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Enfin, nous donnons quelques pistes de recherche dans la Conclusion générale du travail.

Résumé

L'analyse des séries temporelles est un sujet de recherche très actif en Statistique et en Data Science. L'abondance de ce type de données a créé d'énormes besoins de méthodologies efficaces et précises. C'est ainsi que plusieurs familles de modèles ont vu le jour. Étant donnée cette multitude de modèles, comment en choisir un pour modéliser une série temporelle ? L'objet de cette thèse est de proposer et d'étudier des critères de sélection de modèles pour une grande famille de modèles contenant les séries temporelles autorégressives telles les ARMA ainsi que les séries temporelles conditionnellement hétéroscédastiques telles les GARCH.

Nous commençons par une brève présentation des séries temporelles, en particulier de la famille des modèles affines causaux tout en rappelant quelques précédents résultats utiles pour cette thèse. Nous décrivons ensuite quelques critères classiques de sélection de modèles obtenus pour les séries temporelles et terminons par un succinct résumé de nos principales contributions.

Dans la suite, nous allons présenter les quatre contributions originales de cette thèse. Le chapitre 2 donne des conditions suffisantes sur la pénalité en fonction de la régularité de la dépendance du processus par rapport à son passé afin d'obtenir un critère consistant en probabilité. Nous proposons également un test d'adéquation du modèle sélectionné basé sur l'autocorrélation du carré des résidus du modèle. Les simulations numériques ont montré des résultats satisfaisants.

Au chapitre 3, nous proposons une généralisation du critère de Hannan et Quinn à la classe des séries affines causales. Cette généralisation induit une certaine constante connue pour les modèles classiques (type ARMA, GARCH ou APARCH) et pour les modèles complexes tels les ARMA-GARCH, la constante est inconnue mais peut être estimée de manière adaptative via l'heuristique de pente. Là également, quelques études de simulation ont attesté de la qualité des critères obtenus.

Dans la troisième contribution, nous construisons des critères asymptotiquement efficients. Nous proposons une généralisation du critère AIC d'Akaike se basant sur la pénalité dite idéale. Le comportement asymptotique de cette pénalité idéale nous a suggéré un terme de pénalité qui vaut exactement 2 D m comme dans l'AIC pour des modèles assez simples, et pour des modèles complexes, nous avons donné une formule moins explicite. A la suite de Schwartz, nous dérivons également le critère BIC qui s'appuie sur la maximisation de la probabilité a posteriori de choisir le vrai modèle.

Au chapitre 5, nous nous sommes restreints à l'étude non asymptotique d'un processus particulier de la classe des modèles affines causaux. Un estimateur des moindres carrés pénalisé est construit à partir d'un critère de sélection adaptatif et la sélection est opérée parmi une collection de modèles linéaires. Nous avons montré que l'estimateur final est presque aussi performant que le meilleur sur la collection considérée, i.e. qu'il réalise, à une constante près, le compromis biais-variance. La pénalité obtenue généralise celle de Mallows et dépend d'une constante que l'on pourrait estimer avec des algorithmes de calibration adaptative. -→
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. denotes the usual Euclidean norm on R ν , with ν ≥ 1 . for a matrix A, denote the subordinate matrix norm such that Ce chapitre introductif a pour but de présenter tour à tour le modèle statistique étudié, quelques critères de sélection de modèles et nos contributions sur la question de la sélection de modèles pour les séries affines causales. 

A| = sup v =0 A v v . r if X is a R ν -random variable and r ≥ 1, we set X r = E X r 1/r ∈ [0, ∞] . Θ for θ ∈ Θ ⊂ R d , if Ψ θ : R ∞ → E where E = R ν or E is a set of square matrix, denote Ψ θ (•) Θ = sup θ∈Θ Ψ θ (•) ∂ θ . for θ ∈ Θ ⊂ R d , if Ψ θ : R ∞ → R is a C 2 (Θ × R ∞ ) func- tion, we will denote ∂ θ Ψ θ (•) = ∂ ∂θ i Ψ θ (•) 1≤i≤d = ∂ θ i Ψ θ (•) 1≤i≤d ∂ 2 θ 2 . ∂ 2 θ 2 Ψ θ (•) =

Quelques préliminaires sur les séries temporelles

Une série temporelle est une suite d'observations, observées sur une période de temps T . Lorsque la période T est un sous ensemble de R, on parlera de série à temps continu et de série à temps discret quand T est plutôt une partie de Z. Dans toute cette thèse, l'on ne considérera que les séries à temps discret.

Les observations temporelles apparaissent dans de nombreux domaines clés du monde réel, allant de la finance à la biologie, en passant par la météorologie, le traitement du langage naturel, la détection des anomalies (dans les systèmes de contrôle), l'audio et le traitement vidéo, pour n'en citer que quelques-uns. Compte tenu de leur abondance, l'analyse des séries chronologiques est devenue un domaine clé de la Statistique et aussi du Machine Learning.

Dans l'analyse des séries temporelles, l'on s'intèresse à la compréhension et à la modélisation des relations entre les observations d'une même variable: la variable d'intérêt est identique aux variables explicatives à la seule différence qu'elles sont observées à des instants distincts. Donnons une définition plus formelle et générale des séries chronologiques. Définition 1.1. Une série temporelle (X 1 , X 2 , . . . , X n ) est une réalisation du processus stochastique (X t ) t∈Z défini sur un espace probabilisé (Ω, F, P ).

À partir d'une seule réalisation (X 1 , X 2 , . . . , X n ), l'on aimerait faire de l'inférence sur les paramètres associés au processus (X t ) t∈Z , notamment l'espérance, la variance etc. En Statistique classique, l'on sait que la moyenne empirique des réalisations indépendantes d'une même variable aléatoire est un bon estimateur de l'espérance. Et l'on sait aussi que l'hypothèse d'indépendance est fondamentale car si les réalisations sont fortement dépendantes alors il est probable que la moyenne empirique ne recouvre pas l'espace de probabilité tout entier et qu'elle ne converge pas vers l'espérance. Ainsi, peut-on obtenir de bons estimateurs des paramètres lorsqu'on a affaire à une série temporelle? La réponse est oui mais au prix de quelques conditions sur le processus. Par exemple, l'on peut supposer que le processus est de moyenne constante et qu'il est de mémoire courte de sorte que l'effet de X t sur X t+k ne soit pas trop important pour k assez grand. Introduisons plus explicitement la notion de stationnarité qui est un concept assez intuitif et suppose que la structure du processus sous-jacent n'évolue pas avec le temps. Définition 1.2. (forte stationnarité) Un processus aléatoire X = (X t ) t∈Z est dit (fortement) stationnaire s'il est invariant en distribution par toute translation du temps, i.e. ∀k ∈ N * , ∀(t 1 , . . . , t k ) ∈ Z k , ∀c ∈ Z, les vecteurs (X t 1 , . . . , X t k ) et (X t 1 +c , . . . , X t k +c ) ont la même distribution.

Ce type de stationnarité comme l'indique son nom, est plutôt une condition forte et est souvent difficile à vérifier en pratique. On lui préfère la stationnarité faible qui ne nécessite que l'invariance des moments jusqu'à l'ordre deux.

Définition 1.3. (faible stationnarité) Un processus aléatoire X = (X t ) t∈Z est dit (faiblement) stationnaire si son espérance est constante et si pour tout t, k ∈ Z, la covariance entre X t et X t+k ne dépend que de k.

Un autre concept qui accompagne très souvent la notion de stationnarité est l'ergodicité. Il permet de généraliser la loi des grands nombres aux variables aléatoires dépendantes.

Définition 1.4. (Ergodicité pour processus stationnaire) Le processus fortement stationnaire X est dit ergodique si et seulement si pour tout borélien B et pour tout entier k, n -1 n t=1 I 1 B (X t , X t+1 , . . . , X t+k ) a.s.

-→ n→+∞ P (X 1 , . . . , X 1+k ) ∈ B .

Modèles affines causaux

Pour décrire les relations entre les observations, l'on recourt à la modélisation. Dans le cadre des séries temporelles, trois grandes familles de modèles se distinguent:

• Les séries linéaires: importantes pour modéliser la structure de covariance de la série.

Cette famille comprend les modèles autorégressifs (AR), les modèles de moyenne mobile (MA) et leur combinaison (ARMA);

• Les modèles non linéaires pour prendre en compte les irruptions soudaines et irrationnelles que l'on observe dans les données, notamment financières. Il s'agit des modèles GARCH et associés;

• Les combinaisons des deux premières familles i.e. les ARMA-GARCH.

La classe de modèles affines causaux se propose d'unifier l'écriture de ces trois familles afin de les traiter simultanément dans un cadre identique.

1.1.2.a Modèle général et propriétés

Définition 1.5. Soit (ξ t ) t∈Z une suite de variables aléatoires iid telle que E[|ξ 0 | r ] < ∞. Le processus (X t ) t∈Z est dit affine causal s'il existe deux fonctions mesurables M , f : R ∞ → R telles que

X t = M (X t-i ) i∈N * ξ t + f (X t-i ) i∈N * pour tout t ∈ Z.
(1.1.1) L'on notera X = (X t ) t∈Z ∈ AC(M, f ). Dans toute cette thèse, l'on se restreindra au cas où les fonctions M et f sont connus mais dépendent d'un paramètre inconnu θ * appartenant à une certaine région admissible de paramètres Θ de R d . Nos travaux s'inscrivent dans un cadre sémi-paramétrique puisque l'on ne fera aucune hypothèse sur la distribution du bruit (ξ t ) t∈Z .

Une fois le modèle posé, il est fondamental avant l'étape d'inférence, de montrer qu'il est bien défini i.e. qu'il admet de solutions ayant un intérêt pratique (finitude, stationarité, moments, etc). Ainsi, sous quelles conditions (1.1.1) admet-il une solution stationnaire? L'étude de l'existence de solution du modèle (1.1.1) et de certaines propriétés a été effectuée par [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] en termes de coefficients de contraction des fonctions M θ et f θ dits coefficients de Lipschitz.

Nous énonçons la principale condition de [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] avec

Ψ θ = f θ , M θ , H θ = M 2 θ où θ ∈ Θ ( Θ supposé compact) et i = 0, 1, 2.
A i (Ψ θ , Θ): Supposons Ψ θ (0) Θ < ∞ et qu'il existe une suite de nombres positifs

α i k (Ψ θ , Θ) k≥1 telle que ∞ k=1 α i k (Ψ θ , Θ) < ∞ vérifiant: ∂ i Ψ θ (x) ∂θ i - ∂ i Ψ θ (y) ∂θ i Θ ≤ ∞ k=1 α i k (Ψ θ , Θ)|x k -y k | pour tout x, y ∈ R ∞ .
Pour les modèles de type GARCH admettant une espérance conditionnelle nulle, il est plus optimale de considérer A i (H θ , Θ): Supposons H θ (0) Θ < ∞ et qu'il existe une suite de nombres positifs α i k (H θ , Θ) k≥1 telle que ∞ k=1 α i k (H θ , Θ) < ∞ vérifiant:

∂ i H θ (x) ∂θ i - ∂ i H θ (y) ∂θ i Θ ≤ ∞ k=1 α i k (H θ , Θ)|x 2 k -y 2 k | pour tout x, y ∈ R ∞ .
L'idée de [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] consiste à restreindre l'espace des paramètres de sorte qu'une condition sur le moment du bruit entraine l'existence d'une solution stationnaire ergodique admettant des moments. Ainsi, si ξ 0 admet des moments d'ordre r ≥ 1, considérons

Θ(r) = θ ∈ R d , A 0 (f θ , {θ}) et A 0 (M θ , {θ}) vraies avec ∞ k=1 α 0 k (f θ , {θ}) + ξ 0 r ∞ k=1 α 0 k (M θ , {θ}) < 1 (1.1.2)
ou bien pour les modèles de type GARCH

Θ(r) = θ ∈ R d , A 0 (H θ , {θ}) vraie avec ξ 0 r ∞ k=1 α 0 k (H θ , {θ}) < 1 . (1.1.3)
Nous pouvons rappeler le résultat de [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF].

Proposition 1.1. Pour tout θ ∈ Θ(r) avec r ≥ 1, (1.1.1) admet une unique solution (X t ) t∈Z stationnaire, ergodique, faiblement dépendante avec X 0 r < ∞.

1.1.2.b Exemples de processus affines causaux

Modèle AR(∞)

Soit (ψ k (θ)) k∈N une suite de réels dépendante de θ ∈ Θ ⊂ R d . Considérons l'AR(∞) définie ainsi qu'il suit: (1.1.4) où (ξ t ) t∈Z est une suite de variable aléatoire iid admettant des moments d'ordre r ≥ 1, et σ > 0. Ce processus correspond à (1.1.1) avec f θ (x i ) i≥1 = k≥1 ψ k (θ)x k et M θ ≡ σ pour tout θ ∈ Θ. Les coefficients de Lipschitz associés à f θ sont α 0 k (f θ ) = ψ k (θ) Θ . La Proposition 1.1 est vraie pour tout paramètre θ vérifiant ∞ k=1 ψ k (θ) {θ} < 1.

X t = k≥1 ψ k (θ)X t-k + σ ξ t pour tout t ∈ Z,
Ainsi soit l'ARMA(p, q) suivant (1.1.5) tel que toutes les racines du polynôme θ(z) = p i=1 θ i z i soient de module strictement plus grand que 1. Alors le processus (X t ) t∈Z est inversible et (1.1.5) admet une représentation affine causale (1.1.4).

X t - p i=1 φ i X t-i = ξ t + p i=1 θ i ξ t-i ,

Modèle ARCH(∞)

Considérons (ψ k (θ)) k∈N une suite de réels dépendante de θ ∈ Θ ⊂ R d . Soit l'ARCH(∞) suivant

X t = ψ 0 (θ) + ∞ k=1 ψ k (θ)X 2 t-k 1/2 ξ t pour tout t ∈ Z,
(1.1.6) où (ξ t ) t admet des moments d'ordre r ≥ 1. Nous avons là un exemple de (1.1.1)

avec f θ = 0 et M θ (x i ) i≥1 = ψ 0 (θ) + ∞ k=1 ψ k (θ)x 2 t-k 1/2
. Ainsi les coefficients de Lipschitz (relativement à la série {x 2 t }) sont α 0 k (H θ ) = ψ k (θ) Θ et tout paramètre θ vérifiant ξ 0 r ∞ k=1 ψ k (θ) {θ} < 1 assure que le processus (X t ) est stationnaire, ergodique d'après la Proposition 1.1.

Modèle TARCH(∞)

Ce modèle est défini ainsi qu'il suit

X t = ψ 0 (θ) + ∞ k=1 ψ + k (θ) max(X t-k , 0) -ψ - k (θ) min(X t-k , 0) ξ t pour tout t ∈ Z,
(1.1.7) avec (ξ t ) t admet des moments d'ordre r ≥ 1. On a encore un cas de (1.1.1) avec

f θ = 0 et M θ (x i ) i≥1 = ψ 0 (θ) + ∞ k=1 ψ + k (θ) max(X t-k , 0) -ψ - k (θ) min(X t-k , 0). On obtient que α 0 k (M θ ) = max ψ + k (θ) Θ , ψ - k (θ) Θ de sorte que tout θ vérifiant ξ 0 r ∞ k=1 α 0
k (M θ ) < 1 assure toutes les propriétés de la Proposition 1.1.

1.1.2.c QMLE et quelques résultats

À présent que nous avons des garanties théoriques sur l'existence de la solution stationnaire du processus (1.1.1), une question naturelle qui vient à l'esprit serait celle de l'estimation du paramètre θ * . Supposons que nous avons observé (X 1 , X 2 , . . . , X n ) où les X t proviennent de (1.1.1) avec θ * ∈ Θ(r) inconnu pour un r ≥ 1. Nous allons construire un estimateur de θ * en utilisant un contraste basé sur la vraisemblance.

Dans l'étude des séries chronologiques, très souvent la distribution des innovations est inconnue, c'est pourquoi nous aurons recours à la méthode de quasi-vraisemblance. Elle consiste à supposer dans un premier temps que le bruit est gaussien et à trouver l'expression de la densité jointe des observations. Cette expression qui donne un contraste sera utilisée même si le bruit n'est pas gaussien. Par ailleurs, il est aussi important de rappeler qu'ici, la densité jointe des observations est en pratique impossible à maximiser. L'on se contente d'une version conditionnelle. Plus formellement, supposons que (ξ t ) t∈Z soit un bruit blanc gaussien (standard). À partir de (1.1.1), l'on déduit que la log densité de X t sachant σ X i , i < t est tout de suite que la fonction de vraisemblance L n n'est pas évaluable puisqu'elle dépend du passé (X -j ) j∈N qui est inconnu. C'est pourquoi, nous considèrerons une approximation observable de L n notée L n et définie ainsi qu'il suit L n (θ) := -1 2 n t=1 q t (θ) , avec q t (θ) := (X t -f t θ ) 2 H t θ + log( H t θ )

(1.1.9) où f t θ := f θ (X t-1 , X t-2 , . . . , X 1 , 0, . . . , 0), M t θ := M θ (X t-1 , X t-2 , . . . , X 1 , 0, . . . , 0) et H t θ = M t θ 2 . L'estimateur de quasi-vraisemblance (QMLE) de θ * est donc:

θ n = argmax θ∈Θ L n (θ).
(1.1.10)

Notons que les propriétés (consistance et normalité asymptotique) de cet estimateur ont été étudiées par [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] sous certaines hypothèses de régularité qui seront utilisées tout au long de cette thèse.

La première hypothèse porte sur l'identifiabilité du "vrai" paramètre θ * . Il induit que deux paramètres qui conduisent à une même valeur de la vraisemblance sont identiques.

A1: Pour tout θ, θ ∈ Θ, (f 0 θ = f 0 θ et M 0 θ = M 0 θ ) p.s. =⇒ θ = θ . Notons que cette hypothèse est vérifiée pour tous les modèles affines causaux classiques lorsque le bruit est non dégénéré.

Aussi, dans les définitions des fonctions de vraisemblance et quasi-vraisemblance conditionnelles, il apparait un dénominateur qui ne devrait pas s'annuler. Ainsi, nous supposerons

A2: ∃h > 0 tel que inf θ∈Θ (H θ (x)) ≥ h pour tout x ∈ R ∞ .
La condition suivante permet d'assurer l'inversibilité de la matrice hessienne de la fonction L n et est très importante pour prouver la normalité asymptotique de l'estimateur QMLE.

A3: Une des familles (∂f t θ /∂θ (i) ) 1≤i≤d ou (∂H t θ /∂θ (i) ) 1≤i≤d est linéairement indépendante presque sûrement.

Théorème 1.1. [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]) Sous les conditions A1-A3 et si

α 0 k (f θ , Θ) + α 0 k (M θ , Θ) = O(k -γ ) avec γ > 3/2,
Alors le QMLE est fortement consistent i.e.

θ n a.s.

-→ n→+∞ θ * .

(1.1.11)

Si par ailleurs,

α 1 k (f θ , Θ) + α 1 k (M θ , Θ) = O(k -γ ) avec γ > 3/2, Alors θ n est asymptotiquement normal i.e. √ n ( θ n -θ * ) D -→ n→∞ N 0, F (θ * ) -1 G(θ * ) F (θ * ) -1
(1.1.12) 

avec G(θ * ) = 1 4 E ∂ θ q 0 (θ * ) ∂ θ q 0 (θ * ) et F (θ * ) = -1 2 E ∂ 2 θ 2 q 0 (θ * ) .

Pourquoi sélectionner un modèle?

En pratique, pour une analyse, le statisticien dispose des données. À partir de ces données, il aimerait tirer des informations pour atteindre l'objectif de l'étude. L'extraction de ces informations passe par une phase de modélisation. Quel est le modèle le plus approprié pour ces données? Rappelons qu'une mauvaise modélisation conduira à des conclusions gravement trompeuses et donc à une prise de décision catastrophique puisque l'intérêt pratique de la Statistique est d'éclairer les décideurs. Comme il n'existe pas de modèle qui soit universellement adapté à toutes les données, le statisticien explore plusieurs modèles/algorithmes afin de mieux comprendre le processus ayant généré ces données ou d'obtenir une meilleure performance de prédiction. Ainsi, il est beaucoup plus judicieux de considérer une grande famille de modèles pour réduire le risque de se tromper et de choisir le modèle le plus approprié de la collection.

La sélection de modèles est donc le processus de sélection d'un modèle dans une famille convenablement choisie à cet effet étant donné un jeu de données. Elle est fondamentale à toute analyse de données pour des fins d'inférence ou de prédiction fiable. Elle intervient donc dans tous les domaines utilisant les données notamment l'économie, l'ingénierie, l'écologie, la finance, les sciences politiques, la biologie, l'épidémiologie, etc.

Objectifs de la Sélection de modèles

L'objectif d'une procédure de sélection de modèles est en réalité le but de la modélisation. On en distingue principalement deux:

• L'identification ou l'interprétation: ici, l'on aimerait comprendre le processus de génération des données, interpréter la nature des données ou appuyer un modèle physique. L'on préfèrera donc les modèles assez simples et interprétables aux modèles complexes;

• La prédiction: Il ne s'agit plus de découvrir ou d'inférer des modèles beaucoup plus réels mais plutôt de répondre à des questions pratiques, comme: quelles températures il fera demain, quel sera le cours du bitcoin dans deux semaines, comment détecter une fraude lors d'une transaction, etc.

1.2.2.a Identification

Considérons M, la famille de modèles candidats. Puisque l'objectif est de sélectionner le vrai modèle (notée m * dans tout ce travail) ayant généré les données, l'on fait l'hypothèse que M contient m * . Une procédure de sélection de modèles vise à sélectionner le meilleur modèle de la famille noté m := m n dans le but d'estimer m * . Définition 1.6. Une telle procédure sera dite consistante si elle arrive à retrouver m * avec probabilité approchant 1 asymptotiquement. Plus formellement,

P m = m * -→ n→∞ 1.
(1. 

1.2.2.b Prédiction

Bien que la consistance d'une procédure de sélection de modèles est une propriété mathématique convaincante, en pratique l'on ne connait pas le vrai modèle et supposer que m * ∈ M est souvent irréaliste. Le vrai modèle peut être de dimension infinie et il est impossible d'identifier pareil modèle. Dans ce cas, ce qui pourrait être fait est une approximation de la réalité par des modèles de dimension finie qui sont évidemment tous faux. Et le but serait donc de sélectionner le modèle qui fait le moins possible d'erreur quand il s'agit de prédire. Ainsi, l'on va considérer une collection de modèles au plus dénombrable M n de cardinal dépendant de n. Pour un certain prédicteur θ, l'on mesure son erreur de prédiction par

R(θ) := Pγ(θ) = E[γ(θ, X 1 )] avec γ(θ, X t ) := (X t -f t θ ) 2 H t θ + log(H t θ ) (1.2.3)
Le contraste γ est -2 fois la log-densité conditionnelle de X t sachant le passé (en ayant considéré un bruit gaussien). D'après [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], la fonction R atteint son minimum en θ * qui est souvent non estimable directement soit parcequ'il est de dimension infinie ou parce que la famille de modèle candidat est mal spécifiée. Ainsi, il est naturel de définir un risque de prédiction relativement à θ

* (θ, θ * ) := R(θ) -R(θ * ) ≥ 0. (1.2.4)
Le meilleur choix possible dans la collection M n est appelé oracle (que nous noterons aussi m * mais qui ne signifie plus vrai modèle) défini par

m * ∈ arg inf m∈Mn ( θ m , θ * ).
(1.2.5) L'oracle m * est un idéal et n'est pas atteignable puisqu'il dépend de θ * et de la distribution du processus qui sont inconnus. Ainsi, une procédure de sélection de modèles peut avoir pour but de sélectionner un modèle m qui imitera m * en matière de risque. 

θ m = argmin θ∈Θm γ n (θ) avec γ n (θ) = 1 n n t=1 γ(θ, X t )
Notons que la version non asymptotique de cette définition est la propriété de plus en plus recherchée chez les théoriciens de la sélection de modèles: elle est appelée inégalité oracle

( θ m , θ * ) ≤ C 1 inf m∈Mn ( θ m , θ * ) + C 2 n (1.2.7) avec C 1 proche de 1 et C 2 > 0.
Le but est d'obtenir (1.2.7) sur un évènement de grande probabilité ou en espérance.

Stratégies de Sélection de modèles

Nous avons vu l'intérêt d'un recours à la sélection de modèles, les différents objectifs. Mais comment est opérée cette sélection? Cette sous-section se propose de répondre à cette question. 

1.2.3.a Tests Statistiques

* ∈ Θ 1 ⊂ ] -1, 1[ " vs "θ * ∈ Θ 2 ⊂ ] -1, 1[×] -1, 1[" l'hypothèse alternative.
Un rejet de l'hypothèse nulle pourrait conduire à retenir l'AR(2) bien que cela ne signifie pas que H1 est vraie. Ainsi, cela pourrait servir pour progréssivement éliminer certains modèles.

Pour conserver un sous-ensemble de paramètres importants, l'on dispose également des tests comme le test de Wald, de student ou du rapport de vraisemblance. Cette approche de sélection de modèles par test présente un certain nombre de défauts: avant d'effectuer le test, il faut se fixer un niveau de significativité; ainsi, deux analystes différents avec exactement les mêmes modèles et données peuvent arriver à des conclusions différentes basées sur des niveaux de significativité différents. Aussi, le nombre de F-test a effectué croit très vite.

1.2.3.b Validation croisée

La validation croisée est très utilisée notamment en apprentissage statistique/ Machine Learning quand il s'agit d'un objectif de prédiction. Plusieurs approches de la validation croisée existent [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF], [START_REF] Allen | The relationship between variable selection and data agumentation and a method for prediction[END_REF]). L'on distingue principalement deux : Plusieurs autres études ont abordé cette approche de sélection de modèles dans le cadre de l'estimation de la densité (voir par exemple [START_REF] Celisse | Optimal cross-validation in density estimation with the l^{2}-loss[END_REF], [START_REF] Celisse | Model selection via cross-validation in density estimation, regression, and change-points detection[END_REF]).

1.2.3.c Pénalisation

Une approche assez populaire pour opérer une sélection de modèles est la pénalisation d'un certain critère empirique qui peut être -2 fois la log-vraisemblance ou le contraste des moindres carrés. Puisque le critère empirique est généralement décroissant en fonction de la complexité du modèle, le minimiser fournira le modèle le plus complexe qui sera difficilement interprétable et en plus n'aura pas nécessairement les meilleures capacités de prédiction en raison de sa grande variabilité due à l'estimation d'un très grand nombre de paramètres.

L'idée de pénaliser vient donc résoudre ce problème; en ajoutant un terme (croissant en fonction de la complexité), l'on défavorise les très gros modèles. A l'inverse, si ce terme est prépondérant devant le contraste empirique, l'on va privilégier les modèles beaucoup plus simples présentant un biais beaucoup plus important.

La pénalisation remonte aux années 1970 avec les travaux de [START_REF] Akaike | Fitting autoregressive models for prediction[END_REF], [START_REF] Mallows | Some comments on cp[END_REF] et [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. Bien qu'il soit probable que cette idée ait déjà existée dans d'autres contextes tels que la sélection de sous-ensembles par [START_REF] Beale | The discarding of variables in multivariate analysis[END_REF], [START_REF] Hocking | Selection of the best subset in regression analysis[END_REF], et la régression ridge par [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF]. En utilisant les moindres carrés ordinaires dans le cadre de régression, Mallows a obtenu le critère C p . Parallèlement, Akaike a dérivé l'AIC pour l'estimation de la densité en utilisant le contraste log-vraisemblance. Quelques années plus tard, à la suite d 'Akaike, Schwarz (1978) a proposé une approche alternative pour l'estimation de la densité et a dérivé le critère d'information bayésien (BIC).

Le terme de pénalité de ces critères est proportionnel à la dimension du modèle. Au cours des dernières décennies, différentes approches de pénalisation ont émergé telles que la pénalisation L 2 pour la régularisation ridge [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF], la pénalisation L 1 pour la procédure LASSO de [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] et l'elastic net qui combine les normes L 1 et L 2 [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

Formellement, en considérant comme contraste empirique la quasi-vraisemblance, l'on définit un critère de pénalisation C ainsi qu'il suit:

C(m) = -2 L n θ(m) + κ n (m),
(1.2.8) pour tout modèle candidat m ∈ M, avec κ n est une suite croissante de la taille de modèle. Puisqu'il existe une multitude de choix pour κ n , toute la difficulté de la sélection de modèles par pénalisation réside dans la spécification de ce terme de pénalité. Les choix les plus classiques sont entre autres:

• κ n (m) = 2c D m log log n avec c > 1, on retrouve le critère de Hannan et Quinn [START_REF] Hannan | The determination of the order of an autoregression[END_REF]; [START_REF] Schwarz | Estimating the dimension of a model[END_REF]; [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF].

• κ n = D m log n, C est le critère BIC
• κ n = 2 D m , C est l'AIC
Toutes ces pénalités ont été obtenues soit pour la prédiction ou l'interprétation. Rappelons aussi qu'il existe aussi des critères de pénalisation où le terme de pénalité est considéré multiplicativement par rapport au risque empirique; c'est l'exemple du FPE de Akaike.

Compte tenu de cette richesse de choix, comment un statisticien peut-il décider du critère à utiliser? C'est la raison pour laquelle les approches qui ne peuvent être ni mises en oeuvre ni comprises par la communauté scientifique ne sont pas acceptées. Cela implique qu'il faut au moins une méthode qui puisse être implémentée facilement et donnent des résultats qui peuvent être interprétés par les utilisateurs. D'un point de vue statistique, les approches suffisamment générales pour traiter une grande variété de problèmes et vérifiant une propriété de sélection de modèles sont les plus prisées.

1.2.4 Dérivation de quelques critères dans le cadre des séries temporelles 1.2.4.a FPE [START_REF] Akaike | Fitting autoregressive models for prediction[END_REF] C'est l'un des tout premiers critères de pénalisation à être obtenus du moins pour les séries chronologiques (notamment pour un AR(p)). Supposons avoir observé une trajectoire

(X 1 , . . . , X n ) d'un AR(p) X t = p i=1 φ * i X t-i + σ ξ t .
Puisque l'on ignore la valeur de p, alors quel ordre d'auto-régression choisir pour ajuster les données? L'idée d'Akaike est de choisir l'ordre qui minimise l'erreur quadratique moyenne lorque le modèle estimé (au moyen de (X 1 , . . . , X n ) ) est utilisé pour prédire la valeur Y n+1 d'une suite d'observation (Y 1 , . . . , Y n ) provenant du même AR(p) mais indépendant de (X 1 , . . . , X n ).

Soit φ := φ 1 (X 1 , . . . , X n ), . . . , φ p (X 1 , . . . , X n ) , l'estimateur du QMLE de φ * = (φ * 1 , . . . , φ * p ) . D'après le TCL (1.1.12), on a √ n ( φ -φ * ) D -→ n→∞ N 0, (G(φ * )) -1 (1.2.9) puisque G(φ * ) = -F (φ * ). Pour i, j = 1, . . . , p (G(φ * )) i,j = 1 4 E ∂q 0 (φ * ) ∂φ i ∂q 0 (φ * ) ∂φ j = 1 4 E 4 σ 4 X -i X -j ξ 2 0 = 1 σ 2 E X i X j . Avec X = (X 1 , . . . , X n ) et Y = (Y 1 , . . . , Y n ) , l'erreur quadratique est donc: E (Y n+1 -φ 1 Y n -• • • -φ p Y n+1-p ) 2 = σ 2 E[ξ 2 n+1 ] + E p i=1 ( φ i -φ * i ) Y n+1-i 2 = σ 2 + E ( φ -φ * ) E Y Y |X ( φ -φ * ) = σ 2 + σ 2 E ( φ -φ * ) G(φ * ) ( φ -φ * ) ≈ σ 2 + σ 2 1 n Trace G(φ * ) (G(φ * )) -1 = σ 2 1 + p n (1.2.10)
où l'approximation a été rendue possible grâce à (1.2.9). Puisque σ est en général inconnu, l'idée est de le substituer par un estimateur consistant. D'après [START_REF] Brockwell | Time Series: Theory and Methods: Theory and Methods[END_REF], l'estimateur MLE de σ 2 vérifie

n σ 2 σ 2 D -→ n→∞ χ(n -p) avec σ 2 = 1 n n t=1 X t -p i=1 φ i X t-i

2

. En remplaçant σ 2 par l'estimateur n n-p σ 2 dans la forme dévéloppée (1.2.10), Akaike définit le FPE pour un modèle candidat d'ordre p quelconque à être

FPE p = σ 2 n + p n -p .
Ing and Wei (2005) ont démontré que le FPE possède la propriété d'efficience asymptotique.

1.2.4.b AIC Akaike (1973)

L'AIC a été obtenu par [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. Il fut dérivé en recherchant un estimateur non biaisé de la divergence de Kullback entre le vrai modèle et les modèles candidats. Supposons observé X 1 , . . . , X n d'un ARMA(p, q)

X t - p i=1 φ * i X t-i = ξ t + q i=1 β * i ξ t-i
où (ξ t ) est un bruit blanc gaussien. Posons θ * = (φ * , β * ), la divergence de Kullback-Leibler entre la loi de X 0 (sachant tout le passé) suivant le vrai modèle (représenté par θ * ) et un modèle candidat est

K(θ * |θ) = E -2 ln g(X 0 , θ) g(X 0 , θ * )
où l'espérance est prise sous θ * et g(X 0 , θ) représente la densité de X 0 sachant X -1 , X -2 , . . . sous θ. L'objectif est de construire un estimateur non biaisé de K(θ * |θ). Puisque cette pseudo distance est positive et s'annule uniquement en θ = θ * , minimiser cet estimateur non biaisé nous conduira au modèle le "plus proche" du vrai. Pour simplifier, supposons que les modèles compétitifs sont aussi gaussiens. Puisque E -2 ln g(X 0 , θ * ) est indépendant du modèle candidat choisi, nous ignorerons ce terme dans l'expression de K(θ * |θ). Donc, un estimateur naturel de cette approximation sera :

- 2 n n t=1 ln g(X t , θ) = - 2 n L n (θ).
Considérons θ l'estimateur MLE de θ * . Sous l'hypothèse de différentiabilité de L n et en prenant θ comme maximum local, un développement de Taylor au second ordre nous donne

L n (θ * ) ≈ L n ( θ) + 1 2 (θ * -θ) ∂ 2 θ 2 L n ( θ) (θ * -θ).
(1.2.11)

En vertu du théorème ergodique et de la continuité uniforme (voir [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]), l'on a:

1 n ∂ 2 θ 2 L n ( θ) a.s. -→ n→+∞ F (θ * ) = - 1 2 E ∂ 2 θ 2 q 0 (θ * ) avec q t (θ) = -2 ln g(X t , θ) . Le TCL (1.1.12) s'écrit ici √ n ( θ -θ * ) D -→ n→∞ N 0, 2 E ∇ 2 θ q 0 (θ * ) -1 (1.2.12) puisque G(θ * ) = 1 4 E ∂ θ q 0 (θ * ) ∂ θ q 0 (θ * ) = -F (θ * ).
Ainsi, l'on obtient en prenant l'espérance de chaque terme en (1.2.11)

E L n ( θ) ≈ E L n (θ * ) - 1 2 Trace F (θ * ) 2 E ∇ 2 θ q 0 (θ * ) -1 = E L n (θ * ) + 1 2 (p + q).
(1.2.13)

En effectuant également un développement de E q 0 (θ) autour de θ * , il vient que

E q 0 ( θ) ≈ E q 0 (θ * ) + 1 2 ( θ -θ * ) E ∇ 2 θ q 0 (θ * ) ( θ -θ * ),
le terme de premier ordre étant nul puisque θ * est l'unique minimum de la divergence de Kullback. Ainsi,

E E q 0 ( θ) ≈ E q 0 (θ * ) + p + q n . (1.2.14)
En prenant l'espérance de la différence entre les termes de (1.2.13) et (1.2.14), on a

E - 2 n L n ( θ) -E q 0 ( θ) ≈ E - 2 n L n (θ * ) -E q 0 (θ * ) - p + q n - p + q n = -2 (p + q) n
de sorte qu'un estimateur sans biais (non normalisé) de E q 0 ( θ) est

AIC = -2 L n ( θ) + 2 (p + q).
L'optimalité asymptotique de l'AIC a été prouvée par [START_REF] Shibata | Asymptotically efficient selection of the order of the model for estimating parameters of a linear process[END_REF] et aussi par Ing and Wei (2005). 1.2.4.c BIC Schwarz (1978) Le critère BIC est l'un des plus connus en sélection de modèles. Contrairement aux autres critères, sa dérivation s'est faite dans un cadre bayésien: le paramètre θ * associé au vrai modèle m * est supposé aléatoire. Etant donné une famille de modèle M, un modèle m ∈ M est tiré selon une distribution a priori π m . Très souvent cet a priori est non informatif car pris comme distribution uniforme ou bien ignoré dans la formule d'approximation du BIC. Ainsi, conditionnellement au modèle m tiré, un paramètre θ ∈ Θ m est tiré suivant une autre distribution µ m . Le choix du meilleur modèle dans la famille M est opéré en considérant le modèle maximisant la probabilité a posteriori i.e.,

m = argmax m∈M P m | X 1 , X 2 , . . . , X n = argmax m∈M π m P X 1 , X 2 , . . . , X n |m P X 1 , X 2 , . . . , X n .
Le terme prépondérant dans cette formule est bien P X 1 , X 2 , . . . , X n |m qui peut encore s'écrire en intégrant sur l'espace des paramètres

P X 1 , X 2 , . . . , X n |m = Θm P X 1 , X 2 , . . . , X n |θ, m dµ m (θ) = Θm exp L n (θ) dµ m (θ).
Cette intégrale est généralement impossible à calculer et est approchée au moyen de la formule de l'approximation de Laplace [START_REF] Lebarbier | Le critère BIC: fondements théoriques et interprétation[END_REF]). Ainsi, l'on obtient log

P X 1 , X 2 , . . . , X n |m ≈ L n ( θ m )- log(n) 2 |m|+ log(2π) 2 |m|- 1 2 log det -∂ 2 θ L n ( θ) +O(n -1 ). Et en prenant π m = 1/|M|, il vient que log π m P X 1 , X 2 , . . . , X n |m ≈ L n ( θ m ) - log(n) 2 |m| -log(|M|) + log(2π) 2 |m| - 1 2 log det -∂ 2 θ L n ( θ) + O(n -1 ) O P (1)
.

