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Abstract

This memoir contains a description of the recent work by the author and collaborators on
groups acting on manifolds. We take this as an opportunity to review the state of the art on
the study of locally discrete groups of real-analytic circle diffeomorphisms.
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Part 1. Summary of works

1. Context

Since my post-doc at PUC of Rio de Janeiro (2014) I have been drawing the attention to
the study of groups acting on manifolds, from the point of view of dynamical systems, which
is a subject that has well developed in the last 60 years, with substantial contributions and
new methods appearing in these last decades. With this connotation, classical (invertible)
dynamical systems fall into this category, as they correspond to actions of Z or R. The subject
has two roots: foliation theory and hyperbolic dynamical systems, and both have still great
influence on the scientific production. Moreover, in the course of its development, the subject
has been contaminated by the expansion of geometric group theory, and the study of discrete
subgroups of Lie groups, and now sits at the interface with all these more classical fields.

There are different approaches to the study of group actions, but the typology of questions
mainly are of the following form:
(a) Given a countable group G (typically finitely generated) and a manifold M , are there

faithful actions of G on M? That is, is there a subgroup of Homeo(M) which is isomorphic
to G? What are the distinct actions of G on M , i.e. up to conjugacy in Homeo(M)? What
about actions of G that preserve an extra structure on M , such as a Cr differentiable
structure, a volume form, a foliation, a geometric structure... ?

(b) Suppose that the group G is unknown, but assumptions on the dynamical behavior of the
action are given, such as equicontinuity properties, or on the entropy, or on the invariant
subsets... Is it possible to extrapolate information about the group structure of G?

For the particular case of actions on one-dimensional manifolds (i.e. circle, closed interval,
or real line) there have already been many developments, so that nowadays the theory is well
structured and is possible to work on specific fundamental questions. This has been possible
because of two essential reasons: (1) a totally ordered structure on the manifold and (2)
a very satisfactory description of Z-actions. In contrast, the state-of-the-art for actions on
higher-dimensional manifolds is still rudimentary.

2. Regularity of group actions

The regularity of the action constitutes a fundamental aspect, which can have a dramatic
influence on its qualitative behavior. Although this aspect is somehow well-understood for
one-dimensional actions, only sparse results are available for higher-dimensional actions. The
general questions are:

(1) Assume a group G admits a faithful Cr action on some manifold M , can we make the
action more regular after some change of coordinates? That is, if G ≤ Diffr(M), can
we conjugate G by h ∈ Homeo(M) so that hGh−1 ≤ Diffs(M) for some s > r?

(2) Similarly, if a group admits a faithful Cr action on some manifold M , can we find an
action which is more regular (possibly not conjugate)? That is, if ρ : G→ Diffr(M) is
a faithful homomorphism, is there a faithful homomorphism ρ′ : G → Diffs(M), for
some s > r?

The classical example confirming that regularity matters is given by Denjoy’s theorem,
which states that every Z-action on the circle by C2 diffeomorphisms, without periodic orbits
must be minimal (every orbit is dense), whereas counterexamples exist in differentiability class
Cr for every r < 2 (see [Her79]). Of similar flavor is the classical result by Kopell according to
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which Z-actions on the closed interval by C2 diffeomorphisms have small centralizers, which
fails in lower regularity (see for instance [BF15] in case of C1 regularity). This has been
exploited to deduce several important results, for instance that the only nilpotent groups
which admit C2 actions on the interval are metabelian (see [Nav11]). Let us also mention
the striking recent work by Kim and Koberda [KK20] which provides, for every r ≥ 1, and
example of finitely generated subgroup of Diffr

+(S1) which does not embed in Diffs
+(S1) for

every s > r (see [MW19] for an alternative construction).
It is already interesting to study the demarcation between C0 and C1 regularity. On the one

hand C0 actions on the real line are of particular interest, as they correspond to left-invariant
orders on the group (a notion of algebraic nature). These two notions coincide for countable
groups (a classical result due to Conrad). Studying such actions provides a dynamical point
of view on the theory of left-orderable groups (see the monograph [DNR16]). On the other
hand, the fact that a group admits a faithful C1 action on the closed interval entails, by
Thurston’s Stability Theorem, that the group is locally indicable, that is, every nontrivial
finitely generated subgroup surjects to Z (this is again a notion of purely algebraic nature).
We will come back later to this algebraic counterpart.

However, Thurston’s Stability Theorem does not characterize locally indicable groups, in
the sense that there are examples of locally indicable groups which admit no faithful C1 action
on the closed interval. A very concrete and elementary family of examples is given by the
solvable Baumslag–Solitar groups BS(1,−n), with n ≥ 2, as one can deduce from the work of
Cantwell and Conlon [CC02] or Guelman and Liousse [GL11] (although this is not explicitly
stated). Interesting examples are described in [Cal08,Nav10]. Motivated by the surprising
works by Monod [Mon13] and Lodha–Moore [LM16], pointing out a large class of nonamenable
groups without free subgroups, with Bonatti and Lodha, we considered in [1] the family of
groups acting by piecewise projective homeomorphisms of the real line (with finitely many
breakpoints). These groups are indeed locally indicable, and they include the more classical
groups acting by piecewise linear homeomorphisms (the most famous example is represented
by Thompson’s group F , although this specific group is not covered by the results of [1]).
Concretely, we can consider the following groups extensively studied by Bieri–Strebel [BS16].
Definition 2.1. Fix an intervalX ⊂ R, and let Λ ≤ R∗+ be a nontrivial multiplicative subgroup
and take a nontrivial Z[Λ]-submodule A ⊂ R. Then the Bieri–Strebel group G(X;A,Λ) is the
group of all piecewise linear homeomorphisms of X with finitely many breakpoints, in A, and
locally of the form x 7→ λx+ a, with λ ∈ Λ and a ∈ A.

For instance, the group G([0, 1];Z[1/2], 〈2〉) is exactly Thompson’s group F . When 1 <
n1 < . . . < nk are natural numbers such that the subgroup Λ = 〈ni〉 ≤ R∗+ has rank k, and
A = Z[1/m] with m = lcm(ni), then we obtain the so-called Brown–Thompson–Stein group
Fn1,...,nk

= G([0, 1];A,Λ). We are particularly interested in the following particular examples
of Bieri–Strebel groups: for λ ∈ R∗+, let Λ = 〈λ〉 and A = Z[Λ], and consider the group
Gλ = G(R;A,Λ). We can now state some of the main results from our work [1].
Theorem 2.A. For every λ > 1, there is no faithful C1 action of Gλ on the closed interval.
Remark 2.2. This result was obtained only for a particular class of algebraic λ > 1 in [1],
but it actually holds for every λ > 1, as we discuss in [8], using different (and more general)
methods, on which we will come back later when discussing locally moving groups.

This implies that for every subring A ⊂ R containing an invertible λ > 1, Monod’s group
H(A) has no C1 action on the closed interval. Recall that H(A) is defined as the group of
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piecewise projective homeomorphisms of R whose breakpoints are fixed points for hyperbolic
elements of PSL(2, A), and are locally given by elements of PSL(2, A). It also gives that the
non-amenable finitely presented subgroup of H(Z[

√
2]) considered by Lodha–Moore has no

faithful C1 action.
Theorem 2.B. When k ≥ 2, the standard action of a Brown–Thompson–Stein group Fn1,...,nk

on the closed interval is not semi-conjugate to any C1+α action.

Remark 2.3. This result was proved in [1] for C2 actions, but the same strategy can be
improved so that we can simply assume Hölder continuity of derivatives, as pointed out in
[8]. Moreover, in [1] we were simply considering actions which are conjugate to the standard
action.

A technical difference between Theorem 2.B and Theorem 2.A is that Brown–Thompson–
Stein groups are defined as groups acting on the closed interval, and thus do not contain affine
transformations. It turns out that actions of groups of affine transformations on the line are
quite rigid. More precisely, a fundamental work of Bonatti, Monteverde, Navas, and Rivas
[BMNR17] describes some form of C1 rigidity for actions of the solvable Baumslag–Solitar
groups BS(1, n), |n| ≥ 2 (and more general abelian-by-cyclic groups). This is also a key
ingredient for other results in the field (such as the already mentioned [KK20,MW19]). For
λ > 1, consider the affine group Aλ, generated by a : x 7→ λx and b : x 7→ x + 1. Then in
[BMNR17, §4.2] it is proved the following.
Theorem 2.4 (Rigidity of multipliers). For every λ > 1, if a C1 action of Aλ is semi-conjugate
to the standard action then it is actually conjugate, and the derivative of the element a at its
unique fixed point in (0, 1) is exactly λ.

A necessary step to obtain Theorem 2.A is to show that the standard action of Gλ on the
line cannot be conjugate (and hence semi-conjugate) to any differentiable action on the closed
interval. This is a nice consequence of Theorem 2.4: consider the element a+ in Gλ which
coincides with a on (0,+∞) and is trivial on (−∞, 0). Then if the standard action of Gλ is
conjugate to a C1 action, then the derivative of a+ at the point corresponding to 0 should be
at the same time λ and 1, which is an absurd.

Let us take the opportunity to present the following related problem raised in [8].
Conjecture 2.5. Let G ≤ PL+([0, 1]) be a subgroup. Then the action of G on [0, 1] is C0

conjugate to a C1 action if and only if G is isomorphic to a subgroup of Thompson’s group F .

Note that the action of Thompson’s F is C0 conjugate to a C∞ action on the closed interval
[GS87].

Part of the motivation for Theorem 2.B, which leads to the presentation of the content of
[2], was the well-known problem of finding a left-orderable group admitting Kazhdan’s property
(T ), which can be considered as part of Zimmer’s program, which is about actions of “large”
groups on low-dimensional manifolds (although Kazhdan groups are not necessarily “large”, for
instance they can be hyperbolic). Observe that by Thurston’s Stability Theorem, such groups
do not admit faithful actions on the closed interval by C1 diffeomorphisms; more generally,
locally indicable groups cannot have Kazhdan’s property (T ). Also, Navas proved [Nav02]
that infinite Kazhdan groups admit no faithful actions on the circle by C3/2 diffeomorphisms.
Navas proposed that good candidates for such examples could be found among groups acting
by piecewise linear homeomorphisms of the circle (and their lifts to the real line), such as
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Brown–Stein–Thompson’s groups. The fact that the actions of these groups do not admit
more regular realizations, as proved in [1], was keeping Navas’s question open. In collaboration
with Lodha and Matte Bon, we found a different approach to the question, which revealed to
be of broad generalization. Recall that a countable group G has Kazhdan’s property (T ) if
every isometric action on a Hilbert space has a fixed point. In [2], a very explicit (and very
natural) example of isometric action of PL+(S1) on the Hilbert space `2(S1) is given, with the
property that every non-abelian subgroup acts without fixed points. This was enough to give
a negative answer to Navas’ question, but the construction was using heavily the fact that
the group is of piecewise linear homeomorphisms. To generalize the result to a broader class
of groups, we considered a different fixed-point property, called FW, which is for actions on
spaces with walls, or equivalently, for actions on CAT(0) cube complexes. The equivalent
notion that we consider is in terms of commensurating actions. Given a countable group G
acting on a set X, we say that a subset A ⊂ X is commensurated if the symmetric difference
gA4A is finite for very g ∈ G. We also say that A is transfixed if there exists a G-invariant
subset B ⊂ X such that the symmetric difference A4B is finite. The group G has property
FW if for every action on a set X, every commensurated subset is transfixed. Observe that
this notion is purely set-theoretical. Countable groups with Kazhdan’s property (T ) also have
property FW, but the converse is not true (for instance the group SL(2,Z[

√
2]) has FW).

Property FW turned out to be well-suited to study actions of countable groups on closed
manifolds (of any dimension!). For the statement, we say that a homeomorphism h : M →M
is a countably singular Cr diffeomorphism if there exists an open subset U ⊂ M whose
complement is countable, such that the restriction h|U is a Cr diffeomorphism. We denote by
ΩDiffr(M) the group of such homeomorphisms. A nontechnical version of the main result of
[2] can be stated as follows.
Theorem 2.C. Let M be a closed manifold and let G be a finitely generated group with
property FW. For every homomorphism ρ : G→ ΩDiffr(M), one of the following holds:

(1) the action of ρ(G) on M has a finite orbit;
(2) there exists a closed manifold N and a countably singular Cr diffeomorphism ϕ : M →

N such that ϕρ(G)ϕ−1 ⊂ Diffr(N).

