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d’avoir accepté de lire ce mémoire et d’avoir écrit un rapport. Je les remercie aussi d’avoir
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Introduction

L’objet de ce mémoire est de présenter les résultats principaux de mes recherches depuis ma thèse
de doctorat. Mon domaine de recherche est la théorie des représentations, et je m’intéresse en
particulier à l’étude des catégories triangulées. Je vais maintenant essayer d’expliquer pourquoi
ces catégories apparaissent naturellement en théorie des représentations.

Un des objectifs de la théorie des représentations est le suivant. Etant donné une algèbre
Λ sur un corps k, on souhaite comprendre tous les modules sur Λ, ainsi que les morphismes
entre eux. La famille ModΛ de tous ces modules et de leurs morphismes forme ce qui s’appelle
une catégorie. Elle fait partie des catégories dites abéliennes. Sans entrer dans les détails précis
de la définition, disons que ce sont des catégories dans lesquelles les notions de noyau, image,
conoyau, et donc de suites exactes jouent un rôle fondamental.

Etant donné un Λ-module M , il est souvent utile d’en donner une présentation, c’est-à-dire
de le voir comme le conoyau d’un morphisme d0 : P1 → P0 entre modules projectifs (qui sont
une généralisation des modules libres). Le morphisme d0 n’étant en général pas injectif, on en
vient à considérer un complexe de Λ-modules projectifs

P•(M) := · · · // P2
d1 // P1

d0 // P0
// 0 // · · ·

tel que pour tout n ≥ 0 on a Kerdn = Imdn+1 et où M est le conoyau du morphisme d0.
Dans ce cas, l’homologie du complexe P•(M) est nulle en tout degré sauf en degré 0 où elle
est isomorphe à M . Un tel complexe P•(M) est appelé une résolution projective de M : de
manière un peu raccourcie, on peut comprendre le module P0 comme engendré par un ensemble
de générateurs pour M , le module P1 comme engendré par les relations entre ces générateurs, le
module P2 comme engendré par les relations entre ces relations, etc... Par ailleurs, une propriété
des résolutions projectives est la suivante : tout morphisme de modules f : M → N donne lieu à
un morphisme de complexes P•(M)→ P•(N). Malheureusement, si tout module admet bien une
résolution projective, celle-ci n’est unique qu’à homotopie de complexes près, et de même pour
le morphisme induit P•(M) → P•(N). Il devient alors naturel de travailler dans la catégorie
homotopique K−,b(ProjΛ), dont les objets sont des complexes de projectifs bornés à droite, et
dont les morphismes sont les morphismes de complexes modulo homotopie. La catégorie des
Λ-modules ModΛ peut alors se voir comme une sous-catégorie pleine de K−,b(ProjΛ). Si par
ailleurs l’algèbre Λ est de dimension finie, tout Λ-module de dimension finie admet une résolution
formée de modules projectifs de dimension finie. Cette résolution sera de plus bornée à gauche
si la dimension globale de Λ est finie. On aura donc dans ce cas une inclusion

mod Λ ⊂ Kb(proj Λ),

où mod Λ désigne la catégorie des Λ-modules de dimension finie (qui est aussi abélienne), et
Kb(proj Λ) la catégorie homotopique des complexes bornés de modules projectifs de dimension
finie. Malheureusement, les notions de noyau, de conoyau ou d’image ne sont pas bien définies
dans la catégorie Kb(proj Λ) : cette catégorie n’est pas abélienne. Elle hérite malgré tout des
belles propriétés de la catégorie mod Λ en ayant la structure de ce qu’on appelle une catégorie
triangulée. Par exemple, toute suite exacte

0 // X // Y // Z // 0
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dans mod Λ donne lieu à ce qu’on appelle un triangle

P•(X) // P•(Y ) // P•(Z) // P•(X)[1]

où P•(X)[1] est le complexe P•(X) décalé d’un cran vers la gauche. Les triangles de Kb(proj Λ)
vérifient des propriétés proches de celles des suites exactes courtes de mod Λ. De plus la catégorie
Kb(proj Λ) contient de nombreuses informations homologiques sur l’algèbre Λ. En particulier
on a des isomorphismes pour tout n ∈ Z

HomKb(proj Λ)(P•(X), P•(Y )[n]) ' ExtnΛ(X,Y ). (0.1)

fonctoriels en X et en Y . Par ailleurs, dans l’idée de mieux “voir” la catégorie mod Λ dans la
catégorie homotopique, il est souvent plus aisé de donner une autre description de la catégorie
Kb(proj Λ). On considère la catégorie dont les objets sont cette fois des complexes bornés de
Λ-modules de dimension finie (qui ne sont donc plus nécessairement projectifs), et dont les
morphismes sont les morphismes de complexes modulo homotopie, où l’on inverse formellement
les quasi-isomorphismes (i.e. les morphismes induisant un isomorphisme dans l’homologie). Le
Λ-module X peut alors se voir comme un complexe concentré en degré zéro :

· · · // 0 // X // 0 // · · · .

La projection naturelle P•(X)→ X est alors un quasi-isomorphisme et devient donc un isomor-
phisme dans cette catégorie. Cette catégorie, notée Db(mod Λ) est appelée la catégorie dérivée
bornée. Dans le cas où Λ est de dimension finie et de dimension globale finie, elle coincide avec
la catégorie Kb(proj Λ). Du fait des isomorphismes (0.1), elle est un invariant homologique très
intéressant de l’algèbre Λ. Une question naturelle et difficile de théorie des représentation est de
déterminer si deux algèbres données ont des catégories dérivées équivalentes. Celle-ci a donné
naissance dans les années 80 à ce qu’on appelle la théorie du basculement (tilting), omniprésente
en théorie des représentations depuis lors [AHK07].

Les catégories triangulées apparaissent aussi naturellement en théorie des représentations
dans la construction de la catégorie stable décrite par Happel dans [Hap88]. Si Λ est une
algèbre auto-injective, les Λ-modules projectifs sont aussi injectifs. Ils jouent donc un rôle
très particulier dans la catégorie mod Λ. Il devient alors intéressant de considérer la catégorie
stable modΛ, où l’on quotiente les espaces de morphismes par les morphismes se factorisant
par des projectifs-injectifs. Cette procédure ‘régularise’ en quelque sorte la catégorie mod Λ en
‘éliminant’ ces objets particuliers que sont les projectifs-injectifs. Happel montre dans [Hap88]
que cette catégorie a aussi une structure de catégorie triangulée. Cette construction se généralise
aux algèbres Iwanaga-Gorenstein (le cas auto-injectif correspondant à la dimension Gorenstein
0), où l’on considère non plus tous les Λ-modules, mais certains modules appelés modules de
Cohen-Macaulay. On obtient ainsi une catégorie triangulée CM(Λ), appelée parfois catégorie des
singularités. Cette catégorie est en effet nulle si et seulement si l’algèbre Λ est homologiquement
lisse, autrement dit de dimension globale finie.

Partant de ces deux types de constructions de catégories triangulées (et de leurs généralisations),
on peut en construire d’autres, en utilisant la notion de quotient de Verdier d’une catégorie tri-
angulée par une sous-catégorie triangulée pleine. Presque toutes les catégories triangulées de
théorie des représentations sont construites de cette manière.

Mon travail de recherche peut se résumer en deux fils conducteurs, tous deux allant dans le
sens de mieux comprendre ces catégories:

1. trouver des équivalences entre certaines catégories triangulées ;

2. décrire explicitement les objets indécomposables et morphismes de certaines catégories
triangulées.
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La première question est source de nombreux travaux dans le domaine. Mentionnons déjà
trois résultats fondamentaux très classiques :

• le premier, dû à Happel [Hap88], permet de comprendre la catégorie Db(Λ) comme une
catégorie stable graduée modZT(Λ), via l’ extension triviale de Λ par son dual Homk(Λ, k);

• le deuxième, dû à Buchweitz [Buc87] et Rickard [Ric89], permet de comprendre la catégorie
stable CM(Λ) d’une algèbre Iwanaga-Gorenstein comme le quotient de Db(mod Λ) par la
sous-catégorie pleine Kb(proj Λ);

• le troisième donne un critère permettant de montrer qu’une catégorie triangulée est équi-
valente à Db(mod Λ) via l’existence d’objets basculants. Ce dernier résultat, dû à de
multiples auteurs selon la généralité de l’énoncé [Hap87, Ric89b, Kel94], a donné lieu à la
théorie du basculement.

La deuxième question est en général sans espoir. En effet la plupart des algèbres sont de type
sauvage, et l’on ne peut même pas espérer décrire leur catégorie de modules de dimension finie.
Cependant, pour certaines algèbres particulières Λ, les catégories Db(mod Λ) sont bien connues
et ont été largement étudiées dans la littérature. C’est notamment le cas pour les algèbres de
chemins sur un carquois acyclique (ou algèbres héréditaires) dans le cas où le carquois est de
type Dynkin, ou Dynkin étendu [Hap87]. C’est aussi le cas pour une classe d’algèbres introduites
par Assem et Skowronski [AS87] appelées algèbres aimables, ou encore pour les algbres quasi-
aimables (skew-gentle) introduites par Geiss et de la Peña [GePe99]. Toutes ces algèbres sont
dociles (tame) et dérivée-dociles. Il a ainsi été possible grâce à de nombreux travaux de décrire les
objets indécomposables des catégories mod Λ et Db(mod Λ) ainsi que les espaces de morphismes
en termes combinatoires à partir du carquois à relation définissant Λ [BR87, BM03, ALP16,
CB00, BMM03]. D’autres informations concernant par exemple le carquois d’Auslander-Reiten
de ces catégories ont aussi pu être obtenues [BR87, AAG08, GePe99].

Une troisième famille de catégories triangulées joue un rôle important dans ce mémoire, il
s’agit de la catégorie d-amassée Cd(Λ) construite à partir d’une algèbre Λ de dimension globale
≤ d et vérifiant une certaine condition de finitude (τd-finie) [BMRRT06, Ami, Guo11]. Ces
catégories sont construites comme enveloppe triangulée d’une catégorie d’orbites de la catégorie
dérivée Db(mod Λ). Elles peuvent aussi s’interpréter comme le quotient de catégories dérivées
de certaines algèbres différentielles graduées (DG). Ces catégories ont la particularité d’avoir
une symétrie appelée d-Calabi-Yau, et d’avoir un ensemble d’objets appelés amas-basculants
(cluster-tilting) dont la combinatoire (dans le cas d = 2) a des similarités avec la combinatoire
des algèbres amassées (cluster). Ces propriétés combinatoires sont notamment encodées dans
l’algèbre d’endomorphismes Π(d+1)(Λ) d’un objet amas-basculant initial appelée l’algèbre (d+1)-
préprojective de Λ. Dans le cas d = 2, la catégorie amassée C2(Λ) est très proche de la catégorie
mod Π2(Λ). Ainsi lorsque Π2(Λ) est une algèbre aimable ou quasi-aimable, il devient possible
d’obtenir de nombreux renseignements sur la catégorie amassée associée.

Partant d’une algèbre Λ de dimension finie sur un corps k, et de dimension globale finie ≤ d,
on peut alors lui associer les trois objets suivants:

• sa catégorie dérivée bornée Db(mod Λ);

• sa catégorie d-amassée Cd(Λ);

• son algèbre (d+ 1)-préprojective Πd+1(Λ),

qui sont les principaux objets d’étude de ce mémoire.

Ce travail est divisé en deux parties principales.

• La première porte sur les différentes propriétés algébriques de ces trois constructions et les
liens entre elles.
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• La deuxième partie quant à elle, décrit comment on peut associer un objet topologique à
certaines de ces catégories triangulées (amassées ou dérivées) et d’établir un dictionnaire
entre les propriétés algébriques de la catégorie et les propriétés topologiques de l’objet
associé.

Passons maintenant à une description plus précise de la première partie. Le premier chapitre
se concentre sur l’algèbre (d+1)-préprojective et ses différentes propriétés. La construction dans
le cas d = 1 est classique et dûe à Gelfand et Ponomarev [GP79]. Elle a été intensément étudiée
dans la littérature [Rin98, ES98I, BBK02, CBH98, RV89]. La construction a été généralisée
par Iyama et Oppermann [IO11] dans le cadre de la théorie d’Auslander-Reiten supérieure. Un
des objectifs de ce chapitre consiste à montrer que la construction pour un d ≥ 2 satisfait des
propriétés similaires à la construction classique, au moins pour certaines algèbres Λ dites d-
héréditaires [HIO14]. Je m’intéresse ici en particulier aux propriétés homologiques satisfaites
par l’algèbre préprojective. Ces propriétés sont notamment décrites dans les articles [Ami14b,
AIR15, AO15, Dug12]. Notons que dans le cas d = 1, les algèbres préprojectives ont aussi été très
largement étudiées pour les liens très étroits qu’elles entretiennent avec les algèbres amassées.
Ces questions ne seront pas abordées dans ce mémoire, nous renvoyons à [GLS13, Lec11] pour
des articles de survol sur le sujet.

Le deuxième chapitre se concentre sur les catégories d-amassées d’algèbres τd-finies, et à
leur lien avec certaines catégories de singularités d’algèbres Iwanaga-Gorenstein. En effet, pour
certaines de ces algèbres R, comme par exemple certaines singularités isolées de dimension d, la
catégorie CM(R) est d-Calabi-Yau et contient des objets d-amas-basculants. On cherche ici à
construire une équivalence triangulée

Cd(Λ) ' CM(R).

Ce chapitre contient des résultats des articles [Ami09, ART11, AIRT12, AIR15, Ami14a] ainsi
que plusieurs de leurs généralisations [IO13, Kim17, Han].

Le troisième chapitre se concentre quant à lui sur la catégorie dérivée des algèbres τ2-finies.
Le cas d = 2 est spécialement intéressant car la combinatoire des algèbres amassées, notamment
la mutation des carquois à potentiel, y joue un rôle primordial. Ce chapitre traite de différentes
collaborations avec Steffen Oppermann [AO13a, AO14, AO13b]. Il s’agit ici d’interpréter la
combinatoire amassée et la théorie de l’amas-basculement non plus dans la catégorie amassée
C2(Λ), mais dans la catégorie dérivée Db(mod Λ). Nous introduisons la notion de mutation
graduée, qui nous permet entre autres choses, d’obtenir de nouveaux critères combinatoires
pour déterminer si deux algèbres de dimension globale ≤ 2 sont dérivée-équivalentes.

La deuxième partie de ce mémoire porte sur la notion de modèle topologique pour une
catégorie triangulée. L’idée est d’attacher un objet topologique (ou géométrique) à une catégorie
triangulée qui ‘encoderait’ la catégorie. L’idéal étant que cet objet détermine entièrement la
catégorie. Lorsqu’on a un tel modèle, il devient intéressant d’essayer de traduire les différentes
propriétes de la catégorie en terme de cet objet topologique.

Le premier chapitre de cette partie décrit de tels modèles dans le cadre amassé. En parti-
culier, un premier exemple de modèle topologique provient de la catégorie amassée associée au
carquois à potentiel d’une surface triangulée. Le tout premier exemple remonte à un article de
Caldero, Chapoton et Schiffler [CCS06] où les auteurs donnent une description de la catégorie
amassée de type A en termes de diagonales de polygones. Plus généralement, partant de la
catégorie amassée associée à une surface triangulée, différents travaux [ABCP10, BZ11, QZ17,
CS17, CPS19] ont permis d’interpréter les objets indécomposables et les espaces de morphismes
de cette catégorie en termes de courbes et d’intersections sur la surface. De plus, en combi-
nant les résultats [KY11, LF09, BZ11, QZ17], on peut montrer que deux catégories amassées
d’une surface triangulée sont équivalentes si et seulement si les surfaces correspondantes sont
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homéomorphes. Le modèle topologique naturel de la catégorie amassée est donc ici la surface (et
non plus la surface munie d’une triangulation). Mon travail en collaboration avec Pierre-Guy
Plamondon [AP] s’est concentré sur le cas où la surface admet des points marqués à l’intérieur.
En interprétant ces points marqués non pas comme des pointures, mais comme des points orb-
ifold, et en construisant un revêtement double de cet orbifold, nous avons pu décrire les objets
indécomposables de la catégorie amassée associée en termes des courbes sur la surface orbifold.
Ce travail a fortement utilisé les résultats de l’article [RR85] qui étudie les algèbres tordues par
des groupes finis. On peut ainsi comprendre la catégorie amassée associée à une surface avec
des points marqués à l’intérieur, comme la catégorie amassée associée à son revêtement double
tordue par le groupe Z/2Z.

Ce cadre amassé peut se raffiner pour obtenir un modèle topologique pour la catégorie dérivée
de certaines algèbres, dites algèbres de coupes de surface (surface cut algebras). À une surface tri-
angulée munie d’une certaine coupe admissible, on associe une algèbre τ2-finie Λ dont la catégorie
amassée C2(Λ) est équivalente à la catégorie amassée de la surface triangulée. En utilisant la
mutation graduée introduite dans [AO14], nous montrons dans [AG16, Ami16, ALP20] que le
modèle topologique naturel de la catégorie Db(mod Λ) est la surface S (éventuellement orbifold)
à points marqués munie d’un certain H1(S,Z)-espace affine, qui peut s’interpréter comme une
classe d’homotopie de champ de droites sur la surface.

Le deuxième chapitre de cette partie sort du cadre de la combinatoire amassée pour se
concentrer sur la catégorie dérivée des algèbres aimables et quasi-aimables. Ainsi dans [OPS],
les auteurs associent à toute algèbre aimable Λ une surface à points marqués munie d’une
dissection (qui généralise la notion de triangulation), et décrivent les objets indécomposables
de la catégorie Db(mod Λ) ainsi que les morphismes en termes topologiques. Cette description
est particulièrement intéressante car elle possède des liens avec certaines catégories de Fukaya
partiellement enroulées [LP, HKK]. Dans la prépublication [APS] (voir aussi [Opp]), nous
associons un champ de droites à toute surface munie d’une dissection, et montrons que la surface
munie de la classe d’homotopie du champ de droites est un invariant dérivé complet pour l’algèbre
aimable Λ. Ceci répond à une conjecture de [HKK] dans le cas non gradué. La construction de
cet invariant utilise très fortement la théorie du basculement.

Nous généralisons ce résultat dans ma dernière prépublication avec Thomas Brüstle [AB] au
cas des algèbres quasi-aimables, en considérant cette fois non pas une surface munie d’un champ
de droites, mais une surface orbifold munie d’un champ de droites, ainsi que son revêtement dou-
ble. Ce modèle topologique permet par ailleurs d’obtenir une description des objets indécomposables
en termes de courbes sur la surface orbifold associée. Je donne dans l’appendice de ce mémoire
une preuve alternative au résultat de [LSV], qui n’utilise pas la description combinatoire des
objets de la catégorie dérivée donnée dans [BMM03].
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Notation and convention

We fix an algebraically closed field k. All algebras, categories and functors are k-linear (unless
otherwise stated). We denote by D = Homk(−, k) the k duality.

Categories

By a triangulated category we mean a k-linear category with finite dimensional Hom-spaces
(unless otherwise stated) with a Serre duality, denoted by S. The shift functor is denoted by
[1] and the bifunctor HomT (−,−[n]) by ExtnT (−,−). For d ≥ 0, we define the autoequivalence
Sd := S[−d].

The following definition is fundamental in this memoir.

Definition 0.1. A (Hom-finite) triangulated category is called d-Calabi-Yau (d-CY for short)
if there is a bifunctorial isomorphism

HomC(X,Y ) ' DHomC(Y,X[d]),

so in other words, the functor Sd is isomorphic to the identity.

For A an additive k-category, we denote by K(A) its homotopy category, by D(A) its derived
category, and by perA the full triangulated subcategory of D(A) closed under direct summands
generated by objects in A.

Algebras and modules

For Λ a k-algebra, we denote by ModΛ the category of right Λ-modules, by mod Λ the subcate-
gory of finitely generated Λ-modules, and by fdΛ the category of finite dimensional Λ-modules.
We denote by Λop the opposite algebra, and Λe := Λop ⊗k Λ the envelopping algebra. The bi-
module duality HomΛe(−,Λe) is denoted by (−)∨ :=. We denote by Db(Λ) the bounded derived
category of mod Λ.

An algebra Λ is called Iwanaga-Gorenstein if the projective dimension of the module DΛ
and the injective dimension of the module Λ are finite. In that case, these dimensions coincide
and is called the Gorenstein dimension of Λ. For Λ an Iwanaga-Gorenstein algebra, we denote
by

CM(Λ) := {M ∈ mod Λ| ExtiΛ(M,Λ) = 0 ∀i > 0}

the category of (maximal) Cohen-Macaulay Λ-modules.

For a graded algebra Λ =
⊕

n∈Z Λn, we denote by ModZΛ (resp. modZ Λ, resp. CMZ Λ) the
category of (resp. finitely generated, resp. Cohen-Macaulay) graded Λ-modules. For a graded
module M =

⊕
n∈ZMn, we denote by M(1) the graded module where M(1)n := Mn−1. Note

that the algebra Λe inherits of a natural grading, and we often consider it as a Z-graded algebra.
We may also consider Λ as a DG-algebra with zero differential. In this case, we denote by
D(ΛDG) the derived category of the DG-algebra Λ.

Quivers

For a quiver Q, we denote by Q0 its set of vertices, Q1 its set of arrows, and by s, t : Q1 → Q0

the source and target maps. The path algebra is denoted by kQ. Composition of arrows is from
right to left as functions. For any i ∈ Q0, we denote by ei the trivial path at vertex i.

A potential W on a quiver is given by a class in kQ/[kQ, kQ]. We define the partial derivative
∂a with respect to an arrow a as a map ∂a : kQ/[kQ, kQ]→ kQ defined by

∂a(a1 . . . ar) =

r∑
i=1

ai+1 . . . ara1 . . . ai−1,
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and extended by k-linearity.
The Jacobian algebra Jac(Q,W ) of the quiver with potential (Q,W ) (QP for short) is defined

as

Jac(Q,W ) :=
k̂Q�〈∂aW,a ∈ Q1〉,

where k̂Q is the completion of the path algebra kQ, and 〈∂aW,a ∈ Q1〉 is the closure of the ideal
generated by ∂aW for any a ∈ Q1.

The complete Ginzburg DG algebra Γ̂ = Γ̂Q,W of (Q,W ) is defined as follows.
Let Q̄ be the graded quiver whose vertices set is that of Q and whose arrows set contains

• for every arrow α : i→ j in Q, an arrow α : i→ j of degree 0;

• for every arrow α : i→ j in Q, an arrow ᾱ : j → i of degree −1; and

• for every vertex i of Q, a loop ti : i→ i of degree −2.

Then, as a graded algebra, Γ̂ is the complete path algebra of Q̄, that is, for every integer m,

Γ̂m =
∏

w path of degree m

kw.

The differential of Γ̂ is the continuous map defined as follows on arrows, and extended by linearity
and the Leibniz rule: for any arrow α of Q, d(α) = 0 and d(ᾱ) = ∂αS, and for any vertex i of
Q, d(ti) = ei

(∑
α∈Q1

(αᾱ− ᾱα)
)
ei.

Note that in this memoir, we consider quivers with potential associated with a triangulated
surface with non-empty boundary, and the non completed Ginzburg or Jacobian algebra is
isomorphic to the completed one.
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Preprojective algebras, cluster
categories and derived categories
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Chapter 1

Higher preprojective algebras

The notion of (higher) preprojective algebra is central in my work. The aim of this chapter is
to describe different properties satisfied by these algebras, and in which context they naturally
appear. Let us start with the definition.

Definition 0.1. [IO13] Let Λ be an algebra of global dimension ≤ d, then the (d + 1)-
preprojective algebra of Λ is defined to be the tensor algebra over Λ of the Λ-bimodule ExtdΛe(Λ,Λe)

Πd+1(Λ) := TΛ ExtdΛe(Λ,Λe).

The classical notion of a preprojective algebra of a quiver (the case d = 1) was introduced by
Gelfand and Ponomarev [GP79]. Already in this set up we can make the following observations:

• seen as a kQ-module, Π2(kQ) is the direct sum of all preprojective kQ-modules1 (that
justifies the name) [Rin98]

• the behaviour of Π2(kQ) changes completely depending whether Q is Dynkin or not;

• the algebra Π2(kQ) has a presentation in term of quiver and relations that can easily be
contructed from Q;

• when Q is of extended Dynkin type, and when k has characteristic 0, the preprojective
algebra Π2(kQ) is Noetherian. Moreover, it can be related with the finite subgroup G of
SLn(k) corresponding to the Dynkin type of Q: it is a non commutative resolution of the
invariant polynomial ring k[X,Y ]G, [Rei87, RV89]

The aim of this chapter is to show how all these properties generalize for general d.
We can first be a bit more precise concerning the second item: in the Dynkin case, the

preprojective algebra is finite dimensional and its bimodule projective resolution is periodic
[ES98I, ES98II, BBK02]; whereas in the non Dynkin case, the preprojective algebra is infnite
dimensional and its bimodule projective resolution has a certain symmetry, it is bimodule 2-
Calabi-Yau [CB00].

In a first section, we relate the (d+1)-preprojective algebra to the derived category of Λ and
certain endofunctors Sd and τd that are higher generalizations of Auslander-Reiten translate for
the derived and for the module category. We also explain how the preprojective algebra can
be viewed as the H0 of a certain negatively graded DG algebra Π(d+1)(Λ) called the derived
preprojective algebra. Furthermore, we explain that the (d + 1)-preprojective algebra of Λ,
when finite-dimensional, appear naturally in the construction of the d-cluster category of Λ
[Ami, Guo11].

1Preprojective modules are modules that are direct summands of direct sums of τ−n(kQ) where τ is the
Auslander-Reiten translation in mod kQ.
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In a second section, we discuss the presentation of the preprojective algebra by a quiver with
relations. In the classical case d = 1, this description relies on reflection functors, and we show
how these reflection functors can be “seen” in the module or derived category of the preprojective
algebras. We further explain how the presentation of the preprojective algebra as a quiver with
“symmetric” relations can be generalized in the case d = 2. Some generalizations in the case
d ≥ 3 have also been studied with the notion of (higher) Jacobian algebras [Kel11, BSW10, IG].

