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Abstract

The main objective of this thesis resides in applying the stochastic approximation method

to build up a large class of recursive non parametric kernel estimators for dependent and

independent variables. First, we de�ne a recursive kernel estimator of the conditional

extreme value index. We investigate the properties of the proposed recursive estimator

and compare it to Hill's non recursive kernel estimator. We show that using some optimal

parameters, the proposed recursive estimator de�ned by the stochastic approximation al-

gorithm proves to be very competitive to Hill's estimator. E�ciency and feasibility were

con�rmed by theoretical results and then by applications on simulated real data about

Malaria in Senegalese children. Second, we extend the work of Slaoui (2014b) to the

case of α-mixing data. We study the properties of these estimators and compare them

with Nadaraya's non recursive distribution estimator. Using an optimal choice of the

bandwidth and an appropriate choice of the stepsize parameter, the recursive estimators

allowed us to obtain quite better results compared to the non recursive distribution esti-

mator under α-mixing condition in terms of estimation error. We elaborate the central

limit theorem and the uniform convergence for the proposed estimators under some mild

conditions. The obtained theoretical results are corroborated through simulation study.

Finally, we adopt the stochastic approximation algorithms to de�ne a kernel estimator

of the mode based on the recursive kernel density estimator developed by Mokkadem et

al. (2009a). Additionally, we establish its almost sure convergence under strong mixing

hypothesis and we con�rm these theoretical results through numerical simulations.

Keywords: Asymptotic normality, Bandwidth selection, Extreme value, Non

parametric estimation, Mixing Data, Pareto distribution, Recursive estimator, Stochastic

approximation algorithm, Strong consistency, Tail index.





Résumé

L'objectif de cette thèse réside dans l'application de la méthode d'approximation stochas-

tique pour construire une classe d'estimateurs à noyau récursifs non paramétriques pour

les variables dépendantes et indépendantes. Dans un premier temps, nous dé�nissons un

estimateur récursif à noyau de l'indice conditionnel des valeurs extrêmes. Nous étudions

les propriétés de l'estimateur récursif proposé et le comparons à l'estimateur à noyau non

récursif de Hill. Nous montrons qu'en utilisant certains paramètres optimaux, l'estimateur

récursif proposé dé�ni par l'algorithme d'approximation stochastique s'avère très compéti-

tif par rapport à l'estimateur de Hill. L'e�cacité est con�rmée par des résultats théoriques

puis par des applications sur des données réelles simulées concernant le paludisme chez les

enfants sénégalais. Deuxièmement, nous étendons le travail de Slaoui (2014b) au cas des

données α-mélangeantes. Nous étudions les propriétés de ces estimateurs et les comparons

avec l'estimateur de distribution non récursif de Nadaraya. En utilisant un choix opti-

mal de la fenêtre et un choix approprié de pas, les estimateurs récursifs nous permettent

d'obtenir de meilleurs résultats que l'estimateur de distribution non récursif dans le cas

α-mélangeant en termes d'erreur d'estimation. Nous établissons le théorème central limite

et la convergence uniforme pour les estimateurs proposés sous certaines conditions. Nous

prouvons ces résultats théoriques par une étude de simulation. En�n, nous adoptons les

algorithmes d'approximation stochastique pour dé�nir un estimateur à noyau du mode

basé sur l'estimateur récursif de densité à noyau développé par Mokkadem et al. (2009a).

En outre, nous établissons sa convergence presque sûre sous l'hypothèse de mélange fort

et nous corroborons ces résultats théoriques par des simulations numériques.

Mot-clés: Algorithme d'approximation stochastique, Choix de fenêtre, Consis-

tence forte, Distribution de Pareto, Données mélangeantes, Estimation non paramétrique,

Estimateur récursif, Indice de queue, Normalité asymptotique, Valeur extrême.
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General introduction

Estimation theory has been an attractive area of research that has generated signi�cant

scienti�c concern and interest among statisticians. It has led to the development of a wide

variety of applied �elds such as medicine, biology, public health, epidemiology, astronomy,

economics and demography. There are three estimation approaches in literature. The �rst

one stands for the parametric estimation that is the estimation of a �nite number of pa-

rameter. In this case, the estimators are constructed using either the method of moments,

least squared method or maximum likelihood method (See, for instance, Dempster et al

(1977) and McLachlan and Peel (2004)). The second one corresponds to the non para-

metric estimation that is the estimation of an unknown function from observations. An

introduction to non parametric methods in Tsybakov (1990). The third estimating model

refers to a semi-parametric method which combines both parametric and non parametric

aspects. The branch of non parametric estimation has become very attractive in current

research. The oldest and most widely used method for non parametric density estimation

is the histogram. This method remains insu�cient to estimate a smooth density. Hence,

the introduction of a kernel technique produces a smooth estimation of the probability

density function and recti�es the previous problem. The kernel method of smoothing was

introduced by Rosenblatt (1956) and extended by Parzen (1962). It was investigated in

several directions. For example, the estimation of the density of probability as well as

the distribution function, the regression function and the extreme value index function.

The kernel estimators have been improved using stochastic approximation methods. This

method has the capacity to facilitate updating estimators when we have new observations.

That introduce the notion of the recursivity. As an excellent reference for the stochastic

approximation algorithm, we refer the reader to Révész (1973, 1977) and Mokkadem et

al. (2009a).

The main objective in this thesis resides in applying the stochastic approxima-

tion method to build up a large class of recursive non parametric kernel estimators for

dependent and independent variables.
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This manuscript is structured in terms of four major chapters. In the �rst chap-

ter, We provided useful de�nitions and some asymptotic properties of continuous kernel

estimators. Next, we considered various mixing conditions. Subsequently, we introduced

the Extreme Value Theory (EVT), we displayed the fundamental theorem in EVT and we

recalled certain basic de�nitions. Additionally, we exhibited the di�erent extreme value

distributions and we presented di�erent estimators of extreme value index as well as recall-

ing their asymptotic properties. Finally, we have described the stochastic Robbins-Monro

algorithm which allows us to introduce recursive estimators.

In the second chapter, we applied the stochastic approximation method to de�ne a

class of recursive kernel estimator of the conditional extreme value index. We investigated

the properties of the proposed recursive estimator and compared them to those concerning

Hill's non recursive kernel estimator. We demonstrated that using some optimal parame-

ters, the proposed recursive estimator de�ned by the stochastic approximation algorithm

proves to be very competitive compared to Hill's non recursive kernel estimator. Finally,

the theoretical results are tackled through simulation experiments and illustrated using

real dataset about Malaria in Senegalese children. This research work is actually under

review after minor revision Ben Khadher and Slaoui (2021c).

Chapter three is an extension of the work of Slaoui (2014b) to the case of α-

mixing data. We �rst examined the properties of these estimators and compared them

to Nadaraya's non recursive distribution estimator. We showed that, using some optimal

parameters, the recursive estimators allowed us to obtain quite better results compared

to the non recursive distribution estimator under α-mixing condition in terms of estima-

tion error. Then, we elaborated the central limit theorem and the uniform convergence

for the proposed estimators under some mild conditions. Finally, we corroborated these

theoretical results through a few simulations. This research work was the subject of the

following publication Ben Khadher and Slaoui (2021a).

In chapter four, we identi�ed a kernel estimator of the mode based on the recursive

kernel density estimator developed by Mokkadem et al. (2009a). In addition, we estab-

lished its almost sure convergence under strong mixing hypotheses. This research work

was the subject of the following accepted paper Ben Khadher and Slaoui (2021b).

The last part incorporates the closing section which rests upon pertinent concluding



remarks as well as promising future perspectives.
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Chapter 1

Basic concepts

In this chapter, the readers are provided with a brief review of the scienti�c background

of non parametric estimation. First, generalities on non parametric kernel estimation

were displayed. Second, methods allowing to obtain the optimal choice of smoothing

parameter estimation were proved. Subsequently, a set of de�nitions related to types of

mixing conditions were integrated. Furthermore, the concept of EVT was introduced.

Eventually, the stochastic approximation algorithm which create the recursive estimators

was presented.

1.1 Non parametric kernel estimation

We are interested in this section in classical non parametric estimation. Notably, the

properties of kernel approach of the density, mode and distribution functions are reported.

In this section, let X1, · · · , Xn be independent and identically distributed (iid) R-valued
random variables and let f and F denote respectively the probability density and the

distribution function of X1.

1.1.1 Kernel density estimator

In this subection, we provide some asymptotic properties of continuous kernel density

estimators. The �rst step is to de�ne the notion of the kernel.

De�nition 1.1.1. A kernel is a function K : R −→ R, which is positive, integrable and

satis�es
∫
RK(x)dx = 1.

Some classical examples of kernels function are indicated as follows.
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Example 1.1.1.

K (x) = 1
2
1{|x|61} (the rectangular kernel),

K (x) = (1− |x|)1{|x|61} (the triangular kernel),

K (x) = 3
4
(1− |x|2)1{|x|61} (the Epanechnikov kernel or the parabolic kernel),

K (x) = 15
16

(1− |x|2)21{|x|61} (the biweight kernel),

K (x) = 1√
2π

exp
(
x2

2

)
(the Gaussian kernel).

For further details, we can refer to Tsybakov (1990). The well-known kernel density

estimator of f was introduced by Rosenblatt (1956)(see also Parzen (1962)) and de�ned

as

∀x ∈ R, f̂n(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, (1.1.1)

where K : R −→ R is a kernel function and (hn) is a sequence of positive real numbers

that goes to zero as n tends to in�nity called bandwidth. To investigate the asymptotic

behaviors of the estimator (1.1.1), we make the following assumptions:

Assumption 1.1.1.1.

(A1). K(x) = K(−x), ∀ x ∈ R,

(A2).
∫
R xK(x)dx = 0,

(A3).
∫
R x

2K(x)dx < +∞,

(A4).
∫
RK

2(x)dx < +∞.

Multiple are the criteria to assess the e�ciency of the estimator f̂n. For instance,

we established an asymptotic expression for the mean squared error (MSE) of the kernel

estimator for any �xed value of x. This is de�ned as

MSE
[
f̂n(x)

]
= E

[(
f̂n(x)− f(x)

)2
]
.

Developing this expression, we obtain

MSE
[
f̂n(x)

]
= Bias2

[
f̂n(x)

]
+ Var

[
f̂n(x)

]
,

where

Bias
[
f̂n(x)

]
= E

[
f̂n(x)

]
− f(x),

18



and

Var
[
f̂n(x)

]
= E

[(
f̂n(x)− E

[
f̂n(x)

])2
]

= E
[
f̂ 2

n(x)
]
− E2

[
f̂n(x)

]
.

To evaluate the MSE of f̂n, we will need to calculate its bias and variance. Assuming that

f is bounded, twice di�erentiable and f (2) is bounded and substituting that u = x−t
hn

, we

obtain

Bias
[
f̂n(x)

]
=

1

hn

∫
R
K (u) [f (x− uhn)− f(x)] du.

and

Var
[
f̂n(x)

]
=

1

nh2
n

[∫
R
K2

(
x− t
hn

)
f(t)dt−

(∫
R
K

(
x− t
hn

)
f(t)dt

)2
]
.

By Taylor series expansion, f(x−uhn) = f(x)−uhnf ′(x) + 1
2
u2h2

nf
(2)(x) + o(h2

n), and by

applying the properties of the kernel K, we get

Bias
[
f̂n(x)

]
=

1

2
h2
nf

(2)(x)

∫
R
z2K(z)dz + o(h2

n)

and

Var
[
f̂n(x)

]
=

1

nhn
f(x)

∫
R
K2(z)dz + o

(
1

nhn

)
.

The choice of the bandwidth has an important in�uence over the quality of kernel es-

timation. It needs to be carefully determined. The optimal value of hn is obtained by

minimizing the asymptotic Mean Integrated Squared Error (MISE).

MISE
[
f̂n

]
=

∫
R
MSE

[
f̂n(x)

]
dx =

∫
R
Bias2

[
f̂n(x)

]
dx+

∫
R
Var

[
f̂n(x)

]
dx.

Therefore, this optimal value of hn is expressed by

hopt,n =

(
‖K‖2

2(∫
R t

2K(t)dt
)2 ‖f ′′‖2

2

) 1
5

n−
1
5 , (1.1.2)

where ‖.‖2 is the Euclidien norm.

Unfortunately, the optimal smoothing parameter (hopt,n) depends on the unknown

quantity ‖f ′′‖2
2 =

∫
R

(
f
′′
(t)
)2
dt. Hence, it cannot be readily applied in practice. There
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are several methods to estimate the smoothing parameter. Among the most famous and

useful ones are the Plug-in approach and the cross-validation criterion (see Tsybakov

(1990)).

Plug-in:

After de�ning the theoretical optimal bandwidth as the minimizer of the mean integrated

squared error, we estimate the unknown quantities in expression hn. A natural way lies

in using non parametric estimator for
∫
R

(
f
′′
(t)
)2
dt. Let us de�ne

f̂ ′′n (x) =
1

ng3
n

n∑
i=1

K
′′
(
x−Xi

gn

)
,

where gn is a prior bandwidth. Several estimators for ‖f ′′‖2
2 were developed by Hall and

Marron (1987). Thus, they determined the bias corrected estimator in terms of

‖̂f ′′‖2
2 = f̂ ′′n (x)− 1

ng5
n

‖K ′′‖2
2.

To obtain an adequate prior bandwidth, Park and Marron (1990) set gn as the minimizer

for the asymptotic mean squared error of ‖̂f ′′‖2
2. Using (1.1.2), the prior bandwidth is

expressed in function of (hn) as:

gn = I1(K)I2(f)h10/13
n

where I1(K) contains the fourth derivative as well as convolutions ofK, and I2(f) contains

the second and third derivatives of f . It follows that, the expression of the optimal

bandwith (hn) is expressed as

ĥopt,n =

{
‖K‖2

2(∫
R t

2K(t)dt
)2 ‖̂f ′′‖2

2

}1/5

n−1/5,

Cross-validation:

The usual method for estimating risk is leave-one-out cross-validation. Recall that the

risk of f̂n is indicated by MISE
[
f̂n

]
= E (R) where

R
(
f̂n

)
=

∫
R

(
f̂n(x)− f(x)

)2

dx

is the integrated squared error loss function. The loss function, which we now write as a

function of smoothing parameter (hn), (since f̂n depend on (hn)) is

L(hn) =

∫
R
(f̂n(x)− f(x))2dx
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=

∫
R
f̂ 2
n(x)dx− 2

∫
R
f̂n(x)f(x)dx+

∫
R
f 2(x)dx.

The last term does not depend on (hn). As a matter of fact, minimizing the loss is

equivalent to minimizing the expected value of

J(hn) =

∫
R
f̂ 2
n(x)dx− 2

∫
R
f̂n(x)f(x)dx.

We shall refer to E (J(hn)) as the risk, although it di�ers from the true risk by the constant

term
∫
R f

2(x)dx. The cross-validation estimator of risk is represented by

Ĵ(hn) =

∫
R
f̂ 2
n(x)dx− 2

n

n∑
i=1

f̂(−i)(Xi)

wheref̂(−i)(t) = 1
(n−1)hn

∑n
j 6=iK

(
t−Xj
hn

)
is the density estimator obtained after removing

the ith observation. Next, the optimization is restricted to a range of values of hn and the

one that minimizes Ĵ shall be selected.

1.1.2 Kernel mode estimator

The mode is often based on a sequence of the density function f , de�ned as the value θ

which maximizes it, as expressed as follows

f(θ) = sup
t∈R

f(t).

The kernel estimator of the mode θ is de�ned as the random variable θn maximizing the

estimator f̂n (de�ned in (1.1.1)), which is expressed as

θn := arg max
x∈R

f̂n(x).

The majority of properties of mode estimators are related to those of density estimators

and have been explored by several authors.

The weak consistency of the kernel sample mode was investigated by Parzen (1962).

More precisely, it is assumed that the true probability density function f(x) is uniformly

continuous in x and that the mode θ is unique. Then he reported the following theorem

Theorem 1.1.1. [Parzen (1962)] If (hn) is a function of n satisfying

lim
n→∞

nh2
n =∞,

21



and if the probability density f(x) is uniformly continuous, then for every ε > 0

P
[

sup
−∞<x<∞

|fn(x)− f(x)| < ε

]
−→ 1, as n −→ +∞.

If {θn} are the sample modes, and if the population mode is unique, then for every ε > 0

P [|θn − θ| < ε] −→ 1, as n −→ +∞.

This result was extended in several directions. We can mention for example Cherno�

(1964), Eddy (1980, 1982) and Vieu (1996).

The strong consistency was explored by Nadaraya (1965) and Van Ryzin (1969).

We recall the following theorem:

Theorem 1.1.2. [Nadaraya (1965)] We assume that

1. K is a continuous and bounded function such that K(x) −→ 0 as |x| −→ +∞,

2. The series
∞∑
n=1

exp−γnh
−2
n converges for any γ > 0 where nh−2

n −→ 0 as n −→ +∞,

3. f(x) is uniformly continuous,

then if the mode is unique, the sample mode θn converges to θ almost surely (a.s.).

The asymptotic normality of kernel estimate of the mode was elaborated by Romano

(1988). The multidimensional study of the mode was carried out by Samanta (1973) and

Konakov (1974).

1.1.3 Kernel distribution estimator

There has been a considerable development of methods for smooth estimation of distri-

bution functions. The most popular one is the kernel approach which is identi�ed by

Nadaraya (1964) as follows

F̂n(x) =
1

n

n∑
i=1

K
(
x−Xi

hn

)
(1.1.3)

whereK (z) =

∫ z

∞
K(x)dx. In the following, we assume that the kernel functionK satis�es

(A1)-(A3) in (1.1.1.1). We are now ready to state the basic properties of the kernel
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distribution estimator (3.1.3). In order to measure the quality of our proposed estimator

F̂n(x), we use the following quantity:

MWISE
[
F̂n

]
= E

[∫
R

[
F̂n(x)− F (x)

]2

f(x)dx

]
=

∫
R
Bias

[
F̂n(x)

]2

f(x)dx+

∫
R
Var

[
F̂n(x)

]
f(x)dx.

Assuming that f is bounded, di�erentiable and f ′ is bounded, the bias and the variance

of Nadaraya's estimator F̂n(x) are given by:

Bias
[
F̂n(x)

]
=

1

2
h2
nf
′(x)µ2(K) + o(h2

n),

Var
[
F̂n(x)

]
=

1

n
F (x)(1− F (x))− hn

n
f(x)φ(K) + o

(
hn
n

)
,

where

µ2(K) =

∫
R
t2K(t)dt and φ(K) = 2

∫
R
tK(t)K(t)dt.

It follows that

MWISE
[
F̂n

]
=

1

n
VF −

hn
n
I1φ(K) +

1

4
h4
nI2µ

2
2(K) + o(h4

n),

where

I1 =

∫
R
f 2(x)dx, I2 =

∫
R

(f ′(x))
2
f(x)dx and VF =

∫
R
F (x)(1− F (x))f(x)dx.

