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Chapter 1

Introduction and Overview of the
Contributions

1.1 Forward and Inverse Problems

Parametrized partial differential equations are of common use to model complex physical systems,
and are routinely involved in design and decision-making processes. Such equations can generally
be written in abstract form as

P(u, y) = 0, (1.1.1)

where P is a partial differential operator, and y = (y1, . . . , yp) is a vector of scalar parameters
ranging in some domain Y ⊂ Rp. We assume well-posedness, that is, for any y ∈ Y the problem
admits a unique solution u = u(y) in some Hilbert space V whose elements depend on a physical
variable x ranging in a domain Ω ⊂ Rd. The variable x usually refers to space but it is not limited
to that meaning, and it may also refer to more elaborate sets of variables such as space and time.
We may thus regard u as a function (x, y) 7→ u(x, y) from Ω×Y to R, or we may also consider the
parameter to solution map

y 7→ u(y), (1.1.2)

from Y to V . This map is typically nonlinear, as well as the solution manifold

M := {u(y) : y ∈ Y } ⊂ V (1.1.3)

which describes the collection of all admissible solutions. Throughout this document, we assume
that Y is compact in Rd and that the map (1.1.2) is continuous. Therefore M is a compact set
of V . We sometimes refer to the solution u(y) as the state of the system for the given parameter
vector y.

The parameters y are used to represent physical quantities such as diffusivity, viscosity, velocity,
source terms, or the geometry of the physical domain in which the PDE is posed. In several relevant
instances, y may be high or even countably infinite dimensional, that is, p� 1 or p =∞.

Given this general setting, two families of problems may be considered:

1. Forward problems are concerned with the parameter to solution map (1.1.2). For a given
parameter y ∈ Y, the goal is to develop numerical schemes to solve the PDE problem (2.3.1).
This is an old topic with a long history in numerical analysis. It can be addressed with clas-
sical discretization techniques such as finite element, finite volume spectral methods, or, less
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classically, with machine learning techniques such as, for example, Physics-Informed Neural
Networks. For general references to these methods, we refer to [42, 76, 12, 83, 45]. Among
the main properties that these methods seek to offer stand:

(a) The ability to estimate the error between the computed approximation and the exact
solution. This question is usually addressed via the development of a posteriori error
estimators that connect the residual of the equation with the exact error. Finite elements
are particularly well-suited for this task and we could say that the problem is very
well-understood for elliptic problems. There are however still numerous open questions,
especially in nonlinear and/or non-coercive problems.

(b) The numerical efficiency, in the sense of using the minimum number of degrees of freedom
to deliver a certain target accuracy. This property is particularly relevant to address the
curse of dimensionality, that is, to prevent that the number of degrees of freedom grows
exponentially with the dimension d.

(c) The easiness of implementation, which is particularly critical in applicative contexts in-
volving complicated PDE models and complicated domains Ω. This point is probably
one of the main appealing features of recent approaches involving machine learning tech-
niques such as PINNs despite their current lack of rigorous guarantees concerning the
quality of the final approximation.

In numerous design and decision-making processes, one is often confronted to optimization
problems defined over the solution manifold M, where the algorithms are usually iterative
and require to evaluate solutions u(y) of the PDE on a large set of dynamically updated
parameters y ∈ Y. Computations cannot be addressed rapidly unless the overall complexity
has been appropriately reduced, and motivates the search for accurate methods to approximate
the family of solutions very quickly at a reduced computational cost. This task, usually known
as reduced modelling ormodel order reduction, has classically been addressed by approximating
M with well-chosen linear subspaces of V . However, it can be expected to be successful only
when the Kolmogorov width of M decays fast. While this is the case for certain families of
parabolic or elliptic problems (see [28]), most transport-dominated problems are expected to
present a slow decaying width and require to study nonlinear approximation methods (see,
e.g., [18, Chapter 3]).

2. Inverse Problems occur when the parameter y is not given, and, instead, we only observe a
vector of linear measurements

z = (z1, . . . , zm) ∈ Rm, zi = `i(u), i = 1, . . . ,m,

where each `i ∈ V ′ is a known continuous linear functional on V . We also sometimes use the
notation

z = `(u), ` = (`1, . . . , `m).

In this setting, the goal is to recover the unknown state u ∈M from z or even the underlying
parameter vector y ∈ Y for which u = u(y). Therefore, in an idealized setting, one observes
the result of the composition map

y ∈ Y 7→ u ∈M 7→ z ∈ Rm.
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for the unknown y. More realistically, the measurements may be affected by additive noise

zi = `i(u) + ηi,

and the model itself might be biased, meaning that the true state u deviates from the solu-
tion manifold M by some amount. We will come to these important points later on in the
manuscript. For the moment, let us simply remark that two main types of inverse problems
may be considered:

(a) State estimation: recover an approximation u∗ of the state u from the observation z =
`(u) and assuming that u belongs to the manifoldM. This inverse problem is linear in
nature because the forward map ` : u 7→ `(u) is linear. It is however challenging because
the target u lives in V , which is a space of typically very high or infinite dimension.
In addition, the information that u ∈ M is difficult to handle given that M has a
complicated geometry, which is only partially known to us by solving forward problems
y 7→ u(y) for different values of y ∈ Y.

(b) Parameter estimation: recover an approximation y∗ of the parameter y from the obser-
vation z = `(u) when u = u(y). This is a nonlinear inverse problem, for which the prior
information available on y is given by the domain Y .

These problems become severely ill-posed when Y has dimension p > m. For this reason,
they are often addressed through Bayesian approaches [57, 23] in which a prior probability
distribution Py is assumed on y ∈ Y . This induces a push forward distribution Pu for u ∈M,
and the objective is to understand the posterior distributions of y or u conditioned by the
observations z in order to compute plausible solutions y∗ or u∗ under such probabilistic priors.
The accuracy of these solutions should therefore be assessed in some average sense.

In this work we do not follow this avenue: the only priors made on y and u are their membership
to Y andM. We are interested in developping practical estimation methods that offer uniform
recovery guarantees under such deterministic priors in the form of upper bounds on the worst
case error for the estimators over all y ∈ Y or u ∈ M. We also aim to understand whether
our error bounds are optimal in some sense. Our primary focus will actually be on state
estimation. Nevertheless we present several implications on parameter estimation, which are
new to the best of our knowledge.

1.2 Overview of the contributions

In this manuscript, I summarize a series of contributions revolving around the above topics on
forward and inverse problems. The common denominator of all the works is the effort to address
problems that are challenging for modern computing architectures. The studied problems are mainly
connected either to high-dimensional and/or to transport-dominated PDEs and the ability to solve
them with guaranteed accuracy, at a reduced computational cost, and ideally with provable opti-
mality properties in a sense that will depend on the specific context. For every topic, I will discuss
ongoing works and possible research directions that can be envisaged in future works.

The first part of the manuscript is devoted to forward problems (Section 2):

• Section 2.1 is devoted to kinetic PDEs, which is a family of problems that accumulate several
intrinsic obstructions to an efficient and accuracy controlled numerical solution:
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– The problem is high-dimensional: its solution u depends in general on 2d + 1 variables
(space, momentum and time) so “naive” discretization schemes become prohibitive due
to the number of degrees of freedom.

– The solutions have low regularity. Standard a priori error estimates involving classical
isotropic Sobolev regularity scales are therefore not very useful for controlling accuracy.

– Kinetic problems involve nontrivial scattering kernels which induce a global coupling
on momentum variables. This gives rise to very large and dense matrices when using
standard methods based on localization only.

– The optical parameters can present high oscillations in space (due to the spatial hetero-
geneity of the materials) and in energy.

In Section 2.1, I will summarize [A5], a work done in collaboration with Prof. W. Dahmen
and F. Gruber, in which we develop accuracy controlled schemes and corresponding stability
notions. To the best of my knowledge, this is the first numerical scheme which rigorously
connects the exact solution (at the infinite dimensional level) with the discretized one. The
work required significant coding efforts, and we have released an open source library called
DUNE-DPG (see [A11]). Section 2.1 also summarizes [A7] which is a work done in collabora-
tion with Profs. F. Salvarani and H. Hutridurga on homogenization of the energy variable to
study the nature of the PDE in presenc of high oscillations in energy.

• One desirable feature of numerical schemes for high-dimensional problems is the ability to
parallelize computations. This can be particularly challenging for certain time-dependent
problems due to the inherent sequential nature of the time variable. In Section 2.2, I summarize
an adaptive parareal method which I have developed in collaboration with Prof. Y. Maday
(see [A8]). The main contribution is the improvement of the parallel efficiency of the method.

• Section 2.3 summarizes a recent line of research that I have initiated on nonlinear model
reduction in Wasserstein spaces to address transport dominated problems. In [A6], a work
in collaboration with V. Ehrlacher, D. Lombardi and Prof. F.X. Vialard, we leveraged the
existence of closed forms of the Wasserstein distance in one spatial dimension (d = 1) to
develop model reduction strategies for conservation laws. In an ongoing collaboration with
J. Feydy and H. Do, we are currently extending the procedure to higher dimensions.

The second part of the manuscript is devoted to inverse problems (Section 3). In Sections 3.1
to 3.4, I give an overview in the form of a review of a series of works done in collaboration with
Profs. P. Binev, A. Cohen, W. Dahmen, R. DeVore, J. Fadili, and J. Nichols. This corresponds to
the publications [A10, A4, S3]. The main contribution is the development of a state and parameter
estimation framework which can be seen as a deterministic counterpart to Bayesian inverse problems.
We have developed practical estimation methods that involved model order reduction and that
offer uniform recovery guarantees in the form of upper bounds on the worst case error for the
estimators over all y ∈ Y or u ∈ M. In parallel to these theoretical developments, I have devoted
considerable efforts to bring the theoretical developments into applications. Interestingly, even
though our theoretical framework is formulated in a very general way, each application comes with
specific challenging features that have led us to enlarge some aspects of the theory. Section 3.5
summarizes my contributions in applying the methodology to:
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• Neutronics (nuclear engineering): This work was done in the framework of H. Gong’s
PhD CIFRE thesis which I co-supervised with Prof. Yvon Maday, and two colleagues from
EDF: B. Bouriquet and J.P. Argaud. This has led to the publication of papers [A9, P1, P2].

• Biomedical applications: In this case, inverse problems are usually posed on certain organs
or portions of the body which inevitably involve morphological variations between individuals.
In the framework of F. Galarce’s PhD thesis (co-supervised with J.F. Gerbeau and D. Lom-
bardi), we have developed and analyzed an extension of our general methodology in order
to allow to take shape variability into account without needing any a priori knowledge on a
parametrization of the geometrical variations. The papers connected to this work are [A2,
A3, S1].

• Epidemiology: Although I was not involved in research on epidemiology before the Covid-19
pandemic, the gravity of the situation has motivated me to try to put my skills at the service
of better understanding the dynamic of the pandemic. I have joined forces with colleagues
from PSL, Inria and Sorbonne University to help include mobility data in the modeling of the
propagation of the epidemy, and to provide more accurate forecasts on the number of infected
and hospitalized people. These interactions have led to two publications [Pop1, Pop2] for the
greater public which were covered by some national media. I have also published a paper
in collaboration with Prof. Y. Maday, A. Bakhta and T. Boiveau from Carnot Smiles on
epidemiological forecasting with model reduction of compartmental models (see [A1]).

• An ongoing work related to pollution: I am currently involved in using the methodology
for the rapid reconstruction of pollutant concentration maps in large urban areas. We will
not present the results in the manuscript given that the work is unfinished. It is being done
in the framework of the Emergences Project “Models and Measures” in collaboration with
Prof. J. Aghili (Maître de Conférences at Strasbourg University who was previously a post-
doc funded by Emergences), R. Chakir, A. Cohen and A. Somal (currently doing his PhD
with A. Cohen and myself).

1.3 Publication List

I list here my publications. References [A14, A13, A12] and [P5, P6, P4, P7] were produced or
substantially initiated during my PhD. The rest are contributions made after my PhD.

Submitted Preprint Articles

[S1] F. Galarce, D. Lombardi, and O. Mula. “State Estimation with Model Reduction and Shape
Variability. Application to biomedical problems”. 2021. url: https://arxiv.org/abs/
2106.09421.

[S2] J. Aghili and O. Mula. “Depth-Adaptive Neural Networks from the Optimal Control View-
point”. 2020. url: https://arxiv.org/abs/2007.02428.

[S3] A. Cohen, W. Dahmen, O. Mula, and J. Nichols. “Nonlinear reduced models for state and
parameter estimation”. 2020. url: https://arxiv.org/abs/2009.02687.
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1.4 Advising Activities

I have had the great pleasure of being part of the advising team of several undergraduate, master,
PhD and post-doctoral fellows:

Postdoctoral fellows:

• 2020–...: Minh Hieu Do. (supervised at 100%)
Topic: Reduced Modeling based on Computational Optimal Transport.

• 2019–20: Joubine Aghili. (supervised at 100%)
Topic: Data assimilation for Inverse Problems and Statistical Learning.
Next position: Assistant Professor of Applied Mathematics at Strasbourg University.

• 2016–18: Walid Kheriji (co-supervised at 70% with Y. Maday).
Topic: The parareal algorithm and its application to the neutron transport equation.
Next position: Data Scientist at VEDECOM.
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PhD theses:

• 2020–...: Agustín Somacal (co-supervised at 50% with A. Cohen, Sorbonne Université)
Topic: Nonlinear reduced models and machine learning in forward modeling and inverse prob-
lems.

• 2017–2021: Felipe Galarce (co-supervised at 50% with J.F. Gerbeau and D. Lombardi, IN-
RIA).
Topic: Reconstruction of blood flows with reduced models and Doppler ultrasound images.
Next position: Postdoctoral fellow at the Weierstrass Institute for Applied Analysis and
Stochastics (WIAS).

• 2015-18: Helin Gong (CIFRE thesis co-supervised at 30% with Y. Maday, Sorbonne Uni-
versité, and in collaboration with EDF).
Title: Data assimilation with reduced basis and noisy measurements. Application to nuclear
reactor cores.
Next position: Nuclear engineer at the Nuclear Power Institute of China (NPIC).

Master theses and undergraduate internships:

• April-Sept 2019: Master thesis of Changqing Fu (co-supervised at 50% with R. Ryder).
Title: Classification methods with Approximate Bayesian Computation methods.

• March-Sept 2017: Master thesis of Felipe Galarce (co-supervised at 30% with J.F. Gerbeau
and D. Lombardi).
Title: Enhancing Hemodynamics Measurements with Mathematical Modeling.

• June-July 2019: Internship of Lucas Perrin, first year master student (co-supervised at 50%
with D. Gontier).
Title: Tensor methods for quantum chemistry.

• June-July 2017: Internship of Thanh Bao Tran, second year undergraduate student (super-
vised at 100%). To my deepest sorrow, Thanh suddenly died before finishing his internship.

CEMRACS Research Projects (=5 week research project + subsequent collaboration):

• July-August 2021: Topic: COVID4CAST: Measuring prediction uncertainty for approximate
solutions to PDEs, and application to the Covid-19 pandemic.
Students: Ludovica Saccaro, Giulia Sambataro.
Co-supervised with A. Roche and R. Ryder (U. Paris Dauphine).

• July-August 2021: Topic: MORPOR: Model Order Reduction of 1D nonlinear transport PDEs
in porous media.
Students: Beatrice Battisti, Tobias Blickhan.
Co-supervised with G. Enchéry (IFPEN) and D. Lombardi (Inria Paris).

• July-August 2021: Topic: MOCO: State estimation methods involving physical model correc-
tions. Application to neutronics.
Students: Yonah Conjungo, David Labeurthre (CEA).
Co-supervised with F. Madiot (CEA) and T. Taddei (Inria Bordeaux).
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• July-August 2021: Topic: GreedyPINNS: Solving high-dimensional PDEs with neural net-
works and greedy algorithms
Students: Roberta Flenghi, María Fuente Ruiz, .
Co-supervised with V. Ehrlacher (École des Ponts ParisTech & Inria-Paris).

• July-August 2021: Topic: Pollution: Inverse Problems on Graphs. Application to Pollution
in Urban City Areas.
Students: Matthieu Dolbeault, Agustín Somacal.
Co-supervised with A. Cohen (Sorbonne Université).

• July-August 2017: Topic: Quantification of Uncertainties in the Vlasov-Poisson equation.
Students: Joackim Bernier (ENS Rennes), Pierre Gerhard (Univ. Strasbourg), Anna Yurova
(Max-Planck Institute for Plasma-Physik).
Co-supervised with M. Campos-Pinto (Sorbonne Université) and K. Kormann (MPI).
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Chapter 2

Forward Problems: numerical schemes
for high-dimensional PDEs and
nonlinear model order reduction

In this chapter I summarize a selection of works on forward problems:

• Section 2.1 summarizes [A5, A7], two contributions on the numerical analysis of the linear
Boltzmann equation for neutron and radiative transfer.

• Section 2.2 summarizes [A8], a contribution in time domain decomposition.

• Section 2.3 summarizes [A6], a contribution in forward reduced modeling.

At the end of each section I outline future research directions.

2.1 Linear Boltzmann equation for neutron and radiative transfer

The transport of non-charged particles such as neutrons or photons plays a key role in a number of
scientific and engineering areas. It is, for example, relevant in understanding certain atmospheric
processes and it also plays a major role in the field of nuclear engineering for the safety of nuclear
reactors and shielding. The evolution of the particles in all these problems can be modelled by the
linear Boltzmann equation that we introduce next.

Let Ω be a bounded domain of Rd with C1 boundary. Denoting by f = f(t, x, v) the population
density of particles which are located at position x ∈ Ω at time t ∈ R+ and travelling with velocity
v ∈ V ⊂ Rd, the dynamics of the gas can be described by the linear Boltzmann equation (sometimes
called the neutron or radiation transport equation)

∂tf + v · ∇xf + σ(x, v)f −
∫

V
κ(x, v · v′)f(t, x, v′) dv′ = q, (2.1.1)

where q is a source term, and the non-negative functions σ and κ denote the total cross-section of the
background material and the scattering kernel respectively. In the following, we will sometimes refer
to the pair (σ, κ) as the optical parameters. The above evolution equation must be supplemented
by suitable initial data

f(0, x, v) = finit(x, v),
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Figure 2.1: Total cross-section σ of Uranium 238 as a function of the energy according to the JEFF
3.1 library [68]. Note the highly oscillatory interval for E ∈ [1 eV; 104 eV].

and boundary data on the incoming phase-space boundary. For simplicity, we consider absorption-
type boundary data, i.e.,

f(t, x, v) = g ∀t > 0 and for (x, v) ∈ Γ− :=
{

(x, v) ∈ ∂Ω× Rd : n(x) · v < 0
}
,

where n(x) denotes the unit exterior normal to the boundary ∂Ω at the point x.
The numerical computation of solutions to (2.1.1) is challenging for the following reasons:

• The solution f depends on (2d+ 1) variables. Hence, the problem is high-dimensional enough
so that standard schemes become possibly prohibitively inefficient.

• Nontrivial scattering kernels κ give rise to densely populated very large system matrices when
using standard discretizations based on localization only.

• These obstructions are aggravated by the fact that solutions exhibit in general only a low
degree of regularity, in particular, when dealing with highly concentrated and non-smooth
boundary data g. Standard a priori error estimates involving classical isotropic Sobolev reg-
ularity scales are therefore not very useful for controlling the accuracy between the exact
solution and the computed one.

• On top of the previous, the optical parameters can present high oscillations in space due to the
spatial heterogeneity of the materials. They can also oscillate in the energy variable defined
as E = |v|2/2, see Figure 2.1 for an illustration.

The above difficulties give rise to very complex discretizations, and it is often tacitly assumed
that the numerical output represents the corresponding continuous object reasonably well, without
being, however, able to actually quantify output quality in any rigorous sense. Often interest shifts
then towards accurately solving the discrete problem which by itself may indeed pose enormous
challenges. Instead, the central objective of my collaboration with W. Dahmen and F. Gruber in
[A5] was to put forward a new scheme warranting error controlled computation. The main ideas
and results are summarized in Section 2.1.1.

Regarding the oscillatory behavior of the optical parameters, this topic has motivated a consid-
erably huge amount of literature in the theory of homogenization (see [79] and references therein).
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However, to the best of my knowledge, the existing mathematical theory addresses only high oscil-
lations in the spatial variable and no rigorous results seem to address high oscillations in the energy
variable. This point has been treated so far only in the engineering community where the problem
is known as energy self-shielding or resonant absorption. In this context, in my collaboration with
F. Salvarani and H. Hutridurga we have made a first step to bridge the gap between theory and
practice by arriving at some rigorous homogenization results which we have published in [A7].

From the homogenization viewpoint, transport dominated equations such as (2.1.1) are particu-
larly challenging since the structure of the partial differential equation becomes more complex after
taking the homogenization limit. This is due to the memory effects induced in the limit that make
the dynamics be no longer defined by a semigroup [69, 53, 43]. This, in turn, entails difficulties in
the numerical solution of the homogenized equation since the memory effects dramatically increase
the computational complexity in terms of the number of degrees of freedom to be used in order to
retrieve a certain target accuracy.

2.1.1 An Adaptive Nested Source Term Iteration with a posteriori guarantees

Variational Formulation: For the sake of brevity, we will work with the following simplifications
but we emphasize that the development could easily be extended to the general case:

• Stationary: we do not have time dependence.

• Monoenergetic: all the particles have the same velocity modulus |v| so we can work with the
direction of propagation of the particles s = v/|v| instead of v, and s takes values in the unit
sphere S of Rd.

• Zero incoming data g = 0.

Our starting point equation is thus

s · ∇f(x, s) + σ(x, s)f(x, s)−
∫

S
κ(x, s′ · s)f(x, s′) ds′ = q(x, s), ∀(x, s) ∈ Ω× S,

f = 0, on Γ−.

(2.1.2)

with
Γ− := {(x, s) ∈ ∂Ω× S : n(x) · s < 0} .

In the following, we will also work with the boundary Γ+ which is defined in the same spirit as Γ−.
Our approach to derive a numerical scheme with a posteriori error guarantees relies on building

stable variational formulations to solve (2.1.2). The trial space U must accommodate solutions
of (2.1.1) which are potentially discontinuous. Stability in the present context means that the
variational formulation identifies an operator B as an isomorphism from U onto the dual V ′ of the
test space V . The test and trial Hilbert spaces which we found suitable for our purposes are

U := L2(Ω× S)

V := H0,+(Ω× S) = clos‖·‖H(Ω×S){v ∈ C
1(Ω× S) : v|Γ+ = 0} (2.1.3)

endowed with norms

‖u‖2U :=

∫

Ω×S
u2(x, s)dxds, ∀u ∈ U,

‖v‖2V := ‖v‖2L2(Ω×S) +

∫

S
‖s · ∇v‖2L2(Ω)ds, ∀v ∈ V.
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On these spaces, we define the bilinear form associated to the transport component of the equation

a : U × V → R

(u, v) 7→ a(u, v) :=

∫

Ω×S
u(x, s)(σ(x, s)v(x, s)− s · ∇v(x, s)) dx ds.

From the bilinear form, we can define the transport operator T : U → V ′ induced by a through

(T u)(v) := a(u, v), ∀(u, v) ∈ U × V
for which we can prove that it is linear and bounded.

We next define the scattering operator

K : L2(Ω× S)→ L2(Ω× S)

v 7→ (Kv)(x, s) :=

∫

S
κ(x, s · s′)v(x, s′) ds′.

and define an associated bilinear form

k : U × V → R

(u, v) 7→ k(u, v) :=

∫

Ω×S
(Ku)(x, s)v(x, s) dxds.

The bilinear form associated to our original Boltzmann equation (2.1.2) is the difference between
a and k, namely

b(u, v) := a(u, v)− k(u, v), ∀(u, v) ∈ U × V. (2.1.4)

The Boltzmann operator B : U → V ′ induced by b is thus

(Bu)(v) := b(u, v), ∀(u, v) ∈ U × V. (2.1.5)

A key property to prove the results that follow is accretivity of B. In the present context this
means that there exists α > 0 such that

〈Bu, u〉U ≥ α‖u‖2U , ∀u ∈ H0,−(Ω× S) ⊂ U, (2.1.6)

where H0,−(Ω× S) is defined similarly as the space V = H0,+(Ω× S) but we use Γ− instead of Γ+

in (2.1.3). Property (2.1.6) holds true under mild assumptions on the optical parameters which we
give in [A5]. We purposefully avoid giving these details in the present document in order to focus
on the main ideas without the interference of too many technicalities.

Theorem 2.1.1. Assume that B is accretive in the sense that (2.1.6) holds. Given any right-hand
side q ∈ V ′, the problem {

find f ∈ U such that,
b(f, v) = 〈q, v〉V ′,V , ∀v ∈ V,

(2.1.7)

has a unique solution satisfying
‖f‖U . ‖q‖V ′ ,

with constants depending only on the optical parameters. f is a weak solution to the Boltzmann prob-
lem (2.1.2) and the operator B, defined by (2.1.5) is an isomorphism from U onto V ′. Furthermore,
it holds that

‖B−1‖L(U,U) ≤ α−1. (2.1.8)
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Iterations in Functional Space: We are now in position to build a numerical scheme based
on the above variational formulation of our problem. The main guiding principle underpinning
our development is that we avoid discretization until the last possible moment. As such, we first
formulate a fixed point iteration in the infinite dimensional space U . The idea is to identify an
iteration of the form

fn+1 = fn + P(q − Bfn), n = 0, 1, . . . (2.1.9)

where P ∈ L(V ′, U) is a preconditioner that must be chosen in such a way that

∃ ρ < 1 such that ‖fn+1 − f‖U ≤ ρ‖fn − f‖U , n ∈ N. (2.1.10)

This holds true if and only if
‖id− PB‖L(U,U) ≤ ρ < 1. (2.1.11)

Our choice for P heavily depends on the quantity ‖T −1K‖L(U,U), which defines two regimes:

1. Dominating transport: ‖T −1K‖L(U,U) ≤ ρ < 1.

2. Dominating scattering: ‖T −1K‖L(U,U) ≥ 1.

In practice, it is possible to estimate the regime of the problem thanks to the fact that we can find
a reasonably tight upper bound ρ for ‖T −1K‖L(U,U) with available data as we explain in [A5].

Dominating Transport ‖T −1K‖L(U,U) ≤ ρ < 1: In this case, a suitable choice for the precondi-
tioner is

P := T −1.

With this choice, ‖id − PB‖L(U,U) = ‖T −1K‖L(U,U) ≤ ρ < 1 so condition (2.1.11) is satisfied.
Iteration (2.1.9) becomes

fn+1 = fn + T −1(q − Bfn) = T −1(Kfn + q), n ∈ N0, (2.1.12)

and satisfies (2.1.10), ensuring convergence in U to the solution u of the Boltzmann problem

Bf = (T − K)f = q.

In particular, it follows that for any initial guess f0,

‖f − fn‖U ≤ ρn‖f − f0‖U .

Dominating Scattering ‖T −1K‖L(U,U) ≥ 1: This case is more challenging than the previous.
To find a substitute for the preconditioner P = T −1 of the transport dominated regime, consider
for some fixed r > 0

Tr := T + r id, Br := Tr −K
and take P := B−1

r . This leads to the iteration

fn+1 = fn + (Tr −K)−1(q − (T − K)fn) = rB−1
r

(
fn + r−1q

)
, n ∈ N0, (2.1.13)
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where we have used that

(Tr −K)−1(T − K) = (Tr −K)−1(Tr −K − rid) = id− r(Tr −K)−1 = id− rB−1
r .

Thus, to ensure convergence we need ‖rB−1
r ‖L(U,U) to be a contraction. Note that this is satisfied

for any r > 0 since we have that (Brv, v) ≥ α+ r, which by equation (2.1.8) of Theorem 2.1.1 gives

‖rB−1
r ‖L(U,U) ≤

r

r + α
< 1.

So (2.1.13) converges in U = L2(Ω×S) to the true solution f with the error reduction rate r/(r+α)
for any fixed r > 0.

At every iteration n, we thus have to solve

Brf̃n = fn + r−1q.