En négligeant tous ces termes qui restent bornés (et le terme P X 1 , X 2 , . . . , X n indépendant du choix de m) , il vient que maximiser la probabilité a posteriori revient à maximiser

L n ( θ m ) -log(n) 2 |m|. Ce qui conduit Schwartz à définir le BIC à être BIC m = -2 L n ( θ m ) + log(n)|m|
et donc à choisir le modèle m comme celui qui minimise le BIC. Plusieurs études ont montré que si le vrai modèle m * est inclus dans la famille des modèles candidats M, alors m obtenu par minimisation du BIC est consistant (voir par exemple [START_REF] Csiszár | Consistency of the bic order estimator[END_REF], [START_REF] Csiszár | The consistency of the bic markov order estimator[END_REF], [START_REF] Garivier | Consistency of the unlimited bic context tree estimator[END_REF], [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF]). 1.2.4.d HQ Hannan and Quinn (1979) Il a été obtenu par [START_REF] Hannan | The determination of the order of an autoregression[END_REF] dans le cadre de l'estimation de l'ordre à considérer lorsqu'un modèle linéaire autorégressif est ajusté aux données. Le terme de pénalité en log log n provient d'une application de la loi des logarithmes itérérés (LIL) à la série des autocorrélations partielles. Il est défini par [START_REF] Hannan | The determination of the order of an autoregression[END_REF] ont argué que le log n dans la pénalité BIC qui assure la consistance dans la sélection du vrai ordre, n'est pas la suite qui croit la plus lentement possible et ont proposé le log log n qui vérifie la propriété de forte consistance [START_REF] Hannan | The determination of the order of an autoregression[END_REF], [START_REF] Hannan | The statistical theory of linear systems[END_REF]. D'après eux, le BIC peut très souvent choisir des modèles très simples, éventuellement erronés, pour de petits échantillons.

HQ = -2 L n ( θ) + 2 c p log log n où c > 1. En effet,

Calibration de la constante multiplicative

Dans la littérature de la sélection de modèles non asymptotique, il est fréquent de rencontrer les pénalités dépendantes d'une certaine constante universelle inconnue: pen(m) = κ pen shape (m) où pen shape est une fonction de la dimension du modèle • D m pour les modèles linéaires gaussiens [START_REF] Birgé | Gaussian model selection[END_REF] ; [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF] dans un cadre gaussien plus général;

• D m (1 + √ 2 L m )
• D m 1 + c log(n/D m ) pour la détection de ruptures [START_REF] Lebarbier | Detecting multiple change-points in the mean of gaussian process by model selection[END_REF];

• et bien d'autres.

Déterminer la valeur de la constante κ est fondamentale avant la mise en oeuvre de la procédure de sélection. [START_REF] Massart | Concentration inequalities and model selection[END_REF] a proposé une méthode efficace pour calibrer κ au moyen des données uniquement. Il s'agit de l'heuristique de pente qui se décline en deux algorithmes classiques:

• slope estimation: elle consiste à prendre comme une estimation de κ deux fois la valeur de la pente de croissance du critère empirique en fonction de la dimension D m pour les modèles complexes (voir Figure 1.1);

• saut de dimension qui consite à considérer plutôt 2 fois la valeur de κ (en ayant préalablement choisi une grille de valeurs pour κ) qui donne le plus grand saut de la compléxité (voir Figure 1.2). 

1.3

Critères de Sélection de modèles consistants et test d'ajustement pour les modèles affines causaux

Supposons avoir observé une trajectoire (X 1 , X 2 , . . . , X n ) du processus affine causal

X t = M θ * (X t-i ) i∈N * ξ t + f θ * (X t-i ) i∈N * pour tout t ∈ Z (1.3.1)
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Dimension 2 x quasi-log likelihood 

m = argmin m∈M C(m) avec C(m) = -2 L n θ(m) + |m| κ n , (1.3.2)
A la suite de [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF], l'idée est de trouver des conditions sur la suite (κ n ) afin de garantir la convergence (1.2.1); lesquelles conditions devraient dépendre des coefficients de Liptschitz des fonctions M θ et f θ . Avant d'énoncer les principaux résultats obtenus, nous donnons un résultat intermédiaire pratique qui dit qu'il est toujours possible de plonger deux modèles affines causaux paramétriques dans un plus grand modèle affine causal.

Proposition 1.2. Soit d 1 , d 2 ∈ N, Θ 1 ⊂ R d 1 et Θ 2 ⊂ R d 2 , et pour i = 1, 2, définissons f (i) θ i , M (i) θ i : R ∞ → R et pour θ i ∈ Θ i . Alors, il existe max(d 1 , d 2 ) ≤ d ≤ d 1 + d 2 , Θ ⊂ R d , et une famille de fonctions f θ : R ∞ → R et M θ : R ∞ → [0, ∞) avec θ ∈ Θ, tels que pour tout θ 1 ∈ Θ 1 et θ 2 ∈ Θ 2 , il existe θ ∈ Θ vérifiant AC M (1) θ 1 , f (1) θ 1 AC M (2) θ 2 , f (2) θ 2 ⊂ AC M θ , f θ .
Ainsi dans toute la suite, Θ sera l'espace des paramètres contenant tous les Θ m avec m ∈ M.

1.3.1.a Hypothèses

Outre les hypothèses de régularité ayant permis d'obtenir le TCL (1.1.12), nous considérerons la condition suivante nous garantissant une relation entre la suite κ n et la vitesse de décroissance des coefficients de Lipschitz de M θ et f θ .

Hypothèse K(Θ): Sous les hypothèses

A i (Ψ θ , Θ), avec i = 0, 1 , Ψ θ = f θ , M θ et s'il existe r ≥ 2 tel que θ * ∈ Θ(r). Par ailleurs, avec s = min(1, r/3), supposons que la suite (κ n ) n∈N satisfasse k≥1 ( 1 κ k ) s j≥k α 0 j (f θ , Θ) + α 0 j (M θ , Θ) + α 1 j (f θ , Θ) + α 1 j (M θ , Θ) s < ∞.
Pour les modèles de type GARCH, nous considérerons plutôt

Hypothèse K(Θ): Sous les hypothèses A i (Ψ θ , Θ), avec i = 0, 1 , Ψ θ = f θ , M θ et sup- posons qu'il existe r ≥ 2 tel que θ * ∈ Θ(r). Par ailleurs, avec s = min(1, r/4), supposons que la suite (κ n ) n∈N satisfasse k≥1 ( 1 κ k ) s j≥k α 0 j ( H θ , Θ) + α 1 j ( H θ , Θ) s < ∞.
Remarque 1.1. Ces conditions sur (κ n ) n∈N ne sont pas restrictives : par exemple, si les coefficients de Lipschitz de f θ , M θ (le cas utilisant H θ peut être traité de manière similaire) et leurs dérivées sont bornées par une décroissance géométrique ou riemanienne, l'on a:

1. Cas géometrique:

α 0 j (f θ , Θ) + α 0 j (M θ , Θ) + α 1 j (f θ , Θ) + α 1 j (M θ , Θ) = O(a j ) avec 0 ≤ a < 1, alors tout (κ n ) telle 1/κ n = o(1)
peut être choisie; par exemple κ n = log n ou log(log n); C'est le cas pour les ARMA, GARCH, APARCH or ARMA-GARCH.

Cas Riemanien

: α 0 j (f θ , Θ)+α 0 j (M θ , Θ)+α 1 j (f θ , Θ)+α 1 j (M θ , Θ) = O(j -γ ) avec γ > 1: • si r ≥ 3 alors -si γ > 2 alors toute suite (κ n ) vérifiant 1/κ n = o(1) peut être choisie; -si 1 < γ < 2, toute suite vérifiant (κ n ) telle que κ n = O(n δ ) avec δ > 2 -γ peut être choisie. • si 1 ≤ r < 3 -si γ > (r + 3)/r alors toute suite (κ n ) satisfaisant 1/κ n = o(1) peut être choisie; -si 1 < γ < (r + 3)/r alors toute suite (κ n ) vérifiant κ n = n δ
avec δ > (r + 3)/r -γ peut être choisie. Dans le dernier cas de ces deux conditions sur r, nous pouvons voir que le choix habituel du BIC, κ n = log n ne vérifie pas l'hypothèse en général.

1.3.1.b Résultats théoriques Théorème 1.2. Considérons (X 1 , . . . , X n ) une trajectoire observée d'un processus affine causal X appartenant à AC(M θ * , f θ * ) (ou AC( H θ * )) où θ * est un paramètre inconnu du compact Θ contenu dans Θ(r) ⊂ R d (ou Θ(r) ⊂ R d ) avec r ≥ 4. Si les hypothèses A1-A3 et K(Θ) (ou K(Θ)), A 2 (f θ , Θ) et A 2 (M θ , Θ) (ou A 2 ( H θ , Θ)) sont satisfaites, alors P( m = m * ) -→ n→∞ 1 et θ( m) P -→ n→∞ θ * .
(1.3.3)

Nous avons aussi établi la normalité asymptotique du QMLE du modèle choisi.

Théorème 1.3. Sous les hypothèses du Théorème 1.

2 et si θ * ∈ o Θ, alors √ n θ( m) i -(θ * ) i i∈m * D -→ n→∞ N |m * | 0 , F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 (1.3.4) où F (θ * , m * ) i,j = - 1 2 E ∂ 2 q 0 (θ * ) ∂θ i ∂θ j et (G(θ * , m * )) i,j = 1 4 E ∂q 0 (θ * ) ∂θ i ∂q 0 (θ * ) ∂θ j pour i, j ∈ m * .

1.3.1.c Test Portmanteau

Bien que les pénalités obtenues nous garantissent la convergence des critères, il est également important de vérifier si le modèle choisi est approprié. Cette section tente de répondre à cette question en construisant un test portmanteau comme outil de diagnostic basé sur la séquence des carrés des résidus du modèle choisi. Pour tout m ∈ M, et K un entier naturel non nul, soit le vecteur corrélogramme des carrés des résidus suivant

ρ(m) := ρ 1 (m), . . . , ρ K (m) , où pour k = 1, . . . , K, ρ k (m) := γ k (m) γ 0 (m) avec γ k (m) := 1 n n t=k+1 e 2 t (m) -1 e 2 t-k (m) -1 et e t (m) := M t θ(m) -1 X t -f t θ(m) .
Le résultat suivant fournit un TCL pour ρ(m * ) et ρ( m) et établit la distribution asymptotique de la statistique de test.

Théorème 1.4. Sous les hypothèses du Théorème 1.3, avec en outre

• E[ξ 3 0 ] = 0; • ∞ t=1 t -1/4 j≥t α 0 j (f θ , Θ) + α 0 j (M θ , Θ) 1/2 < ∞ ou ∞ t=1 t -1/4 j≥t α 0 j ( H θ , Θ) 1/2 < ∞, alors, 1. avec V (θ * , m * ) définie en (1.3.7), on a √ n ρ(m * ) D -→ n→∞ N K 0 , V (θ * , m * ) . (1.3.5) 2. avec Q K (m * ) := n ρ(m * ) V ( θ(m * ), m * ) -1 ρ(m * ), nous avons Q K (m * ) D -→ n→∞ χ 2 (K).
(1.3.6)

3. Les points 1. et 2. demeurent vraies lorque m * est remplacé par m.

V (θ * , m * ) :

= I K + (µ 4 -1) -2 J K (m * ) F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 J K (m * ) -2 (µ 4 -1) -1 J K (m * ) F (θ * , m * ) -1 J K (m * ). (1.3.7)
Le Théorème 1.4 permet de tester asymptotiquement: 

   H 0 : ∃m * ∈ M, tel que (X 1 , . . . , X n ) est une trajectoire de X ∈ AC(M θ * , f θ * ) H 1 : m * ∈ M, tel que (X 1 , . . . , X n ) est une trajectoire de X ∈ AC(M θ * , f θ * ) . avec θ * ∈ Θ(m * )
α 0 j (f θ , Θ) + α 0 j (M θ , Θ) + α 1 j (f θ , Θ) + α 1 j (M θ , Θ) = O(j -γ ) avec γ > 2, ( 1 
1 log log k j≥k α 0 j (f θ , Θ) + α 0 j (M θ , Θ) + α 1 j (f θ , Θ) + α 1 j (M θ , Θ) < ∞.
Et pour les modèles de type GARCH, l'on considèrera Condition K(Θ):

k≥e 1 log log k j≥k α 0 j (H θ , Θ) + α 1 j (H θ , Θ) < ∞.
Il est facile de voir que tout processus satisfaisant (1.3.8) vérifie K(Θ).

Pour obtenir un résultat assez général (avec les ARMA-GARCH inclus), il nous a été commode de supposer une relation entre la matrice d'information de Fisher G(θ * m ) et la matrice limite de la matrice hessienne de la log-likelihood F (θ * m )

F (θ * m ) i,j = - 1 2 E ∂ 2 q 0 (θ * m ) ∂θ i ∂θ j et (G(θ * m )) i,j = 1 4 E ∂q 0 (θ * m ) ∂θ i ∂q 0 (θ * m ) ∂θ j , avec θ * m := (θ * , 0, . . . , 0) ∈ Θ(m). A4: Il existe des constantes α 1 et α 2 telles que pour tout m ∈ M vérifiant m * ⊂ m, 1 m Σ θ * m 1 m = α 1 D 1 m + α 2 D 2 m (1.3.9) où D 1 m et D 2 m sont tels que D 1 m + D 2 m = D m , 1 m := (1, 1, . . . , 1) ∈ R Dm et Σ θ * m := G(θ * m ) 1/2 F (θ * m ) -1 G(θ * m ) 1/2
. Nous verrons que A4 est vérifiée pour tous les modèles qui ne sont pas combinaison de ARMA et GARCH.

1.3.2.a Résultats théoriques

La proposition suivante suggère l'existence d'un terme qui sera capital pour notre résultat principal.

Proposition 1.3. Considérons (X 1 , X 2 , . . . , X n ) une trajectoire observée d'un processus affine causal m * . Pour tout modèle m vérifiant θ * m ∈ o Θ(m), et si A1-A4 sont vérifiées, alors on a lim sup n→∞ L n θ(m) -L n (θ * m ) 2 log log n = 1 4 α 1 D 1 m + α 2 D 2 m p.s. (1.3.10) Soit m ∈ M, désignons par c min (m) la quantité c min (m) := 1 4 α 1 D 1 m + α 2 D 2 m (1.3.11)
Nous énonçons maintenant un résultat qui donne les valeurs de α 1 et de α 2 pour la plupart des modèles causaux affines classiques.

Proposition 1.4. Sous les hypothèses et notation de la Proposition 1.3, nous avons

• Si µ 4 = E[ξ 4 0 ] = 3 (bruit gaussien par exemple), alors α 1 = 2, α 2 = 2 et c min (m) = sinon.
Le principal résultat de notre contribution peut donc être énoncé.

Théorème 1.5. Considérons (X 1 , . . . , X n ) une trajectoire observée d'un processus affine causal 

X appartenant à AC(M θ * , f θ * ) (ou AC( H θ )) où θ * est un paramètre inconnu du compact Θ contenu dans Θ(r) ⊂ R d (ou Θ(r) ⊂ R d ) avec r ≥ 8. Supposons les hypothèses A1-A3, K(Θ) (ou K(Θ)), A 2 (f θ , Θ) et A 2 (M θ , Θ) (ou A 2 ( H θ , Θ))

Sélection de modèles efficiente et consistante pour les séries temporelles

Les deux premières contributions se sont focalisées sur la propriété de consistance pour la classe des séries affines causales. À présent, nous allons nous intéresser aux propriétés d'efficience notamment asymptotique.

Soit (X 1 , X 2 , . . . , X n ) une trajectoire observée du processus (1.3.1). L'objectif n'est plus de retrouver le vrai modèle m * .

Nous avons défini en (1.2.3) le risque de prédiction par θ de l'observation X t au moyen d'un contraste basé sur la log-densité de X t sachant le passé. Ainsi, le contraste empirique associé est

γ n (θ) := P n γ(θ, .) = 1 n n t=1 γ(θ, X t ), avec γ(θ, X t ) = q t (θ) et P n = 1 n n t=1
δ Xt , où δ Xt est la distribution de Dirac de l'observation X t . Pour les mêmes raisons évoquées sur la nécessité d'approximer la fonction L n , l'on définit

γ n (θ) = P n γ(θ, .) = 1 n n t=1 γ(θ, X t ), où γ(θ, X t ) = q t (θ).
Considérons M une famille finie de modèles. L'on aimerait construire des critères de sélection de sorte à obtenir l'efficience asymptotique (1.2.6). Pour cela, pour tout m ∈ M, l'on définit le minimiseur du risque empirique

θ m = argmin θ∈Θm γ n (θ).
( -→

n→+∞ θ * m , alors lim sup n→∞ E 1 n ∂ 2 θ i θ j L n (θ m ) i,j∈m -1 8 < ∞. (1.3.17) Remarque 1.2. Notons que dès que les fonctions θ → M θ et θ → f θ sont C 2 (Θ) et si θ m,n a.s. -→ n→+∞ θ * m alors 1 n ∂ 2 θ i θ j L n (θ m,n ) i,j∈m -1 8 a.s. -→ n→+∞ - 1 2 ∂ 2 θ i θ j γ(θ * m ) i,j∈m -1 8
.

Ainsi, à partir du théorème d'Egorov, on peut trouver un événement Ω avec une probabilité suffisamment grande pour que la relation (1.3.17) dans l'hypothèse A4 tienne si l'on prend l'espérance sur l'événement Ω. Pour le cas particulier des processus linéaires, l'hypothèse A4 est vraie sous une condition légère sur la distribution de X, voir par exemple [START_REF] Papangelou | On a distributional bound arising in autoregressive model fitting[END_REF] et [START_REF] Findley | Aic, overfitting principles, and the boundedness of moments of inverse matrices for vector autotregressions and related models[END_REF].

Nous supposerons enfin que la vitesse de décroissance de (α j (f θ , Θ)) j , (α j (M θ , Θ)) j , (α j (∂ θ f θ , Θ)) j et (α j (∂ θ M θ , Θ)) j doivent être suffisamment rapides pour garantir la forte consistance et la normalité asymptotique de θ m :

A5: Supposons A i (Ψ θ , Θ) , Ψ θ = f θ , M θ avec α 0 j (f θ , Θ) + α 0 j (M θ , Θ) + α 1 j (f θ , Θ) + α 1 j (M θ , Θ) = O(j -δ ) où δ > 7/2.
Notons que l'hypothèse A5 ne permet pas de considérer des processus à mémoire longue, mais les séries temporelles causales habituelles à mémoire courte satisfont à cette hypothèse.

1.3.3.b Résultats théoriques

Le résultat suivant montre que le TCL (1.1.12) s'étend même si le modèle candidat m est mal spécifié.

Théorème 1.6. Soit (X 1 , . . . , X n ) une trajectoire observée d'un processus affine causal

X appartenant à AC(M θ * , f θ * ) (ou AC( H θ )) où θ * est un paramètre inconnu du compact Θ contenu dans Θ(r) ⊂ R d (ou Θ(r) ⊂ R d ) avec r ≥ 8. Supposons aussi A1-A5 satisfaites, alors pour tout m ∈ M, √ n ( θ m ) i -(θ * m ) i i∈m D -→ n→∞ N 0 , F (θ * m ) -1 G(θ * m ) F (θ * m ) -1 , (1.3.18)
Ainsi, nous pouvons asymptotiquement approximer (1.3.16).

Proposition 1.5. Sous les hypothèses du Théorème 1.6, il existe une suite bornée (v * n ) n∈N * telle que pour tout m ∈ M, l'on ait

E pen id (m) ∼ n→∞ - 2 n Trace F (θ * m ) -1 G(θ * m ) + v * n n . (1.3.19)
L'on verra par la suite que le terme en trace dans (1.3.19) est connu pour la plupart des modèles classiques. Nous énonçons un résultat de consistance qui montre que si la pénalité tends en probabilité vers 0, alors le critère C pen ne sélectionne pas asymptotiquement un modèle mal spécifié.

Théorème 1.7. Sous les hypothèses du Théorème 1.6, supposons aussi qu'il existe ε > 0 tel que,

n P pen(m) ≥ ε -→ n→∞ 0 pour tout m ∈ M. (1.3.20) alors, n P m * ⊂ m pen -→ n→∞ 0.
(1.3.21) À présent, nous pouvons spécifier la vitesse de convergence de pen à considérer afin d'obtenir un excès de risque proche de celui de l'oracle.

Théorème 1.8. Sous les hypothèses du Théorème 1.6 et si pour tout ε > 0, il existe K ε > 0 tel que 

P lim sup n→∞ max m∈M n pen(m) ≥ K ε ≤ ε. (1.3.22) Alors, pour tout ε > 0, il existe M ε > 0 et N ε ∈ N * tels que pour tout n ≥ N ε , P ( θ mpen , θ * ) ≤ inf m∈M ( θ m , θ * ) + M ε n ≥ 1 -ε. ( 1 
(θ) = b m (θ) dθ.
Théorème 1.9. Sous les hypothèses A1, A2, A3, A5 et si pour tout

x ∈ R ∞ , les fonctions θ → M θ et θ → f θ sont C 6 (Θ) et satisfont A k (f θ , Θ) et A k (M θ , Θ) pour tout 0 ≤ k ≤ 2. Alors, S n (m, X) = L n ( θ m ) - log(n) 2 |m| + log b m ( θ m ) + log(2π) 2 |m| - 1 2 log det -F n (m) -log(|M|) + O(n -1 ) a.s. (1.3.24) avec F n (m) := ∂ 2 θ 2 L n ( θ m ) et π m = 1/|M|.
Dans l'équation ci-dessus, il est clair que -2 S n (m, X) -2 L n ( θ m ) + log(n) |m| p.s.. Cela donne une légitimité au critère BIC habituel dans le cadre des processus affines causaux puisque :

m BIC = argmin m∈M -2 L n ( θ m ) + log(n) |m| ,
et nous observons que m BIC maximise les principaux termes de S n (m, X). À partir de la relation (1.3.24), en considérant certains termes de second ordre dans l'approximation asymptotique de S n (m, X), nous pouvons aussi obtenir le critère de Kashyap (voir Kashyap (1982), [START_REF] Sclove | Application of model-selection criteria to some problems in multivariate analysis[END_REF], [START_REF] Bozdogan | Model selection and akaike's information criterion (aic): The general theory and its analytical extensions[END_REF]), définie pour tout m ∈ M par

KC(m) := -2 L n ( θ m ) + log(n) |m| + log det -F n (m) et m KC = argmin m∈M KC(m) . (1.3.25)
Par conséquent, nous pourrions définir un nouveau critère consistant data driven, appelé KC , tel que, pour tout m ∈ M

KC (m) := -2 L n ( θ m ) + log(n) -log(2π) |m| + log det -F n (m) + 2 log |m| et m KC = argmin m∈M KC (m) . (1.3.26)
Corollaire 1.1. Sous les hypothèses A1, A2, A3 et A5, nous déduisons de Bardet et al. (2020b) [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], l'on a

G(θ * m ) = -F (θ * m ) =⇒ -2 Trace F (θ * m ) -1 G(θ * m ) = 2 Trace I |m| = 2 |m|;
2/ Si le paramètre θ identifiant un modèle affine causal

X t = M t θ ξ t + f t θ peut s'écrire θ = (θ 1 , θ 2 ) avec f t θ = f t θ 1 et M t θ = M t θ 2 . Soit p 1 , p 2 tels que p 1 = |θ 1 |, p 2 = |θ 2 | et |m| = p 1 + p 2 . Alors nous obtenons -2 Trace F (θ * m ) -1 G(θ * m ) = 2 p 1 + (µ 4 -1) p 2 . (1.3.27)
Au Chapitre 4, l'on trouvera l'exemple de calcul dans un cas complexe (AR-ARCH).

Sélection de modèles data driven pour la prédiction d'un processus linéaire autorégressif

A la suite de notre troisième contribution sur l'efficience asymptotique, une question naturelle qui se pose est celle de la construction de critères de sélection qui atteindront cette propriété d'efficience mais à n fixé. Au vu de la compléxité de notre modèle général, nous nous sommes restreints au processus AR(∞). Supposons avoir observé (X 1 , X 2 , . . . , X n ) trajectoire du processus (X t ) vérifiant

X t = +∞ k=1 θ * k X t-k + σ ξ t pour tout t ∈ Z.
(1.3.28) L'on aimerait prédire X n+1 par sélection de modèles. Ainsi, soit S m (souvent noté m) un modèle qui est un ensemble de fonctions linéaires f de R Dm dans R telle que

f (x 1 , x 2 , . . . , x Dm ) = Dm i=1 θ i x i , (1.3.29) avec θ = (θ 1 , . . . , θ Dm ) ∈ Θ m et Θ m un compact de R Dm .
Etant donné un prédicteur f θ ∈ S m , sa qualité de prédiction est mesurée par le risque quadratique

R(θ) = E (X n+1 -f n+1 θ ) 2 où f n θ = f θ (X n-1 , . . . , X n-Dm ).
Le prédicteur de Bayes qui minimise R(θ) sur l'ensemble de tous les prédicteurs est clairement la fonction inaccessible f θ * . Introduisons alors l'excès de risque du prédicteur f θ

(θ, θ * ) := R(θ) -R(θ * ) = E (f n+1 θ * -f n+1 θ ) 2 ≥ 0.
we will consider that the excess loss is measured on the design points Pour un modèle m, le meilleur prédicteur est f θ * m défini par

θ * m = argmin θ∈Θm R(θ).
La version empirique de θ * m est (1.3.31)

θ m = argmin θ∈Θm γ n (θ) avec γ n (θ) = 1 n n t=1 (X t -f t θ ) 2 . ( 1 
Le but est de trouver la fonction pen de sorte que m vérifie

( θ m , θ * ) ≤ C 1 inf m∈Mn (θ * m , θ * ) + pen(S m ) + C 2 n (1.3.32) où C 1 = 1+δ avec δ > 0 (et proche de zéro) et C 2 > 0 et ( θ, θ * ) = E 1 n n t=1 f t θ -f t θ * 2 .
C'est-à-dire que le modèle sélectionné m sera suffisamment grand pour réduire son biais, mais pas trop grand pour éviter d'avoir une variance élevée.

1.3.4.a Hypothèses

Pour montrer (1.3.32), nous faisons les hypothèses suivantes. La toute première n'est rien d'autre que la condition assurant l'existence et la stationnarité de la solution de (1.3.28)

A1 : ∞ i=1 |θ * i | < 1.
La deuxième hypothèse concerne la sous-gaussianité des observations. Elle nous permettra d'appliquer les inégalités exponentielles pour de tels types de variables. A2 X t est sous-gaussien avec proxy de variance σ 2 0 > 0 i.e.

E[e λ Xt ] ≤ e λ 2 σ 2 0 /2 pour tout λ > 0.

Cette hypothèse est vérifiee si l'on considère un bruit gaussien ou borné.

Pour assurer l'inversibilité des matrices

Σ m et Σ m définies par Σ m = E Σ m , Σ m = M m M m avec M m = X i-1 , . . . , X i-Dm n i=1
, il est suffisant de supposer que

A3: Pour tout f θ ∈ S m , < α, ∂ θ f θ >= 0 p.s. =⇒ α = 0.
Nous avons eu besoin de supposer une condition assez faible sur la densité spectrale du processus (X t ) t∈Z . Cette densité g : [-π, π[-→ C est définie ainsi qu'il suit 

g(λ) = 1 2 π h∈Z r(h) e -ihλ , où r(h) := E[X t X t+h ],
| = O(t -γ ) et γ ≥ 2 , alors pour tout m ∈ M n Σ m op ≤ π -1 ∞ i=0 E[X 0 X i ] < ∞.
(1.3.34)

Si A3-A4 sont satisfaites par ailleurs, alors

Σ -1 m op ≤ 1/a. (1.3.35)
Pour prouver (1.3.32) en présence de la dépendance, il est courant de considérer l'ensemble

Ω n = ω : F θ 2 n F θ 2 µ -1 ≤ 1 2 , ∀F θ ∈ m,m ∈Mn (S m + S m ) où F θ 2 µ := 1 n E n t=1 (f t θ ) 2 = (f 1 θ ) 2 dµ et F θ 2 n = n -1 n t=1 (f t θ ) 2 , F θ = (f 1 θ , . . . , f n θ ) .
Sur Ω n , on a une relation entre la norme empirique . n et la norme L 2 (voir par exemple Baraud et al. (2001b) 

E F θ m -F θ * 2 n I 1 Ωn ≤ C 1 (x) inf m∈Mn E F θ * -F θ * m 2 n + 2 pen(S m ) + x(x + 2) x -2 C 2 n avec C 1 (x) = x+2 x-2 2 > 1 et C 2 > 0.
Ce théorème vient clore la liste des résultats principaux obtenus tout au long de cette thèse. Dans la suite, nous allons présenter de manière détaillée les quatre chapitres associés aux contributions résumées dans ce chapitre. Model selection is an important tool for statisticians and all those who process data. This issue has received considerable attention in the recent literature. There are several model selection procedures, the main ones are : cross validation and penalized contrast based.

Consistent model selection criteria and goodnessof-fit test for common time series models

The cross validation [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF], [START_REF] Allen | The relationship between variable selection and data agumentation and a method for prediction[END_REF]) consists in splitting the data into learning sample, which will be used for computing estimators of the parameters and the test sample which allows to assess these estimators by evaluate their risks.

The procedures using penalized objective function search for a model, minimizing a tradeoff between a sum of an empirical risk (for instance least squares, -2×log-likelihood), which indicates how well the model fits the data, and a measure of model's complexity so-called a penalty.

The best The idea of penalizing dates back to the 1970s with the works of [START_REF] Mallows | Some comments on cp[END_REF] and [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. Although it is likely that these ideas have already existed in other contexts such as subset selection by [START_REF] Beale | The discarding of variables in multivariate analysis[END_REF], [START_REF] Hocking | Selection of the best subset in regression analysis[END_REF], and ridge regression by [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF]. By using the ordinary least squares in regression framework, Mallows obtained the C p criterion. Meanwhile, Akaike derived AIC for density estimation using log-likelihood contrast. A few years later, following Akaike, Schwarz (1978) proposed an alternative approach to density estimation and derived the Bayesian Information Criteria (BIC). The penalty term of these criteria is proportional to the dimension of the model. In the recent decades, different approaches of penalization have emerged such as the L 2 norm for the Ridge penalisation [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF], the L 1 norm used by [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] that provides the LASSO procedure and the elastic-net that mixes the L 1 and L 2 norms [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

Model selection procedures can have two different objectives: consistency and efficiency.

A procedure is said to be consistent if given a family of models, including the "true model", the probability of choosing the correct model approaches one as the sample size tends to infinity. On the other hand, a procedure is efficient when its risk is asymptotically equivalent to the risk of the oracle. In this work, we are interested to construct a consistent procedure for the general class of times series known as affine causal processes, which includes the most common time series. This class of affine causal time series can be defined as follows. Let R ∞ be the space of sequences of real numbers with a finite number of non zero, if M , f : R ∞ → R are two measurable functions, then an affine causal class is

Class AC(M, f ) : A process X = (X t ) t∈Z belongs to AC(M, f ) if it satisfies: X t = M (X t-i ) i∈N * ξ t + f (X t-i ) i∈N * for any t ∈ Z; (2.1.1)
where (ξ t ) t∈Z is a sequence of zero-mean independent identically distributed random vec-

tors (i.i.d.r.v) satisfying E(|ξ 0 | r ) < ∞ for some r ≥ 2 and E[ξ 2 0 ] = 1. For instance, • if M (X t-i ) i∈N * = σ and f (X t-i ) i∈N * = φ 1 X t-1 + • • • + φ p X t-p , then (X t ) t∈Z is an AR(p) process; • if M (X t-i ) i∈N * = a 0 + a 1 X 2 t-1 + • • • + a p X 2 t-p and f (X t-i ) i∈N * = 0, then (X t ) t∈Z is an ARCH(p) process.
Numerous classical time series models such as ARMA(p, q), GARCH(p, q), ARMA(p, q)-GARCH(p, q) (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] and [START_REF] Ling | Asymptotic theory for a vector arma-garch model[END_REF]) or APARCH(δ, p, q) processes (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]) belongs to AC(M, f ). The existence of stationary and ergodic solutions of this class has been studied in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] and [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF].

We consider a trajectory (X 1 , . . . , X n ) of a stationary affine causal process AC(M * , f * ), where M * and f * are unknown. We also consider a finite set M of parametric models m, which are affine causal time series. We assume that the "true" model m * corresponds to M * and f * . The aim is to obtain an estimator m of m * and testing the goodness-of-fit of the chosen model.

There already exist several important contributions devoted to the model selection for time series ; we refer to the book of [START_REF] Mcquarrie | Regression and Time Series Model Selection[END_REF] and the references therein for an overview on this topic. As we have pointed above, two properties are often used to evaluate a quality of a model selection procedure : consistency and efficiency. The consistency assumes that the true model exists and it is included in the collection of candidate models; while the efficiency does not necessarily require the existence of a true model. In many research in this framework, the main goal is to develop a procedure that fulfills one of these properties. So, in some classical linear time series models, the consistency of the BIC procedure has been established, see for instance [START_REF] Hannan | The estimation of the order of an arma process[END_REF] or [START_REF] Tsay | Order selection in nonstationary autoregressive models[END_REF] ; and the asymptotic efficiency of the AIC has been proved, see, among others, [START_REF] Shibata | Asymptotically efficient selection of the order of the model for estimating parameters of a linear process[END_REF], [START_REF] Hurvich | Regression and time series model selection in small samples[END_REF] for a corrected version of AIC for small samples, Ing and Wei (2005), [START_REF] Ing | Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series[END_REF], [START_REF] Ing | Model selection for integrated autoregressive processes of infinite order[END_REF] for the case of infinite order autoregressive model. [START_REF] Shi | Regression model selection-a residual likelihood approach[END_REF] propose the (consistent) residual information criteria (RIC) for regression model (including regression models with ARMA errors) selection. In the framework of nonlinear threshold models, [START_REF] Kapetanios | Model selection in threshold models[END_REF] proved consistency results of a large class of information criteria, whereas [START_REF] Gao | Semiparametric non-linear time series model selection[END_REF] focused on cross-validation type procedure for model selection in a class of semiparametric time series regression model. Let us recall that, the time series model selection literature is very extensive and still growing ; we refer to the monograph of [START_REF] Rao | On model selection[END_REF], which provided an excellent summary of existing model selection procedure, including the case of time series models as well as the recent review paper of [START_REF] Ding | Model selection techniques: An overview[END_REF].

The adaptive lasso, introduced by [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] for variable selection in linear regression models has been extended by [START_REF] Ren | Subset selection for vector autoregressive processes via adaptive lasso[END_REF] to vector autoregressive models, [START_REF] Kock | Consistent and conservative model selection with the adaptive lasso in stationary and nonstationary autoregressions[END_REF] carried out this procedure in stationary and nonstationary autoregressive models; the oracle efficiency is established. Lerasle (2011) considers model selection for density estimation under mixing conditions and derived oracle inequalities of the slope heuristic procedure (Birgé and Massart (2007a) or [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF]) ; whereas [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF] develop oracle inequalities for model selection for weakly dependent time series forecasting. Recently, [START_REF] Shao | Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend[END_REF] have considered the model selection for ARMA time series with trend, and proved the consistency of BIC for the detrended residual sequence, while [START_REF] Arkoun | Sequential model selection method for nonparametric autoregression[END_REF] developed oracle inequalities of sequential model selection method for nonparametric autoregression. Hsu et al. (2019a) pointed out that most existing model selection procedure cannot simultaneously enjoy consistency and (asymptotic) efficiency. They propose a misspecification-resistant information criterion that can achieve consistency and asymptotic efficiency for prediction using model selection. In this paper, we focus on the class of models (5.1.1), and addressed the following questions :

1. What regularity conditions are sufficient to build a consistent model selection procedure? Does the classic criterion such as BIC, still have consistent property for choosing a model among the collection M?

2. How can we test the goodness-of-fit of the chosen model? These questions have not yet been answered for the class of models and the framework considered here, in particular in case of infinite memory processes. This new contribution provides theoretical and numerical response of these issues. (i) The estimator m of m * is chosen by minimizing a penalized criterion C(m) = -2 L n (m) + |m| κ n , where L n (m) is a Gaussian quasi-log-likelihood of the model m, |m| is the number of estimated parameters of the model m and κ n is a non-decreasing sequence of real numbers (see more details in Section 2.2). Note that, in the cases κ n = 2 or κ n = log n we respectively consider the usual AIC and BIC criteria. We provide sufficient conditions (essentially depending on the decreasing of the Lipschitz coefficients of the functions f and M ) for obtaining consistency of the model selection procedure.

