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Abstract
The construction of a quantum computer is an extremely challenging task, be-

cause the states of the quantum system used to carry out the computation are typ-
ically far too fragile. A necessary condition to build such a computer is to design
a system in which a large number of quantum bits are protected from the devas-
tating effect of their environment to withstand the quantum information for a suffi-
ciently long time. At the same time, performing a computation supposes the ability
to control the quantum states to process the information they encode. The theory of
quantum error correction opens the path towards the realization of macroscopically
large quantum systems with, in theory, arbitrary good protection against the noise
induced by the environment. The bottleneck of the implementation of quantum er-
ror correction is twofold. First, it requires to build quantum systems for which the
levels of noise are below a constant value called the accuracy threshold. Second, the
quantum error correcting code, and the processing of the encoded information, re-
sult in a large physical hardware overhead.

In this thesis, we propose and analyze a scheme based on repetition cat qubits
to perform large scale quantum computation. The protection against the environ-
ment induced noise is achieved in two steps. First, the two-photon pumped cat
qubits are arbitrarily well protected against bit-flip errors with the average number
of photons in the cat state. Second, a repetition code protecting against phase-flips
is implemented using cat qubits, thus producing a “repetition cat qubit” with very
low logical error rate. In order to perform quantum computation with this protected
qubit, we design a universal set of logical gates acting on the repetition cat qubit,
that is compatible with the structure of the scheme. More precisely, the construction
is achieved in two steps: first, the design of physical operations acting on cat qubits.
These operations must be bias-preserving in order to preserve the natural protection
against bit-flip errors. A particular attention has been devoted to proposing opera-
tions that could be experimentally realized in the next few years, within the frame-
work of circuit quantum electrodynamics. Then, from the set of bias-preserving
physical operations, we construct a universal set of logical operations on the repeti-
tion cat qubits.

We hope that the resulting scheme, and the ideas developed for its construction,
will prove useful for the construction of a large-scale quantum computer.
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Résumé
La construction d’un ordinateur quantique est un défi technologique extrême-

ment difficile à cause de la fragilité des états quantiques qui servent de support de
calcul. La réalisation d’une telle machine nécessite de construire un grand nom-
bre de systèmes quantiques suffisamment protégés du bruit inévitable induit par
l’environnement, afin que la durée de vie de l’information quantique encodée dans
ces systèmes soit suffisamment grande devant le temps d’exécution typique d’un
algorithme quantique. Paradoxalement, l’implémentation d’algorithmes suppose
aussi la capacité de manipuler l’information. La théorie de la correction d’erreur
quantique établit qu’il est possible de construire des systèmes quantiques de taille
macroscopique, et pourtant arbitrairement bien protégés contre le bruit induit par
l’environnement. En pratique, deux obstacles majeurs s’opposent à la réalisation
physique de la correction d’erreur quantique. Le premier obstacle à surmonter est de
parvenir à construire un système quantique “de base” pour lequel le niveau du bruit
est déjà suffisamment bas, un résultat connu sous le nom de “théorème du seuil”.
Le second obstacle concerne la taille de l’ordinateur quantique: en effet, aussi bien
le code correcteur d’erreur que la capacité à manipuler l’information logique sont
responsables d’un important surcoût en matériel.

L’objet de cette thèse est la construction et l’analyse d’un schéma particulier pour
la réalisation d’un ordinateur quantique basé sur les qubits de chat répétés. La pro-
tection contre les erreurs est assurée en deux temps. D’abord, les qubits de chats util-
isés sont arbitrairement bien protégés contre les erreurs dites de “bit-flip”, lorsque
le nombre moyen de photons dans les états de chat utilisés est suffisamment grand.
Ensuite, un code de répétition contre les erreurs dites de “phase-flip” est construit à
partir de ces qubits de chat. Le qubit logique résultant de cette construction est ap-
pelé le qubit de chat répété. Afin de réaliser du calcul quantique avec ce qubit, un en-
semble universel de portes logiques pour les qubits de chat répétés est proposé dans
cette thèse. La construction de ces portes logiques respecte la structure de la protec-
tion, afin de la préserver: les portes physiques construites au niveau des qubits de
chat ont la propriété d’être “bias-preserving”, c’est-à-dire qu’elles préservent la pro-
tection naturelle contre les erreurs de “bit-flip”. Les propositions d’implémentation
de ces portes ont été adaptées au maximum à la réalité des expériences contempo-
raines, afin que le schéma proposé puisse être raisonnablement implémenté d’ici
quelques années. Enfin, à partir de ces portes physiques, un ensemble universel de
portes logiques est construit au niveau du qubit de chat répété.

Nous espérons que le schéma ainsi proposé, et les idées développées pour sa
construction, seront utiles dans la réalisation d’un ordinateur quantique.
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1.1 Promise of quantum computing

The imperious need to understand is deeply rooted in human nature. From the child
overwhelming his parents with “why?”s about the world surrounding him to the
most educated philosopher or scientist investigating the origin of life, the need to
find answers inhabits each and everyone of us. Science is perhaps the most extraordi-
nary collective attempt at satisfying this need. Through careful observation of Na-
ture, patterns are identified and hypothesis formulated, eventually leading to new
theories. A theory that can accurately predict what is actually observed is considered
a valid answer and is accepted as the truth, growing our collective knowledge about
the world. The validity of a theory thus crucially depends on our ability to observe
Nature and its effects, and what is believed to be true can become wrong upon a
closer inspection.

In physics, the observation of Nature naturally began at the time, space and en-
ergy scales available to us. By studying the relationship between a body and the
forces acting upon it, Isaac Newton established the three Laws of Motion in his
Philosophiæ Naturalis Principia Mathematica first published in 1687, laying the founda-
tions for classical mechanics. The continuous development of scientific equipment
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allowed scientists to observe Nature ever more precisely, over space and time scales
far beyond what is conceivable for a human mind, which eventually led to obser-
vations that could not be explained by classical physics. The accurate observation
of black-body radiation spectra could not be predicted by any existing theory, mo-
tivating Max Planck to formulate in 1900 the hypothesis that an electrically charged
oscillator in a cavity containing a black-body could only absorb discrete amounts of
energy proportional to the frequency of its associated electromagnetic wave. The ob-
servation of the photoelectric effect by Heinrich Hertz in 1887 was incompatible with
the hypothesis in classical electromagnetic theory that a beam of light is a continuous
wave propagating in space. In 1905, Albert Einstein explained this effect (and other
light-related phenomena including the black-body radiation) by suggesting that a
beam of light is a collection of discrete wave packets that he called the light quantum
(das Lichtquant), now called photons, whose energy is proportional to the light fre-
quency E = h̄ν. These two important observations and the ideas developed as an at-
tempt to explain them were foundational in the development of quantum mechanics
during the first half of the twentieth century. Quantum mechanics is the only the-
ory that can predict accurately the behaviour of physical systems at the atomic scale,
yet it also successfully explains all the predictions of classical physics theories in the
limit where the size of the system becomes large. In this limit, called the classical or
correspondence limit, some features specific to quantum mechanics “disappear”, such
as the wave-particle duality, the wave function collapse, quantum entanglement, or
the principle of uncertainty.

Up to this day, there has been no observation of Nature that quantum mechanics
failed to predict. Yet, even though the theory is successful in predicting what we are
able to observe, the interpretation to give to the mathematical formalism of quantum
mechanics still remains a challenge for physicists. Because we only experience the
effects of quantum mechanics at the macroscopic scale, where some of its features
do not longer exist, it is very challenging for a human mind to have an intuition of
purely quantum mechanical effects.

In the second half of the twentieth century, the development of modern comput-
ers opened a new era for science. The physical laws governing the evolution of a
given system are at the core of the model of computation used by the programmers
to develop large computational systems. Physicists and computer scientists natu-
rally began to wonder whether the theory of quantum mechanics could produce a
novel model of computation based on quantum systems. In 1980, Paul Benioff de-
veloped a quantum mechanical model of Turing machines, establishing for the first
time that reversible quantum computing was possible, at least in theory. Building
on this work, Richard Feynman, David Deutsch and other physicists suggested in
the 1980s that quantum computation had the potential to achieve things classical
computation could not. More specifically, quantum computation does not provide
any additional advantage in terms of computability, in the sense that a quantum
computer can solve any computational problem that a classical computer can, and
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reciprocally. Rather, Feynman suggested that using a quantum model of compu-
tation would allow to solve certain problems faster than what is possible with any
classical model of computation. This intuition, initially based on the observation that
the simulation of a quantum mechanical system is computationally challenging for
a classical computer, but is natural for a quantum mechanical computer, culminated
in 1994 with the publication by Peter Shor of a quantum factoring algorithm with
an exponential speedup over the best known classical factoring algorithm. Other
“quantum algorithms”, i.e algorithms that can only be run on a quantum computer,
exhibiting a speedup over their best known classical counterparts include Grover’s
algorithm to conduct searches in large database or the Harrow, Hassidim and Lloyd
(HHL) algorithm to solve linear systems of equations.

1.2 Circuit model of quantum computation

In the circuit model of quantum computation, the basic unit of quantum information
is the quantum bit, or qubit. From a practical point of view, any quantum system that
can exist in two different states can be used to store a quantum bit of information. It
could be stored, for instance, in the states ’up’ and ’down’ of the spin of an electron,
the ’vertical’ and ’horizontal’ polarization of a photon, the ’ground’ and ’excited’
states of an atom, etc. In this dissertation as well as in the quantum information lit-
erature, the term qubit refers to both the quantum bit of information and the physical
two-level quantum system in which it is encoded. The actual physical system used
as the recipient of the quantum bit of information can be abstracted away by simply
denoting its two states |0〉 and |1〉, called the computational states, where the notation
0 and 1 facilitates the classical analogy and the quantum mechanical Dirac notation
| · 〉 emphasizes the quantum behaviour of the system.

Mathematically speaking, the two states |0〉 and |1〉 are orthogonal unit vectors
forming the computational basis of a complex separable Hilbert space, called the
state space of the system. By the rules of quantum mechanics, any unit vector |ψ〉,
called the state vector, of this associated Hilbert space

|ψ〉 = α|0〉+ β|1〉

where α and β are complex numbers satisfying |α|2 + |β|2 = 1, is a valid state of the
system. Two state vectors that differ only by a global phase, |ψ〉 and |ψ̃〉 = eiφ|ψ〉
actually describe the same physical state, and the complex number α can be assumed
to be real without loss of generality. Writing α = cos( θ

2 ) and β = eiϕ sin( θ
2 ), the

vector states of a qubit can be conveniently visualized as the points of the surface of
the Bloch sphere, as depicted in Figure 1.1, where the state is parametrized by the
angles (θ, ϕ) ∈ [0, π]× [0, 2π[.

In order to learn the state of a qubit, one needs to measure it. A quantum mea-
surement is fundamentally different than its classical counterpart. A classical bit of
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FIGURE 1.1: Bloch sphere representation of the state of a qubit.

information is either in the state ’0’ or the state ’1’ and a perfect measurement of
such a bit reveals the state of the system with unit probability. Since the most gen-
eral state of a quantum bit is |ψ〉 = α|0〉+ β|1〉, one could optimistically assume that
a perfect quantum measurement of the qubit would reveal the complex number α

and β. Unfortunately, in quantum mechanics, one cannot directly measure the state
of the qubit but rather, the value of physical observables corresponding to Hermitian
operators acting on the state space. When the qubit is in the state |ψ〉, the measure-
ment of the operator associated with the canonical states |0〉 and |1〉 produces a non-
deterministic outcome: the measurement outcome is +1 (resp. -1), corresponding to
the state |0〉 (resp. |1〉), is obtained with probability |α|2 (resp. |β|2). Importantly,
such a measurement has a back-action on the quantum state of the system. If, for
example, the result of the measurement is +1, then the state of the qubit after the
measurement is no longer |ψ〉 but |0〉, such that a second measurement just after
the first one would now yield the same result with probability one. This quantum
phenomenon is known as the collapse of the wave function, as the quantum super-
position is destroyed and the information contained in the complex numbers α and
β is lost.

The pure states of a qubit, described by state vectors, correspond to the states of
maximal knowledge of the state of a qubit perfectly isolated from any other quantum
system. However, they fail to describe the state of a qubit which shares some in-
formation with another quantum system. To illustrate this, consider the case of a
composite quantum system made of two qubits. As in the classical case, there are
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four computational states |00〉, |01〉, |10〉 and |11〉, forming the basis of a four dimen-
sional Hilbert space. The quantum state

|ψ〉 = 1√
2
(|00〉+ |11〉)

is said to be entangled, because it cannot be written as a separable product of two
distinct quantum states

|ψ〉 = |ψqubit 1〉 ⊗ |ψqubit 2〉.

For a qubit entangled to another quantum system, the full description of the
quantum state of the whole system as a pure state necessarily involves both quan-
tum systems. In this case, it is still possible to consider the state of the qubit only,
disregarding the other quantum systems to which it is entangled, and the state is
said to be a mixed. Mixed states are described by a density matrix denoted ρ, which is
positive operator of trace 1 acting on the state space of the system. For a pure state
|ψ〉, the density matrix reduces to the projector on this state ρ = |ψ〉〈ψ|.

The state vector of a qubit can be modified by the application of a quantum oper-
ator acting on the state space. Quantum operators are linear operators and because
they map unitary vectors to unitary vectors, they are necessarily unitary operators.
In the context of quantum information, the usual basis of U(2) are the four 2 × 2
complex Pauli matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

In the quantum circuit model of computation, a computation is carried out by
a quantum circuit composed of quantum operators, called the quantum gates, acting
on a register of n quantum bits. Any unitary operator acting on the state of n qubits
can be decomposed on the n-qubit Pauli group, obtained by forming all the possible
tensor products of the Pauli matrices

Pn = {±1,±i} ⊗ {I, X, Y, Z}⊗n,

and the four overall phases {±1,±i} ensure the group structure.

Postponing the measurement of the state of the quantum register of qubits to the
end of the execution of a quantum algorithm, a quantum algorithm performed on a
register of n qubits is a unitary operation U ∈ U(2n). There are infinitely many such
operations, so that is it not reasonable to expect to be able to implement any of these
unitaries physically on the register. Two key theoretical concepts are crucial for the
realization of a quantum computer.

First, an arbitrary quantum operator can be arbitrarily well approximated by a
finite set of operators. A finite set of operators S that can actually approximate any
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unitary operator is said to be universal for quantum computation: mathematically
speaking, this is the case if the group generated by S is dense in U(2n). Actually,
since the overall global phase has no physical meaning, it is enough for the group
generated by S to be dense in SU(2n). From a practical point of view, this result is
essential: it implies that for a given platform used to encode quantum information,
a discrete set of physical operations only needs to be built to unlock the ability to
perform any quantum algorithm.

Second, a universal set of quantum operators needs to “fill” SU(2n) quickly enough.
Indeed, one could imagine a pathological situation where a quantum algorithm im-
plemented by a unitary U ∈ SU(2n) provides an exponential speed-up in the number
of input bits n with respect to the best known classical counterpart, but where the
approximation of U would require an exponential number of gates in the universal
gate set naturally available to the quantum hardware, thus annihilating the theoret-
ical advantage. Fortunately, the Solovay-Kitaev theorem ensures that any unitary
can be arbitrarily well approximated with a logarithmic number of gates from a uni-
versal gate set:

Theorem 1 (Solovay-Kitaev) Let S be a finite set of elements in SU(2n) containing its
own inverses, such that 〈S〉 is dense in SU(2n). Let ε > 0. Then there is a constant c such
that for any U ∈ SU(2n), there is a sequence of gates S from S of length O(logc(1/ε) such
that ‖S−U‖ < ε.

The constant c depends on the universal gate set but is typically a small num-
ber, c ≈ 4, and the existence of gate sets achieving the minimal value c = 1 was
established in [63]. Well known universal gate sets include

• CNOT and all single qubit gates

• Clifford group and any single non-Clifford gate

• CNOT, Hadamard and T gate

• Toffoli and Hadamard.

The discovery of quantum algorithms and their potential applications motivates
the construction of the quantum computer. Yet, forty years after the field of quantum
computation was initiated, building such a machine remains a formidable engineer-
ing challenge. The most difficult obstacle to overcome is the quantum decoherence, the
loss of coherence between quantum states. The coherence between two quantum
states has to do with the superposition principle, a purely quantum mechanical fea-
ture that is crucial for quantum algorithms: it states that if a quantum system, say
the famous Schrödinger quantum cat, can exist in two states, |dead〉 or |alive〉, then
it can also exit in a coherent superposition of these two states, 1√

2
(|dead〉+ |alive〉),

where the quantum coherence refers to the ’+’ sign in the superposition. If the quan-
tum cat was a perfectly isolated quantum system, it could remain indefinitely in this
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quantum state. Unfortunately, the construction of a perfectly isolated quantum sys-
tem in a realistic experimental set-up is impossible. The effect of the interaction of
the cat with its environment is to decohere the state, that is to destroy the coherence
between the |dead〉 and the |alive〉 states. Somehow, the quantum decoherence can
be thought of as a loss of information into the environment of the quantum system.
Even though this quantum decoherence is inevitable in any real-world experiment,
the better the quantum system is isolated, the slower the effect of quantum deco-
herence. However, in order to reach the extremely low levels of noise required to
perform useful quantum computations, improving the isolation of physical quan-
tum systems is not enough and some additional layer of active correction of the re-
maining errors is required. The next section provides an introduction to the theory
of error correction, with a particular focus on the theory of quantum error correction
with bosonic qubits used in this work.

1.3 Theory of error correction

1.3.1 The spirit

The theory of error correction enables the detection and correction of errors occur-
ring on the physical system used to store information. In this sense, an “error” is
simply an undesired change of the state of the system, that is caused by some phys-
ical process which cannot be controlled or cancelled a priori. Interestingly, the exact
nature of the event that resulted in a change of the system’s state does not need to be
known for the error to be corrected; rather, the only thing that really matters is the
effect of this process on the state of the system. Consider, for instance, the punched
card used at the beginning of the twentieth century to store data. A punched card
is a stiff piece of paper on which holes can be punched. Each location on the card
is a system which can be in two states, either punched or not, thus storing a binary
digit (‘punched’ to store a ‘1’ and ‘not punched’ to store a ‘0’). There are infinitely
many physical reasons that a bit might be corrupted (a punching process could fail
to properly make a hole, resulting in a ‘0’ being stored instead of a one, or a mice
might eat a piece of the card and make a hole, corrupting a stored ‘0’ into a ‘1’, etc.),
but, assuming the card survives the undesired event, each and every one of these
uncontrolled events can only ever result in an error called the bit-flip, that is an en-
coded ‘0’ turned into a ‘1’ and vice-versa. The probability that such an error occurs,
whatever the cause, is referred to as the physical error probability p, as it is set by the
probability that some undesired physical event occurred and corrupted the state of
the system.

In 1947, the American mathematician Richard Hamming, then working at Bell
Telephone Laboratories, started to work on the problem of error correction. Frus-
trated by the failure of calculating machines, he set himself the goal to design active
protocols with the ability to detect a bit-flip error event, and most importantly, to
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identify without ambiguity which bit had been corrupted, such that the error could
be corrected without losing the information stored in the system. This is to be con-
trasted with the error detecting protocols that already existed at this time: such a pro-
tocol is capable of telling whether the information has been corrupted, but is unable
to remove the error that happened. Rather, in this case, the information is simply
lost. In 1950, Richard Hamming was successful in his quest and proposed the first
error correcting code, known as the Hamming(7,4) code.

FIGURE 1.2: Parity checks of the Hamming(7,4) Code.

This protocol proposes to encode four bits of information, called the logical bits,
using seven physical bits, in such a way that a single bit-flip error occurring on any
of the seven physical bits can be detected and corrected without damaging any of the
four encoded logical bits. This code is said to be a first order error correcting code,
because at least two errors must happen between two rounds of error correction
for the protocol to fail to remove errors. If the errors occur independently, with the
same physical error probability p, then overall logical error probability pL that any
of the four encoded logical bits of information is corrupted scales as p2, which is
much smaller than p when p is small. Although this pioneer code is now 70 years
old, it is a good illustration of the working principles of error correction: increasing
the number of “noisy” physical systems used to encode physical bits of information
provides an increased protection for a smaller number of logical bits of information.
However, this stronger protection comes at the price of adding complexity to the
actual physical system, the hardware, used to store the information. This trade-off
between the number of physical systems used to encode a fixed number of bits of
information and the resulting logical error probability is at the core of the theory of
error correction.

Further insights can be gained by inspecting how the protocol works in practice.
In addition to the four bits d1, d2, d3, d4, the data bits, one wishes to protect, three
additional bits p1, p2, p3, called the parity bits, are added. The encoding of the four
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logical bits into the seven physical bits is performed by setting the value of the three
parity bits to

p1 = d1 ⊕ d2 ⊕ d4

p2 = d1 ⊕ d3 ⊕ d4

p3 = d2 ⊕ d3 ⊕ d4

where ⊕ is the addition modulo 2 (the eXclusive OR operation in terms of Boolean
logic). Once the four data bits are encoded in the seven-bit string d1d2d3d4 p1 p2 p3,
they are protected against any single bit-flip acting on any of the seven bits, and
ready to undergo some error. The decoding of the four logical bits works as follows.
The first step is to determine if an error has occurred, and when it has, to identify it,
by forming the error syndrome s1s2s3 composed of the three following bits

s1 = p1 ⊕ d1 ⊕ d2 ⊕ d4

s2 = p2 ⊕ d1 ⊕ d3 ⊕ d4

s3 = p3 ⊕ d2 ⊕ d3 ⊕ d4.

By construction, one can check that when none of the seven bits suffered from a bit-
flip, the error syndrome is trivial s1s2s3 = 000. The code is successful in correcting
any single bit-flip error because each of the remaining 7 = 23 − 1 possible values of
the error syndrome points unambiguously to one of the seven possible single bit-flip
errors. This can be easily checked on the Venn diagram of the code depicted in Fig-
ure 1.2 as follows: when either one of the physical bit flips, say d1, the syndrome bits
s1 (parity of the bits contained in the blue circle) and s2 (green circle) flip, resulting in
the error syndrome s1s2s3 = 110. The error being unambiguously identified, it can
be corrected, and the four logical bits retrieved trivially by reading out the values of
the data bits d1, d2, d3 and d4.

The one-to-one correspondence between the possible errors that the code is de-
signed to correct and the possible error syndromes is a fundamental feature of the
theory of error correction. The Hamming(7,4) code fails to correct two bit-flips er-
rors because there are different combinations of two bit-flip errors that result in the
same error syndrome; for instance, the error syndrome 110 obtained when the d1 bit
flipped could also be caused by a combination of two bit-flips on the parity bits p1

and p2. However, if one renounces the ability to correct for single bit errors, then
the code can successfully detect when two errors have occurred, because there is no
combination of two errors that can produce the “no error” syndrome s1s2s3 = 000.
The Hamming(7,4) code is said to be a single-error correcting code or a two-error
detecting code.

The Hamming(7,4) is the ancestor of a more general class of linear error-
correcting code called the Hamming codes. More precisely, it can be extended to
encode k = 2r − r − 1 logical bits protected against any single bit-flip error using
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n = 2r − 1 physical bits for any integer r ≥ 2.

1.3.2 Quantum error correction

The theory of error correction proves that the error probability afflicting the infor-
mation encoded in a given physical system could be effectively suppressed by clev-
erly encoding the information in a larger physical system. An important theoreti-
cal question is whether this theory can be extended to quantum systems, in order
to actively suppress the quantum decoherence detrimental to building large-scale
quantum computers. Some features of quantum mechanics, however, need to be ad-
dressed carefully when adapting the theory of classical error correction to quantum
systems.

The first of these features, known as the no-cloning theorem, is that quantum in-
formation cannot be duplicated: there is no quantum operation E that can produce
the mapping

E [|ψ〉 ⊗ |φ〉] = |ψ〉 ⊗ |ψ〉

for an arbitrary state |ψ〉. This is actually a consequence of the linearity of quan-
tum mechanics: if such an operation existed, then cloning the superposition of two
arbitrary orthogonal states |ψ1〉, |ψ2〉 would produce the state

E [ 1√
2
(|ψ1〉+ |ψ2〉)⊗ |φ〉] = 1√

2
(E [|ψ1〉 ⊗ |φ〉] + E [|ψ2〉 ⊗ |φ〉])

= 1√
2
(|ψ1〉 ⊗ |ψ1〉+ |ψ2〉 ⊗ |ψ2〉)

6= 1√
2
(|ψ1〉+ |ψ2〉)⊗ 1√

2
(|ψ1〉+ |ψ2〉).

Thus, the design of a quantum error correcting code to protect quantum infor-
mation against decoherence cannot rely on some part of the quantum information
being duplicated.

The second feature, perhaps more subtle, is the back-action of a quantum mea-
surement on the system being measured. As illustrated by the example of the Ham-
ming(7,4) code, a crucial step when implementing a quantum error correcting is the
ability to measure error syndromes that reveal which errors occurred on the sys-
tem. This step requires extra care in the quantum case, as we have seen that the
direct measurement of a quantum state |ψ〉 = α|0〉+ β|1〉 in the computational basis
{|0〉, |1〉} actually destroys the information encoded in the complex numbers α and
β.

Fortunately, none of these features seem to pose a fundamental problem in de-
signing efficient quantum error correcting code. After all, the Hamming(7,4) code
requires neither cloning the data bits d1d2d3d4 nor directly measuring any of these
bits. Indeed, extra bits were added to probe the collective parity of the bits rather
than the value of the bit themselves, a principle that can be successfully translated
to the quantum world.



1.3. Theory of error correction 11

The last problem one faces when building a theory of quantum error correction
is the numbers of errors to deal with. Indeed, we argued that in the classical case,
any undesired physical process acting on a physical bit could only ever result in a
bit-flip error on the stored bit of data. Consequently, the error correcting code can
focus on detecting the effect of the physical process, the bit-flip, and on correcting
it. In the quantum case, a unitary physical process acting on the state of an isolated
qubit |ψ〉 can produce the state |ψ̃〉 = Uerr|ψ〉, where Uerr ∈U(2) is the resulting error
on the encoded bit of information and can be any unitary operator! Even more gen-
erally, the errors afflicting the qubit usually arise from undesired interactions with
its surrounding environment, entangling the state of the qubit with uncontrolled de-
grees of freedom. In this case, the state |ψ〉 of the qubit becomes mixed and the error
channel is described by a completely positive, trace preserving Kraus map E

ρ = |ψ〉〈ψ| →
error

ρ′ = E(ρ) = ∑
k

EkρE†
k

where the Kraus operators Ek, acting on the state space, satisfy ∑
k

E†
k Ek = 1. The task

may seem overwhelming: how can one design a code that unambiguously detect
and correct any single error, when there are now uncountable infinitely such errors?
In this case, the linearity of quantum mechanics and the quantum measurement
back-action actually play on our side as they give rise to the following discretiza-
tion of error channels theorem:

Theorem 2 (Discretization of error channels) Let R be a recovery operation for the er-
ror channel E described by the Kraus operators {Ek}, i.e for all ρ ∈ Ccode space

R ◦ E(ρ) = ρ.

where Ccode space is the subspace of the state space in which logical information is stored. Let
F be another error channel described by the Kraus operators {Fk}, such that every Fk can be
expressed as a linear combination of the {Ek}.

Then, the recovery mapR is a recovery operation of the error channel F .

Because of the linearity of quantum mechanics, any Kraus operator Ek is a linear
combination of some fixed basis operators, say the Pauli operators. Thus, the task
of designing a quantum error correcting code and the associated recovery operation
reduces to designing a code that can correct for every element of the Pauli basis.
Actually, because XZ = −iY, a code that can correct any two errors in the set {X, Z}
errors can also correct a single Y error.

A consequence of this theorem is that, without loss of generality on the quantum
channel describing the noise acting on the quantum bit, one can merely focus on the
ability for a quantum error correcting codes to correct for Pauli X, Y and Z errors.
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The X error, which is an uncontrolled swap of the computational states

X :|0〉 → |1〉
|1〉 → |0〉

is called the bit-flip error, to emphasize the classical analogy, while the Z error is
referred to as a phase-flip error, which is a “flip” of the sign of the relative phase (the
“coherence”) between the two computational states

Z : 1√
2
(|0〉+ |1〉)→ 1√

2
(|0〉 − |1〉)

1√
2
(|0〉 − |1〉)→ 1√

2
(|0〉+ |1〉)

and the Y error is a combination of both (a “bit and phase flip”).
Let us now introduce one of the simplest quantum error correcting code, the

9-qubit Shor code, not so much for its pedagogical simplicity as because it is the
rightful ancestor of the logical construction proposed in this manuscript. The 9-qubit
Shor code encodes a single logical quantum bit of information |ψ〉L = α|0〉L + β|1〉L,
where the L subscript emphasizes that this is a protected bit, using nine physical
qubits. In the 512-dimensional Hilbert space of the full nine qubits system, the two
computational states chosen as a basis are

|0〉L = 1
2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉),

|1〉L = 1
2
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉).

(1.1)

The two-dimensional subspace of the whole state space generated by the code words
|0〉L and |1〉L is called the code space. The detection of a single qubit X error on any
of the nine qubits is made by measuring the six operators Z1Z2, Z2Z3, Z4Z5, Z5Z6,
Z7Z8 and Z8Z9, where the subscripts refer to the qubit on which the Z operator
is measured. Importantly, the measurement of these operators does not disturb the
encoded information: in the absence of errors, each of the six measurement outcomes
will be +1 with unit probability and the state of the system after the measurements
will remain unchanged.

Suppose now that one of the qubits, say the first one, has been flipped. Since the
error X1 anti-commutes with Z1, the measurement outcome of the Z1Z2 measure-
ment will be -1, while the other five measurement outcome will be +1. Along the
same lines, one can check that any single qubit X error produces a pattern of mea-
surement outcome that allows to determine unambiguously which qubit flipped.

Similarly, any single phase-flip error Z can be detected by measurement the two
operators X1X2X3X4X5X6 and X4X5X6X7X8X9. One could legitimately object that
in this case, the measurement of these two operators can only produce four different
measurement records: (+1,+1), (+1,−1), (−1,+1) and (−1,−1), which does not
seem to be enough to label the 10 distinct scenarios (no error at all, or a single Z error
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on any of the nine qubits). Yet, one can observe that for the particular choice of the
computational states |0〉L and |1〉L, the Z errors work in triplets, that is, a Z error on
any of the first three qubit (say) produces the same effect

Zi(|000〉 ± |111〉)→ (|000〉 ∓ |111〉), i = 1, 2, 3.

In order to correct a Z error on any of the nine qubits, it suffices to learn in which
of the three triplets (1,2,3), (3,4,5) or (7,8,9) it has occurred, for which the four mea-
surement outcomes are enough. Here, we checked ‘by hand’ that any error in the set
{Xi, Zi}i was correctable by the 9-qubit Shor code. The intuition was that any two
different errors should result in two different measurement outcome patterns. This
general statement is summarized in the Knill-Laflamme condition for error correc-
tion:

Theorem 3 (Knill-Laflamme condition for error correction) Let Ccode space be the sub-
space of the state space encoding the logical information, Pc the projector onto Ccode space and
E an error channel described by the set of operators {Ek}. A recovery operationR correcting
E on Ccode space exists if, and only if

PcE†
i EjPc = αijPc

where α = (α)ij is a Hermitian matrix of complex numbers.

So far, we have only considered the use of error correction to protect a bit of
information against errors in time, in order to increase its lifetime. However, build-
ing a computing machine requires not only the ability to store the data reliably but
most importantly the ability to process it, that is, to perform operations on it. At
first glance, processing logical bits of information stored across a large number of
systems could be done by first decoding the bit, bringing back the information into
a single, small physical system, applying the required operations, and finally re-
encoding the processed data into the error correcting code to store it robustly until
it needs to be processed again. This strategy is effective if the decoding, processing,
and re-encoding steps can be performed sufficiently fast and reliably. This is usually
not the case, and the errors affecting the information while it is not protected will
be detrimental to large quantum computations. Fortunately, the theory of quantum
error correction establishes that the logical qubits can be processed without being
decoded first. Instead, logical operations are designed that act directly on the logical
bits without ever exposing the logical information to noise.

Consider the Pauli operator X, which exchanges the two computational states |0〉
and |1〉. For the 9-qubit Shor code, a logical Pauli XL operator is an encoded version
of the X operator that swaps the two logical states |0〉L and |1〉L in equation (1.1),
while a logical ZL operator should swap the two opposite phase superposition states

1√
2
(|0〉L ± |1〉L). One can check by looking at the logical computational states that a

logical XL operation (resp. ZL) is realized by applying Pauli Z operator (resp. Pauli
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X) to all the nine physical qubits

XL = Z1Z2Z3Z4Z5Z6Z7Z8Z9

ZL = X1X2X3X4X5X6X7X8X9.

A “legitimate” logical operator is any operator that acts on the code space as the
unencoded version would, but it does not matter how this operator acts on the rest
of the state space. Because of this gauge degree of freedom, the choice of the logical
operators is not unique, and another possible choice for the logical operators of the
9-qubit Shor code is

XL = Z1Z4Z7

ZL = X1X2X3.

The minimal number of physical qubits which need to be acted upon to imple-
ment a non-trivial logical operator is called the code distance. The distance of the
9-qubit Shor code is three, so the second choice of XL and ZL is actually the most
economic one. A code that encodes k logical bits of information into n physical bits,
of distance d, is denoted [n, k, d] code. Such a code can, at least in theory, detect up to
d− 1 errors but no more. Indeed, suppose that d random errors occur and unluckily
exactly form a logical operator. Then, the effect of these errors leaves the code space
globally invariant and thus cannot be detected. If, additionally, we ask that the code
be able to not only detect but correct for errors, then a [n, k, d] can only correct up
to t = (d− 1)/2 errors, that is to say, the errors that can be corrected are those that
have not been able to close half the distance between two valid code words.

An important remark is in order. Similarly to the classical [7, 4, 3] Hamming(7,4)
code, the [9, 1, 3] 9-qubit Shor code is a single-error correcting code, also called a
first-order error correcting code, in that it can correct any single qubit error occurring
on any of the 9 qubits of the code. Assuming that the errors on the physical bits or
qubits are independent and happen with equal physical error probability p, this code
produces a logical bit of information for which the error rate scales as pL ∝ p2, since
the combination of at least two (independent) errors need to happen for the logical
bit to be corrupted. In the classical case, given the already extremely low physical er-
ror probability p that can be achieved, the resulting logical error probability arising
from first-order error correction pL is sufficiently low for most practical purposes.
Thus, the focus of the generalization of such codes is rather the “encoding rate” of
the code, the ratio between the number of logical bits of information encoded to the
number of physical bits required. As previously mentioned, the family of classical
first-order Hamming codes can encode k = 2r − r − 1 logical bits using n = 2r − 1
physical bits, achieving an encoding rate R = 1− r

2r−1 which is actually optimal for
a first order error correcting code. The focus of the generalization of quantum error
correcting codes is different: rather, the goal is to improve the order of the code, that
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is the number of independent errors that it can correct. Indeed, a very rough estima-
tion of the physical error probability affecting a physical quantum bit of information
over a relevant time-scale is typically in the range 10−2 − 10−3. While these num-
bers are impressively low, resulting from the extraordinary research that has been
conducted over the past 20 years in the development of new materials, qubit de-
sign, quantum control, readout techniques, etc., there are still orders of magnitude
higher than the typical error probabilities required for large-scale quantum compu-
tation, typically in the 10−14 − 10−15 range. The design of quantum error correcting
codes that can detect and correct many more than one single error is thus essential
to bridge the gap between the actual state of experimental research and the required
robustness to perform useful quantum computations.

FIGURE 1.3: Layout of the [49,1,7] Bacon-Shor code. The 49 physical qubits (black
dots) are arranged in a 7× 7 lattice. Single qubit logical operators XL and ZL (red
and blue) are built with products of physical Z and X operator in a column and a
row. Errors are detected by measuring neighbouring Z operators and product of

neighbouring rows of X operators (in green).

The natural extension of the [9, 1, 3] Shor code was developed by Bacon [14],
now known as the family of Bacon-Shor codes. It comes from the observation that
the structure of the Shor code is based on the combination of two first order repetition
codes. The inner repetition code is designed to protect against bit-flips, and the code
words are

|0〉L = |000〉
|1〉L = |111〉.

Such a code can correct a bit-flip on any of the three qubits, but it cannot correct a
single phase-flip. Even worse, because any single phase-flip error Zi is actually a
valid logical ZL operator, the probability that the logical bit of information suffers
from a logical phase-flip error is actually increased. The outer repetition code is
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designed precisely to protect against phase-flips. Its code words are

|+〉L = |+++〉
|−〉L = | − −−〉.