To make this step doable in practice, we choose the parameter r in such a way that the operator
Br is transport dominated. In other words, we fix r to a value r∗ so that we have simultaneously

‖r∗B−1
r∗ ‖L(U,U) ≤ ρ∗ and ‖T −1

r∗ K‖L(U,U) ≤ ρ∗ for some ρ∗ < 1. (2.1.14)

As we explain in our paper, it is possible to find such r∗ and its value depends on the optical
parameters. This way, we can resort to the fixed-point scheme (2.1.12) of the transport dominated
case. Therefore, in the case of dominating scattering, we have to solve a nested iterative scheme.

Perturbed iterations: The practical realization of the scheme boils down to two tasks:

(T1) Formulate a perturbed version of algorithms (2.1.12) and (2.1.13) with suitable error tolerances
ηn that still guarantee convergence to the exact continuous solution.

For this task, it will be convenient to use the following notational convention: Given an operator
G ∈ L(U, Y ), we denote for any η > 0 by [G, u; η] an element in Y satisfying ‖Gu− [G, u; η]‖Y ≤ η.
Specifically, for our purposes we require a routine to approximately apply the kernel K, that is,

[K, u; η]→ zη such that ‖Ku− zη‖V ′ ≤ η. (2.1.15)

Likewise the source q ∈ V ′ is generally not given exactly and has to be approximated

[q; η]→ qη such that ‖q − qη‖V ′ ≤ η. (2.1.16)

The approximation [q; η] of q depends on how the data are given. Finally, given a right hand side
g ∈ V ′, we have to provide a transport solver

[T −1, g; η]→ uη such that ‖uη − T −1g‖U ≤ η, (2.1.17)

where, as before, T is viewed as a mapping from U onto V ′.

(T2) Specify how to realize the above routines in (2.1.15), (2.1.16), and (2.1.17).

We first concentrate on task (T1) and assume for the moment that the routines (2.1.15), (2.1.16),
and (2.1.17) are available.
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• Transport dominated regime: An approximate realization of the scheme (2.1.12) is

f̄n+1 = [T −1, [K, f̄n; ηK] + [q; ηq]; ηT ], n ≥ 0. (2.1.18)

In the following we take for simplicity f0 = 0. Any other choice for f0 that exploits additional
information would, of course, be possible. We choose the individual tolerances proportional
to

ηn = (1 + n)−βρn, (2.1.19)

for some fixed β > 1. Specifically, we set

ηK := c1ηn, ηq := c2ηn, ηT := c3ηn,

where the parameters c1, c2, c3 ≥ 0 satisfy

CT (c1 + c2) + c3 ≤ 1,

and where CT is an upper bound of ‖T −1‖L(V ′,U) (a computable upper bound is given in our
paper [A5]). We call this algorithm Adaptive Source Term Iteration (ASTI). We can prove
that it converges to the exact solution f of the infinite dimensional variational formulation
(2.1.7) (see Theorem 2.1.2 below). We write ASTI[T ,K, q; ε] to denote the routine that
computes an approximate solution fε such that ‖f − fε‖U ≤ ε using the scheme (2.1.18).

• Dominating Scattering: We fix r to a value r∗ so that we satisfy (2.1.14). The approximate
realization of the scheme (2.1.13) takes the form

f̄n+1 = [r∗B−1
r∗ , f̄n + [(r∗)−1q; η∗n]; η∗n], n ∈ N0,

where the tolerances η∗n are chosen as in (2.1.19) but using ρ∗. To compute the above problem,
we use ASTI, namely

f̄n+1 = [r∗B−1
r∗ , f̄n + [(r∗)−1q; η∗n]; η∗n] = r∗ASTI[Tr∗ ,K, f̄n + [(r∗)−1q; η∗n], η∗n]. (2.1.20)

We write N-ASTI[T ,K, q; ε] to denote the routine that computes an approximate solution fε
such that ‖f − fε‖U ≤ ε using the scheme (2.1.20). The notation N-ASTI stands for Nested
ASTI.

The following Theorem guarantees convergence of the nested iterative scheme N-ASTI (as a corol-
lary ASTI converges in the transport dominated regime).

Theorem 2.1.2. For any target accuracy ε > 0, the iterative scheme (2.1.20) converges to the
solution u ∈ U of the variational problem (2.1.7). The output

fε := N-ASTI[T ,K, q; ε]

satisfies
‖f − fε‖U ≤ ε,

where f is the exact solution of the variational formulation (2.1.7).
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Format of the numerical output fε: To implement the above the scheme in practice, we use
adaptive discretrizations involving piecewise polynomials for the angular variable s, and Discon-
tinuous Petrov–Galerkin (DPG) finite elements for the space variable x. The discretizations are
subordinate to partitions PS and PΩ of the domains S and Ω. These partitions are dynamically
refined across the iterations. In our practical implementation, the partition PΩ also depends on the
given direction s. For each cell T of the angular partition, we have used a different spatial partition
PTΩ . This degree of flexibility makes the practical implementation a non-trivial task. It is however
necessary in order to treat heterogenous transport phenomena with a number of degrees of freedom
which is as economic as possible, and also in order to guarantee a final certification for the error.

Let us assume that we use polynomials of degree m and n for space and direction respectively.
For every cell T of the angular partition PS, we denote by {φT,i}ni=1 an associated polynomial
basis of Pm(T ). For a fixed cell T ∈ PS and for every cell K of the spatial partition PTΩ , we
denote by {ϕK,j}mj=1 an associated polynomial basis of Pm(K). With this notation, the numerical
approximation of f is of the form

f̄(x, s) =
∑

T∈PS

∑

K∈PTΩ

n∑

i=1

m∑

j=1

cT,K,i,jϕK,j(x)φT,i(s), ∀(x, s) ∈ Ω× S,

where the cT,K,i,j ∈ R are the coefficients of the polynomial expansion. Note that in the above
formula we have implicitly extended the support of the basis functions to the full domain so that
φT,i(s) = 0 if s 6∈ T , and ϕK,j(x) = 0 if x 6∈ K.

Approximation of the scattering kernel K : U → U : For simplicity, let us assume that the
scattering coefficient κ does not depend on x. In this case, we need to approximate functions of the
form

(Kf̄)(x, s) =
∑

T∈PS

∑

K∈PTΩ

n∑

i=1

m∑

j=1

cT,K,i,jϕK,j(x)KφT,i(s).

The simplest realization of [K, ·; ·] rests on computing η-accurate approximations wT,i = [K, φT,i; η].
In practice, to efficiently compute the wT,i we need to have a sparse representation of the scattering
operator K. The representation may depend on the nature of the scattering operator as we illustrate
for the example of the Henyey–Greenstein kernel for spatial dimension d = 2, which reads

κ(s, s′) ∝ 1

‖s− γs′‖22
(2.1.21)

for a parameter γ ∈]0, 1[ which describes the physical nature of the scattering (if γ → 1, the
scattering tends to be forward peaked). We can first consider a Hilbert–Schmidt decomposition in
which we write

k(s, s′) =
∞∑

i=1

σigi(s)gi(s
′),

where σi ≥ 0 are singular values of K associated to the family of eigenfunctions {gi(s)}i which forms
an orthonormal basis of L2(S). As Figure 2.2 illustrates, the singular values decay fast only when γ
is not close to 1. As a result, we can work with low-rank representations of the kernel (by truncating
the above expansion) and the approximation accuracy decays fast with the number of terms. On
other hand, when γ → 1, we prove in [A5] that K becomes sparse in a wavelet representation of
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the kernel, which allows to leverage wavelet compression techniques. By expressing κ with Alpert
wavelets {ψλ}λ∈Λ,

κ(s, s′) =
∑

(λ,λ′)∈Λ×Λ

kλ,λ′ψλ(s)ψλ′(s), kλ,λ′ := 〈κ, ψλ ⊗ ψλ′〉L2(S×S) ,

the infinite dimensional matrix {kλ,λ′}(λ,λ′)∈Λ×Λ can be truncated to a sparse finite-dimensional
matrix which delivers high accuracy. We illustrate this idea in Figure 2.3.
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Figure 2.2: Decay of the eigenvalues of the Hilbert–Schmidt decomposition of the Henyey–Greenstein
kernel.
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Figure 2.3: Alpert wavelet representation (kλ,λ′)(λ,λ′)∈Λ×Λ of the Henyey-Greenstein kernel with
degrees M = 0, 1 and 4. Here γ = 0.99. Note the characteristic “finger” structure of a compressible
operator.

Approximation of the transport operator T : U → V ′: The numerical realization of the
routine [T −1, ·; ·] is based on solving in the space variable fiber problems of the form

Tsfn+1 := s · ∇fn+1 + σ(s)fn+1 =

∫

S
κ(·, s, s′)f̄n(·, s′) ds′ + q, (2.1.22)

for properly selected parameters s ∈ S. Achieving a given target accuracy depends on solving each
fiber problem with sufficient accuracy and also on solving sufficiently many of them.
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Figure 2.4: Adaptive meshes for fiber transport solutions with respect to two different directions as
well as the merged mesh at iteration step 10.

In view of the inherently low regularity of the transport solutions (especially in the presence of
rough boundary and source data) we opt for employing an adaptive Discontinuous Petrov–Galerkin
(DPG) scheme for each fiber problem (2.1.22). We follow the approach developped and analyzed in
[20, 9]. A detailed presentation would exceed the purposes of the current document but the main
idea is that this type of discretization makes errors in the U -norm become equivalent to residuals
in the V ′-norm. The constants of equivalence are uniform in the size of the mesh discretization.
This point is crucial to guarantee that the quality of the a posteriori error bounds which we use to
estimate the error at each N-ASTI iteration step is not degraded as we dynamically refine.

Since the algorithm is adaptive, the spatial solutions fn(·, s) are defined in different spatial
partitions for each direction s ∈ S. As a result, one needs to find the union of the meshes when it
comes to applying the scattering kernel to fn. Figure 2.4 shows different meshes for fiber transport
solutions with respect to two different directions as well as the merged mesh at iteration step 10 of
our numerical example.

The computation of the merged grid is delicate to implement and it leads to a grid which
eventually involves a high number of degrees of freedom in final iterations where the accuracy ηn
becomes tight. This issue seems inevitable given the nature of the problem but, on the positive
side, remark that the merged grid will nevertheless involves much less cells than the underlying
uniform mesh which is the one that one would use in a naive approach. In addition to this, note
that our approach adresses the most critical issue regarding computational complexity since the
bulk of computation lies in the approximate inversions of fiber transport problems (2.1.22), and we
handle this operation with an economic number of degrees of freedom. It is therefore of primary
importance to keep the size of each fiber transport problem as small as possible, and this is achieved
thanks to our adaptive DPG scheme.

Numerical Illustration: We consider the radiative transfer problem (2.1.2) on the unit square
domain Ω = [0, 1]2. The spatial structure of the source term q and absorption coefficient σ is
depicted in Figure 2.5. More precisely, we take q = 0 in the white and gray areas whereas q = 1 in
the black area. Similarly, we set σ = 10 in the gray areas and σ = 2 everywhere else.

We consider a Henyey–Greenstein scatering kernel with γ = 0.5 (see formula (2.1.21)). Since
the singular values of the Hilbert–Schmidt decompositions decay rapidly (see Figure 2.2), we work
with adaptive low-rank representations of K based on it. We present results with Alpert wavelets
of degree 2.

We set ε = 1.1 · 5.10−3 as the final target accuracy. The problem is of transport-dominated
nature (ρ ≤ 1) so we can solve it with the ASTI algorithm. The algorithm requires to estimate
certain quantities and we refer to [A5] for these details.
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Figure 2.5: Geometry of the checker-
board benchmark.

Figure 2.6, displays the convergence history and degrees of freedom for the above choice of
parameters. The left plot gives an approximation error of the scattering application ||K(f̄n) −
[K, f̄n; c1ηn]||L2(Ω×S) (dark blue curve), the a posteriori error of the transport solves ||fn−f̄n||L2(Ω×S)

(light blue curve), and a bound for the global error ||f − f̄n||L2(Ω×S) (purple curve). By definition
(2.1.19) of the tolerances ηn, the interior solution accuracies need to be somewhat finer which
explains the gradual divergence between the global error bound and the interior error tolerances.
To avoid this would require total a posteriori bounds based on the full Boltzmann bilinear form b
(defined in (2.1.4)) in combination with coarsening strategies, which will be the subject of future
work. The shaded blue regions in the right plot indicate statistics about the number of degrees of
freedom that are associated for each selected angular direction.
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Figure 2.6: Convergence and number of degrees of freedom (DoFs).

Figure 2.8 shows solutions f̄n(·, s) with their corresponding grids for the final iterate once the
accuracy ε has been reached. Finally, Figure 2.7 shows the final averaged densities

∫
S f̄n(·, s) ds.

They are computed on the merged grids.
We note that no special structure preserving measures had to be imposed on the numerical

schemes to produce physically meaningful results.

Code: The implementation of the ASTI and N-ASTI algorithms can be done in a very modular
fashion thanks to the fact that the main building blocks are very clearly defined. Despite this, the
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(a) integrated solution and grid for iteration step 2.

(b) integrated solution and grid for iteration step 6.

(c) integrated solution and grid for iteration step 8.

(d) integrated solution and grid for iteration step 10.

Figure 2.7: Integrated solutions
∫
S fn(·, s) ds and corresponding merged grids.
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Figure 2.8: Solutions f̄n(·, s) for different directions s in final outer iterate.

implementation is very challenging due to the numerous different elements to put into place and
assemble together: the efficient computation of the kernel, the DPG adaptive solver for the fiber
problems, and the management of the grid merging. Felix Gruber was the person who contributed
most significantly to this part of the work in the framework of his PhD thesis [16]. On my side,
I laid the foundations for the computation of the scattering kernel and the computation of the
residual-based a posteriori estimators. My contribution was more focused on the construction of
the N-ASTI scheme, and the estimation of technical quantities needed in the algorithm, and upon
which I have not insisted a lot in the previous summary.

The implementation makes use of Dune-DPG 0.4.2, a C++ based library which Felix Gruber,
Angela Klewinghaus and I built upon the multi-purpose finite element package DUNE. We published
an introductive summary of the code in [A11], and details of the Dune-DPG library can be found
in [27]. The code to reproduce the numerical part of the present work is available online at:

https://gitlab.dune-project.org/felix.gruber/dune-dpg

2.1.2 Homogenization in the energy variable

In this section, we discuss the oscillatory behavior that the optical parameters often present in the
energy variable in realistic scenarios. I summarize the homogenization result on the energy variable
that Harsha Hutridurga, Francesco Salvarani and I published in [A7]. To do so, we come back to
the general Boltzmann equation (2.1.1), which we recall here:

∂tf + v · ∇xf + σ(x, v)f −
∫

V
κ(x, v · v′)f(t, x, v′) dv′ = q.

The velocity variable v can be expressed via the couple (ω,E), where ω = v/|v| is the trajectory
angle of the neutron and E = m|v|2/2 is the kinetic energy, m being the mass of the neutron.

23

https://gitlab.dune-project.org/felix.gruber/dune-dpg


Assuming that E ranges in [Emin, Emax], the same equation can equivalently be written in terms of
the neutron flux

ϕ(t, x, ω,E) = ϕ(t, x, v) := |v|f(t, x, v),

which satisfies the equation
√

m

2E
∂tϕ+ ω · ∇xϕ+ σ (x, ω,E)ϕ−

∫ Emax

Emin

∫

|ω′|=1
κ
(
x, ω · ω′, E,E′

)
ϕ(x, ω′, E′)dω′ dE′ = 0,

where the optical parameters of the linear Boltzmann equation are appropriately redefined. The
above evolution equation is supplemented by suitable initial data, i.e., ϕ(0, x, ω,E) = ϕin(x, ω,E),
and zero boundary data on the incoming phase-space boundary.

Real experiments reveal strong oscillations in σ as a function of E when the neutrons interact
with relevant materials like, for example, Uranium 238 (see figure 2.1). A similar behaviour is
also observed for the scattering kernel κ. These facts motivate us to study the multi-scale linear
Boltzmann equation
√

m

2E
∂tϕ

ε + ω · ∇xϕε + σε (x, ω,E)ϕε −
∫ Emax

Emin

∫

|ω′|=1
κε
(
x, ω · ω′, E,E′

)
ϕε(x, ω′, E′)dω′ dE′ = 0,

where 0 < ε� 1 is a small parameter and

σε(x, ω,E) = σ

(
x, ω,E,

E

ε

)
; κε(x, ω · ω′, E,E′) = κ

(
x, ω · ω′, E,E′, E

′

ε

)
,

where σ(x, ω,E, y) and κ (x, ω · ω′, E,E′, y′) are both assumed to be periodic in the y and y′ variables
respectively. The equation is complemented with zero incoming flux condition on the phase-space
boundary and an initial condition ϕin which we assume to be in L2(Ω× Sd−1 × (Emin, Emax)).

In addition to the above hypotheses, we also assume that there exists α > 0 such that for all
ε > 0,

σε(x, ω,E)− κ̄ε(x, ω,E) ≥ α and σε(x, ω,E)− κ̃ε(x, ω,E) ≥ α,

where 



κ̄ε(x, ω,E) :=

∫ Emax

Emin

∫

Sd−1

κε(x, ω · ω′, E,E′) dω′ dE′

κ̃ε(x, ω,E) :=

∫ Emax

Emin

∫

Sd−1

κε(x, ω · ω′, E′, E) dω′ dE′.

From a physical point of view, these assumptions mean that we place ourselves in the so-called
subcritical regime where absorption phenomena dominate scattering.

Our main contribution is the homogenization result given in Theorem 2.1.3, where we derive
a homogenized equation for the neutron transport problem when the optical parameters oscillate
periodically in the energy variable. The result is derived employing the theory of two-scale conver-
gence. For technical reasons, we worked with scattering kernels κε exhibiting separation in the E
and E′ variables as follows:

κε(x, ω · ω′, E,E′) := c1(x, ω · ω′, E)c2

(
x, ω · ω′, E′, E

′

ε

)
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with c2 (x, ω · ω′, E′, y′) being periodic in the y′ variable. A result without this assumption on κε

requires further investigation as it is not apparent whether one can derive closed form homogenized
equations in the latter case.

The theorem uses the notation Cper(Y) to denote continuous functions on Rd which are Y-
periodic, and for any given g ∈ L∞(Y),

Lg v := gv − 〈gv〉 ∀v ∈ L2
per(Y).

where 〈gv〉 :=
∫
Y g(y)v(y) dy.

Theorem 2.1.3. Let ϕε = ϕε(t, x, ω,E) be the solution of the equation





∂tϕ
ε +
√
E ω · ∇xϕε + σε (ω,E)ϕε −

∫ Emax

Emin

∫

|ω′|=1
κε
(
ω · ω′, E,E′

)
ϕε(ω′, E′) dω′ dE′ = 0

ϕε(0, x, ω,E) = ϕεin (x, ω,E) ,

ϕε(t, x, ω,E) = 0 ∀t > 0 and for (x, ω) ∈ Γ− :=
{

(x, ω) ∈ ∂Ω× Sd−1 : n(x) · ω < 0
}
.

where the coefficients and the data are of the form

σε (ω,E) :=
√
E σ

(
ω,E,

E

ε

)
with σ (ω,E, y) ∈ L∞(V; Cper(0, 1))

ϕεin(x, ω,E) := ϕin

(
x, ω,E,

E

ε

)
with ϕin (x, ω,E, y) ∈ L2(Ω× V; Cper(0, 1))

κε(ω · ω′, E,E′) :=
√
E κ1(ω · ω′, E)κ2

(
ω · ω′, E′, E

′

ε

)
with κ1(η,E) ∈ L∞ ([−1, 1]× [Emin, Emax])

and κ2

(
η,E′, y′

)
∈ L∞ ([−1, 1]× [Emin, Emax]; Cper(0, 1)) .

Then,
ϕε ⇀ ϕhom weakly in L2((0, T )× Ω× V)

and ϕhom satisfies the following partial integro-differential equation

∂tϕhom +
√
E ω · ∇xϕhom +

√
E 〈σ〉ϕhom −

∫ Emax

Emin

∫

Sd−1

√
E κ1(ω · ω′, E)

∫ 1

0
κ2(ω · ω′, E′, y′)ϕhomdy′dω′dE′ =

∫ Emax

Emin

∫

Sd−1

√
E κ1(ω·ω′, E)

∫ 1

0
κ2(ω·ω′, E′, y′)

[
e−t
√
E′LσL1ϕin −

∫ t

0
e−(t−s)

√
E′Lσ
√
E′L1σ(ω′, E′, y′)ϕhom ds

]
dy′dω′dE′

−
√
E

∫ 1

0
σ(ω,E, y)

[
e−t
√
ELσL1ϕin −

∫ t

0
e−(t−s)

√
ELσ
√
EL1σ(ω,E, y)ϕhom ds

]
dy,

with initial condition
ϕhom(0, x, ω,E) = 〈ϕin(x, ω,E, ·)〉

and zero absorption condition at the in-flux phase-space boundary.
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The homogenized equation is integro-differential and presents a memory term which makes the
dynamics be no longer defined by a semigroup. This, in turn, entails difficulties in the numerical
solution of the homogenized equation since the memory effects dramatically increase the computa-
tional complexity in terms of the number of degrees of freedom to be used in order to retrieve a
certain target accuracy.

To derive the results, we base our strategy on the method of characteristics, and hence we first
derive a homogenization result for an associated ordinary differential equation. In there, we also
show that this result is in agreement with previous works on memory effects by Tartar [89], [69,
chapter 35]. An interesting result in its own right is that our technique gives an explicit expression
of the memory kernel that, in the situation studied by Tartar, is equal to the implicit expression
given in [89], [69, chapter 35]. For the sake of brevity, we will not give further details on this results
in the present manuscript and refer to [A7].

To conclude this part, let us compare our approach to some standard methods from the nuclear
engineering community for treating self-shielding phenomena. To the best of our knowledge, the
most widespread technique is a two-stage method originially proposed in [94] by M. Livolant and
F. Jeanpierre (we refer to [63, Chapters 8 and 15] for an introductory overview). It consists in
finding first the averaged optical parameters which are then plugged into a multigroup version of
equation (2.1.1) to compute the behavior of the flux on large and geometrically complex domains
such as nuclear reactors. The pre-computation of the averaged parameters is done on a cell prob-
lem involving a much simpler spatial geometry and simplified physics. It is nevertheless carefully
designed with elaborate physical considerations in a way to keep as much consistency as possible
with respect to the original problem. Note that, while this approach implicitly assumes that the
homogenized equation is of the same nature as the original Boltzmann problem (2.1.1), our starting
point is fundamentally different in the sense that we do not postulate any final form of the limit
equation. Our goal is precisely to discover its form from the only assumption that the optical param-
eters oscillate in energy. As a result, our methodology and conclusions are different from the ones
discussed in [94] and do not involve a pre-computation on a cell problem. Another approach, also
based on averaging the optical parameters, is the so-called multi-band method (see [90]), where, like
in the previous method, the limit equation is assumed to be a Boltzmann equation. Finally, a more
recent approach based on averaging arguments taken from results of homogenization of pure trans-
port equations has recently been proposed in [25]. The initial problem there is a time-independent
Boltzmann source problem with no oscillations in the scattering kernel.

2.1.3 Research Perspectives

There are several extensions and new research directions which I would like to pursue in the future:

• Nonlinear problems:

– Our contribution [A5] on numerical schemes with a posteriori guarantees for the radiative
transfer operator concerns a linear source problem of the form

Bf = (T − K)f = q,

where the right-hand side is fixed. The obstructions of the source problem are aggravated
when going for a generalized eigenpair (λ, u) of the following (nonlinear) problem

(T − K)u = λFu (2.1.23)
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where T and K are the transport and scattering operators as introduced in Section 2.1.1,
and F is a fission operator which is of similar structure as K. Under certain assumptions,
B−1F is compact, and using the Krein-Ruthmann theorm, one can show that there exists
a unique smallest positive real eigenvector λ with a nonnegative eigenstate u ∈ U . This
problem is routinely solved in the field of nuclear engineering to find a steady state
configuration of the nuclear reactor core but so far the numerical schemes do not come
with a posteriori guarantees. The main difficulty from the mathematical stand-point is
that we are looking for the eigenvalue of a non-symmetric problem. We are investigating
this topic in an ongoing collaboration with with Prof. Dahmen.

– Beyond the radiative transfer problem, I would like to develop similar techniques to solve
the Vlasov-Poisson problem. The main strategy should rely in building an appropriate
infinite dimensional Newton iteration scheme on a suitable linearization of the operator.

• Model Order Reduction and Uncertainty Quantification: A second research direction
concerns the development of Reduced Order Models for kinetic problems and the study of
UQ problems. One interesting problem in this direction would be to develop Model Order
Reduction schemes for the non-symmetric eigenvalue problem (2.1.23) where the parameters
of the PDE would typically be the optical parameters. Another question would be if we
can address the problem of the oscillations in the energy variable as a UQ problem and use
techniques from this field.

• Model Error and Inverse Problems: In Section 3.5.1, I outline the results of a col-
laboration with EDF in which we made some contributions in inverse problems for nuclear
engineering using a diffusion version of equation (2.1.23). The results were obtained using
synthetic measurement observations so we could not study the impact of model error in the
reconstructions. In the future it would be very interesting to work on real data in order to
study model errors and incorporate techniques that correct or mitigate the model deficiency
in inverse problems.

2.2 An Adaptive Parareal Method

2.2.1 Motivation

As already brought up in the general introduction of Section 1, one desirable feature of numerical
schemes for high-dimensional problems is the ability to parallelize computations. This can be
particularly challenging for certain time-dependent problems due to the inherent sequential nature
of the time variable. In a collaboration with Prof. Y. Maday, we have published a contribution on
this topic in [A8]. The goal was to accelerate the numerical simulation of time dependent problems
by time domain decomposition. The available algorithms enabling such decompositions present
severe efficiency limitations and are not a competitive option for the solution of large scale and
high dimensional problems. Our main contribution is the improvement of the parallel efficiency
of the parareal in time method. This method is based on iteratively combining predictions made
by a numerically inexpensive solver (with coarse physics and/or coarse resolution) with corrections
coming from an expensive solver (with high-fidelity physics and high resolution). At convergence,
the algorithm provides a solution that has the fine solver’s high-fidelity physics and high resolution.
In the classical version, the fine solver has a fixed high accuracy at all iterations (the one of the
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expensive solver). This point is the major limitation to achieve a competitive parallel efficiency.
In [A8], we develop an adaptive variant that overcomes this obstacle by dynamically increasing the
accuracy of the fine solver across the parareal iterations. As we will see, the adaptive scheme is
built in a similar way as the one developed for the N-ASTI scheme of Section 2.1.1 despite that
the context and goals are significantly different.

We theoretically show that with our adaptive strategy the parallel efficiency becomes very com-
petitive in the ideal case where the cost of the coarse solver is small, thus proving that the only
remaining factors impeding full scalability become the cost of the coarse solver and communication
time. The developed theory has also the merit of setting a general framework to understand the
success of several extensions of parareal based on iteratively improving the quality of the fine solver
and re-using information from previous parareal steps. We illustrate the actual performance of the
method in stiff ODEs, which are a challenging family of problems since the only mechanism for
adaptivity is time and efficiency is affected by the cost of the coarse solver.

Roadmap: To develop the adaptive algorithm, we formulate an ideal parareal scheme on an
infinite dimensional functional setting. We then present feasible realizations involving a fine solver
whose accuracy is adaptively increased across the iterations. We prove that the feasible adaptive
algorithm converges at the same rate as the ideal one provided that the tolerances of the fine solver
are increased at a certain rate which will be discussed. Finally, we discuss how the new paradigm
can be realized thanks to adaptive schemes and/or the re-use of information from previous steps.

2.2.2 Setting and preliminary notations:

Let U be a Banach space of functions defined over a domain Ω ⊂ Rd (d ≥ 1). Let

E : [0, T ]× [0, T ]× U→ U

be a propagator, that is, an operator such that, for any given time t ∈ [0, T ], s ∈ [0, T − t] and any
function w ∈ U, E(t, s, w) takes w as an initial value at time t and propagates it at time t+ s. We
assume that E satisfies the semi group property

E(t0, t2 − t0, w) = E(t1, t2 − t1, E(t0, t1 − t0, w)), ∀w ∈ U,∀(t0, t1, t2) ∈ [0, T ]3, t0 < t1 < t2.