Roughly speaking, for aperiodic countably singular actions of a group with property FW,
upon changing the differentiable structure of the manifold, we can remove all singularities. We
have to mention that similar ideas have been developed independently by Cornulier [Cor18],
who largely worked on property FW.

We finally mention the work in collaboration with Bonatti, Kim, and Koberda [3]. It deals
with actions on compact manifolds M (of any dimension!) of a particular class of groups, those
which are semidirect products G = Hoψ Z, with H finitely generated, so that the generator of
the Z factor acts on H by some automorphism ψ ∈ Aut(H). (As motivating example one can
take as H the fundamental group of a compact surface Σ, so that H identifies with the fibered
3-manifold defined by the suspension of a homeomorphism of Σ.) Usually a group G of this
form should admit many different actions on compact manifolds M by C1 diffeomorphisms.
Quite surprisingly, we prove that in some circumstances, the trivial action admits very few C1

deformations.
Theorem 2.D. Let G = H oψ Z, with H finitely generated, be generated by a finite subset
S ⊂ G, and assume that ψ induces a nontrivial hyperbolic automorphism ψ∗ : H1(H,R) →
H1(H,R) (that is, as a linear map, ψ∗ has no eigenvalue on the unit circle). Then there
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exists a C1 neighborhood U of the identity map in Diff1(M) such that for any representation
ρ : G→ Diff1(M) with ρ(s) ∈ U for every s ∈ S, one has ker ρ ⊃ H.

In other words, if the automorphism ψ∗ is hyperbolic, all sufficiently C1 small deformation
of the trivial action, quotient through the action of a cyclic group. This extends a previous
result by McCarthy [McC10], who proved the same for H finite rank abelian. A quite striking
comment is that the result above fails to be true for G = HoψZ with H residually torsion-free
nilpotent and ψ∗ : H1(H,R)→ H1(H,R) unipotent. In this case the group G itself is residually
torsion-free nilpotent and such groups admit faithful actions on the closed interval by C1

diffeomorphisms, which are arbitrarily closed to the identity [FF03].
The result above relies on an estimate of Bonatti, that we call approximate linearization,

which we present here as it appears in [BMNR17]:

Lemma 2.6. Let M ⊂ RN be a compact submanifold. For any η > 0 and k ∈ N there exists
a neighborhood V of the identity in Diff1(M) (with respect to the C1 topology), such that for
any x ∈M , and f1, . . . , fk ∈ V, and ε1, . . . , εk ∈ {−1, 1}, one has

(2.1)
∥∥∥∥∥f εkk · · · f ε11 (x)− x−

k∑
i=1

εi (fi(x)− x)
∥∥∥∥∥ ≤ η max

i=1,...,k
‖fi(x)− x‖ .

In other words, for diffeomorphisms sufficiently close to the identity, the displacement of a
composition is comparable with the sum of the single displacements.

Instead of presenting the proof of Theorem 2.D in full generality, let us explain the main
mechanism, and in particular how hyperbolicity of ψ∗ is used. We will discuss the slightly
different, but instructive case, of endomorphism ψ which induces the doubling map on
cohomology. For this, we consider the group G = BS(1, 2) = 〈h, t | tht−1 = h2〉. Observe that,
for any n ∈ N, the relation in the group gives

tnht−n = h2n

.

Using this relation, choosing k = 2n in Lemma 2.6, for any η > 0 we can find a neighborhood
V of the identity in Diff1(M) such that if t, h ∈ V , then both conditions hold:∥∥∥(h2n(x)− x)− 2n(h(x)− x)

∥∥∥ ≤ ηmax{‖h(x)− x‖, ‖t(x)− x‖},∥∥∥(h2n(x)− x)− (h(x)− x)
∥∥∥ ≤ ηmax{‖h(x)− x‖, ‖t(x)− x‖}.

This implies that the displacement ‖h(x)− x‖ must be comparable to 2n‖h(x)− x‖, which,
for sufficiently large n, forces ‖h(x)− x‖ = 0. In other words, h ∈ V must be the identity.

Following McCarthy [McC10], for the general case when the map ψ∗ is hyperbolic, with
nontrivial stable and unstable subspaces, then one argues essentially in the same way, using
projections to these subspaces.

3. Contributions to the theory of left-orderable groups

Recall that a group G is left-orderable (LO for short) if it admits a total order ≤ which is
invariant under left-multiplication: x ≤ y implies gx ≤ gy for every x, y and g ∈ G. There
is an analogous notion of right-order, and total orders which are at the same time left- and
right-invariant are called bi-invariant orders. The theory of LO groups is tightly related to the
study of group actions on the real line. The whole group Homeo+(R) of orientation-preserving
homeomorphisms is LO, as well as its subgroups (a subgroup of a LO group is LO). Conversely,
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every countable LO group is isomorphic to a subgroup of Homeo+(R). This correspondence is
even richer, as the choice of a left-order on a countable group G determines a faithful action of
G on the real line (there are many possible choices for such an action, but the semi-conjugacy
class of the action is not affected by the choice), and conversely every action of G on the
real line determines a left-order on G (typically the same action determines more than one
left-order, as this depends on many choices). A clear obstruction to left-orderability is provided
by torsion, but there are no other obvious obstructions. Indeed, it is usually a nontrivial
problem to determine whether a given group is left-orderable or not. If classical groups like
Fn or Zd are easily seen to be left-orderable, the task is in general more difficult. In [Hyd19],
James Hyde gave a remarkable example of finitely generated, non-left-orderable subgroup of
the group of homeomorphisms of the disk fixing the boundary Homeo(D, ∂D) (this group is
torsion-free); see [7] for a personal dynamical interpretation of Hyde’s proof.

As we have already mentioned, groups which are locally indicable are left-orderable, but
the converse is not true. There are, for instance, examples of left-orderable groups which are
perfect (ie with trivial abelianization), although only a very restrictive class of such examples
is known. In the work [5] in collaboration with Rivas, we considered the classical Higman’s
group

H4 =
〈
a1, a2, a3, a4 | aiai+1a

−1
i = a2

i for i ∈ Z/4Z
〉
.

It is evident from the presentation that H4 is perfect, but it is not directly clear that H4 is
infinite. Recall that Higman introduced the group H4 to obtain the first example of finitely
generated infinite simple group: although H4 is not itself simple, it admits no nontrivial finite
quotient, so the quotient by a maximal normal subgroup gives the desired example.
Theorem 3.A. Higman’s group H4 is left-orderable.

See Figure 3.1 for a picture of an action of H4 (which also gives a “dynamical” proof that
H4 is infinite!). Note that we are not able to prove that such action is faithful, but anyhow we
show, using Kurosh subgroup theorem, that the kernel is a free group, so that it is possible to
make a blow up of the action and insert an action of the kernel.

−1 0 +1

+1

a

b

d

c

Figure 3.1. An action of Higman’s group H4 on the circle R/2Z (which lifts
to an action on the line).

In fact, finding examples of finitely generated infinite simple groups which are left-orderable
was an important open problem in the theory of ordered groups, and goes back to Rhemtulla,
around 1982. The first examples were manufactured by Hyde–Lodha [HL19]. In the work [6]
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written in collaboration with Matte Bon, we introduce a systematic construction of finitely
generated simple groups of homeomorphisms of the real line that generalizes and clarifies the
examples of Hyde–Lodha.

The change of paradigm idea is to consider “quasi-periodic lifts” of Thompson’s group
T to homeomorphisms of the real line, which is a finitely generated simple group of circle
homeomorphisms. For this, let (X, σ) be a minimal subshift and let Y = X ×R/(ω,t)∼(σ(ω),t−1)
denote the associated mapping torus, which is a compact connnected topological space,
locally homeomorphic to Cantor × interval. We introduce the group T(σ) as the group of
homeomorphisms of Y which are locally (in restriction to charts clopen × interval) of the
form id× piecewise linear dyadic homeomorphism. These groups T(σ) are seen to be finitely
generated and simple by elementary methods known to experts. Moreover, the group T(σ)
preserves every orbit of the vertical flow Φ defined on the mapping torus Y , and the restriction
of the action to any Φ-orbit defines a faithful action of the group of the real line.

Theorem 3.B. For every minimal subshift (X, σ), the group T(σ) is finitely generated, simple,
and left-orderable.

Many further properties for T(σ) are easily obtained.

Theorem 3.C. Every action of T(σ) on the circle has a fixed point.

The groups T(σ) constitute the first examples with this property. As a consequence we
answer a technical, but fundamental, question of Deroin–Navas–Rivas on the nature of possible
orders on/actions on the real line of a left-orderable group (see [DNR16, Question 3.5.11] and
[Nav18, Question 6]). This was independently solved by Hyde–Lodha–Navas–Rivas [HLNR21].

Theorem 3.D. The groups T(σ) are not finitely presented.

Finding examples of left-orderable finitely presented infinite simple groups is still an open
problem. Also, these groups do not help with the problem of finding Kazhdan groups acting
on the line (see the discussion in the previous section).

Theorem 3.E. The groups T(σ) do not have Kazhdan’s property (T ).

Let us also point out that these groups definitely constitute a large class of examples.

Theorem 3.F. Two different groups T(σ) are isomorphic if and only if the corresponding
mapping tori are homeomorphic. Therefore the family of groups T(σ) provides uncountably
many non-isomorphic examples of finitely generated simple left-orderable groups.

Beyond these particular results and problems, the work [6] provides a new setting to study
actions on the real line: “compactifying” the real line with the mapping torus, allows to use
many classical tools which usually require compactness. A similar, but much more abstract,
approach was previously developed by Deroin [Der20], about which we will also discuss in the
next section. Let us point out the following problem from [6].

Conjecture 3.1. Every minimal faithful action of T(σ) of the real line is conjugate to the
restriction to a Φ-orbit of the standard action on the suspension Y .

A second natural problem about left-orderable groups is to understand how many different
left-orders can be defined on a LO group G. A left-order can be considered as an element
of the power set {−1, 0, 1}G×G (by looking the “sign” of x−1y for x, y ∈ G) and with this
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identification, the set of left-orders LO(G) becomes a compact Hausdorff topological space
which is moreover totally disconnected. A result by Linnell asserts that the space LO(G)
is always finite or uncountable, and groups admitting finitely many left-orders have been
classified by Tararin (they are in particular polycyclic). See the recent monograph on the
subject [DNR16]. One of the basic questions is then to understand when the space LO(G)
admits isolated points. The topology of LO(G) is such that isolated left-orders are exactly
those which are finitely determined: these are the left-orders which are uniquely determined
by looking at the order relations between some finite collection of elements.

To give just a couple of examples, it is not difficult to see that LO(Zd) is a Cantor set
(for d ≥ 2) and one can also prove the same for the space of left-orders of a nonabelian free
group Fn. Finding examples of groups G admitting isolated orders and for which LO(G) is
uncountable, is usually much harder. In collaboration with Malicet, Mann and Rivas, we
proved in [4] the quite surprising fact that the direct product Fn×Z admits isolated left-orders
if and only if n is even. Note that Fn × Z ⊂ Fm × Z for n odd and m even, so that a
consequence of our result is that the property of admitting isolated left-orders does not behave
well when passing to finite-index subgroups. The proof of the main result of [4] passes through
the study of the analogous space of circular orders CO(Fn) (which corresponds to actions
on the circle). Here the isolated circular orders must be realized by actions on the circle of
ping-pong type, which are related to the works [10,11].

4. Locally moving groups and R-focal actions

4.1. First results for locally moving groups. The most recent project [8], in collaboration
with Brum, Matte Bon, and Rivas, was vaguely motivated by Conjecture 3.1 (for which now
we have a partial solution). The general problem is to study a large class of groups for which
it is possible to describe all actions on the real line up to semi-conjugacy. For instance, before
this project, very few actions of Thompson’s group F were known, and we will see that now
we are able to give a rather precise picture. Again, part of the difficulty of the problem is that
the real line is non-compact. Indeed, when the group has nontrivial center, it is often possible
to reduce the problem to the circle, where the situation is simpler (for instance, the bounded
Euler class is a complete invariant). By such methods, we could remark in [6] that the lift
T̃ of Thompson’s group T admits only one action up to semi-conjugacy (two, if one takes
orientation into account); similarly Militon proved [Mil16] that the group of homeomorphisms
of the real line commuting with integer translations (that is, the central lift of Homeo+(S1))
has only one action on the real line.

The class of groups we will consider is the following.

