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Summary in French

Le corps humain est un systeme extrémement complexe composé d’un grand nombre de sous-systémes
intrinseéquement connectés, qui faconnent ses fonctions de base et ses capacités individuelles. L'une de
ses caractéristiques les plus uniques est peut-&tre sa capacité a apprendre et de s’adapter a son environ-
nement. De la petite enfance a 1’age adulte, les gens apprennent a utiliser leur corps de maniere de plus
en plus complexe: de la marche a la course, des pleurs a la parole, de la saisie d’objets a 1’écriture.
L’ apprentissage et I’adaptation des comportements et des compétences motrices constituent en soi une
demande élaborée qui repose non seulement sur la génération de forces et de couples, d’un point de
vue biomécanique, mais aussi sur des fonctions psychologiques essentielles telles que la cognition et la
perception [2]]. Pourtant, les humains excellent largement dans ce domaine.

Dans le contexte du travail, les humains s’adaptent couramment aux conditions de leur environ-
nement. Cependant, certaines situations nécessitent des adaptations qui pourraient &tre préjudiciables au
corps humain. Par exemple, une personne peut étre capable d’exécuter une certaine activité méme en
présence de sources de chaleur excessive, de bruit, de charge physique ou méme de stress mental. A
court ou a long terme, tous ces facteurs peuvent nuire au corps humain. Il peut €tre tres difficile, voire
impossible, de trouver les conditions exactes dans lesquelles 1I’exécution d’une tiche sera adéquate pour
une personne donnée, car chaque individu a un corps unique et complexe, mais 1’essentiel est de trouver
une gamme de conditions dans lesquelles I’activité ne risque pas de nuire au corps a court ou a long
terme. C’est exactement 1’un des principaux objectifs de 1’ergonomie [|83]].

L’ergonomie examine en tandem I’environnement de travail et les capacités des travailleurs qui s’y
trouvent. L’environnement doit permettre au travailleur d’effectuer 1’activité dans les limites de ses
capacités physiques et mentales. Comme tous les corps ne sont pas faits de la méme maniere, les envi-
ronnements de travail le sont aussi, et I’analyse ergonomique doit s’y adapter. Par exemple, un ingénieur
industriel doit tenir compte d’un large éventail de capacités de force dans un échantillon d’ouvriers
d’usine travaillant sur une chaine de montage. Inversement, lors de la conception d’une voiture de
course, on s’attend a ce que le pilote soit une personne athlétique. Dans les deux cas, I’analyse est tou-
jours centrée sur I’humain qui exécute la tiche. A juste titre, 1’ergonomie a été définie comme “la science
de la conception du travail en fonction du travailleur, plutdt que du corps du travailleur en fonction du
travail” [[152].

De nos jours, les industries choisissent de poursuivre des taux de production de plus en plus élevés
tout en améliorant la qualité de leurs produits, simplement pour rester compétitives. Indirectement,
cela peut entrainer des activités professionnelles nuisibles a long terme : soulever des objets lourds ou
encombrants ; spécialisation des taches nécessitant une répétition excessive des mouvements ; travail
plus de 8 heures par jour ; rythme de travail plus élevé que celui recommandé [71,/152]]. Ce sont tous
des facteurs qui peuvent nuire a la santé d’un travailleur, tant sur le plan cognitif que physique [160,
169,/189]]. Un stress cognitif excessif au cours d’une tiche qui repose fortement sur le traitement de
I’information peut détériorer le bien-étre du travailleur et la performance de la tiche. Les exemples de
stress cognitif comprennent les interruptions multiples au travail, le multitiche, ou méme la perturbation
par le bruit [[71]. Le stress physique, quant a lui, est souvent corrélé au développement de troubles



Summary in French

musculo-squelettiques liés au travail (TMSLT).

Les TMSLT sont parmi les premieres causes de maladies professionnelles dans le monde, représen-
tant un probléme de santé majeur, avec des colits pour les entreprises et pour la société [160]. Selon
I’Organisation internationale du travail, les TMSLT constituent la principale cause de pertes économiques
liées aux maladies [[115L[179]. Il n’est pas surprenant que les environnements de travail présentant de tels
facteurs puissent présenter une incidence de TMSLT jusqu’a 3 ou 4 fois plus élevée que dans la pop-
ulation générale [139]]. Elles se développent lorsque les exigences biomécaniques dépassent de facon
répétée les capacités physiques des travailleurs et, avec 1’effort, les postures contraignantes représentent
I’un de leurs principaux facteurs de risque [[139]].

Les progres technologiques peuvent créer des outils qui améliorent les conditions ergonomiques
d’une activité professionnelle en étendant les capacités humaines et en minimisant la probabilité de TM-
SLT al’avenir. Par exemple, un travailleur qui doit assembler un meuble avec un tournevis manuel mettra
généralement plus de temps a assembler le meuble qu’un autre travailleur qui possede un tournevis élec-
trique. Méme si des postures contraignantes sont maintenues pendant I’opération, comme le temps est
beaucoup plus limité, le travailleur équipé de ’outil électrique ne sera pas autant exposé a des con-
ditions non ergonomiques et aura donc moins de chances de développer des TMSLT dues a ’activité
d’assemblage a long terme.

Chaque génération de la révolution industrielle apporte avec elle de nouveaux outils pour le tra-
vailleur humain, et ’un d’entre eux a été particulierement important pour I’avénement de 1’automatisation
moderne: les robots. Les robots peuvent étre programmés pour détecter leur environnement et agir
en conséquence pour obtenir un résultat attendu dans 1’environnement en utilisant une certaine forme
d’actionnement physique. Dans de nombreuses applications, ils effectuent des manceuvres puissantes
et précises qui surpassent les capacités physiques humaines. En fait, dans bon nombre de ces cas, si
les humains tentent méme d’obtenir des performances similaires, ils courent un risque tres sérieux de
développer immédiatement une TMSLT. Dans un sens, on peut dire que les robots ont déja amélioré les
conditions d’ergonomie dans les industries depuis des décennies, car ils effectuent de nombreuses activ-
ités lourdes qui seraient certainement non ergonomiques pour les humains. Contrairement a 1’exemple
du tournevis, au siecle dernier, les robots étaient principalement utilisés dans des scénarios industriels,
situés loin ou dans des espaces cloturés pour éviter tout contact humain avec eux. Toutefois, a bien des
égards, cette distance devient rapidement de plus en plus courte de nos jours.

La derniere décennie a vu le développement de robots ayant une capacité de plus en plus grande a
comprendre leur environnement et leurs éventuels partenaires humains. Les robots petits et 1€gers dotés
d’un haut niveau de perception peuvent potentiellement €tre utilisés en toute sécurité pour améliorer la
vie quotidienne et I’ergonomie, non seulement dans les environnements industriels, mais aussi au bureau
ou a la maison, et méme en tant que robot portable. L’industrie de la robotique de service, les robots
de nettoyage et de livraison par exemple, n’a cessé de croitre ces derni¢res années, et rien n’indique que
cette tendance va s’arréter bient6t. Les robots de service capables d’assister physiquement les humains,
pour la réadaptation ou les soins aux personnes agées, ont méme été identifi€és comme des priorités de
recherche par de nombreux pays développés, y compris des organisations européennes [1]]. De plus,
pendant la crise sanitaire actuelle causée par COVID-19, I’industrie de la robotique de service pourrait
méme avoir bénéficié du besoin croissant d’automatisation et de la distanciation sociale [[187].

Dans le cas de I'industrie manufacturiere, la position de la Fédération internationale de robotique
(IFR en anglais) est que la demande des clients pour une grande variété de produits pousse les usines
vers une fabrication a faible volume et a forte mixité [118]]. Les usines doivent disposer de machines
interconnectées numériquement, y compris des robots qui doivent &tre flexibles pour répondre a cette
demande. Au premier plan de tout cela, les humains devraient étre ceux qui fournissent le degré de
flexibilité et les capacités de prise de décision nécessaires pour faire face a ces demandes [118]]. Par
conséquent, les humains sont la clé du succes des stratégies d’automatisation actuelles et futures, et les
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robots devraient y étre préparés.

Dans ce contexte, cette these a été financée dans le cadre du projet européen AnDy [61]], qui prévoit
de fournir aux robots des capacités de prédiction et d’anticipation de plus en plus importantes pour agir
et réagir correctement lors d’une interaction homme-robot. Pour cette raison, il devient essentiel de
développer des capacités de détection avancées sous forme de matériel et de logiciel pour que le systeéme
robotique soit capable d’atteindre la conscience humaine. Pour qu’un robot soit conscient d’un humain, il
doit non seulement étre capable d’estimer partiellement le mouvement de I’humain, mais aussi d’estimer
la dynamique du mouvement du corps complet, ainsi que son statut ergonomique. Des mesures humaines
completes et efficaces fournissent des données plus précises pour I’estimation de I’ergonomie et des
données plus pertinentes pour les modeles prédictifs. A la limite, ces modeles prédictifs plus efficaces
conferent au robot la capacité de s’adapter, de raisonner, non pas avec un protocole prédéfini, ou avec un
autre robot, mais avec un étre sensible rationnel qui adapte lui aussi en permanence son comportement:
un étre humain. Cette approche centrée sur I’humain est donc de la plus haute importance au sein du
projet AnDy et également pour cette these.

Les travaux de cette theése sont issus d’une approche pluridisciplinaire qui aboutit a un ensemble
d’outils permettant d’améliorer I’ergonomie du mouvement du corps complet. Le comportement mo-
teur humain est évalué du point de vue de la robotique, mais pas exclusivement, des concepts issus
des domaines de ’ergonomie et de la biomécanique sont également essentiels a notre approche.
Cette approche centrée sur I’humain est justifiée pour proposer des méthodes dans lesquelles un robot
peut collaborer avec un partenaire humain de maniere ergonomique tout en étant capable d’interagir
physiquement et efficacement avec lui.

Les deux premiers chapitres de cette these traitent du probleme de I’analyse du mouvement du corps
complet d’un humain pendant une activité de travail spécifique selon un ensemble donné de scores er-
gonomiques. Le mouvement du corps complet est paramétré, rejoué, évalué et finalement optimisé pour
I’ergonomie. Ce mouvement ergonomique, ou cet ensemble de mouvements ergonomiques, peut étre
exploité de différentes manieres ; dans ce travail, une interaction homme-robot est proposée. Cepen-
dant, avant de conduire ’homme vers des trajectoires ergonomiques optimales connues, un contrdleur
de robot doit étre capable de coordonner ses actions avec le partenaire humain d’une maniere efficace
et engageante. Les deux derniers chapitres suivent cette voie centrée sur I’humain en étudiant le com-
portement moteur de I’homme pendant une tiche de co-manipulation d’objets. Le comportement moteur
humain est analysé a la fois dans une dyade homme-homme et dans une dyade homme-robot ou le robot
essaie d’émuler le comportement humain de la dyade homme-homme.

Simulation et optimisation de modeles humains numériques : dans le chapitre (I} nous nous
sommes inspirés de travaux récents sur la simulation de mode¢les humains numériques, ou DHMs en
anglais [98,[156]]. Nous avons proposé notre propre DHM dont le contrdle du corps complet est défini
par un contrdleur QP basé sur la vélocité. La simulation du DHM dans un moteur physique 1éger permet
d’évaluer rapidement et simultanément plusieurs trajectoires de mouvement du corps complet selon des
scores ergonomiques qui évaluent non seulement la cinématique du mouvement mais aussi sa dynamique.
L’ optimisation du mouvement du corps complet est réalisable a condition d’obtenir une paramétrisation
initiale adéquate du mouvement, tant au niveau du nombre de parametres que de la qualité de la repro-
duction du mouvement. Le paramétrage et I’optimisation du mouvement du corps complet sont réalisés
dans le chapitre 2]

Notre DHM imite les cadres anatomiques du corps humain, et contient donc 43 articulations rotatives.
Si la paramétrisation du mouvement du corps complet est prise pour ce nombre élevé d’articulations, on
peut s’attendre a un nombre tres élevé de parametres. Pour éviter ce probleme, la formulation QP est util-
isée ici a notre avantage. Le contrdleur QP peut essentiellement suivre plusieurs positions cartésiennes
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tout en respectant toutes les contraintes des articulations du DHM. Par conséquent, au lieu de paramétrer
directement toutes les trajectoires des articulations, une poignée de trajectoires cartésiennes est suff-
isante pour représenter le mouvement du corps complet. La paramétrisation elle-méme est réalisée a
I’aide de ProMPs (Primitives Probabilistiques de Mouvement), qui sont particulierement intéressantes
pour la paramétrisation des mouvements humains car elles encodent a la fois les mouvements humains
et leur variance, étant donné qu’elles sont formées a partir de différentes démonstrations de trajectoires
avec différentes durées. En fait, un ProMP peut étre représenté de maniere compacte par un seul vecteur
de poids, et ce vecteur peut étre utilisé pour générer la trajectoire moyenne codée. La trajectoire du corps
complet est alors représentée par une pile de ProMPs individuels. Cette représentation du corps complet
a I’aide d’un empilement de poids cartésiens ProMP tout en tirant parti des propriétés du contréleur QP
pour maintenir les contraintes au niveau des articulations fait partie des contributions de cette these, car
elle permet une représentation treés compacte, mais facile a saisir, du mouvement du corps complet. Apres
avoir proposé une solution au probléme de paramétrage du corps complet, nous revenons a I’optimisation
des mouvements du corps complet humain en fonction des scores d’ergonomie.

Personnalisation et optimisation multi-objectif du mouvement: Le corps humain est capable
d’exécuter des mouvements de nombreuses facons différentes en raison du nombre élevé de DoF du
corps et de I'efficacité du systeme musculo-squelettique. En outre, la population humaine présente une
tres grande variété de morphologies corporelles avec des capacités de puissance encore plus diverses. Par
conséquent, si deux personnes ayant des morphologies corporelles tres différentes tentent d’exécuter un
ensemble identique de trajectoires cartésiennes, une évaluation ergonomique, comme celles du chapitre
[l pourrait donner des résultats tres différents. En outre, chaque personne peut également avoir des
contraintes particulieres, comme une limitation de la flexibilité, ou un handicap par exemple. Ces fac-
teurs individuels, ou contraintes particulieres, ne sont pas pris en compte par les scores ergonomiques
classiques. En un mot, un mouvement qui est ergonomique pour un individu peut étre différent pour un
autre, et de nombreuses exigences individuelles peuvent étre difficiles a appréhender avec les évaluations
ergonomiques classiques. Méme si certaines stratégies ou certains modeles peuvent étre congus, nous
montrons dans le chapitre 2] que les mouvements ergonomiques optimaux sont individuels.

Outre le caractere unique de chaque morphologie corporelle, I’ optimisation d’une trajectoire du corps
complet en fonction des scores d’ergonomie doit étre traitée avec soin. Les TMSLT sont multifactoriels
et peuvent se développer dans différents segments du corps. C’est pourquoi il existe de nombreuses
facons de quantifier le risque de développer une TMSLT. Certains de ces scores d’ergonomie sont ex-
posés dans le chapitre [T} et cela peut toujours se produire dans différentes parties du corps humain. Par
conséquent, si I’objectif de 1’optimisation de la trajectoire est de réduire le risque global de dévelop-
per une TMSLT, I’optimisation d’un seul score ergonomique peut ne pas étre suffisante ni optimale
d’un point de vue ergonomique. Nos résultats de simulation avec I’optimisation de trajectoire a objectif
unique montrent clairement que 1’optimisation pour un seul score ergonomique n’est pas suffisante pour
obtenir un mouvement ergonomique global a partir de 1’optimisation. Pour résoudre ce probleme, au lieu
d’une optimisation a objectif unique, nous proposons une optimisation multi-objectifs. Dans I’expérience
d’optimisation multi-objectifs, les conditions de simulation restent les mémes, et deux ou plusieurs scores
d’ergonomie sont choisis pour I’optimisation. Le résultat de toute approche d’optimisation multi-objectif
est un ensemble de solutions non dominées, un front de Pareto, qui met généralement en évidence les
compromis potentiels entre les fonctions objectives choisies. Il s’avere que c’était également le cas pour
notre expérience. L optimisation multi-objectif de la trajectoire a mis en évidence les compromis entre les
différents scores d’ergonomie. De plus, a partir d’un front de Pareto, il est possible de choisir des mou-
vements du corps complet qui améliorent simultanément plusieurs scores d’ergonomie. Cette approche
multi-objectif contraste avec les solutions de pointe pour I’optimisation des trajectoires ergonomiques
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qui ne prennent en compte que |’ optimisation mono-objectif.

