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Preface

Motivations

Many physical, biological, socio-economical problems can be written as Wasserstein gradient
flows, that is curves of steepest descent in the Wasserstein space. A curve of steepest descent
is an evolution that starting from an initial configuration evolves in time maximizing the rate
of decrease of a given energy, i.e. decreasing it as fast as possible. Different forms of the
energy generate different dynamics. The knowledge that a problem presents this particular
structure can be beneficial for the design of a numerical scheme to approximate its solution.
The objective of this work is indeed to propose approaches for solving these type of problems,
preserving and exploiting their structure in order to have reliable and robust schemes.

The notion of gradient flow depends on the notion of metric space. The easiest example
is the case of a finite dimensional gradient flow in Rd, equipped with the euclidean distance,
with respect to a real valued function F : Rd → R. In this very simple setting, given a starting
point x0 ∈ Rd, a gradient flow is defined as the solution to the following Cauchy problem:

dx(t)

dt
= −∇F (x(t)) , t ≥ 0 ,

x(0) = x0 .
(1)

The vector field is given by the opposite of the gradient of the function F , which clearly
motivates its name. The definition (1) of gradient flow makes perfectly sense also in the
infinite dimensional case whenever the underlying space is of Hilbert type. Nevertheless, the
notion of gradient flow can be extended to setting where the metric space does not have
this geometrical structure, as it is the case for the Wasserstein space. Another definition
is necessary however in these cases, where the time derivative and the gradient operator
appearing in equation (1) do not make sense.

Although always sharing the same principle, there are different definitions of gradient flows,
more or less suited depending on the notion of metric space or the specific energy considered.
If the space has sufficient differential structure, as it is the case for the Wasserstein space, one
can again resort to a characterization close to (1), which we could describe in some sense as
the optimality conditions of the variational problem. Given a real valued energy functional E
and an initial condition ρ0, we can characterize a Wasserstein gradient flow with respect to E
as the solution to the following partial differential equation:

∂t%−∇ · (%∇ δE
δρ [%]) = 0 in [0, T )× Ω̊ ,

%∇ δE
δρ [%] · n = 0 on [0, T )× ∂Ω ,

%(0, ·) = ρ0 in Ω ,

(2)
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where Ω ⊂ Rd is a convex and compact domain, T ∈ R+ is a time horizon. Equation
(2) expresses the continuity equation for a time evolving density %, starting from the initial
condition ρ0, convected by the velocity field −∇ δE

δρ [%]. It is complemented with a condition
of zero flux across the boundary of the domain: the total mass, defined as the space integral
of the density on the whole domain, is therefore preserved.

It is now well understood since the pioneering works of Otto [73, 107, 108] that equations
of the form of (2) can be interpreted as the gradient flow in the Wasserstein space with respect
to the energy E . The first problem that has been shown having this structure is the linear
Fokker-Planck equation [73, 25]. Beside this, many problems have been proven to exhibit the
same variational structure. Porous media flows [108, 78, 34], magnetic fluids [107], supercon-
ductivity [5, 4], crowd motions [94], aggregation processes in biology [42, 23], semiconductor
devices modelling [76], or multiphase mixtures [37, 72] are just few examples of problems
that can be represented as gradient flows in the Wasserstein space. Designing efficient nu-
merical schemes for approximating their solutions is therefore a major issue and our leading
motivation.

There exist already numerous numerical schemes to solve problems of the form of (2).
Nevertheless, the hidden variational structure is usually disregarded. The key principle that
the evolution should decrease (as fast as possible) the energy is hardly enforced. The design
of discretizations that, starting from the interpretation of problem (2) as steepest descent
curve, preserve and exploit this structure can be extremely beneficial, both for robustness
and reliability. Approaches in this direction have already been proposed recently (e.g., [17,
41]). However, the numerical analysis, the efficiency and the flexibility have not always been
considered. The spirit of this work is also to push forward these aspects.

Content of this work

In this work we want to construct robust, reliable and efficient structure preserving discretiza-
tions of problems of the form of equation (2). The time discretization is based on variational
approaches that mimic at the discrete (in time) level the behavior of steepest descent curves.
The space discretization is based on the Finite Volume Method, a well-known methodology
particularly suited for the discretization of partial differential equations that present a con-
servative structure as (2). We use in particular Two-Point Flux Approximation (TPFA) finite
volumes, a simple, yet very flexible, discretization. We insist on designing schemes which
preserve at the ultimate discrete level the variational structure of the problem: that is, we
will always follow a first discretize then optimize approach. We will present first order and
second order accurate schemes, in both time and space. The variational structure is linked
with the notion of Wasserstein distance, a complex optimization problem. We will present
also a deep analysis of the computation of this complex object.

In Chapter 1 we show in which sense problems of the form of (2) can be interpreted as
steepest descent curves of the energy functional E . This interpretation is based on the theory
of optimal transport. We introduce the (quadratic) optimal transport problem and briefly
characterize its solutions. We will insist in particular on its dynamical formulation, which is
of major interest for us. We finally introduce the finite volume methodology.

In Chapter 2 we focus on the discretization with finite volumes of the quadratic optimal
transport problem in the Benamou-Brenier dynamical form. We expose some stability issues
related to this discretization of the problem and propose a possible solution based on nested
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meshes. To validate our approach, we present some convergence results that will be verified
numerically. We also introduce and analyze the interior point strategy we employ to solve the
discrete optimization problem. In Appendix A we present another discretization, always in the
framework of TPFA schemes, which enables to preserve at the discrete level the monotonicity
of the continuous operators.

In Chapter 3 we present a first order accurate variational scheme to solve Wasserstein
gradient flows. The time discretization is based on the Minimizing Movement Scheme (MMS)
introduced by the De Giorgi [48]. In order to decrease the computational complexity, we
approximate the complex Wasserstein distance involved in the scheme with a weighted H−1

norm. We show numerically that this strategy preserves the accuracy of the MMS. For the
space discretization, we rely on upwind finite volumes, a specific instance of TPFA discretiza-
tion. This choice allows to solve directly the problem with an efficient Newton scheme. To
validate our approach, we show the convergence of the scheme to distributional solutions of the
Fokker-Planck equation. We also present several numerical simulations of various problems
that exhibit a Wasserstein gradient flow structure.

In Chapter 4 we deal with the problem of providing a second order accurate discretization
in space for the approach we present in Chapter 3. We rely on the interior point technique we
will present in Chapter 2 to solve the discrete problem. This allows us to be more flexible in
the space discretization and use a more accurate TPFA strategy. We verify numerically the
second order accuracy in space. We finally present and test a more precise, yet not second
order in time, scheme based on a modification of the MMS time discretization which has been
recently proposed in [41].

In Chapter 5 we construct a second order accurate scheme in both time and space. As
the MMS scheme is an order one discretization in time, we introduce a new approach, a
modification of the variational BDF2 scheme introduced in [93]. We prove that this new
time discretization converges to distributional solutions of the Fokker-Planck equation, which
shows its consistency. We show that it is also possible to recover gradient flows in the EVI
sense. Thanks to this modified BDF2, we are able to propose a fully discrete scheme. We will
rely again on the space discretization and the optimization strategy introduced in Chapter 4.
We show numerically that this scheme is second order accurate.

Finally, in Appendix B, we present another possible space discretization strategy for the
dynamical optimal transport problem based on conservative finite elements. This type of
discretization is intimately related to the finite volume one. Moreover, it fits naturally the
framework of the convergence proof designed in [79] for general discretization of optimal
transport, as we will show. We use in this case a primal-dual technique to solve the dis-
crete optimization problem, an optimization approach which is more common in the optimal
transport community.

This work is mainly based on the three published papers [32, 104, 105], which are respec-
tively presented in Chapter 3, Chapter 4 and Chapter 2. The presentation of these works is
not chronological but follows a conceptual order. The latter two works in particular had been
here extended. The content of Chapter 5 has not been, at the moment, submitted. Finally,
the presentation in Appendix B is issued from [103] which is currently under review.
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Finite volume notation

• K,L: cells, control volumes;

• σ: face;

• K|L: face common to K and L;

• xK : cell center of K;

• ∆σ: diamond cell with vertices xK ,xL and the vertices of σ = K|L;

• T : set of all cells;

• Σ: set of all faces;

•
(
T ,Σ, (xK)K∈T

)
: finite volume mesh;

• Σ: set of internal faces;

• Σext: set of boundary faces, Σ \ Σ;

• ΣK : set of faces of the cell K;

• ΣK : set of internal faces of the cell K, ΣK ∩ Σ;

• NK : neighboring cells of the cell K;

• mK : Lebesgue measure of the cell K;

• mσ: (d− 1)-dimensional Lebesgue measure of the face σ;

• dσ: Euclidean distance between xK and xL for σ = K|L;

• dK,σ: Euclidean distance between xK and σ;

• m∆σ : Lebesgue measure of the diamond cell ∆σ;

• aσ: transmissivity of the face σ, mσ
dσ

;

• hT : meshsize, maximum diamater among all cells K;

vii
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Chapter 1

Prerequisites

In this chapter we will present the notions and the fundamental language needed to read and
interpret this work.

1.1 Optimal transport and the Wasserstein distance

Optimal transport is a mathematical theory that deals with the very natural problem of
finding the optimal way of reallocating an initial configuration of mass into a final one, mini-
mizing a total cost of displacement. It is a very old problem originally introduced by Monge
[100], who wondered what was the optimal way of reallocating sand piles. Starting from the
work of Kantorovich [75], who recast it into a suitable mathematical framework, it developed
considerably in the past decades. Despite the initial extremely practical taste, it became an
incredible tool in many theoretical fields. In the last years optimal transport experienced a
new growth particularly thanks to the development of numerical methods. The possibility to
compute approximate solutions made this theory much more appealing. It finds nowadays
application in many different fields, among which socio-economical problems, data science and
machine learning, but also physics and other branches of mathematics, such as the theory of
partial differential equations (PDEs), variational inequalities or probability theory.

Several features contribute to make optimal transport particularly useful. First of all,
it can be applied to more general objects than simply mass distributions, as long as the
reallocation problem can be formulated. Secondly, it provides a notion of distance as the cost
for the optimal reallocation. In this way it is possible to conceive distances between objects
that otherwise would be difficult to compare. Furthermore, if the transport cost takes into
account the horizontal displacement, it resembles an intuitive notion of distance, in contrast
to more classical Lp distances for example which measure the vertical displacement. Finally,
it carries along a natural notion of interpolation, as we shall see later. These features explain
in particular the many connections of optimal transport with physical problems, as it is the
case for example of Wasserstein gradient flows that we are analyzing specifically in this work.

The most natural way of evaluating the total transport cost is to assign to each single
displacement a unitary cost and then sum all the contributions. If this unitary cost is taken
to be the squared euclidean distance between points in space, then the problem is referred to
as the quadratic or the L2 optimal transport problem. The square root of the total cost of
displacement is called in this case the quadratic Wasserstein distance. In the following, we

1



2 CHAPTER 1. PREREQUISITES

Figure 1.1: The problem of transporting an initial configuration of mass µ into a final one ν.

will quickly present the L2 optimal transport problem. We will insist on its fluid dynamics
formulation proposed by Benamou and Brenier, which is better suited for the purposes of this
work, and the notion of geodesic interpolation. We will finally characterized what we refer to
as the Wasserstein space.

Our aim is to introduce the reader to the concepts and the intuitions behind them and we
will keep for this reason the presentation simple and formal. We will work in a very specific
and simplified setting since the general theory will not be needed in this work. We refer to
the monographs [115, 120, 121, 3, 111] for a general and precise presentation of the topics
we will introduce and for a broad overview of the features and the advantages of using this
theory in applications.

1.1.1 Generalities on optimal transport

Let us start by fixing the domain Ω to be a convex and compact subset of Rd. We consider
the space P(Ω) of probability measures defined on Ω, subset of the topological dual space of
the space of continuous function C 0(Ω) defined on Ω. We recall that probability measures are
positive measures with fixed total mass equal to one, although the constant is not essential.
When considering absolutely continuous measures in P(Ω), that is measures that admit a
density function ρ ∈ L1(Ω;R+) for which it holds

∀D ⊂ Ω, µ(D) =

∫
D
ρ(x) dx ,

we will most of the time refer, throughout this work, directly to its density function, stating
for example ρ ∈ P(Ω), following a classical abuse of notation.

Given two measures µ, ν ∈ P(Ω), we say that ν is the pushforward of µ through a map T
if

∀K ⊂ Ω, ν(K) = T#µ(K) = µ(T−1(K)) , (1.1)

or equivalently if ∫
Ω
f(y) dν(y) =

∫
Ω
f(T(x)) dµ(x), ∀f ∈ C 0(Ω) . (1.2)
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With Π(µ, ν) we denote the space of admissible couplings γ between µ and ν, that is the subset
of probability measures defined on the product space Ω × Ω which verify the two marginal
constraints

(π1)#γ = µ , (π2)#γ = ν , (1.3)

where π1, π2 stand for the canonical projections on the first and second coordinate of the
product space Ω× Ω. The two conditions can be equivalently stated as:∫

Ω×Ω
f(x)dγ(x,y) =

∫
Ω
f(x)dµ(x) ,

∫
Ω×Ω

g(y)dγ(x,y) =

∫
Ω
g(y)dν(y) , ∀f, g ∈ C 0(Ω) .

(1.4)
An element γ ∈ Π(µ, ν) is called a coupling, or a transport plan, with respect to the two
reference measures, as it prescribes for each couple of points (x,y) how much mass contained
in x of the measure µ should be assigned to y, and vice versa.

The optimal transport problem and the Brenier solution

We are ready to state the optimal transport problem, in the Kantorovich formulation, between
µ, ν ∈ P(Ω). For a continuous cost function c ∈ C 0(Ω × Ω), which represents for each point
(x,y) the unitary cost of displacement from x to y, the problem writes as

inf
γ∈Π(µ,ν)

∫
Ω×Ω

c(x,y)dγ(x,y) , (1.5)

that is we want to find the transport plan between µ and ν that minimizes the total dis-
placement cost. The cost function which has been considered and studied the most due the
specific mathematical features it expresses, and to its many links and applications in physical
problems and more, is the euclidean cost: c(x,y) = |x−y|2. This is the cost we will consider.
Originally, Monge considered the cost c(x,y) = |x − y| which is theoretically much more
involved.

Problem (1.5) is a well-posed convex optimization problem. It is more precisely a linear
program. The set of optimal couplings Π(µ, ν) is evidently convex. Existence of a solution
is simple to establish using the direct method of the calculus of variations. The space of
probability measures P(Ω) (and equivalently P(Ω × Ω)) is indeed weakly-* compact. We
recall that this means that for every sequence (µn)n∈N ⊂ P(Ω) there exists a subsequence µnk
and a probability measure µ such that∫

Ω
f(x)dµnk(x)→

∫
Ω
f(x)dµ(x), ∀f ∈ C 0(Ω) .

The functional in (1.5) is by definition continuous in this topology and the constraints (1.4)
clearly pass to the limit. The optimal transport plan γ then exists1. It is possible to prove
this result under milder assumptions than the ones we considered, see [115, Section 1.1].
Uniqueness is a more delicate issue and is not guaranteed in general.

1Keep in mind that we assumed from the very beginning that the space Ω is bounded. The space of continu-
ous functions C (Ω) coincides then with the spaces C 0

0(Ω) and C 0
b(Ω), namely the space of continuous functions

vanishing at infinity and the space of bounded continuous functions. This implies that narrow convergence of
measures, i.e. convergence in duality with C 0

b(Ω), coincides with the usual weak-* convergence. Relaxing the
boundedness assumption on Ω can be done resorting to Prokhorov’s theorem to recover compactness, see [115,
Theorem 1.7].
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In the case one of the two measures is absolutely continuous, let us say for example µ,
Brenier [27] proved that it exists an optimal map T : Ω→ Ω sending µ to ν, in the sense that:
ν is the pushforward of µ, ν = T#µ, and the optimal transport plan in problem (1.5) has the
form γ = (Id,T)#µ, where Id is the identity map. This means that the solution is not simply
a measure but it has a precise analytical form: each infinitesimal quantity of mass is sent to
a precise final location. This seems a desirable form for solutions to the transport problem.
Therefore the optimal cost in problem (1.5) writes∫

Ω
|x− T(x)|2 dµ(x) , (1.6)

and the map T minimizes the functional (1.6) among all the maps that verifies the equivalent
conditions (1.1)-(1.2) (otherwise there would exist a better transport plan). The map T can
be written as the gradient of a convex function ψ, i.e. T = ∇ψ, and it is unique (on the
support of µ). The function ψ is usually called the Brenier potential. Even more, if there
exists a map T pushing µ to ν that can be written as the gradient of a convex function on
the support of µ, then γ = (Id,T)#µ is the optimal plan.

Minimizing the functional (1.6) over all maps T satisfying the constraint (1.1) was actually
the original form of the optimal transport problem as it has been formulated by Monge. As
the constraint expressed by the conditions (1.1)-(1.2) is neither linear nor convex, this form
is not suitable. By allowing the mass to split, which is exactly what we do by optimizing over
transport plans rather than transport maps, Kantorovich formulation simplifies enormously
the problem. It can be shown that this latter formulation is indeed a convex relaxation
in a specific sense of the original one (see [115, Section 1.5]). Nevertheless, if one of the
two measures is absolutely continuous, the two problems coincide, in the sense that the two
minima are the same and the optimal transport plan is concentrated on the graph of the
optimal transport map. Mind of course the lack of symmetry whether the measure µ or ν is
the absolutely continuous one: the Monge formulation introduces a direction in the transport
which is not present in the Kantorovich one. If both measures are absolutely continuous, then
there exist the optimal maps in the two directions and they are the inverse of one another.

If we assume both the measures µ, ν to be absolutely continuous, with respective densities f
and g, we can explicitly characterize the map T. Performing the change of variables y = T(x)
in the left-hand side of (1.2), we obtain the following differential condition on the map T in
order to push µ to ν:

g(T(x)) det (∇T(x)) = f(x) .

Considering then that we can write the optimal map T as the gradient of a convex function
ψ, we obtain the following non-linear partial differential equation

g(∇ψ(x)) det (Hess(ψ)(x)) = f(x) , (1.7)

which is the Monge-Ampère equation. Solving (1.7) provides the Brenier potential and there-
fore the optimal transport map. It comes naturally that this simple idea inspired numerical
approaches for solving the optimal transport problem (see [115, Section 6.3] and references
therein). Nevertheless, tackling it numerically is a difficult task. On the other hand, from
the analysis of this PDE we can get useful information. The regularity of solutions to this
equation has been deeply studied by Caffarelli. See [120, Chapter 4] for a brief presentation
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of the topic and in particular [120, Theorem 4.14] for a summary of Caffarelli’s results. Es-
sentially, if the density functions f and g are enough regular and bounded from below, then
the Brenier potential is regular.

The dual problem

One of the fundamental tools to study a convex optimization problem is duality. A constrained
minimization problem can be written as an infsup problem by simply augmenting the objective
functional by adding a convex indicator function representing the constraints. With the
problem at hand, using the constraints in the form (1.4), the infsup formulation of problem
(1.5) writes:

inf
γ∈Π(µ,ν)

sup
φ0,φ1∈C 0(Ω)

∫
Ω×Ω
|x− y|2dγ(x,y)

+

∫
Ω

(dγ(x,y)− dµ(x))φ0(x) +

∫
Ω

(dγ(x,y)− dν(y))φ1(y) . (1.8)

The two functions φ0, φ1 are called the potentials. The dual problem is obtained exchanging
inf and sup and represents a lower bound for the primal one, i.e. the value attained by the
former is always smaller or at most equal to the value attained by the latter. Minimizing the
functional in (1.8) with resepct to γ ∈ Π(µ, ν) we obtain the dual problem of (1.5):

sup
φ0,φ1∈C 0(Ω)

∫
Ω
φ1(y) dν(y) +

∫
Ω
φ0(x) dµ(x) , (1.9)

subject to the constraint:

φ0(x) + φ1(y) ≤ |x− y|2 . (1.10)

In general, there could be a gap between the optimal primal and dual values. However,
if the problem exhibits good properties, that is for example convexity and enough regularity,
then it happens that the gap is zero and they are equivalent (meaning of course that the
optimal values coincide, the problems are different). In this case, we say that strong duality
holds. This is true for problems (1.5) and (1.9)-(1.10). The equivalence between them can be
proven using for example the Fenchel-Rockafellar duality theorem [120, Theorem 1.3] (which
also provides as a direct result the existence of the minimizer for problem (1.5)). Notice that
the notation primal and dual should be swapped, as problem (1.5) is formulated on the space
of measures, which is the dual space of the space C 0(Ω) where (1.9) is formulated. We will
nevertheless stick to the standard notation in the optimal transport community, here and
later on2.

Recalling that the measures µ, ν are non-negative, one could intuitively argue that in order
to find a good competitor (φ0, φ1), given for example φ0, we could replace the other potential
with the biggest function satisfying the constraint, i.e. with

φc0(y) = inf
x
|x− y|2 − φ0(x) , (1.11)

2But we will swap the order of primal and dual variables, as well as the order of the equations, when
referring to the saddle-point problem.
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which is the c-transform of the function φ0. The c actually stands for cost function considered,
the squared euclidean distance in this case. Then we could replace the function φ0 by φcc0 in
order to improve again the objective functional, and so on and so forth. However, φccc0 = φc.
In the case considered, that is for the cost function c(x,y) = |x− y|2, this coincides with the
well known fact that the double Legendre transform of a convex and lower semi-continuous
function is identical to itself. This means that the maximization in problem (1.9) can be
restricted to functions that are the c-transforms of one another. This is the key argument
which is used to prove existence of an optimal couple of potentials (φ0, φ1) for problem (1.9).
First of all, as the c-transform has the same modulus of continuity of the cost function itself, we
can expect the two optimal potentials to be more regular than continuous. Then, it is possible
to prove the equicontinuity of any sequence of maximizer and, thanks to the compactness of Ω,
also the equiboundedness. We can conclude thanks to the Ascoli-Arzelà theorem. See [115,
Section 1.6] for details on c-transforms and more general existence arguments for problem
(1.9)-(1.10). The two maximizers are often called the Kantorovich potentials.

Exploiting strong duality, we can relate the optimal dual potentials in (1.9)-(1.10) to the
Brenier one. We know indeed that the values of the primal and the dual problem coincide,
therefore it must hold

φ0(x) + φ1(y) = |x− y|2 , γ − a.e. , (1.12)

for the optimal potentials φ0, φ1 and the optimal transport plan γ. To obtain (1.12), just
rewrite the objective functional in (1.9) using γ ∈ Π(µ, ν). If we disregard the fact that this
equality is defined γ-a.e., we may differentiate it with respect to the x variable to obtain

y = x− 1

2
∇φ0(x) = T(x) . (1.13)

We have in this way an explicit relation between the optimal map and the optimal potential
φ0. Moreover,

ψ(x) =
|x|2

2
− 1

2
φ0(x) , (1.14)

where we recall that ψ is the Brenier potential3. The same relations hold for more general
cost functions c, although they may not be explicit. This was actually the original argument
of Brenier. Handling carefully the support of the optimal transport plan when differentiating
equality (1.13) provides the conditions for the existence of the optimal transport map. The
condition µ absolutely continuous considered by Brenier is sufficient, but not necessary. See
[95], or [120, Theorem 3.8], for a refined version of Brenier’s theorem.

1.1.2 Dynamical formulation

A solution to problem (1.5) only provides the optimal reallocation of mass, but it doesn’t
specify how this reallocation should take place. In this sense, problem (1.5) is referred to as
the static formulation of optimal transport. Benamou and Brenier introduced a dynamical
formulation, which takes into account how the displacement has to be realized continuously
in time [14]. It is especially thanks to this new formulation that optimal transport turned out
to have incredible links with physical problems.

3Formulas (1.13)-(1.14) are usually written without the factor 1
2

on the potential, which follows from
considering c(x,y) = 1

2
|x − y|2 as unitary cost. When dealing with Wasserstein gradient flows however, the

factor 1
2

is not considered as it is more natural in the formulation of the JKO scheme (see Section 1.2).
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Benamou-Brenier formulation of optimal transport

We assume the two measures to be absolutely continuous, in order to simplify the presentation.
Let us denote the initial and final densities as ρin, ρf ∈ L1(Ω;R+), with the same total mass,∫

Ω
ρin(x)dx =

∫
Ω
ρf (x)dx ,

not necessarily equal to one. We implicitly assume a positive time direction for the problem,
whence the notation of initial and final density.

Benamou and Brenier showed that problem (1.5) can be formulated as finding a time-
dependent density ρ : [0, 1]×Ω→ [0,+∞) and a time-dependent velocity field v : [0, 1]×Ω→
Rd solving

inf
(ρ,v)
ρ≥0

∫ 1

0

∫
Ω
ρ|v|2 dxdt , (1.15)

where the two curves (ρ,v) are subjected to the continuity equation constraint,{
∂tρ+∇ · ρv = 0 in [0, 1]× Ω ,

ρv · n = 0 on [0, 1]× ∂Ω ,
(1.16)

which has to be satisfied in distributional sense, with the further initial and final conditions
ρ(0, ·) = ρin, ρ(1, ·) = ρf . The optimal displacement is therefore the one that minimizes
the total kinetic energy among all the admissible ones. It is reasonable that an admissible
displacement should not create or destroy mass, neither disperse it outside the domain, whence
the continuity constraint subjected to the condition of no flux across the boundary. For a
precise statement of problem (1.15)-(1.16), see for example [120, Theorem 8.1].

Problem (1.15)-(1.16) is a non-linear and non-convex optimization problem. Nevertheless,
as pointed out by Benamou and Brenier, it can be formulated as a convex optimization
problem under linear constraints thanks to the change of variables (ρ,v) 7→ (ρ,m = ρv) and
defining B : R× Rd → [0,+∞],

B(p,Q) :=


|Q|2
2p if p > 0 ,

0 if p = 0, Q = 0 ,

+∞ else .

(1.17)

The function B is convex and lower semi-continuous as it can be written as the supremum of
linear functions,

B(p,Q) = sup
(a,b)∈K

ap+ 〈b,Q〉 ,

where the convex set K is defined as: K =
{

(a, b) ∈ R× Rd : a+ |b|2
2 ≤ 0

}
. Introducing the

functional

B(ρ,m) =

∫ 1

0

∫
Ω
B(ρ(t,x),m(t,x)) dxdt , (1.18)

the problem is then stated as:
inf

(ρ,m)
B(ρ,m) (1.19)
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where ρ and m satisfy in distributional sense the continuity equation{
∂tρ+∇ ·m = 0 in [0, 1]× Ω ,

m · n = 0 on [0, 1]× ∂Ω ,
(1.20)

with the further initial and final conditions ρ(0, ·) = ρin, ρ(1, ·) = ρf . The positivity con-
straint is now automatically enforced thanks to the definition of the functional B for a finite
valued couple (ρ,m). It is worth noticing that, whereas the change of variables solves the
non-convexity and non-linearity issues, it introduces a regularity issue: as a results, finding
solutions to problem (1.19)-(1.20) does not turn out to be easy. Pay attention that the func-
tional (1.18) is defined as one half of the functional in (1.15)4. For a precise definition of
the problem in the general setting of arbitrary initial and final probability measures, see for
example [79]. Existence of a solution is easy to obtain (see Theorem 2.3 for the argument in
the discrete setting) whereas uniqueness is more delicate. Again, it is guaranteed if one of the
two measures is absolutely continuous [121, Corollary 7.23].

Also problem (1.19)-(1.20), as the original (1.9), admits a dual one for which strong duality
holds. Let us derive it thanks to formal computations. Incorporating the constraint (1.20) in
the objective functional, we can write the problem in the following saddle-point formulation:

inf
(ρ,m)

sup
φ

∫ 1

0

∫
Ω
B(ρ,m) +

∫ 1

0

∫
Ω

(∂tρ+∇ ·m)φ . (1.21)

The function φ is now the time-space dependent potential. Integrating by parts, using the no
flux boundary conditions and the initial and final conditions, we obtain

inf
(ρ,m)

sup
φ

∫ 1

0

∫
Ω
B(ρ,m)−

∫ 1

0

∫
Ω
ρ∂tφ−

∫ 1

0

∫
Ω
m · ∇φ+

∫
Ω
φ(1, ·)ρf −

∫
Ω
φ(0, ·)ρin .

Exchanging inf and sup we obtain the dual problem,

sup
φ

inf
(ρ,m)

∫ 1

0

∫
Ω
B(ρ,m)−

∫ 1

0

∫
Ω
ρ∂tφ−

∫ 1

0

∫
Ω
m · ∇φ+

∫
Ω
φ(1, ·)ρf −

∫
Ω
φ(0, ·)ρin ,

which is equivalent to the primal one as we said, thanks to strong duality. The minimization
in m then provides the optimality condition m

ρ = ∇φ, which can be written in the form

m = ρ∇φ , (1.22)

as we know that m = 0 whenever ρ = 0, due to the definition of the function B. The
definition of the function (1.17) imposes that for a momentum m to attain a finite value for
the functional (1.18), it has to be absolutely continuous with respect to the density ρ. The
optimal vector field v in (1.15) is therefore provided by ∇φ. Using this condition we can
rewrite the saddle-point problem as

sup
φ

inf
ρ≥0
−
∫ 1

0

∫
Ω

1

2
ρ|∇φ|2 −

∫ 1

0

∫
Ω
ρ∂tφ+

∫
Ω
φ(1, ·)ρf −

∫
Ω
φ(0, ·)ρin . (1.23)

4This will turn out to be convenient notation-wise in the definition of the JKO scheme in section 1.2.
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Minimizing now in ρ we finally obtain the form of the dual problem,

sup
φ

∫
Ω
φ(1, ·)ρf −

∫
Ω
φ(0, ·)ρin , (1.24)

where the potential must satisfy the Hamilton-Jacobi equation:

∂tφ+
1

2
|∇φ|2 ≤ 0 in [0, 1]× Ω . (1.25)

The inequality derives from the fact that the minimization in ρ is taken over non-negative
densities, and the equality holds where ρ does not vanish, i.e. ρ-a.e.. Problem (1.24)-(1.25)
is the corresponding dynamical formulation of the static problem (1.9)-(1.10). The objective
functional in (1.24) can be identified with the one in (1.9) by changing sign to the potential φ0.
The strong duality between the two problems can be proven again using Fenchel-Rockafellar
duality theory. See for example [39] for its application on a more general problem then the
one considered here.

Thanks to strong duality, the primal and dual problem attain the same value. A primal-
dual solution (φ, ρ) is a saddle point for the augmented functional in (1.23). It must then
satisfy the system of primal-dual optimality conditions, or stationarity conditions,

∂tρ+∇ · (ρ∇φ) = 0 in [0, 1]× Ω ,

∂tφ+ 1
2 |∇φ|

2 ≤ 0 in [0, 1]× Ω ,

∂tφ+ 1
2 |∇φ|

2 = 0 ρ− a.e. ,

(1.26)

complemented with the boundary conditions ρ∇φ·n = 0 on ∂Ω and the initial/final conditions
ρ(0, ·) = ρin, ρ(1, ·) = ρf . The optimal momentum is given by the optimality condition (1.22).
A solution (φ, ρ) to system of equations (1.26) is necessarily a saddle-point of (1.23). Suppose
indeed that (φ̃, ρ̃) solves system (1.26) but it is not a saddle-point. It holds∫

Ω
φ̃(1, ·)ρf −

∫
Ω
φ̃(0, ·)ρin =

∫ 1

0

∫
Ω
∂t(φ̃ρ̃) =

∫ 1

0

∫
Ω
∂tφ̃ρ̃+

∫ 1

0

∫
Ω
φ̃∂tρ̃

= −
∫ 1

0

∫
Ω

1

2
ρ̃|∇φ̃|2 −

∫ 1

0

∫
Ω
φ̃∇ · (ρ̃∇φ̃)

= −
∫ 1

0

∫
Ω

1

2
ρ̃|∇φ̃|2 +

∫ 1

0

∫
Ω
ρ̃|∇φ̃|2 =

∫ 1

0

∫
Ω

1

2
ρ̃|∇φ̃|2 ,

providing

sup
φ

∫
Ω
φ(1)ρf −

∫
Ω
φ(0)ρin ≥

∫
Ω
φ̃(1)ρf −

∫
Ω
φ̃(0)ρin

=

∫ 1

0

∫
Ω

1

2
ρ̃|∇φ̃|2 ≥ inf

(ρ,m)

∫ 1

0

∫
Ω
B(ρ,m) ,

(where the sup is taken on φ satisfying (1.25), the inf on (ρ,m) satisfying (1.20)). One of
the two inequalities is strict if (φ̃, ρ̃) is not a saddle-point, which is a contradiction to strong
duality. Solutions to (1.26) are therefore saddle-points. As we said, uniqueness of solution
to problem (1.19) and consequently system (1.26) is delicate to infer. Notice that problem
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(1.23) is not strictly convex in the density. In any case, the potential is defined up to a global
time-space constant, and it is not defined where the density vanishes.

We highlight that the Hamilton-Jacobi equation can be saturated thanks to the monotonic-
ity of the Hamilton-Jacobi operator. For two potential curves φ1, φ2, such that φ1(0) = φ2(0)
and satisfying

∂tφ1 +
1

2
|∇φ1|2 ≤ ∂tφ2 +

1

2
|∇φ2|2 , (1.27)

it holds φ2(1) ≥ φ1(1) (conversely, if φ1(1) = φ2(1) and (1.27) holds then φ2(0) ≤ φ1(0)).
Saturating the equation then in (1.25) provides a better competitor for problem (1.24), i.e.
the inequality can be replaced by the equality and consequently also in system (1.26) by strong
duality. We will show in Section 1.2.2 how the argument works. Bear in mind that whereas
the constraint (1.25) defines a convex set, the saturated equation does not. Solutions to the
Hamilton-Jacobi equation

∂tφ+
1

2
|∇φ|2 = 0 in [0, 1]× Ω ,

are provided by the Hopf-Lax formula [11]. Given the initial condition φ(0, ·) (or equivalently
the final condition φ(1, ·), by simply switching sign) we can explicitly write φ(t, ·) as

φ(t,y) = inf
x∈Ω

|x− y|2

t
+ φ(0,x) , ∀y ∈ Ω . (1.28)

If we evaluate it at the final time, we recover the fact that the potentials are the c-transform
of one another (up to the already mentioned sign change of φ0). (1.28) is the time dependent
version of (1.11). In the same way, it can provide useful information on the regularity of
the potential. See [121, Chapter 7] for an introduction to the relation between the Hopf-Lax
formula and the dual optimal transport problem.

Problem (1.19) does not guarantee any regularity on the interpolating density. For exam-
ple, the interpolation between two delta measures is always a delta itself. We may wonder if
there exist conditions on the initial and final measures that could ensure some regularity on
the interpolation. As we already said, smoothness and strict positivity provides regularity on
the Brenier potential, and consequently on the optimal dual potential φ0. However we are
not aware of results that extend to the whole time-dependent potential, nor on the density
curve. Consider already that strict positivity does not necessarily hold on the whole curve
even though the initial and final measures are strictly positive [117]. Nonetheless, smooth and
strictly positive solutions to problem (1.26) exist and can be constructed (see Remark 2.11).

Lagrangian interpretation

Thanks to the Benamou-Brenier formulation, optimal transport defines a natural notion of
interpolation between probability measures. Prior to their work, McCann introduced another
idea [96]. Let us assume again that the measure µ is absolutely continuous, so that it exists
the optimal map T transporting it to the final measure ν. Consider the map given by Tt =
(1 − t)Id + tT,∀t ∈ [0, 1]. We can define the density curve µt = (Tt)#µ, which is called the
displacement interpolation. By the Brenier theorem, Tt is the optimal transport map between
µ and µt, ∀t ∈ [0, 1]. It holds indeed

Tt(x) = x− 1

2
∇φt(x) = x− t

2
∇φ0(x) , (1.29)
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Figure 1.2: Interpolation between the two measures of the example in Figure 1.1.

and Tt is the gradient of the convex function

ψt =
|x|2

2
− t

2
φ0 , (1.30)

where φ0 is the optimal potential in the dual problem for the transport from µ to ν. At
each time, the intermediate potential is simply given by the rescaling of φ0. Notice that, as
the Brenier potential ψ is convex, ψt is strongly convex, hence also strictly convex (see the
discussion in Section 1.1.2). The cost increases quadratically in time along the curve,∫

Ω
|x− Tt(x)|2 dµ(x) = t2

∫
Ω
|x− T(x)|2 dµ(x) .

Thanks to McCann’s displacement interpolation, once we have found the optimal map
T transporting the initial measure µ to ν, we can define the constant velocity v = T − Id
and move the mass from the initial to the final position following straight trajectories, with
constant velocity v. The particles do not accelerate neither decelerate along the path. At each
time, the trajectories remain optimal, meaning that there is no change of direction that could
decrease further the total cost. Consequently, also the kinetic energy at each time remains
constant and it is the minimal possible one. Intuitively, particles cannot bump into each other.
More precisely, this is related to the fact that at each time the measure is the pushforward via
the injective map Tt (as it is the gradient of a strongly convex function). It should not come
as a surprise then that the interpolation µt coincides with the interpolation defined via the
Benamou-Brenier formulation: the displacement interpolation solves the dynamical optimal
transport problem, i.e. there exists a velocity field vt such that the two curves (µt,vt) satisfy
the continuity equation (1.16) and the total kinetic energy is minimal [121, Theorem 7.21].
The vector field vt is given by

vt(t,x) = v ◦ ((1− t)x+ tT(x))−1 ,

that is, the velocity at time t in the point x is the velocity of the particle that will pass by x
at time t. We highlight that the hypothesis of convexity of Ω is necessary in order to define
the displacement interpolation, since otherwise Tt(x) may exit the domain. On the contrary,
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problem (1.19)-(1.20) makes sense even in the case Ω is not convex but clearly particles cannot
move on straight lines5.

McCann’s interpolation and the Benamou-Brenier formulation are two different descrip-
tion of the same continuous displacement. The notion of interpolation introduced by McCann
is Lagrangian, which means that it prescribes the displacement and the velocity of each par-
ticle of the initial configuration. The notion introduced by Benamou and Brenier is instead
Eulerian and it prescribes the evolution in time and space of the density and velocity field.
The hypothesis that the measure µ is absolutely continuous is not necessary as the same con-
cept can be formulated in terms of optimal transport plans. Recall that π1 and π2 represent
the canonical projections on the first and second component of the product space Ω×Ω, and
let us define πt = (1 − t)π1 + tπ2. Let γ be the optimal transport plan between µ and ν.
We can define the displacement interpolation as the measure ωt = (πt)#γ. If µ is absolutely
continuous, we recover the previous definition. The curve ωt is again optimal in problem
(1.15) and all the considerations we have previously made, although less intuitive, hold true.
The only difference is that in this case particles may split at the initial time.

Geodesic extrapolation

McCann defined an interpolation between two measures by linearly interpolating at the level
of the transport maps (plans). It is possible to use the same idea in order to define an
extrapolation. Again, let us start by the simpler case of µ absolutely continuous in order to
ease the presentation. Given the optimal transport map T that pushes µ to ν, we define again
the map Tt = (1− t)Id + tT, this time for t ≥ 1. We define the geodesic6 t-extrapolation from
µ to ν, at time t ∈ [1, t∗], t∗ ≥ 1, as the measure µt = (Tt)#µ. The value t∗ is the maximum
time for which this extrapolation is well defined, in the sense we specify below. Assume the
Brenier potential ψ, relative to the transport from µ to ν, to be λ-convex (strongly convex
with modulus λ), with λ > 0. This implies that

|x|2

2
− t

2
φ0 = t

( |x|2
2t
− 1

2
φ0

)
= t
( |x|2

2t
−
( |x|2

2
− ψ

))
= t
(
− (t− 1)

2t
|x|2 + ψ

)
is convex as long as (t−1)

2t ≤ λ. This means that ψt defined as in (1.30) is the Brenier potential
relative to the transport from µ to µt only if t ≤ 1

1−2λ = t∗, if λ < 1
2 , for any t > 1 if λ ≥ 1

2
(t∗ = +∞). Up until this time, particles keep moving straight beyond the final measure ν
and the displacement is optimal between µ and µt. All the considerations we made in Section
1.1.2 hold true also in this case. After the time t∗, the Brenier potential, which has to be
convex, is different from ψt and µt is not anymore the geodesic extrapolation.

Depending on the specific problem considered, after a certain point beyond the final mea-
sure ν particles may start to collide or reach the boundary of the domain, which is the reason
why we cannot define the extrapolation for any time t ≥ 1. If ν is not absolutely continu-
ous, particles collide exactly at time t = 1, which means that the potential is 0-convex. The
extrapolation does not exists at all in this case. Consider for example the transport between
two measures uniformly distributed on two concentric annuli, where the optimal solution is

5Anyway, the unitary cost in the definition of problem (1.5) can be adapted to a non-convex domain
Ω, passing from the straight euclidean distance to a curved one, in order to define again the displacement
interpolation and state again its equivalence with the Benamou-Brenier one. See [121].

6The reason for the name geodesic extrapolation will be clear after Section 1.1.3.
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clearly given by radial trajectories. If we consider the transport from the inner to the outer
one, the particles can move straight for an indefinite time beyond the final measure and the
extrapolation always exists. On the contrary, moving from the outer to the inner, they can
only go as far as they reach the center and collapse into a delta. Nevertheless, the map Tt is
always well defined even past the possible collision and we can always consider the measure
µt = (Tt)#µ, for all t ≥ 1, provided of course we do not exit the domain. The measure µt
defined in this way is the Lagrangian extrapolation. In the previous example, particles would
start to escape again from the origin, keeping going straight. But the interpolation is not
anymore the optimal one: there exists another map that pushes in an optimal way µ to µt,
and the new optimal trajectories do not pass through ν.

If µ is not absolutely continuous, we can proceed as in the previous section. Denoting by
γ the optimal transport plan between µ and ν, we can define the Lagrangian extrapolation
as ωt = (πt)#γ, where πt = (1− t)π1 + tπ2, this time for t ≥ 1. If the optimal transport plan
between µ and ωt is given by (π1, πt)#γ, for all t ∈ [1, t∗], then we say that ωt is the geodesic
t-extrapolation from µ to ν. Again, t∗ is the maximum time for which this holds true, i.e. the
time when a collision takes place. After t∗ the Lagrangian extrapolation is well-defined but
the trajectories are not the optimal ones.

From the initial time t = 0 till the time t ≤ t∗, the interpolation defined between µ and
µt is the same as the Benamou-Brenier one. It can be computed as solution to the system
of equation (1.26). Recall that the optimal transport problem (1.19)-(1.20) is defined on the
time interval [0, 1]. If we solve it for the measure µ and µt, t 6= 1, the solution (φ(s, ·), ρ(s, ·))
we obtain coincides with the one defined via the McCann’s interpolation only up to a rescale
of the potential and the time variable by the factor t, (tφ(ts, ·), ρ(ts, ·)). The fact that the
particles do not collide along the measure curve interpolating µ and µt means that the solution
to the Hamilton-Jacobi equation is a classical solution. A collision implies a loss of regularity:
classical solutions cannot be considered in that event. However, we can consider viscosity
solutions, which are solutions that dissipate the possible shock. This means that even though
particles start to collide, we can keep integrating forward the system of equations (1.26), by
considering viscosity solutions for the Hamilton-Jacobi equation [12]. The solution provided
in this way is not the extrapolation (in the sense we defined it above), neither coincides with
the pushforward of µ via the map Tt (after the shock). The viscosity solution dissipates in
general the kinetic energy, which is on the contrary preserved if we simply assume that the
particles continue to move straight even after the time t∗.

1.1.3 The Wasserstein space

We want to briefly characterize now what we refer to as Wasserstein space. First of all, given
two measures µ, ν ∈ P(Ω), we denote

W2
2 (µ, ν) := min

γ∈Π(µ,ν)

∫
Ω×Ω
|x− y|2dγ(x,y) .

The mapping W2(·, ·) : P(Ω) × P(Ω) → R+ can be proven to be a metric [115, Section 5.1].
It is called the quadratic Wasserstein distance. If a different power p > 1 is considered in the
unitary cost, a different distance is obtained and it is denoted asWp. As we will only work with
the quadratic case, we will omit to specify it from time to time. We call the Wasserstein space
the metric space (P(Ω),W2), obtained by equipping the space of probability measures with
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the Wasserstein distance. The topology induced on P(Ω) byW2 is the same one as the weak-*
topology [115, Theorem 5.10]7: given a sequence of probability measures (µn)n∈N ⊂ P(Ω) and
a measure µ ∈ P(Ω), saying that

W2(µn, µ)→ 0

is therefore equivalent to ∫
Ω
ϕdµn →

∫
Ω
ϕdµ, ∀ϕ ∈ C 0(Ω) .

A direct consequence is that the functional W2(·, ν) : P(Ω) → R+, for any fixed measure
ν ∈ P(Ω), is continuous with respect to the weak-* convergence, which can be proven using
the triangular inequality. This property will be fundamental in the study of gradient flows
via minimizing movements (see Section 1.2 below).

From what we exposed in the previous sections, it appears that problem (1.19)-(1.20)
selects a curve in P(Ω) which minimizes the total distance in the Wasserstein sense. Something
that resembles a geodesic curve on a Riemannian manifold. Ambrosio, Gigli and Savaré
developed a whole formalism in order to justify this intuition, that can be applied to general
metric spaces, not only the Wasserstein space. Let us just give simple definitions in order
to clarify the previous statement. We refer to [3] for the detailed construction, or the more
accessible [115, Chapter 5]8. A curve in the space of probability measures ω is a continuous
map defined on a time interval with values in P(Ω), i.e. ω : [0, 1] → P(Ω). Up to a time
rescaling, we can always consider the time interval to be [0, 1]. The curve is said absolutely
continuous if there exists f ∈ L1([0, 1]) such that

W2(ω(t0), ω(t1)) ≤
∫ t1

t0
f(s)ds , ∀ t0, t1 ∈ [0, 1], t0 < t1.

The velocity of the curve is not defined, as its time derivative has no meaning, but it is possible
to give a meaning to its modulus:

|ω′|(t) := lim
∆t→0

W2(ω(t+ ∆t), ω(t))

|∆t|
.

The length of the curve is defined as

Length(ω) := sup
N

{
N−1∑
k=0

W2(ω(tk), ω(tk+1)) : N ≥ 1, 0 = t0 < t1 < · · · < tN = 1

}
, (1.31)

and for an absolutely continuous curve it holds

Length(ω) =

∫ 1

0
|ω′|(t)dt .

A curve ω such that ω(0) = µ, ω(1) = ν and minimizing (1.31) is called a geodesic curve
between µ and ν.

7Recall that we are considering the case of Ω ⊂ Rd compact and that in this case the weak-* convergence
coincides with the narrow convergence. See [115, Theorem 5.11] for the general case of unbounded domain.

8We also suggest the survey [116] for a brief, yet clear, presentation.
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In the Wasserstein space, absolutely continuous curves can be identified with curves that
satisfy the continuity equation (1.16) in distributional sense for some vector field v and which
have finite kinetic energy, i.e. with finite weighted norm L2

ω(t) [115, Theorem 5.14]9. Moreover,
it holds

|ω′|(t) =

(∫
Ω
ω(t)|v(t)|2

) 1
2

.

Therefore, problem (1.15)-(1.16) selects an absolutely continuous curve which has the minimal
length between two probability measures, i.e. a geodesic curve. The Wasserstein space is a
geodesic space, which means that for any two points in the space, that is for any two measures,
there exists a geodesic. The geodesic is moreover a constant speed curve, as we saw in Section
1.1.2, meaning that the distance along the interpolation is proportional to the travel time:

W2(ω(t0), ω(t1)) = |t0 − t1|W2(ω(0), ω(1)) , ∀t0, t1 ∈ [0, 1] .

Equivalently, the space integral of the density of kinetic energy is preserved along the curve.

Otto formalism

By building on this formal identification between the Wasserstein space and a Riemannian
manifold, Otto [108] justified the link between gradient flows in this space and equations of
the form: 

∂t%−∇ · (%∇ δE
δρ [%]) = 0 in [0, T )× Ω̊ ,

%∇ δE
δρ [%] · n = 0 on [0, T )× ∂Ω ,

%(0, ·) = ρ0 in Ω .

(1.32)

Let us briefly explain Otto’s argument. This formal justification is nowadays called Otto
calculus.

Firs of all, we need to give a definition of the tangent space at the point µ ∈ P(Ω) and
endow it with an appropriate metric. Consider then measure curves ρ : [−ε, ε] → P(Ω)
passing by µ at time zero, i.e. such that ρ(0) = µ, and let us denote their velocity by ∂tρ. We
want to give a representation of ∂tρ|t=0. As these velocities should be seen as infinitesimal
admissible displacements of the measure µ, we can intuitively identify them with elements of
the form

∂tρ|t=0 = −∇ · (µv) , (1.33)

for any vector field v which is tangent to the boundary of the domain, v · n = 0 on ∂Ω, and
which is compatible with the displacement. As there may be more then one compatible vector
field, we select a specific one: the one associated with the minimal kinetic energy. That is,
the one that can be represented as the gradient of a potential φ,

∂tρ|t=0 = −∇ · (µ∇φ) , (1.34)

where φ should also verify the boundary condition ∇φ · n = 0 on ∂Ω. We can then formally
identify the tangent space to the Riemannian manifold at the point µ as the set H1

µ(Ω)
of potentials. Each potential is associated with a specific displacement, that is it verifies
equation (1.34) for a specific curve ρ passing by µ. The next step is to define the notion of

9See also [3, Theorem 8.3.1].
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metric we consider in the tangent space, i.e. in the space H1
µ(Ω) of potentials by our formal

identification. This metric should be compatible with the formula for the total length of the
geodesic in problem (1.19)-(1.20). Consider two curves ρ1, ρ2 and the respective potentials
φ1, φ2 satisfying (1.34). We define the following metric on the tangent space:

〈∂tρ1, ∂tρ2〉µ =

∫
Ω
∇φ1 · ∇φ2 dµ .

We denote || · ||µ the norm associated with this metric. We can then write the length of a
curve as

Length(ρ)2 =

∫
||∂tρ||2ρ(t)dt =

∫ ∫
Ω
∇φ · ∇φ dρdt =

∫ ∫
Ω
|∇φ|2dρdt .

We want now to identify the gradient operator. Consider a functional E and a curve ρ
passing by µ at time zero. Using the chain rule, we know that

dE(ρ(t))

dt
|t=0 =

∫
Ω

δE
δρ

[µ]∂tρ .

On the other hand, we want to define the gradient such that it holds

dE(ρ(t))

dt
|t=0 = 〈∇W2E(ρ(t)), ∂tρ(t)〉µ|t=0 =

∫
Ω
∇ψ · ∇φ dµ , (1.35)

for some potential ψ ∈ H1
µ(Ω). Using the identification (1.34) and integrating by parts, we

can write ∫
Ω

δE
δρ

[µ]∂tρ = −
∫

Ω

δE
δρ

[µ]∇ · (µ∇φ) =

∫
Ω
∇δE
δρ

[µ] · ∇φdµ . (1.36)

Comparing (1.35) and (1.36), we can identify ψ with δE
δρ [µ] and define the gradient in the

Wasserstein sense as

∇W2E(µ) = −∇ · (µ∇δE
δρ

[µ])

A gradient flow in the Wasserstein space can therefore be written as

∂tρ = −∇W2E(ρ) ,

complemented with the no flux boundary conditions, which is exactly equation (1.32).

1.2 Wasserstein gradient flows

A finite dimensional gradient flow in Rd, equipped with the euclidean distance, with respect to
a real valued function F : Rd → R, coincides with solutions of the following Cauchy problem:

dx(t)

dt
= −∇F (x(t)) , t ≥ 0 ,

x(0) = x0 .
(1.37)

This definition relies on two things: the time derivative of the curve and the gradient operator.
Both these tools can be defined in an infinite dimensional Hilbert space, but they make no
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direct sense in the non-flat Wasserstein space, or a general metric space. In order to extend
the notion of gradient flow to the Wasserstein space, its definition needs to be generalized.

Following [3], the reference book for gradient flows in metric spaces, a possible idea is to
build a definition upon a property of finite dimensional gradient flows which does not require
these notions, and extend it to the general setting10. Here is a possible construction. With
reference to the gradient flow (1.37), assume the function F to be λ-convex and C 1. Therefore
for any point x ∈ Rd it holds:

F (x) + 〈∇F (x),y − x〉+
λ

2
|y − x|2 ≤ F (y) , ∀y ∈ Rd .

In case F is not C 1 we could write the same for each element in its subdifferential instead of
considering the gradient (which is the only element in the subdifferential if F is differentiable).
If we consider the quantity 1

2 |x(t)− y|2, for y ∈ Rd, taking the time derivative we obtain:

d

dt

1

2
|x(t)− y|2 = 〈x(t)− y, dx(t)

dt
〉 = −〈x(t)− y,∇F (x(t))〉

≤ F (y)− F (x(t))− λ

2
|y − x(t)|2, ∀t ≥ 0 .

(1.38)

In the finite dimensional case, satisfying the inequality (1.38) is equivalent to satisfying (1.37),
so that it is an equivalent definition of gradient flow. Inequality (1.38) is called Energy
Variational Inequality (EVI). As this definition does not require any gradient or time derivative
of the curve, it is possible to use it to generalize gradient flows to the infinite dimensional case.
We say that a measure curve % is a Wasserstein gradient flow in the EVI sense, with respect
to the energy functional E , if it satisfies for any given ν ∈ P(Ω) the following inequality:

d

dt

1

2
W2

2 (%(t), ν) ≤ E(ν)− E(%(t))− λ

2
W2

2 (%(t), ν), ∀t ≥ 0 . (1.39)

We just need to consider a proper notion of convexity, i.e. convexity along specific curves
(Section 1.2.1). On the one hand, requiring the energy functional to be λ-convex may be
too restrictive. On the other hand, it ensures uniqueness of the flow and also stability with
respect to initial data [116, Section 3.3]. In Section 5.2.3, we will rely on this construction
in order to prove convergence towards gradient flows of a time discretization of the flow. A
weaker definition is possible, based again on another analogy with the finite dimensional case,
but we prefer to follow another path. To define Wasserstein gradient flows, we rely on the
construction based on the minimizing movements introduced by De Giorgi [48].

1.2.1 Generalized Minimizing Movement

Let us directly focus on the Wasserstein case for simplicity, although the idea is generalizable
to any metric space. Given the measure ρ0 ∈ P(Ω) as initial condition and a real parameter
τ > 0, the Minimizing Movement Scheme (MMS) constructs a sequence of measures (ρn)n∈N ⊂
P(Ω) recursively defined as

ρn ∈ arginf
ρ∈P(Ω)

1

2τ
W2

2 (ρ, ρn−1) + E(ρ) . (1.40)

10As the latter monograph may be rather technical, we suggest also the expository paper [116], which provides
a summary of the theory and focuses on the Wasserstein case.
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The sequence of measures progressively minimizes the energy E . Indeed, comparing the
optimal measure ρn to the sub-optimal measure ρn−1 for the objective functional, we deduce
that at each step n it holds

1

2τ
W2

2 (ρn, ρn−1) + E(ρn) ≤ E(ρn−1) . (1.41)

The parameter τ , that we consider fixed but it may also vary at each iteration, plays the role
of the time step and controls indeed the length of the step. For a big value the minimization
of the energy functional prevails whereas for a small one the measure ρn will stick to the
previous one. We can consider the gradient flow as the limit of this process that aims at
sequentially minimizing its energy in smaller and smaller neighborhoods. For a time horizon
T > 0, we can construct from the sequence (ρn)n∈N a time dependent measure curve on [0, T ]
by gluing them together in a piecewise continuous fashion:

ρτ (t) =

Nτ∑
n=1

ρn1(tn−1,tn] , ρτ (0) = ρ0 , (1.42)

with Nτ = T
τ total number of steps, tn = nτ (assuming for simplicity the time step τ to be

a divisor of T ). We can define the Wasserstein gradient flow as the limit curve, if it exists,
for τ → 0. This is the definition of Generalized Minimizing Movement (GMM) proposed by
De Giorgi. The scheme is also called JKO scheme after Jordan, Kinderlehrer and Otto, who
applied it in the Wasserstein setting [73]. Problem (1.40) is usually refer to as JKO step.

