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Introduction

L'objet de ce mémoire est de présenter les résultats principaux de mes recherches depuis ma thèse de doctorat. Mon domaine de recherche est la théorie des représentations, et je m'intéresse en particulier à l'étude des catégories triangulées. Je vais maintenant essayer d'expliquer pourquoi ces catégories apparaissent naturellement en théorie des représentations.

Un des objectifs de la théorie des représentations est le suivant. Etant donné une algèbre Λ sur un corps k, on souhaite comprendre tous les modules sur Λ, ainsi que les morphismes entre eux. La famille ModΛ de tous ces modules et de leurs morphismes forme ce qui s'appelle une catégorie. Elle fait partie des catégories dites abéliennes. Sans entrer dans les détails précis de la définition, disons que ce sont des catégories dans lesquelles les notions de noyau, image, conoyau, et donc de suites exactes jouent un rôle fondamental.

Etant donné un Λ-module M , il est souvent utile d'en donner une présentation, c'est-à-dire de le voir comme le conoyau d'un morphisme d 0 : P 1 → P 0 entre modules projectifs (qui sont une généralisation des modules libres). Le morphisme d 0 n'étant en général pas injectif, on en vient à considérer un complexe de Λ-modules projectifs

P • (M ) := • • • / / P 2 d 1 / / P 1 d 0 / / P 0 / / 0 / / • • •
tel que pour tout n ≥ 0 on a Kerd n = Imd n+1 et où M est le conoyau du morphisme d 0 . Dans ce cas, l'homologie du complexe P • (M ) est nulle en tout degré sauf en degré 0 où elle est isomorphe à M . Un tel complexe P • (M ) est appelé une résolution projective de M : de manière un peu raccourcie, on peut comprendre le module P 0 comme engendré par un ensemble de générateurs pour M , le module P 1 comme engendré par les relations entre ces générateurs, le module P 2 comme engendré par les relations entre ces relations, etc... Par ailleurs, une propriété des résolutions projectives est la suivante : tout morphisme de modules f : M → N donne lieu à un morphisme de complexes P • (M ) → P • (N ). Malheureusement, si tout module admet bien une résolution projective, celle-ci n'est unique qu'à homotopie de complexes près, et de même pour le morphisme induit P • (M ) → P • (N ). Il devient alors naturel de travailler dans la catégorie homotopique K -,b (ProjΛ), dont les objets sont des complexes de projectifs bornés à droite, et dont les morphismes sont les morphismes de complexes modulo homotopie. La catégorie des Λ-modules ModΛ peut alors se voir comme une sous-catégorie pleine de K -,b (ProjΛ). Si par ailleurs l'algèbre Λ est de dimension finie, tout Λ-module de dimension finie admet une résolution formée de modules projectifs de dimension finie. Cette résolution sera de plus bornée à gauche si la dimension globale de Λ est finie. On aura donc dans ce cas une inclusion mod Λ ⊂ K b (proj Λ), où mod Λ désigne la catégorie des Λ-modules de dimension finie (qui est aussi abélienne), et K b (proj Λ) la catégorie homotopique des complexes bornés de modules projectifs de dimension finie. Malheureusement, les notions de noyau, de conoyau ou d'image ne sont pas bien définies dans la catégorie K b (proj Λ) : cette catégorie n'est pas abélienne. Elle hérite malgré tout des belles propriétés de la catégorie mod Λ en ayant la structure de ce qu'on appelle une catégorie triangulée. Par exemple, toute suite exacte 0 / / X / / Y / / Z / / 0 dans mod Λ donne lieu à ce qu'on appelle un triangle P • (X) / / P • (Y ) / / P • (Z) / / P • (X) [1] où P • (X)[1] est le complexe P • (X) décalé d'un cran vers la gauche. Les triangles de K b (proj Λ) vérifient des propriétés proches de celles des suites exactes courtes de mod Λ. De plus la catégorie K b (proj Λ) contient de nombreuses informations homologiques sur l'algèbre Λ. En particulier on a des isomorphismes pour tout n ∈ Z

Hom K b (proj Λ) (P • (X), P • (Y )[n]) Ext n Λ (X, Y ). (0.1)
fonctoriels en X et en Y . Par ailleurs, dans l'idée de mieux "voir" la catégorie mod Λ dans la catégorie homotopique, il est souvent plus aisé de donner une autre description de la catégorie K b (proj Λ). On considère la catégorie dont les objets sont cette fois des complexes bornés de Λ-modules de dimension finie (qui ne sont donc plus nécessairement projectifs), et dont les morphismes sont les morphismes de complexes modulo homotopie, où l'on inverse formellement les quasi-isomorphismes (i.e. les morphismes induisant un isomorphisme dans l'homologie). Le Λ-module X peut alors se voir comme un complexe concentré en degré zéro :

• • • / / 0 / / X / / 0 / / • • • .
La projection naturelle P • (X) → X est alors un quasi-isomorphisme et devient donc un isomorphisme dans cette catégorie. Cette catégorie, notée D b (mod Λ) est appelée la catégorie dérivée bornée. Dans le cas où Λ est de dimension finie et de dimension globale finie, elle coincide avec la catégorie K b (proj Λ). Du fait des isomorphismes (0.1), elle est un invariant homologique très intéressant de l'algèbre Λ. Une question naturelle et difficile de théorie des représentation est de déterminer si deux algèbres données ont des catégories dérivées équivalentes. Celle-ci a donné naissance dans les années 80 à ce qu'on appelle la théorie du basculement (tilting), omniprésente en théorie des représentations depuis lors [START_REF]Handbook of Tilting The-ory[END_REF].

Les catégories triangulées apparaissent aussi naturellement en théorie des représentations dans la construction de la catégorie stable décrite par Happel dans [START_REF] Happel | Triangulated categories in the representation theory of finite-dimensional algebras[END_REF]. Si Λ est une algèbre auto-injective, les Λ-modules projectifs sont aussi injectifs. Ils jouent donc un rôle très particulier dans la catégorie mod Λ. Il devient alors intéressant de considérer la catégorie stable modΛ, où l'on quotiente les espaces de morphismes par les morphismes se factorisant par des projectifs-injectifs. Cette procédure 'régularise' en quelque sorte la catégorie mod Λ en 'éliminant' ces objets particuliers que sont les projectifs-injectifs. Happel montre dans [START_REF] Happel | Triangulated categories in the representation theory of finite-dimensional algebras[END_REF] que cette catégorie a aussi une structure de catégorie triangulée. Cette construction se généralise aux algèbres Iwanaga-Gorenstein (le cas auto-injectif correspondant à la dimension Gorenstein 0), où l'on considère non plus tous les Λ-modules, mais certains modules appelés modules de Cohen-Macaulay. On obtient ainsi une catégorie triangulée CM(Λ), appelée parfois catégorie des singularités. Cette catégorie est en effet nulle si et seulement si l'algèbre Λ est homologiquement lisse, autrement dit de dimension globale finie.

Partant de ces deux types de constructions de catégories triangulées (et de leurs généralisations), on peut en construire d'autres, en utilisant la notion de quotient de Verdier d'une catégorie triangulée par une sous-catégorie triangulée pleine. Presque toutes les catégories triangulées de théorie des représentations sont construites de cette manière.

Mon travail de recherche peut se résumer en deux fils conducteurs, tous deux allant dans le sens de mieux comprendre ces catégories:

1. trouver des équivalences entre certaines catégories triangulées ; 2. décrire explicitement les objets indécomposables et morphismes de certaines catégories triangulées.

La première question est source de nombreux travaux dans le domaine. Mentionnons déjà trois résultats fondamentaux très classiques :

• le premier, dû à Happel [START_REF] Happel | Triangulated categories in the representation theory of finite-dimensional algebras[END_REF], permet de comprendre la catégorie D b (Λ) comme une catégorie stable graduée mod Z T(Λ), via l' extension triviale de Λ par son dual Hom k (Λ, k);

• le deuxième, dû à Buchweitz [START_REF] Buchweitz | Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings[END_REF] et Rickard [START_REF] Rickard | Derived categories and stable equivalence[END_REF], permet de comprendre la catégorie stable CM(Λ) d'une algèbre Iwanaga-Gorenstein comme le quotient de D b (mod Λ) par la sous-catégorie pleine K b (proj Λ);

• le troisième donne un critère permettant de montrer qu'une catégorie triangulée est équivalente à D b (mod Λ) via l'existence d'objets basculants. Ce dernier résultat, dû à de multiples auteurs selon la généralité de l'énoncé [START_REF] Happel | On the derived category of a finite-dimensional algebra[END_REF][START_REF] Rickard | Morita theory for derived categories[END_REF][START_REF] Keller | Deriving DG categories[END_REF], a donné lieu à la théorie du basculement.

La deuxième question est en général sans espoir. En effet la plupart des algèbres sont de type sauvage, et l'on ne peut même pas espérer décrire leur catégorie de modules de dimension finie. Cependant, pour certaines algèbres particulières Λ, les catégories D b (mod Λ) sont bien connues et ont été largement étudiées dans la littérature. C'est notamment le cas pour les algèbres de chemins sur un carquois acyclique (ou algèbres héréditaires) dans le cas où le carquois est de type Dynkin, ou Dynkin étendu [START_REF] Happel | On the derived category of a finite-dimensional algebra[END_REF]. C'est aussi le cas pour une classe d'algèbres introduites par Assem et Skowronski [START_REF] Assem | Iterated tilted algebras of type Ãn[END_REF] appelées algèbres aimables, ou encore pour les algbres quasiaimables (skew-gentle) introduites par Geiss et de la Peña [START_REF] Ch | AuslanderReiten components for clans[END_REF]. Toutes ces algèbres sont dociles (tame) et dérivée-dociles. Il a ainsi été possible grâce à de nombreux travaux de décrire les objets indécomposables des catégories mod Λ et D b (mod Λ) ainsi que les espaces de morphismes en termes combinatoires à partir du carquois à relation définissant Λ [BR87, BM03, ALP16, CB00, BMM03]. D'autres informations concernant par exemple le carquois d'Auslander-Reiten de ces catégories ont aussi pu être obtenues [START_REF] Butler | Auslander-Reiten sequences with few middle terms and applications to string algebras[END_REF][START_REF] Avella-Alaminos | Combinatorial derived invariants for gentle algebras[END_REF][START_REF] Ch | AuslanderReiten components for clans[END_REF].

Une troisième famille de catégories triangulées joue un rôle important dans ce mémoire, il s'agit de la catégorie d-amassée C d (Λ) construite à partir d'une algèbre Λ de dimension globale ≤ d et vérifiant une certaine condition de finitude (τ d -finie) [START_REF] Buan | Tilting theory and cluster combinatorics[END_REF][START_REF] Amiot | Sur les petites catégories triangulées[END_REF][START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF]. Ces catégories sont construites comme enveloppe triangulée d'une catégorie d'orbites de la catégorie dérivée D b (mod Λ). Elles peuvent aussi s'interpréter comme le quotient de catégories dérivées de certaines algèbres différentielles graduées (DG). Ces catégories ont la particularité d'avoir une symétrie appelée d-Calabi-Yau, et d'avoir un ensemble d'objets appelés amas-basculants (cluster-tilting) dont la combinatoire (dans le cas d = 2) a des similarités avec la combinatoire des algèbres amassées (cluster). Ces propriétés combinatoires sont notamment encodées dans l'algèbre d'endomorphismes Π (d+1) (Λ) d'un objet amas-basculant initial appelée l'algèbre (d+1)préprojective de Λ. Dans le cas d = 2, la catégorie amassée C 2 (Λ) est très proche de la catégorie mod Π 2 (Λ). Ainsi lorsque Π 2 (Λ) est une algèbre aimable ou quasi-aimable, il devient possible d'obtenir de nombreux renseignements sur la catégorie amassée associée.

Partant d'une algèbre Λ de dimension finie sur un corps k, et de dimension globale finie ≤ d, on peut alors lui associer les trois objets suivants:

• sa catégorie dérivée bornée D b (mod Λ);

• sa catégorie d-amassée C d (Λ);

• son algèbre (d + 1)-préprojective Π d+1 (Λ), qui sont les principaux objets d'étude de ce mémoire.

Ce travail est divisé en deux parties principales.

• La première porte sur les différentes propriétés algébriques de ces trois constructions et les liens entre elles.

• La deuxième partie quant à elle, décrit comment on peut associer un objet topologique à certaines de ces catégories triangulées (amassées ou dérivées) et d'établir un dictionnaire entre les propriétés algébriques de la catégorie et les propriétés topologiques de l'objet associé.

Passons maintenant à une description plus précise de la première partie. Le premier chapitre se concentre sur l'algèbre (d+1)-préprojective et ses différentes propriétés. La construction dans le cas d = 1 est classique et dûe à Gelfand et Ponomarev [START_REF] Gelfand | Model algebras and representations of graphs[END_REF]. Elle a été intensément étudiée dans la littérature [START_REF] Ringel | The preprojective algebra of a quiver. (English summary) Algebras and modules[END_REF][START_REF] Erdmann | On Hochschild cohomology of preprojective algebras I,II[END_REF][START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF][START_REF] Boevey | Noncommutative deformations of Kleinian singularities[END_REF][START_REF] Reiten | Two-dimensional tame and maximal orders of finite representation type[END_REF]. La construction a été généralisée par Iyama et Oppermann [START_REF] Iyama | n-representation-finite algebras and n-APR tilting[END_REF] dans le cadre de la théorie d'Auslander-Reiten supérieure. Un des objectifs de ce chapitre consiste à montrer que la construction pour un d ≥ 2 satisfait des propriétés similaires à la construction classique, au moins pour certaines algèbres Λ dites dhéréditaires [START_REF] Herschend | n-representation infinite algebras[END_REF]. Je m'intéresse ici en particulier aux propriétés homologiques satisfaites par l'algèbre préprojective. Ces propriétés sont notamment décrites dans les articles [Ami14b, [START_REF] Amiot | Stable categories of Cohen-Macaulay modules and cluster categories[END_REF][START_REF] Amiot | Higher preprojective algebras and stably Calabi-Yau properties[END_REF][START_REF] Dugas | Periodicity of d-cluster-tilted algebras[END_REF]. Notons que dans le cas d = 1, les algèbres préprojectives ont aussi été très largement étudiées pour les liens très étroits qu'elles entretiennent avec les algèbres amassées. Ces questions ne seront pas abordées dans ce mémoire, nous renvoyons à [START_REF] Geiss | Schrer Cluster algebras in algebraic Lie theory Transformation[END_REF][START_REF] Leclerc | Cluster algebras and Representation theory Proceedings of the International Congress of Mathematicians[END_REF] pour des articles de survol sur le sujet.

Le deuxième chapitre se concentre sur les catégories d-amassées d'algèbres τ d -finies, et à leur lien avec certaines catégories de singularités d'algèbres Iwanaga-Gorenstein. En effet, pour certaines de ces algèbres R, comme par exemple certaines singularités isolées de dimension d, la catégorie CM(R) est d-Calabi-Yau et contient des objets d-amas-basculants. On cherche ici à construire une équivalence triangulée

C d (Λ) CM(R).
Ce chapitre contient des résultats des articles [Ami09, ART11, AIRT12, AIR15, Ami14a] ainsi que plusieurs de leurs généralisations [START_REF] Iyama | Stable categories of higher preprojective algebras[END_REF][START_REF] Kimura | Tilting and cluster tilting for preprojective algebras and Coxeter groups[END_REF][START_REF] Hanihara | Cluster categories of formal DG algebras and singularity categories[END_REF].

Le troisième chapitre se concentre quant à lui sur la catégorie dérivée des algèbres τ 2 -finies. Le cas d = 2 est spécialement intéressant car la combinatoire des algèbres amassées, notamment la mutation des carquois à potentiel, y joue un rôle primordial. Ce chapitre traite de différentes collaborations avec Steffen Oppermann [START_REF] Amiot | The image of the derived category in the cluster category[END_REF][START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF][START_REF] Amiot | Algebras of acyclic cluster type: tree type and type A tilde[END_REF]. Il s'agit ici d'interpréter la combinatoire amassée et la théorie de l'amas-basculement non plus dans la catégorie amassée C 2 (Λ), mais dans la catégorie dérivée D b (mod Λ). Nous introduisons la notion de mutation graduée, qui nous permet entre autres choses, d'obtenir de nouveaux critères combinatoires pour déterminer si deux algèbres de dimension globale ≤ 2 sont dérivée-équivalentes.

La deuxième partie de ce mémoire porte sur la notion de modèle topologique pour une catégorie triangulée. L'idée est d'attacher un objet topologique (ou géométrique) à une catégorie triangulée qui 'encoderait' la catégorie. L'idéal étant que cet objet détermine entièrement la catégorie. Lorsqu'on a un tel modèle, il devient intéressant d'essayer de traduire les différentes propriétes de la catégorie en terme de cet objet topologique.

Le premier chapitre de cette partie décrit de tels modèles dans le cadre amassé. En particulier, un premier exemple de modèle topologique provient de la catégorie amassée associée au carquois à potentiel d'une surface triangulée. Le tout premier exemple remonte à un article de Caldero, Chapoton et Schiffler [START_REF] Caldero | Quivers with relations arising from clusters (An case)[END_REF] où les auteurs donnent une description de la catégorie amassée de type A en termes de diagonales de polygones. Plus généralement, partant de la catégorie amassée associée à une surface triangulée, différents travaux [ABCP10, BZ11, QZ17, CS17, CPS19] ont permis d'interpréter les objets indécomposables et les espaces de morphismes de cette catégorie en termes de courbes et d'intersections sur la surface. De plus, en combinant les résultats [KY11, LF09, BZ11, QZ17], on peut montrer que deux catégories amassées d'une surface triangulée sont équivalentes si et seulement si les surfaces correspondantes sont homéomorphes. Le modèle topologique naturel de la catégorie amassée est donc ici la surface (et non plus la surface munie d'une triangulation). Mon travail en collaboration avec Pierre-Guy Plamondon [AP] s'est concentré sur le cas où la surface admet des points marqués à l'intérieur. En interprétant ces points marqués non pas comme des pointures, mais comme des points orbifold, et en construisant un revêtement double de cet orbifold, nous avons pu décrire les objets indécomposables de la catégorie amassée associée en termes des courbes sur la surface orbifold. Ce travail a fortement utilisé les résultats de l'article [START_REF] Reiten | Skew group algebras in the representation theory of artin algebras[END_REF] qui étudie les algèbres tordues par des groupes finis. On peut ainsi comprendre la catégorie amassée associée à une surface avec des points marqués à l'intérieur, comme la catégorie amassée associée à son revêtement double tordue par le groupe Z/2Z.

Ce cadre amassé peut se raffiner pour obtenir un modèle topologique pour la catégorie dérivée de certaines algèbres, dites algèbres de coupes de surface (surface cut algebras). À une surface triangulée munie d'une certaine coupe admissible, on associe une algèbre τ 2 -finie Λ dont la catégorie amassée C 2 (Λ) est équivalente à la catégorie amassée de la surface triangulée. En utilisant la mutation graduée introduite dans [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF], nous montrons dans [AG16, Ami16, ALP20] que le modèle topologique naturel de la catégorie D b (mod Λ) est la surface S (éventuellement orbifold) à points marqués munie d'un certain H 1 (S, Z)-espace affine, qui peut s'interpréter comme une classe d'homotopie de champ de droites sur la surface.

Le deuxième chapitre de cette partie sort du cadre de la combinatoire amassée pour se concentrer sur la catégorie dérivée des algèbres aimables et quasi-aimables. Ainsi dans [OPS], les auteurs associent à toute algèbre aimable Λ une surface à points marqués munie d'une dissection (qui généralise la notion de triangulation), et décrivent les objets indécomposables de la catégorie D b (mod Λ) ainsi que les morphismes en termes topologiques. Cette description est particulièrement intéressante car elle possède des liens avec certaines catégories de Fukaya partiellement enroulées [LP, HKK]. Dans la prépublication [APS] (voir aussi [Opp]), nous associons un champ de droites à toute surface munie d'une dissection, et montrons que la surface munie de la classe d'homotopie du champ de droites est un invariant dérivé complet pour l'algèbre aimable Λ. Ceci répond à une conjecture de [HKK] dans le cas non gradué. La construction de cet invariant utilise très fortement la théorie du basculement.

Nous généralisons ce résultat dans ma dernière prépublication avec Thomas Brüstle [AB] au cas des algèbres quasi-aimables, en considérant cette fois non pas une surface munie d'un champ de droites, mais une surface orbifold munie d'un champ de droites, ainsi que son revêtement double. Ce modèle topologique permet par ailleurs d'obtenir une description des objets indécomposables en termes de courbes sur la surface orbifold associée. Je donne dans l'appendice de ce mémoire une preuve alternative au résultat de [LSV], qui n'utilise pas la description combinatoire des objets de la catégorie dérivée donnée dans [START_REF] Bekkert | Indecomposables in derived categories of skewedgentle algebras[END_REF].
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I Preprojective algebras, cluster categories and derived categories 

Notation and convention

We fix an algebraically closed field k. All algebras, categories and functors are k-linear (unless otherwise stated). We denote by D = Hom k (-, k) the k duality.

Categories

By a triangulated category we mean a k-linear category with finite dimensional Hom-spaces (unless otherwise stated) with a Serre duality, denoted by S. The shift functor is denoted by [1] and the bifunctor Hom T (-, -[n]) by Ext n T (-, -). For d ≥ 0, we define the autoequivalence

S d := S[-d].
The following definition is fundamental in this memoir.

Definition 0.1. A (Hom-finite) triangulated category is called d-Calabi-Yau (d-CY for short) if there is a bifunctorial isomorphism Hom C (X, Y ) D Hom C (Y, X[d]),
so in other words, the functor S d is isomorphic to the identity.

For A an additive k-category, we denote by K(A) its homotopy category, by D(A) its derived category, and by per A the full triangulated subcategory of D(A) closed under direct summands generated by objects in A.

Algebras and modules

For Λ a k-algebra, we denote by ModΛ the category of right Λ-modules, by mod Λ the subcategory of finitely generated Λ-modules, and by fdΛ the category of finite dimensional Λ-modules. We denote by Λ op the opposite algebra, and Λ e := Λ op ⊗ k Λ the envelopping algebra. The bimodule duality Hom Λ e (-, Λ e ) is denoted by (-) ∨ :=. We denote by D b (Λ) the bounded derived category of mod Λ.

An algebra Λ is called Iwanaga-Gorenstein if the projective dimension of the module DΛ and the injective dimension of the module Λ are finite. In that case, these dimensions coincide and is called the Gorenstein dimension of Λ. For Λ an Iwanaga-Gorenstein algebra, we denote by CM(Λ) := {M ∈ mod Λ| Ext i Λ (M, Λ) = 0 ∀i > 0} the category of (maximal) Cohen-Macaulay Λ-modules.

For a graded algebra Λ = n∈Z Λ n , we denote by Mod Z Λ (resp. mod Z Λ, resp. CM Z Λ) the category of (resp. finitely generated, resp. Cohen-Macaulay) graded Λ-modules. For a graded module M = n∈Z M n , we denote by M (1) the graded module where M (1) n := M n-1 . Note that the algebra Λ e inherits of a natural grading, and we often consider it as a Z-graded algebra. We may also consider Λ as a DG-algebra with zero differential. In this case, we denote by D(Λ DG ) the derived category of the DG-algebra Λ.

Quivers

For a quiver Q, we denote by Q 0 its set of vertices, Q 1 its set of arrows, and by s, t : Q 1 → Q 0 the source and target maps. The path algebra is denoted by kQ. Composition of arrows is from right to left as functions. For any i ∈ Q 0 , we denote by e i the trivial path at vertex i.

A potential W on a quiver is given by a class in kQ/[kQ, kQ]. We define the partial derivative ∂ a with respect to an arrow a as a map ∂ a : kQ/[kQ, kQ] → kQ defined by

∂ a (a 1 . . . a r ) = r i=1 a i+1 . . . a r a 1 . . . a i-1 ,
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and extended by k-linearity.

The Jacobian algebra Jac(Q, W ) of the quiver with potential (Q, W ) (QP for short) is defined as

Jac(Q, W ) := kQ ∂ a W, a ∈ Q 1 ,
where kQ is the completion of the path algebra kQ, and ∂ a W, a ∈ Q 1 is the closure of the ideal generated by ∂ a W for any a ∈ Q 1 . The complete Ginzburg DG algebra Γ = Γ Q,W of (Q, W ) is defined as follows.

Let Q be the graded quiver whose vertices set is that of Q and whose arrows set contains

• for every arrow α : i → j in Q, an arrow α : i → j of degree 0;

• for every arrow α : i → j in Q, an arrow ᾱ : j → i of degree -1; and

• for every vertex i of Q, a loop t i : i → i of degree -2.
Then, as a graded algebra, Γ is the complete path algebra of Q, that is, for every integer m,

Γ m = w path of degree m kw.
The differential of Γ is the continuous map defined as follows on arrows, and extended by linearity and the Leibniz rule: for any arrow α of Q, d(α) = 0 and d( ᾱ) = ∂ α S, and for any vertex i of Q, d(t i ) = e i α∈Q 1 (α ᾱ -ᾱα) e i . Note that in this memoir, we consider quivers with potential associated with a triangulated surface with non-empty boundary, and the non completed Ginzburg or Jacobian algebra is isomorphic to the completed one.