To minimize the MWISE
[
F̂n

]
, the bandwidth (hn) must be equal to

hn =

([
I1φ(K)

I2µ2
2(K)

]1/3

n−1/3

)
,

and then we get

MWISE
[
F̂n

]
= n−1VF

[
1− 3

4

I
4/3
1 Θ(K)

I
1/3
2 VF

n−1/3 + o(n−1/3)

]
,

where

Θ(K) =

[
φ(K)4

µ2
2(K)

]1/3

.

The properties of F̃n have been investigated by several authors. The uniform convergence

was elaborated by Nadaraya (1964), Winter (1973), Yamato (1973) and Singh et al

(1983). The asymptotic normality was addressed by Watson and Leadletter (1964).
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1.2 Mixing conditions

Numerous probabilistic tools have been developed for measuring the dependence between

variables. For a �nite-variance process, elementary measures of dependence are the auto-

covariances and autocorrelations. Mixing assumptions, introduced by Rosenblatt (1956),

are used to convey di�erent ideas of asymptotic independence between the past and future

processes. We de�ne now the popular α-mixing coe�cient.

De�nition 1.2.1. Let X = (Xi)i>1 be a sequence of random variables. Given a positive

integer n, set

α (n) = sup
k

{
| P (A ∩B)− P (A)P (B) |, A ∈ Fk1 (X) and B ∈ F∞k+n(X)

}
, (1.2.1)

where Fki (X) is the σ-�eld of events generated by Xj, i 6 j 6 k. The sequence is α-mixing

if the mixing coe�cient α (n) −→ 0 as n −→∞.

The α-mixing, called also the strong mixing, condition was introduced by Rosen-

blatt (1956). It is the weakest among the known mixing conditions in the literature. There

are numerous examples of stochastic processes satisfying the α-mixing condition, such as

ARMA processes, the threshold extension, the EXPAR model, the simple ARCH mod-

els, their GARCH extension and the bilinear Markovian models. If the mixing condition

α(n) = O (exp−an) for some a > 0, the process is exponentially strongly mixing, where

a is the mixing rate and 1/a is the mixing time. The process is geometrically strongly

mixing when there exists ρ ∈ (0, 1) such that, α(n) = O (ρn). Then, if α(n) = O
(
n−k
)

for some k > 0, the process is polynomially strongly mixing. The α-mixing has many

practical applications (see Doukhan (1994), Bosq (1999), Bradley (2007) and Dedecker et

al (2007) for more details).

There exist various other mixing conditions used in the literature. We mention,

for instance, the β-mixing condition (see Kolmogorov (1931)), φ-mixing condition (see

Ibragimov (1962)), ψ-mixing condition (see Blum et al. (1963)) and ρ-mixing condition

(see Hirschfeld (1935)).

1.3 Extreme Value Theory

The asymptotic theory of sample extremes has been developed in parallel with the central

limit theory, and in fact both theories bear to a certain extend some resemblance. Let X1,
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X2,. . . , Xn be independent and identically distributed random variables having a common

distribution function F . The central limit theory concerns the limit behavior of the sum

X1 + X2 + . . . + Xn as n −→ ∞, whereas the theory of sample extremes concerns the

asymptotic behavior of the sample extremes max(X1, X2, . . . , Xn) or min(X1, X2, . . . , Xn)

as n −→∞.

In this thesis, we shall consider the maxima of the sample, Knowing that all results

obtained can be easy reformulated for sample minima according to the following formula:

min(X1, X2, . . . , Xn) = −max(−X1,−X2, . . . ,−Xn).

1.3.1 Extreme value distributions

The main result in EVT was introduced by Fisher and Tippet (1928) and Gnedenko

(1943). They proved that the distribution of the extreme values of an iid sample from a

cumulative distribution function F can converge only to one distribution from the three

possible ones.

Theorem 1.3.1. [FisherandT ippet (1928);Gnedenko (1943)] Under certain regularity

conditions on the distribution function F , there exist a real parameter γ and two normal-

izing series (an)n≥1 ⊂ R∗+ and (bn)n≥1 ⊂ R such that for all x ∈ R,

lim
n→∞

P
[

max (X1, · · · , Xn)− bn
an

≤ x

]
−→
n→+∞

Hγ(x),

with,

if γ > 0, Hγ(x) =

 0 if x < 0

exp
[
−x−

1
γ

]
if x > 0

if γ < 0, Hγ(x) =

exp
[
−(−x)−

1
γ

]
if x < 0

1 if x > 0

if γ = 0, H0(x) = exp [exp (−x)] for all x ∈ R.

The distribution function Hγ is called extreme value distribution. It is indexed by a shape

parameter γ called the extreme value index. This parameter accounts for the behaviour of

the tail of the distribution.

Three domains of attraction, depending on the sign of γ , should be distinguished:
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• If γ > 0, F is said to belong to the Fréchet domain of attraction. This domain

includes distribution with heavy tails, i.e. their survival distribution function de-

creases as a power function.

• If γ = 0, F is said to belong to the Gumbel domain of attraction. This domain in-

cludes distributions with light tails, i.e. their survival distribution function decreases

as an exponential rate.

• If γ < 0, F is said to belong to the Weibull domain attraction. This domain in-

cludes distributions with short tails, i.e. they have a �nite endpoint xF = inf{x, F (x) > 1}.

Remark 1.3.1. We present, in the table below, some domains of attraction associated

with usual distribution:

Fréchet (γ > 0) Gumbel (γ = 0) Weibull (γ < 0)

Pareto Normal Uniform

Cauchy Exponential Beta

Student Gamma

Fréchet Weibull

Burr

Remark 1.3.2. The normalization sequences (an)n and (bn)n, in Theorem 1.3.1, are

interpreted as a scale and a location parameters. Their choices is not unique.

Example 1.3.1. If X1, · · · , Xn is a sequence of independent standard Fréchet variables,

F (x) = 1 − (x/a)−α, for x > a > 0 and α > 0. Let an = aα−1n1/α, bn = an1/α and

extreme value index γ = 1/α > 0,

P
[

max (X1, · · · , Xn)− bn
an

≤ x

]
= F n (anx+ bn)

=

(
1− (1 + x/α)−α

n

)n
,

So P
[

max(X1,··· ,Xn)−bn
an

≤ x
]
−→ exp

(
− (1 + x/α)−α

)
= H1/α(x) as n −→∞ for x > −α.

1.3.2 Characterization of the domains of attraction

The characterization of domains of attraction relies on the theory of regularly-varying

functions.

26



De�nition 1.3.1. A positive function L is regularly-Vaying with index δ ∈ R at in�nity

if

lim
x→∞

L(tx)

L(x)
= tδ,∀ t > 0.

This property is denoted by L ∈ RVδ. If δ = 0, the function L is said to be slowly-varying.

A well known example of a slowly-varying function is L(x) = lnx.

Let us now display the expressions of the distribution function in each domain.

• Fréchet Domain of attraction

Theorem 1.3.1. F is in the domain of attraction of a Fréchet distribution with

shape parameter ξ if and only if F is regularly varying with index −1/ξ

ie: F (x) = 1− F (x) = x−1/ξL(x), x > 0,

where L is a slowly-varying function.

• Weibull Domain of attraction

For all distribution function F with �nite endpoint xF , we denote by F∗ the distri-

bution function de�ned by F∗(x) = F (xF − 1/x) if x > 0 and F∗(x) = 0 otherwise.

Theorem 1.3.2. F is in the domain of attraction of a Weibull distribution if and

only if xF is �nite and F∗ belongs to domain of attraction of Fréchet. Let γ > 0 be

the extreme value index associated with F∗, the extreme value index associated with

F is then −γ.

• Gumbel Domain of attraction

Theorem 1.3.3. F is in the domain of attraction of a Gumbel distribution if and

only if there exists x0 < xF ≤ ∞ such that

F (x) = c(x) exp

(
−
∫ x

x0

g(t)

a(t)
dt

)
,

where a, c and g three functions verifying a′(x) −→ 0, c(x) −→ c > 0 and g(x) −→ 1

as x −→ xF .
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1.3.3 Estimation of the extreme value index

The extreme value index γ plays a central role in terms of searching for the shape of the

distribution tail. We need to estimate it in order to better understand the nature of the

studied extreme distribution. Several methods for estimating this parameter are proposed

in the literature of EVT. The Hill estimator (see Hill (1975)), the Pickands estimator (see

Pickands (1975)) and the Dekkers et al. moment estimator (see Dekkers al. (1989)) present

the most widely used ones in practice. An extensive discussion of estimation methods for

EVT models can be found in Embrechts et al. (1997). We recall below the three most

frequently used estimators of the extreme value index and their asymptotic properties.

The Hill estimator:

The Hill estimator is de�ned by:

γ̂Htn(x) =
1

tn

tn∑
i=1

i (logXn−i+1,n − logXn−i,n)

=
1

tn

tn∑
i=1

logXn−i+1,n − logXn−tn,n,

where X1,n ≤ · · · ≤ Xn,n are the associated order statistics to the sample X1, · · · , Xn and

tn is the number of the top order statistics (number of extremes) used for the estimation

of γ. The construction of this estimator is based on the maximum likelihood method. It

is well known that the Hill estimator displays a very good performance, that is competi-

tive with respect to other EVT methods of estimation. Theoretically, the Hill estimator

is favorably considered in view of its asymptotic properties, which are summarized in

Embrechts et al. (1997)(Theorem 6.4.6):

• Weak consistency: if tn −→∞ and tn/n −→ 0 for n −→∞, then γ̂Htn
P−→ γ.

• Strong consistency: if tn/n −→ ∞ and tn/ log log n −→ ∞ for n −→ ∞, then

γ̂Htn
a.s.−→ γ.

• Asymptotic normality: under additional hypotheses,
√
tn
(
γ̂Htn − γ

) D−→ N (0, γ2),

where
P−→ denotes the convergence in probability,

D−→ the convergence in distribution

and N the gaussian-distribution.
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Pickands Estimator:

This estimator is proposed by Pickands (1975) to estimate the shape parameter of any of

the three extreme value distributions. It is expressed as

γ̂Ptn =
1

log 2
log

(
logXn−tn+1,n − logXn−2tn+1,n

Xn−2tn+1,n −Xn−4tn+1,n

)
.

Their asymptotic properties are well studied in Dekkers al. (1989):

• Weak consistency: if tn −→∞ and tn/n −→ 0 for n −→∞, then γ̂Ptn
P−→ γ.

• Strong consistency: if tn/n −→ ∞ and tn/ log log n −→ ∞ for n −→ ∞, then

γ̂Ptn
a.s.−→ γ.

• Asymptotic normality: under additional hypotheses which can be consulted in

Dekkers al. (1989),

√
tn
(
γ̂Ptn − γ

) D−→ N
(

0,
γ2 (22γ+1 + 1)

4 (log 2)2 (2γ − 1)2

)
.

The moment Estimator:

The moment estimator is identi�ed by Dekkers al. (1989) and determined as:

γMtn = M
(1)
tn + 1− 1

2

1−

(
M

(1)
tn

)2

M
(2)
tn


−1

, 1 < tn < n,

where M
(r)
tn = 1

tn

∑tn
j=1

(
logXnj+1,n − logXn−tn,n

)r
, r = 1, 2. Note that M

(1)
tn corresponds

to the Hill estimator. It is called moment estimator since M
(1)
tn can be considered as

empirical moments of the order r. Further more, it is known as the Dekkers-Einmahl-de

Haan estimator as an extension to the Hill estimator. Note that the asymptotic properties

of γMtn estimator were investigated in Dekkers al. (1989).

Suppose F belongs to one of the domain of attraction with γ ∈ R, xF > 0 and let (tn)n≥1

be a sequence of integers such that 1 ≤ tn < n, tn −→∞ and tn/n −→ 0 as n −→∞.

• Weak consistency: then, γ̂Mtn
P−→ γ.

• Strong consistency: if tn/(log n)δ −→∞ as n −→∞ for δ > 0, then γ̂Mtn
a.s.−→ γ.
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• Asymptotic normality: under additional hypotheses on the distribution function F

(see Dekkers al. (1989), Theorem 3.1 and Corollary 3.2),

√
tn
(
γ̂Mtn − γ

) D−→ N
(
0, σ2

γ

)
,

where

σ2
γ =


1 + γ2 if γ ≥ 0

(1− γ)2 (1− 2γ) (1− γ + 6γ2)

(1− 3γ) (1− 4γ)
if γ < 0

.

1.4 Stochastic approximation method and recursive es-

timators

Stochastic algorithms have been widely used in numerous areas including adaptive con-

trol, system identi�cation, sequential change detection and transmission systems, see Ben-

veniste et al. (1990) for multiple interesting examples. The stochastic algorithm method

allows us to construct a class of recursive estimators. The advantage of recursive estima-

tors lies in the fact that their update, from a sample of size n to one of size n+1, requires

considerably less computations.

1.4.1 The Stochastic approximation method

The general form of stochastic algorithm is:

θn = θn−1 + γnφ (θn−1,Wn) + γ2
nµn (θn−1,Wn) , (1.4.1)

where (θn) stands for the sequence to be recursively updated, (γn) corresponds a positive

sequence of real numbers decreasing towards zero, (Wn) represents a sequence of random

variables representing the on-line observations, φ(θ,W ) refers to the function which es-

sentially de�nes how the parameter θ is updated as a function of new observation and

µn (θn−1,Wn) relates to a small perturbation on the algorithm.

The behavior of this algorithm was investigated by Benveniste et al. (1990), the special

case when µn = 0 was considered by Delyon (1996). Algorithm (1.4.1) coincides with the

one analyzed by Kushner (1977), Ljung (1978) and Ruppert (1982):

θn = θn−1 + γn [φ(θn−1)−Wn + ηn] , (1.4.2)

where ηn stands for a random variables which converges to 0 almost surely and φ corre-

sponds to a measurable unknown function.
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They asserted that (1.4.2) includes the Robbins and Monro (1951) and Kiefer and Wol-

fowitz (1952) stochastic approximation processes, which allow the search for zero θ? of

the function φ. The application of Robbins�Monro's procedure to construct a stochastic

approximation algorithm was identi�ed by Révész (1973, 1977) and extended by Tsybakov

(1990). Most of the classical results for the Robbins�Monro and Kiefer�Wolfowitz pro-

cesses require the assumption E [Wn|Fn−1] = 0, where Fn−1 stands for the σ-algebra of

the events occurring up the time n− 1. Under standard conditions on the function φ and

on the sequence (γn), Kushner and Yin (2003) highlighted that

θn −→ θ? a.s. as n −→∞.

In the following subsections, two examples of recursive estimators are established using

the Robbins and Monro algorithm (See Robbins and Monro (1951)).

1.4.2 Recursive kernel estimators

Recursive kernel density estimator

In order to construct a stochastic algorithm, which approximates the unknown density

function f at a given point x, Mokkadem et al. (2009a) de�ned an algorithm to search

for the zero of the function g : y 7−→ f(x)− y as follows:

(i) f0(x) ∈ R,

(ii) ∀n > 1, we set fn(x) = fn−1(x) + γnZn(x), where the stepsize (γn) is a sequence

of positive real numbers that go to zero and (Zn) is a sequence of functions Zn :

R → R de�ned by Zn(x) = g(fn−1(x)) −Wn + ηn. Departing from the fact that

E(Wn|Fn−1) = 0, where Fn−1 stands for the σ-algebra of the events occurring at the

time n− 1, it follows that E(Zn(x)) = f(x)− fn−1(x) + ηn. Adapting the approach

of Révész (1973, 1977) and noting that

E
[
h−dn K(h−1

n (x−Xn))
]

= f(x) + ξn(x),

where ξn(x) goes to zero as n goes to in�nity, we set Zn(x) = h−dn K(h−1
n (x−Xn))−

fn−1(x).

Therefore, the recursive estimator fn of the density function f at the point x can be stated

as

fn(x) = (1− γn)fn−1(x) + γnK(h−1
n (x−Xn)). (1.4.3)
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Further more, we suppose that f0(x) = 0. Let Πn =
n∏
j=1

(1− γj). As a matter of fact, we

infer from Equation (1.4.3) that fn can be rewritten as

fn(x) = Πn

n∑
k=1

Π−1
k γkK

(
x−Xk

hk

)
.

Recursive kernel distribution estimator

In order to construct a stochastic algorithm, which approximates the function F at a

given point x, Slaoui (2014b) de�ned an algorithm to search for the zero of the function

h : y → F (x)− y as follows:

(i) we set F0(x) ∈ [0, 1].

(ii) For all n ≥ 1, we set

Fn(x) = Fn−1(x) + γnQn(x),

where the stepsize (γn) represents a positive sequence of real numbers decreasing to

zero and (Qn) determins a sequence of functions Qn : R → R de�ned by Qn(x) =

φ(Fn−1(x)) −Wn + ηn. Relying upon the fact that E(Wn|Fn−1) = 0, where Fn−1

stands for the σ-algebra of the events occurring up the time n − 1, it follows that

E(Qn(x)) = F (x)− Fn−1(x) + ηn. Based on the approach of Révész (1973, 1977)

and noting that

E
[
K(h−1

n (x−Xn))
]

= F (x) + ξn(x),

where ξn(x) goes to zero as n goes to in�nity and K(z) =
∫ z
−∞K(u)du, we set

Qn(x) = K(h−1
n (x−Xn))− Fn−1(x).

Hence, the recursive estimator Fn of the distribution function F at the point x can be

expressed as

Fn(x) = (1− γn)Fn−1(x) + γnK(h−1
n (x−Xn)). (1.4.4)

Further more, we suppose that F0(x) = 0. Let Πn =
n∏
j=1

(1− γj). Thus, we infer from

Equation (1.4.4) that Fn can be rewritten as

Fn(x) = Πn

n∑
k=1

Π−1
k γkK

(
x−Xk

hk

)
.

Recall that all de�nitions and theoretical concepts, introduced in this chapter,

allows us to better understand the following chapters.







Chapter 2

The stochastic approximation method

for recursive kernel estimation of the

conditional extreme value index

Abstract: In this research chapter, our central focus is upon applying the stochastic

approximation method to de�ne a class of recursive kernel estimator of the conditional

extreme value index. We investigate the properties of the proposed recursive estimator and

compare them to those pertaining to Hill's non recursive kernel estimator. We attempt to

demonstrate that using some optimal parameters, the proposed recursive estimator de�ned

by the stochastic approximation algorithm proves to be very competitive to Hill's non

recursive kernel estimator. Finally, the theoretical results are explored through simulation

experiments and illustrated using real data about Malaria in Senegalese children.

Keywords: Extreme value, Pareto distribution, Stochastic approximation algorithm, Tail

index.

