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Abstract

This thesis deals with the study of a Gross-Clark-Schridinger system which models the motion of
an impurity in a Bose condensate.

We have first shown that the Cauchy problem for this system is globally well posed in the associated
energy space. The approach used is quite classical and is based on Strichartz type estimates and on a
fixed point theorem.

In a second step, we are interested in the travelling waves of this system. These special solutions
have been studied since 1974 by physicists using formal asymptotic developments and some numerical
simulations. In one dimension space the existence of these solutions and some properties have been
rigorously established in 2006. Despite several attempts, there is no rigorous proof in the literature
of the existence of travelling waves in dimension greater than or equal to two. We have used several
approaches to show the existence, based on ideas and tools recently developed in Calculus of Varia-
tions. One of them consists in minimizing the energy associated to the system under two constraints,
at constant mass and constant momentum. We have shown that minimizing travelling waves exist
for any pair (moment, mass) that verifies a strict subadditivity condition of the minimal energy as a
function of two variables.

In parallel, we have performed numerical simulations that have well highlighted the travelling waves
in the cases that correspond to the physical applications, we have obtained their profiles and we have
calculated their energy levels.

We have also studied other types of special solutions, including zero-momentum ground states and
bubble-vortex solutions.



Résumé

Cette thése porte sur ’étude d’un systéme de Gross-Clark-Schrédinger qui modélise le mouvement
d’une impureté dans un condensat de Bose.

Nous avons d’abord montré que le probléme de Cauchy pour ce systéme est globalement bien posé
dans l'espace d’énergie associé. L’approche utilisée est assez classique et est basée sur des estimations
de type Strichartz ainsi que sur 'utilisation d’un théoréme de point fixe.

Dans un second temps nous nous sommes intéressés aux ondes progressives de ce systéme. Ces
solutions spéciales ont été étudiées dés 1974 par des physiciens & ’aide des développements asymp-
totiques formels et de quelques simulations numériques. En dimension un d’espace l'existence de ces
solutions et quelques propriétés ont été établies rigoureusement en 2006. Malgré plusieurs tentatives, il
n’existe dans la littérature aucune preuve rigoureuse de ’existence des ondes progressives en dimension
supérieure ou égale a deux. Nous avons utilisé plusieurs approches pour montrer I'existence, basées sur
des idées et des outils récemment développés en Calcul des Variations. Une d’elles consiste & minimiser
I’énergie associée au systéme sous deux contraintes, & masse constante et & moment constant. Nous
avons montré que les ondes progressives minimisantes existent pour tout couple (moment, masse) qui
vérifie une condition de stricte sous-additivité de I’énergie minimale comme fonction de deux variables.

En paralléle, nous avons effectué des simulations numériques qui ont bien mis en évidence les ondes
progressives dans les cas qui correspondent aux applications physiques, nous avons obtenu leurs profils
et nous avons calculé leurs niveaux d’énergie.

Nous avons étudié également d’autres types de solutions spéciales, notamment les états fondamen-
taux de moment nul et les solutions de type bulle-vortex.
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Chapter 1

Introduction

1.1 English version

1.1.1 Presentation of the problem

We consider the following Gross-Clark system:

00 =AU+ H(L[®2+ [V - 1)¥
(GO) in R x RY,
i60,® = —A®+ 5(¢*|V]? — 2k?)D

with the "boundary conditions"
|¥| - 1, — 0 as |z| — oo.

This system, is originally introduced by Clark and Gross, has been studied by Grant and Roberts
(see [12]). It models the movement of an impurity in a Bose-Einstein condensate. The functions ¥ and
® are the wavefunctions for the bosons and for the impurity, respectively. Several physical parameters
are relevant for the system (GC): In the second equation in (GC) we have put § = 17, where y is
the mass of the impurity, and M is the boson mass; since p is small compared to M, § is supposed
to be small. We have denoted ¢> = %, where [ is the boson-impurity scattering length, and d the

boson diameter, while k is a dimensionless measure for the single-particle impurity energy. The pa-

1
rameter € is defined by € = (;’—]{2) 5, where b is the "healing length"; in applications we have ¢ =2 0.2.
The system (GC) has been studied in [12], where the effective radius and the induced mass of the un-
charged impurity were computed using formal asymptotic expansions and some numerical experiments.

When ® = 0, the system (GC) reduces to the Gross-Pitaevskii equation

. 1 :
(1.1) z@t\I’:—A‘II+5—2(|\I!]2—1)\Il in R x RY,

Both the system (GC) and the Gross-Pitaevskii equation (1.1) are Hamiltonian. The conserved energies
are, respectively

1 2 1 1
1.2 E(, @) = 2o (P -1+ == |Vl + = |v)*e|?d
(12) e = [ 196 + 53 (W8 =1+ 55l Vel + glulloPda
and the Ginzburg-Landau energy of ¥, namely
1 2
(13) B0) = [ 1908+ 55 (1~ 1)

9
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Other quantities conserved by the flow of (GC) are the momentum P(¥) = (P(¥), -+, Py(¥)), and
the mass M(®) = [pn |®[*dz. The momentum was rigorously defined in [21] in dimension N > 3,
then in [8] if N = 2. We will recall the main ideas of this definition later. If W is a function sufficiently
localized in space, the momentum is P,(¥) = [pn (07, gf’ ydz, for k € {1,--- , N}, and where (.,.) is
the usual scalar product in C ~ R2.

We denote by @ the momentum with respect to the xy direction, i.e Q(¢) = Pi(v)). The momentum
has a nice behavior with respect to dilations, i.e if € €, v,0 > 0, ¥ 5 1= w(mvl x/) then

(1.4) Qo) = o 1Q(v),

where & is the function space naturally associated to the Gross-Pitaevskii equation defined by:
(1.5) &= {¢:RY — C;¢ is measurable, |¢| — 1 € L*(RY), vy € L*(RY)}.
There are several equivalent definitions for £. If N € {2,3,4}, it can be proved that £ = E, where

(1.6) E = {y € H (RY) | V¢ € L*(RY), [p|* — 1 € L*(RY)}.

1.1.2 Existing results
The nonlinear Schrédinger equation

The results corresponding to the nonlinear Schrédinger equation,

ov
(1.7) z§+Aw+F(|\II|2)\II:O in R x RV,
with the boundary condition |¥| — 1 as |z| — oo, are several. The most important cases that have been
extensively studied by physicists and mathematicians are the Gross-Pitaevskii (GP) equation, where
F(s) = 1—s, and the so-called "cubic-quintic" Schrédinger equation, where F(s) = —aj + ags — ass?,
a1, a3 and as being positive constants and F' has two positive roots.

Denoting V(s f F(7)dr, we define the conserved energy F; with a general nonlinearity by

(1.8) By () :/RN V\I/deju/RN V(| ¥]?)da

For this equation, a particular attention has been paid to the travelling waves solutions in a series
of papers (see, e.g., [1], [2], [12], [15], [16], [17]). These are solutions of the form W (¢, z) = (1 — ct, z’)
that must satisfy the equation
(1.9) _ic¥ + Ay + F([y]*)y =0,

8371

where ' = (zg,--- ,xy) and c is the speed of the travelling wave. In [21], it is proved that there
exist nontrivial finite energy travelling waves moving with speed ¢ in any space dimension N > 3, for
a large class of nonlinear Schrodinger equations with nonzero conditions at infinity, for any speed ¢
less than the sound velocity, and under general conditions on the nonlinearity F. The sound velocity
is defined as follows: if F is C* near 1, F’(1) < 0, the sound velocity at infinity associated to (1.1) is
vs = y/—2F"(1). These solutions are critical points of the energy F; when the momentum is fixed.

C. A. Jones, C. J. Putterman and P. H. Roberts computed the energy and the momentum of the
travelling waves they have found numercially for the Gross-Pitevskii equation. The rigorous proof of
the existence of travelling waves for (GP) in space dimension N = 2 was done in [5] for all speed in
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some interval (0,7) where 7 is small. Minimizing the energy at fixed momentum has been used first in
[4] to construct a sequence of travelling waves with speeds tending to 0 in dimension N > 3. The same
result was established in [7] for small speeds by using a mountain-pass argument. In space dimension
N =2 and N = 3 the existence of travelling waves for the Gross-Pitaevskii equation was done in [3]
by minimizing the energy at fixed momentum. In this case, the Lagrange multiplier associated to the
obtained minimizers corresponds to the propagation speed, and if N = 2, the result is obtained for any
speed in a set A C (0,vs) where v is the sound velocity at infinity, and A contains points very close
to 0 and v,. Later on, it was shown in [8] that the minimization of the energy at fixed momentum can
be used in any dimension N > 2 for general nonlinearities under the assumption that V is nonegative.
Moreover, the set of solutions is orbitally stable. Unfortunately, in this case it is not clear that the set
of speeds of travelling waves constructed forms an interval. Also, it was proved in [3| and in [18] that
in space dimension N > 3 there exists vg € (0, vs) such that minimizing the energy at fixed momentum
can not give travelling waves of speed ¢ € (vg, vs).

In [21], we have an existence result that covers the whole range (0, vs) of possible speeds if N > 3,
for general nonlinearities. For the (GP) equation the nonexistence of travelling waves for ¢ > v, was
done in [13]. For a large class of nonlinearities, it was done in [20].

The travelling waves have the best regularity allowed by the nonlinearity F', for example in the
case of (GP), the solutions are analytic. In [16], Jones, Putterman and Roberts predicted formally the
asymptotic behavior of travelling waves as |z| — oco. In [14], Gravejat considered the (GP) equation
to study the asymptotic behavior of the travelling waves. His proof could be adapted for the general
nonlinearities.

It was conjectured in [16] and in [17] that there exists a critical speed ¢, such that the travelling
waves of speed smaller than ¢, present vortices, while those of speed greater than ¢, do not.

For the (GP) equation, the small velocity solutions solutions of small velocity solutions constructed
in [4], [5] and [7] have vortices. For general nonlinearities, it was proved in [9] that the travelling waves
do not have vortices if N = 2 or 3 and c close to v,.

Travelling waves solutions for the (GP) equation were obtained in [3| by minimizing the energy at
fixed and small momentum and have velocities close to vs. The energy-momentum diagram of these
solutions shows that they are of arbitrary small energy and momentum in dimension two. In higher
dimensions, the energy and the momentum of the three-dimensional travelling waves for (GP) are
bounded from below. This result was noticed in [16]. If N = 3, it was proved in [3] that (GP) does
not admit small energy travelling waves solutions. This result was extended to higher dimensions by
De Laire, in [18].

For general nonlinearities, finite energy travelling waves of speed close to vs were provided in [21]
if N >3 and in [8] if N = 2. In the two and three dimensional cases, the travelling waves solutions
have modulus close to 1.

It was proved in [10] and [11] that if N < 3, the Cauchy problem for the (GP) is globally well-posed
for all initial data in the energy space. If N = 4, the result is true for initial datas with small energy.
The method used by Gerard can be adapted for other nonlinearities.

The assumptions used to prove the existence of travelling waves for the nonlinear Schrodinger
equation with general nonlinearity F' (see (1.7)) are:
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1. the function F is continuous on [0,00), C! in a neighborhood of 1, F(1) = 0 and F’(1) < 0;

2. there exist C > 0 and py < %5 (with py < oo if N = 2) such that [F(s)| < C(1 + sP) for any
s> 0;

3. there exist C, o > 0 and r, > 1 such that F(s) < —Cs® for any s > r;

4. Fis C? near 1 and

F(s)=—(s—1)+ %F”(l)(s —1)24+0((s—1)%)  for s close to 1.

The Gross-Clark system

The results about the Gross-Clark system are very rare. In [19], it is proven that in space dimension
one, there exist travelling-waves moving with velocity c¢ if and only if ¢ is less than the sound velocity
at infinity. In this case, the structure of the set of travelling waves is investigated and it is showed that
it contains global subcontinua in appropriate Sobolev spaces.

Bouchel [6] showed decay estimates for finite energy travelling waves of (GC) and the nonexistence
of supersonic travelling waves in dimension 3.

On the other hand, it was proved in [20] that in space dimension N > 2, travelling waves do not
exist for ¢ greater than the sound velocity at infinity.

If N € {3,4} Nguyen proved in [22| that the travelling waves exist, by minimizing some action un-
der a Pohozaev constraint under general conditions on the nonlinearity F' and for any speed ¢ € (0, v)
satisfying £2(c?62 + k%) < ¢%. Moreover, minimizing the energy E at fixed momentum @ has given the
trivial solution (¥,0), where U is a solution of (1.1) obtained by minimizing F; at fixed momentum
@ as in [8] and [21].

1.1.3 Main results

e The aim of Chapter 2 is to prove that the Cauchy problem for a Gross-Clark-Schrodinger sys-
tem is globally well-posed in the energy space naturally associated to the system. The proof of
this result is standard and based on the method used in [10]: Strichartz estimates and Banach
fixed-point theorem.

e In Chapter 3, we prove the existence of travelling waves of (GC). These are solutions of the form
\I/(tv 113) = w(x - th)7

O(t,z) = p(x — ctw),

where w € SV~ is the direction of propagation, and ¢ € R* is the travelling wave speed. Since
(GC) is invariant by rotation, we may assume that w = (1,0,---,0). Then travelling waves of
speed c satisfy the following equations in RV

_jeow 112 2 _
(1.10) { icgey = —Av+ Bl + P - Dy

. ¢ 0
—icdgt = —Ap+ (P[P — k),
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with a fixed mass m of ¢. It is easy to see that (¢, ) satisfies (1.10) for some velocity c if and
only if (¢, ¢)(—x1,2") satisfies (1.10) with —c instead of ¢. Hence, we may assume that ¢ > 0.

It is obvious that ¢ € HY(RY) if and only if et € H'(RY) for some a € R. Therefore, we
can replace ¢ by €1y in the second equation of (1.10) to get

0 0 1
cap — ic5a—;’; = a’p — 2iaa—;01 —Ap + ;2((]2|1/)|2 —e2k)e.
Then choosing a = %, we see that travelling waves for (GC) have to satisfy a system of two
equations given by
.9
W) {—zca;ﬁ 2 = —AY + Sl + P - 1)y
(—A+ SRy =,

where \ = # + k? is unknown, and k calculated once \ found.

Formally, travelling waves are critical points of the functional E(1), ¢) — cQ(v)) — AM(yp). There-
fore, it is a natural idea to look for solutions as minimizers of the energy at fixed momentum and
mass. The speed c and X being the Lagrange multipliers associated to the minimization problem.

To prove the existence of non trivial travelling waves solutions for (GC), we choose first to prove
the existence of the ground states by minimizing the energy at fixed mass or L?-norm for ¢, then
we study the minimization at fixed momentum for ¢. We have also minimized the energy at
fixed mixed momentum Pg(%, ¢) where

Ps(h, ) = BQY) + (1 = B)Q(p) for some S € [0, 1].

Finally, we chose to minimize the energy (1.2) under two constraints: fixed momentum p for
and fixed mass m for ¢. Therefore, we define the quantity:

(1.11) Epmin(p,m) = inf{E(xb,¢) | ¥ € £, € H'(RY),Q(¢) = p,

/RN p|*dz = m}.

The first results gave us some concavity properties for E,,;, and the existence of minimizers for
some values of p and m. Indeed, we could not prove the strict subadditivity of F,,;,, for all values
of p and m. The method used to prove these results is mainly the concentration-compactness
principle, by eliminating the "vanishing" and the "dichotomy" case and concluding that the
"compactness" case holds.

Chapter 4 is devoted to the numerical approximation in dimension 2 of the results obtained in
Chapter 3. Indeed, we look numerically for travelling waves solutions for (GC) that have small
mass. For 1), the solution looks like the vortex branch of travelling wave of (1.1). For ¢, it looks
like a sum of two Gaussians functions of small mass concentrated near the vortices of . The
energy-momentum diagram of these solutions forms a concave curve (see Figure 1.1). Moreover,
the numerical value of A is also presented in this chapter.

In Chapter 5, we use some numerical methods to approximate the solutions of mass 47 for the
system (GC) in dimension 2. We could find two branches of solutions: the ground state branch,
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Figure 1.2: The energy-momentum diagram for (a) left: the ground state branch; (b) right: both the
vortex and the ground state branches
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and the vortex branch. For each of these branches, we start to find the stationary solutions:
for the first branch, the stationary solutions were found in dimensions 2 and 3. For the second
one, they were obtained in dimension 2. Then we could approximate the solutions with small
speeds ¢ for both of the branches. We could plot the energy-momentum diagram corresponding
to each type of these solutions. For the ground state branch, the diagram is obtained for speeds
¢ € [0,2.35], while it is found for speeds ¢ € [0.12,0.19] for the vortex branch (see Figure 1.2). For
the vortex branch, if ¢ € [0.7,2.35], the algorithm converges, but the used ansatz do not present
any vortex, they look like the ansatz of the ground state branch, and the obtained solutions
are the same as the ones of the ground state branch. In other words, the ground state branch
for ¢ € [0.7,2.35] could be obtained in two ways: starting from the ground state solution and
starting from the ansatz of two vortices that superpose. The last part of Chapter 5 is devoted
to a rigorous proof for the existence of the ground state solution.
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1.2 Version francaise

1.2.1 Présentation du probléme

On consideére le systéme de Gross-Clark:
00 =—AV+ L(H[PP+ T2 -1)T
(GC) dans R x RY,
0P =—-Ad+ 5 L(P?|V)? - 262D
avec les "conditions aux bords"
|¥| — 1,® — 0 quand |z| — oo.

Ce systéme, introduit par Clark et Gross, a été étudié par Grant et Roberts (voir [12]). Ce systéme
modélise le mouvement d’une impureté dans un condensat de Bose-Einstein. Les fonctions ¥ and &
représentent les fonctions d’ondes des bosons et de I’ impureté, respectivement. Plusieurs paramétres
physiques sont appropriés au systeme (GC): dans la seconde équation de (GC) on choisit § = {7, ou
1 est la masse de 'impureté, et M celle du boson; comme p est petite comparée & M, § est supposé
étre petit. On note ¢*> = %iv ou [ est la longueur de diffusion du boson et de l'impureté, et d le
diameétre du boson, tandis que k est une mesure sans dimension de 1’énergie de I'impureté & une seule
particule. Le paramétre ¢ est défini comme suit ¢ = (l%)é, ou b est la "longueur de cohérence";
dans les applications, on a € = 0,2. Le systéme (GC) a été étudié dans [12], on le rayon effectif et la
masse induite de 'impureté non chargée ont été calculés en utilisant des développements asymptotiques
formels et quelques expériences numeériques.

Lorsque ® = 0, le systéme (GC) se réduit a ’équation de Gross-Pitaevskii

(1.12) 0,0 = —AV + (|\11|2 1w dans R x RV,

Le systéme (GC) et I'équation de Gross—Pitaevskii (1.12) sont tous les deux hamiltoniens. Les
énergies conservées sont, respectivement

1 2 1 1
1.1 E = 2 S (lw)P-1 —— |Vl + = |¥*|e|*d
(113) o0) = [ 196 + 53 (08 = 1)+ 551Vl + luPloPda
et ’énergie de Ginzburg-Landau energy de ¥, donnée par
1 2
1.14 Ey(y) = 24+ —(lw*-1)7d
(1.14) @) = [ 99 + 5 (= 1)

Les autres quantités conservées par le flux de (GC) sont le moment P(¥) = (P1(¥),--- , Pn(¥)), ¢t la
masse M(®) = [ [®|?dz. Le moment a été rigoureusement défini dans [21] en dimension N > 3, puis
dans [8] si N = 2. On rappellera plus tard les idées principales de cette définition. Si ¥ est une fonction
suffisamment localisée dans ’espace, le moment est Py (¥ fRN AN gf ydx, pour k € {1,--- , N}, et

oi (.,.) est le produit scalaire habituel dans C ~ R2.

On désigne par @ le moment par rapport a la direction z1, i.e Q(v) = Pi(¢)). Le moment a un
bon comportement par rapport aux dilatations, i.e si ¢ € £, 7,0 > 0, 9, 5 := 1/1(“71 %) alors

(1'15) Q(ww,a) = UN_lQ(i/f%
ou & est 'espace d’énergie naturellement associé a I’équation de Gross-Pitaevskii défini par :
(1.16) &= {¢:RY — C;¢ est mesurable, || — 1 € L*(RY), Vy € L*(RM)}.

11 existe plusieurs deéfinitions équivalentes pour €. Si N € {2,3,4}, on peut prouver que £ = E, ou

(1.17) E = {y € H (RY) | VY € L*(RY), |)]* — 1 € L*(RY)}.
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1.2.2 Reésultats existant
L’équation de Schrédinger non-linéaire
Les résultats correspondant & I’équation de Schrédinger non-linéaire,

OV

(1.18) o

+ Ay + F(|U?)¥ =0 dans R x RY,

avec les conditions aux bords |[¥| — 1 quand |z|] — oo, sont nombreux. Les cas les plus im-
portants qui ont été largement étudiés par les physiciens et les mathématiciens sont ’équation de
Gross-Pitaevskii (GP), ou F(s) = 1 — s, et équation de Schrodinger dite "cubique-quintique", ot
F(s) =—ai; +ags — a552, a1, a3 et as étant des constantes positives et F' a deux racines positives.

On note V(s) = fsl F(1)dr, on définit I’énergie conservée E; avec une non-linéarité générale par

(1.19) Ey(7) :/RN v\m?daz+/RN V(|¥[?)da.

Pour cette équation, une attention particuliére a été accordée aux solutions d’ondes progressives
dans une série de travaux (voir, par exemple, [1], [2], [12], [15], [16], [17]). Ce sont des solutions de la
forme W(t,z) = 1(x1 — ct,z’) qui doivent satisfaire 1’équation

.0
(1.20) —ie Yy A+ F(9P) =0,
8%’1
ou &' = (zg, -+ ,xN) et ¢ est la vitesse de 'onde progressive. Dans [21], il est prouvé qu'il existe des

ondes progressives non triviales d’énergie finie se déplacant a la vitesse ¢ dans tout espace de dimen-
sion N > 3, pour une grande classe d’équations non-linéaires de Schrodinger avec des conditions non
nulles & U'infini, pour toute vitesse ¢ inférieure a la vitesse du son, et sous des conditions générales sur
la non-linéarité F. La vitesse du son est définie comme suit : si F est C! prés de 1, F/(1) < 0, la
vitesse du son a U'infini associée & (1.12) est vy = \/—2F"(1). Ces solutions sont des points critiques
de I’énergie F; lorsque le moment est fixé.

C. A. Jones, C. J. Putterman et P. H. Roberts ont calculé numériquement I’énergie et le moment
des ondes progressives qu’ils ont trouvées pour I’équation de Gross-Pitaevskii. La preuve rigoureuse
de l'existence d’ondes progressives pour (GP) en dimension N = 2 d’espace a été faite dans [5] pour
toute vitesse dans un certain intervalle (0,7) ol 7 est petit. La minimisation de I’énergie & moment
fixé a été utilisée en premier lieu dans [4] pour construire une séquence d’ondes progressives avec des
vitesses tendant vers 0 en dimension N > 3. Le méme résultat a été établi dans |7| pour les petites
vitesses en utilisant un argument de type "mountain-pass". En dimension N = 2 et N = 3, I'existence
d’ondes progressives pour I’équation de Gross-Pitaevskii a été établie dans [3] en minimisant I’énergie
a moment fixé. Dans ce cas, le multiplicateur de Lagrange associé aux minimiseurs obtenus correspond
& la vitesse de propagation, et si N = 2, le résultat est obtenu pour toute vitesse dans un ensemble
A C (0,v5) ou vy est la vitesse du son a l'infini, et A contient des points trés proches de 0 et vs. Par
la suite, il a été montré dans [8] que la minimisation de I’énergie & moment fixé peut étre utilisée dans
toute dimension N > 2 pour des non-linéarités générales sous I’hypothése que V est positif. De plus,
I’ensemble des solutions est orbitalement stable. Malheureusement, dans ce cas, il n’est pas clair que
I’ensemble des vitesses des ondes progressives construites forme un intervalle. De plus, il a été prouvé
dans [3] et dans [18] qu’en dimension N > 3, il existe vy € (0,vs) de telle sorte que la minimisation de
I'énergie & moment fixé ne peut pas donner des ondes progressives de vitesse ¢ € (vg, vs).
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Dans [21], on a un résultat d’existence qui couvre tout 'intervalle (0,vs) des vitesses possibles si
N > 3, pour des non-linéarités générales. Pour ’équation (GP), la non-existence des ondes progres-
sives pour ¢ > v a été faite dans [13]|. Pour une grande classe de non-linéarités, elle a été faite dans [20].

Les ondes progressives ont la meilleure régularité permise par la non-linéarité F', par exemple dans
le cas de (GP), les solutions sont analytiques. Dans [16], Jones, Putterman et Roberts ont prédit
formellement le comportement asymptotique des ondes progressives en tant que |z| — co. Dans [14],
Gravejat a considéré I'équation (GP) pour étudier le comportement asymptotique des ondes progres-
sives. Sa preuve pourrait étre adaptée aux non-linéarités générales.

Dans [16] et [17], la conjecture suivante a été émise : il existe une vitesse critique ¢, telle que les on-
des progressives de vitesse inférieure a ¢, présentent des vortex, tandis que celles de vitesse supérieure
& ¢y, n’en présentent pas.

Pour I'équation (GP), les solutions de petites vitesses construites dans [4], [5] et [7] ont des vortex.
Pour des non-linéarités générales, il a été prouvé dans |9] que les ondes progressives n’ont pas de vortex
si N =2 ou 3 et ¢ proche de vs.

Des solutions de type ondes progressives pour l'équation (GP) ont été obtenues dans [3] en min-
imisant I’énergie & moment fixé et petit et ont des vitesses proches de vs. Le diagramme énergie-moment
de ces solutions montre qu’elles ont une énergie et un moment arbitrairement petits en dimension deux.
En dimension supérieure, I’énergie et le moment des ondes progressives tridimensionnelles pour (GP)
sont minorés. Ce résultat a été remarqué dans [16]. Si N = 3, il a été prouvé dans [3] que (GP)
n’admet pas de solutions de type ondes progressives de petite énergie. Ce résultat a été étendu aux
dimensions supérieures par De Laire, dans [18].

Pour les non-linéarités générales, des ondes progressives d’énergie finie et de vitesse proche de v,
ont été fournies dans [21] si N > 3 et dans [8] si N = 2. Dans les cas a deux et trois dimensions, les
solutions d’ondes progressives ont un module proche de 1.

Il a été prouvé dans [10] et [11] que si N < 3, le probléme de Cauchy pour le (GP) est globalement
bien posé pour toutes les données initiales dans I'espace d’énergie. Si N = 4, le résultat est vrai pour
les données initiales de petite énergie. La méthode utilisée par Gérard peut étre adaptée & d’autres
non-linéarités.

Les hypothéses utilisées pour prouver l'existence d’ondes progressives pour ’équation non linéaire
de Schrédinger avec une non-linéarité générale F' (voir (1.18)) sont:

1. la fonction F est continue sur [0,00), C'' dans un voisinage de 1, F'(1) = 0 et F'(1) < 0;

2. il existe C' > 0 et py < 125 (avec py < oo si N = 2) tels que |F(s)| < C(1+sP°) pour tout s > 0;

3. il existe C,ap > 0 et r, > 1 tels que F(s) < —C's® pour tout s > ry;

4. F est C? proche de 1 et
1
F(s)=—(s—1)+ §F”(1)(5 —1)2+0((s —1)%) pour s proche to 1.

Le systéme de Gross-Clark

Les résultats concernant le systéme de Gross-Clark sont trés rares. Dans [19], il est prouvé qu’en
dimension un, il existe des ondes progressives se déplagant avec une vitesse ¢ si et seulement si ¢ est
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inférieur & la vitesse du son & l'infini. Dans ce cas, on étudie la structure de I’ensemble des ondes pro-
gressives et on montre qu’il contient des sous-continus globaux dans des espaces de Sobolev appropriés.

Bouchel [6] a montré des estimations de décroissance pour les ondes progressives d’énergie finie de
(GC) et la non-existence d’ondes progressives supersoniques en dimension 3.

D’autre part, il a été prouvé dans [20] qu’en dimension N > 2, les ondes progressives n’existent
pas pour ¢ supérieur & la vitesse du son a l’infini.

Si N € {3,4}, Nguyen a prouvé dans [22] que les ondes progressives existent, en minimisant une
certaine action sous une contrainte de Pohozaev sous des conditions générales sur la non-linéarité F'
et pour toute vitesse ¢ € (0,vs) satisfaisant €2(c20% + k?) < ¢°. De plus, la minimisation de 'énergie
E a moment fixé () a donné la solution triviale (¥,0), ot ¥ est une solution de (1.12) obtenue en
minimisant £ & moment fixé @) comme dans [8] et [21].

1.2.3 Reésultats principaux

e Le but du Chapitre 2 est de prouver que le probléme de Cauchy pour le systéme de Gross-Clark-
Schrodinger est globalement bien posé dans ’espace d’énergie naturellement associé au systéme.
La preuve de ce résultat est standard et repose sur la méthode utilisée dans [10] : estimations de
Strichartz et théoréme du point fixe de Banach.

e Dans le Chapitre 3, on prouve 'existence d’ondes progressives de (GC). Ce sont des solutions de

la forme
\Il(t7 .CC) = w(l‘ - th)7
(I)(t7$) = Sp(x - th)»
ott w € SN~ est la direction de propagation, et ¢ € R* est la vitesse de I'onde progressive.

Puisque (GC) est invariant par rotation, on peut supposer que w = (1,0,---,0). Les ondes
progressives de vitesse ¢ satisfont alors les équations suivantes dans RY.

ey L1y .2 2
(1.21) { s AY+ o (alel” + [0 =1y

)
—icd5E = —Ap+ H(|Y]* — 2k,

avec une masse fixée m de ¢. Il est facile de voir que (¢, ¢) satisfait (1.21) pour une certaine
vitesse ¢ si et seulement si (¢, p)(—x1,2’) satisfait (1.21) avec —c au lieu de ¢. On peut donc
supposer que ¢ > 0.

Il est clair que ¢ € HY(RY) si et seulement si etp € H'(RY) pour a € R. On peut alors
remplacer ¢ par €“1¢ dans la seconde équation de (1.21) pour avoir

0 1
coap — icdg;i =a%p — Qiaa—z —Ap+ ?(qz\w|2 —2k%) .
cd

On choisit a = 5, on voit que les ondes progressives pour (GC) doivent satisfaire un systéme de
deux équations données par

™w) {gw —AY+ S (el + [P - )y
(—A+5[P)e =X,
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ou A= C%T‘Sz + k? est inconnu, et k calculé une fois \ trouvé.

Formellement, les ondes progressives sont des points critiques de la fonction E (i, p) — cQ(v)) —
AM(p). Par conséquent, il est naturel de chercher des solutions comme minimiseurs de 1’énergie
a4 moment et masse fixés. La vitesse ¢ et A étant les multiplicateurs de Lagrange associés au
probléme de minimisation.

Pour prouver U'existence de solutions d’ondes progressives non triviales pour (GC), on a choisi en
premier lieu de prouver 'existence des états fondamentaux en minimisant 1’énergie (1.13) sous
masse ou norme L? de ¢ fixée égale & m, ensuite on étudie la minimization sous moment fixé
pour . On a également minimisé 1’énergie & moment mixte fixé Pz(1, ¢) ol

Ps(h, ) = BQRY) + (1 = B)Q(¢) pour un f3 € [0, 1].

