Contributions à une aide à la décision de confiance

Pierre LEMAIRE Univ. Grenoble Alpes - Grenoble INP / G-SCOP

Soutenance d'habilitation à diriger les recherches présentée devant le jury composé de

•	Prof.	Yves CRAMA, Université de Liège	rapporteur
•	Prof.	Stéphane DAUZÈRE-PÉRÈS, Mines de Saint-Étienne	examinateur
•	Prof.	Clarisse DHAENENS, Université de Lille	. rapportrice
•	Prof.	Éric GAUSSIER, Université Grenoble Alpes	examinateur
•	Prof.	Adeline LECLERCQ-SAMSON, Université Grenoble Alpes	examinatrice
•	Prof.	Vincent T'KINDT, Université de Tours	rapporteur

Contributions à une aide à la décision de confiance

Pierre LEMAIRE Univ. Grenoble Alpes - Grenoble INP / G-SCOP

Soutenance d'habilitation à diriger les recherches présentée devant le jury composé de

•	Prof.	Yves CRAMA, Université de Liège	rapporteur
•	Prof.	Stéphane DAUZÈRE-PÉRÈS, Mines de Saint-Étienne	examinateur
•	Prof.	Clarisse DHAENENS, Université de Lille	rapportrice
•	Prof.	Éric GAUSSIER, Université Grenoble Alpes	examinateur
•	Prof.	Adeline LECLERCQ-SAMSON, Université Grenoble Alpes	examinatrice
•	Prof.	Vincent T'KINDT, Université de Tours	rapporteur

Contributions à une aide à la décision de confiance

Pierre LEMAIRE Univ. Grenoble Alpes - Grenoble INP / G-SCOP

Soutenance d'habilitation à diriger les recherches présentée devant le jury composé de

•	Prof.	Yves CRAMA, Université de Liège	rapporteur
•	Prof.	Stéphane DAUZÈRE-PÉRÈS, Mines de Saint-Étienne	examinateur
•	Prof.	Clarisse DHAENENS, Université de Lille	. rapportrice
•	Prof.	Éric GAUSSIER, Université Grenoble Alpes	examinateur
•	Prof.	Adeline LECLERCQ-SAMSON, Université Grenoble Alpes	examinatrice
•	Prof.	Vincent T'KINDT, Université de Tours	rapporteur

C'est pas mon problème

Pierre LEMAIRE Univ. Grenoble Alpes - Grenoble INP / G-SCOP

Soutenance d'habilitation à diriger les recherches présentée devant le jury composé de

•	Prof.	Yves CRAMA, Université de Liège	apporteur
•	Prof.	Stéphane DAUZÈRE-PÉRÈS, Mines de Saint-Étienne exa	minateur
•	Prof.	Clarisse DHAENENS, Université de Lille	apportrice
•	Prof.	Éric GAUSSIER, Université Grenoble Alpes exa	minateur
•	Prof.	Adeline LECLERCQ-SAMSON, Université Grenoble Alpesexa	minatrice
•	Prof.	Vincent T'KINDT, Université de Tours	apporteur

7 Operations Research and Management Sciences	3 Pediatrics	2 Research Experimental Medecine	1 Biophysics 1 Computer 1 Astronomy Astrophysics
	2 Business Economics	1 Endocrinology Metabolism	1 Immunology 1 Nuclear Science
		1	Tecnhology
4		Energy Fuels	1 Oncology
Science Technology Other Topics	2 Optics	1 Hematology	1 Tran <mark>splantation</mark>

(source : Web of Knowledge, oct. 2021)

7 Operations Research and Management Sciences	3 Pediatrics	2 Research Experimental Medecine	1 Biophysics 1 Computer Science Astronomy Astrophysics
	2 Business Economics	1 Endocrinology Metabolism	1 Immunology 1 Nuclear
		1	Tecnhology
Λ		Energy Fuels	1 Oncology
Science Technology Other Topics	2 Optics	1 Hematology	1 Trar <mark>splantation</mark>

(source : Web of Knowledge, oct. 2021)

(source : Web of Knowledge, oct. 2021)

