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Abstract

In the last decades, Apollonian packings have drawn increasing attention due to

their applications in number theory, geometric group theory, hyperbolic geometry,

fractal structures and discrete geometry. In this thesis, we study a class of sphere

packings where the combinatorics is carried by an edge-scribed polytope. Through

this connection, Apollonian packings can be generalized in different geometric set-

tings and in higher dimensions. The polytopal structure also allows us to obtain a

generalization of the Descartes’ Theorem for the sphere packings which are based

on the regular polytopes in every dimension. We use the polytopal generalization

of the Descartes’ Theorem to find integrality conditions of the Apollonian packings

based on the Platonic solids. Then, we introduce the notion of Apollonian section,

and we use it to show that the set of curvatures of any integral tetrahedral, octahe-

dral or cubical Apollonian packing is contained in the set of curvatures of an integral

orthoplicial Apollonian packing.

The polytopal approach that we propose also allows us to extend the appli-

cations of Apollonian packings into a novel direction in the area of topology. In

this thesis, we introduce two methods of construction of necklace representations

of knots and links. The first method follows directly from the Koebe-Andreev-

Thurston Circle Packing Theorem and gives a linear upper bound on the minimum

number of spheres needed to construct a necklace representation in terms of the

crossing number. In the second method, we use the fractal structure of orthopli-

cial Apollonian packings to construct necklace representations of rational links with

interesting arithmetical properties.





Résumé

Les empilements apolloniens ont attiré l’attention des mathématiciens en raison

de leurs applications en théorie des nombres, théorie géométrique des groupes,

géométrie hyperbolique, structures fractales et géométrie discrète. Dans cette thèse,

nous introduisons une classe d’empilements de sphères où la combinatoire est don-

née par un polytope inscrit aux arêtes. À travers cette connexion, nous généralisons

les empilements apolloniens dans d’autres contextes géométriques et en dimensions

supérieures. Cette structure polytopale permet également d’obtenir une générali-

sation du théorème de Descartes pour les empilements de sphères provenant des

polytopes réguliers dans toutes les dimensions. Nous utilisons ce résultat pour car-

actériser l’intégralité des empilements apolloniens provenant des solides platoni-

ciens. Puis, nous introduisons la notion de section apollonienne, et nous l’utilisons

pour montrer que l’ensemble des courbures de tout empilement apollonien intégral

tétraédrique, octaédrique ou cubique est contenu dans l’ensemble des courbures

d’un empilement apollonien orthoplicial intégral.

L’approche polytopale que nous proposons nous permet également d’étendre les

applications des empilements apolloniens dans une nouvelle direction dans le do-

maine de la topologie. Dans cette thèse, nous introduisons deux méthodes de con-

struction de représentations en colliers de nœuds et d’entrelacs. La première méth-

ode découle directement du théorème d’empilements de cercles de Koebe-Andreev-

Thurston, et donne une borne supérieure linéaire sur le nombre minimal de sphères

nécessaires pour construire une représentation en collier en termes du nombre min-

imal de croisements. Dans la seconde méthode, nous utilisons la structure fractale

des empilements apolloniens orthopliciaux pour construire des représentations en

collier des entrelacs rationnels avec des propriétés arithmétiques intéressantes.





Résumé étendu

Les empilements de sphères sont des objets qui apparaissent très souvent, non seule-

ment en mathématiques, mais aussi en divers champs scientifiques comme la chimie

pour les structures cristallines, la physique pour la modélisation des milieux granu-

laires ou l’informatique pour les codes correcteurs. Parmi la variété infinie des con-

figurations possibles, les empilements apolloniens ont attiré l’attention des mathémati-

ciens en raison de leurs applications en théorie des nombres, théorie géométrique de

groupes, géométrie hyperbolique, structures fractales ou géométrie discrète. Dans

cette thèse, nous utilisons la combinatoire des polytopes pour généraliser les em-

pilements apolloniens et les appliquer dans la construction polygonale des nœuds

et entrelacs dans l’espace.

En premier lieu, nous introduisons les différents modèles géométriques qui sont

utilisés pour étudier les empilements de sphères. Nous rappelons la bijection qui

existe entre l’ensemble des boules euclidiennes en dimension d et l’ensemble des

vecteurs unitaires dans l’espace lorentzien en dimension d + 2. Cette bijection fait

de l’algèbre linéaire, appliquée aux espaces lorentziennes, un outil très adapté pour

étudier les empilements de sphères.

Nous continuons avec les notions basiques de la théorie des nœuds, en faisant

un point sur les entrelacs rationnels introduits par Conway, et finissons cette section

en décrivant les invariants géométriques qui sont liés aux représentations polygo-

nales des nœuds. La longueur en sphères est l’un de ces invariants, défini comme le

nombre minimal de sphères dans un collier ayant la forme d’un nœud ou entrelacs

donné. Dans le chapitre 2, en utilisant la géométrie lorentzienne et le théorème de

Koebe-Andreev-Thurston sur les empilements de cercles, nous prouvons une borne

linéaire de la longueur en sphères en fonction du nombre minimal de croisements

d’un nœud. La méthode utilisée dans la preuve inspire un premier algorithme de

construction des représentations de nœuds en collier à partir d’un diagramme de

nœuds planaire. Ce type de représentations a été récemment utilisée pour l’étude

du volume hyperbolique de 3-variété hyperbolique.
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Dans le chapitre 3, nous faisons le lien entre les empilements et les polytopes.

Pour cela, nous voyons d’abord les définitions classiques associées aux polytopes et

le modèle projectif de l’espace de boules. Dans ce modèle, une boule d-dimensionnelle

correspond à un point dans l’espace euclidien de dimension d+ 1 ayant une norme

strictement plus grande que 1. De manière analogue, un empilement de boules d-

dimensionnelles correspond à un polytope de dimension d + 1 vérifiant certaines

propriétés géométriques. Les empilements issus de cette correspondance seront ap-

pelés polytopaux. Nous étudions ensuite l’unicité sous transformations de Möbius et

la dualité des empilements polytopaux. Cette dernière permet de bien généraliser

les empilements apolloniens dans d’autres combinatoires et en dimensions plus

grandes.

L’application des empilements apolloniens dans la théorie des nombres vient du

fait qu’il existe une infinité d’empilements apolloniens intégraux dont les courbures

de tous les cercles contenus dans l’empilement sont des entiers. C’est le théorème

de Descartes sur les courbures d’un empilement de 4 cercles deux-à-deux tangents

qui permet de créer le lien, car il donne les conditions nécessaires pour qu’un em-

pilement apollonien soit intégral. Dans le chapitre 4, nous utilisons la géométrie

lorentzienne pour donner une généralisation du théorème de Descartes pour les

empilements polytopaux réguliers. Nous appliquerons ce résultat pour caractériser

l’intégralité des empilements apolloniens polytopaux, lorsque le polytope corre-

spondant est l’un des solides de Platon.

Le chapitre 5 est dédié à l’étude d’une famille d’empilements polytopaux réguliers

en dimension 3: les empilements orthopliciaux. Ceux-ci sont des empilements ayant

la combinatoire de l’orthoplex, l’analogue de l’octaèdre en dimension 4. La ver-

sion apollonienne pour les empilements orthopliciaux a été introduite par Dias et

Nakamura en 2014, comme une généralisation des empilements apolloniens trois

dimensionnelles ayant une structure algébrique plus riche. Cela leur a permis de

résoudre des problèmes arithmétiques, dans les cas des empilements apolloniens

orthopliciaux, qui restent toujours ouverts pour les empilements apolloniens clas-

siques en dimension 2. Avec les outils développés dans les chapitres précédents,
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nous montrons l’unicité de Möbius des empilements orthopliciaux et nous calcu-

lons les groupes apolloniens associés. Puis, nous introduisons la notion de section

apollonienne qui généralise, d’une manière algébrique, l’action d’intersecter un em-

pilement avec un hyperplan. Les sections apolloniennes nous permettent de mon-

trer que les ensembles des entiers qui se trouvent dans les empilements apolloniens

intégraux venant d’un tétraèdre, un octaèdre ou un cube sont toujours contenus

dans l’ensemble des entiers d’un empilement apollonien intégral ayant la combina-

toire de l’orthoplex.

Dans le chapitre 6, nous regardons les questions évoquées au chapitre 2 sur

les représentations en collier et la longueur en sphères des nœuds, dans les em-

pilements apolloniens orthopliciaux. En utilisant les structures obtenues dans le

chapitre 5, nous prouvons plusieurs résultats. Tout d’abord, nous montrons que

tout entrelacs admet une représentation en collier contenue dans les empilements

apolloniens orthopliciaux. Puis, avec une projection déterminée, nous perfection-

nons ce résultat en montrant que tous les entrelacs rationnels, et plus généralement

les entrelacs algébriques, admettent une représentation en collier dans une section

apollonienne cubique d’un empilement apollonien orthoplicial. Ce dernier résultat

nous permet d’améliorer la borne supérieure de la longueur en sphères qui a été

donnée au chapitre 2, dans les cas des entrelacs rationnels. Enfin, nous montrons

deux corollaires arithmétiques du dernier résultat.

Nous finissons ce manuscrit par une discussion sur les résultats obtenus dans

cette thèse, le travail qui est en cours et les perspectives sur les possibles applications

dans la théorie des nombres et la théorie des nœuds.





Introduction

Sphere packings appear diversely in chemistry, physics, computer science and math-

ematics. There is a long trajectory on numerical and analytic approaches, but many

questions about the algebraic and combinatorial aspects of non-congruent sphere

packings remain open to date. Among the great variety of possible configurations,

the Apollonian packings have drawn increasing attention by mathematicians due to

their applications in number theory, geometric group theory, hyperbolic geometry,

fractal structures or discrete geometry.

The origin of the term Apollonian packings goes back to a problem apparently

raised by Apollonius of Perga around 230 BCE, following the writings of Pappus of

Alexandria on Apollonius’ works [31]. The problem of Apollonius concerned the

number of circles that can be added to be tangent to three given circles. If the three

given circles are pairwise tangent, then the answer is two. The packing made by

these five circles gives the first step towards an Apollonian packing, which is made

by inscribing a new circle at the interstice made by each triplet of circles, and then

repeating this process ad infinitum. The first record of the whole picture belongs

to Leibniz, in a fragment of a letter to Des Bosses in 1706 [70] on his attempts to

illustrate the notion of infinitesimal.

Beyond mathematics, the space-filling property of the three-dimensional ana-

logue of Apollonian packings has been used in the modelling of granular systems

[4], foam structures [86], fluid emulsions [67] and in many other applications [103,

94, 65].

In number theory, research on Apollonian packings has been increasing in the

last decades, due to the interesting properties of the integral and algebraic structures

behind Apollonian packings revealed in a foundational series of papers by Graham,

Lagarias, Mallows, Wilks and Yan [44, 45, 46, 47]. Chen, in his PhD thesis [21],

proposed a combinatorial approach to study Apollonian packings by relating them

with stacked polytopes. In this thesis, we develop a line of research close to Chen’s,

by using a polytopal approach to generalize the structure of Apollonian packings in

different geometric settings and in higher dimensions.
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The approach that we propose allowed us to obtain new results in number theory

on Apollonian packings, and also to extend the applications of Apollonian packings

into a novel direction in the area of topology. For a given knot K (resp. link), a

necklace representation is a cyclic chain (resp. chains) of consecutive tangent spheres

which are ambient isotopic to K. Necklace representations of knots and links have

been recently used for the study of hyperbolic volume of hyperbolic 3-manifolds

[41]. In this thesis, we used the fractal structure of polytopal Apollonian packings to

construct necklace representations of links and knots with interesting arithmetical

properties.

Organization of the manuscript

In Chapter 1, we discuss the classic results and definitions in sphere packings

and knots that will be used throughout the rest of the manuscript.

In Chapter 2, we present an upper bound on the minimum number of spheres

needed to construct a necklace representation of a given knot or link. We finally

describe an algorithm to construct necklace representations, which is based in the

constructive proof of the upper bound.

In Chapter 3, we explore the connection between polytopes and sphere pack-

ings in any dimension by introducing a class of packings whose combinatorics is

based on edge-scribed polytopes. We then study the unicity under Möbius trans-

formations and the duality of these packings. The latter allows us to generalize the

Apollonian group and the Apollonian packing within new settings.

In Chapter 4, we generalize the Descartes’ theorem for polytopal d-ball packings

obtained from a regular polytope. The latter allows us to construct integral Apollo-

nian packings based on the Platonic solids.

In Chapter 5, we review the orthoplicial Apollonian packing, introduced by Dias

[33] and Nakamura [79], with the tools developed in the previous chapter. After

introducing the notion of Apollonian section, we show that the set of curvatures of

every integral tetrahedral, octahedral and cubical Apollonian packing is contained

in the set of curvatures of an integral orthoplicial Apollonian packing.
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Chapter 6 connects the two main objects of this thesis: Apollonian packings and

necklace representations. We use the orthoplicial Apollonian packing to produce

necklace representations efficiently. The latter reveals interesting geometric and

arithmetic properties.

A final section presents general conclusions of our work and includes discus-

sions on some current developments and future perspectives.

The first section of Chapter 1 and the content of Chapter 2 were published in

[81]. Chapters 3, 4 and 5 are based on the submitted preprints [82, 84] and Chapter

6 is a part of a preprint in preparation [83].
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In this chapter, we discuss a general background needed throughout the manuscript.

1.1 The space of oriented hyperspheres

In this section, we review the space of d-dimensional oriented hyperspheres (or

d-ball) in the Euclidean space through different classic models. The majority of the

notations and definitions were adapted from [18, 104, 20].
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1.1.1 The spherical model

Let d ≥ 1 be an integer. We denote Rd the Euclidean space of dimension d. Let

Sd be the unit d-sphere of Rd+1 endowed with the induced metric ∥ · ∥S from Rd+1. A

d-spherical cap α of center γ ∈ Sd and spherical radius ρ ∈ (0, 2π) is a subset given by

α = {x ∈ Sd | ∥x− γ∥S ≤ ρ} (1.1)

which gives a partition of Sd in three disjoint subsets: the interior of α, points of

Sd satisfying (1.1) strictly, the exterior of α, points of Sd not satisfying (1.1) and the

boundary of α, ∂α, points of Sd satisfying the equality of (1.1). Let Caps(Sd) denote the

family of d-spherical caps. It is well known that Sd is homeomorphic to R̂d under the

stereographic projection, where R̂d := Rd ∪ {∞} is the one-point compactification

of Rd. We call a d-ball of R̂d the image of a d-spherical cap under the stereographic

projection. We denote by Balls(R̂d) the space of d-balls, isomorphic to Caps(Sd) given

by the above construction. A d-ball b is called solid sphere, hollow sphere or half-space

depending on whether the pole of the stereographic projection lies in either the exte-

rior, the interior or the boundary of the corresponding d-spherical cap αb. Therefore,

we have that a d-ball of R̂d of curvature κ ∈ R corresponds to one of the following

subsets:

- Solid sphere: {x ∈ R̂d | ∥x− c∥ ≤ 1/κ}when κ > 0.

It is also a standard d-ball of Rd with center c ∈ Rd and radius 1
κ

.

- Hollow sphere: {x ∈ R̂d | ∥x− c∥ ≥ −1/κ}when κ < 0.

It can be regarded as the closure of the complement of a solid sphere.

- Half-space: {x ∈ R̂d | x · n̂ ≤ δ}when κ = 0.

By convention, we choose the normal vector n̂ pointing towards the interior.

The real number δ represents the signed distance from the boundary to the ori-

gin (positive if the origin is contained in the interior and negative otherwise).

There is a natural embedding of Balls(R̂d) ↪→ Balls(R̂d+1) where a d-ball b of center c

and curvature κ (resp. normal vector n̂ and signed distance δ) is mapped to a (d+1)-

ball b̂ of center (c, 0) and curvature κ (resp. normal vector (n̂, 0) and signed distance

δ). We call this embedding the inflate operation.
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1.1.1.1 The intersection angle

For d > 1, let b and b′ be two d-balls with intersecting boundaries. We define the

intersection angle of b and b′, denoted by ∡(b, b′) ∈ [0, π], as the angle formed by the

vectors −→pc and −→pc′ where c and c′ are the centers of b and b′ and p ∈ ∂b ∩ ∂b′ (see

Figure 1.1). The intersection angle does not depend on the choice of the point in the

intersection.

c c′

p

Figure 1.1: The intersection angle of two disks.

Two d-balls b and b′ with intersecting boundaries are said to be:

- Internally tangent if ∡(b, b′) = 0.

- Orthogonal if ∡(b, b′) = π
2
.

- Externally tangent if ∡(b, b′) = π.

When the boundaries of b and b′ do not intersect the intersection angle ∡(b, b′) is

not well-defined. In this case we say that b and b′ are disjoint if they have disjoint

interiors and nested if one is contained in the other.

Remark 1. The inflate operation preserves intersection angles.

We notice that the definition of intersection angle does not apply when d = 1,

since the boundary of a 1-ball is not simply connected. In this case, we can define

the intersection angle of two 1-balls as the intersection angle of the corresponding

2-balls given by the inflate operation.
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1.1.2 The hyperbolic model

Let Hd+1 be the Poincaré ball model of the hyperbolic space of dimension d + 1

embedded in R̂d+1 as the standard unit (d + 1)-ball. The boundary ∂Hd+1 is ex-

actly the unit sphere Sd. A d-hyperbolic half-space of Hd+1 is the intersection h :=

Hd+1 ∩ b̂h where b̂h is a (d+1)-ball orthogonal to Hd+1. We denote by Halfs(Hd+1) the

space of hyperbolic half-spaces of Hd+1. At the boundary of Hd+1, the intersection

∂Hd+1 ∩ b̂h = Sd ∩ b̂h is a d-spherical cap αh which corresponds to a d-ball bh by the

stereographic projection. For any d-ball, the mapping h 7→ αh 7→ bh can be reversed

so we can define the following isomorphisms:

Balls(R̂d) Caps(Sd) Halfs(Hd+1)
≃ ≃ (1.2)

The notions of interior, exterior and boundary are easily extended for d-hyperbolic

half-spaces. For d > 1, two d-balls b and b′ have intersecting boundaries if and only if

the corresponding d-hyperbolic half-spaces hb and hb′ have intersecting boundaries.

Moreover, the intersection angle of b and b′ is equal to the dihedral angle of hb and hb′

measured at a non-common region.

1.1.3 The Lorentzian model

The Lorentzian space of dimension d+2, denoted by Ld+1,1, is a real vector space

of dimension d + 2 equipped with a bilinear symmetric form ⟨·, ·⟩ of signature (d +

1, 1). The Lorentzian product of two vectors x and y of Ld+1,1 is the real number ⟨x,y⟩
and the Gramian of a collection of vectors B = {x1, . . . ,xn} of Ld+1,1 is the matrix

Gram(B) :=


⟨x1,x1⟩ · · · ⟨x1,xn⟩

... . . . ...

⟨xn,x1⟩ · · · ⟨xn,xn⟩


If B = {x1, . . . ,xd+2} is a basis of Ld+1,1 then Gram(B) is the matrix of the Lorentzian

product in the basis B. The Lorentzian product of two vectors x,y ∈ Ld+1,1 can be

computed by

⟨x,y⟩ = cB(x)
T Gram(B)cB(y) (1.3)
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where cB(x) is the column matrix of the coordinates of x in the basis B. By a fun-

damental theorem of bilinear forms (see [18, Theorem 2.1]), there is always an or-

thonormal basisB0 = {e1, . . . , ed+2} of Ld+1,1 such that Gram(B0) = diag(1, . . . , 1,−1).
From now on, we fix an orthonormal basis B0 which we shall refer to as the canonical

basis of Ld+1,1. A vector x ∈ Ld+1,1 is called:

- Space-like if ⟨x,x⟩ > 0.

- Time-like if ⟨x,x⟩ < 0.

- Light-like if ⟨x,x⟩ = 0.

- Future-directed (resp. past-directed) if ⟨ed+2,x⟩ > 0 (resp. < 0).

- Normalized if |⟨x,x⟩| = 1.

The space of all the normalized space-like (resp. time-like) vectors of Ld+1,1 is usu-

ally called de Sitter space (resp. anti de Sitter space). We denote it by S(Ld+1,1) (resp.

T(Ld+1,1)). The anti de Sitter space can be regarded as the generalization of a two-

sheets hyperboloid with two connected components T↑(Ld+1,1) and T↓(Ld+1,1) formed

by the future-directed and the past-directed vectors of T(Ld+1,1) respectively. The hy-

perboloid model of the (d + 1)-hyperbolic space is obtained by taking T↑(Ld+1,1) with

the metric induced by the restriction of the Lorentzian product of Ld+1,1. The iso-

morphism which maps the hyperboloid model to the Poincaré ball model can be

regarded as the projection π : T↑(Ld+1,1)→ {ed+2 = 0} from −ed+2 (see Figure 1.2).

A time-like half-space is a subset tx = {y ∈ Ld+1,1 | ⟨x,y⟩ ≥ 0} where x ∈
S(Ld+1,1). The set of time-like half-spaces is in bijection with S(Ld+1,1). The image

π(tx ∩T↑(Ld+1,1)) is a hyperbolic half-space of Hd+1 and every hyperbolic half-space

can be obtained in this way. We can then extend the isomorphisms of (1.2) by

Balls(R̂d) Caps(Sd) Halfs(Hd+1) S(Ld+1,1)
≃ ≃ ≃ (1.4)

The Lorentzian vector of a d-ball b, denoted by xb, is the normalized space-like

vector obtained by the previous isomorphisms.
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R̂d

S(Ld+1,1)

Sd Hd+1

b

xb

αb
hb

Figure 1.2: Geometric interpretation of the isomorphisms between the different

models of the space of d-balls.

The inversive product of two d-balls b and b′, denoted by ⟨b, b′⟩ := ⟨xb,xb′⟩, is

the Lorentzian product of their corresponding Lorentzian vectors. Equivalently, we

define the Gramian of a collection of d-balls as the Gramian of the collection of the

Lorentzian vectors of the d-balls. We denote by −b the d-ball corresponding to the

Lorentzian vector −xb, which is also the d-ball obtained by taking the closure of

the complement of b. We notice that ⟨−b, b′⟩ = −⟨b, b′⟩. The inversive product is a

fundamental tool to encode configurations of d-balls [104]. Indeed,

⟨b, b′⟩ =


cosh dH(hb, hb′) if b and b′ are nested

cos∡(b, b′) if ∂b and ∂b′ intersect

− cosh dH(hb, hb′) if b and b′ are disjoint

where hb and hb′ are the corresponding hyperbolic half-spaces and dH(hb, hb′) is the

hyperbolic distance between ∂hb and ∂hb′ . In particular, if the Lorentzian vectors of

b and b′ are not both past-directed, then
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⟨b, b′⟩



< −1 if b and b′ are disjoint

= −1 if b and b′ are externally tangent

= 0 if b and b′ are orthogonal

= 1 if b and b′ are internally tangent

> 1 if b and b′ are nested

(1.5)

1.1.4 The Möbius group

The Möbius Group Möb(R̂d) can be defined as the group of the continuous auto-

morphisms of R̂d mapping d-balls to d-balls [101]. An element of the Möbius Group

is called a Möbius transformation. For every solid or hollow (resp. half-space) d-ball b

we define the inversion on b, denoted by sb, as the sphere inversion (resp. Euclidean

reflection) on the boundary of b. Alternatively, sb can be defined as the only Möbius

transformation that maps b to −b and fixes a d-ball b′ if and only if b′ is orthogonal

to b [101]. It is well-known that Möb(R̂d) is generated by the set of inversions. The

product sbsb′ of the inversions on two d-balls centered at the origin with non-zero

curvatures κ and κ′ gives a rescaling of Rd with scaling factor (κ′/κ)2. Thus, the

group of Euclidean isometries and rescalings of Rd is a subgroup of Möb(R̂d).

