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Contribution to Kinematic Modeling and Control of Soft
Manipulators using Computational Mechanics

Abstract: This work provides new methods for the kinematic modeling
and control of soft, continuum manipulators based on the Finite Element
Method. Contrary to the case of rigid manipulators, soft and continuum
manipulators generate their motion by deformation, therefore, the proposed
methodology accounts for the deformation mechanics to better describe
the kinematics of these type of robots. This methodology does not pro-
duce analytic solutions, instead, a numerical approximation is provided
by methods derived from Computational Mechanics. The methodology is
applied to a continuum manipulator, namely, the Compact Bionic Handling
Assistant (CBHA). A closed-loop control scheme based on control alloca-
tion is also presented. The models and controller are validated experimentally.

Keywords: Continuum manipulators, Finite Element Method, Con-
tinuum kinematics, Continuum manipulator control, Soft robots, Continuum
Mechanics, Computational Mechanics
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Introduction
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1.1 General Introduction . . . . . . . . . . . . . . . . . . . 1

1.2 Framework and context . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . 3

1.5 List of Publications . . . . . . . . . . . . . . . . . . . . 4

1.1 General Introduction

50 years after the construction of the first continuum manipulator, researchers
and engineers still consider the modeling and control of this type of robot an
open problem. The development of a generic modeling approach for continuum
manipulators that can capture the main behavior characteristics regardless of
its design seems like a far fetched idea. From our point of view, this issue
is linked to some key factors. First, the bio-inspiration behind continuum
manipulators: nature offers a myriad of shapes and motion mechanisms from
which we can gather inspiration for the design of soft, continuum manipula-
tors. However, most of these principles require a great insight of the biological
object of inspiration. As we close the gap between the more traditional rigid
designs of manipulators currently populating the factories and the organic
bodies of snakes and tentacles, the need to trespass the knowledge boundaries
of robotics as a field arises.

On the other hand, the tools used to study this type of robots usually aim
at the over-simplification of the problem; as for the writing of this manuscript,
the most popular approach towards the modeling of continuum manipulators
is based on conventional rigid robotic methodologies that consider only the
structural geometry of the robot as an important feature in the modeling.
In reality, the geometrical description of the manipulator is only one part of
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the solution to the kinematic model. The other part being the continuum
deformation.

In the study of deformations of continuum bodies, the field of continuum
mechanics appears as a natural choice of analysis framework. In our opinion,
a generic modeling methodology for continuum manipulators should be based
on continuum mechanics since it allows for an accurate approximation of the
kinematic solution based on a constitutive material law. If the material of
the manipulator changes, it is only this constitutive law that changes in the
model, but not its entire formulation.

1.2 Framework and context

This Ph.D. thesis was developed within the research groups, Deformable
Robotic Software (Defrost)1 from Inria Lille-Nord Europe and Méthodes et
Outils pour la Conception Intégrée de Systémes (MOCIS), of the Centre de
Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) (UMR
CNRS 9189)2. The implementation of the Ph.D. results has been realized as
part of the framework of technological research with Festo-Didactic company
from Essligen, Germany 3. This Ph.D. was funded by the Mexican National
Council of Science and Technology (CONACYT) 4.

1.3 Motivation

A generic modeling and control approach needs to have modularity. We need
to be able to include, for example, the contact computation or the environment
interaction with the robot as a module in our model to give it re-usability. It
is simply not practical to think about a re-calibration of the model every time
the conditions of operation change.

To this end, this Ph.D. work proposes a modeling and control methodology
for soft, continuum manipulators based on computational mechanics. At the
core of this methodology is the Finite Element Method (FEM), a technique for
the approximation of differential equations with boundary conditions. FEM is
used in this context to discretize the theoretical infinite number of degrees of

1https://team.inria.fr/defrost/
2https://www.cristal.univ-lille.fr/
3http://www.festo-didactic.com/int-en/
4http://conacyt.gob.mx/
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freedom of continuum manipulators. The imposition of constraints in the form
of Lagrange Multipliers allows for the model of sensors, actuators and end-
effector. In this way, the forces applied to the manipulator by the actuators are
related to the end-effector and sensors spaces. Forward and inverse kinematic
models are derived from the FEM model of the manipulators. To account for
non-modeled nonlinear behaviors of the robot, a closed-loop control strategy
based on the implementation of the simulation as a state estimator is proposed.

1.4 Chapter summary

The manuscript is organized in 4 chapters as follows:

Chapter 2 introduces the definition of the kinematic model of contin-
uum manipulators. To this end, the challenges of modelization are identi-
fied. The current state of the art in kinematic models and the methods used
are given, along with the most recent efforts towards the formalization of a
design methodology and control of continuum manipulators. The proposed
methodology is then positioned in the context of the literature.

Chapter 3 formally introduces the methodology. First, a brief introduction
to Continuum Mechanics is given and the fundamental steps of the Finite
Element method are presented. Then, the method of modeling of continuum
manipulators based on Computational Mechanics is explained. The concept of
constraints, fundamental in the development and application of the method,
is introduced.

Also, in this chapter we talk about the simulation framework used for the
implementation of the method and the general steps required to obtain a robot
simulation. Then, the method is applied to a continuum manipulator, namely,
the Compact Bionic Handling Assistant (CBHA). The kinematic relationships
between 3 different spaces are explained and the experimental validation for
forward and inverse kinematics is shown.

The objective of Chapter 4 is to present a closed-loop control strategy
for continuum manipulators based on the methodology given in the previous
chapters. The feed-forward control strategy based on real-time simulation is
showcased and, based on the experimental results, we explain the need for
more accurate controllers. The closed-loop control based on PI control law
and control allocation based on Quadratic Programming (QP) formulation is
proposed. The implementation of the controller is validated with experiments
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using the CBHA and the robustness analysis for the close-loop system is also
performed.

Finally, Chapter 5 gives the conclusions for this work and discuss the
perspectives of future work, in particular, the use of the methodology towards
the design of soft, continuum manipulators based on simulation and possible
improvements to the model of this type of robots.

1.5 List of Publications

The results obtained during the development of this work have made the topic
of the following list of publications:

Journal Publication

• Bieze T., Largilliere F., Merzouki R., Duriez C. (Under review). FEM-
based forward and inverse kinematics of soft, continuum manipulators.
Soft Robotics Journal. Submitted on June 2017.

• Coevoet E., Bieze T., Largilliere F., Zhang Z., Thieffry M., Carrez B.,
Marchal D., Goury O., Dequidt J., Duriez C. (Under review) Software
toolkit for modeling, simulation and control of soft robots. Advanced
Robotics Journal. Submitted on March 2017.

International Conference

• Zhang Z., Bieze T., Dequidt J., Kruszewski A., Duriez C., Visual Servo-
ing Control of Soft Robots based on Finite Element Model. Accepted for
publication in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2017)

• Duriez, C., Coevoet, E., Largilliere, F., Bieze T., Zhang, Z., Sanz-Lopez,
M., Dequidt, J. (2016, December). Framework for online simulation
of soft robots with optimization-based inverse model. In Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), IEEE
International Conference on (pp. 111-118). IEEE.

• Lakhal, O., Melingui, A., Bieze, T. M., Escande, C., Conrard, B., Mer-
zouki, R. (2014, December). On the kinematic modeling of a class of
continuum manipulators. In Robotics and Biomimetics (ROBIO), 2014
IEEE International Conference on (pp. 368-373). IEEE.
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• Bosman, J., Bieze, T. M., Lakhal, O., Sanz, M., Merzouki, R., Duriez,
C. (2015, May). Domain decomposition approach for FEM quasistatic
modeling and control of Continuum Robots with rigid vertebras. In
Robotics and Automation (ICRA), 2015 IEEE International Conference
on (pp. 4373-4378). IEEE.

Book Chapter

• Duriez, C., Bieze, T. (2017). Soft Robot Modeling, Simulation and
Control in Real-Time. In Soft Robotics: Trends, Applications and Chal-
lenges (pp. 103-109). Springer International Publishing.

Other contributions

• Runner up Prize at the Soft Robotics Toolkit Design Competition
(2015). FeTCH Mark I Manipulator. Contributors: Bieze T.,
Largilliere F., Hage S., Sanz-Lopez M., Duriez C., Project page at
https://softroboticstoolkit.com/fetch

• Bieze, T. (2015). On the Kinematic Modeling Methodology of Soft
Manipulator Robots. Poster presentation. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE.
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2.4 Work contextualization and contributions . . . . . . . 29

2.1 Introduction

In this chapter, we will, first, give a formal definition of a soft, continuum
manipulator in the context of this work. The State of the Art related to the
modeling, design and control of this type of robots is provided in order to
position our work in the framework of the current literature.

2.2 Continuum manipulator definition

To grasp the concept of continuum manipulator it is always helpful to visualize
a conventional manipulator composed, in general, by a set of joints, rotational
or spherical, serially connected by rigid links. In this class of manipulators, the
links provide a kinematic relationship between the joints; in other words, by
knowing the lengths of the links, one can always know the relative position of
the joints with respect to a common reference frame [Siciliano 2016]. Now, let
us place additional joints along the rigid links of our imaginary manipulator.
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Soon enough, our manipulator will have more active1 degrees of freedom than
the ones required to position an object in space. In the literature, these
type of manipulators are known as hyper-redundant [Hirose 2004]. If we keep
repeating the process of adding joints until their number approaches infinity
and the link lengths to zero, our robot will eventually approach to what is
known as a continuum manipulator.

Figure 2.1: Left) A classic industrial manipulator, (Center) A
hyper-redundant robot, the meeting ground between a rigid
and a continuum manipulator, (Right) A continuum manipu-
lator

The previous definition may imply that all the degrees of freedom in a con-
tinuum manipulator are controllable, which is in general, not the case. Often
bio-inspired by the morphology and functionality of biological limbs and ap-
pendices like octopus tentacles [Zheng 2014], elephant trunks [Neppalli 2007]
[McMahan 2005] [Zhao 2010], plant tendrils [Mehling 2006] [Yamada 2014]
and other mammal tongues, continuum manipulators are composed by an
elongated structure with no identifiable joints, which is continuously bending
via elastic deformation [Robinson 1999].

2.2.1 Soft continuum robot applications

The characteristics of soft continuum manipulators, like their natural compli-
ance, high power to weight ratio, and reduced dimensions compared to their

1In robotics, the degrees of freedom can be of two types: passive degrees of freedom
are the ones that cannot be directly controlled and conform passively to the movements of
the robot, while active degrees of freedom are the ones that are controlled to provide the
required forces to move the manipulator.
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rigid counterparts, make them particularly suitable for applications in which
the contact with humans is unavoidable or even desired. Applications such
as skeletal trauma treatment [Wilkening 2017] [Alambeigi 2017], endoscopy
[Conrad 2013] [Cianchetti 2013] [Fraś 2015] and minimally invasive surgery
[Qu 2016] [Orekhov 2016] [Mahoney 2016] have proved the great potential of
application of continuum robots in the medical field, as extensively reviewed
in [Burgner-Kahrs 2015].

As suggested by the very first prototypes of continuum manipulators
[Anderson 1967]. The slender shape and high dexterity of continuum ma-
nipulators can be exploited in tasks such as minimally invasive inspection
[Mehling 2006] [Tonapi 2014] and search and rescue [Bajo 2010] [Li 2017].

Continuum robots have been studied with the goal of exploiting their lo-
comotive capabilities [Godage 2012] [Kang 2012] [Arienti 2013], although the
review presented in the following of this manuscript is concerned mainly on
manipulation.

2.2.2 Bio-inspiration

If one sees for the first time a continuum manipulator, without any previous
knowledge on the concept behind it, one can immediately identify the re-
markable morphological similarities that this type of devices have with some
soft-bodied animals, particularly with the muscular hydrostats. Muscular hy-
drostats, commonly found in elephant trunks, mammal tongues and octopus
tentacles are soft muscular structures that can bend, extend and twist and
provide the force required for movement and skeletal support to animals (or
limbs) that lack a rigid skeleton, see Fig. 2.2.

Muscular hydrostats are typically composed by a fluid-filled cavity sur-
rounded by a muscular wall reinforced with connective tissue fibres. The
arrangement of the muscle fibres in a hydrostatic muscle include both circular
and longitudinal muscle fibres. These two muscle fibres can antagonize one
another to produce a variety of shape changes including elongation and bend-
ing [Kier 1992]. The fluid inside the cavity of a hydrostatic limb is mainly
a liquid which resists to volume change, thus, to create an elongation of the
limb, the circular muscles contract to decrease the diameter while increasing
the length to allow for a constant volume inside the cavity. The study of
the biomechanics of hydrostatic structures have shown also additional fibres
with more intricate configuration patterns that allow for more complex shape
changes like twisting, present in octopus tentacles and mammals and reptile
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Figure 2.2: Diagram of the hydrostatic muscle in the arm
of Octopus from [Trivedi 2008b]. AN, axial nerve cord; AR,
artery; CM, circumferential muscle layer; CT, connective tis-
sue; DCT, dermal connective tissue; EP, epidermis; IN, intra-
muscular nerve; LM, longitudinal muscle fibres; OME, exter-
nal oblique muscle layer; OMI, internal oblique muscle layer;
OMM, median oblique muscle layer; SU, sucker; TM, traverse
muscle fibres; TR, trabeculae; and V, vein.

tongues [Kier 1985]. The complete replication of hydrostats is very complex,
but the study of their underlying function principles have given roboticists an
interesting insight and a solid starting point in the design of soft, continuum
manipulators.

2.2.3 Classification

Continuum manipulators can be broadly classified with respect to the
type of backbone they possess. Single backbone manipulators (see Fig.
2.3 (left)) have a central elongated structure that supports the passage
of actuation/transmission elements along the body of the manipulator
[Burgner-Kahrs 2015]. Many single-backbone designs utilize tendons routed
along the structure which are spaced by discs attached to the backbone as a
way of transmission. The termination points of the tendons in this type of de-
sign dictate the lengths of a bending section. Multibackbone (Fig. 2.3 (right))
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continuum manipulators are typically composed by a parallel arrangement of
elastic elements which are constrained with respect to each other in some way.

Figure 2.3: Single and Multibackbone continuum robots:(left)
A single backbone tendon-driven steerable cardiac catheter
from [Camarillo 2008].(Right) The DDU multibackbone ma-
nipulator designed by Simaan et al. [Simaan 2009].

Another classification of continuum manipulators is based on the actua-
tion system implemented to apply forces and torques to the backbone. When
the actuators are embedded in the structure and apply forces directly to the
backbone, the actuation scheme is called intrinsic. Most continuum robot de-
signs with multi-backbones use pneumatic cavities to conform the structure,
essentially making a backbone composed of actuators that can be reshaped
by applying pressure to the cavities. Extrinsic actuation systems place the
actuators outside of the structure. These apply torques and forces at localized
points via a mechanical link to the backbone, which is made by an incompre-
hensible elastic rod. A hybrid actuation scheme replaces the central elastic
rod in an extrinsic design by an actively controlled actuator, which is in many
designs, a pneumatic cavity [Chirikjian 2015] [Ataollahi 2017].
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Figure 2.4: The KSI hybrid actuated manipulator [Immega 1995]

Figure 2.5: (Left) The Clemson tentacle, an extrinsic actuated manipula-
tor [Gravagne 2001]. (Right) The BHA, an intrinsic actuated manipulator
[Rolf 2012].
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2.3 State of the art in soft, continuum manipu-
lators

This section describes the research developed in the last 20 years, towards the
design, modeling and control of soft, continuum manipulators. The review
is divided into each of the subtopics mentioned in order to provide a clear
overview of the field.

2.3.1 Design of continuum manipulators

As stated in [Walker 2013a], the first prototype of a continuum robot reported
in the literature was the Tensor Arm [Anderson 1967], designed by Anderson
and Horn in 1967. Conceived to be used under water, the prototype was
able to achieve a wide range of shapes; however, the relationship between the
shapes and inputs was highly complex and challenging for the computational
resources of that time. Based on extrinsic actuation, the robot used nylon
filaments routed along the structure through spacer discs that apply torques
directly to the backbone to produce bending, see Fig. 2.6. As is usual in
tendon-based designs, the termination points of the cables define the bending
sections. This prototype has inspired since then, a significant number of
designs based on the same principle.

Figure 2.6: The "Tensor Arm" by Anderson and Horn [Anderson 1967].

Walker and Hanna presented the Elephant’s Trunk Robot [Walker 1999], a
continuum manipulator with extrinsic actuation composed of 4 main bending
sections. The robot uses a pulley system outside the structure to pull cables
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and bend the sections. Spacer disks are used to give the robot its characteris-
tic shape but they also provide a mechanical coupling; out of the 32 DoF only
8 are actively controllable, leaving the rest to be coupled by passive springs
positioned between adjacent segments of the manipulator at a 90 degrees angle
with respect to the tendons. Thanks to this work the identification of critical
hardware necessities in the field was possible, in particular the need for elas-
tic structures. Later work in design of continuum robots replaced the spring
system by an incompressible elastic rod [Gravagne 2003]. This choice of back-
bone has been, since then, the most used in tendon-based designs of continuum
manipulators [Hemami 1984] [Simaan 2004] [Bardou 2010] [Zhao 2010]. An-
other choice of backbone is the use of a central spring [Mehling 2006] that
provides the desired compliance to the manipulator but makes the operation
of this type of manipulators a difficult task, since the forces applied by the
tendons tend to be absorbed by the spring. However, spring-backbone ma-
nipulators have been implemented as actuated endoscopes with great success
[Yoon 2011].

