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Turbulent multiscale flows represent the majority of flows in nature and a key field of investigation, both for their fundamental dynamics and their numerous applications in engineering and environmental science. The present thesis concerns the investigation by means of direct numerical simulations (DNS) of some examples of complex unsteady flows, focusing on the different non-linear mechanisms that take place over a wide range of length and time scales that interact among them in a dynamically complex way.

In the first part, we discuss a model system symmetric under time-reversal based on the Navier-Stokes equations constrained to keep the Enstrophy or Energy constant, obtained replacing the viscosity coefficient with a time-dependent term which acts as a thermostat compensating the fluctuations of global invariants. The purpose of the present work is precisely to show to which extent the Gallavotti conjecture of dynamical ensemble equivalence is accurate, using high-resolution numerical experiments in two and three dimensions at different Reynolds numbers.

In the second part, we consider a predator-prey model of plankton dynamics in the presence of a turbulent flow past an idealized island, to investigate the conditions under which an algal bloom is observed, and the resulting patchiness of plankton distributions. By means of direct numerical simulations in two and three dimensions, we explore the role of the turbulent intensity and of the obstacle shape. In particular, we focus on population variance spectra, and on their relation with the statistical features of the turbulent flow, as well as on the correlation between the spatial distribution of the planktonic species and velocity field persistent structures.

Finally, we report the results of a work to which I collaborated, concerning the investigation of bubble-induced turbulence, tackled numerically by performing direct numerical simulations with a Volume-of-fluid (VOF) method. After some preliminary tests, we analyzed the data from highly-resolved simulations of 2D and 3D bubble column at different Reynolds number, with a setup and physical parameters similar to those used in laboratory experiments. Results are compared with experiments and previous coarse-mesh numerical simulations, with the aim of investigating the energy spectra and one-point Probability Density Function and thus understanding the physical mechanisms underlying the collective agitation.
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Preface "The purpose of computing is insight, not numbers." With this motto, R.W. Hamming introduces his textbook on scientific computation, titled "Numerical Methods for Scientists and Engineers" (1962), pointing out the need to intimately relate numerical computing to the source of the problem one aims at resolving and to the use that will be made of the results. Computation is not an isolated step from the reality, but is a sort of creation of a set of numbers that (hopefully) constitutes a realistic approximation of a real-life system, which thus needs an intense work of validation of results as well as a comparison with theoretical predictions and experimental evidence. Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat and momentum transfer and associated phenomena such as chemical reactions, scalar transport and mixing, by means of computerbased simulations. The range of application areas is thus very wide, including electrical and mechanical engineering, meteorology, hydrology and oceanography, biomedical engineering and so forth. The availability of affordable high-performance computing hardware which are becoming accessible to a progressively larger community of users have led to a recent upsurge of interest, motivating researchers to develop efficient numerical techniques to face the tremendous complexity of multiscale turbulent flows which constitute the majority of flows in nature. Even apparently simple flows, like two-dimensional jets, wakes and flat plate boundary layers become unstable above a certain Reynolds number and, typically, not analytically solvable: their chaotic and random motion can be tackled numerically, eventually with additional approximations which thus require a deep knowledge of the underlaying physics. Indeed, turbulence causes the appearance in the flow of eddies characterized by a wide range of length and time scales that interact among them in a dynamically complex way. A substantial amount of research effort has been dedicated to the development of numerical methods to capture the various effects due to turbulence. Depending on the physics of the problem and the cost effectiveness, one may aim at simulating the mean flow motion by using a turbulence model for Reynolds-averaged Navier-Stokes equations (RANS) or at focusing on larger eddies motion, including the unresolved ones through a sub-grid scale model using large-eddy simulations (LES). Alternatively, performing a direct numerical simulation (DNS) means resolving the complete equations for the mean flow and turbulent velocity fluctuations by using a suited spatiotemporal resolution. The latter is the approach we decided to adopt in the present work, applied to the investigation of different multiscale flows, whose complexity can arise due to the classical single-phase turbulence or due to the agitation generated by the dispersed phase in multi-phase flows, like bubbly flows. Possibly, the unsteady and highly non-linear nature of the flow can be coupled to a non-linear reaction term for transported scalars, which gives rise to the so-called advection-reaction-diffusion dynamics. In the following, we proceed to illustrate the general framework of the different topics that we have studied, in order to clarify the motivations and the perspectives that have led our research.

The first topic concerns a study of turbulence from a fundamental point of view, motivated by the observation that in everyday life, we experience phenomena indicating that natural processes are intrinsically irreversible. It suffices to think about the dispersion of ink in a glass of water, the melting of a sugar lump in coffee, or the natural life cycle, from birth to death, through ageing. However, classical mechanics and quantum mechanics, which describe the motions of the elementary constituents of matter, are time reversal invariant, i.e. they allow the reverse evolution of every allowed forward evolution. Over the years, a controversial debate concerning the dichotomy between irreversible macroscopic phenomena and fundamental mechanical laws has developed, starting from the first major contribution to its resolution of Boltzmann, through the formulation of the famous kinetic theory, H-theorem and the subsequent developments [Grad 1949, Cercignani 1988]. Boltzmann's stroke of genius consisted in having understood that irreversibility cannot be deduced solely from the laws of mechanics, but it naturally emerges on the basis of two fundamental ingredients: the large number of particles and thus large ratios between the microscopic time and length scales and the macroscopic ones and the appropriate initial conditions, those which verify molecular chaos. An additional element to consider, pointed out by Boltzmann [Chibbaro 2014], is that in a macroscopic system, not all the microscopic states evolve in the irreversible manner, but the vast majority does, i.e. practically all microstates, thus irreversibility is a universal fact. In this perspective, irreversibility should be viewed as associated to the different multiscale processes that occur within a given phenomenon, hence the possibility to describe in different ways the same systems. These general assumptions are particularly useful in the context of the hydrodynamic equations, namely the Navier-Stokes equations, which can be interpreted as the result of a multiscale analysis, starting from the Boltzmann equation through the assumption of local equilibrium and leading to an explicit way of computing the transport coefficients, such as the viscosity or the conductivity [Gorban 2004]. In this perspective, viscosity has not a fundamental nature but can be regarded as a phenomenological quantity accounting for molecular disorder, whose role is to forbid to a fluid to increase indefinitely its energy if subject to non conservative external forces: replacing this macroscopic parameter should not affect the macroscopic description of the fluid, but simply lead to an equivalent description, where "equivalent" should be intended in a statistically sense. The equivalence viewpoint between irreversible and reversible equations in fluid mechanics has been firstly proposed by [She 1993], then formalized in [Gallavotti 1997, Gallavotti 2014a]. Aside from the fundamental interest about the reversibility, the key-idea of replacing the Navier-Stokes equations by equivalent versions has been efficiently adopted as a computational approach: a prominent example is the above cited LES [Sagaut 2001], where effective eddy viscosities may be introduced to account for the effects of unresolved scales. However, the fundamental difference is that the equivalence approach above discussed is not meant to reduce the number of equations to obtain a simplified version with an extra term to account for the reduction but proposes to replace the constant viscosity with a fluctuating one that would make possible to have a new global invariant for the system, which thus a-priori remains computationally complicated.

Aside from the relevance of studying the turbulence phenomenon per se, understanding the role of turbulent flows has attracted considerable interest in geophysics, particularly concerning the study of plankton blooms [Denman 1995, Huisman 2002, Abraham 1998, Martin 2002a] and several studies have been undertaken, through simple theoretical models [Hernández-García 2004, Lindemann 2017[START_REF] Guseva | [END_REF]] but also by more realistic numerical tools [Lévy 2004, Lévy 2008]. The complexity of the problem arises from the different processes acting on a very broad range of spatial and temporal scales, ranging Figure 1: One of Earth's four major eastern boundary upwelling systems, the Canary Upwelling System exports phytoplankton-fixed carbon hundreds of kilometers into the North Atlantic Ocean via Ekman transport and mesoscale filaments and eddies that are generated when the North Atlantic's eastern boundary current flows past the complex coastal topography of Northwest Africa. Data collected during two orbits of the Suomi-NPP/VIIRS instrument on December 10, 2018. from order of tens of kilometers (submesoscale and mesoscale ranges 1 ) to micron, which is the typical size of Cyanobacteria, one of the most abundant planktonic species. From the data extracted by satellite observations and measurements of chlorophyll concentration in the ocean, a clear evidence of an interplay between flow structures like eddies and fronts and plankton arises, pointing out that different physical and biological processes may be relevant for plankton spatial variability. Generally speaking, two are the main ingredients to consider in the study of plankton dynamics: their reactive nature, meaning their biological interactions, which may be represented in an oversimplified manner through a Lokta-Volterra predator-prey type model, extended by possibly including the effect of nutrients and a diffusive term, and the advection by the flow they are immersed in. One possibility is to consider kinematic velocity fields, namely specified by a prescribed streamfunction, whose parameters can be adjusted to account for several effects, like Ekman pumping, vertical shear, wind stress, etc. While such a simplified approach allows the description of some of the main flow features and offers reduced computational cost, it cannot account for complex turbulent flow motion and thus provide an effective illustration of the non-trivial interplay between flow and reactive dynamics. Furthermore, a generalization to different geometries and boundary conditions may not be easy to achieve. In this perspective, an alternative approach consisting in performing extensive fully-resolved numerical simulations may contribute to shed light on the complex organization of plankton with respect to the characteristics of the carrying velocity field, avoiding any bias possibly coming from the modeling of the small scales of the flow. Indeed, studying the effect of a complex multiscale flow on plankton dynamics may pave the way for the development of furthermore efficient numerical tools to face realistic configurations.

We conclude this overview of the thesis introducing another topic, that is the investigation of bubble-induced turbulence, which involves several complex and coupled physical mechanisms and makes bubbly flows a particularly challenging investigation field [Prosperetti 2017, Risso 2011, Mathai 2020], among the various examples of multiphase flows. The movement of bubbles -whose size can be likely of the order of the millimeter -is essentially due to buoyancy and disturbs the carrying fluid inducing a collective agitation, referred to as pseudo-turbulence, which may enhance significative fluctuations in the principal phase (fluid). As the effects of the dispersed phase start to be relevant, i.e. when the ratio of portion of volume occupied by one phase with respect to the other, called volume fraction α, is higher than 10 -3 , a complex turbulent motion arises, showing a typical power-law scaling in the energy spectrum as a result of nonlinear wake interactions [Risso 2018]. The relation between pseudo-turbulence and turbulence is thus evident: the presence of a cascade phenomenon offers the possibility to unveil the underlying mechanisms and the range of scales over which the energy transfer takes place, by investigating the role of the Reynolds number as well. In this perspective, the direct numerical investigation of bubbly-flows can be a complementary tool to actual experiments, to provide a reference fully-resolved numerical experiment over the broad range of involved scales and to exploit the detailed information available to a DNS, eventually testing the possibility to perform reliable coarser simulations. The manuscript is therefore organized in four parts: Part I illustrates the main concepts of turbulent flows, focusing on their physical features and drawing a picture of the more important theoretical predictions that can be assessed. Secondly, a brief overview of the different physical phenomena that take place in a moving fluid is reported, particularly regarding the concept of turbulent mixing of inert and reactive scalars.

In Part II, we present a general overview of the methodologies used in this work, describing the main features of the code Basilisk, that we use as the numerical tool for all the simulations here performed. Moreover, the direct numerical simulation approach is briefly introduced, through the illustration of the first case where we applied it, namely the simulation of bubble-induced turbulence in two-dimensional and three-dimensional flows. With the aim of getting used to the numerical code and the main analytical tools, I have collaborated in the work of [Innocenti 2018], which resulted in an article published in the Journal of Fluid Mechanics. In particular, my personal contribution has been at performing some preliminary validation tests and then at analyzing the data of a well-resolved threedimensional simulation of a bubble column. Being the result of a collaboration and thus not conceived as a main topic of investigation per se, we do not dedicate an entire chapter to it but solely report the article in the Appendix A.

In Part III, we discuss a model system symmetric under time-reversal based on the Navier-Stokes equations constrained to keep the enstrophy or the energy constant. Following the conjecture of equivalence proposed by [Gallavotti 1997], it is demonstrated through highly resolved numerical experiments in two and three dimensions that the reversible model evolves to a stationary state which reproduces quite accurately all statistical observables relevant for the physics of turbulence extracted by direct numerical simulations at different Reynolds numbers. To assess the validity of the conjecture, we developed and validated the robustness of a prediction-correction algorithm, used in combination to the numerical integration scheme in order to keep the quadratic invariants conserved with the desired accuracy.

Part IV is devoted to the study of plankton dynamics, focusing on the role of stirring and dispersion by turbulent flows in the generation of their typical patchiness, meaning their heterogeneous spatial distribution. After an introductory overview of such organisms, from a biological point of view, we report the results of the study of a predator-prey model of plankton dynamics in the presence of a turbulent two-dimensional flow past an idealized island. Primarily, our scope was to investigate the conditions under which an algal bloom is observed, unveiling the underlying mechanism that determines its persistency. Secondarily, by means of direct numerical simulations, we intended to study the possible effects due to the spatiotemporal complexity of dynamical turbulent flows, by focusing on population variance spectra, and on their relation with the statistical features of the turbulent flow, as well as on the correlation between the spatial distribution of the planktonic species and velocity field persistent structures. We further investigated the role of the obstacle shape and the impact of the grid resolution, testing the possibility of using a coarse-grained approach, which is computationally more feasible than the direct numerical simulation in realistic configurations. Motivated by the several findings of the above study, we pushed further the investigation of such dynamics in fully-developed three-dimensional turbulence, generated in the wake of an ideally infinite cylinder. A comparative study of the two and three-dimensional configuration at the same Reynolds number is reported, with the aim of unveiling similarities and differences in terms of spectral properties, spatial organization and correlations between the flow velocity and plankton fields.

In Chapter 9, we summarize the most important findings of the different studies and asses some general conclusions as well as the perspectives and future advancements. As it can be deduced by the above overview, this work has been strongly transversal, touching different problems but with the same common thread of the direct numerical simulation of multiscale turbulent flows. Beside the general introduction of theoretical and numerical tools, Part III, IV and Appendix A have been conceived as self-contained and correspond to different papers published or submitted to international scientific journals. Therefore, even if there might be some repeated concepts in some chapter, the structure and the contents should remain clear and thus facilitate the reader who is interested only in some specific topic.

Part I

Theoretical concepts

Chapter 1

Turbulent Flows

Turbulent flows are frequently observed in our everyday surroundings over a wide range of scales, ranging from large-scale flows as ocean and atmosphere circulation to small-scale ones, as water in a puddle or river mouth, the smoke from a chimney or the buffeting of a strong wind. This diversity of phenomena, independently if they are natural or artificial, share some evident features: turbulent motions are unsteady, irregular, chaotic, unpredictable, seemingly random and characterized by several scales, both in terms of space and time. The motivation for the study of turbulent flows is primarily due to the observation that the majority of flows is turbulent, especially in engineering applications (processing of liquids and gases with pumps or compressors, mixing of fuel and air in engines, mixing of reactants in chemical reactors, etc.); secondarily the effectiveness of turbulence in transporting and mixing of matter, momentum and heat with respect to the laminar flows points out the need of a wide comprehension of turbulence phenomenon as well as of a mathematical theory that could explain the phenomenological observations. In a well-known experiment O. Reynolds [START_REF] Reynolds | An experimental investigation of the circumstanccs which determine whether the motion of water shall bc direct or sinnous, and of the law of resistance in parallel channels[END_REF]] observed how the transport of dye, injected in the centerline of a glass pipe containing flowing water, critically depends on a dimensionless parameter, called Reynolds number, which is defined as:

Re = U L ν (1.1)
where U and L are some characteristic velocity and length scales and ν the kinematic viscosity of the flow. The Reynolds number expresses the ratio between inertial and viscous forces and controls the transition to turbulence starting from a laminar state. In the experiment, Reynolds observed that at low Re the flow motion didn't induce mixing of dye, which remained organized in streamlines parallel to flow direction; increasing this parameter, the motion became irregular and both velocity profile and mixing of the dye became time and space dependent. Therefore, it is commonly stated that if Re 1 the flow becomes turbulent, meaning that infinitesimal disturbances grow indefinitely and the motion rapidly becomes irregular and chaotic. Many different techniques have been used to address many different questions concerning turbulence and turbulent flows, starting from the pioneering works of [Richardson 1922, Kolmogorov 1941a, Kolmogorov 1941b, Kolmogorov 1941c] and an exhaustive description can be found in different text books [Hinze 1975, Frisch 1995, Pope 2000]. In this chapter, we illustrate the main characteristics of simple turbulent flows, of the dominant physical processes and governing laws, which are embodied in the Navier-Stokes equations (NS). While for the high-Reynolds-number flows and complex geometry a modelling approach is preferable and several models can be used, e.g. the kε model [Jones 1972], Reynolds-stress models [Shih 1985, Sarkar 1990], models based on the probability density function (PDF) [Pope 1983] of velocity and large-eddy-simulations (LES) [Smagorinsky 1963, Lilly 1967, Deardorff 1970], for flows at low and moderate Reynolds number the direct approach of solving the NS equations, called direct numerical simulation (DNS), is a powerful research tool. In this work we will concentrate manly on the latter approach (described in Chapter 4), leaving apart the illustration of the statistical description of turbulence. 

The equations of fluid motion

The key-idea of treating fluids as continuous media relies on the continuum hypothesis, which is naturally applied to fluid dynamics considering that the typical flow scales exceed the molecular scales by three or more orders of magnitude. Based on the definition of the separation of length scales as the Knudsen number:

Kn ≡ λ/ (1.2)
where λ the length scale of molecular motion (e.g the mean free path) and the smallest geometric length scale in a flow, the continuum approach is appropriate for Kn 1. Let us consider an intermediate scale * such that λ size V = * 3 , over which the molecular properties are averaged, and spherical region in it centered on the point x, V x . The fluid's density ρ(x, t) is defined as the ratio between the mass of molecules in V x and V, at the time t. Similarly the fluid's velocity u(x, t) is defined as the average velocity of molecules within V x . Because of the separation of scales, the dependence of the continuum properties on the choice of * is negligible. Given these prescriptions, let us introduce the mass-conservation or continuity equation, which is one of the fundamental equations of fluid mechanics:

∂ρ ∂t + ∇ • (ρu) = 0 (1.3)
A fluid is said to be incompressible when the density of an element of fluid is not affected by changes in the pressure. The density of the fluid may also change as a consequence of molecular conduction of heat but generally the effects are negligible, so the definition of incompressibility is simply that the density of each mass element of the fluid remains constant. Thus, for incompressible flows, the rate of change of ρ is zero and Eq. (1.3) degenerates to the kinematic condition that the velocity field has to be solenoidal :

∇ • u = 0 (1.4)
The equation of motion for a fluid is a relation equating the rate of change of momentum of certain portion of fluid and the sum of all forces acting on it, which are generally given by the surface forces and volume forces. The surface forces, of molecular origin, are described by the stress tensor τ ij (x, t) which is symmetric and given for Newtonian incompressible fluids by:

τ ij = -P δ ij + µ ∂u i ∂x j + ∂u j ∂x i (1.5)
where P is the pressure and µ is the viscosity coefficient. Generally, the body force is expressed by gravity g = -∇Ψ, with Ψ the gravitational potential. These forces, according to Newton's second law, cause the fluid to accelerate according to the momentum equation:

ρ Du j Dt = ∂τ ij ∂x i -ρ ∂Ψ ∂x j (1.6)
where the material derivative is defined as:

D Dt ≡ ∂ ∂t + u i ∂ ∂x i = ∂ ∂t + u • ∇ (1.7)
By exploiting the fact that ρ and µ are constant and recalling the incompressible condition (1.3), one obtains the Navier-Stokes equations:

ρ Du j Dt = µ ∂ 2 u j ∂x i ∂x i - ∂P ∂x j = ρ ∂Ψ ∂x j (1.8)
which, defining a modified pressure p = P + ρΨ, simplifies as:

Du Dt = - 1 ρ ∇p + ν∇ 2 u (1.9)
where ν ≡ µ/ρ is the kinematic viscosity. This equation, together with the solenoidal condition ∇ • u, is the governing equation of motion for a constant-property Newtonian fluid.

An important feature of turbulent flows is that they are rotational, i.e. they have non-zero vorticity. The latter is defined as:

ω = ∇ × u
(1.10)

The equation for the evolution of the vorticity is thus obtained by taking the curl of Eq. (1.9):

Dω Dt = ν∇ 2 ω + ω • ∇u (1.11)
The pressure term (-∇ × ∇p/ρ) vanishes for constant-density flows. The second term on the right-hand side ω • ∇u is referred as the vortex-stretching term and is responsible for the stretching process which is fundamental in turbulent flows. This term vanishes in two-dimensional flows and the only non-zero component of vorticity evolves as a conserved scalar, resulting in a dynamics which is qualitatively different with respect to the threedimensional case.

The rotation and stretching processes are clearly distinguishable by proceeding to the decomposition of the velocity gradients ∂u i /∂x j into isotropic, symmetric-deviatoric and antisymmetric parts:

∂u i ∂x j = 1 3 ∇δ ij + S ij + Ω ij (1.12)
where S ij is the symmetric rate-of-strain tensor :

S ij ≡ 1 2 ∂u i ∂x j + ∂u j ∂x i (1.13)
and Ω ij is the antisymmetric rate-of-rotation tensor :

Ω ij ≡ 1 2 ∂u i ∂x j - ∂u j ∂x i (1.14)
The vorticity and the rate of rotation are related by:

ω i = -ε ijk Ω jk (1.15
)

Ω ij = - 1 2 ε ijk ω k (1.16)
where ε ijk is the alternating tensor.

It is worth noting that the stress tensor can be re-arranged as:

τ ij = -P δ ij + 2µS ij (1.17)
so the viscous stress depends on the rate of strain but it is independent on the rate of rotation.

The scales of turbulent motion

A key-point in turbulence is the study of the distribution of energy among the various scales of motion and the different physical processes occurring on these scales. Two concepts are primarily fundamental: the energy cascade and the Kolmogorov hypotheses.

In this section, we consider a fully turbulent flow (3D), homogeneous and isotropic, at high Reynolds number with characteristic velocity U and length scale L. A separate discussion of 2D turbulence is given in Sec. 1.3, while Sec. 1.4 is devoted to the description of free shear flows, especially the flow in the wake behind an obstacle.

The energy cascade

The idea of the Richardson cascade, firstly introduced in [Richardson 1922], is that energy is injected at the largest scales of motion L and is then transferred through a multi-step process to the smallest scales, i.e. the dissipative scale η, where it is dissipated by viscosity.

The picture has been quantitatively enriched by Kolmogorov [Kolmogorov 1941c], as it will be described in the next paragraph. The basic assumption is the locality of interactions in Fourier space, i.e. there is not a direct transfer of energy connecting very large scales to very small ones. Respecting the scaleinvariance of NS equations, the mechanism is supposed to be self-similar Let us consider a generic eddy of size , which has a characteristic velocity u( ) and time-scale τ ( ) ≡ /u( ), also defined eddy-turn-over time. The uppermost eddies have a scale 0 , called the integral scale, which is comparable to the flow scale L, their characteristic velocity u 0 is of the order of r.m.s turbulence intensity u ≡ ( 2 3 K) 1/2 ∼ U and the typical time scale is τ 0 ∼ 0 /u 0 , the large eddy-turn-over time. With these prescriptions, we can define the integral-scale Reynolds number, which is the most frequently used definition of Reynolds number:

Re ≡ 0 u 0 ν (1.18)
The successive generations of eddies have scales n = 0 r n with (n = 0, 1, 2, ...) and 0 < r < 1. Generally, the most common choice is r = 1/2 but the exact value is not important. Large eddies are unstable and so they break up, transferring their energy to somewhat smaller eddies, until the Reynolds number Re( ) ≡ u( ) /ν is sufficiently small that the eddies motion is stable and viscosity is efficient in dissipating the kinetic energy. The smallest eddies have scales ∼ η, the Kolmogorov dissipation scale. A crucial feature is that energy, introduced at the top at a rate ε ∼ u 3 0 / 0 , independent of ν, is "cascading" down at the same rate and is eventually removed by dissipation at the bottom, still at rate ε.

In the cascade process, a key-concept, theoretically stated and experimentally observed, is the universality of small-scale turbulent fluctuations, i.e. their independence on the largescale forcing mechanism used to inject energy in the system. In a nutshell, this implies that turbulent flows which are differently sustained at large-scales, in terms of boundaries, forcing term, etc., share similar small-scale statistics. Universality is strictly linked with the so-called return-to-isotropy, the assumption that small-scale statistics is dominated by the isotropic component. Both these assumptions clearly hold far enough from the boundaries, which can introduce non-homogeneous effects at all scales. 

The Kolmogorov 1941 Theory

The purpose of the celebrated Kolmogorov 1941 theory (in short K41) is to formulate hypotheses, explaining two basic empirical laws of fully developed turbulence. We follow here the presentation given by [Frisch 1995]:

(i) Two-thirds law. In a turbulent flow at very high Reynolds number, the mean square velocity increment (δv( )) 2 between two points at distance behaves approximately as the two-thirds power of the distance.

(ii) Law of finite energy dissipation. If, in an experiment on turbulent flow, all the control parameters are kept the same, except for the viscosity, which is lowered as much as possible, the energy dissipation per unit mass dE/dt behaves in a way consistent with a finite positive limit.

At the basis on the concept of isotropy of small-scales already introduced in the previous paragraph, there is the statement of invariance of the NS equations under the following symmetries:

1. space translations:

x → x + r 2. space rotations: (x, v) → (Ax, Av) with A ∈ SO(3) 3. scaling: (t, x, v) → (λ 1-h t, λx, λ h v) for any h and λ > 0
where the first two symmetries are consequences of space homogeneity and isotropy and are broken in the presence of boundaries or a forcing mechanism. The third one is linked to the above introduced idea of similarity, i.e. two flows with the same geometry and the same Reynolds number are similar.

The first hypothesis of K41 concerns the isotropy of the small-scales motion and states: H 1. In the limit of infinite Reynolds number, all the possible symmetries of the NS equation, usually broken by the mechanism producing the turbulent flow, are restored in a statistical sense at small scales ( 0 ) and away from boundaries.

By denoting with δv(x, , t) = v(x + )v(x) the velocity increments over a scale , the property of homogeneity means that:

δv(x + ρ, ) law = δv(x, ) (1.19)
for all and ρ small compared to the integral scale. Similarly, isotropy means that the statistical properties of velocity increments are invariant under rotations of and δv, i.e.

δv(Ax, A ) law = δAv(x, ) where A is a rotation matrix. Kolmogorov argued that the directional biases of the large scales are lost as the energy passes down the cascade and so all the information about the geometry of the large eddies, which are determined by the mean flow field and boundary conditions, is lost. In this sense, the statistics of small-scales is universal, similar in every high-Reynolds-number turbulent flow. By introducing a length scale EI ≈ 1 6 0 which denotes a size range < EI referred ad the universal equilibrium range, the concept of universality in a statistical sense is expressed by the Kolmogorov's first similarity hypothesis: H 2. In every turbulent flow at sufficiently high Reynolds number, the statistics of the small-scale motions ( < EI ) have a universal form that is uniquely determined by ν and ε.

Thus, there exists a scaling exponent h ∈ R such that

δv(x, λ ) law = λ h δv(x, ) (1.20) 
for all x and increments , λ small compared to the integral scale. This hypothesis implies that given ε and ν unique length, velocity and time scales exist, the so-called Kolmogorov scales:

η ≡ ν 3 ε 1/4
(1.21)

u η ≡ (εν) 1/4 (1.22) τ η ≡ ν ε 1/2 (1.23)
By definition, the Reynolds number based on the Kolmogorov scale, i.e. ηu η /ν is unity, which is consistent with the notion that the energy cascade proceeds until the Re is small enough for dissipation to be effective. Indeed the definition of Kolmogorov length scale η comes from equating the eddy turnover time τ ∼ ε -1/3 2/3 and the typical time for viscous diffusion to attenuate excitation on a scale ∼ , which is

τ dif f ∼ 2 /ν.
The ratios of the smallest to largest scales are readily determined from the definitions of the Kolmogorov scales and from the scaling ε ∼ u 3 0 / 0 :

η/ 0 ∼ Re -3/4 (1.24) u η /u 0 ∼ Re -1/4 (1.25) τ η /τ 0 ∼ Re -1/2 (1.26)
At sufficiently high Reynolds numbers, it exists a range of scales such that 0 η where eddies motion is weakly affected by viscosity. Following this and from Kolmogorov's first similarity hypothesis, a third hypothesis, called the Kolmogorov's second similarity hypothesis, states: H 3. In every turbulent flow at sufficiently high Reynolds number, the statistics of the motions of scales 0 η have a universal form that is uniquely determined by ε and and independent of ν.

By introducing a lenghtscale DI , the universal equilibrium range can be divided in two subranges: the inertial subrange ( EI > > DI ), where the inertial effects dominate and the dissipation range ( < DI ), where motions experience significant viscous effects. As a consequence of the hypothesis H 3, at a given size one can estimate the characteristic velocity and time scales for the eddy starting from and ε:

u( ) = (ε ) 1/3 (1.27) τ ( ) = ( 2 /ε) 1/3 (1.28)
Assuming that the energy transfer process is due primarily to eddies of size , the rate of energy transfer, i.e. T ( ) can be expected to be of order u( ) 2 /τ ( ) and for the above relations, one obtain:

u( ) 2 /τ = ε = T ( ) (1.29)
which expresses the fact the the rate of energy transfer is independent on the scale and constant across the inertial subrange, as illustrated in Fig. 1.3.

The energy spectrum according to K41

A possible estimation of the form of energy spectra for turbulent flow is by directly applying the Kolmogorov hypotheses to spectrum, as it will be done in this section. A more rigorous approach (followed in [Frisch 1995]) consists in applying the Fourier transforms of the second-order velocity structure, which has a precise scaling law from K41.

According to the first similarity hypothesis, in the universal equilibrium range in the wavenumber space, i.e. k > k EI ≡ 2π/ EI , velocity statistics are solely determined by k, ε and ν. By a simple dimensional argument, one obtains:

E(k) = ε 2/3 k -5/3 Ψ(kη) (1.30)
where Ψ(kη) is a universal dimensionless function and the relation applies for:

kη > k EI η = 2πη EI (1.31)
According to the second similarity hypothesis, E(k) has a universal form determined by ε and independent of ν in the inertial subrange, which corresponds in wavenumber space to k EI < k < k DI . In Eq. (1.30), the viscosity enters solely through η so the hypothesis implies that, as its argument tends to zero (kη 1), Ψ becomes independent of its argument, i.e. tends to a constant C. Thus, the second similarity hypothesis predicts in the inertial subrange k EI < k < k DI an energy-spectrum function:

E(k) = Cε 2/3 k -5/3 (1.32)
where C is a universal Kolmogorov constant and according to experimental data its value is C 2.0. The statement that the energy spectrum follows a k -5/3 is equivalent to the the two-thirds law. We now know that the spectrum (1.32) is not exact, as intermittency induces some deviations from the Kolmogorov exponent -5/3. Nevertheless, these effects are small and their existence has been definitively accepted only very recently.

Kolmogorov's four-fifths law

One of the fundamental results in fully developed turbulence is the four-fifths law, derived in [Kolmogorov 1941a]. By assuming homogeneity, an exact relation holds for the third order longitudinal structure function:

Four-fifths law. In the limit of infinite Reynolds number, the third order (longitudinal) structure function of homogeneous isotropic turbulence, evaluated for increments small compared to the integral scale, is given in terms of the mean energy dissipation per unit mass ε (assumed to remain finite and nonvanishing) by

S 3 ( ) = (δv || (x, )) 3 = - 4 5 ε (1.33)
This statement constitutes an indispensable condition to satisfy for any theory of turbulence. A plausible derivation of this law relies on a previously derived relation of Karman and Howarth and on simple dimensional arguments [Frisch 1995].

Let us show that this law directly implies that in Eq. (1.20) h = 1 3 . Following the hypothesis H 2, under rescaling of the increment by a factor λ, the Eq. (1.33) becomes:

(δv || (λ )) 3 law = λ 3h (δv || ( )) 3 law = - 4 5 ελ (1.34)
and thus, implies that the only possible value for h is 1/3. This statement, combined with the hypothesis H 2, allows to predict a scaling law for the velocity function structures at inertial-range separations of arbitrary positive order p > 0:

S p ( ) ≡ (δv || ( )) p = C p ε p/3 p/3 (1.35)
where C p s are dimensionless constant, whose universality was postulated by Kolmogorov in its first 1941 paper but questioned by Landau (see [Kraichnan 1974]). For p = 3 C 3 = -4/5. The fact that the second order structure function follows an 2/3 law directly implies the k -5/3 law for the energy spectrum (Eq. (1.32)).

We conclude this section by briefly introducing the problem of intermittency. It is now accepted that K41 Theory is not exact because higher order structure functions display a systematic deviation from the scaling exponents:

S p ( ) = C p 0 ζp (1.36)
with ζ p = p/3. In several experiments, the scaling exponents ζ p have been extracted using the so-called ESS procedure [Benzi 1993], resulting to follow a non-linear function of p. This means that the PDFs of velocity differences δv( ) vary as a function of length scale and the skewness of the velocity differences is not constant but increases as a function of the Reynolds number.

Two-dimensional turbulence

Two-dimensional turbulence, although is never rigorously realized in nature or in laboratory, appear to be relevant for many physical systems like planetary atmospheres, oceanic currents and geophysical flows, where the large aspect ratio (the ratio of lateral to vertical length scales), the stable density stratification and Earth's rotation allow to employ such a description, at least in first approximation. Neglecting to discuss the possible fields of applicability and the experimental results, here we illustrate the statistics of stationary, forced-dissipated, 2D turbulence in homogeneous isotropic conditions, highlighting the rich phenomenology that arises, which reveals the fact that 2D turbulence is not simply a reduced version of the 3D dynamics so far discussed. Recalling the Navier-Stokes equation introduced in Sec. 1.1 for the scalar vorticity field

ω = ∇ • u = -∇ 2 ψ: ∂ t ω + u • ∇ω = ν∇ 2 ω + f (1.37) where u = (∂ y ψ -∂ x ψ) (1.38)
with ψ a stream function and f the curl of the forcing term. Note that (1.38) directly implies the incompressibility condition of u. As already observed, the above equation includes no vortex-stretching term. Indeed, the main aspect that distinguishes it most from three-dimensional turbulence is the conservation in the inviscid, unforced limit, of vorticity in addition to the kinetic energy, which is a quadratic invariant in both 2D and 3D cases. Thus, for the case with no external forcing (f = 0), finite viscosity results in dissipation of K and Ω given by

dK dt = -2νΩ ≡ -ε(t) (1.39) dΩ dt = -2νP ≡ -η(t) (1.40)
where we have introduced the palinstrophy P ≡ 1 2 (∇ × ω) 2 , ε and η are the energy and enstrophy dissipation rate. Eq. (1.40) imposes a bound on enstrophy which cannot increase under the sole action of nonlinearity as in the 3D case and Eq. (1.39) implies that ε → 0 as ν → 0. Thus the dissipation anomaly is absent and energy is not dissipated by viscosity and is dynamically transferred to large scales by the inverse cascade [Kraichnan 1967]. Conversely, palinstrophy is not bounded as vorticity, so a direct cascade of enstrophy is expected.

The inertial cascade ranges

Analogously to the K41, a 2D cascade theory can be developed through dimensional analysis and with the basic assumption that in the inertial range the cascade rate is independent on the spatial scale [Kraichnan 1967]. In an inverse energy inertial cascade range, the only expression for the energy spectrum which assures that ε is scale-independent is

E(k) = Cε 2/3 k -5/3
(1.41)

i.e. the same shape in the 3D case, as it must be if it depends only on k and ε. However, the k-direction of the energy flux is opposite.

In a forward enstrophy inertial cascade range, we assume that η is the scale-independent cascade rate toward small scales, thus

E(k) = C η2/3 k -3 (1.42)
where C is another dimensionless constant, analogously to the Kolmogorov constant C. The enstrophy dissipation range starts at a scale d given by

d ≡ ν 3 η 1/6 (1.43)
which is analogous to the Kolmogorov dissipation scale in 3D turbulence. Note that in contrast to the "rough" velocity field of the 3D turbulence, the k -3 spectrum implies an almost everywhere smooth velocity field at small scales such that within the enstrophy cascade range the flow has a single time scale, given by the eddy turnover time τ d = η-1/3 and independent on the length scale . The resulting picture, illustrated in Fig. 1.4, consists in assuming that the system is forced at a wavenumber k f = 2π/ f much larger than the smallest wavenumber associated to the size of the domain L and much smaller than the dissipation wavenumber k d = 2π/ d . The energy introduced by forcing moves towards larger scales with a shape given by Eq. (1.41) and the equilibrium is achieved, provided it exists an energy sink on some very large scale (Ekman friction, Rayleigh friction, etc.). The enstrophy accumulation associated with the forcing moves toward smaller scales with a shape given by Eq. (1.42) and is dissipated by viscous effects for k > k d .

It should be noted that the argument for the direct cascade is not fully consistent, so to assure a scale-independent flux a logarithmic correction has to be added [Kraichnan 1971], resulting in where k min ∼ 1/L is the smallest wavenumber.

E(k) = C η2/3 k -3 [log(k/k min )] -1/3 (1.44)
For an energy spectrum of the form E(k) ∼ k -β , one expects for 1 < β < 3 (locality condition) a second-order velocity structure function scaling as S 2 ( ) ∼ β-1 . In the case of the inverse cascade, the prediction is therefore S 2 ( ) = C 2 ε 2/3 2/3 with C 2 2.15C. For the direct cascade, Eq. (1.42) gives S 2 ∼ 2 but it is at the border of the locality condition (β = 3). Therefore, the structure functions are dominated by the largest scales and are not informative about small-scale turbulent components.

Free shear flows

Free shear flows are of significant importance in many natural and industrial applications. As the name "free" suggests, for these type of flows the motion takes place far from walls and turbulent motions arise because of the mean-velocity differences. Some examples are jets, wakes, mixing layers and homogeneous shear flow (i.e. flow subjected to a constant and uniform mean shear). It is usual in discussing free shear flows to use the boundary-layer theory [Schlichting 2017] (at large Reynolds numbers, without viscous shear stresses), but this is beyond the scope of this work. Here a short introduction will be given in order to understand the physics of flow separation and vortex formation from a surface, which take place in the wake of a flow behind an obstacle. The boundary layer is the thin layer around the body surface in which the flow velocity is increased from zero (no-slip condition at the surface) to the free-stream velocity at some distance away from the surface. The separation of the flow is related to the pressure distribution in the boundary layer. In a potential (frictionless) flow around a body, the fluid particles are decelerated upstream of the obstacle (the free-stream velocity is reduced to 0 at the surface), thus due to the Bernoulli's equation the pressure is increased at the upstream stagnation point and conversely at the downstream one, assuring the conservation of kinetic energy. This symmetry arises only because the flow is completely frictionless. Instead, in the presence of viscosity, in the boundary layer the flow particles have lost parts of their kinetic energy before facing the increased pressure field on the downstream half of the body and this results in a boundary layer separation (Fig. 1.5). At this point, the flow from ahead and behind will meet in the stagnation point and subsequently advance in a different direction, giving rise to a vortex which will feed on the energy loss in the wake due to the boundary layer separation. The vortex will be subsequently transported away with the local velocity and with other vortices will form the so-called Karman vortex street. 