The Möbius Group defines a group action (on the left) on the space of d-balls.

The following group isomorphisms and equivariant group actions can be obtained

by using the isomorphisms given in (1.4)

Balls(R̂d) Caps(Sd) Halfs(Hd+1) S(Ld+1,1)

Möb(R̂d) Möb(Sd) Isom(Hd+1) O↑(Ld+1,1)

≃ ≃ ≃

≃ ≃ ≃

(1.6)

where Möb(Sd) is the Möbius group defined on Sd acting on the family of d-spherical

caps, Isom(Hd+1) is the group of hyperbolic isometries acting on the space of hy-

perbolic half-spaces and O↑(Ld+1,1) is the Orthochronous Lorentz Group which is the

group of linear maps of Ld+1,1 preserving the Lorentz product and the time ori-

entation. The latter acts on the space of normalized space-like vectors of Ld+1,1.

Moreover, for any b ∈ Balls(R̂d), the isomorphism Möb(R̂d) → O↑(Ld+1,1) maps the
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inversion sb to the Lorentzian reflection on the boundary of the time-like half-space

txb
, which corresponds to the linear map

y 7→ y − 2⟨y,xb⟩xb (1.7)

Since the Orthochronous Lorentz Group preserves the Lorentz product, the Möbius

Group preserves the inversive product of d-balls.

1.1.5 Coordinate systems

Based on the previous models, we shall describe two different systems of coor-

dinates for the space of d-balls.

1.1.5.1 Inversive coordinates

In [104], Wilker defined the inversive coordinates of a d-ball b as the column-matrix

i(b) given by the Cartesian coordinates of the Lorentzian vector of b with respect to

the canonical basis. We shall use these coordinates for most of the computations.

The inversive coordinates can be obtained in terms of the curvature κ and center c

(normal vector n and signed distance δ for half-spaces) by

i(b) := cB0(xb) =


(κc, 1

2
(κ∥c∥2 − κ−1 − κ), 1

2
(κ∥c∥2 − κ−1 + κ))T if κ ̸= 0,

(n̂, δ, δ)T if κ = 0

(1.8)

where ∥ · ∥ denotes the Euclidean norm. The curvature of b can be deduced from its

inversive coordinates by

κ(b) = −⟨xN ,xb⟩ (1.9)

= kd+2 i(b) (1.10)

where xN = ed+1 + ed+2 and ei denotes the i-th vector of B0 and kd+2 is the row-

matrix (0, . . . , 0,−1, 1) of length d+ 2.

Points of R̂d can be seen as d-balls of infinite curvature. By extending continu-

ously the isomorphism between Balls(R̂d) and S(Ld+1,1) we have that points of R̂d
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correspond to asymptotic directions in the light cone L(Ld+1,1) made by all the light-

like vectors of Ld+1,1. Each direction corresponds to a point in the projective space

PL(Rd+1,1). Therefore, we can assign (homogeneous) inversive coordinates to a point

η ∈ R̂d by

i(η) =


(2η, ∥η∥2 − 1, ∥η∥2 + 1)T if η ̸=∞

(0d, 1, 1) if η =∞
(1.11)

where 0d is the null vector of length d. Homogeneity means that for every λ ̸= 0,

λi(η) are valid inversive coordinates of the same point of R̂d (see [104] for more

details).

The following formula to compute the inversive product in inversive coordinates

follows from Eq. (1.3)

⟨b, b′⟩ = i(b)TQd+2i(b
′) (1.12)

where Qd+2 = diag(1, . . . , 1,−1) is the Gramian of B0. Therefore, the Möbius group

is isomorphic to the following group of matrices

O↑
d+1,1(R) = {M ∈ GLd+2(R) |MTQd+2M = Qd+2 and Md+2,d+2 > 0} (1.13)

where the isomorphism is obtained by applying Eq. (1.7), which gives the map

sb 7→ Id+2 − 2i(b)i(b)TQd+2 (1.14)

where sb is the inversion on the boundary of b ∈ Balls(R̂d) and Id+2 is the identity

matrix of size d+ 2.

1.1.5.2 Polyspherical coordinates

These coordinates were introduced by Boyd in [14]. Let B = {x1, . . . ,xd+2} be a

basis of Ld+1,1. The polyspherical coordinates of a vector x ∈ Ld+1,1 with respect to B,

are the column matrix

pB(y) =
(
⟨x1,y⟩ · · · ⟨xd+2,y⟩

)T
(1.15)
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The polyspherical and Cartesian coordinates with respect to B are related by

cB(x) = Gram(B)−1pB(x) (1.16)

By combining Equations (1.3) and (1.16), we can compute the Lorentzian product in

polyspherical coordinates by

⟨x,y⟩ = pB(x)
T Gram(B)−1pB(y) (1.17)

In practice, we shall use Eq. (1.17) to compute the inversive product in a different

basis.

Remark 2. In the literature, the most used system of coordinates is the augmented-curvature-

center coordinates introduced by Graham et al. in [45]. This system of coordinates shall not

be used in this manuscript.

1.1.6 Packings

We shall say that an arrangement of d-balls B is a d-ball packing if every two

bi, bj ∈ B are either externally tangent or disjoint. The tangency graph of a B is the

simple graph where the vertices represent the d-balls and the edges represent the

tangency relations. Reciprocally, a simple graph G is said to be d-ball packable if

there is a d-ball packing BG whose tangency graph is G [21]. If G is d-ball packable

then G admits an embedding in R̂d which is obtained by taking the centers of the

d-balls of BG and the straight segments between the centers of any tangent pair (see

Figure 1.3). This embedding is usually called the carrier of the d-ball packing. The

Möbius Group preserves tangency graphs and maps carriers to carriers [98].
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Figure 1.3: A circle packing with its carrier.

In this manuscript, we shall study d-ball packings for d = 2, 3. Following the

tradition, we shall refer to them as circle and sphere packings, respectively. Circle

packable graphs were fully characterized in 1936 by Koebe [61]. The latter was redis-

covered by Thurston by using some results of Andreev on hyperbolic 3-polytopes.

The well-known Koebe-Andreev-Thurston Circle Packing Theorem (KAT theorem)

is stated below. For a detailed survey on the applications of the KAT theorem we

refer the readers to a paper of Bowers [13].

Theorem 1.1.1 (KAT theorem). A graph G is circle packable if and only G is simple and

planar. Moreover, if G is a triangulation of S2, then all the circle packings whose tangency

graph is G are equivalent under Möbius transformations.

The KAT theorem implies that the family of d-ball packable graphs is fully char-

acterized for d = 1, 2. Such characterization is still unknown nowadays when d ≥ 3.

Indeed, d-ball packable graphs are closely related to the (d−1)-ball packable graphs

which can be made by (d − 1)-balls of the same size. It has been proved that the

recognition of the tangency graphs of circle packings made by equal disks (and more

generally disks with a bounded ratio between all the curvatures) is NP-hard (see

[15, 50]). However, many properties of sphere packable graphs have been found

(see [66, 73, 75, 8, 23]).

A packing B is said to be standard if it contains the half-spaces bi = {xd ≥ 1}
and bj = {xd ≤ −1}. We denote this property by [B]ij . We notice that the tangency
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point bi ∩ bj is at the infinity and the rest of the d-balls of [B]ij must lie inside the

region {−1 ≤ xd ≤ 1}. For any d-ball packing B whose tangency graph contains

at least one edge ij, a Möbius transformation ϕ : B 7→ [B]ij will be called a standard

transformation. Standard transformations exist for every edge ij of G and they can

be obtained as the product of an inversion in a d-ball centered at the tangency point

bi ∩ bj , a Euclidean isometry and a rescaling of Rd (see Fig. 1.4).

bj

bi Standard

transformation

bi = {xd ≥ 1}

bj = {xd ≤ −1}

Inversion

bi

bj

Euclidean isometry bi

bj

Rescaling

Figure 1.4: Example of a standard transformation.

1.1.7 Möbius uniqueness of d-ball packable graphs

We say that two d-ball packings are Möbius equivalent if one can be sent to the

other by a Möbius transformation. If such a Möbius transformation is a Euclidean

isometry then we say that the two packings are Euclidean congruent. A d-ball pack-

able graph G will be Möbius unique if all the d-ball packings whose tangency graph

is G are Möbius equivalent. A useful result to detect Möbius uniqueness is the fol-

lowing:

Lemma 1.1.1. Let BG and B′
G be two d-ball packings with same tangency graph G and let

ij be an edge of G. Then BG and B′
G are Möbius equivalent if and only if [BG]ij and [B′

G]
i
j

are Euclidean congruent.

Proof. Let ϕ : BG 7→ [BG]ij and ψ : B′
G 7→ [B′

G]
i
j be two standard transformations.
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(Sufficiency) If there is a Euclidean isometry γ : [BG]ij 7→ [B′
G]

i
j then ψ−1◦γ ◦ϕ defines

a Möbius transformation mapping BG to B′
G.

(Necessity) Let us suppose that there is a Möbius transformation µ : BG 7→ B′
G. Then

θ := ψ ◦µ ◦ϕ−1 is a Möbius transformation mapping [BG]ij to [B′
G]

i
j and leaving fixed

the half-spaces bi and bj . Therefore, θ is generated by inversions on d-balls which

are simultaneously orthogonal to bi and bj . A d-ball simultaneously orthogonal to

two parallel half-spaces must also be a half-space. Therefore, θ can be expressed as

a product of Euclidean reflections so θ is a Euclidean isometry.

1.2 Preliminaries on knot theory

The main results and notations were adapted from the classic books of Adams

[1] and Cromwell [30].

1.2.1 Diagrams of knots and links

A link L with n components consists of n disjoint simple closed curves in R̂3 (or

S3). A knot K is a link with one component. Two links are said to be equivalent if

there is an ambient isotopy of R̂3 which carries one to the other. A link diagram L
is a regular projection of a link L onto a plane in such a way that the projection of

each component is smooth and at most two curves intersect at any point. At each

crossing point of the link diagram, the curve which goes under the other is specified

by deleting a small neighbourhood as in Figure 1.5. The crossing number of a L,

denoted by cr(L), is the minimum number of crossings among all the diagrams of

links which are equivalent to L.
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Figure 1.5: (Left) A knot diagram of the trefoil (denoted by 31 in the Alexan-

der–Briggs notation): the simplest non-trivial knot, (right) a link diagram of

the Hopf link (denoted by 221) : the simplest non-trivial link.

A link diagram L is said to be:

(i) alternating if the crossings in the diagram alternate between under and over-

passes when one travels along each component.

(ii) reduced if it has no nugatory crossings (also called reducible or removable cross-

ings). Those are, crossings in the diagram such that a closed curve can be

drawn meeting the diagram transversely at that crossing, but not meeting the

diagram at any other point.

A link L is said to be:

(i) alternating if it admits an alternating diagram.

(ii) trivial if it is equivalent to a link admitting a diagram without crossings. Oth-

erwise, L is said to be nontrivial.

(iii) splittable if a plane can be embedded in R̂3 such that it separates one or more

components of L. Otherwise, L is nonsplittable.

(iv) amphichiral if L is equivalent to its mirror, i.e. the link obtained from L after

applying a reflection. Otherwise, L is chiral.

The main result concerning the crossing number of alternating links was conjec-

tured by Tait [99] and proved independently by Kauffman [59], Murasugi [77] and

Thistlethwaite [100].

Theorem 1.2.1 (Tait’s conjecture on the crossing number). Reduced alternating dia-

grams have the minimum number of crossings.
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1.2.2 Tangles

A n-tangle is a pair (U , t) where U is a compact set of R3 homeomorphic to a 3-

ball and t is a collection {γ1, γ2, . . . , γm} of 1 ≤ n ≤ m disjoint arcs contained in U
satisfying the following conditions:

(1) For every 1 ≤ i ≤ m, γi is closed if and only if i > n.

(2) The endpoints of γi for every 1 ≤ i ≤ n lie on ∂U (these are called the endpoints

of the tangle).

Two n-tangles (U , t) and (U ′, t′) are said to be equivalent if there is an isotopy of

R3 carrying U to U ′, t to t′ and the endpoints of (U , t) to the endpoints of (U ′, t′). We

shall denote this equivalence relation t ≃ t′. Up to equivalence, we may consider

that the endpoints of t lie on a same plane H . A tangle diagram of (U , t) is a regular

projection of t on H , together with U ∩H and the crossing information (see Fig. 1.6).

The equivalence of tangles corresponds to the equivalence of their tangle diagrams

via Reidemeister’s moves [30]. In order to simplify the notation, we shall refer to

a tangle (U , t) by t when there is no ambiguity. From now on, we shall focus our

attention on 2-tangles and their derived constructions. We shall name the endpoints

in a 2-tangle diagram by the cardinal points NE, NW, SE and SW.

Figure 1.6: A 2-tangle diagram.

The elementary tangles t0, t1 and t∞ are the 2-tangles given in the Figure 1.7.

NENW

SW SE
t0

NENW

SW SE
t1

NENW

SW SE
t∞

Figure 1.7: The elementary tangles.
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Let us now recall some classic operations of 2-tangles. For any 2-tangles t and t′

we have the following binary operation

(i) the sum t+ t′, obtained by connecting the East endpoints of t to the West end-

points of t′,

t′t

t+ t′

Figure 1.8: Sum of tangles.

and the unary operations:

(ii) the mirror −t is the image of t under the reflection on the plane containing the

equator,

(iii) the flip F (t) is the image of t under the reflection on the plane perpendicular

to the equator and passing through the endpoints SW and NE,

(iv) the positive half-twist H+ : t 7→ t1 + t,

(v) the negative half-twist H− : t 7→ −t1 + t.

t −t F (t) H+(t) H−(t)

Figure 1.9: Unary operations of tangles.

The closure of a 2-tangle (U , t) is the link formed by joining the endpoints by

two disjoint and unlinked paths at the exterior of U . Up to equivalence, there are

two possible closures, the numerator N(t), obtained by joining the northern and the
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southern endpoints separately, and the denominator D(t), obtained by joining the

western and the eastern endpoints (Fig. 1.10).

t

N(t)

t

D(t)

Figure 1.10: The tangle closures.

1.2.3 Rational tangles

Rational tangles were introduced by Conway in his work on enumerating and

classifying knots and links [26]. For a given sequence of integers a1, . . . , an all non-

zero except maybe a1, we denote by t(a1, · · · , an) the rational tangle given as follows

by Conway’s algorithm

t(a1, · · · , an) :=M(a1) ◦ · · · ◦M(an)(t∞) where M(ai) :=

{
(H+)aiF if ai ≥ 0

(H−)−aiF if ai < 0

(1.18)

An example of a rational tangle is illustrated in Fig. 1.11.

M(−3)

t∞

M(−2)

t(−3)

M(2)

t(−2,−3) t(2,−2,−3)

Figure 1.11: The rational tangle t(2,−2,−3) obtained by Conway’s algorithm.

The fraction of a rational tangle t(a1, . . . , an) is the continued fraction

p

q
:= a1 +

1

a2 +
1

. . .+ 1
an

(1.19)
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In Conway’s famous paper on tangles [26], he gave a full characterization of

rational tangles.

Theorem 1.2.2 (Conway). Two rational tangles t(a1, . . . , an) and t(b1, . . . , bm) are equiv-

alent if and only if

a1 +
1

a2 +
1

. . .+ 1
an

= b1 +
1

b2 +
1

. . .+ 1
bm

The origin of the name of rational tangle came from the connection established

by Conway’s theorem, between the family of tangles produced by the Conways’s

algorithm and the rational numbers. We denote by tp/q the class of the rational

tangles with fraction p/q under tangle equivalence. When all ai have the same sign

in t(a1, . . . , an), then the corresponding tangle diagram is alternating. Since there is

always a continued fraction expansion of p/q in which all the coefficients have the

same sign [30], then tp/q always has an alternating tangle diagram.

Following Conway’s definition, a rational link is the closure of a rational tangle.

Rational links are also the 2-bridge links, i.e. links admitting a representation such

that the natural height function given by the z-coordinate has only two maxima and

two minima as critical points [30]. We shall denote by C(a1, . . . , an) the rational link

obtained by the closure of t(a1, . . . , an) (numerator closure if a1 ̸= 0 and denom-

inator closure otherwise). By the above discussion, rational links are alternating.

Moreover, Theorem 1.2.1 gives

ai > 0, for every 1 ≤ i ≤ n ⇒ cr(C(a1, . . . , an)) = a1 + . . .+ an (1.20)

Tangles which are obtained by sums and flips of rational tangles are called alge-

braic tangles [1]. Equivalently, links which are obtained by the closure of algebraic

tangles are said to be algebraic or arborescent [42]. A Pretzel link (or knot) P (a1, . . . , an)

is a particular case of algebraic link defined by

P (a1, . . . , an) := N(F (t(a1)) + · · ·+ F (t(an))) (1.21)

We show in Figure 1.12 the Pretzel knot P (3,−2, 3) which corresponds to the knot

819 in the Alexander-Briggs notation [30].
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Figure 1.12: The Pretzel knot P (3,−2, 3).

1.2.4 Braids

We consider oriented tangles by giving an orientation to the arcs. The endpoints

of an oriented tangle (U , t) shall be called inputs or outputs according to the orien-

tations. By convention, we shall represent U by a rectangle in the tangle diagrams,

where the orientation will be read from the bottom to the top. An oriented n-tangle

(U , t) is monotone if every arc of t never goes back. Thus, a monotone n-tangle does

not have closed arcs.

Definition 1.2.1. A braid of n strands (or n-braid) is a monotone-oriented n-tangle.

The closure of an n-braid is defined by labelling the inputs and the outputs in

linear ordering from 1 to n, and then connecting outputs and inputs with the same

label by unlinked oriented arcs (Fig. 1.13). One might ask if every link can be rep-

resented as the closure of a n-braid. The well-known Alexander’s Theorem gives a

positive answer [3].

Theorem 1.2.3 (Alexander). For any link L there is a closed n-braid equivalent to L.

The minimum number n satisfying the Alexander’s Theorem is called the braid

index of L, and the minimum number of crossings among all the braids representing

L is called the braid length [102]. We shall represent closed n-braids by diagrams in

a square-grid with the crossings lying in the interior of the squares and we shall call

these diagrams square-grid diagrams (Fig. 1.13). It is easy to see that every closed

braid admits a square-grid diagram.
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Figure 1.13: A 3-braid (left), its closure (center) and the corresponding square-

grid diagram (right).

1.2.5 Polygonal representations

A natural way to better understand knots and links is by representing them as

closed polygonal curves in the space. Polygonal representations of links have been

of great interest not only in mathematics, but also in chemistry and physics in the

study of molecular chains such as DNA and proteins [34, 78]. Moreover, by adding

more restrictions to polygonal representations, we can endow more geometric struc-

tures to knots. Lattice representations are a particular case of polygonal representa-

tions where all the vertices have integer coordinates in the space. These represen-

tations have been useful to study geometric knot invariants such as the rope length,

defined as the minimal length needed of a rope with a fixed thickness in order to

form a given knot [51]. We define a necklace representation of a link as a polygonal

representation which is contained in the carrier of a sphere packing. We show in

Figure 1.14 an arbitrary polygonal, lattice and necklace representation of the trefoil

knot.



1.2. Preliminaries on knot theory 25

Figure 1.14: A polygonal representation (left), a lattice representation (center)

and a necklace representation (right) of the trefoil knot.

Necklace representations of links have been appearing recently in the study of

the hyperbolic volume of hyperbolic 3-manifolds [41]. There are also other geo-

metric knot invariants, which are defined for minimal polygonal representations.

The stick number and the lattice stick number of a link L are defined as the minimum

number of segments needed to construct a polygonal and lattice representation of

L, respectively. In [72], Maehara introduced the ball number of a link L, denoted by

ball(L), as the minimum number of spheres needed to construct a necklace repre-

sentation of L. Little is known about the behavior of the ball number with respect

to other geometric invariants. For instance, the stick number of the trefoil knot and

the Hopf link is known to be 6 in both cases (see [2] for a nice proof for the trefoil),

while their lattice stick number is 12 and 8, respectively [55, 53]. By contrast, Mae-

hara proved that the ball number of the Hopf link is 8, but the ball number of the

trefoil is, nowadays, not known. Maehara conjectured that ball(31) = 12, and he

and Oshiro showed that 9 ≤ ball(31) ≤ 12 [75, 72]. As far as we are aware, these

are the only known results concerning the ball numbers of links. We show in Fig.

1.15 a minimal polygonal, lattice and necklace representations of the trefoil that are

known.
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Figure 1.15: From left to right: a minimal polygonal representation with 6 seg-

ments, a minimal lattice representation with 12 segments [32] and a conjec-

tured minimal necklace representation with 12 spheres [75] of the trefoil knot.

Linear upper bounds on the stick and the lattice stick number in terms of the

crossing number have been found [52, 80, 17, 56]. In Chapters 2 and 6, we shall

present different methods of construction of necklace representations. The first gives

a linear upper bound on the ball number of nonsplittable and nontrivial links, in

terms of the crossing number. The last method will improve this upper bound for

rational links with the help of the polytopal sphere packings introduced in Chapter

3.
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An upper bound on the ball number
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2.1 Introduction

In this chapter, we present the following upper bound on the ball number.

Theorem 2.1.1. For any nontrivial and nonsplittable link L, we have that

ball(L) ≤ 5cr(L)

Let us give a sketch of the proof. We start by considering a minimal crossing

diagram of a link L. Then, we construct a simple planar graph with 3cr(L) vertices

containing a subgraph admitting a planar embedding isotopically equivalent to a

planar projection of L. By applying the KAT theorem, and then the inflate opera-

tion, we shall construct a sphere packing whose carrier contains the previous planar

projection of L. Finally, for each crossing of the planar projection, we reconstruct the

projected crossing by adding two spheres that serve as a "bridge", and in this way,
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we obtain a necklace representation of L with 5cr(L) spheres.

Given the connection of the ball number with KAT Theorem, a linear bound

seems inevitable. The main difficulty in the method described above is to show that

two spheres are enough to form the bridges, independently of the chosen link.

2.2 From links to circle packable graphs

Every link diagram Lwith at least one crossing leads to a 4-regular planar graph

GL where the vertices are the crossings and the edges are the arcs joining the cross-

ings. This graph is not simple in general (see Fig. 2.1). On the other hand, the medial

graph of a planar graph G, denoted med(G), is constructed by placing one vertex on

each edge of G and joining two vertices if the corresponding edges are consecutive

on a face of G. Medial graphs are 4-regular planar graphs but may have loops or

multiple edges (see Fig. 2.1 (c)). We define the simplified medial graph of G, denoted

by med(G), the simple planar graph obtained from med(G) by deleting loops and

multiple edges. Finally, we define the patchwork graph of L, denoted by P (L), as the

simple planar graph given by the simultaneous drawing ofGL∪med(GL). The set of

vertices of P (L) can be divided in two sets: V×, the vertices of GL (colored in white

in Fig. 2.1) and Vm, the vertices of med(GL) (colored black in Fig. 2.1). We call the

vertices of V× the crossing vertices.