Finalement, on a choisi de minimiser ’énergie (1.14) sous deux contraintes: moment fixé p de 9
et masse fixée m pour . Par conséquent, on définit la quantité:

(1.22) Epin(p,m) = inf{E(¢, ¢) | ¢ € €, € H'(RY), Q(v) = p,

/RN loPdx = m}.

Les premiers résultats nous ont donné quelques propriétés de concavité pour F,,;, et I’existence
de minimiseurs pour quelques valeurs de p et m. En effet, on n’a pas pu prouver la sous-additivité
stricte de E,,;,, pour toutes les valeurs de p et de m. La méthode utilisée pour prouver ces résul-
tats est principalement le principe de concentration-compacité, en éliminant le cas évanescence
et le cas dichotomie et en concluant que le cas compacité tient.

Le Chapitre 4 est consacré & 'approximation numérique en dimension 2 des résultats obtenus au
Chapitre 3. En effet, on cherche numériquement des solutions d’ondes progressives pour (GC)
qui ont une petite masse. Pour v, la solution ressemble a la branche vortex de I’onde progressive
de (1.12). Pour ¢, elle ressemble & une somme de deux fonctions de Gauss de petites masses
concentrées prés des vortex de . Le diagramme énergie-moment de ces solutions forme une
courbe concave (voir Figure 1.3). De plus, la valeur numérique de A est également présentée dans
ce Chapitre.

Dans le Chapitre 5, on utilise certaines méthodes numériques pour approcher les solutions de
masse 47 pour le systéme (GC) en dimension 2. On a pu trouver deux branches de solutions
: la branche de I’état fondamental, et la branche des vortex. Pour chacune de ces branches,
on commence par trouver les solutions stationnaires: pour la premiére branche, les solutions
stationnaires ont été trouvées en dimensions 2 et 3. Pour la deuxiéme branche, elles ont été
obtenues en dimension 2. Ensuite, on a pu approximer les solutions avec de petites vitesses c
pour les deux branches. On a pu tracer le diagramme énergie-moment correspondant a chaque
type de ces solutions. Pour la branche de ’état fondamental, le diagramme est obtenu pour des
vitesses ¢ € [0,2.35], alors qu'il est trouvé pour des vitesses ¢ € [0.12,0.19] pour la branche des
vortex (voir Figure 1.4). Pour la branche des vortex, si ¢ € [0.7,2.35], 'algorithme converge,
mais les ansatz utilisés ne présentent pas de vortex, ils ressemblent aux ansatz de la branche de
I’état fondamental, et les solutions obtenues sont les mémes que celles de la branche de I’état
fondamental. En d’autres termes, la branche de ’état fondamental pour ¢ € [0.7,2.35] pourrait
étre obtenue de deux facons : soit & partir de la solution de I’état fondamental, soit & partir de
I'ansatz de deux vortex qui se superposent. La derniére partie du Chapitre 5 est consacrée a une
preuve rigoureuse de l'existence de la solution de I’état fondamental.
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Figure 1.3: Le diagramme énergie-moment pour les solutions a petite masse avec m = 0.1
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et

Figure 1.4: Le diagramme énergie-moment pour (a) & gauche : la branche de I’état fondamental ; (b)
a droite : les branches des vortex et de ’état fondamental
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Chapter 2

On the Cauchy problem for Gross-Clark
system

2.1 Introduction

We recall that the Gross-Clark (GC) system is given by:

(GO in R x RY,
Z58t<1> = —A(I) + E%(q2|q[|2 _ €2k2)q>

with the "boundary conditions"
|W| - 1,® — 0 as |z| — oo.

The functions ¥ and ® are the wavefunctions for the bosons and for the impurity, respectively. ¢,
q, and ¢ are some physical parameters.
We recall that when ® = 0, the system (GC) reduces to the Gross-Pitaevskii equation

1
00 = —AV + — (|¥]* - 1)¥ in R x RY,
g

and that both the system (GC) and the Gross-Pitaevskii equation are Hamiltonian. As we mentioned
in the Introduction, the conserved energies are, respectively

1 2 1 1
2.1 E(, ) = 24 (WP =1+ == |Ve2 + = [¥)?|ed
(2.) o0) = [ 196 + 53 (W8 =1+ 55V + lulePda
and the Ginzburg-Landau energy of 1, namely
1 2
2.2 Ei(¢) = VyI? + — (J¢]* — 1) da.
(22 @) = [ I90P +  (wl — 1)
The function space naturally associated to the Gross-Pitaevskii equation is (see [5, 2, 7])

(2.3) E={yeHLMR")|VyeLR"),|[y]* - 1€ L*RY)}.

The aim of this chapter is to prove that the Cauchy problem for the system (GC) is globally well
posed in E x H'(R") in space dimension N = 1,2 or 3. Our main result is

23



24 CHAPTER 2. ON THE CAUCHY PROBLEM FOR (GC) SYSTEM

Theorem 1. Assume that N € {1,2,3}. For any ¥y € E and any ®y € H'(RY), there exists a unique
global solution (U, ®) € C(R,E x HY(RN)) of (GC) such that ¥(0) = ¥y and ®(0) = ®&y. Moreover,
for any t € R we have E(V(t),®(t)) = E(¥Yo, Do) and || P(t)||2 = ||Pollr2. The solution depends
continuously on the initial data uniformly on compact intervals. !

In the next section we give some useful properties of the energy space. Theorem 1 is proven in
section 3. In the Appendix we prove an "abstract" result that we needed in the proofs and which could
be useful elsewhere.

2.2 The energy space

For any integer k > 1, we consider the function space (sometimes called Zhidkov space, see [3, 4, 8, 9,
10])

(2.4) XFRN) = {u e L®RY) | 0% e L2(RN),1 < |a| < k}
endowed with the natural norm

(2.5) lullxr =l + D 0%l .

1<[al<k

Fix a C*°, nonincreasing function ¥ : R — R such that x =1 on (—00,2] and x = 0 on [3,00).
Define x : C — R by x(z) = x(]#|). For any u € E, define

(2.6) Py(u) = x(u)u and Py(u) = (1 — x(u))u.

Lemma 2 and 4 have been proven in [5]. For the convenience of the reader we recall here the proofs.
Lemma 2. ([5]) Let N € N*. For any u € E we have

(i) Pi(u) € LX(RY) and ||Py(u)]|~ < 3.

(ii) Po(u) € LARY) and | Po(u)|z2 < || Jul? = 1 12 < /21 ().

(111) There is C > 0, depending only on x, such that |V (P;(u))||z2 < C||Vul/z2 fori=1,2.

In particular, we have Py(u) € XY(RN) with |Pi(u)||x1 < 3+ C\/Ei(u), and Py(u) € HY(RY)
with || Pa(uw)|| g < Cy/Eq(u).

Proof. (i) Since |zx(z)| = 0 if |z] > 3, and |zx(2)| = |2||x(2)] < 3 if |2]| < 3, we have ||Py(u)||r~ < 3.
(ii) Tt is obvious that |u(z)| > 2 whenever Py(u(x)) # 0. For all z € C satisfying |z| > 2 we have
|(1 —x(2))z] < |2] < |2|> — 1. We infer that |Py(u)| < ’ lu|? — 1’ and (ii) follows.
(iii) We have

V(x(wu) = x(u)Vu+u[dix(u) - V (Re(u)) + dox(u) - V (Im(u))]
and

V((l - X(u))u) =(1 - x(uv))Vu
—u[Oix(u) - V (Re(u)) 4 dax(u) - V (Im(w))]

Then (iii) holds with C' =14 6||Vx|| . O

!See (2.27) for a more precise statement.
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Remark 3. Recall that, given two Banach spaces X, Y of distributions on RY, the space X +Y is
also a Banach space with the norm

lollxsy = inf {Jlorllx + loally |0 =01+ v, 01 € X, v € V.

If X and Y are continuously embedded into X and Y, respectively, then X + Y is continuously
embedded into X +Y.
By Lemma 2 we have E € X'(RY) + H'(R") and there is ¢ > 0 such that

[ullxrem < [Pr@)llxs +[Po(w)llm < e(1+ V' Ei(u))  for any u € E.

If HY(RY) is continuously embedded into LP(RY), then X'(RY) + H'(RY) is embedded into L™ +
LP(RM).

Given ug,u; € E, we define
(2.7) dE(uo,ul) = H’LL() - Ul”Xl-s-Hl + H ‘U0’2 — ]ul\z HLQ'

It is easy to see that dg is a distance on E and (F,dg) is a complete metric space.
Then E x H'(RY) can be endowed with a complete metric space structure by defining the distance
d as follows: for every ug,u; € E and for every vy, v; € H(RY),

(2.8) d((uo,vo), (u1,v1)) = dm(uo, ur) + llvo — vil g1

Lemma 4. ([5]) Assume that 1 < N < 4. Then we have E+ H' (RY) C E, and for any v € E,
w € HY(RYN), there holds

(2.9) [ o+ w* =1 <[] = 1|2 +6[wl[z2 + CV/Er(v)[wl]|ps + [|w]|74-
Moreover, for all vi, vy € E, wy, wo € H'(RY) we have

dg(v1 + wi,v2 + w2) < C(1 4+ ||wa| 1) dE(v1,v2)
(2.10)
+C(1+ /E1(v1) + [Jwi] g1 + Jwal 1) lJwr — wal g

Proof. For v € E, w € H'(RY), we have V(v + w) = Vv + Vw € L?(RV).

v +w® —1=|v]* =1+ 2Re(tw) + |w|*

Since v € E, we have |v|> — 1 € L2(RY). By the Sobolev embedding we have H*(RY) c L*(RY),
hence w € L*(RY), which implies that |w|?> € L2(RY). Tt remains to prove that Re(vw) € L2(RY).
By Lemma 2, v can be written as v = vy + vg, with v; = Py(v) € X} (RY) and vy = Py(v) € H'(RY).
Using the Cauchy-Schwarz inequality, the Sobolev embedding and Lemma 2 (ii) we get

[Twll 2 < [[orwll 2 + [[v2wl]| 2 < 3l|wl| g2 + [lva | a]lw]] 4
< 3wl 2 + [Jv2]| g lwll s < 3llwllzz + CV/ Er(v)|Jw]| 4.
This gives (2.9). Next we prove (2.10). Obviously,
o1 + w1 —v2 —wal[x11 0 < v — v2llx1pmn + [wr — w2, and

lv1 + wi)? — |vg + wa|* = v1 > — Jva|* 4 2Re(Trwy — Tows) + |wy|? — |wal?.
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Using the Cauchy-Schwarz inequality and the Sobolev embedding we get

Hewn [* = fwa* g2 < [[Tw] + [wa |zl Twi| = wa] [ 4

< Cllwillg + lwz]| g [[wr = we| g

and
[v1w1 — Vawel[ 2 < [[U1 (w1 — w2)l[r2 + [[(V1 — D2)wz|| 12
< | Pr(vr)llze[lwr — w2 g2 + [[Pa(vr) || palJwr — wal| 4
+ 1|01 — V2| peoy ra ([[wallz2 + [lwa2| 14)
< 3flwr — wa g2
+ C\/ El(vl)le — w2HH1
+ Cllvr — vallx14 g Jwall g -
From the above estimates we get (2.10). O

Corollary 5. For every vi,va € E, wi,wa,uy,us € H(RY), we have

d((vl + wy,u1), (v2 + wQ,UQ)) < C(l + |]w2”H1)dE(v1,vg)
(2.11)

+CO(L+ VE1(v1) + il + [[wall o) llwr = wall g+ [Jur — a1

It is easily seen that in space dimension N > 4, the energy FE introduced in (2.1) is well-defined
and continuous on E x H'(R™). It is obvious that Ey(¥) < E(¥,®) and |[VO|2, < 2¢2E(¥, D).
One can prove that for any M > 0, there exists C(M) > 0 such that F(¥,®) < M implies that
@[l < C(M).

2.3 The main result

We consider the Cauchy problem associated to the Gross-Clark system (GC) with initial values ¥(0) =
T € E and ®(0) = &y € H(RY). We denote by S(t) = > the linear Schrodinger group in RY. For
any given ug € L2(RY), we have S(t)ug = F 1 (eiﬂf'Q}"u(f)), where F is the Fourier transform. Since
el€ is of modulus one, S(t) is an isometry from L2(RY) into itself and from H*(RY) into H*(RN) for
any s € R. It is well-known that (¥, ®) is a solution of the Cauchy problem associated to the system

(GC) with initial data (¥g, ®p) if and only if the functions ¥ and ® satisfy the Duhamel formula (see
e.g. [1], formula (1.6.2) p. 19 or Proposition 3.1.3 p. 57):

it [t 1 1
(2.12) U(t) = 0 — z/o S(t—1) <€2 (§|<1>\2 + 0|2 — 1)@(T)> dr,
(2.13) B(t) = '+ 2y — ;/O s <t - T> <€12(q2|\11|2 - 6214:2)@(7)) dr.

We will study the mappings
L1 oo 2
(\II,<I>)»—>F(\II,<I>):€—2 8—2\<I>| +|¥]*—1) 9,

and

! (|9 — %k?) @.

(V. ®) > G(¥,9) =
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2.3.1 Estimates on the nonlinear drifts

Lemma 6. Assume that 1 < N < 4. Consider p > 4 such that Hl(]RN) s continuously embedded
into LP(RN). Then F and G are continuous from E x HY(RN) to L? + Lz’%(RN) and the mappings
(U, ®) — V(F(¥,®)) and (¥, ®) — V(G(¥, ®)) are continuous from Ex HL(RN) to LQ—}—L%(RN).
Moreover, for any R > 0 there exists a constant C(R) such that, for every Vi, Uy € E, ®1,Py €
HY(RYN) satisfying E1(¥1) < R, E1(V2) < R and ||®1]|;n < R, || 2]z < R, the following inequalities
hold:

[E (W1, @1) — F(¥2, o) 2 +[[VE(W1, 1) — VE (U, Bo)|

2p
(2.14) L2412 L24+LPH

< C(R)A((T1, 1), (U2, D2)),

IG(T1, 1) = G(T2, )|, 2 + [VG(T1, 81) = VG(T2, B 2p

+Lp+2 L24Lp+4

(2.15)
< C(R)d((W1,®y), (Ug, By)),

Proof. It suffices to prove (2.14) and (2.15). Let ¥y, Uy € E, and ®;, 5 € H'(RY). We have:
F(U,®,) — F(Uy, D) :é(mflyz — W5 ?) Ty + 6%(\1/1 —0y) (|W]* - 1)
+ E%(yw — [@2]?) Uy + 8%(\111 — Uy |®q .
Assume that N < 4 and H'(R") is continuously embedded into LP(RY), where p > 4. Then E C

L> + LP(RY) and using the above equality, the Sobolev embedding and the fact that § > 1% we get

|F (91, @) — F(32, )] < O[04 = 102 || o[ 91 ooy 1

2p
L2+4Lp+2
s = o e | 12212 = 1]+ @1 — |0 ]l e, 1o (1] + | @2 1)
2
w1 = o e |10

< C(R)d((lylv (I)l)v (\1127 (1)2))

It is obvious that

1 1 1
VE(U,®) = ?v(@y?\p) + E—Qv((\qx\Q)\If) — ?v\p.

Using the formula
V(fgh) = ghVf+ fhVg+ fgVh

with f=®, g=®, h =W and with f =V, g =W, h = U as well as
figihi — fagaho = (f1 — fo)g1h1 + fa(g1 — g2)ha + fag2(h1 — ha),

then using Holder’s inequality for each term we get

[V(F (W1, ®1)) — V(F(Vg, P2)) < C(R)d((¥1, ®1), (P2, D).

L2+ Lp+2
We have

GV, D) — G(Ug, D) =

1
S (P01 = [952) + ¢ Wa (@1 — 02) + 2K (@1 — @) ),

and proceeding as above we get (2.15). O
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Definition 7. We say that the pair (p,q) is admissible if p > 2,2 <qg< o0 if N=1,2<¢g < 0 if
N=22<¢q< % if N >3, and the following equality holds:

2 N N
(2.16) o=

p q 2

Given T > 0 and f € LY([0,T); 2°), where 2 is a Banach space such that (t,u) — S(t)u is
continuous from R x 2" to 2  (for instance, 2~ may be any Sobolev space H*(R") with s € R), we
define Ay : [-T,T) — Z by

(2.17) Af(t)—/o S(t—7)f(r)dr.

Remark 8. (Strichartz estimate - see e.g. [1], Theorem 2.3.3 p. 33). We recall that if (p1,q1)
and (pa,qo) are two admissible pairs, then for every f € LPi ([-T, T), L% (RN )), the mapping Ay
belongs to LP2 ([T, T, L%(RY)) and to C([-T, T}, L>(RY)). Moreover, there exists a constant C > 0,
independent of T', such that the following inequality holds

(218) HAfHLp2 ([*T,TLL‘D) S C”f”LP/I ([7T,T},Lq/1) .
Let (U, ®) € C([-T,T),E x H'(RY)). By Lemma 6, F(¥,®) and G(¥, ®) belong to H*(R") for

some s € R (for instance, we may take s = —1 if 1 < N < 4). Hence we may define A(¥,®) and
B(¥,®) on [-T,T] by

AU, D) (t) : = /0 S(t— T)F(\IJ(T), (I)(T))dT

=5 [ 0= (GIe0R + wOR - 1) w(ryar

g2

B(W, ®)(t) : = (15/;5 <t - T) G(U(r), B(r))dr
_ 51? /Ots <t - T> (T(r)? — 2k2)B(r)dr.

Lemma 9. Assume that 1 < N < 3. For every ¥ € C([—T, T], E) and ® € C([—T, T],Hl(RN)), the
functions A(V, ®) and B(¥,®) defined above belong to C([—T,T], H'(RY)).

Moreover, if T <1 then for every R > 0, there exists a constant C(R) > 0 independent of T such
that, if V1, Wy, @1, Py satisfy

B (T1(t) <R, || ®21(t)||mn <R and  Ei(Va(t)) < R, |22(t)]mn < R,

then
sup [A(T1, @1)(1) = ATz, 22)(0)]
(2.19) "= 1
<cmrt s a((100), ®1(1)), (Wa(0), (1)),
and
sup || B, @1)(8) = B(¥a, @2)(1)
(2.20) "=

< C(R)T* sup d((W1(1), ®1(1)), (V2(t), ®a(1)) ).
[¢|<T



2.3. THE MAIN RESULT 29

Proof. Let p > 4 such that H'(R") is continuously embedded into LP(RY). Obviously, we must have
N <4 <p. Using Lemma 6, then Lemma 12 and Corollary 13 in Appendix, there exist two continuous

functions f € C([-T,T], L>(RY)) and g € C([-T, T],LP%(RN)) such that
F(Uy, @) — F(P2, ®2) = f+g

and
sup [|f(O)lze + sup lg(O)]| 2p
te[—T,T) te[—T,T) Lp+2
<3 F(Uq,P1) — F(Uy,P

(2.21) < tef}gﬂ” (U1, @1) = F(P2, ®)l| , 2,

< C<R) sup d( (qjl(t)a (I)l(t)) ’ (\IJQ(t)7 (I)2(t>) )
te[-T,T)

If (v, p) is an admissible pair such that p’ = 1%’ we have necessarily p = _2, N = 2—7’ and +' = 2p2_pN.

Using Strichartz’ estimate with v and p as above, then Hdlder’s inequahty on [— T T| we see that
Ap, Ay € C([-T,T), L*(RY)), where Ay, A, are as in (2.17), and

sup [[Ay(W)llz2 < Cllfllprrm),2) < CT SUP Hf(t)HLQ»
te[-T,T) te[-T,

2p—N
sup [|Ag(t)]| 22 < CHQHM’([—T,T},M’) <CT 2% sup |g(t) 2p -
te[=T,T] te[—T,T) Lr+

Summing up, we infer that A(¥q, ®1) — A(¥s, o) € C([-T,T], L2(RY)). From the above estimates
and (2.21) we see that there exists C(R) > 0 such that if 7" € (0, 1], we have

sup [l A(W1, @1) —A(P2, )| 12
te[-T,T)
(2.22) .
SOWRTS sup d{ (3 (2),91(1)). (Va(t), 02(1)) ).

Since S(t) commutes with derivatives with respect to space variables, it is easy to see that

t) = /Ot:;(t—T)(VF(q;(T),q><T)))dT.

From Lemma 6, Lemma 12 and Corollary 13 there exist continuous functions h € C ([—T , T, (L2(RY ))N>
2p N
and g € C <[—T, T], (Lﬁ+4 (]RN)> > such that

VF(Uy,®1) — VE(Wy, ) = h+ k

and
sup |[h(t)[[2 + sup k()] 2
te[—1.T] te[-T,T) Lp+a
<3 s VF(U,®1) — VF(Uy, o
(2.23) < tqﬁ}gﬂll (T, @) (Ty 2)HL2+LP%

<C(R) sup d((P1(t),1(t)), (V2(t), Pa(t)) )-

te|-T,T)



30 CHAPTER 2. ON THE CAUCHY PROBLEM FOR (GC) SYSTEM

1%’ we must have p = z% (respectively p = oo if p = 4),
v=4%andy = p_LN. If N>3weneed2<p< % and this is equivalent to p > 2N. Hence there is
no admissible pair with the desired properties if N = 4, and in the case N = 3 the only possible choice
is p = 6, thus (v, p) = (2,6) and (v, p') = (2, 8). Notice that if N = 3 we need the endpoint Strichartz

estimate, that is (2.18) with (p1,q1) = (2, 225), see [6]. Using Strichartz’ estimate with v and p as

above, then Holder’s inequality on [—T,T] we see that Ay, Ay € C ([—T, T], (LQ(RN))N) and

If (y, p) is an admissible pair such that p’ =

sup [[An(t)llze < ClIAll1(-rmyp2) < CT sup  ||A(t)]| 2,
te[-T,T) te[-T,T)

p—N
sup ||Ax()||z2 < C||El ;41 n<CT v  sup |kt 2 .
A0l < OVl 1y e KO,z
We infer that V (A(¥q,®1)) — V (A(Pa, P2)) € C (([—T, T], (LZ(RN))N>. From the above estimates
and (2.23) we see that there exists C(R) > 0 such that if 7" € (0, 1], there holds
sup ||V (A(¥1, ®1)) — V (A(V2, P2)) || 2

te[-T,T]

(2.24)
p=N
<SCR)T 7 sup d((V1(t), 21(2)), (L2(t), 22(2)) ).
te[-T,T)
We conclude that AWy, ®1) — A(Vy, ®3) € C([-T,T], HY(RY)). Taking (¥5, ®2) = (1,0) it is obvious
that A(¥q,®1) € C([-T,T], H'(RY)) whenever ¥; € C([-T,T],E) and &, € C([-T,T], H'(RV)).
Estimate (2.19) follows from (2.22) and (2.24) with p =6 if N = 3, respectively p =4 if N € {1,2}.
A simple change of variables shows that B(¥,®)(t) = Agw(s.),a(s.) (%) Proceeding exactly as

above, one proves that B(¥, ®) € C([-T,T], H*(R")) and (2.20) holds. O

2.3.2 Local wellposedness

The Duhamel formula (2.12)-(2.13) can be written as

(2.25) U(t) = S(6)Wo — LAY, ) (1),
(2.26) B(t) = S (2) By — iB(W, B)(1).

Theorem 10. Assume that N € {1,2,3}. For every R > 0, there exists T > 0 such that for any
o € E and any ®9 € H'(RN) satisfying E1(¥) < R and || ®o||zn < R, there exists a unique solution
(U, D) of the system (GC) with initial values (¥, ®)(0) = (¥, ®g), such that

(0,®) € C([-T,T), E) x C([-T,T), H(R")).

MOTSOU@T‘, ’L'f(\IIOJ, (1)071), (\1/072, @072) € EXHl(RN) satisfy El(\IJOJ) S R, ||(I)0,1HH1 S R and El(\Ifo’z) S
R, H(I)O,QHHl < R then

(2.27) ;lir;d((‘l’l(t)ﬁbl(t))a (‘I’z(t)>q’2(t))) < C(R)d((Yo,1,P0,1), (o2, Po2)),

where (U1, ®1) and (Yo, ®2) are the solutions of (GC) with initial data (Vo 1,Po,1) and (Vo 2, Po2),

respectively.
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Proof. Let (Ug, ®g) € E x H'(RN) be such that E1(¥g) < R and ||®¢|/;1 < R. We shall prove that
for T small enough (depending only on R), the mapping

(2.28) (W, ®) —s (5(.)\110 — AT, ®), S (5) By — iB(T, @))
is a contraction on the complete metric space
X ={(,®) e C(-T,T),E) x C([-T,7), H'(R")) | sup E1(¥(t)) < 3R,
[t<T
sup [ ®(1)]|: < 3R}

[t|<T

endowed with the distance

dist( (U1, 1), (Va2,P2)) = sup d((U1(t), P1(t)), (P2(t), P2(t)) ).
te[-T,T)
Since e is an isometry in H'(RY), we have |e®®®q|/1 = ||®ol/r < R for all t. Notice that
Proposition 2.3 in [5] is valid for N = 1,2,3 and it implies that there exists 77 (R) > 0 such that for
|t| < T1(R) we have Ey(e?¥q) < 2R.
Using (2.19) and (2.20) in the particular case when W9 is constant of modulus 1 and ®2 = 0, we

get

sup AW, ®)(1)| g1 < C(R)T? and  sup ||B(¥,®)(t)|m < C(R)T?.

[t|<T [t|<T

Then using inequality (2.9) in Lemma 4, we see that for T small enough (depending on R),
sup F4 (eitA\Ilo + A(Y, ®)(t)) < 3R.

t|<T

It is obvious that

sup ||e"2® + BV, ®)(¢)|| ;1 < R+ C(R)T? < 3R
tI<T

if T is small enough. We conclude that there exists To(R) > 0 such that for T' < T5(R), the mapping
(2.28) is from X to X.
Using estimate (2.10) in Lemma 4, then estimate (2.19) in Lemma 9 we get

t [SPTI?T} de (S(t)Wo — iA(V1(1), @1(1)), S(t)¥o — iA(P2(t), P2(t)))

(2.29) SCi(R) sup (A1), @1(0)) = AV2(0), €20

<CR)TE sup d((W1(1), 21(1)), (Wa(t), @(1)) ).
te[-T,T)

Similarly, from estimate (2.20) in Lemma 9 we obtain

e | <s (;) g — iB(\Ill(t),‘IH(t))) - (s <§) g — z’B(\PQ(t),@z(t))) ..

(2.30) = e |B(W1(t), ®1(t) — B(Ta(t), ®2(t))]| 1

< C5(R)T?  sup d((qfl(t),@l(t)),(xpg(t),%(t))).
te[-T,T)
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It follows from (2.29) and (2.30) that there is T'(R) > 0 such that for 7' < T'(R), the mapping in (2.28)
is a contraction in X’; then the Banach-Picard fixed point theorem implies that it has a unique fixed
point. Hence (GC) has a unique local solution with initial data (U, ®).

Let (VUq,®q) and (W3, P2) be the solutions of (GC) with initial data (Vo 1, ®o,1) and (Vo z2, Po2),
respectively, satisfying the assumptions in Theorem 10. Proceeding exactly as in (2.29) and (2.30), we
see that there are C4(R) > 0, C5(R) > 0 such that

sup d((1(t), @1(t)), (Pa(t), P2(t)))
te[-T,T)

< C4(3R)d((¥o,1,Po,1), (o2, Po2))

+C5(3R)T 7 supye_p7q d( (T1(1), D1(1)), (V2(t), P2(t)) ).

Choosing T3(R) < T'(R) such that 05(3R)T3(R)% < 3, we see that (2.27) holds on intervals of length
T3(R). Dividing [-T'(R),T(R)] into a finite number of intervals of length no greater than T3(R) and
iterating this argument, we see that (2.27) holds on [-T'(R),T(R)]. O

Since we have a lower bound on the time of existence of the local solution of the Cauchy problem
for (GC) only in terms of E1(¥¢) and || Pl 71, a standard argument gives the following:

Corollary 11. Assume that 1 < N < 3. Let Vg € E and & € HY(RN). Let (U(t),D(t)) be the
solution of the Cauchy problem with initial data (Vo, ®o) and let (=T, T*) be its mazimal interval of
existence. Then either T* = oo, or tlTirTI}k (E1(U(t) + | Pt)||g1) = oo A similar statement holds for T.

2.3.3 Regularity, conservation of energy and global existence

Assume that N < 3. Then we have H?(RY) c X2(R¥). Consider ¥y € E and &, € H'(R")
such that AW, € L2(RY) and A®y € L2(RY). Let (¥(t), ®(t)) be the solution of (GC) with ini-
tial data (¥, ®o) and let (—T%, T™*) be the maximal interval where this solution exists. Since the
mapping (¥, ®) — (F(¥,®),G(¥,®)) from X*(RY) x H?(RY) to itself is Lipschitz continuous
on bounded sets of X2(RY) x H?(RY), proceeding as in [5] p. 772-773 we see that (U(-),®()) €
C((~T., T*), X2(RN) x H*(RY)). Then using (GC) we get 0;¥(t), 0,®(t) € C((~Tx, T*), L>(RYN)),
and differentiating [|®(¢)[|7, and E((¥(t), ®(t)) (where E is given by (2.1)), then integrating by parts
and using the system (GC) we find

%H‘I’(t)H%Q = 2Re(®(t), O, B(t)) 2

= 2Re /RN D(t) (‘; (—A(I)(t) + é(qz\\P\Q(t) — 52k2)<1>(t)>> dz =0,
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respectively

1
£2

—9Re [ 8,02 (—A\I/(t) + (Eig\q>y2(t)+ W2(t) — 1)@@)) da

2
+€22qQRe ZX0) <_A<1>(t) + 32|\m2(t)<1>(t)> dz

=9Re [ () (i0,T(t)) da
]RN

2 R VY .
"‘WRG /RN 0P (1) (Z(Satq)(t) + €2k2<1)(t)) dz

=0.

We infer that ||®(t)||;2 and E(V(t), ®(t)) do not depend on ¢.

Let ¥g € E and &y € H'(RY). By Lemma 6 p. 773 in [5], there is a sequence (¥%),>1 C
E N X2(RY) such that dg(¥2,¥y) — 0 as n — oo. Consider a sequence (®2),>1 C CZ(RY)
such that ®f — ®g in H'(RY). Denote by (¥(t), ®(t)) and by (¥, (t), ®,(t)) the solutions of the
Cauchy problem associated to the system (GC) with initial data (Uo, ®¢) and (¥{, ®f), respectively.
Let (=T, T*) be the maximal interval of existence of the solution (¥ (¢), ®(¢)), and let tg € (—T%, T*).
Using (2.27) in Theorem 10, it is standard to see that for all n sufficiently large, ¢y belongs to the
existence interval of the solution (¥, (t), ®,(t)), and (¥, (o), Pn(te)) — (¥(to), ®(to)) in Ex H(RY)
as n — o0. Since || Py, (to)|| 2 = [|®f]| 2 and E(V,(to), ®n(to)) = E(¥(, @f) for all n, passing to the
limit we discover that ||®(to)||r2 = ||Pol|r2 and E(¥(to), P(to)) = E(Vo, Po). We have thus proved
that |®| ;2 and the energy E are conserved quantities for all solutions of (GC) in E x H'(RY).