2.1 Introduction

The EVT is a branch of statistics which studies the asymptotic distributions of extreme

values. It can be a maximum or a minimum of a set of random variables. This theory

was developed by Emil Julius Gumbel (1958). It is widely applied in many research areas

like climate changes, environmental risks, insurance and �nancial banking (see Beirlant

et al. (2004) for a list of interesting examples). Estimation of the tail index, associated

with a random variable Y , is one of the main problems in the area of EVT. Therefore, a
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lot of research, aiming to estimate this parameter, carried out during last decades (see for

example Embrechts et al. (1997), Beirlant et al. (2004), De Haan and Fereira (2006), Reiss

and Thomas (2007), Gardes and Girard (2008), Gardes et al. (2010) and Stup�er (2013)).

We denote by γ the tail index which characterizes the distribution tail heaviness of Y .

For example when γ is positive, the survival function of Y decreases polynomially to zero.

It can be estimated parametrically using the Hill (1975) estimator and non parametri-

cally using a kernel version of the Hill's estimator proposed by Goegebeur et al. (2014).

Improved approaches have recently appeared in literature. Among them, we can mention

Beirlant et al. (2004) to proposed the generalized Hill estimator;Brilhante et al. (2013)

to de�ned a moment of order p estimator which reduces to the Hill estimator for p = 0;

Beran et al. (2014) who proposed a harmonic moment tail index estimator; Paulauskas

and Vaieciulis (2013, 2017) who elaborated parametric families of functions of the order

statistics.

In many practical applications, it is often the case that the variable of interest Y

can be linked to a covariate X. In this case, the extreme-value index of the conditional

distribution of Y given X = x can depend on x; the problem is then to estimate the

conditional extreme-value index x −→ γ(x). Motivating examples in the literature include

the estimation of the maximal production level as a function of the quantity of labor (see

Daouia et al. (2010)), studying extreme temperatures as a function of various topological

parameters (see Ferrez et al. (2011)), or analyzing extreme earthquakes as a function of the

location (see Pisarenko and Sornette (2003)). Let (Xi, Yi), i = 1, · · · , n, be independent
realizations of the random vectors (X, Y ) ∈ Rd×R+

0 , where X is a d-dimensional covariate

with joint density function g, d > 1. The probability density function of Y given X = x

is de�ned as f(y|x) = P(Y = y|X = x) and the conditional survival function of Y given

X = x is denoted by F (y|x) = P(Y > y|X = x). Now, we de�ne the kernel version

of Hill's estimator of the conditional extreme value index proposed by Goegebeur et al.

(2014), which is expressed as follows

γ̃n(x) =
1
n

∑n
i=1 Khn(x−Xi) [lnYi − ln tn]1{Yi>tn}

1
n

∑n
i=1Khn (x−Xi)1{Yi>tn}

, (2.1.1)

where Kh (x) := h−dK (h−1x) with K is a kernel function and (tn) is a nonrandom thresh-

old sequence tending to ∞ as n −→∞.

Recently, recursive estimation has drawn the attention and whetted the interest

of multiple researchers. Recursivity means that the estimator calculated from the �rst

n observations, say θn, is a function of θn−1. More precisely, we can easily update the

estimator value with each additional observation specialy in large sample sizes. The
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basic objective of the present work lies in applying the stochastic approximation method

to construct a recursive kernel estimator of the conditional extreme value index de�ned

in (2.1.1). To the best of our knowledge, this tail index estimator construction was

not previously considered in literature and it aims to improve the estimation accuracy.

It turns out that this estimator depends on two important parameters, which are the

bandwidth and the stepsize of the stochastic algorithm. By making an adequate choice

of the two parameters, the proposed recursive estimator can be very competitive to Hill's

non recursive kernel estimator in terms of estimation error and much better in terms of

computational costs.

The remainder of the chapter is organized as follows. In Section 2, we identify

our estimator and we set forward its asymptotic properties. Simulation experiments and

investigation of real data are presented in Section 3. Finally, the last section wraps up

the conclusion and provides new perspectives for future works.

2.2 Construction of the estimator and asymptotic prop-

erties

2.2.1 The proposed estimator

In this chapter, we are basically interested in heavy tails. More precisely, we assume that

the conditional survival function of Y given X = x satis�es

(C1): F (y|x) = y−
1

γ(x) l(y|x),

where γ(·) is an unknown positive continuous function of the covariate x called the tail

function and for a �xed x, l(·|x) is a function that varies slowly at in�nity, i.e for all λ > 0,

lim
y→∞

l(λy|x)

l(y|x)
= 1.

Condition (C1) means that the conditional distribution of Y given X = x is in the Frechet

maximum domain of attraction. The tail function γ(x) is the conditional extreme value

index function which needs to be adequately estimated from the available data.

(C2): l(·|x) is normalized.

The Karamata representation (Theorem 1.3.1 given in Bingham et al. (1987)) of the

slowly-varying function, l(·|x), can be written as

l(y|x) = c(x) exp

(∫ y

1

ε(z|x)

z
dz

)
,
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where c(·) is a positive function and ε(z|x) −→ 0 as z −→∞. Thus, l(·|x) is di�erentiable

and the function ε(·|x) is given by ε(z|x) = z l
′(z|x)
l(z|x)

.

(C3): There exists a strictly negative function ρ(·), a strictly positive function

γ(·) and a rate function b(·|x), b(y|x) −→ 0 as y −→∞, of constant sign for large values

of y such that for all υ > 0

lim
y→∞

F (υy|x)

F (y|x)
− υ−

1
γ(x)

b(y|x)
= υ−

1
γ(x)

υ
ρ(x)
γ(x) − 1

ρ(x)γ(x)
.

Additional conditions are needed for ensuring the asymptotic properties of the estimators.

Let d(x, y) denote the Euclidean distance between x and y, for all x, y ∈ Rd.

(C4): There exists cg > 0 such that for all x, y ∈ Rd,

|g (x)− g(y)| ≤ cgd(x, y).

(C5): There exists cF > 0 and y0 > 1 such that for all x, z ∈ Rd,

sup
y≥y0

∣∣∣∣ lnF (y|x)

lnF (y|z)
− 1

∣∣∣∣ ≤ cFd(x, z).

Moreover, we impose a condition on the kernel function K.

(C6): K is a bounded density function on Rd, with support Ω included in the unit

hypersphere of Rd.

Our idea rests upon to construct a recursive estimator for the conditional tail

index γ(x). This recursive version is based on the estimator proposed by Goegebeur

et al. (2014) which is a rational function. Therefore, it will be presented as a ra-

tio of two estimators an(x) and bn(x). The denominator bn(x) is an estimator of the

function b(x) = g (x)F (tn|x). The nominator an(x) is an estimator of the function

a(x) = γ(x)F (tn|x)Cxg (x), where

Cx = 1 +
b(tn|x)

γ(x)ρ(x)

[
1

1− ρ(x)
− 1 + rn,x

]
and (rn,x) is a non-random sequence, tending to 0 as n −→∞, de�ned as

rn,x =
ρ(x)

γ2(x)

∫ ∞
1

z−
1

γ(x)
−1

γ2(x)
z

1
γ(x) F (tnz|x)

F (tn|x)
− 1

b(tn|x)
− z

ρ(x)
γ(x) − 1

ρ(x)γ(x)

 dz.

Remark 2.2.1. Since Cx tends to 1, we can remove it safely from the expression of a(x).

Thus it can be written as a(x) = γ(x)F (tn|x)g (x) .
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Remark 2.2.2. Based on a deterministic threshold as in the article Goegebeur et al.

(2014) and Ndao et al. (2016), we use the deterministic threshold. It is possible also to

consider a random threshold (tn) as in the article of Stup�er (2013). Additionally, we

can even make the comparison between two results.

Construction of a recursive estimator of the function a (x):

Let us introduce the stochastic algorithm to estimate the function a(·) at a point x. It is

based on searching the zero of the function f1 : y 7−→ a(x)−y. Following Robbins-Monro's

procedure, this algorithm is de�ned as follows:

(i) a0(x) ∈ R,

(ii) ∀n > 1, we set an(x) = an−1(x) + γnZn(x), where the stepsize (γn) is a sequence

of positive real numbers that goes to zero and Zn(x) is a sequence of function

Zn : Rd → R de�ned by Zn(x) = f1 (an−1(x)) − Wn + ζn, where ζn is a random

variables converges to 0 almost surely.

To constructWn(x), we follow the approach of Révész (1973, 1977), Tsybakov (1990) and

Slaoui (2013, 2014a,b, 2018) which are based on the classical property of stochastic algo-

rithms (which is E [Wn(x)|Fn−1] = 0, where Fn−1 stands for the σ -algebra of the events

occurring at the time n−1). Then, it comes E (Zn(x)) = a(x)−an−1(x)+ζn. In addition,

we introduce a kernel K (which is a function satisfying
∫
Rd K(z)dz = 1), and a bandwidth

(hn) (which is a sequence of positive real numbers that goes to zero when n −→∞) . More-

over, we have E
[
Khn (x−Xn) [lnYn − ln tn]1{Yn>tn}

]
= a(x)+ηn(x), where ηn(x) goes to

zero as n goes to∞. Then, we set Zn(x) = Khn (x−Xn) [lnYn − ln tn]1{Yn>tn}−an−1(x).

The stochastic approximation algorithm introduced in Mokkadem et al. (2009a) which es-

timates recursively the function a at the point x is de�ned as follows:

an(x) = (1− γn)an−1(x) + γnKhn (x−Xn) [lnYn − ln tn]1{Yn>tn}. (2.2.1)

Considering a0(x) = 0, the estimator an de�ned in (2.2.1) can be rewritten as

an(x) = Πn

n∑
k=1

Π−1
k γkKhk (x−Xk) [lnYk − ln tn]1{Yk>tn}, (2.2.2)

with

Πn =
n∏
k=1

(1− γk). (2.2.3)
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Construction of a recursive estimator of the function b (x):

We apply the stochastic algorithm to estimate the function b(·) at a point x. It is based

on searching the zero of the function f2 : y 7−→ b(x) − y. Following Robbins-Monro's

procedure, this algorithm is de�ned as follows:

(i) b0(x) ∈ R,

(ii) ∀n > 1, we set bn(x) = bn−1(x) + βnTn(x), where the stepsize (βn) is a sequence of

positive real numbers that goes to zero and Tn(x) is an observation of the function

f2 at the point bn−1(x).

Based on the same previously used approach, we consider Tn(x) = Khn (x−Xn)1{Yn>tn}−
bn−1(x), with the same bandwidth (hn) and kernel function Kh previously de�ned. Then,

the stochastic approximation algorithm to estimate recursively the function b at the point

x is de�ned as follows:

bn(x) = (1− βn)bn−1(x) + βnKhn (x−Xn)1{Yn>tn}. (2.2.4)

Considering b0(x) = 0, the estimator bn de�ned by (2.2.4) can be rewritten as

bn(x) = Qn

n∑
k=1

Q−1
k βkKhk (x−Xk)1{Yk>tn}, (2.2.5)

with

Qn =
n∏
k=1

(1− βk). (2.2.6)

Then, our proposed recursive estimator for the conditional tail index γ(x) is de�ned as:

γ̂n(x) :=
an(x)

bn(x)
=

Πn

∑n
k=1 Π−1

k γkKhk (x−Xk) [lnYk − ln tn]1{Yk>tn}

Qn

∑n
k=1 Q

−1
k βkKhk (x−Xk)1{Yk>tn}

. (2.2.7)

The second objective of our chapter is to study the properties of the recursive estimator

de�ned by (2.2.7) and to compare them with the kernel version of Hill's estimator of the

conditional extreme value index de�ned in (2.1.1).

The asymptotic properties of γ̂n are investigated in the next subsection.
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2.2.2 Asymptotic results

In order to obtain the bias and the variance of the recursive estimator γ̂n de�ned by (2.2.7),

we �rst calculate those of the recursive estimator an de�ned by (2.2.2). Then, we calculate

those of the recursive estimator bn de�ned by (2.2.5). Throughout this chapter, stepsizes

and bandwidths are considered to belong to the following regularly varying sequences

class.

De�nition 2.2.1. Let u ∈ R and (un)n>1 be a nonrandom positive sequence. We say that

un ∈ GS(u) if

lim
n→∞

n

[
1− un−1

un

]
= u.

This condition was introduced by Galambos and Seneta (1973). The acronym GS
stands for (Galambos and Seneta). Typical sequences in GS(u) are, for b ∈ R, nu(log n)b,

nu(log log n)b and so on.

Finally, we impose the following additional conditions:

(C7):

(i) γn ∈ GS(−α) with α ∈ (1/2, 1].

(ii) hn ∈ GS(−p) with p ∈ (0, α/d).

(iii) lim
n→∞

nγn ∈ (min (p, (α− pd) /2) ,∞].

(iv) βn ∈ GS(−b) with b ∈ (1/2, 1].

(v) lim
n→∞

nβn ∈ (min (p, (b− pd) /2) ,∞].

(vi) nhd+2
n ln2 tn −→

n→∞
∞.

The following notations will be often used in this chapter:

ε = lim
n→∞

(nγn)−1. (2.2.8)

ε1 = lim
n→∞

(nβn)−1. (2.2.9)

c′
F

= cF‖z‖2 such as z ∈ B∗Rd(0, 1) = {x ∈ Rd ; 0 < ‖x‖2 ≤ 1}.

C =

(
− 1

γ(x)
+ o(1)

)
cF‖u‖2 for all u ∈ Ω.

m̃n(x) = E
[
Khn(x−Xn)(lnYn − ln tn)1{Yn>tn}

]
.

mn(x) = E
[
(lnYn − ln tn)1{Yn>tn}|Xn = x

]
.
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Since we are interested in the asymptotic behavior of the estimator γ̂n, we shall start by

giving the asymptotic behavior of the estimator an.

Theorem 2.2.1. (Bias and variance of the estimator an)

Let Assumptions (C1)− (C7) hold.

1. If p ∈ (0, α/ (d+ 2)], then

E(an(x)) = a(x) +O(hn ln tn). (2.2.10)

If p ∈ (α/ (d+ 2) , 1/d), then

E(an(x)) = a(x) +O(
√
γnh−dn ). (2.2.11)

2. If p ∈ (0, α/ (d+ 2)), then

Var(an(x)) = o(h2
n ln2 tn). (2.2.12)

If p ∈ [α/ (d+ 2) , 1/d), then

Var(an(x)) =
6

2− (α− pd)ε
‖K2‖1g (x) γ2(x)F (tn|x)γnh

−d
n

+o(γnh
−d
n ). (2.2.13)

Departing from the above, we infer that the bias and the variance of the estimator

an heavily depend on the choice of the stepsize (γn). We consider an example of choices

of (γn)based on the minimization of the variance.

Choices of (γn) minimizing the variance of the estimator an:

As mentioned in Mokkadem et al. (2009a), by considering the point of view of estimation

by con�dence intervals, it is recommended to minimize the variance of the proposed

estimator for con�dence interval estimation (see also Hall (1992)).

Corollary 2.2.1. Let the assumptions of Theorem 2.2.1 hold. To minimize the asymptotic

variance of the estimator an, α must be chosen equal to 1, (γn)n must satisfy lim
n→∞

nγn =

1− pd, and we then have

Var(an(x)) = 6 (1− pd) ‖K2‖1g (x) γ2(x)
F (tn|x)

nhdn
+ o

(
1

nhdn

)
.
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The proof of Corollary 2.2.1 follows immediately from (2.2.13).

The following proposition provides the MISE of the estimator an. First, we have

MISE(an) =

∫
Rd
MSE(an(x))dx =

∫
Rd

[
(E(an(x))− a(x))2 + Var(an(x))

]
dx.

Proposition 2.2.1. Let Assumptions (C1)-(C7) hold.

1. If p ∈ (0, α/ (d+ 2)),

MISE(an) = O(h2
n ln2 tn).

2. If p = α/ (d+ 2),

MISE(an) =
6

2− (α− pd)ε
‖K2‖1

∫
Rd
g (x) γ2(x)F (tn|x)dxγnh

−d
n

+o
(
γnh

−d
n

)
+O

(
h2
n ln2 tn

)
.

3. If p ∈ (α/ (d+ 2) , 1/d),

MISE(an) =
6

2− (α− pd)ε
‖K2‖1

∫
Rd
g (x) γ2(x)F (tn|x)dxγnh

−d
n +O(γnh

−d
n ).

Now, we treat the asymptotic behavior of the estimator bn, in order to deduce the

one of the estimator γ̂n.

Theorem 2.2.2. (Bias and variance of the estimator bn)

Let Assumptions (C1)-(C7) hold.

1. If p ∈ (0, b/ (d+ 2)], then

E(bn(x)) = b(x) +O(hn ln tn). (2.2.14)

If p ∈ (b/ (d+ 2) , 1/d), then

E(bn(x)) = b(x) +O

(√
βn
hdn

)
. (2.2.15)

2. If p ∈ (0, b/ (d+ 2)), then

Var(bn(x)) = O(h2
n ln2 tn). (2.2.16)

If p ∈ [b/ (d+ 2) , 1/d), then

Var(bn(x)) =
1

2− (b− pd)ε1

‖K‖2
2g (x)F (tn|x)

βn
hdn

+O

(
βn
hdn

)
. (2.2.17)
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The bias and the variance of the estimator bn de�ned by the stochastic approxi-

mation algorithm (2.2.4), then heavily depend on the choice of the stepsize (βn). For an

adequate choice, we consider an example of choices of (βn) based on the minimization of

the variance.

Choices of (βn)n minimizing the variance of the estimator bn:

As mentioned in Mokkadem et al. (2009a), it is recommended to minimize the variance

of the proposed estimator for con�dence interval estimation.

Corollary 2.2.2. Let the assumptions of Theorem 2.2.2 hold. To minimize the asymptotic

variance of the estimator bn, b must be chosen equal to 1, (βn)n must satisfy lim
n→∞

nβn =

1− pd, and we then have

Var(bn(x)) = (1− pd)‖K‖2
2g (x)

F (tn|x)

nhdn
+O

(
1

nhdn

)
.

The proof of Corollary 2.2.2 follows immediately from (2.2.17).

The following proposition provides the MISE of the estimator bn.

Proposition 2.2.2. Let Assumptions (C1)-(C7) hold.

1. If p ∈ (0, b/ (d+ 2)),

MISE(bn) = O(h2
n ln2 tn).

2. If p = b/ (d+ 2),

MISE(bn) =
1

2− (b− pd)ε1

‖K‖2
2

∫
Rd
g (x)F (tn|x)dx

βn
hdn

+O
(
h2
n ln2 tn

)
+O

(
βn
hdn

)
.

3. If p ∈ (b/ (d+ 2) , 1/d),

MISE(bn) =
1

2− (b− pd)ε1

‖K‖2
2

∫
Rd
g (x)F (tn|x)dx

βn
hdn

+O

(
βn
hdn

)
.

Now we present the bias and the variance of γ̂n.