It is actually exactly the same code where the computational states |0〉 and |1〉 have
been replaced by there in-phase and out-of-phase superpositions |±〉 = 1√

2
(|0〉 ±

|1〉), sometimes referred to as the dual basis. The 9-qubit Bacon-Shor code arise
from the concatenation of these two codes: each of the three physical qubits of the
outer code is replaced by one logical qubit of the inner code, itself composed of
three physical bits. By construction, the resulting code protects against any single X,
Y or Z error, and by Theorem 2 against all single qubit errors. Having exposed the
structure of the Shor code, its generalisation to an arbitrary distance family of codes
follows straightforwardly by concatenating a distance n repetition code protecting
against bit-flips with a distance n repetition code in the dual basis, protecting against
phase-flips. The code words of the resulting (symmetric) [n2, 1, n] Bacon-Shor code
are

|0〉L =
√

2
−n

(|0〉⊗n + |1〉⊗n)⊗n

|1〉L =
√

2
−n

(|0〉⊗n − |1〉⊗n)⊗n.

When the n2 physical qubits are arranged in a 2D lattice as depicted in Figure
1.3, where the physical qubits in a row form a logical qubit of the inner repetition
code, a logical XL operator of minimum weight (in red) can be implemented by
applying physical Z to all the physical qubits in a column. Symmetrically, a logical
ZL operator (in blue) can be formed with the product of the X operator in a row.
The detection of the errors is achieved by measuring pairs of neighbouring Z
operators in the rows and pairs of neighbouring X rows (in green). The Bacon-
Shor code, regarded as a strict concatenation of two repetition code, requires the
joint measurement of all the X operators in two neighbouring rows, which is an
undesired feature. Fortunately, it is unnecessary. Indeed, as detailed in [14], [101],
the Bacon-Shor code belong to the class of subsystem codes and it is enough to
measure pairs of neighbouring X in the same column to reconstruct the value of
the X operators in two neighbouring rows. Even though these neighbouring X
operators do no longer commute with the code words, their measurement does not
affect the logical encoded information but rather, just induce a change of basis for
the logical code words.

For the purpose of appreciating the error correction construction proposed in this
work, the theoretical material on error correcting codes presented so far is probably
sufficient, given the simplicity of the codes that we intend to use. Nonetheless, be-
fore we move on to the challenges of the practical implementation of these codes,
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and the path that proposed here to tackle them, let us pause for a moment to intro-
duce the stabilizer formalism, developed by Gottesman [54], to which the Bacon-Shor
codes belong.

The stabilizer formalism, which was developed as an elegant mean to describe
and analyse stabilizer codes, is most easily explained with two level systems (qubits),
although they apply to a larger class of quantum systems. The description of a sta-
bilizer code that encodes k logical qubits into n physical qubits is specified by the
stabilizer group S , an abelian subgroup of the n-qubit Pauli group generated by n− k
independent Pauli operators. In the stabilizer formalism, an operator U is said to
stabilize a quantum state |ψ〉 if |ψ〉 is a +1 eigenstate of U

U|ψ〉 = |ψ〉.

The code space of a stabilizer code is defined as the set of states that are stabilized
by every element in the stabilizer group S , called the stabilizers. In other words, the
code space is the common +1 eigenspace of all the stabilizers. Note that since −I
has no +1 eigenvector, it is necessary that −I /∈ S for the code to be non-trivial, and
since S is a group, the Pauli operators in S can only have ±1 (and not ±i) global
phases. Consider a minimal generating set of the group S , composed of n− k Pauli
operators. The two eigenspaces associated to the +1 and -1 eigenvalues of every
Pauli operator in this set are necessarily of equal dimension 2n−1, “splitting” the full
Hilbert space of the n-qubit system in two. As the stabilizer group is abelian, the
generators can be diagonalized in the same basis and the common +1 eigenspace
of the generating set, the code space, is a subspace of dimension 2n/2n−k = 2k,
encoding k logical qubits.

The set of stabilizers S is not just a nice theoretical way to describe the code
space, it is actually the set of operators that ought to be measured to perform error
correction (a generating subset of the stabilizer group). The stabilizers are Hermi-
tian operators, so they can be measured, and since they all commute, they can be
measured simultaneously. Whenever the state of the system is in the code space, the
measurement of the stabilizers produces the {+1, ...,+1} outcome, without disturb-
ing the state of the system. Consider now the effect of a Pauli error E on a logical
states lying in the code space |ψ〉L ∈ C. If the error E belongs to the stabilizer group,
then by definition it leaves the state unchanged E|ψ〉L = |ψ〉L so it does not need to
be detected nor corrected. If it does not belong to the stabilizer group, there are two
cases to consider. Since E is a Pauli operator, it either commutes or anti-commutes
with all the stabilizers. If it anti-commutes with a stabilizer S, then the state E|ψL〉 is
a -1 eigenstate of S

S(E|ψ〉L) = −ES|ψL〉 = −(E|ψ〉L)

such that the measurement of the stabilizers will produce a -1 outcome for every
stabilizer that anti-commutes with the error. The Knill-Laflamme condition for
error correction, in this case, states that a correctable set of errors is such that every
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error in the set produces a different pattern of {+1,−1} outcomes, allowing to
uniquely identify the error that occurred. If, on the other hand, the error E belongs
to the set N(S) − S , where N(S) is the normalizer of S , i.e the set of operators
that commutes with S (an operator commutes with a set of operators if it leaves it
globally invariant), then the error E has a non-trivial effect on the logical state |ψ〉L
while being undetectable. The operators in the set N(S) − S are actually logical
operators, as allow to manipulate the encoded information in a non-trivial way (see
subsection 1.3.3).

Operating a quantum error correcting code requires the ability to measure the
value of the stabilizer operators that reveal the errors. Typically, these operators are
multi-qubit Pauli operators acting on the data qubits (the formalism can actually
be extended to non-Pauli stabilizer operators as we will see later in this thesis, see
Chapter 3). A Pauli stabilizer operator U (with real global phase) can be measured
in a quantum non-demolition (QND) way using an additional ancilla qubit and a
controlled-U operation, as depicted in Figure 1.4.

FIGURE 1.4: a) Quantum non-demolition measurement of the stabilizer operator
U using an ancilla qubit. b) The required multi-qubit controlled-U operation can
be implemented using a sequence of two-qubit gates. Here, the measurement of
a X1X2X3X4 operator on the state |ψ〉 is performed using four CNOT gates. c)
Propagation of a single X error on the ancilla qubit to two X errors in the block of

qubits by propagation through the measurement circuit.

The controlled-U operation applied between the ancilla qubit in the state |+〉 and
the block of qubits in the state |ψ〉 effectively maps the value of the stabilizer U on
the ancilla qubit

CS(|+〉 ⊗ |ψ〉) = 1√
2
(|0〉 ⊗ |ψ〉+ |1〉 ⊗U|ψ〉)

= 1√
2
(|+〉 ⊗ I + U

2
|ψ〉+ |−〉 ⊗ I −U

2
|ψ〉)

such that the measurement of the X operator of the ancilla qubit reveals the value
of the U operator, and projects the state of the block of qubits into the corresponding
eigenspace (as I±U

2 is the projector on the±1 eigenspace). The stabilizer operators U
typically act on at least two qubits, and most often on four or six qubits. In this case,
one may worry that the required controlled-U operation required to implement a
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QND measurement is too complex to engineer, but it can be realized by using a
sequence of lower weight gates. For instance, in Figure 1.4-b), we depict the usual
way one would measure the weight-4 stabilizer operator U = X1X2X3X4 using a
sequence of four weight-2 CNOT gates rather than a single weight-five operation
controlled-X1X2X3X4.

The measurement circuit depicted in Figure 1.4-c) allows us to discuss in detail a
fundamental issue that we will deal with throughout the whole of this work, which
is that of fault-tolerance. The foundational assumption behind the design of error
correcting code is that the errors of the different physical components are indepen-
dent, such that errors of high weight require the independent failure of many of
these components and, consequently, occur with a very low probability. However,
this assumption has no reason to hold when gates are applied between different
physical components, because these gates may copy in a deterministic manner errors
from a component to another one, thus increasing the probability of having errors
of high weight. To illustrate this, consider for instance the measurement circuit of
figure 1.4-b), and suppose that the ancilla qubit undergoes some X error after the
two first CNOT gates have been executed as in c). Because the controlled-X gate
consists in applying a X gate to the target conditioned on the control qubit being
in the |1〉 state, an X error flipping the state of the control qubit will result in the X
gate being applied erroneously (or not applied erroneously), such that in either case
the target qubit also suffers from an X error after the CNOT gate is executed. Thus,
because the stabilizer measurement circuit is built in such a way that the ancilla
qubit interacts with more than one qubit of the encoded block, the probability of
high weight errors becomes that of a single error. A circuit that is designed in such
a way that it does not increase the weights of the errors beyond what is correctable
by the code is called fault-tolerant.

In the early days of quantum error correction, several modifications of the mea-
surement circuit of Figure 1.4 were proposed to make it fault-tolerant at the cost of
using more ancillae qubits [110, 113, 72]. The intuition behind these constructions is
that the ancilla block of qubits should reproduce the effect of a single ancilla qubit,
but in such a way that no component of the ancilla block interact with more than a
single qubit of the system, to prevent the ability of an error to spread to more than
one qubit in the system. The “Steane-style” error correction [113] is only applicable
to the codes for which the stabilizers are either composed of X operators exclusively,
or of Z operators, called the CSS codes (after their inventors, Calderbank, Shor and
Steane). The 9-qubit Shor code introduced above is a CSS code, for which the sta-
bilizers are either tensor products of six X operators or tensor products of two Z
operators. For these codes, Steane proposed a fault-tolerant method, depicted in
Figure 1.5, to extract all of the information about the Z errors (or the X errors) in a
single step, rather than measuring all the stabilizers separately. For the 9-qubit Shor
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code, the information about the Z errors is extracted using a 9-qubit ancilla block
prepared in the specific state |0〉L. A round of nine CNOT gates is applied in a one-
to-one correspondence (transversally) between this ancilla block and the qubits of
the Shor code. Importantly, because the ancilla block is prepared in the |0〉L state
and the CNOT gate is transversal for any CSS code, the round of CNOT gates has
no effect on the logical encoded state |ψ〉L. Thus, the only effect of these gates is to
“copy” the Z errors from the logical encoded block to the ancilla block, where they
are revealed by the value of the measurement of all the ancilla qubits.

FIGURE 1.5: Circuit to extract information about the Z errors using Steane-style
error correction for the 9-qubit Shor code.

In this work, however, the propagation of errors through the stabilizer mea-
surement circuit will not be a concern (but it will be a major issue to address for
other circuits that we design in Chapter 3). Let us assume for now that one has
access to a qubit that only suffers from Z errors, and the motivations behind this
choice will be explained later in this introduction. The detection of the Z errors
on such qubits is realized with X-type stabilizers (that anti-commutes with the Z
errors, while Z-type stabilizers would be blind to such errors). The measurement of
X-type stabilizers as in Figure 1.4 is realized with a sequence of CNOT gates where
the control qubit is the ancilla and the target qubits are those of the stabilizer code.
While a CNOT gate propagates an X error from the control to the target qubit (and a
Z error from the target qubit to the control, which is actually the mechanism behind
an X-type stabilizer measurement), it does not propagate Z errors of the control to
the target. Thus, if the ancilla qubit has strictly no X errors, then the circuits of 1.4
are fault-tolerant.

A second important issue arising from the fact that the ancilla qubits and
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the measurement circuits are themselves prone to errors is that the value of the
syndrome measurement is also subject to errors. Since these measurement outcomes
are used to determine which errors have arisen, and hence which correction to
apply, an error in a stabilizer measurement outcome may lead to a wrong correction
being applied, thus introducing additional errors. For this reason, it is usually
necessary to repeat the stabilizer measurements a certain number of times. Then,
one needs to design a procedure to interpret all of the results of the measurement, to
decide which correction needs to be applied. For instance, a typical procedure could
consist in repeating the stabilizer measurement until d consecutive measurement
outcomes agree. Indeed, by choosing the number d large enough (typically, linear
in the code distance, but the precise number depends on the error model describing
the ancilla), the probability that all of these measurements were wrong (and hence,
that one interprets badly the outcome of the measurement, leading to a possibly
high weight error on the system after correction) can be made sufficiently small
by picking a large enough d. However, such procedures are not very practical, as
when the distance of the code is increased, the probability to get such consecutive
measurement agreement becomes very unlikely. Better procedures to interpret the
stabilizer measurement outcomes, known as decoding procedures, can be designed.
We provide in Chapter 4 an introduction to the most popular of these methods for
stabilizer codes, based on mapping the problem of finding the most likely pattern of
errors given an observed sequence of measurement outcomes to a problem in graph
theory called minimum weight perfect matching.

1.3.3 Protected logical Gates

So far, we have discussed how quantum information could be protected from errors
by encoding it into quantum error correcting code, in order to extend its lifetime. A
logical qubit in which information is stored is called a quantum memory. However,
operating a quantum computer requires not only the ability to retain faithfully
the information, but most importantly to process it, that is to actually perform
computational operations on this information. Actually, the most important metric
is not so much the absolute value of the error probability afflicting the qubits, but
rather, the typical number of operations that one can perform on these qubits before
the inevitable errors destroy the information being processed. In this regard, the role
of the extra protection provided by error correcting codes is to lower the probability
of errors, thus effectively extending the lifetime of the encoded information, such
that (typically long) quantum algorithms may be run within the lifetime of quantum
information.

Most importantly, we now argue that information processing can be performed
directly on the logical encoded information, without re-introducing errors with
high probability. How this can be done is not so trivial: as the information is
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encoded in highly non-local entangled state, it may seem that manipulating this
information might require to first decode it, by bringing it back into a smaller
quantum system, before applying some processing operation before re-encoding.
However, doing so exposes the information to errors with high probability during
the time it is not encoded. Worse, if the operation itself is noisy, then one hardly
sees how the good level of protection provided by the code could be maintained
during a computation. Fortunately, in a similar way that quantum error correcting
codes yield very good logical qubits from many noisy physical qubits, logical
quantum gates of arbitrarily high fidelity acting at the level of the logical qubit can
be constructed from many noisy physical gates. Such logical gates can be used to
act on the encoded information without requiring to decode/re-encode it. Such
a use of error correction is somewhat new: indeed, classical error correction has
found applications to redundantly encode information that needs to be sent through
very noisy communication channels (typical applications include the internet,
deep-space telecommunications, satellite broadcasting, etc.), but the typical gates
error probabilities in classical hardware are such that classical computation does
not require the use of logical encoded gates. Quantum gates, on the other hand,
suffer from levels of noise that are typically of order 10−2 to 10−4 in state of the art
experiment, far too noisy for the demanding requirements of large-scale quantum
computation (say, 10−10 to 10−15 depending on the algorithm), such that using quan-
tum error correction to improve the quality of the gates themselves seems inevitable.

When describing the way error correction works, we have implicitly assumed
a non-trivial fact to be true. As emphasized previously, the basic principle of error
correction is to increase the redundancy of the encoding of the logical information
such that a higher number of independent errors are required to destroy it. Roughly
speaking, this strategy can only be helpful if the amount of protection gained by
using more physical systems surpasses the amount of errors added by using more
physical systems. Indeed, this is only true if the basic components of the physical
system are themselves suffering from errors with sufficiently small probability. This
key result at the foundation of the theory of quantum error correction is known as
the accuracy threshold [2, 73, 70]. We recall the theorem as stated in [91]

Theorem 4 (Threshold theorem for quantum computation) A quantum circuit on n
qubits and containing p(n) gates may be simulated with probability of error at most ε using
O(logc(p(n)/ε)p(n)) gates (for some constant c) on hardware whose components fail with
probability at most p, provided p is below some constant threshold, p < pth, and given
reasonable assumptions about the noise in the underlying hardware.

The value of the threshold error probability pth is actually a single number (as
is usual in the literature) only when one assumes that all the error models for the
various operations in the circuit can be expressed in terms of the same error prob-
ability p. For instance, a typical error model that is often studied is the depolarizing
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error model where all components fail with equal probability p. In general, however,
there could be n independent parameters describing error models for different types
of operations in the circuit (for instance, the failure probability of an idle qubit could
be much lower than that of a qubit that is acted upon, etc.), in which case the thresh-
old is not given by a single number but rather by a hyperplane in the n-dimensional
parameter space.

The reasonable assumptions about the noise in the underlying hardware on which
the threshold theorem rely are actually a crucial hypothesis of the theorem, and the
value of the threshold (when it is given by a single number) is highly dependent on
these assumptions. Some of the most basic assumptions that typically need to hold
true to implement a quantum error correcting code are ([33])

• Constant error rate. The strength of the noise acting on the qubits must be
independent of the number of qubits in the computer, otherwise there cannot
be a threshold.

• Weakly correlated errors. Errors must not be too strongly correlated, either
in space or in time, as fault-tolerant procedures fail if errors are allowed to act
simultaneously on many qubits of the same code block.

• Parallel operation. Quantum operations that act on different parts of the quan-
tum computer can be performed at the same time.

• Reusable memory. Ancilla qubits can be reinitialized during the computation.
The entropy introduced by the errors into the computer are transferred into
the ancilla qubits, thus the ability to “flush out” this entropy by re-initializing
the ancilla to provide fresh ancilla is essential.

• Fast and accurate classical processing. Compared to the speed and accuracy
of the quantum computer, the speed and reliability of classical computations
can be assumed to be infinitely fast and perfect. In this case, it is more ad-
vantageous to defer any computation that does not need to be quantum to the
classical hardware, which includes e.g the decoding of the syndrome measure-
ments to decide which correction to apply.

The above assumptions are usually required to hold true to perform arbitrarily
long quantum computations, but they are not enough. Indeed, one also needs to be
able to implement a universal set of fault-tolerant gates. The universality of the set
of logical gates is required to implement arbitrary quantum algorithms. The fault-
tolerance is required to implement gates with arbitrary accuracy, such that the com-
putation can be made arbitrarily long. The design of a set of logical gates that is both
universal and fault-tolerant, however, is challenging. As we have seen on the par-
ticular examples of the stabilizer measurement circuits, the major issue to overcome
when designing circuits is that errors can propagate through these circuits, thus pro-
ducing high weight errors with high probability, when the protection provided by
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the code precisely relies on the fact that these high weight errors are expected to
occur with extremely low probability. In this regard, one might wonder whether a
universal set of gates could be implemented on a code using only transversal cir-
cuits, as by construction, these circuits do not increase the weight of errors and are
thus fault-tolerant. Quite unfortunately, such a construction has been found to be
impossible, as stated by the Eastin-Knill theorem [37].

Theorem 5 (Eastin-Knill theorem) For any nontrivial local-error-detecting quantum
code, the set of logical unitary product operators is not universal.

For many quantum codes, the encoded version of the gates in the Clifford group
can be implemented transversally on the code, which, by virtue of the Eastin-Knill
theorem, prevents non-Clifford gates to be implemented transversally. Yet, the
fault-tolerant but non-transversal construction of a non-Clifford gate is possible
but is usually more expensive in terms of physical resources than the transversal
gates. Thus, most of the focus of such constructions has been devoted to find the
most efficient strategies to reduce the associated overhead. A long standing leading
strategy inspired from gate teleportation techniques [55] is to prepare encoded
versions of magic states and to consume these states as a non-Clifford resource
during the computation [19]. In these techniques, the magic state can be injected in
the code using logical Clifford gates to produce a logical non-Clifford gate and the
fidelity of this non-Clifford gate is limited by the fidelity of the preparation of the
magic state. Thus, the bottleneck of such techniques is usually to prepare very high
fidelity magic states, which can be achieved e.g using a state distillation protocol, that
produces a high fidelity state using many copies of low fidelity states. The cost of
these techniques, initially very expensive in terms of hardware resources, has been
greatly reduced thanks to many years of active research [43, 36, 35, 95, 61, 52, 84].
To this day, this approach to work around the Eastin-Knill theorem is undeniably
regarded as the most promising, and many schemes, including the surface codes,
rely on it.

In order to avoid magic state preparation, distillation and injection, and the
costly overhead associated with it, another approach is to combine different codes
that have different sets of transversal gates that might complete one another. An
interesting example of this are the color codes: 2D color codes (including the 7-qubit
Steane code) have transversal Clifford gates, while 3D color codes (including the
15-qubit Reed-Muller code) have a transversal non-Clifford gate, the T gate (but
do not have a transversal Hadamard gate). Constructions that attempt to exploit
these facts include concatenating these two codes [65], or combine 2D and 3D
color codes in an architecture where a 2D color code would be augmented with 3D
T-gate factories where logical qubits could undergo a T gate [17]. More generally,
subsystems codes make it possible to deform the encoding in such a way that the
information remains protected from errors but the set of allowed transversal gates
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changes (see e.g the gauge color codes [18, 22, 76, 99] and other code-switching
techniques [10]).

Along the same lines, a recent proposal proposed to use code deformation
techniques to directly implement a fault-tolerant non-Clifford gate on the surface
code [21]. Other strategies focus on circuits that are not transversal, yet can still
be made fault-tolerant, such as the pieceable fault-tolerant EC where intermediate
rounds of error correction are added in well-chosen locations of the circuit [130,
116], or the flag fault-tolerant EC where additional “flag” ancilla qubits are used
to gain more information about the propagating errors [27, 24]. Interestingly, the
use of flag qubits found applications in the preparation of high fidelity magic states
without the need for state distillation, see e.g the preparation of H-type magic states
on the Steane code and the color codes [25, 26].

The absolute value of the accuracy threshold is of great practical importance as
it sets a target goal for the real-world implementation of quantum error correction.
The first estimates of the accuracy threshold were obtained via an analytical analy-
sis of the 7-qubit Steane code concatenated with itself, which produced thresholds
about pth = 10−6 [69, 2, 74, 102]. These very low estimates of the threshold seemed to
put error correction out of reach of experiments, but motivated the constructions of
codes with higher thresholds. Indeed, it was discovered soon afterwards that some
topological error correcting codes, such as surfaces codes [70], have much higher
thresholds [33]: a rigorous lower bound around 10−4 can be proved and numeri-
cal simulations establish that the actual value of the threshold is around 10−2. The
2D surfaces codes and related topological error correcting codes like the color codes
still remain to this day the codes with the highest thresholds known, and the pre-
cise value of the threshold for these codes under many different sets of relevant
assumptions and error models have been the subject of intensive research (see e.g
the selected set of studies [105, 46, 41]). While this value remains experimentally
challenging, it is now within reach of state of the art experiments (see e.g the recent
demonstration of the 9-qubit Bacon-Shor code with trapped-ions [39]).

1.3.4 Bosonic qubits

From the first demonstration of the Cooper pair box in the early 2000s with a typi-
cal lifetime of a few nanoseconds, to the first implementation of the transmon with
a lifetime of a few microseconds in 2007, and in the millisecond range by 2014, the
quality of the superconducting qubits has been improved by over five orders of mag-
nitude over the past two decades! The field of superconducting qubits is now very
close to meet the demanding requirements of quantum error correcting codes, but
the construction of a useful error correcting code will require that the lifetime prop-
erties of the qubit are actually well below the required threshold. Indeed, an error
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correcting code made with qubits that are just “good enough” has to use an over-
whelming number of these qubits, while the implementation of the same code with
qubits that are one or two orders of magnitude longer lived makes the required size
of the code much more realistic.

In “conventional” qubits, the quantum bit of information is stored in a strictly
two level quantum system, like the spin of an electron. In the circuit quantum elec-
trodynamics (cQED) framework, the two states used to encode a qubit are usually
the two levels of lowest energy of a quantum anharmonic oscillator. The quantum
harmonic oscillator (QHO) is the quantum version of the classical harmonic oscilla-
tor, implemented in the cQED framework by a LC circuit described by the Hamilto-
nian

Ĥ = 4ECn̂2 + 1
2 ELφ̂2 (1.2)

where EC = e2/(2C) is the charging energy, EL = (φ0/2π)2/L the inductive
energy and φ0 = h/(2e) the superconducting magnetic flux quantum. This Hamil-
tonian can be re-written using the “ladder operators” â and â†, also called the anni-
hilation and creation operators

Ĥ = h̄ω(â† â + 1
2 )

defined as

â = 1
2 (

φ̂

φzpf
− i

n̂
nzpf

)

â† = 1
2 (

φ̂

φzpf
+ i

n̂
nzpf

)

where φzpf = [2EC/EL]
1/4, nzpf = [EL/32EC]

1/4 are the zero-point fluctuations of
the phase and charge variables, and ω = 1/

√
LC is the QHO’s frequency. This

Hamiltonian is diagonal in the Fock basis, also called the photon number basis
{|n〉}n∈N

Ĥ|n〉 = En|n〉 = h̄ω(n + 1
2 )|n〉.

The fact that the eigenvalues of Ĥ are equally spaced, En − En−1 = h̄ω makes the
use of the two lowest levels of the QHO a bad candidate for storing a quantum bit
of information, as the transition between the |0〉 and |1〉 states cannot be addressed
individually without addressing all the transitions between higher energy states |n−
1〉 and |n〉. This can be fixed by replacing the linear inductance of the LC oscillator
by a Josephson junction, a superconducting circuit element playing the role of a loss-
less non-linear inductor.

Because of this non-linearity, the oscillator becomes anharmonic and its energy
levels are no longer evenly spaced. When the anharmonicity α, defined as the
difference between the transition frequencies of the ground to first excited state and
first to second excited state is sufficiently large compared to the transition frequency,
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the two states {|0〉, |1〉} can be selectively addressed and be the recipient of a qubit.
This general recipe has been successfully used to father the so-called transmon qubit,
which is undeniably the most popular superconducting qubit up to this day, as well
as a family of superconducting qubits including the flux qubit, the fluxonium qubit,
and others, described in the recent reviews [75, 71].

FIGURE 1.6: (a) Circuit representation of the LC oscillator (b) The energy spectrum
of the QHO as a function of the superconducting phase φ̂ across the inductor.

A different strategy, that we follow in this work, is to rely instead on bosonic
qubits [29]. A bosonic qubit is stored using all of the infinite dimensional Hilbert
space of the QHO. The choice of the computational basis that encodes the quantum
information is referred to as the bosonic code. There are three main advantages to this
approach. First, the use of an infinite dimensional Hilbert space of a single quan-
tum systems provides a large “quantum space” to protect the information but also
to perform operations, with a very “compact” hardware. The property, named hard-
ware efficiency, is a key ingredient in the building of large-scale architectures. The
second advantage is the intrinsic long lifetimes of the cavity modes that are used for
the bosonic qubits. It is hoped that the bosonic qubit will be able to improve the cur-
rent lifetimes over more conventional two-level systems and thus prove to be better
building blocks for quantum error correcting codes. Last, the largely dominant er-
ror channel affecting bosonic qubits is photon loss. Since there is mostly a single
error channel, designing bosonic qubits that are robust against this particular error
is perhaps simpler and could prove to be enough to build long-lived bosonic qubits.

The encoding of the quantum bit of information into the two lowest levels of an
anharmonic quantum oscillator, |0〉L = |0〉, |1〉L = |1〉 provides no protection against
photon loss. In this case, the single loss of a photon, described by the annihilation
operator â, destroys the encoded bit of information

â|ψL〉 = â(α|0〉L + β|1〉L) ∝ |0〉L.
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such that the rate of loss of the encoded information will be essentially the same as
the bare rate of single photon loss κ of the oscillator. The use of multi-photonic states
of the QHO as a computational basis is precisely to increase the robustness to pho-
ton loss errors. Many bosonic encodings have been proposed to achieve this, with
particular focus on their robustness against photon loss errors, and against thermal
excitations or dephasing errors. A thorough review of this approach is proposed in
[66].

The kitten code, realized experimentally in [64], encodes a quantum bit of infor-
mation using the two computational states defined in the Fock basis as

|0〉L =
1√
2
(|0〉+ |4〉)

|1〉L = |2〉.

Note that the code space is supported on Fock states with an even number of pho-
tons, in order to protect the bit of information against the loss of a single photon â.
Such an event is detected by the measurement of the parity of the number of pho-
tons operator P̂ = (−1)â† â, which takes the value +1 (resp. −1) on any state in the
span of {|2n〉} (resp. {|2n + 1〉}). Importantly, the two computational states have
the same average number of photon n̄ = 〈0|L â† â|0〉L = 〈1|L â† â|1〉L = 2, a property
that needs to be fulfilled to ensure that the logical information is not distorted upon
the loss of a photon. Indeed, the logical state |ψ〉L = α|0〉L + β|1〉L evolves under a
single photon loss as

|ψ〉L â→ â|ψ〉L√
〈ψ|L â† â|ψ〉L

=
1√
2
(
√

2α|3〉+
√

2β|1〉) = α|3〉+ β|1〉

and the code words can be restored without losing the quantum bit of information
α, β.

By observing that the kitten code cannot protect against the loss of two photons
â2 because only a single level separates the code words in the Fock space, the family
of binomial codes was developed in [86] to protect against a larger set of errors con-
taining up to L photon loss errors â, G photon gain â† and D dephasing errors â† â
by using a S = L + G spacing in the Fock space. The code words are given by

|W↑/↓〉 =
1

2N

[0,N+1]

∑
p even/odd

√(
p

N + 1

)
|p(S + 1)〉.

where N = max(L, G, 2D) is called the maximum order. The choice of the bino-
mial coefficients after which the code is named ensures that all the first l moments,
l ≤ max(L, G) moments of the number operator are equal for the two logical code
words 〈W↑|(â† â)l |W↑〉 = 〈W↓|(â† â)l |W↓〉. The error detection of this extended set of
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correctable errors requires the measurement of a “generalized photon number par-
ity”, the photon number modulo S + 1.

The binomial code belongs to the general class of rotation-symmetric codes [58]
that includes all the codes that are invariant under a discrete rotation in phase space
described by the discrete rotation operator

R̂N = ei(2π/N)â† â

where the discrete number N is the order of the rotation symmetry of the code. A
general recipe to construct an order-N bosonic rotation code is to pick a certain state
|Θ〉 called the primitive of the code and to form the two computational states by
symmetrization

|0〉L =
1√N0

2N−1

∑
m=0

ei(mπ/N)â† â|Θ〉

|1〉L =
1√N1

2N−1

∑
m=0

(−1)mei(mπ/N)â† â|Θ〉

where the primitive |Θ〉 can be any state that has support on at least one of both
the |2kN〉 and the |(2k + 1)N〉 Fock states for the code words to be non-trivial. The
protection provided by these codes can be appreciated in terms of the number dis-
tance dn = N that corresponds to the distance between the code words in the Fock
space, and thus quantifies the maximum number of photon loss errors that can be
detected âk with k < dn, and in terms of the rotational distance dθ = π/N that
(roughly speaking) quantifies the maximum angle θ of a detectable rotation error of
the form eiθ â† â.

Although the particular choice of the discretization of errors does not affect a
bosonic code error correcting capacity, the intuition of a design of a bosonic code
depends much on the form of the error model considered. The codes we have seen
so far were thought to protect against errors expressed in terms of multiple photon
loss âk, photon gain â†k or dephasing (â† â)k errors. Another model to represent
the errors of an imperfect QHO is to express them in terms of shifts of the values
of the canonical position operator q̂ = (â + â†)/

√
2 and momentum operator p̂ =

(â − â†)/i
√

2 of the QHO. One of the earliest bosonic encodings [56], named the
GKP code as a reference to its authors Gottesman, Kitaev and Preskill, is precisely
crafted to protect against such shifts. The “ideal” code words, sometimes referred to
as the code words of the perfect GKP code, are given by a coherent sum of an infinite
number of position eigenstates

|0〉L =
+∞

∑
s=−∞

|q = α2s〉

|1〉L =
+∞

∑
s=−∞

|q = α(1 + 2s)〉
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where q̂|q = q〉 = q|q = q〉 is the eigenstate of the position operator with eigen-
value q and α ∈ R∗+ is a free parameter that can be varied to tailor the code asymme-
try. The dual basis states |±〉L = (|0〉L ± |1〉L)/

√
2 are then given by infinite sums of

momentum eigenstates

|+〉L =
+∞

∑
s=−∞

|p =
π

α
2s〉

|−〉L =
+∞

∑
s=−∞

|p =
π

α
(1 + 2s)〉.

As opposed to the rotation-symmetric codes that we discussed above, this code in
translation-symmetric as one can readily check from the expression of the computa-
tional states that they are invariant under a shift of the value of q by 2α or of the value
of p by 2π/α. The symmetric GKP code correspond to the choice α =

√
π such that

the spacing of the eigenstates supporting the code words in the phase space is the
same for both quadratures.

While the GKP code is most easily introduced using the eigenstates of the po-
sition and momentum operators, these states are actually unphysical (their energy
is not finite) and the computational states as introduced above are not normalized.
The realistic version of the GKP code words is superposition of finitely squeezed
states that are approximate eigenstates of the position and momentum operators.
Because of the properties of a Fourier transform, the finite squeezing σ of the po-
sition (resp. momentum) eigenstates results in a Gaussian envelope of width 1/σ

limiting the amplitude of the momentum (resp. position) eigenstates and the realis-
tic code words (recently implemented experimentally for the first time using trapped
ions [40], followed by a cQED implementation in [23]) are

|0〉L = N0

+∞

∑
s=−∞

e−
σ2(2αs)2

2

∫ +∞

−∞
dqe−

(q−2αs)2

2σ2 |q = q〉

|1〉L = N1

+∞

∑
s=−∞

e−
σ2(α(1+2s))2

2

∫ +∞

−∞
dqe−

(q−α(1+2s))2

2σ2 |q = q〉.

To understand the error correcting capability of the perfect GKP code, one can
observe that the two code words |0〉L and |1〉L (resp. |±〉L) have disjoint support
in the phase-space and that the logical ZL operation (resp. XL) amounts to shift the
value of the position (resp. momentum) operator by α (resp. π/α). Provided that the
natural errors of the QHO, described in terms of shifts of the value of the position
and momentum operators, occur sufficiently slow with respect to the typical mea-
surement time of the error syndrome, the GKP encoding produces a bosonic qubit
very well-protected against both bit-flip and phase-flip errors. More precisely, by
measuring both the position operator q̂ modulo α and the momentum operator p̂
modulo π/α, one can detect and accurately correct any shift in both quadratures ∆q
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and ∆p provided

|∆q| < α

2

|∆p| < π

2α
.

An important point is that, while the two position and momentum operators q̂ and
p̂ obey the canonical commutation rule [q̂, p̂] = i and thus cannot be measured si-
multaneously, the position modulo α operator and momentum modulo π/α do com-
mute and can thus be measured simultaneously. An unfortunate consequence of the
Heisenberg uncertainty principle is that the shifts in momentum and position that
the code can correct obey the condition

∆p∆q <
π

4

such that there is no choice of code words that can produce a qubit with arbitrarily
low bit-flip error and phase-flip error rates. Yet, for practical purposes this encoding
is a very promising candidate to produce long lived bosonic qubits. Actually, even
though the protection provided by the code is most easily understood when the
errors are expressed as displacements of the field quadratures, the GKP encoding
provides an excellent protection against the photon loss error channel â, as has
been demonstrated numerically [7]. In order to reach the extremely low levels of
noise required for large-scale quantum computation, the concatenation of the GKP
code with a “traditional” quantum error correcting code will remain inevitable,
as well as with any other bosonic encoding. In this approach, the use of bosonic
qubits such as the GKP is expected to reduce the total hardware needed because
of the better lifetimes properties of the “base qubits”. Indeed, even though the use
of a higher layer of error correction is theoretically useful as soon as the physical
error probability of the physical qubit p is as low as the threshold value pth, the
number of physical qubits required to reach a target logical error probability
becomes experimentally reasonable only if the value of p is actually well below pth.
These constructions, and more particularly the “GKP - surface code” ticket, have
been thoroughly studied [48, 49, 123, 62, 94, 117], with a particular focus on the
overall hardware overhead reduction that can be expected from this construction,
and closely related, to the value of fault-tolerant thresholds for various noise models.

The observation of the above examples shows that the working principle be-
hind the protection provided by bosonic codes is somehow similar to that of the
traditional quantum error correcting codes. The basic idea is to “hide” the valuable
quantum information in from the eyes of the environment. Since the natural errors
are typically local, the bosonic codes rely on explicitly non-local states to encode the
information, much the same as the traditional quantum error correcting code rely
on maximally entangled states across many different quantum systems. While the
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GKP encoding is the bosonic encoding that provides the best protection against the
pure photon loss error channel when only a single bosonic mode is considered [7],
the observation that the bosonic qubit needs to be embedded in an active error cor-
rection procedure to achieve the demanding requirements of large-scale quantum
computation opens the path to a very different strategy in the use of the inner layer
of bosonic error correction.