The conservation of the energy and of the L?—norm of ® immediately imply that all solutions
are global. Indeed, let (U(t),®(t)) be a solution with initial data (¥g,®o) € E x H'(RY), and
let (=74, T*) be its maximal interval of existence. We have already seen that if 7% < oo, then
Ei (U(t) + ||12(t)||g1 — oo as t — T*. Or, we have E(U(t)) + 621(]2 [VO(1)[|2, < E(¥(t), ®(t) =
E(Ug, ®g), and || ()| 2 = || Po|| 12, hence E1(¥(t))+||®(t)| g1 remains bounded as long as the solution
(U(-),®(-)) exists, and we conclude that necessarily 7% = oco. Similarly we have T, = oo.

2.4 Appendix

Let (X, - ||x) and (Y, || - [ly) be two Banach spaces of distributions in R"Y. We consider the Banach
space X +Y endowed with the norm ||ul|x+y = inf{||z||x + |lylly | z€ X, ye€Y, u=z+y}.

Lemma 12. Let u: [a,b] — X + Y be a continuous function from the compact interval [a,b] C R to
(X+Y,||'||x+y)- Lete > 0. There exist two continuous functions v : [a,b] — X and w : [a,b] — Y
such that

u(t) = v(t) + w(t) Jor allt € [a, ],

sup |[v(t)||lx < sup ||u(t)||x+y +€ and
t€[a,b] tela,b]

sup [lw(®)|ly < sup [[u(t)|x4+y +e.
t€[a,b] te[a,b]

(2.31)
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Proof. We divide the proof into two steps.
Step 1. For any € > 0 there exist two continuous functions v : [a,b] — X and w : [a,0] — Y
such that (2.31) holds and

(2.32) Sup, [u(t) = v(t) —w(t)|| x4y <e.
t€la,b

Fix ¢ > 0. Since u is uniformly continuous, there exists > 0 such that |[u(t) — u(s)|| x4y < § for all
s,t € [a,b] such that |s—t| < n. Consider a finite sequence a =ty < t; < to < --- < tp_1 < t, = bsuch
that ty, —tx_1 <nforall k=1,...,n. Forany k € {0,1,...,n}, choose v € X and wy € Y such that
u(ty) = v +wy and |Jog||x + [lwrlly < [Ju(tr)llx+y + 5. Define v : [a,b] — X and w : [a,b] — Y by
v(tg) = vg, w(ty) = wg and

tr — 1t t— 1t
v(t) = kivk_l + ¢U}C,
gy — tg—1 ty — tr—1
t, —t t—tr_
w(t) = — g+ —— Ly for t € [tg_1,tx].
by — th—1 t —tp—1

In other words, v and w are affine on each of the intervals [tx_1,%x]. It is clear that v and w are
continuous on [a,b]. For ¢ € [t;_1, ;] we have
t —t t—tp 1

k
lv(t)]|x < P k-1l x +
E— th—1

g
lvellx < sup [lu()llx+y + 5
t —tp—1 t€ab] 2

and a similar estimate holds for w. Hence (2.31) is established.
It is easily seen that

t—tg1
v(t) = vp—1 +w(t) —wp—1 = ——— (Vg — Vp—1 + Wi — Wi—1)
tp — ti—1
t— g1
= ——— (u(tx) — u(tk-1))
tp — th—1

and consequently
lo(t) + w(t) — ults-1)lx+v

IN

Jutr) — u(te—1)l x+v

< g for all t € [ty_1, ).
Therefore for ¢ € [tx_1, tx] we have
[u(t) = (v(t) + w(t)) Ix+v
< Ju(t) = w(te-1)ll x4y + lv(t) + w(t) — wlte—1)l x4y
<e.

Step 2. We iterate the construction in Step 1 to conclude the proof. Given € > 0, we construct
vy and wy as in Step 1 such that (2.31) and (2.32) hold with £ instead of . Let uy = u — v — wy,
€
so that sup [Ju1(t)||x+y < i Using again Step 1, we construct vy and wsg such that (2.31) and
te[a,b]
(2.32) hold with u; and § instead of u and ¢, respectively. We denote us = u; — vz — ws, and we
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continue the process. If u; has been constructed such that sup ||ux(t)|| x4y
te[a,b]

we find vgy1 and wyyq satisfying (2.31) and (2.32) with uy instead of u and 555 instead of €, and

so on. Since |[vg||reo(fap), x) < 57 + gier for b > 1 and (X, - |[x) is complete, the series } ;- vk

converges in X. We denote by v its sum. It is clear that v is continuous from [a,b] to X and
satisfies (2.31). Similarly w = ;- wy is continuous from [a,b] to X and satisfies (2.31). We have

€
< SR using Step 1

Hu - Zle v; — Zle wiHLw([mbLX”) < iy for all £ € N* and letting k — oo we get u = v +w. O

Corollary 13. Let u : [a,b] — X +Y be a continuous function. Let e > 0. There exist two continuous
functions v : [a,b] — X and w : [a,b] — Y such that

u(t) = v(t) + w(t) for all t € [a,b],

sup [lo(t)llx < (L+¢) sup |lu(?)|x+y and
t€(a,b] t€la,b]

(2.33)

sup [[w(t)|ly < (1+¢) sup flu(t)|x+v-
t€la,b] te[a,b]
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Chapter 3

Travelling waves to the Gross-Clark
system

3.1 Introduction

We recall that the Gross-Clark system is given by

OV

oy = —AV + L(|¥ + 5|02 - 1)
(GC)

oD

i = AL L@V - R0

with the "boundary conditions" |¥| — 1 and |®| — 0 as || — oo. Here §,¢€,q, k are physical
parameters, and € is not "small" (e ~ 0.2 in the literature).

We are interested in traveling waves, that is solutions of the form ¥ (¢,z) = ¥ (x1 — ct,xa,...,2N),
O(t,z) = p(x1 — ct,x9,...,xN). It turns out that it is more interesting to search for ¢ of the form
@(x) = €1 p(z); this transform leads finally to ®(t,z) = 91— p(z) — ct, xa,...,xn). Notice
that ¢ € HY(RY) if and only if o € H(RY). We find that ¢ and ¢ must satisfy the system

—icp— = —Ap+ H(P2+ Zlel — Dy
(TW)

2.2 2
(CE+E)e = —Ap+ Syl

The first equation in (TW) is similar to the equation satisfied by traveling-waves to the Gross-Pitaevskii
equation, except that it contains an additional term E%|<p|2¢ which is linear with respect to 1. The
second equation in (TW) is linear in ¢. In fact, ¢ must be an eigenvalue of the linear operator
Ly = —A + Z—;W\Q corresponding to the eigenvalue A = 52402 + k2. Notice that we have always
(Lyo,¢) > 0. If 1| tends to 1 sufficiently fast as |x| — oo, the essential spectrum of Ly, is [1,00).
We will look only for eigenvectors of Ly, corresponding to the first eigenvalue. They can be obtained
by minimizing (Ly¢, ¢) in HY(RY) when ||¢|| 12 is kept constant. It is therefore natural to seek for
solutions of (TW) by minimizing E(v, ¢) when the momentum of 1) and the L?—norm of ¢ are fixed

(see below for the definition of the "energy" E(1, ¢) and of the momentum). If (¢, ¢) is a minimizer,

the parameters c and A = % + k2 appearing in (TW) will be the corresponding Lagrange multipliers.
The following "energies" are relevant in the study of (GC) and (TW):

(3.1) Ey(y) = /R VP V() e, and
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BW,9) = fan VU2 + V(UP) + 25 Vo2 + X6 Ppf? de
(3.2)

= Bi(Y) + fpnv 22| Vel + Zl0Plel de = Bi(y) + zz(Lye, ¢).

€2q

In (GC) - (TW) we have V(s) = 555 (s—1)2, but we may consider more general potentials V. Through-

T 22
out this chapter we consider a general potential V, we denote F(7) = —V'(7), and we work with the

same assumptions on F and on V as in [5]:

(A1) The function F is continuous on [0, 00), C! in a neighborhood of 1, F(1) = 0 and F’(1) < 0.

If (A1) is satisfied, the sound velocity at infinity associated to (GC) or to (3.3) is vs = /—2F'(1)
(see e.g. [9]). In particular, for F(s) = 6%(1 — s) we have vy = @

(A2) There exist C > 0 and pg < o0 if N =1 or N = 2, pg < ﬁ in N > 3, such that
|F(s)] < C(1+ sP?) for any s > 0.

(A3) There exist C, ag > 0 and r, > 1 such that F(s) < —Cs% for any s > r,.

(A4) Fis C? near 1 and
1
F(s)=F(1)(s—1)+ §F”(1)(s —124+0((s 1) for s close to 1.

We assume throughout the chapter that (A1) and (A2) hold. Assumptions (A3) and (A4) will be
needed occasionally. For instance, (A3) is useful to obtain the regularity of solutions when a bootstrap
cannot be performed, but it is not needed to prove the existence of solutions.

Notice that the energy E is a conserved quantity for the system (GC) (see Section 3.3 in [1]).
Similarly, the energy FEj is a conserved quantity for the Gross-Pitaevskii (GP) equation

(3.3) iy + AV + F(|¥)¥ =0 in RY, |¥| — 0 as |z| — oo.
The natural energy space associated to (GC) is

2 = {1, ¢) € HipeRY) | E(,) < o0}

If (¢,p) € 2, we have necessarily F1(¢) < oo and we infer that ¢ € £, where £ is the energy
space associated to the Gross-Pitaevskii equation. We refer to the introduction of [5] or of [11] for a
description of £. Consider a cut-off function y € C°°(R) such that y is nondecreasing, x(t) = tif t < 2
and x(t) = 3 if ¢ > 4. It has been shown in [5] that

£ = {¥eHLERY)| B < oc}

(3-4) = {@Z} € Hll

oc

(RY) | VY € L2(RN), x*(J9]) — 1 € L*(RY)}
= {¢:RYN — C| ¢ is measurable, |[¢| — 1 € L2(RY), V¢ € L2(RY)}.

Lemma 20 below implies that if (v, ¢) € 27, then ¢ € HY(RY). In the sequel we will work with
functions in the space & x HY(RN). If N > 4, using the Sobolev embeddings it is easy to see that
E(¢, ) is finite for any ¢ € € and ¢ € HY(RY), and 2" = & x HY(RY). If N > 5 we still have
2 C € x HYRY), but the inclusion is strict. For the minimization problems considered in this
chapter it suffices to consider only functions (¢, p) € € x HY(RY) such that E(v, ) is finite.

Another important quantity for the study of (GC) (as well as for the Gross-Pitaevskii equation) is
the momentum.
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Given any function ¢ € H'(RY), we define its momentum by Q(p) = [pn (ig—;’;, v) dx. It is obvious
that this is well-defined because <i§—;’;, @) € LYRY) whenever ¢ € H'(RY) and the Cauchy-Schwarz
inequality gives

1 Ip |2 2|, |2
< — /| +K d fi K >0.
ol <5 [ 52 + KPelPar forany K>

65 lRWI<|5E

If ¢ € &, the function <i%, 1) does not necessarily belong to L'(R™). However, it has been shown in
[11], Section 2 and in |5], Section 2 that for any ¢ € £ we may write <i§—i,w> =f+ 38%, where f €
LY(RN) and ¢ € H'(RYN), and that it makes sense to define the momentum of 1 by Q(¢) = Jen fda;
see [11, 5] for details.

The momentum Q(¥) is a conserved quantity for the Gross-Pitaevskii equation (3.3). The problem
of minimizing F1()) while Q(v) is kept fixed has been studied in [5]. This gives traveling waves to
(3.3) that are orbitally stable. The following result has been proven in [5]:

Theorem 14. [5] Assume that N > 2, (A1) and (A2) are satisfied and V >0 on [0,00). Forp >0,
let

(3.6) E1min(p) = nf{E1(¢) | ¢ € €, Q) = p}.
Then:

(1) The function E1 mp is concave, increasing on [0,00), E1min(p) < vsp for any p > 0, the right

E1,min(p)
p

derivative of Eq min at 0 is vs, E1 min(p) — 00 and — 0 as p — co.

(it) Let po = inf{p > 0 | Eq1 min(p) < vsp}. For any p > po, all sequences (n)n>1 C € satisfying
Q(Yn) — p and E1(¥n) — E1min(p) are precompact (modulo translations).

The set S, = {¢p € €| Q(¢¥) = p, E(¥) = E1min(p)} is not empty and is orbitally stable by the
flow associated to (3.5).

(ii1) Any 1y € Sp is a traveling wave for (3.3) of speed c(vp) € [dT E1 min(p), d” E1 min(p)], where
we denote by d~ and d*t the left and right derivatives. We have c(,) — 0 as p — o0o.

(iv) If N > 3 we have always py > 0. Moreover, if N = 2 and assumption (A4) is satisfied, we
have po = 0 if and only if F"(1) # 3, in which case c(yp) — vs as p — 0.

Notice that Q(¢) and Q(¢) are not conserved quantities for (GC). Let

(3.7) Pl ) = Q) + GQZQQM

It is easily seen that P is (at least formally) a conserved quantity for the system (GC). Therefore it
would be natural to seek for traveling waves for (GC) by minimizing F when P is kept fixed. In section
3.3 we consider a more general problem, namely for any 8 € (0,1) we minimize the energy E(v, )
when the mixed momentum Pg(v, ) = BQ(Y) + (1 — B)Q(p) is fixed. Our Theorem 26 below is a
result analogous to Theorem 14.

Let us give a brief overview of our main results. In Section 3.2 we consider the problem of minimizing
E(1, ¢) when the L2 —norm of ¢ is kept fixed (no constraint is imposed on ). We prove the following
result:

Theorem 15. Suppose that (A1) and (A2) hold and V > 0 on [0,00). For m > 0, we define

(33) mintm) = int { Bl p) [0 € €. HYE), [ Jol e =m .
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Then:

(i) The function gmin is concave, increasing on [0,00), gmin(m) < %

for any m > 0, the right
N
derivative of gmin at 0 is %4, and gmin(m) < Cm¥N+2 for large m.

(11) Let my = inf {m > 0| gmin(m) < 6%} For any m > myg, all sequences (Yn, on)n>1 C € X
HY'(RY) satisfying ||¢nll2. — m and E(¢n, on) — gmin(m) are precompact (modulo translations),
and there exist minimizers for gmin(m).

(iii) Any minimizer (Y, @) for gmin(m) satisfies the system
1 q° .
—AGFF(P)+ Sl =0, Do+ Slle—Edre=0  inRY

for some v € [dF gmin(m), d” gmin(m)]. The functions 1) and @ are smooth on RN and, after translation,
they are radial. After multiplication by complex numbers of modulus one, they are real-valued; moreover,
the radial profile of 1 is nondecreasing, and the radial profile of ¢ is nonincreasing.

(iv) We have mg =0 if N =1 and mg >0 if N > 2.

In Section 3.3 we consider the problem of minimizing £(v, ¢) when the mixed momentum Pz (), ¢) =
BR(Y) + (1 — B)Q(yp) is fixed. Here is the main result of Section 3.3:

Theorem 16. Assume that N > 2, (A1) and (A2) are satisfied and V >0 on [0,00). Let

Egmin(p) = nf {E(¥,0) | ¥ € £, € H'(RY), Ps(v, ) = p} -
For any B € (0,1), the following holds true.

(i) The function Egi, is concave, increasing on [0,00), and there exists an explicit constant

Sg > 0 such that Egmin(p) < Sgp for any p > 0. The right derivative of Eg i at 0 is Sz, and

B,min (p)

E,B,mm(p) — 00 and E — 0 as p — o0.

(it) Let pg = inf {p > 0| Egmin(p) < Sgp}. For any p > pg, all sequences (¢Yn, on)n>1 C € X
HYRN) satisfying Pg(vn,on) — p and E(Yn, on) — Egmin(p) are precompact (modulo transla-
tions), and there exist minimizers for Eg min(p).

(iii) Any minimizer (1, @) for Eg min(p) satisfies the system
8L = — Ay — F(|9|2)y + Lol
icBar = —A% = F([¢]) Y + Zlel*y
. 2
ic(1 - B)E2* 52 = —Ap + L[

for some ¢ € [T Eg min(p), d~ Egmin(p)]. The functions ¢ and ¢ are smooth on RN (at least CH* for
any a € [0,1)). After translation, (¢, @) is azially symmetric about the azis Ox;.

In the last section we study a minimization problem with two constraints. More precisely, for p € R
and m > 0, we define

B9 Bunlpn) = inf { B0 |0 €€, o€ HEY), Q) =, [ loPdo=m].

The main result of Section 3.4 is as follows.
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Theorem 17. Assume that N > 2, assumptions (A1) and (A2) hold and V > 0. Assume that the
pair (p,m) satisfies the following strict sub-additivity condition:

(3.10) E1min(p") + Emin(p — p',m) > Epin(p,m) for any p’ € R*.
Then there exist minimizers for Epi,(p,m).

Moreover, any sequence (Vy,, 0n) € € x HY(RN) satisfying Q(vn) — p, / lon|? dz — m and
RN

E(Yn, on) — Emin(p,m) has a convergent subsequence (after translations in RY ).
The minimaizers solve the system

Mgl = =AY — F([0)e + Kol
2.2 0p

. 2
M€ g = —Ap + %2!1#\2@

for some Lagrange multipliers A1, A2, and are smooth (at least C»*(RN) for any o € [0,1)).

3.2 Ground states

For m > 0 we consider the minimization problem

(GSn) minimize E(i, @) for ¢ € £, ¢ € HY(RY) satisfying / lo? dz = m.
RN
We define
(3.11) mintm) = int { Bl ) [ 0 € €. HYE), [ fo e =m .
RN

Proposition 18. The function gm:n has the following properties:
(i) Gmin is non-decreasing and concave on (0,00), and 0 < gmin(m) < % for all m > 0.

; 1
(1) If N = 1 we have gmin(m) < n for any m >0 and lim Gumin () = .
et m—=0  m et

(iii) If N > 2, there exists mg > 0 such that gmin(m) = @4 for any m € (0, mo].
€

(iv) There ezxists C > 0 such that gmin(m) < Om™+,

Proof. (i) Since E(,) = 0 for any ¢ and ¢, it is obvious that gmin(m) > 0. Consider
¢ € CP(RN) such that [ox |¢°dz = m and let ¢, (2) = —7z¢ (£). Then [py [@o|* dz = m and
Jan l@o|? dz = %IRN |Vop|?dz. Taking ¢ = 1 we see that gmin(m) < E(1,¢,) for all ¢ > 0, and
letting o — 0o we get gimin(m) < 7.

Proceeding as in (3.68) we see that

. m m
amin(m) =int { [ 190 4 VW) + S V6l + SluPlel de |
(3.12) RN q ¢

@bEg,goeHI(RN),fRN\QDPdJ::l}.

For any (¢, ) € € x HY(RY), the mapping m — [pn [VO> + V([¢?) + 32| Ve|? + %[0 [*|p]* dz is

2q2
concave and non-decreasing, and the infimum of a family of concave and non-decreasing functions is a
concave and non-decreasing function, too.
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(ii) Consider x € C°(R"Y) such that 0 < x < 1, x = 1 on B(0,1) and x = 0 on R \ B(0,2).
Denote A = ||x||2,, B = [|[Vx||%:, and D = [pn x*da. Let & € (0,1) (to be chosen later) and let

x x
%,b(ﬂﬁ) =1~ /iCLZXZ (g) s Spa,b(w) =ax (g) .
Fix m > 0. If a € (0,1) and b > 0 are chosen so that a*»’V A = m, we have ||pqp[|2. = m. It is

clear that [|[Vap)|2, = a?0N 2B and [|[Viye[2. = £2a®d™ 72| V(x?)[|2. < 4k2a’bN2B. There exists
C > 0 such that V(1) < C(1 — 7)2 for all 7 € [0, 2], hence

Vi(lasl?) < C(1—2,)? < d0n2aly* (£)

and consequently

/ V(|thapl?) dz < 4CK*a*d™ D.
RN

Using the above estimates and the fact that a?b™ A = m we get

m 1
gmzn(m) - < E(¢a,b7 (Pa,b) - 674 /N |(pa,b|2 dz
R

[q)]

= /RN IVbapl® + V([Yapl®) + 72|v90ab| ta (|¢ab|2 — 1) |@apl® dz

2bN72B 2 4bN 1
< 4r%a*DN 2B 4 4CK%a* N D + ? 22 1%24 /RN <1 — 2/{(12)(2(33)) x!(z)da

a?N 2B ka*®™ D
4

< 4k2a*WN 2B + 4CK2a*WN D + 55— —
€2q €

2 4 2
=m <4/@ m-~at¥ AN 1B + 4K%a QCAD + EQIqu_WaWAW_lB - IQCLQA) .

Choosing k sufficiently small (for instance, k < 854 will do) we see that there exist constants C, C3 > 0

such that gmin(m) — % <m (Cgm_%a% — Csa > .If N =1 it suffices to take a = ¢m, where £ > 0 is
€

sufficiently small, to see that there exists some Cy > 0 such that gpin(m) — —Cym? < 0 for all
m > 0.

If N =1, for any n > 0 there exists e(n) > 0 such that for any ¢ € € satisfying F1 (1)) < e(n) there
holds ||| — 1 pee(r)y < 1. Fix > 0. Let m € (0, sete(n)]. If ¢ € € and ¢ € H'(R) are such that

lell2; = m and E(¢, ) < 22, it is obvious that Fy(y) < 2 < e(n), hence [¢(z)] € [1 —n,1+ 7]

- S
o

for all z € R and consequently E(1, ¢) fR [v|2|]? dz > (=n)"m 77) . We conclude that (1_6#4)27” <
797”%(”1) < 2 for any m € (0, 3ete(n)], hence hmm_m 79"”;(’”) =4

(iii) We already know that giin(m) < % (see part (i)) and it suffices to show that for m sufficiently
small and for any ¢ € £ and any ¢ € H'(R") satisfying [|¢[|2, = m and E(¢,¢) < QE—T there holds
E(¢,) = %. It also suffices to consider the case when 1) and ¢ are real-valued and 0 < ¢ < 1 on
RV. Indeed, denoting ¢ = |¢| and ¢ = min(|¢|,1) we have ¢ € £, ¢ € H'(RN), ||§[2. = m and
E(y,3) < E(t, ).

Suppose that ¢ € £ and ¢ € HY(RY) are real-valued, 0 < ¢ < 1 on RY, loll22 = m, and
E(y, ) < 2.



3.2. GROUND STATES 45

Consider first the case N > 3. Using Holder’s inequality, then Sobolev’s inequality we get

13 | [ (P =1)lelde] < = 1Py Il < CBIL= 10, 4 IVl

Since 0 < |¢| < 1, using Lemma 4.1 p. 171 in [5] (see estimate (4.1) there), we infer that there exists
C1 > 0 such that

/“aw2—n%m<4/ V([[2) dz + C1| V||
RN RN
(3.14)

9%

B, ¢) + CLEW, )T < 2 4., (8’?)2.

If N > 4, by Hélder’s inequality we get

&m

2%
1= 1Py < = [P 11— [Pl < | 22 o (22
L% X 1.2 Lo X T 1 A

Then using (3.13) we infer that there is Cy > 0 such that for any m € (0, 1] and for all ) and ¢ as
above there holds

2
[ (8 = 1) I da] < Com¥ |V
and consequently

Vel* |1 1 Cym¥
mw@—zzaw+/‘*’+4wwawww>aww<2f—”’)Wmm

RN €2¢%2 €

N
The last quantity is nonnegative if m < min(1,C, 2 e¥g=).

If N = 3, using Holder’s inequality, estimate (3 14) above and Sobolev’s inequality we get

1 3 3 1 3
| [ (9= 1) ol da] < 1= 10Plallel faliel e < O30 = WPz ol IV

3 oo 1 1 3
< CZ (4E(h, ) + CLE(¥,9)%) % [lo] 2| Ve |2,

If ¢ and ¢ are as above we have ﬁHV@H%z < E(W, ) < QE—T If m < 1, we infer that there exist
C3,C% > 0 such that

1 3 1 1 1 1
| [, =1) P as] < Cam @IVl fllol s < G (Ba9) + 251912 ) 191 el

Then we get

m 1 C! 1 1 1
E@W, o)== = | BEi(®) + 55 Vel — 2Velileli. ) = ( Br@) + 55 Vel7z ) (1-Csm)
€ €°q € €q

for some C5 > 0 and the last quantity is non-negative for all m sufficiently small.
Consider next the case N = 2. Using Plancherel’s theorem and Hélder’s inequality, we get

lloll s < Hcp||}}s||Vg0HSLz for all s € (0,1) and all ¢ € HI(RN).
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If pe (2,00) and s € (0, 1) satisfy % =1 — % (thatis,s=1— %), using the Sobolev inequality we see

that there exists C}, > 0 such that

lellze < Gollelle < Collell2°IVellza  for any ¢ € HY(R?).

1 1
In particular, for p = 4 we get [|p||Lar2) < Callpll72[|Vel|], for any ¢ € H'(R?), hence

15 | [ (0B =) lePda] <1 = WPlselels < CHIL= WPV el el e

Using Lemma 4.1 p. 171 in [5] (see estimate (4.2) there) we infer that there exists C' > 0 such that for
any ¢ € & satisfying |¢| < 2 we have

(3-c1vuli) [P -0 ar< [ viwR)a

In particular, there exists mg > 0 such that whenever [¢)| < 2 and E(¢), ¢) < 2:}“, there holds

/ (P2 - 1)* de <8 / V(2 de
R2 R2

Coming back to (3.15) we see that there exists C7 > 0 such that for all m € (0, mg] and for any ¢ € £
and any ¢ € H'(RY) with [¢| <2, |l¢[|2, = m and E(¢),¢) < 2?74? we have

1
[ o =0y 1ol an| < 05 ([ Vi 96l lelse

As previously, we conclude that

1
m 1 Crm?2
B) -5 > ([ V0P st 5519l ) (1 - ) >0

if ¢, @ are as above and m is sufficiently small.

(iv) Fix a radial function x € C°(R™) such that y = 1 on B(0,1), 0 < x < 1 and supp(x) C
B(0,2). For R > 0 denote ¢p(x ) =1—x(%). Denote A = [pn |Vi1]* dz and B Jon V(01 ]?) da
We have [on [Vig|* dz = ARN 2 and [pn V(|¢r|*) dz = BRYN. Since ¢p is radial we have Q(¢r) = 0.
Let ¢ be an optimizer for the Poincaré inequality on B(0, 1), that is ¢1 € H(B(0,1)), fB(O,l) |p1]? dz =
1 and fB 0.1) |V¢1|>dz = Cp. Extend qﬁl by zero outside B(0,1). Let pr(z) = £x¢1 (%), so that

fRN log|?dz = m, f]RN Vogr|?de = %5m and supp(pr) C B(0,R), hence fRN 1VR|?|or|?dz = 0.
Then we have

(3.16) Ein(0,m) < E(wp,or) = ARN2 4 BRY 4 Py — 1 (R).

R
Notice that (3.16) holds for any R > 0, hence we may optimize with respect to R. The function f,, has
a unique minimum on (0, o0) at a point R,, satisfying f/, (Rmy) = 0, that is ANRN*2 4+ B(N —2)RY =
2Cpm. It is easily seen that for large m the unique positive root R, of this equation is of order of
magnitude R, ~ mN¥2 and there is some constant C > 0 such that fi,(Rp) < CmNLH. Coming back
0 (3.16) we conclude that

Epin(0,m) < Cm~ie.
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m

Theorem 19. Assume that gmin(m) < Z. Then there exist minimizers for the problem (GSp,).

Moreover, if (n, pn)n>1 is any sequence in Ex H' (RN) such that ||on||2, — m and E(in, ¢n) —
Gmin(m), then there exists a subsequence, still denoted the same, there is a sequence (T,)n>1 C RY and
there are ¢ € 1 + H'(RN) and ¢ € H'(RY) such that

[ —an)l =1 — ¥ =1 and |pn(—zn)| — ¢ in H'(RY),

V([al?)(: = 2n) — V([9?) and [¥n?lenl*(- — 2n) — [WPle]* in LYRY) asn — oo.

Remark.  The conclusion of Theorem 19 is only a statement about |¢,| and |@,|. More in-
formation should be available here. Indeed, if (¢, ¢,) is a minimizing sequence, then E(¢,, ) —
E(|tn|, |@n]) — 0, hence 1, should be "close" to €7|i),| and @, should be "close" to € |p,| for
some 0, B, € R.

Proof.  Let (¢n, pn)n>1 be a sequence as in Theorem 19. In particular, E1(¢) and ||on || g1 @y
are bounded. It follows from Lemma 4.8 p. 177 and Corollary 4.3 p. 172 in [5] that || [th,] — 1]| L2 )
is bounded. Let py be as in assumption (A2). Denote

(3.17) Fo = IVl 4 n] = 1P + | ion] = 127042 + [ Voou|* + [0n]* + [thnlon]*.

Obviously, (fn)n>1 is a bounded sequence in L'(RY) and [pn fo(z)dz > [l¢n||2,. Passing to a
subsequence we may assume that [on fn(z)dz — ap as n — oo, where ap > m > 0. Let
A, 1 [0,00) — [0,00) be the concentration function of f,, that is

(3.18) A, (t) = sup /B( )fn(a:) dz.
Yt

yeRN

Proceeding as in [8], it is straightforward to show that there exists a subsequence of ((¢n, ¥n, An))n>1,
still denoted the same, there is a nondecreasing function A : [0,00) — R and there is a € [0, ag] such
that

(3.19) Ay (t) — A(t) a.eon [0,00) as n — o0 and A(t) — a as t — 0.

As in [11] (see the proof of (5.12) p. 156 there) one can prove that there is a nondecreasing sequence
t, — oo such that

(3.20) lim An(ty) = lim Ay, <t;> ~a

n—oo n— oo

Our aim is to show that a = ap. The next lemma, which we will use several times in the sequel to
rule out "vanishing," shows that a > 0.

Lemma 20. Suppose that N > 2, the assumptions (A1) and (A2) hold, and V > 0. There exists an
icreasing function M : Ry — Ry such that lirr[lJ M(7) =0 and for any ¢ € € and any ¢ € H'(RY)
T

we have
VO[22 + ([ ] = Uiz + el < M(E(, ¢)).

Proof. It is obvious that |[V¢[|3, < E1(¢) < E(1, ¢) and [|[Ve||2, < €¢°E(1, ¢). It follows from
Lemma 4.1 p. 171, Corollary 4.3 p. 172 and Lemma 4.8 p. 177 in [5] that there exists an increasing
function M : Ry — Ry such that Mi(7) — 0as 7 — 0 and || |¢| — 1|2 < Mi(E1(v)).

It remains to estimate ||¢[|r2. Let A = {z € RY | [¢(z)| < 2} . We have

[ JePdrs<a | wPlelds < acEw.)
RN\ A RN\A
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On A we have ||y — 1] > %, hence LN (A) < 4| || — 1]\%2(14) < A4 || = 1||%2.

If N > 3, by the Sobolev embedding we have [¢||;2+ < Cs||Vl||p2, where 2* = 22 and then
using Holder’s inequality we get

_2 _2
/A\sor?dmusouimﬁN(A)l < C3|IVel2.LN (4) 7 F

Consider the case N = 2. By inequality (3.10) p. 107 in [3], for any r € [1, c0) there is C,. > 0 such
that for any n € L} (R?) satisfying Vi € L?(R?) and £2({|n| > 0}) < oo we have

loc

3=

(3.21) 19l 2 (r2) < Crll Vnll L2z (£2({In] > 03)) ™.