Comportement moteur humain pendant la coopération et la collaboration: pour conduire une
personne vers une posture ergonomique optimale de I’ensemble du corps a I’aide d’une interaction
physique homme-robot, la trajectoire de référence elle-méme n’est qu’une partie de la solution : le
robot doit coordonner ses actions avec I’humain de maniere efficace et finalement le conduire vers la
trajectoire ergonomique. Dans le chapitre [3] 1’approche consiste a étudier la fagon dont les humains
coordonnent leurs actions dans une tiche de co-manipulation sous différentes conditions de coordination
du leadership : coopération leader/suiveur, ou pas de leader (collaboration). Dans la tiche proposée, la
dyade humaine doit effectuer une manipulation difficile qui nécessite des mouvements précis. La con-
figuration de 1’expérience ne permet que la communication haptique entre les agents humains, sinon les
résultats de 1’expérience auraient pu étre faussés par d’autres formes de communication qui ne sont pas
suivies par la configuration, comme la parole ou le regard. Le comportement moteur des agents est suivi
a I’aide de marqueurs de capture de mouvement et de signaux d’activation musculaire, ainsi que d’une
mesure de I’efficacité d’exécution de la tache. Les résultats de I’expérience confirment que lorsqu’un
humain dirige la tache, la co-contraction des muscles de son bras est significativement plus élevée que
lorsque les agents sont des suiveurs, c’est-a-dire que les dirigeants augmentent la rigidité de leur bras par
rapport aux suiveurs. Nous avons constaté que lorsqu’aucun leadership n’est assigné, dans une coordi-
nation s’apparentant a une collaboration telle que définie par Jarrassé et al. [66], les deux agents ont des
niveaux de co-contraction du bras similaires a leur condition de leadership. La dyade humain-humain
est plus efficace dans I’exécution de la tache difficile de co-manipulation que lorsque I’un des agents est
désigné comme leader.

Le mouvement des mains de la dyade suggere également que lorsque chaque agent humain dirige la
tache, leurs trajectoires souhaitées pour atteindre I’objectif de la tiche sont significativement différentes,
ce qui signifie que dans ce cas, ils pourraient également favoriser des objectifs biomécaniques individuels
tels que la manipulabilité du bras [150] par exemple. Cependant, d’autres expériences sont nécessaires
pour confirmer cette hypothése. En attendant, lorsqu’aucun leader n’est assigné, la trajectoire résultante
semble étre un arbitrage entre les trajectoires des deux autres conditions. Parallelement aux résultats de
modulation de la rigidité et d’efficacité de la tache, cela pourrait signifier que pendant la collaboration,
les agents communiquent haptiquement leurs intentions de mouvement en modulant la rigidité de leur
bras [[109], tout en estimant éventuellement les objectifs des autres pour arbitrer leur trajectoire souhaitée
et améliorer I’exécution de la tache [[176]. Ce type de comportement moteur humain dans des conditions
de coopération et de collaboration entre leader et suiveur s’inscrit dans la classification unifiée de controle
partagé/autonomie partagée définie par Selvaggio et al. [[163]].

Collaboration homme-robot : Dans le chapitre ] une dyade homme-robot exécute la méme tache
que son homologue homme-homme. L’ objectif de cette expérience est double : étudier le comportement
moteur humain pour la méme tache, mais avec un robot, et essayer d’émuler ce comportement du c6té du
contrdle du robot. Compte tenu des résultats de I’expérience homme-homme, chaque fois que le robot se
voit attribuer un leadership, on considere qu’il dispose d’une autonomie compléte sur la tiche, tandis que
le robot et I’humain partagent cette méme autonomie lors d’une collaboration. Les deux comportements
sont exprimés en modifiant la rigidité cartésienne souhaitée de 1’effecteur du robot : le robot leader a
une rigidité élevée, le robot suiveur une rigidité faible. De plus, dans cette expérience, I’autonomie de la
tache est arbitrée par la co-contraction du bras humain, en utilisant deux profils de contrdle d’impédance
variable différents : réciproque et miroir.

Le profil réciproque fait passer le comportement du robot du statut de leader a celui de suiveur, tandis
que ’humain cocontracte son bras, et par conséquent, passe du statut de suiveur a celui de leader. Par
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conséquent, dans ce cas, I’autonomie est prise du robot dans les mains de I’humain, pour ainsi dire.
Ce profil est similaire a celui mis en ceuvre dans le [[131] de Peternel, qui était arbitré par la somme
des signaux d’activation musculaire d’une paire de muscles antagonistes, alors que dans le @ un indice
de co-contraction a été utilisé. Il s’agit d’une différence importante car la co-contraction musculaire
est un phénomene associé a une stabilité et a une précision accrues du mouvement [14,/51] alors que
la somme des efforts des muscles antagonistes n’a pas été associée a un tel résultat. Le profil miroir
considere que le robot et ’humain doivent toujours partager la tiche a parts égales, il n’y a jamais de
leader total ni de suiveur total. Dans ce profil, la rigidité cartésienne souhaitée du robot est directement
proportionnelle a la co-contraction du bras humain. Il s’agit d’un comportement similaire a celui observé
pour les comportements de collaboration homme-homme ot les deux agents ont des valeurs élevées de
co-contraction du bras. En outre, ce profil est également similaire a celui de Grafakos et al. [50], a
la différence que dans ce travail connexe, le robot était toujours un suiveur, et la co-contraction du
bras augmentait seulement 1’amortissement cartésien souhaité du robot, qui était destiné a simplement
intensifier la stabilisation du mouvement cartésien et non a partager 1’autonomie de la tiche comme
cela a été fait dans le chapitre 4 D’une part, le profil réciproque utilise une approche d’interpolation
lisse leader/suiveur pour le partage de I’autonomie, similaire a d’autres travaux dans la littérature [3|
88,(110], et d’autre part, le profil miroir est plus proche en ressemblance avec ce qui a été observé
pendant I’expérience humaine-humaine proposée pour la méme tache. Les deux profils de commande a
impédance variable sont testés.

L’expérience homme-robot a été exécutée par un petit nombre de sujets, par conséquent, nous ne
pouvons pas tirer de conclusions précises des résultats préliminaires, cependant, une tendance importante
semble apparaitre. Dans les conditions de collaboration, profils réciproque et miroir, la dyade homme-
robot a exécuté la tAche avec plus de précision que lorsque I’homme ou le robot était en totale autonomie.
De plus, il semble que la co-contraction du bras pendant les conditions de collaboration diminue par
rapport aux conditions de leader/suiveur, ce qui pourrait étre lié au fait que I’humain ne s’engage dans
la tiche qu’a des moments spécifiques, comme s’il percevait qu’une trajectoire du robot ne serait pas
suffisante pour accomplir I’objectif de la tiche par exemple. Le comportement leader-suiveur correspond
a ce qui était attendu, avec une efficacité sous-optimale de la tiche, et I’humain présentant une faible co-
contraction du bras lorsqu’il agit en tant que suiveur, et une co-contraction élevée lorsqu’il agit en tant
que leader. Cependant, il n’est pas encore clair lequel des profils d’impédance variable est le plus adéquat
pour la tache. Il est néanmoins possible qu’en ayant une autonomie partagée, I’humain maintienne son
engagement dans la tache et sa conscience de la situation a un niveau élevé. Cela peut ne pas €Etre le
cas lorsque le robot dispose d’une autonomie complete pour la tiche [47] et cela pourrait entrainer une
inefficacité de la tache si I’exécution du robot n’est pas fiable ou si le robot a un potentiel de conscience
situationnelle plus faible que le partenaire humain.

Globalement, au cours de cette these, il a été possible de développer des outils qui peuvent servir de
base a une interaction physique homme-robot visant a améliorer I’ergonomie humaine. Dans notre ap-
proche, la prochaine étape au-dela de cette these est de rassembler ces pieces dans une seule application,
ol le mouvement humain optimisé est utilisé comme référence pour les profils d’impédance variable
proposés dans le chapitre d Tout d’abord, le DHM doit étre couplé avec un robot en simulation afin que
les efforts du DHM reflétent mieux la réalité. Cela sera également facilité par le fait que le DHM est
simulé sur un moteur généralement utilisé pour les simulations de robots [85]]. Deuxi¢emement, davan-
tage de données doivent étre collectées pour I’expérience homme-robot afin de vérifier si les tendances
observées présentent effectivement des effets significatifs. Enfin, la tAiche concue pour les expériences
homme-homme et homme-robot est déja tres difficile du point de vue de la précision, mais les mouve-
ments réussis sont déja treés contraints, de sorte qu’il n’y a pas beaucoup de marge pour 1’optimisation
ergonomique de la trajectoire. Par conséquent, une autre tiche de co-manipulation devrait étre concue,
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dont I’exécution exigerait de la précision a certaines périodes de temps, tandis qu’a d’autres périodes
de temps, le mouvement serait suffisamment libre pour permettre a 1’optimisation ergonomique de pro-
duire des résultats significatifs. En d’autres termes, la tiche doit étre suffisamment difficile pour que
I’assistance du robot soit nécessaire pour obtenir a la fois la précision et I’ergonomie du mouvement.

Le développement des méthodes d’optimisation des mouvements et des profils d’impédance variable
a été rendu possible par I’adoption d’une approche centrée sur I’homme, mettant 1’accent sur la mesure
et la compréhension de I’état humain. En outre, I’optimisation des mouvements et la coordination des
dyades par I’interaction physique peuvent également étre améliorées. Les perspectives de travaux futurs
dans ces domaines sont ensuite discutées dans la section suivante.
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Introduction

The human body is an extremely complex system with a large amount of intrinsically connected sub-
systems, shaping its basic functions and individual capabilities. Perhaps one of its most unique char-
acteristics is the ability to learn and adapt to its environment. From infancy to adulthood, people learn
how to use their bodies in progressively more complex ways: from walking to running, from crying to
speaking, from grasping objects to writing. Learning and adapting motor behaviors and skills is in itself
an elaborate demand that relies not only on generating forces and torques, from a biomechanical point of
view, but also on core psychological functions such as cognition and perception [2]. Yet, humans largely
excel at it.

In the context of labor, humans routinely adapt to their environment conditions. However, some
situations require adaptations that could be detrimental to the human body. For instance, people may still
be able to execute a certain activity even in the presence of sources of excessive heat, noise, physical
load, or even mental stress. In the short or in the long term, all of these could harm the human body.
It may be very hard, or impossible, to find the exact conditions in which the execution of a task will be
adequate for any given person, as each individual has a unique and complex body, but the key point is to
find a range of conditions for which the activity is not likely to harm the body in the short or in the long
term. This is exactly one of the main goals of Ergonomics [83]].

Ergonomics examine the work environment and the capabilities of the workers within it in tandem.
The environment has to allow the worker to perform the activity under the worker’s physical and mental
limits. As not all bodies are made the same, so are work environments, and the ergonomics analysis has
to adapt to it. For instance, an industrial engineer should consider a large range of strength capabilities in
a sample of factory workers in an assembly line. Conversely, when a racing car is designed, the pilot is
expected to be an athletic person [83]]. In either case, the analysis is always centered around the human
executing the task. Rightfully so, ergonomics has been defined as “the science of designing the job to
fit the worker, rather than the worker’s body to fit the job” [152].

Costs by disease
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Figure 1: Distribution of costs due to work-related injuries and diseases (Image taken from an Interna-
tional Labor Organization report [[179]).
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Figure 2: Different body postures for an overhead drilling task (Image taken from Anton et al. [[7]]): a)
Ergonomically adequate posture. b) Ergonomically non-adequate posture.

Nowadays, industries choose to pursue higher and higher production rates along with their product
quality just to remain competitive. Indirectly, this may incur in job activities that are harmful in the
long term: lifting heavy or awkward items; task specialization that requires excessive motion repetition;
working more than 8 hours a day; higher than recommended pace of work [71}152]]. Those are all factors
that may hinder a worker’s health both cognitively and physically [160,|169,(189]. Excessive cognitive
stress during a task that heavily relies on information processing may deteriorate the worker’s well-being
and task performance. Physical stress, on the other hand, is often correlated to the development of
Work-related Musculoskeletal Disorders (WMSDs).

WMSDs are among the first causes of occupational diseases worldwide, representing a major health
issue, with costs for companies and society [160]. The International Labor Organization reported that
the biggest single reason for economic losses regarding diseases are WMSDs [115|[179] (Fig. [I). Not
surprisingly, work environments with such factors may present an incidency of WMSDs of up to 3 or 4
times higher than in the overall population [[139]]. They develop when biomechanical demands repeatedly
exceed the workers’ physical capacities, and, along with force exertion, awkward postures represent one
of their major risk factors [139] (Fig. [2).

Technology advancements can create tools that improve the ergonomic conditions of a work activity
by extending the human capabilities and minimizing the likelihood of WMSDs in the future. For instance,
a worker that has to assemble a piece of furniture with a manual screwdriver will generally take longer
to assemble the piece than another worker that possesses an electrical screwdriver. Even if awkward
postures are sustained while doing so, because the time is much more limited, the worker with the
powered tool will not be exposed to non-ergonomic conditions as much, and therefore will have a lesser
chance of developing WMSDs due to the assembly activity in the long-term.

Each generation of the industrial revolution brings with it new tools for the human worker, and
one of them has been specially important to the advent of modern automation: robots. Robots can
be programmed to sense their environment and act accordingly to obtain an expected outcome in the
environment by using some form of physical actuation. In many applications, they display powerful and
precise maneuvers that outperform human physical capabilities. As a matter of fact, in many of those
cases if humans even attempt to have similar performance this would incur in a very serious risk of
developing a WMSD immediately. In a sense, it can be argued that robots have already been improving
ergonomics conditions at industries for decades as they have been doing many heavy activities that
would be certainly non-ergonomic to humans. Contrarily to the screwdriver example though, in the past
century, robots were mainly used in industrial scenarios, located far away or in fenced spaces to avoid
any human contact with them. However, in many ways, this distance is rapidly becoming shorter and
shorter nowadays.

The past decade has seen the development of robots with increasingly more capacity of understanding
its environment and its possible human partners. Small and light robots with a high-level of perception
can potentially be used in a safe manner to improve daily life, and ergonomics, not only in industrial
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Figure 3: Humans and robots in close proximity in and out of the industrial environment . a) Active
exoskeleton that supports lumbar motion at the sagittal plane (German Bionic); b) Active exoskeleton that
transforms itself into a stool (Noonee); ¢) Robotic arm attached to a wheelchair (Kinova); d) Telepresence
robot supports independent living for the elder (Giraff Telepresence Robot) .

Service robots for professional use. Major applications
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Figure 4: Yearly increasing in sales projections for the worldwide market in service robotics ||

environments but also in the office, or at home, and even as a wearable robot (Fig.[3). The industry of
service robotics, cleaning and delivery robots for instance, has been steadily growing over the recent
years, and there is no indication that this trend will stop soon (Fig.[d). Service robots that are capable of
physically assisting humans, for rehabilitation, or elderly care have been identified as research priorities
by many developed countries, including European organizations [[1]]. Moreso, during the current sanitary
crisis caused by COVID-19, the service robotics industry may even have been benefitted from a growing
need for automation and for enabling social distancing [187].

In the case of the manufacturing industry, the International Federation of Robotics (IFR) position is
that customer demand for a high variety of products drives the factories towards low-volume and high-
mix manufacturing [118]]. Factories should have digitally interconnected machines, including robots that
need to be flexible to attend that demand. At the forefront of it all, humans should be the ones to provide
the degree of flexibility and decision-making capabilities required do deal with those demands [118]].
Therefore, humans are key for the success of current and future automation strategies, and robots should
be prepared for it.
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Cooperation/Collaboration
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Complexity of Human-Robot Interaction

Figure 5: The more complex the human-robot interaction is, the more complex are the required safety
features and sensors external to the robot in an industrial environment. Robots enclosed by cages or
fences without any interactions with human; Robots coexisting without a shared workspace with humans,
or at most working in the same workspace but at different periods of time; Robots working with human
at the same workspace at the same time in a cooperative/collaborative interaction.