The Minimizing Movement Scheme is the variational generalization of the implicit Euler
scheme. To see it, just write it in the finite dimensional case, considering the space Rd
equipped with the euclidean distance:

xn ∈ argmin
1

2τ

∣∣x− xn−1
∣∣2 + F (x) . (1.43)

Taking the optimality conditions for this problem provides

xn − xn−1

τ
= −∇F (xn) ,

which is the implicit Euler discretization of equation (1.37). The MMS then generalizes the
Euler scheme to general metric spaces, as it is sufficient to replace the euclidean metric with
any other metric. As it will be shown in Section 1.2.2, this time discretization differs from
the implicit Euler discretization of the PDE (1.32) when applied in the Wasserstein setting.
Defining the finite dimensional gradient flow as GMM, we can state its existence with milder
hypotheses with respect to what the classical theory provide for the Cauchy problem (1.37),
see [116, Section 2]. Although the MMS is usually thought just as a time discretization for a
gradient flow, it can be taken as its very definition.

For a gradient flow to exist in the GMM sense, we need the scheme (1.40) to be well posed
at each step n and we need to be able to extract a convergent subsequence. That is, we need
sufficient compactness, which is the reason why it may be difficult to generalize this definition
to other gradient flows. In the Wasserstein case, very few hypotheses on the energy functional
are sufficient in order to find a minimizer in (1.40), lower semi-continuity with respect to the
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weak-* convergence and a lower bound11. Summing the inequality (1.41) over n provides the
classical estimate:

1

2τ

N∑
n=0

W2
2 (ρn, ρn−1) ≤ E(ρ0)− E(ρN ) , (1.44)

which is bounded if the energy is bounded from below and it is proper in the starting point ρ0.
With (1.44) it is straightforward to prove a uniform Hölder estimate for the sequence of curves
(ρτ )τ∈R+ defined in (1.42). Although the curves ρτ are not continuous, by taking advantage
of the nice features of the Wasserstein space we can introduce a continuous analogous. As we
said in section 1.1.3, given any two measures in the Wasserstein space we can find the geodesic
curve joining them. We can then define a continuous curve ρ̃τ by joining the geodesics between
every two consecutive measures ρn−1, ρn:

ρ̃τ =
N∑
n=1

ρ̃n1(tn−1,tn] , ρ̃τ (0) = ρ0 , (1.45)

with ρ̃n geodesic between ρn−1 and ρn. The family of curves (ρ̃τ )τ∈R+ is again equicontinuous.
We can therefore use the Ascoli-Arzelà compactness theorem and the compactness of the
Wasserstein space to find a limit curve: the gradient flow. Using again the same estimate,
we can further show that the family of piecewise continuous curves (ρτ )τ∈R+ converges to the
same limit. The previous argument is classical (see for example [115, Section 8.3] or Chapter
5) but we highlight that it is not necessarily true in other metric spaces.

Finally, the link between the GMM and solutions to equation (1.32) can be obtained
passing to the limit the optimality conditions of problem (1.40). See [115, Proposition 7.17]
and [73] for examples of possible variations that can be considered for this purpose. We
remark that the construction we presented may be used, as we already pointed out for the
finite dimensional case, as a strategy to study existence of (weak) solutions to problems of
the form of equation (1.32). If we further assume the energy E to be λ-convex (in a specific
sense, see Section 1.2.1 below), it is also possible to show that the limit measure of the family
of curves (ρτ )τ∈R+ satisfies the EVI inequality (1.39), see [3]12.

Convexity along generalized geodesics

We stress that convexity of the energy is not at all needed in general to define the gradient flow
in this way, although it may help to provide uniqueness to problem (1.40) and characterize the
limit curve. A straightforward consequence of the dual formulation (1.9) and strong duality is
that the functional W2

2 (·, ν) : P(Ω)→ R, which associates to a measure its optimal transport
cost from itself and a fixed measure ν, is convex, as it can be expressed as the sup of linear
functionals. However, a different notion of convexity may fit better the problem. Before
introducing it, we stress that classical convexity is fundamental when tackling discretization
and numerical solution of these problems, since all the nice mathematical structure is usually
lost with the discretization. Concerning this point, see for example the discussion in Section
5.1.

11This last hypothesis can be relaxed if one can control the decay of the energy and settles for a condition
on the time step τ [3].

12See also Section 5.2.3, where we will use this argument in order to prove convergence in the EVI sense of
a discretization similar to the MMS.
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The classical notion of convexity is linked to the standard convex interpolation ρ(t) =
(1 − t)ρ1 + tρ2, for any ρ1, ρ2 ∈ P(Ω). From the discussion in Section 1.1, we understood
that for any two measures in P(Ω) we can find another type of interpolation, which may be
more suited for dealing with this type of problems: the geodesic. Convexity along this type
of curves is referred to as displacement convexity and it has been introduced by McCann [96].
We say that a functional F is displacement convex if for any two measures ρ1, ρ2 ∈ P(Ω)
there exists a geodesic curve ω(t) such that ω(0) = ρ1, ω(1) = ρ2 and the function F(ω(t))
is convex on [0, 1]13. A lot of classic functionals are displacement convex, but unfortunately
not the Wasserstein distance: for a given measure ν ∈ P(Ω), the functionalW2

2 (ω(t), ν) is not
convex in general on [0, 1], unless either ρ1 or ρ2 coincides with ν (in which case we know it
is quadratic). As we want to study variational problems involving the Wasserstein distance,
this notion is not really interesting for us.

To overcome this issue, we consider a more general curve joining the two endpoints ρ1, ρ2.
We fix a measure ν ∈ P(Ω), which is used to ”center” the curve. To simplify the idea, we
consider it to be absolutely continuous for now. There exist in this way the two maps T1 and
T2, optimal transport maps from ν to ρ1 and ρ2, respectively. The generalized geodesic is
defined as the curve

ω(t) = ((1− t)T1 + tT2)#ν ,

pushforward of the linear interpolation of the two maps. The geodesic is recovered if ν coin-
cides with either one of the two endpoints. The functional F is said generalized geodesically
convex if for any three measures ρ1, ρ2, ν ∈ P(Ω), F(ω(t)) is convex on [0, 1]. The functional
W2

2 (ω(t), ν), where the second measure ν is also taken as the center of the generalized geodesic,
is now convex. It is more precisely 2-convex [3, Section 9.2]. See [3, Section 9.3] for some
examples of functionals that are (generalized) geodesically convex and the respective proofs.

This definition, as for the case of the displacement interpolation, can be generalized to the
case where ν is not absolutely continuous. Consider the space Ω × Ω × Ω and recall that π1

denotes the projection on the first component, π2 the projection on the second one, and assume
π3 to be the projection on the third one. We denote π1,3 and π2,3 respectively the projection
on the first and third components, the projection on the second and the third one. Then, if
γ1 is the optimal transport plan from ν to ρ1, and γ2 is the optimal transport plan from ν
to ρ2, there exists a measure σ ∈ P(Ω × Ω × Ω) such that (π1,3)#σ = γ1 and (π2,3)#σ = γ2.
The existence of such a measure σ is guaranteed by the gluing lemma [115, Lemma 5.5]. The
generalized geodesic is the curve defined as: ω(t) = (πt)#σ, where πt = (1− t)π1 + tπ2.

1.2.2 Dynamical form of the JKO step

We show in this section how the presence of the energy in problem (1.40) modifies the optimal-
ity conditions of the dynamical transport problem, namely system of equations (1.26). Again,
we will carry out formal calculations. Thanks to the Benamou-Brenier dynamic formulation
of optimal transport, the problem can be written as

inf
(ρ,v)
ρ≥0

1

2

∫ tn

tn−1

∫
Ω
ρ|v|2 + E(ρ(tn, ·)), (1.46)

13Since in general there may exist more than one geodesic, the definition just requires that there exists at
least one along which the functional is convex.
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where the density and velocity curves satisfy weakly
∂tρ+∇ · (ρv) = 0 in [tn−1, tn]× Ω,

ρv · n = 0 on [tn−1, tn]× ∂Ω,

ρ(tn−1, ·) = ρn−1 in Ω.

(1.47)

Notice that we rescaled the time with respect to problem (1.15)-(1.16), and consequently the
time parameter τ disappeared. Rescaling the time simply leads to rescaling the potential
φ, as already pointed out in Section 1.1.2. The next value ρn is chosen equal to ρ(tn, ·) for
the optimal ρ in (1.46)-(1.47). Using the momentum m = ρv instead of v as a variable,
and incorporating the constraint (1.47) in (1.46), thanks to the potential −φ14, yields the
saddle-point problem

inf
(ρ,m)

sup
φ

∫ tn

tn−1

∫
Ω
B(ρ,m) +

∫ tn

tn−1

∫
Ω

(ρ∂tφ+m · ∇φ)

+

∫
Ω

[φ(tn−1, ·)ρn−1 − φ(tn, ·)ρ(tn, ·)] + E(ρ(tn, ·)) . (1.48)

We refer again to (1.48) as the primal problem. The dual problem is obtained by exchanging
inf and sup in (1.48):

sup
φ

inf
(ρ,m)

∫ tn

tn−1

∫
Ω
B(ρ,m) +

∫ tn

tn−1

∫
Ω

(ρ∂tφ+m · ∇φ)

+

∫
Ω

[φ(tn−1, ·)ρn−1 − φ(tn, ·)ρ(tn, ·)] + E(ρ(tn, ·)) . (1.49)

Strong duality can be proven again and the problem hence does not change. Optimizing first
with respect to m leads to m = −ρ∇φ, so that the dual problem reduces to

sup
φ

inf
ρ≥0

∫ tn

tn−1

∫
Ω

(∂tφ−
1

2
|∇φ|2)ρ+

∫
Ω

[φ(tn−1, ·)ρn−1 − φ(tn, ·)ρ(tn, ·)] + E(ρ(tn, ·)) . (1.50)

Because of the first term in (1.50), the infimum is equal to −∞ unless −∂tφ+ 1
2 |∇φ|

2 ≤ 0 in
(tn−1, tn)× Ω since ρ ≥ 0, with equality ρ-a.e.. Moreover, optimizing with respect to ρ(tn, ·)
provides that φ(tn, ·) ≤ δE

δρ [ρ(tn, ·)] with equality ρ(tn, ·)-a.e.. Hence the dual problem can be
rewritten as

sup
φ(tn−1,·)

∫
Ω
φ(tn−1, ·)ρn−1 − E∗(φ(tn, ·)) , (1.51)

subject to the constraint

− ∂tφ+
1

2
|∇φ|2 ≤ 0 in [tn−1, tn]× Ω , (1.52)

where E∗ denotes the Legendre transform of the energy functional E .

14We enforce the constraint using the potential −φ, i.e. changing sign to the potential, differently from (1.21)
in Section 1.1.2, in order to obtain the minus sign in the continuity equation in analogy with equation (1.32).
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A couple (φ, ρ) is then a saddle point for problem (1.50) if it satifies the system of primal-
dual optimality conditions:

∂tρ−∇ · (ρ∇φ) = 0 in [tn−1, tn]× Ω,

−∂tφ+ 1
2 |∇φ|

2 ≤ 0 in [tn−1, tn]× Ω,

−∂tφ+ 1
2 |∇φ|

2 = 0 ρ− a.e. ,

with


ρ(tn−1, ·) = ρn−1 in Ω ,

φ(tn, ·) ≤ δE
δρ [ρ(tn, ·)] in Ω ,

φ(tn, ·) = δE
δρ [ρ(tn, ·)] ρ(tn, ·)− a.e. .

(1.53)
As we said in Section 1.1.2, the Hamilton-Jacobi equation in (1.26) can be saturated thanks
to the monotonicity of the operator, preserving the optimality in problem (1.24). The same
is true for system of equations (1.53) (for the two conditions in this case) and problem (1.51).
We want to show here how the argument works. In Thereom 3.5 and Theorem A.1, we will
transpose it to the discrete setting, where we will also justify the existence of a potential
solving the Hamilton-Jacobi equation.

On the one hand, the monotonicity of the backward equation −∂tφ + 1
2 |∇φ|

2 = f with
respect to its right-hand side f ≤ 0 implies that given φ(tn, ·), the solution of −∂tφ+ 1

2 |∇φ|
2 =

0 gives a bigger value at φ(tn−1, ·) and thus a better competitor for (1.51). On the other
hand, in order to saturate the final time constraint we use the monotonicity of the equation
with respect to its final time φ(tn, ·). Indeed let (φ̄, ρ̄) be a saddle point of (1.50) and ϕ
be the solution of −∂tϕ + 1

2 |∇ϕ|
2 = −∂tφ̄ + 1

2 |∇φ̄|
2 with ϕ(tn, ·) = δE

δρ [ρ̄(tn, ·)] ≥ φ̄(tn, ·).
In particular (1.53) gives φ̄(tn, ·) = ϕ(tn, ·) ρ(tn, ·)-almost everywhere and the monotonicity
implies ϕ(tn−1, ·) ≥ φ̄(tn−1, ·). All together these inequalities yield:∫ tn

tn−1

∫
Ω

(∂tϕ−
1

2
|∇ϕ|2)ρ̄+

∫
Ω

[φ(tn−1, ·)ρn−1 − ϕ(tn, ·)ρ̄(tn, ·)] + E(ρ̄(tn, ·))

≥
∫ tn

tn−1

∫
Ω

(∂tφ̄−
1

2
|∇φ̄|2)ρ̄+

∫
Ω

[φ̄(tn−1, ·)ρn−1 − φ̄(tn, ·)ρ̄(tn, ·)] + E(ρ̄(tn, ·))

= sup
φ

∫ tn

tn−1

∫
Ω

(∂tφ−
1

2
|∇φ|2)ρ̄+

∫
Ω

[φ(tn−1, ·)ρn−1 − φ(tn, ·)ρ̄(tn, ·)] + E(ρ̄(tn, ·)).

Bearing in mind the optimality of φ̄, this last inequality is then an equality and ϕ is again
optimal. Then, thanks to (1.53) and by convexity of the energy E , we have∫ tn

tn−1

∫
Ω

(∂tφ−
1

2
|∇φ|2)ρ̄+

∫
Ω

[φ(tn−1, ·)ρn−1 − φ(tn, ·)ρ̄(tn, ·)] + E(ρ̄(tn, ·))

≤
∫ tn

tn−1

∫
Ω

(∂tϕ−
1

2
|∇ϕ|2)ρ̄+

∫
Ω

[ϕ(tn−1, ·)ρn−1 − ϕ(tn, ·)ρ̄(tn, ·)] + E(ρ̄(tn, ·))

≤
∫ tn

tn−1

∫
Ω

(∂tϕ−
1

2
|∇ϕ|2)ρ+

∫
Ω

[ϕ(tn−1, ·)ρn−1 − ϕ(tn, ·)ρ(tn, ·)] + E(ρ(tn, ·))

for all (φ, ρ), which means that (ϕ, ρ̄) is also a saddle point of (1.50). The second inequality
derives from the fact that the Hamilton-Jacobi is satisfied everywhere and since ϕ(tn, ·) =
δE
δρ [ρ̄(tn, ·)], by convexity of E , it holds E(ρ̄(tn, ·)) + ϕ(tn, ·)(ρ(tn, ·)− ρ̄(tn, ·)) ≤ E(ρ(tn, ·)), ∀ρ.
At the end of the day, the primal-dual optimality conditions of problem (1.40) finally amounts
to the mean field game{

∂tρ−∇ · (ρ∇φ) = 0,

∂tφ− 1
2 |∇φ|

2 = 0,
in [tn−1, tn]× Ω, with

{
ρ(tn−1, ·) = ρn−1,

φ(tn, ·) = δE
δρ [ρ(tn, ·)],

in Ω . (1.54)
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The optimal ρn of (1.40) is then equal to ρ(tn, ·). The no-flux boundary condition reduces to
∇φ · n = 0 on [tn−1, tn]× ∂Ω.

1.3 Finite Volume Method

Finite volumes are a mean of discretizing partial differential equations, particularly suited for
conservative equations. The main idea is to discretize the integral version of a conservative
equation on a given partitioning of the domain, relying on the divergence theorem in order
to transform a differential operator into an integral one. The main technicality is then to
consistently discretize the fluxes across the faces of the partitioning. The easiest idea, which
we will rely on throughout this whole work, is to discretize vector fields on each face only along
a specific direction, that is orthogonal to the face. In this way, the information of a vector
field is only retained on one direction and the others are discarded. This type of discretization
can be done in the framework of the so called Two-Point Flux Approximation (TPFA) and
gives rise to the simplest finite volume scheme. We refer to [54] for an extensive introduction
to finite volumes for partial differential equations. We shall here present as an example the
discretization with this methodology of the continuity equation (1.16), our building block for
the approximation of optimal transport related problems.

1.3.1 The discretization of Ω

In order to design TPFA finite volume schemes, we need sufficiently regular polygonal subdi-
visions of the domain. One simple possibility is to consider cartesian grids, a choice that can
be beneficial both for the design of the scheme and its efficiency. On such partitioning, TPFA
schemes coincide with centered finite differences. However, cartesian grids are not suited to
discretize complex domains, which can be of interest for applications. We need to resort to
more flexible partitionings.

Let us give the definition of the regular partitioning of the domain Ω we will use. These
specifications are classical for TPFA Finite Volumes [54].

Definition 1.1 (Admissible mesh of Ω). Assume the domain Ω ⊂ Rd to be polygonal if d = 2
or polyhedral if d = 3. An admissible mesh of Ω is a triplet

(
T ,Σ, (xK)K∈T

)
such that the

following conditions are fulfilled:

1. Each control volume (or cell) K ∈ T is non-empty, open, polyhedral and convex. We
assume that K ∩ L = ∅ if K,L ∈ T with K 6= L, while

⋃
K∈T K = Ω. The Lebesgue

measure of K ∈ T is denoted by mK > 0.

2. Each face σ ∈ Σ is closed and is contained in a hyperplane of Rd, with positive (d− 1)-
dimensional Hausdorff (or Lebesgue) measure denoted by mσ = Hd−1(σ) > 0. We
assume that Hd−1(σ ∩ σ′) = 0 for σ, σ′ ∈ Σ unless σ′ = σ. For all K ∈ T , we assume
that there exists a subset ΣK of Σ such that ∂K =

⋃
σ∈ΣK

σ. Moreover, we suppose

that
⋃
K∈T ΣK = Σ. Given two distinct control volumes K,L ∈ T , the intersection

K ∩ L either reduces to a single face σ ∈ Σ denoted by K|L, or its (d− 1)-dimensional
Hausdorff measure is 0.
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(a) (b) (c)

(d) (e)

Figure 1.3: Different types of admissible mesh: cartesian grid (a), regular Delaunay triangu-
lations (b,c), subdivision of a regular Delaunay triangulation (d), Voronöı tesselation (e).

3. The cell-centers (xK)K∈T ⊂ Ω are pairwise distinct and are such that, if K,L ∈ T share
a face K|L, then the vector xL−xK is orthogonal to K|L and has the same orientation
as the normal nK,σ to K|L outward with respect to K.

Cartesian grids, Delaunay triangulations or Voronöı tessellations are typical examples of
admissible meshes in the above sense. In Figure 1.3 different type of admissible meshes are
displayed for Ω = [0, 1]2. We refer to [62] for a discussion on the need of such restrictive grids.
Further hypotheses on the regularity of the mesh will be needed for specific convergence results
and will be specified at a later time (see Sections 2.5 and 3.3).

In this work we will never consider three dimensional domains Ω and we will mainly
restrict to the case d = 2. Nonetheless, we stress that the discretizations we will present,
along with the theoretical results, can be straightforwardly recast in the three dimensional
space, without any additional effort15. The only difference is the computational complexity
for solving the discrete problems. It is of course possible to define a partioning of this type also
for one dimensional domains, i.e. intervals I ⊂ R. In this simplified setting, the domain can
be divided in subintervals and edges collapse to points. The cell-centers can be taken in this
case to be any point inside the cell, although the barycenter is the usual choice. Therefore,
with the due care on the notation, also one dimensional cases will be covered by this work.

15For this reason, to be more general, we stuck to the three dimensional term of faces instead of edges.
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xK

xL

K
L

σ

dσ

nK,σ

dK,σ

xK

xL

K
L

∆σ

Figure 1.4: Exemplification of the notation for triangular cells.

We introduce some further notation. The set Σ consists of the two subsets of internal
faces Σ = {σ ⊂ Ω} and external faces Σext = {σ ⊂ ∂Ω} = Σ \Σ. We denote by ΣK = ΣK ∩Σ
the internal faces belonging to ∂K, and by NK the neighboring cells of K, i.e., NK = {L ∈
T | K|L ∈ ΣK}. For each internal face σ = K|L ∈ Σ, we refer to the diamond cell ∆σ as
the polyhedron whose edges join xK and xL to the vertices of σ. The diamond cell ∆σ is
convex if xK ∈ K and xL ∈ L. Denoting by dσ = |xK −xL|, the measure m∆σ of ∆σ is then
equal to mσdσ/d, where d stands for the space dimension. We denote by dK,σ the Euclidean
distance between the cell center xK and the edge σ ∈ ΣK . The quantity aσ = mσ/dσ defines
the transmissivity of the face σ ∈ Σ. In Figure 1.4 the notation is exemplified for a triangular
cell.

1.3.2 Discrete continuity equation

In order to present how finite volumes work, let us consider the simple example of the con-
tinuity equation (1.16). Suppose for simplicity that the vector field v is given and that we
want to approximate the density evolution ρ.

First of all, we discretize the time derivative with a simple (here implicit) Euler formula.
For this purpose, consider a constant time step ∆t = 1

N+1 , for some integer N > 0, and

denote by tk = k∆t, for k ∈ {0, .., N + 1}. We can approximate the solution ρ at time tk,
∀k ∈ {1, .., N + 1}, by

ρk − ρk−1 +∇ · (ρkv(tk)) = 0 , (1.55)

with the boundary conditions ρ0 = ρin, ρN+1 = ρf . Consider now a control volume K ∈ T .
Integrating at step k equation (1.55) over K and using the divergence theorem provides:∫

K
(ρk − ρk−1) +

∫
∂K

ρkv(tk) · nK = 0 , (1.56)

where nK is the outer normal of K. Since we suppose the cell K to be polygonal, we can
rewrite the second term in (1.56) as:∫

∂K
ρkv(tk) · nK =

∑
σ∈ΣK

∫
σ
ρkv(tk) · nK,σ . (1.57)
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Notice that we are automatically taking into account the boundary condition ρv · n = 0,
which is the reason why we restrict the sum in (1.57) to the internal edges only of the cell K.

For each K ∈ T and k ∈ {0, .., N + 1} we associate a value ρkK which is meant to approx-
imate the mean value of ρk on the cell K,

ρkK ≈
1

mK

∫
K
ρk .

The last step to have a fully discrete version of equation (1.16) is then to approximate the
fluxes on each face σ ∈ Σ. That is, we have to choose how to reconstruct the mobility, the
density associated with the flux across the face. For σ = K|L, the simplest idea is to use the
discrete densities of the two neighboring cells, ρkK and ρkL. If we denote r(ρkK , ρ

k
L) such value,

and we introduce

vkK,σ =
1

mσ

∫
σ
v(tk) · nK,σ , ∀K ∈ T , ∀σ ∈ ΣK , ∀k ∈ {1, .., N + 1},

we can finally write equation (1.56) as:

(ρkK − ρk−1
K )mK +

∑
σ∈ΣK

r(ρkK , ρ
k
L)vkK,σmσ = 0 . (1.58)

Equation (1.58) is then complemented with the conditions ρ0
K = ρinK , ρ0

K = ρinK , ∀K ∈ T ,

where (ρinK )K∈T and (ρfK)K∈T are discrete approximations, on each cell, of the continuous
counterparts ρin, ρf .

Different choices are possible for the function r(·, ·), which essentially consist in averaging
the values of the two neighboring cells. We will consider several possibilities in the next
chapters. If we denote F kK,σ = r(ρkK , ρ

k
L)vkK,σ, we can further write the discrete continuity

equation as

(ρkK − ρk−1
K )mK +

∑
σ∈ΣK

F kK,σmσ = 0 , (1.59)

which is the discrete version of the equation in the density-momentum variables, namely
equation (1.20)16. This type of finite volume discretization is called two-point flux because
each discrete flux F kK,σ in (1.59) depends only on the two values ρkK and ρkL.

1.3.3 Discrete spaces and operators

The Finite Volume Method, at least in the simple case we are considering, replaces the
continuous solutions with discrete ones defined on the partitioning of the domain. Let us
formalize better the approach by precisely introducing the discrete spaces and operators.

We denote by RT and RΣ the two discrete spaces of discrete quantities defined on the
control volumes and the diamond cells. They are respectively endowed with the weighted
scalar products

〈·, ·〉T : (a, b) ∈ [RT ]2 7→
∑
K∈T

aKbKmK ,

〈·, ·〉Σ : (s,u) ∈ [RΣ]2 7→
∑
σ∈Σ

sσuσmσdσ .

16Notice that each F kK,σ discretizes a flux according to (1.57) and not directly the momentum, whence our
notation. We will sometimes refer anyway to it as discrete momentum.
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For a ∈ RT , its mass is defined as 〈a,1〉T . We define the element-wise multiplication by �.
We denote by 1 the constant element whose components are all equal to one, equivalently for
0. By convention, a−1 is the vector whose components are the reciprocal of the components
of a. The relation a ≥ b will always be intended componentwise.

We introduce also the space of discrete conservative fluxes,

FT = {F = (FK,σ, FL,σ)σ∈Σ ∈ R2Σ : FK,σ + FL,σ = 0} , (1.60)

endowed with the scalar product

〈·, ·〉FT : (F ,G) ∈ [FT ]2 7→
∑
σ∈Σ

(FK,σGK,σ + FL,σGL,σ)
mσdσ

2
.

We remark that the definition (1.60) does not take into account the boundary faces. Due
to the no-flux boundary condition, there exist no fluxes on the boundary faces and we can
discard them17. For the same reason, we do not need to reconstruct the mobility on the
boundary and the space RΣ only considers internal diamond cells.

We define now the discrete operators involved in equation (1.59). The discrete divergence
divT : FT → RT is defined by (divT F )K := divK(F ), where

divKF :=
1

mK

∑
σ∈ΣK

FK,σmσ .

We can also define the discrete gradient ∇Σ : RT → FT by duality as 〈∇Σa,F 〉FT =
−〈a,divT F 〉T . In particular we also have (∇Σa)K,σ = ∇K,σa where

∇K,σa :=
aL − aK
dσ

.

With these definitions at hand, we can rewrite equation (1.59). For (ρk)N+1
k=0 ⊂ RT and

(F k)N+1
k=1 ⊂ FT , the discrete continuity equation writes as

ρk − ρk−1

∆t
+ divT F k = 0 , ∀k ∈ {1, .., N + 1} ,

which is complemented by ρ0 = ρin,ρN+1 = ρf , where ρin,ρf ∈ RT+ are the discrete initial
and final conditions. Due to the definition of the space of conservative fluxes (1.60), the
equation is also automatically enforced with zero flux at the boundary. Then, owing to the
conservation property FK,σ + FL,σ = 0, ∀σ ∈ RΣ, the total discrete mass is preserved at each
iteration k, i.e.

〈ρ
k − ρk−1

∆t
+ divT F k,1〉T = 〈ρ

k − ρk−1

∆t
,1〉T = 0,

which implies
〈ρk,1〉T = 〈ρin,1〉T = 〈ρf ,1〉T , ∀k ∈ {1, .., N} ,

assuming of course the two discrete densities ρin and ρf to have the same total mass.

17This implies that, in the discrete optimization problems we will consider, the constraint on the no-flux
condition will be explicitly enforced.
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In the following chapters, we will also introduce for convenience the reconstruction operator
from cells to diamond cells RΣ : RT → RΣ, which provides the definition for the mobility:

(RΣ(a))σ = r(aK , aL) , for a ∈ RT .

Thanks to this operator, using the convention u � w ∈ FT , (u � w)K,σ = uσwK,σ, for u ∈
RΣ,w ∈ FT , we can rewrite in vectorial form the change of variables

F k = RΣ(ρk)vk , ∀k ∈ {1, .., N + 1} .

For the discretization of optimal transport problems we will need also another operator,
RT : RΣ → RT , which acts in the opposite way with respect to RΣ, reconstructing cell values
from diamond cell ones. The form of RT depends on RΣ, in order to preserve the variational
structure of the problem we will consider. The specific form of RΣ, and consequently of RT ,
will be detailed later.



Chapter 2

Computation of optimal transport
with finite volumes

This chapter contains an extended presentation of:

Andrea Natale and Gabriele Todeschi. Computation of optimal transport with finite vol-
umes. ESAIM: Mathematical Modelling and Numerical Analysis, 55(5):1847–1871, Septem-
ber 2021.

2.1 Introduction

We presented in the previous chapter the quadratic optimal transport problem, which provides
the notion of distance we need to interpret problems of the form of equation (1.32) as gradient
flows. We want to focus in this chapter on how we can compute numerically this distance. As
we already said, optimal transport started to gain more and more attention recently thanks to
the progresses in numerical methods to approximate it and nowadays several approaches are
available. We suggest the interested reader to have a look at [115, Chapter 6],[98, 111, 13] for a
complete introduction to the subject and the state of the art. For what concerns the quadratic
problem, we could naively distinguish two categories: approaches for the static formulation
(1.5) and for the dynamical one introduced by Benamou and Brenier. Let us recall this latter.
Given two densities ρin and ρf , we aim at finding the two curves (ρ,m) : [0, 1]×Ω→ R+×Rd,
respectively the density displacement and the momentum, which solve

inf
(ρ,m)

∫ 1

0

∫
Ω
B(ρ(t,x),m(t,x)) dxdt , (2.1)

while satisfying in distributional sense the continuity equation

{
∂tρ+∇ ·m = 0 in [0, 1]× Ω ,

m · n = 0 on [0, 1]× ∂Ω ,
(2.2)

29
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with the further initial and final conditions ρ(0, ·) = ρin, ρ(1, ·) = ρf . The function B :
R× Rd → [0,+∞] represents the density of kinetic energy of the curve and is defined as

B(p,Q) :=


|Q|2
2p if p > 0 ,

0 if p = 0, Q = 0 ,

+∞ else .

(2.3)

This dynamical formulation has inspired some of the first numerical methods for optimal
transport. This form of the problem enables to compute not only the optimal reallocation but
also the continuous in time displacement, which makes it more interesting for applications.
In particular, it is easily generalizable to other problems, such as mean field games [18], the
Schrödinger bridge problem [87], unbalanced optimal transport [46] or capacity constrained
optimal transport [29], just to name a few. A lot of interest is still devoted for this reason on
approaches to compute this dynamical formulation and several techniques are already avail-
able. However, only few of these can actually be generalized to more complex settings which
are relevant for numerical modeling. Moreover, their numerical analysis is often neglected.

We consider here finite volume discretizations for the dynamical optimal transport prob-
lem, following the approach originally proposed by Benamou and Brenier [14]. We will focus
on three main aspects. Firstly, we will expose some numerical issues related to the stability of
finite volume methods that have been considered for this problem, and we propose a strategy
based on nested meshes to overcome these. Secondly, we provide quantitative estimates on
the convergence of the proposed methods to smooth solutions of the problem. Finally, we
tackle the issue of the efficient computation of numerical solutions by applying and analyzing
a classical interior point strategy adapted to our setting. We will provide extensive numerical
results to validate our approach.

2.1.1 Discretization of dynamical optimal transport

In the original work of Benamou and Brenier [14] problem (2.1)-(2.2) was discretized on
regular grids using centered finite differences. Later in [109] Papadakis, Peyré and Oudet
introduced a finite difference discretization using staggered grids, which are better suited for
the discretization of the continuity equation. Similar finite difference approaches have been
used also in more recent works [41, 85]. Note that the use of regular grids can be beneficial
for the efficient solution of the scheme, but it is not adapated to complex domains. Several
finite element approaches have been considered in order to construct schemes able to handle
more general unstructured grids [16, 17, 80]. In Appendix B we propose a H(div)-conforming
finite element discretization that preserves at the discrete level the conservative form of the
problem, in the same spirit of [109].

Another approach to discretize problem (2.1)-(2.2) is to use finite volumes, which is a
natural choice given the conservative form of the constraint (2.2) and allows one to use un-
structured grids. In [51], Erbar, Rumpf, Schmitzer and Simon considered a discretization
of problem (2.1)-(2.2) on graphs, which can be written under the formalism of Two-Point
Flux Approximation (TPFA) finite volumes [64]. They proved the Gamma-convergence of
the discrete problem towards a semi-discrete version of (2.1)-(2.2), discrete in space and con-
tinuous in time. In [64], Gladbach, Kopfer and Maas proved a convergence result for this
semi-discretization towards the continuous problem. Combining these two results, it is possi-
ble to obtain a global convergence result, under conditions on the ratio between the temporal
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and spatial step sizes. Carrillo, Craig, Wang and Wei proved the Gamma-convergence with-
out conditions on the step sizes but only for sufficiently regular and strictly positive solutions
[41]. They used a centered finite difference discretization, which coincide with TPFA finite
volumes on cartesian grids. Finally, in [79] Lavenant proved the weak convergence of discrete
solutions (reconstructed as space-time measures) of a large class of time-space discretizations
of (2.1)-(2.2), unconditionally with respect to time and space steps and without assuming
any regularity. Lavenant applied this result to the discretization studied in [51] and the one
proposed in [80]. We will apply it to the finite element discretization we present in Appendix
B.

Our starting point in this work is the finite volume discretization presented in [79, 51].
We observe numerically that for this discretization the density interpolation can exhibit os-
cillations which prevent strong convergence of the numerical solution, even when the exact
interpolation is smooth. The same phenomenon has been observed by Facca and coauthors in
[56, 57] when dealing with finite element discretizations for the L1 optimal transport problem,
which is closely related to (2.1)-(2.2). Our strategy to overcome this issue is inspired by these
last works and consists in enriching the space of discrete potentials. We will show numerically
that such a modification attenuates the oscillations and favors a stronger convergence.

Note that with this modification, the convergence result in [79] cannot be applied straight-
forwardly. However, we will derive quantitative estimates for the convergence of the discrete
Wasserstein distance and the discrete potential, which hold both in the enriched and original
non-enriched case, in the case of smooth and strictly positive solutions. Even if such results
are only partial as they do not apply to the density, they are still surprising given that the
problem is not strictly convex. Moreover, we are not aware of similar estimates for the dis-
cretizations mentioned above. With these results at hand, it is possible to deduce again the
weak convergence of the discrete density and momentum.

2.1.2 Numerical solution

A typical approach for solving discrete versions of the dynamical formulation (2.1)-(2.2) is to
apply first order primal dual methods. This goes back to the original paper of Benamou and
Brenier [14], who proposed to use an Alternating Direction Method of Multipliers (ADMM)
approach applied to the augmented Lagrangian of the discrete saddle point problem. Later
[109] considered different proximal splitting methods and recast the previous algorithm into
the same framework. Nowadays, these approaches are frequently used [16, 17, 80, 41, 103]. In
fact, they are robust and can take care automatically of the positivity of the density thanks
to the definition of the objective functional and the function B (2.3). Nevertheless, they
are not easy to apply to arbitrary discretizations of the problem (especially on unstructured
grids). More importantly, they are efficient only as far as high accuracy is not mandatory and
uniform grids are used.

In the present work, we apply the so called barrier method, an instance of the wider
class of interior point methods [26, 65, 113, 58]. The problem is perturbed by adding to the
functional a strictly convex barrier function which repulses the density away from zero. In
this way it reduces to an equality-constrained minimization problem, where the minimizer is
automatically greater than zero and the objective functional is locally smooth around it, and
which can be effectively solved using a Newton scheme. The perturbation introduced by the
barrier function can be tuned by multiplying it by a positive coefficient µ and the original
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solution is recovered via a continuation method for µ going to zero. The final algorithm is
robust and can be easily generalized to similar problems (see for example Chapter 4).

The idea of using a regularization term to deal with numerical solutions of optimal trans-
port is not new. Among others, entropic regularization deserves a special mention. It has
been introduced in [47] to approximate solutions of problem (1.5) and it has gained more and
more attention thereafter. The idea is to add to the objective functional the entropy of the
transport and it is particularly effective as it allows to use a robust algorithm to solve the
discrete problem, the Sinkhorn algorithm. The approach is extremely simple, computationally
cheap and particularly suited to high dimensions. However, the problem is solved for a finite
value of the perturbation, as the complexity of the algorithm explodes otherwise, and it finds
particular success for applications where some additional diffusion is tolerated. A modified
version of the approach, able to recover the unpertubed solution via a continuation method,
has been proposed only recently [19]. Notice that the same regularization technique can be ap-
plied to the dynamical formulation (2.1)-(2.2), by perturbing the problem with the entropy of
the density curve. This entropic-dynamical formulation has gained a lot of attention recently
for its relation with the Schrödinger problem [87]. However, we are not aware of numerical
strategies employing this type of regularization for the dynamical optimal transport problem.

In [85], to regularize problem (2.1)-(2.2) and deal automatically with the positivity con-
straint, the authors proposed to use the Fisher information. However, they didn’t consider a
continuation method and the problem is solved for a fixed (small) value of the perturbation’s
parameter, leading to diffusive effects. A strategy similar to ours has been applied instead
by Achdou and coauthors [1] (although in the context of mean field games), perturbing the
Lagrangian associated to the problem with the Dirichlet energies of the density and the po-
tential. Such a perturbation does not ensure the positivity of the solution and this forces the
use of a monotone discretization. Using a barrier function allows us to consider more general
discretizations, with higher accuracy in space.

2.2 Finite volume discretization

We introduced in section 1.3.3 the finite dimensional spaces and operators which are involved
in the finite volume discretization. They rely on an admissible mesh discretizing the domain
Ω according to Definition 1.1. We want to slightly generalize this construction.

2.2.1 Nested meshes

In order to be more flexible in the discretization of problem (2.1)-(2.2), we want to be able to
decouple the discretization of the potential and the density. We introduce then two different
(admissible) discretizations of Ω. In particular, we will take one as a subdivision of the other.
We denote by

(
T ′,Σ′, (xK′)K′∈T ′

)
the coarse mesh and by

(
T ,Σ, (xK)K∈T

)
the fine one, and

we require that

∀K ∈ T , ∃K ′ ∈ T ′ such that K ⊆ K ′ .

In practice we will consider two specific instances of this construction. The first is the
trivial case where the two meshes coincide. The second holds at least in two dimensions and
can be defined as follows. First, we take as coarse mesh a Delaunay triangulation, with cell
centers xK′ the circumcenters of each cell K ′. We further require that all the triangles are
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xK′

xL′

K ′L′

σ′

dK′,σ′

dσ′nK′,σ′

K
L

Figure 2.1: Exemplification of the notation of a triangular cell (left) and its subdivision (right).

acute, so that all the cell centers xK′ lie in the interior of the corresponding cell K ′. Then,
we define the fine mesh by dividing each triangular cell K ′ into three quadrilaterals by joining
xK′ to the three midpoints of the edges σ′ ∈ Σ

′
K′ . We take again as cell centers xK of the

fine mesh the circumcenters of each cell K. This construction is illustrated in Figure 1.3d
(which is the subdivision of a mesh of the type of Figure 1.3c) and in Figure 2.1. Note that
the partition obtained in this way is indeed admissible. Other constructions are possible.

2.2.2 Discrete spaces and operators

We introduce two spaces of discrete variables defined on the two meshes, RT and RT ′ , each
one endowed with its own weighted scalar product,

〈·, ·〉T : (a, b) ∈ [RT ]2 7→
∑
K∈T

aKbKmK ,

and similarly for 〈·, ·〉T ′ . Note that RT ′ ⊆ RT , and we denote by I the canonical injection
operator, which is given explicitly by

I : RT
′ → RT , (Iρ)K = ρK′ , ∀K ⊂ K ′.

In the case where the two discretizations of Ω coincide, I is just the identity operator. We
will denote by I∗ the adjoint of I, i.e. 〈I∗·, ·〉T ′ = 〈·, I·〉T .

The space of discrete variables on diamond cells RΣ and the space of conservative fluxes
FT ,

FT = {F = (FK,σ, FL,σ)σ∈Σ ∈ R2Σ : FK,σ + FL,σ = 0} , (2.4)

are both defined on the finer mesh only. They are respectively endowed with the scalar
products:

〈·, ·〉Σ : (u,v) ∈ [RΣ]2 7→
∑
σ∈Σ

uσvσmσdσ ,

〈·, ·〉FT : (F ,G) ∈ [FT ]2 7→
∑
σ∈Σ

(FK,σGK,σ + FL,σGL,σ)
mσdσ

2
.

We denote by ‖ · ‖T , ‖ · ‖T ′ , ‖ · ‖Σ and ‖ · ‖FT the norms associated with the inner products
defined above. We also denote Fσ = |FK,σ| = |FL,σ| and by convention |F | = (Fσ)σ∈Σ ∈ RΣ
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and (F )2 = (F 2
σ )σ∈Σ ∈ RΣ, for F ∈ FT . Moreover, given F ,G ∈ FT and u ∈ RΣ, we define

F �G,u� F ∈ FT by

[F �G]K,σ := FK,σGK,σ , [u� F ]K,σ := uσFK,σ .

The discrete divergence divT : FT → RT and the discrete gradient ∇Σ : RT → FT are
defined on the finer mesh and writes:

(divT F )K = divKF =
1

mK

∑
σ∈ΣK

FK,σmσ ,

(∇Σa)K,σ = ∇K,σa :=
aL − aK
dσ

.

It holds 〈∇Σa,F 〉FT = −〈a,divT F 〉T . Moreover, as for the discrete conservative fluxes, we
define ∇σa := |∇K,σa|. Finally, let us give the explicit form of the reconstruction operator
RΣ : RT → RΣ, from cells to diamond cells of the finer grid, that we will use to discretize the
mobility. We require the operator RΣ to be a concave function (component-wise), positively
1-homogeneous and positivity preserving. We will consider two weighted means, LΣ and HΣ,
which correspond respectively to a linear and a harmonic mean, and are defined as follows:

(LΣa)σ =
dK,σ
dσ

aK +
dL,σ
dσ

aL , (HΣa)σ =
dσaKaL

dK,σaL + dL,σaK
, (2.5)

for any a ∈ RT . We denote by dRΣ[a] : RT → RΣ the differential of RΣ with respect
to a, evaluated at a given a ∈ RT . Clearly, if RΣ = LΣ, we simply have dRΣ[a] = LΣ.
Moreover, we denote by (dRΣ[a])∗ the adjoint of dRΣ[a], with respect to the two different
scalar products. For the two reconstructions we consider, this operator is given by either L∗Σ
or (dHΣ[a])∗, which are defined by

(L∗Σu)K =
∑
σ∈ΣK

uσ
mσdK,σ
mK

, ((dHΣ[a])∗u)K =
∑
σ∈ΣK

(HΣ[a])2
σ

a2
K

uσ
mσdK,σ
mK

, (2.6)

for any u ∈ RΣ.

2.3 Time discretization

The discretization in time of problem (2.1)-(2.2) deserves some comments. The continuous in
time displacement of mass needs to be replaced with a sequence of finite steps. Consider an
integer N > 0 and a discretization of the time interval [0, 1] in N + 1 subintervals of constant
length ∆t = 1

N+1 , and let tk := k∆t for all k ∈ {0, .., N + 1}. Consider a sequence of densities

(ρk)N+1
k=0 ⊂ P(Ω), such that ρ0 = ρin, ρN+1 = ρf . It is natural to discretize the time derivative

in (2.2) with a simple Euler step with uniform time step ∆t, introducing then a sequence of
staggered momentum (mk)N+1

k=1 that pushes the mass from one step to the other:

ρk − ρk−1

∆t
+∇ ·mk = 0, ∀k ∈ {1, .., N + 1} (2.7)
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As the momentum are staggered in time with respect to the densities, we can see (2.7) as
a midpoint discretization of equation (2.2). We can think of the time dependent density
discretized with a piecewise linear one on each subinterval [tk−1, tk], whereas the momentum
with a piecewise constant one. On each subinterval the integral in time of the kinetic energy
can be approximated for example with a left/right endpoint approximation or a midpoint rule.
We want to comment on these choices thanks to the corresponding optimality conditions. The
derivation of the discrete optimality conditions will be detailed later in Section 2.4, we want
here to give just a quick look.

In order to have a finite kinetic energy, and therefore a finite candidate solution, the mo-
mentum has to be absolutely continuous with respect to the density, that is, loosely speaking,
it has to be proportional to it (see Section 1.1.2). Consider a left endpoint approximation of
the kinetic energy, that is∫ 1

0

∫
Ω
B(ρ,m) dxdt ≈

N+1∑
k=1

∆t

∫
Ω
B(ρk−1,mk) dx .

Repeating the same steps as in Section 1.1.2, bearing in mind the optimality condition for
the momentum (1.22), a left endpoint approximation would provide the following discrete
continuity equation

ρk − ρk−1

∆t
+∇ · (ρk−1∇φk) = 0, ∀k ∈ {1, .., N + 1} ,

where mk = ρk−1∇φk, φk being the Lagrange multiplier for the k-th equation. At each step,
moving accordingly to the chosen time direction, the continuity equation is discretized with
an explicit Euler step (considering the velocity field to be given). Assume the initial density
ρ0 = ρin to have compact support. It is evident then that the mass cannot flow outside of
its support, as the momentum is zero in this region and the density ρ1 cannot have bigger
support. Recursively, this is true at every step, therefore an admissible couple (φ, ρ) (or an
admissible triplet (φ, ρ,F ) with finite kinetic energy) can exist if and only if the support of the
final density ρN+1 = ρf is not bigger than the support of ρin. The situation is the opposite
for a right endpoint approximation of the kinetic energy. These choices appear too rigid.

Remark 2.1. Due to the finite volumes discretization, as the momentum is defined on the
edges and the mobility is averaged on adjacent cells (see Section 2.4), in the fully discrete
scheme this issue may turn into a condition on a sufficiently high number of intermediate
steps N for the existence of a candidate solution.

Consider now a discretization of the kinetic energy with a midpoint rule:∫ 1

0

∫
Ω
B(ρ,m) dxdt ≈

N+1∑
k=1

∆t

∫
Ω
B
(ρk−1 + ρk

2
,mk

)
dx .

We obtain in this case the condition mk = (ρ
k+ρk−1

2 )∇φk for the momentum, and the continu-
ity equation is discretized with a midpoint rule as well (considering again the vector field ∇φk
to be given). The first advantage is that the discretization is now symmetric in time. As the
optimal transport problem is symmetric, it would make sense to discretize it symmetrically.
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One may also expect a higher precision for this discretization with respect to the previous
one. More importantly, the previous issue with the supports of the final and initial conditions
disappears as the mobility is not explicit in neither time directions. A candidate solution al-
ways exists, it suffices that the supports of two consecutive densities of the sequence (ρk)N+1

k=0

always intersect. This of course turns into a high speed of propagation of the support of the
densities if the number of intermediate steps N is not big.

Despite the several reasons for avoiding a left/right endpoint approximation of the kinetic
energy, this choice presents an advantage with respect to the midpoint rule. Using a left
(right) endpoint approximation leads to an implicit approximation of the Hamilton-Jacobi
equation in the positive (negative) direction of time. The discrete equation in the first case
is:

φk+1 − φk

∆t
+

1

2
|∇φk+1|2 ≤ 0, ∀k ∈ {1, .., N} . (2.8)

As mentioned in Section 1.1.2, the Hamilton-Jacobi equation can be saturated thanks to the
monotonicity of the operator in both time directions. The discrete equation (2.8) is monotone
as well, but only in one direction. We can show it thanks to formal computations. The
following argument will be adjusted to the fully discrete case in Section 3.2 and appendix A.
Consider indeed two potentials (φk1)N+1

k=1 , (φ
k
2)N+1
k=1 (sufficiently regular), verifying φ1

1 = φ1
2 and

φk+1
1 − φk1

∆t
+

1

2
|∇φk+1

1 |2 ≤ φk+1
2 − φk2

∆t
+

1

2
|∇φk+1

2 |2 , ∀k ∈ {1, .., N} . (2.9)

We define then by (xk+1)Nk=1 a sequence of points verifying xk+1 ∈ argminφk+1
2 − φk+1

1 . For
k = 1, we have

φ2
1

∆t
+

1

2
|∇φ2

1|2 ≤
φ2

2

∆t
+

1

2
|∇φ2

2|2 ,

and since ∇φ2
1(x2) = ∇φ2

2(x2) by definition of x2, this provides φ2
1(x2) ≤ φ2

2(x2) and therefore
φ2

1 ≤ φ2
2. Assuming φk1 ≤ φk2, at the step k + 1 it holds

φk+1
1

∆t
+

1

2
|∇φk+1

1 |2 ≤ φk+1
1

∆t
+

1

2
|∇φk+1

1 |2 +
φk2 − φk1

∆t
≤ φk+1

2

∆t
+

1

2
|∇φk+1

2 |2 ,

so that φk+1
1 (xk+1) ≤ φk+1

2 (xk+1) and therefore φk+1
1 ≤ φk+1

2 . By recurrence, this is true for
all k and we have φN+1

1 ≤ φN+1
2 .

The same reasoning cannot be applied to show that φ1
2 ≤ φ1

1 under the hypotheses φN+1
2 =

φN+1
1 and (2.9), and the result clearly does not hold. Therefore the discrete in time operator

is monotone only in one direction, the positive direction of time. Approximating the kinetic
energy with a right endpoint approximation would lead to a monotone operator in the negative
direction of time. In this case it is possible to show that φ1

2 ≤ φ1
1 if φN+1

2 = φN+1
1 and (2.9)

holds, using the same argument (exchanging the min with a max). In either one direction or
the other, it is possible to saturate the Hamilton-Jacobi equation in the discrete problem, as
we did in the continuous case in Section 1.2.2 and as we shall see in the discrete setting in
Appendix A.

2.4 Discrete optimal transport problem

We introduce now the fully discrete scheme. We will start from the convex formulation of
the dynamical optimal transport problem in order to preserve the variational structure at the
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discrete level. We will use here the midpoint discretization in time introduced in the previous
section. Starting from the classical finite volume discretization of the continuity equation
(2.2), we discretize the kinetic energy and we derive by duality the corresponding discrete
form of the Hamilton-Jacobi equation (1.25), finally ending up with a discrete version of the
system of optimality conditions (1.26).

We denote the time evolution of a discrete density by ρ := (ρk)N+1
k=0 , where ρk :=

(ρkK′)K′∈T ′ . Similarly we denote by F := (F k)N+1
k=1 the time evolution of a discrete momentum,

where F k := (F kK,σ, F
k
L,σ)σ∈Σ. Given a couple (ρ,F ) ∈ [RT ′ ]N+2 × [FT ]N+1, we define the

discrete equivalent of the objective functional in (2.1), BN,T : [RT ]N+2 × [FT ]N+1 → [0,+∞],
as follows:

BN,T (ρ,F ) :=

{∑N+1
k=1 ∆t

∑
σ∈ΣB

(
((RΣ ◦ I)(ρ

k+ρk−1

2 ))σ, F
k
σ

)
mσdσ if ρkK′ ≥ 0 ,

+∞ else .
(2.10)

Since RΣ is assumed to be concave, the function (2.10) is convex and lower semi-continuous.

At each time step, the kinetic energy is discretized on the diamond cells of the finer grid.
As the momentum are defined on this grid, the density is first injected in the finer space and
then reconstructed on the edges. Thanks to the discretization with the midpoint rule of the
kinetic energy on each subinterval [tk−1, tk] = [(k − 1)∆t, k∆t], a given F kσ needs to vanish
only if the reconstruction of (ρk+ρk−1)/2 on the same edge vanishes. Notice that the measure
of each diamond cell is taken d times. This is done in order to compensate the unidirectional
discretization of the vector field F and therefore obtain a consistent discretization (see, e.g.,
Lemma 2.6). Indeed, each Fσ is meant as an approximation of the modulus of the unitary
flux, |m · nK,σ|, and encodes then the information of m only along the direction nK,σ. This
choice is linked to the definition of inflated gradient (see [44, 55] for more details on this
construction).

Remark 2.2. Note that (2.10) is not simply the discretization of the objective functional in
(2.1) on the diamond cells, in which case it would take the value +∞ whenever the time-space
reconstruction of the density is negative on some diamond cell. The functional in (2.10) takes
the value +∞ whenever the density is negative on some cell K ′ ∈ T ′, which is a stronger
condition.

Given two discrete densities ρin,ρf ∈ RT ′+ , with the same total discrete mass, 〈ρin,1〉T ′ =
〈ρf ,1〉T ′ , we consider the following discrete version of problem (2.1)-(2.2):

inf
(ρ,F )∈CN,T

BN,T (ρ,F ) , (2.11)

where CN,T ⊂ [RT ′ ]N+2 × [FT ]N+1 is the convex subset whose elements (ρ,F ) satisfy both
the discrete continuity equation

I
(ρk − ρk−1

∆t

)
+ divT F k = 0 , ∀k ∈ {1, .., N + 1}, (2.12)

and the initial and final conditions

ρ0 = ρin, ρN+1 = ρf . (2.13)
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The continuity equation is discretized in time using the midpoint rule (F is indeed staggered
in time with respect to ρ). Moreover, given the definition of the discrete space of conservative
fluxes and the operator divT , (2.12) is to be understood with zero flux boundary conditions
in space. Hence equations (2.12)-(2.13) imply that the total discrete mass is preserved at
all times: 〈ρk,1〉T ′ = 〈ρin,1〉T ′ , ∀k ∈ {1, .., N}. In the following, we explicitly enforce the
constraint (2.13), i.e. we identify ρ0 and ρN+1 with ρin and ρf , respectively.

Theorem 2.3. Problem (2.11) admits a solution.

Proof. First of all, notice that existence of a finite valued feasible point, i.e. an element (ρ,F )
satisfying the constraint and with finite kinetic energy, is ensured thanks to the surjectivity
of the divergence operator (to the space of discrete functions in [RT ]N+1 with zero mean) and
the time discretization of the functional (as explained in the previous section). Consider for
example a density with mass everywhere.

Let us now show that a minimizing sequence is bounded. As the total mass is preserved,

any density of the sequence lies in the compact set ||ρ||∞ ≤ 〈ρin,1〉T ′
minK′∈T ′ (mK′ )

. Thus we just need

to show that also the momenta are bounded. For any b ∈ [FT ]N+1, with |bkσ| ≤ 1 for all
σ ∈ Σ, k ∈ {1, .., N + 1}, denoting by ρs ∈ [RΣ]N+1 the term given by

ρks =

√
(RΣ ◦ I)

ρk + ρk−1

2
, ∀k ∈ {1, .., N + 1} ,

it holds:
N+1∑
k=1

∆t〈F k, bk〉FT =

N+1∑
k=1

∆t〈F k � (ρks)
−1, bk � ρks〉FT

≤
√

2BN,T (ρ,F )||b||ρ ≤ C
√

2BN,T (ρ,F ) .