At the same time, research in the area of artificial muscle design facilitated
the conception of locally actuated designs, such as the Oct-Arm [Walker 2005]
[McMahan 2006], the "European Octopus" [Calisti 2012] [Guglielmino 2010]
[Laschi 2009], and the Bionic Handling Assistant [Rolf 2012], which is inspired
by the trunk of an elephant, with possible appealing advantages like full-body
manipulation. Intrinsic design manipulators proved to be very dexterous by
reproducing the way longitudinal muscles work in an animal trunk or tentacles
[McMahan 2006]. Originally developed to provide actuation to a prosthesis
device for severely paralyzed hand patients, the McKibben artificial muscle
[Nickel 1963] has been used in continuum robot designs with great success
[McMahan 2006] [Pritts 2004]. This type of pneumatic muscle is composed
by a soft cavity constrained in its deformation by a braided sleeve. The mus-
cle is considered contractor if the cavity expands radially when the pressure
is increased in the cavity, or extensor if the cavity expands longitudinally.
This operation is analogous to the longitudinal muscles. Experiments con-
ducted on the McKibben muscle [Klute 1999] show that it provides a first
order approximation to a biological muscle when contracting.

Another venue for researchers to design extrinsic actuation is the imple-
mentation of concentric tubes as the structure of the manipulator [Sears 2006]
[Gilbert 2016]. The body of the robot is composed by a telescopic array of
concentric tubes that are free to rotate and translate with respect to each
other. To provide bending to the robot, the tubes are often pre-curved, so
that when a distal tube is translated outside of the preceding one, it will nat-
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Figure 2.7: (Left) Extensor and contractor pneumatic mus-
cles, (Right) An example of a locally actuated design, the
Oct-Arm manipulator composed by pneumatic muscles, from
[McMahan 2006]

urally bend [Furusho 2006]. Pre-curved concentric tubes designs have found
a niche of applications in the medical field [Wu 2017], where their slim and
clean design is well suited to act as actuated endoscopes in minimally invasive
surgery [Furusho 2006] [Su 2012].

Figure 2.8: A concentric tube robot or Active Cannula com-
posed by 3 pre-curved tubes, from [Wu 2017]

Given the advantages of intrinsic actuation in terms of dexterity, particu-
larly the ability to extend the backbone longitudinally and in turn, improve its
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ability to bend [Walker 2006], robot designers started to experiment with hy-
brid actuation schemes that incorporate both pneumatic cavities and tendons.
An example of this type of design is the Air-Octor [Jones 2004a] [Jones 2004b]
depicted in Fig. 2.9, a manipulator composed by a soft pneumatic hose that
acts as the backbone, which is actuated by 3 cables to achieve bending. While
the prototype proved to be capable of full-body manipulation, it suffered from
sagging and kinking of the soft backbone cavity [McMahan 2005], a problem
that is common to this type of designs. Another example of a realized hy-
brid actuation scheme is the KSI manipulator [Immega 1994], developed by
Kinetic Sciences Inc. in 1994 [Immega 1995].

2.3.1.1 Backbone variable stiffness

In order to exploit to the maximum the capabilities of continuum robots,
the ability to variate the stiffness of its structure is needed, particularly in
medical applications were excessive contact forces at the tip of the manipu-
lator can cause severe trauma to the surrounding tissue. In the literature,
one can find different approaches to the variable stiffness of the backbone.
In [Mahvash 2010], a stiffness control approach is presented. The method is
based on the derivation of the kinematic model of the manipulator as the prod-
uct of two transformations: the first transformation describes the non contact
kinematics of the manipulator and it is specific to the robot itself, while the
second transformation calculates the tip deflection due to the applied forces
and is derived using the Cosserat rod formulation [Mahvash 2011]. To imple-
ment a desired tip stiffness, the two transformations are used to solve for the
actuator positions that deform the manipulator so as to generate the required
tip force at the measured tip position. This method is applied to a concen-
tric tube design intended for minimally invasive surgery. In [Goldman 2011]
a method for the stiffness control of intrinsic actuated manipulators is pre-
sented. The proposed algorithm relies on the measurement of actuation forces,
in conjunction with the stiffness of the backbone, to move in a direction to
minimize the environment interaction.

The combination of pneumatic backbones and tendons provide the means
to increase the apparent stiffness of the structure by antagonizing the set of re-
dundant actuators that compose the robot [Walker 2013b]. In [Maghooa 2015]
the pneumatic backbone and tendons of a hybrid manipulator are controlled
simultaneously to achieve a certain position of the tip of the arm while ac-
tively changing the stiffness of the robot applying the principle of antagonistic
actuation. This functionality is also bio-inspired [Shiva 2016], being present
in a significant number of animal arms, trunks and even the human tongue.
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Figure 2.9: The Air-Octor hybrid manipulator composed by
a pneumatic backbone which is bent by tendons, as presented
in [Jones 2004b]

Some continuum manipulator prototypes utilize local rigidification mech-
anisms to simplify the stiffness control; such is the case of the STIFF-
FLOP manipulator [Cianchetti 2013] [Fraś 2015], that utilizes granular jam-
ming [Steltz 2010], in conjunction with pneumatic cavities to achieve a certain
degree of variable stiffness of the structure. Each section of the robot is com-
posed by an elastomeric cylinder that hosts three pneumatic cavities to provide
bending and extension as well as a central chamber that holds the granular
media. The section is surrounded by a braided sleeve to prevent the radial
deformation of the elastomeric cavities. The granular media utilized is coffee
powder, which jams when the central cylinder is under negative pressure caus-
ing drastic stiffness changes of the structure [Jiang 2012]. The STIFF-FLOP
is one of the most advanced continuum manipulators prototypes currently un-
der development, having force [Noh 2014] and tactile [Sareh 2014] capabilities
provided by sensors embedded in the structure of the robot.

More advanced actuation systems have been studied with the intention of
stiffness control. In [Sadeghi 2012], Sadeghi et al. demonstrated a method
to control the stiffness of a worm-like soft robot utilizing electro-rheological
materials that can change phase, from fluid to solid and vice versa, under the
presence of magnetic fields.
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2.3.1.2 Design methodologies

The key challenge for creating soft machines that achieve their full potential
is the development of controllable soft bodies using materials that integrate
sensors, actuators and computation, and that together enable the body to
deliver the desired behaviour [Rus 2015]. The conception of a design method-
ology for continuum robots is not a trivial task due to the wide variety of
possible backbone-actuation schemes, the applications to which the design is
aimed at and more importantly, due to the interdisciplinary nature of the de-
sign tasks; very often, electronics, mechanics and computer science come into
play during the integration of the system. Nevertheless, some design guide-
lines can be found in the literature. For example, a pragmatic approach to
the design of continuum arms inspired by the octopus tentacle is presented in
[Guglielmino 2013]. In [Bedell 2011] an algorithm for the optimization of con-
centric tube robot design is proposed; given the description of the task space
and the number of sections in the robot, the algorithm solves for a design with
the desired workspace.

The fabrication of artificial pneumatic muscles is also a daunting en-
terprise that requires, in most cases, multiple design iterations to achieve
a desired behavior. A direct2 finite element simulation has been used in
[Connolly 2015] for the programming of desired deformations of pneumatic
muscles with braided sleeves.

The work of Hauser et al. in [Hauser 2011] presents the concept of morpho-
logical computation. This concept aims at the relegation of difficult control
tasks in soft bodied robots to the body itself, making use of inherit charac-
teristics of the robot, like the natural compliance of its structure [Paul 2006].
While it is difficult to directly design smart bodied robots, this work pro-
vides useful design guidelines compatible with any kind of bio-inspired robot
[Pfeifer 2009].

2.3.2 Modeling of continuum robots

In order to control the movement of continuum robots, kinematic models,
which relate the configuration (pose) of the backbone and task space (end-
effector position) and actuator variables must be established. These models
are fundamental for the development of control strategies and path planning

2In this work, we refer to the direct finite element when the unknown nodal displacement
is computed given the known external forces
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for continuum manipulator robots. Equation (2.1) depicts the general form of
a kinematic model for conventional manipulators

x = f(q) (2.1)

where x is the position of the end-effector inside the task space of the
robot which is, more often than not, expressed in cartesian coordinates, q is
the set of configuration variables related to the joint variables (which are, in
general, observable and directly controlled) and f is the unknown function
that relates task space variables to the configuration of the robot. For soft,
continuum robots however, f depends on the configuration variables and also
on the mechanics of the deformable material. We can then rewrite Eq. 2.1
for continuum manipulators as

x = f(q,ϑ) (2.2)

where ϑ represents the mechanics of the soft material. The modeling task
deals with finding this relationship and the assumptions used in order to
accomplish this goal dictates the type or flavor of the modeling approach.

In general, kinematic modeling approaches of continuum manipulators can
be broadly classified as quantitative models, which deal with the description
of the robots in a mathematical fashion making use of geometry and elasticity
theories, and qualitative models, which are numerical abstractions of the more
complex model and often make use of experimental data to find the closest
solution to the kinematic problem.

Qualitative models Due to the complexity involved in the modeling of con-
tinuum robots, qualitative approaches, which aim at learning the kinematic
problem by the use of learning algorithms, have a significant level of popularity
due to their ability to by-pass the modeling task. These approaches are based
on previous knowledge of input-output data derived from experimentation and
can provide accurate fast approximations to the kinematic solutions. Rolf and
Stein proposed in [Rolf 2014] a control scheme for the Bionic Handling As-
sistant based on goal babbling [Rolf 2010]. The control scheme is capable
of dealing with highly non-linear behavior like hyperelasticity, plasticity and
non-stationarities, which are very complex to address analytically.

Control schemes based on Neural Networks have been also investigated.
Giorelli et al. [Giorelli 2013] used a feedforward neural network to learn the in-
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verse kinematics of a tendon driven manipulator. In this approach, a geometri-
cal model of the manipulator is used for data generation and in [Giorelli 2015]
a controller based on the static model Jacobian is used to control a non-
constant curvature manipulator. Another feedforward neural network con-
troller was proposed by Braganza et al. [Braganza 2006] [Braganza 2007]. In
this work, no model is required; instead, a low level controller uses the neural
network component to compensate for the dynamic uncertainties of the manip-
ulator. More recently, the work of Melingui et al. [Melingui 2014] employed a
neural network to solve the inverse kinematics based on the measurements of
the end-effector position. In [Melingui 2017] an adaptive algorithm is imple-
mented to improve the performance of the controller by allowing rapid posi-
tion convergence of the end-effector. While qualitative controllers have shown
great success in real world scenarios, the fact that the learning base changes
when the operation conditions of the robot change make data-driven models
limited in their application. This is the main reason as to why quantitative
approaches still dominate the literature.

Quantitative models Current quantitative models in the literature can be
classified into 2 different main approaches: those that describe the behavior
of the continuum backbone curve with respect to geometry parameters, which
we will call Geometric Models, and those that use classical elasticity theories,
such as strings or rods, to describe the manipulator with respect to the way
its structure behaves under external loading, which we will call Elasticity
Models. In this section, a review of these modeling approaches is given in
order to highlight the fundamental differences between these models and the
approach presented in this work and to position clearly the contribution of
this work in the current literature.

2.3.2.1 Geometric models

We refer to the first type of quantitative models as Geometric models. These
approaches compute the kinematic relationships making use of the geometry
of the manipulators, in particular, the curvature that the robot exhibit under
the actuation forces; however, the forces themselves are not accounted for in
the model.

The first kinematic analysis of continuum robot backbones was presented
by Chirikjian [Chirikjian 1992] [Chirikjian 1994b]. In this approach, also
called Non-Constant curvature approach, the Cartesian position of backbone
curve points x(s, t) is given by the integral representation:
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x(s, t) =

� s

0

l(σ, t)u(σ, t)dσ (2.3)

where u(s, t) = [0 1 0]T is the unit vector tangent to the curve at s

and l(s, t) is a scaling factor that controls the length of the curve tangent
according to local backbone extension or contraction. In [Chirikjian 1992],
the follolwing backbone curve representation is given:

x(s, t) = [x1(s, t) x2(s, t) x3(s, t)]
T =




� s

0
l(σ, t) sin(K(σ, t)) cos(T (σ, t))dσ� s

0
l(σ, t) cos(K(σ, t)) cos(T (σ, t))dσ� s

0
l(σ, t) sin(T (σ, t))


 (2.4)

Figure 2.10: Backbone curve parametrization

with K and T being the curve parameters as illustrated in Fig. 2.10. The
backbone reference frame Φ(s, t) attached to the curve at s and which origin
coincides with x(s, t) has its orientation described by

Φ(s, t) =




cos(K(s, t)) sin(K(s, t)) cos(T (s, t)) − sin(K(s, t)) sin(T (s, t))

− sin(K(s, t)) cos(K(s, t)) cos(T (s, t)) − cos(K(s, t)) sin(T (s, t))

0 sin(T (s, t)) cos(T (s, t))


 (2.5)

The inverse kinematics of the continuous curve, that is, the problem of
finding the backbone position and orientation given a specific task constraint,



22 Chapter 2. State of the Art

is then solved by finding the values of the independent functions l(s, t), T (s, t)
and K(s, t). A modal approach for the selection of these values is developed
in [Chirikjian 1992]. The disadvantage of this approach is that the set of
backbone shapes available in the model is restricted by the combination of
modal functions, and further analysis of the hardware is required to tune
the selection of the basis functions to be able to model arbitrary backbone
shapes. In [Mochiyama 2003], Mochiyama and Suzuki used the same approach
to derive the kinematics and dynamics of a cable-like flexible manipulator.

In [Hannan 2000], Hannan and Walker presented what would later become
the most used approach towards the kinematic modeling of continuum manip-
ulators. This work makes the assumption that, after actuation, the shape of
the backbone of the manipulator can be assimilated as a piecewise constant
curvature curve and its evolution, from base to end, is then described by a set
of 3 discrete transformations for the planar curve. The first transformation is
a rotation to point the tangent direction at the curve beginning to the end of
the curve, followed by a translation along the new direction, from the curve
starting point to the curve end point, and finally, a second rotation of same
magnitude as the first to realign with the tangent at the curve end point. See
Fig. 2.11

Figure 2.11: The geometry of a planar constant curvature curve segment

Thus, a virtual rigid link manipulator with two rotational and one pris-
matic joint can be used to derive the kinematic model of the planar con-
stant curvature backbone. The corresponding kinematic model is found using
standard Denavit-Hartenberg notation [Hartenberg 1955] for the virtual rigid
manipulator. The Denavit-Hartenberg parameters are shown in the following
table:
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Link θ d a α

1 * 0 0 -90◦

2 0 * 0 90◦

3 * 0 0 0◦

where θ and d are the joint parameters for rotational and prismatic joints,
respectively, α is the link twist and a is the length of the common normal
vector between consecutive joints. Using the previous parameters, the homo-
geneous transformation matrix, which relates the Cartesian position of the
end of the curve with respect to the base is formed as:

A3
0 =




cos(θ1 + θ3) − sin(θ1 + θ3) 0 −d2 sin(θ1)

sin(θ1 + θ3) cos(θ1 + θ3) 0 d2 cos(θ1)

0 0 1 0

0 0 0 1


 (2.6)

Further manipulation of the derived homogeneous transformation matrix
is required to relate the joint variables of the virtual robot to the configuration
space variables of the continuous curve. Noting that

θ1 = θ3 =
ks

2
(2.7)

and also

d2 =|| x(s) ||= 2 sin θ

k
(2.8)

with k being the inverse of the radius of the arc and s being the arc length,
the previous transformation matrix turns into

A3
0 =




cos(sk) − sin(sk) 0 1
k
(cos(sk)− 1)

sin(sk) cos(sk) 0 1
k
sin(sk)

0 0 1 0

0 0 0 1


 (2.9)

which relates the continuum curve arc length and curvature to the task
space. It is important to note that the arc length s can be chosen arbitrarily
to model the transformation from the curve shape to any point along the
backbone curve.

Spatial continuum kinematics can also be modelled by adding an additional
pair of rotational joints to the virtual manipulator that rotates the curvature
plane as shown in Fig. 2.12
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Figure 2.12: The geometry of a spatial constant curvature curve segment

The resulting Denavit-Hartenberg parameters are shown in the following
table:

Link θ d a α

1 * 0 0 90◦

2 * 0 0 -90◦

3 0 * 0 90◦

4 * 0 0 -90◦

As reviewed in [Walker 2013a], the constant curvature approach produces
the same kinematic relationships as the non-constant curvature approach.
This approach has been used subsequently. Mahl et al. implemented a
constant curvature continuum kinematics as fast approximate model for the
Bionic Handling Assistant [Mahl 2014] and Escande et al. used the same ap-
proach to model the smaller version of the robot, the Compact Bionic Handling
Assistant [Escande 2012] [Escande 2015].

Continuum manipulators composed by several serially connected sections
can be modelled using the same approach by concatenating the transformation
matrices of each section, as presented in [Jones 2006] and [Bardou 2010].

As is common when using geometric approaches, further modeling is re-
quired to find the relationships between the curve parameters and the actu-
ator variables (displacement of tendons or pressure inside pneumatic muscles
are the most common). This transformation is specific to each manipula-
tor hardware and therefore, cannot be generalized. Nevertheless, geometric
approaches provide a fast and accurate approximation to the kinematics of
continuum manipulators in scenarios where gravity can be countered by a
clever orientation of the manipulator or when the weight of the robot is small
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compared to its structural stiffness. More important, they provide close form
kinematic equations which can be easily implemented in control algorithms.

2.3.2.2 Elasticity models

The second class of quantitative kinematic models are, what we will call,
Elasticity based models. These models substitute the backbone of the robot by
continuum mechanic objects, like rods and strings, to better capture the elastic
behavior of the backbone. In contrast with geometric models, mechanic-based
models provide a description of the deformation of the backbone based on
the constitutive law of the material from which the backbone is made, by
establishing static equilibrium between external loading, such as gravity, and
internal forces.