In this context, this thesis was funded under the European project AnDy
|I| [61]], that foresees robots being supplied with increasingly more prediction n
and anticipation capabilities to act and react properly during a human-robot
interaction. For this matter, it becomes key to develop advanced sensing
capabilities in the form of both hardware, and software for the robot system
to be able to achieve human awareness. For a robot to be aware of a human,

it should not only be able to estimate the human motion partially, but also to be able to estimate the
dynamics of the whole-body motion, as well as its ergonomics status. Comprehensive and efficient
human measurements provides more accurate data for ergonomics estimation and more relevant data for
predictive models. At the limit, these more efficient predictive models endow the robot with the capability
to adapt, to reason, with not just a predefined protocol, or with another robot, but with a rational sentient
being that is also constantly adapting its behavior: a human being. This human-centered approach is,
therefore, of the utmost importance within the AnDy project and equally for this thesis.

1 From Human to Robot Collaboration

In the past, industrial robots were relegated to special areas of the factory floor, where they were guar-
anteed not to enter in contact with the human workforce. But the need for human-centric approaches in
automation has been changing that. Leveraging the superior capabilities of humans and robots, appli-
cations where the two are not only able to, but need to interact with each other are becoming more and
more common in industry, especially with the advent of cobots. Cobots, as defined by Colgate et al. [25],

! Advancing anticipatory behaviors in Dynamic human-robot collaboration.
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1. From Human to Robot Collaboration

are robotic devices that can provide assistance to a human operator and guide the motion along the task
execution. The constant evolution of cobot’s safety standards, and hardware actuation [11,/105,114]]
make it possible for modern cobots to be designed to be in close proximity to a human worker, even
around the worker’s peripersonal space ﬂ The requirements of human awareness for the robot increase
as the human gets closer to the robot (Fig. [5)). Safety is of course one of the main reasons, however,
not the only one. The human is a partner that is constantly adapting and reacting to its environment. If
the robot has autonomy over a different task or sub-task than the human partner (cooperation), then it
is possible to overlook the human actions in the given task or sub-task. To achieve true human-robot
collaboration, where the robot and the human share the same task, with the same goals, we point out
that the robot should exhibit the same social sensorimotor control mechanisms that humans have during
a human-human collaboration.

The main sensorimotor control mechanisms that drive human-human interaction are: shared repre-
sentation, prediction, and signaling [18]]. The mere presence of another human agent in the execution of
a task changes the perception and motor behavior of a human agent [|39}/101]], even if the other’s actions
do not influence on the task directly [161]]. Recent studies have reported that in a dyadic interaction,
humans may see themselves as a dyadic unit, rather than the sum of its parts [36,/198]]. Interacting hu-
mans also seem to utilize sensorimotor forward models to predict their partner motor behaviors [201].
Moreover, humans also expect other humans to make accurate predictions over their own goals and the
environment [18,[80]. In addition, to improve their own predictability, humans signal their intentions to
their partners in many different ways, such as gaze [[193]], haptic sensory cues [109]], or their kinematic
behavior [[154]]. As a matter of fact, changing motor behavior may incur in extra energy expenditure, but
as long as the benefit of signaling balances this cost, humans are willing to do it [20].

Given the many possible ways a human can interact, and be represented, human-robot interaction
applications have also used a varied set of sensors, for modeling, estimation and prediction of the human
state. State-of-the-art motion capture techniques remain widely used to provide high-fidelity and high-
frequency measurements of human kinematics [[194]. While human kinematics can serve to inform about
human’s intent, the on-line estimation of human dynamics is receiving a lot of attention since it enables
the robot to consider aspects such as balancing, or humans’ internal force distribution [82]. Dynamics
estimation requires a measure of external forces, either via generic force/torque (F/T) sensors that can
be embedded in the robot, or via specific sensors such as force plates for human/ground reaction force.
Wearable force sensors such as sensorized insoles are also of interest due to their portability [[168]].

Measurements of physiological quantities are also common in human-robot cooperation. Physiolog-
ical quantities can be used as such, for instance, electromyography (EMG) signals have been used to
estimate human muscle fatigue [[132]]. But physiological quantities can also serve to estimate the human
cognitive state: electrocardiography (ECG) and galvanic skin response (GSR) signals have been linked
to stress and anxiety levels [27]], while eye gazing was correlated with engagement and proactivity levels
during social human robot interactions without physical contact [9]].

In more recent works, there are indications that individual factors such as personality, can affect the
human posture and motion while interacting with a humanoid robot [192]] (motor contagion), or even the
level of trust towards the robot [58]]. These emotional, and perception factors should also be monitored
by the robot in order to provide mental safety during interactions [[72]].

Control approaches that consider the task autonomy to be shared between the robot and the human
(collaboration as defined by Jarrassé et al. [60]) are becoming more and more frequent. These shared
autonomy approaches arbitrate the robot’s level of autonomy towards the task based exactly on the human
representation [[163]]. However, not all of them attempt to represent the human, constantly predict their
behavior, and signal to the human the robot’s intent at the same time. Therefore, we argue that in those

2Some of which are depicted in Fig.
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cases the human may not perceive this collaboration attempt as a natural interaction, however this is a
hypotheses that still needs to be tested. Meanwhile, a study on young children suggested that humans
have a tendency to act in a collaboratively manner, even if the task does not require collaboration [[200].
Biitepage and Kragic [ 18] suggest that to achieve a similar behavior, robot action should be rewarded not
only for the task execution but also by the quality of the collaboration. In a human-robot collaboration
of good quality the robot would be able to accurately predict human’s actions while the human would
also respond properly to the robot’s actions, in sum, the agents would constantly co-adapt to each others
motor behaviors. This collaborative behavior can be potentially used to induce trajectories during a
physical human-robot interaction, including ergonomic trajectories.

Ergonomics Intervention Through Human-Robot Collaboration

The classic approach to assess the risk of WMSDs in industrial environments is to observe the work
activity, and manually compute ergonomics scores, typically, using paper-based spreadsheets. These
spreadsheets are meant to be filled by the evaluator, an ergonomics expert, in loco or by video observa-
tions. This approach has been widely successful in assessing the risk of WMSDs in industrial environ-
ments, but it has important limitations due to its mostly paper-based methods [41]]. The first problem
with this approach is that if there is any significant change to the work environment, such as a new
machine for instance, the expert needs to redo the evaluation, and the evaluation is of course subject to
their availability. This alone would be a bottleneck for any given factory that needs to be flexible. In
addition, even if the assessment evaluation is highly standardized, there will always be a level of sub-
jectivity, and imprecision related to the manual scoring of a task. Different ergonomics experts could
diverge when choosing the postures in which they will evaluate the task for example. Therefore, auto-
matic risk-assessment evaluations aim to conserve the success of the classic evaluation tools, while still
being flexible. However automatic evaluation is only part of the solution, if it is not followed by an
automatic ergonomic intervention, then the factory bottleneck may still be present.

A human-aware robot can be used to improve the human ergonomics status during some tasks [16,
1411|166]. In physical interactions, moving a box or table with the robot’s assistance for instance, recent
works have been able to change the robot motion in order to decrease human joint efforts [74], muscle
activation [43|], fatigue [[129]], or other indexes based on classic evaluation tools [[190,205]. In many of
those cases, even though the robot is only assisting the human to achieve a more ergonomic body posture,
and assisting on the task per se, the robot needs to actively engage in the task. We argue that physical
interaction could be more effective, and perceived as more natural to the human partner during robot
ergonomics intervertions if sensorimotor control mechanisms present in human-human interactions are
also taken into account [|18]]

2 Contributions and Thesis Organization

The main objective of this thesis is, to provide tools to improve the ergonomics of the human body
postures during an object co-manipulation task. Our approach is summarized as follows (Fig. [0)):

1. Automatically reproduce and ergonomically evaluate a whole-body motion for a task execution
using a Digital Human Model simulation

2. Generate “optimal” ergonomic motions for the human body posture
3. Study the human motor behavior executing a task that requires coordination of the human actions

4. Evaluate different robot control laws to emulate the human motor behavior for task collaboration
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Figure 6: Thesis organization. In chapter 1, we discuss how to evaluate movements with respect to
ergonomics. Then, in chapter 2, an initial motion is optimized for several ergonomics scores using
multi-objective optimization. In chapter 3, we present a human-dyad study where we investigate diffent
coordination configurations, and compare their efficiency in a precision task. Finally, in chapter 4, we
present a physical human-robot interaction where the robot tries to emulate the human-human coordi-
nation using haptic signals. The desired ergonomics trajectory input to the human-robot coordination
is represented with a dashed line since this scenario was not experimented in this thesis, but it is in the
future work perspective.
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This approach includes both whole-body posture ergonomics evaluation, and dyadic interaction anal-
ysis, from which a human-robot application can leverage a better physical interaction. Given the multi-
disciplinary nature of the topics, for clarity of presentation, each chapter presents a state-of-the-art review
of its relevant topics.

Chapter 1 reviews some classic ergonomics criteria and their scoring system. We took inspiration
on recent works on the simulation of DHMs [98}[156] to propose methods for automatic ergonomics
evaluation using a custom Digital Human Model(DHM) controlled by a Quadratic Programming (QP)
controller within a physics simulator. Furthermore, in the end of this chapter, a real-world case study
of ergonomics evaluation in a work environment is presented.

Chapter 2 proposes methods to optimize whole-body motion trajectories for a DHM and humanoid
robot under single- and multiple-objective optimization experiments. The motions are parameterized us-
ing stacks of Probabilistic Movement Primitives, ProMPs [125]]. The whole-body representation using
a stack of Cartesian ProMPs while leveraging the QP controller properties to maintain the joint-
level constraints is one of the novel contributions in this thesis, as it allows for a very compact, yet
easy to grasp, representation of the whole-body motion. Moreover, if two people with very differ-
ent body morphologies attempt to execute an identical set of Cartesian trajectories, then an ergonomics
evaluation could yield widely different results. Each person can also have special constraints, such as a
limitation on flexibility, or a handicap for instance. These individualities, or special constraints are not
taken into account by classic ergonomics scores. Even though some strategies or patterns could be
devised, we verify using single-objective trajectory optimization that optimal ergonomic motions
are individual.

The causes for WMSDs are multi-factorial and may be developed at different body segments. There-
fore, if the goal of the trajectory optimization is to decrease the overall risk of developing any WMSD,
then optimizing for a single ergonomics score may not be sufficient. Our experiment results with
single-objective trajectory optimization make it clear that optimizing for a single ergonomics score
is not sufficient to obtain an overall ergonomics motion from the optimization. The resulting trajecto-
ries in the multi-objective optimization experiment highlighted trade-offs between different ergonomics
scores. In addition, we show that from a Pareto front of optimal motions regarding different er-
gonomics scores, it is possible to pick whole-body motions that simultaneously improve many er-
gonomics scores.

Chapter 3 presents a study on the human-dyad motor behavior during an object co-manipulation.
The motor behavior is analyzed through the agents’ kinematics, muscle activation signals, and the dyad
efficiency at executing the proposed task. The human-human dyad has to perform a challenging manip-
ulation that requires precise movements from the dyad. During the human collaboration, the human-
human dyad seems to be more effective at executing the challenging co-manipulation task than
when one of the agents is assigned as a leader, in cooperation. We also observed different pat-
terns in arm co-contraction and trajectory modulation according to cooperation and collaboration
conditions.

Chapter [] presents a human-robot object co-manipulation using an industrial cobot under different
control strategies whose aim is to emulate the cooperation and collaboration capabilities presented in the
human-human study. It presents two different variable impedance control profiles to emulate the human
motor behavior seen on the human-human experiment during the collaboration condition.

The human-robot experiment was executed by a small number of subjects, so statistical tests are
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not conclusive, however, an important trend could be identified: during the collaboration conditions,
reciprocal and mirrored profiles, the human-robot dyad executed the task more accurately than
when the human or the robot were given full autonomy to the task.

3 Publications

The body of work of this Ph.D. has produced several contributions in the form of academic articles,
software, and videos. All of which are described below.

Accepted / Published Articles

— Exoturn Project: this project aimed to select exoskeletons to alleviate efforts from healthcare
workers during the execution of a strenuous and non-ergonomic task.

Contribution: Our Digital Human Model simulation was used to make ergonomic evaluations
of the human motion with and without the exoskeleton of choice. The study is presented within
chapter |1}

Serena Ivaldi, Pauline Maurice, Gomes, Waldez, Jean Theurel, Lien Wioland, Jean-Jacques
Atain-Kouadio, Laurent Claudon, Hind Hani, Antoine Kimmoun, Jean-Marc Sellal, Bruno
Levy, Jean Paysant, Serguei Malikov, Bruno Chenuel, and Nicla Settembre. Using ex-
oskeletons to assist medical staff during prone positioning of mechanically ventilated covid-
19 patients: A pilot study. In Jay Kalra, Nancy J. Lightner, and Redha Taiar, editors,
Advances in Human Factors and Ergonomics in Healthcare and Medical Devices, pages
88-100, Cham, 2021. Springer International Publishing

— Optimization of Retargeted Whole-Body Motion: this study proposes optimizing motions that
have been previously retargeted from a human to a humanoid robot with respect to the robot’s
capabilities.

Contribution: We showed how to use movement primitives to parameterize and optimize whole-
body motion. The study is presented within chapter 2}

W. Gomes, V. Radhakrishnan, L. Penco, V. Modugno, J. Mouret, and S. Ivaldi. Humanoid
whole-body movement optimization from retargeted human motions. In 2019 IEEE-RAS
19th International Conference on Humanoid Robots (Humanoids), pages 178-185, 2019

Video is available at: youtu.be/rJ7ZVrVAVLM:s.

— Review on Human-Humanoid interaction: it reviews different aspects of human-humanoid in-
teraction, such as social factors, robot interaction control, human perception and human behavior
modelling. Additionally it also reviews relevant applications on the field.

Contribution: Our role on the review was related to the state-of-the-art on sensing and measuring
the human status which is also partially present in this introduction chapter.
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Introduction

Lorenzo Vianello, Luigi Penco, Gomes, Waldez, Yang You, Salvatore Anzalone, Pauline
Maurice, Vincent Thomas, and Serena Ivaldi. Human-humanoid interaction and coopera-
tion: a review. Current Robotics Reports, 2021

— Multi-Objective Whole-Body Optimization w.r.t. Ergonomics: this study proposes optimizing

the ergonomics of a human whole-body motion using several ergonomics scores simultaneously.

Contribution: This work pushed forward the current work on whole-body motion generation by
making the case for taking into account several ergonomics score simultaneously. The proposed
methods are presented in chapter [2]

Gomes, Waldez, Pauline Maurice, Eloise Dalin, Jean-Baptiste Mouret, and Serena Ivaldi.
Multi-objective trajectory optimization to improve ergonomics in human motion. IEEE
Robotics and Automation Letters, 2021, Accepted for publication

Video is available at: [youtu.be/vgQ0Ybs9TTo.

In Preparation

18

— Motor Behavior of a Human-Human Dyad in an Object Co-manipulation: the dyad was

analyzed according to their motion, muscle activation signals and efficiency executing the task.

Contribution: We found important differences on the motor behavior of a human-human dyad
between different forms of coordination. This study is presented in chapter 3]

Gomes, Waldez, Pauline Maurice, Jan Babic, Jean-Baptiste Mouret, and Serena Ivaldi. In
a collaborative co-manipulation, humans have a motor behaviour similar to a leader. Nature
Human Behaviour, In Preparation

The raw dataset is available at the DOI: [10.5281/zenodo0.3989616|[183]].
Custom code developed for the experiment is available at: http://github.com/inria-
larsen/emg-processing

Latent Ergonomics Maps: demonstration of real-time activity recognition and ergonomics visu-
alization tools on a human-robot object co-manipulation task.

