimental setup

of executing different instructions, For these experiments we considered 3 arithmetic and
logic instructions: multi, add and xor, and 3 memory instructions: load, write and mov.
These instructions were chosen as they are used within the AES encryption, except for
the multi, and this characterisation would help us decide which part of the AES to tar-
get. Figure 3.2 shows the experiments’ results for the arithmetic and logic instructions,
while Figure 3.3 presents the results for the memory instructions. These results show the
frequency of appearance of a given temperature value according to the related instruc-
tion. Each dot on the trace represents the mean temperature during the 30,000 iterations,
this step was repeated to finally obtain 600 means per instructions. The results of the
experiments are shown in Figure 3.2 and Figure 3.3.

Temperature(°C)

42.84 42.876 42.912 42.948 42.984

Fr
eq

u
en

cy
 o

f
ap

p
ea

ra
n
ce

Figure 3.2 – Comparison of the integrated temperature values generated by each consid-
ered arithmetic and logic instruction with the same operands

From these two figures, it can be seen that it is possible to distinguish most of the ex-
ecuted instructions depending on the measured temperature. For instance, at the highest
temperature 42.9°C, the most likely executed instruction is the multiplication as it has
a higher load compared to other instructions (i.e., the greatest frequency of appearance
compared to the others). Moreover, xor and add instructions induce close temperatures
making them harder to distinguish but still possible as their temperature values vary
around 42.836°C and 42.852°C for xor and add respectively. The xor also generates the
least heat as it is a binary instruction and has the lowest load on the processor. On the
other hand, for memory instructions, it is possible to see a clear distinction as mov, write
and load instructions entail temperature mean of 43.01°C, 43.15°C and 43.22°C respec-
tively. As the temperature difference is higher, compared to the considered arithmetic

59

Chapter 3 – Exploiting integrated temperature sensor

Temperature(°C)

43.05 43.10 43.15 43.20

Fr
eq

u
en

cy
 o

f
ap

p
ea

ra
n
ce

Figure 3.3 – Comparison of the integrated temperature values generated by each consid-
ered memory instruction with the same operands

instructions, it is easier to distinguish these 3 instructions. Additionally, it can be noticed
here that these measurements enable also to distinguish between the type of instructions
(i.e., separating arithmetic and memory instructions).

Therefore, we can conclude that for certain cases, instructions can be confidently
distinguished through the integrated temperature sensor measurements. Moreover, it can
be seen that multi is the arithmetic instruction that statistically generates more heat as it
requires more energy compared to the add and the xor instructions. This is an expected
result as the binary operation xor is the instruction that has the lowest complexity out
of the three instructions, thus, it generates the least amount of heat compared to the
two other instructions. From these measurements, we can also see that we can distinguish
between simple instructions executed on the SoC using only temperature measurements
from the embedded sensors. In the next section, we focus on the investigation of the
possibility of distinguishing operands.

3.2.2 Distinguishing between operands

The second characteristic to study is the effect of the operands of the instructions.
In previous experimentations, the same set of operands were used. Thus, their effect was
the same on the different instructions. In this part, the instruction is fixed, we choose the
multiplication as this arithmetic operation provides the highest heat based on the previous
experiments and therefore we expect it to be the easiest to be distinguished. We then vary

60

3.2. Experimental setup

the operand from one experiment to another. Since the target is an arithmetic instruction
that uses two operands, one of them has been fixed during the whole experimentation.

The same previous setup is used, each experiment consists on running the multi in-
struction 30,000 times with two fixed operands while taking the temperature measure-
ments. After the 30,000 iterations the second operand is changed while the first one
remains constant, and a new experiment is conducted. Figure 3.4 summarizes the mea-
surement algorithm used for this experiment.

Repeat for 30.000
iterations

Initialization of temperature sensor and DMA

Main loop Tem
perature m

easurem
ent w

ith D
M

A

Fixing target operation operands

Target operation

Change operand

Characterisation algorithm of the device STM32F303

Figure 3.4 – The main steps used for measuring the effect of the operands on the temper-
ature

As the temperature has a high response time, it is not possible to distinguish between
all possible values of the operand as their effect would be filtered. In this case, operand
with same or close characteristics has to be grouped into a set of values. One way to
group the non-constant operand is by their Hamming Weight (HW, i.e., the number of
’1’ in the binary value) and it is expected that the higher HW the higher the effect on
the temperature.

As we used the STM32 processor, we worked with 32-bit width operands. For these
measurements, we choose to multiply a constant operand arbitrarily chosen (fixed to the

61

Chapter 3 – Exploiting integrated temperature sensor

decimal value 23). It is important to notice that further experiments with different con-
stant values for the first operand showed that this latter has no impact on the obtained
results. The second operand is variable, and without loss of generality, and to limit the
experiments time, we have chosen values that have certain selected HW. Indeed, consider-
ing all HW values is not feasible as performing all experiments will be unreasonably time
consuming. Therefore, we arbitrarily choose HWs of 8, 16, 24 as they allow to study very
different classes of values.

All the measurement are reported in Figure 3.5, with each dot representing the fre-
quency of appearance of a specific temperature. It can be seen that different HW of
the variable operands induces different temperature values. For example, we can see on
the figure that a temperature of 42,952°C corresponds to the highest probability of a
non-constant operand HW of 8, as it is the highest frequency of appearance for this tem-
perature. The same can be said for temperatures 42.968°C and 42.987°C as they both
correspond to HW 16 and 24 respectively. As expected the temperature grows up with
the HW of the variable operand.

Temperature(°C)

42.84 42.912 42.98442.876 42.948 43.02

Fr
eq

ue
nc

y
of

ap
pe

ar
an

ce

Figure 3.5 – Comparison of the temperature generated by 32-bit width multiplication,
with the non-constant operand having HW of [8,16,24] and multiplied by the constant
value 23

Through this simple experiments, it is shown that operands HW has an impact on
the heat generated by the instruction, and that the difference in temperature is observ-
able through the integrated sensor. But the HW is not sufficient if we consider multiple
instructions.

62

3.2. Experimental setup

3.2.3 Distinguishing operands based Hamming Distance

Finally, even if the previous experiments prove that there is information leaked through
temperature sensors measurements, it is not enough to conclude on the possibility of
using these measurements as a basis for a side channel attack. The next experimentation
consists on executing two consecutive instructions. In this case, classifying the results
according to operands’ HW does not have any sense if the executed instructions are
completely independent. However in the typical case, both instructions’ results are written
in the same register. This is for example the typical case in many algorithms (e.g., AES
encryption). In this case we can use the Hamming Distance (HD, the number of bits’
values that have changed from one state of the register to another) to evaluate the impact
on the temperature generated by a sequence of instructions. In the same conditions as
the previous experiments, we consider the first two operations of the first round of the
AES algorithm in order to investigate the feasibility of the proposed approach on this
algorithm. We thus execute a xor instruction between a fixed and a variable operand,
followed by the Subbyte operation (a load instruction) as the two consecutive instructions.
Both instructions were executed in the same 30,000 iterations loop before changing the
second operand at the input of the xor instruction. In this experiment, the operands have
a width of 8 bits as it allows us to test all the possible operand values.

In Figure 3.6, it is possible to observe clear differences between the temperatures
measured depending on the HD after the second operation result is written in the same
register. Different HDs generate different amounts of heat. As can be seen, HDs of 3,
4 and 5 have distinctive peaks at 42.907°C,42,92°C and 42.932°C respectively, making
possible to distinguish them. However, even if their frequency of appearance is high on
their respective temperature peak, it is always possible to get a false positive as some other
HDs generate the same temperature value in some cases. On the other hand, 1,2,6 and
7 HDs are harder to distinguish as their peaks have almost the same appearance rate, if
not lower, compared to neighbour HDs. This can be due to a low number of values having
these HDs (only seven measures for a HD=7 for instance). The number of measurements
being too small to be representative

This experience consisting on executing two instructions, shows that it is possible to
use the temperature measured with the embedded sensors to infer information such as the
HD between two successive operations. Thus, knowing this property of the register values
allows the deduction of possible values of the operands that lead to the results saved in
the register. Indeed, classic attacks such as Differential Power Analysis (DPA) and Cor-

63

Chapter 3 – Exploiting integrated temperature sensor

Temperature(°C)

42.876 42.912 42.948 42.98442.894 42.93 42.966

Fr
eq

ue
nc

y
of

ap
pe

ar
an

ce

42.907°C 42.92°C 42.932°C

Figure 3.6 – Comparison of the temperature depending on the HD between two states of
the same register after a xor and a load operation.

relation Power Analysis (CPA), presented in Section 1.6, are based on the principle of
correlating the HD between the AddRoundKey (xor) and the Subbyte (load) instructions
of the AES algorithm with the energy consumption that could be measured. Therefore,
by distinguishing the HD from one state to another of the used register, we show that
temperature can be used as a side channel to extract secret information in specific con-
ditions. Using a strategy similar to DPA and CPA, we used our approach to infer some
information on the secret key of the AES algorithm.

3.3 Extracting AES key characteristics using tem-
perature sensors

As seen before, it is clearly possible to use the temperature of the chip to infer certain
information. In this section, the implementation of an attack based on the use of the inte-
grated temperature sensors is detailed. The main objective is to investigate the feasibility
of significantly reduce the number of possible secret keys on AES encryption algorithm
to eventually perform a brute-force attack to reveal the secret key.