Plane wake

In this subsection, we will discuss the descriptive understanding of plane wake formed when a uniform stream (of velocity U c in the x direction), flows over a cylinder. The resulting flow is statistically stationary, two-dimensional and symmetric about the plane y = 0. The characteristic velocity difference is:

U s (x) ≡ U c -U (x, 0, 0) (1.45)
and the half-width, y 1/2 (x) is defined such that

U (x, ±y 1/2 , 0) = U c - 1 2 U s (x) (1.46)
Clearly, with increasing downstream distance, the wake spreads (i.e. y 1/2 increases) and decays, U s /U c decreases toward zero). Another fundamental quantity is the boundary layer thickness δ BL , which is normally defined as the distance from the surface to the point where the velocity is 99% of the free-stream velocity U c , i.e. the flow has essentially reached the asymptotic value. By introducing the Reynolds number based on the cylinder diameter Re = Ucd ν , a dimensional estimation of δ BL could be obtained by stating that in the boundary layer viscous forces balance inertia and pressure gradient forces, so:

ν U c d d δ BL 2 = O(1) → δ BL = O(Re -1/2 d)
(1.47) The dependence on the Reynolds number in the above equation suggests that one can distinguish between laminar and turbulent boundary layers. In particular, this parameter determines whether or not flow separation will occur and the position of the separation point. Based particularly on flow visualization experiments, a classification of the different flow regimes of flow around a circular cylinder has been established by several authors, e.g. [Coutanceau 1991]. Fore very low Re (Re 5) the flow around a cylinder is laminar and still attached to the cylinder. The flow is symmetric on the upstream and downstream parts and has a relatively clear stagnation point on the two sides. However, increasing Re the streamlines of the flow can be seen to move off from the cylinder surface, due to a reduction of the velocity of the downstream fluid particles with respect to the upstream ones. For Re 5 the reduced flow velocity downstream of the cylinder induces a pressure gradient on the boundary layer close to the downstream stagnation point. This leads to a beginning boundary layer separation on each side of the stagnation point. Correspondingly, the two separated shear layers meet at an increased distance behind the back of the cylinder, enclosing two symmetrical standing vortices, which remain attached to the cylinder. For Re above a critical value of about 50-60 the shedding of alternating vortices now takes place, forming the so-called Karman vortex street for increasing Reynolds number up to some limiting value, normally varying around 150-200. The initial bubble disappears, and a progressively growing formation zone develops, where the vortices build up. Increased three-dimensionality of the wake flow causes the laminar shed vortices to develop into turbulent vortices. The transition zone at first is found far downstream of the cylinder, but as the Re increases, this distance decreases. This flow regime ends at Re 2000. At this stage, it is possible to introduce the so-called Strouhal number [Blevins 1990]:

St = df s U c (1.48)
where f s is the frequency of the vortex shedding and d and U c the quantities already introduced. Typical measurements of this parameter have been obtained in various experiments, giving a value of St ∼ 0.2.

For 2000 Re 1.5 -2 • 10 5 , the wake is completely turbulent but the boundary layer is still laminar. The length of the formation zone reaches its maximum for Re 2000 and then starts to decrease with increasing Re. With respect to the laminar regime, the transverse spacing is smaller and the acceleration period is longer. In the critical regime, for 1.5 -2 • 10 5 Re 4 -5 • 10 5 , the boundary layer becomes unstable and separation occurs before turbulence sets up. The wake width decreases and the Strouhal number increases from about 0.2 to a maximum of 0.46, as a result of a notable increasing of the vortex shedding frequency. In the supercritical regime, 4 -5 • 10 5 Re 3.5 • 10 6 , the flow undergoes at first a laminar separation, then it becomes turbulent and reattaches tp the cylinder surface, forming an attached separation bubble, before definitely separating downstream. The character of vortex shedding is not regular anymore. For Re ∼ 3.5 • 10 6 , the wake is in a transcritical regime, the separation is fully turbulent, the width now increases again, but is smaller than the corresponding value in the laminar regime. The relatively regular vortex shedding provides a quasi-constant Strouhal number of about 0.3. Clearly, the described limits defining the different regimes, which have been stated for a smooth circular cylinder, are not precise, and they may change due to the surface roughness or to a variation of the turbulence level of incoming flow. The different regimes have been found to have an impact on the shedding Strouhal number as well as the drag coefficients, that we are now going to define.

At sufficiently high Reynolds number, vortices are shedded from the surface of the cylinder, resulting in a time-varying fluctuation of the pressure field around the body. Correspondingly, a time-dependent force acts on the body due to the shear stresses and pressure differences caused by the fluid motion. This force can be resolved in two components, the lift force which acts perpendicular to the direction of the incoming flow, which has a zero mean and a oscillating component:

F L = FL sin(ω s t + φ s ) (1.49)
and the drag force, which acts in-line with the incoming flow, given by:

F D = F D + FD sin(2ω s t + ψ s ) (1.50)
where FL and FD are the amplitudes of the oscillating lift and drag forces, F D the mean drag force, ω s = 2πf s the frequency of vortex shedding, and φ s and ψ s the phases of the oscillating forces relative to the shedding. By non-dimensionalizing the above expression by the dynamic pressure ρLdU 2 C /2 (where ρ is the fluid density and L is unity in the 2D Figure 1.7: Flow regimes for fluid flow around a circular cylinder (Blevins (1990).

case), one can obtain the expression for the lift and drag coefficients:

ĈL = FL 1 2 ρLdU 2 c
(1.51)

C D = F D 1 2 ρLdU 2 c (1.52) ĈD = FD 1 2 ρLdU 2 c (1.53)
Several experimental studies [Schewe 1983, Schlichting 2017, Pantazopoulos 1994], to which we refer for a complete discussion, have investigated the dependence of both these coefficients as well as of the Strouhal number on Reynolds number and other parameters like the surface roughness, the relative turbulence of the incoming flow and the actual experimental conditions.

Chapter 2

Mixing and Dispersion in Fluid Flows

Combustion, diffusion and transport of chemical species, formation and dynamics patterns in reactive media are just a few examples bearing witness of the diversity and complexity of phenomena that take place in a moving fluid. The study of mixing and dispersion plays an important role in a range of natural and technological processes including large scale geophysical flows, chemical reactors, microfluidic devices, etc. The aim of a theoretical description of mixing is to characterize the spatial distribution of transported quantities both during the transient phase of homogenization and the final stationary state, highlighting the influence of the velocity field on the spatiotemporal organization. Indeed it turns out that even simple uniform and homogeneous flows can create complex strongly non-uniform distributions. A possible description of mixing could be given in terms of the trajectories of fluid particles, i.e. the so-called Lagrangian description. This approach is particularly useful when the velocity field is given explicitly (e.g. as an analytical model flow or in the form of data from satellite observations or simulations). Otherwise, adopting an Eulerian viewpoint, one considers the equations for the continuum density and velocity fields, indexed by the position in an inertial frame. Similarly, there are two viewpoints to investigate the motion of populations: the Lagrangian viewpoint involves identifying (marking) each individual and following the subsequent motion; in the Eulerian viewpoint the flow of population individuals or of a generic field of concentration is observed. In the latter case generally the dynamics is well-described by the so-called advection-reaction-diffusion equation (ARD), where in the most general formulation one also has to consider the Navier-Stokes equation for u, with possibly a term accounting the feedback of the concentration field on the velocity one. Moreover, although in certain circumstances the distribution of some transported properties of the fluid or organisms may influence the velocity field itself, in the following we will only consider passive components, i.e. we assume that the underlying velocity field is not affected by them so the mixing and transport are treated as a dynamics superimposed on a prescribed flow. Nevertheless, the resulting dynamics is quite complex and often not analytically resolvable, such that some approximations and simplified models can be invoked. The approach we adopt here following [Neufeld 2009] is to disentangle the problem to account the different processes which determine the temporal evolution of a generic concentration field: firstly, we discuss the role of advection and diffusion, primarily separately and then coupled together, for non-reactive scalars transported by a fluid flow, which may have a source or sink but don't participate in chemical reactions or biological interactions. Secondarily, the effect of the latter is investigated and the resulting complete dynamics, mainly concentrating on the case of planktonic species. 

Advection

Advection in a moving fluid consists in the rearrangement of fluid elements in space as a result of the motion of the medium. By denoting the distribution of suspended particles or of some properties of the fluid (temperature, salinity, etc.) by a continuous density or concentration field C(x, t), the evolution is expressed by a conservation equation for C:

∂C ∂t + ∇ • J = S(x, t) (2.1)
where S(x, t) specifies the distribution of sources or sinks of the concerning substance, J(x, t) is the flux, i.e. the amount of the quantity crossing the unit surface at location x per unit of time. When the flux is due only to the advection by the flow, J = uC.

Restricting the discussion to incompressible flows, one has:

∂C ∂t + u • ∇C = S(x, t) (2.2)
The left hand side is the Lagrangian derivative of C, i.e. the rate of change of the concentration along a path following a fluid element. Consequently, Eq. (2.2) becomes:

D Dt C(x, t) = dC(t) dt = S(t) (2.3)
where C(t) ≡ C(x = r(t), t) and S(t) ≡ S(x = r(t), t) are the concentration at a particular fluid element and the rate at which the substance is injected (or removed) along its path r(t), that satisfies:

ṙ = u[r(t), t] (2.4)
In the absence of sources or sinks (S(x, t) = 0), the concentration is conserved across the time and only rearranged in space by the flow motion. In the Lagrangian frame, one can define a mapping between the initial and final positions of each flow element:

r(t) = Φ 0,t (r 0 ) (2.5)
which is equivalent to the Eulerian description based on specifying the velocity field. Thus, one can express the formal solution of Eq. (2.2) in terms of the solution of Eq. ( 2.3) and the inverse of Lagrangian map Φ -1 :

C(x, t) = C[Φ -1 0,t (x, t = 0)] + t 0 S[Φ -1 t ,t (x, t )]dt (2.6)
that gives the concentration at any given point as the sum of the initial concentration at the initial position of the corresponding fluid element and the concentration of the sources and sinks accumulated along its trajectory. When the second term on the r.h.s is zero (absence of sources and sinks), the probability density function of C is effectively conserved.

Diffusion

The transport due to the chaotic thermal motion is modeled by a diffusion term which is responsible for the spreading of contents across the fluid elements. The effect of transport by molecular diffusion on the concentration field C(x, t) can be expressed by Eq. (2.1), where the the flux is proportional to the local concentration gradient (Fick's law):

J D = -∇(DC) (2.7)
where D is the diffusion coefficient which we assume here to be a constant, thus it can be placed outside of the gradient term. The minus sign indicates that diffusion occurs from high concentration to low one. In this case, the conservation equation for C has the form of the diffusion equation:

∂C ∂t = D∇ 2 C (2.8)
When the only mechanism of diffusion is due to the molecular motion, D is given by the Einstein relation D = kT /γ, where k is the Boltzmann constant and γ the drag coefficient of the fluid. The general solution of Eq. (2.8) can be written as:

C(x, t) = dx G(x -x , t)C 0 (x ) (2.9)
where G(x, t) is the Green function, i.e. the solution with initial condition C 0 (x) = δ(x), which corresponds to the situation in which the concentration is introduced in the flow at x = 0. Assuming as boundary conditions that C(x, t) → 0 for |x| → ∞, the solution in d dimensions is given by:

G(x, t) = 1 (4πDt) d/2 e -x 2 4Dt
(2.10) A initially localized density patch evolves in time due to molecular diffusion as a growing concentration cloud with a typical width:

w 2 ≡ x 2 G(x, t)dx G(x, t)dx ⇒ w (2dDt) 1/2 (2.11)
Typical diffusion coefficients of solute molecules in liquids are D ∼ 10 -9 m 2 /s, meaning that about 10 minutes are needed to disperse concentrations over a distance of one millimeter and half a day to disperse on centimeter scales. Consequently, although at macroscopic scales the molecular diffusion is inefficient, it plays an important role at biological cell dimensions and below. Moreover, several planktonic species like ciliates, flagellates and copepods exhibit a wide variety of motility patterns. On large scales, the quasi-random motility of such organism may be treated as a diffusive-like process [Okubo 1980], called biodiffusion and described by a proper diffusivity coefficient which is proportional to the organism speed and larger than molecular values.

Advection and Diffusion

Considering both advective and diffusive transport, the evolution of the concentration of a non-reactive substance in an incompressible flow is expressed by the advection-diffusion equation:

∂C ∂t + u • ∇C = S(x) + D∇ 2 C (2.12)
where we have assumed that the distribution of sources/sinks is time independent, S(x, t) = S(x). A dimensionless parameter that measures the ratio between the advective and diffusive transport on the characteristic length scale of the flow L is the Péclet number:

P e = U/L D/L 2 = U L D (2.13)
being U the typical flow velocity. Generally P e takes large values reflecting the fact that at macroscopic scales the molecular diffusion is very inefficient. Analogously to the case of pure advection, it is possible to express the general solution of the above equation in a Lagrangian frame. Eq. (2.6) can be generalized to the diffusive case using the Feynman-Kac formula:

C(x, t) = C[r(0), 0] + t 0 S[r(t )]dt η (2.14)
where the brackets denote the average over an ensemble of trajectories which satisfy the Langevin equation

ṙ = u(r, t) + η(t) (2.15)
where η is a Gaussian white noise term with zero mean and delta-correlated in time:

η i (t)η j (t ) = 2Dδ ij δ(t -t ) (2.16)
The results described up to now have a general validity, independent on the nature of the flow, being it smooth and steady or fully turbulent. In the following, we focus on the mixing of a passive scalar immersed in a fully-developed turbulent flow, whose main feature is the existence of a broad range of timescales which all contribute to the relative dispersion of transported quantities.

Mixing of a passive scalar in turbulent flows

The theory of mixing of a passive scalar in a turbulent flow has been developed in the works of [Obukhov 1970] and [Corrsin 1951] and is mostly based on the same theoretical ideas used in the Kolmogorov theory of turbulence.

Let us consider the Eq. (2.12) and suppose that source/sink term has zero mean. This is the prerequisite for the existence of a stationary state with constant average concentration.

Denoting with the spatial average, let us introduce the fluctuating component of the the scalar field θ(x, t) ≡ C(x, t) -C , which satisfies the same equation. Multiplying by θ and integrating on the flow domain, one obtains the equation for the variance:

1 2 d θ 2 dt + θu • ∇θ = Sθ + D θ∇ 2 θ (2.17)
Rewriting the advective term as:

θu • ∇θ = ∇ • (θ 2 u) -θ 2 ∇ • u -θu • ∇θ (2.18)
the first term on the r.h.s. is zero after spatial integration (imposing periodic or no-slip boundary condition) and the second one for the incompressibility condition, so the second term on the l.h.s of Eq. (2.17) vanishes. Similarly for the diffusion term, one has:

θ∇ 2 θ = ∇ • (θ∇θ) -(∇θ) 2 (2.19)
In this way, one obtains:

1 2 d θ 2 dt = Sθ -D (∇θ) 2 (2.20)
The interpretation is straightforward: the evolution of the variance is dictated by a forcing term due to the source/sink which injects concentration fluctuations at large scale and a diffusive term which dissipates them at small scales. Recalling the Kolmogorov's assumption of the finite energy dissipation rate, an analogue hypothesis can be stated for the dissipation term in the limit of D → 0:

lim D→0 D (∇θ) 2 = ε θ (2.21)
Analogously to the inertial scale of turbulence, an inertial-convective range can be defined, i.e. scales below the forcing scale where diffusion and viscosity are negligible and so defining the scalar structure function of order p as S θ p (x, , t) = (θ(x+ )-θ(x)) p , the only possible dimensionally correct argument for the second order structure function is:

S θ 2 ∼ ε -1/3 ε θ 2/3 (2.22)
This implies that the power spectrum's scaling is:

E θ (k) = C θ ε -1/3 ε θ k -5/3 (2.23)
where C θ is a dimensionless constant. Let us note that a exact relation has been obtained by Yaglom analogously to the Kolmogorov four-fifths law:

S( )S θ 2 ( ) = - 4 3 ε θ (2.24)
where S( ) is the first order velocity structure function. A definition of the diffusive scale in this regime can be obtained as the length scale at which the time scale of diffusion 2 D /D is comparable to the eddy-turnover time. Recalling that in the Kolmogorov cascade τ ( ) = ( 2 /ε) 1/3 , the diffusive scale is defined as:

D ∼ ε -1/4 D 3/4 = η D ν 3/4
(2.25)

By defining the Schmidt number as the ratio between the diffusivity of momentum and of concentration, Sc = ν/D, let us note that D > η when Sc < 1. When the Schmidt number is larger than unity, an other range of scales can be defined, the so-called viscousconvective range, where scalar fluctuations are not yet dissipated at the Kolmogorov scale but are transferred to smaller scales by chaotic advection. In this range, called Batchelor regime, the eddies of the flow have a characteristic scale η and time scale τ η (ν/ε) 1/2 , which can be interpreted as the inverse of the mean strain rate, which is related to the maximum Lagrangian Lyapunov exponent. Assuming that in the large Pe limit the flux of scalar variance is constant and independent on the molecular diffusivity, the only possible dimensionally correct form of the spectrum is [Batchelor 1959]:

E θ (k) = C θ ε θ ν ε 1/2 k -1 (2.26)
The Batchelor spectrum extends from the Kolmogorov scale to the diffusive one, the socalled Batchelor scale B , which is in this case defined equating the diffusion time to the time scale of advection by eddies of size η:

B ∼ ν ε 1/4 D 1/2 = ηSc -1/2 (2.27)
Note that this type of scaling is found also at moderate and small Reynolds numbers, in presence of chaotic advection, or in two-dimensional flows. A theoretical explication of this result can be found in [Vulpiani 1989], where the author shows that this power law is related to the chaotic Lagrangian behavior which arises even in regular velocity fields. In a nutshell, the argument is based on the fact that in the presence of Lagrangian chaos, two particles initially at distance 0 , can reach after a time t ∼ λ -1 1 (λ 1 is the maximum Lagrangian Lyapunov exponent of the flow) a distance O( ). For t > t all the particles get a good mixing on scale , so the probability density to have two particles at distance at time t will become independent of so: Hence it follows that:

S θ 2 ∼ δ with δ = 0 (2.28)
E θ (k) ∼ k -β with β ≤ 1 (2.29)
The conservation law, E θ (k)dk = const implies β ≥ 1, so the Batchelor scaling β = 1 follows. Summarizing, The fact that the sufficient condition for the the existence of the k -1 power-law is the Lagrangian chaos (so the separation between two fluid particles has to increase at an exponential rate) implies that for turbulence in three dimensions it holds only in the viscous convective range, where S( ) ∼ and so the velocity field is smooth.

Conversely in two dimensional flows, also in the enstrophy inertial range there exist some regularity properties, so the Batchelor law holds at all length scales, and the spectrum is not characterized by the two different regimes exhibited by the 3D case.

Advection Reaction Diffusion Systems

As we saw in the previous sections, even passive scalars, which are simply transported by the flow, display a very complex behavior in laminar and turbulent flows. When reaction is taken into account the problem becomes even more complex. Even when the feedback of the advected scalars on the velocity field can be neglected, the dynamics of the reacting species is quite complicated by the presence of the flow and it is not simple to perform an analytical study of the system, thus generally a purely numerical approach is the only feasible tool. Nevertheless, as it will be discussed briefly in the following, a dimensional reduction of the problem through simplified one-dimensional models could be a starting point for the comprehension of the complete dynamics.

Adopting an Eulerian point of view, the general mathematical expression for a multicomponent advection reaction diffusion system (ARD), involving N-components θ = (θ i , ..., θ N ) is:

∂θ i ∂t + u • ∇θ i = D i ∇ 2 θ i + F i (θ 1 , ..., θ N ) (2.30)
where F i (θ 1 , ..., θ N ) is the reaction term for the i-th species and D i the diffusion coefficient.

In the following, we assume that the reaction term can be non-linear and not trivial but local in space.

Even when the reaction-diffusion equation has a formal solution, the presence of the advective term increases enormously the complexity and difficulty of the problem because the fluid motion is usually complex due to turbulence, as we have discussed for a passive scalar. Moreover, different behaviors arise depending on the particular reaction dynamics: a prominent class is occupied by autocatalytic processes, where the formation of the reaction product contributes to the increase of its own rate of production, usually limited by other external factors. Typical examples are combustion reactions, where the temperature raises due to the heat released and leads to enhanced burning rate, and plankton population dynamics, where the growth of phytoplankton results in a larger population with an increased production rate of new plankton biomass, but also a higher total rate of consumptions of nutrients, that eventually represent a growth limiting factor. Generally autocatalytic processes are characterized by multiple steady states and thus transitions between them take place. A special class of systems is represented by the excitable systems, which we briefly discuss following [START_REF] Meron | Pattern formation in excitable media[END_REF]].

Excitable systems

Excitable media are nonequilibrium systems that have rest states that are linearly stable but can display excitabiility to finite perturbations. Depending on the form of the perturbation, a variety of wave patterns can be triggered, like solitary waves, target like patterns, spiral waves, Turing instabilities. These media are generally encountered in biological and chemical systems, among which the most notable and studied example is the Belousov-Zhabotinsky (BZ) reaction which accounts for the catalytic oxidation of malonic acid in an acidic bromate solution. Another prominent example is offered by the FitzHugh-Nagumo (FN) model [Murray 2002[START_REF] Meron | Pattern formation in excitable media[END_REF]], proposed as a simplification of the Hodgkin-Huxley theory for the impulse propagation in nerve membranes.

The large variety of phenomena that show excitability and thus belong to the same class of reaction-diffusion systems lead to an extensive interdisciplinary study of excitable media and thus numerous mathematical models have been proposed [START_REF] Tyson | [END_REF]], which are beyond the scope of the present work.

To understand the key-ideas of excitability, let us consider a simple model of a bistable system:

u = -u(u -a)(u -1) -v (2.31)
where a and v are constant parameters and the dot indicates the derivation with respect to time. This equation can be also expressed as:

u = -δF/δu (2.32)
where F is a double-well potential in a range of parameter values v min (a) < v < v max (a).

Let us suppose that the two wells have different depths and consider the shallower one as describing the metastable state. By taking a fixed in the range (0, 1/2), for v = 0 the well on the left denotes the metastable state: if the system is prepared in this state and one perturbs it by increasing the value of u beyond the potential barrier u = a the system will evolve toward the state u = 1. If v is increased (and a remains constant), the original metastable state u = 0 becomes more stable and the other one is shallower and eventually disappears (Fig. 2.3a). Let us consider now that v is not constant but a dynamical variable that evolves with a typical time scale much longer than that of u, for example according to: v = εu (2.33) where 0 < ε 1. Clearly, the point u = v = 0 is a stationary stable state of the new system. By initializing the system to this state and then perturbing u until the threshold value u = a, on a short time scale O(1) (the time is supposed to be non-dimensional) the system collapses to the well on the right as in the previous case, but on larger time scales (O(ε -1 )) v starts to increase (since now u > 0) and thus the right well becomes shallower. The system remains here until it disappears, then it "falls" down into the deep well on the left, located at negative u, thus v starts to decrease while u adiabatically adjusts itself to the varying well position. Finally, the system will come back to the original stable state u = v = 0: in this case perturbations, which are larger than a certain threshold, do not immediately decay but excite the system for a possibly long but finite time interval. In Fig. 2.3b, the typical trajectories in the phase space (u, v) in response to a subthreshold (trajectory A) and a supertreshold (trajectory B) are schematically depicted. The right and left branches correspond to the potential wells, while the middle one describes the location of the potential barrier. Focusing on the long trajectory B, during the early stages of the relaxation to the stationary state (left branch) the system is refractory to perturbations: indeed, for high values of v the threshold is too large and thus the left well too wide for small perturbations to induce a transition to the right branch.

The double-well-potential picture here described is thought to be valid in the limit of small ε, the potential barrier imposes a sharp threshold of excitation. Otherwise, it is more appropriate to speak of a threshold zone, within the system response continuously varies from immediate decay to fast growth. 

Excitable plankton dynamics

Truscott and Brindley [Truscott 1994b] suggested that typical plankton blooms may be explained by the excitability of the dynamical system describing biological interactions in the plankton ecosystem. The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive. The role of flow stirring in structuring the spatial distribution of planktonic species has been recognized as determinant as well and broadly investigated [Abraham 1998, Abraham 2000]. Therefore, the proper mathematical framework for the study of plankton dynamics is that of advection reaction diffusion equations.

Following [Truscott 1994b], a plankton population model which displays excitability is the so-called PZ (for phytoplankton and zooplankton) model. In the presence of advection and diffusion, the full-dynamics reads:

∂P ∂t + u • ∇P = D∇ 2 P + rP 1 - P K -R m Z P 2 P 2 + κ 2
(2.34)

∂Z ∂t + u • ∇Z = D∇ 2 Z + γR m Z P 2 P 2 + κ 2 -µZ (2.35)
In the following, we discuss in some details the reaction model (in the absence of diffusion and advection), while we refer to Chapter 7 for a more general discussion of plankton dynamics in flow environments. Despite the large variability in terms of location, duration, seasonality and severity of the events, an acceptable mathematical model to reproduce the general features of plankton blooms, relies on some basic ingredients: the existence of two quasi-stable population levels of the "outbreak" organism (the stable prebloom state and the outbreak level, not strictly stable and much higher than the other one), the existence of two distinct time scales and a trigger mechanism. The above cited characteristics are typical properties of excitable media illustrated in the previous section. In Fig. 2.4 a schematic illustration of the typical phase space of an excitable system is reported: u and v are the time-dependent variables that describe the instantaneous state of the system, the solid lines are the null-clines ( u = f (u, v) = 0 and v = g(u, v) = 0) while the dashed lines are typical trajectories. The intersection point denoted as (1) is the stable state and small perturbations (2) rapidly decay to it; for suprathreshold perturbations (3) the system follows a long trajectory passing through a phase of rapid excitation (4), followed by a period (5) when the system remains excited. At the end of this stage (6), the system starts to decay (7), before returning to the original stable state (8). In the PZ, the phytoplankton population plays the role of the fast component as the trigger of the excitation (the variable u in Fig. 2.4 ), while the zooplankton responds as the grazer on a slower timescale to increased phytoplankton concentration and causes the system to return to the initial equilibrium state (refractory mechanism, variable v). Other candidates for the role of refractory factor could be extrinsic factors (not directly produced or consumed by the phytoplankton) like salinity, temperature, vertical stability of water column or intrinsic ones (which have a feedback but also are influenced by phytoplankton), like nutrients, toxins and predators.

Recognizing as the essence of the trigger mechanism the interaction between the growth rate of phytoplankton with the grazing rate of the zooplankton, the meaning of different Figure 2.4: Typical phase plane for an excitable system, described by a fast variable u and a slow one u (image taken from [Truscott 1994b]). terms in eq. 2.35 is thus the following: the term rP (1 -P/K) represents the gross rate of production of phytoplankton, called primary production P P , and is expressed by a logistic growth function, with a maximum specific growth rate r and a carrying capacity K. Predation of phytoplankton is represented by a Holling Type-III function [Holling 1959], where R m is the maximum specific predation rate and κ determines how quickly that maximum is attained as the prey population density increases. The rate of zooplankton production is controlled by the population density of phytoplankton, with γ representing the ratio of biomass consumed to biomass of new herbivores produced. The rate of zooplankton removal, by natural death and predation from higher organisms, is called µ. The particular choice of the Holling Type-III function to model the predation term relies on two requirements: grazing should exceed production for high values of P population and the contrary should be true for very low prey population densities. Additionally, an essential feature to allow the phytoplankton to escape grazing control and thus form a bloom is the saturation of the latter, in correspondence of P = κ. In order to investigate the mathematical character of the model equations, it is convenient to non-dimensionalize them, by introducing P = K P , Z = K Z and t = t/R m . Thus the evolution of P and Z, expressed in term of ordinary differential equations is:

dP dt = αP (1 -P ) -Z P 2 P 2 + χ 2 = f (P, Z) (2.36) dZ dt = γ P 2 P 2 + χ 2 -ω Z = g(P, Z) (2.37)
where χ = κ/K, α = r/R m and ω = µ/(γR m ). Imposing f (P, Z) = g(P, Z) = 0, one obtains the fixed points: (P 1 , Z 1 ) = (0, 0), (P 2 , Z 2 ) = (1, 0) and (P 3 , Z 3 ) where P 3 = χ ω/(1ω) and Z 3 = α(1 -P 3 )(P 2 3 + χ 2 )/P 3 . A stability analysis of these points shows that (P 1 , Z 1 ) and (P 2 , Z 2 ) are saddle points (representing respectively the extinction of both species and the equilibrium for P in the absence of Z), while the third one is the stable pre-outbreak state of species coexistence. To display excitability, the nullcline f (P, Z) = 0 should have, as discussed in [Truscott 1994b], two turning points, at values P > 0, thus imposing f (P, Z) = 0 and ∂f /∂P = 0 one obtains, after few calculations:

P 3 - P 2 2 + χ 2 2 = 0 (2.38)
The position of turning points (e.g. P h in Fig. 2.5) depends only on χ and the condition to have three real roots is:

0 < χ < 1 3 √ 3 (2.39)
The nullcline g(P, Z) = 0 occurs for:

P z = χ ω 1 -ω (2.40)
Thus when P z falls below the lower root or above the upper one, the system becomes excitable, while if P Z is intermediate between the two solutions of 2.38 the equilibrium point is unstable and the system follows a periodic trajectory. The requirements for both the existence of real roots and the condition of excitability are satisfied by a range of realistic parameter values. As should be clear from eq.( 2.37), it is noteworthy that the different behaviors are governed mainly by χ and ω, while the system is quite independent of the parameter γ. For a more rigorous discussion about the excitability in the context of chemical and ecological models, one can refer to [Neufeld 2009].

The specific expedient chosen to simulate an outbreak has an impact on the details of the biological dynamics. This point is discussed in detail in [Truscott 1994b]. If on one side, due to the excitable character of the system, a trigger mechanism is needed, on the other, different choices can lead to qualitative changes of the dynamics. Nevertheless, excitability turns out to be quite a robust feature with respect to such choices. For instance, a direct perturbation of P population, which is the simplest one to implement numerically, may correspond to some biological activation process ("dormant" phytoplankton cells). Independently on the mechanism of activation, the excitability turns out to be a transient phenomenon: once P is increased beyond the excitability threshold, it starts to grow escaping predation, which responds to prey abundance with a certain delay. This initial fast stage is followed by a slower return to the equilibrium, caused by the (slower) growth of zooplankton. Despite its simplicity, the PZ model turns out to be an efficient tool for modeling predator-prey interactions in planktonic community. A large variety of more complex models exist [Murray 2002], accounting for few interacting species like the NPZ model [Truscott 1994a], which describes the interactions of three species in a trophic chain (P , Z and N which are the nutrients) to large comprehensive ones [Baretta-Bekker 1997].

The filament model

The excitable nature of plankton population combined to an efficient transport and mixing mechanism may give rise to persistent blooms, as produced by the SOIREÉ iron fertilization experiment [Abraham 2000], when the addition of an iron compound of some km size on the Southern Ocean triggered a localized bloom, visible on satellite images in the form a high-concentration filament. A well-accepted explanation of such a behavior is given Figure 2.5: System null-clines for the parameters range adopted in [Truscott 1994b]. P h represents the local minimum of phytoplankton population (image taken from [Truscott 1994b]).

in [Neufeld 2001] on the basis of recent results of the effect of chaotic advection on excitable media. In a chaotic flow a steady bloom filament profile can be generated as the result of competition between reaction-diffusion spreading and stretching by the flow, resulting in the confinement of the fast-growing species into these stable filaments and favoring persistence. The dynamics can be well captured by a simple one-dimensional model, firstly introduced by [Ranz 1979].

Let us consider a Lagrangian reference frame co-moving with the flow: at each point one can identify a compressing and a stretching direction (due to the incompressibility condition) and so close to the point the linearized flow field is u = (-λx, λy). The concentration of plankton is thus stretched along the y direction becoming nearly homogeneous along it, so P (x, y) P (x), ∇ 2 P ∂ 2 P/∂x 2 and u • ∇P -λx∂P/∂x. Adopting the same approximation for Z, Eq. (2.35) becomes:

∂P, Z ∂t -λx ∂P, Z ∂x = F P,Z (P, Z) + D ∂ 2 P, Z ∂x 2 (2.41)
where F P,Z (P, Z) stays for the two biological terms on the r.h.s of Eq. (2.35). The second term on the l.h.s represents the effect of stirring and λ is the averaged stretching rate experienced by fluid elements, that is the Lyapunov exponent of the chaotic advection. Roughly speaking, the condition for the existence of the steady bloom filament solution is that the characteristic timescale of stirring should be slower than the phytoplankton growth rate, but faster than the zooplankton reproduction rate. In this case the phytoplankton does not became diluted by the flow and the zooplankton is thus kept at low concentration unable to graze down the bloom filament. Clearly, this simplified model holds while the filaments are well separated from each other, so that they do not interact, but it breaks down when the excited filaments start to fill the domain. An intriguing result which has been highlighted in [Martin 2000] for a simple reaction model of a unique species with a time-dependent growth rate is that the filament width w f ∼ D/λ is determined solely by the parameters governing the physical flow: the diffusivity and the rate of strain, while is independent on the biological growth rate. These ideas will be recalled and enriched in Chapter 7, where the phytoplankton-zooplankton dynamics in the turbulent wake of an obstacle is investigated trough direct numerical simulations.

Part II

Methodology

Chapter 3

Code BASILISK

In this chapter, a general overview of all the methodologies used in this work is presented. Every topic that is addressed is resolved through a numerical approach using the code Basilisk, therefore we will illustrate the main features of this code as well as the numerical schemes used to solve the equations of motion concerning each particular case. Basilisk (http://www.basilisk.fr) is an ensemble of solver-blocks written using an extension to the C programming language, called Basilisk C, adapted for discretization schemes on Cartesian grids.

Main features

Regular, Multi-grid or Adaptative grids

Basilisk code is based on the finite volume method and can use regular Cartesian grids (one level only), multi-level grids and tree-structured adaptative grids, which are particularly useful when the resolution in the spatial domain is not constant. Before illustrating the principles of different grids, it is useful to depict the basic features of the spatial discretization of the domain. The domain is spatially discretised using square (cubic in 3D) finite volumes. Variable can be defined at the center of each cell (when declared using predefined types for scalar, vector, tensor), on the center of the cell faces (using face vector), or at the vertex of the cell (using vertex scalar). Predefined stencils 3 × 3 are used to access field values and their local neighbors, as illustrated in Fig. 3.1. Neighboring cells are referred to by their relative placement with respect to the current cell. Fields value are manipulated using iterators, which automatically define several variables such as the coordinates (x,y,z) of the center of the current cell as well as its size ∆.

Multigrid is a short for "Multiple resolution grid" and is a combination of grids at different levels of refinement, generally used to speedup iterative solvers such as Basilisk's Poisson solver. Starting from the zero-level which is simply a single L × L-sized cell, a multi-resolution grid forms when one or more levels of refinement are added. A multigrid with l levels of refinement consists of 2 l × 2 l cells at the maximum resolution. Although the cells are organized hierarchically in levels, the spatial resolution is not variable, as it is for the tree-based grids. Quad/octree discretisations deal with various levels of refinement locally through the use of finite-difference operators adapted to work at fine/coarse cell boundaries. In a tree-based grid, each cell may be the parent of up to four children (eight in 3D). The root cell is the base of the tree and a leaf cell is a cell without any child. The level of a cell is defined by starting from zero for the root cell and by adding one every time a group of four descendant children is added. With increasing refinement levels, there exist many permutations of possible grid structures, as it is illustrated in Fig. 3.2b, which explains the etymology of "tree grids". Basilisk can employ anisotropic meshes using tree-based grids. A detailed description of the adaptive mesh refinement algorithm will be given in section 3.3.

Events and building blocks

Numerical simulations often need to perform actions (outputs for example) at given time intervals. Because the timestep used to integrate the numerical scheme can vary, for example due to stability requirements, it is generally not trivial to ensure that specific time intervals will be respected. To solve this problem Basilisk C provides events, which can happen either at specified times t or at a specified number of timesteps i. The overall syntax of events is similar to that of for loops in C. For example: event name ( t = 1; t <= 5; t +=1){ ... } Generally pre-defined solvers are available, containing events of their own which are executed at each time step with a prescribed order. Moreover, multiple events can share the same name. This is used to implement inheritance of existing events and allows to modify and extend the functionality of existing solvers. For example, the numerical method for the resolution of Navier-Stokes equations, implemented in centered.h, contains the event properties:

event properties ( i ++){ boundary ({ alpha , mu , rho }); } To set for example the viscosity of the fluid, one can define an event inside the main code:

# include " centered . h " event properties ( i ++){ foreach_face (){ muc . x [] = nu ; } }
In this way, the new event will be introduced just before the event of the same name inside the file centered.h. This builinding-block approach is specially suited for split-step methods.

Parallel programming

Basilisk can automatically parallelise field iterations (i.e. foreach()) on systems supporting OpenMP or MPI. If the operations performed on stencils are purely local (i.e. concurrent accesses by several threads are only possible for read operations), then nothing special needs to be done to parallelise the corresponding field iteration. However there are some functions that require a reduction operator provided by OpenMP, for example if one computes a spatial average on the domain the correct prescription is:

double sum ( scalar a ){ double s = 0 , vol = 0; foreach ( reduction (+: s ) reduction (+: vol )){ s += a []* dv (); vol += dv (); } return s /= vol ; } Provided one uses these precautions, the code efficiently works in parallel mode, allowing the possibility to perform high computational cost simulations on clusters.

Numerical scheme

In this section, the numerical scheme employed to solve the incompressible Navier-Stokes equations, coupled to reaction-advection-diffusion equations for scalars is presented. The algorithm described in the following has been used in the context of the Part. III (in the absence of scalars, only the Navier-Stokes equations for the flow are concerned) as well as for the plankton dynamics (Part. IV), where the coupled system is resolved. As regarding the numerical scheme employed for the simulation of bubbly flows, it is separately illustrated in Sec. 4.1.

The numerical scheme is obtained by combining a centered formulation of the incompressible Navier-Stokes equations (see centered.h), a reaction-diffusion solver for the reactive scalars (see diffusion.h and a tracer advection event (see tracer.h, resulting in a global second-order accuracy scheme [Bell 1989]. For simplicity, let us consider a generic scalar θ, whose reaction term is local, i.e. R(θ). The exact form of the reaction, provided its locality, would't change the numerical implementation.

Temporal discretisation

By using a staggered in time discretisation of the velocity field and scalars [Popinet 2003, Popinet 2009], one supposes that the velocity field is known at time n and the scalar fields (pressure, reactive scalars, density) are known at time n -1/2 and computes velocity at time n + 1 and scalars at time n + 1/2:

ρ n+ 1 2 u n+1 -u n ∆t + u n+ 1 2 • ∇u n+ 1 2 = -∇p n+ 1 2 + ∇ • µ n+ 1 2 (D n + D n+1 ) + f n+ 1 2 , (3.1) ∇ • u n = 0 (3.2) η n+ 1 2 θ n+ 1 2 -θ n-1 2 ∆t + ∇ • (θ n u n ) = ∇ • (d∇θ) n+ 1 2 + R(θ) n+ 1 2 . (3.3)
where ρ ≡ ρ(x, t) is the fluid density, µ ≡ µ(x, t) the dynamics viscosity, η ≡ η(x, t) is the reactive scalar density, D = [∇u+(∇u) T ]/2 the symmetric deformation tensor, d ≡ d(x, t) the diffusion coefficient and f (x, t) the forcing term. First of all, let us concentrate on the velocity-pressure coupling, which is treated using a classical time-splitting projection method [Chorin 1969a]:

ρ n+ 1 2 u * -u n ∆t + u n+ 1 2 • ∇u n+ 1 2 = -∇ • µ n+ 1 2 (D n + D * ) + f n+ 1 2 , (3.4) u n+1 = u * - ∆t ρ n+ 1 2 ∇p n+ 1 2 , (3.5) ∇ • u n+1 = 0 . (3.6)
The momentum equation has the general form of an Helmholtz-type equation:

∇ • ∆t ρ n+ 1 2 ∇p n+ 1 2 = ∇ • u * (3.7)
which can be solved using a multi-level Poisson-Helmholtz solver, which is described in [Popinet 2003] (see poisson.h). The iterative solution procedure is stopped whenever the maximum relative change in the volume of any discretisation element, due to the remaining divergence of the velocity field, is less than a given threshold ε p .

The discretised momentum equation (3.4) can be re-organised as:

ρ n+ 1 2 ∆t u * -∇ • µ n+ 1 2 D * = ∇ • µ n+ 1 2 D n + f n+ 1 2 + ρ n+ 1 2 u n ∆t -u n+ 1 2 • ∇u n+ 1 2 (3.8)
The right-hand-side term depends only on values at time n and n + 1/2: this an Helmholtz-type equation which can be solved by using a variant of the multilevel Poisson solver. In fact, the latter is applicable only to scalar fields. To overcome this difficulty, one can decouple the equations for each components of u * and then use the standard multilevel algorithm to solve for each component independently. The resulting Crank-Nicholson discretisation of the viscous terms is formally second-order accurate and unconditionally stable. The criterion for convergence of the multilevel solver is in this case the relative error ε u in each component of the velocity field. The velocity advection term u n+ 1 2

• ∇u n+ 1 2 is evaluated using the Bell-Colella-Glaz second-order unsplit upwind scheme [Bell 1989, Popinet 2003]. The solution of equation (3.3) is obtained in two steps. Firstly, the advection terms are evaluated using the Bell-Colella-Glaz scheme used for the velocity advection; secondly, an Helmhontz-Poisson problem for the reaction-diffusion equation is used, as described below.