Contribution: We participated on the development of the Digital Human Model, and on the data
collection for the experiments. Even though it was not an integral part of this Ph.D thesis body of
work, we believe Latent Ergonomics Maps to be an important tool for ergonomics visualization
going forward. For this reason, they are also briefly presented in chapter [T}

Lorenzo Vianello, Gomes, Waldez, Francis Colas, Pauline Maurice, Freek Stulp, and Ser-
ena Ivaldi. Latent ergonomics maps: Real-time visualization of estimated ergonomics maps.
Sensors, In Preparation

Video is available at: youtu.be/bPJSHfE3wAw.
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Human Ergonomics Evaluation

In this chapter, we briefly review the main procedures and criteria for evaluating ergonomics at work
with the aim to reduce the risk of musculoskeletal disorders. Then, we follow-up by showing some of
the advantages of leveraging Digital Human Models to automate ergonomics evaluations tools. We show
our proposed Digital Human Model, and how we control its whole-body under a lightweight physics
engine in simulation. Some ergonomics scores are presented in more detail as they are used throughout
this thesis.

At the end of this chapter, we present a real-world case study in which we evaluate the ergonomics of
a specific healthcare maneuver in a hospital intensive care unit under stress from the COVID-19 outbreak.

1.1 Musculoskeletal Disorders and Ergonomics Evaluations

Work-related musculoskeletal disorders (WMSDs) represent a major health issue with important costs
for companies and society [160]. For instance, the incidence of some WMSDs in certain industries and
occupations can be up to 3 or 4 times higher than the overall frequency of the same disorders on the
general population [[139]]. They include a wide-range of syndromes and conditions on muscles, tendons,
joints and peripheral nerves, usually developing when a work activity repeatedly exceeds the workers’
physical capacities, as in with excessive force, or maintaining awkward body postures [[139]]. The risk
of developing those disorders may also vary according to age, gender, muscle strength, smoking, and
other personal factors. Nonetheless, ergonomics processes of evaluation and intervention that reduce or
eliminate physical stressors are still a great help in preventing WMSDs.

O More Ergonomic

O

O Less Ergonomic

Figure 1.1: Illustration of ergonomics visual feedback for a human holding an object above the head.
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Chapter 1. Human Ergonomics Evaluation

Before changing a setup, or modifying a certain work-activity towards a more ergonomic environ-
ment, one needs to choose and define ergonomics methods and/or scores to assess the risk of developing
WMSDs associated with the activity in question [29]. A proper choice of the ergonomics evaluation is
key to avoiding potentially harmful misclassifications. For instance, if a work activity generates major
stress on the worker’s shoulders, it may not be appropriate to evaluate the ergonomics of the lower limbs.
Even if an ergonomics score related to the shoulder is chosen, if the evaluation is based on an observation
made over a brief period of time that is not representative of the entire work-day, then misclassifications
may still occur.

In industry, most ergonomics evaluations are based on observations made by ergonomists that re-
port their findings on worksheets [[147]]. These worksheets were designed as field tools, that could be
easily calculated with pen and paper by a practioner. Generally speaking, most evaluation tools output
bad scores for activities that maintain human joints out of known ergonomic neutral positions, and that
require several motion repetitions, or transportation of heavy loads. To facilitate, and standardize poli-
cies for intervention they also classify the activity according to overall scores. Some of the most used
scores are: RULA (Rapid Upper Limb Assessment), a standard sheet that evaluates some upper body
joint angles [100]; REBA (Rapid Entire Body Assessment), an extension of RULA that additionally
takes into consideration some joint angles from the lower body [55]], OWAS (Owako Working Posture
Analysis System) [26], OCRA (Occupational Repetitive Actions) [116]], EAWS (European Assessment
Worksheet) [[158]].

Even though they may be commonly regarded as classic and standard tools, the aforementioned
observational scores have important limitations. They require a reliable assessment of the body pos-
ture [6,/41]] which is not always achievable from the naked eye, or from video observations [86,/191]].
Furthermore, the overall scores can also vary greatly for joint angles that are close to the score bound-
aries, e.g., a 60.5 degrees of elbow flexion could be disproportionally worse for a RULA score than 59.5
degrees would. Therefore, the overall score is subject to high intra- and inter-observer variability [[135].
In addition, those methods may need to be run several times, if there is any major change to the setup, or
if workers with very different body morphologies are hired after the initial evaluation, a new evaluation
will have to be done to take those changes into account. In order to automate those evaluations, many
studies have started using Digital Human Models as digital twins for the workers in simulated work
environments [|156]].

1.2 Digital Human Model

Digital Human Models (DHMs) are articulated human body representations that can be used to study
the human motion. As the industry starts to focus on manufacturing solutions that are more and more
human-centric [91]], DHMs are used to capture information of the human state. For instance, state-of-
the-art motion capture systems such as the Xsens MVN suit [[146] use Inertial Measurement Unit IMU)
sensors to capture the joint angles of the human body and retarget them to a proprietary DHM (Fig.[1.2)).

The level of complexity of a DHM varies on the level of detail needed by a given application. In
the biomechanics community, one is often interested on studying complex interactions between a given
motion and the actuation and interaction between the involved muscles and tendons [28}33]]. Although
potentially more precise, those types of musculoskeletal models [28] are very computationally expen-
sive, often, taking many hours to analyze brief motions. For this reason, many applications that require
quick ergonomics evaluations such as optimization [[190], or real-time ergonomics assessment [/6] prefer
using less complicated DHMs where the human is modelled as a set of rigid bodies connected by ideal
rotational joints.

Similarly to other recent works [[76}(186], the DHM used here is modelled with basic shapes, and
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Figure 1.2: Digital Human Model Example: Xsens MVN system [146].The origin of the Xsens frame is
defined by the system’s initial calibration.
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Digital Human Model (DHM) joints description. The axes are X=Red, Y=Green, Z=Blue.
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Chapter 1. Human Ergonomics Evaluation

Table 1.1: The ergonomics evaluation scores used in this thesis. £,p;(t) is an instantaneous score.

Description Score Eobj(t)
RULA-C Regression of RULA [99] Ere
A
Normalized whole-body effort | 137, ., (ﬂ;ﬁ) Enwe
Torques Shoulder | Tshoutder | Etsh
Torques Lumbar | Trumbar | Etlb
Back Flexion H 9{5 s1 H Eback

inertia properties. The DHM (Fig. [I.3) consists of 19 rigid bodies linked together by 18 compound joints,
for a total of 43 DoFs, q € R*3, (11 for the back and neck, 9 for each arm including the sternoclavicular
joint, and 7 for each leg), plus 6 DoFs for the free-floating base. Each DoF is a revolute joint controlled
by a single actuator. Different human morphologies are easily generated from a desired body mass
and height, by scaling the geometric and inertial parameters of the human model according to average
anthropometric coefficients [22}/120]].

Our DHM’s simple shapes are particularly useful to simulate the whole-body motion in a physics
engine (DART [85]]). This allows us to evaluate the DHM not only w.r.t. kinematical ergonomics scores,
related to the body’s joint and Cartesian positions, but also w.r.t. scores that consider the dynamics of the
motions, such as the efforts exerted by or on the body. Additionally, the DHM is controlled using multi-
task Quadratic Programming (QP) controller [106]. The QP controller generates whole-body motions
that respect whole-body motion constraints, such as the DHM’s joint limits. The QP controller takes
reference Cartesian trajectories that define the activity, and outputs desired joint velocities for the DHM.
The QP is set to minimize the tracking error of these references while handling task priorities defined
by the user. The priorities are defined by hierarchical levels, and tasks within the same level are further
prioritized by their task weights. The control of n tasks 7 is formulated as a QP problem:

(j* = arg min HAnq - anW (LD
q

S.t. Can < bl,n (1.2)

C2,nq < b2,n (13)

where ¢* is the desired velocity sent to low-level controllers (solution for the QP problem), A, €
R(%+6)x(nj+6) ig the Jacobian matrix for the task, b,, € R(+6) ig a reference value for the task, W is a
positive definite weight matrix, C,.,, € R(%+6)%(+6) and ., € R("16) encode lower, upper bounds,
equalities and inequalities from the c-th constraint for q.

If a task 77 has a hard priority over 7, this means that 75 is solved within the null space of 77.

1.3 Ergonomics Scores Evaluation

Typically, each ergonomics score represent a different physiological phenomena that could increase the
risk of developing WMSDs [29]. In particular, we want to define an ergonomics score as an objective
function to our formulation, both for simplicity in the evaluation, and later to use it in optimization
processes. However, neither for evaluation, nor for optimization there is a strict consensus on a single
score to use. Moreover, different ergonomics scores might be antagonistic among themselves, e.g. the
same movement could produce ergonomically suitable results for a score, and unsuitable results for
another.
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1.3. Ergonomics Scores Evaluation

For this reason, instead of using an aggregated score, that is often task-specific, we consider several
scores, €p;, separately (Tab. [1.1). In order to obtain an evaluation of the entire trajectory execution,
we can use a cost proportional to the squared RMS value of ¢,; for each score, for the entire activity
duration:

Tobj = > €o;lt) (1.4)

tel0...T]

where 1" € R is the final simulation instant. Below, we describe each of the selected scores €.

RULA-C or RULA Continuous: The Rapid Upper Limb Assessment (RULA) tool [99] is often
used by ergonomists to evaluate work activities involving upper-body motion. It consists of a score rang-
ing from 1 to 7, calculated based on the joint positions (posture), the force/load applied at the worker’s
arm, and the number of times the activity is repeated. Since RULA is a discontinuous function calculated
over a continuous domain, RULA time evolution during an activity is likely to have discontinuities and
plateaus that make its domain exploration less efficient for many optimizers. To alleviate this problem,
we propose a continuous version of RULA instead: RULA-C, ¢, € R™. To compute RULA-C, we
fit second-degree polynomial functions to calculate intermediate scores for the RULA joints. The joint
scores for each limb are combined with weighted sums whose weights are computed from linear regres-
sions of the standard RULA tables. Moreover, differently from RULA, RULA-C only takes into account
the body posture.

Normalized whole-body effort: the torques at every joint are summed to quantify the whole-body
effort (Tab. [I.T]), where all joint torques are normalized w.r.t. average maximum human capacity for each
joint [22]] in order to handle the joint torque capabilities.

Local measurements: WMSDs at the shoulder and lumbar areas are among the most common in
the population [[139]], therefore, we choose scores that target them. For the shoulder joint, we monitor its
absolute torque values, €4, and for the lumbar joint, we monitor its absolute torque values, €43, and the
lumbar back flexion angle, €pqc-
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Figure 1.4: Latent Ergonomic Maps (LEM): The VAE is used both to reduce the dimension of the current
human posture (encoder), and to create the LEM (decoder).
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RULA-C Latent Space Visualization RULA Latent Space Visualization

Figure 1.5: Whole-body Posture in a Latent Ergonomics Map. Each point in the map represents a whole-
body posture. Each point’s color represents the corresponding ergonomic score for the point. Some
points are illustrated as their reconstructed whole-body posture.

In the context of this thesis, we have also collaborated in the development of a tool for real-time visu-
alization of the human ergonomics status using the RULA, and the RULA-C implementation from this
chapter [[195]]. The method consists of learning Variational Auto-encoders (VAEs) to encode a high-
dimensional body posture configuration into a low-dimensional latent space, and posteriorly use the same
VAE to map the low-dimensional space w.r.t. to the RULA or the RULA-C scores (Fig. [[.4] Fig.[L.3]).
This latent space is then called a Latent Ergonomic Map (LEM), and it can be used to intuitively indicate
if given whole-body postures are ergonomic or not. Furthermore, by associating ergonomics scores with
a low-dimensional (2D space) and smooth (in the case of RULA-C) LEM, many efficient approaches
with very low computational time could be used to find ergonomic whole-body motion paths. For in-
stance, finding a path in an LEM is akin to finding a path using classic path planning techniques such as
the RRT family of algorithms [84].

In the next section, we showcase how some of those ergonomics scores alongside our DHM simula-
tion can help to evaluate the ergonomics of a real-world work activity, even in the presence of external
assistive devices such as exoskeletons.

1.4 Real case study on Ergonomics Evaluation: Exoturn Project

Exoturn was a short-term project developed jointly by the Larsen team of Inria Nancy and the Hospital
University of Nancy during the first waves of the COVID-19 pandemic in the city of Nancy in France.
The project aimed to improve the ergonomics of healthcare professionals at the Hospital University of
Nancy for a physically stressing and nonergonomic maneuver. In the context of this thesis, it was a
good opportunity to apply our DHM simulation and ergonomics evaluation methods within a real-world
scenario beyond the laboratory.

Since the initial outbreak, the COVID-19 pandemic has stressed healthcare systems worldwide as
never before, with significant consequences for clinical management, including rationing of care, and
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Figure 1.6: Although small differences in the practice of PP can happen from one hospital to another,
the maneuver is substantially standardized (video tutorial: https://www.youtube.com/watch?
v=X—-qyeN3e81iU). A: A doctor positioned behind the head of the patient secures the head to avoid
extubation and coordinates the whole procedure. Four teammates are distributed on both sides of the
patient to reposition and turn the patient. B: The 4 teammates lift the patient and position him/her on one
side of the bed. C: The 2 teammates on the right place a clean bed linen. D: The 2 teammates on the left
pivot the patient temporarily on the side using the old linen. E: The patient is rotated toward vent until in
prone position, lying on his/her abdomen. F: The 4 teammates lift the patient to position him/her at the
center of the bed and add a pillow underneath him/her.
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facing a limitation of capacity and resources of Intensive Care Units (ICU) to safely maintain a high
number of patients on mechanical ventilation during the surge. Prone positioning (PP) (Fig.[L.6), when a
patient is repositioned from a supine position (i.e., lying on his/her back) to lie on a prone position (i.e.,
on his/her front side), is known to improve oxygenation and ventilatory mechanics in Acute Respiratory
Distress Syndrome (ARDS) patients who require mechanical ventilatory support [53]]. Therefore, PP has
been largely used during the COVID-19 pandemic.

In the University Hospital of Nancy, the ICU performed 116 PP maneuvers in the first 10 days of
the outbreak, which is equivalent to the number of maneuvers usually performed during an entire year.
Although turning a patient into the prone position is not an invasive procedure, it is an exhausting,
time-consuming, complex maneuver with many potential complications that require adequate and well-
trained healthcare staff. Notably, a PP procedure requires the medical staff to remain with their torso
bent forward for several minutes, thus, increasing the potential for lower back injuries [57]]. In addition,
obesity-related complications have been identified as risk factors for severe COVID-19 cases [21]]. As a
matter of fact, patients weighting up to 150 kg are common in COVID-19 ICUs, making the PP maneuver
ever more daunting for the caregivers.

As we discussed before, musculoskeletal injuries and back pain generated by the repetition of stren-
uous tasks are well-known in industrial scenarios [57]], and many back-support systems have been pro-
posed to alleviate the problem. Given the similarity of the postures, robotics assistance used in industry
might also be useful to assist caregivers. In the specific case of a PP maneuver, collaborative robots or
mobile manipulators are not suitable, mainly due to limited robot payload and lack of available space
in the ICU. Alternatively, motorized beds that can help with manual repositioning of patients (e.g., the
commercial products Hospidex toto with inflatable air cells and Vendlet V5S with motorized bars) do
exist, but they cannot fully replace the work of the caregivers and require substantial time and financial
resources to be put in place. Conversely, occupational exoskeletons [[30] appear to be less invasive for
the daily practice, as they are easy to set up, cheap, and compatible with the caregivers’ work in the ICU.

Given the task-specific efficiency and functionality of exoskeletons, a multidisciplinary team within
the Exoturn project conducted a pilot study to evaluate the potential and feasibility of using occupational
back-support exoskeletons to help caregivers in the ICU during PP maneuvers. In the remaining of the
chapter, we report on the pilot study that defined a suitable exoskeleton for daily usage at the ICU of
the University Hospital of Nancy. Additionally, we showcase how we used our DHM simulation to
complement the ergonomics analysis of the PP maneuver with and without the exoskeleton.