The Cosserat rod theory [Antman 1973] has become a great resource in the
research of kinematics for continuum manipulators. In Cosserat rod theory,
a homogeneous transformation matrix g(s) is used to describe the rod with
s ∈ [0 l] being the reference parameter. The evolution of g(s) along s is
defined by

Ṙ(s) = R(s)û(s), ṗ(s) = R(s)v(s) (2.10)

where the dot denotes derivative with respect to s, R and p are the rotation
matrix and position vector of g at s and R(s) and u(s) are the kinematic
variables that represent the linear and angular rates of change of g(s). The
ˆ operator is a linear mapping that converts � to the correspondent skew
symmetric matrix as

û =




0 −uz uy

uz 0 −ux

−uy ux 0


 (2.11)

Given an undeformed reference configuration of the rod g∗(s), the reference
kinematic variables v∗ and u∗ can be obtained by

[v∗ u∗]T = (g(∗−1))(s)ġ∗(s))
�

(2.12)

where the operator
�

represents the inverse operation of .̂ The internal
force and moment vectors (in global coordinates) are denoted by n and m,
the applied force distribution per unit of s is f , and the applied moment
distribution per unit of s is l. The classical form of equilibrium differential
equations for a Cosserat rod are
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ṅ(s) + f(s) = 0 (2.13)

ṁ(s) + ṗ(s)× n(s) + l(s) = 0 (2.14)

Using the constitutive law of the rod to map the kinematic variables to
the internal forces and moments we have

n(s) = R(s)Kse(s)(v(s)− v̇∗(s)) (2.15)

m(s) = R(s)Kbt(s)(u(s)− u̇∗(s)) (2.16)

where Kse is the stiffness matrix for shear and extension and Kbt is the stiff-
ness matrix for bending and torsion. Given the assumption that the stiffness
matrices are constant with respect to s, a full set of explicit model equations
that provide the values of ṗ(s), Ṙ(s), v̇(s) and u̇(s) can be derived. Usually,
a linear constitutive law is used, but the approach can work under nonlinear
constitutive laws as well.

The work of Davis and Hirschorn in 1994 [Davis 1994] on the modeling of
flexible robot links with tendon control introduced this method in the con-
text of robotics, although it was Trivedi et al. in 2008 [Trivedi 2008a] who
conducted the first work directly in the field of soft manipulators using this
approach, as reviewed in [Burgner-Kahrs 2015].

One of the advantages of mechanic-based modeling methods is the great
variety of elements from which one can conform the model. As an example,
one of the special cases of Cosserat rod, the Kirchhoff rod, has been used
to derive models for concentric tube robots [Rucker 2010b]. The Kirchhoff
theory assumes inextensibility and neglects transverse shear strain, which are
generally regarded as good assumptions for long thin rods like the tubes that
make up active cannulas [Rucker 2010a]. Wenlong et al. used Timoshenko
beam theory, which accounts for shear deformation and beam twisting, to map
a driven load to the pose of a continuum manipulator [Wenlong 2013]. Euler-
Bernoulli beam theory, a special case of Timoshenko beam theory that only
considers lateral external loading, has being used to simplify the computation
of the mechanics of concentric tubes as well [Webster 2006].

While elasticity models can be fast to compute (up to a certain number of
elements), they can be quite complex to parametrize and implement, also, as
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explained before, since close form solutions for continuum mechanic objects
exist only for a very limited number of cases, numerical approximations of the
solutions of the partial differential equations that arise in their development
must be performed.

2.3.3 Dynamics and control of continuum robots

The use of geometric models to describe the pose of a continuum manip-
ulator is hardly sufficient due to the fact that internal and external load-
ing in the manipulators play an important role in the configuration of the
robot. Even in free space, gravity can cause significant deflections in the
curvature of the robot even when no payload is being carried by the manipu-
lator. Dynamic models, which aim at the description between the backbone
shape and the forces that cause the deformation of it, have been the objec-
tive of intense research in the field since the very beginning [Chirikjian 1993]
[Chirikjian 1994a].

As in the case with the modeling of kinematics, researchers have tried to
apply methodologies commonly used for rigid manipulators to describe the dy-
namics of continuum ones. In [Mochiyama 2002], Mochiyama and Suzuki used
the Lagrangian approach to describe the dynamics of a string-like manipula-
tor. In this development, a discretization stage in the modeling is performed
in which the backbone is assumed to be formed by circular slices located at
σ along the backbone. Each slice has a mass. After calculating the kinetic
and potential energy for each slice, the total energies are found by integration
along the backbone and substituted in the Lagrangian L = K − P . Once the
Lagrangian is calculated, the dynamic model is found as

∂

∂t

�
∂L

∂θ̇i(σ, t)

�
− ∂L

∂θi(σ, t)
= τi(σ, t) (2.17)

where (θi, τi) are the configuration variables and the forces that change
them, respectively. In the initial study [Mochiyama 2002], non-extensible
backbones were considered. Later work by Tatlicioglu [Tatlicioglu 2007] con-
sidered extensible backbones for a planar manipulator; however, the complex-
ity of the closed form models generated renders the application to non-planar
backbones too computationally expensive to be implemented in the control of
manipulators.

More computationally efficient formulations of the dynamics of continuum
backbones have been developed. In [Kang 2011], the Newton-Euler formula-
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tion is applied to derive the dynamics of a manipulator for underwater ap-
plications. In [Giri 2011], Giri and Walker presented an approximation to
the dynamics of a continuum arm using lumped parameters (mass, spring,
and structural damping) and the Lagrangian formulation. This approach
was implemented to compute the dynamics of an octopus inspired arm in
[Zheng 2012] and in [Falkenhahn 2014] to describe the dynamics of the Bionic
Handling Assistant manipulator.

The elasticity models discussed in section 2.3.2.2 provide a formulation
that explicitly takes the internal and external forces into account. However,
for more complex applications in which the external loading of the manip-
ulator comes from the contact with its environment, or the velocity of the
manipulator induces inertial effects in its behavior, these models are not suf-
ficient. In [Yu 2015] inverse dynamics and sliding mode control schemes for
a continuum manipulator are proposed based on the Euler-Lagrange formu-
lation and in [Falkenhahn 2017] the dynamic control of the Bionic Handling
Assistant based on a lumped mass model is presented.

Given the complexity involved in the derivation of the dynamics of contin-
uum manipulators, model-less approaches have been proposed. Ivanescu et al
[Ivanescu 2003] avoid the difficulties of solving the complex PDE system that
describes the dynamics of continuum manipulators by proposing controllers
based on an energy formulation. A model-less controller based on the estima-
tion of the Jacobian under spatial constraints is presented in [Yip 2014] and
[Yip 2016]. In this regard, controllers based on fuzzy-logic [Qi 2014] [Qi 2016]
and adaptive algorithms [Melingui 2017] have been presented.

In medical applications, the use of in-vivo feedback information gathered
by radio-graphic and electromagnetic images [Arai 1994] [Bertocchi 2006] have
been used to control continuum manipulators with great success. Camera
vision systems [Chitrakaran 2007] [Boudjabi 2003] have also been employed
to provide feedback information for the controller. However, all these tech-
niques rely on external sensors to close the loop. When the environment
in which the manipulator works makes impossible the use of external sen-
sors, controllers based on embedded sensors in closed-loop [Penning 2011]
[Penning 2012] [Bajo 2011] can be used instead.
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2.4 Work contextualization and contributions

Given the classification of the approaches towards the modeling and control
of continuum manipulators presented in section 2.3.2, it is now possible to
position the methodology presented in this work, in the context of the current
literature. Fig. 2.13 provides a helpful visualization of the position of our
method with respect of other previously proposed methods and their classifi-
cation.

Figure 2.13: The context of the proposed method in the cur-
rent state of the art

As it is illustrated in the figure, the proposed method is based on the me-
chanics of the materials, which means that no geometrical assumptions are
done in order for the method to be applicable. Moreover, being a mechanics-
based approach, the description provided by the method explicitly accounts
for the internal and external loading of the continuum backbone, which means
that the deformation caused by gravity or the load of a payload will be re-
flected in the model. Nevertheless, there are a few important differences be-
tween the method here discussed and other mechanic-based methods: First,
while most methods are based on Cosserat rod and other elasticity theories,
the proposed approach is based on Finite Element Analysis which provides
geometrically accurate descriptions of the backbone. Second, the modeling
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of actuators, sensors and end-effector is done implicitly by the formulation of
the constraints, so no further modeling is required.

In the following, the contributions to the field derived from the develop-
ment of this Ph.D. work are enlisted:

• FEM-based quasi-static modeling approach that accounts for complex
structural shapes of single and multi-backbones.

• The model implementation of two types of actuation systems (i.e. ten-
dons and pneumatic muscles) currently implemented in the majority of
designs of soft manipulators.

• The integration of sensors in the model that allows for a description of
the manipulator in the configuration space.

• A closed-loop control strategy for continuum manipulators based on the
state estimation of the robot.

In the next chapter, the assumptions considered during modeling and
the study framework of this methodology (namely Continuum Mechanics
and Finite Element Method) are introduced.
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3.1 Introduction

In contrast with rigid robots, soft manipulator kinematics not only de-
pend on the geometry of the robot, but also on the mechanical properties
of its material, in particular the stiffness, that dictates the net config-
uration of the robot under a set of external forces. This statement
represents the core of the modeling principle considered in this
manuscript. As an example, consider the manipulator in Fig. 3.1 (a).
A tendon routed through the structure is pulled to achieve a desired end-
effector position. In Fig. 3.1 (b), a manipulator with the same geometry
but with inhomogeneous material is actuated in the same manner by the
same amount, however, the resulting configuration differs from (a). This
is because of the influence of the material stiffness in the kinematics of
the manipulator.

Inhomogeneous material

(a) (b)

Figure 3.1: In this example a tendon is pulled to create the
motion of an elastic soft robot. Starting with the same geom-
etry, the material stiffness has an influence on the kinematics
(output vs input displacements).

While rigid manipulator kinematics can be used to solve positioning
problems with the assumption of resistance/counter-actuation to grav-
ity or load effects, soft manipulators easily comply to these forces and
deform. To answer the same problems of positioning, it is then necessary
to take into account the current deformation (i.e. change of geometry)
induced by these forces to obtain a kinematic relation between the po-



3.2. Continuum mechanics framework 33

sition of the end-effector and the position of the actuators.

Another difference between soft continuum manipulators and rigid ones
is the impact that external forces (particularly gravity) have on the
final pose of the manipulator [Trivedi 2008b]. As mentioned before, in a
continuum manipulator, there can be only a finite number of actuated
degrees of freedom1. The state of the remainder of the (infinite) degrees
of freedom in a continuum robot backbone will be determined by both
the constraints of the controlled degrees of freedom and internal and
external forces [Walker 2013a].

In this work, this problem is addressed by a discretization of the degrees
of freedom of the continuum manipulator, through numerical methods
provided by Computational Mechanics. In the following, the Contin-
uum Mechanics framework is briefly introduced to help us describe the
motion of the continuum manipulator based on its deformation and to
help the reader to understand the assumptions made in this modeling
methodology. This work also explains the methodology of kinematics
estimation on a continuum manipulator based on FEM.

3.2 Continuum mechanics framework

From a Continuum Mechanics perspective, we will consider the structure
of a continuum manipulator at a macroscopic level, that is, there is no
space between the particles that compose the manipulator, the body of
the manipulator fills the entire space it occupies. In this section, we
present the basic notions of Continuum Mechanics with the example
of a continuum manipulator. The interested reader may refer to the
Appendix A.1 for a more formal introduction.

Consider the manipulator in Fig. 3.2. with all its material particles oc-
cupying a 3-dimensional domain with a starting configuration k0. Given
a set of external loads, the manipulator will deform, changing its geom-
etry. The new deformed configuration of the manipulator is called ki.
A material particle of the manipulator will have a position P in k0 and
a position P̄ in ki. Then, we can always find a function M that maps
P̄ from P.

1This statement can be extended to any physically realizable system.
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initial con guration

deformed con guration

mapping

Figure 3.2: Illustration of the initial and deformed configura-
tions of the continuum manipulator.

In the study of deformation, two important physical quantities arise:
the stress and the strain.

Stress The deformation of the manipulator will cause internal body
reaction forces. These forces are called stress which is defined as the
force per unit area.

Strain The displacement of the particles in a continuum manipulator
can be considered, in the general case, as a result of a rigid body mo-
tion and a deformation. A measure of strain is the computation of the
deformation part of the displacement.

3.2.1 Constitutive material law

As stated before, the internal forces in a continuum manipulator are
caused by its deformation. Therefore, it is of interest to find a rela-
tion between the stress and the strain. The stress-strain relationship
is given by the Constitutive law and it depends on the material from
which the manipulator is build. We assume that the manipulator
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is built from linear elastic materials. For linear elastic materials,
the constitutive law is represented by Hook’s law.

In the experimental characterization of linear elastic materials, Hook’s
law is expressed in terms of the Young’s modulus, which is a measure
of the linear stiffness, the Poisson’s ratio, which expresses a measure
of the change in volume of the material, and the shear modulus. We
will also make the assumption that the material of the manipulator
is isotropic, which means that the material properties are independent
from the direction they are measured. It means that we do not consider
material made of fibers; however, this assumption does not prevent the
use of different materials in the structure of the robot. In this case,
only one Young’s modulus, one Poisson’s ratio, and one shear modulus
characterize the material properties.

3.2.2 Forces in the continuum manipulator

In order to compute the response of the continuum manipulator to a
set of known forces, the Principle of Conservation of Linear Momenta,
commonly known as Newton’ s second law of motion is applied. This
principle states that the rate of linear momentum of a collection of par-
ticles is always proportional to the forces acting on the particles.

The forces acting on the particles are the sum of internal and exter-
nal forces. Internal forces are of two types, volumetric and boundary
forces. The boundary forces are related to the stress by a tensor called
Cauchy’s stress tensor and they need to be integrated along the entire
manipulator. This integration produces a differential equation describ-
ing the motion of the continuum manipulator. In general, this equation
cannot be solved analytically because it involves an infinite number of
degrees of freedom. Instead, numerical methods provided by the field
of Computational Mechanics are used to approximate the solution. In
the following, we will introduce the Finite Element Method as means of
discretization of continuum manipulators.
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3.3 Finite Element Method

In order to model the kinematics of continuum manipulators, the equa-
tion of motion provided by Continuum Mechanics needs to be solved.
This equation however, cannot be solved analytically, hence the need of
numerical methods to approximate its solution. One of these numeri-
cal methods is the Finite Element Method (FEM). For a more formal
introduction to FEM, the interested reader can refer to the Appendix
A.2

The FEM can be conceptually divided in 3 main steps: discretization,
discrete solution and assembly. The main idea behind the FEM is the
consideration of the continuum body, in this case the continuum manip-
ulator, as being comprised of a set of subdomains, called finite elements.
In this step, the theoretical infinite number of degrees of freedom in a
continuum manipulator is reduced to a finite number, which makes the
approximation of the solution attainable. The collection of finite ele-
ments that compose the structure under study is called mesh, as shown
in Fig. 3.3. The generation of the mesh is an important process in FEM,
since it defines the fidelity of the model. As a general rule, the model
fidelity increases as we increase the number of elements in the mesh. In
practice, the mesh is generated from a surface model of the manipulator,
like those provided by Computer Assisted Design (CAD) software.

Surface model Volumetric mesh

Figure 3.3: Illustration of a mesh. The volumetric mesh is
created from a surface model of the manipulator.

Many choices exist for selecting the type of element that will compose
the mesh. One of the considerations to make in this regard is the di-
mensions of the problem. For example, for 1-dimensional problems, the
typical choice is the two-node truss; for 2-dimensional problems plate
or shell elements are often selected, and for 3-dimensional problems the
hexahedron or tetrahedron element are a good example of volumetric
elements (see Fig. 3.4).
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The type of element selected for the mesh will determine the nodal inter-
polation, which is basically the expression of any physical quantity inside
the mesh depending only on the values at the nodes. The accuracy of
the interpolation depends on the amount of nodes an element has and
on the choice of interpolation or shape functions. These functions can
be linear or higher order polynomials. Once the mesh is generated, the
solution to the differential equations is approximated over each element.

For the solution of the problem at the element level, each element is
disassembled from the mesh and is referred to a reference element in
which the computations are made easier. Because of this process, the
nodes in each element will have a local numeration (at the element level)
and a global numeration (at the mesh level). The final step in the FEM
deals with the re-assembly of the elements using its global numeration.
To find the global equation system we must assemble all the element
equations. In other words, we must combine local element equations for
all the elements used in the discretization.

mesh
element (tetrahedron)

1

2

3

4

node

Figure 3.4: Illustration of an element. One of the many (tetra-
hedra) elements composing the mesh.

Before the solution of the global system, boundary conditions should
be imposed. Boundary conditions in the most simple case, occur at the
fixation points of the manipulator (where the manipulator is attached to
its base). In this case, the imposition of this boundary in the global sys-
tem is simple; the equations for the nodes that are fixed to the base are
eliminated from the global system. Another, more complex boundary
condition is the one that represents the actuators, end-effector and sen-
sors in our soft, continuum manipulator. In our work, these conditions
are imposed as constraints in the model and allow for the kinematic
descriptions of the manipulator. In the next part of this chapter, the
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derivation of the kinematic models for continuum manipulators based
on the aforementioned constraints will be explained.

3.4 FEM-based kinematics of soft manipu-
lators

The computation of the kinematic model of continuum manipulators
developed in this section depend on the simulation of the FEM model
explained in 3.3. To arrive at the models of continuum manipulators,
we shall start from the formulation given by Newton’s second law that
models the dynamic behavior of the robot as

M(x)ẍ = Fext − F(x, ẋ) +HTλ (3.1)

where x ∈ Rn is the vector of generalized degrees of freedom (in this
case, the position of the nodes), M(x) : Rn �→ Mn×n is the inertia
matrix of the manipulator, ẋ ∈ Rn is the velocity vector, ẍ ∈ Rn is the
acceleration vector, Fext represents the external forces (like gravity),
F(x, ẋ) represents the non-linear internal forces that depends on the
generalized state of the manipulator and HTλ ∈ Rn gathers the contri-
bution of the constraints forces(actuators, sensors and end-effector) as
Lagrange multipliers.