Theorem 2.2.3. (Bias and variance of γ̂n)

Let Assumptions (C1)-(C7) hold, and suppose that the stepsize (βn)n = (n−1)n.
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1. If p ∈ (0, α/ (d+ 2)], then

E (γ̂n(x))− γ (x) = O (hn ln tn) . (2.2.18)

If p ∈ (α/ (d+ 2)), 1/d), then

E (γ̂n(x))− γ (x) = O

(√
γn
hdn

)
. (2.2.19)

2. If p ∈ (0, α/ (d+ 2)), then

Var (γ̂n(x)) = o
(
h2
n ln2 tn

)
. (2.2.20)

If p ∈ [α/ (d+ 2) , 1/d), then

Var (γ̂n(x)) =
1

b2(x)

6

2− (α− pd)ε
‖K2‖1g (x) γ2(x)F (tn|x)

γn
hdn

+ o

(
γn
hdn

)
.(2.2.21)

Clearly, the bias and the variance of the estimator γ̂n depend on the choice of the two

stepsizes (γn)n and (βn)n.

Let us state now the following Theorem, which gives the weak convergence rate of

the proposed recursive estimator γ̂n de�ned in (2.2.7) in the special case of (βn)n = (n−1)n.

Theorem 2.2.4. Let Assumptions (C1)-(C7) hold, and suppose that (βn)n = (n−1)n.

1. If there exists r > 0 such that F (tn|x)−1γ−1
n hd+2

n ln2 tn −→
n→∞

r then

√
F (tn|x)−1γ−1

n hdn (γ̂n(x)− γ(x))
D−→ N

(√
rB(x),Var(x)

)
,

where

B(x) = −
(

C

1− pε
+

C

1− p

)
γ (x) ,

Var(x) =
1

b2(x)

6

2− (α− pd)ε
‖K2‖1g (x) γ2(x).

2. If F (tn|x)−1γ−1
n hd+2

n ln2 tn −→
n→∞

∞, then

1

hn ln tn
(γ̂n(x)− γ(x))

P−→ B(x),
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Corollary 2.2.3. Under the same assumptions as the previous theorem and if r = 0 then√
F (tn|x)−1γ−1

n hdn (γ̂n(x)− γ(x))
D−→ N (0,Var(x)) ,

with

Var(x) =
1

b2(x)

6

2− (α− pd)ε
‖K2‖1g (x) γ2(x).

We can consider the case when the stepsize (βn) is chosen to minimise the variance of the

estimator bn. Similarly, we can obtain the weak convergence rate of the estimator γ̂n.

The following corollary is a consequence of the previous theorem which gives an

asymptotic con�dence interval of the index function γ.

Corollary 2.2.4. The asymptotic 100(1− α)% con�dence interval for γ(x) is given by(
γ̂n +

√
F (tn|x)γnh−dn

√
rB(x)± u1−α

2

√
F (tn|x)γnh−dn

√
Var(x)

)
,

where u1−α
2
is the normal

(
1− α

2

)
quantile.

2.3 Simulation study

The target of our applications is to compare the performance of the proposed recursive

kernel estimator of the conditional extreme value index given in (2.2.7) to that of Hill's

non recursive estimator de�ned in (2.1.1) using the "Leave One Out" cross-validation

bandwidth selection.

2.3.1 The study design

We use the following simulation design: we consider the unidimensional case d = 1 and we

simulate N = 500 samples of size n (n = 50, 250) of independent replicates (Xi, Yi) where

X is uniformly distributed on [0, 1] and the conditional distribution of Yi given Xi = x

is Pareto with parameter γ(x) = 0.5(0.1 + sin(πx)× (1.1− 0.5 exp(−64(x− 0.5)2))) (this

function was proposed by Daouia et al. (2011)), it was also used in Goegebeur et al. (2014)

and in Ndao et al. (2016). The pattern of γ is given in Figure 2.1.

For each of theN simulated samples, we estimate γ(·) at x = (0.1, 0.2, 0.3, · · · , 0.8, 0.9)

using the estimator (2.2.7) with a biquadratic kernel K(x) = 15
16

(1− x2)21[−1,1]. As men-

tioned in previous papers (see Slaoui (2014a,b)), there is no big in�uence on the choice of

the kernel K in our setup when the observations are not contamined.

46



0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

x

G
a
m

m
a

Figure 2.1: Pattern of γ(·) on [0, 1]

In order to calculate our estimator, we need to choose the bandwidth (hn)n and

the threshold (tn)n. We take tn to be the (n − k) th order statistic Y(n−k) as is usual in

extreme value statistics.

Moreover, we propose an algorithm for choosing (hn, k). This algorithm adapted from

Goegebeur et al. (2014), was considered recently by Ndao et al. (2016). The purpose is

then to select the bandwidth (hn) using the following cross-validation criterion

hcv = arg min
h∈H

n∑
i=1

n∑
j=1

(
1{Yi6Yj} − F̂n,−i(Yj|Xi)

)2

,

where H = {hn = cn−v;n > 1 and (c, v) ∈ {0.1, 0.2, · · · , 0.9}} is a grid of values

for (hn) and

F̂n,−i(y|x) :=

∑n
j=1,j 6=iKh(x−Xj)1{Yj6y}∑n

j=1,j 6=iKh(x−Xj)
.

This criterion was introduced in Yao (1999), implemented by Gannoun et al. (2002), and

established in an extreme value context by Daouia et al. (2011, 2013), Goegebeur et al.

(2014) and Ndao et al. (2016). Using this bandwidth selection, we consider the following

procedure to determine the number of threshold excesses k. This procedure rests on

considering for each point x, the following steps:

Step 1: we compute the estimates for γ̂n,Y(n−k)(x) with k = 1, · · · , n− 1.

Step 2: we construct several successive "blocks" of the estimates γ̂n,Y(n−k)(x) (one block

for k ∈ {1, · · · , 15}, a second block for k ∈ {16, · · · , 30} and so on).

Step 3: we calculate the standard deviation of the estimate in each block.
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Step 4: we determine the k-value (denoted by k1) from the block with minimal standard

deviation (in particular, we take the median of the k-values in that block).

Finally, we estimate γ(x) by using the estimator γ̂n (2.2.7) by taking (hn, k) = (hcv, k1)

2.3.2 Results

For each con�guration of the simulation design parameters (sample size n, stepsize param-

eters (γn, βn) and covariate value x), we calculate the average IAE (Integrated Absolute

Error), the average ISE (Integrated Squared Error); and L∞ of the estimators over N =

500 trials; IAE = 1
N

∑N
i=1

∫
R

∣∣∣γ[i]
n (x)− γ(x)

∣∣∣ dx, ISE = 1
N

∑N
i=1

∫
R

(
γ

[i]
n (x)− γ(x)

)2

dx

and L∞ = maxi=1,··· ,N
∫
R

∣∣∣γ[i]
n (x)− γ(x)

∣∣∣ dx, where γ[i]
n corresponds to the estimator com-

puted from the ith sample. In order to investigate the comparison estimators, we con-

sider the stepsizes (γn, βn) equal to (n−1, n−1), ((2/3)n−1, n−1), (n−1, (2/3)n−1) and

((2/3)n−1, (2/3)n−1) respectively. These four choices of parameters of the recursive esti-

mator are referred to as R1, R2, R3 and R4 respectively. Results are highlighted in Table

2.1. We point out that the major merit of our proposed estimator lies in its update

aspect. Indeed, when new sample points are available, it requires less computational cost

than non recursive estimator. Moreover, Table 2.1 reveals that our proposed recursive es-

timator can provide better results in some speci�c situations that are very close in general

to the reference values, which proves the e�ectiveness of our proposed recursive estimator

in terms of the estimation error. Figure 2.2 discloses that all the considered estimators

yield good results since the values of γ at each point x ∈ {0.1, 0.2, . . . 0.9} are very close

to the median.

2.3.3 Real data application

We considered a Malaria dataset of 176 families in Senegal, totaling 505 children between

2 and 19 years old, living in two villages of Niakhar (Toucar and Diohine). The number

of observations was 6986. We measured Plasmodium falciparum Parasite Load (PL) from

thick blood smears obtained by �nger-prick during two di�erent seasons and regularly

over a three-year observation period (2001-2003). The number of measurements per child

ranged from 1 to 15. We refer readers to consult Milet et al. (2010) for more details about

data. These data were used also in Slaoui and Nuel (2014c) in a parametric context and

more recently in Slaoui (2019a) in a non parametric context. Considering this real data,

the recursive estimator (2.2.7) and the non recursive estimator (2.1.1) are compared with
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the reference index function, considered by Lekina (2010) and de�ned as follows:

γ(xi) = 0.3
x2
i −min

j
x2
j

max
j
x2
j −min

j
x2
j

+ 0.2,

where xi is the ith value in the data vector. Once a variable change has been taken into

consideration, the data vector should be in the same interval [0.2,0.5] proposed by Lekina

(2010), so that the previous function γ(x) can be used. Therefore, for any considered

estimator γn of the index function γ, we propose to compute IAE and ISE de�ned as:

IAE(γn) =

∫
R
|γn(x)− γ(x)| dx

and

ISE(γn) =

∫
R

(γn(x)− γ(x))2 dx,

Departing from Table 2.2 and Figure 2.3, we infer that the IAE and the ISE of the

proposed recursive estimator are smaller than those of the non recursive estimator set for-

ward by Goegebeur et al. (2014). Thus, demonstrating the e�ectiveness of our considered

estimator.
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Figure 2.3: Qualitative comparaison between the non recursive estimator (2.1.1) and the

proposed recursive one (2.2.7).

2.4 Conclusion

In this chapter, we tackled the estimation of the conditional extreme value index γ(x)

of a heavy-tailed distribution when some random covariate information is available. We
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ISE IAE

Recursive estimator 0.04173758 0.1660733

Non recursive estimator 0.0454373 0.1722541

Table 2.2: The comparaison between errors of the non recursive estimator (2.1.1) and the

proposed recursive estimator (2.2.7).

elaborate recursive kernel estimator of the extreme value index function based on the

stochastic approximation algorithm. The proposed estimator asymptotically follows nor-

mal distribution. We subsequently compared the proposed estimator to Hill's non recur-

sive extreme value index estimator. We demonstrated that using some particular stepsizes

and a speci�c bandwidth selection through a cross-validation procedure, the proposed re-

cursive estimator could be very competitive to the non recursive version. Moreover, we

highlighted that the proposed estimator is much better in terms of computational costs.

Numerical results illustrate the e�ectiveness of our recursive approach. To this extent, we

would state that although our work is an extension of a wealthy historical background,

it may be taken further, extended and built upon since it o�ers di�erent perspectives

and opens new horizons for future research. We can extend our recursive extreme value

index estimator to the case of censored data. We can also propose a new estimator of the

conditional extreme quantile using our recursive estimator de�ned by (2.2.7) and compare

it to the classical Weissman estimator. Another direction is to investigate the almost sure

convergence and the large and moderate deviation principles of the proposed estimator,

which requires non trivial mathematics. This would go well beyond the scope of the

present chapter.

2.5 Proofs

We introduce the following Lemmas that will enable us to obtain the asymptotic expansion

of an.

Lemma 2.5.1. Let assumption (C3) holds. Then, for tn −→∞ as n −→∞ we have

mn(x) = γ(x)F (tn|x).

The proof of Lemma 2.5.1 is presented in Goegebeur et al. (2014).
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Lemma 2.5.2. Let assumptions (C1)-(C6) hold. Then, for all x ∈ Rd such that g (x) >

0 we have for tn −→
n→∞

∞ and hn −→
n→∞

0 with hn ln tn −→→∞ 0

m̃n(x) = mn(x)g (x) (1 +O(hn ln tn)) . (2.5.1)

The proof of Lemma 2.5.2 is presented in Goegebeur et al. (2014).

Lemma 2.5.3. Let assumptions (C1) and (C4)-(C6) hold. Then, for all x ∈ Rd such

that g (x) > 0, we have for tn −→
n→∞

∞ and hn −→
n→∞

0 with hn ln tn −→
n→∞

0

E
[
Khn (x−Xn)1{Yn>tn}

]
= g (x)F (tn|x) (1 +O(hn ln tn)) .

2.5.1 Proof of Lemma 2.5.3

Since (Xi, Yi), i = 1, · · · , n are independent and identically distributed, we have under

the assumption (C6)

E
[
Khn (x−Xn)1{Yn>tn}

]
=

∫
Rd

∫
R

1

hdn
K

(
x− t
hn

)
1{y>tn}f(y|t)g(t)dtdy

=

∫
Rd

1

hdn
K

(
x− t
hn

)
F (tn|t)g(t)dt

=

∫
Ω

K(u)F (tn|x− uhn)g(x− uhn)du.

Now, we consider∣∣E [Khn (x−Xn)1{Yn>tn}
]
− F (tn|x)g (x)

∣∣ ≤ F (tn|x)

∫
Ω
K(u) |g(x− hnu)− g (x)| du

+ F (tn|x)

∫
Ω
K(u)

∣∣∣∣F (tn|x− uhn)

F (tn|x)
− 1

∣∣∣∣ g(x− hnu)du

:= J̃1 + J̃2.

Under the assumption (C5), and since g(x) > 0, we have

J̃1 ≤ F (tn|x)cghn

∫
Ω
‖u‖2K(u)du = F (tn|x)g (x)O(hn). (2.5.2)

Concerning J̃2, under (C5) and using this equation

F (y|x− hnz)
F (y|x)

= exp

[
lnF (y|x)

(
lnF (y|x− hnz)

lnF (y|x)
− 1

)]
,

it comes that ∣∣∣∣F (tn|x− uhn)

F (tn|x)
− 1

∣∣∣∣ ≤ |exp [Chn ln tn]− 1| .
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Applying Taylor, we get:

sup
u∈Ω

∣∣∣∣F (tn|x− uhn)

F (tn|x)
− 1

∣∣∣∣ = O(hn ln tn).

and therefore, in view of (2.5.2),

J̃2 = g (x)F (tn|x)O(hn ln tn)

∫
Ω
K(u)

g(x− hnu)

g (x)
du

= g (x)F (tn|x)O(hn ln tn)(1 + o(1))

= g (x)F (tn|x)O(hn ln tn).

Then, we get

E
[
Khn (x−Xn)1{Yn>tn}

]
= g (x)F (tn|x) (1 +O(hn ln tn)) .

We state now the following technical lemma, which is proved in Mokkadem et al. (2009a),

and which will be used throughout the demonstrations.

Lemma 2.5.1.

Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α) and m > 0 such that m − v∗ε > 0 where ε is de�ned

in (4.2.1), and Πn in (2.2.3). Then,

lim
n→∞

vnΠm
n

n∑
k=1

Π−mk
γk
vk

=
1

m− v∗ε
.

Moreover, for all positive sequences (αn) such that limn→∞ αn = 0, and all C ∈ R,

lim
n→∞

vnΠm
n

[
n∑
k=1

Π−mk
γk
vk
αk + C

]
= 0.

2.5.2 Proof of Theorem 2.2.1

1. The application of Lemma 2.5.2, ensures that

E(an(x)) = Πn

n∑
k=1

Π−1
k γkm̃k(x) = Πn

n∑
k=1

Π−1
k γkmk(x)g (x) (1 +O(hk ln tn)) .

In the case p ∈ (0, α/ (d+ 2)], we have lim
n→∞

nγn > p; the application of lemma 2.5.1

ensures that

E(an(x)) = a(x) +O(hn ln tn),

and (2.2.10) follows. In the case p ∈ (α/ (d+ 2) , 1/d), we have hn ln tn = o

(√
γnh

−d
n

)
,

Lemma 2.5.1 ensures E(an(x))− a(x) = O

(√
γnh

−d
n

)
, which gives (2.2.11).
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2. Now, we have

Var(an(x)) = Π2
n

n∑
k=1

Π−2
k γ2

k

[
E
[
h−2d
k K2

(
x−Xk

hk

)
[lnYk − ln tn]2 1{Yk>tn}

]
− E2

[
h−dk K

(
x−Xk

hk

)
[lnYk − ln tn]1{Yk>tn}

]]
.

Following the same steps of the proof of Theorem 1 in Goegebeur et al. (2014), we obtain

Var(an(x)) = Π2
n

n∑
k=1

Π−2
k γ2

k

[
6
‖K2‖1
hdk

γ2(x)F (tn|x)g (x) (1 + o(1))

]

= Π2
n

n∑
k=1

Π−2
k γk

γk

hdk

[
6‖K2‖1γ2(x)F (tn|x)g (x) (1 + o(1))

]
.

In the case when p ∈ [α/ (d+ 2) , 1/d), we have lim
n→∞

nγn >
α−pd

2 , and the application of

Lemma 2.5.1 ensures that

Var(an(x)) =
6

2− (α− pd)ε
‖K2‖1g (x) γ2(x)F (tn|x)γnh

−d
n

+
6

2− (α− pd)ε
‖K2‖1F (tn|x)g (x) γ2(x)o(γnh

−d
n ),

which proves (2.2.13). In the case when p ∈ (0, α/ (d+ 2)), we have γnh
−d
n = o(h2

n ln2 tn),

Lemma 2.5.1 ensures that Var(an(x)) = o(h2
n ln2 tn), which yields (2.2.12).

2.5.3 Proof of Theorem 2.2.2

1. First, the application of Lemma 2.5.3 provides

E(bn(x)) = Qn

n∑
k=1

Q−1
k βkg (x)F (tn|x) (1 +O(hk ln tn)) .

Now, in the case when p ∈ (0, b/ (d+ 2)], we have lim
n→∞

nβn > p; the application of

Lemma 2.5.1 ensures that

E(bn(x)) = b(x) +O(hn ln tn),

and (2.2.14) follows. In the case when p ∈ (b/ (d+ 2) , 1/d), we have hn ln tn = o(

√
βnh

−d
n ),

Lemma 2.5.1 ensures E (bn(x)) = b(x) +O

(√
βnh

−d
n

)
, which gives (2.2.15).

2. Now, we have

Var(bn(x))
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= Q2
n

n∑
k=1

Q−2
k β2

k

[
E
[
h−2d
k K2

(
x−Xk

hk

)
1{Yk>tn}

]
− E2

[
h−dk K

(
x−Xk

hk

)
1{Yk>tn}

]]

= Q2
n

n∑
k=1

Q−2
k β2

k

[
‖K‖22
hdk

E
[
h−dk H

(
x−Xk

hk

)
1{Yk>tn}

]
− E2

[
h−dk K

(
x−Xk

hk

)
1{Yk>tn}

]]
,

with H(·) =: K
2(·)
‖K‖22

also satisfying assumption (C6). Using Lemma 2.5.3, we get

Var(bn(x)) = Q2
n

n∑
k=1

Q−2
k β2

k

[
‖K‖22
hdk

[
g (x)F (tn|x) (1 +O(hk ln tn))

]
− g2(x)F

2
(tn|x) (1 +O(hk ln tn))

]
,

then, we have

Var(bn(x)) = ‖K‖22g (x)F (tn|x)Q2
n

n∑
k=1

Q−2
k

β2
k

hdk
+ ‖K‖22g (x)F (tn|x)Q2

n

n∑
k=1

Q−2
k β2

kO

(
ln tn

hd−1
k

)

−g2(x)F
2
(tn|x)Q2

n

n∑
k=1

Q−2
k β2

k − g2(x)F
2
(tn|x)Q2

n

n∑
k=1

Q−2
k β2

kO(hk ln tn).