In a third section, we introduce the notion of d-hereditary algebras, through d-representation
finite algebras (d-RF) and d-representation infinite algebras (d-RI), that are higher analogues
of the dichotomy Dynkin/not Dynkin cases [HIO14]. Certain behaviour of the derived category
generalize in that case, as certain properties of the d-preprojective algebra.

In a fourth section, we show how the properties of the bimodule projective resolution of the
preprojective algebras generalize in particular in the setting of d-RI and d-RF. This relies on
the works [AIR15] and [AO15] (see also [Ami14b]).

Finally in a fifth section, we show how certain Noetherian preprojective algebras can be seen
as non-commutative resolutions of certain Gorenstein algebras (see [AIR15]).

Motivating example

In the rest of the chapter, we will consider only preprojective algebras Πd+1(Λ) where Λ is finite
dimensional. However we start with the example of the polynomial ring, which gives an idea
of the behaviour of certain higher preprojective algebras (typically the (d + 1)-preprojective
algebras of d-RI algebras).

Denote R = k[x1, . . . , xd]. For any 0 ≤ ` ≤ d define the set

I`d := {(i1, i2, · · · , i`), i1 < i2 < . . . < i`, ij ∈ {1, . . . , d}}.

Consider the following complex of R-bimodules:

0 // Pd
∂d // · · · // P1

∂1 // P0
// 0

where P` := (R⊗R)I
`
d and where

∂`((1⊗ 1)i1...i`) =
∑̀
s=1

(−1)s+1(xis ⊗ 1− 1⊗ xis)i1...̂is...i` .

This complex of R-bimodules gives a projective resolution of R as an R-bimodule. Moreover,
by applying the functor (−)∨ := HomRe(−, Re) and using the canonical pairing between I`d and
Id−`d , one obtains an isomorphism of complexes

P∨• [d] ' P•.

As a consequence we obtain an isomorphism of R-bimodules

R ' ExtdRe(R,Re),

hence one has Πd+1(R) ' k[x1, . . . , xd+1].

1 Preprojective algebras and the category Db(Λ)

In the rest of this work, we will concentrate on the case where Λ is a finite dimensional algebra.
In that case we have an isomorphism of Λ-bimodules

ExtdΛe(Λ,Λe) ' ExtdΛ(DΛ,Λ), (see for instance [IG, Lemma 2.9]).
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1.1 The functors τd and Sd
Definition 1.1 (Keller, [Kel11]). Let Λ be an algebra of global dimension ≤ d. The derived
(d+ 1)-preprojective algebra of Λ is defined to be the tensor DG-algebra

Πd+1(Λ) := TΛΘ

where Θ is a cofibrant replacement of the DG-bimodule RHomΛe(Λ,Λe)[d].

Since the algebra Λ has global dimension ≤ d, then we have a canonical isomorphism

H0(Πd+1(Λ)) ' Πd+1(Λ).

For Λ of global dimension ≤ d, we denote by S := −
L
⊗
Λ
DΛ the Serre functor of the derived

category Db(Λ), and by Sd := S◦[−d] its composition with the d power of the inverse of the shift.
The functor Sd is an auto-equivalence, we denote by S−1

d its inverse, and for ` ≥ 0 by S−`d the
`-power of the inverse. We also denote by τd := H0(Sd) : mod Λ −→ mod Λ. In the case d = 1,
S1 is the Auslander-Reiten translate in the derived category, while τ1 is the Auslander-Reiten
translate in the module category.

The behaviour of these two functors have important impact on the properties of the prepro-
jective algebras. Here is a first observation.

Proposition 1.2. Let Λ be a finite dimensional algebra of global dimension ≤ d. We have
isomorphisms

Πd+1(Λ) '
⊕
`≥0

S−`d (Λ) in D(ModΛ); and Πd+1(Λ) '
⊕
`≥0

τ−`d Λ in ModΛ.

This leads to the following

Definition 1.3. [Ami, Guo11] An algebra of global dimension ≤ d is said to be τd-finite if
the preprojective algebra Πd+1(Λ) is finite dimensional. This is equivalent to the fact that the
functor τd is nilpotent.

1.2 Cluster-tilting objects

Here we recall how finite dimensional d-preprojective algebras can be seen as endomorphism
algebras of d-cluster-tilting object in certain triangulated categories.

Definition 1.4. [Iya07a, KR07] Let C be a Hom-finite abelian, or triangulated category. A full
subcategory U ⊂ C is called d-cluster-tilting if U is functorially finite 2 and if

U = {X ∈ C, such that ExtiC(U,X) = 0 ∀i = 1, . . . , d− 1, ∀U ∈ U}
= {X ∈ C, such that ExtiC(X,U) = 0 ∀i = 1, . . . , d− 1, ∀U ∈ U}

An object U ∈ C is called d-cluster-tilting if addU is d-cluster-tilting.

The following definition has been given in my thesis [Ami] and [Ami09] for the case d = 2,
and generalized for any d in Guo’s thesis [Guo11].

Definition 1.5. [Ami, Guo11] The (generalized) d-cluster category of a τd-finite algebra of
global dimension ≤ d is defined as the triangulated hull

Cd(Λ) := (Db(Λ)/Sd)∆,

as defined in [Kel05] (see also Appendix of [IO13]).

2A subcategory U of C is called functorially finite if any object in C has left and right approximations by
objects in U .
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The d-cluster category comes naturally with a triangle functor π : Db(Λ) −→ Cd(Λ).

Theorem 1.6 (Amiot [Ami09] Guo [Guo11]). Let Λ be a τd-finite algebra. Then the d-cluster
category of Λ is d-Calabi-Yau and the object π(Λ) is a d-cluster-tilting object such that

EndCd(Λ)(π(Λ)) ' Πd+1(Λ).

2 Description in terms of quivers with relations

2.1 Classical case d = 1

Presentation of Π2(kQ)

Let Q be an acyclic quiver. Then the algebra kQ is a finite dimensional algebra of global
dimension ≤ 1.

We define the double quiver Q from Q by adding for each arrow a ∈ Q1 an arrow a∗ in the
opposite direction.

Theorem 2.1 (Ringel [Rin98]). Let Q be an acyclic quiver. Then there is an isomorphism of
Z-graded algebras

Π2(kQ) ' kQ̄/〈
∑
a∈Q1

[a, a∗]〉,

where the Z-grading on the RHS is induced by a grading on Q̄ assigning degree 0 to arrows
a ∈ Q1 and degree 1 to arrows a∗, a ∈ Q1.

Note that preprojective algebras have been first introduced and studied by Gelfand and
Ponomarev in [GP79] using the definition with the double quiver.

We give here an alternative idea of the argument for this result using projective bimodule
resolutions (which is different from the proof in [Rin98]). The minimal projective Λ-bimodule
resolution of Λ = kQ is given as follows:

0 //
⊕

a∈Q1
Λet(a) ⊗ es(a)Λ

∂ //
⊕

i∈Q0
Λei ⊗ eiΛ // 0 ;

where ∂ is defined as

∂(et(a) ⊗ es(a)) = (a⊗ es(a))s(a) − (et(a) ⊗ a)t(a).

Applying (−)∨ to this complex we obtain:

0 //
⊕

i∈Q0
Λei ⊗ eiΛ ∂∨ //

⊕
a∈Q1

Λes(a) ⊗ et(a)Λ // 0 ;

where

∂∨(ei ⊗ ei) =
∑

a,t(a)=i

(a⊗ ei)a −
∑

b,s(b)=i

(ei ⊗ b)b.

Define the algebra Π := kQ̄/〈
∑

a∈Q1
[a, a∗]〉, as above, and define the Λ-subbimodule of Π as

E =
⊕

a∈Q1
Λa∗Λ. Then one checks that E is the cokernel of ∂∨ via the map es(a) ⊗ et(a) 7→ a∗.

Therefore we have an isomorphism of Λ-bimodules

E ' Ext1
Λe(Λ,Λe).

Example 2.2. Let Q be the quiver 1
a // 2 . Then the preprojective algebra of Q is presented

by the quiver 1
a
((
2

a∗
hh with the relations aa∗ = a∗a = 0.
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Preprojective algebras and reflection functors

This description in term of quiver with relations gives another point of view on the category
mod Π2(kQ). It contains mod kQ′ where Q′ is any acyclic orientation of the underlying graph
of Q. In particular, if Q and Q′ are related by a reflection at a sink i of Q, then there is an
equivalence [APR79, BGP73]

Ri : mod kQ/[eiDkQ]
∼−→ mod kQ′/[eikQ

′],

and moreover there is an isomorphism Π2(kQ) ' Π2(kQ′). This equivalence is encoded in the
category mod Π2(kQ) via certain tilting objects, as described in the following result.

Theorem 2.3. [AIRT12, Cor 2.12] Let Q be an acyclic quiver, and i be a sink in Q. Denote
by Ii := Π/Π(1 − ei)Π where Π := Π2(kQ) is the preprojective algebra of Q. Then there is a
commutative diagram

mod kQ/[eiDkQ]
Ri //

� _

��

mod kQ′/[eikQ
′]� _

��
mod Π2(kQ)

−⊗ΠIi // mod Π2(kQ)

.

If moreover Q is not Dynkin, then Ii is a tilting object in D(ModΠ) and we have

mod kQ/[eiDkQ]
Ri //

� _

��

mod kQ′/[eikQ
′]� _

��
Db(f.l.Π)

∼

−
L
⊗
Π
Ii

// Db(f.l.Π)

.

2.2 Case d ≥ 2

Case d = 2 and Jacobian algebras

If Λ = kQ/I is a basic algebra of global dimension ≤ 2, let us choose a basis of {ρ`} of the spaces
Ext2

Λ(Si, Sj) for any i, j vertices of Q. The set of {ρ`} is a set of generators of the ideal I. Then
we define a quiver Q̄ from Q and I by adding a new arrow a` : i→ j for any ρ` ∈ Ext2(Si, Sj),
and define W as

W :=
∑
`

ρ`a`.

Then we have the following:

Theorem 2.4. [Kel11] Let Λ = kQ/I be a finite dimensional algebra of global dimension ≤ 2.
Let Q̄ and W defined as above. Then there is an isomorphism of Z-graded algebras

Π3(Λ) ' kQ̄/〈∂aW,a ∈ Q1〉.

where the grading on the RHS is induced from a grading on Q̄ assigning degree 0 to any arrow
a ∈ Q1, and degree 1 to any new arrow a`.

More precisely, Keller constructs a morphism of DG algebras Γ(Q̄,W ) → Π3(Λ) which is a
quasi-isomorphism, where Γ(Q̄,W ) is the Ginzburg DG algebra associated to the quiver with

potential (Q̄,W ) [Kel11, Thm 6.3]. Since the Ginzburg algebra is negatively graded, and since
the Jacobian algebra of (Q̄,W ) is the H0 of the Ginzburg algebra, the theorem above is a
consequence of this quasi-isomorphism. A converse of this result has been shown by Van den
Bergh in [V15].
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Example 2.5. Let Λ be the algebra presented by the quiver 1
a // 2

b // 3 with the relation
ba = 0. The preprojective algebra of Λ is presented by the following quiver with relations:

2
b

��
1

a
@@

3c
oo

ba = cb = ac = 0.

Example 2.6. Let Λ be the algebra presented by the quiver 1 y //x //
z // 2 y //x //

z // 3 with the com-
mutativity relations. The preprojective algebra of Λ is presented by the following quiver with
the commutativity relations:

2

���� ��
1

@@ @@@@

3oooooo

.

Case d ≥ 3

The situation becomes much more complicated for higher d. However in case where the algebra
is d-hereditary (see next section for definition) and Koszul, one has a description in terms of
higher Jacobian algebras [BSW10, IG, Thi], see also [V15, VV16].

3 d-hereditary algebras

3.1 Definition

The motivation of the introduction of d-hereditary algebras comes from the following observation
due to Iyama, which generalizes the case d = 1 due to Happel [Hap88].

Lemma 3.1. [Iya11, Lemma 5.2] Let Λ be an algebra of global dimension ≤ d. If X ∈ Db(Λ)
is such that Hi(X) = 0 for i ∈ Z \ dZ then X is isomorphic to its homology

⊕
j∈Z Hj(X).

In general however, if Λ has finite global dimension ≥ 2, the homology of the indecomposable
objects can be spread in many degrees. But at least the subcategory

DdZ := add{X ∈ Db(Λ),Hi(X) = 0 for i ∈ Z \ dZ}

behaves as a higher analogue of the derived category of a hereditary algebra, indeed it is equiv-
alent to copies of the module category mod Λ.

The d-hereditary algebras are algebras where we have a control of the homology of the
Sd-orbit of Λ. More precisely we have the following definition:

Definition 3.2. [HIO14] A finite dimensional algebra Λ is said to be d-hereditary if it has global
dimension d and if for any ` ∈ Z, S`dΛ ∈ DdZ.

By Proposition 1.2 the derived (d + 1)-preprojective algebra is isomorphic to the direct
sum of S−`d Λ with ` ≥ 0, hence for a d-hereditary algebra, the derived preprojective algebra is
isomorphic to its homology. But this isomorphism is an isomorphism of Λ-module and not a
DG algebra one, so this remark does not a priori imply that the derived preprojective algebra
is formal. However one could hope to have more control on the corresponding preprojective
algebra, especially when noticing that its H0 is the (d+ 1)-preprojective algebra.

With the definition above, one observes two main different behaviours for d-hereditary alge-
bras ([HIO14, Lemma 3.6]): if P is an indecomposable projective Λ-module, then

• either there exists n such that S−nd (P ) ∈ add(DΛ),

• or for any n, S−nd P ∈ mod Λ.
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This observation leads to the following definition:

Definition 3.3. [IO11, HIO14] Let Λ be a finite dimensional algebra of global dimension d.
Then

• Λ is said d-representation finite (d-RF) if U = U [d] where U = add{S−pd Λ, p ∈ Z};

• Λ is said d-representation infinite (d-RI) if U+ ⊂ mod Λ where U+ = add{S−pd Λ, p ∈ N};

For the case d = 1, using the description of the derived category Db(kQ) one immediately
observes that

kQ is 1-RF ⇔ Q is Dynkin ⇔ kQ is representation-finite

kQ is 1-RI ⇔ Q is non Dynkin ⇔ kQ is representation-infinite.

In general, as shown in [HIO14], any d-hereditary algebra which is indecomposable as a ring
is either d-RF or d-RI. Moreover, one easily verifies

Λ d-RF ⇒ Λ τd-finite.

Λ d-RI ⇒ Λ τd-infinite .

The link between d-hereditary algebras and (d + 1)-preprojective algebras is given by the
following characterization.

Proposition 3.4. Let Λ be an algebra of global dimension d. Then we have the following
equivalences

• Λ is d-RI if and only Π(d+1)(Λ) is concentrated in (homological) degree 0, that is the
projection

p : Πd+1(Λ)→ H0(Πd+1(Λ)) = Πd+1(Λ)

is a quasi-isomorphism.

• Λ is d-RF if and only if Πd+1(Λ) is a finite dimensional self-injective algebra [IO13, Cor
3.4].

Note that in the case where Λ is d-RI, the derived (d+ 1)-preprojective algebra is formal.

Example 3.5. The algebra presented by the quiver 1
a // 2

b // 3 with the relation ba = 0
is 2-RF.

The algebra presented by the quiver 1 y //x //
z // 2 y //x //

z // 3 with the commutativity relations is
2-RI.

3.2 d-Auslander algebras

The d-RF algebras can also be caracterized by the existence of a d-cluster-tilting object in their
module category.

Theorem 3.6. [Iya11] Let Λ be an algebra of global dimension ≤ d. Then it is d-RF if and
only if there exists a d-cluster-tilting object U in mod Λ. This object is moreover unique and is
isomorphic to Πd+1(Λ) as a Λ-module.

In that case, the endomorphism algebra EndΛ(Πd+1(Λ)) of the d-cluster-tilting object is not
a higher preprojective algebra. It is called the d-Auslander algebra of the d-RF algebra Λ.

The concept of d-Auslander algebras has been generalized by Iyama to higher Krull di-
mension. More generally, if U is a d-cluster-tilting object in a category CM Γ where Γ is a
Cohen-Macaulay ring over an Artin algebra R, then EndΓ(U) is also called d-Auslander algebra.
In general however, there might be more than one cluster-tilting object.
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3.3 Constructing d-hereditary algebras

There are different ways to construct d-hereditary algebras. One can construct inductively on d
using tensor products [HI11, HIO14]. The d-hereditary algebras (and d-Auslander algebras) of
type A have been entirely described in [IO11].

From a d-hereditary algebra, one can also construct new d-hereditary algebras using an
operation called d-APR tilt [IO11] which is the higher analogue of the Auslander-Platzeck-
Reiten tilt introduced in [APR79]. A natural question arising here is whether an analogue of
Theorem 2.3 is true for d ≥ 2: does the d-APR tilt have an interpretation in the derived category
of the preprojective algebra of a d-hereditary algebra ?

4 Calabi-Yau properties

We investigate here the different Calabi-Yau properties satisfied by the (d + 1)-preprojective
algebra.

4.1 Motivations

The motivation for the results of this section follow from the following two results.

The first one is the classical case d = 1.

Theorem 4.1. [ES98I, ES98II, CB00, BBK02] Let Q be a finite quiver without oriented cycles.
Then

• if Q is Dynkin, the preprojective algebra Π2(kQ) is selfinjective and the stable category
modΠ2(kQ) is 2-Calabi-Yau.

• if Q is not Dynkin, then Π2(kQ) has global dimension 2 and the bounded derived category
Db(fd Π2(kQ)) of finite dimensional Π2(kQ)-modules is 2-Calabi-Yau.

The second one concerns the derived (d+ 1)-preprojective algebra.

Theorem 4.2. [Kel11] Let Λ be a finite dimensional algebra. Then the derived (d + 1)-
preprojective algebra Π := Π(d+1)(Λ) of Λ is bimodule (d + 1)-Calabi-Yau, that is Π is ho-
mologically smooth and we have an isomorphism

RHomΠe(Π,Πe)[d+ 1] ' Π in D(Πe).

One result in my collaboration with Iyama and Reiten [AIR15], and the main result in one
of my work with Oppermann [AO15] aim at generalizing these results for general d-hereditary
algebras.

4.2 d-RI case

The homological results presented in Theorem 4.1 concern some triangulated categories attached
to preprojective algebras and not the algebras themselves. In order to have a higher analogue,
which could be also seen as a characterization of preprojective algebras, one should enhance the
Calabi-Yau property at the level of the graded algebra itself as follows:

Definition 4.3. Let Γ =
∑

`∈Z Γ` be a Z-graded algebra with dimk Γ` < ∞ for all `. The
algebra is said to be (1)-twisted bimodule (d + 1)-Calabi-Yau (or bimodule (d + 1)-Calabi-Yau
of Gorenstein parameter 1) if the following two conditions are satisfied

• Γ is homologically smooth (that is Γ ∈ per Γe);
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• there is an isomorphism RHomΓ(Γ,Γe)[d+ 2] ' Γ(1) in D(ModZΓe).

Here (1) is the degree shift in the category ModZΓe, where Γe is considered as a Z-graded
algebra.

Note that a (1)-twisted bimodule (d+ 1)-Calabi-Yau algebra seen as a DG algebra with zero
differential, is (d+ 1)-bimodule Calabi-Yau. Indeed the isomorphism above implies

RHomΓ(Γ,Γe)[d+ 1] ' Γ in D(ModZΓe)�(1) ◦ [−1], so in D((Γe)DG)

.

Moreover we have:

Proposition 4.4. [Gin, Kel08] Let Γ be a bimodule (d + 1)-Calabi-Yau graded algebra, then
Db(fd Γ) is a (d+ 1)-Calabi-Yau triangulated category.

The next result gives then a complete homological characterization of (d+ 1)-preprojective
algebra of d-RI algebras.

Theorem 4.5. [Kel11, HIO14, MM11, AIR15] Let Γ =
⊕

i≥0 Γi be a graded algebra with finite
dimensional degree zero part Λ := Γ0. Then the following are equivalent

(1) Λ is d-RI and Γ ' Πd+1(Λ) as graded algebras;

(2) Γ is (1)-twisted bimodule (d+ 1)-Calabi-Yau.

The implication (1)⇒ (2) follows from what was explained before. The preprojective algebra
of a d-RI algebra is quasi-isomorphic to the derived preprojective algebra. Then, applying [Kel11,
Thm 4.8], we get the result (see also [HIO14]).

The implication (2)⇒ (1) was shown independently in [MM11, Thm 4.8] and [AIR15, Thm
3.4].

Let us mention a few words about the proof (2)⇒ (1) given in [AIR15]. The idea here is to
consider the projective minimal resolution P• of Γ as a graded Γ-bimodule. It satisfies

P∨• [d+ 1] ' P•(1) in C(projZ Γe), (4.1)

where (−)∨ = HomΓe(−,Γe). It is generated in degree 0 and 1, and hence we can ‘split’ each
term Pi of the complex P• into Pi ' P 0

i ⊕ P 1
i (−1) and show that there is an exact sequence

0 // P 0
• // P• // P 1

• (−1) // 0 in Cb(projZ Γe).

From (4.1), we deduce (P 1
• )∨[d] ' P 0

• . Then using the fact that Λ⊗
Γ
P 0
• ' Γ in D(Λop ⊗ Γ) and

the above short exact sequence, we deduce a triangle

RHomΛe(Λ,Λe)
L
⊗
Λ

Γ(−1) // Γ // Λ // RHomΛe(Λ,Λe)
L
⊗
Λ

Γ(−1)[1] in D(ModZ(Λop⊗Γ)).

It permits us to construct an isomorphism

RHomΛe(Λ,Λe)⊗` ' Γ` in D(Λe) for any ` ∈ Z,

and so the desired algebra isomorphism.
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4.3 d-RF case

The next result is the d-RF analogue of Theorem 4.5. It can be seen as a generalization of
the Dynkin case of Theorem 4.1, and gives a homological characterization of the preprojective
algebras of d-RF algebras.

Definition 4.6. Let Γ =
⊕

`∈Z Γ` be a finite dimensional Z-graded algebra. Then Γ is said to
be (1)-twisted stably bimodule (d+ 1)-Calabi-Yau if there is an isomorphism

HomΓe(Γ,Γe)[d+ 2] ' Γ(1) in modZΓe.

One easily checks the following.

Proposition 4.7. [AO15, Thm 2.12] If Γ is (1)-twisted stably bimodule (d+1)-Calabi-Yau, and
self-injective then the category modΓ is (d+ 1)-Calabi-Yau.

The next theorem is a complete analogue of Theorem 4.5 for d-RF algebras.

Theorem 4.8. [Dug12, AO15] Let Γ =
⊕

i≥0 Γi be a finite dimensional graded algebra. Denote
by Λ its degree zero part. Then the following are equivalent

1. Λ is d-RF, has global dimension d and Γ ∼= Πd+1(Λ) as graded algebras;

2. Γ is selfinjective and (1)-twisted stably bimodule (d+ 1)-Calabi-Yau.

The implication (1)⇒ (2) is shown in [Dug12, Thm 3.2], while the implication (2)⇒ (1) is
shown in [AO15, Thm 3.1].

The idea of the proof (2) ⇒ (1) is similar to the one of Theorem 4.5, by computing the
cohomology spaces of the triangle

Λ
L
⊗
Γ

Λ // Γ
L
⊗
Γ

Λ // Γ>0

L
⊗
Γ

Λ // Λ
L
⊗
Γ

Λ[1] in D(Γop ⊗ Λ)

It has also been shown in [IG] and [Dug12] that the bimodule projective resolution of the
(d + 1)-preprojective algebra of a d-RF algebra has a certain periodicity. This generalizes the
case d = 1 treated in [ES98I, ES98II].

4.4 τd-finite case: beyond the d-RF case

In general the finite dimensional preprojective algebras are not selfinjective but their behaviour is
still similar to the one of the preprojective algebras of d-RF algebras. In the case d = 2, Keller
and Reiten proved in [KR07] that the algebras Π3(Λ) are Iwanaga-Gorenstein of dimension
≤ 1. Hence the correct analogue Calabi-Yau triangulated category is given by the stable cate-
gory of maximal Cohen-Macaulay Π-modules. Indeed they proved in [KR07] that the category
CM Π3(Λ) is 3-Calabi-Yau.

These results were the motivation for the following characterization of finite dimensional
preprojective algebras.

Theorem 4.9. [AO15, Thm 3.1] Let Γ =
⊕

i≥0 Γi be a (non trivially) graded finite dimensional
algebra. Denote by Λ its degree zero part. Assume that

(a) Γ is Iwanaga-Gorenstein of dimension ≤ d− 1;

(b) there is an isomorphism RHomΓe(Γ,Γe)[d+ 2] ∼= Γ(1) in Db(modZ Γe)/perZ Γe.

(c) ExtiΓe(Γ,Γe(j)) = 0 for any i ≥ 1 and any j ≤ −1.

Then Λ has global dimension d and Γ ' Πd+1(Λ) as graded algebras.
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Here property (b) is again an algebraic (and graded) enhancement of the (d+ 1)-Calabi-Yau
property of the category CM Γ (see [AO15, Thm 2.12]).

We also show in [AO15] that these properties are satisfied by finite dimensional preprojective
algebras in the case d = 2 and d = 3 using the description of the preprojective algebra in term
of quivers with relations as described in Section 2.

5 Non commutative resolutions

5.1 Preprojective algebras as d-Auslander algebras

The following result in [AIR15] states that certain Noetherian (d+1)-preprojective algebras can
be seen as d-Auslander algebras of Iwanaga-Gorenstein algebras. This is related with the last
item of the introduction concerning the 2-preprojective algebras of extended Dynkin type.