In this work, the study is limited to quasi-static behavior on
purpose. Thus, in a first approach, the assumption is that the control
of the robot is performed at low velocities. As such, the term M(x)ẍ

in Eq. 3.1 that corresponds to the inertia effects is removed. On this
basis, Eq. 3.1 for the quasi-static analysis of the continuum manipulator
becomes

Fext − F(x) +HTλ = 0 (3.2)

The internal forces F(x), which are obtained from the FEM of the ma-
nipulator are non-linear. We use the Taylor series expansion to compute
a unique linearization of F(x) per simulation step. During each step i

of the simulation, the internal forces are updated as

F(xi) ≈ F(xi−1) +K(xi−1)dx (3.3)



3.4. FEM-based kinematics of soft manipulators 39

where K(x) is the tangent stiffness matrix that depends on the actual
positions of the nodes and dx is the difference between positions dx =

xi − xi−1. This linearization is valid as long as the displacement of the
nodes dx is small.

As mentioned before, the lines and columns that correspond to fixed
nodes are removed from the system to get a full rank for matrix K. In
F and K, the rows (and columns for K) contain the components of the
internal forces (x, y, z) for the nodes, in the order corresponding to their
global node numbering in the mesh.

The way H is obtained is explained in the following, but it is important
to mention that its computation is performed with the values obtained
from the previous simulation step. We then use the expression H(xi−1)

and through the linearization explained in Eq. 3.3, we obtain the fol-
lowing formulation :

−K(xi−1)dx = Fext + F(xi−1) +H(xi−1)
Tλ (3.4)

The variables dx and λ are both unknown and are found during the
optimization process. It should also be noticed that the matrix K is
highly sparse. In the implementation, a conjugate gradient solver is
used and preconditioned by a sparse LDLT decomposition. For a mesh
composed of about 1000 nodes and about 3000 tetrahedral elements, a
refresh rate of 60Hz is obtained with the implementation available in
the simulation framework.

3.4.1 Constraint for the end-effector

To set the Lagrange multiplier on the end-effector, a point or a set of
points of the robot need to be considered as the end-effector; these are
the points we seek to control in position. It could be any points mapped
on the FE mesh. For each point, the constraint objective is to reduce
the difference between the end-effector position and its desired position
pdes. Thus, a function δe(x) : R3n → R3 with n being the number
of nodes, evaluates this difference along x, y and z (see Fig. 3.5). If
the end-effector corresponds to a node i of the mesh, the function is
δe(x) = xi − pdes, where xi is the position of node i. If the effector is
set inside an element, we use



40 Chapter 3. FEM-based model of Continuum Manipulators

δe(x) =
n�

i=0

φi(peff )xi (3.5)

where peff is the position of the end-effector in the rest configuration of
the FEM model and φi is the shape (interpolation) function associated
to node i.

Figure 3.5: Illustration of the end-effector constraint. δe rep-
resents the difference between current and desired position.

If several points are used for the end-effector position, the vector δe(x)

gathers the evaluation of the difference for all the points. The function
is then R3n → R3m, where m is the number of end-effector points.

The matrix H used for the end-effectors corresponds to He(x) =
∂δe(x)
∂x

.

The matrix He is highly sparse: A row, that corresponds to a component
of a point of the end-effector, will contain non null values on a very small
number of columns. As the point is mapped on a single tetrahedral
element, there is a maximum of 4 non-null values per row. Of course,
the column should match with the components of the nodes, given the
fact that the non-null values are gathered in 3x3 diagonal block matrices.

Finally, an important point is the effort value that is put on the Lagrange
multiplier that corresponds to the terminal effector. The value of λe

will depend on the load applied on the end-effector. Two cases can be
considered:

I If the points defined as end-effector move freely in the space, there
is no physical interaction, so the contribution of the constraint
vanishes λe = 0.
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II If one or several points of the end-effector carries one object l which
mass creates a load that could deform the structure. In such cases,
the corresponding load should be set on λe = mlg with ml being
the mass of the object and g the gravity field.

In both cases, it is assumed that the value of the Lagrange multiplier
λe is known, whether by experimentation or identification.

3.4.2 Actuator constraint model

One can find different actuation schemes for soft, continuum manip-
ulators in the literature. From piezo electric actuation [Su 2012],
electro-rheological fluids [Sadeghi 2012], to electro-active polymers
[Chikhaoui 2014]; however, as implied in 2.3.1, the two most prominent
actuation schemes for continuum robots remain the pneumatic actua-
tors, and cables or tendons. As such, these two types of actuation are
considered in this work.

The model of the actuators considers their physical characteristics. The
contributions of these actuator constraints are unknown before the op-
timization process. However, given the type of actuation, the constraint
is not set in the same way.

3.4.2.1 Cable actuator

In a first case (Fig 3.6), a cable is used to actuate the manipulator. The
cable can simply be attached at one point of the structure, but it can
also go through several other points or guides; in that case, frictionless
guides are considered. In all cases, the unknown λa is the stretching
force inside the cable. It is evident that this force is unilateral (λa ≥ 0)
since we cannot push with the cable.

Let’s suppose now that the points are numbered starting from the ex-
tremity where the cable is being pulled. The matrix H is computed this
way: At each point p, representing one of the cable guides (Fig. 3.6),
we take the direction of the cable before p

db =
xp − xp−1

�xp − xp−1�
(3.6)
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Figure 3.6: Cable actuation. db and da on the figure, represent
the direction of the tendon before and after the cable guide,
respectively, which are used to compute the normal forces at
the guides.

and after p

da =
xp+1 − xp

�xp+1 − xp�
(3.7)

To obtain the constraint direction that is applied to the point, we use

dp = da − db (3.8)

Note that the direction of the final point is equal to the direction "be-
fore" as da does not exist. These constraint directions are mapped on
the nodes using the interpolation
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λa = HT

a λa (3.9)

A function δa(x) is defined to provide the length of the cable, given the
position of the constrained nodes. This constraint formulation allows
also to consider the physical limitations of the actuators, which in this
case is the cable stroke. The actuator stroke can also be included by
imposing

δa(x) ∈ [δmin δmax] (3.10)

Through the use of this function, we get

Ha =
∂δa(x)

∂x
(3.11)
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3.4.2.2 Pneumatic actuator

The formulation is compatible with pressure-based actuation of cavities
that are placed in the structure. In that case, the effort λa is the uniform
pressure exerted on the wall of the cavity, while δa represents the volume.
As the pressure is uniform inside the cavity, a single constraint can be
set for each pneumatic actuator; however, all triangles of the cavity wall
will be involved.

For each triangle t, the area at and the normal direction nt are computed.
If this result is multiplied by the pressure, we obtain the force applied by
the pneumatic actuator on the triangle t. We distribute this contribution
to each of its nodes by dividing the resulting vector by 3. We sum up
the results of each triangle in the corresponding column of HT

a . This
gives us the corresponding force acting on each of the nodes of all the
triangles that compose the cavity

Fi =
�

t∈S,i∈t

at
3
ntλa = (HT

a )iλa (3.12)

where Fi is the pressure force assigned to the node i and S is the set of
triangles composing the cavity.

cavity at rest in ated cavity

air pressure

Figure 3.7: A pneumatic actuator. The cavity at rest (left)
is then pressurized with air (right). The pressure applies a
normal force to the walls of the cavity.

Usually, pneumatic actuators only provide positive pressure so λa ≥ 0.
However, in some cases, it is also possible to create both negative and
positive pressure using vaccum/pressure actuation. In that case, there is
no particular constraint on the unknown value of λa, despite an eventual
limit (max / min) of pressure that can be achieved by the actuator.
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3.4.3 Sensor constraint model

In order to relate the end-effector position and the geometry of the ma-
nipulator, one needs sensors that can measure the geometrical state or
shape of the robot. In the literature, this task is done either by us-
ing external sensors, such as stereo-vision systems and x-ray cameras
[Otake 2014], or by sensors embedded in the body of the manipulator.
In this study, we assume that the robot has embedded sen-
sors. Various studies have been conducted to evaluate the feasibility
of different types of embedded sensors for shape reconstruction, includ-
ing electromagnetic and piezoelectric polymers [Cianchetti 2012], cable
length measurement [Segreti 2012] [Murphy 2014] and Fiber Bragg grat-
ing (FBG) [Farvardin 2016] [Searle 2013]. We can summarize the com-
mon aim of these techniques as the estimation of the configuration of
the manipulator by measuring the relative position of a set of points
along a string.

In this study, we implement the sensors in the simulation, using the
same string concept. As in the case of the cable actuator, the string of
the sensor is routed through several friction-less guides, at n points xn,
as shown in Fig. 3.8. In the model, the measure of the lengths read by
the sensor will be

n−1�

i=1

�xi+1 − xi� (3.13)

sensor string

sensor guides

Figure 3.8: Example of an embedded sensor. The sensor string
is routed though n frictionless guides.

which evaluates the distance between each sensor guide after the position
of the nodes has been updated. A function δs is defined to represent the
current length of the sensor string given the position of the constrained



3.5. Reduced model in the constraint space 45

nodes. The matrix Hs that gathers the directions of the sensor con-
straint is obtained in the same way as for the cable actuator. Since the
sensor does not apply any forces to the manipulator, λs is equal to 0.

3.5 Reduced model in the constraint space

The classical resolution of a deformable body motion using FEM (like
solving the static equilibrium of the structure described at equation
3.4) provides a forward model: it allows to compute the displacements
of the structure, given the values of the efforts put on the actuator
λa. However, in the case of position control, the actuation λa is the
unknown. Consequently, for controlling the motion of the manipulator,
an inverse model is needed, which is challenging to compute in real-time
as the size of the system is in the range of several thousands degrees of
freedom. In this work, another approach is used, based on the projection
of the mechanics in the constraint space that drastically reduces the
size of the optimization problem. This approach, initially developed in
[Duriez 2013], is generalized. A new formulation of the inverse problem
in the form of a quadratic programming (QP) optimization (developed
in [Largilliere 2015]) is used.

3.5.1 Reduced compliance on the constraint space

As stated above, the optimization process relies on a projection of the
mechanics in the constraint space. Each constraint has a direction that
is set by a line of the matrices He, Ha and Hs. This matrix is usually
sparse, as the direction of the constraints is mapped on few nodes of the
FE mesh. The values of the effort applied by the actuators λa are not
known at the beginning of the optimization process, whereas the value
of λe is supposed to be known and the value of λs is 0.

The first step consists of obtaining a free configuration xfree of the robot
which is found by solving the equation 3.4 while considering that there
is no actuation applied to the deformable structure. In practice, the
known value of λe is used and λa = 0 is imposed.

The linear equation 3.4 is solved using a LDLT factorization of the
matrix K. Given this new free position xfree for all the nodes of the
mesh, one can evaluate the values of



46 Chapter 3. FEM-based model of Continuum Manipulators

δfree
e = δe(xfree) (3.14)

that represent the shift between the effector point(s) position and the
desired position introduced in section 3.4.1. One can also evaluate

δfree
a = δa(xfree) (3.15)

which represents the position of the actuated points without actuation
effort.

From the FEM formulation of the problem that uses the global matrix
K (Eq. A.55 ), a formulation that accounts for the directions of the
constraints placed for actuators and end-effectors is derived. Using the
Schur complement of matrix K in the Lagrange multiplier-augmented
system [Przemieniecki 1985], a small formulation of δe is obtained. This
variable expresses the difference between the desired position for the end-
effector and its current position in terms of the actuators contributions
λa:

δe =
�
HeK

−1HT
a

�
� �� �

Wea

λa + δfree
e (3.16)

The Schur complement also provides similar formulations for the dif-
ference between a desired sensor or actuator position and its current
position:

δa =
�
HaK

−1HT
a

�
� �� �

Waa

λa + δfree
a (3.17)

δs =
�
HsK

−1HT
a

�
� �� �

Wsa

λa + δfree
s (3.18)

This step is central in the method. It consists of projecting the mechan-
ics into the constraint space. As the constraints are the inputs (effector
position shift and sensor length shift) and outputs (effort to apply on
the actuators) of the inverse problem, the smallest possible projection
space for the inverse problem is obtained. It allows for a projection that
drastically reduces the size of the search space without loss of informa-
tion. Indeed, the following subsection shows how the matrices Wea and
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Waa provide the mechanical coupling equations between actuators and
effector point(s).

After this projection, the optimization is processed in the reduced con-
straint space to get the values of λa. This part is described in 3.5.3.

The final configuration of the soft robot, at the end of the time step, is
obtained as

x = xfree +K−1HT
aλa (3.19)

It should be emphasized that one of the main difficulties in this im-
plementation is the computation Wea and Waa in a fast manner. No
pre-computation is possible as their value changes at each iteration.
However, this type of projection problem is frequent when solving fric-
tion contact on deformable objects. Thus, several strategies are already
implemented in SOFA.

3.5.2 Coupled Kinematic Equations

Using the compliance operator Wea, one can get a measure of the me-
chanical coupling between effector and actuator, and with Waa, the
coupling between actuators. For instance, the displacement δie created
on the end-effector (along a direction stored on the line i of matrix He)
by a unitary force λj

a applied by the actuator (which is stored at the line
j of matrix Ha) is directly obtained by

Δδie = wij
eaλ

j
a + δi,freee (3.20)

As the motion is created by deformation, the motion of the actuator j is
influenced by actuator k. Through the same principle, actuator k also
influences the displacement of the end-effector. To get a kinematic link
between actuators and effector, the method needs to account for the
mechanical coupling that can exist between actuators. It is captured
by Waa that can be inverted if actuators are defined on independent
degrees of freedom. Thus one can get a kinematic link by rewriting
equation (3.17) as:

δe = WeaW
−1
aa (δa − δfree

a ) + δfree
e (3.21)
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Equation (3.21) is composed of a reduced number of linear equations
that relate the displacement of the actuators to the displacement of the
effector. Consequently, matrix WeaW

−1
aa is equivalent to the Jacobian

matrix of a rigid manipulator. This matrix is a local linearization
provided by the FEM model on a given position and it needs to be
updated for deformations with large displacements.

In conclusion, with basic manipulation of the matrices Wea and Waa, a
condensed direct model of the soft manipulator can be obtained.

3.5.3 Inverse kinematic model solution by convex
optimization

The goal of the optimization is to find how to actuate the structure so
that the end-effector of the robot reaches a desired position. This was
initially proposed in [Largilliere 2015]. It consists of reducing the norm
of δe which actually measures the shift between the end-effector and
its desired position. Thus, computing min( 1

2
δT
e δe) leads to a Quadratic

Programming (QP) problem

min

�
1

2
λa

TWT
eaWeaλa + λa

TWT
eaδ

free
e

�
(3.22)

subject to (course of actuators) :

δmin ≤ δa = Waaλa + δfree
a ≤ δmax

and (case of unilateral effort actuation) :

λa ≥ 0

(3.23)

The use of a minimization allows to find a solution even when the de-
sired position is out of the workspace of the robot. In such a case, the
algorithm will find the point that minimizes the distance to the desired
position while staying in the limits introduced by the course of the ac-
tuators.

In practice, the QP solver available in the Computational Geometry
Algorithms Library (CGAL) [Fabri 1998] is used. The matrix of the QP
WT

eaWea is symmetric.
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If the number of actuators is equal or inferior to the size of the end-
effector space, the matrix WT

eaWea is also definite. In such a case, the
solution of the minimization is unique. In the case when the number of
actuators is greater than the degrees of freedom of the effector points,
the matrix of the QP is only semi-definite. Consequently, the solution
could be non-unique.

A new criterion for the minimization can be introduced, based on the
deformation energy. Indeed, this energy Edef is linked to the mechanical
work of the forces exerted by the actuators. Edef can be computed by
evaluating the dot product between λa and the displacements of the
actuators

Δδa = δa − δfree
a (3.24)

due to the actuator forces

Edef = λa
TΔδa = λa

TWaaλa (3.25)

Matrix Waa is definite positive if the actuators are placed on different
nodes of the FEM or with different directions (i.e. if there is no linear
dependencies between lines of Ha. Thus, one can add this energy in the
minimization process by replacing (3.22) with:

min

�
1

2
λa

T (WT
eaWea + νWaa)λa + λa

TWT
eaδ

free
e

�
(3.26)

with ν chosen sufficiently small so that the deformation energy does not
disrupt the quality of the effector positioning. In practice,

ν =
tr(WT

eaWea)

tr(Waa)
∗ 10−3 (3.27)

is chosen so that the term νWaa does not alter the value of the QP
matrix. Thanks to this modification, the QP matrix becomes definite
positive and a unique solution of the problem can be found.

3.6 Method implementation

In this section, the inverse FEM method is implemented in order to ob-
tain forward and inverse kinematic relationships for a geometrically com-
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plex continuum manipulator. Two different descriptions are obtained for
the inverse kinematics; one that relates the position of the end-effector
to the actuator space, and another that relates the position of the end-
effector to the geometric configuration of the robot. The kinematic
models are used to pilot the robot in feedforward configuration. The
forward kinematic model obtained from this approach is compared in
terms of position accuracy to two different geometric models, developed
for the same robot. Finally, the results are discussed.

3.6.1 Simulation framework

SOFA [Faure 2012] is a simulation framework first released in 2007, orig-
inally intended for the interactive computation of biomechanical models
for soft tissue. The framework is an open source C++ library with a
modular architecture in which the simulations are built as scenes. The
scenes are composed by various components that encapsulate one of the
aspects of a simulation, such as the mechanical objects representing the
degrees of freedom, the forces and constraints, the differential equations,
the main loop algorithms, the linear solvers, the collision detection al-
gorithms or the interaction devices.

At the present time, an auxiliary module, or plug-in for SOFA, dedi-
cated entirely towards the modeling and control of soft robots and its
environment is in development. This plug-in allows for a rapid genera-
tion of mechanic-based models of soft devices and their interaction with
the environment. The algorithm proposed by Duriez in [Duriez 2013] is
at the core of this plug-in and allows for the direct control of soft robots
based on the simulation of the inverse FEM of the robots.