3.3.1 Methodology of the attack main steps

The main steps of this attack are:

64

3.3. Extracting AES key characteristics using temperature sensors

Accessing the temperature sensors: The proposed attack does not require any
physical access to the victim device. The only requirement is a remote access to the
temperature embedded sensor measurement results. This is possible through a 3rd party
malicious application or module installed on the targeted device. Under an embedded OS,
accessing the temperature sensor may require privileged access.

Measuring the temperature during AES encryption: It is required that the
target device has the capabilities to take temperature measurements in parallel with the
AES encryption execution. In order to fulfil this condition, it is either required to have
a multi-core SoC in which one core executes the victim AES encryption and a second
core execute the attacker code responsible for triggering the temperature measurements,
or having the ability to use a DMA controller to save measurements in parallel with the
AES encryption execution.

Re-executing the targeted instruction(s) multiple times: The temperature
needs time to propagate through the chip, it is thus important to be able to re-execute
the same targeted instruction(s) multiple times as described in Section 3.2. In this work,
we are going to focus on attacking the Subbyte operation on the first round of the AES
encryption as the secret key has the most impact on this operation. One of the techniques
that can be used for this purpose is the zero-stepping [8] as it was used in [34].

Offline Phase; Characterization of the device: The attacker has to first char-
acterize the target device as well as the effect of specific keys characteristics (e.g., HW,
intermediate result’s HD) on the temperature of the targeted device. The impact on tem-
perature needs to be characterized in a first phase where the used key is known before
performing the actual attack (see Figure 3.1 in Section 3.1). This phase requires the at-
tacker to have the same hardware as the victim targeted device. It has to be noticed that
this characterization phase has to be driven only once for a specific device.

Online Phase; Deducing the possible secret key values: In the second phase,
which actually corresponds to the attack, the used key is secret and thus not known by the
attacker. The objective is to deduce indirect characteristics of the key which result on a
certain HD after two specific consecutive operations of the algorithm (e.g., AddRoundKey
and Subbyte). This deduction will allow the attacker to infer the possible values of the
encryption key significantly reducing the key exploration space. If the solution space is
sufficiently reduced, recovering the final key can be done through a brute-force attack. In
this phase the encryption of a controlled message with the unknown secret key is triggered,
and the temperature measurements are simultaneously taken. Finally, a comparison of

65

Chapter 3 – Exploiting integrated temperature sensor

the measurements during the actual attack with the Offline characterization phase results
allows to deduce a classification of the most probable keys.

In the following sections the implementation of these steps is presented and obtained
results are discussed.

3.3.2 AES reminder

In this work, we target an AES128 encryption and more specifically, the first round
as described in Figure 3.7. The diffusion of the cipher does not happen until the second
operation of this round, thus, the complexity to infer information and recover the key is
minimum at this stage. The first round takes as input a 4 by 4 matrix of 16 bytes and go
through four operations SubBytes,ShiftRows,MixColumns and AddRoundKey.

— SubBytes uses a known 8-bit substitution box to substitutes each byte of the
matrix with another byte from the box.

— ShiftRows shifts the rows of the input matrix by a fixed offset, the offset depends
on which row is being shifted.

— MixColumns transforms each column using a fixed matrix. This operation pro-
vides, with the ShiftRows operation, the diffusion of the cipher.

— AddRoundKey add the subkey K1 to the bytes of the matrix with the xor opera-
tion.

The plaintext goes through AddRoundKey before the first round starts as seen in the
Figure 3.7 which makes the results directly linked to the subkey K1. The plaintext is
known and controlled by the attacker and the complexity is the lowest during this stage
as the diffusion does not happen until the ShiftRows operation. Thus, during the attack,
we target the first AddRoundKey and SubBytes. If we infer the HD between the input and
output of SubByte operation, we will be able to directly link it to only certain possible
values of the input, thus reducing the possible values of the subkeys.

3.3.3 Attack implementation and results

We continue using the same target device as for the previous experiments (i.e., the
STM32F303 device). We assume that the attacker can access the embedded temperature
sensor through DMA and is able to run temperature measurements during AES encryption
targeted program. We assume that the attacker can also configure interruptions as they

66

3.3. Extracting AES key characteristics using temperature sensors

Figure 3.7 – Operations in the first round of AES

are crucial to isolate the target instruction and repeat it indefinitely. In this case, the
attacker needs to configure a periodic interruption using, for example, an APIC (Advanced
Programmable Interrupt Controller) timer. The interruption needs to happen during the
execution of the targeted instruction and before the program counter is updated. As we
re-execute the same instruction, delay between each interruption is the same. We focused
on the instruction Subbyte as explained before and shown in Algorithm 1.

Algorithm 1 Malicious application execution steps
1: DMA initialization
2: DMA start #Start measurement
3: foreach plaintext p_i
4: AES encryption #Start AES with an arbitrary plaintext p_i
5: wait to reach the targeted instruction
6: while Measurements do

#e.g.., 30,000 temperature measurements for this instruction in our case, while
execution of targeted instruction

7: trigger interruption #An interruption stops the execution of the targeted instruction
and thus it will be re-executed, e.g., zero stepping

As previously explained, this attack requires two main phases.

67

Chapter 3 – Exploiting integrated temperature sensor

3.3.4 Offline Phase

The whole process described in the previous section represents the Offline characteri-
zation. We use known keys and plaintexts to characterise their effect on the temperature.
In this case, we already observed a difference of temperature when the HD between two
consecutive states of register r (i.e., the register where the results of the AddRoundKey
are written followed by the results of the SubBytes) varies. For the rest of the chapter,
this Hamming Distance is designated by HD of r. During the Online Phase, the attacker
will use these observations and will compare them with the run-time measurements.

During the Offline Phase, an exhaustive characterization is done by measuring the
temperature of each possible plaintext/key combination for one byte which is a total of
65536 possible values. This is a time consuming process and lasts approximately 3 weeks.
However, the characterization will not change for the same target device model and can
be reused for the proposed attack on devices of the same model.

As we are using the same target as in Section 3.2.2, the previously measurements
targeting the instructions used in the AES 128bits are considered. The experiments are
limited to two HDs 4 and 5 of r as the attack can be easily generalised later. Figure 3.8
shows two extracted HD from Figure 3.6 the characterisation of these two HDs and three
different areas can be distinguished:

— A first area (Area A) with temperature values of different plaintexts and keys, but
resulting for the great majority of the cases on a HD of 4 between the two states of
the register r.

— A second area (Area B) with temperature values of different plaintexts and keys
where the resulting HD, of 4 or 5, is much harder to distinguish.

— A third area (Area C) with temperature values of plaintexts and keys where the
resulting HD is predominantly 5.

During the implementation of the complete attack, all the zones (8 for each HDs
plus the mingled zones) for the 8 possible HDs need to be distinguished. Finally, as
Figure 3.8 shows the frequency of appearance for each temperature values, it is possible
to statistically compute the probability of the most likely HD of r as:

P (HDi) = Samples(HDi)∑8
j=0 Samples(HDj)

68

3.3. Extracting AES key characteristics using temperature sensors

Figure 3.8 – For the STM32F303 platform, the temperature characterization for two
arbitrary HDs of r (4 and 5) during the Offline Phase. There are 500 dots in each graph
and each point represents the mean value of 30,000 temperature measurements. The blue
dotted line represents the temperature measurement during the Online Phase.

Where Samples(HDi) represents the number of measurements of the same temperature
for the tested HDi over all the measurements for all the HDs.

3.3.5 Online Phase

Once the correlation between the temperature and the HD of r has been shown, it
is possible to move to the second part of the attack which is the Online Phase. In this
case, the attacker takes multiple temperature measurements with an unknown secret
key but with a known plaintext. These measurements are then projected on the offline
characterization areas, to finally compute the probability of having a specific HD, this is
done for each HD. This process can be repeated with different known plaintexts. Thus,
it is possible to rank each possible HD by the highest probability (the most probable)
each time. For the sake of understanding the presentation of this attack here, is limited
to only two HDs: 4 and 5. In Figure 3.8 the Offline Phase characterisation as well as the
temperature measurements during the Online Phase (the blue dotted line) of the attack
are shown. In this example, the attacker measures a temperature of 42.833°C, for this
measured value, there is a total of 61 offline measurements with the same temperature,

69

Chapter 3 – Exploiting integrated temperature sensor

18 of them correspond to the HD of 4 and 43 of them to the HD of 5. In this case, the
probabilities for the key to have resulted on a HDs = 4 or HDs = 5 are expressed as:

P (HD4) = Samples(HD4)
Samples(HD4) + Samples(HD5)

=

P (HD4) = 43
18 + 43 = 29.50%

P (HD5) = Samples(HD5)
Samples(HD4) + Samples(HD5)
P (HD5) = 70.49%

In this case, the HD between the two states of the register r has a high probability
of being 5, by repeating the measurement and the process with different plaintexts, it is
possible to infer the possible values of HD of the register. As the plaintext is known by
the attacker, the possible value of the key can be computed.

3.3.6 Results analysis

Hamming
distance 0 1 2 3 4 5 6 7 8

Number of
possible values 0 12 31 48 67 59 32 7 0

Table 3.1 – Number of possible values of the register r depending on the HD before and
after the Subbyte operation

The final step to deduce the correct AES key is by using a brute-force approach. The
possible keys to test during this final step depend on the HD of each byte found in the
previous steps of the attack. As the operation of the Subbyte in AES is a substitution with
known values, it is possible to only select the inputs that lead to a specific HD. Therefore,
it is possible to find all possible values of the register r that could have resulted in a given
HD.