(ii) We provide an asymptotic goodness-of-fit test for the selected model that is very simple to be used (with the usual Chi-square distribution limit), which successively completes the model selection procedure. Numerical applications show the accuracy of this test under the null hypothesis as well as an efficient test power under an alternative hypothesis. Note that, a similar test has been proposed by [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[END_REF] under the Gaussian assumption on the observations, whereas [START_REF] Ling | Diagnostic checking of nonlinear multivariate time series with multivariate arch errors[END_REF] focused for multivariate time series with multivariate ARCH-type errors. These papers are also based on exact likelihood estimators that do not make feasible Portemanteau tests. [START_REF] Duchesne | On diagnostic checking time series models with portmanteau test statistics based on generalized inverses and[END_REF] proposed an interesting Portmanteau test statistic directly based on the autocorrelations of residuals (and not squared residuals) computed from quasi-likelihood estimators for diagnostic checking in the class of model (5.1.1). Unlike these authors, we apply the test to a model obtained from a model selection procedure.

Monte-Carlo experiments and numerical applications on illustrative examples are also performed to highlight the obtained asymptotic results. We have also considered a datadriven choice of the penalty obtained from the slope heuristic procedure (see for instance [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF]) for avoiding an a priori choice of the penalty sequence. The simulation study and real data applications show that the results of the proposed model selection procedure and the Portetemanteau test are overall satisfactory.

The paper is organized as follows. Some definitions, notations and assumptions are described in Section 2.2. The consistency of the criteria and the asymptotic normality of the post-model-selection estimator are studied in Section 2.3. In Section 2.4, the examples of AR(∞), ARCH(∞), AP ARCH(δ, p, q) and ARMA(p, q)-GARCH(p , q ) processes are detailed. The goodness-of-fit test is studied in Section 2.5. Finally, numerical results are presented in Section 2.6 and Section 2.7 contains the proofs. In this section, we are going to present the model selection using Gaussian quasi-maximum likelihood estimators (QMLE) and give some notations in order to facilitate the presentation.

General

The Gaussian quasi-maximum likelihood estimation and the model selection criterion

In the sequel, for a model m ∈ M, a family of models of

AC(M θ , f θ ) with θ ∈ Θ ⊂ R d ,
where θ → M θ and θ → f θ are two fixed functions, we are going to consider QMLE of θ for each specific model m.

This approach as semi-parametric estimation has been successively introduced for GARCH(p, q) processes in [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF] where its consistency is also proved, and the asymptotic normality of this estimator has been established in [START_REF] Berkes | GARCH processes: structure and estimation[END_REF] and [START_REF] Francq | Maximum likelihood estimation of pure garch and armagarch processes[END_REF]. In [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], those results have been extended to affine causal processes, and an extension to Laplacian QMLE has been also proposed in [START_REF] Bardet | Asymptotic behavior of the laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF]. The Gaussian QMLE is derived from the conditional (with respect to the filtration σ (X t ) t≤0 ) log-likelihood of (X 1 , . . . , X n ) when (ξ t ) is supposed to be a Gaussian standard white noise. Due to the linearity of a causal affine process, we deduce that this conditional log-likelihood (up to an additional constant) L n is defined for all θ ∈ Θ by:

L n (θ) := - 1 2 n t=1 q t (θ) , with q t (θ) := (X t -f t θ ) 2 H t θ + log(H t θ ) (2.2.1)
where

f t θ := f θ (X t-1 , X t-2 , • • • ), M t θ := M θ (X t-1 , X t-2 , • • • ) and H t θ = M t θ 2 . Since L n (θ)
depends on (X t ) t≤0 that are unobserved, the idea of the quasi log-likelihood is to replace q t (θ) by an approximation q t (θ) and to compute θ as in equation (2.2.3) even if the white noise is not Gaussian. Hence, the conditional Gaussian quasi log-likelihood (up to an additional constant) is given for all θ ∈ Θ by

L n (θ) := - 1 2 n t=1 q t (θ) , with q t (θ) := (X t -f t θ ) 2 H t θ + log( H t θ )
where

     f t θ := f θ (X t-1 , X t-2 , • • • , X 1 , u) M t θ := M θ (X t-1 , X t-2 , • • • , X 1 , u) H t θ := ( M t θ ) 2 (2.2.2)
for any deterministic sequence u = (u n ) with finitely many non-zero values (u = 0 is very often chosen without loss of generality).

Finally, for each specific model m ∈ M, we define the Gaussian QMLE θ(m) as

θ(m) = argmax θ∈Θ(m)
L n (θ).

(2.2.3)

To select the "best" model m ∈ M, we chose a penalized contrast C(m) ensuring a tradeoff between -2 times the maximized quasi log-likelihood, which decreases with the size of the model, and a penalty increasing with the size of the model. Therefore, the choice of the "best" model m among the estimated can be performed by minimizing the following criteria

m = argmin m∈M C(m) with C(m) = -2 L n θ(m) + |m| κ n , (2.2.4)
where

• (κ n ) n an increasing sequence depending on the number of observations n.

• |m| denotes the dimension of the model m, i.e. the cardinal of m, subset of {1, . . . , d}, which is also the number of estimated components of θ (the others are fixed to zero).

The consistency of the criterion C, i.e.

P( m = m * ) -→ n→∞ 1;
(2.2.5) will be established after showing that both of following probabilities are zero:

• the asymptotic probability of selecting a larger model containing the true model (overfitting case);

• the asymptotic probability of selecting a false model that is a model not containing m * .

The affine causal framework

In the introduction, to be more concise, we have presented the problem of time series model selection in a very general form. In reality, we will limit our field of study a little bit by considering a semi-parametric framework. Hence, let (f θ ) θ∈Θ and (M θ ) θ∈Θ be two families of known functions such as for any θ ∈ Θ, both f θ , M θ with real values defined on R ∞ .

Before diving in details, let's give some notations that will be useful throughout the paper. We will consider a subset Θ of R d (d ∈ N). We will use the following norms:

• . denotes the usual Euclidean norm on R ν , with ν ≥ 1;

• if X is R ν -random variable with r ≥ 1 order moment, we set X r = E( X r 1/r ;
• for any set Θ ⊆ R d and for any g

: Θ → R d , d ≥ 1, denote g Θ = sup θ∈Θ g(θ) .
Let us start with an example to better understand the framework and the approach of model selection we will follow.

Example: Assume that the observed trajectory (X 1 , . . . , X n ) is generated from a model belonging to a collection M, for instance a set of ARMA(p, q) and GARCH(p , q ) processes for 0 ≤ p ≤ p max , 0 ≤ q ≤ q max , 0 ≤ p ≤ p max , 0 ≤ q ≤ q max (where p max , q max , p max , q max are the upper bounds of orders). Then, we would like to chose in this family a "best" model for fitting the data (X 1 , . . . , X n ). For instance, if p max = q max = p max = q max = 9, in the collection above, there is 200 possible models and we expect to recognize the true process (which is unknown to the analyst) as the selected model, at least when n is large enough.

We begin with the following property that allow to enlarge the family of models by extending the dimension d of the parameter θ:

Proposition 2.1. Let d 1 , d 2 ∈ N, Θ 1 ⊂ R d 1 and Θ 2 ⊂ R d 2 , and for i = 1, 2, define f (i) θ i , M (i) 
θ i : R ∞ → R and for θ i ∈ Θ i . Then there exist max(d 1 , d 2 ) ≤ d ≤ d 1 + d 2 , Θ ⊂ R d , and a family of functions f θ : R ∞ → R and M θ : R ∞ → [0, ∞) with θ ∈ Θ, such that for any θ 1 ∈ Θ 1 and θ 2 ∈ Θ 2 , there exists θ ∈ Θ satisfying AC M (1) θ 1 , f (1) θ 1 AC M (2) θ 2 , f (2) θ 2 ⊂ AC M θ , f θ .
The proof of this proposition, as well as the other proofs, can be found in Section 2.7. This proposition says that it is always possible to embed two parametric causal affine models in a larger one. Hence, for instance, we can consider as well AR processes and ARCH processes in a unique representation, i.e.

                 AR M (1) θ 1 (X t-i ) i∈N * = σ f (1) θ 1 (X t-i ) i∈N * = φ 1 X t-1 + • • • + φ p X t-p ARCH    M (2) θ 2 (X t-i ) i∈N * = a 0 + a 1 X 2 t-1 + • • • + a q X 2 t-q f (2) θ 2 (X t-i ) i∈N * = 0 =⇒ M θ (X t-i ) i∈N * = θ 0 + θ 1 X 2 t-1 + • • • + θ q X 2 t-q f θ (X t-i ) i∈N * = θ q+1 X t-1 + • • • + θ q+p X t-p
.

From now and in all the sequel, we fix d ∈ N * , and the family of functions

f θ , M θ : R ∞ → R for θ ∈ Θ ⊂ Θ(r) ⊂ R d .
Let (X 1 , . . . , X n ) be an observed trajectory of an affine causal process X belonging to AC(M θ * , f θ * ), where θ * is an unknown vector of Θ, and therefore:

X t = M θ * (X t-i ) i∈N * ξ t + f θ * (X t-i ) i∈N * for any t ∈ Z. (2.2.6)
In the sequel, we will consider several models, which all are particular cases of

AC(M θ , f θ ) with θ ∈ Θ ⊂ R d .
More precisely define:

• a model m as a subset of {1, . . . , d} and denote |m| = #(m);

• Θ(m) = (θ i ) 1≤i≤d ∈ R d , θ i = 0 if i / ∈ m ∩ Θ;
• M as a finite family of models, i.e. M ⊂ P {1, . . . , d} .

Finally, for all m ∈ M, m ∈ AC(M θ , f θ ) when θ ∈ Θ(m) and denote m * the "true" model. We could as well consider hierarchical or exhaustive families of models.

Example: From the previous example, we can consider:

• a family M 1 of models m 1 such as M 1 = {1}, {1, 2}, . . . , {1, . . . , q + 1} : this family is the hierarchical one of ARCH processes with orders varying from 0 to q.

• a family M 2 of models m 2 such as M 2 = P {1, . . . , p + q + 1} : this family is the exhaustive one and contains as well the AR(2) process X t = φ 2 X t-2 + θ 0 ξ t as the process

X t = φ 1 X t-1 + φ 3 X t-3 + ξ t θ 0 + a 2 X 2 t-2 .
To establish the consistency of the selected model, we will need to assume that the "true" model m * with the parameter θ * , is included in the model family M.

The special case of NLARCH(∞) processes

As in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], in the special case of NLARCH(∞) processes, including for instance GARCH(p, q) or ARCH(∞) processes, a particular treatment can be realized for obtaining sharper results than using the previous framework. In such case, define the class:

Class AC( H θ ): A process X = (X t ) t∈Z belongs to AC( H θ ) if it satisfies: X t = ξ t H θ (X 2 t-i ) i∈N * for any t ∈ Z. (2.2.7) Therefore, if M 2 θ (X t-i ) i∈N * = H θ (X t-i ) i∈N * = H θ (X 2 t-i ) i∈N * then, AC( H θ ) = AC(M θ , 0).
In case of the class AC( H θ ), we will use the assumption A( H θ , Θ). By this way, we will obtain a new set of stationary solutions. For r ≥ 2 define:

Θ(r) = θ ∈ R d , A( H θ , {θ}) holds with ξ 0 r 2 ∞ k=1 α k ( H θ , {θ}) < 1 .
(2.2.8)

Then, for θ ∈ Θ(r), a process (X t ) t∈Z belonging to the class AC( H θ ) is stationary ergodic and satisfies X 0 r < ∞. 

2.3

Assumptions required for the asymptotic study

We begin by giving a condition on f θ and M θ which ensure the existence of a r-order moment, stationary and ergodic time series belonging to AC(M θ , f θ ). This condition, initially obtained in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], is written in terms of Lipschitz coefficients of both these functions. Hence, for Ψ θ = f θ or M θ , define:

Assumption A(Ψ θ , Θ): Assume that Ψ θ (0) Θ < ∞ and there exists a sequence of non- negative real numbers α k (Ψ θ , Θ) k≥1 such that ∞ k=1 α k (Ψ θ , Θ) < ∞ satisfying: Ψ θ (x) -Ψ θ (y) Θ ≤ ∞ k=1 α k (Ψ θ , Θ)|x k -y k | f or all x, y ∈ R ∞ .
Now for r ≥ 1, where ξ 0 r < ∞, define:

Θ(r) = θ ∈ R d , A(f θ , {θ}) and A(M θ , {θ}) hold with ∞ k=1 α k (f θ , {θ}) + ξ 0 r ∞ k=1 α k (M θ , {θ}) < 1 . (2.3.1)
Then, for any θ ∈ Θ(r), there exists a stationary and ergodic solution with r-order moment belonging to AC(M θ , f θ ). (see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] and [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]).

Secondly, note that the definitions of the conditional log-likelihood (2.2.1) and quasi loglikelihood (2.2.2) require that their denominators do not vanish. Hence, we will suppose in the sequel that the lower bound of

H θ (•) = M θ (•) 2 (which is reached since Θ is compact)
is strictly positive:

Assumption D(Θ): ∃h > 0 such that inf θ∈Θ (H θ (x)) ≥ h for all x ∈ R ∞ .
The following classical assumption ensures the identifiability of the considered model.

Assumption Id(Θ):

For all θ, θ ∈ Θ, (f 0 θ = f 0 θ and M 0 θ = M 0 θ ) a.s. =⇒ θ = θ .
Another required assumption concerns the differentiability of Ψ θ = f θ or M θ on Θ. This type of assumption has already been considered in order to apply the QMLE procedure (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF], [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF]). First, the following Assumption Var(Θ) provides the invertibility of the "Fisher's information matrix" of X and is important to prove the asymptotic normality of the QMLE.

Assumption Var(Θ):

For any θ ∈ Θ, d i=1 β i ∂f 0 θ ∂θ (i) = 0 =⇒ ∀i = 1, . . . , d, β i = 0 a.s or d i=1 β i ∂H 0 θ ∂θ (i) = 0 =⇒ ∀i = 1, . . . , d, β i = 0 a.s .
Moreover, one of the following technical assumption is required to establish the consistency of the model selection procedure.

Assumption K(Θ): Assumptions A(f θ , Θ), A(M θ , Θ), A(∂ θ f θ , Θ), A(∂ θ M θ , Θ) and B(Θ)
hold and there exists r ≥ 2 such that θ * ∈ Θ(r). Moreover, with s = min(1, r/3), assume that the sequence

(κ n ) n∈N satisfies k≥1 ( 1 κ k ) s j≥k α j (f θ , Θ) + α j (M θ , Θ) + α j (∂ θ f θ , Θ) + α j (∂ θ M θ , Θ) s < ∞. Assumption K(Θ): Assumptions A( H θ , Θ), A(∂ θ H θ , Θ
) and B(Θ) hold and there exists r ≥ 2 such that θ * ∈ Θ(r). Moreover, with s = min(1, r/4), assume that the sequence

(κ n ) n∈N satisfies k≥1 ( 1 κ k ) s j≥k α j ( H θ , Θ) + α j (∂ θ H θ , Θ) s < ∞.
Remark 2.1. These conditions on (κ n ) n∈N have been deduced from conditions for strong law of large numbers obtained in [START_REF] Kounias | An inequality and almost sure convergence[END_REF] and are not too restrictive: for instance, if the Lipschitz coefficients of f θ , M θ (the case using H θ can be treated similarly) and their derivatives are bounded by a geometric or Riemanian decrease:

1. Geometric case: α j (f θ , Θ) + α j (M θ , Θ) + α j (∂ θ f θ , Θ) + α j (∂ θ M θ , Θ) = O(a j ) with 0 ≤ a < 1, then any (κ n ) such as 1/κ n = o
(1) can be chosen; for instance κ n = log n or log(log n); this is the case for instance of ARMA, GARCH, APARCH or ARMA-GARCH processes.

Riemanian case: α

j (f θ , Θ) + α j (M θ , Θ) + α j (∂ θ f θ , Θ) + α j (∂ θ M θ , Θ) = O(j -γ ) with γ > 1: • if r ≥ 3 then -if γ > 2 then any sequence such as 1/κ n = o(1) can be chosen; -if 1 < γ < 2, any (κ n ) such as κ n = O(n δ ) with δ > 2 -γ can be chosen. • if 1 ≤ r < 3
if γ > (r + 3)/r then any sequence such as 1/κ n = o(1) can be chosen; if 1 < γ < (r + 3)/r then any (κ n ) such as κ n = n δ with δ > (r + 3)/r -γ can be chosen.

In the last case of these two conditions on r, we can see the usual BIC choice, κ n = log n does not fulfill the assumption in general.

Asymptotic model selection

Using the above assumptions, we can establish the limit theorem below, which provides sufficient conditions for the consistency of the model selection procedure.

Theorem 2.1. Let (X 1 , . . . , X n ) be an observed trajectory of an affine causal process X belonging to

AC(M θ * , f θ * ) (or AC( H θ )) where θ * is an unknown vector of Θ a compact set included in Θ(r) ⊂ R d (or Θ(r) ⊂ R d ) with r ≥ 4. If assumptions D(Θ), Id(Θ), K(Θ) (or K(Θ)), A(∂ 2 θ 2 f θ , Θ) and A(∂ 2 θ 2 M θ , Θ) (or A(∂ 2 θ 2 H θ , Θ)) also hold, then P( m = m * ) -→ n→∞ 1 and θ( m) P -→ n→∞ θ * . (2.3.2)
The following theorem shows the asymptotic normality of the QMLE of the chosen model. 

√ n θ( m) i -(θ * ) i i∈m * D -→ n→∞ N |m * | 0 F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 (2.3.3)
where

F (θ * , m * ) i,j = E ∂ 2 q 0 (θ * ) ∂θ i ∂θ j and (G(θ * , m * )) i,j = E ∂q 0 (θ * ) ∂θ i ∂q 0 (θ * ) ∂θ j for i, j ∈ m * .
Remark 2.2. In Remark 2.1, we detailed some situations where the assumption K(Θ) (or K(Θ)) holds, which leads to the results of Theorem 2.1 and 2.2. In particular, the log n penalty usually linked to BIC is consistent in the case of a geometric decrease of the Lipschitz coefficients of the functions f θ and M θ (and their first order derivative). In the case of a Riemanian rate, the consistency of BIC is not ensured; see also the next section. In this section, some examples of time series satisfying the conditions of previous results are considered. These examples include AR(∞), ARCH(∞), AP ARCH(δ, p, q) and ARMA(p, q)-GARCH(p , q ).

AR(∞) models

For (ψ k (θ)) k∈N a sequence of real numbers depending on θ ∈ R d , let us consider an AR(∞) process defined by:

X t = k≥1 ψ k (θ * )X t-k + σ ξ t for any t ∈ Z, (2.4.1)
where (ξ t ) t admits 4-order moments, and θ * ∈ Θ ⊂ Θ(4), the set of θ ∈ R d such that k≥1 ψ k (θ) Θ < 1 and σ > 0. This process corresponds to (2.2.6) with

f θ (x i ) i≥1 = k≥1 ψ k (θ)x k and M θ ≡ σ for any θ ∈ Θ. The Lipschitz coefficients of f θ are α k (f θ ) = ψ k (θ) Θ . Moreover, Assumption D(Θ) holds with h = σ 2 > 0.
Let us consider M a finite family of models. Of course, the main example of such family of models is given by the one of ARMA(p, q) processes with 0 ≤ p ≤ p max and 0 ≤ q ≤ q max , providing (p max + 1)(q max + 1) models and θ ∈ R pmax+qmax+1 .

Besides, assume that Id(Θ), Var(Θ) hold and that the sequence

(ψ k ) is twice differentiable (with respect to θ) on Θ, with k ∂ 2 θ ψ k (θ) Θ < ∞ and ψ k (θ) Θ + ∂ θ ψ k (θ) Θ = O(k -γ ) with γ > 1. From Remark 2.1, • if γ > 2, the condition κ n -→ n→∞ ∞ (for instance, the BIC penalization with κ n = log(n), or κ n = √ n) ensures the consistency of m and the Theorem (2.2) holds if in addition θ * ∈ o Θ; • if 1 < γ < 2, κ n = O(n δ
) with δ > 2 -γ has to be chosen (and we cannot insure the consistency of m in case of classical BIC penalization).

Finally, in the particular case of the family of ARMA processes, the stationarity condition implies that any κ n -→ n→∞ ∞ can be chosen (BIC penalization with κ n = log(n), or κ n = √ n), since the decreases of ψ k and its derivative are exponential.

ARCH(∞) models

For (ψ k (θ)) k∈N a sequence of nonnegative real numbers depending on θ ∈ R d , with ψ 0 > 0, let us consider an ARCH(∞) process defined by :

X t = ψ 0 (θ * ) + ∞ k=1 ψ k (θ * )X 2 t-k 1/2 ξ t for any t ∈ Z, (2.4.2)
where E ξ 4 0 < ∞, and

θ * ∈ Θ ⊂ Θ(4), the set of θ ∈ R d such that k≥1 ψ k (θ) Θ < 1. This process corresponds to (2.2.6) with f θ (x i ) i≥1 ≡ 0 and H θ (x i ) i≥1 = ψ 0 (θ) + ∞ k=1 ψ k (θ)x 2 k , i.e. H θ (y i ) i≥1 = ψ 0 (θ) + ∞ k=1 ψ k (θ)y k , for any θ ∈ Θ. The Lipschitz coefficients of H θ are α k ( H θ ) = ψ k (θ) Θ . Moreover, Assumption D(Θ) holds if h = inf θ∈Θ ψ 0 (θ) > 0.
Let us consider M a finite family of models. The main example of such family of models is given by the GARCH(p, q) processes with 0 ≤ p ≤ p max and 0 ≤ q ≤ q max , providing (p max + 1)(q max + 1) models and θ ∈ R pmax+qmax+1 . Moreover, assume that Id(Θ), Var(Θ) hold and that the sequence

(ψ k ) is twice differen- tiable (with respect to θ) on Θ, with k ∂ 2 θ ψ k (θ) Θ < ∞ and ψ k (θ) Θ + ∂ θ ψ k (θ) Θ = O(k -γ ) with γ > 1. From Remark 2.1, • if γ > 2, the condition κ n -→ n→∞ ∞ (for instance, the BIC penalization with κ n = log(n), or κ n = √ n) ensures the consistency of m and the Theorem (2.2) holds if in addition, θ * ∈ o Θ; • if 1 < γ < 2, κ n = O(n δ
) with δ > 2 -γ has to be chosen (and we cannot insure the consistency of m in the case of the classical BIC penalization).

Finally, in the particular case of the family of GARCH processes, the stationarity condition implies that any κ n -→ n→∞ ∞ can be chosen (BIC penalization with κ n = log(n), or κ n = √ n), since the decreases of ψ k and its derivative are exponential.

APARCH(δ, p, q) models

For δ ≥ 1 and from [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF], (X t ) t∈Z is an APARCH(δ, p, q) process with p, q ≥ 0 if:

X t = σ t ξ t (σ t ) δ = ω + p i=1 α i (|X t-i | -γ i X t-i ) δ + q j=1 β j (σ t-j ) δ for any t ∈ Z, (2.4.3)
where ω > 0, -1 < γ i < 1, α i ≥ 0, β j ≥ 0 for 1 ≤ i ≤ p and 1 ≤ j ≤ q, α p > 0, β q > 0 and q j=1 β j < 1. From [START_REF] Bardet | Asymptotic behavior of the laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF], with θ = (ω, α 1 , . . . , α p , γ 1 , . . . , γ p , β 1 , . . . , β p ) , the conditional variance σ t can be rewritten as follows

σ δ t = b 0 (θ) + k≥1 b + k (θ)(max(X t-k , 0)) δ -b - k (θ)(min(X t-k , 0)) δ ; with f θ ≡ 0 and M t θ = σ t , we deduce that α k (M θ , Θ) = max( b + k (θ) 1/δ Θ , b - k (θ)
1/δ Θ ), and from the assumption q j=1 β j < 1, the Lipschitz coefficients α k (M θ , Θ) decrease exponentially fast. Then, the stationarity set for r ≥ 1 is

Θ(r) = θ ∈ R 2p+q+1 ξ 0 r ∞ j=1 max |b + j (θ)| 1/δ , |b - j (θ)| 1/δ < 1 .
Now, assume that (X t ) t∈Z is an APARCH(δ, p * , q * ) where 0 ≤ p * ≤ p max and 0 ≤ q * ≤ q max are unknown orders as well as the other parameters:

ω * > 0, -1 < γ * i < 1, α * i ≥ 0, β * j ≥ 0 for 1 ≤ i ≤ p max and 1 ≤ j ≤ q max , α p * > 0, β q * > 0.
Let M be the family of APARCH(δ, p, q) processes, with 0 ≤ p ≤ p max and 0 ≤ q ≤ q max . As a consequence, we consider here d = 2p max + q max + 1, and

θ * = t ω * , α * 1 , . . . , α * p * , 0, . . . , 0, γ * 1 , . . . , γ * p * , 0, . . . , 0, β * 1 , . . . , β * q * , 0, . . . , 0 ∈ R d .
With all the previous conditions, assumptions D(Θ), Id(Θ), Var(Θ) are satisfied. Moreover, since the Lipschitz coefficients decrease exponentially fast, K(Θ) is satisfied when κ n → ∞. Therefore, the consistency Theorem (2.1) and the Theorem (2.2) of the estimator of the chosen model are satisfied when r = 4 and κ n → ∞ (for instance with the typical BIC penalty κ n = log n).

2.4.4 ARMA(p, q)-GARCH(p , q ) models From [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] and [START_REF] Ling | Asymptotic theory for a vector arma-garch model[END_REF], we define (X t ) t∈Z as an (invertible) ARMA(p, q)-GARCH(p , q ) process with p, q, p , q ≥ 0 if:

X t = p i=1 a i X t-i + ε t -q i=1 b i ε t-i ε t = σ t ξ t , with σ 2 t = c 0 + p i=1 c i ε 2 t-i + q i=1 d i σ 2 t-i for all t ∈ Z,
where

• c 0 > 0, c p > 0, c i ≥ 0 for i = 1, • • • , p -1 and d q > 0, d i ≥ 0 for i = 1, • • • , q -1; • P (x) = 1 -p i=1 a i x i and Q(x) = 1 -q i=1 b i x i are coprime polynomials.
Here we will consider the case of a stationary invertible ARMA(p, q)-GARCH(p , q ) process such as X 0 4 < ∞ and therefore we will consider:

Θ p,q,p ,q = (a 1 , . . . , d q ) ∈ R p+q+p +1+q , q j=1 d j + ξ 0 4 p j=1 c j < 1 and 1 - p j=1 a j z j 1 - q j=1 b j z j = 0 for all |z| ≤ 1 .
Therefore, if (a 1 , . . . , d q ) ∈ Θ p,q,p ,q , (ε t ) t is a stationary GARCH(p , q ) process and (X t ) t is a stationary weak invertible ARMA(p, q) process. Moreover, following Lemma 2.1. of [START_REF] Bardet | Asymptotic behavior of the laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF], we know that a stationary ARMA(p, q)-GARCH(p , q ) process is a stationary affine causal process with functions f θ and M θ satisfying the Assumption A(f θ , Θ) and A(M θ , Θ) with Lipschitzian coefficients decreasing exponentially fast, as well as their derivatives. Finally, if Θ is a bounded subset of Θ p,q,p ,q , then assumptions D(Θ), Id(Θ) and Var(Θ) are automatically satisfied.

Assume now that (X t ) t∈Z is an ARMA(p * , q * )-GARCH(p * , q * ) process where 0 ≤ p * ≤ p max , 0 ≤ q * ≤ q max , 0 ≤ p * ≤ p max and 0 ≤ q * ≤ q max are unknown orders with also unknown parameters:

c * 0 , . . . , c * p * , d * 1 , . . . , d * q * , a * 1 , . . . , a * p * , b * 1 , . . . , b q * .
Let M be the family of ARMA(p, q)-GARCH(p , q ) processes, with 0 ≤ p ≤ p max , 0 ≤ q ≤ q max , 0 ≤ p ≤ p max and 0 ≤ q ≤ q max . Hence, we consider here d = p max + q max + p max + q max + 1, and

θ * = c * 0 , . . . , c * p * , 0, . . . , 0, d * 1 , . . . , d * q * , 0, . . . , 0 , a * 1 , . . . , a * p * , 0, . . . , 0, b * 1 , . . . , b q * , 0, . . . , 0 ∈ R d .
With Θ a bounded subset of Θ pmax,qmax,p max ,q max , all the previous assumptions D(Θ), Id(Θ), Var(Θ) are satisfied and K(Θ) is also satisfied as soon as κ n → ∞. As a consequence, in this framework the consistency Theorem (2.1) and the Theorem (2.2) of the estimator of the chosen model are satisfied when r = 4 and κ n → ∞ (for instance with the typical BIC penalty κ n = log n). From the above section, we are now able to asymptotically pick up a best model in a family of models. We can also obtain asymptotic confident regions of the estimated parameter of the chosen model. However, it is also important to check whether the chosen model is appropriate. This section attempts to answer this question by constructing a portmanteau test as a diagnostic tool based on the squares of the residuals sequence of the chosen model. This test has been widely considered in the time series literature, with procedures based on the squared residual correlogram (see for instance [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[END_REF], [START_REF] Ling | Diagnostic checking of nonlinear multivariate time series with multivariate arch errors[END_REF] ) and the absolute residual (or usual residuals) correlogram (see for instance [START_REF] Li | On the asymptotic standard errors of residual autocorrelations in nonlinear time series modelling[END_REF], [START_REF] Duchesne | On diagnostic checking time series models with portmanteau test statistics based on generalized inverses and[END_REF], [START_REF] Li | Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity[END_REF]), among others. Since our goal is to provide an efficient test for the entire affine class that contains weak white noise processes. We consider in this setting the autocorrelation of the squared residuals and follow the same scheme of procedure used in [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[END_REF], [START_REF] Ling | Diagnostic checking of nonlinear multivariate time series with multivariate arch errors[END_REF]) while relying on some of their results. But three main differences need to be pointed out:

2.5

• the results of [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[END_REF] are based on the exact likelihood of the data, which is then assumed to be known. But it is not at all the case even for simple ARMA(1, 1) or GARCH(1, 1) processes. By working directly on the quasi-likelihood, we really proposes a feasible Portemanteau test;

• we provide more detailed sufficient conditions to get the asymptotic results of the Portmanteau test;

• our procedure is also applied to the selected model, which is not necessarily the true model.

For m ∈ M, for K a positive integer, denote the vector of adjusted correlogram of squared residuals by: ρ(m) := ρ 1 (m), . . . , ρ K (m) ,

where for k = 1, . . . , K, ρ k (m) := γ k (m) γ 0 (m) with γ k (m) := 1 n n t=k+1 e 2 t (m) -1 e 2 t-k (m) -1 and e t (m) := M t θ(m) -1 X t -f t θ(m) .
Finally, the following theorem provides central limit theorems for ρ(m * ) and ρ( m) as well as for a portmanteau test statistic.

Theorem 2.3. Under the assumptions of Theorem 2.2, with also

• E[ξ 3 0 ] = 0; • ∞ t=1 t -1/4 j≥t α j (f θ , Θ) + α j (M θ , Θ) 1/2 < ∞ or ∞ t=1 t -1/4 j≥t α j ( H θ , Θ) 1/2 < ∞, then, 1. With V (θ * , m * ) defined in (2.7.39), it holds that √ n ρ(m * ) D -→ n→∞ N K 0 , V (θ * , m * ) .
(2.5.1)

2. With Q K (m * ) := n ρ(m * ) V ( θ(m * ), m * ) -1 ρ(m * ), we have Q K (m * ) D -→ n→∞ χ 2 (K).
(2.5.2)

3. The previous points 1. and 2. also hold when m * is replaced by m.

Using the Theorem 2.3, we can asymptotically test:

   H 0 : ∃m * ∈ M, such as (X 1 , . . . , X n ) is a trajectory of X ∈ AC(M θ , f θ * ) H 1 : m * ∈ M, such as (X 1 , . . . , X n ) is a trajectory of X ∈ AC(M θ , f θ * )
.

with θ * ∈ Θ(m * ) in both cases.
Therefore, Q K ( m) can be used as a portmanteau test statistic to decide between H 0 and H 1 and diagnose the goodness-of-fit of the selected model.

Remark 2.3. 1. In practice the constant µ 4 and the columns of the matrix J K (m * ) (see (2.7.35)) involved in V (θ * , m * ) are estimated by the correspondent sample average; they are respectively

µ 4 = 1 n n t=1 ( e t ( m)) 4 and J K ( θ( m) .,k = 1 n n-k t=1 [( e t ( m)) 2 - 1]∂ θ log M t+k θ( m)
).

2. For AR(∞) models (and then for causal invertible ARMA(p, q)), since M θ = σ as we have seen in Sub-section 2.4.1, we deduce from (2.7.39

) that V (θ * , m * ) = I K as J K (m * ) = 0.
Hence, in such a case, we simply obtained:

Q K ( m) = n ρ( m) 2 D -→ n→∞ χ 2 (K).
(2.5.3)

Note that working with autocorrelations of squared residuals rather than those of residuals, avoids the need to subtract the number of estimated parameters in the asymptotic chi-square distribution. Hence our result is valid for any K ∈ N * . This section features some simulation experiments that are performed to assess the usefulness of the asymptotic results obtained in Section 2.3. Each model is generated independently 1000 times over a trajectory of length n. Different sample sizes are considered to identify possible discrepancies between asymptotically expected properties and those obtained at finite distance. We will consider n belongs to {100, 500, 1000, 2000}. The process used to generate the trajectory is indicated each time. Throughout this section, (ξ t ) represents a Gaussian white noise with variance unity.

Numerical

Monte-Carlo experiments for common time series selection

We first generate some classical models as "true" models m * :

1. Model 1, AR(2) process:

X t = 0.4X t-1 + 0.4X t-2 + ξ t ; 2. Model 2, ARMA(1, 1) process: X t = 0.3X t-1 + ξ t + 0.5ξ t-1 ; 3. Model 3, ARCH(2) process: X t = ξ t 0.2 + 0.4X 2 t-1 + 0.2X 2 t-2 ; 4. Model 4, GARCH(1, 1) process: X t = σ t ξ t , with σ 2 t = 0.2 + 0.3X 2 t-1 + 0.5σ 2 t-1 .
We considered as competitive models all the models in the family M defined by: M = ARMA(p, q) or GARCH(p , q ) processes with 0 ≤ p, q, p ≤ 5, 1 ≤ q ≤ 5 .

As a consequence, there are 66 candidate models. Note also that in our simulations, since we have more than one model per dimension, slope estimation is done after considering the "best model" (which maximizes quasi-log likelihood) within each dimension.

The results of the model selection procedure are displayed in Table 2.1. More precisely, for each penalty (log n, √ n) the frequency that the associated criterion selects respectively a wrong model, the true model and an overfitted model (here a model that contains the true model). From these results, it is clear that the consistency of our model selection procedure is numerically convincing, which is in accordance with Theorem 2.1, where both penalties (log n, √ n) lead to consistent criteria for the four models under consideration. Note also that the typical BIC log n penalty is more interesting for retrieving the true model than the √ n-penalized likelihood for a small sample size. But the larger the sample size, the more accurate the √ n penalty is, compared to the log n penalty. In addition, for each of the three models, we also applied the portmanteau test statistic Q K ( m), using the √ n penalty. Table 2.2 shows the empirical size and empirical power of this test. We call by empirical size, the percentage of falsely rejecting the null hypothesis H 0 . On the other hand, the empirical power represents the percentage of rejection of H 0 when we arbitrary chose a false model, which is a AR(3) process X t = 0.2X t-1 + 0.2X t-2 + 0.4X t-1 + ξ t for Model 1 and 2, and a ARCH(3) process

X t = ξ t 0.4 + 0.2X 2 t-1 + 0.2X 2 t-2 + 0.2X 2 t-3
for Model 3 and 4.

It is important to note that choosing the maximum number of lags K is sometimes tricky.

To our knowledge, there is no real theoretical study to justify the choice of one value or another. However, some Monte Carlo simulations have suggested some ways to make a good choice . For instance [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[END_REF] suggested that the autocorrelations ρ k ( m) with 1 ≤ k ≤ K have a better asymptotic behaviour for small values of k. Therefore, the finite sample performance of the size and power of the test may also vary with the choice of K and could be better for small values of K. On the other hand, [START_REF] Tse | Testing for conditional heteroscedasticity: Some monte carlo results[END_REF] suggested that K = p + q + 1 may be an appropriate choice for the GARCH(p, q) family. Thus, in our tests, we consider K = 3 and K = 6 so that the rejection is based on the upper 5th percentile of the χ 2 (3) distribution on the one hand and χ 2 (6) on the other hand. Once again, the results of Table 2.2 numerically confirms the asymptotic results of Theorem 2.3. Remark that the test is more powerful by using values of K not too large as mentioned above especially for small samples.

Subset model selection

Now, we exhibit the performance of the previously considered criteria on a particular case of dimension selection. The process generated data is considered as follows:

Model 5 : X t = 0.4X t-3 + 0.4X t-4 + ξ t .

Here, we will consider the case of a nonhierarchical but exhaustive family M of AR(4) models , i.e.