Definition 4.1. A subgroup G ⊂ Homeo+(R) is locally moving if for every open interval
I ⊂ R, the subgroup of elements of G supported on I acts on it without fixed points.

As a consequence of deep results by Rubin [Rub89], every group admits at most one locally
moving action on the line, up to conjugacy. In fact, studying the structure of actions of locally
moving groups, and using the approximate linearization (Lemma 2.6), we were able to prove
the following.

Theorem 4.A. Let G ⊂ Homeo+(R) be a locally moving group, and let ϕ : G→ Diff1
+(R) be

a minimal faithful C1 action on the real line. Then ϕ is conjugate to the standard action of G.
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A more precise version of the statement above also describes C1 actions which are not
minimal. Note that the standard action of G may fail to be conjugate to a C1 action, as
we discussed in Section 2, in which case we obtain as a consequence that the group has no
minimal faithful C1 actions at all.

However, the rigidity displayed in Theorem 4.A fails in the C0 setting. Perhaps the
simplest way to give counterexamples is to consider countable groups of compactly supported
homeomorphisms. For such groups, one can always obtain exotic actions, in the sense that
they are not induced from quotients, nor semi-conjugate to the standard action. For instance,
one can consider a left-invariant order on the group of germs of homeomorphisms fixing a
point, and declare that an element is positive if the germ at its rightmost point of the support
is positive. This defines a left-invariant order on the group and thus an action on the real line.

Proposition 4.2. Let G ⊂ Homeo+(R) be a countable group of compactly supported homeo-
morphisms acting minimally. Then G admits actions without fixed points on R which are not
semi-conjugate to its standard action, nor to any non-faithful action of G.

While this observation is formally sufficient to rule out the C0 version of Theorem 4.A,
it is not fully satisfactory, for instance because a group G as in Proposition 4.2 cannot be
finitely generated. In fact, we obtain actions which admit no non-empty closed invariant set on
which the group acts minimally (in particular, the action is not semi-conjugate to a minimal
action nor to a cyclic action); this phenomenon is somewhat degenerate, and cannot arise for
a finitely generated group. Much more interesting is the fact that many (finitely generated)
locally moving groups admit exotic actions which are minimal and faithful. Here we only
mention the following existence criteria, which are satisfied by many well-studied groups.

Proposition 4.3 (Criteria for existence of minimal exotic actions). For X = (a, b), let
G ⊂ Homeo+(X) be a finitely generated subgroup. Assume that G acts minimally on X and
contains nontrivial elements of relatively compact support in X, and that at least one of the
following holds.

(1) The group G is a subgroup of the group of piecewise projective homeomorphisms of X.
(2) The groups of germs Germ(G, b) is abelian and its nontrivial elements have no fixed

points in a neighborhood of b.
Then there exists a faithful minimal action ϕ : G → Homeo+(R) which is not topologically
conjugate to the action of G on X (nor to any non-faithful action of G).

4.2. Actions on planar real trees and R-focal actions. A key concept introduced in [8]
is the notion of R-focal action. This will be the main tool to understand exotic actions on the
line of a vast class of locally moving groups (see Theorem 4.C below).

In order to define this notion, we say that a collection S of open bounded real intervals is a
cross-free cover if it covers R and every two intervals in S with nontrivial intersection are one
contained into the other.

Definition 4.4. Let G be a group. An action ϕ : G→ Homeo+(R) is R-focal if there exists a
bounded open interval I ⊂ R whose G-orbit is a cross-free cover.

Although the notion of R-focal action is purely given in terms of the action on the real
line, it provides an incredibly rich combinatorial structure, which allows to understand the
dynamical behavior of the single elements.
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Indeed, the terminology comes from group actions on trees (and Gromov hyperbolic spaces).
In this classical setting, an isometric group action on a tree T is called focal if it fixes a unique
end ω ∈ ∂T and contains hyperbolic elements (which necessarily admit ω as an attracting or
repelling fixed point). The key fact is that every R-focal action on the line can be encoded by
a focal action on a tree, except that we need to consider group actions on real trees (or R-trees)
by homeomorphisms (not necessarily isometric). Let us give an overview of this connection.

Recall that a real tree is a metrizable space T where any two points can be joined by a
unique path, and which admits a compatible metric which makes it geodesic. By a directed
tree we mean a (separable) real tree T together with a preferred end ω ∈ ∂T, called the focus.
If T is a directed tree with focus ω, we write ∂∗T := ∂T \ {ω}. An action of a group G on a
directed tree T (by homeomorphisms) is always required to fix the focus. In this topological
setting we will say that such an action is focal if for every v ∈ T there exists a sequence
(gn) ⊂ G such that (gn.v) approaches ω along the ray [v, ω[.

By a planar directed tree we mean a directed tree T endowed with a planar order, which is
the choice of a linear order on the set of directions below every branching point of T (one can
think of T as embedded in the plane). Note that in this case the set ∂∗T inherits a linear order
≺ in a natural way. Assume that T is a planar directed tree, and that Φ: G → Homeo(T)
is a focal action of a countable group which preserves the planar order. Then Φ induces an
order-preserving action of G on the ordered space (∂∗T,≺). From this action one can obtain
an action ϕ : G→ Homeo+(R) on the real line, which we call the dynamical realization of the
action of Φ. It turns out that such an action is always minimal and R-focal. In fact, we have
the following equivalence, which can be taken as an alternative definition of R-focal actions.

Proposition 4.5. Let G be a countable group. An action ϕ : G → Homeo+(R) is minimal
and R-focal if and only if it is conjugate to the dynamical realization of a focal action by
homeomorphisms of G on some planar directed tree.

We will say that an R-focal action ϕ can be represented by an action Φ: G→ Homeo(T)
on a planar directed tree if it is conjugate to the dynamical realization of Φ. Note that in
general such an action Φ representing ϕ is not unique.

Examples of R-focal actions appear naturally in the context of solvable groups. In fact,
the notion of R-focal action was largely inspired by an action on the line of the group Z o Z
constructed by Plante [Pla83] to give an example of action of a solvable group on the line
which is not semi-conjugate to any action by affine transformations, see Figure 4.1. In fact,
for finitely generated solvable groups we obtain the following dichotomy.

Theorem 4.B. Let G be a finitely generated solvable group. Then every action ϕ : G →
Homeo+(R) without fixed points is either semi-conjugate to an action by affine transformations,
or to a minimal R-focal action.

A distinctive feature of R-focal actions is that the action of individual elements of the group
satisfy a dynamical classification which resembles the classification of isometries of trees into
elliptic and hyperbolic elements. Namely if G ⊂ Homeo+(R) is a subgroup whose action is
R-focal, then every element g ∈ G satisfies one of the following:

• Either g is totally bounded: its set of fixed points accumulates on both ±∞.
• Or g is a pseudohomothety: it has a non-empty compact set of fixed points K ⊂ R
and either every x /∈ [minK,maxK] satisfies |gn(x)| → ∞ as n→ +∞ (in which case
we say that g is an expanding pseudohomothety), or the same holds as n→ −∞ (in



15

g

h0
h1

h2

Figure 4.1. Plante action of the lamplighter group.

which case we say that g is contracting). We simply say that g is a homothety when K
is reduced to a single point.

Moreover the dynamical type of each element can be explicitly determined from the G-action
on a planar directed tree T representing the R-focal action by looking at the local dynamics
near the focus ω ∈ ∂T.

We finally discuss another crucial concept: the notion of horograding of R-focal action of
a group G by another action of G. This will allow us to establish a relation between exotic
actions of various locally moving groups and their standard actions. Assume that T is a
directed tree with focus ω. An increasing horograding of T by a real interval X = (a, b) is a
map π : T→ X such that for every v ∈ T the ray [v, ω[ is mapped homeomorphically onto the
interval [π(v), b). This is a non-metric analogue of the classical metric notion of horofunction
associated with ω. A decreasing horograding is defined analogously but maps [v, ω[ to (a, π(v)],
and a horograding is an increasing or decreasing horograding. If G is a group acting both on
T and X we say that π is a G-horograding if it is G-equivariant, and that its action on T can
be horograded by the action of G on X. This leads to the following definition.

Definition 4.6. Assume ϕ : G → Homeo+(R) is a minimal R-focal action, and j : G →
Homeo+(X) is another action of G on some open interval X. We say that ϕ can be (increasingly
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or decreasingly) horograded by j if ϕ can be represented by an action on a planar directed
tree Φ: G→ Homeo(T) which admits an (increasing or decreasing) G-horograding π : T→ X.

The existence of such a horograding is a tight relation between ϕ and j, which is nevertheless
quite different from the notion of semi-conjugacy: here the action of G on X plays the role of
a hidden “extra-dimensional direction” with respect to the real line on which ϕ is defined. For
instance, in the presence of an increasing G-horograding, the type of each element in ϕ can be
determined from its germ on the rightmost point of X as follows.
Proposition 4.7. Let ϕ : G→ Homeo+(R) be a minimal R-focal action, and assume that ϕ
can be increasingly horograded by an action j : G → Homeo+(X) on an interval X = (a, b).
Then we have the following alternative.

(1) If the fixed points of j(g) accumulate on b then ϕ(g) is totally bounded.
(2) Else ϕ(g) is a pseudohomothety, which is expanding if j(g)(x) > x for x in a neighbor-

hood of b, and contracting otherwise. Moreover if j(g) has no fixed points in X, then
ϕ(g) is a homothety.

4.3. Structure theorems for actions by homeomorphisms. The notion of R-focal ac-
tions can be used to understand exotic actions on the line of a vast class of locally moving
groups.
Definition 4.8 (The classes F and F0). For X = (a, b), let G ⊂ Homeo+(X) be a subgroup.
For an interval (x, y) ⊆ X, write G(x,y) = {g ∈ G : supp(g) ⊂ (x, y)}. Write also G+ :=⋃
x<bG(a,x) and G− := ⋃

x>aG(x,b) for the subgroups of elements with trivial germ at a and b
respectively. Consider the following conditions.

(1) G is locally moving.
(2) There exist two finitely generated subgroups Γ± ⊂ G± and x, y ∈ X such that

G(a,x) ⊂ Γ+ and G(y,b) ⊂ Γ−.
(3) There exists an element of G without fixed points in X.

We say that G belongs to the class F if it satisfies (1–2), and that it belongs to the class F0 if
it satisfies (1–3).

Note that condition (2) trivially holds true provided there exist x, y ∈ X such that G(a,x) and
G(y,b) are finitely generated. In practice this weaker condition is satisfied in many examples,
but (2) is more flexible and more convenient to handle.

The class F0 contains many well-studied examples of finitely generated locally moving
groups of piecewise linear or projective homeomorphisms, including Thompson’s group F and
all Thompson–Brown–Stein groups Fn1,...,nk

, several other Bieri–Strebel groups, the groups
of piecewise projective homeomorphisms of Lodha–Moore. It also contains various groups
which are far from the setting of groups of piecewise linear or projective homeomorphisms: for
instance every countable subgroup of Homeo+(X) is contained in a finitely generated group
belonging to F0.

Probably the main result of [8] is a qualitative description of every exotic action of a group
un the class F .
Theorem 4.C (Main structure theorem for actions of groups in F). Let X be an open interval
and G ⊂ Homeo+(X) be a group in the class F . Then every action ϕ : G → Homeo+(R)
without fixed points is semi-conjugate to an action in one of the following families.

(1) (Non-faithful) An action which factors a proper quotient.
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(2) (Standard) An action which is conjugate to the standard action of G on X.
(3) (R-focal) A minimal faithful R-focal action which can be G-horograded by the standard

action of G on X.

The main content of Theorem 4.C is that even though a group in F may admit exotic
actions on the line, these are nevertheless tightly related to the standard action of G, which
appears at the level of a planar directed tree encoding the R-focal action. This relation can
be effectively exploited to study such exotic actions, by means of Proposition 4.7.

4.4. Description of the space of actions without fixed points. Although describing all
possible R-focal actions of a group in the class F appears out of the reach in general, we can
use Theorem 4.C to get an insight into the space Homirr(G,Homeo+(R)) of actions without
fixed points. Recall that this space can be endowed with the natural compact-open topology,
which means that a neighborhood basis of a given action ϕ ∈ Homirr(G,Homeo+(R)) is defined
by considering for every ε > 0, finite subset S ⊂ G, and compact subset K ⊂ R, the subset of
actions {

ψ ∈ Homirr(G,Homeo+(R)) : max
g∈S

max
x∈K
|ϕ(g)(x)− ψ(g)(x)| < ε

}
.