7 Operations Research and Management Sciences	3 Pediatrics	2 Research Experimental Medecine	1 Bioph 1 Astronomy Astrophysics	nysics 1 Computer Science
	2 Business Economics	1 Endocrinology Metabolism	1 Immunolog <i>i</i>	1 Nuclear Science
		1		ecnhology
4		Energy Fuels	1 Oncoloay	
Science Technology Other Topics	2 Optics	1 Hematology	Trars	1 splantation

(source : Web of Knowledge, oct. 2021)

 Ordonnancement d'observations astronomiques Recherche Opérationnelle

 Diagnostics de troubles de la croissance Apprentissage automatique

 Production en micro-électronique Génie industriel

Ordonnancement d'observations astronomiques Recherche Opérationnelle

collaboration avec l'Institut de Planétologie et d'Astrophysique de Grenoble

If you can't find the correct answer then you are obvioul wrong que

nuit 2

nuit 1

- durée *p_j* variable
- intérêt $w_j = w_j(p_j)$
 - durée minimale p_i^{\min}
 - intérêt initial w^{min}
 - intérêt marginal b_i

Hypothèses

•
$$[r_j; d_j) = [r; d] = [0; d]$$

• $p_j^{\min} = p^{\min} \qquad \Rightarrow P|LPSTIP, p_j^{\min} = p^{\min}, d_j = d$

		2 0 1111	3.0000	4 p ^{mm}	50000	
~	P	4m (2)	SP		U P	

$\max(b_1, b_2) < b_3$

 $0 p^{\min} 2p^{\min} 3p^{\min} 4p^{\min} 5p^{\min} c$

 \Rightarrow chaque nuit, au plus 1 observation n'est pas à $p^{\rm min}$

$\max(b_1, b_2) < b_3$

 \Rightarrow chaque nuit, au plus 1 observation n'est pas à p^{\min}

• des nuits avec 1 seule observation

$\max(b_1, b_2) < b_3$

 \Rightarrow chaque nuit, au plus 1 observation n'est pas à p^{\min}

- des nuits avec 1 seule observation
- des nuits avec $\lfloor d/p^{\min} \rfloor$ observations

_			-
	_	 _	

$\max(b_1, b_2) < b_3$

 \Rightarrow chaque nuit, au plus 1 observation n'est pas à p^{\min}

- des nuits avec 1 seule observation
- des nuits avec $\lfloor d/p^{\min} \rfloor$ observations

des nuits spéciales

$\max(b_1, b_2) < b_3$

0	p ^{min}	2 p ^{min}	3 p ^{min}	4 p ^{min}	5 p ^{min}	d

 \Rightarrow chaque nuit, au plus 1 observation n'est pas à p^{\min}

- des nuits avec 1 seule observation
- des nuits avec $\lfloor d/p^{\min} \rfloor$ observations

$$U_{1} = \{j \in S, \quad p_{j} = d\}$$

$$U_{2} = \{j \in S, \quad p_{j} = k p^{\min} + r\}$$

$$U_{3} = \{j \in S, \quad p_{j} = p^{\min} + r\}$$

$$U_{4} = \{j \in S, \quad p_{j} = p^{\min}\}$$

$$U_{0} = \{j \notin S\}$$

 $U_1 = \{j \in S, \quad p_j = d\}$ $U_2 = \{j \in S, \quad p_j = k p^{\min} + r\}$ $U_3 = \left\{ j \in S, \quad p_j = p^{\min} + r \right\}$ $U_4 = \{j \in S, p_i = p^{\min}\}$ $U_0 = \{j \notin S\}$

$$n_1 \in \{0, 1, \dots, m\}$$

 $n_2 \in \{0, 1\}$ $k \in \{2, \dots, n\}$
 n_3
 n_4

 n_0

 $-n_{1}$

 U_1

 $-n_2$

 U_2

- n₃

 U_3

 $-n_4$ U_4

 $-n_{0}$

Quelles étoiles observer, et quand ?

Quelles étoiles observer, et quand ?

Quelles étoiles observer, et quand ?

9

Quelles étoiles observer, et quand ?

Il existe un super algorithme qui résout le problème.