L GL GL ∪med(GL) P (L)

Figure 2.1: From left to right: a diagram of the Figure-eight knot, the graph

obtained from the diagram, same graph drawn with its medial graph and the

patchwork graph of the initial knot diagram.
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Let us suppose thatGL is connected and it has no loops. SinceGL is 4-regular, the

subgraph of P (L) induced by a crossing vertex and its 4 neighbors is the 1-skeleton

of a square-pyramid. We shall call this graph the square-pyramidal graph. In the case

considered, P (L) can be obtained as the union of n square-pyramidal graphs, where

n is the number of crossings of L. Therefore, we have

|V (P (L))| = |V×|+ |Vm| = n+
1

2
(4n) = 3n (2.1)

2.3 Square-pyramidal disk arrangements

Square-pyramidal graphs are one of the building blocks for constructing the de-

sired necklace representations. From now on, we shall consider square-pyramidal

graphs ⊠ with the labelling on the vertices depicted in Figure 2.2.

x

−1−2

1 2

Figure 2.2: The labelling of a square-pyramidal graph ⊠.

We say that a circle packing is square-pyramidal if its tangency graph is the square-

pyramidal graph. As we show below, square-pyramidal graphs are not Möbius

unique, that is, there are square-pyramidal circle packings which are not Möbius

equivalent. Therefore, all the properties of square-pyramidal circle packings and the

added structures must be carefully verified in each equivalence class under Möbius

transformations. In the following proposition, we describe the Moduli spaceM⊠ of

all the square-pyramidal circle packings under Möbius transformations.

Proposition 2.3.1. M⊠ is a family of one real parameter.

Proof. Let [D⊠]
−1
x (κ1) = {dx, d1, d2, d−1, d−2} be a standard square-pyramidal circle

packing where d2 and d−2 are two unit disks tangent to the half-spaces d−1 = {y ≥
1}, dx = {y ≤ −1} and d1 is a disk of curvature κ1 ∈ R tangent to d2, d−2 and dx.
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We have that 1 < κ1 < 4. Indeed, when κ1 < 1 (resp. κ1 > 4), the disks d1
and d−1 (resp. d2 and d−2) overlap and, when κ1 = 1 (resp. 4), d1 and d−1 (resp.

d2 and d−2) are tangent so the tangency graph would be other than ⊠ (see Figure

2.3). We notice that the collection of circle packings {[D⊠]
−1
x (κ1)}1<κ1<4 are Euclidean

non-congruent. Therefore, by Lemma 1.1.1, they represent different equivalence

classes in M⊠. Moreover, these are the only possible standard square-pyramidal

circle packings under Euclidean isometries. Hence, M⊠ is in bijection to the open

interval (1, 4).

d−1

dx

d1
d2d−2

κ1 = 1

d−1

dx
d1

d2d−2

κ1 = 4

d−1

dx

d1
d2d−2

1 < κ1 < 2

d−1

dx

d1
d2d−2

κ1 = 2

d−1

dx

d1

d2d−2

2 < κ1 < 4

Figure 2.3: Extreme cases with an extra edge (top figures) and the equivalence

classes ofM2(⊠) (bottom figures).

We define, for every i = 1, 2,−1,−2, the standard curvatures of a square-pyramidal

circle packing D⊠ as the real numbers 1 < κi < 4 corresponding to the curvature of

the disk di ∈ [D⊠]
−i
x . The standard curvatures can be used to identify the equivalence

class of D⊠ inM⊠. We define also the smaller standard curvature

κ := min{κ1, κ2, κ−1, κ−2}
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We define a square-pyramidal disk arrangement as the collection of disks (D⊠, d
∗
1, d

∗
2, dt)

formed by

• D⊠ = {dx, d1, d2, d−1, d−2}: a square-pyramidal circle packing.

• The mirror disks d∗1 and d∗2 where d∗1 is the disk orthogonal to d2, d−2, dx and

d1 ⊂ d∗1; d∗2 is the disk orthogonal to d1, d−1, dx and d2 ⊂ d∗2 (see Figure 2.4).

• The tangency disk dt: the disk whose boundary passes through all the tangency

points of d1, d2, d−1 and d−2, and satisfies dx ⊂ dt.

Lemma 2.3.1. For any square-pyramidal disk arrangement, the mirror disks and the tan-

gency disk are well-defined.

Proof. We first prove the Lemma for the standard [D⊠]
−1
x (κ1) which appears in the

Figure 2.4.

The orthogonality conditions of d∗1 imply that the boundary of d∗1 must be the

circle with center (0,−1) which passes through the tangency point dx ∩ d2. The

orientation of the interior is determined by the condition d1 ⊂ d∗1.

For d∗2, a disk orthogonal to d1, d−1 and dx must be a half-space with the y-axis as

boundary. As before, the orientation of the interior comes from the condition d2 ⊂ d∗2

which gives that d∗2 is the half-space {x ≥ 0}.

For dt, by symmetry, the only circle passing through the tangency points d1 ∩
d2, d1 ∩ d−2 and d−1 ∩ d2 must passes through d−1 ∩ d−2. Again, the orientation is

determined by the condition dx ⊂ dt.

It is clear that the previous arguments work for any standard [D⊠]
−1
x (κ1) with

1 < κ1 < 4. Since the conditions defining the mirror disks and the tangency disks

are preserved under Möbius transformations, the Lemma is also true for the class of

[D⊠]
−1
x (κ1) inM⊠, for any 1 < κ1 < 4. As is shown in the proof of Proposition 2.3.1,

the union of all the classes contains all the square-pyramidal circle packings.
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d1

d2

d−1

d−2

dx
d∗1

d∗2

dt
Curvature Center / n̂ Inversive coordinates

dx 0 (δ = 1) 0 −1 0 −1 1 1

d1 κ1 0 1
κ1
− 1 0 1− κ1 −1 κ1 − 1

d2 1 2√
κ1

0 2√
κ1

0 2
κ1
− 1 2

κ1

d−1 0 (δ = 1) 0 1 0 1 1 1

d−2 1 −2√
κ1

0 −2 − 2√
κ1

0 2
κ1
− 1 2

κ1

d∗1

√
κ1

2 0 −1 0
−√

κ1

2
−1√
κ1

κ1−2
2
√
κ1

d∗2 0 (δ = 0) 1 0 1 0 0 0

dt
−κ1√
κ2
1+4

0 2
κ1

0 −2√
κ2
1+4

κ1√
κ2
1+4

0

Figure 2.4: (Left) The square-pyramidal disk arrangement containing the stan-

dard [D⊠]
−1
x (κ1) with the center of d1 lying on the y-axis. (Right) Curvature,

center and inversive coordinates of the disk in terms of the curvature of d1.

Lemma 2.3.2. The following relations hold for every square-pyramidal disk-arrangement

(D⊠, d
∗
1, d

∗
2, dt) and for every i = 1, 2:

(a) ⟨di, d−i⟩ = −1− 2κi = −1− 8
κj

with i ̸= j.

(b) κi = κ−i.

(c) κ1κ2 = 4.

(d) −7 < ⟨di, d−i⟩ < −1.

(e) (1− ⟨d1, d−1⟩)(1− ⟨d2, d−2⟩) = 16.

(f) ∂dt ⊂ d1 ∪ d2 ∪ d−1 ∪ d−2.

(g) d∗1, d∗2 and dt are mutually orthogonal.

(h) sd∗i (dj) =

{
d−j if i = |j|
dj otherwise

for every j ∈ {1, 2,−1,−2, t}.

Proof. The relations can be obtained by simple calculations by using the inversive

coordinates given in Fig. 2.4.



2.4. The crossing sphere arrangement 33

The equalities (a), (b) and (c) tell us that a square-pyramidal circle packing has

essentially two different standard curvatures κ1 and κ2 which are inversely propor-

tional and the smaller standard curvature must verify 1 < κ ≤ 2. We define the

closest disjoint pair ofD⊠ as the disjoint pair {di, d−i} satisfying that κ = κi. The other

disjoint pair will be called the farthest disjoint pair. In the following we use the indices

{dc, d−c} and {df , d−f} with {c, f} = {1, 2} and c ̸= f to denote the closest and the

farthest disjoint pair of D⊠. By convention, we define c = 1 and f = 2 when κ1 = κ2.

d1

d2

d−1
d−2

dx

d−1d−2

d1 d2

dx

d1 d2

d−1

d−2

dx

Figure 2.5: The closest disjoint pairs in darker gray in three different cases:

(left) κ = κ1 = 1.33 (center) κ = κ1 = κ2 = 2 (right) κ = κ2 = 1.6.

2.4 The crossing sphere arrangement

We define a square-pyramidal sphere packing B⊠ as a sphere packing obtained by

inflating a square-pyramidal circle packing. We define equivalently the closest and

farthest disjoint pairs as in the planar case. Let (D⊠, d
∗
1, d

∗
2, dt) be a square-pyramidal

disk arrangement. We define, for every ε ∈ {+,−}, the crossing sphere arrangement

(B⊠, b∗1, b∗2, bt, bε3, b′ε3) as the arrangement of oriented spheres formed by:

• The square-pyramid sphere packing B⊠ obtained by inflating D⊠.

• The mirror spheres b∗1 and b∗2: the inflating of the mirror disks d∗1 and d∗2 respec-

tively.

• The tangency sphere bt: the inflating of the tangency disk dt.

• The bridge spheres bε3 and b′ε3 where:
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(i) bε3 is the unique sphere externally tangent to bc, bf , bx, internally tan-

gent to b∗c and contained in the half-space {εz ≥ 0}, where {bc, b−c} and

{bf , b−f} denotes the closest and the farthest pair of B⊠.

(ii) b′ε3 is the sphere obtained by the inversion of bε3 on the mirror-sphere b∗c .

We also define the crossing region X of a crossing sphere arrangement as

X :=

 ⋂
b∈B⊠

− b

 ∩ bt.
We show in Figure 2.6 three examples of crossing sphere arrangements with their

corresponding crossing regions.

b1

b−2

b−1

b2

X
b3
b′3

b−1b−2

b1 b2

X
b′−3

b−3

b1 b2

b−1

b−2

Xb′3
b3

Figure 2.6: The corresponding crossing sphere arrangement of square-

pyramidal disk arrangements of Figure 2.5.

Lemma 2.4.1. Let (B⊠, b∗1, b∗2, bt, bε3, b′ε3) be a crossing sphere arrangement. The bridge

spheres bε3 and b′ε3 are well-defined for every ε ∈ {+,−}. Moreover, they are externally

tangent and both are contained in the crossing region X .

Proof. Consider the arrangement of spheres

B = {bx, bc, bf , b∗c , bεz}

where {bc, b−c} and {bf , b−f} are the closest and the farthest disjoint pair ofB⊠ and bεz
is the half-space {εz ≥ 0}. Since the inversive product is preserved by the inflating

operation, we can compute the Gramian of B by using the inversive coordinates

given in the Table 2.4 in terms of the smaller standard curvature. For every 1 < κ <
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2, we find that Gram(B) is non-singular and therefore the Lorentzian vectors of B
form a basis of L4,1. Moreover, we have

Gram(B)−1 =
1

2



κ
2

−1 κ
2
− 1

√
κ 0

−1 0 −1 0 0
κ
2
− 1 −1 κ

2

√
κ 0

√
κ 0

√
κ 2 0

0 0 0 0 2


(2.2)

In order to show that the bridge-spheres are well-defined, we compute the poly-

spherical coordinates of bε3 with respect to B using the definition of bε3 and Eq.(1.5)

which gives

pB(bε3) =
(
−1 −1 −1 1 λz,3

)T
with λz,3 ≥ 1 (2.3)

By using Eq. (1.17), we can normalize to get λz,3 =
√

3 + 2
√
κ− κ > 1 for every

1 < κ ≤ 2. The latter insures, for every square-pyramidal sphere packing, the

existence and the uniqueness of bε3, and hence of b′ε3 := sb∗c (b3). Moreover,

⟨bε3, b′ε3⟩ = ⟨bε3, sb∗c (bε3)⟩

= ⟨bε3, bε3 − 2⟨bε3, b∗c⟩b∗c⟩ by (1.7)

= 1− 2⟨bε3, b∗c⟩2

= −1

so bε3 and b′ε3 are externally tangent. A sphere b is contained in the crossing region

of the crossing sphere arrangement (B⊠, b∗1, b∗2, bt, bε3, b′ε3) if and only if

⟨bi, b⟩ ≤ −1 for every bi ∈ {bx, bc, bf , b−c, b−f} and ⟨bt, b⟩ ≥ 1 (2.4)

By combining the invariance of the inversive product under inversions and the in-

flate operation, the intersection angles between the disks of a square-pyramidal disk

arrangement and the mirror disks given in Lemma 2.3.2 (h), and the tangency con-

ditions in the definition of bε3 we obtain

⟨bx, b′ε3⟩ =⟨sb∗c (bx), sb∗c (b
′
ε3)⟩ = ⟨bx, bε3⟩ = −1

⟨b−c, b
′
ε3⟩ =⟨sb∗c (b−c), sb∗c (b

′
ε3)⟩ = ⟨bc, bε3⟩ = −1

⟨bf , b′ε3⟩ =⟨sb∗c (bf ), sb∗c (b
′
ε3)⟩ = ⟨bf , bε3⟩ = −1
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For the rest of inversive products we use Lemma 2.3.2 (h), Eq. (1.17) and the inver-

sive coordinates given in Fig. 2.4.

⟨bc, b′ε3⟩ = ⟨sb∗c (bc), sb∗c (b
′
ε3)⟩

= ⟨b−c, bε3⟩

= pB(b−c)
T Gram(B)−1pB(bε3)

=
(
−1 −2κ+ 1 −1 −

√
κ 0

)
Gram(B)−1



−1
−1
−1
1√

3 + 2
√
κ− κ


= −1− 2

√
κ < −1 for 1 < κ ≤ 2

By the same procedure, we find that for all 1 < κ ≤ 2 we have

⟨b−f , b
′
ε3⟩ =⟨sb∗c (b−f ), sb∗c (b

′
ε3)⟩ = ⟨b−f , bε3⟩ = 3− 4√

κ
− 8

κ
< −1

⟨bt, b′ε3⟩ =⟨sb∗c (bt), sb∗c (b
′
ε3)⟩ = ⟨bt, bε3⟩ =

2 + 2
√
κ− κ√

4 + κ2
≥ 1

We now have all the ingredients to proceed with the proof of the upper bound

given in Theorem 2.1.1.

2.5 The proof of the upper bound

Proof of Theorem 2.1.1. Let L be a nonsplittable and nontrivial link, and let L be a

minimal crossing diagram of L. The two conditions on the link L imply that the

patchwork graph P (L) = (V×∪Vm, E) has at least two crossing vertices. On the other

hand, the minimality of the diagram L implies that P (L) is a simple planar graph.

Therefore, by the KAT theorem, there is a circle packingDP (L) whose tangency graph

is P (L). Let BP (L) be the inflating of DP (L). For every crossing vertex x ∈ V×, DP (L)

admits a square-pyramidal disk arrangement with circle packing D⊠(x). Therefore,

BP (L) admits a crossing sphere arrangement with square-pyramidal sphere packing
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B⊠(x) and bridge spheres {bεx3, b′εx3}. We notice that

DP (L) =
⋃

x∈V×

D⊠(x) and BP (L) =
⋃

x∈V×

B⊠(x).

We choose εx such that the thread of the chain made by the spheres (bc, bε3, b′ε3, b−c)

is over/under the thread of the chain (bf , bx, b−f ) according to the diagram L. Let

B∧(L) be the arrangement of spheres made by the union of all the bridge spheres

with the appropriate signs with respect to L for each crossing vertex, and let BL :=

BP (L) ∪ B∧(L). If BL were a packing, then its carrier would contain a polygonal

link ambient isotopic to L (by construction). Moreover, the number of spheres

|BL| = |BP (L)| + |B∧(L)| = 3cr(L) + 2cr(L) = 5cr(L) since L is a minimal crossing

diagram. It remains to show that BL is a packing. This is equivalent to showing the

following three claims:

(1) BP (L) is a packing.

(2) Every sphere of BP (L) is at most tangent to every sphere of B∧(L).

(3) B∧(L) is a packing.

Claim (1)] This is obtained directly by the fact that the inflating operation preserves

the inversive product.

Claim (2)] Let x be a crossing vertex with corresponding square-pyramidal disk ar-

rangement (D⊠, d
∗
1, d

∗
2, dt), crossing sphere arrangement (B⊠, b∗1, b∗2, bt, bεx3, b′εx3) and

crossing region X . Since DP (L) is a packing then, as a consequence of Lemma 2.3.2

(f), any disk d ∈ DP (L) \ D⊠ must be disjoint to dt. Therefore, the corresponding

sphere b ∈ BP (L) \ B⊠ must be disjoint to bt and thus, b is disjoint to X . Since, by

Lemma 2.4.1, bεx3, b′εx3 ⊂ X , we have that bεx3 and b′εx3 are disjoint to every sphere

of BP (L) \ B⊠. On the other hand, Lemma 2.4.1 ensures that bεx3 and b′εx3 are at most

tangent to every sphere of B⊠.

Claim (3)] We first notice that, by Lemma 2.4.1, the bridge spheres of a crossing

sphere arrangement are externally tangent. It remains to show that the bridge spheres

of different crossing sphere arrangements do not overlap. Let x and x′ be two
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different crossing vertices of P (L) and let D⊠ = {dx, d1, d2, d−1, d−2} and D′
⊠ =

{dx′ , d1′ , d2′ , d−1′ , d−2′} be the corresponding square-pyramidal circle packings inDP (L).

Let n be the number of disks in common of D⊠ and D′
⊠ and let X and X ′ be the

corresponding crossing regions. Now we show that in each of the five cases (n =

0, 1, 2, 3, 4), X and X ′ have disjoint interiors. We may relabel D′
⊠ in order to work

with the labelling of the graphs shown on the left.

(n = 0)
x 1

2−1

−2 x′ −2
′

−1′2′

1′
Since DP (L) is a packing then, by Lemma 2.3.2

(f), the boundaries of dt and dt′ do not intersect.

Therefore, bt and bt′ are disjoint. Hence,X∩X ′ = ∅.

(n = 1) x
1 = 1′

2

−1

−2
x′

2′

−2′

−1′

The (possibly empty) region dt ∩ dt′ must be con-

tained in d1 so bt ∩ bt′ is contained in b1. As a con-

sequence, int(X ) ∩ int(X ′) = ∅.

(n = 2)
x
1 = 1′

2 = 2′

−1

−2
x′ −2

′

−1′

We can apply a standard transformation to get a

standard circle packing [D⊠∪D′
⊠]

1
2 where the disks

d1, d2, dt and dt′ become half-spaces as in Fig. 2.7.

d1

d2

d−1

d−2

dx
dt d−1′

d−2′

dx′

dt′

d1

d2

d−1

d−2

dx
d−1′

d−2′

dx′

dt dt′

Figure 2.7: (Left) D⊠ ∪D′
⊠ in the case n = 2 together with their tangency disks;

(right)[D⊠ ∪ D′
⊠]

1
2.

The lines ∂dt and ∂dt′ in [D⊠ ∪D′
⊠]

1
2 either intersect in a point lying in d1 ∪ d2 or they

are parallel implying, in both cases, that the region dt ∩ dt′ is contained in d1 ∪ d2.
Therefore, bt ∩ bt′ is contained in b1 ∪ b2 and thus int(X ) ∩ int(X ′) = ∅.

(n = 3)
x

1 = 1′

2 = 2′

−1 = −1′

−2 x′ −2′
The boundaries of dt and dt′ intersect at the tan-

gency points d1 ∩ d2 and d−1 ∩ d2 (Fig. 2.8). There-

fore dt ∩ d′t ⊂ d2 which implies that bt ∩ b′t ⊂ b2 and

hence int(X ) ∩ int(X ′) = ∅.
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d1

d2

d−1

d−2
dxdt d−2′

dx′ dt′

d1

d2

d−1

d−2

dx

d−2′

dx′

dt dt′

Figure 2.8: (Left) D⊠ ∪ D′
⊠ for n = 3 and the tangency disks (right)[D⊠ ∪ D′

⊠]
1
2.

(n = 4) x
1 = 1′

2 = 2′

−1 = −1′

−2 = −2′

x′

In this case, the tangency graph of D⊠ ∪ D′
⊠ is iso-

morphic to the octahedral graph by taking x′ = 3

and x = −3 (Fig. 2.9). We have that dt = −dt′
which implies that bt and bt′ are externally tangent.

Thus, int(X ) ∩ int(X ′) = ∅.

d1

d2

d-1

d-2
dx

dt
dt′

dx′

d1

d2

d-1

d-2

dx dx′

dtdt′

Figure 2.9: (Left) D⊠ ∪ D′
⊠ for n = 4 and the tangency disks (right)[D⊠ ∪ D′

⊠]
1
2.

Finally, since by Lemma 2.4.1 the bridge spheres are contained in the crossing

regions we have that B∧(L), and by consequence BL, are packings.

Remark 3. The method in the previous proof requires two spheres for each bridge in order

to connect the closest pair. Unfortunately, this cannot be done with a single sphere since it

would be too large to be contained in the crossing region, a central request in the proof.



40 Chapter 2. An upper bound on the ball number

2.6 An algorithm for knotted necklaces

Here we present an algorithm arising from the constructive proof of Theorem

2.1.1. We believe that this algorithm can be useful to investigate 3D invariants of

links, such as the rope length or the stick number.

The spheres are given in inversive coordinates. To compute the bridge spheres

we use the inversive products λ−c,3 := ⟨b−c, bε3⟩ = ⟨bc, b′ε3⟩ and λz,3 := ⟨bεz, bε3⟩ =
⟨bεz, b′ε3⟩. These values are given in the proof of Lemma 2.4.1 in terms of the smaller

standard curvature by λ−c,3 = −1−2
√
κ and λz,3 =

√
3 + 2

√
κ− κ. The smaller stan-

dard curvature can be computed by using Lemma 2.3.2 (a) obtaining κ = 1−λc,−c

2
=

8
1−λf,−f

where λc,−c := ⟨bc, b−c⟩ and λf,−f := ⟨bf , b−f⟩. We use the well-known al-

gorithm of Collins and Stephenson [25] for the construction of circle packings from

the tangency graph. The radius of the outer disks and the visual precision can be

chosen. The necklaces representations of the Figures 2.10 and 2.11 are obtained by

this algorithm with outer radii equal to 1 and precision 10−4.

Table 2.1: Algorithm to construct necklace representations.

Input: A link diagram Lwith n crossings of a link L.

Output: A necklace representation BL of the link L with 5n spheres.

1. Compute the patchwork graph P (L) of L.

2. With a Circle Packing algorithm, construct a circle packing DP (L) with tangency graph P (L).
3. Construct a sphere packing BP (L) obtained by inflating DP (L).

4. Set B∧(L) = {}, Q = diag(1, 1, 1, 1,−1), bz = ( 0 0 1 0 0 )T .

5. For each crossing vertex x of P (L) do:
(a) Give to B⊠(x) a square-pyramidal labeling B⊠(x) = {bx, b1, b2, b−1, b−2}.
(b) Compute the inversive product λ = bT1 Qb−1.