Theorem 5.1. [AIR15, Thm 2.2] Let Λ be a d-RI algebra such that the corresponding prepro-
jective algebra Π := Πd+1(Λ) is noetherian. Assume that there exists an idempotent e ∈ Π such
that Π/ΠeΠ is finite dimensional. Then we have the following:

• the algebra R = eΠe is Iwanaga-Gorenstein of dimension (d+ 1);

• we have an isomorphism RHomRe(R,Re)[d+1] ' R(1) in D(modZRe), hence the category
CM(R) is d-Calabi-Yau;

• the category CM(R) has a d-cluster-tilting object Πe and we have an isomorphism of alge-
bras EndR(Πe) ' Π, so in other words, Π is the d-Auslander algebra of R.

Note that here R is not perfect as a bimodule, so R is not (d+ 1)-bimodule Calabi-Yau.

This theorem has fruitful connections with non commutative algebraic geometry when R is
a local ring. In that case, Π is the endomorphism algebra of a Cohen-Macaulay module M (thus
reflexive in the sense that M ' HomR(HomR(M,R), R)), and has global dimension equal to the
dimension of R. Hence Π is a non commutative crepant resolution of R.

5.2 Auslander-Mckay correspondence

Let us illustrate the above result in the case of polynomial skew-group algebras.

Let S be the polynomial ring k[x0, . . . , xd] over an algebraically closed field k of characteristic
zero, and G be a finite subgroup of SLd+1(k) acting freely on kd+1\{0}. The group G acts on
S in a natural way. The invariant ring SG is known to be a Gorenstein isolated singularity of
Krull dimension (d+ 1).

We denote by SG the skew group algebra: it is defined as the vector space by S ⊗
k
kG with

multiplication induced by

(P ⊗ g)(Q⊗ h) := Pg(Q)⊗ gh.

By classical results of Auslander [Aus86, Yos90], SG is Morita equivalent to EndSG(S).
Moreover by [Iya07a, Thm 2.5] S is a d-cluster-tilting object in the category CM(R).

Case d = 1

The link between this setup and preprojective algebra is also classical in the case d = 1 and due
to Reiten and Van den Bergh.

Theorem 5.2. [RV89] Let G ⊂ SL2(k) be a finite subgroup acting on S = k[x, y]. Then the
skew-group algebra SG is Morita equivalent to the preprojective algebra Π2(kQ) where Q is an
orientation of the extended Dynkin graph associated to G via the Mckay correspondence.



28 CHAPTER 1. HIGHER PREPROJECTIVE ALGEBRAS

These results can be reinterpreted as the case d = 1 of Theorem 5.1: First observe that
Λ = kQ is 1-RI if and only if Q is not Dynkin. Moreover if Q is not Dynkin, the corresponding
preprojective algebra is noetherian if and only if Q is extended Dynkin [BGL87]. Denote by e the
extended vertex, and by Q the corresponding Dynkin quiver Q/e. Then we have Π = Π2(kQ),
so Π/ΠeΠ is finite-dimensional. Therefore we obtain:

• R = eΠe is Iwanaga-Gorenstein of dimension 2;

• the category CM(R) is 1-Calabi-Yau;

• the category CM(R) has a 1-cluster-tilting object (equivalently is representation finite)
Πe, and we have EndR(Πe) ' Π.

Moreover the extended vertex e in Theorem 5.2 corresponds to the summand SG in S, so
we obtain an isomorphism

R = eΠe ' EndSG(SG) ' SG.

Case d ≥ 2

Using Theorem 4.5, we can generalize Theorem 5.2 for certain cyclic groups.

Corollary 5.3. [AIR15] Let G be cyclic subgroup of SLd+1(k) of order n generated by g =
diag(ζa0 , . . . , ζad) where ζ is a primitive n-root of 1, with gcd(ai, n) = 1. Then there exists
a d-RI algebra Λ such that the skew-group algebra SG is isomorphic to Πd+1(Λ), where S =
k[x0, . . . , xd].

To prove this theorem, one uses the isomorphism SG ' EndR(S) (since G is abelian, the
Morita equivalence comes from an isomorphism).

Using a suitable grading on R, one describes explicitely the algebra EndR(S) by a quiver with
relations, and deduces a graded bimodule projective resolution P• that satisfies P∨• [d+1] ' P (1).

Example 5.4. Let G = diag(ζ, . . . , ζ) where ζ is a primitive d + 1-root of 1. Then one shows
that the algebra SG is isomorphic to the path algebra

1 2 3 d− 1 d

0

x0x1

xd

x0x1

xd

x0x1

xd

x0 x1
xd

x0x1
xd

with relations xixj = xjxi for any i 6= j. It is the (d+1)-preprojective algebra of the d-Beilinson
algebra Λ given by the quiver :

0 1 2 d− 1 d
x0x2

xd

x0x1

xd

x0x1

xd

with the relations xixj = xjxi.

The algebra R = eΠe is isomorphic to the invariant ring SG, thus is the subalgebra of S
generated by monomials of degree d+ 1 which is the (d+ 1)-Veronese algebra.

Remark 5.5. Unfortunately Corollary 5.3 does not generalize to any finite subgroup of SLd(k)
as shown in [Thi].
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5.3 Dimer and toric varieties

We give here another application of Theorem 5.1.
Let Γ be a bipartite graph (or a dimer model) on the torus. As described in [Bro12], one

can associate a quiver with potential to such graph: the quiver Q is the dual of the graph Γ,
where the faces of Q corresponding to white vertices are oriented clockwise, and faces of Q
corresponding to black vertices are oriented counterclockwise. The potential is the difference
between ‘white’ faces of Q and ‘black’ faces of Q.

If the bipartite graph is consistent in the sense of [Bro12] (see also [Boc11, Dav11]), then the
algebra Π(Γ) := Jac(Q,W ) is a non commutative crepant resolution over its center which is of
the form eΠe, where e is any vertex in the quiver Q. Moreover its center eΠe is the coordinate
ring of a Gorenstein affine toric threefold. Moreover the coordinate ring of any Gorenstein affine
toric threefold can be obtained in this way.

The data of a perfect matching (or a dimer configuration) on the graph Γ induces a grading
on Q for which the potential W is homogeneous of degree 1, so induces a grading on Π.

Using again explicit graded bimodule resolution of Π, one obtains the following:

Corollary 5.6. Let Γ be a consistent dimer model on the torus, and D be a dimer configuration.
Denote by Π the corresponding graded Jacobian algebra. If the degree zero part Λ of Π is finite
dimensional, then Λ is 2-RI, and Π is the 3-preprojective algebra of Λ.

If moreover there exists a primitive idempotent e such that Π/ΠeΠ is finite-dimensional,
Theorem 5.1 implies that the center eΠe is d-representation finite (as CM-ring), and that Π is
a NCCR of eΠe.

Example 5.7. Let Γ and D be given by the following picture.

• ◦

•◦

3

2

43 3

2

34

1

The associated Jacobian algebra Π is presented by the quiver

1 2

34

x1

x2

z2

z1

y1 y2w2 w1

with potential W = w1z1y1x1 + w2z2y2x2 − w1z2y1x2 − w2z1y2x1.

Then the perfect matching D corresponds to {w1, w2}. Thus the algebra Λ of Π is given by
the quiver

1 2 3 4
x1

x2

y1

y2

z1

z2
with relations z1y1x1 = z1y2x1 and z2y1x2 = z2y2x2.

The center R of this algebra is the semigroup algebra R = C[Z3∩σ∨] where σ∨ is the positive
cone

σ∨ = {λ1n1 + λ2n2 + λ3n3 + λ4n4, λi ≥ 0}, n1 =

1
1
1

 , n2 =

 1
−1
1

 , n3 =

−1
1
1

 , n4 =

−1
−1
1

 .
The algebra R is the homogenous coordinate algebra of P1 × P1.
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Chapter 2

Cluster categories and
Cohen-Macaulay modules

Cluster categories associated with τ2-finite algebras were constructed in my thesis [Ami]. The
aim was to generalize the notion of cluster category associated with an acyclic quiver introduced
by Buan, Marsh, Reineke, Reiten and Todorov in their seminal paper [BMRRT06]. The idea was
to construct a category in which cluster combinatorics appeared naturally. An instance of such
categories is given by 2-Calabi-Yau triangulated categories with cluster-tilting objects as shown
in [BIRS09], and the main result of my thesis was the fact that cluster categories associated
with τ2-finite algebras are 2-Calabi-Yau with cluster-tilting objects. This construction was then
generalized by Guo [Guo11] from 2 to d ≥ 2.

Other examples of d-Calabi-Yau triangulated categories with d-cluster-tilting objects arise
naturally in representation theory, especially as stable categories of Cohen-Macaulay modules
(or singularity categories) CMΓ of some Iwanaga-Gorenstein algebras Γ. It is then natural to
ask the following:

When are these categories d-cluster categories ?

This is the question we address in this chapter, and for which the papers [Ami09, ART11,
AIRT12, AIR15] gave some answers.

We also refine the question in the graded setting. By construction as triangulated hull of an
orbit category the d-cluster category can be seen as an ungraded version of the derived category
Db(Λ), where the grading is given by the functor Sd.

Then, given an Iwanaga-Gorenstein algebra Γ such that CM(Γ) is d-Calabi-Yau, it becomes
natural to ask whether there exists a grading on Γ so that we have equivalences:

Db(Λ)
∼ //

π

��

CMZ(Γ)

forget

��
Cd(Λ)

∼ // CM(Γ).

(0.1)

The typical strategy to answer these questions can be summarized in the following steps:

1. First one finds a d-cluster-tilting object in CM(Γ) so that the algebra EndΓ(T ) is isomor-
phic to the d-preprojective algebra of some algebra Λ. The results of the previous chapter
(especially Theorems 4.8, 4.5 and 5.1) are then very useful.

2. The second step requires to construct a triangle functor F : Db(Λ) −→ per Γ that induces
a functor F̄ : Cd(Λ) −→ per Γ/Db(Γ) = CM(Γ). In order to do this, one may apply the
universal property of the d-cluster category (see Theorem 1.1 in the next section)
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3. The third step consists in showing that the functor F̄ is an equivalence. For this one can
apply the following

Proposition 0.1. [KR07, IY08] Let T and T ′ be two triangulated categories with d-
cluster-tilting subcategories U and U ′. If there exists a triangle functor F : T → T ′
inducing an equivalence U ' U ′ then F is an equivalence.

4. Finally, to deal with the graded version, one needs to find a good grading on Γ. It generally
comes from the grading on EndΓ(T ) ' Π(d+1)(Λ). Then either one uses a graded analogue

of Theorem 1.1, or one shows the existence of a tilting object in the category CMZ(Γ).
But in this last case, one also needs to show the commutativity of the above diagram.

The plan of this chapter is as follows. We first recall general results on the construction
of the d-cluster category, its universal property, and its alternative description as a quotient
of triangulated categories. In a second section, we consider the case where Γ is a preprojective
algebra of a d-RF algebra. We give some generalisation in Section 3 in the case d = 2 for algebras
Γw associated with elements in the Coxeter group of a quiver. In the last section we consider
the case where Γ is given by eΠe where Π is the (d+ 1)-preprojective algebra associated with a
d-RI algebra as in Theorem 5.1.

1 Cluster categories as quotient of triangulated categories

We refer to [Ami11] for a detailed construction of the generalized cluster category, and for
motivation for this construction.

1.1 Universal property

By construction, the d-cluster category of a τd-finite algebra Λ satisfies an universal property
that will be essential in this chapter.

Theorem 1.1. [Kel05, Section 9.6][IO13, Thm A20] Let Γ be a DG algebra, and T be a thick
subcategory of D(Γ). Let Λ be a τd-finite algebra of global dimension ≤ d. Assume there exists
an object M ∈ D(Λop ⊗ Γ) and a morphism

M // RHomΛ(DΛ,Λ)
L
⊗
Λ
M [d] in D(Λop ⊗ Γ)

(or a morphism RHomΛ(DΛ,Λ)
L
⊗
Λ
M [d] //M ) whose cone lies in T when viewed as an

object in D(Γ). Then there is a triangle functor Cd(Λ)→ D(Γ)/T making the following diagram
commutative

Db(Λ)
−

L
⊗
Λ
M

//

π

��

D(Γ)

��
Cd(Λ) // D(Γ)/T

This universal property permits to exhibit alternative constructions of the d-cluster category
using DG-algebras.
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1.2 Using higher trivial extensions algebras

The first one uses an higher analogue of the trivial extension of Λ.

Definition 1.2. [IG] Let Λ be a finite dimensional algebra of finite global dimension. The
(d+ 1)-trivial extension of the algebra Λ is defined to be the Z-graded algebra

T(d+1)Λ := Λ⊕DΛ(−d− 1),

where the multiplication is given as (a, f).(b, g) = (ab, ag + fb). Hence, forgetting the grading,
T(d+1)(Λ) is the usual trivial extension of Λ.

The graded algebra T(d+1)Λ can be viewed as a DG-algebra with zero differential. And we
have the following result.

Proposition 1.3. [Ami, Section 7.3] Let Λ be a finite dimensional algebra of global dimension
≤ d which is τd-finite, then there is an equivalence of triangulated categories :

Cd(Λ) ' thickD(TDG
(d+1)

)(Λ)�per(TDG
(d+1))

where T(d+1) = T(d+1)(Λ) and where thickD(TDG
(d+1)

)(Λ) is the thick subcategory in D(TDG
(d+1))

generated by the object Λ viewed as an object in D(TDG
(d+1)).

This description can be understood as follows. Since Λ has finite global dimension, the
projection map p : T(1) → Λ induces an equivalence of triangulated categories by [Hap88]:

Db(Λ)
∼−→ modZ(T1) ' D

b(modZT(1))�perZT(1)
.

The Serre functor of the category modZ(T(1)) is ν◦[−1], and since we have D(T(1)) ' T(1)(1)
as graded T(1)-bimodules, we obtain an equivalence

Db(Λ)�Sd
∼−→ modZ(T(1))�[−(d+ 1)] ◦ (1).

Now one can check that there is an equivalence

Db(modZT(1))�[−(d+ 1) ◦ (1)] '
Db(modZT(d+1)))�[−1] ◦ (1).

Since the triangulated hull of D
b(modZT(d+1))�[−1] ◦ (1) is the category Db(TDG

(d+1)) (see [KY16,

Thm 1.3]), we obtain an embedding of triangulated categories

Cd(Λ) �
� // Db(TDG

(d+1))�per TDG
(d+1)

.

Note that the equivalence of Proposition 1.3 can also be constructed using the universal
property applied to the restriction functor Db(Λ) −→ D(TDG

(d+1)) of the natural projection

T(d+1) → Λ, since we have a triangle in D(Λop ⊗TDG
(d+1))

SdΛ[−1] // T(d+1)
// Λ // Sd(Λ) .

This was the argument used in [Ami] to prove the equivalence.
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1.3 Using the higher derived preprojective algebras

The other description of the d-cluster category uses the derived (d+ 1)-preprojective algebra of
Λ.

Proposition 1.4. [Ami09, Thm 4.10][Guo11] Let Λ be a finite dimensional algebra of global
dimension ≤ d which is τd-finite, then there is an equivalence of triangulated categories :

Cd(Λ) ' per Π�Dfd(Π),

where Π = Πd+1(Λ) is the derived (d + 1)-preprojective algebra of Λ and where Dfd is the
subcategory of D(Π) of objects of finite dimensional total cohomology.

Note that here, the DG algebra Πd+1(Λ) is infinite dimensional, so Π is not in Dfd. Moreover,
Π is homologically smooth, that is Π ∈ per Πe so we have an inclusion Dfd(Π) ⊂ per Π.

The construction of the functor comes also here from the universal property (Theorem 1.1)
applied with Γ = Π, and M = Π. Then there is a triangle in D(Λop ⊗Π)

Λ // Π // Θ⊗Λ Π // Λ[1]

where Θ is the cofibrant replacement of the DG-bimodule RHomΛe(Λ,Λe)[d] as defined in 1.1.
Since Λ is finite dimensional, it is in Dfd(Π) and we obtain the following commutative diagram

Db(Λ)
−

L
⊗
Λ

Π

//

π

��

per Π

��

Cd(Λ)
∼ // per Π�Dfd(Π).

In fact, it can be related to Proposition 1.3 as follows. On shows that there exists an
isomorphism in the homotopy category of DG algebras (cf [Ami, Lemma 7.3.1])

RHomT(d+1)
(Λ,Λ) ' Π(d+1).

This makes the DG algebra Π(d+1) a Λ-Koszul dual of the DG algebra Td+1. Therefore the
functor RHomT(d+1)

(Λ,−) induces the following diagram

per(TDG
d+1)

∼ //
� _

��

Dfd(Π(d+1))� _

��
thickD(TDG

(d+1)
)(Λ)

∼ // per Π(d+1).

2 Preprojective algebra of RF-algebras

2.1 Case of 1-RF algebras

The first instance of an equivalence CM(Γ) ' Cd(Λ) was given in my thesis for the stable
module category of a preprojective algebra of Dynkin type. Such categories are 2-Calabi-Yau
(see Theorem 4.1) and have cluster-tilting objects (see [GLS06]).

Theorem 2.1. Let Q be a Dynkin quiver. There exists a τ2-finite algebra Λ of global dimension
≤ 2 together with a triangle equivalence

C2(Λ) ' modΠ2(kQ).
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In this result, the algebras Λ and kQ can be related as follows: Λ is the stable Auslander
algebra of kQ, that is

Λ := EndkQ(M),

where M is a generator of the category mod kQ.

More precisely, we have the following diagram

Π2(kQ)
degree zero part // kQ

Auslander algebra //
2-preprojective algebra
oo Λ

−/〈e〉 //
e(−)e

oo Λ

Here the idempotent e corresponds to the projective objects in mod kQ.

Example 2.2. Let Q be the quiver 1→ 2→ 3. Then the above algebras Π2(kQ), Λ and Λ are
given as follows. The idempotent e corresponds to black dots.

Π2(kQ)

•

•

•

01

01

kQ

•

•

•

Λ

• ◦ ◦

• ◦

•

Λ

◦ ◦

◦

2.2 General d and graded version

Theorem 2.1 has been generalized by Iyama and Oppermann in the context of higher Auslander
theory.

Theorem 2.3. [IO13] Let A be a (d−1)-RF algebra. There exists a τd-finite algebra Λ of global
dimension ≤ 2 together with a commutative diagram of triangle functors

Db(Λ)

π

��

∼ // modZΠd(A)

forget

��
Cd(Λ)

∼ // modΠd(A).

Here Λ and A are related as follows:

Πd(A)
degree zero part // A

(d-1)-Auslander algebra //
d-preprojective algebra
oo Λ

−/〈e〉 //
e(−)e

oo Λ

Example 2.4. Let A be the Auslander algebra of the quiver A3, it is 2-RF.

Π3(A)

• • •

• •

•

0

0

0 0 0

0

1 1

1

A

• • •

• •

•

Λ

• • •

• •

•

◦

◦

◦

◦ Λ

◦ ◦

◦

◦
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Using Happel’s Theorem, the equivalence given in Theorem 2.3 corresponds to a triangle
equivalence

modZΠd(A) ' modZT1(Λ)

where T1(Λ) is the trivial extension of the algebra Λ. The graded algebras Πd(A) and T1(Λ)
are far from being isomorphic (the rank of their Grothendieck group is not even the same).
However, Iyama and Oppermann showed an equivalence

projZ Πd(A) ' projZ T (Λ).

This equivalence can be seen as follows in the example where A is the Auslander algebra of
the path algebra of the quiver A3. The trivial extension of the algebra Λ is given by the quiver:

• • • •a b
a∗ b∗

c
c∗

with relations ba, cb,a∗b∗, b∗c∗

aa∗ − b∗b, bb∗ − c∗c

The equivalence projZ Πd(A) ' projZT1(Λ) can be seen in the following picture, considering
the Z-covers of the algebras:

• • •

• •

•

• • •

• •

•

• • •

• •

•

· · · · · ·· · · · · ·

Here the Z-action on Πd(A) is given by a horizontal translation, while the Z-action on T1(Λ)
is given by sending a red fondamental domain to the next red one.

Note that Iyama and Oppermann proved in [IO13] a more general version of Theorem 2.3 for
τd-finite algebras such that the preprojective algebra Πd(A) has Gorenstein dimension ≤ 1 (or
equivalently satisfying a certain vanishing condition called vosnex property [AO15, Cor. 4.10]).

3 Coxeter group and CM modules

3.1 General w

In the case of a non Dynkin quiver, the preprojective algebra is not selfinjective anymore.
However, one can construct Iwanaga-Gorenstein algebras from it using elements in the Weyl
group of Q. The general construction is due to Buan, Iyama, Reiten and Scott [BIRS09], but
some particular cases were studied by Geiss Leclerc and Schröer [GLS06].

Let Q be any acyclic quiver, and let WQ be the Weyl group associated to the graph of Q. It
is the free group generated by si, i ∈ Q0 with the relations

• s2
i = 1;

• sisj = sjsi if there is no arrows between i and j;

• sisjsi = sjsisj if there is precisely one arrow between i and j.

Denote by Π := Π2(kQ) the preprojective algebra of Q, and for i ∈ Q0, define Ii to be the
two-sided ideal Π(1− ei)Π.

Let w be an element in WQ. For w = su1 . . . su` a reduced expression of w, we define
Πw := Π/Iu` . . . Iu1 . It is shown in [BIRS09] that the algebra Πw := Πw does not depend on the
choice of the reduced expression of w, and that this algebra is Iwanaga Gorenstein of Gorenstein
dimension ≤ 1. Therefore the restriction functor mod Πw −→ mod Π induces an equivalence of
categories CM(Πw)

∼−→ Sub(Πw) where Sub(Πw) is the subcategory of mod Π of submodules
of Πw seen as a Π-module. Moreover the stable category CM(Πw) is 2-Calabi-Yau, and each
reduced expression w gives rise to a cluster-tilting object Mw in CM(Πw) [BIRS09, Thm II.2.8].
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Theorem 3.1. [ART11] Let Q be an acyclic quiver and let w be in WQ. Then for any w reduced
expression of w, there exists a τ2-finite algebra Λ′w such that we have a triangle equivalence

CM(Πw) ' C2(Λ′w).

If Q is Dynkin, and if w is the longest element in WQ, then the algebra Πw is the preprojective
algebra Π2(kQ). However, Theorem 3.1 is not a generalisation of Theorem 2.1. The algebra Λ′w
cannot be understood as a stable Auslander algebra.

It is constructed here as follows: to each choice of a reduced expression of w, let Mw ∈
CM(Πw) be the cluster-tilting object constructed in [BIRS09]. We fix an orientation of Q
compatible with w in the following sense.

if there exists an arrow i→ j, then ti < tj where tk is the last integer such that stk = sk in
the reduced expression w = su1 . . . su`.

This choice of orientation induces a Z-grading on Π2(kQ) and thus on Πw. The cluster-tilting
object Mw comes from a natural graded object. We define

Λ′w := EndZΠw
(Mw) and Λ′w := EndZΠw

(Mw).

For this particular choice of grading on Πw, we obtain a graded analogue of Theorem 3.1.

Theorem 3.2 (Kimura). [Kim18, Kim17]

Let Q be an acyclic quiver whose orientation is compatible with a choice of a reduced expres-
sion w of w ∈WQ. Then there is commutative diagram of triangle functors

Db(Λ′w)
∼ //

π

��

CMZ(Πw)

forget

��
C2(Λ′w)

∼ // CM(Πw).

Remark 3.3. A generalisation of Theorem 2.1 has been shown in [AIRT12] for special elements w
in WQ called co-c-sortable. In that case, one can construct an algebra Λw as a stable Auslander
algebras of a certain torsion class in mod kQ. It generalizes Theorem 2.1 in the following sense:
in the case where Q is Dynkin, where c is the Coxeter element associated to the orientation of Q,
and where w is a co-c-sortable expression of the longest element in WQ, we have an isomorphism
Λ ' Λw.

It is shown in [Ami12] that the two different τ2-algebras constructed Λ′w and Λw are related
by a sequence of 2-APR tilts, and so are derived equivalent.

Question

A natural question arising here is to understand the relations between the algebras Λ′w and Λ′w′
where the reduced expressions w and w′ represent the same element in WQ, so for instance
when w and w′ differ by one braid relation.

3.2 Higher analogues for special w

Let us give some more details on the construction of the algebras Λw and Λ′w in the following
case.

Let Q be a non Dynkin quiver, and c be the Coxeter element compatible with the orientation
of Q as above. For n ≥ 2 we define w = cn. Then we have Πw ' Π/〈E⊗n〉 where E :=
Ext1

kQ(DkQ, kQ).
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For the construction of Λw as in [AIRT12] we have

Λw =


kQ E · · · E⊗n

0 kQ
. . .

...
. . . E

kQ

 = EndkQ(Πw)

and

Λw =


kQ E · · · E⊗n−1

0 kQ
. . .

...
. . . E

kQ

 = EndkQ(Πw).

For the construction of Λ′w as in [ART11], we have

Λ′w = kQ⊗
k
k
←
An and Λ′w = kQ⊗

k
k
←
An−1.

For example, taking Q of type Ã2, and n = 3 one obtains the following

Λw = •

•

•

•

•

•

•

•

•

Λ′w = •

•

•

•

•

•

•

•

•

If we consider the case n = 2, the algebra Πw is just the trivial extension of kQ by the
bimodule Ext1

kQ(DkQ, kQ). And one gets Λw = Λ′w = kQ. So Theorem 3.1 gives an equivalence

CM(kQ⊕ E) ' C2(kQ);

which was already a consequence of [KR08] and [BIRS09]. This has been generalized as follows
by Hanihara:

Theorem 3.4. [Han] Let d ≥ 2 and A be a (d − 1)-RI algebra. Then A is τd-finite algebra.
Denote by Γ the trivial extension of the algebra A by the bimodule Extd−1

A (DA,A). Then we
have an equivalence of categories

CM(Γ) ' Cd(A).

Note moreover that Πd(A) is (1)-twisted bimodule d-Calabi-Yau as a graded algebra since
A is d-RI. Hence it is bimodule (d + 1)-Calabi-Yau as a DG algebra. In fact, we even have an
isomorphism

Π(d+1)(A) ' Πd(A)

in the homotopy category of DG algebras. Thus, when A is (d− 1)-RI, we have an equivalence

Cd(A) ' per(Πd(A)DG)�Dfd(Πd(A)DG).