1.4.1 Preliminary Prone Positioning Kinematic Analysis

In a preliminary test, video analysis of PP maneuvers revealed that the medical staff can assume postures
with forward trunk bending up to 45 degrees with arms raised straight forward, exert traction to the
trunk bending up to 20-30 degrees, and hold prolonged static postures with the trunk bent forward up
to 60 degrees. Then, to confirm the visual observation, we recorded the whole-body kinematics of one
physician (M, 35 years old, 175cm) performing a PP maneuver, using the Xsens MVN inertial motion
capture system (Xsens, Enschede, Netherlands, capture rate: 240Hz).

Postural analysis with the Anybody biomechanical simulation software (AnyBody Technology, Aal-
borg, Denmark) revealed that when operating at the side of the patient, the physician spends approx-
imately 40% of the maneuver time with the torso bent more than 20 degrees forward (Fig. [[.7). Ad-
ditionally, when operating behind the head of the patient to secure the head and avoid extubation, the
physician maintains a static posture with important flexion of the trunk for several minutes. The precise
angle of flexion, in this case, depends on the height of the patient’s bed, his/her location relative to the
bed, and the physician’s height. Even when not associated with load manipulation, such postures cause
mechanical load in the lower back [57]. Exoskeletons for lumbar support can help, but to be used in the
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Figure 1.7: Preliminary analysis of the trunk flexion angles of a subject performing a prone-positioning
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to the worker’s health .

27



Chapter 1. Human Ergonomics Evaluation

ICU they have to match many usability constraints, such as being lightweight and unburdensome for the
users.

Corfor LAEVO BackX CrayX

P\ .

Figure 1.8: The four commercial exoskeletons used in the ExoTurn exploratory study: Corfor, LAEVO,
BackX, CrayX.

Based on the previous analysis, we identified four commercial exoskeletons (Fig. [I.8) that could
meet the requirements and aid the medical staff: Corfor (Corfor, France), Laevo v1 (Laevo, Netherlands),
BackX (SuitX, USA), and CrayX (German Bionics, Germany). Corfor is a passive soft exoskeleton (also
known as exosuit), Laevo and BackX are passive rigid exoskeletons based on springs, while CrayX is
an active exoskeleton, employing electrical actuators. To verify their feasibility for a PP maneuver, an
exploratory study was designed where 5 volunteers from the Hospital of Nancy performed 11 PP ma-
neuvers with a 100kg manikin, and one of the volunteers (M, 30) executed the maneuver while wearing
each one of the aforementioned exoskeletons at a time.

1.4.2 Ergonomics Evaluation of Exoskeleton Usage

The whole-body motion of the participant that wore the exoskeletons is replayed using our DHM. His
motion was captured using the Xsens suit, and was used as a reference to the DHM simulation in a DART
physics engine (Fig.[T.9). The length of each segment of the DHM was scaled to match the participant’s
body segment length, while the DHM inertial parameters were scaled based on the participant’s height
and mass using average anthropometric coefficients.

Here, to control the DHM, we add Cartesian tasks at different priority levels of the DHM’s QP
controller:

— Level 1 (Top priority tasks): Center of Mass (balance) position task; feet position task (fixed);

— Level 2: Pelvis and thoracic spine body segments (position and orientation); Shoulder, elbow and
wrists (position only); Head (orientation);

where, in the first level, the center of mass position task handles the balance of the DHM, and the feet
task keeps the DHM in double support during the motion replay. In the second level, the tasks track the
reference trajectories coming the poses of the Xsens avatar’s body segments.

The Xsens system exports position and orientations (poses) for every segment of their model. How-
ever, since the human subjects move from their initial position along the PP maneuver, the DHM would
also need to replay walking and lateral movements of the human subject. In order to simplify the replay
in the physics engine, we replay the movements on the DHM always in double support, by taking the
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Figure 1.9: In the study conducted at the Hospital Simulation Center, the motion of one physician ex-
ecuting the PP maneuver was captured with the Xsens MVN suit (Step 1). We used the whole-body
kinematic estimation of the Xsens MVN software (Step 2) as an input to our dynamic simulation with a
Digital Human Model (Step 3). The analysis of motion and estimation of human lumbar effort are based
on this dynamic simulation.

Assistance | L Shoulder | R Shoulder | L Elbow | R Elbow | L wrist | R wrist
No Exo 3.6 cm 3.0cm 5.5cm 6.1 cm 57cm | 54cm
Corfor 3.5cm 3.0cm 55cm 5.1cm 57cm | 55cm
LAEVO 34 cm 33cm 5.5cm 5.4 cm 53cm | 54 cm
BackX 3.1 cm 34 cm 5.4 cm 6.2 cm 47cm | 4.8cm
CrayX 3.8 cm 39cm 5.8 cm 5.7 cm 53cm | 5.8cm

Table 1.2: RMS errors between DART Simulation and Xsens reference trajectories for all experiments.

Xsens body segments poses w.r.t. the Pelvis frame:

]_—bSegi _ (f-pelvis)—l}‘bSGQi (1.5

pelvis Tsens Tsens
where the Cartesian pose for a body segment ¢ € Segments w.r.t to F¢cns is given by fi’f:,?,g"), and then
posteriorly the same coordinates are taken w.r.t. the DART frame before sending it as reference to the
QP controller:
bSeg; __ pelvis bSeg;
Foarr = Fparr)7, (1.6)

pelvis

where the DART frame, Fp 47 is the projection of the initial pelvis position on the ground.

To guarantee that our controller is able to reproduce the captured movements in the DHM we need
to compare the trajectories between the Xsens and the resulting simulation. Due to the nature of the
movement, it is particularly necessary that the shoulder, elbow and wrist positions to be as close to the
captured reference as possible. Therefore, we verify the root mean square error (RMSe) for those body
segments for each experiment. In Tab. it is possible to verify that the replay was able to track the
shoulder trajectories closely, which assures a good approximation for the thoracic spine angle.

Given the nature of the PP maneuver, and where the exoskeleton most affect the movement, the lower
back, we chose to evaluate both the lumbar flexion angle (sagittal plane of the human), £p,.%, and the
lumbar torques at the same axis for the 2 most demanding phases of the maneuver, Prone to Supine
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Figure 1.10: Lumbar spine flexion angle of one participant performing prone-positioning maneuvers
with different exoskeletons.
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Figure 1.11: Boxplots represent the distribution of Lumbar spine flexion angle across time for all tested
exoskeletons, both for the prone to supine (PS), and supine to prone (SP) maneuvers.
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(PS), and Supine to Prone (SP). In the absence of physiological measures, DHM computed joint torques
are used as a surrogate measure of the efforts performed by the participants during the experiment to
investigate the effect of the exoskeleton.

The DHM L5/S1 flexion/extension joint torques estimated with the dynamic simulation are used
to compare the lumbar effort exerted by the participant with and without the exoskeleton. When no
exoskeleton is worn, the joint torque exerted by the human is directly retrieved from the simulation.
However, when the participant is equipped with the exoskeleton, the net torque exerted at the L5/S1 joint
to counter the dynamics and gravity effects on the upper-body is a sum of the human-generated torque
and of the exoskeleton assistive torque: Tr551 = Thuman + Tezo- In order to estimate the human torque,
the assistive torque .., provided by each exoskeleton is needed, however in order to compute it one
needs details about the exoskeleton’s mechatronics design.

The following torque estimation is used only with the Laevo exoskeleton, since it was the exoskeleton
unanimously perceived by the participants as the most suitable candidate for use during PP maneuvers
(Appendix [A)). Based on the Laevo empirical calibration curve published by Koopman et al. [[7§]] and on
the Laevo user manual which specifies that its set of springs provides a maximum torque of 40 N.m, we
estimated the exoskeleton torque contribution, T.., as follows:

ko + k10 0
mo(e):{ 0+ ™, >0 (1.7)

ko + k10 — kioss, 0 <0

where 6 is the back flexion angle, kg and k; are constants that encode the spring linearity in its range
of operation from 20 to 50 degrees (with the maximum assistance of 40 Nm at 50 degrees), and kj,ss
represents frictional losses which introduce hysteresis in the system (numerical values of the model’s
coefficients were set so that the model matches the calibration curve in [[78]] as closely as possible).

In addition, given the estimated, 7.4;,, the torque generated by the human, 7,4, is also estimated

(Fig. [LT3):

ith kelet
rrssn(6) = {Tem + Thuman, With exoskeleton (18)

Thumans without exoskeleton

1.4.3 Ergonomics Analysis Results

The profiles for the lower back flexion angles of one human subject are overall similar for different
conditions (Fig.[I.10): prone-to-supine, supine-to-prone; and all four exoskeletons. The median value of
the back-flexion angle of the participant across one trial does not vary significantly from one condition
to another (Fig. [I.TI)), and can be explained by small differences in the manikin’s position on the bed
and/or intrinsic variability in the entire maneuver performed by the team. These results suggest that the
range of motion of the L5/S1 flexion/extension joint during the PP maneuver was not affected by
the use of any of the exoskeletons.

When using Laevo for the SP and PS maneuvers, the lower back torque medians were reduced by
11.3% and 13.0% respectively (Fig.[I.12). Those results, though limited to one participant, suggest that
wearing the Laevo may reduce the human lumbar torque during PP maneuvers. This result also
agrees with the 15% reduction of the L5/S1 moment observed in [78] for a similar static forward bending
task.
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Figure 1.12: Boxplots represent the distribution of estimated human torque profile with and without the
Laevo Exoskeleton.
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Figure 1.13: Estimation of assistive torque from Laevo exoskeleton,and human effort.

1.5 Discussion

In this section, we proposed to use a DHM simulation in a physics engine to perform ergonomics eval-
uations of human motions. Particularly, we demonstrated its usage to complement the evaluation of a
strenuous work activity for health professionals: prone-positioning (PP). In the exploratory study [|62],
using the motion capture suit was key to obtain precise measures of the lumbar flexion angles of the
physician or nurse not only for selected moments as is the case with classic observational methods, but
for the entire maneuver execution. Furthermore, since the PP maneuver was assisted by an exoskeleton,
then observational methods may not be advisable for precise ergonomics evaluation [[149]. These clas-
sic methods do not take into consideration exoskeletons, robots, or any external devices attached to the
human body, therefore, they are likely to misclassify the risk of WMSDs if an exoskeleton is worn by
the human. With the physics engine simulation, and the estimation of the assistive torque curve for the
Laevo exoskeleton (Fig.[I.13] Fig.[T.T4)), it was possible to obtain an estimation of the effort realized by
the human subject at the lumbar back during the maneuver. However, there were still simplifications to
the PP simulation: the effects of the Laevo weight (2.5 kg) and of the manikin were ignored during the
torque estimation. This simplification matters only at the lateral position, since the external load at the
head position was only associated with maintaining the endotracheal tube.

The torque estimation is particularly important, as our DHM can be scaled both in weight and height
to the human’s measurements. Different people, with different body morphologies may require vastly
different efforts for the same PP maneuver, and this is a subtlety that would be otherwise impossible to
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Figure 1.14: Laevo exoskeleton assistive torque for the lower back flexion angle of one participant,
including the histeresis effect due to frictional losses, under supine-to-prone and prone-to-supine condi-

tions.

measure with classic observational methods. In the next chapter, we investigate if it is possible to find
motions that are optimal for a given body morphology, and activity according to one or more ergonomics

SCOores.
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2

Whole-Body Motion Optimization

In this chapter, we propose a set of methods that leverage the control and ergonomics evaluation tools
from the previous chapter to generate ergonomic whole-body motions (Fig.[2.1)). First, we discuss whole-
body trajectory optimization for both humans, and humanoid robots with kinematic chains similar to a
human. Then, we detail how we are able to encode whole-body motions with few parameters and use
them as optimization variables for a given activity’s trajectory. Both single-objective and multi-objective
optimization algorithms are considered and their use is discussed.

At the end of the chapter, two different studies are presented: Optimization of retargeted motions
for a humanoid robot; and Multi-objective trajectory optimization to generate ergonomic human mo-
tion. The former is a real-world application that was used to showcase the framework under a model
with simpler kinematic chains than the ones of a DHM, as well as to benchmark some of the proposed
single-objective optimizers. The latter optimized human motion for different body morphologies and ac-
tivities, ultimately, verifying that the ergonomics evaluation should include multiple ergonomics scores.
Additionally, it showed that optimal ergonomic motions are sensitive to user-specific requirements and
capabilities, and therefore, should be taken on a case-by-case approach.

2.1 Whole-body Trajectory Generation and Optimization

Humanoid robots are able to execute a given activity in many different ways (motion redundancy), al-
though not with the same dexterity as humans in many cases. As it was the case for the DHM on Chapter
[T} a well-established approach to control both DHMs and humanoid robots is to use quadratic program-
ming (QP) formulations. They implement strict [40,|137]] or soft [[13},|153]] priorities among many tasks
while dealing with low-level constraints (e.g. joint or torque limits). However, even though those QP

O More Ergonomic

O

O Less Ergonomic

= =
Initial Ergonomic
Posture Posture
(Digital Human Model)

Figure 2.1: Motion optimization with respect to ergonomics scores using a Digital Human Model (DHM)
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controllers have shown satisfactory results, they still demand good input trajectories. Otherwise, the high
number of degrees of freedom and constraints in humanoid robots may hinder the generation of motions
that do not violate the robot constraints.

One solution for whole-body trajectory generation for both DHMs and humanoid robots is to learn
the movements from human demonstrations [[134,|157]. In [[127], the authors retarget human motion
onto a humanoid robot using a QP controller while taking into consideration higher-level constraints
such as balance. Other works have achieved motion retargeting in different challenging scenarios, with
multiple contacts [[37]], or heavy object manipulation [[123]]. Furthermore, demonstrations may be used
to learn useful robot control policies. For instance, Lin et al. [89] learn movement constraints from
demonstrations, and Ortenzi et al. [[121]] estimate contact constraints.

The trajectories executed by humans are likely optimal according to one or more criteria related to
human motor behavior [63]]. However, even after motion retargeting, there is no guarantee that retargeted
trajectories are adequate for the robot. In order to execute robot movements optimally, some studies set or
define multiple reference trajectories for the robot, and optimize controller parameters. In [[107,(167,206]
for instance, the authors parameterize hard or soft priorities for multiple trajectories in a QP controller
and posteriorly optimize them w.r.t. to different cost functions related to the humanoid kinematics or
dynamics. In this work, we take the approach of keeping the QP controller parameters fixed, and opti-
mizing the reference trajectories directly. Furthermore, before trajectory optimization, those trajectories
need to be compactly parameterized so that the optimization only deals with a small set of parameters,
as it is typically done in motion planning and reinforcement learning [79L/138]].

In [90], the authors used reinforcement learning (RL) to modify waypoints in a reference trajec-
tory for the robot’s hand. The waypoints were used as parameters for a Bayesian Optimization (BO)
framework. It included cost function evaluations directly from robot demonstrations to have only a few
roll-outs in comparison to optimizations in simulations.

In [108]], the authors parameterized a reference trajectory for the robot Center of Mass (CoM). A
compact representation of the entire trajectory is provided through a radial basis function (RBF) network.
Furthermore, the trajectory optimization was done in 2 steps: Unconstrained optimization; and black-
box constrained optimization, where the solution of the first step was used as an initial point for the
second step. The main issue of this study was exactly the fact that its main optimization step required a
prior bootstrapping step from a successful unconstrained optimization to guarantee a trajectory that does
not violate any constraints. In contrast, here we leverage human demonstrations for bootstrapping the
optimization.

In [[172]], the authors used dynamic movement primitives (DMPs) to parameterize humanoid joint
trajectories, and posteriorly optimize them in a RL framework. Similarly, Stulp et al. [173]] use DMPs
in a hierarchical RL framework that optimizes for sequences of movement, which was further extented
in a later work [[174] to learn the trajectory’s end goal and to improve robustness in pick and place
applications. The DMPs in all those approaches were trained after task demonstrations by humans.