Part I

Preprojective algebras, cluster categories and derived categories

Chapter 1

Higher preprojective algebras

The notion of (higher) preprojective algebra is central in my work. The aim of this chapter is to describe different properties satisfied by these algebras, and in which context they naturally appear. Let us start with the definition. Definition 0.1. [START_REF] Iyama | Stable categories of higher preprojective algebras[END_REF] Let Λ be an algebra of global dimension ≤ d, then the (d + 1)preprojective algebra of Λ is defined to be the tensor algebra over Λ of the Λ-bimodule Ext

d Λ e (Λ, Λ e ) Π d+1 (Λ) := T Λ Ext d Λ e (Λ, Λ e ).
The classical notion of a preprojective algebra of a quiver (the case d = 1) was introduced by Gelfand and Ponomarev [START_REF] Gelfand | Model algebras and representations of graphs[END_REF]. Already in this set up we can make the following observations:

• seen as a kQ-module, Π 2 (kQ) is the direct sum of all preprojective kQ-modules1 (that justifies the name) [START_REF] Ringel | The preprojective algebra of a quiver. (English summary) Algebras and modules[END_REF] • the behaviour of Π 2 (kQ) changes completely depending whether Q is Dynkin or not;

• the algebra Π 2 (kQ) has a presentation in term of quiver and relations that can easily be contructed from Q;

• when Q is of extended Dynkin type, and when k has characteristic 0, the preprojective algebra Π 2 (kQ) is Noetherian. Moreover, it can be related with the finite subgroup G of SL n (k) corresponding to the Dynkin type of

Q: it is a non commutative resolution of the invariant polynomial ring k[X, Y ] G , [Rei87, RV89]
The aim of this chapter is to show how all these properties generalize for general d.

We can first be a bit more precise concerning the second item: in the Dynkin case, the preprojective algebra is finite dimensional and its bimodule projective resolution is periodic [START_REF] Erdmann | On Hochschild cohomology of preprojective algebras I,II[END_REF][START_REF] Erdmann | Preprojective algebras of Dynkin type, periodicity and the second Hochschild cohomology, Algebras and modules II[END_REF][START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]; whereas in the non Dynkin case, the preprojective algebra is infnite dimensional and its bimodule projective resolution has a certain symmetry, it is bimodule 2-Calabi-Yau [START_REF] Crawley-Boevey | On the exceptional fibres of Kleinian singularities[END_REF].

In a first section, we relate the (d + 1)-preprojective algebra to the derived category of Λ and certain endofunctors S d and τ d that are higher generalizations of Auslander-Reiten translate for the derived and for the module category. We also explain how the preprojective algebra can be viewed as the H 0 of a certain negatively graded DG algebra Π (d+1) (Λ) called the derived preprojective algebra. Furthermore, we explain that the (d + 1)-preprojective algebra of Λ, when finite-dimensional, appear naturally in the construction of the d-cluster category of Λ [START_REF] Amiot | Sur les petites catégories triangulées[END_REF][START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF].

In a second section, we discuss the presentation of the preprojective algebra by a quiver with relations. In the classical case d = 1, this description relies on reflection functors, and we show how these reflection functors can be "seen" in the module or derived category of the preprojective algebras. We further explain how the presentation of the preprojective algebra as a quiver with "symmetric" relations can be generalized in the case d = 2. Some generalizations in the case d ≥ 3 have also been studied with the notion of (higher) Jacobian algebras [START_REF] Keller | Deformed Calabi-Yau completions, With Appendix by Michel Van den Bergh[END_REF][START_REF] Bocklandt | Superpotentials and higher order derivations[END_REF][START_REF] Iyama | Higher preprojective algebras, Koszul algebras and superpotentials[END_REF].

In a third section, we introduce the notion of d-hereditary algebras, through d-representation finite algebras (d-RF) and d-representation infinite algebras (d-RI), that are higher analogues of the dichotomy Dynkin/not Dynkin cases [START_REF] Herschend | n-representation infinite algebras[END_REF]. Certain behaviour of the derived category generalize in that case, as certain properties of the d-preprojective algebra.

In a fourth section, we show how the properties of the bimodule projective resolution of the preprojective algebras generalize in particular in the setting of d-RI and d-RF. This relies on the works [START_REF] Amiot | Stable categories of Cohen-Macaulay modules and cluster categories[END_REF] and [START_REF] Amiot | Higher preprojective algebras and stably Calabi-Yau properties[END_REF] (see also [START_REF] Amiot | Preprojective Algebras and Calabi-Yau duality[END_REF]).

Finally in a fifth section, we show how certain Noetherian preprojective algebras can be seen as non-commutative resolutions of certain Gorenstein algebras (see [START_REF] Amiot | Stable categories of Cohen-Macaulay modules and cluster categories[END_REF]).

Motivating example

In the rest of the chapter, we will consider only preprojective algebras Π d+1 (Λ) where Λ is finite dimensional. However we start with the example of the polynomial ring, which gives an idea of the behaviour of certain higher preprojective algebras (typically the (d + 1)-preprojective algebras of d-RI algebras).

Denote R = k[x 1 , . . . , x d ]. For any 0 ≤ ≤ d define the set

I d := {(i 1 , i 2 , • • • , i ), i 1 < i 2 < . . . < i , i j ∈ {1, . . . , d}}.
Consider the following complex of R-bimodules:

0 / / P d ∂ d / / • • • / / P 1 ∂ 1 / / P 0 / / 0
where P := (R ⊗ R) I d and where

∂ ((1 ⊗ 1) i 1 ...i ) = s=1 (-1) s+1 (x is ⊗ 1 -1 ⊗ x is ) i 1 ... îs...i .
This complex of R-bimodules gives a projective resolution of R as an R-bimodule. Moreover, by applying the functor (-) ∨ := Hom R e (-, R e ) and using the canonical pairing between I d and I d- d , one obtains an isomorphism of complexes

P ∨ • [d] P • . As a consequence we obtain an isomorphism of R-bimodules R Ext d R e (R, R e ), hence one has Π d+1 (R) k[x 1 , . . . , x d+1 ].
1 Preprojective algebras and the category D b (Λ)

In the rest of this work, we will concentrate on the case where Λ is a finite dimensional algebra.

In that case we have an isomorphism of Λ-bimodules Ext d Λ e (Λ, Λ e ) Ext d Λ (DΛ, Λ), (see for instance [IG, Lemma 2.9]).

1.1 The functors τ d and S d Definition 1.1 (Keller,[START_REF] Keller | Deformed Calabi-Yau completions, With Appendix by Michel Van den Bergh[END_REF]). Let Λ be an algebra of global dimension ≤ d. The derived (d + 1)-preprojective algebra of Λ is defined to be the tensor DG-algebra

Π d+1 (Λ) := T Λ Θ
where Θ is a cofibrant replacement of the DG-bimodule RHom Λ e (Λ, Λ e ) [d].

Since the algebra Λ has global dimension ≤ d, then we have a canonical isomorphism The functor S d is an auto-equivalence, we denote by S -1 d its inverse, and for ≥ 0 by S - d the -power of the inverse. We also denote by τ d := H 0 (S d ) : mod Λ -→ mod Λ. In the case d = 1, S 1 is the Auslander-Reiten translate in the derived category, while τ 1 is the Auslander-Reiten translate in the module category.

H 0 (Π d+1 (Λ)) Π d+1 (Λ).
The behaviour of these two functors have important impact on the properties of the preprojective algebras. Here is a first observation.

Proposition 1.2. Let Λ be a finite dimensional algebra of global dimension ≤ d. We have isomorphisms

Π d+1 (Λ) ≥0 S - d (Λ) in D(ModΛ); and Π d+1 (Λ) ≥0 τ - d Λ in ModΛ.
This leads to the following Definition 1.3. [START_REF] Amiot | Sur les petites catégories triangulées[END_REF][START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF] An algebra of global dimension ≤ d is said to be τ d -finite if the preprojective algebra Π d+1 (Λ) is finite dimensional. This is equivalent to the fact that the functor τ d is nilpotent.

Cluster-tilting objects

Here we recall how finite dimensional d-preprojective algebras can be seen as endomorphism algebras of d-cluster-tilting object in certain triangulated categories.

Definition 1.4. [START_REF] Iyama | Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories[END_REF][START_REF] Keller | Cluster-tilted algebras are Gorenstein and stably Calabi-Yau[END_REF] Let C be a Hom-finite abelian, or triangulated category. A full subcategory U ⊂ C is called d-cluster-tilting if U is functorially finite2 and if

U = {X ∈ C, such that Ext i C (U, X) = 0 ∀i = 1, . . . , d -1, ∀U ∈ U} = {X ∈ C, such that Ext i C (X, U ) = 0 ∀i = 1, . . . , d -1, ∀U ∈ U} An object U ∈ C is called d-cluster-tilting if addU is d-cluster-tilting.
The following definition has been given in my thesis [Ami] and [START_REF] Amiot | Cluster categories for algebras of global dimension 2 and quivers with potential[END_REF] for the case d = 2, and generalized for any d in Guo's thesis [START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF].

Definition 1.5. [START_REF] Amiot | Sur les petites catégories triangulées[END_REF][START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF] The (generalized) d-cluster category of a τ d -finite algebra of global dimension ≤ d is defined as the triangulated hull

C d (Λ) := (D b (Λ)/S d ) ∆ ,
as defined in [START_REF] Keller | On triangulated orbit categories[END_REF] (see also Appendix of [START_REF] Iyama | Stable categories of higher preprojective algebras[END_REF]). The d-cluster category comes naturally with a triangle functor π : D b (Λ) -→ C d (Λ).

Theorem 1.6 (Amiot [Ami09] Guo [START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF]). Let Λ be a τ d -finite algebra. Then the d-cluster category of Λ is d-Calabi-Yau and the object π(Λ) is a d-cluster-tilting object such that

End C d (Λ) (π(Λ)) Π d+1 (Λ).
2 Description in terms of quivers with relations

2.1 Classical case d = 1 Presentation of Π 2 (kQ)
Let Q be an acyclic quiver. Then the algebra kQ is a finite dimensional algebra of global dimension ≤ 1.

We define the double quiver Q from Q by adding for each arrow a ∈ Q 1 an arrow a * in the opposite direction.

Theorem 2.1 (Ringel [START_REF] Ringel | The preprojective algebra of a quiver. (English summary) Algebras and modules[END_REF]). Let Q be an acyclic quiver. Then there is an isomorphism of Z-graded algebras

Π 2 (kQ) k Q/ a∈Q 1 [a, a * ] ,
where the Z-grading on the RHS is induced by a grading on Q assigning degree 0 to arrows a ∈ Q 1 and degree 1 to arrows a * , a ∈ Q 1 .

Note that preprojective algebras have been first introduced and studied by Gelfand and Ponomarev in [START_REF] Gelfand | Model algebras and representations of graphs[END_REF] using the definition with the double quiver.

We give here an alternative idea of the argument for this result using projective bimodule resolutions (which is different from the proof in [START_REF] Ringel | The preprojective algebra of a quiver. (English summary) Algebras and modules[END_REF]). The minimal projective Λ-bimodule resolution of Λ = kQ is given as follows: Applying (-) ∨ to this complex we obtain:

0 / / i∈Q 0 Λe i ⊗ e i Λ ∂ ∨ / / a∈Q 1 Λe s(a) ⊗ e t(a) Λ / / 0 ; where ∂ ∨ (e i ⊗ e i ) = a,t(a)=i (a ⊗ e i ) a - b,s(b)=i (e i ⊗ b) b .
Define the algebra Π := k Q/ a∈Q 1 [a, a * ] , as above, and define the Λ-subbimodule of Π as E = a∈Q 1 Λa * Λ. Then one checks that E is the cokernel of ∂ ∨ via the map e s(a) ⊗ e t(a) → a * . Therefore we have an isomorphism of Λ-bimodules

E Ext 1 Λ e (Λ, Λ e ).
Example 2.2. Let Q be the quiver 1 a / / 2 . Then the preprojective algebra of Q is presented by the quiver 1 a ( ( 2

a * h h
with the relations aa * = a * a = 0.

Preprojective algebras and reflection functors

This description in term of quiver with relations gives another point of view on the category mod Π 2 (kQ). It contains mod kQ where Q is any acyclic orientation of the underlying graph of Q. In particular, if Q and Q are related by a reflection at a sink i of Q, then there is an equivalence [APR79, BGP73]

R i : mod kQ/[e i DkQ] ∼ -→ mod kQ /[e i kQ ],
and moreover there is an isomorphism Π 2 (kQ) Π 2 (kQ ). This equivalence is encoded in the category mod Π 2 (kQ) via certain tilting objects, as described in the following result.

Theorem 2.3. [AIRT12, Cor 2.12] Let Q be an acyclic quiver, and i be a sink in Q. Denote by

I i := Π/Π(1 -e i )Π where Π := Π 2 (kQ) is the preprojective algebra of Q. Then there is a commutative diagram mod kQ/[e i DkQ] R i / / _ mod kQ /[e i kQ ] _ mod Π 2 (kQ) -⊗ Π I i / / mod Π 2 (kQ)
.

If moreover Q is not Dynkin, then I i is a tilting object in D(ModΠ) and we have

mod kQ/[e i DkQ] R i / / _ mod kQ /[e i kQ ] _ D b (f.l.Π) ∼ - L ⊗ Π I i / / D b (f.l.Π) .

Case d ≥ 2

Case d = 2 and Jacobian algebras If Λ = kQ/I is a basic algebra of global dimension ≤ 2, let us choose a basis of {ρ } of the spaces Ext 2 Λ (S i , S j ) for any i, j vertices of Q. The set of {ρ } is a set of generators of the ideal I. Then we define a quiver Q from Q and I by adding a new arrow a : i → j for any ρ ∈ Ext 2 (S i , S j ), and define W as W := ρ a .

Then we have the following:

Theorem 2.4. [START_REF] Keller | Deformed Calabi-Yau completions, With Appendix by Michel Van den Bergh[END_REF] Let Λ = kQ/I be a finite dimensional algebra of global dimension ≤ 2.

Let Q and W defined as above. Then there is an isomorphism of Z-graded algebras

Π 3 (Λ) k Q/ ∂ a W, a ∈ Q 1 .
where the grading on the RHS is induced from a grading on Q assigning degree 0 to any arrow a ∈ Q 1 , and degree 1 to any new arrow a .

More precisely, Keller constructs a morphism of DG algebras Γ ( Q,W ) → Π 3 (Λ) which is a quasi-isomorphism, where Γ ( Q,W ) is the Ginzburg DG algebra associated to the quiver with potential ( Q, W ) [Kel11, Thm 6.3]. Since the Ginzburg algebra is negatively graded, and since the Jacobian algebra of ( Q, W ) is the H 0 of the Ginzburg algebra, the theorem above is a consequence of this quasi-isomorphism. A converse of this result has been shown by Van den Bergh in [V15].

Example 2.5. Let Λ be the algebra presented by the quiver 1 a / / 2 b / / 3 with the relation ba = 0. The preprojective algebra of Λ is presented by the following quiver with relations:

2 b 1 a @ @ 3 c o o ba = cb = ac = 0.
Example 2.6. Let Λ be the algebra presented by the quiver 1 y / /

x / / z / / 2 y / /

x / / z / / 3 with the commutativity relations. The preprojective algebra of Λ is presented by the following quiver with the commutativity relations: 2

1 @ @ @ @ @ @ 3 o o o o o o . Case d ≥ 3
The situation becomes much more complicated for higher d. However in case where the algebra is d-hereditary (see next section for definition) and Koszul, one has a description in terms of higher Jacobian algebras [BSW10, IG, Thi], see also [START_REF] Van Den Bergh | Calabi-Yau algebras and superpotentials[END_REF][START_REF] De Völcsey | Explicit models for some stable categories of maximal Cohen-Macaulay modules[END_REF].

3 d-hereditary algebras

Definition

The motivation of the introduction of d-hereditary algebras comes from the following observation due to Iyama, which generalizes the case d = 1 due to Happel [START_REF] Happel | Triangulated categories in the representation theory of finite-dimensional algebras[END_REF]. is such that H i (X) = 0 for i ∈ Z \ dZ then X is isomorphic to its homology j∈Z H j (X).

In general however, if Λ has finite global dimension ≥ 2, the homology of the indecomposable objects can be spread in many degrees. But at least the subcategory

D dZ := add{X ∈ D b (Λ), H i (X) = 0 for i ∈ Z \ dZ}
behaves as a higher analogue of the derived category of a hereditary algebra, indeed it is equivalent to copies of the module category mod Λ.

The d-hereditary algebras are algebras where we have a control of the homology of the S d -orbit of Λ. More precisely we have the following definition:

Definition 3.2. [HIO14] A finite dimensional algebra Λ is said to be d-hereditary if it has global dimension d and if for any ∈ Z, S d Λ ∈ D dZ .
By Proposition 1.2 the derived (d + 1)-preprojective algebra is isomorphic to the direct sum of S - d Λ with ≥ 0, hence for a d-hereditary algebra, the derived preprojective algebra is isomorphic to its homology. But this isomorphism is an isomorphism of Λ-module and not a DG algebra one, so this remark does not a priori imply that the derived preprojective algebra is formal. However one could hope to have more control on the corresponding preprojective algebra, especially when noticing that its H 0 is the (d + 1)-preprojective algebra.

With the definition above, one observes two main different behaviours for d-hereditary algebras ([HIO14, Lemma 3.6]): if P is an indecomposable projective Λ-module, then

• either there exists n such that S -n d (P ) ∈ add(DΛ),

• or for any n, S -n d P ∈ mod Λ.

This observation leads to the following definition:

Definition 3.3. [IO11, HIO14] Let Λ be a finite dimensional algebra of global dimension d. Then

• Λ is said d-representation finite (d-RF) if U = U[d] where U = add{S -p d Λ, p ∈ Z};
• Λ is said d-representation infinite (d-RI) if U + ⊂ mod Λ where U + = add{S -p d Λ, p ∈ N}; For the case d = 1, using the description of the derived category D b (kQ) one immediately observes that

kQ is 1-RF ⇔ Q is Dynkin ⇔ kQ is representation-finite kQ is 1-RI ⇔ Q is non Dynkin ⇔ kQ is representation-infinite.
In general, as shown in [START_REF] Herschend | n-representation infinite algebras[END_REF], any d-hereditary algebra which is indecomposable as a ring is either d-RF or d-RI. Moreover, one easily verifies

Λ d-RF ⇒ Λ τ d -finite. Λ d-RI ⇒ Λ τ d -infinite .
The link between d-hereditary algebras and (d + 1)-preprojective algebras is given by the following characterization.

Proposition 3.4. Let Λ be an algebra of global dimension d. Then we have the following equivalences

• Λ is d-RI if and only Π (d+1) (Λ) is concentrated in (homological) degree 0, that is the projection p : Π d+1 (Λ) → H 0 (Π d+1 (Λ)) = Π d+1 (Λ) is a quasi-isomorphism. • Λ is d-RF if and only if Π d+1 (Λ) is a finite dimensional self-injective algebra [IO13, Cor 3.4].
Note that in the case where Λ is d-RI, the derived (d + 1)-preprojective algebra is formal.

Example 3.5. The algebra presented by the quiver 1 a / / 2 b / / 3 with the relation ba = 0 is 2-RF. The algebra presented by the quiver 1 y / /

x / / z / / 2 y / /

x / / z / / 3 with the commutativity relations is 2-RI.

d-Auslander algebras

The d-RF algebras can also be caracterized by the existence of a d-cluster-tilting object in their module category.

Theorem 3.6. [START_REF] Iyama | Cluster tilting for higher Auslander algebras[END_REF] Let Λ be an algebra of global dimension ≤ d. Then it is d-RF if and only if there exists a d-cluster-tilting object U in mod Λ. This object is moreover unique and is isomorphic to Π d+1 (Λ) as a Λ-module.

In that case, the endomorphism algebra End Λ (Π d+1 (Λ)) of the d-cluster-tilting object is not a higher preprojective algebra. It is called the d-Auslander algebra of the d-RF algebra Λ.

The concept of d-Auslander algebras has been generalized by Iyama to higher Krull dimension. More generally, if U is a d-cluster-tilting object in a category CM Γ where Γ is a Cohen-Macaulay ring over an Artin algebra R, then End Γ (U ) is also called d-Auslander algebra. In general however, there might be more than one cluster-tilting object.

Constructing d-hereditary algebras

There are different ways to construct d-hereditary algebras. One can construct inductively on d using tensor products [START_REF] Herschend | Selfinjective quivers with potential and 2-representation-finite algebras[END_REF][START_REF] Herschend | n-representation infinite algebras[END_REF]. The d-hereditary algebras (and d-Auslander algebras) of type A have been entirely described in [START_REF] Iyama | n-representation-finite algebras and n-APR tilting[END_REF].

From a d-hereditary algebra, one can also construct new d-hereditary algebras using an operation called d-APR tilt [START_REF] Iyama | n-representation-finite algebras and n-APR tilting[END_REF] which is the higher analogue of the Auslander-Platzeck-Reiten tilt introduced in [START_REF] Auslander | Coxeter functors without diagrams[END_REF]. A natural question arising here is whether an analogue of Theorem 2.3 is true for d ≥ 2: does the d-APR tilt have an interpretation in the derived category of the preprojective algebra of a d-hereditary algebra ?

Calabi-Yau properties

We investigate here the different Calabi-Yau properties satisfied by the (d + 1)-preprojective algebra.

Motivations

The motivation for the results of this section follow from the following two results.

The first one is the classical case d = 1.

Theorem 4.1. [ES98I, ES98II, CB00, BBK02] Let Q be a finite quiver without oriented cycles. Then

• if Q is Dynkin, the preprojective algebra Π 2 (kQ) is selfinjective and the stable category modΠ 2 (kQ) is 2-Calabi-Yau.
• if Q is not Dynkin, then Π 2 (kQ) has global dimension 2 and the bounded derived category

D b (fd Π 2 (kQ)) of finite dimensional Π 2 (kQ)-modules is 2-Calabi-Yau.
The second one concerns the derived (d + 1)-preprojective algebra.

Theorem 4.2. [START_REF] Keller | Deformed Calabi-Yau completions, With Appendix by Michel Van den Bergh[END_REF] Let Λ be a finite dimensional algebra. Then the derived (d + 1)preprojective algebra Π := Π (d+1) (Λ) of Λ is bimodule (d + 1)-Calabi-Yau, that is Π is homologically smooth and we have an isomorphism

RHom Π e (Π, Π e )[d + 1] Π in D(Π e ).
One result in my collaboration with Iyama and Reiten [START_REF] Amiot | Stable categories of Cohen-Macaulay modules and cluster categories[END_REF], and the main result in one of my work with Oppermann [AO15] aim at generalizing these results for general d-hereditary algebras.

d-RI case

The homological results presented in Theorem 4.1 concern some triangulated categories attached to preprojective algebras and not the algebras themselves. In order to have a higher analogue, which could be also seen as a characterization of preprojective algebras, one should enhance the Calabi-Yau property at the level of the graded algebra itself as follows:

Definition 4.3. Let Γ =
∈Z Γ be a Z-graded algebra with dim k Γ < ∞ for all . The algebra is said to be (1)-twisted bimodule (d + 1)-Calabi-Yau (or bimodule (d + 1)-Calabi-Yau of Gorenstein parameter 1) if the following two conditions are satisfied

• Γ is homologically smooth (that is Γ ∈ per Γ e ); • there is an isomorphism RHom Γ (Γ, Γ e )[d + 2] Γ(1) in D(Mod Z Γ e ).
Here (1) is the degree shift in the category Mod Z Γ e , where Γ e is considered as a Z-graded algebra.

Note that a (1)-twisted bimodule (d + 1)-Calabi-Yau algebra seen as a DG algebra with zero differential, is (d + 1)-bimodule Calabi-Yau. Indeed the isomorphism above implies

RHom Γ (Γ, Γ e )[d + 1] Γ in D(Mod Z Γ e ) (1) • [-1] , so in D((Γ e ) DG )
. Moreover we have:

Proposition 4.4. [Gin, Kel08] Let Γ be a bimodule (d + 1)-Calabi-Yau graded algebra, then D b (fd Γ) is a (d + 1)-Calabi-Yau triangulated category.
The next result gives then a complete homological characterization of (d + 1)-preprojective algebra of d-RI algebras.

Theorem 4.5. [Kel11, HIO14, MM11, AIR15] Let Γ = i≥0 Γ i be a graded algebra with finite dimensional degree zero part Λ := Γ 0 . Then the following are equivalent (1) Λ is d-RI and Γ Π d+1 (Λ) as graded algebras;

(2) Γ is (1)-twisted bimodule (d + 1)-Calabi-Yau.

The implication (1) ⇒ (2) follows from what was explained before. The preprojective algebra of a d-RI algebra is quasi-isomorphic to the derived preprojective algebra. Then, applying [Kel11, Thm 4.8], we get the result (see also [START_REF] Herschend | n-representation infinite algebras[END_REF]).

The implication (2) ⇒ (1) was shown independently in [MM11, Thm 4.8] and [AIR15, Thm 3.4].

Let us mention a few words about the proof (2) ⇒ (1) given in [START_REF] Amiot | Stable categories of Cohen-Macaulay modules and cluster categories[END_REF]. The idea here is to consider the projective minimal resolution P • of Γ as a graded Γ-bimodule. It satisfies

P ∨ • [d + 1] P • (1) in C(proj Z Γ e ), (4.1) 
where (-) ∨ = Hom Γ e (-, Γ e ). It is generated in degree 0 and 1, and hence we can 'split' each term P i of the complex P • into P i P 0 i ⊕ P 1 i (-1) and show that there is an exact sequence

0 / / P 0 • / / P • / / P 1 • (-1) / / 0 in C b (proj Z Γ e ).
From (4.1), we deduce (P 1

• ) ∨ [d] P 0 • . Then using the fact that Λ ⊗ Γ P 0 • Γ in D(Λ op ⊗ Γ) and
the above short exact sequence, we deduce a triangle

RHom Λ e (Λ, Λ e ) L ⊗ Λ Γ(-1) / / Γ / / Λ / / RHom Λ e (Λ, Λ e ) L ⊗ Λ Γ(-1)[1] in D(Mod Z (Λ op ⊗Γ)).