The encoding that will be the main focus of this work, that belongs to the family
of cat codes, is the building block of a scheme that aims to achieve a similar, or
perhaps even greater, overall hardware overhead reduction by leveraging the use
of the bottom bosonic encoding in a different manner. The philosophy of such
encodings is to separate the logical computational states of the bosonic qubit |0〉L,
|1〉L arbitrarily far away (in theory) in the phase space. The reward in doing this is
that the effective rate of bit-flip errors induced by any natural errors of the QHO
is exponentially suppressed with the “phase-space distance” that separates these
two states. As we will see, the counterpart of this approach is that the distance of
dual states |±〉L becomes closer as the distance between the computational states is
increased, resulting in a linearly enhanced effective phase-flip error rate. Somehow,
the goal of using such an encoding is to produce a base quantum bit for which the
noise is almost purely “quantum”, in the sense that only a single type of error, the
phase-flip, affects the qubit. In practice, the two types of quantum errors will still
affect the qubit, but the choice of a sufficiently large phase-space distance between
the states |0〉L and |1〉L can produce a bosonic qubit for which the bit-flip error
probability becomes extremely small, say close to 10−10, while maintaining the
remaining phase-flip error probability sufficiently low, typically around 1%. In this
approach, the purpose of the higher level of error correction can thus be entirely de-
voted to correct for the phase-flip errors. Hence, any classical error correcting code
correcting for a single type of error could in principle be promoted to an effective
quantum error correcting code and used in a concatenated scheme with cat qubits,
producing an overall scheme with undeniable advantages. First, the hardware cost
of the higher code automatically benefits from the fact that a single error oughts to
be corrected. Second, the physical layout of the qubits could be simplified as the
topology of code correcting only one type of error is intrinsically simpler than that
of one correcting two types of error. Finally, the real-time detection, processing and
correction of errors, known in the literature as the decoding of a code, is certainly an
easier task for such a code.

Schemes tailored for biased noise qubits have been studied before [8, 9, 129, 120,
122, 121, 11]. Indeed, such a structure in the noise naturally arises e.g when the
computational basis states are chosen to be the energy eigenstates of the underlying
quantum system, in which case phase-flip errors arise from the loss of coherence in
the computational basis due to entanglement with uncontrolled degrees of freedom
of the environment, while the bit-flip errors are induced by energy exchange with
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the environment, which typically happens at a much lower rate. Natural systems
that present a biased noise structure are, for instance, certain superconducting
qubits [9], NV centers in diamond [28], spin qubits [128], trapped ions [93], quan-
tum dots [112], and many more. While the noise bias, defined as the ratio between
the phase-flip error probability to the bit-flip error probability η = pZ/pX can be as
high as 103 − 104 in these systems, the value of the low bit-flip error rate is still too
high to be ignored by the error correcting code. Rather, in these cases, the optimal
choice is to construct a code or a hierarchy of codes that is tailored to the value of
the noise bias. One example of such a construction [8, 9] is to first use a repetition
code protecting only against the dominant phase-flip error to effectively unbias the
error channel, producing a very good logical qubit with balanced noise that is then
used within a second code (a CSS code in these codes). A slightly different approach
to take into account the native noise bias is to use asymmetric code tailored for this
asymmetry, such as an asymmetric Bacon-Shor code [90, 20]. Yet another strategy
that has been studied recently is to modify the surface code to improve its capacity
to account for a noise bias, resulting in improved thresholds and hence reduced
overhead [120, 122, 121, 11].

A crucial difference between the works cited above and the construction pre-
sented in this work is that the noise bias of the cat qubit is tunable, and can be made
very large by taking the two computational states sufficiently far away in the phase-
space. Accordingly, the overall strategy is rather different. Indeed, the exponential
suppression of effective bit-flip errors and the linear increase of effective phase-flip
errors on the cat qubit when the amplitude of the coherent states is increased re-
minds us of the scalings one would get using “traditional” qubits in a repetition
code against bit-flips. Consider a qubit undergoing bit-flip (resp. phase-flip) errors
per unit of time with probability pX (resp. pZ), used in a distance d repetition code
protecting against bit-flips (|0〉L = |0〉⊗d, |1〉L = |1〉⊗d).

Assuming perfect error detection and correction for simplicity, the resulting log-
ical bit-flip and phase-flip error probabilities are given by (pZ � 1)

P[XL] = P[a majority of the qubits bit-flipped] =
d

∑
k= d+1

2

(
d
k

)
pk

X(1− pX)
d−k

P[ZL] = P[any single qubit phase-flipped] ∼ d× pZ

such that the logical bit-flip error probability P[XL] is suppressed exponentially
in d at the cost of a linear increase in P[ZL].

With this in mind, the cat qubit encoding can thus be thought of as a hardware-
efficient implementation of a repetition code protecting against bit-flips. Indeed, the
same scaling is achieved but using only one single quantum system, the QHO, where
the code distance is now played by the mean number of photons n̄ in the oscillator,
instead of using d different two-level quantum systems.
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In order to achieve full protection of the quantum bit of information, we follow
the construction of Bacon-Shor codes and propose to embed several cat qubits in a
repetition code now protecting against phase-flips, to produce a logical qubit that
we call the repetition cat qubit. This approach is hardware efficient in the sense that
the use of a bosonic qubit, the cat qubit, that “focuses” the natural errors of the
oscillator into a single quantum error for the qubit encoded in the cat subspace,
allowed us to replace the concatenation of two repetition codes in dual basis by only
a single repetition code, the outer one, where each of the “base” qubits is a cat qubit
providing itself a protection similar to an inner repetition code.

1.4 Two-photon dissipative cat qubit

1.4.1 Encoding of a cat qubit

The primitives for the cat qubit encoding are the two coherent states of opposite
phase |α〉 and | − α〉, where the coherent state |α〉 is parametrized by the complex
number α ∈ C [30, 80]. The amplitude of this complex number α, called the ampli-
tude of the cat, is actually related to the average number of photons in the coherent
state n̄ = 〈α|â† â|α〉 = |α|2 and both notations n̄ and |α|2 are used in this manuscript
to denote the average number of photons in the cat state. A coherent state is ex-
panded in the Fock basis as

|α〉 = e−
−|α|2

2 ∑
n∈N

αn
√

n!
|n〉.

The coherent states |α〉 and | − α〉 are only orthogonal in the limit |α|2 = +∞, as
〈−α|α〉 = e−2|α|2 . An orthogonal basis for the logical subspace is composed of the in-
phase and out-of-phase superposition of these two states, the so-called Schrödinger
cat states after which the encoding was named

|C+α 〉 =
1√

2(1 + e−2|α|2)
(|α〉+ | − α〉) = e−

−|α|2
2√

2(1 + e−2|α|2)
∑

n∈N

α2n√
(2n)!

|2n〉

|C−α 〉 =
1√

2(1− e−2|α|2)
(|α〉 − | − α〉) = e−

−|α|2
2√

2(1− e−2|α|2)
∑

n∈N

α2n+1√
(2n + 1)!

|2n + 1〉.

The state |C+α 〉 (resp. |C−α 〉) is referred to as the even cat (resp. odd cat) as it is
supported on even Fock states (resp. odd Fock states) which makes it clear that
these two states are orthogonal for all values of |α|2. We follow the convention of our
recent works [83, 60, 59] where these two cat states are chosen to be the eigenstates
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of the X Pauli operator for the cat qubit

|+〉L = |C+α 〉
|−〉L = |C−α 〉.

With this choice, the computational states are exponentially close in |α|2 to the
coherent states | ± α〉, while being strictly orthogonal to each other

|0〉L = 1√
2
(|C+α 〉+ |C−α 〉) = |α〉+O(e−2|α|2)

|1〉L = 1√
2
(|C+α 〉 − |C−α 〉) = | − α〉+O(e−2|α|2).

We now recall the intuition of why such an encoding provides an arbitrary good
protection against bit-flips, but no protection at all against phase-flips. Because the
coherent states | ± α〉 are eigenstates of the annihilation operator â with eigenvalue
α, â|α〉 = α|α〉, an initial coherent state of amplitude α that undergoes photon losses
at rate κ evolves after a time t as |αe−

κ
2 t〉: while the amplitude of the coherent state

shrinks, the state is not distorted and is still a coherent state. This effect can be
countered by continuously re-injecting energy in the case state, which in the case
of a coherent state can be achieved with a resonant drive on the lossy cavity of
appropriate amplitude. As a consequence, the exponentially small overlap between
the two coherent states of same amplitude and opposite phase | ± α〉 is preserved
even in the presence of single photon loss. More generally, the exponential suppres-
sion of bit-flip errors holds for any natural error of the oscillator that acts locally in
the phase-space, as it cannot induce a population transfer between the far distance
states | ± α〉.

The calculation of the precise rate of the exponential suppression of bit-flips in-
duced by any local operator is a hard problem. A rigorous discussion of the bit-flip
suppression can be found in [31]. In this thesis, we give numerical evidence for this
by performing process tomography for both the idle qubit case and all the opera-
tions on cat qubits, in presence of the typical error processes of the QHO, in Chapter
2.

Given the state |ψ〉 of a QHO that loses photons at a rate κ, the probability to lose
a photon during a small time δt � κ−1 is given by the mean value of the operator
κδtâ† â

P[photon loss event during δt] = κδt〈ψ|â† â|ψ〉 = n̄κδt.

For a two-component cat qubit, the loss of a single photon results in a phase-flip
error. Indeed, the eigenstates of the Pauli X operator |±〉 are given by the even and
odd cat states |C±α 〉, and the annihilation operators acts as

â|C±α 〉 = αt±1|C∓α 〉
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where t2 = tanh(|α2|) = 1+O(e−2|α|2). This implies that the effective phase-flip rate
induced by photon loss (and similarly, by all the natural errors acting locally in the
phase-space) increases linearly with the mean number of photons in the coherent
states n̄ = |α|2. The cat code based on only two coherent states | ± α〉 is sometimes
referred to as the two components cat code. It is a particular case of the more general
rotation-symmetric bosonic codes introduced in subsection 1.3.4, where the primi-
tive is the coherent state |α〉 and the order of the symmetry is N = 1. Using the same
primitive but a 2-order symmetry produces the four components cat qubit with (dual)
code words

|+〉L =
1√N0

3

∑
m=0

ei(mπ/2)â† â|α〉 = 1√N0
(|α〉+ |iα〉+ | − α〉+ | − iα〉)

|−〉L = (−1)m 1√N1

3

∑
m=0

ei(mπ/2)â† â|α〉 = 1√N1
(|α〉 − |iα〉+ | − α〉 − | − iα〉).

This encoding, proposed in [80], led to the first experimental demonstration of
QEC beyond the “break-even” point where the lifetime of a quantum bit exceeds
that of any of its constituent parts [96]. One can check by expanding the code words
in the Fock basis that both code words are supported on even photon number Fock
states, congruent to 0 modulo 4 (resp. 2 modulo 4) for the |0〉L state (resp. the
|1〉L state). This spacing provides a correction against the loss of a single photon,
such that a logical phase-flip induced by photon loss is in this case a second order
process, occurring with a much lower probability. This improved protection comes
at the cost of a more complicated encoding. Importantly, the distance in the phase-
space between the different components of the cat still increase with the size of the
cat n̄ such that the bit-flip error rate induced by any error acting locally in the phase-
space is exponentially suppressed (at the cost of a linear increase of the phase-flip
error rate). Following the general rotation-symmetric codes construction [58] and
as already detailed in [80], one can construct the 2N components cat code using two
superpositions of 2N coherent states of amplitude α uniformly spaced on a circle,
with equal +1 phases for the |+〉L state and alternating phase for the |1〉L state, that
protects against N− 1 photon loss events. The focus of this work is based on the two
components cat code, which produces the largest noise bias, but for which a large
class of gates can be performed. In the rest of this thesis, the term cat qubit or cat
code will implicitly refer to this code.

1.4.2 Autonomous stabilization of a cat qubit

While the phase-flips errors damaging the cat qubit will be taken care of by the
means of an active layer of error correction as we detail in Chapter 3, the exponential
suppression of bit-flip errors is autonomously realized by the process engineered to
stabilize the cat qubit encoding manifold. This may be thought as a “continuous”
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version of quantum error correction. The “discrete” version of quantum error correc-
tion that we have considered so far, like the stabilizer codes, relies on the detection
of errors through measurements of carefully chosen operators, interpretations of
the outcome patterns (the “decoding” of the code) and subsequent correction. On
the other hand, a continuous quantum error correcting protocol [3] relies on a
continuous monitoring of the state of the system through weak measurement and
continuous correction via a feedback loop. A particular realization of continuous
error correction relies on reservoir engineering. In the theory of open quantum sys-
tems, the reservoir, or the bath, usually refers to a large quantum system modelling
the effect of the environment on the quantum system of interest. The engineering of
the reservoir is a technique that consists in coupling the quantum system of interest
to a dissipative reservoir through a carefully chosen interaction. In a certain sense,
this amounts to allow the environment to probe the system, which usually leads to
dissipative effects and decoherence, but only through a restricted interaction. When
implemented successfully, this allows us to transfer the entropy created by the errors
in the system to the reservoir, which is then evacuated through dissipation. This
idea has been applied e.g to the autonomous stabilization of the ground state of a
transmon qubit [51] or of an entangled Bell state between two transmon qubits [108].

The dissipative dynamics that stabilizes autonomously the cat qubit encoding,
first proposed in [87] and realized experimentally in [78, 118, 83] is described by the
following Lindblad master equation

dρ

dt
= κ2D[â2 − α2]ρ (1.3)

where the super-operator D is given by

D[L̂]· = L̂ · L̂† − 1
2 L̂† L̂ · − 1

2 · L̂† L̂

and κ2 is the rate of the two-photon dissipation. The kernel of the dissipative oper-
ator â2 − α2, also called the Lindblad operator, is precisely the code space of the cat
qubit as a consequence of the coherent states being eigenstates of the annihilation
operator â

(â2 − α2)| ± α〉 = 0.

The dissipative evolution of a system governed by a Lindbladian that has more than
one steady states is somehow the dissipative analog of Hamiltonians with multiple
ground states, see e.g [4]. The steady states of such dynamics, that depend on the
initial state of the system, can be conveniently expressed by identifying invariant
operators of the evolution in the Heisenberg picture [5, 6]. Here, because the stable
manifold is two-dimensional, it is enough to determine three degrees of freedom,
that correspond to the population on one of the cat states |C±α 〉 and to the complex
coherence between these two cats. It was shown in [5, 87] that the infinite time steady
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states corresponding to the initial state (possibly mixed) ρ(t = 0) = ρ0 is given by

ρ(t = ∞) = c++|C+α 〉〈C+α |+ (1− c++)|C−α 〉〈C−α |+ c+−|C+α 〉〈C−α |+ c∗+−|C−α 〉〈C+α |

where the conserved quantities c++ = Tr(J†
++ρ0), c+− = Tr(J†

+−ρ0) are the mean
value of the invariant operators J++, J+−

J++ =
+∞

∑
n=0
|2n〉〈2n|

J+− =

√
2|α2|

sinh(2|α|2
+∞

∑
q=−∞

(−1)q

2q + 1
Iq(|α|2)J(q)+−e−i(2q+1) arg(α)

where Iq is the modified Bessel function of the first kind and

J(q)+− =


(â† â−1)!!
(â† â+2q)!! J++ â2q+1 q ≥ 0

J++ â†2|q|−1 (â† â)!!
(â† â+2|q|−1)!! q < 0.

By expanding the Lindblad super-operator in equation (1.3), one can check that
it is equivalent to apply a two-photon drive to a QHO that loses photon in pairs

dρ

dt
= [ε2 â†2 − ε∗2 â2, ρ] + κ2D[â2]ρ (1.4)

where the (tunable) amplitude and phase of the two-photon drive ε2 determine the
value of the cat code

α =

√
2ε2

κ2
.

1.4.3 Realization of the two photon driven-dissipative scheme

In this subsection, we recall the mechanism that can be used to implement the two-
photon driven-dissipative dynamics of equation (1.3). The general recipe to engineer
a non-trivial dissipation operator of the form

√
κL̂ on a long-lived memory mode â is

to use an additional mode described by the annihilation operator b̂, usually referred
to as the buffer mode, and to couple it to the mode â via an interaction Hamiltonian

Ĥint = gL̂b̂† + g∗ L̂†b̂. (1.5)

When the buffer mode is very lossy with respect to this interaction Hamiltonian,
|g| � κ, the full dynamics describing the evolution of the two modes state

ρ̇â,b̂ = −i[Ĥint, ρâ,b̂] + κD[b̂]ρâ,b̂ (1.6)

reduces to an effective dissipative dynamics on the memory mode â given by

ρ̇â =
4|g|2

κ
D[L̂]ρâ. (1.7)
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The complexity of engineering an exotic dissipation of the form D[L̂] is thus to engi-
neer the corresponding interaction Hamiltonian (1.5). The interaction Hamiltonian
to engineer for the two-photon pumping scheme is

Ĥint = g(â2 − α2)b̂† + g∗(â2 − α2)†b̂.

The discussion of the realization of this interaction Hamiltonian in circuit QED is
postponed to Chapter 2, where its implementation is discussed along with other
Hamiltonians required to perform operations on the cat qubit. We now recall why
the dynamics of equation (1.6) gives rise to the effective dissipative dissipation (1.7).

The systematic adiabatic elimination of one of the two subsystems of a bipartite
open quantum system, where the subsystem to be eliminated is subject to a strong
(fast) dissipative dynamics and is coupled to the (slow) subsystem via a Hamiltonian
interaction, has been rigorously exposed in [13]. Using the dimensionless time t ←
κt, Ĥint ← Ĥint/κ, the full dynamics is expressed in the small perturbation parameter
ε = |g|/κ

ρ̇â,b̂ = L(ρâ,b̂) = −iε[Ĥint, ρâ,b̂] +D[b̂]ρâ,b̂.

In the absence of interaction (ε = 0), an initial separable state ρâ,b̂(0) = ρâ(0)⊗ ρb̂(0)
remains separable at all times under this evolution ρâ,b̂(t) = ρâ(0)⊗ ρb̂(t) and the b̂
mode relaxes rapidly to the vacuum state ρâ,b̂(∞) = ρâ(0)⊗ |0〉〈0|. The generic adi-
abatic elimination technique of [13] proposes to seek a solution that is a perturbation
in ε of the unperturbed situation, by modelling the effective dynamics the subsystem
â by a density operator ρs on a Hilbert space Hs of the same dimension as Hâ with
dynamics

ρ̇s = Ls,ε(ρs)

and to recover the full evolution of the composite system via the mapping

ρâ,b̂ = Kε(ρs)

where Kε is a completely positive trace preserving map. The idea to compute Ls,ε

and Kε is to expand them in power series of the perturbation parameter ε

Ls,ε = ∑
k∈N

εkL(k)
s,ε

Kε = ∑
k∈N

εkK
(k)
ε

Expressing ρ̇â,b̂ in two different ways yields the following invariance equation

L(Kε(ρs)) = Kε(Ls,ε(ρs))

and the identification of terms with equal power in ε yields recursive formulas to



40 Chapter 1. Introduction

compute L(k)
s,ε , K

(k)
ε at any order. The truncation of the infinite sums Ls,ε, Kε to some

power in ε provides an approximation of the dynamics up to this order, but in gen-
eral it is challenging to prove that the truncated sum indeed takes a Lindblad form
and a Kraus map form, respectively. In the particular case of a purely Hamiltonian
interaction between the two subsystems, and with a fast dissipative dynamics on
the b̂ mode κD[b̂], the reduced dynamics on the mode â, parametrized by the single
mode operator ρs, reads [13]

ρ̇s = Ls,ε(ρs) = −iε[Ĥ(1)
s , ρs]− iε2[Ĥ(2)

s , ρs] + ε2 ∑
µ

D[L(2)
s,µ ]ρs +O(ε3)

i.e the first order contribution in ε is purely Hamiltonian, while the second order
contribution in ε contains both Hamiltonian terms and dissipative terms (in gen-
eral). For the particular Hamiltonian interaction Ĥint = gL̂b̂† + g∗ L̂†b̂, the first order
contribution Ĥ(1)

s is given by

Ĥ(1)
s = Tr(b̂|0〉〈0|)L̂ + Tr(b̂†|0〉〈0|)L̂† = 0.

and the second order contributions Ĥ(2)
s , L(2)

s,µ are

Ĥ(2)
s = 0

L(2)
s,0 = 2L̂

where in this special case, there is only a single non-zero dissipation channel L(2)
s,µ ,

such that the final reduced dynamics on the system mode â, up the second order in
ε, is described by the master equation

ρ̇s = 4ε2D[L̂]ρs +O(ε3).

We have argued that the effective dissipative dynamicsD[â2− α2] stabilizing the
cat code words is crucial to get the exponential suppression of the bit-flip errors.
This desired dynamics is obtained through the second order effective dynamics re-
sulting from the non-linear coupling of the system to a highly dissipative reservoir.
However, together with this ideal dissipation comes an infinite number of (small)
higher order terms in ε. Fortunately, the additional dynamics described by these
higher order terms is not harmful to the exponential suppression of bit-flip errors.
An intuitive way to realize this is to note that the two states | ± α〉 ⊗ |0〉 of the full
memory and buffer system are eigenstates of the full dynamics with the interaction
Hamiltonian Ĥint = g(â2− α2)b̂† + g∗(â2− α2)†b̂, such that any higher order term in
the expansion can not cause transitions between the two coherent states | ± α〉.
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1.5 Outline of the manuscript

The entire work of this manuscript is to devoted to answering the following ques-
tion: can repetition cat qubits be used to perform large-scale quantum computa-
tions? We present and analyze the set of operations that can be performed on cat
qubits in Chapter 2, with a particular focus on the noise structure of these opera-
tions. Indeed, these operations must be “compatible” with the overall scheme con-
struction in the following sense: since the active error correcting code does not pro-
tect against bit-flips, these errors need to remain exponentially suppressed while
operations are executed, a property of the operations called bias preserving. In Chap-
ter 3, we construct a universal set of logical encoded gates for repetition cat qubits
from the bias-preserving operations of Chapter 2. The bottleneck of this construction
is the realization of a fault-tolerant encoded version of the non-Clifford Toffoli gate,
for which we propose two schemes: the first one, that requires code concatenation, is
more readily adaptable to a local architecture; while the second one achieves a better
reduction of the hardware overhead at the cost of a more complicated physical im-
plementation. The thorough numerical analysis of the performance of this approach
using full circuit-level analysis of the circuits proposed is presented in Chapter 4.
Chapter 5 contains some concluding remarks and perspectives regarding this work.
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Chapter 2

Bias-preserving operations on cat
qubits

This chapter and the following one cover the work that was published in [60].

2.1 Bias-preserving gates: two conditions to satisfy . . . . . . . . . . 43

2.1.1 Forbidden operations . . . . . . . . . . . . . . . . . . . . . . 44

2.1.2 Bias-preserving implementation . . . . . . . . . . . . . . . . 47

2.2 Bias-preserving implementations . . . . . . . . . . . . . . . . . . . 50

2.2.1 State preparation and measurement . . . . . . . . . . . . . . 50

2.2.2 Dynamical phase gates with the Quantum Zeno Effect . . . 53

2.2.3 Topological phase gates with adiabatic code deformation . 55

2.3 Error models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 Identity and SPAM errors . . . . . . . . . . . . . . . . . . . . 63

2.3.2 Zeno gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.3 Topological gates . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.1 Two-photon pumping scheme . . . . . . . . . . . . . . . . . 74

2.4.2 Zeno Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . 80

2.4.3 Topological gates . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.1 Bias-preserving gates: two conditions to satisfy

The purpose of this Chapter is to describe how the quantum bit of information stored
in a cat qubit can be processed. While the original motivation behind the design of
cat qubits was to build a well protected quantum memory [80], that is, a quantum
system in which information can be stored reliably but without any processing ca-
pacity, the following work [87] demonstrated that the stored information could be
processed in situ, thus promoting the cat code to a legitimate qubit. For the sake of
completeness, and because some of these gates are needed later in this dissertation,
we describe both the operations that were already known prior to this work as well
as the new ones. The very design of the cat qubit introduces an asymmetry in the
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structure of the noise, which we believe might lead to the experimental observation
of larger noise bias than what has been observed in any quantum system so far. Since
the entire construction presented in this thesis relies on the assumption that the noise
bias can be made extremely large, it is crucial that this remains true even during the
processing of the information encoded in the cat qubit. Hence, much of the focus
of this Chapter is to design operations on the cat qubit that are “compatible” with
the noise bias, and such operations are called bias-preserving. There are actually two
distinct conditions to fulfill to successfully design a bias-preserving operation, that
are discussed separately in the next two subsections.

2.1.1 Forbidden operations

The first condition concerns the operation itself, as operators that convert the Z op-
erator into an X (or Y) operators are automatically non bias-preserving. The text-
book example of such an operation is the Hadamard gate H, that converts a Pauli
Z operator into X (and vice-versa). Applying a Hadamard gate to a cat qubit con-
verts a phase-flip error that occurs just before the gate to a bit-flip error. Thus, even
though bit-flips occur with an exponentially small probability, the application of a
Hadamard gate on a cat qubit re-introduces bit-flips with a probability that is similar
to the phase-flip error probability. This observation can be generalized to other gates
such as the S gate or the controlled-H gate, etc. The gates that commute with the Z
operator are readily acceptable candidates. Gates that do not commute with Z may
still be acceptable, as long as the error produced by the propagation of the Z error
through the gate remains of the phase-flip type. Note that in this regard, we only
require that Z errors are not converted to other types of errors, while X or Y errors
that occur with exponentially small probability can be converted to other types of
errors.

Single-qubit gates Consider the case of a unitary operator U acting on a single
qubit. For the purpose of this discussion, one can disregard the global phase and
identify the unitary to a rotation on the Bloch sphere of an angle θ around the axis
specified by the real valued unitary vector~n = (nx, ny, nz)

U = R~n(θ) = e−i θ
2~n·~σ = cos

θ

2
− i sin

θ

2
(nxX + nyY + nzZ).

where~σ = (X, Y, Z). A phase-flip error Z that occurred before the gateR~n(θ) propa-
gates through the gate as a Z error together with an additional unitary error EZ(~n, θ)

R~n(θ)Z = ZEZ(~n, θ)R~n(θ)
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where the additional error EZ(~n, θ) is given by

EZ(~n, θ) = (cos θ + 2 sin2 θ

2
n2

z)I − i(sin θnx + 2 sin2 θ

2
nynz)X

− i(sin θny − 2 sin2 θ

2
nxnz)Y.

Thus, the unitaryR~n(θ) does not convert Z errors into X or Y error if and only if
the following conditions are satisfied{

sin θnx + 2 sin2 θ
2 nynz = 0

sin θny − 2 sin2 θ
2 nxnz = 0.

(2.1)

As one could expect, this includes the rotations around the Z axis of the Bloch
sphere of an arbitrary angle Z(θ), which commute with the Z operator (the π rota-
tion around the Z-axis) as confirmed by checking the above conditions are satisfied
for nz = 1 (and hence nx = ny = 0) and any angle θ. Note that the set of rotations
{Z(θ)}θ∈[0,2π[ actually contains gates from arbitrarily high levels of the Clifford hi-
erarchy (see Appendix B), as one can check that the rotation around a cardinal axis
+X,+Y,+Z of an angle θ ∈ {kπ/2n−1}k∈Z2n is in the n-th level of the Clifford hier-
archy.

The conditions 2.1 can also be satisfied for unitaries that do not commute with
the Z operator. For instance, they are satisfied by the π-rotations around any axis in
the (X, Y) plane, θ = π and (nx, ny, nz) = ~nX,Y(ϕ) = (cos(ϕ), sin(ϕ), 0), producing
the unitary

U = R~nX,Y(ϕ)(π) = cos(ϕ)X + sin(ϕ)Y.

Note that this set also contains gates from arbitrary levels of the Clifford hier-
archy, following from the fact that R~nX,Y(ϕ)(π) is in the (n − 1)-th level if ϕ ∈
{kπ/2n−1}k∈Z2n . This can be checked e.g from the above fact using the decompo-
sition

R~nX,Y(ϕ)(π) = Z(ϕ)XZ(−ϕ).

The conditions (2.1) also automatically rule out some gates. One can check, as
expected, that the Hadamard gate (θ = π, ~n = (1, 0, 1)/

√
2) does not match the

criteria, or that the only rotations around the X or Y axis that are allowed are those
of an angle π, that is the Pauli rotations.

Entangling gates The same analysis can be carried through for entangling gates.
For two qubits (or more generally, two subsystems), an entangling gate U is a gate
that cannot be factorized in the form U = U1 ⊗U2, where U1,2 are gates acting each
on one of the two qubits (or two subsystems).

Here, we investigate the bias-preserving compatibility of a specific subset of
entangling gates composed of the “controlled” gates. A two-qubit controlled gate is
built using two single-qubit unitary operators (different from the identity) U1 and



46 Chapter 2. Bias-preserving operations on cat qubits

FIGURE 2.1: a) Circuit representation of a general U1-controlled-U2 gate. (b-c) A
Pauli Z error commutes with a Z-controlled-U operation, but produces an addi-

tional U error by propagating through an X-controlled-U gate.

U2, where one of the two (say U1) has to be Hermitian. The resulting entangling
gate, called the “U1 − controlled−U2” gate, acts as follows. The unitary operator
U1 being Hermitian (and non-trivial), it has exactly two eigenvalues: ±1. The
two associated eigenspaces split the Hilbert space of the first qubit in two. The
U1-controlled-U2 consists in applying the unitary U2 to the second qubit, called
the target qubit, whenever the state of the first qubit, called the control qubit, is in
the −1 eigenspace, and applying identity otherwise. The circuit representation
of such a gate is depicted in Figure 2.1 a). In general, it suffices that only one
of the two unitaries U1 or U2 be Hermitian to define such an operation, where
the qubit corresponding to the Hermitian unitary is taken as the control qubit.
Interestingly, when both unitaries are Hermitian, choosing either one of the qubits
as the control qubit produces the same quantum gate. Note that in the literature,
a Z-controlled-U gate is simply referred to as a controlled-U operation, because
the ±1 eigenstates of the Z operator are the computational |0〉, |1〉 states and the Z
control is represented by the symbol • in circuit notation to emphasize the classical
analogy. This definition is readily generalized to multi-qubit unitaries.

In this work, we focus on a specific subset of multi-qubit controlled gates
where the basic unitaries used to construct entangling gates are only X and Z
Pauli operators. This includes, for example, the two-qubit “controlled-NOT”
gate (Z-controlled-X), denoted CNOT or CX, the two-qubit “controlled-Z” gate
(Z-controlled-Z) gate, denoted CZ, or the three-qubit Toffoli gate (Z-controlled-Z-
controlled-X), denoted CCX.

As with the single-qubit unitaries, we are here interested in two things. First,
one can check that an n-qubit controlled gate where each of the involved unitaries is
a (non-trivial) Pauli operator is in the n-th level of the Clifford hierarchy. Consider
first the three two-qubit controlled gates that can be formed using X and Z operators

{U1 − controlled−U2, U1,2 ∈ {X, Z}}.

We are interested in how Z errors propagate through such gates. As Z trivially
commutes with Z but anti-commutes with X, it is clear that the ±1 eigenspaces of
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the Z operator are not disturbed by a Z error, while the ±1 eigenspaces of X are
swapped. Thus, as depicted in Figure 2.1 (b-c), a Z error acting on a “Z-controlled-
U” commutes with the gate, while a Z error acting on a “X-controlled-U” produces
an additional error U on the corresponding qubit. From this observation, it is clear
that a multi-qubit controlled gate built with X and Z operators does not convert Z
errors if and only if U is composed of Z operators only. In other words, the eligible
gates cannot contain more than a single X control: the CZ gate and the CNOT gate
are not forbidden by our bias-preserving definition, while the “X-controlled-X” gate
is.

The same analysis carries through straightforwardly to a higher number of
qubits. Using only X and Z operators, it is necessary to use at least three qubits
to construct a non-Clifford gate (gates that do not belong to the first two levels of the
Clifford hierarchy). Out of the four gates of the form

{U1 − controlled−U2 − controlled−U3, U1,2,3 ∈ {X, Z}}

only those that contain zero (the CCZ) or one (the CCX gate) X operator do not
convert Z type errors into X type errors.

2.1.2 Bias-preserving implementation

The second condition that needs to be fulfilled by a bias-preserving gate in addition
to not convert Z-type errors into X or Y-type errors is that it should be implementable
in a bias-preserving manner. While the first condition is agnostic to the specific
technology implementing the qubit but rather only depends on the structure of the
unitary itself, this second condition can only be checked on the description of the
process actually implementing the gate on a given physical platform. Let us con-
sider, for instance, rotations around the X (or Y axis). As discussed in the previous
subsection, only the π-rotation around the X axis is a viable candidate for a bias-
preserving implementation. The authors of [8] rightfully noted that the structure
of the noise induced by the implementation of the gate may have no reason to be
highly biased: in the case of a π-rotation around the X-axis, for instance, the effect
of a slight over-rotation or under-rotation may introduce an error proportional to X
rather than Z, thus re-introducing bit-flip errors that are not exponentially unlikely.

Fortunately, no gate is lost at this step and we argue in the next subsections that
all the candidates introduced above can indeed be implemented in a bias-preserving
manner on cat qubits. Because the exponential bias in the noise structure comes from
the distance in the phase-space between the two computational states, one general
guiding principle that needs to be followed when designing such implementations
is that this distance should never be decreased during the process implementing a
gate.

This guiding principle is necessary, but sufficient only for the gates that commute
with the Z errors at all times during the execution of the gates. It has been shown in
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[87] how such gates, that include arbitrary rotations around the Z-axis or the CZ
gate, can be implemented using a weak Hamiltonian in presence of the strong two-
photon dissipative dynamics. The effect of the weak Hamiltonian implementing the
gate is to induce a slow evolution in the two-dimensional stable manifold of the cat
qubits. The precise bias-preserving implementation of these gates is discussed in
subsection 2.2.2.

FIGURE 2.2: Schematic illustration of the no-go theorem for a bias-preserving X
gate on a two-level system, and of the trick used to work around this no-go in
the case of the cat qubit. A continuous evolution mapping the state | − α〉 to |α〉
without leaving the code space evolves the state on a path at the surface of the
Bloch sphere (green arrows). While doing so, a phase-flip error (here, happening
in the middle of the gate and depicted by the red arrow) may be converted to a bit-
flip error after the gate is executed. On the other hand, by exploiting the infinite
dimensional Hilbert space in which the cat qubit is embedded, a process taking a
path outside the code space (blue arrow) can implement a bias-preserving X gate.

The gates that do not commute with the Z error pose additional challenges,
and were usually discarded from general hardware agnostic studies of computing
with biased noise qubits (see e.g [8, 129]). Indeed, considering again the π-rotation
around the X-axis of the Bloch sphere, it is actually impossible to design a bias-
preserving implementation without leaving the code subspace. The rigorous proof
of this theorem is detailed in Appendix C for the case of the CNOT gate, but can be
readily adapted to the X or Toffoli gates. The intuition of why an X gate cannot be
performed in a bias-preserving manner without leaving the code space is illustrated
in Figure 2.2, adapted from [81]. A continuous process that rotates the state | − α〉
to |α〉 (and vice-versa) without leaving the code space takes the state through a
path on the surface of the Bloch sphere (green arrows in Figure 2.2). If a phase-flips
occurs, say, at the middle of this evolution (red arrow), then the remaining part
of the process (green arrow) results in a bit-flip after the gate is executed. The
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way around this no-go theorem is to rather design an implementation that takes
the state outside the code space (blue arrow) during the whole evolution, in such
a way that the errors that occur during the evolution cannot introduce bit-flip
errors. The idea was originally introduced to perform a bias-preserving CNOT
gate in the context of Kerr-cat qubits [103]. The gates that are implemented in this
manner are discussed in section 2.2.3. The rest of the Chapter is organized as follows.

In section 2.2, we describe the precise implementations of all the operations in
the set

S ′ = {P|+〉,P|0〉,MX,MZ} ∪ {Z(θ), ZZ(θ), ZZZ(θ)} ∪ {X, CX, SWAP, CCX}

with a particular focus on the bias-preserving property of the implementation.
This set is split in three subsets, corresponding to three different ways to achieve a
bias-preserving implementation, and discussed separately in the three subsections
of section 2.2. The first one (subsection 2.2.1) concerns state preparation and
measurement. Here, the bias-preserving property is either trivial or comes from
considerations very specific to the realization of the operation. The second subset
(subsection 2.2.2) contains the gates that are realized through the quantum Zeno
effect, by using a weak Hamiltonian that triggers the accumulation of the desired
“dynamical phase” in the cat qubit subspace. Here, the bias-preserving property
is ensured by the fact that phase-flips commutes with the continuous process
implementing the gate, and by the fact that the two-photon dissipation is always
turned on. We note that the operations in these two subsets were already known
prior to this work [87]. The last subset (subsection 2.2.3) is composed of the gates
that are implemented using a continuous deformation of the code space that impart
a topological π phase around the X axis of the Bloch sphere. The bias-preserving
implementation of these gates is decomposed in two parts: first, the two-photon
dissipative scheme is made time-dependent, and for multi-qubit gates, conditional,
in order to implement the required code deformation. Additionally, we argue that
the fidelity of these gates is greatly improved by adding a Hamiltonian during the
gate execution. We emphasize that these (optional) Hamiltonians are not required
for the gate implementation, nor for the bias-preserving property of the gates, but
merely to greatly reduce the phase-flip errors induced by the non-adiabaticity (finite
time) of these gates.