We further assume that E is implicitly defined through the solution u ∈ C1([0, T ],U) of the time-
dependent problem

u′(t) +A (t, u(t)) = 0, t ∈ [0, T ], (2.2.1)

where A is an operator from [0, T ]×U into U with adequate regularity we shall specify later. Then,
given any w ∈ U, E(t, s, w) denotes the solution to (2.2.1) at time t + s with initial condition w
at time t ≥ 0. In our problem of interest, we study the evolution given by (2.2.1) when the initial
condition is u(0) ∈ U.

Since, in general, the problem does not have an explicit solution, we seek to approximate it at
a given target accuracy. For any initial value w ∈ U, any t ∈ [0, T [, s ∈ [0, T − t] and any ζ > 0 we
denote by [E(t, s, w); ζ] an element of U that approximates E(t, s, w) such that we have

‖E(t, s, w)− [E(t, s, w); ζ]‖ ≤ ζ s (1 + ‖w‖), (2.2.2)

where, here and in the following, ‖·‖ denotes the norm in U. Any realization of [E(t, s, w); ζ] involves
three main ingredients:
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i) a numerical scheme to discretize the time dependent problem (2.2.1) (e.g. an Euler scheme in
time),

ii) a certain discretization error (e.g. error associated with the time step size of the Euler scheme),

iii) a numerical implementation to solve the resulting discrete systems (e.g. conjugate gradient,
Newton method, SSOR, . . . ).

In the following, we will use the term solver to denote a particular choice for i), ii) and iii). Given
a solver S, we will use the same notation as for the exact propagator E to express that S(t, s, w) is
an approximation of E(t, s, w) with a certain accuracy ζ. In other words, we can write S(t, s, w) =
[E(t, s, w); ζ].

2.2.3 An idealized version of the parareal algorithm

We introduce a decomposition of the time interval [0, T ] into N subintervals [TN , TN+1], N =
0, . . . , N −1. Without loss of generality, we will take them of uniform size ∆T = T/N which means
that TN = N∆T for N = 0, . . . , N . For a given target accuracy η > 0, the primary goal of the
parareal in time algorithm is to build an approximation ũ(TN ) of u(TN ) such that

max
1≤N≤N

‖u(TN )− ũ(TN )‖ ≤ η.

The classical way to achieve this is to set

ũ(TN ) = Sseq(0, TN , u(0)) = [E(0, TN , u(0)); ζ], 1 ≤ N ≤ N,

where Sseq is some sequential solver in [0, T ] with ζ = η/(T (1+‖u(0)‖)) in (2.2.2). Since this comes
at the cost of solving the evolution over the whole time interval [0, T ], the main goal of the parareal
in time algorithm is to speed up the computing time, while maintaining the same target accuracy
η. This is made possible by first decomposing the computations over the time domain. Instead
of solving over [0, T ], we perform N parallel solves over each interval (TN , TN+1] of size ∆T . We
next introduce an idealized version of it which will not be feasible in practice but which will be the
starting point of subsequent implementable versions. The algorithm relies on the use of a solver G
(known as the coarse solver) with the following properties involving the operator

δG := E − G.

Hypotheses (H): There exists constants εG , Cc, Cd > 0 such that for any function x, y ∈ U and
for any t ∈ [0, T [ and s ∈ [0, T − t],

G(t, s, x) = [E(t, s, x), εG ] ⇔ ‖δG(t, s, x)‖ ≤ s(1 + ‖x‖)εG (H1)
‖G(t, s, x)− G(t, s, y)‖ ≤ (1 + Ccs)‖x− y‖, (H2)
‖δG(t, s, x)− δG(t, s, y)‖ ≤ CdsεG‖x− y‖ (H3)

Note that hypothesis (H1) to (H3) are the classical abstract formulations of the properties of nu-
merical schemes related to stability and accuracy. Hypothesis (H2) is a Lipschitz condition and the
quantity εG is a small constant which, in the case of a Euler scheme, would be equal to the time
step size.
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The idealized version of the algorithm consists in building iteratively a series (yNk )k of approxi-
mations of u(TN ) for 0 ≤ N ≤ N following the recursive formula





yN+1
0 = G(TN ,∆T, y

N
0 ), 0 ≤ N ≤ N − 1

yN+1
k+1 = G(TN ,∆T, y

N
k+1) + E(TN ,∆T, y

N
k )

− G(TN ,∆T, y
N
k ), 0 ≤ N ≤ N − 1, k ≥ 0,

y0
0 = u(0).

(2.2.3)

At this point, several comments are in order:

1. The computation of yNk only requires propagations with E over intervals of size ∆T . As follows
from (2.2.3), for a given iteration k, N propagations of this size are required, each of them
over distinct intervals [TN , TN+1] of size ∆T , each of them with independent initial conditions.
Since they are independent from each other, they can be computed over N parallel processors
and the original computation over [0, T ] is decomposed into parallel computations over N
subintervals of size ∆T .

2. The algorithm may not be implementable in practice because it involves the exact propa-
gator E . Feasible instantiations consist of replacing E(TN ,∆T, y

N
k ) by some approximation

[E(TN ,∆T, y
N
k ), ζNk ] with a certain accuracy ζNk which has to be carefully chosen. We will

come to this point later on.

3. Note that, in the current version of the algorithm, for all N = 0, . . . , N , the exact solution
u(TN ) is obtained after exactly k = N parareal iterations. This number can be reduced when
we only look for an approximate solution with accuracy η. Depending on the problem, the
final number of iterations K(η) can actually be much smaller than N .

The convergence result of Theorem 2.2.1 is helpful to understand the main mechanisms driving the
convergence of the algorithm and explaining its behavior. To present it, we introduce the shorthand
notation for the error norm

ENk := ‖u(TN )− yNk ‖, k ≥ 0, 0 ≤ N ≤ N,

and the quantities

µ =
eCcT

Cd
max

0≤N≤N
(1 + ‖u(TN )‖), and τ := CdTe

−Cc∆T εG .

Theorem 2.2.1. If G and δG satisfy Hypothesis (H1) to (H3), then,

max
0≤N≤N

‖u(TN )− yNk ‖ ≤ µ
τk+1

(k + 1)!
, ∀k ≥ 0. (2.2.4)

Note that τ is the quantity driving convergence and its speed. Introducing the quantity

ε̄G :=
eCc∆T

CdT
,

we can write
τ =

εG
ε̄G
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and we note that a sufficient condition to converge is that

τ < 1 ⇔ εG < ε̄G . (2.2.5)

In other words, ε̄G is the minimal accuracy that the coarse solver has to satisfy in order to guarantee
convergence of the ideal parareal algorithm. In the following, we will work under the assumption
that εG satisfies (2.2.5).

As we will see next, ε̄G plays also a critical role in certain convergence properties of the perturbed
algorithm so we finish this section by discussing the behavior of ε̄G depending on several scenarios.
First, Cc and Cd are Lipschitz constants (fixed by the properties of the evolution problem) so they
could be potentially large numbers. As a result, ε̄G could be a large number and condition (2.2.5)
would not be very stringent. The value of ε̄G can be small for very long time simulations where
T becomes large or if ∆T becomes small compared to Cc (that is, if the number N of processors
becomes large).

2.2.4 Feasible realizations of the parareal algorithm

Feasible versions of algorithm (2.2.3) involve approximations of E(TN ,∆T, y
N
k ) with a certain accu-

racy ζNk . This leads to consider algorithms of the form




yN+1
0 = G(TN ,∆T, y

N
0 ), 0 ≤ N ≤ N − 1

yN+1
k+1 = G(TN ,∆T, y

N
k+1) + [E(TN ,∆T, y

N
k ); ζNk ]

− G(TN ,∆T, y
N
k ), 0 ≤ N ≤ N − 1, k ≥ 0,

y0
0 = u(0).

(2.2.6)

Since no feasible version will converge at a better rate than (2.2.4), we need to analyze what is the
minimal accuracy ζNk that preserves it. A result in this direction is given in the following theorem.
It requires to introduce the quantity

νp :=
max0≤N≤N (1 + ‖yNp ‖)

max0≤N≤N (1 + ‖u(TN )‖) , ∀p ≥ 0.

which tends to 1 as p→∞.

Theorem 2.2.2. Let G and δG satisfy Hypothesis (H1) to (H3). Let k ≥ 0 be any given positive
integer. If for all 0 ≤ p < k and all 0 ≤ N < N , the approximation [E(TN ,∆T, ζ

N
p )] has accuracy

ζNp ≤ ζp :=
εp+2
G

(p+ 1)!νp
, (2.2.7)

then the (yNk )N of the feasible parareal scheme (2.2.6) satisfy

max
0≤N≤N

‖u(TN )− yNk ‖ ≤ µ
τ̃k+1

(k + 1)!
, (2.2.8)

with

τ̃ := τ + εG .
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Let us make a couple of remarks:

1. The sufficient condition to converge is now

τ̃ < 1 ⇔ εG <
ε̄G

1 + ε̄G

so the minimal accuracy required for the coarse solver is stronger than the one for the ideal
case (see (2.2.5)). Note however that when ε̄G is small (roughly, ε̄G ≤ 1), the condition on εG
is similar in the ideal and perturbed case.

2. Comparing (2.2.4) and (2.2.8), the rate of convergence τ̃ of the feasible parareal algorithm
deviates from τ , the ideal one, by a factor

τ̃

τ
=
τ + εG
τ

= 1 +
eCc∆T

CdT
= 1 + ε̄G .

The parameter ε̄G plays again a critical role in the convergence properties and determines
whether convergence is close to the ideal rate τ , or deviates from it by a potentially important
factor.

Practical realization of [E(TN ,∆T, y
N
k ), ζNk ]: Since the accuracy ζNk needs to improve with k,

the most natural way to build the approximations [E(TN ,∆T, y
N
k ), ζNk ] is with adaptive techniques

and with adaptive refinements at every step k. The implementation ultimately rests on the use of a
posteriori error estimators. It opens the door to local time step adaptation in the parareal algorithm
as well as spatial coarsening or refinement if the problem involves additional spatial variables.

In principle, as ζNk decreases with k, the numerical cost increases in terms of degrees of freedom
and also in terms of computing time. This actually reveals the key idea of this new approach which
is that we would like that only the last fine solver is expensive and the cost of the previous ones is a
small fraction of the cost of the last one (we refer to the next section for a more precise statement).
By re-using information from previous iterations, we can limit the cost of internal solvers required in
[E(TN ,∆T, y

N
k ), ζNk ] and enhance the speed-up. This depends of course on the nature of the specific

problem.
The idea about re-using information from previous steps is actually the main point of contact

between our work and previous contributions from the literature which have incorporated it with
encouraging results in a variety of contexts. Among the most relevant ones stand the coupling of
the parareal algorithm with spatial domain decomposition (see [72, 46, 17]), the combination of the
parareal algorithm with iterative high order methods in time like spectral deferred corrections (see
[61, 56, 34]) and, in a similar spirit, applications of the parareal algorithm to solve optimal control
problems (see [72, 65]). Another relevant scenario where efficiency could be enhanced by reusing
information from previous iterations is when internal iterative schemes are involved to solve the
equation at every time step. This idea was first identified and proposed in my PhD thesis [T1],
where I provided an analysis on a restricted setting. It has later been applied more extensively in
the framework of the MGRIT algorithm that couples parareal with multigrid iterative schemes (see
[24]).
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2.2.5 Parallel efficiency

It is difficult to give accurate a priori estimations for the speed-up and efficiency of the method due
to its adaptive nature so the actual performance can only be established through relevant examples
but we make here some general remarks to highlighting the relevance of the cost of the coarse solver
in the parallel speed-up. The speed-up is defined as the ratio

speed-upAP/seq(η, [0, T ]) :=
costseq(η, [0, T ])

costAP(η, [0, T ])
(2.2.9)

between the cost to run a sequential fine solver achieving a target accuracy η with the cost to run an
adaptive parareal algorithm providing at the end the same target accuracy η. The parallel efficiency
of the method is then defined as the ratio of the above speed up with the number of processor which
gives a target of 1 to any parallel solver:

effAP/seq(η, [0, T ]) :=
speed-upAP/seq(η, [0, T ])

N
.

The next Proposition gives an estimate of the parallel efficiency in the ideal case in which the
cost of the coarse solve is negligible, and that there is no communication delay.

Proposition 2.2.3. Suppose that the cost to realize [E(TN ,∆T, y
N
k ), ζNk ] is fNk = ∆T (ζNk )−1/α for

some α > 0. Then, if the cost of the coarse solver is negligible with respect to fNk for any k ≥ 0, we
have

effAP/seq(η, [0, T ]) =
1− τ1/α

1− τK(η)/α
∼ 1

(1 + ε
1/α
G )

.

Therefore

speed-upAP/seq(η, [0, T ]) ∼ N 1

(1 + ε
1/α
G )

.

In the ideal setting of Proposition 2.2.3:

• The parallel efficiency of the adaptive parareal algorithm does not depend on the final number
of iterations. This is in contrast to the classical version whose efficiency decreases with the
final number of iterations K(η) as 1/K(η).

• The efficiency behaves like 1 − o(εG) in the adaptive version, and o(εG) rapidly goes to zero
with εG . As soon as εG becomes negligible with respect to 1, we will be in the range of full
scalability.

We emphasize that, obviously, the above idealized setting will never hold in practice, but the result
is interesting since it highlights that the cost of the fine solver is no longer the main obstacle for full
scalability in the adaptive setting: the cost of the coarse solver becomes now the major obstruction
towards full efficiency.

2.2.6 Guidelines for a practical implementation

• Practical choice of ζNk Formula (2.2.7) of the convergence analysis of Theorem 2.2.2 gives
an estimate for ζNk that one could in principle use for the implementation. However, these
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tolerances may not be optimal because they are derived from a theoretical convergence analysis
based on abstract conditions for the coarse and fine solvers. This was confirmed during
our numerical tests where we observed that using estimates (2.2.7) for ζNk did not deliver
satisfactory enough results. This is the reason why it is necessary to build a practical rule to
set ζNk . We have explored the following choice: if η is the final target accuracy, the classical
parareal algorithm is usually run with a solver that delivers a slightly higher accuracy, say
η/2. Assume that the classical algorithm converges in KCP(η) = K iterations. We propose to
build the tolerances of ζNk in such a way to target that KAP(η) = KCP(η) and such that the
cost of the last fine propagation is of the order of the sum of the previous ones. This motivates
to set

ζNk =

{
ε

1− k+1
K

G
(η

2

) k+1
K , if k < K

η/2, if k ≥ K.
The numerical example of the next section uses these tolerances.

• Load balancing: For simplicity of exposition, the algorithm has so far been discussed for N
subintervals of uniform size ∆T . However, this decomposition may lead to a task imbalance
because some time intervals may have more complex dynamics than others, requiring more
degrees of freedom, thus more computational time. In order to balance tasks as efficiently as
possible, we dynamically adapt the size of the N subintervals in a way to have the fine solver
propagations as balanced as possible among processors.

2.2.7 Numerical tests for several stiff ODEs

We apply our adaptive algorithm to several stiff ODEs where the only mecanism for adaptivity is
time. Our results illustrate that our approach improves the speed-up and efficiency with respect
to the classical non-adaptive parareal method. We also show that the main element affecting
performance is no longer the cost of the fine solver but the cost of the coarse solver. In extreme
cases, this cost may even prevent any speed-up at all and puts this obstruction at the forefront for
future research. The code to reproduce the numerical results is available online at:

https://plmlab.math.cnrs.fr/mulahernandez/parareal-adaptive

Other ODEs can easily be tested as indicated in the instructions. Note that the algorithm could
also be applied to PDEs but we defer the presentation of numerical examples to future works since
this requires full space-time adaptive techniques which are a topic in itself since they are challenging
to formulate and deploy, and there are also very specific to each type of problem.

The Brusselator system: We consider the brusselator system
{
x′ = A+ x2y − (B + 1)x

y′ = Bx− x2y,

with initial condition x(0) = 0 and y(0) = 1. This is a stiff ODE that models a chain of chemical
reactions. It was already studied in a previous work on the parareal algorithm (see [60]). The
system has a fixed point at x = A and y = B/A which becomes unstable when B > 1 + A2 and
leads to oscillations. We place ourselves in this oscillatory regime by setting A = 1 and B = 3. The
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dynamics present large velocity variations in some time subintervals, making the use of adaptive
time-stepping schemes particularly desirable for an appropriate treatment of the transient.

For the coarse solver, we set
εG = 0.1,

and use an explicit Runge Kutta method of order 5 with an adaptive time-stepping (see [91]). For
the fine solver, we use the implicit Runge-Kutta method of the Radau IIA family of order 5 with
adaptive time-stepping (see [85, 81]). Both integrators are available in the ODE integration library
of Scipy1 which we have used in our library.

As already discussed, the target accuracies ζNk should be ensured by rigorous a posteriori error
estimators. However, these type of estimators are unfortunately not available in the Scipy library
and we are not aware of any mainstream library with this capability. As a surrogate, we have used
the above mentioned classical ODE integrators that only guarantee local accuracy between time-
steps tn → tn+1, but not global accuracy between macro intervals [TN , TN+1] (composed of several
time-steps). The local accuracy can be specified in the library routine via the parameters atol
and rtol of the function scipy.integrate.solve_ivp. To relate this local accuracy control to
the global one, we have built a priori a “chart” mapping accuracies of the solver on macro-intervals
against the tolerance parameters atol and rtol of the library. To simplify, these two parameters
have been set to be equal (atol = rtol) and their value is fixed according to the chart. As an
example, we provide a chart for T = 20 for the scheme of the fine solver in Figure 2.9. The dots
are computed values: for a given value of the parameter atol, we examine the accuracy ε of the
solver. We then interpolate the points with a cubic spline interpolation. This way, for a given
intermediate accuracy ζNk in the parareal algorithm, we can easily adapt the parameter value atol
that is required.

We use formula (2.2.9) to compare the speed-up of the classical and adaptive parareal algorithm
in terms of the number of operations involved in the numerical solution (communication delays
have not been taken into account). For the costs gNk and fNk , we take into account:

• the number of time steps (which is adaptively increased as we tightened the accuracy),

• the number of right-hand side evaluations,

• for the fine solver, we additionally count the number of evaluations of the Jacobian matrix
and of the number of linear system inversions.

In Figure 2.10, we plot the obtained speed-up for different configurations:

• the final time T varies from 100 to 900,

• the final target accuracy is η = 10−6 or η = 10−8,

• the number of processors N varies from 10 to 100.

The speed-up of the adaptive parareal is always superior to the one of the classical parareal. We
observe that the gain is marginal for a moderate accuracy (η = 10−6) but it is about 2.5 times larger
for η = 10−8. Note that sometimes the speed-up does not increase monotonically as the number
of processors N increases. Also, the speed-up generally increases with N but the increase is rather
moderate.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
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Figure 2.9: Mapping of the accuracies ε against the tolerance parameters (atol = rtol) of the
library. The dots are computed values: for a given value of the parameter, we examine the accuracy
ε of the solver. We then interpolate the points with a cubic spline interpolation. This way, for a
given intermediate accuracy ζNk in the algorithm, we can infer the parameter value atol and rtol.
Case T = 20, integrator of the fine solver.

The values significantly differ from the range of full scalability and we next explain why this is
mainly due to the cost of the coarse solver. Since the problem is stiff and we consider relatively long
time intervals, it has been necessary to use a sufficiently accurate coarse solver. This explains our
choice of an explicit Runge-Kutta scheme of order 5. To illustrate the impact of its cost, let us fix
T = 500, η = 10−8 and N = 50 (other parameters would yield similar conclusions). We compare
the speed-up and efficiency when we count or do not count the cost of the coarse solver in Table 2.1.
Obviously, when we do not count the cost of the coarse solver, the performance of both algorithms
improves but it is particularly increased in the case of the adaptive version. If the cost of G was
negligible, it would deliver a very satisfactory efficiency of 75.52%. This is five times larger than
what the classical parareal would yield. This analysis illustrates that the major obstacle to achieve
competitive scalabilities is no longer the cost of the fine solver like in the classical version, but the
cost of the coarse propagator.

We next give some insight on the differences in the convergence behavior of both algorithms.
We fix T = 20, η = 10−8 and N = 20 and plot in Figure 2.11 the convergence history of the parareal
solution in terms of:

• the errors of the fine solver at every fine time-step

• the maximum error of the parareal solution at the macro-intervals

max
N
‖u(TN )− yNk ‖

Note that the maximum error in the adaptive scheme steadily decreases to the desired accuracy
whereas the error in the classical scheme degrades at iteration k = 1 before converging. This type
of behavior has been observed for all other configurations and we conjecture that an important
difference in accuracy between the coarse and the fine solver at early stages of the algorithm may
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Figure 2.10: Speed-up in comparison to running a sequential fine solver as a function of the number
of processors N . Dashed lines: classical parareal. Continuous lines: Adaptive parareal.

Speed-up Classical parareal Adaptive Parareal
With cost G 4.06 7.38

Without cost G 7.38 37.76

Efficiency Classical parareal Adaptive Parareal
With cost G 8% 14.76%

Without cost G 14.76% 75.52%

Table 2.1: Brusselator: Impact of the cost of the coarse solver. Speed-up and efficiency with
T = 500, η = 10−8 and N = 50.
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Figure 2.11: Brusselator: Convergence history of the errors for T = 20, η = 10−8 and N = 20.
Top: classical parareal. Bottom: adaptive parareal. Left: errors of the fine solver at every fine
time-step. Right: maximum parareal error at each iteration k.
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be the cause. Finally, an inspection of the error of the fine solver shows that the adaptive algorithm
succeeds to reduce the error at every time t in a much more uniform way than the classical algorithm.

The Van der Pol oscillator We next consider the Van der Pol oscillator
{
x′ = y

y′ = µ(1− x2)y − x,

with initial condition x(0) = 2 and y(0) = 0. When µ = 0, this equation is a simple nonstiff
harmonic oscillator. When µ > 0, the system has a limit cycle and becomes stiffer and stiffer as its
value is increased. For our tests, we set µ = 4 which is already a relatively stiff case.

Like in the example of the Brusselator system, we set εG = 0.1 for the coarse solver and use
an explicit Runge Kutta method of order 5 with an adaptive time-stepping (see [91]). For the fine
solver, we use the implicit Runge-Kutta method of the Radau IIA family of order 5 with adaptive
time-stepping.

In Figure 2.12, we plot the obtained speed-up for different configurations:

• the final time T is 1000 or 2000,

• the final target accuracy is η = 10−6 or η = 10−8,

• the number of processors N varies from 10 to 100.

Like in the previous example, the adaptive algorithm outperforms the nonadaptive version in terms
of speed-up. However, the gain is marginal for moderate accuracies η = 10−6. For high accuracy
η = 10−8, the adaptive algorithm improves the speed-up by a factor of about 2 to 3 times with
respect to the classical one. The improvement is more significant for large T .

20 40 60 80 100
Nb Processors

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

d-
up

T=1000
=1e-06 (Adaptive)
=1e-06 (Non Adaptive)
=1e-08 (Adaptive)
=1e-08 (Non Adaptive)

20 40 60 80 100
Nb Processors

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

d-
up

T=2000
=1e-06 (Adaptive)
=1e-06 (Non Adaptive)
=1e-08 (Adaptive)
=1e-08 (Non Adaptive)

Figure 2.12: Van der Pol: speed-up in comparison to running a sequential fine solver as a function
of the number of processors N . Dashed lines: classical parareal. Continuous lines: Adaptive
parareal.

In Table 2.2, we illustrate that the coarse solver is again the main bottleneck to reach high
parallel efficiency in the adaptive algorithm: we examine the speed-up and efficiency for T = 2000,
η = 10−8 and N = 40 when we take and do not take into account the cost of the coarse solver.
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Speed-up Classical parareal Adaptive Parareal
With cost G 4.54 11.14

Without cost G 6.61 32.63

Efficiency Classical parareal Adaptive Parareal
With cost G 11.35% 27.8%

Without cost G 16.5% 81.56%

Table 2.2: Van der Pol: Impact of the cost of the coarse solver. Speed-up and efficiency with
T = 2000, η = 10−8 and N = 40.

2.2.8 Research Perspectives

Further investigations which could be pursued on this topic are:

• Further enhancements and applications of the adaptive parareal algorithm:

– The main bottleneck of the parareal algorithm after our contribution [A8] relies in the
cost of the coarse solver. One natural idea to explore is that if we need to repeat
the simulations for different parameter values, one could build a coarse solver based on
reduced modelling or machine learning techniques. An interesting element could be to
try to exploit the coarse solver propagations computed during the parareal iterations to
enrich the training set on the fly.

– It would be interesting to consider PDE problems in which the adaptive parareal algo-
rithm is coupled with adaptive spatial domain decomposition.

– The adaptive parareal algorithm could be applied to speed up optimal control problems
involving the solution of the Pontryagin Maximum Principle. In particular, this idea
could be leveraged for the training of ODE-Nets as we outline in our paper [S2].

• Alternative time domain decomposition techniques without a coarse solver: The
question of developing perfectly scalable algorithms based on domain decomposition is an old
problem which is still nowadays open because there does not seem to exist a general recipe
to succeed. This is particularly the case in transport dominated PDEs. To make progress
in this challenging task, it may be necessary to develop schemes that are not based on a
prediction-correction strategy like in the case of the parareal algorithm, but rather on “one-
shot” straightforward strategies. A direction which, in my view, may be promising would be
to search for coordinate transformations, possibly time-dependent, for which the nature of the
PDE in the transformed coordinates makes the problem easier to parallelize.

2.3 Model-Order Reduction for Transport Dominated Problems

In this Section I summarize [A6], a work in collaboration with V. Ehrlacher, D. Lombardi and
F.X. Vialard in which we extend the notion of of reduced order modeling to metric spaces, and
leverage the new point of view to address model reduction of transport dominated problems.
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2.3.1 Motivation

In modern applications of science, industry and numerous other fields, the available time for design
and decision-making is often short, and some tasks are even required to be performed in real time.
The process usually involves predictions of the state of complex systems which, in order to be
reliable, need to be described by sophisticated models. The predictions are generally the output
of inverse or optimal control problems that are formulated on these models and which cannot be
solved in real time unless the overall complexity has been appropriately reduced. Our focus lies in
the case where the model is given by a PDE that depends on certain parameters. In this setting,
the routines for prediction require to evaluate solutions of the PDE on a large set of dynamically
updated parameters. This motivates the search for accurate and online methods to approximate
the solutions at a reduced computational cost. Depending on the different scientific communities
and on the nature of the strategy to reduce the cost, this task is known under the name of reduced
modelling, model order reduction, surrogate modeling or metamodeling.

Following the notation of the main introduction (Section 1.1), we write the parametric PDE as

P(u, y) = 0, (2.3.1)

where P is a partial differential operator, and y = (y1, . . . , yp) is a vector of scalar parameters
ranging in some domain Y ⊂ Rp. We assume well-posedness, that is, for any y ∈ Y the problem
admits a unique solution u = u(y) in some Hilbert, Banach or metric space (V, d) with metric d.
The set of solutions when the parameters y range in Y defines the so-called solution manifold

M := {u(y) : y ∈ Y } ⊂ V

which we already introduced in equation (1.1.3) of Section 1.1.
The bottom line of most model reduction strategies has so far been based on posing the prob-

lem on a Hilbert or Banach space V and determining a “good” n-dimensional subspace Vn =
span{v1, . . . , vn} ⊂ V that yields efficient approximations of u(z) in Vn of the form

un(y) :=
n∑

i=1

ci(y)vi (2.3.2)

for some coefficients c1(y), · · · , cn(y) ∈ R. This approach is the backbone of most existing methods
among which stand the reduced basis method ([32, 30]), the empirical interpolation method and
its generalized version (G-EIM, [73, 64, A14, A12]), Principal Component Analysis (PCA, see [18,
Chapter 1]), polynomial-based methods like [54, 50] or low-rank methods ([51]).