In the case when p ∈ [b/ (d+ 2) , 1/d), we have lim
n→∞

nβn > (b−pd)/2, and the application

of Lemma 2.5.1 gives

Var(bn(x))

=
1

2− (b− pd)ε1
‖K‖22g (x)F (tn|x)

βn
hdn

+O

(
βn ln tn

hd−1
n

)
− 1

2− bε1
g2(x)F

2
(tn|x)βn +O(ln tnβnhn),

which proves (2.2.17). In the case when p ∈ (0, b/ (d+ 2)), we have βnh
−d
n = o(h2

n ln2 tn),

Lemma 2.5.1 ensures that Var(bn(x)) = O(h2
n ln2 tn), which gives (2.2.16).

2.5.4 Proof of Theorem 2.2.3

Let us �rst note that, for x such that bn(x) 6= 0, we have

γ̂n(x)− γ(x) = Dn(x)
b(x)

bn(x)
, (2.5.3)

with

Dn(x) =
1

b(x)
(an(x)− a(x))− γ(x)

b(x)
(bn(x)− b(x)). (2.5.4)
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It follows from (2.5.3), that the asymptotic behavior of γ̂n(x) − γ(x) can be deduced from the

one of Dn(x). Then, (2.2.18) follows from (2.2.10), (2.2.14) and (2.5.3) whereas (2.2.19) follows

from (2.2.11), (2.2.15) and (2.5.3). Now it follows from (2.5.4) that

Var(Dn(x)) =
1

b2(x)
Var(an(x))− 2γ(x)

b2(x)
Cov(an(x), bn(x)) +

γ2(x)

b2(x)
Var(bn(x)). (2.5.5)

By using Lemma 2.5.1 and choosing the stepsize (γn) = (n−1), computations provide

Cov(an(x), bn(x)) =
1

n
Qn

n∑
k=1

Q−1
k βk (J1 − J2J3) , (2.5.6)

with

J1 = E
[
K2
hk

(x−Xk) [lnYk − ln tn]1{Yk>tn}
]
, J2 = m̃n(x) and J3 = E

[
Khk (x−Xk)1{Yk>tn}

]
.

Following similar steps as Lemma 2 in Goegebeur et al. (2014) and Lemma 2.5.2, we infer that

J1 = mn(x)g (x)
‖K‖22
hdk

(1 +O(hk ln tn)) ,

J2 and J3 are already calculated in Lemmas 2.5.2 and 2.5.3. Then, the combination of (2.5.4),

(2.5.5), (2.2.13), (2.2.17) and (2.5.6), gives (2.2.21), and the combination of (2.5.4), (2.5.5),

(2.2.12), (2.2.16) and (2.5.6), gives (2.2.20).

2.5.5 Proof of Theorem 2.2.4

Let us at �rst assume that, if p > α/(d+ 2), then√
F (tn|x)−1γ−1

n hdn (γ̂n(x)− E (γ̂n(x)))
D−→ N (0,Var(x)) . (2.5.7)

In the case when p > α/(d+ 2), Part 1 of the theorem follows from the combination of (2.2.19)

and (2.5.7). In the case when p = α/(d + 2), Parts 1 and 2 of the Theorem follow from the

combination of (2.2.18) and (2.5.7). In the case p < b/(d+ 2), (2.2.20) implies that

1

hn ln tn
(γ̂n(x)− E (γ̂n(x)))

P−→ 0,

and the application of (2.2.18) gives Part 2 of Theorem. Now (2.5.7) is proved. Relying on

(2.5.4), we have

Dn(x)− E[Dn(x)] =
1

b(x)
Πn

n∑
k=1

(Yk(x)− E[Yk(x)]) ,

where

Yk(x) = Π−1
k

(
γkZk(x)− γ(x)ηnη

−1
k βkWk(x)

)
,
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with Zn(x) = Khn (x−Xn) [lnYn − ln tn]1{Yn>tn}, Wn(x) = Khn (x−Xn)1{Yn>tn} and ηn =

Π−1
n Qn. Now, in the case when (βn) =

(
n−1

)
, we have ηn = (nΠn)−1 and η−1

k βk = Πk. Then,

Yk(x) = Π−1
k γkZk(x)− γ(x)(nΠn)−1Wk(x).

Set

Tk(x) = Yk(x)− E [Yk(x)] . (2.5.8)

Moreover, we have

s2
n =

n∑
k=1

Var (Tk(x))

=
n∑
k=1

Π−2
k γ2

kVar (Zk(x)) + γ2(x)(nΠn)−2
n∑
k=1

Var (Wk(x))

−2γ(x)(nΠn)−1
n∑
k=1

Π−1
k γkCov (Zk(x),Wk(x))

:= Γ1 + Γ2 + Γ3.

In addition, classical computations and applications of Lemma 2.5.1 ensure that

Γ1 = Π−2
n γ2(x)

[
6

2− (α− pd)ε
‖K2‖1g (x)F (tn|x)

γn
hdn

+ o

(
γn
hdn

)]
,

Γ2 = Π−2
n γ2(x)

[
1

1 + pd
‖K‖22g (x)

F (tn|x)

nhdn
+ o

(
1

nhdn

)]
,

Γ3 = Π−2
n γ2(x)

[
2

1 + pdε
‖K‖22g (x)

F (tn|x)

nhdn
+ o

(
1

nhdn

)]
.

As a matter of fact, we infer that

s2
n = Π−2

n b2(x)F (tn|x)
γn
hdn

[Var(x) + o(1)] .

On the other side, we have, for all q > 0,

E
[
| Yk(x) |2+q

]
= O

(
1

h
(1+q)d
k

)
,

and, since lim
n→∞

(nγn) > (α− pd) /2, there exists q > 0 such that lim
n→∞

nγn > 1+q
2+q (α− pd).

Applying Lemma 2.5.1, we get

n∑
k=1

E
[
| Tk(x) |2+q

]
= O

(
n∑
k=1

Π−2−q
k γ2+q

k E
[
| Yk(x) |2+q

])
= O

(
γ1+q
n

Π2+q
n h

(q+1)d
n

)
,

and we thus obtain

1

s2+q
n

n∑
k=1

E
[
| Tk(x) |2+q

]
=

1

s
2(1+q/2)
n

O

(
γ1+q
n

Π2+q
n h

(q+1)d
n

)
= O

(
γ
q
2
n h
− dq

2
n

)
= o (1) .

The convergence in (2.5.7) then follows from the application of Lyapounov's Theorem.







Chapter 3

The Stochastic Approximation Method

for Estimation of a Distribution

Function under α-mixing condition

Abstract: In this chapter, we extend the work of Slaoui (2014b) [The stochastic approximation

method for the estimation of a distribution function. Math. Methods Statist., 23, 306-325] to the

case of α-mixing data. Then, we study the properties of these estimators and compare them with

Nadaraya's non recursive distribution estimator. We show that, using some optimal parameters,

the recursive estimators allowed us to obtain quite better results compared to the non recursive

distribution estimator under α-mixing condition in terms of estimation error. We establish the

central limit theorem and the uniform convergence for the proposed estimators under some mild

conditions. Finally, we corroborate these theoretical results through a few simulations.

Keywords: Asymptotic normality, Bandwidth selection, Mixing Data, Recursive distribution

estimator, Stochastic approximation algorithm.

3.1 Introduction

Non parametric distribution function methods have a central position in statistics, and an

enormous literature exists in this subject. Non parametric kernel type methods have been

widely used in estimating distribution function. We can list without to trying to be exhaus-

tive Nadaraya (1964), Azzalini (1981), Reiss (1981), Sarda (1993), Bowman et al (1998) and

Slaoui (2014b). This estimation has been widely applied in many disciplines such as economics,

�nances, medicine, biology and various other situations.

In the current chapter, we consider the case of non parametric estimation of the distri-
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bution function, using a recursive kernel estimator version. In this way, the estimator can be

updated with each additional new observation. This recursive scheme o�ers many advantages to

recursive estimators: they do not require extensive storage of data and they are fast to compute.

In particular cases, they also appear as more e�cient than classical estimators. Let X1, · · · , Xn

a sequence of random variables satisfy the α-mixing dependency property (see De�nition 1.2.1)

having a common unknown distribution function F with associated density f . Let us introduce

a kernel function K de�ned on R (that is, a function satisfying
∫
RK(x)dx = 1), a function K

(de�ned by K(z) =
∫ z
−∞K(u)du) and a bandwidth (hn) (that is, a sequence of positive real

number tending to zero when n goes to ∞). Let us recall that the usual kernel estimate of F (x)

is given by F̃n (x) = 1
n

∑n
i=1K

(
x−Xi
hn

)
.

Whereas to construct a stochastic algorithm, which approximates the function F at a

given point x, we de�ne an algorithm of search of the zero of the function φ : y 7→ F (x)− y. We

thus proceed in the following way:

(i) We set F0(x) ∈ [0, 1];

(ii) For all n > 1, we set Fn(x) = Fn−1(x) + γnTn(x), where the stepsize (γn) is a positive

sequence of real numbers decreasing to zero and Tn is an observation of the function φ at

the point Fn−1(x).

Now, to de�ne Tn(x), we follow the approach of Révész (1973, 1977), Tsybakov (1990) and more

recently Slaoui (2014a,b) and we set Tn(x) = K
(
h−1
n [x−Xn]

)
− Fn−1(x).

Then, the estimator Fn to recursively estimate the distribution function F at the point x can

thus be written as

Fn(x) = (1− γn)Fn−1(x) + γnK
(
x−Xn

hn

)
. (3.1.1)

This estimator was proposed by Slaoui (2014b) in the case of independent data and whose large

and moderate deviation principles was obtained by Slaoui (2019b). Moreover, we consider for

simplicity that F0(x) = 0 and Πn =
n∏
j=1

(1 − γj). We can also consider the problem of bias

reduction (see for instance the recent work of Slaoui (2018b), this would go well beyond the

scope of the present chapter. By iteration, the estimator Fn de�ned by (3.1.1) can be rewritten

as

Fn(x) = Πn

n∑
k=1

Π−1
k γkK

(
x−Xk

hk

)
. (3.1.2)

Moreover, in the case when the stepsize (γn) is chosen equal to (n−1), the estimator Fn de�ned

by (3.1.2) can be rewritten as

Fn(x) =
1

n

n∑
k=1

K
(
x−Xk

hk

)
. (3.1.3)
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This estimator was considered by Isogai and Hirose (1994). The choice of such stepsize belongs

to the subclass of the recursive kernel estimators of density, which have a minimum MSE (Mean

Squared Error) or MISE (Mean Integrated Squared Error) (see Mokkadem et al. (2009a)).

The aim of this chapter is to study the properties of the recursive distribution function estimator

(3.1.3) in the case α-mixing data and its comparison with the kernel distribution estimator

de�ned as

F̃n(x) =
1

n

n∑
i=1

K
(
x−Xi

hn

)
. (3.1.4)

A number of authors have studied the properties of the estimator (3.1.4) (see Nadaraya (1964),

Reiss (1981) and Hill (1985)).

In recent years, data �ows have become increasingly important in the �eld of research.

In this situation, the data arrives so fast that it is impossible to store it in a traditional database.

In such a situation, the construction of a recursive estimator that does not require the storage

of all the data in memory and that can be easily updated to process the online data is of great

interest. This recursive estimator shows good theoretical properties, from the point of view of

Mean Weighted Integrated Squared Error (MWISE) and almost sure convergence.

The purpose of this chapter is to generalize the recursive estimators proposed by Slaoui

(2014b) to the case of α-mixing data. We �rst compute the bias and the variance of the estimator

Fn de�ned by (3.1.3). It turns out that they heavily depend on the choice of the stepsize (γn).

We show that using an adequate choice of the bandwidth (hn), the expansion of the MWISE of

the proposed estimator Fn will be smaller than that of Nadaraya's estimator (3.1.4). We show

also that estimator (3.1.3) can be very competitive to the estimator (3.1.4) in terms of estimation

error and much better in terms of computational costs, especially for large n. This chapter is

organized into �ve sections. We study asymptotic properties in Section 2, while Section 3 is

devoted to our application results. We conclude the chapter in Section 4, whereas the technical

details are deferred to Section 5.

3.2 Assumptions and Main Results

Throughout this chapter, we consider stepsizes and bandwidths belonging to the following class

of regularly varying sequences.

De�nition 3.2.1. Let u ∈ R and (un)n>1 be a nonrandom positive sequence. We say that

un ∈ GS(u) if

lim
n→∞

n

[
1− un−1

un

]
= u.

This condition was introduced by Galambos and Seneta (1973) and by Mokkadem et

Pelletier. (2007) in the context of stochastic approximation algorithms. Note that the acronym
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GS stand for (Galambos and Seneta). Typical sequences in GS(u) are, for b ∈ R, nu(log n)b,

nu(log log n)b and so on.

The assumptions to which we shall refer are the following:

(H1) K : R −→ R is a continuous bounded function satisfying
∫
RK(x)dx = 1,

∫
R xK(x)dx = 0

and
∫
R x

2K(x)dx <∞.

(H2)

(i) The stepsize γn ∈ GS(−α) with α ∈ (1/2, 1].

(ii) hn ∈ GS(−a) with a ∈ (0, 1).

(iii) lim
n→∞

nγn ∈ (min (2a, (α+ a) /2) ,∞].

(H3) The density f is bounded, di�erentiable and f ′ is bounded.

(H4) The stepsize (γn) is a decreasing sequence and γn −→ 0 as n −→∞.

(H5) The mixing coe�cient of the sequence (Xi) is geometry-dependent and satis�es α(n) =

O(n−ρ) for some ρ > 3.

(H6) There exist integer sequences (pn)n and (qn)n going to ∞ along with n such that

qn/pn −→ 0, qnhn −→ 0, pnhn −→∞ as n −→∞.

Moreover, for w := wn :=
[

n
pn+qn

]
(where [.] is the integer of the formula), we have

wnq
−ρ
n −→ 0 as n −→∞; wnγn −→ 0,

(
wγ−1

n Π2
n

(pn + qn)ρ

)
−→ 0, as n −→∞.

(H7)
∑n

k=1
θk
θn

< ∞,
∑

16k6n

(
θk
θn

)2
< ∞,

∑
16i<j6n

θiθj
θ2n

< ∞ and
∑

16k6n

(
θk
θn

)2
hk < ∞

where θ2
k = Π−2

k γ2
k .

Moreover, we use the following notations:

ξ = lim
n→∞

(nγn)−1, (3.2.1)

Zn(x) = K
(
x−Xn

hn

)
, (3.2.2)

µ2(K) =

∫
R
z2K(z)dz, φ(K) = 2

∫
R
zK(z)K(z)dz,

C1 =

∫
R
f2(x)dx, C2 =

∫
R

(
f ′(x)

)2
f(x)dx,

VF =

∫
R
F (x)(1− F (x))f(x)dx.

Our �rst result are given in the following propositions, which give the bias and the variance of

Fn respectively.
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Proposition 3.2.1. (Bias of Fn)

Let assumptions (H1)− (H3) hold, and assume that f ′ is continuous at x. Then

E[Fn(x)]− F (x) =

[
1

2(1− 2aξ)
f ′(x)µ2(K)h2

n + o(h2
n)

]
1{a∈(0,α/3]}

+o
(√

γnhn

)
1{a∈(α/3,1)} (3.2.3)

Proposition 3.2.2. (Variance of Fn)

Let Assumptions (H1)-(H6) hold. Then

Var [Fn(x)] =
1

2− αξ
F (x)(1− F (x))γn1{a∈[α/4,1]}

− 1

2− (a+ α)ξ
f(x)φ(K)γnhn1{a∈[α/3,1]}

+o(γnhn)1{a∈[α/3,1]} + o
(
h4
n

)
1{a∈(0,α/4)}. (3.2.4)

Moreover, in order to measure the quality of our proposed estimator Fn de�ned in (3.1.3),

we consider the Mean Weighted Integrated Squared Error (MWISE):

MWISE(Fn) = E
∫
R

(Fn(x)− F (x))2 f(x)dx

=

∫
R

(E (Fn(x))− F (x))2 f(x)dx+

∫
R
Var (Fn(x)) f(x)dx.

The following proposition gives the MWISE of the estimator Fn for the mixing case.

Proposition 3.2.3. Let Assumptions (H1)-(H6) hold, and assume that f ′ is continuous at x.

MWISE(Fn) =
1

2− αξ
γnVF1{a∈[α/4,1]} −

1

2− (a+ α)ξ
γnhnC1φ(K)1{a∈[α/3,1]}

+
1

4(1− 2aξ)2
h4
nC

2
2µ

2
2(K)1{a∈(0,α/3]} + o(γnhn)1{a∈[α/3,1]}

+o
(
h4
n

)
1{a∈(0,α/3]}. (3.2.5)

The following remark follows immediately from the previous proposition.

Remark 3.2.1. One can infer from (3.2.3) and (3.2.4), that in the special case a = α/3, we

have an asymptotic expression of the bias and the variance of Fn, the same remark can be done

from (3.2.5), then, under the assumptions of the proposition 3.2.3, we have in the case when

a = α/3

MWISE(Fn) =
1

2− αξ
γnVF −

1

2− (a+ α)ξ
γnhnC1φ(K) +

1

4(1− 2aξ)2
h4
nC

2
2µ

2
2(K)

+o
(
h4
n

)
.

Then it comes that we can obtain an optimal bandwidth in the special case a = α/3, which will

be very helpful for practice.
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The following corollary is an immediate consequence of the previous remark. Now, we

explicit the choices of (hn) which minimize the MWISE of our proposed recursive estimator

de�ned by (3.1.3).

Corollary 3.2.1. Let Assumptions (H1)-(H5) hold. To minimize the MWISE of Fn, the

stepsize (γn) must be chosen in GS (−1), lim
n→∞

nγn = γ0, the bandwidth (hn) must equal

(hn)n =

(
2−1/3

(
γ0 −

2

3

)1/3( C1φ(K)

C2µ2
2(K)

)1/3

n−1/3

)
, (3.2.6)

and then the corresponding MWISE is equal to

MWISE[Fn] = n−1VF

(
γ2

0

2γ0 − 1
− 3

4

1

24/3

γ2
0

(γ0 − 2/3)2/3

C
4/3
1 φ(K)

C
1/3
2 VF

n−1/3 + o(n−1/3)

)
.