Let B = {z € RN | |po(z)] > 1} and let n = (Jo| — 1), . We have |Vn| < [Vy| a.e. on RY. Since
|| > 1 and |¢| = 5 on B\ A, we infer that

£V(B\ A) <4 / 2ol de < 42E (W, o)
B\A

and consequently
LY(B) < LY (B\ A) + LY (A) <4EE(W, 0) + 4] [¢] — 1|72

Using (3.21) with r = 2 we get [|n]|z2®2) < C’g”V@HLz(Rz)EQ(B)%. Since |¢| < 1+ n, we have

/A"”Fdx < Q/Al +n?dz < 2L2(A) + |03z g2

The conclusion of Lemma 20 follows from the above estimates. O

Lemma 21. Let N > 2. Suppose that V > 0 and the assumptions (A1) and (A2) hold.

(1) Let (Yn)n>1 C & be a sequence such that E1(vy,) is bounded and

(3.22) sup / (|thn| —1)* dz — 0 as n —> 00.
yeRN J B(y,1)

Fiz any d € (0,1). Let
A, ={zeRY | [n(x)] <1—d or |Pn(z)]>1+d}.

Then LN (A,) — 0 as n — oo, where LV is the Lebesgue measure in RY.

Assume that (Vn)n>1 C € and (pn)n>1 € HY(RYN) are two sequences such that E(n, ©r) is bounded
and (3.22) holds. Then:

(i1) If/ lon(z)[? dz — m as n — oo, we have liminf/ [V |?on|? dz = m.
RN n—oo RN

(iii) If Q(pn) —> p, where Q(p) = /RN <i§fl,g0> dz, we have

n—o0

.. 2 q2 2 2 2q
lim inf \V90n| + 72’1/}71‘ ’(pn’ dz > —p.
RN € €
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Proof. (i) It is well-known that for any ¢ € HL (RN RF) we have [¢| € H} (RN R) and
|V[¢]| < |Ve| a.e. Denote un = |[thn| — 1|. Then we have u, € H'(RY), A, = {z € RY | u,(z) > d}
and |Vu,| < |Vib,| a.e., hence Vu, is bounded in L?(RY). Assume that there is a sequence of (uy,)n>1,
still denoted the same, and there is g > 0 such that £V (A,,) = no for all n. Using Lieb’s Lemma (see
Lemma 6 p. 447 in [7]) we infer that there exists 71 > 0 and for any n € N* there is 3, € RY such
that

d
v (Bn N B(ym 1)) =, where By, = {x € RY ‘ |un($)‘ > 2} :

On B,, we have Hwn| — 1‘ > % and consequently
d2
/ Hwnl—lfdx>/ [n] = 1]7de > —m  for all m,
B(y’ﬂvl) B(ynyl)ﬂBn 4

contradicting the fact that sup / || — 1‘2 dz — 0 as n — oo.
yeRN JB(y,1)

(ii) Fix € > 0. Choose d € (0,1) such that (1 — d)? (m — §) > m — e. For this choice of d, let 4,
be as in part (i) Since E(in, ¢y) is bounded and |[¢y |2, — m, the sequence (¢5)n>1 is bounded in
H'(RM).

Fix p € (2,00) if N € {1,2}, respectively p € (2, %} if N > 3. By the Sobolev embedding,
(©n)n>1 is bounded in LP(RY). Using Holder’s inequality and part (i), we get

(3.23) / lon|? dz < Haan%p(An)EN(An)k% —0 as n — oo.

n

Then / lon|?dz — m, hence there exists n. € N such that / lon|? dz > m — S for all
RN\ A, RN\ A, 2

n = ne. Since |1, =1 —d on RY \ A, we infer that

/ o Plon|2 dz > / ol lonPde > (1 —d? (m—Z) >m—c  foralln>n.,
RN RN\ A, 2

and part (ii) follows.

Remark. If N < 3, for a given ¢ > 0 we may choose d € (0,1) such that m —e < (1 —d)* (m — §)
and (14+d)? (m + 5) < m+e, then consider the set A,, as above. By the Sobolev embedding (¢n)n>1 is
bounded in LP(RY) for some p > 4 and using Holder’s inequality and part (i) we get fAn lon|*dz — 0
and fAn 19 |*dz — 0, then the Cauchy-Schwarz inequality implies fAn [Vn|?pn]? dz — 0 as n —

[

oo. On the other hand, we have fA'n |<pn]2dm — 0 and fRN\An |<,0n’2d$ — m, hence m — § <

IRN\An lon|? dz < m + £ for all sufficiently large n. For such n we get

m—¢e < (1—d)? (m—%) </]RN\A [ |?onl?dz < (1 + d)? (m—i—%) <m+e

and we infer that [pn [¢n|*|¢n]*dz — 0 as n — oo. This is no longer true if N > 4. Under the

assumptions of part (i), [px [¢n|?|¢n|? dz remains bounded but does not necessarily tend to zero if
N =4, and this quantity may be arbitrarily large if N > 5.

(iii) By (3.5) and Proposition 24 we already know that

2
q 2q 2q
/ Veul? + Lignl2 dz > 2210(00)] — 2L,
RN € € €
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and it suffices to show that

(3.24) liminf [ (|1n]®> — 1) |n|*dz > 0.
]RN

n—oo

Since E(1n, ¢n) is bounded, Lemma 20 implies that (¢;,),>1 is bounded in H*(RY).
Fix € € (0,1). Let d =1 — /1 —e. With this choice of d, let A,, be as in part (i). Then we have
Y2 —1>(1—d)?—1=—conRV\ A, and we get

/ ([nf? — 1) |pnl d > — / onl? de — / oul? dz > —ellgn]2a — / o2 da.
RN RN\ A, An An

Since ||¢nl/z2 is bounded, fAn lon|?dx — 0 by (3.23) and ¢ € (0,1) is arbitrary, (3.24) follows and
(i) is proven. O

We come back to the proof of Theorem 19. If A,(t) — 0 for some ¢ > 1 it is obvious that
(3.22) holds. Then Lemma 21 (ii) implies that liminf/ [Yn)?|on?dz > m and consequently
n—oo RN

m

liminf E (¢, on) > %, contradicting the fact that E(n,¢n) — gmin(m) < Z. Thus we must
n—00 €
have A(¢) > 0 and this implies that o > 0.

To prove that o ¢ (0,p) we argue by contradiction and we assume that 0 < a < «ag. Let
hyn = Ap(tn) — A (%”) + 2% It is obvious that h,, — 0 as n — oco. For each n € N* choose x,, such

tn 1 . .
that / fn( )dz > A, <2> ~on and denote Q,, = B(y,tn) \ B(zn, 2). It is obvious that
B(:pn7 2

tn

325 / fn dl‘—/ fn(‘r)dx_/ fn(x)dngn(tn)_An <) + = :hn'
tn 2 2n
B(&n,tn) B(zn,g)
Take x € C2°(RY) such that 0 < x <1, x =1 on B(0,1) and x = 0 on R \ B(0,1). Denote

Yo = (Ul = DX(522) +1 np = (Wl =) [1—x(5522) | 1

¢n1—|<pn!x(x “”") Pn2 = |enl [1_X<x?f")]

It is clear that

T — T, T — Tp
320) | [t~ lonal = lpnafate] < [ o (T75) =002 (1T ) [l de < o
RN Qn n n

Since |9y, | < max(|t,],1) and |@ni| < |@n| for ¢ = 1,2, we have

(3'27) ’ /N |¢n|2|gpn|2 - |¢n,1|2|90n,1|2 - ‘wn,2|2|@n,2|2dx’ < 3/9 |90n|2 + |¢n|2|90n|2d1' < 3hn-
R n

By assumptions (A1) and (A2) there exists C' > 0 such that V(s?) < C ((s — 1)* 4 (s — 1)?°F2). We
have | [¢n| — 1| < |[¢n| — 1|, 4 = 1,2, and we infer that

[ V) = Vi) = VIl do
(3.28) < /Q V(1al)| + [VIna )] + |V ([nal?)| de

< 30/ ] = 1 + | [tha] — 1]°7% < 3Ch.
Qn
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We have 8;’;]1 = a(glﬁ:‘X(f”;:") + i(\wn\ — 1)%‘J (x;f”> and a similar equality holds for v, 2. If

n is sufficiently large, so that N|Vx|? < 2 on RV, we get

/ 8¢n,1‘2dx<2/ 0|¢n|
Q, ! 0z; Q, ! 0x;

and summing up we infer that

2 1 2
+ N‘ Y| — 1| dz

\/RNvwnuz—rvwn,ﬂ?—!vwn,zr?)dx] </Q V[tonl P+ [Vl + [ Viona2l?) d
(3.29) !
< 5/ V[ |* + | [n] — 1] Az < 5h.
Qn

It is obvious that a similar estimate holds for ¢,. From (3.27)-(3.29) we infer that there exists a
constant C > 0 such that for all n sufficiently large we have

(330) ‘E(@bm Qpn) - E(¢n,1, Sonl) - E(¢n727 gan){ < Chn

Passing to a subsequence (still denoted the same) we may assume that |¢, |2, — m; as n — oo
for ¢ = 1,2, and (3.26) implies that mi + mg = m. Let us show that my > 0 and mgy > 0. We argue
again by contradiction and we assume, for instance, that mo = 0. Then we have necessarily m; = m.
If there is a subsequence (ng)g>1 such that E(iy, 2, ¢n, 2) — e > 0 as k — o0, by (3.30) we have
E(ng1, Png1) — gmin(m) — e. On the other hand, E(¢n, 1, ¥n,1) = Gmin (][¢nk72\\%2), and letting
k — oo and using the continuity of g, we find hkn_ljcng(w”kvl’ ©np1) = gmin(m), a contradiction.

Therefore a sequence (ng)r>1 as above cannot exist, and this implies that E(¢p2,¢n2) — 0 as
n —+ oo. Then we deduce that ||¢n 2| g1y — 0 and E1(¢n,2) — 0 as n — oo, and using Lemma
4.8 p. 177 and Corollary 4.3 p. 172 in [5] we infer that || [t 2| 1| 2(ev)y — 0. The Sobolev embedding

gives then || [t 2| — 1| z2p0+2rnvy — 0. Since (¢n, ¢n) = (¥n,2, ¢n,2) on RN\ B(xp,t,), we see that

/ fn(z)dz — 0, hence / fn(z)dz — ay, and this implies A, (t,) — ap. Recall
RN\ B(zn,tn) B(zn,tn)
that the sequence (t),>1 has been chosen so that A, (t,) — «a, thus we get o = «p, contradicting

the assumption that a € (0, ap). So far we have shown that we cannot have mg = 0, and similarly we
show that m; # 0. We conclude that mq,mg € (0,m).
It is clear that E(¢n i, oni) = gmm(HgomH%Q) and letting n — oo we find

liminf E(¢n i, ©ni) = Gmin(ms) fori=1,2.

n—oo
Then using (3.30) we get gmin(m) = gmin(m1) + gmin(mse). On the other hand, the concavity of gpin
implies gmin(Mmi) = "% gmin(m) and equality may occur in this inequality if and only if gmn is linear
on [0,m]. Summing up the last two inequalities and comparing to the previous inequality we see that
necessarily gmin(mi) = " gmin(m) for i = 1,2, and therefore gy, must be linear on [0,m]. Then
Proposition 18 (ii) and (iii) implies that gy (m') = TT, for all m’ € [0, m], contradicting the fact that
gmin(m) < Zi. We conclude that we cannot have a € (0, ap), and consequently we must have a = ay.

Since o = ay, it is standard to prove that there is a sequence (x,),>1 C R such that for any

€ > 0 there are R. > 0 and n. € N such that

(3.31) / falz)de <e for all n > ne..
RN\ B(zn,Re)
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Denoting ¢, = [n|(- — 2n) and @n = |@n|(- — 2,), it is easily seen that ¢, — 1 and @, are bounded in
H'(RY). Passing again to a subsequence (still denoted the same), we infer that there exist ¢ € H*(RY)
and ¢ € 1+ HY(RY) such that

Yp—1 =0 and @, — ¢ weakly in H'(RV),
(3.32)
Up — 1 and @, — ¢ in LZOC(RN) for any 1 < p < 2* and almost everywhere.

The weak convergence implies [[¢]|2, < 1irr_1>inf\|apn||%2 = m. On the other hand, fix ¢ > 0. Using
n—oo

(3.31), for n > n. we have / |¢n|? dz < &, hence / |Pn2dz > ||@nll2e — ¢ for all
RN\B(0,R:) B(0,R:)
n = ne. Since @, — ¢ in L?(B(0, R.)), we obtain / lo|*dx = m —e. Since € > 0 is arbitrary,
B(0,R:)

we infer that [pn [¢]|? dz > m. Thus we have shown that ||¢|/2, = m.
By weak convergence we have

(3.33) IV [7 <liminf [Ven|7.  and  [|Ve|7e < liminf [V,Z..

The convergence almost everywhere and Fatou’s lemma give
(3.34) / V([ dz < liminf/ V(|tha|?) dz  and / ]2 ) dz < liminf/ [Un|?|@n|? da.
RN n—oo RN RN n—o0 RN

Since ¢ € &, p € HY(RY) and ||¢[|2, = m, we have E(1, ) > gmin(m). From (3.33) and (3.34) we
get E(1, @) < liminf, 0 E(¢n, $n). On the other hand, since ¢ € £, ¢ € H'(RY) and loll2s = m,
we have E(¢, @) = gmin(m). We deduce that necessarily

IVnllZs — IV9l72,  and  [V@al7: — [Vell7:  asn — oo

Moreover, we must have equalities in (3.34) and the lower limits there are in fact limits. We show that
by — 1|2 — ||¢) — 1|| 2 in the same way as we proved that |¢]|22 = m. Then the weak convergence
and the convergence of norms give Un—1 —> ¢ — 1 and &, — ¢ in H'(RV).

The last assertion in Theorem 19 is a consequence of the following well-known and elementary
result: if ¢, and ¢ are nonnegative integrable functions on a measure space (X, A, p), if ¢, — ¢

almost everywhere and if / On dp —> / ¢ du, then / |pn, — | dpp — 0. O
X X X

Proposition 22. Assume that (1, ¢) € € x HY(RYN) is a solution of the minimisation problem (GSy,).
Then:

(i) There exists v € [Grnin »(M); Grpin o(M)] (where g).. ) and g,.;., . are the left and right derivatives
of Gmin, respectively) such that

1 .
(3.35) —AY+ F([pP) + SlelPv =0, —Ap+5 W — Py =0 inRY.

(ii) We have || < 1 almost everywhere and ¢ € W, ’p(RN) o € W2P(RN) for any p € [2,00). In
particular, 1 and ¢ are C' functions.

. (m) The function (¥, ¢) is radially symmetric (after translation). That is, there exist z¢ € RN and
V), @ [0,00) — C such that V¥(x) = ¥(|lz — x0|) and ¢(x) = G(|x — x0]) for all x € RV,

(w) If (¥, ) is a minimizer and 1), ¢ are as in (iii), then the function || is nondecreasing on
[0,00), |@| is nonincreasing on [0,00) and there exist constants 0o, By € R such that i = €|y,
p=e"™|p| on [0,00).
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Proof. (i) is standard.

(ii) If (¢, ) is a minimizer, then (|1], |¢|) is also a minimizer. It is clear that E(min(1,|¢]),|¢|) <
E(|9|, |¢]). Since (|9, |¢|) is a minimizer, we must have E(min(1, [¢|), |¢|) < E(]¥|, |¢]). This implies
V]g| =0a.e. and V(|¢|?) = 0 a.e. in the set {z € RY | [¢(z)| > 1}, and we deduce that (|| —1)4 =
a.e. on RY. Thus |[¢| < 1 a.e. on RV, Then the second equation in (3.35) and a standard boot-strap
argument imply that ¢ € W2P(RY) for any p € [2,00). In particular, p € CH*(RY) for any a € (0, 1)
and ¢ is bounded on RY.

Since || < 1 a.e., we have F([¢|?) € L®°(RYN). The first equation in (3.35) can be written as
—Ap+ A(x)y =0, where A= F(|9|*)+ %|p|* € L>°(RY). Standard elliptic regularity theory implies
that there exists C' > 0 such that [|¢|ly2.0(p(y,1)) < C for any y € RN In particular, ¢ is C! on RY.

(iii) Since any minimizer (¢, ) for the problem (GS,,) is C' in RY, (iii) follows from Theorem 2
p. 314 in [10].

(iv) Given a non-negative, measurable function w : RN — [0, 00) such that £V ({z € RN | w(z) >
t}) is finite for any t > 0, we denote by w, the symmetric decreasing rearrangement of w. It is well-

known that for p € (1,00) we have / |[Vw,|Pdz < / |Vw|P dz, and equality may occur if and
RN RN

only if for any ¢ € (0,supess(w)), the level set {z € RY | w(x) > t} is equivalent to a ball. The last
statement is a consequence of Lemma 3.2 p. 163 in [4]. It is also well-known that for wq, w2 as above

we have / wiwy da < / (w1)«(w2)s dz. Obviously, we have (|¢|?)s = (|¢|+)%. Let u = 1 — |¢].
RN RN

Since 0 < u < 1 and the mapping s — 2s — s? is increasing on [0, 1], we have (2u — u?), = 2u, — u?.

Therefore
—u,)? L)idr = L)2dr — Ux — U
|- w el e = [ (elpdo= [ e —ad)(el.a

- / o2 de - / (2u — %) (o) da < / o2 de - / (2u — )] da = / 2ll? de.
RN RN RN RN RN

We infer that E(1 — uy, |¢|«) < E(|¢],|¢]) < E(, ). Since (¢, ) is a minimizer and [|[¢].[2, =
| el H%Q = HcpH%Q = m, we must have E(1 — us, |pl«) = E(|¢Y],|¢|) = E(,¢), and consequently
|V |? dz = / |Vu|? dz and / IV|pls|?dz = / V|| |>dz. The result of Brothers and
RN RN RN RN

Ziemer implies that for almost all t > 0, the sets {z € RY | u(z) >t} and {z € RY | |¢|(z) > t} are
equivalent either to a ball or to (). Since we already know that u and |p| are radially symmetric, we

infer that the functions @ = 1 — |¢| and |@| are non-increasing on [0, o).
The fact that |@| is nonincreasing implies that the set D = {z € R | |¢(z)| > 0} is either a ball or
RY. On this set we have a lifting ¢ = |p|e’#(®), where 8 € H.  and |V|? = |V]p| |2+ |¢[?| V0|2 Since

/ V|? dz = / V|| |> dz we must have V3 = 0 a.e. and we infer that 3 is constant, 3(z) = fo
RN RN A .
for a.e. € D. Therefore p(z) = e'®|p(z)| = €|p|(|x — xo|). A similar argument holds for ¢». O

The following simple facts will be useful in the sequel. Given any ¢ € H*(R") and any a € R, let

goa(x) = emzl(p( ) Then gia — memxlgo 4 62@118872’; and

/ (0l dz = / e, Qlea) = Qe) —a / o2de,  and
RN RN RN

/ Oipq |2
RN 8.’E1

(3.36)

_ _ 2
dm/RN 8351‘ dz — 2aQ(p) + a? /Ngol dz.
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2

890(1 . . ..
dz achieves its minimum at a,,;, =

RN 65131

Q(p)

||80Hi2

Notice that for any ¢ # 0, the mapping a —

Next we consider a related minimization problem. Let

himin(p) = Inf{E(¥, ) | 1 € £, € H'(RY), Q(p) = p}.

Proposition 23. The function hn,;, has the following properties:
(1) hmin is positive, (strictly) increasing and concave on (0,00), and hpin(p) — 00 as p — oo.
(1) homin(p) < %p for any p > 0.

(iii) If N > 2, let mg = sup {m > 0 | gmin(m) = %} (see Proposition 18 (iii)).

We have hynin(p) = %p for any p € [0, skmy)].

() If N =1, we have hyn(p) < %p for any p >0 and 7hmi;(p) — % as p — 0.
(v) For any p > 0 we have
. 1 p?
(3.37) homin(p) = 1711n>f0 <gmm(m) + 62q2m> .

The infimum in (3.37) is achieved at some my, > 0 (not necessarily unique). The function gmin is
1 p2
€2q? m2*

For any (¢, @) € ExHY(RYN) satisfying H(pHQLQ =my, and E(Y, ) = gmin(myp), we have Q(e‘i(p/m”)zlcp) =
p and E(1p, e P/me)1p) = Ry (p).
Conversely, if (¥« px) € E X Hl(RN) satisfies Q(px) = p and E(Vs, 0x) = hmin(p), then the
)

differentiable at m, and g/, (mp,) =

manni ) 1 p? ; ; f 7 — 2 i(p/ms)z1
pping m — gm,n(m)—l—€2q2 - achieves its minimum on (0,00) at m« = |[¢4||72 and (¥, e ©x)

is a solution of the minimization problem (GSp,,).
(vi) There ezxists C > 0 such that hpyin(p) < C’pNL+1 for all p > 0.

Proof. Since E > 0 it is obvious that h, > 0. Taking ¢ = 1 and using Proposition 24 we get

2

homin(p) < inf {E(l,gp) | xS Hl(RN)’ Q(y) :p} _ @p.

Since Q(ap) = a?Q(y), we have
. 1 1
fimin(p) = inf {El(w +p/RN o Vel + glvllel* do (v epe HEY), Q) = 1} :
The infimum of a family of affine functions is concave, therefore Ay, is concave on (0, c0).
For any ¢ € H'(RY) such that Q(¢) = p we have / |V|>+|@|? dz > 2p by (3.5), thus necessarily
RN

1
/ IVo?dz > por / lp?dz > p. In the former case we have E (¢, @) > 22/ Vel?de > %,
RN RN €q” JRry €q

and in the latter case we get E(1),©) = gmin([pn [0]* d2) = gmin(p) for all ¢ € €. We conclude that

. p
boin9) > i (L gin)) =40 a5 p .

Any concave mapping from (0,00) to itself that tends to 0 at the origin and to infinity at infinity is
necessarily increasing and continuous. Assertions (i) and (ii) are thus proven.
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(iii) Let 0 < p < gtmg. Choose n > 0 such that p < 1+77 s-mg. We already know that A (p) <
e% p. We will show that for any 1 € £ and ¢ € H'(RY) such that Q(¢) = p and E(1, ¢) < (1+77)§p,
we have E(i, p) > 3 - This implies that A, (p) = %p. Then the continuity of A, implies that
the equality hpmin(p) = - qp holds for p = sLmy, too.

Let p, 1, 1, ¢ be as above. Denote m = [px l¢|? dz. We have

2 mo
gmm(m) < E(Q[),(p) < (1 + ﬁ)ap < 67 = gmin(mo)'

Since gmin is non-decreasing, we infer that m < mg and consequently gpin(m) = E%. For any a € R
we have [pn |€"1p(z)[?dz = m, hence E(¢), €' ¢p) > gmin(m) = %. Choosing agp = £ (so that
Q (071 p) = 0) and using (3.36) we get

E(,¢) = E(, ™07 p) + 62qu (2aoQ(s0) — aj /RN \@!2dw>
(3.38)

3=

w3
—

3=
[\
S

; 1
= BW.e™0) + 5

as desired.

(v) For any ¢ € HY(RY) ¢ € £ and any a € R, we have e o]l 2rny = l@l L2y~ The mapping

a — E(1, 1) achieves its minimum on R at ami, = % and Q(¢q,,.,) = 0 (see (3.36)). We

conclude that
Imin(m) = inf {E(@b,g&) | velpe Hl(RN),/ lo[?dz = m and Q(p) = O} .
RN

Let p > 0 and m > 0. Consider any ¢ € H'(R") such that [¢[2, = m and Q(¢) = 0. Let a = £.
By (3.36) we have Q(e™%*1¢) = p, thus for any ¢ € £ we have

p2

. a® 1
hmin < E(Y, T = E(v, 2 dz = E(v, 5 9 -
(0) S E@.e™0) = B, @) + 55 [ el de = B0+ 557

Passing to the infimum we get
1
hmzn(p) < gmzn< )+ q p

Since the above inequality holds for any m > 0, we infer that

1 p?
hmm(p) < 7”}1n>f0 <gmzn(m) + 62(]2m>
| Let p > 0 and consider ¢ € H*(RY) such that Q(p) = p. Denote my, = ||¢||3, and a, = -£-. Then
e’ *1p||2, = ||¢||22 = m, hence for any 1 € £ we have
1Ay, _ 1 2 2\ _ 1 p
gmm(m<p) E(,e ©) =E(),0) + ( 2‘%0@( )+a<p||‘:0||L2) = E(,p) — 62q m
©

Thus for any ¢ € H'(RY) with Q(¢) = p and for any ¢ € £ we have

2

1 p?
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The above inequality shows that A, (p) = inf,,~0 <gmm(m) + ) Thus (3.37) is proven.

e2¢2 m

For any fixed p > 0, the mapping m —— gmin(m) + 621(12 % is continuous on (0,00) and tends to
infinity as m — 0, respectively as m — oco. We infer that this mapping achieves its minimum at

some my, € (0,00).

The mapping m — gmin(m)+ teq = admits left and right derivatives at any point m > 0 because

Gmin is concave. At a minimum point m, the left derivative must be non-positive and the right
derivative must be non-negative, and this gives

1
Iiin,e(Mp) < =

q g;nin,r (mp) .

3\*3

On the other hand, by concavity we have g, ;. ,(m ) 2 Grnins(Mp). Thus g1 o0 (mp) = gy (M) =

1 p?
€2q? m2

The other statements in part (v) follow easily using (3.36) and a computation similar to (3.38).

and gp is differentiable at m,,.

(iv) Assume that N = 1. Let p > 0. Let mo = £p. Using (3.37) and the fact that gmin(mo) < 2
(see Proposition 18 (ii)), we get

1 p» mg 1 p* 2p
hmm(p) < gmin(mo) + ;mio < 67 + W% = %

Fix ¢ > 0. By Proposition 18 (ii) there is m. > 0 such that Q’”Lm(m) € (15, &) for any m € (0, me).
Let p. € (0, 63T(Igmn(mg)). Choose 1 > 0 such that (1 + n) zé’; < gmin(me). Let p € (0,p:]. We know
that hmin(p) < 2. For any (1, ¢) € € x H'(RY) satisfying Q(¢) = p and E(¥,¢) < (1 +1) 2% we

have E(1, ¢) < gmin(me), thus necessarily ||¢[|3, < me. Denoting m = [|¢[|2,, ag = £ and proceeding
exactly as in (3.38) we get

, 1 p? 1 p2 (1-e)m 1 p? _ 2y/1—¢
_ 1apT . I
EW, QO) - EW, € 0 190) + 62(]2 m 2 gmln(m) + 62(]2 m > 64 + qug m > qu b-

We conclude that A, (p) > QVE;};Ep for all p € (0, pe].
N2

(vi) By Proposition 18 (iv) there is C' > 0 such that gmin(m) < Om™+, Taking m = p~+1 in
(3.37) we get

N+2 1 p? 1 N
Pomin(P) < Gmin (pNH) t 55 Nz < (C + > pNFL.
q PN+ q

3.3 Minimizers of the energy when the mixed momentum is fixed
For B € [0,1], ¥ € £ and ¢ € H'(RV) we define

Ps(h, ) = BR(Y) + (1 = B)Q(¢).

We suppose that the assumptions (A1) - (A4) are satisfied. For any § € [0,1] and p > 0 we consider
the minimization problem

(Psp) minimize E(¢, ) for ¢ € &, ¢ € H (RY) satisfying Ps(¢), ) = p

Obviously, if 8 = 1 the solutions of the problem (P;,) are precisely of the form (1,0), where 1
minimizes F1(¢) under the constraint Q(v)) = p. For the existence of such minimizers and some of
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their properties, see Theorem 1.1 1in [5]. If 8 = 0, the solutions of the problem (Py ;) are the minimizers

for hpmin(p) given by Proposition 23. Denoting £, = where 0, €, ¢ are as in (GC), it is easily

€ q2
€2 q2 +47
seen that Pg, is a conserved quantity for the system (GC).
We begin with the following simple

Proposition 24. Fiz K > 0. For any p > 0 we have

in { [ 196l K2 o | o € HURY), Qo) =p} 2Ky
RN

and the infimum is never achieved.

Proof.  Consider a real-valued function x € C>®(RM) such that x = 1 in B(0,1) and xy = 0 in
RN\ B(0,2). Let ¢r(x) = x (%) e~ K1 A simple computation gives

/ (@) dz = RV / NPdr,  Qér) = KRY / x? de,
RN RN RN

)
/ ‘ Or(z ‘d —KQRN/ yx|2d:c+RN—/ ‘ ‘d
gy | 011 N rN 1071

/“%R ‘d — RN- / ‘da: for j=2,...,N.
RN al'j RN 81"7

Let ag = K_%R_%péﬂxﬂzg and let ¢r = agdpr. Then we have Q(¢r) =p for all R > 0 and

p IVl
KR [|Ix|72

/ |V¢R\2 + K2|¢R\2 dz = 2K2RNa%/ |><|2 dx + RN_za%_z/ ]V)dQ dz = 2Kp +
RN RN RN

Letting R — oo we see that the infimum is smaller than or equal to 2Kp. On the other hand, by
(3.5) We see that the infimum is greater than or equal to 2Kp. If u is a minimizer, by (3.5) we have

/ Er ‘ dx =0 for j = 2,..., N, hence u depends only on z;. Since u € H'(R") we must have
RN l']

u =0, and this contradicts the fact that Q(u) = p. O
We define
(3.39) Epmin(p) = inf {E(y, ¢) | ¥ € £, 0 € H'(RY), P3(4), ¢) = p} .

If B =0, we have Eg min(p) = hmin(p) and the properties of the function hyy;, are given by Proposition
23. The properties of the function E i, as well as the existence of minimizers for the problem (P )
have been studied in [5]. See Theorem 14 in the Introduction.

Some important properties of the function Eg ,,;, that will be useful in the sequel are given in the
next Proposition.

Proposition 25. Assume that N > 2,V > 0 and the assumptions (A1) and (A2) hold.
For any 8 € (0,1) we denote

V2 2 (s 2
Sﬂ‘“““(ﬁ T=H)e q>_mm<ﬁ’(1—ﬁ)e3q>'

Then:



28 CHAPTER 3. TRAVELLING WAVES TO THE (GC) SYSTEM

(i) Egmin(p) < min <E1’mm (%) s Nomin (ﬁ)) < Sgp for any B € (0,1) and any p > 0.

Eg min
1) For oll 8 € (0,1) we have lim —Bmin L) (p) = 55.
B

p—0 P
(ii) Suppose in addition that N = 2, assumption (A4) holds, F'(1) # ~3F'(1), and - <
2
m, Then we have Eg in(p) < Sgp for all p > 0.

(i) Eg min is concave, positive and increasing on (0,00), and Eg min(p) — 00 as p — oo.

Proof. (i) Taking "test functions" of the form (¢, 0) with Q(¢)) = ,6” it is obvious that Eg ,in(p) <

El,min (%) .