Table 3.1 shows the number of the possible values of the register r depending on the
HDs previously deduced. The HD of 4 represents the greater number of possible values
of r (67). To find the correct value, all the 67 different numbers should be tested. On the

70

3.3. Extracting AES key characteristics using temperature sensors

other hand, HD 7 represents the easiest case since there are only 7 possible values of r
that need to be tested. To recover the entire key, the same operation on all the bytes of
the subkeys need to be repeated, 16 times in the case of AES128. For sake of simplicity
and in order to study the feasibility of the attack, the example was separated into two
cases, the worst and the best case scenario. The worse case scenario is when all the keysub
bytes lead to a HD of 4 (the greater number of values to test) while the best case scenario
is when all the bytes lead to a HD of 7. With the data shown in Table 3.1, the time it
will take to brute-force a key for each scenario can be inferred. An AES encryption would
approximately take 1.3 clock cycles/byte according to [54]. This estimation is based on
recent Intel processors and it takes ≈ 433 ps to test one key using a CPU with a frequency
of 3 Ghz. In the best case scenario, it will take 1.6E−1 days to brute-force the entire key,
and 8.26E18 days in the worst case scenario. The process can be generated to compute the
time needed for all possible combinations, but there is no simple representation to show
the data as there is a lot of possibilities. We give a simplified example in the case where
all the bytes leads to the same HD. The computation effort estimations are gathered in
Table 3.2.

Hamming distance 0 1 2 3 4 5 6 7 8

Time to test all keys in days 0
9.
26

E2
3.
64

E9
3.
97

E1
2

8.
26
E

18
1.
08

E1
8

6.
05

E1
3

1.
6
E-

1
0

Table 3.2 – Time to test all keys if all the bytes of the secret key lead to the same HD

The process of brute-forcing the key can be further simplified. The attacker is able
to change the plaintext used during the Online Phase. As the key is fixed and does not
change during the attack, the value of the register r will mainly depend on the plaintext
that is controlled by the attacker. This gives the attacker the possibility to change the
resulting HD of r by choosing each time a different plaintext. And for each plaintext and
HD of r, there is a set of identified possible keys. The intersection of these sets represents
a reduced set of the possible keys. For example, finding two plaintexts, leading to a HD
of 4 and 5 respectively, will give a set of 67 and 59 possible keys respectively. Therefore,
the intersection of these sets will reduce the possible keys down to 23. In the same way,
three plaintexts leading to HDs of 3, 4 and 5 respectively, will further reduce the number
of possible keys to only 9, making it possible to brute-force it in 9 days in our case using
the same AES encryption speed in [54] used to compute the results of Table 3.2. It is also

71

Chapter 3 – Exploiting integrated temperature sensor

important to note that these results were computed using the information of one desktop
CPU. It is thus possible to significantly reduce the time of brute-forcing if the tests are
parallelized (e.g., using multiple CPUs, GPU).

3.4 Discussion

The work presented in this chapter shows that it is possible to maliciously exploit
the temperature measurements from embedded sensors to extract crucial information
and significantly reduce the AES key exploration space. In the considered scenario, we
were able to reduce the exploration space down to 96.47% for one byte in the best case
scenario (9 out of all 255 possible values, requiring only 9 days to brute-force the key, see
Section 3.3.6). As for the worst case scenario, the reduction of exploration space is reduced
by 74% (67 possible values over 255, see Table 3.1). These results can be extrapolated
to deduce the worst case scenario for the 16 bytes in AES128 in which the reduction of
the exploration space could be theoretically reduced down to 99.9999999515% (16 bytes
leading to the HD=4 of r) 6716 / 25516 which will theoretically take 8.26E 18 days to
bruteforce the whole key according to Table 3.2. However, with further measurements
using different plaintexts, the time to bruteforce the key can be reduced even further to
less then a day in the best case scenario.

This work can be extended to other platforms as today’s embedded devices generally
come with temperature (and other) embedded sensors. There are possibly further ways
to use sensors information. For example, in systems with multiple sensors, it is possible
to observe delays in the heat propagation as the sensors are geographically in different
positions in the chip. This could be used to pin-point where certain registers are located
or where certain instructions are executed. Finally, this work can be further extended by
studying its feasibility on protected AES algorithm and AES dedicated bloc (cryptography
cores).

The most straightforward countermeasure would be to add access limitations to the
integrated sensors. In devices with an operating system, a limitation can be for example to
always limit sensor data access to privileged users only. Additionally, it is also possible to
reduce the accuracy of the measurements as the attack requires to distinguish an average
of 100 m°C difference between the temperature peaks of each HD observed in Section 3.2.2,
in order to distinguish the different HD values. Thus, reducing the measurement precision
will make the number of false positive considerably increase, to the point where it is

72

3.5. Conclusion

impossible to find the correct HD. In case where there is no need to share the temperature
with the user or the consumer, the access to the temperature sensor can be limited to
trusted execution environment only.

3.5 Conclusion

Today’s embedded devices generally support temperature management mechanisms.
This work investigates the feasibility of a remote malicious exploitation of embedded
temepraturesensors used in these management systems. We considered the example of
IoT devices. The proposed technique was fully implemented in a real platform. Our ex-
periments showed that integrated sensors can be remotely and maliciously exploited as
measurements are sufficiently precise to extract information. Operands and executed in-
structions are clearly distinguished in some cases. Finally, our technique has been used in
order to deduce AES encryption secret key characteristics reducing the key exploration
space down to 74% per key byte (in the worst case) making it feasible to brute force the
remaining possible key values to deduce the exact key. With this work we highlighted
important security flaws in the temperature management systems and the necessity to
address them.

73

Chapter 4

USING MACHINE LEARNING TO ANALYZE

TEMPERATURE VARIATION AND EXTRACT

SECRET INFORMATION

In the work presented in Chapter 3, thermal sensors are used to extract information
from an STM32 micro-controller. Experiments shows that it is possible to infer certain
characteristics from the execution of an AES128 and to use it to eventually brute-force
the encryption key. In this chapter we also focus on extracting secret information using
thermal sensors. However, the target is the kirin960 a much more complex architecture.
This target is a heterogeneous SoC with 8 cores and each core is more complex than
the STM32 single core. The Kirin was designed for high end computing on smartphone
devices, contrary to the STM32 which was mainly designed for IoT. The main target
algorithm of this chapter is the RSA2048 algorithm as its operations have a higher load
and generate more heat compared to AES. Thus, its thermal print is more visible when
measuring temperature. These experiments also show that the attack can be implemented
on a different cryptography algorithm. Machine learning algorithms are used to analyse
the measurements.

The key contributions of this chapter are:

— Using on-chip thermal sensors to infer some operands HW in 2048 bits multiplica-
tions.

— Using machine learning with on-chip thermal sensors to distinguish HW of the
private key during RSA decryption.

The remainder of this chapter is as follows: Section 4.1 presents the scenario of the
attack and its threat model. In Section 4.2 the experimental setup is presented with the
chosen target and the necessary experimentation to prove the feasibility of this work.
Section 4.3 extends the previous section by presenting machine learning techniques and

75

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

using them to improve the analyze of the data. Section 4.4 elaborates on the possibility
to use the previous methodology against RSA decryption algorithm to extract the HW of
the private key. Section 4.5 discusses the limitations of this work and gives some leads for
possible countermeasures. Finally, Section 4.6 draws conclusion and future work directions
to this work.

4.1 Attack scenario

In this chapter, we also try the previous method on a more complex platform, we focus
on inferring the HW of the key from an RSA2048 decryption algorithm. The objective is
to significantly reduce the number of the possible values for the secret key.

This attack is similar to the one described in Chapter 2 and its methodology is sum-
marized in Figure 4.1.

Characterize the effect of
the HW of the private key
on the target temperature Malicious application on the

victim device is able to
access the temperature

The victim device

The attacker

The application does
measurement during an

RSA decryption launched
by the attacker remotely

Measurement are sent
back to the attacker by the

malicious application

Train machine learning
models for classification

depending on HW

Do measurements remotely
on the target

Use the measurements
with the previous model to

infer the HW

C
ho

se
ci

ph
er

te
xt

Offline Phase

Online Phase

Figure 4.1 – The main steps of the proposed temperature separated into the Offline Phase
where the attacker characterize the victim device and Online phase where the attacker
access the temperature sensor on the victim device and measure the temperature remotely

76

4.2. Experimental setup

The attacker needs to know beforehand the effect of some characteristics (operands and
instructions) on the heat generated within the chip. Thus, it is necessary to characterize
the target device and the effect instructions and operands have on the temperature. As the
intended victim algorithm is an RSA-2048 decryption, the focus will be on characterization
of multiplications and exponents operations. Once this step is done, the attacker can
measure temperature on the target device and infer secret information using the previous
characterization.

For this attack to be successful, the attacker requires:
— to have a remote access to the embedded temperature sensors of the targeted em-

bedded device core. This a classic and simple requirement for remote attacks as
already shown.

— to be able to take temperature measurements while executing the victim algorithm
(e.g., RSA decryption). On the targeted MPSoC, it is possible to use one core or
cluster running the malicious application to measure the temperature of another
core or cluster running the victim program. This allows us to reduce the effects
of the measurement on the heat emitted by the core or cluster running the victim
program.

— to be able to trigger the encryption of any chosen plaintext.
All these points and their implementation on the Kirin960 embedded system are de-

scribed and discussed in Section 4.4.

4.2 Experimental setup

In this work we used the Hikey960 [9] evaluation board which embed the Kirin960 SoC,
an octa-cores based on arm big.LITTLE technology. It uses the armv8 architecture and
encompasses 3 temperature sensors within the SoC as shown in Figure 4.2 and another 2
outside the SoC, within the Random Access Memory (RAM) and the modem. For the rest
of this chapter, the focus will be on the two sensors within each cluster. They both have
a response time of 500ns and a resolution of 220m°C. For the following experimentation,
the target device is running the Android Open Source Project (AOSP).