In order to solve non-linear deformations, while providing a computa-
tionally economic method that is able to simulate the robots in real
time, a corotational formulation of volume FEM, like the one developed
in [Felippa 2005], [Felippa 2000] is implemented in SOFA.

3.6.2 Corotational FEM

In physical simulation of deformable bodies with small strains, the non-
linear part of the deformation of the body is in most cases neglected.
However, when the elements undergo a rigid transformation, this non-
linear deformation is no longer small compared with the linear part
and can no longer be neglected. Felippa and Haugen [Felippa 2005]
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proposed the computation of the rigid transformation by adding an ad-
ditional frame of reference, called corotated configuration, attached to
the elements that moves with it like a "shadow". Element deformations
are measured with respect to the corotated configuration. The element
stress field and tangent stiffness matrix are corrected using the element
rotations. A significant feature of this implementation is that it allows
for large rigid motions, as long as the strains are small. The implementa-
tion is element-independent and compatible with linear finite elements,
which makes it particularly suitable for real-time FEM simulation.

3.6.3 Mesh generation

The mesh generation is a critical part in the simulation process. In our
case, volumetric meshes (volume elements) are required. The Compu-
tational Geometry Algorithms Library (CGAL) is a software written in
C++ that allows for the generation of surface and volume meshes. The
input to the CGAL software are surface objects in stereolithography for-
mat (.stl), like those generated by a Computer Assisted Design Software
(CAD). In practice, we use only one type of element for a given mesh;
however, in some cases, different mesh subdomains are required, for ex-
ample, to represent heterogeneous materials. CGAL is able to generate
meshes composed of different subdomains while respecting the physical
interfaces; elements do not cross interfaces.

3.6.4 Description of the Compact Bionic Handling
Assistant

The CBHA is the bionic continuum manipulator component of the
RobotinoXT, a didactic mobile platform designed by Festo Robotics
[Festo 2012]. The system is shown in Fig. 3.9 (a). The bionic contin-
uum manipulator is formed by 2 serially connected sections of pneumatic
actuators, an axially rotating wrist and a compliant gripper. Without
actuation, the manipulator has a length of 206mm, with each section
having a length of 103mm. The width at the base of the manipulator is
100mm long and the top has 80mm of width. In our study, the end of
the second section is considered as the end-effector.

Each section of the manipulator is composed of an array of pneumatic
actuators or bellows, connected in parallel configuration, as shown in
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Figure 3.9: The CBHA by Festo Robotics. (a) The anatomy of
the Compact Bionic Handling Assistant. (b) A section of the
manipulator, composed by 3 pneumatic actuators and their
correspondent length sensor.

Fig. 3.9 (b). By applying different pressures to the bellows, each section
can bend independently (Fig. 3.10).

The pressure inside the cavities is regulated by a piezo proportional
valve terminal, which includes its own pressure regulators. The air is
compressed by two small membrane pumps that can attain a pressure
of 2.5 to 2.7 bars. However, the nominal operation pressure for a single
cavity in practice is in the range of 0.3 to 1 bar. The pose of the
manipulator is obtained as the contribution of the poses of the 2 sections.

In order to sense the state of the robot, string potentiometers measure
the lengths of the actuators. The control unit in the RobotinoXT is a
EA09 control board that handles the sensor readings and drive units. An
Application Programming Interface (API) embedded in the system pro-
vides communication with external applications via ethernet connection
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Figure 3.10: Examples of configurations of the CBHA based
on the pressure inside the pneumatic actuators.

and W-LAN.

The manipulator is built by a process of Additive Manufacturing (AM),
which is the name to describe the technologies that build 3D objects
in a layer-upon-layer fashion. The material employed in the CBHA
construction is Polyamide-Nylon, which has a Young’s Modulus in the
range of 1.6 to 2.3 GPa and a Poisson’s ratio of 0.39.

3.6.5 Simulation of the CBHA

In order to simulate the CBHA and kinematically control it, a mesh,
composed by 3528 tetrahedra is created from the surface representation
of its structure (Fig.3.11). To allow for a fast computation of such a big
model, a model reduction technique, based, on a domain decomposition
is performed (see Appendix B). We select the end-effector point to cor-
respond to the tip of the second section and each pneumatic actuator is
modeled following the procedure described in 3.4.2.

The implementation of the simulation that allows for the interactive
control of the robot is handled by an external computer featuring an
Intel Xeon CPU W3690 at 3.47GHz x6 with a performance, in terms of
simulation steps, of 18.4 frames per second. The communication between
the simulation and the robot is done via W-LAN with a latency of 3ms,
and when actuation commands are sent, the pressure regulators in the
CBHA have a response time of 10ms.

As implied in 3.4.1, one of the features that sets apart this modeling ap-
proach is the ability to predict yielding of the structure under external
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Figure 3.11: Visual surface model of the CBHA (left) and the
FEM mesh used in simulation (right)

loading given an accurate parametrization of the material mechanics.
This feature is of special importance when the robot is large in compar-
ison to its thickness or when the orientation of the structure as a whole
cannot be changed to counteract the effects of gravity. When the loads
are known a priori, the magnitude of the force acting on the end-effector
λe is used in Eq. 3.4 to compute the configuration of the manipulator
that accounts for said force.

As a preliminary experiment to assess the predictive capabilities of the
model, we observe the deflection of the robot when a set of known loads
are applied at the end-effector position. First, an initial configuration of
the manipulator without loading is selected and the position of the end-
effector is measured with respect to a reference frame; then, the load is
applied and the new position of the end-effector is recovered. The loads
are applied statically, so only the stationary state of the manipulator
is observed. The same load is applied to the model of the manipulator
using the same initial pose and the resulting end-effector position is
also recovered. The model of the sensors presented in 3.4.3 is used to
attain the initial configuration of the robot in the simulation. This
configuration is measured by the string potentiometers.

A vector that connects the initial and final end-effector positions repre-
sents the deflection caused by the load. In order to assess the repeata-
bility of the measurements, the loading sequence described is performed
40 times for each loading value and the average value is then used for
the model validation. The results are presented in Fig. 3.12
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Figure 3.12: Comparison between measured and predicted de-
flections caused by external loading on the CBHA manipulator

The results illustrate the compliance to loading profile of the manipula-
tor, with a maximum deflection error of 4.107mm with an average error
of 2.104mm between the measured values (blue line) and the prediction
of the model (red line). The results also show that the CBHA presents
strain hardening/necking stages of plastic behavior which corresponds
to the compliance of the plastic material used to make the manipulator.
This non-linear behavior is not considered in our model and therefore,
the model prediction is accurate only for a small region of the profile.
This behavior can be accounted for, in order to improve the predictive
capabilities of the model, by implementing two constitutive laws with
a switching condition, depending on the region of compliance in which
the manipulator is operating. However, this would modify significantly
the way the inverse FEM is formulated.

3.7 Kinematic models

In this section, the methodology developed in this chapter is applied
to obtain the forward and inverse kinematic relationships of the CBHA
based on the FEM simulation. An experiment is performed to assess
the accuracy of the forward model using the real robot. The results are
then compared to those obtained using 2 different modeling approaches.
The inverse kinematic model, derived from the inverse FEM simulation
of the robot, is also shown and validated experimentally.
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3.7.1 Forward kinematic models

The forward kinematic model of a soft manipulator deals with the prob-
lem of finding the end-effector position, given a defined configuration of
the manipulator. For a rigid manipulator, this configuration is simply
the set of variables associated with the joints of the robot. In contrast
with the rigid robots, the variables that express the configuration of
a soft manipulator change with respect to the morphology of the robot
and its type of actuation, and therefore, cannot be obtained in a straight
forward manner. The FEM-based methodology presented provides a for-
mulation to obtain the kinematic relation between the end-effector and
the configuration of the manipulator.

Given the intrinsic nature of the CBHA, the configuration of the robot
is represented by the lengths of the sensor strings, that correspond to a
position of the end-effector, as illustrated in Fig. 3.13.

string lengths
(model input)

e ector position
(model output)

Figure 3.13: Illustration of the forward kinematic model (in-
puts and output)

The input to our model becomes the configuration of the robot, and
the output will be the actuation required to achieve said configuration.
When the actuation is computed and applied to the FEM model, the
position of the end-effector that corresponds to the given configuration
is retrieved. Eq. 3.18, which is reproduced here for clarification, is used
to relate the configuration of the manipulator to the actuation space.
The lengths are recovered by the string potentiometers of the CBHA.
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δs =
�
HsK

−1HT
a

�
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Wsa

λa + δfree
s (3.28)

In this approach, no geometrical assumptions are needed. Each part of
the manipulator is modeled in detail as described in 3.6.5. Once the con-
straints have been incorporated in the model, the convex optimization
finds each actuator contribution required to achieve the desired sensor
lengths. The position of the end-effector is not represented explicitly
in Eq. 3.18. Instead, the corresponding position is recovered after the
position of the nodes is updated.

In the following, we briefly present 2 different forward models of the
CBHA previously introduced in the literature, in order to compare the
results obtained experimentally.

3.7.1.1 Constant curvature model

This approach follows the development shown in 2.3.2.1. It was tailored
to the case of the CBHA in [Escande 2011] and experimentally validated
in [Escande 2012]. In this approach, the evolution from end-to-end of
a section i is described, in terms of backbone parameters, by 2 coupled
rotations and one translation, given by the homogeneous transformation

i
jT =




cos2 φi cos θi + sin2 φi cosφi sinφi(cos θi − 1) cosφi sin θi xi

cosφi sinφi(cos θi − 1) sin2 φi cos θi + cos2 φi sinφi sin θi yi
− cosφi sin θi − sinφi sin θi cos θi zi

0 0 0 1


 (3.29)

The end-effector cartesian coordinates of the bending section i are given
by (xi, yi, zi), where

xi = ri cosφi(1− cos θi) (3.30)

yi = ri sinφi(1− cos θi) (3.31)

zi = ri sinφi (3.32)
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Figure 3.14: Parametrization of the Constant curvature model
of the CBHA

The backbone variables, namely the rotation angles φi and θi and the
curvature radius ri, are illustrated in Fig. 3.14.

In order to have the kinematic model relating the configuration of the
manipulator to the end-effector, the backbone variables need to be ex-
pressed in terms of the actuator lengths. These relationships are

φi = tan−1

√
3(l3 − l1)

2l1 − l2 − l3
(3.33)

i =
Di

3di
(3.34)

ri =
(l1 + l2 + l3)di

Di

(3.35)

where

Di = 2
�

l21 + l22 + l23 − l1l2 − l1l3 − l2l3 (3.36)

The lengths of each actuator in section i are represented by l1, l2 and l3.
The parameter di represents the diameter of section i. In this model,
each section is considered to be a cylinder with constant radius.
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3.7.1.2 Hybrid model

In the Hybrid approach to the modeling of the CBHA [Lakhal 2016], the
structure of the robot is considered as 17 vertebrae serially connected.
Between each pair of vertebrae, an inter-vertebra section is modeled
as a 3UPS-1UP joint. The behavior of a sub-structure composed by 2
vertebrae and the inter-vertebra is represented by a parallel robot with
3 DoF, as depicted in Fig. 3.15.

Figure 3.15: Sub-structure of the CBHA modeled as a paralel
robot

The position and orientation of the upper vertebra k + 1 with respect
to the lower vertebra k is given by the transformation matrix

k
k+1T =




cos θk sin θk sinΨk sin θk cosΨk 0

0 cosΨk − sinΨk 0

− sin θk sinΨk cos θk cos θk cosΨk zk
0 0 0 1


 (3.37)

where the angles θk and Ψk represent the pitch and roll angles of the
vertebra, respectively. The jaw of vertebra k + 1 with respect to the
vertebra k is constrained by a passive prismatic joint. The position of
the center of vertebra k + 1 is given by the longitudinal translation zk.
The prismatic variable qn,k, shown in Fig. 3.15, represents the length
of the inter-vertebra, which is a percentage of the total length of the
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pneumatic actuator. The value of qn,k is computed by considering the
minimum and maximum elongation of each inter-vertebra.

3.7.1.3 Forward kinematics experimental validation

In order to validate the position tracking capabilities of the model, a
trajectory inside the task space of the robot is defined. The trajectory
is composed of a set of via points for which the position can be mea-
sured in the real robot. The cartesian position of the end-effector is
measured using a stereo-vision system composed by a set of 6 infrared
cameras. For each position, the corresponding set of actuator lengths
was recorded using the string potentiometers. The set of lengths was
then used as an input for the forward kinematic model in the simulation.
After imposing the sensor constraints, the configuration of the robot is
updated and the position of the end-effector is then recovered. In this
experiment we assume that there is no payload being carried by the
end-effector. Fig. 3.16 shows the error between the measured trajec-
tory and the trajectory estimated by the FEM simulation. Fig. 3.17
and 3.18 show the estimated trajectory for the constant curvature and
hybrid approaches, respectively.

Figure 3.16: Estimated trajectory of the FEM-based approach
compared to the measured trajectory

The euclidean error comparison between the 3 approaches is summarized
in Table 3.1, where RMSD stands for the root-mean-square deviation,
ME is the maximum error, CC is the constant curvature model, HA is
the hybrid model and FEM is the finite element-based model.
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Figure 3.17: Estimated trajectory of the Constant curvature
approach compared to the measured trajectory

Figure 3.18: Estimated trajectory of the Hybrid approach
compared to the measured trajectory

Table 3.1: Error metrics for the 3 modeling approaches for the
CBHA in free load configuration

CC model HA model FEM model
RMSD(mm) 12.87 17.09 4.66

ME(mm) 16.35 22.4 7.71
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From Fig. 3.18, we can observe that the Hybrid approach is the least
accurate. This can result from the fact that one cannot precisely mea-
sure the displacement of each vertebra (only 6 string potentiometers are
available). Moreover, this model was initially developed to be able to
inverse it, more than for the attainable precision of the forward kine-
matic model. The constant curvature model has a standard deviation
of 12.87mm, which represents 6.43% of the total length of the manip-
ulator; however, for longer manipulators with bigger variations in their
diameter with respect to their length, the error increases considerably.
Moreover, as soon as a deformation in the manipulator is induced by an
external force, both of these approaches lose relevance.

3.7.2 Inverse kinematic model

Inverse kinematics deal with the problem of finding the correct config-
uration of the robot, given a desired position of the end-effector. This
configuration, as for the forward kinematic model, is represented by the
set of sensor lengths that describe the state of the manipulator. Of
course, the description of the robot can be given in the actuator space
directly [Bosman 2015], using in this case the relationship between the
end-effector position and the actuators contribution. This provides a
pressure-to-position model that requires a precise control over the actu-
ation (pressure inside the pneumatic actuators). Due to the embedded
control of the CBHA, the precise control cannot be attained however.

Instead, the relationship given by Eq. 3.16 is used to find the con-
tribution of the actuators required to achieve the desired end-effector
position. After these forces are computed and applied to the model in
the simulation, the reading from the sensor model given in Eq. 3.13 will
be taken as the solution of the inverse kinematic problem. Fig. 3.19
illustrates the input and output relationships in this model.

To validate the method, a set of 50 end-effector positions are selected
inside the task space of the robot and the corresponding set of lengths
for each position is recorded by the sensors of the robot. The same set
of positions is used as inputs for the inverse model simulation, and the
resultant length of each sensor is computed after the model is updated.
This study is summarized in Table 3.2, where l1, . . . , l6 represent the
lengths of the sensors and their values are in mm, µ represents the mean
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Figure 3.19: Illustration of the inverse kinematic model (input
and output)

error and σ is the standard deviation. The results are presented in Fig.
3.20.

Table 3.2: Error between measured and estimated lengths for
the CBHA

l(mm) l1 l2 l3 l4 l5 l6
µ(mm) 3.2 2.43 3.86 4.08 3.6 3.69
σ(mm) 1.55 1.76 2.05 2.12 2.56 2.06

The results show a mean error between 2.43mm and 4.08mm across all
lengths, which represents between 1.21% and 2.04% of the total length of
the manipulator. Again, the set of actuator contributions (in this case
the pressures applied to the cavities) obtained from the optimization
process can be used as input for the real robot to obtain a feed-forward
control signal, as will be explained in the next chapter.

3.8 Conclusion of the chapter

The results of the experimental comparison show that the FEM-based
forward kinematic model has greater accuracy in terms of position track-
ing, compared to the geometric models. The model of the sensors in the
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Figure 3.20: Comparison of the 6 measured and estimated
lengths for a predefined set of end-effector positions for the
CBHA

manipulator allows for a representation of the kinematics in the con-
figuration space that is less sensitive to model uncertainties, compared
to a description in the actuator space. Nevertheless, given an accurate
model of the constitutive law of the material, the method can provide a
description in the actuator space that can be used to control the robot
directly. Unlike other methods, the kinematic model involving the ac-
tuator space can be derived without any additional transformations.

The FEM model has a few limitations in its development, however.
These limitations represent the main source of error in the experimental
results: for the moment, the constitutive law used to model the material
of the trunk is only an approximation, as shown in 3.6.5. Moreover, non-
linear effects like the plasticity of the material are not yet implemented
in the model.
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Figure 3.21: Collision of the outer walls of the cavities when
bent at maximum angles

Another source of error comes from the geometry of the trunk itself.
When the trunk is bent at a maximum angle, the outer walls of the
pneumatic cavities collide with each other, as shown in Fig. 3.21. The
consideration of these collisions is not yet implemented in the simulation;
however, the formulation of the contact forces is already developed and
implemented in SOFA.

Additionally, the extension of the CBHA is limited by a steal cable that
runs through its backbone. This constraint is not considered in the
model and so, the extension of the robot in simulation is constrained
only by the stiffness of the structure and load mass. Thus, this model-
ing uncertainty can be compensated by adding a closed-loop controller,
which is introduced in the following chapter.
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4.1 Introduction

In the previous chapter, the kinematics of continuum manipulators based
on the inverse FEM simulation were presented and the limitations of the
model in terms of model uncertainties were discussed. The aim now, is
to compensate for the limitations of the kinematic modeling given in
the previous chapter in terms of accuracy of the position tracking and
rapidity by using a kinematic controller.