These results have a more general analogue in [Han] for (a)-twisted bimodule d-Calabi-Yau
graded algebras.
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Further directions

All these results leads naturally to the following generalisations.
Let A be a (d− 1)-RI algebra, and n ≥ 2. Define the following algebras

• Πd,n(A) := Πd(A)�〈E⊗n〉 where E = Extd−1
A (DA,A);

• Λd,A,n =


A E · · · E⊗n−1

0 A
. . .

...
. . . E

A

 = EndkQ(Πd,n(A)).

• Λ′d,A,n = A⊗
k
k
←
An−1.

It is then natural to ask the following

Are there triangle equivalences CM(Πd,n(A)) ' Cd(Λd,A,n) ' Cd(Λ′d,A,n) ?

Are the algebras Λd,A,n and Λ′d,A,n related by d-APR tilts ?

We could also try, following [Han], to generalize the situation for higher Gorenstein param-
eters.

4 CM over isolated singularities

4.1 General result

Another source of examples comes from algebraic geometry: Auslander showed in [Aus78] (see
also [Yos90]) that the stable category of (maximal) Cohen-Macaulay modules over a commutative
isolated d-dimensional local Gorenstein singularity is (d−1)-Calabi-Yau. Using higher analogues
of Auslander-Reiten theory, Iyama proved the existence of (d − 1)-cluster-tilting objects for
quotient singularities in [Iya07a]. Similar results have been proved for some three dimensional
hypersurface singularities in [BIKR08], (see also [IR08, VV16]).

In this section, we discuss the case where the Iwanaga-Gorenstein algebra R is given as in
Theorem 5.1. Under some further assumption on the idempotent e, we obtain the following.

Theorem 4.1. [AIR15] Let Λ be a finite dimensional d-RI algebra, such that the corresponding
(d+ 1)-preprojective algebra Π := Πd+1(Λ) is Noetherian. Asume moreover that there exists an
idempotent e ∈ Λ such that

• Π := Π/ΠeΠ is finite dimensional;

• eΛ(1− e) = 0.

Then the algebra Λ := Λ/ΛeΛ is τd-finite and we have a diagram of triangle functors

Db(Λ)
∼ //

π

��

CMZ(R)

forget

��
Cd(Λ)

∼ // CM(R)

,

where R := eΠe.

We can summarize as follows the relation between R and Λ:

R = eΠe
d-Auslander algebra // Π

degree 0 part //
e(−)e

oo Λ
−/〈e〉 //

d+ 1-preprojective algebra
oo Λ = Λ/ΛeΛ



40 CHAPTER 2. CLUSTER CATEGORIES AND COHEN-MACAULAY MODULES

4.2 Applications

Case d = 1

We come back to Subsection 5.2 in Chapter 1, and apply Theorem 4.1 in the case d = 1. Then
Λ = kQ where k is an algebraically closed field of characteristic zero, Q is some extended Dynkin
quiver, and e is the extended vertex. We can choose an orientation of Q so that ekQ(1− e) = 0
holds. The algebra Λ is then the path algebra kQ of the corresponding Dynkin quiver. The
previous diagram becomes

k[x, y]G
Auslander algebra // Π2(Q)

degree 0 part //
e(−)e

oo kQ
−/〈e〉 //

preprojective algebra
oo kQ

The theorem states that we have triangle equivalences

Db(kQ)
∼ //

π

��

CMZ(k[x, y]G)

forget

��
C1(kQ)

∼ // CM(k[x, y]G)

,

Here the functor S1 is the AR translation of the derived category, and since kQ is hereditary,

the 1-cluster category is the orbit category Db(kQ)/S1 which is k-equivalent to the category of
the projective modules over the preprojective algebra Π2(kQ). So the bottom equivalence (seen
as an equivalence of k-categories) is the well-known result due to Reiten and Van den Bergh
[Rei87, RV89]. The above equivalence (seen as an equivalence of k-categories) was also already
proved in [LP11] and [KST07], since we clearly have Db(kQ) ' projZ(Π2(kQ)) as k-categories.

Beilinson algebras for general d

For general d, we can come back to Example 5.4 in Chapter 1 with Λ being the d-Beilinson
algebra where we take e = e0 which clearly statisfies the hypothesis.

We obtain triangle equivalences

CMZ(R) ' Db(Λ) and CM(R) ' Cd(Λ),

where R is the (d+ 1)-Veronese algebra, and where Λ is given by the quiver

1 2 3 d− 1 d
x0x2

xd

x0x1

xd

x0x1

xd

with the relations xixj = xjxi.

Dimer models

The situation also applies to dimer models in the setup of Corollary 5.6 in Chapter 1, if there
exists an idempotent e such that Π/ΠeΠ is finite dimensional and with eΛ(1− e) = 0.

Let us come back to Example 5.7 in Chapter 1. The vertex 1 is a source in the quiver of
Λ, so e1Λ(1 − e1) = 0. Moreover, the algebra Π = Π/Πe1Π is the path algebra of an acyclic
quiver, so it is finite dimensional. Therefore we can apply Theorem 4.1 and we obtain a triangle
equivalence C2(Λ) ' CM(R) where Λ is the path algebra of the quiver 2 //// 3 //// 4 , and
where R is the homogenous coordinates algebra on P1 × P1.
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4.3 Orlov decomposition and recollement

In this section, we explain how the restriction functor Db(Λ) −→ Db(Λ) can be seen as a
“non commutative” analogue of Orlov’s orthogonal decomposition theorem [Orl09]. We refer to
[Ami14a] for more details.

Here is a result which gives a geometric interpretation of the category Db(Λ).

Theorem 4.2. [Min12, Thm 3.12] Let Λ be a d-RI algebra, and Π := Πd+1(Λ) be the corre-
sponding (d + 1)-preprojective algebra. If Π is left graded coherent, then there exists a triangle
equivalence

Db(Λ) ' Db(qgrΠ)

where qgrΠ := modZ Π/ fdZ Π is the category of graded tails of Π.

Now, assume that e is as in Theorem 4.1. Since the algebra Π/ΠeΠ is finite dimensional,
the functor modZ Π→ modZR which is a right multiplication by e, induces an equivalence

qgr(Π) ' qgrR.

The second assumption, stating that eΛ(1− e) = 0 ensures that there is an embedding

Db(Λ)→ Db(Λ).

Therefore combining Theorems 4.1 and 4.2 we obtain an embedding CMZ(R) → Db(qgrR). If
eΛe = k, I show in [Ami14a] that this embedding is the one constructed by Orlov in [Orl09] for
graded commutative Noetherian rings of Gorenstein parameter 1.

In this case, we even get a recollement

CM(R) // Db(qgrR)oo
oo // Db(k)oo

oo
.

Coming back to the example of the Beilinson algebra in subsection 5.4, we obtain the fol-
lowing: R is the (d + 1)-Veronese algebra, so we have ProjR = ProjS, and hence by Serre’s
result [Ser55], we obtain Db(qgrR) = Db(cohS) = Db(cohPd). So Minamoto’s result can be
understood as a generalisation of Beilinson’s result [Bei78]

Db(Λ) ' Db(cohPd).

The recollement above becomes

CM(R) // Db(cohPd)oo
oo // Db(k)oo

oo
.



42 CHAPTER 2. CLUSTER CATEGORIES AND COHEN-MACAULAY MODULES



Chapter 3

Derived categories as graded cluster
categories (Case d = 2)

As mentionned in Chapters 1 and 2, the cluster category Cd(Λ) of a τd-finite algebra Λ is a d-
Calabi-Yau triangulated category with d-cluster-tilting objects. The structure of such categories
is very rich and can be summarized as these three (intentionnally imprecise) statements:

• lots of information of the entire category is encoded in a single cluster-tilting object;

• one can construct inductively new cluster-tilting objects from an initial one by performing
an operation called mutation;

• the situation is especially nice for d = 2, since the mutation of cluster-tilting objects is
encoded via mutation of quivers and mutation of quivers with potential.

The leading idea of this chapter is to use the cluster-tilting machinery not for the cluster
category Cd(Λ) but rather for the derived category Db(Λ). Indeed the category Db(Λ) can be
understood as the graded analogue of Cd(Λ) (where the grading is played by the endofunctor
Sd). It has a natural cluster-tilting subcategory UdΛ := π−1(πΛ) given by the preimage of the
canonical d-cluster-tilting object π(Λ) in Cd(Λ) by the triangle functor

π : Db(Λ) −→ Cd(Λ).

Therefore we have
UdΛ := add{SpdΛ, p ∈ Z} = addπ−1(π(Λ)),

and UdΛ can be understood as the Z-covering of the (d+ 1)-preprojective algebra Πd+1(Λ) with
its natural Z-grading.

The plan of this chapter is as follows. In a first section, we recall general results of d-cluster-
tilting theory in triangulated categories, mainly due to Iyama and Yoshino [IY08]. We then
concentrate on the case d = 2, and with the link with mutation of quivers and quivers with
potential. In a second section, we describe the main results of [AO13a] where we investigate
the image of the functor π. The third section is dedicated to the results of [AO14]: we define
the notion of graded mutation (which refines the notion of mutation of QPs) in order to encode
the cluster-tilting mutation in the derived category. This allows us in particular to describe a
new tool that detects whether two τ2-finite algebras are derived equivalent. Graded mutation is
strongly used in Chapter 4.

1 Cluster-tilting theory in triangulated categories

Before concentrating on the case d = 2, we recall some very general results on d-cluster-tilting
theory, mainly due to Iyama and Yoshino in this generality [IY08].
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In all the section, we assume that T is a Hom-finite triangulated category with a Serre
functor, that we denote by S. We denote by Sd := S[−d] the autoequivalence. A first observation
concerning subcategories, is the fact that any d-cluster-tilting subcategory is stable under the
functor Sd ([IY08, Prop 3.4] ).

1.1 Approximation (d+ 1)-angles

An interesting aspect of a d-cluster-tilting subcategory is the fact that it plays the role of
‘projective-injective” objects in the category T in the following sense: every object sits in a
approximation (d+ 1)-angle with objects in U . More precisely for any X ∈ T , there exist maps

Xd+1 = 0 Xd X2 X1 X0 = X

Td T2 T1 T0

+ ++

where each Ti is in U and where for each i = 0, . . . , d− 1

Xi+1
gi // Ti

fi // Xi
// Xi+1[1]

is a triangle, the map fi is a left U-approximation and the map gi is a right U-approximation.
In other words we have the equality (cf [IY08, Thm 3.1])

U ∗ U [1] ∗ · · · ∗ U [d− 1] = T ,

where X ∗ Y is the full subcategory generated by cones of maps from Y[−1] to X .
Then, morally at least, the knowledge of a d-cluster-tilting subcategory should be enough

to recover the entire category T . This is in fact more complicated, especially because of the
fact that cones are not functorial in a triangulated category: the knowledge of a d-cluster-tilting
subcategory is enough to understand the objects in T , but not all the morphisms. Proposition
0.1 of Chapter 2 is a consequence of these approximation triangles.

However in general, it is not known whether two triangulated categories having equivalent
d-cluster-tilting subcategories are equivalent, except in the case d = 2 and where the endomor-
phism algebra of d-cluster-tilting subcategory is hereditary (see [KR08]). This has recently be
generalized by Kalck and Yang in higher Calabi-Yau dimension, in the case where the endomor-
phism algebra of the d-cluster-tilting object is the path algebra of a tree (see Theorem 5.7 of
[KY]) with some extra vanishing conditions and when the characteristic of the field is zero.

1.2 The module category modU

We denote by modU the category of finitely presented functors Uop → Modk.
If U is a d-cluster-tilting subcategory, we have just seen that the category T can be built

from U by iterated cones. So one can wonder how the pieces U [`] ∗ U [`+ 1] are related with U .
The answer is given by

Proposition 1.1. [IY08, Cor 6.4] The natural functor

T −→ modU
T 7→ Hom(−, T )|U

induces an equivalence (
U [`] ∗ U [`+ 1]

)
�U [`+ 1]

∼−→ modU .

The situation is here especially nice for the case d = 2 and for a 2-cluster-tilting object T .
In that case we obtain an equivalence (see [KR07]).

T�addT [1] ' mod EndT (T ).
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1.3 Mutation of d-cluster-tilting subcategories

The other important aspect of d-cluster-tilting object is the notion of mutation. If we remove
an indecomposable summand of a d-cluster-tilting object, (or a Sd-orbit in an indecomposable
of a d-cluster-tilting subcategory), there exists a systematic way to replace it to get a new
d-cluster-tilting object (resp. subcategory). This can precisely be formulated as follows:

Theorem 1.2. [IY08, Thms 5.3 and 5.8] Let U = U ′ ∪ {SpdX, p ∈ Z} be a d-cluster-tilting
subcategory, with X indecomposable.

1. if d = 2 then U ′ is contained in exactly two 2-cluster-tilting subcategories denoted by U
and µX(U).

2. under the condition that X has no loops in U , then U ′ is contained in exactly d d-cluster-
tilting subcategories denoted by µiX(U), i ∈ Z/dZ.

The operation µX , the mutation, can be explicitely described in terms of exchange (d+ 1)-
angles.

The “no loop” condition means that the exchange (d + 1)-angle associated to X coincides
with the AR-(d+ 1)-angle of X in U , that is, there is no summands in {SpdX, p ∈ Z} appearing
in the middle terms of the AR-(d+1)-angle on X. For the case d = 2, it is equivalent to the fact
that the quiver of U contains no arrows from X to some SpX for any p, so in the 2-CY case, it
is equivalent to the fact that the quiver of U contains no loop at X.

1.4 The case d = 2

The case d = 2 is especially nice since the mutation of cluster-tilting objects can be understood
combinatorially.

Quiver mutation

For a 2-cluster-tilting subcategory U = U ′∪{SpdX, p ∈ Z} where X is indecomposable summand,
the category µX(U) can be computed from U as U ′ ∪ {SpdX

L, p ∈ Z} where XL appears in a
triangle

X
u // B

v // XL w // X[1]

where u is a minimal left U ′-approximation.

It can also be computed as U ′ ∪ {SpdX
R, p ∈ Z} where XR appears in a triangle

XR u′ // B′
v′ // X

w // XR[1]

where v′ is a minimal right U ′-approximation.

As a direct consequence, we obtain that there exists p ∈ Z such that XL ' Spd(X
R). The

situation is then easier in the 2-Calabi-Yau setting, where XR and XL coincide.

These two special triangles are called exchange triangles. They have been first described
by Buan, Marsh, Reineke, Reiten and Todorov (see [BMRRT06, Proposition 6.9]) for cluster
categories. The corresponding exchange short exact sequences in module categories over a
preprojective algebra of Dynkin type appeared also in the work of Geiss, Leclerc and Schröer
(see [GLS06, Lemma 5.1]). The general statement is due to Iyama and Yoshino [IY08, Theorem
5.3].

This recursive process of mutation of cluster-tilting objects, especially in the context of 2-
Calabi-Yau categories is closely related to the notion of mutation of quivers defined by Fomin
and Zelevinsky [FZ02] which was the original motivation of cluster categorification.
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Theorem 1.3 (Buan-Iyama-Reiten-Scott [BIRS09]). Let C be a Hom-finite 2-CY triangulated
category with cluster-tilting object T . Let Ti be an indecomposable direct summand of T , and
denote by T ′ the cluster-tilting object µTi(T ). Denote by QT (resp. QT ′) the Gabriel quiver of
the endomorphism algebra EndC(T ) (resp. QT ′).Assume that there are no loops and no 2-cycles
at the vertex i of QT (resp. QT ′) corresponding to the indecomposable Ti (resp. T ∗i ). Then we
have

QT ′ = µi(QT ),

where µi is the Fomin-Zelevinsky quiver mutation.

We illustrate this result by the following diagram.

T
cluster−tilting

oo IY−mutation //

��

T ′
cluster−tilting

��
QT oo

FZ−mutation // QT ′

The corresponding results have been first shown in the setting of cluster categories in
[BMR08] and in the setting of preprojective algebras of Dynkin type in [GLS06].

These results have been generalized for d-cluster categories of acyclic type (see [BT09, ZZ09,
Wra09]). The combinatorics of this process is much more technical and can be encoded via
mutation of coloured quivers.

Mutation of quiver with potential

Let (Q,W ) be a Jacobi-finite quiver with potential, that is a quiver with potential such that
the corresponding Jacobian algebra is finite dimensional. The Ginzburg DG algebra Γ(Q,W ) is
a homologically smooth bimodule 3-Calabi-Yau DG-algebra which is negatively graded [Kel11].
The construction of the 2-cluster category can be applied to obtain a generalized cluster category

C(Q,W ) := per Γ�DfdΓ

which is 2-Calabi-Yau and has cluster-tilting objects [Ami]. We refer to [Ami11] for more
details on the generalized cluster category associated with quiver with potential and Ginzburg
DG algebras. Note that in a recent paper[KY], Kalck and Yang have shown that in characteristic
zero, any triangulated d-Calabi-Yau category with a d-cluster-tilting is equivalent to a quotient
per Γ�DfdΓ for some DG algebra Γ with similar properties as a higher analogue of a Ginzburg
algebra.

A notion of mutation of QPs is defined in [DWZ08]. The link with generalized categories is
given in the following theorem.

Theorem 1.4. [KY11] Let (Q,W ) be a Jacobi-finite reduced QP, and i a vertex of Q such that
there is no loops, nor 2-cycles at i in Q. Denote by (Q′,W ′) = µi(Q,W ) the mutation of the
QP (Q,W ) at vertex i in the sense of Derksen-Weyman-Zelevinsky. Then there is a triangle
equivalence

C(Q,W ) ' Cµi(Q,W )

sending the canonical cluster-tilting object Γ(Q,W ) on µi(Γ(Q′,W ′)).

When combining this result with Theorem 2.4, we obtain two consequences for the cluster
category of a τ2-finite algebras.

Corollary 1.5. Let Λ be a τ2-finite algebra. Denote by (Q̄,W ) the QP associated to Π3(Λ) as
in Theorem 2.4. Let T be a cluster-tilting object in C := C2(Λ) obtained from π(Λ) by a sequence
of mutations s = i1, . . . , in. If for each 0 ≤ ` ≤ n there is no 2-cycle at i` in the quiver of
EndC(T

`−1), where the T ` are the iterated mutate of π(Λ), then there is an isomorphism

EndC(T ) ' Jac(µs(Q̄,W )).
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Note that a similar result has been proved by Buan, Iyama, Reiten and Smith in [BIRS11] in
the setup of a 2-Calabi-Yau category with a cluster-tilting object having a Jacobian endomor-
phism algebra. It is more general in that sense, but they need in the proof a technical condition
(the glueing condition) which may be complicated to check in examples.

Corollary 1.6. Let Λ and Λ′ be τ2-finite algebras. Denote by (Q̄,W ) (resp. (Q̄′,W ′)) the QP
associated to Π3(Λ) (resp. Π3(Λ′)) as in Theorem 2.4. If there exists a sequence of mutation
(with no 2-cycles on each mutated vertex of the sequence of mutated quivers), then there is an
equivalence

C2(Λ) ' C2(Λ′).

One important remark about this result is the fact that the converse statement is not known.
It is an open question to know whether the cluster-tilting graph is connected for a category
C2(Λ). It is true for Λ hereditary (see [BMRRT06] and [HU03]). Some counter-examples have
been discovered for cluster categories associated with some QP [Pla11], but these are not cluster
categories associated with a τ2-finite algebra.

2 The image of the functor π

2.1 A conjecture

The aim of the article [AO13a] is to understand the image of the functor π : Db(Λ) −→ C2(Λ). In
particular we are interested to understand when the functor π is dense. Indeed the construction
of the triangulated hull of an orbit category is difficult to manipulate in practice, since it uses
DG-enhancement. The cluster category becomes much simpler for computation when it is equal
to the orbit category Db(Λ)/S2. By [Kel05], it is the case when the algebra Λ is piecewise
hereditary, that is when the category Db(Λ) is equivalent to some category Db(H) where H is a
hereditary category. In the paper [AO13a], we aim to prove the converse statement.

Coming back to Proposition 1.1 applied for the cluster-tilting subcategory U := U2
Λ of Db(Λ)

we obtain the following commutative diagram, where Π is the 3-preprojective algebra of Λ, and
modZ Π is the category of graded modules over Π (which can be identified to the category modU
by the above remark).

Db(Λ)
HomD(U ,−) //

π

��

modZ Π

forget

��
C2(Λ)

HomC(πΛ,−) // mod Π

.

We first make the following observation :An object X ∈ C2(Λ) is in the image if and only if
its image HomC(πΛ, X) ∈ mod Π is a gradable module.

The conjecture leading the work in [AO13a] becomes then as follows:

Conjecture 2.1. Let Λ be a τ2-finite algebra, and Π be the 3-preprojective algebra of Λ. Then
Λ is piecewise hereditary if and only if any Π-module is gradable.

A very similar conjecture has been already stated by Skowronski [Sko] concerning the trivial
extension algebra, instead of the 3-preprojective algebra.

2.2 Properties of objects in the image

We first discuss different properties satisfied by the objects in the image of π.

Proposition 2.2. Let Λ be a τ2-finite algebra. Let X be an idecomposable object in C2(Λ).

1. X is in the image of π if and only if all objects in its AR-component are;
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2. if X is not in the image of π, then there exists a one parameter family (Xα)α∈k× of objects
in C2(Λ) which are not in the image and such that for any α, Xα ' Xβ for finitely many
β.

Using these results, we prove the direct direction of the conjecture in different cases:

• when some objects satisfy a certain fractional CY property (see [AO13a, Thm 6.1])

• when the quiver of Λ has an oriented cycle [AO13a, Thm 7.1]);

• and for surface cut algebras (see Proposition 2.13 in Chapter 4).

2.3 Cluster-tilting objects

From 2. of Proposition 2.2, we can deduce the following.

Proposition 2.3. Let Λ be a τ2-finite algebra of global dimension ≤ 2. Let X be an indecom-
posable object in C2(Λ) which is a summand of a cluster-tilting object, then X is in the image of
π. As a consequence the functor π induces a bijection

{2-cluster-tilting objects in C2(Λ)} ←→ {2-cluster-tilting subcat. in Db(Λ)}.

In the derived category Db(Λ) we can also construct approximation triangles (see subsection
1.1), and exchange triangles (see subsection 1.4), and their image through π are approximation
and exchange triangles respectively.

As a consequence, cluster-tilting combinatorics of the category C2(Λ) is encoded in the derived
category Db(Λ).

Note that it is not completely clear that Proposition 2.3 holds for general d.

3 Mutation in derived categories

3.1 Recognition theorem

As we have seen in Proposition 0.1 in Chapter 2, to construct an equivalence between two
triangulated categories with a cluster-tilting subcategory, one needs to construct a functor which
restricts to an equivalence on the cluster-tilting subcategories. Constructing such a functor can
be in general difficult.

The key result in [AO14] is the fact that the existence of such a functor is not needed if one
of the category is Db(Λ) with Λ a τ2-finite algebra.

Theorem 3.1. [AO14, Thm 3.5] Let T be a Hom-finite algebraic triangulated category with
a Serre functor S and with a cluster-tilting subcategory V. If there exists a τ2-finite algebra Λ
together with an equivalence f : UΛ ' V commuting with the action of S2 := S[−2], then there
exists an equivalence F : Db(Λ) ' T .

The proof of this theorem uses strongly the existence of approximation triangles. We intro-
duce the category MorV of radical morphisms in V. This category is not exactly the category
T since the cones are not functorial in general, however, the cone map MorV → T induces a
bijection on objects. This is enough in this setup to prove that the object f(Λ) ∈ V is a tilting
object in the category T .
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3.2 Graded mutation

The graded category UΛ ⊂ Db(Λ) is the graded covering of the graded algebra Π3(Λ), which is
by Theorem 2.4, isomorphic to a graded Jacobian algebra.

Given an indecomposable summand Ti in a cluster-tilting subcategory V ⊂ Db(Λ), taking
right or left V \ add{Sp2Ti, p ∈ Z}-approximation maps gives two different replacement for Ti:

Ti
u // B

v // TLi
w // Ti[1] and TRi

u′ // B′
v′ // Ti

w′ // TRi [1]

which are in the same S2-orbit. We aim in [AO14] to answer the following question: If V is
the covering of some graded Jacobian algebra, is the new category µi(V) still the covering of a
graded Jacobian algebra ?

We need for that a few definitions.

Definition 3.2. A graded QP (Q,W, d) is a QP (Q,W ) together with a map d : Q1 → Z such
that W is homogenous of degree 1.

Definition 3.3. Let (Q,W, d) be a graded QP, and i ∈ Q0 such that there is no loop, nor 2-cycle
at i in Q. We define the left mutation µLi (Q,W, d) = (Q′,W ′, d′) of the graded QP (Q,W, d) as
follows:

• replace each arrow a : i→ j in Q by an arrow a∗ : j → i and put d′(a∗) := −d(a)

• replace each arrow b : j → i in Q by an arrow b∗ : i→ j and put d′(b∗) := 1− d(b)

• for each composition j
a→ i

b→ k, add an arrow [ba] : j → k and put d([ba]) := d(a) + d(b);

• the unchanged arrows keep the same grading;

• the potential W ′ = W ∗ + [W ] is defined as in [DWZ08].

We can dually define right mutation µRi , by exchanging the degree formula of the first 2 items.

One immediately observes that W ′ is homogenous of degree 1, so (Q′,W ′, d′) is a graded
QP. Similary to [DWZ08], one can define reduced and trivial graded QPs, and prove that any
graded QP is graded right equivalent to direct sum of a reduced and a trivial QP. Therefore the
reduced part of µLi (Q,W, d) is still a graded QP.

Here is a graded analogue of Corollary 1.5 which gives an answer to the above question.

Proposition 3.4. [AO14, Thm 6.12] Let Λ be a τ2-finite algebra. Denote by (Q̄,W, d) the
QP associated to Π3(Λ) as in Theorem 2.4. Let T be an object in Db(Λ) obtained from Λ by
a sequence of left/right mutations i1, . . . , in. If for each 0 ≤ ` ≤ n there is no 2-cycle at i`
in the quiver of EndC(T

`−1), where the T ` are the iterated mutate of π(Λ), then there is an
isomorphism of graded algebras⊕

p∈Z
HomDb(Λ)(T, S

−p
2 T )) ' Jac(µL,Rs (Q̄,W, d)).