3.3 Practical bandwidth selection

In order to give more details on the practical implementation of the proposed algorithm, we give

�rst a data driven bandwidth selection procedure to estimate the optimal bandwidth (3.2.6), we

must estimate C1 and C2. We followed the approach proposed in Slaoui (2014a,b), and we use

the following kernel estimator of C1 and C2 respectively :

Ĉ1 =
Πn

n

n∑
i,k=1

Π−1
k γkb

−1
k Kb

(
Xi −Xk

bk

)
, (3.3.1)

Ĉ2 =
Π2
n

n

n∑
i,j,k=1

Π−1
j Π−1

k γjγkb
′−2
j b′−2

k K
(1)
b′

(
Xi −Xj

bk

)
K

(1)
b′

(
Xi −Xk

bk

)
, (3.3.2)

where Kb is a kernel and bn is the associated bandwidth, K
(1)
b′ is the �rst derivative of a kernel

Kb′ and b
′
n the associated bandwidth. It was shown in Slaoui (2014a,b) that in order to minimize

the MISE (Mean Integrated Squared Error) of Ĉ1 (resp. of Ĉ2), bn (resp. b′n) should belongs

to GS (−2/5) (resp. GS (−3/10)). In practice, we take

bn = n−β min

{
ŝ,
Q3 −Q1

1.349

}
, β ∈ (0, 1) (3.3.3)

(see Silverman (1986)) with ŝ the sample standard deviation, and Q1, Q3 denoting the �rst and

third quartiles, respectively, here we take β = 2/5 to estimate bn and β = 3/10 to estimate b′n.

Moreover, in order to make a choice of the stepsize (γn), we choose γ0 = 2/3 + ε such that ε is

close to zero to ensure that the MISE of the recursive estimator Fn is smaller than the one of

the non recursive estimator F̃n (see Slaoui (2014b)).

We state the following theorem, which gives the weak convergence rate of our estimator

(3.1.3).

66



Theorem 3.3.1. Let Assumptions (H1)-(H6) hold.

1. If there exists d > 0 such that γ−1
n h3

n −→ d, then√
γ−1
n (Fn(x)− F (x))

D−→ N

(
d1/2

2(1− 2aξ)
f ′(x)µ2(K),

1

2− αξ
F (x)(1− F (x))

)
. (3.3.4)

2. If γ−1
n h3

n −→∞, then

1

h2
n

(Fn(x)− F (x))
P−→ 1

2(1− 2aξ)
f ′(x)µ2(K).

Remark 3.3.1. The asymptotic bias and the asymptotic variance of the considered estimator Fn

in the case of of dependent data (α-mixing) are exactly the same as in the case of independent

data, and consequently the convergence rate of Fn in the two cases are the same, the main

di�erence between the two cases are certainly linked to the considered assumptions, the ones

used in the case of dependent data are much more stronger than the ones used in the case of

independent data. Moreover, the data-driven bandwidth procedures are the same in the two cases.

Let us underline that, when the bandwidth (hn)n is chosen such that lim
n→+∞

γ−1
n h3

n =

0 (which corresponds to undersmoothing) and using the stepsize (γn)n =
(
γ0n
−1
)
n
, we infer

from (3.3.4), that the considered estimator Fn ful�ls the following central limit theorem

√
n (Fn(x)− F (x))

D−→ N
(

0,
γ2

0

2γ0 − 1
F (x)(1− F (x))

)
.

We let φ denote the standard normal distribution function N (0, 1), and tα/2 be such that

φ
(
tα/2

)
= 1 − α/2 (where α ∈ (0, 1)). Then, the asymptotic con�dence interval of F (x) with

level 1− α, is given by [
Fn (x)± tα/2

√
C (γ0)

√
F (x) (1− F (x))

n

]
,

where, C (x) = x2 (2x− 1)−1, this function reaching its minimum at the point x = 1. Then the

best choice in point of view of estimation by con�dence intervals is obtained by considering the

stepsize (γn)n =
(
n−1

)
n
, using this choice, the estimator Fn ful�ls the central limit theorem

n1/2 (Fn(x)− F (x))
D−→ N (0, F (x)(1− F (x))) .

It comes that, the asymptotic con�dence interval of F (x) with level 1−α, in this special choice

is given by [
Fn (x)± tα/2

√
F (x) (1− F (x))

n

]
.
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Remark 3.3.2. We can observe that in the special case when the bandwidth (hn)n is chosen

such that lim
n→+∞

γ−1
n h3

n = 0, and the stepsize (γn)n is chosen to be equal to
(
n−1

)
n
, the esti-

mator Fn ful�lls the same limit theorem as the one obtained for the empirical distribution, and

consequently the two estimators (Fn and the empirical distribution) have the same asymptotic

con�dence interval of F .

Theorem 3.3.2 (Uniform convergence). Let assumptions (H1) − (H3) hold, F is uniformly

continuous and there exists η > 0 such that z −→ ‖z‖η |F (x)| is a bounded function. We let C
be a compact set of R. Then, we have

sup
x∈C
|Fn (x)− F (x)| = o (1) a.s. asn −→∞.

3.4 Simulation study

The aim of our applications is to compare the performance of Nadaraya's estimator de�ned

in (3.1.4) with the proposed recursive kernel distribution function estimator under α-mixing

condition (1.2.1), de�ned in (3.1.3), using the Plug-in method of bandwidth selection.

3.4.1 The study design

We consider the following simulation design, we simulate N = 500 samples of sizes, n = 50,

n = 100, n = 150 and a sequence of m-dependent variables

Xi =
i+m∑
j

√
|Zj |,

where (Zj)j are generated from the following mixture distribution:

Z ∼ 1

2
N (2.5, 6) +

1

2
N (9, 1) .

In order to calculate the MWISE of the proposed recursive kernel distribution function Fn, we

need to use the following quantities:

• The Fonction K, we use the normal kernel.

• The stepsize (γn) = (γ0n
−1), where γ0 = 2/3 + c, with c ∈ [0, 1/3].

• The bandwidth (hn)n, we consider the plug-in method, given in Slaoui (2014b), that there

is chosen to be equal to2−1/3

(
γ0 −

2

3

)1/3
(
Ĉ1φ(K)

Ĉ2µ2
2(K)

)1/3

n−1/3

 ,
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Y ∼ 1
2
N (2.5, 6) + 1

2
N (9, 1)

n = 50 n = 100 n = 150

MWISE MWISE MWISE

m = 2

Non recursive 0.003061 0.001641 0.001123

Recursive 0.002391 0.001453 0.001040

m = 4

Non recursive 0.002877 0.001565 0.001087

Recursive 0.002272 0.001396 0.001016

m = 6

Non recursive 0.002740 0.001510 0.001030

Recursive 0.002176 0.001357 0.000972

m = 8

Non recursive 0.002666 0.001462 0.001025

Recursive 0.002146 0.001319 0.000968

Table 3.1: MWISE (approximated using N = 500 trials) of the non recursive estimator

and the recursive estimator.

with Ĉ1 and Ĉ2 are given in Slaoui (2014b) (see respectively equations (3.3.1) and (3.3.2)).

Moreover, some numerical results of φ(K) and µ2(K) are given for some standard kernels

(see Table 1 in Slaoui (2014b)).

In order to calculate the MWISE of the non recursive kernel distribution function F̃n, we need

to use these quantities:

• The Fonction K, we use the normal kernel.

• The bandwidth (hn), we consider the plug-in method (see Slaoui (2014b)).

3.4.2 Results

For each con�guration of the simulation design parameters, we calculate the MWISE of the

non recursive estimator (3.1.4) and the recursive estimator (3.1.3). From Table 1, the proposed

recursive estimator of Fn(x) outperformed the non recursive estimator F̃ (x) in all the considered

situations. We can observe that the MWISE decrease as m increase. We can observe also that

the MWISE decrease as the sample size n increase.
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3.5 Conclusion

This chapter proposes an automatic bandwidth selection of the recursive density estimators under

α-mixing condition (1.2.1). The proposed estimators asymptotically follow normal distribution.

The proposed estimators are compared to the non recursive distribution function estimator un-

der α-mixing condition. We showed that using a speci�c plug-in bandwidth selection method

and some particularly stepsizes, the proposed recursive estimators can give better results com-

pared to the non recursive distribution function estimator under α-mixing condition in terms of

estimation error. However, the main advantage of the recursive method is considerably faster

than the classical one; see, for instance, Mokkadem et al. (2009a) and Slaoui (2014a) in the

framework of density of probability estimation, Slaoui (2014b) in the framework of distribution

estimation, Slaoui (2015, 2016a) in the framework of regression estimation and Slaoui (2016b) in

the framework of hazard function. In conclusion, the proposed recursive estimators allowed us

to obtain quite better results compared to the non recursive density estimator under α-mixing

condition in terms of estimation error and much better in terms of computational costs.

3.6 Proofs

Before giving the outlines of the proofs, we introduce the following technical lemma, which is

proved in Mokkadem et al. (2009a), and which will be used throughout the demonstrations.

Lemma 3.6.1.

Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α) and m > 0 such that m − v∗ε > 0 where ε is de�ned

in (4.2.1), then

lim
n→∞

vnΠm
n

n∑
k=1

Π−mk
γk
vk

=
1

m− v∗ε
.

Moreover, for all positive sequence (αn) such that lim
n→+∞

αn = 0, and all C ∈ R,

lim
n→∞

vnΠm
n

[
n∑
k=1

Π−mk
γk
vk
αk + C

]
= 0.

3.6.1 Proof of Proposition 3.2.1

In view of (3.1.1) and (3.2.2), we have

Fn(x)− F (x) = (1− γn)Fn−1(x) + γnZn(x)− F (x)

= (1− γn)(Fn−1(x)− F (x)) + γn[Zn(x)− F (x)]
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=
n∏
j=1

(1− γj)(F0(x)− F (x)) +
n−1∑
i=1

n∏
j=i+1

(1− γj)γi[Zi(x)− F (x)]

+γn[Zn(x)− F (x)]

= Πn

n∑
k=1

Π−1
k γk(Zk(x)− F (x)) + Πn(F0(x)− F (x)).

It implies that

E[Fn(x)]− F (x) = Πn

n∑
k=1

Π−1
k γk(E[Zk(x)]− F (x)) + Πn(F0(x)− F (x)).

Then, an integration by parts ensures that

E[Zk(x)] =

∫
R
K
(
x− t
hk

)
f(t)dt

=

∫
R
K(z)F (x+ hkz) dz. (3.6.1)

It follows that

E[Zk(x)]− F (x) =

∫
R
K(z) [F (x+ hkz)− F (x)] dz

=
h2
k

2
f ′(x)µ2(K) + βk(x)

with

βk(x) =

∫
R
K(z)

[
F (x+ hkz)− F (x)− zhkf(x)− 1

2
z2h2

kf
′(x)

]
dz,

and, since f ′ is bounded and continuous, we have lim
k→∞

βk(x) = 0.

In the case a > α/3, we have h2
n = o

(√
γnhn

)
and lim

n→∞
(nγn) > (a + α)/2, then Lemma 4.5.1

ensures that

E[Fn(x)]− F (x) = Πn

n∑
k=1

Π−1
k γko

(√
γkhk

)
+O(Πn)

= o
(√

γnhn

)
. (3.6.2)

Moreover, in the case when a 6 α/3, we have lim
n→∞

(nγn) > 2a; the application of Lemma 4.5.1

ensures that

E[Fn(x)]− F (x) =
1

2
f ′(x)µ2(K)Πn

n∑
k=1

Π−1
k γk[h

2
k + o(1)] + Πn(F0(x)− F (x))

=
1

2(1− 2aξ)
f ′(x)µ2(K)[h2

n + o(1)]. (3.6.3)

Then, the combination of (3.6.2) and (3.6.3) give (3.2.3).
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3.6.2 Proof of Proposition 3.2.2

First, we have

Var [Fn(x)] = Var

[
Πn

n∑
k=1

Π−1
k γkZk (x)

]

= Π2
n

n∑
k=1

Π−2
k γ2

kVar (Zk(x)) + 2Π2
n

∑
16i<j6n

Π−1
i γiΠ

−1
j γjCov (Zi(x), Zj(x))

=: I1 + I2,

where

I1 = Π2
n

n∑
k=1

Π−2
k γ2

kVar (Zk(x)) ,

I2 = 2Π2
n

∑
16i<j6n

Π−1
i γiΠ

−1
j γjCov (Zi(x), Zj(x)) .

Now, in order to compute I1, we use the following decomposition

I1 = Π2
n

n∑
k=1

Π−2
k γ2

k

(
E
(
Z2
k(x)

)
− E2 (Zk(x))

)
. (3.6.4)

An integration by parts ensures that

E
(
Z2
k(x)

)
=

∫
R
K2

(
x− t
hk

)
f(t)dt

= 2

∫
R
K (−z)K(z)F (x+ zhk)dz

= vk(x) + F (x)− hkf(x)φ(K) (3.6.5)

with

vk(x) = 2

∫
R
K(z)K(−z) [F (x+ zhk)− F (x)− zhkf(x)] dz.

Moreover, it follows from (3.6.1), that

E (Zk(x)) = F (x) + ṽk(x), (3.6.6)

with

ṽk(x) =

∫
R
K(z) [F (x+ zhk)− F (x)] dz.

Then, the combination of (3.6.4), (3.6.5) and (3.6.6) gives

I1 = Π2
n

n∑
k=1

Π−2
k γ2

k

[
F (x)− hkf(x)φ(K) + vk(x)− F 2(x)− ṽ2

k(x)− 2F (x)ṽk(x)
]
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= F (x) (1− F (x)) Π2
n

n∑
k=1

Π−2
k γ2

k − f(x)φ(K)Π2
n

n∑
k=1

Π−2
k γ2

khk

+
(
vk(x)− ṽ2

k(x)− 2F (x)ṽk(x)
)

Π2
n

n∑
k=1

Π−2
k γ2

k . (3.6.7)

Since f , f ′ are continuous and bounded, we have lim
k→∞

vk(x) = 0 and lim
k→∞

ṽk(x) = 0.

In the case a > α/3, we have lim
n→∞

nγn > (a+ α)/2, and the application of Lemma 4.5.1 gives

I1 =
γn

2− αξ
F (x)(1− F (x))− γnhn

2− (a+ α)ξ
f(x)φ(K) + o(γnhn). (3.6.8)

Moreover, in the case when a ∈ [α/4, α/3), we have γnhn = o(h4
n), and lim

n→∞
nγn > α/2, Lemma

4.5.1 then ensures that

I1 =
γn

2− αξ
F (x)(1− F (x)) + Π2

n

n∑
k=1

Π−2
k γko(h

4
k)

=
γn

2− αξ
F (x)(1− F (x)) + o(γn). (3.6.9)

Now, in the case when a ∈ (0, α/4), we have γn = o(h4
n), and lim

n→∞
nγn > 2a, then the application

of Lemma 4.5.1 gives

I1 = Π2
n

n∑
k=1

Π−2
k γko(h

4
k) = o(h4

n). (3.6.10)

Then, (3.2.4) follows from the combination of (3.6.8), (3.6.9) and (3.6.10). Let us now compute

I2, we have

I2 = 2Π2
n

∑
16i<j6n

Π−1
i γiΠ

−1
j γjCov (Zi(x), Zj(x))

= 2Π2
n

∑
16i<j6n

Bi,j , s

where Bi,j = Π−1
i γiΠ

−1
j γjCov

(
K
(
x−Xi
hi

)
,K
(
x−Xj
hj

))
.

|Bi,j | = Π−1
i γiΠ

−1
j γj

∣∣∣∣Cov(K(x−Xi

hi

)
,K
(
x−Xj

hj

))∣∣∣∣
= Π−1

i γiΠ
−1
j γj

∣∣∣∣∫
R2

K
(
x− t1
hi

)
K
(
x− t2
hj

)
fXi,Xj (t1, t2)dt1dt2

−
∫
R
K
(
x− t1
hi

)
f(t1)dt1

∫
R
K
(
x− t2
hj

)
f(t2)dt2

∣∣∣∣ .
Assumption (H4), a simple change of variables and an integration by parts imply

|Bi,j | 6 MΠ−1
i γiΠ

−1
j γj

∫
R2

K (s1)K (s2) ds1ds2
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= O(Π−1
i γiΠ

−1
j γj). (3.6.11)

Next, to evaluate the asymptotic behavior of I2, we de�ne the sets

F1 = {(i, j) such that 1 6 |i− j| 6 σn} ,

and

F2 = {(i, j) such that σn + 1 6 |i− j| 6 n− 1}

where σn = o(n). Let

J1,n = 2Π2
n

∑
(i,j)∈F1

Bi,j and J2,n = 2Π2
n

∑
(i,j)∈F2

Bi,j .

Then it follows from (3.6.11) and (H4), that

|J1,n| 6 2MΠ2
n

∑
(i,j)∈F1

Π−1
i γiΠ

−1
j γj

and applying Lemma 4.5.1, we infer that

|J1,n| 6 2M ′σnγn
1

2− αξ

= O

(
σnγn

2− αξ

)
.

In order to compute J2,n, we use the Davydov inequality for mixing processes (see Rio (2000),

p. 10, Formula 1.12a). This leads, for all i 6= j, to∣∣∣Cov (Π−1
i γiZi(x),Π−1

j γjZj(x)
)∣∣∣ 6 cα (|i− j|) .

Therefore, using (H5), we have

J2,n 6 2cΠ2
n

n∑
j=1

∑
σn+1<k6n−1

α (k)

< 2cnΠ2
n

∫ n−1

σn+1
k−vdk

= O
(
nΠ2

nσ
1−v
n

)
.

By choosing σn = n1/vγ
−1/v
n Π

2/v
n

(
1

2−αξ

)−1/v
, the assumption (H5), ensures that

I2 = J1,n + J2,n = O

(
n1/vγ

(v−1)/v
n Π

2/v
n

(2− αξ)(v−1)/v

)
= o(1),

which conclude the proof.
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3.6.3 Proof of Theorem 3.3.1

We have√
γ−1
n (Fn(x)− F (x)) =

√
γ−1
n (Fn(x)− E (Fn(x))) +

√
γ−1
n (E (Fn(x))− F (x))

= Υ1,n + Υ2,n. (3.6.12)

First, we determine that Υ2,n are negligible, whereas Υ1,n is asymptotically normal.

In order to establish the asymptotic normality, dealing with strong mixing random variables

(under (H5)), we use the well-known sectioning device introduced by (Doob (1955), p. 228-

232). We �rst split the sum in (3.6.15) below into large pn blocks and small qn blocks under

(H6). For that, observe that wn(pn + qn) 6 n and wn(pn + qn)/n −→ 1 as n −→ ∞ and, for

j = 1, · · · , wn, partition the set {1, 2, · · · , n} into (2wn + 1) subsets with w =: wn blocks of size

pn and kn blocks of size qn, as follows: Let

ymn =

km+p−1∑
i=km

Li(x), y′mn =

lm+q−1∑
j=lm

Lj(x), y′′wn =

n∑
k=w(p+q)+1

Lk(x) (3.6.13)

where km = (m− 1)(p+ q) + 1, lm = (m− 1)(p+ q) + p+ 1, m = 1, · · · , w. Let us �rst assume

that if a > α/3, we have√
γ−1
n (Fn(x)− F (x))

D→ N
(

0,
1

2− αξ
F (x)(1− F (x))

)
. (3.6.14)

In order to prove (3.6.14), we set Lk(x) = Π−1
k γk (Zk(x)− E(Zk(x))), then, it comes from (3.1.1),

that

Fn(x)− E (Fn(x)) = Πn

n∑
k=1

Π−1
k γk (Zk(x)− E(Zk(x))

= Πn

n∑
k=1

Lk(x). (3.6.15)

Moreover, since we have

Υ1,n(x) = Πn

√
γ−1
n

n∑
k=1

Lk(x).