(2.14)

The weighted (semi-)norm || · ||ρ is defined via (2.23). The first inequality derives applying
Cauchy-Schwarz whereas the second one from the uniform bound on the density. Taking the
sup with respect to b we obtain the bound on F . Therefore a minimizing sequence is bounded.
The existence of a minimizer follows from the lower semi-continuity of the function BN,T and
the linearity of the constraint.

By applying standard Lagrange duality for convex optimization problems (see for example
[26]), we can observe that for problem (2.11) strong duality holds and that the dual problem
attains its optimal value. Then we can equivalently say that a primal-dual couple (φ, (ρ,F ))
of solutions to the primal and dual problems is the saddle point of the Lagrangian function

LN,T (φ,ρ,F ) = BN,T (ρ,F ) +
N+1∑
k=1

∆t〈φk, I
(ρk − ρk−1

∆t

)
+ divT F k〉T , (2.15)

where the potential φ ∈ [RT ]N+1 is the Lagrange multiplier for the continuity equation
constraint.

We derive now the first order optimality conditions for problem (2.11), which are necessary
and sufficient conditions for a solution. Equivalently, we want to derive the stationarity
conditions of the Lagrangian LN,T (φ,ρ,F ). By definition of the discrete gradient operator
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and thanks to the definition of conservative fluxes (2.4), the stationarity condition of LN,T
with respect to F provides:

F k = (RΣ ◦ I)
(ρk + ρk−1

2

)
�∇Σφ

k , ∀k ∈ {1, .., N + 1}, (2.16)

Plugging this condition in (2.15), the Lagrangian reduces to

LN,T (φ,ρ) = −∆t

2

N+1∑
k=1

〈(RΣ ◦ I)
(ρk + ρk−1

2

)
, (∇Σφ

k)2〉Σ +
N+1∑
k=1

∆t〈φk, I
(ρk − ρk−1

∆t

)
〉T .

(2.17)
A stationary point of (2.17) must then satisfy the conditions:

I
(ρk − ρk−1

∆t

)
+ divT

(
(RΣ ◦ I)

(ρk + ρk−1

2

)
�∇Σφ

k
)

= 0 ,

I∗
(φk+1 − φk

∆t

)
+

1

4
RkT ′(∇Σφ

k)2 +
1

4
Rk+1
T ′ (∇Σφ

k+1)2 ≤ 0 ,

(2.18)

where k ∈ {1, .., N + 1} for the discrete continuity equation, k ∈ {1, .., N} for the discrete
Hamilton-Jacobi equation. The linear operators RkT ′ : RΣ → RT ′ , for k ∈ {1, .., N + 1}, are
defined by

〈RkT ′u, b〉T ′ = 〈u, (dRΣ

[
I
(ρk + ρk−1

2

)]
◦ I) b〉Σ , for u ∈ RΣ , b ∈ RT

′
.

We recall that dRΣ[a] : RT → RΣ is the differential of RΣ with respect to a, evaluated at a
given a ∈ RT . If RΣ = LΣ, then these operators do not depend on ρ and in particular we
will drop such dependency in the notation by setting RkT ′ = RT ′ = I∗ ◦ L∗Σ.

The inequality in the second condition derives from the fact that the minimization in ρ is
taken over non-negative values, and the equality holds where ρk does not vanish. Hence, we
can write the full system of optimality conditions using a slack variable λ ∈ [RT ′− ]N :

I
(ρk − ρk−1

∆t

)
+ divT

(
(RΣ ◦ I)

(ρk + ρk−1

2

)
�∇Σφ

k
)

= 0,

I∗
(φk+1 − φk

∆t

)
+

1

4
RkT ′(∇Σφ

k)2 +
1

4
Rk+1
T ′ (∇Σφ

k+1)2 = λk,

ρk ≥ 0, λk ≤ 0, ρk � λk = 0,

(2.19)

where k ∈ {1, .., N + 1} for the discrete continuity equation and k ∈ {1, .., N} for the other
conditions. Note that system (2.19) is a discrete version of the system of optimality conditions
(1.26) holding at the continuous level. In particular, the continuity equation is discretized on
the fine grid whereas the Hamilton-Jacobi equation on the coarse one. Using a discretization
that preserves the monotonocity of the discrete Hamilton-Jacobi operator it is possible to
show that the value zero for λ is optimal (see Appendix A), i.e. the discrete Hamilton-Jacobi
equation can be saturated. However this is not the case for the discretizations we considered
here since they do not preserve the monotonicity.
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Remark 2.4. If the two discretizations of Ω coincide, I becomes the identity and we recover
the finite volumes discretization already considered in [51, 79], which is a fully discrete version
of the continuous-time discrete optimal transport problem studied in [64].

Remark 2.5. Uniqueness of the density interpolation, which is guaranteed for the continuous
problem (2.1)-(2.2) as soon as the initial (or final) measure is absolutely continuous with
respect to the Lebesgue measure [121, Corollary 7.23], is not evident. System (2.19) is not
guaranteed in general to have a unique solution. In particular, where the density vanishes,
the potential and the positivity multiplier are clearly non unique. The potential is however
uniquely defined, up to a global constant, if the density solution is unique and everywhere
strictly positive.

Given a solution (φ,ρ) to system (2.19), we can construct the associated momentum F by
equation (2.16) so that (ρ,F ) is a minimizer of problem (2.11). Then, we define the discrete
Wasserstein distance WN,T (ρin,ρf ) by

W 2
N,T (ρin,ρf )

2
:= BN,T (ρ,F ). (2.20)

More precisely, replacing (2.16) in (2.20), the discrete Wasserstein distance can be computed
using the following expression:

W 2
N,T (ρin,ρf )

2
=

∆t

2

N+1∑
k=1

〈(RΣ ◦ I)
(ρk + ρk−1

2

)
, (∇Σφ

k)2〉Σ . (2.21)

In the case of the linear reconstruction, i.e. taking RΣ = LΣ, one can also easily express
the dual to problem (2.11) in terms of the potential φ, as in the continuous case, i.e. problem
(1.9). In this case in fact, maximizing the Lagrangian (2.17) over potentials φ verifying the
second condition of system (2.19) yields the following problem:

sup
φ∈KN,T

〈I∗φN+1 − ∆t

4
RT ′(∇Σφ

N+1)2,ρf 〉T − 〈I∗φ1 +
∆t

4
RT ′(∇Σφ

1)2,ρin〉T (2.22)

where RT ′ = I∗ ◦ L∗Σ and KN,T ⊂ [RT ]N+1 is the convex subset of potentials φ verifying

I∗
(φk+1 − φk

∆t

)
+

1

4
RT ′

(
(∇Σφ

k)2 + (∇Σφ
k+1)2

)
≤ 0 .

2.5 Convergence to the continuous problem

In this section, we provide quantitative estimates for the convergence of the action and the dis-
crete potential φ towards their continuous counterparts, in the case of solutions with smooth
strictly positive densities. Note that we restrict ourselves to the case of the linear reconstruc-
tion operator, i.e. we take RΣ = LΣ. As a consequence of Remark 2.4, these results are also
valid for the finite volume discretization considered in [79].

First of all, we introduce some additional notation. Let F ,G ∈ [FT ]N+1 and ρ ∈ [RT ′+ ]N+2.
We define the following weighted inner products:

〈F ,G〉ρ := ∆t
N+1∑
k=1

〈F k,Gk〉ρk+ρk−1

2

, (2.23)
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where

〈F k,Gk〉ρk :=
∑
σ∈Σ

(F kK,σG
k
K,σ + F kL,σG

k
L,σ)((RΣ ◦ I)ρk)σ

mσdσ
2

.

We will denote by ‖ · ‖ρ and ‖ · ‖ρk the (semi-)norms associated with these (semi-)inner
products.

We will consider two sampling operators: one for the density ΠT ′ , which performs an
average on each cell, and one for the potential ΠT , which evaluates the function at the cell
centers. More precisely, given f and g sufficiently regular, we define

(ΠT ′f)K′ :=
1

mK′

∫
K′
f dx , (ΠT g)K := g(xK) ,

for all K ′ ∈ T ′ and all K ∈ T . For any time dependent functions ρ and φ sufficiently regular,
we define ΠT ′ρ := (ΠT ′ρ(tk, ·))N+1

k=0 and

ΠT φ :=

(
1

∆t

∫ tk

tk−1

ΠT φ(s, ·)ds

)N+1

k=1

.

We will denote by hT the maximum cell diameter of the fine mesh, i.e. hT := maxK∈T diam(K).
We will assume two regularity conditions on the fine mesh. Firstly, there exists a constant ζ,
which does not depend on hT , such that

diam(K) ≤ ζdσ ≤ ζ2diam(K), ∀σ ∈ ΣK , ∀K ∈ T , (2.24)

dist(xK ,K) ≤ ζ diam(K), ∀K ∈ T . (2.25)

Secondly, there exists a constant ηh > 0 only depending on hT , with ηh → 0 for hT → 0, such
that ∑

σ∈ΣK

mσdK,σnK,σ ⊗ nK,σ ≤ mK(1 + ηh)Id , ∀K ∈ T . (2.26)

The latter condition is essentially a specific instance of the asymptotic isotropy condition in
[64] (see Definition 1.3). When the cell centers xK are chosen as the circumcenters of the
associated cell (as in the particular examples of meshes described in Section 2.2.1), a stronger
property holds, which has been referred to as center of mass condition [64] or superadmissi-
bility [53], and which reads as follows:∑

σ∈ΣK

mσdK,σnK,σ ⊗ nK,σ = mKId . (2.27)

However, for generality of the discussion, in the following we will only require (2.26) and
therefore we will keep the dependence on ηh explicit.

The following lemma collects some consistency properties of the projection ΠT . In partic-
ular, point (3) below shows that the asymptotic isotropy condition implies the consistency of
the quadratic term in the discrete Wasserstein distance (2.21), and justifies our discretization
of the functional BN,T .

Lemma 2.6. The following properties hold:



42 CHAPTER 2. COMPUTATION OF OPTIMAL TRANSPORT

1. for any ψ ∈ C 0(Ω), maxK∈T |(ΠT ψ)K | ≤ ‖ψ‖C 0 ;

2. for any ψ ∈ C 0,1(Ω), there exists a constant C > 0 only depending on ψ and ζ such that

max
K∈T

‖(ΠT ψ)K − ψ‖C 0(Ω) ≤ ChT ;

3. for any ψ ∈ C 1,1(Ω), there exists a constant C > 0 only depending on ψ and ζ such that

(L∗Σ|∇ΣΠT ψ|2)K ≤ (ΠT |∇ψ|2)K + C(hT + ηh) ,

for all K ∈ T , where LΣ is the linear reconstruction operator and ηh is defined as in
(2.26).

Proof. The first two points follow easily from the definition of ΠT and the regularity condition
(2.25). For (3), observe that, by definition of the linear reconstruction operator,

(L∗Σ|∇σΠT ψ|2)K =
∑
σ∈ΣK

|∇σΠT ψ|2
mσdK,σ
mK

. (2.28)

Then, using the definition of the operator ΠT and the regularity condition (2.24),

∇σΠT ψ =

∣∣∣∣ψ(xK)− ψ(xL)

dσ

∣∣∣∣ =
1

dσ

∣∣∣∣∫ 1

0

d

ds
ψ((1− s)xK + sxL)ds

∣∣∣∣ ≤ |∇ψ(xK) · nK,σ|+ ChT .

Replacing this into (2.28), neglecting higher order terms, and using the asymptotic isotropy
assumption (2.26), we obtain the desired bound.

Propostion 2.8 below is an adaptation to our setting of standard approximation results
for elliptic problems. It quantifies the consistency of the projection ΠT ′ in terms of the
associated potential. As in [64], we will use it to construct an admissible competitor for the
discrete problem. Before proving the result, we state the following classical finite-volume
version of the Poincaré inequality.

Lemma 2.7 (Discrete mean Poincaré inequality, Lemma 10.2 in [54]). There exists a constant
C > 0, only depending on Ω, such that for all admissible meshes T , and for all ψ ∈ RT , the
following inequality holds:

‖ψ − 1

|Ω|
∑
K∈T

ψKmK‖T ≤ C‖∇Σψ‖FT .

Proposition 2.8. Suppose that ρ, ∂tρ ∈ L∞([0, 1]; C 0,1(Ω)), with ρ ≥ ε > 0, and let φ ∈
L∞([0, 1]; C 1,1(Ω)) be a solution of

− div(ρ∇φ) = ∂tρ , ∇φ · n∂Ω = 0 on ∂Ω . (2.29)

Let ρ = ΠT ′ρ and let φ be a solution of

−divT
(
(LΣ ◦ I)

(ρk + ρk−1

2

)
�∇Σφ

k
)

= I
(ρk − ρk−1

∆t

)
.

Then, there exists a constant C > 0 depending only on φ, ρ, ε, ζ and Ω, such that

‖∇Σφ‖2ρ ≤
∫ 1

0

∫
Ω
ρ|∇φ|2 dxdt+ C(hT + ∆t+ ηh) , (2.30)

with ηh defined as in (2.26).
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Proof. First, we integrate equation (2.29) over the time-space cell [tk−1, tk]×K and divide it
by mK∆t. This yields

− divKu
k =

1

mK∆t

∫
K

∫ tk

tk−1

∂tρ dtdx . (2.31)

where u ∈ [FT ]N+1 is defined by

ukK,σ :=
1

mσ∆t

∫
σ

∫ tk

tk−1

(ρ∇φ) · nK,σ dt ds .

We define e ∈ [FT ]N+1 and r ∈ [RT ]N+1 by

ekK,σ = ukK,σ −
(

(LΣ ◦ I)
(ρk + ρk−1

2

))
σ
∇σ(ΠT φ)k ,

and denoting by K ′ the cell in T ′ such that K ⊂ K ′,

rkK :=
1

mK∆t

∫
K

∫ tk

tk−1

∂tρdtdx− 1

mK′∆t

∫
K′

∫ tk

tk−1

∂tρdtdx .

Then

−divT
(
(LΣ ◦ I)

(ρk + ρk−1

2

)
�∇Σ(φk − (ΠT φ)k

)
= rk − divT ek .

Multiplying both sides by (φk − (ΠT φ)k) we obtain

‖∇Σ(φk − (ΠT φ)k)‖2
ρk+ρk−1

2

= 〈rk − divT ek, (φk − (ΠT φ)k)〉T .

Using the discrete Poincaré inequality of Lemma 2.7 and the lower bound on ρ, this implies

‖∇Σ(φk − (ΠT φ)k)‖ρk+ρk−1

2

≤ C(‖rk‖T + ‖ek‖FT ) ,

where C > 0 is a constant only depending on the lower bound ε and the domain. By the
regularity of φ and ρ, and the estimate (2.24), we then obtain

‖∇Σ(φk − (ΠT φ)k)‖ρk+ρk−1

2

≤ C(hT + ∆t) , (2.32)

where now C depends also on ρ and φ.
In order to get an estimate on the energy, we observe that φk minimizes the functional

ψ ∈ [RT ]N+1 7−→ ‖∇Σψ‖2ρk+ρk−1

2

− 〈I
(ρk − ρk−1

∆t

)
,ψ〉T ,

which implies the inequality

‖∇Σφ
k‖2

ρk+ρk−1

2

≤ ‖∇Σ(ΠT φ)k)‖2
ρk+ρk−1

2

+ 〈I
(ρk − ρk−1

∆t

)
, (φk − (ΠT φ)k)〉T .

Using again the discrete Poincaré inequality of Lemma 2.7 and the lower bound on ρ, as well
as its regularity, we get

‖∇Σφ
k‖2

ρk+ρk−1

2

≤ ‖∇Σ(ΠT φ)k)‖2
ρk+ρk−1

2

+ C‖∇Σ(φk − (ΠT φ)k)‖ρk+ρk−1

2

.
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Hence, using (2.32), we obtain

‖∇Σφ‖2ρ ≤ ‖∇ΣΠT φ)‖2ρ + C(hT + ∆t) .

Finally, using Jensen’s inequality and then Lemma 2.6, we find

‖∇ΣΠT φ‖2ρ ≤
N+1∑
k=1

∫ tk

tk−1

‖∇ΣΠT φ(t, ·))‖2
ρk+ρk−1

2

dt

≤
N+1∑
k=1

∫ tk

tk−1

〈I
(ρk + ρk−1

2

)
,ΠT |∇φ(t, ·)|2〉T dt+ C(hT + ηh)

=

N+1∑
k=1

∑
K∈T

∫ tk

tk−1

∫
K

ρ(tk, ·) + ρ(tk−1, ·)
2

|∇φ(t,xK)|2 dxdt+ C(hT + ηh)

≤
∫ 1

0

∫
Ω
ρ|∇φ|2 dxdt+ C(hT + ∆t+ ηh) ,

which concludes the proof.

We are now ready to state the two main convergence results of this section, which pro-
vide quantitative estimates for the convergence rates of the discrete action and the discrete
potential.

Theorem 2.9 (Convergence of the action). Suppose that φ : [0, 1] × Ω → R is an optimal
potential for the dual optimal transport problem (1.24)-(1.25) from ρin to ρf and that ρ :
[0, 1] × Ω → [0,+∞) is the associated interpolation. Then, denoting ρin := ΠT ′ρin and
ρf := ΠT ′ρf , and taking ηh as in (2.26), the following holds:

1. if φ ∈ C 1,1([0, 1] × Ω), there exists a constant C > 0 only dependent on φ and ζ such
that

W 2
N,T (ρin,ρf ) ≥ W2

2 (ρin, ρf )− C(hT + ∆t+ ηh) ;

2. if φ ∈ L∞([0, 1]; C 1,1(Ω)) and ρ, ∂tρ ∈ L∞([0, 1]; C 0,1(Ω)), with ρ ≥ ε > 0, there exists
a constant C > 0 depending only on ρ, φ, ε, ζ and Ω such that

W 2
N,T (ρin,ρf ) ≤ W2

2 (ρin, ρf ) + C(hT + ∆t+ ηh) .

Proof. For the first point, we first observe that by Lemma 2.6 and the regularity of φ, ΠT φ
verifies

I∗
((ΠT φ)k+1 − (ΠT φ)k

∆t

)
+

∆t

4
RT ′((∇Σ(ΠT φ)k)2 + (∇Σ(ΠT φ)k+1)2) ≤ C(hT + ∆t+ ηh) .

Define φ by φk := (ΠT φ)k − C(tk + tk−1)(hT + ∆t + ηh)/2, for k ∈ {1, . . . , N + 1}. Then φ
is admissible for the dual problem (2.22), hence

W 2
N,T (ρin,ρf )

2
≥ 〈I∗φN+1 − ∆t

4
RT ′(∇Σφ

N+1)2,ρf 〉T ′ − 〈I∗φ1 +
∆t

4
RT ′(∇Σφ

1)2,ρin〉T ′ .
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Replacing back the definition of φ and using the fact that |∇σφ1| and |∇σφN+1| are uniformly
bounded by a constant depending only on φ, we get

W 2
N,T (ρin,ρf )

2
≥
∫

Ω
φ(1, ·)ρf −

∫
Ω
φ(0, ·)ρin − C(hT + ∆t+ ηh) .

For the second point it suffices to observe that the couple (ρ, φ) satisfies (2.29). Then,
defining ρ and φ as in the statement of Proposition 2.8, we can construct an admissible
competitor (ρ,F ) for the discrete optimal transport problem by defining the momentum
F ∈ [FT ]N+1 as in equation (2.16). Since, by definition,

W 2
N,T (ρin,ρf ) ≤ 2BN,T (ρ,F ) = ‖∇Σφ‖2ρ ,

we obtain the desired estimate using (2.30).

The issue of convergence of the discrete solution (ρ,F ) towards its continuous counterpart
has been treated in detail in [79] for a general class of discretizations. These include the finite
volume schemes considered here, in the case where the two domain decompositions coincide
so that I is the identity operator (see Remark 2.4). For this case, one has that the discrete
density ρ can be lifted to a measure on [0, 1] × Ω converging weakly to the exact optimal
transport interpolation with mesh refinement.

It is not difficult to show that the second point of Theorem 2.9 implies a similar conver-
gence result, for smooth positive solutions, also when the two discretizations of the domain
do not coincide (e.g., this is a direct consequence of Theorem 2.18 in [79]). Besides this
weak convergence result, Theorem 2.9 also implies the following quantitative estimate for the
convergence of the potential, although in a norm dependent on the discrete solution itself.

Theorem 2.10 (Convergence of the potential). Suppose that φ : [0, 1]×Ω→ R is an optimal
potential for the dual optimal transport problem (1.24)-(1.25) from ρin to ρf and that ρ : [0, 1]×
Ω → [0,+∞) is the associated interpolation. Let (ρ̃, φ̃) be the discrete solution associated
with the boundary conditions ρin := ΠT ′ρin and ρf := ΠT ′ρf . If φ ∈ C 1,1([0, 1] × Ω) and
ρ, ∂tρ ∈ L∞([0, 1]; C 0,1(Ω)), with ρ ≥ ε > 0, there exists a constant C > 0 depending only on
ρ, φ, ε, ζ and Ω, such that

‖∇Σφ̃−∇ΣΠT φ‖2ρ̃ ≤ C(hT + ∆t+ ηh) ,

for ηh defined as in (2.26).

Proof. Consider the quantity

EN,T (ρ̃, φ̃|φ) :=
1

2
‖∇Σφ̃−∇ΣΠT φ‖2ρ̃ . (2.33)

Expanding the square in (2.33) we obtain

EN,T (ρ̃, φ̃|φ) = BN,T (ρ̃, F̃ ) +
1

2
‖∇ΣΠT φ‖2ρ̃ − 〈∇Σφ̃,∇ΣΠT φ〉ρ̃ , (2.34)
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where F̃ is given by equation (2.16). The second term in (2.34) can be written as

1

2
‖∇ΣΠT φ‖2ρ̃ =

1

2

N+1∑
k=1

∫ tk

tk−1

〈L∗Σ|∇ΣΠT φ(s, ·)|2 −ΠT |∇φ(s, ·)|2, I
( ρ̃k + ρ̃k−1

2

)
〉T ds

−
N+1∑
k=1

∫ tk

tk−1

〈ΠT ∂tφ(s, ·), I
( ρ̃k + ρ̃k−1

2

)
〉T ds

= I1 −
N+1∑
k=1

〈ΠT φ(tk, ·)−ΠT φ(tk−1, ·), I
( ρ̃k + ρ̃k−1

2

)
〉T .

(2.35)

The third term in (2.34) instead can be written as

−〈∇Σφ̃,∇ΣΠT φ〉ρ̃ =

N+1∑
k=1

∫ tk

tk−1

〈divT
(
(LΣ ◦ I)

( ρ̃k + ρ̃k−1

2

)
�∇Σφ

k
)
,ΠT φ(s, ·)〉T ds

= −
N+1∑
k=1

∫ tk

tk−1

〈I
( ρ̃k − ρ̃k−1

∆t

)
,ΠT φ(s, ·)〉T ds

= I2 − 〈Iρ̃N+1,ΠT φ(1, ·)〉T + 〈Iρ̃0,ΠT φ(0, ·)〉T

+
N∑
k=1

〈ΠT φ(tk, ·)−ΠT φ(tk−1, ·), I
( ρ̃k + ρ̃k−1

2

)
〉T ,

(2.36)

where

I2 :=
N∑
k=1

∫ tk

tk−1

〈ΠT ∂tφ(s, ·)−ΠT
(φ(tk+1, ·)− φ(tk, ·)

∆t

)
, Iρ̃k−1,k(s)〉T ds

and ρ̃k−1,k(s) is the linear interpolation between ρ̃k−1 and ρ̃k, i.e. ρ̃k−1,k(s) := ρ̃k−1(tk −
s)/∆t+ ρ̃k(s− tk−1)/∆t.

Adding and subtracting W2
2 (ρin, ρf )/2 =

∫
Ω φ(1, ·)ρf −

∫
Ω φ(0, ·)ρin from the right-hand

side of (2.34), substituting (2.35) and (2.36), and rearranging terms we obtain

EN,T (ρ̃, φ̃|φ) =
W 2
N,T (ρin,ρf )

2
− W

2
2 (ρin, ρf )

2
+ I1 + I2 + I3 , (2.37)

where

I3 :=

∫
Ω
φ(1, ·)ρf −

∫
Ω
φ(0, ·)ρin − 〈I∗ΠT φ(1, ·),ρf 〉+ 〈I∗ΠT φ(0, ·),ρin〉 ,

since ρ0 = ΠT ′ρin and ρN+1 = ΠT ′ρf . Finally, we estimate I1 and I3 using Lemma 2.6, I2

using the regularity of φ, and the remaining term using the second point in Theorem 2.9.

Remark 2.11. It is easy to construct solutions to the optimality conditions (1.26), and there-
fore to problem (2.1)-(2.2), satisfying the assumptions of Theorem 2.9 or 2.10. In fact, given
any smooth compactly-supported initial potential φ0 : Ω → R, there exists δ > 0 such that
the map x 7→ Tt(x) := x + t∇φ0(x) is a diffeomorphism for t ∈ [0, δ], and φ(t, ·) = φ0 ◦ T−1

t

is a smooth solution to the Hamilton-Jacobi equation. Moreover, given a strictly postive and
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smooth initial density ρ0, the density ρ(t, ·) = (ρ0/det(∇Tt)) ◦T−1
t solves the continuity equa-

tion with velocity ∇φ(t, ·), and it is also smooth and strictly positive for t ∈ [0, δ]. Then,
the curve t 7→ (δφ(δt, ·)), ρ(δt, ·)) solves the optimality conditions (1.26) on the time interval
[0, 1]. On the other hand, even in the case where ρ0 and ρ1 are smooth and strictly positive
the interpolation may not even be stricly positive as shown in [117].

Remark 2.12. The quantity EN,T (ρ̃, φ̃|φ) defined in equation (2.33) is the discrete H1 semi-
norm of the error weighted by the discrete solution ρ̃. Note that this can also be seen as a
discretization of the modulated energy (or relative entropy) of the kinetic energy, interpreted
as a convex function of (ρ, F ). In Section 2.7 we will use a similar quantity in order to
evaluate numerically the convergence rate of the scheme.

2.6 Primal-dual barrier method

We introduce now the primal-dual barrier method, the discrete optimization technique we use
to deal with the uniqueness, smoothness and positivity issues and effectively solve problem
(2.11). The method consists in perturbing the discrete problem with a barrier function which
forces the density to be positive. Here we show that the solutions of such perturbed problem
converge to the ones of the original problem, when the perturbation vanishes, therefore jus-
tifying the use of a continuation method. Finally, we will detail the implementation of the
algorithm commenting on the choice of the parameters involved.

The most classical barrier function used when dealing with positivity constraints is the
logarithmic barrier, − log ρ. In order to write the perturbed problem, we first define precisely
the barrier,

J(x) =

{
− log(x) if x > 0,

+∞ if x ≤ 0,

so that it is convex and lower semi-continuous. We define the barrier function as

JN,T (ρ) =

N∑
k=1

∆t
∑
K′∈T ′

J(ρkK′)mK′ ,

and the perturbed version of problem (2.11) is therefore:

inf
(ρ,F )∈CN,T

BN,T (ρ,F ) + µJN,T (ρ) . (2.38)

Thanks to the strict convexity of the function JN,T on [RT ′+ \ {0}]N , the solution (ρµ,F µ) is
now unique. Proceeding as in Section 2.4, ρµ can be characterized as solution to the system
of optimality conditions

I
(ρk − ρk−1

∆t

)
+ divT

(
(RΣ ◦ I)

(ρk + ρk−1

2

)
�∇Σφ

k
)

= 0,

I∗
(φk+1 − φk

∆t

)
+

1

4
RkT ′(∇Σφ

k)2 +
1

4
Rk+1
T ′ (∇Σφ

k+1)2 = −sk,

ρk � sk = µ1,

(2.39)
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where k ∈ {1, .., N +1} for the continuity equation and k ∈ {1, .., N} for the other conditions.
The variable s ∈ [RT ′ ]N , (sk)K′ = µ (ρkK′)

−1, has been introduced in order to decouple the
optimization in ρ and s, and it highlights the connection with system (2.19). In particular,
system (2.39) can be seen as a perturbation of (2.19), where ρkK′ and skK′ = −λkK′ are au-
tomatically forced to be positive and the orthogonality is relaxed. In this way, the solution
(φµ,ρµ, sµ) is now unique, up to an additive constant for the potential, and the problem is
smooth.

As it is classical in interior point methods (see, e.g., [26]), if we regard (ρµ,F µ) as an
approximate solution to problem (2.11), we can derive an explicit estimate on how far it is
from optimality. Given a solution (ρ,F ) of the original problem, and defining λ̃ ∈ [RT ′− ]N by

(λ̃k)K′ = − µ
(ρµ)k

K′
, we have

BN,T (ρ,F ) = sup
φ

inf
ρ≥0,F

LN,T (φ,ρ,F )

≥ inf
ρ≥0,F

LN,T (φµ,ρ,F ) +
N∑
k=1

∆t〈λ̃k,ρk〉T ′

= LN,T (φµ,ρµ,F µ) +

N∑
k=1

∆t〈λ̃k, (ρµ)k〉T ′ = BN,T (ρµ,F µ)− µ N

N + 1
|Ω| ,

(2.40)
where we used the fact that (ρµ,F µ) is optimal for LN,T (φµ,ρ,F ) +

∑N
k=1 ∆t〈λ̃k,ρk〉T ′ ,

which can be easily verified by comparing the associated optimality conditions with (2.39).
We have therefore

0 ≤ BN,T (ρµ,F µ)− BN,T (ρ,F ) ≤ µ N

N + 1
|Ω| . (2.41)

As a consequence of (2.41), the smaller the parameter µ, the closer the perturbed solution is
to the original one.

Theorem 2.13. The solution (ρµ,F µ) of problem (2.38) converges up to extraction of a
subsequence to (ρ,F ) solution of (2.11) for µ→ 0.

Proof. Consider a sequence (µn)n ⊂ R+ converging to zero and the corresponding sequence
(ρµn ,F µn) of solutions to problem (2.38). We first derive a bound on (ρµn ,F µn), independent
of µ. The bound on ρµn derives easily from the conservation of mass. To obtain a bound for
the momentum F µn , for any b ∈ [FT ]N+1 with |bkσ| ≤ 1 for all σ ∈ Σ, k ∈ {1, .., N + 1}, we
observe that there exists a constant C > 0 independent of µ such that

N+1∑
k=1

∆t〈(F µn)k, bk〉FT ≤
√

2BN,T (ρµn ,F µn)||b||ρµ ≤ C , (2.42)

where the weighted norm ||·||ρµ is defined via (2.23). The first inequality is the same as (2.14),
applied to ρµn and F µn . The second one is obtained using the inequality (2.41). Taking the
sup with respect to b in (2.42), we obtain the bound on F µn .

The sequence (ρµn ,F µn) is bounded hence we can extract a converging subsequence (still
labeled with µn for simplicity) (ρµn ,F µn) → (ρ∗,F ∗). Consider (ρ,F ) minimizer of the
unperturbed problem (2.11). From inequality (2.41), taking the limit for n→ +∞, we obtain
BN,T (ρ∗,F ∗) = BN,T (ρ,F ), hence (ρ∗,F ∗) is a minimizer for problem (2.11).
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Remark 2.14. If the solution (ρ,F ) of the discrete problem (2.11) is unique, then the entire
sequence (ρµn ,F µn) converges to it. In case it is not unique, due to

0 ≤ BN,T (ρµn ,F µn)− BN,T (ρ,F ) ≤ µn(JN,T (ρ)− JN,T (ρµn)) ,

we know that (ρµn ,F µn) converges up to subsequence to a solution (ρ∗,F ∗) with minimal
JN,T . In case the solution ρ∗ is strictly positive everywhere, the whole sequence (ρµn ,F µn)
converges again.

The strict positivity derives automatically from the definition of the barrier function,
which attains the value +∞ in zero. As a consequence, for every value of µ > 0 the objective
function BN,T (ρ,F )+µJN,T (ρ) is smooth in a neighborhood of the solution (ρµ,F µ), ensuring
a good behavior of the Newton scheme for the solution of the system of equations (2.39). It
is possible to derive a quantitative bound for the positivity of ρµ as follows.

Proposition 2.15. There exists a constant C > 0 independent of µ such that the density ρµ

solution to problem (2.38) satisfies the following bound:

(ρµ)kK′ ≥ Cµ, ∀K ′ ∈ T ′, ∀k . (2.43)

Proof. Consider the solution (ρµ,F µ) to (2.38). We define the constant density c ∈ [RT ′+ ]N ,
ckK′ = (

∑
K∈T mK′)

−1 = (|Ω|)−1. It can be easily checked that c is the unique solution to

min
ρ∈[RT ′ ]N

JN,T (ρ) such that
∑
K′∈T ′

ρkK′mK′ = 1, ∀k . (2.44)

From now on, with a slight abuse of notation, we consider c to be complemented with the
boundary conditions ρin,ρf . Thanks to the surjectivity of the divergence operator (to the
space of discrete functions in [RT ]N+1 with zero mean), we can find the unique momentum
F c with minimal || · ||c norm (defined via equation (2.23)), such that (c,F c) ∈ CN,T :

F c = argmin
F∈FT

1

2
||F ||2c, such that (c,F c) ∈ CN,T .

Taking the admissible competitor (ρ̂, F̂ ) = (εc + (1 − ε)ρµ, εF c + (1 − ε)F µ), ε ∈ [0, 1], for
problem (2.38), it holds

µ (JN,T (ρµ)− JN,T (ρ̂)) ≤ BN,T (ρ̂, F̂ )− BN,T (ρµ,F µ) . (2.45)

The right-hand side of (2.45) is bounded: indeed, by convexity of BN,T , it holds

BN,T (ρ̂, F̂ )− BN,T (ρµ,F µ) ≤ εBN,T (ρc,F c) + (1− ε)BN,T (ρµ,F µ)− BN,T (ρµ,F µ)

≤ Cε .
(2.46)

The left-hand side of (2.45) can be bounded from below thanks to the convexity of JN,T , by
the following quantity

µ

N∑
k=1

∑
K′∈T ′

J ′(ρ̂kK′)((ρ
µ)kK′ − ρ̂kK′)mK′∆t = µε

N∑
k=1

∑
K′∈T ′

J ′(ρ̂kK′)((ρ
µ)kK′ − ckK′))mK′∆t .
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Hence, we obtain

µε
N∑
k=1

∑
K′∈T ′

J ′(ρ̂kK′)((ρ
µ)kK′ − ckK′))mK′∆t ≤ Cε . (2.47)

Simplifying ε in (2.47) and taking the limit for ε→ 0, we obtain

N∑
k=1

∑
K′∈T ′

(
ckK′

(ρµ)kK′
− 1

)
mK′∆t ≤

C

µ
,

and therefore

min
K′

(mK′)∆t

N∑
k=1

∑
K′∈T ′

ckK′

(ρµ)kK′
≤ C

µ
+ |Ω|T ,

which implies the result.

By Theorem 2.13 the solution of problem (2.38) provides an approximation to a solution
(φ,ρ) to problem (2.19), although the smaller the parameter the more difficult it is to solve
the problem using a Newton method. The idea is then to use a continuation method, that is
construct a sequence of solutions to problem (2.39) for a sequence of coefficients µ decreasing
to zero, using each time the solution at the previous step as starting point for the Newton
scheme. The resulting algorithm in shown in Algorithm 1. We denote by θ the rate of decay
for µ; by ε0 and εµ the tolerances for the solution to (2.19) and (2.39), respectively; and by δ0

and δµ the error in the convergence towards solutions of the original and perturbed problem.
The parameter δµ can be taken to be a norm of the residual of the system of equations (2.39)
or of the Newton step d. Concerning δ0, it is either possible to choose a norm of the residual
of the system of equations (2.19) or δ0 = µ N

N+1 |Ω|, by virtue of (2.41), whether the proximity
to the minimizer or to the minimum is preferred.

Algorithm 1:

Given the starting point (φ0,ρ0, s0) and the parameters µ0 > 0, θ ∈ (0, 1), ε0 > 0 ;
while δ0 > ε0 do

µ = θµ ;
while δµ > εµ do

compute Newton direction d for (2.39);
compute α ∈ (0, 1] such that ρ+ αdρ > 0 and s+ αds > 0;
update: (φ,ρ, s) = (φ,ρ, s) + α(dφ,dρ,ds) ;
if n > nmax or α < αmin then

increase µ and repeat from previous iteration;
end

end

end

Since any intermediate solution for µ 6= 0 is not of interest, a very common approach in
interior point methods is to set a relatively big tolerance εµ, or even to do just one Newton
step per value of µ. Another possibility could be to consider a tolerance εµ decreasing to ε0

as µ tends to zero. Nonetheless, a small tolerance εµ avoids the solution ρµ of the pertubed
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problem to get accidentally too close to the boundary of the feasibility domain, i.e. too close
to zero. This would imply a drop in the regularity of the specific problem at hand, with
evident consequences on the effectiveness of the Newton scheme. For this reason, we consider
εµ = ε0. Notice that, in view of Proposition 2.15, it is possible to evaluate (underestimate)
the constant for the lower bound on the density. It could be possible then try to employ the
previous more effective strategies, taking care of controlling the proximity of the density to
zero by means of bound (2.43).

A linesearch technique is typically employed in order to ensure global convergence of the
Newton scheme. However, in many cases it leads to a non negligible cost by forcing the
Newton scheme to do several steps before reaching convergence. Instead of modifying the
step size α, we adaptively control θ in order to force the convergence. The Newton scheme is
repeated with an increased θ (i.e. with an increased µ) if it is not able to converge in nmax
steps. The step size α is chosen just to ensure that ρ and s do not become negative. Again,
the Newton scheme is repeated if α needs to be smaller than αmin. In particular, taking
αmin = 1 only allows full Newton steps.

For the success of the algorithm, it is fundamental to have access to a good initial condition.
Since the idea is to start from a relatively big value of the parameter µ, for which the problem
is sufficiently regular, the common strategy is to use the starting point which minimizes the
perturbation function.

Proposition 2.16. The solution (ρµ,F µ) of problem (2.38) converges to (c,F c), defined as
in Proposition 2.15, for µ→ +∞.

Proof. The proof is similar to the proof of Theorem 2.13. Consider a sequence (µn)n ⊂
R+, µn → +∞ and the corresponding sequence (ρµn ,F µn) of solutions to problem (2.38). We
already know from the proof of Theorem 2.13 that this latter is bounded and we can extract
a convergent subsequence (without relabelling it) converging to (ρ∗,F ∗). Consider the couple
(c,F c), defined as in the proof of Proposition 2.15. By optimality of (ρµn ,F µn) and recalling
that c minimizes (2.44) , it holds:

0 ≤ µn(JN,T (ρµn)− JN,T (c)) ≤ BN,T (c,F c)− BN,T (ρµn ,F µn) ≤ BN,T (c,F c) . (2.48)

We deduce that for n → +∞, ρµn converges to ρ∗ = c, unique minimizer of JN,T , and the
whole sequence converges. From (2.48) we also know that

BN,T (ρµn ,F µn) ≤ BN,T (c,F c), ∀n ,

so that, for n→ +∞, thanks to the lower semi-continuity of BN,T ,

BN,T (c,F ∗) ≤ BN,T (c,F c) .

Since F c is the unique minimizer of BN,T (c,F ), F ∗ = F c and the whole sequence converges.

As shown in Proposition 2.16, for big values of the parameter µ the solution of the per-
turbed problem tends to (c,F c). This motivates the choice of the intial condition ρ0 = c,
s0 = µ(ρ0)−1 and φ0 = φc, where φc is the solution to

divT
(
(RΣ ◦ I)

(ck + ck−1

2

)
�∇Σφ

k
)

= I
(ck−1 − ck

∆t

)
, ∀k ∈ {1, .., N + 1} ,
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for which (F c)k = (RΣ ◦ I)(c
k+ck−1

2 ) � ∇(φc)k. However, this initial condition may be not
sufficiently good for starting the algorithm for relatively low values of µ. The issue is due
to the presence of the boundary conditions on the density, which makes the kinetic energy
contribution not negligible and the problem is not trivial to be solved. Taking ρ0 = c e F = 0
is an alternative that performs well, as long as the time step ∆t is not too small, since the
boundary contributions become more important the smaller is ∆t. For complex simulations,
in one case or the other, one could be forced to consider high value for the initial parameter
µ0.

The issue with the choice of the starting point is inevitable due to the specific structure of
the problem. In order to overcome it, one could devise a perturbation/smoothing of problem
(2.11) which enables to state that the perturbed solution tends to the constant solution (c,0)
for increasing values of µ. This could be obtained in different ways, for example relaxing
the continuity equation or the boundary conditions, which would of course exit from the
framework of the barrier method. A simple and effective strategy is to set the boundary
conditions

ρinµ =
ρin + µM

1 + µ|Ω|
, ρfµ =

ρf + µM

1 + µ|Ω|
, (2.49)

for the perturbed problem, where M is the total discrete mass.

There exist of course several optimization solvers that could tackle the solution of problem
(2.11), most of which are usually based on interior point strategies, especially for large scales.
Nevertheless, the specificity of the problem at hand, its non-linearity of course but more
importantly its lack of smoothness, led us to develop our own solver, in order to better handle
it. Moreover, the solution of the sequence of linear systems requires an ad-hoc strategy, as
mentioned in Sections 2.7-2.8. Finally, we remark that in the particular case of the linear
reconstruction, the corresponding dual problem in (2.22) can be cast in the form of a second-
order cone program, which can be solved again using an interior point method in polynomial
time. This does not apply to the case of the harmonic reconstruction (or more general
reconstructions) for which the dual problem has a more complex structure.

2.7 Numerical results

In this section we assess the performance of the scheme we presented in Section 2.4 using
several two-dimensional numerical tests. In particular, we demonstrate the numerical impli-
cations of enriching the space of discrete potentials, both from a qualitative and quantitative
point of view. As already noted in Remark 2.4, considering the two subdivisions of the do-
main to be the same and taking I to be the identity operator, we recover the discretization
presented in [79]. We will refer to this case as the non-enriched scheme, to distinguish it from
the enriched one. Needless to say, the greater is the richness of the space of discrete potentials
the higher is the computational complexity. We will also show that the monotone scheme we
introduce in Appendix A does not prevent the stability issues.

For the construction of the enriched scheme we use the nested meshes described in Section
2.2.1. In particular, the coarse mesh is given by a regular triangulation of the domain with
only acute angles. Here, we will use the first family of grids provided in [60], which discretize
the domain Ω = [0, 1]2. One of these grids is shown in Figure 1.3c. Unless specified differently,
we will always refer to these grids throughout this section.
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The code is implemented in MATLAB and is available online1. In particular, we exploit the
built-in MATLAB direct solver to solve the sequence of linear systems generated by Algorithm
1. For µ → 0 the Jacobian matrix becomes ill-conditioned and the computation time, along
with the memory consumption, rapidly increases for this solver. Using an iterative method
could be extremely beneficial in this sense. However, the design of effective preconditioners
is a delicate issue and should take into account the structure of the problem at hand (see,
e.g., the general survey [20]). Therefore, we do not explore the use of such techniques in
this article. We calibrated Algorithm 1 with the following parameters: θ = 0.2, αmin = 0.1,
ε0 = 10−6 (ε0 = 10−8 for the convergence tests), µ0 = 1,φ0 = 0,ρ0 = c (c defined as in 2.15)
and s0 = µ(ρ0)−1. In all the simulations performed in this section, but also more generally,
the algorithm proved to be extremely robust under this configuration. The Newton scheme
rarely reaches a breakdown and, in case this happens, the adaptive strategy on the parameter
θ overcomes the issue. Notice only that for complex simulations the value µ0 may be increased
to ease the start of the Newton scheme. On the other hand, the algorithm greatly benefits
from perturbing the boundary conditions as in (2.49). Finally, we stress that all the results
in this section are presented in their piecewise-constant form on the grid, without any kind
of interpolation.

2.7.1 Oscillations

In this section we show that the discrete density obtained by using the non-enriched scheme
can be very oscillatory. We observed numerically that the oscillations are more severe in cases
where there is high compression of mass, i.e. when the corresponding continuous velocity field
is not divergence free, and also more persistent with refinement (this is also confirmed by the
convergence tests shown below in Section 2.7.2). On the other hand, this type of instability
can be prevented using either cartesian grids or the enriched scheme, which eliminates the
oscillations almost entirely. The monotone scheme we present in Appendix A on the contrary
does not solve the issue.

In order to illustrate this phenomenon, consider the interpolation between two gaussian
densities:

ρin(x, y) = exp−3|x−x1|2 , ρf (x, y) = exp−3|x−x2|2 ,

where x1 = ( 3
10 ,

3
10),x2 = ( 7

10 ,
7
10). We compute the approximate solution between the discrete

densities ρin =
(
ρin(xK)

)
K′∈T ′ and ρf =

(
ρf (xK)

)
K′∈T ′ . We use both the enriched and

the non-enriched scheme with linear reconstruction, for h′T = 0.0625 and #T ′ = 896, and
for a number N + 1 = 8 of time steps. On the same grid and with the same number of
time steps, we compute the solution also with the monotone discretization (i.e. the scheme
introduced in Appendix A). Finally, we also use a different grid for the non-enriched scheme
with linear reconstruction, a cartesian grid with h′T = 0.0707, that is with edges length
0.05 (using the same number of time steps). In Figure 2.2 we represented the four different
midpoints. The non-enriched scheme with linear reconstruction exhibits severe oscillations
on the unstructured grid. With the monotone scheme, the oscillations seems milder but the
result is not satisfactory. Preserving the monotonicity of the Hamilton-Jacobi equation does
not prevent this issue. Using the enriched scheme instead we obtain a good approximation

1https://github.com/gptod/OT-FV

https://github.com/gptod/OT-FV
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Figure 2.2: Midpoint between two gaussian functions. Non-enriched scheme with linear recon-
struction (top-left), monotone discretization (top-right), enriched scheme with linear recon-
struction (bottom-left), non-enriched scheme with linear reconstruction with cartesian grid
(bottom-right).

of the expected result, as well as using a cartesian grid with the non-enriched one. The non-
enriched scheme does not exhibit oscillations when using cartesian grids. Indeed, oscillations
do not appear either in other works based on finite differences [41, 109, 85], which coincide
with finite volumes on such simple grids.

The instability does not depend on the time refinement, which seems to exclude a possible
condition on the time and space step sizes. We repeated the test with the non-enriched scheme
with linear reconstruction using the same unstructured grid and with number of time steps
N + 1 = 16, 32, 64. The oscillations do not disappear as it is noticeable from the computed
midpoints (Figure 2.3).

Let us consider another example, the interpolation between the two densities

ρin(x, y) = cos (2π |x− x0|) +
3

2
, ρf (x, y) = M

(
− cos (2π |x− x0|) +

3

2

)
,

where x0 = (1
2 ,

1
2) and M is chosen such that they have the same total mass. For h′T = 0.0625

and #T ′ = 896, and for a number N + 1 = 8 of time steps, we compute the approximate
Wasserstein interpolation between ρin =

(
ρin(xK)

)
K′∈T ′ and ρf =

(
ρf (xK)

)
K′∈T ′ , by solv-
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Figure 2.3: Midpoint between two gaussian functions computed with the non-enriched scheme
with linear reconstruction. From left to right, number of time steps N + 1 = 16, 32, 64.

ing problem (2.11) in four different ways: with the enriched and the non-enriched scheme,
both with linear and harmonic reconstruction. The results are shown in Figure 2.4. Again,
the severe oscillations which appear using the non-enriched scheme with linear reconstruction
disappear using the enriched one. Oscillations are evident also using the harmonic recon-
struction, although milder. The enriched scheme with harmonic reconstruction provides the
smoothest solution.

2.7.2 Convergence test

We now quantify numerically the convergence rate for the potential, the Wasserstein distance
and the density, by considering specific smooth solutions (φ, ρ) to (1.26) with compact support,
and with smooth initial and final densities ρin and ρf . Note, however, that the convergence
results of Section 2.5 are less general, since they require strictly positive densities, and only
apply to the linear reconstruction.

We compute the solutions to problem (2.11), with ρin = (ρin(xK′))K′∈T ′ and ρf =

(ρf (x′K))K′∈T ′ , on a sequence of admissible meshes (T ′,Σ′, (xK′)K′∈T ), and with an increas-
ing number of time steps. We consider four type of errors: the error on the distance, the L1

error on the density curve, the weighted L2 error on the potential and on its gradient on the
whole trajectory. We define a discrete potential φ ∈ [RT ]N+1 by sampling the continuous
solution, i.e. φkK = φ(tk−1 + ∆t

2 ,xK), for k ∈ {1, .., N + 1}, and similarly for the density we

introduce ρ ∈ [RT ′ ]N+1, with ρK′ = ρ(tk−1 + ∆t
2 ,xK′), for k ∈ {1, .., N + 1}. Given the

discrete solution (φ̃, ρ̃), the four errors are then computed as follows:

εW2 = |W2(ρin, ρf )−WN,T (ρin,ρf )| , εφ =
N+1∑
k=1

∆t〈(φ̃kK − φkK)2, I
( ρ̃k + ρ̃k−1

2

)
〉T ,

ε∇φ = ‖∇Σφ̃−∇Σφ‖ρ̃ , ερ =

N+1∑
k=1

∆t
∑
K′∈T ′

∣∣∣ρkK′ − ρ̃kK′ + ρ̃k−1
K′

2

∣∣∣mK′ ,

where the weighted (semi-)norm || · ||ρ̃ is defined via (2.23). The rate of convergence is
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Figure 2.4: Midpoint between two sinusoidal functions. Non-enriched scheme in the top row,
enriched scheme in the bottom one. Linear reconstruction on the left, harmonic reconstruction
on the right.

evaluated as
log(εm−1)− log(εm)

log((h′T )m−1)− log((h′T )m)

for two consecutive values of errors ε and meshsizes h′T .

We first consider the simple case of a pure translation. We consider the optimal transport
problem between the two following densities:

ρin(x, y) =
(

1 + cos
(102π

32
|x− x1|2

))
1|x−x1|≤ 3

10
,

ρf (x, y) =
(

1 + cos
(102π

32
|x− x2|2

))
1|x−x2|≤ 3

10
,

where x1 = ( 3
10 ,

3
10),x2 = ( 7

10 ,
7
10). The density interpolation and the potential are simply

given by

ρ(t, x, y) =
(

1 + cos
(102π

32
|x− xt|2

))
1|x−xt|≤ 3

10
,

φ(t, x, y) =
2

5
x+

2

5
y − 4

25
t ,
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Table 2.1: Convergence test on the translation.

h′T N εW2 rate εφ rate ε∇φ rate ερ rate

Non-enriched scheme with linear reconstruction

0.250 1 3.109e-02 / 1.802e-02 / 2.153e-01 / 6.092e-01 /
0.125 3 3.375e-03 3.204 4.857e-03 1.892 9.574e-02 1.169 2.779e-01 1.132
0.062 7 1.190e-03 1.504 1.442e-03 1.752 3.947e-02 1.278 1.431e-01 0.958
0.031 15 2.351e-04 2.339 4.105e-04 1.813 1.550e-02 1.348 7.115e-02 1.008
0.016 31 2.874e-05 3.032 1.086e-04 1.919 5.708e-03 1.442 3.110e-02 1.194

Non-enriched scheme with harmonic reconstruction

0.250 1 4.897e-02 / 2.382e-02 / 1.825e-01 / 5.870e-01 /
0.125 3 9.950e-03 2.299 5.635e-03 2.080 7.503e-02 1.282 2.535e-01 1.211
0.062 7 4.009e-03 1.311 1.751e-03 1.686 3.393e-02 1.145 1.172e-01 1.114
0.031 15 1.168e-03 1.780 5.055e-04 1.792 1.433e-02 1.243 4.907e-02 1.256
0.016 31 3.074e-04 1.925 1.409e-04 1.843 6.040e-03 1.247 2.057e-02 1.254

Enriched scheme with linear reconstruction

0.250 1 3.880e-02 / 2.084e-02 / 2.231e-01 / 5.774e-01 /
0.125 3 3.714e-03 3.385 5.129e-03 2.023 9.375e-02 1.251 2.343e-01 1.301
0.062 7 1.457e-03 1.350 1.568e-03 1.710 4.303e-02 1.124 9.481e-02 1.305
0.031 15 3.551e-04 2.037 4.391e-04 1.836 1.935e-02 1.153 3.233e-02 1.552
0.016 31 6.712e-05 2.403 1.145e-04 1.939 8.719e-03 1.150 1.228e-02 1.397

Enriched scheme with harmonic reconstruction

0.250 1 4.512e-02 / 2.240e-02 / 1.999e-01 / 5.740e-01 /
0.125 3 6.907e-03 2.708 5.187e-03 2.111 8.270e-02 1.273 2.370e-01 1.276
0.062 7 2.852e-03 1.276 1.597e-03 1.699 3.975e-02 1.057 1.036e-01 1.193
0.031 15 8.292e-04 1.782 4.521e-04 1.821 1.857e-02 1.098 4.014e-02 1.369
0.016 31 2.116e-04 1.970 1.221e-04 1.889 8.802e-03 1.077 1.668e-02 1.266

where xt = (1− t)x1 + tx2 = ( 3
10 + 2

5 t,
3
10 + 2

5 t), and the Wasserstein distance isW2(ρin, ρf ) =
2
√

2
5 . Note in particular that the associated velocity field is constant in space. The errors

defined above and the respective rates of convergence are shown in Table 2.1. In this case,
all the considered errors converge with a rate of at least one for both the enriched and non-
enriched scheme and both type of reconstructions.

We now consider a more challenging test, the optimal transport problem between the two
densities

ρin(x, y) =
(

1 + cos
(

2π
(
x− 1

2

)))
,

ρf (x, y) =
1

c

(
1 + cos

(2π

c

(
x− 1

2

)))
1|x− 1

2 |≤ c2 ,

where ρf is the compression of a factor c of ρin. The exact expression of the density interpo-
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lation is

ρ(t, x, y) =
1

t(c− 1) + 1

(
1 + cos

( 2π

t(c− 1) + 1

(
x− 1

2

)))
1|x− 1

2 |≤ t(c−1)+1
2

,

whereas the exact potential is

φ(t, x, y) =
1

2

c− 1

t(c− 1) + 1

(
x− 1

2

)2
.

The Wasserstein distance between the two densities is

W2(ρin, ρf ) =

√
(π2 − 6)(c− 1)2

12π2
.

The numerical results for c = 0.3 are shown in Table 2.2. Again, in all the four cases, the
Wasserstein distance and the gradient of the potential converge, with the errors exhibiting
at least a linear rate of convergence. However, the density does not seem to converge in the
non-enriched scheme with linear reconstruction, whereas it converges in the other cases.

It is noticeable from the convergence tests we performed how in the case of a pure transla-
tion the instability tends to disappear with refinement, whereas with compression this depends
on the reconstruction used: the harmonic reconstruction seems to prevent the issue, the linear
one does not. Our strategy of enriching the discrete space of potentials alleviates the problem
and enables to recover the convergence of the density.

We performed the same convergence tests with cartesian grids, using the non-enriched
scheme with linear reconstruction. Since the scheme does not oscillate with these meshes,
it is interesting to see how it performs in this case in order to compare with the case of
unstructured grids. The results are presented in Table 2.3. In this case, the density converges
with an order of accuracy higher than one.