A kernel module was developed to access the temperature, it is done by reading the
value from the register of the thermal sensor ADC of the cluster running the victim
program. This kernel module must be executed in parallel of the target program as mea-
surement requires minimum impact on the temperature compared to the victim program.

77

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

Registers

ADC

Sensor

Kirin960 SoC

Sensor
GPU

User

big cluster

Core 6

Core 4 Core 5

Core 7

Sensor

LITTLE cluster

Core 2

Core 0 Core 1

Core 3

Other devices
outside the SoC

Figure 4.2 – The 5 different temperature sensors on the Hikey960 board

In fact, both of the cluster are physically separated on the chip, plus the temperature
has a slow propagation time, making it easily to fulfil the previous condition. In order to
implement this, the main kernel module launches two threads, the first one is responsible
for measurements while the second starts the victim program and waits for it to finish. As
the Kirin960 has a sensor for each cluster, the two threads are running on two different
clusters, this will further minimize the effect of the measurements on the temperature.
For the rest of this chapter, we arbitrary choose the LITTLE cluster to execute the target
program while the big cluster is executing the measurements.

4.2.1 Distinguishing operands HWs

The first step toward the characterization of the RSA encryption is to study the effect
of multiplications on the temperature, the first experimentation consists in characterizing
the 2048 bits multiplications, for this, the Multiple Precision Integer (MPI) kernel library
was used. This library is part of GnuPG which is a cryptographic tool and contains
functions that allow to do arithmetic operations on large integers. For this experiments,
two functions were used, the first one is mpi_alloc which sets the size of the used integer
and allocates a portion of memory to the operands. The second one is mpi_mul which
multiplies two MPI variables (MPI is the base structure of the MPI library and mainly
contains the value of the operands and its size) and saves the result into a 3rd variable.
As the size of each operand is 2048 bits, it is impossible to characterize all the values as
it will take years to finish executing all the iterations. Thus, one operand will be fixed

78

4.2. Experimental setup

wile the other will be varying within an arbitrary chosen set of HW. The first operand
represents the hidden information and the goal of this experiments is to characterize
the effect that this operand’s HW has on the temperature. Thus, the value of the first
operand is fixed depending on the HW while the second one vary within a set of 1000
arbitrarily chosen values. Finally, for each couple, the multiplication is repeated in a 40,000
measurements loop (enough measurements are done until the temperature stabilize) and
the mean of those measurements is computed to reduce the error and noise from OS other
background programs affecting the temperature. This provides 1000 mean of temperatures
measurement for each hidden operand value. This process is repeated for each hidden value
in the evaluation set.

Figure 4.3 shows the frequency of appearance of a given temperature value depending
on the HW of the hidden operand within 256, 768, 1280 and 1792 values.

42.820 46.920 51.020 55.120 59.220

Temperature (°C)

Fr
eq

ue
nc

y
of

 a
pp

ea
ra

nc
e

41.65 42.2 43.22 46.7

Figure 4.3 – Comparison of the integrated temperature values generated by different HW
values of the secret (hidden operand).

In this figure, it can be clearly seen that it is possible to distinguish the HW-768 and
HW-1792. However, it is harder to distinguish the HW-256 and HW-1280 as they are
superposed but it is still possible to separate them from the HW of 768 and 1792. This
phenomenon is expected to occur more often as other HW graphs are added to the results
even if the variation range of the temperature is large (between 34.620°C and 59.220°C).

79

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

In fact, different groups of overlapping temperature could be formed, it is possible to
distinguish them visually and statistically but it would be difficult or near impossible
to distinguish HWs within the same group. For this, a different method had to be used
to analyze the temperature measurements. Moreover, as it is not possible to test all the
values, it is important to interpolate the results based on the available data. Thus, it has
been decided to use dimension reduction algorithm and classification methods to imporve
data analysis.

4.3 Machine learning methods

Principal component analysis (PCA) is one of the techniques used to analyze large
and difficult to interpret dataset. This method is used to reduce the dimension of these
datasets and make them more interpretive while minimizing information loss. It does so
by creating new uncorrelated variables (principal components) that successively maximize
the variance of the data.

4.3.1 Variational Autoencoder

Before applying the PCA to our dataset, it is necessary to preprocess it to reduce the
noise. For this, different other methods were tested and we choose Variational Autoencoder
(VAE) as it was the most efficient and fits our requirements.

VAE is an artificial neuronal network and a variation of the Autoencoder (AE). Both
are based on fully connected neuron networks. They can also be implemented using con-
volution layers but the results using the first model were satisfactory and the convolution
neuronal network was not necessary. AE is composed of two parts as shown in Figure 4.4:

— Encoder : a fully connected neuron network which compresses the data and encodes
it unto a smaller space by gradually reducing the number of neurons after each
layers. the encoder generates a latent space (code).

— Decoder : a fully connected neuron network which decompresses the code and tries
to reconstruct the encoded data to match the original data.

Both parts are linked as the output of the encoder is the input of the decoder. Thus,
the data is forced to go through a smallest layer and then reconstructed it and doing so,
reduces the non-significant information (noise). The neuron layer shared by the Encoder
and Decoder is called latent space (Also referred to as Code in the Figure 4.4) as it

80

4.3. Machine learning methods

Figure 4.4 – The classic structure of an Autoencoder were the Encoder compress the
data into a 3 dimension layer Code (also called latent space), meanwhile, the Decoder
reconstruct the data from the latent space. The reconstructed data has its insignificant
information filtered

represents the compressed data, and the number of neurons in this layer represents the
degree of the compression.

For the VAE, the latent space is not formed by a layer of neurons. In fact, the output of
the encoder is encoded into multivariate distribution (namely a Gaussian distribution) as
shown in Figure 4.5. In the later, the mean µ and the variance σ are processed to compute
the distribution, then, random samples are selected from the distribution (the number of
samples depends on the dimension of the latent space and the degree of compression) and
are used as the input of the decoder.

For our work, the VAE shown in Figure 4.5 was used to filter the input dataset.
Different layer models have been tested experimentally and the most efficient one had an
input layer of 250 neurons, 2 hidden layers of 64 and 32 neurons and a latent layer of 4
samples (randomly extracted from the distribution σ, µ). This model is used for the rest
of the experimentation. The dataset consist of the measurements done for the 2048 bits
multiplication. Each input set is composed of 250 of the 1000 values. The VAE model
was constructed using Keras library on python, the activation function of the neurons is
the ReLU (Rectified Linear Unit) which defined by equation 4.1. As for the optimizer
(Optimizers are algorithms used to minimize the error function) Adam [55] is used.

f(x) = max(0, x) (4.1)

81

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

1

2

64

1

2

250

1

2

32

μ

σ

1

2

3

4

1

2

32
64

1

2

1

2

250

Encoder Decoder

SamplesDistributionInput layer Output layerHidden layersHidden layers
Hidden operand

1st value

2nd operand 1st value

2nd operand 2nd value

2nd operand 250th

value

Hidden operand
2nd value

ReLu activation
function

Figure 4.5 – The structure of the VAE used during this work

The results of using the VAE to filter the measurements are shown in Figure 4.6. It
is possible to see a clear difference compared to the previous figure. The first main and
important difference is the absence of mingled graphs and all of the 4 HW traces are
distinguishable. Additionally, we can observe that the difference between the temperature
of the traces is smaller. This makes it harder to distinguish them visually and increases
the error of guessing the correct HW. However, when using a machine learning mechanism
to differentiate between the traces, the effect is reduced and neglectable. As we will see
in the following Section 4.3.2, the dataset is now ready to be used with PCA.

4.3.2 Principal Component Analysis

PCA is an orthogonal linear transformation that reduce the dimension of the data by
projecting them to a new dimension where the variance is maximized. The coordinates
in the new dimension are called principal component and the first coordinates (the first
principal component) represents the one with the maximal variance, the second coordinate
corresponds to the second greatest variance, and so on.

To implement this technique, the sklearn [56] library from python was used. The
dimension of our data was reduced to 250 to adapt it to the previously used VAE and it
was projected to a 2-dimensional space. At first, the goal was to increase the dimension
if it proved not enough to distinguish between the HW but, it was not necessary.

Figure 4.7 shows the results of the dimension reduction on the filtered data. It is
possible to see clusters forming depending on the HW of the hidden operand. The clusters

82

4.3. Machine learning methods

44.870

Temperature (°C)

Fr
eq

ue
nc

y
of

 a
pp

ea
ra

nc
e

45.895 46.920 47.945 47.945 48.970

Figure 4.6 – Comparison of the integrated temperature values generated by different HW
values of the secret after being filtered using a VAE

Cluster for HW
768

Cluster for HW
256Cluster for HW

1792

Cluster for HW
1280

Principal component 1

P
ri
n

c
ip

a
l
c
o

m
p

o
n

e
n

t
2

Figure 4.7 – Different clusters are formed depending on the HW of the hidden operand
after using PCA on the dataset filtered by the VAE

83

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

for the HW of 768 and 1280 are isolated and easily distinguished. However, clusters for
HWs 256 and 1792 are close to each other and some data are overlapping leading to mixed
boundaries of the two clusters. In this case, the validation of the model shows that 14%
of the cases lead to a false-positive which is a lot better compared to the Figure 4.3 in
Section 4.2.1. Finally, a decision algorithm is applied to identify the HW of the operand.