It permits us to construct an isomorphism

RHom Λ e (Λ, Λ e ) ⊗ Γ in D(Λ e ) for any ∈ Z, and so the desired algebra isomorphism.

d-RF case

The next result is the d-RF analogue of Theorem 4.5. It can be seen as a generalization of the Dynkin case of Theorem 4.1, and gives a homological characterization of the preprojective algebras of d-RF algebras.

Definition 4.6. Let Γ = ∈Z Γ be a finite dimensional Z-graded algebra. Then Γ is said to be (1)-twisted stably bimodule (d + 1)-Calabi-Yau if there is an isomorphism

Hom Γ e (Γ, Γ e )[d + 2] Γ(1) in mod Z Γ e .
One easily checks the following.

Proposition 4.7. [AO15, Thm 2.12] If Γ is (1)-twisted stably bimodule (d + 1)-Calabi-Yau, and self-injective then the category modΓ is (d + 1)-Calabi-Yau.

The next theorem is a complete analogue of Theorem 4.5 for d-RF algebras.

Theorem 4.8. [Dug12, AO15] Let Γ = i≥0 Γ i be a finite dimensional graded algebra. Denote by Λ its degree zero part. Then the following are equivalent

1. Λ is d-RF, has global dimension d and Γ ∼ = Π d+1 (Λ) as graded algebras; 2. Γ is selfinjective and (1)-twisted stably bimodule (d + 1)-Calabi-Yau. The implication (1) ⇒ (2) is shown in [Dug12, Thm 3.2], while the implication (2) ⇒ (1) is shown in [AO15, Thm 3.1].
The idea of the proof (2) ⇒ (1) is similar to the one of Theorem 4.5, by computing the cohomology spaces of the triangle

Λ L ⊗ Γ Λ / / Γ L ⊗ Γ Λ / / Γ >0 L ⊗ Γ Λ / / Λ L ⊗ Γ Λ[1] in D(Γ op ⊗ Λ)
It has also been shown in [IG] and [START_REF] Dugas | Periodicity of d-cluster-tilted algebras[END_REF] that the bimodule projective resolution of the (d + 1)-preprojective algebra of a d-RF algebra has a certain periodicity. This generalizes the case d = 1 treated in [START_REF] Erdmann | On Hochschild cohomology of preprojective algebras I,II[END_REF][START_REF] Erdmann | Preprojective algebras of Dynkin type, periodicity and the second Hochschild cohomology, Algebras and modules II[END_REF].

τ d -finite case: beyond the d-RF case

In general the finite dimensional preprojective algebras are not selfinjective but their behaviour is still similar to the one of the preprojective algebras of d-RF algebras. In the case d = 2, Keller and Reiten proved in [START_REF] Keller | Cluster-tilted algebras are Gorenstein and stably Calabi-Yau[END_REF] that the algebras Π 3 (Λ) are Iwanaga-Gorenstein of dimension ≤ 1. Hence the correct analogue Calabi-Yau triangulated category is given by the stable category of maximal Cohen-Macaulay Π-modules. Indeed they proved in [START_REF] Keller | Cluster-tilted algebras are Gorenstein and stably Calabi-Yau[END_REF] that the category

CM Π 3 (Λ) is 3-Calabi-Yau.
These results were the motivation for the following characterization of finite dimensional preprojective algebras.

Theorem 4.9. [AO15, Thm 3.1] Let Γ = i≥0 Γ i be a (non trivially) graded finite dimensional algebra. Denote by Λ its degree zero part. Assume that

(a) Γ is Iwanaga-Gorenstein of dimension ≤ d -1; (b) there is an isomorphism RHom Γ e (Γ, Γ e )[d + 2] ∼ = Γ(1) in D b (mod Z Γ e )/ per Z Γ e .
(c) Ext i Γ e (Γ, Γ e (j)) = 0 for any i ≥ 1 and any j ≤ -1.

Then Λ has global dimension d and Γ Π d+1 (Λ) as graded algebras.

Here property (b) is again an algebraic (and graded) enhancement of the (d + 1)-Calabi-Yau property of the category CM Γ (see [AO15, Thm 2.12]).

We also show in [START_REF] Amiot | Higher preprojective algebras and stably Calabi-Yau properties[END_REF] that these properties are satisfied by finite dimensional preprojective algebras in the case d = 2 and d = 3 using the description of the preprojective algebra in term of quivers with relations as described in Section 2.

Non commutative resolutions

Preprojective algebras as d-Auslander algebras

The following result in [START_REF] Amiot | Stable categories of Cohen-Macaulay modules and cluster categories[END_REF] states that certain Noetherian (d + 1)-preprojective algebras can be seen as d-Auslander algebras of Iwanaga-Gorenstein algebras. This is related with the last item of the introduction concerning the 2-preprojective algebras of extended Dynkin type.

Theorem 5.1. [AIR15, Thm 2.2] Let Λ be a d-RI algebra such that the corresponding preprojective algebra Π := Π d+1 (Λ) is noetherian. Assume that there exists an idempotent e ∈ Π such that Π/ΠeΠ is finite dimensional. Then we have the following:

• the algebra R = eΠe is Iwanaga-Gorenstein of dimension (d + 1); • we have an isomorphism RHom R e (R, R e )[d+1] R(1) in D(mod Z R e ), hence the category CM(R) is d-Calabi-Yau;
• the category CM(R) has a d-cluster-tilting object Πe and we have an isomorphism of algebras End R (Πe) Π, so in other words, Π is the d-Auslander algebra of R.

Note that here R is not perfect as a bimodule, so R is not (d + 1)-bimodule Calabi-Yau. This theorem has fruitful connections with non commutative algebraic geometry when R is a local ring. In that case, Π is the endomorphism algebra of a Cohen-Macaulay module M (thus reflexive in the sense that M Hom R (Hom R (M, R), R)), and has global dimension equal to the dimension of R. Hence Π is a non commutative crepant resolution of R.

Auslander-Mckay correspondence

Let us illustrate the above result in the case of polynomial skew-group algebras.

Let S be the polynomial ring k[x 0 , . . . , x d ] over an algebraically closed field k of characteristic zero, and G be a finite subgroup of SL d+1 (k) acting freely on k d+1 \{0}. The group G acts on S in a natural way. The invariant ring S G is known to be a Gorenstein isolated singularity of Krull dimension (d + 1).

We denote by SG the skew group algebra: it is defined as the vector space by S ⊗ k kG with multiplication induced by

(P ⊗ g)(Q ⊗ h) := P g(Q) ⊗ gh.
By classical results of Auslander [START_REF] Auslander | Rational singularities and almost split sequences[END_REF][START_REF] Yoshino | Cohen-Macaulay modules over Cohen-Macaulay rings[END_REF], SG is Morita equivalent to End S G (S). Moreover by [Iya07a, Thm 2.5] S is a d-cluster-tilting object in the category CM(R).

Case d = 1

The link between this setup and preprojective algebra is also classical in the case d = 1 and due to Reiten and Van den Bergh. These results can be reinterpreted as the case d = 1 of Theorem 5.1: First observe that Λ = kQ is 1-RI if and only if Q is not Dynkin. Moreover if Q is not Dynkin, the corresponding preprojective algebra is noetherian if and only if Q is extended Dynkin [START_REF] Baer | The preprojective algebra of a tame hereditary Artin algebra[END_REF]. Denote by e the extended vertex, and by Q the corresponding Dynkin quiver Q/e. Then we have Π = Π 2 (kQ), so Π/ΠeΠ is finite-dimensional. Therefore we obtain:

• R = eΠe is Iwanaga-Gorenstein of dimension 2;

• the category CM(R) is 1-Calabi-Yau;

• the category CM(R) has a 1-cluster-tilting object (equivalently is representation finite)

Πe, and we have End R (Πe) Π.

Moreover the extended vertex e in Theorem 5.2 corresponds to the summand S G in S, so we obtain an isomorphism

R = eΠe End S G (S G ) S G .
Case d ≥ 2

Using Theorem 4.5, we can generalize Theorem 5.2 for certain cyclic groups.

Corollary 5.3. [AIR15] Let G be cyclic subgroup of SL d+1 (k) of order n generated by g = diag(ζ a 0 , . . . , ζ a d ) where ζ is a primitive n-root of 1, with gcd(a i , n) = 1. Then there exists a d-RI algebra Λ such that the skew-group algebra SG is isomorphic to Π d+1 (Λ), where S = k[x 0 , . . . , x d ].
To prove this theorem, one uses the isomorphism SG End R (S) (since G is abelian, the Morita equivalence comes from an isomorphism).

Using a suitable grading on R, one describes explicitely the algebra End R (S) by a quiver with relations, and deduces a graded bimodule projective resolution P • that satisfies P ∨

• [d+1] P (1).

Example 5.4. Let G = diag(ζ, . . . , ζ) where ζ is a primitive d + 1-root of 1. Then one shows that the algebra SG is isomorphic to the path algebra

1 2 3 d -1 d 0 x 0 x 1 x d x 0 x 1 x d x 0 x 1 x d x 0 x 1 x d x 0 x 1 x d
with relations x i x j = x j x i for any i = j. It is the (d + 1)-preprojective algebra of the d-Beilinson algebra Λ given by the quiver :

0 1 2 d -1 d x 0 x 2 x d x 0 x 1 x d x 0 x 1 x d with the relations x i x j = x j x i .
The algebra R = eΠe is isomorphic to the invariant ring S G , thus is the subalgebra of S generated by monomials of degree d + 1 which is the (d + 1)-Veronese algebra.

Remark 5.5. Unfortunately Corollary 5.3 does not generalize to any finite subgroup of SL d (k) as shown in [Thi].

Dimer and toric varieties

We give here another application of Theorem 5.1.

Let Γ be a bipartite graph (or a dimer model) on the torus. As described in [START_REF] Broomhead | Dimer models and Calabi-Yau algebras[END_REF], one can associate a quiver with potential to such graph: the quiver Q is the dual of the graph Γ, where the faces of Q corresponding to white vertices are oriented clockwise, and faces of Q corresponding to black vertices are oriented counterclockwise. The potential is the difference between 'white' faces of Q and 'black' faces of Q.

If the bipartite graph is consistent in the sense of [START_REF] Broomhead | Dimer models and Calabi-Yau algebras[END_REF] (see also [START_REF] Bocklandt | Consistency conditions for Dimer models[END_REF][START_REF] Davison | Consistency conditions for brane tilings[END_REF]), then the algebra Π(Γ) := Jac(Q, W ) is a non commutative crepant resolution over its center which is of the form eΠe, where e is any vertex in the quiver Q. Moreover its center eΠe is the coordinate ring of a Gorenstein affine toric threefold. Moreover the coordinate ring of any Gorenstein affine toric threefold can be obtained in this way.

The data of a perfect matching (or a dimer configuration) on the graph Γ induces a grading on Q for which the potential W is homogeneous of degree 1, so induces a grading on Π.

Using again explicit graded bimodule resolution of Π, one obtains the following:

Corollary 5.6. Let Γ be a consistent dimer model on the torus, and D be a dimer configuration. Denote by Π the corresponding graded Jacobian algebra. If the degree zero part Λ of Π is finite dimensional, then Λ is 2-RI, and Π is the 3-preprojective algebra of Λ.

If moreover there exists a primitive idempotent e such that Π/ΠeΠ is finite-dimensional, Theorem 5.1 implies that the center eΠe is d-representation finite (as CM-ring), and that Π is a NCCR of eΠe.

Example 5.7. Let Γ and D be given by the following picture.

• • • • 3 2 4 3 3 2 3 4 1
The associated Jacobian algebra Π is presented by the quiver

1 2 3 4 x 1 x 2 z 2 z 1 y 1 y 2 w 2 w 1 with potential W = w 1 z 1 y 1 x 1 + w 2 z 2 y 2 x 2 -w 1 z 2 y 1 x 2 -w 2 z 1 y 2 x 1 .
Then the perfect matching D corresponds to {w 1 , w 2 }. Thus the algebra Λ of Π is given by the quiver

1 2 3 4 x 1 x 2 y 1 y 2 z 1 z 2 with relations z 1 y 1 x 1 = z 1 y 2 x 1 and z 2 y 1 x 2 = z 2 y 2 x 2 .
The center R of this algebra is the semigroup algebra R = C[Z 3 ∩σ ∨ ] where σ ∨ is the positive cone

σ ∨ = {λ 1 n 1 + λ 2 n 2 + λ 3 n 3 + λ 4 n 4 , λ i ≥ 0}, n 1 =   1 1 1   , n 2 =   1 -1 1   , n 3 =   -1 1 1   , n 4 =   -1 -1 1   .
The algebra R is the homogenous coordinate algebra of P 1 × P 1 .

Chapter 2

Cluster categories and Cohen-Macaulay modules

Cluster categories associated with τ 2 -finite algebras were constructed in my thesis [Ami]. The aim was to generalize the notion of cluster category associated with an acyclic quiver introduced by Buan, Marsh, Reineke, Reiten and Todorov in their seminal paper [START_REF] Buan | Tilting theory and cluster combinatorics[END_REF]. The idea was to construct a category in which cluster combinatorics appeared naturally. An instance of such categories is given by 2-Calabi-Yau triangulated categories with cluster-tilting objects as shown in [START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF], and the main result of my thesis was the fact that cluster categories associated with τ 2 -finite algebras are 2-Calabi-Yau with cluster-tilting objects. This construction was then generalized by Guo [START_REF] Guo | Cluster tilting objects in generalized higher cluster categories[END_REF] 

from 2 to d ≥ 2.
Other examples of d-Calabi-Yau triangulated categories with d-cluster-tilting objects arise naturally in representation theory, especially as stable categories of Cohen-Macaulay modules (or singularity categories) CMΓ of some Iwanaga-Gorenstein algebras Γ. It is then natural to ask the following:

When are these categories d-cluster categories ?

This is the question we address in this chapter, and for which the papers [Ami09, ART11, AIRT12, AIR15] gave some answers.

We also refine the question in the graded setting. By construction as triangulated hull of an orbit category the d-cluster category can be seen as an ungraded version of the derived category D b (Λ), where the grading is given by the functor S d .

Then, given an Iwanaga-Gorenstein algebra Γ such that CM(Γ) is d-Calabi-Yau, it becomes natural to ask whether there exists a grading on Γ so that we have equivalences:

D b (Λ) ∼ / / π CM Z (Γ) forget C d (Λ) ∼ / / CM(Γ). (0.1)
The typical strategy to answer these questions can be summarized in the following steps:

1. First one finds a d-cluster-tilting object in CM(Γ) so that the algebra End Γ (T ) is isomorphic to the d-preprojective algebra of some algebra Λ. The results of the previous chapter (especially Theorems 4.8, 4.5 and 5.1) are then very useful. 4. Finally, to deal with the graded version, one needs to find a good grading on Γ. It generally comes from the grading on End Γ (T ) Π (d+1) (Λ). Then either one uses a graded analogue of Theorem 1.1, or one shows the existence of a tilting object in the category CM Z (Γ). But in this last case, one also needs to show the commutativity of the above diagram.

The plan of this chapter is as follows. We first recall general results on the construction of the d-cluster category, its universal property, and its alternative description as a quotient of triangulated categories. In a second section, we consider the case where Γ is a preprojective algebra of a d-RF algebra. We give some generalisation in Section 3 in the case d = 2 for algebras Γ w associated with elements in the Coxeter group of a quiver. In the last section we consider the case where Γ is given by eΠe where Π is the (d + 1)-preprojective algebra associated with a d-RI algebra as in Theorem 5.1.

Cluster categories as quotient of triangulated categories

We refer to [START_REF] Amiot | On generalized cluster categories[END_REF] for a detailed construction of the generalized cluster category, and for motivation for this construction.

Universal property

By construction, the d-cluster category of a τ d -finite algebra Λ satisfies an universal property that will be essential in this chapter.

Theorem 1.1. [Kel05, Section 9.6][IO13, Thm A20] Let Γ be a DG algebra, and T be a thick subcategory of D(Γ). Let Λ be a τ d -finite algebra of global dimension ≤ d. Assume there exists an object M ∈ D(Λ op ⊗ Γ) and a morphism

M / / RHom Λ (DΛ, Λ) L ⊗ Λ M [d] in D(Λ op ⊗ Γ) (or a morphism RHom Λ (DΛ, Λ) L ⊗ Λ M [d]
/ / M ) whose cone lies in T when viewed as an object in D(Γ). Then there is a triangle functor C d (Λ) → D(Γ)/T making the following diagram commutative

D b (Λ) - L ⊗ Λ M / / π D(Γ) C d (Λ) / / D(Γ)/T
This universal property permits to exhibit alternative constructions of the d-cluster category using DG-algebras.

Using higher trivial extensions algebras

The first one uses an higher analogue of the trivial extension of Λ. Definition 1.2. [IG] Let Λ be a finite dimensional algebra of finite global dimension. The (d + 1)-trivial extension of the algebra Λ is defined to be the Z-graded algebra

T (d+1) Λ := Λ ⊕ DΛ(-d -1),
where the multiplication is given as (a, f ).(b, g) = (ab, ag + f b). Hence, forgetting the grading, T (d+1) (Λ) is the usual trivial extension of Λ.

The graded algebra T (d+1) Λ can be viewed as a DG-algebra with zero differential. And we have the following result.

Proposition 1.3. [Ami, Section 7.3] Let Λ be a finite dimensional algebra of global dimension ≤ d which is τ d -finite, then there is an equivalence of triangulated categories :

C d (Λ) thick D(T DG (d+1) ) (Λ) per(T DG (d+1) )
where T (d+1) = T (d+1) (Λ) and where thick D(T DG (d+1) ) (Λ) is the thick subcategory in D(T DG (d+1) ) generated by the object Λ viewed as an object in D(T DG (d+1) ).

This description can be understood as follows. Since Λ has finite global dimension, the projection map p : T (1) → Λ induces an equivalence of triangulated categories by [START_REF] Happel | Triangulated categories in the representation theory of finite-dimensional algebras[END_REF]:

D b (Λ) ∼ -→ mod Z (T 1 ) D b (mod Z T (1) ) per Z T (1)
.

The Serre functor of the category mod Z (T (1) ) is ν •[-1], and since we have D(T (1) ) T (1) (1) as graded T (1) -bimodules, we obtain an equivalence

D b (Λ) S d ∼ -→ mod Z (T (1) ) [-(d + 1)] • (1) .
Now one can check that there is an equivalence

D b (mod Z T (1) ) [-(d + 1) • (1)] D b (mod Z T (d+1) )) [-1] • (1) . Since the triangulated hull of D b (mod Z T (d+1) ) [-1] • (1) is the category D b (T DG (d+1) ) (see [KY16, Thm 1.3]),
we obtain an embedding of triangulated categories

C d (Λ) / / D b (T DG (d+1) ) per T DG (d+1)
.

Note that the equivalence of Proposition 1.3 can also be constructed using the universal property applied to the restriction functor D b (Λ) -→ D(T DG (d+1) ) of the natural projection T (d+1) → Λ, since we have a triangle in D(Λ op ⊗ T DG (d+1) )

S d Λ[-1] / / T (d+1) / / Λ / / S d (Λ) .
This was the argument used in [Ami] to prove the equivalence.

Using the higher derived preprojective algebras

The other description of the d-cluster category uses the derived (d + 1)-preprojective algebra of Λ.

Proposition 1.4. [Ami09, Thm 4.10][Guo11] Let Λ be a finite dimensional algebra of global dimension ≤ d which is τ d -finite, then there is an equivalence of triangulated categories :

C d (Λ) per Π D fd (Π) ,
where Π = Π d+1 (Λ) is the derived (d + 1)-preprojective algebra of Λ and where D fd is the subcategory of D(Π) of objects of finite dimensional total cohomology.

Note that here, the DG algebra Π d+1 (Λ) is infinite dimensional, so Π is not in D fd . Moreover, Π is homologically smooth, that is Π ∈ per Π e so we have an inclusion D fd (Π) ⊂ per Π.

The construction of the functor comes also here from the universal property (Theorem 1.1) applied with Γ = Π, and M = Π. Then there is a triangle in D(Λ op ⊗ Π)

Λ / / Π / / Θ ⊗ Λ Π / / Λ[1]
where Θ is the cofibrant replacement of the DG-bimodule RHom Λ e (Λ, Λ e )[d] as defined in 1.1. Since Λ is finite dimensional, it is in D fd (Π) and we obtain the following commutative diagram

D b (Λ) - L ⊗ Λ Π / / π per Π C d (Λ) ∼ / / per Π D fd (Π) .
In fact, it can be related to Proposition 1.3 as follows. On shows that there exists an isomorphism in the homotopy category of DG algebras (cf [Ami, Lemma 7.3.1])

RHom T (d+1) (Λ, Λ) Π (d+1) .
This makes the DG algebra Π (d+1) a Λ-Koszul dual of the DG algebra T d+1 . Therefore the functor RHom T (d+1) (Λ, -) induces the following diagram

per(T DG d+1 ) ∼ / / _ D fd (Π (d+1) ) _ thick D(T DG (d+1) ) (Λ) ∼ / / per Π (d+1) .
2 Preprojective algebra of RF-algebras

Case of 1-RF algebras

The first instance of an equivalence CM(Γ) C d (Λ) was given in my thesis for the stable module category of a preprojective algebra of Dynkin type. Such categories are 2-Calabi-Yau (see Theorem 4.1) and have cluster-tilting objects (see [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF]).

Theorem 2.1. Let Q be a Dynkin quiver. There exists a τ 2 -finite algebra Λ of global dimension ≤ 2 together with a triangle equivalence

C 2 (Λ) modΠ 2 (kQ).
In this result, the algebras Λ and kQ can be related as follows: Λ is the stable Auslander algebra of kQ, that is

Λ := End kQ (M ),
where M is a generator of the category mod kQ.

More 

Λ

Here the idempotent e corresponds to the projective objects in mod kQ.

Example 2.2. Let Q be the quiver 1 → 2 → 3. Then the above algebras Π 2 (kQ), Λ and Λ are given as follows. The idempotent e corresponds to black dots.

Π 2 (kQ)

• • • 0 1 0 1 kQ • • • Λ • • • • • • Λ • • • 2.

General d and graded version

Theorem 2.1 has been generalized by Iyama and Oppermann in the context of higher Auslander theory.

Theorem 2.3. [START_REF] Iyama | Stable categories of higher preprojective algebras[END_REF] Let A be a (d -1)-RF algebra. There exists a τ d -finite algebra Λ of global dimension ≤ 2 together with a commutative diagram of triangle functors

D b (Λ) π ∼ / / mod Z Π d (A) forget C d (Λ) ∼ / / modΠ d (A).
Here Λ and A are related as follows:

Π d (A) degree zero part / / A (d-1)-Auslander algebra / / d-preprojective algebra o o Λ -/ e / / e(-)e o o Λ Example 2.4. Let A be the Auslander algebra of the quiver A 3 , it is 2-RF. Π 3 (A) • • • • • • 0 0 0 0 0 0 1 1 1 A • • • • • • Λ • • • • • • • • • • Λ • • • • Using Happel's Theorem, the equivalence given in Theorem 2.3 corresponds to a triangle equivalence mod Z Π d (A) mod Z T 1 (Λ)
where T 1 (Λ) is the trivial extension of the algebra Λ. The graded algebras Π d (A) and T 1 (Λ) are far from being isomorphic (the rank of their Grothendieck group is not even the same). However, Iyama and Oppermann showed an equivalence

proj Z Π d (A) proj Z T (Λ).
This equivalence can be seen as follows in the example where A is the Auslander algebra of the path algebra of the quiver A 3 . The trivial extension of the algebra Λ is given by the quiver:

• • • • a b a * b * c c * with relations ba, cb,a * b * , b * c * aa * -b * b, bb * -c * c
The equivalence proj Z Π d (A) proj Z T 1 (Λ) can be seen in the following picture, considering the Z-covers of the algebras:

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Here the Z-action on Π d (A) is given by a horizontal translation, while the Z-action on T 1 (Λ) is given by sending a red fondamental domain to the next red one.

Note that Iyama and Oppermann proved in [START_REF] Iyama | Stable categories of higher preprojective algebras[END_REF] a more general version of Theorem 2.3 for τ d -finite algebras such that the preprojective algebra Π d (A) has Gorenstein dimension ≤ 1 (or equivalently satisfying a certain vanishing condition called vosnex property [AO15, Cor. 4.10]).

3 Coxeter group and CM modules

General w

In the case of a non Dynkin quiver, the preprojective algebra is not selfinjective anymore. However, one can construct Iwanaga-Gorenstein algebras from it using elements in the Weyl group of Q. The general construction is due to Buan, Iyama, Reiten and Scott [START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF], but some particular cases were studied by Geiss Leclerc and Schröer [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF].

Let Q be any acyclic quiver, and let W Q be the Weyl group associated to the graph of Q. It is the free group generated by s i , i ∈ Q 0 with the relations

• s 2 i = 1; • s i s j = s j s i if
there is no arrows between i and j;

• s i s j s i = s j s i s j if there is precisely one arrow between i and j.

Denote by Π := Π 2 (kQ) the preprojective algebra of Q, and for i ∈ Q 0 , define I i to be the two-sided ideal Π(1 -e i )Π.