Then, in section 2.3, we either give or derive explicitly analytical error models for
the dominant phase-flip error probabilities, As will become clear upon inspection of
the error models, the phase-flip errors occurring during the execution of the gates
come from two different sources that we both take into account. The first are the
phase-flip errors induced by the main error channel of the QHO, namely the photon
loss, characterized by the single photon dissipation rate κ1. The second source of
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phase-flip errors is the finite gate time of the gates. The analytical error models the
phase-flip error probability are useful both to better understand the source of errors
of the gates and for the numerical study of the performance of the logical circuits
presented in Chapter 4.

Last, in section 2.4, we discuss how all the proposed implementations can be
realized within the framework of circuit QED. We begin by describing how the two-
photon pumping scheme that stabilizes the cat qubit is implemented, as has already
been demonstrated experimentally in [78, 118, 83]. Then, we proceed to describe
how the weak Hamiltonians required for the Zeno gates have been realized [118]
or could be realized. Last, we discuss the realization of the topological gates. This
can be split in two parts: the (required) implementation of the time dependence of
the two-pumping scheme that realized the topological deformation of the cat qubit
code space, and the (optional) implementation of the feed-forward Hamiltonians
that might be added during the gates execution to reduce the phase-flip errors in-
duced by non-adiabaticity.

2.2 Bias-preserving implementations

2.2.1 State preparation and measurement

2.2.1.1 State measurement

Measurement of the X operator The only measurement on the cat qubit required
in the construction of the scheme is the measurement of the X operator, whose
eigenstates are the cat states |C±α 〉. Because these states have a well-defined photon-
number parity, the measurement of X can be realized by a photon-number parity
measurement. Here, the “bias-preserving” property of this operation is trivially en-
sured by the fact that, every time an X measurement is needed in our circuit, it is
performed on an ancilla qubit whose state is discarded after the measurement and
prepared again in a fresh state. The measurement of the X operator could be ei-
ther destructive or quantum non-demolition (QND) as it is only used on ancilla cat
qubits, which are discarded after the measurement, except at the very end of the
execution of the quantum algorithm where the data cat qubits are also measured
(destructively) to get the output of the algorithm. The QND parity measurement
proposed in [85] and realized in [15, 114] is perfectly suitable for our scheme. The
main idea behind this protocol is to couple to an ancilla (transmon) qubit to the
mode whose photon-number parity is to be measured via the dispersive interaction
Hamiltonian

Ĥ = −χ|e〉〈e|â† â.

The unitary evolution generated by this Hamiltonian on a time interval T = π/χ is
given by

Û = |g〉〈g|I + |e〉〈e|eiπâ† â
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entangling the state of the ancilla with the parity of the state of the cavity. Preparing
the ancilla qubit in a superposition state |+〉 = 1√

2
(|g〉+ |e〉), the effect of the unitary

Û is to flip the ancilla to the state |−〉 = 1√
2
(|g〉 − |e〉) when the cavity contains an

odd number of photons and to leave it unchanged otherwise. A measurement of the
σ̂x operator of the qubit thus reveals the parity of the cavity state.

Note that in order to perform such a parity measurement, the two-photon driven
dissipation on the measured cat qubit has to be turned off. However, given that
these measurements are performed on ancilla cat qubits that are thrown out after
each measurement, the absence of protection during the measurement merely af-
fects the measurement fidelity and does not have any consequence on the rest of the
circuit. Fidelities of photon-number parity measurement of about 98.5% have been
previously achieved using this protocol [96].

Measurement of the Z operator The measurement of the Pauli Z operator of the
cat qubits is not required in the rest of the scheme. Yet, it might be required some
day to design new logical operations, or to simplify some of the logical circuits. An
example of this is discussed in the considerations about a 2D implementation of our
scheme in Chapter 5, where the measurement of the logical ZL operator can be used
to teleport a logical CZL gate. Note that the eigenstates of the Z operator are (expo-
nentially close to) the coherent states | ± α〉, such that a destructive measurement of
the Z operator can be implemented e.g the protocol used to measure the phase of a
coherent state of [57].

2.2.1.2 State preparation

Preparation of the cat states |C±α 〉 The preparation of the eigenstates of the X op-
erator is trivially compatible with the noise bias since a bit-flip does not affect these
states, as noted in [8]. Indeed, because the cat states |C±α 〉 have equal population on
the | ± α〉 states, the bit-flip operator X cannot modify these population. One way
to prepare the even cat state |+〉 = |C+α 〉 is performed by initializing the QHO in
the vacuum state |0〉 and turning on the driven two-photon dissipation [87]. Indeed,
the two-photon driven dissipation conserves the photon-number parity, such that
unique steady state of the system is given by the even cat state. Such a state prepara-
tion has already been realized experimentally [78] and the fidelity of this operation
is set by the ratio between the two-photon dissipation rate κ2, setting the rate of con-
vergence to the cat state, and the undesired single-photon loss rate κ1, setting the
parity jump rates (equivalent to phase-flip errors) mixing the even cat with the odd
one. Then, the odd cat state |−〉 = |C−α 〉 can be prepared from the even cat state
by applying the Z described in subsection 2.2.2. The preparation of the cat states
can also be performed using an active protocol rather than relying on the passive
two-photon dissipation. Such protocol, like the mapping of an arbitrary state of a
transmon to a cat qubit [79], have the advantage to be faster and to produce states
with higher fidelity. A fast and reliable operation that prepares a given state on the
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cat qubit is immediately followed by the activation of the stabilization scheme. In
particular, in the experiment [118], the state |C+α 〉 was generated using optimal con-
trol techniques which can significantly improve the fidelity with respect to a passive
preparation with two-photon driven dissipation.

It will become clear in Chapter 3 that the general repetition cat qubit construc-
tion only requires that the physical cat qubits used to process the information can
be initialized in the |C±α 〉 states, as the distance d repetition code protecting against
phase-flips has logical code words (in the dual basis) |±〉L = |C±α 〉⊗d. However, the
preparation of a cat qubit in the coherent state |0〉 ≈ |α〉 will prove useful to prepare
the logical ancilla cat qubit state |0〉L (see Chapter 3) for Steane error correction, so
we introduce this preparation now.

Preparation of the coherent state |α〉 The eigenstates of the Z operator of the
cat qubit are exponentially close to the coherent states | ± α〉. A fast and reliable
preparation of these states is realized by applying a strong microwave pulse to the
oscillator initialized in the vacuum state to generate a displacement D(±α), and
to turn on the two-photon driven-dissipative stabilization immediately after the
displacement. Note that unlike the cat states |C±α 〉, the | ± α〉 are not intrinsically
robust to bit-flip errors, as the bit-flip error operator induces population transfer
between |α〉 and | − α〉.

Here, the preparation of the state |α〉 is only bias-preserving in the sense that
the phase of the microwave pulse applied to displace the oscillator state from the
vacuum to the coherent state | ± α〉 can be made very precise, such that the state of
the oscillator after this displacement is in a certain coherent state |α̃〉 in the neigh-
bourhood of |α〉, where |α̃〉 is in general slightly different from |α〉 to account for the
small imprecision in the displacement. Then, the two-photon pumping is activated
just after the displacement, such that the state |α̃〉 relaxes to the coherent state |α〉.
The resulting bit-flip probability (i.e, the probability to be in the state | − α〉 after
a displacement D(α) has been applied to the vacuum) can be very small. Indeed,
the population of the state | − α〉 at the end of this protocol is (roughly) given by
the probability that a phase error of at least π has occurred in the displacement,
which can be sufficiently small. However, because here the “bias-preserving” is en-
sured solely by the fact that the phase of microwave pulses is very well controlled,
it is specific to our circuit QED implementation of the scheme and it is important to
check that the probability of a bit-flip error occurring during this protocol is of the
same order as the exponentially suppressed bit-flip error of the cat qubit.
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2.2.2 Dynamical phase gates with the Quantum Zeno Effect

2.2.2.1 Z(θ) gate

The Z(θ) gate is the rotation of an arbitrary angle θ around the Z axis of the Bloch
sphere of the cat qubit:

Z(θ) = e−i θ
2 Zα = cos

θ

2
Iα − i sin

θ

2
Zα. (2.2)

It was first proposed in [87] and realized experimentally in [118]. The subscript α

in the Pauli operators Iα and Zα are here to emphasize that these are operators the
Pauli operators acting on the cat qubit. They can be expressed as

Iα = |C+α 〉〈C+α |+ |C−α 〉〈C−α |
Zα = |C+α 〉〈C−α |+ |C−α 〉〈C+α |

In the rest of this manuscript, the subscript α is dropped and the operators acting
on the cat qubit are simply written using the usual qubit notations. The Z(θ) gate is
realized by applying a weak resonant drive described (in the rotating frame of the
cavity mode) by the Hamiltonian Ĥ = εZ â + ε∗Z â† in the presence of the two-photon
driven dissipation modelled by the Lindblad super-operator κ2D[â2 − α2], with |εZ|
small with respect to κ2. The combination of these two dynamics implements the
gate as follows. The fast two-photon driven-dissipative part of the dynamics con-
fines the state in the cat qubit manifold, while the single photon drive induces a
change of the photon number parity. If the cat qubit is initialized in the state |C+α 〉, of
even photon number parity, the effect of the weak drive is to induce Rabi oscillations
between the even cat |C+α 〉 and the odd cat |C−α 〉. The rate of these Rabi oscillations
is set by the first order perturbation induced by the Hamiltonian, given by the pro-
jection of the Hamiltonian on the cat qubit subspace

(|C+α 〉〈C+α |+ |C−α 〉〈C−α |)(εZ â+ ε∗Z â†)(|C+α 〉〈C+α |+ |C−α 〉〈C−α |) = 2R[αεZ]Z+O(e−2|α|2).

The fact that the effective dynamics, up to the first order in the small parameter
εZ/κ2, is given by the projection of the perturbative Hamiltonian is the well known
quantum Zeno effect. A rigorous mathematical derivation proving this fact can be
found e.g in [12].

The oscillation rate is maximized when the phase of the drive is opposite to the
phase of α such that αεZ is a real number, and the rotation of an angle θ is obtained
by applying the weak drive during a time

T =
θ

4αεZ
=

θ

4
√

n̄|εZ|
.



54 Chapter 2. Bias-preserving operations on cat qubits

2.2.2.2 ZZ(θ) gate and CZ gate

The same recipe can be readily applied to construct the two qubit entangling gate
[87]

Z1Z2(θ) = e−i θ
2 Z1Z2 = cos

θ

2
I1 I2 − i sin

θ

2
Z1Z2

where the subscript (1,2) label the two cat qubits. This gate is realized by applying a
weak beam-splitter Hamiltonian

Ĥ = εZ1Z2 â1 â†
2 + ε∗Z1Z2

â†
1 â2

in the presence of the two-photon driven dissipation on both of the cat qubits. Here
and for all the multi-qubit gates involved in this work, we always assume that the
same α is used for the two (or more) cat qubits. This assumption is made for the sole
purpose of reducing the number of notations, but this assumption can be relaxed ev-
erywhere is this work and all the gates presented can be straightforwardly adapted
to cat qubits of different sizes α and β. Taking εZ1Z2 to be real, the projection of Ĥ on
the two cat qubit subspaces gives the oscillation rate ΩZ1Z2 = 2|α|2εZ1Z2 such that the
rotation Z1Z2(θ) is obtained upon the application of the weak Hamiltonian during a
time

T =
θ

4|α|2εZ1Z2

=
θ

4n̄εZ1Z2

.

The two gates Z(θ) and Z1Z2(θ) commute, such that one can be combine them.
For instance, noting that a controlled-Z gate can be decomposed as

CZ = (−1)|11〉〈11| = e−i π
4 (I1−Z1)(I2−Z2)

and taking α real, the CZ gate is implemented through the Zeno effect by applying
the Hamiltonian

Ĥ = εCZ[−(â + â† + b̂ + b̂†) +
1√
n̄
(âb̂† + â†b̂)]

for a time T = π/(8
√

n̄εCZ).

2.2.2.3 ZZZ(θ) gate

From a theoretical point of view, the above Zeno mechanism can be generalized to
construct arbitrary rotations on n qubits. However, the weak Hamiltonian required
is of higher with each added qubit, which makes it increasingly hard to implement,
for reasons that we detail in the experimental section 2.4. The same trade-off is
encountered in the case of the topological gates introduced next.

For instance, the three qubit entangling gate ZZZ(θ) (which, combined with CZ
and Z gates, can be used to implement e.g the CCZ gate) can be generated e.g using
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the weak Hamiltonian between the three cat qubits â1,2,3

Ĥ = εZ1Z2Z3 â1 â2 â†
3 + h.c

for a time T =
θ

8|α|3εZ1Z2Z3

.

2.2.3 Topological phase gates with adiabatic code deformation

2.2.3.1 X gate

Dissipative implementation As we have argued in section 2.1, the only rotation
around the X-axis that does not convert Z errors into X or Y errors is the rotation of
an angle π, the Pauli X gate. The problem of the bias-preserving implementation
can be roughly stated as such. How can we design a process, having a unitary action
on the two-dimensional subspace of the cat qubits, that implements a rotation of the
coherent state |α〉 to the coherent state | − α〉 (and vice-versa) while ensuring that
the physical errors of the QHO (e. g photon loss) result in at most an exponentially
small population remaining on the state |α〉 after the transfer is done? As we
have seen in section 2.1, there is no process that can realize this while keeping the
state of the system inside the two-dimensional cat qubits manifold during the gate
execution. Rather, this is realized using an excursion outside the code space, that
can be thought of as a continuous adiabatic deformation of the code space, obtained
by varying the complex number α of the two-photon dissipation κ2D[â2 − α2]

in time. When the variations of α(t) are sufficiently slow with respect to κ−1
2 ,

the driven-dissipative dynamics modelled by the super-operator κ2D[â2 − α(t)2]

stabilizes the two-dimensional manifold spanned by the coherent states |α(t)〉 and
| − α(t)〉 at all times t, realizing a slow motion of the fixed points of the dynamics in
the phase-space.

Remarkably, the quantum information is preserved while the code space is de-
formed, provided the two states |α(t)〉, | − α(t)〉 remain sufficiently separated in
phase-space at all times. This point is crucial in order to implement a unitary op-
eration within the cat qubit manifold. The state |ψ0〉 = c0|α〉+ c1| − α〉 at time t = 0
evolves under the effect of κ2D[â2 − α(t)2], with α(0) = α, to

|ψ(t)〉 = c0|α(t)〉+ c1| − α(t)〉

provided that at all times intermediate times t′ ∈ [0, t], the two following conditions
are satisfied

|α̇(t′)|/|α(t′)| � κ2

|〈α(t′)| − α(t′)〉|2 � 1.
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FIGURE 2.3: Wigner function of the state of a cat qubit during the execution of an
X operation. The green dots are the Wigner functions of the instantaneous steady
states of the dynamics ρ̇ = κ2D[â2 − α(t)2]. These attracting points are slowly
rotated from ±α to ∓α on the dashed circle, as shown by the green arrows. When
this rotation is performed slowly, the cat follows the attractive points (red arrows).

The X gate is realized by choosing a "path" function α(t) such that |α〉 and | − α〉
are swapped, e.g α(t) = αeiπt/T, t ∈ [0, T] where T � κ−1

2 is the gate time. Indeed,
the swap |α〉 ↔ | − α〉 corresponds to the map |C+α 〉 → |C+α 〉 and |C−α 〉 → −|C−α 〉
which is an X operation for the cat qubit.

The process implementing the X gate thus swaps the two states | ± α〉 while
keeping the quantum information encoded in the superposition of these states
intact. With this regard, the gate consists in imparting a topological π-phase to the
coherent states. We call this phase “topological” because the state of the system
during the execution of the gate does no longer belong to the cat qubit subspace.
It is only at the end of the gate that the state is brought back into this manifold
together with an exact π-phase. This phase is not affected by the imprecision in the
rotation angle. Indeed, the phase of the coherent states | ± α〉 are locked to the phase
of the pump drives. In this sense, each cat qubit is defined with respect to its own
pumps. Therefore, even if the rotation angle is not precisely π, which could happen
e.g because of the amplitude and phase fluctuations of the pumping drive, the state
has still accumulated a topological π-phase with respect to its local oscillator. This
is to be contrasted with the accumulation of the dynamical phase realized inside the
code manifold for the Zeno type gates of the previous section.
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Note that in addition to this topological π phase, there is a geometric phase
accumulated due to the particular path taken by α(t). However, this phase is the
same for the two states | ± α〉 and correspond to a physically meaningless global
phase.

In the ideal case of a loss-less harmonic oscillator and in the limit where the gate
time T = +∞, the fidelity of this operation with respect to the X operator is 1. This
operation is bias-preserving as the errors caused by the finite gate time are only
of the phase-flip type, but the bit-flips remain exponentially suppressed in the size
of the cat n̄. Intuitively, this is possible because the two-photon pumping is never
turned off during the gate execution. A schematic representation of this evolution in
the phase-space is depicted in Figure 2.3.

Optional addition of a feed-forward Hamiltonian To reduce the phase-flip error
rate due to the finite gate time, called the non-adiabatic errors, the feed-forward
Hamiltonian

Ĥ = −π

T
â† â

is turned on while the pumping is being rotated. This Hamiltonian generates the
unitary R̂(t) = ei π

T â† ât which rotates deterministically the qubit state

R̂(t)|ψ0〉 = c0|α(t)〉+ c1| − α(t)〉

so that it remains at all times in the kernel of the time dependent dissipative channel:

[â2 − α(t)2]R̂(t)|ψ0〉 = 0

In presence of this Hamiltonian, there is no need to proceed adiabatically, that is the
gate time T can be arbitrarily short.

2.2.3.2 CNOT gate

Dissipative implementation The idea behind the X gate can be adapted to realize
a controlled-X (CNOT) gate between two cat qubits, which consists in applying an
X gate to the “target” cat qubit when the “control” qubit is in the computational
|1〉 ≈ | − α〉 state and applying the identity otherwise

CNOT = 1
2 (I1 + Z1)⊗ I2 +

1
2 (I1 − Z1)⊗ X2.

In terms of operators acting on the cat qubit, the CNOT gate can be written

CNOT ≈ |α〉〈α| ⊗ (|α〉〈α|+ | − α〉〈−α|) + | − α〉〈−α| ⊗ (|α〉〈−α|+ | − α〉〈α|)
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The approximation is exponentially precise in |α|2. This operation is realized by
making a rotation of the pumping of the target qubit implementing the X gate that
depends on the state of the control qubit, by modifying the dissipation channels of
the cat qubits Lâ = D[L̂â] and Lb̂ = D[L̂b̂(t)], with:

L̂â = â2 − α2

L̂b̂(t) = b̂2 − 1
2 α(â + α) + 1

2 αe2i π
T t(â− α)

where we denote by â (resp. b̂) the mode of the control cat qubit (resp. target cat
qubit). The dissipation channel on the control qubit Lâ is the two-photon pumping
scheme stabilizing the control cat qubit. The second dissipation channel, however,
acts on the target cat qubit but also depends on the first mode â. It should be under-
stood as follows: when the control qubit â is in the state |α〉, the operator L̂b̂(t) acts
on the target mode as b̂2 − α2, stabilizing the idle code space, but when the control
qubit is in the state | − α〉, the pumping becomes b̂2 − (αei π

T t)2, thus implementing
the time-dependent two-photon pumping dissipation used for the X gate. Just like
for the X gate, the pumping is always turned on during the gate and the bit-flip er-
rors remain exponentially suppressed throughout the gate, ensuring that the CNOT
gate preserves the biased structure of the noise.

In the case of the X gate, the geometric phase corresponded to a physically
meaning-less global phase, but here this phase is conditioned on the state of the con-
trol qubit. As a consequence, the geometric phase induces a deterministic rotation
around the Z-axis of the control qubit. The rotation angle is given by

ϑ = −i
∫ T

0
〈±α(t)| d

dt
| ± α(t)〉dt = π|α|2.

This deterministic geometric phase can be removed by applying the appropriate
Z(θ) operation discussed above. Another option is to ensure the rotation angle ϑ

is a multiple of 2π, either by setting the number of photons to be an even integer
or by choosing a path α(t) such that the result of the integral is a multiple of 2π.
Even in this case, the fluctuations along the chosen path will inevitably lead to a
certain imprecision in the final value of the geometric phase, leading to additional
phase-flip errors.

Optional addition of a feed-forward Hamiltonian A major part of the phase-flip
errors induced by non-adiabatic effects can be compensated in the same way as for
the X gate, by adding a Hamiltonian evolution of the form

Ĥ =
1
2

π

T
â− α

2α
⊗ (b̂†b̂− n̄) + h.c.

while rotating the pumping. In presence of two-photon pumping, this Hamiltonian
is an approximation of the “ideal” Hamiltonian that would perfectly cancel all of the



2.2. Bias-preserving implementations 59

non-adiabatic errors
Ĥ∗ = −π

T
| − α〉〈−α| ⊗ (b̂†b̂− n̄)

which triggers a rotation of the target cat qubit in the phase-space conditional to the
control cat qubit being in the state | − α〉. Similar Hamiltonians have been already
realized using parametric methods [119], (see section 2.4).

2.2.3.3 Toffoli gate

Dissipative implementation The Toffoli gate is the three-qubit controlled-
controlled-X gate (CCX)

Toffoli = 1
4 (I1 + Z1)(I2 + Z2)I3 +

1
4 (I1 + Z1)(I2 − Z2)I3

+ 1
4 (I1 − Z1)(I2 + Z2)I3 +

1
4 (I1 − Z1)(I2 − Z2)X3.

This unitary is in the third level of the Clifford hierarchy, thus it does not
belong to the Clifford group. In many of the schemes achieving universality, the
non-Clifford operations are the most difficult operations to implement. While the
Toffoli gate is undeniably the most complicated gate of the physical gate set, its
implementation is similar to the two-qubit CNOT gate.

Similarly to the CNOT gate, only the dissipation channel of the target cat qubit
needs to be modified, Lâ = D[L̂â], Lb̂ = D[L̂b̂] and Lĉ = D[L̂ĉ(t)],

L̂â = â2 − α2

L̂b̂ = b̂2 − α2

L̂ĉ(t) = D[ĉ2 − 1
4 (â + α)(b̂ + α) + 1

4 (â + α)(b̂− α)

+ 1
4 (â− α)(b̂ + α)− 1

4 e2i π
T t(â− α)(b̂− α)].

Here, Lâ and Lb̂ keep stabilizing the two control modes â and b̂ in manifolds
spanned by | ± α〉, and Lĉ rotates the two-photon pumping on the target mode ĉ
only when the control cat qubits are in the state | − α,−α〉.

In theory, assuming the required couplings between any number of modes are
available, the mechanism behind the topological X, CNOT and Toffoli gates can be
straightforwardly adapted to implement the n-qubit entangling gate Cn−1X belong-
ing to the n-th level of the Clifford hierarchy, where Cn−1 denotes the controls on the
first n− 1 qubits. Note that in practice, the implementation of the required dissipa-
tive channels would involve non-linear processes of higher order which are much
more complex to realize and that would typically be weak.

As for the CNOT gate, the deterministic geometric phase associated to the path
taken by the target cat qubit can also be eliminated by tailoring the path followed in
the phase-space by the cat states during the execution of the gate, or by physically
applying Z(θ) and ZZ(θ) gates.
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Optional addition of a feed-forward Hamiltonian Similarly to all the topological
gates implemented on the cat qubits involving a continuous evolution of the code
space, the fidelity of the dissipative implementation can be improved by adding
a feed-forward Hamiltonian whose role is merely to reduce the phase-flip errors in-
duced by non adiabaticity. Again, the systematic construction of such a Hamiltonian
is based on the adaptation of the ideal feed-forward Hamiltonian for the X gate to
the particular case where this rotation is realized conditionally on some control cat
qubits state. In the specific case of the Toffoli gate, the target cat qubit (mode ĉ) un-
dergoes a rotation in the phase-space implementing the X gate only when the joint
state of the two control cat qubits is | − α,−α〉. Thus, in analogy with the X gate,
a “perfect” feed-forward Hamiltonian that would exactly cancel the non-adiabatic
phase-flip errors is

Ĥ = −π

T
| − α〉〈−α| ⊗ | − α〉〈−α| ⊗ ĉ† ĉ.

Just like for the Toffoli gate, the projectors on coherent states are not Hamilto-
nians that can be implemented; but they can be well approximated by (where the
approximation on the cat manifold is exponentially good in α)

| − α〉〈−α| ≈ α− â
2α

and the resulting approximate Hamiltonian that we propose to apply while a Toffoli
gate is performed to remove most of the non-adiabatic phase-flip errors is thus given
by

Ĥ = −1
2

π

T
â− α

2α
⊗ b̂− α

2α
⊗ (ĉ† ĉ− n̄) + h.c.

2.2.3.4 SWAP gate

Dissipative implementation The two-qubit SWAP gate, which acts like its name
suggests, is trivially compatible with a bias-preserving implementation as it does
not convert Z-type errors into X- or Y-type errors. As it will become clear in the
next Chapter, the SWAP gate is often useful to adapt logical circuits to actual con-
straints on the connectivity graph of the physical qubits. Noting that a SWAP gate
can be implemented using three CNOT gates establishes that the SWAP gate can be
implemented in a bias-preserving manner, but there is a more direct way to do this.
Following the guiding principle of the CNOT gate, the SWAP gate is realized by re-
placing the regular two-photon dissipation operators L̂â = â2 − α2 and L̂b̂ = b̂2 − α2

by the following time-dependent operators that combine both modes

L̂â(t) = â2 − 1
2 âb̂(1− e2i π

T t)− 1
2 α2(1 + e2i π

T t),

L̂b̂(t) = b̂2 − 1
2 âb̂(1− e−2i π

T t)− 1
2 α2(1 + e−2i π

T t).
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for t ∈ [0, T] where T is the SWAP gate time. The instantaneous joint kernel of these
operators is the four dimensional Hilbert space spanned by the set of coherent states

{|α, α〉, | − α,−α〉, |αei π
T t,−αe−i π

T t〉, | − αei π
T t, αe−i π

T t〉}.

Recalling that |0〉 ≈ |α〉 and |1〉 ≈ | − α〉, these two dissipation channels implement
the correct mapping corresponding to a SWAP gate:

|α, α〉 → |α, α〉
| − α,−α〉 → | − α,−α〉
|α,−α〉 → | − α, α〉
| − α, α〉 → |α,−α〉.

Optional addition of a feed-forward Hamiltonian Similarly to the others gates
that are implemented using a rotation of the steady states of the driven-dissipative
super-operators in the phase space, the phase-flip errors of a SWAP gate caused by
non-adiabaticity are reduced when the Hamiltonian

Ĥ = − π

4α2T
(â† â− b̂†b̂)(α2 − âb̂) + h.c

is added during the gate. The operator (α2 − âb̂)/2α2 acts as identity on the states
|αei π

T t,−αe−i π
T t〉 and | − αei π

T t, αe−i π
T t〉 while it vanishes on the states |α, α〉 and | −

α,−α〉. The above Hamiltonian thus reduces to the required rotating term π(â† â−
b̂†b̂)/T only when the cat qubits are in a state that is moved around in the phase
space, and vanishes otherwise.

2.3 Error models

In this section, we detail the error models of the various gates introduced above. We
give a particular attention to the CNOT gate, as this gate is crucial for the stabilizer
measurement and hence it is important to have a detailed understanding of its
errors in order to assess the overall performance of the scheme (Chapter 4). On the
other hand, this discussion about the error models does not include the ZZZ(θ) and
the SWAP gates. These gates are not used later in the circuit simulations, hence the
derivation of their precise error model is independent of the rest of this work, and
requires a careful treatment that we postpone to future work.

We analyze the error models resulting from two different sources of errors: the
single-photon loss of the QHO at a rate κ1, and the non-adiabaticity of the gates.
Actually, apart from state preparation and measurement, and in the absence of any
source of decoherence, all the gates have unit fidelity in the limit where the gate
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time is infinite. We discuss phase-flip and bit-flip errors in two different ways.

The phase-flip errors are exponentially dominant. For these errors, we give
explicit analytical formulas. More precisely, the analytical formula for the phase-flip
errors induced by photon loss are explicitly calculated. The analytical formula for
the phase-flip errors induced by non-adiabaticity are derived using a combination
of a systematic adiabatic elimination theory to guess the scaling of the formula
together with a numerical fit to determine the constant prefactor. Using this method,
we were able to derive the non-adiabatic phase-flip errors for the topological gates
(actually, the X gate has no non-adiabatic phase-flip error when the feed-forward
Hamiltonian is added). While we were writing this dissertation, a very thorough
study of all the gates on dissipative cat qubits was published [26]. Using a new
method introduced in this paper, based on the “shifted Fock basis” adapted to
the cat states, the authors were able to also derive analytically the non-adiabatic
phase-flip errors for the Zeno gates, thus completing the analysis of phase-flip
errors. For the sake of completeness, we give these formulas without including
the derivation, which is thoroughly exposed in [26]. Because the phase-flip errors
induced by the natural losses of the QHO increase with the gate time, while the
phase-flip errors induced by non-adiabaticity decrease with the gate time, the
combination of these two sources of errors gives rise to an optimal finite gate time
that minimizes the phase-flip errors. We give these optimal gate times based on the
analytical formulas, and the error models obtained for these optimal gate times are
the input of the circuit simulations of Chapter 4.

We claim that the cat qubit encoding, the two photon stabilization, and the care-
ful bias-preserving implementations of the gates, result in gates for which the bit-flip
errors are exponentially suppressed even during the execution of the gates, this point
being crucial for the whole construction of the scheme. Here, we give numerical ev-
idence for this claim by performing numerical process tomography of two gates, the
Z(θ) and the CNOT gate, for increasing cat sizes, for which the exponential sup-
pression of bit-flips is indeed observed. We deem that checking the exponential
suppression of bit-flips on these two gates is enough, because the other Zeno gates
have a similar mechanism as the Z(θ) gate. For the topological gates, while the X
gate, in presence of the feed-forward Hamiltonian, is actually equivalent to the two-
photon pumping under a change of frame (see below), the Toffoli gate was beyond
reach of numerical simulations. Again, the recent and thorough study [26] filled in
this gap by using the shifted Fock basis in which the Toffoli gate was simulated and
the exponential suppression of bit-flips verified numerically.
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2.3.1 Identity and SPAM errors

Photon loss phase-flip and bit-flip errors The dynamics of an idling cat qubit sub-
ject to photon loss is modelled by the master equation

dρ

dt
= κ2D[â2 − α2]ρ + κ1D[â]ρ (2.3)

where κ2 is the rate of the engineered two-photon dissipation and κ1 the rate of
single photon loss. The photon loss operator â induces a phase-flip error on the cat
qubit, â|C±α 〉 = α tanh(|α|2)±1/2|C∓α 〉. Thus, the phase-flip error probability induced
by single photon loss at rate κ1 during a time T is given by pZ = n̄κ1T. This leading
order contribution can be calculated explicitly by considering the evolution of the cat
state |C±α 〉 under the evolution (2.3). Assuming that κ1 � κ2 such that the dynamics
remains in the cat qubit manifold and looking for a solution of the form ρ(t) =

(1− p(t))|C+α 〉〈C+α |+ p(t)|C−α 〉〈C−α |, the evolution of the population of the cat states
is given by (dropping the terms exponentially small in α)

ṗ(t) = κ1n̄(1− 2p(t)).

Thus, starting from the initial cat state |C±α 〉 (p(0) = 0), the phase-flip error probabil-
ity is given by p(t) = 1

2 (1− e−2n̄κ1t) ≈ n̄κ1t when n̄κ1t� 1.

FIGURE 2.4: Numerical simulation of the effective bit-flip a) and phase-flip b)
error probability induced by photon loss at rate κ1.

While it is possible to derive explicitly the dominant phase-flip error probability,
the exact calculation of the (exponentially suppressed) bit-flip error probability is
a hard problem (the same holds for the error models of the gates, where analytical
formulas can be derived for the dominant phase-flip errors induced either by
photon loss or by the finite gate times but not for the exponentially small bit-flip
errors). Rather, we confirm numerically (Figure 2.4 that the bit-flip errors are
exponentially suppressed with the average number of photon n̄ in the cat qubit. We
note that even though Figure 2.4 is plotted using the effective dynamics (2.3), these
scalings have been observed experimentally in [83].
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Finally, we expect that the preparation of the cat states |C±α 〉 and the measurement
of these states can be performed with a similar phase-flip error probability pZ =

n̄κ1T, where T is the typical preparation and measurement time.

2.3.2 Zeno gates

2.3.2.1 Z(θ) gate

The master equation describing the rotation of an angle θ around the Z axis in time

T =
θ

4
√

n̄|εZ|
is

ρ̇ = −i[εZ â + ε∗Z â†, ρ] + κ2D[â2 − α2]ρ. (2.4)

Photon loss phase-flip errors The phase-flip errors induced by photon loss at rate
κ1, described by adding the term κ1D[â]ρ to the above master equation, commute
with the gate at all times. For this reason, the effect of photon loss can be accounted
for separately, and the phase-flip errors induced by photon loss are the same as in
the memory case

pZ[photon loss] = n̄κ1T =
κ1
√

n̄θ

4|εZ|

Non-adiabatic phase-flip errors In [26], the analytical formula proposed for the
non-adiabatic phase-flip errors is

pZ[non-adiabaticity] =
θ2

16κ2n̄2T
=

θ|εZ|
4κ2n̄3/2 .

We perform a numerical simulation of master equation (2.4) in Figure 2.5, for a
rotation of angle θ = π and in the absence of photon loss (that is, to check the non-
adiabatic error model). The dotted points (numerical results) are in good agreement
with the analytical formula (blue curve).

FIGURE 2.5: Numerical simulation of the non-adiabatic errors of the Z = Z(π)
gate implemented by the master equation (2.4). The non-adiabatic phase-flip error
Z is linearly suppressed with the gate time T, while the bit-flip type errors X and

Y are exponentially suppressed with the mean number of photons n̄.
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Optimal gate time Taking into account both the phase-flip errors induced by pho-
ton loss and by non-adiabaticity, the total phase-flip error probability for a Z(θ) gate
implemented in time T is given by

pZ = n̄κ1T +
θ

16κ2n̄2T

which is minimal for T∗ =
√

θ

4n̄3/2√κ1κ2
, for which the phase-flip rate is

pZ =

√
θ

2
√

n̄

√
κ1

κ2
.

2.3.2.2 CZ gate

The same analysis has been carried through in [26] for the ZZ(θ) gate, from which
the CZ gate can be implemented by combining the single qubit Z rotations. While
the errors induced by photon loss result in independent Z errors on the two cat
qubits with same probability n̄κ1T as before, it is shown that the non-adiabatic
phase-flip errors result in both independent Z1 and Z2 errors as well as correlated
Z1Z2 errors. The analytical formula for the overall phase-flip errors are given by

pZ1 = pZ2 = n̄κ1T +
θ2

64κ2n̄2T

pZ1Z2 =
θ2

32κ2n̄2T
.

Note that the photon loss induced errors increase linearly with T while the non-
adiabatic errors decrease linearly with T. The optimal gate time minimizing these

errors is given by T∗ =
√

θ

4
√

2n̄3/2√κ1κ2
.

2.3.3 Topological gates

2.3.3.1 X gate

The master equation implementing the topological X gate in time T is given by

ρ̇ = i[
π

T
â† â, ρ] + κ2D[â2 − (αei π

T t)2],

where the (optional) Hamiltonian term is added to compensate the non-adiabatic
phase-flip errors while the dissipative term implements the continuous deformation
of the cat qubit subspace. Actually, for this gate, the Hamiltonian removes all of the
non-adiabatic phase-flip errors. Indeed, in the rotating frame of this Hamiltonian,
the dynamics reads

ρ̇ = κ2D[â2 − α2]
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which is simply the two-photon stabilization. Thus, for this gate, there are only the
phase-flips errors induced by photon loss, which are given by

pZ = n̄κ1T.

In this effective model, it seems that the gate can be executed arbitrarily fast (the
optimal gate time is T∗ → 0). In practice we will be limited by the adiabatic elimi-
nation of the buffer mode that is required for the implementation of the two-photon
dissipation (see subsection 1.4.3 for the generic adiabatic elimination of the buffer
mode and section 2.4 for the precise discussion of the experimental implementa-
tions). This more thorough study is out of the scope of the current manuscript.

2.3.3.2 CNOT gate

We now investigate the error model of the CNOT gate. As we have argued before,
this gate is particularly important for error correction, such that a detailed analysis
is provided. In particular, we numerically check that the analysis is robust when
adding additional sources of errors on the QHO, including thermal excitation and
dephasing.