Spatial discretisation

To complete the description of the algorithm, it is useful to clarify how exactly the scheme is implemented in relation to the space discretisation. In fact, as it has already described, all the variables are collocated at the centre of each square in 2D (resp. cubic in 3D) discretisation volume. The choice of a collocated definition of all variables is mandatory for the application of the Bell-Colella-Glaz scheme as well as it simplifies the implementation of the Crank-Nicholson discretisation of the viscous terms. For this aim, an approximate projection method [Almgren 2000, Popinet 2003] is used for the spatial discretisation of the pressure correction equation (3.5) and the associated divergence in the Poisson equation (3.7). Firstly, the auxiliary cell-centred velocity field u * c is computed using equation (3.8); an auxiliary face-centred velocity field u * f is computed by averaging the cell-centred values on all the faces of the Cartesian discretisation volumes. The divergence of the auxiliary velocity field appearing in the Poisson equation is then computed for each control volume as the finite-volume approximation:

∇ • u * = 1 ∆ f u * f • n f (3.9)
where n f is the unit normal vector to the face and ∆ the length scale as already introduced.

After solving the Poisson equation (3.7), the pressure correction is applied to the facecentred auxiliary field:

u n+1 f = u * f - ∆t ρ f n+ 1 2 ∇ f p n+ 1 2 , (3.10)
where ∇ f is the face-centred gradient operator. In this way, the resulting face-centred velocity field u f n+1 is exactly non-divergent by construction. The cell-centred velocity field at time n + 1 is obtained by applying a cell-centred pressure correction:

u n+1 c = u * c - ∆t ρ f n+ 1 2 ∇ f p n+ 1 2 c , (3.11)
where the || c operator denotes averaging over all the faces delimiting the control volume.

The resulting cell-centred velocity field is approximately non-divergent. The sequence of events required to solve one generic time step of equations (3.1,3.2,3.3) is illustrated in Fig. 3.3. All that remains to do now is to describe the numerical scheme adopted for the solution of the equation (3.3). It is useful to remind that the initial assumption is that tracer fields are lagging the velocity/pressure fields by half a timestep. The complete integration of advection and diffusion-reaction terms is contained in tracer.h, which is generally usable, independently on the scheme used to solve the fluid velocity equations. Preliminarily, the user has to define in the main code the tracers list. Then while the advection term is already integrated in the code (using the standard Bell-Colella-Glaz) and automatically filled up (term highlighted in blue in the following), the diffusion term integration relies on a time-implicit backward Euler discretisation and has to be formally defined in the main code by the user. In case of pure diffusion, it is sufficient to define the diffusion coefficient d, which could be in principle space-time-variable. In presence of a reaction term, for simplicity assuming linear, the user has to define the exact form of the source R(θ), which is implemented as:

Solution for the reaction-diffusion equation

R(θ) = βθ + r (3.12)
where β and r are constant. Equation (3.3) becomes:

η n+ 1 2 θ n+ 1 2 -θ n-1 2 ∆t + ∇ • (θ n u n ) = ∇ • (d∇θ) n+ 1 2 + βθ n+ 1 2 + r (3.13)
Rearranging the terms, we get:

∇ • (d∇θ) n+ 1 2 + (β - η n+ 1 2 ∆t )θ n+ 1 2 = - η n+ 1 2 ∆t θ n-1 2 -r -∇ • (θ n u n ) (3.14)
The terms highligthed in red constitute a Poisson-Helmholtz problem which can be solved using the standard multigrid solver: indeed, the condition of applicability, i.e. the linearity of the operator L() is fulfilled:

L(θ) = ∇ • (α∇θ) + λθ = b (3.15)
where α = d, λ = βη/∆t and b = -ηθ ∆tr.

Adaptive mesh refinement scheme

An efficient tool which can be used in combination with the described numerical schemes is the mesh refinement and coarsening, such that the mesh resolution can vary during the simulation based on the evolution of the solution itself (i.e. adaptive). It requires a decision algorithm. Basilisk's wavelet-based strategy is designed to be such an adaptation algorithm. The algorithm has been designed and implemented as detailed in [Popinet 2015].

Here, a concise description will be given.

The adaptive wavelet algorithm is based on the estimation of numerical errors done in the representation of spatially discretized fields (the discretization operation relies on a wavelet based transformation of the field into a set of orthogonal functions, i.e. the wavelet functions). Consider a one-dimensional signal f that is discretized using an even number (n) of elements, calling it f n . The i-entry of the signal is denoted f i n . One can define a down sampling operator (D) that coarsens the original signal to a lower level resolution such that:

f n/2 = D(f n ) (3.16)
Alternatively, one can define an upsampling operator (U ) such that:

g n = U (f n /2) (3.17)
In principle g i n = f i n and the difference is defined as:

χ i n = |f i n -g i n | (3.18)
This can be interpreted as the error associated with the subsequent application of the downsampling and upsampling operators to the signal f n . In Basilisk, the downsampling operation is intended as a local volume-averaging of the fine resolution solution to a coarse one. This means that for a N -dimensional grid, 2 N leaf cells that share a common parent cell are averaged and the resulting value is assigned to the parent cell. This operation is exact for a finite volume formulation. For the upsampling operator, a second order accurate interpolation seems to work better as Basilisk employs a second-order-accurate formulation for its solvers, as we have already seen.

With these prescriptions, one can evaluate the error χ i and distinguish three cases regarding the grid cell resolution by defining a threshold on the allowed error (ζ):

ζ represents the refinement criterion and has the same units as f . Notice that to ensure a local 3 N coarse grid stencil for the linear interpolation, the resolution between cells is only allowed to vary one level of refinement.

The function adapt-wavelet() contained in grid/tree-common.h requires the user to define a list of fields that it will be analyzed for the refinement/coarsening . Additionally, the maximum tolerated estimated error for each field needs to be defined. Finally, a minimum and maximum level of resolution should be provided, accordingly to the specific requirements in terms of precision-efficiency ratio.

Chapter 4

Direct numerical simulation (DNS)

The Direct Numerical Simulation (DNS) approach, widely used since 1970s with the appearance of first computers of sufficient power, consists in solving the Navier-Stokes equations, with appropriate initial and boundary conditions and resolving all the scales of motion. Conceptually it is the most accurate approach which guarantees an incomparable level of description provided but it requires a huge computational cost, which rapidly increases with the Reynolds number and limits the applicability of the method to low and moderate Reynolds-number flows.

Let us recall that the dimension of the dissipative scales (η) and its characteristic time (τ η ) are related with Reynolds number by the Kolmogorov relations:

η/l 0 ∼Re -3 4 l (4.1) τ η /τ 0 ∼Re -1 2 l (4.2)
where l 0 and τ 0 are the reference length-and time-scale of the problem. These relationships yields that the requirements on the grid spacing and on the computational time-step are roughly

∆ x , ∆ y , ∆ z ≤ η ≈ l 0 Re -3 4 l (4.3) ∆t ≤ τ η ≈ l 2 0 ν -1 Re -3 2 l (4.4)
Since turbulent flows are fundamentally three-dimensional phenomena, we would at least require (L/η) 3 grid points, which is proportional to Re 9/4 . Even for a relatively low Reynolds number of 10 4 , DNS requires grid points at least on the order of 10 9 . Moreover, most turbulent flows of engineering interest possess much higher Reynolds numbers with complex boundary surface geometries. The required computational cost becomes huge also from the point of view of temporal resolution since the solution needs the number of time steps to be on the order of the number of grid points for numerical stability. For these reasons, it is quite natural that DNS method requires the use of supercomputers. However, the evidence that most DNS performed does not take into account the vortices with size smaller than the grid size but provides acceptable results is due to the fact that the majority of energy dissipation occurring at length scales about an order of magnitude larger than the smallest vortices predicted by theory. For the results from DNS to be meaningful, sufficient spatial resolution must be acquired to ensure that flow phenomena taking place at scales smaller than the grid resolution are negligible. Moreover, recalling that turbulence is essentially a chaotic phenomenon, it is not practical to predict the state of the flow at a particular time and position. Hence, it can be expected that DNS is capable of correctly capturing turbulence statistics computed over a long-time interval.

To conclude, it can be stated that with appropriate grid resolution and numerical accuracy DNS can be a trustworthy research tool for obtaining fundamental turbulence data.

Direct Numerical Simulation of bubble-induced turbulence

In this section, a first application of the Basilisk code is provided in the framework of direct numerical simulations (DNS) of bubbly flows. We investigated the dynamics of a monodisperse suspension of bubbles rising under the action of buoyancy in a fluid initially at rest. The adopted approach consists in considering the two fluids (liquid and gas) as continuum with different density and viscosity, separated by a sharp interface which results in a sudden change of the fluid characteristics. The necessity to reconstruct accurately the geometry of the bubble surface imposes the constraint to resolve all the typical scales of the two fluids, i.e. the Kolmogorov scale if turbulence is present. Moreover with respect to a single-phase DNS, the additional requirement for two-phase flows is to reconstruct the advection of the interface, usually by employing a marker function that takes different values in the two phases. Different methods have been proposed in literature to face this problem, for example the level-set, the phase-field, the front-tracking methods and the Volume-of-Fluid (VOF) method, which has been chosen in the present work. This method, which will be described in the following, has some advantages with respect to the front-tracking ones because it naturally preserves mass and changes of topology as breakups or coalescences are implicit in the algorithm.

The complete discussion of the physics of bubbly flows and of the results of the numerical simulations are illustrated in the manuscript reported in Appendix A. In the following, the mathematical formulation and the numerical schemes are only presented. The governing equations for the two fluids are represented by the incompressible, variabledensity, Navier-Stokes equations with surface-tension:

∇ • u = 0 (4.5) ∂ t ρ + ∇(ρu) = 0 (4.6) ∂u ∂t + ∇ • (u ⊗ u) = 1 ρ [-∇p + ∇ • (2µD) + f + f σ δ s ], (4.7) 
here the viscosity µ and the density ρ varies across the two phases; D = [∇u + (∇u) T ]/2 is the symmetric deformation tensor, f represents the volumetric forces, which in the present case are the gravity f = ρg, f σ is the force exerted by the surface tension, and δ s = δ s (x-x s ) is a Dirac delta function that identify the presence of the surface. The volumetric surface tension force is expressed as [Tryggvason 2011]

f σ = σκn + ∇ s σ . (4.8)
The first term depends on the surface tension coefficient (a material property), the local curvature κ = ∇•n and the surface normal, while the last term is different from zero only if a non-constant surface tension is present. In the present work, we shall deal with constant surface tension, and therefore the second term is zero.

For two-phase flows we can introduce the volume fraction c(x, t) of the first fluid and define the two densities and viscosities as

ρ(c) = cρ 1 + (1 -c)ρ 2 , (4.9) µ(c) = cµ 1 + (1 -c)µ 2 , (4.10)
where ρ 1 , ρ 2 and µ 1 , µ 2 are the densities and viscosities of the first and second fluid respectively. The advection equation for the density can then be replaced with an equivalent advection equation for the volume fraction c. The time discretisation, as already described in Section 3.2, is staggered in time for the volume fraction/density and pressure, resulting in a second-order accurate time scheme:

ρ n+ 1 2 u n+1 -u n ∆t + u n+ 1 2 • ∇u n+ 1 2 = -∇p n+ 1 2 + ∇ • µ n+ 1 2 (D n + D n+1 ) + (σκδ s n) n+ 1 2 + f n+ 1 2 , (4.11) c n+ 1 2 -c n-1 2 ∆t + ∇ • (c n u n ) = 0 , (4.12) ∇ • u n = 0 . (4.13)
The system is then further simplified using a time-splitting projection method

ρ n+ 1 2 u * -u n ∆t + u n+ 1 2 • ∇u n+ 1 2 = -∇ • µ n+ 1 2 (D n + D * ) + (σκδ s n) n+ 1 2 + f n+ 1 2 , (4.14) c n+ 1 2 -c n-1 2 ∆t + ∇ • (c n u n ) = 0 , (4.15) u n+1 = u * - ∆t ρ n+ 1 2 ∇p n+ 1 2 , (4.16) ∇ • u n+1 = 0 , (4.17)
which requires the solution of the Poisson equation

∇ • ∆t ρ n+ 1 2 ∇p n+ 1 2 = ∇ • u * (4.18)
This problem is solved using the multi-level Poisson-Helmholtz solver, once the advection term is provided. The spatial discretisation is done with a finite volume centered method and the advection term u n+ 1 2

• ∇u n+ 1 2 is estimated using the Bell-Colella-Glaz secondorder unsplit upwind scheme. A regular cartesian multilevel grid can be used as well as an adaptive quadtree/octree grid [Popinet 2009].

Volume-Of-Fluid advection scheme

To solve the advection equation (4.12) for the volume fraction Basilisk uses a piecewiselinear geometrical Volume-Of-Fluid (VOF) scheme [Scardovelli 1999] generalised for the In piecewise-linear interface construction (PLIC) methods the interface is approximated by a local segment of equation m

• x = α , (4.19)
where m is the local normal to the interface and x the position vector. Firstly the normal m is determined with the volume fraction in the cell and in the neighbouring ones using the Mixed-Youngs-Centered scheme [START_REF] Aulisa | [END_REF]], which choses the best approximation between the Central and the Young schemes. Then, the interface line (4.19) is moved along the normal by changing α to obtain the desired volume fraction. Using geometrical arguments, e.g. the symmetry of a Cartesian cell, it is possible to find α without the need of an iterative procedure [Tryggvason 2011].

For the advection of the interface the geometrical flux is evaluated through an Euleriansplit method that evaluates the upwind flux of volume leaving the cell for the solution of equation (4.12). The principle of geometrical flux estimation is illustrated in figure 4.1.

Surface tension

The surface tension term in (4.14) is approximated with the continuum-surface-force (CSF) approach of Brackbill [Brackbill 1992] as follows:

σκδ s n ≈ σκ∇f , (4.20) κ ≈ ∇ • n with n ≡ ∇f |∇f | (4.21)
This approach is known to suffer from problematic parasitic currents when applied to the case of a stationary droplet in theoretical equilibrium with certain implementations of the CSF scheme, e.g. with staggered discretisations (velocity and pressure field on shifted grids). This inconvenience has been avoided in Basilisk with the use of a collocated scheme to ensure a correct force-surface tension balance. Estimating curvature has traditionally been the major challenge for Volume-Of-Fluid schemes. For this reason, many recommend level-set, coupled VOF/level-set or front-tracking schemes as alternatives. In Basilisk a height function curvature calculation is used, which has been shown to give practical estimates of the curvature which are comparable in accuracy to estimates obtained using the differentiation of exact level-set functions. The algorithm consists in: (i) evaluating the best alignment of the stencil (horizontal or vertical) based on the direction of the normal to the interface; (ii) building a discrete approximation of the interface height y = h(x) (resp.

x = h(y)) by summing the volume fractions in each columns (resp.line); (iii) using finitedifference approximations of the derivatives of the discretised height-function to compute the curvature:

κ = h (1 + h 2 ) 3/2    x=0 . (4.22)
Part III

Homogeneous isotropic turbulence

Chapter 5 Time-reversal system as an alternative model to the Navier-Stokes equations for solving fluid turbulence

In this chapter, we present the results of the study of a system of reversible Navier-Stokes equations in two and three dimensions for an incompressible fluid, whose viscosity coefficient is replaced by a time-fluctuating term which acts as a thermostat compensating the fluctuations of quantities such the kinetic energy or the enstrophy. After the illustration of the general problem and the mathematical formalism, focused on the application to the Navier-Stokes system, the preliminary results obtained in two-dimensions will be presented; motivated by the good agreement with the theoretical predictions, we pushed further the numerical demonstration of the so-called conjecture of equivalence, by performing high-resolution numerical simulations at different Reynolds number in a fully-developed 3D turbulence.

Conjecture of equivalence of dynamical ensemble

The foundation of the Gallavotti's conjecture is widely described in [START_REF] Gallavotti | Foundations of fluid dynamics[END_REF], Gallavotti 2014a, Gallavotti 2019], to which we refer for a complete description. In this paragraph, we introduce the theoretical concepts that constitute the basis of the formulation of the conjecture of equivalence.

Let us consider a smooth dynamical system on a phase-space M and suppose that its evolution, defined by a map S, is attracted by a smooth surface A ⊂ M on which S is an Anosov map. The evolution is chaotic and a phase space point, excepting for a a set of zero volume, moves accumulating at the attracting surface A densely. The property of a Anosov map [Arnold 1968, Smale 1967] is that the fraction of time asymptotically spent in any open phase space region dx defines a stationary probability distribution µ(dx) = µ(Sdx), which is independent on the initial position and it is concentrated on the attracting surface A, i.e. µ(A) = 1. Likewise if the evolution is described by a flow x → S t x, generated by a smooth differential equation on M, ẋ = f (x), which on A ⊂ M is an Anosov flow and A is an attractive surface, such flow S t is called a flow with an Anosov attractor. Systems with a global Anosov attractor are described by a unique stationary probability, which is called the Sinai-Ruelle-Bowen (SRB) distribution [Ruelle 1989, Ruelle 1995], which has strong ergodic properties such for example that the average value over time of a smooth observable is reached exponentially fast.

For systems evolving chaotically, the following hypothesis holds:

Chaotic hypothesis (CH): A chaotic evolution takes place on a phase space M being attracted by a bounded smooth attracting surface A ⊂ M and on A the map S (or the flow S t ) is an Anosov map (or flow).

The conceptual content of this hypothesis is that all the systems sufficiently chaotic (in the Lyapunov sense) can be treated "in practice" as Anosov systems. In some sense, that is analogous to the ergodic hypothesis for the equilibrium statistical mechanics, which is not rigorously true but can be considered as true for macroscopic bodies [START_REF] Landau | [END_REF], Castiglione 2008, Chibbaro 2014].

In general, given an evolution equation on a phase space depending on several parameters P = {ν, E, ...}, the SRB stationary states form a collection E c of probability distributions µ P which constitutes an ensemble. Generally, for systems where there is only one parameter and for which CH holds, more than a single SRB distribution (which would mean more than an attractor) can be generated, but we do not consider this possibility for the sake of clarity, without loss of generality. A natural question is whether the same system can be described by different equations of motion. For instance a fluid motion can be equally described by a Navier-Stokes equation or by a more complex collection of molecules, in contact with a thermostat and at given density, at least if attention is given to observations depending on large scale properties and performed over long time scales. In this framework, let us consider a given equation which depends for the sake of clarity only on a parameter ν. One can consider together with the collection of SRB distributions µ ν ∈ E c , the collection µ E ∈ E of SRB distributions corresponding to a different equation parametrized by another parameter denoted E, which is intended to describe equivalently the same class of phenomena. This equivalence means that both models give the same predictions for a large class of relevant observables. In this sense, we may have equivalent dynamical nonequilibrium ensembles. This proposition is analogous to (and a generalisation of) the Gibbs ensemble description of statistical mechanics of equilibrium systems. In particular, there is the microcanonical ensemble given by the distribution µ E , which depends on the fixed energy E, and the canonical distribution µ β depending on the fixed (inverse) temperature β = (k B T ) -1 . These ensembles are equivalent in the sense that in the thermodynamic limit, where the number of molecules N → ∞, the average of most of the observables Θ is the same in both ensembles, i.e. µ E (Θ) = µ β (Θ). For a mathematical formulation of the problem, let us consider a system described by the following equation:

ẋ = h(x) + f (x) -νLx (5.1) with h(x) = h(-x) and f (x) = f (-x), i.e
. symmetric for the time reversal Ix = -x, ν a positive transport coefficient and L a positive defined operator. If ν = 0, the equation has a symmetry of temporal inversion I if the solution operator x → S t x, x ∈ R N and the map I are such that

I 2 = I, S t I = IS -t . In the case ν > 0, assuming that |x • h(x)| ≤ Γ(x • Lx),
the motion is asymptotically confined to the ellipsoid (x • Lx) ≤ G ν and a stationary state exists, described by an invariant distribution of probability µ ν which defines a nonequilibrium ensemble E ν , whose the various elements are parametrized by a different value of ν.

Let us substitute the equation (5.1) with:

ẋ = h(x) + f (x) -αLx (5.2) with α = Lx•h(x) Lx•Lx , defined such that the observable O(x) = (x • Lx
) is a constant of motion. This equation is reversible under time-reversal. Each values of O determines a family µ O , called reversible viscosity ensemble. Denoting ν , O the averages over the two distributions and assuming that ν is small enough that the system is chaotic and the stationary distributions are unique, then say that µ ν and µ O are correspondent if:

α O = ν or if O ν = O (5.3)
Under this hypothesis, for a set of macroscopic observables Θ(x) such that are local (locality is intended in the momentum space):

Θ O = Θ ν [1 + o(Θ, ν)] (5.4) with o(Θ, ν) ---→ ν→0 0.
This proposal is called conjecture of equivalence and assures the statistical equivalence in the frame of dynamical systems between irreversible and reversible formulation, notably for fluids [Gallavotti 1995a, Gallavotti 1996, Gallavotti 1997].

In the following, we focus the attention on the possibility of using a reversible model to mimic turbulence dynamics: the NS equations are considered macroscopic manifestations of particles interacting via Newtonian forces; therefore the microscopic reversible equations of motion are "equivalent" to dissipative equations of motion at the macroscopic level.

Reversible Navier-Stokes equation

Let us consider an incompressible fluid, with constant density ρ = 1, subjected to viscosity and an external forcing term. The motion is described by the NS equation:

∂ t u + (u • ∇)u = -∇p + ν∇ 2 u + f ∇ • u = 0 (5.5)
where ν is the cinematic viscosity, p the pressure and f a forcing term which acts at large scales. Clearly, the dissipative term breaks up the symmetry for temporal inversion, i.e the equation is not invariant under the transformation:

T : t → -t; u → -u (5.6)
The idea of the conjecture is to replace the viscosity coefficient ν with a time-dependent term which makes the equation invariant under the symmetry T . Imposing for example the conservation of the kinetic energy K ≡ V |u| 2 dx, the equation (5.5) becomes:

∂ t u + (u • ∇)u = -∇p + α[u]∇ 2 u + f ∇ • u = 0 (5.7)
with the fluctuating viscosity α defined as:

α[u] = V [f • u] dx V (∇ × u) 2 dx (5.8)
where the integrals are defined over the whole volume of the fluid V.

Conversely, if one imposes the conservation of the total enstrophy Ω ≡ V |∇ × u| 2 dx, the fluctuating viscosity is equal to:

α[ω] = V [g • ω + ω • (ω • ∇)u] dx V (∇ × ω) 2 dx
(5.9)

with ω = ∇ × u the vorticity and g = ∇ × f . In the above expression, the term ω • (ω • ∇)u is non-zero only in the three dimensional case.

In both cases, the conjecture of equivalence leads to the statement that in the limit of large Reynolds number, the distribution µ ν and the distribution µ O attributes to any given local observable Θ(u) the same average if:

lim ν→0 µ ν (Θ) = lim ν→0 µ O (Θ) (5.10) provided that ν = µ O (α).
That is to say that between the two distributions there is the following relation (Eq. ( 5.3)):

µ ν (α) = ν(1 + o(ν)) (5.11) with o(ν) ---→ ν→0 0.
In this case, the analogous of the thermodynamic limit is considered as usual in turbulence to be the large Reynolds number or vanishing viscosity limit, such that the system is chaotic and α(u) is a self-averaging quantity that tends to a constant value ν. Moreover, the fact that α(u) = -α(-u) assures that the invariance for temporal inversion is rebuild.

Numerical approach

A wide description of the current state of art of the conjecture's proof is reported in Sec. 6. In the present work, the purpose is precisely to show to which extent the Gallavotti conjecture is accurate, by performing direct-numerical simulations in 2D and 3D at different Reynolds numbers, through the code Basilisk. The computational domain is a square (2D) or cubic (3D) box of side L = 2π, triply-periodic. In the 2D case, the initial velocity field is given by a white noise with amplitude u 0 = 10 -4 , while for the 3D case the Taylor-Green initial velocity is given by:

u x = u 0 sin(x)cos(y)cos(z)
(5.12)

u y = -u 0 cos(x)sin(y)cos(z) (5.13) u z = 0 (5.14)
where u 0 has been fixed to 1. In order to obtain statistically steady states, we inject energy in the system by using the Taylor-Green forcing [Brachet 1984], which takes in 2D the following expression:

f x = f 0 sin(k f x)cos(k f y) (5.15) f y = -f 0 cos(k f x)sin(k f y) (5.16)
with f 0 = 0.0025 and the forcing wave number is such that k f = (2, -1), acting at large scale.

The 3D counterpart is given by:

f x = f 0 sin(k f x)cos(k f y)cos(k f z)
(5.17)

f y = -f 0 cos(k f x)sin(k f y)cos(k f z) (5.18) f z = 0 (5.19) with f 0 = 0.1 and k f = (1, 1, 1).
We verified the independence of the results from the choice of the initial and forcing conditions, provided that it acts at large scales. All the simulations are carried out so that the smallest scale, i.e. the Kolmogorov scale, is very well resolved. For the irreversible case, we simulated the dynamics of the fluid with constant viscosity for a long time interval in order to assure the convergence to a stationary regime. Then, the reversible model is initiated from the final velocity field of the NS run and is integrated for a certain time interval to make a statistically significant comparison with the correspondent NS case.

The temporal evolution of various global quantities (averaged on the volume occupied by the fluid V) such as the kinetic energy, the enstrophy, the dissipation's rate have been studied:

K E = 1 V V |u(x)| 2 dx (5.20) Ω = 1 V V |ω(x)| 2 dx (5.21) ε = 1 V V ν|∇u(x)| 2 dx (5.22)
Concerning the accuracy of the method in the reversible case, a remark is in order since the value of the reversible viscosity α may take very small values at some times. It is important to emphasize that we used a prediction-correction algorithm (Fig. 5.1) in order to keep the quadratic invariants always conserved at the desired precision: firstly, we predict the viscosity coefficient according to the analytical formula, then we let the dynamics evolves. At the following step, we check the difference of the supposed conserved quantity with the reference value (given by the spatio-temporal average on the NS run): if the difference is smaller than a certain threshold, the integration goes on. Otherwise, the predicted viscosity coefficient is corrected by taking into account this difference. The accuracy of the method has been tested by varying the integration time step and by performing in 2D different simulations for the RNS case, at constant energy and enstrophy, to test the possibility of generating different time-reversible models that lead to a plurality of (potentially equivalent) nonequilibrium ensembles.

We have verified that with our algorithm the effect of numerical dissipation is always negligible. That is confirmed a posteriori by the quality of the agreement between the reversible and irreversible dynamics. 

Results

In this section, we illustrate the results obtained for the 2D case. The flow is characterized by the dimensionless Reynolds number based on the Taylor length [Frisch 1995] R λ = u rms λ/ν; in the RNS model R λ = u rms λ/ α , where α is the mean value of the fluctuating viscosity. We have performed the NS simulation at R λ = 95, for two different values of grid resolution (N = 128 and N = 256) to test the robustness of the results. In both cases, the dissipation scale η is well resolved (∆x/η 1). The time step has been correspondingly adjusted in order to respect the conservation of the global quantity with the desired precision. We have verified the conjecture of equivalence, by performing two runs of the RNS model, conserving the quantity D, respectively equal to the kinetic energy K E or the enstrophy Ω. The 2D case has been primarily studied to test the robustness of the code (especially regarding the prediction-correction procedure) and the impact of initial conditions, so we focused the attention on the phenomenology of the two models regarding the stringent test of the conjecture. In Fig. 5.2a, the time-dynamics of the enstrophy normalized by its average value is shown. In the reversible model this quantity is kept constant. In the inset, the case at constant energy is shown. In both cases, the results correspond to the simulation at resolution N = 128, as it is in the following, unless differently specified. It has been verified that all the results hold also at N = 256, which is not shown for the sake of compactness.

To study the properties of statistically stationary, non-equilibrium states for the NS and RNS models, a criterion to judge whether a stationary state has been approached is mandatory. By computing the velocity correlation function in the irreversible model (not shown), we obtained an estimation of the integral time scale T I , so the two models have been integrated on several T I . In particular, the NS runs have been stopped when D fluctuates around a definite value, i.e. D m , and the final velocity field is used as initial datum for the RNS runs. A priori, two consecutive snapshots of the velocity field may yield rather different values of the chosen value of D m : to minimize the impact of this choice, the simulations have been carried on for the time required to stabilize the average and stopped at a given instant t * such that the difference D(t * ) -D m was smaller than a threshold ε = 10 -6 . The first prediction of the conjecture is the reciprocity property which states that if D is taken fixed to the average value of the irreversible model D m , then ν = α . This is a prerequisite for the conjecture of equivalence. In Fig. 5.2b it is shown that this is true within the numerical errors (about 2-3%), for both RNS runs. It is remarkable noting some negative events in the viscosity coefficient, meaning that there is sometime injection of energy by viscosity. From a more qualitative point of view, Fig. 5.2c,5.2d show that also the geometrical features of the turbulent flow are practically indistinguishable in the reversible and irreversible dynamics.

Then we tested the conjecture 5.10 using as the observable the second and fourth moments of the velocity field (Fig. 5.3a). We have computed them taking only the k = 2 mode of the Fourier transform of the field. These moments are effectively large-scale observables and the equivalence conjecture is expected to hold for them. While the instantaneous value wildly oscillate (especially for the fourth moment), the mean values converge rapidly to the irreversible value. These findings have been verified also for the case at constant energy and the results have been found to be independent from refining the mesh. Furthermore, we have analysed the probability density function of the viscosity coefficient (Fig. 5.3b), that could be defined in the irreversible model as in the reversible one according to Eq. (5.9). For both models α tends to have a PDF symmetric around the constant viscosity coefficient ν, being more skewed towards positive values. This is an interesting feature that hints at the possible existence of families of non-local observables which fall into the equivalence. The possibility to extend the validity of the conjecture for this type of observables will be widely discussed in the following section for the 3D case.

Chapter 6

Constrained Reversible System for Navier-Stokes Turbulence Alice Jaccod 1 , Sergio Chibbaro Abstract Following a Gallavotti's conjecture, Stationary states of Navier-Stokes fluids are proposed to be described equivalently by alternative equations besides the NS equation itself. We discuss a model system symmetric under time-reversal based on the Navier-Stokes equations constrained to keep the Enstrophy constant. It is demonstrated through highly resolved numerical experiments that the reversible model evolves to a stationary state which reproduces quite accurately all statistical observables relevant for the physics of turbulence extracted by direct numerical simulations at different Reynolds numbers. The possibility of using reversible models to mimic turbulence dynamics is of practical importance for coarse-grained version of Navier-Stokes equations, as used in Large-eddy simulations. Furthermore, the reversible model appears mathematically simpler, since enstrophy is bounded to be constant for every Reynolds. Finally, the theoretically interest in the context of statistical mechanics is briefly discussed.

Introduction Non-equilibrium macroscopic systems are generally described in the framework of irreversible Hydrodynamics [START_REF] Landau | [END_REF][START_REF] Groot | [END_REF], Onsager 1931, Cercignani 1988, Kubo 2012]. In some cases, the Hydrodynamic level is obtained from the microscopic molecular through coarse-graining [Kadanoff 2000, Castiglione 2008], and the laws that emerge through the coarse-graining break the fundamental timereversal symmetry inherent to the microscopic laws [Cercignani 1988, Lebowitz 1993, Chibbaro 2014, Spohn 2012, Bertini 2015] The foremost physical example of irreversible process is given by an incompressible fluid which is described by the Navier-Stokes equations [Landau 1987, Frisch 1995]. In this framework, the molecular effects are represented by the viscosity ν that is also responsible for the dissipation of energy, and may lead to a stationary state when energy is injected. In the limit of vanishing viscosity, the fluid becomes turbulent [Monin 1975, Frisch 1995], and displays the outstanding feature of "anomaly dissipation", which means that the mean rate of kinetic energy dissipation ε remains finite and independent of ν. Thus, the trace of irreversibility is kept through this singular limit [START_REF] Sreenivasan | [END_REF][START_REF] Eyink | [END_REF]]. The rigorous explanation of such feature remains an open issue, and is at the basis of the mathematical problem of the existence and smoothness of the Navier-Stokes solution in three dimensions [Bertozzi 2002, Constantin 2001[START_REF] Gallavotti | Foundations of fluid dynamics[END_REF]]. Furthermore, non-trivial features of irreversibility have been found in Lagrangian statistics [Xu 2014], and such extreme events have been revealed to be related to possible singularities in Navier-Stokes equations [START_REF] Saw | Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow[END_REF], Dubrulle 2019]. A problem of such an approach is the asymptotic nature of turbulence, which makes difficult to disentangle in actual experiments Reynoldsnumber effects from genuine features [START_REF] Iyer | [END_REF], Iyer 2019]. An alternative approach was proposed by Gallavotti through the conjecture that the same system can be described by different yet equivalent models, notably for fluids [Gallavotti 1997]. In particular, phenomenological irreversible macroscopic systems could be described by suitable reversible dissipative models, at least in some respect. This idea was rooted in several developments in statistical physics, and notably in the use of thermostats in Molecular Dynamics simulations [Evans 2008, Hoover 2012].

The possibility to use a time-reversible model to obtain turbulent features was pioneered in [She 1993], and then conjectured in a more formal way by Gallavotti [Gallavotti 2014a, Gallavotti 2019]. This conjecture has been called of equivalence of dynamical ensemble, to clearly point out the analogy with ensembles in equilibrium statistical mechanics [Gallavotti 1995b]. In this framework, in the thermodynamic limit, N → ∞ with ρ = N/V = const, any local observable (i.e. related to a finite region of the phase space) is equal in all canonical ensembles. Following this picture, it has been proposed to replace the constant viscosity with a fluctuating one that would make possible to have a new global invariant for the system. The thermodynamic limit is obtained in the case 1/ν → ∞. Since in this fully turbulent limit, the system is highly chaotic and exhibits a random behaviour, it is plausible to conjecture that it may be described by an invariant distribution, as already postulated by Kolmogorov [Kolmogorov 1941c, Kolmogorov 1941b, Kolmogorov 1941a].

The conjecture has been directly tested in small 2D systems [START_REF] Rondoni | [END_REF], Gallavotti 2004, Gallavotti 2019], for the Lorenz model [Gallavotti 2014b], in shell models [START_REF] Biferale | [END_REF], Biferale 2018]. Recently, a model obtained by imposing the constraint that turbulent kinetic energy is conserved has been analysed in 3D turbulence with a small number of modes [START_REF] Shukla | [END_REF]]. Parallel attempts have been made to test the consequences, namely the fluctuation relations in different systems [Ciliberto 1998, Shang 2005, Bandi 2009, Zonta 2016]. Yet, a clear demonstration of the validity of the Gallavotti's conjecture still lacks.

Reversible Hydrodynamics

The purpose of the present work is precisely to show to which extent the Gallavotti conjecture is accurate, using high-resolution numerical experiments at different Reynolds numbers. Different equivalent models may in principle be proposed [Gallavotti 2019], yet considering the physics of Turbulence the reversible model should be related to the dissipation anomaly, where the average rate of dissipation is defined as ε ≡ ν|∆u| 2 = 2νΩ, where Ω = ω 2 is the enstrophy, expressed in terms of the vorticity ω = ∇ × u [Frisch 1995]. In analogy with statistical mechanics [Huang 1963], we consider the irreversible distribution as the canonical ensemble with ν corresponding to β = (k B T ) -1 , and therefore we build the analogous to the microcanonical ensemble taking the enstrophy Ω as fixed, and letting ν fluctuating.

Giving evidence of the equivalence of reversible and irreversible NS equations, this work makes a first link between turbulent fluids and the general framework for nonequilibrium problems in statistical mechanics [Evans 1993, Gallavotti 1995a[START_REF] Marconi | [END_REF], formally based on the chaotic hypothesis [Ruelle 1995, Gallavotti 1995b, Gallavotti 1996, Lebowitz 1999]. The main difficulty is that the general theory applies only to timereversible dynamical systems, whereas NS is not. However our results show that many non-equilibrium systems, and most notably turbulent fluids could be considered in practice as reversible as far as statistical observables are considered, and therefore Gallavotti-Cohen theory could be applied to the correct observables. Moreover, multi-scale approach is crucial to tackle complex systems with decimated models [Biferale 2019], like in climate and meteorological sciences. In this case, only large-scales can be simulated and small-scales are modelled often in an irreversible dissipative way [Lesieur 1996, Sagaut 2006]. The present study aims to give some insights on new possible way to propose reversible models, since it is known that such models may better describe the cascade process [Meneveau 2000]. Finally, the conjecture is related to the issue of a rigorous proof of existence of unique solutions of the Navier-Stokes equations [Constantin 1988, Temam 2001[START_REF] Gallavotti | Foundations of fluid dynamics[END_REF]. Indeed, the reversible model proposed should admit a smooth solution, since the vorticity remains bounded for any value of the viscosity. While the original mathematical problem would remain open, the conjecture should provide an answer at least from the statistical point of view, since the same statistical results can be obtained with a well-posed set of equations.

We consider here an incompressible fluid, with constant density ρ = 1, subjected to 
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viscosity and an external forcing term. The motion is described by the NS equation:

∂ t u + (u • ∇)u = -∇p + ν∇ 2 u + f ∇ • u = 0 (6.1)
where ν is the cinematic viscosity, p the pressure and f a forcing term which acts at large scales. Clearly, the dissipative term breaks up the symmetry for temporal inversion, i.e the equation is not invariant under the transformation: T : t → -t; u → -u. The corresponding reversible model is obtained replacing the viscosity coefficient ν with a timedependent term which makes the equation invariant under the symmetry T . Imposing the conservation of enstrophy Ω ≡ V |∇ × u| 2 dx, the equation (6.1) becomes the reversible Navier-Stokes (RNS)

∂ t u + (u • ∇)u = -∇p + α[u]∇ 2 u + f with the fluctuating viscosity defined as α[u] = V [g • ω + ω • (ω • ∇)u] dx V (∇ × ω) 2 dx (6.2)
where the integrals are defined over the whole volume of the fluid V; the vorticity ω = ∇×u, and g = ∇ × f are used. While the stationary states of NS define a nonequilibrium ensemble E ν , RNS equation will generate stationary states that form a collection of new reversible viscosity ensemble E Ω . Denoting ν , Ω the averages over the two corresponding distributions, the content of the Gallavotti's Conjecture of equivalence is the following: for small enough ν, it can be expected that the system is highly chaotic and α(x) fluctuates wildly leading to a multi-scale or homogenisation phenomenon [Sánchez-Palencia 1980, Castiglione 2008], that is a large class of observables have the same statistics in the two ensembles, provided that α Ω = ν or equivalently Ω ν = Ω. Some details more about the theory are given in the supplemental material. Numerical demonstration We perform numerical simulations of the 3D NS and the 3D RNS Eqs. by using the code Basilisk1 . The velocity field u is solved inside a cubic domain of side 2π, and is prescribed to be triply-periodic. The NS runs are initiated from the Taylor-Green velocity field [Brachet 1983]; then RNS runs are initiated from the final velocity field of the corresponding NS run. In both cases, we inject energy in the system by using the Taylor-Green forcing [Brachet 1984]. The results are independent from the choice of the initial and forcing conditions, provided forcing is at large scales, and it has been verified that numerical dissipation is negligible. As usual in isotropic turbulence, we characterise the flow by using the dimensionless Reynolds number based on the Taylor length [Frisch 1995] R λ = u rms λ/ν; in the reversible model R λ = u rms λ/ α , where α is the mean value of the fluctuating viscosity. We have performed three NS simulations at R λ = 30, 100, 300, using the same initial conditions for the velocity field but varying the viscosity coefficient. All simulations are carried out so that the smallest scale η is very well resolved (∆x/η 1 in all cases), and the corresponding number of points used are N = 256, 512, 1024. More numerical details are given in the supplementary material.