This process can help distinguishing between operand’s HW using temperature mea-
surements. The steps are summarized in Figure 4.8 as it will be used and described in
detail again in the following section.

Measuring the
temperature of the

victim program
- VAE training with keras
- ReLu activation function
- Adam optimizer

Neural Network
Filtred measurement

Apply PCAIdentify clusters

1st HW

Use decision
algorithm

2nd HW
3th HW
4th HW

Figure 4.8 – All the steps used in the characterization of the 2048 bits multiplication,
from measurement to identifying the HW of a fixed operand

It is also important to be able to process the decision boundaries of the clusters. In
the presented case, it is possible to visually distinguish them, however, when most of the
different HW are present, it is expected to become much more difficult. For this, decision
algorithms can be used:

— K-nearest neighbors algorithm (k-NN) [57]: is a type of classification algorithm that
identifies the clusters by studying the distance between the projected dataset

— Support-vector machine (SVM) [58]: is a supervised learning model that analyzes
data for classification and regression analysis. It is one of the most robust prediction
methods

84

4.4. Inferring the HW of RSA private key

— Neuronal networks for classification [59]: it is also possible to use a classical percep-
tron for automatically classifying the output of the PCA

These methods were not used in this chapter but represents future possible work to
increase the accuracy of finding the correct HW.

4.4 Inferring the HW of RSA private key

As seen in Section 4.2, it is possible to use the temperature of the chip to infer in-
formation. The main objective of this section is then to infer information from an RSA
decryption and implement an attack on modern MPSoC (Hikey960 board as an example).
Same as in the previous section, the focus will be on extracting the HW of the secret key.

4.4.1 Main implementation steps of attack

The main steps of this attack are similar to the attack presented in Chapter 3 with
slight differences.

Accessing the temperature sensors: Accessing the temperature sensors does not
require a physical access to the system. In modern MPSoC the devices run under an
OS and it is still possible to access the sensors without privilege. However, having a
privileged access allows to read the temperature value directly from the register, thus, it
reduces the latency and has higher sampling rate. Moreover, a privileged access will also
allow the attacker to modify the working frequency. Running at the minimal frequency is
recommended for this attack as the junction temperature will not be reached and more
measurements can be done within the same time span.

Measuring the temperature during RSA: In the target platform, the system
has multiple cores and two clusters as opposite to the targeted platform of the previous
Chapter 3. Techniques like DMA are not necessary as measurements can be done from
one core while the target program is being executed on another one. For this attack, the
measurements are done from a big cluster core running at the highest frequency, while
the victim target program is executed on a LITTLE cluster core running at its minimum
frequency (Similar to Chapter 2).

Launching an RSA decryption: It is important to be able to re-execute the RSA
decryption with the same ciphertext and the same key. Multiple iterations are necessary

85

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

as we need a sufficient number of measurements. The mean temperature for at least 100
iterations were needed in our rest case scenario.

Offline Phase; Characterization of the device: In the first phase, the attacker
is required to characterize the target device. Since the main objective is to uncover the
HW of the private key, a characterization for every HW and its effect on the temper-
ature of the targeted device is necessary. This process is time consuming but needs to
be accomplished only once per platform model. In this phase, the private key is known.
Moreover, it is recommended to have different target hardware of the same model to take
into consideration the variation introduced during the manufacturing process. Finally, the
dataset obtained in this phase is used to train the VAE model previously presented.

Online Phase; Uncovering the HW for the private key: The second step rep-
resents the real attack and its objective is to uncover the HW of the private key. In
this phase, few measurements need to be done using a malicious application. These mea-
surements are used with the previously trained VAE and are added to the Offline Phase
dataset for clustering with PCA. The final step is to identify which cluster is the closest to
the measurements done during the Online Phase. The distance between the measurement
and the cluster represents the probability of the key being of a specific HW.

4.4.2 RSA reminder

The main target of this part of the work is RSA 2048. It uses exponentiation operation
to encrypt and decrypt information with both operands of the operation being long binary
number (from 1024 bits and up to 4096 bits). Thus, it has long processing time and a
high load on the SoC making it the perfect target for our proposed temperature attack.
RSA is a public-key cryptosystem used to secure transmissions. In this case, a public key
is released and used to encrypt the information. However, this same key cannot be used
to decrypt the cipher, to decrypt the information, a private key, which is kept secret, is
used. It is also important to note that both private and public keys are computed using
two distinct prime numbers (p and q). Any person in possession of these two numbers
can recreate the private key.

The creation of both, a private and public key, is shown in Figure 4.9 and the main
steps are as follow:

— Choosing two distinct prime numbers p and q. They should be random and kept
secret.

86

4.4. Inferring the HW of RSA private key

— Computing n = pq. n is the modulo for both the private and public key, it will be
used during the encryption and decryption processes.

— Computing λ(n) where λ is Carmichael’s totient function. λ(n) should be kept secret.

— Choosing e where 1 < e < λ(n) and e should be coprime with λ(n). (e,n) is released
as the public key.

— Computing d ≡ e−1(modλ(n)). (d,n) is the private key and kept secret.

Compute n=pq
Compute λ(n)

 λ is Carmichael
function

Choose e < λ(n)
e and λ(n) should be

coprime

Compute d
d ≡ e−1 (mod λ(n))

 public key (e,n)

private key (d,n)

Prime numbers
(p,q)

Figure 4.9 – The main step to generate the public and private key of the RSA algorithm

Finally, with the public and private key, it is possible to encrypt and decrypt the
plaintext. The encryption of a message m into the cipher c is computed as follow:

me ≡ c ∗mod(n) (4.2)

The decryption of a ciphertext c into the plaintext m is computed as follow:

cd ≡ m ∗mod(n) (4.3)

In this work, the main goal is to infer the HW of the private key d. Thus, the main
target is the decryption phase where d is used as an exponent of c, d being the secret.

4.4.3 Experimental setup

The target device is the Hikey board, as for the RSA implementation, the library MPI
was used. This library was originally created to be used for cryptography applications and
contains all the mathematical tools necessary for this case. For the RSA implementation,
the function mpi_powm (MPI m, MPI c, MPI d, MPI n) is used. It is equivalent to m =
cd ∗mod(n). n was arbitrary chosen and fixed for the whole attack. As for measurements,
the previous setup used for the multiplication in Section 4.2 is reused.

87

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

4.4.4 Attack implementation and results

The first step toward implementing the attack is to complete the characterization. The
objective of this phase, as previously stated, is to identify the effect of the RSA decryption
on the temperature when the private key HW is known. In our case, the size of d is 2048
bits width meaning that there are 2048 possible HWs. As it is too time consuming to
characterize all of them, it was decided to characterize 25 HW only. Moreover, enough
measurements are needed for training the VAE.

During the characterization, a set of 250 ciphertexts was arbitrary chosen and will
not change for the rest of the attack. For each HW, 20 private keys of this HW were
arbitrary chosen. The characterization consists of re-executing the decryption ciphertext
until 40.000 temperature measurements are obtained (same setup as in Section 4.2.1.
The mean of those measurements is computed before moving on to the next ciphertext.
At the end of this experiments, a matrix of 25*20*250 (25 HW, 20 private key and 250
ciphertexts) measurements is obtained, it will represent the dataset for the rest of the
chapter.

The next step is to train the VAE. The structure from Secion 4.2 shown in Figure 4.5
is reused. The input of the VAE is the 250 measurements of each ciphertext for each key.

43.845

Temperature (°C)

Fr
eq

ue
nc

y
of

 a
pp

ea
ra

nc
e

44.870 45.895 46.920 47.945 48.970 49.995

Figure 4.10 – Temperature characterization of RSA2048, each trace shows a different HW
from (80 to 2000 with a step of 80).

The Figure 4.10 shows the filtered temperature measurements computing the RSA

88

4.4. Inferring the HW of RSA private key

decryption, each trace represents a different HW of a key set. The next step is to use
the PCA for clustering. However, the 20 private keys per HW were not enough, thus,
the dataset for each class (HW) was not large enough to form clusters specially due to
the measurement time. For this reason, it was necessary to trade the number of HW to
characterize for the number of private keys per HW. We decided to reduced the number of
HW to characterize to 5 (250, 650, 1050, 1450, 1850) and increase the number of private
keys per HW to 200. Finally, the new dataset is processed again and the result of PCA is
shown in Figure 4.11. It is possible to see the 5 clusters distinct from each other.

HW 250
HW 650

HW 1050
HW 1450
HW 1850

Figure 4.11 – Clusters for each HW (250, 650, 1050, 1450, 1850) of the private key formed
after executing the PCA on the dataset of RSA2048 using 200 keys per HW.

With the PCA and identification of each clusters the Offline Phase is finished. Once
the cluster are formed and distinguished, it is possible to move to the Online Phase.
During this part, the attacker measure remotely the temperature during the decryption
of a set of ciphertexts. The set should be the same one that is used during the Offline
Phase. Measurements are also done in the same way, however, this time there is only
one key and it is not known. By the end of this phase, a vector of 250 measurements for
the private key is obtained. It is then filtered using the VAE and added to the previous
dataset for PCA. This projects the measurements done during the attack on the clusters
previously formed. The HW is inferred by computing the closest cluster to this specific
measurement. It has to be noticed that we need 250 measurements only in this phase. It is

89

Chapter 4 – Using machine learning to analyze temperature variation and extract secret
information

still possible to increase the number of measurements in order to obtain a more accurate
results.