If (¢, ©n)n>1 is a minimizing sequence for hyin (%), that is Q(p,) — % and E(¢y, pn) —

Rmin (%), then (|¢n|, pn) is also a minimizing sequence. Since Q(|y|) = 0 for any ¢ € £ we have

- | - (P
Py([¥nl, #n) = p, hence Egmin(p) < liminf E([yn], on) = homin (1 . ﬁ)'

The second inequality follows from the fact that Eq pin(p) < vep = @p and hpin(p) < Tp for all

p > 0 (see Proposition 23 (ii)).

(ii) We already know that Eg ,in(p) < Sgp for any p > 0 and it suffices to show that hméﬂf Epomin(p)
p— p
()

Sg. We argue by contradiction and we assume that £ := lim (1]I+1f E.min(p)
p— P

/. such that ¢ < ¢, < S, := min (”56_5, ﬁ (% — 5)) < Sg. Then there exists a decreasing sequence

pn — 0 such that Eg pin(pn) < ¢epp for all n. For each n there exist ¢, € € and ¢, € H'(RYN) such
that Pg(vn, ¢n) = pn and E(¢y, ¢pn) < ypp. From Lemma 4.6 p. 175 and Lemma 4.5 p. 173 in [5] we

=

< Sg. We choose € > 0 and

E .
have 111((1;5r Ln(p) = v;, and we may assume that p; is sufficiently small, so that E1 ,,in(p) = (vs—e)p
p— p
for all p € [0,25].
For simplicity denote p, 1 = Q(¢,) and pp2 = Q(¢n), so that Sp,1 + (1 — B)pn2 =pn. Epr2 <0

(respectively if p, o > ﬁpn) we have pp 1 > % (respectively pn 1 < —%") and we get

E(wnygon) = El(wn) Eq mzn(|pn 1’) Ey ,min <pﬁn> = (Us - 5)% P S*pn7

contradicting the choice of (¢, ¢n). We infer that 0 < pp2 < %pn for all n, and this implies that
__Dn

TL

B < Pni S B
We claim that lim inf Pn2 > 0. To prove the claim we argue by contradiction and we assume that
n—oo pn
there is a subsequence (py, )r>1 such that p”’“ 2 5 0as k — oo. Then we get p": R % and

proceeding as above we infer that for all sufﬁmently large k,

E(wnkﬁpnk) = El(wnk) = El,min(pnk,l) = (Us - 5)pnk,1

E Ny ¥n s Pt
(Wni @) > Y 3 ¢ > S, > ., contradicting the fact that E(¢,, ¢n) < lupy for all

therefore lim inf
k—oo Pny,

n. We conclude that there is C' > 0 such that C' < p” 2 < ﬁ for all n sufficiently large.
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If n is large enough (so that p,o > Cpy), let @, = It is obvious that Q(¢,) = 1 and

—— ¥
NZradl
Pn2 = Cpp > —g E(¢n, ¢n) and we have

. 1 1 s ¢ 2 2
E(n, ¢n) = El(i/)n)‘l‘WquQ/RNW@n’ +€7|1/)n| lon|” dz

/e 1 1
Ev(n) + g
1) T & 2 Blomon)

N

2
q
L 196l + Gl da

< B, on) + &.

Therefore E (1, p) is bounded. We have F1 (1) < E(¥n, ¢n) < lipn, — 0 and Lemma 20 implies
that || || — 1|2 — 0 as n — oco. Then Lemma 21 (iii) gives

s S 2 'S 2~ |2 2q

lim inf IVul® + = [nl*|@n]” dz = —.
Hence for all n sufficiently large we have

1 2, 2 2 2
(3.40) 3 [ IVenl® + LlonPlonl do > (5 =€) pa
We use the following simple observation: given any A > 0, B > 0 and § € (0, 1), we have
As B

(3.41) min {Asy + Bsy | s1 >0, s2 >0, Bs1 + (1 — 8)s2 = s} = min (; 1*}) ‘
The minimum is reached for s; = 0,59 = ﬁ if % > %, respectively for s; = %, s9=0if % < %.

Using (3.40) and (3.41), for all sufficiently large n we get

1 2 2
E(n,on) = Bi(¥n) + 55 /]R IVeuP + S leal de > (v = ©)lpual + <3q - e) Pn2 > Spn,

contradicting the fact that E(¢y, pn) < lepn < Sipn. This proves assertion (ii).

(iii) Under the assumptions of (iii) we have S = % and Theorem 4.15 p. 190 in [5] implies that
E1 min(p) < vsp for all p > 0. Then using part (i) we get

Epin(p) < Evmin <g> < vs% = Sgp.

(iv) The proof of (iv) is essentially the same as the proof of Lemma 4.7 p. 175 in [5], so we omit
it. O
Theorem 26. Assume that N > 2, assumptions (A1) and (A2) hold, V > 0 on [0,00) and p > 0 is
such that Eg min(p) < Sap-

Then there exist minimizers for the problem (Pg,).

Moreover, any sequence ({n, on)n>1 C € x HY(RYN) satisfying Ps(Yn, on) — p and E(tn, @) —
Eg min(p) contains a subsequence (¢n, )k>1 having the following property: there are a sequence of points
(zr)k>1 CRY, o € € and p € HY(RYN) such that Ps(¢y, ) = p, E(¥, 9) = Eg min(p), and as k — oo
we have

O, — ¢ i H'(RY), (Vg Py ) (- + k) — (1, 0) a.e. in RV,
IV thn, (- + 21) — V|| 2 — 0, [ [0, [(- + ) — [0] | 2 — O,

wn;ﬁonk(' + xk) — 1/190 mn L2(RN)7 Vv (W]nk( + xk)|2) — V(|77Z)|2) mn Ll(RN)'
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Proof. Let (¢, pn)n>1 be a sequence as in Theorem 26. Then E(iy,, ¢,) is bounded. Define f,
as in (3.17) and let A,, be the concentration function of f,, as in (3.18). Lemma 20 and the Sobolev
embedding imply that (f,)n>1 is a bounded sequence in L'(RN).

Since ||¢n || g1 is bounded, (3.5) implies that Q(¢y,) is bounded. From the fact that Pz(¢y,, ¢n) — p
we infer that Q(1,) is bounded. Passing to a subsequence we may assume that Q(v,) — p; and
Q(pn) — p2 as n — 00, where Bp; + (1 — B)p2 = p. Let us show that 0 < py < % and 0 < pa < ﬁ.
We have

imsup B4 () < f B (G 90) = Baomin(s) < Evmin (5 ).
n—»00 I}

n—o0

Since E1min is increasing on [0, 00), this implies lim sup|Q(vy)| < §, thus [p1] < §.
n—oo

Since |Q(¢n)| < [lenllz2] %%Hm and ||y || 72 is bounded by Lemma 20, we have £ := linrgioréngT’;HLQ >

1 1
0. If p; < 0, we have py = pl_fgl > ﬁ and d,, := (M’%)Q — (ﬁ)2 < 1. Then |¢),] € &,

Q([¥n]) =0, Q(dnipn) = 15, hence Py(|¢n|, dnpn) = p and taking (|¢n|, dnyn) instead of (1n, on) we
get

2

d 7 1—d? Oy
E n dn n gE n - n2 ) n2 n2d gE n n) n/ =
(|1%nl, dnpn) 1(¢n) + 62q2/]RN Ven|” + 62|¢ “lnl” dz (n, on) €2q2 Jpn | 01

2
dx.

Passing to the limit we discover

. (1—dp)e
Eﬁ,min(p) < lim SUPE(WM, dn‘ﬂn) < Eﬁ,min(p) — T 9.5 s

n—o0 €“q

a contradiction. We conclude that p; > 0, thus 0 < p; < % and this implies 0 < pg < ﬁ.

We claim that there is C' > 0 such that ||f,||1 = C for all n sufficiently large. Otherwise, there
is a subsequence (fy, )r>1 such that ||f,, ||;1 — 0. Clearly, this implies that ||y, | g1 — 0 and then
(3.5) gives Q(¢n,) —> 0. On the other hand, we have ||V, |2 — 0 and || [¢n, | — 1|2 — O,
and Lemma 4.1 p. 171 in [5] gives [pn V(|¢n,[*)dz — 0, hence E1(¢n,) — 0. Since Ey(iy,) >
E1 pmin(Q(¥n,,)) and Eq iy is positive on R* and increasing on Ry, we get Q(¢y,,) — 0, and therefore
Ps(n,, ¢n,) — 0, a contradiction. This proves the claim.

Passing to a subsequence we may assume that f]RN fndx — ag > 0. We apply the concentration-
compactness principle to the sequence (f,)n>1. Let A, be the concentration function of f,, as in
(3.18). Proceeding as in [8] and using (5.12) p. 156 in [11], we see that there exist a non-decreasing
function A : [0,00) — [0,00), a € [0, ] and a sequence ¢, — oo such that (3.19) and (3.20) hold.
We will show that o = a. To do this we rule out the possibilities & = 0 ("vanishing") and « € (0, ag)
("dichotomy").

If @« = 0 we have A(t) = 0 for all ¢ € [0, 00), in particular A(1) = 0 and condition (3.22) is satisfied.
Then Lemma 21 (iii) gives

2
. 2

(3.42) lim inf IVon|? + q—2|¢n]2|cpn]2 dz > —qu.
RN € €

n—oo
We use the next lemma, which is an immediate consequence of Lemma 4.10 p. 179 in [5].

Lemma 27. ([5]) Assume that N > 2 and assumptions (A1) and (A2) hold. Let (¢Yn)n>1 C € be a
sequence satisfying:

(a) E1(¢n) < M for some positive constant M.
(b) lim inf Q(¢pn) > g-
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(c) sup / IVn|® + | |[¥n] — 1) dz — 0 as n — oco.
yeRN J/ B(y,1)

Then hm 1nf E1(vn) = vslql.

From Lemma 27 we get hm 1nf E1(1n) = vsp1 and using (3.42) and (3.41) we obtain

n—oo

. 2
lim inf E(1y, on) = vsp1 + %pz > Sap,

contradicting the assumption that Ey,i,(p) < Sgp.
Assume that o € (0,ap). As in the proof of Theorem 19, let h,, = Ay, (t,) — An (%") + 2%, so that
tn 1
h, — 0 as n — oo, and for each n € N* choose x, such that / fo(x)dz > A, <2> ~
B(zn, )

and denote , = B(xn,t,) \ B(xn, %). Then (3.25) holds, thus [, f,dz — 0 as n — oo.

Take x1,x2 € C°(RY) such that 0 < <1,0< <1, x1 =1 on B(0, 7) and supp(x1) C
B(0,2), x2=00n B(0,%) and y2 =1 on RN\B(O 1). Let ‘Pn,i( x) = Xi (x z”) op(x) fori=1,2. It
is easy to see that

a3 [ Vel = [Venal = [Venal?|do < C [ [Vgu + fgul do < O,
RN [97%
(3.44) ln = o = onallin <C [ [Vou +onf?do < Choy and
Qp
(3.45) L tnPla = lonal = lonoPldz < [ uPlonfdo < .

It is clear that ¢, ; is bounded in Hl(RN), hence Q(¢ni) is bounded for ¢ = 1,2. Since ¢, and
¢n 2 have disjoint supports we have Q(¢n 1+ ¢n2) = Q(¢n,1) + Q(pn,2), and then using (3.44) we get
Q(en) — Q(pn1) — Q(pn2) — 0asn — o0

To "separate" the behaviour of ¢y, on B(z,, %) and on RN \ B(zy,t,) we need a more subtle
argument than in the proof of Theorem 19. It is based on the next Lemma, which is a particular case
of Lemma 3.3 p. 138 in [11] and of Lemma 3.3 p. 167 in [5].

Lemma 28. (/11, 5]) There exist eg > 0 and C; > 0, depending only on N (and on F for (v)) such
that for any R > 2, ¢ € (0,£0) and ¢ € & verifying fB 0,.R)\B(O,2) IV + | || — 1‘2dx < ¢, there exist
two functions Y1, g € € and a constant Oy € [0,27) satisfying the following properties:

(i) Y1 =1 on B(0,2R) and ¢y = € on RN \ B(0,3R),

(ii) 2 = ¢ on RN \ B(0, LR) and ¢ = €% = constant on B(0,3R),

(111) . ‘ ’8%’ — ‘gﬁjr - ?ﬁjf‘dx < Cie forj=1,...,N,
(1) |Q(¢¥) — Q1) — Q12)] < Cie,
(v) If assumptions (A1) and (A2) hold, then

2% -1

Cue + C51/e (E1(¢)) 2

if N >3,
[ VR = Vi) = V(e o <
8 Cse + Cr/z (Br()P™ if N =2.
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Using Lemma 28 with ¢ = ¢, (- + x,), R = t,, and € = h,, for all sufficiently large n we construct
two functions ¢y, 1,92 € € such that ¢, 1 = ¢, on B(zy, %tn) and 1y, 1 is constant (of modulus 1)
on RN\ B(z,, %tn), Yn,2 = Pp o0 RN\ B(z,, %tn), p 2 is constant on B(x,, %tn), and all conclusions
of Lemma 28 hold. Then we have |¢,,|? (|gpn,1 2 4 |g0n72|2) = (Y12 pni|? + [¥n2]?|@n2|? on RY and
using (3.45) we get

(346) /]RN ‘ ‘¢n‘2‘¢n‘2 - ‘wn,l‘2’§0n,1’2 - ’wn,le‘Qpn,QP‘ dx < hn-

From Lemma 28 (iii)-(v) we infer that (¢, ;) is bounded, and consequently Q(t,, ;) is bounded, and
we have

(347)  E1(¥n) = Ex(¥n.1) + E1(¢n2) + o(1) and Q(¢n) = Q(¢hn1) + Q(¥n2) + 0(1) as n — oo,

Passing to a further subsequence (still denoted the same) we may assume that Pg(¢n1,¢n1) — D
and Pg(¢n 2, ¢n2) — p" as n — oo. It is obvious that p’ + p” = p. By (3.47), (3.43) and (3.46) we
get
E(Yn, on)) = E(Yn1, on1) + E(¥n2, ¢n,2) + o(1).
Since E(1), @) = Egmin(|Ps(1, ¢)|) for any ¢ € € and any ¢ € H'(RY), we obtain
Eﬂ,min(p) = lim E(¢na @n)) > lim inf E(¢n,1, San,l) + lim inf E(¢n,27 @n,?)
n—oo n—oo n—oo

(3.48)
> Egmin(IP']) + Egmin([P"]).

Since Eg min is nonnegative and increasing on [0,00), the above inequality implies that [p'| < p

and |p”| < p, and this implies that p/,p” € [0,p]. If p” = 0 we must have p’ = p and conse-

quently liminf E(¢n 1, ¢n1) = Egmin(p). On the other hand, by (3.47) we get limsup E(¢n1, ¢n,1) <
n—o0 n—oo

nh_)rrolo E(Yn, on) = Egmin(p). Thus E(¥n1, on1) — Egmin(p) and this implies that E(tn, 2, pn2) —

0 as n — oo. Then Lemma 20 gives

IVn2llLz + [Hn2l = Ulez + llen2llg@yy — 0

and we infer that fRN\B(x" t) fndz — 0 as n — oo. On the other hand we have

/ fndl':/ fndx—/ frndr — a9 — a,
RN\ B(zn,tn) RN B(xn,tn)

a contradiction. Thus p” > 0. Similarly we prove that p’ > 0, thus p’,p” € (0,p). The concavity of
Eg min (see Proposition 25 (iv)) implies that Eg min(p') > 2 Eg min(p) and Egmin(p") > & Eg min(p)
and equality may occur if and only if Eg y, is linear on [0,p]. Summing the above inequalities and
comparing to (3.48) we see that equality must occur, and thus Eg ,,;, must be linear on [0, p]. Since
M — Sg as s — 0+ (see Proposition 25 (ii)), we infer that Eg n(s) = Sgs on [0, p], thus
E3 min(p) = Sgp, contradicting the assumption Eg,in(p) < Sgp in Theorem 26.

So far we have shown that v = ag. Then it is standard to prove that there is a sequence (xy,)n>1 C
RY such that for any ¢ > 0 there exits R. > 0 satisfying fRN\B(:En 0 fndx < € for all n sufficiently

large. Let n, = V(- + xn), &n = @n(- + z,) and fn = fu(- 4+ x,) (obviously, f,, is the function
associated to (¢, @) by (3.17)). For all £ > 0 there are R. > 0 and n. € N such that

(3.49) / fodz <e for all n > ne.
RN\ B(0,R:)
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Clearly, ($n)n>1 is bounded in HY(RN), (V) )n>1 is bounded in L2(RY) and (ty,)n>1 is bounded
in L?(B(0,R)) for any R > 0. By classical compact embeddings in Sobolev spaces and a diagonal
extraction argument, there exist functions ¢ € H} (RY) such that Vi € L2(RY), o € HY(RY), and
a subsequence (LZNJnk, ©On,, Jk>1 satisfying

Py — @ weakly in H'(RY),
Vi, = Vb weakly in L2(RYN),
(3.50) Vn, = U weakly in H'(B(0, R)) for all R > 0,
&nk — ¢ and @, — ¢ strongly in LP(B(0, R)) for R > 0 and p € [1,2%),
@nk — 1 and @, — ¢ almost everywhere on RN,

By weak convergence we get

(3.51) / |V¢|2dxgliminf/ Vihn, |? da and/ |ch|2dx§1iminf/ |V @n, | dz.
RN k—o0 RN RN k—o0 RN

Using the a.e. convergence and Fatou’s Lemma we infer that

(3.52) / V(wP)dxghminf/ V(|thn, |?) de,
RN k—oo JrN
(3.53) /(|¢]—1)2dz<hminf/ (|thn,| —1)*dz  and
RN k—oo JrN
(3.54) /|¢|2|gp|2dm<hminf/ |1;nk\2|<ﬁnk|2d:c.
RN k—oo JRN

From (3.51)-(3.54) we get
(3.55) E(¢,¢) < liminf E(tng, Pny) = Epmin(p).

Let us show that @¢,, — ¢ strongly in L2(RY). Fix € > 0. Then choose R. > 0 such that (3.49)
holds. Since ¢,, — ¢ a.e., by Fatou’s Lemma we get

/ l?dz < liminf/ P, |2 d < e
RN\ B(0,R.) k—o00 JRN\B(0,R.)

Since @n, — ¢ in L?(B(0, R.)), there is k. € N such that fB(O R |Gy, — @?dz < € for all k > k..
Then

/ |Pny — gp[de < / |&n,, — g0|2dzv + 2/ |¢nk\2 + \<p|2d:n <b5e forall k > k..
RN B(0,R.) RN\B(0,R.)

Since € > 0 is arbitrary, we infer that [|@n, — ¢l 2@y) — 0.

O0Pn,. ~ . .
The weak convergence gwlk - %i and the strong convergence ¢,, — ¢ in L2(RN) give

(3.56) Q(&n,,) — Q).

We need the following result, which is an immediate consequence of Lemmas 4.11 p. 182 and 4.12
p. 184 in [5].
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Lemma 29. (/5/) Assume that N > 2 and assumptions (A1) and (A2) hold. Let (yn)n>1 C € be a
sequence satisfying:
(a) (E1(Yn))n>1 18 bounded and for any e > 0 there are R. > 0 and n. € N such that/ V24
RN\B(0,R.)
‘ || — 1|2d9: < ¢ for anyn > n..
(b) There exists v € € such that Vv, — Vv weakly in L>(RY), v, — v strongly in L*>(B(0, R))
for any R >0, and v, — v a.e. on RN asn — oco.

Then || [yl = 19 2 — 0, IV (Iyal*) = V(P — 0, and Q(yn) — Q(v) as n — oc.

It follows from (3.49), (3.50) and Lemma 29 that Q(n,) — Q1) as k — co. Together with
(3.56), this gives Pg(¥n,,@n,) — Ps(¥,¢), hence Pg(,¢) = p. Then we infer that E(¢, ) >
Eg min(p). Comparing this to (3.51)-(3.55) we get E(v,¢) = Egmin(p), hence (1, ¢) is a minimizer
for (Psp). Moreover, we have

IVin 72 — IVOIl72,  IV@n,l72 — [Vel72, and

(3.57) / [ 2By 2 d — / WPl e as k —s oo.
RN RN

The weak convergence and the convergence of norms imply that Vz/;nk — V¢ and V¢, — Vo
strongly in L?(RM).

Using (3.57), the fact that 1/1nk<pnk — 1 a.e. in RV and Brezis-Lieb Lemma (see, e.g., Exercise
4.17 (3) p. 123 in [2]), we infer that Uy Py, — i strongly in LQ(RN)

From Lemma 29 it follows that || [¢n, | — [¢][|r2 — 0 and ||V (|, ]?) = V([00[2)] 12 @~y — 0 as
k — oo and the proof of Theorem 26 is complete. O

Proposition 30. Let N > 2, € (0,1) and p > 0. Assume that V' > 0 on [0,00) and (¢, p) €
E x HY(RY) is a solution of the minimization problem (Pgs,). Then:

(i) There is ¢ € [d* Eg min(p), d” Eg min(p)] such that & and ¢ satisfy

icBHL = —Ap — F([Y)p + Lol
ic(1 - B)E? 2L = —Ap + S|y

(i) For any p > 0 such that Egmin(p) < Ssp there are (v, ¢7), (™, ¢7) € €& x HL(RY) so-
lutions of the minimization problem (Pgp) that satisfy (3.58) with speeds ¢t = dtEgpmin(p) and
¢~ =d Egmin(p), respectively.

If N > 3 we assume, in addition, that (A3) holds. Then:

(i1i) Any solution (v, ) € € x H'(RN) of (5.58) satisfies ¢ € W, ’p(RN) Vi € WHP(RY), and
© € WEP(RN) for any p € [2,00). Moreover, 1 and Vi) are bounded and 1, o € CY*(RN) for any
a€[0,1).

If F is C™, then ¢ and Vv belong to WFP(RYN) for any k € N and any p € [2,00). In particular,
Y and ¢ are C*° and bounded on RY .

(iv) After a translation, the pair (1, ) is azially symmetric with respect to the x1—azis if N > 3.
The same conclusion holds for N = 2 if we assume in addition that F is C'.
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Proof. The proof of assertions (i), (ii) and (iv) is very similar to the proof of Proposition 4.14 (i),
(iv) and (iii) p.187 in [5], so we omit it. We only sketch the proof of (iii). Denoting ) = ei%mw and

2 2
,L'C(lf/g)E q

p=e Tl it is easily seen that 1/;, ¢ satisfy the system

It is clear that ¢ € H'(RN) and 4 € H! (RN). If N = 2, a standard bootstrap argument gives
the desired regularity result. If N > 4, bootstrap doesn’t work anymore because of the terms |<ﬁ|2zﬁ
and || even if the nonlinearity F is subcritical (that is, assumption (A2) is satisfied). In the case
N = 3, the standard nonlinearity F'(s) = }2(1 — s) appearing in (GC) becomes critical and prevents
bootstrap to work. If N > 3, we use assumption (A3) and Proposition 2.2 (i) p. 1078 in [9] and
we infer that ¢ € L>°(RY). (Notice that the proof in [9] is based on an inequality of Kato and on
previous work by Farina [6].) Then the second equation in (3.58) and a classical bootstrap argument

give o € W2P(RN) for all p € [2,00). Now the first equation in (3.58) and a bootstrap give the desired

result. See Proposition 4.6 (i) p. 1097 in [9] for a complete proof in the case F(s) = }2(1 — s); that

proof easily adapts to general nonlinearities. O

Lemma 31. Assume that 1) € £ and o € HY(RY) satisfy the second equation in (3.58). Then we have
1 2 2 2
(3.60) Qo) = se1- e [ (o a.
RN

Proof.  Formally we obtain (3.60) by multiplying the second equation in (3.58) by izip and
integrating by parts. The computation can be made rigorous by taking y € C2°(RY) such that xy = 1
on B(0,1), multiplying the second equation satisfied in (3.58) by x (%) (iz1¢), integrating by parts,
then letting R — oo. g

3.4 Minimization of the energy at fixed mass and momentum

In this section we will minimize F(1,¢) when the momentum of ¢ and the L?—norm of ¢ are fixed.
More precisely, we consider the problem

(Epm) minimize E(v,¢) for ¢ € €, ¢ € H'(RY) satisfying Q(¢)) = p and / lo? dz = m.
RN

For pe R and m > 0, let

36D Bualpon) =it {B) [0 €& o HEY), Q) =p. [ loPds=m}.
Recall that

(3.62) By min(q) = inf {E1(Y) [ Y € €, Q) = ¢}
and the main properties of the function E1 4, are given in Theorem 14. It is obvious that

Ermin(q,m) = E1min(q)  for any ¢,m > 0.
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Proposition 32. The function E,.;, has the following properties:

(i) Epin(p,m) = Enin(—p, m) for any p € R and any m > 0.

(11) Emin(p,m) is finite and continuous on R x [0,00), and for all p € R and m > 0 we have
Enmin(p,0) = Evmin(|pl), Emin(0,m) = gmin(m), and

(363) maX(E17mm(|pD7gmin(m)) g Emin(p7 m) < El,min(’pn + gmm(m)

(113) Emin is sub-additive: Enin(p1+p2, mi+m2) < Epin(p1,m1)+Emin(p2, m2) for all p1, p2,m1, ma.
() For any p >0 and m = 0, Epin(p,m) is equal to

2
. N-2 N mp N-1 m
mf{pw—l/ |w12dx+pfv—l/ V([*) dz + —55— / rW|2da:+4/ [ el” dz
RN RN €°q RN € RN

| vee.Qw) =1y e H®R) gl = 1}.

(v) For any fized py the mapping m — Epin(po, m) is concave and increasing on [0, 00).

(vi) If N > 3, for any pair (po, mo) # (0,0), mg = 0, the mapping t — Epin(tpo, tmg) is concave
and increasing on [0,00).

(vii) Assume that p1,p2 € R and my,mq > 0 are such that

(364) Emin(pla ml) + Emin(p2u m2) = Emin(pl + p2,m1 + m2)-
Then we have either

Enin(p1,0) + Enin(p2, m1 + m2) = Enin(p1 + p2, m1 + ma), or
(3.65)
Erin(p1, m1 + m2) + Enin(p2,0) = Epin(p1 + p2, m1 + ma).

Proof. (i) For z = (x1,22,...,2,) € RY, denote 2’ = (x3,...,2x) € RV, Given any ¢ € £
and ¢ € H'(RVN), let Y(x) = Y(—21,2") and @(z) = p(—21,2"). It is obvious that Q(v)) = —Q (%),
12 = llpllz2 and E(d, ) = E(, ), and this implies (i).

From the definition of E1 jin and of gy, it is clear that

Emin(pa m) Z El,min(p)7 Emin(p7 m) = gmzn(m)7 and Emin(pa 0) = El,min(p)~

In particular, we have E,in(0,m) = gmin(m) and the first inequality in (3.63) holds. On the other
hand, if (¢, ¢,) is @ minimizing sequence for gmin(m), then (|1y], ¢y) is another minimizing sequence
and Q(|¢n]) = 0. Thus gmin(m) = Emin(0,m). The second inequality in (3.63) follows from the above
and the sub-additivity of E,,;, (see part (iii)).

Fix go > 0 and mg > 0. Let ¢ € £ and ¢ € H'(RY) be any functions satisfying Q(v)) = qo
and [pn [p|?*dz = mg. Let a,b,c > 0. Denote (x) = (%,%) and @¢(x) = cw(%,%’). An easy
2

computation gives Q(¢)) = bN1Q(¢ V), Jan 1912 dz = abV "1 [on o]? dz and

T~ N-—-1 2 _ N—-1.2 2 N-3
B(.@) = fon B || +abVOIVEOPR + o | 52|+ Lant Vel
(3.66)
N-1 2 abN ‘e 2
+ab™V([¢[7) + \w| |ol” da.
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Let ¢ > 0 and m > 0. Choose b and ¢ such that bV~ = qlo and ac?bN -1 = mﬂo We get Q(q/;) = ¢ and

Jgn 1&* dz = m, hence

(3.67) Emin(q,m) < E($, @)

From (3.66) and (3.67) it is not hard to see that (¢,m) — Enmin(¢, m) is continuous in the region
(0,00)2. From (3.63) and the fact that gmin(m) — 0 as m — 0 and Ej ymin(p) — 0 as p — 0 we
infer that E,,;, is continuous on R X [0, 00).

(iii) Proceeding as in the proof of Theorem 26 and using Lemma 28, it is easy to show that for
any given ¢ € £, ¢ € HY(RV) and € > 0, there exist ¢! € £ and f € H'(RY) such that ¥f = 1 and
¢ = 0 outside a large ball B(0, R), |Q(¢)) — Q(v*)| < &, |l — ¥l i < € and |E(, p) — E(¥*, )| < e
(see also Corollary 3.4 p. 169 in [5]).

Then the sub-additivity follows form a classical argument of P.-L. Lions [8]. Given pi1,p2 € R,
mi,ms = 0and € > 0, approximating "almost minimizers" by functions that are constant outside a ball
and eventually performing a scaling, we see that there are (Y1, 1), (2, p2) € € x H'(RV) and R > 0
such that (¢, ;) = (1,0) on RN\ B(0, R), Q(¢) = pi, ||@ill22 = m; and E(vs, ;) < Enin(pi, mi) +e.
Take g € RY such that |xg| > 3R and define (v, p) = (¥1,¢1) on B(0, R), (¥,¢) = (Y2, 92)(- — x0)
on B(xg, R), and (¢, p) = (1,0) on RV \ (B(0, R) U B(xo, R)). It is then obvious that Q(¥)) = p1 + po,
loll22 = m1 +mg and

E(,¢) = E@1,01) + E(¥2,02) < Enin(p1,m1) + Emin(p2, ma) + 2¢.

Since € > 0 is arbitrary, (iii) follows
_N_

Using (3.66) with a = b = pN and ¢ = mp N1 we get (iv).
1
2,

Fix pg > 0. Let a = b =1 and ¢ = m2. Using (3.66) and (3.67) we see that

. m m
Epin(po,m) = inf {/ (VP2 + V(D) + 5 Vol + S0l de |
(3.68) RN <4 ‘

Ype&pe Hl(RN)7Q(¢) :p07fRN |90|2dx = 1} :

For any «a, € R the function m —— a 4+ fm is affine, hence concave. The infimum of a family
of concave nondecreasing functions is a concave nondecreasing function. We infer that for any fixed
po > 0 the mapping m — E,in(po, m) is concave and nondecreasing on (0, 00). By (3.63) it tends to
00 as m — 00, and since it is concave we infer that it is strictly increasing.

(vi) Assume that N > 3. Fix pg and mgy. Let a =c=1and b = tﬁ, where ¢ > 0. From (3.66)
we get

Erin(tpo, tmo)

ol +tV([v) + |w|2\so|2d:c

(3.69) :inf{/RNt‘a ‘+tw1|viw|2+—‘8 ]

ve&pe Hl(RN)vQ(w) :pU?fRN ‘(,0|2dl' = mO} .

As previously, t — Enin(tpo, tmyg) is the infimum of a family of concave nondecreasing functions,
hence it is a concave nondecreasing function. By (3.63) it tends to oo as t — oo, thus it must be
strictly increasing.