Let w be an element in W Q . For w = s u 1 . . . s u a reduced expression of w, we define Π w := Π/I u . . . I u 1 . It is shown in [START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF] that the algebra Π w := Π w does not depend on the choice of the reduced expression of w, and that this algebra is Iwanaga Gorenstein of Gorenstein dimension ≤ 1. Therefore the restriction functor mod Π w -→ mod Π induces an equivalence of categories CM(Π w ) ∼ -→ Sub(Π w ) where Sub(Π w ) is the subcategory of mod Π of submodules of Π w seen as a Π-module. Moreover the stable category CM(Π w ) is 2-Calabi-Yau, and each reduced expression w gives rise to a cluster-tilting object M w in CM(Π w ) [BIRS09, Thm II.2.8].

Theorem 3.1. [START_REF] Amiot | The ubiquity of the generalized cluster categories[END_REF] Let Q be an acyclic quiver and let w be in W Q . Then for any w reduced expression of w, there exists a τ 2 -finite algebra Λ w such that we have a triangle equivalence

CM(Π w ) C 2 (Λ w ).
If Q is Dynkin, and if w is the longest element in W Q , then the algebra Π w is the preprojective algebra Π 2 (kQ). However, Theorem 3.1 is not a generalisation of Theorem 2.1. The algebra Λ w cannot be understood as a stable Auslander algebra.

It is constructed here as follows: to each choice of a reduced expression of w, let M w ∈ CM(Π w ) be the cluster-tilting object constructed in [START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF]. We fix an orientation of Q compatible with w in the following sense.

if there exists an arrow i → j, then t i < t j where t k is the last integer such that s

t k = s k in the reduced expression w = s u 1 . . . s u .
This choice of orientation induces a Z-grading on Π 2 (kQ) and thus on Π w . The cluster-tilting object M w comes from a natural graded object. We define

Λ w := End Z Πw (M w ) and Λ w := End Z Πw (M w ).
For this particular choice of grading on Π w , we obtain a graded analogue of Theorem 3.1.

Theorem 3.2 (Kimura). [Kim18, Kim17]
Let Q be an acyclic quiver whose orientation is compatible with a choice of a reduced expression w of w ∈ W Q . Then there is commutative diagram of triangle functors

D b (Λ w ) ∼ / / π CM Z (Π w ) forget C 2 (Λ w ) ∼ / / CM(Π w ).
Remark 3.3. A generalisation of Theorem 2.1 has been shown in [START_REF] Amiot | Preprojective algebras and c-sortable words[END_REF] for special elements w in W Q called co-c-sortable. In that case, one can construct an algebra Λ w as a stable Auslander algebras of a certain torsion class in mod kQ. It generalizes Theorem 2.1 in the following sense: in the case where Q is Dynkin, where c is the Coxeter element associated to the orientation of Q, and where w is a co-c-sortable expression of the longest element in W Q , we have an isomorphism Λ Λ w .

It is shown in [START_REF] Amiot | A derived equivalence between cluster equivalent algebras[END_REF] that the two different τ 2 -algebras constructed Λ w and Λ w are related by a sequence of 2-APR tilts, and so are derived equivalent.

Question

A natural question arising here is to understand the relations between the algebras Λ w and Λ w where the reduced expressions w and w represent the same element in W Q , so for instance when w and w differ by one braid relation.

Higher analogues for special w

Let us give some more details on the construction of the algebras Λ w and Λ w in the following case.

Let Q be a non Dynkin quiver, and c be the Coxeter element compatible with the orientation of Q as above. For n ≥ 2 we define w = c n . Then we have Π w

Π/ E ⊗n where E := Ext 1 kQ (DkQ, kQ).

For the construction of Λ w as in [START_REF] Amiot | Preprojective algebras and c-sortable words[END_REF] we have

Λ w =       kQ E • • • E ⊗n 0 kQ . . . . . . . . . E kQ       = End kQ (Π w )
and

Λ w =       kQ E • • • E ⊗n-1 0 kQ . . . . . . . . . E kQ       = End kQ (Π w ).
For the construction of Λ w as in [START_REF] Amiot | The ubiquity of the generalized cluster categories[END_REF], we have

Λ w = kQ ⊗ k k ← A n and Λ w = kQ ⊗ k k ← A n-1 .
For example, taking Q of type A 2 , and n = 3 one obtains the following Note moreover that Π d (A) is (1)-twisted bimodule d-Calabi-Yau as a graded algebra since A is d-RI. Hence it is bimodule (d + 1)-Calabi-Yau as a DG algebra. In fact, we even have an isomorphism

Λ w = • • • • • • • • • Λ w = • • • • • • • • • If
Π (d+1) (A) Π d (A)
in the homotopy category of DG algebras. Thus, when A is (d -1)-RI, we have an equivalence

C d (A) per(Π d (A) DG ) D fd (Π d (A) DG ) .
These results have a more general analogue in [Han] for (a)-twisted bimodule d-Calabi-Yau graded algebras.

Further directions

All these results leads naturally to the following generalisations.

Let A be a (d -1)-RI algebra, and n ≥ 2. Define the following algebras

• Π d,n (A) := Π d (A) E ⊗n where E = Ext d-1 A (DA, A); • Λ d,A,n =       A E • • • E ⊗n-1 0 A . . . . . . . . . E A       = End kQ (Π d,n (A)). • Λ d,A,n = A ⊗ k k ← A n-1 .
It is then natural to ask the following Are there triangle equivalences

CM(Π d,n (A)) C d (Λ d,A,n ) C d (Λ d,A,n ) ?
Are the algebras Λ d,A,n and Λ d,A,n related by d-APR tilts ?

We could also try, following [Han], to generalize the situation for higher Gorenstein parameters.

CM over isolated singularities 4.1 General result

Another source of examples comes from algebraic geometry: Auslander showed in [START_REF] Auslander | Functors and morphisms determined by objects, Representation theory of algebras[END_REF] (see also [START_REF] Yoshino | Cohen-Macaulay modules over Cohen-Macaulay rings[END_REF]) that the stable category of (maximal) Cohen-Macaulay modules over a commutative isolated d-dimensional local Gorenstein singularity is (d-1)-Calabi-Yau. Using higher analogues of Auslander-Reiten theory, Iyama proved the existence of (d -1)-cluster-tilting objects for quotient singularities in [START_REF] Iyama | Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories[END_REF]. Similar results have been proved for some three dimensional hypersurface singularities in [START_REF] Burban | Cluster tilting for one-dimensional hypersurface singularities[END_REF], (see also [START_REF] Iyama | Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras[END_REF][START_REF] De Völcsey | Explicit models for some stable categories of maximal Cohen-Macaulay modules[END_REF]).

In this section, we discuss the case where the Iwanaga-Gorenstein algebra R is given as in Theorem 5.1. Under some further assumption on the idempotent e, we obtain the following.

Theorem 4.1. [AIR15] Let Λ be a finite dimensional d-RI algebra, such that the corresponding (d + 1)-preprojective algebra Π := Π d+1 (Λ) is Noetherian. Asume moreover that there exists an idempotent e ∈ Λ such that

• Π := Π/ΠeΠ is finite dimensional; • eΛ(1 -e) = 0.
Then the algebra Λ := Λ/ΛeΛ is τ d -finite and we have a diagram of triangle functors The theorem states that we have triangle equivalences

D b (Λ) ∼ / / π CM Z (R) forget C d (Λ) ∼ / / CM(R)
D b (kQ) ∼ / / π CM Z (k[x, y] G ) forget C 1 (kQ) ∼ / / CM(k[x, y] G )

,

Here the functor S 1 is the AR translation of the derived category, and since kQ is hereditary, the 1-cluster category is the orbit category D b (kQ)/S 1 which is k-equivalent to the category of the projective modules over the preprojective algebra Π 2 (kQ). So the bottom equivalence (seen as an equivalence of k-categories) is the well-known result due to Reiten and Van den Bergh [START_REF] Reiten | Finite-dimensional algebras and singularities, Singularities, representation of algebras, and vector bundles[END_REF][START_REF] Reiten | Two-dimensional tame and maximal orders of finite representation type[END_REF]. The above equivalence (seen as an equivalence of k-categories) was also already proved in [START_REF] Lenzing | Extended canonical algebras and Fuchsian singularities[END_REF] and [START_REF] Kajiura | Matrix factorization and representations of quivers. II. Type ADE case[END_REF], since we clearly have D b (kQ) proj Z (Π 2 (kQ)) as k-categories.

Beilinson algebras for general d

For general d, we can come back to Example 5.4 in Chapter 1 with Λ being the d-Beilinson algebra where we take e = e 0 which clearly statisfies the hypothesis.

We obtain triangle equivalences

CM Z (R) D b (Λ) and CM(R) C d (Λ),
where R is the (d + 1)-Veronese algebra, and where Λ is given by the quiver

1 2 3 d -1 d x 0 x 2 x d x 0 x 1 x d x 0 x 1 x d with the relations x i x j = x j x i .

Dimer models

The situation also applies to dimer models in the setup of Corollary 5.6 in Chapter 1, if there exists an idempotent e such that Π/ΠeΠ is finite dimensional and with eΛ(1 -e) = 0.

Let us come back to Example 5.7 in Chapter 1. The vertex 1 is a source in the quiver of Λ, so e 1 Λ(1 -e 1 ) = 0. Moreover, the algebra Π = Π/Πe 1 Π is the path algebra of an acyclic quiver, so it is finite dimensional. Therefore we can apply Theorem 4.1 and we obtain a triangle equivalence C 2 (Λ) CM(R) where Λ is the path algebra of the quiver 2 / / / / 3 / / / / 4 , and where R is the homogenous coordinates algebra on P 1 × P 1 .

Orlov decomposition and recollement

In this section, we explain how the restriction functor D b (Λ) -→ D b (Λ) can be seen as a "non commutative" analogue of Orlov's orthogonal decomposition theorem [START_REF] Orlov | Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry[END_REF]. We refer to [START_REF] Amiot | Singularity categories, Preprojective algebras and orthogonal decompositions, Algebras, Quivers and Representations[END_REF] for more details.

Here is a result which gives a geometric interpretation of the category D b (Λ). where qgrΠ := mod Z Π/ fd Z Π is the category of graded tails of Π. Now, assume that e is as in Theorem 4.1. Since the algebra Π/ΠeΠ is finite dimensional, the functor mod Z Π → mod Z R which is a right multiplication by e, induces an equivalence qgr(Π) qgrR.

The second assumption, stating that eΛ(1 -e) = 0 ensures that there is an embedding

D b (Λ) → D b (Λ).
Therefore combining Theorems 4.1 and 4.2 we obtain an embedding CM Z (R) → D b (qgrR). If eΛe = k, I show in [START_REF] Amiot | Singularity categories, Preprojective algebras and orthogonal decompositions, Algebras, Quivers and Representations[END_REF] that this embedding is the one constructed by Orlov in [START_REF] Orlov | Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry[END_REF] for graded commutative Noetherian rings of Gorenstein parameter 1.

In this case, we even get a recollement The recollement above becomes

CM(R) / / D b (qgrR) o o o o / / D b (k)
CM(R) / / D b (cohP d ) o o o o / / D b (k) o o o o .
Chapter 3

Derived categories as graded cluster categories (Case d = 2)

As mentionned in Chapters 1 and 2, the cluster category C d (Λ) of a τ d -finite algebra Λ is a d-Calabi-Yau triangulated category with d-cluster-tilting objects. The structure of such categories is very rich and can be summarized as these three (intentionnally imprecise) statements:

• lots of information of the entire category is encoded in a single cluster-tilting object;

• one can construct inductively new cluster-tilting objects from an initial one by performing an operation called mutation;

• the situation is especially nice for d = 2, since the mutation of cluster-tilting objects is encoded via mutation of quivers and mutation of quivers with potential.

The leading idea of this chapter is to use the cluster-tilting machinery not for the cluster category C d (Λ) but rather for the derived category D b (Λ). Indeed the category D b (Λ) can be understood as the graded analogue of C d (Λ) (where the grading is played by the endofunctor S d ). It has a natural cluster-tilting subcategory U d Λ := π -1 (πΛ) given by the preimage of the canonical d-cluster-tilting object π(Λ) in C d (Λ) by the triangle functor

π : D b (Λ) -→ C d (Λ).
Therefore we have andU d Λ can be understood as the Z-covering of the (d + 1)-preprojective algebra Π d+1 (Λ) with its natural Z-grading.

U d Λ := add{S p d Λ, p ∈ Z} = add π -1 (π(Λ)),
The plan of this chapter is as follows. In a first section, we recall general results of d-clustertilting theory in triangulated categories, mainly due to Iyama and Yoshino [START_REF] Iyama | Mutation in triangulated categories and rigid Cohen-Macaulay modules[END_REF]. We then concentrate on the case d = 2, and with the link with mutation of quivers and quivers with potential. In a second section, we describe the main results of [START_REF] Amiot | The image of the derived category in the cluster category[END_REF] where we investigate the image of the functor π. The third section is dedicated to the results of [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF]: we define the notion of graded mutation (which refines the notion of mutation of QPs) in order to encode the cluster-tilting mutation in the derived category. This allows us in particular to describe a new tool that detects whether two τ 2 -finite algebras are derived equivalent. Graded mutation is strongly used in Chapter 4.

Cluster-tilting theory in triangulated categories

Before concentrating on the case d = 2, we recall some very general results on d-cluster-tilting theory, mainly due to Iyama and Yoshino in this generality [START_REF] Iyama | Mutation in triangulated categories and rigid Cohen-Macaulay modules[END_REF].

In all the section, we assume that T is a Hom-finite triangulated category with a Serre functor, that we denote by S. We denote by S d := S[-d] the autoequivalence. A first observation concerning subcategories, is the fact that any d-cluster-tilting subcategory is stable under the functor S d ([IY08, Prop 3.4] ).

Approximation (d + 1)-angles

An interesting aspect of a d-cluster-tilting subcategory is the fact that it plays the role of 'projective-injective" objects in the category T in the following sense: every object sits in a approximation (d + 1)-angle with objects in U. More precisely for any X ∈ T , there exist maps

X d+1 = 0 X d X 2 X 1 X 0 = X T d T 2 T 1 T 0 + + +
where each T i is in U and where for each i = 0, . . . , d -1

X i+1 g i / / T i f i / / X i / / X i+1 [1]
is a triangle, the map f i is a left U-approximation and the map g i is a right U-approximation.

In other words we have the equality (cf [IY08, Thm 3.1])

U * U[1] * • • • * U[d -1] = T ,
where X * Y is the full subcategory generated by cones of maps from Y[-1] to X .

Then, morally at least, the knowledge of a d-cluster-tilting subcategory should be enough to recover the entire category T . This is in fact more complicated, especially because of the fact that cones are not functorial in a triangulated category: the knowledge of a d-cluster-tilting subcategory is enough to understand the objects in T , but not all the morphisms. Proposition 0.1 of Chapter 2 is a consequence of these approximation triangles.

However in general, it is not known whether two triangulated categories having equivalent d-cluster-tilting subcategories are equivalent, except in the case d = 2 and where the endomorphism algebra of d-cluster-tilting subcategory is hereditary (see [START_REF] Keller | Acyclic Calabi-Yau categories[END_REF]). This has recently be generalized by Kalck and Yang in higher Calabi-Yau dimension, in the case where the endomorphism algebra of the d-cluster-tilting object is the path algebra of a tree (see Theorem 5.7 of [KY]) with some extra vanishing conditions and when the characteristic of the field is zero.

The module category mod U

We denote by mod U the category of finitely presented functors U op → Modk.

If U is a d-cluster-tilting subcategory, we have just seen that the category T can be built from U by iterated cones. So one can wonder how the pieces U[ ] * U[ + 1] are related with U. The answer is given by Proposition 1.1. [IY08, Cor 6.4] The natural functor

T -→ mod U T → Hom(-, T ) | U induces an equivalence U[ ] * U[ + 1] U[ + 1] ∼ -→ mod U.
The situation is here especially nice for the case d = 2 and for a 2-cluster-tilting object T . In that case we obtain an equivalence (see [START_REF] Keller | Cluster-tilted algebras are Gorenstein and stably Calabi-Yau[END_REF]).

T

add T [1] mod End T (T ).

Mutation of d-cluster-tilting subcategories

The other important aspect of d-cluster-tilting object is the notion of mutation. If we remove an indecomposable summand of a d-cluster-tilting object, (or a S d -orbit in an indecomposable of a d-cluster-tilting subcategory), there exists a systematic way to replace it to get a new d-cluster-tilting object (resp. subcategory). This can precisely be formulated as follows:

Theorem 1.2. [IY08, Thms 5.3 and 5.8] Let U = U ∪ {S p d X, p ∈ Z} be a d-cluster-tilting subcategory, with X indecomposable.

1. if d = 2 then U is contained in exactly two 2-cluster-tilting subcategories denoted by U and µ X (U).

2. under the condition that X has no loops in U, then U is contained in exactly d d-clustertilting subcategories denoted by µ i X (U), i ∈ Z/dZ.

The operation µ X , the mutation, can be explicitely described in terms of exchange (d + 1)angles.

The "no loop" condition means that the exchange (d + 1)-angle associated to X coincides with the AR-(d + 1)-angle of X in U, that is, there is no summands in {S p d X, p ∈ Z} appearing in the middle terms of the AR-(d + 1)-angle on X. For the case d = 2, it is equivalent to the fact that the quiver of U contains no arrows from X to some S p X for any p, so in the 2-CY case, it is equivalent to the fact that the quiver of U contains no loop at X.

The case d = 2

The case d = 2 is especially nice since the mutation of cluster-tilting objects can be understood combinatorially.

Quiver mutation

For a 2-cluster-tilting subcategory U = U ∪ {S p d X, p ∈ Z} where X is indecomposable summand, the category µ X (U) can be computed from U as U ∪ {S p d X L , p ∈ Z} where X L appears in a triangle

X u / / B v / / X L w / / X[1]
where u is a minimal left U -approximation. It can also be computed as U ∪ {S p d X R , p ∈ Z} where X R appears in a triangle

X R u / / B v / / X w / / X R [1]
where v is a minimal right U -approximation. As a direct consequence, we obtain that there exists p ∈ Z such that X L S p d (X R ). The situation is then easier in the 2-Calabi-Yau setting, where X R and X L coincide.

These two special triangles are called exchange triangles. They have been first described by Buan, Marsh, Reineke, Reiten and Todorov (see [BMRRT06, Proposition 6.9]) for cluster categories. The corresponding exchange short exact sequences in module categories over a preprojective algebra of Dynkin type appeared also in the work of Geiss, Leclerc and Schröer (see [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF]Lemma 5.1]). The general statement is due to Iyama and Yoshino [IY08, Theorem 5.3]. This recursive process of mutation of cluster-tilting objects, especially in the context of 2-Calabi-Yau categories is closely related to the notion of mutation of quivers defined by Fomin and Zelevinsky [START_REF] Fomin | Cluster algebras. I. Foundations[END_REF] which was the original motivation of cluster categorification.

Theorem 1.3 (Buan-Iyama-Reiten-Scott [START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF]). Let C be a Hom-finite 2-CY triangulated category with cluster-tilting object T . Let T i be an indecomposable direct summand of T , and denote by T the cluster-tilting object µ T i (T ). Denote by Q T (resp. Q T ) the Gabriel quiver of the endomorphism algebra End C (T ) (resp. Q T ).Assume that there are no loops and no 2-cycles at the vertex i of Q T (resp. Q T ) corresponding to the indecomposable T i (resp. T * i ). Then we have

Q T = µ i (Q T ),
where µ i is the Fomin-Zelevinsky quiver mutation.

We illustrate this result by the following diagram. 

Q T o o FZ-mutation / / Q T
The corresponding results have been first shown in the setting of cluster categories in [START_REF] Buan | Cluster mutation via quiver representations[END_REF] and in the setting of preprojective algebras of Dynkin type in [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF].

These results have been generalized for d-cluster categories of acyclic type (see [BT09, ZZ09, Wra09]). The combinatorics of this process is much more technical and can be encoded via mutation of coloured quivers.

Mutation of quiver with potential

Let (Q, W ) be a Jacobi-finite quiver with potential, that is a quiver with potential such that the corresponding Jacobian algebra is finite dimensional. The Ginzburg DG algebra Γ (Q,W ) is a homologically smooth bimodule 3-Calabi-Yau DG-algebra which is negatively graded [START_REF] Keller | Deformed Calabi-Yau completions, With Appendix by Michel Van den Bergh[END_REF]. The construction of the 2-cluster category can be applied to obtain a generalized cluster category

C (Q,W ) := per Γ D fd Γ
which is 2-Calabi-Yau and has cluster-tilting objects [Ami]. We refer to [START_REF] Amiot | On generalized cluster categories[END_REF] for more details on the generalized cluster category associated with quiver with potential and Ginzburg DG algebras. Note that in a recent paper [KY], Kalck and Yang have shown that in characteristic zero, any triangulated d-Calabi-Yau category with a d-cluster-tilting is equivalent to a quotient per Γ D fd Γ for some DG algebra Γ with similar properties as a higher analogue of a Ginzburg algebra.

A notion of mutation of QPs is defined in [START_REF] Derksen | Quivers with potentials and their representations[END_REF]. The link with generalized categories is given in the following theorem.

Theorem 1.4. [START_REF] Keller | Derived equivalences from mutations of quivers with potential[END_REF] Let (Q, W ) be a Jacobi-finite reduced QP, and i a vertex of Q such that there is no loops, nor 2-cycles at i in Q. Denote by (Q , W ) = µ i (Q, W ) the mutation of the QP (Q, W ) at vertex i in the sense of Derksen-Weyman-Zelevinsky. Then there is a triangle equivalence

C (Q,W ) C µ i (Q,W )
sending the canonical cluster-tilting object

Γ (Q,W ) on µ i (Γ (Q ,W ) ).
When combining this result with Theorem 2.4, we obtain two consequences for the cluster category of a τ 2 -finite algebras.

Corollary 1.5. Let Λ be a τ 2 -finite algebra. Denote by ( Q, W ) the QP associated to Π 3 (Λ) as in Theorem 2.4. Let T be a cluster-tilting object in C := C 2 (Λ) obtained from π(Λ) by a sequence of mutations s = i 1 , . . . , i n . If for each 0 ≤ ≤ n there is no 2-cycle at i in the quiver of End C (T -1 ), where the T are the iterated mutate of π(Λ), then there is an isomorphism

End C (T ) Jac(µ s ( Q, W )).
Note that a similar result has been proved by Buan, Iyama, Reiten and Smith in [START_REF] Buan | Mutation of cluster-tilting objects and potentials[END_REF] in the setup of a 2-Calabi-Yau category with a cluster-tilting object having a Jacobian endomorphism algebra. It is more general in that sense, but they need in the proof a technical condition (the glueing condition) which may be complicated to check in examples.

Corollary 1.6. Let Λ and Λ be τ 2 -finite algebras. Denote by ( Q, W ) (resp. ( Q , W )) the QP associated to Π 3 (Λ) (resp. Π 3 (Λ )) as in Theorem 2.4. If there exists a sequence of mutation (with no 2-cycles on each mutated vertex of the sequence of mutated quivers), then there is an equivalence C 2 (Λ) C 2 (Λ ).

One important remark about this result is the fact that the converse statement is not known.

It is an open question to know whether the cluster-tilting graph is connected for a category C 2 (Λ). It is true for Λ hereditary (see [START_REF] Buan | Tilting theory and cluster combinatorics[END_REF] and [START_REF] Happel | On the set of tilting objects in hereditary categories[END_REF]). Some counter-examples have been discovered for cluster categories associated with some QP [START_REF] Plamondon | Cluster algebras via cluster categories with infinite-dimensional morphism spaces[END_REF], but these are not cluster categories associated with a τ 2 -finite algebra.

2 The image of the functor π

A conjecture

The aim of the article [START_REF] Amiot | The image of the derived category in the cluster category[END_REF] is to understand the image of the functor π : D b (Λ) -→ C 2 (Λ). In particular we are interested to understand when the functor π is dense. Indeed the construction of the triangulated hull of an orbit category is difficult to manipulate in practice, since it uses DG-enhancement. The cluster category becomes much simpler for computation when it is equal to the orbit category D b (Λ)/S 2 . By [START_REF] Keller | On triangulated orbit categories[END_REF], it is the case when the algebra Λ is piecewise hereditary, that is when the category D b (Λ) is equivalent to some category D b (H) where H is a hereditary category. In the paper [START_REF] Amiot | The image of the derived category in the cluster category[END_REF], we aim to prove the converse statement.

Coming back to Proposition 1.1 applied for the cluster-tilting subcategory U := U 2 Λ of D b (Λ) we obtain the following commutative diagram, where Π is the 3-preprojective algebra of Λ, and mod Z Π is the category of graded modules over Π (which can be identified to the category mod U by the above remark).

D b (Λ) Hom D (U ,-) / / π mod Z Π forget C 2 (Λ) Hom C (πΛ,-) / / mod Π .
We first make the following observation :An object X ∈ C 2 (Λ) is in the image if and only if its image Hom C (πΛ, X) ∈ mod Π is a gradable module.

The conjecture leading the work in [START_REF] Amiot | The image of the derived category in the cluster category[END_REF] becomes then as follows:

Conjecture 2.1. Let Λ be a τ 2 -finite algebra, and Π be the 3-preprojective algebra of Λ. Then Λ is piecewise hereditary if and only if any Π-module is gradable.

A very similar conjecture has been already stated by Skowronski [Sko] concerning the trivial extension algebra, instead of the 3-preprojective algebra.

Properties of objects in the image

We first discuss different properties satisfied by the objects in the image of π.

Proposition 2.2. Let Λ be a τ 2 -finite algebra. Let X be an idecomposable object in C 2 (Λ).