(c) If λ ≥ −3, then B = (bx|b1|b2|b−1|bz) and κ = 1−λ
2 . Else, B = (bx|b2|b1|b−2|bz) and κ = 8

1−λ .

(d) Define λ−c,3 = −1− 2
√
κ and λz,3 =

√
3 + 2

√
κ− κ.

(e) Set b3(x) = ( −1 −1 −1 λ−c,3 λz,3 )B−1Q)T

and b′3(x) = ( −1 λ−c,3 − 1 −1 λz,3 )B−1Q)T .

(f) If the thread made by the bridge sphere is under-crossing in L,

then change the sign of the third coordinate of b3(x) and b′3(x).

(g) B∧(L) ← B∧(L) ∪ {b3(x), b′3(x)}.
6. BL := BP (L) ∪ B∧(L).



2.6. An algorithm for knotted necklaces 41

Center Radius
1 0. 0. 0. 1.
2 0.4068 1. -0.1882 0.0958
3 0.519 1.083 -0.1184 0.0603
4 0.6344 1.0947 0. 0.1054
5 0.7338 1.0234 0.0655 0.0334
6 0.7762 0.9686 0.071 0.0362
7 0.8407 0.7983 0. 0.1593
8 1. 0.5458 0. 0.1392
9 2. 0. 0. 1.

10 1.4814 0.9131 0.1095 0.0558
11 1.4327 0.9925 0.0815 0.0415
12 1.3656 1.0947 0. 0.1054
13 1.3204 0.9813 -0.0604 0.0307
14 1.2858 0.9279 -0.065 0.0331
15 1.1593 0.7983 0. 0.1593
16 1.1253 0.6243 0.1733 0.0886
17 1. 0.4638 0.2589 0.1323
18 2. 2. 0. 1.
19 1.0949 1.4501 0.1314 0.0671
20 1. 1.3938 0.0956 0.0489
21 0.8873 1.3285 0. 0.1127
22 1. 1.211 0. 0.0501
23 1.1302 1.0863 0. 0.1302
24 1.2695 0.9745 0. 0.0485
25 1.3864 0.9006 0. 0.0898
26 1.546 1. 0. 0.0982
27 0. 2. 0. 1.
28 1. 1.5198 0. 0.1093
29 1.1127 1.3285 0. 0.1127
30 1.0501 1.2136 0.0693 0.0354
31 1. 1.162 0.0714 0.0365
32 0.8698 1.0863 0. 0.1302
33 0.7305 0.9745 0. 0.0485
34 0.6136 0.9006 0. 0.0898
35 0.454 1. 0. 0.0982

Figure 2.10: Necklace representation of the link 731 with 35 spheres.

Center Radius
1 0. 0. 0. 1.
2 0.5168 0.958 0.2146 0.1094
3 0.6549 1.0442 0.1381 0.0704
4 0.7919 1.0508 0. 0.1243
5 0.9356 1.0528 -0.0671 0.0343
6 0.9982 1.0317 -0.0625 0.0319
7 1.081 0.9676 0. 0.09
8 1.1502 0.8904 0.0455 0.0232
9 1.164 0.8497 0.0395 0.0202

10 1.1595 0.7925 0. 0.0494
11 1.0879 0.7759 0. 0.0241
12 1.0007 0.7799 0. 0.0633
13 0.902 0.7895 0. 0.0358
14 0.7559 0.8166 0. 0.1127
15 0.5757 0.9527 0. 0.1132
16 0.1772 1.9921 0. 1.
17 1.1772 1.4541 0. 0.1356
18 1.3308 1.212 0. 0.1511
19 1.4928 1.1678 -0.1645 0.084
20 1.6347 1.0364 -0.2477 0.1265
21 2. 0. 0. 1.
22 1. 0.4186 0.2005 0.1025
23 0.9104 0.5354 0.1241 0.0634
24 0.895 0.6486 0. 0.1053
25 0.876 0.7684 -0.0535 0.0273
26 0.8848 0.8205 -0.0502 0.0256
27 0.9271 0.9005 0. 0.0779
28 0.9571 1.0187 0. 0.044
29 1.0243 1.2064 0. 0.1554
30 1.0559 1.3765 -0.1686 0.0861
31 1.1772 1.533 -0.2525 0.1289
32 2.1772 1.9921 0. 1.
33 1.5588 1.0432 0. 0.1327
34 1.3111 0.9157 0. 0.1459
35 1.1441 0.8682 0. 0.0278
36 1.0843 0.8388 0. 0.0389
37 1.0718 0.7954 0.0305 0.0156
38 1.0717 0.7615 0.0372 0.019
39 1.1051 0.6481 0. 0.1049
40 1. 0.4677 0. 0.1039

Figure 2.11: Necklace representation of the knot 817 with 40 spheres.
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3.1 Introduction

In this chapter, we study a class of packings which we call polytopal d-ball pack-

ings. These are packings arising from edge-scribed (d+1)-polytopes and are a central

object of this thesis. One of the main differences is that the combinatorial structure

of a polytopal d-ball packing is encoded by a polytope, instead of a graph, which is

the case for general packings. Consequently, polytopal d-ball packings behave well

under duality, and offer a good frame to generalize further constructions such as the
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Apollonian group and packings in higher dimensions.

As we will see, polytopal Apollonian packings encompass other known gener-

alizations. For instance, the classic Apollonian Circle Packing, the generalization of

Guettler and Mallows [49] and the Apollonian ring packing with n = 5 [10] are, re-

spectively, a tetrahedral, octahedral and icosahedral Apollonian packing (Fig. 3.1).

Figure 3.1: From left to right: the classic Apollonian circle packing, the

Guettler-Mallows’ generalization and the Apollonian ring packing with n = 5.

Even if the connection between polytopes and packings has drawn increasing at-

tention in the last decades, this idea is much older. Coxeter, following Beecroft’s idea

[7], already noticed that the initial setting in the classic Apollonian packing with its

dual can be obtained from a circumscribed octahedron [28]. One of the fundamental

results which relates edge-scribed polyhedra with circle packings is the Midsphere

Theorem, proved by Brightwell and Schneirman [16]. The Midsphere Theorem im-

plies important theorems, such as the KAT and the Steinitz’s theorem, and has also

numerous applications in polytopes and graph drawing [93, 76, 36]. Kontorovich

and Nakamura explored the integrality of the Apollonian packings based on circle

packings produced by the Midsphere Theorem, which they call polyhedral packings

[63]. In higher dimensions, Eppstein, Kuperberg and Ziegler [35] followed a similar

approach to construct sphere packings from edge-scribed 4-polytopes which im-

prove the upper bound of the average kissing number. Similarly, Chen studied in

[21] the relation between Apollonian d-ball packings and stacked (d+ 1)-polytopes,

and explored some generalizations of the Midsphere Theorem in higher dimensions.



3.2. The projective model of the space of oriented hyperspheres. 45

3.2 The projective model of the space of oriented hy-

perspheres.

The one-sheet hyperboloid of normalized space-like vectors S(Ld+1,1) can be re-

garded in the oriented projective space of Ld+1,1

P+Ld+1,1 = {x ∈ Ld+1,1 \ 0}/∼ (3.1)

where x ∼ y if there is a real λ > 0 such that x = λy. P+Ld+1,1 is equivalent

to the Euclidean unit sphere Sd+1 ⊂ Ld+1,1 which, under the gnomonic projection,

becomes the union of two affine hyperplanes Π↑ = {xd+2 = 1} and Π↓ = {xd+2 =

−1} together with Π0 = {(x, 0) | x ∈ Sd+1}. The composition of the isomorphism

Balls(R̂d)→ S(Ld+1,1) with the projection

S(Ld+1,1)→ Π↑ ∪ Π0 ∪ Π↓

x 7→

{
x if xd+2 = 0
1

|xd+2|
x otherwise

gives an isomorphism between Balls(R̂d) and Π↑ ∪ Π0 ∪ Π↓. We call the latter the

projective model of Balls(R̂d). We shall identify Π↑ with the (d + 1)-dimensional Eu-

clidean space which we shall denote by Ed+1, in order to make the difference with

the compactified Euclidean space R̂d where the d-balls are defined. This identifica-

tion induces a bijection between d-balls whose Lorentzian vector is future-directed

and points of Ed+1 whose Euclidean norm is strictly greater than 1. Such a point of

Ed+1 will be called an outer-sphere point. The reciprocal bijection between an outer-

sphere point u ∈ Ed+1 and a d-ball b(u) ∈ Balls(R̂d) can be obtained geometrically by

taking a light source which illuminates Sd from u. The spherical illuminated region is

a spherical cap which becomes, under the stereographic projection from the North

Pole, the d-ball b(u). We say that u is the light source of b(u) and, reciprocally, we say

that b(u) is the illuminated region of u.
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b(u)

u

xb(u)

R̂d

Sd
Ed+1

S(Ld+1,1)

R̂d

Ed+1

Sd

b(u)

u

Figure 3.2: A light-source and its illuminated region in the projective model.

For any d-ball whose Lorentzian vector is future-directed, the inversive coordi-

nates can be computed from the coordinates of its light source by

i(b(u)) =
1√

∥u∥2 − 1

(
u

1

)
(3.2)

This equality implies that for any two d-balls whose Lorentzian vectors are future-

directed, their inversive product is related to the Euclidean inner product of their

corresponding light sources by the following equation

⟨b(u), b(v)⟩ = 1√
(∥u∥2 − 1)(∥v∥2 − 1)

(u · v − 1) (3.3)

where · denotes the Euclidean inner product. In the projective model of space of

d-balls, the Möbius group acts as the group of projective transformations preserving

the unit sphere of Ed+1 [106].

3.3 Polytopes

Let us quickly recall some basic polytope notions and definitions needed for the

rest of the paper. We refer the reader to [89, 48] for further details. We consider here

a d-polytope as the convex hull of a finite collection of points in Ed. A 2-polytope

and a 3-polytope are usually called polygon and polyhedron respectively.
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Let d ≥ 1 and P be a (d + 1)-polytope. For every 0 ≤ k ≤ d + 1 we denote by

Fk(P) the set of k-faces of P and by F(P) = {∅} ∪
⋃d+1

k=0Fk(P). A flag of P is a chain

of faces (f0, f1, . . . , fd,P) where for each k = 0, . . . , d, fk ⊂ fk+1. The elements of

V (P) := F0(P), E(P) := F1(P), R(P) := Fd−1(P) and F (P) := Fd(P) are called

vertices, edges, ridges and facets of P , respectively. The graph of P (also called skeleton

or 1-skeleton) is the graph induced by the vertices and the edges of P . The face

lattice (F(P),⊂) encodes all the combinatorial information about P . Two polytopes

P and P ′ are combinatorially equivalent if there exists an isomorphism between

their face lattices. If they are combinatorially equivalent, we say they have the same

combinatorial type and P ′ is said to be a realization of P .

The polar of a set X ⊂ Ed+1 is defined as

X∗ := {u ∈ Ed+1 | u · v ≤ 1 for all v ∈ X}. (3.4)

If P is a (d+1)-polytope containing the origin in its interior then P∗ is also a (d+1)-

polytope containing the origin in its interior and holding the dual relation (P∗)∗ =

P . There is a bijection between F(P) and F(P∗) which reverses incidences. Indeed,

every facet f ∈ Fd(P) corresponds to a unique vertex vf ∈ F0(P∗) and they are

related by

f = {u ∈ P | u · vf = 1}. (3.5)

The symmetric group of P is defined as the group of Euclidean isometries of Ed+1

preserving P . P is said to be regular if its symmetric group acts transitively on the

set of flags P . In this case, the symmetric group of P can be generated from a flag

(f0, . . . , fd,P) by considering the maximal simplex C (chamber) in the barycentric

subdivision of P whose vertices are the barycenters of the faces in (f0, . . . , fd,P).
Then C is the fundamental region of the symmetric group of P which is generated

by the reflections r0, . . . , rd, where rk is the reflection in the wall of C containing the

barycenter ofP and opposite to the vertex corresponding to the k-face in (f0, . . . , fd).

We call the set {r0, . . . , rd} the fundamental generators of the symmetric group of P
with respect to the flag (f0, . . . , fd,P). A presentation of the symmetric group of P
in terms of the fundamental generators is given by{

r2i = (rjrk)
2 = 1 (0 ≤ i, j, k ≤ d, |j − k| ≥ 2)

(ri−1ri)
pi = 1 (0 ≤ i ≤ d)
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where {p1, p2, . . . , pd} is the Schläfli symbol of P . The symmetric group of P is then

the spherical Coxeter group with Coxeter graph p1 pd
.

All polygons admit a regular realization. The Platonic solids, namely, the tetrahe-

dron T 3, the octahedron O3, the cube C3, the icosahedron I3 and the dodecahedron

D3 are the five regular 3-polytopes (polyhedra). The 4-simplex T 4, the orthoplexO4,

the hypercube C4, the 600-cell I4 and the 120-cell D4 are the five regular 4-polytopes

which can be thought as a 4-dimensional analogue of the Platonic solids. The re-

maining regular 4-polytope, the 24-cellR4 (the notation is not standard), completes

the list of regular 4-polytopes. For every d ≥ 2, we shall denote by T d+1, Od+1 and

Cd+1 the (d + 1)-dimensional analogues of the tetrahedron, octahedron and cube.

These are usually called (d + 1)-simplex, (d + 1)-cross-polytope and (d + 1)-cube,

respectively. It is well-known that in dimension 5 or above, these three families are

the only regular polytopes [29].

For every 0 ≤ k ≤ d, a (d + 1)-polytope P is said to be k-scribed if all its k-faces

are tangent to the unit sphere of Ed+1. A k-scribed polytope is called inscribed, edge-

scribed, ridge-scribed and circumscribed if k = 0, 1, d − 1, d respectively. A polytope is

said to be k-scribable if it admits a realization which is k-scribed. Any regular (d+1)-

polytope is k-scribable for every 0 ≤ k ≤ d (by properly centering and rescaling by a

suitable value). If P is a (d+ 1)-polytope containing the origin in its interior then P
is k-scribed if and only if P∗ is (d− k)-scribed (see [24] for more general results).

For any regular (d+ 1)-polytope P , we denote by ℓP the midsphere ratio of P , ob-

tained by the ratio between the half edge-length of P and the radius of the midsphere

(the sphere tangent to every edge). The midsphere ratios of every regular polytope

are presented in the Appendix (Table A.1) and were adapted from [29]. For d = 1, 2,

the midsphere ratios can be computed from the Schläfli symbols by

ℓ{p} = tan(π
p
) ℓ{p,q} =

√√√√sin2(π
q
)− cos2(π

p
)

cos2(π
p
)

(3.6)
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3.4 The ball-arrangement projection.

Let P be an outer-sphere (d + 1)-polytope, i.e. with all its vertices outer-sphere.

We define the ball-arrangement projection of P , denoted by β(P), the arrangement of

d-balls whose light sources are the vertices of P . Reciprocally, we say that P is the

light-source polytope of the ball arrangement β(P). Chen proved in [21, Th. 5.2] that

if β(P) is a packing, then the tangency graph of β(P) is a spanning subgraph of the

graph of P .

Figure 3.3: (Left) An outer-sphere polyhedronP with the spherical illuminated

regions of its vertices; (right) the ball-arrangement projection β(P).

For any two vertices u and v joined by an edge e of P , the d-balls b(u) and b(v)

are disjoint, externally tangent or they have intersecting interiors if and only if e

cuts transversely, is tangent or avoids strictly Sd, respectively. Therefore, P is an

edge-scribed (d+ 1)-polytope if and only if β(P) is a d-ball packing.

Definition 3.4.1. A d-ball packing B is polytopal if there exist an edge-scribed (d + 1)-

polytope P and µ ∈ Möb(R̂d) such that µ(B) = β(P).

Analogously to the tangency graph of d-ball packing, we say that P is the tan-

gency polytope of any polytopal d-ball packing BP satisfying the previous definition.

As Chen noticed in [21, Section 5.2], the graph of P and the graph of BP are isomor-

phic. We observe that not all the d-ball packings are polytopal. We show an example

of a circle packing which is not polytopal in Figure 3.4.
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Figure 3.4: (Left) A circle packing which is not polytopal; (center) its light-

source polyhedron; (right) same polyhedron with the unit sphere. The edge

cutting the sphere does not correspond to any edge of the tangency graph.

3.4.1 Centered Ball Packing projections of regular polytopes

For every d ≥ 1 and 0 ≤ i ≤ d, we define a Centered Ball Packing (i-CBP) projec-

tion of a regular (d + 1)-polytope P , as the ball-arrangement projection of an edge-

scribed regular realization of P containing an i-face whose barycenter is in the ray

going from the origin to the North Pole of Sd (∞ in R̂d). We show in the Appen-

dices (Tables A.2 and A.3) the CBP projections of the Platonic solids and the regular

4-polytopes.

The d-balls in an i-CBP projection can be grouped by layers of d-balls with the

same curvature. These curvatures may be expressed as a linear combination of two

numbers: κP and hi, where κP is the mean of all the curvatures, and hi is the mini-

mum of the positive heights, in the direction of the North Pole, among all the vertices

of P . By Lemma 4.2.3, we have that κP is equal to the inverse of the midsphere ratio

of P . CBP projections are similar to the projections of regular polytopes defined by

Coxeter in [29], obtained by applying parallel cross-sections. Indeed, the number

of d-balls in each layer of an i-CBP projection corresponds to the number of ver-

tices in a layer of a Coxeter’s projection where the dimension of the first face in the

cross-section is i.
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3.5 Duality of polytopal d-ball packings

For d ≥ 2, let P be an edge-scribed (d + 1)-polytope. We can always send P
by a projective transformation preserving the sphere into an edge-scribed (d + 1)-

polytope P0 containing the origin in its interior. Therefore, for any polytopal d-ball

packing BP there is a Möbius transformation µ such that µ(BP) = β(P0). We de-

fine the dual of BP as the ball arrangement B∗
P := µ−1(β(P∗

0 )). The dual B∗
P does

not depend on the choice of P0. For any vertex v of P0, and for any vertex of P∗
0

corresponding to a facet f of P0 containing v, the corresponding d-balls bv ∈ BP
and bf ∈ B∗

P are orthogonal (this can be easily obtained by combining Equations

(1.5), (3.3) and (3.5)). Since P is edge-scribed, P0 is edge-scribed and P∗
0 is ridge-

scribed. In the case d = 2, P∗
0 is also edge-scribed and therefore BP and B∗

P are

both circle packings. The union BP ∪ B∗
P has been called a primal-dual circle repre-

sentation of P [36]. We show in Figure 3.5 a primal-dual circle representation of the

icosahedron. The Midsphere Theorem of Brightwell and Scheinerman [16] gives the

existence and the uniqueness up to Möbius transformations of primal-dual circle

representations for every polyhedron. It can be thought of as a stronger version of

the Koebe-Andreev-Thurston Circle packing theorem [9].

Figure 3.5: (Left) An edge-scribed icosahedron I and its polar I∗; (center) the

spherical illuminated regions of I and I∗; (right) a primal-dual circle represen-

tation of I.
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3.6 Möbius uniqueness of edge-scribable polytopes

In Section 1.1.7, we define the notion of Möbius uniqueness for d-ball packable

graphs. Here, we introduce an analogous uniqueness for edge-scribable (d + 1)-

polytopes. We say that an edge-scribable (d + 1)-polytope P is Möbius unique if

any two polytopal d-ball packings, whose tangency polytope is an edge-scribed

realization of P , are Möbius equivalent. Equivalently, P is Möbius unique if all

its edge-scribed realizations are connected by a projective transformation preserv-

ing the sphere. The following algebraic approach will be useful to detect Möbius

uniqueness of edge-scribable polytopes. We say that an arrangement of d-balls has

maximal rank if the rank of its Gramian is equal to d + 2 (it cannot be larger). In

particular, polytopal d-ball packings have maximal rank.

Proposition 3.6.1. Let B and B′ be two d-ball packings with maximal rank. Then B is

Möbius equivalent to B′ if and only if Gram(B) = Gram(B′).

Proof. The necessity is trivial since Möbius transformations preserve the inversive

product. Now let us suppose that Gram(B) = Gram(B′) is a matrix of rank d + 2.

Let V = (x1, . . . ,xn) and V ′ = (x′
1, . . . ,x

′
n) be the Lorentzian vectors of the d-balls

of B and B′ respectively. Without loss of generality we can consider that the vec-

tors of V and V ′ are future-directed. By the rank condition, V contains a basis

∆ = {xi1 , . . . ,xid+2
} of Ld+1,1. Since Gram(B) = Gram(B′) the corresponding col-

lection ∆′ = {x′
i1
, . . . ,x′

id+2
} ⊂ B′ is also a basis. Let P and P ′ be the light-source

polytopes of the d-balls corresponding to ∆ and ∆′, respectively. Since these are ba-

sis, then the polytopes P and P ′ are outer-sphere (d + 1)-simplices intersecting the

unit sphere Sd ⊂ Ed+1. If P does not contain the origin, then we can find a Möbius

transformation µ̃0 such that the corresponding projective transformation maps P
into another (d+1)-simplexP0 containing the origin of Ed+1. Such a Möbius transfor-

mation can be easily found by combining translations and rescalings of R̂d which are

also Möbius transformations. Let µ0 be the element in the Orthochronous Lorentz

group corresponding to µ̃0 and let V0 := µ0(V ), ∆0 := µ0(∆). Let M0 and M1 be the

(d+2)-square matrices formed by the column-matrices of the Cartesian coordinates

of the vectors of ∆0 and ∆′ respectively with respect to the canonical basis of Ld+1,1.
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The matrices M0 and M1 are non-singular and therefore we have

Gram(∆0) = Gram(∆′)⇔M0
TQd+2M0 = M1

TQd+2M1

⇔ Qd+2(M1
T )−1M0

TQd+2M0 = M1

The matrix A := Qd+2(M1
T )−1M0

TQd+2 defines a linear map of Ld+1,1 to itself

which maps ∆0 to ∆′. Moreover, one can check that

ATQd+2A = Qd+2

Since the origin belongs to P0 we have that Aed+2 ⊂ P ′ ⊂ Π↑. Thus,

eTd+2Aed+2 = Ad+2,d+2 > 0

and therefore, by Equation (1.13), A ∈ O↑
d+1,1(R). The coordinates for the remaining

vectors of V0 and V ′ with respect to the basis ∆0 and ∆′ respectively can be obtained

with the polyspherical coordinates and the entries of Gram(B). The equality of the

Gramians and linearity implies that the Lorentz transformation µ given by A maps

V0 to V ′. Therefore, µµ0 induces a Möbius transformation mapping B to B′.

Remark 4. Proposition 3.6.1 does not hold for arrangements of d-balls in general. To see

this, one may consider any ball packing B = {b1, . . . , bn} whose Gramian is maximal. The

arrangement −B := {−b1, . . . ,−bn} is not a packing, and therefore B and −B are not

Möbius equivalent. However, Gram(B) = Gram(−B).

In practice, we shall use Lemma 1.1.1 and Proposition 3.6.1 to study Möbius

uniqueness. As an example, the result of Wilker [104, Lemma 6] stating that any

two d-ball packings made by d + 2 pairwise tangent d-balls are Möbius equivalent,

follows directly from Proposition 3.6.1. In terms of the tangency polytope, this result

can be restated as follows.