Controllers for soft manipulators have been investigated in the past with
the intention of rejecting non-linear behaviours and model uncertain-
ties that result from the complex dynamics of the manipulators (see
2.3.3). Control based on energy formulations [Ivanescu 2003], model-
less approaches [Yip 2014] and feedback controllers [Penning 2011]
[Penning 2012] have been proposed before with the intention of achiev-
ing accurate positioning of the manipulators in presence of non-modeled
dynamics. In this chapter we propose a feedback control scheme for
soft, continuum manipulators. The control is based on the Jacobian
estimation of the robot, obtained from the FEM model simulation and
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the implementation of a state estimator. We have tested the closed-loop
controller on the CBHA, but the same kind of control can be used with
any soft, continuum manipulator as long as it can be modelled using the
FEM-based method explained in the previous chapter.

In the next section, the feed-forward control based on the inverse kine-
matic model of the CBHA is presented in order to highlight the need
for closed-loop controllers.

4.2 Feed-forward control of continuum ma-
nipulators

Based on the inverse kinematic model of the CBHA presented in the
previous chapter, it is possible to use a real-time simulation of the robot
to directly control it. A feed-forward controller which, in the case of the
CBHA, computes the pressures required to reach a desired position for
the end-effector is implemented using the relationship given in Eq. 3.16
and 3.17 (see Fig. 4.1).

actuator pressure
(model output)

e ector position
(model input)

model

Figure 4.1: Illustration of the feedforward controller based on
the pressure-to-position model

We call this type of relationship a pressure-to-position model, since it
relates these two spaces. In order to describe accurately the implemen-
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tation of this type of controller, let us consider the discrete form of Eq.
3.16. Assuming the external forces to be constant, we have

δe,k+1 = δe,k +Wea(xk)Δλa,k+1 (4.1)

δa,k+1 = δa,k +Waa(xk)Δλa,k+1 (4.2)

where δe,k+1 is the current end-effector position and Δλa,k+1 is the
increment of the actuators force contribution at time k + 1, xk is the
position of the nodes at time k, also referred as the state of the robot
and Wea is the coupling between end-effector and actuators. In order to
describe the system in a language that is more familiar to robotic control
theory, in the following, the matrix Wea will be recalled as Jea, which is
the Jacobian matrix between the inputs of the system (the pressure in
the cavities) and the output error. In this way, Eq. 4.1 can be re-written
as

δe,k+1 = δe,k + Jea(xk)Δλa,k+1 (4.3)

The error is defined as

ek+1 = δe,k+1 − δd
e,k+1 (4.4)

where δde,k+1 is the desired position. The control signal sent to the robot
(pressure commands) computed at each simulation time is

λa,k+1 = λa,k +Δλa,k+1 (4.5)

The configuration of the robot at time k + 1 is updated by

xk+1 = xk +K−1
k HT

aΔλa,k+1 (4.6)

where the matrix Ha results from the imposition of the model con-
straints as Lagrange multipliers, as explained in 3.4. In this controller
implementation, the estimation of the Jacobian matrix for the real robot
performed by the simulation is inaccurate. This inaccuracy is due to
the fact that a model will never match perfectly the real system because
of unmodelled phenomenons, parameter uncertainties and disturbances.
This results in a significant disparity between the Jacobian of the robot
and the Jacobian estimated by the simulation.



70Chapter 4. Closed loop control of soft, continuum manipulators

To show the performance of this type of control, a semicircular trajectory
formed by via points inside the task space of the robot is computed.
Each point of the trajectory is introduced in the simulation sequentially
as a desired position for the end-effector and the actuation computed by
the simulation is then used as set point for the pressure regulator of the
robot. The results from this test are shown in Fig. 4.2.

Figure 4.2: Comparison between desired and measured tra-
jectories using the simulation of the CBHA as a feed-forward
controller

The results show a maximum error of 23mm, which represents the 11%
of the total length of the manipulator. The pressure-to-position model
used in this controller is highly sensible to model disparities, since the
pressure constraints are no longer modelled as Dirichlet boundary con-
ditions [Reddy 2013] in the FEM simulation. Moreover, in the case of
the CBHA, because of the lack of sensors, we cannot be certain that
the pressures computed by the simulation are the ones applied to the
cavities.

One way to correct this type of model is the use of a closed-loop control
strategy. To this end, some questions arise in the development of the
controller: First, what type of controller could be used? and more
importantly, Is the closed-loop system robustly stable?
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4.3 Closed-loop control of continuum ma-
nipulators

In the development of the closed-loop controller for the CBHA, a fun-
damental change in the nature of the model used in simulation is per-
formed. As explained previously, the pressure-to-position model used in
the feed-forward control required an accurate control of the pressures
applied to the cavities. Instead, the pressure-to-length model given in
3.7.2 is used. In this way, the inputs of our model become the lengths
of the sensors that correspond to a desired position. Eq. 4.1 is replaced
by

δs,k+1 = δs,k + Jsa(xk)Δλa,k+1 (4.7)

where Jsa is the Jacobian matrix between sensors and actuators.

Instead of imposing a desired end-effector position δd
e, a reference com-

putation is performed in order to obtain the sensor lengths δd
s required

to achieve said position (Fig. 4.3).

reference
computation

Figure 4.3: Reference computation that is performed before
the feedback system.

The reference computation provides the desired motion in terms of de-
sired sensor lengths. The desired trajectory can also be set by the user
by imposing the motion to the trunk and recording the sensor lengths.
When these desired sensor lengths are provided, we can propose a closed-
loop approach, as shown in Fig. 4.4.

In Fig. 4.4 the blue blocks represent the computations performed by
simulation. The output of the reference computation (Fig. 4.3) is the
input of the closed-loop. Two simulations executing simultaneously are
implemented in the closed-loop system: One main simulation that com-
putes the Inverse kinematic model and a second simulation that acts as
a state estimator for the system. The state estimator is the Forward
kinematic model simulation of the robot that computes an estimated
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Controller

IKM simulation Robot

FKM simulation

-

Figure 4.4: Closed-loop control of the CBHA based on IKM
and FKM simultaneous simulations and the controller

configuration for the robot based on the lengths of the actuators. This
configuration is used to update the state of the Inverse kinematic model
at each simulation step. In this way, we make sure that the configura-
tions of both simulation model and the manipulator are the same before
the estimation of the Jacobian is computed.

4.3.1 Closed-loop control law design

The tracking error ek in the closed-loop system is computed as

ek = δs,k − δd
s,k (4.8)

with δds,k represents the desired lengths of the sensors and δs,k represents
the current lengths in the robot. We define the control vector vk as

vk = Ĵsa(x̂k)rk (4.9)

where Ĵsa(x̂k) is the estimated Jacobian matrix between the sensors and
actuators and rk = Δλa,k+1. Using Eq. 4.9, the kinematic model can
be rewritten as

δs,k+1 = δs,k + vk (4.10)

The control law is based on proportional integrative strategy, therefore,
the control vector vk is designed in the sensor space as

vk = −kpek − kihk (4.11)
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with kp and ki being the proportional and integrative gains of the con-
troller, respectively. The integrative term h at time k + 1 is computed
as

hk+1 = hk + ek (4.12)

Then, the control allocation based on a Quadratic Programming (QP)
formulation [Johansen 2013] is employed to find a unique solution to

rk = Ĵ+
sa(x̂k)vk (4.13)

where Ĵ+
sa is the pseudo-inverse of the estimated Jacobian. In practice,

as Ĵsa(x̂k) may not be fully invertible, we introduce a variable O defined
as

O = Ĵsa(x̂k)rk − vk (4.14)

Using O, the QP problem formulation (3.5.3) becomes

min
vk

(OTO) (4.15)

the resulting rk will be the best possible inversion of Eq. 4.9 in the
least square sense. In addition, the QP formulation allows to define
constraints like actuator saturation or positive direction of actuation.
Using Eq. 4.11 in Eq. 4.13, rk is rewritten as

rk = −Ĵ+
sa(x̂k)(kpek + kihk) (4.16)

Using Eq. 4.16 in Eq. 4.7, the closed-loop system is defined as

ek+1 = ek + Jsa(xk)rk (4.17)

which in the ideal case in which Ĵsa is invertible, can be written as

ek+1 = ek + vk (4.18)

The system of Eq. 4.18 is a first order discrete model that can be
controlled with any standard controller. We choose the control strategy
to be based on proportional-integrative control law because we want to
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improve the convergence rate and remove any steady state error (in the
sensor space at least).

The gains of the controller are tuned by extensive testing using a simu-
lated version of the closed-loop; we use a direct FEM simulation of the
manipulator that takes any external force as input and computes the
displacement field based on these forces. No computation of the inverse
of the stiffness matrix K−1 is required. This direct simulation is put into
the place of the real robot in Fig. 4.4. The control input computed by
the simulation is applied to the direct simulation and the performance
of the robot is observed.

In order to communicate the different simulations, a couple of client-
server scripts are written in Python based on the sockets provided by
ZeroMQ communication protocol [Hintjens 2013], that allows for a fast
communication between the simulations with an average latency of 75µs.

After testing, the selected gain values are kp = 0.14 and ki = 0.0003

as a compromise between the rise time of the signal and its overshot.
Fig 4.5 shows the lengths of the simulated robot and the real robot,
both in closed-loop, given a pre-computed set points corresponding to
an end-effector position inside the task space of the robot. The position
is chosen so that the actuators are far from their saturation points. The
model simulation and the real robot have different initial conditions.
After 1000 simulation steps, the set points are changed in both the
simulation and the real robot.

Some noticeable features in Fig 4.5 can be observed. First, the results
show that both, the simulation of the robot and the robot itself have
the same settling time ts ≈ 400 simulation steps. We can also see that
the curve that represents the measured value of the lengths in the robot
jumps between two values. This behavior is a consequence of the poor
resolution of the string potentiometers. While the precision of the sen-
sors cannot be improved, the signal of the sensors can be filtered by
using a numerical implementation of an Infinite Impulse Response filter
[Rabiner 1975]. However, after implementing the filter, a considerable
delay in the measuring signal was noticed. This delay hampers consider-
ably the performance of the closed-loop system and, therefore, we opted
to not implement it in the final version of the controller.
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Figure 4.5: Comparison of real and estimated actuator lengths
of the CBHA. A second set point is applied to the system after
1000 simulation steps in order to observe the performance of
the controller. The time step is 0.1s for the experiment.

Fig 4.5 also shows a different response in the transitory stage of the
curve of the measured lengths. This response can be attributed to dif-
ferent factors; first, there is the time required to compute the config-
uration of the manipulator from the measured sensor lengths; second,
there is a time delay for the desired pressure to be applied to the robot,
and finally, the plasticity of the material from which the manipulator
is built (polyamide-nylon), that introduces a dampening effect at large
deformations, which is not represented in our FEM model. There is hys-
teresis in the behavior of the pneumatic cavities. On the other hand, the
pneumatic valves that control the pressure inside the actuators have a
small dead zone, so, when the manipulator starts its motion from a zero-
pressure condition, very small increments in the pressure do not produce
any motion until this dead zone is surpassed, which is not considered in
the FEM model.
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A second experiment was performed with the real robot in the loop. In
this experiment an external unknown force was applied to the manipula-
tor in order to see the uncertainty rejection capabilities of the controller.
Fig. 4.6 shows the results of this experiment.

Figure 4.6: Measured lengths of the CBHA in closed-loop. An
external force is applied to the manipulator after 1050 time
steps. The time step is 0.1s for the experiment.

Fig. 4.6 shows the controller disturbance rejection capabilities. After
the external force is applied, the manipulator is able to return to the
desired configuration.

4.3.2 Robustness analysis

Because of modeling uncertainties, the estimated Jacobian matrix
Ĵsa(x̂k) is, in general, different from the Jacobian of the robot Jsa(xk).
We introduce the vector ωk that represents the disparities between the
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real Jacobian and the estimated Jacobian. We call this vector the in-
version error and is defined as

ωk = [I− Jsa(xk)Ĵ
+
sa(x̂k)]vk (4.19)

Then, the closed-loop system is re-written as

ek+1 = ek + vk + ωk = ek − kpek − kihk + ωk (4.20)

The disturbed closed-loop system is

�
ek+1

hk+1

�
=

�
I− kpI −kiI

I I

� �
ek
hk

�
+

�
I

0

�
ωk (4.21)

It can be disturbing that we end up with such a simple linear system. We
emphasize to the reader that the non-linearities are taken into account
by the two simulation blocks (FKM and IKM in Fig. 4.4) in the closed-
loop control. In Eq. 4.21, we are writing the system in terms of ek and
hk and if the model was perfect, the system would be trivial. However,
we can have modeling errors, that is why, in the following, we will prove
that the control is robust to these modeling uncertainties ωk.

To simplify the notation of the problem, we define the following vectors

Xk+1 =

�
ek+1

hk+1

�
, Xk =

�
ek
hk

�
, D =

�
I

0

�
and F =

�
kp ki

�

(4.22)

Also

�
I− kpI −kiI

I I

�
= A−BF (4.23)

where

A =

�
I 0

I I

�
and B =

�
I

0

�
(4.24)

Using this notation, matrix ωk is written as

ωk = [I− Jsa(xk)Ĵ
+
sa(x̂k)]FXk (4.25)
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If the Jacobian is bounded and invertible, then there always exist a
parameter γ such that

ωT
k ωk = XT

kF
T [I−Jsa(xk)Ĵ

+
sa(x̂k)]

T [I−Jsa(xk)Ĵ
+
sa(x̂k)]FXk ≤ γ2XT

kF
TFXk

(4.26)

with

[I− Jsa(xk)Ĵ
+
sa(x̂k)]

T [I− Jsa(xk)Ĵ
+
sa(x̂k)] ≤ γ2I (4.27)

For the proof of stability, we use Lyapunov’s second method of stability
[Lyapunov 1992]. We define the Lyapunov candidate function as

V = XT
kPXk (4.28)

where P is the Lyapunov matrix with the properties

PT = P > 0 (4.29)

From Eq. 4.28 and the notation given in Eq. 4.22, the variation of the
Lyapunov function is defined as

ΔV = XT
k+1PXk+1 −XT

kPXk (4.30)

Using Eq. 4.24, Eq. 4.30 is re-defined as

ΔV = ((A−BF)Xk+Dωk)
TP((A−BF)Xk+Dωk)−XT

kPXk (4.31)

By making

A−BF = C (4.32)

Eq. 4.31 is written as

ΔV = (CXk +Dωk)
TP(CXk +Dωk)−XT

kPXk

= XT
kC

TPCXk +XT
kC

TPDωk + ωT
k D

TPCXk + ωT
k D

TPDωk −XT
kPXk

(4.33)
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Reverting the notation in Eq. 4.24, Eq. 4.33 can be written in matrix
form as

ΔV =

�
Xk

ωk

�T �
(A−BF)TP(A−BF)−P (A−BF)TPD

DTP(A−BF) DTPD

� �
Xk

ωk

�
(4.34)

For the proof, we introduce an accessory parameter α ≥ 0 in Eq. 4.26,
such that

Υ = αωTω − αγ2XT
kF

TFXk < 0 (4.35)

From Eq. 4.35, the left hand side of the inequality is written in matrix
form as

Υ =

�
Xk

ωk

�T �
−αγ2FTF 0

0 αI

� �
Xk

ωk

�
< 0 (4.36)

Adding and subtracting this term to Eq. 4.34 allows us to find a bound-
ing for ΔV as

ΔV −Υ+Υ =

�
Xk

ωk

�T
Q

�
Xk

ωk

�
+Υ (4.37)

with

Q =

�
(A−BF)TP(A−BF)−P+ αγ2FTF (A−BF)TPD

DTP(A−BF) DPDT − αI

�
(4.38)

We know from Eq. 4.35 that Υ < 0. Therefore, if Q is definite negative,
then ΔV < 0. To prove the closed-loop system to be stable, the values
for matrix P > 0 and α ≥ 0 need to be found such as matrix Q is definite
negative, given the predefined values of the boundary parameter γ and
the tuned controller parameter kp and ki. To this end, a Linear Matrix
Inequality [Boyd 1994] Solver called SeDuMi [Sturm 1999] is used in
the software Matlab. In order to describe the LMI given by Eq. 4.32,
Yalmip [Lofberg 2004], a toolbox for optimization that is compatible
with Matlab is employed. Given a value of γ = 0.98 and the gain
values kp = 0.14 and ki = 0.0003, the LMI was solved successfully. The
resulting matrix P and the parameter α that make matrix Q negative
definite are
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P =

�
646.4512 1.2983

1.2983 0.0087

�
and α = 4655 (4.39)

Using the LMI solver, we can also compute the maximum value of γ,
which provides an insight on the robustness of the closed-loop system.
After some iterations we have

max γ = 0.98685 < 1 (4.40)

One can see that if γ > 1 the sign in the control input could potentially
change which would lead to instability, so γ = 0.98685 is close to the
limit case. The proposed closed-loop system is robustly stable and can
handle high Jacobian inversion errors in the change of control variables.

4.4 Conclusions of the chapter

In this chapter, feed-forward and closed-loop controllers based on the
FEM model for the CBHA were studied. Given the fact that the esti-
mation of the Jacobian matrix depends on the configuration of the robot,
the feed-forward control was ineffective in terms of precise positioning.
Based on this observation, a closed-loop control strategy that relies on
the forward kinematic model as a state estimator was proposed. The
state estimator is able to apply the configuration of the robot to the
simulation. The closed-loop was tuned using a direct FEM simulation
of the CBHA and then implemented in the real robot. The performance
of the controller was showed and the proof of stability was given.