M = P({1, 2, • • • , 10}) =⇒ X t = θ 1 X t-1 + θ 2 X t-2 + • • • + θ 10 X t-10 + ξ t and θ = (θ 1 , θ 2 , • • • , θ 10 ) ∈ Θ(m).
As a consequence, 1024 = 2 10 candidate models are considered and We deduce that the consistency of our model selection procedure is also numerically convincing in this case of exhaustive model selection, which is in accordance with Theorem 2.1.

Application to real data

2.6.3.a Air quality analysis

Air quality, which can be defined as the level of cleanliness of the air, is probably one of the first health and environmental concerns of this new century. With the increasing number of human activities, the air is being degraded by a wide variety of pollutants, including PM. PM stands for particulate matter government (2017): the term for a mixture of solid particles and liquid droplets found in the air. Some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be seen with the naked eye. Let consider daily observations of PM10 (downloaded from Air PACA) at Marseille Kaddouz station (France) from January 1, 2018 to November 30, 2019. This is a time series trajectory of length n = 698 (see Figure 2.1a). We are going to use our model selection criteria to identify the "best" model for this time series. 

κ n = log(n) κ n = √ n m ARMA(1, 2) ARMA(1, 1) Q 10 ( m)
11.09 18.02 p -value 0.35 0.055

This table shows that all p-values are greater than 0.05, and then none of the test statistics leads us to reject the null hypothesis at this level even though the case of the ARMA(1, 1) is somehow limit. The chosen ARMA(1, 2) seems to be the more suitable model for PM10 time series.

2.6.3.b Financial index analysis

We consider the returns of the daily closing prices of the FTSE 100 index and also the SP 500. They are respectively 2273 and 2264 observations from January 4th, 2010 to December 31st, 2018 for FTSE 100 and SP500. The time plot and the correlograms for the log-returns and squared log-returns are plotted in Figure 2.3. Figures 2.3a and 2.3c exhibit the conditional heteroskedasticity in the log-return time series. Moreover, Figure 2.3b shows that more than 5 per cent of the autocorrelations are out of the confidence interval ±1.96/ √ 2273 and specially the Figure 2.3d suggests that the strong white noise assumption cannot be sustained for this log-returns sequence of FTSE index. We also have the same conclusion for SP 500 (see Figure 2.4) As in the previous illustrative example, the ARMA-GARCH is a plausible family for modeling of the FTSE 100 and SP 500 index. The log n and √ n penalizations have been applied to identify the best order and the goodness-of-fit of the selected model has been tested by the Portmanteau test. 

κ n = log(n) κ n = √ n m GARCH(1, 1) GARCH(1, 1) Q 10 ( m)
9.30 9.30 p -value 0.50 0.50 The GARCH(1, 1) is the "best" model based on the three criteria considered and it is adequate (at level 0.95) to model the FTSE 100 index. Regarding the SP 500 index, the GARCH(1, 1) is still the best model based on all three criteria and Q 10 ( m) = 15.2 associated with a p-value of 0.12. These results are not surprising since the GARCH(1, 1) is the reference model and the most commonly used in empirical studies. In addition, [START_REF] Francq | GARCH models: structure, statistical inference and financial applications[END_REF] found the GARCH(1, 1) to be adequate using a FTSE 100 trajectory from April 3, 1984to April 3, 2007and January 3, 1950 to July 24, 2009 for SP 500. We start with the proof of the Proposition 2.1.

Proof. For ease of writing, consider only the general case where f (i)

θ i = g (i)
α i and M

(i)

θ i = N (i) β i
where θ i = t (α i , β i ) for i = 1, 2. Now, assume that there exist α ∈ R δ , where 0 ≤ δ ≤ min(d 1 , d 2 ) and a function h α such as g

(1)

α 1 = h α + (1) α 1 , f (2) 
α 2 = h α + (2) α 2 with α 1 = t (α, α 1 )
and α 2 = t (α, α 2 ) and

(i) 0 = 0. Similarly, assume that there exist β ∈ R δ , where 0 ≤ δ ≤ min(d 1 , d 2 ) and a function R β such as N

(1)

β 1 = R β + m (1) β 1 , N (2) 
β 2 = R β + m (2) β 2 with β 1 = t (β, β 1 ) and β 2 = t (β, β 2 ) and m (i) 0 = 0. Consider now θ = t (α, α 1 , α 2 , β, β 1 , β 2 ) ∈ R d (and therefore max(d 1 , d 2 ) ≤ d ≤ d 1 + d 2 ), f θ = h α + (1) α 1 + (2) α 2 and M θ = R β + m (1) β 1 + m (2) β 2 . Then if X ∈ AC M θ , f θ , for any t ∈ Z, X t = R β ((X t-k ) k≥1 ) + m (1) β 1 ((X t-k ) k≥1 ) + m (2) β 2 ((X t-k ) k≥1 ) ξ t + h α ((X t-k ) k≥1 ) + (1) α 1 ((X t-k ) k≥1 ) + (2) α 2 ((X t-k ) k≥1 ) . Then, for α 2 = β 2 = 0, X ∈ AC M (1) θ 1 , f (1) θ 1 and for α 1 = β 1 = 0, X ∈ AC M (2) θ 2 , f (2) θ 2 .
In the sequel, some lemmas are stated and theirs proofs are given.

Lemma 2.1. Let X ∈ AC(M θ , f θ ) (or AC( H θ )) and Θ ⊆ Θ(r) (or Θ ⊆ Θ(r)) with r ≥ 2.
Assume that the assumptions D(Θ) and K(Θ) (or K(Θ)) hold. Then:

1 κ n L n (θ) -L n (θ) Θ a.s.
-→ n→+∞ 0.

(2.7.1)

Proof. We have | L n (θ) -L n (θ)| ≤ n t=1 | q t (θ) -q t (θ)|. Then, 1 κ n L n (θ) -L n (θ) Θ ≤ 1 κ n n t=1 q t (θ) -q t (θ) Θ .
By Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], with r ≤ 3, (2.7.1) is established when:

k≥1 ( 1 κ k ) r/3 E q k (θ) -q k (θ) r/3 Θ < ∞. (2.7.2)
With r ≥ 3, and under the assumptions, we first recall some results already obtained in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]: for any t ∈ Z,

• E |X t | r + f t θ r Θ + f t θ r Θ + M t θ r Θ + M t θ r Θ + H t θ r/2 Θ + H t θ r/2 Θ < ∞ (2.7.3) •          E f t θ -f t θ r Θ ≤ C j≥t α j (f θ , Θ) r E M t θ -M t θ r Θ ≤ C j≥t α j (M θ , Θ) r E H t θ -H t θ r/2 Θ ≤ C min j≥t α j (M θ , Θ) , j≥t α j (H θ , Θ) r/2
.

(2.7.4)

For any θ ∈ Θ, we have:

r/3 f t θ -f t θ r/3 Θ . (2.7.5)
Then, by Hölder's inequality and (2.7.3) we have:

E X t + f t θ 2 Θ + 1 r/3 M t θ -M t θ r/3 Θ ≤ E X t + f t θ + 1 r Θ 2/3 E M t θ -M t θ r Θ 1/3 ≤ C E M t θ -M t θ r Θ 1/3 . (2.7.6)
Again with Hölder's inequality and (2.7.3) ,

E (2|X t | + f t θ Θ + f t θ Θ ) f t θ -f t θ Θ r/3 ≤ C E f t θ -f t θ r Θ ] 1/3 . (2.7.7)
Therefore, from (2.7.6), (2.7.7) and (2.7.4), there exists a constant C such that

E ( q t (θ) -q t (θ) r/3 Θ ≤ C j≥t α j (f θ , Θ) + j≥t α j (M θ , Θ) r/3 . (2.7.8) Hence, k≥1 ( 1 κ k ) r/3 E q k (θ) -q k (θ) r/3 Θ ≤ C k≥1 ( 1 κ k ) r/3 j≥k α j (f θ , Θ) + α j (M θ , Θ) r/3
, which is finite by assumption K(Θ), and this achieves the proof.

2/ If X ⊂ AC( H θ ) and using Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], with r ≤ 4, (2.7.1) is established when:

k≥1 ( 1 κ k ) r/4 E q k (θ) -q k (θ) r/4 Θ < ∞.
(2.7.9)

By proceeding as in the previous case, we deduce

| q t (θ) -q t (θ)| ≤ h -2 |X t | 2 H t θ -H t θ Θ + h -1 H t θ -H t θ Θ .
In addition, we deduce that there exists a constant C such that

E ( q t (θ) -q t (θ) r/4 Θ ≤ C j≥t α j (H θ , Θ) r/4
.

(2.7.10)

Lemma 2.2. Let X ∈ AC(M θ , f θ ) (or AC( H θ )) and Θ ⊆ Θ(r) (or Θ ⊆ Θ(r)) with r ≥ 2.
Assume that the assumptions D(Θ) and K(Θ) (or K(Θ)) hold. Then:

1 κ n ∂ L n (θ) ∂θ - ∂L n (θ) ∂θ Θ a.s.
-→ n→+∞ 0.

(2.7.11)

Proof. We will go along similar lines as in the proof of Lemma 2.1. We have:

1 κ n ∂ L n (θ) ∂θ - ∂L n (θ) ∂θ Θ ≤ 1 κ n n t=1 ∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i Θ .
Using again Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], it is sufficient to prove for r ≤ 3 that

k≥1 ( 1 κ k ) r/3 E ∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i r/3 Θ < ∞.
(2.7.12)

For any θ ∈ Θ, with H θ = M 2 θ , the first partial derivatives of q t (θ) are

Θ ∂H t θ ∂θ i Θ .
Using again the results of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we know that:

• E ∂f t θ ∂θ i r Θ + ∂ f t θ ∂θ i r Θ + ∂M t θ ∂θ i r Θ + ∂ M t θ ∂θ i r Θ + ∂H t θ ∂θ i r/2 Θ + ∂(H t θ ) -1 ∂θ i r Θ < ∞ (2.7.13) •                                E (H t θ ) -1 -( H t θ ) -1 r Θ ≤ C j≥t α j (M θ , Θ) r E ∂f t θ ∂θ i - ∂ f t θ ∂θ i r Θ ≤ C j≥t α j (∂f θ , Θ) r E ∂H t θ ∂θ i - ∂ H t θ ∂θ i r/2 Θ ≤ C j≥t α j (M θ , Θ) + α j (∂M θ , Θ) r/2 E ∂(H t θ ) -1 ∂θ i - ∂( H t θ ) -1 ∂θ i r/2 Θ ≤ C j≥t α j (M θ , Θ) + α j (∂M θ , Θ) r/2
(2.7.14) 1. If X ⊂ AC(M θ , f θ ), we deduce from the Hölder's Inequality that,

E ∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i r/3 Θ ≤ C E f t θ -f t θ r Θ 1/3 E ∂ f t θ ∂θ i r/2 Θ 2/3 + E X t -f t θ 2r/3 Θ 1/2 E ∂f t θ ∂θ i - ∂ f t θ ∂θ i r Θ 1/3 + E (H t θ ) -1 -( H t θ ) -1 r Θ 1/3 E X t -f t θ r Θ E ∂ f t θ ∂θ i r Θ 1/3 + E X t -f t θ r Θ 1/3 E ∂( H t θ ) -1 ∂θ i - ∂(H t θ ) -1 ∂θ i r/2 2/3 + E ∂(H t θ ) -1 ∂θ i r Θ 1/3 E |X t | r E f t θ -f t θ r Θ 1/3 + E ∂ H t θ ∂θ i - ∂H t θ ∂θ i r/3 Θ + E ∂H t θ ∂θ i r/2 Θ 2/3 E ( H t θ ) -1 -(H t θ ) -1 r Θ 1/3
. Using (2.7.13) and (2.7.14), we deduce

E ∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i r/3 Θ ≤ C j≥t α j (f θ , Θ) + α j (M θ , Θ) + α j (∂f θ , Θ) + α j (∂M θ , Θ) r/3 . Therefore, k≥1 1 κ r/3 k E ∂ q k (θ) ∂θ i - ∂q k (θ) ∂θ i r/3 Θ ≤ C k≥1 1 κ r/3 k j≥t α j (f θ , Θ) + α j (M θ , Θ) + α j (∂f θ , Θ) + α j (∂M θ , Θ) r/3
.

We conclude the proof of (2.7.12) from assumption K(Θ).

2. If X ⊂ AC( H θ ), we deduce

∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i Θ ≤ X t 2 ∂( H t θ ) -1 ∂θ i - ∂(H t θ ) -1 ∂θ i Θ + h -1 ∂ H t θ ∂θ i - ∂H t θ ∂θ i Θ + ( H t θ ) -1 -(H t θ ) -1 Θ ∂H t θ ∂θ i Θ .
As a consequence,

E ∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i r/4 Θ ≤ E X t r E ∂( H t θ ) -1 ∂θ i - ∂(H t θ ) -1 ∂θ i r/2 Θ 1/2 + h -r/4 E ∂ H t θ ∂θ i - ∂H t θ ∂θ i r/4 Θ + E ( H t θ ) -1 -(H t θ ) -1 r/2 Θ E ∂H t θ ∂θ i r/2 Θ 1/2 , implying E ∂ q t (θ) ∂θ i - ∂q t (θ) ∂θ i r/4 Θ ≤ C j≥t α j (H θ , Θ) + α j (∂H θ , Θ) r/4
, which achieves the proof, according to Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF].

Lemma 2.3. Under the assumptions of Theorem 2.1 and if a model m ∈ M is such that θ * ∈ Θ(m), then:

1 κ n L n ( θ(m)) -L n θ(m * ) = o P (1).
(2.7.15)

Proof. We have:

1 κ n L n ( θ(m)) -L n θ(m * ) = 1 κ n L n ( θ(m)) -L n ( θ(m)) + L n ( θ(m)) -L n θ(m * ) + L n θ(m * ) -L n θ(m * ) ≤ 2 κ n L n (θ) -L n (θ) Θ + 1 κ n L n ( θ(m)) -L n θ(m * ) .
According to Lemma 2.1,

1 κn L n (θ) -L n (θ) Θ a.s.
-→ n→+∞ 0. The proof will be achieved if we can show that

1 κ n L n ( θ(m)) -L n (θ * ) = o P (1). (2.7.16) Since 1 κ n L n ( θ(m)) -L n θ(m * ) ≤ 1 κ n L n ( θ(m)) -L n (θ * ) + 1 κ n L n ( θ(m * )) -L n (θ * ) .
Applying a second order Taylor expansion of L n around θ(m) for n sufficiently large such that θ(m) ∈ Θ(m) which are between θ(m) and θ * , yields:

1 κ n L n ( θ(m)) -L n (θ * ) = 1 κ n θ(m) -θ * ∂L n ( θ(m)) ∂θ + 1 2κ n θ(m) -θ * ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * .
(2.7.17)

Let us deal first with the first term on the right hand side of last equality:

1 κ n θ(m) -θ * ∂L n ( θ(m)) ∂θ = 1 κ n √ n θ(m) -θ * 1 √ n ∂L n ( θ(m)) ∂θ .
Since 1 κn = o(1) and from [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] we have and1 √ n ∂Ln( θ(m)) ∂θ

√ n θ(m) -θ * = O P (1)
= o P (1), it follows that:

1 κ n θ(m) -θ * ∂L n ( θ(m)) ∂θ = o P (1).
(2.7.18)

On the other hand, for the second term of the right hand side of equality (2.7.17), let us note that, we have from [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]: -→ n→+∞ θ * and using the assumption Var(Θ) insuring that the matrix F (θ * , m) exists and is definite positive (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]).

• √ n θ(m) -θ * D -→ n→∞ A θ * ,
Hence,

θ(m) -θ * ∂ 2 L n (θ(m)) ∂θ i ∂θ j i,j∈m ( θ(m) -θ * ) = -1 2 √ n θ(m) -θ * F (θ * , m) + o P (1) √ n θ(m) -θ * P -→ n→∞ -1 2 A θ * ,m F (θ * , m) A θ * ,m .
We deduce that 

θ(m) -θ * ∂ 2 L n (θ(m)) ∂θ i ∂θ j i,j∈m ( θ(m) -θ * ) = O P (1) =⇒ 1 κ n θ(m) -θ * ∂ 2 L n (θ(m)) ∂θ i ∂θ j i,j∈m ( θ(m) -θ * ) = o P (1

Misspecified model

When a model m is misspecified (θ * / ∈ Θ(m)), we will show that P(m * ⊆ m) -→ n→∞ 0 by following the key idea of similar proof in [START_REF] Sin | Information criteria for selecting possibly misspecified parametric models[END_REF] by defining the "best" parameter θ * (m) ∈ Θ(m) which will play the role of θ * in cases of "true" or overfitted model. For model m ∈ M, let define

θ * (m) := argmax θ∈Θ(m) L(θ) with L(θ) := - 1 2 E[q 0 (θ)].
(2.7.20)

Given that the function L is continuous and the parameter set Θ(m) is assumed compact, the parameter θ * (m) exists and is unique by virtue of the identifiability condition Id(Θ).

It is worth noting, since L(θ) has a unique maximum reached at θ * (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]), and along with the fact that θ * ∈ Θ(m), it follows that θ * (m) = θ * when m is the true model or an overfitted one.

Let us show that even in the presence of misspecification, the QMLE still remains consistent but for θ * (m). This important result will allow us to show that our model selection procedure can not choose a misspecified model.

Proposition 2.2. Let X ∈ AC(M θ * , f θ * ) (or AC( H θ * )) and Θ ⊆ Θ(r) (or Θ ⊆ Θ(r)) with r ≥ 2. Under the assumptions Id(Θ), D Θ and K Θ , it holds 1 n L n (θ) -L(θ) Θ(m)
a.s.

-→ n→+∞ 0 and (2.7.21)

θ(m)
a.s.

-→ n→+∞ θ * (m).

(2.7.22)

Proof. The proof of (2.7.21) follows from a consequence of uniform strong law of large numbers for stationary ergodic sequence (see the proof of Theorem 1 in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). The second result holds by applying (2.7.21) and Lemma 2.1.

Proof of Theorem 2.1

Before diving into the proof, remark first that:

P( m = m * ) = 1 -P(m * ⊂ m) -P(m * ⊆ m).
(2.7.23)

As we point out in Subsection 2.2.1, the proof is divided into two parts; the first part shows that our selection criterion choses an overfitted model with probability decreasing to zero while the second part shows a similar behavior for the probability of selecting a misspecified model.

Proof. 1. Since M is finite, let m 0 ∈ M such as m = m 0 and m * ⊂ m 0 , (i.e an overfitted model was selected, but let show that this cannot happen). Let compute P C(m 0 ) ≤ C(m * ) for large n.

We have: 

P C(m 0 ) ≤ C(m * ) = P -2 L n θ(m 0 ) + |m 0 | κ n ≤ -2 L n θ(m * ) + |m * | κ n = P -2 L n θ(m 0 ) + 2 L n θ(m * ) ≤ κ n (|m * | -|m 0 |) = P 1 κ n L n θ(m * ) -L n θ(m 0 ) ≤ (|m * | -|m 0 |) 2 -→
P(m * ⊂ m) -→ n→∞ 0. 2. Since M is finite, let m 0 ∈ M such as m = m 0 and m * ⊆ m. Let compute n -1 C(m 0 ) -C(m * ) for large n. First, 1 n L n θ(m * ) -L n θ(m 0 ) = 1 n L n θ(m * ) -L n θ(m 0 ) + o a.s (1) using Lemma 2.1 = L θ(m * ) -L θ(m 0 ) + o a.s (1) using Proposition 2.2 = L θ(m * ) -L(θ * ) -L θ(m 0 ) -L(θ * (m 0 )) + L(θ * ) -L(θ * (m 0 )) + o a.s (1).
Since L is continuous over Θ, using continuous mapping theorem and the relation (2.7.22) of Proposition 2.2, it holds for n large enough

L θ(m * ) -L(θ * ) = o a.s (1) and L θ(m 0 ) -L(θ * (m 0 )) = o a.s (1).
Hence,

1 n L n θ(m * ) -L n θ(m 0 ) = L(θ * ) -L(θ * (m 0 )) + o a.s (1).
(2.7.24)

Now, let us show that that A(m)

:= L(θ * ) -L(θ * (m)) > 0 for m = m 0 . Let us denote by F t := σ X t-1 , X t-2 , • • • . Using conditional expectation, we obtain L(θ * ) -L(θ) = 1 2 E E q 0 (θ) -q 0 (θ * ) | F 0 .
(2.7.25)

But,

E q 0 (θ) -q 0 (θ * ) | F 0 = E (X 0 -f 0 θ ) 2 H 0 θ + log(H 0 θ ) - (X 0 -f 0 θ * ) 2 H 0 θ * -log(H 0 θ * ) | F 0 = log H 0 θ H 0 θ * + E (X 0 -f 0 θ ) 2 | F 0 H 0 θ - E (X 0 -f 0 θ * ) 2 | F 0 H 0 θ * = log H 0 θ H 0 θ * -1 + E (X 0 -f 0 θ * + f 0 θ * -f 0 θ ) 2 | F 0 H 0 θ = H 0 θ * H 0 θ -log H 0 θ * H 0 θ -1 + (f 0 θ * -f 0 θ ) 2 H 0 θ Thus from (2.7.25), 2 A(m 0 ) = E H 0 θ * H 0 θ * (m 0 ) -log H 0 θ * H 0 θ * (m 0 ) -1 + f 0 θ * -f 0 θ * (m 0 ) 2 H 0 θ * (m 0 ) ≥ E H 0 θ * H 0 θ * (m 0 ) -log E H 0 θ * H 0 θ * (m 0 ) -1 + E f 0 θ * -f 0 θ * (m 0 ) 2 H 0 θ * (m 0 )
by Jensen Inequality.

Since x -log(x) -1 > 0 for any x > 0, x = 1 and x -log(x) -1 = 0 for x = 1, we deduce that

• If f 0 θ * = f 0 θ * (m 0 ) , then E f 0 θ * -f 0 θ * (m 0 ) M 0 θ * (m 0 ) 2 > 0 and A(m 0 ) > 0.
• Otherwise, then

2 A(m 0 ) = E H 0 θ * H 0 θ * (m 0 ) -log H 0 θ * H 0 θ * (m 0 )
-1 , and from assumption Id(Θ), since θ * / ∈ Θ(m) and f 0 θ * = f 0 θ * (m 0 ) , we necessarily have

H 0 θ * = H 0 θ * (m 0 ) so that H 0 θ * H 0 θ * (m 0 ) = 1. Therefore, A(m 0 ) > 0.
As a consequence, Thus we have proved the first and most difficult part of Theorem (2.1). The next lines show the second part which is about the consistency of θ( m).

C(m 0 ) -C(m * ) n = A(m 0 ) + κ n n (|m 0 | -|m * |) + o a.s ( 
Given > 0, we have :

P θ( m) -θ * i∈m * > = P θ( m) -θ * i∈m * > | m = m * P m = m * +P θ( m) -θ * i∈m * > | m = m * P m = m * .
From the strong consistency of the QMLE (see New version of Theorem 1 of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]), the first term of the right hand side of the above equation is asymptotically zero and also the second one under the assumptions of the first part of Theorem 2.1 which gives P m = m * -→ n→∞ 0.

Proof of Theorem 2.2

Proof. For

x = (x i ) 1≤i≤d ∈ R d , denote F n (x) = P 1≤i≤d √ n θ( m) -θ * i ≤ x i .
First, we have:

F n (x) = P 1≤i≤d √ n θ( m) -θ * i ≤ x i m = m * P m = m * +P 1≤i≤d √ n θ( m) -θ * i ≤ x i m = m * P m = m * .
Under the assumptions of Theorem 2.1,

P m = m * -→ n→∞ 1 and P m = m * -→ n→∞ 0.
Therefore the second term in the right side of the previous equality asymptotically vanishes. For the first term, we can write,

P 1≤i≤d √ n θ( m) -θ * i ≤ x i m = m * = P i∈m * √ n θ(m * ) -θ * i ≤ x i i / ∈m * √ n θ(m * ) -θ * i ≤ x i . Since θ(m * ) ∈ Θ(m * ), θ(m * ) i i / ∈m * = θ * i i / ∈m * = 0, for (x i ) i /
∈m * a family of non negative real numbers we have:

P i∈m * √ n θ(m * ) -θ * i ≤ x i i / ∈m * √ n θ(m * ) -θ * i ≤ x i = P i∈m * √ n θ(m * ) -θ * i ≤ x i -→ n→∞ P F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 -1/2 Z ≤ (x i ) i∈m * ,
with Z a standard Gaussian random vector in R |m * | from the central limit theorem in Theorem 2 of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], and this achieves the proof of 2.3.3 of Theorem 2.2.

Proof of Theorem 2.3

Consider the following notation: for θ ∈ Θ and m ∈ M, denote the residuals and quasiresiduals by:

e t (θ) := M t θ -1 X t -f t θ and e t (θ) := M t θ -1 X t -f t θ e t (m) := M t θ(m) -1 X t -f t θ(m)
and e t (m) :

= M t θ(m) -1 X t -f t θ(m)
.

For k ∈ {0, 1, . . . , n -1}, θ ∈ Θ and m ∈ M, define also the adjusted lag-k covariograms and correlograms of the squared (standardized) residual by:

           γ k (θ) := 1 n n-k t=1 e 2 t (θ) -1 e 2 t+k (θ) -1 ; γ k (θ) := 1 n n-k t=1 e 2 t (θ) -1 e 2 t+k (θ) -1 γ k (m) := 1 n n-k t=1 e 2 t (m) -1 e 2 t+k (m) -1 ; γ k (m) := 1 n n-k t=1 e 2 t (m) -1 e 2 t+k (m) -1 and ρ k (θ) := γ k (θ) γ 0 (θ) , ρ k (θ) := γ k (θ) γ 0 (θ) , ρ k (m) := γ k (m) γ 0 (m) and ρ k (m) := γ k (m) γ 0 (m) .
Finally, for K a positive integer, denote the vector of adjusted correlogram:

ρ(θ) := ρ 1 (θ), . . . , ρ K (θ)
and ρ(m) := ρ 1 (m), . . . , ρ K (m) .

Proof.

(1) This proof is divided into two parts. In (i) we prove a result that ensures that the asymptotic distributions of the vectors ρ(θ) and ρ(θ) are the same. In (ii) we show that the large sample distribution of √ nρ(m * ) is normal with a covariance matrix V (θ * , m * ) . Those two conditions do lead well to the asymptotic normality (2.5.1).

(i) In this part, we first show that for any k ∈ N,

√ n γ k (θ) -γ k (θ) Θ a.s.
-→ n→∞ 0.

(2.7.27)

We have:

√ n γ k (θ) -γ k (θ) = 1 √ n n t=k+1 e 2 t (θ) -1 e 2 t-k (θ) -1 - 1 √ n n t=k+1 e 2 t (θ) -1 e 2 t-k (θ) -1 = 1 √ n n t=k+1 e 2 t (θ) e 2 t-k (θ) -e 2 t (θ)e 2 t-k (θ) + 1 √ n n t=k+1 e 2 t (θ) -e 2 t (θ) + 1 √ n n t=k+1 e 2 t-k (θ) -e 2 t-k (θ) =: I 1 + I 2 + I 3 .
Now, we show that I 1 Θ a.s.

-→ n→+∞ 0. We can rewrite I 1 as follows

I 1 = 1 √ n n t=k+1 e 2 t-k (θ) e 2 t (θ) -e 2 t (θ) + 1 √ n n t=k+1 e 2 t (θ) e 2 t-k (θ) -e 2 t-k (θ) = 1 √ n n t=k+1 e 2 t-k (θ) -e 2 t-k (θ) e 2 t (θ) -e 2 t (θ) + 1 √ n n t=k+1 e 2 t-k (θ) e 2 t (θ) -e 2 t (θ) + 1 √ n n t=k+1 e 2 t (θ) e 2 t-k (θ) -e 2 t-k (θ) := I 1 1 + I 2 1 + I 3 1 .
Let us show that I 1 1 Θ a.s.

-→ n→+∞ 0 in our two frameworks.

a/ If X ⊂ AC(M θ , f θ ), by Hölder's inequality, it follows from (2.7.8) that,

E e 2 t-k (θ) -e 2 t-k (θ) e 2 t (θ) -e 2 t (θ) 1/2 Θ ≤ E e 2 t (θ) -e 2 t (θ) Θ × E e 2 t-k (θ) -e 2 t-k (θ) Θ 1/2 . But we have e 2 t (θ)-e 2 t (θ) Θ ≤ × E M t θ -M t θ 2 Θ 1/2 ≤ C E j≥t α j (f θ , Θ)X t-j 2 1/2 +C E j≥t α j (M θ , Θ)X t-j 2 1/2 ≤ C j≥t α j (f θ , Θ) + α j (M θ , Θ), using E |X t | 4 + f t θ 2 Θ + f t θ 2 Θ < ∞ and Cauchy-Schwarz Inequality. Hence, E e 2 t-k (θ) -e 2 t-k (θ) e 2 t (θ) -e 2 t (θ) 1/2 Θ ≤ C j≥t-k α j (f θ , Θ) + α j (M θ , Θ).
Therefore, from [START_REF] Kounias | An inequality and almost sure convergence[END_REF],

I 1 1 Θ a.s. -→ n→+∞ 0 when ∞ t=1 t -1/4 j≥t α j (f θ , Θ) + α j (M θ , Θ) < ∞. (2.7.28) b/ if X ⊂ AC( H θ ), same computations imply I 1 1 Θ a.s. -→ n→+∞ 0 when ∞ t=1 t -1/4 j≥t α j ( H θ , Θ) < ∞. (2.7.29) Since E e 2 t (θ) Θ ≤ 2 h -1 E X 2 t + f t θ 2
Θ < ∞ and similarly E e 2 t (θ) Θ < ∞, we deduce from the same inequalities as in the first case of I 1 1 that I 2 1 Θ a.s.

-→ n→+∞ 0 and

I 3 1 Θ a.s. -→ n→+∞ 0 when ∞ t=1 t -1/4 j≥t α j (f θ , Θ) + α j (M θ , Θ) + α j ( H θ , Θ) 1/2 < ∞, (2.7.30)
which is also the condition for insuring that I 2 Θ a.s.

-→ n→+∞ 0 and I 3 Θ a.s.

-→ n→+∞ 0. This ends the proof of (2.7.22). Finally, since ρ k (θ) = γ k (θ)/ γ 0 (θ) and ρ k (θ) = γ k (θ)/γ 0 (θ), with γ 0 (θ) > 0, we deduce under condition (2.7.30) that

√ n ρ k (θ) -ρ k (θ) Θ a.s.
-→ n→+∞ 0 for any k ≥ 1.

(2.7.31)

This also implies

√ n ρ k (m * ) -ρ k (m * ) a.s.
-→ n→+∞ 0 for any k ≥ 1.

(2.7.32) (ii) The proof of this result has already been done in [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[END_REF] but in a Gaussian framework. We recall here the main lines while avoiding the Gaussian assumption. The first step is to use a Taylor expansion of the function γ. Hence, we have for each k = 1, . . . , K,

√ n γ k (m * ) = √ n γ k ( θ(m * )) = √ n γ k (θ * ) + ∂ θ γ k (θ (k) ) √ n ( θ(m * )) i -θ * i i∈m * , (2.7.33)
where ∂ θ γ k = t ∂γ k /∂θ i i∈m * , and θ (k) is in the ball of centre θ * and radius ( θ(m * )θ * ) i∈m * . We also have

∂ θ γ k (θ) = - 2 n = 0.
As a consequence, the expectation of the three last terms of (2.7.34) vanishes for θ = θ * . By using the Ergodic Theorem, we finally obtained:

∂ θ γ k (θ * ) a.s. -→ n→+∞ -2 E e 2 k (θ * ) e 2 0 (θ * ) -1 ∂ θ M k θ * M k θ * = -2 E ξ 2 0 -1 ∂ θ log M k θ * .
Moreover, since ∂ 2 θ 2 f θ and ∂ 2 θ 2 M θ exist, and since θ(m * ) a.s.

-→ n→+∞ θ * , we deduce that the same almost sure convergence occurs for ∂ θ γ k (θ (k) ). Then, we finally obtain

∂ θ γ k (θ (k) ) 1≤k≤K a.s. -→ n→+∞ J K (m * ) = -2 E ξ 2 0 -1 ∂ ∂θ j log M i θ * 1≤i≤K, j∈m * .
(2.7.35) Under the assumptions, a central limit theorem for θ(m * ) has been established in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], and this implies

∂ θ γ k (θ (k) ) 1≤k≤K √ n ( θ(m * )) i -θ * i i∈m * D -→ n→∞ N K 0 , J K (m * ) F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 J K (m * ) . (2.7.36)
On the other hand, when θ = θ * , e 2 t (θ * ) = ξ 2 t for any t ∈ Z and since E[ξ 2 0 ] = 1, we deduce that e 2 t (θ * ) -1 t is a sequence of centred iid random variables with variance µ 4 -1 with µ 4 = E[ξ 4 0 ]. In such as case, the asymptotic behavior of the covariograms is well known and we deduce: (2.7.37) with I k the (K × K) identity matrix.

√ n γ k (θ * ) 1≤k≤K D -→ n→∞ N K 0 , (µ 4 -1) 2 I K ,
We would like to use (2.7.33) for obtaining the asymptotic behavior of γ(m * ). In (2.7.36) and (2.7.37), we obtained the asymptotic normality of each of the two terms composing γ(m * ). Now we need to study the joint asymptotic behavior of

√ n γ(θ * ) and √ n ( θ(m * )) i - θ * i i∈m * .
Using the proof of the asymptotic normality of the QMLE (see for instance [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]), a Taylor expansion of log-likelihood for large n leads to

( θ(m * )) i -θ * i i∈m * ≈ 2 F (θ * , m * ) -1 1 n ∂ ∂θ L n (θ * ).
Therefore, the asymptotic cross expectation between

∂ θ γ k (θ (k) ) k √ n ( θ(m * )) i -θ * i i∈m * and √ n γ(θ * ) is equal to: -J K (m * ) F (θ * , m * ) -1 E ∂ ∂θ L n (θ * ) γ(θ * ) .
(2.7.38)

From (2.2.1), a direct differentiation of L n provides ∂ ∂θ L n (θ * ) = n t=1 e 2 t (θ * ) -1 ∂ ∂θ log M t θ * + n t=1 e t (θ * ) ∂ ∂θ f t θ * so that, E ∂ ∂θ L n (θ * ) γ k (θ * ) = 1 n E n i=1 e 2 i (θ * ) -1 ∂ ∂θ log M i θ * × n j=k+1 e 2 j (θ * ) -1 e 2 j-k (θ * ) -1 + 1 n E n i=1 e i (θ * ) ∂ ∂θ f i θ * n j=k+1 e 2 j (θ * ) -1 e 2 j-k (θ * ) -1 = 1 n n i=1 n j=k+1 E ξ 2 i -1 ξ 2 j -1 ξ 2 j-k -1 ∂ ∂θ log M i θ * + 1 n n i=1 n j=k+1 E ξ i ξ 2 j -1 ξ 2 j-k -1 ∂ ∂θ f i θ * .
Using conditional expectations, we have

E ξ 2 i -1 ξ 2 j -1 ξ 2 j-k -1 ∂ ∂θ log M i θ *
= 0 for i = j since k ≥ 1. Moreover, for i = j, we obtain:

E ξ 2 i -1 ξ 2 j -1 ξ 2 j-k -1 ∂ ∂θ log M i θ * = (µ 4 -1) E ξ 2 i-k -1 ∂ ∂θ log M i θ * , which is the row k of matrix -(µ 4 -1) 2 J K (m * ).
Similarly, and using the assumption

E ξ 3 0 ] = 0, we obtain E ξ i ξ 2 j -1 ξ 2 j-k -1 ∂ ∂θ f i θ * = 0 for any i, j and k. As a consequence, Cov √ n γ(θ * ) , ∂ θ γ k (θ (k) ) k √ n ( θ(m * )) i -θ * i i∈m * -→ n→∞ 1 2 (µ 4 -1) J K (m * ) F (θ * , m * ) -1 J K (m * ).
Finally, we deduce the asymptotic covariance matrix of √ n γ(m * ), which is

(µ 4 -1) 2 I K + J K (m * ) F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 J K (m * ) + (µ 4 -1) J K (m * ) F (θ * , m * ) -1 J K (m * ).
Moreover the vector γ(m * ) is normal distributed from Lemma 3.3 of [START_REF] Ling | Diagnostic checking of nonlinear multivariate time series with multivariate arch errors[END_REF]. Thus, using Slutsky Lemma and with γ 0 (m * ) a.s.

-→ n→+∞ µ 4 -1, and with ρ k (m * ) = γ k (m * )/γ 0 (m * ), the limit theorem (2.5.1) holds with

V (θ * , m * ) := I K + (µ 4 -1) -2 J K (m * ) F (θ * , m * ) -1 G(θ * , m * )F (θ * , m * ) -1 J K (m * ) -2 (µ 4 -1) -1 J K (m * ) F (θ * , m * ) -1 J K (m * ). (2.7.39)
The proof is achieved after using the limit theorem (2.7.32).

(2) (2.5.2) follows directly from (2.5.1).

(3) We follow a same reasoning like in the proof of Theorem 2.2. For

x = (x k ) 1≤k≤K ∈ R K , denote by F n (x) = P 1≤k≤K √ n ρ( m) k ≤ x k the distribution function of √ n ρ( m).
Applying the Total Probability Rule and by virtue of Theorem 2.1, we obtain:

F n (x) = P 1≤k≤K √ n ρ(m * ) k ≤ x k .
Therefore, the vectors √ n ρ( m) and √ n ρ(m * ) have exactly the same distribution. The content of this chapter was taken from the article submitted for publication: K. KAMILA "General Hannan and Quinn Criterion for Common Time Series " https://arxiv.org/pdf/2101.04210.pdf .