2.7.3 Geodesic

To conclude, we consider the transport problem between a cross distributed density and its
rotation by 45 degrees. We compute the discrete solution with the enriched scheme, using the
harmonic reconstruction, with h′T = 0.0156,#T ′ = 14336 and N + 1 = 32 time steps. The
approximate density interpolation is displayed in Figure 2.5: as expected, each branch of the
cross splits symmetrically in two parts which move towards the two opposite branches of the
rotated cross.

2.8 Perspectives

We considered TPFA discretizations of the dynamical formulation of the quadratic optimal
transport problem. In particular, we proposed a method based on nested meshes to deal
with numerical instabilities that occur when using this type of techniques. We also proved
quantitative convergence estimates in the case of smooth solutions and proposed the use of
interior point techniques for the efficient numerical solutions of the scheme. Several interesting
questions remain open on all the three aspects of the problem we considered:
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Table 2.2: Convergence test on the compression.

h′T N εW2 rate εφ rate ε∇φ rate ερ rate

Non-enriched scheme with linear reconstruction

0.250 1 1.653e-02 / 4.734e-03 / 6.903e-02 / 2.288e-01 /
0.125 3 1.421e-03 3.540 1.471e-03 1.687 3.301e-02 1.064 1.285e-01 0.832
0.062 7 2.978e-04 2.255 4.651e-04 1.661 1.729e-02 0.933 1.859e-01 -0.532
0.031 15 4.850e-04 -0.704 1.466e-04 1.666 1.038e-02 0.736 2.193e-01 -0.238
0.016 31 2.030e-04 1.257 4.491e-05 1.706 6.351e-03 0.709 2.378e-01 -0.117

Non-enriched scheme with harmonic reconstruction

0.250 1 2.380e-03 / 2.785e-03 / 3.954e-02 / 2.666e-01 /
0.125 3 8.112e-03 -1.769 1.403e-03 0.989 2.384e-02 0.730 7.503e-02 1.829
0.062 7 2.805e-03 1.532 4.851e-04 1.532 1.162e-02 1.037 7.046e-02 0.091
0.031 15 6.207e-04 2.176 1.242e-04 1.966 5.419e-03 1.100 4.919e-02 0.518
0.016 31 1.652e-04 1.910 3.574e-05 1.797 2.690e-03 1.011 3.393e-02 0.536

Enriched scheme with linear reconstruction

0.250 1 1.746e-02 / 4.130e-03 / 6.212e-02 / 2.333e-01 /
0.125 3 2.093e-03 3.060 9.486e-04 2.122 2.725e-02 1.189 7.694e-02 1.600
0.062 7 2.436e-04 3.103 2.827e-04 1.747 1.274e-02 1.097 5.805e-02 0.406
0.031 15 1.538e-04 0.664 7.698e-05 1.876 5.834e-03 1.127 3.551e-02 0.709
0.016 31 5.447e-05 1.497 1.932e-05 1.994 2.751e-03 1.085 2.325e-02 0.611

Enriched scheme with harmonic reconstruction

0.250 1 7.281e-03 / 3.069e-03 / 4.756e-02 / 2.606e-01 /
0.125 3 2.609e-03 1.480 7.574e-04 2.019 2.332e-02 1.028 5.786e-02 2.171
0.062 7 1.626e-03 0.682 2.984e-04 1.344 1.112e-02 1.069 4.280e-02 0.435
0.031 15 2.752e-04 2.563 7.551e-05 1.983 5.378e-03 1.048 2.409e-02 0.829
0.016 31 6.788e-05 2.020 2.166e-05 1.802 2.700e-03 0.994 1.537e-02 0.648

1. As for the issue of the numerical instabilities, the origin of these remains unclear, al-
though their appearance is not surprising since the optimal transport interpolation does
not imply any direct regularizing effect (e.g., the interpolation between two Dirac masses
stays a Dirac). Our approach (together with previous works on the L1 optimal transport
problem [56, 57]) points towards the existence of a hidden inf-sup type of condition, anal-
ogous to the well-known ones for linear saddle point problems, which guaranties some
regularity in the interpolation.

2. The convergence results we proposed are only partial as they require that the density
is strictly positive and also they do not apply to the density itself. Note, however, that
the positivity requirement is only needed for the approximation result on the continuity
equation in Proposition 2.8, and this could be avoided using for example the regular-
ization technique used by Lavenant in [79]. Note also that the same type of inf-sup
condition needed for stability could also be used to derive convergence rates for the
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Table 2.3: Convergence test for the non-enriched scheme with linear reconstruction on carte-
sian grids.

h′T N εW2 rate εφ rate ε∇φ rate ερ rate

Translation

0.283 1 6.324e-02 / 2.978e-02 / 2.396e-01 / 8.181e-01 /
0.141 3 1.392e-02 2.184 7.749e-03 1.942 1.207e-01 0.990 2.907e-01 1.493
0.071 7 2.753e-03 2.338 2.389e-03 1.698 5.520e-02 1.128 1.270e-01 1.195
0.035 15 4.681e-04 2.556 7.085e-04 1.754 2.294e-02 1.267 4.361e-02 1.542
0.018 31 6.781e-05 2.787 1.932e-04 1.875 8.750e-03 1.390 1.385e-02 1.655

Compression

0.283 1 1.080e-02 / 7.364e-03 / 9.636e-02 / 1.500e-01 /
0.141 3 1.956e-03 2.465 2.754e-03 1.419 5.187e-02 0.894 1.007e-01 0.575
0.071 7 2.283e-03 -0.224 1.005e-03 1.455 2.410e-02 1.106 3.968e-02 1.344
0.035 15 7.757e-04 1.558 2.874e-04 1.805 9.323e-03 1.370 1.115e-02 1.831
0.018 31 2.323e-04 1.740 7.498e-05 1.939 3.402e-03 1.454 3.135e-03 1.831

density.

3. The interior point technique we proposed for the solutions of the discrete system of
optimality conditions can be made even more effective by using iterative methods for
the solution of the linearized system. However, this is possible only once appropriate
preconditioners are available. The challenging nature of the problem, which is mostly
due to the interplay of the time and space discretization, implies that the design of such
preconditioners requires a dedicated study and must be adapted to the discrete problem
itself.
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Figure 2.5: Wasserstein interpolation between a cross distributed density and its rotation by
45 degrees. Time increases from left to right, from top to bottom.
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Chapter 3

A variational finite volume scheme
for Wasserstein gradient flows

This chapter is issued from:

Clément Cancès, Thomas Galloëut, and Gabriele Todeschi. A variational finite volume
scheme for wasserstein gradient flows. Numerische Mathematik, 146:437–480, 10 2020.

3.1 Introduction

Our leading objective is to develop numerical schemes for the solution of Wasserstein gradient
flows. Let us recall the form of the problem we want to tackle numerically. Given a convex
and compact subset Ω of Rd, a strictly convex and proper energy functional E : L1(Ω;R+)→
[0,+∞], and given an initial density ρ0 ∈ L1(Ω;R+) with finite energy, i.e. such that E(ρ0) <
+∞, we want to solve problems of the form:

∂t%−∇ · (ρ∇ δE
δρ [ρ]) = 0 in QT = [0, T )× Ω̊ ,

ρ∇ δE
δρ [ρ] · n = 0 on ΣT = [0, T )× ∂Ω ,

ρ(0, ·) = ρ0 in Ω .

(3.1)

As we explained in Chapter 1, a problem of this form can be interpreted as a gradient flow in
the Wasserstein space with respect to the energy E , i.e. a process that starting from ρ0 evolves
following the steepest decreasing direction of E . A typical example of problem entering this
framework is the linear Fokker-Planck equation [73]:

∂tρ = ∆ρ+∇ · (ρ∇V ) in QT , (3.2)

complemented with no-flux boundary conditions and an initial condition. In (3.2), V ∈
W 1,∞(Ω) denotes a Lipschitz continuous exterior potential. In this case, the energy functional
is

E(ρ) =

∫
Ω

[ρ log
ρ

e−V
− ρ+ e−V ]dx. (3.3)

The potential V is defined up to an additive constant, which can be adjusted so that the
densities e−V and ρ0 have the same mass.

63
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3.1.1 JKO semi-discretization

Problem (3.1) can of course be directly discretized and solved using one of the many tools
available nowadays for the numerical approximation of partial differential equations. The
development of energy diminishing numerical methods based on classical ODE solvers for
the march in time has been the purpose of many contributions in the recent past, see for
instance [22, 35, 36, 31, 119, 106, 38]. Nevertheless, the aforementioned methods disregard
the fact that the trajectory aims at optimizing the energy decay, in opposition to methods
based on the JKO scheme. We recall that this scheme can be thought as a generalization to
the space P(Ω) (the mass being defined by the initial data ρ0) equipped with the metric W2

of the backward Euler scheme. It defines recursively a sequence of measures (ρn)n∈N ⊂ P(Ω),
approximating the continuous curve, as

ρn ∈ arginf
ρ∈P(Ω)

1

2τ
W2

2 (ρ, ρn−1) + E(ρ) , (3.4)

starting from the initial condition ρ0. The parameter τ is the time discretization step. See
Section 1.2.1 for more details.

Lagrangian numerical methods appear to be very natural (especially in dimension one) to
approximate the Wasserstein distance and thus the solution to (3.4). This was already noticed
in [77], and motivated numerous contributions, see for instance [91, 30, 92, 74, 43, 40, 81].
In our approach, we rather consider an Eulerian method based on finite volumes for the
space discretization. The link between monotone finite volumes and optimal transportation
was simultaneously highlighted by Mielke [99] and Maas [88, 63, 50, 89, 64]. But these
works only focuses on the space discretization, whereas we are interested in the fully discrete
setting. Moreover, the approximation based on upstream mobility we propose in Section 3.2.2
does not enter their framework. Last but not least, let us mention the so-called ALG2-
JKO scheme [17, 33] where the optimization problem (3.4) is solved thanks to an augmented
Lagrangian iterative method. Our approach is close to the one of [17], with the goal to obtain
a faster numerical solver.

As we explained in Section 1.2.2, the primal-dual optimality conditions of problem (3.4)
amounts to the mean field game{

∂tρ−∇ · (ρ∇φ) = 0 ,

∂tφ− 1
2 |∇φ|

2 = 0 ,
in [tn−1, tn]× Ω, with

{
ρ(tn−1, ·) = ρn−1 ,

φ(tn, ·) = δE
δρ [ρ(tn, ·)] ,

in Ω , (3.5)

complemented with the no-flux boundary condition ∇φ · n = 0 on [tn−1, tn] × ∂Ω. The
optimal ρn of (3.4) is then equal to ρ(tn, ·). The approximation of the system (3.5) is a
natural strategy to approximate the solution to (3.1). Of course, its direct discretization would
in general lose the variational structure of problem (3.4), disregarding the advantage of this
semi-discretization in time. In [17, 41] two variational approaches have been proposed to solve
problem (3.4), which essentially lead to find solutions to the system of optimality conditions
(3.5) (more precisely to the non saturated version, see Section 1.2.2). Notice however that
in [17] the authors did not discretize directly the optimization problem, contrary to [41],
where the problem has been first discretized then optimized. These methods require a sub-
time stepping to solve system (3.5) on each interval [tn−1, tn], yielding a possibly important
computational cost. The avoidance of this sub-time stepping is the main motivation of the
time discretization we propose now.
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3.1.2 Implicit linearization of the Wasserstein distance and LJKO scheme

Let us introduce in the semi-discrete in time setting the time discretization to be used in the
fully discrete setting later on. The following ansatz is at the basis of our approach: when τ is
small, ρn is close to ρn−1. Then owing to [120, Section 7.6] (see also [110]), the Wasserstein
distance between two densities ρ and µ of P(Ω) is close to some weighted H−1 distance,
namely

‖ρ− µ‖Ḣ−1
ρ

=W2(ρ, µ) + o(W2(ρ, µ)), ∀ρ, µ ∈ P(Ω) . (3.6)

In the above formula, we denoted by

‖h‖Ḣ−1
ρ

=

{
sup
ϕ

∫
Ω
hϕdx

∣∣∣∣ ‖ϕ‖Ḣ1
ρ
≤ 1

}
, with ‖ϕ‖Ḣ1

ρ
=

(∫
Ω
ρ|∇ϕ|2dx

)1/2

, (3.7)

so that ‖ρ− µ‖Ḣ−1
ρ

= ‖ψ‖Ḣ1
ρ

with ψ solution to{
ρ− µ−∇ · (ρ∇ψ) = 0 in Ω ,

∇ψ · n = 0 on ∂Ω .
(3.8)

Indeed, in view of (3.7)-(3.8), there holds∫
Ω

(ρ− µ)ϕdx = −
∫

Ω
∇ · (ρ∇ψ)ϕdx =

∫
Ω
ρ∇ψ · ∇ϕdx ≤ ‖ψ‖Ḣ1

ρ
‖ϕ‖Ḣ1

ρ
,

with equality if ϕ = ψ/‖ψ‖Ḣ1
ρ
. Equation (3.8) can be thought as a linearization of the

Monge-Ampère equation (1.7) ([120, Exercise 4.1]).

As the JKO scheme is an order one discretization in time of the continuous flow, it is
reasonable to approximate the computation of the complex Wasserstein distance. In view of
(3.6), a natural idea is to replace it by the weighted Ḣ−1

ρ norm in (3.4), leading to what we
call the implicitly linearized JKO (or LJKO) scheme:

ρn ∈ argmin
ρ∈P(Ω)

1

2τ

∥∥ρ− ρn−1
∥∥2

Ḣ−1
ρ (Ω)

+ E(ρ) . (3.9)

We will show numerically that this approximation preserves the order one accuracy in time
(Section 3.4). We stress that, as the Ḣ−1

ρ norm is changing at every step n, scheme (3.9) cannot
be considered as a minimizing movement in a metric space. The choice of an implicit weight
ρ in (3.9) appears to be particularly important when {ρn−1 = 0} has a non-empty interior
set, which cannot be properly invaded by ρn if one chooses the explicit (but computationally
cheaper) weight ρn−1 as in [102]. Our time discretization is close to the one that was proposed
very recently in [84] where the introduction of inner time stepping was also avoided. In [84], the
authors introduce a regularization term based on Fisher information, which mainly amounts
to stabilize the scheme thanks to some additional non-degenerate diffusion. In our approach,
we manage to avoid this additional stabilization term by taking advantage of the monotonicity
of the involved operators.

At each step n ≥ 1, (3.9) can be formulated as a constrained optimization problem. To
highlight its convexity, we perform the change of variables (ρ, ψ) 7→ (ρ,m = −ρ∇ψ), in
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analogy with the change of variables we performed in Section 1.2.2. Recalling the definition
of the density of kinetic energy function B : R× Rd → [0,+∞],

B(p,Q) :=


|Q|2
2p if p > 0 ,

0 if p = 0, Q = 0 ,

+∞ else ,

(3.10)

we can rewrite step n as:

inf
(ρ,m)

1

τ

∫
Ω
B(ρ,m)dx+ E(ρ), subject to:

{
ρ− ρn−1 +∇ ·m = 0 in Ω ,

m · n = 0 on ∂Ω .
(3.11)

Incorporating the constraint in the above formulation yields the following inf-sup problem:

inf
(ρ,m)

sup
φ

1

τ

∫
Ω
B(ρ,m)dx−

∫
Ω

(ρ− ρn−1)φ dx+

∫
Ω
m · ∇φ dx+ E(ρ) , (3.12)

the supremum with respect to φ being +∞ unless the constraint is satisfied. Problem (3.12)
is strictly convex in (ρ,m) and concave (since linear) in φ. Exploiting Fenchel-Rockafellar
duality theory it is possible to show that strong duality holds, so that (3.12) is equivalent to
its dual problem where the inf and the sup have been swapped. Optimizing with respect to
m yields the optimality condition m = −τρ∇φ, hence the problem reduces to

sup
φ

∫
Ω
ρn−1φ dx+ inf

ρ

∫
Ω

(−φ− τ

2
|∇φ|2)ρdx+ E(ρ) . (3.13)

The problem is now strictly convex in ρ and concave in φ. Optimizing with respect to ρ leads
to the optimality condition

φn +
τ

2
|∇φn|2 ≤ δE

δρ
[ρn] , (3.14)

with equality on {ρn > 0}. In the above formula, φn denotes the optimal φ realizing the sup
in (3.13). Similarly to what has been done in Section 1.2.2 for the JKO scheme, it is possible
to show again that saturating inequality (3.14) on {ρn = 0} is optimal since the mapping
f 7→ φ solution to φ + τ

2 |∇φ|
2 = f is monotone. Finally, the optimality conditions for the

LJKO problem (3.9) write 
ρn − ρn−1

τ
−∇ · (ρn∇φn) = 0 ,

φn +
τ

2
|∇φn|2 =

δE
δρ

[ρn] ,
(3.15)

set on Ω, complemented with the homogeneous Neumann boundary condition ∇φn ·n = 0 on
∂Ω. We can interpret (3.15) as the one step resolvent of the mean-field game (3.5). Both the
forward in time continuity equation and the backward in time Hamilton-Jacobi equation are
discretized thanks to one step of backward Euler scheme.

Remark 3.1. From the computations we just showed, our approximation of the Wasserstein
distance in problem (3.11) coincides with a right endpoint approximation of the kinetic energy
on the whole interval [tn−1, tn] (which is the rescaled interval [0, 1] in the definition of the
dynamical optimal transport problem (1.19)-(1.20)) and a single Euler step for the continuity
equation. Notice that differently from the computation of geodesics, the final density is not
fixed here but to be chosen, which is the reason why this operation is not restrictive in this
case. See Section 2.3 for more details.
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3.1.3 Goal and organisation of the chapter

As already noted, most of the numerical methods based on the backward Euler scheme dis-
regard the optimal character of the trajectory t 7→ %(t) of the exact solution to (3.1). Rather
than discretizing directly the equation (3.1), which can be thought as the Euler-Lagrange
equation for the steepest descent of the energy, we propose to first discretize with respect
to space the functional appearing in the optimization problem (3.9), and then to optimize.
The corresponding Euler-Lagrange equations will then encode the optimality of the trajec-
tory. The choice of the LJKO scheme (3.9), rather than the classical JKO scheme (3.4), is
motivated by the fact that solving (3.15) is computationally affordable. Indeed, it merely de-
mands to approximate two functions, ρn and φn, rather than time depending trajectories as
for the JKO scheme (3.5). This allows in particular to avoid inner time stepping as in [17, 41],
making our approach much more tractable to solve complex problems.

Two-Point Flux Approximation (TPFA) finite volumes are a natural solution for the space
discretization. They are naturally locally conservative thus well-suited to approximate con-
servation laws. Moreover, they naturally transpose to the discrete setting the monotonicity
properties of the continuous operators. Monotonicity was crucial in the derivation of the
optimality conditions (3.15), as it will also be the case in the fully discrete framework later
on. This led us to use upstream mobilities in the definition of the discrete counterpart of
the squared Ḣ−1

ρ norm. The system (3.15) thus admits a discrete counterpart (3.30). The
derivation of the fully discrete finite volume scheme based on the LJKO time discretization
is performed in Section 3.2, where we also establish the well-posedness of the scheme, as well
as the preservation at the discrete level of fundamental properties of the continuous model,
namely the non-negativity of the densities and the decay of the energy along time. In Sec-
tion 3.3, we show that our scheme converges in the case of the Fokker-Planck equation (3.2)
under the assumption that the initial density is bounded from below by a positive constant.
Even though we do not treat problem (3.1) in its full generality, this result shows the consis-
tency of the scheme. Finally, Section 3.4 is devoted to numerical results, where our scheme is
tested on several problems, including systems of equations of the type of (3.1).

3.2 A variational Finite Volume scheme

The goal of this section is to define the fully discrete scheme to solve (3.1), and to exhibit some
important properties it has. We will rely on the notion of admissible mesh (T ,Σ, (xK)K∈T ),
Definition 1.1, we gave in Section 1.3 for TPFA finite volumes, along with the notation
introduced therein. We recall that the discrete space RT , the space of discrete quantities
defined on the control volumes of the partitioning1, is equipped with the scalar product

〈h,φ〉T =
∑
K∈T

hKφKmK , ∀h = (hK)K∈T , φ = (φK)K∈T ,

which mimics the usual scalar product on L2(Ω).

1We won’t consider here a discretization based on nested meshes. The potential and the density variables
will be discretized in the same space, since we did not experience any stability issue in this case. Indeed, the
Wasserstein distance is discretized in time with a single step and the (final) density is regularized thanks to
the energy functional E .
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3.2.1 Upstream weighted dissipation potentials

Since the LJKO time discretization presented in Section 3.1.2 relies on weighted Ḣ1
ρ and Ḣ−1

ρ

norms, we introduce the discrete counterparts to be used in the sequel. As it will be explained
in what follows, the upwinding yields problems to introduce discrete counterparts to the
norms. To bypass this difficulty, we adopt a formalism based on dissipation potentials inspired
from the one of generalized gradient flows introduced by Mielke in [99]. This framework was
used for instance to study the convergence of the semi-discrete in space squareroot finite
volume approximation of the Fokker-Planck equation, see [67].

Let ρ = (ρK)K∈T ∈ RT+, and let φ = (φK)K∈T ∈ RT , then we define the upstream
weighted discrete counterpart of 1

2‖φ‖
2
Ḣ1
ρ

by

A∗T (ρ;φ) =
1

2

∑
σ∈Σ

aσρσ (φK − φL)2 ≥ 0 , (3.16)

where ρσ denotes the upwind value of ρ on σ ∈ Σ:

ρσ =

{
ρK if φK > φL ,

ρL if φK < φL ,
∀σ = K|L ∈ Σ . (3.17)

Because of the upwind choice of the mobility (3.17), the functional (3.16) is not symmetric,
i.e., A∗T (ρ;φ) 6= A∗T (ρ;−φ) in general, which prohibits to define a semi-norm from A∗T (ρ; ·).
But one easily checks that φ 7→ A∗T (ρ,φ) is convex, continuous thus lower semi-continuous
(l.s.c.) and proper.

Let us now turn to the definition of the discrete counterpart of 1
2‖ · ‖

2
Ḣ−1
ρ

. To this end, we

recall the definition of the space of conservative fluxes FT ⊂ R2Σ we gave in Section 1.3.3. An
element F of FT is made of two outward fluxes FK,σ, FL,σ for each σ = K|L ∈ Σ. We impose
the conservativity across each internal face

FK,σ + FL,σ = 0 , ∀σ = K|L ∈ Σ . (3.18)

In what follows, we denote by Fσ = |FK,σ| = |FL,σ|. There are no fluxes across the boundary
faces. The space FT is then defined as

FT =
{
F = (FK,σ, FL,σ)σ=K|L∈Σ ∈ R2Σ

∣∣∣ (3.18) holds
}
.

Now, we define the subspace

RT0 =
{
h = (hK)K∈T ∈ RT

∣∣ 〈h,1〉T = 0
}

and

AT (ρ;h) = inf
F

∑
σ∈Σ

B(ρσ, Fσ) dσmσ ≥ 0 , ∀h ∈ RT0 , (3.19)

where the minimization over F is restricted to the linear subspace of FT such that

hKmK =
∑
σ∈ΣK

mσFK,σ, ∀K ∈ T . (3.20)
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In (3.19), ρσ denotes the upwind value with respect to F , i.e.,

ρσ =

{
ρK if FK,σ > 0 ,

ρL if FL,σ > 0 ,
∀σ = K|L ∈ Σ . (3.21)

Summing (3.20) over K ∈ T and using the conservativity across the edges (3.18), one notices
that there is no F ∈ FT satisfying (3.20) unless h ∈ RT0 . But when h ∈ RT0 , the minimization
set in (3.19) is never empty. Note that AT (ρ;h) may take infinite values when ρ vanishes on
some cells, for instance AT (ρ;h) = +∞ if hK > 0 and ρK = 0 for some K ∈ T .

Formula (3.19) deserves some comments. This sum is built to approximate
∫

Ω
|m|2
2ρ dx. The

flux Fσ approximates |m · nσ|, and thus encodes the information on m only in one direction
(normal to the face σ) over d. But on the other hand, the volume dσmσ is equal to dm∆σ

which allows to hope that the sum is a consistent approximation of the integral. This remark
has a strong link with the notion of inflated gradients introduced in [44, 55]. The convergence
proof carried out in Section 3.3 somehow shows the non-obvious consistency of this formula.

At the continuous level, the norms ‖ · ‖Ḣ1
ρ

and ‖ · ‖Ḣ−1
ρ

are in duality. This property is

transposed to the discrete level in the following sense.

Lemma 3.2. Given ρ ≥ 0, the functionals h 7→ AT (ρ;h) and φ 7→ A∗T (ρ;φ) are one another
Legendre transforms in the sense that

AT (ρ;h) = sup
φ
〈h,φ〉T −A∗T (ρ;φ) , ∀h ∈ RT0 . (3.22)

In particular, both are proper convex l.s.c. functionals. Moreover, if AT (ρ;h) is finite, then
there exists a discrete Kantorovitch potential φ solving

hKmK =
∑
σ∈Σ

aσρσ(φK − φL) , ∀K ∈ T , (3.23)

such that

AT (ρ;h) = A∗T (ρ;φ) =
1

2
〈h,φ〉T . (3.24)

Proof. Let ρ ≥ 0 be fixed. Incorporating the constraint (3.20) in (3.19), and using the
definition of ρσ and the twice conservativity constraint (3.18), we obtain the saddle point
primal problem

AT (ρ;h) = inf
F

sup
φ

∑
σ∈Σ

[
B(ρK , F

+
K,σ) +B(ρL, F

−
K,σ)

]
mσdσ

+
∑
K∈T

hKφKmK −
∑
σ∈Σ

mσFK,σ(φK − φL).

The functional in the right-hand side is convex and coercive with respect to F and linear with
respect to φ, so that strong duality holds. We can exchange the sup and the inf in the above
formula to obtain the dual problem, and we minimize first with respect to F , leading to 2

FK,σ = ρσ

(φK − φL
dσ

)
, ∀σ ∈ Σ .

2Notice that F has opposite sign with respect to the gradient of φ.
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Substituting FK,σ by ρσ(φK−φLdσ
) in the dual problem leads to (3.22), while the constraint (3.20)

turns to (3.23). The fact that A∗T (ρ, ·) is also the Legendre transform of AT (ρ, ·) follows from
the fact that it is convex l.s.c., hence equal to its relaxation.

When AT (ρ;h) is finite, then the supremum in (3.22) is achieved, ensuring the existence
of the corresponding discrete Kantorovitch potentials φ. Finally, multiplying (3.23) by the
optimal φK and summing over K ∈ T yields 〈h,φ〉T = 2A∗T (ρ;φ). Substituting this relation
in (3.22) shows the relation AT (ρ;h) = A∗T (ρ;φ).

Our next lemma can be seen as an adaptation to our setting of a well known properties
of optimal transportation, namely ρ 7→ 1

2W
2
2 (ρ, µ) is convex, which is key in the study of

Wasserstein gradient flows.

Lemma 3.3. Let µ ∈ RT+, the function ρ 7→ AT (ρ;µ − ρ) is proper and convex on (µ +
RT0 ) ∩ RT+.

Proof. The function ρ 7→ AT (ρ;µ − ρ) is proper since it is equal to 0 at ρ = µ. Then it
follows from (3.22) that

AT (ρ;µ− ρ) = sup
φ
〈µ− ρ,φ〉T −A∗T (ρ;φ) . (3.25)

Since ρ 7→ A∗T (ρ;φ) is linear, AT (ρ;µ − ρ) is defined as the supremum of linear functions,
hence it is convex.

3.2.2 A variational upstream mobility finite volume scheme

Given ρ0 ∈ RT+, the space PT , which is the discrete counterpart of P(Ω), is defined by

PT =
{
ρ ∈ RT+

∣∣ 〈ρ,1〉T = 〈ρ0,1〉T
}

= (ρ0 + RT0 ) ∩ RT+ .

It is compact. The energy E is discretized into a strictly convex functional ET ∈ C1(RT+;R+)
that we do not specify yet. We refer to Sections 3.3 and 3.4 for explicit examples.

We have introduced all the necessary material to introduce our numerical scheme, which
combines upstream weighted finite volumes for the space discretization and the LJKO time
discretization:

ρn ∈ arginf
ρ∈PT

1

τ
AT (ρ;ρn−1 − ρ) + ET (ρ) , n ≥ 1 . (3.26)

A further characterization of the scheme is needed for its practical implementation, but the
condensed expression (3.26) already provides crucial informations gathered in the following
theorem. Note in particular that our scheme automatically preserves the mass and the posi-
tivity since the solutions (ρn)n≥1 belong to PT .

Theorem 3.4. For all n ≥ 1, there exists a unique solution ρn ∈ PT to (3.26). Moreover,
energy is dissipated along the time steps. More precisely,

ET (ρn) ≤ ET (ρn) +
1

τ
AT (ρn;ρn−1 − ρn) ≤ ET (ρn−1) , ∀n ≥ 1 . (3.27)
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Proof. The functional ρ 7→ 1
τAT (ρ;ρn−1 − ρ) + ET (ρ) is lower semi-continuous and strictly

convex on the compact set PT in view of Lemma 3.3 and of the assumptions on ET . Moreover,
it is proper since ρn−1 belongs to its domain. Therefore, it admits a unique minimum on PT .
The energy / energy dissipation estimate (3.27) is obtained by choosing ρ = ρn−1 as a
competitor in (3.26).

In view of (3.25), and after rescaling the dual variable φ← φ
τ , solving (3.26) amounts to

solve the saddle point problem

inf
ρ≥0

sup
φ

〈
ρn−1 − ρ,φ

〉
T −

τ

2

∑
σ∈Σ

aσρσ(φK − φL)2 + ET (ρ) . (3.28)

which is equivalent to its dual problem

sup
φ

inf
ρ≥0

〈
ρn−1 − ρ,φ

〉
T −

τ

2

∑
σ∈Σ

aσρσ(φK − φL)2 + ET (ρ) . (3.29)

Our strategy for the practical computation of the solution to (3.26) is to solve the system
corresponding to the optimality conditions of (3.29). So far, we did not take advantage of the
upwind choice of the mobility (3.17) (we only used the linearity of (ρ,φ) 7→ (ρσ)σ∈Σ in the
proofs of Lemmas 3.2 and 3.3, which also holds true for a centered choice of the mobilities).
The upwinding will be key in the proof of the following theorem, which, roughly speaking,
states that there is no need of a Lagrange multiplier for the constraint ρ ≥ 0.

Theorem 3.5. The unique solution (φn,ρn) to system
(ρnK − ρn−1

K )mK + τ
∑
σ∈ΣK

aσρ
n
σ(φnK − φnL) = 0 ,

φnKmK +
τ

2

∑
σ∈ΣK

aσ
(
(φnK − φnL)+

)2
=
∂ET
∂ρK

(ρn) ,
∀K ∈ T , (3.30)

where ρnσ denotes the upwind value, i.e.,

ρnσ =

{
ρnK if φnK > φnL ,

ρnL if φnK < φnL ,
∀σ = K|L ∈ Σ ,

is a saddle point of (3.29).

System (3.30) is the discrete counterpart of (3.15), whose derivation relied on the mono-
tonicity of the inverse of the operator φ 7→ φ + τ

2 |∇φ|
2. Before proving Theorem 3.5, let us

show that the space discretization preserves this property at the discrete level. To this end,
we introduce the functional H = (HK)K ∈ C1(RT ;RT ) defined by

HK(φ) := φK +
τ

2mK

∑
σ∈ΣK

aσ
(
(φK − φL)+

)2
, ∀K ∈ T .
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Lemma 3.6. Given f ∈ RT , there exists a unique solution to H(φ) = f , and it satisfies

minf ≤ φ ≤ maxf . (3.31)

Moreover, let φ, φ̃ be the solutions corresponding to f and f̃ respectively, then

f ≥ f̃ =⇒ φ ≥ φ̃ . (3.32)

Proof. Given f ≥ f̃ and φ, φ̃ corresponding solutions, let K∗ be the cell such that

φK∗ − φ̃K∗ = min
K∈T

(
φK − φ̃K

)
.

Then, for all the neighboring cells L of K∗, it holds φK∗ − φ̃K∗ ≤ φL − φ̃L and therefore
φK∗ − φL ≤ φ̃K∗ − φ̃L which implies

τ

2mK

∑
σ∈ΣK∗

aσ
(
(φK∗ − φL)+

)2 ≤ τ

2mK

∑
σ∈ΣK∗

aσ

(
(φ̃K∗ − φ̃L)+

)2
. (3.33)

Recall f ≥ f̃ , so HK∗(φ) ≥ HK∗(φ̃) together with (3.33) yield φK∗ ≥ φ̃K∗ . As in K∗

the difference φK − φ̃K is minimal, we obtain φK ≥ φ̃K for all K ∈ T . The uniqueness
of the solution φ of H(φ) = f follows directly. The maximum principle (3.31) is also a
straightforward consequence of (3.32) as one can compare φ to (minf)1 and (maxf)1 which
are fixed points of H. Finally, existence follows from Leray-Schauder fixed-point theorem [83]
as the bounds (3.31) are uniform whatever τ ≥ 0.

With Lemma 3.6 at hand, we can now prove Theorem 3.5.

Proof of Theorem 3.5. Uniqueness of the solution ρn to (3.26) was already proved in Theo-
rem 3.4. Owing to (3.27), AT (ρn;ρn−1 − ρn) is finite. So Lemma 3.2 ensures the existence

of a discrete Kantorovitch potential φ̃
n

satisfying (after a suitable rescaling by τ−1)

(ρnK − ρn−1
K )mK + τ

∑
σ∈ΣK

aσρ
n
σ(φ̃nK − φ̃nL) = 0 , ∀K ∈ T . (3.34)

The above condition is the optimality condition with respect to φ in (3.29). To compute
the optimality condition with respect to ρ in (3.29), let us rewrite the objective using the
definition of ρσ and H:〈

ρn−1 − ρ,φ
〉
T −

τ

2

∑
σ∈Σ

aσρσ(φK − φL)2 + ET (ρ) =

= ET (ρ) +
〈
ρn−1 − ρ,φ

〉
T −

τ

2

∑
σ∈Σ

[
aσρK

(
(φK − φL)+

)2
+ aσρL

(
(φL − φK)+

)2]
= ET (ρ) +

〈
ρn−1 − ρ,φ

〉
T −

τ

2

∑
K

∑
σ∈ΣK

aσρK
(
(φK − φL)+

)2
= ET (ρ) +

〈
ρn−1,φ

〉
T − 〈ρ,φ〉T −

∑
K

mKρK

[ τ

2mK

∑
σ∈ΣK

aσ
(
(φK − φL)+

)2 ]
= ET (ρ) +

〈
ρn−1,φ

〉
T − 〈ρ,H(φ)〉T .
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Thus (3.29) rewrites

sup
φ

inf
ρ≥0
ET (ρ) +

〈
ρn−1,φ

〉
T − 〈ρ,H(φ)〉T . (3.35)

Denote by
Zn = {K ∈ T | ρnK = 0} , Pn = {K ∈ T | ρnK > 0} = (Zn)c ,

Using (3.35) the optimality conditions with respect to ρ of (3.29) thus read

φ̃nKmK +
τ

2

∑
σ∈Σ0,K

aσ
(
(φ̃nK − φ̃nL)+

)2
=
∂ET
∂ρK

(ρn) , ∀K ∈ Pn (3.36)

and

φ̃nKmK +
τ

2

∑
σ∈Σ0,K

aσ
(
(φ̃nK − φ̃nL)+

)2 ≤ ∂ET
∂ρK

(ρn) , ∀K ∈ Zn . (3.37)

By definition, (φ̃
n
,ρn) is a saddle point of (3.29), so equivalently of (3.35) and by strong

duality it is also a saddle point of

inf
ρ≥0

sup
φ
ET (ρ) +

〈
ρn−1,φ

〉
T − 〈ρ,H(φ)〉T . (3.38)

In particular φ̃
n

is optimal in

sup
φ
ET (ρn) +

〈
ρn−1,φ

〉
T − 〈ρ

n,H(φ)〉T . (3.39)

To prove Theorem 3.5, we have to prove that, given ρn, we can saturate the inequality in both
(3.36) and (3.37) while preserving the optimality in (3.39). Lemma 3.6 gives the existence of
a solution φn ∈ RT to

H(φn) =

(
1

mK

∂ET
∂ρK

(ρn)

)
K∈T

. (3.40)

Note that (3.36) implies

HK(φn) = HK(φ̃
n
) , ∀K ∈ Pn,

so
〈ρn,H(φn)〉T =

〈
ρn,H(φ̃

n
)
〉
T
. (3.41)

The combination of (3.36) and (3.37) is exactly H(φn) ≥ H(φ̃
n
), thus Lemma 3.6 gives

φn ≥ φ̃
n
. Consequently, 〈

ρn−1,φn
〉
T ≥

〈
ρn−1, φ̃

n
〉
T

(3.42)

since ρn−1 ≥ 0. Incorporating (3.41) and (3.42) in (3.39) shows that φn is a better competitor

than φ̃
n
, and therefore again optimal. Thanks to the convexity of ET and (3.40), it also holds

ET (ρn) +
〈
ρn−1,φn

〉
T − 〈ρ

n,H(φn)〉T ≤ ET (ρ) +
〈
ρn−1,φn

〉
T − 〈ρ,H(φn)〉T

for every ρ, which means that (φn,ρn) is again a saddle point of (3.29) and satisfies (3.30).
Finally, owing to Lemma 3.6, the solution φn to (3.40) is unique, concluding the proof of
Theorem 3.5.



74 CHAPTER 3. A VARIATIONAL FINITE VOLUME SCHEME

3.2.3 Comparison with the classical backward Euler discretization

The scheme (3.26) is based on a “first discretize then optimize” approach. We have built a
discrete counterpart of 1

2W
2
2 and a discrete energy ET , then the discrete dynamics is chosen

in an optimal way by (3.26). In opposition, the continuous equation (3.1) can be thought as
the Euler-Lagrange optimality condition for the steepest descent of the energy. A classical
approach to approximate the optimal dynamics is to discretize directly (3.1), leading to what
we call a “first optimize then discretize” approach. It is classical for the semi-discretization in
time of (3.1) to use a backward Euler scheme. If one combines this technique with upstream
weighted finite volumes, we obtain the following fully discrete scheme:

(ρ̌nK−ρn−1
K )mK+τ

∑
σ∈ΣK

aσρ̌
n
σ(φ̌nK−φ̌nL) = 0 , with φ̌nK =

1

mK

∂ET
∂ρK

(ρ̌n) , ∀K ∈ T . (3.43)

This scheme has no clear variational structure in the sense that, to our knowledge, ρ̌n is no
longer the solution to an optimization problem. However, it shares some common features
with our scheme (3.26): it is mass and positivity preserving as well as energy diminishing.

Proposition 3.7. Given ρn−1 ∈ PT , there exists at least one solution (ρ̌n, φ̌n) ∈ PT ×RT to
system (3.43), which satisfies

ET (ρ̌n) +
1

τ
AT (ρ̌n;ρn−1 − ρ̌n) + τA∗T (ρ̌n; φ̌n) ≤ ET (ρn−1) . (3.44)

Proof. Summing (3.43) over K ∈ T provides directly the conservation of mass, i.e., 〈ρ̌n,1〉T =
〈ρn−1,1〉T . Assume for contradiction that Kn = {K ∈ T | ρ̌nK < 0} 6= ∅, then choose K? ∈ Kn
such that φ̌nK? ≥ φ̌nK for all K ∈ Kn. Then it follows from the upwind choice of the mobility
in (3.43) that ∑

σ∈ΣK?

aσρ̌
n
σ(φ̌nK? − φ̌nL) ≤ 0 ,

so that ρ̌nK? ≥ ρn−1
K? ≥ 0, showing a contradiction. Therefore, Kn = ∅ and ρ̌n ≥ 0. These

two a priori estimates (mass and positivity preservation) are uniform with respect to τ ≥ 0,
thus they are sufficient to prove the existence of a solution (ρ̌n, φ̌n) to (3.43) thanks to a
topological degree argument [83].

Let us now turn to the derivation of the energy / energy dissipation inequality (3.44).
Multiplying (3.43) by φ̌nK and summing over K ∈ T provides

〈ρ̌n − ρn−1, φ̌n〉T + 2τA∗T (ρ̌n; φ̌n) = 0 .

The definition of φ̌n and the convexity of ET yield 〈ρ̌n − ρn−1, φ̌n〉T ≥ ET (ρ̌n) − ET (ρn−1).
Thus to prove (3.44), it remains to check that

1

τ
AT (ρ̌n;ρn−1 − ρ̌n) = τA∗T (ρ̌n; φ̌n) =

1

τ
A∗T (ρ̌n; τ φ̌n) . (3.45)

In view of (3.23), τ φ̌n is a discrete Kantorovitch potential sending ρn−1 on ρ̌n for the mobility
corresponding to ρ̌n. Therefore (3.45) holds as a consequence of (3.24).

Next proposition provides a finer energy / energy dissipation estimate than (3.27), which
can be thought as discrete counterpart to the energy / energy dissipation inequality (EDI)
which is a characterization of generalized gradient flows [3, 99].



3.3. CONVERGENCE IN THE FOKKER-PLANCK CASE 75

Proposition 3.8. Given ρn−1 ∈ PT , let ρn be the unique solution to (3.26) and let ρ̌n be a
solution to (3.43), then

ET (ρn) + τA∗T (ρn;φn) + τA∗T
(
ρ̌n; φ̌n

)
≤ ET (ρn−1) ,

where φ̌n is defined by mK φ̌
n
K = ∂ET

∂ρK
(ρ̌n) for all K ∈ T .

Proof. Since ρ̌n belongs to PT , it is an admissible competitor for (3.26), thus

ET (ρn) +
1

τ
AT (ρn;ρn−1 − ρn) ≤ ET (ρ̌n) +

1

τ
AT (ρ̌n;ρn−1 − ρ̌n) . (3.46)

Combining this with (3.44) and bearing in mind that 1
τAT (ρn;ρn−1 − ρn) = τA∗T (ρn;φn)

thanks to (3.24), we obtain the desired inequality (3.46).

3.3 Convergence in the Fokker-Planck case

In this section, we investigate the limit of the scheme when the time step τ and the size of
the mesh hT tend to 0 in the specific case of the Fokker-Planck equation (3.2). We recall that
the size of the mesh is defined by hT = maxK∈T hK with hK = diam(K). To this end, we
consider a sequence

(
Tm,Σm, (xK)K∈Tm

)
m≥1

of admissible discretizations of Ω in the sense of

Definition 1.1 and a sequence (τm)m≥1 of time steps such that limm→∞ τm = limm→∞ hTm = 0.
We also make the further assumptions on the mesh sequence: there exists ζ > 0 such that,
for all m ≥ 1,

hK ≤ ζdσ ≤ ζ2hK , ∀σ ∈ ΣK , ∀K ∈ Tm , (3.47a)

dist(xK ,K) ≤ ζhK , ∀K ∈ Tm , (3.47b)

and ∑
σ∈σK

m∆σ ≤ ζmK , ∀K ∈ Tm . (3.47c)

Let T > 0 be an arbitrary finite time horizon, then we assume for the sake of simplicity
that τm = T/Nm for some integer Nm tending to +∞ with m. For the ease of reading, we
remove the subscript m ≥ 1 when it appears to be unnecessary for understanding.

Given V ∈ C 2(Ω), we define the discrete counterpart of the energy (3.3) by

ET (ρ) =
∑
K∈T

mK

[
ρK log

ρK
e−VK

− ρK + e−VK
]
, ∀ρ ∈ RT+,

where VK = V (xK) for all K ∈ T . In view of the above formula, there holds

∂ET
∂ρK

(ρ) = mK(log(ρK) + VK) , ∀K ∈ T . (3.48)

Given an initial condition %0 ∈ P(Ω) with positive mass, i.e.
∫

Ω %
0dx > 0, and such that

E(%0) <∞, it is discretized into ρ0 =
(
ρ0
K

)
K∈T defined by

ρ0
K =

1

mK

∫
K
%0dx ≥ 0 , ∀K ∈ T . (3.49)



76 CHAPTER 3. A VARIATIONAL FINITE VOLUME SCHEME

Note that the energy ET is not in C 1(RT+) since its gradient blows up on ∂RT+. However, the
functional ET is continuous and strictly convex on RT+, hence the scheme (3.26) still admits
a unique solution ρn for all n ≥ 1 thanks to Theorem 3.4, since its proof does not use the
differentiability of the energy. Thanks to the conservativity of the scheme and definition (3.49)
of ρ0, one has

〈ρn,1〉T = 〈ρ0 ,1〉T =

∫
Ω
%0dx > 0 , ∀n ≥ 1.

Let us show that ρn > 0 for all n ≥ 1. To this end, we proceed as in [115, Lemma 8.6].

Lemma 3.9. Assume that %0 has positive mass, then the iterated solutions (ρn)n≥1 to scheme (3.26)
satisfy ρn > 0 for all n ≥ 1. Moreover, there exists a unique sequence (φn)≥1 of discrete Kan-
torovitch potentials such that the following optimality conditions are satisfied for all K ∈ T
and all n ≥ 1:

(ρnK − ρn−1
K )mK + τ

∑
σ∈Σ

aσρ
n
σ(φnK − φnL) = 0 , (3.50)

φnK +
τ

2mK

∑
σ=K|L∈ΣK

aσ
(
(φnK − φnL)+

)2
= log(ρnK) + VK , (3.51)

Proof. Define ρ = 1
|Ω|
∫

Ω %
0dx and ρ = ρ1 ∈ PT , and by ρnε =

(
ρnK,ε

)
K∈T

= ερ+(1−ε)ρn ∈ PT
for some arbitrary ε ∈ (0, 1). Since ρn is optimal in (3.26), there holds∑

K∈T
mK

[
ρnK log ρnK − ρnK,ε log ρnK,ε

]
≤
∑
K∈T

mK

(
ρnK,ε − ρnK

)
VK

+AT (ρnε ;ρn−1 − ρnε )−AT (ρn;ρn−1 − ρn). (3.52)

The convexity of ρ 7→ AT (ρ,ρn−1 − ρ) implies that

AT (ρnε ;ρn−1 − ρnε ) ≤ εAT (ρ;ρn−1 − ρ) + (1− ε)AT (ρn;ρn−1 − ρn) ,

while the boundedness of V provides∑
K∈T

mK

(
ρnK,ε − ρnK

)
VK ≤ ε‖V ‖L∞(Ω)‖%0‖L1(Ω) .

Therefore, the right-hand side in (3.52) can be overestimated by∑
K∈T

mK

[
ρnK log ρnK − ρnK,ε log ρnK,ε

]
≤ Cε

for some C depending on ρn,ρn−1 and V but not on ε. Setting Zn = {K ∈ T | ρnK = 0} and
Pn = {K ∈ T | ρnK > 0} = (Zn)c, we have∑

K∈Zn
mK

[
ρnK log ρnK − ρnK,ε log ρnK,ε

]
= ε

∑
K∈Zn

mKρ log ερ ,

and, thanks to the convexity of ρ 7→ ρ log ρ and to the monotonicity of ρ 7→ log ρ,∑
K∈Pn

mK

[
ρnK log ρnK − ρnK,ε log ρnK,ε

]
≥ ε

∑
K∈Pn

mK(ρnK − ρ)(1 + log(ρnK,ε))

≥ ε
∑
K∈Pn

mK(ρnK − ρ)(1 + log(ρ)) ≥ −Cε .
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Then dividing by ε and letting ε tend to 0, we obtain that

limsup
ε→0

∑
K∈Zn

mKρ log ερ ≤ C ,

which is only possible if Zn = ∅, i.e., ρn > 0. This implies that ET is differentiable at ρn,
hence the optimality conditions (3.30) hold, which rewrites as (3.51)–(3.50) thanks to (3.48).
The uniqueness of the discrete Kantorovitch potential φn for all n ≥ 1 is then provided by
Theorem 3.5.

Lemma 3.9 allows to define two functions ρT ,τ and φT ,τ by setting

ρT ,τ (t,x) = ρnK , φT ,τ (t,x) = φnK if (t,x) ∈ (tn−1, tn]×K .

It follows from the conservativity of the scheme and definition (3.49) of ρ0 that∫
Ω
ρT ,τ (tn,x)dx = 〈ρn,1〉T = 〈ρ0,1〉T =

∫
Ω
%0dx > 0 ,

so that ρT ,τ (t, ·) belongs to P(Ω) for all t ∈ (0, T ).

The goal of this section is to prove the following theorem.

Theorem 3.10. Assume that %0 ≥ ρ? for some ρ? ∈ (0,+∞) and that E(%0) < +∞, and let(
Tm,Σm, (xK)K∈Tm

)
m≥1

be a sequence of admissible discretizations of Ω such that hTm and τm

tend to 0 while conditions (3.47) hold. Then up to a subsequence, (ρTm,τm)m≥1 tends in L1(QT )

towards a weak solution % ∈ L∞((0, T );L1(Ω)) ∩ L2((0, T );W 1,1(Ω)) of (3.2) corresponding
to the initial data %0.

The proof is based on compactness arguments. At first in Section 3.3.1, we derive some
a priori estimates on the discrete solution. These estimates will be used to obtain some
compactness on ρTm,τm and φTm,τm in Section 3.3.2. Finally, we identify the limit value as a
weak solution in Section 3.3.3.

Remark 3.11. We restrict our attention to the case of the linear Fokker-Planck equation
for simplicity. The linearity of the continuous equation plays no role in our study. What is
important is the fact that the discrete and continuous solutions are uniformly bounded away
from 0 so that the weighted Ḣ1

ρ norm controls the non-weighted Ḣ1 norm. Such a uniform
lower bound can also be derived for the porous medium equation without drift.

3.3.1 Some a priori estimates

First, let us show that if the continuous initial energy E(%0) is bounded, then so does its
discrete counterpart ET (ρ0).

Lemma 3.12. Given %0 ∈ P(Ω) such that E(%0) < +∞, and let ρ0 be defined by (3.49), then
there exists C1 depending only on Ω, V and %0 (but not on T ) such that ET (ρn) ≤ C1 for all
n ≥ 0.
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Proof. It follows from (3.27) that ET (ρn) ≤ ET (ρ0) for all n ≥ 1. Rewriting ET (ρ0) as

ET (ρ0) = T1 + T2 + T3 (3.53)

with

T1 =
∑
K∈T

mK [ρ0
K log ρ0

K − ρ0
K ] , T2 =

∑
K∈T

mKρ
0
KVK , and T3 =

∑
K∈T

mKe
−VK ,

we deduce from the definition (3.49) of ρ0 and Jensen’s inequality that

T1 ≤
∫

Ω
[%0 log %0 − %0]dx . (3.54)

Since V is continuous, there exists x̃K ∈ K such that
∫
K e
−V dx = mKe

−V (x̃K). Therefore,

T3 =

∫
Ω
e−V dx+

∑
K∈T

mK [e−V (xK)−e−V (x̃K)] ≤
∫

Ω
e−V dx+e‖V

−‖∞‖∇V ‖∞diam(Ω) . (3.55)

Similarly, it follows from the mean value theorem that there exists x̌K ∈ K such that
mKV (x̌K)ρ0

K =
∫
K %

0V dx. Hence,

T2 =

∫
Ω
%0V dx+

∑
K∈T

mKρ
0
K [V (xK)− V (x̌K)] ≤

∫
Ω
%0V dx+ ‖∇V ‖∞diam(Ω)

∫
Ω
%0dx .

(3.56)
Combining (3.54)–(3.56) in (3.53) shows that ET (ρ0) ≤ E(%0) +C for some C depending only
on V , Ω and %0.

Our next lemma shows that if %0 is bounded away from 0, then so does ρT ,τ .

Lemma 3.13. Using the convention log(0) = −∞, one has

min
K∈T

[log(ρnK) + VK ] ≥ min
K∈T

[
log(ρn−1

K ) + VK
]
, ∀n ≥ 1.

In particular, if %0 ≥ ρ? for some ρ? ∈ (0,+∞), then there exists α > 0 depending only on V
and ρ? (but not on T , τ and n) such that ρn ≥ α1 for all n ≥ 1.

Proof. It follows directly from (3.51) that log(ρnK) + VK ≥ φnK for all K ∈ T . Let K? ∈ T
be such that φnK? ≤ φnK for all K ∈ T , then the conservation equation (3.50) ensures that

ρnK? ≥ ρ
n−1
K?

. On the other hand, since∑
σ∈ΣK?

aσ
(
(φnK? − φ

n
L)+

)2
= 0 ,

the discrete HJ equation (3.51) provides that

φnK? = log(ρnK?) + VK? = min
K∈T

[log(ρnK) + VK ] ≥ log(ρn−1
K?

) + VK? ≥ min
K∈T

[
log(ρn−1

K ) + VK
]
.

Assume now that %0 ≥ ρ?, then for all K ∈ T and all n ≥ 0,

log(ρnK) ≥ min
L∈T

[log(ρ0
L) + VL]− VK ≥ min

L∈T
log(ρ0

L)− 2‖V ‖∞ ≥ log(ρ?)− ‖V +‖∞ − ‖V −‖∞ .

Therefore, we obtain the desired inequality with α = ρ?e
−‖V +‖∞−‖V −‖∞ .
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Our third lemma deals with some estimates on the discrete gradient of the discrete Kan-
torovitch potentials (φn)n.

Lemma 3.14. Let (φn,ρn) be the iterated solution to (3.30), then

N∑
n=1

τ
∑
σ∈Σ

aσρ
n
σ(φnK − φnL)2 ≤ C1 . (3.57)

Moreover, if %0 ≥ ρ? ∈ (0,+∞), then there exists C2 (depending on Ω, V and %0) such that

N∑
n=1

τ
∑
σ∈Σ

aσ(φnK − φnL)2 ≤ C2 . (3.58)

Proof. Since ET (ρ) ≥ 0 for all ρ ∈ PT , summing (3.27) over n ∈ {1, . . . , N} yields

N∑
n=1

1

τ
AT (ρn;ρn−1 − ρn) ≤ ET (ρ0) .

Thanks to (3.24), the left-hand side rewrites

N∑
n=1

1

τ
AT (ρn;ρn−1 − ρn) =

N∑
n=1

τ
∑
σ∈Σ

aσρ
n
σ(φnK − φnL)2,

so that it only remains to use Lemma 3.12 to recover (3.57).

Finally, if %0 is bounded from below by some ρ? > 0, then Lemma 3.13 shows that ρnK ≥ α
for some α depending only on ρ? and V . Therefore, since ρnσ is either equal to ρnK or to ρnL
for σ = K|L ∈ Σ, then (3.58) holds with C2 = C1

α .

The discrete solution ρT ,τ is piecewise constant on the cells. To study the convergence
of the scheme, we also need a second reconstruction ρΣ,τ of the density corresponding to the
edge mobilities. It is defined by

ρΣ,τ (t,x) =

{
ρnσ if (t,x) ∈ (tn−1, tn]×∆σ , σ ∈ Σ ,

ρnK if (t,x) ∈ (tn−1, tn]×K \
(⋃

σ∈ΣK
∆σ

)
, K ∈ T .

(3.59)

Lemma 3.15. There exists C3 depending only on ζ and %0 such that∫
Ω
ρΣ,τ (t,x)dx ≤ C3 , ∀t > 0 . (3.60)

Moreover, there exists C4 depending only on ζ, V and %0 such that∫
Ω
ρΣ,τ (t,x) log ρΣ,τ (t,x)dx ≤ C4 , ∀t > 0 . (3.61)
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Proof. Since t 7→ ρΣ,τ (t, ·) is piecewise constant, it suffices to check that the above properties
at each tn, 1 ≤ n ≤ N . In view of the definition of ρΣ,τ , one has∫

Ω
ρΣ,τ (tn,x)dx ≤

∑
K∈T

∑
σ∈ΣK

ρnKmK +
∑
σ∈Σ

ρnσm∆σ .

