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Abstract

The main volume of the work presented here is in computer vision, and it aims to holistically decipher

information enciphered in human faces.

Motivation originates from the emerging importance of automated face-analysis in our evolving soci-

ety, be it for security or health applications, as well as from the practicality of such systems. Specifically,

we have placed emphasis on learning representations of human faces concerning two main domains

of application: security and healthcare. While seemingly different, these applications share the core

processing-competence, which has proven to be beneficial as it has brought to the fore cross-fertilization

of ideas across areas. With respect to security, we have designed algorithms, which extract soft biomet-

rics attributes such as gender, age, ethnicity, height and weight. We have aimed at mitigating bias, when

estimating such attributes. Prior, we have established the impact of facial cosmetics on automated face

analysis systems and have then focused on the design of methods that reduce such impact and ensure for

makeup-robust face recognition.

Results related to healthcare deal with facial behavioral analysis, as well as apathy analysis of

Alzheimer’s disease patients. In our current work with the STARS team of INRIA and the Cognition

Behaviour Technology (CoBTeK) lab of the Université Nice Sophia Antipolis (UNS), we have devel-

oped a series of spatio-temporal methods for facial behavior, emotion and expression recognition.

Most recently, we have additionally focused on Generative Adversarial Networks (GANs), which

have witnessed increasing attention due to their abilities to model complex visual data distributions.

We have proposed a number of novel approaches towards conditional and unconditional generation of

realistic videos and have additionally aimed at disentangling the latent space into appearance and motion,

as well as interpreting it.
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This mémoire d’habilitation manuscript revisits my work after the Ph.D. and about 10 years of re-

search from January 2012 to date. Specifically, the results in Chapters 2 and 3, provide solutions to a

series of problems relating to facial analysis in security and healthcare, respectively. Chapter 4 presents

results on the novel and exciting topic of face generation. The manuscript is followed by information on

my supervision, organization, funding, as well as the complete list of my publications since my Ph.D..

In the text, citations to my own work between 2012 and 2021 appear in alpha style as in [DBB+16],

whereas citations to other works appear in plain style as in [35].
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Chapter 1

Introduction

The topic of human facial analysis has engaged researchers in multiple fields including computer vision,

biometrics, forensics, cognitive psychology and medicine. Interest in this topic has been fueled by

scientific advances that offer insight into a person’s identity, intent, attitude as well as health solely

based on their face images.

The methodological breakthrough behind this success, lies in the fact that computer vision sees the

human face as a natural object and aims to perform the tasks of detection, tracking, coding, and matching

from images and videos and most recently the task of generation. The task of facial recognition, for

the purpose of establishing human identity, is the central focus in biometrics, where face images have

also been used to deduce soft biometric attributes such as an individual’s age, gender and ethnicity. In

forensics, local facial features such as moles, scars, tattoos and wrinkles have been used to validate

identity in one-to-one matching cases involving photos. Real-time face tracking, coupled with the use

of soft biometric features, has allowed for new applications, such as continuous user monitoring and

authentication in work environments. In cognitive vision and social psychology, videos and images of

faces have been analyzed to infer an individual’s emotional state or to detect interpersonal deception. The

neuropsychological processes pertaining to how humans recognize faces have also been actively studied

over several decades. From a medical perspective, face images and videos may also offer information

about an individual’s health.
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Motivated by the above some tantalizing questions emerged: “What is ciphered in human faces?

How can we decipher faces? How can we generate faces?”

1.1 Goals

One main goal of my research has been to learn representations of human faces that are instrumental in

deciphering and characterizing appearance and dynamics of faces, originating from the emerging impor-

tance of automated human-analysis in our evolving society, be it for security or health applications, as

well as from the practicality of such systems. Specifically, focus has been placed on designing computer

vision methods concerning two main domains of application: security and healthcare. While seemingly

different, these applications share the core processing-competence, e.g., learning and classifying suitable

representations, which has brought to the fore cross-fertilization of ideas across areas.

A more recent goal has been the design of generative models able to generate realistic face videos.

In particular, in video generation, we have placed emphasis on naturalism, control of generated results,

as well as most recently on interpretability.

This manuscript provides highlights of my work after the Ph.D., which I classify in three research

axes, namely Axis I. Face analysis for security, Axis II. Face analysis for healthcare and Axis III. Face

Generation. This chapter motivates these research directions (Section 1.2) and showcases related chal-

lenges (Section 1.3). The results in the following Chapters 2 and 3 provide solutions to a series of

problems relating to Axis I and Axis II, respectively. The Chapter 4 presents results on the novel and

exciting topic of face generation. Chapter 5 concludes the thesis and provides future directions. In the

end Chapter 6 presents details on my supervising students and postdoctoral researchers, on my scientific

engagement, as well as scientific projects.

1.2 Motivation

Axis I. Security The first axis is motivated by the rapid evolution in volume, complexity and utility

of biometrics [36]. The past decade has witnessed significant technical progress in the field of bio-

metrics partly due to convolutional neural networks (CNNs) and large datasets. While biometrics has
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been traditionally involved person identification by employing simple matching of well-defined single

biometric traits (such as face, iris or fingerprint), we are now witnessing a transition to large-scale bio-

metric systems that reliably determine the identity of a person and that involve many traits and many

tasks that often include deducing ancillary information beyond identity [DER15]. According to market

value studies [DRD+20] the interest and investment in such evolved systems is large and rapidly growing

and is fueled by applications ranging from border control to smartphones; from autonomous vehicles to

e-voting; from crime scene investigation to personalization of customer service. Currently, the largest

biometric system is operated by the Unique Identification Authority of India, whose national ID system

(Aadhaar) accommodates almost the entire Indian population of 1.25 billion enrolled subjects at the time

of this writing.

Axis II. Healthcare At a time of a rapid growth in the population of elderly individuals1 and at a time of

decreased/pressed availability of human healthcare-resources, automated face analysis has the potential

to offer efficient and cost-effective methods for monitoring of a number of pathologies. Facial appearance

is determined by skull morphology, muscles, innervation of blood flow, fat deposit. Abnormal dry skin,

eye bags, facial asymmetry, as well as paleness can provide cues to internal health issues. In addition,

many psychological, genetic, and physical health disorders can be directly diagnosed by facial analysis

(e.g., emotion, appearance, motion, symmetry, color, shape), determining cause and course of diseases,

as well as assessing efficiency of treatments for diseases. As stated by McKinsey Global Institute [53],

it is envisioned that such analysis can reduce costs for the US health-care industry by $300 Billion per

year. We here have focused on neurogenetic disorders (ND) and specifically on Alzheimer’s disease,

which is characterized by a decline in mental ability - severe enough to terminate independence in daily

life. ND concern over 60 million people worldwide23. Consequently there is an urgent societal need and

an equally certain scientific challenge to provide new solutions for early detection, progress analysis and

long-term analysis of ND, which would improve intervention effects and decrease the global burden of

ND [26].
1http://www.un.org/esa/population/publications/worldageing19502050/pdf/

80chapterii.pdf
2https://www.alz.co.uk/research/statistics
3https://parkinsonsnewstoday.com/parkinsons-disease-statistics/
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Axis III. Generation Human video generation has attracted an increased commercial and academic

attention due to numerous real-world applications, as well as due to its applicability in computer vision

for data augmentation. The former has mainly to do with entertainment, where video generation can

greatly facilitate creating dynamic scenes. Current methods [10, 147, 148] have already been able to

transfer motion from target video to input avatars, allowing users to move like Michael Jackson to even

lipsync his songs. We envision that video generation will pave the way for customized movies, video

games and law enforcement, where generation of realistic faces can be instrumental in cases of witness

descriptions, where the descriptions are the only available evidence (e.g., in the absence of facial images).

Data augmentation constitutes another pertinent application for GANs motivated by the inherently

hungry deep CNNs. Real data is costly and cumbersome to obtain and inherently incorporates human

biases. In addition, concerns related to privacy and usage rights have hindered recent data collection.

Hence, synthetic data is now seen by some as a panacea [4], as it can be provided in abundance. Further,

such data can be easily modified by walks in the latent space and labeled with respect to pose, illumina-

tion, scale, age, shape, and ethnicity, allowing for AI-systems to be unbiased across populations (diverse

datasets). Each manipulated sample is considered as an augmentation (or another ’view’) of the original

data. A set of companies have developed their business models with such considerations, in sectors such

as finance4, insurance5, and healthcare6.

GAN generated and manipulated videos have become increasingly realistic. At the same time such

deepfake techniques are now widespread via a number of websites and phone applications, and they

pose without a doubt an imminent security threat to us all. To date, deepfakes are able to mislead face

recognition systems, as well as humans. Unfortunately, existing methods for deepfake detection perform

poorly when tested on unseen manipulation techniques, which is the most realistic scenario in practice.

1.3 Challenges

To understand some of the challenges that we are facing, we start by recalling that classical face analysis

systems acquire an image from an individual, extract a set of features (e.g., representing edges and texture
4https://www.facteus.com/
5https://mostly.ai/synthetic-data-for-insurance/
6https://synthea.mitre.org/
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descriptors) from the image, and proceed to compare this feature set with templates in the database in

order to verify a claimed identity or to determine an identity. The comparison is being performed by

machine learning tools such as principal component analysis (PCA) or support vector machines (SVM).

Such classical systems have been challenged by a variety of co-variates including pose, illumination,

expression (PIE), age.

Convolutional neural networks (CNNs) Starting with DeepFace in 2014 [119] we have witnessed

the remarkable progress of convolutional neural networks (CNNs) in face analysis, rapidly replacing

classic methods. CNNs can be trained with very large datasets, aimed at learning face representations that

achieve high accuracy in downstream tasks. Such representations are robust to co-variates sufficiently

represented in the training data. Deviating from classical systems, CNNs are data-driven, learning jointly

in an end-to-end manner discriminative features, reducing dimensionality and classification. Therefore,

CNNs intrinsically learn intra-class variations from training data and have overcome several related

challenges, for example with respect to in-the-wild face recognition.

1.3.1 Axis I. Security

While CNNs have solved a series of challenges related to vulnerabilities in face recognition, there is

a plethora of challenges that remains unsolved. Such remaining challenges include biasness, privacy

preservation, anti-spoofing methods that generalize across different types of attacks, scalability, as well

as the quantification of face-uniqueness and permanence thereof [35, 92].

Representation. Identifying a suitable representation scheme for a given biometric trait is essential.

Such a representation should retain discriminative information that is distinctive to a person, and at the

same time remain invariant to intra-subject variations.

Reliability. The next fundamental step in a face-based biometric algorithm is given a representation

scheme, to designing a robust matcher. The desired matching algorithm must model the variations in the

features belonging to the same individual, while accounting for variations between features of different

individuals.

Face Analysis in the Wild. Face based biometrics has been challenged by Real-world data, referred

to as “in the wild” that includes for example low-resolution images incorporating variations in pose,
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illumination and expression, which is frequent in surveillance applications. Such challenges have been

addressed in a number of works [49].

Biasness. An algorithm is considered to be biased, given that significant differences in its operation

can be observed for different demographic groups (e.g., gender or ethnicity), thereby privileging and

disadvantaging certain demographic groups. Biasness concerns all areas in artificial intelligence (AI), as

it is rooted in factors such as skewed training data and sensors. In addition, humans are known to exhibit

a broad range of biases [17, 73], which are transferred to AI. Biasness in face based biometrics [22]

has sparked immense interest related to a set of concerns, which have raised questions with respect to

algorithmic design, interactions with and use of biometric systems. In this context, we have introduced

a multi-task algorithm aimed at mitigating biasness in esitmating gender, age and ethnicity [DDB18].

Recently, we revisited biasness in biometrics in an overview article [DRD+20].

Privacy. Privacy preservation in biometrics has to do with respect and confidentiality of an indi-

vidual’s personal information or data, as well as transparency surrounding its use and storage. The

General Data Protection Regulation (GDPR) for European Member States addresses biometric data and

represents a significant step forward for data protection and privacy with a real international impact.