Abstract

This chapter aims to study data driven model selection criteria for a large class of time series, which includes ARMA or AR(∞) processes, as well as GARCH or ARCH(∞), APARCH and many others processes. We tackled the challenging issue of designing adaptive criteria which enjoys the strong consistency property. When the observations are generated from one of the aforementioned models, the new criteria, select the true model almost surely asymptotically. The proposed criteria are based on the minimization of a penalized contrast akin to the Hannan and Quinn's criterion and then involved a term which is known for most classical time series models and for more complex models, this term can be data driven calibrated. Monte-Carlo experiments and an illustrative example on the CAC 40 index are performed to highlight the obtained results. A common solution in model selection is to choose the model, minimizing a penalized based criterion which is the sum of two terms: the first one is the empirical risk (least squares, likelihood) that measures the goodness of fit and the second one is an increasing function of the complexity which aims to penalize large models and control the bias. Therefore a challenging task when designing a penalized criterion is the specification of the penalty term. Considering leading model selection criteria (BIC, AIC, Cp, HQ to name a few), one can see that the penalty term is a product of the model dimension with a sequence which is specific to the criteria. Indeed, a criterion is designed according to the goal one would like to achieve. The classical properties for model selection criteria include consistency, efficiency (oracle inequality, asymptotic optimality), adaptative in the minimax sense.

In this chapter, we focus on consistency property which aims at identifying the data generating process with high probability or almost surely. Hence, it requires the assumption whereby there exists a true model in the set of competitive models and the goal is to select this with probability approaches one as the sample size tends to infinity. In Bardet et al. (2020b), they studied model selection criteria regarding consistency in a large class of time series, which is the interest of this paper. The leading criterion obtained in this framework is the BIC; with a relatively heavy penalty, it ensures the selection of quite simple models. Moreover, several papers have established the consistency property in particular settings. For instance, [START_REF] Hannan | The determination of the order of an autoregression[END_REF] shows that the Hannan and Quinn (HQ) penalty c log log n with c > 2 leads to a consistent choice of the true order in the framework of AR type models. One year later, [START_REF] Hannan | The estimation of the order of an arma process[END_REF] (or [START_REF] Hannan | The statistical theory of linear systems[END_REF]) extended this result for ARMA models.

Also, it has been proven in several contexts, that the BIC criterion Schwarz (1978) enjoys the consistency property: [START_REF] Shibata | Consistency of model selection and parameter estimation[END_REF] in the density estimation using hypothesis testing for autoregressive moving average models, [START_REF] Lebarbier | Le critère BIC: fondements théoriques et interprétation[END_REF] in density estimation for independent observations, Bardet et al. (2020b) for a general class of time series, to name a few.

Compare to HQ penalty, the BIC penalty does not have the slowest rate of increase and then it can very often choose very simple models possible wrongs for small samples [START_REF] Hannan | The determination of the order of an autoregression[END_REF]. Moreover, the HQ criterion has been derived for linear time series: AR models in [START_REF] Hannan | The determination of the order of an autoregression[END_REF], ARMA models in [START_REF] Hannan | The estimation of the order of an arma process[END_REF] and [START_REF] Hannan | The statistical theory of linear systems[END_REF]. Is the HQ penalty still strongly consistent for heteroscedastic nonlinear models such as GARCH, APARCH or ARMA-GARCH? And what about a general class including linear and non linear models as well?

That raises a challenging question of designing robust penalties for most classical time series models enjoying the model selection consistency. This is the issue we want to address in this chapter for a general class of times series called affine causal and defined below.

Class AC(M, f ) : A process X = (X t ) t∈Z belongs to AC(M, f ) if it satisfies:

X t = M (X t-i ) i∈N * ξ t + f (X t-i ) i∈N * for any t ∈ Z. (3.1.1)
where (ξ t ) t∈T is a sequence of zero-mean independent identically distributed random vectors (i.i.d.r.v) satisfying E(|ξ 0 | r ) < ∞ with r ≥ 1 and M , f : R ∞ → R are two measurable functions.

For instance,

• if M (X t-i ) i∈N * = σ and f (X t-i ) i∈N * = ∞ i=1 φ i X t-i , then (X t ) t∈Z is an AR(∞) process; • if M (X t-i ) i∈N * = a 0 + a 1 X 2 t-1 + • • • + a p X 2 t-p and f (X t-i ) i∈N * = 0, then (X t ) t∈Z is an ARCH(p) process.
Note that, numerous classical time series models such as ARMA(p, q), GARCH(p, q), ARMA(p, q)-GARCH(p, q) (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] and [START_REF] Ling | Asymptotic theory for a vector arma-garch model[END_REF]) or APARCH(δ, p, q) processes (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]) belongs to AC(M, f ). The study of this type of process more often requires the classical regularity conditions on the functions M and f , which are not restrictive at all and remain valid in various time serie models. Let us recall these conditions for Ψ θ = f θ or M θ and Θ a compact set.

Hypothesis A(Ψ θ , Θ): Assume that Ψ θ (0) Θ < ∞ and there exists a sequence of nonnegative real numbers α k (Ψ θ , Θ) k≥1 such that ∞ k=1 α k (Ψ θ , Θ) < ∞ satisfying:

Ψ θ (x) -Ψ θ (y) Θ ≤ ∞ k=1 α k (Ψ θ , Θ)|x k -y k | f or all x, y ∈ R ∞ .
In addition, if the noise ξ 0 admits r-order moments (for r ≥ 1), let us define:

Θ(r) = θ ∈ R d , A(f θ , {θ}) and A(M θ , {θ}) hold with ∞ k=1 α k (f θ , {θ}) + ξ 0 r ∞ k=1 α k (M θ , {θ}) < 1 . (3.1.2)
Under this assumption, [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] showed that there exists a stationary and ergodic solution to (3.1.1) with r-order moment for any θ ∈ Θ(r). Moreover, [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] studied the consistency and the asymptotic normality of the QMLE of θ * for AC(M θ * , f θ * ) .

The main contribution of this chapter is the generalization of the HQ criterion to affine causal class: we provide a minimal multiplicative penalty term c min so that all penalties of the form 2 c log log n D m with c ≥ c min ensure the strong consistency property for affine causal models under some mild conditions on the Lipschitz coefficients of functions M θ , f θ (D m denotes the size of the model m). Monte Carlo experiments have been conducted in order to attest the accuracy of our new criteria.

The chapter is organized as follows. The model selection consistency along with notations and assumptions are described in Section 3.2. Numerical results are presented in Section 3.3 and Section 3.4 contains the proofs. 

Model Selection Procedure

Let assume (X 1 , . . . , X n ) be a trajectory of a stationary affine causal process m * := AC(M θ * , f θ * ), where θ * is unknown. The goal of the consistency property is to come up with this true model given a set of candidate model M such that m * ∈ M.

A D m -dimensionnal model m ∈ M can be viewed as a set of causal functions (M θ , f θ ) with θ ∈ Θ(m) ⊂ R Dm . Θ(m) is the parameter set of the model m.

The consistency property will be studied using quasi likelihood functions since assumption on the distribution of the noise is not required. The Gaussian quasi log-likelihood is derived from the conditional (with respect to the filtration σ X t , t ≤ 0 log-likelihood of (X 1 , . . . , X n ) when (ξ t ) is supposed to be a Gaussian standard white noise. From (3.1.1), one deduce that the log density of

X t given σ X i , i < t is - 1 2 (X t -f t θ * ) 2 H t θ * + log(H t θ * ) .
Therefore the conditional log density of (X 1 , . . . , X

n ) given σ X t , t ≤ 0 is - 1 2 n t=1 (X t -f t θ * ) 2 H t θ * + log(H t θ * ) .
From now on, we drop the Gaussian assumption of the noise. The conditional log-density inspires to define for all θ ∈ Θ

L n (θ) := - 1 2 n t=1 q t (θ) , with q t (θ) := (X t -f t θ ) 2 H t θ + log(H t θ ) (3.2.1)
where

f t θ := f θ (X t-1 , X t-2 , • • • ), M t θ := M θ (X t-1 , X t-2 , • • • ) and H t θ = M t θ 2 .
The quasi likelihood function L n is not computable since it depends on the past (X -j ) j∈N that is unknown. However, the sequence (L n (.)) n enjoys very nice asymptotic properties such that the Uniform Law of Large Numbers (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). Let M a finite family of candidate models containing the true one m * . According to Proposition 1 in Bardet et al. (2020b), all these models can be included into a big one with parameter space Θ. For each specific model m ∈ M, we define the Gaussian QMLE θ(m) with respect to

L n as θ(m) = argmax θ∈Θ(m) L n (θ). (3.2.2)
To select the true model m ∈ M, we consider a penalized contrast C(m) ensuring a trade-off between -2 times the maximized log-likelihood, which decreases with the size of the model, and a penalty increasing with the size of the model. Therefore, the choice of the "best" model m among the estimated can be performed by minimizing the following criteria

m = argmin m∈M C(m) with C(m) = -2 L n θ(m) + κ n (m) (3.2.3)
where (κ n ) n an increasing sequence depending on the number of observations n and the dimension D m . There exist several possible choices of κ n (m) including

• κ n (m) = 2c D m log log n with c > 1, we retrieve the HQ criterion [START_REF] Hannan | The determination of the order of an autoregression[END_REF];

• κ n = D m log n, C yields to BIC criterion [START_REF] Schwarz | Estimating the dimension of a model[END_REF];

• κ n = 2 D m , C is the AIC criterion [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF].

Basically the principle is that by increasing the size of the model, the likelihood increases also. The question is whether this increase in complexity is offset by a sufficient increase in likelihood. If the answer is no, then the least complex model is used, even if it is less likely. If the answer is affirmative, then we accept to work with a more complex model. Of course, all the difficulty lies in the choice of weights between likelihood and complexity, and thus ultimately in the specification of the penalty multiplicative term κ n .

What is the better weighting term of the model complexity? The aim here is by leveraging the increasing rate of the likelihood, to propose a data driven κ n in order to guarantee the strong consistency property to our model selection procedure i.e. (3.2.4)

Assumptions

Some mild conditions will be required to prove the consistency of the considered model selection criteria.

The following assumption is well-known as the identifiability one and is always required in order to guarantee the unicity of the global maximum of the MLE at the true parameter θ * . That is:

Assumption A1: For all θ, θ ∈ Θ m , (f 0 θ = f 0 θ ) and (M 0 θ = M 0 θ ) =⇒ θ = θ .
Another required assumption concerns the differentiability of Ψ θ = f θ or M θ on Θ. This type of assumption has already been considered in order to apply the QMLE procedure (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF], [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF]).

The following condition provides the invertibility of the Fisher's information matrix of (X 1 , . . . , X n ) and was used to prove the asymptotic normality of the QMLE (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]).

Assumption A2: For any x ∈ R ∞ , the functions θ → M θ and θ → f θ are C 2 (Θ) and one of the families

(∂f t θ /∂θ (i) ) 1≤i≤D m * or (∂H t θ /∂θ (i) ) 1≤i≤D m * is a.e. linearly independent.
Note that the definitions of the conditional log-likelihood requires that their denominators do not vanish. Hence, we will suppose in the sequel that the lower bound of

H θ (•) = M θ (•) 2 (which is reached since Θ is compact) is strictly positive: Assumption A3: ∃h > 0 such that inf θ∈Θ (H θ (x)) ≥ h for all x ∈ R ∞ .
Next we assume the existence of the eighth order moment of the noise.

Assumption A4: E[ξ 8 0 ] < ∞. We end the list of assumptions by assuming a suitable relation between the Fisher Information matrix G(θ * m ) and the limiting Hessian matrix of the log-likelihood F (θ * m ) defined as follows

F (θ * m ) i,j = E ∂ 2 q 0 (θ * m ) ∂θ i ∂θ j and (G(θ * m )) i,j = E ∂q 0 (θ * m ) ∂θ i ∂q 0 (θ * m ) ∂θ j ,
with θ * m := (θ * , 0, . . . , 0) ∈ Θ(m). Assumption A5: There exist absolutes constants α 1 and α 2 such that for any m ∈ M verifying m * ⊂ m,

1 m Σ θ * m 1 m = α 1 D 1 m + α 2 D 2 m (3.2.5)
where D 1 m and D 2 m are two integers such that

D 1 m + D 2 m = D m , 1 m := (1, 1, . . . , 1) ∈ R Dm , Σ θ * m := G(θ * m ) 1/2 F (θ * m ) -1 G(θ * m ) 1/2 .
For most classical affine causal models, A5 is verified (see Proposition 3.2). However, for more complex models such as ARMA-GARCH with µ 4 = 3, Σ θ * m is hard to handle.

Consistency Result

Before stating the main result of this section, we give important intermediate results. All proof of the results stated in this subsection can be found in Section 3.4.

The following Proposition suggests the existence of a term that will be the keystone of this work. 

L n θ(m) -L n (θ * m ) 2 log log n = 1 4 α 1 D 1 m + α 2 D 2 m a.s. (3.2.6)
where the constants α 1 , α 2 , D 1 m , D 2 m are specified in assumption A5.

For every m ∈ M, let us denote by c min (m) the following term that will be used several times

c min (m) := 1 4 α 1 D 1 m + α 2 D 2 m (3.2.7)
Now we state a result which provides the values of both α 1 and α 2 for most classical affine causal models.

Proposition 3.2. Under the assumptions and notation of Proposition 3.1, we have

• If µ 4 = E[ξ 4 0 ] = 3 (for instance for Gaussian noise), then α 1 = 2, α 2 = 2 and c min (m) = 1 2 D m ; • If the parameter θ identifying an affine causal model X t = M t θ ξ t + f t θ can be de- composed as θ = (θ 1 , θ 2 ) with f t θ = f t θ 1 and M t θ = M t θ 2 , then α 1 = 2, α 2 = µ 4 -1 and c min (m) = 1 2 D 1 m + µ 4 -1 4 D 2 m
The second configuration in Proposition 3.2 includes classical time series

• GARCH(p, q), APARCH(δ, p, q) type models and related ones, c min (m) = µ 4 -1 4 D m ;

• ARMA(p, q) models, c min (m) = Dm 2 if the variance of the noise is known and

c min (m) = Dm-1 2 + µ 4 -1 4 otherwise.
We can now state the first main result of this paper.

Theorem 3.1. Let (X 1 , . . . , X n ) be an observed trajectory of an affine causal process X belonging to AC(M θ * , f θ * ) where θ * is an unknown vector belonging to Θ(r) ⊂ R D m * . Let also M be a finite family of candidate models such that m * ∈ M. 2. For more complex models, the values of α 1 and α 2 are unknowns (at least until a better relationship between matrix F (θ * m ) and G(θ * m ) is found) and so c min is also unknown. In these cases, we propose to use adaptive methods such as slope heuristic algorithm or dimension jump [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF] to calibrate c min .

Let us mention that our result generalizes the strong consistency obtained by [START_REF] Hannan | The determination of the order of an autoregression[END_REF] for AR models as the affine causal class also contains GARCH models. It furthermore generalizes the result [START_REF] Hannan | The statistical theory of linear systems[END_REF] for ARMA models. Theorem 3.1 gives a theoretical guarantee on the consistency of the model selection procedure. However, it does not say anything about the convergence (and its rate) of the parameter estimate resulting from the model selection m. The following results shows that the final estimate θ m is consistent and verifies a CLT. (3.2.10)

Moreover, √ n θ( m) i -(θ * ) i i∈m * D -→ n→∞ N |m * | 0 , Σ θ * ,m * (3.2.11) with Σ θ * ,m * := F (θ * ) -1 G(θ * )F (θ * ) -1
The proof of this result is identical to the proofs of theorems 3.1 and 3.2 of our previous paper Bardet et al. (2020b). It will therefore not be carried out for the sake of brevity.

In this subsection, we have used the QMLE contrast without any distribution assumption on the noise to derive a consistency property. However, the contrast L n as in (3.2.1) depends on all the past values of the process X, which are unobserved. In the next subsection, we will propose an extension of Theorem 3.1 based on QMLE which does not require knowledge of the initial values of the process.

Another Quasi-Likelihood Function

The goal of this subsection is to sharpen the conditions on the sequence κ n found in Bardet et al. (2020b). Before stating the result, let recall a little bit some definitions and notations used in Bardet et al. (2020b). Following the derivation of L n , we define its computable version L n as follows:

L n (θ) := - 1 2 n t=1 q t (θ) , with q t (θ) := (X t -f t θ ) 2 H t θ + log( H t θ ) (3.2.12)
where

f t θ := f θ (X t-1 , X t-2 , . . . , X 1 , 0, . . . , 0), M t θ := M θ (X t-1 , X t-2 , . . . , X 1 , 0, . . . , 0) and H t θ = M t θ 2 .
Therefore for every model m ∈ M, we define the Gaussian QMLE θ(m) (with respect to

L n ) as θ(m) = argmax θ∈Θ(m)
L n (θ).

(3.2.13)

Once the estimation in each model in the family M has been performed, we select the best model as follows

m = argmin m∈M C(m) with C(m) = -2 L n θ(m) + κ n (m). (3.2.14)
In this framework, we do not consider long memory process and then we define the class H(M θ , f θ ) a subset of AC(M θ , f θ ) in which every process has Lispchitz coefficients satisfying the following conditions

α j (f θ ) + α j (M θ ) + α j (∂ θ f θ ) + α j (∂ θ M θ ) = O(j -γ ) with γ > 2.
It is then straightforward to see that every process in the class H(M θ , f θ ) verifies the following condition

Condition K(Θ): k≥e 1 log log k j≥k α j (f θ , Θ) + α j (M θ , Θ) + α j (∂ θ f θ , Θ) + α j (∂ θ M θ , Θ) < ∞.
This finding allows to propose a sharpen generalization of both Theorem 3.1 in our previous paper Bardet et al. (2020b) and a similar result in [START_REF] Kengne | Strongly consistent model selection for general causal time series[END_REF].

Before stating the consistency result, it is important as in Bardet et al. (2020b) or [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], to distinguish the special case of NLARCH(∞) processes which includes for instance GARCH(p, q) or ARCH(∞) processes. In such case, let us define the class:

Class AC( H θ ): A process X = (X t ) t∈Z belongs to AC( H θ ) if it satisfies: X t = ξ t H θ (X 2 t-i ) i∈N * for any t ∈ Z. (3.2.15) Therefore, if M 2 θ (X t-i ) i∈N * = H θ (X t-i ) i∈N * = H θ (X 2 t-i ) i∈N * then, AC( H θ ) = AC(M θ , 0
). In case of the class AC( H θ ), we will use the assumption A( H θ , Θ). The new set of stationary solutions is for r ≥ 2:

Θ(r) = θ ∈ R d , A( H θ , {θ}) holds with ξ 0 r 2 ∞ k=1 α k ( H θ , {θ}) < 1 . (3.2.16)
Finally, we propose to restrict class AC( H θ ) to H( H θ ) as done with H(M θ , f θ ) by considering all the process checking the condition

α j (H θ ) + α j (∂ θ H θ ) = O(j -γ ) with γ > 2 so that k≥e 1 log log k j≥k α j (H θ ) + α j (∂ θ H θ ) < ∞.
We can now state the second main result.

Theorem 3.3. Let (X 1 , . . . , X n ) be an observed trajectory of an affine causal process All the comments made about the Theorem 3.1 remain valid here. Moreover, recently, Kengne (2020) requires heavy penalties to ensure the strong consistency for the process in the class AC(M θ * , f θ * ). Indeed, according to [START_REF] Kengne | Strongly consistent model selection for general causal time series[END_REF], it is necessary that κ n verified κ n / log log n -→ n→∞ ∞ to obtain (3.2.18) which is a stronger condition since the HQ criterion does not fulfill this condition and it is well known that HQ criterion is strongly consistent (see for instance [START_REF] Hannan | The determination of the order of an autoregression[END_REF]). Moreover, the new penalties found in this paper does not satisfy this condition, yet we ensure strongly consistency.

X belonging to H(M θ * , f θ * ) (or H( H θ * )) where θ * is an unknown vector belonging to Θ(r) ⊂ R D m * (or Θ(r) ⊂ R D m * ). Let
Also, let us mention that for small samples, heavy penalties such as those in Kengne (2020) can very often choose very simple models possible wrongs [START_REF] Hannan | The determination of the order of an autoregression[END_REF].

Remark 3.2. Our results show that, asymptotically heavy penalties such as BIC penalty will ensure the consistency property. However, in practise, these penalties are used for fixed n and most for small samples and it is important to point out their drawbacks. Very often, in the family of competitive models M, there are misspecified and underfitted models (M ). Since the difference -2 L n ( θ m ) + 2 L n ( θ m * ) > 0 for every m ∈ M , making the penalty, heavy could offset this positivity and can lead to the selection of some underfitted models and then wrong models. To be more convincing of that, see the simulations (DGP III) experiments in Section 3.3.

Algorithm of Calibration of the minimal constant

There exist several ways to calibrate the minimal constant c min including the dimension jump (presented below) and the data-driven slope estimation. Indeed, once an estimation of c min is obtained, many studies advocates the choice of 2 c min which turn out to be optimal [START_REF] Massart | Concentration inequalities and model selection[END_REF], [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF] among others). Now we present the dimension jump algorithm. This algorithm has been implemented in [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF] which gives several details including the grid for c values.

Let us notice that, in view of obtaining penalties, there is no need to calibrate the c min constant for most classical time series models. However, since the fourth order moment of the noise is unknown, a consistent estimate of this term is required. To do that, we proceed as in the estimation of the variance of the noise as in the Mallows Cp.

A consistent estimator µ m,4 of µ 4 = E[ξ 4 0 ] can be :

µ m,4 := 1 n n t=1 ξ t (m) 4 with ξ t (m) := M t θ m -1 X t -f t θ m
where we suppose that m is the "largest" model in the family M, typically the largest order of a family of time series. As a result an estimator of the c min constant to consider in the penalty κ n is

• µ m,4 -1 2
for GARCH family and related ones;

• 1 for ARMA family with known variance. In this section, several numerical experiments are conducted to assess the consistency property (Section 3.2) of our new criteria.

NUMERICAL EXPERIMENTS

Monte Carlo: Consistency

This subsection studies the performance of the model selection criteria found in Section 3.2. We have considered three different Data Generating Process (DGP):

DGP I X t = 0.5 X t-1 + 0.2 X t-2 + ξ t , DGP II X t = 0.2 + 0.4 X 2 t-1 + 0.2 X 2 t-2 1/2 ξ t , DGP III X t = 0.1( X t-1 + X t-2 + . . . + X t-6 ) + ξ t ,
where (ξ t ) will be a white Gaussian noise with variance one at first and a Student with 5 degrees of freedom on the other hand. For the first and the second DGP, we considered as competitive models all the models in the family M defined by: M = ARMA(p, q) or GARCH(p , q ) processes with 0 ≤ p, q, p ≤ 5, 1 ≤ q ≤ 5 .

Therefore, there are 66 candidate models as in Bardet et al. (2020b). The goal is to compare the ability of selecting the true model for

κ 3 n = log n D m , κ 2 n = 2 c min log log n D m
( in accordance with the condition (1.3.12) and κ 2 n = 2 × 2 c min log log n D m . Moreover, from Proposition 1.4, c min does not need to be estimated and worth one for Gaussian noise. But for Student noise, c min = max 1, µ m,4 -1 2

for the DGP I and c min = µ m,4 -1 2 for DGP II. The Table 2.1 presents the results of the selection procedure. As we can notice, the three penalties have a good consistency property. Moreover, for n relatively small, the penalty κ 1 n is better than both others. For larger n, κ 2 n is the best the penalty to consider. For DGP III, as we want to exhibit the possible "non consistency" of BIC for small samples, we have considered as the competitive set, the hierarchical family of AR models M = AR(1), . . . , AR( 15) 100,200,400,500,1000,2000. In Table 3.2 below the percentage of selected order based on 1000 independent replications are presented for the above three penalties. These results invite us to be cautious when using the BIC for small sample sizes, whereas the proposed adaptive penalty is more robust, as it at least allow us to recover an overfitted model that is less harmful than a wrong model most often chosen by the BIC. 
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Real Data Analysis: financial time series

CAC 40 is a benchmark French stock market index and is highly regarded in many statistical studies . Let consider the daily closing prices of the CAC 40 index from January 1st, 2010 to December 31st, 2019 plotted in Figure 3.1. Over the period under review, the CAC 40 increased.

To analyze this type of data, it is common to consider the returns (see Figure 3.2). We can see that the return values display some small auto-correlations. Also, from Figure 3.3, the squared returns of CAC 40 are strongly auto-correlated. These facts suggest that the strong white noise assumption cannot be sustained for this log-returns sequence of the CAC 40 index.

Hence, let consider the competitive set of models M used in the previous subsection in order to propose the best suitable model for these data: M = ARMA(p, q) or GARCH(p , q ) processes with 0 ≤ p, q, p ≤ 5, 1 ≤ q ≤ 5 .

Using the adaptive penalty and the BIC criterion, we find out that the GARCH(1, 1) is the best model over M with respect to both criteria. This fact is in accordance with [START_REF] Francq | GARCH models: structure, statistical inference and financial applications[END_REF] 

Proof of Theorem 3.1

Usually, this proof is divided into two parts: one has to show that as n tends to infinity the probability of overfitting goes to zero and so is the probability of misspecification. 

3.4.1.a Overfitting Case

Let m ∈ M such as m * ⊂ m. We want to show that C(m * ) ≤ C(m) a.s. asymptotically. We have

C(m * ) ≤ C(m) ⇐⇒ -2 L n θ(m * ) + 2c log log n D m * ≤ -2 L n θ(m) + 2c log log n D m ⇐⇒ L n θ(m) -L n (θ * ) log log n ≤ L n θ(m * ) -L n (θ * ) log log n + c (D m -D m * ) (3.4.1)
therefore, a necessary and sufficient condition to avoid overfitting can be stated by taking lim sup n→∞ on both sides of the inequality (3.4.1); that is by virtue of definition (1.3.11)

2 c min (m) -2 c min (m * ) ≤ c (D m -D m * ) for m * ⊂ m, (3.4.2) i.e., α 1 2 (D 1 m -D 1 m * ) + α 2 2 (D 2 m -D 2 m * ) ≤ c (D m -D m * )
which is fulfilled for any constant c such as in (3.2.8). Indeed,

c min = max α 1 2 , α 2 2 and α 1 2 (D 1 m -D 1 m * ) + α 2 2 (D 2 m -D 2 m * ) ≤ c min D 1 m -D 1 m * + D 2 m -D 2 m * = c min (D m -D m * )
where the inequality holds since m * ⊂ m that implies

D 1 m ≥ D 1 m * and D 2 m ≥ D 2 m * .
Hence the associated criterion κ n will avoid overfitting.

3.4.1.b Misspecification/Underfitting Case

All misspecified/underfitted models are contained in the set

M = m ∈ M : (m * ⊆ m) ∪ (m ⊂ m * ) .
The proof is exactly as the one done in Bardet et al. (2020b). But for the sake of completeness, we give here some important steps of the proof. The goal is to show that for every m ∈ M , it holds Bardet et al. (2020b) and using continuous mapping Theorem

C(m * ) < C(m) a.s. (3.4.3) Let m ∈ M . From Proposition 2 in
1 n L n θ(m * ) -L n θ(m) = A(m 0 ) + o a.s (1) (3.4.4) where A(m) := L(θ * ) -L(θ * m ) with L(θ) = - 1 2 E[q 0 (θ)].
Let us denote by F t := σ X t-1 , X t-2 , • • • . Using conditional expectation, we obtain

L(θ * ) -L(θ) = 1 2 E E q 0 (θ) -q 0 (θ * ) | F 0 . (3.4.5) But, E q 0 (θ) -q 0 (θ * ) | F 0 = E (X 0 -f 0 θ ) 2 H 0 θ + log(H 0 θ ) - (X 0 -f 0 θ * ) 2 H 0 θ * -log(H 0 θ * ) | F 0 = log H 0 θ H 0 θ * + E (X 0 -f 0 θ ) 2 | F 0 H 0 θ - E (X 0 -f 0 θ * ) 2 | F 0 H 0 θ * m = 1. Then A(m) > 0.
As a consequence,

C(m) -C(m * ) n = A(m) + 2 c κ n n (D m -D m * ) + o a.s (1).
That establishes (3.4.3) by virtue of (3.2.8) and as all the considered models are finite dimensional.

In the sequel, we state and prove several lemmas to which we referred to when proving above main results.

3.4.1.c Proof of Theorem 3.3

The proof follows mutatis mutandis from the Theorem 3.1's proof after replacing line by line L n , θ(m) and the criterion C by their equivalent L n , θ(m) and C respectively and applying Lemma 3.2 instead of Proposition 3.1.

3.4.1.d Proof of Proposition 3.1

Proof. Applying a second order Taylor expansion of L n around θ(m) for n sufficiently large such that θ(m) ∈ Θ(m) which are between θ * m := (θ * , 0, . . . , 0) and θ(m) yields (as

∂L n ( θ(m)) = 0 since θ(m) is a local extremum): L n (θ * ) -L n ( θ(m)) = L n (θ * m ) -L n ( θ(m)) = 1 2 θ(m) -θ * m ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * m := I 1 (m).
From the mean value Theorem, and for large n, there exists θ m,i between

(θ * m ) i and ( θ(m)) i such that, 1 ≤ i ≤ D m : 0 = ∂L n ( θ m ) ∂θ i = ∂L n (θ * m ) ∂θ i + ∂ 2 L n (θ m,i ) ∂θ∂θ i ( θ m -θ * m ) (3.4.6)
Also, using Lemma 4 of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and continuous mapping Theorem, we deduce that:

F n := - 2 n ∂ 2 L n (θ m,i ) ∂θ∂θ i 1≤i≤Dm a.s. -→ n→+∞ F (θ * m ) = E ∂ 2 q 0 (θ * m ) ∂θ 2 . (3.4.7)
On the other hand, under A2 condition, F (θ * m ) is an invertible matrix and there exists n sufficiently large such that F n is invertible. Therefore, from (3.4.6), it follows

I 1 (m) 2 log log n = 1 4 log log n θ(m) -θ * m ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * m = 1 4 log log n ∂L n (θ * m ) ∂θ - 2 n F -1 n ∂ 2 L n (θ(m)) ∂θ 2 - 2 n F -1 n ∂L n (θ * m ) ∂θ = - 1 2n log log n ∂L n (θ * m ) ∂θ × F (θ * m ) -1 × ∂L n (θ * m ) ∂θ 1 + o(1) a.s.
The next step of the proof consists in handling the quadratic form

∂Ln(θ * m ) ∂θ × F (θ * m ) -1 × ∂Ln(θ * m ) ∂θ
by applying the law of iterated logarithm (LIL). We claim that lim sup

n→∞ 1 √ 2n log log n 2 G(θ * m ) -1/2 ∂L n (θ * m ) ∂θ = 1, . . . , 1 . (3.4.8)
Proof of the claim: First, since the covariance matrix of

2 ∂Ln(θ * m ) ∂θ is G(θ * m )
, it follows that the covariance matrix of the vector

Z m := 2 G(θ * m ) -1/2 ∂Ln(θ * m ) ∂θ is the D m × D m identity matrix. Moreover, as ∂L n (θ * m ) ∂θ = - 1 2 n t=1 ∂q t (θ * m ) ∂θ = - 1 2 n t=1 ∂q t (θ * ) ∂θ ,
where

E ∂q t (θ * ) ∂θ σ(X t-1 , X t-2 , . . . , X 1 ) = 0 (3.4.9)
and

E ∂q 1 (θ * ) ∂θ i 2 < ∞ (3.4.10)
hold from [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] under A4. Finally, one can see that the i th element of Z m can be rewritten as

Dm j=1 2 G(θ * m ) -1/2 i,j ∂L n (θ * m ) ∂θ j = n t=1 ζ i t where ζ i t = -Dm j=1 G(θ * m ) -1/2 i,j ∂qt(θ * )
∂θ j . By virtue of (3.4.9), we have

E ζ i t σ(X t-1 , X t-2 , . . . , X 1 ) = 0.
Hence, any component of Z m verifies the LIL. That is for any

i = 1, . . . , D m , lim sup n→∞ 1 √ 2n log log n 2 G(θ * m ) -1/2 ∂L n (θ * m ) ∂θ i = 1.
This fact concludes the proof of the claim (3.4.8).

Hence writing

1 2n log log n ∂L n (θ * m ) ∂θ F (θ * m ) -1 ∂L n (θ * m ) ∂θ = 1 √ 2n log log n 2G(θ * m ) -1/2 ∂L n (θ * m ) ∂θ G(θ * m ) 1/2 F (θ * m ) -1 G(θ * m ) 1/2 4 1 √ 2n log log n 2G(θ * m ) -1/2 ∂L n (θ * m ) ∂θ 3.4.2 Technical Lemmas Lemma 3.1. Let X ∈ H(M θ * , f θ * ) (or H(H θ * )) and Θ ⊆ Θ(r) (or Θ ⊆ Θ(r)) with r ≥ 4.
Assume that assumption A3 holds. Then for i = 0, 1, 2, it holds

1 log log n ∂ (i) L n (θ) ∂θ i - ∂ (i) L n (θ) ∂θ i Θ a.s.
-→ n→+∞ 0.

(3.4.13)

Proof. This Lemma has already been proved in Bardet et al. (2020b) in a more general framework. Let us prove the result for i = 0. Other cases can be deduced by using a similar reasoning.

We have for any

θ ∈ Θ, | L n (θ) -L n (θ)| ≤ n t=1 | q t (θ) -q t (θ)|. Then, 1 log log n L n (θ) -L n (θ) Θ ≤ 1 log log n n t=1 q t (θ) -q t (θ) Θ .
By Corollary 1 of Kounias and Weng (1969), (3.4.13) is established when:

k≥1 1 log log k E q k (θ) -q k (θ) Θ < ∞. (3.4.14)
From [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and Bardet et al. (2020b), there exists a constant

C such that 1/ If X ∈ H(M θ , f θ ), we deduce E ( q t (θ) -q t (θ) Θ ≤ C j≥t α j (f θ , Θ) + j≥t α j (M θ , Θ) . (3.4.15) Hence, k≥1 1 log log k E q k (θ) -q k (θ) Θ ≤ C k≥1 1 log log k j≥k α j (f θ , Θ) + α j (M θ , Θ) ,
which is finite by definition of the class H(M θ , f θ ), and this achieves the proof.

2/ If X ∈ H( H θ ), E ( q t (θ) -q t (θ) Θ ≤ C j≥t α j (H θ , Θ) . (3.4.16)
This fact along with Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF] enable us to conclude the proof in this case. (3.4.17)

Proof. Applying a second order Taylor expansion of L n around θ(m) for n sufficiently large such that θ(m) ∈ Θ(m) which are between θ * m := (θ * , 0, . . . , 0) and θ(m) yields (as

∂ L n ( θ(m)) = 0 since θ(m) is a local extremum): L n (θ * ) -L n θ(m) = L n (θ * m ) -L n θ(m) = 1 2 θ(m) -θ * m ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * m := I 2 (m).
But I 2 (m) can be rewritten as

I 2 (m) 2 log log n = 1 4 θ(m) -θ * m 1 log log n ∂ 2 L n (θ(m)) ∂θ 2 - ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * m + 1 4 1 log log n θ(m) -θ * m ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * m =: I 21 (m) + I 22 (m).
First, as θ(m) a.s.

-→ n→+∞ θ * m along side with Lemma 3.1, it follows

I 21 (m) a.s.
-→ n→+∞ 0.

(3.4.18)

Writing a counterpart of (3.4.6) using the quasi-functions, we have

θ(m) -θ * m = ∂ 2 L n (θ(m)) -1 ∂ L n (θ * m ) ∂θ
Hence I 22 (m) can be rewritten as

I 22 (m) = 1 4 log log n θ(m) -θ * m ∂ 2 L n (θ(m)) ∂θ 2 θ(m) -θ * m = 1 4 log log n ∂ L n (θ * m ) ∂θ ∂ 2 L n (θ(m)) -1 ∂ 2 L n (θ(m)) ∂ 2 L n (θ(m)) -1 ∂ L n (θ * m ) ∂θ = - 1 2 n log log n ∂L n (θ * m ) ∂θ × F (θ * m ) -1 × ∂L n (θ * m ) ∂θ 1 + o(1) a.s. (3.4.19) since from (3.4.7), it holds - n 2 ∂ 2 L n (θ(m)) -1 a.s. -→ n→+∞ F (θ * m ) -1
and along with Lemma 3.1, it also holds

- n 2 log log n ∂ 2 L n (θ(m)) -1 a.s. -→ n→+∞ F (θ * m ) -1 .
As a consequence, the chain of following equalities holds a.s.

lim sup n→∞ L n θ(m) -L n (θ * ) 2 log log n = lim sup n→∞ - 1 2 n log log n ∂L n (θ * m ) ∂θ × F (θ * m ) -1 × ∂L n (θ * m ) ∂θ = c min (m)
That ends the proof of (3.4.17). The content of this chapter is based on a work in progress in collaboration with J-M BARDET and W. KENGNE.