Photon loss phase-flip errors In order to understand the effect of the loss of a pho-
ton during the execution of the CNOT, let us consider the operation approximately
generated by the two dissipation channels Lâ and Lb̂. In the cat qubits subspaces
where the dynamics is confined, these channels implement a unitary operation of
the form:

U (t) = |α〉〈α| ⊗ I + | − α〉〈−α| ⊗ ei π
T tb̂† b̂

with U (0) = I ⊗ I and U (T) = CNOT.
Consider the effect of a loss of a single photon of the control mode â at an ar-

bitrary time t ∈ [0, T]. The noisy quantum operation Eâ performed instead of the
CNOT is given by

Eâ = U (T − t)[â⊗ I]U (t)
= α|α〉〈α| ⊗ I − α| − α〉〈−α| ⊗ eiπb̂† b̂

= [â⊗ I]CNOT

which can be written in terms of Pauli operators for the cat qubits as

Eâ = Z1CNOT.

In other words, the loss of a photon on the control cat qubit causes a phase-flip on
that qubit but does not affect the target cat qubit.
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On the other hand, a photon loss occurring on the target cat qubit b̂ at time t
propagates as

U (T − t)[I ⊗ b̂]U (t) = (I ⊗ b̂)(|α〉〈α| ⊗ I + e−iπ T−t
T | − α〉〈−α| ⊗ eiπb̂† b̂)

= (I ⊗ b̂)(|α〉〈α| ⊗ I + e−iπ T−t
T | − α〉〈−α| ⊗ I)CNOT.

The resulting error

I ⊗ b̂(|α〉〈α| ⊗ I + e−iπ T−t
T | − α〉〈−α| ⊗ I)

induced by the propagation of the photon loss can be expressed in terms of the Pauli
operators of cat qubits as

Ûerr(θ) =
1
2
(1 + Z1)Z2 +

1
2

eiθ(1− Z1)Z2

where θ = −iπ(1− t/T) is a random phase. The time of the jump being uniformly
distributed over the interval [0,T], the noisy operation Eb̂ can be written

Eb̂(ρ) = n̄κ1T
∫ 0

−π

dθ

π
Ûerr(θ)ρ̃Ûerr(θ)

†

= n̄κ1T[
1
2

Z2ρ̃Z2 +
1
2

Z1Z2ρ̃Z1Z2 +
i
π

Z1Z2ρ̃Z2 −
i
π

Z2ρ̃Z1Z2]

where ρ̃ = CNOTρCNOT is the image of ρ by a perfect CNOT operation and n̄κ1T
is the average number of photons lost in each mode during the execution of the
gate. Note that this analytical formula is an approximation that only accounts for
the effect of the loss of a single photon loss. In addition to this dominant phase-flip
error corresponding to the loss of a single photon, the cat states are also slightly
deformed towards the center of the phase space, causing (exponentially small)
bit-flip errors. Importantly, while the bit-flip are still exponentially suppressed with
the cat size as e−2n̄, the constant prefactor in front of this exponential suppression
is significantly larger than for the case where the two-photon dissipation is time
independent. Also, the loss of more than a single photon result in a phase-flip error
rate slightly different from this one. However, the numerical simulation of the
process confirms that this approximation captures well most of the errors that are
caused by photon loss.

The factorization of the operation Eb̂ as a perfect CNOT gate followed by some
noise operators makes it easier to analyze the effect of the errors. The first two terms
indicate that the effect of photon loss on the target cat qubit produces two types of
errors of the same strength: phase-flips on the target cat qubit 1

2 Z2ρ̃Z2 as well as a
correlated phase-flips on both qubits 1

2 Z1Z2ρ̃Z1Z2, with some degree of coherence
between these two errors.
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When losses on both modes are taken into account, the noisy CNOT gate Eâ,b̂ is
described by the Kraus map:

Eâ,b̂(ρ) = ∑
k=1,2,3

Mkρ̃M†
k

where, noting r = 1
2 arcsin(2/π), the Kraus operators are given by

M1 =
√

n̄κ1TZ1

M2 =
√

n̄κ1T
2 (cos rI1 + i sin rZ1)Z2

M3 =
√

n̄κ1T
2 (sin rI1 + i cos rZ1)Z2.

Non-adiabatic phase-flip errors Let us now consider the phase-flip errors induced
by non-adiabaticity. The addition of the feed-forward Hamiltonian

Ĥ =
1
2

π

T
â− α

2α
⊗ (b̂†b̂− n̄) + h.c.

compensates most of the errors induced by the finite gate time T, and it is possible to
characterize the remaining errors. Using the systematic adiabatic elimination tech-
niques of [12], one can check that it is only composed of phase-flips on the control
cat qubit Z1, with a rate proportional to (n̄κ2T)−1

The exact coefficient of proportionality is estimated by a numerical fit and is
found to be around 0.159. In our work [60], we used the approximation 0.159 ≈
(2π)−1. The phase-flip probability is given by

pZ1 [non-adiabaticity] = 0.159(n̄κ2T)−1.

We note that using the shifted Fock basis, the authors of [26] derived an analytical
error model and found that

pZ1 [non-adiabaticity] =
π2

64
(n̄κ2T)−1,

in close agreement with our numerical estimation
π2

64
≈ 0.154.

Optimal gate time The probability of the "environment" induced phase-flip errors,
e.g by photon loss, increase linearly with the gate time T, whereas phase-flip errors
caused by non-adiabaticity are reduced when the gate time is increased. This oppo-
site behavior gives rise to a finite optimal gate time T∗ for which the gate fidelity is
maximal.

More precisely, taking into account phase-flip errors caused by both photon loss
and non-adiabaticity, the total phase-flip error probability on the control cat qubit is
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given by

pZ1 = pZ1 [photon loss] + pZ1 [non-adiabaticity] = n̄κ1T + 0.159(n̄κ2T)−1.

The gate fidelity F of the implemented CNOT operation, defined in equation (2.5),
is given by

F =
√

1− (pZ1 + pZ2 + pZ1Z2) =
√

1− 2n̄κ1T − 0.159(n̄κ2T)−1.

The highest value of the fidelity that can be achieved is set by the ratio κ1/κ2

F =

√
1− 1.13

√
κ1

κ2
,

achieved for the optimal gate time

T∗ = 0.282[n̄
√

κ1

κ2
]−1κ−1

2 .

For the ratio κ1
κ2

= 10−3 considered in Figure 2.6, this theoretical formula predicts a
gate fidelity of F = 98.2%, in agreement with the numerical simulation.

Numerical process tomography The validity of this error model is checked nu-
merically in Figure 2.6 (a,b,c). The full master equation of the system is simulated in
presence of photon loss. The process matrix χ plotted in (a) completely characterizes
the quantum operation E performed via the relation [92]

E(ρ) = ∑
mn

χmnPmρP†
n

where {Pj} is the set of two-qubit Pauli operators. The gate fidelity F is defined as
[92]

F (U, E) = min
|ψ〉
F (U|ψ〉, E(|ψ〉〈ψ|)) (2.5)

where U = CNOT is the perfect CNOT operation the minimum is taken over the set
of all possible two-qubit states |ψ〉. The unitary of the perfect CNOT is factored out
in order to obtain the process error matrix χerr (real part in (b), imaginary part in (c)),
which characterizes the noise alone:

E(ρ) = ∑
mn

χerr
mnPmρ̃P†

n

with ρ̃ = CNOTρCNOT the image of ρ by a perfect CNOT. In other words, we
decompose the noisy CNOT into a perfect CNOT followed by some noise process,
characterized by the process error matrix χerr. As can be seen in the real part of χerr

(Figure 2.6-b), photon loss and non-adiabaticity only cause phase-flip errors Z1, Z2

or Z1Z2.
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FIGURE 2.6: Process tomography of the CNOT gate in presence of noise. The
CNOT process is numerically simulated for n̄ = 7 photons cat qubits using
two different error models. First, we consider photon loss on both modes
κ1D[â] + κ1D[b̂] (a-c). Then, we consider a more elaborate error model including
photon loss κ1(1 + nth)D[â] + κ1(1 + nth)D[b̂], thermal excitations κ1nthD[â†] +

κ1nthD[b̂†] (nth = 10%) and dephasing on both modes κφD[â† â] + κφD[b̂† b̂] (d-
f). In both cases, we set κ1/κ2 = 10−3 and the gate time is chosen optimal
T∗ = 0.282[n̄

√
κ1κ2]

−1 ≈ 1.27κ−1
2 (see main text). We plot the real part of the pro-

cess matrix χ (a,d), and the real (b,e) and imaginary (c,f) part of the error matrix
χerr. In the lower row (g,h,i), we check the validity of the analytical error model for
photon loss for various gate times and cat sizes. The dots illustrate the simulation
results where the full master equation in presence of loss is considered, the plain
lines correspond to the analytical formula provided in the main text. The blue dots
correspond to the diagonal process matrix element corresponding to Z1 errors, the
red dots correspond to the coinciding diagonal matrix elements corresponding to
Z2 and Z1Z2 errors. The green dots correspond to the off-diagonal elements cor-
responding to the coherence between Z2 and Z1Z2 errors. The pale magenta dots
correspond to the off-diagonal elements corresponding to coherence between Z1
and I, this coherence is due to high-order non-adiabatic effects (not included in
our model). The black dots correspond to all of the remaining errors, including
bit-flip type ones. It is clear that these errors are exponentially suppressed with

the mean number of photons n̄.

We further investigate our theoretical model for errors caused by photon loss
by plotting in Figure 2.6(g,h,i) the values of the coefficients of the error matrix χerr
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(marked by colored squares) as a function of gate duration. The blue dots corre-
spond to phase-flip errors on the control cat qubit Z1 induced by a combination of
non-adiabatic errors and the photon loss. The plain blue line corresponds to the
analytical formula

pZ1 = n̄κ1T + 0.159(n̄κ2T)−1.

The red dots represent the phase-flip errors on target qubit Z2 and the correlated
phase-flip errors Z1Z2. These values coincide and are given by

PZ2 = PZ1Z2 =
1
2 n̄κ1T,

as is represented by the plain line in red. The off-diagonal term corresponding
to the coherence between Z2 and Z1Z2 errors (green dots) also fit very well our
expectation. The pale purple dots correspond to the off-diagonal term representing
the coherence between I and Z1 errors. In order to capture such a coherence, one
needs to push the non-adiabatic perturbation techniques [12] up to third order,
which we have not yet done. Most importantly, the remaining errors (namely
the ones that contain an X or Y Pauli operator) represented by the black lines are
exponentially suppressed by the cat size, that confirms the bias-preserving aspect of
the gate.

As discussed in [31] and recalled in Chapter 1, in presence of the two-photon
pumping scheme, any physical noise process with a local effect in the phase space of
the harmonic oscillator causes bit-flips that are exponentially suppressed in the size
of the cat qubits, thus preserving the biased structure of the noise. We now provide
a numerical evidence of this fact for a more elaborate set of physical noise processes
for the superconducting cavity: photon loss â, thermal excitation â† with a non-zero
temperature, and photon dephasing â† â.

In Figure 2.6, we characterize the performed operation by plotting the process
matrix χ (d), and the real part (e) and imaginary part (f) of the error matrix. In this
simulation, κ1/κ2 = 10−3, the photon loss is given by κ1(1 + nth)D[â] and thermal
excitations by κ1nthD[â†] with nth = 10%, and the dephasing on the cavity is given
by κφD[â† â] with κφ = κ1.

Note that the resulting error matrix and gate fidelity are barely affected by the
added thermal excitations and photon dephasing. The addition of thermal noise
and dephasing slightly decrease the fidelity of the operation, from 98.2% to 97.8%,
but as expected, this decrease is caused by an increased rate of phase-flip errors,
while all bit-flip errors remain exponentially suppressed.

Very interestingly, the phase-flip error probability induced by the cavity dephas-
ing was computed explicitly in the recent work [26]. The fact that cavity dephasing
at rate κφ, described by the dissipation super-operator κφD[â† â], can lead to phase-
flip errors might be surprising. Indeed, the dephasing operator â† â commutes with
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the photon number parity operator (−1)â† â, such that one may naively think that
it cannot induce transitions between the two cat states |C±α 〉 of well-defined photon
number parity. While this is in general true for an idling cat qubit, the photon num-
ber parity of the cat states during the execution of the CNOT gate does not remain
well-defined, thus exposing the cat state to some dephasing-induced phase-flips. In
[26], it was shown that cavity dephasing κφD[â† â] results in a phase-flip error only
on the control cat qubit, with probability

pZ1 =
1
2

κφn̄T.

Note that we have not included this error in the rest of our work, for which we
assumed that κφ = 0.

Numerical considerations. The numerical study of the CNOT gate in presence of
noise (Figure 2.6) requires the simulation over a time T of the Lindblad master equa-
tion

ρ̇ = −i[Ĥ, ρ] + κ2D[L̂â]ρ + κ2D[L̂b̂(t)]ρ + κ1D[â]ρ + κ1D[b̂]ρ

for 16 different initial states. The numerical computations were performed using
the cluster of Inria Paris, composed of 68 nodes for a total of 1244 cores. The nodes
are divided in a few hardware generations: 28 bi-processors Intel Xeon X5650 of
6 cores, 12 bi-processors E5-2650v4 2.20 of 12 cores, 16 bi-processors XeonE5-2670
of 10 cores, 8 bi-processors E5-2695 v4 of 18 cores, 4 bi-processors E5-2695 v3 of 14
cores. The simulation of the CNOT gate for cat qubits of n̄ = 10 and a gate time of
T = 3κ−1

2 takes about 13 hours on the cluster. The simulation of the Toffoli gate with
the same parameters would be about 2000 times longer, for this reason, we do not
provide numerical simulations for the Toffoli gate.

However, we note that in the recent work [26], the shifted Fock basis adapted to
large cat states was introduced, in which the simulation time of the Toffoli gate on a
cluster is reasonable.

2.3.3.3 Toffoli gate

Photon loss phase-flip errors The effect induced by photon loss during the execu-
tion of the Toffoli gate can be derived in the same way as for the CNOT. A photon
loss occurring on one of the two control modes â, b̂ does not propagate to the other
modes and results in a dephasing error Z1 and Z2, respectively. When the target
mode ĉ loses a photon, it gives rise to a correlated error between the three modes.
More precisely, the noisy Toffoli operation Eâ,b̂,ĉ can be decomposed into a perfect
Toffoli operation, again denoted by

ρ̃ = Toffoli ρ Toffoli
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followed by a noise process modelled by the Kraus map

Eâ,b̂,ĉ(ρ) = ∑
k=1,2,3,4

Mkρ̃M†
k

M1 =
√

n̄κ1TZ1

M2 =
√

n̄κ1TZ2

M3 =
√

n̄κ1T(cos r(I1 I2 −Z12)− i sin rZ12)Z3

M4 =
√

n̄κ1T(sin r(I1 I2 −Z12)− i cos rZ12)Z3.

where Z12 = 1
4 (I1 I2 − Z1 − Z2 − Z1Z2) acts on the two control cat qubits.

Non-adiabatic phase-flip errors Because of the analogies in the way the CNOT
and the Toffoli gates are implemented, it is useful to think of the Toffoli gate as a
CNOT where the control state | − α〉 is replaced by | − α,−α〉. In particular, the
methods of [12] that we used to characterize the effect of non-adiabaticity predict
similar results for the Toffoli gate. The analysis of the errors induced by the approx-
imate Hamiltonians was not realized in this work and it still the topic of current
research. However, we anticipate that the effect of the finite gate time is to dephase
the “trigger” state | − α,−α〉with respect to the other three possible states of the pair
of control cat qubits. In terms of Pauli operator, this only results in phase-flip errors
Z1, Z2 and Z1Z2 on the two control cat qubits with equal probability p = (4πn̄κ2T)−1

but it does not cause any error on the target cat qubit, or bit-flip type errors.
We note that the thorough analysis of [26] include the non-adiabatic phase-flip

errors for the Toffoli gate and are in accordance with these predictions.

Optimal gate time Taking into account phase-flip errors caused by photon loss and
non-adiabaticity, the gate fidelity F of the implemented Toffoli operation is given by

F = [1− pZ1 − pZ2 − pZ3 − pZ1Z2 − pZ1Z3 − pZ2Z3 − pZ1Z2Z3 ]
1
2

= [1− 3
4n̄πκ2T

− 3n̄κ1T]
1
2 .

This fidelity is maximum for the same gate time T∗ = [2n̄
√

π κ1
κ2
]−1κ−1

2 optimizing
the CNOT gate, producing a gate fidelity of

F =

√
1−

√
9
π

κ1

κ2
.

The ratio κ1
κ2

= 10−3 considered in Figure 2.6 corresponds to a gate fidelity F =

97.3% with respect to a perfect Toffoli. Note that the optimal gate time for the CNOT
and the Toffoli gate decreases with the mean number of photons n̄.
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2.4 Experimental realization

We now discuss how all the different operations proposed above could be realized
within the framework of circuit QED. As it will become clear throughout this
section, all the recipes for realizing these operations belong to the well studied
class of parametric methods with circuit QED. The multi-wave mixing property of
Josephson junctions in a transmon or in a more elaborate circuit such as the ATS [83]
can be combined with the application of microwave drives (also called pumps) at
well chosen frequencies to realize the stabilization of the cat qubits, and to process
the information encoded in them. Throughout this section, one can roughly judge
of whether the operation that we propose is reasonable by looking at the order
of non-linearity required to implement the operation. Indeed, while low orders
parametric processes (at most quadratic or cubic) are now more and more common
in the framework of circuit QED, it remains a formidable challenge to engineer
higher order non-linearities with sufficient strength. In all of the implementations
proposed below, we restrict ourselves to (rather) low order non-linearities with
these facts in mind, such that our whole scheme shall seem reasonable to implement
in a near future. Specifically, the most difficult operation to implement experi-
mentally (according to the non-linearity order metric) should be the feed-forward
Hamiltonian required for the reduction of the phase-flip error rate of the Toffoli gate.

We begin in subsection 2.4.1 by describing how the two-photon pumping scheme
that stabilizes the cat qubit is implemented, following the experiments [78, 118, 83].
Then, we discuss in subsection 2.4.2 how the weak Hamiltonians required for the
Zeno gates have been realized [118] or could be realized [87]. Last, we discuss the
realization of the topological gates in subsection 2.4.3. For each gate, the discus-
sion is split in two parts: the (required) implementation of the time dependence of
the two-pumping scheme that realized the topological deformation of the cat qubit
code space, and the (optional) implementation of the feed-forward Hamiltonians
that might be added during the gates execution to reduce the phase-flip errors in-
duced by non-adiabaticity.

2.4.1 Two-photon pumping scheme

We have argued in Chapter 1 that the effective two-photon driven-dissipative stabi-
lization of the cat qubit κ2D[â2 − α2] on a high Q mode â can be implemented using
a low Q “buffer” mode b̂ by the dynamics

ρ̇ = −i[Ĥint, ρ] + κD[b̂]ρ
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where

Ĥint = Ĥconversion + Ĥdrive

Ĥconversion = gâ2b̂† + g∗ â†2b̂

Ĥdrive = −gα2b̂† − g∗α∗2b̂.

The drive Hamiltonian Ĥdrive can be simply implemented by applying a reso-
nant drive on the buffer mode of appropriate amplitude and phase. The Hamil-
tonian Ĥconversion is a non-linear interaction modelling the coherent conversion of
two photons of the memory mode â into a single photon of the buffer mode b̂. In
order to implement this Hamiltonian, it is necessary to use a non-linear circuit el-
ement. Within the framework of circuit QED, this non-linear circuit element is the
Josephson junction. In the next two subsections, we review two different ways to
use a Josephson junction to implement the above Hamiltonian. The first scheme re-
lies on a transmon and was realized experimentally in [78, 118]. The second one,
realized experimentally in [83], relies on a more elaborate circuit element called the
Asymmetrically threaded SQUID (ATS) whose non-linearity is inherited from the
Josephson junction.

2.4.1.1 Two-photon exchange using a transmon

The first experimental demonstration of the conversion Hamiltonian, proposed in
[87] and realized in [78], was achieved by coupling the two modes to a Josephson
junction in a bridge transmon configuration [68]. More precisely, the Josephson junc-
tion is used as a four-wave mixer to generate the coupling that converts two-photons
of the memory mode â into one photon of the buffer mode b̂. In order to do so, the
buffer is pumped off-resonantly at the angular frequency

ωp = 2ωa −ωb

where ωa,b are the frequencies of the memory and buffer mode, respectively, which
stimulates the conversion of two photons of the mode â into one photon of the pump
and one photon of the buffer b̂. Additionally, the Hamiltonian Ĥdrive is implemented
by a weak resonant irradiation of the buffer.

Derivation of the two-photon exchange Hamiltonian The resulting Hamiltonian
of the two modes coupled to the Josephson junction with the two tones (the drive
and the pump) on the buffer mode is given by

Ĥ/h̄ = ω̄a â† â + ω̄bb̂†b̂− EJ

h̄
(cos(ϕ̂) + ϕ̂2/2) + 2R(εpe−iωpt + εde−iωdt)(b̂ + b̂†)

ϕ̂ = ϕa(â + â†) + ϕb(b̂ + b̂†).



76 Chapter 2. Bias-preserving operations on cat qubits

The first two terms are the quadratic Hamiltonian of the two modes, where the
bare frequencies ω̄a,b are shifted due to the contribution of the Josephson junction
in the Hamiltonian. The cosine term is the Josephson junction Hamiltonian (where
the quadratic terms are included in the quadratic part of the Hamiltonian) where
ϕ̂ is the phase across the junction, to which both modes â and b̂ participate with
respective coefficients ϕa and ϕb. The last term describes the two (pump and drive)
tones applied to the buffer mode, with complex amplitude εp and εd and frequencies
ωp and ωd respectively.

The regime of parameters producing the correct term is

ωp, ωd, ω̄a,b � εp, ωp − ω̄b �
EJ

h̄
‖ϕ̂‖4

4!
.

Following [78], the fast time scales corresponding to the system frequencies and
pump amplitude are eliminated by the change of basis

U = eiωdtb̂† b̂ei ωd+ωd
2 tâ† âe−ξ̃p b̂†+ξ̃∗p b̂

dξ̃p

dt
= −iω̄b ξ̃p − 2iR(εpe−iωpt)− κb

2
ξ̃p.

The amplitude of the displacement quickly converges (in a few κ−1
b ) to

ξ̃p ≈ ξpe−iωpt =
−iεp

κb/2 + i(ω̄b −ωp)
e−iωpt.

In this frame, the Hamiltonian is given by

H̃/h̄ = (ω̄b −ωd)b̂†b̂ + (ω̄a −
ωd + ωp

2
â† â− EJ

h̄
(cos(ϕ̃) + ϕ̃2/2)

ϕ̃ = ϕa(e−i
ωp+ωd

2 t â + ei
ωp+ωd

2 t â†) + ϕb(e−iωdtb̂ + eiωdtb̂† + ξ̃p + ξ̃∗p).

Expanding the cosine up to the fourth order and performing the rotating wave
approximation, this Hamiltonian becomes

Ĥ = Ĥshift + ĤKerr + Ĥint

where

Ĥshift = (ω̄b −ωd − δb − χbb|ξp|2)b̂†b̂ + (ω̄a −
ωp + ωd

2
− δa − χab|ξp|2)â† â

ĤKerr = − 1
2 χaa â†2 â2 − 1

2 χbbb̂†2b̂2 − χab â† âb̂†b̂

Ĥint = g∗2 â2b̂† + g2 â†2b̂ + εdb̂† + ε∗d b̂.

The Hamiltonian Ĥshift corresponds to the modes frequency shifts, caused by
the AC Stark shift induced by the pump (|ξp|2), and by a term due to the particular
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ordering of the self-Kerr terms (δa,b). This Hamiltonian vanishes when the frequency
matching conditions ωd = ωb and ωp = 2ωa −ωb are satisfied with

ωa = ω̄a − δa − χab|ξp|2

ωb = ω̄b − δb − χbb|ξp|2.

The Hamiltonian ĤKerr corresponds to the self-Kerr (χaa, χbb) and the cross-Kerr
(χab terms), where χaa =

EJ
h̄ ϕ4

a/2, χbb =
EJ
h̄ ϕ4

b/2 and χab =
EJ
h̄ ϕ2

a ϕ2
b.

Finally, the Hamiltonian Ĥint contains the two terms required to implement the
two-photon driven-dissipative scheme. The coupling strengh g2 is given by

g2 = χabξ∗p/2. (2.6)

Limitations As we have seen in section 2.3, the crucial point in the design of the cat
qubit is the ability to engineer a two-photon dissipation rate much larger than the
rate at which single photon decay. Combining the expression (1.7) from Chapter 1
with (2.6), the two-photon dissipation rate is given by (under the assumption |g2| <
κb)

κ2 = 4|g2|2/κb = χ2
ab|ξp|2/κb.

This rate is proportional to the the pump power |ξp|2 and to the memory-buffer
cross-Kerr χab, and the assumption that |g2| < κb implies that κ2 is bounded by a
value of order |g2| = χab|ξp|/2. However, it is not possible to pump arbitrarily hard
as this would lead to undesired effects such as a reduction of the coherence time or
an increase of the effective temperature of the involved modes. These undesired
effects are partially explained by the escape into the unconfined states due to the
bounded potential of the Josephson junction [82]. In [78], the value of |ξp|2 = 1.2
was achieved with a pump power of 100mW, the cross-Kerr χab/2π = 200kHz.
Given the value of the Tb

1 = 0.025µs of the buffer, this corresponds to a ratio
κ1/κ2 ≈ 1.

This experiment was improved in [118] to demonstrate a single qubit gate on the
cat (more detail in 2.4.2). The major improvement was the use of a post-cavity [106]
for the memory mode for which a longer lifetime with respect to energy decay T1 =

92µs was achieved (versus T1 = 20µs in [78]). In this experiment, the parameters
achieved for the single-photon and two-photon dissipation achieved were κ1/2π =

1.7kHz and κ2/2π = 176kHz, achieving a ratio of 1%, close to the threshold required
to implement active error correction (.5%, see Chapter 3).

However, in these two experiments, the spurious cross-Kerr terms prevented the
observation of the exponential suppression of the bit-flip rate. Indeed, in these ex-
periments a large cross-Kerr strength with respect to the desired two-photon interac-
tion g2, causes an effective suppression of this interaction as soon as the buffer mode
is thermally excited. Such undesired effects should be totally suppressed as soon as
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one reaches g2 values that exceed the cross-Kerr interaction. We now introduce the
second generation of experiment developed to overcome this problem.

2.4.1.2 Two-photon exchange using an ATS

The Asymmetrically Threaded SQUID (ATS) In order to circumvent the limita-
tions of the first experiments, a novel non-linear circuit element, called the Asym-
metrically Threaded SQUID (ATS) was realized in [83] to implement the two-to-one
photon conversion Hamiltonian Ĥint between the memory and the buffer mode. It
consists in a SQUID (Superconducting Quantum Interference Device) shunted in its
center by a large inductance, thus forming two loops. Before we detail how the
two-photon exchange Hamiltonian is obtained from the interaction Hamiltonian be-
tween the buffer mode and the memory mode, let us recall the properties of the ATS.
The potential energy of this element alone depends on only one degree of freedom,
the phase ϕ across the inductor, and is given by

U(ϕ) =
1
2

EL,b ϕ2 − EJ,1 cos(ϕ + ϕext,1)− EJ,2 cos(ϕ + ϕext,2).

Denoting EJ,1 = EJ + ∆EJ and EJ,1 = EJ − ∆EJ , the potential energy can be written

U(ϕ) =
1
2

EL,b ϕ2 − 2EJ cos(ϕΣ) cos(ϕ + ϕ∆) + 2∆EJ sin(ϕΣ) sin(ϕ + ϕ∆)

where ϕΣ = 1
2 (ϕext,1 + ϕext,2) and ϕ∆ = 1

2 (ϕext,1 − ϕext,2). Setting ϕΣ = π/2 +

ε(t) = π/2 + ε0 cos(ωpt) and ϕ∆ = π/2, where ε0 is small, the time-dependent
potential energy becomes (to the first order in ε(t))

U(ϕ) =
1
2

EL,b ϕ2 − 2EJε(t) sin(ϕ) + 2∆EJ cos(ϕ).

FIGURE 2.7: Circuit representation of the low Q mode of an ATS (red) coupled
capacitively to a high memory mode â (red) hosting the cat qubit. The ATS is
DC biased at the asymmetric flux bias point ϕΣ = 1

2 (ϕext,1 + ϕext,1) = π/2 +

ε0 cos(ωpt), ϕ∆ = 1
2 (ϕext,1 − ϕext,1) = π/2 to mediate the required two-photon

exchange between the memory and the buffer mode (see main text).
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Now, because of the shunt, this potential is unbounded which prevents the sys-
tem to escape to unconfined state like in the case of an unshunted Josephson junc-
tion. In practice, the inductance can be replaced by an array of N Josephson junctions
for which the potential energy 1

2 EL,b ϕ2 is replaced by NEJ,L cos(ϕ/N) where EJ,L is
the Josephson of each individual junction of the array; which is now a bounded po-
tential, but for which the number of junctions N can be chosen such that the depth
of the potential is high enough (NEJ,L � 2EJε0) so that the state remains confined in
the parabolic part of the cosine potential.

Derivation of the two-photon exchange Hamiltonian The two modes we consider
are a high Q mode (the memory â) and the (low Q) mode of the ATS. When these
two modes are coupled using the ATS as in Figure 2.7, and a weak resonant drive is
applied on the buffer, the Hamiltonian governing the dynamics is given by

Ĥ/h̄ = ωa â† â + ωbb̂†b̂− 2EJε(t) sin(ϕ̂) + 2R(εde−iωdt)(b̂ + b̂†)

where ϕ̂ = ϕ̂a + ϕ̂b = ϕa(â + â†) + ϕb(b̂ + b̂†) is the global phase across the ATS
dipole, written as the sum of the phase across each of the two modes â and b̂
weighted by the contribution ϕa,b of each mode to the zero point fluctuations of
ϕ̂.

Expanding the sine up to the third order, the Hamiltonian reads

Ĥ/h̄ = ωa â† â + ωbb̂†b̂− 2EJε(t)ϕ̂a − 2EJε(t)ϕ̂b +
1
3 EJε(t)(ϕ̂a + ϕ̂b)

3

+ 2R(εde−iωdt)(b̂ + b̂†).

The rest of the derivation proceeds as in the case of the single junction. By going
to the frame displaced by ξa(t) = ξae−iωpt for â and ξb(t) = ξbe−iωpt for b̂, to the
frame rotating at frequency (ωp + ωd)/2 for â and ωd for b̂ and keeping only the
non rotating terms, the Hamiltonian reads

Ĥ = Ĥshift + Ĥint

where

Ĥshift = (ω̄b −ωd − ∆b)b̂†b̂ + (ω̄a −
ωp + ωd

2
− ∆a)â† â

Ĥint = g∗2 â2b̂† + g2 â†2b̂ + εdb̂† + ε∗d b̂.

The AC Stark Shift induced by the pump is now given by ∆a,b/h̄ =
1
3 EJ ϕ2

a,b(R(ξa)ϕa)+R(ξb)ϕb and the coupling strength is given by h̄g2 = 1
2 EJε0ϕ2

a ϕb.
Crucially, unlike in the case of a single Josephson junction, the only leading or-

der non-rotating term is precisely the desired Hamiltonian, without all the Kerr-like
terms that resulted in spurious effects. This led to the first observation of the expo-
nential suppression of the bit-flip error rate with the size of the cat qubit, at the cost
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of a linear increase of the phase-flip error rate [83]. More precisely, the parameters
achieved in this experiment are κ1/2π = 53kHz and κ2/2π = 40kHz, thus the ratio
is of the two rates of dissipation is of order 1. This ratio is expected to be greatly
improved by using a long-lived 3D cavity for the memory mode. However, because
of the absence of Kerr-terms, it was possible to witness the exponential increase of
lifetime with respect to bit-flip errors: for each added photon in the cat qubit, the
bit-flip time is multiplied by 4.2, up to a point where it saturates around 1ms (300
times longer than the T1 = 3µs). In this experiment, the saturation of the bit-flip ex-
ponential suppression was caused by the thermal occupation of the transmon used
for the Wigner tomography of the cat qubit, which contaminated the memory mode
through the dispersive coupling between the transmon and the cavity mode used
for the readout.

2.4.2 Zeno Hamiltonians

Z(θ) gate The use of quantum Zeno dynamics (subsection 2.2.2) to perform bias-
preserving rotations around the Z-axis of the cat qubit was demonstrated experi-
mentally in [118], and it is, up to this day, the only gate that has been demonstrated
experimentally on the stabilized cat qubit.
The experimental realization followed the proposal [87] that we recalled above. In
addition to the (time-independent) two-photon dissipation realized as detailed in
subsection 2.4.1, the continuous rotation around the Z axis is triggered by turning
on a weak resonant drive at the frequency of the cat qubit mode ωa.

ZZ(θ) gate In [87], it was suggested that the same recipe (weak Hamiltonian
in presence of the two-photon pumping) could be used to realized two qubit
entangling gates.

The Hamiltonian required for the Z1Z2(θ) gate is (subsection 2.2.2) the following
“beam-splitter” Hamiltonian

ĤBS = εZ1Z2(âb̂† + b̂â†)

where â and b̂ are now both longed lived modes each hosting a cat qubit.

This Hamiltonian was recently realized experimentally [50], using the four-wave
mixing capability of the Josephson junction in presence of two pump tones. More
precisely, denoting ξ1, ξ2 and ω1, ω2 the normalized amplitudes and frequencies of
the two pumps, respectively, and by ĉ the anharmonic mode of the transmon used in
the bridge configuration to mediate the coupling between â and b̂, the Hamiltonian
of the system in the displaced frame of the drives and rotating frame of â, b̂ is given
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by

Ĥ = −EJ cos[ϕa(â + â†) + ϕb(b̂ + b̂†) + ϕc(ĉ + ĉ† + ξ1 + ξ∗1 + ξ2 + ξ∗2).

Expanding the cosine and keeping the non-rotating term when the frequency
matching condition ω1 − ω2 = ωa − ωb is verified produces the required beam-
splitter interaction

Ĥint/h̄ = g(t)(eiϕ âb̂† + e−iϕ â†b̂)

where ϕ is determined by the relative phase of the two drives and the coupling
coefficient is

g(t) = EJ ϕa ϕb ϕ2
c ξ1(t)ξ2(t) =

√
χabχbcξ1(t)ξ2(t).

Note that usually, in these parametric methods, the specific term that one is en-
gineering using wave mixing with appropriate pumps, giving the desired term after
an appropriate change of frame and in the limit of the rotating wave approxima-
tion, typically result in weak coupling strength. The challenge is then to manage to
increase this coupling strength, as in the example of the two-to-one photon conver-
sion Hamiltonian required for the two-photon pumping. Here, however, it is fine
that the coupling g(t) is typically weak because it has to be small with respect to the
two-photon dissipation in order to implement the Zeno gate with high fidelity.

2.4.3 Topological gates

X gate The realization of the X gate requires to modify the two-photon pumping
scheme continuously in time to implement the effective dissipation operator

κ2D[â2 − exp(2iπt/T)α2]

We have seen that the complex number α that parametrizes the two-dimensional
cat qubit subspace is given by α =

√
2εd/κ2. Thus, the phase of this complex

number can be tuned by changing the phase of the resonant drive applied on the
buffer εd between 0 and 2π in a time T. Hence, the realization of the dissipative part
of the X gate is actually a straightforward modification of the two-photon pumping
scheme already realized experimentally.

In order to remove the phase-flip errors induced by the non-adiabaticity of this
variation, one can additionally implement a Hamiltonian of the form −∆â† â with
∆ = π/T. This can be done by taking the pump at frequency 2ωa −ωb − 2∆ instead
of 2ωa −ωb and furthermore detuning the drive εd from resonance by value ∆.
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FIGURE 2.8: Proposal for an experimental implementation of bias-preserving
CNOT and Toffoli gates for cat qubits using a transmon as the non-linear element.
A similar sketch can be drawn to use a fluxed pumped ATS instead as the source
of non-linearity. (a) Setup for implementing a bias-preserving CNOT gate. The cat
qubits are encoded in high-Q cylindrical post-cavities (in blue, resonance frequen-
cies ωa and ωb). The two cavities are coupled via a Y-shape transmon as in [125] to
a low-Q stripline resonator (in red, resonance frequency ωd) playing the role of the
buffer mode. The system is driven with three micro-wave pumps at frequencies
ω1 = 2ωb−ωd, ω2 = (ωa−ωd)/2, ω3 = ωd. (b) Similar setup for implementing a
bias-preserving Toffoli gate with three cat qubits encoded in high-Q post-cavities
(frequencies ωa, ωb, ωc) all coupled to a single stripline resonator (frequency ωd).
The system is driven with five micro-wave pumps at frequencies ω1 = 2ωc − ωd,

ω2 = ωa + ωb −ωd, ω3 = (ωa −ωd)/2, ω4 = (ωb −ωd)/2, and ω5 = ωd.