Algorithmic data protection strategies include (a) the storage of data in a de-centralized manner, (b) the

elimination for storage of any identity related information in the database, as well as (c) the transfor-

mation of raw images and videos into “privacy - securing’’ biometric templates. We note that similar

privacy concerns have been discovered also in the context of GANs, and specifically identity leakage in

image generation [122].

Presentation attacks. With recent advances in deep CNNs, biometric systems have become remark-

ably accurate, fast, and more resilient to environmental and user co-variates. However, biometric systems

can be attacked and bypassed by “spoofs” or presentation attacks. Examples of presentation attacks in-

clude photographs, videos, masks, as well as facial makeup. Such attacks pose serious challenges in face

recognition. This is why identification and mitigation of such vulnerabilities has received substantial

attention.

In 2012 we were the first to establish the impact of facial cosmetics on automated face analysis

systems [CDSR17, CDR14, DCR12b, RDB19] and have then focused on the design of methods that
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reduce such impact [CDR13, CDR16]. Specifically, we have quantified such an impact on a number

of face recognition, as well as age and gender-estimation systems, and have then designed methods for

detecting facial cosmetics (based on appearance, texture and color features) and have proceeded to design

an algorithm based on an ensemble of patch-based subspaces for makeup-robust face recognition. This

work was awarded with the Best Tabula Rasa Spoofing Attack Award 2013, the Best Poster Award at

the IAPR International Conference on Biometrics (ICB) 2013 and with the Best Paper Award (Runner

up) at the IEEE International Conference on Identity, Security and Behavior Analysis (ISBA) 2017.

Most recent presentation attacks relate to GAN-generated attacks such as adversarial attacks, as well as

deepfakes in the realm of behavior based authentication. We address deepfake detection in Section 4.4.

Scalability. The success of India’s Aadhaar national ID system (based on fingerprints, face and iris)

have proven that biometric recognition systems are highly scalable [104]. Despite the success, very few

evaluations exist in the literature to show how biometric recognition systems operate at a scale the size

of Aadhaar (an average of 35M biometric authentications per day7).

Related to scalability, soft biometrics are instrumental in search space reduction of large datasets, as

they are able to prune or pre-filter such datasets. We have explored novel soft biometrics such as weight

and height from facial images, as well as novel modalities such as smile-dynamics for gender estimation

in Section 2.1.1.

Face uniqueness. The knowledge of distinctiveness of the human face is incomplete and often

relegated to anecdotal interpretation of error rates rather than a systematic exploration of the biology

of the characteristics [13, 38, 92]. Hence, we lack an estimate for the upper bound of the amount of

discriminatory information contained in a face. We recently attempted to shed some light on facial

uniqueness [BHBD21].

1.3.2 Axis II. Healthcare

Naturally, automated face-based security and health analysis have many intersections and hence share

similar core algorithmic challenges. Both applications necessitate carefully designed face representation

schemes, demand high levels of reliability and robustness, require the analysis of unconstrained data, as

7https://uidai.gov.in/aadhaardashboard/authtrend.php
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well as privacy preservation mechanisms to secure the involved sensible data. These similarities moti-

vate our joint exposition of these problems. However, we note that named challenges have particularities,

when encountered in Axis I or II. Further contributing to particularities, we have that while in Axis I, we

predominantly analyzed images, in Axis II, we analyzed spatio-temperal features of faces. Hence, differ-

ences in the challenge ‘identification of representation’ stem mainly from the additional time-dimension.

Linked to this, addressing the time-dimension is a pertinent long term challenge of Axis II. At the same

time, biometrics has already overcome some challenges that we still encounter in healthcare, such as

data scarcity. Moreover, we might envision that presentation attacks might emerge as challenge in Axis

II, when healthcare monitoring systems become ubiquitous. It is likely that some patients might aim

to mislead a healthcare monitoring system, in order to avoid monitoring or to test related boundaries.

Finally, while biasness is undesirable in both Axes, related personalization and specificity in Axis II is

sought and might be a path forward.

Motivated by the above, we proceed to elaborate on the challenges, we have encompassed in the

context of automated healthcare.

Fine-Grained Representation. In face analysis, a key goal has been to obtain a discriminative

appearance representation, which allows for precise classification of aspects such as expressions, mental

states or neurogenetic diseases. To obtain such representation, one can employ various strategies that

include (i) global feature maps (pertaining the full detected face), (ii) key local features (e.g., facial

landmarks), (iii) attention mechanisms (placing the focus of the network on relevant key spatial, temporal

regions or channels), as well as (iv) partitioning (where for example, the last convolutional layer of

a network is partitioned into a number of horizontal stripes). Some of the limitations of the above

strategies are described below. For the first strategy (i), a main limitation is that the errors incurred

due to the massiveness of the contained information, while for the second strategy (ii) a key limitation

is that the additional errors pertaining to landmark-detection are included in the extraction. In strategy

(iii) infrequent (but potentially pertinent) information is removed, whereas in strategy (iv) key facial

features might occur in different horizontal stripes. Our work on heartrate estimation from RGB-videos

(Section 3.4) necessitated a fine-grained representation, which we designed with the means of channel

and spatial-temporal attention mechanisms.
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Face Analysis in the Wild. Towards developing algorithms that properly capture the right facial ap-

pearance, as well as behavior, we have worked with real-world data that encompasses continuous facial

pose variations, and real expressions of different intensity. This has been particularly challenging, espe-

cially in settings that involve human analysis. An example of such a challenge has to do with the fact that

real-world expressions of older adults are often subtle (modulated by saggy muscles or by pain), and can

be occluded due to unfavorable poses or hands. Facial analysis systems face additional challenges with

large intra- and inter-class variability of patients, as well as pose variations, as such systems are gener-

ally trained with constrained data and sometimes often with posed and rather “exaggerated” expressions.

Moreover, noisy acquisition challenges automated healthcare methods, with a variety of ambient illu-

minations, camera movements and artefacts. Due to such factors, real-world facial analysis is still an

open challenge in computer vision. We have faced above challenges in a set of works of Chapter 3 and

more specifically in our works on music therapy (Section 3.2, as well as in the series of works on apathy

classification (Section 3.3)).

Data Scarcity. A further challenge concerns healthcare data, where currently it is often the case that

only limited data (e.g., containing a small number of patients) is available for analysis. Further, espe-

cially in a multimodal setting, missing input data of a modality (e.g., for a short period of time) poses

a challenge. We proposed in the context of expression recognition weakly supervised (Section 3.1.1)

and semi-supervised (Section 3.1.2) approaches. Along these lines, we can also envision to introduce

active, few shot and cooperative learning. In addition, given the limited data, we built our work of apathy

classification firstly in a hand-crafted manner, in order to rationalize learned features and avoid overfit-

ting (Section 3.3). Finally, effective data augmentation is beneficial in the setting of limited available

healthcare data. We explored different data augmentation methods in our work on heartrate estimation

(Section 3.4). Further, we employed a similar attention mechanism in Axis III, Section 4.2.3 accounting

for improved video quality in generated videos.

Addressing the Time-Dimension in DNNs. While discriminative models for perception tasks (such

as object detection) have witnessed substantial progress with the resurgence of deep CNNs, effective

methods for incorporation of temporal information into CNNs have proven more challenging [130, 143]

and are still being actively explored. Such approaches are important and play a fundamental role in
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modeling humans. Existing 3D convolutional networks such as I3D [9] and two-stream convolutional

neural networks [18] suffer from (i) being limited to processing only a limited amount of frames at a time

and hence lack the ability to model long-term dependencies, as well as suffer from (ii) limitations that

enforce the processing of only fixed length videos. We envision that finding algorithms, which extract

high-level temporal features would allow for processing of long videos, which is instrumental in hospital

monitoring.

Privacy. Privacy here refers to assuring that healthcare data collected from a patient is not used to

deduce any additional type of information about the individual (e.g., identity). In this context, we are

anonymizing the data and are exploring a federated learning approach, in order to avoid for data to leave

the hospital.

Deployment. While the majority of proposed algorithms have been evaluated and validated in con-

strained lab settings, the transition to real life deployment, and potentially real time analysis remains an

open challenge. Deployment constraints such as latency and interoperability can only be tested during

such deployment.

Personalization. A long term goal will be to design approaches for intelligent personalized moni-

toring and diagnosis based on adaptive classification. Such models will be trained on data associated to

a single patient, individually. This can be highly instrumental for accounting for large inter-class varia-

tions. In an experiment of our music therapy work, we showed that such personalization can increase the

accuracy of behavior estimation.

In addition to the the above highlighted open challenges, which are directly related to AI and com-

puter vision techniques, there are few more challenges related to data acquisition in unconstrained envi-

ronment, publicly availability of datasets, as well as precise annotation.

1.3.3 Axis III. Generation

GANs often suffer from following limitations. Firstly, model parameters may oscillate, destabilize and

fail to converge. Further, in mode collapse the generator collapses, which leads to limited varieties of

samples. In case of a too strong discriminator, the generator gradient can vanish and fail to learn, referred

to as diminished gradient. An unbalance between generator and discriminator causes overfitting. We also
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have that GANs are highly sensitive to the hyperparameter selections. Named challenges have been of

concern in our work on image generation (Section 4.1).

Related to video generation we have identified a set of challenges that we proceed to list. Some of

the main challenges of video generation include GAN design, and associated video representation. We

elaborate on these challenges below.

GAN design. While video generation can be considered as the inverse problem of video understand-

ing [WDB17], it constitutes a far more challenging problem due to its extra requirements such as stable

training, high visual-quality and interpretability. While two widely-used architectures in video under-

standing, namely 3D ConvNets and 2D ConvNet+RNN, have been explored reversibly for generation,

both entail notable limitations such as large complexity with more training parameters, which may render

models difficult to be optimized (3D ConvNets), as well as unstable training owing to gradient vanishing

and gradient explosion (RNN). Discriminators ensure that generated videos encompass visual-quality, as

well as temporal consistency. For the latter, the transition between consecutive frames should be smooth,

which is highly challenging. In Chapter 4, we present a two-stream discriminator, which combines 3D

ConvNets and 2D ConvNets to learn spatio-temporal distribution (Section 4.2.3). In Section 4.2.4, we

introduce a novel temporal pyramid discriminator equipped with only 2D ConvNets.

Entanglement of appearance and motion in videos. Appearance and motion are two major factors

in videos. In the absence of additional information such as human keypoints or optical flow, learning to

disentangle such factors is challenging, as it requires building specific model components to represent

both factors, respectively. Due to lack of explicit formulation of the disentanglement of motion and

appearance, designing model components, which disentangle these two factors remains challenging. In

Section 4.2.3 and Section 4.2.4, we introduce two complementary disentangling approaches, as well as

comparison thereof.

Interpretability. Deep neural networks have been widely used as black-boxes, and GANs are no ex-

ception. Due to the large amount of parameters, it is difficult to identify the types of knowledge GANs
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have learned. In addition, given that features such as textures, concepts, semantics and objects are repre-

sented in a hierarchical manner in GANs [5], discovering and locating information of interest becomes

difficult. To interpret different features, novel methods are necessitated. In the context of image genera-

tion for example, in an attempt to interpret attributes (e.g., gender, age) in StyleGANs [42,43], pretrained

classifiers were used to provide scores for generated samples [105]. At the same time landmark detectors

were necessitated for interpretation of pose. Deviating from that, we aimed at interpreting motion in

video GANs. This is discussed in Chapter 4.2.4.

Evaluation. We note that lack of effective evaluation metrics is a major challenge in current GAN

research. Often generated images and videos are evaluated for how realistic they are and in particular by

user studies, which is though inefficient and time-consuming. Towards evaluating GANs in an objective

manner, two quantitative evaluation metrics, namely Inception Score (IS) [99] and Fréchet Inception

Distance (FID) [28], have been proposed. IS and FID use statistical methods, that rely on features

extracted from pretrained models on large-scale datasets, in order to measure the distance between real

and generated distributions. Due to large variability in space and time, evaluation in video generation

remains very challenging.