During the Online Phase, we did 50 tests of 250 measurements of the temperature
with different keys and it was possible to infer the HW of the private key 95% of the time.
Some measurements contained too much noise and were projected outside of the expected
clusters and when computing the closest cluster it leads to false-positive. Finally, further
tests were conducted to compare the recovery rate that is dependent on the HW of the
secret keys. The results summed up in Table 4.1 and Table 4.2 consist on comparing
the recovery rate for keys with high HW to keys with low HW. This shows that there
is no main difference, and that all recovery rate are higher than 90% with the highest
being 96.8%. Those results were obtained by reducing the number of measurements per
ciphertext 30.000 instead of 40.000 and using the same setup as before (200 private keys
per HW), we were able to collect enough measurement to form the table in 3 weeks.

Tested
HW 20 40 60 80 100 120 140 160 180 200

Rate of
recovery 95.6% 96.8% 94.3% 94% 95.5% 96% 94.1% 93.8% 95.9% 94.3%

Table 4.1 – Table summing up the success rate of recovering the HW of the secret keys
with a ’low’ HW.

Tested
HW 1680 1720 1760 1800 1840 1880 1920 1960 2000 2040

Rate of
recovery 93.1% 91% 95.6% 93.2% 96.3% 93.7% 95.2% 90.2% 95.9% 92.6%

Table 4.2 – Table summing up the success rate of recovering the HW of the secret keys
with a ’high’ HW.

4.5 Discussion

In this chapter we showed that it is possible to use integrated temperature sensors
to infer information over complex architectures. The victim program of this work is the
RSA2048 algorithm, as this program has a high load on the cpu, it was possible to detect

90

4.6. Conclusion

a general variation of temperature depending on the HW of the private key. However,
this may not be the case for encryption like AES as it requires to detect variation at a
few instructions granularity level and before the key is diffused. However, it is possible to
isolate the target instructions, but the variation of temperature is small compared to the
noise from the OS and other applications.

This attack also requires a lot of measurements, and the characterization is time
consuming. However, once it is done, it is viable for most of the devices using the same
platform model.

Finally, it may also be possible to use machine learning techniques to complete char-
acterization for certain HW if the dataset is large enough. One of the reasons VAE was
used is because of its ability to generate new data. However, this was not tested on the
dataset created during this work.

4.6 Conclusion

Temperature management mechanisms are nowadays omnipresent in every device. A
first work proved the possibility of maliciously remotely using temperature sensors to
extract information during AES encryption. That work mainly targeted IoT devices as
they are simple and was not proven on complex architectures. However, in this chapter,
it is shown on a state-of-art high-end architecture used on the smartphone industry, that
it is still possible to maliciously exploit temperature sensors. Machine learning techniques
were used to filter the measurements, reduce the noise and remove irrelevant information.
Finally, PCA was used for clustering. The private key was not recovered but this work
may be combined with other works such us factorization of the key [60] as it may reduce
the exploration space.

91

CONCLUSION

In this thesis, we evaluated possible vulnerabilities in today’s dynamic managers and
their hardware implementation. We focused on the two most used managers: energy man-
ager and thermal managers.

First, the importance of evaluating the security of those systems is highlighted in
Chapter 1. Previous vulnerabilities proven in different works in the literature are pre-
sented. Energy managers were maliciously used to inject faults and extract secrets while
works on thermal managers are limited. Most of the works have used heat as a covert
channel to transmit information. In Chapter 2, we presented a different way of exploiting
the same vulnerability presented using energy managers. In this case no secret informa-
tion was extracted. However, it is possible to lock out the targeted device and to make its
data inaccessible and service unusable, this was presented as a possible ransomware on
smartphone, but it can be extended to other targets such as autonomous car, IoT devices
or even temporally lock out companies’ servers with a DOS attack.

In Chapter 3, the internal temperature sensors present in today’s SoCs were used to
characterize a target device and extract crucial information. This was done by measur-
ing the heat generated by different instructions and operands and was used to infer a
characteristics of a secret key of an AES encryption. It was possible to reduce the explo-
ration space by 74% for each byte of the encryption key, and it was proven that it can
be reduced even further, making possible to bruteforce the encryption key within 9 days
theoretically. This attack was implemented on an IoT SoC, as the temperature has a low
propagation time, thus, a lot of information is lost and filtered due to the high frequency
of in state-of-art SoC. However, with application that has high load and generates more
heat it would be still possible to extract information for its execution and temperature,
this possibility was explored in the following chapter.

In Chapter 4, we explored the possibility of using the temperature sensors in a more
complex architecture running an OS. In this case, we target RSA encryption as it has a
higher load on the SoC and generate more energy than the AES encryption. However, it
was not enough to observe a correlation between operands and the temperature. Machine
learning techniques (VAE and PCA) are then used to analyze the temperature measure-

93

ments. The HW of the private key was inferred from the heat emitted during an RSA
decryption, .

Future possible work

This work focused on studying two different dynamic managers. Future work may also
focus on other types of managers such as resource managers in order to identify further
vulnerabilities. This work can also be extended to different hardware performance counters
and use them to extract information as different works [61][62][63][64] have studied their
use in order to model the energy consumption from the obtained data. It is likely that
this information can be used to study data-dependency and to extract secrets from the
device.

It would also be important to study the feasibility of the approach presented in this
work on different protected encryption systems integrating classical side-channel attacks
countermeasures (e.g., AES with mask, random delays or RSA exponent blinding). The
study of the approach against dedicated hardware blocks for encryption is also a future
work. This work can also be extended and studied on different architectures (i.e., Intel,
AMD).

Another interesting research lead would be extending the machine learning analysis
using VAE. Some literature work has already used AE to filter measurements and reduce
the number of traces needed to recover secret information. However, VAE may also be
used to predict the characterization of certain HW. For example, in our work we required
the characterization of every Hamming Weight (HW) of the private encryption key. In this
case, VAE can be used to interpolate the characterization of a HW if we have enough traces
for other characterized HWs. Finally, this approach could be applied to other template
attacks in order to reduce the time required for their characterization phase.

Scientific communication

International conferences

Published:
1. S. NOUBIR, M. MENDEZ REAL and S. PILLEMENT, "Towards Malicious Exploita-
tion of Energy Management Mechanisms," 2020 Design, Automation & Test in Europe

94

Conference & Exhibition (DATE), 2020, pp. 1043-1048, doi: 10.23919/DATE48585.2020.9116420.

95

BIBLIOGRAPHY

[1] Moritz Lipp et al. « Meltdown ». In: CoRR abs/1801.01207 (2018). arXiv: 1801.
01207. url: http://arxiv.org/abs/1801.01207.

[2] Paul Kocher et al. « Spectre Attacks: Exploiting Speculative Execution ». In: CoRR
abs/1801.01203 (2018). arXiv: 1801.01203. url: http://arxiv.org/abs/1801.
01203.

[3] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. « CLKSCREW: Ex-
posing the Perils of Security-Oblivious Energy Management ». In: 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
2017, pp. 1057–1074. isbn: 978-1-931971-40-9. url: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/tang.

[4] Kit Murdock et al. « Plundervolt: Software-based Fault Injection Attacks against
Intel SGX ». In: 41st IEEE Symposium on Security and Privacy (S&P’20). 2020.

[5] Exynos 5422 reference. url: https://www.samsung.com/semiconductor/minisite/
exynos/products/mobileprocessor/exynos-5-octa-5422/.

[6] Ramya Jayaram Masti et al. « Thermal Covert Channels on Multi-core Platforms ».
In: 24th USENIX Security Symposium (USENIX Security 15). Washington, D.C.:
USENIX Association, Aug. 2015, pp. 865–880. isbn: 978-1-939133-11-3. url: https:
/ / www . usenix . org / conference / usenixsecurity15 / technical - sessions /
presentation/masti.

[7] STM32F303 reference page. url: https://www.st.com/en/microcontrollers-
microprocessors/stm32f303re.html.

[8] Jo Van Bulck, Frank Piessens, and Raoul Strackx. « SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control ». In: 2nd Workshop on System
Software for Trusted Execution (SysTEX). ACM, Oct. 2017, 4:1–4:6.

[9] Hikey 960 reference page. url: https://www.96boards.org/product/hikey960/.

97

https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.st.com/en/microcontrollers-microprocessors/stm32f303re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f303re.html
https://www.96boards.org/product/hikey960/

[10] Bryan Black et al. « Die Stacking (3D) Microarchitecture ». In: 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06). 2006, pp. 469–
479. doi: 10.1109/MICRO.2006.18.

[11] Viswanathan Subramanian, Prem Kumar Ramesh, and Arun K. Somani. « Man-
aging the Impact of On-chip Temperature on the Lifetime Reliability of Reliably
Overclocked Systems ». In: 2009 Second International Conference on Dependability.
2009, pp. 156–161. doi: 10.1109/DEPEND.2009.30.

[12] Ayse K. Coskun et al. « Evaluating the Impact of Job Scheduling and Power Man-
agement on Processor Lifetime for Chip Multiprocessors ». In: Proceedings of the
Eleventh International Joint Conference on Measurement and Modeling of Com-
puter Systems. SIGMETRICS ’09. Seattle, WA, USA: Association for Comput-
ing Machinery, 2009, pp. 169–180. isbn: 9781605585116. doi: 10.1145/1555349.
1555369. url: https://doi.org/10.1145/1555349.1555369.

[13] 40 Years of Microprocessor Trend Data [Online]. url: https://www.karlrupp.
net/2015/06/40-years-of-microprocessor-trend-data/.

[14] Dynamic Voltage and Frequency Scaling on ARM architectures [Online]. url: https:
//developer.arm.com/documentation/den0013/d/Power-Management/Dynamic-
Voltage-and-Frequency-Scaling.