The first term can easily be overestimated by
∫

Ω ρT ,τ (tn,x)dx =
∫

Ω %
0dx. Since ρnσ ≤ ρnK+ρnL,

the second term in the above expression can be overestimated by

∑
σ∈Σ

ρnσm∆σ ≤
∑
K∈T

ρnK

( ∑
σ∈ΣK

m∆σ

)
.

Using the regularity property of the mesh (3.47c), we obtain that∑
σ∈Σ

ρnσm∆σ ≤ ζ
∫

Ω
%0dx ,

so that (3.60) holds with C3 = (1 + ζ)
∫

Ω %
0dx.

Reproducing the above calculations, one gets that∫
Ω
ρΣ,τ (t,x) log ρΣ,τ (t,x)dx ≤ (1 + ζ)

∫
Ω
ρT ,τ (t,x) log ρT ,τ (t,x)dx

= (1 + ζ)
(
ET (ρn) +

∑
K∈T

mK [ρnK(1− VK)− e−VK ]
)
.

Since ET (ρn) ≤ ET (ρ0) ≤ C1 and since V is uniformly bounded, we obtain that (3.61) holds
with C4 = (1 + ζ) (C1 + ‖(1− V )+‖∞).

The last lemma of this section can be thought as a discrete
(
L∞((0, T );W 1,∞(Ω))

)′
es-

timate on ∂tρT ,τ . This estimate will be used to apply a discrete nonlinear Aubin-Simon
lemma [6] in the next section.

Lemma 3.16. Let ϕ ∈ C∞c (QT ), then define ϕnK = 1
mK

∫
K ϕ(tn,x)dx for all K ∈ T . There

exists C5 depending only on ζ, T, %0, d, such that

N∑
n=1

∑
K∈T

mK(ρnK − ρn−1
K )ϕK ≤ C5‖∇ϕ‖L∞(QT ) .

Proof. Multiplying (3.50) by ϕnK and summing over K ∈ T and n ∈ {1, . . . , N} yields

A :=
N∑
n=1

∑
K∈T

mK(ρnK − ρn−1
K )ϕK = −

N∑
n=1

τ
∑
σ∈Σ

aσρ
n
σ(φnK − φnL)(ϕnK − ϕnL) .

Applying Cauchy-Schwarz inequality on the right-hand side then provides

A2 ≤

(
N∑
n=1

τ
∑
σ∈Σ

aσρ
n
σ(φnK − φnL)2

)(
N∑
n=1

τ
∑
σ∈Σ

aσρ
n
σ(ϕnK − ϕnL)2

)
. (3.62)
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The first term in the right-hand side is bounded thanks to Lemma 3.14. On the other hand,
the regularity of ϕ ensures that there exists x̃K ∈ K such that ϕ(tn,xK) = ϕnK for all K ∈ T .
Thanks to the regularity assumptions (3.47a)–(3.47b) on the mesh, there holds

|ϕnK − ϕnL| ≤ ‖∇ϕ‖∞|x̃K − x̃L| ≤ (1 + 2ζ(1 + ζ))‖∇ϕ‖∞dσ , σ = K|L .

Hence, the second term of the right-hand side in (3.62) can be overestimated by

N∑
n=1

τ
∑

σ=K|L∈Σ

aσρ
n
σ(ϕnK − ϕnL)2 ≤ (1 + 2ζ(1 + ζ))2‖∇ϕ‖2∞

N∑
n=1

τ
∑

σ=K|L∈Σ

mσdσρ
n
σ

≤ (1 + 2ζ(1 + ζ))2d‖∇ϕ‖2∞
∫∫

QT

ρΣ,τdxdt

≤ (1 + 2ζ(1 + ζ))2C3Td‖∇ϕ‖2∞ ,

the last inequality being a consequence of Lemma 3.15. Combining all this material in (3.62)
shows the desired estimate with C5 = (1 + 2ζ(1 + ζ))

√
C1C3Td.

3.3.2 Compactness of the approximate solution

The goal of this section is to show enough compactness in order to be able to pass to the limit
m→∞. For the sake of readability, we remove the subscript m unless necessary.

Owing to Lemma 3.12, one has ET (ρn) ≤ C1 for all n ∈ {1, . . . , N}. Proceeding as in the
proof of Lemma 3.15, this allows to show that∫

Ω
ρT ,τ (t,x) log ρT ,τ (t,x)dx ≤ C6 , ∀t ∈ (0, T ] , (3.63)

for some C6 depending only on %0, ζ and V . Combining de La Vallée Poussin’s theorem with
Dunford-Pettis’ one [122, Ch. XI, Theorem 3.6], there exists % ∈ L∞((0, T );L1(Ω)) such that,
up to a subsequence,

ρTm,τm tends to % weakly in L1(QT ) as m tends to +∞ . (3.64)

Since ρ 7→ ρ log ρ is convex, f 7→
∫∫
QT

f log fdxdt is l.s.c. for the weak convergence in L1(QT )

(see for instance [28, Corollary 3.9]), so that (3.63) yields∫∫
QT

% log %dxdt ≤ C6T . (3.65)

Moreover, since ρT ,τ ≥ α thanks to Lemma 3.13, then % ≥ α too.

Our goal is to show that % is a weak solution to the Fokker-Planck equation (3.2) corre-
sponding to the initial data %0. Even though the continuous problem is linear, (3.64) is not
enough to pass to the limit in our nonlinear scheme. Refined compactness have to be derived
in this section so that one can identify % as the solution to (3.2) in the next section. To show
enhanced compactness (and most of all the consistency of the scheme in the next section), we
have to assume that the initial data is bounded away from 0.
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Proposition 3.17. Assume that %0 ≥ ρ? ∈ (0,+∞), then, up to a subsequence,

ρTm,τm −→m→∞
% strongly in L1(QT ), (3.66)

log ρTm,τm −→m→∞
log % strongly in L1(QT ), (3.67)

φTm,τm −→m→∞
log %+ V strongly in L1(QT ). (3.68)

Proof. Our proof of (3.66)–(3.67) relies on ideas introduced in [101] that were adapted to the
discrete setting in [6]. Define the two convex and increasing conjugated functions defined on
R+:

Υ : x 7→ ex − x− 1 and Υ∗ : y 7→ (1 + y) log(1 + y)− y ,
then the following inequality holds for any measurable functions f, g : QT → R:∫∫

QT

|fg|dxdt ≤
∫∫

QT

Υ(|f |)dxdt+

∫∫
QT

Υ∗(|g|)dxdt . (3.69)

Now, notice that since ρT ,τ is bounded from below thanks to Lemma 3.13 and bounded in
L1(QT ), then log ρT ,τ is bounded in Lp(QT ) for all p ∈ [1,∞) and Υ(| log(ρT ,τ )|) is bounded
in L1(QT ). As a consequence, there exists ` ∈ L∞((0, T );Lp(Ω)) such that

log ρTm,τm −→m→∞
` weakly in L1(QT ) . (3.70)

Since f 7→
∫∫
QT

Υ(|f |) is convex thus l.s.c. for the weak convergence, we infer that Υ(|`|)
belongs to L1(QT ). Moreover, in view of (3.65), Υ∗(%) belongs also to L1(QT ). Therefore,
thanks to (3.69), the function %` is in L1(QT ).

Define the quantities

rnK =
τ

2mK
aσ

∑
σ∈ΣK

(
(φnK − φnL)+

)2 ≥ 0, ∀K ∈ T , ∀n ∈ {1, . . . , N} ,

and by rT ,τ ∈ L1(QT ) the function defined

rT ,τ (t,x) = rnK if (t,x) ∈ (tn−1, tn]×K ,

Thanks to Lemma 3.14, ‖rT ,τ‖L1(QT ) ≤
1
2C2τ . As a consequence, rTm,τm tends to 0 in L1(QT )

as m tends to +∞.
Let ξ ∈ Rd be arbitrary, we denote by Ωξ = {x ∈ Ω | x+ ξ ∈ Ω}. Then using (3.51) and

the triangle inequality, we obtain that for all m ≥ 1, there holds∫ T

0

∫
Ωξ

|log ρTm,τm(t,x+ ξ)− log ρTm,τm(t,x)|dxdt ≤ A1,m(ξ) +A2,m(ξ) +A3,m(ξ) ,

where, denoting by VT (x) = VK if x ∈ K, we have set

A1,m(ξ) =

∫ T

0

∫
Ωξ

|rTm,τm(t,x+ ξ)− rTm,τm(t,x)|dxdt ,

A2,m(ξ) =

∫ T

0

∫
Ωξ

|φTm,τm(t,x+ ξ)− φTm,τm(t,x)|dxdt ,

A3,m(ξ) = T

∫
Ωξ

|VTm(x+ ξ)− VTm(x)|dx .
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Since (rTm,τm)m≥1 and (VTm)m≥1 are compact in L1(QT ) and L1(Ω) respectively, it follows
from the Riesz-Frechet-Kolmogorov theorem (see for instance [28, Exercise 4.34]) that there
exists ω ∈ C(R+;R+) with ω(0) = 0 such that

A1,m(ξ) +A3,m(ξ) ≤ ω(|ξ|), ∀ξ ∈ Rd, ∀m ≥ 0 . (3.71)

On the other hand, the function φT ,τ belongs to L1((0, T );BV (Ω)) and the integral in time
of its total variation in space can be estimated as follows:∫∫

QT

|∇φTm,τm | =
N∑
n=1

τ
∑
σ∈Σ

mσ|φnK − φnL|

≤

(
d|Ω|T

N∑
n=1

τ
∑
σ∈Σ

mσ(φnK − φnL)2

)1/2

≤ C7 .

with C7 =
√
d|Ω|TC2. This implies in particular that A2,m(ξ) ≤ C7|ξ| for all m ≥ 1.

Combining this estimate with (3.71) in (3.51) yields

sup
m≥1

∫ T

0

∫
Ωξ

| log ρTm,τm(t,x+ ξ)− log ρTm,τm(t,x)|dxdt −→
|ξ|→0

0 . (3.72)

The combination of (3.72) with Lemma 3.16 is exactly what one needs to reproduce the proof
of [6, Proposition 3.8], which shows that the product of the weakly convergent sequences
(ρTm,τm)m and (log ρTm,τm)m converges towards the product of their weak limits:∫∫

QT

ρTm,τm log ρTm,τmϕdxdt −→
m→∞

∫∫
QT

%`ϕdxdt , ∀ϕ ∈ C∞c (QT ) . (3.73)

Let us now identify ` as log(%) thanks to Minty’s trick. Let κ > 0 and ϕ ∈ C∞c (QT ;R+) be
arbitrary, then thanks to (3.73),

0 ≤
∫∫

QT

(ρTm,τm − κ) (log ρTm,τm − log κ)ϕdxdt −→
m→∞

∫∫
QT

(%− κ) (`− log κ)ϕdxdt .

As a consequence, (%− κ) (`− log κ) ≥ 0 a.e. in QT for all κ > 0, which holds if and only if
` = log %. To finalize the proof of (3.66)–(3.67), define

cm = (ρTm,τm − %)(log ρTm,τm − log %) ∈ L1(QT ;R+) , ∀m ≥ 1 .

Then (3.73) implies that∫∫
QT

cmϕdxdt −→
m→∞

0, ∀ϕ ∈ C∞c (QT ), ϕ ≥ 0 .

As a consequence, cm tends to 0 almost everywhere in QT , which implies that ρTm,τm tends
almost everywhere towards % (up to a subsequence). Then (3.66)–(3.67) follow from Vitali’s
convergence theorem (see for instance [122, Chap. XI, Theorem 3.9]).

Finally, one has φT ,τ = log ρT ,τ+VT −rT ,τ . In view of the above discussion, the right-hand
side converges strongly in L1(QT ) up to a subsequence towards log % + V , then so does the
left-hand side. This provides (3.68) and concludes the proof of Proposition 3.17.
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Next lemma shows that ρΣ,τ shares the same limit % as ρT ,τ .

Lemma 3.18. Assume that %0 ≥ ρ? ∈ (0,+∞), then

‖ρΣm,τm − ρTm,τm‖L1(QT ) −→m→∞
0 .

Proof. Thanks to Lemma 3.15, it follows from the de La Vallée-Poussin and Dunford Pettis
theorems that (ρΣm,τm)m≥1 is relatively compact for the weak topology of L1(QT ). Combining
this with (3.64), we infer that, up to a subsequence, (ρΣm,τm − ρTm,τm)m≥1 converges towards

some w weakly in L1(QT ). Thanks to Vitali’s convergence theorem, it suffices to show that
from any subsequence of (ρΣm,τm − ρTm,τm)m≥1, one can extract a subsequence that tends to
0 a.e. in QT (so that the whole sequence converges towards w = 0), or equivalently

‖log ρΣm,τm − log ρTm,τm‖L1(QT ) −→m→∞
0 , (3.74)

since both (ρΣm,τm)m≥1 and (ρTm,τm)m≥1 are bounded away from 0 thanks to Lemma 3.13.
Bearing in mind the definition (3.59) of ρΣm,τm , one has

‖log ρΣ,τ − log ρT ,τ‖L1(QT ) ≤
N∑
n=1

τ
∑
σ∈Σ

m∆σ | log ρnK − log ρnL| .

Using (3.51) and the triangle inequality, one gets that

‖log ρΣ,τ − log ρT ,τ‖L1(QT ) ≤ R1 +R2 + TR3 ,

with

R1 =

N∑
n=1

τ
∑
σ∈Σ

m∆σ |φnK − φnL| , R2 =
N∑
n=1

τ
∑
σ∈Σ

m∆σ |rnK − rnL| ,

and
R3 =

∑
σ∈Σ

m∆σ |VK − VL| .

Using again that dm∆σ = dσmσ ≤ ζhTmσ thanks to (3.47a), one has

R1 ≤
ζ

d
hT

N∑
n=1

τ
∑
σ∈Σ

mσ|φnK − φnL| ≤
C7ζ

d
hT −→

m→∞
0 .

Since |rnK − rnL| ≤ rnK + rnL, the regularity assumption (3.47c) on the mesh implies that

R2 ≤
N∑
n=1

τ
∑
K∈T

∑
σ∈ΣK

m∆σr
n
K ≤ ζ‖rT ,τ‖L1(QT ) −→

m→∞
0 .

Since V is Lipschitz continuous, |VK − VL| ≤ ‖∇V ‖∞dσ ≤ ζ‖∇V ‖∞hT for all σ = K|L ∈ Σ
thanks to (3.47a). Therefore,

R3 ≤ ζ‖∇V ‖∞|Ω|hT −→
m→∞

0 ,

so that (3.74) holds, concluding the proof of Lemma 3.18.
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3.3.3 Convergence towards a weak solution

Our next lemma is an important step towards the identification of the limit % as a weak solution
to the continuous Fokker-Planck equation (3.2). Define the vector field FΣ,τ : QT → Rd by

FΣ,τ (t,x) =

{
dρnσ
(φnK−φnL

dσ

)
nKσ if (t,x) ∈ (tn−1, tn]×∆σ ,

0 otherwise .

Lemma 3.19. Assume that %0 ≥ ρ? ∈ (0,+∞), then, up to a subsequence, the vector field
FΣm,τm converges weakly in L1(QT )d towards −∇%−%∇V as m tends to +∞. Moreover,

√
%

belongs to L2((0, T );H1(Ω)), while % belongs to L2((0, T );W 1,1(Ω)).

Proof. Let us introduce the inflated discrete gradient GΣ,τ of φT ,τ defined by

GΣ,τ (t,x) =

{
d
(φnL−φnK

dσ

)
nKσ if (t,x) ∈ (tn−1, tn]×∆σ ,

0 otherwise ,

so that FΣ,τ = −ρΣ,τGΣ,τ . Thanks to Lemma 3.14,

‖GΣ,τ‖2L2(QT )d = d
N∑
n=1

τ
∑
σ∈Σ

aσ(φnK − φnL)2 ≤ dC2 ,

thus we know that, up to a subsequence, GΣ,τ converges weakly towards some G in L2(QT )d

as m tends to +∞. Since φT ,τ tends to log %+V , cf. (3.68), then the weak consistency of the
inflated gradient [44, 55] implies that G = ∇(log %+ V ).

Define now HΣ,τ =
√
ρΣ,τGΣ,τ , then using again Lemma 3.14,

‖HΣ,τ‖2L2(QT )d = d
N∑
n=1

τ
∑
σ∈Σ

aσρ
n
σ(φnK − φnL)2 ≤ dC1 ,

so that there exists H ∈ L2(QT )d such that, up to a subsequence, HΣ,τ tends to H weakly
in L2(QT )d. But since

√
ρΣ,τ converges strongly towards

√
% in L2(QT ), cf. Lemma 3.15, and

since GΣ,τ tends weakly towards ∇(log %+V ) in L2(QT )d, we deduce that HΣ,τ tends weakly
in L1(QT )d towards

√
%∇(log % + V ) = 2∇√% +

√
%∇V = H. In particular,

√
% belongs to

L2((0, T );H1(Ω)). Now, we can pass in the limit m → +∞ in FΣ,τ = −√ρΣ,τHΣ,τ , leading
to the desired result.

In order to conclude the proof of Theorem 3.10, it remains to check that any limit value
% of the scheme is a solution to the Fokker-Planck equation (3.2) in the distributional sense.

Proposition 3.20. Let % be a limit value of (ρTm,τm)m≥1 as described in Section 3.3.2, then
for all ϕ ∈ C∞c ([0, T )× Ω), one has∫∫

QT

%∂tϕdxdt+

∫
Ω
%0ϕ(0, ·)dx−

∫∫
QT

(%∇V +∇%) · ∇ϕdxdt = 0 . (3.75)



86 CHAPTER 3. A VARIATIONAL FINITE VOLUME SCHEME

Proof. Given ϕ ∈ C∞c ([0, T )× Ω), we denote by ϕnK = ϕ(tn,xK). Then multipying (3.50) by
−ϕn−1

K and summing over K ∈ T and n ∈ {1, . . . , N} leads to

B1 +B2 +B3 = 0 ,

where we have set

B1 =
N∑
n=1

τ
∑
K∈T

mK
ϕnK − ϕ

n−1
K

τ
ρnK , B2 =

∑
K∈T

mKϕ
0
Kρ

0
K ,

and

B3 = −
N∑
n=1

τ
∑

σ=K|L∈Σ

aσρ
n
σ (φnK − φnL)

(
ϕn−1
K − ϕn−1

L

)
.

Since ρT ,τ converges in L1(QT ) towards %, cf. Proposition 3.17, and since ϕ is smooth,

B1 −→
m→∞

∫∫
QT

%∂tϕdxdt .

It follows from the definition (3.49) of ρ0
K that the piecewise constant function ρ0

T , defined by
ρ0
T (x) = ρ0

K if x ∈ T , converges in L1(Ω) towards %0. Therefore, since ϕ is smooth,

B2 −→
m→∞

∫
Ω
%0ϕ(0, ·)dx .

Let us define

B′3 =

∫∫
QT

FΣ,τ · ∇ϕdxdt .

Then it follows from Lemma 3.19 that

B′3 −→m→∞
−
∫∫

QT

(%∇V +∇%) · ∇ϕdxdt .

To conclude the proof of Proposition 3.20, it only remains to check that

∣∣B3 −B′3
∣∣ ≤ N∑

n=1

τ
∑

σ=K|L∈Σ

aσρ
n
σ |φnK − φnL|

∣∣∣∣ϕn−1
K − ϕn−1

L +
1

τm∆σ

∫ tn

tn−1

∫
∆σ

dσ∇ϕ · nKLdxdt

∣∣∣∣ .
Since ϕ is smooth and since dσnKL = xK−xL thanks to the orthogonality condition satisfied
by the mesh,∣∣∣∣ϕn−1

K − ϕn−1
L +

1

τm∆σ

∫ tn

tn−1

∫
∆σ

dσ∇ϕ · nKLdxdt

∣∣∣∣ ≤ Cϕdσ(τ + dσ)

for some Cϕ depending only on ϕ. Therefore,

∣∣B3 −B′3
∣∣ ≤ Cϕ(τ + dσ)

N∑
n=1

τ
∑
σ∈Σ

mσρ
n
σ |φnK − φnL| .

Applying Cauchy-Schwarz inequality, one gets that∣∣B3 −B′3
∣∣ ≤ Cϕ(τ + dσ)C1d ‖ρΣ,τ‖L1(QT ) −→m→∞

0

thanks to Lemma 3.15.
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3.4 Numerical results

To check the correctness and reliability of our formulation we performed some numerical
tests. Before that, we are going to present some details on the solution of the nonlinear
system involved in the scheme.

3.4.1 Newton method

Due to the explicit formulation of the optimality conditions of the saddle point problem
(3.29), it appears extremely convenient to use a Newton method for their solution. Given
un−1 = (φn−1,ρn−1) ∈ R2T solution of the scheme at the time step n−1, the Newton method
aims at constructing a sequence of approximations of un as un,k+1 = un,k−dk, dk = (dkφ,d

k
ρ)

being the Newton direction, solution to the block-structured system of equations

Jkdk =

[
Jkφ,φ Jkφ,ρ
Jkρ,φ Jkρ,ρ

] [
dkφ
dkρ

]
=

[
fkφ
fkρ

]
. (3.76)

In the above linear system, fkφ and fkρ are the discrete continuity and HJ equations evaluated

in un,k, and Jkφ,φ, Jkφ,ρ, Jkρ,φ and Jkρ,ρ are the four blocks of the Hessian matrix Jk of the

discrete functional in (3.29) evaluated in un,k. The sequence converges to the unique solution
un as soon as the initial guess is sufficiently close to it, which is ensured for a sufficiently small
time step by taking un,0 = un−1. The algorithm stops when the `∞ norm of the discrete
equations is smaller than a prescribed tolerance or if the maximum number of iterations is
reached. It is possible to implement an adaptative time stepping: if the Newton method
converges in few iterations the time step τ increases; if it reaches the maximum number of
iterations the time step is decreased and the method restarted. Issues could arise if the iterate
un,k reaches negative values, especially if the energy is not defined for negative densities. Two
possible strategies may be implemented to avoid this problem: the iterate may be projected
on the set of positive measure by taking un,k = (un,k)+; the method may be restarted with a
smaller time step.

In case of a local energy functional, as it is the case for the Fokker-Planck energy and many
more examples, the block Jkρ,ρ is diagonal and therefore straightforward to invert. System

(3.76) can be rewritten in term of the Schur complement and solved for dkφ as[
Jkφ,φ − Jkφ,ρ (Jkρ,ρ)−1 Jkρ,φ

]
dkφ = fkφ − Jkφ,ρ (Jkρ,ρ)−1 fkρ , (3.77)

while dkρ = (Jkρ,ρ)−1 (fkρ − Jkρ,φ dkφ).

Proposition 3.21. The Schur complement Sk = Jkφ,φ−Jkφ,ρ (Jkρ,ρ)−1 Jkρ,φ is symmetric and
negative definite.

Proof. Sk is symmetric since Jkφ,φ and Jkρ,ρ are, while Jkφ,ρ = (Jkρ,φ)T . The matrix Jkρ,ρ
is positive definite since the problem is strictly convex, whereas Jkφ,φ is negative definite if

ρn,kK > 0,∀K ∈ T , since the problem is strictly concave, but it is semi-negative definite if
the density vanishes somewhere. Therefore, it is sufficient to show that the matrix Jkφ,ρ =

(Jkρ,φ)T = M +Ak is invertible. M is a diagonal matrix such that (M)K,K = mK , whereas

(Ak)K,K = τ
∑
σ∈ΣK

aσ(φn,kK − φn,kL )+ ≥ 0 ,



88 CHAPTER 3. A VARIATIONAL FINITE VOLUME SCHEME

Figure 3.1: Sequence of regular triangular meshes.

and, for L 6= K,

(Ak)K,L = −τaσ(φn,kL − φnK)+ ≤ 0 if σ = K|L, (Ak)K,L = 0 otherwise.

Therefore the columns of Ak sum up to 0, so that (Jkφ,ρ) is a column M-matrix [59] and thus
invertible.

In case the matrix Jkρ,ρ is simple to invert it is then possible to decrease the computa-
tional complexity of the solution of system (3.76). Moreover, it is possible to exploit for the
solution of system (3.77) solvers which are computationally more efficient, since the system
is symmetric and negative definite.

3.4.2 Fokker-Planck equation

We first tackle the gradient flow of the Fokker-Planck energy, namely equation (3.2). In
section 3.3 we showed the L1 convergence of the scheme. Consider the specific potential
V (x) = −gx: for this case it is possible to design an analytical solution and test numerically
the convergence of the scheme. Consider the domain Ω = [0, 1]2, the time interval [0, 0.25] and
the following analytical solution of the Fokker-Planck equation (built from a one-dimensional
one):

%(t, x, y) = exp
(
−αt+

g

2
x
)(

π cos(πx) +
g

2
sin(πx)

)
+ π exp

(
g
(
x− 1

2

))
,

where α = π2 + g2

4 . On the domain Ω = [0, 1]2, the function %(t, x, y) is positive and satisfies
the mixed boundary conditions (∇%+%∇V )·n|∂Ω = 0. We consider g = 1. We want to exploit
the knowledge of this exact solution to compute the error we commit in the spatial and time
integration. Consider a sequence of meshes

(
Tm,Σm, (xK)K∈Tm

)
with decreasing mesh size

hTm and a sequence of decreasing time steps τm such that
hTm+1

hTm
= τm+1

τm
. In particular, we

used a sequence of Delaunay triangular meshes such that the mesh size halves at each step,
obtained subdividing at each step each triangle into four using the edges midpoints. Three
subsequent partitioning of the domain are shown in Figure 3.1.
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Table 3.1: Time-space convergence for the two schemes. Integration on the interval [0, 0.25].

FV LJKO

h dt εL∞ r εL1 r εL∞ r εL1 r

0.2986 0.0500 0.1634 / 0.0350 / 0.1463 / 0.0334 /
0.1493 0.0250 0.0856 0.932 0.0176 0.997 0.0651 1.169 0.0145 1.120
0.0747 0.0125 0.0434 0.979 0.0087 1.015 0.0449 0.535 0.0066 1.134
0.0373 0.0063 0.0218 0.996 0.0043 1.009 0.0297 0.598 0.0033 1.007
0.0187 0.0031 0.0109 0.999 0.0022 1.004 0.0174 0.770 0.0017 0.943
0.0093 0.0016 0.0054 1.000 0.0011 1.001 0.0095 0.870 0.0009 0.947

Let us introduce the following mesh-dependent errors:

εn1 =
∑
K∈Tm

|ρnK − %(nτ,xK)|mK → discrete L1 error ,

εL∞ = max
n

(ε1n) → discrete L∞((0, T );L1(Ω)) error ,

εL1 =
∑
n

τ εn1 → discrete L1((0, T );L1(Ω)) error ,

where %(nτm,xK) is the value in the cell center of the triangle K of the analytical solution
at time nτm, n running from 1 to the total number of time steps Nm. The upstream Finite
Volume scheme with backward Euler discretization of the temporal derivative, namely scheme
(3.43), is known to exhibit order one of convergence applied to this problem, both in time and
space. This means that the L∞((0, T );L1(Ω)) and L1((0, T );L1(Ω)) errors halve whenever
hT and τ halve. We want to inspect whether scheme (3.30) recovers the same behavior.

For the sequence of meshes and time steps, for m going from one to the total number of
meshes, we computed the solution to the linear Fokker-Planck equations and the errors, using
both schemes (3.43) and (3.30). The results are shown in Table 3.1. For each mesh size and
time step m, it is represented the error together with the rate with respect to the previous
one. Scheme (3.30) exhibits the same order of convergence of scheme (3.43). It is noticeable
that the rate of convergence of the former scheme senses a big drop and then recovers order
one, especially in the L∞((0, T );L1(Ω)) error. This is due to the fact that the initial condition
%(0,xK) is too close to zero, and in particular equal to zero on the set 1× [0, 1], and scheme
(3.30) tends to be repulsed away from zero due to the singularity of the gradient of the first
variation of the energy. In Table 3.2 we repeated the convergence test for the time interval
[0.05, 0.25]: the convergence profile sensibly improves.

To further investigate and compare the behavior of the two schemes, we computed also the
energy decay along the trajectory. We call dissipation the difference E(%)−E(%∞), where %∞

is the final equilibrium condition, the long time behavior. Since we are discretizing a gradient
flow, its dissipation is a useful criteria to assess the goodness of the scheme. The long time
value of the energy is equal to:

E
(

lim
t→∞

%
)

=

∫
Ω

lim
t→∞

(% log %− %gx) dx

= exp
(g

2

)(π log(π)

g
+
π

2
− π

g

)
+ exp

(
−g

2

)(
−π log(π)

g
− π

2
+
π

g

)
.
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Table 3.2: Time-space convergence for scheme (3.30). Integration on the interval [0.5, 0.25].

LJKO

h dt εL∞ r εL1 r

0.2986 0.0500 0.1186 / 0.0216 /
0.1493 0.0250 0.0618 0.9411 0.0109 0.9857
0.0747 0.0125 0.0307 1.0110 0.0053 1.0311
0.0373 0.0063 0.0152 1.0116 0.0026 1.0213
0.0187 0.0031 0.0076 1.0078 0.0013 1.0119
0.0093 0.0016 0.0038 1.0042 0.0006 1.0062

It is possible to define the equilibrium solution also on the discrete dynamics on the grid.
Namely, the equilibrium solution ρ∞ for the discrete dynamics is

ρ∞K = M exp(−VK), VK = V (xK), ∀K ∈ T ,

which is the unique minimizer of the discrete energy ET =
∑

K∈T
(
ρK log ρK +ρKV (xK)

)
mK

subject to the constraint of the conservation of the mass. The optimality conditions for this
problem provide indeed:

∂

∂ρK

(
ET + λ

∑
K∈T

(ρK − ρ0
K)mK

)
|ρ∞K =

(
log ρ∞K + 1 + VK + λ

)
mK = 0, ∀K ∈ T

=⇒ ρ∞K = exp(−(1 + λ)− VK) = M exp(−VK), ∀K ∈ T ,

with λ lagrange multiplier associated with the constraint. M is the constant that makes ρ∞

have the same total mass:

M =

∑
K∈T ρ

0
KmK∑

K∈T exp−VK mK
.

It is immediate to observe that this is indeed the equilibrium solution for scheme (3.43), since
with such density the potential is constant:

φK =
δET (ρ)

δρK
|ρ∞K = log ρ∞K + 1 + VK = logM − VK + 1 + VK = logM + 1, ∀K ∈ T .

For the scheme (3.30) instead, as it appears clear from Lemma 3.2, whenever ρnK = ρn−1
K , ∀K ∈

T , as it is the case for an equilibrium solution, the potential is constant. From the potential
equation one gets again

φK =
δET (ρ)

δρK
|ρ∞K = logM + 1,∀K ∈ T .

In Figure 3.2 it is represented the semilog plot of the dissipation of the system in the
time interval [0, 3], computed for the two schemes, ET (ρ) − ET (ρ∞), and the real solution,
E(%) − E(%∞). In Figure 3.2a it is noticeable that scheme (3.30) dissipates the energy faster
than the other, being indeed a bit more diffusive. This is an expected behavior since the
scheme is built to maximize the decrease of the energy and this is actually one of the main
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strength of the approach. In Figure 3.2b, one can see that the two dissipations tend to the
real one when a finer mesh and a smaller time step are used, for both schemes, despite the
fact that (3.30) still dissipates faster. In the end, in Figure 3.2c it is possible to remark that
for a very small time step the dissipations tend to coincide, as it is expected. For the time
parameter going to zero the two schemes coincide.

3.4.3 Other examples of Wasserstein gradient flows

Let us consider now more qualitative tests on other examples of Wasserstein gradient flows,
in order to show the general validity of our approach.

Porous medium equation

The porous medium equation,

∂t% = ∆%δ +∇ · (%∇V ) ,

has been proven in [108] to be a gradient flow in Wasserstein space with respect to the energy

E(ρ) =

∫
Ω

1

δ − 1
ρδdx+

∫
Ω
ρV dx , (3.78)

for a given δ strictly greater than one. Our aim is to show that scheme (3.30) works regardless
of the uniform bound from below on the density. For this reason, we use an initial density ρ0

with compact support and a confining potential V (x) = 1
2 |x− x0|2, where x0 = (1

2 ,
1
2). The

equilibrium solution of the gradient flow should then be the Barenblatt profile

%∞(x) = max

((M
2π

) δ−1
δ − δ − 1

2δ
|x− x0|2 , 0

) 1
δ−1

,

with M total mass of the initial condition.

In Figure 3.3 the evolution of an initial density close to a dirac in the center of the domain
Ω = [0, 1]2 is shown for the case m = 4. In Figure 3.4 it is represented the dissipation of the
energy, ET (ρ)−ET (ρ∞), in semi-logarithmic scale, where ρ∞K = %∞(xK),∀K ∈ T . The energy
ET is the straightforward discretization of (3.78), as it has been done for the Fokker-Planck
energy. As expected, the solution converges towards the Barenblatt profile.

Thin film equation

In order to show that scheme (3.30) can be employed also on more complex problems, we
consider the Wasserstein gradient flow with respect to the energy

E(ρ) =
1

2

∫
Ω
|∇ρ|2dx+

∫
Ω
ρV dx ,

which gives rise to a phenomenon modeled by the thin film equation

∂t% = −∇ · (%∇(∆%)) +∇ · (%∇V ) ,
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Figure 3.2: Comparison of the dissipation along time of the system computed with the two
numerical schemes (3.30) (LJKO) and (3.43) (FV), and in the real case. Semi-logarithmic
plot.

a particular case of a family of nonlinear fourth order equations [90]. The energy E(ρ) is
discretized as

ET (ρ) =
1

2

∑
σ∈Σ

(ρL − ρK
dσ

)2
dσmσ +

∑
K∈T

ρKV (xK)mK ,
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Figure 3.3: Evolution of an initial density close to a dirac according to the porous medium
equation. From left to right, t = 0, 0.0001, 0.01, 1. In each picture the scaling is different for
the sake of the representation.

0 0.2 0.4 0.6 0.8 1
10−9

10−5

10−1

103

Figure 3.4: Dissipation along time of the energy for the porous medium equation. Semi-
logarithmic plot.

where again we made use of the inflated gradient definition for the discretization of the
Dirichlet energy. Notice that even though the continuous energy functional E(ρ) is local,
the discrete counterpart is not. The matrix Jkρ,ρ in (3.77) is not diagonal and the Schur
complement technique for the solution of the linear system (3.76) is not necessarily convenient
anymore. In Figure 3.5 it is represented the evolution of an initial density with quadratic
profile and compact support in the domain Ω = [0, 1]2. The potential is V (x) = (x−1)(y−1).

Salinity intrusion problem

We want to show now that scheme (3.30) can be used for the solutions of systems of equations
of the type of (3.1). We consider the problem of salinity intrusion in an unconfined aquifer.
Under the assumption that the two fluids, the fresh and the salt water, are immiscible and
the domains occupied by each fluid are separated by a sharp interface, the problem can be
modeled via the system of equations{

∂tf −∇ · (νf∇(f + g + b)) = 0 ,

∂tg −∇ · (g∇(νf + g + b)) = 0 .
(3.79)
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(a) t=0 (b) t=0.0015 (c) t=0.008

(d) t=0.014 (e) t=0.02 (f) t=0.3

Figure 3.5: Evolution of an initial quadratic density according to the thin film equation. In
each picture the scaling is different for the sake of the representation.

System (3.79) is completed with the no-flux boundary conditions ∇f · n = ∇g · n = 0 on
∂Ω,∀t ≥ 0, and the initial conditions f(0, ·) = f0, g(0, ·) = g0, with f0, g0 ∈ L∞(Ω), f0, g0 ≥ 0.
The quantities f , g, and b represent respectively the thickness of the fresh water layer, the
thickness of the salt water layer and the height of the bedrock. Therefore the quantity b+ g
represents the height of the sharp interface separating the two fluids. The parameter ν =

ρf
ρs

is the ratio between the constant mass densities of the fresh and salt water. Equation (3.79)
has been proven in [78] to be a Wasserstein gradient flow with respect to the energy

E(f, g) =

∫
Ω

(ν
2

(b+ g + f)2 +
1− ν

2
(b+ g)2

)
dx . (3.80)

The discretization of (3.80) is again straightforward. In Figure 3.6 it is represented an
evolution of the two surfaces of salt and fresh water (see [2] for a full description of the test
case). Given the particular configuration of the bedrock b, the two surfaces are represented
respectively by b+ g and b+ g+ f . Also this case is not covered from the theoretical analysis
we performed on the convergence of the scheme but still scheme (3.30) works. As already said,
from numerical evidences the scheme works under much more general and mild hypotheses.
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(a) t=0 (b) t=0.1

(c) t=0.5 (d) t=10

Figure 3.6: Evolution of the two interfaces of salt (red) and fresh (blue) water.
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Chapter 4

Centered TPFA finite volume
discretization for Wasserstein
gradient flows

This chapter contains an extended presentation of:

Andrea Natale and Gabriele Todeschi. TPFA Finite Volume Approximation of Wasserstein
Gradient Flows. In Finite Volumes for Complex Applications IX - Methods, Theoretical
Aspects, Examples, pages 193–201. Springer International Publishing, 2020.

4.1 Introduction

In the previous chapter we proposed a discretization for Wasserstein gradient flows. By
taking advantage of the variational structure of the problem, i.e. the fact that the flow can
be seen as the limit curve generated via the JKO scheme (1.40), we derived a non-trivial
discretization of the partial differential equation representing it, namely equation (1.32). For
this discretization, the energy decay and the positivity of the discrete density can be ensured.
Furthermore, the scheme is intrinsically robust, as it is formulated as the solution of a well-
posed convex optimization problem. Preserving at the discrete level the monotonicity of the
Hamilton-Jacobi operator, at each step of the scheme the solution can be computed solving
the system of non-linear equations (3.30). However, the discretization is of order one, in
time by the very nature of the JKO scheme, and in space due to the choice of the upwind
reconstruction. Moreover, the mere application of the Newton scheme we considered for
solving the equations is not a robust optimization technique. The convergence is indeed
ensured by reducing, whenever necessary, the time step τ (see Section 3.4.1). The objective
of this chapter is to improve these two aspects.

Improving the accuracy in time is the objective of the next chapter, even though a first try
inspired by [41] will be discussed here. We will mainly focus here on the space discretization.
In the previous chapter we strongly relied on the upwind discretization in order to preserve
the monotonocity and write the discrete system of equations (3.30). Without it, one has to
deal with the more general problem (4.22), see below. We follow the path we set in Chapter 2
and employ the same interior point strategy. In this way we can be more flexible in the choice

97
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of the discretization: we will use in particular a centered reconstruction for the mobility as
we did in Chapter 2, which typically leads to second order accuracy in space. Furthermore,
we can obtain in this way a more robust solver by taking advantage of the smoothing effect
and the continuation method.

4.1.1 LJKO time discretization

As we already said, we can see a gradient flow as the limit process of a discrete evolution
that minimizes at each step the sum of an energy term and a penalization on the Wasserstein
distance. This is the so called JKO scheme, which we recall here. For an intial condition
ρ0 ∈ P(Ω) and an increasing sequence (tn)n∈N ⊂ R of time steps such that ∪n[tn−1, tn] = [0, T ],
[tn−1, tn] = τ (not necessarily constant), the JKO scheme constructs a sequence (ρn)n∈N ⊂
P(Ω) as follows: given the measure ρn−1, compute ρn = ρ(tn), where (ρ,m) : [tn−1, tn]×Ω→
R+ × Rd solve

inf
(ρ,m)

∫ tn

tn−1

∫
Ω
B(ρ,m)dxdt+ E(ρ(tn, ·)) , (4.1)

among all (ρ,m) belonging to the convex subset of distributional solutions to the continuity
equation: 

∂tρ+∇ ·m = 0 in [tn−1, tn]× Ω ,

m · n = 0 on [tn−1, tn]× ∂Ω ,

ρ(tn−1, ·) = ρn−1 .

(4.2)

We used the Benamou-Brenier formulation of optimal transport. The function B : R×Rd →
[0,+∞] is the density of kinetic energy,

B(p,Q) :=


|Q|2
2p if p > 0 ,

0 if p = 0, Q = 0 ,

+∞ else ,

(4.3)

and the minimal total kinetic energy of the curve (ρ,m) satisfying the continuity equation con-
straint (4.2) represents the squared Wasserstein distance between ρn−1 and ρn. The sequence
computed in this way is then an approximation in time of the continuous flow. However, the
Wasserstein distance involved in (4.1) is a complex time dependent problem and needs to be
further discretized. Since the JKO scheme is naturally of order one, a first order time dis-
cretization is sufficient (as we have shown numerically in Chapter 3) and leads to a reasonable
computational complexity. As the Wasserstein distance is closed to a weighted Ḣ−1

ρ norm for
two measures that are sufficiently close to each other ([120, Section 7.6],[110]), namely

‖ρ− ν‖Ḣ−1
ρ

=W2(ρ, ν) + o(W2(ρ, ν)), ∀ρ, ν ∈ P(Ω),

we can enormously simplify the problem by replacing it in (4.1)-(4.2). We obtain in this way
the following scheme:

ρn ∈ arginf
ρ∈P(Ω)

1

2τ

∥∥ρ− ρn−1
∥∥2

Ḣ−1
ρ

+ E(ρ), ∀n ≥ 1 . (4.4)
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As we have shown in Chapter 3, by the very same change of variables of the Benamou-Brenier
formulation, the weighted Ḣ−1

ρ norm squared can be written as a convex optimization problem.
Indeed, it holds

1

2

∥∥ρ− ρn−1
∥∥2

Ḣ−1
ρ

= inf
(ρ,m)

{∫
Ω
B(ρ,m)dx :

{
ρ− ρn−1 + ∇ ·m = 0 in Ω,

m · n = 0 on ∂Ω,

}
, (4.5)

see Section 3.1.2. Replacing problem (4.1)-(4.2) with problem (4.4) essentially consists, up to
a time rescale by the factor τ of the momentum, in discretizing the continuity equation using
a single implicit Euler step and the time integral using a right endpoint approximation. We
refer to this time discretization as Linearized JKO scheme (LJKO).

4.2 A second order discretization in space

The space discretization is based again on TPFA finite volumes. Let us recall the main
definitions and notation that we have set in Section 1.3. We denote by

(
T ,Σ, (xK)K∈T

)
an

admissible mesh according to Definition 1.1, namely the triplet of the set of polyhedral control
volumes, the set of faces and the set of cell centers. The space of discrete conservative fluxes
is given by

FT = {F = (FK,σ, FL,σ)σ∈Σ ∈ R2Σ : FK,σ + FL,σ = 0} . (4.6)

We denote Fσ = |FK,σ| = |FL,σ| and, by convention, |F | = (Fσ)σ∈Σ ∈ RΣ and (F )2 =
(F 2

σ )σ∈Σ ∈ RΣ, for F ∈ FT . The spaces of discrete variables are RT and RΣ, defined respec-
tively on the cells and the diamond cells of the mesh, endowed with the two scalar products

〈·, ·〉T : (a, b) ∈ [RT ]2 7→
∑
K∈T

aKbKmK ,

〈·, ·〉Σ : (u,v) ∈ [RΣ]2 7→
∑
σ∈Σ

uσvσmσdσ .

To define the mobility on the diamond cells, we employ again the average operators LΣ,HΣ :
RT → RΣ we introduced in Section 2.2.2: for any a ∈ RT ,

(LΣa)σ = λK,σaK + λL,σaL , (HΣa)σ =
aKaL

λK,σaL + λL,σaK
, (4.7)

which correspond to weighted arithmetic and harmonic averages, where λK,σ, λL,σ ∈ [0, 1],
λK,σ + λL,σ = 1. Other choices are possible, such as geometric or logarithmic averages

[51, 64]. For both reconstructions we will consider the weights (λK,σ, λL,σ) = (
dK,σ
dσ

,
dL,σ
dσ

),
which provide a mass weighted mean. For the linear reconstruction, we will also consider
(1

2 ,
1
2), the standard arithmetic mean, and (

dL,σ
dσ

,
dK,σ
dσ

), which provides a linear reconstruction
of the density at the edge midpoint. Thanks to these reconstructions we expect to obtain
second order accuracy for the space discretization.

We denote by dRΣ[a] : RT → RΣ the differential of RΣ with respect to a, evaluated at a
given a ∈ RT . Clearly, if RΣ = LΣ, we simply have dRΣ[a] = LΣ. Moreover, we denote by
(dRΣ[a])∗ the adjoint of dRΣ[a], with respect to the two different scalar products. For the
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two reconstructions we consider, this operator is given by either L∗Σ or (dHΣ[a])∗, which are
defined by

(L∗Σu)K =
∑
σ∈ΣK

uσλK,σ
mσdσ
mK

, ((dHΣ[a])∗u)K =
∑
σ∈ΣK

(HΣ[a])2
σ

a2
K

uσλK,σ
mσdσ
mK

, (4.8)

for any u ∈ RΣ.

Centered finite volume scheme

The discrete scheme can be derived straightforwardly by following the same steps as in Section
3.2. We begin again by defining the discrete counterpart of the weighted norm (4.5). First,
we introduce the discrete space of zero mass variables:

RT0 =
{
h ∈ RT : 〈h,1〉T = 0

}
.

Then, given the discrete density ρ ∈ RT and for any h ∈ RT0 , the discrete counterpart of the
Ḣ−1
ρ norm squared is

AT (ρ;h) =


inf
F∈FT

∑
σ∈Σ

B ((RT (ρ))σ, Fσ)mσdσ : hKmK =
∑
σ∈ΣK

FK,σmσ

 if 〈h,1〉T = 0 ,

+∞ else .
(4.9)

The total kinetic energy is discretized on the diamond cells. Each flux Fσ is meant as an
approximation of the quantity |m · nK,σ| and the measure of each diamond cell is taken
mσdσ = dm∆σ , i.e. d times the actual measure, where d stands for the space dimension,
in order to compensate this unidirectional discretization. The constraint m · n = 0 on
the boundary is automatically taken into account disregarding the flux on the boundary
edges in the definition of the space of discrete conservative fluxes (4.6). For any ρ ∈ RT ,
the function AT (ρ; ·) is proper (h = 0 has always finite value), convex and lower semi-
continuous as infimum of convex and lower semi-continuous functions. The function B(·, Fσ)
is indeed convex and decreasing and the reconstructions RΣ defined in (4.8) are component-
wise concave. Existence of the optimal flux can be obtained easily thanks to the coercivity of
the objective function with respect to F . The function AT (ρ; ·) is then equal to its double
Legendre transform and it holds:

AT (ρ;h) = inf
F∈FT

sup
φ∈RT

∑
σ∈Σ

B ((RT (ρ))σ, Fσ)mσdσ +
∑
K∈T

φKhKmK −
∑
σ∈Σ

FK,σ(φK − φL)mσ

= sup
φ∈RT

inf
F∈FT

∑
σ∈Σ

B ((RT (ρ))σ, Fσ)mσdσ +
∑
K∈T

φKhKmK −
∑
σ∈Σ

FK,σ(φK − φL)mσ

= sup
φ∈RT

〈φ,h〉T −
1

2

∑
σ∈Σ

(RΣ(ρ))σ

(φK − φL
dσ

)2
mσdσ

= sup
φ∈RT

〈φ,h〉T −A∗T (ρ;φ) .

(4.10)
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Let us comment on the above calculations. After incorporating the constraint via the Lagrange
multiplier φ, we used the conservativity property of the space FT to write:∑

K∈T
φK

∑
σ∈ΣK

FK,σmσ =
∑
σ∈Σ

FK,σ(φK − φL)mσ .

Then we swapped inf and sup thanks to strong duality, the objective function being convex
in F and linear in φ. Finally, we used the optimality conditions with respect to F which
provides

FK,σ = (RΣ(ρ))σ

(φK − φL
dσ

)
.

Notice that differently from the upwind case presented in Chapter 3, which introduces an
asymmetry in the problem, in this case both AT (ρ;h) and A∗T (ρ;φ) are symmetric, i.e.
AT (ρ;−h) = AT (ρ;h) and A∗T (ρ;−φ) = A∗T (ρ;φ).

We can now formulate the discrete versions of problem (4.4). Assume the discrete energy
ρ 7→ ET (ρ) to be a proper, strictly convex and lower semi-continuous scalar function. Given
the discrete initial density ρ0 ∈ RT+, define the discrete space

PT = {ρ ∈ RT+ : 〈ρ,1〉T = 〈ρ0,1〉T } .

For a time step τ > 0, the discrete analogous of the LJKO scheme (4.4) computes recursively
the sequence of densities (ρn)n∈N as: given ρn−1 ∈ PT , compute ρn solution to

inf
ρ∈PT

1

τ
AT (ρ;ρn−1 − ρ) + ET (ρ) . (4.11)

The function ρ 7→ AT (ρ;ρn−1 − ρ) is convex and lower semi-continuous, as it can be written
as the sup of convex and lower semi-continuous functions thanks to (4.10) and by concavity
of RΣ. Existence of a solution ρn is then ensured as the whole objective function is lower
semi-continuous and the minimization is carried out on the compact set PT . Uniqueness
is guaranteed by the strict convexity of the energy. Thanks to the duality formula (4.10),
this ensures the existence also of the optimal potential φn. The conservation of mass is
automatically enforced thanks to the conservativity of the finite volume discretization, by
definition of the function AT , and therefore

〈ρn,1〉T = 〈ρn−1,1〉T , ∀n .

The minimization in ρ can be performed on the whole subspace RT+. Furthermore, the scheme
guarantees the discrete energy-dissipation property: given the solution ρn to (4.11), the com-
petitor ρn−1 provides

1

τ
AT (ρn;ρn−1 − ρn) + E(ρn) ≤ E(ρn−1) .

Thanks to (4.10), rescaling the potential as φ← φ
τ , problem (4.11) can be formulated as

inf
ρ∈RT+

sup
φ∈RT

〈φ,ρn−1 − ρ〉T − τ A∗T (ρ;φ) + ET (ρ) . (4.12)
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We already know that a solution exists (the potential is not necessarily unique) and strong
duality holds again. We can therefore characterize (φn,ρn) as solution to the following system
of necessary and sufficient optimality conditions:

(ρnK − ρn−1
K )mK + τ

∑
σ∈ΣK

(RΣ(ρn))σ

(φnK − φnL
dσ

)
mσ = 0 ,

φnKmK −
∂ET
∂ρK

(ρnK) +
τ

2

(
RT
(φnK − φnL

dσ

)2 )
K
mK ≤ 0 ,

∀K ∈ T . (4.13)

The linear operator RT : RΣ → RT is given by either L∗Σ or (dHΣ[ρn])∗, as defined in (4.8).
The inequality derives from the fact that we are optimizing on the set of positive densities and
the equality holds in the cells where ρK > 0. By introducing the auxiliary variable λn ∈ RT−,
we can rewrite system (4.13) as:

(ρnK − ρn−1
K )mK + τ

∑
σ∈ΣK

(RΣ(ρn))σ

(φnK − φnL
dσ

)
mσ = 0 ,

(φnK − λnK)mK −
∂ET
∂ρK

(ρnK) +
τ

2

(
RT
(φnK − φnL

dσ

)2 )
K
mK = 0 , ∀K ∈ T .

ρnK ≥ 0, λnK ≤ 0, ρnKλ
n
K = 0 ,

(4.14)

The variable λn ∈ RT− acts as the Lagrange multiplier of the positivity constraint on ρn.

Remark on the Hamilton-Jacobi equation

System (4.14) is not easy to solve, the major problem being the non-uniqueness of the mul-
tipliers λ and φ whenever the density vanishes. The discretization we proposed in Chapter
3, based on the upwind reconstruction for the mobility (3.21), allowed us to consider λ = 0
an admissible solution and discard it. That is, it allowed us to saturate the Hamilton-Jacobi
equation, while preserving the optimality of the solution, Theorem 3.5. We relied on the mono-
tonicity of the discrete Hamilton-Jacobi operator, a property that was essential in Lemma 3.6,
the building block of Theorem 3.5. The upwind reconstruction has however another nice fea-
ture as shown in Section 3.2.3: the discrete continuity equation admits only non-negative
solutions. We may think that, in order to consider λ = 0 an admissible solution for system
(4.14), ensuring the positivity is sufficient and that the monotonicity is not needed. Let us
show that such positivity preservation property is not enough.

Consider the weighted harmonic reconstruction operator HΣ : RT → RΣ and let us define
it as:

(HΣ(ρ))σ =

{
dσρKρL

dK,σρL+dL,σρK
if ρK , ρL > 0 ,

0 else ,
(4.15)

so that it is continuous and defined everywhere. The discrete continuity equation in (4.13) is
in this case:

(ρnK − ρn−1
K )mK + τ

∑
σ∈ΣK

(HΣ(ρn))σ

(φnK − φnL
dσ

)
mσ = 0 , ∀K ∈ T . (4.16)
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Equation (4.16) admits only positive solutions as soon as ρn−1 is positive. Suppose indeed
it exists a solution ρn ∈ RT with ρnK < 0, for a control volume K ∈ T . Then we obtain
ρnK = ρn−1

K < 0, which is a contradiction. With this reconstruction we could hope to saturate
the Hamilton-Jacobi equation in system (4.14), i.e. take by default λ = 0 as we did with the
upwind reconstruction, and compute the optimal solution to problem (4.11). This is not the
case as the following counterexample shows. Consider the energy E(ρ) =

∫
Ω

1
2ρ

2, which gives
rise to the porous medium equation, a nonlinear type of diffusion. The discrete counterpart
of this energy is ET (ρ) =

∑
K∈T

1
2ρ

2
KmK . Consider a trivial mesh made of two square cells of

edge length one and cell centers x1 = (−1
2 , 0),x2 = (1

2 , 0), so that there is only one internal
edge σ = 1|2, dσ = 1 and |x1 − x2| = 1. System of equations (4.13) writes in this case

ρn1 − ρ
n−1
1 + τ(φn2 − φn1 )

2ρn1 ρ
n
2

ρn1 +ρn2
= 0 ,

ρn2 − ρ
n−1
2 + τ(φn1 − φn2 )

2ρn1 ρ
n
2

ρn1 +ρn2
= 0 ,

φn1 − ρn1 + τ
2 (φn2 − φn1 )2 2(ρn2 )2

(ρn1 +ρn2 )2
= 0 ,

φn2 − ρn2 + τ
2 (φn1 − φn2 )2 2(ρn1 )2

(ρn1 +ρn2 )2
= 0 ,

where we saturated the Hamilton-Jacobi equations. Take then as initial condition ρ0 = (1, 0).
We can check then that the density ρn = (1, 0),∀n ≥ 1, is an admissible stationary solution
for the system of equations as long as τ < 1

4 , i.e. the density does not evolve. This is clearly
not the correct dynamics, which should instead tend to diffuse the mass everywhere. If the
discretization of the Hamilton-Jacobi operator is not monotone, saturating the equation does
not necessarily provide an optimal solution in problem (4.12).

4.3 A different time approach

We want to propose an alternative, possibly more precise, time discretization to (4.4). It relies
on two things: a variant of the JKO time discretization and a more precise approximation of
the Wasserstein distance. We present it here, instead of postponing it to the next chapter,
since the structure of problem does not change.