(vii) The mapping m —— Enin(q1,m) + Emin(q2, m1 +ma —m) is concave on (0,m1 +msg). Since
E,in is sub-additive and (3.64) holds, this mapping reaches its minimum on [mj, ms] at m = my. We
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infer that either m; = 0, or m; = my + mg (which means that my = 0), or this mapping is constant
on (0,m1 + my), and (vii) follows. O

We are able to prove the following result:

Theorem 33. Assume that N > 2, assumptions (A1) and (A2) hold and V > 0. Assume that the
pair (p,m) satisfies the following strict sub-additivity condition:

(3.70) E1min(0') + Emin(p — D', m) > Epin(p,m) for any p’ € R*.
Then the minimization problem (&) admits solutions.

Moreover, any sequence (¥, 0n) € € x HY(RN) satisfying Q(vn) — p, / lon|>dz — m and
E(Yn,on) — Emin(p,m) has a subsequence (Vn, , on, )k>1 with the followng]]voroperty: there are a

sequence of points (mi)iz1 © RY, ¢ € £ and o € HI(RY) such that Q) = p, |¢lzan) = m,
E(wa@) = Emzn(p;m)7 and

O, — ¢ i H'(RY), (Vg on, ) (- + 1) — (1b,9) a.e. in RN,
IV, (- + zx) — Vbl 2 — 0, [ 1, |+ 2x) — [¥] |2 — 0,
Uy Py, (- + 2) — o in L2RY), V (|thn, (- + z1)|?) — V([©]?) in L'(RY).

Proof. Let (1n, ©n)n>1 be as in Theorem 33. Then Ej(¢y,) and ||¢n| g1 are bounded. Lemma 20
and the Sobolev embedding imply that || |¢,| — 1|12 and || [¢)n| — 1|| zro+1 are bounded. Let f,, be as in

(3.17). Then the sequence (f,)n>1 is bounded in L'(R") and lim inf/ fondx > li_>m / lon|? dz =
n—oo RN

n—oo RN
m. Passing to a subsequence we may assume that / fndz — a9 > 0 as n — oco.

N
We proceed as in the proofs of Theorems 41 ar]Fd 26 and we use the concentration-compactness
principle for the sequence (f,)n>1. Let A, be the concentration function of f,, as given by (3.18).
Proceeding as in [8] and using (5.12) p. 156 in [11], we infer that there exist a non-decreasing function
A :[0,00) — [0,00), o € [0,0] and a sequence t, — oo such that (3.19) and (3.20) hold. As
previously, we rule out the possibilities a = 0 ("vanishing") and « € (0, ag) ("dichotomy") in order to
show that a = ag.

If @« = 0, by Lemma 21 (ii) we get lim inf/ n|?|@n|? dz > m and Lemma 27 gives lim inf By (,,) >
n—oo  JpN n—o00
vsp, hence
o m
Emin(p7 m) = lim 1nfE(¢n7 Spn) = Usp + = = El,min (p) + Gmin (m)
n—00 €

The above inequality contradicts (3.70). Indeed, for p’ = p assumption (3.70) implies that E yin(p) +
gmm(m> > Emin(p7 m) if p 7& 0 and m 7é 0.

If o € (0,a9), proceeding as in the proof of Theorem 26 we construct two sequences (¢ 1,¥n,1)
and (¢n 2, ¢n2) satisfying (3.43) - (3.47) there. We use the same notation as in the proof of Theorem
26. Since E1(¢p;) is bounded, we infer that Q(1,,;) is bounded and passing to a further subsequence
we may assume that Q(¢y,1) — p1 and Q(¢2) — p2 as n — oco. By (3.47) we have p; + p2 = p.
It is clear that

/N’|907L|2_|90n,1|2_|90n,1|2‘dl‘</ lon?dz < hy, — 0 asn — oo,
R Qn

and passing to a further subsequence we may assume that fRN |cpm-]2 dx — m; as n — oo, where
m1 + my = m. We have

E(%,i, 4/7n,i) > Emm(Q(d}n,z)» H‘Pml”%?)
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and letting n — oo we get liminf E(ty, 4, ¢n.i) = Emin(pi,m;) for ¢ = 1,2. Using (3.47) we obtain
n—ro0

2
Epin(p;m) = lim E(in, op) > > liminf B (¢, oni) 2 Emin(pr, m1) + Emin(p2, m2).
i=1

By the sub-additivity of E,,i, (see Proposition 32 (ii)) we must have equality in the above inequality,
and then Proposition 32 (vii) implies that (3.65) holds. Assumption (3.70) implies then that either
p1 =0, 0r po =0.

If p; =0, we have po = p and we get

Emzn(oa ml) + Emin(p7 m?) = Emin(p7 m)

By Proposition 32 (iii) and (v), the mapping 7 —— Epnin(0,7) + Epin(p,m — 7) is concave on [0, m]
and is greater than or equal to Ey,i,(p, m). If it reaches its minimum at an interior point my € (0, m),
it must be constant on that interval and we infer that

Emzn(07 m) + Emin(pa O) = Emin(o) ml) + Emin(pa m — ml) = Emin(p7 m)

contradicting (3.70). The same holds if m; = m. We infer that necessarily m; = 0.

Thus if py = 0 we must have m; = 0 and this implies mo = m, po = p. We infer that
hnn_l)géf E(wn,Qa (Pn,Q) 2 Emz’n(pa m) Since E(wm (Pn) = E(?%,h Son,l) + E(wn,% @n,2) and E(q/}m @n) —
Epin(p, m), we infer that E(%Dn,l,@n,l) — 0 as n — oo. Since ||<,0n71||%2 — my = 0, using Lemma
20 we find ||pn1llgr — 0, [|VUn1|lp2 — 0 and || |[¢p,1] — 1| g2 — 0 as n — oo, and we deduce that

fndx — 0, hence o = 0, contradicting the fact that o € (0, ap). Similarly, if po = 0 we get
B(Inytn)
ag — a = 0, again a contradiction.

We have thus proved that o = ag. By a standard argument we see that there is a sequence

(Tn)n>1 C RN such that for any € > 0 there exits R. > 0 satisfying f]RN\B( )fn dz < ¢ for all n

Tp,E
sufficiently large. Denoting Uy = Un (- 4+ 2p), &n = on(: + xn) and fn = fu(- 4+ zp), we see that (3.49)
holds. Then we deduce that there exist a subsequence (vn, , Pn, )k>1, and functions 1 € H} (RY) and

loc

¢ € HY(R™) such that (3.50) holds. Then (3.51) - (3.54) also hold and we infer that ¢ € £ and
k—o0

On the other hand, as in the proof of Theorem 26 we see that ||y, — ¢|/z2 — 0, hence |2, = m.
Lemma 29 implies that Q(v) = nh_}rrgo Q(¥n,,) = p. Thus we have E(¢,¢) = Enin(p,m), and the
inequality must be an equality.

For the rest of the proof we proceed exactly as in the proof of Theorem 26. We deduce strong

convergence from the weak convergence and the convergence of norms, which follow from (3.51) -
(3.54) and the fact that E(¢, ) = Enin(p,m). O

We were not able to rigorously prove (3.70). We suspect that this strict sub-additivity condition
is true for all p > py and m > mg. We were only able to check (3.70) numerically in some physically
relevant situations.

Remark 34. If (¢, ) is a minimizer for F,,;,(p, m), there exist o € R and a real-valued function g
such that ¢ = e™@pq (for otherwise, (1, |p|) would do better than (i, ¢)).

Remark 35. If (¢, ¢) solves the minimization problem (&), ), it is standard to see that there exist
Lagrange multipliers A1, A2 € R such that

Mgl = =AY — F([p)e + Xlel*y
(3.71) 2 in D'(RY).
M@ 2 = —Ap+ L[y
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Moreover, A2 is between the right and left derivatives at m of the mapping Ep,in(p, ).

If assumption (A3) in the Introduction holds, (1, ¢) satisfies the conclusion of Proposition 30 (iii).
In particular, we have 1, ¢ € CH*(RY) for any a € [0,1).

Let e; = (1,0,...,0) € RV, If N > 4, Theorem 2’ p. 329 in [10] implies that there exists v € RV
orthogonal to e; such that after translation, (v, ¢) is cylindrically symmetric around Span(ej,v). The
general results in [10] do not imply that (¢, ) is axially symmetric, although that might be the case
(for instance, when (1), e "*1¢) solves a minimization problem (Pz,) - see Proposition 36).

Proposition 36. (i) Assume that (1, ) is a minimizer for the problem (Pg,), as given by Theorem
26, and that it solves (3.58) for some ¢ > 0. Denote p1 = Q(v), m = [|¢||2,, and a = Lc(1 — B)e?¢>.
Then (1, €' ) solves the minimization problem (&p, m)-

Moreover, if (11, ¢1) is any solution of the problem (&p, m), then (V1,e™"%1p)) is a solution of the
minimization problem (Pg ).

(ii) For any p € R, a € R and m > 0 we have
(3'72) Eﬁ,min(ﬁp + (1 - B)Qm) < Emin(py m) + a2m'

Proof. (i) Let p1 = Q(v) and pa = Q(¢), so that Sp; + (1 — B)p2 = p. By Lemma 31 we have
Qp) = %c(l — B)e2¢? fRN |o|? dz, that is py = am.

Take any 1) € & such that Q(¢)) = p1 and any ¢ € H'(RY) such that 13]12, = m. Let ¥(z) =
e~ taz1 |@(x)|. We have Q(|@]) = 0 because || is real-valued and using (3.36) we get Q") = am = pa,

hence Pﬁ(dl,wﬁ) = Bp1 + (1 — B)p2 = p. We infer that E(¢), ¢*) = Egmin(p) = E(1), ). We have
|¢| = e?¥1pf and using (3.36) again we obtain

- . . 1 . 2
B(,$) > B, |#)) = B, &) + 55 (~20Q(6") + *m) = B, ') - 5 5
and
iax 1 2 a2m
B, ) = E(.9) + 55 (—2aQ(p) + a*m) = E(, ¢) — a2

We conclude that E(v, e1p) < E(@Z, ©). Since this is true for any ¥ and any @ as above, we infer
that E(1, €%%1p) = Eynin(p1,m) and (1), €91 ¢p) is a minimizer for E,,i,(p1, m).

The second assertion is obvious because Q(¢1) = p1 = Q(v¥), Q(e™1p1) = am = py = Q(p)
(here we use the fact that Q(¢1) = 0 and (3.36)), and

a2 2

—i m a~m
E(Y1,e "1 p1) = E(¢1, 1) + 27 Erin(p1,m) + 22 E(), ).

(ii) Consider ¢ € & such that Q(¢)) = p and ¢ € H'(RY) such that ||¢]|2, = m. For a € R, we
have Q(e™"**1|p|) = am and Pg(1), e ***1|p|) = fp + (1 — B)am, hence

Epmin(Bp + (1 = B)am) < E(p, e ¢]) = E(3, |¢]) + a®*m.

Passing to the infimum we get (3.72). O
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Chapter 4

Travelling waves of small mass to the
Gross-Clark system

4.1 Introduction

In this chapter, we will present some numerical results. More precisely, we will approximate the small
mass solution of our 2 dimensional system using Newton-Raphson algorithm. We recall that the system
is given by

W) {—z'cg;ﬁ = =AY+ G (Elef + PP - 1)y

2
(-A+LP)e =),
with the boundary conditions [¢)| — 1 and ¢ — 0 as |z| — co. Moreover we fix the L%norm of ¢:

Jge l¢?dz = m.

Here A is unknown and will be approximated numerically. These solutions are close to the following
approximations: v is almost the product of the two Padés approximant for the vortices of the Gross-
Pitaevskii equation, and ¢ is a sum of two functions of small mass concentrated near the vortices
of ¥. These results are obtained for several values of the speed c. We are interested also in the
energy-momentum diagram for the speeds ¢ for which Newton-Raphson algorithm converges.

4.2 The numerical method

4.2.1 Change of variables

We will look for solutions that respect two symmetries of the problem: 1 is thus assumed to satisfy

Y(z) = (1, 22) = Y(21, —22) = Y(—71, 72).

Moreover, we can see in [5] that, up to a phase shift, ¢ is a real function, then it is assumed to satisfy
the following symmetries:

p(r) = p(z1,22) = p(T1, —72) = P(—21, T2).

This allows us to work on the domain R, x R, instead of R%. Then using the stretched variables used
by Jones and Roberts in [4] and by Chiron and Scheid in [2],

Ryz1 = tan(#1), Roxe = tan(Zs),

where R; and Ry > 0 have to be fixed and are adapted to the lengthscales of the solution, we can
choose to work in the bounded domain [0, g]z This choice avoids to consider artificial type of boundary
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conditions.

Since

oh

d%h )
oz’

oh oh 9*h @ h
03?2

= o 2
o Rcos®(& )8” and 92 R*(co

— 25sin(%) cos® (&)

for any function h of the variable = with the change of variables # = arctan(Rz), and setting ¥ (%) =
(x), we can rewrite the system (TW) in these variables:

Q
<>

—icRy COSQ(afl)g—;fl +R3( Cos4(§:1)g%p — 2sin(21) cos®(21) 52

)
)

Q;Q)
e, B

o
—(HPP + WP -1y =0

2? —2sin(21) cos®(21) ggi )

—R3( cos4(x2)W — 28in(Z2) cos%ﬁm)%’l)

+ 59 — e = 0.

Q’)
m

+R3( cos?(22) 82—3’ — 2sin(&y) cos®(£2) 57
2

(4.1)

—R}( cos4(x1)g

\

4.2.2 Discretization

As in [2]| and [4], we discretize the computational domain, the square [0, g]Q, by a cartesian grid, with
Nz, points in the direction z; and N, points in the direction x3. For simplicity, we will work in a
uniform discretization and choose ‘N = N,, = N,,. The size of the mesh is denoted by dz = m
We also choose to work in a Finite Difference framework, using central approximations of derivatives
that are of order 2.

4.2.3 The equations

We choose to write 1@ as a + ié, so we can work with real quantities. Dividing the first equation of
(4.1) into the real part and the imaginary one, it becomes:

.\ 9% A .\ da

cRy cos? (1) aaxbl +R3( Cos4(x1)g—j‘% — 2sin(z) 0053(:101)%11)
L\ 92 . .\ da

+R3( cos4(x2)87‘§ — 2sin(Z) cos3(x2)(%‘;)

—cRy COSQ(xl)gfl +R%(COS4(:21)6—£ — 2sin(2) 0083(:%1)88—;1)
(4.2) +R3 ((cos'(d2) 55 — 2sin(d) cos?(22) 22 )
—L1e1% - La%h - L* + Lb=0
—R3( cos4(x1)% —2sin(21) cos®(21 )g;’; )
—RQ(COS4(.%'2) o f 2sin(Z2) 0053(332)%22)

—i—gﬁ(d +0%)p—Ap=0.

Fori=0,...,N—1and j=0,...,N — 1, we denote by a;, b; ;, and ¢; ; the values of a, b, and ¢
on the points (&1, #2) = (idx, jdx). We will suppose that ¢ tends to 0 and ¢ tends to a constant of
modulus 1 when |z| — oo, which is not proved for the system, but for the Gross-Pitaevskii equation.
Hence on the lines #1 = § and 23 = 7, the values of a, b and @ are known: & = 1 and b= 0, p=0. On
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the line £; = 0, we have b= 0, because of the symmetry. In other words, on the line £; = 0, we have
(N —1) points: (0,0),---,(0,(N — 2)dx) and in each of them we have two unknowns: @ and ¢. For
the other points of the grid, excluding the axis £ = §, 22 = 7, and £; = 0, we have (N — 2)(N — 1)
points containing 3 unknowns for each. Hence, the number of the unknowns in our system is equal to
2(N —1)+3(N —2)(N —1) = (N —1)(3N — 4).

Using the central approximations of the derivatives, we can write the equations of (4.2) on every
point of the grid, excluding the axis #; = §, #2 = § and without the second equation for the
points of the line £; = 0. These equations can be written using the symmetries mentioned in the
previous section, a(iy1, —&2) = a(21, &), b(E1, —#9) = (&1, &2), a(—&1, &2) = a(i1, &2), b(—i1,&2) =
—b(21,#2), P(&1,—d2) = @(&1,42), and G(—i1,22) = @(&1,22), for the critical points on the axis
Z1 =0, and Z2 = 0. Hence, the number of the equations is equal to the number of the unknowns.

To control the mass of ¢, we will add one more equation, which is the norm L? of ¢. It is an integral
quantity that have to be approximated numerically using a trapezoidal rule. Adding an equation leads
us to add an unknown for the system, to have equality between the number of the equations and the
one of the unknowns. Since A is an unknown quantity of the system, we conclude, the number of

equations=the number of unknowns=(N — 1)(3N —4) + 1.

4.2.4 Choice of the initializations

For the initialization of v, we will choose a function that looks like a product of 2 vortices, one of
degree 1 situated at (0, %) and the other of degree -1 situated at (0, —%) Hence

v(@) =i (L - 0,0)) x Va (Lt 0,)):

C C

In polar coordinates, we have B
Vi(e) = a(r) exp(i6) = V_1(2)

where @ : Ry — R is an increasing function from 0 to 1. Then, we follow the strategy of [2] and choose
a Padé approximant. Therefore, we look for an initialization under the form

x1 —i(ze +c 1)
[(z1,22 + 1)

x1 +i(ze — )
(21,22 — 1)

1 _ 1 _
(4.3) aPadé(nglaxQ_c 1)|) XaPadé(g|(5Ela$2+C 1)|) )

where apage is given by

2
(4.4) aPadé(T) _ 7“\/ a1 + aar

1+ i + Bard”

for some coefficients ay, ag, f1, B2 to be chosen as in [1] or [3], such that S2 = «ag in order to have
apads(+00) = 1. This Padé is an approximate solution of the ODE

/
1
a"+a———2a+a(1—a2)20.
roor

This initialization was used to approximate the travelling waves of the Gross-Pitaevskii equation sat-
isfying:
oY 1

45 —ie=— = =AY+ = (|1|* — D).
(145) S = — A+ (0~ Dy

To construct the initialization of ¢, we consider that the impurity is concentrated near the vortices
(0,1) and (0,—1). Indeed, in the energy, if ¢ is the fixed function of two vortices (4.4), we can see
from the kinetic energy for ¢ and the interaction term of v and ¢ with the mass constraint, that ¢
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should be put where v is small. We look at what happens near one of these vortices. Let us consider
V1. We are brought to the equation

i
(4.6) —e2Apg + qz\Vl(g)\Qapo = A2y,

setting A. = Ae?, we see that A. is the smallest eigenvalue of the operator —e?A + ¢?|Vi(Z)[%. ¢ is
approximated by a Gaussian function of the form

where ¥ is adapted such that the mass of g is fixed equal to 3,
5 each one. o is given below.
Our problem is radial, because (|V1|?(x) = a?(r)), and we search for a radial pg. We choose to

approximate ¢ by the Gaussian function

in order to have 2 gaussians of mass

S SR e SR
2e202 2e252 ’

(4.7) o(z) = a(exp (

where the coefficient « is calculated using the mass constraint denoted by m and given by the formula

2.2
(4.8) m= o(x)?dz ~ 2a% x 21 x 7,

R2 2
To introduce these initializations in the code, we are meant to consider the change of variables u =
R%atan(:cl) = %1, v = R%Etan(:cg) = %2, so that the vortices are located in (0, L) and (0,—2),
in order to work in the stretched variables, and consider the approximation of the solution of the
Gross-Pitaevskii equation with the coefficient 6% in front of the nonlinearity.

We could find some numerical approximations for the eigenvalue A., and calculate the profile a
of the vortex Vi by a Newton method, starting from the Padé (4.4). After calculating the matrix of
the operator —e?A + q2d2(£) in radial coordinates, we search for the smallest eigenvalue, using the
command "spec" of Scilab and can plot the associated eigenvector ¢g and fit a Gaussian approximation.
The value of ¢ is v/71.219, and the graph of ¢¢ is given in Figure 4.3 in section 4.3.

4.2.5 Choice of the parameters

We start testing the convergence of our algorithm with ¢ = 0.2 for the system (4.2). As in [2], we
choose R1 = Ry = 0.2. This choice can influence the precision of the numerical computations. In fact,
the uniform grid in the mapped domain [0, F]?
(R*)2. Approaching to infinity, the mesh is dilated and the cells become bigger. In [5], we can see
that the physical parameters ¢ and € can be chosen as

, 1s transformed in a non-uniform one in the real domain

(4.9) q =041,

(4.10) e =0.187.

In order to have a better approximation of the vortices, we choose N such that we have enough points
in the area where the modulus of the vortices varies. Taking N > 42, we have almost 5 points over
a length of ¢ = 0.187. Indeed, in this case we have 25]7\3[ < e. We fix N = 60. For the mass m of the

function ¢, refering to the theoretical results, we have to choose it small enough. We set m = 0.1. Since

we are working on [0, 5]? that correspond to (RT)?, the mass over this domain is in fact § = 0.025.
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Figure 4.1: The initial data of ¢ in the stretched variables for ¢ = 0.2

It remains to choose the parameters aq, ag, f1, and (o for the initialization of . Two choices are
possible: either the Padé found by Berloff in [1] and given by

oy = 0.3447, az = 0.0286, B1 = 0.3333, B2 = ag,
or, the Padé used in [3], given by
ar = 0.3350601,  ag — 0.0494196, By = 0.3725704, By — .

After several tests, it turns out that the choice of the second one leads to the convergence of the
algorithm for more values of ¢. Hence, we choose the second option.

4.3 The results

From numerical approxiations of the eigenvalue, we could find that the initialization of A must be

0.165 and the variance of the Gauss function is 02 = 71.219. In other words, the code will start by

h 70'165322322252 and ¢ as in (4.7), with a = 1, /-1

e\/ 2027w

initializing A wit . Now we can plot these data (see
Figure 4.1 and Figure 4.2). For the initialization of A, we will present the eigenvector ¢ associated to
this eigenvalue in Figure 4.3.

Because of the condition number of the matrix, the Newton-Raphson method diverges on the full
coupled system with small values of €. It converges however very well for 0.8 < e < 1. Hence, we had
to work on separated iterations. In other words, we consider the following algorithm:

Step 1:
Discretize in the stretched variables and divide into real and imaginary part the first equation of the
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Figure 4.2: The initial data of ¢ in the stretched variables for ¢ = 0.2

Figure 4.3: The eigenvector ¢q for the equation (4.6)



4.4. THE ENERGY-MOMENTUM DIAGRAM 79

system (TW) to get the equations

.\ 9% o N

cRy cos?(21) aaxbl +R3( Cos4(x1)%‘% — 2sin(#1) cos3(x1)88—§?1)
.\ 8% N ;

+R% ( cos? () —gi‘g — 2sin(22) cos®(22) —(%“2 )

(4.11) 9 3 ) A AE 2 . R € ) o5
—cRycos®(d1) gz, +Ry(cos™(21) gz — 2sin(dr) cos(21) g37)
+R3( cosﬂ@)% — 2sin(z2) cos3(§c2)%)
— L2 — Sa?b — L3+ 5b=0
Step 2:

Fix ¢ in (4.11) as in (4.7) and solve in @ and b using Newton- Raphson algorithm and starting from
the initial data of given by (4.3), to get an approximate solution of ¢ denoted by .

Step 3:

Discretize in the stretched variables the second equation of the system (TW) to get

24 - 2 4
(4.12) _R%(CO#(@I)Z;@? — 2sin(21) Cos3(:%1)aa:;) — R%(Cos4(i2)gj§
. 2
— 2sin (&) cos® (i) ago) + q2( +0)p—Ap =0

Dia

together with the trapezoidal approximation of the L? norm of ¢.

Step 4:

Fix ¢ = 11 in (4.12), and solve in ¢ and A using Newton-Raphson algorithm and starting from the
initial data of ¢ and A given by (4.7) and 4.7298842 respectively. We get an approximate solution
denoted by ¢1.

Step 5:

Repeat Step 2 but with ¢ fixed as 1, and get an approximate solution of 1@ denoted by 1[12.

Step 6:

Repeat Step 4 but with 1[1 = 1&2, and get a solution ¢o.

We keep repeating Step 2 and Step 4 with @2, @3, ... and ¢2,¢5, ... until we reach a relative error
of order 1073 between two consecutive solutions wz,¢z+1 and @;, ¢;1+1- In this case, the separated
iterations method converges and gives the following results: A =~ 4.1808086. The modulus of the
approximate solutions 1& and ¢ are represented in Figure 4.4 and Figure 4.5.

In the physical variables, i.e. in R?, the graphics of || and |p| are represented in Figure 4.6 and
Figure 4.7. We choose also to represent the contour lines of these solutions in a 2D plot, as in Figure
4.8 and Figure 4.9, where we can clearly see that the vortices are radial. To be able to read the values
of the countour lines, we changed the scale on the axis x9 (see Figure 4.10 and Figure 4.11).

In order to have a better look on the vortices and the peak of the Gauss function, Figure 4.12 and
Figure 4.13 present the modulus of the obtained solutions in the half-plane x; > 0.

4.4 The energy-momentum diagram

The separated iterations method converges for several values of the speed c. For some c¢’s, this method
diverges, i.e. Newton diverges at some point while solving either in ¢ or in (¢, A). When we have
convergence, we notice that when c is small, the vortices are well separated from each other, and we
calculate the energy E(1, ), and the momentum Q(v) of the solution, using the trapezoidal rule for
the integral. The results are represented in Table 4.1:
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Figure 4.4: The approximate solution of @Z; in the stretched variables for ¢ = 0.2

Figure 4.5: The approximate solution of ¢ in the stretched variables for ¢ = 0.2
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Figure 4.6: The approximate solution of 1 in all R? for ¢ = 0.2

Figure 4.7: The approximate solution of ¢ in all R? for ¢ = 0.2
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Figure 4.8: The contour line of the approximate solution of ¢ for ¢ = 0.2

Figure 4.9: The contour line of the approximate solution of ¢ for ¢ = 0.2
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Figure

Figure

4.10: The contour line of the approximate solution of ¢ for ¢ = 0.2

OD70E g pggz. 0047 ™ 00352

j\\ﬁ 1o Do

22 g0 0587 0047 00382

T T T T
428 28 24 22 2 18 8 14 2

T T T T
4 08 08 04 02 0 02 04 08 08 1 12 14 18 18 2 22 24 28 28 3

4.11: The contour line of the approximate solution of ¢ for ¢ = 0.2
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Figure 4.12: The approximate solution of v in the half-plane 1 > 0 for ¢ = 0.2

Figure 4.13: The approximate solution of ¢ in the half-plane z; > 0 for ¢ = 0.2
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Figure 4.14: The energy-momentum diagram with m = 0.1

c Momentum Energy

0.355 30.622562 76.433487
0.345 32.88967555 77.58745292353
0.335 34.25260209 78.2507466199
0.315 37.73496833 79.79338513551
0.3 40.89830567 80.98027299029
0.27 46.96893883 82.74749393678
0.24 51.39760595 83.92101094292
0.225 54.89109151 84.70760002663
0.215 58.362908 85.370019
0.175 71.032636 87.01579

0.165 75.788422 87.262036

Table 4.1: Numerical values of the momentum and the energy for the small mass solutions of (TW)
Hence the energy-momentum diagram is a concave curve (see Figure 4.14). We could not have any
value of the energy or the momentum for ¢ > 0.355. The solutions corresponding to 1 and ¢ for the
first and the last points of this curve (i.e. for ¢ = 0.355 and ¢ = 0.165) are represented in Figure 4.15 -
Figure 4.26. For ¢ = 0.165, we have A ~ 4.2082464. For c = 0.355 the algorithm gives A ~ 4.1518133.

4.5 Conclusion

The method used numerically is quiet different than the one of the thoeretical proof of Chapter 3 for
the existence of solutions for (T'W). In Chapter 3, we proved the existence of small mass travelling
waves solution for the system by minimizing the energy at fixed momentum and mass. In this chapter,
we approximated numerically the solutions of the same system with small mass constraint. We used
the Newton-Raphson method, which is of continuation method and not minimization one. We don’t
have any affirmation that the numerical method used in this chapter captures the minimizers under
constraints. They are two different methods. One could minimize the energy numerically under two
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Figure 4.15: The approximate solution of 1& in the stretched variables for ¢ = 0.165

Figure 4.16: The approximate solution of ¢ in the stretched variables for ¢ = 0.165
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Figure 4.17: The contour line of the approximate solution of ¥ for ¢ = 0.165
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Figure 4.18: The contour line of the approximate solution of ¢ for ¢ = 0.165
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Figure 4.19: The approximate solution of ¢ in the half-space z; > 0 for ¢ = 0.165
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Figure 4.20: The approximate solution of ¢ in the half-space z; > 0 for ¢ = 0.165
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Figure 4.21: The approximate solution of 1& in the stretched variables for ¢ = 0.355

Figure 4.22: The approximate solution of ¢ in the stretched variables for ¢ = 0.355
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Figure 4.23: The contour line of the approximate solution of ¥ for ¢ = 0.355
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Figure 4.24: The contour line of the approximate solution of ¢ for ¢ = 0.355
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Figure 4.25: The approximate solution of ¢ in the half-space z; > 0 for ¢ = 0.355

i

—

o
S

L7
P

L7
Lo

202

L
Sy
17

Figure 4.26: The approximate solution of ¢ in the half-space 1 > 0 for ¢ = 0.355

91



92 CHAPTER 4. TRAVELLING WAVES OF SMALL MASS TO THE (GC) SYSTEM

constraints, and plot the energy-momentum diagram for the obtained solutions, and conclude from
this diagram that these solutions are exactly the minimizers under two constraints. Moreover, the
numerical minimization under constraints might give some local minimizers.
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Chapter 5

Stationary and travelling waves to the
Gross-Clark system

5.1 Introduction

In this chapter, we will present some numerical and theoretical results concerning the solution of the
Gross-Clark system with a large mass of ¢ equal to 47. We will present two branches of solutions: the
ground state branch and the vortex branch. For each branch, we focus first on some stationary solutions
for this system (called ground state solutions and vortex solutions), then we study the travelling waves
and construct numerically, through the Newton-Raphson method, the whole branches of solutions for
rather small propagation speeds. We recall that this system is given by

{—z'cggi = =AY+ G (Elef + [P - 1)y
2
(—A+ LRy =X,

where A is unknown, and with the boundary conditions |[¢)| — 1 and ¢ — 0 as |z| — oco. We fix the
mass of ¢ by the constraint [p, [¢[*dz = 4.

For the ground state branch, the solutions of the system with small speeds ¢ are close to the minimizer
of the energy corresponding to the stationary solutions. For the vortex branch, each vortex is close to
the minimizer of some renormalized energy. These results are obtained for several values of the speed c.
We are interested also in the energy-momentum diagram for the speeds ¢ for which Newton-Raphson
algorithm converges for the ground state branch and the vortex branch.

(TW)

5.2 The numerical method

5.2.1 Change of variables

As in the previous chapter, we will look for solutions that respect two symmetries of the problem: 1
is thus assumed to satisfy for all 2 € R?

(5.1) Y(z) = (21, 22) = (21, —22) = Y(—21, 72).