The approximation quality of the obtained subspace Vn is either measured through the worst
case error

eVwc(M, Vn) := sup
y∈Y

inf
v∈Vn

d (u(y), v) ,

or the average error

eVav(M, Vn) :=

(∫

y∈Y
inf
v∈Vn

d2 (u(y), v) dµ(y)

)1/2

,

where µ is a probability measure on Y, given a priori and from which the parameters are sampled.
The reduction method is considered efficient if eVwc(M, Vn) or eVav(M, Vn) decays rapidly to 0 as

n goes to ∞. There is sound evidence of efficiency only in the case of certain elliptic and parabolic
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PDEs. More precisely, it has been shown in [28] that for this type of equations, under suitable
assumptions, the L∞-Kolmogorov width defined as

dVn (M) := inf
Vn⊂V

dimVn=n

eVwc(M, Vn) (2.3.3)

and the L2-Kolmogorov width

δVn (M) := inf
Vn⊂V

dimVn=n

eVav(M, Vn) (2.3.4)

decay exponentially or polynomially with high exponent as n grows. In the context of model reduc-
tion, this quantity gives the best possible performance that one can achieve when approximating
M with n-dimensional linear spaces.

Optimal linear subspaces Vn ⊂ V of dimension n which realize the infimum of (2.3.3) cannot
be computed in practice in general. However, it has been shown that greedy algorithms can be
used to build sequences of linear spaces (Vn)n≥1 whose approximation error eVwc(M, Vn) decay at
a comparable rate as the Kolmogorov n-width dVn (M). These algorithms are the backbone of the
so-called Reduced Basis method [48]. In the case of (2.3.4), the optimal subspaces for which the
minimum is attained are obtained using the PCA or Proper Orthogonal Decomposition (POD)
method.

In [A6], our goal has been to extend the above notion of model reduction to more general metric
spaces in view of the following facts:

• First of all, in the context of Banach or Hilbert spaces, linear methods are unfortunately
not well suited for hyperbolic problems. Among others, this is due to the transport of shock
discontinuities whose locations may vary together with the parameters. It was proved in [18,
Chapter 3, see equation (3.76)] that the L∞-Kolmogorov width of simple pure transport
problems decays very slowly, at a rate n−1/2 if V = L2 (similar examples can be found
in [29, 26, A10]). The same type of result has recently been derived for wave propagation
problems in [11]. These results highlight that linear methods of the type (2.3.2) are not
expected to provide a fast decay in numerous transport dominated problems, and may be
highly suboptimal in terms of the trade off between accuracy and numerical complexity. For
these classes of problems, an efficient strategy for model reduction requires to look for nonlinear
methods that capture the geometry ofM in a finer manner than linear spaces.

• In addition to the idea of searching for nonlinear methods, it may be beneficial to move from
the classical Banach/Hilbert metric framework to more general metric spaces in order to better
quantify the ability to capture specific important features like translations or shifts.

• Finally, this broader setting enlarges the scope of problems that can be treated. Relevant
classes of problems could be posed either on Banach spaces or on metric spaces and the latter
characterization may be more convenient for model reduction in some situations. To name
a few examples involving gradient flows, we cite [77] for Hele-Shaw flows, [58] for quantum
problems, [78] for porous media flows, [82] for Fokker-Planck equations and [35, 39] for Keller-
Segel models in chemotaxis. Other examples involving metric spaces that are not necessarily
related to gradient flows are [70] for the Camassa-Holm equation, [8] for the Hunter-Saxton
equation. Such examples can often be interpreted as a geodesic flow on a group of diffeo-
morphisms and can thus be encoded as Hamiltonian flows. In addition to this, there are
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other problems which cannot be defined on Banach vector spaces and can only be defined
over metric spaces. Consider for instance the case of a pure transport equation with constant
velocity where the initial data is a Dirac measure concentrated in one point. The solution of
this PDE remains at all times a (translated) Dirac mass. More generally, it has been proven
that solutions to certain nonlinear dissipative evolution equations with measure-valued initial
data are measure-valued and do not belong to some standard Lebesgue or Sobolev spaces.
They can however be formulated in the form of Wasserstein gradient flows.

2.3.2 Model Order Reduction in the L2-Wasserstein space

Setting: In [A6], we have developped a model order reduction method for conservation laws based
on the following remark: for any given parameter y ∈ Y, if the solution u(y) of a conservative PDE
is nonnegative, it induces a measure ρ(y) defined by

ρ(y)(A) :=

∫

A
u(y)(x)dx, for any borel subset A of Ω,

Thus we assume in the following that u(y) ≥ 0 and that
∫

Ω u(y)(x)dx = 1. We also assume that the
regularity of u(y) is such that the measure ρ(y) belongs to P2(Ω), the set of probability measures
on Ω with finite second-order moments. The space P2(Ω) is a metric space when endowed with the
L2-Wasserstein distance defined as

W2(u, v) := inf
π∈Π(u,v)

(∫

Ω×Ω
(x− y)2 dπ(x, y)

)1/2

, ∀(u, v) ∈ P2(Ω)× P2(Ω),

where Π(u, v) is the set of probability measures on Ω × Ω with marginals u and v. This space is
usually called the L2-Wasserstein space (see [75] for more details).

In the particular case of one dimensional marginal domains, the L2-Wasserstein distance can be
expressed using the inverse cumulative distribution functions as

W2(u, v) = ‖ icdf(u)− icdf(v)‖L2([0,1]). (2.3.5)

Wasserstein Barycenters: The proposed model reduction strategy is based on using Wasserstein
barycenters. We next recall the main definitions. Let n ∈ N∗ and let

Σn :=

{
(λ1, · · · , λn) ∈ [0, 1]n,

n∑

i=1

λi = 1

}

be the set of barycentric weights. For any Un = (ui)1≤i≤n ∈ P2(Ω)n and barycentric weights
Λn = (λi)1≤i≤n ∈ Σn, an associated barycenter is an element of P2(Ω) which minimizes

inf
v∈P2(Ω)

n∑

i=1

λiW
2
2 (v, ui). (2.3.6)

The existence of a minimizer is guaranteed under mild conditions. For instance, it suffices that at
least one barycentric function ui vanishes on small sets in the sense defined in [47]. In full generality,
minimizers to (2.3.6) may not be unique. In the following, we call Bar(Un,Λn) the set of minimizers
to (2.3.6), which is the set of barycenters of Un with barycentric weights Λn.
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We next introduce the notion of optimal barycenter of an element u ∈ P2(Ω) for a given family
Un ∈ P2(Ω)n. The set of barycenters with respect to Un is

Bn(Un) := {Bar(Un,Λn) : Λn ∈ Σn}
and an optimal barycenter of the function u ∈ V with respect to the set Un is a minimizer of

min
b∈Bn(Un)

W 2
2 (u, b). (2.3.7)

This problem can equivalently be written as the search for optimal barycentric weights

Λ∗n(u) ∈ arg min
Λn∈Σn

W 2
2 (u,Bar(Un,Λn))

In other words, a minimizer to (2.3.7) has the form Bar(Un,Λ
∗
n(u)) and it is the projection of u on

the set of barycenters Bn(Un).

A Barycentric Greedy Algorithm: In [A6] we explored two model reduction strategies for
conservation laws. The first was the so-called Tangent PCA method (tPCA), which consists in
mapping the manifold to a tangent space and performing a standard PCA on this linearization.
This method has drawn significant attention in numerous fields like pattern recognition, shape
analysis, medical imaging, computer vision (see [74, 37]). It is well-documented that this approach
suffers from certain stability issues. In [A6] we have developed an alternative strategy based on a
barycentric greedy algorithm which we call gBar in the following. To the best of our knowledge,
this strategy is novel, and it could be used as an alternative to tPCA in other applications apart
from model reduction.

The advantages of our appoach with respect to tPCA are the following. Our strategy can be
defined for general metric spaces (V, d). Contrary to tPCA, the space does not need to be embedded
with a Riemannian manifold structure. The method is also guaranteed to be stable in the sense
that all the steps of the algorithm are well-defined. The stability comes at the price of difficulties in
connecting theoretically its approximation quality with optimal performance quantities. Thus its
quality has been evaluated through numerical examples.

The offline phase of the gBar method is an iterative algorithm which can be written as follows:

• Compute a training set of functionsMtr ⊂M associated to training parameters Ytr.

• Initialization: Find (u1, u2) ∈Mtr ×Mtr such that

(u1, u2) ∈ argmax
(v1,v2)∈Mtr×Mtr

d(v1, v2)2,

and define U2 := {u1, u2}. Then compute and store

Λ2(y) ∈ argmin
Λ2∈Σ2

d (u(y),Bar(U2,Λ2))2 , ∀y ∈ Ytr.

• Iteration n ≥ 3: Find un ∈Mtr such that

un ∈ argmax
v∈Mtr

min
b∈Bn−1(Un−1)

d(v, b)2.

and set Un := Un−1 ∪ {un}. Then compute and store

Λn(y) ∈ argmin
Λn∈Σn

d (u(y),Bar(Un,Λn))2 , ∀y ∈ Ytr.

44



• Terminal Step: For a given target accuracy ε > 0, the algorithm terminates when

max
ỹ∈Ytr

min
b∈Bn−1(Un−1)

d(u(ỹ), b)2 = min
b∈Bn−1(Un−1)

d(u(yn), b)2 < ε2.

Note that the gBar algorithm selects via a greedy procedure particular snapshots

Un = {u(y1), · · · , u(yn)}

in order to approximate as well as possible each element u(y) ∈ Mtr with its optimal barycenter
associated to the family Un. The barycentric weights have to be determined via an optimization
procedure. We momentarily postpone the discussion on the feasibility of all the steps in order to
present the online procedure.

In principle, we can consider two different versions of the online phase of the gBar algorithm:

• Projection: Let y ∈ Y. Compute Λn(y) ∈ Σn a minimizer of

Λn(y) ∈ argmin
Λn∈Σn

d(u(y),Bar(Un,Λn))2,

and approximate u(y) with ugBar,proj
n (y) ∈ Bar(Un,Λn(y)).

• Interpolation: From the values (Λn(y))y∈Ytr
which are known from the offline stage, compute

an interpolant Λn : Y → Σn such that

Λn(y) = Λn(y), ∀y ∈ Ytr.

For a given y ∈ Y, we approximate u(y) with ugBar,interp
n (y) ∈ Bar(Un,Λn(y)).

In practice, the only viable online strategy is the one based on the interpolation of the barycentric
coefficients since the projection method requires the computation of the full solution u(y) for y ∈ Y.
Both approaches are purely data-driven and do not involve solving the original PDE in a reduced
space or manifold in the online phase. We compare the quality of both strategies in our numerical
tests.

Challenges for practical implementation in the L2-Wasserstein space: We apply the gBar
algorithm to conservation laws using the L2-Wasserstein distance. In this case, the implementation
of the above steps crucially relies in the ability to accurately compute Wasserstein distances and
barycenters. It is also required that the computation of barycenters is fast enough in order to
guarantee that the online step is competitive with respect to directly computing the solution with
the high fidelity numerical solver. In the case of one spatial dimension, computations are greatly
facilitated and sped up thanks to the existence of the closed form (2.3.5) for the Wasserstein distance.
As a consequence, this entails that the computation of the optimal barycentric weights becomes a
simple convex quadratic optimization problem. In [A6], we leverage these facts to show in numerical
examples that the strategy is online efficient. As we illustrate in our numerical examples below, the
obtained speed-ups factors were of the order of 5.102 compared to a direct computation with the
high-fidelity solver.

The extension to higher spatial dimensions is far from trivial from a practical computational
standpoint. One viable possibility is to resort to entropic regularized version of the Wasserstein
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distance, leading to Sinkhorn-type algorithms amenable for computation (see [15]). In a current
collaboration with Hieu Do, a post-doctoral student under my supervision, and Jean Feydy (postdoc
at Imperial College), we are currently exploring the potential of the same algorithm by replacing
W2 with the regularized version W

(η)
2 where η > 0 is a regularization parameter (see, e.g., [15,

Chapter 4] for the definition). In this setting, it is possible to compute barycenters with a Sinkhorn-
type algorithm. With a highly optimized implementation that resorts to the latest developments
in numerical optimal transport, if the functions are discretized with N degrees of freedom, the
incompressible cost of the barycentric computation is of the order O(nN logN) with a proportion-
ality factor that depends mildly on the dimension d. Although this cost may seem large because it
involves the degrees of freedom of the high-fidelity discretization, note that the cost of computing
one single time step with a classical solver is at least of order O(N (1+α)) where α > 0 depends on
the specific matrix system to invert and the solver used to perform the inversion. As a result, when
N � 1 and the number of calls is sufficiently large, one can expect significant gains in computing
times.

2.3.3 Numerical Experiments

As a support for our tests, we consider in [A6] four different conservative PDEs in one space
dimension:

• An inviscid and Burgers’ equation for which we have explicit expressions of the solutions and
some theoretical estimates of the performance of the method (see [A6]).

• A version with viscosity of the previous Burgers’ equation.

• A Camassa Holm equation.

• A Korteveg de Vries equation.

For each PDE, we compare the performance of the four following model reduction methods:

• The classical linear PCA method in L2,

• The tangent PCA method in W2,

• The gBar method (with interpolation and projection) in W2.

The performance is measured in terms of the average and worst case approximation error of a
set on a discrete test set of 500 functions. Each test set is different from the training set Mtr.
The training set is composed of randomly generated snapshots. For every example, the number
of training snapshots is #Mtr = 5.103 (see [A6] for a discussion on the impact of the number of
training snapshots).

In addition to the error study, we also provide run time statistics but only for the case of the
viscous Burgers’ equation since it is the only example that involves a high-fidelity solver. In the
case of the inviscid Burgers’ equation and KdV, the exact solutions can be explicitly written down
with formulas so we did not use a solver to which we can compare ourselves to. In the case of
the Camassa Holm equation, the solution was nearly analytic too and we could not consider its
numerical solution as a representative example which involves a solver.

The code to reproduce the numerical results is available online at:
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https://github.com/olga-mula/2019-RBM-metric-spaces

For each PDE example, we also provide reconstruction videos of a full propagation on the same
link. In this manuscript, we only report results for the viscous Burgers’ equation for the sake of
brevity.

Viscous Burgers’ Equation: The considered equation is

ut +
1

2
(u2)x − ν∂2

xu = 0, ρ(0, x, y) =





0, −3 ≤ x < 0

h, 0 ≤ x < 1
h

0, 1
h ≤ x ≤ 5,

where the parameters are h ∈ [0.5, 3], the viscosity term ν ∈ [5.10−5, 0.1], and the time t ∈ [0, 3].
The parameter domain is thus

Y = {(t, y, ν) ∈ [0, 3]× [0.5, 3]× [5.10−5, 0.1]}.

The spatial coordinate is x and it ranges in Ω = [−3, 5] in our computations.
Figure 2.13 gives the errors in average and worst case sense for the test set Mtest. If we first

examine the errors in the natural norms (plots on the left), it appears that the errors in tPCA do not
seem to decay significantly faster than in PCA. Also, the approach with barycenters does not seem
to give a very good performance and seems to perform worse than PCA. In order to make a “fair”
comparison, it is necessary to mesure errors in a common metric which is “fair” for all approaches
and which also quantifies the potential numerical instabilities of tPCA. Since we are looking for
metrics that quantify the quality of transport rather than spatial averages, we discard the L2 metric
in favor of the H−1 metric which can be seen as a relaxation of the W2 distance. The space H−1 is
taken here as the dual of H1

0 and its norm computed accordingly. When we examine the errors in
the unified H−1 metric, we see that all the nonlinear methods are clearly outperforming PCA. This
is more in accordance with what we visually observe when we examine the reconstructed functions
given by each method (see Figure 2.16). Note that in this particular example the tPCA presents a
sharp unnatural spike at the propagation front, due to the above discussed stability issues of this
method. This is in contrast to the approach with barycenters which does not suffer from this issue
at the cost of slightly degrading the final approximation quality. Like for the other examples, the
reader may watch videos of the reconstruction on the link above.

We next provide run time statistics for this test case. For any u ∈ Mtr, let rHF(u), rPCA(u),
rtPCA(u), rgBar(u) and rinterpgBar (u) be the respective run times of the high-fidelity solver, and of the
PCA, tPCA, and gBar with projection and interpolation methods. The high-fidelity solver uses an
explicit piecewise linear finite-volume method to evaluate the advective flux and then discretize the
diffusion part implicitly (Crank-Nicolson) with the advective piece as a source to update in time.
The resulting discretization is second-order in space and time. For each dynamic, the time step δt
is fixed to be sufficiently small in order to satisfy a CFL condition. Figure 2.14 shows, as a function
of the reduced dimension n, the average and the median of the ratios between the run time of a
given method and the run time of the high-fidelity computation,

R∗av =
1

#Mtr

∑

u∈Mtr

r∗(u)

rHF(u)
and R∗median = median

{
r∗(u)

rHF(u)
: u ∈Mtr

}
.
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Figure 2.13: Errors onMtest for the ViscousBurgers equation. Top figures: average error. Bottom
figures: worst case error. Left: natural norms. Right: H−1 norm.
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The ∗ symbol denotes all the previous methods. The figure shows that the run time is reduced by a
factor of about 100 in average and of about 500 in the median for all the methods. We observe that
the classical PCA is slightly faster than tPCA and the gBar algorithm. This is essentially related
to the fact that we need to compute exponential maps for the latter methods. We may also note
that the run time remains constant with n: we think that this is due to the fact that n is pretty
small and expect a mild increase for larger values of n. One last final observation for these plots is
to remark that the gBar method with interpolation performs almost identically than the one with
interpolation.
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Figure 2.14: Run times as a function of the dimension n: Average R∗av (left plot) and median R∗median
(right plot).

Since the time variable is treated as a parameter in our approach, it is interesting to compare run
times with respect to t since we expect that the high-fidelity method will be faster for smaller times.
Figure 2.15 shows the run times to compute each snapshot ofMtr as a function of its corresponding
parameter t (we take n = 20). We observe that the reduced models are significantly faster, even for
small values of t. As expected, the difference grows as t increases.
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Figure 2.15: Run times to compute each snapshot ofMtr as a function of the parameter t (n = 20).

49



2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

Ex
ac

t

2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

PC
A

2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

PC
A

2 0 2 4
x

0.0

0.5

1.0

1.5

tP
CA

2 0 2 4
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

tP
CA

2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ry

2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

Ba
ry

Figure 2.16: ViscousBurgers equation: Reconstruction of a function with n = 5 (left) and n = 10
(right). Black: exact function. Red: PCA. Green: tPCA. Blue: gBar.
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2.3.4 Research Perspectives

There are numerous research perspectives connected to the question of model reduction for parametrized,
transport dominated PDEs which I would like to explore in the future. We start by discussing some
perspectives directly related to [A6] and then enlarge the scope of the discussion:

• Enhancing the theoretical foundations: In [A6] we were able to develop some theoretical
statements in order to show the potential of the approach. However, the results were very
pessimistic compared to what we observed in the numerical tests. Can we find better strategies
of proof to give sharper bounds? And more importantly, in [48, 41] it was proven that greedy
algorithms for Hilbert and Banach spaces had a similar rate of convergence as the Kolmogorov
width. Can we relate the decay rate of the gBar algorithm to some adapted version of the
Kolmogorov width for metric spaces?

• Extension to higher dimensions: As already mentionned above, I am working with H. Do
and J. Feydy in the extension to dimension 2 and 3 of the same type of algorithm. We
resort to the entropic regularized version of the Wasserstein distance in order to leverage the
latest developments in numerical optimal transport to build online efficient strategies. The
development requires a highly optimized GPU implementation which is currently in progress.

• Nonlinear dimensionality reduction: One can further refine the above strategy by adap-
tively choosing the barycentric functions Un for each given y. This could be done by a
parameter splitting strategy in the spirit of our approach in [S3] for nonlinear linear in-
verse state estimation, or by nonlinear dimensionality learning strategies such as Isomap (see
e.g. [71]), which aims at finding locally low-dimensional isometric embeddings. This type of
ideas are being tested with H. Do, J. Feydy. I am also engaged in another collaboration with
Prof. D. Guignard on these topics.

• Metric Learning, beyond conservation laws: Since each instance of the entropic regu-
larization parameter leads to a different metric, the optimization over these parameters will
naturally lead to metric learning strategies. In addition, it will be possible to address certain
families of non-conservative problems thanks to the unbalanced formulation of optimal trans-
port (see e.g. [13]). This will also require learning the additional parameters required in this
approach.

• Foreseen limitations, thoughts on possible remedies, and further directions:

– Classes of problems: Although we expect that the above approach will significantly
broaden the scope of problems that can efficiently be addressed in forward reduced mod-
elling, it seems clear that the success of the above strategy is linked to the question as to
whether the problem presents a somewhat “additive transport structure”, where regions
with high density are stretched or contracted. Problems that we think can possibly be
well described by this property are Burgers’ equations, KdV, Gross–Pitaevskii, Vlasov–
Poisson equations (and possibly others). However, PDEs such as the wave equation are
expected to pose problems and in general any PDE whose solution is not positive poses a
challenge. Although the naive approach would be to add a sufficiently large constant to
make the solutions positive, we do not expect that this would work because it may pro-
duce concentrations on regions with depressions. A possible strategy in this case would
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be to search for a lifting in a higher dimensional space by appropriately transporting the
graphs (x, y, u(y)) ∈ Ω×Y ×M.

– Very high dimension: Despite the development of efficient numerical approaches for
the computation of optimal transport distances and barycenters, these computations still
remain intractable when the dimension d of the problem becomes very high. One possible
angle of attack in this context is to approximate the solutions with mixtures of Gaussians
or mixtures of densities supported on polygons with simple shapes where we can ressort
to closed forms for the Wasserstein distances. Since optimal transport plans between
mixture models are usually not mixture models themselves, we could consider variants of
the Wasserstein distance by restricting the set of possible coupling measures to certain
mixture models as has recently been studied in [4].

– How can nonlinear approximation methods coming from Machine Learning
help to address the problem? Given the tremendous impact that learning with Deep
Neural Networks is having in a variety of applicative problems, it is natural to wonder
how to leverage this type of approach to address the present topic of nonlinear model
reduction of transport dominated PDEs. In the framework of Agustín Somacal’s PhD
thesis which I am co-supervising with Prof. A. Cohen, we are exploring several ideas in
this direction.
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Chapter 3

Inverse state and parameter estimation
using reduced models

In this chapter I give an overview of my works on inverse problems:

• Sections 3.1 to 3.4 summarize the theory and algorithms of state and parameter estimation
framework that my collaborators and I have built in [A10, A4, S3].

• Section 3.5 summarizes my contributions in applying the methodology to applications (neu-
tronics [A9, P1, P2, 10], and biomedicine [A2, A3, S1]). I also include another application
related to epidemiology forecasting in which the method is not directly built from the previous
theoretical developments (see [A1]).

• Section 3.6 discusses future research directions in the field of inverse problems.

3.1 Optimality Benchmarks for State Estimation

Let V be a Hilbert space defined over a domain Ω ⊆ Rd and equipped with some norm ‖ · ‖ and
inner product 〈·, ·〉. We want to recover an approximation to an unknown function u ∈ V from data
given by m linear measurements

`i(u), i = 1, . . . ,m,

where the `i are m linearly independent linear functionals over V . This problem appears in many
different settings. The particular one that motivates our work is the case where u = u(y) represents
the state of a physical system described as a solution to a parametric PDE

P(u, y) = 0 (3.1.1)

for some unknown parameter vector y = (y1, . . . , yp) that belongs to some admissible set Y ⊆ Rp.
The dimension p of the parameter space can be finite or infinite. The `i are a mathematical model
for sensors that capture some partial information on the unknown solution u(y) ∈ V .

Denoting by ωi ∈ V the Riesz representers of the `i, such that `i(v) = 〈ωi, v〉 for all v ∈ V , and
defining

W := span{ω1, . . . , ωm},
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the measurements are equivalently represented by

w = PWu,

where PW is the orthogonal projection from V onto W . A recovery algorithm is a computable map

A : W → V

and the approximation to u obtained by this algorithm is

u∗ = A(w) = A(PWu).

The construction of A should be based on the available prior information that describes the prop-
erties of the unknown u, and the evaluation of its performance needs to be defined in some precise
sense. Two distinct approaches are usually followed:

• In the deterministic setting, the sole prior information is that u belongs to the set

M := {u(y) : y ∈ Y }, (3.1.2)

of all possible solutions. The set M is sometimes called the solution manifold. The perfor-
mance of an algorithm A over the classM is usually measured by the “worst case” reconstruc-
tion error

Ewc(A,M) = sup{‖u−A(PWu)‖ : u ∈M}. (3.1.3)

The problem of finding an algorithm that minimizes Ewc(A) is called optimal recovery. It has
been extensively studied for convex sets M that are balls of smoothness classes [87, 92, 62],
which is not the case for (3.1.2).

• In the stochastic setting, the prior information on u is described by a probability distribution
p on V , which is supported onM, typically induced by a probability distribution on Y that
is assumed to be known. It is then natural to measure the performance of an algorithm in an
averaged sense, for example through the mean-square error

Ems(A, p) = E(‖u−A(PWu)‖2) =

∫

V
‖u−A(PWu)‖2dp(u). (3.1.4)

This stochastic setting is the starting point for Bayesian estimation methods [23]. Let us
observe that for any algorithm A one has Ems(A, p) ≤ Ewc(A,M)2.

Note that, of course, in full generality, the measurement observations are noisy and the target
function u may not belong to M due to model error. For the sake of clarity, we will carry the
discussion by placing ourselves in the ideal case of no noise and no model error, and we will discuss
how to analyze noise and model error later on in the manuscript.

My contributions concentrate mostly on the deterministic setting according to the above dis-
tinction, although we gave some remarks on the analogies with the stochastic setting in [A4]. In
the deterministic setting, the performance benchmark of recovery algorithms is given by

E∗wc(M) = inf
A:W→V

Ewc(A,M),
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where the infimum is taken over all possible maps A : W → V .
There is a simple mathematical description of an optimal map that meets this benchmark. To

define it, we note that in the absence of model bias and when a noiseless measurement w = PWu is
given, our knowledge on u is that it belongs to the set

Mw :=M∩ (ω +W⊥). (3.1.5)

The best possible recovery map can be described through the following general notion.

Definition 1. The Chebychev ball of a bounded set S ∈ V is the closed ball B(v, r) of minimal
radius that contains S. One denotes by v = cen(S) the Chebychev center of S and r = rad(S) its
Chebychev radius.

In particular one has
1

2
diam(S) ≤ rad(S) ≤ diam(S), (3.1.6)

where diam(S) := sup{‖u− v‖ : u, v ∈ S} is the diameter of S. Therefore, the recovery map that
minimizes the worst case error overMw for any given w, and therefore overM is defined by

A∗wc(w) = cen(Mw). (3.1.7)

Its associated worst case error is

E∗wc(M) = sup{rad(Mw) : w ∈W}.

Note that the map A∗wc is also optimal among all algorithms for each Mw, where w ∈ PW (M),
since

Ewc(A
∗
wc,Mw) = min

A
Ewc(A,Mw) = rad(Mw), ∀w ∈ PW (M).

However, there may exist other maps A such that Ewc(A,M) = E∗wc(M), since we also supremize
over w ∈ PW (M).

In view of the equivalence (3.1.6), we can relate E∗wc(M) to the quantity

δ0 = δ0(M,W ) := sup{diam(Mw) : w ∈W} = sup{‖u− v‖ : u, v ∈M, u− v ∈W⊥}, (3.1.8)

by the equivalence
1

2
δ0 ≤ E∗wc(M) ≤ δ0. (3.1.9)

Note that injectivity of the measurement map PW overM is equivalent to δ0 = 0. We provide in
Figure (3.6a) an illustration of the mapping A∗wc and of the above benchmark concepts.

If w = PWu for some u ∈M, then any u∗ ∈M such that PWu∗ = w, meets the ideal benchmark
‖u − u∗‖ ≤ δ0. Therefore, one way of finding such a u∗ would be to minimize the distance to the
manifold over all functions v ∈ V such that PW v = w, that is, to solve

min
v∈ω+W⊥

dist(v,M) = min
v∈ω+W⊥

min
y∈Y
‖u(y)− v‖.

This problem is computationally out of reach since it amounts to the nested minimization of two non-
convex functions in high dimension, and motivates the search for suboptimal, yet computationally
feasible algorithms. We discuss our contributions on this front in Sections 3.2, to 3.4. Section 3.5
will be devoted to applications to which we have brought the developed methodology.
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3.2 Optimal Affine Algorithms

3.2.1 Definition and preliminary remarks

In practice the above map A∗wc cannot be easily constructed due to the fact that the solution
manifoldM is a high-dimensional and geometrically complex object. One is therefore interested in
designing “sub-optimal yet good” recovery algorithms and analyze their performance. One possibility
in this direction is to restrict the search to linear recovery mappings A ∈ L(W,V ). One vehicle for
constructing them is to use reduced modeling.