The accuracy in time is limited by the very nature of the JKO scheme. In [41] a simple
modification has been proposed which seems to be more accurate. It is based on the analogy
with the Crank-Nicolson time discretization and consists in replacing the energy E in the n-th
JKO step with Ẽn−1 defined as:

Ẽn−1(ρ) =
1

2

(
E(ρ) +

∫
Ω

δE
δρ

[ρn−1] ρ

)
.

The energy Ẽn−1 is the average of the original E with its first order expansion in ρn−1 (up to
a constant term). In the finite dimensional case, given a function F : Rd → R, the problem
writes as

xn ∈ arginf
x∈Rd

1

2τ

∣∣x− xn−1
∣∣2 +

1

2

(
F (x) + 〈∇F (xn−1),x〉

)
.

The optimality conditions for the minimizer xn provides the recurrence formula

xn − xn−1

τ
= −1

2

(
∇F (xn) +∇F (xn−1)

)
,
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which is the Crank-Nicolson time discretization of the Cauchy problem (1.37), the gradient
flow of F .

As the numerical experiments in Chapter 2 suggest, we may be able to obtain a more
precise scheme by taking the arithmetic mean of the measures ρ and ρn−1 as weight for the
H−1 norm:

1

2

∥∥ρ− ρn−1
∥∥2

Ḣ−1

ρ+ρn−1

2

= inf
(ρ,m)

{∫
Ω
B
(ρ+ ρn−1

2
,m
)

dx :

{
ρ− ρn−1 + ∇ ·m = 0, in Ω,

m · n = 0, on ∂Ω,

}
.

(4.17)
In this way the approximation of the Wasserstein distance could be more accurate as the time
integral of the kinetic energy is approximated with a midpoint rule.

Using these simple ideas we can try to devise a higher accurate in time scheme with respect
to (4.4):

ρn ∈ arginf
ρ∈P(Ω)

1

2τ

∥∥ρ− ρn−1
∥∥2

Ḣ−1

ρ+ρn−1

2

+ Ẽn−1(ρ) , ∀n ≥ 1 . (4.18)

The discrete analogous of scheme (4.18) is derived in the same way. At each step n, the
density ρn is computed as:

inf
ρ∈PT

1

τ
AT
(ρ+ ρn−1

2
;ρn−1 − ρ

)
+ Ẽn−1
T (ρ) , (4.19)

where

Ẽn−1
T (ρ) =

1

2

(
ET (ρ) + 〈∇ρET (ρn−1),ρ〉T

)
,

and ∇ρET (ρn−1) = ( ∂ET∂ρK
(ρn−1))K∈T ∈ RT . The analogous of formula (4.9) and (4.10) can be

straighforwardly written. The optimality conditions are derived in the same way and writes
in this case:

(ρnK − ρn−1
K )mK + τ

∑
σ∈ΣK

(
RΣ

(ρn + ρn−1

2

))
σ

(φnK − φnL
dσ

)
mσ = 0 ,

φnKmK −
∂Ẽn−1
T

∂ρK
(ρnK) +

τ

4

(
RT
(φnK − φnL

dσ

)2 )
K
mK ≤ 0 ,

∀K ∈ T . (4.20)

The linear operator RT : RΣ → RT is in this case either L∗Σ or (dHΣ[ρ
n+ρn−1

2 ])∗, as defined
in (4.8). We stress that scheme (4.19) does not necessarily decrease the energy at each step.
The decrease of Ẽn−1 does not implies the decrease of E . We will test this scheme and show
that, despite being more precise, it is not second order accurate in time.

We conclude with another final remark on the Hamilton-Jacobi equation and its saturation.
With the discretization we presented in Chapter 3, the functional in the dual problem, (3.39),
is linear and increasing in φ. This is not the case using the arithmetic mean of the densities
ρn and ρn−1 in the definition of the function AT as in problem (4.19). Indeed, this term
writes

AT (
ρn + ρn−1

2
;ρn−1 − ρn) = 〈φn,ρn−1 − ρn〉T −

1

2

∑
σ∈Σ

(RΣ(
ρn + ρn−1

2
))σ(

φnK − φnL
dσ

)2mσdσ .
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where φn is an optimal potential. In the objective functional, and hence in the dual prob-
lem, there is a term that depends on the density ρn−1 and on the gradient squared of the
potential φn. Consequently, assuming the discrete Hamilton-Jacobi equation to be monotone,
saturating it provides a bigger potential but it does not necessarily increase the value of the
objective functional, as we do not control its gradient squared. The potential obtained by
saturating the equation is not necessarily optimal in this case. For this reason, in the scheme
we proposed in Chapter 3 we cannot consider an arithmetic average of the densities in the
definition of AT . The possibility of saturating the equation depends also on the form of the
dual problem and not only on the monotonicity of the discrete operator.

4.4 Interior point strategy

In order to find solutions to problems (4.11) and (4.19) we use again the interior point strategy
we devised in Section 2.6. As we pointed out already, this approach is very flexible and can
be adapted easily to different problems. Consider for example problem (4.11). We introduce
its perturbed version:

inf
ρ∈RT

1

τ
AT (ρ;ρn−1 − ρ) + ET (ρ)− µ

∑
K∈T

log(ρK)mK . (4.21)

The addition of the barrier function forces the solution to be positive, taking care automati-
cally of the positivity coinstraint, and regularizes the problem. The optimality conditions of
the perturbed problem are in this case

(ρnK − ρn−1
K )mK + τ

∑
σ∈ΣK

(RΣ(ρn))σ

(φnK − φnL
dσ

)
mσ = 0 ,

(φnK + sK)mK −
∂ET
∂ρK

(ρnK) +
τ

2

(
RT
(φnK − φnL

dσ

)2)
K
mK = 0 , ∀K ∈ T ,

sKρK = µ ,

(4.22)

which can be seen as a pertubation of (4.14), where ρK and sK = −λK are automatically
forced to be positive and the orthogonality is relaxed. For small value of the parameter µ
we can then approximate the solution of problem (4.11) (the convergence proof for µ → 0 is
identical to the proof of Theorem 2.13) and the true solution is recovered via a continuation
method. The resulting algorithm is identical to Algorithm 1. See Section 2.6 for a careful
description of the algorithm and all the considerations regarding its implementation, which
apply also in this case.

We remark that solving the gradient flow with respect to an energy which is singular
or has singular derivative in zero, as for example the entropy E(ρ) =

∫
Ω ρ log(ρ), enforces

automatically the strict positivity of the density. In system (4.14) the equality holds then
on every cell and the problem can be solved with the Newton scheme again. However, one
cannot control the magnitude of the energy and therefore the interior point method, even if
not strictly necessary, helps to get a more robust solver.
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4.5 Numerical results

We are going now to perform a convergence test to show that scheme (4.11) is second order
accurate in space. We will also show that the new time discretization (4.19) does not attain
second order accuracy in time. We will finally present a qualitative test, a porous medium
flow.

Convergence test

In Section 3.4, we perfomed a convergence test in order to test the accuracy of the scheme.
We considered an analytical solution to the Fokker-Planck equation. We want to repeat the
same test in the present case, in order to show that the new discretization does attain a second
order accuracy in space.

We recall that the model problem is:

∂t% = ∆%+∇ · (%∇V ) , (4.23)

complemented with no flux boundary condition and a positive initial condition, with V ∈
W 1,∞(Ω) a Lipschitz continuous exterior potential. Equation (4.23) defines a gradient flow in
the Wasserstein space with respect to the energy E(ρ) =

∫
Ω(ρ log ρ+ ρV )dx, and it has been

one of the first problem to be recast in this way [73]. The analytical solution we consider is

%(t,x) = exp
(
−αt+

g

2
x
)(

π cos(πx) +
g

2
sin(πx)

)
+ π exp

(
g
(
x− 1

2

))
,

where α = π2 + g2

4 , which solves equation (4.23) in the domain [0, 0.25]× [0, 1]2 with potential
V (x) = −gx. We take g = 1. Consider then a sequence of meshes

(
Tm,Σm, (xK)K∈Tm

)
with decreasing mesh size hm = hTm , and a sequence of decreasing time steps τm such that
( τm+1

τm
) = (hm+1

hm
)2. We use the same sequence of meshes as in Section 3.4 (see Figure 3.1). We

solve problem (4.23) with scheme (4.11) using this sequence of meshes and using as discrete
initial condition ρ0

K = %(0,xK). The continuous energy is straightforwardly discretized as

ET (ρ) =
∑
K∈T

(ρK log ρK + ρKV (xK))mK .

For each solution we compute the mesh-dependent L1((0, T );L1(Ω)) error:

εm =
∑
n

τm
∑
K∈Tm

|ρnK − ρs(xK , nτm)|mK .

In Table 4.1 are listed the errors for each m together with the convergence rate,

log(εm−1)− log(εm)

log(hm−1)− log(hm)
,

for the three different weighted arithmetic averages and the harmonic one. The scheme is first
order accurate in time and second order accurate in space. The results can be compared with
the results presented in Table 3.1.

We want to test now the scheme (4.19) to see if the strategy proposed in [41], together
with the arithmetic average in time of the mobilities in the definition of function AT , allows
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Table 4.1: Time-space convergence for the scheme (4.11). Linear reconstruction for the mo-
bility in the first three cases, harmonic in the last one.

LΣ HΣ

hm τm εam rate εbm rate εcm rate εm rate

0.2986 0.0500 3.281e-02 / 3.336e-02 / 3.300e-02 / 3.238e-02 /
0.1493 0.0125 7.443e-03 2.140 7.609e-03 2.132 7.341e-03 2.168 7.479e-03 2.114
0.0747 0.0031 1.759e-03 2.081 1.788e-03 2.089 1.736e-03 2.080 1.792e-03 2.062
0.0373 0.0008 4.332e-04 2.021 4.389e-04 2.026 4.288e-04 2.018 4.434e-04 2.015
0.0187 0.0002 1.080e-04 2.004 1.092e-04 2.007 1.070e-04 2.002 1.106e-04 2.004

a Weights (1
2 ,

1
2). b Weights (dLdσ ,

dK
dσ

). c Weights (dKdσ ,
dL
dσ

).

Table 4.2: Time-space convergence for the schemes (4.11) and (4.19).

Scheme (4.11) Scheme (4.19)

LΣ HΣ LΣ HΣ

hm τm εm rate εm rate εm rate εm rate

0.2986 0.0500 2.041e-02 / 2.043e-02 / 5.916e-03 / 6.047e-03 /
0.1493 0.0250 1.071e-02 0.930 1.073e-02 0.929 2.304e-03 1.361 2.367e-03 1.353
0.0747 0.0125 5.404e-03 0.987 5.411e-03 0.988 1.010e-03 1.190 1.025e-03 1.208
0.0373 0.0063 2.709e-03 0.996 2.712e-03 0.997 4.754e-04 1.087 4.769e-04 1.103
0.0187 0.0031 1.356e-03 0.999 1.357e-03 0.999 2.320e-04 1.035 2.320e-04 1.040

to obtain a higher accuracy in time. We repeat the same test using scheme (4.19), using the
same sequence of grids but considering this time a linearly decreasing sequence of time steps
τm, satisfying precisely: ( τm+1

τm
) = (hm+1

hm
). We perform also the test with scheme (4.11) to

compare the results. In both cases, we consider the weights (dKdσ ,
dL
dσ

) and both the linear and
the harmonic reconstruction. We integrate the equation on the time interval [0.05, 0.25] to
avoid the effects of the singularity at time t = 0 in 1 × [0, 1]. The results are presented in
Table 4.2. Although being more precise, the approach (4.19) is only first order accurate.

Porous medium flow

As second application, we consider a gradient flow of an energy which is not singular in
zero. On the domain Ω = [−1.5, 1.5]2, for a time interval [0, T ], consider the porous medium
equation,

∂t% = ∆%δ +∇ · (%∇V ) ,

which we recall is a gradient flow in the Wasserstein space with respect to the energy E(ρ) =∫
Ω

1
δ−1ρ

δ+ρV , for a given δ strictly greater than one [108]. We consider the confining potential

V (x) = 1
2 |x|

2, which forces the density to concentrate at the origin. We compute the discrete
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Figure 4.1: Convergence towards the Barenblatt solution (γ = 2). Time steps t = 0, t = 0.1
and t = 0.7.
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Figure 4.2: Exponential decay profile of the dissipation along time, with the three values
corresponding to Figure 4.1. Semi-logarithmic plot.

flow using scheme (4.11) with linear reconstruction, for the discrete energy

ET (ρ) =
∑
K∈T

(
1

δ − 1
ρδK + ρKV (xK)

)
mK .

In (4.1) the evolution of an initial cross shaped density is shown for the case δ = 2. As
expected, the solution converges towards the Barenblatt profile

ρ∞(x) = max

((M
2π

) δ−1
δ − δ − 1

2δ
|x|2 , 0

) 1
δ−1

,

M being the total mass of the initial condition (Figure 4.1). In Figure 4.2, it is represented
the dissipation profile of the energy, ET (ρn)−ET (ρ∞), which converges exponentially towards
the energy of the Barenblatt equilibrium solution.

4.6 Concluding remarks

In order to be able to discretize Wasserstein gradient flows with second order accuracy in
space, we presented a strategy based again on TPFA finite volumes. Instead of considering
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the upwind reconstruction, we used in this case a centered reconstruction for the density, which
enabled to reach the second order accuracy in space. The time discretization is again based
on the LJKO scheme, which limits the accuracy in time and therefore the overall accuracy
of the scheme. The modification based on the strategy proposed in [41] does not provide a
second order accurate scheme. We will consider a second order time discretization in the next
chapter.

The great advantage of using the upwind reconstruction is to be able to solve the system
of optimality conditions directly, resulting in an extremely efficient approach. In comparison,
the interior point strategy we proposed for solving the problem with the new discretization is
evidently more involved, as it requires the solution of several non-linear system of equations.
Concerning specifically the solution of the sequence of linear systems, all the considerations
we made in Section 3.4.1 are again valid: the barrier function has a local structure (i.e. its
hessian is diagonal) and if the discrete energy functional ET is local as well, the system of
equations can be reduced to the strictly positive definite and symmetric Schur complement
and solved with efficient techniques. Notice that the third equation in (4.22) has been added
artificially in order to decouple the optimization in ρ and s, but the linear system can be
easily reduced to the first two equations.

On the other hand, the smoothing effect of the perturbation and the continuation method
result in an extremely robust solver: no matter the time step τ chosen, the solution exists
and the algorithm is able to compute it. In Chapter 3 we chose to apply directly the Newton
scheme to solve the system of equations (3.30), without considering a globalization technique
as for example the use of a linesearch. The convergence was there enforced by reducing the
time step when necessary. Indeed, for the Newton scheme the natural starting point is the
solution at step n−1. The closer this point is to the solution at step n, the easier it is to solve
the problem. The strategy therefore was to link the accuracy of the solution to the possibility
to solve the system of equations. In this case, the interior point method is sufficiently robust
to allow us to solve the problem for any time step. The time step has therefore to be chosen in
advance and a careful control, based for example on the (approximate) Wasserstein distance
between consecutive densities, could improve the performance of the scheme. We did not
explore this possibility in this work.

These last considerations deserve a final comment regarding the present approach. Due to
the interior point strategy, the previous known solution is not a valid starting point because
of the presence of the perturbation, especially if it has a compact support. The initialization
has always to be the constant density in order to ease the start of the algorithm, see Section
2.6 for details. This implies that all the information we know thanks to the previous value of
the solution is disregarded in the new step. This seems to be an unavoidable consequence of
using an interior point strategy and it is particularly penalizing in the computation of gradient
flows.
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Chapter 5

A modified BDF2 scheme for
Wasserstein gradient flows

5.1 Introduction

In Chapters 3 and 4 we presented strategies for discretizing Wasserstein gradient flows. Con-
cerning the time discretization, we relied on the JKO scheme (1.40), variational generalization
of the implicit Euler scheme. For the space discretization we followed two strategies based al-
ways on TPFA finite volumes. In Chapter 3 we used the upwind choice for the reconstruction
of the mobility, which leads to a monotone discretization and enables to obtain a one step
resolvant of the system of equations (1.54). The problem can then be solved using directly
a Newton scheme. The drawback is that the accuracy in space of the scheme is limited to
order one. In Chapter 4, we used instead a centered reconstruction which enables to obtain a
second order accuracy in space but requires more effort for solving the discrete optimization
problem. The objective is now to increase the accuracy in time and propose a second order
in time and space scheme.

The JKO scheme is naturally an order one discretization in time. A new variational
strategy is required if we want to increase the accuracy. New approaches can be designed
generalizing second order schemes for ordinary differential equations, following the example
of the JKO scheme. The simple strategy we considered in Chapter 4 which has been proposed
in [41], based on the analogy with the Crank-Nicolson scheme, is not enough. Two other
strategies have been proposed, which are not however particularly suited to be implemented:
the variational implicit midpoint [82] and the variational backward differentiation formula of
order two [93]. We will propose a modified version of the latter. The new strategy can be
justified rigorously and we propose a possible non rigorous, yet effective, implementation. To
the best of our knowledge, there exist no numerical approach able to compute with second
order accuracy general Wasserstein gradient flows while preserving the variational structure.

5.1.1 Existing variations of the JKO scheme

Two well-known second order accurate schemes for ordinary differential equations are the
midpoint scheme and the BDF2 (Backward Differentiation Formula of order 2) scheme. Let
us consider the domain Rd endowed with the standard euclidean metric. We can cast these two
schemes in a variational form as follows. Consider a real valued scalar function F : Rd → R,

111
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a starting point x0 ∈ Rd and a time step τ > 0. The Variational Implicit Midpoint (VIM)
scheme can be written as: at each step n, compute xn as

xn ∈ arginf
x∈Rd

1

2τ

∣∣x− xn−1
∣∣2 + 2F

(x+ xn−1

2

)
. (5.1)

The optimality conditions of (5.1) provide the recurrence formula

1

τ
(xn − xn−1) = −∇F

(xn + xn−1

2

)
,

which is indeed the midpoint scheme for the Cauchy problem (1.37). If we consider instead
two initial conditions x0,x1 ∈ Rd, where x1 can be computed for example with a single Euler
step (1.43), the variational BDF2 scheme can be written as: compute at each step n the point
xn as

xn ∈ arginf
x∈Rd

1

τ

(
α
∣∣x− xn−1

∣∣2 − β ∣∣x− xn−2
∣∣2)+ F (x) , (5.2)

with α = 1, β = 1
4 . The optimality conditions of (5.2) are in this case

1

τ

(3

2
xn − 2xn−1 +

1

2
xn−2

)
= −∇F (xn) , (5.3)

that is the Backward Differentiation Formula of order 2.

These two schemes have been recently extended to the computation of more general gra-
dient flows, respectively by Legendre and Turinici in [82] and by Matthes and Plazotta in
[93]. Both schemes have been formulated for general metric spaces, but we will focus on
our case of interest. Let us place ourselves in the Wasserstein space and consider the energy
functional E : P(Ω)→ R. As for the JKO, these two schemes generate a sequence of measures
(ρn)n∈N ⊂ P(Ω) which discretize the continuous flow. To define the VIM scheme in this
case, the linear interpolation needs to be substituted with a more general curve, the geodesic.
Given then ρn−1 ∈ P(Ω), the n-th VIM step writes:

ρn ∈ arginf
ρ∈P(Ω)

1

2τ
W2

2 (ρ, ρn−1) + 2E(ρ̃n) , (5.4)

where ρ̃n is the midpoint of the (not necessarily unique) geodesic between ρ and ρn−1. Given
instead ρn−1, ρn−2 ∈ P(Ω), the n-th BDF2 step can be naturally written as:

ρn ∈ arginf
ρ∈P(Ω)

1

τ

(
αW2

2 (ρ, ρn−1)− βW2
2 (ρ, ρn−2)

)
+ E(ρ) . (5.5)

where again α = 1, β = 1
4 . These two approaches are not however of immediate implementa-

tion.

Scheme (5.4) is not numerically feasible as it requires an explicit formula for the midpoint
given the initial and final density. This may also lead to convexity issues. In the finite
dimensional case, where geodesics are straight lines and the midpoint coincides with the simple
arithmetic mean, the objective function is convex as soon as F is. In the case of problem (5.4),
it is simple to see that the objective functional is generalized geodesically convex as soon as
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the energy functional E is1. Nevertheless, at the discrete level obtaining a convex problem
does not seem to be trivial, depending of course on how we represent the geodesic midpoint.
Notice however that the VIM scheme can be formulated in another, equivalent way. In order
to compute ρn at the n-th step, one can compute first ρ̃n with a JKO step with halved time
step τ

2 ,

ρ̃n ∈ arginf
ρ∈P(Ω)

1

τ
W2

2 (ρ, ρn−1) + E(ρ) , (5.6)

and then compute ρn as the 2-extrapolation2 along the geodesic from ρn−1 to ρ̃n. The equiv-
alence of the two formulations is immediate since for the three measures ρn−1, ρ̃n and ρn it
holds

1

2τ
W2

2 (ρn, ρn−1) + 2E(ρ̃n) = 2
(1

τ
W2

2 (ρ̃n, ρn−1) + E(ρ̃n)
)
.

Problem (5.6) is classically (generalized geodesically) convex as soon as the functional E
is classically (generalized geodesically) convex. Nevertheless, it requires to extrapolate the
measure curve. Although numerically feasible (see Section 5.3), in this way there are no
guarantees on the regularity of the final measure, as the extrapolation does not provide any
regularity. We will expose this issue in Section 5.4.1.

The BDF2 scheme does not require to compute any extrapolation or geodesic. Problem
(5.5) is not however a convex optimization problem in the classical sense. We know that the
functional W2

2 (·, µ), for any fixed measure µ ∈ P(Ω), is convex. Despite the fact that α > β,
the difference of the two distances in (5.5) is not necessarily convex. Consider the following
simple counterexample. Take ρn−1 = δ0 and ρ1 = δ−x, ρ2 = δx, three delta measures centered
respectively in 0,x and −x. Along the interpolation ρt = (1− t)ρ1 + tρ2, the first term of the
functional, W2

2 (ρt, ρ
n−1), is constant whereas the other one is not for a general ρn−2. Then

the second term is concave along the interpolation. The overall convexity of the functional
in (5.5) depends on the energy E . This lack of convexity inevitably leads to difficulties in its
numerical implementation, see Sections 5.3.3 and 5.4.1.

5.1.2 A new formulation for the BDF2

The BDF2 in the euclidean setting does not suffer from this convexity issue. Problem (5.2)
is indeed convex since it holds

α
∣∣x− xn−1

∣∣2 − β ∣∣x− xn−2
∣∣2 = (α− β)

∣∣x− xn−1
e

∣∣2 − αβ

α− β
∣∣xn−1 − xn−2

∣∣2
and α > β, where

xn−1
e =

αxn−1 − βxn−2

α− β
= xn−2 +

α

α− β
(xn−1 − xn−2) = xn−2 +

4

3
(xn−1 − xn−2) (5.7)

is the euclidean 4
3 -extrapolation from xn−2 to xn−1. The point xn−1

e is an approximation of
the gradient flow at time tn−1 + τ

3 . It can be defined as the unique solution to the following

1Assume for simplicity that T1,T2 are the two optimal transport plans from ρn−1 (or any other measure) to
the two measures ρ1, ρ2. If we consider T1

s = (1−s)Id+sT1, and identically T2
s, then µt = ((1−t)T1

s+tT
2
s)#ρ

n−1

is a generalized geodesic for any s ∈ [0, 1].
2Assuming for simplicity T to be the optimal transport maps from ρ1 to ρ2, we recall that the t-extrapolation

is the measure µt = (Tt)#ρ
1, where Tt = (1− t)Id + tT for t > 1.
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problem:

arginf
x∈Rd

α
∣∣x− xn−1

∣∣2 − β ∣∣x− xn−2
∣∣2 . (5.8)

Thanks to (5.7) we can rewrite the step (5.2) as

xn ∈ arginf
x∈Rd

1

τ
(α− β)

∣∣x− xn−1
e

∣∣2 + F (x) , (5.9)

where we neglect the constant term.
In analogy with (5.9), we propose the following modified version of the BDF2 scheme.

Given a time step τ > 0 and two initial conditions ρ0, ρ1 ∈ P(Ω), where ρ1 can be computed
for example with a single JKO step (1.40), compute ρn as

ρn ∈ arginf
ρ∈P(Ω)

1

τ
(α− β)W2

2 (ρ, ρn−1
e ) + E(ρ) , (5.10)

where the density ρn−1
e is defined as

ρn−1
e ∈ arginf

ρ∈P(Ω)
αW2

2 (ρ, ρn−1)− βW2
2 (ρ, ρn−2) . (5.11)

In the same way as problem (5.8) recasts in a variational way the euclidean extrapolation,
problem (5.11) provides a variational notion of Wasserstein extrapolation in a metric sense.
At each step, instead of directly computing the new measure by solving problem (5.5), we first
compute the extrapolation at time tn−1 + τ

3 and then realize a JKO step of length τ
2(α−β) = 2τ

3

from this point in order to compute the measure ρn at time tn = tn−1 + τ .
This modified BDF2 scheme requires to compute at each step n the density ρn−1

e , which
is to be computed in advance and does not depend on the unknown density ρ. The problem
(5.5) is therefore convex as long as E is. Differently from the VIM scheme, in this case the
extrapolation is computed before taking the JKO step and the energy is evaluated in the final
density, providing regularity to the solution. Problem (5.11) suffers from the same convexity
issues of the original problem (5.5). Nonetheless, a sufficiently accurate approximation to the
solution ρn−1

e can be effectively computed, which motivates its use from the numerical point
of view. We remark that the metric notion of Wasserstein extrapolation provided by problem
(5.11) differs in general from the geodesic extrapolation we presented in Section 1.1.2. See
the discussion in Section 5.2.1 below.

5.1.3 Organization of the chapter

In Section 5.2 we will analyze this new formulation of the BDF2 scheme. We will first
state the well-posedness of the scheme and characterize its properties. We will then show
the consistency of the approach: firstly, by proving the convergence of the scheme towards
distributional solutions of the Fokker-Planck equation, in the same spirit of the original paper
[73]; secondly, by showing that this time discretization recovers Wasserstein gradient flows
defined in the EVI sense. Relying on the finite volumes techniques developed in the previous
chapters, we will propose a numerical implementation of the scheme. Since (5.11) is not a
convex optimization problem, we will propose another definition of extrapolation. We will
verify the consistency and the second order accuracy in Section 5.4. We will also present
simple implementations of the VIM and the original BDF2 schemes, test their accuracy and
compare their solutions.
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5.2 Analysis of the modified BDF2 scheme

In order to carry out the analysis of the scheme, let us make the following assumptions
on the energy functional: E is lower-semicontinuous with respect to the weak-* topology,
bounded from below and generalized geodesically convex (see Section 1.2.1). To simplify the
presentation, we consider the time step τ to be fixed at each step n and to be always an
integer divisor of the total integration time T , i.e. Nτ = T

τ ∈ N. In the following, we will
keep most of the time the explicit reference to the coefficients α, β in order to keep track of
the computations. We recall that α = 1 and β = 1

4 .

5.2.1 Well-posedness and main properties of the scheme

Given the two measures ρn−1, ρn−2 ∈ P(Ω) and the two real numbers α, β, let us define for
compactness of notation the functional F(ρn−1, ρn−2; ρ) as

F(ρn−1, ρn−2; ρ) := αW2
2 (ρ, ρn−1)− βW2

2 (ρ, ρn−2) .

We first show that the minimizer of the functional F(ρn−1, ρn−2; ρ) is always well-defined. In
this sense, the following lemma, which is a particular case of [93, Theorem 3.4], is fundamental.
It states that F(ρn−1, ρn−2; ·) is convex along the generalized geodesic curve centered in ρn−1

(see Section 1.2.1).

Lemma 5.1. For any two given measures ω0, ω1 ∈ P(Ω), denote by ω : [0, 1]→ P(Ω), ω(0) =
ω0, ω(1) = ω1, the generalized geodesic curve joining them and centered in ρn−1. Then,
∀t ∈ [0, 1], it holds:

F(ρn−1, ρn−2;ω(t)) ≤ (1−t)F(ρn−1, ρn−2;ω0)+tF(ρn−1, ρn−2;ω1)−(α−β)t(1−t)W2
2 (ω0, ω1).

(5.12)

Theorem 5.2 (Metric extrapolation). There exists a unique solution ρn−1
e to problem (5.11).

Moreover, it holds

(α− β)W2
2 (ρ, ρn−1

e ) + F(ρn−1, ρn−2; ρn−1
e ) ≤ F(ρn−1, ρn−2; ρ) , ∀ρ ∈ P(Ω) , (5.13)

and

W2
2 (ρn−1

e , ρn−1) ≤
( β

α− β

)2
W2

2 (ρn−1, ρn−2) , (5.14)

W2
2 (ρn−1

e , ρn−2) ≤
( α

α− β

)2
W2

2 (ρn−1, ρn−2) . (5.15)

Proof. First of all, the functional F(ρn−1, ρn−2; ρ) is bounded from below: using indeed the
inequality

W2
2 (ρ, ρn−2) ≤

(
1 +

1

c

)
W2

2 (ρ, ρn−1) + (1 + c)W2
2 (ρn−1, ρn−2) ,

(which derives from the triangular inequality and Young’s inequality) with c = β
α−β > 0, we

get

F(ρn−1, ρn−2; ρ) ≥
(
α− β

(
1 +

1

c

))
W2

2 (ρ, ρn−1)− β(1 + c)W2
2 (ρn−1, ρn−2)

= − αβ

α− β
W2

2 (ρn−1, ρn−2) .
(5.16)
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Existence of the solution is then immediate, as the space P(Ω) is compact in the weak-* topol-
ogy and the functional is continuous for the same topology. Uniqueness derives immediately
from Lemma 5.1.

Inequality (5.13) derives again from Lemma 5.1. For ρ ∈ P(Ω), consider a measure curve
ω as in Lemma 5.1, with ω0 = ρn−1

e and ω1 = ρ. By optimality of ρn−1
e , it holds

0 ≤ F(ρn−1, ρn−2;ω(t))−F(ρn−1, ρn−2; ρn−1
e )

= t
(
F(ρn−1, ρn−2; ρ)−F(ρn−1, ρn−2; ρn−1

e )
)
− (α− β)t(1− t)W2

2 (ρ, ρn−1
e ) ,

which, dividing by t and taking the limit t→ 0, gives (5.13). Substituting ρn−1, ρn−2 in (5.13)
and using (5.16), we obtain respectively the two estimates (5.14)-(5.15).

From the inequality (5.13) we understand that problem (5.10) is a lower bound for the
original formulation (5.5). Let us assume that the geodesic 4

3 -extrapolation from ρn−2 to ρn−1

exists. It is given by (πe)#γ
n−1, where γn−1 is the optimal transport plan between ρn−1 and

ρn−2 and πe = 1
α−β (απ2 − βπ1), the maps π1 and π2 standing for the canonical projections

on the first and second component of the space Ω × Ω. Recalling that along the geodesic
extrapolation particles move straight with constant speed and the total distance is therefore
proportional to the travel time (see Sections 1.1.2-1.1.2), it holds

αW2
2 ((πe)#γ

n−1, ρn−1)− βW2
2 ((πe)#γ

n−1, ρn−2) =

= α
( β

α− β

)2
W2

2 (ρn−1, ρn−2)− β
( α

α− β

)2
W2

2 (ρn−1, ρn−2) = − αβ

α− β
W2

2 (ρn−1, ρn−2) ,

which is the minimum for problem (5.11) by the lower bound (5.16). The geodesic 4
3 -

extrapolation solves problem (5.11). This latter may not always exist, as the particles may
bump into each others or the domain. However, the solution ρne to problem (5.11) does and it
is in this sense its metric generalization. The estimates (5.14)-(5.15), which express the sta-
bility of this extrapolation, will be fundamental in the sequel. If the geodesic extrapolation
exists, the equality holds in (5.14)-(5.15).

Let us consider now problem (5.10). Again for compactness of notation, we define the
objective functional of problem (5.10) as:

G(ρn−1, ρn−2; ρ) :=
1

τ
(α− β)W2

2 (ρ, ρn−1
e ) + E(ρ) .

Thanks to the assumptions on the energy, G(ρn−1, ρn−2; ρ) is lower semi-continuous with
respect to the weak-* topology, bounded from below and strictly convex in the generalized
geodesic sense. Then the next theorem follows quite easily.

Theorem 5.3. At each step n, there exists a unique solution ρn to problem (5.10).

Proof. The proof of existence is again an application of the direct method of the calculus of
variations. We recall that the Wasserstein distance is 2-convex along generalized geodesics
[3, Section 9.2]. Then the functional G(ρn−1, ρn−2; ρ) is as well 2-convex along generalized
geodesics, thanks to the assumption on E . The uniqueness of the minimizer follows.

Differently from the JKO scheme, but analogously to the VIM and the original BDF2
schemes, at each step the energy is not necessarily diminished.
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Lemma 5.4. At each step n, the solution ρn satisfies the following inequality

α− 2β

τ
W2

2 (ρn, ρn−1) + E(ρn) ≤ β

τ
W2

2 (ρn−1, ρn−2) + E(ρn−1) . (5.17)

Proof. By optimality of ρn and using (5.14), we can write

1

τ
(α− β)W2

2 (ρn, ρn−1
e ) + E(ρn) ≤ 1

τ
(α− β)W2

2 (ρn−1, ρn−1
e ) + E(ρn−1)

≤ 1

τ

β2

α− β
W2

2 (ρn−1, ρn−2) + E(ρn−1) .

Using the inequality

W2
2 (ρn, ρn−1) ≤ (1 +

1

c
)W2

2 (ρn, ρn−1
e ) + (1 + c)W2

2 (ρn−1, ρn−1
e ) ,

for c = α−2β
β and again (5.14), we can estimate the left-hand side from below as

α− β
τ
W2

2 (ρn, ρn−1
e ) + E(ρn) ≥ α− β

τ

(
c

c+ 1
W2

2 (ρn, ρn−1)− cW2
2 (ρn−1, ρn−1

e )

)
+ E(ρn)

≥ α− 2β

τ
W2

2 (ρn, ρn−1)− β(α− 2β)

τ(α− β)
W2

2 (ρn−1, ρn−2) + E(ρn) .

Rearranging, we obtain (5.17).

Although the energy does not strictly decrease at each step, its possible growth is con-
trolled. The energy is in any case bounded by a decreasing function as the inequality (5.19)
shows in the following theorem, which also provides the usual classical estimate for gradient
flows.

Theorem 5.5. Given a fixed time horizon T > 0, assuming there exists a constant C1 > 0
such that W2

2 (ρ1, ρ0) ≤ C1τ and assuming further E(ρ1) <∞, it holds:

1

τ

Nτ∑
n=0

W2
2 (ρn, ρn−1) ≤ C2 (5.18)

∀τ > 0, Nτ = T
τ , with the constant C2 independent of τ .

Proof. Summing over n the inequality (5.17) we obtain

α− 3β

τ

N∑
n=0

W2
2 (ρn, ρn−1) ≤ E(ρ1)− E(ρN ) +

β

τ
W2

2 (ρ1, ρ0) , (5.19)

Then, since α − 3β > 0 for α = 1, β = 1
4 , and thanks to the lower bound on the energy, we

have

1

τ

N∑
n=0

W2
2 (ρn, ρn−1) ≤ 1

α− 3β

(
E(ρ1)− E(ρN ) + βC1

)
≤ C2 .

Remark 5.6. The condition W2
2 (ρ1, ρ0) ≤ C1τ is satisfied for example considering the first

step to be performed with a JKO step and ρ0 such that E(ρ0) <∞.
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5.2.2 Convergence towards the Fokker-Planck equation

The objective of the present section is to validate our modified BDF2 approach by showing the
convergence of the discrete flow generated via the scheme (5.10)-(5.11) to the linear Fokker-
Planck equation. We recall the form of the model problem and the energy functional that
generates it: given a Lipschitz continuous exterior potential V ∈ W 1,∞(Ω), the equation
writes

∂t% = ∆%+∇ · (%∇V ) in [0, T )× Ω , (5.20)

complemented with no-flux boundary conditions ∇% + %∇V · n = 0 on ∂Ω and an initial
condition %(0, ·) = ρ0 ∈ P(Ω). Equation (5.20) represents a Wasserstein gradient flow with
respect to the energy functional

E(ρ) = U(ρ) +

∫
Ω
ρV , (5.21)

where the internal energy U , the entropy, is defined as

U(ρ) =

{∫
Ω ρ log ρ if ρ absolutely continuous ,

+∞ else .
(5.22)

The functional (5.21) is lower semi-continuous with respect to the weak-* topology [115,
Proposition 7.7], is bounded from below and convex along generalized geodesics [3, Proposition
9.3.9]. Therefore the measure ρn solution to problem (5.10) exists and is unique at each step
n, and it is furthermore absolutely continuous. We consider a proper initial condition ρ0,
E(ρ0) <∞, and the first measure ρ1 to be generated via a JKO step with time parameter τ :

ρ1 = argmin
ρ∈P(Ω)

1

2τ
W2

2 (ρ, ρ0) + E(ρ) .

Although the discrete flow does not move by strictly minimizing the energy at each step, we
want to show that it converges to the maximal slope curve of E . We will resort to the same
ideas developed in the original work [73].

Relying on the estimate (5.18), the compactness arguments for obtaining a limit curve are
rather standard. We introduce the two density curves

ρτ (t) =

N∑
n=1

ρn−1
1(tn−1,tn] , ρτ (0) = ρ0 ,

ρ̃τ (t) =
N∑
n=1

ρ̃n1(tn−1,tn] , ρ̃τ (0) = ρ0 ,

with ρ̃n geodesic between ρn−1 and ρn on the time interval [tn−1, tn] (that is the time interval
in problem (1.15) is [tn−1, tn] and not [0, 1]). This means that there exist a vector field ṽτ
which solves the continuity equation

∂tρ̃τ +∇ · (ρ̃τ ṽτ ) = 0 in [0, 1]× Ω .
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It is defined as the interpolation of the vector fields ṽn(t,x) defined on each interval [tn−1, tn]
as

ṽn(t,x) =

(
Tn − Id

τ

)
◦
(

(tn − t)
τ

Id(x) +
(t− tn−1)

τ
Tn(x)

)−1

.

The vector field Tn−Id
τ is the constant velocity of the particles of ρn−1 going to ρn. On each

interval [tn−1, tn] it holds:

W2
2 (ρn, ρn−1) = τ

∫ tn

tn−1

∫
Ω
ρ̃τ |ṽτ |2 .

The curve ρτ is a piecewise constant measure curve whereas ρ̃τ is a (absolutely) continuous
one, interpolation of the discrete densities.

Proposition 5.7. The sequence (ρτ )τ converges uniformly in theW2 distance to an absolutely
continuous measure curve %.

Proof. The sequence of curves (ρ̃τ )τ∈R+ , defined from [0, T ] to the compact Wasserstein space,
is uniformly Hölder continuous. Indeed, for any r, s ∈ [0, T ], s > r, denote Nr, Ns the two
integers such that r ∈ [tNr , tNr+1], s ∈ [tNs−1, tNs ]. Let us call (ρ∗,v∗) the optimal density
displacement and velocity field between ρ̃τ (r) and ρ̃τ (s). We recall that along this curve the
kinetic energy is constant in time. Since on the contrary (ρ̃τ , ṽτ ) is not optimal between these
two measures, it holds

W2(ρ̃τ (s), ρ̃τ (r)) =

∫ s

r

(∫
Ω
ρ∗|v∗|2

) 1
2

≤ (s− r)
1
2

(∫ s

r

∫
Ω
ρ∗|v∗|2

) 1
2

≤ (s− r)
1
2

(∫ s

r

∫
Ω
ρ̃τ |ṽτ |2

) 1
2

≤ (s− r)
1
2

(
Ns∑

n=Nr+1

∫ tn

tn−1

∫
Ω
ρ̃τ |ṽτ |2

) 1
2

= (s− r)
1
2

(
Ns∑

n=Nr+1

1

τ
W2

2 (ρn, ρn−1)

) 1
2

≤ C(s− r)
1
2

(5.23)
where in the last inequality we used the estimate (5.18). By the (generalized) Ascoli-Arzelà
theorem, the sequence converges uniformly in W2, up to a subsequence, to a limit curve %.
As the inequality (5.23) passes to the limit, % is as well an absolutely continuous curve in the
Wasserstein space. Finally, for any r ∈ [0, T ],

W2(ρτ (r), ρ̃τ (r)) ≤
∫ tNr+1

tNr

∫
Ω
ρ̃τ |ṽτ |2 ≤ C

√
τ ,

by the same computations. The piecewise continuous curve ρτ converges uniformly with order√
τ to the same limit curve %.

To characterize the limit curve % we have to rely on the optimality conditions of the
objective functionals G and F . Consider an absolutely continuous measure ρ and a smooth
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vector field ξ tangent to the boundary of Ω. We define ω as the absolutely continuous curve
solution to

∂sω +∇ · (ωξ) = 0 , in (−δ, δ)× Ω , ω(0) = ρ , (5.24)

for δ ∈ R, δ > 0. We take variations along curves defined in this way. The hypothesis
of absolute continuity of ρ is essential in order to define ω(s) at each time s ∈ (−δ, δ) as
pushforward of ρ.

Lemma 5.8. Consider two measures ρ, ν ∈ P(Ω). Assume ρ absolutely continuous and denote
by γ the optimal transport plan between them. For any ξ ∈ C∞(Ω,Rd) such that ξ ·n = 0 on
∂Ω, consider curves defined as in (5.24) centered in ρ. It holds:

dW2
2 (ω(s), ν)

ds
|s=0 = 2

∫
Ω×Ω
〈x− y, ξ(x)〉 dγ(x,y) , (5.25)

and
dE(ω(s))

ds
|s=0 = −

∫
Ω

(∇ · ξ(x))ρ(x)dx+

∫
Ω
〈∇V (x), ξ(x)〉ρ(x)dx . (5.26)

Proof. See [73, Theorem 5.1].

We want to write the optimality conditions of the two problems (5.11)-(5.10). As the
measure ρn is absolutely continuous, we can apply Lemma 5.8 for (5.10). Nevertheless, the
measure ρn−1

e solution to (5.11) is not necessarily absolutely continuous, even though ρn−1

and ρn−2 are. Constructing a counter-example is simple, thanks to the equivalence between
problem (5.11) and the geodesic extrapolation, when this latter exists. We cannot therefore
apply directly formula (5.25). We can however write the optimality conditions of problem
(5.11) by a regularization argument.

Lemma 5.9. At each step n, let us denote by γn−1,1
e and γn−1,2

e respectively the optimal
transport plans from ρn−1 to ρn−1

e and from ρn−2 to ρn−1
e . Then it necessarily holds

α

∫
Ω×Ω
〈xe − y1, ξ(xe)〉dγn−1,1

e (xe,y1)− β
∫

Ω×Ω
〈xe − y2, ξ(xe)〉dγn−1,2

e (xe,y2) = 0 , (5.27)

for any ξ ∈ C∞(Ω,Rd) such that ξ · n = 0 on ∂Ω.

Proof. In order to prove the result we construct a sequence of approximated smooth variational
problems and pass to the limit in the optimality conditions. Let us define

Fε(ρn−1, ρn−2; ρ) := F(ρn−1, ρn−2; ρ) + εU(ρ) , (5.28)

and the regularized problem
inf

ρ∈P(Ω)
Fε(ρn−1, ρn−2; ρ) , (5.29)

for ε ∈ R, ε > 0. Problem (5.29) admits a solution ρn−1
e,ε which is now absolutely continuous.

The proof is the same as in Theorem 5.2. By applying Lemma 5.8, we can write down the
necessary optimality conditions of problem (5.29):

dFε(ρn−1, ρn−2;ω(s))

ds
|s=0 = 2α

∫
Ω×Ω
〈xe − y1, ξ(xe)〉dγn−1,1

e,ε (xe,y1)

− 2β

∫
Ω×Ω
〈xe − y2, ξ(xe)〉dγn−1,2

e,ε (xe,y2)− ε
∫

Ω
(∇ · ξ(x))ρn−1

e,ε (x)dx = 0 , (5.30)



5.2. ANALYSIS OF THE MODIFIED BDF2 SCHEME 121

for any ξ ∈ C∞(Ω;Rd) tangent to the boundary, where we now denote by γn−1,1
e,ε and γn−1,2

e,ε

respectively the optimal transport plans from ρn−1 to ρn−1
e,ε and from ρn−2 to ρn−1

e,ε .

We want to show that problem (5.29) Γ-converges towards problem (5.11) in order to pass
to the limit in the optimality conditions. By the lower semi-continuity of F and the fact that
U is non-negative, the Γ-lim inf is obvious,

F(ρn−1, ρn−2; ρ) ≤ lim inf
ε
F(ρn−1, ρn−2; ρε) ≤ lim inf

ε
Fε(ρn−1, ρn−2; ρε) ,

for any ρε → ρ in the Wasserstein sense. Concerning the Γ-lim sup, if U(ρn−1
e ) < +∞ we

can take ρε = ρn−1
e as recovering sequence. Otherwise, we take a sequence of absolutely

continuous measure ρε converging to ρn−1
e in the Wasserstein sense. The set of absolutely

continuous measures is dense in P(Ω) for the weak-* topology, justifying the existence of such
sequence. Since U(ρn−1

e ) = ∞, up to a reparametrization we can assume that the entropy is
increasing and that

U(ρε) ≤
C√
ε
,

for a constant C independent of ε. Then it holds:

lim sup
ε
Fε(ρn−1, ρn−2; ρε) = lim

ε
Fε(ρn−1, ρn−2; ρε) = F(ρn−1, ρn−2; ρn−1

e ) .

Therefore problem (5.29) Γ-converges to problem (5.11), which implies that ρn−1
e,ε → ρn−1

e in
the Wasserstein sense. By the stability of optimal transport plans [120, Exercise 2.17]

γn−1,1
e,ε −→ γn−1,1

e , γn−1,2
e,ε −→ γn−1,2

e ,

for the weak-* convergence of measures. As the vector field ξ is smooth, passing to the limit
in (5.30) we obtain (5.27).

We can now prove convergence of the sequence of curves (ρτ )τ towards a distributional
solution of equation (5.20).

Theorem 5.10. For all ϕ ∈ C∞c ([0, T )× Ω), the limit curve % satisfies:

−
∫ T

0

∫
Ω
∂tϕ%−

∫
Ω
ϕ(0)%(0)dx−

∫ T

0

∫
Ω

∆ϕ%+

∫ T

0

∫
Ω
〈∇V,∇ϕ〉% = 0 . (5.31)

Proof. Consider a smooth function ϕ ∈ C∞c ([0, T ] × Ω) such that ∇ϕ · n = 0 on ∂Ω. We
define the sequence (ϕn)n ⊂ C∞c (Ω) as ϕn = ϕ(tn, ·). At each step n > 2, the derivatives
(5.25)-(5.26) hold with ξ = ∇ϕn−2. Consider then a curve ω defined as in (5.24) centered in
ρn. We denote γ̄n the optimal transport plan between ρn−1

e and ρn. Owing to (5.25)-(5.26),
the necessary optimality condition of problem (5.10) for the measure ρn is:

dG(ρn−1, ρn−2;ω(s))

ds
|s=0 =

2

τ
(α− β)

∫
Ω×Ω
〈x− xe,∇ϕn−2(x)〉dγ̄n(x,xe)

−
∫

Ω
(∆ϕn−2(x))ρn(x)dx+

∫
Ω
〈∇V (x),∇ϕn−2(x)〉ρn(x)dx = 0 .

(5.32)



122 CHAPTER 5. A SECOND ORDER ACCURATE SCHEME

Thanks to Proposition 5.7 and the regularity of ϕ, we immediately have

∣∣∣∣∣
N∑
n=2

τ

(
−
∫

Ω
(∆ϕn−2)ρn +

∫
Ω
〈∇V,∇ϕn−2〉ρn

)

−
(
−
∫ T

0

∫
Ω

∆ϕ%+

∫ T

0

∫
Ω
〈∇V,∇ϕ〉%

) ∣∣∣∣∣ −→ 0 ,

for τ → 0. In order to prove that the measure % is a distributional solution of equation (5.20)
we need to show that

I1 =

∣∣∣∣∣
N∑
n=2

2(α− β)

∫
Ω×Ω
〈x− xe,∇ϕn−2(x)〉dγn(x,xe)

−
(
−
∫ T

0

∫
Ω
∂tϕ%−

∫
Ω
ϕ(0)%(0)dx

) ∣∣∣∣∣ −→ 0 ,

as well. We can bound the latter quantity as I1 ≤ I2 + I3, where

I2 =

∣∣∣∣∣
N∑
n=2

2(α− β)

∫
Ω×Ω
〈x− xe,∇ϕn−2(x)〉dγn(x,xe)

− 2

∫
Ω

((α− β)ρn − αρn−1 + βρn−2)ϕn−2

∣∣∣∣∣ ,
and

I3 =

∣∣∣∣∣
N∑
n=2

2

∫
Ω

((α− β)ρn − αρn−1 + βρn−2)ϕn−2 −
(
−
∫ T

0

∫
Ω
∂tϕ%−

∫
Ω
ϕ(0)%(0)

)∣∣∣∣∣ .
Integrating by part the discrete derivative

N∑
n=2

2

∫
Ω

((α− β)ρn − αρn−1 + βρn−2)ϕn−2 =

=
N∑
n=2

2

∫
Ω

((α− β)ϕn−2 − αϕn−1 + βϕn)ρn + βρ0ϕ0 + (βϕ1 − αϕ0)ρ1

=

N∑
n=2

∫
Ω

(
3

2
ϕn−2 − 2ϕn−1 +

1

2
ϕn)ρn + (ϕ1 − ϕ0)ρ1 +

1

2
ρ0ϕ0 − ρ1ϕ0 − 1

2
ϕ1ρ1 ,

we can see that, thanks to the smoothness of the function ϕ and Proposition 5.7, I3 ≤ Cτ for
some constant C independent of τ . Let us focus then on the term I2.
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At each step n, adding and subtracting 2(α− β)
∫

Ω(ρn − ρn−1
e )ϕn−2, we can write:∣∣∣∣2(α− β)

∫
Ω×Ω
〈x− xe,∇ϕn−2(x)〉dγn(x,xe)− 2

∫
Ω

((α− β)ρn − αρn−1 + βρn−2)ϕn−2

∣∣∣∣
≤ 2(α− β)

∣∣∣∣∫
Ω×Ω
〈x− xe,∇ϕn−2(x)〉dγn(x,xe)−

∫
Ω

(ρn − ρn−1
e )ϕn−2

∣∣∣∣
+ 2

∣∣∣∣∫
Ω

(αρn−1 − βρn−2 − (α− β)ρn−1
e )ϕn−2

∣∣∣∣
= 2(α− β)I4 + 2I5 .

Rewriting ∫
Ω

(ρn − ρn−1
e )ϕn−2 =

∫
Ω×Ω

(ϕn−2(x)− ϕn−2(xe))dγ̄
n(x,xe) ,

we can bound I4 as

I4 =

∣∣∣∣∫
Ω×Ω

ϕn−2(x)− ϕn−2(xe)− 〈x− xe,∇ϕn−2(x)〉dγ̄n(x,xe)

∣∣∣∣
≤ 1

2
||Hess(ϕn−2)||∞

(∫
Ω×Ω
|x− xe|2dγ̄n(x,xe)

)
=

1

2
||Hess(ϕn−2)||∞W2

2 (ρn, ρn−1
e )

≤ ||Hess(ϕn−2)||∞
(
W2

2 (ρn, ρn−1) +W2
2 (ρn−1, ρn−1

e )
)

≤ ||Hess(ϕn−2)||∞
(
W2

2 (ρn, ρn−1) +
β2

(α− β)2
W2

2 (ρn−1, ρn−2)
)
,

where we used the estimate (5.14). In order to bound the term I5, we use the optimality
condition of problem (5.11), namely equation (5.27). Rewriting∫

Ω
(αρn−1 − βρn−2 − (α− β)ρn−1

e )ϕn−2 =α

∫
Ω×Ω

(ϕn−2(y1)− ϕn−2(xe))dγ
n−1,1
e (xe,y1)

− β
∫

Ω×Ω
(ϕn−2(y2)− ϕn−2(xe))dγ

n−1,2
e (xe,y2) ,

we can bound I5 as

I5 =∣∣∣∣α ∫
Ω×Ω

(ϕn−2(y1)− ϕn−2(xe))dγ
n−1,1
e (xe,y1)− β

∫
Ω×Ω

(ϕn−2(y2)− ϕn−2(xe))dγ
n−1,2
e (xe,y2)

∣∣∣∣
≤
∣∣∣∣α ∫

Ω×Ω
〈x1 − xe,∇ϕn−2(xe)〉dγn−1,1

e (xe,y1)− β
∫

Ω×Ω
〈x2 − xe,∇ϕn−2(xe)〉dγn−1,2

e (xe,y2)

∣∣∣∣
+

1

2
||Hess(ϕn−2)||∞

(
α

∫
Ω×Ω
|y1 − xe|2dγn−1,1

e (xe,y1) + β

∫
Ω×Ω
|y2 − xe|2dγn−1,2

e (xe,y2)

)
=

1

2
||Hess(ϕn−2)||∞

(
αW2

2 (ρn−1
e , ρn−1) + βW2

2 (ρn−1
e , ρn−2)

)
≤ 1

2
||Hess(ϕn−2)||∞

(
αβ2 + βα2

(α− β)2
W2

2 (ρn−1, ρn−2)

)
,
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where we used again the smoothness of ϕ, the optimality conditions (5.27), and the estimates
(5.14)-(5.15). Finally, we can bound I2 as

I2 ≤ τ ||Hess(ϕ)||∞
N∑
n=2

(
2(α− β)W2

2 (ρn, ρn−1) + (α+ 2β)W2
2 (ρn−1, ρn−2)

)
≤ Cτ ,

using the estimate (5.18). The whole term I1 is therefore converging to zero and % satisfies
equation (5.31).

Remark 5.11. Note that the term I5 could be controlled in other ways. First of all, it would
be exactly zero if we considered the density to be extrapolated in the euclidean sense, i.e. taking
ρn−1
e = α

α−βρ
n−1 − β

α−βρ
n−2, implying that this simple strategy would still lead to a conver-

gent scheme although the accuracy would not be second order, as one can numerically verify.
Considering instead the two optimal transport maps Tn−1 and Te

n−1, mapping respectively
ρn−2 to ρn−1 and ρn−2 to ρn−1

e , we could rewrite

I2 =

∣∣∣∣∫
Ω

(αϕn−2(Tn−1(y2))− βϕn−2(y2)− (α− β)ϕn−2(Te
n−1(y2)))dρn−2

∣∣∣∣
≤
∣∣∣∣∫

Ω
〈αTn−1(y2))− βy2 − (α− β)Te

n−1(y2),∇ϕn−2(y2)〉dρn−2

∣∣∣∣
+

1

2
||Hess(ϕn−2)||∞

(∫
Ω×Ω
|Tn−1(y2)− y2|2dρn−2 +

∫
Ω×Ω
|Te

n−1(y2)− y2|2dρn−2

)
.

The scheme would be consistent taking ρn−1
e equal to the pushforward of the map Te

n−1 =
α

α−βTn−1− β
α−β Id. If Te

n−1 is not the gradient of a convex function, the pushforward via this

map is not necessarily the solution of problem (5.11). However, Te
n−1 may not be well-defined

in case the mass leaves the domain, i.e. Im(Te
n−1) 6⊂ Ω.