Corollary 3.6.1. For every d ≥ 1, the (d+ 1)-simplex is Möbius unique.

It is clear that all polygons are edge-scribable but not all are Möbius unique.

Corollary 3.6.2. The only polygon which is Möbius unique is the triangle.
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Proof. Let P be an edge-scribed n-gon with n > 3 and let [BP ]n1 = (b1, b2, . . . , bn) be

the standard 1-ball packing obtained by applying a standard transformation to the

ball-arrangement projection of P . Let −1 < x < 1 be the contact point of the two

closed intervals b2 and b3. By replacing b2 and b3 by two closed intervals b′2 and b′3

obtained by moving x a suitable distance we can construct another 1-ball packing

[B′
P ]

n
1 which is not Euclidean congruent to [BP ]n1 . By Lemma 1.1.1, [BP ]n1 and [B′

P ]
n
1

are not Möbius equivalent and therefore P is not Möbius unique.

Möbius uniqueness in dimension 3 is much less restricted. Indeed, the Mid-

sphere theorem of Brightwell and Scheinerman’ [16] stating the existence and unique-

ness of primal-dual circle representations implies the following.

Corollary 3.6.3 (Corollary of the Midsphere Theorem). Every polyhedron is edge-scribable

and Möbius unique.

In dimension 4, there are polytopes which are not edge-scribable (see Section

3.6.2). However, we do not know if there are edge-scribable 4-polytopes which are

not Möbius unique. Appart of the simplex family, we can also prove that the family

of (d + 1)-cross polytopes and (d + 1)-cubes are Möbius unique for every d ≥ 2.

Before proving this, we need the following result.

Theorem 3.6.1. Let d ≥ 2 and let BP be a polytopal d-ball packing where P is an edge-

scribed realization of the (d+1)-cross polytope or (d+1)-cube. Then, for every two vertices

u, v of P , we have

⟨bu, bv⟩ = 1− 2dG(u, v) (3.7)

where dG(u, v) is the distance between u and v in the graph of P .

Proof. We proceed by induction on d ≥ 2. The initial case d = 2 can be easily checked

in a single octahedral or cubical circle packing. Since, by Cor. 3.6.3, polyhedra

are Möbius unique, then Eq. (3.7) holds for every edge-scribed realization of the

octahedron or cube.

Let us now suppose that (3.7) holds for any edge-scribed realization of the (d+1)-

cross polytope or (d+ 1)-cube for some d ≥ 2.
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(P = Od+2) Let BOd+2 be a polytopal (d + 1)-ball packing where Od+2 ⊂ Ed+2 is an

edge-scribed realization of the (d + 2)-octahedron. We give to the vertices of Od+2

an antipodal labelling

V (Od+2) = {v1, . . . , vd+2, v−1, . . . , v−(d+2)}

where vi and vj are connected by an edge of Od+1 if and only if j ̸= −i. For every

1 ≤ i < j ≤ d+ 1, we consider the following collection of (d+ 1)-balls

Bi,j := {b1, . . . , bd+1, b−i, b−j} ⊂ BOd+2

where bk := bvk . Since BOd+2 is polytopal, the tangency graph of BOd+2 is the 1-

skeleton of Od+2. Therefore, bd+2 and b−(d+2) are tangent to every bk ∈ Bi,j . By (1.5),

we have that bd+2 and b−(d+2) satisfy

⟨bk, b⟩ = −1 for every bk ∈ Bi,j (3.8)

and b ∈ {bd+2, b−(d+2)}. In inversive coordinates, (3.8) becomes the following linear

system

Bi,jQd+3X = −1d+3 (3.9)

where Bi,j is the matrix of the inversive coordinates of Bi,j , Qd+3 is the matrix of

the inversive product, X is a (d + 3)-column vector, and 1d+3 is the (d + 3)-column

vector of only 1’s. Since bd+2 and b−(d+2) are distinct, (3.9) has more than one solution.

Therefore, Bi,j is singular, which implies that there is a hyperplane Hi,j of Ed+2 such

that

Vi,j := {v1, . . . , vd+1, v−i, v−j} ⊂ Hi,j.

Moreover, since for every 1 ≤ j′ ≤ d + 1, the hyperplanes Hi,j and Hi,j′ share d + 2

points of Ed+2, then they must be the same hyperplane. Therefore, there is one hy-

perplane H containing all the vertices V (Od+2) \ {vd+2, v−(d+2)}. We thus can find a

Möbius tranformation µ ∈ Möb(Sd+1) such that the corresponding projective trans-

formation sends H to the hyperplane {xd+2 = 0} ⊂ Ed+2. After identifying µ(H)

with Ed+1 we obtain that µ(H ∩ Od+2) becomes an edge-scribed realization of the

(d + 1)-octahedron Od+1. The identification µ(H) ≃ Ed+1 preserves the inversive

product of the (d + 1)-balls corresponding to the points lying in H . Moreover, the
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distance between u and v in the graph ofOd+2 is equal to the distance in the graph of

Od+1. By the invariance of the inversive product under Möbius transformations and

the induction hypothesis, we have that Equation (3.7) holds for any two (d+1)-balls

of BOd+2 \ {bd+2, b−(d+2)}.

The same arguments work if we exchange b1 and bd+2 in Bi,j , so (3.7) holds in the

remaining cases of BOd+2 .

(P = Cd+2) LetBCd+2 be a polytopal (d+1)-ball packing where Cd+2 ⊂ Ed+2 is an edge-

scribed realization of the (d+2)-cube. Let u, v be two vertices of Cd+2. We notice that

0 ≤ dG(u, v) ≤ d + 2. Let ū the unique vertex in Cd+1 such that dG(u, ū) = d + 2.

If v ̸= u then there is a facet f of Cd+2 containing u and v. Let H be the hyperplane

obtained by the affine hull of f . As above, there is µ ∈ Möb(Sd+1) such that the

corresponding projective transformation sends H to the hyperplane {xd+2 = 0} ⊂
Ed+2, and therefore µ(H ∩ Cd+2) induces an edge-scribed realization of the (d + 1)-

cube. By applying the induction hypothesis we obtain that Equation (3.7) holds for

any bu, bv ∈ BCd+2 corresponding to two vertices of Cd+2 at distance strictly less than

d + 2. It remains thus to show that (3.7) holds for bu and bū. Let v1, . . . , vd+2 be

the neighbours of u in the graph of Cd+2. We consider the (d + 1)-ball arrangement

∆ = (bu, bv1 , . . . , bvd+2
, bū) ⊂ BCd+2 . By the induction hypothesis, we have

Gram(∆) =



1 −1 · · · −1 λ

−1 1− 2d
... Ad+2

...

−1 1− 2d

λ 1− 2d · · · 1− 2d 1


where An denotes the n-square matrix with 1’s in the diagonal entries and −3

everywhere else and λ := ⟨bu, bū⟩. It can be computed that

det(Gram(∆)) = −4d+1(d(2d− 3λ+ 3)− 2λ+ 2)(2d+ λ+ 3).

Since ∆ corresponds to a collection of d + 4 vectors of Ld+2,1 the Gramian of ∆

must be singular. Therefore, by the above equality, we obtain

det(Gram(∆)) = 0⇔ λ = −3− 2d or λ =
2d2

3d+ 2
+ 1 > 0 for every d ≥ 2.
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Since bu and bū are disjoint then, by Equation (1.5), λ < −1 and therefore we have

that

⟨bu, bū⟩ = −3− 2d = 1− 2(d+ 2) = 1− 2dG(u, ū).

Corollary 3.6.4. For every d ≥ 2, the (d+1)-cross polytope and the (d+1)-cube are Möbius

unique.

Proof. Let BP and BP ′ be two polytopal d-ball packings where P and P ′ are two

edge-scribed realizations of the (d + 1)-cross polytope (resp. (d + 1)-cube). By The-

orem 3.6.1, we can find an ordering such that Gram(BP) = Gram(BP ′). The Möbius

uniqueness then follows from Proposition 3.6.1.

Corollary 3.6.5. The 24-cell is Möbius unique.

Proof. It is well-known that the 1-skeleton of a 24-cell admits a 3-coloring such that

the vertices of each color span an orthoplex. By taking the vertices of two out of

the three colors, we span a hypercube. Moreover, the edges of this hypercube are

also edges of the initial 24-cell. Therefore, every polytopal sphere packing whose

tangency polytope is the 24-cell contains a hypercubical sphere packing. Let BR4 be

the 0-CBP projection of the 24-cell. The even layers of BR4 gives a 3-CBP projection

BC4 of the hypercube (see Table A.3 in the Appendices). Let BP be a polytopal sphere

packing where P is another edge-scribed realization of the 24-cell and let Q ⊂ P be

one of the hypercubes contained in P . Since, by Corollary 3.6.4, the hypercube is

Möbius unique, then there is a Möbius transformation µ sending the packing BQ to

BC4 . Furthermore, every sphere b ∈ BR4 \ BC4 must be tangent to 6 spheres of BC4

corresponding to the vertices of a facet of C4. This condition forces µ to send the

spheres in BP \BQ to BR4 \BC4 implying that BP and BR4 are Möbius equivalent.

3.6.1 The Möbius spectra

Spectral techniques, based on the eigenvalues and the eigenvectors of the adja-

cency or the Laplace matrices of graphs are strong and successful tools to investigate

different graph’s properties. In this spirit, we define the Möbius spectra of an edge-

scribable Möbius unique (d + 1)-polytope P as the multiset of the eigenvalues of

the Gramian of β(P ′) where P ′ is any edge-scribed realization of P . We believe that
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Möbius spectra may shed light on the properties of edge-scribable polytopes. In

the appendices, we show in Table A.1 the Möbius spectra of the regular polytopes

which we know are Möbius unique.

3.6.2 Non edge-scribable 4-polytopes.

The first examples of 4-polytopes not admitting an edge-scribed realization were

given by Schulte in [88]. In [35, Corollary 9], Eppstein, Kupperberg and Ziegler

found another type of non edge-scribable 4-polytope by noticing that every stacked

4-polytope with more than 6 vertices is not edge-scribable. We recall that the con-

nected sum of two polytopes P and P ′ along a facet f , denoted by P#fP ′, is the

glueing of P and P ′ along f where one of them is projectively deformed in such

a way that the faces of P#fP ′ are the union of the faces of P and P ′ minus f . A

stacked d-polytope is a polytope obtained by applying consecutively connected sums

of d-simplices. The main ingredient in the non edge-scribability property of stacked

4-polytopes is the following.

Lemma 3.6.1. The consecutive connected sum of three 4-simplices is not edge-scribable.

Proof. We consider the 4-polytope (T #f1T ′)#f2T ′′ where T , T ′ and T ′′ are three 4-

simplices. The facets f1 and f2 must intersect in a common ridge r (a triangle) of T ,

T ′ and T ′′. We label the vertices by V (r) = {1, 2, 3}, V (T ) = {1, 2, 3, 4, 5}, V (T ′) =

{1, 2, 3, 5, 6} and V (T ′′) = {1, 2, 3, 6, 7}. Let us suppose that (T #f1T ′)#f2T ′′ admits

an edge-scribed realization P . By applying the ball-arrangement projection to P
and then an inversion on a sphere centered at the tangency point of the spheres b1
and b2 we obtain a polytopal sphere packing BP Euclidean congruent to the packing

depicted in Figure 3.6. The Möbius uniqueness of the simplex and Lemma 1.1.1

ensure that there is no other possibility.
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b1b2

b4 b7 bf0
b3

b6b5

Figure 3.6: The sphere packing obtained by inverting the ball-arrangement

projection of a glueing of three 4-simplices.

In this packing, the dual sphere bf0 , corresponding to the facet f0 of T1 with ver-

tices {1, 2, 3, 4}, cuts orthogonally the sphere b7. By combining Equations (3.5), (3.3)

and (1.5), we have that the vertex v7 of T3 lies in the affine hull f0, so f0 is not a face

of (T #f1T ′)#f2T ′′. This contradicts the condition on the set of faces in the definition

of connected sum. Therefore, (T #f1T ′)#f2T ′′ is not edge-scribable.

Chen mentioned in [21, Section 5] similar arguments as above, by considering a

2-CBP projection of the 4-simplex instead of a 1-CBP projection. A natural gener-

alization of stacked polytopes are the stacked P-polytopes, introduced by Chen and

Padrol in [24], as polytopes obtained by connected sums of several copies of a given

polytope P . By combining Corollaries 3.6.4 and 3.6.5 with Lemma 1.1.1, we can gen-

eralize the construction of Eppstein, Kuperberg and Ziegler by applying the same

arguments to the stacked P-polytopes, where P = O4, C4,R4.

Proposition 3.6.2. The following 4-polytopes are not edge-scribable:

• The connected sum of two orthoplexes.

• The connected sum of three hypercubes sharing a ridge.

• The connected sum of three 24-cell’s sharing a ridge.

Proof. We may apply the same arguments of the proof of Lemma 3.6.1. By the

Möbius uniqueness of the orthoplex, hypercube and 24-cell and Lemma 1.1.1, af-

ter applying the corresponding inversion and a proper rescaling, we must obtain a

packing which is Euclidean similar to the glueing by reflections of 1-CBP projections
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of the corresponding 4-polytope. Then, as above, we would have a dual sphere cut-

ting orthogonally spheres of the different components in the connected sum, and

the same contradiction arises.

3.7 Apollonian groups and packings

In this section, we introduce a generalization of the Apollonian group introduced

by Graham et al. in [45, 46, 47] and Lagarias et al. in [69] for any polytopal d-ball

packing.

For d ≥ 2, let BP a polytopal d-ball packing. We consider the following sub-

groups of Möb(R̂d):

• The symmetric group of BP is the group

Sym(BP) := ⟨µ ∈ Möb(R̂d) | µ(BP) = BP⟩.

We notice that Sym(BP) = Sym(B∗
P).

• The Apollonian group of BP is the group

A(BP) := ⟨S(B∗
P)⟩

where S(B∗
P) denotes the set of inversions on the d-balls of B∗

P .

• The symmetrized Apollonian group of BP is the group

SA(BP) := ⟨Sym(BP) ∪ A(BP)⟩

It can be checked that for every r ∈ Sym(BP) and every b ∈ B∗
P we have

rsbr = sr(b) ∈ A(BP) (3.10)

where sb denotes the inversion of b. And consequently, we have that SA(BP) =
A(BP)⋊ Sym(BP).

• The super symmetrized Apollonian group of BP is the group

SSA(BP) := ⟨A(B∗
P) ∪ Sym(BP) ∪ A(BP)⟩.
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By definition, for any polytopal d-ball packing A(BP) < SA(BP) < SSA(BP).
Therefore, we can find representations of A(BP) as a subgroup of SSA(BP). Clearly,

SSA(BP) might have a smaller set of generators than A(BP). In [45, 46, 47, 63] the

authors defined the dual Apollonian group and the super Apollonian group which, with

our notation, correspond to the groups A(B∗
P) and ⟨A(BP)∪A(B∗

P)⟩, respectively. For

the purposes of this manuscript, these groups are not needed. Nevertheless, both

groups are subgroups of SSA(BP).

For any other polytopal d-ball packing B′
P Möbius equivalent to BP the four

groups defined above for BP are congruent to their analogues in B′
P . Therefore,

if P is Möbius unique, the four groups can be defined for P independently of the

choice of BP , up to isomorphism.

Since inversions of Möb(R̂d) can be seen as hyperbolic reflections of the (d + 1)-

dimensional hyperbolic space, Apollonian groups are hyperbolic Coxeter groups.

This point of view has been well-explored in [22, 23]. The Apollonian cluster of BP ,

denoted by Ω(BP), is the union of the orbits of the action of A(BP) on BP . If Ω(BP) is

a packing we shall call it the Apollonian packing of BP . For d = 2, Apollonian clusters

are always packings. However, this is not true in higher dimensions. For instance,

for d ≥ 4, the Apollonian cluster Ω(BP) where P is an edge-scribed (d+ 1)-simplex,

is not a packing [47].

The four groups presented above give different actions on the Apollonian cluster.

Indeed, each disk of a polytopal circle packing BP has a different orbit under the

action of A(BP). This can be used to present colorings of the disks in the Apollonian

packing of BP . Indeed, if BP admits a proper coloring, then is not hard to see that the

coloring can be extended to Ω(BP) by the action of the A(BP). We present in Figure

3.7 three Apollonian packings with a minimal coloration. In the first case each orbit

has a different color. If P is regular, then Sym(BP) acts transitively on the d-balls of

the Apollonian clusters Ω(BP) and Ω(B∗
P). Moreover, if S is a set of generators of

Sym(BP), then Equation (3.10) implies that for any sf ∈ S(BP) and any sv ∈ S(B∗
P)

the group SA(BP) is generated by S ∪{sf} and SSA(BP) is generated by S ∪{sv, sf}.
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Figure 3.7: A tetrahedral (left), octahedral (center) and cubical (right) Apollo-

nian packing with a minimal coloration.

3.7.1 The Platonic Apollonian Groups

In this section, we compute the Apollonian groups of the Platonic solids, which

we shall call the Platonic Apollonian groups.

Theorem 3.7.1. LetBP be a polytopal circle packing whereP is a Platonic solid with Schläfli

symbol {p, q}. The group SSA(BP) is the hyperbolic Coxeter group with Coxeter graph

∞ p q ∞ . Moreover, SSA(BP) is generated by the following five matrices:

S =


−1

1

1

1

, V =


1

−1
1

1

, E =


1 0 0 0

0 1/2 1 −1/2

0 1 −1 1

0 1/2 −1 3/2



Fq =


−1 0 4 cos(πq ) −4 cos(πq )
0 1 0 0

4 cos(πq ) 0 1− 8 cos2(πq ) 8 cos2(πq )

4 cos(πq ) 0 −8 cos2(πq ) 1 + 8 cos2(πq )

, S∗ =


1 0 0 0

0 −1 −2 2

0 −2 −1 2

0 −2 −2 3


Proof. We follow a similar strategy as in the proof of Theorem 3.7.2. For every

q = 3, 4, 5, let [BP ]12 be the standard polytopal circle packing where P is the regu-

lar polyhedron of Schläfli symbol {3, q}. We choose the flag (v, e, f) satisfying the
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same conditions as in the proof of Theorem 3.7.2. Let us now apply a translation

and a reflection if needed so bf becomes the half-space {x ≥ 0}. Let B3,q be the

circle packing obtained after the transformations. Since P is regular, SSA(B3,q) is

generated by {sv, rv, re, rf , sf} where {rv, re, rf} are the elements in Sym(B3,q) corre-

sponding to the fundamental generators of the symmetric group of P with respect

to the flag (v, e, f), sf is the inversion on the disk in B∗
3,q corresponding to f and sv

is the inversion on the disk in B3,q corresponding to v. For each q = 3, 4, 5 we have

that

• sv is the reflection on the line {y = 1},

• rv is the reflection on the line {y = 0},

• re is the inversion on the circle centered at (1, 1) and radius 2,

• rf is the reflection on the line {x = −2 cos(π
q
)},

• sf is the reflection on the line {x = 0}.

sv

sf

rv

rf

re

sv

sf

rv

rf

re

sv

sf

rv

rf

re

Figure 3.8: The circle packings B3,q with their dual (in blue) for q = 3 (left),

q = 4 (center) and q = 5 (right). In dashed line the generators of the symmetric

group of B3,q. The central disk is a unit disk centered at the origin.

By using the inversive coordinates and Eq. (1.14) we obtain a faithful linear

representation of SSA(B3,q) as a discrete subgroup of O↑
3,1(R) where the generators

are mapped to:

sv 7→ S∗ rv 7→ V re 7→ E rf 7→ Fq sf 7→ S
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The relations of finite order in the Coxeter graph can be checked by straightfor-

ward computations on the matrices. For every n ∈ N the last entry in the diagonal

of (S∗V)n and (FqS)
n is, respectively, 1+2n2 and 1+8 cos2(π

q
)n2 and therefore every

product has infinite order for every q = 3, 4, 5. Since SSA(B3,q) = SSA(B∗
3,q) then

the results also hold for the cube and the dodecahedron. Indeed, the generators of

SSA(B∗
3,q) are given by swapping rv with rf and sv with sf .

The previous theorem allows to exhibit a matrix representation of the Platonic

Apollonian groups in O↑
3,1(K) where K is one of these 3 number fields: Z, Z[

√
2] and

Z[φ]. We illustrates this for the tetrahedron, octahedron and cube.

Corollary 3.7.1. The tetrahedral Apollonian group is isomorphic to

⟨T1,T2,T3,T4⟩ < O↑
3,1(Z)

where

T4 =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = S T3 =


−1 0 4 −4
0 1 0 0

4 0 −7 8

4 0 −8 9

 = F3T4F3

T2 =


−1 2 0 −2
2 −1 0 2

0 0 1 0

2 −2 0 3

 = ET3E T1 =


−1 −2 0 −2
−2 −1 0 −2
0 0 1 0

2 2 0 3

 = VT2V

Corollary 3.7.2. The octahedral Apollonian group is isomorphic to

⟨C123,C123,C123,C123,C123,C123,C123,C123⟩ < O↑
3,1(Z[

√
2])

where
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C123 =


−1

1

1

1

 = S C123 =


−1 0 4

√
2 −4

√
2

0 1 0 0

4
√
2 0 −15 16

4
√
2 0 −16 17

 = F4C123F4

C123 =


−1 2

√
2 0 −2

√
2

2
√
2 −3 0 4

0 0 1 0

2
√
2 −4 0 5

 = EC123E C123 =


−1 −2

√
2 0 −2

√
2

−2
√
2 −3 0 −4

0 0 1 0

2
√
2 4 0 5

 = VC123V

C123 =


−17 6

√
2 12

√
2 −18

√
2

6
√
2 −3 −8 12

12
√
2 −8 −15 24

18
√
2 −12 −24 37

 = F4C123F4 C123 =


−17 −6

√
2 12

√
2 −18

√
2

−6
√
2 −3 8 −12

12
√
2 8 −15 24

18
√
2 12 −24 37

 = VC123V

C123 =


−17 0 0 −12

√
2

0 1 0 0

0 0 1 0

12
√
2 0 0 17

 = EC123E C123 =


−49 0 20

√
2 −40

√
2

0 1 0 0

20
√
2 0 −15 32

40
√
2 0 −32 65

 = F4C123F4

Corollary 3.7.3. The cubical Apollonian group is isomorphic to

⟨O1,O2,O3,O3,O2,O1⟩ < O↑
3,1(Z[

√
2])

where

O1 =


1 0 0 0

0 −1 −2 2

0 −2 −1 2

0 −2 −2 3

 = S∗ O2 =


1 0 0 0

0 −1 2 −2
0 2 −1 2

0 2 −2 3

 = VO1V

O3 =


1

1

−1
1

 = EO2E O3 =


−15 0 12

√
2 −16

√
2

0 1 0 0

12
√
2 0 −17 24

16
√
2 0 −24 33

 = F4O3F4

O2 =


−15 4

√
2 4

√
2 −12

√
2

4
√
2 −1 −2 6

4
√
2 −2 −1 6

12
√
2 −6 −6 19

 = EO3E O1 =


−15 −4

√
2 4
√
2 −12

√
2

−4
√
2 −1 2 −6

4
√
2 2 −1 6

12
√
2 6 −6 19

 = VO2V



66 Chapter 3. Polytopal ball packings

We end this chapter with the following result.