As explained in previous chapters, the model employed in the controller
works under quasi-static conditions, which means that it is assumed
that once the robot reaches a desired position, a period of stabilization
is required before moving to the next position. The natural next step in
the control of continuum manipulators would be to extend the controller
to the dynamic case in which the inertial effects of the manipulator are
considered. This would allow for the control of the acceleration of the
robot, required for more complex applications. In general however, in
order to capture high frequency vibrations of the structure, a higher
sampling rate is required.
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In 4.3, we mentioned that a reference computation was performed in
order to change the spaces related by our models. In this case, the
robot is actuated directly to achieve a certain cartesian position, then, a
sensor reading is performed to obtain the lengths that correspond to said
position. However, thanks to the implementation of the state estimator,
an end-effector trajectory can be set manually by manipulating the trunk
directly while recording the lengths with the estimator. This manner of
pre-computing the reference is more intuitive and can be used when the
control commands for a desired position are not known.

In this chapter, the closed-loop control strategy for continuum manipu-
lators was presented and the proof of stability was given. However, in
the robustness analysis of the controller, the only assumption imposed
on the inversion uncertainty ωk was its norm boundedness. No structure
was assumed on ωk. This simplification of the uncertainties may lead to
extreme conservative results. For example, consider a system composed
by two actuators with a proportional gain kp described by

e1k+1 = (1− kp)e1k + ω1k (4.41)

e2k+1 = (1− kp)e2k + ω2k (4.42)

given the values of uncertainties

ω1k = 0, ω2k = 105e1k (4.43)

The LMI proposed before is unfeasible with these values but if we study
this model it can be proved to be stable. The system described in Eq.
4.41 and 4.42 is not realistic in the context of soft continuum manipula-
tors, since more often than not the actuators are coupled. Nevertheless,
the example helps to highlight the need of structured system uncertain-
ties [Doyle 1982]. For a structured system, the inversion uncertainty
takes the form

ωk = EΔFX (4.44)

where E and F are called uncertainty weighting filters. The bound-
edness is now applied to the uncertainty structure Δ ≤ γI. Special
procedures have been developed to deal with structured bounded uncer-
tainties [Morari 1989].
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The main objective of this work was to provide a methodology to study
and model soft, continuum manipulators based on computational me-
chanics. The methodology was used in the kinematic modelization of a
continuum manipulator, the CBHA. We provided new control methods
based on such models. We have validated the methodology with exper-
iments that involve the real-time simulation of the FEM model. In the
following, the conclusions for each chapter are given.

5.1 Summary of conclusions

In chapter 2, a concise and complete view of the field as it is was given.
The main problem on the modelization of continuum manipulators was
introduced and a brief study on the most popular approaches towards
the modeling in the literature was given and a qualitative evaluation of
these approaches was presented. In order to make room for our con-
tribution in the field, the role that external forces play in the motion
of continuum manipulators was also presented. Also, a taxonomy of
the different types of designs was presented in order to highlight the
main actuation differences. In our opinion, the most important part of
the state of the art was the introduction of the main issue that most
of the modeling approaches fail to capture: the deformation mechanics!
Continuum manipulators produce their motion by deformation, and yet,
very few approaches make emphasis on this feature.
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Chapter 3 started as an introduction on continuum mechanics in an at-
tempt to show that the study of deformations seems like a more natural
and compatible tool to model continuum manipulators. The Finite Ele-
ment Method was presented as a method to solve differential equations
with boundary conditions; a problem that is encountered when studying
continuum media. Special emphasis was put in the concept of discretiza-
tion, that allow us to reduce the infinite number of degrees of freedom
of continuum manipulators. The methodology we use towards the mod-
eling and control of soft, continuum manipulators was introduced and
the model reduction based on the projection of the FEM model was ex-
plained. The model of sensors, actuators and end-effector as constraints
in the FEM was explained. The mechanical coupling between the dif-
ferent constraints, provided by the compliance operators, was shown to
be a necessity in the computation of the Jacobian matrix for continuum
manipulators. The model of actuators and sensors based on Lagrange
multipliers was used in the implementation of the kinematic models for
the CBHA. The CBHA manipulator was introduced as a case of study to
exemplify the implementation of the methodology. While our method-
ology does not produce analytic solutions for the kinematic model, the
numerical approximation of the kinematic solution was shown superior
to those obtained by 2 other geometric methods in terms of tracking
position.

As a conclusion for chapter 3, some of the uncertainties in the model
of the CBHA were discussed. This gave room for the implementation
of the closed-loop control presented in chapter 4. The simulation of
the FEM model was used to control the manipulator in real time. The
discussion about the feed-forward control of the CBHA provided a good
example of the need for closed-loop controllers. While there are a lot of
non-linear behaviors that are currently not included in the model, the
closed-loop control is still able to provide good performance in terms of
the positioning of the manipulator. The proposed controller was proved
to be robustly stable.

As a conclusion to this work, we have shown the feasibility of using
FEM simulation as a generic methodology for modeling and control of
soft, continuum manipulators, based on the premise that the study of
deformations is fundamental if one seeks to characterize this type of
robots.
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One interesting venue for future research of the methodology presented
in this manuscript is its application to the design of soft, continuum
manipulators. Since the simulation of the backbone of continuum robots
can be done in a fast manner. The simulation can be used to reduce the
number of design iterations performed to achieve a certain behaviour.
The fabrication of soft actuators, in particular fluidic actuators, is a
complex task. Being able to observe the behavior that a certain design
has, prior to its fabrication, is of great help when undertaking the design
of a new prototype. This approach towards the design and integration
of soft, continuum manipulators has been explored in the past, with the
design and construction of the FeTCh manipulator.

5.2 The FeTCh manipulator

The prototype of the FeTCh manipulator was designed with the in-
tention of using the principle of antagonistic actuation to achieve the
rigidification of its structure [Shiva 2016]. The backbone of the robot is
composed by actuators in an intrinsic fashion, while including extrinsic
tendon actuators. Each section of the robot is formed by three pneu-
matic actuators arranged in parallel configuration between two rigid
platforms that guide the deformation of the actuators. This configura-
tion gives the section 2 axis bending, and also extension. The arrange-
ment of the actuators also helps to counter the lack of shearing stiffness
that is characteristic to pneumatic actuators. The described section of
the manipulator is shown in Fig. 5.1.

The extrinsic actuation of the manipulator is composed by tendons that
are pulled by a servomotor-pulley system. These tendons are routed
through the rigid platforms at 120◦ around the rigid platform at the end
of each section and apply a force that is regulated. The inclusion of the
tendons provides more stability to the manipulator when it moves, but
also provide a degree of selective rigidification of the structure.

The idea behind the actuator design was to create an extensor that
can elongate when pressurized, as opposed to the more traditional con-
tractor artificial muscles. The extension of the actuator is caused by
the unfolding of its walls, rather than pure deformation caused by the
pressure. The simulation of the actuator was used in order to observe
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Figure 5.1: Single section of the FeTCh manipulator showing
different configurations depending on the pressure inside the
actuators

its behaviour and obtain the actuation values (in this case the pressure
inside the cavity) for a desired elongation.

Figure 5.2: Simulation of the soft actuator.

After the validation of the design by the simulation, the actuator was
built and tested. The actuator has a maximum extension of 81.25%

when pressurized with 0.41bars. The final design of the manipulator is
achieved by serially connecting 3 sections like the one shown in Fig. 5.1.

The design allows for the positioning of the final rigid platform, but also
for its orientation. Further testing on the rigidification effect based on
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Figure 5.3: The FeTch manipulator.

the FEM model is still required but the preliminary results are promis-
ing.

The simulation of soft structures prior its fabrication allows also for the
testing of the design robustness. Since the integration of soft robots
in general is not a perfected process, defects in the soft parts are often
encountered. For example, the most common flaw in soft pneumatic
actuators are artificial heterogenous regions formed by air bubbles. In
the simulation, the inclusion of these regions is easily done. This allows
the validation of designs when fabrication flaws are expected. In addi-
tion, the range of actuation can also be determined, this allows for the
selection of key components like the servos for the tendons and the type
of pneumatic manifolds to be used in the back-end of the manipulators.
Once the final assembly for the manipulator has been established, the
identification of the task space of the robot can also be performed.
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5.3 Perspectives

The possible improvements in the current work regarding the modeling
of continuum manipulators are numerous and it is difficult to mention
them all here. However, based on the experience we have with the
CBHA, some immediate modifications can be performed to improve the
model without making it too complex for fast computation. For ex-
ample, it is observed that at different temperatures, the manipulator
behaves slightly differently; at higher temperature, the plastic material
is more ductile. The inclusion of the model of thermal expansion in the
element potential energy functional Π (Eq. A.52), from the FEM, can
be done without changing its general formulation. By adding the term

h =

�

V

BTEεTdV (5.1)

where B is the relation between strains and nodal displacements and
E is the elasticity matrix, we can represent the fictitious forces that
correspond to the thermal expansion of the material. Of course, in
small scale manipulators, this term can be completely neglected, but for
applications that require bigger manipulators, the effect of temperature
in their behavior can be considerable. It is also observed that material
fatigue affects the motion of the manipulator. After prolonged use of
the robot, the pneumatic actuators expand more easily. Creeping and
relaxation stages of plastic materials should also be considered in the
model.

In terms of design, there is a great need for novel actuation technologies
to be developed with the purpose of providing continuum robots with
bigger force generation capabilities. At the present time, it is clear
that soft manipulators have a niche of applications in the medical field.
However, this narrow niche can be expanded provided that this type
of robots can compete with rigid ones in terms of force generation and
payload handling.

As a final perspective, much work needs to be done in terms of the
formalization of the theory behind continuum manipulators. In order
to expand and teach soft robotics as a field, a unified and comprehen-
sive terminology and methodology of modeling and control needs to be
firmly established. It is our hope that the work presented in this brief
manuscript contributes towards that important objective.



Appendix A

Introduction to Continuum
Mechanics and FEM

A.1 Introduction

The objective of this appendix is to give the reader a brief introduction
to continuum mechanics and FEM. The interested reader should refer
to [Constantinescu 2007], [Reddy 2013] for a more detailed explanation
of the concepts presented in the sequel.

A.1.1 Continuum Mechanics

When analyzing the effects of forces and energy on bodies from a me-
chanical point of view, we can choose to perform the analysis at different
physical scales. Continuum Mechanics performs this study at the macro-
scopic scale, by assuming that the body is a continuous mass. By making
this assumption, the molecular substructures can be disregarded and the
body is then considered a continuum. In the following, the description
of motion in continuum bodies is presented.

A.1.1.1 Concept of configuration and description of motion

To arrive at a description of motion in a continuum media, let us consider
a body B with all its material particles occupying a three dimensional
domain Ω ∈ R. For a given set of loads (external forces), the body
will deform changing its geometry and this deformation will be accom-
panied by internal body reaction forces, called stress. The new region
κi occupied by the body after the i-th deformation is called the i-th
configuration of the continuum. In this case, Ω = κ0 is the initial or
underformed configuration and it is used as a reference to express the
deformation of the continuum body.
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initial con guration

deformed con guration

Figure A.1: Illustration of the Lagrangian description of mo-
tion between initial and deformed configuration for an elastic
body

A material particle of B, with a position vector P0 in the initial con-
figuration κ0 will have a new position vector Pi in κi after deformation
given by

Pi = M(P0, t) (A.1)

The function M is called a deformation mapping and describes a 1-
to-1 relation between particle positions in the initial configuration and
the new position in the deformed configuration. The displacement of a
particle in a continuum can be defined as

u(Pi) = Pi −P0 = M(P0, t)−P0 (A.2)

This description of motion of continuum is referred as the Lagrangian
description (Fig. A.1).

Now consider an infinitely small line segment in the body B given by
dP0 and dPi before and after deformation, respectively, as shown in Fig.
A.2. The relationship between these two lines is given by the gradient
of deformation F, defined as

F =

�
∂M

∂Pi

��
= ∇u+ I (A.3)

where ∇ is the gradient operator with respect to Pi and I is the identity
matrix. The determinant of F, J = detF is referred to as the Jacobian
of motion.
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initial con guration

deformed con guration

Figure A.2: Illustration of the gradient of deformation in the
Lagrangian description of motion

A.1.1.2 Stress and Strain

The displacement of particles in a continuum media can be considered,
in the general case, as a result of a rigid body motion (a translation and
a rotation) and a deformation. A measure of strain is the computation
of the deformation part of the displacement, independent of the rigid
body motion.

In order to arrive at the definition of the strain tensor, we define the
right Cauchy-Green tensor as

C = F · F� (A.4)

which gives us the square of local displacement due to the deformation.
Similarly, the left Cauchy-Green tensor is defined as

B = F� · F (A.5)

Using Eq. A.4, we define the Green - Lagrange strain tensor in vector
form as

E =
1

2
(F · F� − I) =

1

2
(C− I) (A.6)

with E = 0 when the displacement is a result of a rigid body motion.
Eq. A.6 is expressed in Cartesian coordinates (X1, X2, X3), as

Ei,j =
1

2

�
∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

�
, ∀ 1 ≤ (i, j) ≤ 3 (A.7)
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where ui are the cartesian components of the displacement, E11, E22

and E33 are called normal strains and E12, E23 and E13 are called shear
strains. The tensor can also be written in terms of the gradient of the
displacement

E =
1

2
[(I+∇u) · (I+∇u)� − I] =

1

2
[∇u+ (∇u)� + (∇u) · (∇u)�]

(A.8)

In the case of infinitesimal strains, the displacement gradients are small
and the nonlinear terms in Eq. A.8 can be neglected. The infinitesimal
strain tensor becomes

ε =
1

2
[∇u+ (∇u)�] (A.9)

Also important in the study of continuum motion is the measure of
stress. As mentioned before, when a body deforms, the deformation
causes reaction forces within the body. These internal forces are called
stress and are defined as the force per unit area.

Consider a small element of area a in a continuum media. The stress
vector m acting on the surface of the element is defined as

m(n̂) = lim
Δa→0

Δf(n̂)

Δa
(A.10)

where Δf(n̂) is the force acting on a small surface of area Δa and n̂ is
the unit vector normal to that area. We can also write m in terms of
the Cauchy stress tensor σ as

m(n̂) = n̂ · σσσ (A.11)

The Cauchy stress tensor σ is defined as the current force per unit of
deformed area. The first Piola-Kirchhoff stress tensor or Lagrangian
stress tensor

G = Jσσσ · F� (A.12)

is defined as the current force per unit of undeformed area. In a similar
way, we introduce the second Piola-Kirchhoff stress tensor S, defined as
the transformed current force per unit of undeformed area. The second
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Piola-Kirchhoff stress tensor is associated to the first Piola-Kirchhoff
stress tensor by the equation

S = F� ·G (A.13)

In practice, the second Piola-Kirchhoff stress tensor is used in the study
of large deformations, useful for the simulation of elastic materials.

A.1.1.3 Constitutive equations

In order to reconstruct the deformed configuration of a body under a set
of external forces, a relationship between stress and strain is necessary.
In our study, we will continue to consider the case of small strains.
For linear elastic materials, the relationship between the components of
stress and strain tensors at each point of the body is given by Hooke’s
law, which is written in tensor form as

σij =
�

1≤(k,l)≤3

Cijklεkl, ∀ 1 ≤ (i, j) ≤ 3 (A.14)

where the scalar coefficients Cijkl are called stiffness coefficients of the
stiffness tensor C. In the general case, C is formed by 81 coefficients,
but due to the symmetry of the stress and strain tensors, the coefficients
are reduced to 21. Using single subscript notation for stresses and strains
and two subscripts for the stiffness coefficients

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13, σ6 = σ12

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = ε23, ε5 = ε13, ε6 = ε12

11 → 1 22 → 2 33 → 3 23 → 4 13 → 5 12 → 6

(A.15)

Eq. A.14 takes the form

σi = Cijεj (A.16)

which is refered as the Voigt-Kelvin notation [Dellinger 1998]. In matrix
notation, Eq. A.16 is written as
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σ1

σ2

σ3

σ4

σ5

σ6



=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







ε1
ε2
ε3
2ε4
2ε5
2ε6




(A.17)

with Cij = Cji. The components of strain are related to the components
of stress by

εi = Wijσj (A.18)

where Wij are the coefficients of the compliance tensor W = C−1. Eq.
A.18 is written in matrix notation as




ε1
ε2
ε3
2ε4
2ε5
2ε6



=




W11 W12 W13 W14 W15 W16

W21 W22 W23 W24 W25 W26

W31 W32 W33 W34 W35 W36

W41 W42 W43 W44 W45 W46

W51 W52 W53 W54 W55 W56

W61 W62 W63 W64 W65 W66







σ1

σ2

σ3

σ4

σ5

σ6




(A.19)

Orthotropic materials Orthotropic materials have three mutually
orthogonal planes of material symmetry, meaning that their material
properties differ when measured from different directions. In this case,
the elastic coefficients are reduced to 9. Most of the time, experimental
characterization of material is performed using known loads; it is then
convenient to express the relation of stress and strain in terms of the
compliance. Eq. A.19 for orthotropic materials has the form




ε1
ε2
ε3
2ε4
2ε5
2ε6



=




W11 W12 W13 0 0 0

W21 W22 W23 0 0 0

W31 W32 W33 0 0 0

0 0 0 W44 0 0

0 0 0 0 W55 0

0 0 0 0 0 W66







σ1

σ2

σ3

σ4

σ5

σ6




(A.20)
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In the experimental characterization of linear elastic materials, the coef-
ficients of the compliance tensor are computed using the Young’ s mod-
ulus, the shear modulus and the Poisson ratio [Wortman 1965]. After
introducing these engineering constants, Eq. A.20 takes the form




ε1
ε2
ε3
2ε4
2ε5
2ε6



=




1
E1

−v21
E2

−v31
E3

0 0 0

−v12
E1

1
E2

−v32
E3

0 0 0

−v13
E1

−v23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12







σ1

σ2

σ3

σ4

σ5

σ6




(A.21)

where E1, E2 and E3 are the Young’s moduli in the three main material
directions, vij is Poisson’s ratio, defined as the ratio of traverse strain in
the jth direction to the axial strain in the ith direction when stressed
in the i-direction, and G23, G13 and G12 are the shear moduli in the 2-3,
1-3 and 1-2 planes respectively.