1. X is in the image of π if and only if all objects in its AR-component are;
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2. if X is not in the image of π, then there exists a one parameter family (X α ) α∈k × of objects in C 2 (Λ) which are not in the image and such that for any α, X α X β for finitely many β.

Using these results, we prove the direct direction of the conjecture in different cases:

• when some objects satisfy a certain fractional CY property (see [AO13a, Thm 6.1])

• when the quiver of Λ has an oriented cycle [AO13a, Thm 7.1]);

• and for surface cut algebras (see Proposition 2.13 in Chapter 4).

Cluster-tilting objects

From 2. of Proposition 2.2, we can deduce the following.

Proposition 2.3. Let Λ be a τ 2 -finite algebra of global dimension ≤ 2. Let X be an indecomposable object in C 2 (Λ) which is a summand of a cluster-tilting object, then X is in the image of π. As a consequence the functor π induces a bijection

{2-cluster-tilting objects in C 2 (Λ)} ←→ {2-cluster-tilting subcat. in D b (Λ)}.
In the derived category D b (Λ) we can also construct approximation triangles (see subsection 1.1), and exchange triangles (see subsection 1.4), and their image through π are approximation and exchange triangles respectively.

As a consequence, cluster-tilting combinatorics of the category C 2 (Λ) is encoded in the derived category D b (Λ).

Note that it is not completely clear that Proposition 2.3 holds for general d.

3 Mutation in derived categories

Recognition theorem

As we have seen in Proposition 0.1 in Chapter 2, to construct an equivalence between two triangulated categories with a cluster-tilting subcategory, one needs to construct a functor which restricts to an equivalence on the cluster-tilting subcategories. Constructing such a functor can be in general difficult.

The key result in [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] is the fact that the existence of such a functor is not needed if one of the category is D b (Λ) with Λ a τ 2 -finite algebra.

Theorem 3.1. [AO14, Thm 3.5] Let T be a Hom-finite algebraic triangulated category with a Serre functor S and with a cluster-tilting subcategory V. If there exists a τ 2 -finite algebra Λ together with an equivalence f : U Λ V commuting with the action of S 2 := S[-2], then there exists an equivalence F : D b (Λ) T .

The proof of this theorem uses strongly the existence of approximation triangles. We introduce the category MorV of radical morphisms in V. This category is not exactly the category T since the cones are not functorial in general, however, the cone map MorV → T induces a bijection on objects. This is enough in this setup to prove that the object f (Λ) ∈ V is a tilting object in the category T .

Graded mutation

The graded category U Λ ⊂ D b (Λ) is the graded covering of the graded algebra Π 3 (Λ), which is by Theorem 2.4, isomorphic to a graded Jacobian algebra.

Given an indecomposable summand T i in a cluster-tilting subcategory V ⊂ D b (Λ), taking right or left V \ add{S p 2 T i , p ∈ Z}-approximation maps gives two different replacement for T i :

T i u / / B v / / T L i w / / T i [1] and T R i u / / B v / / T i w / / T R i [1]
which are in the same S 2 -orbit. We aim in [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] to answer the following question: If V is the covering of some graded Jacobian algebra, is the new category µ i (V) still the covering of a graded Jacobian algebra ?

We need for that a few definitions.

Definition 3.2. A graded QP (Q, W, d) is a QP (Q, W ) together with a map d : Q 1 → Z such that W is homogenous of degree 1.
Definition 3.3. Let (Q, W, d) be a graded QP, and i ∈ Q 0 such that there is no loop, nor 2-cycle at i in Q. We define the left mutation • the unchanged arrows keep the same grading;

µ L i (Q, W, d) = (Q , W ,
• the potential W = W * + [W ] is defined as in [START_REF] Derksen | Quivers with potentials and their representations[END_REF].

We can dually define right mutation µ R i , by exchanging the degree formula of the first 2 items.

One immediately observes that W is homogenous of degree 1, so (Q , W , d ) is a graded QP. Similary to [START_REF] Derksen | Quivers with potentials and their representations[END_REF], one can define reduced and trivial graded QPs, and prove that any graded QP is graded right equivalent to direct sum of a reduced and a trivial QP. Therefore the reduced part of µ L i (Q, W, d) is still a graded QP. Here is a graded analogue of Corollary 1.5 which gives an answer to the above question.

Proposition 3.4. [AO14, Thm 6.12] Let Λ be a τ 2 -finite algebra. Denote by ( Q, W, d) the QP associated to Π 3 (Λ) as in Theorem 2.4. Let T be an object in D b (Λ) obtained from Λ by a sequence of left/right mutations i 1 , . . . , i n . If for each 0 ≤ ≤ n there is no 2-cycle at i in the quiver of End C (T -1 ), where the T are the iterated mutate of π(Λ), then there is an isomorphism of graded algebras p∈Z

Hom D b (Λ) (T, S -p 2 T )) Jac(µ L,R s ( Q, W, d)).

Graded mutation and derived equivalences

Combining Proposition 3.4 together with Theorem 3.1, we obtain the graded analogue of Corollary 1.6.

Corollary 3.5. [AO14, Cor 6.14] Let Λ 1 and Λ 2 be τ 2 -finite algebras of global dimension ≤ 2.

Denote by (Q 1 , W 1 , d 1 ) and (Q 2 , W 2 , d 2 ) the corresponding graded quivers with potential. If there exists a sequence a left/right mutation from (Q 1 , W 1 , d 1 ) to (Q 2 , W 2 , d 2 ) (with no 2-cycle on each mutated vertex of the sequence of mutated quivers), then there is a triangle equivalence

D b (Λ 1 ) D b (Λ 2 ).
If moreover (Q 1 , W 1 ) is mutation acyclic (that is mutation equivalent to an acyclic quiver), then the converse holds.

Here again, the obstruction for the converse direction comes from the open question about the connectedness of the cluster-tilting graph. Note that if a quiver Q is acyclic, then the mutation at i of the QP (Q, 0), when i is a source or a sink, is (R i (Q), 0) where R i is the reflection of the quiver Q at i. So Corollary 3.5 can also be understood as a generalisation of the following well-known result: Theorem 3.6. [START_REF] Happel | On the derived category of a finite-dimensional algebra[END_REF] Let Q and Q be two acyclic quivers. Then there exists a derived equivalence D b (kQ) D b (kQ ) if and only if Q and Q can be related by a sequence of reflections.

Example 3.7. For example, we can classify the τ 2 -finite algebras whose cluster category is of type A 2,2 . They belong in two different derived equivalence classes. The first class contain eight non isomorphic algebras given as follows. To start with, let us consider the situation where the sequence of mutations is empty, that is when there is an isomorphism of algebras

Π := Π 3 (Λ 1 ) Π 3 (Λ 2 ).
Then we get two different gradings on the algebra Π. Assume that these two gradings can be lifted to a Z 2 -grading (d 1 , d 2 ) on the algebra Π and thus on the quiver of Π (this is a priori not always possible, two Z-gradings on an algebra do not give rise in general to a Z 2 -grading on it). Then the degree map d 2 (resp. d 1 ) induces a grading on the degree 0 part of Π with respect to d 1 (resp. d 2 ), that is on Λ 1 (resp. Λ 2 ). Then using a graded analogue of Theorem 3.1, we prove in the last section of [AO14] that we have a triangle equivalence

D b (mod Z Λ 1 ) D b (mod Z Λ 2 ).
Coming back to the general situation, assume that the QPs (Q 1 , W 1 ) and (Q 2 , W 2 ) can be related by a sequence of mutations (without 2-cycles on each mutated vertex). Using graded mutations, we obtain two different gradings on the preprojective Π 3 (Λ 1 ), one given by the tensor algebra grading, and one given by mutating the graded QP (Q 2 , W 2 , d 2 ). Once again, we have to assume that this grading lifts to a Z 2 -grading on the quiver of Π 3 (Λ 1 ) (this condition is called compatibility condition in [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF]). This Z 2 -grading gives a Z-grading on Λ 1 . Using a notion of Z 2 -graded mutation of Z 2 -graded QPs (which is a straitforward generalisation of the left/right mutation), we obtain a Z 2 -grading on (Q 2 , W 2 ), and then a Z-grading on Λ 2 (so in other words the compatibility condition is symmetric in Λ 1 and Λ 2 ). Theorem 8.7 of [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] states that we have a triangle equivalence D b (mod

Z Λ 1 ) D b (mod Z Λ 2 ).
We can also try to understand the meaning of these different gradings through the derived equivalences. The graded shift functor (1) in the category D b (mod Z Λ 1 ) is equivalent to the functor S -1 2 • (-1) in the category D b (mod Z Λ 2 ). These isomorphism of functors can be lifted at the DG category level, hence we obtain a triangle equivalence

D b (Λ 1 ) D b (mod Z Λ 2 ) S 2 (1) ∆ .
This implies that this equivalence is compatible with the equivalence constructed by Keller and Yang in Corollary 1.6, that is we have the following commutative diagram :
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Acyclic case

The situation is particularly nice when the QP associated to Λ is mutation equivalent to an acyclic quiver. Indeed, in this case, we automatically obtain that the QP is rigid, so the condition on 2-cycles does not need to be checked. Morover the compatibility condition is also automatically satisfied, since two Z-gradings on a quiver induce a Z 2 -grading on it.

Example 3.8. Coming back to example 3.7, we can apply the result below for the algebras Λ 3 and Λ 10 . By the graded mutations Moreover, if the quiver is a tree, one easily shows that any two Z-gradings on a tree can be related by a sequence of left/right mutations. As a corollary, we obtain the following Corollary 3.9. [START_REF] Amiot | Algebras of acyclic cluster type: tree type and type A tilde[END_REF] Let Λ be a τ 2 -finite algebra such that the QP associated to Π 3 (Λ) is mutation equivalent to a quiver Q whose underlying graph is a tree. Then Λ is derived equivalent to kQ.

The first non trivial case beyond the tree type arises in type A n , where two gradings on a quiver are not necessary linked by a sequence of left/right mutations. In that case, we prove that the equivalent classes of gradings on a quiver of type A n are parametrized by Z. As we will see in the next part of this memoir, this parameter has different interpretations, using either the AG invariant of [START_REF] Avella-Alaminos | Combinatorial derived invariants for gentle algebras[END_REF], or a geometric interpretation using line fields on the annulus, and winding numbers.

Chapter 4

Triangulated marked surfaces

As seen in the previous chapters, cluster combinatorics appear naturally in triangulated categories with cluster-tilting objects. But they also appear naturally in topology through flips and triangulations of surfaces. More precisely, following [START_REF] Fomin | Cluster algebras and triangulated surfaces. Part I: Cluster complexes[END_REF] (resp. [START_REF] Labardini-Fragoso | Quivers with potentials associated to triangulated surfaces[END_REF]) one can associate to any triangulated surface a quiver (respectively a QP), and the operation of flipping an arc of the triangulation corresponds to the mutation of the associated quiver (resp. QP). It becomes then quite natural to investigate whether one can link more directly cluster categories with the surface. This is the main idea of topological model: one constructs a dictionnary between categories and surfaces, and interprets algebraic operations in term of topological operations.

In the first section of this Chapter, we concentrate on cluster categories associated to triangulated surfaces with non-empty boundary. We first recall results in the case where all marked points are located on the boundary of the surface (the unpunctured case). In this case, the cluster category is very close to the module category of a gentle algebra. Therefore one can obtain a topological description of indecomposable objects of the category [ABCP10, BZ11], and of morphisms [START_REF] Canakci | Extensions in Jacobian Algebras and Cluster Categories of Marked Surfaces, with an appendix by C. Amiot[END_REF][START_REF] Canakci | Mapping cones in the bounded derived category of a gentle algebra[END_REF]. We then focus on the punctured case which is treated in a joint work with Pierre-Guy Plamondon [AP]. We use the skew-group algebra construction to see the punctured surface as an orbifold with 2-folded cover. This permits us to obtain a complete description of the indecomposable objects in topological terms.

In a second part of this chapter, we show that any cluster category of a surface can be interpreted as a 2-cluster category of a τ 2 -finite algebra, that we call surface cut algebra. We apply results on graded mutation in [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] (see Chapter 3) in order to get derived invariants of surface cut algebras. The annulus case is treated in [START_REF] Amiot | Algebras of acyclic cluster type: tree type and type A tilde[END_REF], the unpunctured case in [START_REF] Amiot | Derived invariants for surface algebras[END_REF] and [START_REF] Amiot | The derived category of surface algebras: the case of the torus with one boundary component[END_REF], and the punctured case in [START_REF] Amiot | Derived invariants for surface cut algebras II: the punctured case[END_REF].

Cluster categories from triangulated surfaces 1.Definition

A marked surface (S, M, P) is an oriented surface S with non-empty boundary, together with a finite set of marked points M on the boundary such that there is at least one marked point on each boundary component, and a finite set of marked points P in the interior of S, called the punctures. A curve on the boundary of S intersecting marked points only on its endpoints is called a boundary segment. An arc on (S, M, P) is the homotopy class of a curve on S, with endpoints in M ∪ P and without selfintersection (except for the endpoints), which is not homotopic to a boundary segment. Two arcs are admissible if there exists some representative that do not cross in the interior of the surface. A triangulation is a maximal collection of pairwise admissible arcs. It cuts out the surface into triangles.

To each triangulation ∆, one can associate a quiver with potential (Q ∆ , W ∆ ). It is given as follows when ∆ does not contain any self-folded triangle:

• the vertices of Q ∆ are in bijection with the set of arcs of ∆.

• for each consecutive arcs i and j in counterclockwise direction around a marked point, one puts an arrow i → j.

For each internal triangle τ of ∆, there exists a 3-cycle c τ ∈ kQ ∆ /[kQ ∆ , kQ ∆ ]. For each puncture p ∈ P, there exists a cycle (of length the valency of p in the triangulation) denoted by

z p ∈ kQ ∆ /[kQ ∆ , kQ ∆ ].
The potential W ∆ is defined in [START_REF] Labardini-Fragoso | Quivers with potentials associated to triangulated surfaces[END_REF] by

W ∆ := τ int. triangle c τ - p∈P z p .
This QP has been shown to be Jacobi-finite and non degenerate by Labardini-Fragoso in [START_REF] Labardini-Fragoso | Quivers with potentials associated to triangulated surfaces[END_REF]. Therefore, one can associate a cluster category to each triangulated surface (S, M, P, ∆) (see Subsection 1.4 of Chapter 3), that we denote C ∆ . We also denote by T ∆ the corresponding canonical cluster-tilting object

Γ (Q ∆ ,W ∆ ) .
Given an arc i in a triangulation ∆ (which is not the self-folded arc of a self-folded triangle), one can define a new triangulation by flipping the arc i and replacing it by the only other one making a new triangulation.

τ i flip τ * i
In [START_REF] Labardini-Fragoso | Quivers with potentials associated to triangulated surfaces[END_REF], Labardini-Fragoso showed that the QP associated with the flip of ∆ at the arc i is the Derksen-Weyman-Zelevinsky mutation of the QP (Q ∆ , W ∆ ) [START_REF] Derksen | Quivers with potentials and their representations[END_REF] up to right equivalence.

∆ triangulation o o flip / / ∆ = f i (∆) triangulation (Q ∆ , W ∆ ) o o DWZ-mutation / / (Q ∆ , W ∆ )
Therefore, combining this fact with Theorem 1.4 and the fact that any two triangulations can be linked by a sequence of flips (see [START_REF] Fomin | Cluster algebras and triangulated surfaces. Part I: Cluster complexes[END_REF]) we obtain Corollary 1.1. Let ∆ and ∆ be two triangulations of the marked surface (S, M, P), then

C ∆ C ∆ .

The unpunctured case

In the case where P = ∅, the situation is particularly nice, since the Jacobian algebra associated to any triangulation is gentle (see section 1.1 of Chapter 5 for definition). The module category over a gentle algebra is particularly well known [START_REF] Butler | Auslander-Reiten sequences with few middle terms and applications to string algebras[END_REF], [START_REF] Crawley-Boevey | On the exceptional fibres of Kleinian singularities[END_REF], hence using the equivalence

C ∆ / add(T ∆ [1]) ∼ -→ mod Jac(Q ∆ , W ∆ ),
a description of indecomposable objects, and of spaces of morphisms have been obtained in [ABCP10, BZ11, CS17, CPS19, CPS].

Denote by π 1 (S, M) the groupoid of homotopy classes of curves in S with endpoints in M which are not homotopic to a boundary segment. Denote by π free 1 (S) the set of non contractible closed curves in S up to free homotopy.

One has the following description of indecoposable objects:

Theorem 1.2. [ABCP10, BZ11] Let k be an algebraically closed field1 . Let (S, M, ∆) be a triangulated surface without punctures, and denote by C ∆ the corresponding cluster k-category.

Then the isomorphism classes of indecomposable objects of C ∆ are in bijection with

• {{γ, γ -1 }, γ ∈ π 1 (S, M), γ = 1 M , M ∈ M};
• π free 1 (S) × k * / ∼, where the equivalence relation ∼ is given by

([γ], λ) ∼ ([γ -1 ], λ -1 ).
This bijection restricts to a bijection T : {arcs on the surface (S, M)}/htp ←→ {indecomposable rigid objects in C ∆ }/isom., in which each arc of ∆ is sent to the object (T ∆) i := e i Γ, where Γ is the Ginzburg DG algebra associated to the QP (Q ∆ , W ∆ ). The intersection number between two arcs coincide with the dimension of Ext 1 between the corresponding objects [START_REF] Th | On the cluster category of a marked surface without punctures[END_REF], this bijection induces a bijection between the set of triangulations of (S, M) and the set of isoclasses of cluster-tilting objects in C ∆ . Moreover the flip coincide with Iyama-Yoshino mutation in the following sense:

∆ triangulation o o flip at i / / T ∆ = f i (∆ ) triangulation T T ∆ cluster-tilting o o IY-mutation at T i / / T ∆ cluster-tilting
An interesting question here, is about what happen when we combine Corollary 1.1 with Theorem 1.2. More precisely we ask the following question: Are the bijections constructed in Theorem 1.2 independent of the choice of ∆? This question is more complicated than expected since the triangle equivalence constructed in Corollary 1.1, depends both on the choice of a sequence of flips linking ∆ to ∆ , and on the choice of a right equivalence map between the mutated QP. The reduction process is in general not unique and not even canonical. If we denote by T ∆ : π 1 (S, M) → Obj(C ∆ ) and B ∆ : π free 1 (S) × k * / ∼→ Obj(C ∆ ) the two bijections of Theorem 1.2, then we have the following: [START_REF] Canakci | Extensions in Jacobian Algebras and Cluster Categories of Marked Surfaces, with an appendix by C. Amiot[END_REF]). Let ∆ and ∆ be two triangulations of a marked surface (S, M). Then for any sequence s of flips relating ∆ to ∆ there exists a triangle equivalence

Proposition 1.3 (Appendix in
Φ s : C ∆ -→ C ∆ ,
such that the bijections T ∆ • Φ s and T ∆ coincide.

But, one can find a sequence of mutation s such that the bijections B ∆ • Φ s and B ∆ do not coincide. Typically, if i is an arc of ∆, we may have

B ∆ • Φ f i f i = B ∆ (cf Example 1.3.2 in Appendix [CS17]).

The punctured case using Z 2 -action

Tagged arcs

In the case P = ∅, the situation is more complicated. First of all, a triangulation with self-folded triangles cannot be flipped at a self-folded side in the usual sense. To overcome this situation, Fomin, Shapiro and Thurston introduced the notion of tagged arcs, and tagged triangulations in [START_REF] Fomin | Cluster algebras and triangulated surfaces. Part I: Cluster complexes[END_REF]. Then combining the results in [START_REF] Labardini-Fragoso | Quivers with potentials associated to triangulated surfaces[END_REF], [START_REF] Plamondon | Cluster algebras via cluster categories with infinite-dimensional morphism spaces[END_REF], and [START_REF] Qiu | Cluster categories associated with surfaces: the punctured case[END_REF] This bijection has been extended in [START_REF] Qiu | Cluster categories associated with surfaces: the punctured case[END_REF] to any tagged curve linking two marked points to describe a certain subset of objects called strings in C ∆ when ∆ satisfies certain properties.

One consequence of the bijection between tagged triangulations and cluster-tilting objects is the following.

Corollary 1.4. Let (S 1 , M 1 , P 1 , ∆ 1 ) and (S 2 , M 2 , P 2 , ∆ 2 ) be two marked surfaces. Then the cluster categories C ∆ 1 and C ∆ 2 are equivalent if and only if there exists a homeomorphism Φ : S 1 → S 2 preserving orientation and marked points.

Proof. The "if" part is a consequence of Corollary 1.1 and the fact that any two triangulations are related by a sequence of flips.

Let us write an explicit proof of the "only if part". First note that we can assume that ∆ 1 is a valency ≥ 3 triangulation. Indeed if it is not, by flipping it, we can obtain one together with a triangle equivalence between the two corresponding cluster categories.

Denote by T 1 (resp. T 2 ) the canonical cluster-tilting object in C ∆ 1 (resp. C ∆ 2 .) Assume that there exists a triangle equivalence F : C ∆ 1 → C ∆ 2 . The object T 1 := F (T 1 ) is a cluster-tilting object in C ∆ 2 . Using the bijection written above, it corresponds to a tagged triangulation ∆ 1 in S 2 . Denote by ∆ 1 the untagged triangulation from ∆ 1 (that is, we remove all eventuel taggings of the arcs of ∆ 1 to obtain an ideal triangulation). Since F is an equivalence we have the following isomorphisms

Jac(Q ∆ 1 , W ∆ 1 ) End C 1 (T 1 ) End C 2 (T 1 ) Jac(Q ∆ 1 , W ∆ 1 ) Jac(Q ∆ 1 , W ∆ 1 ).
Therefore the Gabriel quivers of these algebras are isomorphic. Since ∆ 1 is a valency ≥ 3triangulation, the Gabriel quivers are Q ∆ 1 and Q ∆ 1 . We can now apply Proposition 8.5 in [BS] (we refer to [ALP20, Prop 3.15] to include all surfaces), and we obtain a homeomorphism S 1 → S 2 , sending ∆ 1 to ∆ 1 .

Unfolding the surface with punctures

In the joint work [AP] we study the case of the cluster category of a triangulated surface with punctures, in the case where the base field has characteristic = 2. When the triangulation satisfies the property that any puncture is in a self-folded triangle, the associated Jacobian algebra is skew-gentle (see section 2 of Chapter 5 for definition). This class of algebras has been introduced by Geiss and de la Peña [START_REF] Ch | AuslanderReiten components for clans[END_REF] using the construction of skew-group algebras of Reiten and Riedtmann [START_REF] Reiten | Skew group algebras in the representation theory of artin algebras[END_REF].

Let (S, M, P) be a punctured surface and ∆ be a triangulation such that all punctures are in a self-folded triangle. From this data, we construct a new triangulated surface without punctures together with a homeomorphism of order 2 as follows:

• Each puncture P belongs to an self-folded arc i P . We cut the surface S along each self-folded side i P and, obtain a surface S + , with new boundary segments [P + 1 , P + 2 ] corresponding to the arc i P .

S j k • i P P • S + j + k + • • P + 1 P + 2
• We then glue to S + a copy of itself S -along the segments [P + 1 , P + 2 ] and [P - 1 , P - 2 ], and obtain a new surface S with marked points M := M + ∪M -∪{P + 1 = P - 2 , P - 1 = P + 2 , P ∈ P}.

S + S - P + 1 P + 2 P - 2 P - 1 j + k + i S j - k - i Proposition 1.5.
1. [AP, Thm 3.5] The surface ( S, M) constructed above is a surface with marked points, and without punctures. The collection of arcs ∆ := {τ + , τ -, τ ∈ ∆} ∪ {[P + 1 , P + 2 ], p ∈ P} is a triangulation of S.

[AP, Prop. 3.9]

There is a homeomorphism σ : S → S of order 2 that exchanges the surfaces S + and S -. It has exactly |P| fixed points, one in each segment [P + 1 , P + 2 ], and fixes globally the triangulation ∆.

3. [START_REF] Amiot | The cluster category of a surface with punctures via group actions[END_REF]Cor. 3.10] The natural projection S/σ → S is a 2-folded cover, with branched points P. It induces a structure of orbifold for S with orbifold points P.

Example 1.6. Let (S, M, P) be a cylinder with two punctures P = {P, Q} and two marked points M = {A, B}, and with the following triangulation ∆. Cutting the surface along the folded sides and along an arc [A, B], we obtain S as the following polygon with identifications of sides.