In figure 6.1 the phenomenology of both models is illustrated by displaying the dynamics of the dissipation-rate and of the Enstrophy at different Reynolds numbers. It is seen from Fig. 6.1a that the reversible model at high Reynolds numbers shows wild fluctuations in ε = 2αΩ because of the behaviour of the fluctuating viscosity α. At more moderate Reynolds the behaviour is practically indistinguishable between NS and RNS. It is worth noting some sporadic negative events in dissipation at high Reynolds, meaning that there is sometime injection of energy by viscosity. The first prediction of the conjecture is the reciprocity property which states that if enstrophy is taken fixed Ω RN S = Ω N S , then ν = α . This is a prerequisite for the conjecture of equivalence. In Fig. 6.1b it is shown that this is true within the numerical errors (about 1%) at all Reynolds. From a more qualitative point of view, Fig 1c shows that also the geometrical features of the turbulent flow are practically indistinguishable in the reversible and irreversible dynamics. The stringent test of the conjecture is about the equivalence of statistical properties of local observables (where locality is intended in momentum space). Since dissipation takes place at small scales, the observables are local if they reside at large scale only. We compare in Fig. 6.2a the second and fourth statistical moment of the the velocity field. We have computed them both from the whole field, that is containing all the wave-modes, and from the large scales only. While the instantaneous value wildly oscillate, the mean values converge rapidly to the irreversible value. Key for the dynamic of turbulence are the twopoint statistical observables [Monin 1975, Kraichnan 1971, Frisch 1995]. We show both velocity time-correlation and one-dimensional Energy spectrum in Fig. 6.2b. An excellent agreement between irreversible and reversible models is found at all scales. The analysis of the one-point PDF is consistent with these results (see supplemental).

Even more important is the scale-by-scale flux of energy, which describes the cascade of energy [Alexakis 2018]. We compute the scale-by-scale flux from the coarse-graining of Scaling exponents extracted through ESS procedure [Benzi 1993] of the structure functions up to order 6 (Details in the supplemental). Data obtained for shell models from [De Pietro 2018] are also shown. ISM corresponds to NS, and RSM to RSN. Inset: example of comparison for the 4-th order.
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the Navier-Stokes equation (6.1) as [Germano 1992[START_REF] Eyink | [END_REF]]

Π (x) ≡ -( ∂u i ∂x j )τ ij , with (τ ) i,j = (u i u j ) -(u ) i (u ) j , (6.3) 
where the dynamic velocity field u is spatially (low-pass) filtered over a scale to obtained a filtered value: [Chen 2003, Alexakis 2020], but what is important is that the fluxes of the reversible and irreversible model are the same at all scales, and at all R λ . A small discrepancy is present at R λ = 300 in the inertial range, which is probably due to different statistical convergence. These results show unambiguously that the mechanics of turbulence is the same with both irreversible and reversible model. To complete the analysis, we have considered the higher-order structure functions S p (r) = |u(x + r)u(x)| p and the their scaling exponents S p (r) ∼ r ζp , which are the relevant observables for intermittency [Frisch 1995]. Although these kinds of observables are not included in the conjecture, the agreement displayed in Fig. 6.3b is striking. Interestingly, our DNS results are in remarkable agreement with those obtained with shell models [De Pietro 2018].

u (x) = d 3 r G (r)u(x +
Finally, we analyse the statistics of the time-fluctuating viscosity α, shown in Fig. 6.4. With respect to the equivalence conjecture, the sole crucial feature is that α = ν, as shown in Fig. 6.1. The statistics of α are interesting per se in connection with the symmetry of fluctuations given by the Fluctuation relations for time-reversible dynamical systems [START_REF] Marconi | [END_REF], Gallavotti 2014a]. Indeed, α is related to the entropy production in the time-reversible model [Gallavotti 2019]. We plot the PDF of α computed using formula (6.2) during the reversible dynamics as well as that computed in the irreversible one at different Reynolds numbers. In the reversible dynamics, α fluctuates around the "canonical" value ν, and the variance increases with the Reynolds number. At low and moderate Reynolds numbers no negative event is recorded. Instead some are found at R λ = 300, when distribution turns out to be much more flatter. As discussed in recent works [Biferale 2018[START_REF] Shukla | [END_REF]], the limit R λ → ∞ and N → ∞ is singular and the different behaviour of the PDF reflects that. Furthermore, our results show that in the cascade regime analysed here, it is difficult to observe extreme events on a reasonable observation-time, notably at small R λ . As expected for the 3D case [Gallavotti 1997], the statistics of α of the reversible and irreversible dynamics are qualitatively different. The entropy production should be the same in both dynamical ensembles, but in fact α is related to entropy only in the reversible model, whereas it bears no connection with it in the irreversible one. Our results confirm this picture with α fluctuating little in the irreversible model and not around ν, as found for the reversible model.

Conclusions

We have shown through high-resolved numerical simulations that the Gallavotti's conjecture of dynamical ensemble equivalence is correct. We observe that no matter the Reynolds number, provided sufficient resolution is kept, not only the basic requirements of the conjecture are fulfilled, but all the relevant statistical observables are found indistinguishable in the irreversible and reversible dynamical system. Furthermore, the scale-by-scale analysis of the kinetic energy flux shows negligible difference between the two models up to the dissipation range, far beyond the original formal conjecture proposition. Wild fluctuations of the reversible viscosity are encountered and at high-Re numbers, even negative values are recorded, which point out to local anti-dissipative phenomena. However, these negative events remain extremely rare. Our results confirm preliminary results obtained in simplified dynamical models of turbulence [Biferale 2018].

Our results give empirical evidence that the chaotic hypothesis from which the conjecture is originally derived can be considered morally applicable to turbulent fluids. That means in turn that non-equilibrium statistical mechanics [Ruelle 1995, Ruelle 2012], and notably fluctuation relations should apply in some sense also to turbulent fluids. Furthermore, it is shown that turbulence is unaffected by the precise mechanism of dissipation. This corroborates the idea that scales larger than the forcing are governed by Euler, as recently proposed [START_REF] Dallas | Statistical equilibria of large scales in dissipative hydrodynamic turbulence[END_REF], Michel 2017[START_REF] Dallas | Transitions between turbulent states in a two-dimensional shear flow[END_REF]]. On the other hand, it paves the way to the use of whatever phenomenological model in coarse-grained approaches, provided the correct amount of average rate of dissipation is enforced. Some issues remain to be answered. While the reversible system appears mathematically simpler because of the constraint on the enstrophy, the presence of negative events in viscosity makes it not well-posed, shifting but not solving the question of global existence of the solution. Rigorous analysis lacks. The possibility to compute non-equilibrium entropy and its behaviour is appealing but the needed statistics to make predictions seems overwhelming in 3D. More notably, to exploit the new framework to get new insights on turbulence problem remains an unexplored route.

6.1 Supplemental material

Numerical set-up

We have used the open-source code Basilisk2 . Second-order finite-volume numerical schemes for the spatial gradients are used [Popinet 2003, Popinet 2009, Lagrée 2011a].

Navier-Stokes equations are integrated by a projection method [Chorin 1969a], and the time advancing is made through a fractional-step method using a staggered discretization in time of the velocity and the scalar fields [Popinet 2009]. The code has been largely validated in turbulent flows, notably is isotropic [Fuster 2013] and convective turbulence [van Hooft 2017, Castillo-Castellanos 2019, Valori 2020]. The Taylor-Green initial velocity field is given by

u x = u 0 sin(x) cos(y) cos(z)
u y = -u 0 cos(x) sin(y) cos(z)

u z = 0 ,
where u 0 has been fixed to be 1. In order to obtain statistically steady states, we inject energy in the system by using the Taylor-Green forcing [Brachet 1984]:

f x = f 0 sin(k f x) cos(k f y) cos(k f z) f y = -f 0 cos(k f x) sin(k f y) cos(k f z) f z = 0 .
f 0 is put to 0.1 and the forcing wave number has been chosen at large scales |k f | = √ 3. In the table 6.1, we report the mean values of the R λ for both the NS and RNS simulations. We have verified that the results are independent from the choice of the initial conditions, as usual for turbulent flows [Frisch 1995, Pope 2000 

Scale-by-scale analysis

We recall that The Navier-Stokes equations for the velocity field u of an incompressible unit density fluid are given by

∂u ∂t + u • ∇u = -∇p + ν∇ 2 u + f (6.4) ∇ • u = 0, (6.5)
where p is the pressure, ν is the viscosity and f an external body force.

We introduce the notion of different scales in the flow using the filtering or coarsegraining approach [Germano 1992], where the dynamic velocity field u is spatially (lowpass) filtered over a scale to obtain the filtered velocity field u (x). The filtering procedure is given by

u (x) = d 3 r G (r)u(x + r) (6.6)
where G is a smooth filtering function, spatially localized and such that G ( r) = -3 G( r/ ) where the function G satisfies d r G( r) = 1, and d r | r| 2 G( r) = O(1). By applying such a coarse-graining to the Navier-Stokes equations we obtain:

∂ t u + ( u • ∇) u = -∇ p -∇ • τ + ν∇ 2 u . (6.7)
This equation describes the dynamics at the scale , and τ is the subscale stress-tensor (or momentum flux) which describes the force exerted on scales larger than by fluctuations at scales smaller than . It is given by:

(τ ) i,j = (u i u j ) -( u ) i ( u ) j (6.8)
The corresponding pointwise kinetic energy budget reads

∂ t 1 2 | u | 2 + ∂ j 1 2 | u | 2 + p )( u ) j + τ ij ( u ) i -ν∂ j 1 2 | u | 2 (6.9) = -Π -ν|∇ u | 2 , with Π (x) ≡ -(∂ j u i )τ ij .
(6.10) the sub-grid scale (SGS) energy flux. This term is key since it represents the space-local transfer of energy among large and small scales across the scale . In the case of direct energy cascade, the flux is known to be positive in average. The present scale-by-scale procedure holds in the physical space, however an efficient way to implement the filter in homogeneous flows is through the Fourier transform Ĝq (k) = G (x)e ik•x dx (6.11)

where q = 1/ is the filtering wavenumber. In this work we have considered a Gaussian kernel

Ĝq (k) = exp - k 2 2q 2 . (6.12)
For an infinite domain this filter corresponds to the Gaussian filter in real space G (r) = exp(-1 2 r 2 / 2 )/(2π 2 ) 3/2

Complementary Results

To further assess the equivalence conjecture, we have also studied the entire one-point pdf of the velocity, see Fig. 6.5, which indicates that the irreversible and reversible PDF of the velocity field are in quite good agreement, with only some minor discrepancy in the right tail for the highest R λ , yet of the order of the statistical error. This result is consistent with what found concerning the spectra and the second and fourth moments of the field, as displayed in the main text.
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We have also considered the Eulerian Longitudinal structure functions S p (r) [Frisch 1995], defined as

S p (r) ≡ |[u(x + r) -u(x)] • r| p , r = r/|r| . (6.13)
We have computed the structure functions averaging both in space and time. These functions exhibit scaling S p (r) ∼ r ζp and are the fundamental tool to analyse the local structure of turbulence, and the anomalous scaling of fluctuations, or intermittency [Frisch 1995]. Indeed, the scaling based on original Kolmogorov similarity theory gives ζ p = p/3, whereas a different multifractal scaling has been found in experiments and numerical simulations [Paladin 1987, Biferale 2005, Arneodo 2008]. In Fig. 6.6 we show the log-log plot of longitudinal structure functions for p=2,4,6. A qualitative scaling behaviour is clearly detectable and more importantly reversible and irreversible dynamics appear to be in quite good agreement, independently of Reynolds number. The case at R λ = 100 is intermediate and does not add much to discussion, so that it is not shown for the sake of compactness. As well known [Frisch 1995], it is very difficult to extract accurate exponents directly from the structure functions, notably at low and moderate Reynolds number because of the absence of a clear inertial range. A common tool to overcome this difficulty is to use the Extended Self-similarity (ESS) procedure [Benzi 1993], where relative exponents are evaluated plotting different structure functions against the S 3 (r) function, whose scaling with exponent ζ 3 = 1 comes from the exact 4/5th-law [Kolmogorov 1941c, Kolmogorov 1941a]. The ESS of some structure functions are shown in Fig. 6.7. The procedure allows to find a clear scaling in the range r > 10η. The scaling range and thus the accuracy increase with Reynolds, allowing for a better fit. We have also verified that the structure function of order 3 is consistent with the theoretical scaling ζ 3 = 1, as shown in Fig. 6.8. In the table 6.2, we give all the scaling exponents. The agreement between reversible and irreversible dynamics is excellent. Furthermore, the exponents are in quite good agreement with the literature [Gotoh 2002, Benzi 2010].

As explained in the letter, the previous results as those presented in the main text have been obtained through the following procedure: first, a NS simulation is carried out with a given viscosity until a steady state state is obtained; then it is stopped and the RNS simulation is started from the last NS velocity field. For our proof of concept, this is the correct procedure and it is the one proposed in the original works by Gallavotti [Gallavotti 2019]. Yet, as correctly pointed out by a reviewer, these results show that the RNS dynamics is able to preserve the statistical properties of a turbulent flow, provided that the latter is first generated by the genuine NS dynamics. It remains an issue whether or not it is possible to generate a turbulent velocity field using solely the RNS model. It would seem plausible that this indeed the case, since the flow is chaotic and initial conditions should not generally play a role. We have addressed this issue repeating the RNS simulation of the flow at R λ = 30 starting from standard initial conditions (Taylor-Green velocity field), by fixing the value of u 0 in order to have an initial value of enstrophy equal to the mean value of this quantity obtained in the NS run with the same R λ . We label this new simulation RNSbis.
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In Fig. 6.9, we show the comparison with the irreversible NS and the previous RNS results obtained from the NS initial conditions, for the energy spectrum, the one-point pdf and the scaling exponents for the structure function. The agreement is excellent in all cases. These results show unambiguously that the RNS is able to generate a correct dynamics from generic initial conditions. Part IV
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Plankton dynamics

Chapter 7

Predator-prey plankton dynamics in turbulent flow past an obstacle

In the framework of mixing by turbulent and chaotic flows, an intriguing topic is the role of stirring and dispersion in the generation of plankton patchiness, meaning their heterogeneous spatial distribution, as revealed by satellite and ship-transect measurements of chlorophyll concentration.

Firstly, a brief introduction to the planktonic organisms will be given, with the aim of providing a general frame on the biological nature of these organisms and on the role they play in modifying the carbon dioxide content of the atmosphere, which has a clear implication for global climate change.

Then, we present the results of the study of a predator-prey model of plankton dynamics in the presence of a turbulent two-dimensional flow past an idealized island, by means of direct numerical simulations. The aim is mainly centered on the possible effects on plankton dynamics due to the spatiotemporal complexity of turbulent flows, thus the impact of Reynolds number and the spectral properties of planktonic fields are studied, as well as the spatial correlations between the spatial structures of the latter and those of the flow field. Motivated by the several findings of the above study, we pushed further the investigation of such dynamics in a fully-developed 3D turbulence (Chapter 8), generated in the wake of an ideally infinite cylinder. A comparative study of the 2D and 3D configuration at the same Reynolds number is reported, with the aim of unveiling similarities and differences in terms of spectral properties, spatial organization and correlations of both flow and planktonic fields.

An introduction to planktonic organisms

As the term πλαγκτός (=wanderer,drifter ) suggests, planktonic organisms float in the surface waters of rivers, lakes and oceans, being drift passively by fluid motions. Many planktonic organisms are themselves immobile, others show a limited capability to swim (motility) through the water and hence have the ability to change their position in the water column. Generally, there is not a strict and universally accepted definition of planktonic species: the term phytoplankton is used for the large group of planktonic plants which live in surface waters: the vast majority are algae, non-flowering plants. Some phytoplankton may strictly be described as bacteria as they are prokaryotes while others are classified like unicellular eukaryotes, like diatoms. Dinoflagellates, due to their motility (based on whiplike tail, or flagella), move through the water and thus show some distinctly animal-like characteristics. Conversely, the term zooplankton is used to classify the animal component of planktonic community, generally including larger heterotrophic (other-feeding) organisms (copepods,cladocerans), that can be herbivores and thus graze on phytoplankton or predatory carnivores. The species range in size from prokaryotic, as small as a micron, and eukaryotic cells equivalent in size to bacteria to the largest dinoflagellates which are visible to the naked eye. Thus, the size range of at least five orders of magnitude. Their range in growth rates is more limited, ranging from a few doublings per day to one doubling every week or ten days. In many respects the ecology of phytoplankton is similar to the ecology of bacteria, which show comparable sizes, growth rates and metabolic flexibility. The basic features of phytoplankton cells have been reviewed by [Taylor 1980]. The cellular organization of the phytoplankton is usually very simple and most species occur as single cells or as small colonies of cells. It is rare for the colonial or coenobial forms to have more than 32 or 64 cells in a colony and the species of Volvox, with between 1000 and 50000 cells in a colony are quite unusual. The phytoplankton are, in general, photoautotrophic (auto-feeding based on photosyntesis) organisms. Thus, even those with a simple bacterial cell structure are photosynthetic and obtain most of their energy from sunlight. Some species have rather complex nutritional requirements and may partially relies on organic substrates (heterotrophic). Most species do, however, derive most of their energy from photosynthesis so the ecological factors that affect their existence are those which influence all photosynthetic organisms: light, temperature and the supply of the major nutrient ions (carbon, nitrogen, phosphorus and trace metals). For the role they play in the photosynthesis, these organisms are at the bottom of the food chain: they create fresh organic matter from dissolved nutrients, carbon dioxide, and energy from sunlight. Many of them are eaten by other plankton, like zooplankton which in turn are consumed by larger organisms, ultimately sustaining large fish at the vertex of the food chain. Eventually some of the organic matter sinks to the deeper, dark waters. This organic matter is utilized by a host of organisms, including bacteria, which recover what remains of the energy originally captured by the phytoplankton and, in the process of respiration, convert organic molecules back to inorganic form, namely the nutrients that sustain phytoplankton growth. Electromagnetic radiation is rapidly absorbed in seawater, limiting viable phytoplankton growth to within typically 80m of the surface, the so-called euphotic layer. In this region, the scarce availability of nutrient ions often becomes the limiting factor for phytoplankton growth, since they need these elements in appropriate ratios to build specific molecules. A characterization in terms of nutrient availability is generally done, based on the amount of biological productivity they can sustain, distinguishing between an eutrophic habitat, where nutrients are uniformly distributed and thus do not constitute a limiting factor for plankton growth and oligotrophic one (nutrient poor). For years it has been assumed that no nutrients meant no growth; more recently several studies (for a detailed discussion of nutrients dynamics see [Williams 2003]) have evidenced that the important parameter is not only the concentration of nutrient but the flux rates between the various processes, specifically the balance between uptake and rapid growth on one side and rapid grazing and regeneration of the nutrients.

From a microscopic point of view, the mechanism of uptake of dissolved nutrients by phytoplankton cells can be described in terms of two stages: molecules of nutrient transferred by turbulent mixing and then by molecular diffusion near the cell surface are captured by transporter proteins in the cell wall and then transferred into the interior of the cell (Fig. 7.2a). This uptake creates a gradient in the nutrient concentration within a narrow layer of fluid adjacent to the cell wall, which leads to a transfer of more nutrient molecules towards the cell by molecular diffusion (Fig. 7.2b). In addition to nutrient availability, a limiting factor to phytoplankton growth is represented by other environmental factors like light abundance and temperature. Primary production, the creation of organic matter, generally increases with the incident flux of photons at low light levels and saturates at high levels of irradiance. Indeed, if the latter is too strong, light harvesting is reduced and so photosynthesis becomes less efficient: the cell responds by forming photoprotection pigments which dissipate the energy in excess and consequently the population growth rate results reduced. Conversely, warmer temperature represents a trigger for biochemical reactions: laboratory experiments reveal maximum phytoplankton growth rate increase with temperature [Bissinger 2008]. The phytoplankton community structure in surface waters results to be very complex and varied with between 50 and 100 coexisting species (Fig 7 .3). This apparently anomalous diversity of phytoplankton communities has been firstly stated by [Hutchinson 1961], in his paper on the "paradox of the plankton": "how is it possible for a number of species to coexist in a relatively isotropic or unstructured environment all competing for the same sorts of materials?". The paradox stems from the prediction, based on the principle of competitive exclusion [Hardin 1960], that in homogeneous environments species that compete for the same resources cannot coexist so one species alone would outcompete all the others, resulting in a final equilibrium situation with a population composed of a single species. To explain the paradox of the plankton, many solutions have been proposed by scientists over the years [Roy 2007]. The principal mechanisms invoked suggest that phytoplankton communities never reach a stable equilibrium, due to both external forcing (e.g., environmental fluctuations in essential resources, disturbances), and internal species interactions generating chaotic dynamics. Phytoplankton communities are perturbed by turbulence and vertical mixing and the impact of such perturbations depends on the scale of the perturbation. Moreover, resources including nutrients and light are not homogeneously distributed, but vary spatially and temporally. All of these mechanisms are plausible and have found evidence in observations and laboratory investigations [Bracco 2000[START_REF] Huisman | [END_REF], Huisman 2003, Scheffer 1997]. Even if each of the proposed mechanisms potentially explain the paradox in a fairly convincing way, the main process allowing such a large diversity of species in phytoplankton communities remains a subject of investigation, depending on the interaction of several physical, chemical and biological processes. 

Overview of physical processes relevant for plankton dynamics

The ocean circulation is due to a combination of mechanical and density forcing, involving the surface winds, exchanges of heat, fresh water and salt and thus incorporates several processes occurring on a wide range of spatial and temporal variability, as schematized in Fig. 7.4. Globally, the ocean circulation can be divided in two principal components, intimately connected [START_REF] Rogé | Etudes de cartographie altimétrique pour l'observation de la dynamique méso-échelle dans le contexte SWOT: application à la mer Méditerranée occidentale[END_REF]]: a rapid circulation induced by wind stress and thus dominating the upper surface motion and a slower circulation which dominates the internal layers' motions and it is primarily determined by temperature and salinity changes. Generally speaking, ocean is a stratified fluid in rotation: large scale dynamics is primarily determined by the small aspect ratio, i.e. vertical motion is weak with respect to the horizontal one, thus the two-dimensional approximation is usually adopted in combination to the hydrostatic hypothesis, i.e. the vertical component of pressure force is perfectly equilibrated by gravitational one. The effect of stratification and terrestrial rotation are determinant at these scales: the so-called geostrophic equilibrium condition holds when the Coriolis force equates the horizontal pressure gradient. A small value of the Rossby number, i.e. Ro = U/f L with U and L the velocity and horizontal length scale of flow and f the Coriolis frequency, means that the rotational effects are predominant with respect to inertial forces and thus the flow is well described by the geostrophic equilibrium: the large-scale ocean circulation is characterized by a very small Rossby number, Ro 1 and thus the geostrophic approximation is generally used. The oceanic mesoscale flow field, characterized by a horizontal length scale O(100km), has been studied extensively for its dynamics and its contribution to the lateral transport of heat, momentum, and tracers by means of eddies [Hernández-García 2004, Sandulescu 2008[START_REF] Pasquero | [END_REF], Hernández-Carrasco 2012].

Being characterized by a small Rossby number, mesoscale flows are well-described by a quasi-geostrophic approximation (QG), valid for relative vorticities much smaller than the ambient vorticity because of the earth's rotation: a typical spatial parameter is the so-called Rossby radius of deformation, which represents the scale at which the rotational effect is as much important as the buoyancy effect, i.e. L d = N H/f , where N is the vertical average of the Brunt-Väisälä frequency (oscillation frequency of a particle in a stratified fluid), H the vertical depth and f the Coriolis frequency. This parameter varies according to latitude and stratification [Chelton 1998], ranging from about 200 km at the equator and between 10 and 30 km at mid-latitudes and characterizes the typical scale of generation of mesoscale eddies. The primary eddy source term is given by the baroclinic instabilities generated by the vertical shear [Wunsch 1997], which generate the most part of the eddy kinetic energy (EKE) associated to these structures; an additional amount of energy is given by the barotropic instabilities, resulting from the horizontal shear induced by currents and jets with strong gradients of horizontal velocity. These sources of energy determine the generation of both a downscale enstrophy cascade ad upscale energy cascade, corresponding to energy spectra E(k) ∼ k -3 and E(k) ∼ k -5/3 , respectively [Kraichnan 1967, Charney 1971].

Possible deviations from this ideal picture may reasonably come from the non-homogeneous and non-stationary characteristics of the velocity field. In this framework, at intermediate scales between the Rossby deformation radius and the small dissipative scales (much smaller than 1 km), the role of submesoscale vortices has been pointed out in determining the shape of the energy spectrum [McWilliams 1985]: characterized by O(1) Rossby number dynamics, the submesoscale (∼ 1 km), not fully three-dimensional and nonhydrostatic, is not described appropriately by the traditional quasi-geostrophic theory valid for mesocales [Thomas 2008] but is, to some extent, captured by the turbulence theory sQG (surface quasi-geostrophic [START_REF] Lapeyre | [END_REF]]) which accounts for the effect of the surface density anomalies on mesoscale and submesoscale dynamics. Submesoscale processes are particularly dominant on the upper ocean due to to the presence of lateral density gradients, vertical shear, weak stratification and a relatively small Rossby radius based on the mixed-layer depth. Several studies have been focalized on the possible mechanisms that are responsible for submeoscale processes, widely discussed in [Thomas 2008]: the mesoscaledriven surface frontogenesis [START_REF] Lapeyre | [END_REF], Klein 2009], the baroclinic mixed-layer instabilities [START_REF] Boccaletti | [END_REF][START_REF] Callies | The role of mixed-layer instabilities in submesoscale turbulence[END_REF]] and forced motions, affected by buoyancy fluxes or friction at boundaries [Yoshikawa 2001, Thomas 2005]. Three-dimensional numerical simulations at progressively finer resolutions show that resolving submesoscale processes leads to flattening the kinetic energy spectra slope to -2 [Capet 2008] and a transfer of energy to larger as well as smaller scales [START_REF] Boccaletti | [END_REF]]. The interactions among these different mechanisms and their effect on the global circulation and the mesoscale dynamics are still a topic of discussion and study, motivated by several factors. As above discussed, the small geometrical aspect ratio (depth to length) and Rossby number Ro associated to mesoscale and larger scale flow lead to vertical velocities of about 10 -3 -10 -4 times smaller than the horizontal ones [Thomas 2008], which are typically about 0.1 m s -1 . Instead, the sub-mesoscale dynamics, being Ro ∼ O(1), generate vertical velocities of O(10 -3 m s -1 ) that are typically an order of magnitude larger than those associated with the mesoscale. For this reason, submesoscale processes can be efficient in vertically transferring properties and tracers, between the surface ocean and the interior. This vertical transport plays an important role in supplying nutrients from the deep pool into the euphotic zone and drive phytoplankton into the dark [Lévy 2001, Lévy 2012, Lévy 2018]. Submesoscale processes generally also reduce mixed-layer depth, increase vertical stratification, and decrease vertical mixing, with consequences for the residence time of phytoplankton in the euphotic zone. Although the patchiness observed in satellite imagery has been attributed to stirring of phytoplankton spatial gradients by the water motions of mesoscale eddies [Gower 1980] and the pioneering work of [Abraham 1998] assessed the crucial role of mesoscale currents in stirring the basin-scale chlorophyll gradients into thin filaments, during the last decade or so, observations and models have revealed evidence for direct forcing at scales significantly smaller than mesoscale eddies [Lévy 2001, Mahadevan 2012], which can prominently affect plankton growth rates, biomasses and community structure. Submesoscale currents are continuously forming, moving, and dissipating over time scales ranging from days to weeks, making them particularly difficult to sample and model. Moreover, satellite altimeters used to provide global maps of upper-ocean currents do not presently resolve spatial scales smaller than 100 km (see Fig. 7.4), while numerical models require fine time and spatial resolutions which are computationally challenging. Predator-prey plankton dynamics in turbulent flow past an obstacle Abstract Plankton constitutes the productive base of aquatic ecosystems and plays an essential role in the global carbon cycle. The impact of hydrodynamic conditions on the biological activity of plankton species can manifest in a variety of different ways and the understanding of the basic effects due to multiscale complex flows still appears incomplete. Here, we consider a predator-prey model of plankton dynamics in the presence of a turbulent flow past an idealized island, to investigate the conditions under which an algal bloom is observed, and the resulting patchiness of plankton distributions. By means of direct numerical simulations, we explore the role of the turbulent intensity and of the obstacle shape. In particular, we focus on population variance spectra, and on their relation with the statistical features of the turbulent flow, as well as on the correlation between the spatial distribution of the planktonic species and velocity field persistent structures. We find that both the average biomass and local plankton dynamics critically depend on the relation between advective and biological time scales, confirming and extending previous results obtained in simpler flow settings. We further provide evidence that, in the present system, due to local flow action plankton accumulates in localized filamentary regions. Small turbulent scales are found to impact the statistics of plankton density fields at very fine scales, but the main global features of the population dynamics only weakly depend on the Reynolds number and are also found to be remarkably independent of the geometrical details of the obstacle.

Introduction

Planktonic populations are key to aquatic ecosystems, as they form the base of marine and lacustrine food webs [Mann 2005], and play a central role in the climate, by taking part in the global carbon budget [START_REF] Williams | [END_REF]]. Plankton blooms, however, can also have major negative environmental and societal impacts, when involving harmful algae [START_REF] Sellner | [END_REF][START_REF] Kahru | [END_REF][START_REF] Guseva | [END_REF]]. The modeling of plankton dynamics is therefore relevant to different studies, both from a fundamental and an applied point of view.

Among the physical-biological interactions controlling plankton blooms a prominent role is played by fluid transport. Understanding the role of laminar and turbulent flows on this phenomenon, both on the vertical [Denman 1995, Huisman 2002, Lindemann 2017], and on the horizontal [Abraham 1998, Martin 2002a, Martin 2003, Reigada 2003, López 2001, Goodman 2008[START_REF] Guseva | [END_REF]] has attracted considerable interest. The complexity of the problem arises from the different processes acting on a very broad range of spatial and temporal scales [Lévy 2008, McGillicuddy 2016, Lévy 2018[START_REF] Zhang | [END_REF]]. Furthermore, the interplay between the fluid and biological dynamics is often subtle, making the prediction of the conditions for blooming non-trivial even in relatively simple theoretical models [Hernández-García 2004, Lindemann 2017[START_REF] Guseva | [END_REF].

A distinctive feature characterizing plankton populations at the ocean surface is their patchiness, meaning their heterogeneous spatial distribution, due to lateral stirring and mixing, as revealed by satellite and ship-transect measurements of chlorophyll concentration (an indicator of the local phytoplankton biomass) [Denman 1976, Smith 1988, Martin 2002b, Lévy 2004, Franks 2005]. Several efforts have been devoted to explain and numerically reproduce the statistical features, such as spectra, of plankton density fields. Using dimensional arguments, some theoretical predictions have been obtained, suggesting that the spectra of biological species in two-dimensional (2D) turbulent flows should be flatter than that of the velocity field, particularly for interacting species [Denman 1976, Powell 1994]. In numerical simulations, relying on an idealized model, the role of turbulent advection in the generation of patchiness was first put in evidence in [Abraham 1998], where some differences between phytoplankton and zooplankton were also observed, due to the typical biological time scale of the latter. The dominance of physical processes in structuring the spatial variability of plankton distributions was also reported in more realistic numerical studies (see, e.g., [Lévy 2004]). The picture emerging from previous experimental, theoretical and numerical investigations, however, questions the universality of spectral slopes, pointing to large variability with respect to the physical and biological processes considered.

Turbulent flows of environmental interest, and particularly oceanic ones in the submesoscale and mesoscale ranges (horizontal size of O(1 -10) km and O(10 -100) km, respectively) are also characterized by the presence of coherent structures, in the form of eddies and filaments. Such structures have an important impact on biological dynamics, as they shape the spatial distribution of the different species [START_REF] Pasquero | [END_REF]]. Their effects on productivity depend on multiple factors. Based on kinematic-flow numerical simulations, and including nutrient dynamics, it has been argued that the confinement of plankton for sufficiently long time inside large eddies promotes biological growth [Sandulescu 2007, Sandulescu 2008]. Intense mesoscale stirring, on the other hand, can also reduce productivity in coastal upwelling systems, as shown using the same nutrientphytoplankton-zooplankton (NPZ) model and flow fields from both satellite data and a regional model in the Benguela area [Hernández-Carrasco 2014]. This apparently counterintuitive result confirms previous remote-sensing observations [Rossi 2008, Rossi 2009] and is found to be due to relevant off-shore advection, through an analysis of the correlation between spatial features in plankton density fields and Lagrangian coherent structures.

Several important ideas to investigate the basic mechanisms underlying the effects of fluid motions on biological dynamics, as those mentioned above, were put forward in studies examining chemical and biological reactions in the presence of chaotic advection, in both closed and open flows [Toroczkai 1998[START_REF] Neufeld | [END_REF], Neufeld 2001, López 2001, Neufeld 2002b]. In particular, these works highlighted the role of a special flow structure, the chaotic saddle, forming in open flows and capable of entraining fluid parcels for long time intervals [Hernández-García 2004[START_REF] Neufeld | [END_REF], Neufeld 2002b, Sandulescu 2007, Sandulescu 2008[START_REF] Guseva | [END_REF]]. Due to this property, when such flows are coupled to excitable biological dynamics [Truscott 1994b, Truscott 1994a], sustained blooms can take place [Hernández-García 2004]. As both fluid transport across the region of interest and biological growth are transient phenomena in that case, such a feature provides, in our opinion, an effective illustration of the non-trivial interplay between fluid and reactive dynamics. The above studies, however, considered kinematic velocity fields, namely specified by a prescribed streamfunction. While such a simplified approach allows the description of some of the main flow features and offers reduced computational cost, it cannot account for complex flow dynamics, involving a whole range of temporal and spatial scales. Furthermore, it cannot be easily generalized to different geometries and boundary conditions.

In this work we explore the dynamics of a predator-prey model of plankton blooms displaying excitability, the so-called PZ (phytoplankton-zooplankton) model [Truscott 1994b], in turbulent flows occurring in the wake of an obstacle. Our flow configuration shares some similarities with the one used to study plankton dynamics in the Canary region [START_REF] Sandulescu | [END_REF], Sandulescu 2007, Sandulescu 2008[START_REF] Guseva | [END_REF]] using a kinematic flow (and NPZ model), but we take a more general perspective. In our setup, the obstacle mimics a generic island, rather than a specific one, and it could also equally represent another obstruction (e. g. a man-made construction) in a current. More importantly, our interest is mainly centered on the possible effects due to the spatiotemporal complexity of dynamical turbulent flows. In particular, we aim at identifying the minimal flow ingredients needed to sustain a bloom, and at characterizing how the latter could be affected by multiscale fluid properties. While investigating an idealized system, we avoid any bias possibly coming from the modeling of the small scales of the flow. Furthermore, we have chosen the PZ model to leave apart possible effects linked to nutrient heterogeneities.

For this purpose we revisit some of the theoretical predictions and the numerical results obtained in simplified settings [Hernández-García 2004, López 2001, Neufeld 2002b], to test their robustness against genuine multiscale flows. We then focus on the conditions for the occurrence of blooms, and on their intensity in terms of global biomass produced, in progressively more turbulent 2D flows. By means of extensive fully-resolved numerical simulations, we further investigate the statistical properties of plankton patchiness, quantifying variance spectra, and analyze the correlations between the spatial organization of prey (phytoplankton) and predator (zooplankton) populations with flow structures. Since it is not possible to perform resolved simulations of realistic configurations, we evaluate the impact of varying the size of the system. Finally, we consider the effect of changing the obstacle shape and assess the role of the roughness of its boundary, which had not been examined before, in spite of its relevance in realistic situations. This article is organized as follows. In Sec. 7.4 we introduce the mathematical framework of the problem, recalling the main dynamical features of the biological model adopted, and describing the link with the equations governing hydrodynamics. The numerical setup, as well as the flow configuration and the main parameters used, are illustrated in Sec. 7.5. We present the results of our numerical study in Sec. 8.3, particularly discussing the impacts on the biological dynamics of the different turbulence regimes, of under-resolving the velocity field and of the obstacle shape. Finally, discussions and conclusions are presented in Sec. 7.7.

Mathematical formulation

We investigate the growth dynamics of two planktonic species, the phytoplankton and the zooplankton, living in a fluid environment localized around islands, characterized by predator-prey interactions. Their spatiotemporal evolution can be conveniently described using coupled advection-reaction-diffusion equations. As for the reaction kinetics, a simple model accounting in an effective way for bloom dynamics was proposed by [Truscott 1994b] based on the properties of excitable media [Murray 2002, Grindrod 1991]. This model, also known as PZ (for phytoplanktonzooplankton) model, provided useful to reproduce the main dynamical features of red tides. Its two basic ingredients are the trigger mechanism, represented by the interaction between the phytoplankton growth rate and the grazing rate of zooplankton, which gives rise to the prey population outbreak, and the refractory mechanism, represented by the growth of zooplankton, which causes the system return to the initial equilibrium state.

In well-mixed conditions, calling P = P (t) and Z = Z(t) the population densities of phytoplankton and zooplankton, respectively, the evolution equations read:

dP dt = rP 1 - P K -R m Z P 2 P 2 + κ 2 , (7.1a) dZ dt = γR m Z P 2 P 2 + κ 2 -µZ.
(7.1b)

The term rP (1 -P/K) represents the gross rate of production of phytoplankton, called primary production P P , and is expressed by a logistic growth function, with a maximum specific growth rate r and a carrying capacity K. Predation of phytoplankton is represented by a Holling Type-III function [Holling 1959], where R m is the maximum specific predation rate and κ determines how quickly that maximum is attained as the prey population density increases. The rate of zooplankton production is controlled by the population density of phytoplankton, with γ representing the ratio of biomass consumed to biomass of new herbivores produced. The rate of zooplankton removal, by natural death and predation from higher organisms, is called µ. To display excitability, the PZ model must have at least two different time scales: to initiate an outbreak, the phytoplankton growth rate must be larger than the predation rate by the zooplankton population.

To consider the previous reactive dynamics in a fluid flow, it is necessary to specify the evolution equation for the velocity field and the influence of the latter on the population densities, P (x, t) and Z(x, t). It is useful to formulate the complete model in non-dimensional variables. For this purpose, we introduce a characteristic length l 0 and a typical velocity u 0 , from which the typical time is t 0 = l 0 /u 0 . We then consider an incompressible 2D flow defined on a square domain of side L, in the presence of a circular obstacle (of radius l 0 ) representing an island, which is the solution of the Navier-Stokes equation with the appropriate boundary conditions (see Sec. 7.5). The non-dimensional form of the latter equation and of the incompressibility condition is:

∂ t u + (u • ∇)u = -∇p + 1 Re ∇ 2 u, (7.2a) ∇ • u = 0, (7.2b)
where u(x, t) is the dimensionless fluid velocity field, p is pressure and Re = u 0 d/ν the Reynolds number based on the obstacle diameter d = 2l 0 , with ν the viscosity coefficient.

As we have neglected any feedback effects of the planktonic species on the velocity field in Eq. (8.2a), as it is reasonable considering their weakness in realistic conditions, the link between the biological and fluid dynamics, is realized only by advection. This implies that the time derivatives in Eqs. (7.1a-7.1b) now need to be interpreted as material derivatives. Note that, in the following we will also add a diffusivity term to both equations, with a diffusion coefficient D (equal for the two species), possibly due to swimming behavior. Proceeding as before and further normalizing the population densities with the carrying capacity K, we obtain:

∂ t P + u • ∇P - 1 ReSc ∇ 2 P = ε βP (1 -P ) -δZ P 2 P 2 + χ 2 , (7.3a) ∂ t Z + u • ∇Z - 1 ReSc ∇ 2 Z = εγZ δ P 2 P 2 + χ 2 -λ , (7.3b) 
where Sc = ν/D is the Schmidt number, β = rl 0 /u 0 , δ = R m l 0 /u 0 , χ = κ/K, λ = µl 0 /(u 0 γ). In addition, we have introduced the parameter ε in front of the reaction terms, which allows to perform a parametric study in a simple way, by artificially changing the ratio between the advective time scale and the biological activity one. In the following we will always work with dimensionless variables and we will set ε to 1, unless explicitly stated.