Ergonomic Motion Generation

Techniques that optimize whole-body motion for humanoid robots can also be used to generate optimal
motion in DHMs according to given ergonomics criteria. Prior works utilize human models to auto-
mate human whole-body motion analysis for a given activity [98,/156]]. There is even a recent trend
in the human-robot interaction community to use DHMs to improve the human posture with respect to
ergonomics scores during physical interactions. For instance, Marin et al.optimized a shared object’s
position in order to minimize the maximum muscle activation signal taken from a fast-to-compute mus-
culoskeletal surrogate model [96]]. Van der Spaa et al.optimizes a discrete sequential plan of poses for a
shared object during its transportation by both human and robot, with respect to the Rapid Entire Body
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Figure 2.2: Ergonomics human motion optimization. The entire motion is encoded into motion primitives
that can be readily optimized with respect to a single, or multiple, ergonomics scores using a user-specific
Digital Human Model (DHM) Simulation for motion evaluation.

Assessment (REBA) score, a standard whole-body ergonomics score [[190]].

Other works continuously evaluate the human kinematics/kinetics to try to influence the human pos-
ture with different robot actions. Shafti. et al.use wearable sensors to compute the Rapid Upper-Limb
Assessment (RULA) score and adapt the robot’s end-effector accordingly until the ergonomics evalu-
ation is considered satisfactory [[166]]. Kim et al. minimized the human joint torque due to an external
load [[75]]. Similar optimization techniques were used to improve human operator ergonomics during
teleoperation [1411,204].

The examples above consider single ergonomics scores, however, given the multi-factorial causes of
WMSDs, optimizing the movement for one ergonomics score could deteriorate other possible antago-
nistic scores. For this matter, there are some examples of multi-objective ergonomics optimization in
the literature. For instance, Xiang et al.optimized a human’s posture w.r.t. ergonomics and stability
scores [203]], and Iriondo et al.optimized a workstation setup parameter w.r.t RULA, and the human’s
upper-arm elevation angle [59]. In a physical human-robot application, Maurice et al.optimized a robot’s
design parameters to simultaneously improve several ergonomics scores [97]]. Figueredo et al.combined
muscle activation predictions and the REBA score to calculate a comfortability index that can be used
in a physical human-robot interaction to guide the human partner towards postures that minimize both
types of scores [43]].

In the next sections, we propose a set of methods to optimize human- and activity-specific whole-
body motions w.r.t. several ergonomics scores. We also show that the resulting optimal motions are
sensitive to different body morphologies, and ergonomics scores.

2.2 Multi-Objective Trajectory Optimization

We propose to generate optimal whole-body motions with respect to one or more objective functions,
or scores (Fig. 2.2). Given the high redundancy of motion in humanoid rigid body models, it may be
difficult to find a first feasible motion otherwise. Therefore, this step guarantees that the optimization
process is aware of at least one feasible point in the search space. Human motion demonstrations are
captured from a given subject executing a given activity. This initial movement is used to bootstrap the
optimization procedure, as the initial motion corresponds to a feasible initial point in the optimization
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process.

Then, we manually select and encode the Cartesian trajectories from human body segments that are
able to represent the whole-body motion. For instance, if the human lifts a box from the ground, both the
pelvis and the hand trajectories can be used to represent the whole-body motion. Those selected trajec-
tories are encoded into a single vector using Probabilistic Movement Primitives (ProMPs) [126]], which
can capture motion variability computing a Gaussian trajectory distribution from a set of demonstrations.

The whole-body trajectory references are generated from the ProMPs and executed by a hierarchical
multi-task whole-body controller [56] that controls the DHM we proposed in chapter |1} During the
execution, the encoded motion is evaluated according to one or more of the ergonomics scores in Tab.[I.1]
that can be used to evaluate the entire trajectory execution using Eq. (1.4).

Finally, an optimization algorithm, single or multi-objective, is used to find and select feasible, and
optimal wholebody trajectories for the given activity, and DHM morphology according to the chosen
score. We use non-linear constrained optimization algorithms to ensure that the solutions are always
safe, not violating any constraints for the DHM or the activity [[23}/108].

In the next sections, we detail the methods of our framework, and then we show its effectiveness
under 2 different applications. In the first application, the whole-body motion of a humanoid robot is
optimized with respect to a single objective, the robot’s joint efforts. The robot’s initial motion comes
from retargeted whole-body human demonstration motions even though the robot and the human have
very different dimensions. Additionally, the method’s viability was also tested for different non-linear
constrained optimization algorithms. In the second application, we move our focus back into DHMs, and
optimize the whole-body motion of DHMs in several different scenarios: varied body morphologies, er-
gonomics scores and two different activities. In this case, we also show that multi-objective optimization
potentially generates motion that is more ergonomic than with single-objective optimization.

In summary, this chapter provides a framework that generates ergonomic motions for DHMs by op-
timizing encoded whole-body motions from human demonstrations. Several experiments explore the
framework capabilities under different optimization algorithms, additionally, providing practical knowl-
edge for its usage in future experiments, including the human-robot experiments of chapter 4]

2.3 Whole-body Trajectory Parameterization

In order to represent a whole-body motion in a DHM or in a robot, one could use different tools for
motion parameterization such as dynamic movement primitives (DMPs) [155]] or probabilistic movement
primitives (ProMPs) [125]. ProMPs can even account for multi-dimensional trajectories accounting for
all joints degrees of freedom [35]. However, given the high number of joints in DHMs and humanoid
robots, this would mean that a great number of parameters would have to be used to encode even simple
motions. Instead, we propose to select Cartesian trajectories of the human motion that are few but
representative of the motion we want to encode.

Given the set of body segments of a DHM or a humanoid robot, Segments, there is a Cartesian
trajectory Y;"Y,Vseg € Segments. Then, given the activity we want to encode we select a subset
Selected C Segments, that is representative of the motion, i.e., in a lifting task we could select the
Pelvis and Hands segments, Selected = {Pelvis, Right Hand, Left Hand}, and then we learn a ProMP
for each trajectory Y,* within Selected.

Probabilistic Movement Primitives

ProMPs are Bayesian parametric models that associate a mean and a standard deviation to a set of tra-
jectory demonstrations [[125]]. From its formulation, a ProMP can compactly represent trajectories with
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2.3. Whole-body Trajectory Parameterization

a simple weight vector. For instance, a one-dimensional trajectory y; € R can be represented with a
weight vector v:

yi(v) = P/ v + ¢, 2.1

and the probability of observing this trajectory given a certain vector v is given as a linear basis function
model:

plyilv) = [ [N (Wil ¢/ v,0,) 2.2)
t

where the variable ¢, ~ N (0, o) is a zero-mean i.i.d Gaussian noise, and ¢; € R"*/ is a time dependent
radial basis function vector for the trajectory positions. The general form of the i-th basis function b; for

stroke-based motions is given by:
bi = exp _M (2.3)
2h

where h defines the basis’ width and ¢; is the basis’ center; the basis’ centers are uniformly distributed
in [—2h, (1 + 2h)]; z; defines a phase variable in such a way that at the beginning of a motion
Zpegin = 0, and at the end z.,q = 1. Then, we normalize the basis functions
, b;
¢; = nilb 2.4)
> j=1"%j
to maintain the same summed activation. In other words, y, is represented as a weighted sum of n;
normalized basis functions uniformly distributed in time.
To capture the variability of the movement, v is also represented as a Gaussian variable,

v ~ N (s, Xv). Therefore, by marginalizing out the weight vector in 2.2 we get:

Dyl o, ) = / N (|7 0, 0,)N (0] s S )

= N (| d/ por, &) S + o)

Then, we need to train the ProMP (2.5)), that is, we need to estimate a mean (u,,) and variance
(3y) for the variable v based on ngemo trajectory observations. Similarly to [125]], we use a maximum
likelihood estimation algorithm alongside a linear ridge regression to achieve the training. For each one
of the trajectory demonstrations we compute a j-th weight v;:

2.9

v; = (o] ¢ + M) "' Y] (2.6)

where Y contains the j-th trajectory demonstration, and A is the ridge factor for the linear regression,
here set to a very low value 1079 not to bias the regression results . Then, v; are used to estimate both

Mo, 2y

1 Ndemo

oy = v;j 2.7

Ndemo

1 Ndemo

3, = Z (vj — o) (V) — o) (2.8)

Ndemo

By using ProMPs as trajectory references instead of the demonstrations directly, we are able to
smooth the mean trajectories and capture their variability. Additionally, because of the phase variable z;,
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Demonstrations Trajectories

P - |Xsens !
L e - o ProMP
DO, — I—> Training I >
T =| I
! | ProMP
Captured I | ro
| |

Figure 2.3: Process of extracting trajectories from demonstrations: 1) Acquisition of Cartesian position
trajectories from a human wearing an Xsens suit; 2) Training a ProMP, smoothing the raw data and
associating it with a variance of motion.

the trajectory demonstrations can also begin and end at different times and this will not affect the shape
of the learned ProMP (Fig. 2.3).

Finally, for each coordinate of each selected Cartesian trajectory, Selected, a one-dimensional ProMP
is learned using Eq. (2.7),Eq. (2.8), and they all are stacked into a single vector:

w =1y iy 2.9)

From Eq. (2.9) all representative mean trajectories can be recovered using Eq. (2.3). Those mean
trajectories are used as references for the DHM QP controller tasks Eq. (I.3). Since the QP controller
commands all of the DHM joints while minimizing the reference tracking errors for all tasks, then w
effectivelly encodes the entire whole-body motion, and not just the motion in the set Selected. For this
reason, w is hereafter defined as our optimization variable, that we can modify in order to minimize
the scores such as the ones in Tab. [L.1l

2.4 Constrained Trajectory Optimization

We optimize a selection of the DHM body segment trajectories, y(w), through its optimizable param-
eters, w, w.r.t. one of the ergonomic scores in Tab. [I.1] with a single-objective optimizer, or for several
scores with a multi-objective optimizer. The approach is equivalent to an episodic learning loop with the
maximum number of K roll-outs (or episodes). Given an episode k in the optimization loop (Fig. [2.2),
the point w" is considered feasible if, and only if, the executions of the whole-body trajectories y(w")
respect some nonlinear constraints.

Trajectory Constraints: The DHM limbs and reference trajectories should always be within the
environment workspace. That is, each ProMP weight is constrained to box boundaries that correspond to
the DHM’s reach in the workspace. Additionally, during the trajectories’ execution, the DHM must never
fall, and its hand(s) must reach all (activity-dependent) points of interest that are relevant for the activity.
In order for the trajectory execution scores (Eq. (1.4)) to be comparable, the duration of every trajectory
execution is always fixed for every episode. This trajectory optimization is a derivative-free problem
with black-box non-linear constraints. In the next section, we briefly describe the different optimization
algorithms we have tested with our framework.
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2.4.1 Optimization Algorithms

We explore both single- and multi-objective optimization algorithms. For single-objective optimization
the 3 following optimizers were considered: COBYLA, AGS, and CCMA-ES. The first two optimiz-
ers were already available within the NLopt C++ library [69], and we implemented the latter in C++
especially for this work. All three optimizers are briefly described below.

— COBYLA: (Constrained Optimization BY Linear Approximation) is a deterministic optimization
algorithm that constructs linear approximations of the objective function and then optimizes them
at each roll-out [[136].

— AGS: is a deterministic single-objective optimization algorithm proven to converge to a global
optimum if the cost function satisfies the Lipschitz condition within the bound constraints [164].

— CCMA-ES: ((1+1)-CMA-ES with Constrained Covariance Adaptation) is an stochastic optimiza-
tion algorithm. At every roll-out, it evaluates a set of samples drawn from a multivariate Gaussian
distribution. If the samples violate any of the previously set constraints, it adapts the covariance
matrix of the distribution and resamples from the new co-variance. This design ensures that the
constraints are never violated [8]] and demands that it has to start with a point that does not violate
any constraints, otherwise the algorithm will get stuck and fail. This algorithm has already been
used in learning soft task priorities for the iCub robot [107].

To optimize for multiple scores at the same time, we advocate for multi-objective optimization. The
goal becomes not to find one single optimal solution, but rather, a set of Pareto-optimal solutions that
provide trade-off trajectories for conflicting ergonomics scores, i.e a Pareto front. By definition [32]],
within the Pareto front, all solutions are said to be dominant: given solutions w; and ws, w; is said to
dominate ws if and only if w; provides better results for all objective functions; if one or more of ws’s
objectives is better than in wj, then, both are dominant solutions with a trade-off between each other.
For the multi-objective case, we chose the NSGA-II algorithm:

— NSGA-II: (Non-dominated Sorting Genetic Algorithm II) is a popular multi-objective evolution-
ary optimizer [32] with a fast non-dominated sorting approach. Its implementation was taken from
the C++ library Sferes,o [[111]].

2.4.2 Single- and Multi-Objective Trajectory Optimization

Single-objective trajectory optimization (SOTO), and multi-objective trajectory optimization (MOTO)
are handled differently due to differences in the selected optimizers. After Collecting ngemo motion
demonstrations of a human subject, SOTO is initialized with the initial ProMP vector, w = w? (Fig. .
A score ¢ is chosen to evaluate execution of each one of the episodes in the optimization, then the whole
episode execution is evaluated using Eq. (I.4). At last, a feasible optimal score is found by one of the
aforementioned single-objective optimizers.

In the MOTO case, two or more scores are optimized simultaneously, however, in order to use the
chosen optimizer, NSGA-II, some modifications are done to the formulation regarding: how to deal with
the non-linear constraints; and how to bootstrap the initial demonstrations.

NSGA-II’s implementation does not handle specifying feasible/unfeasible points directly, so we
modify the objective function Eq. (I.4) to penalize the unfeasible points. Each ergonomics score is
penalized in case the DHM falls or it does not reach the activity’s points of interest:

Jovi = TrauPhy + Pod+ > ekt (2.10)
t€[0...7)
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where T'tq € R is the period of time in which the DHM is fallen, ngj” € R is the fall penalty for a

given score, and ng;l € R is the point-of-interest penalty for a given score. Each score is associated
with a different penalty value for they have different orders of magnitude.

Differently from the single-objective case, it is not possible to directly warm-start NSGA-II with
the initial trajectories. To circumvent this issue, we modify the initial population sampling of NSGA-II
instead. The i-th variable, w;, of each initial individual is sampled using the initial ProMP ¢-th variable,
winitial ysing a Gaussian distribution:

w; = N (wirital 5, 5) (2.11)

where §; is the largest distance between wf”itml and any of its box boundaries, and 5 € R is a constant
that modulates how much of the boundaries we want to sample initially. For instance, if § = % then
p(w; = boundary,) < 0.3%, that is, we would sample the entire workspace with very low probabilities
at each variable boundary. Here, we chose 5 = -, a low value, to keep the initial sample close to the

ﬁ s
initial demonstrations.

2.5 Humanoid Whole-body Motion Optimization from Retargeted Hu-
man Motions

We demonstrate our motion optimization methods with a humanoid robot model that initially replays
retargeted human motions that are not optimal for the robot. Since the humanoid robot has similar
kinematic chains w.r.t. a DHM, this is a proxy problem to optimizing whole-body motions for the DHM.
In addition, we also benchmark different types of single-objective optimizers within this application to
decide which type is more suitable to the whole-body optimization using our methods.

Kinesthetic teaching is widely used to demonstrate the motion required to perform a task to robotics
manipulators. Motion retargeting [37,|127] implements this idea for humanoid robots by using human
motion tracking data to demonstrate whole-body movements. While this approach is very powerful, it
presents two main limitations. First, humans generate movements that may not be optimal for the robot
mainly due to structural differences between them: different number of joints, or power generation at the
joint level for instance. Second, because of the intrinsic variability of the human motion, the robot may
not learn from the best possible representation of the task execution. The main insight is that even if a
human demonstration enables the robot to perform a given task, i.e., lift a box, the retargeted motion will
be hardly optimal for the robot from an energetic point of view: if a more efficient way to perform a task
exists, it needs to be found.

Here, we used largely the same framework as the one devised for the DHM, but this time we retar-
geted the motion from the demonstrations before encoding them using ProMPs (Fig.[2.4and[2.5)). For the
experiment, we proposed a lifting activity demonstrated by the human subect using the motion-tracking
suit, where the retarget motion should minimize the joint torques at the iCub robot. All three single-
objective optimization algorithms were benchmarked for different initial trajectories, and we show that
our framework was able to minimize torque consumption by over 40%.