We say that an action ϕ ∈ Homirr(G,Homeo+(R)) is locally rigid if there exists a neighborhood
U ⊂ Homirr(G,Homeo+(R)) of ϕ such that every ψ ∈ U is semi-conjugate to ϕ. Otherwise, we
say that the action of ϕ is flexible. We show the following result for groups in the class F0.

Theorem 4.D (Local rigidity of the standard action for groups in F0). Let G ⊂ Homeo+(R)
be a finitely generated group in the class F0. Then the standard action of G is locally rigid.

Possible annoying issues when studying the quotient space of Homirr(G,Homeo+(R)) by the
semi-conjugacy equivalence relation is that it may fail to be Hausdorff (this is for instance
the case for the groups T(σ) from [6]), and that locally rigid actions may correspond to
non-isolated semi-conjugacy classes. For finitely generated groups, we consider a space which
has been introduced by Deroin [Der20], which contains a representative of every (positive) semi-
conjugacy class. One way to construct such space is based on work by Deroin, Kleptsyn, Navas,
and Parwani [DKNP13] on symmetric random walks on Homeo+(R). Given a probability
measure µ on G whose support is finite, symmetric, and generates G, one defines the Deroin
space Derµ(G) as the subspace of Homirr(G,Homeo+(R)) of harmonic actions, that is, actions
of G for which the Lebesgue measure is µ-stationary. The space Derµ(G) is compact and
Hausdorff, with a natural topological flow Φ : R× Derµ(G)→ Derµ(G) defined on it, with the
property that two actions in Derµ(G) are (positively semi-)conjugate if and only if the are on
the same Φ-orbit. For the proof of Theorem 4.D we use a new criterion which might be of
independent interest: in order to check the local rigidity of a harmonic action ϕ ∈ Derµ(G)
among all continuous actions, it is enough to check its local rigidity among actions in the
space Derµ(G). This criterion is based on a new description of the space Derµ(G) as a quotient
of the space of invariant preorders on G. In particular, this last observation shows that the
topology of Derµ(G) does not depend on the choice of the probability measure µ.

4.5. Some concrete groups. Many illustrative examples of applications of our results arise
as subgroups of PL+(X), where X = (a, b) is an open interval. Note that Proposition 4.3
implies that every finitely generated locally moving group G ⊂ PL+(X) admits a minimal
faithful exotic action on the real line. It turns out that subgroups of PL+(X) exhibit a
surprising mixture of rigidity and flexibility properties.
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The most famous example of group of PL homeomorphisms is Thompson’s group F , which
belongs to the class F0. In particular every faithful action ϕ : F → Diff1

0([0, 1]) without fixed
points in (0, 1) is semi-conjugate to the standard action (Theorem 4.A), every exotic action
ϕ : F → Homeo+(R) is R-focal and horograded by the standard action of F on (0, 1) (Theorem
4.C), and the standard action of F on (0, 1) is locally rigid (Theorem 4.D). From this we can
make a picture of the Deroin space of F (Figure 4.2).

P0
+ τ1

τ0

τ̂1

τ̂0

ατ1 + βτ0

Nι̂
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ι
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Figure 4.2. The circle N corresponds to the space of actions induced from a
proper quotient (which must an action of Z2 ∼= F/[F, F ]). The lines I and Î are
the orbits of the standard action and the reversed standard action, respectively.
The other families correspond to the R-focal actions.

Despite these rigidity results, it turns out that the group F admits a rich and complicated
universe of minimal exotic actions (we are able to give explicit examples of R-focal actions
with very different behavior).

Theorem 4.E. Thompson’s group F admits uncountably many actions on the line which are
faithful, minimal, R-focal and pairwise non-semi-conjugate. Moreover, there are uncountably
many such actions whose restrictions to the commutator subgroup [F, F ] remain minimal and
are pairwise non-semi-conjugate.

It is interesting to note that this abundance of exotic actions of the group F fails for some
tightly related groups of PL homeomorphisms. The Bieri–Strebel group Gλ belongs to F0
provided λ is algebraic, thus satisfies Theorem 4.C. However, in striking difference with the
case of F , we have the following result.

Theorem 4.F (PL groups with finitely many exotic actions). Let λ > 1 be an algebraic
real number. Then the group G = Gλ admits exactly three minimal faithful actions ϕ : G→
Homeo+(R) on the real line up to conjugacy, namely its standard action and two minimal
R-focal actions (which can be horograded by its standard action).

Building on the proof of Theorem 4.F, we also construct a finitely generated locally moving
group G which does not have exotic actions at all.
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Theorem 4.G (A finitely generated locally moving group with no exotic actions). There
exists a finitely generated subgroup G ⊂ Homeo+(R) in the class F0, such that every faithful
minimal action ϕ : G→ Homeo+(R) is conjugate to the standard action.

5. Classification of locally discrete groups of circle diffeomorphisms

Here we present the content of a series of works, which try to understand a very specific
class of groups acting on the circle. More precisely, we will discuss locally discrete groups of
real-analytic circle diffeomorphisms. This is part of a program that has received contributions
by several authors, and which is motivated by old conjectures in foliation theory.

5.1. State of the art. Recall that an action of a group G on the circle S1 gives rise, by
suspension of the action, to a codimension-one foliation of a closed manifold. There is a perfect
dictionary between the dynamics of the action on S1 and the dynamics of the leaves of the
foliation. Foliations defined by suspensions represent a particular class (e.g. the manifold
M must admit a circle bundle structure) however their study is important for developing
new techniques, manufacturing examples, and test conjectures. More than 10 years ago
Deroin, Kleptsyn and Navas [DKN09] started the study of group actions on the circle with
non-uniformly hyperbolic behavior. The original motivation for this was the ergodic theory of
group actions and more precisely to solve long-standing open conjectures by Ghys–Sullivan
and Hector, about the relationship between minimality and Lebesgue-ergodicity for C2 actions
on the circle (more generally, for codimension-one foliations). In their original formulations,
these conjectures remain unsolved, but many significant cases have been settled, especially in
real-analytic (Cω) regularity [Reb99,DKN18,FK14,9].

Conjecture 5.1. Let (M,F) be a closed manifold with a fixed volume form vol and a C2

codimension-one foliation F , without invariant transverse Borel measure.
(1) (Ghys–Sullivan) If F is minimal (every leaf is dense), then every subset E ⊂M which

is saturated by leaves of F has either full or zero volume.
(2) (Hector) When F is not minimal, every minimal (with respect to inclusion) closed

subset saturated by leaves of F has zero volume and its complement in M has finitely
many connected components.

The interest goes beyond this precise conjecture: the partial advances are providing very good
tools for understanding the dynamics and geometry of finitely generated subgroups of Diff2

+(S1).
Before [DKN09] only the dynamics of non locally discrete subgroups of Diffω

+(S1) was well
understood [EISV93,Nak94,LR03]. This is a fundamental notion: a subgroup G ⊂ Diffω

+(S1)
is locally discrete, if for every interval I, the identity is isolated, in the C1 topology, among
the set of restrictions {g|I}g∈G. Let us assume from now on that G ⊂ Diffω

+(S1) is a finitely
generated, locally discrete subgroup. A relatively easy subcase is that of expanding actions,
which has been treated in [Der13]: a subgroup G ⊂ Diffω

+(S1) is called expanding if for every
x ∈ S1 there exists an element g ∈ G such that |g′(x)| > 1. On the other hand, understanding
non-expanding actions requires heavy work. One wants to prove that a non-expandable point
(a point x ∈ S1 such that |g′(x)| ≤ 1 for every g ∈ G) is fixed by some nontrivial element of the
group. After [DKN09], this is called property (?). This is the case for non-expanding discrete
subgroups G ⊂ PSL(2,R), where a non-expandable point is fixed by a parabolic element, and
moreover has a geometric meaning: its orbit is identified with a cusp in the quotient H2/G.
If property (?) holds, then the dynamics has a very nice description, by a non-uniformly
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hyperbolic Markov partition. The recent collective work [9] goes in the direction of describing
the geometry of such actions. Let us first state what should be the desired picture.

Conjecture 5.2. Let G ⊂ Diffω
+(S1) be a finitely generated, locally discrete subgroup of

orientation-preserving real-analytic circle diffeomorphisms. If the group is expanding, then it
is Cω conjugate to a cocompact discrete subgroup of some finite central extension of PSL(2,R).
If the group is non-expanding, then it is virtually free (it contains a free subgroup of finite
index) and such actions are classifiable by generalized ping-pong partitions.

Conjecture 5.2 has been partially validated. As already mentioned, the case of expanding
actions has been solved by Deroin [Der13]. The case of non-expanding actions has been
addressed in several works:

(1) in [FK14], Filimonov and Kleptsyn proved that if a finitely generated group G has one
end and is non-expanding, then either it contains elements of arbitrarily large finite
order or it is not finitely presented;

(2) in [DKN18], Deroin, Kleptsyn and Navas were able to obtain a ping-pong partition
(see definition below) for every non-expanding free subgroup G ⊂ Diffω

+(S1);
(3) in [10], in collaboration with Alonso, Alvarez, Malicet and Meniño, we extended the

notion of ping-pong partition to the case of non-expanding virtually free subgroups
G ⊂ Diffω

+(S1), and proved that it is a C0-conjugacy invariant;
(4) finally, in the collective work [9], we proved that if a locally discrete subgroup G ⊂

Diffω
+(S1) has infinitely many ends, then it must be virtually free.

Therefore only subgroups G ⊂ Diffω
+(S1) with one end, and either unbounded torsion or non

finitely presented, are missing in this picture. Let us also mention that we have proved in [10]
that virtually free groups acting on the circle are of very special form.

Theorem 5.A. If G ⊂ Homeo+(S1) is virtually free, then it contains a normal free subgroup
whose quotient is finite cyclic. Conversely, every such abstract virtually free group G can be
realized as a locally discrete subgroup of Diffω

+(S1).

The two works [9, 10] heavily use the point of view of Bass–Serre theory (the theory of
groups acting on trees). By the celebrated Stalling’s theorem, every finitely generated group
with infinitely many ends admits an action on a tree with finite edge stabilizers. Using an
inductive argument on the vertex stabilizers, we prove the following.

Theorem 5.B. If G ⊂ Diffω
+(S1) is locally discrete and with infinitely many ends, then it

must have property (?) and be virtually free.

This extends (and actually builds on) an old result of Ghys [Ghy87]. Secondly, we prove
the following result.

Theorem 5.C. If a subgroup G ⊂ Diffω
+(S1) is locally discrete, non-expanding and has property

(?), then it must have infinitely many ends and therefore be virtually free.

The proof of this result is inspired by a celebrated result of Duminy (see [Nav11]), on
actions on the circle with invariant Cantor set (it actually holds for codimension-one foliations).
However, in our case we have to develop more sophisticated analytic tools. The leading
idea is that an end of the group G ⊂ Diffω

+(S1) determines a local “asymptotically invariant”
projective structure, so that if G has only one end, then it would be identified as a subgroup
of PSL(2,R), up to finite error.
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On the other hand, the work [10] on generalized ping-pong partitions is more of group-
theoretical nature. The hardest part is to find the good notion of ping-pong partition. The
starting geometric picture to have in mind is the situation of a classical ping-pong for Schottky
groups, such as

Γ =
〈[

2 1
1 1

]
,

[
1 1
1 2

]〉
⊂ PSL(2,R),

whose ping-pong partition is obtained by considering the connected components of the
complement of the four vertices {−1, 0, 1,∞} ∈ RP1 = ∂H2 of the corresponding ideal square
in the hyperbolic plane.

For general virtually free groups, a “generalized” ping-pong partition should correspond to
a partition of the circle S1 into finitely many intervals together with the information of how
generators map all of these intervals. We want two properties to be satisfied.

(1) (Ping-pong lemma) If the action of a virtually free group G on S1 admits a ping-pong
partition, then the action is faithful.

(2) (Nice conjugacy invariant) The partition is defined by finitely many data, and this
determines the conjugacy class of the action.

This is motivated by an important application, which is a partial solution to an old conjecture
by Dippolito [Dip78]:
Conjecture 5.3 (Dippolito). Let (M,F) be a codimension-one foliation of a closed manifold
which is transversally C2, with exceptional minimal set Λ. Then there exists a transverse
measure supported on Λ for which the Radon-Nikodym derivative of the action of any holonomy
pseudogroup is locally constant.