We infer that,

Υ1,n(x) = Πn

√
γ−1
n

{
w∑

m=1

ymn +

w∑
m=1

y′mn + y′′wn

}

:= Πn

√
γ−1
n {Tn,1 + Tn,2 + Tn,3} .
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We let ϕn = Πn

√
γ−1
n . Let us �rst show that

ϕn (Tn,2 + Tn,3)
P−→ 0, as n −→∞, (3.6.16)

and then we prove that

ϕnTn,1
D−→ N

(
0,

1

2− αξ
F (x)(1− F (x))

)
. (3.6.17)

To proof (3.6.16), we use Tchebychev's inequality. Then, we need to show that

ϕ2
nE
(
T 2
n,2 + T 2

n,3

)
−→ 0, n −→∞.

For the �rst term, we consider the following decomposition

ϕ2
nE
(
T 2
n,2

)
= ϕ2

n

w∑
m=1

lm+q−1∑
i=lm

E
(
L2
i (x)

)
+ 2ϕ2

n

∑
16i<j6w

E
(
y′iny

′
jn

)
+2ϕ2

n

w∑
m=1

∑
lm6i<j6lm+q+1

Cov (Li(x)Lj(x))

= Θ1 + Θ2 + Θ3,

where

Θ1 = ϕ2
n

w∑
m=1

lm+q−1∑
i=lm

E
(
L2
i (x)

)
Θ2 = 2ϕ2

n

∑
16i<j6w

E
(
y′iny

′
jn

)
Θ3 = 2ϕ2

n

w∑
m=1

∑
lm6i<j6lm+q+1

Cov (Li(x)Lj(x)) .

The combination of (3.6.8), (3.6.11) and (3.6.13), together with (H6), (H7), ensure that

Θ1 −→ 0 and Θ3 −→ 0 as n −→∞.

Now, in order to compute Θ2, we use Rio (2000), p.10, Formula 1.12a, to infer that

E
(
y′iy
′
j

)
6 Cα (qn + (j − i− 1)(pn + qn)) ,

we then deduce that

Θ2 6 Cγ−1
n Π2

n

w−1∑
i=1

w−i−1∑
j=0

(qn + (j − i− 1)(pn + qn))−ρ

6 Cγ−1
n Π2

n(pn + qn)−ρ
w−1∑
i=1

∞∑
l=0

l−ρ
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6 O

(
wγ−1

n Π2
n

(qn + qn)ρ

)
= o(1).

Now, in order to proof (3.6.17), we show that∣∣∣∣∣E [exp (itαnTn,1)]−
Wn∏
m=1

E [exp (itαnymn)]

∣∣∣∣∣ −→ 0 (3.6.18)

and

α2
n

Wn∑
m=1

E
[
y2
mn1{ym>ξα−1

n σ(x)}
]
−→ 0 as n −→∞, (3.6.19)

where σ2(x) = 1
2−αξF (x)(1− F (x)). Using Volkonskii and Rozanov (1959) inequality, we obtain∣∣∣∣∣E

[
exp

(
itαn

wn∑
m=1

ymn

)]
−

Wn∏
m=1

E [exp (itαnymn)]

∣∣∣∣∣ 6 16(wn − 1)α(qn) −→ 0 as n −→∞

which, under (H6), yields to (3.6.18).

For (3.6.19), the combination of (3.6.13) together with (H1), (H3) and (H6), for n large enough,

ensure that the set
{
ymn, n > ξα−1σ(x)

}
become empty which completes the proof (see Khardani

and Slaoui (2019)).

3.6.4 Proof of Theorem 3.3.2

First, using the compactness property of the set C, we use the fact that, for some (xk)1≤k≤γn ,

C ⊂
⋃γn
k=1B (xk, an), where γn ∼ a−1

n with an = h
1
α

+1
n .

Moreover, for any x ∈ C, we set k̃ (x) = arg mink ‖xk − x‖. We infer that, for any x ∈ C,
we have

sup
x∈C
|Fn (x)− E [Fn (x)]| ≤ sup

x∈C

∣∣Fn (x)− Fn
(
x
k̃

)∣∣
+ sup
x∈C

∣∣Fn (xk̃)− E
[
Fn
(
x
k̃

)]∣∣
+ sup
x∈C

∣∣E [Fn (xk̃)]− E [Fn (x)]
∣∣

=: T1,n + T2,n + T3,n. (3.6.20)

We let α denote the Hölder order of K and ‖K‖H its corresponding Hölder norm. Then, it follows

from (3.1.2) that for any x ∈ C

∣∣Fn (x)− Fn
(
x
k̃

)∣∣ ≤ Πn

n∑
k=1

Π−1
k γk

∣∣∣∣K(Xk − x
hk

)
−K

(
Xk − xk̃
hk

)∣∣∣∣
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≤ 2 ‖K‖H Πn

n∑
k=1

Π−1
k γk

(∥∥x− x
k̃

∥∥
hk

)α

≤ 2 ‖K‖H Πn

n∑
k=1

Π−1
k γkhk,

we then get T1,n = o (1) and T3,n = o (1). Moreover, we set ρ > 0 andM such that ‖F∞‖
∫
‖z‖>M |K (z)| dz ≤

ρ/2. Since the application of Lemma 4.5.1 ensures that Πn
∑n

k=1 Π−1
k γk = 1 + o (1), then, it

follows from (3.6.1)

∣∣Fn (xk̃)− E
[
Fn
(
x
k̃

)]∣∣ ≤ Πn

n∑
k=1

Π−1
k γk

∣∣∣∣E [K(Xk − xk̃
hk

)]∣∣∣∣
≤ Πn

n∑
k=1

Π−1
k γk

∣∣∣∣∫
R
K (z)F

(
x
k̃

+ zhk
)
dz

∣∣∣∣
≤ ρ

2
+

∫
‖z‖≤M

|K (z)|
∣∣F (x

k̃

)∣∣ dz
+Πn

n∑
k=1

Π−1
k γk

∫
‖z‖>M

|K (z)|
∣∣F (x

k̃
+ zhk

)
− F

(
x
k̃

)∣∣ dz.
Then, the uniform continuity of F combined with the dominate convergence and the existence

of η > 0 such that z −→ ‖z‖η |F (x)| is a bounded function ensure that T2,n = o (1). Then the

combination of Proposition 3.2.1 and (3.6.20) concludes the proof of Theorem 3.3.2.







Chapter 4

Strong consistency of the mode of

multivariate recursive kernel density

estimator under strong mixing

hypothesis

Abstract: In this research chapter, we attempt to de�ne a kernel estimator of the mode based

on the recursive kernel density estimator developed by Mokkadem et al. (2009a). In addition,

we establish its almost sure convergence under strong mixing hypothesis. Finally, we corroborate

these theoretical results through numerical simulations.

Keywords: Density estimation, Mode, Non parametric estimation, Stochastic approximation,

Strong consistency, Strong mixing.

4.1 Introduction

The estimation of mode function stands for a classical problem in statistics which has whetted

considerable interest in various �elds of applications. Indeed, it is widely used in machine learning

applications and, in particular, in clustering methods (see Cheng (1995); Sheikh et al. (2007);

Jiang and Kpotufe (2017)), computer vision (see Yin et al. (2003); Tao et al. (2007)), power

systems (see Williams et al. (2001); Nezam Sarmadi and Venkatasubramanian (2014)), control

(see Hofbaur and Williams (2002)) and bioinformatics (see Hedges and Shah (2003)). Multiple

research works related to this topic within the frame work of non parametric estimation have

been elaborated. Among the most prominent ones, we mention Parzen (1962), Samanta (1973)

and Tsybakov (1990). Recently, there has been a spate of interest in recursive estimation which
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has drawn the attention of multiple researchers. The basic merit of the recursive estimator lies

in the fact that it can not only be updated with each additional new observation especially in

large sample sizes but it can also be much better in terms of computational costs. In this work,

our central focus is upon a recursive kernel estimator of the mode function de�ned by stochastic

approximation method.

Let X1, · · · , Xn be identically distributed Rd-valued random vectors satisfy the α-mixing depen-

dency property (see De�nition 1.2.1) and let f denote the probability density of Xi, i = 1, · · · , n.
We consider a compact set Ω such that Ω ⊂ Rd, and we de�ne the mode as follows

θ := arg max
y∈Ω

f(y).

We assume that θ is unique.

In order to de�ne our estimator of the mode, we �rst begin by constructing a stochastic algorithm

for the estimation of the function f at a point x. We present an algorithm to search for the zero

of the function g : y 7−→ f(x) − y. Following Robbins-Monro's procedure, this algorithm is

de�ned below as

(i) f0(x) is an arbitrary choice belonging to R,

(ii) ∀n > 1, we set fn(x) = fn−1(x) + γnWn(x), where the stepsize (γn)n is a sequence of

positive real numbers that goes to zero and Wn(x) is an observation of the function g at

the point fn−1(x).

To construct Wn(x), we follow the approach of Révész (1973, 1977) and Tsybakov (1990) which

are based on the classical property of stochastic algorithms (E
[
Wn(x)|Fn−1

1

]
= 0, where Fn−1

1

stands for the σ-�eld of events generated by {X1, · · · , Xn−1}). In addition, we introduce a

kernel K (which is a function satisfying
∫
Rd K(z)dz = 1), and a bandwidth (hn) (which is a

sequence of positive real numbers that goes to zero when n −→ ∞), and we set Wn(x) =

Khn (x−Xn)− fn−1(x), with Kh (x) := h−dK
(
h−1x

)
. Therefore, the recursive estimator of the

density function f at the point x can be written as

fn(x) = πnf0 + πn

n∑
k=1

π−1
k γkh

−d
k K

(
x−Xk

hk

)

with πn =
n∏
k=1

(1−γk). Our estimator of mode θ is de�ned as the random variable θn maximizing

the recursive estimator fn of f , which is expressed as

θn := arg max
t∈Ω

fn(t). (4.1.1)

The mode estimator has been investigated by several authors. Based on independent and

identically distributed (iid) random data, the weak consistency and the asymptotic normality
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of the kernel sample mode was addressed by Parzen (1962). This result was extended in sev-

eral directions by Cherno� (1964), Eddy (1980, 1982) and Vieu (1996). Strong consistency was

explored by Nadaraya (1965) and Van Ryzin (1969). Asymptotic normality of kernel estimate

of the mode was elaborated by Romano (1988). The multidimensional study of the mode was

carried out by Samanta (1973) and Konakov (1974).

Based on dependent random data, some studies have been performed for mode estimation. In φ-

mixing condition as well as the conditional case, the strong consistency was enacted by Collombs

et al (1987). In alpha mixing case, the strong consistency was established by Ould Saïd (1993)

and the asymptotic normality was set forward by Louani and Ould Saïd (1999). Numerous works

were conducted, under censored and truncated data, to explore the property of non parametric

mode estimators (see Louani (1998), Ould Saïd (2005) and Gannoun and Louani (1996)).

The majority of properties of mode estimators are related to those of density estimators.

We need always to handle the density case before that of the mode. This chapter investigates

the estimation of the mode, which is based on non parametric recursive kernel density estimator

developed by Mokkadem et al. (2009a), under strong mixing conditions. The rest of the chapter

is organized as follows. In Section 4.2, the assumptions and main results are displayed. Section

4.3 is devoted to simulation study. Finally, a conclusion is presented in Section 4.4. The details

of proofs are exhibited in Section 4.5 along with some auxiliary results.

4.2 Assumptions and main results

We consider stepsizes and bandwidths, which belong to the following class of regularly varying

sequences.

De�nition 4.2.1. Let γ ∈ R and (γn)n>1 be a nonrandom positive sequence. We state that

γn ∈ GS(γ) if lim
n→∞

n[1− γn−1

γn
] = γ.

The assumptions to which we shall refer are the following:

(A1) The kernel function K:Rd −→ R is a bounded probability density, lipschitz and satis�es

for all j ∈ {1, . . . , d},
∫
R zjK(z)dzj = 0 and

∫
Rd z

2
jK(z)dz <∞.

(A2)

(i) γn ∈ GS(−α) with α ∈ ]1/2, 1].

(ii) hn ∈ GS(−a) with a ∈ ]0, α/d[.

(iii) lim
n→∞

nγn ∈] min {2a, (1− ad)/2} ,∞].

(A3) f is bounded, twice di�erentiable on Ω, and, for all i, j ∈ {1, · · · , d}, ∂2f/∂xi∂xj is

bounded.
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(A4) The joint density f(i,j) of (Xi, Xj) exists for all (i, j), and there exists a constant M > 0

such that

sup
|i−j|>1

sup
t1,t2∈Ω

∣∣f(i,j)(t1, t2)− f(t1)f(t2)
∣∣ < M.

(A5) The mixing coe�cient of the Xi's satis�es α(n) = O(n−ν) for some ν > 3.

(A6) The mode θ satis�es the following property: for any ε > 0 and x, there exists η 6= 0 such

that |θ − x| > ε implies that |f(θ)− f(x)| > η.

(A7)

(i) n1/νγ
1−1/ν
n −→

n−→∞
0.

(ii) {
a(dν − 2)− α(d+ 2) > 6 if a ≥ α/(d+ 4)

a(d− 2ν − 6)− α > 6 if a < α/(d+ 4).

Remark 4.2.1. Assumption (A1) on the kernel is widely used in the recursive and non recursive

framework for the functional estimation. Assumptions (A2) on the stepsize and the bandwidth

are used in the recursive framework for the estimation of the density function (Mokkadem et

al. (2009a); Slaoui (2013, 2014a, 2018b)). Hypothesis (A2)(i) and (A2)(ii) ensure that the

bandwidth (hn) and the stepsize (γn) go to zero as n goes to in�nity. Moreover, the stepsize (γn)

goes to zero more rapidly than the bandwidth (hn). Assumption (A2)(iii) on the limit as n goes

to in�nity of (nγn) is usual in the framework of stochastic approximation algorithms. It implies

that the limit of (nγn)−1 is �nite. Assumption (A3) on the function f allows us to calculate

the properties of our estimator. Condition (A4) is needed to calculate the covariance. (A5)

states a condition on the mixing coe�cient. Assumption (A6) is classical in mode estimation.

Finally, hypothesis (A7) provides a condition for the bandwidth allowing the estimation of the

covariance term.

Throughout this chapter, we shall use the following notation:

ε = lim
n→∞

(nγn)−1, (4.2.1)

µ2
j =

∫
Rd
z2
jK(z)dz, ∀j ∈ {1, · · · , d} , (4.2.2)

f
(2)
ij (x) =

∂2f(x)

∂xi∂xj
,

Zn(x) =
1

hdn
K

(
x−Xn

hn

)
.

The almost sure convergence is denoted by a.s..
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Now, we shall prove the consistency of our estimator (4.1.1) and give the rate of conver-

gence.

Proposition 4.2.1. Let Assumptions (A1)-(A7) hold.

sup
t∈Ω
|fn(t)− f(t)| =



O

(√
γnh

−d
n log n

)
if a > α/(d+ 4)

O

(
max

(√
γnh

−d
n log n, h2

n

))
if a = α/(d+ 4)

O
(
h2
n

√
log n

)
if a < α/(d+ 4)

a.s. as n −→∞.

Proposition 4.2.2. Under the assumption of Proposition 4.2.1, we have

θn − θ =



O

((
γnh

−d
n log n

)1/4
)

if a > α/(d+ 4))

O

(
max

((
γnh

−d
n log n

)1/4
, hn

))
if a = α/(d+ 4)

O
(
hn (log n)1/4

)
if a < α/(d+ 4)

a.s. as n −→∞.

4.3 Simulation study

In this section, we aim to compare our proposed recursive kernel estimator of mode, de�ned by

(4.1.1), with the mode estimator based on the well-known non recursive kernel density estimator

introduced by Rosenblatt (1956b),

θ̃n := arg max
t∈Ω

f̃n(t), (4.3.1)

where f̃n(t) = 1
nhdn

n∑
k=1

K
(
t−Xk
hn

)
.

4.3.1 The study design

Let us consider the following simulation design, we simulate N = 500 samples of sizes, n = 50,

n = 100, n = 150 and a sequence of m-dependent variables

Xi =
i+m∑
j

√
|Yj |,

where (Yj)j are generated from the following mixture distributions:
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• Y ∼ 1
2N (2.5, 6) + 1

2N (9, 1) .

• Y ∼ 1
2N (2, 6) + 1

2N (8, 1) .

Next, we calculate the ISE (Integrated Squared Error) and the IAE (Integrated Absolute Error)

of the two estimators;

ISE =
1

N

N∑
i=1

(
θ[i]
n − θ

)2
and IAE =

1

N

N∑
i=1

∣∣∣θ[i]
n − θ

∣∣∣ ,
where θ

[i]
n corresponds to the mode estimator computed from the ith sample. In order to calculate

the ISE and the IAE of the two mode estimators, we need to use the following quantities:

• The normal kernel function K.

• The stepsize (γn)n = (n−1)n.

• The bandwidth (hn)n is chosen with plug-in method, given in Slaoui (2014a).

4.3.2 Results

For each con�guration of the simulation design parameters, we calculate the ISE and the IAE

of the non recursive estimator (4.3.1) and the recursive estimator (4.1.1). From Table 1, Table

2, Table 3 and Table 4, it is clear that, the proposed recursive estimator (4.1.1) outperformed

the non recursive estimator (4.3.1) in all the considered situations. We can observe that the

ISE decreases as m increases. We can observe also that the ISE decreases as the sample size

n increases. This simulation study shows the good performance of the recursive estimator with

an appropriate choice of stepsize and bandwidth parameters.

4.4 Conclusion

In this chapter, we attempted to elaborate a recursive kernel mode estimator based on stochastic

approximation algorithm. We established the strong consistency of this estimator under α-mixing

condition. Investing the same selected parameters in Mokkadem et al. (2009a), which minimize

the mean squared error of recursive density estimator, the proposed recursive mode estimator

maintains the same convergence rate with non recursive mode estimator de�ned by (4.3.1).