Deepfakes. The access to large-scale public datasets, jointly with the fast progress of GANs, have led

to the generation of very realistic generated images and videos, which entail corresponding implica-

tions towards society in this era of fake news. In our effort to detect manipulated images and videos,

i.e., deepfakes we faced two fundamental challenges. Firstly we have a “cat-and-mouse-game”, honing

deepfake generation and deepfake detection, one against the other. In improving the detection mecha-

nism, generation can be improved accordingly, which in turn can be beneficial in improving the detector.

This results in this game, which can never be won. Secondly, we have that deep models are highly

domain-specific and likely yield big performance degradation in cross-domain deployments, especially

with large train-test domain gap. The second challenge indicates that detectors trained on known manip-

ulation techniques generalize poorly to tampering methods outside of the training set, which we show in

a very recent work, in which we compare 2D and 3D deepfake detection algorithms (Section 2).
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Chapter 2

Axis I. Facial Analysis for Security

Biometrics is the science of recognizing individuals based on their physical, behavioral, and physiolog-

ical characteristics [33, 35, 36, 39, 91] such as fingerprint [39], face [37], and iris [14]. Biometrics is

aimed at ensuring an accurate person recognition, which ensures high recognition rates and low error

rates (e.g., False Reject Rate (FRR) and False Accept Rate (FAR)). Despite fingerprint and iris entailing

generally higher recognition accuracy than face, face has catapulted itself as the most compelling modal-

ity commercially for its user-friendliness. However, its susceptibility to change due to factors such as

expression or aging, have brought to the fore a number of challenges, see Section 1.3.

Automating face recognition dates back to 1964, when Woody Bledsoe, Helen Chan Wolf, and

Charles Bisson [6] firstly studied the problem. This laid the foundation for geometric-based face recog-

nition, which is based on distances between pre-defined facial landmarks. In contrast, the first approach

considering the face holistically, namely Eigenfaces dates back to 1991 and was proposed by Turk and

Pentland [129]. The novelty herein was a compact face representation, obtained by mapping the high-

dimensional face image into a lower dimensional sub-space, which is aimed at reducing the intra-class

distances on the features and increasing the inter-class distances. In 2004 Viola and Jones revolutionized

the field by introducing a real-time face detector based on Haar filters [134]. A large number of hand-

crafted algorithms such as local binary pattern (LBP), Gabor Wavelet, scale invariant feature transform

(SIFT), histogram of oriented gradients (HoG), and also sparsity-based representations continued the

progress in face recognition. Notably, the progress of sensors and cameras, e.g., the first digital cameras
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in the early 1990s, further pushed forward face-based biometrics by allowing for 3D face recognition

or face recognition beyond the visible spectrum. The most recent and prominent milestone was set by

Taigman et al. with DeepFace [119], entailing a CNN for face recognition, which notably approached

human performance on the unconstrained condition for the first time ever (DeepFace 97.35% vs. Hu-

man: 97.53%). Interestingly, Wang and Deng [145] drew attention that starting from the first few layers

of a deep neural network, patterns similar to the Gabor Wavelets are encoded (i.e., oriented edges with

different scales). Following layers learn increasingly complex features such as ‘high-bridged nose’ and

‘big eyes’, whereas the last few layers incorporate facial attributes such as smile and eye color. No-

table CNN-approaches include VGGface [74], COCO algorithm [51], SphereFace [50], CosFace [140],

ArcFace [16]. Most recently, algorithms are concerned with bias-mitigation [20], as well as with pri-

vacy, introducing federated learning in the context of face recognition, which allows for data not to

be transferred, nor stored [1]. Models after 2017 have predominantly focused on developing new loss

functions for more discriminative feature learning. The remarkable progress of CNNs for face-based

biometrics [59] is on account of large-scale datasets such as MegaFace, incorporating more than 690.000

identities, or Google’s private dataset including over 10 Million individuals. This progress has enabled

current biometric systems to reliably recognize cooperative individuals in controlled environments [38].

Given the increasing reliability of biometrics, in the last decade researcher have studied forgery in

biometrics [19, 54, 81], as well as methods to counter-act and distinguish fake biometric features from

authentic ones [15].

The National Institute of Standards and Technology (NIST) has been organizing frequent evaluations

and challenges, reporting on the progress of face recognition accuracy1. The interest and investment into

biometric technologies is large and rapidly growing according to various market value studies [DRD+20].

While biometric data is typically used to recognize individuals, it is possible to deduce other types

of attributes of an individual from the same data. For example, attributes such as age, gender, ethnicity,

height, hair color and eye color can be deduced from data collected for biometric recognition purposes.

These additionally deduced attributes, while not necessarily unique to an individual, can be used in a

variety of applications. For example they can be used in conjunction with primary biometric traits in

1https://www.nist.gov/biometrics
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order to improve or expedite recognition performance. It is perhaps this latter application that has led

to these attributes being referred to as soft biometrics [DER15]. In this context, soft biometrics can be

traced back to Bertillon [86]. We note that soft biometrics are instrumental in bridging the semantic gap

between human and machine descriptions of biometric data.

In this context, we present here work on (a) facial behavior in estimating soft biometrics (Section

2.1.1), (b) extracting novel soft biometrics such as height and weight from face (Section 2.1.2), (c)

algorithmic bias in biometric systems w.r.t. soft biometrics (Section 2.3), as well as (d) vulnerabilities

in biometric systems (Section 2.2). In (a) and (b) we have designed algorithms aiming at exploring

the relatively novel modality - behavior, as well as the novel for the face height, weight and BMI. In

(c) one notable result comprises a multi-task algorithm for analyzing gender, age and ethnicity in an

unbiased manner that won a European Conference of Computer Vision 2018 challenge on unbiased face

analysis. In (d) we established the impact of facial cosmetics on automated face analysis systems and

have then focused on the design of methods that reduce such impact and more specifically designed

an ensemble algorithm of patch-based subspaces for makeup-robust face recognition. This work was

awarded with the Best Tabula Rasa Spoofing Attack Award 2013, the Best Poster Award at the IAPR

International Conference on Biometrics (ICB) 2013 and with the Best Paper Award (Runner up) at the

IEEE International Conference on Identity, Security and Behavior Analysis (ISBA) 2017.

2.1 Soft Biometrics or ‘What else is there in your biometric data’

Soft biometrics [DER15,34] constitute personal attributes, such as gender, age, ethnicity, hair color, body

weight, which find applications that include video surveillance or human-computer interaction. Such

attributes are particularly useful in bridging the semantic gap between human and machine descriptions

of the biometric data. Soft biometrics are seen as a crucial stepping stone towards the evolution of human

analysis into a science that reflects the dynamic nature and uncertainty that exists in decision making of

real world pertinent problems.
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2.1.1 Gender estimation based on smile dynamics

One pertinent soft biometric attribute is gender, for related numerous applications, including video

surveillance, human-computer interaction, anonymous customized advertisement, and image retrieval.

Most commonly, the underlying algorithms analyzed the facial appearance for clues of gender. We pro-

posed novel methods for gender estimation [BDB16, DB16], which exploited dynamic features gleaned

from smiles and we proceed to show that: (a) facial dynamics incorporate clues for gender dimorphism

and (b) while for adult individuals appearance features are more accurate than dynamic features, for sub-

jects under 18 years facial dynamics can outperform appearance features. In addition, we fused proposed

dynamics-based approach with state-of-the-art appearance-based algorithms, predominantly improving

performance of the latter. Results showed that smile-dynamics include pertinent and complementary to

appearance gender information.

2.1.2 Show me your face and I will tell you your height, weight and body mass

index

Staying in the realm of soft biometrics, we explored novel attributes such as body height, weight, as well

as the associated and composite body mass index (BMI). Such attributes are of pertinence in biometrics,

as well as in healthcare. Previous work on automated estimation of height, weight and BMI had predom-

inantly focused on 2D and 3D full-body images and videos. Little attention had been given to the use of

face for estimating body height and weight. Motivated by this, we explored the possibility of estimating

height, weight and BMI from single-shot facial images by proposing a regression method based on the

50-layers ResNet-architecture [DBB18]. In addition, we introduced a novel dataset consisting of 1026

subjects and showed results, which suggested that facial images contain discriminatory information per-

taining to height, weight and BMI, comparable to that of body-images and videos. In conclusion, we

performed a gender-based analysis of the prediction of height, weight and BMI.
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2.2 Vulnerabilities in Biometrics

A contribution that I am particularly proud of relates to our pioneering work on the topic of facial cos-

metics and automated facial analysis systems, which we proposed during my 2 PostDocs in the USA.

Specifically, we showed that automated face analysis not only can be substantially impacted by the ap-

plication of facial makeup but also can be spoofed, surpassing all current spoofing countermeasures.

The problem has been of particular interest, since (a) face recognition systems have been increasingly

deployed in security and commercial applications and (b) facial cosmetics are a simple, non-permanent,

cost-efficient method to substantially alter facial appearance. Hence facial cosmetics has the potential to

compromise the accuracy of biometric systems. We proposed research investigating this and I was the

PI of the project “Impact of Cosmetics on the Performance and Security of Face Recognition” from Na-

tional Science Foundation (NSF) Industry / University Cooperative Research Center CITeR (Center for

Identification Technology Research with affiliates such as the Federal Bureau of Investigation). Results

of this work were published a series of successful, well cited publications covering following topics.

2.2.1 Establishing the impact of facial cosmetics on automated face analysis al-

gorithms

We verified the significant impact of facial cosmetics by evaluating the matching accuracy of multiple

face recognition algorithms and the accuracy of multiple age and gender-estimation algorithms on four

different datasets [CDSR17, CDR14, DCR12b].

2.2.2 Mitigation of impact

Motivated by the above, we designed a makeup detection-algorithm [CDR13] extracting a feature vector

that captures the shape, texture and color characteristics of the input face, and employs a classifier to

determine the presence or absence of makeup. Further, we proposed an adaptive pre-processing scheme

that exploits knowledge of the presence or absence of facial makeup to improve the matching accuracy

of a face matcher.
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Towards finding an algorithm for cosmetics-robust face recognition [CDR16] we introduced an en-

semble learning scheme to generate multiple common semi-random subspaces for before-makeup and

after-makeup samples, instead of two separate subspaces. We illustrate the scheme in Figure 2.1. In

random subspace methods, a set of multiple low-dimensional subspaces are generated by randomly sam-

pling feature vectors in the original high-dimensional space. Specifically, multiple texture descriptors

were used to describe a face-patch. A combination of sparse and collaborative classifiers were used in

these subspaces. A random subspace method can be used to generate multiple common subspaces, where

each subspace contains a small portion of discriminative information pertaining to the identity. At the

same time, by randomly selecting different patches as the input to each subspace-based classifier, the

overfitting issue is avoided.

2.3 Bias in Biometrics

Biometric systems have become ubiquitous in personal, commercial, and governmental identity man-

agement applications. Both cooperative (e.g., access control) and non-cooperative (e.g., surveillance

and forensics) systems have benefited from biometrics. Recently, however, automated decision systems

(including biometrics) faced public and academic concerns related to systemic bias. Most prominently,

face recognition algorithms have been labelled as “racist” or “biased” by the media, non-governmental

organisations, as well as researchers.

We revisited algorithmic bias in the context of biometrics [DRD+20], providing a comprehensive

survey of existing literature on biometric bias estimation and mitigation, as well as discussing pertinent

technical and social matters, and outlining remaining challenges.