5.2.3 Convergence in the EVI sense

Let us now make the further assumption that the energy functional E is λ-convex in the
generalized geodesic sense, for λ ∈ R+. We will limit ourselves to the case λ ≥ 0 for simplicity.
We recall that a curve % : [0, T ]→ P(Ω), %(0) = ρ0, is a Wasserstein gradient flow in the EVI
sense if for any ν ∈ P(Ω) it holds

d

dt

1

2
W2

2 (%(t), ν) ≤ E(ν)− E(%(t))− λ

2
W2

2 (%(t), ν), ∀t ∈ (0, T ) . (5.33)

Equivalently, we can write it in integral form. The inequality (5.33) holds if and only if for
all r, s ∈ (0, T ) with r ≤ s it holds

1

2
W2

2 (%(s), ν)− 1

2
W2

2 (%(r), ν) ≤ E(ν)(s− r)−
∫ s

r
(E(%(t)) +

λ

2
W2

2 (%(t), ν))dt . (5.34)

The original BDF2 scheme [93] has been proven to converge to gradient flows in the EVI sense,
i.e. the limit curve extracted from the time discretization (5.5) satisfies the inequality (5.34).
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The convergence has been proven for general metric spaces. We want to show here that our
modified BDF2 scheme (5.10)-(5.11) recovers the same convergence in the Wasserstein space.

We first show that for scheme (5.10)-(5.11) a discrete equivalent form of the inequal-
ity (5.34) holds. As the Wasserstein distance W2

2 (·, ρn−1
e ) is 2-convex along any generalized

geodesic centered in ρn−1
e , the overall functional

G(ρn−1, ρn−2; ρ) =
1

τ
(α− β)W2

2 (ρ, ρn−1
e ) + E(ρ) , (5.35)

is 2
τ (α − β) + λ > 0 convex along any generalized geodesic centered in ρn−1

e as well. We
consider the case λ ≥ 0 in order to avoid dealing with the conditions on the time step τ in
order to have 2

τ (α− β) + λ > 0, and simplify the presentation.

Lemma 5.12. At each step n, ∀ν ∈ P(Ω), the following inequality holds:

(1

τ
(α− β) +

λ

2

)
W2

2 (ρn, ν)− α

τ
W2

2 (ν, ρn−1) +
β

τ
W2

2 (ν, ρn−2) ≤

≤ E(ν)− E(ρn) +
αβ

τ(α− β)
W2

2 (ρn−1, ρn−2)− 1

τ
(α− β)W2

2 (ρn, ρn−1
e ) . (5.36)

Proof. The functional G is (2(α−β)+λ)-convex along generalized geodesics, therefore consid-
ering the generalized geodesic ω between ν and ρn with center ρn−1

e , and using the optimality
of ρn, it holds

0 ≤ G(ρn−1, ρn−2;ω(t))− G(ρn−1, ρn−2; ρn)

≤ t(G(ρn−1, ρn−2; ν)− G(ρn−1, ρn−2; ρn))− 1

2

(2

τ
(α− β) + λ

)
t(1− t)W(ρn, ν).

Dividing by t and taking the limit t→ 0 we obtain(1

τ
(α− β) +

λ

2

)
W2

2 (ρn, ν)− 1

τ
(α− β)W2

2 (ν, ρn−1
e ) ≤ E(ν)− E(ρn)− 1

τ
(α− β)W2

2 (ρn, ρn−1
e ) .

Adding on both side the term −F(ρn−1, ρn−2; ρn−1
e ), using (5.13) on the left-hand side and

(5.16) on the right-hand side, we conclude.

We recall that thanks to the classical estimate (5.18) (Theorem 5.5), the piecewise constant
curve

ρτ (t) =
N∑
n=1

ρn−1
1(tn−1,tn] , ρτ (0) = ρ0 ,

converges uniformly in theW2 distance to an absolutely continuous limit curve % (see Proposi-
tion 5.7). In order to prove convergence of the scheme in the EVI sense, we show that the this
curve satisfies inequality (5.34). Thanks to the uniform convergence in time, the procedure is
the same as in [93, Theorem 5.1].

Theorem 5.13. The curve % satisfies (5.34).
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Proof. For simplicity, assume that given r, s ∈ (0, T ), r ≤ s, there exist Nτ ,Mτ ∈ N, Nτ ≤Mτ ,
such that r = Nττ, s = Mττ , ∀τ . We multiply by τ inequality (5.36) and sum over n from
Nτ to Mτ to obtain the discrete integral form of the EVI:

Mτ∑
n=Nτ

(
(α− β)W2

2 (ρn, ν)− αW2
2 (ν, ρn−1) + βW2

2 (ν, ρn−2)
)
≤

≤ E(ν)(t− s)−
Mτ∑
n=Nτ

τ
(
E(ρn) +

λ

2
W2

2 (ρn, ν)
)

+

Mτ∑
n=Nτ

(
αβ

α− β
W2

2 (ρn−1, ρn−2)− (α− β)W2
2 (ρn, ρn−1

e )

)
. (5.37)

By canceling out terms, the left-hand side is equal to

− αW2
2 (ν, ρNτ−1) + βW2

2 (ν, ρNτ ) + βW2
2 (ν, ρNτ−1)

+ (α− β)W2
2 (ρMτ−1, ν) + (α− β)W2

2 (ρMτ , ν)− αW2
2 (ν, ρMτ−1) , (5.38)

and thanks to the uniform convergence in the Wasserstein distance, (5.38) converges to

1

2
W2

2 (%(s), ν)− 1

2
W2

2 (%(r), ν) ,

for τ → 0, where we recall α = 1, β = 1
4 . Concerning the right-hand side, thanks again to the

uniform convergence in the Wasserstein distance, the lower semi-continuity of E and Fatou’s
lemma, we have

lim sup
n→∞

−
Mτ∑
n=Nτ

τ
(
E(ρn) +

λ

2
W2

2 (ρn, ν)
)
≤ −

∫ s

r

(
E(%(t)) +

λ

2
W2

2 (%(t), ν)
)

dt .

Finally, owing to bound (5.18), we estimate the last contribution of (5.37) as

∑
n

αβ

α− β
W2

2 (ρn−1, ρn−2)− (α− β)W2
2 (ρn, ρn−1

e ) ≤
∑
n

αβ

α− β
W2

2 (ρn−1, ρn−2) ≤ Cτ,

which converges to zero. In the end, we recover the continuous inequality (5.34).

5.3 Finite volume discretization

Based on the modified BDF2 we proposed, we want to devise a second order accurate finite
volume scheme in both space and time. The discretization of problem (5.10) will be done
employing the techniques we presented in the previous Chapter 4. More involved is instead
the discretization of problem (5.11), as it is not a convex optimization problem in the classical
sense. We propose for this reason a non-variational approach.
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5.3.1 Extrapolation in the viscosity sense

Let us consider two measures µ, ν ∈ P(Ω) and assume that the α
α−β -extrapolation, in the

geodesic sense, from µ to ν exists. We have seen that in this case, given the solution (φ̃, ρ̃)
to problem (1.26) which defines the geodesic interpolation, we can compute the extrapolated
measure as the final value of the measure curve defined by∂tρ+∇ · (ρ∇φ) = 0 ,

∂tφ+
1

2
|∇φ|2 = 0 ,

in

[
1,

α

α− β

]
× Ω , (5.39)

complemented with the boundary conditions ρ∇φ · n = 0 on ∂Ω and the initial conditions
ρ(1, ·) = ρ̃(1, ·), φ(1, ·) = φ̃(1, ·). System (5.39) is a system of two forward in time equations
that can be solved separately, starting from the Hamilton-Jacobi equation and then recovering
the measure evolution from the continuity equation. In alternative, once we have computed
the solution φ to the Hamilton-Jacobi equation, the latter step can be written as finding

ρe ∈ arginf
ρ∈P(Ω)

α− β
2β
W2

2 (ρ, ν)−
∫

Ω
φeρ , (5.40)

where φe = φ( α
α−β , ·). Problem (5.40) is a JKO step with energy E(ρ) = −

∫
Ω φeρ and time

step β
α−β = 1

3 . If the geodesic extrapolation exists, the solution to problem (5.40) coincides
with the one of (5.39). Indeed, in this case we know that the potential φe is given by

φe =
α

α− β
φ̃(0, ·) =

4

3
φ̃(0, ·)

(see Section 1.1.2) and |x|
2

2 −φe is convex. The optimality condition of (5.40) then guarantees
that φe is the optimal potential in the transport from the minimizer to ν (see [115, Proposition
7.20] and the Example 7.21 that follows). By uniqueness of the geodesic, the solution provided
coincides with the solution of (5.39).

As we already said, the extrapolation in the geodesic sense may not always exist, the
problem being that the particles moving in a straight trajectory may collide at some point
after the final measure or encounter the boundary of the domain. If this happens, the solution
to the Hamilton-Jacobi equation cannot be a classical one. We need to consider solutions that
dissipate the possible shock, namely viscosity solutions. The weak solution (φ, ρ) provided in
this way by system (5.39) is well defined thanks to the semi-concavity of the initial condition
φ̃(1, ·), see [12]. We can always extrapolate in this sense and move past a potential shock. If
φ is not a classical solution to the Hamilton-Jacobi equation, that is in the case the geodesic
extrapolation does not exist, problems (5.39) and (5.40) do not provide the same measure. In
this case, we can therefore define the extrapolation ρe in two different ways, either integrating
the continuity equation in (5.39) or solving the variational problem (5.40). We will use
both strategies in our numerical approach. If the geodesic extrapolation exists, the two
approaches are consistent, which motivates their use for numerical computations. As the
numerical experiments will show in Section 5.4, this choice not only provides a consistent
scheme but it is also second order accurate.
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5.3.2 A second order finite volume scheme

Following the same ideas we exposed in Chapters 3-4, we want to approximate the scheme
(5.10)-(5.39) with the least computational effort possible, preserving the accuracy of the overall
approach. Problem (5.10) can be simplified using again the weighted H−1 norm and resorting
to the same space discretization we introduced in Chapter 4. This time, the choice of the
arithmetic average of the densities as weight for the H−1 norm will be fundamental in order
to achieve second order accuracy in time. We will focus here on the strategy to compute ρn−1

e ,
which can be divided in three consecutive steps. First, we need to solve the optimal transport
problem between the measures ρn−2 and ρn−1 in order to evaluate the optimal potential φ̃n−1

pushing one into the other. Then, we evolve φ̃n−1 forward in time with the Hamilton-Jacobi
equation. Finally, we recover the density from the first equation in (5.39), or solving problem
(5.40). We will reduce these problems to one step discretizations.

Discrete setting

We consider TPFA finite volumes which requires sufficiently regular partitioning of the do-
main, according to Definition 1.1. We recall that the spaces of discrete variables defined on
cells and diamond cells, RT and RΣ, are endowed with the two scalar products 〈·, ·〉T and
〈·, ·〉Σ:

〈·, ·〉T : (a, b) ∈ [RT ]2 7→
∑
K∈T

aKbKmK , 〈·, ·〉Σ : (u,v) ∈ [RΣ]2 7→
∑
σ∈Σ

uσvσmσdσ .

The space of discrete probability measures PT ⊂ RT is

PT = {ρ ∈ RT+ : 〈ρ,1〉T = 〈ρ0,1〉T } .

Finally, the space of consevative fluxes is defined as:

FT = {F = (FK,σ, FL,σ)σ∈Σ ∈ R2Σ : FK,σ + FL,σ = 0} .

We recall that we denote Fσ = |FK,σ| = |FL,σ| and that by convention |F | = (Fσ)σ∈Σ ∈ RΣ

and (F )2 = (F 2
σ )σ∈Σ ∈ RΣ, for F ∈ FT . The discrete divergence divT : FT → RT and the

discrete gradient ∇Σ : RT → FT are defined by:

(divT F )K = divKF =
1

mK

∑
σ∈ΣK

FK,σmσ ,

(∇Σa)K,σ = ∇K,σa :=
aL − aK
dσ

.

We will use a centered reconstruction for the mobility in order to attain the second order
accuracy in space. For this purpose, we will use again the weighted arithmetic average operator
LΣ : RT → RΣ and its adjoint L∗Σ : RΣ → RT (with respect to the two scalar products):

(LΣa)σ =
dK,σ
dσ

aK +
dL,σ
dσ

aL , (L∗Σu)K =
∑
σ∈ΣK

uσ
mσdK,σ
mK

,

for a ∈ RT and u ∈ RΣ.
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Discrete extrapolation

Let us consider two discrete densities µ,ν ∈ PT . We are going to show a possible implemen-
tation to extrapolate from µ to ν, following what we proposed in Section 5.3.1. As we did
in Chapters 3-4, we will approximate the Wasserstein distance with a discrete weighted H−1

norm. We stress that we will consider now the arithmetic average of the densities as weight.
The first step is to compute the interpolation between the two discrete densities. By

approximating the Wasserstein distance with the weighted H−1 norm between µ and ν3,

AT
(µ+ ν

2
;µ− ν

)
= sup
φ∈RT

〈µ− ν,φ〉T − 〈L
(µ+ ν

2

)
, (∇Σφ)2〉Σ , (5.41)

we simply have to compute the optimal potential φ̃ in (5.41). See Section 4.2 for details on
formula (5.41). This potential can be considered as an approximation of the continuous one
at the midpoint of the time interval [0, 1]. The optimality conditions of the problem provide
the one step discretization of the continuity equation:

µ− ν + divT (L
(µ+ ν

2

)
�∇φ̃) = 0 . (5.42)

Notice that a solution to problem (5.41) is not necessarily unique as the Dirichlet energy is
weighted by the time-space reconstruction of the density, which may vanish. In this case, in
order to uniquely defined φ̃ and consequently the extrapolation, we consider the solution with
minimal Dirichlet energy.

Once we have computed the potential φ̃ which transports µ to ν, the second step can be
realized integrating forwardly in time the Hamilton-Jacobi equation explicitly. We integrate
till the time 1 + β

2(α−β) = 7
6 in order to approximate the potential in the midpoint of the

interval [1, α
(α−β) ] = [1, 4

3 ]. In the following step we will compute the extrapolated density ρe
as solution to the continuity equation discretized with the midpoint rule, whence this choice.
The length of the temporal step is therefore α

2(α−β) = 2
3 and the potential φe ∈ RT is explicitly

given by:

φe = φ̃− 2(α− β)

α

1

2
L∗T (∇Σφ̃)2 , (5.43)

To discretize the Hamilton-Jacobi operator and reconstruct the norm squared of the gradient
on each cell K ∈ T , we used the adjoint of the linear reconstruction L. As this step is not
variational, this choice is not mandatory and we could use in principle any second order dis-
cretization. Notice in particular that at the discrete level, since we approximate the equation
in one step, we don’t need to recover a viscous solution. We can therefore be more flexible in
the discretization. Finally, the density ρe is computed as solution to the discrete continuity
equation with given velocity field ∇Σφe:

ρe − ν +
(α− β)

β
divT (L

(ρe + ν

2

)
�∇Σφe) = 0 . (5.44)

Equation (5.44) discretizes the continuuity equation with the midpoint rule on the time inter-
val [1, α

(α−β) ] = [1, 4
3 ]. We used again the linear reconstruction operator, although this choice

is not mandatory, and the arithmetic average of the densities to reconstruct the mobility.

3Notice that with respect to the definitions we gave in Chapters 3-4 we are implicitly changing the sign of
the potential.
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The first step of this procedure to compute the discrete extrapolation is variational and can
be solved in an efficient and robust way. Although for vanishing mobility the non-uniqueness
could be an issue to carefully deal with, in practice the density will be always strictly greater
than zero. At each step in fact the density ρn will be computed thanks to the same interior
point method we presented in Chapter 4. Therefore, we can compute the solution φ̃ solving
directly the linear system (5.42). The second step is explicit and does not pose any problem.
The last one is not variational and a solution is not guaranteed to exist or to be unique
in general, depending on the velocity field ∇Σφe. Furthermore, this discretization does not
guarantee the positivity of the density ρe. Designing a second order space discretization in
order to preserve it is not immediate due to the unavoidable arithmetic average in time for
the mobility, which is necessary to preserve the order two accuracy of the approach.

In order to overcome this last issue, we present an alternative method for computing ρe
based on problem (5.40). After computing the potential φ̃ as solution to problem (5.41),
we can evolve it until the final time α

α−β = 4
3 , that is considering a temporal step of length

1
2 + β

α−β = α+β
2(α−β) = 5

6 :

φe = φ̃− 2(α− β)

α+ β

1

2
L∗T (∇Σφ̃)2 . (5.45)

Then, we approximate problem (5.40) using again the discrete H−1 norm and we compute
the density ρe as4

ρe ∈ arginf
ρ∈PT

β

(α− β)
AT
(ρ+ ρn−1

2
;ρn−1 − ρ

)
− 〈φe,ρ〉T , (5.46)

which is an LJKO step with step length β
α−β and discrete energy −〈φe,ρ〉T .

Modified BDF2 discrete scheme

We can finally formulate our second order finite volume scheme. Consider a strictly convex
discrete energy function ET : RT → R. Given two initial densities ρ0,ρ1 ∈ RT , with the same
total discrete mass 〈ρ0,1〉T = 〈ρ1,1〉T , and a time step τ > 0, we compute the sequence of
densities (ρn)n≥2 ⊂ PT defined by the following recursive scheme:

1) compute the
4

3
-extrapolation ρn−1

e from ρn−2 to ρn−1;

2) compute ρn solution to the LJKO step:

inf
ρ∈PT

2

τ
(α− β)AT

(ρ+ ρn−1
e

2
;ρn−1

e − ρ
)

+ ET (ρ) .

(5.47)

The first step can be realized either via (5.41)-(5.43)-(5.44) or (5.41)-(5.45)-(5.46). In order
to find solutions to the LJKO steps, we use the same interior point strategy presented in
Section 4.4. Since extrapolating using the continuity equation (5.44) does not guarantee the
positivity of the density, we need to carefully handle it. If the density ρn−1

e becomes negative,

4We recall that the factor 1
2

in front of the Wasserstein distance squared is absorbed in the definition of
AT , see Section 4.2.
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the functional in the LJKO step in (5.47) is not anymore convex on the whole RT+ and it may
also be unbounded from below. To avoid it, we can modify the step as

inf
ρ∈PT

2

τ
(α− β)AT

(ρ+ (ρn−1
e )+

2
;ρn−1

e − ρ
)

+ ET (ρ)

where (ρn−1
e )+ =

(
max((ρn−1

e )K , 0)
)
K∈T .

5.3.3 Other implementations

As we said in Section 5.1.1, the VIM scheme and the original variational BDF2 are not
particularly convenient approaches for designing a discrete scheme. We can nevertheless
briefly show that their implementation is possible and leads to second order accurate schemes
(see Section 5.4.2). We will compare their solutions to the solutions provided by scheme
(5.47).

As we said in Section 5.1.1, the VIM scheme can be implemented by first solving a JKO
step with time step τ

2 and then computing the 2-extrapolation. We can use the same idea for
extrapolating that we presented in the previous section. We can then propose a discrete VIM
scheme as: given the initial density ρ0 ∈ PT and a time step τ > 0, at each step n,

1) compute ρ̃n solution to the LJKO step:

inf
ρ∈PT

2

τ
AT
(ρ+ ρn−1

2
;ρn−1 − ρ

)
+ ET (ρ) ;

2) compute ρn as the 2-extrapolation from ρn−1 to ρ̃n.

(5.48)

The time parameter in the LJKO step is τ
2 . The extrapolation step can again be computed

either via (5.43)-(5.44) or (5.45)-(5.46). In order to realize the 2-extrapolation, we need to

consider the values α = 1, β = 1
2 . In this case, the value for the potential φ̃

n−1
is already

known from the LJKO step and does not need to be computed. As before, the discrete LJKO
steps can be computed thanks to the interior point strategy presented in Section 4.4.

We can also propose a naive discretization of scheme (5.5). Consider two initial conditions
ρ0,ρ1 ∈ PT and the time parameter τ > 0. At each step n, for ρn−1,ρn−2 ∈ PT , compute ρn

as solution to

inf
ρ∈PT

2

τ

(
αAT

(ρ+ ρn−1

2
;ρ− ρn−1

)
− βAT

(ρ+ ρn−2

2
;ρ− ρn−2

))
+ ET (ρ) , (5.49)

with again α = 1, β = 1
4 . We approximate each Wasserstein distance in (5.5) with a weighted

discrete H−1 norm. Problem (5.49) is not a convex optimization problem. Notice that it is

not even bounded from below in general. The function AT (ρ+ρn−2

2 ;ρn−2 − ρ) is not indeed
bounded from above for all ρn−2 ∈ PT 5. We can nevertheless try to compute stationary points
of the objective function in (5.49). A stationary point can be easily recognized to satisfy the

5Just consider that, if the density ρn−2 is not supported everywhere, one can chose a density ρ ∈ PT in

order to realize a finite displacement with vanishing mobility ρ+ρn−2

2
, i.e. infinite kinetic energy.
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following system of equations:

ρ− ρn−1

τ
− divT

(
L
(ρ+ ρn−1

2

)
�∇φ1

)
= 0,

ρ− ρn−2

τ
− divT

(
L
(ρ+ ρn−2

2

)
�∇φ2

)
= 0,

2α

τ

(
φ1 +

1

2
L∗T (∇Σφ1)2

)
− 2β

τ

(
φ2 +

1

2
L∗T (∇Σφ2)2

)
−∇ρET (ρ) ≤ 0.

(5.50)

where ∇ρET (ρ) = ( ∂ET∂ρK
(ρ))K∈T ∈ RT . The first two continuity equations are the optimality

conditions of the two discrete H−1 norm, whereas the third one is the stationarity with respect
to ρ. We can try to compute solutions to system (5.50) using again the interior point strategy.

5.4 Numerical validation of the modified BDF2 approach

We want to show now that the scheme (5.47), based on the modified BDF2 temporal dis-
cretization we proposed, is second order accurate. We will consider both the implementation
we proposed. We will also show qualitatively the behavior of the scheme with simple one di-
mensional tests. We will compare in this case the solution provided by scheme (5.47) with the
solutions provided by schemes (5.48) and (5.49). We will further show that also these schemes
are second order accurate. When two initial conditions ρ0,ρ1 are needed, we compute first
ρ1 from ρ0 via the LJKO scheme (4.11).

We consider for these purposes two specific problems that exhibit a gradient flow structure
in the Wasserstein space: the Fokker-Planck equation we presented in Section 5.2.2 and the
porous medium equation. We recall that this latter equation writes

∂t% = ∆%δ +∇ · (%∇V ) , (5.51)

and it is a Wasserstein gradient flow with respect to the energy

E(ρ) =

∫
Ω

1

δ − 1
ρδ + ρV , (5.52)

for a given δ strictly greater than one and with V ∈ W 1,∞(Ω) a Lipschitz continuous
exterior potential [108]. The energy functionals (5.21) and (5.52) are both of the form
E(ρ) =

∫
ΩE(ρ)dx for a real valued scalar function E. They can be straightforwardly dis-

cretized as ET =
∑

K∈T E(ρK)mK .

5.4.1 Comparison between the three approaches

We perform one dimensional tests in order to show how the scheme (5.47) works and compare
it with the other two approaches (5.48) and (5.49). We consider a discretization of the domain
Ω = [0, 1] in subintervals of length mK = 0.02. We will compute the extrapolation thanks to
(5.45)-(5.46).

We first address the diffusion equation, which is problem (5.20) with zero external potential
V . We take as initial condition

ρ0 = exp
(
− 50

(
x− 1

2

)2)
,
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Figure 5.1: Comparison between the three schemes for the diffusion equation. From top to
bottom, the BDF2 scheme (5.49), the VIM scheme (5.48) and the modified BDF2 scheme
(5.47). From left to right, three different time steps: t = 0.02, 0.04, 0.06.

which we discretize as ρ0 = ρ0(xK), and the time step τ = 0.01. We solve the problem with
the three schemes, the BDF2 scheme (5.49), the VIM scheme (5.48) and the modified BDF2
scheme (5.47). The results are shown in Figure 5.1. The mass diffuses from the center of the
domain, where it is initially concentrated, towards the boundary. Extrapolating along this
dynamics means that the particles have to move further towards the boundary. It happens
therefore that they reach it, concentrate and start diffusing again, which in the end may
generate oscillations. In the VIM scheme (5.48), when we first solve a JKO step and then
extrapolate, there appear oscillations that are higly unstable and persist along the integration
in time. In our approach instead, the modified BDF2 scheme (5.47), extrapolating before and
then realizing the JKO step smooths and stabilizes the flow. The BDF2 scheme (5.49) does
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not suffer at all from this problem, yet again notice that the dynamics may slightly differ
from the pure diffusion (for the time step chosen). The oscillations attenuates and tend to
disappear for smaller and smaller time step τ .

Remark 5.14. Our modification of the BDF2 scheme and the VIM scheme perform the same
operations, extrapolation and JKO step, but in a different order. Up to a temporal shift, the
two operations can be considered to be synchronized. Hence, it is the different length of the
steps, rather than the order of the operations, that explains the difference in the observed
regularity. In scheme (5.47) the length of the extrapolation step is 1

3 , whereas it is 1
2 for

scheme (5.48). The length of the JKO step is 2
3 for the former and 1

2 for the latter. The
modified BDF2 performs a smaller extrapolation and a longer JKO step.

Consider now the porous medium equation (5.51) with δ = 2 and the external potential
V (x) = −x, which drifts the mass towards the positive direction. We take as initial condition

ρ0(x) = 1x≤ 3
10
,

discretized again as ρ0 = ρ0(xK), and the time step τ = 0.002. In this case, the naive
implementation we proposed for the BDF2 scheme (5.49) does not converge. Notice that the
objective function in (5.49) is unbounded from below. We compute the discrete flow with the
VIM scheme (5.48) and our modified BDF2 scheme (5.47). The results are shown in Figure
5.2. Again, the VIM sheme is unstable whereas the modified BDF2 controls and smooths the
oscillations generated by the extrapolation step, and the solution is reliable. In this case the
oscillations are not due to the boundary, as the mass is flowing away from it. The oscillations
are due to the compact support of the measure and the explicit integration in time of the
Hamilton-Jacobi equation: in the extrapolation step the mass cannot flow outside the support,
which acts then like a boundary.

5.4.2 Convergence tests

We assess now the second order accuracy of the three schemes. We will consider a simple
one dimensional test to compare them. For the approach we proposed (5.47), we will also
perform two dimensional cases. We use two explicit solutions %, for the Fokker-Planck equation
(5.20) and the porous medium equation (5.51). We consider then a sequence of meshes(
Tm,Σm, (xK)K∈Tm

)
with decreasing meshsize hm = hTm and a sequence of decreasing time

steps τm such that
hTm+1

hTm
= τm+1

τm
. We solve the discrete problem for each couple (hTm , τm)

and evaluate the convergence with respect to the discrete L1((0, T );L1(Ω)) error:

εm =
∑
n

τ
∑
K∈Tm

|ρnK − %(xK , nτ)|mK .

We compute the rate of convergence as:

log(εm−1)− log(εm)

log(τm−1)− log(τm)
.
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Figure 5.2: Comparison between the VIM scheme (5.48) (top row) and the modified BDF2
scheme (5.47) (bottom row) for the porous medium equation. The BDF2 scheme (5.49) does
not converge in this case. From left to right, three different time steps: t = 0.004, 0.008, 0.020.

One dimensional case

On the domain Ω = [0, 1] and for the external potential V (x) = −gx, we consider the density

%(t, x) = exp

(
−
(
π2 +

g2

4

)
t+

g

2
x

)(
π cos(πx) +

g

2
sin(πx)

)
+ π exp

(
g
(
x− 1

2

))
, (5.53)

analytical solution to the Fokker-Planck equation (5.20). We consider the value g = 1. For
each mesh

(
Tm,Σm, (xK)K∈Tm

)
and time step τm, we compute then the discrete solution

using the three schemes, starting from the initial condition (ρ0
K)K∈T = (%(0,xK))K∈T . We

will use (5.45)-(5.46) to compute the extrapolation. The results are presented in Table 5.1.
The BDF2 and our modified approach are second order accurate. The VIM scheme suffers the
problem of the oscillations on the time interval [0, 0.25]. Repeating the test on the interval
[0.05, 0.25], the convergence significantly improves and attains the second order accuracy as
well.

Two dimensional case

We want to test convergence of the scheme we proposed (5.47) on two dimensional cases. For
this purpose, we use the same sequence of grids we used in Chapters 3-4 (see Figure 3.1).

We repeat first the test on the Fokker-Planck equation in two dimensions. We consider
the same solution (5.53) on the domain Ω = [0, 1]2. We test both the two different ways of
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Table 5.1: Time-space convergence for the three schemes. Integration time [0, 0.25] for the
first three cases, [0.05, 0.25] for the last one.

BDF2 (5.49) Mod. BDF2 (5.47) VIM (5.48) VIM (5.48)

hm τm εm rate εm rate εm rate εm rate

0.100 0.050 2.091e-02 / 2.217e-02 / 5.895e-02 / 4.667e-03 /
0.050 0.025 6.376e-03 1.713 7.016e-03 1.660 3.615e-02 0.706 1.024e-03 2.188
0.025 0.013 1.791e-03 1.832 2.044e-03 1.779 2.294e-02 0.656 2.517e-04 2.025
0.013 0.006 4.849e-04 1.885 5.653e-04 1.854 1.468e-02 0.644 6.264e-05 2.007
0.006 0.003 1.280e-04 1.922 1.508e-04 1.906 1.234e-02 0.251 1.562e-05 2.003
0.003 0.002 3.324e-05 1.945 3.933e-05 1.939 9.983e-03 0.306 3.901e-06 2.002

Table 5.2: Time-space convergence for the modified BDF2 scheme (5.47), with two different
type of extrapolations, for the Fokker-Planck equation.

(5.43)-(5.44) (5.45)-(5.46)

hm τm εm rate εm rate

0.2986 0.0500 2.122e-02 / 2.111e-02 /
0.1493 0.0250 6.802e-03 1.641 6.800e-03 1.634
0.0747 0.0125 2.002e-03 1.765 2.017e-03 1.754
0.0373 0.0063 5.585e-04 1.842 5.669e-04 1.831
0.0187 0.0031 1.501e-04 1.896 1.535e-04 1.884

computing the extrapolation, namely (5.43)-(5.44) and (5.45)-(5.46). The results are listed
in Table 5.2. They can be compared with the results in Tables 3.1-4.1, for the schemes we
proposed respectively in Chapters 3 and 4. The scheme is second order accurate, using both
extrapolation approaches.

We consider now an explicit solution of the porous medium equation (5.51) with zero
exterior potential V . This equation admits a solution called Barenblatt profile [108]:

%(t,x) =
1

tdλ

(δ − 1

δ

) 1
δ−1

max
(
M − λ

2

∣∣∣x− x0

tλ

∣∣∣2, 0) 1
δ−1

, (5.54)

where λ = 1
d(δ−1)+2 , d standing for the space dimension, and x0 is the point where the mass

is centered. The parameter M can be chosen to fix the total mass. The value

M =
( δ

δ − 1

)− 1
δ
( λδ

2π(δ − 1)

) δ−1
δ

sets it equal to one. The function (5.54) solves (5.51) on the domain Ω = [0, 1]d, with x0

in the interior of the Ω, starting from t0 > 0 and for a sufficiently small time horizon T ,
that is as long as the mass does not reach the boundary of the domain. We consider the
two-dimensional case and x0 = (0.5, 0.5). We solve the problem for δ = 2, 3, 4, with initial
condition (ρ0

K)K∈T = (%(t0,xK))K∈T , starting respectively from t0 = 10−4, 10−5, 10−6. We
consider an integration time of 10−3. The extrapolation is in this case computed via (5.45)-
(5.46). The results are presented in Table 5.3. The convergence profile is not clean, probably
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Table 5.3: Time-space convergence for the modified BDF2 scheme (5.47) for the porous
medium equation.

δ = 2 δ = 3 δ = 4

hm τm εm rate εm rate εm rate

0.2986 2.000e-04 5.139e-04 / 7.515e-04 / 9.537e-04 /
0.1493 1.000e-04 1.999e-04 1.363 2.780e-04 1.435 3.085e-04 1.628
0.0747 5.000e-05 6.429e-05 1.636 4.630e-05 2.586 1.103e-04 1.485
0.0373 2.500e-05 1.471e-05 2.127 2.903e-05 0.674 3.847e-05 1.519
0.0187 1.250e-05 4.129e-06 1.833 7.521e-06 1.949 1.340e-05 1.522

due to the low precision of the discretization in space. We can nevertheless notice that in the
case δ = 2 the rate of convergence is slowly assessing order two. In the cases δ = 3, 4, where
the solutions are less regular, we can notice that the order tends to 1.5.
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Appendix A

A monotone discretization for the
computation of geodesics

We have shown in Section 1.1.2 that solutions (φ, ρ) to the optimal transport problem (1.19)-
(1.20) can be characterized as solutions to the system of equations{

∂tρ+∇ · (ρ∇φ) = 0 ,

∂tφ+ 1
2 |∇φ|

2 = 0 ,
in [0, 1]× Ω , (A.1)

complemented with the no-flux boundary condition and the initial and final conditions. The
Hamilton-Jacobi equation in (A.1) has been saturated (i.e. the equality holds everywhere)
thanks to its monotonicity (see Section 1.2.2). We want to present here a strategy for dis-
cretizing problem (1.19)-(1.20) in order to obtain a discrete version of system (A.1). That is,
we want to preserve the monotonicity of the Hamilton-Jacobi equation at the discrete level.
We present this approach for completeness and to be able to show that preserving the mono-
tonicity does not solve the stability issues related to the TPFA discretization, see Section
2.7. For the latter reason, we will avoid to resort to the two nested meshes discretization
introduced in Chapter 2, which would just complicate the presentation and in the end will
not be exploited in this particular case.

The first key ingredient, as we explained in Section 2.3, is to discretize the kinetic energy
(1.18) with a left/right endpoint approximation, in order to preserve the monotonicity of
the Hamilton-Jacobi equation in either one time direction or the other. Let us consider a
left endpoint approximation, which will lead to an implicit scheme for the Hamilton-Jacobi
equation in the positive direction of time. The second key ingredient is to use a monotone
discretization in space: we will rely on the upwind reconstruction for the mobility, as we did
in Chapter 3.

A.1 Discrete setting

Let us recall first of all the TPFA finite volume discrete setting. The unknown density and
potential are discretized on a regular partitioning of the domain, according to Definition 1.1.
The discrete spaces are RT and RΣ, the spaces of discrete variables defined on cells and

139
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diamond cells, and are endowed with the scalar products:

〈·, ·〉T : (a, b) ∈ [RT ]2 7→
∑
K∈T

aKbKmK ,

〈·, ·〉Σ : (u,v) ∈ [RΣ]2 7→
∑
σ∈Σ

uσvσmσdσ .

Vector fields are discretized instead in the space FT , the space of conservative fluxes:

FT = {F = (FK,σ, FL,σ)σ∈Σ ∈ R2Σ : FK,σ + FL,σ = 0} . (A.2)

We recall the following notation: Fσ = |FK,σ| = |FL,σ|, |F | = (Fσ)σ∈Σ ∈ RΣ and (F )2 =
(F 2

σ )σ∈Σ ∈ RΣ, for F ∈ FT .

The discrete divergence and gradient operators are defined on FT and RΣ. Precisely,
divT : FT → PT and ∇Σ : RT → FT are defined by:

(divT F )K = divKF =
1

mK

∑
σ∈ΣK

FK,σmσ ,

(∇Σa)K,σ = ∇K,σa :=
aL − aK
dσ

.

The duality relation holds at the discrete level: 〈∇Σa,F 〉FT = −〈a,divT F 〉T , ∀a ∈ RT .
In order to reconstruct the density on the diamond cells, we use the upwind reconstruction
presented in Chapter 3. Given a discrete vector field v ∈ FT , we can define the upwind
reconstruction operator UΣ[v] : RT → RΣ as

(UΣ[v]a)σ = aK 1vK,σ≤0 + aL 1vL,σ<0 , ∀a ∈ RT . (A.3)

A.2 Monotone discretization

Consider an integer N > 0 and a discretization of the time interval [0, 1] in N +1 subintervals
of constant length ∆t = 1

N+1 . We denote by ρ = (ρk)N+1
k=0 and F = (F k)N+1

k=1 the time

evolutions of discrete density and momentum, where ρk ∈ RT and F k ∈ FT . Using the
reconstruction (A.3) and a left endpoint approximation for the discretization of the kinetic
energy, the discrete kinetic energy functional BN,T : [RT ]N+2 × [FT ]N+1 → [0,+∞] is given
by

BN,T (ρ,F ) :=

{∑N+1
k=1 ∆t

∑
σ∈ΣB

(
(UΣ[F k]ρk−1)σ, F

k
σ

)
mσdσ if ρkK ≥ 0,

+∞ else,
(A.4)

where we recall that B : R× Rd → [0,+∞] is defined by

B(p,Q) :=


|Q|2
2p if p > 0 ,

0 if p = 0, Q = 0 ,

+∞ else .

(A.5)
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Denote x− = min(x, 0) and x+ = max(x, 0). Thanks to the definition of the space of conser-
vative fluxes (A.2) and the definition of the upwind reconstruction (A.3), the function BN,T
can be rewritten as1

BN,T (ρ,F ) =

N+1∑
k=1

∆t
∑
σ∈Σ

B
(
ρk−1
L , (F kK,σ)+

)
mσdσ +B

(
ρk−1
K , (F kL,σ)+

)
mσdσ , (A.6)

and it is therefore convex and lower semi-continuous, as composition of convex and lower
semi-continuous functions.

Given two discrete densities ρin,ρf ∈ RT+ with the same total mass, 〈ρin,1〉T = 〈ρf ,1〉T ,
the discrete transport problem is formulated as

inf
(ρ,F )∈CN,T

BN,T (ρ,F ) (A.7)

where CN,T ⊂ [RT ]N+2× [FT ]N+1 is the convex subset whose elements (ρ,F ) satisfy both the
discrete continuity equation

ρk − ρk−1

∆t
+ divT F k = 0 , ∀k ∈ {1, .., N + 1}, (A.8)

and the initial and final conditions

ρ0 = ρin, ρN+1 = ρf . (A.9)

We will enforce explicitly this last constraint. As for the discrete problem (2.11) we presented
in Chapter 2, we can state existence of a discrete solution, the proof being identical (Theorem
2.3). (A.7) can be written as

inf
(ρ,F )

sup
φ
LN,T (φ,ρ,F ) , (A.10)

where the Lagrangian LN,T is defined as in (2.15):

LN,T (φ,ρ,F ) = BN,T (ρ,F ) +
N+1∑
k=1

∆t〈φk, ρ
k − ρk−1

∆t
+ divT F k〉T .

Again, strong duality holds and a primal-dual solution exists, which we can characterize as
the saddle point of the Lagrangian function. The dual problem is given by

sup
φ

inf
(ρ,F )

LN,T (φ,ρ,F ) . (A.11)

Taking in (A.11) the optimality conditions in F , thanks to (A.6) and (A.5), provides

F kK,σ =

{
ρk−1
K ∇K,σφk if φkK ≥ φkL ,
ρk−1
L ∇K,σφk otherwise ,

(A.12)

1The upwind notation here and in the following is switched with respect to the notation we set in Chapter 3,
due to the fact that the flux F we are considering here has the opposite sign with respect to the flux considered
there.
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∀K ∈ T ,∀σ ∈ ΣK ,∀k ∈ {1, .., N + 1}. In order to simplify the notation, let us denote the
reconstructed density by ρΣ ∈ [RΣ]N+1,

(ρkΣ)σ = ρkσ =

{
ρk−1
K if φkK ≥ φkL ,
ρk−1
L otherwise ,

(A.13)

∀k ∈ {1, .., N}. We can write then the optimal flux as

F k = ρkΣ �∇Σφ
k, ∀k ∈ {1, .., N + 1} . (A.14)

Replacing (A.14) inside the Lagrangian we reduce it to:

LN,T (φ,ρ) = −∆t

2

N+1∑
k=1

〈ρkΣ, (∇Σφ
k)2〉Σ +

N+1∑
k=1

∆t〈φk, ρ
k − ρk−1

∆t
〉T . (A.15)

In order to take the optimality conditions with respect to ρ, notice that we can rewrite the
kinetic energy term, for each time step k ∈ {1, .., N + 1}, as:

〈ρkΣ, (∇Σφ
k)2〉Σ =

∑
σ∈Σ

ρkσ(∇K,σφk)2mσdσ

=
∑
σ∈Σ

ρk−1
K

(
(∇K,σφk)−

)2
+ ρk−1

L

(
(∇L,σφk)−

)2
mσdσ

=
∑
K∈T

ρk−1
K

( ∑
σ∈ΣK

(
(∇K,σφk)−

)2mσdσ
mK

)
mK .

The optimality condition in ρ, the discrete Hamilton-Jacobi equation, is then

φk+1 − φk

∆t
+

1

2
UT
(

(∇Σφ
k+1)−

)2
≤ 0 , ∀k ∈ 1, .., N , (A.16)

with the vectorial notation (v−)2 = ((v−K,σ)2)K,σ ∈ R2Σ for v ∈ FT , and defining UT : R2Σ →
RT the reconstruction operator given by:

(UT u)K =
∑
σ∈ΣK

uK,σ
mσdσ
mK

.

In order to reconstruct the squared norm of the gradient of the discrete potential, on each
cell, only the negative gradients are retained. Note that (v+)2 is not a conservative flux, as
the negative part on each edge is discarded. As the equality holds in (A.16) in the cells K
where ρkK > 0, we can finally write the discrete dual problem as

sup
φ∈KN,T

〈φN+1,ρf 〉T − 〈φ1 +
∆t

2
UT
(
(∇Σφ

1)−
)2
,ρin〉T (A.17)

where KN,T ⊂ [RT ]N+1 is the convex subset of potentials φ verifying (A.16).
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A saddle point (φ,ρ) of the Lagrangian (A.15) satisfies the following system of necessary
and sufficient optimality conditions:

ρk − ρk−1

∆t
+ divT (ρkΣ �∇Σφ

k) = 0 , ∀k ∈ 1, .., N + 1,

φk+1 − φk

∆t
+

1

2
UT
(

(∇Σφ
k+1)−

)2
≤ 0 , ∀k ∈ 1, .., N,

(A.18)

We want to show that the discretization we obtained for the Hamilton-Jacobi equation pre-
serves its monotonicity in the positive direction of time and, consequently, that the equation
can be saturated. For this, we will need again Lemma 3.6 that we proved in Chapter 3. We
introduce again the function H ∈ C1(RT ;RT ) defined as2

H(a) := a+
∆t

2
UT
(

(∇Σa)−
)2
, ∀a ∈ RT .

Theorem A.1. A solution (φ,ρ) of the following system of equations,
ρk − ρk−1

∆t
+ divT (ρk−1

Σ �∇Σφ
k) = 0 , ∀k ∈ 1, .., N + 1,

φk+1 − φk

∆t
+

1

2
UT
(

(∇Σφ
k+1)−

)2
= 0 , ∀k ∈ 1, .., N,

(A.19)

is a saddle-point of the Lagrangian (A.15).

Proof. We know that there exists a saddle point (φ̂,ρ) for the Lagrangian (A.15) and it
satisfies the system of necessary and sufficient optimality conditions (A.18). We introduce a

new potential φ ∈ [RT ]N+1 recursively defined as follows: φ1 = φ̂
1

and ∀k ∈ {2, .., N + 1},
φk is defined as the solution to the equation H(φk) = φk−1. The potential φ defined in this
way is solution to the second equation of (A.19). By Lemma 3.6, given the intial condition

φ̂
1
, φ exists and is unique. We want to prove by recurrence that φk ≥ φ̂

k
, ∀k ∈ {1, .., N + 1}.

For k = 2, following the proof of Theorem 3.5, by setting as in Lemma 3.6 H(φ2) = f = φ̂
1

and H(φ̂
2
) = f̂ ≤ φ̂

1
, we have

H(φ2) ≥H(φ̂
2
) =⇒ φ2 ≥ φ̂

2
.

For k > 2, H(φk) = f = φk−1, H(φ̂
k
) = f̂ ≤ φ̂

k−1
≤ φk−1 and we have

H(φk) ≥H(φ̂
k
) =⇒ φk ≥ φ̂

k
.

By recurrence, φk ≥ φ̂
k
, ∀k ∈ {1, .., N + 1}.

For k = N + 1, φN+1 ≥ φ̂
N+1

, therefore

〈φN+1,ρf 〉T ≥ 〈φ̂
N+1

,ρf 〉T ,
2The function H is the same as the one introduced in Chapter 3 due to the change in sign of the gradient.

The Lemma 3.6 is therefore again valid.
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and consequently φ is optimal as well for the dual problem (A.17). We are left to show that
the couple (φ,ρ) is still a saddle point in order to prove that it verifies the necessary first
order optimality conditions (A.18), where the Hamilton-Jacobi equation can be satured, that
is it satisfies equations (A.19). For any (φ̃, ρ̃) ∈ [RT ]N+1 × [RT+]N , it holds

LN,T (φ̃,ρ) ≤ LN,T (φ̂,ρ) = LN,T (φ,ρ) ≤ LN,T (φ, ρ̃) ,

which is indeed the condition on (φ,ρ) to be a saddle point. The first inequality derives from
the fact that (φ̂,ρ) is a saddle point for LN,T , the equality and the second inequality (which is
actually again an equality) are due to the fact that the Hamilton-Jacobi equation is satisfied
everywhere by φ.

Thanks to theorem A.1, one can find a solution to the discrete optimal transport problem
(A.7) by solving directly the system of equations (A.19). Comparing this system of equations
to the system (2.19), this simply means that thanks to the specific discretization chosen,
among the different possible choices for the Lagrange multiplier for the positivity constraint on
the density, zero is admissible. We remark that the solution φ which saturates the Hamilton-
Jacobi equation is not necessarily unique, as it depends on the possibly non-unique initial
condition (see Remark 2.5, which holds true also in this case).

The approach we presented in this section is not useful in practice for the computation
of Wasserstein geodesics for several reasons. We already explained in Section 2.3 that a
left/right endpoint approximation for the kinetic energy gives restrictions on the initial and
final densities. The discretization is also presumably of order one in time and space (the
upwind reconstruction is of order one). Although one could try to solve directly the system of
equations (A.19) with a Newton scheme, the problem is too hard and it requires in any case
a continuation method like the one we introduced in Section 2.6. Finally, we have shown in
Section 2.7 that the preservation of the monotonicity does not prevent the stability issues.



Appendix B

A mixed finite element
discretization of dynamical optimal
transport

We present here another possible strategy for computing solutions to the dynamical optimal
transport problem. We present a discretization based on locally conservative finite elements,
which are closely related to finite volumes. Finite elements have been already employed to
discretize this problem [16]. However, not in a locally conservative form. Furthermore, in
[16] the authors did not discretize the variational problem rather its optimality conditions.
This partially motivated this work. In this sense, what we present is a generalization of
the variational and locally conservative finite difference approach proposed in [109]. In [109]
the authors considered proximal splitting algorithms, an instance of primal dual methods,
to solve the discrete optimization problem. We use here the same strategy. The original
motivation of this work has been indeed to inspect the use of this type of techniques, more
common in the optimal transport community, which could have proved useful for our finite
volume discretizations. Nevertheless, we realized that they are not easy to apply to arbitrary
discretizations of the problem (especially on unstructured grids). More importantly, they are
efficient only as far as high accuracy is not mandatory and uniform grids are used. These
reasons led us to introduce our interior point strategy (see Section 2.6).

This work is issued from:

A. Natale, G. Todeschi. A mixed finite element discretization of dynamical optimal transport.
HAL: hal-02501634, 2020.

B.1 Introduction

Optimal transport provides a convenient framework for density interpolation as a convex op-
timization problem. Its most remarkable feature is its sensitivity to horizontal displacement,
which generally allows one to retrieve translations when interpolating between two densities.
This property has motivated the application of optimal transport to many imaging problems,
especially in the context of physical sciences and fluid dynamics. A typical example comes
from satellite image interpolation in oceanography. In this case, one is interested in recon-
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structing the evolution of a quantity of interest such as Sea Surface Temperature (SST) or Sea
Surface Height (SSH) between two given observations. As highlighted in [69], for this type of
applications one needs to include appropriate regularization terms to avoid the appearance of
unphysical phenomena such as mass concentration in the reconstructed density evolution.

In this work we propose a finite element approach to solve the dynamical formulation of
optimal transport with quadratic cost on unstructured meshes (and therefore can be easily
implemented on complex domains) and that can be easily modified to include different type of
regularizations which are relevant for the dynamic reconstruction and interpolation of physical
quantities. For some choices of finite element spaces, using the framework introduced in [79],
we can prove convergence of our discrete solutions to the ones of the continuous problem.

The dynamical formulation of optimal transport inspired some of the first numerical meth-
ods for this problem. This reads as follows: given two probability measures ρ0, ρ1 ∈ P(D) on
a compact domain D ⊂ Rd, find the curve t ∈ [0, 1] 7→ ρ(t, ·) ∈ P(D) which solves

inf
ρ,v

{∫ 1

0

∫
D

|v(t, ·)|2

2
dρ(t, ·)dt ; ∂tρ+ divx(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}
(B.1)

where v : [0, 1] × D → Rd is a time-dependent velocity field on D tangent to the boundary
∂D, and | · | denotes the Euclidean norm. In other words, problem (B.1) selects the curve of
minimal kinetic energy with fixed endpoints ρ0 and ρ1.

Benamou and Brenier [14] realized that introducing the momentum m := ρv, problem
(B.1) can be recast into a convex optimization problem in the variables (ρ,m), with a linear
constraint, since the continuity equation becomes

∂tρ+ divxm = 0 . (B.2)

If we define σ := (ρ,m), regarded as a measure on [0, 1]×D, this constraint is equivalent to
div σ = 0, where now div denotes the divergence operator on the space-time domain [0, 1]×D.
Introducing the dual variable q = (a, b) where a ∈ C([0, 1]×D) and b ∈ C([0, 1]×D;Rd), the
kinetic energy minimized in (B.1) can be written in the form

sup
q

{∫ 1

0

∫
D
q · dσ ; a+

|b|2

2
≤ 0

}
.

Combining this expression with (B.1) we obtain a saddle point problem in the variables (q, σ)
with a nonlinear constraint on q and a linear one on σ.

The numerical method proposed in [14] involves discretizing q and σ by their values on
a regular grid, and expressing the constraint on σ via a Lagrange multiplier; then the dual
problem can be solved by an Augmented Lagrangian ADMM approach, optimizing separately
in q and the Lagrange multiplier and then performing a gradient descent step on σ. Dis-
regarding the discretization in space-time, the convergence of the method has been studied
in [66, 70]. The same approach was used to discretize different problems related to optimal
transport (e.g., gradient flows [17], mean field games [16], unbalanced optimal transport [61])
using a finite element discretization in space-time. Importantly, in these cases the numerical
method is obtained by discretizing the several steps of the augmented Lagrangian approach
rather than as a discrete optimization algorithm. This implies that in general it is difficult
to establish the convergence of the discrete algorithms. Moreover, for these type of methods,



B.1. INTRODUCTION 147

convergence results towards the continuous solutions with mesh refinement are only available
for specific settings (e.g., the L1-type optimal transport problems studied in [71]), but they
are not available for the optimal transport problem (B.1).

Papadakis, Peyré, and Oudet proposed in [109] a staggered finite difference discretization
on regular grids of the optimal transport problem (B.1), and they considered different proximal
splitting algorithms to solve it. The computational bottleneck for these methods as well as for
the original augmented Lagrangian approach is the projection onto the space of divergence-free
vector fields σ, which amounts to solving a Poisson equation at each iteration. This however
can be avoided by exploiting the Helmholtz decomposition of vector fields, as recently showed
in [68], or adding regularization terms as in [85]. Recently, Carrillo and collaborators [41]
proposed a finite difference scheme similar to that in [109] (in the context of the discretization
of Wasserstein gradient flows), for which they could also prove its convergence with mesh
refinement, but only upon strong regularity assumptions on the solutions of the continuous
problem.

In [80] a numerical scheme was proposed using tools from finite element and finite vol-
ume methods, where one explicitly constructs a duality structure for the discrete variables.
Later Lavenant [79] proved convergence of this scheme, unconditionally with respect to the
time/space step size, to the solutions of the optimal transport problem, proposing a general
framework for convergence of discretizations of problem (B.1) between two arbitrary prob-
ability measures. This filled a critical gap for the analysis of discrete dynamical transport
models, since previously convergence results were only known in case of sufficiently smooth
solutions (as in [41]) or conditional to the relative time/space step sizes (e.g., in the context
of finite volume methods, combining the results in [52] and [64]).

B.1.1 Contributions and structure of the chapter

We propose here a mixed finite element discretization of (B.1) which generalizes to the finite
element setting the finite difference scheme proposed by Papadakis et al. [109]. We derive our
method by discretizing a saddle point formulation of the dynamic optimal transport problem
on Hilbert spaces, where one looks for a solution (q, σ) ∈ L2([0, 1]×D;Rd+1)2. Nonetheless,
we stress that the method we obtain is still well-defined when the initial and final data are
arbitrary probability measures. By using H(div)-conforming spaces for the variable σ, we
are able to construct discrete solutions that satisfy exactly the weak form of the continuity
equation (B.2).

Using the framework of [79], we also show that our discrete solutions, for specific choices
of finite element spaces, converge towards the solutions of the optimal transport problem
between two arbitrary measures, and therefore even when the solution σ is only a measure (see
Theorem B.7). Such a result carries over also to a slight modification of the finite difference
scheme proposed in [109], which can be viewed as a particular instance of our discretization
on a uniform quadrilateral grid (see Remark B.9).

Finally, as in [109], we solve the discrete problem using a proximal splitting algorithm
[112]. Importantly, this is not only a discretization of the same algorithm applied to the
continuous saddle point formulation as in previous works, but also a genuine optimization
scheme applied to the finite dimensional problem. Furthermore, we observe numerically that
the proposed modification of the finite difference scheme in [109] (which we derived to prove
convergence with mesh refinement) also yields a remarkable speedup for the convergence of
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the proximal splitting algorithm itself, keeping approximately the same computational cost
per iteration.

The chapter is structured as follows. We establish the notation in Section B.2. In Section
B.3 we give the precise formulation of problem (B.1) and describe the proximal splitting
algorithm applied to the continuous problem in the Hilbert space setting. In Section B.4
we introduce and discuss the main finite element tools we use for our method. In Section
B.5 we define our finite element discretization of problem (B.1) and state the convergence
result. In Section B.6 we detail the steps required for solving our discrete optimal transport
problem with a proximal splitting algorithm. In Section B.7 we describe how to introduce
regularization terms in the formulation. Finally in Section B.8 we present some numerical
results.

B.2 Notation

Throughout this work we will denote by D ⊂ Rd a convex polytope, with d ∈ {2, 3}, and by
Ω := [0, 1]×D the space-time domain. For differential operators such as ∇ or div, we use the
subscript x to emphasize that these are defined on D rather than Ω, but we will drop this
subscript when this is clear from the context.

We use the standard notation for Sobolev spaces on D or Ω. In particular, Lp(D;Rd)
denotes the space of functions f : D → Rd whose Euclidean norm |f | is in Lp(D). We use a
similar notation for functions taking values on a subset K ⊂ Rd, or defined on Ω. We denote
by H(div;D) the space of vector fields f : D → Rd in L2(D;Rd) whose divergence is in L2(D).
Similarly, H(div; Ω) the space of vector fields f : Ω→ Rd+1 in L2(Ω;Rd+1) whose divergence
is in L2(Ω).