The two previous estimators are asymptotically equivalent. In addition, the main merit of our

estimator resides in its update, when a new sample information becomes available. Tackling this

area is extremely interesting as it o�ers new perspectives for future works to consider multiple

directions within this framework. This involves the elaboration of recursive mode estimation

for dependent strong mixing functional data like in Slaoui (2020). Furthermore, our proposed
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Y ∼ 1
2
N (2.5, 6) + 1

2
N (9, 1)

n = 50 n = 100 n = 150

ISE ISE ISE

m = 2

Non recursive 0.315226 0.148972 0.103131

Recursive 0.158550 0.029883 0.021263

m = 4

Non recursive 0.194686 0.133191 0.100986

Recursive 0.113563 0.125054 0.020975

Table 4.1: ISE for N = 500 trials of the non recursive estimator (4.3.1) and the recursive

estimator (4.1.1), for n = 50, n = 100 and n = 150. The bold values indicates the smallest

values of ISE.

Y ∼ 1
2
N (2.5, 6) + 1

2
N (9, 1)

n = 50 n = 100 n = 150

IAE IAE IAE

m = 2

Non recursive 0.561450 0.385970 0.321140

Recursive 0.398184 0.172867 0.145820

m = 4

Non recursive 0.441232 0.275033 0.115408

Recursive 0.336991 0.155993 0.111827

Table 4.2: IAE for N = 500 trials of the non recursive estimator (4.3.1) and the recursive

estimator (4.1.1), for n = 50, n = 100 and n = 150. The bold values indicates the smallest

values of IAE.
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Y ∼ 1
2
N (2, 6) + 1

2
N (8, 1)

n = 50 n = 100 n = 150

ISE ISE ISE

m = 3

Non recursive 0.337509 0.136912 0.079324

Recursive 0.305999 0.115895 0.058715

m = 5

Non recursive 0.154778 0.142782 0.071498

Recursive 0.303375 0.99815 0.045986

Table 4.3: ISE for N = 500 trials of the non recursive estimator (4.3.1) and the recursive

estimator (4.1.1), for n = 50, n = 100 and n = 150. The bold values indicates the smallest

values of ISE.

Y ∼ 1
2
N (2, 6) + 1

2
N (8, 1)

n = 50 n = 100 n = 150

IAE IAE IAE

m = 3

Non recursive 0.580955 0.281645 0.192126

Recursive 0.553173 0.242312 0.126076

m = 5

Non recursive 0.393418 0.224771 0.99556

Recursive 0.550795 0.224771 0.106438

Table 4.4: IAE for N = 500 trials of the non recursive estimator (4.3.1) and the recursive

estimator (4.1.1), for n = 50, n = 100 and n = 150. The bold values indicates the smallest

values of IAE.
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recursive kernel mode estimator is promising and can be extended in such a way as addressing

recursive non parametric estimation in the Bayesian work (see Boukabour and Masmoudi (2020)).

4.5 Proofs

Before setting the outlines of the proofs, we introduce the following technical lemma, which is

proved in Mokkadem et al. (2009a), and which will be used throughout the demonstrations.

Lemma 4.5.1.

Let vn ∈ GS (v∗), γn ∈ GS (−α) and m > 0 such that m− v∗ε > 0 where ε is de�ned in (4.2.1).

Then,

lim
n→∞

vnπ
m
n

n∑
k=1

π−mk
γk
vk

=
1

m− v∗ε
.

Moreover, for all positive sequence (αn)n such that lim
n→∞

αn = 0, and all C ∈ R,

lim
n→∞

vnπ
m
n

[
n∑
k=1

π−mk
γk
vk
αk + C

]
= 0.

Proof of Proposition 4.2.1. The proof rests on the following decomposition

|fn (t)− f (t) | ≤ |fn (t)− E [fn(t)] |+ |E [fn (t)]− f (t) |

and is based on the proofs of the following three lemmas.

Lemma 4.5.2. Under Assumptions (A1)-(A3), we have

sup
t∈Ω
|E [fn(t)]− f (t) | =


O
(
h2
n

)
if a ≤ α/(d+ 4)

o

(√
γnh

−d
n

)
if a > α/(d+ 4)

as n −→∞.

The proof of Lemma 4.5.2 is presented in Mokkadem et al. (2009a).

Lemma 4.5.3. (Fuk-Nagaev) Let (Wi)i∈N be a sequence of centered real random variables, with

a strong mixing coe�cient α(n) = O (n−ν), ν > 1, such that ∀n ∈ N, 1 6 i 6 n, |Wi| < +∞.

Hence, for all ε > 0 and r > 1, there exists a constant c such that

P

{
|

n∑
k=1

Wi |> ε

}
6 c

(
1 +

ε2

16rS2
n

)−r/2
+ ncr−1

(
2r

ε

)ν+1

where S2
n =

n∑
i,j=1

| Cov (Wi,Wj) | .
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For more details about previous Lemma 4.5.3, we refer to Rio (2000), p. 87, 6.19b.

Lemma 4.5.4. Under Assumptions (A1)-(A7), we have

sup
t∈Ω
|fn(t)− E[fn(t)]| =


O

(√
γnh

−d
n log n

)
if a ≥ α/(d+ 4)

O
(
h2
n

√
log n

)
if a < α/(d+ 4)

(4.5.2a)

(4.5.2b)

a.s. as n −→∞.

Proof of Lemma 4.5.4. The proof relies upon the following assertion: the compact set

Ω can be covered by a �nite number λn of balls Bk(t∗k, bn) centered at t∗k, 1 6 k 6 λn where bn

satis�es

bn = γ1/2
n h1+d/2

n . (4.5.3)

Since Ω is bounded, one can �nd l > 0 such that λn ≤ lb−1
n . For any t ∈ Ω, there exists k such

that

|t− t∗k| 6 bn. (4.5.4)

Now, we set for t ∈ Ω

Ti(t) = π−1
i γih

−d
i

{
K

(
t−Xi

hi

)
− E

(
K

(
t−Xi

hi

))}
. (4.5.5)

Evidently, we get

πn

n∑
i=1

Ti(t) = fn(t)− E (fn(t))

= {(fn(t)− fn(t∗k))− (E(fn(t)− E(fn(t∗k))}+ {fn(t∗k)− E(fn(t∗k)}

:= πn

n∑
i=1

T̃i(t) + πn

n∑
i=1

Ti(t
∗
k)

with

T̃i(t) = π−1
i γih

−d
i

{
K

(
t−Xi

hi

)
−K

(
t∗k −Xi

hi

)}
−π−1

i γih
−d
i

{
E
(
K

(
t−Xi

hi

))
− E

(
K

(
t∗k −Xi

hi

))}
.

As a matter of fact, we have

sup
t∈Ω

∣∣∣∣∣πn
n∑
i=1

Ti(t)

∣∣∣∣∣ 6 max
k6λn

sup
t∈Bk

∣∣∣∣∣πn
n∑
i=1

T̃i(t)

∣∣∣∣∣+ max
k6λn

∣∣∣∣∣πn
n∑
i=1

Ti(t
∗
k)

∣∣∣∣∣
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:= U1 + U2.

In order to investigate U1, we observe that∣∣∣∣∣πn
n∑
i=1

T̃i(t)

∣∣∣∣∣ 6 πn

n∑
i=1

π−1
i γih

−d
i

∣∣∣∣K ( t−Xi

hi

)
−K

(
t∗k −Xi

hi

)∣∣∣∣
+πn

n∑
i=1

π−1
i γih

−d
i E

[∣∣∣∣K ( t−Xi

hi

)
−K

(
t∗k −Xi

hi

)∣∣∣∣]
:= V1(t) + V2(t).

Assumptions (A1), (4.5.3) and (4.5.4) and the application of Lemma 4.5.1 provide

V1(t) 6 cπn

n∑
i=1

π−1
i γih

−d
i

∣∣∣∣ t− t∗khi

∣∣∣∣
6 cπn

n∑
i=1

π−1
i γih

−(d+1)
i |t− t∗k|

6 cbnh
−(d+1)
n

1

1 + a(d+ 1)ε

6 cγ1/2
n h−d/2n

1

1 + a(d+ 1)ε

= O

(√
γnh

−d
n

)
,

and

V2(t) 6 cπn

n∑
i=1

π−1
i γih

−(d+1)
i E [|t− t∗k|]

= O

(√
γnh

−d
n

)
.

Thus, we get

U1 = O

(√
γnh

−d
n

)
a.s as n −→∞.

Now, in order to study U2, we use Lemma 4.5.3. For that, let

Wi = πnTi(t
∗
k) = πnπ

−1
i γih

−d
i

{
K

(
t∗k −Xi

hn

)
− E

(
K

(
t∗k −Xi

hn

))}
. (4.5.6)

Then, we have to calculate

S2
n =

n∑
i,j=1

| Cov (Wi,Wj) |

=
∑
i 6=j
|Cov (Wi,Wj)|+

n∑
i=1

Var (Wi)
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:= S2∗
n +

n∑
i=1

Var (Wi) .

On the one hand, under (A1)-(A3), we obtain

n∑
i=1

Var (Wi) = π2
n

n∑
i=1

π−2
i γ2

i Var (Zi(t
∗
k))

=

 O
(
γnh

−d
n

)
if a ≥ α/(d+ 4)

o
(
h4
n

)
if a < α/(d+ 4),

see Proposition 1 in Mokkadem et al. (2009a) for more details about computation of the variance.

Now, from (4.5.6) as well as under assumptions (A1) and (A4), we have

|Cov (Wi,Wj)| =

∣∣∣∣E [π2
nπ
−1
i π−1

j γiγjh
−d
i h−dj K

(
t∗k −Xi

hn

)
K

(
t∗k −Xj

hn

)]
− E

[
πnπ

−1
i γih

−d
i K

(
t∗k −Xi

hn

)]
E
[
πnπ

−1
j γjh

−d
j K

(
t∗k −Xj

hn

)]∣∣∣∣
=

∣∣∣∣π2
nπ
−1
i π−1

j γiγjh
−d
i h−dj

(
E
[
K

(
t∗k −Xi

hn

)
K

(
t∗k −Xj

hn

)]
− E

[
K

(
t∗k −Xi

hn

)]
E
[
K

(
t∗k −Xj

hn

)])∣∣∣∣
= π2

nπ
−1
i π−1

j γiγj

∫
R2d

K(t1)K(t2)
∣∣f(i,j)(t

∗
k − t1hi, t∗k − t2hj )

− f(t∗k − t1hi)f(t∗k − t2hj)| dt1dt2
6 Mπ2

nπ
−1
i γiπ1

jγj

= O(π2
nπ
−1
i γiπ1

jγj). (4.5.7)

Next, to asses the term S2∗
n , we use a technique developed by Masry (1986). We de�ne the sets

F1 = {(i, j) : 1 6 |i− j| 6 βn}

and

F2 = {(i, j) : βn + 1 6 |i− j| 6 n− 1}

where βn = o(n). Let

F1,n =
∑
i,j∈F1

|Cov (Wi,Wj)| and F2,n =
∑
i,j∈F2

|Cov (Wi,Wj)| .

Applying the upper bound in (4.5.7), we have

F1,n 6 Mπ2
n

∑
i,j∈F1

π−1
i γiπ

−1
j γj
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6 Mπ2
n

n∑
j=1

βn∑
k=1

π−1
k+jγk+jπ

−1
j γj

6 Mπ2
n

n∑
j=1

βn∑
k=1

π−2
j γ2

j

1

(1− γj+1) · · · (1− γj+k)

6 Mβnπ
2
n

n∑
j=1

π−2
j γ2

j ,

and applying Lemma 4.5.1, we get

F1,n 6 Mβnγn
1

2− αε
= O (βnγn) .

For F2, we use the Davydov inequality for mixing processes (see Rio 2000, p. 10, Formula 1.12a).

This leads us to get, for all i 6= j

|Cov (Wi,Wj)| 6 cα (|i− j|) .

Therefore, using (A5), we obtain

F2,n 6 c

n∑
j=1

∑
βn+16k6n−1

α (k)

< cn

∫ n−1

βn+1
k−vdk

= O
(
nβ1−v

n

)
.

Choosing βn =
(
nγ−1

n

)1/ν
and under (A7)(i), we obtain

S2∗
n = F1,n + F2,n = O

(
n1/νγ1−1/ν

n

)
= o (1) .

Finally, we get

S2
n =

 O
(
γnh

−d
n

)
if a ≥ α/(d+ 4)

o
(
h4
n

)
if a < α/(d+ 4).

(4.5.8a)

(4.5.8b)

As a matter of fact, we apply Lemma 4.5.3 in the case a ≥ α/(d+ 4). We obtain, for any k

P

{∣∣∣∣∣πn
n∑
k=1

Ti(t
∗
k)

∣∣∣∣∣ > ε

}
6 c

(
1 +

ε2

16rS2
n

)−r/2
+ ncr−1

(
2r

ε

)ν+1

:= c (Γ1,n + Γ2,n) .
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By taking

ε = ε0

(√
γnh

−d
n log n

)
and r = c log n(log2 n)1/ν (4.5.9)

and using Taylor series expansion of log(1 + x) as well as (4.5.8a)-(4.5.9), we infer

Γ1,n 6 cn−ε
2
0/2

and

Γ2,n 6 cε
−(ν+1)
0 nγ−(ν+1)/2

n hd(ν+1)/2
n (log n)(ν−1)/2 log2 n

where log2 n = log(log n) for n > 2. Consequently,

P

{
max

k=1,··· ,λn

∣∣∣∣∣πn
n∑
k=1

Ti(t
∗
k)

∣∣∣∣∣ > ε0

(√
γnh

−d
n log n

)}

6
λn∑
i=1

P

{∣∣∣∣∣πn
n∑
k=1

Ti(t
∗
k)

∣∣∣∣∣ > ε0

(√
γnh

−d
n log n

)}
6 λnc {Γ1,n + Γ2,n}

6 lb−1
n c {Γ1,n + Γ2,n}

6 lc
{
n(α−ε20)/2h−(2+d)/2

n + ε
−(ν+1)
0 nα(ν+2)/2+1h(dν−2)/2

n (log n)(ν−1)/2 log2 n
}

:= lc
{

Γ̃1,n + Γ̃2,n

}
,

with

Γ̃1,n := b−1
n Γ1,n and Γ̃2,n := b−1

n Γ2,n.

Now, referring to (A7)(ii), we have

h(dν−2)/2
n = o

(
n−α(ν+2)/2−2(log n)−(ν+1)/2(log2 n)−3

)
,

which yields

Γ̃2,n = o

(
1

n log n(log2 n)2

)
,

corresponding to the general term of the convergent Bertrand series. For Γ̃1,n, an appropriate

choice of ε0 can be made O
(
n−3/2

)
, which corresponds to the general term of convergent se-

ries. Hence,
∑

n>1

{
Γ̃1,n + Γ̃2,n

}
<∞, and therefore (4.5.2a) follows by applying Borel Cantelli

Lemma. The same steps shall be used in the second case if a < α/(d + 4). The result (4.5.2b)

is a consequence of Borel Cantelli Lemma after applying Lemma 4.5.3 and choosing

ε = ε0h
2
n

√
log n and r = c log n(log2 n)1/ν .

Proof of Proposition 4.2.2. Standard argument yields

|f(θn)− f(θ)| 6 |f(θn)− fn(θn)|+ |fn(θn)− f(θ)|
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6 sup
t∈Ω
|fn(t)− f(t)|+ |fn(θn)− f(θ)| . (4.5.10)

Since

|fn(θn)− f(θ)| =
∣∣∣∣sup
t∈Ω

fn(t)− sup
t∈Ω

f(t)

∣∣∣∣ 6 sup
t∈Ω
|fn(t)− f(t)| ,

then we have

|f(θn)− f(θ)| 6 2 sup
t∈Ω
|fn(t)− f(t)| . (4.5.11)

The a.s. consistency of θn follows then immediately from (4.2.1) and (A6). Now a taylor

expansion provides

f(θn)− f(θ) = (θn − θ)f ′(θ) +
1

2
(θn − θ)2f (2)(θ∗n)

=
1

2
(θn − θ)2f (2)(θ∗n),

where θ∗n is between θ and θn. Therefore, based on (4.5.11) and (A3), we get

|θn − θ| 6

√
2 |f(θn)− f(θ)|∣∣f (2)(θ∗n)

∣∣
6 2

√√√√sup
t∈Ω
|fn(t)− f(t)|

| f (2)(θ∗n) |
.

Thus, by (4.2.1) the proof holds.





Chapter 5

Conclusion and perspective

For clarity and methodological reasons, the basic concepts and properties used in the subsequent

analysis are highlighted in chapter 1.

In chapter 2, we tackled the estimation of the conditional extreme value index γ(x) of

a heavy-tailed distribution when some random covariate information is available. We elabo-

rated recursive kernel estimator of the extreme value index function based on the stochastic

approximation algorithm. We demonstrated that using some particular stepsizes and a speci�c

bandwidth selection through a cross-validation procedure, our recursive estimator could be very

competitive to Hill's non recursive version in terms of estimation error and computational costs.

We illustrated this performance via simulations and real data.

In chapter 3, we extended the work of Slaoui (2014b) to the case of α-mixing data. We

established the central limit theorem and the uniform convergence for the proposed estimator

under some mild conditions. We con�rmed that using a speci�c plug-in bandwidth selection

method and some particularly stepsizes, the proposed recursive estimator yielded better results

compared to Nadaraya's non recursive distribution estimator under α-mixing condition. How-

ever, the basic merit of the recursive method resides essentially in the fact that it is much faster

than the classical one. Eventually, these theoretical results were corroborated through a few

simulations.

In chapter 4, we elaborated a recursive kernel mode estimator based on stochastic ap-

proximation algorithm. We established the strong consistency of this estimator under α-mixing

condition. Investing the same selected parameters in Mokkadem et al. (2009a), which minimize

the mean squared error of recursive density estimator, the proposed recursive mode estima-

tor maintains the same convergence rate with non recursive mode estimator de�ned by (4.3.1).

We shown that two previous estimators are asymptotically equivalent. In addition, the main ad-
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vantage of our estimator resides in its update, when a new sample information becomes available.

At this stage of synthesis, it is noteworthy that our thesis would be valuable in terms of

opening further fruitful lines of investigation and o�ering promising future perspectives. Indeed,

this thesis may be extended in several ways:

• First, we may extend our recursive extreme value index estimator to the case of censored

data. We can also propose a new estimator of the conditional extreme quantile using our

recursive estimator de�ned by (2.2.7) and compare it to the classical Weissman estimator.

• Second, we may equally apply Bernstein and Lagrange polynomials to estimate extreme

value index and extreme quantile functions (See Slaoui and Jmaei (2019) and Helali and

Slaoui (2020)).

• Third we may explore of a recursive mode estimation for dependent strong mixing func-

tional data like in Slaoui (2019, 2020) and for dependent strong mixing spatial data like

in Bouzebda and Slaoui (2018, 2020). Furthermore, our proposed recursive kernel mode

estimator is promising and can be extended in such a way as addressing recursive non

parametric estimation in the Bayesian work (see Boukabour and Masmoudi (2020)).
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