In addition, we explored joint classification of gender, age and race [DDB18], where we proposed

a Multi-Task Convolution Neural Network (MTCNN) employing joint dynamic loss weight adjustment

towards classification of named soft biometrics, as well as towards mitigation of soft biometrics related

bias. The proposed algorithm achieved promising results on the UTKFace and the Bias Estimation

in Face Analytics (BEFA) datasets and was ranked first in the the BEFA Challenge of the European

Conference of Computer Vision (ECCV) 2018.
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Figure 2.1: Proposed framework for matching after-makeup images with before-makeup images. During
the training phase, for each feature descriptor, a pool of patches is extracted, followed by weight learning,
patch sampling and random subspace construction. In the testing phase, patches from an input image are
projected onto the learned random subspace. A combination of sparse representation based classification
(SRC) and collaborative representation based classification (CRC) classifiers are used to compare feature
vectors in these subspaces and generate a match score. This process is repeated for each descriptor
and the matching scores corresponding to individual feature descriptors are fused to generate the final
similarity score.
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We note that DeepFakes, representing maliciously modified images/videos is a recent challenge in

biometrics, which we elaborate on in Chapter 4.
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Chapter 3

Axis II. Facial Analysis for Healthcare

It is interesting to note that automated face-based security and health analysis have naturally many inter-

sections and have effectively similar underlying principles. Specifically, both applications demand high

levels of reliability and robustness and hence coerce carefully designed face representation schemes.

Both applications require the analysis of unconstrained data, captured in an non-intrusive and efficient

manner. Both security and healthcare share high societal impact and require privacy preservation mech-

anisms to secure the involved sensible data. These similarities motivate our joint exposition of these

problems. We believe that these applications - despite their differences in interpretation of the com-

mon extracted facial information - share similar core algorithmic challenges and similar core algorithmic

solutions. It is this joint analysis and empirical experimentation that may reveal deeper connections

between seemingly unrelated challenges. One example has to do with our result suggesting that smile-

dynamics encode the gender of an individual [DB16,BDB16]. Having this in mind, when encoding facial

expressions in a framework analyzing apathy, we built separate gender-specific models, which showed

beneficial in the accuracy.

In addition, joint exposition of security and healthcare has allowed for cross-fertilization of ideas

across areas, where we proposed an algorithm for gender estimation [BDB16] and were able to adopt the

algorithm in the setting of facial behavior recognition in Alzheimer’s disease patients [DBN+17a].

Face-based health diagnosis and treatments have advanced rapidly, associated to the rapid progress in

computer vision and machine learning, and carry the premise to constitute a fundamental part of future

22



assisted living frameworks [25,98]. Specific applications include clinical diagnosis, where symptoms or

specific health conditions are evaluated, prognosis, referring to the monitoring of a patient for a specific

health condition and predicting how this health condition will evolve in the future, assertive techniques

providing assistance directly to patients, personal level health monitoring and healthcare management.

During the past decade, notable computer vision based approaches have focused on depression

detection [41, 44, 146], pain detection [7], assessment of neurological disorder [11, 87, 127], as well

as phenotypes of genetic disorders [23, 24]. In the context of healthcare also stress [151] and af-

fect [47, 62, 71, 103, 114] have been studied.

Motivated by the medical need, as well as by the great progress in CNNs, the topic of automated

healthcare monitoring has sparked high interest in the community and consequently several scientific

events, such as special sessions (Kinect-based Kinematic Data Analysis and Evaluation for Clinical

Applications) and scientific event workshops (Face and Gesture Analysis for Health Informatics) and

special session (Human Heath Monitoring based On Computer Vision) have been organized associated

to the IEEE FG 20181, IEEE FG 20192, IEEE FG 20203, IEEE FG 20214, respectively. Previous overview

articles such as [107] and [120] have revisited technical challenges pertaining to automated healthcare

monitoring, witnessing an increased number of publications associated to this research area.

This scientific attention has been further fueled by the prevalent commercial deployment of auto-

mated health-care systems, by dedicated projects based on health monitoring such as Patient@home5

and Smarthome [52].

In the context of healthcare, we have sought to predict the needs of patients with Alzheimer’s disease

(AD), in order to better address them. At a time of an increased elderly population growth6 and decreased

availability of human healthcare-resources, computer vision aided face analysis has the potential to offer

efficient and cost-effective methods for monitoring of AD-patients.

1
https://fg2018.cse.sc.edu

2
http://fg2019.org/participate/special-sessions/hhmbcv/

3
https://fg2020.sunai.uoc.edu/program/

4
http://iab-rubric.org/fg2021/session.html

5
http://www.en.patientathome.dk/projects/computer-vision-for-in-home-medical-diagnosis-and-monitoring.aspx

6
http://www.un.org/esa/population/publications/worldageing19502050/pdf/80chapterii.pdf
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In this context we proposed (a) novel computer vision and machine learning methods for automated

recognition of facial expressions and dynamics in severely demented patients (Section 3.1). Recogniz-

ing behavior and expression of AD-patients is essential, because AD patients usually lose a substantial

amount of their cognitive capacity, and some even their verbal communication ability (e.g., aphasia).

This means that clinicians often need to interpret the patients’ verbal and non-verbal messages; these

messages can be important, and they must be properly assessed because they might convey discomfort

or pain. Such assessment classically requires the patients’ presence in a clinic, and it usually involves

time consuming examinations involving medical personnel. Thus, (non-automated) expression assess-

ment is costly and logistically inconvenient, and as a result can severely hinder large-scale monitoring.

Our work constitutes a large improvement over the majority of previous approaches on emotion and

expression recognition, which have focused on posed expressions or spontaneous expressions in highly

constrained settings [2] and which limits the validity and generalizability of their models to more com-

plex concepts, such as mental health.

Building upon proposed facial emotion classification methods, we proposed (b) models, which ex-

plore complex concepts of mental states by employing behavior algorithms (Section 3.3). In particular,

we introduced novel machine learning frameworks to classify apathetic and non-apathetic patients based

on analysis of facial dynamics, entailing both emotion and facial movement. In addition, we explored re-

gression models to predict the clinical scores related to the mini-mental state examination (MMSE) and

the neuropsychiatric apathy inventory NPI using motion and emotion features, and successfully aug-

mented the accuracy of apathy classification. We note that assessment of mental health is a significant

rising problem, with reports showing an astonishing 46% of subjects meet criteria for symptoms such

as anxiety disorders, mood disorders (including depression and bipolar disorders, impulse-control dis-

orders, and substance use disorders (including alcohol and drug abuse)) at least once in their lives [12].

Automatic assessment of mental health on a large scale is a new big challenge, which I am interested in.

A further work in this Axis includes (c) a face-based algorithm for remote heartrate detection [NZH+19],

capturing remote photoplethysmography (rPPG), which constitutes a pulse triggered perceivable chro-

matic variation (Section 3.4).
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We note that, despite these challenges, it is imperative to work with such data, as it is representative

for current (vast amount of) video-documentation of medical doctors, requiring automated analysis.

3.1 Emotion Analysis

The universal hypothesis suggests that the six basic emotions - anger, disgust, fear, happiness, sad-

ness, and surprise - are being expressed by similar facial expressions by all humans. Recognizing such

expressions remains highly challenging, predominantly due to (a) lack of sufficient data, (b) subtle emo-

tion intensity, (c) subjective and inconsistent annotation, as well as due to (d) in-the-wild data containing

variations in pose, intensity, and occlusion.

3.1.1 A Weakly Supervised Learning Technique for Classifying Facial Expres-

sions

While existing datasets support the universal hypothesis and comprise of images and videos with discrete

disjoint labels of profound emotions, real-life data contains jointly occurring emotions and expressions of

different intensities. Models, which are trained using categorical one-hot vectors often over-fit and fail to

recognize low or moderate expression intensities. Motivated by the above, we aimed to tackle challenge

(a) described in Section 3.1, namely lack of sufficient data by a weakly supervised learning technique

for expression classification [HDB19], which leveraged the information of not annotated data. Crucial

in our approach (see Figure 3.1) was that we firstly trained a CNN with label smoothing in a supervised

manner and proceeded to tune the CNN-weights with both labelled and unlabelled data simultaneously.

Experiments on four datasets demonstrated large performance gains in cross-database performance, as

well as show that the proposed method achieves to learn different expression intensities (above described

challenge (b) in Section 3.1), even when trained with categorical samples.

3.1.2 Semi-supervised Emotion Recognition using Inconsistently Annotated Data

Seeking to address above described challenges in a unified framework, we proposed a self-training based

semi-supervised CNN-framework [HDB20b], which directly addressed the challenge of (a) limited data
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Figure 3.1: Workflow of the proposed expression recognition method.

by leveraging information from unannotated samples. Our method used ‘successive label smoothing’ to

adapt to the subtle expressions and improve the model performance for (b) low-intensity expression sam-

ples. Further, we addressed challenge (c) inconsistent annotations by assigning sample weights during

loss computation, thereby ignoring the effect of incorrect ground-truth. We observed significant perfor-

mance improvement in in-the-wild datasets by leveraging the information from the in-the-lab datasets,

related to challenge (d). Associated to that, experiments on four publicly available datasets demonstrated

large performance gains in cross-database performance, as well as showcased that the proposed method

achieves to learn different expression intensities, even when trained with categorical samples.

3.2 Music Therapy

We assessed facial dynamics in patients AD. Such assessment was challenging, but of high impact, as

such patients have lost a substantial amount of their cognitive capacity, and hence communication ability

(e.g., to indicate discomfort or pain). We proposed an initial handcrafted approach based on the ex-

tension of Improved Fisher Vectors (IFV) [141] for videos, representing a video-sequence using both,

local, as well as the related spatio-temporal features [DBN+17b, DBB+16]. Later, we compared CNN-

methods for assessing facial dynamics such as talking, singing, neutral and smiling captured during

music mnemotherapy sessions [WDB+18b]. Specifically, we compared 3D ConvNets [125], Very Deep

Neural Network based Two-Stream ConvNets [109, 144], as well as Improved Dense Trajectories. We

adapted these methods from prominent action recognition methods and our promising results suggest
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that the methods generalize well to the context of facial dynamics. The Two-Stream ConvNets in combi-

nation with ResNet-152 obtained the best performance on our dataset, capturing well even minor facial

dynamics and has thus sparked high interest in the medical community. In personalizing the former

approach, we obtained higher accuracy [HDB+20a].

3.3 Apathy Analysis

This section stands out, as it has the goal to go beyond expression and behavior analysis and focuses

on a more complex, mental state. Analysis thereof is substantially more challenging, as it constituted a

novel topic in computer vision and it was to be explored of how to deduce an internal characteristic state

from external facial clues. We tackled the challenge on classifying apathy, which is defined by symptoms

including reduced emotional response, lack of motivation and limited social interaction. Current methods

for apathy diagnosis require the patient’s presence in a clinic, and time consuming clinical interviews and

questionnaires involving medical personnel, which are costly and logistically inconvenient for patients

and clinical staff, hindering among other large scale diagnostics.

3.3.1 Initial Framework

In this context, we introduced a novel machine learning framework to classify apathetic and non-apathetic

patients based on analysis of facial dynamics, entailing both emotion and facial movement [HDD+19].

Our approach catered to the challenging setting of current apathy assessment interviews, which include

short video clips with wide face pose variations, very low-intensity expressions, and insignificant inter-

class variations. We tested our algorithm on a dataset consisting of 90 video sequences acquired from

45 subjects and obtained an accuracy of 84% in apathy classification. Based on extensive experiments,

we showed that the fusion of emotion and facial local motion produces the best feature set for apathy

classification. In addition, we trained regression models to predict the clinical scores related to the mini-

mental state examination (MMSE) and the neuropsychiatric apathy inventory (NPI) using the motion and

emotion features. Our results suggested that the performance can be further improved by appending the

predicted clinical scores to the video-based feature representation.
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3.3.2 Multi-task learning for apathy classification

Leveraging on findings from the above framework, we proceeded to propose a multi-task learning (MTL)

framework for apathy classification based on facial analysis, entailing both emotion and facial move-

ments [HDD+20]. In addition, it leveraged information from other auxiliary tasks (i.e., clinical scores),

which might be closely or distantly related to the main task of apathy classification. Our proposed

MTL approach (termed MTL+) improved apathy classification by jointly learning model weights and

the relatedness of the auxiliary tasks to the main task in an iterative manner. Our results on 90 video

sequences acquired from 45 subjects obtained an apathy classification accuracy of up to 80%, using

the concatenated emotion and motion features. Our results further demonstrated the improved perfor-

mance of MTL+ over MTL. We improved this algorithm by considering spatio-temporal relations in a

GRU-based model [DND+21] obtaining 90% of accuracy.