• • • • > >> A B Q P 3 3 • • • • • • • • >> > > > > B B A Q A A A P 6 4 2 1 5
The surfaces S + and S -are then given by the following polygons with identifications: Theorem 1.8. [AP, Cor 3.6] There exists a triangle functor F : C ∆ → C ∆ which induces a bijection between the isomorphism classes of indecomposable objects in C ∆ and the set

{σ -invariant indec. in C ∆ } × Z 2 ∪ {σ -orbits of non σ -invariant indec. in C ∆ }.
Combining this result together with Theorem 1.2, and translating curves on S in term of curves on the orbifold S we obtain the following description of the indecomposable objects in C ∆ : Theorem 1.9 (Corollaries 5.10 and 5.19 in [AP]). Let (S, M, P) be a marked surface with nonempty boundary and possibly with punctures. Let ∆ be a triangulation of S such that each puncture belongs to a self-folded triangle and such that no triangle shares a side with two selffolded triangles. Then the indecomposable objects of the cluster category C ∆ are in bijection with the following sets:

1. {γ, γ -1 } | γ ∈ π orb 1 (S, M), γ = γ -1 , 2. γ ∈ π orb 1 (S, M)|γ = γ -1 , γ = 1 M , M ∈ M × Z 2 , 3. [γ] ∈ π orb,free 1 (S)| [γ] = [γ -1 ] × k * / ∼, 4. [γ] ∈ π orb,free 1 (S)| γ 2 = 1 and [γ] = [γ -1 ] × k * \{±1}/ ∼, 5. [γ] ∈ π orb,free 1 (S)| γ 2 = 1 and [γ] = [γ -1 ] × (Z 2 ) 2 ,
where ∼ is the equivalence relation given by

([γ], λ) ∼ ([γ -1 ], λ).
In this theorem, the set π orb 1 (S, M) is the quotient of π 1 (S \ P, M) by the equivalence relation given by

• P = • P
where P is a puncture. The set π orb,free 1 (S) is the set of conjugacy classes of the fundamental orbifold group π orb 1 (S). The tagged arcs as described in [START_REF] Fomin | Cluster algebras and triangulated surfaces. Part I: Cluster complexes[END_REF] can be recovered from this description as follows:

• The set of arcs with both endpoints in M injects in the set 1. of Theorem1.9. Note that the condition γ = γ -1 excludes the arcs cutting out a once punctured monogon (which are also excluded in [START_REF] Fomin | Cluster algebras and triangulated surfaces. Part I: Cluster complexes[END_REF]).

• The set of tagged arcs with one endpoint in M and one endpoint in P injects in the set 2. in Theorem 1.9. Indeed to each arc from M to P, one can associate the closed curve from M to M surrounding the puncture as in the following picture. The taggings of the arc corresponds here to Z 2 .

• • • • arc from M to P γ ∈ π orb 1 (S, M) with γ 2 = 1
• The set of tagged arcs with both endpoints in P injects in the set 5. in Theorem 1.9. To each arc from P to P, one can associate a closed curve surrounding the two punctures as follows:

• •

arc from P to P • • [γ] ∈ π orb,free 1 (S) with [γ] = [γ -1 ]
The four different taggings of such an arc correspond to (Z 2 ) 2 . Note that the condition γ 2 = 1 in the sets 4. and 5. excludes the curves that surround exactly one puncture.

It is however dangerous to try to translate the sets 1., 2. and 5. in terms of generalized tagged arcs. The relation given by the orbifold fundamental group may have surprising identifications. For example, if we consider a "generalized" tagged arc that would cut out a once puncture Q monogon, with endpoint P in P (recall that these are not consider as tagged arcs in [START_REF] Fomin | Cluster algebras and triangulated surfaces. Part I: Cluster complexes[END_REF]), then using the previous map, it is sent to a closed curve surrounding twice the puncture P . But using the orbifold relation, it is the same as the generalized tagged arc from Q to Q surrounding P .

• • P Q generalized arc from P to P • • P Q generalized arc from P to P • • [γ] ∈ π orb,free 1 (S) with [γ] = [γ -1 ] = • • [γ] ∈ π orb,free 1 (S) with [γ] = [γ -1 ] • • = = Further directions
A natural continuation of this work would concern morphisms spaces, and Auslander-Reiten quivers. The triangulated functors linking C ∆ and C ∆ behave nicely with respect to irreductible morphisms and Auslander-Reiten triangles. It should be then possible to try to describe dimension of morphisms spaces in terms of intersection numbers, and one should be able to deduce the shape of the Auslander-Reiten quiver of C ∆ from the one of C ∆ .

Derived categories of surface cut algebras

In this section, we regard the cluster category of a triangulated surface as a cluster category associated with a τ 2 -finite algebra Λ. The derived category D b (Λ), as a graded analogue of the cluster category C 2 (Λ), inherits a topological model from the one of the cluster category. The idea is here to interpret the graded mutation (see Section 3.3 and Corollary 3.5) in term of the topological model.

Surface cut algebras

The aim of this section is to give an answer to the following question:

Given a triangulated surface (S, M, P, ∆), can we build a τ 2 -finite algebra

Λ such that C 2 (Λ) is equivalent to C ∆ ?
The construction of the QP associated to a global dimension ≤ 2 algebra Λ explained in Theorem 2.4 leads to the following definitions.

Definition 2.1. An admissible cut on (Q, W ) is a map d : Q 1 → {0, 1} such that W is homogenous of degree 1 and such that any arrow of degree 1 belongs to a term of the potential. Definition 2.2. Let ∆ be a triangulation of a marked surface (S, M, P) such that any puncture has valency at most 3. Let d be an admissible cut of the QP (Q ∆ , W ∆ ). The degree zero subalgebra Λ(∆, d) := Jac(Q ∆ , W ∆ , d) 0 of the graded Jacobian algebra Jac(Q ∆ , W ∆ , d) is called the surface cut algebra associated to ∆ and d.

In case of an unpunctured surface, the situation is particularly easy since an admissible cut is the choice of one arrow in any triangle in the potential. It becomes easy to prove the following: Proposition 2.3. [AG16] Let (S, M) be a marked surface without punctures, and ∆ a triangulation. Then for any admissible cut d, the surface cut algebra Λ(∆, d) is τ 2 -finite algebra. Moreover there is an equivalence of categories

C 2 (Λ) C (Q ∆ ,W ∆ ) .
The situation is more complicated in the punctured case. First it is not clear that admissible cuts always exists. Indeed the potential involves not only internal triangles, but also oriented cycles around punctures. So one cannot choose randomly an arrow in each oriented triangle. It is possible to construct triangulations for which no admissible cut exists [ALP20, Prop 6.9]. Moreover, even if such a cut does exist, the degree zero subalgebra of the corresponding graded Jacobian algebra has not always global dimension ≤ 2. However we can prove the following: Proposition 2.4. [ALP20] Let (S, M, P) be a marked surface with punctures. Then there exists a triangulation ∆ and an admissible cut d such that the corresponding surface cut algebra Λ(∆, d) is a τ 2 -finite algebra. In that case there is an equivalence of categories

C 2 (Λ) C (Q ∆ ,W ∆ ) .

Derived equivalence and graded mutation

The aim is now to apply Corollary 3.5 to surface cut algebras of global dimension ≤ 2, in order to get a topological criterion that determines when two surface cut algebras are derived equivalent. The first thing to observe is the fact that all cluster-tilting objects in the cluster category C ∆ are related by sequences of mutation. Therefore we obtain the following Corollary 2.5. Let Λ 1 := Λ(∆ 1 , d 1 ) and Λ 2 := Λ(∆ 2 , d 2 ) be two surface cut algebras of global dimension ≤ 2. Then the algebras Λ 1 and Λ 2 are derived equivalent if and only if one can pass from

(Q ∆ 1 , W ∆ 1 , d 1 ) to (Q ∆ 2 , W ∆ 2 , d 2 ) by a sequence of graded mutations.
The next step is to try to find a good topological invariant of this graded mutation. By Corollary 1.4, we already know that the topological data of the marked surface is an invariant. All the missing information should then be given by the degree maps. Therefore, a good invariant should be given by d, but forgetting the triangulation.

It can be done as follows: Given a 1-homogenous degree map d : Q ∆ 1 → Z, one can construct a well-defined map d : π free 1 (S) → Z. Indeed, the quiver Q ∆ is a deformation retract of the surface S. The degree of a loop γ counts algebraically the degree of each arrow along γ.

Then we prove the following result which can be considered as the graded version of Corollary 1.4. Theorem 2.6. [AG16, Thm 3.12][ALP20, Thm 5.3] Let (S 1 , M 1 , P 1 , ∆ 1 ) and (S 2 , M 2 , P 2 , ∆ 2 ) be two triangulated surfaces. Let Λ 1 := Λ(∆ 1 , d 1 ) and Λ 2 := Λ(∆ 2 , d 2 ) be two surface cut algebras of global dimension ≤ 2. Then the following are equivalent:

1. Λ 1 and Λ 2 are derived equivalent; 2. there exists a homeomorphism Φ : S 1 → S 2 preserving orientation, marked points, and punctures such that the maps d 2 • Φ = d 1 as maps π free 1 (S 1 ) → Z.

One key ingredient in the proof of this result is the fact that the map d : π free 1 (S) → Z is invariant under graded mutation ([AG16, Lemma 2.14] and [ALP20, Lemma 3.13]). Moreover, if two different gradings given on the same triangulation induce the same map π free 1 (S) → Z, one shows that they are equivalent as gradings, using a CW-complex associated to the surface. It follows from [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] that two equivalent gradings can be related by a sequence of graded flips.

The rest of the proof is a graded analogue of the proof of Corollary 1.4, so each step has a graded analogue that has to be checked. For most of them, it is just a technical verification.

For instance, one has to check the following "commutativity" for ∆ any tagged triangulation up to right graded equivalence:

(∆, d) graded tagged triangulation o o graded flip / / (∆ , d ) = (f i (∆), µ L i (d))
graded tagged triangulation

(Q ∆ , W ∆ , d) o o graded DWZ-mutation / / (Q ∆ , W ∆ , d )
This step is easy to check in the case of an unpunctured surface, since the process of reduction is quite natural in this case. It is much more involved in the case of punctures, especially when the triangulations ∆ or ∆ involve self-folded triangles (cf [ALP20, Thm 4.1]).

Geometric interpretation of the degree map

Link with the AG-invariant

One observation is the following: for each boundary component B i of S, denote by m i the number of marked points on this component, and denote by c i the closed curve surrounding the boundary B i , with the boundary B i on the left.

• •

Then, any homeomorphism Φ as in theorem 2.6 should send a curve c i of S 1 to a curve c j of S 2 with m i = m j . As a consequence we obtain the following Corollary 2.7. The collection of pairs (d(c i ), m i ) i for a surface cut algebra of global dimension ≤ 2 is a derived invariant.

In fact, this invariant was already well-known for the case where the surface S has no punctures. It is closely related with the AG-invariant introduced by Avella-Alaminos and Geiss in [START_REF] Avella-Alaminos | Combinatorial derived invariants for gentle algebras[END_REF] for gentle algebras. It is interesting to see that this invariant was introduced by a careful computation of some components of the Auslander-Reiten quiver. It can be understood using fractional CY properties of certain objects in the derived category. Note that in the case of annulus, the interpretation of the pair (m, d(c)) in terms of AR-quiver, and fractional CYproperties has been also described in [START_REF] Amiot | Algebras of acyclic cluster type: tree type and type A tilde[END_REF].

A natural question arising here is as follows:

Let Λ be a surface cut algebra associated to a surface with punctures. Is there an interpretation of the invariant (d(c i ), m i ) in term of fractional Calabi-Yau properties of some objects in the derived category D b (Λ) ?

H 1 -affine space One first observation, is the fact that the map d : π free 1 (S) → Z is a H 1 (S ∪ P, Z)-affine space. More precisely we have the following Lemma 2.8. [AG16, Cor 2.8][ALP20, Cor 3.14] Let (∆, d) and (∆ , d ) be two graded valency ≥ 2-triangulations of (S, M, P). Then the map d-d : π free 1 (S) → Z factors through a well-defined map

[d -d ] : H 1 (S ∪ P, Z) → Z.
The fact that it factors into a map H 1 (S, Z) → Z comes from the fact that on any internal triangle, the sum of the degree of the arrows is constant equal to 1. The fact that, when there are punctures it factors through H 1 (S ∪ P, Z) → Z comes from the fact that any curve surrounding a puncture has degree exactly 1.

As a consequence, to apply Theorem 2.6, it is sufficient to check the equality between d 2 • Φ and d 1 on a set of closed curves which is a basis when seen in H 1 (S ∪ P, Z).

As a consequence, we obtain that the AG-invariant is a complete derived invariant in the genus zero case.

Corollary 2.9. Let (S 1 , M 1 , P 1 , ∆ 1 ) and (S 2 , M 2 , P 2 , ∆ 2 ) be two triangulated surfaces of genus 0. And let Λ 1 := Λ(∆ 1 , d 1 ) and Λ 2 := Λ(∆ 2 , d 2 ) be two surface cut algebras of global dimension ≤ 2. Then the following are equivalent:

1. Λ 1 and Λ 2 are derived equivalent; 2. they have the same AG-invariant.

In particular, in the case where the surface is a disc, then the derived category is entirely determined by the number of marked points, and the number of punctures. This was already completely clear in the unpunctured case, but not so immediate in the case of surface cut algebras coming from the punctured disc.

Degree map as a winding number

In fact, it is also possible to interpret these maps as winding numbers associated to certain line fields. Assume now that the surface S is smooth oriented surface with punctures, and boundary components. A line field on S is a section η : S → P(T S) of the projectivized tangent bundle P(T S) -→ S. The set of homotopy classes of line fields LF(S) on S is known to also be a H 1 (S, Z)-affine space (see [START_REF] Chillingworth | Winding numbers on surfaces. I[END_REF] for example). The map

LF(S) × LF(S) -→ H 1 (S, Z)
is given by (η, η ) → w η -w η where w η is the winding number map with respect to η. We refer to [APS, section 1] for more details.

To a triangulation (with smooth representative arcs) with an admissible cut, we can associate a line field on S whose corresponding foliation is as follows on each triangle of ∆: Then the winding number w coincides with the degree map d as a map π free 1 (S) → Z. Theorem 2.6 can be reformulated as follows Theorem 2.10. [AG16, Thm 3.12][ALP20, Thm 5.3] Let (S 1 , M 1 , P 1 , ∆ 1 ) and (S 2 , M 2 , P 2 , ∆ 2 ) be two triangulated surfaces. Let Λ 1 := Λ(∆ 1 , d 1 ) and Λ 2 := Λ(∆ 2 , d 2 ) be two surface cut algebras of global dimension ≤ 2, and denote by η 1 and η 2 the corresponding line fields. Then the following are equivalent:

1. Λ 1 and Λ 2 are derived equivalent; 2. there exists a diffeomorphism Φ : S 1 → S 2 preserving orientation, marked points, and punctures such that the line fields η 1 and Φ * (η 2 ) are homotopic.

Furthermore a careful use of Theorem 3.4 in [LP] giving invariant of mapping class group orbits of homotopy classes of line field of a surface permits to deduce a complete derived invariant in terms of winding numbers of closed curves on the surface S.

More precisely, for a marked surface (S, M, P), we denote by b the number of boundary components, by g its genus, by m(i) the number of marked points on the boundary component ∂ i S, and p the number of punctures. Let B = {c 1 , . . . , c b } be a set of simple closed curves such that for any j, c j is homotopic to the boundary component ∂ j S. Denote by S comp the compactified surface obtained from S by adding closed discs on each boundary component, and filling the punctures. Let G = {α 1 , β 1 , . . . , α g , β g } be a set of closed simple curves whose image in H 1 (S comp ) is a symplectic basis with respect to the intersection form.

α 1 β 1 α 2 β 2 c 1 ∂ 1 S c 2 ∂ 2 S
Theorem 2.11. ([APS, Thm 8.5] for the unpunctured case) Let (S 1 , M 1 , P 1 , ∆ 1 ) and (S 2 , M 2 , P 2 , ∆ 2 ) be two triangulated surfaces. And let Λ 1 := Λ(∆ 1 , d 1 ) and Λ 2 := Λ(∆ 2 , d 2 ) be two surface cut algebras of global dimension ≤ 2.

Let B 1 and G 1 (resp. B 2 and G 2 ) be sets of simple closed curves on S 1 (resp. S 2 ) as above. Then Λ 1 and Λ 2 are derived equivalent if and only if the following numbers coincide

1. g 1 = g 2 , b 1 = b 2 , M 1 = M 2 , p 1 = p 2 ; 2. there exists a permutation σ ∈ S b such that for any i = 1, . . . , b 1 we have m 1 (σ(i)) = m 2 (i) and d 1 (c 1 σ(i) ) = d 2 (c 2 i );
3. and if the genus g = g 1 = g 2 is ≥ 1, one of the following holds:

(a) for g = 1, we have 

gcd{d 1 (γ), d 1 (c) + 2, γ ∈ G 1 , c ∈ B 1 } = gcd{d 2 (γ), d 2 (c) + 2, γ ∈ G 2 , c ∈ B 2 } (b) for g ≥ 2,
1 i ) + 1)(d 2 (β 1 i ) + 1) = g i=1 1 2 (d 2 (α 2 i ) + 1)(d 2 (β 2 i ) + 1) mod 2.
Note that this result is stated in [APS] in the case of an unpunctured surface, which is completely devoted to gentle algebras. However it is still true for punctured surfaces, the proof is exactly the same. The number computed in 3. (b) iii is the Arf invariant of some quadratic form on H 1 (S comp , Z 2 ).

In the case of the unpunctured torus with one boundary component, the invariant of 3. (a) was already introduced in [Ami16]. I did not notice the link of the degree map with line fields and winding numbers at that time, so the method used to prove this invariant was down to earth, but self-contained.

Description of the category

The unpunctured case Given a surface cut algebra Λ, we have the following commutative diagram

D b (Λ)/U Λ [1] ∼ / / π mod Z Π forget C 2 (Λ)/ add π(Λ)[1] ∼ / / mod Π ,
where the 3-preprojective algebra Π = Π 3 (Λ) is isomorphic to the graded Jacobian Jac(∆, d). Therefore indecomposable objects of D b (Λ) coincide with graded modules over the graded Jacobian algebra Jac(∆, d) together with one copy of the projectives.

In the unpunctured case, the algebra Jac(∆) is gentle, and so is the covering of the graded algebra Jac(∆, d). Hence by [START_REF] Butler | Auslander-Reiten sequences with few middle terms and applications to string algebras[END_REF], one has a description of the objects of the covering in terms of strings and bands. Copying what is done in [START_REF] Assem | Gentle algebras arising from surface triangulations[END_REF] and [START_REF] Th | On the cluster category of a marked surface without punctures[END_REF], we can deduce a description of the objects of D b (Λ) in terms of curves on the surface. Under the forgetful functor, any string in mod Z Π gives a string in mod Π, and any preimage of a string in mod Π gives a Z-family of strings in mod Z Π. For the bands, the situation is a bit different, since not all bands in mod Π are gradable. The only gradable bands are the one corresponding of a curve of degree zero. Finally we obtain the following classification: Theorem 2.12. Let (S, M, ∆) be a triangulated surface without punctures, and Λ = Λ(∆, d) be a surface cut algebra. Then the isomorphism classes of indecomposable objects of D b (Λ) are in bijection with

• {{γ, γ -1 }, γ ∈ π 1 (S, M), γ = 1 M , M ∈ M} × Z; • {([γ], λ) ∈ π free 1 (S) × k * with d(γ) = 0} ∼ × Z, where the equivalence relation ∼ is given by ([γ], λ) ∼ ([γ -1 ], λ -1 ).
Note that here the description of objects is very close to the one in [OPS] for derived categories of general gentle algebras (see Theorem 1.8 in Chapter 5). However the bijection is completely different. Indeed if X is the string object corresponding to ({γ, γ -1 }, n), then the object corresponding to ({γ, γ -1 }, n + 1) is S 2 (X), while in [OPS] it corresponds to X[1]. The bijection given in [OPS] is much more useful, since it is very explicit, it is easy to write the complex from the data of the graded curve.

From this classification of objects we can also deduce the following Proposition 2.13. Let Λ be a surface cut algebra. Then the functor π : D b (Λ) -→ C 2 (Λ) is dense if and only if Λ is piecewise hereditary.

Proof. From the description above, we deduce that the functor π is dense if and only if any closed curve on the surface has degree 0. It is clearly true for the case of the disc. For the annulus, it is true if and only if the generator of π 1 (S) has degree zero, which is exactly the case where Λ is derived equivalent to a hereditary algebra of type A n . Finally if the surface is not a disc or an annulus, we can use the formula (cf [AG16, Prop 2.9])

i d(∂ i S) = 4g -4 + 2b > 0
Hence there exists a boundary component such that the curve ∂ i S has non zero degree. This gives us immediately a band object in C ∆ which is not in the image of π.

The annulus case

In order to get information on the derived category D b (Λ), one can also use results in Section 3.4 in Chapter 3. The situation is particulary nice in the annulus case. Let Λ be a surface cut algebra associated to an annulus with m 1 and m 2 marked points on each boundary components. Denote by w := d(c 1 ) the degree of c 1 . Then using the results in [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] (see subsection 3.4 in Chapter 3), one can show that we have

D b (Λ) D b (mod Z H) S 2 (1) ,
where H is given by the following graded quiver 

Further directions

Description of D b (Λ) in the punctured case A natural question arising here is the generalization of Theorem 2.12 in the punctured case using the description of the indecomposable objects in the cluster category in Theorem 1.9. This is however not an easy corollary of these two results, in particular because the Jacobian algebra used in Theorem 1.9 comes from a triangulation ∆ with self-folded triangles while a surface cut algebra as defined in [START_REF] Amiot | Derived invariants for surface cut algebras II: the punctured case[END_REF] come from a triangulation ∆ of valency ≥ 3. Given a curve on S, the way to associate an object in C 2 (Λ) is not direct at all. One should first lift the curve in S, then associate an object in C ∆ , that we send to an object in C ∆ . One should then apply a sequence of flips/mutation to pass from ∆ to ∆ in order to obtain an object in mod Π 3 (Λ). Therefore the first step to answer this question would be to find a "shortcut" for this procedure. Furthermore, one should also understand the gradable objects in mod Π 3 (Λ), one could for instance use Proposition 2.2 and results in [START_REF] Amiot | Algebras of acyclic cluster type: tree type and type A tilde[END_REF].

Auslander-Reiten quiver of D b (Λ)

Another natural question could be to try to generalize the strategy used for the annulus case to deduce properties for the derived category of a surface cut algebra for a surface more complicated than an annulus. Given a surface cut algebra Λ, if we can write an equivalence between D b (Λ) and the triangulated hull of an orbit category D b (mod Z A)/S 2 (1) where A is an algebra whose derived category is well understood, then one could obtain information for the category D b (Λ).

Chapter 5

Derived categories of gentle and skew-gentle algebras

As we have seen in the previous chapter, the cluster category and the derived category of a surface cut algebra have topological interpretations. One can understand the objects in terms of (graded) curves, certain dimensions of spaces of morphisms in term of intersection numbers, etc... Moreover the combinatorics of flips and graded flips permit to relate these algebras with each other. In the case where the surface does not have any punctures, these algebras belong to a well-known and well-studied class called gentle algebras.

Using the same kind of ideas, Opper, Plamondon and Schroll described the derived category of a gentle algebra in geometric terms in [OPS] : they translate the combinatorial description given in [START_REF] Bekkert | Indecomposables in derived categories of gentle algebras[END_REF] in topological terms. Thereby they obtain results very similar to the ones of the previous section. In particular the objects can be interpreted in terms of graded curves, and the morphisms spaces in terms of intersections of curves. It becomes so very natural to try to generalize Theorem 2.10 for gentle algebras.

In the first section of this chapter, we concentrate on the derived category of gentle algebras. We first recall results in [OPS]. We further explain how the degree can be interpreted as the data of a line field on the surface. Finally we expose the main result of the paper [APS] which is completely similar to Theorem 2.10 of Chapter 4. An interesting point is the fact that the proof is completely different: it does not use a concept analogue to 'flip' or 'mutation'.

In a second part, we expose the results in [AB]. This combines the ideas of [AP] together with [APS] : we develop a topological model for the derived category of skew-gentle algebra seen as skew-group algebras of a gentle algebra. This permits us to obtain a topological interpretation of different kind of derived equivalence between skew-gentle algebras.

Gentle algebras

Definition 1.1. A gentle pair is a pair (Q, I) given by a quiver Q and a subset I of paths of length 2 in Q such that • for each i ∈ Q 0 , there are at most two arrows with source i, and at most two arrows with target i;

• for each arrow α : i → j in Q 1 , there exists at most one arrow β with target i such that βα ∈ I and at most one arrow β with target i such that β α / ∈ I;

• for each arrow α : i → j in Q 1 , there exists at most one arrow β with source j such that αβ ∈ I and at most one arrow β with source j such that αβ / ∈ I.

• the algebra A(Q, I) := kQ/I is finite dimensional.

An algebra is gentle if it admits a presentation A = kQ/I where (Q, I) is a gentle pair.

Topological model

Definition

A marked surface (S, M • , P • ) is the data of

• an orientable closed smooth surface S with non-empty boundary, that is a compact closed smooth surface from which some open discs are removed;

• a finite set of marked points M • on the boundary, such that there is at least one marked point on each boundary component;

• a finite set P • of marked points in the interior of S.

The points in M • and P • are called marked points. A curve on the boundary of S intersecting marked points only on its endpoints is called a boundary segment. An •-arc on (S, M • , P • ) is a curve γ : [0, 1] → S such that γ |(0,1) is injective and γ(0) and γ(1) are marked points 1 . Each arc is considered up to isotopy (fixing endpoints). Following [OPS], one can associate to the dissection D a quiver Q, together with a subset of quadratic monomial relations I, such that the algebra A(D) := A(Q, I) is a gentle algebra.

• The vertices of Q are in bijection with {i •-arc} • Given i and j •-arcs in D, there is one arrow i j α in Q whenever the arcs i and j have a common endpoint • and when i is immediately followed by the arc j in the counterclockwise order around •;

• If i, j, and k have a common endpoint, and are consecutive arcs following the counterclockwise order around •, then we have βα ∈ I, where α (resp. β) is the arrow corresponding to to the angle j → i (resp. k → j).

Example 1.3. Below is an example of a dissected surface together with the associated quiver Q and relations I (marked with dots). This bijection was also described in [BC], where the authors use the geometrical model in order to get a description of indecomposable objects in the module category.