CNOT gate The implementation of a CNOT gate between two cat qubits encoded
in storage modes â and b̂ requires the implementation of the two dissipative channels

κ2D[â2 − α2]

κ2D[b̂2 − α2 − α

2
(1− e

2iπt
T )(â− α)].

The implementation of the second one can be realized by coupling the two stor-
age modes â and b̂ to a buffer mode d̂, using a Y-shape transmon similar to [125]
or a fluxed pump ATS (see Figure 2.8). Driving the buffer mode at three different
frequencies

ω1 = 2ωb −ωd

ω2 = 1
2 (ωa −ωd)

ω3 = ωd
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one can engineer an interaction Hamiltonian of the form

ĤCNOT = (gbdb̂2d̂† + g∗bdb̂2†d̂) + (gad âd̂† + g∗ad â†d̂) + (εdd̂† + ε∗d d̂).

Note that following the experiment [50], the “beam-splitter” conversion triggered
by the pump at frequency ω2 could also be realized by two pumps at frequencies
ω2, ω′2 verifying the matching condition ω2 −ω′2 = ωa −ωd.

In this interaction Hamiltonian, the first term gbdb̂2d̂† + g∗bdb̂2†d̂ models the ex-
change of two storage photons at frequency ωb with one buffer photon at frequency
ωd via a pump photon at frequency ω1. The second term gad âd̂† + g∗ad â†d̂ models the
exchange of one storage photon at frequency ωa with one buffer photon at frequency
ωd via two pump photons at frequency ω2. The amplitudes and phases of gbd and
gad are modulated by the amplitude and phase of the corresponding pumps. Finally,
the last term εdd̂† + ε∗d d̂ models the resonant interaction of the drive at frequency
ωd with the buffer mode. Similarly to the driven two-photon dissipation, one can
adiabatically eliminate the highly dissipative buffer mode to achieve an effective
dissipation operator

κ2D[b̂2 + ca â + c]

where the dissipation rate κ2 is roughly given by 4|gbd|2/κd, κd being the loss rate
of the buffer mode, the complex constant ca is given by gad/gbd and the complex
constant c by εd/gbd. Similarly to the X-operation, it is clear that by varying the
amplitudes and phases of the pump at frequency ω2 and the resonant drive at fre-
quency ωd, one can engineer a dissipation operator with time-varying constants ca

and c given by

ca(t) = −
α

2

(
1− e

2iπt
T

)
c(t) = −α2

2

(
1 + e

2iπt
T

)
.

This corresponds to the dissipator required for the bias-preserving CNOT operation.
Importantly, the time-dependent function ca takes the value 0 at times t = 0 and t =
T. For this reason, before and after the gate, the two cat qubits involved in the CNOT
are defined by their own local oscillators. The fluctuations of the pumps during the
execution of the gate merely result in a slight modification of the geometric paths
taken. This can only lead to small fluctuations of the geometric phase and therefore
an effective phase-flip type error. The phase-flip probability induced by the non-
adiabaticity of the evolution can be reduced by adding the effective Hamiltonian

Ĥ =
1
2

π

T
â− α

2α
⊗ (b̂†b̂− |α|2) + h.c.

Such a Hamiltonian has also been recently implemented using a detuned parametric
pumping method [119].
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Toffoli In order to realize a bias-preserving Toffoli gate between three cat qubits
encoded in storage modes â, b̂ and ĉ, further to two-photon driven dissipation on
the two control cat qubits, a time-dependent dissipator given by

κ2D[ĉ2 − α2 +
1
4
(1− e

2iπt
T )(âb̂− α(â + b̂) + α2)]

is required. Similarly to the CNOT gate, a way to achieve this is to couple the three
modes to a highly dissipative buffer mode as shown in Figure 2.8. Driving the buffer
mode at five different frequencies ω1 = 2ωc − ωd, ω2 = ωa + ωb − ωd, ω3 = (ωa −
ωd)/2, ω4 = (ωb − ωd)/2, and ω5 = ωd, one can engineer an effective interaction
Hamiltonian of the form

HToffoli = (gcd ĉ2d̂† + g∗cd ĉ†d̂) + (gabd âb̂d̂† + g∗abd â†b̂†d̂) + (gad âd̂† + g∗ad â†d̂)

+(gbdb̂d̂† + g∗bdb̂†d̂) + (εdd̂† + ε∗d d̂).

Here again, all these effective terms are achieved in a parametric manner and using
the 4-wave mixing property of the Josephson junction. The amplitude and phase
of each interaction term can be modulated by the amplitude and phase of the as-
sociated pump. After the adiabatic elimination of the buffer mode, we achieve a
dissipation operator

κ2D[ĉ2 + cab âb̂ + ca â + cbb̂ + c],

where κ2 is given by 4g2
cd/κd, and the complex constants cab = gabd/gcd, ca = gad/gcd,

cb = gbd/gcd, c = εd/gcd. By varying the amplitudes and phases of the pumps in
time, we obtain time-varying constants

cab(t) =
1
4

(
1− e

2iπt
T

)
c(t) = −α2

4

(
3 + e

2iπt
T

)
ca(t) = cb(t) = −

α

4

(
1− e

2iπt
T

)
.

This implements a bias-preserving Toffoli gate between the cat qubits encoded in
the three modes â, b̂ and ĉ. Here again, it should be noted that the functions cab,
ca, cb vanish at the beginning and at the end of the gate execution, so that each cat
qubit gets back to being defined by its own local oscillators. Similarly to the CNOT
gate, the pump fluctuations during the gate only result in a slight increase in the
rate of phase-flip type errors, but do not lead to unsuppressed bit-flip type ones. In
order to reduce the phase-flip probability induced by the non-adiabaticity, we use
an additional Hamitonian

Ĥ = −1
2

π

T
â− α

2α
⊗ b̂− α

2α
⊗ (ĉ† ĉ− |α|2) + h.c.
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This Hamiltonian is undoubtedly the most complicated parametric Hamiltonian to
realize in our scheme. While, in theory, it could be realized as previously by us-
ing a high-order multi-wave mixing with appropriate pumps, this approach would
produce the required term with a very small amplitude. Instead, a better strategy to
engineer this Hamiltonian could be to use a cascade of low-order multi-wave mixing
such as the ones realized [88, 89]. However, due to the complexity of engineering
this higher order Hamiltonian, perhaps the first generation of Toffoli gates could be
implemented without this improvement.
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The focus of the precedent Chapter is the design of physical operations on the
cat qubit preserving the exponentially large noise asymmetry. In this Chapter, we
detail how cat qubits can be used in a repetition code protecting against the domi-
nant phase-flip errors to produce a logical qubit, called the repetition cat qubit, with
very low logical phase-flip and logical bit-flip error rates. Furthermore, we demon-
strate that the set of bias-preserving operations of the precedent Chapter is sufficient
to build a universal and fault-tolerant set of logical encoded gates for the repetition
cat qubit, making this qubit a promising candidate to perform large scale quantum
computations.

3.1 Fault-tolerant and universal construction

3.1.1 Repetition cat qubit

The effect of a phase-flip error, i.e the uncontrolled application of a Pauli Z operator,
is to swap the eigenstates of the Pauli X operator |±〉. For the cat qubit, this is a
swap of the two cat states |C±α 〉

Z|C±α 〉 = |C∓α 〉.
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Hence, the repetition code protecting against phase-flips is defined in the dual
basis by repeating these fragile states. For a distance d repetition cat qubit, encoding
a single logical qubit using d physical cat qubits, the logical |+〉L and |−〉L states
are given by |±〉L := |±〉⊗d = |C±α 〉⊗d. The layout of an experimental proposal to
implement a single repetition cat qubit is depicted in Figure 3.2.

Using the stabilizer formalism, the code space is defined as the +1 common
eigenspace of the d− 1 stabilizers

Si = XiXi+1

with i ∈ Zd−1.
The prerequisite to the implementation of the repetition code that one needs to

check is whether these stabilizers can be measured using the operations on the cat
qubit of the previous Chapter. The quantum non demolition (QND) measurement
of these operators can be implemented using an ancilla cat qubit prepared in the |+〉
state, the bias-preserving CNOT gate and the measurement of the X operator on the
ancilla cat qubit, as depicted in Figure 3.1.

FIGURE 3.1: Joint-parity measurement XiXi+1 between two neighboring cat
qubits i and i + 1 of a repetition cat qubit, using one ancilla. Note that the er-
ror propagation from the ancilla cat qubit to the data ones, of the bit-flip type, is

exponentially suppressed with the size of the cat.

A choice of logical Pauli operators for the repetition cat qubit of minimal weight
is

XL = X0

ZL =
⊗
i∈Zd

Zi

YL = iXLZL.

Note that the minimal choice XL = X0 is not unique, as actually any physical
Pauli Xi operator acting on a cat qubit is implementing a logical Pauli XL operator
on the cat qubit. This reflects the fact that the repetition code protecting against
phase-flips cannot detect or correct any physical bit-flip.
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FIGURE 3.2: Lay-out of a repetition cat qubit using high-Q 3D cylindrical post-
cavities [106]. Each data cat qubit (in blue cavities) is connected to a pair of an-
cilla cat qubits (in green cavities) for the repetition code stabilizer measurement.
The results of the parity measurement are read out using the low-Q stripline res-
onators (in red) coupled to green cavities. Each cat qubit is continuously driven
via the two-photon driven-dissipative scheme (arrows). The couplings between
cavity modes are mediated by a Josephson circuit and extra microwave drives, re-
quired for bias-preserving CNOT operations as detailed in Chapter 2 and Figure
2.8. The choice of Y-shape transmons is optional, and they could be replaced by
flux pumped ATS. The choice of cylindrical post-cavities is to ensure high quality

factors, but a similar layout could be thought of for a 2D architecture.

The logical computational states are given by

|0〉L =
1

(
√

2)d−1 ∑
j∈{0,1}d,|j| even

|j〉

|1〉L =
1

(
√

2)d−1 ∑
j∈{0,1}d,|j| odd

|j〉

where j is a d-bit string and |j| denotes the number of ones, called the Hamming
weight, of the string j. Recalling that |1〉 ≈ | − α〉, one can note that the logical
information is encoded in the parity of the number of cat qubits in the state | − α〉.

For a fixed value of the mean number of photons in each of the physical cat
qubits, hence a fixed value of the physical noise bias η = pZ/pX, the distance d of
the repetition code is chosen such that the probabilities pZL of logical phase-flip, and
pXL of logical bit-flip errors, are of comparable strength, thus constructing a repeti-
tion cat qubit suffering from an effective unbiased noise of probability εL ≤ pXL + pZL .

Before we move on to the construction of logical gates, an important remark is
in order about the general philosophy behind our approach. Indeed, the repetition
cat qubit approach relies on two different kinds of protection. The two-photon
dissipation exponentially suppresses bit-flip errors with the mean number of
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photons in the cat state, while the rate of phase-flip errors increases only linearly.
Then, the repetition code suppresses exponentially the phase-flip errors, provided
that the phase-flip error rate of the cat qubit is below the fault-tolerance threshold
of the repetition code.

This protection is similar to the one achieved by Bacon-Shor codes [111, 14], with
the nice feature that the “distance” of the inner protection provided by the two-
photon pumping can be increased without any further hardware overhead. How-
ever, similarly to Bacon-Shor codes, because the phase-flip error rate of the cat qubit
increases linearly with the mean number of photons, there cannot be a threshold
since the effective phase-flip error rate of the cat qubit will eventually exceed the
threshold of the repetition code. Nonetheless, this is not an obstacle to obtaining
extremely low logical error rates with this approach, by limiting the mean number
of photons to a finite value for which the bit-flip error probability is extremely low,
and for which the phase-flip error probability is still below the threshold of the repe-
tition code. In our analysis, we limit the size of the cat qubits to n̄ = 15 photons and
assume that the exponential suppression of the bit-flip error rate holds at least up to
this cat size.

3.1.2 Quantum computing against biased noise

The idea to use a repetition code against the dominant error of a biased noise qubit
has been employed as a first level of encoding in [8, 129]. In these papers, the
quantum information is protected by a concatenation of two codes C1 . C2, where .

denotes code concatenation. The code C1 is a distance d repetition code that protects
against phase-flips errors, leading to a logical qubit that suffers from an effective
unbiased noise of strength pL,1. As soon as pL,1 is below the threshold of C2, ar-
bitrarily low logical error rates pL,1 can be achieved by the concatenated C1 . C2 code.

A major difference with the cat qubit based scheme that we build in this work
and the previous studies investigating the performance of computing against biased
noise with regular two-level qubits [8, 129] is that in these works, the set of physical
bias-preserving gates that can be implemented are not sufficient to build a set of
logical gates at the repetition code C1 level, because the important topological gates
X, CX, and CCX are missing at the physical level. Thus, in these works, the second
code C2 is required even if the base qubits do not suffer from bit-flip errors at all,
that is in the limit of an infinite noise bias where the logical error rate pL,1 of the
repetition code C1 can be made arbitrarily low.

More precisely, in [8], the set of fundamental bias-preserving operations S is
limited to

S = {P|+〉,MX, CZ}
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FIGURE 3.3: Overall scheme for achieving fault-tolerant universal quantum com-
putation using repetition cat qubits. The fundamental operations inside the left-
hand side box are performed on the cat qubits, in a bias-preserving manner. Fault-
tolerant logical operations acting on the repetition cat qubits (right-hand side) are

built out of these operations, as depicted by the arrows.

At the C1 . C2-logical level, the full set of Clifford gates is achieved by adding the
preparation of the “magic state”

|+ i〉L = 1√
2
(|0〉L + i|1〉L)

and is made universal by appending the preparation of yet another magic state

|T〉L = 1√
2
(|0〉L + eiπ/4|1〉L).

In [129], with the addition of CZ(θ) to the set of bias-preserving operations, the
authors construct new gadgets to reduce the overhead for magic state preparation
and distillation.

3.1.3 Universal set of logical operations

We present the big picture for the construction of fault-tolerant gates at the level of
the repetition cat qubits in Figure 3.3. We have seen in Chapter 2 that the set of all
the bias-preserving operations that can be performed on cat qubits is

S ′ = {P|+〉,P|0〉,MX,MZ, Z(θ), ZZ(θ), ZZZ(θ), X, CX, SWAP, CCX}.

The next step is to build fault-tolerant encoded operations at the level of the
repetition code, using exclusively operations from this fundamental set. Actually,
not all gates in this set are involved in the construction of the universal set of logical
operations. The minimal set of bias-preserving operations required in the logical
construction is

S = {P|+〉,P|0〉,MX, Z, X, CX, CCX}.
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FIGURE 3.4: Logical Hadamard circuits (a). The circuits (b,c,d) are equivalent cir-
cuits that help to understand why the circuit (a) implements a logical Hadamard
gate. In circuit (b), the "CNOT" gate between the repetition cat qubit 2 and 3 is
replaced by the equivalent circuit where the control and target roles are switched
with the addition of Hadamard gates before and after the gate. It becomes clear in
circuit (b) that the second repetition cat qubit plays no role: it is initialized in |−〉L,
transformed to |1〉L after the first Hadamard, thus always triggers the correspond-
ing part of the control of the Toffoli, before being converted to |−〉L by the second
Hadamard. Actually, the second repetition cat qubit is needed only because we do
not readily have a controlled-phase gate available at the repetition cat qubit level
(but here we show that it can be done with the Toffoli gate plus one ancilla repeti-
tion cat qubit). The idle role of the second repetition cat qubit is represented more
simply in circuit (c), where again the "CNOT" between the repetition cat qubit 1
and 3 is replaced by its equivalent circuit where the control and target roles are
exchanged with the addition of Hadamard gates. Finally, in circuit (d) (where the
second repetition cat qubit is omitted for clarity) the first Hadamard of the first
line and the preparation of |+〉L are replaced by the equivalent preparation of |0〉L
and the second Hadamard is commuted through the XL, producing a ZL gate. The
remaining circuit in the dashed box is just a teleportation of the state |ψ〉L of the
second repetition cat qubit to the first one. After the state has been teleported,
the remaining Hadamard gate HL is applied, thus establishing the equivalence

between circuit (a) and a logical Hadamard.

The set of fault-tolerant encoded operations on repetition cat qubits is given by

S ′L = {P|+〉L ,P|0〉L ,MXL ,MZL , ZL, CZL, XL, CXL, CCXL},

and the smallest universal set of operations contained in S ′L, which can be built
using only operations in the minimal set of bias-preserving operations S , is

SL = {P|+〉L ,P|0〉L ,MXL , ZL, XL, CCXL}.

As will become clear in the next section, the logical CNOT gate can be imple-
mented transversally on the repetition code, leading to great hardware simplifica-
tions compared to the logical CNOT gate construction of [8]. The universality of SL

is established by the fact that it contains the Toffoli gate in the computational basis
together with state preparation and measurement in the dual basis. Indeed, as de-
picted in Figure 3.4, a logical Hadamard gate can be built out of the gates of the set
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SL, which, together with the Toffoli gate, is universal [109]. Note that in the circuit of
figure 3.4, the Toffoli gate and the logical target ancilla are used solely to implement
a logical CZL gate. However, as will become clear in section 3.3, the logical CZL is
actually easier to implement than the Toffoli gate such that in practice, it will be used
instead of the Toffoli to implement a Hadamard gate.

3.2 Fault-tolerance via transversal construction

Let us recall the definition of a transversal logical operator as given by Eastin and
Knill in [37]:

Definition 1 (Transversal operator) We label as “transversal” any partition of the phys-
ical subsystems of a code such that each part contains one subsystem from each code block.
Given a transversal partition of a code, an operator is called transversal if it exclusively
couples subsystems within the same part. Put another way, an operator is transversal if it
couples no subsystem of a code block to any but the corresponding subsystem in another code
block.

Very often, the partition of the code considered is the natural one given by the
physical qubits. The transversal circuit implementing a transversal operator is fault-
tolerant by construction, in the sense that they can increase the total number of loca-
tions where errors can arise (by propagation through the circuit) but the total num-
ber of errors necessary to cause a logical error is unchanged, and that the depth of
the circuit (the irreducible number of time steps) is constant and does not depend
on the code distance d. We quickly review the operations that can be performed
transversally on the repetition code.

Preparation of |±〉L The preparation of |±〉L = |±〉⊗d can be performed transver-
sally from the preparation of |±〉

P|±〉L = (P|±〉)⊗d.

followed by a quantum error correction step to reduce the preparation infidelity
according to the distance of the repetition code.

Preparation of |0〉L In our scheme, the preparation of the state |0〉L =
1√
2
(|+〉⊗d + |−〉⊗d) is needed to perform the Steane error correction step in

the implementation of the logical Toffoli gate that we describe in subsection 3.3.2.
This state could be prepared from the logical |+〉L state by applying a logical
Hadamard gate as depicted in Figure 3.4. However, we have seen that the logical
Hadamard gate is not transversal but rather, involves at least one additional ancilla
repetition cat qubit, and a logical CZL, such that this way of preparing the state is
quite complicated. A more simple preparation protocol consists in first preparing
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the state |0〉⊗d ≈ |α〉⊗d from the transversal preparation of all the cat qubits in
the state |α〉, and performing a round of error correction. This protocol works
because the state |0〉⊗d can be written as the state |0〉L on which a superposition of
2d−1 (correctable) errors are acting. Each of these 2d−1 is uniquely identified by a
syndrome, such that the round of error correction projects the state on one of these
errors. After the corresponding correction is applied, the state |0〉L is recovered.

Indeed, the state |0〉⊗d can be expanded as

|0〉⊗d = 1
(
√

2)d (I + Z)⊗d|+〉⊗d = 1
(
√

2)d

[
∑

j∈{0,1}⊗d

⊗
i∈Zd−1

Zji
i

]
|+〉L

Factorizing in the above sum the terms for which the Hamming weight of the bit-
string |j| (the number of bits ji equal to one) is superior to (d + 1)/2 as

⊗
i∈Zd−1

Zji
i =

ZL
⊗

i∈Zd−1

Z1⊕ji
i , the state |0〉⊗d writes

|0〉⊗d = 1
(
√

2)d−1

[
∑

j∈{0,1}⊗d

|j|≤ d+1
2

⊗
i∈Zd−1

Zji
i

]
|0〉L = 1

(
√

2)d−1

[
∑

j∈{0,1}⊗d

|j|≤ d+1
2

Ej
]
|0〉L.

The measurement outcomes of the d− 1 stabilizers {Xi⊗Xi+1}i∈Zd−1 on the state
|α〉⊗d gives a random outcome sj (obtained with probability 1/2d−1), and the state
after the measurement is projected on Ej|0〉L. Because Ej is a Pauli operator, the
preparation of the state |0〉L is achieved by applying the correction Ej.

Measurement of XL Similarly, the measurement of only one cat qubit from the rep-
etition cat qubit usingMXi already implements a measurement of XL. However, to
ensure fault-tolerance,MXL is implemented by measuringMX on all the cat qubits
and applying a majority vote to the measurement outcomes.

Logical CNOT gate This gate is not required in our set of universal gates and can
be suppressed from the set SL. However, its implementation is easy and can lead
to more economical circuits for realization of certain algorithms. Indeed, the logical
CNOT gate is simply obtained from the physical one by performing d CNOT gates
in a transversal manner, as depicted in Figure 3.5.

Before we move on to the construction of the logical Toffoli gate, which achieves
universality, let us point out for the repetition code, not all Clifford gates are
transversal. For instance, a logical encoded version of the controlled-Z gate CZ is
not readily implemented by the transversal application of a single round of d phys-
ical CZ gates, but rather, like the Toffoli gate (see section 3.3), requires that d2 CZ
gates be applied in an all-to-all fashion. We discuss how such a circuit can be made
fault-tolerant in subsection 3.3.3.
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FIGURE 3.5: Transversal implementation of the logical CNOT gate on distance d =
3 repetition cat qubits. Here the three upper lines represent the control repetition

cat qubit and the three bottom ones the target one.

3.3 Fighting the curse of the Eastin-Knill theorem: non-
transversal fault-tolerance

In this section, we investigate two different strategies to build a fault-tolerant en-
coded version of the Toffoli gate from the physical, bias-preserving Toffoli gate. A
clear consequence of the Eastin-Knill theorem is that a circuit implementing an en-
coded version of the Toffoli gate on the repetition code cannot be transversal. In-
deed, we have seen in the previous section that all the other operations in the logical
Hadamard circuit of Figure 3.4 (a), thus a transversal circuit implementing a logical
Toffoli would achieve a universal and transversal gate set on the repetition code.
Rather, the logical Toffoli circuit on (the distance d) repetition code requires d2 Tof-
foli gate, where the d2 factor comes from the fact that the Toffoli gate involves some
Z1Z2 interaction between the two controls and that a (minimal) logical ZL operator
on the code C1 is given by the product of all the physical Z operators. Thus, a logical
Toffoli circuit necessarily contains a physical Toffoli gate coupling all the qubits of
the first control block to all the qubits of the second control block. Note that, for
each physical Toffoli, the qubit chosen to be the target in the target block actually
does not matter, given that XL = Xi for all i). This degree of freedom in the choice
of the target qubit enables us to build a circuit of d blocks, called pieces, of d Toffoli
gates applied transversally, producing a depth d circuit rather than d2. An example
of such a circuit is depicted in Figure 3.6

Mathematically, the logical Toffoli gate is implemented on the repetition code
using the “round-robin” construction [130]

CCXL = ∏
i,j∈Zd

CCX(i, j, k(i, j))

where CCX(i, j, k) denotes a physical Toffoli gate between the i-th qubit of the
first control block, the j-th qubit of the second control block, and the k-th qubit of
target block. Note that k(i, j) can actually be any mapping Zd ×Zd → Zd, since
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FIGURE 3.6: Example of a circuit implementing a logical encoded Toffoli gate on
distance d = 3 repetition cat qubits, using d2 = 9 physical Toffoli gates. The depth
of this circuit is 3 and supposes that any triplet of physical qubits can be coupled

by a Toffoli gate.

the gates CCX(i, j, k1) and CCX(i, j, k2) act identically on the code spaces of the
three logical qubits, and we chose k(i, j) = j for the rest of this manuscript. In the
next two subsections, we detail the reasons why the raw circuit of Figure 3.6 is not
fault-tolerant and we propose two different schemes to fix this issues. In the next
Chapter, we present a third scheme to implement a fault-tolerant Toffoli gate in a
very different manner, by fault-tolerantly preparing a magic state associated to this
gate and injecting it into the code.

The first scheme (subsection 3.3.1) achieves fault-tolerance by using concatena-
tion [130]. The idea of code concatenation is to build a hierarchy of codes within
codes iteratively, by replacing all the physical gates in a logical circuit by their log-
ical versions (see e.g [91]). We argue in Chapter 4 that with experimentally reason-
able physical error rates, the logical error rate of the Toffoli circuit is well below the
pseudo-threshold, i.e the logical error probability of the logical encoded Toffoli gate is
lower than the physical error probability of the Toffoli gate, thus making it possible
to use code concatenation.

The second scheme (subsection 3.3.2) avoids concatenation and achieves a higher
phase-flip threshold and an improved scaling, but comes at the expense of a more
complex error correction circuit based on three ingredients. First, the accumulation
of non-propagating errors is prevented using the pieceable fault-tolerant protocol
described in [130, 60]. Second, this pieceable fault-tolerant protocol requires the
measurement of the stabilizers of the code in the middle of the logical Toffoli circuit,
at a point where these stabilizers are no longer Pauli operators, but have evolved
to Clifford operators under the action of the non-Clifford pieces of the Toffoli cir-
cuit. Last, Steane-style error detection [113] decoded with a majority vote on the
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target block is required instead of the usual stabilizer measurements decoded with
the MWPM decoder used everywhere else in this work.

3.3.1 Fault-tolerant Toffoli circuit: scheme 1

There are two reasons the circuit of Figure 3.6 is not fault-tolerant as such.

Propagation of errors: a consequence of non-transversality First, because the cir-
cuit of Figure 3.6 is not transversal and, by construction, any qubit of the target block
is connected to all the qubits of the first control block, a single Z error acting on a
qubit of the target block can propagate to many different qubits within the same
control block, eventually leading to a logical failure, with a probability that is not ex-
ponentially suppressed with the code distance. For example, a Z error occurring on
a qubit of the target block before the circuit is executed propagates to the same Z er-
ror on the target block, plus a logical CZ gate between the two logical control qubits.
This first problem can be solved following the pieceable fault-tolerant method of
[130]. More precisely, we split the circuit containing d2 physical Toffoli gates into d
transversal pieces of d Toffoli gates each. Choosing a circular permutation on the
qubit of the first control block, the k-th piece of the circuit can be written

Pk =
d−1

∏
i=0

CCX(i− k + 1, i, i)

where all the indices are taken modulo the distance d of the repetition code. Between
two pieces, a round of error correction is inserted on the target block to catch errors
before they spread to the control blocks, as depicted in Figure 3.7. Importantly, be-
cause the target X operator commutes with the CCX gate, the stabilizers of the target
block {XiXi+1, i ∈ Zd−1} are left unchanged by the CCX gates of the circuit and can
be measured at any point in the circuit with the circuit of Figure 3.1.

The logical Toffoli circuit is executed as follows: after each of the first d − 1
transversal pieces of CCX gates, a single round of stabilizer measurement is per-
formed on the target block. After each of these pieces, say the k-th one, the k out-
comes from all the previous measurement rounds are decoded together using a min-
imum weight matching decoder (see Chapter 4). The corresponding correction is
applied before the (k + 1)-th piece of the circuit is executed. After the last piece is
executed, the usual error correction, composed of d rounds of stabilizer measure-
ments and correction, is performed on the three code blocks. The fact that a single
round of stabilizer measurement is enough during the intermediate error correcting
steps can be intriguing. Indeed, since the measurements themselves are faulty, they
usually need to be repeated a certain number of times, that scales linearly with the
code distance, before the outcome of the first measurement, decoded together with
the ones following, can be trusted. Here, a single round is executed independent
of the code size, but is decoded using the full history of the previous measurement
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outcomes. The history of the Z correction applied on the target block is also kept in
memory. Thus, after all the d pieces have been executed, a final decoding on all d
syndrome outcomes is performed and it becomes possible to know a posteriori which
target Z errors have propagated to CZ errors between control qubits and to correct
the corresponding CZ before the final QEC round on the control blocks. This is pos-
sible because the Z corrections performed on the target block anti-commute with the
constant stabilizers of the target block, thus travel without being projected and can
be undone later if needed.

FIGURE 3.7: Logical Toffoli circuit for distance 3 repetition cat qubits. After each
round of transversal Toffoli gates, a single round of stabilizer measurement is per-
formed on the target block. The outcome of the measurement is decoded together
with the history of all outcomes and an appropriate correction is applied. After

the circuit, a full error correction stage is performed on all three blocks.

Accumulation of non-propagating errors: a consequence of increasing circuit
depth The second reason the circuit is not fault-tolerant is because of the accumu-
lation of non-propagating errors on the control qubits. Indeed, as a consequence of
the fact that the circuit depth increases linearly with the code distance d, each qubit
of the two control blocks undergo d gates without the stabilizers of these qubits be-
ing measured. Therefore, without further considerations, when increasing the code
distance d, the probability of Z errors on these control blocks increases and eventu-
ally exceeds the fault-tolerance threshold of the repetition code. One way to handle
this problem is by concatenation with another repetition code. The existence of a
reasonable pseudo-threshold, i.e a physical error probability for which one can find a
code distance d yielding a lower logical error probability proves the existence of a
concatenation phase-flip threshold. We postpone the precise analysis of the value of
this pseudo-threshold to the numerical study of the circuits of Chapter 4. Note that
concatenating a distance d repetition code with itself produces a repetition code of
distance d2. The circuit implementing a logical Toffoli on the concatenation of these
two codes is thus very similar to the one depicted in Figure 3.7, except that it now
includes error correcting steps on the control blocks every d steps. The distance can
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be further increased by raising the number of levels of concatenation (the concatena-
tion of k repetition code produces a distance dk repetition code), while the number
of steps between two rounds of error correction remains constant and equal to d.

3.3.2 Fault-tolerant Toffoli circuit: scheme 2

For the circuit of Figure 3.7 to exhibit a phase-flip threshold without any concate-
nation, it is necessary to place additional rounds of error correction on the control
blocks in such a way that the number of time-steps between two rounds of error de-
tection does not increase with the code distance. Ideally, we would like to perform
a round of error correction on all three logical blocks after each of the transversal
pieces of the circuit. This task is complicated by the fact that the stabilizers of the
control blocks are not constant throughout the circuit. We label the three logical
qubits A, B and C, where C is the logical target block and denote by XA

i the X Pauli
operator acting on the i-th physical qubit of block A, where all subscripts are taken
modulo the code distance d.

FIGURE 3.8: Measurement circuit of the Clifford stabilizer
XA

i XA
i+1CXB,C(i, i)CXB,C(i + k, i + k).

Let us have a look at the value of the non-constant stabilizers of the two control
code blocks XO

i XO
i+1, O ∈ {A, B}, i ∈ [[0, d− 1]], after k pieces of the circuit have been

executed. Noting
Uk = ∏

j∈[[1,k]]
Pj

the stabilizers of the two controls blocks A and B become under conjugation by this
unitary

SA
i,k = UkXA

i XA
i+1U†

k = XA
i XA

i+1CXB,C(i, i)CXB,C(i + k, i + k)

SB
i,k = UkXB

i XB
i+1U†

k = XB
i XB

i+1 ×
k−1

∏
j=0

CXA,C(i− j, i)CXA,C(i + 1− j, i + 1)
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where CXR,S(i, j) denotes the CX gate between the i-th qubit of block R acting as
the control and the j-th qubit of block S acting as the target. Note that the stabilizers
of the control block C are constant throughout this evolution

SC
i,k = UkXC

i XC
i+1U†

k = XC
i XC

i+1.

The evolution of the stabilizers of the control blocks leads to a few issues that need
to be handled carefully, to ensure the existence of a phase-flip threshold.

FIGURE 3.9: A fault-tolerant Toffoli circuit without concatenation. After each of
the first d− 1 pieces of the circuit (here, d = 3), a round of Steane error correction
is performed on the target block, followed by the measurement of the Clifford

stabilizers on the control blocks.

First, the unitary Uk does not belong to the Clifford group, but to the third level
of the Clifford hierarchy [55] (see Appendix B). It maps the Pauli stabilizers of the
control blocks to Clifford operators. Nevertheless, these Clifford stabilizers can be
measured using CCX gates and Clifford gates. The stabilizer SA

i,k can be measured
in the standard way using one ancilla qubit with the circuit depicted in Figure 3.8.
Importantly, the measurement of the non-constant stabilizers is bias-preserving as
the CX and CCX gates possess this property.

Second, the weight of the stabilizers of control block A, SA
i,k, is constant at all in-

termediate steps of the circuit. Unfortunately, this is not the case for the stabilizers
SB

i,k of control block B, whose weights grow linearly with the number of pieces k. The
asymmetry between the two control blocks is a consequence of the particular choice
of ordering for the physical Toffoli gates. A symmetric ordering causes the weight
of the stabilizers of both logical blocks to grow linearly with the code distance, but
unfortunately it is not possible to order the gates such that the weights of all stabiliz-
ers be bounded by a constant. This implies that an increasing depth-k circuit might
be needed to measure these stabilizers in the same fashion as in Figure 3.8. This
scaling of the measurement time with the code distance d prevents the existence of
a phase-flip threshold.

A possible solution to this problem is to measure a different set of Clifford ob-
servables of constant weight instead of the stabilizers of block B. We choose these
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observables in such a way that the action of the circuit on the code space is not mod-
ified by their measurement, while their measurement still reveals the value of the
actual stabilizers. We call these Clifford observables, the “modified stabilizers”. One
further trick here is to first perform a round of error correction on the target block
C before measuring the non-constant stabilizers of block A and the modified “B-
stabilizers”. Let us first assume that we can perform a perfect error correction on the
target register, mapping the state of the target block C back to the code space. After
this perfect error correction, we have XC

i XC
i+1 = +1 for all i. Note that

k−1

∏
j=0

CXA,C(i− j, i)CXA,C(i + 1− j, i + 1) =

CXA,C(i + 1− k, i)CXA,C(i + 1, i + 1)×
k−1

∏
j=1

CXA,C(i + 1− j, i)CXA,C(i + 1− j, i + 1)

and that

CXA,C(i+ 1− j, i)CXA,C(i+ 1− j, i+ 1) =
1
2
(I + ZA

i+1−j)+
1
2
(I−ZA

i+1−j)XC
i XC

i+1.

As XC
i XC

i+1 = +1, we have

SB
i,k = XB

i XB
i+1CXA,C(i + 1− k, i)CXA,C(i + 1, i + 1),

which admits a constant weight now. It is important to note that these constant-
weight “modified B-stabilizers” only commute with the A-stabilizers if the state of
the block C is in the code space.

The remaining question is whether this procedure still works when the error cor-
rection step on the target block is imperfect, thus mapping imperfectly the state of
the logical block C to the code space. In this case, the set of “modified B-stabilizers”
may not commute with the A-stabilizers, thereby forbidding a simultaneous mea-
surement of these two sets. Indeed, in the current error correction approach, the
imperfection of the C-stabilizer measurements is compensated by the repetition of
these measurements and a MWPM decoder. This procedure however requires to
repeat the measurements a number of times that scales linearly with d and during
which we cannot measure the A and B stabilizers. The final trick to get around
this issue is to replace the current error correction procedure of the target block by
a single round of Steane-style error correction. Indeed, while the Steane-style error
correction step can still be faulty, the output errors are not correlated to the input er-
rors. This means that the measurements of the subsequent A and B stabilizers might
be faulty, but these errors remain independent and therefore one can still hope to
achieve a phase-flip threshold. The full circuit for the logical Toffoli gate, including
the different error correction steps, is depicted in Figure 3.9.
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3.3.3 Pieceable fault-tolerant CZ gate

We argued that the logical CZL gate is not required for universality, as it can be
straightforwardly synthesized using a logical Toffoli gate, together with a logical
ancilla prepared in the |−〉L state. However, we will see in Chapter 5 an alternative
construction of the logical Toffoli gate with better architectural properties, which
requires a logical CZL gate. For this reason, and because the logical CZL construction
is just an easier variation of the logical Toffoli circuit presented above, we quickly
present how a logical CZL gate can be realized.

Similar to the Toffoli gate, the CZL gate is not transversal on the repetition code
because of the logical ZLZL interaction. This, together with the fact that the logi-
cal ZL operator is implemented by the transversal application of all the physical Z
operators, implies that an all-to-all coupling is required between the physical cat
qubits of the two logical blocks. Here, the pieceable fault-tolerant method of [130]
can also be applied. More precisely, the logical gate is split as in the Toffoli case into
d transversal pieces of d physical CZ gates, using the round-robin construction

CZL =
d

∏
k=1

Pk =
d

∏
k=1

[
d−1

∏
i=0

CZ(i− k + 1, i)]. (3.1)

There are two major simplifications with respect to the logical Toffoli gate. The
first is that the phase-flips errors commute with the gate, such that the issue of the
spreading of phase-flip errors from the target block to the control blocks does not
exist here. Rather, the pieceable construction allows to prevent the accumulation of
the non-propagating errors.