3.4 Heartrate Estimation

Adding upon the above emotion and behavior analysis, we here aimed to analyze the physiological trait

heart rate (HR) from RGB-facial-videos [NZH+19]. Towards this, we present an end-to-end approach

for robust remote HR-measurement based on remote photoplethysmography (rPPG), depicted in Figure

3.2, which constitutes a pulse triggered perceivable chromatic variation, sensed in RGB-face videos.

Challenging in this setting has been that rPPGs can be affected in less-constrained settings. To unpin

the shortcoming, the proposed algorithm utilizes a spatio-temporal attention mechanism, which places

emphasis on the salient features included in rPPG-signals. In addition, we investigate an effective rPPG

augmentation approach, generating multiple rPPG signals with varying HRs from a single face video

(see Figure 3.3). Experimental results on the public datasets VIPL-HR and MMSE-HR show that the

proposed method outperforms state-of-the-art algorithms in remote HR estimation.
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Figure 3.2: Overview of the proposed end-to-end trainable approach for rPPG based remote HR mea-
surement via representation learning with spatial-temporal attention.
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Chapter 4

Axis III. Face Generation

Given an image or a short video sequence, humans are able to forecast future potential events. Such

ability is instrumental in making decisions. In this chapter, we intend to tackle the question: can we

endow machines with a similar ability to forecast the future? We formulate this problem as a conditional

generation task and pursue it incorporating generative adversarial networks (GANs).

GANs as introduced by Goodfellow et al. [21] incorporate two networks, a Generator, which gen-

erates new data instances and a Discriminator, which evaluates them for authenticity. The generator

accepts noise as input and generates new samples of data in line with the observed training data. GANs

have succeeded in applications such as image generation, image translation, super-resolution imaging,

as well as face image synthesis.

Conditional GANs enhance the GAN-concept by providing both, the discriminator and generator

with additional class information, in order to generate samples conditioned on different classes. It has

been beneficial in domain transfer, super-resolution imaging, as well as image editing. Notable ap-

proaches include the conditional generative adversarial networks (cGANs) work by Mirza and Osin-

dero [60] and Isola [31].

Recently GANs [21] have witnessed increased attention, attributed to the associated abilities to model

complex data distributions, which allow them to generate and translate images. A number of tasks

have benefited from this ability including image generation [118], image translation [31, 153], super-

resolution imaging [48], as well as face image synthesis [106]. In contrast to images, videos represent
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richer representations of the visual world and hence related video generation encompasses challenges

w.r.t. complexity and computation, associated to the simultaneous modeling of appearance, as well as

motion. Specifically, in inferring and modeling the distribution of human videos, generative models

face three main challenges: (i) generating uncertain motion and retaining of human appearance, (ii)

modeling spatio-temporal consistency, and (iii) understanding of latent representation. Finding suitable

model architectures and representation learning methods, which are able to address these challenges, are

critical to visual quality and plausibility of rendered novel video sequences.

Recent works in this context aim to generate actions [46], as well as to predict videos, i.e. antici-

pating what will happen in a video - essential to automate decision making [69, 113]. Particularly video

prediction refers to the generation of future frames, given past observations by learning dynamic visual

patterns from videos [40]. In this context, emphasis has been predominantly placed on predicting high-

level semantics including action [135], event [29] and motion [137]. Such approaches have alleviated

the challenges by conditioning the generation on potent priors such as input images, human keypoints

and optical flow. This relates to learning to sample from conditional distributions, assuming access to

the marginal distributions instead of learning joint distributions.

With respect to face generation, we proposed (a) a 2D model for conditional image generation based

on attribute labels (Section 4.1), which we extend into (b) a 3D conditional approach for video generation

based on attribute labels (Section 4.2). We then explored the challenging video generation that entails

the mapping of a prior distribution (e.g., Gaussian distribution) and video distribution. In a first step, we

designed (c) ImaGINator (Section 4.2.2), an architecture, which preserved the appearance information

learned from an input image and animates this image using a motion label. Slightly altering the scenario

of interest, we then introduced (d) a spatio-temporal generative model (Section 4.2.3), which sought to

capture the distribution of high dimensional video data and to model appearance and motion in disen-

tangled manner. As opposed to ImaGINator, this new model, referred to as G3AN was streamlined to

generate videos in an unconditional manner and hence did not require an input image. Our associated

results showed that G3AN indeed disentangled appearance and motion and hence both, appearance and

motion can be manipulated in generated videos. The follow up model, (e) MintGAN (Section 4.2.4) was
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targeted to allow for interpretation of the latent space. Specifically, we decomposed motion into seman-

tic sub-spaces, which allowed for motion in generated videos to be easily manipulated. The sub-spaces

were implemented by a motion dictionary, whose atoms form an orthogonal basis in the latent space.

We showcased (f) the efficacy of generated data for data augmentation in a contrastive learning approach

for person re-identification in Section 4.3. We proceeded to (g) detect deepfakes in Section 4.4, which

constitute videos created or manipulated by generative models such as GANs.

We note that GANs have been instrumental in face-based biometrics related to Axis I, where we

introduced a GAN, which improved face sketch recognition via adversarial sketch-photo transformation

[YHS+19]. Most recently, we improved thermal to visible face recognition by a novel GAN [ACR+21].

It is aimed at explicitly decomposing an input image into identity code that is spectral-invariant and

style code that is spectral-dependent. By using such a disentanglement, we were able to analyze the

identity preservation by interpreting and visualizing the identity code. Similarly, we envision GANs

being beneficial in Axis II for data augmentation, given the challenge concerning ‘data scarcity’.

4.1 Image generation (2D model)

In generating still face images based on attribute-labels [WDB18a], we aimed to fit the conditional

probability P (x|z, y) in a conditional GAN, as depicted in Figure 4.1. We let z be the noise vector

sampled from N (0, 1) with dimension 100, y be the vector representing attribute-labels (with yi ∈

{±1}, where i corresponds to the ith attribute). We trained a GAN, adding attribute-labels in both,

generator and discriminator. While the generator accepted as input the combination of prior noise p(z)

and attributes vector y, the discriminator accepted both, real or generated images, as well as the attribute-

labels. Generated samples are shown in Figure 4.2.
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Figure 4.1: Architecture of proposed 2D method consisting of two modules, a discriminator D and a
generator G. While D learns to distinguish between real and fake images, classifying based on attribute-
labels, G accepts as input both, noise and attribute-labels in order to generate realistic face images.

(a) no glasses, female, black hair, smiling, young

Figure 4.2: Example images generated by the proposed 2D model.

4.2 Video generation (3D models)

4.2.1 Attributes guided video generation

We expanded the above presented 2D-model onto the spatio-temporal dimension, in order to create a

conditional 3D-GAN [WDB17] (Figure 4.3) for generating videos. In both, generator and discriminator,

the convolutional kernels have been expanded onto three dimensions (H,W,C, T ), where H, W, C and

T denote the height, width, channel and temporal step of the receptive fields in each kernel.

We feed the attribute vectors into the 3D model in a similar manner as in the 2D model. Specifically,

in the generator we concatenate the attribute vector with the noise vector. In the discriminator, the feature

map after the first layer has the dimension of (H,W,C, T ), each (H,W,C, t), t ∈ T containing spatio-

temporal features of a certain time period. Our goal is to generate face videos based on attributes, hence
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we proceed to provide each spatial-temporal feature map with the same attribute embedding. Based

on this, we insert an attribute embedding into the spatio-temporal feature map from the first layer of the

discriminator, creating a new feature map with the dimension (H,W,C+y, T ), where y is the dimension

of the attribute vector.

We proposed a conditional video generation framework to generate smiling face sequences by pro-

viding facial attributes, as well as proposed a new method to insert attributes labels into spatio-temporal

feature maps.

Figure 4.3: Architecture of proposed 3D model for face video generation

4.2.2 Video generation from a single image: ImaGINator

Here our goal has been to generate a video sequence, given an appearance information (i.e., a single

image frame) and a motion class-label [WBBD20b]. We assumed that a video y can be decomposed

into appearance ca (originating from the input-image) and motion cm (originating from the category-

label), based on which we proceeded to generate videos. Hence, we formulated our task as learning a

conditional mapping G : {z, ca, cm} → y, where z ∼ N (0, 1) denotes the random noise.

In this context, we proposed a framework that consists of the following 3 main components: (i)

Generator G, that accepts ca, cm and noise as inputs, and seeks to generate realistic video sequences,
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Figure 4.4: Overview of the proposed ImaGINator.

(ii) image Discriminator DI that determines the frame-level based appearance quality, and (iii) video

Discriminator DV , which additionally discriminates, whether the generated video sequences contain

authentic motion, see Figure 4.4. Generated frames are shown in Figure 4.5.

Related to that, our contributions included the design of a novel generative model incorporating

(a) a novel spatio-temporal fusion mechanism, aiming at retaining the appearance by enforcing G to

employ the spatial information in both, low and high feature levels, as well as (b) a novel transposed

(1+2)D convolution, factorizing the transposed 3D convolutional filters into separate temporal and spatial

components.

4.2.3 Unconditional Generation

In continuation of the above work, we aimed to generate videos given merely a motion class-label. To

tackle this challenge, we proposed the novel spatio-temporal GAN-architectureG3AN [WBBD19b] (see

Figure 4.6), which sought to capture the distribution of high dimensional video data and to model ap-

pearance and motion in disentangled manner. The latter was achieved by decomposing appearance and

motion in a three-stream Generator, where the main stream aims to model spatio-temporal consistency,

whereas the two auxiliary streams augment the main stream with multi-scale appearance and motion

features, respectively. An extensive quantitative and qualitative analysis showed that our model system-

atically and significantly outperformed state-of-the-art methods on the facial expression datasets MUG
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Figure 4.5: Example generated video frames by ImaGINator

and UvA-NEMO, as well as the Weizmann and UCF101 datasets on human action. Additional analysis

on the learned latent representations confirmed the successful decomposition of appearance and motion.

Figure 4.6: Overview of our G3AN architecture, a fully convolutional GAN aimed at generating
realistic video sequences. It consists of a three-stream Generator and a two-stream Discriminator. The
Generator has 5 stacked G3 modules, a factorized self-attention (F-SA) mechanism, and takes as input
two random noise-vectors, za and zm, aiming at controlling appearance and motion, respectively.

4.2.4 Interpretable Generation

Following the above, we presented an unconditional video generative model, MintGAN [WBD21], tar-

geted to allow for interpretation of the latent space. Towards this, we designed a model (see Figure 4.7)

that generates high quality videos, placing emphasis on the interpretation and manipulation of motion.
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Video quality of generated videos was ensured given that they entail (a) naturalism, as well as (b) diver-

sity. Naturalism and related video quality are generally impacted by a number of factors such as model

architecture, objective function, and regularization, our major interest has been in the model architecture.

We decomposed motion into semantic sub-spaces, which allowed for control of generated samples.

We designed the generator of MintGAN in accordance to proposed Linear Motion Decomposition, which

carried the assumption that motion can be represented by a dictionary, whose atoms form an orthogonal

basis in the latent space. Each vector in the basis represented a semantic sub-space. In addition, a Tem-

poral Pyramid Discriminator analyzed videos at different temporal resolutions. Extensive quantitative

and qualitative analysis showed that our model systematically and significantly outperformed state-of-

the-art methods on the VoxCeleb2-mini, BAIR-robot and UCF101 datasets with respect to video quality,

as well as confirmed that decomposed sub-spaces were interpretable and moreover, generated motion

was controllable.