Generally speaking, reduced models consist of linear spaces (Vn)n≥0 with increasing dimension
dim(Vn) = n which uniformly approximate the solution manifold in the sense that

dist(M, Vn) := max
u∈M

‖u− PVnu‖ ≤ εn, (3.2.1)

where
ε0 ≥ ε1 ≥ · · · ≥ εn ≥ · · · ≥ 0,

are known tolerances. Instances of reduced models for parametrized families of PDEs with provable
accuracy are provided by polynomial approximations in the y variable [31, 50] or reduced bases
[44, 67]. The construction of a reduced model is typically done offline, using a large training set of
instances of u ∈ M called snapshots. The offline stage potentially has a high computational cost.
Once this is done, the online cost of recovering u∗ = A(w) from any data w using this reduced
model should in contrast be moderate.

In [33], a simple reduced-model based recovery algorithm was proposed. Assuming that we
have a reduced model Vn, the algorithm, called Parametrized Background Data-Weak (PBDW), is
defined in terms of the map

An(w) := argmin{dist(v, Vn) : v ∈ ω +W⊥}, (3.2.2)

which is well defined provided that Vn ∩W⊥ = {0}. A necessary (but not sufficient) condition to
guarantee this is to have n ≤ m, which we will assume in the following. As a side-remark, it is
interesting to note that the reconstruction algorithm (3.2.2) was proposed simultaneously in the field
of model order reduction and by researchers seeking to build infinite dimensional generalizations of
compressed sensing (see [38]). In the applications of this community, Vn is usually chosen to be a
“multi-purpose” basis such as the Fourier basis, as opposed to our current envisaged applications in
which Vn is a subspace specifically tailored to approximate M. The analysis that follows remains
however valid also for these types of “multi-purpose” spaces.

We can easily prove that An is a linear mapping and it was shown in [19] that An has a simple
interpretation in terms of the cylinder

Kn := {v ∈ V : dist(v, Vn) ≤ εn}, (3.2.3)

that contains the solution manifoldM. Namely, the algorithm An is also given by

An(w) = cen(Kn,w), Kn,w := Kn ∩ (ω +W⊥),

and the map is shown to be the optimal when M is replaced by the simpler containment set Kn,
that is

An = arg min
A:W→V

Ewc(A,Kn).
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The substantial advantage of this approach is that, in contrast to A∗wc, the map An can be easily
computed by solving a simple least-squares minimization problem of size n × m. Note that An
depends on Vn and W , but not on εn in view of (3.2.2). This is important because εn is only known
approximately in practice.

This algorithm satisfies the performance bound

‖u−An(PWu)‖ ≤ µndist(u, Vn ⊕ (V ⊥n ∩W )) ≤ µndist(u, Vn) ≤ µnεn, (3.2.4)

where the last inequality holds when u ∈M. Here

µn = µ(Vn,W ) := max
v∈Vn

‖v‖
‖PW v‖

is the inverse of the inf-sup constant

βn := min
v∈Vn

max
w∈W

〈v, w〉
‖v‖ ‖w‖ ,

which describes the angle between Vn and W . In particular µn = ∞ in the event where Vn ∩W⊥
is non-trivial.

An important observation is that the PBDW algorithm (3.2.2) has a simple extension to the
setting where Vn is an affine space rather than a linear space, namely, when

V (aff)
n = ū+ Vn, (3.2.5)

with Vn a linear subspace of dimension n and ū a given offset that is known to us. In this case,
denoting

ω̄ := PW ū,

the affine version of (3.2.2) reads

A(aff)
n (w) := arg min{dist(v, ū+ Vn) : v ∈ ω +W⊥}, (3.2.6)

which can also be written as
A(aff)
n (w) = ū+An(ω − ω̄).

At first sight, affine spaces do not bring any significant improvement in terms of approximating the
solution manifold, due to the following elementary observation: ifM is approximated with accuracy
ε by an n-dimensional affine space Vn given by (3.2.5), it is also approximated with accuracy ε̃ ≤ ε
by the n+ 1-dimensional linear space

Ṽn+1 := Vn ⊕ Rū.

However, the choice of an affine subspace may significantly improve the performance of the algorithm
(3.2.2) in the case where the parametric solution u(y) is a “small perturbation” of a nominal solution
ū = u(ȳ) for some ȳ ∈ Y , in the sense that

diam(M)� ‖u‖.

Indeed, suppose in addition that ū is badly aligned with respect to the measurement space W in
the sense that

‖PW ū‖ � ‖u‖.
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In such a case, any linear space Vn that is well tailored to approximating the solution manifold (for
example a reduced basis space) will contain a direction close to that of ū and thus, we will have
that µn � 1, rendering the reconstruction by the linear PBDW method much less accurate than the
approximation error by Vn. The use of the affine mapping (3.2.5) has the advantage of elimitating
the bad direction ū since µn will now be computed with respect to the linear part Ṽn.

The standard constructions of reduced models are targeted at making the spaces Vn as efficient
as possible for approximating M, that is, making εn as small as possible for each given n. For
example, for the reduced basis spaces, it is known [48, 41] that a certain greedy selection of snapshots
generates spaces Vn such that dist(M, Vn) decays at the same rate (polynomial or exponential) as
the Kolmogorov n-width

dn(M) := inf{ dist(M, E) : dim(E) = n}. (3.2.7)

However these constructions do not ensure the control of µn and therefore these reduced spaces may
be much less efficient when using the PBDW algorithm for the recovery problem.

In view of the above observations, two main strategies are possible. First, we can build affine
spaces Vn that are better targeted towards the recovery task. In other words, we want to build the
spaces Vn to make the recovery algorithm An as efficient as possible, given the measurement space
W . This was the topic of our work [A4] which I summarize in Sections 3.2.2 and 3.2.3, and where
we develop an implementable method to find the optimal affine subspace for the reconstruction
task. A second strategy can be considered if we are allowed to select the measurement functionals
`i from some admissible dictionary. This amounts to optimizing the space W and was the topic of
our work [A10] which I summarize in Section 3.3. In Section 3.4 we present a strategy that goes
beyond linear and affine algorithms.

3.2.2 Characterization of Affine Algorithms

The goal of our contribution [A4] was to characterize the best affine subspace Vn to apply the
PBDW algorithm (3.2.6), and to develop an implementable strategy to find it. Here, we consider
our measurement system to be imposed on us, and therefore W is fixed.

It turns out that searching for the best affine subspace Vn for the PBDW algorithm (3.2.6) is
equivalent to searching for the best affine reconstruction map A∗aff : W → V defined as

A∗aff ∈ arg min
A:W→V
A affine

Ewc(A,M), (3.2.8)

where the existence of the minimum is guaranteed under very mild assumptions as we outline next.
The algorithm A∗aff reaches the performance among all affine algorithms, namely,

Ewc(A
∗
aff,M) = E∗wca(M) := min

A:W→V
A affine

Ewc(A,M). (3.2.9)

Note that we wrote E∗wca(M) with the subindex “wca” to indicate that it is the optimal performance
in the worst case sense among all affine maps. Obviously, E∗wca(M) ≥ E∗wc(M) since E∗wc(M) is the
optimal performance in the worst case among all maps (affine and nonlinear) as defined in (3.2.9).

We next characterize A∗aff. In order to do this, as a first observation, note that since we are given
the measurement observation w, any algorithm A which is a candidate to optimality must satisfy
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PW (A(w)) = w (otherwise the reconstruction error would not be minimized). Thus a necessary
condition for optimality is that A should have the form

A(w) = w +B(w), (3.2.10)

where B : W →W⊥ with W⊥ the orthogonal complement of W in V . Therefore, in going further,
we always require that A has the above form (3.2.10) and concentrate on the construction of good
affine maps B.

Our next observation is that any affine algorithm A of the form (3.2.10) can always be interpreted
as a PBDW algorithm An for a certain space Vn with n ≤ m.

Lemma 3.2.1 (See [A4]). A is an affine map of the form (3.2.10) if and only if there there exists
ū ∈ V and a linear subspace Vn of dimension n ≤ m such that A coincides with the affine PBDW
algorithm (3.2.6) for V (aff)

n = ū+ Vn.

In view of this result, the search for an affine reduced model ū+ Vn that is best tailored to the
recovery problem is equivalent to the search of an optimal affine map. Our next result is that such
an optimal map always exist whenM is a bounded set.

Theorem 3.2.2. LetM be a bounded set. Then there exists a map A∗wca that minimizes Ewc(A,M)
among all affine maps A.

3.2.3 A practical algorithm for optimal affine recovery and some numerical tests

Discretization and truncation: Since we are searching among algorithms of the form (3.2.10),
we have that

Ewc(A
∗
aff,M) = min

A:W→V affine
max
u∈M

||u−A(ω)||

= min
B:W→W⊥ affine

max
u∈M

||u− ω −B(ω)||

= min
c∈W⊥, B:W→W⊥ linear

max
u∈M

||PW⊥u− c−B(ω)||.

This means that the optimal affine recovery map is obtained by minimizing the convex function

F (c,B) = max
u∈M

‖PW⊥u− c−B(PWu)‖,

over W⊥ × L(W,W⊥). This optimization problem cannot be solved exactly for two reasons:

1. The sets W⊥ as well as L(W,W⊥) are infinite dimensional when V is infinite dimensional.

2. One single evaluation of F (c,B) requires in principle to explore the entire manifoldM.

The first difficulty is solved by replacing V by a subspace ZN of finite dimension dim(ZN ) = N
that approximates the solution manifoldM with an accuracy of smaller order than that expected
for the recovery error. One possibility is to use a finite element space ZN = Vh of sufficiently small
mesh size h. However its resulting dimension N = N(h) needed to reach the accuracy could still
be quite large. An alternative is to use reduced model spaces ZN which are more efficient for the
approximation ofM, as we discuss further.
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We therefore minimize F (c,B) over W̃⊥×L(W, W̃⊥), where W̃⊥ is the orthogonal complement
of W in the space W + ZN , and obtain an affine map Ãwca defined by

Ãwca(w) = w + c̄+ B̄w, (c̄, B̄) := arg min{F̃ (c,B) : c ∈ W̃⊥, B ∈ L(W, W̃⊥)}.

with
F̃ (c,B) = max

u∈M̃
‖PW⊥u− c−B(PWu)‖.

In order to compare the performance of Ãwca(w) with that of A∗wca, we first observe that

‖PW⊥u− PW̃⊥u‖ ≤ εN := sup
u∈M

dist(u, ZN ).

For any (c,B) ∈ W⊥ × L(W,W⊥), we define (c̃, B̃) ∈ W̃⊥ × L(W, W̃⊥) by c̃ = P
W̃⊥

c and B̃ =
P
W̃⊥
◦B. Then, for any u ∈M,

‖PW⊥u− c̃− B̃(PWu)‖ ≤ ‖P
W̃⊥

(PW⊥u− c−B(PWu))‖+ ‖PW⊥u− PW̃⊥u‖
≤ ‖PW⊥u− c−BPWu‖+ εN .

It follows that we have the framing

E(A∗wca,M) ≤ E(Ãwca,M) ≤ E(A∗wca,M) + εN , (3.2.11)

which shows that the loss in the recovery error is at most of the order εN .
To understand how large N should be, let us observe that a recovery map A of the form (3.2.10)

takes it value in the linear space
Fm+1 = Rc+ range(B),

which has dimensionm+1. It follows that the recovery error is always larger than the approximation
error by such a space. Therefore

Ewc(A
∗
wca,M) ≥ dm+1(M),

where dm+1(M) is the Kolmogorov n-width defined by (3.2.7) for n = m + 1. Therefore, if we
could use the space Zn that exactly achieves the infimum in (3.2.7), we would be ensured that, with
N = m+ 1, the additional error εN = δm+1(M) in (3.2.11) is of smaller order than Ewc(A

∗
wca,M).

As a result we would obtain the framing

E(A∗wca,M) ≤ E(Ãwca,M) ≤ 2E(A∗wca,M).

In practice, since we do not have access to the n-width spaces, we use instead the reduced basis
spaces Zn := Vn which are expected to have comparable approximation performances in view of the
results from [48, 41]. We take N larger than m but of comparable order.

The second difficulty is solved by replacing the setM in the supremum that defines F (c,B) by
a discrete training set M̃, which corresponds to a discretization Ỹ of the parameter domain Y , that
is

M̃ := {u(y) : y ∈ Ỹ },
with finite cardinality.
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We therefore minimize over W̃⊥ × L(W, W̃⊥) the function

F̃ (c,B) = sup
u∈M̃

‖PW⊥u− c−BPWu‖,

which is computable. The additional error resulting from this discretization can be controlled from
the resolution of the discretization. Namely, let ε > 0 be the smallest value such that M̃ is an
ε-approximation net of M, that is, M is covered by the balls B(u, ε) for u ∈ M̃. Then, we find
that

F̃ (c,B) ≤ F (c,B) ≤ F̃ (c,B) + ε‖B‖L(W,W̃⊥)
,

which shows that the additional recovery error will be of the order of ε amplified by the norm of
the linear part of the optimal recovery map.

One difficulty is that the cardinality of ε-approximation nets become potentially untractable for
small ε as the parameter dimension becomes large, due to the curse of dimensionality. This difficulty
also occurs when constructing reduced basis by a greedy selection process which also needs to be
performed in a sufficiently dense discretized sets. Recent results obtained in [14] show that, in
certain relevant instances, ε-approximation nets can be replaced by random training sets of smaller
cardinality. One interesting direction for further research is to apply similar ideas in the context of
the present work.

Optimization algorithms: As already brought up, the practical computation of Ãwc consists in
solving

min
(c,B)∈W̃⊥×L(W,W̃⊥)

max
u∈M̃

‖PW⊥u− c−BPWu‖2
︸ ︷︷ ︸

=F̃ (c,B)

, (3.2.12)

The numerical solution of this problem is challenging due to its lack of smoothness (the objective
function F̃ is convex but non differentiable) and its high dimensionality (for a given target accuracy
εN , the cardinality of M̃ might be large). One could use classical subgradient methods, which are
simple to implement. However these schemes only guarantee a very slow O(k−1/2) convergence rate
of the objective function, where k is the number of iterations. This approach did not give satisfactory
results in our case: due to the slow convergence, the solution update of one iteration falls below
machine precision before approaching the minimum close enough, see Figure 3.1. This has motivated
the use of a primal-dual splitting method which is known to ensure a O(1/k) convergence rate on
the partial duality gap. We next briefly describe this method.

We assume without loss of generality that dim(W + VN ) = m+N and that dim W̃⊥ = N . Let
{ψi}m+N

i=1 be an orthonormal basis of W + VN such that W = span{ψ1, . . . , ψm}. Since for any
u ∈ V ,

PW+VNu =

m+N∑

i=1

uiψi,

the components of u in W can be given in terms of the vector w = (ui)
m
i=1 and the ones in W̃⊥

with u = (ui+m)Ni=1.
We now consider the finite training set

M̃ := {u1, . . . , uJ}, J := #(M̃) <∞,
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and denote by wj and uj the vectors associated to the snapshot functions uj for j = 1, . . . , J . One
may express the problem (3.2.12) as the search for

min
(R,b)∈

RN×m×RN

max
j=1,...,J

‖uj − Rwj − b‖22.

Concatenating the matrix and vector variables (R,b) into a single x ∈ Rm(N+1), we rewrite the
above problem as

min
x∈Rm(N+1)

max
j=1,...,J

fj(Qjx), (3.2.13)

where Qj ∈ RN×m(N+1) is a sparse matrix built using the coefficients of wj and fj(y) := ‖uj−y‖22.
The key observation to build our algorithm is that problem (3.2.13) can be equivalently written

as a minimization problem on the epigraphs, i.e.,

min
(x,t)∈Rm(N+1)×R+

t subject to fj(Qjx) ≤ t, j = 1, . . . , J

⇐⇒ min
(x,t)∈Rm(N+1)×R+

t subject to (Qjx, t) ∈ epifj , j = 1, . . . , J,

or, in a more compact (and implicit) form,

min
(x,t)∈Rm(N+1)×R+

t+

J∑

j=1

ιepifj
(Qjx, t) .

where, for any non-empty set S the indicator function ιS has value 0 on S and +∞ on Sc.
This problem takes the following canonical expression, which is amenable to a primal-dual

proximal splitting algorithm

min
(x,t)∈Rm(N+1)×R

G(x, t) + F ◦ L(x, t).

Here, G is the projection map for the second variable

G(x, t) = t,

the linear operator L is defined by

L(x, t) := ((Q1x, t), (Q2x, t), · · · , (QJx, t))

and acts from Rm(N+1) × R to ×Jj=1(RN × R) and the function F acting from ×Jj=1(RN × R) to R
is defined by

F ((v1, t1), · · · , (vJ , tJ)) :=
J∑

j=1

ιepifj
(vj , tj) .

Note that F is the indicator function of the cartesian product of epigraphs.
Before introducing the primal-dual algorithm, some remarks are in order:

1. We recall that if φ is a proper closed convex function on Rd, its proximal mapping proxφ is
defined by

proxφ(y) = argminRd

(
φ(x) +

1

2
‖x− y‖22

)
.
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2. The adjoint operator L∗ is given by

L∗ ((v1, t1), · · · , (vJ , tJ)) :=




J∑

j=1

QT
j vj ,

J∑

j=1

tj


 . (3.2.14)

It can be easily shown that the operator norm of L satisfies ‖L‖2 ≤ J +
∑J

j=1 ‖Qj‖2.

3. Both G and F are simple functions in the sense that their proximal mappings, proxG and
proxF , can be computed in closed form.

The iterations of our primal-dual splitting method read for k ≥ 0,

(x, t)k+1 = proxγGG

(
(x, t)k − γGL∗

(
((v1, ξ1), . . . , (vJ , ξJ))k

))
,

(x̄, t̄)k+1 = (x, t)k+1 + θ
(

(x, t)k+1 − (x, t)k
)
,

((v1, ξ1), . . . , (vJ , ξJ))k+1 = proxγF F̂

(
((v1, ξ1), . . . , (vJ , ξJ))k + γFL(x̄, t̄)k+1

)
,

where F̂ is the Fenchel-Legendre transform of F , γG > 0 and γF > 0 are such that γGγF < 1/‖L‖2,
and θ ∈ [−1,+∞[ (it is generally set to θ = 1 as in [49]).

To illustrate the relevance of this algorithm for our purposes, we compare its performance with
a standard subgradient method. Figure 3.1 plots the convergence history of the objective function
across the iterations of both optimization methods in the example described in the next page
(m = 40, N = 110 and J = 103). Two different reconstruction maps have been considered as
starting guesses: A(w) = w = PWu, and the PBDW algorithm An∗ based on reduced basis spaces
Vn with an optimal choice n∗ for n. The convergence plot shows the superiority of the primal-dual
method which converges to the same minimal value of the objective function after 105 iterations
regardless of the intialization, while the subgradient method fails to reach it since its increments
fall below machine precision.

For the same numerical example described next, we vary m and consider m = 10, 20, 30, 40, 50.
Figure 3.2 gives the convergence of the reconstruction error over the training set M̃ across the
primal-dual iterations (for simplicity, we took PWm as the starting guess for A(m)

wca). To make sure
that we reach convergence, we performed 106 iterations for each case. As expected, we observe in
this figure that the final value of the objective function decreases as we increase the value of m (the
reconstruction error decreases as we increase the number of measurements).

Numerical example: The example under consideration is the elliptic problem
{
−div (a(y)∇u) = f, x ∈ D

u(x) = 0, x ∈ ∂D
(3.2.15)

on the unit square D =]0, 1[2, with a certain parameter dependence in the field a. More precisely,
for a given p ≥ 1, we consider “checkerboard” random fields where a(y) is piecewise constant on a
p× p subdivision of the unit-square.

D =

p−1⋃

i,j=0

Si,j ,
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SG. Init PW(u)

Figure 3.1: Convergence of the objective function for two different optimization algorithms and
starting guesses. P.D. = Our Primal-Dual splitting method (worked well). S.G.=Subgradient
(struggled to converge). Here, m = 40.
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Figure 3.2: Convergence of the objective function in the primal-dual iterations for m =
10, 20, 30, 40, 50.
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with
Si,j :=

[ i
p
,
i+ 1

p

[
×
[ j
p
,
j + 1

p

[
, i, j ∈ 0, . . . , p− 1.

The random field is defined as

a(y) = 1 +
1

2

p−1∑

i,j=0

χSi,jyi,j ,

where χS denotes the characteristic function of a set S, and the yi,j are random coefficients that are
independent, each with identical uniform distribution on [−1, 1]. Thus, our vector of parameters is

y = (yi,j)
p−1
i,j=0 ∈ Rp×p.

In our numerical tests, we take p = 4, that is 16 parameters, and work in the ambient space
V = H1

0 (Ω). The sensor measurements are modelled with linear functionals that are local averages
of the form

`x,τ (u) =

∫

D
u(r)ϕτ (r− x) dr,

where
ϕτ (r) ∝ exp(−|r|/2τ2)

is a radial function such that
∫
ϕτ = 1. The parameter τ > 0 represents the spread around the center

x. For the observation space W of our example, we randomly select m = 50 centers xi ∈ [0.1, 0.9]2

and spreads τi ∈ [0.05, 0.1], and compute the Riesz representers ωxi,τ of `xi,τ in H1
0 (Ω). We then

set
W := {ωxi,τ}Mi=1

which is a space of dimension m = 50. Figure 3.3 shows the m centers xi. As an example, the figure
also plots the function ωxi,τ for i = 10, which has center xi = (0.23, 0.75) and spread τi = 0.06.

In our numerical experiments, we aimed primarily at comparing in terms of the worst case
reconstruction error our approximation to the optimal affine algorithm A∗wca with three other affine
algorithms. The performance results are given in Figure 3.4, and they highlight the superiority
of the best affine algorithm (green curves in the figure). This comes however at the cost of a
computationally intensive training phase to run our primal-dual algorithm as we are going to discuss.
The affine algorithms to which we do the comparison are:

• Amvn(ω) = ω (blue color in Figure 3.4)

• the affine PBDW algorithm A
(aff)
n∗ for an optimized value of n ≤ m (denoted Aone in Figure

3.4, and in black color)

• an affine algorithm A∗msa, which corresponds to the best algorithm in the mean square sense
when we assume a normal distribution onM (see [A4] for the details on this algorithm, and
red color in Figure 3.4).

In order to illustrate the impact of the number of measurements that are used, in Figure 3.4 we
consider the nested subspaces

Wm = span{ωxi,τi}mi=1 ⊂W
for m = 10, 20, 30, 40, 50 so that W50 = W .
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Figure 3.3: Sensor locations and the function ωxi,τi for i = 10 (xi = (0.23, 0.75) and τi = 0.06).
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Ã(m)
msa
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Figure 3.4: Comparison of the reconstruction errors (left: H1
0 (Ω) norm; right: L2(Ω) norm).
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Brief discussion on the complexity of the primal-dual algorithm: At each iteration of
the algorithm, the main bottleneck is the computation of L∗ (see equation (3.2.14)). It requires
to do J matrix-vector products with the matrices Qj ∈ RN×m(N+1) and then do a summation
of the resulting vectors. The cost of these operations thus increases linearly with J in terms of
computational time and memory ressources. In fact, the limitation in memory was the main reason
to fix J = 103 in our case and not work with a larger number of training snapshots. Let us make a
quick count on the cost in terms of the number of elements to store at each iteration. The matrices
Qj are sparse. For each row, there are m + 1 nonnegative coefficients. Therefore we need to store
N(m + 1) coefficients for each matrix, therefore a total number of JN(m + 1) coefficients. In our
case, N = 110 was carefully fixed to guarantee that

max
u∈Mgreedy∪Mtest

‖u− PVNu‖ ≤ εN = 5.10−5.

We have m ranging between 10 and 50. Thus the number of nonnegative elements that we have to
store for each Qj ranges between 1210 and 5610. Therefore, taking J = 103 as in our computation,
we need to handle a total number of coefficients ranging between 1.21.106 and 5.61.106.

3.3 Sensor placement

In section 3.2 we have summarized a strategy to find an optimal affine reconstruction algorithm A∗aff
for a given observation space W . This algorithm is connected to an optimal subspace V opt

n to use in
the PBDW method although we note that our procedure does not yield an explicit characterization
of V opt

n and a further post-processing may have been necessary to find it in practice. In [A10], we
have considered the “reciprocal” problem, namely, for a given reduced model space Vn with a good
accuracy εn, the question is how to guarantee a good reconstruction accuracy with a number of
measurements m ≥ n as small possible. In view of the error bound (3.2.4), one natural objective
is to guarantee that µ(Vn,Wm) is maintained of moderate size. Note that taking Wm = Vn would
automatically give the minimal value µ(Vn,Wm) = 1 with m = n. However, in a typical data
acquisition scenario, the measurements that span the basis of Wm are chosen from within a limited
class. This is the case for example when placing m pointwise sensors at various locations within the
physical domain Ω.

We model this restriction by asking that the `i are picked within a dictionary D of V ′, that is a
set of linear functionals normalized according to

‖`‖V ′ = 1, ` ∈ D,

which is complete in the sense that `(v) = 0 for all ` ∈ D implies that v = 0. With an abuse of
notation, we identify D with the subset of V that consists of all Riesz representers ω of the above
linear functionals `. With such an identification, D is a set of functions normalized according to

‖ω‖ = 1, ω ∈ D,

such that the finite linear combinations of elements of D are dense in V . Our task is therefore to
pick {ω1, . . . , ωm} ∈ D in such a way that

β(Vn,Wm) ≥ β∗ > 0, (3.3.1)
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for some prescribed 0 < β∗ < 1, with m larger than n but as small as possible. In particular, we
may introduce

m∗ = m∗(β∗,D, Vn),

the minimal value of m such that there exists {ω1, . . . , ωm} ∈ D satisfying (3.3.1).
In [A10], we show two “extreme” results:

• For any Vn and D, there exists β∗ > 0 such that m∗ = n, that is, the inf-sup condition
(3.3.1) holds with the minimal possible number of measurements. However this β∗ could be
arbitrarily close to 0.

• For any prescribed β∗ > 0 and any model space Vn, there are instances of dictionaries D such
that m∗ is arbitrarily large.

We then discuss particular cases of relevant dictionaries for the particular space V = H1
0 (Ω), with

inner product and norms

〈u, v〉 :=

∫

Ω
∇u(x) · ∇v(x) dx and ‖u‖ := ‖∇u‖L2(Ω).

The considered dictionaries model local sensors, either as point evaluations or as local averages. In
the first case,

D = {`x = δx : ∀x ∈ Ω},
which requires that V is a reproducing kernel Hilbert space (RKHS) of functions defined on Ω, that
is a Hilbert space that continuously embeds in C(Ω). Examples of such spaces are the Sobolev spaces
Hs(Ω) for s > d/2, possibly with additional boundary conditions. In the case of local averages, the
linear functionals are of the form

`x,τ (u) =

∫

Ω
u(y)ϕτ (y − x)dy,

where
ϕτ (y) := τ−dϕ

(y
τ

)
,

for some fixed radial function ϕ compactly supported in the unit ball B = {|x| ≤ 1} of Rd and such
that

∫
ϕ = 1, and τ > 0 representing the point spread. The dictionary in this case is

D = {`x,τ : ∀x ∈ Ω}.

We could even consider an interval of values for τ in [τmin, τmax] with 0 < τmin ≤ τmax,

D = {`x,τ : ∀(x, τ) ∈ Ω× [τmin, τmax]}.

For the above cases of dictionaries, we provide upper estimates of m∗ in the case of spaces Vn
that satisfy some inverse estimates, such as finite element or trigonometric polynomial spaces. The
optimal value m∗ is proved to be of the same order as n when the sensors are uniformly spaced.

This a-priori analysis is not possible for more general spaces V . It is not possible either for
subspaces Vn such as reduced basis spaces, which are preferred to finite element spaces for model
order reduction because the approximation error εn of the manifoldM defined in (3.2.1) is expected
to decay much faster in elliptic and parabolic problems). For such general spaces, we need a strategy

68



to select the measurements. In practice, V is of finite but very large dimension and D is of finite
but very large cardinality

M := #(D) >> 1.