3.3 Graded mutation and derived equivalences

Combining Proposition 3.4 together with Theorem 3.1, we obtain the graded analogue of Corol-
lary 1.6.
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Corollary 3.5. [AO14, Cor 6.14] Let Λ1 and Λ2 be τ2-finite algebras of global dimension ≤ 2.
Denote by (Q1,W 1, d1) and (Q2,W 2, d2) the corresponding graded quivers with potential. If
there exists a sequence a left/right mutation from (Q1,W 1, d1) to (Q2,W 2, d2) (with no 2-cycle
on each mutated vertex of the sequence of mutated quivers), then there is a triangle equivalence

Db(Λ1) ' Db(Λ2).

If moreover (Q1,W 1) is mutation acyclic (that is mutation equivalent to an acyclic quiver),
then the converse holds.

Here again, the obstruction for the converse direction comes from the open question about the
connectedness of the cluster-tilting graph. Note that if a quiver Q is acyclic, then the mutation
at i of the QP (Q, 0), when i is a source or a sink, is (Ri(Q), 0) where Ri is the reflection of
the quiver Q at i. So Corollary 3.5 can also be understood as a generalisation of the following
well-known result:

Theorem 3.6. [Hap87] Let Q and Q′ be two acyclic quivers. Then there exists a derived
equivalence Db(kQ) ' Db(kQ′) if and only if Q and Q′ can be related by a sequence of reflections.

Example 3.7. For example, we can classify the τ2-finite algebras whose cluster category is of
type Ã2,2. They belong in two different derived equivalence classes. The first class contain eight
non isomorphic algebras given as follows.

.

.

.

.

Λ1

.

.

.

.

Λ2

.

.

.

.

Λ3

.

.

.

.

Λ4

.

.

.

.

Λ5

.

.

.

.

Λ6

.

.

.

.

Λ7

.

.

.

.

Λ8

The second class contains three non isomorphic algebras as follows:

.

.

.

.

Λ9

.

.

.

.

Λ10

.

.

.

.

Λ11

To check that the algebras Λ3 and Λ8 are derived equivalent, one needs to exhibit a sequence
of graded mutations between the graded quivers

1

2

3

4

0 0

01

0 and 1

2

3

4

0 0

1
1

00
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Below is one example of such a sequence:

1

2

3

4

0 0

01

0 µL2 1

2

3

4

1 0

0
0

01

µL1 1

2

3

4

0 1

0
0

10

µL1 1

2

3

4

0 0

1
1

00

3.4 Cluster equivalence and graded derived equivalence

Another question we are considering in [AO14] is the following : if Λ1 and Λ2 are τ2-finite
algebras, such that the associated QP are linked by a sequence of mutation as in Corollary 1.6,
what can be said about the categories Db(Λ1) and Db(Λ2) ?

To start with, let us consider the situation where the sequence of mutations is empty, that
is when there is an isomorphism of algebras

Π := Π3(Λ1) ' Π3(Λ2).

Then we get two different gradings on the algebra Π. Assume that these two gradings can be
lifted to a Z2-grading (d1, d2) on the algebra Π and thus on the quiver of Π (this is a priori not
always possible, two Z-gradings on an algebra do not give rise in general to a Z2-grading on it).
Then the degree map d2 (resp. d1) induces a grading on the degree 0 part of Π with respect to
d1 (resp. d2), that is on Λ1 (resp. Λ2). Then using a graded analogue of Theorem 3.1, we prove
in the last section of [AO14] that we have a triangle equivalence

Db(modZ Λ1) ' Db(modZ Λ2).

Coming back to the general situation, assume that the QPs (Q1,W 1) and (Q2,W 2) can be
related by a sequence of mutations (without 2-cycles on each mutated vertex). Using graded
mutations, we obtain two different gradings on the preprojective Π3(Λ1), one given by the tensor
algebra grading, and one given by mutating the graded QP (Q2,W 2, d2). Once again, we have
to assume that this grading lifts to a Z2-grading on the quiver of Π3(Λ1) (this condition is called
compatibility condition in [AO14]). This Z2-grading gives a Z-grading on Λ1. Using a notion of
Z2-graded mutation of Z2-graded QPs (which is a straitforward generalisation of the left/right
mutation), we obtain a Z2-grading on (Q2,W 2), and then a Z-grading on Λ2 (so in other words
the compatibility condition is symmetric in Λ1 and Λ2). Theorem 8.7 of [AO14] states that we
have a triangle equivalence Db(modZ Λ1) ' Db(modZ Λ2).

We can also try to understand the meaning of these different gradings through the derived
equivalences. The graded shift functor (1) in the category Db(modZ Λ1) is equivalent to the
functor S−1

2 ◦ (−1) in the category Db(modZ Λ2). These isomorphism of functors can be lifted
at the DG category level, hence we obtain a triangle equivalence

Db(Λ1) '
(
Db(modZ Λ2)�S2(1)

)
∆

.

This implies that this equivalence is compatible with the equivalence constructed by Keller and
Yang in Corollary 1.6, that is we have the following commutative diagram :

Db(modZ Λ1)
∼ //

��

Db(modZ Λ2)

��
Db(Λ1)

π1

��

Db(Λ2)

π2

��
C2(Λ1)

∼ // C2(Λ2)
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Acyclic case

The situation is particularly nice when the QP associated to Λ is mutation equivalent to an
acyclic quiver. Indeed, in this case, we automatically obtain that the QP is rigid, so the con-
dition on 2-cycles does not need to be checked. Morover the compatibility condition is also
automatically satisfied, since two Z-gradings on a quiver induce a Z2-grading on it.

Example 3.8. Coming back to example 3.7, we can apply the result below for the algebras Λ3

and Λ10. By the graded mutations

1

2

3

4

0 0

01

0

Π3(Λ3)

µL2 1

2

3

4

1 0

0
0

01

and 1

2

3

4

0 1

01

0µL21

2

3

4

Π3(Λ10)

0 0

1
0

01

we obtain the following gradings on Λ10 and Λ3:

.

.

.

.

1 0

0

0

Λ10

.

.

.

.

Λ3

0 1

0

0

Our theorem states that we have an equivalence Db(modZ Λ10) ' Db(modZ Λ3).

Moreover, if the quiver is a tree, one easily shows that any two Z-gradings on a tree can be
related by a sequence of left/right mutations. As a corollary, we obtain the following

Corollary 3.9. [AO13b] Let Λ be a τ2-finite algebra such that the QP associated to Π3(Λ) is
mutation equivalent to a quiver Q whose underlying graph is a tree. Then Λ is derived equivalent
to kQ.

The first non trivial case beyond the tree type arises in type Ãn, where two gradings on a
quiver are not necessary linked by a sequence of left/right mutations. In that case, we prove
that the equivalent classes of gradings on a quiver of type Ãn are parametrized by Z. As we will
see in the next part of this memoir, this parameter has different interpretations, using either
the AG invariant of [AAG08], or a geometric interpretation using line fields on the annulus, and
winding numbers.
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Chapter 4

Triangulated marked surfaces

As seen in the previous chapters, cluster combinatorics appear naturally in triangulated cate-
gories with cluster-tilting objects. But they also appear naturally in topology through flips and
triangulations of surfaces. More precisely, following [FST08] (resp. [LF09]) one can associate to
any triangulated surface a quiver (respectively a QP), and the operation of flipping an arc of
the triangulation corresponds to the mutation of the associated quiver (resp. QP). It becomes
then quite natural to investigate whether one can link more directly cluster categories with
the surface. This is the main idea of topological model: one constructs a dictionnary between
categories and surfaces, and interprets algebraic operations in term of topological operations.

In the first section of this Chapter, we concentrate on cluster categories associated to trian-
gulated surfaces with non-empty boundary. We first recall results in the case where all marked
points are located on the boundary of the surface (the unpunctured case). In this case, the
cluster category is very close to the module category of a gentle algebra. Therefore one can
obtain a topological description of indecomposable objects of the category [ABCP10, BZ11],
and of morphisms [CS17, CPS19]. We then focus on the punctured case which is treated in a
joint work with Pierre-Guy Plamondon [AP]. We use the skew-group algebra construction to see
the punctured surface as an orbifold with 2-folded cover. This permits us to obtain a complete
description of the indecomposable objects in topological terms.

In a second part of this chapter, we show that any cluster category of a surface can be
interpreted as a 2-cluster category of a τ2-finite algebra, that we call surface cut algebra. We
apply results on graded mutation in [AO14] (see Chapter 3) in order to get derived invariants of
surface cut algebras. The annulus case is treated in [AO13b], the unpunctured case in [AG16]
and [Ami16], and the punctured case in [ALP20].

1 Cluster categories from triangulated surfaces

1.1 Definition

A marked surface (S,M,P) is an oriented surface S with non-empty boundary, together with
a finite set of marked points M on the boundary such that there is at least one marked point
on each boundary component, and a finite set of marked points P in the interior of S, called
the punctures. A curve on the boundary of S intersecting marked points only on its endpoints
is called a boundary segment. An arc on (S,M,P) is the homotopy class of a curve on S,
with endpoints in M ∪ P and without selfintersection (except for the endpoints), which is not
homotopic to a boundary segment. Two arcs are admissible if there exists some representative
that do not cross in the interior of the surface. A triangulation is a maximal collection of pairwise
admissible arcs. It cuts out the surface into triangles.

To each triangulation ∆, one can associate a quiver with potential (Q∆,W∆). It is given as
follows when ∆ does not contain any self-folded triangle:
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• the vertices of Q∆ are in bijection with the set of arcs of ∆.

• for each consecutive arcs i and j in counterclockwise direction around a marked point, one
puts an arrow i→ j.

For each internal triangle τ of ∆, there exists a 3-cycle cτ ∈ kQ∆/[kQ∆, kQ∆]. For each
puncture p ∈ P, there exists a cycle (of length the valency of p in the triangulation) denoted by
zp ∈ kQ∆/[kQ∆, kQ∆]. The potential W∆ is defined in [LF09] by

W∆ :=
∑

τ int. triangle

cτ −
∑
p∈P

zp.

This QP has been shown to be Jacobi-finite and non degenerate by Labardini-Fragoso in [LF09].
Therefore, one can associate a cluster category to each triangulated surface (S,M,P,∆) (see
Subsection 1.4 of Chapter 3), that we denote C∆. We also denote by T∆ the corresponding
canonical cluster-tilting object Γ(Q∆,W∆).

Given an arc i in a triangulation ∆ (which is not the self-folded arc of a self-folded triangle),
one can define a new triangulation by flipping the arc i and replacing it by the only other one
making a new triangulation.

τi
flip τ∗i

In [LF09], Labardini-Fragoso showed that the QP associated with the flip of ∆ at the arc i
is the Derksen-Weyman-Zelevinsky mutation of the QP (Q∆,W∆) [DWZ08] up to right equiv-
alence.

∆
triangulation

oo flip //

��

∆′ = fi(∆)
triangulation

��
(Q∆,W∆) oo

DWZ−mutation // (Q∆′ ,W∆′)

Therefore, combining this fact with Theorem 1.4 and the fact that any two triangulations
can be linked by a sequence of flips (see [FST08]) we obtain

Corollary 1.1. Let ∆ and ∆′ be two triangulations of the marked surface (S,M,P), then

C∆ ' C∆′ .

1.2 The unpunctured case

In the case where P = ∅, the situation is particularly nice, since the Jacobian algebra associated
to any triangulation is gentle (see section 1.1 of Chapter 5 for definition). The module category
over a gentle algebra is particularly well known [BR87], [CB00], hence using the equivalence

C∆/ add(T∆[1])
∼−→ mod Jac(Q∆,W∆),

a description of indecomposable objects, and of spaces of morphisms have been obtained in
[ABCP10, BZ11, CS17, CPS19, CPS].

Denote by π1(S,M) the groupoid of homotopy classes of curves in S with endpoints in M
which are not homotopic to a boundary segment. Denote by πfree

1 (S) the set of non contractible
closed curves in S up to free homotopy.

One has the following description of indecoposable objects:
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Theorem 1.2. [ABCP10, BZ11] Let k be an algebraically closed field1. Let (S,M,∆) be a
triangulated surface without punctures, and denote by C∆ the corresponding cluster k-category.
Then the isomorphism classes of indecomposable objects of C∆ are in bijection with

• {{γ, γ−1}, γ ∈ π1(S,M), γ 6= 1M ,M ∈M};

• πfree
1 (S)× k∗/ ∼, where the equivalence relation ∼ is given by ([γ], λ) ∼ ([γ−1], λ−1).

This bijection restricts to a bijection

T : {arcs on the surface (S,M)}/htp←→ {indecomposable rigid objects in C∆}/isom.,

in which each arc of ∆ is sent to the object (T∆)i := eiΓ, where Γ is the Ginzburg DG algebra
associated to the QP (Q∆,W∆). The intersection number between two arcs coincide with the
dimension of Ext1 between the corresponding objects [BZ11], this bijection induces a bijection
between the set of triangulations of (S,M) and the set of isoclasses of cluster-tilting objects in
C∆. Moreover the flip coincide with Iyama-Yoshino mutation in the following sense:

∆′
triangulation

oo flip at i //

T

��

∆′′ = fi(∆
′)

triangulation

T

��
T∆′

cluster−tilting

oo IY-mutation at Ti // T∆′′
cluster−tilting

An interesting question here, is about what happen when we combine Corollary 1.1 with
Theorem 1.2. More precisely we ask the following question: Are the bijections constructed in
Theorem 1.2 independent of the choice of ∆? This question is more complicated than expected
since the triangle equivalence constructed in Corollary 1.1, depends both on the choice of a
sequence of flips linking ∆ to ∆′, and on the choice of a right equivalence map between the
mutated QP. The reduction process is in general not unique and not even canonical. If we
denote by T∆ : π1(S,M)→ Obj(C∆) and B∆ : πfree

1 (S)× k∗/ ∼→ Obj(C∆) the two bijections of
Theorem 1.2, then we have the following:

Proposition 1.3 (Appendix in [CS17]). Let ∆ and ∆′ be two triangulations of a marked surface
(S,M). Then for any sequence s of flips relating ∆ to ∆′ there exists a triangle equivalence

Φs : C∆ −→ C∆′ ,

such that the bijections T∆′ ◦ Φs and T∆ coincide.

But, one can find a sequence of mutation s such that the bijections B∆′ ◦ Φs and B∆ do
not coincide. Typically, if i is an arc of ∆, we may have B∆ ◦ Φfifi 6= B∆ (cf Example 1.3.2 in
Appendix [CS17]).

1.3 The punctured case using Z2-action

Tagged arcs

In the case P 6= ∅, the situation is more complicated. First of all, a triangulation with self-folded
triangles cannot be flipped at a self-folded side in the usual sense. To overcome this situation,
Fomin, Shapiro and Thurston introduced the notion of tagged arcs, and tagged triangulations
in [FST08]. Then combining the results in [LF09], [Pla11], and [QZ17] we obtain a bijection

T : {tagged arcs on the surface (S,M)}/htp←→ {indecomposable rigid objects in C∆}/isom.,

1This result has an analogue for non necessarily algebraically closed field, using the classification of indecom-
posable k[X]-modules
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that induces a bijection

T : {tagged triangulations of (S,M)}/htp←→ {cluster-tilting objects in C∆}/isom.,

which commutes with flip/mutation in the sense

∆′
tagged triangulation

oo flip at i //

T

��

∆′′ = fi(∆
′)

tagged triangulation

T

��
T∆′

cluster−tilting

oo IY-mutation at Ti // T∆′′
cluster−tilting

This bijection has been extended in [QZ17] to any tagged curve linking two marked points
to describe a certain subset of objects called strings in C∆ when ∆ satisfies certain properties.

One consequence of the bijection between tagged triangulations and cluster-tilting objects is
the following.

Corollary 1.4. Let (S1,M1,P1,∆1) and (S2,M2,P2,∆2) be two marked surfaces. Then the
cluster categories C∆1 and C∆2 are equivalent if and only if there exists a homeomorphism Φ :
S1 → S2 preserving orientation and marked points.

Proof. The “if” part is a consequence of Corollary 1.1 and the fact that any two triangulations
are related by a sequence of flips.

Let us write an explicit proof of the “only if part”. First note that we can assume that ∆1 is
a valency ≥ 3 triangulation. Indeed if it is not, by flipping it, we can obtain one together with
a triangle equivalence between the two corresponding cluster categories.

Denote by T1 (resp. T2) the canonical cluster-tilting object in C∆1 (resp. C∆2 .) Assume that
there exists a triangle equivalence F : C∆1 → C∆2 . The object T ′1 := F (T1) is a cluster-tilting
object in C∆2 . Using the bijection written above, it corresponds to a tagged triangulation ∆′1 in
S2. Denote by ∆′′1 the untagged triangulation from ∆′1 (that is, we remove all eventuel taggings
of the arcs of ∆′1 to obtain an ideal triangulation). Since F is an equivalence we have the
following isomorphisms

Jac(Q∆1 ,W∆1) ' EndC1(T1) ' EndC2(T ′1) ' Jac(Q∆′1 ,W∆′1) ' Jac(Q∆′′1 ,W∆′′1 ).

Therefore the Gabriel quivers of these algebras are isomorphic. Since ∆1 is a valency ≥ 3-
triangulation, the Gabriel quivers are Q∆1 and Q∆′′1 . We can now apply Proposition 8.5 in
[BS] (we refer to [ALP20, Prop 3.15] to include all surfaces), and we obtain a homeomorphism
S1 → S2, sending ∆1 to ∆′′1.

Unfolding the surface with punctures

In the joint work [AP] we study the case of the cluster category of a triangulated surface with
punctures, in the case where the base field has characteristic 6= 2. When the triangulation
satisfies the property that any puncture is in a self-folded triangle, the associated Jacobian
algebra is skew-gentle (see section 2 of Chapter 5 for definition). This class of algebras has been
introduced by Geiss and de la Peña [GePe99] using the construction of skew-group algebras of
Reiten and Riedtmann [RR85].

Let (S,M,P) be a punctured surface and ∆ be a triangulation such that all punctures are in
a self-folded triangle. From this data, we construct a new triangulated surface without punctures
together with a homeomorphism of order 2 as follows:
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• Each puncture P belongs to an self-folded arc iP . We cut the surface S along each
self-folded side iP and, obtain a surface S+, with new boundary segments [P+

1 , P
+
2 ] corre-

sponding to the arc iP .

S

j k◦

iP

P

•
S+

j+ k+

• •
P+

1 P+
2

• We then glue to S+ a copy of itself S− along the segments [P+
1 , P

+
2 ] and [P−1 , P

−
2 ], and

obtain a new surface S̃ with marked points M̃ := M+∪M−∪{P+
1 = P−2 , P

−
1 = P+

2 , P ∈ P}.

S+

S−

P+
1 P+

2

P−2 P−1

j+ k+

i S̃

j−k−

i

Proposition 1.5. 1. [AP, Thm 3.5] The surface (S̃, M̃) constructed above is a surface with
marked points, and without punctures. The collection of arcs ∆̃ := {τ+, τ−, τ ∈ ∆} ∪
{[P+

1 , P
+
2 ], p ∈ P} is a triangulation of S̃.

2. [AP, Prop. 3.9] There is a homeomorphism σ : S̃ → S̃ of order 2 that exchanges the
surfaces S+ and S−. It has exactly |P| fixed points, one in each segment [P+

1 , P
+
2 ], and

fixes globally the triangulation ∆̃.

3. [AP, Cor. 3.10] The natural projection S̃/σ → S is a 2-folded cover, with branched points
P. It induces a structure of orbifold for S with orbifold points P.

Example 1.6. Let (S,M,P) be a cylinder with two punctures P = {P,Q} and two marked
points M = {A,B}, and with the following triangulation ∆. Cutting the surface along the
folded sides and along an arc [A,B], we obtain S as the following polygon with identifications
of sides.

•

•

◦◦
>

4

>
>

A

B

QP

3

3

•

•

•

•

•

•
◦

◦

>
>

>>

4

4
>

>

B

B

A

Q

A

A

A

P

6

4

2
1

5

The surfaces S+ and S− are then given by the following polygons with identifications:
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•

•

•

•

•

•

>
>

>>

B+

B+

Q+
1

Q+
2

P+
1

P+
2 = Q+

1

•

•

•

•

•

•

>
>
|

>>
|

B−

B−

Q−1

Q−2

P−1

P−2 = Q−1

Hence the surface S̃ is a sphere with four boundary components and is given by the following
polygon with identifications:

3+

5

1

3+

•

•

•

•

•

•

B+

B+

P+
2

P+
1

P+
1

P+
2

6+

4+

2+

3−

5

1

3−

•

•

•

•

•

•

B−

B−

P+
1

P+
2

6−

4−

2−

σ

5

1

3+

3−

•B+

•
P1+

•
P+

2

• B−

The quivers Q∆ and Q∆̃ have the following shape:

Q∆ =

1

1′
2

3

4

5

5′

6 Q∆̃ = 1
2+

2−

3+

3−

4+

4−

5

6+

6−

Indecomposable objects

The action of σ on the surface S̃ induces an action of the group Z2 on Q∆̃ preserving the

potential W ∆̃. From this, we deduce an Z2-action on the Ginzburg DG algebra Γ
∆̃

and on the
corresponding cluster category C

∆̃
. Following Reiten and Riedtmann’s definition [RR85], we can

form the skew-group DG algebra Γ
∆̃
Z2 as follows:

• as a graded vector space, we set Γ
∆̃
Z2 := Γ

∆̃
⊗
k
kZ2;

• the multiplication is induced by the rule (γ ⊗ g).(γ′ ⊗ g′) = γg(γ′)⊗ gg′;

• the differential is given by d(γ ⊗ g) = d(γ)⊗ g.

The algebraic link between the triangulated surfaces (S,∆) and (S̃, ∆̃) is given as follows:

Theorem 1.7. [AP, Thm 2.6] The skewgroup DG algebra Γ
∆̃
Z2 is Morita equivalent to Γ∆.

Adapting the results of Reiten and Riedtmann to the DG-setting, we then obtain the fol-
lowing result :
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Theorem 1.8. [AP, Cor 3.6] There exists a triangle functor F : C
∆̃
→ C∆ which induces a

bijection between the isomorphism classes of indecomposable objects in C∆ and the set

{σ − invariant indec. in C
∆̃
} × Z2 ∪ {σ − orbits of non σ − invariant indec. in C

∆̃
}.

Combining this result together with Theorem 1.2, and translating curves on S̃ in term of
curves on the orbifold S we obtain the following description of the indecomposable objects in
C∆:

Theorem 1.9 (Corollaries 5.10 and 5.19 in [AP]). Let (S,M,P) be a marked surface with non-
empty boundary and possibly with punctures. Let ∆ be a triangulation of S such that each
puncture belongs to a self-folded triangle and such that no triangle shares a side with two self-
folded triangles. Then the indecomposable objects of the cluster category C∆ are in bijection with
the following sets:

1.
{
{γ, γ−1} | γ ∈ πorb

1 (S,M), γ 6= γ−1
}

,

2.
{
γ ∈ πorb

1 (S,M)|γ = γ−1, γ 6= 1M ,M ∈M
}
× Z2,

3.
{

[γ] ∈ πorb,free
1 (S)| [γ] 6= [γ−1]

}
× k∗/ ∼,

4.
{

[γ] ∈ πorb,free
1 (S)| γ2 6= 1 and [γ] = [γ−1]

}
× k∗\{±1}/ ∼,

5.
{

[γ] ∈ πorb,free
1 (S)| γ2 6= 1 and [γ] = [γ−1]

}
× (Z2)2,

where ∼ is the equivalence relation given by ([γ], λ) ∼ ([γ−1], λ).

In this theorem, the set πorb
1 (S,M) is the quotient of π1(S \P,M) by the equivalence relation

given by

◦P = ◦P

where P is a puncture. The set πorb,free
1 (S) is the set of conjugacy classes of the fundamental

orbifold group πorb
1 (S).

The tagged arcs as described in [FST08] can be recovered from this description as follows:

• The set of arcs with both endpoints in M injects in the set 1. of Theorem1.9. Note that
the condition γ 6= γ−1 excludes the arcs cutting out a once punctured monogon (which
are also excluded in [FST08]).

• The set of tagged arcs with one endpoint in M and one endpoint in P injects in the set 2.
in Theorem 1.9. Indeed to each arc from M to P, one can associate the closed curve from
M to M surrounding the puncture as in the following picture. The taggings of the arc
corresponds here to Z2.

• ◦ • ◦

arc from M to P γ ∈ πorb
1 (S,M) with γ2 = 1
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• The set of tagged arcs with both endpoints in P injects in the set 5. in Theorem 1.9. To
each arc from P to P, one can associate a closed curve surrounding the two punctures as
follows:

◦ ◦

arc from P to P

◦ ◦

[γ] ∈ πorb,free
1 (S) with [γ] = [γ−1]

The four different taggings of such an arc correspond to (Z2)2. Note that the condition
γ2 6= 1 in the sets 4. and 5. excludes the curves that surround exactly one puncture.

It is however dangerous to try to translate the sets 1., 2. and 5. in terms of generalized
tagged arcs. The relation given by the orbifold fundamental group may have surprising
identifications. For example, if we consider a “generalized” tagged arc that would cut out
a once puncture Q monogon, with endpoint P in P (recall that these are not consider
as tagged arcs in [FST08]), then using the previous map, it is sent to a closed curve
surrounding twice the puncture P . But using the orbifold relation, it is the same as the
generalized tagged arc from Q to Q surrounding P .

◦ ◦P Q

generalized arc from P to P

◦◦ PQ

generalized arc from P to P

◦ ◦

[γ] ∈ πorb,free
1 (S) with [γ] = [γ−1]

=

◦◦

[γ] ∈ πorb,free
1 (S) with [γ] = [γ−1]

◦ ◦

=

=

Further directions

A natural continuation of this work would concern morphisms spaces, and Auslander-Reiten
quivers. The triangulated functors linking C∆ and C

∆̃
behave nicely with respect to irreductible

morphisms and Auslander-Reiten triangles. It should be then possible to try to describe dimen-
sion of morphisms spaces in terms of intersection numbers, and one should be able to deduce
the shape of the Auslander-Reiten quiver of C∆ from the one of C

∆̃
.