The human that executed the demonstrations and the iCub robot have different kinematic structures.
Therefore, human trajectories have to be retargeted into feasible corresponding values for the robot. This
is achieved by either retargeting the joint trajectories or by carefully choosing links and retargeting their
Cartesian positions. Here, we chose the latter to decrease the number of trajectories that need to be
retargeted to represent a whole-body task.

A way to retarget one link position is to consider its relative position w.r.t. a base link, and measure
the length of such limb in both the human and the robot [[127]. The relative position of the robot end
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Figure 2.4: Modified whole-body motion optimization framework for the iCub robot. Here, the captured
motion is retargeted to the iCub robot before the whole-body trajectory encoding.
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Figure 2.5: Process of extracting trajectories from demonstrations for the iCub Robot: 1) Acquisition of
Cartesian position trajectories from a human wearing an Xsens suit; 2) Scaling the position trajectories
for the iCub robot; 3) Training a ProMP, smoothing the raw data and associating it with a variance of
motion.

effector is then computed as:
Ui = koeg (' = v8) + v (2.12)

where ki, € R is the ratio between the robot and the human limb lengths, r and h are superscripts
related to the robot or human respectively, and 0 is a subscript indicating that this is the position for an
initial instant. Effectively, Eq. (2.12)) scales down the trajectory from the human to the child sized iCub
robot (Fig. 2.3).

We define a pick and place activity where a human/iCub has to squat, grab a box, and stand up
(Fig. [2.6). For the human demonstrations, the human grabs the box 9 times with variants of movement
strategies. In particular, for the first 4 movement demonstrations, the human does not bend its back,
while for the other 5 s/he does bend its back.

For this activity, the QP controller is set with a high-priority joint position task for the Head pitch an-
gle, and high-priority Cartesian tasks for the feet (X,Y,Z), and Waist (X,Y,Z); and low-priority Cartesian
tasks for the hands (X,Y,Z), and CoM (X,Y). The tasks,for the head, left foot, and right foot are fixed.
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to

Figure 2.6: In our designed task, iCub has to squat, grab a box, and then stand up with the box.

Regarding the other tasks we modulate the following trajectories:
— ZyWVaist 7_Axis of the waist;
X th oM X_Axis of the CoM;
- X nyH , z thH , X- and Z-Axis of the right hand;
— XylH ZyLH X_ and Z-Axis of the left hand;

however, to simplify the optimization using less parameters we assume the right hand trajectories to be
symmetrical to the left hand

Ty =Ny (2.13)
Tyl =Ty (2.14)

In this way, we only need to learn a ProMP for the right hand, and mirror it like in Eq. (2.14)), totaling
only 4 ProMPs to be learned.

Since in this application the iCub’s whole-body motion is being optimized, we do not optimize for
ergonomics scores but rather a modified version of the normalized wholebody efforts to evaluate the
iCub’s joint efforts:

j

1 Vi T 2
Sicub = — ) _ (Tmax> (2.15)

J =1 7

where 7,"* is a known maximum value for the torque at the i-th joint, and v; is a fixed weight for the i-th
joint. Eq. (2.13) defines a sum of squared torques at every joint, therefore, as €;.,;, decreases, so does the
effort applied by the robot actuators. The weights are defined v; = 1 for every joint, except for the high
priority and low priority joints. The high priority joints with v; = 5 are: left hip, right hip, torso, left
shoulder, right shoulder. Furthermore, the low priority joints with v; = 0.1 are: left knee, right knee, left
ankle, and right ankle.

As for the optimization parameters, we defined nyy = 5, so for each ProMP there are 5 weight
variables to be optimized. However, in order to further decrease the number of optimization parameters,
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Table 2.1: Description of initial sets of human motion demonstration used on the benchmark.

Initial Set ID Description
rL— Ty Single Demonstration(s) w/ straight torso
Tall ProMP from r1,72,73,T4
$1 — S5 Single Demonstration(s) w/ bent torso
Sall ProMP from S1,892, 83,54, S5
all ProMP from every demonstration

we decided to optimize only for the CoM and waist trajectories (the Cartesian retargeted motions are still
learned as ProMPs). It is important to note that the reduction of optimization parameters is taken solely
to speed up the optimization computational process. Finally, the optimization variables are

T
w = (wwaistZ)T7 (wcomX)T S Rlo (216)

where w45tz 1S bound between 0 and 1 and w,,,,x is bound between -0.5 and 0.5, effectively, not
allowing the Z component of the CoM trajectory to go below the inertial reference (ground) and the X
component of the waist to go beyond 0.5 meters of the inertial reference.

Besides the standing-up at all times constraint, iCub’s hands have to achieve a specific set of targets
at a particular order for the task to be considered executed. First, they have to reach the grasping box
position:

Xyt XylH > 0.15m (2.17)
ZyRH ZyLH () 30m, (2.18)

and then they have to return to an initial position:

ZyRH ZyLH - 0. 40m (2.19)

If the robot’s hands do not reach those goals, then the entire execution is said unsuccessful, and a
black-box constraint is violated. Furthermore, inside the simulation environment, whenever Eq. (2.17),
Eq. (2.18) are satisfied for the first time, a virtual box of 1 kg is added to the robot, emulating a grasp.
Note that the above inequalities are constant. This is done in order to fix the same kinematic task for
different ProMP sets, allowing us to compare their performance.

2.5.1 Experiments

To demonstrate that our framework (Fig. [2.2)) does not require a very specific ProMP as a starting point,
different sets of demonstrations are used at the ProMP learning stage (Tab. [2.1)), where the r; sets corre-
spond to demonstrations where the human did not bend his/her back to pick up the box, while the s; sets
correspond to the ones where the human did bend his/her back.

For AGS, the number of roll-outs was set to X = 2000. On the other hand, CCMA-ES and COBYLA
would always converge to a solution much earlier (Fig. [2.7). Therefore, the number of roll-outs for them
was reduced to K = 500. The hyperparameters for the CCMA-ES algorithm were set to ¢ = 0.1,
A = 1 (default values from the benchmarks in the original paper [8]). The hyperparameters for AGS and
COBYLA were default values in the NLOPT library [69].
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Figure 2.7: In our problem, COBYLA and CCMA-ES converge to a solution much faster than AGS. The
figure shows the optimization of set 7.
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Figure 2.8: Optimal cost function from unfeasible starting sets (s1, s2, 83, 54, S5, Sall)-

To evaluate the performance of the algorithms in our optimization framework we measured the cost

function value at the starting point (straight from the motion retargeting) and the optimal cost J* to
calculate an improvement measurement:

j*
u7imtial

=1 (2.20)

2.5.2 Results and Discussion

The results for all optimization algorithms are displayed in Tab.[2.2] AGS and COBYLA are determinis-
tic algorithms, so they were executed only once for every initial set. Whereas CCMA-ES is a stochastic
algorithm, thus, in order to better evaluate the performance of the algorithm, it was executed 30 times.
Additionally, we also show the torque values at the high priority joints (hips, torso, and shoulder) (Fig.

R.1T1).

During the execution of the benchmark, we found out that the sets s; — s4;; did not pick up the box

a -
S T 540 e
150 §
g £20 ' "
100 ' E
of
AGS COBYLA CCMAES AGS COBYLA CCMAES

Figure 2.9: Optimal cost function, and improvement from feasible starting sets (r1, 72, r3, 74, T'qi1,0ll).
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Figure 2.10: Reference trajectories: initial (from human demonstrations) and after optimization. Both
CCMA-ES and COBYLA were bootstrapped from a ProMP that combined every demonstration, all.
The 30 reference trajectories for CCMA-ES are represented with their median and IQR.
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Figure 2.11: Torque values at the most critical joints in €;¢yp-

successfully according to Equations Eq. (2.17),Eq. (2.18),Eq. (Z.19). Therefore, the initial cost function
and improvements for those measures are inexistent. Moreover, those sets violated the task constraints
from the start, so CCMA-ES cannot find a solution for them. However, contrarily to CCMA-ES, both
AGS and COBYLA were able to find optimal values even when starting with unfeasible starting points.
This different behavior within the sets of initial trajectories demands for a more careful comparison
between the algorithms. For this reason, the analysis is first done concerning the unfeasible starting
trajectories (Fig. [2.8) and posteriorly concerning the feasible starting trajectories (Fig. [2.9).

In Fig. 2.10] we show the optimized reference trajectories sent to the controller, for the different
algorithms, compared with the initial solution with the ProMP that combined every demonstration, all.
We do not show the result for AGS, as it behaved poorly when compared to the other ones (Tab. [2.2)).

The AGS algorithm was only able to improve 2 feasible initial sets, with very little improvement
(Tab. [2.2). However, AGS was remarkably able to find feasible solutions when starting from unfeasible
points. These can be explained by AGS thoroughly and rapidly exploring the space, therefore, it is able
to find a solution but it is not able to refine it.

COBYLA provided low-cost functions when starting from feasible solutions (Tab. 2.2)), and like
AGS, it also managed to find solutions even when starting from trajectories that violated constraints. It
is noticeable, though, that COBYLA performs worse than AGS in the latter condition (Fig. [2.8). This
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is likely caused by COBYLA being a local optimization algorithm, that works well at refining good
solutions, but it does not perform well at exploring the search space.

Over 30 iterations, CCMA-ES was able to locate very good solutions in some of the initial sets
(noticeably r4;;, and all). Additionally, all results from within the Interquartile Range (IQR) are better
than the initial starting sets (Tab. 2.2)). Interestingly, some of the solutions from CCMA-ES output a
behavior that is known to be non-ergonomic for humans, e.g., bending the back while lifting, as shown
in the accompanying video ﬂ While this behavior is not desirable for humans, it is coherent with the
fitness for which it is optimized on the robot. This is further indication that our framework indeed is
suitable for motion optimization after retargeting from humans to humanoid robots.

When comparing the results from all three algorithms (Fig. [2.9) it is possible to verify that COBYLA
and CCMA-ES have a very similar median behavior with improvements around the range of 40%. How-
ever, often, only the best trajectory is needed, and for this matter, CCMA-ES is more suitable, as their
best results are better than the ones from COBYLA. AGS did not seem to produce good results even for
4 times more roll-outs than the other algorithms. Lastly, we can also verify that the cost function €;.,
was able to minimize the torques at all of the high priority joints (Fig. 2.11).

In this work, we used a cost function that prioritized minimizing torques at selected joints. However,
it is possible to define different weights (v;) at Eq. and obtain different kinds of movements.
Additionally, other cost functions like in Charbonneau et al. [23]] can favor different movement aspects.

2.6 Multi-objective Trajectory Optimization to Improve Ergonomics in
Human Motion

In this application, the goal is to generate whole-body motions that are ergonomically optimal according
to one or more ergonomics scores. State-of-the-art human-robot applications that improve the human
partner’s ergonomics usually take in consideration only one ergonomics score [15,[75}/96,|166]. How-
ever, single-objective optimization may not be sufficient to obtain ergonomically adequate whole-body
motions, since optimizing for only one criterion often produces motions that are less ergonomic in other
body regions; e.g., minimizing only the back flexion ignores the leg motion or efforts at the shoulder
joints. Here, we use our optimization framework to generate several Pareto-optimal motions that simul-
taneously optimize several different ergonomics scores using a multi-objective optimizer (NSGA-II).

In the next sections, we empirically show that: 1) ergonomics optimization must be user-specific
(experiment 1 in section [2.6.1}{2.6.2); 2) optimizing for one single criteria may lead to non-ergonomic
motions for other criteria, which means ergonomics criteria can enter in conflict (experiment 2 in section
[2.6.1}{2.6.2)); 3) optimizing simultaneously for several criteria using multi-objective optimization leads to
arich set of trade-offs motions that are more reasonable in terms of ergonomics and realistic for a DHM.

2.6.1 Experiments

We optimize whole-body motions under a variety of body morphologies, ergonomics scores, and work
activities. Two work activities commonly related to movements that are risky in terms of ergonomics
were analyzed, A and B (Fig.[2.12)), which are described hereafter.

Activity A - Pick and Place Object from a Shelf: In this activity, a human has to reach an object
located on a shelf with its right hand, take the object, and move it laterally toward the right side to another
point on the same shelf. If the worker’s shoulder level is below the shelf, this activity requires overhead
work that could overload the worker’s right shoulder.

3 Accompanying video is available at: youtu.be/rJZVrVAVLMs,
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A B

Figure 2.12: Demonstrations for work activities A and B captured with the motion capture suit XSens
MVN. A: Pick and place a weight on a high shelf. B: Lift a box from the floor.

To execute this activity, the DHM QP controller includes an additional task that commands the head
to always face the right hand position. The task weights in the QP controller are set as: 1.0 for the feet
position (X,Y,Z), CoM position (X,Y), and hand position(X,Y,Z); 0.5 for the hand orientation (roll, pitch,
yaw); 0.1 for Pelvis position (Z), and Head orientation; 0.05 for a reference body posture task; and 0.005
for a reference back lateral bending joint position task.

Activity B - Lift Box from the Floor: In this activity, a human has to reach a box situated on the
ground, in front of her/him, and with both hands, lift it to the waist level height. This activity commonly
requires a great amount of effort surrounding the human’s lumbar back area, which could be overloaded
in the case of excessive back flexion, and/or excessive manipulated weights.

To execute this activity, the weights in the QP controller are set as: 1.0 for the feet position (X,Y,Z),
CoM position (X,Y), hand position and orientation (X,Y,Z, roll, pitch and yaw); 0.05 for the pelvis
position and orientation (Z, pitch), and reference body posture task; and 0.05 for reference joint positions
at the ankles, knees, and back internal rotation and abduction joint positions.

Experiment 1 - Effect of Varying Morphology

The goal of this experiment is to show that optimal ergonomic motions are user-dependent. We gener-
ated 9 different DHM morphologies with 3 different body heights, and 3 different body mass indexes
corresponding to underweight, average weight, and overweight morphologies (Tab. [2.3). In this experi-
ment, the right hand vertical position and the CoM ground projection trajectories were optimized for an
activity A type of motion. The shelf is located at 1.5 m high and the start and end points for the hand
are 30 cm apart. The initial hand trajectory was artificially generated as the minimum jerk trajectory
between the start and end points. The hand trajectory was defined by a ProMP with 25 weights, and the
CoM trajectory by a ProMP with 5 weights for each coordinate, X and Y, therefore, w € R%.

For each morphology, we ran single-objective optimizations with 2 ergonomics scores for the shoul-
der: the RULA-C score (evaluates upper-body motions), and the shoulder torque score. The optimizer
was set so that the optimization would converge. It was set to stop after 1500 rollouts or when the
improvement in cost function between successive rollouts was below 107>,

Experiment 2 - Effect of Ergonomics Scores

The goal of this experiment is to show that SOTO with different ergonomics scores generates different
optimal trajectories with possible negative impact on the overall ergonomics due to conflicting criteria.
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We optimize the motion for both types of activities, A and B, and for each activity we run one SOTO
for each ergonomics score listed in Tab. Differently from experiment 1, here, the initial motion is
captured from real human demonstrations (Fig.[2.12). In activity A, the shelf is located at 1.7 m high, and
the start and end points are 0.64 m apart. The human demonstrator, as well as his DHM, are 1.85 m high,
with 93 kg, therefore, here, activity A required overshoulder work. For both activities, we instructed
the human demonstrator to perfom a non-ergonomic demonstration (keeping hand above shoulder level
in activity A and bending the back and not the knees in activity B), so that there was always a path for
improvement in the optimization process. Additionally, weights of 1kg were used for both activities to
limit the risk of injuries. In the simulation, however, we used a 5kg object (act. A) and a 10kg box
(act. B) to assess demanding tasks where the choice of postural strategies might have a larger impact on
ergonomics scores.

In activity A, the CoM, hand, and Pelvis QP reference trajectories are optimized with 10, 30, and 10
ProMP weights respectively, totaling 50 parameters to be optimized. In activity B, the CoM, and Pelvis
QP reference trajectories are optimized with 10, 20 ProMP weights respectively, totaling 30 parameters
to be optimized. For each parametrized trajectory, the initial values of the ProMP weights are learned
from 5 human demonstrations. In both activities, the optimizer was set so that the optimization stopped
after 1500 rollouts or when the improvement in cost function between successive rollouts was below
107°.