Abstract

This chapter studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR(∞) processes, as well as the GARCH or ARCH(∞), APARCH, ARMA-GARCH and many others processes. On the one hand, by seeking a penalty that minimizes the risk induced by the quasi-likelihood, we establish the asymptotic efficiency of a data-driven penalty generalizing the AIC penalty term. On the other hand, by a Bayesian approach, we also show the asymptotic consistency of a datadriven penalty that generalizes the BIC criterion. Monte Carlo experiments are performed to highlight the obtained results. Model selection is one of the fundamental tasks in scientific research specially in Statistics and Data Science. It aims at providing a model (or an algorithm) that is best, following a criterion, suitable to observed data in order to gain insight on the underlying data generating process or/and to make good forecasts.

Two leading model selection procedures have received a lot of attention in the literature. On one hand, the resampling methods such as hold out or more generally V -fold cross-validation are widely used in machine learning community. On the other hand, the methods of penalization are also now very popular in the community of applied or theoretical statisticians.. The main challenging task when designing a penalized based criterion is the calibration of the penalty. This is mainly dependent on the goal one would like the final criterion achieves. For instance, the objective could be the consistency, the efficiency or the adaptive nature in the minimax sense to name few.

The consistency property aims at identifying the data generating process with high probability. Hence, its requires the assumption whereby there exists a true model in the set of competitive models and the goal is to select this with probability approaches one as the sample size tends to infinity.

Although the consistency is a convincing mathematical property, this asymptotic property is not always the most interesting when switching to a practical implementation. Indeed the true underlying process is generally unknown and trying to identify the true model for any data is quite ambitious. It is often more plausible to assume that the true data generating process is infinite-dimensional, and that one tries to identify a "good" finitedimensional model based on the data [START_REF] Hurvich | Regression and time series model selection in small samples[END_REF]). Therefore, it is common in this framework to let the dimension of the competitive models to depend on the number of observations in order to obtain better approximation and to reduce the risk of prediction. Hence, the model selection is said to be efficient when its risk is asymptotically equivalent to the risk of the oracle.

In this work, we are interested by providing efficient and consistent penalized data-driven criteria for affine causal times series.

Class AC(M, f ) : A process X = (X t ) t∈Z belongs to AC(M, f ) if it satisfies:

X t = M (X t-i ) i∈N * ξ t + f (X t-i ) i∈N * for any t ∈ Z. (4.1.1)
where (ξ t ) t∈T is a sequence of zero-mean independent identically distributed random vectors (i.i.d.r.v) satisfying E(|ξ 0 | r ) < ∞ with r ≥ 1 and M , f : R ∞ → R are two measurable functions, where R ∞ is the set of numeric sequence with finite number of non-zero terms.

For instance,

• if M (X t-i ) i∈N * = σ and f (X t-i ) i∈N * = φ 1 X t-1 + • • • + φ p X t-p , then (X t ) t∈Z is an AR(p) process; • if M (X t-i ) i∈N * = a 0 + a 1 X 2 t-1 + • • • + a p X 2 t-p and f (X t-i ) i∈N * = 0, then (X t ) t∈Z is an ARCH(p) process.
Note that, numerous classical time series models such as ARMA(p, q), GARCH(p, q), ARMA(p, q)-GARCH(p, q) (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] and [START_REF] Ling | Asymptotic theory for a vector arma-garch model[END_REF]) or APARCH(δ, p, q) processes (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]) belongs to AC(M, f ). The study of this type of process more often requires the classical regularity conditions on the functions M and f that are not really restrictive and remain valid for many time series.

In this semi-parametric framework, we consider (f θ ) θ∈Θ and (M θ ) θ∈Θ two families of functions such as for θ ∈ Θ, f θ : R ∞ → R and M θ : R ∞ → [0, ∞) are known.

There already exist several important contributions devoted to the model selection for time series ; we refer to the book of McQuarrie and Tsai (1998) and the references therein for an overview on this topic. Also, the time series model selection literature is very extensive and still growing ; we refer to the monograph of [START_REF] Rao | On model selection[END_REF], which provided an excellent summary of existing model selection procedure, including the case of time series models as well as the recent review paper of [START_REF] Ding | Model selection techniques: An overview[END_REF].

The asymptotically efficient selection property have already been tackled: by [START_REF] Shibata | Asymptotically efficient selection of the order of the model for estimating parameters of a linear process[END_REF], and recently by Hsu et al. (2019b)). But this was done for linear process type AR(∞). In this paper, we focus on the class of models (4.1.1), and addressed this questions: what regularity conditions are sufficient to build a efficient model selection criteria? Are these obtained criteria data-driven? Is the classic criterion such as AIC, still have efficient property for choosing a model among the collection M? These questions have not yet been answered for the affine causal class and the framework considered here. This new contribution provides theoretical and numerical response of these issues. Also, following the derivation technique of the BIC criterion, we propose a data driven criterion allowing to obtain better results in consistency. The paper is organized as follows. The model selection framework along with notations and assumptions are described in Section 4.2. Efficient criteria and the asymptotic efficiency are studied in Section 4.4. In Section 4.5, the derivation of a consistent data-driven BIC type criteria for affine causal class is studied. Section 4.7 provides some simulation experiments and finally, Section 4.8 contains the proofs. 

Finite family M of parametric affine causal models

Assume a trajectory (X 1 , . . . , X n ) is observed from a causal stationary solution of (4.1.1) where M and f are two known functions indexed by an unknown finite dimensional vector of parameters θ * . Also (X 1 , . . . , X n ) is supposed to be sampled according to a joint distribution P (X 1 ,...,Xn) . Now consider a finite family M of models belonging to parametric affine causal models. In Proposition 1 of Bardet et al. (2020b), due to the linearity of such models, it was established that it is always possible to find a dimension d ∈ N * and a unique couple of known functions (M θ , f θ ) with θ ∈ R d in such a way that any model m ∈ M belongs to the class AC(M θ , f θ ). More precisely, there is a one-to-one correspondence between each model m ∈ M and a linear subspace Θ m ⊂ R d and dim(Θ m ) = |m| the number of unknown parameters of the model m. As a consequence, if we denote m * the "true" model corresponding to AC(M θ * , f θ * ), we will say:

• if m ∈ M is such that Θ m * ⊂ Θ m and Θ m * = Θ m (also denoted m * ⊂ m and m * = m), this is an overfitting's case; • if m ∈ M is such that Θ m * ⊂ Θ m (also denoted m * ⊂ m) , this is a misspecified case.
For example, if m * corresponds to a AR(2) process and if M contains AR(p max ) processes and ARCH(q max ), we have d = 1 + p max + q max and for θ = (θ i ) 0≤i≤d , 4) process implies an overfitting, while an AR(1) or an ARCH(2) process implies a misspecified case.

f θ ((X t-k ) k≥1 ) = pmax i=1 θ i X t-i and M θ ((X t-k ) k≥1 ) = θ 0 + pmax+qmax i=pmax+1 θ i X 2 t-i 1/2 . Then Θ m * = (θ 0 , θ 1 , θ 2 , 0, . . . , 0), (θ 0 , θ 1 , θ 2 ) ∈ R 3 , an AR(
In the sequel, we will always assume that

m * ∈ M.
But m * is supposed to be unknown and our goal is to find a "best" model among a finite family M that forecasts with a minimum risk (defined in Subsection 4.2.2) or the most probable model after observing the trajectory (X 1 , . . . , X n ) (see Section 4.5). This section aims at describing the Maximum and Quasi-Maximum Likelihood contrasts that provides our chosen risk and presenting a data-driven penalization procedure for model selection.

Maximum Likelihood Estimation

Given a predictor θ, we measure its quality by the risk defined as

R(θ) := Pγ(θ) = E[γ(θ, X 1 )] with γ(θ, X t ) := (X t -f t θ ) 2 H t θ + log(H t θ ), and 
   f t θ := f θ (X t-k ) k≥1 M t θ := M θ (X t-k ) k≥1 H t θ := M t θ 2 (4.2.1)
By referring to [START_REF] Massart | Concentration inequalities and model selection[END_REF] or [START_REF] Francq | GARCH models: structure, statistical inference and financial applications[END_REF], the contrast γ(θ, .) is -2 times the Gaussian conditional log-density of X t . Moreover, the Gaussian MLE is derived from the conditional (with respect to the filtration σ (X t ) t≤0 ) log-likelihood of (X 1 , . . . , X n ) when (ξ t ) is supposed to be a Gaussian standard white noise. We deduce that this conditional log-likelihood (up to an additional constant) L n is defined for a parameter θ by:

L n (θ) := - 1 2 n t=1 γ(θ, X t ) (4.2.2)
As proved in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], the risk function R achieves its unique minimum at the "true"' parameter θ * over any parameter set Θ, when θ * ∈ Θ

θ * = argmin θ∈Θ R(θ). (4.2.3)
Therefore θ * is considered as an ideal for the model selection procedure and serves as a benchmark to compare predictors. Given a model m ∈ M with Θ m its parameter space that does not necessary contains θ * , let define

θ * m = argmin θ∈Θm R(θ). (4.2.4)
As a consequence, we have:

θ * m * = θ * and more generally, if m * ⊂ m, θ * m = θ * .
Besides of minimizing the risk, we also consider the minimization of the natural associated loss function, which is defined as

(θ, θ * ) := R(θ) -R(θ * ) ≥ 0. (4.2.5)
This is a well-known measure of separation between the candidate model generated by θ and the true one indexed by θ * .

Let us introduce the empirical distribution P n be such that

P n = 1 n n t=1 δ Xt ,
where δ Xt is the Dirac distribution at observation X t . Let set by γ n the associated empirical criterion

γ n (θ) := P n γ(θ, .) = 1 n n t=1 γ(θ, X t ).
We have γ n (θ) = -2 n L n (θ), so that maximizing the log-likelihood is equivalent to minimize the empirical criterion γ n .

Quasi-Maximum Likelihood Estimation

Since the the white noise is not necessary a Gaussian one and since the log-likelihood (and then the empirical risk) L n (θ) depends on (X t ) t≤0 that are unknown, a quasi-loglikelihood can be used as an approximation of the log-likelihood. It It consists of replacing γ(θ, X t ) by an approximation γ(θ, X t ). Hence, in our framework, we consider the following conditional quasi log-likelihood (up to an additional constant) given for all θ ∈ Θ by

L n (θ) := - 1 2 n t=1 γ(θ, X t ) with γ(θ, X t ) := (X t -f t θ ) 2 H t θ + log( H t θ ) and      f t θ := f θ (X t-1 , X t-2 , • • • , X 1 , u) M t θ := M θ (X t-1 , X t-2 , • • • , X 1 , u) H t θ := ( M t θ ) 2 (4.2.6)
for any deterministic sequence u = (u n ) n∈N with finitely many non-zero values (we will use u = 0 without loss of generality).

In addition the computable empirical risk is then:

γ n (θ) = P n γ(θ, .) = - 2 n L n (θ).
Finally, for each specific model m ∈ M n , we define the Gaussian Quasi-Maximum Likelihood Estimator (QMLE) θ m as

θ m = argmin θ∈Θm γ n (θ). (4.2.7)
The estimator θ m is commonly called the Empirical Risk Minimizer (ERM).

The penalization procedure

For m ∈ M, the ERM provides an estimator in Θ m . The goal is to come up with the model that minimizes the excess loss over

M inf m∈M ( θ m , θ * ). (4.2.8)
This model is unknown since (4.2.8) depends on θ * and the distribution P (X 1 ,...,Xn) that are unknown.

A classical way to solve (4.2.8) problem is to design for every m ∈ M an estimator of R( θ m ) and we naturally choose s γ n ( θ m ). First, it is well known that the empirical criterion γ n ( θ m ) is an optimist version of R( θ m ) and decreases with the dimension of the model. Therefore, it is common to add a penalty term to counteract this bias. As a consequence, define a function pen, which is called the penalty function, possibly datadependent, such as pen: m ∈ M → pen(m) ∈ R + . Then define the penalized contrast and the model selected by it:

m pen = argmin m∈M C pen (m) with C pen (m) := γ n θ m + pen(m). (4.2.9)
In order to achieve (4.2.8), the ideal penalty to consider in (4.2.9) is

pen id (m) = R( θ m ) -γ n ( θ m ). (4.2.10)
Using its definition we have:

m id := argmin m∈M ( θ m , θ * ) = argmin m∈M R( θ m ) = argmin m∈M C pen id (m) . (4.2.11)
However, the function R is unknown (as it depends on the unknown distribution of the process) therefore pen id cannot generally be used directly.

The question is how to choose the penalty in (4.2.9) so that m pen mimics the oracle, which is the model associated with the minimum risk i.e. (4.2.8). Hence, we would like our final estimator θ mpen to behave asymptotically like the oracle. That is to satisfy:

P ( θ mpen , θ * ) ≤ min m∈M ( θ m , θ * ) + C n -→ n→∞ 1 (4.2.12)
and/or for any n ≥ n 0

E ( θ mpen , θ * ) ≤ min m∈M E ( θ m , θ * ) + C n . (4.2.13)
The aim of this paper is to find a good choice of pen(m) in order to obtain the asymptotic optimality (4.2.13), that we prefer to (4.2.12), which means that the expectation of the risk of the chosen estimator is equivalent to the expectation of the risk of the oracle when the sample size tends to infinity. Before considering the problem of model selection, we establish a central limit theorem satisfied by θ m ) for any model m ∈ M, i.e. as well if m is an overfitted or a misspecified model. Before this, some notations and assumptions have to be precised.

Asymptotic

Notations and main assumptions

In the sequel, we will consider a subset Θ of R d which is compact. We will use the following norms:

• . denotes the usual Euclidean norm on R ν , with ν ≥ 1;

• for a matrix A, denote A the subordinate matrix norm such that A| = sup

v =0 A v v ; • if X is a R ν -random variable and r ≥ 1, we set X r = E X r 1/r ∈ [0, ∞]; • for θ ∈ Θ ⊂ R d , if Ψ θ : R ∞ → E where E = R ν or E is a set of square matrix, denote Ψ θ (•) Θ = sup θ∈Θ Ψ θ (•) ; • for θ ∈ Θ ⊂ R d , if Ψ θ : R ∞ → R is a C 2 (Θ × R ∞ ) function, we will denote ∂ θ Ψ θ (•) = ∂ ∂θ i Ψ θ (•) 1≤i≤d = ∂ θ i Ψ θ (•) 1≤i≤d and ∂ 2 θ 2 Ψ θ (•) = ∂ 2 ∂θ i ∂θ j Ψ θ (•) 1≤i,j≤d ; • consider Ψ θ : R ∞ → R for any θ ∈ Θ ⊂ R d .
Then, we define:

A(Ψ θ , Θ): Ψ θ (0) Θ < ∞ and there exists a sequence of non-negative real num- bers α k (Ψ θ , Θ) k≥1 such that ∞ k=1 α k (Ψ θ , Θ) < ∞ satisfying: Ψ θ (x) -Ψ θ (y) Θ ≤ ∞ k=1 α k (Ψ θ , Θ)|x k -y k | for all x, y ∈ R ∞ .
Several assumptions on the AC class will be considered thereafter:

Assumption A0: The process X ∈ AC(M θ * , f θ * ) where θ * ∈ Θ is defined in (4.1.1)
where:

• the white noise (ξ t ) t is such as ξ 0 r < ∞ with 8 < r;

• for any x ∈ R ∞ , the functions θ → M θ and θ → f θ are C 2 (Θ) functions:

• Θ ∈ R d is a compact set such as Θ ⊂ θ ∈ R d , A(f θ , {θ}) and A(M θ , {θ}) hold with ∞ k=1 α k (f θ , {θ}) + ξ 0 r ∞ k=1 α k (M θ , {θ}) < 1 . (4.3.1)
Under this assumption, [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] showed that there exists a stationary causal (i.e. X t is depending only on (X t-k ) k∈N for any t ∈ Z) and ergodic solution of (4.1.1) with 8-order moment for any θ ∈ Θ.

Now assumption A0 holds. We will also add several assumptions required for insuring the strong consistency and the asymptotic normality of the QMLE:

The following classical assumption ensures the identifiability of the θ * .

Assumption A1: For all θ, θ ∈ Θ, (f 0 θ = f 0 θ and M 0 θ = M 0 θ ) a.s. =⇒ θ = θ . Next, the following Assumption ensures the invertibility of the "Fisher's information matrix" and is necessary to prove the asymptotic normality of the QMLE.

Assumption A2: < α, ∂ θ f 0 θ >= 0 =⇒ α = 0 a.s. or < α, ∂ θ H 0 θ >= 0 =⇒ α = 0 a.s.
The definition of the computable empirical risk and require that its denominators do not vanish. Hence, we are going to assume throughout this paper that the lower bound of

H θ (•) = M θ (•)
2 is strictly positive:

Assumption A3: ∃h > 0 such that inf θ∈Θ (H θ (x)) ≥ h for all x ∈ R ∞ .
The following assumption is a technical classical condition (see [START_REF] Lv | Model selection principles in misspecified models[END_REF] -→

n→+∞ θ * m then 1 n ∂ 2 θ i θ j L n (θ m,n ) i,j∈m -1 8 a.s. -→ n→+∞ - 1 2 ∂ 2 θ i θ j γ(θ * m ) i,j∈m -1 8
Thus, from the Egorov's Theorem, we can find an event Ω with sufficiently large probability such that the relation (4.3.2) in the assumption A4 holds if the expectation is taken on the event Ω. For the particular case of the linear processes, the assumption A4 holds true under a mild condition on the distribution of X, see for instance [START_REF] Papangelou | On a distributional bound arising in autoregressive model fitting[END_REF] and [START_REF] Findley | Aic, overfitting principles, and the boundedness of moments of inverse matrices for vector autotregressions and related models[END_REF].

Finally, the decrease rates of (α j (f θ , Θ)) j , (α j (M θ , Θ)) j , (α j (∂ θ f θ , Θ)) j and (α j (∂ θ M θ , Θ)) j have to be fast enough for insuring the strong consistency and the asymptotic normality of the QMLE:

Assumption A5: Conditions A(f θ , Θ), A(M θ , Θ), A(∂ θ f θ , Θ), A(∂ θ M θ , Θ), A(∂ 2 θ 2 f θ , Θ) and A(∂ 2 θ 2 M θ , Θ) hold with α j (f θ , Θ) + α j (M θ , Θ) + α j (∂ θ f θ , Θ) + α j (∂ θ M θ , Θ) = O(j -δ ) where δ > 7/2.
Note that Assumption A5 does not allow to consider long-range dependent processes, but usual short memory causal time series satisfy this assumption.

New asymptotic results satisfied by θ m

The asymptotic normality of θ m has been already established in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] when m = m * and in Bardet et al. (2020b) when m * ⊂ m (overfitting). This property can also be extended in the case of misspecified model, i.e. when m * ⊂ m. Before this, we define the following key matrix for θ m ∈ Θ m with m ∈ M,

F (θ m ) := E ∂ 2 θ i θ j γ(θ m , X 0 ) i,j∈m . (4.3.3)
First, the following corollary can be established as a particular case of more general result, Proposition 4.3, which is stated in Section 4.8 devoted to the proofs. 

G(θ m ) := 1 4 t∈Z Cov ∂ θ i γ(θ m , X 0 ) , ∂ θ j γ(θ m , X t ) i,j∈m =⇒ G(θ * m ) = 1 4 Cov ∂ θ i γ(θ * m , X 0 ) , ∂ θ j γ(θ * m , X 0 ) i,j∈m if m * ⊂ m. (4.3.4)
Then, under assumptions A0-A5, with θ * m defined in (4.2.4),

1 √ n ∂ θ j L n (θ * m ) j∈m D -→ n→∞ N 0 , G(θ * m ) . (4.3.5)
Using mainly this new result, we also obtain:

Theorem 4.1. Under assumptions A0-A5, for any m ∈ M, (4.3.6) with F defined in (4.3.3) and G in (4.3.4).

√ n ( θ m ) i -(θ * m ) i i∈m D -→ n→∞ N 0 , F (θ * m ) -1 G(θ * m ) F (θ * m ) -1 ,
Hence, even in the misspecified case, θ m satisfies a central limit theorem. We will use this result several times, in particular to prove that the probability of selecting a misspecified model tends quickly enough towards 0. Another technical result will also be useful for the sequel:

Proposition 4.1. Under assumptions A0-A5, with 8/3 < r ≤ (8+r)/6 and r < 2(δ -1) where δ > 7/2 is given in Assumption A5 and for any m ∈ M, then we have

sup n∈N * √ n ( θ m ) i -(θ * m ) i i∈m r < ∞. (4.3.7)
Note that we also have sup n∈N * √ n ( θ m ) i -(θ * m ) i i∈m 2 < ∞. This result will be essential for establishing the asymptotic behavior of the expectation of the ideal penalty. The expectation of the ideal penalty (4.2.10) has been computed (or asymptotically approximated) in several frameworks (see [START_REF] Mallows | Some comments on cp[END_REF], [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], [START_REF] Schwarz | Estimating the dimension of a model[END_REF], [START_REF] Hurvich | Regression and time series model selection in small samples[END_REF], [START_REF] Cavanaugh | Unifying the derivations for the akaike and corrected akaike information criteria[END_REF]; etc) and it is most often proportional to the dimension of the model (denoted D m in the sequel).

• [START_REF] Mallows | Some comments on cp[END_REF] in the regression setting and the penalty is 2D m σ 2 /n;

• [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] in the density estimation framework where the penalty is D m /n;

• [START_REF] Lv | Model selection principles in misspecified models[END_REF] in misspecified density estimation and the penalty is Trace B n A -1 n /n where A n is the opposite of the Hessian matrix of the log-likelihood and B n the Fisher Information matrix.

In order to approximate (4.2.10) in this framework, let first provide a decomposition of this term in order to facilitate the computation. For any model m ∈ M, write

pen id (m) := R( θ m ) -γ n ( θ m ) = I 1 (m) + I 2 (m) + I 3 (m), (4.4.1) with    I 1 (m) := R( θ m ) -R(θ * m ) I 2 (m) := γ n (θ * m ) -γ n ( θ m ) I 3 (m) := R(θ * m ) -γ n (θ * m )
.

Next we provide a preliminary result about the asymptotic behavior of the terms I 1 (m) and I 2 (m). Then we obtain:

Lemma 4.1. Under assumptions A0-A5, for any model m ∈ M, there exists a probability distribution U * (m) such that

1. n I 1 (m) = n R( θ m ) -R(θ * m ) D -→ n→∞ U * (m) and E n I 1 (m) -→ n→∞ E[U * (m)] = 1 2 Trace F (θ * m ) -1 G(θ * m ) .(4.4.2) 2. n I 2 (m) = n γ n (θ * m ) -γ n ( θ m ) D -→ n→∞ U * (m) and E n I 2 (m) -→ n→∞ 1 2 Trace F (θ * m ) -1 G(θ * m ) . (4.4.3)
The proof of this lemma, as well as all the other proofs, can be found in Section 4.8. This result leads to our first main result devoted the ideal penalty defined in (4.2.10).

Proposition 4.2. Under assumptions A0-A5 and for any m ∈ M, there exists a bounded sequence (v * n ) n∈N * not depending on m satisfying

E pen id (m) ∼ n→∞ 2 1 2n Trace F (θ * m ) -1 G(θ * m ) + v * n n . (4.4.4)
Note that the Slope Heuristic Procedure which allows to estimate a so called minimal penalty (see [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF]) consists in evaluating the slope of a linear regression of γ n ( θ m ) onto D m for m * ⊂ m and this is equivalent to estimating the slope of

- 1 2n Trace G(θ * m )F (θ * m ) -1 onto D m . We will see that Trace F (θ * m ) -1 G(θ * m
) behaves as a linear function of D m in many cases, which also gives legitimacy to this approach in the case of time series after having obtained it in the case of linear regression. The minimal penalty is then -2× the estimated slope and this finally corresponds to an estimation of E pen id (m) .

Remark 4.2. The trace of the matrix mentioned above is easily computable in some cases using the explicit forms of the matrices F (θ * ), G(θ * ) in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. As showed in Section 4.6, this trace is proportionnal to the dimension of the model D m in some cases but could be more complex functions of D m .

We can now state the main results of this paper. Then for any ε > 0, there exists M ε > 0 and N ε ∈ N * such as for any n ≥ N ε ,

P ( θ mpen , θ * ) ≤ inf m∈M ( θ m , θ * ) + M ε n ≥ 1 -ε. (4.4.8)
Remark 4.3. Let notice that this asymptotic optimality is quite a bit different from the classical one about asymptotic efficiency, where both the cardinal of the collection M and the dimension of competitive models are allowed to depend on n. However, this is done in the framework where the parameter θ * is infinite-dimensional (see for example [START_REF] Shibata | Asymptotically efficient selection of the order of the model for estimating parameters of a linear process[END_REF], [START_REF] Li | Asymptotic optimality for c_p, c_l, cross-validation and generalized crossvalidation: Discrete index set[END_REF], Hsu et al. (2019b)). 

From a

Bayesian model selection

Another classical paradigm for model selection is the Bayesian one, leading typically to the BIC criterion (see [START_REF] Schwarz | Estimating the dimension of a model[END_REF]). In this approach, the construction of the model selection criterion is first done by assuming that the parameter vector θ * is a random vector. Let recall the hierarchical prior sampling scheme in the Bayesian setting: given the finite family of models M, a model m is drawn according to a prior distribution (π m ) m∈M (generally a uniform distribution) and then, conditionally on m, θ is sampled according to some prior distribution µ m (θ).

The goal of this model selection procedure is to choose the most probable model after observing the trajectory

X := (X 1 , • • • , X n ), i.e. m B = argmax m∈M P m | X . (4.5.1)
Using Bayes Formula, we can write

P m | X = πm P X | m P(X)
. Moreover, we have:

P X | m = Θm P X | θ, m dµ m (θ).
In addition, since P(X) does not depend on m, and P X | θ, m is the likelihood of X given θ ∈ Θ m and m ∈ M, maximizing P m | X is equivalent to maximizing

S n (m, X) := log π m P X | m = log Θm π m exp L n (θ) dµ m (θ) .
From now on, we will assume that π m = 1/|M| for any m ∈ M, a priori uniform distribution of the models in the family M. We can also assume that there exists a non-negative Let us give an asymptotic expansion of the a posteriori probability S n (m, X) in order to derive a BIC type criterion that is coherent with our framework where the observed trajectory is that of a causal affine process. This could be obtained from a Laplace approximation leading to the following theorem: Theorem 4.4. Under assumptions A0, A1, A2, A3, A5 and if for any

x ∈ R ∞ , the functions θ → M θ and θ → f θ are C 6 (Θ) functions satisfying A(∂ k θ k f θ , Θ) and A(∂ k θ k M θ , Θ) for any 0 ≤ k ≤ 2. Then, S n (m, X) = L n ( θ m ) - log(n) 2 |m| + log b m ( θ m ) + log(2π) 2 |m| - 1 2 log det -F n (m) -log(|M|) + O(n -1 ) a.s. (4.5.4)
where

F n (m) := ∂ 2 θ i θ j L n ( θ m ) i,j∈m
In the above equation, it is clear that -2 S n (m, X) -2 L n ( θ m ) + log(n) |m| a.s. This gives legitimacy to the usual BIC criterion within the framework of causal affine processes since:

m BIC = argmin m∈M -2 L n ( θ m ) + log(n) |m| ,
and we see that m BIC maximizes the main terms of S n (m, X).

From the relation (4.5.4), considering certain second order terms of the asymptotic expansion of S n (m, X), we also obtain the Kashyap criterion (see [START_REF] Kashyap | Optimal choice of ar and ma parts in autoregressive moving average models[END_REF], [START_REF] Sclove | Application of model-selection criteria to some problems in multivariate analysis[END_REF], [START_REF] Bozdogan | Model selection and akaike's information criterion (aic): The general theory and its analytical extensions[END_REF]), defined for all m ∈ M by

KC(m) := -2 L n ( θ m ) + log(n) |m| + log det -F n (m)
and m KC = argmin m∈M KC(m) . (4.5.5)

Therefore the term log det F n (m) is added to the usual BIC criterion. Several example of computations of this term, generally equal to c |m| but not always, are provided in the forthcoming Section 4.6. It is clear that m KC can be more interesting that m BIC in terms of consistency olny for non asymptotic framework (typically for n of the order of a hundred or several hundred). Note also that the data-driven criteria KC that is "optimal" in the sense of the a posteriori probability (see [START_REF] Kashyap | Optimal choice of ar and ma parts in autoregressive moving average models[END_REF]) is also asymptotically consistent under the assumption A5, see Bardet et al. Bardet et al. (2020b). However this choice of second order terms of the asymptotic expansion of S n (m, X) is somewhere arbitrary. A criterion taking account of all the second order terms could also be defined. For this, we could define a uniform distribution b m on a compact set included in Θ m . As a consequence, using condition (4.3.1) of Assumption A0, there always exists In such a case, from (4.6.1), it is clear that all the terms F (θ * m ) i,j and G(θ * m ) i,j are equals to zero for i = 1, . . . , p 1 and j = 1, • • • , p 2 implying

0 < C 1 ≤ C 2 such as C 1 m ≤ b m (θ m ) ≤ C 2 m .
(H 0 θ * m ) 2 p 1 +1≤i,j≤p 1 +p 2 .
As a consequence,

G(θ * m ) F (θ * m ) -1 = -Diag A 1,p 1 , (µ 4 -1) 2 B p 1 +1,p 1 +p 2 × Diag A -1 1,p 1 , B -1 p 1 +1,p 1 +p 2 = -Diag I p 1 , (µ 4 -1) 2 I p 2
and we obtain

-2 Trace F (θ * m ) -1 G(θ * m ) = 2 p 1 + (µ 4 -1) p 2 . (4.6.2)
This setting includes many classical times series:

• For ARMA(p, q) processes, we have

X t = f t θ +σ ξ t since X t +a 1 X t-1 +• • •+a p X t-p = σ ξ t + b 1 ξ t-1 + • • • + b q ξ t-q
for all t ∈ Z. Then θ 1 = a 1 , . . . , a p , b 1 , . . . , b q ) and θ 2 = σ. The penalty term is slightly different according to σ is known or not:

(a) if σ is known, then θ = θ 1 and G(θ * ) = -F (θ * ), so that we recover exactly the AIC penalty term:

-2 Trace G(θ * m )F (θ * m ) -1 = 2 |m| = 2 (p + q);
(b) Otherwise, θ = (θ 1 , σ) and simple computations lead to

F (θ * ) = (F (θ * ) 1≤i,j≤|m|-1 0 0 -1 2 σ 4 and G(θ * ) = (G(θ * ) 1≤i,j≤|m|-1 0 0 (µ 4 -1) 4 σ 4
where (G(θ * ) 1≤i,j≤|m|-1 = -(F (θ * ) 1≤i,j≤|m|-1 .

Thus, we obtain G(θ * )F (θ * ) -1 = -I 1≤i,j≤|m|-1 0 0

µ 4 -1 2
and therefore, with

|m| = p + q + 1 in this case, -2 Trace G(θ * m )F (θ * m ) -1 = 2 |m| + (µ 4 -3) = 2(p + q) + (µ 4 -1),
and therefore once again the expectation of the ideal penalty leads to the AIC model selection.

• For GARCH(p, q) processes (see [START_REF] Francq | GARCH models: structure, statistical inference and financial applications[END_REF]), we have f θ = 0 and X t = M t θ ξ t since for any t ∈ Z,

X t = σ t ξ t σ 2 t = ω 0 + a 1 X 2 t-1 + • • • + a p X 2 t-p + b 1 σ 2 t-1 + • • • + b q σ 2 t-q
.

Denote θ = θ 2 = (ω 0 , a 1 , . . . , a p , b 1 , . . . , b q ). Then we have A p 1 = 0 and therefore G(θ * ) = -(µ 4 -1) 2 F (θ * ). As a result:

-2 Trace G(θ * m )F (θ * m ) -1 = (µ 4 -1) |m| = (µ 4 -1) (p + q + 1).

• For APARCH(δ, p, q) processes (see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]), we also have f θ = 0 and X t = M t θ ξ t since for any t ∈ Z,

   X t = σ t ξ t σ δ t = ω 0 + a 1 (X t-1 -γ 1 |X t-1 |) δ + • • • + a p (X t-p -γ p |X t-p |) δ +b 1 σ δ t-1 + • • • + b q σ δ t-q
.

For such a process, θ = θ 2 = (ω 0 , a 1 , . . . , a p , γ 1 , . . . , γ p , b 1 , . . . , b q ) when we assume that δ is known, and, mutatis mutandis, the result is the same than for GARCH processes:

-2 Trace G(θ * m )F (θ * m ) -1 = (µ 4 -1) |m| = (µ 4 -1) (2p + q + 1).

3/ Otherwise, the computations are no longer easy. Let us see the example of the family of AR(1) -ARCH(p) processes. Then for any t ∈ Z we have X t = φX t-1 + Z t where

Z t = ξ t α 0 + α 1 Z 2 t-1 + • • • + α p Z 2 t-p 1/2
. As a consequence, with θ = (φ, α 0 , . . . , α p ) , we obtain for any t ∈ Z,

X t = f θ (X t-1 ) + M θ (X t-1 , . . . , X t-p-1 ) ξ t with f θ (X t-1 ) = φ X t-1 M θ (X t-1 , . . . , X t-p ) = α 0 + p i=1 α i (X t-i -φX t-i-1 ) 2 1/2 .
Thus the parameter φ is present in f θ as well as in M θ . From (4.6.1), and with the notations of 1/, we obtain:

F (θ * m ) = - A 1,1 O 1,p+1 O p+1,1 O p+1,p+1 -B 1,p+2 and G(θ * m ) = A 1,1 O 1,p+1 O p+1,1 O p+1,p+1 + (µ 4 -1) 2 B 1,p+2 .
As a consequence,

G(θ * m ) = - (µ 4 -1) 2 F (θ * m ) + (µ 4 -3) 2 A 1,1 O 1,p+1 O p+1,1 O p+1,p+1
.

Thus, with |m| = p + 2,

G(θ * m ) F -1 (θ * m ) = - (µ 4 -1) 2 I |m| + (µ 4 -3) 2 A 1,1 O 1,p+1 O p+1,1 O p+1,p+1 F -1 (θ * m ).
Whatever the matrix F -1 (θ * m ), we have

A 1,1 O 1,p+1 O p+1,1 O p+1,p+1 F -1 (θ * m ) = c(θ * m ) O 1,p+1 O p+1,1 O p+1,p+1 with c(θ * m ) = c(θ * ) ∈ R since m * ⊂ m. Then for all m * ⊂ m, -2 Trace G(θ * m )F (θ * m ) -1 = -2 c(θ * ) + (µ 4 -1) |m|,
where -2 c(θ * ) does not depend on m.

Proposition 4.3. Under Assumption A0-A5, for any θ ∈ Θ, we have

√ n 1 n ∂ θ L n (θ) + 1 2 E ∂ θ γ(θ, X 0 ) D -→ n→∞ N 0 , Σ(θ) with Σ(θ) := 1 4 t∈Z Cov ∂ θ i γ(θ, X 0 ) , ∂ θ j γ(θ, X t ) 1≤i,j≤d
. (4.8.1)

The main tool we use here for establishing Theorem 4.3 is the notion of τ -dependence for stationary time series. More precisely, the τ -dependence coefficients, which are a version of the coupling coefficients introduced in [START_REF] Dedecker | Coupling for τ -Dependent Sequences and Applications[END_REF] and used for stationary infinite memory chains. The reader is deferred to the lecture notes [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF] for complements and details on coupling, based on the Wasserstein distance between probabilities defined as below. Its stationary version is: Let (Ω, C, P) be a probability space, M a σ-subalgebra of C and Z a random variable with values in E.

Assume that Z p < ∞ and define the coefficient τ (p) as

τ (p) (M, Z) = sup f ∈Λ 1 (E) f (x)P Z|M (dx) -f (x)P Z (dx) p .
Using the definition of τ , the dependence between the past of the sequence (Z t ) t∈Z and its future k-tuples may be assessed: consider the norm

x -y = x 1 -y 1 + • • • + x k -y k on E k , set M p = σ(Z t , t ≤ p) and define τ (p) Z (s) = sup k>0 max 1≤l≤k 1 l sup τ (p) (M p , (Z j 1 , . . . , Z j l )) with p + s ≤ j 1 < • • • < j l .
Finally, the time series (Z t ) t∈Z is τ

(p)
Z -weakly dependent when its coefficients τ (4.8.2)

Proof of Lemma 4.2. This Lemma can be directly deduced from Proposition 3.1 of [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] where F (x, ξ 0 ) = M θ (x) ξ 0 + f θ (x) for any x ∈ R ∞ and therefore (s) satisfies:

F (x, ξ 0 ) -F (y, ξ 0 ) p ≤ ξ 0 p M θ (x) -M θ (y) + f θ (x) -f θ (y) inducing F (x, ξ 0 ) -F (y, ξ 0 ) p ≤ ∞ k=1 b (p) k with b (p) k = ξ 0 p α k (M θ , Θ) + α k (f θ , Θ).
τ (1) φ (j) θ (s) ≤ C s =1 α (f θ , Θ) + α (M θ , Θ) + α (∂ θ j M θ , Θ) + α (∂ θ j f θ , Θ) λ s+1- + ∞ =s+1 α (f θ , Θ) + α (M θ , Θ) + α (∂ θ j M θ , Θ) + α (∂ θ j f θ , Θ) , (4.8.3)
for any s ≥ 0 where (λ s ) is defined in (4.8.2).