2 Derived categories of surface cut algebras

In this section, we regard the cluster category of a triangulated surface as a cluster category
associated with a τ2-finite algebra Λ. The derived category Db(Λ), as a graded analogue of the
cluster category C2(Λ), inherits a topological model from the one of the cluster category. The
idea is here to interpret the graded mutation (see Section 3.3 and Corollary 3.5) in term of the
topological model.

2.1 Surface cut algebras

The aim of this section is to give an answer to the following question:

Given a triangulated surface (S,M,P,∆), can we build a τ2-finite algebra Λ such that C2(Λ)
is equivalent to C∆ ?
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The construction of the QP associated to a global dimension ≤ 2 algebra Λ explained in
Theorem 2.4 leads to the following definitions.

Definition 2.1. An admissible cut on (Q,W ) is a map d : Q1 → {0, 1} such that W is homoge-
nous of degree 1 and such that any arrow of degree 1 belongs to a term of the potential.

Definition 2.2. Let ∆ be a triangulation of a marked surface (S,M,P) such that any puncture
has valency at most 3. Let d be an admissible cut of the QP (Q∆,W∆). The degree zero
subalgebra Λ(∆, d) :=

(
Jac(Q∆,W∆, d)

)
0
of the graded Jacobian algebra Jac(Q∆,W∆, d) is

called the surface cut algebra associated to ∆ and d.

In case of an unpunctured surface, the situation is particularly easy since an admissible cut is
the choice of one arrow in any triangle in the potential. It becomes easy to prove the following:

Proposition 2.3. [AG16] Let (S,M) be a marked surface without punctures, and ∆ a trian-
gulation. Then for any admissible cut d, the surface cut algebra Λ(∆, d) is τ2-finite algebra.
Moreover there is an equivalence of categories

C2(Λ) ' C(Q∆,W∆).

The situation is more complicated in the punctured case. First it is not clear that admissible
cuts always exists. Indeed the potential involves not only internal triangles, but also oriented
cycles around punctures. So one cannot choose randomly an arrow in each oriented triangle.
It is possible to construct triangulations for which no admissible cut exists [ALP20, Prop 6.9].
Moreover, even if such a cut does exist, the degree zero subalgebra of the corresponding graded
Jacobian algebra has not always global dimension ≤ 2. However we can prove the following:

Proposition 2.4. [ALP20] Let (S,M,P) be a marked surface with punctures. Then there exists
a triangulation ∆ and an admissible cut d such that the corresponding surface cut algebra Λ(∆, d)
is a τ2-finite algebra. In that case there is an equivalence of categories

C2(Λ) ' C(Q∆,W∆).

2.2 Derived equivalence and graded mutation

The aim is now to apply Corollary 3.5 to surface cut algebras of global dimension ≤ 2, in order to
get a topological criterion that determines when two surface cut algebras are derived equivalent.
The first thing to observe is the fact that all cluster-tilting objects in the cluster category C∆

are related by sequences of mutation. Therefore we obtain the following

Corollary 2.5. Let Λ1 := Λ(∆1, d1) and Λ2 := Λ(∆2, d2) be two surface cut algebras of global
dimension ≤ 2. Then the algebras Λ1 and Λ2 are derived equivalent if and only if one can pass
from (Q∆1 ,W∆1 , d1) to (Q∆2 ,W∆2 , d2) by a sequence of graded mutations.

The next step is to try to find a good topological invariant of this graded mutation. By
Corollary 1.4, we already know that the topological data of the marked surface is an invariant.
All the missing information should then be given by the degree maps. Therefore, a good invariant
should be given by d, but forgetting the triangulation.

It can be done as follows: Given a 1-homogenous degree map d : Q∆
1 → Z, one can construct

a well-defined map d : πfree
1 (S) → Z. Indeed, the quiver Q∆ is a deformation retract of the

surface S. The degree of a loop γ counts algebraically the degree of each arrow along γ.
Then we prove the following result which can be considered as the graded version of Corol-

lary 1.4.

Theorem 2.6. [AG16, Thm 3.12][ALP20, Thm 5.3] Let (S1,M1,P1,∆1) and (S2,M2,P2,∆2) be
two triangulated surfaces. Let Λ1 := Λ(∆1, d1) and Λ2 := Λ(∆2, d2) be two surface cut algebras
of global dimension ≤ 2. Then the following are equivalent:
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1. Λ1 and Λ2 are derived equivalent;

2. there exists a homeomorphism Φ : S1 → S2 preserving orientation, marked points, and
punctures such that the maps d2 ◦ Φ = d1 as maps πfree

1 (S1)→ Z.

One key ingredient in the proof of this result is the fact that the map d : πfree
1 (S) → Z is

invariant under graded mutation ([AG16, Lemma 2.14] and [ALP20, Lemma 3.13]). Moreover,
if two different gradings given on the same triangulation induce the same map πfree

1 (S)→ Z, one
shows that they are equivalent as gradings, using a CW-complex associated to the surface. It
follows from [AO14] that two equivalent gradings can be related by a sequence of graded flips.

The rest of the proof is a graded analogue of the proof of Corollary 1.4, so each step has a
graded analogue that has to be checked. For most of them, it is just a technical verification.

For instance, one has to check the following “commutativity” for ∆ any tagged triangulation
up to right graded equivalence:

(∆, d)
graded tagged triangulation

oo graded flip //

��

(∆′, d′) = (fi(∆), µLi (d))
graded tagged triangulation

��
(Q∆,W∆, d) oo

graded DWZ-mutation // (Q∆′ ,W∆′ , d′)

This step is easy to check in the case of an unpunctured surface, since the process of reduction
is quite natural in this case. It is much more involved in the case of punctures, especially when
the triangulations ∆ or ∆′ involve self-folded triangles (cf [ALP20, Thm 4.1]).

2.3 Geometric interpretation of the degree map

Link with the AG-invariant

One observation is the following: for each boundary component Bi of S, denote by mi the
number of marked points on this component, and denote by ci the closed curve surrounding the
boundary Bi, with the boundary Bi on the left.

• •

Then, any homeomorphism Φ as in theorem 2.6 should send a curve ci of S1 to a curve cj of
S2 with mi = mj . As a consequence we obtain the following

Corollary 2.7. The collection of pairs (d(ci),mi)i for a surface cut algebra of global dimension
≤ 2 is a derived invariant.

In fact, this invariant was already well-known for the case where the surface S has no
punctures. It is closely related with the AG-invariant introduced by Avella-Alaminos and Geiss
in [AAG08] for gentle algebras. It is interesting to see that this invariant was introduced by a
careful computation of some components of the Auslander-Reiten quiver. It can be understood
using fractional CY properties of certain objects in the derived category. Note that in the case
of annulus, the interpretation of the pair (m, d(c)) in terms of AR-quiver, and fractional CY-
properties has been also described in [AO13b].

A natural question arising here is as follows:

Let Λ be a surface cut algebra associated to a surface with punctures. Is there an interpre-
tation of the invariant (d(ci),mi) in term of fractional Calabi-Yau properties of some objects in
the derived category Db(Λ) ?
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H1-affine space

One first observation, is the fact that the map d : πfree
1 (S) → Z is a H1(S ∪ P,Z)-affine space.

More precisely we have the following

Lemma 2.8. [AG16, Cor 2.8][ALP20, Cor 3.14] Let (∆, d) and (∆′, d′) be two graded valency
≥ 2-triangulations of (S,M,P). Then the map d−d′ : πfree

1 (S)→ Z factors through a well-defined
map

[d− d′] : H1(S ∪ P,Z)→ Z.

The fact that it factors into a map H1(S,Z) → Z comes from the fact that on any internal
triangle, the sum of the degree of the arrows is constant equal to 1. The fact that, when there are
punctures it factors through H1(S ∪ P,Z)→ Z comes from the fact that any curve surrounding
a puncture has degree exactly 1.

As a consequence, to apply Theorem 2.6, it is sufficient to check the equality between d2 ◦Φ
and d1 on a set of closed curves which is a basis when seen in H1(S ∪ P,Z).

As a consequence, we obtain that the AG-invariant is a complete derived invariant in the
genus zero case.

Corollary 2.9. Let (S1,M1,P1,∆1) and (S2,M2,P2,∆2) be two triangulated surfaces of genus 0.
And let Λ1 := Λ(∆1, d1) and Λ2 := Λ(∆2, d2) be two surface cut algebras of global dimension ≤ 2.
Then the following are equivalent:

1. Λ1 and Λ2 are derived equivalent;

2. they have the same AG-invariant.

In particular, in the case where the surface is a disc, then the derived category is entirely
determined by the number of marked points, and the number of punctures. This was already
completely clear in the unpunctured case, but not so immediate in the case of surface cut algebras
coming from the punctured disc.

Degree map as a winding number

In fact, it is also possible to interpret these maps as winding numbers associated to certain line
fields. Assume now that the surface S is smooth oriented surface with punctures, and boundary
components. A line field on S is a section η : S → P(TS) of the projectivized tangent bundle
P(TS) −→ S. The set of homotopy classes of line fields LF(S) on S is known to also be a
H1(S,Z)-affine space (see [Chi72] for example). The map

LF(S)× LF(S) −→ H1(S,Z)

is given by (η, η′) 7→ wη −wη′ where wη is the winding number map with respect to η. We refer
to [APS, section 1] for more details.

To a triangulation (with smooth representative arcs) with an admissible cut, we can associate
a line field on S whose corresponding foliation is as follows on each triangle of ∆:

•

•

•

two boundary sides

•

•

•

one boundary side

•

•

•

no boundary side and d(α) = 1

α
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Then the winding number w coincides with the degree map d as a map πfree
1 (S) → Z.

Theorem 2.6 can be reformulated as follows

Theorem 2.10. [AG16, Thm 3.12][ALP20, Thm 5.3] Let (S1,M1,P1,∆1) and (S2,M2,P2,∆2)
be two triangulated surfaces. Let Λ1 := Λ(∆1, d1) and Λ2 := Λ(∆2, d2) be two surface cut
algebras of global dimension ≤ 2, and denote by η1 and η2 the corresponding line fields. Then
the following are equivalent:

1. Λ1 and Λ2 are derived equivalent;

2. there exists a diffeomorphism Φ : S1 → S2 preserving orientation, marked points, and
punctures such that the line fields η1 and Φ∗(η2) are homotopic.

Furthermore a careful use of Theorem 3.4 in [LP] giving invariant of mapping class group
orbits of homotopy classes of line field of a surface permits to deduce a complete derived invariant
in terms of winding numbers of closed curves on the surface S.

More precisely, for a marked surface (S,M,P), we denote by b the number of boundary
components, by g its genus, by m(i) the number of marked points on the boundary component
∂iS, and p the number of punctures. Let B = {c1, . . . , cb} be a set of simple closed curves
such that for any j, cj is homotopic to the boundary component ∂jS. Denote by Scomp the
compactified surface obtained from S by adding closed discs on each boundary component, and
filling the punctures. Let G = {α1, β1, . . . , αg, βg} be a set of closed simple curves whose image
in H1(Scomp) is a symplectic basis with respect to the intersection form.

α1

β1

α2

β2

c1

∂1S

c2

∂2S

Theorem 2.11. ([APS, Thm 8.5] for the unpunctured case) Let (S1,M1,P1,∆1) and (S2,M2,P2,∆2)
be two triangulated surfaces. And let Λ1 := Λ(∆1, d1) and Λ2 := Λ(∆2, d2) be two surface cut
algebras of global dimension ≤ 2.

Let B1 and G1 (resp. B2 and G2) be sets of simple closed curves on S1 (resp. S2) as above.
Then Λ1 and Λ2 are derived equivalent if and only if the following numbers coincide

1. g1 = g2, b1 = b2, ]M1 = ]M2, p1 = p2;

2. there exists a permutation σ ∈ Sb such that for any i = 1, . . . , b1 we have m1(σ(i)) = m2(i)
and d1(c1

σ(i)) = d2(c2
i );

3. and if the genus g = g1 = g2 is ≥ 1, one of the following holds:

(a) for g = 1, we have

gcd{d1(γ), d1(c) + 2, γ ∈ G1, c ∈ B1} = gcd{d2(γ), d2(c) + 2, γ ∈ G2, c ∈ B2}

(b) for g ≥ 2, one the following occurs

i. there exist γ in G1 ∪ B1 and γ′ in G2 ∪ B2 such that d1(γ) and d2(γ′) are odd, or

ii. for any γ in G1 ∪ B1, for any γ′ in G2 ∪ B2, the numbers d1(γ) and d2(γ′) are
even and there exists c ∈ B1 with d1(c) = 0 mod 4, or
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iii. for any γ in G1 ∪ B1 and γ′ ∈ G2 ∪ B2, the numbers d1(γ) and d2(γ′) are even,
for any c ∈ B1 we have d1(c) = 2 mod 4 and

g∑
i=1

1

2
(d1(α1

i ) + 1)(d2(β1
i ) + 1) =

g∑
i=1

1

2
(d2(α2

i ) + 1)(d2(β2
i ) + 1) mod 2.

Note that this result is stated in [APS] in the case of an unpunctured surface, which is
completely devoted to gentle algebras. However it is still true for punctured surfaces, the proof
is exactly the same. The number computed in 3. (b) iii is the Arf invariant of some quadratic
form on H1(Scomp,Z2).

In the case of the unpunctured torus with one boundary component, the invariant of 3. (a)
was already introduced in [Ami16]. I did not notice the link of the degree map with line fields
and winding numbers at that time, so the method used to prove this invariant was down to
earth, but self-contained.

2.4 Description of the category

The unpunctured case

Given a surface cut algebra Λ, we have the following commutative diagram

Db(Λ)/UΛ[1]
∼ //

π

��

modZ Π

forget

��
C2(Λ)/ addπ(Λ)[1]

∼ // mod Π

,

where the 3-preprojective algebra Π = Π3(Λ) is isomorphic to the graded Jacobian Jac(∆, d).
Therefore indecomposable objects of Db(Λ) coincide with graded modules over the graded Ja-
cobian algebra Jac(∆, d) together with one copy of the projectives.

In the unpunctured case, the algebra Jac(∆) is gentle, and so is the covering of the graded
algebra Jac(∆, d). Hence by [BR87], one has a description of the objects of the covering in
terms of strings and bands. Copying what is done in [ABCP10] and [BZ11], we can deduce
a description of the objects of Db(Λ) in terms of curves on the surface. Under the forgetful
functor, any string in modZ Π gives a string in mod Π, and any preimage of a string in mod Π
gives a Z-family of strings in modZ Π. For the bands, the situation is a bit different, since not
all bands in mod Π are gradable. The only gradable bands are the one corresponding of a curve
of degree zero. Finally we obtain the following classification:

Theorem 2.12. Let (S,M,∆) be a triangulated surface without punctures, and Λ = Λ(∆, d) be
a surface cut algebra. Then the isomorphism classes of indecomposable objects of Db(Λ) are in
bijection with

• {{γ, γ−1}, γ ∈ π1(S,M), γ 6= 1M ,M ∈M} × Z;

• {([γ], λ) ∈ πfree
1 (S)× k∗ with d(γ) = 0}�∼ × Z, where the equivalence relation ∼ is given

by ([γ], λ) ∼ ([γ−1], λ−1).

Note that here the description of objects is very close to the one in [OPS] for derived cat-
egories of general gentle algebras (see Theorem 1.8 in Chapter 5). However the bijection is
completely different. Indeed if X is the string object corresponding to ({γ, γ−1}, n), then the
object corresponding to ({γ, γ−1}, n + 1) is S2(X), while in [OPS] it corresponds to X[1]. The
bijection given in [OPS] is much more useful, since it is very explicit, it is easy to write the
complex from the data of the graded curve.

From this classification of objects we can also deduce the following
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Proposition 2.13. Let Λ be a surface cut algebra. Then the functor π : Db(Λ) −→ C2(Λ) is
dense if and only if Λ is piecewise hereditary.

Proof. From the description above, we deduce that the functor π is dense if and only if any
closed curve on the surface has degree 0. It is clearly true for the case of the disc. For the
annulus, it is true if and only if the generator of π1(S) has degree zero, which is exactly the case
where Λ is derived equivalent to a hereditary algebra of type Ãn. Finally if the surface is not a
disc or an annulus, we can use the formula (cf [AG16, Prop 2.9])∑

i

d(∂iS) = 4g − 4 + 2b > 0

Hence there exists a boundary component such that the curve ∂iS has non zero degree. This
gives us immediately a band object in C∆ which is not in the image of π.

The annulus case

In order to get information on the derived category Db(Λ), one can also use results in Section
3.4 in Chapter 3. The situation is particulary nice in the annulus case. Let Λ be a surface cut
algebra associated to an annulus with m1 and m2 marked points on each boundary components.
Denote by w := d(c1) the degree of c1. Then using the results in [AO14] (see subsection 3.4 in
Chapter 3), one can show that we have

Db(Λ) ' D
b(modZH)�S2(1),

where H is given by the following graded quiver

1

2 3 m1

m1 + 1

m1 + 2m1 +m2

0

0 0 0

w

0

00

0

When w = 0, the category Db(Λ) is equivalent to Db(kÃn), so is well-known. For w 6= 0, we
obtain that the covering of the graded algebra (H, d) is of type A∞. By a careful description of
the autoequivalences (1) and S2 of the derived category Db(modZH) we obtain the following

Proposition 2.14. [AO13b, Cor 5.5] Let Λ a surface cut algebra associated to an annulus, with
w 6= 0. Then the AR quiver of Db(Λ) contains exactly 3|w| connected components, |w| of type
ZA∞∞ and 2|w| of type ZA∞.

2.5 Further directions

Description of Db(Λ) in the punctured case

A natural question arising here is the generalization of Theorem 2.12 in the punctured case
using the description of the indecomposable objects in the cluster category in Theorem 1.9.
This is however not an easy corollary of these two results, in particular because the Jacobian
algebra used in Theorem 1.9 comes from a triangulation ∆ with self-folded triangles while a
surface cut algebra as defined in [ALP20] come from a triangulation ∆′ of valency ≥ 3. Given
a curve on S, the way to associate an object in C2(Λ) is not direct at all. One should first lift
the curve in S̃, then associate an object in C

∆̃
, that we send to an object in C∆. One should

then apply a sequence of flips/mutation to pass from ∆ to ∆′ in order to obtain an object in
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mod Π3(Λ). Therefore the first step to answer this question would be to find a “shortcut” for
this procedure. Furthermore, one should also understand the gradable objects in mod Π3(Λ),
one could for instance use Proposition 2.2 and results in [AO13b].

Auslander-Reiten quiver of Db(Λ)

Another natural question could be to try to generalize the strategy used for the annulus case to
deduce properties for the derived category of a surface cut algebra for a surface more complicated
than an annulus. Given a surface cut algebra Λ, if we can write an equivalence between Db(Λ)
and the triangulated hull of an orbit category Db(modZA)/S2(1) where A is an algebra whose
derived category is well understood, then one could obtain information for the category Db(Λ).
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Chapter 5

Derived categories of gentle and
skew-gentle algebras

As we have seen in the previous chapter, the cluster category and the derived category of a
surface cut algebra have topological interpretations. One can understand the objects in terms
of (graded) curves, certain dimensions of spaces of morphisms in term of intersection numbers,
etc... Moreover the combinatorics of flips and graded flips permit to relate these algebras with
each other. In the case where the surface does not have any punctures, these algebras belong to
a well-known and well-studied class called gentle algebras.

Using the same kind of ideas, Opper, Plamondon and Schroll described the derived category
of a gentle algebra in geometric terms in [OPS] : they translate the combinatorial description
given in [BM03] in topological terms. Thereby they obtain results very similar to the ones of
the previous section. In particular the objects can be interpreted in terms of graded curves, and
the morphisms spaces in terms of intersections of curves. It becomes so very natural to try to
generalize Theorem 2.10 for gentle algebras.

In the first section of this chapter, we concentrate on the derived category of gentle algebras.
We first recall results in [OPS]. We further explain how the degree can be interpreted as the
data of a line field on the surface. Finally we expose the main result of the paper [APS] which
is completely similar to Theorem 2.10 of Chapter 4. An interesting point is the fact that the
proof is completely different: it does not use a concept analogue to ‘flip’ or ‘mutation’.

In a second part, we expose the results in [AB]. This combines the ideas of [AP] together
with [APS] : we develop a topological model for the derived category of skew-gentle algebra seen
as skew-group algebras of a gentle algebra. This permits us to obtain a topological interpretation
of different kind of derived equivalence between skew-gentle algebras.

1 Gentle algebras

Definition 1.1. A gentle pair is a pair (Q, I) given by a quiver Q and a subset I of paths of
length 2 in Q such that

• for each i ∈ Q0, there are at most two arrows with source i, and at most two arrows with
target i;

• for each arrow α : i → j in Q1, there exists at most one arrow β with target i such that
βα ∈ I and at most one arrow β′ with target i such that β′α /∈ I;

• for each arrow α : i → j in Q1, there exists at most one arrow β with source j such that
αβ ∈ I and at most one arrow β′ with source j such that αβ′ /∈ I.

• the algebra A(Q, I) := kQ/I is finite dimensional.

An algebra is gentle if it admits a presentation A = kQ/I where (Q, I) is a gentle pair.

71
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1.1 Topological model

Definition

A marked surface (S,M•, P•) is the data of

• an orientable closed smooth surface S with non-empty boundary, that is a compact closed
smooth surface from which some open discs are removed;

• a finite set of marked points M• on the boundary, such that there is at least one marked
point on each boundary component;

• a finite set P• of marked points in the interior of S.

The points in M• and P• are called marked points. A curve on the boundary of S intersecting
marked points only on its endpoints is called a boundary segment.

An •-arc on (S,M•, P•) is a curve γ : [0, 1] → S such that γ|(0,1) is injective and γ(0) and
γ(1) are marked points1. Each arc is considered up to isotopy (fixing endpoints).

Definition 1.2. A •-dissection is a collection D = {γ1, . . . , γs} of •-arcs cutting S into polygons
with exactly one side being a boundary segment.

Two dissected surfaces (S,M•, P•, D) and (S ′,M ′•, P ′•, D′) are called diffeomorphic if there
exists an orientation preserving diffeomorphism Φ : S → S ′ such that Φ(M•) = M ′•, Φ(P•) = P ′•,
and Φ(D) = D′.

Following [OPS], one can associate to the dissection D a quiver Q, together with a subset of
quadratic monomial relations I, such that the algebra A(D) := A(Q, I) is a gentle algebra.

• The vertices of Q are in bijection with {i •-arc}

• Given i and j •-arcs in D, there is one arrow i jα in Q whenever the arcs i and
j have a common endpoint • and when i is immediately followed by the arc j in the
counterclockwise order around •;

• If i, j, and k have a common endpoint, and are consecutive arcs following the counterclock-
wise order around •, then we have βα ∈ I, where α (resp. β) is the arrow corresponding
to to the angle j → i (resp. k → j).

Example 1.3. Below is an example of a dissected surface together with the associated
quiver Q and relations I (marked with dots).

3

2

4

5

7

6

1

Proposition 1.4. [OPS, BC] The assignment D 7→ A(D) induces a bijection{
(S,M, P,D)

dissected surface

}
/ diffeo

←→
{

A(Q, I)
gentle algebra

}
/iso

This bijection was also described in [BC], where the authors use the geometrical model in
order to get a description of indecomposable objects in the module category.

1Note that here we allow arcs homotopic to a boundary segment
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Link with the model of surface cut algebras

From this proposition it is not very difficult to give a precise link with the topological model of
surface cut algebras developped in the previous chapter.

Proposition 1.5. Let Λ be a gentle algebra. Then Λ is a surface cut algebra associated with an
unpunctured surface if and only if Λ has global dimension ≤ 2 and is τ2-finite.

Proof. One direction is proved in Proposition 2.4. Let Λ be a τ2-finite gentle algebra with global
dimension ≤ 2. Denote by (S,M•,P•, D) the corresponding dissection. We first construct the
dual dissection: we fix a finite set M◦ of green points on the boundary of S such that each
boundary segment contains exactly one green point. Then, we define a collection of arcs with
endpoints in M◦ such that each ◦-arc intersects exactly one •-arc and vice versa. This dual
dissection is uniquely defined up to isotopy of ◦-arcs fixing the endpoints. This dual dissection
cuts out the surface into polygons which either have exactly one side being a boundary ◦-segment,
or have exactly one • in the interior.

Since Λ has global dimension ≤ 2, then there is no subpath of length 3 in Q

i j k `α β γ

with βα and γβ in I. In terms of the dissected surface, this is equivalent to the fact that the
◦-dissection cuts out the surface into n-gons with exactly one side being a boundary segment,
with n = 2, 3 or 4. From this observation, we can do the following construction:

• for each ◦-bigon, we keep the two ◦-points as marked points, and add a marked point in
between on the boundary segment, and keep the ◦-arc;

• for each ◦-triangle, we keep the three ◦-point as marked points, and the corresponding two
◦-arcs;

• and for each ◦-square, we identify the boundary segment into a marked point, and we
declare the corresponding angle of degree 1.

◦ ◦•
◦-bigon

◦ ◦

◦

•
◦-triangle

◦ ◦

◦ ◦

•
◦-square

• •• • •

• • •

•

1

We obtain this way a triangulated surface together with a degree map of degree 1 on each
internal triangle. The question is now to check that the obtained marked surface has non-empty
boundary, which is not completely clear since the process may identify boundary segment into
a point.