[15] DA Patterson JL Hennessy. « Computer Architecture: A Quantitative Approach.
Morgan Kaufmann PublishersInc. » In: (1990).

[16] Snapdragon 800 reference. url: https://www.qualcomm.com/products/snapdragon-
processors-800.

[17] Adi Shamir Eli Biham. « The next Stage of Differential Fault Analysis: How to
break completely unknown cryptosystems ». In: (1996).

[18] Andrew Johnson and Richard Ward. « Introducing The ‘Unified Side Channel At-
tack - Model’ (USCA-M) ». In: 2020 8th International Symposium on Digital Foren-
sics and Security (ISDFS). 2020, pp. 1–9. doi: 10 . 1109 / ISDFS49300 . 2020 .
9116291.

[19] Pengfei Qiu et al. « VoltJockey: Breaching TrustZone by Software-Controlled Volt-
age Manipulation over Multi-Core Frequencies ». In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’19. London,
United Kingdom: Association for Computing Machinery, 2019, pp. 195–209. isbn:

98

https://doi.org/10.1109/MICRO.2006.18
https://doi.org/10.1109/DEPEND.2009.30
https://doi.org/10.1145/1555349.1555369
https://doi.org/10.1145/1555349.1555369
https://doi.org/10.1145/1555349.1555369
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://developer.arm.com/documentation/den0013/d/Power-Management/Dynamic-Voltage-and-Frequency-Scaling
https://developer.arm.com/documentation/den0013/d/Power-Management/Dynamic-Voltage-and-Frequency-Scaling
https://developer.arm.com/documentation/den0013/d/Power-Management/Dynamic-Voltage-and-Frequency-Scaling
https://www.qualcomm.com/products/snapdragon-processors-800
https://www.qualcomm.com/products/snapdragon-processors-800
https://doi.org/10.1109/ISDFS49300.2020.9116291
https://doi.org/10.1109/ISDFS49300.2020.9116291

9781450367479. doi: 10.1145/3319535.3354201. url: https://doi.org/10.
1145/3319535.3354201.

[20] RSA signature verification [Online]. url: https://www.cs.cornell.edu/courses/
cs5430/2015sp/notes/rsa_sign_vs_dec.php.

[21] Anatoly Shusterman et al. « Prime+Probe 1, JavaScript 0: Overcoming Browser-
based Side-Channel Defenses ». In: 30th USENIX Security Symposium (USENIX Se-
curity 21). USENIX Association, Aug. 2021, pp. 2863–2880. isbn: 978-1-939133-24-
3. url: https://www.usenix.org/conference/usenixsecurity21/presentation/
shusterman.

[22] Arm TrustZone Technology [Online]. url: https://developer.arm.com/ip-
products/security-ip/trustzone.

[23] Lilian Bossuet El Mehdi Benhani. « DVFS as a Security Failure of TrustZone-
enabled Heterogeneous SoC ». In: 25th IEEE International Conference on Elec-
tronics Circuits and Systems (2018).

[24] Sheng Zhang et al. « Blacklist Core: Machine-Learning Based Dynamic Operating-
Performance-Point Blacklisting for Mitigating Power-Management Security Attacks ».
In: Proceedings of the International Symposium on Low Power Electronics and De-
sign. ISLPED ’18. Seattle, WA, USA: ACM, 2018, 5:1–5:6. isbn: 978-1-4503-5704-3.
doi: 10.1145/3218603.3218624. url: http://doi.acm.org/10.1145/3218603.
3218624.

[25] FAME, Fault-attack Awareness using Microprocessor Enhancements. url: https:
//sites.google.com/view/famechip/.

[26] Dan Kikinis. « Temperature management for integrated circuits ». US5502838A.
1990. url: https://patents.google.com/patent/US5502838A/en.

[27] I. Steiner C. Gough and W. Saunders. Energy Efficient Servers, Apress. 2015.

[28] Michael Hutter and Jörn-Marc Schmidt. « The Temperature Side Channel and Heat-
ing Fault Attacks ». In: Smart Card Research and Advanced Applications. Ed. by
Aurélien Francillon and Pankaj Rohatgi. Cham: Springer International Publishing,
2014, pp. 219–235. isbn: 978-3-319-08302-5.

[29] W. Xiong et al. « Spying on Temperature using DRAM ». In: 2019 Design, Au-
tomation Test in Europe Conference Exhibition (DATE). 2019, pp. 13–18. doi:
10.23919/DATE.2019.8714882.

99

https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1145/3218603.3218624
http://doi.acm.org/10.1145/3218603.3218624
http://doi.acm.org/10.1145/3218603.3218624
https://sites.google.com/view/famechip/
https://sites.google.com/view/famechip/
https://patents.google.com/patent/US5502838A/en
https://doi.org/10.23919/DATE.2019.8714882

[30] Running Average Power Limit - Intel [Online]. url: https://01.org/blogs/
2014/running-average-power-limit-%5C%E2%5C%80%5C%93-rapl.

[31] Paul Kocher, Joshua Jaffe, and Benjamin Jun. « Differential Power Analysis ». In:
Advances in Cryptology — CRYPTO’ 99. Ed. by Michael Wiener. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1999, pp. 388–397. isbn: 978-3-540-48405-9.

[32] Eric Brier, Christophe Clavier, and Francis Olivier. « Correlation Power Analysis
with a Leakage Model ». In: Cryptographic Hardware and Embedded Systems - CHES
2004. Ed. by Marc Joye and Jean-Jacques Quisquater. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 16–29. isbn: 978-3-540-28632-5.

[33] Heiko Mantel et al. « How Secure Is Green IT? The Case of Software-Based Energy
Side Channels ». In: Computer Security. Ed. by Javier Lopez, Jianying Zhou, and
Miguel Soriano. Cham: Springer International Publishing, 2018, pp. 218–239. isbn:
978-3-319-99073-6.

[34] Moritz Lipp et al. « PLATYPUS: Software-based Power Side-Channel Attacks on
x86 ». In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE. 2021.

[35] Johann Heyszl et al. « Clustering algorithms for non-profiled single-execution at-
tacks on exponentiations ». In: International Conference on Smart Card Research
and Advanced Applications. Springer. 2013, pp. 79–93.

[36] Youssef Souissi et al. « First Principal Components Analysis: A New Side Chan-
nel Distinguisher ». In: Information Security and Cryptology - ICISC 2010. Ed. by
Kyung-Hyune Rhee and DaeHun Nyang. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 407–419. isbn: 978-3-642-24209-0.

[37] C. Archambeau et al. « Template Attacks in Principal Subspaces ». In: Crypto-
graphic Hardware and Embedded Systems - CHES 2006. Ed. by Louis Goubin and
Mitsuru Matsui. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–14.
isbn: 978-3-540-46561-4.

[38] Lichao Wu and Stjepan Picek. « Remove Some Noise: On Pre-processing of Side-
channel Measurements with Autoencoders ». In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020.4 (Aug. 2020), pp. 389–415. doi:
10.13154/tches.v2020.i4.389-415. url: https://tches.iacr.org/index.
php/TCHES/article/view/8688.

100

https://01.org/blogs/2014/running-average-power-limit-%5C%E2%5C%80%5C%93-rapl
https://01.org/blogs/2014/running-average-power-limit-%5C%E2%5C%80%5C%93-rapl
https://doi.org/10.13154/tches.v2020.i4.389-415
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688

[39] Timo Bartkewitz and Kerstin Lemke-Rust. « Efficient Template Attacks Based on
Probabilistic Multi-class Support Vector Machines ». In: Smart Card Research and
Advanced Applications. Ed. by Stefan Mangard. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 263–276. isbn: 978-3-642-37288-9.

[40] Annelie Heuser and Michael Zohner. « Intelligent Machine Homicide ». In: Con-
structive Side-Channel Analysis and Secure Design. Ed. by Werner Schindler and
Sorin A. Huss. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 249–264.
isbn: 978-3-642-29912-4.

[41] Gabriel Hospodar et al. « Machine learning in side-channel analysis: a first study ».
In: Journal of Cryptographic Engineering 1.4 (Oct. 2011), p. 293. issn: 2190-8516.
doi: 10.1007/s13389-011-0023-x. url: https://doi.org/10.1007/s13389-
011-0023-x.

[42] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. « Power Analysis At-
tack: An Approach Based on Machine Learning ». In: Int. J. Appl. Cryptol. 3.2
(June 2014), pp. 97–115. issn: 1753-0563.

[43] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. « A machine learning
approach against a masked AES ». In: Journal of Cryptographic Engineering 5.2
(June 2015), pp. 123–139. issn: 2190-8516. doi: 10.1007/s13389-014-0089-3.
url: https://doi.org/10.1007/s13389-014-0089-3.

[44] Benjamin Timon. « Non-Profiled Deep Learning-based Side-Channel attacks with
Sensitivity Analysis ». In: IACR Transactions on Cryptographic Hardware and Em-
bedded Systems 2019.2 (Feb. 2019), pp. 107–131. doi: 10.13154/tches.v2019.i2.
107-131. url: https://tches.iacr.org/index.php/TCHES/article/view/
7387.

[45] Baris Ege Guilherme Perin and Jasper van Woudenberg. « Lowering the bar: Deep
learning for side-channel analysis (white paper) ». In: JBlackHat. August 2018.

[46] Ryad Benadjila et al. « Study of deep learning techniques for side-channel analysis
and introduction to ASCAD database ». In: ANSSI, France & CEA, LETI, MI-
NATEC Campus, France. Online verfügbar unter https://eprint. iacr. org/2018/053.
pdf, zuletzt geprüft am 22 (2018), p. 2018.