Theorem 3.7.2. There is a tetrahedral, cubical and dodecahedral Apollonian packing where

the set of curvatures of the disks contains all the perfect squares.

Proof. For every p = 3, 4, 5, let [BP ]12 be the standard polytopal circle packing, where

P is the regular polyhedron of Schläfli symbol {p, 3}. Let (v, e, f) be the flag of P
where v is the vertex corresponding to the half-space bv = {y ≤ −1}, e is the edge

of P with ends v and v′ where bv′ = {y ≤ −1}, and f is a face of P containing e.

Let us apply a translation and a reflection if needed, so bf becomes the half-space

{x ≥ 0}. We then rescale by a factor of λ = 4 cos2(π
p
). Let B{p,3}, for p = 3, 4, 5, be the

transformed circle packing obtained from [BP ]12 (Fig. 3.9). The rescaling factor has

been chosen to obtain that the disks with minimal non-zero curvature of B{p,3} have

curvature equal to one.

rf

rv

bv′

bv

sf

re

rf

rv

bv′

bv

sf

re

rf

rv

bv′

bv

sf

re

Figure 3.9: The circle packings B{p,3} for p = 3 (left), p = 4 (center) and p = 5

(right). In dashed line the generators of Sym(B{p,3}) .

Since P is regular then SA(B{p,3}) is generated by {rv, re, rf , sf} where {rv, re, rf}
are the elements in Sym(B{p,3}) corresponding to the fundamental generators of the

symmetric group of P with respect to the flag (v, e, f) and sf is the inversion on the

bf . Therefore, for p = 3, 4, 5, we have the following:

• bv is the half-space {y ≤ −λ} and bv′ is the half-space {y ≥ λ},

• rv is the reflection on the line {y = 0},
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• re is the inversion on the circle centered at (0,−λ) and radius 2
√
λ,

• rf is the reflection on the line {x = −
√
λ},

• sf is the reflection on the line {x = 0}.

For every p = 3, 4, 5 and for every integer n ≥ 0 we define the element

µp,n := re(rfsf )
nre ∈ SA(B{p,3}) and the disk bn := µp,n(bv′) ∈ Ω(B{p,3}).

Let us compute the curvature of bn. The inversive coordinates of bv′ and the matrices

representing re, rf and sf obtained by Eq. (1.14), are given by

i(bv′) =


0

1

λ

λ

 , re 7→ Eλ =


1 0 0 0

0 1− λ
2

1
4

(
λ2 − 4λ− 1

)
−1

4

(
λ2 − 4λ+ 1

)
0 1

4

(
λ2 − 4λ− 1

)
1− (λ2−4λ−1)

2

8λ −1−(λ−4)2λ2

8λ

0 1
4

(
λ2 − 4λ+ 1

) 1−(λ−4)2λ2

8λ 1 +
(λ2−4λ+1)

2

8λ

,

rf 7→ Fλ =


−1 0 2

√
λ −2

√
λ

0 1 0 0

2
√
λ 0 1− 2λ 2λ

2
√
λ 0 −2λ 2λ+ 1

, sf 7→ S =


−1

1

1

1

,
By induction on n we obtain

(FλS)
n =


1 0 2

√
λn −2

√
λn

0 1 0 0

−2
√
λn 0 1− 2λn2 2λn2

−2
√
λn 0 −2λn2 1 + 2λn2


and therefore, by Eq. (1.9), we have

κ(bn) = κ(µp,n(bv′))

= k4Eλ(FλS)
nEλ i(bv′)

= n2

where k4 =
(
0 0 −1 1

)
.
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We show in Fig. 3.10 the tetrahedral, cubical and dodecahedral Apollonian pack-

ings containing the sequence of perfect squares.
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0Figure 3.10: The tetrahedral, cubical and dodecahedral Apollonian packings

containing the sequence of perfect squares.
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4.1 Introduction

The classical Apollonian circle packing is constructed from an initial configura-

tion of four pairwise tangent disks in R2, also known as a Descartes configuration

[21]. The name comes from René Descartes who stated, in his correspondence with

the Princess Elizabeth of Bohemia in 1643, an algebraic relation equivalent to the

following theorem [11].

Theorem 4.1.1 (Descartes). The curvatures of four pairwise tangent disks in the plane

satisfy

(κ1 + κ2 + κ3 + κ4)
2 = 2(κ21 + κ22 + κ23 + κ24) (4.1)
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In 1936, Sir Frederick Soddy1 published in Nature a paper extending the Descartes’

Theorem in dimension three. One year later, Thorold Gosset presented in [43] a

proof for a generalization of the Descartes’ Theorem in arbitrary dimensions.

Theorem 4.1.2 (Soddy-Gosset). The curvatures of d + 2 pairwise tangent d-balls in Rd

satisfy

(κ1 + · · ·+ κd+2)
2 = d

(
κ21 + · · ·+ κ2d+2

)
(4.2)

Soddy-Gosset’s theorem was discovered and rediscovered many times [69, 68, 7].

A different type of generalization of the Descartes’ Theorem was given by Guettler

and Mallows in [49] for octahedral circle packings.

Theorem 4.1.3 (Guettler-Mallows). Let κ1, κ2, κ3, κ−1, κ−2, κ−3 be the curvatures of

the disks in an octahedral circle packing where the labelling satisfies that κi and κ−i are the

curvatures of disjoint disks. Then, the curvatures satisfy the following relations

κ1 + κ−1 = κ2 + κ−2 = κ3 + κ−3 =: 2κµ (4.3)

κ2µ − 2(κ1 + κ2 + κ3)κµ + (κ21 + κ22 + κ23) = 0 (4.4)

In two independant works, Dias and Nakamura push forward the Guettler and

Mallows’ generalization to orthoplicial sphere packings, the analogue of octahedral

circle packings in dimension 3. We shall study in detail these packings in Chapter 5.

Theorem 4.1.4 (Dias-Nakamura). Let κ1, κ2, κ3, κ4 κ−1, κ−2, κ−3, κ−4 be the curvatures

of the spheres in an orthoplicial sphere packing where the labelling satisfies that κi and κ−i

are the curvatures of disjoint spheres. Then, the curvatures satisfy the following relations

κ1 + κ−1 = κ2 + κ−2 = κ3 + κ−3 = κ4 + κ−4 =: 2κµ (4.5)

κ2µ − 2(κ1 + κ2 + κ3 + κ4)κµ + (κ21 + κ22 + κ23 + κ24) = 0 (4.6)

The Descartes’ Theorem and its generalizations are a key ingredient for the con-

struction of integral Apollonian packings. In this chapter, we present a generaliza-

tion of the Descartes’ Theorem for all the polytopal d-ball packings whose tangency

polytope is regular. We call this new generalization the Polytopal Descartes’ Theo-

rem. We will see that the Descartes’ Theorem can be obtained as a particular case of

1Chemistry Nobel Prize laureate in 1921 for discovering isotopes.
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the Polytopal Descartes’ Theorem, as can the generalizations of Soddy and Gosset,

Guettler and Mallows, and Dias and Nakamura. Then, we shall use the Polytopal

Descartes’ Theorem to construct integral Apollonian packings based on the Platonic

solids.

4.2 The Polytopal Descartes’ Theorem

In the background given in Chapter 1, we explained that the curvature of a d-

ball b can be obtained from the Lorentzian product of the corresponding space-like

normalized vector xb ∈ S(Ld+1,1) with a specific vector xN = ed+1 + ed+2 where ei
denotes the i-th vector of the canonical basis B0 of Ld+1,1 (Eq. (1.9)). Let us extend

this notion of curvature to any vector x ∈ Ld+1,1 by

κ(x) = −⟨xN ,x⟩ (4.7)

Let P ⊂ Ed+1 be an outer-sphere polytope. For every face f of P , we define the

Lorentzian barycenter of f as the vector xf ∈ Ld+1,1 given by

xf :=
1

|V (f)|
∑

v∈V (f)

xb(v) (4.8)

where V (f) is the set of vertices of f and b(v) is the illuminated region of v. We also

define the Lorentzian curvature of f as κf := κ(xf ). By linearity, we have that

κf =
1

|V (f)|
∑

v∈V (f)

κ(b(v)) (4.9)

Let us now suppose that P is edge-scribed and BP is a polytopal d-ball packing.

For every f of P , we shall say that κf is a polytopal curvature of BP . The polytopal

curvature of a vertex v is exactly the curvature of the corresponding d-ball bv of BP .

A first relation between the polytopal curvatures of polytopal d-ball packing is the

following.

Lemma 4.2.1 (Antipodal relation). Let BP be a polytopal d-ball packing where P is a reg-

ular edge-scribed (d+ 1)-polytope which is centrally symmetric. Then, for any two vertices

v, v̄ at maximal distance in the 1-skeleton of P , we have

κP =
κv + κv̄

2
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Proof. Since P is centrally symmetric, then 1
2
(xbv + xbv̄) is the Lorentzian barycenter

of P . The Lemma follows from Eq. (4.7) and linearity.

The above lemma applies to every centrally symmetric regular (d+ 1)-polytope.

These are the p-gons with p even when d = 1 and all the regular polytopes not be-

longing to the simplex family when d ≥ 2.

We define the flag quadratic form of a regular (d+ 1)-polytope P as

ΦP(x0, x1, . . . , xd+1) :=
d∑

i=0

(xi+1 − xi)2

LP(i+ 1)− LP(i)
−

x2d+1

LP(d+ 1)
(4.10)

where

LP(i) :=


−1 i = 0

0 i = 1

ℓ−2
fi

if 2 ≤ i ≤ d+ 1

and ℓfi denotes the midsphere ratio of fi. From the values of the midsphere ratio

given in Table A.1, one can compute that, for every d ≥ 1, the flag quadratic form of

the (d+ 1)-simplex, (d+ 1)-cross polytope and (d+ 1)-cube is

ΦT d+1(x0, . . . , xd+1) =
d∑

i=0

(
i+ 2

2

)
(xi − xi+1)

2 − d+ 2

d
x2d+1 (4.11)

ΦOd+1(x0, . . . , xd+1) =
d−1∑
i=0

(
i+ 2

2

)
(xi − xi+1)

2 +
d+ 1

2
(xd − xd+1)

2 − x2d+1 (4.12)

ΦCd+1(x0, . . . , xd+1) =
d∑

i=0

(xi − xi+1)
2 − 1

d
x2d+1. (4.13)

We now can state the main theorem.

Theorem 4.2.1 (Polytopal Descartes’ Theorem). Let BP be a polytopal d-ball packing

whereP is a regular edge-scribed (d+1)-polytope with d ≥ 1. Then, for any flag (v, e, . . . , f,P),
the polytopal curvatures κv, κe . . . , κf , κP of BP satisfy

ΦP(κv, κe, . . . , κf , κP) = 0 (4.14)

The following lemmas are needed for the proof of Theorem 4.2.1.
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Lemma 4.2.2. Let ∆ = (x1, . . . ,xd+2) be a collection of d+ 2 vectors in Ld+1,1. Then ∆ is

a basis if and only if Gram(∆) is non-singular. Moreover, the vector (κ1, . . . , κd+2) where

κi := κ(xi) satisfies

(κ1, . . . , κd+2)Gram(∆)−1


κ1
...

κd+2

 = 0 (4.15)

Proof. Let M be the matrix whose columns are the coordinates of the vectors of

∆ with respect to the canonical basis of Ld+1,1, N = (0, . . . , 0, 1, 1)T and Qd+2 =

Diag(1, . . . , 1,−1). We have that (κ1, . . . , κd+2) = (κ(x1), . . . , κ(xd+2)) = −MTQd+2N.

Therefore,

(κ1, . . . , κd+2)Gram(∆)−1


κ1
...

κd+2

 = (−NTQd+2M)(M−1Qd+2(M
T )−1)(−MTQd+2N)

= NTQd+2N = 0

As Boyd noticed in [14], the Soddy-Gosset’s generalization (Th. 4.1.2) follows

directly by applying the above lemma to the Lorentzian vectors of a packing of d+2

pairwise tangent d-balls.

Lemma 4.2.3. Let P be a regular edge-scribed (d+1)-polytope with d ≥ 1. The Lorentzian

vectors of the vertices of P are contained in the hyperplane {xd+2 = 1
ℓP
} where ℓP is the

midsphere ratio of P . Furthermore, for every f ∈ F(P) we have ⟨xf − xP ,xP⟩ = 0.

Proof. Since P is regular and edge-scribed the barycenter of P is at the origin of

Ed+1 and any vertex v of P has the same Euclidean norm ∥v∥. Therefore, the length

of each half edge of P is equal to ℓP =
√
∥v∥2 − 1. By Eq. (3.2), the Lorentzian

vectors of the vertices of P are contained in the hyperplane

H = {xd+2 =
1√

∥v∥2−1
= 1

ℓP
} ⊂ Ld+1,1

implying that for every face f of P the Lorentzian vector xf is also in H . Since the

barycenter of P is the origin of Ed+1 then xP = 1
ℓP
ed+2 implying the second part of

the Lemma.
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Let a1, . . . , an be a sequence of real numbers. We define the corner matrix C(a1, . . . , an)

as the matrix with the following shape

C(a1, . . . , an) :=



a1 a2 a3 · · · an−1 an

a2 a2 a3 · · · an−1 an

a3 a3 a3 · · · an−1 an
...

...
... . . . ...

...

an−1 an−1 an−1 · · · an−1 an

an an an · · · an an


(4.16)

If ai ̸= ai+1 for each i = 1, . . . , n−1 then C(a1, . . . , an) is non-singular. It can be easily

checked that its inverse is equal to

1
a1−a2

−1
a1−a2

0 · · · 0 0 0

−1
a1−a2

1
a1−a2

+ 1
a2−a3

−1
a2−a3

. . . 0 0 0

0 −1
a2−a3

1
a2−a3

+ 1
a3−a4

. . .
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0
. . .

. . . 1
an−3−an−2

+ 1
an−2−an−1

−1
an−2−an−1

0

0 0 0
. . . −1

an−2−an−1

1
an−2−an−1

+ 1
an−1−an

−1
an−1−an

0 0 0 · · · 0 −1
an−1−an

1
an−1−an

+ 1
an


Moreover, if Xn = (x1, . . . , xn) then it can also be checked that

XnC(a1, . . . , an)
−1XT

n =
n−1∑
i=1

(
(xi − xi+1)

2

ai − ai+1

)
+
x2n
an

(4.17)

Proof of Theorem 4.2.1. Let (f0 = v, f1 = e, . . . , fd = f, fd+1 = P) be a flag of P and let

∆ = (xf0 , . . . ,xfd ,xP) ⊂ Ld+1,1. We shall show that

for any d ≥ 1, Gram(∆) = C(−LP(0),−LP(1), . . . ,−LP(d+ 1)) (4.18)

The desired equality will then follow from this as explained below. Since Gramians

and corner matrices are symmetric, then Eq. (4.18) is equivalent to

for any d ≥ 1, Gram(∆)i,j = −LP(j − 1) for every 1 ≤ i ≤ j ≤ d+ 2 (4.19)



4.2. The Polytopal Descartes’ Theorem 75

where Gram(∆)i,j denotes the (i, j)-entry of Gram(∆). We shall consider three cases

according to the value of j in (4.19):

(i) j = 1, 2. Let v′ be the other vertex of e. Then,

• Gram(∆)1,1 = ⟨xv,xv⟩ = ⟨xb(v),xb(v)⟩ = 1 = −LP(0).

• Gram(∆)1,2 = ⟨xv,xe⟩ = ⟨xv,
1
2
(xv + xv′)⟩ = 1

2
(1− 1) = 0 = −LP(1).

• Gram(∆)2,2 = ⟨xe,xe⟩ = ⟨12(xv +xv′),
1
2
(xv +xv′)⟩ = 1

4
(1− 2+ 1) = 0 = −LP(1).

(ii) j = d + 2. Since P is a regular edge-scribed realization, the first part of the

Lemma 4.2.3 implies that xP =
1

ℓP
ed+2 where ed+2 is the (d + 2)-th vector of the

canonical basis of Ld+1,1. Therefore,

• Gram(∆)d+2,d+2 = ⟨xP ,xP⟩ = −ℓ−2
P = −LP(d+ 1).

The second part of Lemma 4.2.3 implies that for each i = 1, . . . , d+ 2 we have

• Gram(∆)i,d+2 = ⟨xfi−1
,xP⟩ = ⟨xP ,xP⟩ = −LP(d+ 1).

(iii) 3 ≤ j ≤ d+ 2. If d = 1, then (i) and (ii) cover all the possible values for j. Let

d > 1. First, we shall prove that (4.19) holds for j = d+1. SinceP is edge-scribed, the

facet fd intersects the unit sphere Sd ⊂ Ed+1 in a (d − 1)-sphere S . Let µ ∈ Möb(R̂d)

given by the composition of the following two Möbius transformations:

- A rotation of Sd which sends the barycenter of fd to the line spanned by the

North pole of Sd.

- The Möbius transformation corresponding to a rescaling of R̂d, which sends

the rotated S to the equator of Sd.

By identifying the hyperplane {xd+1 = 0} ⊂ Ed+1 with Ed we have that µ(fd) be-

comes a regular edge-scribed realization f̃d of the regular d-polytope fd. We can

then apply again Lemma 4.2.3 to obtain

⟨xf̃i−1
,xf̃d
⟩ = −ℓ−2

fd
for every 1 ≤ i ≤ d+ 1

where f̃i is the i-polytope obtained from µ(fi) after the identification {xd+1 = 0} ≃
Ed. This identification preserves the inversive product of the illuminated regions

of the outer-sphere points lying in {xd+1 = 0}. Since the inversive product is also

invariant under Möbius transformations then, for each i = 1, . . . , d+ 1, we have:
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• Gram(∆)i,d+1 = ⟨xfi−1
,xfd⟩ = ⟨xf̃i−1

,xf̃d
⟩ = −LP(d).

Then, to prove (4.19) for j = d we apply the same arguments as above by consid-

ering this time f̃d−1 as a facet of the regular edge-scribed d-polytope f̃d. By carrying

on these arguments for the rest of the values 3 ≤ j ≤ d + 2 we obtain (4.19) which

gives (4.18).

Finally, since the sequence

(−LP(0),−LP(1), . . . ,−LP(d+ 1)) = (1, 0,−ℓ−2
f2
, . . . ,−ℓ−2

P )

is strictly decreasing then Gram(∆) is non-singular. Therefore, by applying the

Lemma 4.2.2 to ∆ we obtain

0 = (κf0 , . . . , κfd+1
)Gram(∆)−1(κf0 , . . . , κfd+1

)T

= (κf0 , . . . , κfd+1
)C(−LP(0), . . . ,−LP(d+ 1))−1(κf0 , . . . , κfd+1

)T

=
d∑

i=0

(
(κfi+1

− κfi)2

LP(i+ 1)− LP(i)

)
− κ2P
LP(d+ 1)

= ΦP(κv, κe, . . . , κf , κP)

We finally notice that Eq. (4.15) in Lemma 4.2.2 is invariant under Lorentz trans-

formations. Therefore, Eq. (4.14) holds for any polytopal d-ball packing whose tan-

gency polytope is P .

Corollary 4.2.1. Let BP+ and BP− be two regular polytopal d-ball packings where one is

obtained from the other by the inversion on a dual d-ball bf . Then,

κP± =

(
ℓf
ℓP

)2

κf ± ℓ−2
P

√(
ℓ2f − ℓ2P

)
Φf (κv, . . . , κf ) (4.20)

Proof. It follows from the definition (4.10) that

ΦP(x0, x1, . . . , xd+1) = Φf (x0, x1, . . . , xd)−
(
ℓ2fxd − ℓ2Pxd+1

)
2

ℓ2f − ℓ2P
(4.21)

By combining this with (4.14) and then resolving for κP we obtain (4.20).
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Let us explain in detail why Theorem 4.2.1 generalizes the Descartes’ Theorem.

We define the simplicial, hyperoctahedral and hypercubical quadratic form as

Td+1(u1, . . . , ud+2) :=ΦT d+1

(
u1,

1

2
(u1 + u2), . . . ,

1

d+ 2
(u1 + . . .+ ud+2)

)
(4.22)

=
1

2

(
1

d
(
d+2∑
i=1

ui)
2 −

d+2∑
i=1

u2i

)

Od+1(u1, . . . , ud+2) :=ΦOd+1

(
u1,

1

2
(u1 + u2), . . . ,

1

d+ 1
(u1 + . . .+ ud+1), ud+2

)
(4.23)

=u2d+2 −
1

2

d+1∑
i=1

(ui − ud+2)
2

Cd+1(u1, . . . , ud+2) :=ΦCd+1

(
u1,

1

2
(u1 + u2), . . . ,

1

2
(u1 + ud+2)

)
(4.24)

=
1

4

(
1

d
(u1 + ud+2)

2 −
d+1∑
i=1

(ui − ui+1)
2

)

Corollary 4.2.2 (Soddy-Gosset). Let κ1, . . . , κd+2 be the curvatures of a polytopal d-ball

packing BT d+1 . Then,

d
d+2∑
i=1

κ2i = (
d+2∑
i=1

κi)
2 (4.25)

Proof. Since T d+1 is Möbius unique, the Polytopal Descartes’ Theorem holds for any

polytopal d-ball packing BT d+1 . For every i = 0, . . . , d + 1, let vi be the vertex of

T d+1 corresponding to the d-ball of curvature κi. Since T d+1 is a (d + 1)-neighborly

polytope, every set of vertices span a face. Thus, we can find a flag (f0, . . . , fd, fd+1 =

T d+1) where the vertices of fi are v0, . . . , vi. Therefore, we have

κfi =
1

i
(κ1 + . . .+ κi). (4.26)

Then, by the Polytopal Descartes’ Theorem,

Td+1(κ1, . . . , κd+2) = ΦT d+1(κf0 , . . . , κfd+1
) = 0

which is equivalent to (4.25).
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In the above corollary, “polytopal d-ball packing BT d+1” can be replaced by a “d-ball

packing made by d+2 pairwise tangent d-balls”, as in the original statement of Th. 4.1.2.

By Prop. 3.6.1, both definitions are equivalent.

Corollary 4.2.3. Let κ1, . . . , κd+1 be the curvatures of d + 1 pairwise tangent d-balls of a

polytopal d-ball packing BOd+1 . Then,

d+1∑
i=1

(κi − κOd+1)2 = 2κ2Od+1 (4.27)

Proof. We can apply the same arguments as in the proof of Corollary 4.2.2. The

vertices corresponding to the curvatures are the vertices of a facet of Od+1, which

is a d-simplex. Therefore, we can find a flag (f0, . . . , fd,Od+1) where Eq. (4.26) is

satisfied for every i = 0, . . . , d. The Polytopal Descartes’ Theorem combined with

the hyperoctahedral quadratic form gives the result.

For d = 2, 3, Eq. (4.27) is equivalent to the second equation given in the Guettler-

Mallows and Dias-Nakamura generalizations (Theorems 4.1.3 and 4.1.4), respec-

tively, where κµ = κOd+1 . The first equation in both theorems corresponds to the

Antipodal relation of Lemma 4.2.1.

Corollary 4.2.4. For every d ≥ 1, let κ1, . . . , κd+2 be the curvatures of d + 2 consecutive

tangent d-balls of a polytopal d-ball packing BCd+1 where κ1 and κd+2 are the curvatures of

two d-balls at distance d+ 1 in the tangency graph of BCd+1 . Then we have

d

d+1∑
i=1

(κi − κi+1)
2 = (κ1 + κd+2)

2. (4.28)

Proof. By Möbius uniqueness, we can consider that Cd+1 is regular. Let (v1, . . . , vd+2)

be a path passing through the vertices of Cd+1 corresponding to the curvatures.

There is a flag (f0, . . . , fd+1) where fi is the unique i-face containing the vertices

v1, . . . , vi. For every i = 2, . . . , d + 1, the intersection fi ∩ Sd gives a polytopal i-ball

packing BCi . By applying the Antipodal relation to BCi+1 we obtain that, for every

i = 1, . . . , d+ 2,

κfi =
1

2
(κ1 + κi). (4.29)
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and therefore,

Cd+1(κ1, . . . , κd+2) = ΦCd+1(κf0 , . . . , κfd , κfd+1
) = 0

which is equivalent to (4.28).

In the case when all the curvatures in the d-ball packing in Corollaries 4.2.2, 4.2.3

and 4.2.4 are integers, we obtain a geometric method to find solutions to three Dio-

phantine equations.

Corollary 4.2.5. Let d ≥ 1. If there is an integral polytopal d-ball packing BT d+1 , BOd+1 or

BCd+1 then the following Diophantine equations, respectively, have integer solutions.

d(m2
1 + · · ·+m2

d+2) = n2 (4.30)

m2
1 + · · ·+m2

d+1 = 2n2 (4.31)

d(m2
1 + · · ·+m2

d+1) = n2 (4.32)

Proof. The three equations are obtained by adding the numbers inside the parenthe-

sis in (4.25), (4.27) and (4.28), respectively.

22
3
15

2(22 + 22 + 32 + 152) = 222

89

10
88

8990

392 + 402 + 412 = 2× 492

7
10

12

15

59

62

64

67

2(32 + 52 + 522) = 742

Figure 4.1: Three primitive solutions to Eq. (4.30), (4.31), (4.32) for d = 2, ob-

tained by the relations between the polytopal curvatures given in Corollaries

4.2.2, 4.2.3 and 4.2.4, respectively.
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4.3 Integrality of the Platonic Apollonian packings

In the same paper where Soddy found the generalization of Descartes’ Theorem

in three dimensions [92], he noticed, by resolving the quadratic equation (4.25) ap-

pearing in the Descartes’ Theorem for κ4, that if κ1, κ2, κ3 are the curvatures of three

disks in a Descartes configuration, such that

κ1, κ2, κ3 and
√
κ1κ2 + κ1κ3 + κ2κ3 are integers (4.33)

then all the curvatures in the Apollonian packing containing the Descartes config-

uration are integers. An Apollonian packing satisfying this property is said to be

integral (Fig. 4.2). This simple but deep observation of Soddy opened several lines

of research in number theory (see [38, 40] for two excellent surveys). In this section,

we apply the Polytopal Descartes’ Theorem to obtain integrality conditions analo-

gous to (4.33) for the Platonic Apollonian packings.
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Figure 4.2: Two integral tetrahedral Apollonian packings.

First, we present two corollaries of the Polytopal Descartes’ Theorem for d = 2.

Corollary 4.3.1. Let BP be a polytopal circle packing where P is an edge-scribed realization

of the Platonic solid with Schläfli symbol {p, q}. Then, for any flag (v, e, f,P), the following

relations on the polytopal curvatures of BP hold:

- Relation between two consecutive vertices:
κv + κv′

2
= κe (4.34)
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where v′ is the vertex in V (P) \ {v} satisfying v′ ⊂ e.

- Relation between two consecutive edges:

κe + κe′

2
= cos(π

p
)2κv + sin(π

p
)2κf (4.35)

where e′ is the edge in E(P) \ {e} satisfying v ⊂ e′ ⊂ f .

- Relation between two consecutive faces:

κf + κf ′

2
=

cos2(π
q
)

sin2(π
p
)
κe +

sin2(π
q
)− cos2(π

p
)

sin2(π
p
)

κP (4.36)

where f ′ is the face in F (P) \ {f} satisfying e ⊂ f ′ ⊂ P .

- Relation between two consecutive polyhedra:

κP + κP ′

2
=

sin2(π
p
)

sin2(π
p
)− cos2(π

q
)
κf (4.37)

where κP ′ is the polytopal curvature of BP ′ := sf (BP) and sf is the inversion on the

disk bf ∈ B∗
P .

Proof. Each relation follows by first combining Eq. (3.6) with the Polytopal Descartes’

Theorem, then resolving explicitly the quadratic equation for κv, κe, κf and κP , re-

spectively, and finally taking the arithmetic mean of both solutions.

Corollary 4.3.2. The set of curvatures of a Platonic Apollonian packing Ω(BP) can be ob-

tained from the curvatures of three consecutive tangent disks of BP corresponding to three

vertices of P lying in the same face.

Proof. Let κi−1, κi and κi+1 be the curvatures of three consecutive tangent disks

di−1, di, di+1 ∈ BP corresponding to three vertices of P lying in the same face f . Let e

and e′ be the edges of P with vertices vi−1, vi and vi, vi+1, respectively. By replacing

κe =
1
2
(κi + κi+1) and κe′ =

1
2
(κi + κi−1) in Eq. (4.35), we obtain

κf =
1

4 sin2(π
p
)
(κi+1 + κi−1) + (1− 1

2 sin2(π
p
)
)κi (4.38)
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By replacing κv by κi, κe by 1
2
(κi + κi+1) and κf by the right-hand side of (4.38) in

Eq. (4.20), and then combining with Eq. (3.6), we obtain

κP± =
− cos(2π

p
)κi +

1
2
(κi+1 + κi−1)± cos(π

q
)
√
(1− 4 cos2(π

p
))κ2i + κiκi+1 + κiκi−1 + κi+1κi−1

2(sin2(π
q
)− cos2(π

p
))

(4.39)

where the two values correspond to the polytopal curvature κP and κP ′ of BP and

sf (BP), respectively. If we fix κP , we can obtain the curvatures of the disks corre-

sponding to the vertices of P by iterating Eq. (4.39). If, instead, we fix κ(P ′), we

obtain the curvatures of the disks corresponding to the vertices of P ′. By changing

faces and polyhedra we can obtain the curvatures for all the disks in Ω(BP) in terms

of κi, κi+1 and κi−1.

4.3.1 Octahedral Apollonian packings

In the same paper where Guettler and Mallows presented the octahedral Descartes’

Theorem, they were able to construct integral octahedral Apollonian packings by

giving an integrality condition. Here, we review their result and we prove the re-

ciprocal, which will be useful in the next chapter.

Corollary 4.3.3 (Integrality condition for octahedral Apollonian packings). Let κ1, κ2, κ3
be the curvatures of the three pairwise tangent disks of an octahedral circle packing BO3 .

Then Ω(BO3) is integral if and only if κ1, κ2, κ3 and
√

2T2(κ1, κ2, κ3) are integers.

Proof. We mimic the same method used by Nakamura for orthoplicial Apollonian

packings (see [79]). Let us first suppose that κ1, κ2, κ3 and
√
2T2(κ1, κ2, κ3) are in-

tegers. Then, by Cor. 4.2.1, we have that κO3 is equal to one of the following two

expressions

κ1 + κ2 + κ3 ±
√

2T2(κ1, κ2, κ3) (4.40)

Hence, κO3 is also an integer and therefore, by the Antipodal relation, we have

that the remaining curvatures κ−1 = 2κO3 −κ1, κ−2 = 2κO3 −κ2 and κ−3 = 2κO3 −κ3
are also integers. The other value in Eq. (4.40) is the polytopal curvature κ′O3 of
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sf (BO3) ⊂ Ω(BO3), which again must be an integer. We can then apply the same

arguments to obtain that all the curvatures in sf (BO3) are integers. By iterating the

same process with other triples, we obtain that Ω(BO3) is integral.

Now let us suppose that Ω(BO3) is integral. Then

T2(κ1, κ2, κ3) = κ1κ2 + κ2κ3 + κ1κ3 ∈ Z (4.41)

By combining the Antipodal relation with Corollary 4.2.1, we have that

2(κ1 + κ2 + κ3)± 2
√

2T2(κ1, κ2, κ3) = 2κO3 = κ1 + κ−1 ∈ Z

Therefore, 2
√

2T2(κ1, κ2, κ3) is an integer. Let us show it is an even integer. If there

is m ∈ Z such that 2
√

2T2(κ1, κ2, κ3) = 2m+ 1, then we would have√
2T2(κ1, κ2, κ3) = m+

1

2
⇔ 2T2(κ1, κ2, κ3) = m2 +m+

1

4
̸∈ Z

contradicting Eq. (4.41). Hence, 2
√
2T2(κ1, κ2, κ3) is an even integer, so

√
2T2(κ1, κ2, κ3)

is also an integer.

We show in Figure 4.3, two integral octahedral Apollonian packings obtained

from three initial disks whose curvatures satisfy the integrality condition of the pre-

vious proposition.
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Figure 4.3: Two integral octahedral Apollonian packings with initial curva-

tures (−2, 4, 5) and (0, 0, 1).
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4.3.2 Cubical Apollonian packings

Cubical Apollonian packings have been studied by Stange in [95] as a particular

case of the Schmidt arrangement Q[
√
−2]. They are also mentioned at the end of the

paper of Apollonian ring packings of Bolt et al. [10]. Before giving the correspond-

ing integrality condition, let us discuss some useful relations between the curvatures

of a cubical circle packing. Since the cube is centrally symmetric, the Antipodal re-

lation of Lemma 4.2.1 holds. Moreover, by applying the Antipodal relation to any

square-face we obtain the following relation (which was already noticed by Stange

in [95]).

Corollary 4.3.4. For any cyclic chain of tangent disks d1, d2, d3, d4 of a cubical circle

packing, the curvatures of the disks satisfy

κ1 + κ3 = κ2 + κ4 (4.42)

By combining the corollary above with the Antipodal relation, the curvatures of

all the disks in a cubical circle packing can be easily deduced from the curvatures of

four disks which are not in a cyclic chain. Now we give the corresponding integral-

ity condition, which can be proved similarly to the proof of Cor. 4.3.3.

Corollary 4.3.5 (Integrality condition for cubical Apollonian packings). Let κ1, κ2, κ3
be the curvatures of three consecutive tangent disks in a cubical circle packing BC3 . Then

Ω(BC3) is integral if and only if κ1, κ2, κ3 and
√

2C2(κ1, κ2, κ3) are integers.
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Figure 4.4: Two cubical Apollonian packings with initial curvatures (−1, 2, 3)
and (−3, 5, 12).
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4.3.3 Icosahedral Apollonian packings

The curvatures of an icosahedral Apollonian packing cannot be in Z but in Z[φ].
We say that such a packing is φ-integral. The corresponding integrality condition for

icosahedral Apollonian packings, which can be proved similarly to Cor. 4.3.3, is the

following.

Corollary 4.3.6 (Integrality condition of icosahedral Apollonian packings). Let κ1, κ2, κ3
be the curvatures of three mutually tangent disks of an icosahedral circle packing BI3 . Then,

Ω(BI3) is φ-integral if and only if κ1, κ2, κ3 and
√

T2(κ1, κ2, κ3) are in Z[φ].
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Figure 4.5: Two icosahedral Apollonian packings with initial curvatures

(−1, φ, 2φ) (left) and (0, 0, 1) (right).
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4.3.4 Dodecahedral Apollonian packings

Like the cube, the dodecahedron is not simplicial. However, we can obtain from

Eq. (4.38) a relation between the curvatures of the disks corresponding to the ver-

tices lying in the same pentagonal face.

Corollary 4.3.7. For any cyclic chain of tangent disks d1, d2, d3, d4, d5 of a dodecahedral

circle packing, their curvatures satisfy

φ(κi+1 − κi) = κi+2 − κi−1 (4.43)

where i runs cyclically from 1 to 5.

Corollary 4.3.8. Let κi−1, κi, κi+1 be the curvatures of three consecutive tangent disks in a

dodecahedral circle packing BD3 . Then Ω(BD3) is φ-integral if and only if κi−1, κi, κi+1 and√
−φ2κ2i + κiκi+1 + κiκi−1 + κi−1κi+1 are in Z[φ].

-1

0

0
Figure 4.6: Two φ-integral dodecahedral Apollonian packings with initial cur-

vatures (−1, φ+ 1, 2φ) (left) and (0, 0, 1) (right).
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5.1 Introduction

In this chapter, we revisit the orthoplicial Apollonian packings introduced by

Dias [33] and Nakamura [79] as a three-dimensional generalization of the construc-

tion of Guettler and Mallows. An orthoplicial Apollonian packing can be obtained

as follows. Consider a packing of 8 spheres whose tangency graph is the 1-skeleton

of an orthoplex. For each subset of four pairwise tangent spheres, there is a unique

dual sphere orthogonal to the four. Invert the whole configuration through every

dual sphere, and then repeat this process indefinitely (Fig. 5.1).
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Figure 5.1: The orthoplicial Apollonian sphere packing at 0, 1 and 2 iterations.

Each color represents an orbit.

Cross sections are a natural way to study Apollonian configurations in higher di-

mensions. In [6], Baragar showed several cross sections of d-simplicial Apollonian

clusters for d = 4 to 8. In order to recognize planar structures in sphere packings, not

only geometrically but also arithmetically, we shall present an algebraic generaliza-

tion of cross sections of Apollonian clusters that we call Apollonian sections. We shall

use the notion of Apollonian section to prove that the curvatures in every integral

tetrahedral, octahedral or cubical Apollonian packing are contained in an integral

orthoplicial Apollonian packing.

The structures introduced in this chapter will be used in Chapter 6.

5.2 The orthoplicial sphere packing

Nakamura defined a sphere packing to be orthoplicial if its tangency graph is the

graph of an orthoplex [79]. These packings were also studied by Sheydvasser as a

packing arising from rational quaternion algebras [91]. They can also be obtained as

a particular case of Boyd-Maxwell packing [23] or a crystallographic sphere packing

[63]. In this section, we shall study orthoplicial sphere packings as polytopal sphere

packings, i.e. as packings Möbius equivalent to the ball-arrangement projection of

an edge-scribed orthoplex. As we show below, orthoplicial sphere packings, in the

sense of Nakamura, are polytopal.
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Lemma 5.2.1. All the sphere packings whose tangency graph is the graph of the orthoplex

are polytopal.

Proof. Let B such a packing. The tangency relations give all the entries of Gram(B)
except for the entries corresponding to the inversive product of disjoint spheres. We

shall prove that these inversive products must be all equal to -3. This would imply,

by Th. 3.6.1, that we can reorder the spheres of B such that Gram(B) = Gram(BO4),

where BO4 is the ball-arrangement projection of an edge-scribed orthoplex. Then,

by Prop. 3.6.1, we would have that B and BO4 are Möbius equivalent, and therefore

B would be polytopal.

Let us give an antipodal labelling to B = {b1, b2, b3, b4, b−1, b−2, b−3, b−4} so bi

is always disjoint to b−i. For every 1 ≤ i < j ≤ 4, let Bi,j ⊂ B the collection

{bi, bj, bk, bl, b−i, b−j}where {i, j, k, l} = {1, 2, 3, 4}. Then, we have

Gram(Bi,j) =



1 −1 −1 −1 λi −1
−1 1 −1 −1 −1 λj

−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
λi −1 −1 −1 1 −1
−1 λj −1 −1 −1 1


where λi := ⟨bi, b−i⟩. Since Bi,j corresponds to a collection of 6 vectors of L4,1, then

Gram(Bi,j) must be singular. Therefore, the entries λ1, λ2, λ3, λ4 must verify the

following conditions

λi < −1 and (λi − 1)(λj − 1)(λi + λj + 6) = 0 for every 1 ≤ i < j ≤ 4 (5.1)

There is an only solution to the previous equations which is

λ1 = λ2 = λ3 = λ4 = −3

The first example of orthoplicial sphere packing considered by Nakamura and

Dias is the standard orthoplicial sphere packing [BO4 ]12 depicted in Fig. 5.2.
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b3b4

b1

b2

b−2

b−1
b−4b−3

Curvature Center / n̂ Inversive coordinates

b1 0 (δ = 1) 0 0 1 0 0 1 1 1

b2 0 (δ = 1) 0 0 −1 0 0 −1 1 1

b3 1 1 1 0 1 1 0 0 1

b4 1 −1 1 0 −1 1 0 0 1

b−1 2 0 0 −1/2 0 0 −1 −1 1

b−2 2 0 0 1/2 0 0 1 −1 1

b−3 1 −1 −1 0 −1 −1 0 0 1

b−4 1 1 −1 0 1 −1 0 0 1

Figure 5.2: The standard orthoplicial sphere packing [BO4 ]12.

Remark 5. Nakamura defined in [79] the Platonic orthoplicial sphere packings as orthopli-

cial sphere packings which are Möbius equivalent to the standard [BO4 ]12. By the Möbius

uniqueness of the orthoplex given in Cor. 3.6.4 and Lemma 5.2.1, all orthoplicial sphere

packings are Platonic in the sense of Nakamura.

5.2.1 Orthoplicial trinities

By polarity, the dual B∗
O4 of an orthoplicial sphere packing is Möbius equivalent

to the ball-arrangement projection of a ridge-scribed hypercube. Therefore, B∗
O4 is

not a packing. However, by alternating the vertices of the hypercube, we can split

the dual in two orthoplicial sphere packings B∗
O4 = B′

O4 ∪ B′′
O4 . Such arrangement

of three orthoplicial sphere packings {BO4 ,B′
O4 ,B′′

O4} will be called an orthoplicial

trinity.

Lemma 5.2.2. Let {BO4 ,B′
O4 ,B′′

O4} be an orthoplicial trinity. Then, for anyB ∈ {BO4 ,B′
O4 ,B′′

O4},
we have that B∗ = {BO4 ,B′

O4 ,B′′
O4} \ B.

Proof. By Cor. 3.6.4, it is enough to prove the result in a particular case. Let us

consider the standard orthoplicial sphere packing [BO4 ]12 given in Fig. 5.2. The dual

of [BO4 ]12 can be split into two orthoplicial sphere packings, both obtained from [BO4 ]12

by a rotation of π
2

degree, one around the x-axis and the other around the y-axis, as

shown in Fig. 5.3.
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Figure 5.3: An orthoplicial trinity containing the standard [BO4 ]12.

The three packings in the previous trinity are 1-CBP projections of the orthoplex.

A similar case arises when an orthoplicial trinity contains a 0-CBP projection of the

orthoplex. In this case the other two packings must be 3-CBP projections as it is

shown in Figure 5.4.

Figure 5.4: From left to right: a 3-CBP projection, a 0-CBP projection and an-

other 3-CBP projection of the orthoplex, and the orthoplicial trinity formed by

the three.

5.2.2 Apollonian groups of the orthoplicial sphere packing

In this context, the orthoplicial Apollonian group A(BO4), introduced by Nakamura

in [79] and also by Dias in [33], corresponds to the Apollonian group of the standard

orthoplicial sphere packing [BO4 ]12.

Lemma 5.2.3. The symmetrized orthoplicial Apollonian group is the hyperbolic Coxeter

group with Coxeter graph
4 4

and it is isomorphic to the group generated by the
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following five matrices:

V =


−1

1
1
1
1

 ,E =
1

2


1 1 −1 −1 0
1 1 1 1 0
−1 1 1 −1 0
−1 1 −1 1 0
0 0 0 0 2

 ,R =


1
1
−1

1
1

 ,

F =


1
1
0 1
1 0

1

 , S =


1 0 0 0 0
0 −1 0 −2 2
0 0 1 0 0
0 −2 0 −1 2
0 −2 0 −2 3

 .

Proof. Let [BO4 ]12 be the standard orthoplicial sphere packing given in Figure 5.2. Let

{rv, re, rr, rf} be the fundamental generators of the symmetric group of [BO4 ]12, with

respect to the flag (v, e, r, f,O4), where v = 1, e = 12, r = 123 and f = 1234. Then,

{rv, re, rr, rf} are represented by the following Möbius transformations:

• rv is the reflection on the plane {x = 0}.

• re is the inversion on the sphere with center (−1, 1,−1) and radius 2.

• rr is the reflection on the plane {z = 0}.

• rf is the inversion on the sphere with center (0, 0, 1) and radius
√
2.

Since the orthoplex is regular, then SA([BO4 ]12) is generated by {rv, re, rr, rf , sf}, where

sf is the inversion on the sphere orthogonal to b1, b2, b3 and b4. By using the inversive

coordinates, we obtain a linear faithful representation of SA([BO4 ]12) as the discrete

subgroup of O↑
4,1(Q), where the generators {rv, re, rr, rf , sf} are represented by the

matrices {V,E,R,F,S}, respectively. The relations in the Coxeter graph can be

checked by straightforward computations on the matrices. By the Möbius unique-

ness of the orthoplex, the symmetrized Apollonian group of any other orthoplicial

ball packing is isomorphic to SA([BO4 ]12).

Corollary 5.2.1. The orthoplicial Apollonian group is isomorphic to the subgroup ofO↑
4,1(Z)

generated by the following 16 matrices:
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S1234 =


1 0 0 0 0
0 −1 0 −2 2
0 0 1 0 0
0 −2 0 −1 2
0 −2 0 −2 3

 = S, S1234 =


1 0 0 0 0
0 −1 −2 0 2
0 −2 −1 0 2
0 0 0 1 0
0 −2 −2 0 3

 = FS1234F,

S1234 =


1 0 0 0 0
0 −1 2 0 2
0 2 −1 0 −2
0 0 0 1 0
0 −2 2 0 3

 = RS1234R, S1234 =


1 0 0 0 0
0 −1 0 2 2
0 0 1 0 0
0 2 0 −1 −2
0 −2 0 2 3

 = FS1234F,

S1234 =


−1 0 0 −2 2
0 1 0 0 0
0 0 1 0 0
−2 0 0 −1 2
−2 0 0 −2 3

 = ES1234E, S1234 =


−1 0 −2 0 2
0 1 0 0 0
−2 0 −1 0 2
0 0 0 1 0
−2 0 −2 0 3

 = FS1234F,

S1234 =


−1 0 2 0 2
0 1 0 0 0
2 0 −1 0 −2
0 0 0 1 0
−2 0 2 0 3

 = RS1234R, S1234 =


−1 0 0 2 2
0 1 0 0 0
0 0 1 0 0
2 0 0 −1 −2
−2 0 0 2 3

 = FS1234F,

S1234 =


−1 0 0 2 −2
0 1 0 0 0
0 0 1 0 0
2 0 0 −1 2
2 0 0 −2 3

 = VS1234V, S1234 =


−1 0 2 0 −2
0 1 0 0 0
2 0 −1 0 2
0 0 0 1 0
2 0 −2 0 3

 = FS1234F,

S1234 =


−1 0 −2 0 −2
0 1 0 0 0
−2 0 −1 0 −2
0 0 0 1 0
2 0 2 0 3

 = RS1234R, S1234 =


−1 0 0 −2 −2
0 1 0 0 0
0 0 1 0 0
−2 0 0 −1 −2
2 0 0 2 3

 = FS1234F,

S1234 =


1 0 0 0 0
0 −1 0 2 −2
0 0 1 0 0
0 2 0 −1 2
0 2 0 −2 3

 = ES1234E, S1234 =


1 0 0 0 0
0 −1 2 0 −2
0 2 −1 0 2
0 0 0 1 0
0 2 −2 0 3

 = FS1234F,

S1234 =


1 0 0 0 0
0 −1 −2 0 −2
0 −2 −1 0 −2
0 0 0 1 0
0 2 2 0 3

 = RS1234R, S1234 =


1 0 0 0 0
0 −1 0 −2 −2
0 0 1 0 0
0 −2 0 −1 −2
0 2 0 2 3

 = FS1234F.