For this reason, the exhaustive search of the set {ω1, . . . , ωm} ⊂ D maximizing β(Vn,Wm) for a
given m > 1 is out of reach. One natural alternative is to rely on greedy algorithms where the ωj
are picked incrementally.

Our starting point to the design of such algorithms is the observation that (3.3.1) is equivalent
to having

σm = σ(Vn,Wm) := sup
v∈Vn,‖v‖=1

‖v − PWmv‖ ≤ σ∗, σ∗ :=
√

1− (β∗)2 < 1. (3.3.2)

Therefore, our objective is to construct a space Wm spanned by m elements from D that captures
all unit norm vectors of Vn with the prescribed accuracy σ∗ < 1. This leads us to study and analyze
algorithms which may be thought as generalization to the well-studied orthogonal matching pursuit
algorithm (OMP), equivalent to the algorithms we study here when applied to the case n = 1 with
a unit norm vector φ1 that generates V1. In [A10], we proposed and analyzed two algorithms and I
briefly summarize the main results in Sections 3.3.1 and 3.3.2. In Section 3.3.3 I discuss the case of
pointwise evaluations. In Section 3.3.4 I report some of our numerical tests. The main theoretical
result is that we show that both algorithms always converge, ensuring that (3.3.1) holds for m
sufficiently large, and we also give conditions on D that allow us to a-priori estimate the minimal
value of m where this happens. The main observation from our numerical experiments is the ability
of our greedy algorithms to pick good points. In particular, in the case of dictionaries of point
evaluations or local averages, we observe that the selection performed by the greedy algorithms is
near optimal in simple 1D cases in the sense that it achieves (3.3.1) after a number of iterations
which is proportional to n and which can be predicted in theory.

Before finishing this section, let us outline the main differences and points of contact between
our approach and existing works in the literature. The problem of optimal placement of sensors,
which corresponds to the particular setting where the linear functionals are point evaluations or
local averages, has been extensively studied since the 1970’s in control and systems theory. In
this context, the state function to be estimated is the realization of a Gaussian stochastic process,
typically obtained as the solution of a linear PDE with a white noise forcing term. The error is
then measured in the mean square sense (3.1.4), rather than in the worst case performance sense
(3.1.3) which is the point of view adopted in our work. The function to be minimized by the sensors
locations is then the trace of the error covariance, while we target at minimizing the inverse inf-sup
constant µ(Vn,W ). See in particular [96] where the existence and characterization of the optimal
sensor location is established in this stochastic setting. Continuous optimization algorithms have
been proposed for computing the optimal sensor location, see e.g. [93, 97, 95]. One common feature
with our approach is that the criterion to be minimized by the optimal location is non-convex, which
leads to potential difficulties when the number of sensors is large. This is our main motivation for
introducing a greedy selection algorithm, which in addition allows us to consider more general
dictionaries.

3.3.1 A collective OMP algorithm

In this section we discuss a first numerical algorithm for the incremental selection of the spaces
Wm, inspired by the orthonormal matching pursuit (OMP) algorithm which is recalled below. More
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precisely, our algorithm may be viewed as applying the OMP algorithm for the collective approxi-
mation of the elements of an orthonormal basis of Vn by linear combinations of m members of the
dictionary.

Our objective is to reach a bound (3.3.2) for the quantity σm. Note that this quantity can also
be written as

σm = ‖(I − PWm)|Vn‖L(Vn,V ),

that is, σm is the spectral norm of I − PWm restricted to Vn.

Description of the algorithm: When n = 1, there is only one unit vector φ1 ∈ V1 up to a sign
change. A commonly used strategy for approximating φ1 by a small combination of elements from
D is to apply a greedy algorithm, the most prominent one being the orthogonal matching pursuit
(OMP): we iteratively select

ωk = arg max
ω∈D

|〈ω, φ1 − PWk−1
φ1〉|,

where Wk−1 := span{ω1, . . . , ωk−1} and W0 := {0}. In practice, one often relaxes the above maxi-
mization, by taking ωk such that

|〈ωk, φ1 − PWk−1
φ1〉| ≥ κmax

ω∈D
|〈ω, φ1 − PWk−1

φ1〉|,

for some fixed 0 < κ < 1, for example κ = 1
2 . This is known as the weak OMP algorithm, but we

refer to it as OMP, as well. It has been studied in [59, 84], see also [52] for a complete survey on
greedy approximation.

For a general value of n, one natural strategy is to define our greedy algorithm as follows: we
iteratively select

ωk = arg max
ω∈D

max
v∈Vn,‖v‖=1

|〈ω, v − PWk−1
v〉| = arg max

ω∈D
‖PVn(ω − PWk−1

ω)‖. (3.3.3)

Note that in the case n = 1, we obtain the original OMP algorithm applied to φ1.
As to the implementation of this algorithm, we take (φ1, . . . , φn) to be any orthonormal basis

of Vn. Then

‖PVn(ω − PWk−1
ω)‖2 =

n∑

i=1

|〈ω − PWk−1
ω, φi〉|2 =

n∑

i=1

|〈φi − PWk−1
φi, ω〉|2

Therefore, at every step k, we have

ωk = arg max
ω∈D

n∑

i=1

|〈φi − PWk−1
φi, ω〉|2,

which amounts to a stepwise optimization of a similar nature as in the standard OMP. Note that,
while the basis (φ1, . . . , φn) is used for the implementation, the actual definition of the greedy
selection algorithm is independent of the choice of this basis in view of (3.3.3). It only involves Vn
and the dictionary D. Similar to OMP, we may weaken the algorithm by taking ωk such that

n∑

i=1

|〈φi − PWk−1
φi, ωk〉|2 ≥ κ2 max

ω∈D

n∑

i=1

|〈φi − PWk−1
φi, ω〉|2,
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for some fixed 0 < κ < 1.
For such a basis, we introduce the residual quantity

rm :=
n∑

i=1

‖φi − PWmφi‖2.

This quantity allows us to control the validity of (3.3.1) since we have

σm = sup
v∈Vn,‖v‖=1

‖v − PWmv‖ = sup∑n
i=1 c

2
i=1

∥∥∥
n∑

i=1

ci(φi − PWmφi)
∥∥∥ ≤ r1/2

m ,

and therefore (3.3.1) holds provided that rm ≤ σ2 = 1− γ2.

Remark 3.3.1. The quantity r1/2
m is the Hilbert-Schmidt norm of the operator I−PWm restricted to

Vn. The inequality σm ≤ r
1/2
m simply expresses the fact that the Hilbert-Schmidt norm controls the

spectral norm. On the other hand, in dimension n, the Hilbert-Schmidt norm can be up to n1/2 times
the spectral norm. This lack of sharpness is one principle limitation in our convergence analysis
which uses the fact that we can estimate the decay of rm, but not directly that of σm.

Convergence analysis: By analogy to the analysis of OMP provided in [84], we introduce for
any Ψ = (ψ1, . . . , ψn) ∈ V n the quantity

‖Ψ‖`1(D) := inf
cω,i

{∑

ω∈D

(
n∑

i=1

|cω,i|2
)1/2

: ψi =
∑

ω∈D
cω,iω, i = 1, . . . , n

}
,

or equivalently, denoting cω := {cω,i}ni=1,

‖Ψ‖`1(D) := inf
cω

{∑

ω∈D
‖cω‖2 : Ψ =

∑

ω∈D
cωω

}
.

This quantity is a norm on the subspace of V n on which it is finite.
Given that Φ = (φ1, . . . , φn) is any orthonormal basis of Vn, we write

J(Vn) := ‖Φ‖`1(D).

This quantity is indeed independent on the orthonormal basis Φ: if Φ̃ = (φ̃1, . . . , φ̃n) is another or-
thonormal basis, we have Φ̃ = UΦ where U is unitary. Therefore any representation Φ =

∑
ω∈D cωω

induces the representation
Φ̃ =

∑

ω∈D
c̃ωω, c̃ω = Ucω,

with the equality ∑

ω∈D
‖c̃ω‖2 =

∑

ω∈D
‖cω‖2,

so that ‖Φ‖`1(D) = ‖Φ̃‖`1(D).
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One important observation is that if Φ = (φ1, . . . , φn) is an orthonormal basis of Vn and if
Φ =

∑
ω∈D cωω, one has

n =

n∑

i=1

‖φi‖ ≤
n∑

i=1

∑

ω∈D
|cω,i| =

∑

ω∈D
‖cω‖1 ≤

∑

ω∈D
n1/2‖cω‖2.

Therefore, we always have
J(Vn) ≥ n1/2.

Using the quantity J(Vn), we can generalize the result of [84] on the OMP algorithm in the following
way.

Theorem 3.3.2. Assuming that J(Vn) <∞, the collective OMP algorithm satisfies

rm ≤
J(Vn)2

κ2
(m+ 1)−1, m ≥ 0. (3.3.4)

Remark 3.3.3. Note that the right side of (3.3.4), is always larger than n(m + 1)−1, which is
consistent with the fact that β(Vn,Wm) = 0 if m < n.

One natural strategy for selecting the measurement space Wm is therefore to apply the above
described greedy algorithm, until the first value m̃ = m̃(n) is met such that β(Vn,Wm) ≥ γ.
According to (3.3.4), this value satisfies

m(n) ≤ J(Vn)2

κ2σ2
. (3.3.5)

For a general dictionary D and space Vn we have no control on the quantity J(Vn) which could
even be infinite, and therefore the above result does not guarantee that the above selection strategy
eventually meets the target bound β(Vn,Wm) ≥ γ. In order to treat this case, we establish a
perturbation result similar to that obtained in [59] for the standard OMP algorithm.

Theorem 3.3.4. Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and Ψ = (ψ1, . . . , ψn) ∈ V n

be arbitrary. Then the application of the collective OMP algorithm on the space Vn gives

rm ≤ 4
‖Ψ‖2`1(D)

κ2
(m+ 1)−1 + ‖Φ−Ψ‖2, m ≥ 1.

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.

As an immediate consequence of the above result, we obtain that the collective OMP converges
for any space Vn, even when J(Vn) is not finite.

The next corollary shows that if γ > 0, one has β(Vn,Wm) ≥ γ for m large enough.

Corollary 3.3.5. For any n dimensional space Vn, the application of the collective OMP algorithm
on the space Vn gives that limm→+∞ rm = 0.
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3.3.2 A worst case OMP algorithm

We present in this section a variant of the previous collective OMP algorithm. This algorithm
was first tested in [33] but without any convergence analysis. In our numerical experiments this
variant performs better than the collective OMP algorithm, however its analysis is more delicate.
In particular we do not obtain convergence bounds that are as good.

Description of the algorithm: We first take

vk := argmax
{
‖v − PWk−1

v‖ : v ∈ Vn, ‖v‖ = 1
}
,

the vector in the unit ball of Vn that is less well captured by Wk−1 and then define ωk by applying
one step of OMP to this vector, that is

|〈vk − PWk−1
vk, ωk〉| ≥ κmax

{
|〈vk − PWk−1

vk, ω〉| : ω ∈ D
}
,

for some fixed 0 < κ < 1.

Convergence analysis: The first result gives a convergence rate of rm under the assumption
that J(Vn) < ∞, similar to Theorem 3.3.2, however with a multiplicative constant that is inflated
by n2.

Theorem 3.3.6. Assuming that J(Vn) <∞, the worst case OMP algorithm satisfies

rm ≤
n2J(Vn)2

κ2
(m+ 1)−1, m ≥ 0. (3.3.6)

For the general case, we establish a perturbation result similar to Theorem 3.3.4, with again a
multiplicative constant that depends on the dimension of Vn.

Theorem 3.3.7. Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and Ψ = (ψ1, . . . , ψn) ∈ V n

be arbitrary. Then the application of the worst case OMP algorithm on the space Vn gives

rm ≤ 4
n2‖Ψ‖2`1(D)

κ2
(m+ 1)−1 + n2‖Φ−Ψ‖2, m ≥ 1.

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.

By the exact same argument as in the proof of Corollary 3.3.5 we find that that the worst case
OMP converges for any space Vn, even when J(Vn) is not finite.

Corollary 3.3.8. For any n dimensional space Vn, the application of the worst case OMP algorithm
on the space Vn gives that limm→+∞ rm = 0.

3.3.3 Application to point evaluation

As a simple example, we consider a bounded univariate interval Ω = I and take V = H1
0 (I) which

is continuously embedded in C(I). Without loss of generality we take I =]0, 1[. For every x ∈]0, 1[,
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the Riesz representer of δx is given by the solution of ω′′ = δx with zero boundary condition.
Normalising this solution ω it with respect to the V norm, we obtain

ωx(t) =





t(1−x)√
x(1−x)

, for t ≤ x
(1−t)x√
x(1−x)

, for t > x.

For any set of m distinct points 0 < x1 < · · · < xm < 1, the associated measurement space
Wm = span{ωx1 , . . . , ωxm} coincides with the space of piecewise affine polynomials with nodes at
x1, . . . , xm that vanish at the boundary. Denoting x0 := 0 and xm+1 := 1, we have

Wm = {ω ∈ C0([0, 1]), ω|[xk,xk+1] ∈ P1, 0 ≤ k ≤ m, and ω(0) = ω(1) = 0}.

As an example for the space Vn, let us consider the span of the Fourier basis (here orthonormalized
in V ),

φk :=

√
2

πk
sin(kπx), 1 ≤ k ≤ n. (3.3.7)

Let us now estimate m(n) in this example if we choose the points with the greedy algorithms
that we have introduced. This boils down to estimate for J(Vn). In this simple case,

J(Vn) := ‖Φ‖`1(D) = inf
{∫

x∈[0,1]
‖cx‖2 dx : Φ =

∫

x∈[0,1]
cxωx dx

}

and we can derive cx for every x ∈ [0, 1] by differentiating twice the components of Φ since

Φ′′(x) =

∫

y∈[0,1]
cyω
′′
y (x) dy = −

∫

y∈[0,1]
cyδy(x) dx = −cx.

Thus, using the basis functions φk defined by (3.3.7), we have

J(Vn) =

∫

x∈[0,1]

(
n∑

k=1

|φ′′k(x)2|
)1/2

dx =

∫

x∈[0,1]

(
n∑

k=1

2kπ| sin(kπx)|2
)1/2

dx ∼ n3/2.

Estimate (3.3.5) for the convergence of the collective OMP approach yields

m(n) &
n3

κ2σ2
,

while for the worst case OMP, estimate (3.3.6) gives

m(n) &
n5

κ2σ2
.

These bounds deviate from the optimal estimation due to the use of the Hilbert-Schmidt norm in
the analysis. Our numerical results reported in [A10] revealed that the greedy algorithms actually
behave much better in this case. I do not summarize them here for the sake of brevity. Instead, I
recall in the next section only one numerical test when Vn is a reduced model space.
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3.3.4 Some numerical illustrations

We consider the same checkerboard problem as the one described in (3.2.15). We work here with 16
parameters (that is, a 4×4 checkerboard diffusion field). The PDE solution snapshots are computed
using P1 finite elements on a uniform trianuglar mesh Th of size h = 2−7.

We consider a dictionary D composed of local averages by the nodal basis functions of the finite
element space. We run our greedy procedure to select the observation space Wm for two different
spaces Vn. A space of trigonometric polynomials

V sin
n = span{φk,` : 1 ≤ k × ` ≤ n},

and a reduced basis space
Vn = span{uh(y(1)), . . . , uh(y(n))}

spanned by solutions uh(y(i)) to (3.2.15) for a given parameter y(i)

We recall that the worst case performance of the state estimation algorithm as defined in (3.2.4)
is given by the product of the inverse inf-sup constant µ(Vn,Wm) by the approximation error
εn = dist(M, Vn). Since the exact computation of εn is out of reach, we instead study the average
projection error for a collection of solutions uh(a(y)) to Vn = V red

n or V sin
n . The left side of Figure

3.5 shows that the reduced bases outperform the trigonometric polynomial spaces by several order
of magnitude, as to the decay of this approximation error. On the other hand, the right side of
Figure 3.5 shows (here in the case n = 20) that when applying the greedy algorithm, the inf-sup
constant β(Vn,Wm) is better behaved for the trigonometric polynomial spaces, however only by
a moderate factor of around 1.1. Therefore the final trade-off is clearly in favor of reduced basis
spaces.

10 20 30 40
n

10
3

10
2

av
g.

 ||
u i

P V
n
u i

||

Average projection errors of 10 solutions, ui = uh(a(yi))
Sinusoid basis: average projection error
Reduced basis: average projection error

20 40 60 80 100 120 140
m

0.0

0.2

0.4

0.6

0.8

1.0

(V
n,

W
m

)

(Vn, Wm) for sinusoid and reduced bases with n = 20

Sinusoid basis
Reduced basis

Figure 3.5: Results on unit square.

3.4 A Piece-Wise Affine Algorithm to reach the Benchmark Opti-
mality

The simplicity of the plain PBDW method (3.2.2) and its above variants come together with a fun-
damental limitation of performance: since the map w 7→ An(w) is linear or affine, the reconstruction
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necessarily belongs to an m or m+ 1 dimensional space, and therefore the worst case performance
is necessarily bounded from below by the Kolmogorov width dm(M) or dm+1(M). In other words,
if we restrict ourselves to affine algorithms, we have

min
A:W→V

Ewc(A,M) ≤ dm+1(M) ≤ min
A:W→V
A affine

Ewc(A,M).

and affine algorithms will miss optimality especially in cases where

min
A:W→V

Ewc(A,M)� dm+1(M).

This is expected to happen in elliptic problems with weak coercivity or in hyperbolic problems.
In view of this limitation, the principal objective of our contribution [S3] is to develop nonlin-

ear state estimation techniques which provably overcome the bottleneck of the Kolmogorov width
dm(M). In the next pages, I summarize the main ideas from this contribution. I will focus par-
ticularly on summarizing a nonlinear recovery method based on a family of affine reduced models
(Vk)k=1,...,K . Each Vk has dimension nk ≤ m and serves as a local approximation to a portionMk

of the solution manifold. Applying the PBDW method with each such space, results in a collection
of state estimators u∗k. The value k for which the true state u belongs to Mk being unknown, we
introduce a model selection procedure in order to pick a value k∗, and define the resulting estimator
u∗ = u∗k∗ . We show that this estimator has performance comparable to optimal in a sense which we
make precise later on, and which cannot be achieved by the standard linear/affine PBDW method
due to the above described limitations.

Model selection is a classical topic of mathematical statistics [66], with representative tech-
niques such as complexity penalization or cross-validation in which the data are used to select a
proper model. Our approach differs from these techniques in that it exploits (in the spirit of data
assimilation) the PDE model which is available to us, by evaluating the distance to the manifold

dist(v,M) = min
y∈Y
‖v − u(y)‖, (3.4.1)

of the different estimators v = u∗k for k = 1, . . . ,K, and picking the value k∗ that minimizes it.
In practice, the quantity (3.4.1) cannot be exactly computed and we instead rely on a computable
surrogate quantity S(v,M) expressed in terms of the residual to the PDE. One typical instance
where such a surrogate is available and easily computable is when the parametric PDE (3.1.1) has
the form of a linear operator equation

B(y)u = f(y),

where B(y) is boundedly invertible from V to V ′, or more generally, from V → Z ′ for a test space
Z different from V , uniformly over y ∈ Y . Then S(v,M) is obtained by minimizing the residual

R(v, y) = ‖B(y)v−f(y)‖Z′ ,

over y ∈ Y . In other words,
S(v,M) = min

y∈Y
R(v, y).

This task itself is greatly facilitated in the case where the operators A(y) and source terms f(y)
have affine dependence in Y. One relevant example is the second order elliptic diffusion equation
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with affine diffusion coefficient,

−div(a∇u) = f(y), a = a(x; y) = ā(x) +
d∑

j=1

yjψj(x).

Optimality benchmark under perturbations

In order to present our piece-wise affine strategy and its performance, we need to enrich the notions
of benchmark optimality introduced in section 3.1. In that section, we introduced in (3.1.8) the
quantity δ0 which was defined as

δ0 = δ0(M,W ) := sup{diam(Mw) : w ∈W} = sup{‖u− v‖ : u, v ∈M, u− v ∈W⊥}.

We saw in (3.1.9) that δ0 can be related to the worst-case optimal performance E∗wc(M) by the
equivalence

1

2
δ0 ≤ E∗wc(M) ≤ δ0.

We next introduce a somewhat relaxed benchmark quantity to take into account the fact that com-
putationally feasible algorithms usually introduce simplifications of the geometry of the manifold.
In the case of the plain PBDW, the simplification is that the manifold is “replaced” by a linear or
an affine subspace Vn, which makes that for most practical and theoretical purposes, M could be
replaced by the cylinder Kn introduced in (3.2.3). As we will see later on, the relaxed benchmark
will also allow us to take into account model error and measurement noise in the analysis.

In order to account for manifold simplification as well as model bias, for any given accucary
σ > 0, we introduce the σ-offset ofM,

Mσ := {v ∈ V : dist(v,M) ≤ σ} =
⋃

u∈M
B(u, σ),

where B(u, σ) is the ball of center u and radius σ. Likewise, we introduce the set

Mσ,w =Mσ ∩ (ω +W⊥),

which is a perturbed set ofMw introduced in (3.1.5) (note that this set still excludes uncertainties
in w but we will come to this in a moment).

Our benchmark for the worst case error is now defined as

δσ := max
w∈W

diam(Mσ,w) = max{‖u− v‖ : u, v ∈Mσ, u− v ∈W⊥}. (3.4.2)

Figures 3.6a and 3.6b give an illustration of δ0, δσ and the optimal scheme A∗wc based on Chebyshev
centers which was introduced in (3.1.7).

To account for measurement noise, we introduce the quantity

δ̃σ := max{‖u− v‖ : u, v ∈M, ‖PWu− PW v‖ ≤ σ}.

The two quantities δσ and δ̃σ are not equivalent, however one has the framing

δσ − 2σ ≤ δ̃2σ ≤ δσ + 2σ.
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(a) Perfect Model. (b) Perturbed Model.

Figure 3.6: Illustration of the optimal recovery benchmark on a manifold in the two dimensional
Euclidean space.

In the following analysis of reconstruction methods, we use the quantity δσ as a benchmark
which, in view of this last observation, also accounts for the lack of accuracy in the measurement of
PWu. Our objective is therefore to design an algorithm that, for a given tolerance σ > 0, recovers
from the measurement w = PWu an approximation to u with accuracy comparable to δσ. Such an
algorithm requires that we are able to capture the solution manifold up to some tolerance ε ≤ σ by
some reduced model.

Piecewise affine reduced models

Linear or affine reduced models, as used in the PBDW algorithm, are not suitable for approximating
the solution manifold when the required tolerance ε is too small. In particular, when ε<dm(M) one
would then need to use a linear space Vn of dimension n>m, therefore making µ(Vn,W ) infinite.

One way out is to replace the single space Vn by a family of affine spaces

Vk = ūk + V̄k, k = 1, . . . ,K,

each of them having dimension
dim(Vk) = nk ≤ m,

such that the manifold is well captured by the union of these spaces, in the sense that

dist

(
M,

K⋃

k=1

Vk

)
≤ ε

for some prescribed tolerance ε > 0. This is equivalent to saying that there exists a partition of the
solution manifold

M =
K⋃

k=1

Mk,
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such that we have local certified bounds

dist(Mk, Vk) ≤ εk ≤ ε, k = 1, . . . ,K. (3.4.3)

We may thus think of the family (Vk)k=1,...,K as a piecewise affine approximation toM. We stress
that, in contrast to the hierarchies (Vn)n=0,...,m produced by reduced modeling algorithms, the
spaces Vk do not have dimension k and are not nested. Most importantly, K is not limited by m
while each nk is.

The objective of using a piecewise reduced model in the context of state estimation is to have
a joint control on the local accuracy εk as expressed by (3.4.3) and on the stability of the PBDW
when using any individual Vk. This means that, for some prescribed µ > 1, we ask that

µk = µ(V̄k,W ) ≤ µ, k = 1, . . . ,K. (3.4.4)

According to (3.2.4), the worst case error bound over Mk when using the PBDW method with a
space Vk is given by the product µkεk. This suggests to alternatively require from the collection
(Vk)k=1,...,K , that for some prescribed σ > 0, one has

σk := µkεk ≤ σ, k = 1, . . . ,K. (3.4.5)

This leads us to the following definitions.

Definition 2. The family (Vk)k=1,...,K is σ-admissible if (3.4.5) holds. It is (ε, µ)-admissible if
(3.4.3) and (3.4.4) are jointly satisfied.

Obviously, any (ε, µ)-admissible family is σ-admissible with σ := µε. In this sense the notion
of (ε, µ)-admissibility is thus more restrictive than that of σ-admissibility. The benefit of the first
notion is in the uniform control on the size of µ which is critical in the presence of noise.

If u ∈ M is our unknown state and w = PWu is its observation, we may apply the PBDW
method for the different Vk in the given family, which yields a corresponding family of estimators

u∗k = u∗k(w) = argmin{dist(v, Vk) : v ∈ ω +W⊥}, k = 1, . . . ,K. (3.4.6)

If (Vk)k=1,...,K is σ-admissible, we find that the accuracy bound

‖u− u∗k‖ ≤ µkdist(u, Vk) ≤ µkεk = σk ≤ σ,

holds whenever u ∈Mk.
Therefore, if in addition to the observed data w one had an oracle giving the information on

which portionMk of the manifold the unknown state sits, we could derive an estimator with worst
case error

Ewc ≤ σ.

This information is, however, not available and such a worst case error estimate cannot be hoped
for, even with an additional multiplicative constant. Indeed, as we shall see below, σ can be fixed
arbitrarily small by the user when building the family (Vk)k=1,...,K , while we know from (3.1.9) that
the worst case error is bounded from below by E∗wc(M) ≥ 1

2δ0 which could be non-zero. We will
thus need to replace the ideal choice of k by a model selection procedure only based on the data w,
that is, a map

w 7→ k∗(w),
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leading to a choice of estimator u∗ = u∗k∗ = Ak∗ . We shall prove further that such an estimator is
able to achieve the accuracy

Ewc(Ak∗ ,M) ≤ δσ,
that is, the benchmark introduced in §2.2. Before discussing this model selection, we discuss the
existence and construction of σ-admissible or (ε, µ)-admissible families.

Constructing admissible reduced model families

For any arbitrary choice of ε > 0 and µ ≥ 1, the existence of an (ε, µ)-admissible family results
from the following observation: since the manifold M is a compact set of V , there exists a finite
ε-cover ofM, that is, a family ū1, . . . , ūK ∈ V such that

M⊂
K⋃

k=1

B(ūk, ε),

or equivalently, for all v ∈ M, there exists a k such that ‖v − ūk‖ ≤ ε. With such an ε cover, we
consider the family of trivial affine spaces defined by

Vk = {ūk} = ūk + V̄k, V̄k = {0},

thus with nk = 0 for all k. The covering property implies that (3.4.3) holds. On the other hand,
for the 0 dimensional space, one has

µ({0},W ) = 1,

and therefore (3.4.4) also holds. The family (Vk)k=1,...,K is therefore (ε, µ)-admissible, and also
σ-admissible with σ = ε.

This family is however not satisfactory for algorithmic purposes for two main reasons. First, the
manifold is not explicitly given to us and the construction of the centers ūk is by no means trivial.
Second, asking for an ε-cover, would typically require that K becomes extremely large as ε goes to
0. For example, assuming that the parameter to solution y 7→ u(y) has Lipschitz constant L,

‖u(y)− u(ỹ)‖ ≤ L|y − ỹ|, y, ỹ ∈ Y,

for some norm | · | of Rd, then an ε cover for M would be induced by an L−1ε cover for Y which
has cardinality K growing like ε−d as ε→ 0. Having a family of moderate size K is important for
the estimation procedure since we intend to apply the PBDW method for all k = 1, . . . ,K.

In order to construct (ε, µ)-admissible or σ-admissible families of better controlled size, we need
to split the manifold in a more economical manner than through an ε-cover, and use spaces Vk
of general dimensions nk ∈ {0, . . . ,m} for the various manifold portions Mk. To this end, we
combine standard constructions of linear reduced model spaces with an iterative splitting procedure
operating on the parameter domain Y. Let us mention that various ways of splitting the parameter
domain have already been considered in order to produce local reduced bases having both controlled
cardinality and prescribed accuracy [55, 43, 1]. Here our goal is different since we want to control
both the accuracy ε and the stability µ with respect to the measurement space W .