If for each boundary component, there is at least one ◦-boundary segment which belongs to
a ◦-bigon, or to a ◦-triangle, then each marked point of the new surface lies on the boundary,
so we obtain a unpunctured triangulated surface with an admissible cut. So the algebra Λ is a
surface cut algebra of an unpunctured surface.
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Now assume that there is one boundary component such that each boundary ◦-segment
belongs to a ◦-quadrilateral. Then one boundary component becomes a puncture in the previous
construction. We want to show that the corresponding algebra is not τ2-finite. First note that
to obtain the QP associated to Π3(Λ), one associates an arrow for each angle of degree 1 for each
internal triangle, and the potential is given by the sum of 3-cycles associated to each internal
triangle. (It is therefore different from the Labardini-Fragoso potential.) However, the puncture
created by the previous construction yields a cycle in the quiver of strictly positive degree, which
is not zero, and whose powers never vanish. Hence, the algebra Π3(Λ) is infinite dimensional.

Example 1.6. Let Λ be the gentle algebra associated with the following dissected surface:

•

•

•

◦ ◦
◦

•• •

•

1

Then Λ is given by the following quiver .

.

. The preprojective algebra Π3(Λ) has
a 2-cycle of degree 1 whose powers never vanish. Therefore Λ is not τ2-finite.

Gradings and line fields

We fix a finite set of green points M◦ on the boundary of S such that each boundary segment
contains exactly one point in M◦.

We define a line field ηD on S \ (∂S ∪ P•), that is, a section of the projectivized tangent
bundle P(TS)→ S. The line field is tangent along each arc of D and is defined up to homotopy
in each polygon cut out by D, by the following foliation:

Definition 1.7. Let γ : (0, 1)→ S be non contractible smooth curve. Assume that γ does not
contain any contractible loops, that γ intersects transversally the dissection D, and that γ does
not intersect an arc twice in succession. A grading on γ is a map n : γ(0, 1)∩D → Z satisfying:

n(γ(ti+1)) = n(γ(ti)) + wη(γ|[ti,ti+1]
),

if γ(ti) and γ(ti+1) are two consecutive intersections of γ with D. More concretely, on [ti, ti+1],
the curve γ intersects one polygon cut out by D, and we have

n(γ(ti+1)) = n(γ(ti)) + 1

if the boundary segment of the polygon is on the left of the curve γ|[ti,ti+1]
, and

n(γ(ti+1)) = n(γ(ti)) + 1

if the boundary segment lies on the right.
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If (γ,n) and (γ′,n′) are two graded curves, such that γ is regular homotopic to γ′, and such
that n(γ(t1)) = n′(γ′(t′1)), then their grading coincide, in the sense that for any i we have

γ(ti), γ(t′i) lie on the same arc of D and n(γ(ti)) = n′(γ′(t′i)).

A graded ◦-curve is a pair (γ,n) where γ is a non contractible curve with endpoints in
M◦, considered up to homotopy fixing endpoints, and where n is a grading on it. Denote by
πgr

1 (S,M◦) the set of graded ◦-curves.

Since we have

n(γ−1(1− ti)) = n(γ(ti))

= n(γ(ti+1))− wη(γ|[ti,ti+1]
)

= n(γ−1(1− ti+1))) + wη(γ
−1
|[1−ti+1,1−ti]

)

the equivalence relation γ ∼ γ−1 on π1(S,M◦) induces an equivalence relation (γ,n) ∼ (γ−1,n)
on πgr

1 (S,M◦).
Let γ : [0, 1] → S be a non contractible closed curve on S that intersects transversally the

dissection D. One easily sees that it admits a grading if and only if its winding number with
respect to the line field η is 0. Denote by πgr,free

1 (S) the set of non contractible graded closed
curves, up to free homotopy.

One of the main result in [OPS] is the following

Theorem 1.8. [OPS] Let Λ be a gentle algebra and (S,M•, P•, D) the associated dissected
surface. Then there is a bijection between indecomposable objects of Kb(proj Λ) and the following
sets

1. πgr
1 (S,M◦) ∼ where (γ,n) ∼ (γ−1,n);

2. πgr,free
1 (S)× k∗/ ∼, where ∼ is defined as (γ,n, λ) ∼ (γ−1,n, λ−1).

Since a grading of a curve is entirely determined by the choice of the first number n(γ(t0)),
one recovers a result really similar to Theorem 2.12. However, here the description is much more
explicit: if the graded curve (γ,n) intersects the arc i, with corresponding degree equal to q, then
the corresponding complex of projectives A-modules P(γ,n) has the projective Pi in homological
position q. Moreover, changing the degree by one is equivalent to shifting the complex in the
derived category.

For example, to each arc i of the •-dissection, there exists a unique (up to isotopy) ◦-arc γi
that intersects exactly once the arc i. Then the object P(γi,0) is the stalk complex Pi concentrated
in degree 0. Hence the object corresponding to the dual dissection with degree 0, is the stalk
complex concentrated in degree 0.

Note also that in case where Λ has infinite global dimension, there are other objects in Db(Λ)
which are not in Kb(proj Λ). These can also be interpreted in terms of graded curves (see [OPS]).

1.2 Derived invariant

Geometric interpretation of derived equivalence

With this geometric model we manage to describe explicitely all tilting objects in the derived
category of a gentle algebra.

More precisely we prove the following

Theorem 1.9. [APS] Let (S,M•, P•, D) be a dissected surface and A = A(D) be the corre-
sponding gentle algebra.
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1. If T is a basic tilting object in Db(A), then there exists a collection of graded arcs {(γi,ni), i ∈
I} such that

(a) T '
⊕

i∈I P(γi,ni);

(b) {γi, i ∈ I} is the dual of a •-dissection denoted by DT ;

(c) we have an isomorphism of algebras EndDb(A)(T ) ' A(DT );

(d) for any δ ∈ π1(S), we have wD(δ) = wDT
(δ).

2. Let {γi, i ∈ I} be the dual of a •-dissection D′. If for any δ ∈ π1(S) we have wD(δ) =
wD′(δ), then there exists a grading ni for any i ∈ I such that

⊕
i∈I P(γi,ni) is a tilting

object in Db(A).

Here point (d) comes from the fact that if γ and γ′ are two ◦-arcs that intersect on the
boundary, then there is no extension between the objects P(γ,n) and P(γ′,n′) if and only if their
degree coincide on the first •-arc intersected on the boundary where they meet.

◦

n(t1)

n′(t′1) = n(t1)

Therefore here we only use the Ext-vanishing property for tilting object. We do not use any
analogue of mutation (like silting mutation for instance).

This permits to prove a result which is completely similar to Theorem 2.10 in Chapter 4.
Note that this result has been proved independently by Opper in [Opp].

Corollary 1.10. [APS, Thm 4.1][Opp, Thm B] Let A and A′ be gentle algebras associated
respectively to dissected surfaces (S,M•, P•, D) and (S ′,M ′•, P ′•, D′). Denote by η (resp. η′) the
line field defined from the dissection D (resp. D′). Then the following are equivalent:

1. the algebras A and A′ are derived equivalent;

2. there exists a diffeomorphism Φ : S → S ′ preserving orientation and marked points such
that Φ∗(η) and η′ are homotopic.

Numerical derived invariant

We can then again use the numerical description of the mapping class group orbit of homotopy
classes of line fields to deduce a complete numerical derived invariant.

For a surface S of genus g with b boundary components and p punctures, denote by B =
{c1, . . . , cb+p} a set of simple closed curves such that for j = 1, . . . b, the curve cj is homo-
topic to the boundary component ∂jS (being on the left of the curve), and so that cb+k is
homotopic to a circle around the k-th puncture for k = 1, . . . , p. Let denote S the closed sur-
face with empty boundary obtained by adding closed discs to each bounday component. Let
G = {α1, β1, . . . , αg, βg}be a set of closed simple curves, such that their image in H1(S,Z) is a
symplectic basis (with respect to the intersection form).

α1

β1

α2

β2

c1

∂1Σ

c2

∂2Σ

c3c4
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Theorem 1.11. [APS, Thm 6.4]
Let A and A′ be two gentle algebras with associated dissected surfaces (S,M•, P•, D) and

(S′,M•
′, P•

′, D′) respectively. Let G = {α1, . . . , βg}, B = {c1, . . . , cb+p} (resp. G′ = {α′1, . . . , β′g′},
B′ = {c′1, . . . , c′b′+p′} ) subsets of simple closed curves on S \ P• (resp. S′ \ P ′•) as before. Then
the algebras A and A′ are derived equivalent if and only if the following numbers coincide:

1. g = g′, b = b′, ]M• = ]M ′•, ]P• = ]P ′•;

2. there exists a permutation σ ∈ Sb+p such that the number of marked points on ∂σiS and
∂iS ′ are the same and such that wη(cσ(j)) = wη′(c

′
j), for any j = 1, . . . , b;

3. for g = g′ ≥ 1 one of the following holds

(a) for g = g′ = 1, we have

gcd{wη(γ), wη(c) + 2, γ ∈ G, c ∈ B} = gcd{wη′(γ′), wη′(c′) + 2, γ′ ∈ G′, c′ ∈ B′}

(b) for g = g′ ≥ 2 one the following occurs:

i. there exist γ ∈ G ∪ B and γ′ ∈ G′ ∪ B′ such that wη(γ) and wη′(γ
′) are odd, or

ii. for any γ ∈ G ∪ B and γ′ ∈ G′ ∪ B′, the numbers wη(γ) and wη′(γ
′) are even and

there exists an i with wη′(ci) = 0 mod 4, or

iii. for any γ ∈ G ∪B and γ′ ∈ G′ ∪B′, the numbers wη(γ) and wη′(γ
′) are even and,

for any i = 1, . . . , b+ p we have wη(ci) = 2 mod 4 and

g∑
i=1

(
1

2
wη(αi) + 1)(

1

2
wη(βi) + 1) =

g∑
i=1

(
1

2
wη′(α

′
i) + 1)(

1

2
wη′(β

′
i) + 1) mod 2

1.3 Further direction

Recollements

The aim is here to interpret certain recollements of derived categories of gentle algebras in a
topological way. This is a work in progress with Pierre-Guy Plamondon.

Let (S,M•) be a marked surface equipped with a •-dissection D, and A be the corresponding
gentle algebra. To a sub-collection of arcs δ of D, on can associate

• a sub-collection δ∗ of the ◦-dissection dual to D ;

• an idempotent e of the algebra A.

The idea is here to try to interpret geometrically the following recollement

Db(A)/thick(eA) // Db(A) //oo
oo Db(eAe)oo

oo

First, using results due to Kalck and Yang [KY16, Theorem 1.3], one can re-interpret it as
follows

Db(Ã/ÃeÃ) // Db(A) //oo
oo Db(eAe)oo

oo

where Ã is a cofibrant replacement of the algebra A, that is a path algebra over a DG quiver
negatively graded whose H0 is isomorphic to A. The aim would be to show that the category
Db(eAe) is obtained from the surface S by contracting all the arcs of D \ δ, and to show that
the category Db(Ã/ÃeÃ) is obtained from S by contracting all the arcs in δ∗ (getting then a
graded gentle algebra seen as a DG algebra with zero differential).

The idea would be to interpret these classical recollements in representation theory as ”rec-
ollements” of surfaces.
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Graded gentle algebras

This project is a work in progress with T. Brüstle, P.G. Plamondon and S. Schroll.

To a marked surface (S,M•) (called a surface with stops in [HKK]) equipped with a line
field, one can associate a A∞-category whose objects are given by graded arcs. This category
is the partially wrapped Fukaya category. A collection of graded arcs A forming a dissection
give then rise to a subcategory of this A∞-category, on which it is possible to compute higher
multiplication using Floer homology. This is the strategy used by Haiden, Kontsevich and
Katzarkov [HKK] to show that such a collection gives rise to a formal object (that is an object
whose endomorphism DG algebra admits a minimal model without higher multiplication) which
also is generator. One thus obtains equivalences between the triangulated categories

D(End∗(A)) ' D(A) ' H0(Tw(A)) ' H0(TwFuk(S,M•, η)).

Since the object A is formal, the algebra End∗(A) is quasi-isomorphic to a DG algebra with zero
differential. It is moreover a gentle algebra.

The aim here is to attack the converse. Given an object T in the derived category of a
gentle algebra (graded or not) that is a formal generator, is T given by a collection of graded
arcs corresponding to a dissection ? We know the answer when the algebra is ungraded, and
when the formal generator is a tilting object. In this situation, tilting theory provides a very
powerful and efficient tool to compute derived equivalences, whereas the general case one needs
to use the very technical A∞-machinery. We have started to try to generalize this result for
any formal generator first in the case where the gentle algebra is ungraded. Indeed in this case,
we have a complete description of the indecomposable objects in the derived category. (This
description probably generalizes in the graded case, but for the moment the argument is not
completely understood.) One needs then to show that if T is not given by a dissection, then it
is not a formal generator. Showing non generation is in general not really difficult. But showing
non formality for an A∞-algebra B is in general a very challenging task. Indeed, one needs to
show that any minimal model on H∗(B) does not admit any higher multiplication, and already
computing one minimal model may be really technical. One strategy in our partial results uses
higher Massey product in the cohomology of B, and seems rather efficient.

Silting mutation

Now that we have a description of silting objects in the derived category of a gentle algebra,
we can try to understand silting mutation in terms of dissections and line fields. This has been
done in [CS] using the description of morphisms between indecomposable in the derived category.
Now a natural question is the following

Is the silting graph connected for gentle algebras ?

Moreover, silting mutation has been described combinatorially in terms of graded quiver by
Oppermann in [Opp17]. This could be useful to determine that the DG-endomorphism algebra
of a silting object in Db(Λ) is formal, that is is isomorphic to its graded homology ring.

Questions about the numerical invariant

One natural question concerning Theorem 1.11 is the following: given a gentle quiver (Q, I)
can we compute algorithmically its numerical invariant ? The topological data of the surface
are easy to computed from (Q, I). Moreover, any closed curve on the surface can be seen as
a certain walk in the quiver, and then computing its winding number is also easy. The walks
associated to the curves ci are easy to describe (and where already describe in [AAG08] through
the AG-invariant). But an algorithm computing the walks associated to curves in G is much
more involved to compute. This would be very useful to have an algorithm to get these numbers,
it could be then possible to add it in the programm QPA for instance, or to the applet dedicated
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to gentle algebras [G]. This would be of great help for the community of representation of
quivers. The description of such an algorithm is a project with Francis Lazarus. Indeed similar
results have been described in the article [LPVV01].

Another question about these numerical invariants is about their algebraic interpretation. As
mentionned before the AG-invariant has an interpretation in terms of a fractional CY properties
of certain indecomposable objects. The other numerical invariants computed in Theorem 1.11
3. should also have an interpretation in term of the category. But the answer is here quite
mysterious.

One way to handle this question could be the study of the orbit category Db(Λ)/[p] for any
positive integer p and its triangulated hull. One could expect that, in analogy with the cluster
category setup, the “band objects” of the triangulated hull of Db(Λ)/[1] would be in bijection
with πfree

1 (S)× k∗/ ∼. The gcd appearing in 3. (a) could be the smallest integer p such that the
functor

(Db(Λ)/[p])∆�[1] −→ (Db(Λ)/[1])∆

is dense. The interpretation of the Arf invariant appearing in 3.(b) (iii), is for now completely
mysterious.

2 Skew-gentle algebras

In the paper [AB] we provide a topological model for the derived category of skew-gentle algebras
over a base field of characteristic 6= 2. The idea is to use the structure of skew-group algebra of
the skew-gentle algebras and to use Opper-Plamondon-Schroll model together with a Z2-action
very similar to the one described in [AP] (see section 1.3 of Chapter 4). This permits us to find
a geometric interpretation of derived equivalence between skew-gentle algebras.

Definition 2.1. A skew-gentle triple (Q, I, Sp) is the data of a quiver Q, a subset I of paths of
length two in Q, and a subset Sp of loops in Q (called ‘special loops) such that (Q, Iq{e2, e ∈ Sp)
is a gentle pair. In this case, the algebra Ā(Q, I, Sp) := kQ/〈I q {e2 − e, e ∈ Sp〉, is called a
skew-gentle algebra.

Every gentle algebra is skew-gentle, and the topological model for skew-gentle algebra is a
generalisation of the topological model for gentle algebras.

2.1 Skew-gentle algebras and orbifolds

Definition 2.2. A Z2-dissected surface (S,M•, P•, D, σ) is the data of:

• a dissected surface (S,M•, P•, D) as in Definition 1.2.

• an orientation preserving diffeomorphism σ : S → S of order 2 that preserves globally
marked points and the dissection D and such that σ has finitely many fixed points which
are all in S \ P•.

Following Proposition 1.4, one can easily deduce from a Z2-dissected surface, a gentle algebra
together with an action of Z2 by automorphisms.

Moreover, from a Z2-dissected surface, one can do the quotient S̄ = S/σ which has a structure
of orbifold, where orbifold points Xx correspond to fixed points of σ. The image D̄ := π(D) of
D under the projection π : S → S/σ is a •-dissection of (S̄ \X, M̄•, P̄• ∪Xx), where each x in
X is the endpoint of exactly one arc. We call such a dissection a x-dissection.

We show the following in [AB].

Proposition 2.3. Let (S,M•, P•, D, σ) be a Z2-dissected surface, and A the corresponding gentle
algebra.
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1. the skew-group algebra AZ2 is Morita equivalent to a skew-gentle algebra Ā;

2. every skew-gentle algebra arises in this way;

3. the assignment (S,M•, P•, D, σ) 7→ Ā is not injective. However, it induces a bijection
(except for a few exceptional cases)

(S,M•, P•, D, σ) −→
{

(S̄ \X, M̄•, P̄•, Xx, D̄), x-dissected orbifold
}
.

This can be summarized into the following diagram :

{Z2-dissected surfaces} //

��

{Z2-gentle algebras}

��
{x-dissected orbifold} oo 1:1 // {skew-gentle algebras}

.

•

•
•

•

•

•
•

•

1

2+

3+

4+

2−

3−

4−

Z2-dissected surface

x •

•

•

•

12

3 4

x-dissected orbifold

1

2+ 3+ 4+

2− 3− 4−

Z2-gentle algebra

1 2 3 4

skew-gentle algebra

(the special vertex is in red)

A way to see point (2) in Proposition 2.3 is to associate a x-dissected orbifold to Ā, and then
to “unfold” it in a very similar way as in [AP]. This process can be summarized in the following
picture

S

•

•

•

•

•◦

x x xX2X1 X3

γ1 γ2 γ3

S+

•

•

•

•

•◦ ◦ ◦ ◦

X2X1 X3x x x

P+
1

P+
2 = P−1

P+
3 = P−2

P−3

S̃

•

•

•

•

•

◦

◦ ◦

◦

x

x

xX1

X2

X3

•

•

•

•

•

◦

◦◦

◦

x

x

x

X2

X3

This procedure provides to any x-dissected surface a “prefered” Z2-dissected surface. This
prefered Z2-dissection has also an algebraic meaning : there is a natural Z2-action on any skew-
gentle algebra Ā which consists of the exchange of the idempotents e and 1− e for any special
loop e. With this Z2-action the algebra ĀZ2 is Morita equivalent to a gentle algebra, whose
Z2-dissected surface is the “prefered” one obtained by unfolding the orbifold.
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2.2 Indecomposable objects

Let Ā be a skew-gentle algebra and A be its corresponding Z2-gentle algebra (the prefered one
described above). The action of Z2 on A induces an action of Z2 on the derived category Db(A).
Following again Reiten and Riedtmann [RR85], we get functors

Db(A)→ Db(Ā) and Db(Ā)→ Db(A),

that induce a bijection between the isomorphism classes of indecomposable objects in Db(Ā)
and the set

{σ-invariant indec. in Db(A)} × Z2 ∪ {σ-orbits of non σ-invariant indec. in Db(A)},

exactly as in Theorem 1.8 of Chapter 4 for cluster categories.
The objects in the derived category of Db(A) are described using a line field ηD defined from

the dissection D as in 1.1. This line field ηD is clearly σ-invariant, thus it induces a line field
η̄D̄ on the surface S̄ \Xx.

We define the graded groupoid2 πgr
1 (S̄ \ Xx, M̄◦) as the set of graded curves (γ,n) with

endpoints in M̄◦ up to regular homotopy, and where the grading is defined with respect to D̄
and η̄D̄. We define then πorb,gr

1 (S̄, M̄◦) as the quotient of the graded groupoid πgr
1 (S̄ \Xx, M̄◦)

by the relation

x = x

We refer to the appendix of this memoir for a precise definition. We also denote by πorb,free,gr
1 (S̄)

the set of non contractible gradable closed loops up to free homotopy (see Appendix for precise

definitions). Note that as in the previous section, if ([γ],n) is in πorb,free,gr
1 (S̄) , then the winding

number wη̄(γ) vanishes.
Then one can show the following.

Theorem 2.4. Let Ā be a skew-gentle algebra, and let (S̄, M̄•, P̄•, Xx, η̄) the corresponding
graded orbifold surface. Then the indecomposable objects of Db(Ā) are in bijection with the
following sets:

1.
{

(γ,n) ∈ πorb,gr
1 (S̄, M̄◦) | γ2 6= 0

}
/ ∼ where (γ,n) ∼ (γ−1,n);

2.
{

(γ,n, ε) ∈ πorb,gr
1 (S̄, M̄◦)× {±1} | γ = γ−1

}
;

3.
{

([γ],n, λ) ∈ πorb,free,gr
1 (S̄)× k∗ | [γ] 6= [γ−1]

}
/ ∼ where ([γ],n, λ) ∼ ([γ−1],n, λ−1);

4.
{

([γ],n, λ) ∈ πorb,free,gr
1 (S̄)× k∗ \ {±1} | [γ] = [γ−1], γ2 6= 0

}
/ ∼;

5.
{

([γ],n, ε, ε′) ∈ πorb,free,gr
1 (S̄)× {±1}2 | [γ] = [γ−1], γ2 6= 0

}
.

This result is proved in the appendix of this memoir. The method is very similar to the one
used in [AP].

Note that a similar result has also been shown in [LSV]. Their proof is however completely
different : it is based on the combinatorial description of the indecomposable objects of the
derived category of a skew-gentle algebra in [BMM03], via [CB89].

2Note that it is not clear that the graded groupoid has a structure of groupoid (at least we don’t prove it
here), so the name is maybe not very well-chosen.
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2.3 Derived equivalence

General results on skew-group algebras

We are interested in finding derived invariants for the skew-gentle algebras in topological terms.
In order to do that, we need to investigate more generally the derived equivalences between
algebras with a G-action, where G is a finite abelian group whose cardinal is invertible in k, and
the derived equivalence between the corresponding skew-group algebras.

We define the notion of G-invariant object, and noticing that the endomorphism algebra of
a G-invariant object has a natural G-action, we set the following

Definition 2.5. Let A and A′ be algebras with G-action. Then A and A′ are G-derived equiv-
alent if and only if there exists a G-invariant tilting object T ∈ Db(A) together with an isomor-
phism EndDb(A)(T ) ' A′ commuting with the action of G.

Given a G-algebra A, one can define a Ĝ-action on the algebra AG by χ(a⊗ g) = χ(g)a⊗ g,
where Ĝ is the group Hom(G, k∗).

Theorem 2.6. [AB, Theorems 2.10 and 2.13 ]

1. Let A be a G-algebra. Then there is a bijection

{G-tilting subcategories of Db(A)} ↔ {Ĝ-tilting subcategories of Db(AG)}.

2. If moreover A′ is a G-algebra, such that A and A′ are G-derived equivalent, then AG and
A′G are Ĝ-derived equivalent.

Applying this to the setup of skew-gentle algebras, we manage to prove the following

Theorem 2.7. [AB, Theorem 5.6] Let k be a field of characteristic 6= 2. Let Ā and Ā′ be
two skew-gentle algebras together with their natural Z2-action. Denote by (S,M•, P•, σ,D) and
(S ′,M ′•, P ′•, σ′, D′) their corresponding Z2-dissected surfaces, and A and A′ be the corresponding
Z2-gentle algebras. Then the following are equivalent

1. Ā and Ā′ are Z2-derived equivalent;

2. A and A′ are Z2-derived equivalent;

3. there exists an orientation preserving diffeomorphism Φ : S → S ′ sending marked points
to marked points, such that Φ ◦ σ = σ′ ◦ Φ, and such that the line fields ηD and Φ∗(ηD′)
are homotopic.

We then investigate the case where the skew-group algebras are derived equivalent, the
derived equivalence given by a Z2-invariant tilting object T , but such that the isomorphism
EndDb(Ā)(T ) ' Ā′ does not necessarily commutes with the action of Z2. In that case, we can
still use 1. of Theorem 2.6 and interpret the Z2-tilting objects in the derived category of a
G-gentle algebra, as the dual of a σ-invariant dissection. We obtain the following

Theorem 2.8. [AB, Thm 5.9] Let Ā and Ā′ be skew-gentle algebras with their natural Z2-action.
Denote by (S̄, M̄•, P̄•, Xx, D̄) and (S̄ ′, M̄ ′•, P̄ ′•, X ′x, D̄′) their associated x-dissected orbifolds. Then
the following are equivalent:

1. the algebras Ā and Ā′ are derived equivalent via a Z2-tilting object;

2. there exists an orientation preserving diffeomorphism Φ̄ : S̄ → S̄ ′ sending marked points
to marked points, and orbifold points to orbifold points such that the line fields Φ̄∗(ηD̄′)
and ηD̄ are homotopic.
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Once again, one can use the numerical description of the mapping class group orbits of
homotopy classes of line fields to deduce a numerical derived invariant.

For an orbifold (S̄, Xx) with x = |Xx| orbifold points, such that S̄ \ X is a surface of
genus g, with b boundary components, p + x punctures, we denote by B = {c1, . . . , cb+p} and
G = {α1, β1, . . . , αg, βg} sets of simple closed curves defined as before.

α1

β1

α2

β2

c1

∂1Σ

c2

∂2Σ

c3c4

x

x

Corollary 2.9. The derived equivalence via a Z2-tilting object class of a skew-gentle algebra Ā
associated to a graded orbifold (S̄, M̄•, P̄•, Xx, η̄) is given by the numbers:

• g, b, p, x;

• (wη̄(ci),mi), i = 1, . . . , b;

• wη̄(cj); j = b+ 1, . . . , b+ p;

• wη̄(γ), γ ∈ G.

Note that here the winding number of the line field of a curve surrounding an orbifold point
is always 1, so it is not needed in the theorem.