As Dippolito writes in [Dip78], this conjecture is conditioned on the solution of a major
open problem:
Conjecture 5.4 (Dippolito). Let (M,F) be a codimension-one foliation of a closed manifold
which is transversally C2, with exceptional minimal set Λ. Then there exists a semi-exceptional
leaf (that is, in the boundary of M \Λ), whose germs of holonomy maps form an infinite cyclic
subgroup.

The only result available in this direction goes back to the Ph.D. thesis of Hector (Strasbourg,
1972) (see also [Nav06, Appendix]), which establishes Conjecture 5.4 under the assumption of
nontrivial r-jets for elements in the holonomy group, for some r ≥ 1. This holds for instance
in the case of transversally real-analytic foliations.

One of the contributions of [10] is to give strong evidences that indeed Conjecture 5.4 is the
unique obstacle towards Conjecture 5.3. Indeed, using ping-pong partitions for virtually free
groups of real-analytic diffeomorphisms of the circle we prove in [11]:
Theorem 5.D (Realization). Let G ⊂ Diffω

+(S1) be a finitely generated group of real-analytic
circle diffeomorphisms acting with an invariant Cantor set. Then the action of G is semi-
conjugate to an action by piecewise-linear homeomorphisms. More precisely, every such G is
C0 semi-conjugate to a subgroup of Thompson’s group T .

Let us give a little more details on the notion of ping-pong partitions introduced in
[10]. We start with a virtually free group G ⊂ Diffω

+(S1), and a classical result of Karrass–
Pietrowski–Solitar, this is equivalent to consider a group G with a proper isometric action
α : G→ Isom(X) on a tree X (proper: finite stabilizers, in this context). The choice of the
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action α : G→ Isom(X) and a connected fundamental domain T ⊂ X plays the role of the
choice of a free generating system in the case of free groups. This choice also determines a
presentation of G as the fundamental group of a graph of groups. For general fundamental
groups of graphs of groups, we prove a ping-pong lemma:

Theorem 5.E. Let G = π1(X;Gv, Ae) be the fundamental group of a graph of groups and
consider an action on a set Gy Ω. If the action satisfies a list of 10 conditions (families of
containment relations), then the action Gy Ω is faithful.

This extends the classical Klein’s ping-pong lemma for free groups, and the (less) classical
Fenchel–Nielsen ping-pong lemma for amalgamated products and HNN extensions, and the list
of 10 conditions is a generalization of the conditions required for the classical ping-pong, and
they have been deduced by looking at the action of G on the boundary of its Bass–Serre tree.
This generalized ping-pong lemma is not a surprising result, but the main, and nontrivial,
point is that the list of 10 conditions is optimal (a shorter list does not suffice).

Note also that, as the group G is virtually free and acts on the circle, the graph of groups
must be a graph of finite cyclic groups, but the result above is valid for general graphs of
groups.

When considering a virtually free group G ⊂ Homeo+(S1), a generalized ping-pong partition
Θ is a collection of finitely many disjoint open intervals of the circle, which satisfies the 10
families of requirements for the ping-pong lemma, and a few more (for instance, a generator
must map one interval of the partition either inside another one, or to an exact union of
intervals of the partition).

We prove in [10] that these finitely many combinatorial data are enough to determine
the conjugacy class of the action. Moreover, one of the important properties of ping-pong
partitions is that they have a good behavior when passing to finite-index subgroups, so that
for many aspects, one can then restrict the attention to ping-pong partitions of free groups.
In particular, this allows to use the construction of ping-pong partitions for free groups in
[DKN18], which relies on involved analytic estimates, to deduce that any locally discrete
virtually free group G ⊂ Diffω

+(S1) admits a generalized ping-pong partition.

5.2. Further explorations.

5.2.1. A naive conjecture. The collective works [9,10] are focused on understanding subgroups
G of Diff2

+(S1) which are locally discrete. My belief (which I state as a “naive conjecture”) is
that such a subgroup G is either conjugate to a central extension of a cocompact Fuchsian group
(cocompact discrete subgroup of PSL(2,R)), or semiconjugate to a subgroup of Thompson’s
group T .

The results obtained so far require a strong regularity assumption, that is we mainly study
locally discrete subgroups of Diffω

+(S1), the group of real-analytic circle diffeomorphisms, but
even under this strong assumption the picture is incomplete. As a matter of fact, we have
very little knowledge about locally discrete subgroups in less rigid regularity (even in class
C∞). I would not be surprised to see my naive conjecture disproved.

5.2.2. Expanding subgroups. Recall that a subgroup G ⊂ Diff1
+(S1) is expanding if for every

point x ∈ S1, there exists an element g ∈ G such that g′(x) > 1. Non-locally discrete subgroups
G ⊂ Diffω

+(S1) which preserve no Borel probability measure are always expanding, and locally
discrete subgroups G ⊂ Diffω

+(S1) which are expanding have been classified by Deroin [Der13]:
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they are Cω-conjugate to a cocompact discrete subgroup of some PSL(k)(2,R) (the k-fold
central extension of PSL(2,R)). The result of Deroin is likely to be extended to expanding
subgroups in C2 regularity (but not below C2), although this requires first to obtain Ghys’
differentiable rigidity for Fuchsian groups [Ghy93] in C2 regularity (after discussions with
Deroin and Kleptsyn, we have a strategy for that).

The results of [FK14, 9] suggest that subgroups G ⊂ Diffω
+(S1) with one end should be

always expanding. However, proving this remains a challenging problem.

5.2.3. Virtually-free locally discrete subgroups. When a locally discrete subgroup G ⊂ Diffω
+(S1)

has infinitely many ends, we proved in [9] that G is actually virtually free. In the work [10],
extending [DKN18] to a more involved algebraic setting, we have introduced the notion of
ping-pong partition for such subgroups, which is a combinatorial object associated with any
such subgroup, which determines the semi-conjugacy class in Homeo+(S1). In the follow-up
paper [11], written in collaboration with S. Alvarez, P. Barrientos, D. Filimonov, V. Kleptsyn,
D. Malicet and C. Meniño, we use ping-pong partitions to deduce several properties of the
dynamics of such subgroups. I will highlight the most interesting consequences, which do not
require too many preliminary notions.

The first one is the realization theorem (Theorem 5.D) mentioned before, which solves the
conjecture by Dippolito (Conjecture 5.3), in the restrictive case of real-analytic group actions.
For this we prove that given a (virtually-free) group G of circle homeomorphisms acting on S1

with a ping-pong partition, then it is possible to find another group G̃ which acts with an
equivalent ping-pong partition, but with desired regularity properties: the group G̃ can be
chosen inside Thompson’s group T , or even inside Diffω

+(S1). Moreover, this combinatorial
framework allowed us to exhibit (the first?) examples of locally discrete subgroups of Diffω

+(S1)
acting minimally, but which are not conjugate to a subgroup of some PSL(k)(2,R).

To state a further consequence of ping-pong partitions, we recall that the C0 conjugacy
class of discrete subgroups of PSL(2,R) is determined in dynamical terms by the so-called
conevrgence property (after celebrated works of Tukia [Tuk88], Gabai [Gab92], Casson–Jungreis
[CJ94]): a subgroup G ⊂ Homeo+(S1) has the convergence property if for every sequence
{gn}n∈N ⊂ G of distinct elements, there exist α, ω ∈ S1 and a subsequence {gnk

}k∈N such
that the sequence of restrictions {gnk

|S1\{α}} pointwise converges, as k →∞, to the constant
map x ∈ S1 \ {α} 7→ ω. It turns out that every subgroup G ⊂ Homeo+(S1) with a ping-pong
partition has a similar behavior:

Theorem 5.F (Multiconvergence property). If G ⊂ Diffω
+(S1) is a finitely generated, virtually

free, locally discrete subgroup, then it has the multiconvergence property: there exists a uniform
K ∈ N such that for every infinite sequence {gn} of distinct elements in G, there exist finite
subsets A and R ⊂ S1, with #A,#R ≤ K, such that there exists a subsequence {gnk

} such
that the sequence of restrictions {gnk

|S1\R} pointwise converges, as k → ∞, to the locally
constant map g∞, with image g∞(S1 \ R) = A, with #R discontinuity points at R and such
that g∞(a) = a for every a ∈ A \R.

From this we deduce directly the following:

Corollary 5.5. If G ⊂ Diffω
+(S1) is a finitely generated, virtually free, locally discrete subgroup,

then the number of fixed points of a nontrivial element in G is uniformly bounded.

Using a result by Matsuda [Mat09], the multiconvergence property also gives the following:
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Corollary 5.6. Let G be a finitely generated, virtually free subgroup of Diffω
+(S1). The

following statements are equivalent:
(1) G is locally discrete;
(2) the rotation spectrum rot(G) = {rot(g) : g ∈ G} is finite.

Indeed, Matsuda proves that if a subgroup G ⊂ Diffω
+(S1) is non-locally discrete, then the

rotation spectrum rot(G) is infinite. It is an interesting problem, which appears in [Mat09], to
see if this can be improved to show that a non-locally discrete, finitely generated subgroup
G ⊂ Diffω

+(S1) contains an element of irrational rotation number (it is well-known that this
holds for non-discrete, finitely generated subgroups of PSL(2,R)).
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Part 2. Locally discrete groups of real-analytic circle diffeomorphisms

This part is a more detailed historical exposition of what we discussed in the last section.
We will not focus too much on personal contribution, but we will try to present the study
of groups of real-analytic circle diffeomorphisms and some of the more relevant results in a
more pedagogical way. The text is based on notes prepared for two series of lectures given at
ENS–Lyon in 2018 and at KIAS in 2019.

6. Preliminaries

6.1. Topological dynamics. Let us start recalling fundamental facts about groups acting
on the circle (see [Ghy01,Nav11] for a more general introduction). We will assume that all
homeomorphisms preserve the orientation. The circle S1 is identified with the Euclidean torus
R/Z. We denote by Homeo+(S1) the group of all orientation preserving circle homeomorphisms,
and by HomeoZ(R) the group of orientation preserving homeomorphisms of the real line R,
which commute with the group of integer translations Z. This identifies with the universal
cover of Homeo+(S1) and is actually a central extension:

0→ Z→ HomeoZ(R)→ Homeo+(S1)→ 1.
Given f ∈ Homeo+(S1), the rotation number rot(f) ∈ S1 is defined as the limit

rot(f) = lim
n→∞

F n(x)− x
n

(mod Z),

where F ∈ HomeoZ(R) is any lift of f and x ∈ R is any point. The rotation number is a semi-
conjugacy invariant for f . It is rational of reduced fraction p/q, if and only if f has a periodic
orbit of period q (and F q(x) = x+p for every x ∈ R). It is irrational rot(f) = α ∈ R\Q if and
only if f is semi-conjugate to the irrational rotation Rα : x 7→ x+ α. Here by semi-conjugacy,
we mean that there exists a continuous, monotone non-decreasing function h : S1 → S1 of
degree 1 such that hf = Rαh (h need not be invertible, that is, we are allowed to collapse
f -orbits).

Let G ⊂ Homeo+(S1) be a finitely generated subgroup. A subset Λ ⊂ S1 is a minimal
invariant set for G if Λ is closed, non-empty and G-invariant, and minimal with respect to
inclusion. When Λ is not a finite G-orbit, then Λ is unique, and can only be the whole circle
or a Cantor set. In these notes, we say that a subgroup G ⊂ Homeo+(S1) is elementary if
it admits an invariant Borel probability measure µ on S1. Observe that if G is elementary
and with no finite orbits, then G is actually semi-conjugate to a subgroup of the group of
rotations (which is actually the image of the function rotation number rot, which defines a
homomorphism in the case of an invariant probability measure). When G ⊂ Homeo+(S1) is
non-elementary then there are local exponential contractions: for every x ∈ S1 there exists a
neighborhood Ix such that a “typical” long composition of generators contracts the size |Ix| at
exponential rate (this can be made precise in probabilistic terms [Ant84,Mal17]). One can
deduce, as a consequence, that any non-elementary G ⊂ Homeo+(S1) contains free subgroups
(this is a weak Tits alternative, originally due to Margulis [Ghy01]).