Diagnostics de troubles de la croissance Apprentissage automatique

collaboration avec AP-HP / Université Paris Descartes

Li grande était son assurance que personne ne pouvait se rendre compte si ce qu'il disait était trè

• GnRH (Gonadotropin Releasing Horm.)

• GnRH (Gonadotropin Releasing Horm.)

• GH (Growth Horm.)

• GnRH (Gonadotropin Releasing Horm.)

- GH (Growth Horm.)
- LH (Luteinizing Horm.) FSH (Follicle Stimulating Horm.)
- IGF-1 (Insulin-like Growth Factor-1)

Des patients

- âge, taille, poids...
- taille cible...
- GnRH, GH, IGF, LH, FSH...
- o ...

Des questions :

- malade ou pas ?
- taille adulte ?
- efficacité du traitement ?

• ...

Particularités

- pathologies rares (peu de données)
- conséquences lointaines dans le temps

- troubles sérieux de la croissance
- traitement lourd
- diagnostics imprécis ou lourds

- troubles sérieux de la croissance
- traitement lourd
- diagnostics imprécis ou lourds

Peut-on améliorer le diagnostic ?

- troubles sérieux de la croissance
- IGF traitement lourd < -2.4< -2.0 diagnostics imprécis ou lourds vc VC < -4.0 > < -2.1> -2.1 Peut-on améliorer le diagnostic ? ΔΤ < 2.5> 2.5 Oui !

IGF I (SDS)

IGF I (SDS)

- puberté commencée avant 8 ans
- croissance et taille adulte réduites
- inconfort, mal-être

- puberté commencée avant 8 ans
- croissance et taille adulte réduites
- inconfort, mal-être

Peut-on prédire la taille adulte ?

- puberté commencée avant 8 ans
- croissance et taille adulte réduites
- inconfort, mal-être

Peut-on prédire la taille adulte ? Oui ! (GLB 2015)

- puberté commencée avant 8 ans
- croissance et taille adulte réduites
- inconfort, mal-être

Peut-on prédire la taille adulte ?

Oui ! (G<u>L</u>B 2015)

Adult height of girls with idiopathic central precocious puberty H1 (cm or SD) MoH (cm or SD) FaH (cm or SD) 0.00 SD V SD v 0.00 SD 0.00 run AH (SD): -0.96 (recommended) -0.68 (alternative) AH (cm): 157.93 (recommended) 159.47 (alternative) · CA1: Chronological age at initial evaluation · H1: Height at initial evaluation recommanded value is computed according to Lemaire et al. 2017; alternative value is computed according to Giabicani et al. 2015.

- puberté commencée avant 8 ans
- croissance et taille adulte réduites
- inconfort, mal-être

Peut-on prédire la taille adulte ?

Oui ! (G<u>L</u>B 2015)

Adult height of girls with idiopathic central precocious puberty CA1 (yr) H1 (cm or SD) MoH (cm or SD) FaH (cm or SD) 0.00 0.00 8 SD V SD v 0.00 SD 0.00 run AH (SD): -0.96 (recommended) -0.68 (alternative) AH (cm): 157.93 (recommended) 159.47 (alternative) · CA1: Chronological age at initial evaluation · H1: Height at initial evaluation MoH: Mother's Height · FaH: Father's Height recommanded value is computed according to Lemaire et al. 2017; alternative value is computed according to Giabicani et al. 2015.

- puberté commencée avant 8 ans
- croissance et taille adulte réduites
- inconfort, mal-être

Peut-on prédire la taille adulte ?

Oui ! (G<u>L</u>B 2015)

Micro-électronique & Génie industriel

Production en micro-électronique Génie industriel

collaboration avec STMicroelectronics

ST-486-DX 2-80 (1995)

Micro-électronique & Génie industriel

(source : K. Dequéant, 2017)

• 250 groupes d'équipements

(source : K. Dequéant, 2017)

- 250 groupes d'équipements
- 1000+ étapes par produit

- qualifications
- ré-entrance

- 250 groupes d'équipements
- 1000+ étapes par produit

- (source : K. Dequéant, 2017)
- qualifications
- ré-entrance
- regroupements
- ...