2.4 Further directions

These two results are both not completely satisfactory and lead to open related questions.

Numerical invariant

Using once again the numerical characterization of mapping class group orbits of homotopy
classes of line fields, one can deduce from Theorem 2.7 a numerical Z2-derived invariant of skew-
gentle algebras. But it is not clear that this numerical invariant is complete. Indeed, if two
Z2-gentle algebras have the same numerical invariants, then we can deduce the following:

• the line fields η and η′ are Z2-invariant (this is by construction)

• the surfaces S and S ′ are diffeomorphic and the diffeomorphism commutes with the action
of σ and σ′;

• there exists a diffeomorphism Φ : S → S ′ such that Φ∗(η′) is homotopic to η.

But it is not clear that this Φ commutes with σ and σ′.

The problem is in general difficult and related with some difficult question in topology such
as Birman-Hilden’s property. For example, it is not clear when two Z2-invariant line fields are
homotopic, that one can find a homotopy preserving the Z2-invariance property.
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Tilting objects

A clear desadvantage of Theorem 2.8 is this condition “given by a Z2-invariant tilting object”.
This condition is closely related to the fact that the class of skew-gentle algebras is not closed
under derived equivalence. We need this hypothesis to apply Theorem 2.6 (1). But using the
geometric model for skew-gentle algebras, one should be able to describe all tilting objects in
terms of “generalized orbifold dissections”. Then a natural problem would be to describe the
endomorphism algebra of such a tilting object from the combinatorial data of the dissected
surface. This would give a class of algebras closed under derived equivalence containing skew-
gentle algebras. One would expect to find the Jacobian algebras associated to triangulated
surfaces with punctures as defined in [LF09], and associated surface cut algebras. One would
also expect an analogue of Theorem 2.11 and Corollary 2.9 to be true (note that in these two
results, the same numbers are involved).

A∞-structure and graded case

One also could want to enhance this geometric model describing the derived category of skew-
gentle algebra in a A∞-structure. Is there a notion of Z2-A∞-structure, and do Reiten and
Riedtmann’s results carry over to this setting ? Can we describe higher multiplications for
graded curves in this setting ? Is there a Z2-Fukaya category associated to a Z2-graded sur-
face, or a Fukaya category associated with an orbifold ? More generally is there a notion of
G-Fukaya category associated with an orbifold surface S/G where G is a finite sub-group of
homeomorphisms of S ?

2.5 Geometric models for other triangulated categories

Other triangulated categories appearing in this memoir arise with a natural topological data.
It would be of interest to try to interpret algebraic information of the category in terms of the
topological data.

Geometric model for the stable category of the trivial extension of a gentle algebra

For a general gentle algebra (of finite global dimension), one can construct its trivial extension
T(Λ) := Λ⊕DΛ as in Section 1.2 in Chapter 2. By Happel’s result, there is a triangle equivalence

Db(Λ) ' modZTΛ.

Using Keller’s results on orbit categories in [Kel05], one can show that this equivalence induces
an equivalence between the stable category modTΛ and the triangulated hull of the category
Db(Λ)/S[1]. Using this observation, the idea would be to try to obtain a geometric model for the
category modTΛ. The auto-equivalences are indeed well understood geometrically, so at least
one should be able to provide a geometric model for the orbit category Db(Λ)/S[1]. As such, the
triangulated category modTΛ plays a role analogue to the cluster category C2(Λ). Moreover,
this trivial extension is a Brauer graph algebra (see [Sch18]), and their representation theory is
already well-known.

One could also try to check analogue results as the ones obtained in [AO14] (see subsection
3.4 in Chapter 3). For example, if Λ1 and Λ2 are gentle algebras such that we have an equivalence
of triangulated categories

modTΛ1 ' modTΛ2

can we construct a grading on Λ1 and Λ2 so that we have an equivalence

Db(modZ Λ1) ' Db(modZ Λ2)?

Note that this question also makes sense for algebras that are not gentle.



2. SKEW-GENTLE ALGEBRAS 85

Geometric model for categories associated with dimer models

Another family of triangulated categories associated with topological data was described in
subections 5.3 in Chapter 1. To a consistent dimer model with a perfect matching, one can
associate a graded Jacobian algebra Π and its degree zero subalgebra Λ. If there exists an
idempotent e such that Π/ΠeΠ is finite dimensional, and such that eΛ(1− e) vanishes, then we
obtain equivalences

Db(Λ)
∼ //

��

CMZ(eΠe)

��
C2(Λ)

∼ // CM(eΠe)

.

One can then wonder whether certain indecomposable objects of the category CM(eΠe) could
be interpreted in terms of curves on the torus. Moreover, would it be possible to construct a line
field on the torus and understand some objects of the category CMZ(eΠe) ' Db(Λ) in terms of
graded curves ?
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Chapter 6

Appendix: Proof of Theorem 2.4
(page 81 in Chapter 5)

1 Indecomposable in term of graded curves on S

Let Ā be a skew-gentle algebra attached to the dissected surface (S̄, M̄•, P̄•, Xx, D̄), and A be the
corresponding gentle algebra attached to the Z2-dissected surface (S,M•, P•, D, σ) (see Section
2 of Chapter 5 for definitions).

Since we have a bijection between the isomorphism classes of indecomposable objects in
Kb(projĀ) with the set

{σ-invariant indec. in Kb(projA)} × Z2 ∪ {σ-orbits of non σ-invariant indec. in Kb(projA)},

the first thing to understand is the action of σ on the indecomposable objects of Kb(projA).

We first fix a piece of notation. For (γ,n) ∈ πgr
1 (S,M◦), we denote by P(γ,n) the string

object in Kb(projA) through the bijection given in Theorem 1.8 in Chapter 5. For ([γ],n, λ) ∈
πfree,gr

1 (S)× k∗ we denote by B([γ],n,λ) the corresponding band object in Kb(projA).

Lemma 1.1. 1. For (γ,n) ∈ πgr
1 (S,M◦), we have (P(γ,n))

σ ' P(σ◦γ,n◦σ).

2. For ([γ],n, λ) ∈ πfree,gr
1 (S)× k∗, we have (B([γ],n,λ))

σ ' B([σ◦γ],n◦σ,λ).

Proof. The first statement is proved in Lemma 5.4 in [AB].

For the second statement, let us define explicitely the bijection B. Let ([γ],n, λ) be in

([γ],n, λ) ∈ πfree,gr
1 (S) × k∗. Assume first that γ is primitive. Let γ : [0, 1] → S be a regular

representant of [γ] intersecting transversally the arcs of D. Denote by 0 ≤ t0 < · · · < t` < 1 the
elements in [0, 1] such that γ(tj) belongs to D, and denote by ij the arc of D containing γ(tj).

Since [γ] is defined up to free homotopy and since wη(γ) = 0, we can assume that t0 = 0,
that wη(γ(0,t1)) = −1 and that wη(γ(t`,1)) = +1.

•

•

•

•

•

•

•

•

•
γ(t`) γ(0) γ(t1)γ

For j = 0 . . . , `, one can associate a path pj(γ) of the quiver Q as in the following picture
(where indices are taken modulo `).

87
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◦

•

•

• •

•

•

••

ij

ij+1
pj(γ)

γ

As a graded A-module, B([γ],n,λ) is defined to be

B([γ],n,λ) :=
⊕̀
j=0

eijA[n(γ(tj)].

The differential is given by the following (`+ 1)× (`+ 1) matrix (d(j,k))j,k

• if wη(γ|(tj ,tj+1)
) = +1, then d(j+1,j) = pj(γ)[n(γ(tj))]

• if wη(γ|(tj ,tj+1)
) = −1, then d(j,j+1) = pj(γ)[n(γ(tj+1))]

• d(0,`) = λp`(γ)[n(γ(t`))],

• all other values of d(j,k) are 0.

Note that in case ` = 1, then we obtain d(0,1) = p0[n(γ(t0))] + λp1[n(γ(t1)].

With the hypothesis on γ, we define an element α ∈ π1(S,M◦) as in the following picture,

•

•

•

•

•

•

•

•

•

◦

◦

γα

and define a grading on it such that n((α(tj))) = n((γ(tj))) for j = 1, . . . , `. Then one immedi-
ately sees that the map (1, λ) : ei0A

2 → ei0A induces a triangle

P(α,n)
// B([γ],n,λ)

// ei0A[n(γ(0))] // P(α,n)[1] .

Then we obtain statement 2. for primitive curves using statement 1..

For any curve, the proof is similar, since the band object can be seen as an iterated extension
of a band object associated with a primitive curve.

We have P(γ,n) ' P(γ′,n′) if and only if γ = γ′ or γ = γ′−1 and n = n′. We have B([γ],n,λ) '
B([γ′],n′,λ′) if and only if ([γ],n, λ) = ([γ′],n′, λ′) or ([γ],n, λ) = ([γ′−1],n′, λ−1). Therefore the

indecomposable objects of Kb(projĀ) are in bijection with the following sets:

1.
{

(γ,n) ∈ πgr
1 (S,M◦) | γ−1 6= σγ

}
/ ∼

where (γ,n) ∼ (σγ,n ◦ σ) ∼ (γ−1,n),
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2.
{

(γ,n, ε) ∈ πgr
1 (S,M◦)× {±1}, | σγ = γ−1

}
/ ∼

where (γ,n, ε) ∼ (γ−1,n, ε.

3.
{

([γ],n, λ) ∈ πfree,gr
1 (S)× k∗ | [σγ] 6= [γ], [γ−1]

}
/ ∼

where ([γ],n, λ) ∼ ([γ−1],n, λ−1) ∼ ([σγ],n ◦ σ, λ);

3’.
{

([γ],n, λ, ε) ∈ πfree,gr
1 (S)× k∗ × {±1} | [σγ] = [γ]

}
/ ∼

where ([γ],n, λ, ε) ∼ ([γ−1],n, λ−1, ε);

4.
{

([γ],n, λ) ∈ πfree,gr
1 (S)× k∗ \ {±1} | [σγ] = [γ−1]

}
/ ∼

where ([γ],n, λ) ∼ ([γ−1],n, λ−1) ∼ ([σγ],n ◦ σ, λ);

5.
{

([γ],n, λ, ε) ∈ πfree,gr
1 (S)× {±1} × {±1} | [σγ] = [γ−1]

}
/ ∼

where ([γ],n, λ, ε) ∼ ([γ−1],n, λ−1, ε)

2 Indecomposables in term of graded curves on the orbifold

Now recall from [AP, Section 5] that there is a groupoid map

Φ : π1(S,M◦)→ πorb
1 (S̄, M̄◦)

and a well defined map

Ψ : πfree
1 (S)→ πorb,free

1 (S̄).

The aim is to use these maps to translate the bijection above in term of graded curves on
the orbifold S̄.

2.1 String objects

First, note that since η̄ is the image of the line field η through the projection p : S \X → S̄ \X,
there is a natural map

πgr
1 (S \X,M◦)→ πgr

1 (S̄ \X, M̄◦).

The first step consists of the definition of the set πorb,gr
1 (S̄, M̄◦) together with a map

πgr
1 (S,M◦)→ πorb,gr

1 (S̄, M̄◦).

Definition 2.1. Let γ be in C1((0, 1), S̄ \X) such that its preimages γ̃ and σγ̃ in C1((0, 1),S\X)
do not contain any contractible loops and intersect transversally the dissection D.

Then, one defines a grading on γ as a map n : γ(0, 1) ∩ D̄ → Z such that

n(γ(ti+1)) = n(γ(ti)) + wη̄(γ|[ti,ti+1]
),

if γ(ti) and γ(ti+1) are two consecutive intersections of γ with D̄.

Since the map Φ : π1(S,M◦) → πorb
1 (S̄, M̄◦) is surjective, any element in πorb

1 (S̄, M̄◦) has a
representant that can be gradable.

We would like now to check that the grading is well-defined on the set πorb
1 (S̄, M̄◦). This

comes from the following two facts:



90 CHAPTER 6. APPENDIX: PROOF OF THEOREM ?? (PAGE 81 IN CHAPTER 5)

1. If (γ̃, ñ) is a graded curve in S, and (γ,n) is a graded curve in S̄ such that Φ(γ̃) = γ and
n(γ(t1)) = ñ(γ̃(t1)), then for any i n(γ(ti)) = ñ(γ̃(ti)). This comes from the fact that η̄ is
the projection of η.

2. If (γ,n) and (γ′,n′) be two graded curves on S̄ that have the same grading at their first
intersection point with D, then they admit the same grading on any intersection point
with D. Indeed their preimages starting at the same point are homotopic, so they admit
the same grading in S.

We denote by πorb,gr
1 (S̄, M̄◦), the set of graded curves up to homotopy, which is now well

defined. It comes then with a natural surjective map

πorb,gr
1 (S̄, M̄◦)→ πorb

1 (S̄, M̄◦)

whose fiber is in bijection with Z.

Therefore the sets 1. and 2. described above are respectively in bijection with

1.
{

(γ,n) ∈ πorb,gr
1 (S̄, M̄◦) | γ2 6= 1

}
/ ∼ where (γ,n) ∼ (γ−1,n);

2.
{

(γ,n, ε) ∈ πorb,gr
1 (S̄, M̄◦)× {±1} | γ2 = 1

}
2.2 Band objects

Here again, we first define the notion of gradable closed curves on the orbifold S̄.

Let [γ] ∈ πorb,free
1 (S̄) represented by a smooth curve γ without contractible loops and inter-

secting transversally D̄. Denote by x0 = γ(0) its starting point, and by x+
0 , and x−0 its preimages

in S. There exists a curve γ̃ ∈ C1((0, 1),S) satisfying :

• γ̃ does not contain any contractible loops;

• γ̃(0) = x+
0 , and γ̃(1) ∈ {x+

0 , x
−
0 };

• ˙̃γ(0) = ˙̃γ(1) if γ̃(1) = x+
0 ;

• σ( ˙̃γ(0)) = (Tσ) ˙̃γ(1) if γ̃(1) = x−0 , and where Tσ : Tx−0
S → Tx+

0
S is induced by the

diffeomorphism σ.

Then the winding number of γ̃ with respect to η is defined, and so is the winding number of
γ = pγ̃ with respect to η̄. Moreover we have

wη̄(γ) = wη(γ̃).

Furthermore since the preimage γ̃ (starting in x+
0 ) is unique up to homotopy, the winding

number of [γ] is well defined as a map

wη̄ : πorb,free
1 (S̄) −→ Z.

Definition 2.2. Denote by S1 the segment [0, 1], where 0, and 1 are identified. Let γ : S1 → S̄\X
be a closed smooth map with γ(0) = x0 and such that its preimage γ̃ : [0, 1]→ S on S starting
at x+

0 is as above. A grading on γ is a map n : γ(S1) ∩ D̄ → Z satisfying:

n(γ(ti+1)) = n(γ(ti)) + wη̄(γ|[ti,ti+1]
),

if γ(ti) and γ(ti+1) are two consecutive intersections of γ with D̄.
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Note that if γ has a grading and if γ̃ is not closed (that is γ̃(1) = x−0 ), then one can consider
the closed curve β := σγ̃.γ̃ : [0, 2]→ S. The grading n defines a grading ñ on β (and on γ̃) with
for any i ñ(γ̃(ti+1)) = ñ(γ̃(ti)) + wη(γ̃|[ti,ti+1]

) and such that

ñ((γ̃)(t`)) = ñ(β(1 + t1) = ñ(β(1 + t1)) + wη(β|[t`,1+t1]
) = ñ(γ̃(t1))) + wη(β|[t`,1+t1]). (2.1)

Then, with the same argument as before, we see that if the gradings two graded closed
curves that are equal when viewed in πorb,free

1 (S̄) coincide at their first point, then they coincide

at every intersection point with the dissection. Therefore, the set πorb,free,gr
1 (S̄) is well defined.

Moreover we have the following

Proposition 2.3. Let [γ] ∈ πorb,free
1 (S̄). Then [γ] is gradable if and only if wη̄([γ]) = 0.

Proof. Let γ representing [γ] be such that its pre-image γ̃. If γ̃ is closed on S, this is clear since
we have

γ gradable ⇔ γ̃ gradable ⇔ wη(γ̃) = 0 ⇔ wη̄(γ) = 0.

If γ̃ is not closed, then we have

γ gradable ⇔ γ̃ is gradable with condition (2.1)⇔ wη(σγ̃.γ̃) = 0 ⇔ wη̄(γ) = 0,

since wη(σγ̃.γ̃) = 2wη(γ̃) = 2wη̄(γ).

Therefore we obtain a map

πorb,free,gr
1 (S̄) −→ πorb,free

1 (S̄),

whose image consists of curves with winding number 0, and whose fiber is in bijection with Z.

Definition 2.4. We call an element γ ∈ π1(S̄, x0) primitive if it is torsionfree, and if it is a
generator of the maximal cyclic group containing it.

Hence if γ ∈ πorb
1 (S̄, x0) satisfies γ2 6= 1 then γ is torsionfree, and so can be written in a

unique way as a positive power of a primitive element.

Now, a small adaptation of Corollary 5.18 in [AP] yields the following.

Proposition 2.5. Let Ψ : πfree
1 (S)→ πorb,free

1 (S̄) be the map induced by the projection p : S → S̄.

1. We have a bijection between the following sets:

(a)
{
{[γ̃], [σγ̃]} | [γ̃] ∈ πfree

1 (S) primitive with wη(γ̃) = 0 and such that [σγ̃] 6= [γ̃], [γ̃−1]
}

;

(b)
{

[γ] ∈ πorb,free
1 (S̄) | [γ] ∈ ImΨ primitive with wη̄(γ) = 0 , [γ] 6= [γ−1]

}
.

2. We have a bijection between the sets

(a)
{
{[γ̃], [σγ̃]} | [γ̃] ∈ πfree

1 (S) primitive with wη(γ̃) = 0 and such that [σγ̃] = [γ̃−1]
}

;

(b)
{

[γ] ∈ πorb,free
1 (S̄) | [γ] primitive with wη̄(γ) = 0 and [γ] = [γ−1]

}
.

3. We have a bijection between the sets

(a)
{

[γ̃] | [γ̃] ∈ πfree
1 (S) primitive with wη(γ̃) = 0 and such that [σγ̃] = [γ̃]

}
× k∗ × Z2;

(b)
{

[α] ∈ πorb,free
1 (S̄) | [α] /∈ ImΨ primitive with wη̄(α) = 0

}
× k∗.
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Proof. The bijections in items 1. and 2. are induced by Ψ, and we always have wη([γ̃]) =
wη̄(Ψ[γ̃]), so the proof here follows from 1. and 2. of Corollary 5.18 in [AP].

Bijection 3. is constructed as follows (see proof of Corollary 5.18 in [AP]) : for any [γ̃] ∈
πfree

1 (S) primitive such that [σγ̃] = [γ̃] there exists a primitive element [α] ∈ πorb,free
1 (S̄) such

that Ψ([γ̃]) = [α2]. If wη(γ̃) = 0, then wη̄(α
2) = 0 = 2wη̄(α). Thus α has winding number zero

if and only if so does γ̃. We associate to ([γ̃], λ,±1) the element ([α],±λ′) where λ′ is a square
root of λ in k.

Then combining Propositions 2.3 and 2.5, one easily gets that the sets 3. and 3’. (resp 4.,
resp 5.) are in bijection respectively with

3. {([γ],n, λ) ∈ πorb,free,gr
1 (S̄)× k∗ | [γ] 6= [γ−1]}/ ∼ where ([γ],n, λ) ∼ ([γ−1],n, λ−1);

4. {([γ],n, λ) ∈ πorb,free,gr
1 (S̄)× k∗ \ {±1} | [γ] = [γ−1], γ2 6= 0}/ ∼;

5. {([γ],n, ε, ε′) ∈ πorb,free,gr
1 (S̄)× {±1}2 | [γ] = [γ−1], γ2 6= 0}.

3 Example

Let us consider a cylinder with one puncture and one orbifold point with the following x-
dissection, and its corresponding skew-gentle algebra.

•

•

•

•

•

x1 3 1

2

4

◦

◦

1

2

2′

34

a

a′

b

b′

c d

e

Ī = (ba+ b′a′, dc, e2)

The dissected surface S, and the Z2-gentle algebra associated to the skew-gentle algebra is
as follows.

•

•

•

•

•

x

•

•

•

•

•

1− 3− 1−

1+ 3+ 1+

4−

4+

2◦ ◦

1−

1+

2

3−

3+

4−

4+

c−

c+

a−

a+

b−

b+

d−

d+

e−

e+

I = (b−a−, b+a+, d−c−, d+c+, (e−)2, (e+)2)
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Let (γ,n) ∈ πorb,gr
1 (S̄, M̄◦) be as follows.

•

•

•

•

•

x

◦

◦

0

0

0

01

1

The element γ satisfies γ2 6= 1, therefore (γ,n) is in the set 1. and has two preimages in
πgr

1 (S,M◦).

•

•

•

•

•

x

•

•

•

•

•

◦ ◦

◦

◦

00

0

0

0

0

0

0

1

1

1

0

These two graded curves correspond to the following complexes in Kb(projA):

P1+ ⊕ P1−

a+ a−

0 c−


// P2 ⊕ P4− and P1− ⊕ P1+

a− a+

0 c+


// P2 ⊕ P4+ .

Their image through the functor Kb(projA) → Kb(proj Ā) gives the following complexes
which are isomorphic:

P1 ⊕ P1


a a
a′ −a′
0 c


// P2 ⊕ P2′ ⊕ P4 , and P1 ⊕ P1


a a
−a′ a′

0 c


// P2 ⊕ P2′ ⊕ P4 .

Take now a (γ,n) ∈ π1(S̄, M̄◦) such that γ2 = 1 as follows:

•

•

•

•

•

x

◦

◦

0
0

0
01

1

1

The graded curve (γ,n) is in the set 2. and has a unique preimage in πgr
1 (S,M◦).
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•

•

•

•

•

x

•

•

•

•

•

◦ ◦

◦

◦

00

00

1

1

1

The corresponding object in Kb(projA) is

P1+ ⊕ P1−


c+ 0
a+ a−

0 c−


// P4+ ⊕ P2 ⊕ P4−

Its image in Kb(proj Ā) is the following complex

P1 ⊕ P1


c 0
a a
a′ −a′
0 c


// P4 ⊕ P2 ⊕ P2′ ⊕ P4 ,

which is isomorphic to the complex

P1 ⊕ P1


c 0
a 0
0 a′

0 c


// P4 ⊕ P2 ⊕ P2′ ⊕ P4

which is clearly decomposable.

Now let ([γ],n, λ) ∈ πorb,free,gr
1 (S̄)× k∗ be the following graded curve

•

•

•

•

•

x

◦

◦

0 1 12 0

The element ([γ],n, λ) is the set 3. and [γ] is in the image of Ψ (indeed it intersects the
green dotted lines an even number of times).

The graded curve ([γ],n) has two preimages in πfree,gr
1 (S) (that are in the set 3.) which are

as follows:
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•

•

•

•
•

x

•

•

•

•
•

◦ ◦

◦

◦

00

00 1 2 1

1 2 1

These graded curves correspond respectively to the following objects in Kb(projA):

P1+

λa+

d+


// P2 ⊕ P4+

(
b+ c+

)
// P3+ and P1−

λa−
d−


// P2 ⊕ P4−

(
b− c−

)
// P3−

The corresponding complexes in Kb(proj Ā) are

P1


λa
λa′

d


// P2 ⊕ P2′ ⊕ P4

(
b b′ c

)
// P3 and P1


λa
−λa′
d


// P2 ⊕ P2′ ⊕ P4

(
b −b′ c

)
// P3

which are isomorphic.

Now let ([γ],n, λ) ∈ πorb,free,gr
1 (S̄)× k∗ be the following graded curve. It is in the set 3. and

[γ] is not the image of Ψ since it intersects the green dotted lines an odd number of times.

•

•

•

•

•

x

◦

◦

0 1 0

However, the concatenation of its two preimages is in the set 3’. and is a primitive closed
curve as follows:
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•

•

•

•

•

x

•

•

•

•

•

◦ ◦

◦

◦

0
1

0 0
1

0

The corresponding band object in Kb(projA) is given by

P1+ ⊕ P1−

 λb−a+ d−e−c−

d+e+c+ b+a−


// P3− ⊕ P3+ ,

whose image in Kb(proj Ā) is

P1 ⊕ P1

λ(ba− b′a′) dec
dec ba− b′a′


// P3 ⊕ P3

which can be shown to be isomorphic to

(
P1

λ′(ba−b′a′)+dec // P3

)
⊕
(
P1

−λ′(ba−b′a′)+dec // P3

)
where (λ′)2 = λ.

Finally, let ([γ],n) ∈ πorb,free,gr
1 (S̄) be such that [γ] = [γ−1] as follows

•

•

•

•

•

x

◦

◦

0 01

10

0
1

0

The closed curve [γ] is in the image of Ψ and its preimage is unique as follows:
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•

•

•

•

•

x

•

•

•

•

•

◦ ◦

◦

◦

0 1

0

1
00

1

0

The corresponding complex in Kb(projA) is the following

P1+ ⊕ P1− ⊕ P2


λa+ a− 0

0 d−e−c− b−

d+e+c+ 0 b+


// P2 ⊕ P3− ⊕ P3+ .

Its image in Kb(proj Ā) is the following complex

P 2
1 ⊕ P2 ⊕ P2′


λa a 0 0
λa′ −a′ 0 0
0 dec b −b′
dec 0 b b′


// P2 ⊕ P2′ ⊕ P 2

3

For λ 6= ±1 (so in the case where [γ],n, λ) is in the set 4.), this complex is indecomposable.
For λ = 1 this complex is isomorphic to

P 2
1 ⊕ P2 ⊕ P2′


a 0 0 0
0 a′ 0 0
0 dec 0 b′

dec 0 b 0


// P2 ⊕ P2′ ⊕ P 2

3

which decomposes.
For λ = −1 this complex is isomorphic to

P 2
1 ⊕ P2 ⊕ P2′


a 0 0 0
0 a′ 0 0
0 dec b 0
dec 0 0 b′


// P2 ⊕ P2′ ⊕ P 2

3
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