This second is that, for the specific ordering considered in (3.1), the (non-
constant) stabilizers of both logical blocks remain Pauli operators of constant weight,
which simplifies greatly their measurement. Indeed, noting again

Uk = ∏
j∈[[1,k]]

Pj

the unitary implemented by the first k pieces of the circuit, the non-constant stabiliz-
ers of the two code blocks XO

i XO
i+1, O ∈ {A, B}, i ∈ [[0, d− 1]] become

SA
i,k = UkXA

i XA
i+1U†

k = XA
i XA

i+1ZB
i ZB

i+k

SB
i,k = UkXB

i XB
i+1U†

k = XB
i XB

i+1ZA
i−kZB

i+1.

The full circuit for the implementation of a pieceable fault-tolerant CZ gate on
distance 3 repetition cat qubits is depicted in Figure 3.10.
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FIGURE 3.10: Non-transversal implementation of the pieceable fault-tolerant log-
ical CZ gate on distance d = 3 repetition cat qubits.
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This chapter covers the work of the pre-print [59].

4.1 Assumptions and methodology

4.1.1 The phase-flip threshold

The repetition cat qubit relies on two different kinds of protection. The two-photon
dissipation exponentially suppresses bit-flip errors with the mean number of pho-
tons in the cat state, while the rate of phase-flip errors increases only linearly. Next,
the repetition code suppresses exponentially the phase-flip errors, provided that the
phase-flip error rate of the cat qubit is below the fault-tolerance threshold of the
repetition code.

We argued in Chapter 1 that this protection is similar to the one achieved by
Bacon-Shor codes [111, 14], with the nice feature that the “distance” of the inner pro-
tection provided by the two-photon pumping can be increased without any further
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hardware overhead. However, similarly to Bacon-Shor codes, because the phase-
flip error rate of the cat qubit increases linearly with the mean number of photons,
there cannot be a threshold since the effective phase-flip error rate of the cat qubit
will eventually exceed the threshold of the repetition code. Nonetheless, this is not
an obstacle to obtaining extremely low logical error rates with this approach, by
limiting the mean number of photons to a finite value for which the bit-flip error
probability is extremely low, and for which the phase-flip error probability is still
below the threshold of the repetition code. In our analysis, we limit the size of the
cat qubits to n̄ = 15 photons and assume that the exponential suppression of the
bit-flip error rate holds at least up to this cat size.

All the circuits presented in this work are built to implement logical gates on
repetition cat qubits, while being fault-tolerant to phase-flip errors only. Indeed, any
single bit-flip error occurring on any data qubit during the execution of a circuit can
cause a logical bit-flip error. The resulting logical bit-flip error rate can therefore be
bounded by simply counting the number of single locations in the circuits where
a bit-flip can occur. The numerical simulations of the logical circuits is devoted to
estimating the logical phase-flip error rate only, without taking into account the bit-
flip errors. For fault-tolerant circuits with respect to phase-flip errors, we define
the “phase-flip threshold” to be the highest value of the physical phase-flip error
probability pth for which the logical phase-flip error probability decreases upon an
increase of the code distance d.

4.1.2 Error models and thresholds

The accuracy threshold of a given quantum code is an important figure. Its actual
value is highly dependent on the assumptions made about the noise, and in the case
of a direct simulation of the quantum code, on the decoder used to interpret the
measurement outcomes, the various hypothesis made in the simulations, etc. The
error models considered in the literature usually fall into one of three classes that we
briefly describe below, each of which being suited for studying a particular feature
of the code. The corresponding allocation of errors to each of these error models is
illustrated in the case of the repetition code in Figure 4.1.

Code capacity error model The code capacity error model (Figure 4.1 (a)) corre-
sponds to the case where errors can affect the data qubits, but the syndrome ex-
traction circuit is perfect. This model is useful to study the intrinsic properties of
a quantum code, for instance, how the surface code can be tailored when the base
qubits are suffering from biased noise [120]. In this case, the threshold of the 2D
surface code for a depolarizing error model (where all single qubit Pauli errors are
equally likely) is pth = 10.3% using a maximum-likelihood decoder [124] and an op-
timal decoder increases this value to slightly above pth = 10.9% [104, 98]. The code
capacity threshold for the repetition code is pth = 50%. In this model, the stabilizer
measurement does not need to be repeated.
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Phenomenological error model The phenomenological error model (Figure 4.1
(b)) includes the errors of the code capacity model, and furthermore adds some er-
rors on the measurement outcome of the stabilizers (which fail with some probabil-
ity that is modelled phenomenologically). The stabilizer measurement are repeated
to ensure fault-tolerance and the history of all the measurement outcomes is inter-
preted using a decoder. In this model, and for depolarizing noise, the threshold of
the surface code falls to around 2.9% [124] (and 3.3% using an optimal decoder [97]),
and that of the repetition code falls to about 10% [115].

Circuit-level error model The circuit-level error model includes errors at every
location in the circuit, including the locations where qubits are idle. The interest of
this error model is to give precise estimations of what can actually be expected in a
real world experiment, and the value of the accuracy threshold in this model gives
(roughly) the target to reach to implement error correcting codes. The surface code
threshold for the circuit-level error model (depolarizing) is around 1% (see e.g [127]
among many others) while that of the repetition code is about 3% [115].

FIGURE 4.1: Location of errors in the stabilizer circuit measurement for (a) Code
capacity noise (b) Phenomenological noise (c) Circuit-level noise.

Description of the simulation We now describe how the logical phase-flip error
rate can be computed through numerical simulations of the circuits. The error model
that we choose is the circuit-level error model, in order to get estimates of the logical
error rates and overheads as close as possible to one could realistically expect in an
experimental setting.

Every noisy gate is modelled as a perfect gate, followed by a stochastic error.
These error models account for non-adiabatic errors and for the effect of single pho-
ton loss at rate κ1. The parameter p that characterizes the “strength” of the physical
noise is the error probability of a physical phase-flip during the typical gate time T,
given by p = n̄κ1T, where n̄ is the average number of photons. For the gate time T∗
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that maximizes the CNOT and Toffoli gate fidelities, this probability is given by

p =
1

2
√

π

√
κ1/κ2.

For each gate, we summarize the Z-type errors and the corresponding probability
that we have used in the Monte Carlo simulations in Table 4.1. We also assume both
the ancilla preparation and measurement to be faulty with probability p.

I Z CZ CNOT Toffoli
Error Prob. Error Prob. Error Prob. Error Prob. Error Prob.

I 1− p I 1− p I 1− 2p I 1− 4p I 1− 6p
Z p Z p Z1 p Z1 3p Z1 p

Z2 p Z2 p/2 Z2 p
Z1Z2 p/2 Z3 p/2

CZ12 3p
CZ12Z3 p/2

TABLE 4.1: Error models of each gate used in the simulations.

For simplicity, we fix the duration of these time-steps to be the same as T, the
duration of CNOT and Toffoli gates. When a qubit is acted upon by a gate at a
given time-step, the applied probabilistic error is drawn from the corresponding
error model, otherwise, the error is drawn from the identity error model (which
corresponds to a phase-flip probability of p = n̄κ1T).

In order to simulate a given circuit, we fix the code distance d and the value of
the physical noise strength p and run the noisy circuit N times. We detail in sub-
section 4.1.3 how the noisy circuits are simulated efficiently. For each trajectory, the
output of the syndrome measurements is decoded using a minimum weight perfect
matching (MWPM) decoder (see subsection 4.1.4) and a final perfect recovery oper-
ation [44]. After the recovery operation, mapping the state back to the code space,
we check whether a logical error has occurred. We then define the logical error prob-
ability of the circuit pL(d, p) as

pL =
Nfail

N
where Nfail is the number of times a logical error occurred during the N runs. In
order to obtain a constant relative error on the value of pL, the circuits are run
continuously until a minimum of Nfail = 500 logical failures are observed, which
ensures that the relative error on pL is less than 9% with probability 95%.

The numerical computations were performed in parallel using the cluster of Inria
Paris, composed of 68 nodes for a total of 1244 cores. The nodes are divided in
a few hardware generations: 28 bi-processors Intel Xeon X5650 of 6 cores, 12 bi-
processors E5-2650v4 2.20 of 12 cores, 16 bi-processors XeonE5-2670 of 10 cores, 8
bi-processors E5-2695 v4 of 18 cores, 4 bi-processors E5-2695 v3 of 14 cores. Some
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data points for the logical Toffoli circuits corresponding to the largest distances and
lowest logical error probabilities, for which ∼ 108 − 109 trajectories were simulated
per point, required up to a week (real time) of computation.

4.1.3 Efficient simulation of non-Clifford circuits using CHP algorithm

The numerical determination of the logical error probability is a schizophrenic
game. For each run of the circuit, one generates random errors at random locations
in the circuit, and keeps them stored somewhere. Then, once the location of errors
(and the type of errors, as multi-qubit gates can produce different errors) are drawn,
one needs to simulate the circuit in order to get the outcomes of the stabilizer
measurement. Then, observing only the stabilizer measurement outcomes, one tries
to guess the error that occurred to decide which correction needs to be applied.

In this subsection, we detail how the measurement outcomes can be obtained
once the location of errors has been drawn. There are actually two different cases
to consider: the stabilizer circuits and the non-stabilizer circuits. A circuit is called
a stabilizer circuit, or a Clifford circuit, if it is composed exclusively of quantum
gates belonging to the Clifford group, and state preparations and measurements in
the computational basis only. The Gottesman-Knill theorem establishes that such
circuits can be simulated efficiently on a classical computer [53]. Most of the logical
circuits that we considered in Chapter 3 actually fall in this class: the preparation of
the logical states |±〉L, the measurement of the logical Pauli XL operator, the error
correction circuit, and the logical transversal CNOT gate. The non-stabilizer circuits
that we introduced were the two circuits for the logical Toffoli gate, as they involved
using physical Toffoli gates.

The original idea behind the Gottesman-Knill theorem is to use an operator
representation of the quantum state rather than the wavefunction, i.e to track the
evolution of a quantum state through a stabilizer circuit in the Heisenberg picture
rather than in the Schrödinger picture. There are two points to address: how does
one represent a stabilizer state in the Heisenberg picture? How can one track
efficiently the evolution of this representation through a stabilizer circuit?

The first answer is actually closely related to the stabilizer formalism of quantum
error correction. The goal is to represent the stabilizer states, i.e the set of all possible
states that can be produced by a stabilizer circuit (the states that one can reach by
applying Clifford gates to the all 0 state). The key point is that an n-qubit stabilizer
state is the unique (up to a global phase) +1 eigenstate of exactly 2n Pauli operators,
that form a group generated by n Pauli operators. For instance, the 1-qubit state
|0〉 is the +1 eigenstate of the set of two Pauli operators {I, Z} generated by a
single Pauli operator {I, Z} = 〈Z〉, the 2-qubits state 1√

2
(|0+〉 − |1−〉) is the +1

eigenstates of the Pauli operators in the set {I I,−XZ, ZX,−YY} = 〈−XZ, ZX〉, the
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3-qubit state |+ 1−〉 is the common +1 eigenstate of the Pauli subgroup generated
by 〈XII,−IZI,−I IX〉, etc.

Now, why is this representation useful in designing an efficient simulation algo-
rithm ? The strategy behind the efficient simulation algorithm of stabilizer circuits
is to keep track of the n Pauli generators of the group representing the state, rather
than keeping track of the 2n complex amplitudes of n-qubit state. The crucial point
is that the Pauli operators representing the state remain Pauli operators upon the ap-
plication of gates in the Clifford group (by definition of the Clifford group). Thus,
one merely needs to update the Pauli operators of the generating set to keep track of
the evolution of the state, which can be achieved efficiently [1].

Toffoli circuits simulation We now describe how this efficient algorithm can be
used for our purpose. Let us begin by the less trivial case, the simulation of the two
logical Toffoli circuits proposed in the Chapter 3. The simulation of non-Clifford
circuits is classically hard (not surprinsingly, as the interest of building a quantum
computer would otherwise be very limited). In our case, however, there are a few
specific features that enable us to perform the Monte Carlo simulations of all the
non-Clifford circuits presented in this work in a classically efficient manner. The
first important thing to note is that while the circuits contain non-Clifford Toffoli
gates, the propagation of errors in the circuits can never produce non-Clifford errors,
as would be the case in all generality. To see this, recall from the error models of
Table 4.1 that all the ’bare’ errors produced by any gates in the Toffoli circuits are of
the following form: a Pauli Z error on any data qubit of any logical block, a Pauli
correlated Z1Z2 error on any two pair of data qubits of the two control blocks, a
controlled-phase gate CZ12 between any two data qubit of the control blocks, or a
correlated controlled-phase gate and Z error CZ12Z3 on two data qubits of the control
block and one data qubit of the target block.

Crucially, none of these errors can become non-Clifford through the Toffoli cir-
cuits: the Pauli Z errors of the control blocks commute with the Toffoli gates, while
a Z error on the target block evolves through a Toffoli gate as a Z error on the target
block together with a controlled-phase error between the two controls:

CCX1,2,3 × Z3 = CZ1,2Z3 ×CCX1,2,3.

Thus, the only Clifford error that can ever appear anywhere in the circuits is a
controlled-phase between any pair of two qubits of the control blocks, either pro-
duced by a Toffoli gate error or by propagation of a Z error on the target block
through another Toffoli gate. Once these errors appear, however, they can never
propagate further to non-Clifford errors as a controlled-phase gate on the control
qubits of a Toffoli gate commutes with the Toffoli gate:

CCX1,2,3 ×CZ1,2 = CZ1,2 ×CCX1,2,3.
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FIGURE 4.2: Noisy piece of a Toffoli circuit (a) where the errors are drawn ran-
domly from the errors models of Table 4.1. Here, the first physical Toffoli produces
a Z error on the second qubit of the second control block and the Steane error cor-
rection produced a Z error on the second qubit of the target block, depicted by the
stars. This noisy circuit is equivalent to the one depicted in (b), where the Toffoli
circuit is now perfect (error less) and is followed by a circuit containing the noise

(in the red dashed box), but composed exclusively of Clifford gates.

Thus, several specific ingredients ensure that all the errors we deal with are at most
Clifford errors:

• the noise bias, such that we deal only with phase-flip types of errors,

• the bias-preserving property of all the gates, thus preserving the phase-flip
nature of errors,

• the specific orientation of the Toffoli gates where the target qubit of any physi-
cal Toffoli gate always belong to the same code block.

The third point is actually a key point. If we were to use two Toffoli gates in a
circuit with the target qubits belonging to two different logical blocks, then a CZ
error produced by the first Toffoli gate could evolve to a non-Clifford CCZ error by
propagation through the second Toffoli:

CCX1,2,3 ×CZ1′,3 = CCZ1,1′,2 ×CZ1′,3 ×CCX1,2,3.

With these facts in mind, we now detail how the logical error probability of a noisy
Toffoli circuit can be simulated efficiently. Once the locations and nature of errors
have been drawn, the errors are propagated through the circuit up until the point
where they meet a measurement. At this point, the circuit has been decomposed in
two different circuits: the first one is perfect, and contains the non-Clifford Toffoli
gates, and it is followed by a second one that consists of the errors only, and contains
exclusively Clifford operations. We depict in Figure 4.2 one example of this circuit
decomposition, for the first piece of the circuit of Figure 3.9. The left hand-side of the
circuit, which is error free, is non-Clifford but its effect on the value of the stabilizers
is trivial. Actually, since the operators that we measure are “compatible” with the
Toffoli pieces of the circuit, in the absence of errors, the results of the measurement
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of these operators is +1 (deterministic). The only thing that needs to be simulated
numerically to get the correct probability distribution for the measurement outcomes
is the effect of the error circuit, depicted in the red box of Figure 4.2 (b), on the
measurement results and the remaining errors after the measurements have been
executed. Note that since this error circuit is Clifford, it can be efficiently simulated
using the CHP algorithm [1]. Note that the errors on the target block are always
simple Pauli Z errors, even after propagation through any gate of the circuit. Thus,
the logical error rate of the target block can actually be simulated separately from
the rest, using a simple array of 0, 1 integers.

Stabilizer circuits simulation Given that the CHP algorithm handles efficiently
stabilizer circuits, all the remaining circuits in this work are within the scope of this
algorithm. However, such simulations can be further simplified for the same rea-
sons mentioned above. Indeed, we saw in the case of the Toffoli circuits that what is
needed to be simulated to produce the correct probability distribution for the mea-
surement outcomes were actually the errors themselves, propagated through the cir-
cuits, while the effect of the (error free) circuit themselves was trivial. In the case
of the Toffoli circuits, the errors could take the form of Clifford unitaries (the CZ
error), while for all of the stabilizer circuits the errors actually remain Pauli. Thus,
since the basis states that we consider are only the |±〉 states and the only errors that
can happen are merely causing flips between these states, the effect of the randomly
drawn errors in the circuits can be tracked classically even in the Schrödinger pic-
ture, which turned out to be the most efficient way to simulate the logical phase-flip
error rates for all of the stabilizer circuits in this work.

4.1.4 Efficient decoding of the repetition code using the MWPM decoder

The problem of deciding what is the most likely set of errors that occurred given a
pattern of stabilizer measurement outcomes (and hence the correction that needs to
be applied) is known as the decoding problem, and the specific algorithm that solves
this task is the decoder. Typically, in most current proposed schemes it is assumed
that the decoding algorithm will be executed on classical hardware running along-
side the quantum computer. An important question is whether this computation
needs to be performed in real time, at the pace of the quantum computer, or if
the measurement outcomes merely need to be recorded to be interpreted later.
There are actually two cases to consider: when the quantum algorithm can be
implemented using exclusively stabilizer circuits, Pauli errors remain Pauli as they
propagate in the circuit. In this case, it is enough to simply detect the errors without
correcting them, and to let them propagate until the end of the circuit where they
can be corrected. Actually, in this case, the errors do not even need to be corrected
but rather their effects can be taken into account when interpreting the final output
of the quantum algorithm (another equivalent way to state this is to say that the
errors can be corrected in software, by updating the Pauli frame [72]). However,
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a quantum algorithm providing a quantum speed-up will necessarily involve
non-Clifford gates in its implementation (otherwise it is possible to efficiently
simulate it on a classical hardware according to the Gottesman-Knill theorem). The
propagation of Pauli errors through these non-Clifford gates results in errors of
increasing complexity, as a Pauli error that propagates through k non-Clifford gates
might in general become an error belonging to the (k + 1)-th level of the Clifford
hierarchy. Tracking the effect of these errors as they propagate becomes classically
intractable, and in this case, errors need to be corrected before the execution of
non-Clifford gates. It is then crucial that the entire error correction procedure,
including the stabilizer measurements, the classical decoding of the measurement
outcomes, and the correction step, can be performed in a time similar to the typical
clock cycle time of the quantum computer. The design of an efficient decoder for
the stabilizer codes, and most particularly for the surface code, is an important
topic of research that has been extensively studied in parallel to the development
of the quantum hardware itself. One of the leading decoders for the surface code
is known as the “minimum weight perfect matching” (MWPM) decoder [46, 44,
47, 45, 42, 126], and it relies on a mapping of the decoding problem onto a well
known problem of graph theory. The graph problem consists in finding a pairing of
nodes of a weighted undirected graph (a matching) that minimizes the sum of the
weights of the selected edges (the minimum weight), and such that all the nodes are
matched (a perfect matching). The “Blossom” algorithm [38, 16] solves this problem
efficiently, providing an efficient decoder of stabilizer codes.

In the numerical study presented in this work, the efficiency of the decoding al-
gorithm is convenient to perform efficient simulations of circuits involving a few
tens of cat qubits. Indeed, an alternative way to decode the measurement outcomes
is the direct simulation of the full density matrix of the system, which contains all
of the information about the system and can therefore be used to compute numeri-
cally the most likely state of the system given an observed pattern of measurement
outcomes. However, this requires the computation of a complex-valued matrix of
size 2n × 2n, which quickly becomes intractable for classical computers. Instead, the
MWPM decoder focuses on the pattern of errors, which is typically very sparse when
the errors are rare, independent of the code distance. We now describe how the ob-
served pattern of measurement outcomes can be mapped (efficiently) on the graph
problem mentioned above, for the specific case of the repetition code that we use in
this work, and for the simple QEC circuit (that is for the case of the memory). Note
that this decoder has been used to decode the first experimental implementation of
a quantum repetition code with transmon qubits [67].

Repetition code with perfect stabilizer measurement Let us first consider the
ideal case where the stabilizer operators XiXi+1 are measured with unit fidelity. In
this case, all the operations of the stabilizer circuits are assumed to be perfect (the
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ancilla preparation and measurement, the CNOT gates used to copy errors from
data qubits to ancilla qubits, and idle operations on data qubits are all assumed to
be error-free), such that we only consider the errors on data qubits at the input of
the circuit (say, from the circuit implementing a logical gate just before, or from a
logical state preparation, etc). In this case, since the outcomes of the stabilizer mea-
surements are perfectly reliable, and the measurement circuits themselves do not
introduce additional errors, the circuit does not need to be repeated.

FIGURE 4.3: a) A single round of perfect stabilizer measurement is performed on
a distance-5 repetition cat qubit. To decode the outcomes, the detection events are
put on a graph where the edges represent the physical qubits and the nodes the
detection events. b) The Blossom algorithm matches every detection event in pair
while minimizing the sum of the weight of the edges. Here, there are two possi-
ble solutions to the observed syndrome (-1,-1,+1,+1) corresponding to either the
second qubit having phase-flipped (red nodes matched together) or the all of the
other qubits having phase-flipped (each node matched to a physical boundary).

Consider a distance-5 repetition code encoding an arbitrary logical state

|ψ〉L = α|+〉L + β|−〉L = α|+〉⊗5 + β|−〉⊗5.

Suppose that the second physical cat qubit of this code suffers from a Z1 error
just before the round of stabilizer measurements, as depicted in Figure 4.3 a). This
error is detected as expected by the two stabilizers X0X1 and X1X2 that are sup-
ported on this qubit, which can be visualized directly on the circuit by noting that
the Z1 errors propagates through the CNOT gates of the corresponding stabilizer
measurements and flip the |+〉 state of the corresponding ancilla to Z|+〉 = |−〉,
resulting in a deterministic −1 outcome for the X measurement of the ancilla. The
collection of measurement outcomes of all the stabilizers, called the syndrome, is
given by (−1,−1,+1,+1). In order to decode this syndrome using a MWPM de-
coder, the measurement outcomes are represented on a graph as depicted in Figure
4.3 where the vertical vertices represent the qubits and the nodes in between two
qubit represent the measurement outcome. Actually, a node represents a detection
event, that is a node is selected (depicted in red) if the corresponding measurement
outcome differs from the one of the previous round (here, the two −1 outcomes
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FIGURE 4.4: MWPM decoding of the distance-5 repetition code for circuit-level
error model. a) The stabilizer measurement circuit is repeated d = 5 times before
the syndrome are decoded together. While some errors occur on the data qubits
(red and yellow errors) and need to be corrected, other errors (purple) affect the
ancilla qubit and cause a wrong measurement outcome to be recorded, but leave
no error on the data qubit, and some correlated errors occur on both (orange).
b) The detection events (change of a measurement outcome with respect to its
previous value) are put on a graph and matched in pairs. A selected edge by the
matching (in blue) that has a vertical component indicates a physical error on the
corresponding data qubit which needs to be corrected. c) A different matching,
leading to a different interpretation of the measurement outcomes pattern. This
matching is of higher weight and is rightfully not selected by the decoder, as it

would lead to a logical error after correction.

result in two detection events at the corresponding locations assuming the previous
syndrome was the all +1 syndrome corresponding to no error). The edges of the
graph are weighted, where the weights of all the vertices are pre-computed using
the error models of the operations. This step has to be performed only once and
can be done before the quantum computer is run, but it requires to have a solid
understanding of the noise models of all the operations of the quantum computer.
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Given the set of nodes corresponding to detection events (red nodes), and the
weights of the graph, the blossom algorithm determines a matching of these nodes
of minimal weight, where the weight of the matching is the sum of the weights of
the selected edges. In Figure 4.3 b), there are actually only two possible matchings
of these two nodes: either these two nodes are matched together (with the corre-
sponding selected edge marked in blue) or each of these nodes is matched with the
boundaries of the graph. Suppose that each qubit at the input may have suffered
from a phase-flip error with constant probability p and therefore the weight of each
edges is − ln(p). The total weight of the first matching is − ln(p), while that of the
second is −4 ln(p) = − ln(p4). As 0 < p < 1, the minimum weight matching is
the first one where only one edge is selected. Indeed, in the case of a perfect mea-
surement of the syndrome, there are always two different solutions for the matching
problem that are complementary to one another: the two states

Z1|ψL〉 = α|+−+++〉+ β| −+−−−〉
ZLZ1|ψL〉 = Z0Z2Z3Z4|ψL〉 = α| −+−−−〉+ β|+−+++〉

produce the same syndrome (−1,−1,+1,+1). However, if one assumes that each
qubit may have flipped with the same probability p, the probability to get the first
state is p whereas the second one requires four independent errors of probability p,
which is what is captured by the matching algorithm.

Repetition code with imperfect stabilizer measurement The assumption that the
stabilizer operators can be measured with perfect accuracy, and without introducing
errors on the system while the measurements are executed, is not realistic. Indeed,
all the parts of the measurement circuit are themselves prone to errors. Some of
these errors only cause the measurement outcome to be wrong, without having an
effect on the data qubits. This is the case for the errors in the ancilla state preparation
or measurement, or for the phase-flip errors on the ancilla (control) qubit introduced
by the CNOT gate. Because of these “readout” errors, the outcome that one gets
when measuring a stabilizer may differ from the real value of the stabilizer, and
one cannot trust a single measurement outcome to decide which correction should
be applied. Indeed, if one proceeds as such, a single erroneous syndrome results
in applying a wrong correction, which can lead to a high weight errors on the data
caused by the correction itself.

In order to avoid this, the measurement of the stabilizers can be repeated a
certain number of times before a correction is applied, where the applied correction
depends on the entire history of the past measurement outcomes. The difficulty
in achieving this is that other errors, like the phase-flip errors on the data (target)
qubit introduced by the CNOT gate, or the phase-flip errors on the data while
idling during the ancilla preparation or measurement, actually cause the state of the
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system to evolve in time. We depict schematically in Figure 4.4 how the MWPM
decoder works in this case. Consider the circuit that repeatedly measures the stabi-
lizers of the distance-5 repetition code, where phase-flip errors may occur at every
locations in the circuit. In 4.4 a), a particular instance where five particular errors
happen at random locations is shown, and the corresponding ±1 outcomes that one
gets in this particular case are given in the measurement boxes. Unlike the case of
the perfect stabilizer measurement, where the solution to the decoding problem is
obvious, here it is much more difficult to guess what the state of the system might be
by just looking at the syndromes, that keep changing at every round. The first step
to decode this syndrome is to actually identify when a stabilizer measurement out-
come differs from the outcome of the previous round. The change of measurement
outcomes, called a detection event, indicates that an error has occurred. In general,
for the repetition code, a single error always triggers two neighbouring detection
events (except at the physical or temporal boundaries, where a physical boundary
is an edge of the repetition code and a temporal boundary denotes the last round
of measurement performed in time). Depending on the location and nature of the
error, the two detection events can be aligned in time, in the case of a measurement
error (purple), or aligned in space, in the case of an error affecting a data qubit
between two different measurement rounds (red), or in both direction (orange) for
some very specific locations (a phase-flip on the target qubit of a CNOT of the first
round of CNOT gates, or a correlated ZZ errors on both qubits of a CNOT of the
second round). Errors that occur at the boundaries (yellow) only cause a single
detection event. To decode the history of syndromes corresponding to a particular
Monte Carlo instance, the detection events are put on the detection graph at the
corresponding locations. The detection graph is precomputed (only once, outside
the Monte Carlo loop) using the errors models of the gates. For a given circuit, and
errors models for all the operations in the circuit, we build this graph in two steps.
First, a node is added for every possible location of a detection event, i.e for every
measurement in the circuit. Second, the edges and the corresponding weights are
added. In order do to this, for every possible error, the two detection events (or the
single detection event) that this error will trigger are identified and the weight of the
corresponding edge is updated to take into account the corresponding probability.

Once this graph is computed, the Monte Carlo simulation proceeds as follows.
For each instance (i.e for each particular draw of the random set of errors), the com-
plete subgraph to feed to the matching algorithm is computed by calling Dijkstra’s
algorithm (shortest path finding algorithm [34]) for each pair of detection events.
Then, this complete subgraph is fed to the Blossom V implementation of MWPM
algorithm [16]. Once the detection events have been matched (possibly with a phys-
ical/temporal boundary), all that remains to be done is to determine the correction
to apply, given the particular matching of detection events. We depict in Figure 4.4 b)
how this is done. The detection events (red nodes) corresponding to the locations of
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the circuits where the measurement outcomes differ from that of the previous round,
are matched in pairs (blue edges) such that the sum of the weights of the matching
is minimal. The horizontal edges of the matching actually identify measurement er-
rors, for which no error actually happened on the data and hence no correction needs
to be applied. The vertical edges of the matching (or the diagonal edges), however,
identify pairs of detection events corresponding to errors that occurred on the data
qubits and that need to be corrected. Tracking all of the pairs of matched nodes that
account for an error on a data qubit gives the correction to apply to remove these
errors. Note that in the depicted example, the decoder correctly finds that three of
the five qubits have actually suffered from phase-flips (as depicted on the right).
Another possible matching of the detection event is the one depicted in Figure 4.4
c), leading to guessing that actually only two qubits have been phase-flipped (and
which would lead to a logical error after correction), but this matching has a higher
weight (a detailed look at the error models and the weights of the edges is required
to check this, however one can readily note that the matching of c) requires six edges
instead of five for the minimum weight matching of b)).

4.2 Performance of the quantum memory and transversal op-
erations

4.2.1 The memory

In this section, we investigate the performance of a repetition cat qubit used as a
quantum memory. Here, the error correction is applied to extend the lifetime of a
quantum bit of information. In this case, the logical circuit (implementing the logical
encoded version of identity operation) simply consists of the error correction step.
The d − 1 stabilizer operators are measured using d − 1 ancilla qubits. To make
the procedure fault-tolerant, the measurements are repeated d times before they are
decoded with the MWPM decoder. Since all the operations are bias-preserving and
do not convert X and Z errors, we estimate separately the error probabilities pZL

and pXL of logical ZL and XL errors occurring per cycle of error correction. We then
bound the global logical error probability by pL = pZL + pXL .

Logical X error probability pXL The repetition code does not provide any protec-
tion against bit-flip errors. Hence, a single bit-flip occurring on any qubit during
the execution of the circuit will cause a logical XL error. For all the bias-preserving
operations presented in Chapter 2, the bit-flip rate is exponentially suppressed with
the mean number of photons in the cat state (experimentally observed in [83] for
the identity operation). However, the exact value of this probability depends on the
operation that is applied to the cat qubit.
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The value of the bit-flip error probability induced by each gate is determined
numerically. The most important source of bit-flip errors is found to be induced by
the CNOT gate, such that the bit-flip errors induced by idling data qubits are actually
negligible with respect to the bit-flips occurring when a CNOT gate is performed.
Here, we assume pessimistically that any bit-flip type of error for the CNOT gate
will result in a logical bit-flip error (which is not always the case, as for instance a
correlated XX error on both the control and the target of a CNOT gate of the first
round propagates through the second CNOT as a XiXi+1 error on the data, which is
a stabilizer and hence does not induce an error). In this case, the bit-flip error rate
for the CNOT is very well approximated by the numerical fit [26]

pCX
X = (5.58

√
κ1

κ2
+ 1.68

κ1

κ2
)e−2n̄

where pCX
X is the sum of all the probabilities of the 12 errors that contain some

bit-flip (X1, X1X2, X1Y2, X1Z2, X2, etc). A full cycle of QEC requires 2d(d− 1) CNOT
gates. Assuming pessimistically that any single bit-flip error will result in a logical
XL error, and assuming pCX

X is small, the resulting logical error probability is simply
bounded by

pXL = 2d(d− 1)pCX
X .

Logical Z error probability pZL To estimate pZL , we perform Monte Carlo simu-
lations of the QEC circuit depicted in Figure 4.1-(c) where we assume there are no
physical bit-flip errors, as they are accounted for separately. Here and in the fol-
lowing simulations, we assume that the classical processing of the measurement
outcomes is instantaneous, so no errors are induced on the data qubits while the
decoding is performed. In the memory case, we also assume the correction step is
perfect, because note that as discussed previously, in this case the correction does not
need to be physically applied but rather can be performed in software by updating
the Pauli frame [72].

For each run, the repetition cat qubit is initialized in a code word |ψin〉L. The sta-
bilizers of the code are measured d times as depicted in Figure 4.1-(c). A last round of
perfect stabilizer measurements is performed and the history of measurement out-
comes is decoded together with this last perfect measurement outcome. This ensures
that, after the perfect correction, the output state |ψout〉L is back in the code space, ei-
ther |ψout〉L = |ψin〉L, in which case the error correction was successful, or a ZL error
occurred, |ψout〉L = ZL|ψin〉L. We plot in Figure 4.5 the probability ZL that a logical
error occurred for various code distances d and values of the physical noise strength
p. The phase-flip threshold for this circuit is pth = 1.9%, which corresponds to a ratio
between the two-photon dissipation rate and a single photon loss rate κ2/κ1 = 220,
close to the value achieved in [118]. For a typical cavity lifetime of 1ms and cat qubits
of size n̄ = 5− 15 photons, this phase-flip threshold of 1.9% corresponds to a CNOT
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FIGURE 4.5: Probability that the error correction circuit of Figure 4.1-(c) induces a
logical ZL error on the repetition cat qubit after the correction is performed. The
dotted lines correspond to the asymptotic regime and fit the empirical scaling for-

mula pZL = A( p
pth

)
d+1

2 .

gate time of about 4µs− 1.3µs, respectively. It is experimentally reasonable to think
that all the other operations could be performed as fast.

Note that the phase-flip threshold for the CNOT error probability is about 92%.
For a depolarizing model where idle qubits, state preparation and measurement,
and the CNOT gate all fail with probability p, and where the CNOT error model is
balanced pZ1 = pZ2 = pZ1Z2 = p/3, the fault-tolerance threshold is slightly above 3%
[115], which corresponds to a CNOT error probability around 97%. Here, a higher
CNOT gate error probability is tolerated because the phase-flips errors of the CNOT
mostly occur on the ancilla cat qubits used for the stabilizer measurement.

Logical error rate and resource overhead Combining the logical XL and ZL er-
rors, the minimum number of data cat qubits and the minimum number of photons
per cat qubit to achieve a target logical error rate pL for a quantum memory can be
estimated. In Figure 4.6, we present this physical overhead as a function of the phys-
ical error probability p. Physical error probabilities of about 1% (corresponding to
a CNOT fidelity of 96%) are enough to achieve very low logical error probabilities
of order 10−10 per QEC cycle using a modest number of 70 modes per repetition cat
qubit (twice as much including the ancillary modes) and for cat sizes of about 15-16
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FIGURE 4.6: Estimated number of cat qubits per repetition cat qubit used as a
quantum memory, versus the physical noise probability p, also given in units of
the phase-flip threshold value pth. The different plots correspond to different val-
ues of the target logical error probability per QEC cycle, and the numbers on the

curves correspond to the mean number of photons n̄ = |α|2 in the cat qubits.

photons. Furthermore, with the specific gate realizations of Chapter 2, this physical
error probability of 1% can for instance be achieved with a two-photon dissipation
rate of 125kHz, a cavity mode lifetime of about 1ms and a gate time of about 0.6µs.

4.2.2 Transversal operations

All logical operations that admit a transversal implementation exhibit a similar per-
formance to the quantum memory. This includes the measurement of XL, the prepa-
ration of the logical |±〉L states, and the logical CNOT gate. The measurement of
the XL operator is done by measuring all the cat qubits in the X basis, followed by
a majority vote on the measurement outcomes. The fault-tolerant preparation of the
state |±〉L consists in preparing all the cat qubits in the |+〉 state, and performing a
full round of error correction. The phase-flip threshold for this preparation is there-
fore the same as the quantum memory. The logical CNOT gate is implemented on
the code space by performing a physical CNOT gate between each pair of cat qubits
of two different logical code blocks, followed by a separate round of error correction
on each logical block. As it can be seen from Figure 4.7, the logical phase-flip error
probability of a logical CNOT gate is similar to that of a quantum memory.

The set of fault-tolerant gates that can be used to perform universal quantum
computation using repetition cat qubits is SL = {P|±〉L ,MXL , XL, CNOTL, ToffoliL}.
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FIGURE 4.7: Error probability of a transversal logical CNOT gate as a function
of the physical CNOT gate error probability given by 4p. The asymptotic dotted

curves are fits to the empirical scaling formula A( p
pth

)
d+1

2 .