We describe the greedy algorithm for constructing σ-admissible families, and explain how it
should be modified for (ε, µ)-admissible families. For simplicity we consider the case where Y is a
rectangular domain with sides parallel to the main axes, the extension to a more general bounded
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domain Y being done by embedding it in such a hyper-rectangle. We are given a prescribed target
value σ > 0 and the splitting procedure starts from Y.

At step j, a disjoint partition of Y into rectangles (Yk)k=1,...,Kj with sides parallel to the main
axes has been generated. It induces a partition ofM given by

Mk := {u(y) : y ∈ Yk}, k = 1, . . . ,Kj .

To each k ∈ {1, . . . ,Kj} we associate a hierarchy of affine reduced basis spaces

Vn,k = ūk + V̄n,k, n = 0, . . . ,m.

where ūk = u(ȳk) with ȳk the vector defined as the center of the rectangle Yk. The nested linear
spaces

V̄0,k ⊂ V̄1,k ⊂ · · · ⊂ V̄m,k, dim(V̄n,k) = n,

are meant to approximate the translated portion of the manifoldMk− ūk. For example, they could
be reduced basis spaces obtained by applying the greedy algorithm toMk − ūk, or spaces resulting
from local n-term polynomial approximations of u(y) on the rectangle Yk. Each space Vn,k has a
given accuracy bound and stability constant

dist(Mk, Vn,k) ≤ εn,k and µn,k := µ(V̄n,k,W ).

We define the test quantity
τk = min

n=0,...,m
µn,kεn,k. (3.4.7)

If τk ≤ σ, the rectangle Yk is not split and becomes a member of the final partition. The affine
space associated toMk is

Vk = ūk + V̄k,

where Vk = Vn,k for the value of n that minimizes µn,kεn,k. The rectangles Yk with τk > σ are, on
the other hand, split into a finite number of sub-rectangles in a way that we discuss below. This
results in the new larger partition (Yk)k=1,...,Kj+1

after relabelling the Yk. The algorithm terminates
at the step j as soon as τk ≤ σ for all k = 1, . . . ,Kj = K, and the family (Vk)k=1,...,K is σ-admissible.
In order to obtain an (ε, µ)-admissible family, we simply modify the test quantity τk by defining it
instead as

τk := min
n=0,...,m

max
{µn,k

µ
,
εn,k
ε

}

and splitting the cells for which τk > 1.
The splitting of one single rectangle Yk can be performed in various ways. When the parameter

dimension d is moderate, we may subdivide each side-length at the mid-point, resulting into 2d

sub-rectangles of equal size. This splitting becomes too costly as d gets large, in which case it is
preferable to make a choice of i ∈ {1, . . . , d} and subdivide Yk at the mid-point of the side-length
in the i-coordinate, resulting in only 2 sub-rectangles. In order to decide which coordinate to pick,
we consider the d possibilities and take the value of i that minimizes the quantity

τk,i = max{τ−k,i, τ+
k,i},

where (τ−k,i, τ
+
k,i) are the values of τk for the two subrectangles obtained by splitting along the i-

coordinate. In other words, we split in the direction that decreases τk most effectively. In order
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to be certain that all sidelength are eventually split, we can mitigate the greedy choice of i in the
following way: if Yk has been generated by l consecutive refinements, and therefore has volume
|Yk| = 2−l|Y |, and if l is even, we choose i = (l/2 mod d). This means that at each even level we
split in a cyclic manner in the coordinates i ∈ {1, . . . , d}.

Using such elementary splitting rules, we are ensured that the algorithm must terminate. Indeed,
we are guaranteed that for any η > 0, there exists a level l = l(η) such that any rectangle Yk

generated by l consecutive refinements has side-length smaller than 2η in each direction. Since the
parameter-to-solution map is continuous, for any ε > 0, we can pick η > 0 such that

‖y − ỹ‖`∞ ≤ η =⇒ ‖u(y)− u(ỹ)‖ ≤ ε, y, ỹ ∈ Y.

Applying this to y ∈ Yk and ỹ = ȳk, we find that for ūk = u(ȳk)

‖u− ūk‖ ≤ ε, u ∈Mk.

Therefore, for any rectangle Yk of generation l, we find that the trivial affine space Vk = ūk has
local accuracy εk ≤ ε and µk = µ({0},W ) = 1 ≤ µ, which implies that such a rectangle would not
anymore be refined by the algorithm.

Reduced model selection and recovery bounds

We return to the problem of selecting an estimator within the family (u∗k)k=1,...,K defined by (3.4.6).
In an idealized version, the selection procedure picks the value k∗ that minimizes the distance of u∗k
to the solution manifold, that is,

k∗ = argmin{dist(u∗k,M) : k = 1, . . . ,K} (3.4.8)

and takes for the final estimator

u∗ = u∗(w) := Ak∗(w) = u∗k∗(w). (3.4.9)

Note that k∗ also depends on the observed data w. This estimation procedure is not realistic since
the computation of the distance of a known function v to the manifold

dist(v,M) = min
y∈Y
‖u(y)− v‖,

is a high-dimensional non-convex problem which necessitates to explore the whole solution manifold.
A more realistic procedure is based on replacing this distance by a surrogate quantity S(v,M) that
is easily computable and satisfies a uniform equivalence

r dist(v,M) ≤ S(v,M) ≤ R dist(v,M), v ∈ V,

for some constants 0 < r ≤ R. We then instead take for k∗ the value that minimizes this surrogate,
that is,

k∗ = argmin{S(u∗k,M) : k = 1, . . . ,K}. (3.4.10)

Before discussing the derivation of S(v,M) in concrete cases, we establish a recovery bound in the
absence of model bias and noise.
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Theorem 3.4.1. Assume that the family (Vk)k=1,...,K is σ-admissible for some σ > 0. Then, the
idealized estimator based on (3.4.8), (3.4.9), satisfies the worst case error estimate

Ewc(Ak∗ ,M) = max
u∈M

‖u− u∗(PWu)‖ ≤ δσ,

where δσ is the benchmark quantity defined in (3.4.2). When using the estimator based on (3.4.10),
the worst case error estimate is modified into

Ewc(Ak∗ ,M) ≤ δκσ, κ =
R

r
> 1.

In the above result, we do not obtain the best possible accuracy satisfied by the different u∗k,
since we do not have an oracle providing the information on the best choice of k. We can show that
this order of accuracy is attained in the particular case where the measurement map PW is injective
onM (which implies δ0 = 0).

Theorem 3.4.2. Assume that δ0 = 0 and that

µ(M,W ) =
1

2
sup
σ>0

δσ
σ
<∞.

Then, for any given state u ∈M with observation w = PWu, the estimator u∗ obtained by the model
selection procedure (3.4.10) satisfies the oracle bound

‖u− u∗‖ ≤ C min
k=1,...,K

‖u− u∗k‖, C := 2µ(M,W )κ.

In particular, if (Vk)k=1,...,K is σ-admissible, it satisfies

‖u− u∗‖ ≤ Cσ.

We next discuss how to incorporate model bias and noise in the recovery bound, provided that
we have a control on the stability of the PBDW method, through a uniform bound on µk, which
holds when we use (ε, µ)-admissible families.

Theorem 3.4.3. Assume that the family (Vk)k=1,...,K is (ε, µ)-admissible for some ε > 0 and µ ≥ 1.
If the observation is w = PWu + η with ‖η‖ ≤ εnoise, and if the true state does not lie in M but
satisfies dist(u,M) ≤ εmodel, then, the estimator based on (3.4.10) satisfies the estimate

‖u− u∗(w)‖ ≤ δκρ + εnoise, ρ := µ(ε+ εnoise) + (µ+ 1)εmodel, κ =
R

r
,

and the idealized estimator based on (3.4.8) satifies a similar estimate with κ = 1.

A numerical example: constructing σ-admissible families:

In this example we examine the behavior of the splitting scheme to construct σ-admissible families
in the example of the elliptic PDE with a checkerboard diffusion field. The manifold M is thus
given by the solutions to equation (3.2.15) associated to the diffusivity field

a(y) = a+
d∑

`=1

c`χD`y`, y ∈ Y,
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Regular spacing, dim(W) = 4 Regular spacing, dim(W) = 16 Random placement, dim(W) = 8

Figure 3.7: Measurement locations.

where χD` is the indicator function on the set D`, and parameters ranging uniformly in Y = [−1, 1]p.
We study the impact of the intrinsic dimensionality of the manifold by considering two cases for the
partition of the unit square D, a 2 × 2 uniform grid partition resulting in p = 4 parameters, and
a 4× 4 grid partition of D resulting in p = 16 parameters. We also study the impact of coercivity
and anisotropy on our reconstruction algorithm by examining the different manifolds generated by
taking c` = c1`

−r with c1 = 0.9 or 0.99 and r = 1 or 2. The value c1 = 0.99 corresponds to a severe
degeneration of coercivity, and the rate r = 2 corresponds to a more pronounced anisotropy.

We use two different measurement spaces, one with m = dim(W ) = 4 evenly spaced local
averages and the other with m = 16 evenly spaced local averages. The measurement locations
are shown diagrammatically in Figure 3.7. The local averages are taken as squares of side-length
2−6. Note that the two values m = 4 and m = 16 which we consider for the dimension of the
measurement space are the same as the parameter dimensions p = 4 and p = 16 of the manifolds.
This allows us to study different regimes:

• When m < p, we have a highly ill-posed problem since the intrinsic dimension of the man-
ifold is larger than the dimension of the measurement space. In particular, we expect that
the fundamental barrier δ0(M) is strictly positive. Thus we cannot expect very accurate
reconstructions even with the splitting strategy.

• When m ≥ p, the situation is more favorable and we can expect that the reconstruction
involving manifold splitting brings significant accuracy gains.

As in the previous case, the training set M̃ is generated by a subset Ỹtr = {ytr
j }j=1,...,Ntr of

Ntr = 5000 samples taken uniformly on Y . We build the σ-admissible families outlined in §3.4 using
a dyadic splitting and the splitting rule is given by (3.4.7). For example, our first split of Y results
in two rectangular cells Y1 and Y2, and the corresponding collections of parameter points Ỹ1 ⊂ Y1

and Ỹ2 ⊂ Y2, as well as split collections of solutions M̃1 and M̃2. On each M̃k we apply the greedy
selection procedure, resulting in Vk, with computable values µk and εk. The coordinate direction in
which we split Y is precisely the direction that gives us the smallest resulting σ = maxk=1,2 µkεk,
so we need to compute greedy reduced bases for each possible splitting direction before deciding
which results in the lowest σ. Subsequent splittings are performed in the same manner, but at each
step we first chose cell ksplit = arg maxk=1,...,K µkεk to be split.

After K − 1 splits, the parameter domain is divided into Y =
⋃K
k=1 Yk disjoint subsets Yk and

we have computed a family of K affine reduced spaces (Vk)k=1,...,K . For a given w ∈W , we have K
possible reconstructions u∗1(w), . . . u∗K(w) and we select a value k∗ with the surrogate based model
selection given in equation (3.4.10). The test is done on a test set of Nte = 1000 snapshots which
are different from the ones used for the training set M̃.
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In Figure 3.8 we plot the reconstruction error, averaged over the test set, as a function of the
number of splits K for all the different configurations: we consider the 2 different diffusivity fields
a(y) with p = 4 and p = 16 parameters, the two measurement spaces of dimension m = 4 and
m = 16, and the 4 different ellipticity/coercivity regimes of c` in a(y). We also plot the error when
taking for k∗ the oracle value that corresponds to the value of k that contains the parameter y which
gave rise to the snapshot and measurement.

Our main findings can be summarized as follows:

1. The error decreases with the number of splits. As anticipated, the splitting strategy is more
effective in the overdetermined regime m ≥ p.

2. Degrading coercivity has a negative effect on the estimation error, while anisotropy has a pos-
itive effect. In our computations, a larger r in c` corresponds to a higher degree of anisotropy,
and in turn to a reduced width of the solution manifold M in dimensions associated with
the less active coordinates. Hence it is no surprise that the approximation errors from our
algorithm are lower for these higher anisotropy examples.

3. Choosing k∗ by the surrogate based model selection yields error curves that are above yet close
to those obtained with the oracle choice. The largest discrepancy is observed when coercivity
degrades.

Figure 3.9 presents the error bounds σK := maxk=1,...,K µkεk which are known to be upper bounds
for the estimation error when choosing the oracle value for k∗ at the given step K of the splitting
procedure. We observe that these worst upper bounds have similar behaviour as the averaged error
curves depicted on Figure 3.8. In Figure 3.10, for the particular configuration dim(Y ) = dim(W ) =
16, we demonstrate that σK indeed acts as an upper bound for the worst case error of the oracle
estimator.

3.5 Applications

In the previous sections, I have summarized the main theoretical aspects of a deterministic theory to
address inverse state and parameter estimation problems. The algorithms that we have developed
come with certain optimality guarantees regarding the quality of approximation. This feature, and
the fact that our theory is formulated in very general terms, is a great opportunity to contribute to
different applications since many of them require quality certificates. That is why, in parallel to the
above theoretical developments, I have devoted considerable efforts to bring the above methodology
into concrete applications, and this section summarizes my works on this front. Interestingly, even
though our theoretical framework is formulated in a very general way, each application comes with
specific challenging features that have led us to enlarge some aspects of our approach. One salient
example are biomedical applications where we must take into account the morphological variations
that inevitably arise between individuals. Therefore we must enlarge the theory and consider families
of domains instead of a fixed domain Ω (see Section 3.5.2).

3.5.1 Neutronics and collaboration with EDF

In the context of Helin Gong’s CIFRE PhD thesis, the company EDF was interested in addressing
inverse problems arising in the field of neutronics with our methodology involving reduced model
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Figure 3.10: Comparison between σK (dashed curve), the averaged oracle error (full curve) and the the range from
maximum to minimum oracle error (shaded region).

spaces. The thesis was co-supervised by Yvon Maday (Sorbonne Université) and myself on the
academic side, and by Jean-Philippe Argaud and Bertrand Bouriquet, research engineers at EDF.

In order to position better our contribution, we need to recall some elements of context regarding
the main scientific challenges in the field of nuclear engineering. An essential element to bear in mind
is that the production of nuclear energy is done under very high safety standards. Understandably,
this leads to a certain type of extremely conservative manner of carrying design, safety studies in
which the experience of engineers plays a crucial role in order to find acceptable configurations.
Due to the complexity of the physics, it is usually necessary to combine the expertise of engineers
from different fields and the modelling/optimization process often require several iterations between
different experts before satisfying all the desired criteria. These iterations take a lot of effort, and
are time-consuming.

In this context, our collaboration with EDF can be seen as a transfer of knowledge to the
nuclear industry, in which the main goal was to help make some of the above tasks become more
agile and systematic by blending in a more natural manner multiphysics phenomena and information
of different nature (PDE models and data observations). The fact that computations take place in
reduced spaces is also a crucial point to accelerate calculations.

In [A9, P1], we applied some of the above techniques to the field of neutronics. The goal was
to give a proof of concept that our methods were able to do fast state estimation of the population
of neutrons (and some related quantities of interest such as the power distribution). Our numrical
tests were done with synthetic measurements but we worked on realistic reactor core configurations.
As a parametrized PDE model, we used a two-group neutron diffusion equation (obviously, more
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(a) Eighth of core (1-33: fuel assembly; R: reflector).
(b) Example of the 3D power distribution over the
core. Computed with the COCAGNE code [21].

Figure 3.11: The fuel assembly loading scheme and an example of 3D power distribution over the
core in a realistic 1450 MWe reactor at EDF.

complicated models could be considered). This model is actually the diffusion limit of the Boltzmann
equation that we discussed in Section 2.1. In [A9], we gave results revolving around the search for
optimal sensor locations to measure certain quantities of interest during the operation of the core.
For this, we used the Generalized Empirical Interpolation Method (GEIM, [T1, A14, A13, A12]).
This method is a particular version of the linear PBDW method in which m = n. The method was
originally introduced in my PhD thesis (see [T1, A14, A13, A12]). Another possibility could have
been to use the greedy algorithm that we developped in Section 3.3. Our numerical experiments were
done on several reactor geometries. Figure 3.11 illustrates the geometry of a realistic Pressurized
Water Reactor of 1450 MWe which is studied by EDF, and Figure 3.12 shows the 20 first locations
for sensor positioning that our algorithms gave.

Our collaboration also led to works on how to do state estimation in presence of measurement
noise. In [P2, 10], we developed a reconstruction strategy involving least-squares projections with
constrains using some a priori knowledge of the geometry of the manifold formed by all the possible
physical states of the system.

3.5.2 Biomedical Applications and Problems with shape variability

In this section I summarize a series of three works [A2, A3, S1] in the field of biomedical applica-
tions. The results have been obtained in the framework of Felipe Galarce’s PhD thesis at the Inria
Commedia group, which I have co-supervised with D. Lombardi, and J. F. Gerbeau.

The overarching topic to which we have contributed is related to the challenge of developing
numerical tools to assist medical doctors in their decisions and diagnoses. This requires to solve
both quickly and in a reliable manner data assimilation and inverse problems, which share the
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Figure 3.12: The first 20 sensors placements suggested by our algorithms on a realistic PWR reactor
of 1450 MWe.

following general common features:

• The problems are typically posed on certain organs or portions of the body which inevitably
involve morphological variations.

• The available data are often corrupted by noise and obtained with medical imaging techniques,
which have the advantage of being non-invasive.

• There may be morphological constraints that prevent from measuring at specific locations.

• In some cases, the device may not be able to measure directly the desired quantity of interest
(QoI), and a post-processing may be required to obtain an estimate of it.

• In order to be of practical use, the problems need to be solved in close to real time in order
that their outputs can be taken into account by the doctors in the process of diagnosing.

State estimation of blood velocity and pressure on carotid arteries using Doppler ul-
trasound velocity images: As a guiding example, we have focused on a specific problem which
is the one of reconstructing 3D blood velocity, and pressure fields as well as related quantities by
using doppler ultrasound velocity images. This type of imaging is one of the most used, clinically
available technologies to monitor blood flows in the heart cavity and in several segments of the
vascular tree. Its main advantages are that it is fast, non-invasive, and cheap. Its main drawback
lies in the space resolution: observations are noisy averages over some voxels of the projection of
the velocity field over a given direction or over a given plane. Figure 3.13 gives examples of veloc-
ity ultrasound images. In this framework, providing full 3D reconstructions of blood velocity, and
pressure fields is of interest since it could enrich the available information used in the diagnosis of

89



certain pathologies (e.g. stenosis in patients with sickle cell disease) which is currently solely relying
on the ultrasound images, and the crucial experience and intuition of medical doctors.

`i =

Z

⌦i

u · b
<latexit sha1_base64="j3AXdJKVHRpr5KUhsvH6Fixl/OY="></latexit>

dx

<latexit sha1_base64="eE1CcP/hiyNvruoUK++3I0IM3sk="></latexit>

(a) Color flow image (CFI) (b) Vector flow image (VFI)

Figure 3.13: Velocity image of the common carotid bifurcation of two ultrasound devices.

In [A2, A3], we illustrate how the general methodology which we have explained in Sections 3.1
to 3.4 can be applied to this specific inverse problem. Due to our lack of real ultrasound images, our
experiments present certain limitations: we have worked with synthetic images and have used an
admittedly simple Gaussian modelling of the ultrasound noise (Doppler ultrasound images present
a very involved space-time structure which is not the main topic of our work). The manifold M
considered to describe the haemodynamics is a family of parametrized incompressible Navier-Stokes
equations. This model is generally acknowledged to be accurate for large vessels such as the carotid
artery, which is why we assume in the following that there is no model error and that the true
system is governed by these equations. This is admittedly a rather strong assumption but note that
we are also led to it because it is not possible to study the impact of the model error without real
measurements.

The Navier-Stokes equations model the dynamics of a fluid with density ρ ∈ R+ and dynamic
viscosity µ ∈ R+. In our case, the fluid under consideration is blood. For all times t ∈ [0, T ], the
blodd velocity and pressure fields (u(t), p(t)) are the solution to




ρ
∂u

∂t
(t) + ρ u(t) · ∇u(t)− µ∆u(t) +∇p(t) = 0, in Ω

∇ · u(t) = 0, in Ω.

The equations are closed by prescribing an initial condition and boundary conditions. A weak
formulation of this equation makes the problem be well posed when we seek (u(t), p(t)) in the space
H1(div,Ω)× L2(Ω), where

H1(div,Ω) := {f ∈ L2(Ω,R3) : div(f) = 0}
is the space of divergence free fields.

Our Navier-Stokes modeling of the blood dynamics involves quantities such as the heart rate
which we take as parameters y ∈ Y ∈ Rp. Since the dynamics behaves with a period given by
the heart beats, time will be considered as a parameter so t will be one of the coordinates of y. A
manifoldM is generated by the variations of the parameters

M := {(u(y), p(y)) ∈ V : y ∈ Y}. (3.5.1)
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In the following, instead of working with H1(div,Ω) for the velocity space, we work with H1(Ω,R3).
That is, we take

V = U × V := H1(Ω,R3)× L2(Ω) (3.5.2)

as the ambient space so that we view M as a subset of V . The reason for choosing to work in
H1(Ω,R3) instead of H1(div,Ω) is because the computation of the Riez representers ωi is facilitated.

In [A2], we focus on the reconstruction of the 3D velocity field using PBDW. The manifold is
therefore slighlty simplified to

M(vel) := {u(y) : y ∈ Y} ⊂ U.

We study the impact of working with different types of reduced models:

• A plain linear (or affine) version in which Vn is given by the Singular Value Decomposition of
M(vel).

• A piece-wise affine version where we avoid the step (3.4.10) of model selection thanks to the
fact that, in our construction, it is possible to know in the online phase to which partition of
the manifold the solution belongs to.

• A non-linear data-driven version in which Vn is built online with a greedy OMP algorithm
that uses the observation ω. The algorithm goes as follows. Let

D := {v = u/‖u‖ : u ∈M(vel), u 6= 0}.

be the set of normalized functions fromM. The first element ϕ1 is chosen as

ϕ1 =
1

#D
∑

v∈D
v,

and we set V1 := span{ϕ1}. For n > 1, given Vn = span{ϕ1, . . . , ϕn}, we select

ϕn+1 ∈ arg max
v∈D

∣∣∣∣
〈
w − PPWmVnw,

PWmv

‖PWmv‖

〉∣∣∣∣

where PWmVn = span{PWmϕ1, . . . , PWmϕn}. We set Vn+1 = span{Vn, ϕn+1}. The algorithm
can easily be extended to build an affine space ū + Vn for a given ū. For this, we introduce
ω̄ = PWm ū and the shifted set

δūD =

{
v =

u− ū
‖u− ū‖ : u ∈M(vel), u 6= ū

}
,

and it suffices to apply the previous greedy algorithm to the target function ω − ω̄ instead of
ω and do the search over δūD instead of D.

Our main conclusion is that, for the example under consideration, all methods deliver a good
accuracy but the piece-wise affine approach is the most accurate. We have thus worked with this
type of approach in [A3] in order to show how to reconstruct unobserved fields such as the pressure
from ultrasound velocity observations. This can easily be accomplished with our approach by
performing a joint velocity and pressure reconstruction. For this, we consider the full velocity-
pressure manifold (3.5.1) and we endow the space (3.5.2) with the external direct sum and product
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structure to build a Hilbert space. That is, for any two elements (u1, p1) and (u2, p2) of V = U ×P
and any scalar α ∈ R,

(u1, p1) + (u2, p2) = (u1 + u2, p1 + p2), α(u1, p1) = (αu1, αp1).

The inner product is defined as the sum of component-wise inner products

〈(u1, p1), (u2, p2)〉V = 〈u1, u2〉U + 〈p1, p2〉P ,

and it induces a norm on V ,

‖(u, p)‖ := (〈(u, p), (u, p)〉V )1/2 , ∀(u, p) ∈ V.

When we are given partial information on (u, p) from Doppler velocity measures, we are given
the projection

ω = PWm(u, p),

where Wm is the observation space

Wm := W (u)
m × {0} = span{ω1, . . . , ωm} × {0} ⊂ V,

and the ωi are the Riesz representers in U of each voxel `i ∈ U ′ of the imaging device,

〈ωi, v〉U = `i(v) =

∫

Ωi

v · bdx, ∀v ∈ U.

We are now in position to apply directly the reconstruction algorithms from the previous sections
to do the joint reconstruction of (u, p) with the current particular choice of Hilbert space V and
observation space Wm. Note that, in general, stability is degraded in the joint reconstruction
compared to the single velocity reconstruction. In fact, if the reduced model is taken as a product
of two reduced spaces, namely, if Vn = V

(u)
nu × V (p)

np with V
(u)
nu ⊂ U and V

(p)
np ⊂ P , we can easily

prove that if the inf-sup constant in the single velocity space satisfies

β(V (u)
nu ,W

(u)
m ) > 0,

with V (u)
nu and W (u)

m ⊂ U , then the inf-sup of the joint reconstruction satisfies

0 < β(V (u)
nu × V (p)

np ,W
(u)
m × {0}) ≤ β(V (u)

nu ,W
(u)
m ).

On the one hand, the left-hand side of the bound guarantees that the joint reconstruction is well-
posed. On the other hand, from the right-hand side it follows that stability cannot be better than
the one of the single velocity reconstruction.

Figures 3.14 to 3.18 give some illustrations of our reconstructions on an example of a carotid
bifurcation. The imaged velocity field ω is the projection of the velocity on a 2D plane on the region
before the carotid bifurcation as shown in Figure 3.14. We refer to [A3] for the presentation of the
error reconstruction study associated to the numerical example.
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Figure 3.14: Example of observation PWu: synthetic CFI of the common carotid branch with
m = 233 voxels of 0.15 [cms] each (image from the systole period). Note that we only receive
information before the bifurcation.

(a) u. (b) u∗ (c) u− u∗

Figure 3.15: Example of reconstruction of the velocity. We observe a region with higher errors close
to the stenosis.
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(a) Θ. (b) Θ∗ (c) Θ−Θ∗

Figure 3.16: Example of reconstruction of the vorticity Θ := ∇× u.

(a) S(u). (b) S∗(u) (c) S(u)− S∗(u)

Figure 3.17: Example of reconstruction of the wall shear stress. This quantity is a mapping S :
U → [H−1/2(∂Ωwall)]

3 that returns the tangential component of the force that the blood applies on
the vessel wall S(u) := 2µ {I − n⊗ n}

(
∇u+∇uT

2 n
)
, on ∂Ωwall.
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Figure 3.18: Pressure drops at the two outlets in two different simulations using the joint velocity
and pressure reconstruction method with the piecewise linear algorithm. The dashed lines show the
ground truth δp1 and δp2. The continuous lines show the reconstruction. The vertical axis shows
the pressure drop in [mmHg] and the horizontal axis the time in seconds.

Multidomain State Estimation: The speed of the affine PBDW reconstruction algorithm cru-
cially relies on the fact that we have assumed that the spatial domain Ω is given to us a priori.
Thanks to this we can precompute the reduced models Vn(Ω) before the reconstruction takes place,
and we only need to solve (3.2.6) during the reconstruction, which is a computation that can be
done in near real-time. The offline computation of the reduced model should be seen as a training
phase, and it can be computationally intensive and time-consuming for complex physical systems.

There are however cases in which we cannot assume that Ω is given a priori. This situation
typically arises in biomedical applications where state estimation needs to be performed on a certain
part of the body for different patients which inevitably present morphological variations. One
example is the application discussed above. In this case, given a new target geometry Ω, one could
of course generateM(Ω) and derive a reduced model Vn(Ω) but this task would not be feasible in
real-time, and the method would no be useful for real time decisions. To avoid this computational
bottleneck, we propose in [S1] a method to quickly build a space Vn(Ω) by using reduced models
which have been pre-computed on a database of template geometries which we suppose to be
available offline. The idea consists in finding the best reduced model from the template geometries,
and then to transport it to the target geometry Ω. Once this is done, we reconstruct with PBDW
on the target geometry. We next outline the details of our proposed strategy.