Proof of Lemma 4.3. In the proof of Proposition 4.1 of Bardet et al. (2020a), it has been proven for

U = (U i ) i≥1 and V = (V i ) i≥1 such as sup i≥1 U i 4 ∨ V i 4 < ∞ that there exists C > 0 satisfyng E sup θ∈Θ φ (j) θ (U ) -φ (j) θ (V ) ≤ C U 1 -V 1 4 + ∞ i=2 α i (f θ , Θ) + α i (M θ , Θ) + α i (∂ θ j f θ , Θ) + α i (∂ θ j M θ , Θ) U i -V i 4 . (4.8.4)
Using coupling techniques, if ( ξ t ) t∈Z is an independent replication of (ξ t ) t∈Z , define also ( X t ) t∈Z satisfying Assumption with ( ξ t ) t∈Z instead of (ξ t ) t∈Z and φ (j) θ ( X t-k ) k≥0 t∈Z . Then for s ≥ 0, using (4.8.4),

τ (1) φ (j) θ (s) ≤ φ (j) θ (X s-k ) k≥0 -φ (j) θ ( X s-k ) k≥0 1 ≤ C X 1 -X 1 4 + ∞ i=2 α i (f θ , Θ) + α i (M θ , Θ) + α i (∂ θ j f θ , Θ) + α i (∂ θ j M θ , Θ) X i -X i 4 ≤ C ∞ =1 α (f θ , Θ) + α (M θ , Θ) + α (∂ θ j f θ , Θ) + α (∂ θ j M θ , Θ) λ s+1-,
that implies (4.8.3).

Remark 4.6. Under Assumption A0 and A5, and therefore with λ s = O s 1-δ log s with δ > 7/2, we also deduce that τ

(1) and∞ s=1 s 1/(κ-2) τ Z (s) < ∞, we deduce from Lemma 2, point 2. of [START_REF] Dedecker | A new covariance inequality and applications[END_REF] that condition D(2, θ/2, X) is satisfied as θ-weakly dependent coefficients are smaller than τ -weakly dependent coefficients, see (2.2.13) p.16 of [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF], and 0 [START_REF] Dedecker | A new covariance inequality and applications[END_REF]. Then,

φ (j) θ (s) = O s 1-δ log s . Proof of Proposition 4.3. If Z is a τ Z -dependent centered stationary time series satisfying E[|Z 0 | κ ] < ∞ with κ > 2,
< t∈Z E[Z 0 Z t ] < ∞ from Proposition 2 of
1 √ n n t=1 Z t D -→ n→∞ N 0 , t∈Z E[Z 0 Z t ] .
We can apply this central limit theorem to

Z t := d j=1 c j φ (j) θ (X t-k ) k≥0 -E φ (j) θ (X t-k ) k≥0 with (c j ) 1≤j≤d ∈ R d .
Indeed, using Lemma 4.3, we easily obtain for s ≥ 0

τ Z (s) ≤ C d j=1 |c j | ∞ =1 α (f θ , Θ) + α (M θ , Θ) + α (∂ θ j f θ , Θ) + α (∂ θ j M θ , Θ) λ s+1-,
and therefore under Assumption A0 and A5, τ Z (s) = O s 1-δ log s . Moreover, using Lemma 4.6, we deduce

E |Z 0 | 8/3 < ∞. Then with κ = 8/3, ∞ s=1 s 1/(κ-2) τ Z (s) = ∞ s=1 s 3/2 τ Z (s) < ∞ is satisfied since δ > 7/2. Therefore, we deduce for any θ ∈ Θ, √ n d j=1 c j 1 n ∂ θ j L n (θ) + 1 2 E ∂ θ j γ(θ, X 0 ) D -→ n→∞ N 0 , 1 4 d i=1 d j=1 c i c j t∈Z Cov ∂ θ i γ(θ, X 0 ) , ∂ θ j γ(θ, X t ) ,
which implies the multidimensional central limit theorem (4.8.1).

Proof of Corollary 4.1. Firstly, it was already established in Bardet et al. (2020b) that if m * ⊂ m then ∂ θ i γ(θ m , X t ) t∈Z is a stationary martingale increments with respect to

F t = σ (X t-k ) k∈N . As a consequence Cov ∂ θ i γ(θ, X 0 ) , ∂ θ j γ(θ, X t ) = 0 if t = 0.
Secondly, for all m ∈ M, from the definition of θ * m as a local minimum of R on Θ m , and from Assumption A0-A5, then ∂

θ j R(θ * m ) = E ∂ θ j γ(θ * m , X 0 ) = 0 for all j ∈ m.
Proof of Theorem 4.1. We use here the standard proof allowing to show the asymptotic normality of the QMLE and already used in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Firstly, it was established in Bardet et al. (2020b) that θ m a.s.

-→ n→+∞ θ * m . Secondly, a Taylor-Lagrange expansion is applied to ∂

θ j L n ( θ m ) j∈m around θ * m : 1 √ n ∂ θ j L n ( θ m ) j∈m = 1 √ n ∂ θ j L n (θ * m ) j∈m + 1 n ∂ 2 θ i θ j L n (θ m ) i,j∈m × √ n ( θ m ) i -(θ * m ) i i∈m (4.8.5) with θ m = c θ m + (1 -c)θ * m and 0 < c < 1. Using θ m a.s. -→ n→+∞ θ * m and the ergodic theorem 1 n ∂ 2 θ i θ j L n (θ m ) a.s. -→ n→+∞ F (θ m ) for any θ m ∈ Θ m since E ∂ 2 θ 2 γ(θ, X 0 ) Θ < ∞ , we obtain: 1 n ∂ 2 θ i θ j L n (θ m ) i,j∈m a.s. -→ n→+∞ F (θ * m ). (4.8.6)
Finally, by definition of θ m , ∂ θ j L n ( θ m ) = 0 for any j ∈ m. As a consequence,

1 √ n ∂ θ j L n ( θ m ) j∈m P -→ n→∞ 0, (4.8.7) using a Markov Inequality and E 1 √ n ∂ θ L n (θ) -∂ θ L n (θ) Θ -→ n→∞ 0 established in (5.11)
of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Considering (4.8.5), (4.8.6) and (4.8.7), and with the central limit theorem satisfied by 1 √ n ∂ θ j L n (θ * m ) j∈m provided in Corollary 4.1, this achieves the proof. Now, before establishing Proposition 4.1, three technical lemmas can be stated: Lemma 4.4. Under the assumptions A0-A5, with 8/3 < r ≤ r/3 and r < 2(δ -1) where δ > 7/2 is given in Assumption A5, for any m ∈ M, there exists C > 0 such as for any n

∈ N * 1 √ n ∂ θ j L n (θ * m ) j∈m r ≤ C. (4.8.8) Proof. First, for any m ∈ M and n ∈ N * , ∂ θ j L n (θ * m ) j∈m r ≤ |m| r /2-1 j∈m ∂ θ j L n (θ * m ) r ≤ |m| r /2-1 2 r j∈m n t=1 ∂ θ j γ(θ * m , X t ) r .
(4.8.9)

Now, for all j ∈ m, ∂ θ j γ(θ * m , X t ) t∈Z is a centered (from the proof of Corollary 4.1) stationary τ 

(j) θ (s) = O s 1-δ log s . (1) φ 
In Proposition 5.5 of [START_REF] Dedecker | Weak dependence: With Examples and Applications[END_REF], since E ∂ θ j γ(θ * m , X 0 ) r < ∞ from Lemma 4.6, it has been established that:

E n t=1 ∂ θ j γ(θ * m , X t ) r ≤ C r M r ,n + M r /2 2,n
where M m,n := 2n

n-1 i=0 (i + 1) m-2 τ (1) φ (j) θ (i).
Using 8/3 < r < 2(δ -1) with δ > 7/2, we obtain that

M r ,n ≤ C n n i=1 i r -1-δ log(i) ≤ C n 1+r -δ log(n) = O n r /2 and M 2,n ≤ C n n i=1 i 1-δ log(i) ≤ C n. As a consequence, there exists C > 0 such as for any n ∈ N * , E n t=1 ∂ θ j γ(θ * m , X t ) r ≤ C n r /2 . (4.8.10)
Then, using (4.8.9) and (4.8.10), the proof is established.

Lemma 4.5. Under the assumptions A0-A5, then for any m ∈ M, there exists C > 0 such as for any n

∈ N * , 1 √ n ∂ θ j L n ( θ m ) j∈m r/3 ≤ C.
Proof. First, from the definition of θ m , we have ∂ θ j L n ( θ m ) = 0 for any j ∈ m. Then,

1 √ n ∂ θ j L n ( θ m ) j∈m r/3 = 1 √ n ∂ θ j L n ( θ m ) -∂ θ j L n ( θ m ) j∈m r/3 ≤ |m| (r-6)/2r √ n j∈m ∂ θ j L n ( θ m ) -∂ θ j L n ( θ m ) r/3 ≤ |m| 1/2 2 √ n j∈m n t=1 ∂ θ j γ( θ m , X t ) -∂ θ j γ( θ m , X t ) r/3
.

From the proof of Lemma 2 in Bardet et al. (2020b), there exists C > 0 such as

E sup θ∈Θ ∂ θ j γ(θ, X t ) -∂ θ j γ(θ, X t ) r/3 ≤ C k≥t α k (f θ , Θ) + α k (M θ , Θ) + α k (∂f θ , Θ) + α k (∂M θ , Θ) r/3 . Therefore, 1 √ n ∂ θ j L n ( θ m ) j∈m r/3 ≤ C |m| 3/2 2 √ n n t=1 k≥t α k (f θ , Θ) + α k (M θ , Θ) + α k (∂f θ , Θ) + α k (∂M θ , Θ) ≤ C √ n n t=1 j≥t j -δ ≤ C √ n n t=1 t 1-δ ≤ C ,
with C > 0, C > 0 and C > 0 and where the last inequality holds since δ > 7/2 under Assumption A5.

Using Assumption A0 and A5 and the proof of Lemma 1 in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], all the right side terms in (4.8.12) are finite for any θ ∈ Θ m and this achieves the proof.

Then Proposition 4.1 can be established:

Proof of Proposition 4.1. From (4.8.5) and (4.8.6) with F (θ * m ) is a positive definite matrix, we know that for n large enough,

√ n ( θ m ) i -(θ * m ) i i∈m r = 1 n ∂ 2 θ i θ j L n (θ m ) i,j∈m -1 × 1 √ n ∂ θ j L n ( θ m ) -∂ θ j L n (θ * m ) j∈m r . (4.8.13)
Therefore, using Hölder and Minkowski inequalities, we obtain:

√ n ( θ m ) i -(θ * m ) i i∈m r ≤ 1 n ∂ 2 θ i θ j L n (θ m ) i,j∈m -1 rr r-3r × 1 √ n ∂ θ j L n ( θ m ) -∂ θ j L n (θ * m ) j∈m r 3 ≤ 1 n ∂ 2 θ i θ j L n (θ m ) i,j∈m -1 rr r-3r × 1 √ n ∂ θ j L n ( θ m ) j∈m r 3 + 1 √ n ∂ θ j L n (θ * m ) j∈m r 3 .
Now using Assumption A4, Lemmas 4.4 and 4.5, we deduce (4.3.7).

Proofs of Section 4.4

Proof of Lemma 4.1. 1. From the assumptions, the function R

: θ ∈ Θ → R(θ) is a C 2 (Θ)
function and the Hessian matrix ∂ θ 2 R = F is a definite positive matrix. Therefore, from a Taylor-Lagrange expansion: [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and continuous mapping Theorem, we deduce that:

n R( θ m ) -R(θ * m ) = n R(θ * m ) + θ m -θ * m ∂ θ R(θ * m ) + 1 2 θ m -θ * m ∂ θ 2 R(θ) θ m -θ * m -R(θ * m ) = 1 2 √ n( θ m -θ * m ) ∂ θ 2 R(θ) √ n( θ m -θ * m ) , (4.8.14) with θ = θ * m + c θ m -θ * m ∈ Θ m since c ∈ [0, 1]. Using Lemma 4 of
∂ θ 2 R(θ) = F (θ) P -→ n→∞ -2 F (θ * m ) and G(θ) P -→ n→∞ G(θ * m ). (4.8.15)
Moreover, using the asymptotic normality of θ m established in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and Bardet et al. (2020b), we have:

√ n(( θ m ) i -(θ * m ) i ) i∈m D -→ n→∞ N 0 , F (θ * m ) -1 G(θ * m ) F (θ * m ) -1 . (4.8.16) As a consequence, with Z n = G(θ) -1/2 F (θ) √ n(( θ m ) i -(θ * m ) i ) i∈m D -→ n→∞ N (0 , I |m| ), we have n R( θ m ) -R(θ * m ) = -Z n G(θ) 1/2 F (θ) -1 F (θ) F (θ) -1 G(θ) 1/2 Z n = -Z n G(θ) 1/2 F (θ) -1 G(θ) 1/2 Z n . Define U * (m) := -Z G(θ * m ) 1/2 F (θ * m ) -1 G(θ * m ) 1/2 Z where Z D ∼ N (0 , I |m| ). Then using (4.8.15) we obtain n R( θ m ) -R(θ * m ) D -→ n→∞ U * (m).
The computation of the expectation of U * m follows from 

E U * m = E Trace U * m = -Trace G(θ * m ) 1/2 F (θ * m ) -1 G(θ * m ) 1/2 = -Trace F (θ * m ) -1 G(θ * m ) . Finally, for establishing E n R( θ m ) -R(θ * m ) -→ n→∞ E U * m ,
E n γ n (θ * m ) -γ n ( θ m ) < ∞,
which concludes the proof.

Proof of Proposition 1.5. The proof of this proposition can be deduced from

E n I 3 (m) = E n R(θ * m ) -γ n (θ * m ) = v * n (4.8.20)
for any m ∈ M. For establishing (4.8.20), we begin by

I 3 (m) = R(θ * m ) -γ n (θ * m ) + γ n (θ * m ) -γ n (θ * m ) := I 31 (m) + I 32 (m). (4.8.21) Firstly, since E γ(θ * m , X 0 ) = R(θ * m )
and (X t ) t∈Z is a stationary times series, then for any

n ∈ N * , E γ n (θ * m ) = 1 n n t=1 E γ(θ * m , X t ) = R(θ * m ) =⇒ E I 31 (m) = 0. (4.8.22)
Secondly, from Assumption A0 and [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], there exists C > 0 such that for any

t ≥ 1 E γ(θ, X t ) -γ(θ, X t ) Θ ≤ C s≥t α k (f θ , Θ) + α k (M θ , Θ) .
Therefore, Using also Lemma 4.1, this implies the asymptotic behavior of E pen id (m) . Now we establish a preliminary lemma that is an important step towards the proof of Theorem 4.3. For any m ∈ M, we also have

E γ n (θ * m ) -γ n (θ * m ) Θ ≤ C n n t=1 s≥t α k (f θ , Θ) + α k (M θ , Θ) ≤ C n n t=1 t 1-δ ≤ C n , ( 4 
C pen (m) = C pen id (m) + pen(m) -pen id (m).
By definition of m pen , we have C pen ( m pen ) ≤ C pen ( m pen id ). Therefore,

C pen ( m pen ) ≤ C pen id ( m pen id ) + pen( m pen id ) -pen id ( m pen id )
C pen id ( m pen ) + pen( m pen ) -pen id ( m pen ) ≤ C pen id ( m pen id ) + pen( m pen id ) -pen id ( m pen id ).

By replacing C pen id (m) by ( θ m , θ * ) following (4.8.26) and using (4.8.27), then (4.8.25) is established.

Proof of Theorem 4.2. Let M * = m ∈ M, m * ⊂ m and M = M \ M * . Let m ∈ M .
We have: Bardet et al. (2020b). Now, using P

P m pen = m ≤ P C pen (m) ≤ C pen (m * ) ≤ P γ n ( θ m ) -γ n ( θ m * ) ≤ pen(m * ) -pen(m) ≤ P n γ n ( θ m ) -γ n (θ * m ) + n γ n (θ * m ) -R(θ * m ) + n R(θ * ) -γ n (θ * ) +n γ n (θ * ) -γ n ( θ m * ) ≤ n R(θ * ) -R(θ * m ) + n pen(m * ) -pen(m) ≤ P Z 1 + Z 2 + Z 3 + Z 4 + Z5 ≤ -2 n DK L (θ * θ * m ) with Z 5 = n pen(m) -pen(m * ) and with R(θ * ) -R(θ * m ) = -2 DK L (θ * θ * m ) < 0 since m ⊂ m * from
(Z 1 + • • • + Z 5 ≤ c) ≤ P(Z 1 ≤ c/5) + • • • + P(Z 5 ≤ c/5
) for any random variables Z i and real number c, we obtain: (4.8.28) where

P m pen = m ≤ 5 i=1 P Z i ≤ c n ,
c n = -2 5 n DK L (θ * θ * m ). Let Z 1 := n γ n ( θ m ) -γ n (θ * m )
. Following the same computations than in (4.8.19), with 8/3 < r ≤ r/3 and r < 2(δ -1) defined in Proposition 4.1, and Hölder Inequality,

E Z 1 3r 8 ≤ ∂ 2 θ 2 γ n (θ m ) 1/2 √ n( θ m -θ * m ) 3r 4 3r 4 ≤ ∂ 2 θ 2 γ n (θ m ) 3r 2 √ n( θ m -θ * m ) 3r 4
r .

Therefore, using Proposition 4.1, 4.8.29) since 3r /8 > 1. The same kind of computations can also be done for Z 4 := n γ n (θ * )γ n ( θ m * ) and we also obtain

P Z 1 ≤ c n ≤ P |Z 1 | 3r 8 ≥ |c n | 3r 8 ≤ E Z 1 3r 8 1 |c n | 3r 8 =⇒ P Z 1 ≤ c n = O 1 n 3r 8 = o 1 n , ( 
P Z 4 ≤ c n = o 1 n . Consider now Z 2 := n γ n (θ * m ) -R(θ * m ) . Then, E Z 2 8/3 ≤ 2 5/3 E L n (θ) -L n (θ) 8/3 Θ + n 8/3 E n k=1 γ(θ * m , X k ) -R(θ * m ) 8/3 .
Using [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we know that sup n∈N * E L n (θ)-L n (θ)

8/3 Θ < ∞ from Assumption A5 and since δ > 7/2 > 2. Now, consider Y k := γ(θ * m , X k ) -R(θ * m ).
Then, (Y k ) k∈Z is a stationary time series, τ Y -weakly dependent because, using the same type of arguments as in the proof of Lemma 4.3, we have:

τ Y (s) ≤ ∞ =1 α (f θ , Θ) + α (M θ , Θ) λ s+1-,
with λ defined in Lemma 4.2. Therefore, using Assumption A5, we also have τ Y (s) = O s δ-1 log(s) , with δ > 7/2. Now, using the same type of arguments as in the proof of Lemma 4.4,

E n k=1 Y k 8/3 ≤ C 8/3 M 8/3,n + M 4/3 2,n , and M 2,n ≤ C n while M 8/3,n ≤ C n n i=1 i 8/3-1-δ log(i) = o n 4/3 . Therefore, there exists C > 0 such that for any n ∈ N * , E n k=1 Y k 8/3 ≤ C n 4/3 .
Finally, we deduce that there exists C > 0 such that for any n ∈ N * , (4.8.30) This result and Markov Inequality imply,

E Z 2 8/3 ≤ C n 4/3 .
P Z 2 ≤ c n ≤ P |Z 2 | 8/3 ≥ |c n | 8/3 ≤ E Z 2 8/3 1 |c n | 8/3 =⇒ P Z 2 ≤ c n = O n 4/3 1 |c n | 8/3 = O 1 n 4/3 , (4.8.31)
We obtain the same bound for Z 3 := n R(θ * ) -γ n (θ * ) . Finally using the assumption (1.3.20), we have: 

n P Z 5 ≤ c n = P pen(m) -pen(m * ) ≤ - 2 5 DK L (θ * θ * m ) ≤ P pen(m * ) ≥ 2 5 DK L (θ * θ * m ) -→ n→∞ 0. ( 4 
P n pen id (m) ≥ K ε ≤ ε.
Therefore, using this inequality and (4.4.7), we deduce that for any ε > 0 there exist M ε > 0 and N ε ∈ N * such that for any n ≥ N ε ,

P n pen( m id ) -pen( m pen ) -pen id ( m id ) -pen id ( m pen ) ≤ M ε ≥ 1 -ε. (4.8.33)
The proof of (4.4.8) is now completed from (4.8.25) of Lemma 4.7 and (4.8.33).

Proof of Theorem 4.4. We first verify conditions (C1) and (C2) of [START_REF] Chen | On asymptotic normality of limiting density functions with bayesian omplications[END_REF] that are sufficient to imply Conditions (i), (ii) and (iii) of [START_REF] Kass | The validity of posterior expansions based on laplace's method[END_REF]. Condition (C1) requires that σ n the largest eigenvalue of -∂ 2

θ i θ j L n ( θ m ) i,j∈m -1 satisfies σ n a.s. -→ n→+∞ 0,
which is satisfied since it was already established that

1 n ∂ 2 θ i θ j L n ( θ m ) i,j∈m a.s. -→ n→+∞ F (θ * m ) and F (θ * m ) is assumed to be a negative definite matrix. Moreover, condition (C2) is also satisfied because θ m ∈ Θ m → ∂ 2 θ i θ j L n (θ m ) i,j∈m and θ m ∈ Θ m → ∂ 2 θ i θ j L n (θ m ) i,j∈m -1
are continuous functions for n large enough. Therefore, using h n = -1 n L n , the assumptions of Theorem 1 of [START_REF] Kass | The validity of posterior expansions based on laplace's method[END_REF] are satisfied and this implies that:

Θm b m (θ) exp L n (θ) dθ = exp L n ( θ m ) 2 π |m|/2 × det n - 1 n ∂ 2 θ i θ j L n ( θ m ) i,j∈m -1/2 b m ( θ m ) + O(n -1 ) a.s.
As a consequence, we have:

S n (m, X) = -log(|M|) + log Θm b m (θ) exp L n (θ) dθ = L n ( θ m ) - log(n) 2 |m| + log b m ( θ m ) + log(2π) 2 |m| - 1 2 log det -F n (m) -log(|M|) + O(n -1 ) a.s.

5

Data driven model selection for same-realization predictions in autoregressive processes The content of this chapter is contained in the submitted preprint, Kare Kamila. "Data Driven Model Selection for Same-Realization Predictions in Autoregressive Processes" https://hal.archives-ouvertes.fr/hal-03169343/document.

Abstract

This paper is about the one-step ahead prediction of the future of observations drawn from an infinite-order autoregressive AR(∞) process. It aims to design penalties (fully data driven) ensuring that the selected model verifies the efficiency property but in the non asymptotic framework. We show that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. To achieve these results, we needed to overcome the dependence difficulties by following a classical approach which consists in restricting to a set where the empirical covariance matrix is equivalent to the theoretical one. We show that this event happens with probability larger than 1 -c 0 /n 2 with c 0 > 0. The proposed data driven criteria are based on the minimization of the penalized criterion akin to the Mallows's C p . Consider observations (X 1 , X 2 , . . . , X n ) arising from a trajectory of the process

X t = f * (X t-i ) i∈N * + σ ξ t for any t ∈ Z.
(5.1.1)

where (ξ t ) t∈Z is a sequence of zero-mean independent identically distributed random variables (i.i.d.r.v) satisfying E(|ξ 0 | 4 ) < ∞ and f * : R N → R is a measurable function and σ > 0 an unknown constant.

The problem is to estimate the function f * using these observations. The process (5.1.1) is a particular case of the general class of affine causal process studied in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] and [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. The study of this type of process more often requires the classical regularity condition on the function f * , which are not restrictive at all and remain valid in various time series models. This condition can be stated as follows:

∞ k=1 sup x∈R ∞ ∂ ∂x k f * (x) < 1, (5.1.2)
provided that that f * admits partial derivatives on R N . Under (5.1.2) and if the noise ξ 0 admits r-order moments, [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] showed that there exists a stationary, mixing and ergodic solution to (5.1.1) admitting r-order moments. Moreover, [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] studied the consistency and the asymptotic normality of the QMLE of θ * = (θ * i ) i∈N in the case f * = f θ * .

In this paper, we will focus only on processes with a linear regression function (f θ * ) with respect to the past and depending on some parameter θ * ∈ R N ; that is

f * (X t-1 , X t-2 , . . .) = f θ * (X t-1 , X t-2 , . . .) = ∞ i=1 θ * i X t-i . (5.1.3)
For such processes, condition (5.1.2) becomes

A1 : ∞ i=1 |θ * i | < 1.
Even if this condition reduces the set of parameters a bit, the class of AR(∞) processes checking the condition A1 is rich and of practical importance because it contains almost all invertible causal ARMA(p, q) processes and it is very useful for prediction given the past. Moreover, contrary to the autocariance of ARMA(p, q) processes which decays exponentially fast, AR(∞) are able to model more complex behaviour such as slower decay of the covariance structure.

The oracle m * is unachievable since it depends on θ * and the distribution P (X 1 ,...,Xn) that are unknowns. However, we hope to select a model m so that ( θ m , θ * ) is closest to ( θ m * , θ * ). The goal of this paper is to propose a data driven penalty in order to obtain an oracle inequality

( θ m , θ * ) ≤ C 1 inf m∈Mn ( θ m , θ * ) + C 2 n (5.2.6)
with the leading constant C 1 close to one and C 2 > 0. This goal could rather be to show that that the excess risk of the selected estimator θ m realizes the best bias-variance trade-off, which would make our penalty an ideal choice in terms of excess risk.

( θ m , θ * ) ≤ C 1 inf m∈Mn (θ * m , θ * ) + pen(S m ) + C 2 n (5.2.7)
with the leading constant C 1 = 1 + δ with δ > 0 (and close to 0) and C 2 > 0.

That is to say that the selected model m will be large enough to reduce its bias, but not too large to avoid high variance.

Notations

We will use the following norms:

• . denotes the usual Euclidean norm on R ν , with ν ≥ 1;

• A op is the operator norm of A as the square root of the largest eigenvalue of A A.

If A is symmetric, then A op is the largest (in absolute value) eigenvalue of A.

• if X is a R ν -random variable and r ≥ 1, we set X r = E X r 1/r ∈ [0, ∞].

Preliminary Results

As we are in dependence setting, we are going to leverage the τ -mixing property of (X t ) t∈Z in order to obtain some exponential Inequalities. The τ -mixing coefficients are a measure of the dependence of the process and has been introduced by [START_REF] Dedecker | New dependence coefficients. examples and applications to statistics[END_REF]. This will help us build 'independents' random vectors and apply classical exponential Inequalities. Let then introduce some notations. Let (Ω, C, P) be a probability space, M a σ-subalgebra of C and Z a random variable with values in a Banach space E, . E . Assume that E|Z| < ∞ and define

τ (p) (M, Z) = sup f ∈Λ(E) f (x)P Z|M (dx) -f (x)P Z (dx) p where Λ(E) is the set of 1-Lipschitz function, i.e. the functions f from E, . E to R such that |f (x) -f (y)| ≤ x -y E .
Using the definition of τ , we will measure the dependence of the strictly stationary sequence (Z t ) t∈Z thanks to the coefficients defined as follows. For any s ≥ 0, let introduce the norm

x -y R k = (|x 1 -y 1 | + • • • + |x k -y k |) and setting M i = σ(Z t , t ≤ i) and if E(|Z 1 |) < ∞, let τ (p) Z,∞ (s) = sup l>0 max 1≤k≤l 1 k sup τ (p) M i , (Z i 1 , . . . , Z i k ) , i + s ≤ i 1 < • • • < i k .
Finally, the time series

(Z t ) t∈Z is τ (p)
Z,∞ -weakly dependent when its coefficients τ (p) Z,∞ tend to 0 as s tends to infinity.

The next Proposition that is a consequence of Theorem 3.1 in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] gives a link between the τ -mixing coefficients of the process (X t ) t∈Z and the coefficients θ * i of the model (5.1.3).

Proposition 5.1. Assume A1 holds and if |θ * t | = O(t -γ ) with γ > 1, there exists a τweakly dependent stationary solution of (5.1.1) and a constant C τ > 0 such that for r > 0

τ (2) X,∞ (r) ≤ C τ log r r γ-1 (5.2.8) Proof. With G(x, ξ 0 ) = σ ξ 0 + f θ * (x) for any x ∈ R ∞ , it holds G(x, ξ 0 ) -G(y, ξ 0 ) 2 = f θ * (x) -f θ * (y) ≤ ∞ i=1 |θ * i | |x i -y i |.
Therefore (5.2.8) is a straightforward application of Theorem 3.1 in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF].

As we are going to need independence for block of random variables, let denote for t = 1, . . . , n the random vector X t := (X t-1 , . . . , X t-Kn ) One can see that the process ( X t ) t∈Z is also mixing with τ

(1) X,∞ upper bounded by K n τ

(1)

X,∞ (see Lemma 5.1). Now, we construct random variables approximating X t 's enjoying the independence by block property. Let s n , q n two integers such that n = 2 s n q n . We are going to build 2 s n blocks of length q n so that the even index blocks are independent and so the odd index blocks. For k = 0, . . . , s n -1 let denote by A k = X 2kqn+1 , . . . , X (2k+1)qn and B k = X (2k+1)qn+1 , . . . , X (2k+2)qn .

We recall a result of Lerasle et al. (2011) which is a consequence of the coupling in [START_REF] Dedecker | New dependence coefficients. examples and applications to statistics[END_REF].

Proposition 5.2. Let (X t ) t∈Z be the stationary mixing process process obtained in Proposition 5.1. Let also s n , q n , A k , B k defined as above for k = 0, . . . , s n -1. There exist random vectors A * k = X * 2kqn+1 , . . . , X * (2k+1)qn , B * k = X * (2k+1)qn+1 , . . . , X * (2k+2)qn such that:

1. For k = 0, . . . , s n -1, A * k has the same law as A k , also B * k and B k .

2. The random vectors (A * k ) 0≤k≤sn-1 are independent and so are the vectors (B * k ) 0≤k≤sn-1 .

3.

A k -A * k 1 ≤ q n K n τ

(1)

X,∞ (q n ) and B k -B * k 1 ≤ q n K n τ

(1)

X,∞ (q n ).

To prove the oracle inequality, we will assume some constraints on the observations. A2 X t is sub-Gaussian with variance proxy σ 2 0 > 0 i.e.

E[e λ Xt ] ≤ e λ 2 σ 2 0 /2 for any λ > 0.

Condition A2 implies that the vector Z m t = (X t-1 , . . . , X t-Dm ) which will be prominent in the proofs, is sub-Gaussian with variance proxy D m σ 2 0 . Indeed for any v ∈ R Dm such that v = 1 ,

E exp λ v Z m t = E Dm i=1 exp λ v i (X t-i ≤ Dm i=1 exp λ v i (X t-i Dm = Dm i=1 exp λ 2 D m σ 2 0 v 2 i /2 = e λ 2 2 Dm σ 2 0 ,
where the Inequality follows from Hölder's Inequality.

The following assumption provides a sufficient condition to ensure the invertibility of both Σ m := M m M m and Σ m := E Σ m where M m = X i-1 , . . . , X i-Dm n i=1 .

A3: For any f θ ∈ S m , < α, ∂ θ f θ >= 0 a.s. =⇒ α = 0 This condition means that the columns of the matrix M m are linearly independents.

We will also need to bound eigenvalues of the matrices Σ m for any m ∈ M n . To do that, we will leverage the relation between the spectral density of the process and these eigenvalues. Let us denote by r, the covariance function r(h) := E[X t X t+h ] for any integer h. Let also introduce the function g : [-π, π[-→ C such that for any λ, g(λ) = 1 2 π h∈Z r(h) e -ihλ , which exists under A1 with |θ * t | = O(t -γ ) where γ ≥ 1 . Therefore, r is the inverse transform of g and r(h) = π -π e ihλ g(λ)dλ for any h ∈ Z. We will assume that A4: There exists a constant a > 0 such that inf -π≤λ<π g(λ) ≥ a. This is a very weak assumption, and we are going to give the value of a for AR(p) process with p ∈ N * . Let denote θ * (z) = 1 -p j=1 θ * j z j , it is well known for such process that g(λ) = σ 2 2 π θ * (e -iλ ) 2 .

For instance for p equal to one, and X t = θ * 1 X t-1 + σ ξ t with |θ * 1 | < 1, it follows

g(λ) = σ 2 2π 1 -θ * 1 e -iλ 2 = σ 2 2π 1 -2 θ * 1 cos(λ) + (θ * 1 ) 2
, and then it is simple to see that

a := σ 2 2π (1 + |θ * 1 |) 2 ≤ g(λ) ≤ σ 2 2π (1 -|θ * 1 |) 2 .
For p ≥ 1 and X t = p j=1 θ * j X t-j + σ ξ t satisfying p j=1 θ * j < 1 and θ * j ≥ 0, we have 

Σ m op ≤ π -1 ∞ i=0 E[X 0 X i ] < ∞.
(5.2.9)

Moreover and under A3-A4, it holds

Σ -1 m op ≤ 1/a.

(5.2.10)

Let us introduce extra important notations. Let denote by µ the law of the vector X t and

Ω n = ω : F θ 2 n F θ 2 µ -1 ≤ 1 2 , ∀F θ ∈ m,m ∈Mn (S m + S m )
Since,

γ n θ m = 1 n n t=1 (X t -f t θm ) 2 = 1 n that sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 = 1 n 2 n t=1 ξ t g θ 0 ( X t ) -g θ 0 ( X * t ) 2 .
As ξ t and F t are independents, it follows that

E sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 = 1 n 2 n t=1 E ξ 2 t g θ 0 ( X t ) -g θ 0 ( X * t ) 2 = 1 n E g θ 0 ( X 0 ) -g θ 0 ( X * 0 )
2 since E[ξ 2 0 ] = 1. In addition, 

ν n (g θ ) -ν * n (g θ ) 2 ≤ 1 n τ (2) (q n ) 2 ≤ C 2 τ n log q n q n 2γ-2
where the last inequality follows from Proposition 5.1. Thus,

E sup g θ ∈B( m,µ) ν n (g θ ) -ν * n (g θ ) 2 ≤ m ∈Mn E sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 ≤ K n C 2 τ n log q n q n 2γ-2 ≤ A 2 C 2 τ n 2 ,
using Assumption A5 and since K n ≤ n. Since the noise (ξ t ) is not bounded, the process ν * n,1 is not bounded either. Let's use the technique used in [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] to overcome this difficulty. Therefore, we decompose ξ t as ξ t = η t + t , η t = ξ t I 1 |ξt|≤kn ,

where k n is a deterministic sequence or a constant to be chosen later. We then have Var υ * n,1,k (g θ )) ≤ v.

• Since the noise is bounded here and from the assumption A1, the process (X t ) is also bounded. Indeed, under A1, there exists (φ * i ) such that

X t = ∞ i=0 φ * i ξ t-i with ∞ i=0 |φ * i | < +∞. Therefore |X t | ≤ Φ 0 k n with Φ 0 := ∞ i=0 |φ * i |.
Moreover, for any g θ ∈ B(m , µ), we have

g θ ( X t ) = D(S m ) i=1 θ i X t-i ≤ Φ 0 k n D(S m ) i=1 |θ i | < Φ 0 k n .
As a result, we have υ * n,1 (g θ ) 2 = υ * n,1 (g θ 0 ) 2 .

Moreover, Let us notice that (Y * k ) k is a family of independent random variables as (υ * n,1,k (g)) k . Thus, it follows

E υ * n,1 (g θ 0 ) 2 = 1 s n E υ * n,1,0 (g θ 0 ) 2 = 1 4 s n q 2 n qn i,j=1 E η i g θ ( X * i ) η j g θ ( X * j ) = 1 4 s n q 2 n qn i=1 E η i g θ ( X * i ) 2 ≤ Φ 2 0 k 2 n 2 n ≤ Φ 2 0 k 2
E sup g θ ∈B( m,µ) υ * n,2 (g θ ) 2 < 1 s 2 n sn-1 i,j=0 E Y * i Y * j < 1 s 2 n sn-1 i=0 E Y * 2 i = 1 s n E Y * 2 0 .
Moreover, ν * n,1 (g θ ) 2 < µ 2 4 s n q n = µ 2 2 n .

E Y * 2 0 = 1 4 q 2 n qn i,j=1 E |ξ i | sup i-Kn≤t<i |X * t | |ξ j | sup j-Kn≤t<j |X * t | = 1 4 q 2 n qn i=1 E sup i-Kn≤t<i |X * t | 2 = µ 2 4 q n , ( 5 
(5.4.10) Inequality (5.4.7) along with (5.4.10) yields to

E * 1 ≤ 8 K n + µ 2 n .
We conclude that there exists K > 0

E[V m ] ≤ K n .
(5.4.11)

Returning to (5.4.3), and taking expectation on both sides, it then follows

1-2 (1 + y) x E f t θ m -f t θ * 2 n ≤ 1+2 (1 + y -1 ) x E f t θ * -f t θ * m 2 n +2 pen(S m )+x K n .
(5.4.12)

For y = x-2 x+2 > 0, so that 1 + y = 2x x+2 and 1 + y -1 = 2x

x-2 , we obtain E X t-i 0 X t-j -X * t-i 0 X * t-j .

E f t θ m -f t θ * 2 n ≤ C(x) E f t θ * -f t
Moreover, X t-i X t-j -X * t-i X * t-j ≤ X t-i X t-j -X * t-j + X * t-j X t-i -X * t-i so that with Cauchy-Schwartz's Inequality,

E X t-i X t-j -X * t-i X * t-j ≤ 2 X 0 2 X t-1 -X * t-1 2
≤ 2 X 0 2 τ (2) (q n ).