- 250 groupes d'équipements
- 1000+ étapes par produit
- 200+ types de produits
- délai d'exécution 6-7 sem. dont 2 sem. de process

(source : K. Dequéant, 2017)

- qualifications
- ré-entrance
- regroupements
- ...

- 250 groupes d'équipements
- 1000+ étapes par produit
- 200+ types de produits
- délai d'exécution 6-7 sem. dont 2 sem. de process

- qualifications
- ré-entrance
- regroupements
- ...

Quel va être le temps de cycle ?
$$TC = \left(\frac{C_a^2 + C_e^2}{2}\right) \left(\frac{u\sqrt{2(m+1)} - 1}{m(1-u)}\right) t_e + t_e \qquad \text{Hopp \& Spearman (2008)}$$
$$TC = WIP/Cap \qquad \qquad \text{Little (1961, 2011)}$$

$$TC = \left(\frac{C_a^2 + C_e^2}{2}\right) \left(\frac{u\sqrt{2(m+1)}-1}{m(1-u)}\right) t_e + t_e \quad \text{Hopp \& Spearman (2008)}$$

$$TC = WIP/Cap$$
 Little (1961, 2011)

WIP Concurrent (CWIP) : charge (heures de process) vue par un produit pendant son attente

 $Cap_{eff} = CWIP/TC$

Micro-électronique & Génie industriel

Micro-électronique & Génie industriel

30

Micro-électronique & Génie industriel

Et ensuite ?

...avoir la précision d'un poète et l'imagination d'un scientifique. (Nabokov)

$$\begin{array}{ll} \min & \sum_{t \in SH} (C^F X_t^F + C^I X_t^I + C_{on}^I y_t^I) dt_t + C_{sat}^I z_t^I \\ + c_{\tau,\theta}^{on} (\Delta_{\theta}^{off}) + c_{\tau,\theta}^{off} (\Delta_{\theta}^{off}) + \sum_{t \in LH \setminus \{\theta\}} c_{\tau,t}^{on} (\Delta_t) \\ \end{array} \\ \begin{array}{ll} \text{such that} \\ \forall t \in SH : & X_t^D = X_t^F + X_t^I + X_{out}_t^S + X_{out}_t^I - X_{in}_t^S - X_{in}_t^I \\ E_t^S = E_{t-1}^S (1 - \delta^S dt_t) + (\eta^S X_{in}_t^S - X_{out}_t^S) dt_t \\ E_t^L = E_{t-1}^L (1 - \delta^L dt_t) + (\eta^L X_{in}_t^L - X_{out}_t^L) dt_t \\ X_{min}^I y_t^I \leq X_t^I \\ \end{array} \\ \begin{array}{ll} \text{reflect goal} & X_t^I \leq X_{t-1} \\ \forall t \in \{T_{min}^I, \dots, \theta - \frac{1}{1}\} : C_{ath}^{-1} Y_t O^I N_{ei} |_{\eta}^T Weapons of Math Destruction \\ E_0^L = E_t^L \\ \forall t \in LH \setminus \{\theta\} : & E_t^L = E_{t-1}^L (1 - \delta^L dt_t) + \Delta_t \\ E_\theta^{on} \leq y_{\theta-1}^I E_{max}^L \\ \Delta_{\theta}^{on} \leq y_{\theta-1}^I E_{max}^L \\ \Delta_{\theta}^{on} \leq y_{\theta-1}^I E_{max}^L \end{array}$$

Bibliographie

- Arnold, F. and Sörensen, K. (2019). What makes a vrp solution good? the generation of problem-specific knowledge for heuristics. *Computers & Operations Research*, 106:280-288.
- Bayley, N. and Pinneau, S. (1952). Tables for predicting adult height from skeletal age: revised for use with the greulich-pyle hand standards. *Journal of Pediatrics*, 40(423-441).
- Benhamou, S. and Janin, L. (2018). Intelligence artificielle et travail. France Stratégie.
- Catusse, N., Cambazard, H., Brauner, N., Lemaire, P., Penz, B., Lagrange, A.-M., and Rubini, P. (2016). A branch-and-price algorithm for scheduling observations on a telescope. In *IJCAI'16, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence*, pages 3060–3066, New-York, USA.
- Corne, D., Dhaenens, C., and Jourdan, L. (2012). Synergies between operations research and data mining: The emerging use of multi-objective approaches. *European Journal of Operational Research*, 221(3):469–479.
- de Ridder, M. A. J., Stijnen, T., and Hokken-Koelega, A. C. S. (2007). Prediction of Adult Height in Growth-Hormone-Treated Children with Growth Hormone Deficiency. *The Journal of Clinical Endocrinology & Metabolism*, 92(3):925-931.