The dynamics resulting from Eqs. (8.2a-8.2b) and (8.1a-8.1b) are generally highly nontrivial, which severely limits the possibility to perform analytical calculations. Some results concerning the transport and mixing of planktonic species have been, nevertheless, previously obtained in simpler configurations, using the tools of dynamical systems theory, and will serve us as a guide for our analysis [Hernández-García 2002, López 2001, Neufeld 2002a, Neufeld 2001]. While the analytical resolution of the full dynamics is not possible, it is instructive to recall some important results concerning the reactive dynamics in the absence of flow [Truscott 1994b]. From Eqs. (7.1a-7.1b), one can obtain the fixed points of the PZ model: (P 1 , Z 1 ) = (0, 0), (P 2 , Z 2 ) = (1, 0) and (P 3 , Z 3 ) = (P eq , Z eq ) where P eq = χ λ/(δλ) and Z eq = β(1 -P eq )(P 2 eq + χ 2 )/(P eq δ), expressed in non-dimensional variables. The first one represents the extinction of both species, (P 2 , Z 2 ) gives the equilibrium value of P in the absence of Z and (P 3 , Z 3 ) is the stable pre-outbreak state of species coexistence. From stability analysis, it emerges that (P 1 , Z 1 ) and (P 2 , Z 2 ) are saddle points, while (P 3 , Z 3 ) is a stable equilibrium point when appropriate parameter values are used (see [Truscott 1994b] and Sec. 7.5).

Numerical setup

The flow field is assumed to be initially uniform and unidirectional, u = u 0 x. In the following we will also refer to the streamwise (x) and the cross-stream (y) directions as the longitudinal and the transversal ones, respectively. The reference dimensional and non-dimensional values we adopted for the biological model [Hernández-García 2004] are reported in Table 7.1.

Parameter

Value Dimensionless value

K 108 µg N l -1 1 r (β) 0.3 day -1 4.285 R m (δ) 0.7 day -1 10 α (χ) 5.7 µg N l -1 0.053 µ (λ)
0.0024 day -1 3.428 γ 0.01 0.01 Table 7.1: Parameters used in the biological model. The symbols adopted for the non-dimensional quantities appear in parentheses in the first column. The values are consistent with typical oceanic ones.

Once the biological parameters fixed, the control parameters are the Reynolds and Schmidt numbers. Using for both of them the realistic values for oceanic conditions is beyond the capabilities of current direct numerical simulations (DNS), so that moderate Re numbers have to be chosen. Yet we have investigated different Reynolds-number flows, to analyze the possible impact of this choice. Based on the effective diffusivity of swimming algae [Polin 2009, Garcia 2011, Brun-Cosme-Bruny 2019], we appraise the Sc number in the range ≈ (10 2 -10 3 ). Here, due to numerical constraints, we fix Sc = 10 2 . From this parameter, the smallest relevant scale, i.e.the Batchelor scale, is B = ν Sc -1/2 , where ν is the viscous dissipation cutoff. Assuming that the turbulent dynamics are governed by a direct enstrophy cascade (see also Sec. 7.6.4), the latter can be estimated as

ν = ν 3 / η ν 1/6
, where η ν is the mean enstrophy flux [Boffetta 2012]. All the dynamical equations, Eqs. (8.2a-8.2b,8.1a-8.1b), are solved through the opensource code Basilisk (http://basilisk.fr). The adopted boundary conditions are such that inflow/outflow conditions are imposed on the left/right side of the domain, while free-slip conditions hold at the boundaries in the y-direction. On the obstacle we have a no-slip condition for the velocity while a no-flux condition is imposed for the two scalars, which are furthermore kept at the equilibrium values (P eq , Z eq ) at all sides of the domain. Further details on the numerical approach and boundary conditions are provided in Supplemental material 7.9.1. For the initial conditions, we fix the longitudinal advecting velocity to the uniform inflow value u 0 , while the transversal one is zero. Following [Hernández-García 2004], the scalar fields are initially set to their equilibrium values. At a later time t * > 0, once the flow is in statistically stationary conditions, to mimic the arrival of a small phytoplankton population, we let a localized patch of P density enter the system from the left of the obstacle. Its spatial distribution is chosen to be of the form P (x, t * ) = P eq + P a e (-((x-x 0 ) 2 +(y-y 0 ) 2 )/w 2 ) , (7.4)

where P a = 0.5 is the amplitude of the excitation, (x 0 , y 0 ) = (-2, 0.5) its location and w = 0.9 ( l 0 ) its width. From a numerical point of view, such a direct perturbation of the P field is the simplest option to model an outbreak, and for this reason it is commonly adopted [Hernández-García 2004, Truscott 1994b]. Although it may argued that it could correspond to the activation of some dormant phytoplankton individuals, as already recognized in [Truscott 1994b], its degree of realism is limited. Interestingly, however, while possibly more realistic choices of the triggering mechanism can give rise to qualitatively different dynamics, the excitable nature of the system is unaffected by their specific forms [Truscott 1994b]. In Sec. 7.6.3, the possible effect of changing the location and the amplitude of the P initial patch is discussed. In Fig. 7.5 we show some visualizations of the vorticity and phytoplankton fields for the simulation at the highest Reynolds number considered. The planktonic patch is introduced at t * = 110 and it takes a certain time to overtake the obstacle and cover the domain with complex filamentary structures, as it has been pointed out in [Neufeld 2001]. The plankton patchiness follows the spatial organization of the flow: the correlation between the phytoplankton density and coherent structures is apparent in the figure and it will be quantitatively investigated in the following. It is here important to stress the transient character of the fluid motion: the flow structures, after spending some time in the vicinity of the obstacle, continuously leave the domain through the right side. 

Results

Flow regimes

The flow past a cylindrical obstacle is a classical flow configuration in fluid mechanics. In its 2D version, it has already been considered as a relevant model to describe the wake behind an island to investigate the population dynamics of micro-organisms at the surface of the ocean, although through a prescribed streamfunction [Sandulescu 2007, Sandulescu 2008, Bastine 2010[START_REF] Guseva | [END_REF]]. Let us recall that the flow becomes unsteady at moderate Reynolds numbers and for 40 < Re < 1000 vortices are periodically shed from the obstacle, while for Re > 1000, the separated flow becomes increasingly more turbulent displaying spatially and temporally irregular behavior [Van Dyke 1982]. In the periodic regime, a relevant non-dimensional parameter is the Strouhal number, St = nd/U , in which U is the free-stream velocity intensity and n the vortex-shedding frequency. The typical flow time scale is thus T = 1/n, which gives the time interval between the appearance of two vortices of the same sign. In the absence of the biological scalar fields, at Re = 400, we obtained a periodic flow, as the one used in kinematic simulations [Sandulescu 2007, Sandulescu 2008, Bastine 2010[START_REF] Guseva | [END_REF]], with T 8 in non-dimensional units, or St 0.23, in good agreement with experiments in a homogeneous non-rotating tank (where St ≈ 0.21 [Zdravkovich 1997]). Increasing the Re number, the flow becomes less and less regular and eventually the periodic behavior is lost. In the present work, we have considered three simulations with the following Reynolds numbers: (A) Re = 400 (N = 2 11 ), (B) Re = 2000 (N = 2 12 ) and (C) Re = 20000 (N = 2 14 ), where we indicate in parentheses the maximum grid resolution N for each case.

PZ model

The excitable character of the biological model can be appreciated by considering the temporal evolution of the system in the presence of the obstacle but in the absence of flow (u = 0 in Eqs. (8.1a-8.1b)) with the described initial condition for the patch (see Fig. 7.6a). As in [Hernández-García 2004, Truscott 1994b], here the outbreak is caused by a direct perturbation of P via a sudden increase of its density. The response of the planktonic species, initially at their equilibrium density values P eq and Z eq everywhere in the domain, is characterized by a fast initial growth of the spatially averaged phytoplankton density, followed by a slower return to the equilibrium, caused by the (slower) growth of zooplankton. This picture is possible because the two species evolve on different time scales, given the presence of parameter γ in Eq. (7.1b) (or, analogously, in Eq. (8.1b)), which limits the zooplankton predation efficiency and thus allows phytoplankton to escape the Z control to reach the carrying capacity. Therefore, we see that due to excitability plankton growth is a transient phenomenon in this system.

Coupled biological and fluid dynamics

Stirring and advection by the fluid flow have remarkable consequences on the biological dynamics. As shown in Fig. 7.6a at Re = 400, the combined (transient) effects of fluid transport and population growth, give rise to a permanent excitation of the predator-prey system. Both P and Z now reach spatially averaged densities that are considerably larger than their equilibrium values. The temporal behavior is dictated by the vortex shedding, with period T 8 (in non-dimensional units), to which the biological dynamics is slaved. Indeed, as shown in Fig. 7.6b, both populations oscillate regularly in time with period T . This result confirms the outcomes of previous works [Hernández-García 2004, López 2001, Neufeld 2001], where the same change of behavior was investigated using kinematic flows (in slightly different configurations) and a basic mechanism was proposed in terms of the existence of a chaotic saddle, namely a flow structure generated by the presence of the obstacle, in which fluid parcels remain trapped for very long time.

We briefly recall here the main elements at the origin of the phenomenon (see [Neufeld 2002b] for a more complete description). The chaotic saddle, being associated with the presence of straining points where velocity gradients compete with reactiondiffusion spreading, can determine the confinement of the fast-growing species into stable filaments. This localization of the prey distribution, with respect to that of the slowergrowing predator, favors persistence. The open nature of the system then prevents filaments from becoming space-filling, which is needed to maintain the excitation. In a closed domain, in fact, the stretching and folding of filaments operated by the flow, would homogenize the population distributions, bringing them close to the no-flow situation after some time, and hence cause the end of the excitation. The basic phenomenology has been already investigated for plankton dynamics in kinematic flows [Neufeld 2002a].

As suggested by dynamic visualizations (see discussion in Supplemental material 7.9.3), however, the plankton growth appears here to start on the side of the obstacle facing the incoming flow, rather than just in the chaotic saddle after it. Indeed, the phytoplankton perturbation is introduced in front of the obstacle and first encounters the straining point upstream of it, close to which it gets trapped. This might produce quantitative differences in the blooming dynamics, or indicate a dependence on initial conditions. To address this issue, several tests have been performed to study the impact of the specific form of the P initial condition. The system response turned out to be independent of the amplitude P a of the initial perturbation (no appreciable differences arise by varying this parameter in the range 0.1 ≤ P a ≤ 0.5), as well as on its size w. Regarding its location, i.e.(x 0 , y 0 ), the algal bloom occurrence and its permanent character have been found for different values of x 0 : initializing the perturbation in front of the obstacle or behind it does not affect the dynamics of the scalar fields, provided that |x 0 | < 2.5d. For initial positions further downstream of the obstacle, the patch is advected away by the flow without giving rise to a permanent excitation. Our results show therefore that the characteristics of the bloom are largely independent of the precise mechanism trapping plankton, provided the hydrodynamic time-scale is much larger than the biological one. This result motivated us to study also various laminar cases at 2 Re 10 (results not shown for the sake of brevity), since these flows are not chaotic but they have two stagnation points in front of and behind the obstacle. While the results are globally different from the turbulent ones, as there is no mixing, interestingly, the plankton still displays the same quantitative growth as in the chaotic case.

Then, we have investigated through several simulations the impact of the biological properties, namely the ratio of the transport to the biological activity time scales ε, and the ratio of biomass consumed to biomass of new herbivores produced, i.e.the predation efficiency γ. The results are reported in Fig. 7.7. The dependence of the spatially and In the right panel the perturbation is introduced at t * = 110. In the corresponding inset the Z curve is shifted above, to superpose it to the P curve, to highlight the delay of the zooplankton growth with respect to the phytoplankton one also in the presence of a flow.

temporally averaged P on γ is evident: no matter the value of ε, the mean global value of phytoplankton P is higher for γ = 0.01 than for γ = 0.02, i.e.for a smaller predation efficiency. We checked that such a feature is general, considering different increasing values of γ. Beyond a limiting value γ = 0.05, the grazing by the zooplankton dominates and the system dynamics cannot sustain a permanent excitation. The phytoplankton bloom is in that case only a transient event, as in the absence of flow. The impact of ε is more complex, as also suggested by [Hernández-García 2004]. Independently of γ, an optimal value ε * = O(1) of this ratio exists. It is attained when the transport by the flow is slower than phytoplankton growth (as β > 1, i.e.t 0 > r -1 , and ε 1). For values of ε much smaller or much larger than ε * , we observe a tendency to recover the equilibrium state, which can be understood as follows. Decreasing ε corresponds to making advection faster (or growth slower). In this case, the initial phytoplankton patch is deformed by stirring and diffusion but soon decays downstream of the obstacle, as the biological dynamics are too slow to sustain its growth. In the opposite limit of large ε, corresponding to very slow flow (or very fast growth), a sudden excitation occurs upstream of the obstacle but the two populations start to get back to their equilibrium states before reaching the obstacle and so when they are entrained in the wake the initial abundance of phytoplankton has been already partially consumed, resulting in a smaller value of the average biomass in the system. The behavior for ε ε * is consistent with the transition to permanent excitation previously detected using a kinematic perturbed jet [Hernández-García 2004]. The behavior at ε ε * , instead, points to a second transition, to de-excitation, which could not be found in [Hernández-García 2004], likely due to the specific topology of the flow employed, but which was documented for a different excitable medium in the presence of a blinking vortex-sink flow [Neufeld 2002b]. 

Role of turbulence and impact of Re

In a realistic geophysical configuration, the Reynolds number is typically huge (10 8 Re 10 10 ). While it is not possible to carry out fully resolved simulations of flows at such large values of Re, it is crucial to understand if the basic features detected at moderate Re are robust with respect to the increase of this control parameter. We investigated the role of the turbulent dynamics using the fixed values ε = 1 and γ = 0.01 of the coupling parameters discussed in Sec. 7.6.3. As it can be seen in Fig. 7.8, when Re ≥ 2000 the rootmean-square (rms) flow intensity u rms looses its periodicity and displays a highly irregular temporal behavior. At Re = 20000 the vortices do not travel along a straight path but are now deflected in the transversal direction, above and below the center line (see Fig. 7.5). Due to the spatial and temporal complexity of the flow, the planktonic populations no longer oscillate periodically in time and the filamentary structures appear thinner and more convoluted, especially close to the obstacle. This feature is reflected in the measure of the globally averaged population density, P (Fig. 7.8b), for which the amplitude and irregularity of fluctuations are modified by the increased chaoticity of the flow, in spite of a weak dependence of its (temporal) mean value on Re.

In the following, we present the results of a deeper analysis about the local properties of plankton fields. In particular, we aim at investigating their correlation with the underlying flow. We focus on simulation C (at Re = 20000), representative of the fully turbulent regime, but we will also perform some comparisons with the results in the periodic regime of simulation A (at Re = 400).

We first consider the spectra of scalar variance and kinetic energy. Figure 7.9a reports one-dimensional spectra of velocity (u x , u y ) and scalar (P, Z) fluctuations, in the transverse direction (with respect to the mean flow), computed in the subdomain 1.5d ≤ x ≤ 10d (with d the obstacle diameter). Note that the Fourier transform is performed along the y direction at several fixed longitudinal positions x and that the resulting spectra are subsequently averaged in the x direction. To improve the statistics, we further perform a temporal average of the latter, in the time interval 150 ≤ t ≤ 300 (in non-dimensional units), in which the system is in a statistically stationary state. Energy spectra are compatible with a scaling E(k) ∼ k -3 over approximately one decade, pointing to the existence of a smooth flow and a direct enstrophy cascade [Kraichnan 1967], with an injection scale k d corresponding to the diameter of the obstacle. At the highest wavenumbers they tend to be steeper, when dissipation starts dominating. We remark that, for our discussions about the interplay between fluid and biological dynamics, the precise slope of E(k) is not expected to play a major role, as long as the spectrum is steep enough. In fact, both for a spectrum scaling as k -3 and for a steeper one, the flow possesses a single time scale, determined by the strain (which essentially acts at the largest scales, in both these cases). The wavenumber spectra of plankton populations, and particularly that of phytoplankton, are commonly used to characterize biological patchiness. Several experimental measurements, obtained using transects from research vessels and satellite images of the sea color (a proxy for phytoplankton concentration), have been performed in different regions [Denman 1976, Smith 1988, Martin 2002b, Lévy 2004, Franks 2005]. While they all provide evidence of a power-law behavior ∼ k -n , different values of the exponent are reported, ranging from n = 1 to n = 3, which suggests that different physical and biological processes may be relevant for plankton spatial variability, in different conditions. In our simulations, for both planktonic species we find a spectrum close to E S (k) ∼ k -1 in a wide range extending for approximately two decades, starting from the largest scale. At the smallest scales, dissipative effects appear to dominate. We have therefore found that the distribution across scales of the variance of passive reactive scalars is the same as that of passive non-reactive ones [Batchelor 1959] (more details in Supplemental material 7.9.2). The observed behavior is in agreement with theoretical predictions for two interacting species evolving in a 2D smooth turbulent flow [Powell 1994]. This result implies that population dynamics somehow reduce patchiness at large scales, giving rise to "whiter" spectra of the scalar fluctuations, meaning flatter than for the turbulent flow. In Figure 7.9b, we also show the power spectra in the frequency domain for phytoplankton and the longitudinal velocity component, which confirm the above scaling behavior even more accurately. The Fourier transform is here performed in the time domain by collecting the data at a distance x = 5d downstream of the obstacle and then averaging the resulting spectra in the y direction. Having quantified the scale-by-scale energetic content of the planktonic populations, we now turn to their spatial features. Indeed, the characteristic spatial patterns of the P and Z fields are a consequence of the time scales over which they respond to changes in their environment caused by the turbulent flow [Abraham 1998]. While global quantities of the planktonic species share a similar qualitative behavior in all our simulations, see Fig. 7.8, the amplitude and frequency of the fluctuations grow with Re. To inspect the effect on spatial features of increasing the Reynolds number, we can consider a horizontal cut along the line y/d = 0 to obtain a transect of the phytoplankton density in the vicinity of the obstacle. As it is evident from Fig. 7.10, while for Re = 400 the population density field appears quite smooth, for Re = 20000 it appears considerably more jagged, displaying much stronger gradients. Some insight on this change of behavior can be gained by adapting a criterion, originally developed in the framework of linear-decay chemical reactions (with rate b) in laminar flows, to identify the so-called smooth-filamental transition [START_REF] Neufeld | [END_REF]]. In a nutshell, the theory, constructed in a Lagrangian reference frame, is based on the comparison between the largest Lyapunov exponent of the flow λ and the chemical (biological) Lyapunov exponent (b = λ c ), quantifying the exponential growth rate of the chemical concentration (biological population density), which allows to obtain the Hölder exponent ζ of the reactive field as:

E(f)/E(f d ) f/f d u x P f -3 f -1 (b)
ζ = min b λ , 1 . (7.5) If ζ = 1 the field is smooth (differentiable), while for 0 < ζ < 1 it is filamental.
In the context of the present study, a simple possibility to estimate the corresponding quantities is by dimensional arguments. The Lyapunov exponent of the flow should be proportional to the inverse of the fastest fluid time scale [Ruelle 1979]. Consistent with the occurrence of a direct enstrophy cascade (see Fig. 8.3), we then take λ ∼ η ν 1/3 (with η ν the enstrophy flux). For the biological dynamics we consider an effective phytoplankton growth rate β ef f = ∂ t P / P , computed in the early growth regime (110 ≤ t ≤ 130 in non-dimensional units) before the statistically steady state. In the inset of Fig. 7.10 our estimation of ζ, normalized by the value at the smallest Reynolds number ζ 400 , is plotted versus Re for simulations A, B and C. In spite of the limitations of our dimensional approach, the criterion turns out to be effective in capturing the transition. A clear decrease is found between the first two values of Re, for which the ratio is close to unity, and the largest one, for which it is definitely smaller. We then conclude that the filamentary distribution of phytoplankton is a direct consequence of the increasing turbulent character of the flow. = 400, 2000, 20000).

Based on the previous observations about the relationship between the statistical features of the turbulent and biological dynamics, it is now interesting to explore how the flow and scalar fields are correlated in space, in terms of structures. For this purpose, at a given time in the statistically stationary state, we analyze both the phytoplankton and zooplankton spatial distribution at Re = 20000 in Fig. 8.4. As it has been already observed in Fig. 7.5, both P and Z fields display structures similar to those present in the vorticity field. Very close to the obstacle, several vortices of different sizes are present, somehow connected by filaments. Further downstream of the obstacle, such vortices grow and interact among each other, giving rise to two large and more separated eddies. Phytoplankton winds around vortices, mainly concentrating in filaments, immediately downstream of the obstacle, and it progressively leaves the vortex cores, in which P is at the equilibrium value P eq (Fig. 7.11a). The zooplankton distribution parallels that of P , in terms of correlation between its extremal values and flow structures (Fig. 7.11b). However, maxima of Z correspond to minima of P , as e. g. in eddy cores. The resulting picture is therefore due to two combining effects. The flow structures entrain the two scalars and transport them across the domain. The predator-prey biological interactions determine, locally, the relative abundance of the two species: where zooplankton grows, it consumes phytoplankton; where Z is absent, instead, P can grow more.

Similar results were previously found coupling the NPZ model (including nutrient dynamics) with a kinematic flow model [Sandulescu 2008], essentially in the same geometrical configuration. Still for inflow densities at the equilibrium values, it was reported that phytoplankton tends to be localized mostly in the periphery of vortices, as in our study, which seems indicative of the generality of fluid transport and stirring mechanisms leading to filament formation. A more quantitative analysis of the correlation between the flow and the phytoplankton distribution was performed by considering an Eulerian quantity, the turbulent kinetic energy (K E ), which is strictly linked to the flow stirring, since it is expected that more energetic turbulent areas would also present stronger horizontal stirring [Rossi 2008, Rossi 2009]. Denoting u i (x, t) = u i (x, t)u i (x) (with i = x, y) the components of the fluctuating velocity field and with the overbar the temporal average over the time interval t ∈ [150, 300], the K E field is given by:

K E (x, t) = 1 2 u x (x, t) 2 + u y (x, t) 2 . (7.6)
Similarly to what is done in [Hernández-Carrasco 2012], we compute the average and the probability distribution function (PDF) of P = P/P eq conditioned on K E , over the time interval t ∈ [150,300]. As shown in Fig. 7.12, we find that the phytoplankton distribution and the turbulent kinetic energy are positively correlated: the PDF conditioned on K E exhibits a peak, for a value of P essentially independent of K E , whose height increases with K E . The conditioned average shows a growth trend as a function of K E , which means that phytoplankton tends to concentrate in regions associated with high values of K E , i.e.characterized by intense flow stirring. The above evidences then suggest that the stirring intensity plays a primary role in determining the plankton distribution in space and, indeed, in the present configuration it promotes biological productivity. .12: PDF of P = P/P eq conditioned on the turbulent kinetic energy K E at Re = 20000. The different curves correspond to the PDF conditioned on increasing values of K E , as reported in the legend. In the inset the conditioned average of P is shown as a function of K E .

Impact of the grid resolution

We now report some results about a comparison between a fully resolved DNS, as those examined in the previous sections, and two coarse-grained simulations. In this case, the flow and geometrical parameters are the same, but the grid is not sufficiently refined to resolve all the scales in the flow and scalar dynamics. This means that the simulations are under-resolved, and some small-scale effects are lacking. This approach is related to the Large-eddy-simulation (LES) one [Pope 2000], where the unresolved scales are called sub-grid scales, and their effect should be reconstructed via some model. Our coarsegrained simulations represent the simplest case in which no sub-grid model is taken into account, and is referred to in the literature as Implicit LES (ILES) [START_REF] Grinstein | [END_REF]]. Such a comparison is important since DNS cannot be used to simulate realistic configurations where only a coarse-grained approach is computationally feasible. We consider the most turbulent case at Re = 20000. The numerical setup is identical in all cases, except for the maximum level of grid refinement: while for the DNS this is N = 2 14 and the smallest resolved scale is ∆x ∼ 1.5 B , for the coarse-grained simulations we have N = 2 12 and ∆x ∼ 6 B in the first case, and N = 2 10 and ∆x ∼ 25 B in the second one. Figures 7.13a and 7.13b show instantaneous phytoplankton density fields at time t = 200, for the N = 2 12 case and the N = 2 10 one, respectively. While in the left panel the phytoplankton distribution resembles the one observed in the well-resolved DNS (Fig. 7.5), in the right panel filaments appear thicker and less convoluted; moreover, vortices are not deflected but travel along a straight path, as they would do at lower Re. Concerning the global value of population density (inset of Fig. 7.13c), we can remark that while the case at N = 2 12 still captures the correct behavior over time, displaying large fluctuations around an average value P which is only slightly lower than that from the fully-resolved simulation, when the refinement level is reduced to N = 2 10 , P further decreases and the oscillations around it essentially disappear. This picture is confirmed by Fig. 7.13c, which shows the spectra of phytoplankton fluctuations in the three cases: the spectra at N = 2 14 and N = 2 12 are quite similar, except for the decade of the smallest spatial scales, which cannot be captured by the under-resolved simulation; at N = 2 10 , instead, the spectrum differs from those at higher resolution also at large scales, confirming the inadequacy of this simulation to account for the dynamics at such high Re number. In Fig. 7.13d we show the PDFs of the transversal gradients of the phytoplankton density, representative of the reactive scalar small-scale features, and of longitudinal velocity, for the N = 2 14 and N = 2 12 cases. A first remark is that for both the well-resolved DNS and the under-resolved one the P gradients' PDF follows that of the fluid velocity, though with lower tails. More interestingly, it is also apparent that in the coarse-grained case the statistics of large-deviation events are less important, for both ∂ y P and ∂ y u x , so that the PDFs of the latter two fields are narrower and with faster decreasing tails, with respect to the DNS case. To further probe possible effects of the spatial resolution on higherorder statistics, we also computed the flatness of the phytoplankton density field, defined as S 4 /S 2 2 , where S 2 and S 4 respectively are the 2 nd and 4 th order transversal structure functions of P (x, t). The behavior of S 4 /S 2 2 as a function of the spatial increment (here in the y direction, and normalized by the Batchelor scale B ) is presented in the inset of Fig. 7.13d. Clearly, for the coarse-grained DNS with N = 2 12 , the smallest separations that is possible to sample are larger than for the well-resolved DNS (N = 2 14 ). Beyond this, the results indicate that for / B ≤ 100, the flatness is close to 3 (the expectation for a Gaussian distribution), but for larger it starts to deviate from this value, and in the N = 2 14 case this feature is more evident.

Our analysis suggests that, although a fully resolved simulation allows to grasp all the statistical details of the dynamics, the smallest scales do not seem to have a significant impact on the overall dynamics. Consequently a coarse-grained approach, as in the case with N = 2 12 , appears viable if one is interested in large-scale dynamics (here it is also important to note that with such resolution all the flow scales are resolved but this is not the case for the scalars, because Sc = 1). Instead, a very under-resolved approach (N = 2 10 ), both in terms of flow and scalar scales, is misleading and incapable of capturing the correct large and small scale dynamics.

Effect of the obstacle shape

In this last section, we examine the effect of the obstacle shape. The motivation, here, comes from the observation that real islands clearly do not have a perfectly circular shape and their boundaries are not necessarily smooth. Indeed, rocky shorelines are known to be well described by fractal curves [Mandelbrot 1967, Boffetta 2008]. Therefore, from a general perspective, it is interesting to study the impact on the dynamics of a rough surface delimiting our idealized island. To this aim, we repeated the simulation at Re = 2000 by replacing the circular obstacle with a geometrically irregular shape characterized by a rough boundary, expressed in terms of a truncated Steinhaus series [START_REF] Toppaladoddi | Thermal convection over fractal surfaces[END_REF]]: As shown in Fig. 7.14a, the distribution of plankton near the obstacle for the rough case appears quite different with respect to the smooth one (Fig. 7.14c): the plankton is entrained in the contour's coves and its concentration is irregular and variable in time (see the video reported in Supplemental material 7.9.3 for a dynamic view of the process). Despite these major differences, the downstream patchiness distribution (Fig. 7.14b) as well as the statistical properties are left unchanged. We observe, for example, that the spatially averaged value of population density is very weakly affected by the roughness of the obstacle, with relative variations within the statistical error (inset of Fig. 7.14d) for the cases here explored. This supports the fact that the global excitation of the system is independent of the specific characteristics of boundary layers. Also from the spectra of phytoplankton fluctuations, no appreciable differences could be detected. As shown in Fig. 7.14d, the spectra of P fluctuations for the two cases are practically identical over a broad range of scales. The same is true for the velocity field, which displays unchanged spectral scaling far away from the obstacle even if the kinetic boundary layer is affected strongly by the roughness. These results indicate that the obstacle roughness does not have a significant impact both on the global and local statistical properties of the advected planktonic species. This appears to be rather independent on the value of characteristic roughness A. Indeed, we verified the robustness of the results also at Re = 400 for A = 0.15 and the much rougher case A = 0.6. Such a finding, along with the weak dependence on the Reynolds number documented in the previous sections, points to the fact that even at higher values of Re the roughness of the obstacle should not give rise to major modifications of the population dynamics.

ρ(θ) = ρ 0 + A N k=1 (-1 -p) 1/2 k p/2 cos (kθ + φ k ), ( 7 

Conclusions

We have investigated predator-prey plankton dynamics in turbulent flows occurring in the wake of an obstacle, which is an idealized configuration intended to mimic an island in the ocean. Our purpose was to understand if and how active small flow scales may affect it.

Aiming to focus on the role played by the flow field, we chose to limit the complexity of the biological dynamics. In this spirit we adopted the PZ model, perhaps the simplest multi-species system allowing to reproduce the main features of algal blooms [Truscott 1994b]. Clearly, this choice poses some limitations on the applicability of our findings to natural environments. Specifically, oligotrophic habitats, where nutrients represent a limiting factor of phytoplankton growth, cannot be described by the present approach. However, since nutrients are not included, and the system is excitable, whenever the flow conditions are capable to trigger a bloom, these model dynamics will sustain it. Furthermore, to evaluate the possible effect of the Reynolds number, we have performed three simulations up to Re = 20000.

The comparison with previous studies in open flows obtained from kinematic models [Neufeld 2001, López 2001, Hernández-García 2002, Neufeld 2002b, Hernández-García 2004, Sandulescu 2008, Bastine 2010[START_REF] Guseva | [END_REF]] has been instructive, and one of our main results has been to indicate that the key mechanism underlying the blooming is the presence in the flow of at least a region where the biological species remain trapped for very long time. If this feature is encountered, basically the same bloom is triggered irrespective of the precise features of the flow and of the Reynolds number. In fact, as in the case of PZ dynamics in a perturbed-jet kinematic flow [Hernández-García 2004], in our dynamical turbulent wake, advection needs to be slow enough with respect to the phytoplankton growth, for this to occur. Interestingly, we have been able to detect also a second transition, to de-excitation, for very slow advection, which could not be observed in that study but was found in another kinematic flow [Neufeld 2002b]. Indeed, in our system an optimal value of order 1 exists for the ratio between flow and biological time scales, which promotes maximum primary production.

We have further found that the presence of a chaotic saddle, whose role had been put in evidence in previous kinematic studies, is not necessarily crucial for blooming, whereas for transport and mixing the details of the fluid dynamics are important. Indeed, we have verified that the plankton bloom occurs even in the laminar regime and this result allows us to estimate in a simple way the average biomass of the system, which in this case is concentrated in two straight filaments departing from the obstacle, approximately in the streamwise direction, at symmetric positions with respect to the centerline in the crossstream direction. According to the model developed in [Martin 2000] for a single reactive tracer in a purely elongational flow, the width f of a plankton filament is independent of the biological growth rate and solely determined by the physical parameters of the flow, f ∼ D/s, where D is the effective diffusivity and s the strain rate. In our case, the latter can be dimensionally estimated as s ∼ u 0 /δ BL , where δ BL ∼ νl 0 /u 0 is the boundary-layer thickness, which gives f ∼ (D 2 νl 0 /u 3 0 ) 1/4 . In this way, provided that a patch of population density equal to P a enters the domain, which is initially at P eq , it is reasonable to expect that the minimum total phytoplankton biomass is given by P tot ∼ 2P a f L f + P eq L 2 where L f is the length of each filament and L the linear domain size. From this, using our parameter values, the average population density, normalized by its equilibrium value, is predicted to be P /P eq ∼ 1.15, not far from the numerical value of 1.75 that we find at Re = 10. The discrepancy is grasped by considering the reactive nature of phytoplankton, which on average grows in a blooming situation, while being stretched by the flow, before the zooplankton can effectively graze on it.

We have then studied the phenomenology of the small scales at high Re. While the large-scale dynamics, and with it the main characteristics of the bloom, remain basically unchanged, similarly to what reported in previous studies [START_REF] Neufeld | [END_REF], Hernández-García 2002], a smooth-filamental transition takes place, depending on the relative importance of the strain-rate intensity and the biological growth rate. This point was studied by varying the turbulent intensity in our simulations, instead of the biological parameters as in the case of kinematic flows, which seems to us more interesting in relation to realistic situations. We found that the transition, manifesting as the appearance of fractal features in transects of the P field, occurs at large Reynolds numbers (Re > 2000), when more small scales are present in the velocity field. This suggests that small-scale fluid motions locally affect the fine-scale spatial distribution of the planktonic species, if the flow is turbulent enough. We have also addressed the problem of plankton patchiness by analyzing the spectral properties of P and Z fields, as well as the correlation between the spatial structures of the latter and those of the flow field. Our finding is a neat k -1 scaling, over more than two decades, for the variance spectra of the population density fields. This provides a clear indication that reactive scalars are not different from passive (non-reactive) ones with regard to the statistical properties, and lends support to the arguments developed in the framework of simplified theories for interacting species in 2D turbulent flows [Powell 1994]. This represents a further important result of the present work.

As for the correlation between flow structures and population patchiness, the results previously reported, from both idealized [Hernández-García 2004, Sandulescu 2007, Sandulescu 2008] and realistic models [Hernández-Carrasco 2014, Lévy 2018], or from observations [McGillicuddy 2016, Lévy 2018[START_REF] Zhang | [END_REF], are varied, due to the relevance of different mechanisms and the variation of their relative weight in different regions. The results from our simulations provide clear evidence that, in the present setup, phytoplankton mainly concentrates in filamentary structures, winding in the periphery of vortices. At the same time, the biological interactions control the relative abundance of zooplankton and phytoplankton, locally. We hope that such outcome can contribute to shed light on the complex organization of plankton with respect to the characteristics of the carrying velocity field, beyond the peculiarities of the flow and biological dynamics here considered. Indeed, some similarities with the present phenomenology have been observed, under some circumstances, also using more realistic biological models [Sandulescu 2007, Sandulescu 2008[START_REF] Guseva | [END_REF].

We have furthermore verified that all these results are quantitatively independent of the roughness of the obstacle. For this purpose, we considered idealized islands with different fractal contours [START_REF] Toppaladoddi | Thermal convection over fractal surfaces[END_REF]], as representative of rocky coastlines [Boffetta 2008]. This result indicates that the detailed spatial structure of boundary conditions has, to good extent, a minor role and corroborates the findings highlighting that the mechanism controlling blooms is mainly related to the presence of flow regions trapping the planktonic species.

The last main result of this work concerns the possibility to use a coarse-grained approach instead of resolving all the dynamical scales, as here, which is impossible in a realistic situation. We have analyzed simulations with progressively coarser spatial resolution and our results point out two possibilities with respect to the level of information sought: (i) the dynamics are not very sensitive to small scales, implying that accurate statistical properties at large and intermediate scales can be obtained with a coarser approach, provided such considered scales are resolved; (ii) if the focus is only on very large-scale features, for instance to answer the question is there a bloom or not?, a large-scale approach seems feasible, with the caveat that the statistical properties cannot be well reproduced.
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Supplemental material

Numerical method

Basilisk is an open source code written using an extension to the C programming language, called Basilisk C, for the resolution of partial differential equations (see http: //basilisk.fr). Space is discretized using a Cartesian tree-based grid, which is adaptively varied according to the Re and Sc numbers for well-resolving all the scales. Two primary criteria are used to decide where to refine the mesh. They are based on a waveletdecomposition of the velocity, scalar and volume fraction fields [START_REF] Van Hooft | [END_REF]. The velocity and scalar criterion is mostly sensitive to the second-derivative of the fields and guarantees refinement in developing boundary layers and wakes. The volume fraction criterion is sensitive to the curvature of the interface and guarantees the accurate description of the shape of the obstacle. Both criteria are usually combined with a maximum allowed level of refinement. Boundaries of general shape are reconstructed using an integral (i.e.finite volume) formulation, which takes into account the volume and area fractions of intersection of the embedded boundary with the mesh [Johansen 1998]. The numerical scheme implemented in Basilisk is described, e.g., in [Popinet 2009]. The Navier-Stokes equations are integrated by a projection method [Chorin 1969b]. Standard second-order numerical schemes for the spatial gradients are used [Popinet 2003, Popinet 2009, Lagrée 2011b]. In particular, the velocity advection term ∂ j (u j u i ) n+1/2 is estimated by means of the Bell-Colella-Glaz second/third-order unsplit upwind scheme [Popinet 2003]. In this way, the problem is reduced to the solution of a Helmholtz-Poisson problem for each primitive variable and a Poisson problem for the pressure correction terms. Both the Helmholtz-Poisson and Poisson problems are solved using an efficient multilevel solver [Popinet 2003, Popinet 2015]. The time advancing is made through a fractional-step method using a staggered discretization in time of the velocity and the scalar fields [Popinet 2009]: one supposes the velocity field to be known at time n and the scalar fields (pressure, density, plankton) to be known at time n -1/2 and one computes velocity at time n + 1 and scalars at time n + 1/2.

In all the simulations, we adopted the following boundary conditions for the flow:

[u n ] lef t = u 0 (7.8a) [u t ] lef t = 0 (7.8b) [∂ n u n ] right = 0 (7.8c) [∂ n u t ] right = 0 (7.8d) [u n ] top = [u n ] bottom = 0 (7.8e) [∂ n u t ] top = [∂ n u t ] bottom = 0 (7.8f) [u n ] obstacle = [u t ] obstacle = 0 (7.8g)
i.e.an inflow/outflow condition is imposed on the left/right side of the domain, while freeslip conditions hold at the boundaries in the y-direction and a no-slip condition on the obstacle. The subscripts n and t stand for the normal and tangential component relative to the boundary walls. In order to avoid issues with inconsistent boundary conditions, we introduced a damping layer near the in and out flow boundaries.

Concerning the two scalars, they are kept at the equilibrium values (P eq , Z eq ) at all sides of the domain, while on the obstacle no-flux conditions are imposed:

[∂ n P ] obstacle = 0, (7.9a) [∂ n Z] obstacle = 0. (7.9b)

Comparison with a passive scalar

In order to better understand the effect of the growth dynamics, and of the biological interactions, on plankton spectra, we performed a simulation at Re = 400 (with a smooth circular obstacle) considering a passive, non-reactive, scalar, obeying the same equations as those for the planktonic species, except for the reaction term which is now removed. The choice of this particular value of Re was motivated by the low computational cost.

The boundary conditions are the same as those adopted for the phytoplankton, except for the condition on the obstacle, where we impose a Dirichlet boundary condition by choosing a constant value higher than in the surroundings (we also verified that the specific numerical value has no impact on the dynamics). Our focus is here on possible differences induced by the reactive evolution in comparison to the passive one. We expected that these differences, if they exist, could be visible at large scales where the biological activity is predominant with respect to the turbulent environmental effects [Denman 1976, Powell 1994].

In Fig. 7.15, the spectra of the phytoplankton density, as well as of the non-reactive tracer, fluctuations at Re = 400 are shown. In both cases, the spectrum is compatible with a ∼ k -1 scaling in the enstrophy inertial range, before a steeper fall-off, typical of a viscous range, at larger wavenumbers. Generally, the plankton spectrum appears to follow the -1 slope at scales larger than the injection scale, where the passive scalar spectrum is flatter. 