In this section we showed that all these gates except the logical Toffoli can be im-
plemented with very high fidelities for modest code sizes. In the next section, we
investigate the performance of two schemes proposed in Chapter 3 to implement
this non-Clifford gate fault-tolerantly using pieceable fault-tolerant circuits.

4.3 Performance of the Toffoli gate

4.3.1 Scheme 1 (with concatenation)

In Figure 4.8, we simulate the circuit of Figure 3.7 with a circuit-based error model.
As mentioned above, the absence of a phase-flip threshold can be explained by the
accumulation of non-propagating errors: for all values of the physical error proba-
bility p, there is a finite optimal value of the code distance that achieves a minimum
logical error probability. We also plot in Figure 4.8 the identity line to visualize the
“break-even” point below which code concatenation becomes possible. The phase-
flip threshold for this circuit used with concatenation is slightly below 2%.

In the case where p is small and for large enough code distance d, the infidelity
of the circuit is dominated by the accumulation of non-propagating errors on the
control blocks. The probability that the circuit fails due to the errors in the control
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FIGURE 4.8: Error probability of the logical Toffoli gate implemented by the cir-
cuit of Figure 3.7 as a function of the error probability of physical cat-qubit Toffoli
gates. The colored cross are numerical simulation results, the plain lines are com-
puted analytically and correspond to the error probability of this circuit in the case
where the final QEC stage is perfect (see main text). The dotted black line is the
identity and serves as a guide to the eye to visualize the “break-even point” below
which the error probability of the logical Toffoli circuit is smaller than that of the
physical Toffoli gate. Inset: Minimal value of the logical Toffoli error probability
achievable for a given physical error probability. The optimal distance realizing

this minimum is indicated on the curve.

blocks exceeds by several orders of magnitude both the failure probability due to
the target block errors or the failure probability of error correction blocks. A good
estimate of this optimal code distance can be obtained by assuming the QEC steps
are perfect. In this case, the probability of a logical ZL error on either of the control
blocks is simply given by the probability of accumulating more than bd/2c errors

pZL =
d

∑
k=bd/2c+1

(
d
k

)
p′k(1− p′)d−k

where p′ ≈ dp is the probability that a given physical qubit of a logical control block
is corrupted by a Z error during the circuits execution (the approximation p′ ≈ dp
is valid as far as dp � 1). This infidelity is plotted in plain lines, and, as expected,
fits well the numerical values in the regime where the physical error probability p is
small and the code distance d is large, for which the logical error is entirely set by
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the accumulation of non-propagating errors.
We used this asymptotic formula to estimate the optimal code distance d and the

associated logical error probability for a given physical Toffoli error probability, as it
is precisely the region of the curves where the formula fits very well the numerical
values. The results are plotted in the inset of Figure 4.8. As it can be observed, even
without concatenation, a physical error probability of about .25% per Toffoli gate on
cat-qubits yields logical error rates of about 10−10 with as few as 60 modes. Now, if
the physical error probability per cat-qubit Toffoli gate is about 1%, the same logical
error probability of 10−10 can be achieved with one level of concatenation, concate-
nating a 9-mode repetition code with a 60-mode one. Following the error model of
the appendix achieved for the Toffoli implementation of [60], and assuming a two-
photon dissipation rate of κ2/2π = 1MHz, this physical error probability can be
achieved for a cavity lifetime of 1ms. With the recent progress in 3D superconduct-
ing cavities, this long lifetime can be typically achieved with cylindrical postcavities
[106].

4.3.2 Scheme 2 (without concatenation)

We perform the Monte-Carlo simulations of the circuit 3.9, using a circuit-based error
model including the error models provided in the Table 4.1. The simulation results
are plotted in Figure 4.9. These simulations indicate the existence of a threshold
corresponding to a physical Toffoli error probability sightly below 3%. A typical
physical error probability of 1% that can be achieved with the parameters of the
previous subsection should result in a logical Toffoli error probability of 10−10 with
as few as 90 data modes. This important overhead reduction, with respect to the
previous concatenated case, comes at the expense of a fault-tolerant preparation of
logical |0〉L states that will be consumed by the Steane EC protocol. This logical
preparation can be performed by initializing each mode in the coherent state |α〉
followed by d rounds of XiXi+1 parity measurements and correction by MWPM. This
requires to allocate a memory register in which the states are constantly prepared,
maintained by EC, and consumed by logical Toffoli gates when needed.
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FIGURE 4.9: Monte Carlo simulations of the circuit of Figure 3.9 using a circuit-
based error model. Here, we plot the error probability of the logical Toffoli gate
as a function of the error probability of the physical cat qubit Toffoli gate. In the
asymptotic regime where the physical error probability is small, the logical error
probability now with d d

4 e instead of the usual d d
2 e that we get in the memory case.

This is a consequence of the fact that the errors of a single physical qubit of the
target block can spread to two different physical qubits within the same logical
control block through the stabilizer measurements. Here, the curves are fit to the

empirical scaling formula A( p
pth

)
d+1

4 .
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5.1 Prior versus current state of the art

The work presented in this manuscript is the natural extension of the works on
dissipative cat qubits initiated around 2012 in a collaboration between Yale univer-
sity and the Quantic team of Inria Paris. The first proposal to use superpositions
of coherent states as a qubit to protect against bit-flips [30] (1998), was adapted to
the superconducting circuits [80] (2012), and then supplemented with a proposal to
stabilize this encoding in a dissipative manner [87] (2013). In the foundational paper
of our work, “Dynamically protected cat-qubits: a new paradigm for universal
quantum computation” [87], it was shown how operations could be performed on
these autonomously stabilized cat qubits (2013), opening the path to building a
quantum computer based on these cat qubits. This proposal demonstrated how a
universal set of gates could be performed on the cat qubits, necessarily including
some operations that were not compatible with the noise bias of the cat qubits (see
Chapter 2, subsection 2.1). In 2014, the autonomous stabilization of the cat qubit
was experimentally demonstrated for the first time [78], followed in 2017 by the
first demonstration [118] of a quantum gate on this cat qubit, the Rabi oscillations
around the Z axis of the Bloch sphere.

In the large family of the bosonic codes, the cat qubit encoding stands out
because the resulting qubit suffers from a highly biased noise. In 2007, a generic
study demonstrated how fault-tolerant quantum computation could be performed
on biased noise qubits [8]. By generic, we mean that this study is implementation-
agnostic, i.e does not rely on a specific type of qubit but rather on a specific structure
of the noise. The strategy follows in this work consists in embedding the noise-bias
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qubits into a repetition code protecting exclusively against the dominant error. The
distance of this repetition code is chosen such that the resulting logical qubit suffers
from unbiased noise. Using this (very good) logical qubit to perform quantum
computations requires to design a universal set of gates at the level of a repetition
code. However, the set of physical operations that one shall use to design logical
gates must crucially be restricted to bias-preserving operations, to comply with
the particular demand of fault-tolerance of this scheme. The study of [8] being
hardware-agnostic, the aforementioned restricted set of bias-preserving gates was
limited to gates that either commuted with phase-flips, or operations that were
trivially biased (see Chapter 2). This restricted set was actually not sufficient to build
a universal set of gates at the level of the repetition code, such that concatenating
with an additional CSS code and appending magic state preparation, distillation
and injection was necessary in this case to construct a universal set of gates. This
work was followed by others, including [129] which showed how the cost of magic
state preparation could be reduced in the context of biased noise.

The combination of the generic path proposed in these works together with the
construction of the biased noise cat qubits is actually a perfectly valid proposal
to build a fault-tolerant and universal quantum computer, because all the bias-
preserving operations required at the base level of [8] were included in the proposal
of [87]. The main focus of this thesis has been to tailor the generic construction
to the specific features of the dissipative cat qubits, with the following metrics in
mind: reducing the overall hardware overhead, increasing the thresholds that need
to be reached in experiments, and using building bricks that have either already
been demonstrated experimentally, or are (hopefully) within reach in the next
couple of years. The major simplification proposed in this work is the addition
to a new class of bias-preserving topological gates on the dissipative cat qubits,
obtained through a continuous deformation of the code space of the cat qubits.
The idea behind this gate was first introduced in the context of the CNOT gate
for the Kerr-cat qubits [103]. We adapted this idea to the particular dissipative
implementation and extended it to the non-Clifford Toffoli gate (Chapter 2). Using
the now larger set of bias-preserving gates, we constructed a universal set of logical
gates at the level of the repetition code, without having to further concatenate.
Also, in an attempt to circumvent the costly magic state preparation required
in the reference work [8], we introduced a fault-tolerant logical Toffoli circuit as
the logical non-Clifford resource (Chapter 3). The design of a non-transversal,
yet fault-tolerant, logical gate turns out to be quite involved. Last, in Chapter
4, we performed a thorough numerical investigation of the performance of the
entire construction. Here, the goal is two-fold. First, the thorough study of the
repetition cat qubit as a quantum memory (and of transversal operations) sets the
experimental requirements to meet within the next few years to demonstrate a
fully protected repetition cat qubit, and (transversal) fault-tolerant logical gates on
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repetition cat qubit. Second, the particular focus on the most costly gate, the logical
non-Clifford Toffoli gate, sets the cost of the overall approach and gives a rough
idea of the demanding requirements that need to be matched within the next decade.

Despite all of the theoretical and experimental efforts of the past decade in build-
ing dissipative cat qubits, including this work, the proposal remains extremely chal-
lenging from an engineering point of view. Yet, the first two decades of the 21st
century, and more especially the past 5 to 10 years, have seen many private com-
panies start a research activity in quantum computing. Among the companies re-
lying on superconducting qubits, the leading architecture is undeniably the surface
code with transmon qubits. However, the field of superconducting bosonic qubits is
quickly evolving, triggering interest in proposals similar to this work. In particular,
the start-up Alice&Bob was founded in 2020 to collaborate with academic groups on
the specific effort towards a large scale quantum computer based on the repetition
cat qubits proposed in this thesis. Very recently, a thorough comprehensive archi-
tectural study based on repetition cat qubits was proposed by the team of the AWS
Center for Quantum Computing [26] and was presented as the blueprint for their
experimental work in the following years. This massive theoretical work has filled
in some of the gaps of our own work. Because of the important overlap with our
own work, it would deserve a detailed comparison, which we unfortunately do not
have time to include. Rather, we simply tried to include and acknowledge the con-
tributions to the analytical errors models for our gates, and postpone the detailed
comparison of the high-level proposal to later analysis.

5.2 Perspectives

In this section, we discuss the perspectives for improving the performance of the
repetition cat qubit approach. Two main axis of research that needs to be addressed
are the implementation of the physical gates and the design of an architecture
compatible with a 2D implementation.

The implementation of the gates is of crucial importance to the overall perfor-
mance of the scheme. Specifically, reducing the errors of the CNOT gate used for
error correction will automatically result in a higher threshold, or, equivalently
reduce the hardware overhead. In its current form, the CNOT implementation
relies on both a continuous conditional deformation of the code space of the target
cat qubit, with the addition of a feed-forward Hamiltonian to increase the fidelity
of the gate. Unfortunately, the desired Hamiltonian that would exactly compensate
the non-adiabatic phase-flip errors is not an experimentally feasible Hamiltonian.
Therefore, an important axis of research is how well one can approximate this
Hamiltonian. We note that because of the similarities between the CNOT and the
Toffoli gate, improving the former might readily lead to a similar improvement of
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the latter.

In this work, we have not considered the physical restrictions imposed by the
particular experimental implementation of the scheme. Typically, a realistic scheme
for large scale fault-tolerant quantum computation should possess the following fea-
tures: a high accuracy threshold such that error rates well below this value can be
achieved in the experiments, a universal set of logical gates that can be implemented
with a reasonable resource overhead, and an architecture that can be scaled up to a
size where the logical error rates match those needed for the targeted computation.
The first and the last points are very strong assets of the surface code approach. In-
deed, this code combines the advantage of a high accuracy threshold around 1% for
a depolarizing noise model [105] and a 2D spatial arrangement of the physical qubits
requiring only low-weight stabilizer measurements between nearest neighbours. In
our approach, the transversal Clifford operations presented in Chapter 3 are com-
patible with a 2D architecture, using only couplings between neighbouring qubits.
However, the two logical Toffoli circuits proposed in this work require an all-to-all
coupling between the data cat qubits of the two logical control blocks. Within the
particular circuit QED framework that we have in mind for the experimental im-
plementation of repetition cat qubits, this kind of connectivity is not practical and
poses a major challenge. Yet, it is worth noting that we anticipate very low logical
error rates with only a few tens of cat qubits per logical qubit, which is a drastically
lower overhead than those usually envisioned in other QEC schemes. Therefore,
the general constraints on the connectivity graph of the physical qubits may be eas-
ier to satisfy for near term experiments involving a small number of cat qubits, yet
achieving low logical error rates.

The optimal layout of a large scale quantum computer based on repetition cat
qubits was not addressed in this work, so we conclude by mentioning two possible
solutions in the next two subsections.

5.2.1 Towards a 2D architecture: SWAP gates

The connectivity graph for the first logical Toffoli circuit (3.3.1) can be made local
by swapping the data qubits of the first control block appropriately, as depicted in
Figure 5.1. Each physical cat qubit of a given repetition cat qubit is now coupled to
a single cat qubit of another repetition cat qubit only. Yet, the intermediate rounds
of error correction on the target block are still needed to prevent the propagation of
errors. The particular ordering of the physical Toffoli gates in Figure 5.1 differs from
the circular permutations previously considered. This particular choice corresponds
to a permutation that can be implemented with parallel SWAP gates in two steps,
independent of the code distance.

One may wonder whether the same trick can be applied to the second Toffoli
circuit proposed in subsection 3.3.2, to produce a circuit both compatible with a 2D
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architecture and with a phase-flip threshold without concatenation. The existence
of a Toffoli circuit ordering that allows us both to measure constant weight Clifford
operators for the intermediate error correction steps on the logical control blocks
and that can be implemented using a constant depth circuit of SWAP gates is an
open problem and requires further investigation.

FIGURE 5.1: Logical Toffoli circuit for distance 5 repetition cat qubits including
physical SWAP gates on the first control block during error correcting stage on the
target. The physical SWAP gates ensure a great simplification of the connectivity

graph for the implementation of the logical Toffoli gate.

5.2.2 Towards a 2D architecture: fault-tolerant magic state preparation
and injection

The results presented in this subsection (unpublished) are partial results of the
masters internship of François-Marie Le Régent [77] that I co-supervised with
Mazyar Mirrahimi. A similar proposal is included in the AWS paper [26].

We have seen in Chapter 3 how to construct directly a logical Toffoli gate using
physical bias-preserving Toffoli gates. However, the additional error correction
steps required to make this non-transversal circuit fault-tolerant are quite involved,
and can only be made local for the scheme achieving fault-tolerance with concatena-
tion. Here, we review a different strategy to work around the Eastin-Knill theorem
is to use non-unitary operations, e.g state injection based on quantum measurement
induced teleportation. In particular, we emphasize the fact that this approach can
be made compatible with a 2D architecture.

The protocol was first introduced in [55] (in the context of a general noise struc-
ture) and it contains two distinct steps:

• the preparation of a high fidelity “magic state” corresponding to the target
logical gate
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• the teleportation of the logical gate (“injection”) into the code, consuming the
magic state.

Usually, the teleportation step can be realized using fault-tolerant Clifford gates,
which, in many schemes, can be implemented transversally. For this reason, the
hard step in this approach is usually concentrated in the preparation of a magic state
of high fidelity. In order to do so, this step is quite often divided in two sub-steps:

• the preparation of many copies of low fidelity magic states

• the “distillation” of these states, producing a single copy of the magic state of
high fidelity by consuming the low fidelity magic states.

Here the specific bias-preserving features of our construction simplify consider-
ably this scheme. We begin by describing the injection of a Toffoli magic state before
discussing its preparation.

Toffoli magic state injection Following the recipe given in [55], a logical Toffoli
gate can be injected in the code by consuming a “Toffoli magic state” [77] (see also
[26]) denoted |CCX〉 using the circuit depicted in Figure 5.2. We emphasize the fact
that, in this circuit, all the operations are logical operations (every single line is rep-
resenting a repetition cat qubit).

FIGURE 5.2: Injection circuit of a Toffoli magic state |CCX〉 into a Toffoli gate,
using logical Clifford operations (see e.g Exercise 10.68 p.488 of [91] for a detailed
explanation of the construction of this circuit). The operation in the boxes are

performed conditionnaly on the measurement outcomes being −1.

One can check by inspecting this circuit, and using the logical operation con-
structions of Chapter 3, that every gate needed in the injection circuit is transversal,
thus compatible with a 2D architecture, except for the CZ gate. Similar to the Toffoli
gate, there are two ways to make the logical CZ gate compatible with a 2D imple-
mentation: either by making the logical CZ circuit of Chapter 3 with concatenation
local using SWAP gates, or by teleporting a logical CZ gate using the injection circuit
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depicted in Figure 5.3, and the CZ magic state

|CZ〉 = 1√
2
(|0+〉+ |1−〉).

FIGURE 5.3: Injection of a CZ magic state producing a transversal logical circuit
for the CZ gate on the repetition code.

The injection circuit of Figure 5.3 is composed exclusively of transversal gates,
which is compatible with a 2D implementation. The fault-tolerant preparation of
the |CZ〉 state is achieved with a QND measurement of the logical XLZL operator ap-
plied to the logical input state |0+〉L, for which the preparation scheme is included
in the logical operations of Chapter 3. The QND measurement of XLZL is achieved
exactly like the QND measurement of XLCXL needed for the fault-tolerant prepara-
tion of the |CCX〉 state that we discuss below. More precisely, the measurement of
the logical XLZL is obtained from Figure 5.5 by replacing every physical Toffoli gate
by a physical CZ gate.

Toffoli magic state preparation The gates and operations used in the injection cir-
cuit are all Clifford operations. Thus, the non-Clifford nature of the whole circuit
is inherited from the particular Toffoli magic state |CCX〉. The Toffoli magic state is
given by

|CCX〉 = 1
2 (|000〉+ |010〉+ |100〉+ |111〉).

To understand why this state can be used as a non-Clifford resource, it is useful
to look at the stabilizers of this state. The |CCX〉 is the +1-eigenstate of the three
Clifford operators

S1 = X1CX2,3

S2 = X2CX1,3

S3 = Z3CZ1,2

and a natural method to prepare this state is to perform a QND measurement
of these three stabilizers. Because these stabilizers are Clifford operators, the
measurement of these operators is actually in the third level of the Clifford hierarchy,
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thus, a non-Clifford operation.

The fault-tolerant preparation of the non-Clifford state |CCX〉 boils down to
the fault-tolerant measurement of its stabilizers. Because these stabilizers are
transversal, the generic method of [55] can be applied. Let us recall the idea behind
this protocol to emphasize where the use of repetition cat qubits greatly simplifies
this protocol.

The quantum non demolition measurement of a logical Hermitian operator UL,
admitting a transversal decomposition on the repetition code UL =

⊗
i

Ui can be per-

formed with an extra ancilla qubit and physical controlled-Ui operations as depicted
in Figure 5.4 a).

FIGURE 5.4: a) QND measurement circuit of the transversal Hermitian operator
UL =

⊗
i

Ui. b) Fault-tolerant version of the circuit.

Because the ancilla qubit used is coupled to all of the data qubits of the code, this
circuit is not fault-tolerant. The reason behind this is that a single X error can be
converted to many (possibly d) Ui errors on the logical block. In general, this circuit
can be made fault-tolerant by following the following steps [91], depicted in Figure
5.4 b). The single ancilla qubit is replaced by a block of ancilla qubit, prepared in
the so-called CAT state (here we follow the usual denomination of the literature for
this state, but we note that this must not be confused with the cat states defining the
code space for the cat qubits)

|CAT〉 = 1√
2
(|0〉⊗d + |1〉⊗d).

This can be achieved e.g by preparing the first ancilla qubit in the |+〉 state
and applying d − 1 CNOT gates between this ancilla qubit as the control and the
others d − 1 ancilla qubits of the block as the targets (blue box of Figure 5.4 b)).
This preparation is not fault-tolerant, because a single error here can propagate
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to many errors on the CAT state. Thus, before coupling this ancilla state with the
system, an additional verification step is needed (only one of these checks is shown
in the red box of Figure 5.4 b)). Whenever this verification step fails (one check
measurement outcome is −1), the CAT state is discarded and the preparation is
restarted. When the CAT state passes the verification step, the measurement is
realized using transversal controlled-Ui operations. Then, the last step is to decode
the output of the measurement (green box of Figure 5.4 c)). While this procedure
ensures that a single error in the ancilla block cannot spread to more than one error
on the data block, the fidelity of this logical measurement is typically rather low.
Because the fidelity of this logical measurement directly impacts the fidelity of the
logical magic state being prepared with this measurement (and hence, the fidelity
of the logical gate that is teleported when consuming this logical magic state), it is
crucial that the fidelity of this measurement can be made very reliable. Fortunataly,
because the measurement of Figure 5.4 c) is both fault-tolerant and QND, its fidelity
can be increased to the required accuracy by simply repeating the measurement d
times.

We now detail how the use of cat qubits and bias-preserving gates simplifies
significantly this construction. One can readily note that the circuit of Figure 5.4 a)
is not fault-tolerant because a single bit-flip error of the ancilla can spread to many
errors on the encoded data block. However, when this ancilla is a cat qubit, the
probability of such an error is exponentially suppressed with the mean number of
photons, while the remaining phase-flip error does not spread to the encoded block
as it commutes with the controlled-Ui gates. This, combined with the fact that the
controlled-Ui gates are themselves bias-preserving, ensures that the circuit in Figure
5.4 a) is already fault-tolerant for a repetition cat qubit.

However, the use a of an ancilla block encoded in the CAT state is still desirable
to implement the controlled-Ui operations in a transversal manner. We emphasize
that, in our scheme, the transversality is not required to prevent a spread of errors
but rather, to benefit from the fact that the controlled-UL can now be executed in a
single time step, thus avoiding undesirable idling locations for the data cat qubits.
Because the bias-preserving property ensures that errors cannot spread, the circuit
using an ancilla block in the CAT state of Figure 5.4 b) is simplified. In particular, the
verification step is not needed anymore, such that the protocol in now deterministic
as it is not necessary to post-select the CAT state preparation. Furthermore, we note
that the decoding step on the CAT state is actually unneeded, as one can equivalently
perform an X measurement on all of the ancilla cat qubit and decode the collection
of outcomes by computing the parity of the number of +1 outcomes. This follows
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from the fact that the CAT state can be rewritten in the dual basis |±〉 as

|CAT〉 = 1
(
√

2)d−1 ∑
j∈{+,−}d,#{+1} even

|j〉.

In the case of a single ancilla qubit (5.4 a)), the state of the ancilla is phase-flipped
for each data qubit i that is in a −1 eigenspace of the corresponding operator Ui.
Equivalently, for the ancilla block qubit case (5.4 b)), it is the parity of the number of
+1 outcomes which is flipped for each data qubit i that is in a −1 eigenspace of the
corresponding operator Ui.

Putting the pieces back together, we depict in Figure 5.5 the circuit to fault-
tolerantly prepare the Toffoli magic state |CCX〉.

FIGURE 5.5: Fault-tolerant preparation of the |CCX〉 state.

The specific choice in Figure 5.5 of the state on which the stabilizer S1 is measured
is because this state is both easy to prepare and can be decomposed as

|0〉|+〉|0〉 = 1√
2
(|CCX〉+ Z1|CCX〉)

such that the measurement of S1 yields either the |CCX〉 state or the Z1|CCX〉 state
(with equal probability).
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The detailed analysis of the error rates of the logical Toffoli gate implemented via
magic state, and the overhead reduction one could expect, is left to future work (the
design of magic state factories based on this scheme is discussed in [26]). In particu-
lar, the design of a universal set of logical gates compatible with an experimentally
scalable layout will be a major problem to address in the next few years.
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Appendix A

Quantum gates

Pauli gates

Gate Circuit notation Matrix representation

X gate
X (

0 1
1 0

)

Y gate
Y (

0 −i
i 0

)

Z gate Z
(

1 0
0 −1

)

Clifford gates

Hadamard gate H 1√
2

(
1 0
0 1

)

CNOT (CX) gate •


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Controlled-Z (CZ) gate •

•


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



SWAP ×

×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Non-Clifford gates

Toffoli (CCX) •
•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



CCZ •
•
•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
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Appendix B

Clifford hierarchy

The Clifford hierarchy was first introduced in [55]. This hierarchy is useful to classify
quantum operations in a growing inclusion. The first two-levels (the Pauli and
Clifford groups, respectively) contain operations that are not enough for universal
quantum computation. Rather, by the Gottesman-Knill theorem, a quantum circuit
that is composed entirely of operations in the first two levels can be efficiently sim-
ulated classically. The operations in the third level or higher levels (the non-Clifford
operations), on the other hand, unlock the computational power of quantum
computing. The exact structure of the hierarchy is not yet fully understood and is
still the topic of current research [32, 107, 100].

The Clifford hierarchy is defined recursively. The first level, denoted C1, is the
Pauli group. Then, a unitary U is said to be in the k-th level of the Clifford hierarchy
(k ≤ 2) if it maps Pauli operators to operators in the (k− 1)-th level:

Ck = {U, UC1U† ⊆ Ck−1}.

The second level of the Clifford hierarchy, C2, contains the operators that map
Pauli operators to Pauli operators (the so-called Clifford operators). The first
two-levels of the Clifford hierarchy are the only one that have a group structure.
Rather, the gates in the third or higher level of the Clifford hierarchy can “bootstrap”
themselves up the Clifford hierarchy.

Examples the operations in the k-th level include:

• Rotations around a cardinal axis of the Bloch sphere of an angle 2π
2k

• Controlled-U operations with U ∈ Ck−1

• Measurement of U with U ∈ Ck−1.

The last fact is key in many magic states based schemes. In this thesis, it was
illustrated by arguing that the Toffoli gate can be realized by measuring the Clifford
operator X⊗ CX (thus achieving the preparation of the Toffoli magic state) together
with Clifford operations.
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Appendix C

A no-go theorem for
bias-preserving gates

The extra degree freedom associated to the complex amplitude α in the cat-qubits
enables us to perform a set of non-trivial operations such as the CNOT or the Toffoli
gate in bias-preserving manner (see Chapter 2). In this appendix, we will show
the crucial role played by this extra degree of freedom. Indeed, we will prove that
such gates cannot be performed in a bias-preserving manner with two-level systems.
The analysis of this appendix should be extendable to the case of qubits encoded in
qudits with a finite number of levels. However, as the dimension of the space in
which the qubit is encoded increases, the bias could be approximately preserved.

We will focus on the case of the CNOT gate but a similar analysis can be per-
formed for the Toffoli gate. Throughout this section, we will call U (4) the Lie group
of unitary operators on two two-level systems and su(4) the associated Lie algebra.
We also assume that we are dealing with qubits that are only susceptible to phase-
flip errors. We define a bias-preserving gate to be a gate that does not transform
phase-flip errors to bit-flip ones. Here is a more precise definition.

Definition 2 We call a unitary operation U ∈ U (4) bias-preserving, if

[UZ1,2U†, Z1,2] = 0.

Indeed, the operators iZ1 and iZ2 and similarly iUZ1,2U† are members of the Lie al-
gebra su(4) and therefore can be written in the basis of two-qubit Pauli operators. It
is therefore easy to see that the above condition is equivalent to saying that UZ1,2U†

is a linear combination of the three Pauli operators Z1, Z2, Z1Z2. This e.g. means that

UZ1U† = c1Z1 + c2Z2 + c12Z1Z2 ⇒ UZ1 = (c1Z1 + c2Z2 + c12Z1Z2)U.

Therefore, a Z1 error before the unitary operation can only lead to Z1, Z2 and Z1Z2

errors after the operation.
We note that, the CNOT or Toffoli gates are members of this set of bias-preserving

operations. We will see however, that they cannot be realized in a bias-preserving
manner. We have the following Lemma:
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Lemma 1 The set
B = {U ∈ U (2) | [U†Z1,2U, Z1,2] = 0}

is a Lie subgroup of U (2).

Proof. We start by proving that B is a group. It clearly includes the identity
operator. Also if U1, U2 ∈ B, we have

U1Z1U†
1 = c1Z1 + c2Z2 + c12Z1Z2.

Therefore,

U2U1Z1U†
1 U†

2 = c1U2Z1U†
2 + c2U2Z2U†

2 + c12U2Z1Z2U†
2

= c1U2Z1U†
2 + c2U2Z2U†

2 + c12U2Z1U†
2 U2Z2U†

2

= c̃1Z1 + c̃2Z2 + c̃12Z1Z2.

Therefore U1U2 ∈ B. We only need to prove that if U ∈ B, then U† ∈ B. We have

UZ1U† = r1Z1 + r2Z2 + r12Z1Z2,

UZ2U† = s1Z1 + s2Z2 + s12Z1Z2.

We note that r1, r2, r12 cannot simultaneously vanish (similarly for s1, s2, s12). Also,
we note that the two vectors (r1, r2, r12) and (s1, s2, s12) are necessarily orthogonal.
In order to see this, we note that by multiplying the above equations and taking the
trace of both sides we get

r1s1 + r2s2 + r12s12 = 0.

Now we multiply the above equations from left by U† and from right by U:

Z1 = r1U†Z1U + r2U†Z2U + r12U†Z1Z2U,

Z2 = s1U†Z1U + s2U†Z2U + s12U†Z1Z2U.

Furthermore, the product of the above equations give

Z1Z2 = (r2s12 + s2r12)Z1 + (r1s12 + s1r12)Z2 + (r1s2 + s1r2)Z1Z2.

We note that this can not be a linear combination of Z1 and Z2, which means
that the vector (r2s12 + s2r12, r1s12 + s1r12, r1s2 + s1r2) is linearly independent from
the orthogonal vectors (r1, r2, r12) and (s1, s2, s12). This means the matrix provided
by these vectors can be inverted and therefore the operators U†Z1U and U†Z2U can
also be written as a linear combination of Z1, Z2, Z1Z2. Thus, U† ∈ B and we have
therefore shown that B is a sub-group of U (4).

In order to prove that it is a Lie sub-group, we note that f (U) =(
[U†ZjU, Zk]

)
j,k=1,2

is a continuous function of U. Furthermore B is defined as the
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pre-image of the set {(0, 0, 0, 0)} which is a closed set. Therefore B is topologically
closed. A topologically closed sub-group of a Lie group is a Lie sub-group (Cartan’s
theorem) and therefore the proof is complete. �

We now follow ideas that are very similar to the analysis of [37]. The Lie group
B can be partitioned into cosets of the connected component of the identity that we
call C. C is itself a Lie sub-group of B. This set of cosets is the quotient group B/C.
The main result of this appendix can be resumed in the following theorem:

Theorem 6 The unitary operator CNOT is not a member of C. This means that CNOT
cannot be continuously obtained from identity in a bias-preserving process.

Proof. As C is a connected Lie group, any element C ∈ C can be written as C =

ΠkeiDk , where Dk is in c, the Lie algebra of C. Now, note that for any ε ∈ R and any
D ∈ c, the operator eiεD is also in C and therefore satisfies

[eiεDZ1,2e−iεD, Z1,2] = 0.

Taking the derivative with respect to ε at ε = 0, we get

[[D, Zj], Zk] = 0, j, k = 1, 2.

Noting that D is necessarily a linear combination to two-qubit Pauli operators, it is
the same for [D, Zj] and therefore

[D, Z1] = r1Z1 + r2Z2 + r12Z1Z2,

[D, Z2] = s1Z1 + s2Z2 + s12Z1Z2.

The only possibility for such a combination is that all the coefficients vanish. There-
fore [D, Z1,2] = 0, or equivalently

D = c0 I + c1Z1 + c2Z2 + c12Z1Z2.

Therefore, the Lie algebra c is spanned by I, Z1, Z2, Z1Z2, which means that the asso-
ciated Lie group does not include CNOT. �
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ABSTRACT 

 
The construction of a quantum computer is an extremely challenging task, because the states of the quantum 

system used to carry out the computation are typically far too fragile. A necessary condition to build such a computer is to 
design a system in which a large number of quantum bits are protected from the devastating effect of their environment 
to withstand the quantum information for a sufficiently long time. At the same time, performing a computation supposes 
the ability to control the quantum states to process the information they encode. The theory of quantum error correction 
opens the path towards the realization of macroscopically large quantum systems with, in theory, arbitrary good protection 
against the noise induced by the environment. The bottleneck of the implementation of quantum error correction is twofold. 
First, it requires to build quantum systems for which the levels of noise are below a constant value called the accuracy 
threshold. Second, the quantum error correcting code, and the processing of the encoded information, result in a large 
physical hardware overhead.  

In this thesis, we propose and analyze a scheme based on repetition cat qubits to perform large scale quantum 
computation. The protection against the environment induced noise is achieved in two steps. First, the two-photon pumped 
cat qubits are arbitrarily well protected against bit-flip errors with the average number of photons in the cat state. Second, 
a repetition code protecting against phase-flips is implemented using cat qubits, thus producing a ``repetition cat qubit'' 
with very low logical error rate. In order to perform quantum computation with this protected qubit, we design a universal 
set of logical gates acting on the repetition cat qubit, that is compatible with the structure of the scheme. More precisely, 
the construction is achieved in two steps: first, the design of physical operations acting on cat qubits. These operations 
must be bias-preserving in order to preserve the natural protection against bit-flip errors. A particular attention has been 
devoted to proposing operations that could be experimentally realized in the next few years, within the framework of circuit 
quantum electrodynamics. Then, from the set of bias-preserving physical operations, we construct a universal set of logical 
operations on the repetition cat qubits. 

We hope that the resulting scheme, and the ideas developed for its construction, will prove useful for the 
construction of a large-scale quantum computer. 

MOTS CLÉS 

Correction d’erreur quantique, information quantique, calcul quantique universel, qubits supraconducteurs 

RÉSUMÉ 

 
La construction d'un ordinateur quantique est un défi technologique extrêmement difficile à cause de la fragilité 

des états quantiques qui servent de support de calcul. La réalisation d'une telle machine nécessite de construire un grand 
nombre de systèmes quantiques suffisamment protégés du bruit inévitable induit par l'environnement, afin que la durée 
de vie de l'information quantique encodée dans ces systèmes soit suffisamment grande devant le temps d'exécution 
typique d'un algorithme quantique. Paradoxalement, l'implémentation d'algorithmes suppose aussi la capacité de 
manipuler l'information. La théorie de la correction d'erreur quantique établit qu'il est possible de construire des systèmes 
quantiques de taille macroscopique, et pourtant arbitrairement bien protégés contre le bruit induit par l'environnement. 
En pratique, deux obstacles majeurs s'opposent à la réalisation physique de la correction d'erreur quantique. Le premier 
obstacle à surmonter est de parvenir à construire un système quantique ``de base'' pour lequel le niveau du bruit est déjà 
suffisamment bas, un résultat connu sous le nom de ``théorème du seuil''. Le second obstacle concerne la taille de 
l'ordinateur quantique: en effet, aussi bien le code correcteur d'erreur que la capacité à manipuler l'information logique 
sont responsables d'un important surcoût en matériel. 
 

L'objet de cette thèse est la construction et l'analyse d'un schéma particulier pour la réalisation d'un ordinateur 
quantique basé sur les qubits de chat répétés. La protection contre les erreurs est assurée en deux temps. D'abord, les 
qubits de chats utilisés sont arbitrairement bien protégés contre les erreurs dites de ``bit-flip'', lorsque le nombre moyen 
de photons dans les états de chat utilisés est suffisamment grand. Ensuite, un code de répétition contre les erreurs dites 
de ``phase-flip'' est construit à partir de ces qubits de chat. Le qubit logique résultant de cette construction est appelé le 
qubit de chat répété. Afin de réaliser du calcul quantique avec ce qubit, un ensemble universel de portes logiques pour 
les qubits de chat répétés est proposé dans cette thèse. La construction de ces portes logiques respecte la structure de 
la protection, afin de la préserver: les portes physiques construites au niveau des qubits de chat ont la propriété d'être 
``bias-preserving'', c'est-à-dire qu'elles préservent la protection naturelle contre les erreurs de ``bit-flip''. Les propositions 
d'implémentation de ces portes ont été adaptées au maximum à la réalité des expériences contemporaines, afin que le 
schéma proposé puisse être raisonnablement implémenté d'ici quelques années. Enfin, à partir de ces portes physiques, 
un ensemble universel de portes logiques est construit au niveau du qubit de chat répété. 
 

Nous espérons que le schéma ainsi proposé, et les idées développées pour sa construction, seront utiles dans 
la réalisation d'un ordinateur quantique. 

KEYWORDS 

Quantum error correction, quantum information, universal quantum computation, quantum fault-tolerance, 

superconducting qubits 
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