Bibliographie (cont.)

- Dequeant, K., Lemaire, P., Espinouse, M.-L., and Vialletelle, P. (2016). Le WIP concurrent : une proposition de file d'attente du point de vue du produit pour caracteriser le temps de cycle. In *MOSIM'16, 11th International Conference on Modeling, Optimization & SIMulation,* Montreal, Canada.
- Federico, G., Street, M., Maghnie, M., Caruso-Nicoletti, M., Loche, S., Bertelloni, S., and Cianfarani, S. (2006). Assessment of serum igf-i concentrations in the diagnosis of isolated childhood-onset gh deficiency: A proposal of the italian society for pediatric endocrinology and diabetes (siedp/isped). Journal of Endocrinological Investigation, 29:732-737.
- Florian, F., Lemaire, P., and Brauner, N. (2018). Complexity of processing-time dependent profit maximization scheduling problems. In *International Symposium on Mathematical Programming*, ISMP, Bordeaux, France.
- GH Research Society (2000). Consensus Guidelines for the Diagnosis and Treatment of Growth Hormone (GH) Deficiency in Childhood and Adolescence: Summary Statement of the GH Research Society. *The Journal of Clinical Endocrinology & Metabolism*, 85(11):3990–3993.
- Giabicani, E., Lemaire, P., and Brauner, R. (2015). Models for predicting the adult height and age at first menstruation of girls with idiopathic central precocious puberty. *PLOS ONE*, 10(3):e0120588.

Bibliographie (cont.)

- Hayes, P. (2016). Early puberty, medicalisation and the ideology of normality. *Women's Studies International Forum*, 56:9–18.
- Hopp, W. J. and Spearman, M. L. (2008). Factory Physics: Foundations of Manufacturing Management. New-York: Irwin/McGraw-Hill (third edition).
- Lagrange, A.-M., Rubini, P., Brauner, N., Cambazard, H., Catusse, N., Lemaire, P., and Baude, L. (2016). Spot: an optimization software for dynamic observation programming. In SPIE Astronomical Telescopes + Instrumentation, Edinburgh, United Kingdom.
- Lemaire, P. (2011). Extensions of logical analysis of data for growth hormone deficiency diagnoses. Annals of Operations Research, 186(1):199-211.
- Lemaire, P., Brauner, N., Hammer, P., Trivin, C., Souberbielle, J.-C., and Brauner, R. (2009). Improved screening for growth hormone deficiency using logical analysis of data. *Medical Science Monitor*, 15(1):MT5-10.
- Lemaire, P., Duhil de Bénazé, G., Mul, D., Heger, S., Oostdijk, W., and Brauner, R. (2018). A mathematical model for predicting the adult height of girls with idiopathic central precocious puberty: A european validation. *PLOS ONE*, 13(10):1–10.

Bibliographie (cont.)

- Little, J. D. C. (1961). A Proof for the Queuing Formula: $I = \lambda w$. Operations Research, 9(3):383-387.
- Little, J. D. C. (2011). OR FORUM—Little's Law as Viewed on Its 50th Anniversary. Operations Research, 59(3):536-549.
- Parmentier, A. and T'Kindt, V. (2021). Learning to solve the single machine scheduling problem with release times and sum of completion times.
- Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., and Zhong, C. (2021). Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. arXiv:2103.11251 [cs, stat]. arXiv: 2103.11251 version: 2.
- Song, H., Triguero, I., and Özcan, E. (2019). A review on the self and dual interactions between machine learning and optimisation. *Progress in Artificial Intelligence*, 8(2):143–165.