Link with the model of surface cut algebras

From this proposition it is not very difficult to give a precise link with the topological model of surface cut algebras developped in the previous chapter.

Proposition 1.5. Let Λ be a gentle algebra. Then Λ is a surface cut algebra associated with an unpunctured surface if and only if Λ has global dimension ≤ 2 and is τ 2 -finite.

Proof. One direction is proved in Proposition 2.4. Let Λ be a τ 2 -finite gentle algebra with global dimension ≤ 2. Denote by (S, M • , P • , D) the corresponding dissection. We first construct the dual dissection: we fix a finite set M • of green points on the boundary of S such that each boundary segment contains exactly one green point. Then, we define a collection of arcs with endpoints in M • such that each •-arc intersects exactly one •-arc and vice versa. This dual dissection is uniquely defined up to isotopy of •-arcs fixing the endpoints. This dual dissection cuts out the surface into polygons which either have exactly one side being a boundary •-segment, or have exactly one • in the interior.

Since Λ has global dimension ≤ 2, then there is no subpath of length 3 in

Q i j k α β γ
with βα and γβ in I. In terms of the dissected surface, this is equivalent to the fact that the •-dissection cuts out the surface into n-gons with exactly one side being a boundary segment, with n = 2, 3 or 4. From this observation, we can do the following construction:

• for each •-bigon, we keep the two •-points as marked points, and add a marked point in between on the boundary segment, and keep the •-arc;

• for each •-triangle, we keep the three •-point as marked points, and the corresponding two •-arcs;

• and for each •-square, we identify the boundary segment into a marked point, and we declare the corresponding angle of degree 1.

• • • •-bigon • • • • •-triangle • • • • • •-square • • • • • • • • • 1
We obtain this way a triangulated surface together with a degree map of degree 1 on each internal triangle. The question is now to check that the obtained marked surface has non-empty boundary, which is not completely clear since the process may identify boundary segment into a point.

If for each boundary component, there is at least one •-boundary segment which belongs to a •-bigon, or to a •-triangle, then each marked point of the new surface lies on the boundary, so we obtain a unpunctured triangulated surface with an admissible cut. So the algebra Λ is a surface cut algebra of an unpunctured surface. Now assume that there is one boundary component such that each boundary •-segment belongs to a •-quadrilateral. Then one boundary component becomes a puncture in the previous construction. We want to show that the corresponding algebra is not τ 2 -finite. First note that to obtain the QP associated to Π 3 (Λ), one associates an arrow for each angle of degree 1 for each internal triangle, and the potential is given by the sum of 3-cycles associated to each internal triangle. (It is therefore different from the Labardini-Fragoso potential.) However, the puncture created by the previous construction yields a cycle in the quiver of strictly positive degree, which is not zero, and whose powers never vanish. Hence, the algebra Π 3 (Λ) is infinite dimensional.

Example 1.6. Let Λ be the gentle algebra associated with the following dissected surface:

• • • • • • • • • • 1
Then Λ is given by the following quiver .

.

. The preprojective algebra Π 3 (Λ) has a 2-cycle of degree 1 whose powers never vanish. Therefore Λ is not τ 2 -finite.

Gradings and line fields

We fix a finite set of green points M • on the boundary of S such that each boundary segment contains exactly one point in M • . We define a line field η D on S \ (∂S ∪ P • ), that is, a section of the projectivized tangent bundle P(T S) → S. The line field is tangent along each arc of D and is defined up to homotopy in each polygon cut out by D, by the following foliation: Definition 1.7. Let γ : (0, 1) → S be non contractible smooth curve. Assume that γ does not contain any contractible loops, that γ intersects transversally the dissection D, and that γ does not intersect an arc twice in succession. A grading on γ is a map n : γ(0, 1) ∩ D → Z satisfying:

n(γ(t i+1 )) = n(γ(t i )) + w η (γ | [t i ,t i+1 ] ),
if γ(t i ) and γ(t i+1 ) are two consecutive intersections of γ with D. More concretely, on [t i , t i+1 ], the curve γ intersects one polygon cut out by D, and we have n(γ(t i+1 )) = n(γ(t i )) + 1 if the boundary segment of the polygon is on the left of the curve γ | [t i ,t i+1 ] , and n(γ(t i+1 )) = n(γ(t i )) + 1 if the boundary segment lies on the right.

If (γ, n) and (γ , n ) are two graded curves, such that γ is regular homotopic to γ , and such that n(γ(t 1 )) = n (γ (t 1 )), then their grading coincide, in the sense that for any i we have γ(t i ), γ(t i ) lie on the same arc of D and n(γ(t i )) = n (γ (t i )).

A graded •-curve is a pair (γ, n) where γ is a non contractible curve with endpoints in M • , considered up to homotopy fixing endpoints, and where n is a grading on it. Denote by π gr 1 (S, M • ) the set of graded •-curves.

Since we have

n(γ -1 (1 -t i )) = n(γ(t i )) = n(γ(t i+1 )) -w η (γ | [t i ,t i+1 ] ) = n(γ -1 (1 -t i+1)) ) + w η (γ -1 | [1-t i+1 ,1-t i ] ) the equivalence relation γ ∼ γ -1 on π 1 (S, M • ) induces an equivalence relation (γ, n) ∼ (γ -1 , n) on π gr 1 (S, M • ).
Let γ : [0, 1] → S be a non contractible closed curve on S that intersects transversally the dissection D. One easily sees that it admits a grading if and only if its winding number with respect to the line field η is 0. Denote by π gr,free 1 (S) the set of non contractible graded closed curves, up to free homotopy.

One of the main result in [OPS] is the following Theorem 1.8. [OPS] Let Λ be a gentle algebra and (S, M • , P • , D) the associated dissected surface. Then there is a bijection between indecomposable objects of K b (proj Λ) and the following sets 1. π gr 1 (S, M • ) ∼ where (γ, n) ∼ (γ -1 , n);

2. π gr,free 1 (S) × k * / ∼, where ∼ is defined as (γ, n, λ) ∼ (γ -1 , n, λ -1 ).

Since a grading of a curve is entirely determined by the choice of the first number n(γ(t 0 )), one recovers a result really similar to Theorem 2.12. However, here the description is much more explicit: if the graded curve (γ, n) intersects the arc i, with corresponding degree equal to q, then the corresponding complex of projectives A-modules P (γ,n) has the projective P i in homological position q. Moreover, changing the degree by one is equivalent to shifting the complex in the derived category.

For example, to each arc i of the •-dissection, there exists a unique (up to isotopy) •-arc γ i that intersects exactly once the arc i. Then the object P (γ i ,0) is the stalk complex P i concentrated in degree 0. Hence the object corresponding to the dual dissection with degree 0, is the stalk complex concentrated in degree 0.

Note also that in case where Λ has infinite global dimension, there are other objects in D b (Λ) which are not in K b (proj Λ). These can also be interpreted in terms of graded curves (see [OPS]).

Derived invariant

Geometric interpretation of derived equivalence

With this geometric model we manage to describe explicitely all tilting objects in the derived category of a gentle algebra.

More precisely we prove the following Theorem 1.9. 2. Let {γ i , i ∈ I} be the dual of a •-dissection D . If for any δ ∈ π 1 (S) we have w D (δ) = w D (δ), then there exists a grading n i for any i ∈ I such that i∈I P (γ i ,n i ) is a tilting object in D b (A).

Here point (d) comes from the fact that if γ and γ are two •-arcs that intersect on the boundary, then there is no extension between the objects P (γ,n) and P (γ ,n ) if and only if their degree coincide on the first •-arc intersected on the boundary where they meet.

• n(t 1 ) n (t 1 ) = n(t 1 )
Therefore here we only use the Ext-vanishing property for tilting object. We do not use any analogue of mutation (like silting mutation for instance).

This permits to prove a result which is completely similar to Theorem 2.10 in Chapter 4. Note that this result has been proved independently by Opper in [Opp]. 2. there exists a diffeomorphism Φ : S → S preserving orientation and marked points such that Φ * (η) and η are homotopic.

Numerical derived invariant

We can then again use the numerical description of the mapping class group orbit of homotopy classes of line fields to deduce a complete numerical derived invariant. For a surface S of genus g with b boundary components and p punctures, denote by B = {c 1 , . . . , c b+p } a set of simple closed curves such that for j = 1, . . . b, the curve c j is homotopic to the boundary component ∂ j S (being on the left of the curve), and so that c b+k is homotopic to a circle around the k-th puncture for k = 1, . . . , p. Let denote S the closed surface with empty boundary obtained by adding closed discs to each bounday component. Let G = {α 1 , β 1 , . . . , α g , β g }be a set of closed simple curves, such that their image in H 1 (S, Z) is a symplectic basis (with respect to the intersection form).

α 1 β 1 α 2 β 2 c 1 ∂ 1 Σ c 2 ∂ 2 Σ c 3 c 4
Theorem 1.11. [START_REF] Amiot | A complete derived invariant for gentle algebras via winding numbers and Arf invariants[END_REF]Thm 6.4] Let A and A be two gentle algebras with associated dissected surfaces (S, M • , P • , D) and (S , M • , P • , D ) respectively. Let G = {α 1 , . . . , β g }, B = {c 1 , . . . , c b+p } (resp. G = {α 1 , . . . , β g }, B = {c 1 , . . . , c b +p } ) subsets of simple closed curves on S \ P • (resp. S \ P • ) as before. Then the algebras A and A are derived equivalent if and only if the following numbers coincide:

1. g = g , b = b , M • = M • , P • = P • ;
2. there exists a permutation σ ∈ S b+p such that the number of marked points on ∂ σi S and ∂ i S are the same and such that w η (c σ(j) ) = w η (c j ), for any j = 1, . . . , b;

3. for g = g ≥ 1 one of the following holds (a) for g = g = 1, we have

gcd{w η (γ), w η (c) + 2, γ ∈ G, c ∈ B} = gcd{w η (γ ), w η (c ) + 2, γ ∈ G , c ∈ B } ( 
b) for g = g ≥ 2 one the following occurs: i. there exist γ ∈ G ∪ B and γ ∈ G ∪ B such that w η (γ) and w η (γ ) are odd, or ii. for any γ ∈ G ∪ B and γ ∈ G ∪ B , the numbers w η (γ) and w η (γ ) are even and there exists an i with w η (c i ) = 0 mod 4, or iii. for any γ ∈ G ∪ B and γ ∈ G ∪ B , the numbers w η (γ) and w η (γ ) are even and, for any i = 1, . . . , b + p we have w η (c i ) = 2 mod 4 and

g i=1 ( 1 2 w η (α i ) + 1)( 1 2 w η (β i ) + 1) = g i=1 ( 1 2 w η (α i ) + 1)( 1 2 w η (β i ) + 1) mod 2

Further direction

Recollements

The aim is here to interpret certain recollements of derived categories of gentle algebras in a topological way. This is a work in progress with Pierre-Guy Plamondon. Let (S, M • ) be a marked surface equipped with a •-dissection D, and A be the corresponding gentle algebra. To a sub-collection of arcs δ of D, on can associate • a sub-collection δ * of the •-dissection dual to D ;

• an idempotent e of the algebra A.

The idea is here to try to interpret geometrically the following recollement

D b (A)/thick(eA) / / D b (A) / / o o o o D b (eAe) o o o o
First, using results due to Kalck and Yang [KY16, Theorem 1.3], one can re-interpret it as follows

D b ( A/ Ae A) / / D b (A) / / o o o o D b (eAe) o o o o
where A is a cofibrant replacement of the algebra A, that is a path algebra over a DG quiver negatively graded whose H 0 is isomorphic to A. The aim would be to show that the category D b (eAe) is obtained from the surface S by contracting all the arcs of D \ δ, and to show that the category D b ( A/ Ae A) is obtained from S by contracting all the arcs in δ * (getting then a graded gentle algebra seen as a DG algebra with zero differential).

The idea would be to interpret these classical recollements in representation theory as "recollements" of surfaces.

Graded gentle algebras

This project is a work in progress with T. Brüstle, P.G. Plamondon and S. Schroll.

To a marked surface (S, M • ) (called a surface with stops in [HKK]) equipped with a line field, one can associate a A ∞ -category whose objects are given by graded arcs. This category is the partially wrapped Fukaya category. A collection of graded arcs A forming a dissection give then rise to a subcategory of this A ∞ -category, on which it is possible to compute higher multiplication using Floer homology. This is the strategy used by Haiden, Kontsevich and Katzarkov [HKK] to show that such a collection gives rise to a formal object (that is an object whose endomorphism DG algebra admits a minimal model without higher multiplication) which also is generator. One thus obtains equivalences between the triangulated categories

D(End * (A)) D(A) H 0 (Tw(A)) H 0 (TwF uk(S, M • , η)).
Since the object A is formal, the algebra End * (A) is quasi-isomorphic to a DG algebra with zero differential. It is moreover a gentle algebra.

The aim here is to attack the converse. Given an object T in the derived category of a gentle algebra (graded or not) that is a formal generator, is T given by a collection of graded arcs corresponding to a dissection ? We know the answer when the algebra is ungraded, and when the formal generator is a tilting object. In this situation, tilting theory provides a very powerful and efficient tool to compute derived equivalences, whereas the general case one needs to use the very technical A ∞ -machinery. We have started to try to generalize this result for any formal generator first in the case where the gentle algebra is ungraded. Indeed in this case, we have a complete description of the indecomposable objects in the derived category. (This description probably generalizes in the graded case, but for the moment the argument is not completely understood.) One needs then to show that if T is not given by a dissection, then it is not a formal generator. Showing non generation is in general not really difficult. But showing non formality for an A ∞ -algebra B is in general a very challenging task. Indeed, one needs to show that any minimal model on H * (B) does not admit any higher multiplication, and already computing one minimal model may be really technical. One strategy in our partial results uses higher Massey product in the cohomology of B, and seems rather efficient.

Silting mutation

Now that we have a description of silting objects in the derived category of a gentle algebra, we can try to understand silting mutation in terms of dissections and line fields. This has been done in [CS] using the description of morphisms between indecomposable in the derived category. Now a natural question is the following Is the silting graph connected for gentle algebras ? Moreover, silting mutation has been described combinatorially in terms of graded quiver by Oppermann in [START_REF] Oppermann | Quivers for silting mutation[END_REF]. This could be useful to determine that the DG-endomorphism algebra of a silting object in D b (Λ) is formal, that is is isomorphic to its graded homology ring.

Questions about the numerical invariant

One natural question concerning Theorem 1.11 is the following: given a gentle quiver (Q, I) can we compute algorithmically its numerical invariant ? The topological data of the surface are easy to computed from (Q, I). Moreover, any closed curve on the surface can be seen as a certain walk in the quiver, and then computing its winding number is also easy. The walks associated to the curves c i are easy to describe (and where already describe in [START_REF] Avella-Alaminos | Combinatorial derived invariants for gentle algebras[END_REF] through the AG-invariant). But an algorithm computing the walks associated to curves in G is much more involved to compute. This would be very useful to have an algorithm to get these numbers, it could be then possible to add it in the programm QPA for instance, or to the applet dedicated to gentle algebras [G]. This would be of great help for the community of representation of quivers. The description of such an algorithm is a project with Francis Lazarus. Indeed similar results have been described in the article [START_REF] Lazarus | Computing a Canonical Polygonal Schema of an Orientable Triangulated Surface[END_REF]. Another question about these numerical invariants is about their algebraic interpretation. As mentionned before the AG-invariant has an interpretation in terms of a fractional CY properties of certain indecomposable objects. The other numerical invariants computed in Theorem 1.11 3. should also have an interpretation in term of the category. But the answer is here quite mysterious.

One way to handle this question could be the study of the orbit category D b (Λ)/[p] for any positive integer p and its triangulated hull. One could expect that, in analogy with the cluster category setup, the "band objects" of the triangulated hull of D b (Λ)/[1] would be in bijection with π free 1 (S) × k * / ∼. The gcd appearing in 3. (a) could be the smallest integer p such that the functor

(D b (Λ)/[p]) ∆ [1] -→ (D b (Λ)/[1]) ∆
is dense. The interpretation of the Arf invariant appearing in 3.(b) (iii), is for now completely mysterious.

Skew-gentle algebras

In the paper [AB] we provide a topological model for the derived category of skew-gentle algebras over a base field of characteristic = 2. The idea is to use the structure of skew-group algebra of the skew-gentle algebras and to use Opper-Plamondon-Schroll model together with a Z 2 -action very similar to the one described in [AP] (see section 1.3 of Chapter 4). This permits us to find a geometric interpretation of derived equivalence between skew-gentle algebras.

Definition 2.1. A skew-gentle triple (Q, I, Sp) is the data of a quiver Q, a subset I of paths of length two in Q, and a subset Sp of loops in Q (called 'special loops) such that (Q, I {e 2 , e ∈ Sp) is a gentle pair. In this case, the algebra Ā(Q, I, Sp) := kQ/ I {e 2 -e, e ∈ Sp , is called a skew-gentle algebra.

Every gentle algebra is skew-gentle, and the topological model for skew-gentle algebra is a generalisation of the topological model for gentle algebras.

Skew-gentle algebras and orbifolds

Definition 2.2. A Z 2 -dissected surface (S, M • , P • , D, σ) is the data of:

• a dissected surface (S, M • , P • , D) as in Definition 1.2.

• an orientation preserving diffeomorphism σ : S → S of order 2 that preserves globally marked points and the dissection D and such that σ has finitely many fixed points which are all in S \ P • .

Following Proposition 1.4, one can easily deduce from a Z 2 -dissected surface, a gentle algebra together with an action of Z 2 by automorphisms.

Moreover, from a Z 2 -dissected surface, one can do the quotient S = S/σ which has a structure of orbifold, where orbifold points X x correspond to fixed points of σ. The image D := π(D) of D under the projection π : S → S/σ is a •-dissection of ( S \ X, M• , P• ∪ X x ), where each x in X is the endpoint of exactly one arc. We call such a dissection a x-dissection.

We show the following in [AB].

Proposition 2.3. Let (S, M • , P • , D, σ) be a Z 2 -dissected surface, and A the corresponding gentle algebra.

1. the skew-group algebra AZ 2 is Morita equivalent to a skew-gentle algebra Ā;

2. every skew-gentle algebra arises in this way;

3. the assignment (S, M • , P • , D, σ) → Ā is not injective. However, it induces a bijection (except for a few exceptional cases)

(S, M • , P • , D, σ) -→ ( S \ X, M• , P• , X x , D), x-dissected orbifold .

This can be summarized into the following diagram : A way to see point (2) in Proposition 2.3 is to associate a x-dissected orbifold to Ā, and then to "unfold" it in a very similar way as in [AP]. This process can be summarized in the following picture

S • • • • • • x x x X2 X1 X3 γ1 γ2 γ3 S + • • • • • • • • • X2 X1 X3 x x x P + 1 P + 2 = P - 1 P + 3 = P - 2 P - 3 S • • • • • • • • • x x x X1 X2 X3 • • • • • • • • • x x x X2 X3
This procedure provides to any x-dissected surface a "prefered" Z 2 -dissected surface. This prefered Z 2 -dissection has also an algebraic meaning : there is a natural Z 2 -action on any skewgentle algebra Ā which consists of the exchange of the idempotents e and 1 -e for any special loop e. With this Z 2 -action the algebra ĀZ 2 is Morita equivalent to a gentle algebra, whose Z 2 -dissected surface is the "prefered" one obtained by unfolding the orbifold.

Indecomposable objects

Let Ā be a skew-gentle algebra and A be its corresponding Z 2 -gentle algebra (the prefered one described above). The action of Z 2 on A induces an action of Z 2 on the derived category D b (A). The objects in the derived category of D b (A) are described using a line field η D defined from the dissection D as in 1.1. This line field η D is clearly σ-invariant, thus it induces a line field η D on the surface S \ X x .

We define the graded groupoid2 π gr 1 ( S \ X x , M• ) as the set of graded curves (γ, n) with endpoints in M• up to regular homotopy, and where the grading is defined with respect to D and η D. We define then π orb,gr 1 ( S, M• ) as the quotient of the graded groupoid π gr 1 ( S \ X x , M• ) by the relation

x = x
We refer to the appendix of this memoir for a precise definition. We also denote by π orb,free,gr 1 ( S) the set of non contractible gradable closed loops up to free homotopy (see Appendix for precise definitions). Note that as in the previous section, if ([γ], n) is in π orb,free,gr 1 ( S) , then the winding number w η(γ) vanishes.

Then one can show the following. This result is proved in the appendix of this memoir. The method is very similar to the one used in [AP].

Note that a similar result has also been shown in [LSV]. Their proof is however completely different : it is based on the combinatorial description of the indecomposable objects of the derived category of a skew-gentle algebra in [START_REF] Bekkert | Indecomposables in derived categories of skewedgentle algebras[END_REF], via [START_REF] Crawley-Boevey | Functorial filtrations II: clans and the Gelfand problem[END_REF].

Once again, one can use the numerical description of the mapping class group orbits of homotopy classes of line fields to deduce a numerical derived invariant.

For an orbifold ( S, X x ) with x = |X x | orbifold points, such that S \ X is a surface of genus g, with b boundary components, p + x punctures, we denote by B = {c 1 , . . . , c b+p } and G = {α 1 , β 1 , . . . , α g , β g } sets of simple closed curves defined as before.

α 1 β 1 α 2 β 2 c 1 ∂ 1 Σ c 2 ∂ 2 Σ c 3 c 4 x x
Corollary 2.9. The derived equivalence via a Z 2 -tilting object class of a skew-gentle algebra Ā associated to a graded orbifold ( S, M• , P• , X x , η) is given by the numbers:

• g, b, p, x;

• (w η(c i ), m i ), i = 1, . . . , b;

• w η(c j ); j = b + 1, . . . , b + p;

• w η(γ), γ ∈ G.

Note that here the winding number of the line field of a curve surrounding an orbifold point is always 1, so it is not needed in the theorem.

Further directions

These two results are both not completely satisfactory and lead to open related questions.

Numerical invariant

Using once again the numerical characterization of mapping class group orbits of homotopy classes of line fields, one can deduce from Theorem 2.7 a numerical Z 2 -derived invariant of skewgentle algebras. But it is not clear that this numerical invariant is complete. Indeed, if two Z 2 -gentle algebras have the same numerical invariants, then we can deduce the following:

• the line fields η and η are Z 2 -invariant (this is by construction)

• the surfaces S and S are diffeomorphic and the diffeomorphism commutes with the action of σ and σ ;

• there exists a diffeomorphism Φ : S → S such that Φ * (η ) is homotopic to η.

But it is not clear that this Φ commutes with σ and σ . The problem is in general difficult and related with some difficult question in topology such as Birman-Hilden's property. For example, it is not clear when two Z 2 -invariant line fields are homotopic, that one can find a homotopy preserving the Z 2 -invariance property.

Tilting objects

A clear desadvantage of Theorem 2.8 is this condition "given by a Z 2 -invariant tilting object". This condition is closely related to the fact that the class of skew-gentle algebras is not closed under derived equivalence. We need this hypothesis to apply Theorem 2.6 (1). But using the geometric model for skew-gentle algebras, one should be able to describe all tilting objects in terms of "generalized orbifold dissections". Then a natural problem would be to describe the endomorphism algebra of such a tilting object from the combinatorial data of the dissected surface. This would give a class of algebras closed under derived equivalence containing skewgentle algebras. One would expect to find the Jacobian algebras associated to triangulated surfaces with punctures as defined in [START_REF] Labardini-Fragoso | Quivers with potentials associated to triangulated surfaces[END_REF], and associated surface cut algebras. One would also expect an analogue of Theorem 2.11 and Corollary 2.9 to be true (note that in these two results, the same numbers are involved).

A ∞ -structure and graded case One also could want to enhance this geometric model describing the derived category of skewgentle algebra in a A ∞ -structure. Is there a notion of Z 2 -A ∞ -structure, and do Reiten and Riedtmann's results carry over to this setting ? Can we describe higher multiplications for graded curves in this setting ? Is there a Z 2 -Fukaya category associated to a Z 2 -graded surface, or a Fukaya category associated with an orbifold ? More generally is there a notion of G-Fukaya category associated with an orbifold surface S/G where G is a finite sub-group of homeomorphisms of S ?

Geometric models for other triangulated categories

Other triangulated categories appearing in this memoir arise with a natural topological data. It would be of interest to try to interpret algebraic information of the category in terms of the topological data.

Geometric model for the stable category of the trivial extension of a gentle algebra

For a general gentle algebra (of finite global dimension), one can construct its trivial extension T(Λ) := Λ⊕DΛ as in Section 1.2 in Chapter 2. By Happel's result, there is a triangle equivalence D b (Λ) mod Z TΛ. Using Keller's results on orbit categories in [START_REF] Keller | On triangulated orbit categories[END_REF], one can show that this equivalence induces an equivalence between the stable category modTΛ and the triangulated hull of the category D b (Λ)/S[1]. Using this observation, the idea would be to try to obtain a geometric model for the category modTΛ. The auto-equivalences are indeed well understood geometrically, so at least one should be able to provide a geometric model for the orbit category D b (Λ)/S[1]. As such, the triangulated category modTΛ plays a role analogue to the cluster category C 2 (Λ). Moreover, this trivial extension is a Brauer graph algebra (see [START_REF] Schroll | Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory[END_REF]), and their representation theory is already well-known.

One could also try to check analogue results as the ones obtained in [START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] (see subsection 3.4 in Chapter 3). For example, if Λ 1 and Λ 2 are gentle algebras such that we have an equivalence of triangulated categories modTΛ 1 modTΛ 2 can we construct a grading on Λ 1 and Λ 2 so that we have an equivalence

D b (mod Z Λ 1 ) D b (mod Z Λ 2 )?
Note that this question also makes sense for algebras that are not gentle.