© is a real function, and is assumed to satisfy the following symmetries:

(5.2) e(z) = p(x1,32) = @(21, —22) = P(—71,22).
Hence we work in Ry x R, instead of R?. Using the change of variables we used in Chapter 4

Ryz1 = tan(#1), Roxe = tan(Zs),
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we work in the bounded domain [0, 3]2.
We recall that we can rewrite the system (TW) in these variables:

. .
—icRy COSQ(fl)%/’l

(5.3)

~ N\ O?
—R3( cos4(x1)a—j

=G>

with the Dirichlet conditions

(5.4)

and

(5.5)

T =

on the boundaries £; = § and

5.2.2 Discretization

We discretize the computational domain [0

jus
5

A 2 D . A~ A )
—i—R%(cos‘l(:rl)gT? — 2sin(2;) cosg(:rl)g—fpl)

A 2 b . A A )
+R%(COS4(IB2)% — 2sin(&g) COSB(.’L‘Q)%)
—a (el + 1Y - 1) =0

—2sin(i1) cos®(#1) 52 )
A 2 5 . A~ A~ b
—R3( cos4(x2)37§ — 2sin(Z2) cos3(:n2)g—£’;)

2 n A ~
+L 920 — A = 0.

s

, 5]2 as in the previous chapter: N, points in the direction

z1 and N, points in the direction x5. and we take N = N,, = N,,. The size of the mesh is then

denoted by dz = 2(]\{1).

We also choose to work in a Finite Difference framework, using central approximations of derivatives

that are of order 2.

5.2.3 The equations

We choose to write Qﬁ as a+ iB, and recall that the system becomes

cRy cos? (jl)a%

—cRy cos?(#1) %11

(5.6)

02
—R3( cos4(x1)a—$§

+R%(cos4(:%1)g%‘% — 2sin(Zq) cos%iﬂ%)
+R3(cos*(&2) gi% — 28in(Z2) cosg(ig)%&)
—LlePa— La® — Lab? + Ha=0
+R%(cos4(i1)% — 2sin(2) cos3(:%1)aa—fl)
+R§(cos4(i2)g—;g — 2sin(22) cos%@)‘%)
—L1@1%b - La?h - L3+ Lb=0

—2sin(z1) cos3(§:1)ﬁ)
o\ 924
—R%(cos4(x2)a—§:§

+ (@2 + %)@ — Ap = 0,

— 2sin(z2) cos3(§:2)aa—£)

Fori=0,...,N—1and j=0,...,N — 1, we denote by Qi j, lA)m, and ¢; ; the values of a, 13, and ¢
on the points (&1, #2) = (idx, jdx). We will suppose that ¢ tends to 0 and ¢ tends to a constant of
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modulus 1 when |z| — oo, which is not proved for (GC), but for the Gross-Pitaevskii equation given
by

o
(GP) ¢%+A\p:xp(|\1/|2—1)

(see [1], [4], and [15]). Hence on the lines 21 = 5 and &2 = 7, the values of a, b and ¢ are known:
a=1and b=0, » =0. On the line #; = 0, we have b = 0, because of the symmetry (5.1). Asin

Chapter 4, we have the number of equations=the number of unknowns=(N — 1)(3N — 4) + 1.
5.2.4 Choice of the parameters

We choose the parameters used in [6] and in Chapter 4:

(5.7) q = 0.41,
(5.8) e =0.187,

5.3 The ground state branch

5.3.1 The ground state solutions. Minimizing the energy

We look for the ground state solutions, these are radial solutions ¢gs and pgg corresponding to (TW)
with ¢ = 0. In other words, we choose the radial minimizer of the energy E. To minimize this energy
in the radial coordinates, we use the projected Gradient method and consider the problem

Minimize

v 1 1 1
(5.9) E(trad; Prad) = 2”/0 (Vizq + 2?2(%?@ — 1)+ gj?ﬁ?ad@?ad + @wlrid)rdr

o0
under the constraint 277/ T | @raq |2 dr = 4,
0

and where ~ is chosen large enough (we take v = 30). Notice that in the energy, ¥,aq and ¢,aq are
given in the physical variables, and not the stretched ones.

To initialize the constrained minimization problem, we follow the computations of [6] in 2D for pgg
to get

(5.10) @rad,i(r) = AoJo(kr)

whenever kr < ro ~ 2.4048256 (the first zero of Jp), and ¢raq,i(r) = 0 elsewhere, and where Jy is
the Bessel function of the first kind, Ag is a parameter chosen such that 2 fooo r]gorad,i(r)|2dr = 4.
This last constraint gives us the value of Ay = 1.6019872. For the initialization of ©¥gg we choose a
continuous function that is equal to zero in » = 0 and approaches to 1 when rk > rg and as r — oo.
Hence we initialize 1gg by the function

1 + tanh(Z=ro/k
(5.11) Praai(r) = 2( e ).

In order to have a good approximation of the minimizers, we put enough points in the interval [0, 7],
and choose N = 600 the number of points so that every subdivision has a size of h = v/(N —1) ~ 0.05.
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Figure 5.1: The initial data taq; for the constrained minimization problem (5.9)

We choose the step size of the projected Gradient method p = h*. In the minimization problem, we
work with the interval ]0,~[ so we have 2N — 4 unknown quantities, and then the values of 1)gs and
wags on r =0 and r = are obtained from the Dirichlet conditions (5.4) and (5.5). We minimize this
energy by fixing the mass or L? norm of ¢qg at each iteration.

1. At some iteration n, we know (¢, ¢n);

2. we do the usual steepest descent for the function E that we are minimizing (without considering
the constraint)

(Yn+1, Pnt1) = (Yn, on) — pE'(wm ©n);

3. we normalize the function @, to satisfy the constraint : ¢,11 = f”—ﬁ,

that [po @2, = 4.

The initial data traq,; and @raq; are given in Figures 5.1 and Figure 5.2 respectively.

After 40 000 iterations, we get an approximation of the minimizers of the energy that are given in
Figure 5.3 and a final relative error between two consecutive solutions equal to 1.31 x 107°. The value
of the energy at each iteration is given in Figure 5.4.

The final value of the coefficient a,41 is equal to 0.9999033. Knowing that the constrained minimizers
satisfy pgs = pags — 26’%/\90(;3, the value of X is calculated from the minimization algorithm by the
formula

where an4+1 > 0 is such

2
)\'_1_04n+1 XE

5.12 = — = 0.268662.
(512) (=l S

We could find some approximations of these minimizers, called ground state solutions, that are given
by

_0.2941¢" + 65.367€
14 25.678¢" + 65.367¢+’

(5.13) Yag(r)

where 7, = rag.gggg and with L*-error equal to 0.006, and

_1.8724e77¢ 4 0.19262¢ 2% — 0.30439¢ 3% + 2.5802¢ 47
14 1.9356e7"¢ + 0.93498¢ =27 + 1.1382¢ =37 4 2.9438¢ 47

(5.14) goaépsp(r)
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Figure 5.2: The initial data ¢yaq, for the constrained minimization problem (5.9)

018

Figure 5.3: The constrained minimizers of the energy E
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Figure 5.4: The value of the energy at each iteration of the minimization problem (5.9)

where 7, = %, with L*-error equal to 0.018.

These approximations are obtained by computing a rational function and an exponential that may be
called exponential-Padé approximants. To do so, we chose randomly, several times, the coefficients of
the exponential Padés. Then, we optimize the coefficients of the Padé, by minimizing the L°°-norm
and starting from the random choice that we did. Once we find the best approximations that conserve
the convexity/concavity of the minimizers and the smallest error possible, we make the choice. We
plot these approximations with the minimizers in the same graph (see Figure 5.5).

5.3.2 The Newton-Raphson algorithm for the ground state branch

The results of the previous section are some stationary solutions of (TW), given in polar coordinates.
These solutions are used as initializations in the Newton-Raphson algorithm to find the whole ground
state branch of travelling waves for (GC), at least for small speeds c¢. The modulus of the stationary
ground state solutions in the domain [0, g]Q are respectively given in Figure 5.6 and Figure 5.7.

First, we choose ¢ = 0.2. Newton-Raphson algorithm converges very well for this value. The solutions
¢ and ¢ in the stretched variables are given in Figure 5.8 and 5.9, and in all R? in Figure 5.10 and
5.11.

The contour lines for the solutions are presented in Figure 5.12 and 5.13.

To have a better look on the solutions, we choose to present them in the half-space 1 > 0 in Figure
5.14 and Figure 5.15.

The Newton-Raphson algorithm gives the approximate value of A which is 0.3304393, that is close to
the value (5.12) obtained in the constrained minimistion problem. These solutions are obtained after
10 iterations with a final relative error equal to 3.8 x 1078,

5.3.3 The energy-momentum diagram

The Newton-Raphson Algorithm converged for different values of ¢. Until ¢ = 1.5 we could get the
solutions of (TW) by Newton-Raphson starting from the initial conditions that are the ground state
of (TW), in other words, the minimizer of the energy, and solution of (TW) with ¢ = 0. For the values
of ¢ that are greater, we had to start from the solutions of (TW) with ¢ larger than zero and closer
to our ¢. For example, to approximate the solutions of (TW) with ¢ = 1.55, we had to initialize our
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Figure 5.8: The numerical solution for v in the stretched variables with ¢ = 0.2
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Figure 5.9: The numerical solution for ¢ in the stretched variables with ¢ = 0.2
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Figure 5.10: The numerical solution for 1 in R? with ¢ = 0.2



104 CHAPTER 5. STATIONARY AND TRAVELLING WAVES TO THE (GC) SYSTEM

Figure 5.11: The numerical solution for ¢ in R? with ¢ = 0.2

Figure 5.12: The contour lines of the numerical solution of 1/ in R? with ¢ = 0.2
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Figure 5.13: The contour lines of the numerical solution of ¢ in R? with ¢ = 0.2
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Figure 5.14: The numerical solution of % in the half-space x1 > 0 with ¢ = 0.2
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Figure 5.15: The numerical solution of ¢ in the half-space 1 > 0 with ¢ = 0.2

Newton-Raphson algorithm with the numerical solutions of (TW) with ¢ = 1.5, that are obtained by
Newton-Raphson starting from the ground state solutions. Hence, we could reach the value 2.35 for
c. For ¢ larger than 2.35, (2.36 for instance), Newton-Raphson algorithm did not converge, even if we
initialize our system with the solutions obtained for ¢ = 2.35. In this way, we could find the ground
state branch. For every value of ¢ for which Newton-Raphson method converges, we calculated the
Energy and the Momentum of the numerical solutions. Some of these quantities are represented in
Table 5.1 below.

c Momentum Energy
0.05 1.1400364 1261.0252
0.35 8.0255292 1262.4817
0.7 16.3374398 1267.0911
0.9 21.341026 1271.2986
1.4 15.288228 1288.1487
1.5 38.441068 1292.8946
1.7 45.280566 1304.221
1.95 55.188544 1322.8241
2.2 67.554076 1349.0038
2.35 77.308418 1371.3961

Table 5.1: Numerical values of the momentum and the energy for the ground state branch of (TW)

The Energy-Momentum diagram is then given in Figure 5.16.

Figure 5.17 and 5.18 represent the solution of (TW) with ¢ = 2.35 that is the greatest value of ¢ for
which Newton-Raphson algorithm converges.

Comparing Figure 5.10 to Figure 5.17 we see that the modulus of the solution 1 has the same shape
and did not vary very much by changing c. We then choose to represent the phase of the obtained
solution by Newton-Raphson method for different values of c.

The values of A for each of these ¢ are given in Table 5.2 below.
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Figure 5.16: The Energy-Momentum diagram for the ground state branch
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Figure 5.17: The numerical solution for 1 in R? with ¢ = 2.35
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Figure 5.18: The numerical solution for ¢ in R? with ¢ = 2.35

Figure 5.19: The phase of the numerical solution for 1 in R? with ¢ = 0.05
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Figure 5.20: The phase of the numerical solution for 1 in R? with ¢ = 0.2

Figure 5.21: The phase of the numerical solution for 1 in R? with ¢ = 1.45
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Figure 5.22: The phase of the numerical solution for 1 in R? with ¢ = 2.35

c A obtained by
Newton-Raphson

0.05 0.3305474

0.2 0.3304393

1.45 0.3242258

2.35 0.3123219

Table 5.2: Numerical values of A for the ground state branch

5.4 Ground state in 3D
In dimension 3, the ground state solutions are radial. We consider the minimization problem
Minimize

S 1 1
(5.15) E3p(Yrad 3D, Prad,3p) = 4”/0 (Yrzasp + @(%ﬂd,aD —1)%+ gjwrzad,w(ﬂ?ad,:m

L p 2
+ q2€2 (prad,3D)r dr
[oe)
under the constraint 477/ r2|gprad73D|2dr = 4.
0

As we did for the dimension 2, we use the projected Gradient method, choose £ = 30, and initialize
the constrained minimization problem, refering to the computations of [6], by

(5.16) ¢rad,3D,i(r) = Arjo(kr)

whenever kr < 7 (the first zero of jo), and ¢raq,3p,i(r) = 0 elsewhere, and where jo(z) = Slr;ﬂ is the
spherical Bessel function, A is a parameter chosen such that 47 fooo 72|¢raa 3. (7)[2dr = 4. This last
constraint gives us the value of A; = 0.7978846. For the initialisation of ¥5q 3p We choose a continuous

function that is equal to zero in » = 0 and approaches to 1 when rk > 7 and as r — oco. Hence we
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Figure 5.23: The initial data taq 3p,; for the constrained minimization problem (5.15)

initialize ¥yaq,3p by the function

1+ tanh("=7/k
(517) wrad,SD,i(r) = 2( £ ) .

We choose N = 600 the number of points so that every subdivision has a size of h = £/(N —1) ~ 0.05,
and the step of the projected Gradient method p = h*. In the minimization problem, we work with
the interval ]0,30[ so we have 2N — 4 unknown quantities, and then the values of tas,3p and ©as 3D
on r =0 and r = £ are obtained from the Dirichlet conditions. We minimize this energy by fixing the
mass or L? norm the ¢gg at each iteration, as we did in dimension 2. The initial data Yrad,3D,i and
©Prad,3D,; are given in Figure 5.23 and Figure 5.24 respectively.

After 50 000 iterations, we get an approximation of the minimizers of the energy that are given in
Figure 5.25 and a final relative error between two consecutive solutions equal to 2.4 x 1076, The value
of the energy at each iteration is given in figure 5.26.

The final value of the coefficient a1 is equal to 0.999855, which gives the numerical value of A equal
to 0.4029429.

We could find some exponential Padé approximations of these minimizers that are given by

_ —0.0494058¢"™ + 2.5128964€ v + 0.3986502¢%™ + 1.5034206¢"7v
1+ 26.946355¢"™ + 4.5772491e?™ + 6.6607466¢>™ + 1.5034206¢%™’
r—2.5180959

where 7y, = 55370045 and with L°-error equal to 0.007, and

0.2319942
1.1231657e "¢ + 2.2851536e 2™ + 0.0008586¢ 3% + 1.8603084e 47

(519) SOaGpSp?,D(r) = _F —9F —_3F —47 0
d 14 4.464733e "¢ + 2.8318444e "¢ 4 3.6186793e°"¢ 4 3.0293949e "¢

where 7, = %, with L®-error equal to 0.004. We plot these approximations with the mini-

mizers in the same graph (see Figure 5.27).

(5.18) YRR ()

5.5 Bubble-vortices solutions

5.5.1 Stationary bubble-vortices

We look now for another branch for the system (T'W). We start by the stationary solutions of this
branch, called vortex solutions. These are solutions of the system:
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Figure 5.24: The initial data ¢yaq,3p,i for the constrained minimization problem (5.15)

Figure 5.25: The constrained minimizers of the energy Esp
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Figure 5.26: The value of the energy at each iteration of the minimization problem (5.15)
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Figure 5.27: The approximation of the constrained minimizers of (5.15)
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(5.20) {—Aw;(;ww?ﬂwﬁ—l)w =0
. 2
—Ap+ LYl = Ap
with
/chdx:47r.
R2

For (GP) (or NLS), there exist some remarkable stationary solutions called vortices. These are sta-
tionary solutions to (GP) in 2d of the form

U(t,z) = a,(r) exp(ind),

in polar coordinates (r, ), where n € Z, n # 0 is the charge, or degree or winding number. Then, ¥
solves the elliptic equation

(5.21) AV = (T2 - 1),

which means that the profile a,, : R4 — [0, 1] is a solution to the ODE

TL2
(522) ) () — T an(r) = an(r) @) — 1)

that increases from 0 at » =0 to 1 for r > 1.
Concerning the (TW) model in 2d, we may look for solutions of (5.20) under the form

(5.23) (¢, p)(x) = (Vapv(z/€), pnpv(2/c)) = (anpv(r/e) exp(ind), onpv(z/€)),

which yields the system

2
BV
AV, By = Vn,BV(|Vn,Bv|2 -1+ m€2|)

(5.24)

—Apnsv + ¢ [Vasv*enBv = AenBv,
or, in the radial coordinate and with ¢, gy real-valued,

2 2 2
O%appv | 10ayBv 1 ‘%,BV)

2
a, BV = p BV (a V4 1+
or? r or r2 " " B g2

(5.25)

2oV 19¢nBV 2 2
o2 T r Or +q 0n BV¥#n,BV = )‘SDH,BV‘

Here, the mass constraint will be replaced by

2 _
/ ¥n,BV do = m,
R2

and A then depends on m.
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5.5.2 Minimizing the energy

Notice that due to the phase factor, the kinetic energy of V;, gy is infinite because of the contribution
for large r, since we have
2
n
IVVasvl® = [Vausv|* + ﬁﬂi,Bv

and the second term will induce in the integral a logarithmic divergence since a, gy — 1 when r is
large. We shall then renormalize the energy by following [16]. Let x = 1p(1). Then, for R > 0, we
may write

2

1
/ n—QA2 + —Q(A2 —1)?dz —2m’InR
D(0,R) r 2e

1— 2,292 2,4 1—
+/ S(A -1 ) - S e
D(O,R) 2€ r 2 Jpomr T

Since (1 — x)/r* € L'(R?), we therefore define, for A € 1 + H*(R?) and ¢ € H'(R?),

1 1
E A,0)= | VAP + —|Vy|? + = A%L?
n,BV( 790) /RQ| | + 82(]2‘ 90‘ + ! 4

2 2.2
n- o 1 2 2 IT—x7/ 42 e n”\ 2
(5.26) (A + (A - 1)) + (42 -1+ )
2.4
]__
e d-x)

2r4

Then, F, gy is a renormalization of the energy in the sense that

E,Bv(A4,¢)= lim [ED(O r)(Aexp(ind), p) — 2mn’In R|.
R—+o0 ’
For (TW), we look for stationary solutions that look like two vortices for ¢ and a sum of two Gaussians

for ¢ (as we did for the solutions with small mass). For x = 1p(g,1), we consider the constrained
minimization problem, for A € 1 + H(R?) | ¢ € H'(R?)

Minimize
1 1
_ 2 2 2 2
(527) ETL,BV(A7SD> - /RZ|VA + 52q2|v90| + 67414 ¥
n? 1 1—x £2n2\ 2
Ly 7142—12) (A2—1 )
+X<r2 5l V) + 5= T
2,4
1—
Cnti-w

2rd

oo
under the constraint 27r/ | o(z) |? do = 4.
0
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L
Figure 5.28: The initial data 1raq,Bv,i for the minimization problem

We will start minimizing this energy to find a numerical stationary solution to (TW). The last term
of E, gv being constant, we can ignore it in the minimization problem.

To minimize this energy, we start from the same initializations (in radial coordinates) that we used
in Newton-Raphson algorithm with separated iterations method with small mass (see Figure 5.28 and
5.29). In other words, we initialize 1 or A by

Yradpva(r) ot or
i(r)y=r
rad,BV i 1 +BIT2 +B27'4

where
a1 = 0.3350601; g = 0.0494196; [y = 0.3725704; (2 = ao.
and ¢ by
Prad,Bv,i(T) = 206557
where

02 = 71.21960411848; m —dm o= -/
e\ 2mwo?

Note that m = 4x, but could be taken 27 or any other value if necessary.

The interval, the parameters and the step for the gradient method are equal to those chosen for the
minimization of the energy for the ground state solutions, namely, we work in polar coordinates in the
interval [0,30], with e = 0.187, ¢ = 0.41, and p = 10~%. We search for vortices of degree 1 so that
n = 1. We choose x = 1 to simplify the energy and make some terms vanish, since 0 < r < 30. The
constrained minimizers and the value of the energy at each iteration of the projected Gradient method
are given in Figure 5.30 and Figure 5.31.

The final relative error is equal to 0.0000116, and the value of A is calculated from the constrained
minimization problem, as for the ground state solutions, and is equal to

1 —an g?

Ay = — X — = 0.2549954.
P 2
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Figure 5.29: The initial data ¢aq,Bv,i for the minimization problem

Figure 5.30: The minimizers of the energy Ey gy
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Figure 5.31: The value of the energy E; gy at each iteration

As we did for the ground state, we could approximate these minimizers by some exponential-Padés
that we used to obtain the two vortices of mass 27 each one (see Figure 5.32). Indeed, we run the code
of the minimization of the energy with mass 27 instead of 4m. With the obtained minimizers, we did
the same work as for the ground state solutions and get

87799 + 8.6056¢%7v
© 14 10.288¢™ + 8.6056¢%

(5.28) ev(r)

where 7y, = To_.fé5437%07 with L*-error equal to 0.012, and

2.2760e e + 4.9087e 2" — (0.86256e "% + 1.1311e 47

5.29 app = _ . } _
(5:29) #1ev () 14+ 8.9986¢—T¢ + 6.7775e—2T¢ + 0.92214e=37¢ + 1.6446e =47’
where 7, = %, with L*-error equal to 0.017.

5.5.3 The Newton-Raphson algorithm for the vortex branch

We now look for travelling wave solutions to system (GC).

Since we have removed the transport term in the equation for ¢, we are allowed to take ¢ real-valued.
To find the vortex branch of (TW) with small ¢ > 0, we used the Newton-Raphson Algorithm starting
from the stationary solutions obtained in the previous section. In 2D the 2 vortices are obtained using
the approximate minimizers obtained in the previous section and are presented in Figure 5.33 and
Figure 5.34.

For ¢ = 0.2, the numerical solutions ¢1 gy and ¢ py are obtained by Newton-Raphson algorithm after
28 iterations with a final relative error of order 107°, and presented in Figure 5.35 and Figure 5.36.
The value of A obtained by Newton-Raphson is equal to 0.4615025.

The contour lines of these numerical solutions are presented in Figure 5.37 and Figure 5.38, and their
modulus in the half-space 21 > 0 in Figure 5.39 and Figure 5.40.

If we compare the vortices of (GP) obtained in |5| and our vortices for (TW), we see that the ones of
the system are much thicker, and the area where 1 is small is much larger.
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Figure 5.32: The exponential-Padé approximants of the constrained minimizers of the energy Eq gy
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Figure 5.33: The initial data for ¢ in the Newton-Raphson algorithm
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Figure 5.34: The initial data for ¢ in the Newton-Raphson algorithm

Figure 5.35: The numerical solution for ¢ in all R? with ¢ = 0.2
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Figure 5.36: The numerical solution for ¢ in all R? with ¢ = 0.2

Figure 5.37: The contour lines of the numerical solution of 1/ in R? with ¢ = 0.2
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Figure 5.38: The contour lines of the numerical solution of ¢ in R? with ¢ = 0.2

il

=

Figure 5.39: The numerical solution of % in the half-space x1 > 0 with ¢ = 0.2
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SN,

Figure 5.40: The numerical solution of ¢ in the half-space 1 > 0 with ¢ = 0.2

5.5.4 The energy-momentum diagram

The Newton-Raphson Algorithm for the vortex branch converges for different values of c¢. For every
value of ¢ for which Newton-Raphson method converges, we calculated the Energy and the Momentum
of the numerical solutions. Some of these quantities are represented in Table 5.3:

c Momentum Energy

0.12 93.605614 1741.3084
0.137 84.894592 1740.9902
0.15 76.624484 1740.4648
0.157 73.617822 1740.2998
0.168 64.71966 1739.3533
0.18 61.42872 1739.1495
0.19 59.451292 1738.7097
0.7 16.3374398 1267.0911
0.9 21.341026 1271.2986
1.5 38.441068 1292.8946
2.2 67.554076 1349.0038
2.35 77.308418 1371.3961

Table 5.3: Numerical values of the momentum and the energy for the vortex branch

We could not find any value of ¢ between 0.19 and 0.7 for which the algorithm converges. We noticed
that when c¢ increases, the two vortices approach, and starting ¢ = 0.7, they superpose and the
initializations and the obtained solutions for the vortex branch do not present vortices, but are the
same as the ground state branch, and have the same energy and momentum. The energy-momentum
diagram for the vortex branch is presented in the upper part in Figure 5.41 with the one for the ground
state branch. The upper branch correspond to the small values of ¢ (0.12—0.19) for the vortex branch,
and the lower one corresponds to the great ones (0.7 — 2.35), and similar to the branch obtained in
Figure 5.16, and where the solutions are not vortices anymore.
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The vortex branch

The ground state branch

Figure 5.41: The energy-momentum diagram for the vortex and the ground state branches

5.6 Some recalls
We first recall the Pohozaev identities (see [14] Proposition 4.6).

Proposition 37. Let ¢ € R and (¢, ) be a solution of (TW) of finite energy. Then the following
hold.

1. The functions ¢ and ¢ are bounded and C™ and ¢,V € WFEP(RN) for any k € N and p > 2

2. There ezxist Ry > 0 and a real valued function © such that 1) = || exp(i©) on RN\ B(0, R.) and
VO ¢ WrkP(RN) for any k € N and p > 2.

3. Letx € C®°(RY) be a cut- offfunction such that x = 0 on B(0,2R,) and x = 1 on RV\ B(0,3R,).
We have 15 awg — )9 % — aTl(X@) € LY(RYN) and the two following Pohozaev-lype identites hold:

al 1 Dy |2
/RN 8%1‘ 6:751’ Z ‘ aCL‘ )dx
1
(5.30) + [ vk =P b Lol - £ opar=o
RN € £°q
and
1
(V=2 [ V9P + 551Veldo
i 2 2 l 2 2 ﬁ 2
[ = 1R + S Iolel? - gl do
B ol (1) ORe() O
(5.31) —C(N—l)/RNRe(¢) . —Im(v) . —axl(x@)dx

2¢6(N — 1 0
+7C( 5 )/ <P1ﬂda:.

e2q
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We have also the following non existence result (see [14], Theorem 4.7).
Theorem 38. Let N > 2 and let (¢, ) be a finite-energy solution of (TW). Assume that either
1L c> 35,

2.N=2and02:§2, or
3. N>3,¢=2%, and 52 - ¢dw1€L2N3(RN)

Then ¢ = 0 and v is constant on RY.

5.7 Formal aspects

5.7.1 Asymptotic expansion at infinity

In this section, we will focus on the asymptotic expansion at infinity for the travelling waves of the

(GP) equation, because ¢ is considered exponentially small. This study was also done by Bouchel

in [2| where he proved that under suitable assumptions on the parameters c,d, ¢, and k, the solution

(3, ) of the three dimensional system (TW) is in C°°(R3) x C°°(R3), moreover, v tends polynomially

to 1 and ¢ tends exponentially to 0. Travelling wave solutions for (GP) have to satisfy the equation
o

(5.32) feg =AY+ (1~ )

In this section we follow the strategy of [4] to study the asymptotic behaviour of the solution to the
equation (5.32).

Clearly ¥ = 1 obeys to (GP) with the boundary condition ¢» — 1 as |(z,y)| — o0o. Neighbouring states
are obtained by writing

(5.33) v =149 =1+ + iy

substituting into (5.32), linearising these with respect to ¢/, and separating their real and imaginary
parts, we obtain

oYl
34 L= — Ayl 4 20
(5.34) e Y. + 21,
oY)
. L= Ay
(5.35) o v;

where (¢].,9.) — 0 for r = |(z,y)| — oco. Thus 9. and 1] obey

(5.36) (A*—2A+¢ 7)(%,%) =

Considering that the A? term is negligible to leading order, we see that we can discard the term At
n (5.34) so that

, coY)
(5.37) =3 I
(5.38) Ayt = ¢ 2Pr

Ox
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and

2 9?
(5.39) (A= 5@)@/};’%) =0
We make the transformation

=z
2
/ — 1 _ i 1
y=yl-5)

And this could be real if we consider that ¢ < v/2. We write wz’- as Fourier serie
(5.40) W) = % + Xp>1a,(r") cos(nd') + X510, (") sin(nd’).

Y} being even in #' we can suppose that b, = 0 for all n > 1 and ap = 0 because ¢, — 0 as ' — oo.
Supposing that the terms a, are of the form 72 we can write

P = EnZl% cos (nf").
Using this result, we can obtain 1)/ from (5.37). For sufficiently large r’ we may therefore write
coy(z? +y%(1 — %)) — 2022
2 @y - 9

" 1T
[ 2
(1= 5)

1/}7“’\“1""

5.7.2 Hamilton equation

For the travelling waves for the (GP) equation, a branch of solutions has been computed. It may be
parametrized by the speed ¢ of propagation, and the following Hamilton equation has been derived
(see [8], equation (2.46))

_OF dE  dQ

=30 or T =0

The computation remains valid in our situation, with () the momentum of 1, Let us then assume that
we have a smooth curve ¢ — (1., ¢.) such that, for any ¢, (1., ¢.) solves (TW) for some A\ depending
smoothly on ¢ and with, for some m > 0 given independent of c,

/ pe|? dz = m.
RN

Then, taking the scalar product of the first equation of (TW) by 0.1 and taking the scalar product
of the second equation of (TW) by 0.¢. yields

d 2 1 2 2 1 / 2 2
5 c c -1 A c c c
Vel + s (el = 1% de+ 5 | 0vel)lel da

dc RN
_ e .
=2c /RN <a$1,zﬁc¢c> dz

d 2 q2/ 2 2 d/ 2
s |”d ) |7 0c(|pe|”) dr = Ae— c|”dz =0,
[ Ve e+ [ ePoedtde = A [ e =0

(5.41) c

in view of the normalisation of ¢.. Consequently,
d e,

%E(@Da ‘Pc) =2c /RN <37$1’18€¢C> dr = C%Q(lbc),

as claimed.
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5.7.3 Stability issues

For the (GP) equation, it is conjectured that travelling waves are stable when %Q(iﬂc) < 0, that is
Q@ — E is concave (by the Hamilton equation (5.41)), and unstable when %Q(@DC) >0, thatis Q — F
is convex. In this direction, we may quote the works [10] (in 1d), [11] (in 3d). This is the usual stability
criterion obtained in [17] and [7] for bound states for NLS. In [4], the travelling waves are obtained
by minimization of the energy at fixed momentum (when this problem has minimizers), and it follows
from this result that the set of minimizers is orbitally stable by the Nonlinear Schrédinger flow. This
result assumes in particular that the Hessian of the action at the travelling wave has only one negative
eigenvalue.

For our problem, the situation is quite different since on the one hand, the (scalar) momentum Q(V) is
not conserved by the (TW) flow, and on the other hand, due to the mass constraint on ¢, the Hessian
at the travelling wave (1., ¢.) may have two negative eigenvalues, but it is not very clear to determine
what happens on the constraint sphere for ¢. Furthermore, the mass constraint fRN l¢|?> = m does
not enter in the framework of [7]. Therefore, we do not make any claim concerning the stability of the
travelling waves we obtain here.

5.8 Rigorous result

The next statement of this chapter is an existence result of a ground state and was done in Chapter
3, but we repost it here for a recall.