101

https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387

[47] Jaehun Kim et al. « Make Some Noise. Unleashing the Power of Convolutional
Neural Networks for Profiled Side-channel Analysis ». In: IACR Transactions on
Cryptographic Hardware and Embedded Systems 2019.3 (May 2019), pp. 148–179.
doi: 10.13154/tches.v2019.i3.148- 179. url: https://tches.iacr.org/
index.php/TCHES/article/view/8292.

[48] « White Paper - The WannaCry Ransomware Attack ». In: (2017). url: http://
cert-mu.govmu.org/English/Documents/White%20Papers/White%20Paper%20-
%20The%20WannaCry%20Ransomware%20Attack.pdf.

[49] Voltage and current regulator API. url: https://www.kernel.org/doc/html/v4.
15/driver-api/regulator.html.

[50] Magisk costum ROM. url: https://github.com/topjohnwu/Magisk.

[51] « Download counts of Magisk ». In: (2019). url: https://forum.xda-developers.
com/apps/magisk/official-magisk-v7-universal-systemless-t3473445.

[52] Arnaud Rosay et al. Method of DVFS-Power Management and Corresponding Sys-
tem. Apr. 2020.

[53] Description of STM32F4 HAL and low-layer drivers. url: https://www.st.com/
resource/en/user_manual/dm00105879-description-of-stm32f4-hal-and-
ll-drivers-stmicroelectronics.pdf.

[54] Kahraman Akdemir et al. « Breakthrough AES Performance with Intel® AES New
Instructions ». In: Intel. 2021.

[55] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[56] scikit-learn: Machine Learning in Python [Online]. url: https://scikit-learn.
org/stable/.

[57] N. S. Altman. « An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression ». In: The American Statistician 46.3 (1992), pp. 175–185. doi: 10 .
1080/00031305.1992.10475879. eprint: https://www.tandfonline.com/doi/
pdf/10.1080/00031305.1992.10475879. url: https://www.tandfonline.com/
doi/abs/10.1080/00031305.1992.10475879.

102

https://doi.org/10.13154/tches.v2019.i3.148-179
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
http://cert-mu.govmu.org/English/Documents/White%20Papers/White%20Paper%20-%20The%20WannaCry%20Ransomware%20Attack.pdf
http://cert-mu.govmu.org/English/Documents/White%20Papers/White%20Paper%20-%20The%20WannaCry%20Ransomware%20Attack.pdf
http://cert-mu.govmu.org/English/Documents/White%20Papers/White%20Paper%20-%20The%20WannaCry%20Ransomware%20Attack.pdf
https://www.kernel.org/doc/html/v4.15/driver-api/regulator.html
https://www.kernel.org/doc/html/v4.15/driver-api/regulator.html
https://github.com/topjohnwu/Magisk
https://forum.xda-developers.com/apps/magisk/official-magisk-v7-universal-systemless-t3473445
https://forum.xda-developers.com/apps/magisk/official-magisk-v7-universal-systemless-t3473445
https://www.st.com/resource/en/user_manual/dm00105879-description-of-stm32f4-hal-and-ll-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105879-description-of-stm32f4-hal-and-ll-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105879-description-of-stm32f4-hal-and-ll-drivers-stmicroelectronics.pdf
https://arxiv.org/abs/1412.6980
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879

[58] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. « A Training Algo-
rithm for Optimal Margin Classifiers ». In: Proceedings of the Fifth Annual Workshop
on Computational Learning Theory. COLT ’92. Pittsburgh, Pennsylvania, USA:
Association for Computing Machinery, 1992, pp. 144–152. isbn: 089791497X. doi:
10.1145/130385.130401. url: https://doi.org/10.1145/130385.130401.

[59] Yoav Freund and Robert E. Schapire. « Large Margin Classification Using the Per-
ceptron Algorithm ». In: Machine Learning 37.3 (Dec. 1999), pp. 277–296. issn:
1573-0565. doi: 10.1023/A:1007662407062. url: https://doi.org/10.1023/A:
1007662407062.

[60] Factorization of RSA-250 [Online]. url: https://caramba.loria.fr/rsa250.
txt.

[61] Dimitris Economou et al. « Full-System Power Analysis and Modeling for Server
Environments ». In: 2006.

[62] Muhammad Fahad et al. « A Comparative Study of Methods for Measurement of
Energy of Computing ». In: Energies 12.11 (2019). issn: 1996-1073. doi: 10.3390/
en12112204. url: https://www.mdpi.com/1996-1073/12/11/2204.

[63] Arsalan Shahid et al. « Additivity: A Selection Criterion for Performance Events
for Reliable Energy Predictive Modeling ». In: Supercomputing Frontiers and In-
novations 4.4 (Nov. 2017), pp. 50–65. doi: 10.14529/jsfi170404. url: https:
//superfri.org/index.php/superfri/article/view/153.

[64] Kenneth O’brien et al. « A Survey of Power and Energy Predictive Models in HPC
Systems and Applications ». In: ACM Comput. Surv. 50.3 (June 2017). issn: 0360-
0300. doi: 10.1145/3078811. url: https://doi.org/10.1145/3078811.

103

https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062
https://caramba.loria.fr/rsa250.txt
https://caramba.loria.fr/rsa250.txt
https://doi.org/10.3390/en12112204
https://doi.org/10.3390/en12112204
https://www.mdpi.com/1996-1073/12/11/2204
https://doi.org/10.14529/jsfi170404
https://superfri.org/index.php/superfri/article/view/153
https://superfri.org/index.php/superfri/article/view/153
https://doi.org/10.1145/3078811
https://doi.org/10.1145/3078811

Titre : Évaluation et considération de la sécurité dans les systèmes de gestion d’architectures
multi-cœurs

Mot clés : Gestionnaires d’énergie, gestionnaires de température, attaque par déni de service,

attaque par canaux auxiliaires

Résumé : Les architectures multi-cœurs pré-
sentent une grande complexité du fait du
grand nombre de ressources et de la com-
plexité de l’infrastructure de communication.
Afin de répondre à des contraintes de perfor-
mance ou de consommation d’énergie, il est
nécessaire d’implémenter des gestionnaires
dynamiques (mapping de tâches, adaptation
dynamique de la fréquence et de la tension
(e.g., DVFS pour Dynamic Voltage and Fre-
quency Scaling)). Par exemple, les smart-
phones ont été conçus en intégrant des ar-
chitectures complexes dans un espace limité

tout en s’assurant du bon fonctionnement de
l’appareil (i.e., durée de vie de la batterie,
température du processeur). Cependant, dans
la majorité des cas, ces gestionnaires n’ont
pas été conçus pour la sécurité et sont vul-
nérables. Dans cette thèse, on explore les
possibles vulnérabilités de sécurité présentes
dans les gestionnaires d’énergie et de tem-
pérature. Trois différentes attaques ont été
démontrées par une implémentation sur des
SoCs (Systems-on-Chip) récents. Finalement,
des contre-mesures à ces attaques ont été
préposées.

Title: Evaluation and consideration of security in multi-core management systems

Keywords: Energy manager, Thermal manager, Denial of Service Attack, Thermal Side-Channel

Attack

Abstract: Architectures have become more
and more complex to keep up with the in-
crease of algorithmic complexity. To fully ex-
ploit those architectures, dynamic managers
are required. The goal of dynamic managers
is either to optimize the resource usage (e.g.,
cores, memory) or to reduce energy consump-
tion under performance constraints. Taking as
example, smartphones, those devices were
designed to fit complex architectures in the
smallest space while ensuring the device runs
in stable conditions. This includes keeping
the SoC (System-on-Chip) in low temperature

level and maximizing the battery life. Thus,
different dynamic managers are deployed for
this purpose. However, managers were de-
veloped with performance optimization being
their main goal, they have not been designed
to be secure and present security vulnerabil-
ities. In this work, we evaluate the security
of both, energy and thermal managers. Three
different attacks are presented and validated
by an implementation on a state-of-art SoCs.
Finally, for each attack, possible countermea-
sures were discussed.

	Introduction
	Background and state of the art
	Energy managers
	Side Channel Attacks
	Differential fault analysis
	Attacks exploiting DVFS

	Temperature managers
	Temperature related vulnerabilities
	Integrated Sensors and hardware counters
	Power analysis based attacks
	Power Analysis Attacks using embedded sensors
	Template attacks
	Profiling attack with machine learning

	Conclusion

	Maliciously exploiting energy management
	Scenario
	Target device
	ARM architecture and big.LITTLE Technology
	Hikey960 & Odroid XU4

	Experimental Setup
	Accessing and controlling the voltage and the frequency
	Characterisation of the targets
	Conclusion on the characterisation

	Malicious exploitation of the DVFS
	Implementation steps
	Implementation of the attack
	Discussion and counter-measures

	Conclusion

	Exploiting integrated temperature sensor
	Methodology
	Experimental setup
	Distinguishing instructions
	Distinguishing between operands
	Distinguishing operands based Hamming Distance

	Extracting AES key characteristics using temperature sensors
	Methodology of the attack main steps
	AES reminder
	Attack implementation and results
	Offline Phase
	Online Phase
	Results analysis

	Discussion
	Conclusion

	Using machine learning to analyze temperature variation and extract secret information
	Attack scenario
	Experimental setup
	Distinguishing operands HWs

	Machine learning methods
	Variational Autoencoder
	Principal Component Analysis

	Inferring the HW of RSA private key
	Main implementation steps of attack
	RSA reminder
	Experimental setup
	Attack implementation and results

	Discussion
	Conclusion

	Conclusion
	Bibliography