Dynamic visualizations

To further illustrate the dynamics of phytoplankton, several animations of the population density are provided at Re = 400 (see video1.mp4), Re = 2000 (see video2.mp4) and Re = 20000 (see video3.mp4). Moreover, the case with the rough obstacle at Re = 2000 and A = 0.15 is illustrated in video4.mp4. In all the cases, the phytoplankton starts to grow in the boundary layer close to the straining point upstream of the obstacle. In the case at lowest Re, it oscillates regularly in time and symmetrically with respect to the centerline in the cross-stream direction, mainly winding around the vortex cores. In the animations at higher

Re with the smooth obstacle (video2.mp4 and video3.mp4), the region close to the same straining point, where the excess scalar (from the initial perturbation) first gets confined, has considerably shrunk and is not visible anymore. The phytoplankton distribution is highly irregular in time and space (also accelerating downstream of the obstacle). The scalar field now predominantly organizes into filaments, whose width becomes smaller with increasing Re, due to the increased strain-rate intensity (see also the Conclusions in the main text). The case with a fractal contour of the obstacle (video4.mp4) shares the same features of the smooth case at the corresponding Re sufficiently downstream of the obstacle. However, in the vicinity of it, the phytoplankton concentration becomes highly irregular both in space and time.

Chapter 8

Extension to 3D turbulent dynamics

In this chapter, we illustrate the results of a comparative study of the advection-reactiondiffusion dynamics of two planktonic interacting species in the wake of a cylinder in a two-dimensional domain, as illustrated in the previous chapter, and in a three-dimensional one, with periodic boundary conditions on the span-wise direction (z ), to mimic a cylinder of ideally infinite height.

Two main reasons led us to perform such a study: on one side, the idea was to test the validity of the results found in the two-dimensional case in a fully-developed 3D turbulent flow, by identifying the minimal flow ingredients needed to sustain a persistent bloom and at characterizing how the latter could be affected by multiscale fluid properties. Indeed, the majority of works examining chemical and biological reactions in the presence of chaotic advection, to whom we mostly referred during our study, involve only two-dimensional flow fields, which are deeply different with respect to the three-dimensional picture, as illustrated in Chapter 1. Clearly, our model is far from being representative of the real planktonic dynamics in the ocean: in our setup, the obstacle mimics a generic island, rather than a specific one, and it could also equally represent another obstruction (e. g. a man-made construction like a pylon) in a current. Moreover, we have chosen to employ the PZ model for the reaction term, once again to leave apart possible effects linked to nutrient heterogeneities. Nevertheless, in addition to a "didactic" interest, we believe that such a study can be regarded as a preliminary step in the direction of a more realistic configuration, which should be clearly three-dimensional, as it will be discussed in the Conclusions (Chapter 9). In this perspective, the results that we will discuss in the following should be taken to assess qualitative features of the investigated dynamics in a three-dimensional setup, eventually highlighting new outcomes with respect to the previous case, hoping that such findings can contribute to shed light on the complex organization of plankton with respect to the characteristics of the carrying velocity field.

In the following, we overlook the discussion of the reactive model, as well as the choice and the impact of the initial and boundary conditions, for which we refer to Chapter 7. Thus, we briefly recall the mathematical formulation and numerical setup, specifically concerning the 3D configuration, while the 2D case is exactly the same as described in the previous chapter.

Mathematical formulation

We briefly recall the governing non-dimensional equations for the evolution of P = P (x, t) and Z = Z(x, t) (where x = (x, y, z)) the population densities of phytoplankton and zooplankton:

∂ t P + u • ∇P - 1 ReSc ∇ 2 P = βP (1 -P ) -δZ P 2 P 2 + χ 2 , (8.1a) ∂ t Z + u • ∇Z - 1 ReSc ∇ 2 Z = γZ δ P 2 P 2 + χ 2 -λ , (8.1b) 
where Sc = ν/D is the Schmidt number, β = rl 0 /u 0 , δ = R m l 0 /u 0 , χ = κ/K, λ = µl 0 /(u 0 γ), l 0 = d/2 with d the diameter of the cylinder, u 0 the typical free-stream velocity. For the explanation of the role of the biological parameters and the equilibrium points of the reactive terms, we refer to the previous chapter for brevity. In the following we will always work with dimensionless variables, unless explicitly stated.

We then consider an incompressible 3D flow defined on a cubic domain of side L = 16d, in the presence of a cylinder of diameter d and height L which is the solution of the Navier-Stokes equation with the appropriate boundary conditions (see Sec. 8.2). In the 2D simulation, the domain is a square of side L. The non-dimensional form of the latter equation and of the incompressibility condition is:

∂ t u + (u • ∇)u = -∇p + 1 Re ∇ 2 u, (8.2a) ∇ • u = 0, (8.2b) 
where u(x, t) = (u x , u y , u z ) is the dimensionless fluid velocity field, p is pressure and Re = u 0 d/ν the Reynolds number based on the obstacle diameter d = 2l 0 , with ν the viscosity coefficient.

Numerical setup

The reference dimensional and non-dimensional values we adopted for the biological model and for the velocity field are the same adopted for the 2D case (see Sec. 7.5). In the present study, the Reynolds number is fixed: on the basis of the investigation of the role of this parameter performed in Chapter 7, we evaluate a reasonable choice to select an intermediate value of Re = 2000, in consideration of the increased computational cost for the three-dimensional DNS. The Schmidt number, due to numerical constraints, is fixed and is Sc = 1. Consequently, the smallest relevant scale, i.e. the Batchelor scale,

B = 2D,3D ν Sc -1/2
, coincides with the viscous dissipation cutoff. For the 2D case, being the turbulent dynamics governed by a direct enstrophy cascade (see Sec. 7.6.4), the latter can be estimated as 2D ν = (ν 3 / η ν ) 1/6 , where η ν is the mean enstrophy flux [Boffetta 2012]. For the 3D case, assuming that the flow is characterized by a direct energy cascade, the Kolmogorov scale is equal to

3D ν = (ν 3 / ε ν ) 1/4
, where ε ν is the mean kinetic energy dissipation rate [Kolmogorov 1941c]. All the dynamical equations are solved through the open-source code Basilisk (http:// basilisk.fr), through an adaptive grid with maximum resolution N = 2 9 for both the 2D and 3D case: to perform a reasonable comparison between the two cases and to face the numerical constraints given by the 3D configuration, firstly we performed the latter and thus we estimated the value of ∆x/ 3D ν , which resulted to be around 1.5. Then we performed several 2D simulations by varying the minimum and maximum grid resolution in order to assure approximately the same resolution, i.e. ∆x/ 2D ν ∼ 1.5. This implies that the fluid and scalar dynamics are moderately under-resolved and consequently the results for the 2D case can be slightly different from the ones at the same Reynolds, presented in the previous Chapter. The adopted boundary conditions are such that inflow/outflow conditions are imposed on the left/right side of the domain, while free-slip conditions hold at the boundaries in the y-direction. On the top/bottom side periodic boundary conditions are imposed. On the obstacle we have a no-slip condition for the velocity while a no-flux condition is imposed for the two scalars, which are furthermore kept at the equilibrium values (P eq , Z eq ) at all sides of the domain. Further details on the numerical approach and boundary conditions are provided in Section 7.9.1. In the following we will also refer to the stream-wise (x), the cross-stream (y) and the span-wise (z) directions as the longitudinal, the transversal one and vertical one, respectively. For the initial conditions, we fix the longitudinal advecting velocity to the uniform inflow value u 0 , while the transversal and vertical ones are zero. The scalar fields are initially set to their equilibrium values, then at a later time t * > 0, once the flow is in statistically stationary conditions, we let a localized patch of P density enters the system from the left side. Its spatial distribution is once again of the form:

P (x, t * ) = P eq + P a e (-((x-x 0 ) 2 +(y-y 0 ) 2 )/w 2 ) , (8.3) 
where P a = 0.5 is the amplitude of the excitation, (x 0 , y 0 ) = (-2, 0.5) its location and w = 0.9 ( l 0 ) its width. In the 3D case, the perturbation is introduced along the entire span-wise direction, so z 0 ∈ [-L/2 : L/2]. A qualitative visualization of the 3D dynamics of the flow and the phytoplankton field is reported in the top panels of Fig. 8.1: the flow vortices have been tracked through the λ 2 criterion (see Appendix 8.5.1 for an illustration of the method). The bottom panels show the z component of the vorticity in the 3D case (Fig. 8.1c) and the vorticity in the 2D case in Fig. 8.1d: the three-dimensional wake displays a much better mixed behavior with respect to the 2D case, which is characterized by coherent vortical structures with a typical size of the order of the cylinder diameter.

Since the vortex-stretching term is non-zero in the 3D Navier-Stokes equations, turbulent eddies stretch on their normal direction reducing their size until they are finally dissipated. Moreover, the 2D vortices appear to arise much closer to the obstacle and progressively spread, covering a larger portion of the domain with respect to the 3D case. A further characterization of the wake in the two cases will be given in the next section.

Results

Coupled biological and fluid dynamics

The different behaviour of the 3D velocity field with respect to the 2D case is clearly observable in Fig. 8.2a: the fluctuations of the kinetic energy have a much larger amplitude for the two-dimensional case than for the three-dimensional one, with a mean value which is smaller in the latter case. We computed the integrated forces on the cylindrical body, in terms of the lift and drag coefficients (equal to force per unit area):

C L = F y ρU 2 d/2 (8.4) C D = F x ρU 2 d/2 (8.5)
where F y and F x are the transversal and horizontal forces on the cylinder surface per unit length and ρ the density of the flow (unitary). In the inset, we show the drag coefficient C D , which displays both a mean value and an oscillation amplitude larger in the 2D case (the same is for the lift coefficient C L , not shown). As already observed in vorticity visualizations, coherent vortical structures are created in the two-dimensional simulation and these contain higher levels of vorticity. Also, the roll-up of vortices happens closer to the body and the near-wake increases in width, hence the shedding of these structures induces higher forces on the cylinder [Chua 1990]. In contrast in the 3D case, the roll-up is found further downstream, so the forces do not fluctuate as much and the width of the near-wake is kept almost constant. By inferring the shedding frequency n from the temporal behavior of the lift coefficient, we have calculated the Strouhal number St = nd/U , which resulted to be in both cases around 0.2, in good agreement with experiments in a homogeneous non-rotating tank (where St ≈ 0.21 [Zdravkovich 1997]). The reactive dynamics in the absence of flow has been investigated in the 3D case, as previously done for the 2D one (see Sec. 7.6.2): without advection, after a sudden increase in the P concentration, the effect of grazing by Z makes the system come back to equilibrium (the results are not shown for the sake of brevity). When the advection term is switched on, the transient character of the flow, combined to the excitable character of the biological model, gives rise to a permanent excitation of the predator-prey system. In Fig. 8.2b, the population density P reaches in both cases spatially averaged densities that are considerably larger than their equilibrium value. Firstly, it can be noted that in the 2D case the time-average value P is larger than the corresponding one in the 3D case (we will discuss this point in Sec. 8.3.3). While the temporal behavior of the 2D case is dictated by the vortex shedding, with a period slightly larger than 1/n, the 3D case appears more irregular in time and the amplitude of oscillations is quite smaller with respect to the 2D case. This suggests, in accordance with the behavior of kinetic energy (Fig. 8.2a), that at the same Reynolds the three-dimensionality of the flow lead to a more chaotic motion and consequently the scalars oscillates more irregularly in time. Despite these differences, the global response of the two scalars to the combined effect of transport and biological interactions seems to be the same in both 2D and 3D case. Thus, we can suppose that in the 3D case the mechanism underlaying the permanent excitation of planktonic species is the same proposed for the 2D dynamics, detailed in [Neufeld 2001] and discussed for our system in Sec. 7.6.3. The main ingredients are the flow stirring which can contrast reaction-diffusion spreading and open boundaries, to avoid the homogenization of the scalar densities, which would end the excitation. Moreover, transport of biological material close to the obstacle, where strain is primarily located in our case, is also relevant: the persistence of excitation depends on the fact that the characteristic timescale of stirring is intermediate between the timescale of phytoplankton growth and that of zooplankton reproduction. While a 2D turbulent flow is characterized by a single time scale, determined by the strain, in the 3D case different timescales exist according to the eddies size. Thus, a possibility is estimating the rate of strain as related to the maximum Lyapunov exponent of the flow λ 1 , which is, following the argument proposed by [Ruelle 1979], proportional to the inverse of the fastest fluid time scale, i.e. the Kolmogorov timescale τ ν = (ν/ ε ν ) 1/2 . By computing the mean kinetic energy dissipation rate in the stationary regime, we obtain λ 1 ∼ 0.57 which is intermediate between the phytoplankton growth rate β = τ -1 P = 4.285 and the zooplankton reproduction rate, which is δγ = τ -1 Z = 0.1, where γ is the predation efficiency. Thus, the relation τ P < τ s < τ Z is satisfied, where with τ s we denote the time scale of flow stirring, estimated according to the above discussion.

Spectral analysis

To investigate the impact of velocity field on the plankton distribution, a useful tool is to consider the spectra of scalar variance and kinetic energy. In Fig. 8.3, we report one-dimensional spectra of velocity (u x , u y , u z ) (where u z = 0 in the 2D case) and scalar (P, Z) fluctuations, in the transverse direction (with respect to the mean flow), computed in the subdomain 1.5d ≤ x ≤ 10d (with d the obstacle diameter). The Fourier transform is computed along the y direction, at fixed x and the resulting spectra are subsequently averaged in the x direction. For the 3D case, the above procedure is repeated at each z and then the resulting spectra are averaged in the z direction. Then, we perform a temporal average, in the time interval 250 ≤ t ≤ 400, where the flow is statistically stationary. It is worth noting that the energy spectra are computed for the fluctuating quantities. A test was carried in this sense and results were almost identically with or without considering the mean flow.

The behavior of energy and scalar variance spectra for the 2D case has been already discussed in 7.6.4: here the picture confirms these results, with a typical scaling E(k) ∼ k -3 or steeper for the energy spectrum. We remark that the precise slope of E(k) is not expected to play a major role in the interplay between fluid and biological dynamics, provided the spectrum is steep enough such that the flow possesses a single time scale, determined by the strain. The scalar fluctuations spectra show a power-law dependence E S (k) ∼ k -1 in a small range of scales, followed by a rapid decay. We discuss this feature in Appendix 8.5.2, in order to compare the present results with the ones obtained in the previous Chapter at the same Reynolds but at Sc = 100 . Regarding the results for the 3D case (Figs. 8.4b and 8.4d), energy spectra are compatible with a scaling E(k) ∼ k -5/3 over approximately one decade, pointing to the existence a direct energy cascade [Kolmogorov 1941c]. This scaling is followed by a rapid decay at the unresolved wavenumbers. It should be noted that the contribution of the span-wise velocity w on the small wavenumbers is significantly smaller than the other velocity components, indicating that coherent structures arising from the cylinder three-dimensionality contain much less energy than the purely two-dimensional structures.

For both planktonic species, we find a spectrum close to E S (k) ∼ k -5/3 , which is the typical spectral shape shown by a passive non-reactive tracer advected in a 3D turbulent flow [Batchelor 1959]. We recall that this scaling is valid in the inertial turbulent subrange of the flow: the Batchelor regime, i.e. scales smaller than the viscous cut-off, is here absent because Sc = 1, i.e. B = 3D ν , thus scalar fluctuations are dissipated at the Kolmogorov scale. The theoretical prediction of spectral slope of plankton in turbulent flows [Denman 1976, Denman 1977] features the existence of three regimes in the spectrum of planktonic variance: the low-wavenumber (large-scale) regime dominated by biological growth with the spectral slope given by E lw S (k) ∼ k -1 ; the inertial subrange of turbulent regime dominated by turbulent motions, where the plankton behaves like a passive scalar, with a spectral scope given by E is S (k) ∼ k -5/3 ; a third regime at high wavenumbers, where a viscous-convective subrange exists only if Sc > 1, giving E hw S (k) ∼ k -1 . The wavenumber scale which separates the first two regimes is thus defined as the scale at which the related eddy turnover time and the phytoplankton growth time are comparable, i.e. k c ≡ (b 3 /ε ν ) 1/2 , where b is the phytoplankton reproduction rate and ε ν the dissipation rate. In our case, a simple possibility to estimate the biological timescale is by considering an effective phytoplankton growth rate β ef f = ∂t P / P , computed in the early growth regime (200 ≤ t ≤ 220). Using the mean value of energy dissipation rate, computed in the statistically steady state, the resulting value for k c is about 0.45, so comparable or slightly smaller than the diameter wavenumber k d = 0.5. Observing Fig. 8.4d, for k < 0.6k d , the spectrum scaling is slightly flatter with respect to k -5/3 but a clear scaling k -1 is not detectable, so on the basis of the available data, we can not claim that our results are completely compatible with the theoretical predictions developed in [Denman 1976]. In this perspective, the inset of Fig. 8.4d shows the absolute (not normalized) spectra of P fluctuations in the 2D and 3D case, compensated with the scaling k -1 : for wavenumbers smaller than k d = 0.5 the curve representing the 2D case is mostly flat, while the one associated to the 3D is slightly less constant. Another interesting feature is that the 2D spectrum is slightly above the 3D one, pointing out that at all scales the phytoplankton fluctuations with respect to the mean value are larger in the 2D case. This evidence suggests that in the two-dimensional configuration the phytoplankton shows a larger variability (the integral over k of the variance spectrum gives the total variance of the field) with respect to the 3D case, but does not allow to explain why on average the total content of P ( P ) is larger, as highlighted in Fig 8 .2b.

Spatial distribution

Having investigated the scale-by-scale energetic content of the planktonic populations, we now turn to their spatial features. For this purpose, at a given time in the statistically stationary state, we analyze the phytoplankton and zooplankton spatial distribution for both the 2D and 3D case in Fig. 8.4. While in the left panels the P and Z fields display the typical structures detectable in the two-dimensional vorticity field, with large vortices connected by filaments, in the 3D case (right panels) the distribution of scalars reflects the mixed nature of the three-dimensional wake: coherent vortices are almost absent, replaced by several convoluted vortical structures which give rise to a complex fragmented picture. The cross-stream size of planktonic patchiness is reduced The spectra are computed along the y-direction and then averaged for 1.5d ≤ x ≤ 10d and 250 ≤ t ≤ 400. For the 3D case, the spectra are first computed on each plane z ∈ [-L/2 : L/2] and then averaged along z. In the inset of (d), the compensated spectra (with the scaling k -1 ) of P for the 2D and 3D case are shown.
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and almost independent from the distance from the obstacle, while in two-dimensional wake, several vortices of different sizes are present and further downstream they grow in size and are deflected in the transversal direction, above and below the center line. Nevertheless, in both cases the relative abundance of the two species is locally determined by the predator-prey biological interactions, with the prey (P ) mostly localized where the predator (Z) is absent. This evidence suggests that even in the 3D case, once the favorable conditions for the phytoplankton growth are created, the scalar response is only determined by its reactive nature and so independent of the underlying flow dynamics.

Indeed, while the qualitative features of spatial distribution are different between the 2D and 3D cases, quantitatively P and Z fields are characterized by the same range of concentration values, although the spatial-averaged population density is larger in the 2D case, especially for the phytoplankton. To investigate the possible origin of such a difference, we report some time-averaged transects of P population. Preliminarily, for the 3D case we have verified that the concentration does not substantially vary along the span-wise direction: Fig. 8.5a shows the time-averaged P population, spatially averaged on x and y, which oscillates around a mean value which is about 2.2P eq , similarly to what observed for the total population density of P , shown in Fig. 8.2b. In Fig. 8.5b, the profiles of P are shown as a function of the cross-stream coordinate, averaged on the window corresponding to x ∈ [1.5d : 10d] (and on z for the 3D case): we can observe that in the 3D case the largest part of phytoplankton is concentrated in a narrow region around the obstacle (y ∈ [-2d : 2d]), where is nearly uniformly distributed, while for farther distances is at its equilibrium value. Conversely, in the 2D case, P takes values abruptly above the equilibrium value in a larger portion of the domain. Moreover, its profile highlights a more complex distribution, showing some peaks of high concentration, which indicate the localization (on average) of filamentary structures.

A more quantitative analysis of the effective portion of domain occupied by the phytoplankton was performed by considering the fraction of occupation by P population, similarly to what is done in [Berti 2005] for quantifying the efficiency of a reaction:

φ = 1 V V dxθ P (x, t) P eq -ξ c (8.6)
where V is the surface (2D) or volume (3D) of the domain, dx represents the surface/volume element, θ(•) is a step function and ξ c a preassigned threshold. In Fig. the time-averaged value of φ, computed in the statistically stationary state, for the two configurations for a wide range of the threshold: in both cases, φ follows a monotonically decreasing trend as a function of the threshold; however the points corresponding to the 2D case are located always above the ones representing the 3D case, giving a further confirmation that on average the phytoplankton occupies a larger portion of the domain. Moreover, the significant feature is that the gap between the two cases increases as the threshold ξ c grows, indicating that the portion of domain occupied by high concentrations of P is much larger in the 2D case. This feature is more evident in the inset, where the difference (in percentage) [φ 2D /φ 3D -1] × 100 is reported: for example, for ξ c > 20 this quantity is about 55%, indicating that the difference between the two cases is more pronounced for such "extreme events". This evidence enriches the previous results, allowing to clarify the different picture of the three-dimensional case with respect to the two-dimensional one: the flow dynamics of the latter confines the phytoplankton in coherent vortical structures, formed by steady filaments which occupy wide regions of the domain and where it can freely grow, being the zooplankton concentrated elsewhere; the mixed and more chaotic nature of the 3D flow tends to homogenize the scalars' distribution, which now localizes in space in a more disordered manner: their spatial extension is reduced as well as the probability of occurrence of regions characterized by very high concentration values of P , resulting in a smaller total concentration P .

Conclusions

We have investigated predator-prey plankton dynamics behind an obstacle both in a twodimensional and three-dimensional turbulent flow at moderate Reynolds number. Our purpose was to make a comparison between the two configurations in order to test the validity of the relevant findings of the two-dimensional case (Chapter 7) in a fully-developed 3D turbulent flow. In this perspective, we chose to fix the Reynolds number to a moderate value and to consider only a smooth obstacle (without roughness), in consideration of the increased computational effort due to the 3D simulation and of the results concerning the impact of these parameters (see Sec. 7.7 for an comprehensive discussion). Beside the substantial differences of the carrying velocity field, the qualitative behavior of the scalars appears to be similar in the 2D and the 3D case, confirming that the combined effect of flow transport and biological excitability gives rise to a permanent sustained excitation of plankton populations. The present results support the statement that the persistence of excitation crucially depends on the ratio between the characteristic timescale of flow stirring and the timescales of phytoplankton growth and zooplankton reproduction, as pointed out for two-dimensional kinetic flows in [Neufeld 2002a] and theoretically discussed in [Neufeld 2001]. We have also addressed the problem of plankton patchiness by analyzing the spectral properties of P and Z fields and the correlation between the features of their spatial distribution and those of the flow field. The evidence of a k -5/3 scaling in the scalars variance spectra led us to support the idea, already assessed in the 2D case, that reactive scalars are not different from passive (non-reactive) ones with regard to the statistical properties. However, while in the 2D case this findings is in accordance with theoretical predictions for interacting species in a turbulent two-dimensional flow, the predictions for the spectral slope of plankton advected by a three-dimensional flow [Denman 1976] feature the existence of a large-scale regime, where the biological reactive nature should be important and thus the spectrum shape should display a k -1 scaling behavior. On the basis of the present results, we are not able to definitely test this prediction. However, as pointed out by [Franks 2005], an important factor to include is the effect of biological interactions, not considered in the theory of [Denman 1976], but discussed in [Powell 1994]: the authors conclude that for two interacting species, the spectral slope results to be unpredictable, including having discontinuities in the turbulent inertial subrange, which may suggest that the spectral slope of plankton distributions does not have enough information to accurately diagnose the underlying dynamics. The study of plankton spatial distribution allowed to highlight some differences between the 2D and 3D dynamics: in the latter, the distribution of scalars reflects the mixed nature of the three-dimensional wake, where coherent large vortices are almost absent, replaced by several convoluted and fragmented vortical structures. These qualitative features have been supported and enriched by quantifying the volume fraction occupied by phytoplank-ton population, which evidences the tendency of the three-dimensional flow dynamics to destroy well-localized structures of high-concentrated scalar, resulting in less favorable conditions for biological growth and a smaller total concentration P with respect to the 2D case.

Appendix

λ 2 vortex method

In the main text, a snapshot of vorticity field for the 3D case has been shown, visualized through the λ 2 vortex criterion, which is already implemented in Basilisk. Originally proposed by [Jeong 1995], it is a Galilean invariant method to identify vortices in a threedimensional fluid velocity field. Let us define the velocity gradient tensor J :

J ≡ ∇u ≡   ∂ x u x ∂ y u x ∂ z u x ∂ x u u ∂ y u y ∂ z u y ∂ x u z ∂ y u z ∂ z u z   (8.7)
which can be decomposed into its symmetric and antisymmetric parts:

S = J + J T 2 (8.8) Ω = J -J T 2 (8.9)
Then, considering S 2 + Ω 2 , which is symmetric, one can identify its (real) eigenvalues such that λ 1 ≥ λ 2 ≥ λ 3 . Thus, a possible definition of a vortex core is that of a connected region with at least two negative eigenvalues, meaning that λ 2 < 0 (hence the method name).

Impact of Schmidt number

In order to understand the possible effect of the Schmidt number, which measures the ratio between the viscosity and the diffusion coefficient, i.e. Sc = ν/D, we report a comparison between the scalar fluctuations spectra in the 2D case at Re = 2000, for (A) Sc = 1 and (B) Sc = 100. To be consistent, the two simulations have been performed by using a maximum resolution of 2 12 , in order to resolve all the scales until the Batchelor one, B . As shown in Fig. 8.7, the spectrum is compatible with a ∼ k -1 , but in the case (A) this behavior is detectable only in a decade, for wavenumber around or smaller than k d , followed by a rapid cutoff. Conversely, in the case (B) the power-law is exhibited for about two decades, as discussed in Sec. 7.6.4, suggesting that there is higher variance at large k, i.e. small scales. This feature is due to the fact that when Sc > 1, a range of scales below the viscous cut-off exists, thus scalar fluctuations are not dissipated at this scale but are transferred to smaller ones and finally dissipated at B = ν Sc -1/2 . For the simulation (B), this prediction is confirmed, being B ∼ 0.1 ν . Moreover, the impact of Schmidt number can be evidenced by comparing the visualizations of phytoplankton field in the two cases (Fig. 8.8): recalling the argument given by [Martin 2000] for the estimation of a plankton filament in a purely elongational flow, the latter should be proportional to f ∼ D/s, where D is the diffusivity and s the strain rate, and thus independent of the biological growth rate. So a larger diffusivity (in the case (A) where Sc is lower) results in a larger thicker filament width, as effectively is detectable in Fig. 8.8b. Although the prediction relies on simplified assumptions (purely elongational flow and absence of interactions among filaments), it efficiently captures the impact of Sc number in affecting the phytoplankton qualitative features. Chapter 9

Conclusions

In this work we have presented a broad study on complex multiscale flows, through the use of extensive well-resolved numerical simulations carried out by means of the code Basilisk. Although the different problems that we have investigated and thus the different physical phenomena that were involved, we have put particular emphasis on the interplay between the various non-linear mechanisms that arise on a large range of scales and whose interactions are nontrivial, essentially due to turbulent and unsteady motions. Although we have investigated various topics both from a fundamental and a more application oriented point of view, our focus was centered on the possibility to use direct numerical simulations to gain insight into the spatiotemporal complexity of dynamical turbulent flows and its interplay with reactive scalars.

In Part III, we have shown through fully resolved numerical simulations in two and three dimensions that Gallavotti's conjecture of dynamical ensemble equivalence is correct, namely the relevant statistical observables are found to be indistinguishable in the irreversible and reversible dynamical system. The preliminary tests in 2D allowed to validate the numerical procedure, namely the prediction-correction algorithm, investigating the accuracy as a function of the time step and the impact of initial conditions. Thus, we focused on the phenomenology of the irreversible and reversible models, limiting our investigation to the stringent test of the conjecture, both at constant energy and enstrophy. In Chapter 6, the results of the three-dimensional case are reported: we observed that no matter the Reynolds number, provided sufficient resolution is kept, not only the basic requirements of the conjecture are fulfilled, but all the relevant statistical observables are found indistinguishable in the irreversible and reversible dynamical system. Indeed, we have analyzed the velocity time-correlation and the one-dimensional energy spectrum, as well as the one-point PDF of velocity: the equivalence between the two models appeared perfectly satisfied for all these observables. Moreover, the scale-by-scale analysis of the kinetic energy flux showed negligible difference between the two models up to the dissipation range, namely over the range of scales which are phenomenologically interesting. Finally, we focused on the statistics of the time-fluctuating viscosity, whose sole crucial feature according to the equivalence conjecture is that the time-average equals the viscosity coefficient of the corresponding irreversible model. The PDF's of this quantity computed in the irreversible and reversible model appeared to be qualitatively different, as expected for the 3D case [Gallavotti 1997] (instead, the equivalence holds in the 2D case, as shown in Chapter 5): the main feature is that in the reversible case the viscosity widely fluctuates around the canonical value with a variance that increases with the Reynolds number, thus extremely rare negative events are recorded at high Re, in accordance to what has been found in testing the equivalence for a multiscale shell model [Biferale 2018]. Giving a strong evidence of the equivalence of reversible and irreversible Navier-Stokes equations, the main outcome of our work is thus making a link between turbulent fluids and the general framework for non-equilibrium problems in statistical mechanics, based on the chaotic hypothesis. Our results show that many non-equilibrium systems and most notably turbulent fluids could be considered in practice as reversible as far as statistical observables are considered. Thus, such evidence corroborates the possibility of employing the universality properties known for the fluctuations of the dissipation in reversible systems to infer, via the proposed equivalence and the chaotic hypothesis, the validity of the same properties in the standard irreversible model. Besides the theoretical interest, the results here presented give evidence that turbulence is unaffected by the precise mechanism of dissipation, provided that the correct amount of average rate of dissipation is enforced: this result offers the concrete possibility of modeling in different ways the viscous forces in non-equilibrium systems such as in coarse-grained versions of Navier-Stokes equations, as used in Large-eddy simulations.

Concerning Part IV, in Chapter 7 we have investigated predator-prey plankton dynamics in turbulent flows occurring in the plane wake of an obstacle, by focusing on the effect of active small flow scales at increasing Reynolds number, through fully-resolved numerical simulations carried out by using an adaptive grid. In accordance with previous studies in open flows obtained from kinematic models, our results have confirmed that the key mechanism underlying the plankton blooming is the presence in the flow of regions where the scalars remain entrained for very long time, pointing out the impact of the ratio between advection and phytoplankton growth time scales as determinant for the persistence of the excitation. Indeed, we have highlighted that the basic features of the excitation are independent of the Reynolds number as well as of the roughness of the obstacle. Nevertheless, small-scale fluid motions resulted to locally affect the fine-scale spatial distribution of the planktonic species, as pointed out by the appearance of fractal features in transects of the phytoplankton field at large Reynolds numbers. A further important result of the work concerns the finding that in the present model plankton species are not different from passive non-reactive ones with regard to the statistical properties, namely the variance spectra of the population density. The investigation of the spatial distribution of biological species has evidenced a clear correlation with flow structures, with a predominant concentration of phytoplankton in filaments winding in the periphery of vortices, where the zooplankton appears scarse. Furthermore, on the basis of the cited outcome concerning the minor role of small scales, we have assessed the possibility to use a coarse-grained approach instead of resolving all the dynamical scales, which may be a valid alternative in more realistic configurations. In Chapter 8, we have presented a comparative study between the above described twodimensional configuration and its three-dimensional extension, at moderate Reynolds number. The dynamics of plankton species displays similar qualitative features in both 2D and 3D cases, in terms of the appearance of a permanent excitation due to the flow transport and excitable character of biological growth. The spectral scaling resulted to be compatible with the predictions for a passive scalar immersed in the inertial subrange of turbulent three-dimensional flow, corroborating the hypothesis that reactive scalars are not different from passive non-reactive ones with regard to the statistical properties. Moreover, as already observed in the 2D case, the plankton distribution in space is determined by the underlying flow structures, while the relative abundance of the two species is controlled by the predator-prey biological interactions. The most notable difference between the 2D and 3D case arises from the flow field which impacts the spatial distribution of plankton: given the mixed nature of the 3D wake, plankton does not appear to be localized in large vortical or filamentary structures but is confined in a narrow homogeneous region behind the obstacle and this constitutes an unfavorable factor for biological growth.

From a numerical point of view, given the extent and the complexity of the topics investigated, the numerical code (Basilisk) revealed to be a robust and feasible tool for studying multiscale turbulent flows. First of all, since Basilisk includes several pre-defined solvers, which can be combined among them in different ways, it results highly flexible and thus of large applicability. Additionally, it is a user-friendly tool, leaving the opportunity of modifying and extending the existing solvers: for example, in Part III, the Navier-Stokes integration scheme has been modified to include the prediction-correction algorithm, allowing a better control of numerical dissipation. Furthermore, the possibility to adopt different types of discretization grids allows to efficiently adapt the code and thus satisfy several requirements: while a multigrid (fixed resolution) has been employed in Part III, a dynamic adaptive mesh has been preferred for the numerical simulations of two and three-dimensional plankton dynamics (Part. IV), as well as for simulating bubbly flows (Appendix A). Indeed, the possibility to adapt the grid dynamically combined to the Volume-Of-Fluid method is key to efficiently simulate multiphase flows and for developing boundary layers and wakes, guarantees an accurate description of the shape of bubbles and allows to resolve even complicated geometrical interfaces, as has been done when studying the impact of an obstacle roughness on plankton dynamics (Sec. 7.6.6). Moreover, adaptive mesh refinement leads to very large savings in computational cost compared to fixed Cartesian grid approaches and this gave us the possibility to perform highly resolved numerical simulations at high Reynolds number. Finally, almost all the available solvers in Basilisk are conceived to be suitable for parallel coding which gave us the possibility to perform our simulation on various clusters, reducing the computational time.

The choice of studying the different topics by using a DNS approach proved to be meaningful and appropriate: it allows to carry out fully-resolved multiscale analysis and thus has been crucial to provide a robust and feasible demonstration of the validity of the equivalence conjecture (Part III). As concerns the study of bubbly flows (Appendix A), the DNS revealed useful to complement the few experimental results and previous coarsegrained experiments and to help understanding the physical mechanisms underlying the agitation. Regarding the study of plankton dynamics (Part IV), the DNS approach allowed to understand how the dynamics of reactive species is affected by all the different scales: our results indicated that the large-scale flow properties predominantly impact the plankton dynamics behavior, which is not very sensitive to small scales. Indeed, the latter locally affect the fine-scale spatial distribution of the planktonic species only in the case of highly turbulent flow. Similar results have been found in [Cencini 2003], where the authors show that in a specific case of reaction front propagation in the presence of cellular flows, the front speed is determined only by the large scale behavior of the velocity field. In this perspective, our results suggest that a coarse-grained approach may be feasible for studying plankton dynamics. This is a particularly relevant outcome when realistic configurations are studied and thus spatial and temporal variability increases, making it impossible to resolve all the range of scales of the problem. On this basis, we can draw some general conclusions regarding the use of the DNS approach to study complex multiscale flows: for a fundamental study of ideal turbulent flows it is undoubtedly -when the computational constraints allow it -the most appropriate choice, giving the possibility to resolve all the scales and thus to avoid any bias possibly coming from the modeling of the smallest scales. Instead, when one aims at studying more complex flows, it may reveal to be a valid approach depending on the level of information sought. When investigating an idealized system, if the focus is mainly centered on the statistical properties of fine scale dynamics, thus it is a feasible approach which allows to reproduce but also to enrich results obtained through kinematic velocity models. However, if the relevant spatiotemporal scales range is very wide, like for geophysical flows, or when the flow motion is strongly influenced by external factors and thus for example it is necessary to include ocean-atmosphere interactions, the DNS approach is unfeasible. Indeed for such class of complex systems a direct computational simulation for resolving all the involved scales would have a computational cost unreachable for the modern computers and thus other approaches are needed, like Large-eddy simulations (LES), Regional Ocean Modeling Systems (ROMS), General Ocean Turbulence Model (GOTMS), just to mention a few.

As for future perspectives, they are mainly focused on the work of Part IV, due to the fact that, as discussed in Sec. 7.2, plankton dynamics is a huge and complex topic, which touches several physical an biological phenomena and thus offers many possible directions of study. A possibility to improve the understanding of planktonic dynamics is to simulate more complex models of biological interactions, namely including the effect of nutrients which has been observed to be an essential constituent of the plankton trophic chain. In particular, it could be interesting to address this problem in the case of a 3D flow, in order to include the effect of the vertical upwelling of nutrients. Even though DNS might be used in principle for every flow, its application to realistic physical cases is practically impossible as above discussed. An alternative route may be using a multilayer model for multiscale free surface flows [Popinet 2020]. This approach aims at modeling the 3D motion of an incompressible flow, possibly bounded below by topography and above by a moving free-surface. The model considers the evolution of n layers, which are functions of time and 2D space only: for each layer, the model consists in an equation for the layer thickness evolution, two conservation equations of the horizontal and vertical momentum, and a semi-discrete continuity equation (or semi-discrete incompressibility condition) which expresses volume (and thus mass) conservation. The resulting model is semi-discrete, in the sense that it is continuous on the horizontal and discrete on the vertical. The formulation is conceived to make a consistent link between the hydrostatic Saint-Venant equations, dispersive Boussinesq-style models and the incompressible non-hydrostatic Euler equations. This approach may offer several advantages: a reduced computational cost, with respect to a fully-resolved 3D DNS and the possibility to include surface or topography effects (e.g. wind stress, wind-driven waves, bottom drag, etc.). Moreover, the implementation is adaptive and apt for parallel computation. This would be of considerable practical interest generally, but in particular for geophysical flows, since the resulting model hierarchy would be applicable and efficient for scales ranging from meters to tens of kilometers. As a first step, one may test the reproducibility of the results obtained though the DNS both in 2D and 3D case with the multilayer model, then extending the study through the inclusion of nutrients dynamics. Another possible testbed for the multilayer model may be the reproduction of the large vertical velocities, and hence the vertical fluxes of biogeochemical tracers, typical of submesoscale turbulence [Capet 2008, Klein 2009, Lévy 2012]. The dynamics of submesoscale flows is a topic of debate with clear implications for climatic issues (e.g. related to the cou-pling of surface and interior dynamics, or air-sea interactions) and ecological ones (as the localization of hotspots of primary production or of biodiversity). An interesting question that could be addressed using the multilayer approach is the investigation of mixed-layer instabilities (see, e.g. [START_REF] Callies | The role of mixed-layer instabilities in submesoscale turbulence[END_REF], Zhang 2021]) in order to compare the resulting flows with those arising from mesoscale-driven processes [START_REF] Lapeyre | [END_REF][START_REF] Zhang | [END_REF], and to assess their respective impacts on plankton dynamics.

Introduction

Multiphase flows are common and a central topic in fluid mechanics [START_REF] Prosperetti | Computational methods for multiphase flow[END_REF]), as they are present in a number of phenomena including pollutant dispersion, sedimentation, bubble spray in ocean dynamics, and bubble columns.

Among the various kinds of multiphase flows, bubbly flows are a particularly challenging and key field of investigation, both for their fundamental dynamics and their numerous applications in engineering and environmental science (Prosperetti 2004;[START_REF] Clift | Modelling of the laminar dispersion force in bubbly flows from direct numerical simulations[END_REF][START_REF] Magnaudet | The motion of high-reynolds-number bubbles in inhomogeneous flows[END_REF][START_REF] Ern | Wakeinduced oscillatory paths of bodies freely rising or falling in fluids[END_REF][START_REF] Lohse | Bubble puzzles: From fundamentals to applications[END_REF]Mathai et al. 2020). While much attention has been paid in the last decades to the dynamics of small inertial or neutrally-buoyant particles [START_REF] Crowe | Numerical models for two-phase turbulent flows[END_REF][START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF][START_REF] Maxey | Simulation methods for particulate flows and concentrated suspensions[END_REF][START_REF] Elghobashi | Direct numerical simulation of turbulent flows laden with droplets or bubbles[END_REF], much less is known for bubbles, because they are experimentally, numerically and theoretically more complex (Prosperetti 2017;Mathai et al. 2020).