Hence using Proposition 5.1, it follows

P 1 ≤ 8 X 0 2 D m τ (2) (q n ) ≤ 8 X 0 2 D m C τ log q n q n γ-1
.

Moreover, since γ ≥ 8 and from assumption A5, one can find some constant A such that log q n q n γ-1

≤ A n 4 .
As a result, with c 0 := 8 X 0 2 C τ A , it holds

P 1 ≤ c 0 n 3 .
As a consequence, Given that Σ m is symmetric, it follows

P(Ω c n ) ≤
Σ m op = λ max (Σ m ) ≤ C π +∞ h=0 1 (h + 1) γ ,
which concludes the proof of (5.2.9). Now we end by the proof of (5.2.10). Reasoning as above, and by virtue of A4, one can show that λ min (Σ m ) ≥ inf 

v: v =1 v A v = v 0 A v 0 .
Therefore one can find a vector v 0 ∈ R Dm with v 0 = 1 such that

P Σ * m -Σ m op ≥ u = P v 0 Σ * m -Σ m v 0 ≥ u .
But,

v 0 Σ * m -Σ m v 0 = 1 n n t=1 v 0 Σ * m,t v 0 -v 0 Σ m v 0 = 1 n n t=1 v 0 (Z * m t ) (Z * m t ) v 0 -v 0 Σ m v 0 = 1 n n t=1 Y 2 t -E[Y 2 t ]
with Y t = v 0 Z m t = Dm i=1 v i 0 X * t-i . From A2, Y t is SG(D m σ 2 0 ). Therefore, Y 2 t is SE(256 D 2 m σ 4 0 , 16 D m σ 2 0 ) (where SE stands for Sub-Gaussian and SE for Sub-Exponential).

Moreover, we can write

v 0 Σ * m -Σ m v 0 = 1 n n t=1 Y 2 t -E[Y 2 t ] = 1 s n sn-1 k=0 1 2q n qn i=1 Y 2 2kqn+i -E[Y 2 1 ] + 1 s n sn-1 k=0 1 2q n qn i=1 Y 2 (2k+1)qn+i -E[Y 2 1 ] = Y 1 + Y 2 .
Therefore, Var (g(Y t )) ≤ v. X t -f (X t-1 , X t-2 , . . . , X t-Dm ) 2 .

Y

Conclusion Générale et Perspectives

A travers une procédure de pénalisation, l'objectif serait de trouver la bonne fonction de pénalité pen de sorte qu'on ait ( f m , f * ) = E (X t -f m (X t-1 , X t-2 , . . . , X t-Dm )) 2 -σ 2 et la constante C 1 proche de 1.

( f m , f * ) ≤ C 1 inf m∈Mn ( f m , f * ) + C 2 n -1 (6.
3/ De plus en plus, l'hypothèse de stationnarité est remise en question et l'intérêt pour des séries non stationnaires surtout localement stationnaires est croissant ces dernières années. Bardet et al. (2020a) ont prouvé des résultats généraux (consistance, TLC) pour des processus localement stationnaires. Il serait intéressant de s'appuyer sur ces résultats pour faire de la sélection de modèles sur ces processus.
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 21 Figure 2.1: The Marseille PM10 levels (January 1st, 2018 to November 30, 2019).

  The sample autocorrelation function for the Marseille PM10 showing the bounds ±1.96/ √ n.
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 22 Figure 2.2: Elimination of trend and seasonality in Marseille PM10 levels (January 1st, 2018 to November 30, 2019).
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 a Time plot of log-returns. (b) Correlograms of log-returns. (c) Time plot of squared log-returns. (d) Correlograms of squared log-returns.
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 23 Figure 2.3: Daily closing FTSE 100 index (January 4th, 2010 to December 31 st, 2018).
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 a Time plot of log returns . (b) The sample autocorrelation function showing the bounds ±1.96/ √ n.
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 24 Figure 2.4: Daily closing price of SP500 (January 4th, 2010 to December 31 st, 2018).
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  (θ * , m) since θ(m) a.s.

  Lemma 2.3 and because |m 0 | -|m * | ≥ 1. This shows, C(m 0 ) > C(m * ) with probability going to 1, i.e. C( m) > C(m * ) . We get a contradiction along with definition of m (2.2.4), and then the selection criteria can not choose m which stricly contains the true model, thus

  κ n = o(n) and all the considered models are finite dimensional, the equality (2.7.26) implies for large n that C(m 0 ) > C(m * ) almost surely. This means that it was possible to select a model m with C( m) > C(m * ), which is impossible according to the definition (2.2.4). Therefore the event m * ⊆ m can not happen and then P(m * ⊆ m) -→ n→∞ 0.
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  the selected model m(c) as a function of c > 0 m(c) = argmin m∈M L n θ m + c pen shape (m); pen shape (m) = D m log log n 2. Find c min such that D m(c) is "huge" for c < c min and "reasonnably small" for c ≥ c min ; 3. Select the model m := m(2 c min ).
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 32 Figure 3.2: Daily closing CAC 40 index (January 4th, 2010 to December 31 st, 2019).
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 33 Figure 3.3: Sample autocorrelations of squared returns of the CAC 40 index (January 1st, 2010 to December 31 st, 2019).

Lemma 3. 2 .

 2 Under the assumptions of Theorem 3.3, for any model m ∈ M with θ * ∈ o Θ(m), it holds lim sup n→∞ L n θ(m) -L n (θ * ) 2 log log n = c min (m) a.s.
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Theorem 4. 2 .

 2 Under assumptions A0-A5 and if for any ε > 0, n P pen(m) ≥ ε -→ n→∞ 0 for any m ∈ M. that if the penalty asymptotically decreases to 0 in probability, then the criterion C pen does not select a misspecified model asymptotically. Now, we can specify the convergence rate of pen to obtain an excess loss close to the minimal one over M: Theorem 4.3. Under assumptions A0-A5, and if for any ε > 0 there exists K ε > 0 such as lim sup n→∞ max m∈M P n pen(m) ≥ K ε ≤ ε. (4.4.7)

  Borel function θ → b m (θ) such as dµ m (θ) = b m (θ) dθ. Then we have: S n (m, X) = -log(|M|) + log Θm b m (θ) exp L n (θ) dθ (4.5.2) and by replacing L n by the quasi version L n , we introduce S n (m, X) = -log(|M|) + log Θm b m (θ) exp L n (θ) dθ . (4.5.3)

F

  As a consequence, we could define a new data-driven consistent criterion, called KC , such as for any m ∈ M KC (m) := -2 L n ( θ m ) + log(n) -log(2π) |m| + log det -F n (m) + 2 log |m| and m KC = argmin m∈M KC (m) . (4.5.6) Remark 4.4. We also know that under assumptions A0, A1, A2, A3, A5, F n (m) (θ * m ). Therefore log det F (θ * m ) can also replace log det F n (m) in the expression of KC (m). Corollary 4.2. Under assumptions A0, A1, A2, A3 and A5, from Bardet et al. (2020b), m BIC , m KC and m KC are consistent criteria, i.e. p 1 = |θ 1 |, p 2 = |θ 2 | and |m| = p 1 + p 2 .

  tend to 0 as s tends to infinity. Lemma 4.2. Under Assumption A0, then for p ≤ r and b (p)k = ξ 0 p α k (M θ , Θ)+α k (f θ , Θ) for any j ∈ N * , τ (p) X (s) ≤ C λ s with λ s = inf

Remark 4. 5 .

 5 Using Assumption A0 and A5, we deduce that b (p) Lemma 4.3. Under Assumption A0-A5, for any j = 1, . . . , d, for any θ ∈ Θ, the sequence φ (j) θ (X t-k ) k≥0 t∈Z is a causal stationary sequence that is τ

  s satisfies (4.8.3) (see Lemma 4.3). Moreover, from the proof of Proposition 4.3, τ

Lemma 4. 7 .

 7 Let pen : m ∈ M n → pen(m) ∈ R + . Then ( θ mpen , θ * ) ≤ min m∈M ( θ m , θ * ) + pen( m id ) -pen( m pen ) -pen id ( m id ) -pen id ( m pen ) .

  (4.8.25) Proof. By definition, for any m ∈ M,C pen id (m) = R( θ m ) = ( θ m , θ * ) + R(θ * ). , θ * ) = ( θ m id , θ * ) = min m∈M C pen id (m) + R(θ * ).(4.8.27)

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4 PROOFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Key words :

 words Model selection, oracle inequality, efficiency, autoregressive process, data driven. 5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

..

  -1 ≤ cos(x) ≤ 1 for any real x, it follows for every λ σ 2 (2π) For such AR(p) process, one can take the constant a in A4 to be equal to a = σ 2 (2π) We can now state an important intermediate result which provides uniform lower and upper bound on the spectral norm of the matrices Σ m . Proposition 5.3. Under A1 with |θ * t | = O(t -γ ) where γ ≥ 2 , we have for any m ∈ M n

E g θ 0 (

 0 X 0 ) -g θ 0 ( i θ 0,j E (X -i -X * -i )(X -j -X * -j ) ≤ D(S m ) i=1 θ 0,i X -i -X *

2/.

  Control of E[V * m ]. First, let us rewrite ν * n (g θ ) for g θ ∈ B(m , µ). Setting X t = (X * t-1 , . . . , X * t-D(S m ) ) )qn+i g θ ( X * (2k+1)qn+i )Now let remark that ν * n,1 (g θ ) and ν * n,2 (g θ ) are both sum of s n independent random variables by virtue of Proposition 5.2. Hence, As a consequence it is sufficient to studyE * 1 := E sup g∈B( m,µ) 4 ν * n,1 (g θ ) 2 -4 x 2 n -1 D(S m )+ and the bound for E supg θ ∈B( m,µ) 4 ν * n,2 (g θ ) 2 -4 x 2 n -1 D(S m )+ will follow by using analogous arguments.Bounding E * 1

  k (g θ ) with υ * n,2,k (g θ ) (g θ ) 2 -0.5 x 2 n -1 D(S m ) bounding the term in (5.4.5). Let m ∈ M n . In order to apply Theorem 5.2, one has to find M, H and v such that supg θ ∈B(m ,µ) υ * n,1,k (g θ ) ≤ M, E sup g θ ∈B(m ,µ) υ n,1 (g θ ) 2 ≤ H 2 ,and sup g∈B(m ,µ)

•

  sup g θ ∈B(m ,µ) υ * n,1,k (g θ ) ≤ 1 2 q n sup g θ ∈B(m ,µ) qn i=1 η 2kqn+i g θ ( X * 2kqn+i )Next, since the parameter set are compacts, there exists θ 0 ∈ Θ m ∪ Θ m such that sup g θ ∈B(m ,µ)

.•

  m ) := H 2 since D(S m ) ≥ 1. • Lastly, as Var [X] ≤ E[X 2 ], it follows from the previous series of equations Var υ * n,1,0 (g θ )) ≤ E υ * n,1,0 (g θ 0 )Hence there exists a constant K such thatm ∈Mn E sup g θ ∈B(m ,µ) υ * n,1 (g θ ) 2 -0.5 x 2 n -1 D(S m )Now, let us upper bound the term in (5.4.6). For any m ∈ M n and any g θ ∈ B(m , µ),

  .4.9)where µ 2 = E[X 2 t ] < ∞. It follows E sup g θ ∈B( m,µ)

θ * m 2 n

 2 + 2 pen(S m ) +x(x + 2)x -2K n with C(x) = (x+2) 2 (x-2) 2 > 1. since -1 < θ i < 1 ensures that θ 2 ≤ |θ i |. Hence, 1 + P 2 .Using Lemma 5.3 with u = 1/4 and by virtue of A6, it followsP 2 ≤ 2 exp -3 log n ≤ 2 n 3 . Now let bound P 1 . We know that for a D m × D m matrix A A op ≤ A ∞ := max

  The proof of the will be based on the relation between the spectral density function and the maximum eigenvalues of the variance covariance matrix.Denote by u ∈ R Dm the normalized eigenvector associated to the largest eigenvalue λ max (Σ m ). Hence,λ max (Σ m ) = u Σ m u = Dm j,k=1 u j r(j -k) u k = u j e i(j-k)λ u k dλ = 1) γ < ∞.

  that (5.2.10) is established.where the last inequality follows from the fact that γ ≥ 2 and that established the Lemma. Lemma 5.3. Under assumptions A2, it holds for any model m ∈ M n , and for all u > 0 P Σ * m -Σ m op ≥ u ≤ 2 exp -One can write for a matrix A A op = max

  k } and {Y 2,k } are independent random vectors by virtue of Proposition 5.2. Now, let us show that Y i,k are sub-exponentials. For λ such that |λ| < used Hölder's Inequality. Hence Y 1,k is SE(64 D 2 m σ 4 0 ,16 D m σ 2 0 ). As a result, using exponential inequalities for SE random variables, it followsP Y 1 ≥ u/2 ≤ exp -Σ * m -Σ m v 0 ≥ u/2 ≤ 2 exp -Assume A3 holds, then Σ m is a.e. invertible. Also, Σ m is invertible. Proof. We can write Σ m = M m M m with M m = X i-1 , . . . , X i-Dm n i=1. By virtue of A3, M m is of full rank which implies the a.e. invertibility of Σ m .Moreover, Σ m = E Σ m = E Z m 0 (Z m 0 ) with Z m 0 = (X -1 , . . . , X -Dm ) . Let u ∈ R Dm , it follows u Σ m u = E ((Z m 0 ) u) 2 ≥ 0.Let show that whenever the equality holds (u Σ m = 0), u = 0. Since ((Z m 0 ) u) 2 ≥ 0, its expectation vanishes if and only if (Z m 0 ) u = 0 a.e. which yields to u = 0 by A3. Hence, Σ m is positive definite and then invertible.
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 5 THEORETICAL TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The next Theorem is a Talagrand's Inequality given in Klein et al. (2005).Theorem 5.2. Let Y 1 , . . . , Y n be independent random variables and let F be a countable class of uniformly bounded measurable functions. Then for all α > 0,η n (g) = n -1 n t=1 (g(Y t ) -E[g(Y t )]) for any g ∈ F ; C(α) = ( √ 1 + α -1) ∧ 1, K = 1/6 sup g∈F g ∞ ≤ M,E sup g∈F |η n (g)| ≤ H, sup g∈F 1 n n t=1

f

  * (x) -f * (y) ≤ ∞ i=1 α i |x i -y i | pour tout x, y ∈ R ∞ avec ∞ i=1 α i < 1.Un modèle candidat S m à considérer pourrait être dans ce cas, un D m sous-espace linéaire de L 2 (R Dm ). Si M n désigne la famille de modèles candidats, l'on définit l'estimateur pour tout S m ∈ M n commef m = argmin f ∈Sm γ n (f ) avec γ n (f ) = 1 n n t=1

  := γ n θ m + pen(S m ),(6.0.4) 
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  où θ * ∈ R d . Le modèle (1.3.1) ayant généré les données sera noté m * et appartient à une certaine famille finie de modèles affines causaux M. Notre objectif est de construire des critères de sélection vérifiant la propriété de consistance (1.2.1) et de tester la qualité d'ajustement du modèle sélectionné aux données. Pour ce faire, nous construisons un estimateur m de m * par pénalisation de la quasi-vraisemblance:

  dans les deux cas.

	1.3.2 Généralisation du critère de Hannan et Quinn pour les séries affines causales
	Nous considérons toujours le problème de sélection de modèles (1.3.2). Nous avons vu
	précédemment qu'il est important de faire dépendre la suite (κ n ) des coefficients de Lips-
	chitz de M θ et f θ . Une limite à cela est d'intérêt pratique: puisque nous donnons un large
	évantail de choix de la pénalité, comment l'analyste choisit-il sa pénalité? En décrois-sance exponentielle par exemple, parmi log(log n), log n ou même √ n, laquelle est la plus
	optimale?
	Dans cette nouvelle contribution, nous établissons pour les processus à mémoire pas
	trop longue typiquement

  satisfaites. Soit M une famille finie de modèles contenant m * et vérifiant A4. Alors, avec c min := max α 1

				2 , α 2 2 ,
	on a que			
	pour tout κ n (m) = 2 c D m log log n avec			
	c ≥ c min ,	(1.3.12)
	le modèle sélectionné m par (1.3.2) vérifie		
	m	a.s. -→ n→∞	m * .	(1.3.13)
	Ce résultat nous donne une généralisation de la pénalité fortement consistance de Han-
	nan et Quinn obtenue pour les processus linéaires.	

  , que m BIC , m KC et m KC sont consistants, i.e.

	1.3.3.d Quelques exemples de calcul du terme trace dans la penalité idéale
	Pour un modèle m vérifiant θ * m ∈ Θ m				
	1/ Si (ξ t ) est un bruit blanc gaussien, alors µ 4 = 3 et d'après		
	m BIC	P -→ n→∞	m * , m KC	P -→ n→∞	m * et m KC	P -→ n→∞	m * .

Proposition 1.7. Supposons que A1 tienne avec |θ * t

  La proposition suivante, qui est une conséquence du Théorème 3.1 de[START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], établit un lien entre les coefficients de mélange τ du processus (X t ) t∈Z et les coefficients θ * i du modèle (1.3.28).

	1.3.4.b Résultats théoriques				
	Proposition 1.6. Supposons que A1 tienne avec |θ * t | = O(t -γ ) et γ > 1, alors il existe
	une solution τ -dependante stationaire de (1.3.28) et une constante C τ > 0 telle que pour
	tout r > 0	τ X,∞ (r) ≤ C τ (2)	log r r	γ-1	(1.3.33)
	Le résultat intermédiaire suivant nous donne une borne inférieure et supérieure uni-
	formes pour la norme spectrale des matrices Σ m .		
	est la fonction de covariance. La fonction g existe en vertue de A1
	avec |θ * t | = O(t -γ ) où γ ≥ 1 .				
	A4: Il existe une constante a > 0 telle que inf -π≤λ<π	g(λ) ≥ a.
	Pour des raisons techniques, nous supposerons que la dimension du plus grand modèle
	K n de M n est de la forme				

montre que Ω n tient avec une grande probabilité. Proposition 1.8. Sous les hypothèses A1 -A4 et si |θ

  

	Alors, l'estimateur θ m avec m donnée en (1.3.31), satisfait
	, Comte and Genon-Catalot (2020)) et cela est très pratique
	pour prouver (1.3.32).			
	La proposition suivante * t | = O(t -γ ) avec γ ≥ 8 , nous
	avons	P(Ω c n ) ≤	c 0 n 3 ,		(1.3.36)
	où c 0 > 0.			
	Nous sommes maintenant en mesure d'énoncer le résultat principal de notre quatrième
	contribution.			
	Théorème 1.10. Considérons les observations (X 1 , . . . , X n ) d'une solution du processus
	(1.3.28) satisfaisant A1 avec |θ * t | = O(t -γ ) où γ ≥ 8 et vérifiant aussi A2 et A4. Soit
	M n une famille dénombrable de modèles S m satisfaisant A3. Pour x > 0, considérons la
	fonction pen: M n → R + telle que			
	pen(S m ) ≥ 8 x σ 2 D m n	.	(1.3.37)
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Table 2 . 1 :

 21 Percentage of selected order based on 1000 replications depending on sample's length for Model 1, 2, 3 and 4 respectively.

		Sample length n Penalty	100 log n	√	500 n log n	√	1000 n log n	√	2000 n log n	√	n
		Wrong	21.4 32.3 1.7	0.8 0.8		0.1 0.2	0
	Model 1	True	74.2 67.6 97.2 99.2 98.2 99.9 99.2	100
		Overfitted	4.4	0.1 1.1		0 1.0			0 0.6	0
		Wrong	30.4 57.7 4.8	4.2 0.7		0.3 0.4	0
	Model 2	True	64.1 42.1 93.6 95.8 98.2 99.7 99.2	100
		Overfitted	5.5	0.2 1.6		0 1.1			0 0.4	0
		Wrong	76.1 90.8 27.3 67.1 14.0 41.5 4.6	12.0
	Model 3	True	23.8	9.2 72.7 32.9 85.9 58.5 95.4 88.0
		Overfitted	0.1		0 0		0 0.1			0 0	0
		Wrong	83.8 94.3 22.1 61.5 5.8	31.3 1.8	6.2
	Model 4	True	15.9	5.7 77.5 38.5 93.2 68.7 98.0 93.8
		Overfitted	0.3		0 0.4		0 1.0			0 0.2	0

Table 2 . 2 :

 22 The empirical size and empirical power of the portmanteau test statistic QK ( m) based on 1000 independent replications (in %) with K = 3 and K = 6.

		n	100	500	1000	2000
		size power size power size power size power
		Model 1 3.3	10.9 6.2	52.2 3.5		84.8 5.0	98.2
	K = 3	Model 2 3.3	7.0 4.8	23.3 6.2		42.4 4.9	70.4
		Model 3 4.6	6.4 8.4	44.1 14.3	81.0 36.9	99.4
		Model 4 9.5	23.2 21.3	38.5 33.6	57.2 39.4	88.3
		Model 1 2.9	9.1 4.9	42.0 4.4		76.3 4.5	97.6
	K = 6	Model 2 3.0	6.3 5.2	18.0 5.1		35.1 4.6	60.2
		Model 3 4.5	12.6 11.1	64.4 14.7	92.5 27.9	99.9
		Model 4 4.3	52.7 4.2	98.6 3.2		99.6 3.6	99.9
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4: Summary of the results of the model selection and goodness-of-fit analysis on PM10.

Table 2 . 5 :

 25 Summary of the results of the model selection and goodness-of-fit analysis on FTSE index.

  If assumptions A1-A5hold, then with c min := max α 1

		2 , α 2 2 , it holds	
	for any κ n (m) = 2 c D m log log n with		
		c ≥ c min	(3.2.8)
	it holds for the selected model m according to (3.2.3)
		m	a.s. -→ n→∞	m * ,	(3.2.9)
	Remark 3.1.	1. For classical configurations as seen in Proposition 3.2, this result
	gives a generalization of Hannan and Quinn criterion.

  also M be a finite family of candidate models such that m * ∈ M. If assumptions A1-A5 hold, then with c min := max α 1 2 , α 2

2 , it holds for any κ n (m) = 2 c D m log log n with c ≥ c min (3.2.17) it holds for the selected model m according to (3.2.14) m a.s. -→ n→∞ m * . (3.2.18)

Table 3 . 1 :

 31 Percentage of selected order based on 500 independent replications depending on sample's length for the penalty κ 1 n = 2 cmin log log n Dm, κ 2 n = 4 cmin log log n Dm and κ 3 n = log n Dm, where and W, T, O refers to wrong, true and overfitted selection.

	n	100	500	1000	2000
	κ 1 n				

Table 3 . 2 :

 32 Percentage of selected order based on 1000 independent replications depending on sample's length using penalty terms κ 1 n = cmin, κ 2 n = 2 cmin and κ 3 n = log n, for DGP III.

	n	100	200	400	500	1000	2000

  ).

	Assumption A4: For every m ∈ M, if (θ m,n ) is a sequence of Θ m satisfying θ m,n	a.s. -→ n→+∞	θ * ,
	then	lim sup n→∞	E	1 n	∂ 2 θ i θ j L n (θ m ) i,j∈m	-1 8	< ∞.	(4.3.2)
	Remark 4.1. Note that under assumption A0, if θ m,n	a.s.		

  we have to prove that there exists n 0 ∈ N such as sup Finally, with Proposition 4.1 and Lemma 4 of[START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we have sup n∈N * E ∂ 2 θ 2 γ n (θ m )

	4 Θ < ∞ and r r -2 ≤ 4 since r > 8/3, and therefore
	sup n∈N *

  Using this and (4.8.23) we deduce that for any m ∈ M, there exists a bounded sequence (v * n ) n∈N * not depending on m satisfying

	E I 32 (m) =	v * n n	.	(4.8.24)

.8.23) since δ > 7/2 from Assumption A5. Moreover, for any m ∈ M such as m * ⊂ m, we have

γ n (θ * m ) -γ n (θ * m ) = γ n (θ * m ) -γ n (θ * m ).

  such as n I 1 (m) + I 2 (m) ≤ Y (m) and n I 3 (m) ≤ Z for any n ∈ N * . Moreover, Y (m) and Z have bounded expectations. Therefore, using Markov Inequality and since M is supposed to be a finite family of models, for any ε > 0 there exists K ε > 0 such as lim sup

	.8.32)
	By this way, (4.4.6) is established.

Proof of Theorem 4.3. The proof is mainly based on Lemma 4.7. From the proof of Lemma 4.1, we deduce that for any m ∈ M, there exists two positive random variable Y (m) and Z(m) n→∞ max m∈M

  Dans cette thèse, il était question pour nous de proposer et d'étudier sur les plans théorique et numérique des critères de sélection de modèles pour les séries affines causales.Dans un premier temps, nous avons montré qu'il était indispensable de faire dépendre la pénalité du critère de sélection de la vitesse de décroissance des coefficients de Lipschitz du processus afin d'obtenir un critère consistant en probabilité. Nous avons également proposé un test d'adéquation du modèle sélectionné basé sur l'autocorrélation du carré des résidus du modèle. Les simulations numériques ont montré des résultats assez satisfaisants.Deuxièmement, nous avons proposé une généralisation du critère de Hannan et Quinn à la classe des séries affines causales. Cette généralisation fournit une nouvelle constante multiplicative (dans la pénalité) connue pour les modèles classiques (ARMA, GARCH ou APARCH) et data-driven calibrable pour les modèles complexes tels que les ARMA-GARCH. Là également, quelques études de simulation ont attesté de la bonne qualité des critères obtenus.Dans un troisième temps, nous nous sommes intéressés à la construction des critères asymptotiquement efficients. Nous avons généralisé le critère AIC d'Akaike en s'appuyant sur la pénalité dite idéale. Le comportement asymptotique de cette pénalité idéale nous a suggéré un terme de pénalité qui vaut exactement 2 D m comme dans l'AIC pour des modèles assez simples, et pour des modèles complexes, nous avons donné une formule moins explicite mais qui peut être calibrée au moyen des données. Dans cette troisième partie, nous avons également à la suite de Schwartz, dérivé le critère BIC basé sur la maximisation de la probabilité a posteriori de choisir le vrai modèle.Enfin, nous nous sommes restreints à l'étude non asymptotique d'un processus particulier de la classe des modèles affines causaux. Un estimateur des moindres carrés pénalisé est construit à partir d'un critère de sélection adaptatif et la sélection est opérée parmi une collection de modèles linéaires. Nous avons montré que l'estimateur final est presque aussi performant que le meilleur sur la collection considérée, i.e. qu'il réalise, à une constante près, le compromis biais-variance. La pénalité obtenue généralise celle de Mallows et dépend d'une constante que l'on pourrait estimer avec des algorithmes de calibration adaptative.Au sortir de cette thèse, il est important de souligner que nos travaux ouvrent plusieurs perspectives de recherche.1/ A la suite du Chapitre 4, il serait intéressant d'obtenir l'inégalité d'oracle (5.2.6) cette fois ci en considérant que les observations proviennent du modèle AR(∞) suivant: X t-k + σ ξ t pour tout t ∈ Z.(6.0.1) où (ξ t ) t∈Z est un bruit blan faible. La tâche devient beaucoup plus difficile car l'hypothèse d'indépendance du bruit est fondamentale pour garantir l'existence d'une solution mélangeante, propriété nécessaire pour utiliser des inégalités exponentielles usuelles. L'on pourrait ainsi dans un premier temps, supposer que le processus (X t ) t∈Z est mélangeant. Cela pourrait permettre de traiter les GARCH puisque l'on peut toujours les écrire comme des ARMA à bruit blanc faible. 2/ Une extension logique du Chapitre 4 serait de considérer que les observations proviennent d'un modèle fonctionnel autoregréssif X t = f * (X t-1 , X t-2 , . . .) + σ ξ t pour tout t ∈ Z (6.0.2) avec bruit blanc fort mais où la fonction f * n'est plus nécessairement linéaire mais vérifie l'hypothèse de contraction

	+∞	
	X t =	θ * k
	k=1	

Table 2.3: Percentage of selected model based on 1000 replications depending on sample's length for Model 4

Remerciements

This section aims to investigate how well are our new model selection criteria based on the theoritical results obtained in both Section 4.4 and Section 4.5. To do that, three Data Generating Process (DGP) have been considered: DGP I AR(2) X t = 0.4 X t-1 + 0.4 X t-2 + ξ t , DGP II ARMA(1, 1) X t -0.5 X t-1 = ξ t + 0.6 ξ t-1 , DGP III GARCH(1, 1)

where (ξ t ) t is a Gaussian white noise with variance unity.

In order to identify possible discrepancies between asymptotically expected results and those obtained at finite distance, we consider n belongs to 200, 500, 1000, 2000. We will compare the performance of the AIC, BIC and KC'.

For the efficiency property (Theorem 1.2), we will be interested in the difference

and the idea would be to see the decay rate of this residual term.

The considered family of competitive models is the same for the three DGP M = ARMA(p, q) or GARCH(p, q) with 0 ≤ p, q ≤ 6 .

The empirical estimates of the ratio ME are obtained based on 500 replications. Here is how we empirically estimated ME.

Given a DGP and a list of candidate models, the empirical estimates of ( θ m , θ * ) have been obtained in the following way:

1. For any model m, the observations (X 1 , . . . , X n ) from DGP have been used to estimated the QMLE θ m and then we considered as an estimate of R( θ m ) the quantity γ n ( θ m ) which is the empirical risk of the estimator θ m but computed over observations (Y 1 , . . . , Y N ) (with N = 10 6 ) arisen from the DGP and independent to (X 1 , . . . , X n ).

2. Selection of m according to (4.2.9) and then we retrieve the estimation of R( θ m ) in the list of estimates obtained in the first point;

3. Then take the difference of the results obtained in 1 and 2. The experiment was repeated 500 times and the average of these differences times n is our estimate of ME.

For the consistency property, the Table 4.1 shows the frequency of selecting respectively the true model versus a model other than the true one (called here "wrong"). From these results, it follows that KC' outperforms BIC when dealing both with small and larges samples. These results confirm that it is important to consider also the neglected terms in the derivation of the BIC criterion. Moreover, the percentage of selecting the true model using both BIC and KC' approaches 100 with increasing n. This is consistent with our asymptotic result (Corollary 4.2). Hence, KC' is more robust to the sample size and thus improves BIC. In view of the results of Table 4.2, we notice a decrease of the residual term M E for all the criteria. This decrease is much faster and tends towards 0 for the consistent criteria while it is much less for the AIC. This allows us to conclude that Theorem 4.3 is verified by AIC criterion. Moreover, Theorem 4.3 is also verified by both criteria BIC and KC' despite the fact that these criteria do not satisfy the conditions of the theorem. One might think that the validity of (4.4.8) is due to the fact that since

is reached for m = m * in most cases and to the consistency of the BIC and KC' criteria. Thus, one could say that in configurations where the true model is part of the candidate models, the consistent criteria are also efficient. 

Proofs of Section 4.3

The asymptotic normality of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and Bardet et al. (2020b) when m * ⊂ m using a central limit theorem for stationary martingale difference. Here we extend this result to any m ∈ M: Henceforth, let observations (X 1 , X 2 , . . . , X n ) be a trajectory of the solution X := (X t ) t∈Z of (5.1.1) verifying A1. The goal of this paper is to predict the next value X n+1 . In fact, if θ * were known, a simple prediction of X n+1 could be f θ * (X n , X n-1 , . . .) setting X t = 0 for all t < 0. However, θ * is generally unknown and it is impossible to provide a direct estimator since its coordinate are infinite. It is classical to identify a 'good' finitedimensional model based on the data which can be done by sieve estimation where only a finite number of {θ * i } K i=1 is estimated and letting K grows as the sample size increases. A usual approach to this is model selection and the goal is to provide a model with the prediction error as small as the oracle's one. This question has already been addressed in the literature. [START_REF] Shibata | Asymptotically efficient selection of the order of the model for estimating parameters of a linear process[END_REF] was the first to tackle this issue. He proved that Akaike criterion is asymptotically efficient in the sense that the selected model achieves a smaller one-step mean squared error of prediction when it is fitted to predict an independent realization of the same process. Following Shibata's asymptotically setting, [START_REF] Ing | On same-realization prediction in an infinite-order autoregressive process[END_REF] and Ing et al. (2005) extended this result for same realization predictions. Indeed, they argued that the Shibata's idea to fit the model to another independent realization is unrealistic since in practice we only have one data at hand. The common feature of these works is their asymptotic framework. Meanwhile, there were several authors which study this question in non asymptotic regime. [START_REF] Goldenshluger | Nonasymptotic bounds for autoregressive time series modeling[END_REF] in the non parametric framework, studied how well a Gaussian process admitting an AR(∞) representation can be approximated by a finite-order AR model.

In Baraud et al. (2001a) and Baraud et al. (2001b), they analyzed similar question, but a little bit different as observations arise from an auto-regressive model of order k. They proved an oracle inequality under several conditions, for instance the compactly supported base of the regression function. Moreover, they assume that the process is β-mixing which is usually admitted, but quite hard to verify in practice. For linear processes, the τ -mixing is more suitable since its coefficients can be easily computed (see [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]) and be bounded by a function of the model parameter θ * (see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]). In this work, we do not assume any mixing property of the process since the condition A1 implies the τ -mixing property (see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]) and we will see that the decreasing rate of τ -mixing coefficients is bounded by the decreasing rate of the coefficients θ * = (θ * i ) i∈N . Based on the above and following a model selection approach, our purpose in this work is to design adaptive penalties in such a way that the selected model mimic the oracle when observations arise form AR(∞) under mild conditions, including the existence of the all order moment of the noise, the decreasing rate of the coefficients of (θ * i ) i∈N so that thanks to a result by [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], the generating process has nice properties such as stationarity, τ -mixing. The main contribution of this paper is to have proved that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. The paper is organized as follows. The model selection approach along with preliminary results are described in Section 5.2. The main results are presented Section 5.3. Finally, Section 5.4 contains the proofs. 

MODEL SELECTION APPROACH

R(θ).

Its empirical version minimizing the least-squares contrast is

(5.2.2)

In this work, we will consider that the excess loss is measured on the design points, that is to say

where

Given that all the models which can be considered must have finite dimensions for fixed n, making all S m wrong models, it is classical to let the dimension of competitive models grow with the number of observations. This will help reduce the excess loss and provide a better approximation of f θ * .

Let M n a countable collection of hierarchical model S m and K n is the dimension of the largest model in M n satisfying |M n | ≤ K n < n. We follow the classical approach of model selection which consists in minimizing the penalized LSE. Let pen: M n → R + be a penalty function, possibly data-dependent, and define

(5.2.4) Thus, the best possible choice over M n is m * the so-called oracle defined as

(5.2.5)

where

It is common to consider the set Ω n which makes a link between the empirical norm . n and the to L 2 norm (see for instance Baraud et al. (2001b), [START_REF] Hsu | An analysis of random design linear regression[END_REF][START_REF] Van De Geer | On hoeffding's inequality for dependent random variables[END_REF], [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] among others). We will see that in our framework, Ω n holds with large probability. In all of this work, we assume that q n was chosen to verify

for some constant A and γ > 1. Also we choose the integer s n such that

Proposition 5.4. Under assumptions A1, A6 and if

(5.2.13) We are now able to state the main result of the paper.

Bias

Theorem 5.1. Let consider observations (X 1 , . . . , X n ) arising from a solution of the process (5.1.1) satisfying A1 with |θ * t | = O(t -γ ) where γ ≥ 8 and also verifying A2 and A4. Let M n be some countable family of AR models satisfying A3 and A5-A6. For any constant x > 0, let a penalty function pen: M n → R + such that pen(S m ) ≥ 8 x 3 σ 2 D m n .

(5.3.1)

Then, the LSE θ m with m given in (5.2.4), satisfies

As we can see, this result is almost similar to that of Baraud et al. (2001b) obtained in non parametric framework. However, their result is only valid if we want to estimate the function F θ * on some compact set. This restriction is lifted in our parametric framework. 

Proof of Theorem 5.1

Proof. We follow the scheme of the proof of Baraud et al. (2001b). Let fix m ∈ M n . From the definition (5.2.4), we have

(5.4.1)

Technical Lemmas

Lemma 5.1. Assume A1 holds and (X t ) the mixing stationary solution of (5.1.1). Then, the process ( X t ) is mixing and

X,∞ (r -1).

(5.4.13)

Proof. Let set by M i X = σ( X t , t ≤ i) and M i X = σ(X t , t ≤ i) for an integer i. One would like to bound τ M i X , X j 1 , . . . , X j k for j k > . . . > j 1 ≥ i + r. Let assume that the universe Ω is rich enough so that, one can find X

This fact along with the definition of τ Proof. By virtue of A1, the process (X t ) t is causal; that is there exists (φ i ) i∈N such that X t = +∞ i=0 φ i ξ t-i with +∞ i=0 |φ i | < ∞. The sequence (φ i ) i∈N is given by the relation φ(z) = +∞ i=0 φ i z i = 1 θ(z) with θ(z) = 1 -+∞ i=0 θ * i z i . Equating coefficients of z j , j = 0, 1, . . ., we find that φ 0 = 1 and for i ≥ 1

This fact allows us to deduce that the sequences (φ i ) i∈N and (θ * i ) i∈N decay at the same rate. Therefore, since |θ * t | = O (t + 1) -γ , there exists h 0 ∈ Z such that for any h ≥ h 0 , it holds |φ t | ≤ C (t + 1) -γ for some constant C > 0. Thus,