6.2. Examples from hyperbolic geometry. We start by describing the canonical exam-
ples of groups of circle homeomorphisms. The group PSL(2,R) is naturally a subgroup of
Homeo+(S1), when considered as the group of (orientation preserving) isometries of the hy-
perbolic space H (identify the circle S1 with the boundary ∂H). Observe that, with this
identification, PSL(2,R) is actually a subgroup of Diffω

+(S1), the group of real-analytic circle
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diffeomorphisms. Let us recall some classical terminology. An element h ∈ PSL(2,R) is elliptic,
parabolic or hyperbolic if it has respectively 0, 1 or 2 fixed points. In the hyperbolic case,
one fixed point is attracting, the other one is repelling (this is usually called a North-South
dynamics). An elementary subgroup Γ ⊂ PSL(2,R) is conjugate in PSL(2,R) either to a
subgroup of rotations SO(2) or to a subgroup of affine transformations Aff+(R). A finitely
generated subgroup Γ ⊂ PSL(2,R) is a Fuchsian group if it is discrete in the C0 topology (by
the Cauchy inequalities, all Ck topologies on Diffω

+(S1) are equivalent). Elementary Fuchsian
groups are virtually cyclic. Fuchsian groups whose minimal invariant set is the whole circle,
are called lattices (as in this case the quotient H/Γ has finite volume). A lattice is uniform (or
cocompact) if the quotient H/Γ is compact. In general, the quotient H/Γ is a surface of finite
type. Dynamically, cocompact lattices are characterized by the property that their actions
on S1 ∼= ∂H are discrete and expanding: for every x ∈ S1 there exists an element h ∈ Γ such
that h′(x) > 1. Moreover, every element h ∈ Γ is either hyperbolic or elliptic (of finite order).
When Γ ⊂ PSL(2,R) is a non-uniform lattice, there are only finitely many orbits of points
where the expanding property fails, and every such point has cyclic stabilizer, generated by a
parabolic element. Geometrically, these correspond to cusps in the quotient H/Γ. At the level
of group structure, a cocompact lattice is isomorphic to a closed surface group, whereas any
other Fuchsian group is virtually free (ie it contains a free subgroup of finite index). It is a
classical fact that every non-elementary, non-discrete, finitely generated subgroup of PSL(2,R)
contains an elliptic element of infinite order, and this element is conjugate in PSL(2,R) to an
irrational rotation Rα ∈ SO(2).

The topological conjugacy class of subgroups G of PSL(2,R) in Homeo+(S1) is characterized
in dynamical terms by important works of Tukia, Casson–Jungreis and Gabai [Tuk88,CJ94,
Gab92]. This is the so-called convergence property: for every sequence {gn} of distinct elements
in G, such that {gnk

} is not equicontinuous, there exists a subsequence {gnk
} and points

a, b ∈ S1 such that the sequence of restrictions gnk
|S1\{a} converges uniformly to the constant

map b.
Subgroups of PSL(2,R) are very classical objects. However, understanding finitely generated,

non-discrete subgroups Γ ⊂ PSL(2,R) is by no means obvious. We mention here the recent
monograph by Kim, Koberda, and Mj [KKM19], which highlights how small perturbations of
such Γ in PSL(2,R) can create very different dynamical behavior. Not only the dynamics, but
also the group structure of such subgroups can be rather wild: for instance, by arithmetic
considerations, one can find subgroups which are isomorphic to closed hyperbolic 3-manifolds
groups (see Calegari [Cal06]).

In general, if G is a connected Lie group which is a subgroup of Homeo+(R), then G is
topologically conjugate to a subgroup of PSL(k)(2,R), for some k ≥ 1, the k-fold central
extension of PSL(2,R):

0→ Zk → PSL(k)(2,R)→ PSL(2,R)→ 1.
These groups naturally act on the corresponding k-fold cover of S1, which is still homeomorphic
to S1.

Going beyond these classical examples, a more ambitious program would be to describe
finitely generated subgroups of Homeo+(S1). In this generality, this is a highly difficult task.
Assuming some regularity on the action certainly gives more restrictions, but the situation
still remains complicated: in the recent beautiful work by Kim and Koberda [KK20], it has
been proved that for any r ≥ 1, there is a finitely generated subgroup Gr ⊂ Diffr

+(S1) which
is not isomorphic to any subgroup of Diffs

+(S1), for any s > r. Here we will simply focus on
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subgroups Diffω
+(S1), hoping that the very strong regularity will be enough to grasp a good

picture of the situation. More specifically, we will investigate the structure of subgroups that
can be seen as the good analogue in Diffω

+(S1) of Fuchsian groups in PSL(2,R). We will try to
convince the reader that these are the locally discrete subgroups of Diffω

+(S1).

7. Non-locally discrete groups

7.1. Elementary subgroups... Let G ⊂ Diffω
+(S1) be a finitely generated elementary sub-

group. If it has no finite orbit, then G is topologically conjugate to a group of rotations
(here we make use of Denjoy theorem), and more precise statements about regularity of the
conjugacy are the duty of Herman–Yoccoz theory, that we won’t discuss here. If G has finite
orbits, then there is a finite index subgroup H with fixed points. Moreover (and this is a first
place real-analytic regularity comes strongly into play), every nontrivial element (and hence
H) can only have finitely many fixed points. Secondly, because of real-analytic regularity,
such a group H is completely determined by its image in the group of real-analytic germs
Hx ⊂ Gω+(R, x) at a fixed point x ∈ S1. As a consequence, we can reduce the problem to the
study of the local dynamics defined by H.

7.2. ... and local flows. After the discussion of the previous paragraph, we now consider
subgroups of the group Gω+(R, 0) of real-analytic germs at 0.

Take a nontrivial germ f ∈ Gω+(R, 0) which is k-flat, for some k ≥ 0: f(z) = z + ak+1z
k+1 +

O(zk+2), with ak+1 6= 0. The germ f is the time 1 of the flow of a formal vector field χ at
0, and the time t map f t (t ∈ R) is of the form f t(z) = z + tak+1z

k+1 + O(zk+2). We claim
that every germ g commuting with f belongs to this flow. For this, write the commutation
relation fg = gf as a system of equations of the coefficients of f and g, then one sees that
g is completely determined by its (k + 1)-th coefficient, which must equal tak+1 for some t.
Proceeding in this way, one succeeds in classifying solvable groups of germs [Ily78,Nak94].

What happens for non-solvable groups of germs? Let us study one particular example.
Example 7.1. Let f ∈ Gω+(R, 0) be a germ with nontrivial linear part, and choose coordinates
(after Poincaré–Kœnigs linearization theorem) so that f(z) = λz. Take another germ h ∈
Gω+(R, 0) which is k-flat, k ≥ 1, write h(z) = z + ak+1z

k+1 + O(zk+2). For integers m,n ∈ Z
we have hm(z) = z +mak+1z

k+1 +O(zk+2) and
f−nhmfn(z) = z + λnkmak+1z

k+1 +O(λn(k+1)zk+2).
Assume without loss of generality λ < 1, then for every fixed m ∈ Z, the sequence {f−nhmfn}
converges to the identity as n→∞. Moreover, for fixed t, we can choose a sequence {mn}
such that λnkmn → t as n→∞, so that f−nhmnfn → z+ tak+1z

k+1 + . . . as n→∞. In other
words, the group generated by f and g contains a local flow in its closure.

In the general case, the picture is pretty close. Let f be arbitrary; take a germ g ∈ Gω+(R, 0)
which does not commute with f , nor does f commute with the commutator h = [f, g]. Then
the commutator h = [f, g] is k′-flat for some k′ > k. Up to taking the inverse of f , we can
assume that ak+1 > 0. Then the sequence of conjugates fnhf−n converges to id as n → ∞.
In [Nak94], Nakai proved that there exists an appropriate rescaling λn(fnhf−n − id) which
converges, as n→∞, to a vector field χ1 = χ(f, h) and the flow of the vector field χ1 belongs
to the closure of the set of conjugates {fnhmf−n}n,m. In the same way, there is a limit vector
field χ2 = χ(h, [f, h]) verifying the analogous property. Moreover, the two vector fields χ1 and
χ2 are linearly independent, and are preserved under topological conjugacy. In conclusion, the
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dynamics of the group 〈f, g〉 on a left neighborhood of 0 is very rich, in the sense that every
orbit is dense and it is well described by local flows which are a topological invariant of the
group.

7.3. Non-elementary subgroups. The work of Nakai was later extended by Rebelo [Reb99]
to the case of non-elementary subgroups. For this, one has to assume that G contains elements
sufficiently close to the identity, more precisely, one wants G to be non locally discrete in the
following sense:

Definition 7.2. Let G ⊂ Diffω
+(S1) be a subgroup and x ∈ S1 be a point. One says that G

is non locally discrete at x (in the C1 topology) if there exists a neighborhood I of x and a
sequence of elements {gn} ⊂ G such that gn|I → id|I in the C1 topology. If G is non locally
discrete at every point of the minimal invariant subset Λ, then one simply says that G is non
locally discrete.

Observe that by minimality of the action of G on Λ, if G is non locally discrete at a point
x ∈ Λ, then it is everywhere non locally discrete in Λ.

It is time to recall a fundamental result due to Hector. which unfortunately has no
satisfactory analogue in lower regularity (this issue was pointed out in [Dip78] in the 1970s
and is fundamental to go beyond real-analytic regularity).

Theorem 7.3 (Hector’s lemma). Let G ⊂ Diffω
+(S1) be a finitely generated subgroup with a

minimal invariant Cantor set Λ ⊂ S1. Let J be a connected component of the complement
S1 \ Λ. Then the stabilizer StabG(J) is infinite cyclic.

Remark 7.4. Although not strictly needed in this exposition, let us mention that a weaker
version of this result holds in C2 regularity: StabG(J) is always nontrivial; moreover, writing
J = (a, b), there is at most a cyclic group of germs at a (or b) which are nontrivial at order
k, for every k. This can be deduced arguing as in Example 7.1. The major problem is to
understand whether StabG(J) can contain an element whose germ at a is infinitely flat, but
nontrivial on Λ.

From Theorem 7.3, we deduce that when Λ is a Cantor set, then G must be locally discrete
at points x /∈ Λ. In fact, the following holds:

Theorem 7.5 (Rebelo). Let G ⊂ Diffω
+(S1) be a finitely generated non-elementary subgroup

which is non locally discrete. Then the action of G on S1 is minimal, that is, Λ = S1.

The key observation by Rebelo is that such a group contains local flows in the closure,
essentially by the same argument as in Example 7.1. It relies on a second fundamental result,
which nowadays we can see as a consequence of the local exponential contractions we mentioned
before (and which holds in much more general context, see [DKN07]).

Theorem 7.6 (Sacksteder). Let G ⊂ Diffω
+(S1) be a non-elementary, finitely generated sub-

group and Λ ⊂ S1 its minimal invariant subset. Then for every open interval U intersecting Λ,
there exists p ∈ U ∩ Λ and g ∈ G such that g(p) = p and g(p) 6= 1.

In the argument revisited by Rebelo, the element f is replaced by a map with an hyperbolic
fixed point p ∈ I ∩ Λ given by Theorem 7.6, and one plays with a sequence of elements {gn}
whose restriction to I converges to the identity in the C1 topology, as n→∞. It is at this
point that the C1 topology is needed: the elements gn do not necessarily fix the point p, and
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one needs to control their powers. Rebelo proves that for sufficiently small |t| < ε, there exist
sequences {kn}n and {`n(t)} such that f−kng`n(t)

n fkn converges, as n→∞, to the time t of a
locally defined flow.

Non locally discrete groups have been extensively studied by Rebelo and collaborators. Let
us point out one further consequence of local flows:
Proposition 7.7. Let G ⊂ Diffω

+(S1) be a finitely generated non-elementary subgroup which
is non locally discrete. Then the action of G on S1 is expanding: for every x ∈ S1 there exists
g ∈ G such that g′(x) > 1.

Proof. Indeed, suppose that for such a group there exists a point x such that g′(x) ≤ 1 for
every g ∈ G. Let I be a neighborhood of x on which local flows are defined, and take a point
p ∈ I and h ∈ G such that h(p) = p, h′(p) ≤ 1, given by Theorem 7.6. Then using the local
flow, we conjugate h to an element hε having a hyperbolic fixed point pε which is ε-close to x,
with derivative h′ε(pε) = h′(p) and, which is more important, we keep control on its derivative
around pε because we conjugate by elements which are close to the identity. By this control
on derivative, there exists ε > 0 such that h′ε(p) > 1, a contradiction. �

8. Introduction to locally discrete groups

The discussion in the previous paragraph indicates that the notion of discreteness is not
well-suited for treating groups of real-analytic diffeomorphisms, but rather local discreteness
is the appropriate property. Note that from the discussion in Sections 7.1 and 7.2, locally
discrete subgroups of Diffω

+(S1) which are elementary are virtually cyclic, and the dynamics is
completely determined by periodic orbits. More generally, we believe that even non-elementary
locally discrete groups have a simple description.
Conjecture 8.1. Let G ⊂ Diffω

+(S1) be a finitely generated, locally discrete subgroup. One of
the following holds:

(1) either G is Cω conjugate to a cocompact discrete subgroup of PSL(k)(2,R), for some
k ≥ 1, or

(2) G is virtually free, and the action is described by a ping-pong partition (the precise
definition appears in [10]).

This conjecture has been validated for groups G which are virtually free [DKN18,10], with
one end, finitely presented and bounded torsion [FK14] and groups with infinitely many ends
[9]. The first possibility has been completely described [Der13]:
Theorem 8.2 (Deroin). Let G ⊂ Diffω

+(S1) be a finitely generated, locally discrete subgroup.
Then G is Cω conjugate to a cocompact discrete subgroup of PSL(k)(2,R), for some k ≥ 1, if
and only if the action of G on S1 is expanding.

The strategy for working on this conjecture, besides the work of Deroin, is to understand
the set of non-expandable points NE(G) = {x ∈ Λ : g′(x) ≤ 1 for every g ∈ G}. In the case
of Fuchsian groups, we observed that these points are related to the cusps of the quotient
surface. Similarly here one wants to prove that every x ∈ NE(G) is a parabolic fixed point for
some element in G. Control of affine distortion is the key: given an interval J and a C1 map
f : S1 → S1, one defines the distortion coefficient

κ(f ; J) = sup
x,y∈J

log f
′(x)
f ′(y) .
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This is a classical way to measure how f deviates from being an affine map: κ(f ; J) ≥ 0 and
κ(f ; J) = 0 if and only if f is affine on J . Moreover, this coefficient has the nice feature to
well-behave under composition:
(8.1) κ(gf ; J) ≤ κ(g; f(J)) + κ(f ; J).

(8.2) κ(f ; I ∪ J) ≤ κ(f ; I) + κ(f ; J).
The second important property is that κ(f ; J) is a continuous Lipschitz function with respect
to J :
(8.3) κ(f ; J) ≤ sup

S1
|(log f ′)′| · |J |.

By the mean value theorem, the distortion coefficient allows to replace the size of an interval
with the derivative at one given point, and vice versa: for every x0 ∈ J one has

(8.4) e−κ(f ;J)f ′(x0) ≤ |f(J)|
|J |

≤ eκ(f ;J)f ′(x0).

Finally, one important property is that a good control of distortion at some point gives a
slightly worse control of distortion on a small neighborhood. This can be made more precise,
and it is the so-called Schwartz’s lemma [Sch63], emphasized also by Sullivan [Sul83]. Let us
give a simple illustration of how this works:

Lemma 8.3 (Schwartz). Let G ⊂ Diff2
+(S1) be a finite subset and set

CG = max
g∈G

sup
S1
|(log g′)′|.

Let {gn}n∈N ⊂ Diff2
+(S1) be a sequence of distinct elements with g0 = id and gng−1

n−1 = sn ∈ G
for every n ∈ N. Let J ⊂ S1 be an interval with

S =
∞∑
n=0
|gn(J)| <∞.

Then, for every interval T ⊃ J such that |T | ≤ (1 + e−2CGS)|J |, we have |gn(T )| ≤ 2|gn(J)|
for every n ∈ N.

Proof. Let us prove this by induction on n. When n = 0, this holds by assumption. Let us
assume |gj(T )| ≤ 2|gj(J)| for every j ≤ n − 1. Then by sub-addivity (8.1) and Lipschitz
control (8.3), we have

κ(gn;T ) ≤ CG
n−1∑
j=0
|gj(T )| ≤ 2CGS.

Take a point xn ∈ J such that g′n(xn) = |gn(J)|
|J | , then for every y ∈ T we have

g′n(y) ≤ e2CGSg′n(xn) = e2CGS |gn(J)|
|J |

.

We deduce

|gn(T )| = |gn(J)|+ |gn(T \ J)| ≤ |gn(J)|+ e2CGS |gn(J)|
|J |

|T \ J | ≤ 2,

which is the desired inequality. �
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Let us now explain the approach that has been successful so far [DKN18,FK14,9]. Take
a point x0 ∈ NE(G) and observe that its G-orbit is dense in Λ. This means that there is a
sequence of elements {gn} and such that gn(x0) − x0 = εn ↘ 0. If one can obtain a good
control of distortion for these maps on the intervals Jn = [x0, gn(x0)], then one must have
that the derivative of gn is close to 1 on Jn (the conditions g′n(x0), (g−1

n )′(x0) ≤ 1 imply that
there exists a point yn ∈ Jn such that g′n(yn) = 1), and so gn is close to the identity on Jn
(because gn(x0) is εn-close to x0). Typically one would like to take as gn the element in the
ball of radius n in G (with respect to some generating system), giving the closest return of x0,
but in practice the choice of gn has to be adapted to the case under consideration.

9. Actions with minimal invariant Cantor sets

The first structural results for locally discrete groups go back to the end of the 1970s and
describe the case of minimal invariant Cantor sets. In what follows, we will consider a finitely
generated subgroup G ⊂ Diffω

+(S1) with a minimal invariant Cantor set Λ ⊂ S1. By a gap of
Λ, we mean a connected component of the complement S1 \ Λ. Note that by Rebelo’s theorem
(Theorem 7.5), such a subgroup G is necessarily locally discrete.

9.1. Ends of Schreier graphs. The first result, although unpublished for a long time, is
due to Duminy.

Theorem 9.1 (Duminy). If a finitely generated subgroup G ⊂ Diffω
+(S1) has a minimal

invariant Cantor set, then G has infinitely many ends.

Note that such a statement highly requires real-analytic regularity: by a construction of
Ghys and Sergiescu [GS87], Thompson’s group T , which is an infinite simple group and thus
with one end, admits a C∞ action with minimal invariant Cantor set. But Duminy’s original
theorem is much more general and holds for transversely C2, codimension-one foliations with
exceptional minimal sets. See [Nav11, §3] for a detailed exposition. In the case of group
actions on the circle, it describes the large scale geometry of the orbit of gaps J of Λ. Theorem
9.1 is then obtained as a consequence, using two lemmas of control of affine distortion, one
of which is Hector’s lemma (the C2 version of Theorem 7.3). More precisely, given a finite
generating system G ⊂ G, we consider the Schreier graph Sch(X,G) of the orbit X = G(J0) of
a fixed gap J0: this is the graph whose vertices are gaps in X and whose edges are of the form
(J, s(J)), where s ∈ G is a generator. We consider the Schreier graph as a one-dimensional
simplicial complex, and in particular it is a connected topological space. Note that the number
of ends of Sch(X,G) does not depend on the choice of G. The following statement is a more
faithful formulation of original Duminy’s theorem.

Theorem 9.2 (Duminy). If a finitely generated subgroup G ⊂ Diff2
+(S1) has a minimal

invariant Cantor set, then the orbit of every gap has infinitely many ends.

We give here an outline of the proof of Theorem 9.2, assuming that the action is Cω. The
idea is to show that if Sch(X,G) has finitely many ends, then G preserves an affine structure
an therefore is elementary. One starts with a reference affine structure, by taking an element
h with hyperbolic fixed point p ∈ Λ, and a linearizing Cω coordinate in a neighborhood of p
(by Poincaré-Kœnigs linearization theorem). That is, we take an interval I containing p, and
we assume that h is a linear contraction of I fixing p. We want to show that return maps to I
induced by the group action are affine. At infinitesimal level, a map f defined on I is affine if
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its nonlinearity N (f) = (log f ′)′ vanishes on I. One key property of the nonlinearity is that it
is a cocycle when considered as a differential 1-form:

N (f ◦ g) = N (f) ◦ g · g′ +N (g).
To get rid of the annoying derivative g′ in the cocycle relation, we integrate N (f) over a gap
J ∈ X, and set N(f) =

∫
J0
N (f).

If f0 generates StabG(J0) (we use Theorem 7.3 here, and hence the Cω assumption, although
not in a crucial way), we set b =

∫
J0
N (f0). Then the map

X ∼= G/〈f0〉 → R/bZ
J = f(J0) 7→ N(J) := N(f)

is well-defined and satisfies
(9.1) N(f(J))−N(J) =

∫
J
N (f).

Assume for simplicity that Sch(X,G) has one end. Take an element g ∈ G, and a gap J ⊂ I
such that g(J) ⊂ I (this is not restrictive, by minimality). As we are assuming that Sch(X,G)
has one end, for any ε > 0, we can take n ∈ N such that hn(J) and hn(g(J)) are joined in
Sch(X,G) by a path visiting gaps whose length sums up to a quantity < ε. Then, using that
N (h) = 0, we deduce from (9.1) that

∫
J N (g) is comparable to the sum of the lengths of these

gaps, and therefore arbitrarily close to 0.
In Cω regularity, we can now take a shortcut to conclude, by considering infinitely many

gaps J in I: if
∫
J N (g) = 0, then N (g) admits a zero on J , and thus (by analytic continuation

principle), N (g) is identically zero. In lower regularity, this argument will give that g is locally
almost affine, and using Schwartz’s lemma on control of distortion, one can put this in good
quantitative terms.

9.2. A first structure theorem. After the result of Duminy, Ghys obtained in [Ghy87] a
very striking improvement.

Theorem 9.3 (Ghys). If a finitely generated subgroup G ⊂ Diffω
+(S1) has a minimal invariant

Cantor set, then it is virtually free.

An elementary argument is given by Ghys in the case G is accessible in the sense of Dunwoody
(note we still don’t know whether every locally discrete subgroup G ⊂ Diffω

+(S1) is accessible).
After Theorem 9.1, G has infinitely many ends, and thus, by Stalling’s theorem, it splits over
a finite subgroup. Let us assume, for simplicity, that G = H ∗AK is an amalgamated product
over a finite group A (the case of HNN extension is treated similarly). Note that A must be
finite cyclic, and that H and K cannot act minimally. If H and K have finite orbits, then they
are virtually cyclic, and we conclude. Otherwise we keep applying this argument. Accessibility
guarantees that his process ends.

In the general case, the proof of Ghys is of cohomological nature. In our opinion, it would
be very enlightening to find a completely dynamical approach to Theorem 9.3.

10. Ping-pong actions

10.1. Free groups. After Theorem 9.3 we see that virtually free groups represent a distin-
guished class of locally discrete subgroups in Diffω

+(S1), and this motivates a more detailed
study of such class of groups. Avoiding technical details (which may require hard algebraic
work), we will limit our discussion to free groups, following the fundamental work by Deroin,
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Kleptsyn, and Navas [DKN18]. We recall the main construction in [DKN18] for free groups.
We denote by G a rank-n free group. We choose S0 a system of free generators for G, and
write S = S0 ∪ S−1

0 . We denote by ‖ · ‖ the word norm defined by S. Recall that any element
g in G may be written in unique way

g = g` · · · g1, gi ∈ S,
with the property that if gi = s then gi+1 6= s−1. This is called the normal form of g. For any
s ∈ S, we define the subset

Ws := {g ∈ G | g = g` · · · g1 in normal form, with g1 = s} .
If X denotes the Cayley graph of G with respect to the generating set S (which is a 2n-regular
tree), then the subsets Ws are exactly the 2n connected components of X \{id}, with Ws being
the connected component containing s. It is easy to see that the generators S play ping-pong
with the subsets Ws: for any s ∈ S, we have (X \Ws−1) s ⊂ Ws (we consider the right action
of G on X). Using the action on the circle, we can push this ping-pong partition of the Cayley
graph of G to a partition of the circle into open intervals with very nice dynamical properties.
Given s ∈ S, we define

(10.1) Us =
{
x ∈ S1

∣∣∣∣∣∃ neighbourhood Ix 3 x s.t. lim
n→∞

sup
g/∈Ws,‖g‖≥n

|g(Ix)| = 0
}
.

In [DKN18] it is proved the following:

Theorem 10.1 (Deroin, Kleptsyn, and Navas). Let G ⊂ Diffω
+(S1) be a finitely generated,

locally discrete, free group of real-analytic circle diffeomorphisms. Let S0 be a system of free
generators for G and write S = S0 ∪ S−1

0 . Consider the collection {Us}s∈S defined in (10.1).
We have:
(1) every Us is open;
(2) every Us is the union of finitely many intervals;
(3) any two different Us have empty intersection inside the minimal invariant set ΛG;
(4) the union of the Us covers all but finitely many points of ΛG;
(5) if s ∈ S, t 6= s then s(Ut) ⊂ Us−1.

Definition 10.2. Let G ⊂ Homeo+(S1) be a finitely generated, free group of circle homeo-
morphisms and let S = S0 ∪ S−1

0 be a symmetric free generating set. A collection {Us}s∈S of
subset of S1 is a ping-pong partition for (G,S) if it verifies all conditions (1-5) in Theorem 10.1.

For s ∈ S, denote by U∗s the subset of Us which is the union of the connected components
of Us intersecting ΛG. The skeleton of the ping-pong partition is the data consisting of

(1) The cyclic order in S1 of the intersection of connected components of ⋃s∈S Us with ΛG,
and

(2) For each s ∈ S, the assignment of connected components

λs : π0

 ⋃
t∈S\{s}

U∗t

→ π0 (Us−1)

induced by the action.

Remark 10.3. In [DKN18] the definition of the sets Us (there called M̃γ) is slightly different
based on a control on the sum of derivatives along geodesics in the group. Here the definition
that we adopt is simply topological, as we consider how neighbourhoods are contracted along
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geodesics in the group. This difference in the definition leads to different sets: one can show
that Us contains the corresponding M̃s, and the complement Us \ M̃s is a finite number of
points.

Even with the different definition, the proof of Theorem 10.1 proceeds as in [DKN18]. The
hardest part is to prove that property (2), which is Lemma 3.30 in [DKN18]. Property (1)
is a direct consequence of the definition, (3) is an easy consequence of Theorem 7.6, (4) can
be obtained from minimality (of the pieces of orbits Ws(x), x ∈ S1, s ∈ S) and the other
properties, as soon as one knows that at least one Us is non-empty (this is not so difficult in
the case Λ is a Cantor set, but it is a highly nontrivial statement for minimal actions, which
requires to understand the points in NE(G) as explained before, and here Cω regularity is
used crucially). The ping-pong property (5) comes directly from the definition of Us and the
fact that the generators S play ping-pong with the sets Ws.

Before sketching the proof of property (2), let us state a classical result (see [Mat16, Theorem
4.7]) explaining why ping-pong partitions are important. For this, we first need the following:
Definition 10.4. Let ρν : (G,S)→ Homeo+(S1), ν ∈ {1, 2}, be two injective representations
of a finitely generated, free group with a marked symmetric free generating set S = S0 ∪ S−1

0 .
Let {Uν

s }s∈S, be a ping-pong partition for ρν(G,S), for ν = 1, 2. We say that the two partitions
are equivalent if they have the same skeleton.
Proposition 10.5. Let ρν : (G,S)→ Homeo+(S1), ν ∈ {1, 2}, be two injective representations
of a finitely generated, free group with a marked symmetric free generating set S = S0 ∪ S−1

0 .
Suppose that the actions on S1 have equivalent ping-pong partitions. Then the actions are
semi-conjugate.

In the course of the proof, we will make the simplifying assumption that the action is
minimal. Even if we won’t not provide full details, we stress that for this part of the proof
only C2 regularity is required. Given an element Us of the partition, fix one of its connected
components I = (x−, x+).
Definition 10.6. An element g /∈ Ws ∪ {id} is wandering if, writing g = gn · · · g1 in normal
form, the intervals {gk · · · g1(I)}n−1

k=0 are all disjoint. We say also that g is a first return if
g(I) ∩ I 6= ∅.
Remark 10.7. If g = gn · · · g1 is wandering, then by Lemma 10.1.5 we have gk · · · g1(I) ⊂ Ug−1

k

for every k ∈ {1, . . . , n}. In particular, every first return ends with s−1.
Thus, given a nontrivial element h /∈ Ws, we can write h in a unique way as the product

h = fπ` · · · π0,

where the πk are first returns, and f is a wandering element. We call this the first return
decomposition of h. On the other hand, if g is a first return, then for every h ∈ Ws there exists
a minimal k ≥ 1 such that h := hgk /∈ Ws (see [DKN18, Lemma 3.26]).
Lemma 10.8.
a) If g and h are two distinct wandering elements, then g(I) ∩ h(I) = ∅.
b) If g = gn · · · g1 is a first return, then gn = s−1 and g(I) ⊂ I.
c) There exists C > 0 such that for every wandering element g one has κ(g; I) ≤ C.
d) There exists δ > 0 and C ′ > 0 such that for every admissible element g one has κ(g; Ĩ) ≤ C ′,

where Ĩ denotes the δ-neighborhood of I.
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Proof. Write g = gn · · · g1 and h = hm · · ·h1. By the ping-pong relation (5), we have g(I) ⊂
Ug−1

n
and h(I) ⊂ Uh−1

m
. So the images are disjoint, unless gn = hm. If this happens, consider

g′ = gn−1 · · · g1 and h′ = hm−1 · · ·h1 and repeat the argument until one of the two elements is
trivial (as g 6= h the other element is nontrivial). Then statement reduces to the condition of
being wandering. This proves a). The second statement b) is a consequence of the ping-pong
relation (5) and the fact that I is a connected component. The third statement is a consequence
of a) applied to the sequence of wandering elements {gk · · · g1}nk=1 and the sub-additivity of
the distortion coefficient (8.1). Statement d) is obtained from c) arguing as in Lemma 8.3. �

10.2. First returns. We recall the following definition:
Definition 10.9. A map g is a uniform contraction on an interval J if there exists 0 < ρ < 1
such that for any subinterval E ⊂ J one has |g(E)| ≤ ρ|E|. In this case one says that g is a
uniform contraction of ratio ≤ ρ.
Lemma 10.10. Let Ĩ be the δ-neighborhood of I as in Lemma 10.8.d and let R denote the
rightmost connected component of Ĩ \ I. If g is a first return which is a uniform contraction
on I ∪R, then for every I ⊂ I ′ ⊂ I ∪R one has g(I ′) ⊂ I ′.

Proof. Indeed, by Lemma 10.8, one has g(I) ⊂ I. Let R′ be the rightmost connected component
of I ′\I. The image g(R′) is adjacent to the right of g(I) and has length |g(R′)| < |R′|. Therefore,
g(R′) cannot trespass the rightmost point of I ′. �

Lemma 10.11. For any 0 < ρ < 1, all but finitely many wandering elements are uniform
contractions on Ĩ, of ratio ≤ ρ.

Proof. Fix ε ∈ (0, 1). By Lemma 10.8, there are only finitely many first returns g such that
|g(I)| ≥ ε|I|. Consider a first return g such that |g(I)| < ε|I|. Then there exists a point x0 ∈ I
such that g′(x0) < ε and hence, by Lemma 10.8.d, we have that for any x ∈ Ĩ, g′(x) ≤ eC

′
ε.

In particular, if ε < ρe−C
′ , such a first return is a uniform contraction on Ĩ, of ratio ≤ ρ. �

Proposition 10.12 ([DKN18], Lemma 3.23). There exist first returns g− and g+ that fix
respectively the left and right endpoints x− and x+ of I.

Proof. After Lemma 10.11, there is only a finite collection of first returns g1, . . . , gm which
are not uniform contractions on Ĩ of ratio ≤ 1

2 . We want to show that one of the gi fixes
x+ (there is at most one, after Lemma 10.8.a). We shall argue by contradiction. We assume
first that none of the gi fixes x− neither; supposing that this is not the case, there exists a
compact subinterval J ⊂ I, which contains a neighbourhood of all images gi(I). Let R be a
neighbourhood of x+ which is contained in Ĩ, and such that
(10.2) gi(I ∪R) ⊂ J for all i = 1, . . . ,m.
Observe that this condition and Lemma 10.10 give g(I ∪R) ⊂ I ∪R for every first return g.

We fix ε > 0 and we want to prove that only finitely many elements h /∈ Ws satisfy
|h(R)| ≥ ε: this will imply that x+ ∈ Us, which is absurd.

Take h /∈ Ws with first return decomposition
h = fπ` · · · π0.

If none of the πi is one of the fixed first returns g1, . . . , gm, then

|h(R)| ≤ |f(R)|
2` ≤ 1

2` .
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In this case ` must be bounded. Moreover, after Lemma 10.11, there are only finitely many
wandering elements which are not uniform contractions on Ĩ of ratio ρ < ε

|R| . We deduce that
only finitely many such h can satisfy |h(R)| ≥ ε.

Next, suppose that there is some πi which is the first of the first returns g1, . . . , gm that
appears in the first return decomposition of h. Let us write h = h1πih2, where no gi appears
in h2. Note that as we are considering a first return decomposition, we have h1 /∈ Ws. From
(10.2), we have

h(R) = h1πih2(R) ⊂ h1(J).
Using compactness of J ⊂ I and the definition (10.1) of Us, we see that for at most finitely
many elements h1 we have |h1(J)| ≥ ε. As we have finitely many choices for h1πi, fix, by
uniform continuity we can fix δ > 0 such that if E ⊂ S1 is an interval of length ≤ δ, then
|h1πi(E)| ≤ ε. For such a δ > 0, by the previous argument, there are only finitely many
choices of elements h2 such that |h2(R)| ≤ δ. This gives the desired contradiction under the
additional assumption that no gi is fixing x−.

In the case one of the first returns gi is the first return g− fixing x−, we change the choice
of the compact subinterval J , requiring that it contains a neighbourhood of all images gi(I),
for gi 6= g−. Upon taking a larger J , we can take a neighbourhood R such that gi(I ∪R) ⊂ J
for all i = 1, . . . ,m (including g−). The proof given for the previous case works verbatim,
unless in the decomposition h = h1πih1 we have πi = g−. For such case, let I+ be the interval
(I ∪R)\g−(I) (which contains the image of R by every possible h2). Then g−(I+) is compactly
contained in I, and we can conclude as in the previous case. �

Note that if g− and g+ exist, they must be different elements. Otherwise, there would
be a unique first return to I, and it would be possible to find a subinterval J ⊂ I such
that g(J) ∩ J = ∅ for every nontrivial g ∈ G, contradicting minimality of the action (see
[DKN18, Lemma 3.24]). More generally, we have the following.

Lemma 10.13 ([DKN18], Lemma 3.29). With the previous notations, the only fixed point of
g± in I is x±. Moreover, one has g′±(x±) = 1 and both g± are topological contractions of I.

Proof. Assume for contradiction that g+ fixes a nontrivial subinterval J of I. Note that this
implies g+(I \ J) ⊂ I \ J . From Lemma 10.8.a, for every wandering element h /∈ Ws, one has
either h(J) ∩ J = ∅ or h(J) = J (in which case h = g+).

Take a nontrivial h ∈ G. Assume first that h /∈ Ws. If h is a power of g+, then we have
h(J) = J . Otherwise, considering the first return decomposition of h, from our preliminary
considerations on wandering elements, we get that h(J) ∩ J = ∅. When h ∈ Ws, consider the
minimal k ≥ 1 such that h := hgk+ /∈ Ws (Remark 10.7). Then h(J) = hg−k+ (J) = h(J), and
thus, as h /∈ Ws, we see from the previous case that h(J) ∩ J = ∅, unless h is a power of g+
(which implies h = g−k+ by minimality of k).

As a summary, we have proved that for every g ∈ G, one has g(J) ∩ J = ∅, unless g is a
power of g+. As the action of 〈g+〉 on J cannot be minimal, we get a contradiction. Thus x+
is the unique fixed point of g+ on I. The analogue argument works for g−.

As a consequence, we get that both g± are contractions of I, so that g′±(x±) ≤ 1. On the
other hand, it is not difficult to observe that they are topological expansions on the other side
of x± respectively (this is because otherwise we would get control on contractions at points
x±). This proves g′±(x±) ≥ 1. �
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10.3. A finite number of connected components.

Lemma 10.14 ([DKN18], Lemma 3.30). Each Us has only finitely many connected components.

Proof. Fixing one I, we can assume |g+(I)| ≤ 1
2 |I|, so that by control of distortion we have

κ(g+; I) ≤ log 2 and hence ∑k−1
i=0 |gi · · · g1(I)| ≥ log 2

C
, where we write g+ = gk · · · g1.

For a given I and the corresponding g+, write g+ = gk · · · g1, and say that Φ+(I) is the
connected component of the Us which contains g1(I). Similarly one defines Φ−. This gives a
decomposition of the connected components of the Us into finite disjoint cycles, where the
total length along a cycle is bounded from below. Thus there are finitely many cycles. �
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