In general, turbulent bubbly flows involve several complex and coupled physical mechanisms (Risso 2018;Mathai et al. 2020). In absence of other external driving forces, buoyancy is the main source of motion: bubbles are much lighter than the surrounding fluid, and they rise attaining a significant velocity. This movement disturbs the carrying fluid inducing a collective agitation, referred to as pseudo-turbulence, bubble-induced turbulence or bubble-induced agitation. In turn, this induced agitation may affect the dynamics of the bubbles. Bubble-induced agitation is therefore one of the basic elements of bubbly-flows and needs to be fully understood before being able to grasp more complex situations as well as proposing adequate models [START_REF] Besagni | Two-phase bubble columns: A comprehensive review[END_REF][START_REF] Magolan | A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems[END_REF][START_REF] Cluzeau | Analysis and modelling of reynolds stresses in turbulent bubbly up-flows from direct numerical simulations[END_REF][START_REF] Chahed | Modeling interfacial interactions and turbulence in the near-wall region of a vertical bubbly boundary layer[END_REF] We focus in this work on this phenomenon, leaving out for the moment the presence of other effects such as the surrounding background turbulence, and also the detailed bubble dynamics. Moreover, we consider as the main test case a bubble column without walls, which is a common configuration in chemical engineering [START_REF] Kantarci | Bubble column reactors[END_REF]), and appears particularly suitable for the study of the physics of pseudo-turbulence.

Several experimental studies have been carried out to investigate this particular régime in different configurations [START_REF] Lance | Turbulence in the liquid phase of a uniform bubbly air-water flow[END_REF][START_REF] Zenit | Measurements of the average properties of a suspension of bubbles rising in a vertical channel[END_REF][START_REF] Martínez-Mercado | Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for 10¡ re¡ 500[END_REF][START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF][START_REF] Mendez-Diaz | Power spectral distributions of pseudo-turbulent bubbly flows[END_REF][START_REF] Colombet | Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction[END_REF], and significant progress has been made in figuring out the characteristic features of bubbleinduced agitation (Risso 2018). In particular, it is an experimental evidence [START_REF] Risso | Velocity fluctuations in a homogeneous dilute dispersion of high-reynolds-number rising bubbles[END_REF] that at moderate-to-large Reynolds numbers (Re 100) the wakes of interacting bubbles are screened, which tends to show that at large Reynolds numbers the dominant mechanism underlying liquid agitation is the nonlinear wake interactions.

Focusing on the liquid fluctuations induced by the bubbles, the key observations are that (i) the probability density function (PDF) of the vertical fluctuations is strongly skewed while the horizontal one is symmetric, and both are non-gaussian; (ii) The energy spectrum of the liquid agitation E(k) displays a robust scaling E ∼ k -3 . Some issues remain unclear however. The range where this scaling applies is under discussion, with some experiments pointing to larger scales than the diameter [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF], while others at smaller scales [START_REF] Mercado | On bubble clustering and energy spectra in pseudo-turbulence[END_REF][START_REF] Prakash | Energy spectra in turbulent bubbly flows[END_REF].

Moreover, in some experiments a Kolmogorov spectrum E ∼ k -5/3 might be present at small [START_REF] Martínez-Mercado | Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for 10¡ re¡ 500[END_REF][START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF] or at large scales [START_REF] Prakash | Energy spectra in turbulent bubbly flows[END_REF]. From a physical point of view, two main mechanisms appear to underlie these scalings: the superposition of Gaussian fluctuations generated near the bubbles (Risso 2011) because of the disordered bubble distribution, and the turbulent fragmentation [START_REF] Lance | Turbulence in the liquid phase of a uniform bubbly air-water flow[END_REF] notably at high Reynolds number. It is difficult to disentangle these two mechanisms, as the steep spectrum E ∼ k -3 corresponds to a smooth flow (Monin & Yaglom 1975), which may be related to a number of different situations (Boffetta & Ecke 2012). The relation between pseudo-turbulence and turbulence is also linked to the last issue. In particular, fluid turbulence is mainly characterised by a cascade phenomenon, expressed by a constant flux of kinetic energy towards a certain range of scales (Frisch 1995 The aim of this work is to address these issues with high-resolution numerical simulations, combining several 2D and 3D numerical experiments.

Indeed, experiments have the great advantage to easily deal with large Re-number flows. Nevertheless, the experimental investigation of turbulent bubbly-flows is difficult, and isolating and analysing the bubble-induced agitation is tricky (Risso 2018). For instance, the PDF of the module of the velocity was measured by [START_REF] Martínez-Mercado | Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for 10¡ re¡ 500[END_REF], yet the PDF of the vertical and horizontal components of the velocity have been so far measured only by [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF] and by [START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 2. liquid dynamics[END_REF] in a thin gap. Furthermore, boundary and impurity effects may be present, and getting information about small-scales and energy-flux statistics is practically impossible.

For these reasons, numerical simulations have appeared early as a necessary complementary tool both for homogeneous and bounded flows [START_REF] Bunner | Direct numerical simulations of threedimensional bubbly flows[END_REF][START_REF] Tryggvason | A front-tracking method for the computations of multiphase flow[END_REF][START_REF] Fuster | Numerical simulation of droplets, bubbles and waves: state of the art[END_REF][START_REF] Dabiri | Transition between regimes of a vertical channel bubbly upflow due to bubble deformability[END_REF][START_REF] Dabiri | Heat transfer in turbulent bubbly flow in vertical channels[END_REF][START_REF] Elghobashi | Direct numerical simulation of turbulent flows laden with droplets or bubbles[END_REF]). However, the numerical approach has its own limitations.

Numerical experiments supposed to reproduce actual experiments must be designed such as to resolve all the characteristic time-and spatial-scales of the flow. The simulations fulfilling these criteria are called Direct Numerical Simulations (DNS) of a flow, and are actually experiments in silico. The numerical investigation of bubbleinduced agitation was pioneered by [START_REF] Bunner | Dynamics of homogeneous bubbly flows part 2. velocity fluctuations[END_REF], who presented the first DNS of homogeneous free-array of bubbles, yet at low-Re number (Re ≈ 30) and density ratio (about 50).

It is important to consider the interplay between numerics and physics to give the full context of the present work. Turbulent bubbly flows display a strong multi-scale character with a very broad spectrum of scales, including the excited fluid modes (Pope 2000) and the scales related to bubble boundary layers (Tryggvason et al. 2011). In addition the density ratio between the two phases is generally very high (about 1000 in experimental flows) making the problem stiff. These numerical constraints come directly from the challenging physics of high-Reynolds bubbly flows. A few attempts have been recently made to investigate pseudo-turbulence at high-Re number, notably with a similar purpose as here [START_REF] Roghair | Energy spectra and bubble velocity distributions in pseudo-turbulence: Numerical simulations vs. experiments[END_REF][START_REF] Pandey | Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows[END_REF]. In these studies the resolution has been kept at about 20 points per diameter (∆x = d b /20), independently from the Reynolds number of the bubbles which is larger than 200 in most of the cases. This choice is related to studies carried out at low-Re number [START_REF] Bunner | Dynamics of homogeneous bubbly flows part 2. velocity fluctuations[END_REF]. A very recent study characterising the topological properties of the agitation induced by two bubbles [START_REF] Hasslberger | A direct numerical simulation analysis of coherent structures in bubble-laden channel flows[END_REF]) is also worth mentioning. This work uses a higher resolution Furthermore in the first work [START_REF] Roghair | Energy spectra and bubble velocity distributions in pseudo-turbulence: Numerical simulations vs. experiments[END_REF]) realistic physical properties are chosen but just a few bubbles are released, of the order of 10, while in the study by [START_REF] Pandey | Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows[END_REF]) many bubbles are followed but with a very low density ratio between the fluid and the gas, between 1.1 and 20. The nonlinear interactions among bubbles are however key to the dynamics and their statistical study requires the presence of a large number of bubbles [START_REF] Lance | Turbulence in the liquid phase of a uniform bubbly air-water flow[END_REF]Risso 2018). Moreover, while in some cases and with respect to specific observables the correct physics may be reproduced with a low density ratio [START_REF] Diotallevi | Capillary filling using lattice boltzmann equations: The case of multi-phase flows[END_REF], that cannot be claimed in general and requires further scrutiny.

(∆x = d b /40),
As a matter of fact, these numerical simulations are implicitly coarse-grained, and therefore they should be considered as Large Eddy Simulations (LES) rather than DNS.

Without in any way diminishing their relevance, as for LES of single-phase flows, results may well be in accordance with experiments but comparison with resolved DNS appears necessary (Pope 2000).

The purposes of the present study is therefore threefold: (i) to complement the few experimental results about pseudo-turbulence with a high-resolution DNS. (ii) To provide a reference fully-resolved numerical experiment to analyse the effect of resolution in the different régimes. In particular, by direct comparison we want to assess to which extent coarser simulations are reliable. (iii) To exploit the detailed information available to a DNS, to help understanding the physical mechanisms underlying the agitation, with particular attention paid to the possible cascade process. This uses in particular a scaleby-scale analysis to be described shortly.

The detailed contents of this paper are the following: In § 2 we review the basic mathematical framework of the problem, with particular attention paid to the different non-dimensional parameters relevant for the physics of bubbly flows. In § 3, we briefly introduce the numerical procedure. From a numerical point of view, different techniques can be used to study interfacial flows (Tryggvason et al. 2011;[START_REF] Popinet | Numerical models of surface tension[END_REF][START_REF] Aniszewski | Parallel, robust, interface simulator[END_REF]). In the present work, we use the Volume-Of-Fluid (VOF) open-source library Basilisk †, which provides efficient adaptive mesh refinement, a key requirement to perform the high-resolution 3D bubble column simulations presented here. The code is briefly described and the numerical schemes used for the integration of the equations are given together with the main references. In § 4, we present the results obtained in a series of 3D tests at low or moderate Reynolds numbers. These tests consist in a regular array of rising bubbles, and we compare our results against analytical predictions in the case of Stokes flows, or to previous numerical studies. These tests are important not only to assess the different numerical codes but also to analyse the interplay between the physical parameters and the numerical requirements to get accurate results. In § 5 we show the results obtained with very high-resolution simulations of a 2D bubble column at different Reynolds numbers. Since with the present computational capability, it is not possible to carry out a parametric analysis of a realistic flow in 3D, these simulations have been used to accurately set the numerical and physical parameters to be used in a single 3D simulation. We show both unsteady and steady simulations to verify that a reasonable convergence in the relevant statistics is obtained also in the unsteady cases.

Different statistical observables are studied, namely spectra of kinetic energy at different

Reynolds, and the one-point PDF of the velocity both in the horizontal and vertical direction.

The 3D bubble-column case results are reported in § 6. Although in experiments a homogeneous swarm is usually studied, it has not been possible from a computational point of view to simulate more than a few layers of bubbles mimicking the swarm. As will be clear later, this configuration is yet a reasonable numerical setup with regard to actual experiments. The configuration corresponds to an Archimedes number of Ar = 185 and is globally comparable with typical laboratory experiments. The PDF of the velocity is analysed first and compared with previous experimental results [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF].

The spectrum of the kinetic energy is then computed and compared with experiments and results obtained very recently at a lower resolution by [START_REF] Pandey | Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows[END_REF]. To gain physical insights and address the issues related to the cascade, we present a scale-byscale analysis of the energy transfers in physical space, rather than in spectral space as commonly done in isotropic turbulence. This multiscale approach has been developed on this velocity

Re ≡ U b d b ν l , (2.3)
where ν l is the kinematic viscosity of the liquid. It is also possible to use another group which compares inertial effects with surface tension, the Weber number

We ≡ ρ b U b 2 d b σ = EoRe 2 Ga .
(2.4)

It is important to note that the average bubble velocity may or may not reach a stationary state in our numerical experiments, so that in general the dynamic dimensionless numbers are dependent on time Re = Re(t).

Governing equations

Both fluids are governed by the Navier-Stokes equations, which we take here in the incompressible limit

∇ • u = 0 (2.5) ∂u ∂t + ∇ • (u ⊗ u) = 1 ρ (-∇p + ∇ • (2µD) + f + f σ δ s ) , (2.6) 
here the viscosity µ and the density ρ varies across the two phases; D = [∇u + (∇u) T ]/2 is the symmetric deformation tensor, f represents the volumetric forces, which in the present case are the gravity f i = ρg, f σ is the force exerted by the surface tension, and δ s = δ s (xx s ) is a dirac delta function that identify the presence of the surface. The volumetric surface tension force is expressed as (Tryggvason et al. 2011)

f σ = σκn + ∇ s σ .
(2.7)

The first term depends on the surface tension coefficient (a material property), the local curvature κ = ∇ • n and the surface normal, while the last term is different from zero only if a non-constant surface tension is present. In the present work, we shall deal with constant surface tension, and therefore the second term is zero. In practice the surface tension balances the jump in pressure across the interface and jump relations can be derived analogously to shock waves. It is worth remarking that since the surface force acts in the plane of the surface, if we integrate it over the whole closed surface, it should give a null contribution.

In addition, the appropriate boundary conditions at the interface between the phases must be imposed. Since we do not consider any phase change, the interfacial condition for viscous fluids is simply u b = u l , or

[u] S = 0, (2.8)

where we have used the jump notation, i.e. the notation [x] S = x bx l . At equilibrium u = 0, the jump at the interface is given by

[p] = σκn, (2.9)

where n is the unit normal vector defined as directed outward from the bubbles, and κ is the mean curvature of the interface.

This set of equations are solved with the Basilisk library with the numerical methods described in the following section.

Numerical method

Basilisk is a library of solvers written using an extension of the C programming language, called Basilisk C, adapted for discretization schemes on Cartesian grids (see http://basilisk.fr). Space is discretized using a Cartesian (multi-level or tree-based) grid where the variables are located at the center of each control volume (a square in 2-D, a cube in 3-D) and at the center of each control surface. The possibility to adapt the grid dynamically is key to efficiently simulate multiphase flows (Popinet 2009). The numerical scheme implemented in Basilisk is very close to that used in Gerris as described in Popinet (2009). The Navier-Stokes equations are integrated by a projection method (Chorin 1969). Standard second-order numerical schemes for the spatial gradients are used (Popinet 2003(Popinet , 2009;;[START_REF] Lagrée | The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a µ (i)-rheology[END_REF]. In particular, the velocity advection term ∂ j (u j u i ) n+1/2 is estimated by means of the Bell-Colella-Glaz second/third-order unsplit upwind scheme (Popinet 2003). In this way, the problem is reduced to the solution of a 3D Helmholtz-Poisson problem for each primitive variable and a Poisson problem for the pressure correction terms. Both the Helmholtz-Poisson and Poisson problems are solved using an efficient multilevel solver (Popinet 2003(Popinet , 2015)).

Time is advanced using a second-order fractional-step method with a staggered discretization in time of the velocity and scalar fields (Popinet 2009): one supposes the velocity field to be known at time n and the scalar fields (pressure, temperature, density)

to be known at time n -1/2, and one computes velocity at time n + 1 and scalars at time n + 1/2.

The interface between the fluids is tracked with a geometric Volume-Of-Fluid method [START_REF] Hirt | Volume of fluid (vof) method for the dynamics of free boundaries[END_REF]Scardovelli & Zaleski 1999;Tryggvason et al. 2011). The surface tension term is computed using an accurate well-balanced, height-function method [START_REF] Popinet | Numerical models of surface tension[END_REF]. In this formulation, the surface tension in Eq. (2.6) is expressed as a gradient, and may thus be included in the pressure term.

Periodic, no-slip and free-slip boundary conditions will be imposed in the different computations considered.

In the present work, we always consider flows with a bubble concentration of a few percent φ < 5%. It is known that in this case, coalescence and break up effects are negligible [START_REF] Jha | Interaction of a vortex ring with a single bubble: bubble and vorticity dynamics[END_REF]. We have checked that the resolution and the physical set-up are always consistent to avoid spurious effects, as briefly described in Appendix B.

Preliminary tests

To assess the accuracy of the numerical code for the simulation of two-phase bubbly flows, we have reproduced several literature test cases, [START_REF] Esmaeeli | Direct numerical simulations of bubbly flows. part 1. low reynolds number arrays[END_REF], 1999;[START_REF] Sangani | Sedimentation in ordered emulsions of drops at low reynolds numbers[END_REF][START_REF] Loisy | Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction[END_REF]. In particular, we have focused on the configuration of regular arrays of bubbles rising due to buoyancy. Previous numerical studies were carried out using different approaches, namely front-tracking [START_REF] Esmaeeli | Direct numerical simulations of bubbly flows. part 1. low reynolds number arrays[END_REF]) and level-set with diffuse interface [START_REF] Loisy | Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction[END_REF]. The present comparison thus allows a mutual validation of the different methods. After an initial transient where bubbles accelerate, they eventually reach a quasi-steady-state régime. Depending on bubble size, surface tension and density, they may follow non-rectilinear paths, with periodic or chaotic lateral oscillations (Cano-Lozano et al. 2016a). A regular array of bubbles is reproduced numerically using a single bubble in a periodic cell. Changing the cell size with respect to the bubble size, we can adjust the volume fraction of the array.

Note that since the computational domain is unbounded in all directions, an additional body forceρ g must be added to avoid that the system accelerates in the vertical downward direction. In this section, we present briefly only the most significant results, while more details are given in Appendix A.

We have first compared our simulations with the theory of [START_REF] Sangani | Sedimentation in ordered emulsions of drops at low reynolds numbers[END_REF] Although at very low-Reynolds number, this is a severe test case since it is 3D and the number of points required may increase rapidly when varying the concentration. We have carried out simulations at different resolution, asking for a relative adaptation error less than 5%. In Table 1 we show the steady-state velocity of the bubble array normalized with the velocity of a single isolated bubble, and the quantitative numerical error. A satisfactory agreement is obtained between the numerical and the analytical solution

U U 0 = 1 -1.1734µ * φ 1/3 + O(φ), where µ * = (µ l + 3/2µ b )/(µ l + µ b ).
We have then considered test cases at finite Reynolds numbers. In figure 1, we show the results for the 3D test-case proposed by [START_REF] Esmaeeli | Direct numerical simulations of bubbly flows part 2. moderate reynolds number arrays[END_REF]. In this case the flow parameters are Ar = 29.9 Eo = 2 ρ b /ρ l = 0.1 µ b /µ l = 0.1 .

Our simulations are compared against both the original DNS of [START_REF] Esmaeeli | Direct numerical simulations of bubbly flows part 2. moderate reynolds number arrays[END_REF], and the more recent results of [START_REF] Loisy | Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction[END_REF]. We have analysed the gridconvergence. Results are in good agreement, while convergence is achieved with a slightly higher number of points (d b /∆x ≈ 40) than in previous works [START_REF] Esmaeeli | Direct numerical simulations of bubbly flows part 2. moderate reynolds number arrays[END_REF][START_REF] Loisy | Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction[END_REF], where the authors indicate that 30 points per diameter are sufficient.

The last set of moderate Re test cases is the oblique rise of periodic arrays of bubbles performed by [START_REF] Loisy | Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction[END_REF]. For this test the numerical setup is the same as for previous tests, i.e. a single periodic lattice to mimic a regular array. Loisy et al. < l a t e x i t s h a 1 _ b a s e 6 4 = " X / q n R v M w h j W b X p m R y 4 / P I W P y G 6 Before analysing complex flows at high Reynolds numbers, we have also carried out a specific quantitative analysis on the effect of two crucial numerical issues: (i) resolution, (ii) density ratio. It is worth emphasising that there is a strong link between physical properties and numerical parameters and that this cannot be overlooked. While the simulation of a single bubble remains feasible even with a very fine grid thanks to the adaptive mesh, it would not be possible to tackle a problem with many bubbles with the same grid. Moreover without the adaptive mesh even the single bubble case appears desperate at large Reynolds numbers. In contrast, using a coarse grid may make the computation easy but the results might be largely unreliable. We summarise here our findings, details are given in the Appendix. In order to simulate bubble flows quantitatively and in detail, it turns out to be key: 1) to have a number of points per diameter increasing with the Ar number (we have found that convergence is obtained with about N points ≈ Ar/2); 2) using an adaptive mesh, it is sufficient to have such a fine resolution inside the bubble and in the wake; 3) a large density ratio, namely ρ l /ρ b > 100, is mandatory to avoid spurious effects which are similar to those found with a too coarse 
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Pseudo-turbulence in two dimensions

In this section, we discuss the results of a 2-dimensional bubble column configuration [START_REF] Biswas | The transient buoyancy driven motion of bubbles across a two-dimensional quiescent domain[END_REF]. We consider a square domain with the vertical direction z aligned with gravity, acting downward. The tank, of size 50d b × 50d b , is filled with a liquid and 32 initially spherical bubbles are placed at the bottom, in a region confined between z = 0 and z = 8d b , and are homogeneously distributed in the lateral direction

x, while avoiding any initial bubble overlap, and with a minimum distance between them of one diameter. This results in a local volume fraction in the region 0 z 8 of φ 5%. The domain is closed at the bottom by a wall (no-slip boundary condition), and an outflow boundary condition is used at the top, while on the lateral sides the domain is periodic. At t = 0 both the liquid and the bubbles are at rest. The viscosity and density ratios are constant in all the simulations and their values are µ l /µ b = 100 and ρ l /ρ b = 1000. Three different simulations have been carried out, and the corresponding parameters are reported in table 2. In particular, the Ar number is within the range Ar 100 -300, which corresponds to typical three-dimensional experiments [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF]. For 2D cases, in all the three cases we have used regularly spaced grids with different resolutions depending on the increasing bubble Reynolds number. In any case, the resolution requirements to get physically-sound results have always been fulfilled, as highlighted in table 2.

We have focused in this work on the liquid agitation induced by bubbles within the swarm. Yet, since the problem is non-homogeneous in the vertical direction and non-stationary, particular care must be taken in the procedure used to compute the observables, and we have therefore performed a careful analysis in 2D to prepare the As detailed in Appendix C, we have found that the spectra are independent of time, over almost the whole time-window considered. In particular the spectral slope appears rather constant, when the bubbles have entered and not yet left the interrogation window.

Furthermore, no appreciable difference is found between the horizontal and the vertical spectrum, showing that both components dynamically distribute the energy in a similar manner. We can then write that the 1D spectrum is E(k) = S ii without compromise.

We compare the spectra at different Ar numbers, at the same time t = 15, as shown in figure 2. Time is always made non-dimensional with the bubble buoyancy time d b /g.

In all cases spectra are compatible with a scaling E(k) ∼ k -3 in a range around the diameter scale. At small scales, a steeper scaling E(k) ∼ k -4 is found also in all cases, which can be related to a range where viscous effects are important (Monin & Yaglom 1975). However for the case (a) this dissipative range appears to dominate over almost the whole range of scales smaller than the diameter. In case (b), the spectrum displays a -3 slope over roughly a decade, while for the highest Ar number the range appears even larger. Moreover, we observe for the (b) and (c) cases that around the bubble diameter there is a crossover and the spectrum is flatter at larger scales with a slope close to -5/3.

To check the statistical robustness of our analysis, we have repeated the simulation of the case at Ar = 313 with periodic conditions in both directions. In this case, the flow is statistically homogeneous in all directions, and after a transient a steady state is attained.

Therefore both spatial and time averages are taken. The periodic simulation confirms the results obtained in the unsteady case. In particular, a k -5/3 scaling is obtained at scales larger than the bubble diameter. The k -3 scaling appears to be present at scales smaller than the bubble diameter and then a steeper slope typical of a viscous range is found. The k -5/3 suggests the presence of an inverse cascade, typical of two-dimensional turbulence Boffetta & Ecke (2012), as confirmed by the negative kinetic-energy flux displayed in appendix C.

In Figure 3 we show the vorticity field in the space-window that has been used for the evaluation of the spectra at a fixed time t = 15. The visualisation allows to link the statistical spectral properties to the actual dynamics of the flow. The bubbles are a source of vorticity, which then creates the trailing wakes. We observe that at Ar = 100, the interaction between the wakes exists but is small, notably in the upper part of the window. The plot for Ar = 140 clearly suggests a stronger interaction between bubble wakes, and the vorticity field is diffused through non-linear interactions. The case at Ar = 313 is similar to the Ar = 140, but the strong interaction between wakes and the presence of dynamics at smaller scales are even more visible, with thin unstable vorticity filaments released behind the bubbles. The nonlinear wake interactions are clearly dominant here and bubbles follow quite intricate paths. Although a k -3 scaling has been found in all cases, the present results show that in case (a) the spectrum is basically related to the coherent structures of the wakes. In contrast to the other two cases, because of the higher Reynolds number, the agitation induced by bubbles starts to play an important role. Notably bubble dynamics lead to an injection of energy and vorticity at the scale of the bubble diameter, and energy is transferred towards different scales. In both cases at Ar = 140 and Ar = 313 these interactions are significant enough that an inverse cascade of energy towards large scales could be triggered, as suggested by the -5/3 scaling of the spectrum.

In figure 4 interactions at higher Ar lead to more intricate paths. While the vertical PDF appears a little less skewed at higher Ar, the difference is within statistical errors. It is worth noting nonetheless that this PDF is a global one-point statistical observable, and the link between it and instantaneous geometrical differences is not straightforward.

From a statistical point of view, the PDFs show unambiguously that results obtained in the unsteady régime are statistically robust, provided the analysis is performed well within the swarm. In our case, this happens starting at about t = 13 for all Ar numbers, for the region z = [15 -20]. After that time, results are basically frozen for some characteristic times, that is up to the early decay régime, that is when all bubbles have left the region of observation. Furthermore, we have verified that results are statistically the same if the window z = [20 -25] is used, as for spectra. Of course, smoother profiles are obtained in the steady case because of the time-averaging.

These results have been used to build the 3D simulation described in the following section.

Three dimensional bubble column

The 3D bubble column is a direct extension of the previous 2D numerical experiments:

the cubic tank, of size 50d b × 50d b × 50d b , is filled with a liquid and 256 initially spherical bubbles are placed at the bottom within a region whose height is about 5d b . The bubbles are homogeneously distributed in the lateral directions x, y, while avoiding any initial bubble overlap, and with a minimum separating distance of 1 diameter. This results in a local volume fraction in the region 0 z 7 of φ 1%. The domain is closed at the bottom by a wall (no-slip boundary condition), and an outflow boundary condition is used at the top, while on the lateral sides the domain is periodic. At t = 0 both the liquid and the bubbles are at rest. The dimensionless characteristic numbers of our numerical experiment are the following: Ar = 185 ; Eo = 0.28 ; ρ l /ρ b = 800 ; µ l /µ b = 100. The configuration is in many respects very close to that investigated experimentally by [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF]. Following the 2D analysis, the Ar has been chosen large enough to trigger important nonlinear interactions. The Reynolds number is not well defined because of the unsteadiness, still a typical order of magnitude is Re b ∼ 500. This is in line with the results obtained with a single-bubble and imposing the same parameters (Appendix B).

From the numerical point of view, an adaptive mesh has been used with a maximum possible refinement of N = 4096 cells in each direction, meaning a maximum resolution in terms of the bubble diameter of d b /∆ = 82. The grid is refined or coarsened relying on the errors on the volume fraction and on the velocity components, using as absolute thresholds for the refinement the values e f = 0.01 and e v = 0.003, based on the analysis detailed in Appendix B. With such criteria of refinement it is possible to have the desired grid resolution in the regions where bubbles are present and where wakes develop, while in the remaining part of the domain where there is no agitation the grid is left coarser.

The total number of computational cells grows in time because of the elongation of the wakes, starting from N tot 10 7 , and attaining N tot 9 • 10 8 at t = 12. Note that using a non-adaptive mesh would require 4096 3 ≈ 69 × 10 9 grid points, which is beyond present computational capabilities. With respect to experiments we analyse the dynamics of a thin layer of bubbles rather than of a full swarm. As anticipated in the introduction, it turns out to be computationally too heavy to follow more bubbles than that. The present numerical experiment is therefore basically the best that can be done in simulating bubble column configurations today.

At a qualitative level, Figure 5 shows the instantaneous motion of the bubbles at an early stage of the rising. The vorticity generated by the bubbles is included in elongated wakes. At this time, the transient has approximately finished and the thin layer of bubbles has stabilised to a width of about 7d b .

In the same Figure 5 (right panel) we can see a lateral 2D projection of the domain showing bubble positions at t = 6 and at t = 9, that is the last time used for the statistical analysis. The same procedure as in 2D has been followed to acquire data and compute observables, with an interrogation window composed by the horizontal planes between z = 22 and z = 25, see Figure 5.

We have acquired the data from each cell in this domain, i.e. considering both phases, and used them to compute the statistics in the time-range t ∈ [8.6, 9.2]. That approximately corresponds to the range over which bubbles are present in the whole window.

More specifically, at t = 9.4 only few bubbles are still present, and the statistics computed at t = 9.6 turn out to be already strongly damped, as in earlier studies fluctuations are rapidly (exponentially) attenuated behind the swarm (Risso 2018). In this time range, statistics are found to be roughly homogeneous in the interrogation window. We have therefore averaged over this space window to get better statistics, as done in 2D. Statistics have been found to be also approximately steady in the time range considered, but with significant fluctuations and we have preferred to avoid time-averaging. Such a choice for the statistical analysis region excludes the initial transient régime that concerns only the first few times.

We display in figure 6 the Probability Density Function of the vertical z and horizontal x velocity fluctuations (the y component does not present appreciable statistical differences with respect to the x component). As in 2D, the velocity fluctuation field is computed at each z subtracting the average velocity computed over the corresponding plane u = U -U z . We find the same characteristics reported in experiments [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF], against which results are compared. The vertical velocity is strongly skewed, indicating a more important probability of having positive fluctuations, while the horizontal components are symmetric. Furthermore, both components are non-Gaussian, which is related to the complex features of the bubble-induced agitation. The agreement between numerical simulations and experiments is globally good. Yet in the numerical experiment the extreme events tend to be more frequent than in experiments, and exponential tails are found for σ 3. This may be related to the fact that the flow is here unsteady, and experiments may be under-sampling extreme events because they plausibly filter the smallest scales, and to the different measurement protocol. Since the PDF of both components have been measured only in the experiments by Riboux et al. (2010), it is difficult to conclude. Finally, with respect to the 2D case, Fig. 4, the PDF is more skewed in 3D. That is consistent with what is observed in experiments in a swarm confined in a thin gap [START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 2. liquid dynamics[END_REF], although the wall friction effect is important there and thus the comparison is not conclusive.

In figure 7, we present the spectrum of the kinetic energy computed in the same window. To compute the spectra, we have interpolated the data on a regular grid. To avoid spurious errors, we have eliminated the highest wave modes, so that spectra are calculated for 512 modes, although the maximum refinement is up to 4096 points. As for 2D simulations, we have computed the spectrum at different times (not shown here), and we have found very little difference if spectra are computed at those times when bubbles are present in the plane used for the computation. When the bubbles have left the spatial region under investigation for a few characteristic times, agitation then decays rapidly, and an exponential fall-off is recorded. A departure from DNS only appears at small scales around 1/10d b , plausibly because of the lower resolution (256 points used in LES against 4096 used in the DNS here).

The other simulation at Ar = 113 seems instead to decay faster at all scales. We compare the results also against experiments. It can be observed that numerical and actual experiments do not investigate the same scales. Experiments are able to access a much larger domain, and they suggest that the k -3 scaling might be valid over a larger range than what is displayed in our results. On the other hand, numerical simulations appear to be more adequate to analyse accurately the small scales, where a possible change of slope from the Kolmogorov one is not recorded. It is moreover important to note that in experiments spectra are computed just behind the swarm, and not within it as in simulations. This may have an effect at small scales.

In order to qualitatively complement this analysis, we show in figure 7 (right) the vorticity field on the same plane used to compute the spectra. This field highlights the position of the bubbles and the generation of vorticity at the scale of the diameter and slightly more. Several bubbles are still present at this time. In some cases it is apparent that different vortices have interacted, producing more complex structures.

While energy spectra contain key information about the flow, they cannot be used to disentangle the different mechanisms leading to the observed scalings, and a scale-byscale analysis can be particularly useful (Alexakis & Biferale 2018). For that purpose, we apply a coarse-graining approach [START_REF] Duchon | Inertial energy dissipation for weak solutions of incompressible euler and navier-stokes equations[END_REF]Eyink & Sreenivasan 2006b) linked to the filtering approach used in Large Eddy Simulations (Germano 1992), and recently applied to different turbulent configurations (Chen et al. 2006b;[START_REF] Xiao | Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation[END_REF][START_REF] Faranda | Computation and characterization of local subfilter-scale energy transfers in atmospheric flows[END_REF]Dubrulle 2019;Valori et al. 2020). More specifically, we have applied this methodology to the velocity field, obtaining informations about the energy flux and the dissipation. The advantage with respect to a spectral approach is that one can gain details also on the locality of the cascade, differentiating regions with positive or negative fluxes. Moreover, this spatial filtering approach is positive-definite and local in space, and can therefore be applied also in non-homogeneous flows.

In this filtering approach, the dynamic velocity field u is spatially (low-pass) filtered over a scale to obtain a filtered value u (x): By applying the filtering to the Navier-Stokes equations for the liquid phase we obtain the coarse-grained dynamics

∂ t u + (u • ∇)u = -∇p -∇ • τ + ν∇ 2 u (6.2)
Since we focus on the liquid agitation, we neglect the gravity contribution, which acts as power injection through bubbles. In the same vein, at interfaces surface tension and density effects play a role. However, few bubbles are present in the analysed region, so that the impact should be small and we may retain the single-phase formulation given by Eq. (6.2). Furthermore, we are mainly interested at understanding whether a cascade process is active. To address this issue, the key term is given by τ subscale stress tensor (or momentum flux), which describes the force exerted on scales larger than by fluctuations at scales smaller than . It is given by: (τ ) i,j = (u i u j ) -(u ) i (u ) j (6.

3)

The corresponding point-wise kinetic energy budget reads ∂ t 1 2 |u| 2 + ∂ j q j = -Π -ν|∇u| 2 . (6.4)

where we have dropped the subscript whenever unambiguous for the sake of clarity, and (6.5) where q is the transport term, and Π is the sub-grid scale (SGS) energy flux. This term is key since it represents the space-local transfer of energy among large and small scales across the scale . The term Π identifies the presence of a local direct (positive) or inverse (negative) energy cascade according to its sign. The last term in Eq. (6.4) represents the coarse-grained dissipation = ν|∇u| 2 . If a spatial average is done for different values of the filter width, one can find the average transfer of energy at each scale. Since our configuration is non-homogeneous in the vertical direction, the transport term q j in Eq. (6.4) is not zero. Yet, this term is related to spatial redistribution of energy and not directly linked to the cascade process, contrarily to Π and . For this reason, we have not analysed those terms.

q j = 1 2 |u| 2 + p )u j + τ ij u i -ν∂ j 1 2 |u| 2 ; Π (x) ≡ -(∂ j u i )τ ij ,
In this work, we have applied a Gaussian filter defined as: G(r) = 6 π exp(-6r 2 ), (6.6) as typically used in LES (Pope 2000). Since the flow is homogeneous in the horizontal direction, the filtering can be efficiently performed in spectral Fourier space, multiplying the quantity to be filtered by the Fourier transform of the filter G (k) = exp(-k 2 2 /24), (6.7)

and then transforming back into physical space.

In figure 8, we show the fluxes computed from the coarse-grained quantities defined in Eq. (6.5). It is worth emphasising that fluxes are averaged in space but not in time.

The physical features which unfold are the following: showing that fluctuations are mostly dissipated inside the small structures generated by bubble wake-interactions. At smaller scales than the diameter, there is a range where W diss ≈ W b , which means ν(δu ) 2 2 ∼ φgU b , where we have considered the two-point quantities δu = u(x + )u(x). This gives the scaling behaviour δu 2 ∼ 2 , which means in spectral space E(k) ∼ k -3 . We obtain here the scaling with an argument similar to that used by [START_REF] Lance | Turbulence in the liquid phase of a uniform bubbly air-water flow[END_REF]; [START_REF] Prakash | Energy spectra in turbulent bubbly flows[END_REF], yet in the physical space rather than in the spectral one. The fact that Π changes sign shows that both a direct and an inverse transfer of energy through non-linear terms are active, and dominate at different times. On average the transfer is more towards small scales, but the inverse process is not negligible. The co-presence of direct and inverse cascades intermittently is a feature also of fluid turbulence [START_REF] Chorin | Vorticity and turbulence[END_REF]. While the direct transfer is linked to dissipation, the inverse one is related to the formation of the wakes, which are found to develop up to some characteristic lengths. To further understand the mechanisms indicated, we show in figure 8 a slice of the energy flux at two different scales: half the diameter and a smaller scale. The pictures show that the energy flux and dissipation are concentrated in the wakes generated by the bubbles. Furthermore these structures, initially at the scale of the diameter, may become a little larger, indicating the generation of larger eddies, and are eventually dissipated at small scales, where the imprint of the bubbles is still detectable.

Conclusions

We have numerically investigated buoyancy-driven bubbly flows, focusing on the agitation induced by the bubbles on the fluid. The purpose of the study was to characterise the physics of the collective motion induced when many bubbles rise under the sole effect of gravity. We have carried out several 2D and 3D preliminary tests and the first high-resolution direct numerical simulation of a 3D realistic bubble column.

We have first extensively investigated the interplay between the numerics and the physics of bubbly flows at moderate and high Reynolds numbers in order to properly set numerical parameters compatible with a reliable description of the flow. To do so, we studied different configurations and compared the results with recent studies made using different interface advection methods. These numerical experiments have shown on the one hand that the physical parameters, and most notably the density ratio of the two fluids, may affect the results both qualitatively and quantitatively. On the other hand, to be sure to have solution at convergence, the spatial resolution should be increased when increasing the Re number. In particular, to carry out a DNS it seems necessary to fulfill the following criteria: Given the numerical constraints which do not allow a parametric DNS study of a high-Reynolds flow in three dimensions, we have rather performed a comprehensive analysis of the agitation in a two-dimensional bubble column at moderate and high Reynolds numbers with a volume fraction of about 5% in the bubble layer, in order to prepare a three-dimensional study. Both unsteady and steady numerical experiments have been carried out. In this configuration, we have analyzed the velocity fluctuations and find different behaviour for different Reynolds numbers, even if the -3 slope of the spectra seems to be a robust feature of this type of flow, also in 2D. That highlights that the same spectrum is consistent with different mechanisms. At higher Archimedes number, the nonlinear interactions start to play an important role, and in particular the presence of an inverse cascade at scales larger than the diameter has been found for flows at Ar number higher than 100. Indeed, at larger scales than the diameter, where the dissipation is negligible, the energy budgets is Π ∼ W b ≈ φgU b which gives the Kolmogorov scaling δu 2 ∼ 2/3 , or E(k) ∼ k -5/3 , typical of an inverse cascade. As expected, PDFs show a strong anisotropy of the fluctuations in the vertical direction, while horizontal fluctuations are symmetric. The 2D simulations have indicated that the statistics obtained in unsteady simulations are accurate, provided the space window used to analyse the data is well chosen. We have provided all the criteria to be fulfilled to get a reliable numerical experiment. Besides the main numerical relevance, the configuration may have some similarity to that investigated experimentally in a confined two-dimensional configuration [START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 1. bubble dynamics[END_REF][START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 2. liquid dynamics[END_REF].

Then, on the basis of the results obtained in the first part of our work, we have performed a single numerical experiment of a 3D bubble column at Ar = 185, which corresponds to a Reynolds number consistent with experiments (Re ≈ 500). First we have observed that the one-point PDF of the velocity fluctuations in numerical simulations are in agreement with those obtained experimentally [START_REF] Riboux | Experimental characterization of the agitation generated by bubbles rising at high reynolds number[END_REF]Risso 2018).

However the tails related to rare events (> 3σ from the mean) are more pronounced, with an exponential decay, than in the experiments where they are more Gaussian. It is difficult to say if this discrepancy is due to the strong unsteadiness of the flow, or to a smoothing of extreme events in real experiments because of the different measurement procedure.

The energy spectra have also been analysed and compared with recent numerical simulations performed at low resolution and low density ratio. We have found a k -3 scaling over a decade of scales smaller than the diameter, and possibly at scales just a little larger. We have not found any hint of a Kolmogorov k -5/3 scaling neither at large or small scales. Comparison with experimental spectra do not add much insight, and

indicates that experiments are more useful to analyse large scales, whereas simulations are better fitted for the small ones.

We have shown through a scale-by-scale analysis in physical space that the spectra are related to a nonlinear cascade mechanism, and do not reflect only the presence of wakes. Indeed we have found that a flux of turbulent kinetic energy is present in the range of scales going from 2d b up to d b /20, where dissipation becomes dominant.