Figure 4.7: MintGAN-architecture. MintGAN comprises of a Generator and a two-stream Discrim-
inator. We design the architecture of the Generator based on proposed Linear Motion Decomposition.
Specifically, a motion bank is incorporated in the Generator to learn and store a motion dictionary D,
which contains motion-directions [d0, d1, .., dN−1]. We use an appearance net GA to map appearance
noise za into a latent code w0, which serves as the initial latent code of a generated video. A motion
net GM maps a sequence of motion noises {zmt

}T−1
t=1 into a sequence {At}T−1

t=1 , which represent motion
magnitudes. Each latent code wt is computed based on Linear Motion Decomposition using w0, D and
At. Generated video V is obtained by a synthesis netGS that maps the sequence of latent codes {wt}T−1

t=0

into an image sequence {xt}T−1
t=0 . Our discriminator comprises an image discriminator DI and a Tem-

poral Pyramid Discriminator (TPD) that contains several video discriminators DVi
, leveraging different

temporal speeds υi to improve generated video quality. While DI accepts as input a randomly sampled
image per video, each DVi

is accountable for one temporal resolution.

38



4.3 Generated data for data augmentation in a contrastive learning

approach for person re-identification

Recent self-supervised contrastive learning has provided an effective approach for unsupervised person

re-identification (ReID) by learning invariance from different views (transformed versions) of an input.

We incorporated a GAN and a contrastive learning module into one joint training framework [CWL+21].

While the GAN provided online data augmentation for contrastive learning, the contrastive module

learned view-invariant features for generation. In this context, we proposed a mesh-based view gen-

erator. Specifically, mesh projections served as references towards generating novel views of a person.

In addition, we proposed a view-invariant loss to facilitate contrastive learning between original and

generated views. Deviating from previous GAN-based unsupervised ReID methods involving domain

adaptation, we did not rely on a labeled source dataset, which made our method more flexible. Extensive

experimental results showed that our method significantly outperformed state-of-the-art methods under

both, fully unsupervised and unsupervised domain adaptive settings on several large scale ReID datsets.

4.4 Deepfake Detection

While technically intriguing, progress in generating realistic images and videos raises a number of social

concerns related to the advent and spread of fake information and fake news. Such concerns necessitate

the introduction of robust and reliable methods for fake image and video detection. Towards this, we

studied the ability of state of the art video CNNs including 3D ResNet [27], 3D ResNeXt [152], and

I3D [9] in detecting manipulated videos [WD20]. We presented related experimental results on videos

tampered by four manipulation techniques, as included in the FaceForensics++ dataset [93]. We inves-

tigated three scenarios, where the networks were trained to detect (a) all manipulated videos, as well

as (b) separately each manipulation technique individually. Finally and deviating from previous works,

we conducted cross-manipulation results, where we (c) detected the veracity of videos pertaining to

manipulation-techniques not included in the test set. Our findings clearly indicated the need for a better

understanding of manipulation methods and the importance of designing algorithms that can successfully

generalize onto unknown manipulations.
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Chapter 5

Conclusions

This HDR presented a number of scientific works related to computer vision and specifically face analysis

for security and healthcare, as well as to face generation. During the past 10 years I consolidated my

knowledge in the domain of pattern recognition and computer vision, designing presented works.

With respect to security, our work extended prior state-of-the art, identifying bias and vulnerabilities

in face analysis algorithms and proceeding to mitigate such by proposing novel ensemble-learning, as

well as multi-task algorithms. Finding new face representations allowed for new insights into face,

allowing to deduce novel characteristics such as height and weight.

­ Deepfake detection. We aim at designing heterogeneous strategies for deepfake detection that suc-

cessfully generalize onto unknown manipulations. One strategy involves the learning of behavioural-

signatures (e.g., talking-signature) representing enrolled subjects. Based on such signatures we will

examine the integrity of videos, regardless of manipulation techniques. Few-shot learning will allow to

transfer learned behaviour-patterns onto unseen subjects. Further, we intend to explore domain adapta-

tion, transfer learning, metric learning, as well as one-class learning. Domain adaptation and transfer

learning has been able to mitigate dataset bias and to increase cross-dataset accuracy. Metric learning

enables the maximization of feature-wise distances between real and manipulated frames, while minimiz-

ing the feature-wise distances between frames obtained from different manipulation methods, focusing

on features that generally occur in manipulation artefacts. In one-class learning, deepfake detection can
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be formulated as an anomaly detection problem. In this context, the distribution of non-manipulated face

images would be modelled using deep convolutional neural networks (CNN), aiming to identify manip-

ulated face images as anomalies. Additional directions of investigation include the fusion of multiple

detection strategies, as well as a multi-asset analysis, which incorporates diverse contextual information

such as IP address, accompanying text, audio, as well origin of data. Finally, increasing the interpretabil-

ity of deep CNNs will allow for the improvement of a reliable detection, providing higher robustness

with respect to unseen malicious attacks.

In terms of healthcare, our work presented methods catering to the substantial gap between state-

of-the-art behavior recognition systems, where related algorithms were trained and tested on small-scale

datasets, and the colossal amounts of unconstrained real-life data. While the majority of research on

automated recognition using biological and behavioral characteristics had focused on individual highly

constrained settings, and had taken a rather microscopic view to the problem, we designed more macro-

scopic spatio-temporal algorithms that were efficiently applied in real-life healthcare settings.

We explored these topics from different perspectives and contributed to tools directly usable in se-

curity, as well as in clinical practice for the assessment of facial appearance and behavior. These works

were developed in collaboration with an international network of scientific, clinical, as well as indus-

trial collaborators, resulting in a set of projects and grants in the domain of computer vision for facial

analysis. Despite these achievements, the state-of-the-art remains challenged in several settings, which I

intend to overcome in our future work.

­ Multimodal analysis. In the context of healthcare, which involves processing data prone to opera-

tional randomness and uncertainty, I intend to explore additional sensors, which capture aspects such as

depth or spectra beyond the visible ones. Specifically depth sensing entails a set of benefits such as (a) the

determination of an absolute size of observed subject, (b) robustness to noise (as opposed to RGB) and

presentation attacks (i.e., spoofing), (c) sensing that is possible in night environments, (d) an improved

performance of 2D data for face analysis with applicability in pose estimation and 3D reconstruction.

However depth maps are of poor quality due to occlusions and artefacts, and furthermore the related
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depth map resolution is orders of magnitude below that of embedded RGB cameras. Additional multi-

modal sensors, which have the ability to support face analysis include devices measuring physiological

signals such as pulse and vein monitoring.

Towards dealing with the scarcity of training data, we will investigate GANs for data augmen-

tation, which has been shown to improve algorithmic performance when used as additional training

data [CWL+21].

One long term goal in the area of healthcare constitutes the design of a holistic framework, which

analyzes human emotions and mental states, predicts emergencies, monitors the progress of potential dis-

eases and proceeds to suggest interventions such as serious games and music therapy. Such a framework

should be streamlined to extract salient features from long videos, deducing a semantic summary.

Finally our work on face generation allowed us to learn meaningful generative models, entailing the

challenge of being able to simultaneously generate both appearance, as well as motion. Towards this and

hence towards modeling the distribution of high dimensional video data, we disentangled appearance

and motion, allowing to tackle the two bottlenecks in video generation, namely ensuring spatio-temporal

consistency, as well as preserving appearance throughout generated videos. While we introduced a set

of image and video generation methods with increasingly realistic generation results, associated results

remain limited in resolution and far from perfect w.r.t. video quality. The main reason for these limi-

tations has to do with the challenging training of video GANs, due to large model-complexity, training

instability and optimization issues. These can be addressed in more sophisticated architectures, involving

more robust loss functions and stable training procedures. We believe that a further research direction

in video generation constitutes developing simpler, lower complexity and memory-efficient architectures

that require less training as shown in the context of image processing [3].

­ Explainability of Video GANs. In view of a most recently financed project on explainability of

video GANs (XGAN, Action exploratoire, Inria), we intend to pierce the black box of GANs for video

generation by proposing strategies to interpret the latent space in (a) design of interpretable architectures,

and by (b) analysis of symmetric functions in input and output of patch-based generation.
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We also intend to design frameworks, which allow for video generation based on an audio and text-

input. A long term goal in generation will be to design a system able to generate personalized complex

videos incorporating interaction, solely based on written descriptions.
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Chapter 6

Supervision, Responsibilities and Other

Research Activities

I am currently the main advisor of 1 PostDoc and 2 Ph.D. students. The funding for these has been se-

cured by the ANR JCJC, the ANR RESPECT projects, as well as Thales. One PostDoc and one Ph.D. stu-

dent will join in the next months, whose research will be funded by Inria, Action Exploratoire https:

//www.inria.fr/fr/actions-exploratoires-inria-prendre-des-risques.

6.1 Current Supervision

• Student Name: Yaohui Wang

Subject: “Automatic Holistic Analysis of Humans”

Institution: INRIA, Sophia Antipolis, France

Dates: December 2017 - November 2020.

Supervisors: Antitza Dantcheva

• Student Name: David Anghelone

Subject: “Facial analysis beyond the visible spectrum”

Institution: INRIA, Sophia Antipolis, France
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Dates: April 2019 - March 2022.

Supervisor: Antitza Dantcheva

In collaboration with Thales

Post-doctoral fellow Supervision

• PostDoc Name: Indu Joshi

Subject: “Deepfake detection”

Institution: INRIA, Sophia Antipolis, France

Dates: July 2021 - February 2022.

Supervisor: Antitza Dantcheva

6.2 Past supervision

• PostDoc Name: S L Happy

Subject: “Automatic Holistic Analysis of Humans”

Institution: INRIA, Sophia Antipolis, France

Dates: February 2018 - July 2019.

Supervisor: Antitza Dantcheva (80%) François Brémond (20%)

• PostDoc Name: Abhijit Das

Subject: “Facial expression recognition with application in health monitoring”

Institution: INRIA, Sophia Antipolis, France

Dates: February 2018 - Mai 2019, December 2020 - February 2021.

Supervisor: Antitza Dantcheva (80%) François Brémond (20%)

• PostDoc Name: Michal Balazia

Subject: “Computer Vision for Neurodegenerative Disorders”
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Institution: INRIA, Sophia Antipolis, France

Dates: September 2019 - March 2021.

Supervisor: Antitza Dantcheva

• Research engineer: Thanh Hung Nguyen

Subject: “Head and Face Detection”

Dates: 2016 - 2018

Institution: INRIA, STARS team

Supervisors: Antitza Dantcheva, François Brémond

Significance of the work: The outcomes of this work will be published in a pending conference

and a pending journal paper.

Previous Ph.D. Student mentoring:

• Student Name: Cunjian Chen

Subject: “Facial Cosmetics and automated Face Analysis Systems”

Dates: 2012 - 2014

Institution: West Virginia and Michigan State University

Supervisors: Arun Ross

Mentor: Antitza Dantcheva

Significance of the work: The outcomes of this work have been featured in a series of publications

(see the full list of contributions) and were a major part of the student’s Ph.D. thesis. He success-

fully defended middle of 2014.

• Student Name: Ester Gonzalez Sanchez

Subject: “Fusion of Facial and Body Soft Biometrics”

Dates: 2016 - 2017, during Ester’s visit at Eurecom, France

Institution: Universidad Autónoma de Madrid

Supervisors: Ruben Vera, Julian Fierrez
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Mentor: Antitza Dantcheva

Significance of the work: The outcomes of this work is a conference paper (ICPR’16) and a sub-

mitted journal publication (submitted November 2017 to Trans. Image Processing).

Masters final project student supervision:

• Student Name: Leah Dankovcik

Subject: “Interrelation of Soft Biometrics”

Dates: February 2012 - May 2012

Institution: West Virginia University

Supervisors: Arun Ross

Mentor: Antitza Dantcheva

Significance of the work: The outcomes of this work have been used in my publication in the IEEE

Transactions on Information Forensics and Security (TIFS 2016).

• Student Name: Leila Zangar

Subject: “Soft Biometrics: Eye Colors”

Dates: Summer Semester 2009

Institution: Eurecom

Supervisors: Antitza Dantcheva, Jean-Luc Dugelay

Significance of the work: The outcomes of this work have been used for a publication in the IEEE

Winter Conference on Applications of Computer Vision 2011 (WACV’11).

6.3 Scientific Engagement

I am continuously being invited to serve in different committees and to serve as reviewer for major

conferences and journals that I proceed to list below.

• Member of the ELLIS Society (https://ellis.eu/members)

49

https://ellis.eu/members


• Program Co-chair at the International Conference of the Biometrics Special Interest Group (BIOSIG)

2017-2021 (http://fg-biosig.gi.de/biosig-2019.html)

• Member of the Evaluation Committee of ANR AAPG 2020 - Comité Sécurité Globale et Cy-

bersécurité

• Associate Editor of Pattern Recognition, since 2020 (https://www.journals.elsevier.

com/pattern-recognition/editorial-board)

• Editorial Board of Journal Multimedia Tools and Applications, since 2017

(http://www.springer.com/computer/information+systems+and+applications/

journal/11042?detailsPage=editorialBoard)

• Serving in the Technical Activities Committee of IEEE Biometrics Council (2017-2021) (http:

//ieee-biometrics.org/index.php/homepage/committees) comprising of a chair

and 4 members, responsible to review tutorials, support award nominations, cooperate with the

publications, conferences and education committees, review and create expert web content, as

well as actively shape the technical future of biometrics within the IEEE.

• Served in the Education Committee of the IEEE Biometrics Council (2013 - 2016) comprising

of a chair and 4 members, who manage the Distinguished Lecturers Program (DLP); organize

biometric seminars; evaluate scholarship requests from students; facilitate the development of

biometric tutorials; and interface with other entities to promote biometric education across IEEE

as well as society-at-large.

• Serving in the EURASIP Biomedical Image & Signal Analytics (BISA) special area team

(2018-2021)

(https://www.eurasip.org/index.php?option=com_content&view=article&

id=151&Itemid=1151)

comprising of a chair and 23 members, aiming to strengthen the biomedical activities at EURASIP

in terms of workshops, tutorials, and special sessions, in particular, at EUSIPCO, initiating a Best

Paper Award at EUSIPCO for papers in the area of biomedical image and signal processing, as

well as providing expertise to the EURASIP Board of Directors.
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• Tutorial chair at the IEEE International Joint Conference on Biomtrics (IJCB) 2021.

• Publication chair at the IEEE International Joint Conference on Biomtrics (IJCB) 2020.

• Publication chair at the IEEE International Conference on Automatic Face and Gesture Recogni-

tion (FG) 2019.

• Media Co-chair at the IEEE International Conference on Biometrics: Theory, Applications, and

Systems (BTAS) 2013.

• Member of the European Association of Biometrics (EAB) since 2018

(https://www.eab.org/membership/members.html?ts=1518609713652)

• I have been jury member for Ph.D. committees of several students of Universite Cote d’Azur.

• A selection of invited lectures include: workshop at Winter Conference on Applications of Com-

puter Vision (WACV’20); Information Sciences Institute (ISI) at the University of Southern Cali-

fornia (USC), Los Angeles, USA ( 2018); Institute of Computing Technology (ICT) at the Chinese

Academy of Sciences (CAS), Beijing, China (2018); Summer School Brain Innovation Genera-

tion @ UCA (Big@UCA, Sophia Antipolis (2018); Institute of Biomedical Engineering (IBME),

University of Oxford, UK (2017); Biometrics Congress, London, UK (2017); Day of Biometrics,

Caen, France (2017); World Conference on Gerontechnology, Nice, France (2016); Research cen-

ter for Information Security (SBA), Vienna, Austria (2015); University of Cyprus, Nicosia, Cyprus

(2015); INRIA, Sophia Antipolis, France (2013); Workshop on 3D and 2D face analysis and recog-

nition, Lyon, France (2011); Lane Department of Computer Science and Electrical Engineering,

West Virginia University, USA (2011).

• I have been session chair in a number of conferences including IEEE International Conference on

Automatic Face and Gesture Recognition (FG) (2020), International Conference of the Biometrics

Special Interest Group (BIOSIG) 2017, 2018, European Conference on Computer Vision (ECCV)

Workshop “What’s in a Face?” (2012), SPIE Defense, Security + Sensing: Biometric Technology

for Human Identification IX (2012)
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I have been in the Technical Program Committee of the IEEE International Conference on Multimedia

and Expo (ICME) (2019), the International Joint Conference on Biometrics (IJCB) (2014, 2017), the

IAPR International Conference on Biometrics (ICB) (2013, 2016, 2018), the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshop ChaLearn Looking at People 2016 the Workshop on

Affective Interaction with Virtual Assistants within the Healthcare Context in conjunction with the EAI

International Conference on Pervasive Computing Technologies for Healthcare Conference (2016), the

IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS) (2013, 2015,

2016), the Cairo International Biomedical Engineering Conference (CIBEC) (2012).

6.4 Collaborative Projects and Funding

I proposed research directions and ideas in several successful international projects listed below. Particu-

lar attention is placed on the ANR Jeunes Chercheuses et Jeunes Chercheurs (JCJC), which is a personal

funding with 12.6% acceptance rate for 2017, with the aim to support young researchers and enable them

to autonomously develop a specific research topic theme and to give them the possibility to form their

team and express their capacity for exploratory research and innovation.

More recent, we were also awarded the selective ANR PRCI (French-German) with Eurecom, France

and the Hochschule Darmstadt, Germany.

Further, I have initiated collaboration with the two companies Thales1, and the startup Blu Manta2 in

the area of 2D and 3D face authentication, focusing on face analysis beyond the visible spectrum with

challenges such as robust depth map reconstruction from structured light dot pattern.

• PI of INRIA Action Exploratoire (AEx) 2021 “XGAN. Interpretable Representation Learning

for Video GANs”, September 2021 - August 2024.

• INRIA PI of ANR PRCI (French-German) “RESPECT. Reliable, Secure and Privacy preserv-

ing multibiometric Person Authentication”, April 2019 - March 2022.

1https://www.thalesgroup.com/en
2https://www.societe.com/societe/blu-manta-832907471.html
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• PI of ANR JCJC “ENVISION. Computer Vision for Automated Holistic Analysis of Humans”,

(Project duration: November 2017 - October 2021).

• Co-PI of INRIA - CAS “FER4HM. Facial expression recognition with application health mon-

itoring”, (project duration: November 2017 - October 2019).

• PI of Labex Post Doctoral Fellowship “Big Data and Biometrics”. Project funded my research at

INRIA (project duration: from March 2016 to February 2017).

• PI of ERCIM ABCDE Project nr. 246016 of the European Commission “Facial Analysis for

Health Monitoring”. Project funded my research at INRIA (project duration: from March 2014

to July 2015).

• PI of the project “Impact of Cosmetics on the Performance and Security of Face Recognition”

Funded by the National Science Foundation (NSF) Industry / University Cooperative Research

Center CITeR (Center for Identification Technology Research) (project duration: July 2012 - June

2013).

• Participant of the EIT Digital European Project on “Cross - linguistic comparison of speech

features in older adults with Alzheimer’s Disease and related disorders” (project duration

January 2017 - December 2018).

• Participant of the “ACTIBIO - Unobtrusive Authentication using Activity Related and Soft

BIOmetrics” European Commisision under FP7-215372 (project duration: March 2008 - March

2011).

6.4.1 Publications after the Ph.D.

International journals (10)

1. A. Das, X. Niu, A. Dantcheva, SL Happy, H. Han, R. Zeghari, P. Robert, S. Shan, F. Bremond,

X. Chen, A spatio-temporal approach for apathy classification IEEE Transactions on Circuits and

Systems for Video Technology (TCSVT), 2021.
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2. SL Happy, A. Dantcheva, F. Bremond, Expression recognition with deep features extracted from

holistic and part-based models Download pdf Image and Vision Computing (IMAVIS), 2020.

3. P. Drozdowski, C. Rathgeb, A. Dantcheva, N. Damer, C. Busch. Demographic Bias in Biometrics:

A Survey on an Emerging Challenge, IEEE Transactions on Technology and Society (T-TS), vol.

2, no. 2, pp. 1-15, 2020.

4. C. Rathgeb, A. Dantcheva, C. Busch. Impact and detection of facial beautification in face recog-

nition: An overview, IEEE Access, vol. 7, no. 1, December, 2019.

5. SL Happy, A. Dantcheva, F. Bremond. A weakly supervised learning technique for classifying

facial expressions, Pattern Reognition Letters, 2019.

6. A. Dantcheva and F. Brémond. Gender estimation based on smile-dynamics. IEEE Transactions

on Information Forensics and Security (TIFS), vol. 12, no. 3, pp. 719-729, March 2017.

7. C. Chen, A. Dantcheva, A. Ross. An ensemble of patch-based subspaces for makeup-robust face

recognition. Information Fusion, vol. 32, pp. 80-92, November 2016.

8. A. Dantcheva, P. Bilinski, J. C. Broutart, P. Robert, F. Brémond. Emotion facial recognition by the

means of automatic video analysis. Gerontechnology, vol. 15, pp. 12s, September 2016.

9. A. Dantcheva, P. Elia, A. Ross. What else does your biometric data reveal? A survey on soft

biometrics. IEEE Transactions on Information Forensics and Security (TIFS), vol. 11, no. 3, pp.

441-467, March 2016.

10. A. Dantcheva, J.-L. Dugelay. Assessment of female facial beauty based on anthropometric, non-

permanent and acquisition characteristics. Mutimedia Tools and Applications (MTAP), vol. 74,

no. 24, pp. 11331-11355, 2014.

Reviewed international conferences (33)

1. D. Anghelone; C. Chen; A. Ross; P. Faure; A. Dantcheva Explainable thermal to visible face

recognition using latent-guided generative adversarial network In FG’21, 16th IEEE International
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Conference on Automatic Face and Gesture Recognition, December 15-18, 2021, Jodhpur, India

(hybrid).

2. D. Yang; Y. Wang; A. Dantcheva; L. Garattoni; G. Francesca; F. Bremond Self-supervised video

pose representation learning for occlusion-robust action recognition In FG’21, 16th IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition, December 15-18, 2021, Jodhpur,

India (hybrid).

3. H. Chen*; Y. Wang*; B. Lagadec; A. Dantcheva; F. Bremond Joint generative and contrastive

learning for unsupervised person re-identification In CVPR’21, IEEE Conference on Computer

Vision and Pattern Recognition, June 19-25, 2021, virtual. arXiv:2012.09071

4. I. Joshi; A. Utkarsh; R. Kothari; V. Kurmi; A. Dantcheva; S. Roy; P. Kalra On learning sensor-

invariant features for fingerprint ROI segmentation In IJCNN’21, The International Joint Confer-

ence on Neural Networks, July 18-22, 2021, virtual.

5. I. Joshi; A. Utkarsh; R. Kothari; V. Kurmi; A. Dantcheva; S. Roy; P. Kalra Learning noise-aware

preprocessing of fingerprints In IJCNN’21, The International Joint Conference on Neural Net-

works, July 18-22, 2021, virtual.

6. Y. Wang; F. Bremond; A. Dantcheva InMoDeGAN: Interpretable motion decomposition genera-

tive adversarial network for video generation arXiv:2101.03049

7. I. Joshi; R. Kothari; A. Utkarsh; V. K. Kurmi; A. Dantcheva; S. D. Roy; P. Kalra Explainable

fingerprint ROI segmentation using Monte Carlo dropout In WACVW’21, Workshops of the Winter

Conference on Applications of Computer Vision, January 5-9, virtual.

8. M. Balazia; SL Happy; F. Bremond; A. Dantcheva How unique is a face: An investigative study

In ICPR’20, 25th International Conference on Pattern Recognition, January 10-15, 2021, Milan,

Italy (virtual).

9. Y. Wang, P. Bilinski, F. Bremond, A. Dantcheva G3̂AN: Disentangling motion and appearance for

video generation In CVPR, IEEE Conference on Computer Vision and Pattern Recognition, June

16-18, 2020, Seattle, USA.
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10. X. Li, H. Han, H. Lu, X. Niu, Z. Yu, A. Dantcheva, G. Zhao, S. Shan The 1st Challenge on

Remote Physiological Signal Sensing (RePSS) In CVPRW, Workshops of the IEEE Conference on

Computer Vision and Pattern Recognition, June 16-18, 2020, Seattle, USA.

11. Y. Wang, A. Dantcheva A video is worth more than 1000 lies. Comparing 3D CNN approaches

for detecting deepfakes In FG, IEEE International Conference on Automatic Face and Gesture

Recognition, May 18-22, 2020, Buenos Aires, Argentina.

12. SL Happy, A. Dantcheva, A. Das, F. Bremond, R. Zeghari, P. Robert Apathy classification by

exploiting task relatedness In FG, IEEE International Conference on Automatic Face and Gesture

Recognition, May 18-22, 2020, Buenos Aires, Argentina.

13. SL Happy, A. Dantcheva, F. Bremond Semi-supervised emotion recognition using inconsistently

annotated data In FG, IEEE International Conference on Automatic Face and Gesture Recognition,

May 18-22, 2020, Buenos Aires, Argentina.

14. Y. Wang, P. Bilinski, F. Bremond, A. Dantcheva ImaGINator: conditional spatio-temporal GAN

for video generation In WACV, Winter Conference on Applications of Computer Vision, March 2-5,

2020, Aspen, USA.

15. Y. Wang, P. Bilinski, F. Bremond, A. Dantcheva G3̂AN: This video does not exist. Disentangling

motion and appearance for video generation arXiv preprint arXiv:1912.05523, 2019.

16. SL Happy, A. Dantcheva, A. Routray Dual-threshold based local path construction method for

manifold approximation and its application to facial expression analysis In EUSIPCO, European

Signal Processing Conference, September 2-6, 2019, A Coruna, Spain.

17. SL Happy, A. Dantcheva, A. Das, R. Zeghari, P. Robert, F. Bremond Characterizing the state

of apathy with facial expression and motion analysis In FG, IEEE International Conference on

Automatic Face and Gesture Recognition, May 14-18, 2019, Lille, France.

18. X. Niu, X. Zhao, H. Han, A. Das, A. Dantcheva, S. Shan, X. Chen Robust remote heart rate

estimation from facce utilizing spatial-temporal attention In FG, IEEE International Conference
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on Automatic Face and Gesture Recognition, May 14-18, 2019, Lille, France. award Best Poster

Award

19. S. Yu, H. Han, S. Shan, A. Dantcheva, X. Chen, Improving face sketch recognition via adver-

sarial sketch-photo transformation In FG, IEEE International Conference on Automatic Face and

Gesture Recognition, May 14-18, 2019, Lille, France.

20. A. Das, C. Galdi, H. Han, R. Ramachandra, J.-L. Dugelay, A. Dantcheva. Recent advances in

biometric technology for mobile devices In BTAS, IEEE International Conference on Biometrics:

Theory, Applications and Systems, October 22-25, 2018, Los Angeles, USA.

21. A. Das, A. Dantcheva, F. Brémond Mitigating bias in gender, age, and ethnicity: a multi-task con-

volution neural network approach In ECCVW International Workshop on Bias Estimation in Face

Analytics (BEFA) in conjunction with the European Conference on Computer Vision, September

9, 2018, Munich, Germany.

22. Y. Wang, A. Dantcheva, F. Brémond From attribute-labels to faces: face generation using a con-

ditional generative adversarial network In ECCVW Women in Computer Vision (WiCV) Workshop

in conjunction with the European Conference on Computer Vision, September 9, 2018, Munich,

Germany.

23. Y. Wang, A. Dantcheva, J. C. Broutart, P. Robert, F. Brémond, Bilinski, Piotr Comparing methods

for assessment of facial dynamics in patients with major neurocognitive disorders In ECCVW, 6th

International Workshop on Assistive Computer Vision and Robotics (ACVR) in conjunction with

the European Conference on Computer Vision, September 9, 2018, Munich, Germany.

24. Y. Wang, A. Dantcheva, F. Brémond From attributes to faces: a conditional generative adversarial

network for face generation In BIOSIG, 17th International Conference of the Biometrics Special

Interest Group, September 26-28, 2018, Darmstadt, Germany.

25. P. Bilinski, A. Dantcheva, F. Brémond. Show me your face and I will tell you your height, weight

and body mass index. In IAPR ICPR International Conference on Pattern Recognition, August

20-24, 2018, Beijing, China.
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26. A. Dantcheva, P. Bilinski, H. Nguyen, J. C. Broutart, F. Bremond Expression Recognition for

Severely Demented Patients in Music Reminiscence - Therapy In EUSIPCO’17, 25th European

Signal Processing Conference, August 28 - September 2, 2017, Kos island, Greece.

27. C. Chen, A. Dantcheva, T. Swearingen, A. Ross. Spoofing Faces Using Makeup: An Investigative

Study. In ISBA’17, 3rd IEEE International Conference on Identity, Security and Behavior Analysis,

February 2017, New Delhi, India.

28. Gonzalez-Sosa, Ester; A. Dantcheva, Vera-Rodriguez, Ruben; J.-L. Dugelay,; Bremond, Francois;

Fierrez, Julian. Image-based Gender Estimation from Body and Face across Distances In ICPR’16,

23rd International Conference on Pattern Recognition, December 4-8, 2016, Cancun, Mexico.

29. P. Bilinski, A. Dantcheva, F. Brémond. Can a smile reveal your gender? In BIOSIG’16, 15th Inter-

national Conference of the Biometrics Special Interest Group, September 21-23, 2016, Darmstadt,

Germany.

30. C. Chen, A. Dantcheva, A. Ross. Impact of facial cosmetics on automatic gender and age esti-

mation algorithms In VISAPP’14, 9th International Conference on Computer Vision Theory and

Applications, January 5-8, 2014, Lisbon, Portugal.

31. A. Dantcheva, A. Ross, C. Chen. Makeup challenges automated face recognition systems. In SPIE

Newsroom 2013, Defense and Security. DOI: 10.1117/2.1201303.004795.

32. C. Chen, A. Dantcheva, A. Ross. Automatic facial makeup detection with application in face

recognition In IAPR ICB’13, 6th IAPR International Conference on Biometrics, June 4-7, 2013,

Madrid, Spain.

33. A. Dantcheva, C. Chen, A. Ross. Can facial cosmetics affect the matching accuracy of face recog-

nition systems? In IEEE BTAS’12, 5th IEEE International Conference on Biometrics: Theory,

Applications and Systems, September 23-26, 2012, Washington DC, USA.
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Books and book chapters (2)

1. A. Dantcheva, P. Elia, J.-L. Dugelay. Facial Soft Biometrics for Person Recognition. In A. Naı̈t-

Ali and R. Fournier, editors, Signal and Image Processing for Biometrics. Wiley, 2012.

2. A. Dantcheva, C. Yemdji, P. Elia, J.-L. Dugelay. Biométrie faciale douce pour l’identification des

individus. In A. Naı̈t-Ali and R. Fournier, editors, Traitement du signal et de l’image pour la

biométrie. Traité IC2, série Signal et Image dirigée par Henri Maı̂tre et Francis Castanié, Hermes

Science, 2012.
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publications 2012-2021
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Recognition (ICPR), 2018.
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Francois Bremond. Expression recognition for severely demented patients in music
reminiscence-therapy. In Signal Processing Conference (EUSIPCO), 2017 25th Euro-
pean, pages 783–787. IEEE, 2017.

[DBN+17b] Antitza Dantcheva, Piotr Bilinski, Hung Thanh Nguyen, Jean-Claude Broutart, and
Francois Bremond. Expression recognition for severely demented patients in music
reminiscence-therapy. In 25th European Signal Processing Conference (EUSIPCO),
pages 783–787, Aug 2017.

[DCR12a] Antitza Dantcheva, Cunjian Chen, and Arun Ross. Can facial cosmetics affect the match-
ing accuracy of face recognition systems? In Proc. of IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS), pages 391–398. IEEE, 2012.

[DCR12b] Antitza Dantcheva, Cunjian Chen, and Arun Ross. Can facial cosmetics affect the match-
ing accuracy of face recognition systems? In Proc. of IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS), 2012.

[DCR13] Antitza Dantcheva, Cunjian Chen, and Arun Ross. Makeup challenges automated face
recognition systems. SPIE Newsroom, pages 1–4, 2013.

[DD15] Antitza Dantcheva and Jean-Luc Dugelay. Assessment of female facial beauty based on
anthropometric, non-permanent and acquisition characteristics. Multimedia Tools and
Applications, 74(24):11331–11355, 2015.

[DDB18] Abhijit Das, Antitza Dantcheva, and Francois Bremond. Mitigating bias in gender, age,
and ethnicity: a multi-task convolution neural network approach. In European Confer-
ence on Computer Vision - Workshops (ECCVW), 2018.

[DER15] Antitza Dantcheva, Petros Elia, and Arun Ross. What else does your biometric data
reveal? a survey on soft biometrics. IEEE Transactions on Information Forensics and
Security, pages 1–26, 2015.

[DGH+18] Abhijit Das, Chiara Galdi, Hu Han, Raghavendra Ramachandra, Jean-Luc Dugelay, and
Antitza Dantcheva. Recent advances in biometric technology for mobile devices. In
IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS),
volume 9, 2018.

[DHD+20] Abhijit Das, SL Happy, Antitza Dantcheva, Hu Han, Francois Bremond, and Xiling Chen.
Computer vision-based human health monitoring: Recent advancement. In Pending Sub-
mission, 2020.

[DND+21] Abhijit Das, Xuesong Niu, Antitza Dantcheva, SL Happy, Hu Han, Radia Zeghari,
Philippe Robert, Shiguang Shan, Francois Bremond, and Xilin Chen. A spatio-temporal
approach for apathy classification. IEEE Transactions on Circuits and Systems for Video
Technology, 2021.

61



[DRD+20] Pawel Drozdowski, Christian Rathgeb, Antitza Dantcheva, Naser Damer, and Christoph
Busch. Demographic bias in biometrics: A survey on an emerging challenge. IEEE
Transactions on Technology and Society, 1(2):89–103, 2020.

[DYED12a] Antitza Dantcheva, Christelle Yemdji, Petros Elia, and Jean-Luc Dugelay. Biométrie fa-
ciale douce pour l’identification des individus. In A. Naı̈t-Ali and Régis Fournier, editors,
Traitement du signal et de l’image pour la biométrie. Hermes Science, 2012.

[DYED12b] Antitza Dantcheva, Christelle Yemdji, Petros Elia, and Jean-Luc Dugelay. Facial soft
biometrics for person recognition. In A. Naı̈t-Ali and Régis Fournier, editors, Signal and
Image Processing for Biometrics. Wiley, 2012.

[GSDVR+16] Ester Gonzalez-Sosa, Antitza Dantcheva, Ruben Vera-Rodriguez, Jean-Luc Dugelay,
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tional GANs for image editing. In NIPS Workshop on Adversarial Training, 2016.

68



[77] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image
classification. In Prof. of European Conference on Computer Vision (ECCV), pages 143–156,
2010.

[78] Silvia L Pintea, Jan C van Gemert, and Arnold WM Smeulders. Déja vu. In ECCV, 2014.
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