Experiment 3 - Multi-Objective Optimization

In this experiment, our goal is to show that MOTO generates motions with better trade-offs between
several ergonomics scores than SOTO. We ran the MOTO on the same activities as in Exp.2, including
the same constraints and parameters for the DHM QP controller. Instead of including all the ergonomics
scores in the optimization, we selected the scores that are most relevant for each activity. Activity A de-
mands a significant motion from the right shoulder, and it is predominantly an upper-body work activity,
so we chose to optimize the motion w.r.t torques shoulder, normalized whole-body effort, and RULA-C
scores. For activity B, both the shoulder and the lumbar joints are well demanded during the box lifting,
so we chose to optimize the motion w.r.t. torques shoulder, and torques lumbar scores.

NSGA-II hyper-parameters are set as follows: cross rate = 0.5; population size = 100; number of
generations = 600 (totalling 62000 rollouts per optimization execution). The mutation rates are set to
0.2, and 0.4 for activities A and B respectively, to take into account the different number of optimization
parameters between activities. Since NSGA-II is a stochastic algorithm, we ran the optimization, in
parallel, 20 times.

2.6.2 Results and Discussion
Experiment 1

The optimization generated motions with improved ergonomics scores for each morphology with a me-
dian improvement of 16.9% and interquartile range (IQR) of 18.6% regarding the RULA-C score, as well
as a median improvement of 25.2% and IQR of 10.7% for the torque shoulder score (Tab.[2.3] For both
ergonomic scores, the hand trajectory of the short morphologies (m7, m8 ,m9) were distinguishingly
lower than for the tall morphologies (m1, m2, m3), which is consistent with reducing the arm elevation
angle. For the tall morphologies and the torque shoulder score, the hand vertical trajectory did not devi-
ate much from the initial trajectory (straight line at 1.5m high). This was likely because the initial hand
trajectory was already below the tall morphologies’ shoulder level, and hence characterized a local mini-
mum for this score. Indeed, lowering the arm even more would reduce the gravity torque at the shoulder,
but it would require to move faster (since the task duration was fixed) thereby increasing the torque due
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Table 2.3: Improvement of the ergonomics score from the initial movement after SOTO for different
morphologies and scores (rula-c and torque shoulder).

m; | Height (m) B.MLL Weight (kg)  J,. Ttsh

1 2.0 18 72 8.3% 29.3%
2 2.0 22 88 84% 31.6%
3 2.0 30 120 8.1% 29.0%
4 1.8 18 58 16.9% 26.1%
5 1.8 22 71 17.6% 25.2%
6 1.8 30 97 14.3% 21.4%
7 1.6 18 46 33.5% 19.1%
8 1.6 22 56 259% 17.9%
9 1.6 30 77 28.0% 16.8%
Right Hand Position Right Hand Vertical Position
Opt. Torques Shoulder Opt. RULA-C
1.6 1 1.6 1
1.5 1.5
1.4+ 1.44
E €
134 m 1.34
1.2 _ :i 1.2 4
1.14 _ :i 1.14
1.0 = _ mg, v v v v 1.0 = T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Normalized Time Normalized Time

Figure 2.13: Optimized hand trajectories w.r.t. torques shoulder and RULA-C scores for the morpholo-
gies m;|i € [1...9] in Tab.[2.3|in experiment 1. Tall in red, medium in blue, and short in green.
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to inertia. These results confirm that each individual needs to have a custom motion optimization
for his/her body morphology.

Experiment 2

Each optimization improved the initial motion according to its ergonomics score (Fig. [2.14). In Activity
A, each optimization improved : back flexion by 99.37%, RULA-C by 4.52%, normalized whole-body
efforts by 12.92%, torques shoulder by 60.36%, and torques lumbar by 77.24%. In Activity B, each
optimization improved : back flexion by 93.42%, RULA-C by 30.02%, normalized whole-body efforts
by 87.67%, torques shoulder by 64.97%, and torques lumbar by 67.32%.

Each one of the ergonomics scores have had a unique influence on the whole-body posture and
efforts. For instance, the DHM’s right elbow is more flexed during the optimal motion w.r.t. the torques
shoulder score in comparison to the other motions during Activity A (Fig. [2.13). This is likely due to
the fact that flexing the elbow brings the arm closer to the torso, hence, decreasing the torques caused
by gravity on the shoulder. During activity B, the initial motion has excessively high lumbar torques
(Fig.[2.14) due to the large back flexion (Fig. [2.13). This motion strategy was penalized by all ergonomics
scores, which in turn favored motions that reduce the back torque decreasing the DHM’s back flexion,
and increasing the DHM’s knee flexion instead. Interestingly, this is the case even for the torque shoulder
optimal motion, where the lumbar torque is not directly penalized, although with a lesser amount of knee
flexion than the others.

The results confirm that solutions optimized for a given score may degrade other scores (Fig. [2.14).
In activity A, minimizing the torque shoulder score increases the whole-body effort and back flexion,
while in activity B, minimizing back flexion increases the torque shoulder score. Additionally, conflicting
ergonomics scores could happen when optimizing for scores that do not evaluate the activity’s main load
requirements. For instance, in activity A, whose main load is at the shoulder, optimizing for back flexion
highly increased torques at the shoulder, while optimizing for lumbar torques increased the whole-body
efforts in comparison to the initial motion.

According to these results, optimizing for a single ergonomics score may not be advisable,
and a more holistic approach concerning different ergonomics criteria must be sought for motion
optimization.

53



Chapter 2. Whole-Body Motion Optimization
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Figure 2.14: Experiment 2 (SOTO) and Experiment 3 (MOTO) - The median of the ergonomics scores
during the execution of the initial and optimal motions. Lines of the same color represent one motion,
and each axis represents one of the ergonomics scores. The motions in experiment 2 are taken from 5
independent single-objective optimizations for each activity. The motions in experiment 3 are taken from
the respective Pareto fronts for each activity (Fig.[2.16/and 2.17).
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Figure 2.15: Experiment 2 (SOTO) and Experiment 3 (MOTO) - Time evolution of selected angles of
the initial movement and the optimized motions: elbow flexion for activity A (Reaching); knee flexion
for activity B (Lifting).
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Experiment 3

The Pareto front for both activities was computed for 20 MOTO replicates per activity (Fig. 2.16] and
Fig. [2.17). The resulting Pareto fronts presented much starker score diversity between the Pareto-optimal
solutions than the motions from the SOTO in Exp. 2 (Fig. [2.14). This likely happened because NSGA-II
is a global optimizer, therefore, it explores the optimization space more efficiently than local optimiz-
ers. This diversity gives more options, and flexibility for the user to choose a Pareto-optimal solution
according to given criteria.

To illustrate the advantage of using the MOTO approach, we visually selected some motions from
each Pareto front of each activity with reasonable trade-offs between the scores (Fig. Fig. 2.17),
and compared them to the single objective solutions of the same scores (Tab. . For activity A, w’
had similar elbow flexion trajectory to the SOTO w.r.t. torque shoulder score. As a matter of fact, this
is a good solution if the user does not care about the generalized increase in the whole-body torques
(indicated by Jp,we). On the other hand, if both the whole-body torques and the torques at the shoulder
are important for the user, w’, could be a more interesting choice. Similarly for activity B, w}, is a
movement that optimizes both shoulder and lumbar torques simultaneously, but if the user would prefer
the minimum shoulder torques from the pareto front, then w7, with less knee flexion, would be a better
choice. Note that w;,, also has a greater reduction on the lumbar torques than the SOTO solution for the
shoulder torques. Additionally, most solutions from the Pareto fronts have improved their ergonomics
scores, even for scores that were not being optimized (Fig. [2.15). This is likely due to those scores not
being in conflict with the optimized ones.

Video: To show that Pareto-optimal solutions obtained by MOTO are better ergonomics trade-offs
than those obtained by SOTO, we refer the reader to the accompanying video where we compare the
different whole-body movements executed by our DHM Clearly, optimizing for a single criteria easily
produces unrealistic movements that one could actually refer to as “non ergonomic”: for example, we
point out the solution in activity A that minimizes only the lumbar torques with a very awkward non-
ergonomic motion from other points of view. Movements generated by our MOTO approach are more
feasible and ergonomically reasonable.

In conclusion, generating whole-body motion with MOTO provides better trade-offs among
several ergonomics criteria; and because many solutions are generated, we obtain a tool that en-
ables a user (i.e., an ergonomist) to choose from a set of ergonomic motions that are often better
than the ones generated with SOTO.

* Accompanying video is available at: youtu.be/vgQ0OYbs9TTo,
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Figure 2.16: Experiment 3 - Activity A - Pareto front. The ergonomics scores values are normalized

by those of the initial motion. The bottom image is a 2D projection of the 3D Pareto front, the third
objective is represented by a color scale on each point.
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Figure 2.17: Experiment 3 - Activity B - Pareto front. The ergonomics scores values are normalized by
those of the initial motion.
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Table 2.4: Improvement of the ergonomics scores w.r.t. the initial motion after SOTO and MOTO. Worse
performance in red. The multi-objective solutions are indicated in the Pareto fronts (Figs. [2.16|and[2.17).

(a) Activity A

Motion t.7tsh jnwe jrc
Initial 100% 100% 100%
Single Obj. Jisp, | 39.4% | 146.2% | 105.7%
Single Obj. Jnwe | 99.1% | 80.2% | 102.4%
Single Obj. J,. | 77.6% | 90.8% | 95.5%
Multi-Obj. w’, | 83.9% | 115.9% | 93.4%
Multi-Obj. w¥, | 72.9% | 41.2% | 102.7%
Multi-Obj. w¥, | 50.1% | 198.0% | 100.5%
Multi-Obj. w, | 35.8% | 534% | 97.0%
(b) Activity B
Motion Jtsh Jin
Initial 100% | 100%

Single Obj. J;sh

33.6% | 70.6%

Single Obj. ‘,7,515

78.8% | 32.8%

Multi-Obj. w,

16.0% | 36.9%

Multi-Obj. wip,

22.4% | 26.0%

Multi-Obj. w,

73.4% | 24.4%
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2.7 Discussion

In both applications, optimization of retargeted motions, and ergonomic motion generation, our trajec-
tory optimization approach using ProMPs (Fig.[2.2) was able to improve the initial trajectories for differ-
ent activities, body morphologies, and objectives. Bootstrapping the trajectory optimization with initial
movements indeed seems to be a promising avenue to more efficent whole-body motion optimization re-
gardless of the chosen optimizer. For instance, regarding the motion retargeting application, both single-
objective optimizers COBYLA (deterministic), and CCMA-ES (stochastic) significantly improved the
objective scores, even though they also require starting points that do not violate any constraints, as it
was already observed in [[108]].

The motion retargeting application still has different ways in which can be expanded. Different
whole-body motion patterns could be harnessed if different objectives other than the robot’s effort are
used, as it was better illustrated by the experiments on the ergonomic motion generation application.
Our approach could also be used to optimize the design of a robot to accomplish tasks that were initially
demonstrated by humans. In addition, our approach is inherently based on physical simulations, and
therefore, it may still fail on tests with real robots, especially if the simulation environment and the real
world have large discrepancies. A possible solution would be to input our optimized trajectories as priors
for a reinforcement learning approach that deals with the real robot and its environment.

In the ergonomic motion generation application, we showed that single-objective optimization may
not be sufficient to obtain satisfactory ergonomic motions, since optimizing for only one criterion often
produces motions that are less ergonomic w.r.t. other criteria. Instead, in our approach we generate a set
of Pareto-optimal motions with respect to multiple ergonomic scores. This allows us to simultaneously
consider several criteria without requiring an ergonomics expert to preset weights for the different cri-
teria prior to the optimization, as would be the case if the criteria were aggregated in a weighted sum.
With our approach, solutions corresponding to any specific trade-off between the different ergonomic
scores can be selected afterwards to match, for instance, the user preferences, or medical condition or
the recommendations of an ergonomist. But importantly, this selection does not require to re-run the
optimization, which represents a significant gain of time. Preliminary discussions with occupational
ergonomists confirmed the potential of our tool, provided that we include learning implicit preferences
for the Pareto-optimal solutions. This will be object of future work, possibly using preference learning
algorithms [[180].

Additionally, our approach has direct applications in human-robot physical interaction: a collabora-
tive robot could be used to drive the human user towards an ergonomic posture when performing a joint
task. For example, from the output of our optimization we can easily extract a user- and activity-specific
optimal human hand trajectory, and then use it as the reference end-effector trajectory during a collab-
orative task. Nonetheless, to drive the human partner towards optimal one needs to comprehend how to
coordinate the robot’s actions with the human partner. The next chapter deals with studying a human
dyad motor behavior during a physical interaction as a first step towards developing robot controllers to
emulate such interactions.
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3

Human-Human Co-Manipulation

In this chapter, we present a study on the human motor behavior during an object co-manipulation task.
First, we discuss about the many factors that can influence the human-human dyad’s motor behavior, in
particular, the assignment of assymetric responsibilities (roles) for each agent such as leadership. We
propose to evaluate not only the kinematics of the motion, but also muscle activation signals from each
agent and a task accuracy measurement for different leader/follower assigment conditions.

We find out that the condition in which no leadership was pre-assigned results in the best task accu-
racy despite also requiring more effort from both agents, as it was seen from the agents’ increased muscle
activation signal. Surprisingly, the motor behavior of both agents resembled the behavior of a leader even
if no leader was preassigned. At the end of the chapter, we discuss possible reasons for the results, and
possible implications to human-robot applications, notably, to robot impedance control profiles.

3.1 Human Dyad Interactive behaviors

N
/) )
¢
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e
Human Human Human Human Human
Agent 1 Agent 1 Agent 2 Agent 1 Agent 2

Q\ W LEADER

;i\ COLLABORATION

NS

Figure 3.1: Human-human physical interaction study. The dyad executes a co-manipulation task under
different leader/follower conditions: leader/follower; follower/leader; collaboration without pre-assigned
leadership.

Humans in a dyadic interaction typically organize their movements around non-random, synchro-

nized patterns in both timing and form [[10}/12}|159]]. Many factors may influence dyadic motor behavior,
such as: sensory cues [[109], roles [67]], or skill level to execute a given activity [70]. When the human
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dyad is haptically coupled, several studies use a leader/follower dichotomy [52,95,/102,/103}/151L/170] to
classify the roles of each agent based on haptic signals, such as force or stiffness. However, this premise
may limit the understanding of the interaction, as recent studies in the neurology and psychology do-
mains have reported that humans may see themselves as a dyadic interaction unit "greater than the sum
of its parts" [36L[198]).

According to Jarrassé et al., physical interactive tasks between dyads (human or robots) can be
classified in three categories [66]: competition, collaboration, and cooperation. During a competition,
the benefit of an agent is detrimental to the other agent, therefore, they may work against each other if
necessary. If prior to the task execution, the agents have been assigned, or agreed upon, different roles
(assymmetric responsibilities) to execute the task, then the interactive task is classified as a cooperation.
In contrast, during a collaboration, both agents form a coalition to accomplish the task [38]]. The “activity
is synchronized and coordinated in order to build and maintain a shared conception of a problem” [[148]].
That is, in a collaboration, the agents may deliberate and negotiate their roles in executing the task for
the dyad common good.

Human-human dyads within a leader/follower dichotomy are actually a typical case of assymetric
role assignment in which the two cooperate to achieve a common goal [[66]]. Meanwhile, the follower is
only there to support the actions of the leader. Many studies have associated this compliance regarding
the other agent with different levels of stiffness for trajectory trackings [3.{17/87,/95,/110]]. For instance,
if an agent has a high arm stiffness, then it is less compliant, and it acts as a leader, and vice-versa. How-
ever, to the best of our knowledge, no study has investigated the stiffness levels across leader/follower
cooperation and collaboration conditions for the same human dyad. If the collaboration condition is
where negotiations occur, can we identify a switching between leader and follower roles by looking at
each agent’s motor behavior? Or particular levels of stiffness that suggest a collaboration is established
by the agents? Moreover, if the dyad organization also strongly affects the task execution, it could 