Geometric model for categories associated with dimer models

Another family of triangulated categories associated with topological data was described in subections 5.3 in Chapter 1. To a consistent dimer model with a perfect matching, one can associate a graded Jacobian algebra Π and its degree zero subalgebra Λ. If there exists an idempotent e such that Π/ΠeΠ is finite dimensional, and such that eΛ(1 -e) vanishes, then we obtain equivalences

D b (Λ) ∼ / / CM Z (eΠe)
C 2 (Λ) ∼ / / CM(eΠe)

.

One can then wonder whether certain indecomposable objects of the category CM(eΠe) could be interpreted in terms of curves on the torus. Moreover, would it be possible to construct a line field on the torus and understand some objects of the category CM Z (eΠe) D b (Λ) in terms of graded curves ?

Proof. The bijections in items 1. and 2. are induced by Ψ, and we always have w η ([ γ]) = w η(Ψ[ γ]), so the proof here follows from 1. and 2. of Corollary 5.18 in [AP]. Bijection 3. is constructed as follows (see proof of Corollary 5.18 in [AP]) : for any [ γ] ∈ π free 1 (S) primitive such that [σ γ] = [ γ] there exists a primitive element [α] ∈ π orb,free 1 ( S) such that Ψ([ γ]) = [α 2 ]. If w η ( γ) = 0, then w η(α 2 ) = 0 = 2w η(α). Thus α has winding number zero if and only if so does γ. We associate to ([ γ], λ, ±1) the element ([α], ±λ ) where λ is a square root of λ in k.

Then combining Propositions 2.3 and 2.5, one easily gets that the sets 3. and 3'. 

Example

Let us consider a cylinder with one puncture and one orbifold point with the following xdissection, and its corresponding skew-gentle algebra. The dissected surface S, and the Z 2 -gentle algebra associated to the skew-gentle algebra is as follows. Their image through the functor K b (proj A) → K b (proj Ā) gives the following complexes which are isomorphic:

• • • • • x • • • • • 1 - 3 - 1 - 1 + 3 + 1 + 4 - 4 + 2 • • 1 - 1 + 2 3 - 3 + 4 - 4 + c - c + a -
P 1 ⊕ P 1     a a a -a 0 c    
/ / P 2 ⊕ P 2 ⊕ P 4 , and

P 1 ⊕ P 1     a a -a a 0 c    
/ / P 2 ⊕ P 2 ⊕ P 4 .

Take now a (γ, n) ∈ π 1 ( S, M• ) such that γ 2 = 1 as follows:

• • • • • x • • 0 0 0 0 1 1 1
The graded curve (γ, n) is in the set 2. and has a unique preimage in π gr 1 (S, M • ).

which is isomorphic to the complex

P 1 ⊕ P 1        c 0 a 0 0 a 0 c       
/ / P 4 ⊕ P 2 ⊕ P 2 ⊕ P 4 which is clearly decomposable.

Now let ([γ]

, n, λ) ∈ π orb,free,gr 1 ( S) × k * be the following graded curve

• • • • • x • • 0 1 1 2 0
The element ([γ], n, λ) is the set 3. and [γ] is in the image of Ψ (indeed it intersects the green dotted lines an even number of times).

The graded curve ([γ], n) has two preimages in π free,gr 1 (S) (that are in the set 3.) which are as follows:

• • • • • x • • • • • • • • • 0 0 0 0 1 2 1 1 2 1
These graded curves correspond respectively to the following objects in K b (proj A): The closed curve [γ] is in the image of Ψ and its preimage is unique as follows:

For Λ of globalΛ

  dimension ≤ d, we denote by S := -L ⊗ DΛ the Serre functor of the derived category D b (Λ), and by S d := S•[-d] its composition with the d power of the inverse of the shift.

0 / / a∈Q 1

 01 Λe t(a) ⊗ e s(a) Λ ∂ / / i∈Q 0 Λe i ⊗ e i Λ / / 0 ; where ∂ is defined as ∂(e t(a) ⊗ e s(a) ) = (a ⊗ e s(a) ) s(a) -(e t(a) ⊗ a) t(a) .

  Lemma 3.1. [Iya11, Lemma 5.2] Let Λ be an algebra of global dimension ≤ d. If X ∈ D b (Λ)

  Theorem 5.2. [RV89] Let G ⊂ SL 2 (k) be a finite subgroup acting on S = k[x, y]. Then the skew-group algebra SG is Morita equivalent to the preprojective algebra Π 2 (kQ) where Q is an orientation of the extended Dynkin graph associated to G via the Mckay correspondence.

  2. The second step requires to construct a triangle functor F : D b (Λ) -→ per Γ that induces a functor F : C d (Λ) -→ per Γ/D b (Γ) = CM(Γ). In order to do this, one may apply the universal property of the d-cluster category (see Theorem 1.1 in the next section) CHAPTER 2. CLUSTER CATEGORIES AND COHEN-MACAULAY MODULES 3. The third step consists in showing that the functor F is an equivalence. For this one can apply the following Proposition 0.1. [KR07, IY08] Let T and T be two triangulated categories with dcluster-tilting subcategories U and U . If there exists a triangle functor F : T → T inducing an equivalence U U then F is an equivalence.

  we consider the case n = 2, the algebra Π w is just the trivial extension of kQ by the bimodule Ext 1 kQ (DkQ, kQ). And one gets Λ w = Λ w = kQ. So Theorem 3.1 gives an equivalence CM(kQ ⊕ E) C 2 (kQ); which was already a consequence of [KR08] and [BIRS09]. This has been generalized as follows by Hanihara: Theorem 3.4. [Han] Let d ≥ 2 and A be a (d -1)-RI algebra. Then A is τ d -finite algebra. Denote by Γ the trivial extension of the algebra A by the bimodule Ext d-1 A (DA, A). Then we have an equivalence of categories CM(Γ) C d (A).

,

  where R := eΠe.We can summarize as follows the relation between R and Λ: R = eΠe d-Auslander algebra / / Π degree 0 part / / e(-)e o o Λ -/ e / / d + 1-preprojective algebra o o Λ = Λ/ΛeΛ 4.2 Applications Case d = 1 We come back to Subsection 5.2 in Chapter 1, and apply Theorem 4.1 in the case d = 1. Then Λ = kQ where k is an algebraically closed field of characteristic zero, Q is some extended Dynkin quiver, and e is the extended vertex. We can choose an orientation of Q so that ekQ(1 -e) = 0 holds. The algebra Λ is then the path algebra kQ of the corresponding Dynkin quiver. The previous diagram becomes k[x, y] G Auslander algebra / / Π 2 (Q)

  Theorem 4.2. [Min12, Thm 3.12] Let Λ be a d-RI algebra, and Π := Π d+1 (Λ) be the corresponding (d + 1)-preprojective algebra. If Π is left graded coherent, then there exists a triangle equivalence D b (Λ) D b (qgrΠ)

o o o o .

 o Coming back to the example of the Beilinson algebra in subsection 5.4, we obtain the following: R is the (d + 1)-Veronese algebra, so we have ProjR = ProjS, and hence by Serre's result [Ser55], we obtain D b (qgrR) = D b (cohS) = D b (cohP d ). So Minamoto's result can be understood as a generalisation of Beilinson's result [Bei78] D b (Λ) D b (cohP d ).

  d ) of the graded QP (Q, W, d) as follows: • replace each arrow a : i → j in Q by an arrow a * : j → i and put d (a * ) := -d(a) • replace each arrow b : j → i in Q by an arrow b * : i → j and put d (b * ) := 1 -d(b) • for each composition j a → i b → k, add an arrow [ba] : j → k and put d([ba]) := d(a) + d(b);

  The second class contains three non isomorphic algebras as follows:To check that the algebras Λ 3 and Λ 8 are derived equivalent, one needs to exhibit a sequence of graded mutations between the graded quivers Cluster equivalence and graded derived equivalence Another question we are considering in[START_REF] Amiot | Cluster equivalence and graded derived equivalence[END_REF] is the following : if Λ 1 and Λ 2 are τ 2 -finite algebras, such that the associated QP are linked by a sequence of mutation as in Corollary 1.6, what can be said about the categories D b (Λ 1 ) and D b (Λ 2 ) ?

  obtain the following gradings on Λ 10 and Λ 3 : that we have an equivalence D b (mod Z Λ 10 ) D b (mod Z Λ 3 ).

  we obtain a bijection T : {tagged arcs on the surface (S, M)}/htp ←→ {indecomposable rigid objects in C ∆ }/isom., that induces a bijection T : {tagged triangulations of (S, M)}/htp ←→ {cluster-tilting objects in C ∆ }/isom., which commutes with flip/mutation in the sense ∆

  side and d(α) = 1 α

  one the following occurs i. there exist γ in G 1 ∪ B 1 and γ in G 2 ∪ B 2 such that d 1 (γ) and d 2 (γ ) are odd, or ii. for any γ in G 1 ∪ B 1 , for any γ in G 2 ∪ B 2 , the numbers d 1 (γ) and d 2 (γ ) are even and there exists c ∈ B 1 with d 1 (c) = 0 mod 4, or iii. for any γ in G 1 ∪ B 1 and γ ∈ G 2 ∪ B 2 , the numbers d 1 (γ) and d 2 (γ ) are even, for any c ∈ B 1 we have d 1 (c) = 2 mod 4 and

  w = 0, the category D b (Λ) is equivalent to D b (k A n ), so is well-known. For w = 0, we obtain that the covering of the graded algebra (H, d) is of type A ∞ . By a careful description of the autoequivalences (1) and S 2 of the derived category D b (mod Z H) we obtain the following Proposition 2.14. [AO13b, Cor 5.5] Let Λ a surface cut algebra associated to an annulus, with w = 0. Then the AR quiver of D b (Λ) contains exactly 3|w| connected components, |w| of type ZA ∞ ∞ and 2|w| of type ZA ∞ .

  Definition 1.2. A •-dissection is a collection D = {γ 1 , . . . , γ s } of •-arcs cutting S into polygons with exactly one side being a boundary segment. Two dissected surfaces (S, M • , P • , D) and (S , M • , P • , D ) are called diffeomorphic if there exists an orientation preserving diffeomorphism Φ : S → S such that Φ(M • ) = M • , Φ(P • ) = P • , and Φ(D) = D .

  4. [OPS, BC] The assignment D → A(D) induces a bijection (S, M, P, D) dissected surface / diffeo ←→ A(Q, I) gentle algebra /iso

  [APS] Let (S, M • , P • , D) be a dissected surface and A = A(D) be the corresponding gentle algebra. 1. If T is a basic tilting object in D b (A), then there exists a collection of graded arcs {(γ i , n i ), i ∈ I} such that (a) T i∈I P (γ i ,n i ) ; (b) {γ i , i ∈ I} is the dual of a •-dissection denoted by D T ; (c) we have an isomorphism of algebras End D b (A) (T ) A(D T ); (d) for any δ ∈ π 1 (S), we have w D (δ) = w D T (δ).

  Corollary 1.10. [APS, Thm 4.1][Opp, Thm B] Let A and A be gentle algebras associated respectively to dissected surfaces (S, M • , P • , D) and (S , M • , P • , D ). Denote by η (resp. η ) the line field defined from the dissection D (resp. D ). Then the following are equivalent: 1. the algebras A and A are derived equivalent;

  vertex is in red)

  Following again Reiten and Riedtmann [RR85], we get functors D b (A) → D b ( Ā) and D b ( Ā) → D b (A), that induce a bijection between the isomorphism classes of indecomposable objects in D b ( Ā) and the set {σ-invariant indec. in D b (A)} × Z 2 ∪ {σ-orbits of non σ-invariant indec. in D b (A)}, exactly as in Theorem 1.8 of Chapter 4 for cluster categories.

Theorem 2. 4 .

 4 Let Ā be a skew-gentle algebra, and let ( S, M• , P• , X x , η) the corresponding graded orbifold surface. Then the indecomposable objects of D b ( Ā) are in bijection with the following sets:1. (γ, n) ∈ π orb,gr 1 ( S, M• ) | γ 2 = 0 / ∼ where (γ, n) ∼ (γ -1 , n); 2. (γ, n, ) ∈ π orb,gr 1 ( S, M• ) × {±1} | γ = γ -1 ; 3. ([γ], n, λ) ∈ π orb,free,gr 1 ( S) × k * | [γ] = [γ -1 ] / ∼ where ([γ], n, λ) ∼ ([γ -1 ], n, λ -1 ); 4. ([γ], n, λ) ∈ π orb,free,gr 1 ( S) × k * \ {±1} | [γ] = [γ -1 ], γ 2 = 0 / ∼; 5. ([γ], n, , ) ∈ π orb,free,gr 1 ( S) × {±1} 2 | [γ] = [γ -1 ], γ 2 = 0 .

  (resp 4., resp 5.) are in bijection respectively with3. {([γ], n, λ) ∈ π orb,free,gr 1 ( S) × k * | [γ] = [γ -1 ]}/ ∼ where ([γ], n, λ) ∼ ([γ -1 ], n, λ -1 ); 4. {([γ], n, λ) ∈ π orb,free,gr 1 ( S) × k * \ {±1} | [γ] = [γ -1 ], γ 2 = 0}/ ∼; 5. {([γ], n, , ) ∈ π orb,free,gr 1 ( S) × {±1} 2 | [γ] = [γ -1 ], γ 2 = 0}.

  ba + b a , dc, e 2 )

I

  = (b -a -, b + a + , d -c -, d + c + , (e -) 2 , (e + ) 2 ) γ satisfies γ 2 = 1, therefore (γ, n) is in the set 1. and has two preimages in π gr 1 (S, M • ). curves correspond to the following complexes in K b (proj A):P 1 + ⊕ P 1 -   a + a - 0 c -   / / P 2 ⊕ P 4 -and P 1 -⊕ P 1 +   a -a + 0 c +  / / P 2 ⊕ P 4 + .

////

  / P 2 ⊕ P 4 + b + c + / / P 3 + and P 1 -   λa - d -   / / P 2 ⊕ P 4 - b -c - / / P 3 - The corresponding complexes in K b (proj Ā) are / P 2 ⊕ P 2 ⊕ P 4 b b c / / P 3 and P 1 / P 2 ⊕ P 2 ⊕ P 4 b -b c / / P 3 which are isomorphic.Now let ([γ], n, λ) ∈ π orb,free,gr 1 ( S) × k * be the following graded curve. It is in the set 3. and [γ] is not the image of Ψ since it intersects the green dotted lines an odd number of times. concatenation of its two preimages is in the set 3'. and is a primitive closed curve as follows: object in K b (proj A) is given byP 1 + ⊕ P 1 -   λb -a + d -e -c - d + e + c + b + a -   / / P 3 -⊕ P 3 + , whose image in K b (proj Ā) is P 1 ⊕ P 1   λ(ba -b a ) / P 3 ⊕ P 3 which can be shown to be isomorphic to P 1 λ (ba-b a )+dec / / P 3 ⊕ P 1 -λ (ba-b a )+dec / / P 3 where (λ ) 2 = λ. Finally, let ([γ], n) ∈ π orb,free,gr 1 ( S) be such that [γ] = [γ -1 ] as follows
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Preprojective modules are modules that are direct summands of direct sums of τ -n (kQ) where τ is the Auslander-Reiten translation in mod kQ.

A subcategory U of C is called functorially finite if any object in C has left and right approximations by objects in U.

This result has an analogue for non necessarily algebraically closed field, using the classification of indecomposable k[X]-modules

Note that it is not clear that the graded groupoid has a structure of groupoid (at least we don't prove it here), so the name is maybe not very well-chosen.

Remerciements

Part II

Topological models for triangulated categories

Hence the surface S is a sphere with four boundary components and is given by the following polygon with identifications:

The quivers Q ∆ and Q ∆ have the following shape:

Indecomposable objects

The action of σ on the surface S induces an action of the group Z 2 on Q ∆ preserving the potential W ∆ . From this, we deduce an Z 2 -action on the Ginzburg DG algebra Γ ∆ and on the corresponding cluster category C ∆ . Following Reiten and Riedtmann's definition [START_REF] Reiten | Skew group algebras in the representation theory of artin algebras[END_REF], we can form the skew-group DG algebra Γ ∆ Z 2 as follows:

• as a graded vector space, we set Γ ∆ Z 2 := Γ ∆ ⊗ k kZ 2 ;

• the multiplication is induced by the rule (γ ⊗ g).(γ ⊗ g ) = γg(γ ) ⊗ gg ;

The algebraic link between the triangulated surfaces (S, ∆) and ( S, ∆) is given as follows:

Theorem 1.7. [AP, Thm 2.6] The skewgroup DG algebra Γ ∆ Z 2 is Morita equivalent to Γ ∆ .

Adapting the results of Reiten and Riedtmann to the DG-setting, we then obtain the following result :

Derived equivalence

General results on skew-group algebras

We are interested in finding derived invariants for the skew-gentle algebras in topological terms. In order to do that, we need to investigate more generally the derived equivalences between algebras with a G-action, where G is a finite abelian group whose cardinal is invertible in k, and the derived equivalence between the corresponding skew-group algebras.

We define the notion of G-invariant object, and noticing that the endomorphism algebra of a G-invariant object has a natural G-action, we set the following Definition 2.5. Let A and A be algebras with G-action. Then A and A are G-derived equivalent if and only if there exists a G-invariant tilting object T ∈ D b (A) together with an isomorphism End D b (A) (T ) A commuting with the action of G.

Given a G-algebra A, one can define a G-action on the algebra AG by χ(a ⊗ g) = χ(g)a ⊗ g, where G is the group Hom(G, k * ).

Theorem 2.6. [AB, Theorems 2.10 and 2.13 ] 1. Let A be a G-algebra. Then there is a bijection

If moreover

A is a G-algebra, such that A and A are G-derived equivalent, then AG and A G are G-derived equivalent.

Applying this to the setup of skew-gentle algebras, we manage to prove the following 3. there exists an orientation preserving diffeomorphism Φ : S → S sending marked points to marked points, such that Φ • σ = σ • Φ, and such that the line fields η D and Φ * (η D ) are homotopic.

We then investigate the case where the skew-group algebras are derived equivalent, the derived equivalence given by a Z 2 -invariant tilting object T , but such that the isomorphism

Ā does not necessarily commutes with the action of Z 2 . In that case, we can still use 1. of Theorem 2.6 and interpret the Z 2 -tilting objects in the derived category of a G-gentle algebra, as the dual of a σ-invariant dissection. We obtain the following Theorem 2.8. [AB, Thm 5.9] Let Ā and Ā be skew-gentle algebras with their natural Z 2 -action. Denote by ( S, M• , P• , X x , D) and ( S , M • , P • , X x , D ) their associated x-dissected orbifolds. Then the following are equivalent:

1. the algebras Ā and Ā are derived equivalent via a Z 2 -tilting object; 2. there exists an orientation preserving diffeomorphism Φ : S → S sending marked points to marked points, and orbifold points to orbifold points such that the line fields Φ * (η D ) and η D are homotopic.

Chapter 6

Appendix: Proof of Theorem 2.4 (page 81 in Chapter 5)

1 Indecomposable in term of graded curves on S

Let Ā be a skew-gentle algebra attached to the dissected surface ( S, M• , P• , X x , D), and A be the corresponding gentle algebra attached to the Z 2 -dissected surface (S, M • , P • , D, σ) (see Section 2 of Chapter 5 for definitions).

Since we have a bijection between the isomorphism classes of indecomposable objects in

the first thing to understand is the action of σ on the indecomposable objects of K b (projA).

We first fix a piece of notation. For (γ, n) ∈ π gr 1 (S, M • ), we denote by P (γ,n) the string object in K b (projA) through the bijection given in Theorem 1.8 in Chapter 5. For ([γ], n, λ) ∈ π free,gr 1 (S) × k * we denote by B ([γ],n,λ) the corresponding band object in K b (projA).

Lemma 1.1.

1. For (γ, n) ∈ π gr 1 (S, M • ), we have (P (γ,n)

Proof. The first statement is proved in Lemma 5.4 in [AB].

For the second statement, let us define explicitely the bijection

such that γ(t j ) belongs to D, and denote by i j the arc of D containing γ(t j ).

Since [γ] is defined up to free homotopy and since w η (γ) = 0, we can assume that t 0 = 0, that w η (γ (0,t 1 ) ) = -1 and that w η (γ (t ,1) ) = +1.

For j = 0 . . . , , one can associate a path p j (γ) of the quiver Q as in the following picture (where indices are taken modulo ). CHAPTER 6. APPENDIX: PROOF OF THEOREM ?? (PAGE 81 IN CHAPTER 5)

The differential is given by the following ( + 1) × ( + 1) matrix (d (j,k) ) j,k

• all other values of d (j,k) are 0.

Note that in case = 1, then we obtain

With the hypothesis on γ, we define an element α ∈ π 1 (S, M • ) as in the following picture,

and define a grading on it such that n((α(t j ))) = n((γ(t j ))) for j = 1, . . . , . Then one immediately sees that the map (1, λ) : e i 0 A 2 → e i 0 A induces a triangle

Then we obtain statement 2. for primitive curves using statement 1.. For any curve, the proof is similar, since the band object can be seen as an iterated extension of a band object associated with a primitive curve.

We have P (γ,n) P (γ ,n ) if and only if γ = γ or γ = γ -1 and n = n . We have

). Therefore the indecomposable objects of K b (proj Ā) are in bijection with the following sets:

2 Indecomposables in term of graded curves on the orbifold Now recall from [AP, Section 5] that there is a groupoid map

and a well defined map Ψ :

The aim is to use these maps to translate the bijection above in term of graded curves on the orbifold S.

String objects

First, note that since η is the image of the line field η through the projection p : S \ X → S \ X, there is a natural map

The first step consists of the definition of the set π orb,gr 1 ( S, M• ) together with a map

Definition 2.1. Let γ be in C 1 ((0, 1), S \X) such that its preimages γ and σ γ in C 1 ((0, 1), S \X) do not contain any contractible loops and intersect transversally the dissection D.

Then, one defines a grading on γ as a map n : γ(0, 1)

if γ(t i ) and γ(t i+1 ) are two consecutive intersections of γ with D.

Since the map Φ : π 1 (S, M • ) → π orb 1 ( S, M• ) is surjective, any element in π orb 1 ( S, M• ) has a representant that can be gradable.

We would like now to check that the grading is well-defined on the set π orb 1 ( S, M• ). This comes from the following two facts:

1. If ( γ, n) is a graded curve in S, and (γ, n) is a graded curve in S such that Φ( γ) = γ and n(γ(t 1 )) = n( γ(t 1 )), then for any i n(γ(t i )) = n( γ(t i )). This comes from the fact that η is the projection of η.

2. If (γ, n) and (γ , n ) be two graded curves on S that have the same grading at their first intersection point with D, then they admit the same grading on any intersection point with D. Indeed their preimages starting at the same point are homotopic, so they admit the same grading in S.

We denote by π orb,gr 1 ( S, M• ), the set of graded curves up to homotopy, which is now well defined. It comes then with a natural surjective map

whose fiber is in bijection with Z.

Therefore the sets 1. and 2. described above are respectively in bijection with

Band objects

Here again, we first define the notion of gradable closed curves on the orbifold S. Let [γ] ∈ π orb,free 1 ( S) represented by a smooth curve γ without contractible loops and intersecting transversally D. Denote by x 0 = γ(0) its starting point, and by x + 0 , and x - 0 its preimages in S. There exists a curve γ ∈ C 1 ((0, 1), S) satisfying :

• γ does not contain any contractible loops;

• γ(0) = x + 0 , and γ(1) ∈ {x + 0 , x - 0 }; Then the winding number of γ with respect to η is defined, and so is the winding number of γ = p γ with respect to η. Moreover we have

Furthermore since the preimage γ (starting in x + 0 ) is unique up to homotopy, the winding number of [γ] is well defined as a map w η : π orb,free 1 ( S) -→ Z.

Definition 2.2. Denote by S 1 the segment [0, 1], where 0, and 1 are identified. Let γ : S 1 → S\X be a closed smooth map with γ(0) = x 0 and such that its preimage γ : [0, 1] → S on S starting at x + 0 is as above. A grading on γ is a map n : γ(S 1 ) ∩ D → Z satisfying:

if γ(t i ) and γ(t i+1 ) are two consecutive intersections of γ with D.

Note that if γ has a grading and if γ is not closed (that is γ(1) = x - 0 ), then one can consider the closed curve β := σ γ. γ : [0, 2] → S. The grading n defines a grading n on β (and on γ) with for any i n( γ(t

Then, with the same argument as before, we see that if the gradings two graded closed curves that are equal when viewed in π orb,free 1 ( S) coincide at their first point, then they coincide at every intersection point with the dissection. Therefore, the set π orb,free,gr 1 ( S) is well defined. Moreover we have the following

If γ is not closed, then we have

Therefore we obtain a map π orb,free,gr 1 ( S) -→ π orb,free 1 ( S), whose image consists of curves with winding number 0, and whose fiber is in bijection with Z.

Definition 2.4. We call an element γ ∈ π 1 ( S, x 0 ) primitive if it is torsionfree, and if it is a generator of the maximal cyclic group containing it. Hence if γ ∈ π orb 1 ( S, x 0 ) satisfies γ 2 = 1 then γ is torsionfree, and so can be written in a unique way as a positive power of a primitive element. Now, a small adaptation of Corollary 5.18 in [AP] yields the following.

Proposition 2.5. Let Ψ : π free 1 (S) → π orb,free 1 ( S) be the map induced by the projection p : S → S.

1. We have a bijection between the following sets: