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Abstract

Wireless communications revolution plays a significant role in facilitating several
mobile applications like unmanned aerial vehicles, high-speed railway, and vehicular
communications. Particularly, the concept of connected vehicles brings a new level of
connectivity to vehicles. Along with novel on board computing and sensing technologies,
vehicular networks serve as a key enabler of intelligent transportation systems and
smart cities. This new generation of networks have a profound impact on the society,
making every day traveling safer, greener, and more efficient and comfortable. However,
in vehicular environments, the propagation medium between the network nodes is
highly time-varying leading to considerable reliability challenges. In fact, transmitted
signals propagate through multiple paths, each with a different delay, attenuation, in
addition to Doppler shift effect resulting from the motion of vehicles and the surrounding
environment. Ensuring communication reliability by the means of accurate channel
estimation in such environments is very important. Therefore, the accuracy of the
channel estimation influences the system performance, since a precisely estimated
channel response influences the follow-up equalization, demodulation, and decoding
operations at the receiver. In literature, there exists an extensive work on conventional
channel estimation for vehicular communications. However, these conventional estimators
rely on many assumptions that limit their performance in highly dynamic time-varying
channels. Moreover, linear conventional estimators are impractical solutions in real case
scenarios as they rely on statistical models and require high implementation complexity.
Although there exists simple linear estimation with affordable complexity, they lack
robustness in highly dynamic environments. Therefore, investigating estimators with a
good trade-off complexity vs. performance is a significant task. As a prevailing approach
to AI, deep learning (DL) develops efficient methods to analyze data by finding patterns
and learning underlying structures and represents an effective data driven approach to
problems encountered in various scientific fields. The main reason behind integrating
DL in wireless communications is to find solutions to communication problems where
analytical solutions are intractable or highly complex. DL has a strong ability to overcome
this challenge via low-complexity and robust solutions that improve the performance of
wireless systems. Additionally, the GPU-based distributed processing enables the DL
employment in real-time applications. As a result, DL can be leveraged to exploit the
data generated in vehicular networks. In this context, this thesis aims to investigate



how to adapt such tools to account for the characteristics of high mobility vehicular
networks. We show that integrating optimized DL architectures brings low-complexity
solutions for vehicular channel estimation either by improving the performance compared
to the simplified linear channel estimators, or by approaching the performance of
complex robust model-based estimators with feasible implementation. Therefore, unlike
conventional estimators, DL-based estimators provide a good trade-off between the
computational complexity and the system performance. Moreover, the generalization
ability gives robustness to the system when deployed in highly dynamic environments.
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Résumé

La révolution des communications sans fil joue un rôle important dans la facilitation
de plusieurs applications mobiles telles que les drones, les trains à grande vitesse et les
communications entre véhicules. En particulier, le concept de véhicules connectés apporte
une bonne connectivité aux véhicules. En plus des nouvelles technologies de calcul et de
détection embarquées, les réseaux de véhicules servent de catalyseur clé aux systèmes
de transport intelligents et aux villes intelligentes. Cette nouvelle génération de réseaux
a un impact profond sur la société, rendant chaque jour les déplacements plus sûrs,
plus écologiques, plus efficaces et plus confortables. Cependant, dans les environnements
véhiculaires, le milieu de propagation entre les nœuds du réseau varie fortement dans le
temps, ce qui pose des problèmes de fiabilité. En fait, les signaux transmis se propagent sur
plusieurs chemins, chacun avec un retard et une atténuation différente, en plus de l’effet de
décalage Doppler résultant du mouvement des véhicules et de l’environnement. Il est très
important de garantir la fiabilité de la communication au moyen d’une estimation précise
des canaux dans de tels environnements. Par conséquent, la précision de l’estimation
de canal influence les performances du système, car une réponse de canal estimée avec
précision influence les opérations d’égalisation, de démodulation et de décodage au niveau
du récepteur. Dans la littérature, il existe plusieurs travaux sur les méthodes classiques
d’estimation du canal pour les communications véhiculaires. Cependant, ces estimateurs
conventionnels reposent sur de nombreuses hypothèses qui limitent leurs performances
dans les canaux hautement dynamiques variant dans le temps. De plus, les estimateurs
linéaires conventionnels sont des solutions peu pratiques dans des scénarios de cas réels
car ils reposent sur des modèles statistiques qui nécessitent une complexité élevée.
Bien qu’il existe des estimateurs linéaires simples avec une complexité abordable, ils
manquent de robustesse dans les environnements très dynamiques. Par conséquent, étudier
des estimateurs avec un bon compromis complexité/performance est une problématique
importante à investir. En tant qu’approche dominante de l’IA, l’apprentissage profond
développe des méthodes efficaces pour analyser des données en apprenant efficacement
les structures pour plusieurs problèmes rencontrés dans divers domaines scientifiques.
La principale raison de l’intégration de l’apprentissage profond dans les communications
sans fil est de trouver des solutions aux problèmes de communication lorsque les solutions
analytiques sont insolubles ou très complexes. L’apprentissage profond a une forte capacité
à relever ce défi grâce à des solutions peu complexes et robustes qui améliorent les



performances des systèmes sans fil. De plus, le traitement distribué basé sur GPU
permet l’utilisation de l’apprentissage profond dans des applications à temps réel. En
conséquence, l’apprentissage automatique s’exploite pour les différentes données générées
dans les réseaux véhiculaires. Dans ce contexte, cette thèse vise à étudier comment adapter
de tels outils pour tenir compte des caractéristiques des réseaux de véhicules à haute
mobilité. Nous montrons que l’intégration d’architectures optimisées d’apprentissage
profond apporte des solutions de faible complexité pour l’estimation de canaux des
réseaux véhiculaires soit en améliorant les performances par rapport aux estimateurs
de canaux linéaires, soit en approchant les performances d’estimateurs robustes tout en
réduisant la complexité d’implémentation. Par conséquent, contrairement aux estimateurs
conventionnels, les estimateurs basés sur l’apprentissage profond offrent un bon compromis
entre la complexité de calcul et les performances du système. De plus, la capacité
de généralisation rend le système plus robuste surtout quand il est déployé dans des
environnements hautement dynamiques.
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ỹ = h̃� x̃, y = C(h)x

xvi



Introduction

Wireless Communication is the fastest growing technology in the communication field.
It can be defined as a method of transmitting information from one point to another
without using any connection like wires, cables or any physical medium. Generally, in a
communication system, information is transmitted from transmitter to receiver that are
placed over a limited distance, or with the help of wireless communication, where the
transmitter and the receiver can be placed anywhere between a few meters (Bluetooth
communications) to a few thousand kilometers (satellite communication).

The primary and important benefit of wireless communication is mobility that offers
the freedom to move around while still being connected to the network. There exist
several applications where network terminals are said to be in motion. Unmanned
aerial vehicles (UAV) also referred to as drones, are playing recently an increasingly
important role in military, public, and civilian applications. Therefore, UAVs have become
a topic of central research interest in the wireless communication community. Another
important application is the internet of things and its related fields [Chafii et al., 2018b,
Chafii et al., 2018a]. Moreover, vehicular communications applications like autonomous
driving and vehicles platooning systems are considered as a trendy research topics that
contribute in designing and managing smart cities. In such applications, the mobility
feature brings several challenges that highly impact the communication reliability, like
fast and frequent handovers, carrier frequency offset, inter-carrier interference, high
penetration loss, and fast time-varying wireless channel, where the channel suffers from
multi-path fading besides large Doppler spread.

In this context, estimating and tracking the wireless channel variations is an
important task, since a precisely estimated channel response is critical for the
follow-up equalization, demodulation, and decoding operations applied at the
receiver [Bomfin et al., 2021a, Bomfin et al., 2021b]. Therefore, the accuracy of the
channel estimation influences the system performance. Moreover, channel state
information is highly relevant for several applications. For instance, it is employed
in wireless physical layer security for secrete key generation [Hyadi et al., 2016,
Hamamreh et al., 2019, Wu et al., 2018], indoor localization [Njima et al., 2020,
Njima et al., 2021b, Njima et al., 2021a, Njima et al., 2021c, de Almeida et al., 2021],
and MIMO based systems [Ehsanfar et al., 2020, Ehsanfar et al., 2019].
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Deep learning (DL) has recently drawn attentions for its great success in improving several
physical layer applications of communications, especially, channel estimation. DL-based
algorithms can provide a good generalization ability and trade-off between the system
performance and the required computational complexity. In this context, this dissertation
addresses mainly DL-based channel estimation in high mobility vehicular communications.

Thesis Outline

The organization of this dissertation and chapters content are presented as follows.

Chapter 1 presents the fundamentals used in the dissertation. First, a background on
wireless communications and time-varying channel with its different statistical properties
are recalled. Next, the model of the OFDM transmission over a multipath channel
is formalized. Finally, vehicular communications concept is introduced as well as the
motivation behind using deep learning (DL) techniques in the channel estimation
procedure.

Chapter 2 introduces a detailed illustration of the physical layer transceiver system model.
In addition, the signal model description and the vehicular channel models employed along
the dissertation are provided.

In Chapter 3, conventional state-of-the-art (SoA) channel estimators that were proposed
for vehicular communications are presented and discussed. After that, a performance
evaluation is carried on, where the conventional estimators are compared in terms of bit
error rate (BER), normalized mean-squared error (NMSE), and computational complexity.
Finally, their limitations are discussed, and our strategies for solving the conventional
estimators limitations are briefly introduced.

Chapter 4 describes our first strategy for improving the channel estimation without the use
of DL techniques. In this context, two conventional estimators namely truncated discrete
Fourier transform (T-DFT) and temporal averaging T-DFT (TA-TDFT) are proposed.
The basic idea behind these estimators is to estimate only the channel dominant taps
while considering the rest taps as an additional noise. Moreover, analytical analysis shows
that applying time averaging to the T-DFT estimated channel is able to further improves
the overall performance. Analytical and simulation results implemented using different
vehicular channel models reveal the performance superiority of the proposed estimators
compared to the conventional estimators while recording a significant decrease in the
computational complexity.

In chapter 5, the proposed DL-based symbol-by-symbol (SBS) channel estimators for
doubly-selective wireless channels are provided and discussed, where deep neural network
(DNN) and long short-term memory (LSTM) networks are utilized. Employing DL
networks in the channel estimation reveals a significant computational complexity decrease
while preserving a good performance. The proposed estimators are compared with the
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recently proposed SoA DL-based estimators, and shown to outperform them in different
vehicular channel models.

Chapter 6 focuses on the proposed DL-based frame-by-frame (FBF) estimators, where
convolutional neural network (CNN) is utilized. The proposed DL-based FBF estimators
improve the estimation accuracy through reformulating a robust and accurate initial
estimation based on weighted interpolation (WI). After that, further performance
improvement is achieved by employing optimized CNN architectures. Extensive numerical
experiments demonstrate that the developed estimators significantly outperform the
recently proposed DL-based FBF estimators in different vehicular scenarios, while
substantially reducing the overall computational complexity.

This thesis started in January 2019 and defended in December 2021, and it is supported
by the CY Initiative of Excellence through the ASIA Chair of Excellence Grant
(PIA/ANR-16-IDEX-0008).

Thesis Contributions

In this dissertation, we mainly investigate improving channel estimation methods using DL
and signal processing techniques, specifically, in high mobility vehicular communications.
However, we note that the proposed estimators in this thesis can be easily adapted to
any other application by just re-configuring the simulation parameters according to the
standards managing each application. Accordingly, the contributions of this thesis can be
summarized as follows:

. DFT-based SBS Channel Estimation

◦ Propose a low-complexity T-DFT channel estimator that adapts the
discrete Fourier transform (DFT) based channel estimation to the vehicular
communications standard by estimating only the channel impulse response of
dominant taps using the predefined pilots.
◦ Show that applying an appropriate temporal averaging to T-DFT results in an

improved performance in different vehicular channels conditions.
◦ Derive analytically the NMSE expressions of T-DFT and TA-TDFT estimators,

and demonstrate how the noise power is degraded throughout the received
frame.
◦ Show that the proposed T-DFT and TA-TDFT estimators outperform

conventional estimators with less computational complexities. In addition to
their robustness superiority compared to conventional linear minimum mean
square error (LMMSE) estimator.

. DL-based SBS Channel Estimation
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◦ Propose two DNN-based SBS channel estimators for vehicular communications.
The proposed estimators are based on applying a DNN based processing on top
of conventional spectral temporal averaging (STA) and time domain reliable
test frequency domain interpolation (TRFI) vehicular channel estimators.
◦ Propose an LSTM-based SBS estimator for vehicular environment, where we

show that LSTM is more robust and efficient in tracking the vehicular channel
especially in high mobility scenarios. Simulation results show that LSTM-based
estimation outperforms DNN-based estimation. This can be explained by the
high ability of LSTM in learning the channel time correlations, compared with
a simple DNN architecture.
◦ Perform intensive experiments on several DNN and LSTM architectures using

the grid search algorithm, in order to select the most suitable hyper parameters
in terms of both performance and complexity. The proposed DNN and LSTM
based estimators are able to significantly outperform the recently proposed
DL-based estimator, while achieving a considerable computational complexity
decrease.

. DL-based FBF Channel Estimation

◦ Propose a hybrid, adaptive, low-complexity, and robust WI channel estimators
that use modified pilot allocation schemes within the transmitted frame and
adapt the employed scheme according to the mobility condition.
◦ Derive analytically the expression of the employed interpolation matrix for the

proposed pilot allocation schemes.
◦ Integrate an optimized super resolution CNN (SR-CNN) and denoising CNN

(DN-CNN) networks on top of the WI estimators to enhance the performance.
◦ Show that the proposed WI estimators outperform the recently proposed

DL-based FBF estimators in terms of latency and transmission data rates,
while recording substantial reduction in computational complexity.
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Chapter 1

Fundamentals and Background

Contents
1.1 Wireless Communications Channel . . . . . . . . . . . . . . . . 5

1.1.1 Major Components of Fading . . . . . . . . . . . . . . . . . . . 6

1.1.2 Doubly Selective Channel Characterization . . . . . . . . . . . 7

1.1.3 LTV Channel Correlation Functions . . . . . . . . . . . . . . . 10

1.2 OFDM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Vehicular Communications . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 IEEE Standards and Network Infrastructure . . . . . . . . . . 17

1.3.3 Characteristics and Challenges . . . . . . . . . . . . . . . . . . 21

1.4 Deep Learning Based Channel Estimation . . . . . . . . . . . 22

1.4.1 DL Techniques Overview . . . . . . . . . . . . . . . . . . . . . 23

This chapter gives a summary of some fundamentals about the time-varying wireless
channel, where the modeling and statistical tools used to characterize it are firstly covered.
Second, the orthogonal frequency division multiplexing (OFDM) transmission and its
benefits in a multipath environment are presented. After that, vehicular communications
are presented as a case study, where its main concept is introduced. Finally, the motivation
of using DL as a promising solution for wireless communications challenges, especially
channel estimation, is discussed.

1.1 Wireless Communications Channel

In wireless communication, the transmitted signal propagates through a multi-path noisy
environment, thus, it takes different paths that arrive at the receiver at different timing
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Reflected signal

Diffracted signal

Direct signal

Reflected signal

Diffracted signal

Direct signal
Combined signal

Figure 1.1: Signal propagation in wireless environment.

with different signal strength as shown in Fig. 1.1. As a result, the signal coming into
the receiver is the superimposition of all the components that are constructively or
destructively combined. This combination of all the incoming signals makes the received
signal different from the original transmitted signal. This phenomenon is called fading.

1.1.1 Major Components of Fading

There are many factors generating fading effect, where the most important channel fading
factors are: (i) Multi-path propagation and (ii) Doppler Shift. Multi-path propagation
is caused by multiple receptions of the same signal. The signal travels along different
paths, and therefore is received at slightly different times, leading to a frequency-selective
channel. Moreover, relative motion between the transmitter and receiver (or surrounding
objects) causes random frequency modulation, since each multi-path component has a
different Doppler shift. Hence, the channel becomes doubly selective, i.e. varies in time
and frequency.

Figure 1.2: Doppler spectrum in doubly selective wireless channel.
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Figure 1.3: Transmitted signal propagation in doubly selective wireless channel.

The impact of Doppler shift is illustrated and calculated as shown in Fig. 1.2. As Doppler
spectrum shows how much the carrier frequency fc gets spread by Doppler effect indicated
by fd that is determined by the velocity v of an object. We note that fd and v are
proportionally related, meaning if v gets higher, fd gets larger, then, the Doppler spectrum
width gets wider, and vise versa.

1.1.2 Doubly Selective Channel Characterization

The doubly selective wireless channel can be modeled as a linear time-variant (LTV)
channel that can be characterized by four functions [Bello, 1963] as follows:

1.1.2.1 Delay-Time Response

In order to explain what is the channel delay-time response, let us consider the following
case shown in Fig. 1.3.

A vehicle in motion is communicating with the base station and there are many buildings
between them. One may intuitively guess that the vehicle would receive multiple copies
of the transmitted signal from the base station because the transmitted signal will reach
the vehicle via multiple path as we discussed. Let us assume that we have four different
paths as shown in Fig. 1.3. There are two major time-variant characteristics of these
multi-paths: (i) time delay and (ii) attenuation. The mathematical representation of the
time-variant channel impulse response can be expressed as follows:
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h(τ, t) =
L−1∑
l=0

αl(t)δ(τ − τl(t)). (1.1)

where αl(t) and τl(t) denote the channel propagation gain known as attenuation and delay
of the l-th propagation path as function of time respectively.

According to the central limit theorem can be applied [Dodge, 2008], the time-variant
impulse response can be modeled as a complex-valued Gaussian random process in the
t variable, and each channel multi-path component pl(τ, t) is associated with specific
statistical distribution. When the channel multi-paths are non-line-of-sight (NLOS), the
channel power profile shows a Rayleigh distribution. Moreover, the probability distribution
function (PDF) of the Rayleigh distribution channel is expressed as follows:

PRay(x) = x

σ2
h

e
−r2

2σ2
h , (1.2)

where x is a positive real value and σ2
h = E{|h(t)|2}. Moreover, the PDF of the phase of

a Rayleigh process noted ΦRay(θ) can be expressed as:

ΦRay(θ) = 1
2π ∀θ ∈ [−π, π]. (1.3)

On the other hand, when a strong dominant component denoted as line-of-sight (LOS)
path is presented, then the corresponding probability density function that follows the
Rician distribution is noted PRic(x), and given as [Rice, 1948]:

PRic(x) = x

σ2
h

e
−r2+ρ2

2σ2
h J0(xρ

σ2
h

). (1.4)

where J0(.) is the modified Bessel function of the first kind with order zero, ρ2 is the
variance of the line of sight path, and σ2

h the variance of the scattered NLOS components.
We define the Rice factor CR = ρ2

σ2
h
as the ratio between the power of the LOS received

multi-path component and all the NLOS multi-path components. The probability density
function of the phase ΦRic is given by:

ΦRic(θ) = e−CR

2π

1 +
√
πρ2

σ2
h

cos(θ − θρ)e
ρ2 cos2(θ−θρ)

σ2
h

(
1 + erf(ρ cos(θ − θρ)

σ2
h

)
) . (1.5)

where erf(.) is the error function and θρ is the phase of the LOS path. For x ≥ 0, the
error function is defined as erf(x) = 2

π

∫ x
0 e
−t2dt, θ is defined as −π ≤ θ ≤ π. We remark

in (1.4) and (1.5) that if ρ2 → 0, we naturally get the Rayleigh model that has been
previously described.
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1.1 Wireless Communications Channel

(a) Channel impulse response h(τ, t) (b) Channel frequency response h̃(f, t)

Figure 1.4: Channel Impulse and frequency responses

1.1.2.2 Frequency-Time Response

The channel frequency-time response known as the time-variant transfer function is
obtained by Fourier transforming the impulse response with respect to the delay variable
τ as shown below:

h̃(f, t) = Fτ{h(τ, t)} =
∞∫
−∞

h(t, τ)e−j2πfτdτ =
L−1∑
l=0

αl(t)e−j2πfτl(t). (1.6)

Figure 1.4 shows the time variant channel impulse and frequency responses.

1.1.2.3 Frequency-Doppler Response

The frequency-Doppler response known as Doppler-spread function is obtained by Fourier
transforming the time-variant transfer function with respect to the time variable t as
shown in 1.7, such that:

ḧ(f, v) = Ft{h̃(f, t)} =
∞∫
−∞

h̃(f, t)e−j2πvtdt. (1.7)

1.1.2.4 Delay-Doppler Response

The delay-Doppler spread function is obtained by Fourier transforming the time-variant
impulse response with respect to the time variable t as shown in Fig. (1.8), or by taking
the inverse Fourier-transform of the output Doppler-spread function with respect to the
frequency. The delay-Doppler spread function describes the complex gain of the channel
in a specific delay and Doppler shift interval.
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1 Fundamentals and Background

Figure 1.5: Relationships between LTV channel responses.

h̄(τ, v) = Ft{h(τ, t)} =
∞∫
−∞

h̃(τ, t)e−j2πvtdt (1.8)

Figure 1.5 describes the relationships between different time variant LTV channel
responses.

1.1.3 LTV Channel Correlation Functions

Assuming that the wireless channel follows the wide-sense stationary uncorrelated
scattering (WSSUS) model, therefore we have:

. Each path hl(t) in (1.1) is a zero mean Gaussian complex process, E{hl(t)} = 0,∀t,
and then the mean of each path is independent of the time variations. Furthermore,
the time correlation function rhl(t1, t2) = E{hl(t1)h∗l (t2)} can only be written with
the difference ∆(t) = (t1 − t2), such that:

rhl(t1, t2) = rhl(∆t). (1.9)

. Uncorrelated scattering (US) means that the paths are uncorrelated, so for l1 6= l2
we have:

E{hl1(t)h∗l2(t)} = 0. (1.10)

Following the above assumptions, we can define the following functions for the time-variant
WSSUS channel model.

1.1.3.1 Time Correlation Function

The time-frequency correlation function, noted PH and defined by PH(f1, f2, t1, t2) =
E{h̃(f1, t1)h̃∗(f2, t2)} has the following property:

PH(f1, f2, t1, t2) = PH(∆f ,∆t). (1.11)

10
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(a) Channel Doppler spectrum SH(v) (b) Channel time correlation rhl
(∆t)

Figure 1.6: Channel Doppler Spectrum and time correlation function for fd = 10 Hz, σ2
h = 1.

where ∆f = (f1 − f2). Following the Jakes model derivation provided
in [G Vega et al., 2019], the time correlation function can be calculated by considering
∆f = 0, and expressed as PH(∆f = 0,∆t) = rhl(∆t), such that:

rhl(∆t) = σ2
hJ0(2πfd∆t). (1.12)

where J0 is the Bessel function of the first kind with order zero, and fd is called maximum
Doppler frequency, and represents the time variation of the mobile channel.

1.1.3.2 Doppler Spectrum

The channel Doppler spectrum is another useful function describing the channel.
Considering a Rayleigh distributed channel response, it is shown that the channel Doppler
spectrum follows the "U" shaped Jakes’ model [G Vega et al., 2019]. The channel Doppler
spectrum denoted as SH(∆f , v) is defined as the Fourier transform of the time correlation
function rhl(∆t). Hence, we note SH(∆f = 0, v) = SH(v), such that:

SH(v) = F∆t{rhl(∆t)} =


σ2
h

πfd

√
1−( v

fd
)2
, |v| ≤ fd.

0, elsewhere,

(1.13)

We note that, if the channel is time invariant (rhl(∆t) = 1), i.e. there is no time variations
in the channel, then SH(v) = δ(v) and there is no spectral broadening observed in the
transmission of a pure frequency tone. Moreover, the range of v where SH(v) is non zero
is called the Doppler spread fd of the channel. Since SH(v) and rhl(∆t) are related by
the Fourier transform, the reciprocal of fd is a measure of the channel coherence time Tc,
such that:
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Tc =
√

9
16π

1
fd

= 0.423
fd

. (1.14)

In this context, we can say that a slowly changing channel has a large coherence time, or
equivalently a small Doppler spread.

1.1.3.3 Power Delay Profile

As the channel is supposed to follow a WSSUS channel model, the paths are uncorrelated,
then the channel intensity profile as a function of time delay τ and difference ∆t denoted
as channel power delay profile (PDP) ΓH(τ,∆t). We note that, ΓH(τ) is measured in
practice by taking the spatial average of the channel impulse response |h(τ, t)|2 over
a local area [Acosta-Marum and Ingram, 2006]. Moreover, the range of τ values where
ΓH(τ) is non zero is called the multipath spread of the channel denoted by τmax.

1.1.3.4 Frequency Correlation Function

We here give the relation between the frequency correlation function and the channel
PDP. We restrict the correlation function (1.11) to its frequency part, i.e. the function
PH(∆f ,∆t) for ∆t = 0, that we note PH(∆f ). The frequency correlation function and the
channel PDP are linked by a Fourier transform relation as:

PH(∆f ) = Fτ{ΓH(τ)}. (1.15)

Since PH(∆f ) is an autocorrelation function in the frequency variable, it provides a
measure of the frequency coherence of the channel. Hence, as a result of the Fourier
transform relationship, the reciprocal of the multipath spread is the coherence bandwidth
of the channel denoted as:

BC = 1
β τmax

. (1.16)

β is a variable factor related to the definition of the coherence bandwidth. For example, if
we define the coherence bandwidth as the range of frequencies over which the frequency
correlation is above 0.5, then, we have β = 5, and we have 50% coherence bandwidth. We
note that, if BC is small in comparison of the bandwidth of the transmitted signal, the
channel is said to be frequency selective, in this case the transmitted signal is severely
distorted by the channel. On the other hand, if BC is large in comparison with the
bandwidth of the transmitted signal, then the channel is said to be frequency flat.
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1.2 OFDM Theory

Figure 1.7: Relationships between the correlation functions of a WSSUS time-variant channel.

1.1.3.5 Scattering Function

The fourth statistical function that is used to describe the channel is the scattering
function, noted Sh, and function of the variables v and τ . Determining Sh(τ, v) can
be easily derived from the previously defined functions with the following relation:

Sh(∆f ) = F∆t{ΓH(τ)} (1.17)

We note that the shape of Sh(τ, v = 0) determines the length and gain of the channel
multi-paths. Moreover, As the channel varies rapidly, it becomes very difficult to obtain a
dynamic knowledge of its perfect knowledge characteristics. However, studying the time
variant channel responses and correlation functions especially by approximations and
models measurements, may help in managing the transmission operations. Moreover,
analyzing the doubly selective channel characteristics and its variation speed is crucial
to establish a robust and reliable wireless communications, where the doubly selective
channel estimation task plays a vital role in determining the overall system performance.
The statistical functions and the links between them are provided in Fig. 1.7.

1.2 OFDM Theory

OFDM, is a key technology in current high data rate wireless communications, since it
has shown success in combating multi-path fading impact. As a definition, OFDM is
a multicarrier transmission technique that divides the available band into K subbands,
corresponding to subcarriers with frequency separation ∆f . OFDM can efficiently utilize
the available spectrum by spacing subcarriers closer together and making them orthogonal
to one another, and thus, preventing guard interval allocation and interference problems.
Therefore, the allocated spectrum of each subcarrier has a null at the center frequency of
each of the other subcarriers.

In order to illustrate the OFDM transmission principle, let us assume that we have K
orthogonal pulses uk(t), with k = {0, 1, . . . , K − 1}. In the n-th symbol interval, K
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1 Fundamentals and Background

Figure 1.8: OFDM transmitter block diagram.

symbols bk[n] are transmitted simultaneously. Thus, the transmitted signal component
corresponding to the n-th symbol interval is:

sn(t) =
K−1∑
k=0

bk[n]uk(t− nTs)ej2πk∆ft. (1.18)

The overall transmitted signal, where all signals components corresponding to various
symbol intervals are added, can be expressed as follows:

s(t) =
+∞∑

n=−∞
sn(t) =

+∞∑
n=−∞

K−1∑
k=0

bk[n]uk(t− nTs)ej2πk∆ft. (1.19)

A block diagram of the OFDM transmitter is shown in Fig. 1.8. In order to achieve
orthogonality, OFDM uses sinusoidal pulses spectrally centered about different carrier
frequencies. For simplicity, we will assume that the pulses uk(t) are rectangular pulses of
duration 1/∆f and amplitude

√
∆f , given by:

uk(t) =


√

∆f, 1 ≤ t < 1
∆f .

0, 1
∆f ≤ t < T.

(1.20)

We note that, other pulses can be used such us raised cosine [Chen and Wyglinski, 2010].
As it is shown in Fig. 1.9, pulses do not overlap, as long as T ≥ 1/∆f , or equivalently until
T∆f ≥ 1. This fundamental property has to be fulfilled in order to ensure orthogonality of
pulses in the time-domain. Moreover, if the above stated condition is not satisfied, there is
not any set of orthogonal pulses and therefore the interference between successive received
OFDM symbols defined as inter symbol interference (ISI) cannot be avoided in general.
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1.2 OFDM Theory

Thus, in order to reduce ISI, we have to ensure that consecutive pulses are spaced enough
to overcome the maximum delay spread of the channel. On the other hand, large T∆f
reduces spectral efficiency of a system, which is inversely proportional to the effective
time-bandwidth product.

Since, most of practical implementations use discrete-time processing, lets define the
sampled transmitted signal s[m] = s(mTs) using sampling frequency B = K∆f , such
that:

s[m] = 1
K

+∞∑
n=−∞

K−1∑
k=0

ak[n]e
j2πkm
K . (1.21)

Here m and N denote the discrete time variable and the sampling period respectively.
Moreover, since OFDM is initially proposed to overcome the channel frequency selectivity
problem, we will also assume that the transmitted signal passes through a frequency
selective channel, modeled by a finite-length impulse response h(τ) of length τmax. Hence,
by sampling of h(τ), we get the discrete time impulse response h[l] with length L.
Therefore, the received signal, ignoring any noise effects for simplicity, is depicted in
Fig. 1.10 and can be represented by following linear convolution:

r[m] = h ∗ s[m] =
L−1∑
l=0

h[l]s[m− l]. (1.22)

According to Fig. 1.10, we have the rectangular pulses of duration K and guard interval
(N−K) between consecutive pulses are linearly convoluted with channel impulse response
h[l] of duration L. As long as (N −K) ≥ (L− 1), pulses at the output of the channel do
not overlap and can be effectively demodulated by receiver, therefore omitting the impact
of ISI. As a result, we conclude that ISI can be avoided if the guard interval between the
consecutive OFDM symbols (N −K) is at least as long as the channel impulse response
(L− 1).

Figure 1.9: OFDM transmitted signal.
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1 Fundamentals and Background

Figure 1.10: Received OFDM signal after passing through a frequency selective channel
without appending CP.

Figure 1.11: Received OFDM signal after passing through a frequency selective channel with
appending CP.

At the receiver, demodulation can be efficiently implemented with fast Fourier transform
(FFT). However, convolution in time domain is equivalent to multiplication in the
frequency domain only if the signals are of infinite length or if at least one of the signals
is periodic over the range of the convolution [Lostanlen, 2017]. Thus FFT of the above
stated linear convolution, does not correspond to product of channel coefficients with the
transmitted symbols. However, it is possible to convert linear convolution into circular,
by simply appending each OFDM symbol with replica of the last (N − K) samples of
the OFDM symbol, denoted as cyclic prefix (CP). By doing so, the cyclically-extended
OFDM symbol now appears periodic when it is convoluted with the channel. Therefore,
the received OFDM symbols are given by cyclic-convolution as shown in Fig. 1.11, where
the cyclic-convolution corresponds to following multiplicative input-output relation, where
each subcarrier is affected by a single channel coefficient, such that:

rk[n] = Hksk[n] + zk[n]. (1.23)

We have seen the potential of OFDM transmission in alleviating the channel frequency
selective fading impact by omitting the ISI error. It is worth mentioning that, splitting
the total band into K subcarriers means that these subcarriers are affected by also
K relatively flat fading channels, hence, this fact greatly simplifies the equalization
performed by receiver, where the transmitted signal can be re-obtained from received
signal using simple zero forcing equalization, in case the channel is accurately estimated,
especially when the wireless channel is doubly selective. Finally, we note that the
disadvantages of OFDM systems lies in the transmitted signal high peak-to-average
power ratio [Hosseinzadeh Aghdam and Sharifi, 2019], due to employing large number
of subcarriers, resulting in significant energy loss.
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1.3 Vehicular Communications

1.3 Vehicular Communications

In this dissertation we will mainly investigate improving channel estimation methods
using DL and signal processing techniques, specifically, in high mobility vehicular
communications. However, we note that the proposed estimators in this thesis can be
easily adapted to any other applications by just re-configuring the simulation parameters
according to the new standards managing each application.

1.3.1 Background

About one million traffic accidents occur annually in the USA. In 2003 alone, these
accidents accounted for 230 billion in damaged property, 2,889,000 nonfatal injuries,
and 42,643 deaths [National Center for Statistics and Analysis, 2004]. Evidently, most of
those accidents are preventable by implementing comprehensive wireless communication
mechanism to exchange vital safety and emergency information between moving vehicles.
In this context, the development and standardization of vehicular communications is
motivated by the desire to disseminate road safety information among vehicles to prevent
accidents and improve the road safety.

All data collected from the sensors on a vehicle can be displayed to the driver or
broadcasted to neighbouring vehicles depending on certain requirements [Djenouri, 2008].
Many more applications are proposed for vehicular networks besides road safety like
car-to-home communication, travel and tourism information distribution, autonomous
driving, multimedia and game applications, and Internet connectivity.

1.3.2 IEEE Standards and Network Infrastructure

As shown in Fig. 1.12, the architecture of vehicular communications network falls in three
main categories:

. vehicle-to-vehicle (V2V) communications: In this category, the vehicles
communicate among each other with no infrastructure support. Any valuable
information collected from sensors on a vehicle, or communicated to a vehicle, can
be sent to neighbouring vehicles.

. vehicle-to-infrastructure (V2I) communication: In this category, the vehicles
can use cellular gateways and wireless local area network access points to connect
to the Internet and facilitate vehicular applications.

. Hybrid V2I communication: Vehicles can use infrastructure to communicate
with each other and share the information received from infrastructure with
other vehicles. This architecture includes V2V communication and provides greater
flexibility in content sharing.
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V2V communications

V2I communications

Hybrid V2I communications

Figure 1.12: Vehicular networks architecture.

Vehicular Communications

WiFi-Based Celluar-Based

DSRC C-ITS LTE 5G

Figure 1.13: Vehicular communications technologies.

Historically, vehicular communications standardization started based on the WiFi
technology, where two standards sets have been developed in parallel, in both the U.S.
(dedicated short-range communications (DSRC) [Kenney, 2011]) and Europe (cooperative
intelligent transport system (C-ITS) [Sjoberg et al., 2017]). This is mainly because the
activities were supported by different research and development programs and promoted
by different stakeholders, leading to different sets of standards. On the other hand,
cellular systems like LTE [Sempere-García et al., 2021] and 5G [Chen et al., 2017]
have been used recently to support vehicular communications due to existence of the
cellular infrastructure. Table 1.1 show different features of the vehicular communications
technologies. We note that, in this dissertation, we will focus on the DSRC standard in
our system model.

DSRC is a suite of standards proposed to enable WiFi-based vehicular
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Table 1.1: Vehicular communication technologies specifications.

Feature WiFi-based Cellular-based

Bandwidth Unlicensed band Licensed band

Waveform OFDM SC-FDMA

Channel coding Convolutional Turbo

Range Short radio range extended communications

Symbol duration (µs) 8 71

Data rate (Mbps) 3− 7 150

Multimedia & cloud services support No Yes

Synchronization Asynchronous Synchronous

communications. DSRC enables fast exchanging of safety messages, combined
with knowledge about other moving vehicles that may not be visible to drivers
in a timely manner, therefore extending the safety concepts beyond the desired
expectations [US Department of Transportation, 2006].

DSRC was initially proposed by the Federal Communication Commission (FCC), which,
in 1999, reserved 75 MHz of bandwidth in the 5.9 GHz frequency (5.850–5.925 GHz)
known as the Intelligent Transportation Systems (ITS) band to support both V2V and
V2I communications. The ITS band is composed of seven 10 MHz channels as shown
in Fig. 1.14, the central channel is called the control channel (CCH) and it is restricted
to safety communications only and it carries the most critical alarms and beacons. It is
the unique channel shared between all the DSRC devices, and consequently, constitutes
a joining point between the nodes. The two channels at the edge of the spectrum
are reserved for prospective applications and particular employment, such as advanced
accident prevention and public safety uses. The remaining channels are service channels
(SCH) for the residual applications and regular communications. Pairs of these adjacent
channels can also be blended in a 20 MHz channel. Nevertheless, the necessity to have 10
MHz channels is associated with the use of parallel applications, and as a consequence,
the partial reduction of channel congestion. Besides, physical tests prove that 10 MHz
channels are more suitable both for delays and the Doppler effect ascertained in vehicular
environments. We note that the channel time is divided into synchronization intervals
with a fixed length of 100 ms, consisting of intervals of equal length alternating between
the CCH and the SCH. During the CCH interval, all vehicular devices must tune in to
the CCH frequency for safety-related and system control data exchange. During the SCH
interval, vehicles optionally switch to one of the SCH frequencies. At the beginning of
each interval, a guard time of 4 ms is set to take into account the radio switching delay
and timing inaccuracies in the devices. Coordination between channels uses Coordinated
Universal Time (UTC) for a global time reference provided by a global satellite navigation
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Figure 1.14: DSRC spectrum.

Figure 1.15: DSRC architecture [Kenney, 2011].

system.

Concerning the DSRC architecture presented in Fig 1.15, the institute of electrical
and electronics engineers (IEEE) defines a series of standards for Wireless Access in
Vehicular Environment (WAVE) that is considered as the most promising technology
for vehicular networks [Ahmed et al., 2013]. This family of IEEE 1609 standards
defines the architecture and the set of services and interfaces that enable secure
wireless communication and physical access for high speed (up to 27 MB/s), short
range (up to 1000 m), and low latency wireless communication in the vehicular
environment [Abdelgader and Wu, 2014].
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The WAVE IEEE 1609 standard series includes IEEE 1609.1 (application layer), IEEE
1609.2 (security layer), IEEE 1609.3 (network layer), IEEE 1609.4 (upper MAC Layer),
and IEEE 802.11p (lower MAC and physical layers). The SAE J2735 standard defines
message sets, data-frames, and data-elements used by applications to exchange data.
Moreover, the SAE J2735 includes the following message categories: general, safety,
geolocation, traveler information, and electronic payment.

1.3.3 Characteristics and Challenges

The network nodes in vehicular communication are self-organized and can self-manage
information in a distributed fashion without a centralized authority or a server
dictating the communication [Brendha and Prakash, 2017]. It means that nodes can
act as servers and/or clients at the same time and exchange information with each
other. Moreover, vehicular communications network has unique attractive features as
follows [Nekovee, 2005]:

. Higher transmission power and storage: The network nodes (vehicles) are
usually equipped with higher power and storage units.

. Higher computational capability: Operating vehicles can afford higher
computing, communication and sensing capabilities.

. Predictable mobility: The movement of the network nodes can be predicted
because they move on a road network. Roadway information is often available from
positioning systems and map-based technologies such as GPS. Given the average
speed, current speed, and road trajectory, the future position of a vehicle can be
predicted.

On the other hand, vehicular communications suffer from several challenges
that directly impact the quality of services provided by the network. These
challenges [Blum et al., 2004] can be summarized as:

. Large scale network: vehicular network can in principle extend over the entire
road network according to the environment, thus, it includes many participants.

. High mobility: The environment in which vehicular networks operate is extremely
dynamic, and includes extreme configurations: in highways, relative speed of up to
200 km/h may occur.

. High dynamic topology: Due to high speed of movement between vehicles, the
topology of vehicular networks is always changing. For example, assume that the
wireless transmission range of each vehicle is 250 m, so that there is a link between
two cars if the distance between them is less than 250 m. In the worst case, if two
cars with the speed of 60 mph (25 m/sec) are driving in opposite directions, the link
will last only for at most 10 sec.
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. Frequently disconnected networks: The connectivity of the vehicular networks
could also be changed frequently. Especially when the vehicle density is low, it has
higher probability that the network is disconnected.

. Various communications environments: Vehicular networks are usually
operated in two typical communications environments. In highway traffic
scenarios, the environment is relatively simple and straightforward (one-dimensional
movement), while in city conditions it becomes much more complex. The streets in
a city are often separated by buildings, trees and other obstacles. Therefore, there
is not always a direct line sight of communications in the direction of the intended
data communication.

As a result of the multi-path fading and high mobility conditions in vehicular
environments, both V2V and V2I communications suffer from a harsh signal propagation
due to the following two reasons: (i) One or both communications nodes i.e. the
transmitter and the receiver are in motion. As a result, the vehicular channel variation
raises as the vehicle velocity increases, leading to a short channel coherence time. (ii)
There are fixed and mobile scatterers that introduce significant channel multi-path
components. Therefore, the vehicular channel becomes doubly selective in time and
frequency, therefore its estimation is challenging.

In literature, there exist two channel estimation categories: (i) SBS estimation, where the
channel is estimated for each received symbol separately. (ii) FBF estimation, where the
receiver should wait for the whole frame reception before starting the channel estimation
process. Moreover, the previous, current and future pilots are employed in the channel
estimation for each received symbol. However, accurate conventional channel estimation
requires transmitting a huge training symbols, thus the actual transmitted data rate
becomes limited. On the other hand, DL techniques are considered to be a robust and
efficient tools to employ in doubly selective channel estimation, while preserving low
overall computational complexity. In this context, the thesis main objective lies in how
we can improve the vehicular channel estimation accuracy in high mobility scenarios by
taking into consideration the advantages of several DL techniques.

1.4 Deep Learning Based Channel Estimation

Recently, DL techniques have been integrated into wireless communications physical
layer applications [Wang et al., 2017, O’Shea and Hoydis, 2017] including channel
estimation [Yang et al., 2019, Ma et al., 2018, Ye et al., 2018], due to its great success in
improving the overall system performance, especially when integrated with low-complexity
conventional estimators. DL techniques are characterized by robustness, low-complexity,
and good generalization ability making the integration of DL into communications
systems beneficial. Motivated by these advantages, DL algorithms have been integrated
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in vehicular channel estimation in two different manners: (i) DNN and LSTM networks
with different architectures and configurations are integrated with SBS estimators, where
the channel is estimated for each received data symbol directly. (ii) CNNs are integrated
in the FBF estimators. The higher performance accuracy can be achieved by utilizing
FBF estimators mainly in high mobility vehicular communications, since the channel
estimation of each symbol takes advantage from the knowledge of previous, current, and
future allocated pilots within the frame. Unlike, SBS estimators, where only the previous
and current pilots are exploited in the channel estimation for each received symbol.

1.4.1 DL Techniques Overview

In this section, we will focus mainly on the DL techniques that will be used in this
dissertation, where the mathematical representation of each technique is provided and
discussed.

1.4.1.1 DNN

Neural networks are among the most popular machine learning algorithms [Schmidhuber, 2015a].
Initially, neural networks are inspired by the neural architecture of a human brain, and
like in a human brain, the basic building block is called a neuron. Its functionality is
similar to a human neuron, i.e. it takes in some inputs and fires an output. In purely
mathematical terms, a neuron represents a placeholder for a mathematical function, and
its only job is to provide an output by applying the function on the inputs provided.
Neurons are stacked together to form a layer. The neural network consists at least of one
layer, and when multiple layers are used, the neural network is called DNN.
Consider a DNN that consists of L layers, including one input layer, L− 2 hidden layers,
and one output layer as shown in Fig. 1.16. The l-th hidden layer of the network consists
of J neurons where 2 ≤ l ≤ L − 1, and 1 ≤ j ≤ J . The DNN inputs i and outputs o
are expressed as i = [i1, i2, ..., iN ] ∈ RN×1 and o = [o1,o2, ...,oM ] ∈ RM×1, where N
and M denote the number of DNN inputs and outputs respectively. Wl ∈ RJl−1×Jl , and
bl ∈ RJl×1 are used to denote the weight matrix and the bias vector of the l-th hidden
layer respectively.
Each neuron n(l,j) performs a nonlinear transform of a weighted summation of output
values of the preceding layer. This nonlinear transformation is represented by the
activation function f(l,j) on the neuron’s input vector i(l) ∈ RJl−1×1 using its weight vector
ω(l,j) ∈ RJl−1×1, and bias b(l,j) respectively. The neuron’s output o(l,j) is:

o(l,j) = f(l,j)

(
b(l,j) + ωT(l,j)i(l)

)
. (1.24)

The DNN over all output of the l-th hidden layer is represented by the vector form:

o(l) = f(l)

(
b(l) +W(l)i(l)

)
, i(l+1) = o(l), (1.25)
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Figure 1.16: DNN architecture.

where f(l) is a vector that results from the stacking of the nl activation functions.

Once the DNN architecture has been chosen, the parameter θ = (W ,B) that represents
the total DNN weights and biases have to be estimated through the learning procedure
applied during the DNN training phase. As well known, θ estimation is obtained by
minimizing a loss function Loss(θ) (1.26). A loss function measures how far apart the
predicted DNN outputs (o(P)

(L)) from the true outputs (o(T)
(L)). Therefore, DNN training

phase carried over Ntrain training samples can be described in two steps: (i) calculate the
loss, and (ii) update θ. This process will be repeated until convergence, so that the loss
becomes very small.

Loss(θ) = arg min
θ

(o(P)
(L) − o

(T)
(L)). (1.26)

Various optimization algorithms can be used to minimize Loss(θ) by iteratively updating
the parameter θ, i.e., stochastic gradient descent [Schmidhuber, 2015b], root mean square
prop [ichi Amari, 1993], adaptive moment estimation (ADAM) [De et al., 2018]. DNN
optimizers updates θ according to the magnitude of the loss derivative with respect to it
as follows:

θnew = θ − ρ∂Loss(θ)
∂θ

, (1.27)

where ρ represents the learning rate of the DNN, which controls how quickly θ is updated.
Smaller learning rates require more training, given the smaller changes made to θ in each
update, whereas larger learning rates result in rapid changes and require less training.
The final step after DNN training, is to test the trained DNN on new data so that its
performance is evaluated. A detailed comprehensive analysis of DNN different principles
is presented in [Ruder, 2017].
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Figure 1.17: LSTM unit architecture.

1.4.1.2 LSTM

Another well known DL tools are the LSTM networks, that are basically proposed to deal
with sequential data where the order of the data matters and there exists a correlation
between the previous and the future data. In this context, LSTM networks are defined
with a special architecture that can learn the data correlation over time, thus giving the
LSTM network the ability to predict the future data based on the previous observations.

LSTM unit contains computational blocks known as gates which are responsible for
controlling and tracking the information flow over time. The LSTM network mechanism
can be explained in four major steps as follow:

1.4.1.2.1 Forget the irrelevant information

In general, the LSTM unit classify the input data into relevant and irrelevant information.
The first processing step is to eliminate the irrelevant information that are not important
for the future data prediction. This can be performed through the forget gate that decide
which information the LSTM unit should keep, and which information it should delete.
The forget gate processing is defined as below

ft = σ(Wf,tx̄t +W ′
f,th̄t−1 + b̄f,t), (1.28)

where σ̄ is the sigmoid function, Wf,t ∈ RP×Kin , W ′
f,t ∈ RP×P and b̄f,t ∈ RP×1 are the

forget gate weights and biases at time t, x̄t ∈ RKin×1 and h̄t−1 denote the LSTM unit
input vector of size Kin, and the previous hidden state of size P respectively.
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1.4.1.2.2 Store the relevant new information

After classifying the relevant information, the LSTM unit applies some computations on
the selected information through the input gate

īt = σ(Wī,tx̄t +W ′
ī,t
h̄t−1 + b̄ī,t), (1.29)

c̃t = tanh(Wc̃,tx̄t +W ′
c̃,th̄t−1 + b̄c̃,t). (1.30)

1.4.1.2.3 Update the new cell state

Now, the LSTM unit should update the current cell state ct based on the two previous
steps such that

ct = ft � ct−1 + īt � c̃t. (1.31)

where � denotes the Hadamard product.

1.4.1.2.4 Generate the LSTM unit output

The final processing step is to update the hidden state and generate the output by the
output gate. The output is considered as a cell state filtered version and can be computed
such that

ot = σ(Wo,tx̄t +W ′
o,th̄t−1 + b̄o,t), (1.32)

h̄t = ot � tanhct. (1.33)

We note that, there exists in literature several LSTM architecture variants, where the
interactions between the LSTM unit gates are modified. The authors in [Greff et al., 2017]
performed a nice comparison of popular LSTM architecture variants.

1.4.1.3 CNN

CNN is a type of deep learning model for processing data that has a grid pattern, such
as images [Albawi et al., 2017]. Thus, CNN has generally become the state of the art for
many visual applications such as image classification, due to its great ability in extracting
patterns from the input image. CNN can be seen as a set of several layers stacked together
in order to accomplish the required task. These layers include:

. Input layer: It represents the 2D or 3D input image. For simplicity, let us consider
a 2D image input to the l -th CNN layer denoted by Xl ∈ Rhl×wl , where hl and wl
are the height and the width of the Xl input image.
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. Convolutional layer: is a specialized type of linear operation used for feature
extraction, where predefined filters called kernels scan the input matrix to fill the
output matrix denoted as feature map as illustrated in Fig. 1.18. We note that
different kernels can be considered as different feature extractors.
Two key hyper parameters that define the CNN convolutional layer are size and
number of kernels denoted by fl and nl respectively. The typical kernel size is 3× 3,
but sometimes 5 × 5 or 7 × 7. The latter is arbitrary, and determines the depth of
output feature maps. These parameters can be tuned according to the application
type. Moreover, the process of training a CNN model with regard to the convolution
layer is to identify the kernels values that work best for a given task based on a given
training dataset. Kernels are the only parameters automatically learned during the
training process in the convolution layer. Mathematically speaking, for a given input
image Xl and kernelKl ∈ Rfl×fl×1, here we consider one kernel for simplicity, then,
the generated feature map Yl ∈ R(hl−f+1)×(wl−f+1) can be expressed as follows:

Yl(x, y) =
hl∑
i=1

wl∑
j=1
Kl(i, j)Xl(x+ i− 1, y + j − 1). (1.34)

Input Image 

Kernel

Feature Map

Figure 1.18: CNN convolutional layer example.

. Activation layer: The outputs of a linear operation such as convolution are then
passed through a nonlinear activation function. The role of the activation function is
to introduce non-linear processing to the CNN architecture since the input-output
CNN pairs relation might be non-linear. There are several non-linear activation
functions such as sigmoid or hyperbolic tangent (tanh) function, but the most
common function used presently is the rectified linear unit (ReLU).

. Pooling layer: This layer is employed to reduce the number of parameters
when the images are too large. Pooling operation is also called sub-sampling or
down-sampling which reduces the dimensionality of each feature map but retains
important information. It is of note that there is no learnable parameter in any
of the pooling layers. The most popular form of pooling operation is max pooling,
which extracts patches from the input feature maps, outputs the maximum value
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Figure 1.19: CNN classical architecture.

in each patch, and discards all the other values. However, there exists other pooling
operations such as global average pooling [Sun et al., 2017].

. Fully connected layer: This layer forms the last block of the CNN architecture,
and it is employed mainly in classification problems. It is a simple feed forward neural
network layer, consisting of one or more hidden layers, its role is to transform the
2D CNN layer output into a 1D vector. In classification problems, the final outputs
of the CNN network represent the probabilities for each class, where the final fully
connected layer typically has the same number of output nodes as the number of
classes.

. Batch normalization: It is used to make the CNN output more stable by
normalizing the output of each layer. Moreover, batch normalisation layer reduces
over fitting and speeds up the CNN training.

. Output layer: This layer is configured according to the studied problem, for
example, in classification problems the CNN output layer is a fully connected layer
with softmax activation function, while in regression problems, the CNN output
does not use any activation function.

Figure 1.19 illustrates the classical CNN architecture. As we can note in the figure, the
only trainable parameters within the CNN network are the kernels and the fully connected
layer weights. We note that, similarly to all other DL techniques, CNN network updates its
trainable parameters by minimizing the CNN loss function that measures how far are the
inputs from the outputs, this operation is called . After that, the CNN kernels and weights
are updated in the back propagation operation [Qi, 2016]. Finally, the performance of the
trained CNN model is evaluated in the testing phase where new unobserved images are
fed to the trained CNN model.
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This chapter provides the system model employed in this thesis, where the physical layer
characteristics including the considered communication standard and transceiver design
are presented. After that, the signal model followed by the vehicular channel models that
are used in the simulation results of Chapters 3 , 4, 5, and 6 are discussed.

2.1 Background

2.1.1 Physical Layer Parameters

As discussed in Chapter 1, vehicular communications are managed by the IEEE 802.11p
standard which is an approved upgrade of the IEEE 802.11a standard that adds wireless
access in vehicular environments. This upgrade includes data exchange between high-speed
vehicles (V2V) and between the vehicles and the roadside infrastructure (V2I) in the
licensed intelligent transportation systems band [Weidong et al., 2009]. IEEE 802.11p
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supports sending data at different data rates employing different modulation orders.
Moreover, it employs OFDM transmission scheme withK = 64 total subcarriers.Kon = 52
active subcarriers are used, and they are divided intoKd = 48 data subcarriers andKp = 4
pilot subcarriers. The remaining Kn = 12 subcarriers are used as a guard band. Compared
to the IEEE 802.11a standard, the channel bandwidth is halved, resulting in a 10 MHz
bandwidth instead of 20 MHz in 802.11a. Accordingly, all OFDM duration parameters
used in the regular 802.11a standard are doubled. In particular, the CP size increases,
which reduces the ISI caused by multi-path propagation. Table 2.1 lists the IEEE 802.11p
physical layer main specifications. A detailed discussion of the IEEE 802.p standard and
all its features is presented in [Abdelgader and Wu, 2014].

Table 2.1: IEEE 802.11p physical layer specifications.

Parameter IEEE 802.11p

Bandwidth 10 MHz

CP duration 1.6 µs

CP-OFDM Symbol duration 8 µs

short training symbols (STS) duration 1.6 µs

long training symbols (LTS) duration 6.4 µs

Overall STS duration 16 µs

Overall LTS duration 16 µs

Total subcarriers 64

Pilot subcarriers 4

Data subcarriers 48

Null subcarriers 12

Kp {±7,±21}
Kn {0,±27,±28,±29,±30,±31,−32}
Kd Kon \Kp ∪ Kn

Subcarrier spacing 156.25 KHz

2.1.2 Baseband Transceiver

As shown in Fig. 2.1, the first operation on the transmitter side is the binary bits
generation. The number of generated bits Nb depends on coding rate, the utilized
modulation scheme, as well as on the number of transmitted OFDM data symbols, defined
as:

Nb = KdIRNc, (2.1)
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Figure 2.1: IEEE802.11p transmitter-receiver block diagram.

where, I denotes the number of transmitted OFDM symbols per frame, R is the coding
rate, and Nc refers to number of bits corresponding to one constellation point.

Generated bits are scrambled in order to randomize the bits pattern, which may contain
long streams of 1s or 0s. Bits scrambling [Carona et al., 2010] facilitates the work of a
timing recovery circuit and eliminates the dependence of signal’s power spectrum upon
the actual transmitted data. The scrambled bits are then passed to a convolutional
encoder [Grami, 2016] with code rate R = 1/2, which introduces some redundancy into
the bits stream. This redundancy is used for error correction that allows the receiver to
combat the effects of the channel, hence reliable communications can be achieved. On
the other hand, IEEE 802.11p standard defines rates 3/4 and 2/3 that can be achieved
by puncturing. Puncturing is a procedure that derives codes of different rate from the
initial code R = 1/2, by periodically deleting certain coded bits in the coded sequence of
the initial code. The bits are deleted according to the given puncture vectors. Puncture
vector is a pattern of 1s and 0s, with 0 indicating stolen bits, which is deleted from the
initial code. As a next step, bits interleaving [Shi et al., 2004] is used to cope with the
channel noise such as burst errors or fading. The interleaver rearranges the encoded input
bits such that consecutive bits are split among different blocks. This can be done using
a permutation process that ensures that adjacent bits are modulated onto non-adjacent
subcarriers and thus allows better error correction at the receiver.

After that, the interleaved bits are mapped according to the used modulation
technique [Sobolewski, 2003]. IEEE 802.11p standard defines four modulation techniques:
BPSK, QPSK, 16QAM and 64QAM. Moreover, Gray code is used, where the mapped
symbol corresponding to neighboring symbols differs by exactly one bit. Bits mapping
operation is followed by constructing the OFDM symbols to be transmitted. The data
symbols and pilots are mapped to the active subcarriers and passed to the IDFT block to
generate the time-domain OFDM symbols and followed by inserting the CP. Finally, the
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Table 2.2: IEEE 802.11p modulation orders and data rates.

Modulation orders BPSK QPSK 16QAM 64QAM

Coding rate 1
2

3
4

1
2

3
4

1
2

3
4

2
3

3
4

Data rate (Mbps) 3 4.5 6 9 12 18 24 27

Data bits per
OFDM symbol

24 36 48 72 96 144 192 216

IEEE 802.11p packet is formed by concatenating the constructed CP-OFDM symbols,
and the predefined preamble symbols in one frame.

At the receiver side, the CP is removed followed by DFT. Then, initial channel estimation
is applied using the preamble and the pilot subcarriers. After that, the received OFDM
data symbols are forwarded to the equalizer. The equalized data are de-mapped to obtain
the encoded bits. The process of de-mapping can be as simple as hard demapping, or
more sophisticated as soft demapping. Hard de-mapping [Dany et al., 2003] is based on the
minimum Euclidean distance between the received symbols and all the valid symbols of the
constellation. However, in order to decrease the probability of residual decoding errors, it
is advantageous to use soft de-mapping [Hassan et al., 2018] instead of hard de-mapping.
Afterwards, deinterleaving, decoding using the Viterbi algorithm [Yamada, 1990], and
descrambling are performed to obtain the detected bits. Table. 2.2 shows different
modulation orders and data rates defined by the IEEE 802.11p standard.

2.1.3 Frame Structure

After preparing the time-domain OFDM data symbols to be transmitted, the complete
IEEE 802.11p frame is constructed. It consists mainly of three parts: (i) preamble, (ii)
signal field, and (iii) OFDM data symbols. The preamble includes ten STS t1 to t10, each
of duration 1.6 µs. The STS are used at the receiver for signal detection, diversity selection,
coarse frequency offset estimation and timing synchronization. The following two 6.4 µs
LTS are prepended with a CP of duration 3.2 µs, and used for channel estimation at the
receiver. After that, the signal field (SF) is used to specify rate and length information that
are required for decoding the received OFDM data symbols. It consists of one CP-OFDM
symbol that is BPSK modulated at 6 Mbps and is encoded at a R = 1/2 rate. We note
that, the signal field carries 24 bits divided into four sub fields described in Table. 2.3.

Finally, the OFDM data symbols that carry the actually transmitted data bits are
inserted. Fig. 2.2 illustrates the IEEE 802.11p frame structure in the time domain.
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Table 2.3: Signal field specifications.

Sub field Bits Function

Rate 4 Define the employed modulation and coding rate

Length 12 Indicate the number of data octets requested in the transmission.

Reserved 2 Reserved for future use.

Tail 6 Return the convolutional encoder to the zero state.
C

P

C
P

C
P

C
P

C
P

     

Figure 2.2: IEEE 802.11p transmitted frame structure in time domain.

2.2 Signal Model

In this section, the signal model used in this thesis is defined. Since our focus is on
channel estimation, we assume perfect synchronization at the receiver, and we ignore the
signal field for simplicity. Therefore, we focus on a frame that consists of two LTS at the
beginning followed by I OFDM data symbols as shown in Fig. 2.3.

2.2.1 Transmitted Signal

The i-th transmitted frequency-domain OFDM symbol x̃i[k], is partitioned as:

x̃i[k] =


x̃di [k], k ∈ Kd.

x̃pi [k], k ∈ Kp.

0, k ∈ Kn,

(2.2)

where 0 ≤ k ≤ K − 1. x̃di [k] and x̃pi [k] denote the modulated data symbols and the
predefined pilot symbols allocated at Kd and Kp, respectively. The other guard band
subcarriers are allocated at Kn. xi[k] is converted to the time domain by applying the
inverse discrete Fourier transform, such that:

xi[n] = 1√
K

K−1∑
k=0

x̃i[k]ej2π
nk
K . (2.3)
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Figure 2.3: IEEE 802.11p transmitted frame structure in frequency domain.

2.2.2 Received Signal

After passing through the doubly-selective vehicular channel, the received OFDM symbol
yi[n] can be expressed as:

yi[n] =
L−1∑
l=0

hi[l, n]xi[n− l] + vi[n]

= 1√
K

K−1∑
k=0

h̃i[k, n]x̃i[k]ej2π
nk
K + vi[n],

(2.4)

where hi[l, n] denotes the delay-time response of the discrete LTV channel of L taps
at the i-th OFDM symbol, whereas h̃i[k, n] = ∑L−1

l=0 hi[l, n]e−j2π lkK is the frequency-time
response. Moreover, vi denotes the additive white Gaussian noise (AWGN) of variance
σ2. The i-th received frequency-domain OFDM symbol is obtained from (2.4) by means
of DFT, and thus:

ỹi[k] = 1
K

K−1∑
q=0

x̃i[q]
K−1∑
n=0

h̃i[q, n]e−j2π
n(k−q)
K + ṽi[k]. (2.5)

The time selectivity of the channel depends on the mobility. In very low mobility, where
fd ≈ 0, h̃i[q, n] = h̃[q] is constant during the whole frame. For moderate to high mobility,

34



2.2 Signal Model

the channel variation within the duration of one OFDM symbol is negligible, and therefore,
h̃i[q, n] = h̃i[q]. At very high mobility, the channel becomes variant within a single OFDM
symbol. In this case, h̃i[q, n] = h̃i[q] + ε̃i[q, n], where

h̃i[q] = 1
K

K−1∑
n=0

h̃i[q, n], and ε̃i[q, n] = h̃i[q, n]− h̃i[q]. (2.6)

Replacing this in (2.5), we get

ỹi[k] = h̃i[k]x̃i[k] + ẽi,d[k] + ṽi[k], k ∈ Kon. (2.7)

The term ẽdi[k] represents the Doppler interference given by:

ẽdi[k] = 1
K

K−1∑
q=0
q 6=k

K−1∑
n=0

h̃i[q, n]e−j2π
n(k−q)
K x̃i[q]

= 1
K

∑
q∈Kon
q 6=k

L−1∑
l=0

h̄i[l, k − q]e−j2π
lq
K x̃i[q].

(2.8)

The Doppler interference destroys the orthogonality of the subcarriers within the
received OFDM symbol, resulting in a significant degradation in the overall system
performance [Matz and Hlawatsch, 2011]. Assuming the subcarriers are uncorrelated with
power Eq, i.e. E [x̃i[q]x̃∗i [q′]] = Eqδ[q − q′] and using (2.14) then:

E
[
ẽi,d[k]ẽ∗i,d[k′]

]
=

L−1∑
l=0

∑
q∈Kon
q 6=k

Eqρ[l, k − q]δ[k − k′]

= σ2
d[k]δ[k − k′].

(2.9)

Thus, the Doppler interference is assumed uncorrelated. However, variance σ2
d[k] =

E [|ẽdi[k]|2] depends on the subcarrier index. Noting that:

h̃i[k] = 1
K

L−1∑
l=0

h̄i[l, 0]e−j2π
kl
K , (2.10)

then, the channel gain and Doppler interference are uncorrelated, i.e. E
[
h̃i[k]ẽ∗i,d[k]

]
= 0.

Moreover, h̃i[k] can be estimated from L uncorrelated tapes defined by h̄i[l, 0].

2.2.3 Channel Model Characteristics

Note that h̃i[q, n] is time-variant at the scale of the OFDM symbol duration and within
the symbol itself. Accordingly:

h̃i[q, n] =
L−1∑
l=0

e−j2π
lq
K

ν=νd∫
ν=−νd

h̄(l, ν)ej2πνniej2πνndν, (2.11)
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where h̄(l, ν) is the channel delay-Doppler response, ν denotes the normalized Doppler
frequency, ni = i(K +Kcp) +Kcp. and νd = fd

Fs
is the maximum Doppler frequency. Let:

h̄i[l, v] = 1
K

K−1∑
q=0

K−1∑
n=0

h̃i[q, n]e−j2π
nv
K ej2π

ql
K

=
ν=νd∫

ν=−νd

h̄(l, ν)ej2πνni
K−1∑
n=0

e−j2π(ν− v
K

)ndν,

(2.12)

be the discrete delay-Doppler response at the i-th OFDM symbol. Assuming h̄(l, ν) is
uncorrelated in both domains, such that E

[
h̄(l, ν)h̄∗(l′, ν ′) = Sh(l, ν)δ[l − l′]δ(ν − ν ′)

]
,

where Sh(l, ν) is the delay-Doppler spectrum, then:

E
[
h̄i[l, v]h̄∗i [l, v′]

]
=

ν=νd∫
ν=−νd

Sh(l, ν)
K−1∑
n=0

K−1∑
n′=0

e−j2πν(n−n′)e−j2π
n′v′−nv

K dν.
(2.13)

This correlation is independent of the index i, and it can be approximated as:

E
[
h̄i[l, v]h̄∗i [l, v′]

]
≈ K2ρ[l, v]δ[v − v′], ρ[l, v] = Sh(l, v

N
). (2.14)

2.3 IEEE 802.11p Vehicular Channel Models

As explained in Section 1.1, the wireless channel in vehicular environments is
considered a time-varying channel including multi-path propagation and large
Doppler shift [Mecklenbrauker et al., 2011]. Various studies that analyze the statistical
characteristics of the wireless channel in vehicular environments are presented
in [Wang et al., 2009], [Karedal et al., 2009], and [Viriyasitavat et al., 2015]. In this
thesis, we consider the tapped delay line (TDL) vehicular channel models proposed
in [Acosta-Marum and Ingram, 2007a]. These TDL models include six vehicular channel
models for different vehicular environments. They are obtained by a measurement
campaign that was implemented in metropolitan Atlanta. Table 2.4 provides the different
characteristics of these vehicular channel models that are summarized below:

. VTV Expressway (VTV-EX): the measurements here are performed between
two vehicles entering the highway at the same time, then they are accelerated to
reach 104 km/h. In this scenario there is no wall separating the two highway sides.

. VTV Urban Canyon (VTV-UC): this scenario has been measured in Edge wood
Avenue in Downtown Atlanta, where urban canyon characteristics exist. The vehicles
move at 32-48 km/hr velocity range in a dense traffic environment.

. VTV Expressway Same Direction with Wall (VTV-SDWW): The
communication between the two vehicles is established on a highway having
center wall between its lanes. The separation distance between both vehicles is
300–400 m, and vehicles speed was 104 km/hr.
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Table 2.4: Vehicular channel models characteristics following Jake’s Doppler spectrum.

Channel
model

Channel
taps

Vehicle
velocity
[kmph]

Max Doppler
shift [Hz]

Average path
gains [dB]

Path
delays [ns]

RTV-SS 12 32-48 500

[0, 0, -9.3,
-9.3, -14, -14,
-18, -18, -19.4,

-24.9, -27.5, -29.8]

[0, 1, 100,
101, 200, 201,
300,301, 400,
500, 600, 700]

RTV-EX 12 104 700

[0, 0, 0,
-9.3, -9.3, -9.3,

-20.3, -20.3, -21.3,
-21.3, -28.8, -28.8]

[0, 1, 2,
100, 101, 102,
200, 201, 300,
301, 400, 401]

RTV-UC 12 32-48 300

[0, 0, 0,
-11.5, -11.5, -11.5,
-19, -19, -25.6,

-25.6, -28.1, -28.1]

[0, 1, 2,
100, 101, 102,
200, 201, 300,
301, 500, 501]

VTV-EX 11 104 1200

[0, 0, 0,
-6.3, -6.3, -25.1,

-25.1, -25.1, -22.7,
-22.7, -22.7]

[0, 1, 2,
100, 101, 200,
201, 202, 300,

301, 302]

VTV-UC 12 32-48 500

[0, 0, -10,
-10, -10, -17.8,

-17.8, -17.8, -21.1,
-21.1, -26.3, -26.3]

[0, 1, 100,
101, 102, 200,
201, 202, 300,
301, 400, 401]

VTV-SDWW 12 104 1150

[0, 0, -11.2,
-11.2, -19, -21.9,
-25.3, -25.3, -24.4,
-28, -26.1, -26.1]

[0, 1, 100,
101, 200, 300,
400, 401, 500,
600, 700, 701]

. RTV Suburban Street (RTV-SS): The road side unit (RSU) is placed at roads
intersection in a sub urban environment. The vehicle is far away from the RSU by
100 m and moving at 32-48 km/hr velocity range.

. RTV Expressway (RTV-EX): In this scenario, the RSU is placed on a highway,
and the vehicle moves towards the RSU at a speed of 104 km/hr.

. RTV Urban Canyon (RTV-UC): the measurements here are performed in a
dense traffic environment. The RSU transmitting antenna is mounted on a pole
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near the urban intersection of Peach tree Street and Peach tree Circle. The vehicle
moves at 32-48 km/hr speed and 100 m far away from the RSU.

Further investigations and discussion concerning the detailed channel models
measurement setups are shown in [Acosta-Marum, 2007]. Among the presented vehicular
channel models, we choose two of them to be used in the thesis simulations, since they
satisfy different mobility conditions that are sufficient to validate the performance of the
studied vehicular channel estimators. The defined simulation scenarios are as follows:

. Low mobility vehicular scenario, where VTV-UC channel model is employed using
V = 45 Kmph which is equivalent to fd = 250 Hz as a maximum Doppler shift.

. High mobility vehicular scenario, where VTV-SDWW channel model with V = 100
Kmph and fd = 500 Hz is employed.

. Very high mobility scenario, where VTV-SDWW channel model is considered with
V = 200 Kmph and fd = 1000 Hz. This scenario is employed in order to further
evaluate the robustness of the proposed and studied vehicular channel estimators.
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The IEEE 802.11p frame structure allocates two preamble symbols that are used for basic
least squares (LS) estimation, and four pilot subcarriers per OFDM symbols in the payload
frame which are used for channel variation tracking over time. This basic LS estimation at
the beginning of the frame is simple, but the estimated channel becomes outdated for the
equalization of the successive transmitted symbols as a result of high channel variation
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in vehicular environments. Hence, accurately tracking the channel variation over time is
a crucial need, due to its contribution in improving the overall system performance.

Conventional channel estimators that have been proposed for vehicular communications
assume that the allocated pilot subcarriers are not sufficient for accurately tracking the
vehicular channel, since they are not spaced closely enough to capture the variation of the
channel in the frequency domain. Therefore, conventional estimators are mainly based on
the demapped data subcarriers, besides pilot subcarriers to update the channel estimate
for each received symbol. This procedure is referred to as data-pilot aided (DPA) channel
estimation. We note that the DPA estimation suffers from a considerable performance
degradation especially in high mobility scenarios since Doppler error affects the data
subcarriers demapping accuracy. As a result, the data subcarriers could be demapped to
the wrong constellation and it is impractical to be employed in high mobility scenarios.

Moreover, the channel estimation can be implemented according to two methods: (i)
symbol-by-symbol (SBS) estimators, where the channel is estimated for each received
symbol separately. (ii) frame-by-frame (FBF) estimators, where the receiver waits for
the whole orthogonal frequency division multiplexing (OFDM) frame reception, then, the
channel for each received OFDM symbol is estimated in an 2D manner, i.e. employing
all the received pilots within the received frame where the previous, current and future
pilots are employed in the channel estimation for each received symbol. Then, higher
performance accuracy can be achieved by employing FBF estimators, since the channel
estimation of each symbol takes advantage from the knowledge of previous, current, and
future allocated pilots within the frame. Unlike, SBS estimators, where only the previous
and current pilots are employed in the channel estimation for each received symbol.
However, in the FBF estimation, the receiver should wait for the complete frame reception
before starting the channel estimation, thus penalizes the latency.

In this chapter, we shed light on the conventional state-of-the-art (SoA) SBS estimators
that are presented in Section 3.1. After that, the performance evaluation and
computational complexity analysis of the studied SBS estimators are presented in
Section 3.2 and Section 3.3 respectively. Finally, the limitations of the conventional SBS
estimators and our proposed strategies to overcome these limitations are provided in
Section 3.4.

3.1 Symbol by Symbol Estimators

There exists an extensive work in the literature concerning the conventional SBS
estimators, where most of them are based on the DPA estimation. Hereafter, the steps
that are applied in each SBS estimator are presented.
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3.1.1 DPA

The DPA estimator [Fernandez et al., 2012] is based on the basic LS estimation and the
demapped data subcarriers of the previous received OFDM symbol to estimate the channel
for the current OFDM symbol according to the following steps:

1. LS estimation: that is implemented using the two long training symbols (LTS)
received preambles denoted as ỹ(p)

1 [k], and ỹ(p)
2 [k], and the predefined preamble

sequence p̃[k] such that:

ˆ̃
hLS[k] = ỹ

(p)
1 [k] + ỹ(p)

2 [k]
2p̃[k] . (3.1)

2. Equalization: the i-th received OFDM symbol is equalized by the previously DPA
estimated channel, such that:

ỹeqi [k] = ỹi[k]
ˆ̃
hDPAi−1 [k]

,
ˆ̃
hDPA0 [k] = ˆ̃

hLS[k]. (3.2)

3. Demapping: ỹeqi [k] is demapped to the nearest constellation point to obtain d̃i[k].

4. Final DPA estimation: DPA updates the final estimated channel for the i-th
received OFDM symbol by:

ˆ̃
hDPAi [k] = ỹi[k]

d̃i[k]
. (3.3)

DPA scheme is considered as the initial estimation process utilized by most vehicular
channel conventional estimators. However, DPA estimation has two main limitations.
First, it is based on the basic ˆ̃hLS estimation suffering from noise enhancement. Second,
the demapping step in DPA results in a significant demapping error mainly in low
signal-to-noise ratio (SNR) region, and this error is enlarged in high mobility scenarios
employing high modulation orders. Moreover, since the DPA estimated channels are
updated iteratively over the received frame, the demapping error propagates through
the frame leading to significant performance degradation.

3.1.2 STA

The spectral temporal averaging (STA) estimator [Fernandez et al., 2012] has been
proposed to further improve the DPA estimation by applying two additional steps on top
of DPA estimation. The first step is by performing frequency domain averaging over the
DPA estimated channel including the current and the neighboring subcarriers as follows:

ˆ̃
hFDi [k] =

λ=β∑
λ=−β

ωλ
ˆ̃
hDPAi [k + λ], ωλ = 1

2β + 1 . (3.4)

41



3 Conventional SoA Channel Estimators

After that, the final STA channel estimate is updated using time averaging between the
previously STA estimated channel and the frequency averaged channel in (3.4), such that

ˆ̃
hSTAi [k] = (1− 1

α
) ˆ̃
hSTAi−1 [k] + 1

α
ˆ̃
hFDi [k]. (3.5)

STA estimator performs well in low SNR region. However, it suffers from a considerable
error floor in high SNR region because of the large DPA demapping error. It is worth
mentioning that in [Fernandez et al., 2012], the values of the frequency and time averaging
coefficients are fixed to α = β = 2, however, to improve the STA performance, the optimal
values of α and β should be updated according to the channel variation and not predefined
as fixed parameters for all mobility scenarios.

3.1.3 CDP

The constructed data pilots (CDP) estimator is proposed in [Zhao et al., 2013] to improve
DPA estimation. The CDP estimator uses only theKd = 48 data subcarriers and it applies
DPA estimation as an initial step. After that, CDP estimator updates the estimated
channel according to the assumption that the time correlation of the channel response
between two adjacent OFDM symbols is high. Following this assumption, the demapped
data subcarriers using the current DPA estimated channel and previous CDP estimated
channel should be equal, then, the DPA estimated channel is considered as reliable. In
this context, the CDP estimator proceeds as follows:

1. Equalization: The previously received OFDM symbol is equalized by ˆ̃hDPAi [k] and
ˆ̃hCDPi−1 [k], where:

ỹ′eqi−1
[k] = ỹi−1[k]

ˆ̃hDPAi [k]
, ỹ′′eqi−1

[k] = ỹi−1[k]
ˆ̃hCDPi−1 [k]

, k ∈ Kd. (3.6)

2. Demapping: The obtained ỹ′eqi−1
[k] and ỹ′′eqi−1

[k] are demapped into d̃′i−1[k] and
d̃′′i−1[k], respectively.

3. Final CDP estimation: The final ˆ̃hCDPi [k] is updated using the demapping results
from the previous step, such that:

ˆ̃
hCDPi [k] =


ˆ̃hCDPi−1 [k], d̃′i−1[k] 6= d̃′′i−1[k].
ˆ̃hDPAi [k], d̃′i−1[k] = d̃′′i−1[k].

(3.7)

The CDP estimator outperforms STA estimator especially in high SNR region, but the
additional demapping procedure applied in the CDP estimator leads to the increase of the
total demapping error of both DPA and CDP estimators. Therefore, CDP suffers from
performance degradation, especially in high mobility scenarios and when high modulation
orders are employed.
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3.1.4 iCDP

In [Wang, 2018] the authors proposed an improved version of the CDP estimator, where
the pilot subcarriers are also included in the channel estimation in addition to the Kd data
subcarriers. Therefore, Improved CDP (iCDP) proceeds similar to the CDP estimation
as illustrated in (3.6), but with k ∈ Kon, and ˆ̃hiCDPi−1 [k] instead of ˆ̃hCDPi−1 [k]. Moreover,
the iCDP estimator updates the final estimated channel for the current OFDM symbol
by utilizing the STA estimated channel, such that:

ˆ̃hiCDPi [k] =


ˆ̃hiCDPi−1 [k], d̃′i−1[k] 6= d̃′′i−1[k].
h̃STAi [k]+ˆ̃hDPAi [k]

2 , d̃′i−1[k] = d̃′′i−1[k].
(3.8)

It is clearly noticed that the iCDP is a combination of both DPA, CDP, and STA
estimators. Although this combination improves the performance, the improvement is still
limited since the enlarged DPA and CDP demapping error still exists, besides employing
fixed time and frequency averaging parameters of the STA estimator as discussed in
Section 3.1.2.

3.1.5 TRFI

Another methodology to improve the CDP estimator is proposed in [Yoon-Kyeong Kim et al., 2014],
where frequency domain interpolation is utilized by time domain reliable test frequency
domain interpolation (TRFI) estimator. Similarly to CDP estimator, the TRFI estimator
applies DPA estimation followed by the equalization and demapping steps as (3.6)
and (3.7). After that, the final channel estimates are updated by dividing the subcarriers
into reliable subcarriers (RS) and unreliable subcarriers (URS) denoted by RS i and
URS i respectively. The TRFI estimator applies first the demapping operations according
to (3.6) where ˆ̃hTRFIi−1 [k] is used instead of ˆ̃hCDPi−1 [k]. Then it proceeds as follows:

1. Subcarriers selection: The RS set contains the four pilot subcarriers, in addition
to the data subcarriers that fulfills d̃′i−1[k] = d̃′′i−1[k]. On the other hand, the URS
set includes the data subcarriers where d̃′i−1[k] 6= d̃′′i−1[k].

2. Final TRFI estimation: After selecting the RS and URS sets, frequency-domain
cubic interpolation [Marsden, 1974] is applied by using the channel estimates inRS i
to determine the channel estimates for the URS i.

The TRFI estimator outperforms both STA and CDP estimators, especially when high
modulation orders like 16QAM are employed. Therefore, performing frequency-domain
interpolation on top of the CDP estimator improves the performance. However, TRFI
still suffers from the demapping and interpolation errors. We note that, the number of RS
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subcarriers is inversely proportional to the channel variations. Since as the channel varies
rapidly, the condition where d̃′i−1[k] 6= d̃′′i−1[k] will be more dominant. Therefore, only few
RS subcarriers will be selected and the employed cubic interpolation performance will be
degraded.

3.1.6 E-TRFI

Recently, the authors in [Han et al., 2020] proposed the E-TRFI estimator which is an
enhanced version of the conventional TRFI estimator [Yoon-Kyeong Kim et al., 2014]
described in Section 3.1.5. The main E-TRFI upgrades are in the reliable and unreliable
subcarriers selection algorithm, where the Euclidean distance between the demapped
subcarriers is used as a reliability condition. Moreover, E-TRFI employs the estimated
channels at the Kn guard band subcarriers in order to improve the cubic interpolation
accuracy. The E-TRFI estimator proceeds as follows:

1. Enhanced LS estimation: The conventional LS estimation presented in (3.1)
estimates the channel at Kon subcarriers. However, the E-TRFI employs the
estimated channel also at the remaining Kn subcarriers that are interpolated as
follows:

ˆ̃
hE-LS[k] = F64(FH

52F52)−1FH
52

ˆ̃
hLS[k], k ∈ K, (3.9)

where F64 ∈ CK×L and F52 ∈ CKon×L denote the truncated DFT matrix obtained
by selecting K, Kon rows and L columns from the K×K DFT matrix, respectively.
Here, L represents the number of channel taps.

2. Equalization: The i-th received OFDM symbol is equalized by ˆ̃hE-TRFIi−1 [k], where

ỹ′eqi [k] = ỹi[k]
ˆ̃
hE-TRFIi−1 [k]

, k ∈ Kd. (3.10)

Here, ˆ̃hE-TRFI0 [k] = ˆ̃hE-LS[k]. After that, the obtained ỹ′eqi [k] is demapped to the
nearest constellation point denoted as d̃′i[k].

3. Euclidean distance reliability test: In order to ensure that d̃′i[k] is correctly
demapped, E-TRFI estimator employs a reliability test where the Euclidean
distances between ỹ′eqi [k] and the constellation points are calculated such that:

δ
(m)
i [k] = |ỹ′eqi [k]− c(m)|2, m = 1, 2, . . . . ,M. (3.11)

c(m) denotes the m-th constellation point with M standing for the employed
modulation order. The obtained δ(m)

i [k] values are arranged in ascending order vector
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denoted as δ̄(m)
i [k], then the reliability ratio for each subcarrier Ri[k] is calculated

employing the first and second minimum distances as follows:

Ri[k] = δ̄
(1)
i [k]
δ̄

(2)
i [k]

, k ∈ Kd, (3.12)

where 0 < Ri[k] < 1. Small Ri[k] value indicates that the demapped subcarrier
d̃′i[k] is close to actual transmitted modulated symbol. Therefore, the subcarrier is
classified as a reliable subcarrier and inserted into the reliable subcarriers set RS i,
otherwise it is considered unreliable and inserted into the unreliable subcarriers
set URS i. The extensive simulations performed in [Han et al., 2020], show that
Ri[k] = 0.5 is the best predefined threshold for the reliability test.

4. Frequency domain cubic interpolation: After selecting the RS i and URS i
sets, frequency-domain cubic interpolation [Marsden, 1974] is applied by using the
channel estimates in RS i to determine the channel estimates for the URS i, such
that

ˆ̃
hInti [k] =



ỹi[k]/d̃′i[k], k ∈ RSi.
ỹi[k]/x̃pi [k], k ∈ Kp.

ỹi[k]/ˆ̃hE-TRFIi−1 [k], k ∈ Kn.

Cubic Interpolation, k ∈ URSi.

(3.13)

5. Noise attenuation: The last step in the E-TRFI estimator is applying a noise
attenuation as follows

ˆ̃
hE-TRFIi [k] = Q

ˆ̃
hInti [k], k ∈ K, (3.14)

where Q = F64F
H
64. We note that the computation of Q depends mainly on the L

channel taps and it can be performed offline resulting in reducing the computational
complexity.

The E-TRFI estimator outperforms other conventional estimators, but it still suffers from
a considerable performance degradation as a result of the enlarged demapping error in high
mobility scenarios. In addition, it suffers from high computational complexity due to the
matrix multiplication in (3.9) and (3.14). Moreover, the Euclidean distance reliability test
threshold is sensitive with respect to the channel variation and it is impractical to be fixed
at 0.5 as proposed. Therefore, the E-TRFI performance degrades as the channel variation
increase. On the other hand, even though increasing the number of subcarriers considered
in the cubic interpolation improves the performance, but similar to TRFI estimator the
numbers of RS i and URS i are directly related to the vehicular channel variations.
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3.1.7 MMSE-VP

The minimum mean square error using virtual pilots (MMSE-VP) estimator is proposed
to tackle the drawbacks caused by the channel variations [Joo-Young Choi et al., 2016].
Similarly to the previously presented channel estimators, MMSE-VP employs the DPA
estimation performed in (3.2), and (3.3) followed by the frequency-domain minimum mean
squared error (MMSE) estimation to compute the final estimate. First of all, MMSE-VP
builds a virtual pilot vector ˆ̃hvpi ∈ CKon×1 by arranging the ˆ̃hDPAi obtained from (3.3),
where the two pilots are placed at the beginning (k = −21,−7) and two pilots are placed
at the end (k = 7, 21), such that:

ˆ̃
hvpi = [ ˆ̃hDPAi [−21], ˆ̃

hDPAi [k], ..., ˆ̃
hDPAi [21]], k ∈ Kon. (3.15)

As noticed in (3.15), the virtual pilot vector ˆ̃hvpi contains pilots subcarriers on its
boundaries, such that the first two pilots ˆ̃hDPAi [−21] and ˆ̃hDPAi [−7] are added at the
beginning while the other two pilots ˆ̃hDPAi [7] and ˆ̃hDPAi [21] are concatenated at the
end. The final channel estimate for each received OFDM symbol is calculated using the
frequency domain MMSE estimation as illustrated below:

ˆ̃
hMMSEi = Rˆ̃hDPAi

ˆ̃hvpi

(
Rˆ̃hvpi

ˆ̃hvpi
+ σ2

i I
′
)−1 ˆ̃

hvpi , (3.16)

where Rˆ̃hDPAi
ˆ̃hvpi
∈ CKon×Kon is the cross-correlation matrix between the DPA estimated

channel vector ˆ̃hDPAi and the virtual pilot vector ˆ̃hvpi , Rˆ̃hvpi
ˆ̃hvpi

∈ CKon×Kon is the
auto-correlation matrix of the virtual pilot vector. I ′Kon is the identity unit matrix, and σ2

i

is the average noise power in the i-th received OFDM symbol. The MMSE-VP estimator
uses the correlation characteristics between the DPA channel estimates and the virtual
pilots vectors to reduce the channel estimation errors. This estimator provides a better
performance than the existing conventional estimators, especially when low modulation
orders e.g. QPSK are utilized, but it still suffers from performance degradation in high
mobility scenarios and it has lower performance than the STA at a low SNRs. Moreover,
it requires high computational complexity due to the matrix inversion applied in (3.16).

3.1.8 Adaptive STA-MMSE-VP

Adaptive channel estimation is proposed in [Choi et al., 2017] where the STA and
MMSE-VP estimators are jointly employed resulting in an improved overall performance.
The key element is the decision method based on preamble symbols. Therefore, the
decision method utilizes the basic LS estimated channel ˆ̃hLS[k] obtained by (3.1) to select
the best channel estimator. In this context, STA and MMSE-VP are implemented, and
the mean squared error (MSE) with respect to ˆ̃hLS[k] is calculated such that:
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MSESTA = |E[| ˆ̃hLS[k]− ˆ̃
hSTA[k]|2]− σ2

LS| (3.17)

MSEMMSE-VP = |E[| ˆ̃hLS[k]− ˆ̃
hMMSE-VP|2]− σ2

LS|, (3.18)

where σ2
LS is the average noise power of ˆ̃hLS[k]. In low SNR region, ˆ̃hLS[k] includes

high-noise components, and because the STA is effective in alleviating the noise impact,
then, MSESTA records the lowest MSE value. Therefore, the STA estimator is employed
in low SNR region. However, as the SNR increases, the noise impact becomes neglected.
Thus, the accuracy of the channel estimates in the STA significantly decreases while
the error performance of the MMSE-VP estimator is improved. Therefore, MSEMMSE-VP

becomes lower than MSESTA in high SNR region. Accordingly, the proposed estimator
uses the STA when the MSE performance of the STA is lower than that of the MMSE-VP
and vice versa. This adaptive estimator suffers from a considerable high computational
complexity due to the MMSE-VP employment. Moreover, it suffers from a considerable
performance degradation in high mobility scenarios especially when high modulation
orders are used, due to the enlarged DPA demapping error impact.

3.1.9 LMMSE Estimator

The linear minimum mean square error (LMMSE) estimator [Choi et al., 2015] aims to
linearly minimize the MSE error between the LMMSE estimated and real channel, given
the LS estimated channel at the Kp subcarriers defined as:

ˆ̃
hpi [k] =

ỹpi[k]
x̃pi [k] , k ∈ Kp. (3.19)

Accordingly, the key element here is to find WLMMSEi where ĥLMMSEi = WLMMSEi
ˆ̃hpi , so

that εLMMSE is minimized, such that:

εLMMSE = E
[
(ĥLMMSEi − h̃i)2

]
= E

[
(WLMMSEi

ˆ̃
hpi − h̃i)2

]
. (3.20)

The minimization of εLMMSE results in the following expression:

WLMMSEi = Rh̃ih̃pi

(
Rh̃pi h̃pi

+ σ2I ′
)−1

. (3.21)

Rh̃i,h̃pi
= E

[
h̃ih̃

H
pi

]
∈ CKd×Kp represents the cross correlation matrix of the real channel

and the real channel vector at the Kp pilot subcarriers within the i-th received OFDM
symbol. Moreover, Rh̃pi ,h̃pi

= E
[
h̃pih̃

H
pi

]
∈ CKp×Kp denotes the autocorrelation matrix of

h̃pi . I ′Kp is the identity matrix and σ2 is the noise power. Therefore, the LMMSE estimated
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channel at the Kd data subcarriers within the i-th received OFDM symbol can be simply
obtained as follows:

ˆ̃
hLMMSEi = WLMMSEi

ˆ̃
hpi . (3.22)

According to the calculation of WLMMSE matrix we can define two LMMSE estimators:
(i) conventional LMMSE estimator where the matrix inversion in (3.21) is performed
online according to the real-time SNR. (ii) low-complexity LMMSE estimator where the
WLMMSE matrix is computed offline resulting in decreasing the computational complexity.
Moreover, several configurations of the LMMSE estimator can be defined, according to
the number of considered pilot subcarriers. In this thesis, we define two configurations:
(i) 1D-LMMSE estimator, where the Kp pilot subcarriers within the i-th received symbol
are used to estimate the channel at the Kd data subcarriers within the same symbol. (ii)
2D-LMMSE estimator, where all the pilot subcarriers within the received OFDM frame,
i.e. KpI, are employed in the channel estimation of each data subcarrier within the frame.

Finally, we note that the LMMSE performance highly depends on the pre-estimated
WLMMSE matrix, where it suffers from a considerable performance degradation in case
the channel employed in the WLMMSE estimation changes.

3.2 Simulation Results

In this section, normalized mean-squared error (NMSE) and bit error rate (BER)
performance are evaluated using three vehicular channel models referring to low, high
and very high mobility scenarios as defined in Section 2.3. We recall that QPSK and
16QAM modulation orders are employed with 1

2 convolutional code rate. The frame size
is I = 100 OFDM symbols, and the SNR range ∈ [0 dB, 40 dB]. The NMSE and BER
performance evaluation of the studied estimators are performed over the chosen vehicular
channel models according to three criteria: (i) modulation order, (ii) mobility, and (iii)
frame length.

3.2.1 Modulation Order: QPSK vs. 16QAM

Simulation results show that the performance of the SoA conventional DPA-based
estimators depends on the employed modulation order as depicted in Fig. 3.1, 3.2.
Moreover, we can observe that employing the basic LS estimator without any channel
tracking leads to a severe performance degradation in different vehicular scenarios when
long frame size is employed, i.e. I = 100.

For QPSK modulation order, Fig. 3.1a, and 3.2a, the STA estimator outperforms other
conventional estimators in low SNR region due to the frequency and time averaging
operations used in STA (3.4), (3.5). Whereas in high SNR regions, conventional estimators
express a significant improvement over the STA estimator, where CDP and TRFI record
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(a) BER performance employing QPSK.
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(b) BER performance employing 16QAM.

Figure 3.1: BER performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

similar performance. This is due to the fact that when the SNR is low, the impact of
noise and interference are high and powerful enough to shift the equalized received OFDM
symbol yeqi [k] to wrong regions and as a result, its demapping di[k] is shifted to incorrect
constellation points. The STA estimator averaging operations are able to alleviate the
impact of the noise. However, as the SNR increases, the aforementioned influence is
reduced, and thus, the superiority of the conventional estimators emerges over STA. It is
worth mentioning that the STA estimator frequency-domain averaging window β, and the
time-domain averaging coefficient α are fixed to 2 as discussed in [Fernandez et al., 2012].
But, fixing these parameters instead of updating them according to the channel variation
makes the smoothing in the time and frequency domains not effective under vehicular
environment. Thus, the gradually accumulated demapping error of di[k] cannot be well
mitigated using fixed β and α. Hence the emergence of the error floor for STA in high SNR
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(a) NMSE performance employing QPSK.
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(b) NMSE performance employing 16QAM.

Figure 3.2: NMSE performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

region. On the other hand, the iCDP estimator improves the STA estimator performance
by considering both STA and DPA estimations in updating the final iCDP channel
estimates. We can notice that employing the iCDP estimator alleviates the STA estimator
error floor in high SNR regions while recording almost similar performance as STA in low
SNR regions.

The E-TRFI estimator achieves similar performance as MMSE-VP where it outperforms
the conventional TRFI estimator by 3 dB gain in terms of SNR for a BER = 10−3 in low
mobility scenario. Moreover, the adaptive STA-MMSE-VP estimator switches between
STA and MMSE-VP according to the MSE criteria shown in (3.17) and (3.18) which
improves the performance in the whole SNR region. However, this improvement is also
limited due to the DPA estimation error.
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(a) BER performance with I = 10.
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(b) BER performance with with I = 100.

Figure 3.3: BER performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

When 16QAM modulation is employed, STA performance is severely degraded in the
whole SNR region due to the huge DPA demapping error that increases as the modulation
order increases. Therefore, the adaptive STA and MMSE-VP estimators suffer as well.
Moreover, we can notice the impact of employing the cubic interpolation in TRFI, where it
outperforms CDP by around 2dB gain. On the other hand, E-TRFI is not able to improve
the TRFI estimator performance due to fixing the E-TRFI reliability test threshold to
0.5 as provided in [Han et al., 2020].
As a summary, we can conclude that conventional SBS estimators performance is limited
due to their dependency on the DPA estimation and due to using fixed valued parameters.
These two reasons are mainly responsible of the conventional estimators performance
degradation in time variant channel estimation as shown in Fig. 3.2a and Fig. 3.2b.
In contrast, we can notice the performance superiority of the 1D-LMMSE over the
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(a) NMSE performance with I = 10.
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(b) NMSE performance with I = 100.

Figure 3.4: NMSE performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

conventional SBS estimation due to employing the channel and noise statistics in the
channel estimation process. On the other hand, the 1D-LMMSE estimator is independent
of the employed modulation order where its NMSE performance records similar results
for both QPSK and 16QAM modulation orders as illustrated in Fig. 3.2a and Fig. 3.2b.

3.2.2 Mobility

As shown in Fig. 3.1 and 3.2, we can notice the severe mobility impact on all the
conventional estimators. This is mainly due to the increasing impact of the accumulated
DPA demapping error that is directly affected by Doppler error. In contrast, the
1D-LMMSE estimator is robust against Doppler error but it also suffers from performance
error floor in high mobility scenarios employing high modulation order.
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3.2.3 Frame Length

Figures 3.3 and 3.4 show the BER and NMSE performance employing short and long
frame size, respectively.

When short frame size is employed, the channel variation is negligible within the
received OFDM frame. Therefore, we can notice that the performance degradation of
the conventional DPA-based estimators is less than that when longer frame is employed
and the basic LS estimator still performs well, where it records similar performance as
1D-LMMSE especially in low SNR regions. However, in very high mobility scenarios,
the impact of Doppler error is dominant, thus, affecting the performance of conventional
DPA-based estimators.

In contrast, we can notice that employing long frames leads to considerable performance
challenge even in low mobility, where the basic LS estimator is not useful. Finally, we
note that the performance of 1D-LMMSE depends mainly on the employed Kp pilot
subcarriers that are insufficient since the channel may have more than 4 taps. In addition,
the performance of the 1D-LMMSE in long frames is better than that in short frames due
to the time diversity impact.

3.3 Computational Complexity Analysis

In this section, a detailed computational complexity analysis of the conventional SBS
estimators is provided. The computational complexity analysis is performed according
to the number of real-valued multiplication/division and summation/subtraction
mathematical operations required to estimate the channel for one received OFDM
symbol. Since we are working with complex-valued data, each complex-valued division
requires 6 real-valued multiplications, 2 real-valued divisions, 2 real-valued summations,
and 1 real-valued subtraction. Moreover, each complex-valued multiplication is equivalent
to 4 real-valued multiplications, and 3 real-valued summations.

The least complex estimator is the basic LS estimator (3.1) where the received preamble
symbols are added to each others, resulting in 2Kon summations. After that, the
summation result is divided by the predefined preamble, thus 2Kon divisions are also
required. Therefore, the total number of divisions and summations needed by the basic
LS estimator is 2Kon and 2Kon respectively.

The DPA estimation that is implemented in the conventional SBS estimators as an initial
step requires two equalization steps (3.2), and (3.3). Each equalization step consists of
Kon complex-valued division, therefore the overall computational complexity of DPA is
16Kon multiplications/divisions and 6Kon summations/subtractions.

The STA estimator applies frequency and time-domain averaging on top of DPA.
The frequency-domain averaging (3.4) coefficient is fixed (β = 2). Therefore, each
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Table 3.1: Computational complexity analysis of the SoA SBS channel estimators.

Est. Pre-Est. Mul. / Div. Sum. / Sub.

LS - 2Kon 2Kon

DPA LS 18Kon 8Kon

STA DPA 22Kon + 2Kd 10Kon + 10Kd

CDP DPA 34Kd 14Kd

TRFI DPA 34Kon + 26KURS 14Kon + 30KURS

iCDP DPA , STA 58Kon + 2Kd 26Kon + 10Kd

MMSE-VP DPA 26Kon + 6K2
on + 4K3

on 14Kon + 6K2
on + 3K3

on

MMSE-VP & STA MMSE-VP , STA 4K3
on + 6K2

on + 30Kon + 2Kd 3K3
on + 6K2

on + 16Kon + 10Kd

E-TRFI DPA 4K2 + 4KonK + 2MKd + 26KURS 5K2 + 5KonK + 3Kd + 4MKd + 30KURS − 4K

1D-LMMSE (real-time) ˆ̃hpi , Rh̃i,h̃pi , Rh̃pi ,h̃pi 4K3
p + 4KpKd + 2Kp 3K3

p + 2K2
p + 5KpKd − 2Kd

1D-LMMSE (offline) ˆ̃hpi , W1D-LMMSE 4KpKd + 2Kp 5KpKd − 2Kd

subcarrier requires 5 complex-valued summations multiplied by a real-valued weight,
which are equivalent to 10 real-valued summations, and 2 real-valued multiplications.
But the frequency averaging in STA estimator is applied on Kd since the subcarriers
in the boundaries are excluded from the averaging operation. As a result, the STA
frequency-domain averaging step requires 10Kd real-valued summations, and 2Kd

real-valued multiplications. Moreover, the STA time-domain averaging step (3.5)
requires 4Kon real-valued divisions, and 2Kon real-valued summations. Therefore, the
computational complexity of STA is 4Kon + 2Kd real-valued multiplications/divisions,
and 2Kon + 10Kd real-valued summations/subtractions, and the accumulated overall
computational complexity of STA estimator is 22Kon +2Kd multiplications/divisions and
10Kon + 10Kd summations/subtractions.

The CDP estimator applies two additional equalization steps after DPA on Kd subcarriers
resulting in 16Kd multiplications/divisions and 6Kd summations/subtractions. Hence,
CDP requires in total 34Kd multiplications/divisions and 14Kd summations/subtractions.

The iCDP estimator employs STA in order to update the final iCDP estimated channels.
Therefore, the overall accumulated computational complexity of iCDP is 58Kon + 2Kd

multiplications/divisions and 26Kon + 10Kd summations/subtractions.

The computational complexity of TRFI relies mainly on the size of unreliable subcarriers
set. In order to have a good approximation of the unreliable subcarriers set size, we
ran simulations 104 times, and we found that an average of Kint = 10 subcarriers are
considered as unreliable in each received OFDM symbol. Each unreliable subcarrier
is bounded by two reliable subcarriers. Theoretically, the cubic interpolation of points
located within a known interval requires the calculation of the third degree polynomial
coefficients. This polynomial (3.23) expresses the behaviour of the interpolated curve
within the specified interval.

f(x) = a.x3 + b.x2 + c.x+ d. (3.23)
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As shown in Appendix A the cubic interpolation of one subcarrier between two reliable
subcarriers requires 26 multiplications/divisions and 30 summations/subtractions. Thus,
the computational complexity of TRFI is 34Kon + 26Kint multiplications/divisions and
14Kon + 30Kint summations/subtractions.

MMSE-VP scheme suffers from high computational complexity due to the correlation
matrices manipulation in addition to the matrix inversion operation. Rˆ̃hDPAi

ˆ̃hvpi

calculation requires 4Kon+2K2
on real-valued multiplications and 3Kon+2K2

on summations.
The same calculation is performed for Rˆ̃hvpi

ˆ̃hvpi
manipulation. Moreover, Rˆ̃hvpi

ˆ̃hvpi
as

presented in (3.16) is added to the noise power vector multiplied by the identity matrix.
Thus, 2K2

on multiplications and 2K2
on summations are required in this step. Finally,

matrix inversion followed by multiplication is applied to calculate the final MMSE-VP
channel estimate. This requires K3

on complex multiplications, which is equivalent to 4K3
on

real-valued multiplications and 3K3
on real-valued summations/subtractions. Therefore,

the overall accumulated computational complexity of MMSE-VP is 26Kon + 6K2
on + 4K3

on
multiplications/divisions and 14Kon + 6K2

on + 3K3
on summations/subtractions operations.

The adaptive STA-MMSE-VP estimator employs jointly both STA and MMSE-VP.
Therefore, the required overall computational complexity is simply 4K3

on +6K2
on +30Kon +

2Kd multiplications/divisions and 3K3
on +6K2

on +16Kon +10Kd summations/subtractions
operations.
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For the E-TRFI estimator, it starts with the E-LS estimation step (3.9) that requires
4KonK real-valued multiplications and 5KonK − 2K real-valued summations. Then
equalization is employed only on Kd subcarriers where 8Kd multiplications/divisions
and 3Kd summations/subtractions are required. The Euclidean distance reliability
test employs Kd + 2MKd real-valued divisions and 4MKd subtractions. After that,
frequency domain cubic interpolation is performed. Our simulations show that for
each OFDM symbol, KURS = 16 subcarriers needed to be interpolated. The frequency
domain cubic interpolation requires 26KURS multiplications/divisions and 30KURS

summations/subtractions. Finally, the E-TRFI employs the noise attenuation step that
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Figure 3.5: Detailed computational complexity of the SoA SBS channel estimators in terms of
real-valued operations.

requires 4K2 real-valued multiplications and 5K2 − 2K real-valued summations. Hence,
the E-TRFI estimator’s overall computational complexity is 4K2+4KKon+9Kd+26KURS

multiplications/divisions and 5K2 + 5KKon + 3Kd + 2MKd + 30KURS − 4K real-valued
summations/subtractions.

The 1D-LMMSE estimator manipulates first the LS estimation at the pilot subcarriers
within the received OFDM symbol which requires 2Kp real-valued divisions. After
that, conventional 1D-LMMSE estimator where the matrix inversion in (3.21) is
computed in real-time requires K3

p complex-valued multiplication. Accordingly,
the overall computational complexity of the conventional 1D-LMMSE estimator is
4K3

p +4KpKd +2Kp real-valued multiplications/divisions and 3K3
p +2K2

p +5KpKd−2Kd

real-valued summations. Whereas, the computational complexity of the low-complexity
1D-LMMSE where W1D-LMMSE is computed offline, requires 4KpKd + 2Kp real-valued
multiplications/divisions and 5KpKd − 2Kd real-valued summations.

Table 3.1 and Fig. 3.5 summarizes the overall computational complexities of the
studied SoA SBS estimators in terms of real valued operations. For clarity, the bar
graphs in Fig. 3.5, show first the high complex estimators, i.e. E-TRFI compared to
iCDP. Then, iCDP estimator is compared to the other SoA SBS estimators including
the low-complexity 1D-LMMSE estimator. Moreover, the adaptive STA-MMSE-VP,
MMSE-VP are not shown since their computational complexities are of orderK3

on. Finally,
we note that, the adaptive STA-MMSE-VP, MMSE-VP, and E-TRFI estimators are more
complex than the iCDP estimator by 99.6%, 99.5%, and 92.72% respectively.

3.4 Limitations and Proposed Strategies

Performance degradation of conventional vehicular channel estimators is mainly related
to the following reasons: (i) conventional estimators are based initially on the basic LS
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channel estimation applied at the received preamble. This basic estimation does not
benefit from prior knowledge of the channel model such as the number of taps and power
delay profile. Moreover, the impact of noise is not considered in the estimation process.
Therefore, basic LS estimation is noisy and unreliable to be considered as a starting point
of the conventional estimators. (ii) conventional estimators employ the DPA estimation,
which is based on demapping the received data subcarriers and using them as pilots. This
mechanism is also unreliable since the demapping error is enlarged from one symbol to
another leading to an additional error in the estimation process, especially when high
modulation orders are employed. (iii) conventional estimators either uses pre-defined
parameters like the STA frequency and time averaging coefficients, E-TRFI reliability
test threshold, or assume that the channel is highly correlated between two successive
received OFDM symbols as the case in CDP and iCDP estimators. (iv) conventional
1D-LMMSE estimator suffers from a robustness challenge since its performance depends
on the pre-estimated WLMMSE matrix, while the number of channel taps may varies in
real-time scenarios. These issues highly impact the channel estimation accuracy when the
channel varies rapidly. As a result, the generalization ability of the estimator cannot be
guaranteed in all mobility scenarios.

In order to overcome the conventional estimators drawbacks, we propose to: (i) Improve
the conventional estimation by proposing a novel estimation method that depends
mainly on employing the tracking pilots without considering the basic LS estimation
at the preamble or the DPA estimation. The proposed method does not depends on
estimating the channel statistics as required for the LMMSE estimator. As a result, the
data subcarriers demapping step is not required and the demapping error is completely
eliminated. (ii) Integrating different deep learning techniques with conventional channel
estimators to improve the estimation accuracy due to the ability of deep learning to learn
channel correlation and correcting the conventional estimation errors.
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Proposed DFT-Based Channel
Estimators
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In this chapter, we discuss our first strategy to overcome the limitations of conventional
symbol-by-symbol (SBS) estimators, mainly due of the employment of the data-pilot
aided (DPA) estimation that suffers from a significant demapping error. In this context,
we propose a novel estimation method that is based on truncated discrete Fourier
transform (T-DFT) interpolation, where the classical discrete Fourier transform (DFT)
interpolation is adapted to the IEEE 802.11p standard structure. In this approach, only
the tracking pilots are employed without a need to perform the basic least squares
(LS) estimation at the preamble or the DPA estimation. This results in a significant
performance improvement since the DPA demapping error is eliminated. Moreover, we
show that updating the estimated channels for the received symbols using temporal
averaging T-DFT (TA-TDFT) leads to considerable noise alleviation throughout the
frame leading to enhanced bit error rate (BER) and normalized mean-squared error
(NMSE) performance. The proposed estimators outperform conventional SBS estimators
with less computational complexities. Moreover, they are robust against Doppler error and
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do not depend on the pre-estimated channel statistics as it is the case for the LMMSE
estimator. As a result, both T-DFT and TA-TDFT are robust and can be generalized to
be employed in different mobility scenarios.
The remainder of this chapter is organized as follows: in Section 4.1, the classical DFT
interpolation concept is illustrated. The proposed T-DFT and TA-TDFT estimators and
their analytical NMSE derivations are described in Sections 4.2 and 4.3, respectively. In
Section 4.4, the simulation results demonstrate the performance of the proposed schemes
in different mobility scenarios. Detailed computational complexity analysis is provided in
Section 4.5. Finally, the chapter is concluded in Section 4.6.

4.1 Classical DFT Estimator

Recall the i-th received frequency-domain orthogonal frequency division multiplexing
(OFDM) symbol (2.7) and (2.10):

ỹi[k] = h̃i[k]x̃i[k] + ẽi,d[k] + ṽi[k], k ∈ Kon

where, h̃i[k] = 1
K

∑L−1
l=0 h̄i[l, 0]e−j2π klK , ẽi,d[k] is the Doppler interference, and ṽi[k] the

additive noise. The goal is to estimate h̃i[k] at the data subcarriers based on the pilot
subcarriers. Let hi,L ∈ CL×1 such that hi,L[l] = 1

K
h̄i[l, 0], l = 0 · · ·L− 1, the vector model

corresponding to the Kp, and Kd subcarriers can be expressed as follows: ỹpi = (Fphi,L)� x̃pi + ẽpi,d + ṽpi , k ∈ Kp.

ỹdi = (Fdhi,L)� x̃di + ẽdi,d + ṽdi , k ∈ Kd,
(4.1)

where � denotes the element wise multiplication. Fd ∈ CKd×L represents the truncated
DFT matrix obtained by selecting Kd rows and L columns from the K ×K DFT matrix.
Fp ∈ CKp×L denotes the truncated DFT matrices at Kp subcarriers. The pilot signal is
used to estimate hi,L. First, by dividing over the pilots, we get:

ˆ̃hpi = ỹpi � x̃pi + ẽpi,d � x̃pi + ṽpi � x̃pi

= h̃pi + ẽpi,d � x̃pi + ṽpi � x̃pi ,
(4.2)

where � is the element wise division, and h̃pi = Fphi,L. In our work, we consider that
the transmitted pilots are equal to one for simplicity. Moreover, after estimating ĥi,L
employing ˆ̃hpi , the final channel estimate at the Kd subcarriers of the i-th received OFDM
symbol can be obtained according to the employed estimator as we discuss in the next
subsections, where ˆ̃hdi = Fdĥi,L.
The classical DFT estimator employs DFT interpolation [Biyyam and Bhuma, 2018] in
order to obtain the final channel estimates at Kd subcarriers assuming that Fp is either
tall or square matrix, i.e. Kp ≥ L. Therefore, ĥi,L can be estimated with the LS as:

ĥi,L = F †p
ˆ̃hpi = hi,L + F †p (ẽpi,d + ṽpi). (4.3)
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Figure 4.1: Vehicular channel dominant taps selection.

Here, F †p = (F H
p Fp)−1F H

p is the pseudo inverse matrix of Fp, and (·)H denotes the
conjugate transpose. Thereafter, the estimate at the data subcarrier denoted as ˆ̃hDFTi , is
computed as follows:

ˆ̃hDFTi = Fdĥi,L = Fdhi,L +WDFTzDFTi , (4.4)

whereWDFT = FdF
†
p denotes the DFT interpolation matrix and zDFTi = ẽpi,d + ṽpi . The

DFT estimation mean squared error (MSE) εDFT can be expressed as:

εDFTi = E
[
‖ ˆ̃hDFTi − h̃i,d‖2

]
= trace

{
WDFT

(
Λp,d + σ2IKp

)
WH

DFT

}
,

(4.5)

where σ2 denotes the noise variance, Λp,d = E
[
ẽpi,dẽ

H
pi,d

]
∈ CKp×Kp is the auto-correlation

matrix of the Doppler error at Kp subcarriers, and IKp ∈ CKp×Kp denotes the identity
matrix. Based on (2.9), Λp,d is diagonal and independent of i.

4.2 Truncated DFT Estimator

IEEE 802.11p standard allocates only four pilots for each transmitted OFDM symbol,
while the vehicular channel models may consist of more than 4 taps. For instance,
according to the channel models discussed in [Acosta-Marum and Ingram, 2007b], it is
found that L = 12 taps. However, considering the bandwidth of 10 MHz, the number
of discrete significant taps is smaller than 12 as shown in Fig. 4.1. Thus, classical DFT
cannot be implemented in IEEE 802.11p standard, since the condition Kp ≥ L is not
satisfied. To overcome this limitation, we propose a truncated DFT (T-DFT) estimator
that targets the estimation of only Ld = Kp dominant channel taps out of L. The indexes
of those dominant taps are denoted as Ld, Ld = |Ld|, and they are selected based on the
maximum values of ρ[l, 0] according to the measured channel profile as shown in Fig. 4.1.
The remaining minor taps are represented by the set Le, Le = |Le| and they are considered
as noise, such that Ld ∪Le = {0, · · · , L− 1}. Let hi,Ld ∈ CLd×1 and hi,Le ∈ CLe×1 be the
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Figure 4.2: Proposed T-DFT truncated DFT matrices.

vectors corresponding to the significant and minor channel taps, the pilot signal (4.2) can
be rewritten as:

ˆ̃
hi,p = Fd,phi,Ld + Fe,phi,Le + ẽpi,d + ṽpi , (4.6)

where (Fd,p ∈ CKp×Ld , Fe,p ∈ CKp×Le) denote the truncated DFT matrices at Kp

subcarriers and (Ld, Le) channel taps respectively, as shown in Fig. 4.2.
Similarly, the channel gain at the data subcarriers can be expressed as:

h̃i,d = Fdhi,Ld + Fehi,Le . (4.7)

Here Fd ∈ CKd×Ld and Fe ∈ CKd×Le denote the truncated DFT matrices from selecting
Kd rows and Ld, Le columns, respectively. First, hi,Ld is estimated using LS as:

ĥi,Ld = F †d,p
ˆ̃hi,p

= hi,Ld + F †d,pFe,phi,Le + F †d,p(ẽpi,d + ṽpi),
(4.8)

where F †d,p is the pseudo inverse matrix of Fd,p. Therefore, the T-DFT estimator can be
expressed as follows:

ˆ̃hT-DFTi = Fdĥi,Ld = Fdhi,Ld +WTDFTzTDFTi , (4.9)

whereWTDFTi = FdF
†
d,p denotes the T-DFT interpolation matrix and zTDFTi = Fe,phi,Le+

ẽpi,d + ṽpi . The overall estimation error between h̃i,d and ˆ̃hT-DFTi , denoted as êTDFT, can
be expressed as:

êTDFT = ˆ̃hT-DFTi − h̃i,d
= WLehi,Le +WTDFT(ẽpi,d + ṽpi),

(4.10)
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where WLe = WTDFTFe,p − Fe. Accordingly, the T-DFT MSE can be expressed as:

εT-DFT = E
[
‖êTDFTi‖2

]
= trace

{
WLeΛLeW

H
Le

}
+ trace

{
WTDFT

(
Λp,d + σ2IKp

)
WH

TDFT

}
,

(4.11)

where ΛLe = E
[
hi,Lehi,Le

H
]
∈ CLe×Le represents the auto-correlation matrix of the

Le neglected channel taps, which is independent of i. Note that, ΛLe is diagonal and
E
[
ẽpi,dh

H
i,Le

]
= 0 due to the uncorrelated Delay-Doppler assumption. The classical DFT

estimation is a special case when all the taps are considered. In this case, the error term
trace

{
WLeΛLeW

H
Le

}
is null, and the interpolation matrix WTDFT becomes WDFT.

4.3 Temporal Averaging TDFT Estimator

Considering the high temporal correlation between the successive channels, h̃i,d and h̃i+1,d,
averaging has the potential of improving the estimation gradually. To demonstrate that, let
h̃i,d = h̃d+ε̃i, where h̃d is static and ε̃i denotes the variation. Similarly, hi,Le = hLe +∆i,Le .
Thus, using (4.10), we get:

ˆ̃hT-DFTi = h̃d +WLehLe︸ ︷︷ ︸
c

+ ε̃i +WLe∆i,Le︸ ︷︷ ︸
zi

+WTDFT(ẽpi,d + ṽpi)︸ ︷︷ ︸
ηi

.

Note that ẽpi,dẽHpj ,d = δ[i − j]Λp,d due to the assumption of uncorrelated data, and
E
[
ṽpiṽ

H
pj

]
= δ[i− j]σ2IKp . As a result, ηi = WTDFT(ẽpi,d + ṽpi) is the error term that can

be reduced by means of averaging. On the contrary, the term zi = ε̃i +WLe∆i,Le , which
is a correlated error term with respect to the channel variation, and the fixed error term
c = WLehLe are not reduced by the averaging.
The temporal averaging T-DFT (TA-TDFT) can be achieved such that:

ˆ̃
hTA-TDFTi =


ˆ̃hT-DFTi , i = 1
γ ˆ̃hTA-TDFTi−1 + (1− γ)ˆ̃hT-DFTi , 2 6 i 6 I,

(4.12)

where γ defines the weights given to ˆ̃hTA-TDFTi−1 and ˆ̃hT-DFTi . In our simulations, we
consider γ = 1

2 . Therefore,
ˆ̃hTA-TDFTi can be rewritten in terms of the previous estimated

T-DFT channels ˆ̃hT-DFTi as follows:

ˆ̃hTA-TDFTi =
(1

2

)(i−1) ˆ̃hT-DFT1 +
i∑

j=2

(1
2

)(i−j+1) ˆ̃hT-DFTj

=
[
h̃d + ε̃i

]
+ c+ [zTA-TDFTi − ε̃i] + ηTA-TDFTi .

(4.13)

Here, the overall error terms are given by:

zTA-TDFTi =
(1

2

)(i−1)
z1 +

i∑
j=2

(1
2

)(i−j+1)
zj ,

ηTA-TDFTi =
(1

2

)(i−1)
η1 +

i∑
j=2

(1
2

)(i−j+1)
ηj .

(4.14)
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(a) Low mobility vehicular channel model. (b) High mobility vehicular channel model.

Figure 4.3: NMSE analytical and simulation results for low and high mobility vehicular channel
models respectively.

The overall estimation error of TA-TDFT depends on the i-th received OFDM symbol,
the signal-to-noise ratio (SNR), and the Doppler shift. At low SNR, the estimation error is
highly influenced by the noise, where ηi ≈WTDFTṽpi . In this case, the averaging reduces
the noise power when i increases, such that:

ε
(1)
TA-TDFTi ≤NTA-TDFTiσ

2trace
{
WTDFTW

H
TDFT

}
, (4.15)

where

NTA-TDFTi =
(1

4

)(i−1)
+

i∑
j=2

(1
4

)(i−j+1)
= 4i−1 + 2

3× 4i−1 . (4.16)

The full derivation of (4.16) is listed in Appendix B. We note that, in high SNR region
and low mobility, the error is influenced by non-significant channel taps error c, and thus,

ε
(2)
TA-TDFTi ≤ trace

{
WTDFTΛLeW

H
TDFT

}
. (4.17)

At high mobility, the error is influenced by zTA-DFTi − ε̃i, which leads to an increase of
the averaging error because of the increase in ‖ε̃i‖. Accordingly, the gain of averaging is
notable at low SNRs, not significant at high SNRs with low mobility, and worse at very
high SNRs and very high mobility. We note that ε(1)

TA-TDFTi + ε
(2)
TA-TDFTi denotes the lower

bound performance of the TA-TDFT estimator.

Figure 4.3 shows the analytical and simulated NMSE curves of the proposed estimators
in low and high mobility scenarios. We note that DFT and TA-DFT estimators employ
Kp = 12 pilot subcarriers, whereas, Kp = 4 is used in the proposed T-DFT and TA-TDFT
estimators. It is clearly shown that applying temporal averaging on top of the T-DFT
estimator improves the NMSE performance, especially in low SNR region, where the
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impact of noise is dominant. This is because adding the temporal averaging step to
the T-DFT estimated channels, reduces the noise power iteratively over the frame, and
thus, the SNR increases resulting in improving the total channel estimation accuracy.
Nevertheless, TA-TDFT estimator suffers from an error floor in high SNR region, as a
consequence of the channel model error resulting from the neglected Le channel taps, in
addition to Doppler interference error. This modeling error can be clearly seen in Fig. 4.3a
considering low mobility, and the influence of Doppler interference in Fig. 4.3b at high
mobility. Moreover, employing the DFT and TA-DFT estimators leads to a significant
NMSE performance improvement over the whole SNR region, especially in low mobility
scenario, since L channel taps are estimated by the DFT estimator. However, it can be
noticed that in high mobility scenario, the temporal averaging step is not effective in
reducing the T-DFT estimation error, especially in high SNR region. This is because the
influence of Doppler error is dominant over the noise impact. Finally, we note that if
more pilot subcarriers are employed i.e. Kp = 12, transmission data rates loss is recorded
according to the modulation order and coding used. Since the number of data subcarriers
Kd becomes 40 instead of 48 data subcarriers per OFDM symbol.

4.4 Simulation Results

In this section, NMSE and BER simulations are conducted in order to evaluate the
performance of the proposed estimators to 1D-LMMSE in the three vehicular channel
models as discussed in 3.2 and considering the modulation order, mobility, and frame
length criteria. Moreover, a robustness analysis is presented in order to evaluate the
generalization ability of the studied estimators.

4.4.1 NMSE Evaluation

As the estimation techniques in this section are all linear and do not employ demapping,
the estimation error is independent of the modulation order. In addition, as the estimation
is performed in SBS fashion, only TA-TDFT experience dependency on the frame length
since it employs averaging. This behavior can be seen in Figure. 4.4. In particular, when
the frame length is I = 100, the estimation error of TA-TDFT is slightly reduced at low
mobility and low SNRs compared with shorter frames, as expected. In comparison with
1D-LMMSE , the T-DFT only approaches 1D-LMMSE at high SNR, whereas TA-TDFT
outperforms 1D-LMMSE when the averaging is sufficient, which is the case of using a long
frame (I = 100) at low SNRs, or in medium SNR region with a short frame (I = 10).
However, at high mobility and high SNRs, the estimation error is influenced by Doppler
interference as well as the channel model mismatch resulting from neglecting Le channel
taps in the estimation process for all of the presented estimators. Fig. 4.5 shows the
average Doppler interference as fd increases.
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(a) NMSE performance with I = 10.
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(b) NMSE performance with I = 100.

Figure 4.4: NMSE performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).
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Figure 4.5: Doppler spectrum Interference (maximum speed v = 290 Kmph).
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(a) BER performance with I = 10.
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(b) BER performance with with I = 100.

Figure 4.6: BER performance employing QPSK: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

For low mobility vehicular scenarios, where fd < 200 Hz, we can notice that εd is
almost negligible. However, for high and very high mobility vehicular scenarios, where
fd > 500 Hz, Doppler interference starts recording a considerable impact on the overall
performance. We note that, the proposed estimators show a significant robustness against
Doppler error similar to the conventional 1D-LMMSE estimator. Moreover, they adhere
to the IEEE 802.11p standard structure, and the transmission data rates in all modulation
orders are preserved. Moreover, employing T-DFT and TA-TDFT estimators outperform
conventional estimators with a considerable performance improvement and significant
decrease in the overall computational complexity as shown in Section 4.5.
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Figure 4.7: BER performance employing I = 100, 16QAM: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

4.4.2 BER Evaluation

Figure 4.6 depicts the BER performance employing QPSK modulation and different frame
length in low mobility, high mobility, and very high mobility vehicular scenarios. We can
notice that the impact of employing temporal averaging on top of the T-DFT estimator
to improve the overall performance can be observed, where the TA-TDFT estimator
outperforms T-DFT estimator by up to 3 dB gain in terms of SNR for a BER = 10−3 for
a long frame (I = 100), whereas the impact in a short frame (I = 10) is less significant.
These results are aligned with the estimation accuracy shown in Figure. 4.4.
The impact of mobility and frame length can be observed in the significant decrease of
BER when using long frames. This is due to the use of a long codeword and the harvested
time diversity gain. The time diversity gain increases with the increase of the Doppler
spread, as can be seen by comparing the case of high mobility (fd = 500) and very high
mobility (fd = 1000). Nevertheless, as the channel estimation error increases with the
increase of Doppler frequency, the net gain from the time diversity and channel estimation
loss depends also on the frame length. For instance, assuming a perfect channel, there is
a small net gain with (I = 100), when the Doppler shift increases from fd = 250 in low
mobility to fd = 500 in high mobility, but it turns to a small loss for short frames (I = 10).
The perfect estimation is only influenced by the Doppler interference. With the induced
estimation error, this impact becomes remarkable. The performance of the presented SBS
estimators is significantly degraded by the mobility increase, however it is improved in
high mobility for long frames. This observation is also valid for high modulation orders
such as 16QAM, as shown in Figure. 4.7

4.4.3 Robustness Analysis

This section compares the robustness and generalization ability of the proposed T-DFT
and TA-TDFT estimators with the 1D-LMMSE estimator. As discussed in Section 3.1.9,
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(a) BER performance employing QPSK. (b) NMSE performance employing QPSK.
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(c) BER performance employing 16QAM. (d) NMSE performance employing 16QAM.

Figure 4.8: Robustness analysis of the proposed DFT-based estimators versus the 1D-LMMSE
estimator in high mobility channel model (fd = 500 Hz).

the 1D-LMMSE estimator depends mainly on the pre-estimated W1D-LMMSE matrix that
is calculated offline. This offline pre-estimation affects the robustness and generalization
ability of the 1D-LMMSE estimator when the channel changes in real-time scenarios. To
further illustrate this idea, we simulate the 1D-LMMSE estimator in four different cases,
such that:

. Case 1 (Est:12,Sim:12): W1D-LMMSE is pre-estimated using 12 taps channel model
and we consider that the number of taps are fixed also in the real-time scenario.

. Case 2 (Est:12,Sim:Random): W1D-LMMSE is pre-estimated using 12 taps channel
model. However, the number of channel taps changes randomly in the real-time
scenario. We note that the "Random" term means that the simulation is carried
using a random number of paths, where in each iteration, a random number of paths
between 1 and 11 is eliminated from the channel power delay profile. Therefore, we
obtain a generalized channel model where the number of taps varies.
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. Case 3 (Est:Random,Sim:12): W1D-LMMSE is pre-estimated where the number of
channel taps varies randomly, while the channel taps are fixed to 12 in the real-time
scenario.

. Case 4 (Est:Random,Sim:Random): Random number of channel taps are used in
both offline estimation of W1D-LMMSE and in the real-time scenario.

Figure 4.8 depicts the simulation results of these four cases in high mobility scenario
employing both QPSK and 16QAM modulation orders. We can observe that the
1D-LMMSE performance is severely degraded when the channel changes in real-time
scenario, whereas, the proposed TDFT and TA-TDFT estimators reveal a good robustness
since they are implemented without any dependency on the channel model statistics.
Therefore, the proposed TDFT and TA-TDFT estimators are more robust than the
1D-LMMSE estimator in real-time scenarios.

4.5 Computational Complexity Analysis

Compared to the conventional estimators, T-DFT estimator does not require the DPA as
a pre-estimation step. It only requires the LS estimated channel at pilot subcarriers ˆ̃hi,p
that requires 2Kp divisions. It is worth mentioning thatWMDFT is computed offline, thus
the computational complexity of the T-DFT estimator lies in multiplying WMDFT with
ˆ̃hi,p which requires KpKd − Kd complex-valued summations, and KpKd complex-valued
multiplications, this is equivalent to 5KpKd − 2Kd real-valued summations, and 4KpKd

real-valued multiplications. Therefore, the overall computational complexity of the T-DFT
estimator is 2Kp + 4KpKd real-valued multiplications/divisions, and 5KpKd − 2Kd

real-valued summations.

TA-TDFT estimator applies simple time averaging on top of the T-DFT estimator
that requires additional 4Kd real-valued multiplications, and 2Kd real-valued
summations. As a result, TA-TDFT estimator requires 2Kp + 4Kd + 4KpKd real-valued
multiplications/divisions, and 5KpKd real-valued summations. TA-TDFT estimator is
also less complex than the conventional IEEE 802.11p estimators, while it records a
complexity higher than T-DFT estimator by 17.56% as illustrated in 4.9.

Table 4.1 shows a detailed computational complexities percentages analysis for the
proposed estimators compared to the conventional estimators, where the proposed

Table 4.1: Computational complexity analysis of the studied estimators.

Est. E-TRFI iCDP TRFI CDP STA
1D-LMMSE

Conventional Low-complexity

Proposed T-DFT -97.59% -66.82% -46.33% -29.81% -26.78% -54.13% same

Proposed TA-TDFT -97.16% -61% -36.91% -16.31% -13.92% -46.08% +17.56%
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Figure 4.9: Detailed computational complexity of the studied vehicular channel estimators in
terms of real-valued operations.

T-DFT and TA-TDFT estimators record 54.13% and 46.68% computational complexity
decrease compared to the conventional 1D-LMMSE estimator, respectively. Whereas,
the proposed T-DFT estimator requires similar complexity as the low-complexity
1D-LMMSE. Fig. 4.9, shows a bar graph for the required multiplications/divisions,
and summations/subtractions by the studied estimators including the low-complexity
1D-LMMSE estimator. It can be noticed that employing both T-DFT and TA-TDFT
instead of the conventional estimators leads to a significant decrease in the overall
computational complexity, with a considerable gain in the BER and NMSE performance.
In addition, the proposed T-DFT and TA-TDFT are more robust than the 1D-LMMSE
estimator in highly dynamic real-time scenarios.

4.6 Conclusion

In this chapter, we have focused on overcoming the limitations of vehicular SoA SBS
conventional estimators represented by their dependency on the DPA estimation, where
the demapping error and the noise are enlarged during the estimation process. To overcome
these limitations, we have proposed low-complexity and robust channel estimators for
vehicular communications, namely T-DFT and TA-TDFT. Unlike classical estimators,
the proposed estimators are based on the truncated DFT-based interpolation, and do
not require the DPA estimation as an initial estimation step. Therefore, the enlarged
DPA demapping error, and the noise enhancement that results from the basic LS
estimator are totally eliminated in the proposed estimators. In addition to that, the
proposed estimators do not depend on the pre-estimated channel statistics as it is
the case for 1D-LMMSE, thus, they are insensitive against channel model changes in
real-time scenarios. Therefore, they are more suitable to be employed in practical systems.
Simulation and analytical results have shown the performance superiority of the proposed
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T-DFT and TA-TDFT estimators over conventional estimators in low and high mobility
vehicular scenarios with a significant computational complexity decrease. Finally, we
note that more performance gain could be achieved by employing deep learning based
estimators as we discuss in the next chapters. However, this performance gain leads to
an increase in the required computational complexity, hence a performance-complexity
trade-off must be taken into consideration to select the appropriate estimator according
to the application requirements.
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Practical wireless communication systems may encounter noise imperfections due to
the multi-path and Doppler shift effects. In doubly-dispersive channel, conventional
symbol-by-symbol (SBS) channel estimators suffer from a considerable performance
degradation as we have discussed in Chapter 3. We recall that, in such SBS estimators,
the previous estimated channel generated from the demapped data subcarriers is used as
a preamble for the current orthogonal frequency division multiplexing (OFDM) symbol.
This process is influenced by the demapping error, which depends on the accuracy of
the previous estimation, the Doppler interference, and the noise level. Moreover, this
error propagates and increases from one symbol to another all over the frame causing
a considerable reliability degradation. Therefore, there is a crucial need to improve the
channel estimation accuracy while preserving low computational complexity.
Recently, the rapid advancements in deep learning (DL) and their successful applications
in several domains, have sparked significant interest to adopt DL techniques for
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wireless communication applications including channel estimation. DL techniques are
characterized by robustness, low-complexity, and good generalization ability making their
integration into communication systems beneficial. For the SBS channel estimation, we
employ both deep neural network (DNN) and long short-term memory (LSTM) networks.
Both networks are able to learn the channel frequency correlation besides correcting
conventional estimator errors. However, LSTM network is more beneficial when time
correlation also exists between successive samples, as in the case of doubly-selective
channels. This is because LSTM takes the previous output as an additional source with
the current input to produce the current output. Motivated by these advantages, DL
algorithms have been proposed to be integrated with conventional channel estimators
in vehicular communications. Accordingly, this chapter presents our second strategy for
improving the channel estimation using DL techniques in SBS mode.

In this context, DNN is first employed after the conventional spectral temporal averaging
(STA) and time domain reliable test frequency domain interpolation (TRFI) estimators.
The DNN is able to learn the channel correlation and corrects the estimation error of the
conventional STA and TRFI estimators. After that, the proposed LSTM-based estimator
is presented. We discover that employing LSTM instead of DNN in the channel estimation
is more appropriate and lead to a significant performance improvement. This is due to the
fact that LSTM network is able to learn the time correlation between successive OFDM
symbols. However, this comes at the cost of higher complexity. This chapter presents the
proposed DL-based SBS estimators for vehicular communications and compares them with
the conventional estimators showing the advantage of employing DL techniques over the
conventional ones. The results of this chapter have been published in [Gizzini et al., 2020a,
Gizzini et al., 2020b, Gizzini et al., 2021a].

5.1 STA-DNN

The proposed STA-DNN channel estimator is mainly based on applying a DNN processing
after the conventional STA channel estimation as shown in Fig. 5.1 to improve the
estimation performance. As discussed in Section 3.1.2, the final STA estimated channel is a
linear combination of the previous STA estimated channel and the current data-pilot aided
(DPA) estimated channel. Therefore, by integrating DNN as an additional module in the
STA estimator, we add a non-linear processing unit to capture the non-linear dependencies
between the previous and the current channel. The DNN captures more features of the
time-frequency correlations of the channel samples. Thus, the DNN implicitly corrects
the estimation error of the conventional STA. This is achieved by minimizing the mean
squared error (MSE) between the ideal channel h̃i and STA estimated channel ˆ̃hSTAi as
follows:

MSESTA-DNN = 1
NT

NT∑
i=1
‖h̃i − ˆ̃hSTAi‖2, (5.1)
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where NT represents the number of samples considered during the DNN training. After
performing STA estimation, the channel estimated gains are converted from the complex
to real-valued domain to be introduced to the DNN input. Therefore, ˆ̃hSTAi is processed
according to the vector realization function:

fR(V ) = [<(V );=(V )]. (5.2)

Thereafter, ˆ̃h(R)
STAi ∈ R2Kon×1 is fed as an input to STA-DNN. Finally, the corrected STA

channel estimates ˆ̃hSTA-DNNi , are converted back to Kon complex valued domain.

We note that the STA estimator takes into consideration the time and frequency
correlation of successive received symbols. However, it suffers from performance
degradation in real case scenarios due to fixing the coefficients α and β. Moreover,
accurate estimation of α and β requires the knowledge of the channel characteristics,
which is hard to obtain in practice. Thus, by employing DNN processing after the STA
estimated channels, we implicitly overcome the performance loss of conventional STA,
and the errors resulting from fixing α and β values.

Figure 5.1: Proposed DNN-based estimators.

5.2 TRFI-DNN

Conventional TRFI estimator assumes high correlation between two successive received
OFDM symbols to estimate the channel of the reliable subcarriers (RS) and improve
the estimation of the unreliable subcarriers (URS) by applying frequency-domain cubic
interpolation as presented in Section 3.1.5. When channel encounters fast fading, this
assumption becomes invalid and interpolation errors occur. As a result, the number of
RS subcarriers decreases as the channel variation increases. Therefore, adding DNN as a
post processing unit to the conventional TRFI estimator, higher order channel statistics
can be learned by the DNN as in the case of STA-DNN, in addition to correcting the
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interpolation errors caused by the low-resolution interpolation. The proposed TRFI-DNN
estimator proceeds similar as the STA-DNN estimator, where the conventional TRFI
channel estimate is converted from complex to real valued domain by stacking the real
and imaginary values in one vector such that ˆ̃h(R)

TRFIi ∈ R2Kon×1. Then, ˆ̃h(R)
TRFIi is fed as an

input to the TRFI-DNN. Finally, the corrected TRFI complex-valued channel estimate
ˆ̃hTRFI-DNNi is obtained by converting the real-valued output vector of TRFI-DNN to the
complex-valued vector. The proposed TRFI-DNN estimator aims to minimize the MSE
given by

MSETRFI-DNN = 1
NTrain

NTrain∑
i=1

∥∥∥∥h̃i − ˆ̃hTRFIi

∥∥∥∥2
. (5.3)

Figure 5.1 shows the detailed block diagram of the proposed STA-DNN and TRFI-DNN
estimators, besides the recently proposed SoA DNN-based estimator denoted as
DPA-DNN [Han et al., 2019], that employs a three hidden layer DNN after the
conventional DPA estimation.

5.3 LSTM-DPA-TA

Motivated by the fact that the vehicular channel can be modeled as a time series due
to the time correlation between successive symbols, it is more convenient to employ
the LSTM network in the channel estimation instead of simple DNN as proposed for
STA-DNN and TRFI-DNN. Moreover, more performance gain can be achieved by using
the LSTM network before the DPA estimation to reduce the demapping error. The
proposed LSTM-based estimator proceeds as follows:

LSTM-based prediction

The first step is to estimate the channel for the current received OFDM symbol employing
the previous estimated channel ˆ̃hDL-TAi−1,d[k]. Then, LSTM units are employed to implicitly
learn the channel correlation between successive received OFDM symbols. Having LSTM
as a pre-processing to the DPA estimation is able to significantly prevent having a high
DPA demapping error. The i-th LSTM unit input is denoted by ˜̄xi ∈ R2Kon×1, which is
obtained by applying complex to real-valued conversion to

x̄i =


ˆ̃hLSTMi−1,d [k], k ∈ Kd
ˆ̃hi−1,p[k], k ∈ Kp

, (5.4)

and stacking its real and imaginary values in one vector. We note that ˆ̃hi−1,p[k] denotes
the least squares (LS) estimated channel at the Kp subcarriers. Then, ˜̄xi is processed by
the LSTM unit, such that

ˆ̃
hLSTMi,d

= ΩLSTM( ˜̄xi,Θ), (5.5)

where ΩLSTM is the LSTM unit processing with overall weights denoted by Θ.
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DPA estimation

The LSTM estimated channel undergoes DPA estimation using the i-th received OFDM
symbol similarly as done in the conventional DPA estimation, however, here the previous
LSTM-based estimated channel is used such that:

ĥeq-LSTMi
[k] = yi[k]

ˆ̃
hLSTMi−1 [k]

,
ˆ̃
hLSTM0 [k] = ˆ̃

hLS[k]. (5.6)

Then, ĥeq-LSTMi
[k] is demapped to the nearest constellation points resulting in the

d̂LSTMi
[k]. The final DPA estimation is performed as follows:

ˆ̃
hLSTM-DPAi [k] = yi[k]

d̂LSTMi [k]
. (5.7)

DPALSTM

LSTM-DNN-DPA Estimator

Proposed LSTM-DPA-TA Estimator

LSTM DPA
Temporal
Averaging

Figure 5.2: Proposed LSTM-based channel estimators block diagram.

TA processing

In order to alleviate the impact of noise, time averaging (TA) processing is applied to the
ˆ̃hLSTM-DPAi [k] such that:

ˆ̄
hDL-TAi,d = (1− 1

α
) ˆ̄
hDL-TAi−1,d + 1

α
ˆ̄
hLSTM-DPAi,d . (5.8)

Here we used a fixed α = 2 for simplicity. Therefore, the AWGN noise power σ2 is degraded
iteratively within the received OFDM frame according to the ratio

RDL-TAq =
(1

4

)(q−1)
+

q∑
j=2

(1
4

)(q−j+1)
= 4q−1 + 2

3× 4q−1 . (5.9)

RDL-TAq denotes the noise power ratio of the estimated channel at the q-th estimated
channel, where 1 < q < I + 1 and RDL-TA1 = 1 denotes the noise power ratio at ˆ̃hLS[k].
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Table 5.1: Proposed DL-based estimators parameters.

DNN (Hidden layers; Neurons per layer) (3;15-15-15)

LSTM (Hidden layers; Neurons per layer) (1;128)

Activation function ReLU (y = max(0, x))

Number of epochs 500

Training samples 800000

Testing samples 200000

Batch size 128

Optimizer ADAM

Loss function MSE

Learning rate 0.001

Training SNR 40 dB

The full derivation of (5.9) is provided in Appendix A. It can be seen from the derivation
of RDL-TAq that the noise power decreases iteratively over the received OFDM frame,
and hence, the SNR increases which leads to better overall performance. We note that,
integrating DNN and LSTM processing blocks with the existing conventional estimators
is compatible with the standard as it does not require a major change in the physical
layer of the standard.

Intensive experiments show that the performance of DL networks highly depends on
the SNR considered in the training. The training performed at the highest SNR value
provides the best performance. In fact, when the training is performed at a high SNR
value, the DL network is able to learn better the channel, because the impact of the
channel is higher than the impact of the noise in this SNR range. Thanks to the good
generalization properties of DL, trained networks can still estimate the channel even if
the noise is increased i.e. low SNR values. Therefore, the proposed DNN and LSTM
based estimators training is performed using signal-to-noise ratio (SNR) = 40 dB to
achieve the best performance. Moreover, intensive experiments are performed using the
grid search algorithm [Pontes et al., 2016] in order to select the best suitable DNN and
LSTM hyper parameters in terms of both performance and complexity. Fig. 5.2 shows
the proposed LSTM-based estimator with the recently proposed SoA LSTM-DNN-DPA
estimator. Moreover, Table. 5.1 presents the proposed DNN and LSTM- based parameters.
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(a) BER performance employing QPSK.
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(b) BER performance employing 16QAM.

Figure 5.3: BER for I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz),
high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000 Hz).

5.4 Simulation Results

In this section, the proposed DL-based estimators is compared against the recently
proposed SoA estimators in literature in terms of bit error rate (BER), normalized
mean-squared error (NMSE) employing the low, high, and very high mobility scenarios.
These are benchmarked with 1D-LMMSE as the best conventional linear SBS estimator,
as shown in Chapter 3. The simulations are implemented using QPSK and 16QAM
modulation orders. The SNR range is [0, 5, . . . , 40] dB. Moreover, the frame size is 100
OFDM symbols per frame and the performance evaluation is performed according to:
(i) modulation order, (ii) mobility, (iii) frame length, and (iv) DL architecture. Finally,
a robustness analysis is provided in order to validate the generalization ability of the
proposed estimators.

5.4.1 Modulation Order: QPSK vs. 16QAM

For QPSK modulation order, we can notice from Fig. 5.3, and Fig. 5.4 that employing
DL techniques in the channel estimation process leads to a significant overall performance
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(a) NMSE performance employing QPSK.
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(b) NMSE performance employing 16QAM.

Figure 5.4: NMSE for I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz),
high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000 Hz).

improvement in different mobility scenarios. First of all, the DNN-based estimators where
DNN is employed as a post-processing unit after conventional estimators are discussed.
We note that DNN can implicitly learn the channel correlations besides preventing a
high demapping error that results from conventional DPA estimation. The simulations
show that further performance improvement can be achieved by employing DNN after
the conventional STA and TRFI estimations, where STA-DNN estimator outperforms
DPA-DNN estimator by around 5 dB gain in terms of SNR for BER = 10−3. However,
STA-DNN suffers from error floor starting from SNR = 20 dB especially in very high
mobility scenario. This is due to the fact that conventional STA estimation outperforms
DPA in low SNR region because of the frequency and time averaging operations that
are able to alleviate the impact of noise and demapping error in low SNR regions.
While in high SNR regions, the averaging operations are not useful since the impact
of noise is low, and the STA averaging coefficients are fixed. Therefore, in order to
compensate the STA-DNN performance degradation in high SNR region we propose to
utilize the DNN processing after the conventional TRFI estimator, which improves the
performance in high SNR region. It is worth mentioning that, STA-DNN and TRFI-DNN
can be employed in an adaptive manner where STA-DNN and TRFI-DNN are used
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(a) NMSE performance with I = 10.
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(b) NMSE performance with I = 100.

Figure 5.5: NMSE for QPSK, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz),
high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000 Hz).

in low and high SNR regions, respectively. For the LSTM-based estimators, we can
notice that employing LSTM as a prepossessing unit instead of just simple DNN in
the channel estimation can significantly improve the overall performance. This is due
to the fact that LSTM can efficiently learn the time correlations of the channel by
taking the advantage of the previous output besides the current input to estimate the
current output. LSTM-DNN-DPA estimator [Pan et al., 2021] outperforms our proposed
STA-DNN and TRFI-DNN estimators by around 4 dB gain in terms of SNR for BER
= 10−3. However, this estimator suffers from high computational complexity as we
discuss in the next section due to employing two DL networks, i.e, LSTM followed by
DNN. On the other hand, our proposed LSTM-DPA-TA estimators performance gain in
different scenarios can be explained by employing the TA processing which significantly
reduces the noise impact. In addition to the high ability of the LSTM in learning the
channel time correlations compared with a simple DNN architecture. Moreover, two
LSTM architectures are employed using 64 and 128 LSTM hidden layer size, respectively.
The proposed LSTM-DPA-TA estimators achieve almost similar NMSE performance
as the 1D-LMMSE estimator in low SNR regions, while they outperform the recently
proposed LSTM-DNN-DPA estimator by around 4 dB gain in terms of SNR for BER
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(a) BER performance with I = 10.
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(b) BER performance with with I = 100.

Figure 5.6: BER for QPSK, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz), high
(v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000 Hz).

= 10−4. However, the optimized LSTM architecture (64) achieves almost similar BER
performance as the recently proposed LSTM-DNN-DPA estimator, with a significantly
reduced computational complexity.

When adopting high modulation order (16QAM), our proposed DNN-based and
LSTM-based estimators are also able to outperform the recently proposed estimators,
where the proposed LSTM-DPA-TA (128) estimator outperforms the other benchmarked
estimators by at least 7 dB and 3 dB gains in terms of SNR for BER = 10−3 in high and
very high mobility scenarios, respectively as shown in Fig. 5.3a and Fig. 5.4b.

5.4.2 Mobility and Frame Length

The impact of mobility and frame length is demonstrated in Figure. 5.5 and Figure. 5.6.
The NMSE performance degradation with the increase of mobility of all the compared
schemes can be noticed from Figure. 5.5, especially when a short frame (I = 10) is
used. The LSTM-based estimators outperform the DNN-based ones, as a result of better
exploiting the channel time correlations. This gain is significantly remarkable in the case
of a long frame (I = 100), whereas the performance of 1D-LMMSE is independent of
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the frame length for the same mobility condition. The increase of estimation accuracy
influences the reliability, as can be seen from Figure. 5.6. The LSTM-based estimators are
more robust against Doppler error than the DNN-based estimators, and LSTM-DPA-TA
estimator is still able to outperforms our proposed TRFI-DNN and the recently proposed
LSTM-DNN-DPA by around 3 dB and 5 dB gains in terms of SNR for BER = 10−3,
respectively.

Although the NMSE of the LSTM-based increases with the increase of the mobility, the
BER performance shows improvements when the mobility increases from high (fd = 500)
to very high mobility (fd = 1000), especially for long frames. However, the BER gets worse
in the case of high mobility than the case of low mobility. This behavior is attributed
to the main following factors; i) channel estimation error, and ii) time diversity due
to increased Doppler spread and frame length. The estimation error degrades the BER
performance, whereas the time diversity improves it. As can be seen from Figure. 5.6,
when perfect channel is used, which is only affected by the Doppler interference within the
duration of one OFDM symbol, increasing the frame length increases the time diversity
gain. In addition, with longer frame the codeword becomes longer, and therefore, the
BER decreases with the increase of the frame length. Once the mobility increases, the
time diversity increases as a result of the increase of Doppler spread, and this diversity
compensates for Doppler error, leading to similar performance with a short frame (I = 10).
Employing a longer frame, increases the time diversity and thus the BER decreases
with the increase of mobility. The impact of channel estimation error overweights the
diversity gain in the case of high mobility for all estimators. However, at very high
mobility, the diversity gain becomes significant, especially with a long frame. In this
case, the LSTM-based method performes similar to LSTM-DPA-TA(128) with slight gain,
at the cost of high complexity in comparison with the least computationally-complex
LSTM-DNN-DPA.

5.4.3 DL Architecture

An intensive investigation has been performed on several DNN and LSTM architectures
in order to select the most suitable hyper parameters in terms of both performance and
complexity. The proposed STA-DNN and TRFI-DNN estimators have better optimized
DNN architecture which definitely makes them less complex than the DPA-DNN estimator
as we discuss in Section 5.5. The simulation results according to several mobility conditions
show that integrating DNN with conventional estimators attains significant performance
improvement. Correcting the estimation error of the DPA estimation which is the main
idea of the recently proposed DPA-DNN estimator [Han et al., 2019] is not sufficient
even if more neurons are included in the DNN hidden layers, since it just corrects the
demapping error and neglects the frequency and time correlation of the received symbols.
Moreover, employing DNN as a post processing module after the STA and TRFI reflect the
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performance superiority with respect to DPA-DNN, due to the fact that STA takes into
consideration both frequency and time correlation between the received OFDM symbols,
whereas the conventional TRFI estimator employs frequency domain cubic interpolation
to improve further the DPA estimation. Therefore, we can conclude that in order for the
DNN processing to be more useful, the pre-estimation should be good enough. In other
words, as the accuracy of the pre estimation increases, low complex DNN architecture is
required while recording a considerable performance gain. In contrast, if the pre estimation
is bad, employing DNN processing with high-complexity architecture leads to a limited
performance gain while increasing the overall computational complexity.
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(a) BER performance employing QPSK. (b) NMSE performance employing QPSK.
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(c) BER performance employing 16QAM. (d) NMSE performance employing 16QAM.

Figure 5.7: Robustness analysis the proposed LSTM-DPA-TA (128) estimator in high mobility
scenario (fd = 500 Hz).
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5.4.4 Robustness Analysis

In order to analyze the robustness and the generalization ability of the proposed DL-based
estimators, we test the performance of the proposed LSTM-DPA-TA estimator in high
mobility scenario according to the following study cases:

. Case 1: Robustness against mobility: where the LSTM models trained for low and
very high mobility scenarios are used to estimate the channel in high mobility
scenario. This gives more information about employing an LSTM model trained
using different Doppler shifts in the testing phase.

. Case 2: Robustness against modulation order: here we consider in the testing
phase, a trained DNN on same mobility but different modulations. Moreover,
besides changing the Doppler shift in the trained LSTM model, we also change the
modulation order. For example, we use the trained LSTM for very high mobility
(QPSK) in estimating the channel for high mobility scenario (16QAM).

Figure 5.7 depicts the robustness analysis of the high mobility scenario including
both QPSK and 16QAM modulation orders. We can clearly notice that employing a
trained LSTM using the same Doppler but different modulation leads to almost similar
performance as using a trained LSTM (same Doppler, same modulation). On the other
hand, Figure. 5.7 illustrates the generalization ability of the LSTM network, where
employing trained LSTMs on very high mobility scenario in the testing phase of high
mobility scenario degrades slightly the performance, in contrast, when trained LSTMs
on low mobility scenario are used for testing in high mobility scenario, a significant
performance degradation is recorded. As a summary we can conclude the following:

. If LSTM is trained on high Doppler value and tested on low Doppler values, it gives
the same performance as the LSTM model trained on low Doppler value.

. If LSTM is trained on low Doppler value and tested on high Doppler values, then,
significant performance degradation is recorded.

. Training the LSTM on 16QAM modulation and testing it on QPSK modulation
achieves better performance than training the LSTM on QPSK modulation and
testing it on 16QAM modulation. This due to the fact that QPSK modulation
is a part of the 16QAM modulation, thus, when the LSTM is trained on higher
modulations it is able to generalize for the lower modulations.

5.5 Computational Complexity Analysis

For the computational complexity of the LSTM unit, it can be calculated in terms
of the required real values operations performed by its four gates, where each gate
applies P 2 +PKin real-valued multiplications, and 3P +Kin− 2 real-valued summations.
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In addition to 3P real-valued multiplications, and P real-valued summations required
by (1.31), and (1.33). Therefore, the overall computational complexity for the LSTM
becomes

CLSTM = 4(P 2 + PKin + 3P +Kin − 2) + 4P. (5.10)

We note that, the DNN-based estimators achieve lower complexity compared to
the LSTM-based estimators because LSTM processing requires more operations
than DNN processing. Concerning the DNN-based estimators, the DPA-DNN
architecture [Han et al., 2019] is composed of three hidden layers with J1 = J5 = 2Kon,
J2 = J4 = 40, and J3 = 20 neurons, respectively. Thus, the DPA-DNN requires
4KonJ2 + 2J2J3 multiplications, and 2Kon + 2J2 + J3 summations. Moreover, the
computational complexity of LS and the DPA estimation are accumulated for DPA-DNN
computational complexity resulting in 178Kon + 1600 multiplications and 168Kon + 1600
summations/subtractions as an overall computational complexity required by the
DPA-DNN estimator.

Table 5.2: Computation complexity in terms of real-valued operations.

Estimator Mul./Div. Sum./Sub.

DNN(J2-J3-J4) 2KonJ2 + J2J3 + J3J4 + 2KonJ4 2KonJ2 + J2J3 + J3J4 +2KonJ4

LSTM (P ) P 2 + 3P + PKin 4P +Kin − 2

Overall channel estimation

STA-DNN 82Kon + 2Kd + 450 70Kon + 10Kd + 450

TRFI-DNN 94Kon + 26Kint + 450 74Kon + 30Kint + 450

DPA-DNN 178Kon + 1600 168Kon + 1600

LSTM-DNN-DPA 512Kin + 98Kd + 71040 4Kin + 88Kd + 6776

LSTM-DPA-TA(64) 514Kon + 18Kd + 16576 10Kon + 8Kd + 824

LSTM-DPA-TA(128) 1026Kon + 18Kd + 65920 10Kon + 8Kd + 1656

The proposed STA-DNN and TRFI-DNN estimator employ a three hidden layer DNN
architecture with 15 neurons each. This DNN architecture requires 4KonJ2 + 2J2

2 , besides
2Kon + 3J2 summations. It can be observed that this architecture is less complex than
the DPA-DNN architecture. Therefore, the STA-DNN overall computational complexity
is 82Kon + 2Kd + 450 multiplications, and 70Kon + 10Kd + 450 summations/subtractions.
Moreover, the TRFI-DNN requires 94Kon + 26Kint + 450 multiplications, and 74Kon +
30Kint +450 summations/subtractions. The proposed TRFI-DNN estimator decreases the
number of multiplications and summations by 48% and 56%, respectively, in comparison
with DPA-DNN, while it has almost similar computational complexity as STA-DNN.
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Figure 5.8: Computational complexity of the LSTM-based estimators.
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Figure 5.9: Computational complexity of the DNN-based estimators.

For the LSTM-based estimators, the LSTM-DNN-DPA estimator employs one
LSTM unit with P = 128 and Kin = 112, followed by one hidden layer DNN
network with N1 = 40 neurons. Finally, the LSTM-DNN-DPA estimator applies
the DPA estimation which requires 18Kd real-valued multiplication/division and
8Kd real-valued summation/subtraction. Therefore, the overall computational
complexity of the LSTM-DNN-DPA estimator is 512Kin + 98Kd + 71040 real-valued
multiplication/division and 4Kin + 88Kd+ 6776 real-valued summation/subtraction. The
proposed LSTM-DPA-TA employs one LSTM unit with P = 128 as LSTM-DNN-DPA
estimator, or P = 64 when the optimized LSTM unit architecture is employed. Moreover,
the proposed estimator uses Kin = 2Kon, and applies TA as a noise alleviation
technique to the ˆ̄hLSTM-DPAi,d estimated channel, that requires only 2Kon real-valued
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multiplication/division and 2Kon real-valued summation/subtraction. As a results, the
proposed LSTM-DPA-TA estimator requires 4P 2 +P (8Kon+3)+18Kd+2Kon real-valued
multiplication/division and 13P + 10Kon + 8Kd − 8 real-valued summation/subtraction.

Based on this analysis, the proposed LSTM-based estimator achieves less computational
complexity compared to the LSTM-DNN-DPA estimator. It records 9.73% and 77.63%
computational complexity decrease in the required real-valued multiplication/division and
summation/subtraction, respectively, when the LSTM unit is employed with P = 128
hidden size. On the other hand, more complexity reduction can be achieved when
the optimized LSTM unit is used with P = 64 hidden size, where the proposed
estimator is able to decrease the complexity of the required multiplication/division and
summation/subtraction by 66.81% and 84.90%, respectively. It is worth mentioning
that replacing the DNN network by the TA processing in order to alleviate the
noise is the main factor in decreasing the overall computational complexity, where
the proposed estimator outperforms the LSTM-DNN-DPA estimator while recording
a significant computational complexity reduction. Moreover, we note that employing
the proposed LSTM-based estimators instead of the proposed DNN-based estimators
leads to 89.10% and 62.18% increase in the required real-valued multiplication/division
and summation/subtraction, respectively. However, a significant performance gain can
be achieved. Table 5.2, Figure. 5.9, and Figure. 5.8 show a detailed summary of the
computational complexities for the different studied estimators.

5.6 Conclusion

In this chapter, we have investigated the challenging channel estimation in doubly-selective
wireless channels. We have proposed two DNN-based estimators denoted as STA-DNN and
TRFI-DNN. The basic idea behind them is to integrate DNN with conventional STA and
TRFI estimators so that the DNN can capture more features of the time and frequency
correlations between the channel samples, thus, ensuring more advanced tracking of the
channel variations. Moreover, we have proposed another LSTM-based estimator, where
we have shown that employing the LSTM network instead of the DNN network in the
channel estimation leads to a significant performance improvement, especially in very
high mobility scenarios. This is due to the ability of LSTM network in implicitly learning
the time correlation between successive samples. Simulation results for different channel
models of vehicular communications have demonstrated that the proposed DNN and
LSTM based estimators significantly outperform the recently proposed SoA estimators,
with a considerable computational complexity decrease.
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Proposed DL-based FBF Channel
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In general, frame-by-frame (FBF) estimation should provide better performance
than symbol-by-symbol (SBS) estimation since the previous, current, and future
pilot subcarriers are employed in the estimation process of each received orthogonal
frequency division multiplexing (OFDM) symbol within the frame. The well-known
FBF conventional estimator 2D linear minimum mean square error (LMMSE) utilizes
the channel and noise statistics in the estimation, and thus, leading to comparable
performance to the ideal case. However, the 2D-LMMSE suffers from high computational
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complexity. Therefore, there is a need for new FBF estimators that are both robust and
low complex in order to overcome the high complexity limitation of the 2D-LMMSE while
achieving good estimation performance. In this context, we propose two FBF channel
estimation techniques, one based on linear estimation and interpolation, and the other
based on deep learning (DL).

The proposed hybrid and adaptive weighted interpolation (WI) channel estimators employ
new pilot allocation schemes for the IEEE 802.11p standard, where pilot symbols are
inserted into the transmitted frame. The number of inserted pilots is controlled and
adapted according to the mobility condition. In particular, one OFDM symbol with all
pilots is inserted at the end of the transmitted frame in low-mobility scenario and as
the mobility increases, more pilot OFDM symbols are required. All the other symbols
within the transmitted frame are fully allocated for data. The estimated channel for the
data symbols is computed by means of weighted summation of the estimated channels at
the inserted pilot symbols. To reduce the latency, each frame is divided into subframes,
where the channel estimation starts upon receiving each subframe instead of waiting
for the whole frame. Moreover, in order to gain more transmission data rate (TDR),
few pilots can be inserted within the pilot OFDM symbols depending on the channel
delay profile. On top of that, further performance improvement can be achieved by
integrating optimized super resolution CNN (SR-CNN) or denoising CNN (DN-CNN)
as post processing modules after the WI estimators. The proposed WI estimators enjoy
low-complexity and robustness, and achieve good performance in high-mobility scenarios.
Additionally, the proposed WI estimators contribute to latency reduction at the receiver in
addition to gaining more transmission data rates. To the best of our knowledge, there is no
recent FBF estimators that modify the IEEE 802.11p pilot allocation. However, the works
proposed in [Kim et al., 2008, Cho et al., 2009] employ modified frame structure but for
SBS channel estimation, where a midamble pilot symbol is inserted frequently within the
transmitted frame and used for estimating the channel for all successive symbols.

Motivated by the advantages of DL in improving the overall system performance as
discussed in Chapter 5, DL techniques, specifically convolutional neural networks (CNNs)
are integrated in the FBF estimators as a good low-complexity alternative to the 2D
LMMSE estimator that achieves considerable performance gain while preserving low
computational complexity. In the CNN-based estimation the estimated channel for the
whole frame is considered as a 2D low-resolution noisy image and CNN-based processing
is applied as super resolution and denoising techniques.

This chapter sheds lights on FBF channel estimation in vehicular communications.
First, the proposed linear and DL-based FBF estimators are presented and discussed
in Section 6.1 and 6.2, respectively. Then, simulation results followed by computational
complexity analysis are implemented in Section 6.3 and 6.4, respectively, where the
performance superiority of the proposed estimators is illustrated. We note that the
contributions presented in this chapter have been published in [Gizzini et al., 2021b].
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(a) Low mobility. (b) High mobility. (c) Very high mobility. (d) Pilot schemes.

Figure 6.1: Proposed frame structure employing different pilot allocation schemes.

6.1 Proposed Weighted Interpolation Estimators

The proposedWI estimators employ different pilot allocation schemes to the IEEE 802.11p
frame structure as shown in Fig. 6.1. The proposed frame structures are motivated by
the fact that the vehicle velocity is a known exchanged parameter between all vehicular
network nodes. For example, in urban environments (inside cities), the car velocity
must not exceed 40 Kmph. The vehicles and road side units within this environment
use a low-mobility frame structure, and similar approach can be decided for different
environments such as highways. Therefore, the frame structure selection is performed in
an adaptive manner according to the estimated vehicle’s velocity. The proposed frame
structures preserve the first two long training symbols (LTS) preamble symbols similar to
IEEE 802.11p standard, so that the synchronization and frame detection processes will
not be affected by the proposed modifications. Moreover, only P pilot OFDM symbols
are required in the transmitted frame, such that ỸP = [ỹ(p)

i1 , . . . , ỹ
(p)
iq , . . . , ỹ

(p)
iP

] ∈ CKon×P ,
where iq denotes the index of the pilot symbol within the frame. The other Id = I − P
OFDM data symbols are preserved for actual data transmission.

The estimation proceeds according to two criteria: (i) the pilot allocation scheme,
Figure. 6.1d, for frequency-domain estimation, and (ii) the mobility condition to select
the frame structure as shown in Figure. 6.1, for time interpolation.

6.1.1 Frequency-domain estimation

Full pilot allocation (FP)

In this scheme, all the Kon subcarriers are used as pilots formulating OFDM pilot symbol
and simple frequency-domain least squares (LS) estimation, denoted as simple LS (SLS),
is applied to estimate the channel for each inserted pilot symbol. The SLS is applied on
the two LTS preambles ỹLTS1 [k], and ỹLTS2 [k], and the received pilot symbol such that

ˆ̃
hSLSq [k] = ỹ

(p)
q [k]
p̃[k] = h̃q[k] + ṽq[k], k ∈ Kon. (6.1)
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Here, ṽq[k] represents the noise at the q-th received pilot symbol. Alternatively, the LS can
be performed in the delay-domain followed by interpolation and it is denoted as accurate
LS (ALS). This relies on the fact that h̃q = Fonhq,L, where hq,L ∈ CL×1 represents the
channel impulse response at the q-th pilot symbol. First, hq,L is estimated such that:

ĥq,L = F †on
ˆ̃hLSq = hq,L + F †onṽq, k ∈ Kon, (6.2)

where F †on = [(F H
onFon)−1F H

on] is the pseudo inverse matrix of Fon. Then, the
frequency-domain estimate produced by ALS is obtained by applying the discrete
Fourier transform (DFT) interpolation of ĥq,L as follows:

ˆ̃hALSq = Fonĥq,L = WALS
ˆ̃hLSq = Fonhq,L +WALSṽq, k ∈ Kon. (6.3)

The matrix WALS = FonF
†
on denotes the accurate ALS interpolation matrix.

L pilot allocation (LP)

This allocation is motivated by the fact that channel mainly consists of L taps, then
calculating hq,L requires only L pilots per pilot symbol, and can be computed as follows:

ĥq,L = F †p
ˆ̃hLSq = hq,L + F †p ṽq, k ∈ Kp. (6.4)

Here, ˆ̃hLSq represents the LS estimated channel for the q-th pilot symbol at the L equally
spaced inserted pilot subcarriers, and Kp = L. Moreover, F †p = [(F H

p Fp)−1F H
p ] is the

pseudo inverse matrix of Fp ∈ CKp×L, which is the truncated DFT matrices obtained by
selecting Kp rows, and L columns from the K-DFT matrix. Using DFT interpolation, the
frequency-domain channel estimate for the q-th pilot symbol is given by

ˆ̃
hDFTq = Fonĥq,L = Fonhq,L +WDFTṽq, k ∈ Kon. (6.5)

The matrix WDFT = FonF
†
p is the the interpolation matrix of the LP method.

Conventional pilot allocation (CP)

This case preserves the pilot structure of IEEE 802.11p standard, where onlyKp = 4 pilots
are employed. In this case, when L > Kp, truncated discrete Fourier transform (T-DFT)
method, which is discussed in Section 4.2, is used to obtain the frequency-domain channel
estimates for each pilot symbol.

6.1.2 Time-domain interpolation

After estimating the channel at the pilot symbols according to the selected configuration,
the proposed WI estimators groups the estimated channels of the P pilot symbols in P
matrices, each of two columns, defined by

ˆ̃
Hq = [ ˆ̃hq−1,

ˆ̃
hq], q = 1, · · ·P. (6.6)
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Figure 6.2: Proposed WI estimators block diagram.

We note that ˆ̃h0 = ˆ̃hLTS and ˆ̃hq refers to the estimates obtained using one of the estimation
techniques discussed in the previous section.

Weighted Interpolation

According to the grouped { ˆ̃Hq} matrices, the received frame can be divided into P

sub-frames, where f denotes the sub-frame index, such that 1 ≤ f ≤ P . Therefore,
the estimated channel for the i-th received OFDM symbol within each f -th sub-frame
can be obtained using interpolation matrix Cf ∈ R2×If , such that:

ˆ̃
HWIf = ˆ̃

HfCf , (6.7)

Cf = E
[
H̃f

ˆ̃HH
f

] [
E
[ ˆ̃Hf

ˆ̃HH
f

]]−1

=
[
E
[
H̃f

ˆ̃hHq
]

E
[
H̃i

ˆ̃hHq+1

]] E
[
‖h̃q‖2

]
+ Eq E

[
h̃qh̃

H
q+1

]
E
[
h̃q+1h̃

H
q

]
E
[
‖h̃q+1‖2

]
+ Eq+1

−1

=
[
J0(2πfd(f − 1)Ts) J0(2πfd(If + 1− f)Ts)

]  1 + EΦq J0(2πfdIfTs)
J0(2πfdIfTs) 1 + Eq+1

−1

.

(6.8)

This interpolation matrix is used to estimate the OFDM data symbols within the f -th
sub-frame whose length is If . We note that If is calculated according to the employed
frame structure where it is equal to Id, Id

2 , and
Id
3 in low, high, and very high mobility

scenarios, respectively. The entries of Cf are calculated by minimizing the mean squared
error (MSE) between the ideal channel H̃f , and the LS estimated channel at the OFDM
pilot symbols ˆ̃Hf as derived in [Zheng and Xiao, 2009]. This minimization results in Cf
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6 Proposed DL-based FBF Channel Estimators

Figure 6.3: SR-CNN architecture.

expressed in (6.8), where J0(.) is the zeroth order Bessel function of the first kind, Ts is the
received OFDM data symbol duration, and Eq denotes the overall noise of the estimated
channel at the q-th pilot symbol. Eq is calculated according to the chosen pilot allocation
scheme, and employed LS estimation, where it equals to σ2, σ2trace

{
WALSW

H
ALS

}
, and

σ2trace
{
WDFTW

H
DFT

}
for SLS, ALS and LP LS estimation respectively.

In fact, the weight elements of Cf for all the sub-frames can be calculated offline for
several vehicular scenarios by employing different fd and Id values, Therefore, decreasing
the online complexity and making the proposed WI estimators more practical. Moreover,
a trade-off between the mobility condition controlled by fd, the inserted pilot symbols P ,
and the employed frame length Id should be considered. As the mobility increases, more
pilot symbols should be inserted within the transmitted frame. This trade-off is managed
by the vehicular application requirements, so that the transmitter adapts the transmission
parameters according to these requirements. Fig. 6.2 shows the block diagram of the
proposed WI estimators besides the recently proposed SOA DL-based FBF estimators
presented in Appendix D.

6.2 Proposed CNN-based Channel Estimation

In this section, to enhance the performance of the linear WI approaches, we
propose to perform DL-based post processing. Namely, SR-CNN and DN-CNN.
SR-CNN [Dong et al., 2016] has been widely used in the literature to improve the
quality of the low-resolution images, where the input-output mapping is represented
as a deep CNN that takes the low-resolution image as the input and outputs the
high-resolution one. SR-CNN consists of three parts as shown in Fig. 6.3: (i) Patch
extraction and representation, where the low-resolution input image features are
extracted (ii) non-linear mapping, and (iii) reconstruction. Let Xm ∈ Rhm×wm×dm be the
input image to the m-th SR-CNN convolutional layer, where hm, wm, and dm denote
the image height, width, and depth respectively, and X1 ∈ Rh1×w1×d1 represents the
input image. The convolutional filters are denoted by the weights and biases matrices
Wm ∈ Rvm×vm×dm×fm and Bm ∈ Rfm×1, where vm refers to the convolutional filter size,
and fm denotes the total number of filters employed in the SR-CNN m-th convolutional
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6.2 Proposed CNN-based Channel Estimation

Figure 6.4: DN-CNN architecture.

layer. The m-th convolution layer applies fm convolution operation to its Xm input
image as follows

Y(m) = F(m)

(
W(m) ∗X(m)

)
, X(m+1) = Y(m), (6.9)

where F(m) represents the activation function applied to the m-th convolutional layer
output. We note that, it is possible to add more convolutional layers to increase the
non-linearity mapping between the SR-CNN convolutional layers, but this increases
the complexity of the SR-CNN model and thus demands more training time. The
employed SR-CNN architecture related mainly to the investigated problem and the
dataset structure, whereas the best SR-CNN architecture and parameters can be fine
tuned by intensive experiments or by using the grid search algorithm [Pontes et al., 2016]
that selects the best suitable SR-CNN hyperparameters in terms of both performance
and complexity. The loss function of the SR-CNN is represented by the MSE between the
SR-CNN reconstructed high resolution images Y , and the true images Y (T ), such that

MSESR-CNN = 1
NTrain

NTrain∑
i=1

∥∥∥Yi − Yi(T )
∥∥∥2
, (6.10)

where NTrain denotes the number of training samples.

On the other hand, DN-CNN [Zhang et al., 2017] improves the image quality by
separating the noise from the input noisy image using a special CNN architecture. After
that, the input noisy image is subtracted from the extracted noise resulting in the denoised
image. In order to extract the noise from a noisy image, residual learning [He et al., 2015]
is employed so that the noise included in the input image is learned in the DN-CNN
training phase by minimizing the following DN-CNN loss function

MSEDN-CNN = 1
NTrain

NTrain∑
i=1

∥∥∥Vi − Vi(T )
∥∥∥2
, (6.11)

where Vi represents the extracted noise included in the noisy input image Xi, and
Vi

(T ) denotes the exact noise, such that Vi(T ) = Yi
(N) − Xi. As shown in Fig. 6.4,

the DN-CNN employs in the first layer convolution and ReLU activation function to
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6 Proposed DL-based FBF Channel Estimators

Table 6.1: Optimized SR-CNN and DN-CNN parameters.

Parameter Values

Input/Output dimensions 2Kon × I × 1

SRCNN (v1, f1; v2, f2; v3, f3) (9,32; 1,16; 5,1)

DNCNN (v, f) (3, 16)

DNCNN D 7

Activation function ReLU

Number of epochs 250

Training samples 8000

Testing samples 2000

Batch size 128

Optimizer ADAM

Loss function MSE

Learning rate 0.001

Training SNR 30 dB

generate the initial feature maps from the input noisy image. After that, successive
(Conv + BN + ReLU) layers are employed to extract the noise features, since the
analysis performed in [Zhang et al., 2017] shows that integrating convolution with batch
normalization followed by ReLU, can gradually separate the clean image structure from
the noisy observation through the DN-CNN hidden layers. Finally, a convolutional layer
is used for output image reconstruction. In summary, the DN-CNN architecture has
two main tasks: the residual learning is used to learn the noise features, and the batch
normalization which is incorporated to speed up training as well as to boost the denoising
performance. The main complexity of the DN-CNN architecture lies in its depth (D)
that denotes the number of employed (Conv+ BN + ReLU) layers. As D increases the
complexity of the DN-CNN architecture increases. Similarly to SR-CNN, all the DN-CNN
parameters can be tuned using grid search algorithm.

Unlike ChannelNet estimator, where both SR-CNN and DN-CNN networks are used on
top of the radial basis function (RBF) interpolation, extensive experiments are applied in
this paper using the hyper parameters tuning grid search algorithm [Pontes et al., 2016]
in order to select the best CNN network configuration that is suitable with the mobility
condition. Based on the selected CNN parameters, an optimized SR-CNN is employed on
top of the WI estimators in low mobility scenario, while optimized DN-CNN is employed in
high mobility scenario. By doing so, better performance can be achieved with a significant
decrease in the overall computational complexity as we discuss in the next sections.
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We note that, employing low-complexity SR-CNN and DN-CNN architectures is due to
the good performance of the initial WI estimation. Moreover, our investigations show
that by employing the proposed WI estimators, there is no need to use both SR-CNN
and DN-CNN, since the computational complexity increases without any significant
performance gain.

We note that CNNs networks work with real valued data, therefore after applying the WI
interpolation estimator, ˆ̃HWI ∈ CKon×Id is converted from complex to real valued domain
by stacking the real and imaginary values vertically in one matrix, such that ˆ̃H(R)

WI ∈
R2Kon×Id . Then ˆ̃H(R)

WI is fed as an input to the optimized SR-CNN or DN-CNN according
to the mobility scenario. Finally, the output of the employed network is converted back
to the complex domain. The optimized SR-CNN and DN-CNN networks are trained on
signal-to-noise ratio (SNR)= 30 dB for each mobility scenario, since in high SNR region,
the CNN network is able to learn better the channel due to the low noise impact in high
SNR region. Moreover, ADAM optimizer is used with MSE loss function. Table 6.1 shows
the proposed optimized SR-CNN and DN-CNN parameters.

6.3 Simulation Results

In this section, the performance of the proposed linear WI estimators is evaluated
compared to the conventional 2D LMMSE that exploits all the pilots defined in the IEEE
802.11p standard, channel network (ChannelNet), and Temporal spectral ChannelNet
(TS-ChannelNet) estimators using bit error rate (BER) and normalized mean-squared
error (NMSE). In addition, we also include the WI estimator withKp = 4 pilot subcarriers
only denoted as WI-CP, in this case, the proposed T-DFT estimation in Chapter 4
is applied at the inserted pilot symbols within the OFDM frame. The simulations
are conducted employing three vehicular scenarios and the criteria that are defined in
Chapter 5.

6.3.1 NMSE Evaluation

The NMSE performance of the proposed estimators depends mainly on the employed
WI estimation, where using low number of pilots as the case in the proposed WI-LP
and WI-CP estimators leads to considerable performance degradation as we can notice
in Figure. 6.5a. Whereas, the proposed WI-FP-SLS and WI-FP-ALS achieve better
performance than WI-CP and WI-LP due to the employment of full pilots symbols within
the frame. The accuracy of WI-FP-ALS is higher at low SNR due to the exploitation of the
frequency correlation via interpolation at the cost of increased complexity. By employing
all the pilots in the frame (4 pilots per OFDM symbol), 2D-LMMSE (100) significantly
outperforms the WI estimators. In order to reduce the latency, we consider to apply the
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(a) NMSE for linear methods.
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(b) NMSE with DL post processing.

Figure 6.5: NMSE employing I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250
Hz), high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000
Hz). The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

2D-LMMSE on subframe basis with a subframe length of 10 OFDM symbols denoted
as 2D-LMMSE (10). The estimation accuracy in this case is reduced by 10 dB with the
decrease of the subframe length. Nevertheless, the accuracy of 2D-LMMSE (10) is better
than the WI estimators due to the high correlation of the pilots.

The performance of the WI approaches is reduced by the increase of mobility. This mainly
depends on the frame structure, and the Doppler spread through the coherence interval
between the pilots symbols, which can be defined as

∆C = ∆pIfdTs, (6.12)

where Ts is the OFDM symbol duration, ∆pI number of symbols between successive
pilot symbols. A smaller value indicates more correlation between the pilots that can
be exploited in the time-domain interpolation. Based on the frame structure shown in
Figure. 6.2, at very high mobility (fd = 1000 Hz), ∆p = 33 symbols, which corresponds to
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6.3 Simulation Results

∆C = 33× 103Ts, whereas in low and high mobility, ∆C = 25× 103Ts. As a consequence,
it is clear that the NMSE at very high mobility increases compared to the other cases
because of the larger coherence interval between the pilots. The high mobility case is only
influenced by the Doppler interference, which can be observed from the error floor at high
SNRs. In addition, WI-CP is affected by using less pilots compared to WI-LP. This is also
the situation in both 2D-LMMSE estimators as the NMSE increases with the increase of
mobility at high SNRs.

Figure. 6.5b shows the NMSE performance of the CNN-based estimators. It can be noticed
that the proposed estimators are able to outperform the ChannelNet and TS-ChannelNet
estimators in different mobility scenarios. It is worth mentioning that using CNN
post processing after the WI-based estimators reveals a considerable robustness against
mobility. This is due to the ability of the optimized SR-CNN and DN-CNN in significantly
alleviating the impact of Doppler interference. The DL-based post processing networks
provide a performance trade-off between the linear WI and 2D-LMMSE using the full
pilots in the frame.

6.3.2 BER Evaluation

Figure. 6.9a depicts the BER using the discussed linear estimation techniques employing
QPSK. The relative performance follows the same trend of the channel estimation
performance shown in Figure. 6.5a in each mobility case. In general, the impact of the
estimation error is lower in low SNR region and this impact increases with the increase
of the SNR. In particular, the BER error floor of WI-CP is higher than the others
as its estimation error floor is higher. Although the NMSE gap between WI-FP-ALS,
WI-FP-SLS, WI-LP decreases with the increase of the SNR, the BER gain achieved by
WI-FP-ALS is maintained until reaching an error floor. In different mobility scenarios, the
trade-off between estimation error and time diversity gain, as detailed in Section 5.4.2, can
be observed. For instance, although the NMSE increases at very high-mobility compared
to low-mobility case, the BER of WI-CP does not highly degrade, this is due to the long
codeword. The other methods employ more pilots at very high mobility, which reduces
the codeword length. In total, the estimation error dominates over the diversity gain.
Nevertheless, the case of 2D-LMMSE experiences improvement due to better channel
estimation, although the codeword is smaller than that used in WI-FP-ALS.

The impact of the proposed DL-based post processing is shown in Figure. 6.9b. First, it
can be clearly seen that the post processing enhances the BER as a result of enhancing the
channel estimation, Figure. 6.5b. Next, we compare our proposed linear, and DL-enhanced
estimation with the SoA DL-based ChannelNet and TS-ChannelNet. We can observe the
significant BER performance superiority of the proposed estimators, where WI-LP records
similar performance as TS-ChannelNet, while WI-FP-SLS estimator slightly outperforms
WI-LP by around 1 dB gain in terms of SNR for a BER = 10−3. On the other hand, the
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(a) BER with linear estimation.
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(b) BER with DL post processing.

Figure 6.6: BER for I = 100, QPSK, mobility from left to right: low (v = 45 Kmph, fd = 250
Hz), high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000
Hz). The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

proposed WI-FP-ALS estimator outperforms both ChannelNet and TS-ChannelNet by
around 6 dB and 3 gain in terms of SNR for a BER = 10−3, respectively. The performance
degradation of the proposed WI-CP estimator is due to employing only 4 pilot subcarriers
with T-DFT estimation, and thus, the error of the neglected channel taps appears, causing
this performance degradation. The performance of ChannelNet and TS-ChannelNet
accounts of the predefined fixed parameters in the applied interpolation scheme, where the
RBF interpolation function and the ADD-TT frequency and time averaging parameters
must be updated in a real-time manner. Moreover, the ADD-TT interpolation employs
only the previous and the current pilot subcarriers for the channel estimation at each
received OFDM symbol. On the contrary, in the proposed WI estimators there are no
fixed parameters, the time correlation between the previous and the future pilot symbols
is considered in the WI interpolation matrix (6.8), and the estimated channel at all channel
taps is considered in the overall estimation. These aspects lead to the proposed estimators
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(a) BER with linear estimation.

0 10 20 30 40
10

-5

10
-4

10
-3

10
-2

10
-1

0 10 20 30 40
10

-5

10
-4

10
-3

10
-2

10
-1

0 10 20 30 40
10

-5

10
-4

10
-3

10
-2

10
-1

(b) BER with DL post processing.

Figure 6.7: BER for I = 100, 16QAM, mobility from left to right: low (v = 45 Kmph, fd = 250
Hz), high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000
Hz). The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

performance superiority. In addition, ChannelNet and TS-ChannelNet estimators suffer
from a considerable performance degradation that is dominant in very high mobility
scenario. However, the proposed estimators show a robustness against high mobility,
this is mainly due to the accuracy of the WI interpolation, combined with optimized
SR-CNN and DN-CNN. Although CNN processing is applied in the ChannelNet and
TS-ChannelNet, this post CNN processing is not able to perform well due to the high
estimation error of the 2D RBF and ADD-TT interpolation techniques in the initial
estimation. As a result, we can conclude that employing robust initial estimation as
the proposed WI interpolation schemes allows the CNN to learn better the channel
correlation with lower complexity, thus improving the channel estimation. Finally, we note
that the performance of the 2D-LMMSE estimator is comparable to the performance of
ideal channel but it requires huge complexity as we discuss in the next section, which is
impractical in real scenario.
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(a) BER of WI estimators employing QPSK.
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(b) BER of WI estimators employing 16QAM.

Figure 6.8: BER for I = 100, QPSK, mobility from left to right: low (v = 45 Kmph, fd = 250
Hz), high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000
Hz). The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

6.3.3 Frame Length

Figure 6.10 shows the BER performance of high mobility vehicular scenario employing
QPSK modulation and different frame lengths. It can be clearly noticed that the proposed
WI-FP-ALS estimator is able to outperform ChannelNet and TS-ChannelNet for different
frame lengths, this is due to the robustness of the proposed WI-FP-ALS estimator,
unlike the 2D RBF and ADD-TT interpolation techniques that suffer from a considerable
estimation error even when a short frame is considered, which affects the performance of
ChannelNet and TS-ChannelNet. Moreover, employing the optimized DN-CNN after the
WI-FP-ALS estimator improves significantly the BER performance. Table 6.2 illustrates
the performance gain of the proposed WI-FP-ALS-DN-CNN estimator compared to the
TS-ChannelNet estimator in high mobility scenario, where employing the optimized
DN-CNN leads to 5 dB and 10 dB gain in terms of SNR for a BER = 10−3 for QPSK and
16QAM modulation orders respectively.
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(a) BER of CNN post processing employing QPSK.
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(b) BER of CNN post processing employing
16QAM.

Figure 6.9: BER for I = 100, 16QAM, mobility from left to right: low (v = 45 Kmph, fd = 250
Hz), high (v = 100 Kmph, fd = 500 Hz), very high (v = 200 Kmph, fd = 1000
Hz). The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

Table 6.2: BER performance gain (dB) of the proposed WI-FP-ALS compared to the
TS-ChannelNet estimator in different mobility scenarios.

Scheme
Low High Very High

WI SRCNN WI DNCNN WI DNCNN

QPSK 4 5 3 4 2 5

16QAM 2 6 3 4 5 10

6.3.4 CNN Architecture

The ChannelNet estimator employs SR-CNN and DN-CNN after the 2D RBF
interpolation. The used SR-CNN consists of three convolutional layers with
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Figure 6.10: BER performance of VTV-SDWW high mobility vehicular channel model
employing QPSK modulation and different frame lengths.

(v1 = 9; f1 = 64), (v2 = 1, f2 = 32) and (v3 = 5, f3 = 1) respectively. Moreover,
the DN-CNN depth is D = 18 with 3× 3× 32 kernels in each layer. On the other hand,
super resolution convolutional long short-term memory (SR-ConvLSTM) network consists
of three ConvLSTM layers of (v1 = 9; f1 = 64), (v2 = 1, f2 = 32) and (v3 = 5, f3 = 1)
respectively is integrated after the ADD-TT interpolation in the TS-ChannelNet
estimator. We note that, the SR-ConvLSTM network combines both the CNN and the
LSTM networks [Shi et al., 2015], which increases the overall computational complexity
as we discuss later. In contrast, the employed optimized SR-CNN and DN-CNN decreases
significantly the complexity due to the accuracy of the proposed WI estimators. In
conclusion, we can observe that, as the accuracy of the pre-estimation increases, the
complexity of the employed CNN decreases, since low-complexity architectures can be
used and vise versa.

6.4 Computational Complexity Analysis

In this section, a detailed computational complexity, TDR, and latency analysis of the
2D LMMSE estimator, ChannelNet, TS-ChannelNet, and the proposed WI estimators are
presented.
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6.4 Computational Complexity Analysis

6.4.1 Computational Complexity Analysis

6.4.1.1 2D LMMSE estimator

The conventional 2D LMMSE estimator requires first the LS estimation as that requires
2KpI divisions. Then, the matrix inverse operation requires 4K3

pI
3 multiplications and

3K3
pI

3 summations. Finally, the correlation matrices are multiplied by the LS estimated
channel vector resulting in K2

pI
2 + K2

dK
2
pI

4 multiplications. Therefore, the overall
computational complexity of the conventional 2D LMMSE estimator is 4K3

pI
3 + K2

pI
2 +

K2
dK

2
pI

4 + 2KpI multiplications and 3K3
pI

3 + 2KpI summations. We note that, in case
the full W2D-LMMSE matrix is calculated offline, the computational complexity of the
2D-LMMSE estimator is reduced to 4KdK

2
pI

2 + 2KpI multiplications and 3KdK
2
pI

2 +
2KdKpI

2− 2KdI summations. We can notice that the 2D LMMSE suffers from very high
computational complexity that make it impractical estimator in real-time scenarios.

6.4.1.2 ChannelNet estimator

The ChannelNet estimator employs the RBF interpolation followed by SR-CNN and
DN-CNN networks. Thus, the overall computational complexity of the ChannelNet
estimator can be expressed as follows

CCChannelNet = CCRBF + CCSR-CNN + CCDN-CNN. (6.13)

The calculation of ˆ̃HLS requires 2KpI divisions. wRBF calculation requires 4K2
pI

2

multiplications/divisions and 5K2
pI

2−2KpI summations/subtractions. On the other hand,
ˆ̃HRBF computation requires KdI(K2

pI
2 + 3KpI) multiplications/divisions and 5KdKpI

2

subtractions/summations. Therefore the total computational complexity of the RBF
interpolation can be expressed byK2

pI
2(4+KdI)+KpI(2+3KdI) multiplications/divisions

and KpI(5KpI + 5KdI − 2) summations/subtractions. Thereafter, the ChannelNet
estimator applies SR-CNN followed by DN-CNN on top of the RBF interpolation.
CCSR-CNN and CCDN-CNN can be computed as follows

CCSR-CNN =
J∑
j=1

hjwjdjv
2
j fj + hjwjdjfj

=
J∑
j=1

hjwjdjfj(v2
j + 1).

(6.14)

CCDN-CNN =
J∑
j=1

hjwjdjfj(v2
j + 1) +

D∑
j=1

4hjwjdj , (6.15)

where J denotes the number of employed CNN layers. We note that the second
term in CCDN-CNN represents the number of operations required by the batch
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Table 6.3: CNN-based estimators overall computation complexity.

Scheme
Interpolation CNN

Mul./Div. Sum./Sub. Mul./Div. Sum./Sub.

ChannelNet
K2
pI

2(4 +KdI)

+ KpI(2 + 3KdI)

KpI(5KpI

+ 5KdI − 2)
350144KonI 42432KonI

TS-ChannelNet 24KonI + 4LKonI
18KonI

+ 5KonIL
226880KonI 81472KonI

FP-SLS-SR-CNN
2KonP + 2Kon

+ 4KonId

2Kon

+ 2KonId

7008KonId 1120KonId
FP-ALS-SR-CNN

4K2
onP + 2KonP

+ 2Kon + 4KonId

5K2
onP

+ 2KonId

LP-SR-CNN
2LP + 4KonLP

+ 2Kon + 4KonId

5KonLP

+ 2KonId

CP-SR-CNN
8P + 16KonP

+ 2Kon + 4KonId

20KonP

+ 2KonId

FP-SLS-DN-CNN
2KonP + 2Kon

+ 4KonId

2Kon

+ 2KonId

84096KonId 9856KonId
FP-ALS-DN-CNN

4K2
onP + 2KonP

+ 2Kon + 4KonId

5K2
onP

+ 2KonId

LP-DN-CNN
2LP + 4KonLP + 2Kon

+ 4KonId

5KonLP

+ 2KonId

CP-DN-CNN
8P + 16KonP

+ 2Kon + 4KonId

20KonP

+ 2KonId

normalization employed in the DN-CNN network. Therefore, the SR-CNN employed
in the ChannelNet estimator requires 16064KonI multiplications/divisions and 4288KonI

summations/subtractions, while the ChannelNet DN-CNN computations require
334080KonI multiplications/divisions and 38144KonI summations/subtractions.

6.4.1.3 TS-ChannelNet estimator

The TS-ChannelNet estimator applies the average decision-directed with time truncation
(ADD-TT) interpolation followed by the SR-ConvLSTM network. Thus, the overall
computational complexity of the TS-ChannelNet estimator can be expressed as follows

CCTS-ChannelNet = CCADD-TT + CCSR-ConvLSTM. (6.16)
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The ADD-TT interpolation applies first the data-pilot aided (DPA) estimation that
requires 18Kon multiplications/divisions and 8Kon summations/subtractions. The
time domain truncation operation applied in (C.6) requires 4LKon multiplications
and 5KonL − 2Kon summations. After time domain truncation, the ADD-TT
interpolation applies frequency and time domain averaging. The frequency domain
averaging (C.7) requires 10Kon summations, and 2Kon multiplications. Moreover, the
time domain averaging step (C.8), requires 4Kon real valued divisions, and 2Kon real
valued summations. Therefore, the overall computational complexity of the ADD-TT
interpolation for the whole received OFDM frame requires 24KonI + 4LKonI real valued
multiplications/divisions, and 18KonI + 5KonIL real valued summations/subtractions,
and its computational complexity is expressed in terms of the overall operations applied
in the input, forget, and output gates of the SR-ConvLSTM network, such that

CCConvLSTM =
J∑
j=1

hjwjdjfj(8v2
j + 30). (6.17)

Based on (6.17), the SR-ConvLSTM network employed in the TS-ChannelNet estimator
requires 226880KonI multiplications/divisions and 81472KonI summations/subtractions.

TS-ChannelNet estimator is less complex than the ChannelNet estimator, since it employs
only one CNN on top of the ADD-TT interpolation, unlike the ChannelNet estimator
where both SR-CNN and DN-CNN are employed.

6.4.1.4 Proposed WI estimators

The proposed WI estimators computational complexity depends mainly on the selected
frame structure, the pilot allocation scheme, and the selected optimized CNN. The overall
computational complexity of the proposed WI estimators can be expressed as follows

CCWI = CC ˆ̃HWI
+ CCO-CNN. (6.18)

In the case of inserting full pilot symbols two options are considered. The first option is the
SLS estimator where it requires only 2KonP +2Kon divisions, and 2Kon summations. The
second option is employing the ALS estimator, where 2KonP +2Kon divisions, followed by
4K2

onP multiplications, and 5K2
onP summations are required. On the other hand, when

Kp = L pilots are inserted with each pilot symbol, then the LS estimation requires
2LP + 2Kon divisions, 4KonLP multiplications, and 5KonLP summations. Similarly
for employing only Kp = 4 pilot subcarriers within the inserted pilot symbols, the
WI-CP estimator requires 8P + 2Kon divisions, 16KonP multiplications, and 20KonP

summations. After selecting the required frame structure and pilot allocation scheme,
the proposed estimators apply the weighted interpolation as shown in (6.7), where the
channel estimation for each received OFDM frame requires 4KonId divisions and 2KonId
summations. Finally, the optimized SR-CNN is employed in low mobility scenario and
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Figure 6.11: Computational complexities of the proposed WI estimators employing P = 2.

it requires 7008KonId multiplications/divisions and 1120KonId summations/subtractions,
while the optimized DN-CNN employed in high and very high mobility scenarios requires
84096KonId multiplications/divisions and 9856KonId summations/subtractions

The proposed WI-FP-ALS records the higher computational complexity among the other
proposed estimators in all mobility scenarios, due to the WALS calculation in (6.3).
Moreover, the proposed WI-FP-SLS estimator is the simplest one. Fig. 6.11 shows the
computational complexity of the proposed WI estimators employing P = 2 pilot symbols
within the transmitted frame.

Table 6.3 shows the overall computational complexity of the studied estimators in terms
of real valued operations. It is worth mentioning that the proposed WI estimators
achieve significant computational complexity decrease compared to ChannelNet and
TS-ChannelNet estimators. Fig. 6.12 shows the computational complexity of ChannelNet
and TS-ChannelNet compared to FP-ALS-SR-CNN. The ChannelNet and TS-ChannelNet
estimators are 70 and 39 times more complex than the proposed FP-ALS-SR-CNN
respectively. Moreover, the proposed estimators achieve at least 7027.35 times less
complexity than the 2D LMMSE estimator, with an acceptable BER performance, thus
making them a good alternative to the 2D LMMSE. We note that FP-ALS-DN-CNN is
12 times more complex than FP-ALS-SR-CNN since the optimized DN-CNN architecture
complexity that is employed in high and very high scenarios is higher than the optimized
SR-CNN architecture which is used in low mobility scenario.

6.4.2 Transmission Data Rate and Latency Analysis

The TDR and the latency introduced at the receiver in order to recover the transmitted
bits are important issues in vehicular communications, especially when real time
applications are employed [Ashraf et al., 2017]. The transmission data rate is influenced
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Figure 6.12: Computational complexities of the SoA CNN-based estimators compared to the
proposed FP-ALS-SR-CNN.
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Figure 6.13: Processing latency of the proposed WI estimators.

by the number of allocated data subcarriers within the transmitted frame, such that

TDR = KDF log2(M)ρ
TsI

, (6.19)

Table 6.4: Transmission data rate and buffering time analysis for the proposed WI estimators.

Estimator
WI-1P WI-2P WI-3P

FP LP CP FP LP CP FP LP CP

TDR gain 7.25% 8.08% 8.25% 6.16% 7% 7.16% 5.1% 7.58% 8.08%

ϕ [µs] 800 400 265
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whereKDF and ρ denote the total allocated data subcarriers within the transmitted frame,
and the employed code rate respectively, and M represents the employed modulation
order. Moreover, the buffering time ϕ can be expressed by the total duration that the
receiver should wait before starting the channel estimation, such that

ϕ = TsI. (6.20)

where Ts represents the received OFDM data symbol duration.

ChannelNet and TS-ChannelNet estimators have no TDR gain since they employ Kp = 4
pilot subcarriers within each transmitted OFDM symbol. Moreover, they also require the
full reception time (ϕ = 800 µs in our case) before starting the channel estimation process.
Therefore, ChannelNet and have similar transmission data rate as defined in the IEEE
802.11p standard. On the other hand, ChannelNet and TS-ChannelNet suffer from high
buffering time at the receiver, since the full frame should be received before the channel
estimation starts, thus leading to high latency.

As shown in Table 6.4, the proposed WI estimators record different TDRs gains according
to the employed frame structure. Moreover, the proposed WI-2P and WI-3P estimators
require lower buffering time than the proposed WI-1P, ChannelNet, and TS-ChannelNet
estimators, since it divides the frame into several sub-frames as shown in Fig. 6.13. Thus,
the channel estimation process starts earlier. Therefore, the proposed WI estimators
contribute in reducing the total required latency. Finally, we note that the transmission
parameters and the chosen frame structure should be adapted according to the mobility
condition, required data rate, and the acceptable latency by the vehicular application.

6.4.3 SBS vs. FBF Estimators

In this section, the proposed DL-based SBS and FBF estimators are compared and
discussed using the same simulation setup as defined in the previous simulations.
Figure. 6.15 and Figure. 6.14 show the BER and NMSE performance of the proposed
DL-based estimators in low, high, and very high mobility scenarios employing QPSK and
16QAM modulation orders.

In low-mobility scenario, the proposed LSTM-based SBS estimator outperforms the
proposed WI-FP-ALS-DNCNN FBF estimator. This can be explained by the ability of
LSTM to learn the channel time correlation than the DNCNN, since in low mobility
scenario, Doppler error is somehow negligible. However, in high and very high mobility
scenarios, WI-FP-ALS-DNCNN shows a significant performance superiority, where it
outperforms the proposed LSTM-based SBS estimator by 3 dB gain in terms of SNR
for a BER = 10−4. We note that in high mobility vehicular scenarios, where the Doppler
error impact is high, LSTM records some performance degradation since learning the
time correlation between successive samples is not achievable as the low mobility scenario
case. On the other hand, DNCNN network is able to significantly alleviate the impact
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(a) NMSE performance employing QPSK.

0 10 20 30 40

10
-3

10
-2

10
-1

10
0

0 10 20 30 40
10

-3

10
-2

10
-1

10
0

0 10 20 30 40
10

-3

10
-2

10
-1

10
0

(b) NMSE performance employing 16QAM.

Figure 6.14: NMSE performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).
The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

of noise and Doppler error, where it records at least 5 dB gain in terms of SNR for
a BER = 10−4. As a conclusion, we can say that employing LSTM network instead
of DNN and DNCNN networks gives better performance in low-mobility scenarios. In
contrast, DNCNN is more useful in high and very high mobility scenarios. This is because
DNCNN takes the advantage of using the whole pilot subcarriers within the received
frame. As a summary, we can say that as the mobility increases, the time correlation
between successive received OFDM symbols decreases. Therefore, the performance of
LSTM degrades compared to CNN. Whereas, in high mobility scenarios the proposed
CNN-based estimators become more useful than the proposed LSTM-based estimators.

However, we should take into consideration that even though the performance is improved
by using LSTM and CNN networks, but more computational complexity is required where
the proposed LSTM-based SBS estimator is 23.6 times more complex than the proposed
DNN-based SBS estimators. On the other hand, the proposed CNN-based FBF estimator
is more complex than the proposed LSTM-based SBS estimator by around 3450 times.
This is due to the great difference in terms of required operations between the CNN and
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(a) BER performance employing QPSK.
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Figure 6.15: BER performance employing three scenarios: (i) first column - low mobility (v =
45 Kmph, fd = 250 Hz) (ii) second column - high mobility (v = 100 Kmph, fd =
500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).
The CNN refers to SRCNN and DNCNN in low and high/very high) mobility
scenarios, respectively.

LSTM networks. Finally, we note that, the choice of the vehicular channel estimator is
mainly related to the vehicular applications requirements and the allowed computational
complexity limits, if the application is sensitive to latency, than SBS estimators are more
useful, while if some latency can be accepted, FBF estimators can be employed. As a
summary, a trade off between the required performance, computational complexity, and
the accepted latency should be first defined in order to select what is the best vehicular
channel estimator to choose.

6.5 Conclusion

In this Chapter, FBF channel estimation in vehicular communication is studied, where
the limitations of the conventional 2D LMMSE estimator and the motivation behind
employing CNN processing in the channel estimation are presented. Moreover, The
recently proposed CNN-based channel estimators have been extensively surveyed. In this

112



6.5 Conclusion

context, we have proposed a hybrid, adaptive, and robust WI channel estimators for the
IEEE 802.11p standard, where pilot symbols are inserted within the transmitted frame,
with several pilot allocation schemes adapted according to the mobility condition. Unlike
the recently proposed ChannelNet and TS-ChannelNet estimators that suffer from high
computational complexity, performance degradation in high mobility vehicular scenarios,
and high latency at the receiver, the proposed WI estimators have reduced computational
complexity and robustness in high mobility scenarios. Moreover, they require low buffering
time at the receiver and more TDR gain is achieved since all the OFDM symbols within
the transmitted frame are fully allocated to data. Additionally, the employed SR-CNN and
DN-CNN architectures are optimized through intensive experiments in order to alleviate
the high complexity problem. Simulation results have shown the performance superiority
of the proposed WI estimators over ChannelNet and TS-ChannelNet estimators in all
vehicular scenarios with a substantial reduction in computational complexity, where the
ChannelNet and the TS-ChannelNet estimators are more complex than the proposed
WI-FP-ALS-SR-CNN by 70 and 39 times respectively. On the other hand, the proposed
estimators are less complex than the 2D LMMSE estimator by at least 7027.35 times while
recording a convenient BER performance especially in high mobility vehicular scenarios,
which makes them suitable alternatives with a good performance vs. complexity tradeoff.
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Chapter 7

Conclusions and Perspectives

Summary of the Contributions

This thesis has addressed the topic of doubly-dispersive channel estimation, with specific
focus on vehicular communications as an application. In order to investigate this topic,
we have given a detailed background of time and frequency selective channels, vehicular
communications system model and a state of art overview of the classical channel
estimation methods. In order to improve the conventional channel estimators accuracy, we
have first analyzed and defined their limitations, then we have presented the two following
approaches:

. Propose new DFT-based symbol-by-symbol (SBS) estimators: as
illustrated in Chapter 4, we have focused on overcoming the conventional estimators
drawbacks represented by the data-pilot aided (DPA) demapping error that is
enlarged during the estimation process throughout the frame. In this context,
we have proposed low complex and robust channel estimators namely truncated
discrete Fourier transform (T-DFT) and temporal averaging T-DFT (TA-TDFT).
Unlike conventional estimators, the proposed estimators are based on the truncated
discrete Fourier transform (DFT)-based interpolation, and do not require the DPA
estimation. Therefore, the enlarged DPA demapping error is totally eliminated in
the proposed estimators. Moreover, the simulation results are analytically verified
by deriving the proposed estimators NMSE error derivations. The performance
superiority of the proposed T-DFT and TA-TDFT estimators over conventional
estimators in low and high mobility vehicular scenarios are achieved with a
significant computational complexity decrease.

. Integrate DL techniques with conventional estimators: In this approach,
we have employed DL techniques for SBS and FBF estimators, where DNN
and LSTM networks are integrated with the conventional STA, TRFI and DPA
estimators. Simulation results performed using high mobility vehicular channel

115



7 Conclusions and Perspectives

model have shown that the proposed spectral temporal averaging (STA)-deep neural
network (DNN) and time domain reliable test frequency domain interpolation
(TRFI)-DNN outperform conventional estimators, and auto-encoder deep neural
network (AE-DNN) while reducing the computational complexity by around 50%
compared with the recently proposed AE-DNN. On the other hand, the proposed
LSTM-based estimators record a significant performance improvement over the
conventional estimators and the DNN-based estimators. This can be explained by
the ability of LSTM in learning time correlations better than DNN since it employs
the previous output and the current input in estimating the current output.
In Chapter 6, frame-by-frame (FBF) channel estimators are studied, where the
limitations of the conventional 2D linear minimum mean square error (LMMSE)
estimator and the motivation behind employing convolutional neural network (CNN)
processing in the channel estimation are presented. In this context, we have proposed
a hybrid, adaptive, and robust weighted interpolation (WI) channel estimators
for the IEEE 802.11p standard, where pilot symbols are inserted within the
transmitted frame, with several pilot allocation schemes adapted according to the
mobility condition. Unlike the recently proposed channel network (ChannelNet)
and Temporal spectral ChannelNet (TS-ChannelNet) estimators that suffer from
high computational complexity, performance degradation in high mobility vehicular
scenarios, and high latency at the receiver, the proposed WI estimators have
reduced computational complexity and robustness in high mobility scenarios.
Moreover, they require low buffering time at the receiver and more transmission
data rate (TDR) gain is achieved since all the orthogonal frequency division
multiplexing (OFDM) symbols within the transmitted frame are fully allocated to
data. Simulation results have shown the performance superiority of the proposed
WI estimators over ChannelNet and TS-ChannelNet estimators in all vehicular
scenarios with a substantial reduction in computational complexity, where the
ChannelNet and the TS-ChannelNet estimators are more complex than the proposed
WI-FP-ALS-SR-CNN by 70 and 39 times respectively. On the other hand, the
proposed estimators are less complex than the 2D LMMSE estimator by at
least 104 times while recording a convenient BER performance especially in high
mobility vehicular scenarios, which makes them good alternatives to the 2D
LMMSE estimator. Finally, we note that the employed DNN, long short-term
memory (LSTM), super resolution CNN (SR-CNN) and denoising CNN (DN-CNN)
architectures are optimized through intensive experiments employing the grid search
algorithm in order to alleviate the high complexity problem.

Finally, we note that the proposed estimators show a good robustness and generalization
ability in fast fading environments even when some of the training and testing conditions
change. Moreover, the choice of the appropriate estimator should be based on a trade off
between the application TDR requirement, the desired performance, the computational
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complexity cost, and the latency sensitivity. Studying deeply this trade off can optimize
the use of the proposed SBS and FBF vehicular estimators.

Perspectives

The contributions of this work open several perspectives. In particular, it would be
interesting to study the following ideas:

. Doubly dispersive channel prediction: in order to allow more data gain, the channel
in the current symbol can be predicted from previous symbols without the need of
using pilots for each single symbol, especially in low mobility scenarios, when the
channel time correlation is high.

. Deep Learning Hardware Implementation: The hardware implementation of the
proposed DL-based channel estimators is important for further validating the
numerical simulation results. It is worth mentioning that, we have already started a
collaborative project with Indraprastha Institute of Information Technology
Delhi in India and the DNN hardware implementation is almost ready, where the
simulation results obtained in Chapter 5 for the frequency-selective LS-DNN channel
estimator have been validated by the developed DNN hardware. We note that, now
we are working on the hardware implementation of the LSTM and CNN networks
in order to validated our doubly-selective DL-based channel estimators.

. MIMO Channel estimation: an extension of this work would consider a MIMO
channel where the high dimension of the channel would justify even more the use of
deep learning.

. Power amplifier non-linear distortions: while we assume in this thesis a perfect RF
front-end, it would be worth studying how the non linear distortions resulting from
the high power amplifier will affect the performance, and if the neural networks
architectures are able to jointly estimate the channel and the RF nonlinearities.

. Wideband channel estimation in high frequencies: the deep learning based channel
estimation methods can be extended to cover channel estimation for the mmWave
and Terahertz spectrum, where the propagation environment is more challenging
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Appendix A

Cubic interpolation

Let h[k] = hQ[k] + jhI [k] be the channel function. Assume, the channel is known at the
subcarriers k1 and k2. In order to find the channel at the unknown subcarrier k1 < k < k2,
we consider cubic interpolation per real and imaginary component. First, we change the
variable x = k−k1

k2−k1
and considering the real part, we define f(x) = hQ[k] such that:

f(x) = a3x
3 + a2x

2 + a1x+ a0, x ∈ [0, 1]. (A.1)

In order to compute the coefficients {ak}, four equations are required. Two equations are
obtained by:

hQ[k1] = f(0) = a0,

hQ[k2] = f(1) = a3 + a2 + a1 + a0,
(A.2)

and another two equations by using the derivative:

f ′(0) = a1,

f ′(1) = 3a3 + 2a2 + a1.
(A.3)

As a result, a0 = f(0) and a1 = f ′(0). In addition, a2 and a3 can be computed from the
equations:

a3 + a2 = f(1)− f(0)− f ′(0),
3a3 + 2a2 = f ′(1)− f ′(0).

The solution is given by:

a2 = 3[f(1)− f(0)]− f ′(1)− 2f ′(0),
a3 = −2[f(1)− f(0)] + f ′(1) + f ′(0).

As assuming that the channel is known at k0 ≤ k1 and k3 ≥ k2, the derivatives can be
computed as:

f ′(0) = hQ[k2]− hQ[k0]
k2 − k0

,

f ′(1) = hQ[k3]− hQ[k1]
k3 − k1

.

(A.4)
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This guarantees that the polynomials in different segments are continuous. In the case
where k1 is a boundary subcarrier, then k0 = k1, similar for boundary k2; k3 = k1.

Based on that, in the worst case, the computation efforts required to interpolate the
real part of the channel gain requires 4 subtractions and 4 divisions to compute the
derivatives. To compute the polynomial coefficients, we need 3 multiplications and 6
summations/subtractions. To compute the gain, first x is computed by 2 subtractions and
1 division. Afterwards, computing f(x) is achieved by 5 multiplications and 3 summations.
In total, it requires 13 multiplications/divisions and 15 summations/subtractions. Similar
process is repeated for the imaginary part, and therefore, to interpolate the channel
gain at one subcarrier between two known subcarriers, it is required to perform 26
multiplications/divisions and 30 summations/subtractions.
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time averaging (TA) noise power
alleviation ratio

According to the TA-TDFT channel estimation applied in (4.12), we consider that
ˆ̃hTA-TDFT1 = ˆ̃hTDFT1 , therefore the noise power of the first TA-TDFT estimated channel
is σ2, and the noise power enhancement ratio for the successive TA-TDFT estimated
channels can be computed as follows:

NTA-TDFTi =



1, i = 1

1
4 + 1

4 = 1
2 , i = 2

1
8 + 1

4 = 3
8 , i = 3

...
NTA-TDFTi−1

4 + 1
4 , i = I

(B.1)

The generalization formula of (B.1) can be written as a sequence where the first element
NTA-TDFT1 = 1 as follows:
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NTA-TDFTi = 1
4NTA-TDFTi−1 + 1

4
= 1

4
(
NTA-TDFTi−1 + 1

)
= 1

4

(1
4NTA-TDFTi−2 + 1

4 + 1
)

= 1
4

(1
4

(1
4NTA-TDFTi−3 + 1

4

)
+ 1

4 + 1
)

= 1
4

( 1
42NTA-TDFTi−3 + 1

42 + 1
4 + 1

)
= 1

4

( 1
43−1NTA-TDFTi−3 + 1

43−1 + 1
43−2 + 1

43−3

)
...

= 1
4

( 1
4(i−1)−1NTA-TDFTi−(i−1) + 1

4(i−1)−1 + · · ·+ 1
40

)
= 1

4

( 1
4i−2NTA-TDFT1 + 1

4i−2 + 1
4i−3 + · · ·+ 1

40

)
= 1

4

( 1
4i−2 + 1

4i−2 + 1
4i−3 + · · ·+ 1

40

)
.

(B.2)

The sequence derived in (B.2) can be written as follows:

NTA-TDFTi = 1
4

( 1
4i−2 + 1

4i−2 + 1
4i−3 + · · ·+ 1

40

)

= 1
4

 1
4i−2 +

i∑
j=2

(1
4

)i−j (B.3)

Let j′ = i− j, then (B.3) can be written in terms of j′ such that:

NTA-TDFTi = 1
4

 1
4i−2 +

i−2∑
j′=0

(1
4

)j′ . (B.4)

According to the summation of geometric sequence rule [Orosi, 2016], (B.4) can be further
simplified to:

NTA-MDFTi = 1
4

 1
4i−2 +

i−2∑
j′=0

(1
4

)j′ = 1
4

 1
4i−2 +

1− 1
4
i−1

3
4


= 4i−1 + 2

3× 4i−1 .

(B.5)
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SoA CNN-based Channel Estimators

ChannelNet Estimator

In [Soltani et al., 2019], the authors propose a CNN-based channel estimator denoted as
ChannelNet scheme, where 2D radial basis function (RBF) interpolation is applied as
an initial channel estimation. The basic motivation of the 2D RBF interpolation is to
approximate multidimensional scattered unknown data, from their surrounding neighbors
known data, employing the the radial basis function [Toit, 2008]. To do so, the distance
function is calculated between every data point to be interpolated and its neighbours,
where closer neighbors are assigned higher weights. After that, the RBF interpolated frame
is considered as a low resolution image, where SR-CNN is utilized to get better estimation.
Finally, in order to alleviate the impact of noise within the high resolution estimated
frame, DN-CNN is implemented on top of the SR-CNN resulting in a high resolution,
noise alleviated estimated channels. The ChannelNet estimator considers sparsed allocated
pilots within the IEEE 802.11p frame and it first applies the least squares (LS) estimation
to the pilot subcarriers within the received OFDM frame. After that, The 2D RBF
interpolation is obtained by the weighted summation of the distance between each data
subcarrier to be interpolated and all the pilot subcarriers within the received OFDM
frame, such that:

ˆ̃
HRBF[k, i] =

KpI∑
j=1

ωjΦ(|k −Kf [j]|, |i−Kt[j]|). (C.1)

Kf = [Kp1 , . . . ,KpI ] ∈ R1×KpI and Kt = [(1)×Kp , . . . , (I)×Kp ] ∈ R1×KpI denote the
frequency and time indices vectors of the sparsed allocated pilot subcarriers within the
received OFDM frame. ωj represents the RBF weight multiplied by the RBF interpolation
function Φ(.) between the (k, i) data subcarrier and the (Kf [j],Kt[j]) pilot subcarrier.
In [Soltani et al., 2019], the RBF gaussian function is applied, such that

Φ(x, y) = e
− (x+y)2

r0 , (C.2)

123



C Appendix C

where r0 is the 2D RBF scale factor and it varies according to the used RBF function.
We note that changing the value of r0 changes the shape of the interpolation function.
Moreover, the RBF weights wRBF = [ω1, . . . , ωKpI ] ∈ RKpI×1 are calculated using the
following relation

ARBFwRBF = h̄LS, (C.3)

where ARBF ∈ RKpI×KpI is the RBF interpolation matrix of the pilots subcarriers,
with entries ai,j = Φ(Kf [i],Kt[j]) where i, j = 1, . . . , KpI. We note that, h̄LS is a
vector containing the LS estimated channels at all the pilot subcarriers within the
received OFDM frame. After computing WRBF, the RBF estimated channel for every
data subcarriers within the received OFDM frame can be calculated as shown in (C.1).
Finally, the RBF interpolation estimated frame ˆ̃HRBF is fed as an input to SR-CNN and
DN-CNN in order to improve the channel estimation accuracy, and alleviate the noise
impact.

The ChannelNet estimator limitations lie in: (i) 2D RBF interpolation high computational
complexity that results from the computation of (C.3) for the channel estimation of each
data subcarrier. (ii) The 2D RBF function and scale factor should be optimized according
to the channel variations. (iii) The integrated SR-CNN and DN-CNN architectures have
considerable computational complexity. We note that, the ChannelNet estimator uses a
fixed RBF function and scale factor, therefore, it suffers from considerable performance
degradation especially in low signal-to-noise ratio (SNR) regions where the impact of
noise is dominant, and high mobility vehicular scenarios, where the channel varies rapidly
within the OFDM frame.

TS-ChannelNet Estimator

TS-ChannelNet [Zhu et al., 2020] is based on applying average decision-directed with time
truncation (ADD-TT) interpolation to the received OFDM frame. After that, an accurate
estimation is obtained by implementing super resolution convolutional long short-term
memory (SR-ConvLSTM) network in order to track vehicular channel variations by
learning the time and frequency correlations of the vehicular channel. We note that,
the ADD-TT interpolation is a SBS estimator, where DPA estimation is applied first
as described in the previous chapters. After that, the enlarged DPA demapping error is
reduced by applying time domain truncation as follows:

ĥDPAi = FH
K

ˆ̃
hDPAi , (C.4)

where FK ∈ CK×K denotes the K-DFT matrix, and ĥDPAi is the time domain DPA
estimated channel. Then, ĥDPAi truncation is applied to the significant L channel taps,
such that:

ĥDPAi,L = ĥDPAi(1 : L). (C.5)
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After that, ĥDPAi,L is converted back to the frequency domain such that:

ˆ̃
hTTi = FonĥDPAi,L , (C.6)

where Fon ∈ CKon×L represents the scaled DFT matrix that is used to convert ĥDPAi,L back
to frequency domain, which is obtained by selecting Kon rows, and L columns from the
K-DFT matrix. Applying the average time truncation operation to ˆ̃hDPAi [k] alleviates
the effect of noise and enlarged demapping error. Moreover, ˆ̃hTTi [k] estimated channel
is further improved by applying frequency and time domain averaging consecutively as
follows:

ˆ̃
hFTTi [k] =

λ=β∑
λ=−β

ωλ
ˆ̃
hTTi [k + λ], ωλ = 1

2β + 1 . (C.7)

The final ADD-TT channel estimates is updated using time averaging between the
previously ADD-TT estimated channel and the frequency averaged channel in (C.7), such
that:

ˆ̃
hADD-TTi [k] = (1− α) ˆ̃

hADD-TTi−1 [k] + α
ˆ̃
hFTTi [k]. (C.8)

Motivated by the fact that the vehicular time-variant channel can be modeled as a
time-series forecasting problem, where historical data can be used to predict future
observations [Chatfield, 2000]. The authors in [Zhu et al., 2020] apply SR-ConvLSTM
network on top of the ADD-TT interpolation, where convolutional layers are added to
the LSTM network in order to capture more vehicular channel features, hence improving
the estimation performance. Therefore, the ADD-TT estimated channel for the whole
received frame is modeled as a low resolution image, and then SR-ConvLSTM network is
used after the ADD-TT interpolation. Unlike ChannelNet estimator where two CNNs are
employed, TS-ChannelNet estimator uses only SR-ConvLSTM network, thus the overall
computational complexity is relatively decreased. However, TS-ChannelNet still suffers
from high computational complexity due to integrating both LSTM and CNN in one
network.
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