We consider a set G of spatial domains in Rd. The set can potentially be infinite. An example
for G is the set of human carotid arteries or, more generally, the set of shapes of a certain organ.
Our goal is to build a state estimation procedure that is fast for every geometry Ω ∈ G. For this, our
approach is based on a learning phase that involves computations on a dataset of available template
geometries. We next summarize the main steps. Some of them involve certain routines which are
introduced at an abstract level in the current presentation. We refer to [S1] for further details on
possible choices and practical implementations.

Training/Learning phase (offline)

• Database of Template Geometries: Gather a family of K template domains

Gtemplates = {Ω1, . . . ,ΩK} ⊆ G.
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This family will serve as a database for our subsequent developments.

• Database of Template Reduced Models: For every Ω ∈ Gtemplates, we consider a
parameter-dependent PDE

P(u, y) = 0,

where the parameters y take values in Y and the solution u(y) belongs to a Hilbert space
V (Ω). Note that the differential operator P and the parameter domain Y could vary with
the geometry Ω. However, to simplify the presentation, we assume that P and Y are taken
identical for all Ω ∈ Gtemplates. The set of solutions yields the solution manifoldM(Ω) and
it describes all the possible physical states of the system under consideration for the given
geometry. We summarize the physics by precomputing a template reduced model Vn(Ω),

M(Ω) ≈ Vn(Ω), ∀Ω ∈ Gtemplates.

• Transport snapshots and reduced-models between geometries:

– We need to define a map to transport functions between different geometries

τΩ→Ω′ : V (Ω)→ V (Ω′), ∀(Ω,Ω′) ∈ G×G.

For some applications, it will be important that τ satisfies some physical properties
such as mass conservation.

– We also need to define a map to transport subspaces into subspaces. For this we
introduce the mapping

τ̂Ω→Ω′ : Vn(Ω) ⊆ V (Ω)→ Vn′(Ω
′) ⊆ V (Ω′), ∀(Ω,Ω′) ∈ G×G.

If Vn(Ω) is spanned by the family of functions {vi}ni=1, one possibility to define
τ̂Ω→Ω′(Vn(Ω)) is

τ̂Ω→Ω′(Vn(Ω)) = span{τΩ→Ω′(vi)}ni=1

which is a space of dimension n′ ≤ n.
– We refer to [S1] for details on how we have built τ and τ̂ in practice.

• Best-Template: For the reconstruction task, we need to identify for each new target
geometry Ω ∈ G, which template geometry Ωt ∈ Gtemplates has the most appropriate
reduced model Vn(Ωt) that we have to transport to Ω. For this, we need to build a best
template map

BT : G→ Gtemplates

Ω 7→ Ω∗t .

In our case, the selection strategy is based on defining and estimating distances between
reduced models Vn(Ω) from different geometries Ω ∈ G. We use a dimensionality reduction
technique called Multi-Dimensional Scaling for this task (MDS, see e.g. [86, 80, 71, 6]).
In our work, the distance between two reduced models Vn(Ω) and Vn(Ω′) is defined as a
symetrized version of formula (3.5.3), which is a quantity involved in our numerical analysis
of the main underlying mechanisms that drive the reconstruction quality with transported
subspaces (see below). We refer to [S1] for details concerning the practical implementation.

96



Reconstruction phase (online)

We are given a target domain Ω ∈ G, and our goal is to give a fast reconstruction of an
unknown function u ∈ V (Ω) given m measurement observations `(u) = (`i(u))mi=1. Note that
since `i ∈ V ′(Ω), the observation space depends on the geometry and W = W (Ω).

• If Ω ∈ Gtemplates (the target geometry is in our template dataset), then we simply recon-
struct with A(pbdw)

n,m (PW (Ω)u) with the pre-computed reduced model Vn(Ω).

• If Ω 6∈ Gtemplates:

– We need to find an appropriate reduced model for the reconstruction. For this, we
apply the best-template mapping BT and we set

Ω∗t = BT(Ω) ∈ Gtemplates.

– We transport the template reduced model Vn(Ω∗t ) to Ω by applying τ̂Ω∗t→Ω, namely

V̂n(Ω) = τ̂Ω∗t→Ω(Vn(Ω∗t ))

– In Ω, we reconstruct with PBDW using Wm(Ω) and V̂n(Ω).

Error Analysis of the reconstruction quality using a transported reduced model: Sup-
pose we are given a target geometry Ω1 ∈ G and that we want to reconstruct an unknown function
u ∈ M(Ω1) from its observations `i(u), i = 1, . . . ,m. Suppose further that there exists a reduced
space Vn(Ω1) that accurately approximates M(Ω1) but computing it would would prevent the re-
construction to be in real time. We can instead transport a pre-computed reduced model from a
template geometry. Suppose we fix the template geometry to be Ω0 ∈ Gtemplates and we transport
the reduced model space Vn(Ω0) to the target geometry by applying τ̂0→1. This yields

V̂n(Ω1) := τ̂0→1(Vn(Ω0)).

In Theorem 3.5.1 we analyse the reconstruction error by involving the Hausdorff distance between
S(Vn(Ω1)) and S(V̂n(Ω1)), the unit spheres of Vn(Ω1) and V̂n(Ω1). The distance is defined as

d2
H(S(V̂n(Ω1)),S(Vn(Ω1))) := max

(
max

v̂∈V̂n(Ω1)

‖v̂ − PVn(Ω1)v̂‖2
‖v̂‖2 ; max

v∈Vn(Ω1)

‖v − P
V̂n(Ω1)

v‖2

‖v‖2

)

= max
(

1− β2(V̂n, Vn); 1− β2(Vn, V̂n)
)

= 1−min
(
β2(V̂n, Vn);β2(Vn, V̂n)

)
(3.5.3)

Theorem 3.5.1. Suppose Vn(Ω1) is a reduced model space such that

max
u∈M(Ω1)

‖u− PVn(Ω1)u‖ ≤ ε,

β(Vn(Ω1),W (Ω1)) ≥ β > 0.
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Let V̂n(Ω1) = τ̂0→1(V (Ω0)) be a transported subspace from Ω0 to Ω1 such that

dH(S(V̂n(Ω1)),S(Vn(Ω1))) ≤ δH .

Then the reconstruction ofM(Ω1) with PBDW using Vn(Ω1) is well-posed and the error is bounded
by

max
u∈M(Ω1)

‖u−AVn(Ω1)(PWu)‖ ≤ ε

β
.

If we use V̂n(Ω1), the reconstruction is well posed if and only if

δH < β

and the reconstruction error is bounded by

max
u∈M(Ω1)

‖u−A
V̂n(Ω1)

(PWu)‖ ≤
ε+ 2δH maxu∈M(Ω1) ‖PVn+V̂n

u‖
β(1− δH/β)1/2((2 + δH)/β − 1)1/2

. (3.5.4)

From the error bound (3.5.4) from Theorem 3.5.1, it follows that the Hausdorff distance between
subspaces plays a crucial role in the final reconstruction quality. This motivates to use this distance
in our MDS approach to build the routine BT to select the best template. If the transported subspace
V̂n(Ω1) deviates from Vn(Ω1) by a quantity of the order δH ≤ ε/maxu∈M(Ω1) ‖u‖, then

max
u∈M(Ω1)

‖u−A
V̂n(Ω1)

(PWu)‖ ≤ C ε
β
,

for a relatively moderate constant C ≥ 1. In this scenario, the reconstruction with the transported
subspace is of the same quality as the one with the reduced model Vn(Ω1) (which we are avoiding
to compute in order to speed-up the state estimation procedure).

Numerical results on a simple example:

Geometry: In our example, the family G of geometries is a set of 3D Venturi tubes with
variations on three geometrical parameters concerning the tube coarctation (see Figure 3.19). The
parameters are the coarctation length Sl, its radius Sr, and its position along the y−axis Sx. The
ranges of the geometrical parameters are Sr ∈ [1.4, 2.6] mm, Sl ∈ [0.8L, 1.2L] and Sx ∈ [5, 11] mm.
The length of the tube is fixed to L = 5 cm, and its diameter to D = 0.4 cm.

Physical Model: We work with K = 64 template geometries for the database Gtemplates.
They are computed using a uniform grid sample on the three geometrical parameters.

We assume that the fluid is governed by the Stokes equations defined, for a given Ω ∈ G, as the
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Figure 3.19: Scheme for the generation of the set G.

problem of finding the velocity u ∈
[
H1 (Ω; [0, T ])

]3 and the pressure p ∈ L2(Ω; [0, T ]) such that





∂tu− µ∆u+∇p = 0 in Ω

∇ · u = 0 in Ω

u = (0, 0, 0) on Γw

u = u0

(
0, 1− x2 + z2

(D/2)2
, 0

)
sin (2πt) on Γin

(∇Tu+∇u
2

− pI
)
· n = (0, 0, 0) on Γout,

where I is an identity matrix of size three, n is a unitary vector pointing outwards the working
domain, and u0 ∈ R+. The boundary ∂Ω is decomposed into 3 disjoint subdomains,

∂Ω = Γin ∪ Γout ∪ Γw,

where Γin is the inflow part, Γout the outflow, and Γw corresponds to the walls (see Figure 3.19).
In our example, we reconstruct velocities taking V (Ω) = L2(Ω,R3) as the ambient reconstruction

space. This choice was made in order to target the reconstruction of the field and not its derivatives.
For each Ω ∈ G, we work with the manifold

M(Ω) := {u(y) : y ∈ Y},

with
Y := {y = (t, u0, µ) ∈ [0, 0.5 s.]× [0.01, 1 cm/s]× [0.01, 0.1 P]}.

Training/Learning Phase:

• For each Ω ∈ Gtemplates, we compute a finite training subset of M(Ω) with Ns = 12 800
snapshots, and we compute its Proper Orthogonal Decomposition (POD).

• We build the best template routine BT by applying MDS.

Measurement space W (Ω): For a given Ω ∈ G, we consider a partition of Ω = ∪mi=1Ωvoxel
i

into m disjoint subdomains (voxels) Ωvoxel
i . We mimic getting ultrasound images by defining the
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linear functionals `i ∈ L2(Ω) as

`i(u) =

∫

Ωvoxel
i

u · b dx, 1 ≤ i ≤ m,

where b is a unitary vector giving the direction of the ultrasound beam. In our case, the plane is
chosen to be z = 0, the ultrasound direction is b = [0,

√
2/2,
√

2/2] and the size of voxels is 2.5
mm3. The dimension m of the total number of observations changes slightly between geometries.
The geometry with the smallest amount of voxels, i.e., the geometry corresponding to the smaller
parameter Sr and maximal Sl, is m = 59.

Study of the reconstruction quality: Figure 3.20 shows the relative average reconstruction
L2-errors for four different target geometries. Each curve depicts the error made when we use the
different template geometries Ωt ∈ Gtemplates from our database. The role of the routine BT which
we have built in the learning stage is to quickly select the template which will be the most appro-
priate so that we obtain the most accurate reconstruction results. The selection with our proposed
construction yields the error curve in blue which is labeled MDS. We tested several possibilities for
the definition of the metric for MDS but the one based on (3.5.3) produced systematically the best
results, so, for the sake of clarity, we only present the results for this choice, which, in addition, is
also involved in our numerical analysis above. We observe in Figure 3.20 that the selection method
is near-optimal in the sense that it chooses either a good or the best available template among the
64 template domains. Figure 3.21 gives an illustration of the reconstruction of one snapshot with
our pipeline.

3.5.3 Epidemiology

In this section I summarize [A1], a contribution in epidemiological forecasting made in collaboration
with Prof. Yvon Maday, and two engineers from Summit, Athmane Bakhta and Thomas Boiveau.
The work was made in the course of the year 2020, during the first waves of the Covid-19 pandemic
in France which led to several lockdown periods. Our goal was to develop a method for forecasting
the series of infected and recovered people on a two-week horizon at the regional and interregional
resolution. The main challenge in this task is related to the paradox that, on the one hand, the
mechanisms of an epidemic spread can be very well understood through epidemiological models,
and all the details of its evolution can be very accurately modelled in theory. On the other hand,
it is very difficult to benefit from the power of epidemiological models in actual practice because
they involve numerous parameters, and many of them are very difficult to accurately estimate in
practice. This difficulty legitimately raises the question as to whether one should not resort to
purely data-driven strategies but, in this approach, we may quickly be limited by the data: their
nature, their quality, and our ability to access it or not. In addition, outputs from purely data-driven
strategies may lack interpretability. In our approach, we decided not to dismiss the high potential
and interpretability of epidemiological models. We work with a limited amount of health data, and
address the difficulty of handling the potential numerous parameters with the angle of attack which
I explain next.

We assume that we are given health data in a time window [0, T ], where T > 0 is taken to be the
present time. The observed data is the series of infected1 people, denoted Iobs, and removed people

1In fact, the observed series is the of the hospitalized people Hobs. In [A1], we apply a correction factor α = 15
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Figure 3.20: Relative reconstruction error for 4 different target geometries Ω ∈ Gtest. Each individ-
ual curve depicts the error when we transport the reduced model from a given template geometry.
The Best-Template methods is able to identify a good or the best template.

(a) Target field u

(b) Reconstructed field A (PWm
u)

(c) Error field u−A (PWmu)

Figure 3.21: Example of field reconstruction for one target snapshot
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denoted Robs. They are usually given at a national or a regional scale and on a daily basis. For
our discussion, it will be useful to work with time-continuous functions and t→ Iobs(t) will denote
the piecewise constant approximation in [0, T ] from the given data (and similarly for Robs(t)). Our
goal is to give short-term forecasts of the series in a time window τ > 0 whose size will be about
two weeks. We denote by I(t) and R(t) the approximations to the series Iobs(t) and Robs(t) at any
time t ∈ [0, T ].

We propose to fit the data for t ∈ [0, T ] and provide forecasts for t > T with SIR models with
time-dependent parameters [98]. It is based on a partition of the population into:

• Uninfected people, called susceptible (S),

• Infected and contagious people (I), with more or less marked symptoms,

• People removed (R) from the infectious process, either because they are cured or unfortunately
died after being infected.

If N denotes the total population size that we assume to be constant in time, we have

N = S(t) + I(t) +R(t), ∀t ∈ [0, T ],

and the evolution from S to I and from I to R is given for all t ∈ [0, T ] by

dS

dt
(t) = −β(t)I(t)S(t)

N
dI

dt
(t) =

β(t)I(t)S(t)

N
− γ(t)I(t)

dR

dt
(t) = γ(t)I(t).

In the following, we use bold-faced letters for the graph of time-dependent functions. For example,
f := {f(t) : 0 ≤ t ≤ T} for any function f ∈ L∞([0, T ]). Using this notation, for any given β and
γ ∈ L∞([0, T ]) we denote by

(S, I,R) = SIR(β,γ, [0, T ])

the solution of the associated SIR dynamics in [0, T ].
The SIR model is one of the simplest epidemiological models. It has only two parameters:

• γ > 0 represents the recovery rate. In other words, its inverse γ−1 can be interpreted as the
length (in days) of the contagious period.

• β > 0 is the transmission rate of the disease. It essentially depends on two factors: the
contagiousness of the disease and the contact rate within the population. The larger this
second parameter is, the faster the transition from susceptible to infectious will be.

In the most simple SIR model, β and γ are constant in time. The main motivation for consid-
ering them time-dependent is because the family of SIR models with time-dependent coefficients
in L∞([0, T ]) has optimal fitting and forecasting properties for our purposes in the sense that we
explain next. In addition, the variations of β and γ are reasonable from the epidemiological point

to infer the series of infected people Iobs = αHobs. Obviously, this factor is uncertain and could be improved in the
light of further retrospective studies of the outbreak.
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of view given that social distancing measures affect the value of β, and the improvement of medical
treatments at the hospital have an impact on γ.

Defining the cost function

J (β,γ | Iobs(t), Robs(t), [0, T ]) :=

∫ T

0

(
|I(t)− Iobs(t)|2 + |R(t)−Robs(t)|2

)
dt

such that
(S, I,R) = SIR(β,γ, [0, T ]),

we define the fitting problem of approximating the observed health series Iobs, and Robs with a SIR
evolution as the optimal control problem of finding

J∗ = inf
(β,γ)∈L∞([0,T ])×L∞([0,T ])

J (β,γ | Iobs,Robs, [0, T ]). (3.5.5)

It is straightforward to observe that if Sobs, Iobs, Robs are of class C1([0, T ]), then setting




β∗obs(t) := − N

Iobs(t)Sobs(t)

dSobs
dt

(t)

γ∗obs(t) :=
1

Iobs(t)

dRobs

dt
(t),

we have that
(Sobs, Iobs,Robs) = SIR(β∗,γ∗, [0, T ])

is a minimizer of the optimal control problem since

J (β∗obs,γ
∗
obs, [0, T ]) = 0,

which obviously implies that J∗ = 0.
This simple observation means that there exists a time-dependent SIR model which can perfectly

fit the data of any epidemiological evolution. In particular, we can perfectly fit the series of sick
people with a time-dependent SIR model (modulo a smoothing of the local oscillations due to noise).
This great approximation power comes however at the cost of defining the parameters β and γ in
L∞([0, T ]), which is a space that is too large in order to be able to define any feasible prediction
strategy.

In order to pin down a smaller manifold where these parameters may vary without sacrificing
much on the fitting and forecasting power, our strategy is the following:

1. Learning phase: The fundamental hypothesis of our approach is the confidence that the
specialists of epidemiology have well understood the mechanisms of infection transmission.
We thus propose to generate a large number of virtual epidemics with highly detailed com-
partmental models involving constant parameters µ ⊂ Rp. Since the models are assumed to be
detailed, they involve a potentially large number of parameters (p� 1) for which the optimal
value is unknown. The main steps of our the learning step are thus as follows:

(a) Generate virtual scenarios using detailed models with constant coefficients:
• Define the notion of Detailed_Model which is most appropriate for the epidemi-

ological study. Note that several models could be considered simultaneously. In
the case of the Covid-19 pandemic, the detailed models that we considered are the
SEI5CHRD model from [5] involving 11 compartments or the SE2IUR proposed in [7].
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• Define an interval range P ⊂ Rp where the parameters µ of Detailed_Model will
vary. We call the solution manifold U the set of virtual dynamics over [0, T + τ ],
namely

U := {u(µ) = Detailed_Model(µ, [0, T + τ ]) : µ ∈ P}.
The fact that the functions u(µ) are defined in the fitting and forecasting window

[0, T + τ ] is crucial to provide our forecasts.
• Draw a finite training set

Ptr = {µ1, . . . , µK} ⊆ P

ofK � 1 parameter instances and we compute u(µ) = Detailed_Model(µ, [0, T+τ ])
for µ ∈ Ptr. Each u(µ) is a virtual epidemiological scenario. An important detail
for our prediction purposes is that the simulations are done in [0, T + τ ], that is, we
simulate not only in the fitting time interval but also in the prediction time interval.
We call

Utr = {u(µ) : µ ∈ Ptr}
the training set of all virtual scenarios.

(b) Collapse: Collapse every detailed model u(µ) ∈ Utr into a SIR model following the
procedure outlined in our paper [A1]. For every u(µ), the procedure gives time-dependent
parameters β(µ) and γ(µ) and associated SIR solutions (S, I,R)(µ) in [0, T + τ ]. This
yields the sets

Btr := {β(µ) : µ ∈ Ptr} and Gtr := {γ(µ) : µ ∈ Ptr}.

(c) Compute reduced models:
We apply model reduction techniques using Btr and Gtr as training sets in order to build
two basis

Bn = span{b1, . . . , bn}, Gn = span{g1, . . . , gn} ⊂ L∞([0, T + τ ],R),

which are defined over [0, T + τ ]. The space Bn is such that it approximates well all
functions β(µ) ∈ Btr (resp. all γ(µ) ∈ Gtr can be well approximated by elements of Gn).
For this step, it is interesting to note that classical model reduction strategies such as
Singular Value Decomposition or a classical greedy algorithm did not work because they
do not preserve positivity of the basis functions. Due to this, reduction with Nonnegative
Matrix Factorization (NMF, see [88, 36]), a variant of SVD involving nonnegative modes
and expansion coefficients, delivered better results. We additionally developed a new
greedy algorithm, called Enlarged Nonnegative Greedy (ENG), which not only allows
to preserve positivity but also other types of bounds. In our numerical results, ENG
systematically outperformed NMF.

2. Fitting on the reduced spaces: We next solve the fitting problem (3.5.5) in the interval
[0, T ] by searching β (resp. γ) in Bn (resp. in Gn) instead of in L∞([0, T ]), that is,

J∗(Bn,Gn) = min
(β,γ)∈Bn×Gn

J (β,γ | Iobs,Robs, [0, T ]). (3.5.6)
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Note that the respective dimensions of Bn and Gn can be different, for simplicity we take
them equal in the following. Obviously, since Bn and Gn ⊂ L∞([0, T ]), we have that

J∗ ≤ J∗(Bn,Gn),

but we numerically observe that the function n 7→ J∗(Bn,Gn) decreases very rapidly as n in-
creases, which indirectly confirms the fact that the manifold generated by the two above
models accommodates well the COVID-19 epidemics.

The solution of problem (3.5.6) gives us coefficients (c∗i )
n
i=1 and (c̃∗i )

n
i=1 ∈ Rn such that the

time-dependent parameters

β∗n(t) =
n∑

i=1

c∗i bi(t), ∀t ∈ [0, T + τ ],

γ∗n(t) =
n∑

i=1

c̃∗i gi(t).

achieve the minimum (3.5.6).

3. Forecast: For a given dimension n of the reduced spaces, propagate in [0, T+τ ] the associated
SIR model

(S∗n, I
∗
n,R

∗
n) = SIR(β∗n,γ

∗
n, [0, T + τ ])

The values I∗n(t) and R∗n(t) for t ∈ [0, T [ are by construction close to the observed data
Iobs,Robs (up to some numerical optimization error). The values I∗n(t) and R∗n(t) for t ∈
[T, T + τ ] are then used for prediction.

4. Forecast Combination/Aggregation of Experts (optional step): By varying the di-
mension n and using different model reduction approaches, we can easily produce a collection of
different forecasts and the question of how to select the best predictive model arises. Alterna-
tively, we can also resort to Forecast Combination techniques: denoting (I1, R1), . . . , (IP , RP )
the different forecasts, the idea is to search for an appropriate linear combination

IFC(t) =

P∑

p=1

wpIp(t)

and similarly for R. Note that these combinations do not need to involve forecasts from our
methodology only. Other approaches like time series forecasts could also be included. One
simple forecast combination is the average, in which all alternative forecasts are given the
same weight wp = 1/P, p = 1, . . . P . More elaborate approaches consist in estimating the
weights that minimize a loss function involving the forecast error.

Some numerical results: We consider the forecasting of I and R for the first two epidemic waves
in the Paris region which took place around March-May 2020 and November 2020. We use public
observed data from Santé Publique France2 to get the number Iobs(t) of infected, and Robs(t) of
removed people. Figures 3.22 to 3.24 show forecasts with our approach on a 28-day ahead window

2https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
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for different times T . The plots depict the evolution of β and γ and the resulting evolution of the
infected I and removed R. We only show results using the ENG algorithm to find the reduced
model spaces Bn and Gn since this was the approach that delivered the best predictions. Note that
the method has difficulties in forecasting γ due to the oscillatory behavior of the series. However,
the obtained forecasts for I and R are in general very satisfactory over the whole time window. We
accurately predict the peak of both waves at least 10 days in advance.
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Figure 3.22: ENG forecast from T = 01/04.

3.6 Research perspectives on inverse problems

In this section I outline some research perspectives on inverse problems that I am either currently
investigating, or that I think would be worth considering for future works:

Future works on Theory and Algorithms:

• Efficient algorithms for advection dominated problems: The theory and algorithms of
Sections 3.1 to 3.4 is general in the sense that it holds for solution setsM of any nature (elliptic,
or hyperbolic problems). However, since the developed algorithms are based on a piecewise
affine reconstruction strategy, we expect that advection dominated problems will require a
very large number of partitions, making our model selection approach too computationally
demanding to be acceptable. The fundamental obstruction is connected to the fact that
partitioning a solution setM from a hyperbolic problem will not improve the slow convergence
rate of the Kolmogorov n-width. A relevant topic for future works is therefore the one of
searching for alternative nonlinear reconstruction algorithms that are more efficient than our
piecewise affine approach in this setting. Can nonlinear schemes from machine learning help
us in this task? With what theoretical guarantees and at which training cost?

• Extension of the theory and algorithms for Banach and metric spaces: Many advec-
tion dominated problems are naturally posed on Banach or even metric spaces. Can we extend
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Figure 3.23: ENG forecast from T = 15/04
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Figure 3.24: ENG forecast from T = 28/10
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the theory to these spaces and can we develop relatively simple reconstruction algorithms?
In the case of Wasserstein spaces, can we involve the model reduction ideas from Chapter 2,
Section 2.3?

• Sampling: The construction of the local reduced models is usually made with algorithms that
involve a finite training set of snapshots obtained through a discretization of the parameter
domain. In forward problems, the influence of sampling has been investigated in, e.g., [3]. Its
impact on inverse problems has not been explored to the best of my knowledge and it would
be worth studying. Even more: if the sampling is not enough, how can we dynamically enrich
it?

• Sensor placement for the piecewise affine reconstruction: It would be interesting to
develop extensions of the work [A10] on sensor placement that I have summarized in Section
3.3. Another very interesting contribution which has connections on sensor placement is [40]
and its subsequent extensions/improvements such as [22, 2]. For any of these approaches, the
selection of the sensors is done assuming that we work with one reduced model. One line of
research could consist in seeing how to perform a joint selection of the optimal observation
space and a family of piecewise reduced models.

• Model error: The current methodology does not inform on how to proceed if the model
error is large. Can we build a systematic strategy to estimate and compensate for the model
bias?

Applications:

• Beyond synthetic observations: I personally regret that most applications of this manuscript
have been done with synthetic measurements. This is of course due to the difficulty of get-
ting access to real observations for some applications such as neutronics. Despite this, I am
optimistic that we will be able to work with real data in the near future at last for certain
biomedical problems. This will allow us to extend the works [A2, A3, S1] presented in Section
3.6 and to bring the approach closer to a real production use.

• Variable geometries: Several extensions of our work [S1] could be envisaged. It would be
interesting to extend the strategy to the piecewise reconstruction approach, and for parameter
estimation. Another question is related to the database of available template geometries:
how can we detect that we do not have enough template geometries and how to enrich the
database? For the generation of new meaningful geometries, we may consider using machine
learning techniques such as variational autoencoders. For the detection, we may consider
using tools from topological data analysis in order to reduce the comparisons of shapes and
physical regimes to comparisons of algebraic invariants.

• Epidemiology: One key issue in epidemiological forecasting is how to leverage mobility data
in the modeling and forecasting of the outbreak dynamics. It would therefore be interesting to
develop a multiregional version of the forecasting approach proposed in [A1] and summarized
in Section 3.6. This requires the use of interregional population mobility data, which is in
general difficult to have access to, but this data is available in our case thanks to an agreement
between Paris Sciences Lettres University (PSL) and Facebook. Together with colleagues
from computer science at PSL, we have already studied this data in order to understand the
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connections between the different epidemic waves and population mobility. Two reports for
the greater public have been published on this matter (see [Pop1, Pop2]). It would now be
worth using the data for the multiregional extension of [A1]. Beyond this development, the
topic of optimal vaccination policies also arises a relevant question to explore, with interesting
mathematical challenges. Taking inspiration from the current pandemic situation in which a
vaccine is available, but not everybody has the possibility of being vaccinated immediately,
the question that we would like to address is the following: given an insufficient and fixed
number of vaccines, what is the optimal vaccination strategy? Should we invest all vaccines in
vulnerable people, or should we vaccinate some people with risky social behavior to mitigate
the spread? We expect that the rigorous formulation of this problem will lead to the study
of a mean field equilibrium for which we would have to study its theoretical properties and
develop numerical algorithms for solving it.

• Inverse problems posed on graphs: Numerous applications are posed on graphs. Among
the many examples which we could think of stand the connections between trees from a forest,
the traffic on the graph of roads, interactions on social networks... Applying and further
extending our methodology to these types of problems seems interesting and original to me.
In the framework of Agustín Somacal’s thesis, we are currently studying state and parameter
estimation problems related to the transport of pollutants in urban areas.

3.7 References
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