In this range the balance between the flux of energy and the dissipation explain the k -3 scaling. Interestingly our unsteady numerical experiment highlights the presence of instantaneous fluxes in both directions indicating the tendency to create locally larger structures around the bubbles, even though on average the energy is injected around the bubble diameter scale and mostly transferred to smaller scales where it is eventually dissipated. Considering both 2D and 3D results, it can be inferred that in all cases an agitation is produced by the geometrical structure, as modelled by Risso (2011), while a nonlinear cascade process is superimposed at high Ar. An important result of our work comes also from the comparison with the recent simulations by Pandey et al. Concerning future developments. In this work we have focused on liquid agitation properties, but bubble properties deserve to be studied as well, as done in experiments [START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 1. bubble dynamics[END_REF]Risso 2018). We have been performing the Lagrangian tracking of the bubbles, and notably it would be relevant to get insights on the bubble distribution within the flow. We hope to have mature results in the future. With respect to simplified physical modelling [START_REF] Risso | Physical interpretation of probability density functions of bubble-induced agitation[END_REF](Risso , 2018)), we plan to carry out steady simulations at different

Re numbers to analyse some assumptions that could not be assessed in the present framework. It would be also interesting to analyse the budgets of the momentum and energy equation in relation to the development of two-fluid models, that is Reynolds-Averaged Navier-Stokes (RANS) [START_REF] Drew | Mathematical modeling of two-phase flow[END_REF][START_REF] Biesheuvel | Two-phase flow equations for a dilute dispersion of gas bubbles in liquid[END_REF][START_REF] Drew | Theory of multicomponent fluids[END_REF]. Indeed, this is an important ongoing research for applications, and issues concerning both the stability and the quality of the models remain to be addressed [START_REF] Prosperetti | The linear stability of general two-phase flow models?ii[END_REF][START_REF] Tiselj | Modelling of two-phase flow with second-order accurate scheme[END_REF][START_REF] Davidson | Numerical calculations of two-phase flow in a liquid bath with bottom gas injection: the central plume[END_REF][START_REF] Song | The one-dimensional two-fluid model with momentum flux parameters[END_REF][START_REF] Panicker | On the hyperbolicity of the two-fluid model for gas-liquid bubbly flows[END_REF][START_REF] Cluzeau | Analysis and modelling of reynolds stresses in turbulent bubbly up-flows from direct numerical simulations[END_REF][START_REF] Moore | Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes[END_REF][START_REF] Cluzeau | On bubble forces in turbulent channel flows from direct numerical simulations[END_REF][START_REF] Cluzeau | On bubble forces in turbulent channel flows from direct numerical simulations[END_REF]. Finally, it would be interesting to make a comparison with the somewhat similar yet different problem of the dynamics of solid finite-size particles. So far, the research has focused on suspensions of small particles [START_REF] Guazzelli | A physical introduction to suspension dynamics[END_REF] or large particles in media of similar density [START_REF] Kidanemariam | Direct numerical simulation of pattern formation in subaqueous sediment[END_REF][START_REF] Picano | Turbulent channel flow of dense suspensions of neutrally buoyant spheres[END_REF]. The different boundary condition on the interface should make a difference.

Bubble deformability constitutes another key element [START_REF] Clift | Modelling of the laminar dispersion force in bubbly flows from direct numerical simulations[END_REF], but for instance in the régime investigated in the present work the impact should be small. Table 5: Final Re for the 3D-oblique test case. For the last oscillating case we have reported the average over the last steps, so the comparison is to be considered qualitative. The number of mesh points is plotted against time. It should be noted that the number of points is approximately steady for the two coarser resolutions, while it is growing rapidly for the most refined resolution. numerical asymmetry. For the same reason, while we expect a quantitative agreement in the direction of gravity, the other two components can share the energy in a different way, provided that this is compatible with the symmetry of the problem. As shown in Table 5, the steady value of the different components of the bubble Reynolds number is in excellent agreement for cases (a) and (b), while in case (c) where a steady régime is not reached the agreement is more qualitative. The oscillation periods appear also to be in qualitative agreement.

a characteristic rise velocity also of order unity, and a maximum time for the simulation comparable to the domain size. In this régime, it turns out that bubble trajectories are between the rectilinear and chaotic régimes, as found in the original paper (Cano-Lozano et al. 2016a). We have simulated the bubble rise with three different grids, namely varying the threshold of the error tolerance, fixed at err v = 0.001; 0.003; 0.01, in absolute value.

This threshold controls the local refinement of the grid (van Hooft et al. 2018). In Fig. 10a, we show the evolution of the rise velocity of the bubble, which is given by the Reynolds number in dimensionless form. The two low-tolerance grids show very little difference (less than 1%), whereas for the highest-tolerance grid the difference is of the order of 5%. This indicates that the three grids are sufficient to get a qualitative reproduction of the physics of the problem but that only the two more refined are at convergence.

In figure 10b, we display the evolution of the number of grid points with time for the three different grids. This gives a measure of the computational cost of each setup. From figure 10a, we can see that a transient is present with a duration of about 8 ÷ 10 unit times. Results show that an over-refinement of the bubble is present for the lowest error threshold. We have therefore found that convergence is reached with N M ax = 2 12 , such that the maximum refinement is of 82 points per diameter, with an error threshold of 0.003 (absolute value) in the velocity. This resolution has hence been chosen for the final 3D bubble column simulation.

B.2. Coalescence

We have studied from a qualitative point of view the coalescence of two bubbles in relation to density ratio and grid refinement. This is a vast area of research [START_REF] Liao | A literature review on mechanisms and models for the coalescence process of fluid particles[END_REF]) and a detailed analysis of this issue is out of the scope of the present work.

Yet, in the concentration régime studied in the present work (φ < 5%) coalescence and break-up have a negligible effect [START_REF] Jha | Interaction of a vortex ring with a single bubble: bubble and vorticity dynamics[END_REF], and it is therefore important to have some control on this process to avoid spurious effects. In particular, it is known that VOF methods tend to make coalescence too easy (Scardovelli & Zaleski 1999), if numerical parameters are not well chosen. Here we consider for this purpose two bubbles in a two-dimensional box of side 20 times the diameter of the bubbles with periodic boundary conditions. The physical parameters are fixed in such a way that dimensionless numbers are Ar = 30, Eo = 0.1 and µ b /µ l = 100. We consider two bubbles, one on top of the other, initially at rest in a quiescent fluid. The top bubble is at 0.75 diameter from the bottom bubble. The situation is somewhat similar to that encountered by bubbles at the initial stage of our bubble-column simulations. They start moving because of buoyancy which induces vorticity fluctuations and creates wakes. We shall consider our numerical approach satisfying if coalescence is avoided. We have first fixed the density ratio ρ l /ρ b = 1000, and varied the resolution with different grids. We have found that convergence is attained with N Max = 2 12 , since the results are the same as those obtained with N Max = 2 13 . Using N Max = 2 11 instead the coalescence occurs (results not shown here). Two instants for the maximal resolution are displayed in the bottom of the figure 11. Then, we have assessed the influence of the density ratio. We have chosen the finest resolution N Max = 2 13 to be sure to avoid any discretisation effect. In figure 11, we show two instants of this dynamics, displaying also the vorticity field, for two different density ratios. Notably in the left column, we display the results obtained for a density ratio of ρ l /ρ b = 100, for which coalescence happens. In the right column, we show the same case but with a density ratio of ρ l /ρ b = 1000. As said previously, in this case coalescence does not occur. We have investigated different density ratios in the range ρ l /ρ b ∈ [10, 1000] (not shown here for the sake of clarity), and it turns out that in our particular set-up the threshold for avoiding the coalescence is about ρ l /ρ b = 200.

Appendix C. 2D pseudo-turbulence: complements

In figure 12 We have observed in Fig. 2 a possible k -5/3 range at large scales in the spectra of the 2D case at high Ar. The scaling range is however tiny, and therefore to corroborate the claim of an inverse cascade we show in Fig. 13, the scale-by-scale energy-flux, as defined in the discussion of the 3D results, see Eq. (6.5). The flux turns out to be negative at scales larger than about half of the diameter. That is in line with the spectra, confirming the presence of an inverse cascade, as already found in recent simulations of a 2D mixture at very low density ratio [START_REF] Ramadugu | Pseudo-turbulence in twodimensional buoyancy-driven bubbly flows: A dns study[END_REF] 
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 2 Figure 2: A typical swarm of rising bubbles in the sea.

Figure 1

 1 Figure 1.1: Turbulent water axisymmetric jet directer downward into water. The Reynolds number is approximately 2300. Dimotakis, Lye & Papantoniou, 1981 (image taken from Van Dyke (1982)).
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 12 Figure 1.2: The energy cascade according to the Kolmogorov 1941 theory.

Figure 1 . 3 :

 13 Figure 1.3: Diagram of the energy cascade at very high Reynolds number.
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 1 Figure 1.4: The energy cascade in equilibrium 2D homogeneous and isotropic turbulence, assuming a single source of forcing at an intermediate scale f .
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 15 Figure 1.5: Boundary layer separation around a bluff body (Newman 1977), showing the behavior of the flow velocity and its derivatives as a function of the cross-wise coordinate at different stream-wise positions.
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 16 Figure 1.6: Sketch of plane two-dimensional shear flow showing the characteristic flow width δ(x), the characteristic convective velocity U c and the velocity difference U s .
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 2 Figure 2.1: Winds flowing across topographic low points of Mexico and Central America drive upwelling in the gulfs of Tehuantepec, Papagayo, and Panama. This upwelling brings nutrients to the surface waters thereby fueling phytoplankton growth in this part of the Pacific Ocean. Ocean color map reflects the abundance of chlorophyll, which is a proxy for the plankton concentration. Illustration from data collected by the VIIRS instruments on the Suomi-NPP and NOAA-20 spacecraft on January 30, 2021.
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 2 Figure 2.2: Power spectrum of the passive scalar in turbulent flow at large Schmidt number.
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 23 Figure 2.3: The potential F(u) at increasing values of v (indicated on the right side of the potential). (b) Two typical trajectories in the phase space (u, v) (image taken from [Meron 1992]).
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 31 Figure 3.1: Stencils for different scalar and vector fields. The shaded cell corresponds to the current one, the symbol ⊗ placed at the center of the cell, cell face or cell vertex is associated to the index [0, 0, 0] in the local stencil.
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 3 Figure 3.2: (a) Illustration of the hierarchic structure in a multigrid. (b) Example of quadtree discretisation and corresponding tree representation.
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 3 Figure 3.3: Step-by-step diagram of the algorithm.
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 41 Figure 4.1: Geometrical flux estimation.
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 5 Figure 5.1: Step-by-step diagram of the prediction-correction algorithm.

Figure 5 Figure 5

 55 Figure 5.2: Time-dynamics of some observables in the irreversible NS and then switched in the Reversible model for the resolution N = 128. (a) Time-dynamics of Enstrophy Ω normalized by its average value. In the reversible model the enstrophy is kept constant. In the inset, the case at constant Kinetic energy is shown. Time is normalised with the large-scale (integral) characteristic time-scale. (b) Time-dynamics of fluctuating viscosity and its running time-average for the RNS run at constant Enstrophy. In the inset, the same quantities for the RNS run at constant energy. (c) Visualisation of the vorticity field at a given time for the NS and RNS (d), at constant enstrophy.

Figure 6

 6 Figure 6.1: Time-dynamics of some observables in the irreversible NS and then switched in the Reversible model. (a) Comparison between the time evolution of dissipation rate ε in the irreversible NS and the reversible RNS model for different Reynolds numbers. Time is normalised with the large-scale (integral) characteristic time-scale. The case at R λ = 100 is very similar to the R λ = 30 one and is not shown for the sake of clarity. (b) Time-dynamics of Enstrophy Ω normalized by its average value at the highest R λ . In the reversible model the enstrophy is kept constant. In the inset, α normalised by the constant viscosity value is show at different Reynolds numbers. (c) Visualisation of the vorticity field for the NS (left panel) and RNS right panel. The 3D are obtained with the λ 2 criterion. The snapshots are the vorticity field at a given time at the centre of the cube.
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 62 Figure 6.2: Test of equivalence: (a): running average of the ratio between the second statistical moment and fourth moment of the reversible model with respect to the irreversible one at R λ = 300. In the left inset, comparison of the same moments for NS (closed symbols) and RNS (open symbols) as a function of the Reynolds number. Right inset: Same moments of a velocity field component pertaining to the large scales, only the k = 3 mode of the Fourier transform of the field is taken. (b) Time-average of the energy spectrumE(k, t) ≡ 1/2 k ¯|u(k ¯, t)| 2 ,at different Reynolds number for the irreversible and reversible models. In the inset the normalised auto-correlation in time of the velocity for both NS and RNS ρ(t) = u(t 0 )u(t 0 + t) /σ u , at R λ = 300.

Figure 6

 6 Figure 6.3: (a) Scale-by-scale flux of energy normalised by the mean dissipation-rate. (b)Scaling exponents extracted through ESS procedure[Benzi 1993] of the structure functions up to order 6 (Details in the supplemental). Data obtained for shell models from[De Pietro 2018] are also shown. ISM corresponds to NS, and RSM to RSN. Inset: example of comparison for the 4-th order.

  r) where G is a smooth filtering function, spatially localized and such that G ( r) = -3 G( r/ ) and G satisfies d r G( r) = 1, and d r | r| 2 G( r) = O(1). The results of the flux for the different numerical experiments are displayed in Fig 6.3a up to scale = 2π/256. The global behaviour is the same as obtained in analogous pseudo-spectral simulations

Figure 6

 6 Figure 6.4: Probability density function of α. As in the previous figures, filled symbols are for NS and void symbols for RNS. The insets on the left show the corresponding typical time evolutions of α at R λ = 300.
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 6 Figure 6.5: Test of equivalence: One-point pdf of the velocity field at different Reynolds number for both models.

Figure 6

 6 Figure 6.6: Log-Log plot of the structure functions S p (r) for p = 2, 4, 6. Both irreversible and reversible dynamics are displayed at (a) R λ = 30, (b) R λ = 300.
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 6 Figure 6.7: ESS of the structure functions S p (r) for p = 2, 4, 6. Both irreversible and reversible dynamics are displayed at (a) R λ = 30, (b) R λ = 300.
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 6 Figure 6.8: Third-order Structure function S 3 (r) for the NS at R λ = 300 with the power law exact relation coming from the 4/5 law. Inset, compensated plot, S 3 (r)/r.

  0.68 ± 0.04 0.68 ± 0.04 0.69 ± 0.04 0.69 ± 0.04 0.70 ± 0.03 0.70 ± 0.03 3 0.99 ± 0.05 0.99 ± 0.05 0.99 ± 0.04 0.99 ± 0.04 0.99 ± 0.03 0.99 ± 0.03 4 1.30± 0.07 1.30 ± 0.07 1.29 ± 0.05 1.29± 0.05 1.28± 0.04 1.28 ± 0± 0.1 1.56 ± 0.06 1.56± 0.06 1.53± 0.05 1.53 ± 0.05 6 1.85± 0.15 1.89 ± 0.15 1.81 ± 0.08 1.81± 0.08 1.77± 0.07 1.77 ± 0.07 Table6.2: Estimate of the global scaling exponents, out of ESS figures. Error bars are computed by summing the uncertainty in the fit and by changing the scaling range in the interval r ∈ [10 : 200]η, where the global exponent is evaluated.

  Scaling exponents of the structure function of the velocity extracted through the ESS procedure for the NS, RNS and the RNSbis simulation.
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 69 Figure 6.9: Comparison between NS, RNS and RNSbis simulations.
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 71 Figure 7.1: Examples of representative marine eukaryotic phytoplankton. Light micrographs of living cells and scanning electron micrographs of dried and coated marine phytoplankton. (A) A chain of the diatom Stephanopyxis nipponica. (B) A single valve of the diatom Thalassiosira pacifica. (C) The large, tropical coccolithophore Scyphospahaera apsteinii. (D) An overlapping pair of phycomas of Pterosperma moebii. ( E ) A clump of coccospheres of Gephy-rocapsa oceanica. ( F ) The athecate dinoflagellate Karlodinium micrum. ( G ) The thecate dinoflagellate Lingulodinium polyedra (flagella missing). Photographs: (A, C, D, F) F. J. R. Taylor; (B) E. Simons; (E) G. Hallegraeff; and (G) G. Gaines.

Figure 7

 7 Figure 7.2: (a) A schematic view of the transfer of nutrient molecules into a microbial cell. (b) Nutrient transfer by molecular diffusion: N ∞ is the concentration far from the cell, just outside the cell is N o , and inside the cell is N i . The flux is proportional to the molecular diffusivity κ and r is the radius from the centre of the cell (image taken by [Williams 2011]).
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 73 Figure 7.3: Patches of dominant types of phytoplankton, identified from 8-d SeaWiFS composite by the PHYSAT algorithm during the spring bloom. Colors indicate diatoms (green), Prochlorococcus (red), Synechococcus (dark blue), nanoeukaryotes (yellow), Phaeocystis (magenta), and coccolithophorids (cyan) (image from [d'Ovidio 2010]).

Figure 7 . 4 :

 74 Figure 7.4: Spatial and temporal scales of physical processes occurring in the ocean. The dashed lines indicate the approximate inferior limits of temporal and spatial scales that ca be resolved by an altimeter of type TOPEX/POSEIDON (image from [Rogé 2018]).
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 75 Figure 7.5: Vorticity field ω (a, c) and phytoplankton density P (b, d) at t = 230 (top panels) and t = 300 (bottom panels) at Re = 20000. In the left column the blue color stands for clockwise circulation and the red color for counterclockwise. The colorbar refers to the panels in the right column.
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 76 Figure 7.6: Population densities of phytoplankton P and zooplankton Z, averaged in space and normalized by the corresponding equilibrium values, in the absence (a) and in the presence (b) of flow (at Re = 400).In the right panel the perturbation is introduced at t * = 110. In the corresponding inset the Z curve is shifted above, to superpose it to the P curve, to highlight the delay of the zooplankton growth with respect to the phytoplankton one also in the presence of a flow.
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 7 Figure 7.7: Phytoplankton population, averaged in space and time, as a function of the ratio between the transport and the biological activity time scales ε, for two values of the predation efficiency γ at Re = 400.

Figure 7

 7 Figure 7.8: (a) Root-mean-square fluid velocity u rms and (b) spatially averaged phytoplankton density P , normalized by the equilibrium value P eq , versus time for increasing Re numbers. In the right panel, the phytoplankton patch is introduced at t * = 110.

Figure 7

 7 Figure 7.9: (a) Spatial spectra of phytoplankton and zooplankton fluctuations E S (k) (with S = P, Z), and spectra of velocity component fluctuations E(k) (inset) at Re = 20000. All these spectra are normalized by the value corresponding to k d , the wavenumber associated with the obstacle diameter d. The spectra are computed along the y-direction and then averaged for 1.5d ≤ x ≤ 10d and 150 ≤ t ≤ 300. (b) Power spectra in the frequency domain E(f ) of longitudinal velocity u x and phytoplankton fluctuations at Re = 20000, normalized by the value corresponding to f d . Note that f d = n/St, where n is the vortex-shedding frequency.
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 7 Figure 7.10: Transects of time-averaged (in the range 150 ≤ t ≤ 300) phytoplankton density, normalized by the equilibrium value, P /P eq , at the center line y/d = 0 for Re = 400 and Re = 20000. Inset: ratio ζ = β ef f / η ν 1/3 (see text), normalized by its value at Re = 400 for the three simulations (Re = 400, 2000, 20000).
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 7 Figure 7.11: Instantaneous phytoplankton P (a) zooplankton Z (b) density fields, for Re = 20000 at t = 230, in the statistically steady state.

  Figure7.12: PDF of P = P/P eq conditioned on the turbulent kinetic energy K E at Re = 20000. The different curves correspond to the PDF conditioned on increasing values of K E , as reported in the legend. In the inset the conditioned average of P is shown as a function of K E .

Figure 7

 7 Figure 7.13: Panels (a) and (b) show the phytoplankton density field P , at time t = 200 and Re = 20000, for the maximum grid-refinement levels N = 2 12 and N = 2 10 , respectively. (c) Spectra of phytoplankton fluctuations E S (k), normalized by E S (k d ), with k d the wavenumber associated with the obstacle diameter d, for Re = 20000 and N = 2 10 , 2 12 , 2 14 . In the inset, the temporal behavior of the spatially averaged phytoplankton density is shown for the same values of Re and N . (d) PDFs of the gradients, in the transversal direction, of longitudinal velocity and phytoplankton density for the simulations with N = 2 14 (DNS) and with N = 2 12 (coarse-grained DNS) at Re = 20000. All PDFs are computed from centered fluctuations, rescaled by the corresponding standard deviation. The inset reports the flatness S 4 /S 2 2 of the phytoplankton density field versus the separation / B (with B the Batchelor scale) in the transversal direction, for N = 2 12 , 2 14 .

Figure 7

 7 Figure 7.14: Visualization of the phytoplankton density field P in the vicinity of the obstacle at time t = 175 for: (a) an irregular obstacle with characteristic roughness A = 0.15, (c) a smooth cylindrical obstacle, in the same flow conditions. (b) Visualization of phytoplankton density field in the wake generated behind the rough obstacle. (d) Spectra of phytoplankton fluctuations E S (k) for the smooth obstacle and the rough one, normalized by E S (k d ), with k d the wavenumber associated with the obstacle diameter d. The spectra are computed along the y-direction and averaged over 1.5d ≤ x ≤ 10d and time. The inset shows the temporal behavior of the spatially averaged phytoplankton density for the two obstacle shapes. In all the panels the Reynolds number is Re = 2000.

Figure 7

 7 Figure 7.15: Spatial spectra of phytoplankton density and non-reactive passive scalar fluctuations E S (k), normalized by E S (k d ), with k d the wavenumber associated with the obstacle diameter. The spectra are computed along the y-direction and averaged over 1.5d ≤ x ≤ 10d and time.

Figure 8

 8 Figure 8.1: Top panels: snapshots of 3D simulation at t = 350, showing (a) the vorticity field (through the λ 2 criterion) and (b) the phytoplankton field. The cylinder surface is shown in red, while the bottom wall displays the level of mesh adaptation. Bottom panels: snapshots at t = 350 of (c) the span-wise vorticity ω z at z = 0 for the 3D case and of (d) the vorticity ω for the 2D case. The fields have been normalized such that they take values in the range [-1 : 1] for a clearer comparison.

Figure 8

 8 Figure 8.2: (a) Kinetic energy K E and drag coefficient C D (in the inset) versus time. (b) Population density of phytoplankton P , averaged in space and normalized by the corresponding equilibrium values, as a function of time. In the right panel the perturbation is introduced at t * = 200. In the corresponding inset we show the population densities of zooplankton Z vs time.
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 83 Figure 8.3: Spatial spectra of velocity component fluctuations E(k) for (a) the 2D case and (b) the 3D one. In the bottom panels, the spatial spectra of phytoplankton and zooplankton fluctuations E S (k) (with S = P, Z) are shown for (c) the 2D case and (d) the 3D one. All these spectra are normalized by the value corresponding to k d , the wavenumber associated with the obstacle diameter d.The spectra are computed along the y-direction and then averaged for 1.5d ≤ x ≤ 10d and 250 ≤ t ≤ 400. For the 3D case, the spectra are first computed on each plane z ∈ [-L/2 : L/2] and then averaged along z. In the inset of (d), the compensated spectra (with the scaling k -1 ) of P for the 2D and 3D case are shown.
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 8 Figure 8.4: Instantaneous phytoplankton P and zooplankton Z density fields for the 2D case (a),(c) and the 3D one (b),(d) at t = 350, in the statistically steady state.

Figure 8

 8 Figure8.5: (a) Profile of P population in the 3D case, averaged on xy and for 250 ≤ t ≤ 400 as a function of the vertical coordinate. (b) Profiles of P population, averaged on x and for 250 ≤ t ≤ 400. For the 3D case, the profile is averaged also on z.
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 8 Figure 8.6: Time-averaged fraction of occupied area/volume as a function of several thresholds ξ c . The inset shows the difference in percentage [φ 2D /φ 3D -1] × 100 vs ξ c .
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 8 Figure 8.7: Spatial spectra of phytoplankton density E S (k) of the 2D simulations at Re = 2000 for the two different values of Sc, normalized by E S (k d ), with k d the wavenumber associated with the obstacle diameter.

Figure 8

 8 Figure 8.8: Visualization of P field for (a) the case at Sc = 1 and (b) the case at Sc = 100.

  ; Boffetta & Ecke 2012; Alexakis & Biferale 2018). The existence of such a cascade in the pseudo-turbulence régime would help to understand the underlying mechanisms. Because the injection of energy is made via buoyancy, it is not clear a priori which scales are forced and towards which scales the energy is transferred. It remains therefore to be addressed if: (a) there is an energy cascade and in what direction; (b) whether the shape of the spectrum and then the underlying mechanisms may be traced back to the energy cascade; (c) whether the Reynolds number has any influence on the results.

  Two primary criteria are used to decide where to refine the mesh. They are based on a wavelet-decomposition of the velocity and volume fraction fields respectively(van Hooft et al. 2018). The velocity criterion is mostly sensitive to the second-derivative of the velocity field and guarantees refinement in developing boundary layers and wakes. The volume fraction criterion is sensitive to the curvature of the interface and guarantees the accurate description of the shape of bubbles. Both criteria are usually combined with a maximum allowed level of refinement. As demonstrated in previous work, using the earlier code Gerris(Cano-Lozano et al. 2016a), this strategy leads to very large savings in computational cost compared to fixed Cartesian grid approaches.

  for the Stokes flow régime. The configuration consists in a cubic array of spherical bubbles at different volume fractions. The non-dimensional numbers of the simulation are the same as in previous DNS studies, namely: Ar = 0.15 Eo = 0.38 ρ b /ρ l = 0.005 µ b /µ l = 0.01 .

( 2017 )

 2017 pointed out that for certain values of the non-dimensional parameters, bubbles can have an oblique trajectory (not aligned with gravity) at certain volume fractions, although a single bubble in the same parameter régime would follow a straight vertical path. Analytical considerations support the possibility of a non-trivial path indicating a possible transition for Ar ≈ 20. In particular three different oblique régimes have been found: (a) a steady oblique rise, (b) an oscillatory oblique rise, with a bubble oscillating around a straight oblique path, and (c) a chaotic oblique rise. Such a behaviour had been previously noticed numerically[START_REF] Sankaranarayanan | Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice boltzmann method[END_REF], but using a diffuse interface method and a small density ratio. In the present work, we have simulated the configurations corresponding to the three régimes in[START_REF] Loisy | Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction[END_REF]. The density

  Figure 1: (a) Time evolution of the bubble Reynolds number at different grid resolutions for the 3D configuration proposed by Esmaeeli & Tryggvason (1999). (b) Time evolution of the components of the bubble Reynolds number for the case of steady oblique rise, compared against the results by (Loisy et al. 2017). The Reynolds number is defined here as Re = U d b /ν, with U the vertical component of the drift velocity U = u bu , where means an average over the entire cell, while b denotes the average over the volume occupied by the bubble only.

Figure 2 :

 2 Figure 2: (a) Spectra of the vertical component of the velocity of bubbles for different Ar evaluated at the time t = 15. The vertical line corresponds to the bubble diameter. The dot-dashed line indicates the k -5/3 slope, and the dashed line the k -3 slope. (b)Energy spectrum of vertical fluctuations against k for the case Ar = 313 for both the unsteady and the steady configurations. For the steady case, the spectrum is obtained by averaging over time between t = 13 and t = 23. Lines are the same as (a).
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 3 Figure 3: Vorticity field displayed in the domain between 15 and 25 bubble diameters in the vertical direction, at time t = 15 for the different Ar cases: (a) Ar = 100 and Eo = 0.1; (b) Ar = 140 and Eo = 0.2; (c) Ar = 313 and Eo = 0.33. The colour bar is the same for the three cases and is displayed laterally.
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 4 Figure 4: PDFs of the velocity fluctuations in the lateral x (left panel) and vertical z (right panel) directions for different Ar. The steady simulation at Ar = 313 is plotted for comparison. The unsteady PDFs are shown at t = 14 for the cases at Ar = 100, 140, and at t = 20 for Ar = 313. The time are chosen such that observables are computed well within the swarm. Yet results obtained at different times are very similar. As in Fig. 2, in the steady case, time-averages have been taken in the window t = 13 -23.

  , the PDFs of the velocity fluctuations for the different cases are shown together with those obtained in the steady case. The velocity fluctuation field is computed at each z subtracting the average velocity computed over the corresponding plane u = U -U z . We have verified that keeping only the liquid phase does not change appreciably the results. From a physical point of view, PDFs are clearly not Gaussian with exponential tails, and while the horizontal one is symmetric, the vertical one is skewed, showing anisotropy of fluctuations and the particular status of the vertical direction. The PDFs obtained are similar for all the Ar studied, although it has been observed that the dynamics are different. In particular, it has been observed that stronger

Figure 5 :

 5 Figure 5: Left panel: Snapshot of the 3D simulation at t = 6 after the release (left). Time is made non-dimensional with the bubble buoyancy time d b /g. The VOF field is shown with blue iso-surfaces and the λ 2 vorticity field is shown with grey contours. The right wall displays the level of mesh adaptation, while the left panel displays the vertical component of the velocity field. Right panel: bubble positions at different times: t = 6 and t = 9.
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 6 Figure 6: PDFs of the velocity fluctuations in the lateral x direction (a), and in the vertical z (b), at time t = 9, averaged over the space window z = 22 -25. Results are compared with the experimental data by Riboux et al. (2010), for a concentration of φ = 1.7%, close to that of the numerical configuration. The points have been extracted directly from Risso (2018), and show the results obtained from measurement of the liquid agitation within the swarm. The error bars indicate the fluctuations recorded in the time-range t ∈ [8.6 -9.2].
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 7 Figure 7: Left panel: Normalised spectrum of the kinetic energy. Present results (Ar = 185 and Eo = 0.28) are displayed at t = 8.8 averaged over the space window z = 22-25. The dashed line represents the -3 slope. Data obtained by Pandey et al. (2020) are shown for comparison at two different Ar numbers. Right panel: Vorticity field for bubbles at t = 9.0 and z = 25d b .

  Fig. 7 shows that bubbles are able to generate significant fluctuations in the length range λ ∈ [10d b , 0.1d b ], before being dissipated. After the energy range λ ∈ [10d b , 1d b ], the spectrum follows a power law with a scaling E(k) ∼ k -3 in an inertial range over the decade λ ∈ [d b , 0.1d b ]. No hint of an inertial range with slope k -5/3 is observed, neither at large or small scales. For comparison, the very recent numerical results presented by Pandey et al. (2020) are also shown for two Ar numbers. It is worth recalling that these results have been obtained with a lower resolution (24 points per diameter instead of 82 for the present simulation), and using a much lower density ratio of about 20, instead of 800 for the present simulation as for water/air. Despite these important differences, the results obtained in the present DNS are in quite good agreement with those obtained in Pandey et al. (2020) at Ar = 358.

u

  (x) = d 3 r G (r)u(x + r) (6.1)where G is a smooth filtering function, spatially localized and such that G ( r) = -3 G( r/ ) where the function G satisfies d r G( r) = 1, and d r | r| 2 G( r) = O(1).

  Figure 8: (a) Mean energy flux at different filter lengths, the energy flux (solid lines) and the dissipative flux (dashed lines) are displayed at different times. Fluxes are computed at z = 25d b , the same as for the computations of spectra. The length scale displayed on the x axis is normalised with the diameter d b , so that = 1 corresponds to the initial bubble diameter. (b) Local energy flux at t = 9 and z = 25d b . In the upper panel the filter length is l = 0.5d b , in the lower panel l = 0.1d b . The color scale is the same in both panels. Each slice is made by 450 points taken in the horizontal direction, and 180 in the vertical direction.

  (i) The density ratio has to be realistically high ρ l /ρ b > 100 ; (ii) The viscosity ratio should also be realistic µ l /µ b ≈ 100; (iii) The number of points used to resolve the bubbles must increase linearly with the Archimedes number (or the Reynolds number based on the raising velocity). As a rule of thumb, this number should be of the order d b /∆ ≈ Ar/2.

(

  2020). According to our analysis these simulations should be considered as implicit LES when Ar > 50, given the low resolution with respect to the bubble size, yet they are representative of the numerical resolution used in most of the works presently carried out in turbulent bubbly flows[START_REF] Elghobashi | Direct numerical simulation of turbulent flows laden with droplets or bubbles[END_REF][START_REF] Cifani | Flow and bubble statistics of turbulent bubbleladen downflow channel[END_REF]. The present DNS resultsshow that one-point and two-point statistics are in good agreement with the results of[START_REF] Pandey | Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows[END_REF] obtained at high Ar number, except at small scales. The present conclusion is hence that using only 20 -30 points to resolve the bubble diameter, seems to be sufficient to get consistent results with respect to large-scale statistics, although finite Reynolds number effects are found to be exaggerated. At variance with what was found for single-bubble observables (Cano-Lozano et al. 2016a), our fully-resolved DNS validate the use of under-resolved simulations to analyse large-scale collective properties in bubble-induced agitation.
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 9 Figure 9: Time evolution of two components of the bubble Reynolds number for régime (b) (left panel) and (c) (right panel).
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Figure 10 :

 10 Figure 10: (a) Average Reynolds number of a single bubble rise plotted for the three resolutions. The final values are: Re = 559 for e v = 0.01, Re = 549 for e v = 0.003 and Re = 547 for e v = 0.001. (b)The number of mesh points is plotted against time. It should be noted that the number of points is approximately steady for the two coarser resolutions, while it is growing rapidly for the most refined resolution.

Figure 11 :

 11 Figure 11: Contour plot of the vorticity at two instants. The grid is drawn to show the degree of refinement obtained with N Max = 2 13 , other resolutions are not shown for the sake of simplicity. Left column: simulation with ρ l /ρ b = 100; Right column: simulation with ρ l /ρ b = 1000.

Figure 12 :

 12 Figure12: Spectra of the vertical (left panels) and horizontal component (right panels) of the velocity for bubbles with Ar = 100 and Eo = 0.1 evaluated at different times. Top panels corresponds to the spatial window between 15 and 20 diameters, bottom panels to the one between 20 and 25 diameters. The energy spectrum is made non-dimensional with the corresponding standard deviation.

Figure 13 :

 13 Figure 13: Mean energy flux, Eq. ((6.5)), with different filter lengths. The time-average is taken in the range t = 13 -23 as in (a).
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Table 6

 6 

			].
	N	R N S λ	R RN S λ
	256	32	31
	512	93	92
	1024	310	295

.1: Numerical mean values of R λ for the three simulations.
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  but for a flow at very high Reynolds number, larger than 900. However,Cano-Lozano et al. (2016a) have shown that such a resolution does not allow to properly resolve the boundary layers around bubbles at high Reynolds number and this may lead to quantitative and even qualitative errors on the dynamics. The resolution should rather increase proportionally to the bubble Reynolds number. From a more quantitative point of view, let us recall that around bubbles a thin boundary-layer develops, whose thickness scales like δ ∼ Re -1/2(Landau & Lifshitz 1987;[START_REF] Moore | The boundary layer on a spherical gas bubble[END_REF]. That means that a resolution of d b /∆x ≈ 20 leads to less than one grid point in the boundary layer for

	Re > 100.

Table 1 :

 1 φ 1/3 U/U 0 DNS U/U 0 Analytical relative error d b /∆ DNS and analytical results for the test analysed by[START_REF] Sangani | Sedimentation in ordered emulsions of drops at low reynolds numbers[END_REF]. The volume of the cell is kept always the same, and in the last column we display the resolution. Globally a resolution of d b /∆ = 64 may be considered satisfactory. For comparison, Loisy et al. (2017) indicated as a good resolution d b /∆ = 40.

	0.2	0.768	0.755	1.7%	63.5
	0.3	0.651	0.632	2.5%	47.64
	0.4	0.525	0.51	3 %	63.5
	0.5	0.408	0.39	4.3%	79.4

Table 2 :

 2 Non-dimensional parameters for the 2-dimensional bubble column. N represents the number of points, and d b /∆ the grid resolution in terms of points per bubble diameter. The Reynolds number usually defined as Re b = U b d b /ν is not defined a-priori. Since the present test case is not steady, it is not possible to identify it clearly. We have computed it by averaging over the time range where it is approximately steady (t ∈ [13 -20]) to obtain Re b ≈ 200, 280, 470 for the case (a), (b), (c) respectively.

grid, leading to a too high rate of coalescence. Our results confirm the previous results by

Cano-Lozano et al. (2016b)

.

Table 3 :

 3 Grid resolutions and final Reynolds number for the 3D array of bubbles.

	N		16 3	32 3	64 3 128 3
	d b /∆		10	20	40	80
	Re f (present)		23.05 22.01 21.275 21
	Re f (Esmaeeli & Tryggvason 1998)	\	\	20.49	\
	Re f (Loisy et al. 2017)		19.05 20.22 20.58	\
	Case Ar Bo	φ		
	a 29.9 2 0.008		
	b	40.7 0.38 0.13		
	c	40.7 0.38 0.038		

Table 4 :

 4 Non-dimensional parameters for the 3D-oblique array of bubbles test case.

All the algorithms that have been presented, have been generalised for a use with quad/octree grids. For more details on the numerical schemes see[Popinet 2009] and http://basilisk.fr.

http://basilisk.fr

http://basilisk.fr

Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France Published on J. Fluid Mech. (2021), vol. 918, A23We report on an investigation of bubble-induced turbulence. Bubbles of a size larger than the dissipative scale cannot be treated as point-wise inclusions, and generate important hydrodynamic fields in the carrier fluid when in motion. Furthermore bubble motions may induce a collective agitation due to hydrodynamic interactions which display some turbulent-like features. We tackle this complex phenomenon numerically, performing direct numerical simulations (DNS) with a Volume-of-fluid (VOF) method.In the first part of the work, we perform both

2D and 3D tests in order to determine appropriate numerical and physical parameters. We then carry out a highly-resolved simulation of a 3D bubble column, with a setup and physical parameters similar to those used in laboratory experiments. This is the largest simulation attempted for such a configuration and is possible only thanks to adaptive grid refinement. Results are compared both with experiments and previous coarse-mesh numerical simulations. In particular, the one-point Probability Density Function (PDF) of the velocity fluctuations is in good agreement with experiments. The spectra of the kinetic energy show a clear k -3 scaling. The mechanisms underlying the energy transfer and notably the possible presence of a cascade are unveiled by a local scale-by-scale analysis in physical space. The comparison with previous simulations indicates to what extent simulations not fully resolved may yet give correct results, from a statistical point of view.

† http://basilisk.fr
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Bubbly flows

in relation to the filtering used in LES (Germano 1992), and permits the detailed study of the cascade process in different situations [START_REF] Borue | Local energy flux and subgrid-scale statistics in three-dimensional turbulence[END_REF]Meneveau & Katz 2000;Chen et al. 2003Chen et al. , 2006a;;Eyink & Sreenivasan 2006a;Chen et al. 2006c;[START_REF] Eyink | [END_REF]Alexakis & Biferale 2018). Furthermore, in contrast with the spectral approach, this method is by definition local in space and is thus not limited to homogeneous flows (Eyink & Aluie 2009;Aluie & Eyink 2009). A conclusion § 7 summarizes and discusses our findings.

Three appendices provide some complements for the results shown in the main text; some more comparison with the literature is given for the case of the array of bubbles (Appendix A); some numerical issues, such as the effect of grid refinement are presented in Appendix B, and some complementary results for the 2D simulations are given in Appendix C. These numbers indicate the relative importance of buoyancy and surface tension.

Mathematical formulation

When bubbles move, the flow is also characterised by a velocity-scale, which is typically given by the average bubble velocity U b . We have computed that as the space-averaged velocity of each phase. It is then possible to define the bubble Reynolds number based

Appendix A. Arrays of bubbles

For the test case proposed by [START_REF] Esmaeeli | Direct numerical simulations of bubbly flows part 2. moderate reynolds number arrays[END_REF], displayed in Fig. 1 We have replicated some of the results obtained by Cano-Lozano et al. (2016a) to study the behaviour of a single bubble rising "in a large tank" i.e. far from any boundaries.

The physical parameters chosen are the same used in the 3D bubble column. Namely, we fix Ar = 185 and Eo = 0.28. The acceleration of gravity is set to unity, which gives