Finally, we denote by M(D) the set of finite signed measures on D, by M+(D) ⊂M(D)
the convex subset of positive measures; by P(D) ⊂ M+(D) the set of positive measures of
total mass equal to one; and by C(D) the space of continuous functions on D. We use a
similar notation for the spaces of measures and continuous functions on Ω. We use 〈·, ·〉 to
denote either the duality pairing between measures and continuous functions or the L2 inner
product, on either D or Ω, according to the context.

B.3 Dynamical formulation of optimal transport

The dynamical optimal transport problem (B.1) can be formulated as a saddle point problem
on the space of measures σ := (ρ,m) ∈M(Ω)×M(Ω)d. This can be written as follows

inf
σ∈C
A(σ), A(σ) := sup

q∈C(Ω;K)
〈q, σ〉, (B.3)

where C is the set of measures σ ∈M(Ω)d+1 satisfying div σ = 0 in distributional sense with
boundary conditions

σ · n∂Ω = X , X :=


ρ0 on {0} ×D,
ρ1 on {1} ×D,
0 otherwise,

(B.4)
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with ρ0, ρ1 ∈ P(D), and where C(Ω;K) is the space of continuous functions on Ω taking value
in the convex set

K :=

{
(a, b) ∈ R× Rd ; a+

|b|2

2
≤ 0

}
. (B.5)

It will be convenient to treat time and space as separate variables. In particular we will also
use the action defined by

A(ρ,m) := sup
(a,b)∈C(D;K)

〈ρ, a〉+ 〈m, b〉 ,

for any (ρ,m) ∈M(D)d+1. Then, A(ρ,m) is finite if and only if m has a density with respect
to ρ and in that case A(ρ,m) =

∫
D B(ρ,m), where B : R×Rd → [0,+∞] is the function given

by

B(a, b) :=


|b|2
2a if a > 0,

0 if a = 0, b = 0,
+∞ if a = 0, b 6= 0 or a < 0 .

Due to the definition of the function B, any saddle point of problem (B.3) must satisfy ρ ≥ 0.
The value of the infimum of problem (B.3) coincides with W 2

2 (ρ0, ρ1)/2, where W2(·, ·)
denotes the Wasserstein distance associated with the L2 cost (see Theorem 5.28 in [115]).
Moreover the infimum itself is attained by a measure σ = (ρ,m), where ρ is known as the
Wasserstein geodesic between ρ0 and ρ1 (see proposition 5.32 in [115]). We refer the reader
to [115] for more details on the links between the dynamical formulation and the Wasserstein
distance.

B.3.1 Hilbert space setting and proximal splitting

Before discussing the discretization of problem (B.3), we review its reformulation on Hilbert
spaces, and discuss the convergence of the proximal splitting algorithm.

Proposition B.1 (Guittet [66]; Hug et al. [70]). Suppose ρ0, ρ1 ∈ L2(D). Then problem
(B.3) is equivalent to

inf
σ∈C

sup
q∈L2(Ω;K)

〈q, σ〉 , (B.6)

where C is the set of functions σ ∈ H(div; Ω) satisfying div σ = 0 in weak sense with boundary

conditions given by (B.4). Moreover, assuming that supp(ρ0) ∪ supp(ρ1) ⊂
◦
D, there exists a

saddle point (σ∗, q∗) ∈ C × L2(Ω;K) solving problem (B.6).

The equivalence of problem (B.6) to (B.3) can be easily deduced by a regularization
argument on σ and then applying Lusin’s theorem as in Proposition 5.18 in [115]. The proof
for the existence of a saddle point problem is more delicate and can be found in [70].

In order to apply a proximal splitting algorithm to solve problem (B.6), we first write it
in the form

inf
σ∈L2(Ω;Rd+1)

sup
q∈L2(Ω;Rd+1)

〈q, σ〉+ ιC(σ)− ιK(q) , (B.7)

where ι denotes the convex indicator function and

K := L2(Ω;K) = {q ∈ L2(Ω;Rd+1) ; q ∈ K a.e.}.
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Note in particular that C and K are closed convex sets of L2.

We apply to (B.7) the primal-dual projection algorithm proposed in [112]. In particular,
given τ1, τ2 > 0 and an admissible (σ0, q0) ∈ C ×K, we define the sequence {(σk, qk)}k by the
two-step algorithm:

Step 1 : σk+1 = PC(σk − τ1q
k) . (B.8a)

Step 2 : qk+1 = PK(qk + τ2(2σk+1 − σk)) . (B.8b)

where PC and PK are the L2 projections on the closed convex sets C and K, respectively.
The projection onto C amounts to computing the Helmholtz decomposition of σk − τ1q

k and
selecting the divergence-free part, whereas the projection onto K is a pointwise projection
applied to a representative of qk + τ2(2σk+1 − σk).

The proof of convergence in [112] holds also in our setting. More precisely, the following
convergence theorem holds.

Theorem B.2 (Pock et al. [112]). If τ1τ2 < 1 then (σk, qk)→ (σ∗, q∗) ∈ C × K which solves
(B.6).

Discretizing problem (B.7), and consequently the proximal splitting algorithm (B.8), with
finite elements requires choosing finite-dimensional spaces for σ and q so that the steps in
(B.8) are well-posed and computationally feasible. However, satisfying these requirements
is not enough to guarantee convergence of the discrete solutions to the ones of the infinite
dimensional problem. Hereafter we will identify a class of finite element spaces for which the
theory developed in [79] applies, which allows us to deduce convergence to the solutions of
problem (B.3), i.e. even when ρ0 and ρ1 are arbitrary probability measures and the Hilbert
space setting presented in this section is not well-defined.

B.4 Mixed finite element setting

B.4.1 Finite element spaces on D

We recall that D is a convex polytope in Rd, with d ∈ {2, 3}. We consider a triangulation of D
which we denote Th, i.e. a decomposition of D in either simplicial or quadrilateral (disjoint)
elements, where h is the maximum diameter of the elements in Th. We assume that there
exists a constant Cmesh such that

|h|d ≤ Cmesh|T | , ∀T ∈ Th . (B.9)

This implies that the mesh is quasiuniform, meaning that the ratio of any two element diam-
eters is uniformly bounded by a constant depending only on Cmesh, and shape-regular, that
is, for each element T ∈ Th, the ratio of its diameter and the diameter of the largest inscribed
ball is uniformly bounded by a constant depending only on Cmesh (see, e.g., [8]).

For any T ∈ Th, we denote by Pk(T ) the space of polynomials of degree up to k on T .
If T is a quadrilateral element, i.e., in general, if T is obtained by an affine transformation
φ : Id → T where I is the unit interval, then we define Pk1,...kd(Id) := Pk1(I) ⊗ . . . ⊗ Pkd(I)
and Pk1,...kd(T ) := Pk1,...kd(Id) ◦ φ−1.
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We now define the finite element spaces Qh and Vh which will serve to construct approxi-
mations of the density ρ and the momentum m, respectively. We set

Qh := {ϕ ∈ L2(D) ; ϕ|T ∈ P0(T ), ∀T ∈ Th},

Vh := {v ∈ H(div;D) ; v|T ∈ Vh(T ), ∀T ∈ Th}.
where Vh(T ) is the so-called shape function space. We distinguish two cases:

1. for simplicial elements (triangles or tetrahedrons), we take Vh(T ) to be either

RT 0(T ) := {v = v0 + v1x̂ ; v0 ∈ (P0(T ))d , v1 ∈ P0(T )} ⊂ (P1(T ))d,

where x̂ = (x1, . . . , xd) ∈ (P1(T ))d, which generates the lowest order Raviart-Thomas
space; or BDM1(T ) = (P1(T ))d, which generates the lowest order Brezzi-Douglas-
Marini H(div)-conforming space;

2. for quadrilateral elements, we set T = φ(Id), where I is an interval and φ an affine
transformation, and we take Vh(T ) to be the tensor product space which generates the
lowest order Raviart-Thomas space on quadrilateral elements. This is defined as follows:

RT [0](T ) :=

{
P1,0(T )e1 + P0,1(T )e2 if d = 2 ,
P1,0,0(T )e1 + P0,1,0(T )e2 + P0,0,1(T )e3 if d = 3 ,

where {ei}i is the basis for Rd aligned with the edges of T .

In other words, the space Vh is chosen as one of the standard lowest order H(div)-
conforming spaces. In fact, the property of being piece-wise linear will be crucial in the
following, namely to prove the convergence result in Theorem B.7 (see, in particular, Propo-
sition B.12 in the appendix). A graphical representation of the degrees of freedom associated
with these spaces is shown in figure B.1.

Importantly, with the choices mentioned above, one can define projection operators ΠQh :
L2(D) → Qh and ΠVh : VD ⊂ H(div;D) → Vh that commute with the divergence operator
[8, 24], where VD is a dense subset of sufficiently smooth vector fields. By an appropriate
regularization procedure of such operators (see, e.g., Section 5.4 in [8]), one can construct
bounded projections Π̃Qh : L2(D) → Qh and Π̃Vh : H(div;D) → Vh satisfying a similar
property. In other words, the following diagram commutes

H(div;D) L2(D)

Vh Qh

Π̃Vh

div

Π̃Qh

div

As a consequence, the divergence operator is surjective onto Qh when restricted on Vh, i.e.
div Vh = Qh. Finally, we let Q+

h ⊂ Qh the convex subset of non-negative piecewise constant
functions.

Remark B.3. For the proof of Theorem B.7 in the appendix, we will consider as commuting
projections ΠVh and ΠQh the canonical projections defined in Section 5.2 of [8]. Here, we will
only need the explicit definition of ΠQh, which is given by

ΠQhρ|T =
1

|T |

∫
T
ρ , (B.10)
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(a) RT 0 (b) BDM1 (c) RT [0]

Figure B.1: Degrees of freedom for different choices of shape function space Vh(T )

for any T ∈ Th. Note, in particular, that ΠQh is well-defined on M(D) and its restriction on
M+(D) is surjective onto Q+

h .

B.4.2 Finite element spaces on Ω

We now introduce finite element spaces on the space-time domain [0, 1]×D. We first define
a decomposition Th,τ , obtained by a tensor product construction. In other words, we assume
that Th,τ is obtained by tensor product of a triangulation Th of D and a decocomposition of
[0, 1] of maximum size τ , so that any element S ∈ Th,τ is of the form S = [t0, t1] ⊗ T where
T ∈ Th.

We now define the finite element spaces Fh,τ and Zh,τ on the space-time domain. The
space Zh,τ will be constructed using the standard tensor product construction based on the
spaces Qh and Vh defined on D, and continuous P1 and discontinuous P0 spaces on [0, 1]. In
our discretization, the space-time vector field (ρ,m) will be an element of Zh,τ whereas Fh,τ
will be the space of discrete Lagrange multipliers associated with the continuity equation,
which is equivalent to the constraint that the space-time divergence of (ρ,m) is zero.

More precisely, we define

Fh,τ := {φ ∈ L2(Ω) ; φ|S ∈ P0(S), ∀S ∈ Th,τ},

Zh,τ := {v ∈ H(div; Ω) ; v|S ∈ Zh,τ (S), ∀S ∈ Th,τ}.

For S = [t0, t1] ⊗ T , the shape function space Zh,τ (S) is built by defining a shape function
space for the density, in the space-time domain, which is given by

Qh,τ (S) := P1([t0, t1])⊗Qh(T )

(i.e. the density is piecewise linear in time), and a shape function space for the momentum,
in the space-time domain, which is given by

Vh,τ (S) := P0([t0, t1])⊗ Vh(T )

(i.e. the momentum is piecewise constant in time). Then, we set

Zh,τ (S) := (Qh,τ (S) t̂)⊕ Vh,τ (S) ,
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where t̂ is the unit vector oriented in the time direction. The spaces Fh,τ and Zh,τ inherit
from Qh and Vh the commuting diagram property mentioned above. In particular, there
exist bounded projections Π̃Fh,τ : L2(Ω) → Fh,τ and Π̃Zh,τ : H(div; Ω) → Zh,τ for which the
following diagram commutes

H(div; Ω) L2(Ω)

Zh,τ Fh,τ

Π̃Zh,τ

div

Π̃Fh,τ

div

(B.11)

where the divergence is the one associated with the space-time domain Ω. Then, as before,
the divergence operator is surjective onto Fh,τ when restricted on Zh,τ , i.e. divZh,τ = Fh,τ .
Note that the precise definition for the projection operators on tensor product meshes can be
found in [7].

B.4.3 Discrete projection on the divergence-free subspace

Denote by B the kernel of the divergence operator on H(div; Ω). Given ξ ∈ L2(Ω) we define
the projection PB(ξ) to be the divergence-free vector field σ minimizing the L2 distance from
ξ. This can be obtained solving the following problem for (σ, φ) ∈ H(div; Ω)× L2(Ω){

〈σ, v〉+ 〈φ,div v〉 = 〈ξ, v〉 ∀v ∈ H(div; Ω) ,
〈div σ, ψ〉 = 0 ∀ψ ∈ L2(Ω) .

(B.12)

Let Bh,τ be the kernel of the divergence operator restricted on Zh,τ . We define the projection
PBh,τ (ξ) to be the divergence-free vector field σh,τ ∈ Zh,τ minimizing the L2 distance from ξ.
This can be obtained solving the following problem for (σh,τ , φh,τ ) ∈ Zh,τ × Fh,τ{

〈σh,τ , v〉+ 〈φh,τ , div v〉 = 〈ξ, v〉 ∀v ∈ Zh,τ ,
〈div σh,τ , ψ〉 = 0 ∀ψ ∈ Fh,τ .

(B.13)

The commuting diagram (B.11) implies well-posedness of the discrete system. In particular,
it implies the following inf-sup condition: there exists a constant β > 0 independent of h and
τ such that

inf
φ∈Fh,τ

sup
σ∈Zh,τ

〈φ, div σ〉
‖σ‖H(div)‖φ‖L2

≥ β ,

see for example proposition 5.4.2 in [24]. Then, problem (B.13) is well-posed, i.e. it has a
unique solution (σh,τ , φh,τ ) which verifies σh,τ ∈ B and

‖σh,τ‖L2 ≤ C1‖ξ‖L2 ,

‖φh,τ‖L2 ≤ C2‖ξ‖L2 ,

‖σh,τ − σ‖L2 + ‖φh,τ − φ‖L2 ≤ C3‖ξh,τ − ξ‖L2 ,

where C1, C2, C3 > 0 are constants independent of h and τ , ξh,τ is the L2 projection of ξ onto
Zh,τ and (σ, φ) is the unique solution of problem (B.12) (e.g., these results can be derived as
particular cases of Theorems 4.3.2, 5.2.1 and 5.2.5 in [24]).
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In the following we will need to compute the discrete version of the L2 projection onto C.
In particular we define

Ch,τ := {σ ∈ Bh,τ , σ · n∂Ω = Xh,τ} , (B.15)

where, since ΠQh can be defined on M(D) (see equation (B.10)), we set

Xh,τ :=


ΠQhρ0 on {0} ×D,
ΠQhρ1 on {1} ×D,
0 otherwise.

(B.16)

The well-posedness results described above for the L2 projections onto B and Bh,τ hold also for
the L2 projections onto C and Ch,τ up to adding Neumann boundary conditions to the spaces
H(div; Ω) and Zh,τ , and replacing L2(Ω) and Fh,τ by L2(Ω)/R and Fh,τ/R, respectively.

B.5 Discrete dynamical formulation and convergence

In this section we formulate the discrete problem and state a convergence result obtained by
applying the theory developed in [79]. For this, we need to introduce a space for the discrete
dual variable q. We adopt the same notation as for the spaces defined in Section B.4. In
particular, we set for r ∈ {0, 1},

Xr
h := {φ ∈ L2(D) ; φ|T ∈ Xr

h(T ), ∀T ∈ Th}.

The superscript r denotes the polynomial order of the shape function space Xr
h(T ). We

distinguish two cases:

1. for simplicial elements (triangles or tetrahedrons), we take Xr
h(T ) := Pr(T ).

2. for quadrilateral elements, we set T = φ(Id), where I is an interval and φ an affine
transformation, and we take Xr

h(T ) := Pr(I)d ◦ φ−1.

The associated space-time space is defined by

Xr
h,τ := {φ ∈ L2(Ω) ; φ|S ∈ Xr

h,τ (S), ∀S ∈ Th,τ},

with Xr
h,τ (S) = P0([t0, t1]) ⊗ Xr

h(T ). In order to simplify the notation, we will omit the
superscript r when not relevant to the discussion.

Remark B.4. The choice r ∈ {0, 1} is dictated by computational feasibility of the algorithm.
In fact, for these cases, we can compute explicitly the projection on K ∩Xr

h,τ (with respect to
appropriate inner products) as it will be explained in the next section. On the other hand, we
restrict ourselves to piecewise constant functions in time since this is crucial for the conver-
gence of the algorithm, as shown in [79].

The discrete action (at fixed time) is defined as follows:

Ah(ρ,m) := sup
(a,b)∈(Xh)d+1

{〈ρ, a〉+ 〈m, b〉 ; (a, b) ∈ K a.e.}

for any (ρ,m) ∈ Qh×Vh. By construction, Ah : Qh×Vh → [0,+∞] is a proper convex function
−1-positively homogeneous in its first variable and 2-positively homogeneous in its second
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variable. Moreover, it is non-increasing in its first argument, i.e. Ah(ρ1 + ρ2,m) ≤ Ah(ρ1,m)
for any ρ1, ρ2 ∈ Q+

h and m ∈ Vh. In fact, suppose that Ah(ρ1 + ρ2,m) < +∞. Then there
exists (a∗, b∗) ∈ (Xh)d+1 ∩ K such that 〈ρ1 + ρ2, a

∗〉+ 〈m, b∗〉 = Ah(ρ1 + ρ2,m); in particular
a∗ ≤ 0. Then

Ah(ρ1,m) ≥ Ah(ρ1 + ρ2,m)− 〈ρ2, a
∗〉 ≥ Ah(ρ1 + ρ2,m) ,

and by a similar reasoning we obtain that if A(ρ1+ρ2,m) = +∞ then we also have A(ρ1,m) =
+∞.

The space-time discretization of problem (B.3) is given by

inf
σ∈Ch,τ ,
ρ≥0

Ah,τ (σ), Ah,τ (σ) := sup
q∈(Xr

h,τ )d+1∩K
〈q, σ〉 . (B.17)

Note that, by definition, Ah,τ is convex and non-negative. Therefore, problem (B.17) always
admits minimizers.

Suppose that the time discretization is given by a decomposition of the interval [0, 1] in
N elements, i.e. fixing the points 0 = t0 < t1 < . . . < tN+1 = 1. Given σ = (ρ,m) ∈ Zh,τ , we
can identify the density ρ with the collection {ρi}N+1

i=0 with ρi ∈ Qh, and the momentum m
with the collection {mi}N+1

i=1 with mi ∈ Vh. Since q is piecewise constant in time, we have the
following equivalent formulation

Ah,τ (σ) =
N+1∑
i=1

Ah

(
ρi + ρi−1

2
,mi

)
|ti − ti−1| . (B.18)

Note that in order to obtain (B.18) from (B.17), we relied on the particular choice of finite
element spaces for density (piecewise linear in time), momentum (piecewise constant in time)
and the corresponding dual variables (piecewise constant in time).

Remark B.5 (Continuity constraint). The choice of a H(div)-conforming finite element
space for σ implies that the weak form of the continuity equation ∂tρ+ divxm = 0 is satisfied
exactly by any solution of the discrete saddle point problem (B.17) (this is also directly implied
by the definition of the constraint set Ch,τ in (B.15)) .

Remark B.6 (Positivity constraint). Note that removing the positivity constraint in the for-
mulation (B.17), we obtain a different scheme. In that case, since the action is evaluated on
the mean density (in time), the positivity constraint ρ ≥ 0 is then only enforced on ρi+ρi−1

2 ,
rather than on each ρi separately.

The objects introduced until now define a finite dimensional model of optimal transport
in the sense of Definition 2.5 in [79]. The framework developed therein can be used to deduce
a convergence result for our scheme.

Theorem B.7. Let ρ0, ρ1 ∈ P(D) be given and {Th,τ}h,τ>0 a family of tensor-product de-
composition of Ω such that the time discretization is uniform, i.e. ti − ti−1 = τ for all
i = 1, . . . , N + 1, and the space discretization Th satisfies equation (B.9). Let σh,τ be a
minimizer of problem (B.17) associated with Th,τ and for r = 1. Then, as h, τ → 0, up to
extraction of a subsequence, σh,τ converges weakly to σ ∈ M(Ω)d+1 a minimizer of problem
(B.3).
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The proof is essentially an extension of the one presented in [79] and is postponed to the
appendix.

Remark B.8 (Stability). The existence of bounded projections sastifying the commuting di-
agram (B.11) ensures stability of the projection onto Ch,τ (see (B.14)). Such commuting
projections are also crucial to estabilish the convergence result in Theorem B.7: in [79], they
are used to sample the continuous solution into a discrete one satisfying the continuity equa-
tion, therefore providing an admissible candidate for the discrete problem. Nonetheless, due to
the nonlinear constraint q ∈ K, one cannot apply the standard linear theory in [24], for exam-
ple, so the commuting diagram condition does not imply directly a stability result analogous to
(B.14) for the saddle point problem (B.17) (even if we see it as a discretization of the Hilbert
space formulation in Proposition B.1). Numerically (see Section B.8) the finite element pairs
considered here (Zh,τ , X

r
h,τ ) appear to be stable when r = 1, but strong oscillations may occur

for r = 0 and Vh = BDM1, providing empirical evidence of the instablity of the discretization
for this case.

Remark B.9. Suppose that D = [0, 1]d and that Th,τ is a uniform quadrilateral discretization
of Ω = [0, 1]d+1. Then for r = 0 and removing the constraint ρ ≥ 0 (see Remark B.6),
the discrete problem (B.17) coincides with the discretization proposed in [109]. Theorem B.7
shows that modifying this method with r = 1 and adding the positivity constraint at all times,
one can prove convergence to the solution of the continuous problem (B.3).

B.6 The proximal splitting algorithm

We now describe in detail the discrete version of the proximal splitting algorithm introduced
in Section B.3.1, in the simplest setting where we remove the additional positivity constraint
on the density, i.e. we solve

inf
σ∈Ch,τ

Ah,τ (σ), Ah,τ (σ) := sup
q∈(Xh,τ )d+1∩K

〈q, σ〉 .

As mentioned in Remark B.6, this amounts to enforcing positivity only on the mean density
in time between consecutive time-steps. Using this formulation rather than (B.17) we can
reproduce the structure of the continuous version of the scheme, described in Section B.3.1.
Note, however, that one can actually solve problem (B.17) with a similar strategy, e.g., by
first reformulating the problem intrudicing a Lagrange multiplier to enforce the continuity
equation, and then applying the same proximal splitting algorithm considered here but with
the new variables and with an appropriate choice of norms.

We start by defining

Krh,τ := K ∩ (Xr
h,τ )d+1 := {q ∈ (Xr

h,τ )d+1 ; q ∈ K a.e.} .

We write the discrete problem as follows:

inf
σ∈L2(Ω;Rd+1)

sup
q∈L2(Ω;Rd+1)

〈q, σ〉+ ιCh,τ (σ)− ιKh,τ (q) , (B.19)

where Ch,τ is defined in (B.15). Then, the proximal splitting algorithm of section B.3.1
applied to problem (B.19) can be formulated as follows: given τ1, τ2 > 0 and an admissible
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(σ0, q0) ∈ Ch,τ×Kh,τ , we define the sequence {(σk, qk)}k by performing iteratively the following
two steps:

Step 1 : σk+1 = PCh,τ (σk − τ1q
k) . (B.20a)

Step 2 : qk+1 = PKh,τ (qk + τ2(2σk+1 − σk)) . (B.20b)

The convergence result in Theorem B.2 clearly holds also in the discrete setting and gives
convergence of the algorithm to a discrete saddle point (σh,τ , qh,τ ), if the condition τ1τ2 < 1
is satisfied. The two steps in the algorithm can be computed as follows.

Step 1 As discussed in Section B.4.3, the projection PCh,τ can be computed modifying the
system given by (B.13) by adding the Neumann boundary conditions associated with the
function (B.16).

Step 2 Since PKh,τ is an L2 projection, we have that PKh,τ = PKh,τ ◦ P(Xr
h,τ )d+1 , where

P(Xr
h,τ )d+1 denotes the L2 projection onto (Xr

h,τ )d+1. This means that we only need to be able

to compute PKh,τ when applied to an element of Xr
h,τ . In addition, since Xr

h,τ is discontinuous
across elements, we can compute the projection element by element, and since functions in
Xr
h,τ (S) are constant along the time direction, we can also eliminate the time variable in the

projection. In other words, we only need to solve for each element [t0, t1] × S a problem in
the form

ξK := argmin{‖ξ − q‖2L2(T ) ; q ∈ (Xr
h(T ))d+1 , q(x) ∈ K ∀x ∈ T} (B.21)

for a given ξ ∈ (Xr
h(T ))d+1. We distinguish two cases:

1. if r = 0, the projection (B.21) is just the projection of a vector ξ ∈ Rd+1 onto the convex
set K;

2. if r = 1, any ξ ∈ (X1
h)d+1 is fully determined by its value on the vertices {vi}i of T ,

and the condition ξ ∈ K, is equivalent to ξ(vi) ∈ K, by convexity of the set K (see
equation (B.5)). However the problem is coupled in these variables when computing the
projection in the L2 norm. Here, we use instead a different projection and we simply
set

ξK(vi) = argmin{|ξ(vi)− q|2 ; q ∈ K} .

Note that this is a variational crime, but it can be avoided by reformulating the algorithm
using as inner product on X1

h a weighted `2 inner product on the degrees of freedom.

In both cases we only need to compute for each degree of freedom the projection of a given
vector (ā, b̄) ∈ R×Rd onto K. If (ā, b̄) /∈ K, such a projection is given explicitly by the vector(

−µ
2

2
, µ

b̄

|b̄|

)
where µ ≥ 0 is the largest real root of the third order polynomial

x 7→ x3

2
+ x(ā+ 1)− |b̄| .
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Remark B.10. As for the finite difference discretization studied in [109], different optimiza-
tion techniques could be applied to solve problem (B.17). In particular, it should be noted that
the ADMM approach orginally proposed by Benamou and Brenier [14] could also be applied.
This would lead to a very similar algorithm to (B.20), but it would require the introduction of
an additional variable which avoids coupling of the degrees of freedom in the optimization step
with respect to q. In other words, this is needed in order to be able to perform the projection
on K for each degree of freedom separately. More details on this issue can be found in [109]
for the discretization studied therein, and they hold also in the finite element setting.

B.7 Regularization

The optimal transport problem does not involve any regularizing effect on the interpolation
between two measures. In fact, one can even expect a loss of regularity in some cases, namely
if one is interpolating between two smooth densities on a smooth but non-convex domain.
Such a loss of regularity (which is often unphysical when the density represents a physical
quantity) can be avoided introducing additional regularization terms in the formulation. In
this section we describe how to do so, and how these modifications translate at the algorithmic
level.

We consider the Hilbert space setting discribed in Section B.3.1 and we study problems
in the form

inf
σ∈C
A(σ) + αR(σ) (B.22)

where R : L2(Ω) → R is a convex, proper and l.s.c. functional, and α > 0. For this type
of problem, we can still apply the proximal splitting algorithm (B.8) replacing the projection
onto C by proxτ1F , the proximal operator of F := ιC + αR, defined by

proxτ1F (ξ) = argmin
η∈L2(Ω;Rd+1)

‖ξ − η‖2

2τ1
+ F(η) .

This leads to the so-called PDGH algorithm, which for τ1τ2 < 1 can be seen just as a proximal
point method applied to a monotone operator [45], and therefore we still have convergence
in the Hilbert space setting. As mentioned in [79] convergence of the discrete problem with
mesh refinement is more delicate and will not be discussed here.

B.7.1 Mixed L2-Wasserstein distance

Define for any σ = (ρ,m) ∈ L2(Ω)× L2(Ω;Rd)

R(σ) :=

{ 1
2‖∂tρ‖

2
L2(Ω) if ∂tρ ∈ L2(Ω) ,

+∞ otherwise .

With this functional, problem (B.22) yields an interpolation between the Wasserstein distance
and the L2 distance. It was originally considered in [15], where a conjugate gradient method
was proposed to compute the minimizers. Let V := H1([0, 1];L2(D)) × L2([0, 1];H(div;D))

and let
◦
V be the same space with homogenous boundary conditions on the fluxes. For any ξ ∈
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L2(Ω)d+1, σ = proxτ1F (ξ) is obtained by solving the following system for (σ, φ) ∈ V ×L2(Ω)/R 〈σ, v〉+ ατ1〈∂tρ, ∂tvt〉+ 〈φ, div v〉 = 〈ξ, v〉 , ∀v ∈
◦
V ,

〈div σ, ψ〉 = 0 , ∀ψ ∈ L2(Ω)/R ,
σ · n∂Ω = X ,

where vt = v · t̂ is the component of v in the time direction. Well-posedness can be obtained by
standard methods for saddle point problems [24] and it translates directly into well-posedness
of the discrete system obtained by replacing V with Zh,τ , L2(Ω) with Fh,τ , and X with Xh,τ .

B.7.2 H1 regularization

Define for any σ = (ρ,m) ∈ L2(Ω)× L2(Ω;Rd)

R(σ) :=

{ 1
2‖∇xρ‖

2
L2(Ω) if ρ ∈ L2([0, 1];H1(D)) ,

+∞ otherwise .
(B.23)

In this case we set V := H(div; Ω), W := L2([0, 1];H(divx;D)) and let
◦
V and

◦
W be the same

spaces with homogenous boundary conditions on the fluxes. Then, for any ξ ∈ L2(Ω)d+1,

σ = proxτ1F (ξ) is obtained by solving the following system for (σ, η, φ) ∈ V ×
◦
W × L2(Ω)/R

〈σ, v〉 − ατ1〈divxη, vt〉+ 〈φ,div v〉 = 〈ξ, v〉 , ∀v ∈
◦
V ,

〈ρ,divxw〉+ 〈η, w〉 = 0 , ∀w ∈
◦
W ,

〈div σ, ψ〉 = 0 , ∀ψ ∈ L2(Ω)/R ,
σ · n∂Ω = X ,

where vt = v · t̂ is the component of v in the time direction. As before, well-posedness can be
obtained by standard methods for saddle point problems [24].

We introduce the space Wh,τ ⊂ L2([0, 1];H(divx;D)) whose shape functions on S =
[t0, t1]⊗ T are given by

Wh,τ (S) := P1([t0, t1])⊗ Vh(T ).

We denote by
◦
Wh,τ the same space with the boundary conditions η · n∂Ω = 0 on [0, 1]× ∂D.

Denote by ∇hx : L2(Ω)→
◦
Wh,τ the adjoint of −divx defined by

〈∇hxφ, η〉 = −〈φ,divxη〉 , ∀ (φ, η) ∈ L2(Ω)×
◦
Wh,τ .

We define a discrete version of (B.23) as follows:

Rh,τ (σ) :=
1

2
‖∇hxρ‖2L2(Ω).

Let Fh,τ := ιCh,τ +αRh,τ . Then for any ξ ∈ L2(Ω)d+1, σ = proxτ1Fh,τ (ξ) is obtained by solving

the following system for (σ, η, φ) ∈
◦
Vh,τ ×

◦
Wh,τ × Fh,τ/R:

〈σ, v〉 − ατ1〈divxη, vt〉+ 〈φ,div v〉 = 〈ξ, v〉 , ∀v ∈
◦
Vh,τ ,

〈ρ,divxw〉+ 〈η, w〉 = 0 , ∀w ∈
◦
Wh,τ ,

〈div σ, ψ〉 = 0 , ∀ψ ∈ Fh,τ/R ,
σ · n∂Ω = Xh,τ .
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B.8 Numerical results

In this section we describe two numerical tests that demonstrate the behaviour of the proposed
discretization both qualitatively and in terms of convergence of the algorithm. For both tests
the time discretization is uniform, but we will use different meshes and finite element spaces
for the discretization in space. For all tests, we set τ1 = τ2 = 1 as parameters of the proximal
splitting algorithm (B.20). The results shown hereafter have been obtained using the finite
element software Firedrake [114] (see [97, 21], for the tensor product constructions) and the
linear solver for the mixed Poisson equation is based on PETSc [9, 10]. The code to perform
the tests in this section can be found in the repository https://github.com/andnatale/

dynamic-ot.git.

B.8.1 Qualitative behaviour and convergence of the proximal-splitting al-
gorithm

We set D = [0, 1]2, and consider either a structured triangular mesh, an unstructured one, or
a uniform Cartesian mesh (shown in figures B.2, B.3 and B.4), and τ := |ti+1 − ti| = 1/20.
The initial and final densities are given by

ρ0(x) ∝ 3

2
+ cos(2π|x− x0|), ρ1(x) ∝ 3

2
− cos(2π|x− x0|) , (B.24)

where x0 = (0.5, 0.5), and they are normalized so that the total mass is equal to one. In figures
B.2, B.3 and B.4, the interpolation at time t = 0.5 is shown for different choices of spaces Vh
and Xh and different meshes. The discretization corresponding to the couple Vh = BDM1 and
X0
h appears to yield the wrong solution both on the structured and unstructured mesh, which

is also very oscillatory. Oscillations appear also for Vh = RT 0, although the correct solution
is recovered. For this latter case, the oscillations seem to be very sensitive to the structure of
the mesh and are attenuated when choosing X1

h instead of X0
h. On the Cartesian mesh the

scheme does not generate any oscillations, with the choice of the space X1
h leading to slightly

more diffusive results. Note that the appearance of oscillations is not related to the positivity
constraint since in the case considered here the interpolation is strictly positive. On the other
hand, we remark that for tests leading to pure translation of compactly supported densities
(not shown) the oscillations disappear almost entirely even for the couple Vh = BDM1, X0

h.

In figure B.5, the different schemes are compared in terms of convergence of the proximal
splitting algorithm. The cases corresponding toX1

h appear to converge significantly faster than
those corresponding to X0

h. Note that in the case Vh = RT [0], X
0
h, the resulting discretization

as well as the optimization algorithm coincide with the ones proposed in [109], since here we
consider a uniform Cartesian grid. Also in this case, replacing X0

h with X1
h (besides providing

a convergence guarantee, see Remark B.9) yields a considerable speedup of the algorithm.

B.8.2 Non-convex domain

We now consider a non-convex polygonal domain D, with the spatial mesh Th represented in
figure B.6 and τ := |ti+1 − ti| = 1/30. Note that even if the case of a non-convex domain is
beyond the domain of applicability of the convergence results presented in this chapter, our

https://github.com/andnatale/dynamic-ot.git
https://github.com/andnatale/dynamic-ot.git
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Vh = RT 0, X0
h Vh = RT 0, X1

h

Vh = BDM1, X0
h Vh = BDM1, X1

h

Figure B.2: Comparison between optimal transport interpolations of the densities in (B.24)
for different spaces on a structured triangular mesh. Note that in the case Vh = BDM1, X0

h,
the data exceeds the color map range.

Vh = RT 0, X0
h Vh = RT 0, X1

h

Vh = BDM1, X0
h Vh = BDM1, X1

h

Figure B.3: Comparison between optimal transport interpolations of the densities in (B.24)
for different spaces on an unstructured triangular mesh. Note that in the case Vh = BDM1,
X0
h, the data exceeds the color map range.
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Vh = RT [0], X
0
h Vh = RT [0], X

1
h

Figure B.4: Comparison between optimal transport interpolations of the densities in (B.24)
for different spaces on an uniform Cartesian mesh.

scheme is still well-defined for this case. The boundary conditions are given by

ρ0(x) = exp

(
−|x− x0|2

2s2

)
, ρ1(x) = exp

(
−|x− x1|2

2s2

)
,

with s = 0.1, x0 = (0.5, 0.1) and x1 = (0.5, 0.9). Such boundary conditions are illustrated
in figure B.6. In this case, the exact density interpolation is not absolutely continuous, since
mass concentrates on the segment connecting the two non-convex corners of the domain.
Note that we have therefore refined the mesh along the diagonal where we expect the mass
to concentrate.

In figure B.7, B.9 and B.8 we show the density evolution up to time t = 0.5 (the other
half of the time evolution being symmetric in space given the boundary conditions and the
domain shape) for the non-regularized case, the H1 regularization and the L2 regularization,
respectively. For both regularizations the density profile appears to be smoothened, but only
the H1 regularization avoids concentration at the corners.

The proximal operator of the projection on the continuity equation is more expensive
computationally for the H1 regularization than for the other two cases, since we have to solve
a larger mixed system at each iteration. However, for both regularizations, the proximal
splitting algorithm itself converges much faster than the non-regularized case, as it can be
seen in figure B.10.

B.9 Proof of theorem B.7

Applying Theorem 2.16 in [79], in order to prove Theorem B.7 it is sufficient to check that
the conditions listed in definition 2.9 of [79] are verified. Such conditions translated to our
finite element settings are listed in Proposition B.12 below.

From now on, we assume r = 1, and Xh stands for X1
h. We also denote by I is the

standard nodal interpolant onto Xh, defined element by element.

First of all, we introduce some notation and list some technical results [49]. Denote by
PXh and PVh the L2 projections onto Xh and Vh, respectively. Then,

‖PXhϕ‖Lp ≤ C‖ϕ‖Lp , ∀ϕ ∈ Lp , 1 ≤ p ≤ ∞ ,
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Vh = RT 0 (str.) Vh = BDM1 (str.) Vh = RT [0]

Vh = RT 0 (unstr.) Vh = BDM1 (unstr.)

Figure B.5: Convergence of the proximal splitting algorithm measured by ‖σn+1 − σn‖L2(Ω)

for different spaces Vh and Xr
h on the structured (str.) and unstructured (unstr.) triangular

mesh, and on the Cartesian mesh.

and moreover ∀T ∈ Th

‖ϕ− PXhϕ‖Lp(T ) ≤ ChT ‖∇ϕ‖Lp(T ) , ∀ϕ ∈W 1,p(T ) , 1 ≤ p ≤ ∞ ,

where, with an abuse of notation, we have used PXh to denote the L2 projection onto Xh(T ).
These imply the following lemma.

Lemma B.11. Given the regularity assumption in (B.9) on Th, we have

‖I|PVhb|
2‖L∞ ≤ C‖b‖2L∞ ,

for any b ∈ L∞(D), and

‖I|PVhb|
2 − |b|2‖L∞ ≤ Ch|b|W 1,∞‖b‖L∞ ,

for any b ∈W 1,∞(D).
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t = 0 t = 1

Figure B.6: Mesh, and initial and final density for the non-convex domain test.

Proof. For the first inequality, using standard inverse inequalities, we have

‖I|PVhb|
2‖L∞ ≤ ‖|PVhb|

2‖L∞

≤ Ch−d‖|PVhb|
2‖L1

= Ch−d‖PVhb‖
2
L2

≤ Ch−d‖P(Xh)db‖2L2

≤ C‖P(Xh)db‖2L∞
≤ C‖b‖2L∞ .

For the second inequality , we observe that

‖I|PVhb|
2 − |b|2‖L∞ ≤ ‖I|PVhb|

2 − I|b|2‖L∞ + ‖I|b|2 − |b|2‖L∞ .

The second term of the right-hand side is easy to control. For the first term, we have

‖I|PVhb|
2 − I|b|2‖L∞ ≤ ‖|PVhb|

2 − |b|2‖L∞
≤ ‖|PVhb|

2 − |P(Xh)db|2‖L∞ + ‖|b|2 − |P(Xh)db|2‖L∞ .

Again, the second term is easy to control. For the first tem, using the same reasoning as
above,

‖|PVhb|
2 − |P(Xh)db|2‖L∞ ≤ Ch−d‖|PVhb|

2 − |P(Xh)db|2‖L1

≤ Ch−d
d∑
i=1

‖(PVhb)
2
i − (PXhbi)

2‖L1

≤ Ch−d
d∑
i=1

‖(PVhb)i − PXhbi‖L1‖b‖L∞

≤ Ch−
d
2 ‖PVhb− PXhb‖L2‖b‖L∞

≤ Ch‖∇PXhb‖L∞‖b‖L∞ ≤ Ch‖∇b‖L∞‖b‖L∞ .
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t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure B.7: Density evolution on the non-convex domain without regularization, Vh = RT 0,
X1
h (color scale is rescaled to fit data range).

As mentioned in Section B.4.1, there exist projection operators ΠQh : L2(D) → Vh and
ΠVh : VD → Qh commuting with the divergence operator, where VD is a dense subset of
H(div;D). We pick these to be the canonical projections introduced in Section 5.2 of [8], and
in particular ΠQh as in equation (B.10). Such operators verify the following approximation
properties (see Theorem 5.3 in [8]): for any ϕ ∈ H1(D) and η ∈ H1(D)d

‖ΠQhϕ− ϕ‖L2(D) ≤ Ch‖ϕ‖H1(D) , ‖ΠVhη − η‖L2(D)d ≤ Ch‖η‖H1(D)d . (B.25)

Notice in particular that given the mesh regularity assumption (B.9), equation (B.25) is a
standard property for ΠQh as defined in equation (B.10).

Proposition B.12 below contains the properties needed for convergence: it can be seen as
a specific instance of Definition 2.9 of [79]. Note that a few of the properties listed therein are
omitted here because they are either unnecessary or true by construction in our setting. Note
also that the sampling operators used in [79] are replaced here with the canonical projections
ΠQh and ΠVh , where ΠQh can be naturally extended toM(D) (see equation (B.10)) and ΠVh is
considered to be defined on a dense subset ofM(D)d. Moreover the reconstruction operators
are simply the injection operators from Qh and Vh toM(D) andM(D)d, respectively. Finally,
we define for any (ρ, b) ∈M(D)× C(D;Rd)

A∗(ρ, b) :=

∫
D

|b|2

2
ρ ,
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t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure B.8: Density evolution on the non-convex domain with L2 regularization, α = 0.002,
Vh = RT 0, X1

h (color scale is rescaled to fit data range).

so that if (ρ,m) ∈M+(D)×M(D)d then

A(ρ,m) = sup
b∈C(D;Rd)

〈m, b〉 −A∗(ρ, b);

and for any (ρ, b) ∈ Qh × Vh,

A∗h(ρ, b) := sup
m∈Vh

〈m, b〉 −Ah(ρ,m) .

Proposition B.12. The following properties hold:

1. For any ρ ∈M+(D), ΠQhρ→ ρ as h→ 0 weakly in M(D).

2. Let B ⊂ (C1(D))d a bounded subset. Then there exists a constant εh tending to 0 as
h→ 0 such that for any b ∈ B and ρ ∈ Qh

A∗h(ρ, PVhb) ≤ A
∗(ρ, b) + εh‖ρ‖ ,

where PVh denotes the L2 projection onto Vh. Moreover there exists a constant C ≥ 1
such that for any b ∈ C(D)d, there holds

A∗h(ρ, PVhb) ≤
C

2
‖ρ‖‖b‖2L∞ .
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t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure B.9: Density evolution on the non-convex domain with H1 regularization, α = 0.002,
Vh = RT 0, X1

h (color scale is rescaled to fit data range).

3. Let B ⊂ C0(D)∩H1(D) a bounded subset such that for all ρ ∈ B there holds ρ > C > 0,
and let B′ ⊂ (C0(D) ∩ H1(D))d a bounded subset. There exists a constant εh tending
to 0 as h → 0 such that, given (ρ,m) ∈ M(D)d+1 such that ρ has density in B and m
in B′, then

Ah(ΠQhρ,ΠVhm) ≤ A(ρ,m) + εh.

4. There exists εh tending to 0 as h→ 0 and a continuous function ω satisfying ω(0) = 0
such that: for any x, y ∈ D and h > 0 there exists ρ ∈ Q+

h and m1,m2 ∈ Vh satisfying{
divm1 = ρ−ΠQh(δx)
divm2 = ρ−ΠQh(δy)

and Ah(ρ,mi) ≤ ω(|x− y|) + εh , ∀i ∈ {1, 2}. (B.26)

Remark B.13. In [79] point (3) of Proposition B.12 is stated with B and B′ bounded subsets
of C1(D) and C1(D)d, respectively. The condition we require here is stronger, but it is needed
since we considered a convex polytope domain rather than a domain with a smooth boundary
as in [79]. As a matter of fact, in [79] one applies the condition (3) on a regularized measure
(ρ̃, m̃) ∈M(D)d+1 obtained by convolution with the heat kernel and by solving an appropriate
elliptic problem (see proposition 3.2 in [79]). For a convex polytope domain this procedure
yields a couple (ρ̃, m̃) with densities which are not C∞ given the singularities of the boundary.
By classical elliptic regularity estimates on non-smooth domains (e.g., [118] and [86]), the
regularity we require in condition (3) is however sufficient for the proof in [79] to apply without
changes.
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Figure B.10: Convergence of the proximal splitting algorithm measured by ‖σn+1−σn‖L2(Ω) for
non-convex domain test without regularization (a); with the H1 regularization and α = 0.002
(b); with the L2 regularization and α = 0.002 (c).

Proof. The first point is immediate from the definition of ΠQh in equation (B.10). For (2),
we observe that

Ah(ρ,m) = sup
b∈Xh
〈m, b〉 − 1

2
〈ρ, I|b|2〉 ,

where we recall that I is the standard element-wise nodal interpolant onto Xh. In fact, for
any b ∈ (Xh)d, we have b2 ≤ I|b|2, and therefore when ρ ≥ 0 we can “saturate” the constraint
setting a = −I|b|2/2. On the other hand if ρ < 0 on some element both sides of the equality
are +∞. For (ρ, b,m) ∈ Qh × Vh × Vh define

A∗I,h(ρ, b) :=
1

2
〈ρ, I|b|2〉, ĀI,h(ρ,m) := sup

b∈Vh
〈m, b〉 −A∗I,h(ρ, b).

Then, since when ρ < 0 on some element A∗h(ρ, b) = −∞,

Ah(ρ,m) ≥ ĀI,h(ρ,m), A∗h(ρ, b) ≤ Ā∗I,h(ρ, b) ≤ A∗I,h(ρ, b),

and we can prove (2) for A∗I,h. In particular, we have

A∗I,h(ρ, PVhb) ≤ A
∗(ρ, b) +

1

2
‖I|PVhb|

2 − |b|2‖L∞‖ρ‖,

and we obtain the result applying Lemma B.11. Using again Lemma B.11, we easily obtain
the second bound as well.

For point (3), observe first that Ah(ΠQhρ,ΠVhm) ≤ A(ΠQhρ,ΠVhm) by definition. Then
given the assumption on ρ and m we can simply write

Ah(ΠQhρ,ΠVhm)−A(ρ,m) ≤
∫
D

|ΠVhm|2

2ΠQhρ
− |m|

2

2ρ

≤ 1

2

∫
D
| |ΠVhm|2 − |m|2

ΠQhρ
|+ | |m|

2

ΠQhρ
− |m|

2

ρ
|

≤ C(‖ΠQhρ− ρ‖L2 + ‖|ΠVhm|
2 − |m|2‖L1) ,
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where the constant C depends on the uniform lower bound on ρ and on the L∞ norm of |m|.
We conclude using Cauchy–Schwarz inequality on the second term and then equation (B.25).

For the last point, we will establish a connection between our scheme and the one proposed
by Gladbach, Kopfer and Maas [64] and then use propoperty (B.26) for this scheme which
was proved in [79]. We will consider only the case of a simplicial mesh and Vh = RT 0 (which
covers also the case of Vh = BDM1, since RT 0 ⊂ BDM1). The quadrilateral case with
Vh = RT [0] can be dealt with in a completely analogous way.

First, we introduce some notation. For each T ∈ Th, let Th,T be the set of neighbouring
elements L ∈ Th such that fT,L := T ∩ L 6= ∅, which we assume to be oriented. Define by
Fh the set of (d − 1)-dimensional facets in the triangulation. Let T, L ∈ Th be neighbouring
elements, we denote by ϕT,L ∈ RT 0 the canonical basis function associated with the oriented
facet fT,L. Then, any m ∈ RT 0 can be written as

m =
∑

fT,L∈Fh
mT,LϕT,L ,

where mT,L is the flux of m on the oriented facet fT,L. In other words we can identify functions
in (ρ,m) ∈ Qh × RT 0 with their finite volume representation {ρT ,mT,L}T,L. Then, we can
interpret the action for the finite volume scheme [64], which we denote by AFVh (ρ,m), as a
function on Qh ×RT 0. This is given by the following expression

AFVh (ρ,m) :=
∑

fT,L∈Fh

m2
T,L

2θ(ρT , ρL)
|fT,L||xT − xL| ,

where θ : R+ × R+ → R+ is an appropriate function (see [64]) which we take to be the
harmonic mean.

Now, in order to construct ρ ∈ Q+
h and m1,m2 ∈ RT 0 satisfying (B.26), we use the same

construction as in [79] for the finite volume scheme, and interpolate these to the spaces RT 0

and Q+
h to obtain ρ, m1 and m2 satisfying{

divm1 = ρ−ΠQh(δx) ,
divm2 = ρ−ΠQh(δy) .

In particular the support of ρ, m1 and m2 is a chain of neighbouring elements T1, . . . , TN . To
prove the bound on the action, we observe that Ah(ρ,mi) ≤ A(ρ,mi). Then, we only need
to bound A(ρ,mi) by the action of the finite-volume scheme AFVh (ρ,mi), since AFVh satisfies
the desired inequality thanks to the regularity assumption (B.9) on the mesh [79]. By the
regularity assumption on the triangulation, we can assume∫

T∪L
|ϕT,L|2 dx ≤ C|fT,L||xT − xL|

uniformly. Then, by explicit calculations we obtain A(ρ,mi) ≤ CAFVh (ρ,mi) and we are done.



170 APPENDIX B. A MIXED FINITE ELEMENT DISCRETIZATION



Bibliography

[1] Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta. Mean field games: Numerical
methods for the planning problem. SIAM J. Control Optim., 50(1):77–109, 2012.

[2] Ahmed Ait Hammou Oulhaj. Numerical analysis of a finite volume scheme for a seawater
intrusion model with cross-diffusion in an unconfined aquifer. Numer. Methods Partial
Differential Equations, 34(3):857–880, 2018.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces
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[87] Christian Léonard. A survey of the schrödinger problem and some of its connections
with optimal transport. Discrete & Continuous Dynamical Systems, 34(4):1533–1574,
2014.

[88] Jan Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal.,
261(8):2250–2292, 2011.

[89] Jan Maas and Daniel Matthes. Long-time behavior of a finite volume discretization for
a fourth order diffusion equation. Nonlinearity, 29(7):1992–2023, 2016.

[90] Daniel Matthes, Robert J. McCann, and Giuseppe Savaré. A family of nonlinear fourth
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[100] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de
l’Académie Royale des Sciences de Paris, 1781.

[101] Ayman Moussa. Some variants of the classical Aubin-Lions Lemma. J. Evol. Equ.,
16(1):65–93, 2016.

[102] Thomas J. Murphy and Noel J. Walkington. Control volume approximation of degen-
erate two-phase porous media flows. SIAM J. Numer. Anal., 57(2):527–546, 2019.

[103] Andrea Natale and Gabriele Todeschi. A mixed finite element discretization of dynam-
ical optimal transport. working paper or preprint, May 2020.

[104] Andrea Natale and Gabriele Todeschi. TPFA Finite Volume Approximation of Wasser-
stein Gradient Flows. In Finite Volumes for Complex Applications IX - Methods, The-
oretical Aspects, Examples, pages 193–201. Springer International Publishing, 2020.

[105] Andrea Natale and Gabriele Todeschi. Computation of optimal transport with finite
volumes. ESAIM: Mathematical Modelling and Numerical Analysis, 55(5):1847–1871,
September 2021.
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RÉSUMÉ

Cette thèse a pour objet la construction de schémas numériques localement conservatif et préservant la structure pour
des flots de gradient Wasserstein, c’est à dire des courbes de descente maximale dans l’espace de Wasserstein. Les
discrétisations en temps reposent sur des formulations variationnelles imitant au niveau discret ce comportement de courbes
de descente maximale. Ces discrétisation font intervenir le calcul de la distance de Wasserstein, un exemple de problèmes de
transport optimal. Les discrétisations en espaces sont basées sur des approximations volumes finis avec reconstructions à
deux points des flux, également appelés schémas TPFA. Ces méthodes sont bien connues et particulièrement adaptées pour
discrétiser des équations conservatives. Afin de conserver les structures variationnelles au niveau discret, notre approche
est de d’abord discrétiser puis optimiser. Dans une première partie nous présentons des discrétisations TPFA pour la
distance de Wasserstein, basées sur la formulation dynamique de Benamou-Brenier du transport optimal. Nous montrons
des problèmes de stabilité liés à ces discrétisations et proposons une méthode permettant de les surmonter. Nous dérivons
des estimations quantitatives de convergence pour ce model discret. Afin de résoudre le problème d’optimisation discret,
nous introduisons une stratégie de point intérieur. Ensuite nous proposons des schémas d’ordre un puis deux pour des flots
de gradients Wasserstein. Afin de réduire la complexité numérique des problèmes étudiés nous utilisons une linéarisation
implicite de la distance de Wasserstein. En exploitant la monotonie de la reconstruction upwind, nous proposons un schéma
d’ordre un que l’on peut résoudre efficacement avec une méthode de Newton et nous montrons sa convergence vers des
solutions faibles de l’équation de Fokker-Planck. Pour augmenter l’ordre de convergence en espace, nous utilisons une
reconstruction centrée qui nécessite une technique d’optimisation différente. Nous utilisons à nouveau la stratégie du point
intérieur pour cela. Finalement, pour monter en ordre en temps, nous proposons une version modifiée de la discrétisation
variationnelle BDF2 pour laquelle nous prouvons la convergence vers des flots de gradient Wasserstein. À l’aide de ces
nouvelles discrétisations, nous construisons un schéma d’ordre deux en espace et en temps. Tous les schémas proposés
sont accompagnés de nombreux résultats numériques.

ABSTRACT

This thesis is devoted to the design of locally conservative and structure preserving schemes for Wasserstein gradient flows,
i.e. steepest descent curves in the Wasserstein space. The time discretization is based on variational approaches that
mimic at the discrete in time level the behavior of steepest descent curves. These discretizations involve the computation
of the Wasserstein distance, an instance of optimal transport problem. The space discretization is based on Two-Point Flux
Approximation (TPFA) finite volumes, a well-known methodology particularly suited for the discretization of partial differential
equations that present a conservative structure. In order to preserve the variational structure at the discrete level, we follow
a first discretize then optimize approach. We start by presenting TPFA discretizations for the Wasserstein distance based
on the Benamou-Brenier dynamical formulation. We expose some stability issues related to these discetizations, propose
a possible solution to overcome them and derive quantitative estimate on the convergence of the discrete model. To solve
the discrete optimization problem, we introduce an interior point strategy. Then, we propose first and second order accurate
schemes for Wasserstein gradient flows. At this level, to reduce the computational complexity, we use an implicit linearization
of the Wasserstein distance. By taking adavantage of the monotonicity of the upwind reconstruction, we propose a first order
scheme which can be efficiently solved with a Newton method and show its convergence towards distributional solutions of
the Fokker-Planck equation. In order to higher the accuracy in space, we use a centered reconstruction, which requires a
different optimization technique. We use again the interior point strategy for this purpose. Finally, we propose a modified
variational BDF2 time discretization and prove its convergence towards Wasserstein gradient flows. Thanks to these new
discretizations, we design a second order accurate scheme in both time and space. All our approaches are validated with
several numerical results.

KEYWORDS

Optimal transport, Wasserstein gradient flows, Finite volumes, Optimization
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