Theorem 39. Assume that 1 < N < 3 and that we work for the physical parameters (5.7) and (5.8).
Then, there exists at least one minimizer (Yas, vgs) for the problem

inf{ E(, p), € £, € H'(RY) s.t. / lo|? dz = m}.
RN

For m > 0 we consider the minimization problem

(GSm) minimize E(y),¢) for ¢ € £, ¢ € HY(RY) satisfying / lp|*dz = m.
RN
We define
(5.42) Gmin(m) = inf {E(¢, Q)| vet pe Hl(RN),/ > de = m} .
RN

Proposition 40. The function Guin has the following properties:
(i) Gmin s non-decreasing and concave on (0,00), and 0 < Guin(m) < I for all m > 0.

i 1
(1) If N =1 we have Gpin(m) < 34 for any m > 0 and lim Gmin (M) =
€ m—0 m 3

(115) If N > 2, there exists mg > 0 such that Gpin(m) = 34 for any m € (0, mg].
5

(iv) There exists C > 0 such that Gmin(m) < Cmvz,

Proof. (i) Since E(3,¢) > 0 for any 1 and ¢, it is obvious that Gpin(m) > 0. Consider ¢ € C°(RY)
such that [y |[¢|*dz = m and let ¢, (z) = g]\l,/2¢ (2). Then [pn [po*dz = m and [pn [Vee?dz =
% Jp~ IV@|? da. Taking ¥ = 1 we see that Gmin(m) < E(1,¢,) for all o > 0, and letting ¢ — oo we
get Gmin(m) < .
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Writing ¢ = v/mg, we see that
. 2 2 m 2, M99
Guin(m) =nt { [ V024 VIIUP) + 5196 + Fuiof ds
(5.43) R
77/} € 8,(/3 € Hl(RN)yfRN ‘@‘de = 1}

For any (¢,¢) € € x H'(RY), the mapping m — [pn [VY|2 + V([¢]?) + 2 + By @l da is
concave and non-decreasing, and the infimum of a family of concave and non-decreasing functions is a
concave and non-decreasing function, too.

In all what follows, the various constants C7, Cs, etc. depend on €.

(zz) Consider x € C2°(R"Y) such that 0 < x < 1, x = 1 on B(0,1) and x = 0 on R \ B(0,2). Denote
= [|x||22, B =||Vxl|[%2, and D = [n x*dz. Let s € (0,1) (to be chosen later) and let

x T
b =1k (D), gt an (2).
Fix m > 0. If a € (0,1) and b > 0 are chosen so that a?b™ A = m, we have [|¢a[2, = m. It is clear

that [|[Veapl2s = a?b™ 2B and [|[Vipapl|2. = £2a*b™ 72|V (x )H%2 < 4xk%a*bN~2B. There exists C > 0
such that V(7) < C(1 — 7)2 for all 7 € [0,2], hence, when xa? < 1,

V([thapl?) < C(1 =42 ,)? < 4CK%a 4<b)

and consequently
[ V(s az < 408200 D,
RN

Using the above estimates and the fact that a?b™ A = m we get

m 1 9
gmin(m) - 57 < E(¢a,b7 Spa,b) - 57 /]%N ’(Pa,b’ dx

1 1
= / IVbapl® + V(IYap?) + 55IV0asl* + = ([0ap]® — 1) [@apl* dz
RN e%q €

2bN QB

< 4k%a*WN 2B + 4CK2a*N D + 3
e2q

— 2 fon (1= $ra®x3(@) X' (x) do

2 4 2
=m (4n MmN a2 ¥ AN LB + 4k2a 20D 4 a21q2mfﬁaﬁAﬁle — /<ca2£4).

Choosing k sufficiently small (for instance, kK < m n(8€4, 1/a?) will do) we see that there exist constants
4

Cs, C3 > 0 such that Qmin(m)—% <m (Cgm*%aN — Csa ) .If N = 1 it suffices to take a = fm, where
€

¢ > 0 is sufficiently small, to see that there exists some Cy > 0 such that Gpi,(m) — —om? <0
for all m > 0.

If N =1, for any n > 0 there exists e(n) > 0 such that for any ¢ € & satisfying F1(¢) < e(n) there
holds |[|1| — 1[|fe®) < 1. Fix n > 0. Let m € (0, 3ee(n)]. If ¥ € € and ¢ € H'(R) are such that

loll2, = m and E(y), ) < Q—m , it is obvious that F1(v) < 26')} < e(n), hence |[¢(z)| € [1 —n,1+4n] for all

m<
g4 =
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2 .
x € R and consequently E(v, p) > si‘l fR [V%|¢|? dz > (1;+)2m. We conclude that (1;7) < gm‘;(m) < %4
for any m € (0, ;646( )], hence limy, o g"%(m) = %4-

(4ii) We already know that Gmin(m) < 3 (see part (7)) and it suffices to show that for m sufficiently
small and for any ¢ € £ and any ¢ € H'(RY) satisfying [¢||2, = m and E(¢,¢) < 28—‘} there holds
E(¢,¢) > Z. It also suffices to consider the case when ¢ and ¢ are real-valued and 0 < ¢ < 1 on

RN, Indeed denoting ¢ = |¢| and ¢ = min([¢)|,1) we have ¢ € £, ¢ € H'(RV), |42, = m and

(% SO) = (wv 90)
Suppose that ¢ € £ and ¢ € H'(R"Y) are real-valued, 0 < ¢ < 1on RY, ||g0H%2 =m, and E(¢, p) < 26—‘2.
Consider first the case N > 3. Using Holder’s inequality, then Sobolev’s inequality we get

(5.44) ‘/ (e IwIde’ 11— 1121, g el Zer < CEIL = [P, x IV ll7e.

Since 0 < || < 1, using Lemma 4.1 p. 171 in [4] (see estimate (4.1) there), we infer that there exists
C1 > 0 such that

[ k=1 ar<a [ viop)da+clvel
RN RN
(5.45)

2*
2r _ 8m Sm 2
B9+ GEwe)F <5 (5
If N > 4, by Hélder’s inequality we get

4
2* N

4 4
2 2NN onl—= 8 8m\ 2
=Pl < I WP - Pt < 5 va ()

Then using (3.5) we infer that there is Co > 0 such that for any m € (0, 1] and for all ¢ and ¢ as above
there holds

4
[ (8 = 1) P de| < Com 9]

and consequently

C N
B.g) - 5 > Bi() + ( - ‘“) IVl

e2q g4

_N
The last quantity is nonnegative if m < min(1,C, * 5%q*%),
If N = 3, using Holder’s inequality, estimate (5.45) above and Sobolev’s inequality we get

[ (0P =) o

18 3 1 3
<L = [Pllzellelza el fe < CEIL = [Pl 2llellZ Vel 72

1
3 2 1 3
<cd (1 vuPras+culvults) el el

If 4 and ¢ are as above we have [|[V||7, < E1(¥) < 2‘“ . If m < 1, we infer that there exist C5,C% > 0
such that

3 1
| s (192 = 1) o2 da| < G3Ex )21V 0l 32

1 1
<G (Bs@) + 2= IVell3: ) 196l 2l 2.
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Then we get
o! 1 1
B9 - % > () + alVelta) (1- SI9lbilel:

> (1) + 2 1V0l2: ) (1 - Com?)

for some C5 > 0 and the last quantity is non-negative for all m sufficiently small.
Consider next the case N = 2. Using Plancherel’s theorem and Hélder’s inequality, we get

llell gs < H(leL;SHVgoHSLQ for all s € (0,1) and all ¢ € Hl(RQ).

If p € (2,00) and s € (0, 1) satisfy % = % — 5 (that is, s =1 — %), using the Sobolev inequality we see
that there exists C}, > 0 such that

lellze < Collollye < Collell2°IIVellza  for any ¢ € H'(R?).

1 1
In particular, for p = 4 we get ||| Lar2) < Cull@l 22 |Vll7, for any ¢ € H'(R?), hence

) | [ (0B =)o da] <1 = WPselels < CHIL= 1RV el ol o

Using Lemma 4.1 p. 171 in [4] (see estimate (4.2) there) we infer that there exists C' > 0 such that for
any ¢ € & satisfying [¢| < 2 we have

1
(4 5 — CIVlE: ) /]R (WP - 1)" do < /R V([¢]?) dz

In particular, there exists mg > 0 such that whenever |¢)| < 2 and E(¢), ¢) < 2"}10, there holds

[P -1 ar s [ V(P
R2 ]R2

Coming back to (5.46) we see that there exists C7 > 0 such that for all m € (0, mg] and for any ¢ € £
and any ¢ € H'(RY) with [¢] <2, [J¢[|2. = m and E(y, ¢) < 26—‘31‘ we have

IR 07(/RQV(W\)da:+HV<PHL2)H<PHL2-

As previously, we conclude that E(v, ) — % > 0 if ¢, ¢ are as above and m is sufficiently small.

(iv) Fix a radial function x € C°(RY) such that x =1 on B(0,1), 0 < x < 1 and supp(x) C B(0,2).
For R > 0 denote ¢r(x) =1 — x (%). Denote A = [ [V¢1|*dz and B fRN (|11]?) dz. We have
Jgn IVYR|>dz = ARN™2 and fRN V(|wr|?)de = BRY. Since v is radial we have Q(¢g) = 0.

Let ¢1 be an optimizer for the Poincaré inequality on B(0,1), that is ¢1 € HZ(B(0,1)),
fB(o,l) |p1/>dz = 1 and fB(o,l) |V¢i1|?dr = Cp. Extend ¢; by zero outside B(0,1). Let pgr(z) =

R\J/anﬁsl (%)7 so that fRN lpr|*dz = m, fRN Vpr|?dz = %’Qm and supp(pr) C B(0,R), hence
Jen |Yr|?|or|?dz = 0. Then we have

C
(5.47) Grnin(m) < B(Vr, or) = AR + BRY + 5 m = fn(R).

Notice that (5.47) holds for any R > 0, hence we may optimize with respect to R. The function fy, is
convex in (0,00) and tends to 400 when R — 0" and when R — +o0; it then has a unique minimum
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on (0,00) at a point Ry, satisfying f4(Rm) = 0, that is A(N — 2)RY + BNRN+2? = 2(el | [t is easily

e2q
seen that for large m the unique positive root Ry, of this equation is of order of magnitude Ry, ~ mﬁ
and there is some constant C' > 0 such that fi(Ry) < Cmw+e, Coming back to (5.47) we conclude
that N
grnin(m) < CmN+2,

Let us now provide some explicit e-dependent bounds C' when N =1, 2 or 3 and F(s) =1 — s, hence
V(s) = (1—s)%/(2%).
First, we may take, by density, x(z) = 1if |z| < 1, x(x) =0if |z| > 2, x(z) =2 — |z] if 1 < |z| < 2,
so that )
A= %N—l(SN—l)/ rNldr = £N(B(0,1))(2Y - 1).
1

Moreover,

2

2¢2B = HNTL(SN ) / (r —2)%N"tdr,
1

In addition, we know that Cp = 72/4if N = 1; Cp = 2.4048% < 5.8 if N = 2 (~ 2.4048 is the first zero
of the Bessel function Jy) and Cp = 7% if N = 3 (7 is the first zero of the modified Bessel function jo).
If N = 2, then fo(R) = A+ BR? + ngfpmm, Rn = (Cpm/e2¢?B)'/? and fu(Rn) = A +
2(BCpm/e2¢*)/* with A = 37 and €2B = 57/12, thus

5.502

5—Vm < 9.5+ 383.75y/m.
£%q

(5.48) Gumin(M) < fou(Rum) < 37+

If N =1, then fn(R) = A/R+BR+ EQ%RQm with A =2, 2B = 1/3. Choosing R = (2Cpm/e2¢>B)'/3

as an approximation of Ry, we obtain

0.45
(5.49) Gmin(m) < fu((2Cpm/*¢*B)!/?) < i 63.62m/3

If N = 3, then fu(R) = AR + BR3 + ,S2>m, with A = 287/3 and 2B = 167/15. Choosing

Z2L2R?
R = (2Cpm/(32¢>B))'/° = (%m)l/f’ = 3.5m'/% as an approximation of Ry, we obtain

(5.50) Gmin(M) < fum((2Cpm/(32¢° B))Y/%) < 102.63m"/° + 4245.71m%/°.

Theorem 41. Assume that Gmin(m) < . Then there exist minimizers for the problem (GSp).
Moreover, if (Vn, n)n>1 s any sequence in € x H*(RN) such that

H(PNH%Q —m

and
E(wna Son) — gmin(m)7

then there exists a subsequence, still denoted the same, there is a sequence (zy)n>1 C RY and there are
Y€1+ HYRY) and ¢ € HY(RYN) such that

Y- — )| =1 — =1 and |on(- —x)] — o in HY(RY),
V([4nl®) (- — 20) — V(|¢]*) in LY(RY) and

[UnlPlenl?(- = zn) — [WPlel* in LYRY) asn — oo
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Remark 42. The conclusion of Theorem 41 is only a statement about |¢y| and |p,|. More in-
formation should be available here. Indeed, if (Vn,pn) is a minimizing sequence, then E(in, pn) —
E(|tnl, lonl) — 0, hence 1y, should be "close" to e¥|i,| and ¢, should be "close” to €Pr|py| for
some 0y, B € R.

Remark 43. For the physical values (5.7), (5.8) of the parameters, and by using the upper bounds
(5.49), (5.48) and (5.50), we may check that the conclusion of Theorem 41 with F(s) =1 — s holds at
least when

(i) N =1 and m > 0.0245;

(i) N =2 and m > 0.25;

(i) N = 3 and m > 62.14.

Proof. Let (1n, on)n=1 be a sequence as in Theorem 41. In particular, E1(¢r) and [[¢n| g1ry) are
bounded. It follows from Lemma 4.8 p. 177 and Corollary 4.3 p. 172 in [4] that || [{n| — 1| 2w is
bounded. Let pp be as in assumption (A2). Denote

Fu = IVl + [ [on] = 12 + [ ] = 17072 + [V |* + |on]*.

Obviously, (fn)n>1 is a bounded sequence in L*(RY) and [pn fo(z)dz > [|¢n|2.. Passing to a
subsequence we may assume that [pn fn(z)dz — ag as n — oo, where ap > m > 0. Let
A, 1 [0,00) — [0, 00) be the concentration function of f,, that is

A, (t) = sup / fn(z)dz.
yeRN J B(y,t)

Proceeding as in [12], it is straightforward to show that there exists a subsequence of ((¥n, ¢n, An))n>1,
still denoted the same, there is a nondecreasing function A : [0,00) — R and there is « € [0, ag] such
that

(5.51) A, (t) — A(t) a.eon [0,00) as n — 00 and A(t) — o as t — oo.

As in [15] (see the proof of (5.12) p. 156 there) one can prove that there is a nondecreasing sequence
t, — oo such that

(5.52) lim An(ty) = lim A, (’Z“L) —a

n—oo n—oo

Our aim is to show that a = ag. The next step is to prove that a > 0.
4
Let k = m — e*Guin(m) > 0. Choose d € (0,1) such that m — (lfid)ggmm(m) > £. Denote

A, ={z € RY | [Yn(z)| <1 —d}, mip= fAn \gon\de and

man = f]RN\An ’(Pnlzdx
It is obvious that
min + man = H‘PnH%Q —m

and

1 2 2
Mo € G o Wl

et et
< = d)QE(¢n7SOn) — mgmin(m)




5.8. RIGOROUS RESULT 133

as n — oco. It follows that

4

5 9min(m) >

liminf my, =m —limsupms, > m —
n—00 n—00 (1 - )

K
5
Hence there exists ng € N such that my, > § for all n > ng. Fix p € (2,00) if N € {1, 2}, respectively

€ (2, 2% ] if N > 3, so that (pn)n>1 is bounded in LP(RY). Denoting by £V the Lebesgue measure

in ]RN and using Hélder’s inequality we get

2 2
g s / |‘Pn|2dm < H‘PnH%P(An)‘CN(An)li; < mﬁN(An)lig for all n > nyo.
Ap
The above inequality implies that there exists 79 > 0 such that £V (A,) > no for all n > ng. Using
Lieb’s Lemma for (1 — |1y, |)+ (see Lemma 6 p. 447 in |9]) we infer that there exists 71 > 0 and for any
n = ng there is y, € RY such that

d
v (BnﬂB(ynal)) =M, where By, = {xeRN } |¢n($)| < 1_2}'
Then we get
2 md?
An(1) > fo(z)dz > ‘1 — || ’ de > — for all n > nyg.
(Yn,1) B(yn,1) 4

The above inequality implies that A(1) > 4d )

To prove that a & (0,p) we argue by contradiction and we assume that 0 < a< ag. Let hy =
An(tn) — Ay (%) + 2% It is obvious that A, —> 0 as n — oo. For each n € N* choose x,, such that

tn 1
/ . fo(z)dax > A, (> — — and denote Q, = B(zy,tn) \ B(zn, ). It is obvious that
B(xn, ;)

2 2n

an fo(z)de = fB(zn,tn) fn(2 fB(ac (z) dz

Take x € C2°(RY) such that 0 < x <1, x =1 on B(0,1) and x = 0 on RY \ B(0,1). Denote
Una = (] = D (5550) 1, o = (] = 1) [1 = x(2520) | +1

(Pnl—’()on’X(x In>7 (10"72:|<pn| |:1_X<%):| '

It is clear that

‘/]RN ’@n’Z - ‘@n,l’z - "Pn,2|2d$’

(5.53) < /Qn ‘1 2 (1’ ;n:vn> —a- X)Q(J: ;nxn> )wn‘z da

< hp.
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Since |9y, ;| < max(|t,],1) and |y i| < |@n| for ¢ = 1,2, we have

[ [ FuPhonl = s Plon P = 1nal?lnal? da

(5.54) <3 / (onl? + [ 2lon? da
Qp

< 3hy,.

By assumptions (A1) and (A2) there exists C' > 0 such that V(s) < C ((s — 1)* + (s — 1)*°%2). We
have } |Yn.i| — 1! < ‘ |tn| — 1|, i = 1,2, and we infer that

‘ /RN V(Wn|2) - V|¢n71’2) _ V(Wn,Z’Q) dx’

(5.55) < / WV (1al)| + [VIna )] + IV (ol da

n

<30/ [ [n] = 1% + | [n] — 1]%°*2 < 3Chy.
Q'n/

8.1"7' - 8a:j X tn tn
sufficiently large, so that N|Vy|? <2 on RY, we get

2
/ 81/’71,1‘ dz < 2/ ‘a|¢n‘
Qn 8% Qn c%c]

and summing up we infer that

We have 2ot — 9lvnl (f‘_“’"> + i(wn’ - 1)5—;‘7_ (m) and a similar equality holds for ¢, 2. If n is

2 1 9
+NW"‘_” dz

[ V1P = 1900 = [Vna) s
RN
(5.56) < [ VIl P+ Vs + (96, do

< 5/ V[t \2 + | ltbn| — 1]2dx < 5hy,.
Qn

It is obvious that a similar estimate holds for ¢,. From (5.54)-(5.56) we infer that there exists a
constant C > 0 such that for all n sufficiently large we have

(5.57) |E(¥n, ¢n) — E(¥n1,¢n,) — E(Wn2, 0ny)| < Cha.

Passing to a subsequence (still denoted the same) we may assume that HgomHQLQ —m; as N — 00
for i = 1,2, and (5.53) implies that m; + mg = m. Let us show that m; > 0 and mg > 0. We argue
again by contradiction and we assume, for instance, that mo = 0. Then we have necessarily m; = m.
If there is a subsequence (ny)g>1 such that E(iy,, 2,¢n,2) — e > 0 as k — oo, by (5.57) we have
E(Yn, 1,0n,1) — Gmin(m) — e. On the other hand, E(¢n, 1, ¢n,.1) = Gmin (||‘Pnk,1”%2)7 and letting
k — oo and using the continuity of G, we find likrggle(wnk’l, ©n;1) = Gmin(m), a contradiction.

Therefore a sequence (ng)r>1 as above cannot exist, and this implies that E(t¢p 2, on2) — 0 as
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n —+ oo. Then we deduce that ||¢n 2| g1y — 0 and E1(¢n,2) — 0 as n — oo, and using Lemma
4.8 p. 177 and Corollary 4.3 p. 172 in [4] we infer that || [ty 2| 1| 2(ev)y — 0. The Sobolev embedding

gives then || [t 2] — 1| p2pg+2(may — 0. Since (¥n, on) = (¥n,2,¢n,2) on RN\ B(zy,,t,), we see that
/ fn(z)dz — 0, hence / fn(z)dz — «y, and this implies A,,(t,) — ap. Recall
RN\ B(zn,tn)

B(xn,tn)
that the sequence (t,),>1 has been chosen so that A, (t,) — «, thus we get a = «p, contradicting

the assumption that o € (0, ). So far we have shown that we cannot have my = 0, and similarly we
show that my # 0. We conclude that my, my € (0, m).
It is clear that E(ni, oni) = gmin(”@n,z‘”%z) and letting n — oo we find, by continuity of Guin,

liminf E(¢n i, ¢n,i) = Gmin (M) fori=1,2.

n—oo
Then using (5.57) we get Gmin(M) = Gmin(M1) + Gmin(m2). On the other hand, the concavity of Gmin
implies Gmin(m;) = TEGmin(m) and equality may occur in this inequality if and only if Gy, is linear
on [0, m]. Summing up the last two inequalities and comparing to the previous inequality we see that
necessarily Guin(m;) = T:Gmin(m) for i = 1,2, and therefore Gyin must be linear on [0, m]. Then
Proposition 40 (i7) and (i4i) implies that Gmin(m’) = m/ for all m’ € [0, m], contradicting the fact that
Gmin(m) < &. We conclude that we cannot have a € (0 o), and consequently we must have a = .
Since a = ao, it is standard to prove that there is a sequence (x,),>1 C RY such that for any ¢ > 0
there are R > 0 and n. € N such that

(5.58) / falz)de <e for all n > ne..
RN\ B(zn,Re)

Denoting ¢y, = [tn|(- — 2n) and @n = |@n|(- — 2,), it is easily seen that ¢, — 1 and @, are bounded in
H'(RY). Passing again to a subsequence (still denoted the same), we infer that there exist ¢ € H*(RY)
and ¢ € 1+ H'(RY) such that

Yp—1p =0 and @, — ¢ weakly in H'(RV),
(5.59) U —> ¢ and @, — ¢ in L (RN) for any 1 < p < 2

and almost everywhere.

The weak convergence implies |[¢||2, < lim inf |@n |72 = m. On the other hand, fix e > 0. Using (5.58),
n—oo

for n > n. we have / |@n|? dz < &, hence / |@n|? dz > ||@nll32 — ¢ for all n > n.. Since
RN\B(0,R.) B(0,R.)
@n — o in L?(B(0, R.)), we obtain / lp|*dz > m — e. Since € > 0 is arbitrary, we infer that
B(0,R:)

Jgw l¢[*dz > m. Thus we have shown that [|¢[|7, = m.
By weak convergence we have

(5.60) IV9lI7: < lminf [[Veb|7.  and  [[Vel7. < liminf [V Z..
The convergence almost everywhere and Fatou’s lemma give

Jev V([91?) de < liminf, oo fon V (|n)?)dz  and
(5.61)

IRN |¢|2|90‘2d$ < liminf, fRN |@En’2|@n|2dx
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Since ¢ € &, ¢ € H'(RY) and [|¢||2, = m, we have E(¢), ) > Gmin(m). From (5.60) and (5.61) we
get E(1, ) < liminf, o0 E(tn, $n). On the other hand, since ¢ € &, p € HY(RN) and loll22 = m,
we have E(¢, ¢) = Gmin(m). We deduce that necessarily

V|22 — V|22,  and  [[V@al[7. — [Vl asn — oo.

Moreover, we must have equalities in (5.61) and the lower limits there are in fact limits. We show that
b — 1||L2 — || — 1|| 2 in the same way as we proved that |¢|2, = m. Then the weak convergence
and the convergence of norms give ¢, — 1 — ¢ — 1 and @, — ¢ in H'(RN).

The last assertion in Theorem 41 is a consequence of the following well-known and elementary result,
known as Riesz-Scheffé lemma: if ¢, and ¢ are nonnegative integrable functions on a measure space

(X, A, ), if ¢, — ¢ almost everywhere and if/ On dp — / ¢ du, then / |p, — Pldpu — 0. O
X X X

Proposition 44. Assume that (1, ) € € x HY(RY) is a solution of the minimisation problem (G Sy,).
Then:

(i) There exists v € [Gpoy (M), Gy o(M)] (where G o and Gy, o are the left and right derivatives of
the concave function Guin, respectively} such that

1 1 .
(5.62) —A + S F(Y)Y + ey =0, —As0+ WJ\ p—cyp=0  nR.

(i) We have |¢| < 1 almost everywhere and ¢ € VVif(RN), © € W2P(RN) for any p € [2,00). In
particular, ¥ and ¢ are C' functions.

(iit) The function (1, ) is radially symmetric (after translation). That is, there ewist xo € RN and
U, @ [0,00) — C such that ¥(z) = P(|z — xo|) and p(x) = @(|x — z0]) for all z € RN,

() If (1, @) is a minimizer and 1, @ are as in (ii), then the function |1)| is nondecreasing on [0', 0),
|@| is nonincreasing on [0,00) and there exist constants 6y, o € R such that 1 = %y, ¢ = ||
on [0, 00).

Proof. (i) is standard.

(ii) If (¢, ) is a minimizer, then (|1, |p|) is also a minimizer. It is clear that E(min(1, [¢]),|¢|) <
E(|¢], |¢]). Since (|9], |¢]) is a minimizer, we must have E(min(1, [¢|), |¢|) = E(|¢], |¢|). This implies
V[y| =0a.e. and V(|¢|?) = 0 a.e. in the set {x € RV | [¢(z)| > 1}, and we deduce that (|t)|—1); =0
a.e. on RV, Thus |¢| < 1 a.e. on RY. Then the second equation in (5.62) and a standard boot-strap
argument imply that ¢ € W2P(RY) for any p € [2,00). In particular, ¢ € CH*(RY) for any a € (0,1)
and ¢ is bounded on RY.

Since || < 1 a.e., we have F(\w|2) € L"O(]RN). The first equation in (5.62) can be written as
— A+ A(x)p = 0, where A = F(|1|?) + = Llp|? € L®(RY). Standard elliptic regularity theory implies
that there exists C' > 0 such that [|9||yw2s(p(y,1)) < C for any y € RN In particular, ¢ is C* on RV,
(iii) Since any minimizer (1, ) for the problem (GS,,) is C! in R¥ | (i) follows from Theorem 2 p.
314 in [13).

(iv) Given a non-negative, measurable function w : RN — [0, 00) such that £V ({z € RN | w(z) > t})
is finite for any ¢ > 0, we denote by w, the symmetric decreasing rearrangement of w. It is well known

that for p € (1,00) we have / |Vw, P dz < / |Vw|P dz, and equality may occur if and only if for
RN RN

any t € (0,supess(w)), the level set {x € RV | w(z) > t} is equivalent to a ball. The last statement
is a consequence of Lemma 3.2 p. 163 in [3]. It is also well-known that for wi,wy as above we have

/ wiwy dr < / (w1)«(w2)« dz. Obviously, we have (|¢]|?)« = (Jp|+«)?. Let u = 1 — |¢|. Since
RN RN
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2

2 is increasing on [0, 1], we have (2u — u?). = 2u, — u?.

0 < u < 1 and the mapping s — 2s — s
Therefore

_u*2 *2$: *237_ u*_u2 *2.%'
[0 wrtel = [ (elde— [ G —u2)(elra

- / o da / (2u — ). (). da
RN RN

< / o da / (2u — )] da
RN RN

— / p2ll? de.
RN

We infer that E(1 — uy, |pl«) < E(|¢],|¢]) < E(, ). Since (1, ¢) is a minimizer and [|[¢]«|[7, =
Helll72 = llellfz = m, we must have E(L — u.,|pl) = E([¢l,¢]) = E(¥,), and consequently

/ |Vu|? dz :/ \Vu|? dz and/ IV |pl«|? dz :/ |V|¢||?dz. The result of Brothers and
RN RN RN RN

Ziemer implies that for almost all £ > 0, the sets {z € RY | u(z) >t} and {z € RY | |¢|(z) > t} are
equivalent either to a ball or to (). Since we already know that u and |p| are radially symmetric, we
infer that the functions @ = 1 — |¢| and |@| are non-increasing on [0, o).

The fact that |@| is nonincreasing implies that the set D = {& € RY | |p(z)| > 0} is either a ball or
RY. On this set we have a lifting ¢ = |p|e?®, where 8 € HL_(RY) and |V|? = |V]p| |2 + ¢} V5|2

Since / IVo|>dz = / V|| |? dz we must have V3 = 0 a.e. and we infer that § is constant,
RN RN

B(x) = fBo for a.e. x € D. Therefore p(x) = e/|p(z)| = ¢|@|(|x — xo|). A similar argument holds
for 1. 0
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Chapter 6

Conclusion and some perspectives

The main goal of this thesis was the analysis of the Gross-Clark-Schrédinger system given by

00 =AU+ H(H [+ [V - 1)¥
(GC) in R x RV,
60,2 = —A®+ S (Y[ — 2k?)P

with the "boundary conditions"
U] - 1,® — 0 as |z] = oco.

First, in Chapter 2, we have shown that the Cauchy problem associated to this system in dimension
N € {1,2,3} is locally well posed in € x H'(RV) using Strichartz type estimates and a fixed point theo-
rem. The global well posedness was obtained from the conservation of the energy and the L? norm of ®.

Second, the existence of the travelling waves solutions of speed ¢ for the system (GC) was the aim of
Chapter 3, where we have studied several minimizing problems to prove the existence of solutions for
the system
W) {—5” = =AY+ (G lel + [P - 1Dy
2
(—A+SP)e =,

The minimizers of the energy at fixed mass for ¢ has given us the ground states solutions of the
system. We have then obtained some minimizers of energy at fixed mixed momentum. The existence
of minimizers for the energy at fixed mass for ¢ and momentum for v was obtained under some
condition on the strict sub-additivity of E,, (see (3.70) in Chapter 3). It would be very fascinating
to find the values of p and m for which this condition holds. The existence of these minimizers is
restricted to some values of ¢ in terms of the right and the left derivatives of the minimal energy.

Numerically, in Chapter 4 we have found the travelling waves solutions of small mass for (GC) and
an approximation for the eigenvalue A, using a Newton-Raphson algorithm with seperated iterations.
These solutions were obtained for speeds 0.165 < ¢ < 0.355. One can search for other numerical
methods to find an algorithm that converges for a larger speed range.

Finally, in Chapter 5, two branches of solutions for (TW) were studied numerically for small speeds
c and with mass equal to 47: the ground state branch, issued from the stationary solutions of type
ground state, and the vortex branch issued from the stationary solutions of type vortex of degree
1. We could plot the energy-momentum diagram corresponding to each type of these solutions.
For the ground state branch, the diagram is obtained for speeds ¢ € [0,2.35], while it is found for
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speeds ¢ € [0.12,0.19] for the vortex branch. Moreover, we have noticed that for the vortex branch,
if ¢ € [0.7,2.35], the algorithm converges, but the obtained solutions are the same as the ones of the
ground state branch and do not present vortices anymore. The proof for the existence of the ground
states solutions was recalled in this Chapter. A similar one could be adapted to prove rigorously
the existence of the stationary solutions of type bubble-vortices. An interesting study is to test the
convergence of the algorithm of minimizing the normalized energy for the vortices of degree 2 and 3
and study the issued branch of these minimizers.