When computed experimentally, the Young’s modulus, which is a mea-
sure of linear stiffness, is represented by the slope of the linear part in
the stress-strain relationship, while the Poisson’s ratio is a measure of
the change in volume of a material.

Isotropic materials If the material properties are independent from
the direction, meaning that

E1 = E2 = E3 = E , G23 = G13 = G12 = G , v12 = v23 = v13 = v

(A.22)

the material is said to be isotropic. For isotropic materials, the stress-
strain relationship is reduced to

σij =
E

1 + v
εij +

vE

(1 + v)(1− 2v)
εkkδij (A.23)

where δij is called the Kronecker Delta and it is used as a simple repre-
sentation of the scalar product

δij = êi · êj (A.24)
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that takes the values δij = 1 if i = j and δij = 0 otherwise. The
vectors êi and êj are the orthonormal unit vectors in a right-handed
basis system. Introducing the Lamé coefficients [Akamatsu 1991]

µ =
E

2(1 + v)

λ =
Ev

(1 + v)(1− 2v)

(A.25)

the constitutive equation for isotropic linearly elastic material takes the
form

σij = 2µεij +
3�

k=1

εkkδij (A.26)

A.1.1.4 Equations of motion

The evolution of the motion in continuum bodies is derived from the
Principle of Conservation of Linear Momenta commonly known as New-
ton’s second law of motion that can be stated as the time rate of linear
momentum of a collection of particles equals the net force exerted on the
collection. This principle allow us to express the relationships between
the primary unknown displacement field of the particles of a continuum
body in terms of stresses and strains. The solution of these equations
represent the response of the system to a set of input (known forces)
data. In vector form, the principle is represented by

m
dv

dt
= F (A.27)

where m is the constant total mass, v is the velocity, and F is the net
force applied on the particles. For a body over the control volume Ω,
Eq. A.27 takes the form

F =
∂

∂t

�

Ω

ρdv +

�

Γ

ρv · ds (A.28)

where ds is the vectorial representation of an area element, ρ is the mass
density and Γ is the boundary surface of the body. Let f be the external
body force per unit of mass, which acts on the distribution of mass inside
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the body. Considering an elemental volume dΩ inside Ω, the body force
of dΩ is equal to ρdΩf . The total body force in the control volume is

�

Ω

ρfdΩ (A.29)

Let m be the surface force per unit area. The surface force acting on
an elemental surface ds of the volume is mds. The total surface force
acting on the closed surface of Ω is

�

Γ

mds (A.30)

rewriting m in terms of Cauchy’s stress tensor (Eq. A.11), and using
the divergence theorem, we have

�

Γ

n̂ · σσσds =
�

Ω

∇ · σσσdΩ (A.31)

Using the Reynolds transport theorem [Cengel 2006], the global form
of the equation of motion of the body occupying the region Ω with
bounding surface Γ and acted upon the surface force m and body force
f is given by

0 =

�

Ω

�
∇ · σσσ + ρf − ρ

Dv

Dt

�
dx (A.32)

where D
Dt

denotes the material time derivative. The local form is

∇ · σσσ + ρf = ρ
Dv

Dt
(A.33)

or

∇ · σσσ + ρf = ρ

�
∂v

∂t
+ v ·∇v

�
(A.34)

For infinitesimal deformation of solid bodies in static equilibrium, Eq.
A.33 becomes

∇ · σσσ + ρf = 0 (A.35)

In Cartesian rectangular coordinates, we have
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∂σji

∂xj

+ ρfi = 0, ∀ 1 ≤ (i, j) ≤ 3 (A.36)

In the general case, Eq. A.34 is the partial differential equation that de-
scribes the motion of a deformable body. However, an analytical solution
to Eq. A.34 is intractable for most cases. In turn, an approximation of
the solution is computed using numerical methods.

A.2 Finite Element Method for linear elas-
tic bodies

In order to reconstruct the sequence of configurations that an elastic
body will take, given a set of forces acting on it, Eq. A.36 remains
to be solved. This equation, however, cannot be solved analytically,
since it involves an infinite number of degrees of freedom. In general,
finding the solution for continuum elastic solids is done by making use of
numerical methods provided by the field of Computational Mechanics,
since analytical solutions exist only for trivial problems. One of these
numerical methods is the Finite Element Method (FEM).

In the finite element method, a geometrically complex domain Ω is
viewed as being comprised by a finite set of subdomains (elements) Ωe

over which the solution of the governing equation is approximated using
variational methods 1. The division of the domain in subdomains allows
for an accurate representation of complex geometry.

We can summarize the Finite Element Method in three main steps:

1. The division of the domain of interest in smaller subdomains. We
call this step the discretization step

2. The approximation of the solution at the element level as a linear
combination of nodal values and shape functions

3. The assembly of the elements that allows to approximate the global
solution over the whole original domain

In the following, these three steps are briefly explained for the formu-
lation of the displacement-based FEM [Bathe 2006], which is used in

1In fact, FEM can be viewed as a piecewise variational method
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the manuscript to derive the kinematics of soft manipulators. If more
detailed explanation is required regarding the general formulation of
the problem using variational methods, the reader is advised to refer to
[Reddy 1993].

A.2.1 Discretization of the domain

Figure A.3: Discretization of the domain. A continuum do-
main (a) is approximated by triangle elements (b) which pro-
duces a discretization error. The mesh is refined (c) by in-
creasing the number of elements. This in turn reduces the
error.

The first step in FEM is the partition of the domain of interest Ω into
smaller, geometrically independent domains called finite elements Ωe.
The collection of finite elements that form the discrete domain is called
mesh (Fig. A.3). In this step, the first source of error in a finite element
analysis is introduced: In most cases, the discrete representation will
differ geometrically from the original domain. It is evident that this
error can be diminished by reducing the dimensions of the elements to
better conform to Ω, but this results in an increased number of elements
involved in the computation which, in turn, require more computational
resources. A compromise between an accurate representation of the
complex geometry and the number of elements is needed. In fact, mesh
refinement and convergence is still an active research topic.

While there are some commercially available applications for automatic
mesh generation, it is important to mention the general set of rules that
a finite element mesh must follow. This set of rules are:

Finite elements in a mesh do not overlap in space. This property
goes by the name of local support
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Elements with high aspect ratios should be avoided. The aspect
ratio of a three-dimensional element is the ratio between its largest
and smallest dimensions
A physical interface (Fig A.4 (a)), resulting from a change in ma-
terial, should be an interelement boundary. Elements should not
cross an interface

Figure A.4: Illustration of the mesh rules. Elements should
not cross physical interfaces formed by a change of material
(a). Elements with high aspect ratios (b) should be avoided.

In the following, the treatment given to an element is explained.

A.2.2 Element solution

At the element level, the physical quantities of interest, which in our
case is the displacement field u at any point inside the element, is ap-
proximated by a linear combination of u at the nodes of the element.
This approximation is expressed as

ue ≈
n�

i=1

ue
iφ

e
i (x) (A.37)

where ue is the displacement inside the element, ue
i is the displacement

of node i and φe
i are the interpolation functions that depend on the

element geometry. In the following, we introduce the linear tetrahedron
element and derive its interpolation models. In this case φe

i are taken to
be linear polynomials.
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A.2.2.1 The linear Tetrahedron

The simplest solid element is the four-node tetrahedron, also known as
the linear tetrahedron [Felippa 2001], depicted in fig A.5. The tetra-
hedron geometry is defined by the position of its nodes in Cartesian
coordinates xi, yi and zi with i = 1, 2, 3, 4 or in the tetrahedral natural
coordinates denoted by

ζ1, ζ2, ζ3, ζ4 (A.38)

(a) (b) 

Figure A.5: Illustration of the tetrahedron element. (a) Ele-
ment picture. (b) Visualization of ζ1 as planes parallel to face
234. Figure adapted from [Felippa 2001]

The value of ζi is one at corner i and zero at the other 3 corners, includ-
ing the entire opposite face and it varies linearly with distance as one
traverses the distance from the corner to that face.

Any function f(x, y, z) linear in x, y, z that takes values fi(i = 1, 2, 3, 4)

at the corners of the tetrahedron may be interpolated in terms of the
coordinates of the tetrahedron by

f(ζ1, ζ2, ζ3, ζ4) = f1ζ1 + f2ζ2 + f3ζ3 + f4ζ4 (A.39)

The interpolation functions are expressed in terms of the tetrahedron
coordinates because they depend on the geometry of the element, how-
ever, other quantities like stress, strain and displacements are expressed
in Cartesian coordinates. Therefore, a transformation between these
two coordinate systems is needed. This transformation is given by
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1

x

y

z


 =




1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4







ζ1
ζ2
ζ3
ζ4


 (A.40)

For linear elastic material, the interpolation functions are simply the
tetrahedron coordinates ζi. The displacement field over the tetrahedron
ue is defined by the three components ux, uy and uz. These are linearly
interpolated from their node values




ux

uy

uz


 =




ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4







ζ1
ζ2
ζ3
ζ4


 (A.41)

combining Eq. A.40 and A.41, we obtain the isoparametric definition of
the tetrahedron as a displacement model




1

x

y

z

ux

uy

uz




=




1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4
ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4







ζ1
ζ2
ζ3
ζ4


 (A.42)

The relation between the strains and the nodal displacements is given
by

ε = Bue (A.43)

where matrix B is constant over the element, and has the form

B =




a1 0 0 a2 0 0 a3 0 0 a4 0 0

0 b1 0 0 b2 0 0 b3 0 0 b4 0

0 0 c1 0 0 c2 0 0 c3 0 0 c4
b1 a1 0 b2 a2 0 b3 a3 0 b4 a4 0

0 c1 b1 0 c2 b2 0 c3 b3 0 c4 b4
c1 0 a1 c2 0 a2 c3 0 a3 c4 0 a4




(A.44)

where
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6V
∂ζi
∂x

= ai, 6V
∂ζi
∂y

= bi, 6V
∂ζi
∂z

= ci, i = 1, 2, 3, 4. (A.45)

with V being the volume of the element. Similarly to Eq. A.20, the
stress field is related to the strain field by

σ = Cε (A.46)

for isotropic materials the relation in expanded form simplifies to




σxx

σyy

σzz

σxy

σyz

σzx



=

E

(1 + v)(1− 2v)




1− v 0 0 0 0 0

0 1− v 0 0 0 0

0 0 1− v 0 0 0

0 0 0 1
2 − v 0 0

0 0 0 0 1
2 − v 0

0 0 0 0 0 1
2 − v




(A.47)

where E is the Youngs modulus and v is the Poisson ratio. Introducing
Eq. A.43 and A.46 into the Total Potential Energy functional restricted
to the element volume and assuming that the elasticity modulus do not
vary over the element, we can compute the element stiffness matrix as

Ke = VBTCB (A.48)

A.2.3 Assembly

The purpose of the finite element solution of the elastic problem is to find
the displacement field u that provides minimum to the total potential
energy functional Π

Π =

�

V

1

2
εTσdv −

�

V

uTfdV −
�

S

uTmdS (A.49)

with the second term corresponding to the volume forces, where f is
the body force vector and the third term corresponding to the surface
forces where m is the surface force vector. The displacement boundary
conditions do not appear in the functional Π; boundary conditions are
implemented after the assembly of the finite element equations.
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Using the relationships for stress and strain, derived in A.2.2.1, we can
express Eq. A.49 in terms of the displacements of the nodes

Π =

�

V

1

2
(Bue)TC(Bue)dv −

�

V

(ζue)T fdV −
�

S

(ζue)TdS (A.50)

where the superindex e denotes a value at the element level. Nodal
displacement ue which corresponds to the minimum of the functional Π
are determined by the condition

∂Π

∂ue
= 0 (A.51)

Differentiating Π with respect to ue produces the following equilibrium
equations for the finite element

Π =

�

V

BTCBdvue −
�

V

ζT fdV −
�

S

ζTmdS = 0 (A.52)

Eq. A.52 is usually represented in the equivalent form

Keue = Fe (A.53)

with

Ke =

�

V

BTWBdv

Fe =

�

V

ζT fdV −
�

S

ζT tdS

(A.54)

where matrix Ke is the element stiffness matrix and Fe is the vector of
loads. The aim of the assembly is to form the global equation system

Ku = F (A.55)

using the element equations of the ith finite element

Ke
iu

e
i = Fe

i (A.56)

Let us introduce the matrix Kd and vectors ud and Fd formed by the
concatenation of Eq. A.56, such as
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Kd =




Ke
1 0 0

0 Ke
2 0

0 0 · · ·




ud = (ue
1 ue

2 · · · )
Fd = (Fe

1 Fe
2 · · · )

(A.57)

with the relations

K = ATKdA

F = ATFd

(A.58)

where matrix K is the global stiffness matrix. Here, matrix A provides
the transformation from global to local node enumeration. In practice,
one node can be shared by several elements. The nodes have a local
index (at the element level) and a global index (at the level of the mesh).
Finally, we arrive at the following global equation system

ATKdAu−ATFd = 0 (A.59)

A.2.4 Displacement boundary conditions

Displacement boundary conditions were not present in the total poten-
tial energy functional presented in Eq. A.49. They are usually applied
to the global equation system, given by Eq. A.55, after its assembly
for convenience. In the general case, before the application of boundary
conditions, matrix K is singular, which means that its rows and columns
are linearly dependent and, therefore, K is not a full rank matrix.

Let us consider the application of the displacement boundary condition

ue
m = d (A.60)

to the global system Eq. A.55. We will use explicit method for this
purpose.

In the explicit method, we substitute the known value of the displace-
ment ue

m = d in the mth column of matrix K, of dimensions nxn, and
move this column to the right-hand side of Eq. A.55

Fi = Fi −Kimd, i = 1...n, i �= m

Fm = d
(A.61)
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Then, we fill the mth row and mth column of matrix K with zeros,
except for the main diagonal term, which is replaced by 1

Kmj = 0, j = 1...n,

Kim = 0, i = 1...n,

Kmm = 1

(A.62)

After boundary conditions are applied, matrix K has full rank.

A.2.5 Solution method

For practical applications, the system Eq. A.55 results in a large num-
ber of simultaneous linear algebraic equations. Fortunately, matrix K

possesses some properties that enables an easy computation of the sys-
tem of equations. For instance, K is symmetric, which means that it is
enough to store only half of the matrix entries including those in the di-
agonal. Also, K is definite positive after setting the boundary conditions
(Eq. A.62) and highly sparse, which makes storage and computations
economic.

Solution methods for the simultaneous linear system of equations come
in two different types: direct methods, such as those based on the LDLT

decomposition or LDU method with profile matrix [Bunch 1971], which
are usually used for problems of moderated size, and iterative methods
that require less computations for large scale problems. In practice,
we use the iterative method of the preconditioned conjugate gradient
method or PCG, since we often deal with problems involving thousands
of degrees of freedom.

Let us consider the example system given by

Ax = b (A.63)

In the PCG, the convergence of the conjugate gradient is improved by
the preconditioning of the equation system

M−1Ax = M−1b (A.64)

where M−1 is the preconditioning matrix which in some sense approx-
imates A−1. The simplest preconditioning is diagonal preconditioning,
in which M contains only diagonal entries of the matrix A. There are
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many existing solvers and libraries developed to solve large sparse linear
matrix systems.





Appendix B

Domain decomposition of
continuum manipulators

In some continuum manipulator designs, the structure of the robot is
composed by a sequence of serially connected substructures that have
a vertebra-inter-vertebra pattern. In such designs, the inter-vertebra
section shows a deformation that is greater than the vertebra under
actuation. In the context of FEM modelization, the model dimensions of
such manipulators can be significantly decreased by means of a domain
decomposition technique.

B.1 Domain decomposition of the CBHA

The body of the CBHA is composed by a set of substructures formed
by the aforementioned vertebra-inter-vertebra pattern. The main idea
of the domain decomposition is to discretize the deformation of the
structure using a set of frames with 6 DoF, attached to the structure
at the position of the vertebrae. In the simulation of the robot, the
frames are nodes with 6 DoF which are kinematically linked to the inter-
vertebra section. A non-linear stiffness matrix that correspond to the
inter-vertebra section is pre-computed and condensed as springs with
equivalent stiffness between the frames.

To pre-compute the equivalent stiffness, a substructure of the manipu-
lator is isolated. The substructure is composed by 2 consecutive frames
and the inter-vertebra between them. The nodes at the upper and lower
boundary of the substructure are attached to the frames and have 6 DoF
(pure rigid motion) while the nodes in-between the vertebrae have only
3 DoF (deformation). These 2 types of nodes need to be merged in the
same mechanical system. The stiffness matrix K of the inter-vertebra
can be computed using a conventional FEM approach that takes into
account the nodes kinematically linked to the rigid frames. Given the
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computed matrix K, the compliance that corresponds to the rigid frames
can also be computed as

C = JK−1JT (B.1)

where

J =
�
06×n I6X6

�
(B.2)

with n being the number of independent DoF. The identity matrix in J

corresponds to the constraints of each DoF in the upper frame. Given
two consecutive frames i and j, the equivalent stiffness matrix Keq

ij can
be expressed as

Keq
ij = Ri

�
HijC

−1
ij H

T
ij HijC

−1
ij

C−1
ij H

T
ij C−1

ij

�
RT

i (B.3)

where Ri is the rotational matrix of frame i. Matrix Hij describes
the relationship between linear displacement on frame j and angular
displacement on frame i and has the form

Hij =

�
H3×3 03×3

(xj − xi)
∧ H3×3

�
(B.4)

with xi and xj are the position of frames i and j respectively and the
symbol ∧ represents the skew symmetric matrix representation of a vec-
tor.

Using this approach, the FE model of a continuum manipulator can be
replaced by a chain of frames linked by equivalent springs.
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