The previous representation of the orthoplicial Apollonian group in O↑
4,1(Z) can

be obtained by conjugating the matrix representation O↑
W (Z) given by Nakamura in

[79], where W is the matrix of the inversive product in augmented curvature-center

coordinates (see [69]). Both representations satisfy the following relations:
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(R1) S2
ijkl = 1 for every (i, j, k, l) = (±1,±2,±3,±4).

(R2) (SijklSi′j′k′l′)
2 = 1 if the labels ijkl and i′j′k′l′ differ by only one letter.

5.3 Apollonian sections

Let BP be a polytopal d-ball packing and let A(BP) and Ω(BP) be the Apollonian

group and the Apollonian cluster of BP . We say that a subset Σ ⊂ Ω(BP) is an

Apollonian section of Ω(BP) if there is subgroup Γ < A(BP) and a subset X ⊆ BP
such that Σ = Γ · X . Two Apollonian sections Σ = Γ · X and Σ′ = Γ′ · X ′ of two

different polytopal Apollonian clusters Ω(BP) and Ω(BP ′), respectively, are said to be

algebraically equivalent if Γ and Γ′ are isomorphic and there is an equivariant bijection

between Γ ·X and Γ′ ·X ′ with respect to the actions. More specifically, Σ and Σ′ are

algebraically equivalent if there exist two bijections ϕ : Γ→ Γ′ and ψ : Σ→ Σ′ such

that

(i) ϕ : Γ→ Γ′ is a group isomorphism

(ii) For all g ∈ Γ and all b ∈ X , ψ(g · b) = ϕ(g) · ψ(b)

If in addition ψ preserves curvatures, we say that Σ and Σ′ are arithmetically equiva-

lent. We shall say that an Apollonian cluster has a tetrahedral, octahedral, cubical,

icosahedral or dodecahedral Apollonian section if it contains an Apollonian sec-

tion algebraically equivalent to an Apollonian packing of the corresponding Pla-

tonic solid.

Proposition 5.3.1. Every orthoplicial Apollonian packing contains a tetrahedral, octahedral

and cubical Apollonian section.

Proof. Since the orthoplex is Möbius unique, it is enough to find the desired Apol-

lonian sections in a particular orthoplicial Apollonian packing. First, we shall con-

struct a tetrahedral and octahedral Apollonian section in Ω([BO4 ]12) (Fig. 5.5).
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Figure 5.5: The orthoplicial Apollonian packing Ω([BO4 ]12) at depth ≤ 3, view

from above.

(Tetrahedral section) Let ΣT = ΓT · XT where XT = {b1, b2, b3, b4} ⊂ [BO4 ]12, ΓT =

⟨s1234, s1234, s1234, s1234⟩ < A([BO4 ]12) and let b1234 ∈ ([BO4 ]12)
∗. One can check that ΓT

leaves invariant b1234. Let HT be the boundary of b1234. In [BO4 ]12, HT is the plane

{y = 1}. After identifying HT with R̂2, we obtain that

XT ∩HT := {b1 ∩HT , b2 ∩HT , b3 ∩HT , b4 ∩HT }

becomes a tetrahedral circle packing BT 3 . Moreover, the restriction of ΓT on HT

induces an isomorphism between ΓT and A(BT 3) given by

ϕT : ΓT −→ A(BT 3)

sb 7−→ sb∩HT

where sb denotes the inversion on b. On the other hand, we can construct a bijection

ψT : ΣT −→ Ω(BT 3)

g · b 7−→ (g · b) ∩HT

By inspection, one can check that for every ijkl ∈ {1234, 1234, 1234, 1234} and for

every m = 1, 2, 3, 4, we have

ψT (sijkl · bm) = (sijkl · bm) ∩HT

= ϕT (sijkl) · (bm ∩HT )

= ϕT (sijkl) · ψT (bm)
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which gives the equivariance of ψT . Therefore, ΣT is algebraically equivalent to the

tetrahedral Apollonian packing Ω(BT 3).

(Octahedral section) We may apply a similar strategy to construct an octahedral

section in Ω([BO4 ]12) by intersecting with the plane HO := {x − y = 1}, orthogonal

to every b ∈ XO := [BO4 ]12 \ {b4, b−4}. The intersection HO ∩XO gives an octahedral

circle packing BO3 . We define then ΣO := ΓO ·XO ⊂ Ω([BO4 ]12) where

ΓO = ⟨t123, t123, t123, t123, t123, t123, t123 | tijk := sijk4sijk4⟩

In this case, the group isomorphism ϕO : ΓO 7→ A(BO3) is given by tijk 7→ sijk,

where sijk denotes the inversion on the disk orthogonal to the three disks {bi ∩
HO, bj ∩HO, bk ∩HO}. The equivariant bijection ψO : ΣO → Ω(BO3) is then given by

g(b) 7→ g(b) ∩HO. We illustrate in Figure 5.6 the tetrahedral and octahedral sections

ΣT and ΣO.

Figure 5.6: A tetrahedral (left) and octahedral (right) Apollonian section of

Ω([BO4 ]12).

(Cubical section) This case is a bit more tricky. We consider the orthoplicial sphere

packing B↑x
O4 obtained by a 3-CBP projection of the orthoplex, with the labelling

and coordinates given in Figure 5.7. We call the labelling given in Figure 5.7 the

x-labelling. We notice that in the x-labelling, i is positive if and only if the first coor-

dinate of the center of bi is positive.
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b1b−4

b3 b−2

b−1 b4

b−3b2

z

y

Curvature Center Inversive coordinates
b1 1− 1/

√
2 (
√
2 + 1) ( 1 1 1) 1/

√
2 ( 1 1 1 1

√
2)

b2 1 + 1/
√
2 (
√
2− 1) ( 1 −1 1) 1/

√
2 ( 1 −1 1 −1

√
2)

b3 1− 1/
√
2 (
√
2 + 1) ( 1 −1 −1) 1/

√
2 ( 1 −1 −1 1

√
2)

b4 1 + 1/
√
2 (
√
2− 1) ( 1 1 −1) 1/

√
2 ( 1 1 −1 −1

√
2)

b−1 1 + 1/
√
2 (
√
2− 1) (−1 −1 −1) 1/

√
2 (−1 −1 −1 −1

√
2)

b−2 1− 1/
√
2 (
√
2 + 1) (−1 1 −1) 1/

√
2 (−1 1 −1 1

√
2)

b−3 1 + 1/
√
2 (
√
2− 1) (−1 1 1) 1/

√
2 (−1 1 1 −1

√
2)

b−4 1− 1/
√
2 (
√
2 + 1) (−1 1 −1) 1/

√
2 (−1 −1 1 1

√
2)

Figure 5.7: The orthoplicial sphere packing B↑x
O4 .

The orthoplicial Apollonian packing Ω(B↑x
O4) and a cubical Apollonian section of

Ω(B↑x
O4) are shown in Figure 5.9. Let us describe the construction. First, we consider

the ridge-scribed cube and hypercube

C3 := conv{ 1√
2
(±1,±1,±1)} C4 := conv{ 1√

2
(±1,±1,±1,±1)}

We split C4 into two edge-scribed orthoplexes induced by the classes of a 2-

coloring of its vertices. LetO4 be the orthoplex in the class of the vertex 1√
2
(1, 1, 1, 1).

Then we have that B↑x
O4 = β(O4). Let π : E4 → E3 be the orthographic projection onto

the hyperplane {x1 = 0} ⊂ E4 made by deleting the first coordinate. We have that

π(O4) = C3. Now let BC3 = β(C3). By mapping bv to bπ(v), for every v ∈ O4, we

construct a bijection π̃ : B↑x
O4 → BC3 . Now we consider the packing B⊥

HC
⊂ (B↑x

O4)
∗

made by the six spheres of (B↑x
O4)

∗ which are orthogonal to HC := {x = 0} ⊂ R̂3

(see the blue packing in Figure 5.4), and let ΓC < A(B↑x
O4) be the group generated by

the inversions on the spheres of B⊥
HC

. According to the x-labelling, we have that ΓC

corresponds to the parabolic subgroup of A(B↑x
O4) given by

⟨s1234, s1234, s1234, s1234, s1234, s1234⟩

The intersection of B⊥
HC

with HC induces a map of B⊥
HC

to B∗
C3 (see Figure 5.8). There-

fore, we can define a group isomorphism ϕC : ΓC → A(BC3) by mapping the inver-

sion on every sphere b ∈ B⊥
HC

to the inversion on the circle (b ∩ HC) ∈ B∗
C3 . Let

ΣC := ΓC · B↑x
O4 . It can be checked that for every g ∈ ΓC and every b ∈ B↑x

O4 , the
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mapping

ψC : ΣC → Ω(BC3)

g · b 7→ ϕ(g) · π̃(b)

defines an equivariant bijection with respect to the action of ΓC on B↑x
O4 . Therefore,

ΣC is a cubical Apollonian section of Ω(B↑x
O4).

Figure 5.8: (Left) B↑x
O4 in gray with B⊥

HC
in blue; (right) BC3 in gray with B∗

C3 in

blue.

The bijections ψT and ψO described above, both preserve the inversive product,

which is not the case for ψC . Indeed, spheres which are tangent in the cubical Apol-

lonian section may correspond to disjoint disks in the cubical Apollonian packing.

To see this, we might consider the cubical Apollonian packing Ω(BC3) given above

with a 2-coloring. Then, two disks ψC(b) and ψC(b
′) have the same color if and only

if the centers of b and b′ both lie on the same side of the plane HC . When two disks

with the same color (and therefore disjoint), correspond to two vertices lying in the

same square-face, then the corresponding spheres are tangent (see Fig. 5.9).
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Figure 5.9: (From left to right) The orthoplicial Apollonian sphere packing

Ω(B↑x
O4); a cubical Apollonian section ΣC of Ω(B↑x

O4); ΣC zoomed; the correspond-

ing cubical Apollonian circle packing with a minimal coloration.

On the arithmetic side, the bijections ψT and ψO preserve the curvatures, contrar-

ily to ψC . However, by composing ψC with a rescaling of R̂2 of factor
√
2 we obtain

a bijection that does preserve the curvatures. These properties will be important

in the next section in order to construct integral orthoplicial Apollonian packings

containing an Apollonian section with prescribed curvatures.

5.3.1 Construction of orthoplicial Apollonian packings containing

a given integral section

In this section, we prove the main result of this chapter.

Theorem 5.3.1. Let Ω(BP) be either a tetrahedral, an octahedral or a cubical Apollonian

packing. There is an orthoplicial Apollonian packing Ω(BO4) containing an Apollonian sec-

tion arithmetically equivalent to Ω(BP). Moreover, Ω(BP) is integral if and only if Ω(BO4)

is integral.

For the integrality part, we need the integrality condition for orthoplicial Apol-

lonian sphere packings.

Lemma 5.3.1 (Integrality condition for orthoplicial Apollonian packings). Let κ1, κ2,

κ3 and κ4 be the curvatures of four pairwise tangent spheres of an orthoplicial sphere pack-

ing BO4 . Then, Ω(BO4) is integral if and only if κ1, κ2, κ3, κ4 and
√

T3(κ1, κ2, κ3, κ4) are

integers.
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Proof. Nakamura gave a proof in [79] for all orthoplicial sphere packings Möbius

equivalent to the standard [BO4 ]12. Since the orthoplex is Möbius unique, Naka-

mura’s lemma applies to every orthoplicial sphere packing.

Proof of Theorem 5.3.1. LetBO4 be the orthoplicial sphere packing obtained from [BO4 ]12

by applying a translation of R3 of vector (−1, 0, 0), so HT becomes the plane given

by {x = 0}. Let ΣT = ΓT ·XT be the corresponding tetrahedral section of Ω(BO4) and

let BT 3 be the tetrahedral circle packing given by ψT (XT ). In inversive coordinates,

the bijection ψ−1
T : Ω(BT 3)→ ΣT ⊂ Ω(BO4) is given by

ψ−1
T : Ω(BT 3) −→ ΣT

i(b) 7−→

(
0

i(b)

)

Let B′
T 3 be any tetrahedral circle packing. Since the tetrahedron is Möbius unique,

there exists µ ∈ Möb(R̂2) such that µ · BT 3 = B′
T 3 . Therefore, µ ·Ω(BT 3) = Ω(B′

T 3). Let

M ∈ O↑
3,1(R) be the matrix corresponding to µ and let µ̃ ∈ Möb(R̂3) be the Möbius

transformation corresponding to the matrix(
1 0T

4

04 M

)
∈ O↑

4,1(R)

where 04 is the null column-matrix of size 4. We have that Σ′
T := µ̃ · ΣT is a tetrahe-

dral section of the orthoplicial Apollonian packing Ω(B′
O4) = µ̃ · Ω(BO4). We define

the bijection

ψ̃T := µ ◦ ψT ◦ µ̃−1

mapping Σ′
T to Ω(B′

T 3). Let us show that Σ′
T preserves curvatures. For every disk

b ∈ Ω(B′
O3), we have

κ(ψ̃−1
T (b)) = κ(µ̃ ◦ ψ−1

T ◦ µ
−1(b))

= k5

(
1 0T

4

04 M

)(
0T
4

I4

)
M−1 i(b) where I4 is the identity matrix of size 4

= k5

(
0

i(b)

)
= k4 i(b) = κ(b)
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and therefore, Ω(B′
T 3) and Σ′

T ⊂ Ω(B′
O4) are arithmetically equivalent.

We may use the beginning of the proof to show the octahedral case in a sim-

ilar way as above. In this case, we may consider the orthoplicial sphere packing

obtained from [BO4 ]12 after a rotation around the z-axis of angle π
4
, so the plane HO

becomes the plane {x = 0}. Then, the bijection ψ−1
O : Ω(BO3) → ΣO has the same

expression in inversive coordinates as ψ−1
T and the rest of computations are identical

as in the tetrahedral case.

As before, the cubical case is more delicate. Let B↑x
O4 be the orthoplicial sphere

packing of Figure 5.7 and let ΣC = ΓC · B↑x
O4 be the cubical Apollonian section de-

scribed in the proof of Prop. 5.3.1. Let BC3 be the cubical circle packing given by

ψC(B↑x
O4). We define the mapping

ε : BC3 −→ {1,−1}
b 7−→ sign(x1(b))

(5.2)

where x1(b) is the first coordinate of the center of ψ−1
C (b). Then, in inversive coordi-

nates, the bijection ψ−1
C : BC3 → B↑x

O4 and the group isomorphism ϕ−1
C : A(BC3) → ΓC

are given by

ψ−1
C : BC3 −→ B↑x

O4

i(b) 7−→ 1√
2

(
ε(b)

i(b)

) ϕ−1
C : A(BC3) → ΓC

A 7→

(
1 0T

4

04 A

)
(5.3)

The equivariance of ψC allows us to extend ψ−1
C : Ω(BC3)→ ΣC by

ψ−1
C (g · b) = ϕ−1

C (g) · ψ−1
C (b) (5.4)

for every g ∈ A(BC3) and every b ∈ BC3 . Let B′
C3 be any cubical circle packing. As

before, the Möbius uniqueness of the cube implies that there is µ ∈ Möb(R̂2) such

that µ · Ω(BC3) = Ω(B′
C3). We define µ̃ ∈ Möb(R̂3) as above in the tetrahedral case.

Let µ̂ = λ 1√
2
◦ µ̃ ∈ Möb(R̂3) where λ 1√

2
is the rescaling of R̂3 with factor 1√

2
. We

have that Σ′
C := µ̂ · ΣC is a cubical Apollonian section of the orthoplicial Apollonian

packing Ω(B′
O4) := µ̂ ·Ω(B↑x

O4). We define the bijection ψ̂C = µ ◦ ψC ◦ µ̂−1 which maps

Σ′
C → Ω(B′

C3). Again, we shall prove that ψ̂C preserves curvatures. First, we notice

that for any disk b ∈ Ω(B′
C3), there is g′ ∈ A(B′

C3) and b′ ∈ B′
C3 such that b = g′ · b′, by
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definition. Then, for any b ∈ Ω(B′
C3) we have

κ
(
ψ̂−1
C (b)

)
= κ

(
ψ̂−1
C (g′ · b′)

)
= κ

(
µ̂ ◦ ψ−1

C ◦ µ
−1(g′ · b′)

)
= κ

(
λ 1√

2
◦ µ̃ ◦ ψ−1

C ◦ µ
−1(g′ · b′)

)
=
√
2κ
(
µ̃ ◦ ψ−1

C ◦ µ
−1(µgµ−1) · (b′)

)
where g = µ−1g′µ ∈ A(BC3)

=
√
2κ
(
µ̃ ◦ ϕ−1

C (g) · ψ−1
C ◦ µ

−1(b′)
)

by (5.4)

=
√
2k5

(
1 0T

4

04 M

)(
1 0T

4

04 A

)
1√
2

(
ε(µ−1(b′))

i(µ−1(b′))

)
where A is the matrix of g

= k5

(
ε(µ−1(b′))

MAi(µ−1(b′))

)
= k4MAi(µ−1(b′))

= k4MAM−1i(b′)

= κ(µgµ−1 · b′)

= κ(g′ · b′) = κ(b)

Now we suppose that Ω(B′
T 3), Ω(B′

O3) and Ω(B′
C3) are integral. We shall show that in

the three cases we can find four pairwise tangent spheres of B′
O4 with curvatures κ1,

κ2, κ3 and κ4 satisfying that
√

T3(κ1, κ2, κ3, κ4) ∈ Z. The integrality of Ω(B′
O4) then

follows from Prop 5.3.1.

(Tetrahedral section) Let κ1, κ2, κ3, κ4 be the curvatures of the four disks of B′
T 3 . By

the Descartes’ Theorem, we have that

T3(κ1, κ2, κ3, κ4) = 0

Since ψ̃−1
T preserves curvatures, then κ1, κ2, κ3, κ4 are the curvatures of four pairwise

tangent spheres of B′
O4 satisfying that

√
T3(κ1, κ2, κ3, κ4) ∈ Z.

(Octahedral section) Let κ1, κ2, κ3, κ−1, κ−2, κ−3 be the curvatures of the six disks of

B′
O3 under an antipodal labelling, so κi and κ−i are the curvatures of non-tangent

disks. By (4.27) , we have

(κ1 − κO3)2 + (κ2 − κO3)2 + (κ3 − κO3)2 = 2κ2O3 (5.5)
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where κO3 = 1
2
(κi + κ−i) for every i = 1, 2, 3. Since ψ̃−1

O preserves curvatures, then

κ1, κ2, κ3, κ−1, κ−2, κ−3 are also the curvatures of six spheres of B′
O4 . Let κ4 and κ−4

be the curvatures of the remaining spheres of B′
O4 . By the antipodal relation, which

holds for B′
O3 and B′

O4 , we have

κO3 =
κ1 + κ−1

2
= κO4 (5.6)

We also have that κ1, κ2, κ3, κ4 are the curvatures of four pairwise tangent spheres of

B′
O4 . By combining (5.6) with Cor. 4.2.3 we obtain

(κ1 − κO4)2 + (κ2 − κO4)2 + (κ3 − κO4)2 + (κ4 − κO4)2 = 2κ2O4

⇔ (κ1 − κO3)2 + (κ2 − κO3)2 + (κ3 − κO3)2 + (κ4 − κO3)2 = 2κ2O3

⇔ κ4 = κO3

Therefore,√
T3(κ1, κ2, κ3, κ4) =

√
T3(κ1, κ2, κ3, κO3)

=
1

2

√
(κ1 + κ2 + κ3 + κO3) 2 − 2

(
κ21 + κ22 + κ23 + κ2O3

)
=

1

2

√
2(κ1κ2 + κ2κ3 + κ1κ3) + 2κ2O3 − (κ1 − κO3)2 − (κ2 − κO3)2 − (κ3 − κO3)2

=
1

2

√
2(κ1κ2 + κ2κ3 + κ1κ3) by (5.5)

=
1

2

√
2T2(κ1, κ2, κ3)

Since Ω(B′
O3) is integral, then, 2T2(κ1, κ2, κ3) is an even integer. Moreover, by Cor.

4.3.3,
√

2T2(κ1, κ2, κ3) is also an even integer. Consequently,
√

T3(κ1, κ2, κ3, κ4) ∈ Z.

(Cubical section) Let κ1, κ2, κ3, κ4 be the curvatures of four consecutive tangent disks

b1, b2, b3, b4 of B′
C3 with b4 tangent to b1. By Cor. 4.3.4, we have

κ1 + κ3 = κ2 + κ4

Since ψ̂−1
C preserves curvatures, then κ1, κ2, κ3, κ4 are the curvatures of four pairwise

tangent spheres of BO4 . Then, we have√
T3(κ1, κ2, κ3, κ4) =

√
T3(κ1, κ2, κ3, κ1 + κ3 − κ2)

=
√
κ1κ2 + κ2κ3 + κ1κ3 − κ22

=
√

2C3(κ1, κ2, κ3)

The integrality of Ω(B′
C3) and Cor. 4.3.5 give that

√
T3(κ1, κ2, κ3, κ4) ∈ Z.
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The previous proof is constructive and gives a method to obtain integral ortho-

plicial Apollonian packings containing a given tetrahedral, octahedral or cubical

section. The three orthoplicial Apollonian packings shown in Table 5.1 were ob-

tained by this method.

Platonic AP Orthoplicial AP Apollonian section
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Table 5.1: An integral tetrahedral, octahedral and cubical Apollonian circle

packing and an orthoplicial Apollonian sphere packing containing an Apollo-

nian section arithmetically equivalent to the packing on the left.
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6.1 Introduction

In [74], Maehara and Oshiro studied two necklace representations of the simplest

link: the Hopf link (Fig. 6.1). Chen used the same two constructions to obtain

graphs which can not be realized as the tangency graph of a sphere packing [21].

The first known necklace is the Soddy’s Hexlet, a nice construction discovered by

Soddy in the same paper where he introduced the integral Apollonian packings and

the three-dimensional generalization of Descartes’ theorem [92]. Soddy’s Hexlet

appears naturally as a subset of the classic Apollonian sphere packing [62]. The

second construction considered by Maehara and Oshiro is a standard orthoplicial

sphere packing, and they used it to compute the ball number of the Hopf link, which

is 8 [72]. As far as we are aware, the Hopf link is the only link whose ball number is

known.
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Figure 6.1: Two necklace representations of the Hopf link: the Soddy’s Hexlet

(left) and the orthoplicial sphere packing (right).

In this last chapter before the conclusion, we shall take advantage of the fractal

structure of the orthoplicial Apollonian sphere packing to construct necklace repre-

sentations of links with few spheres. After showing that any link admits an orthopli-

cial necklace representation, we shall improve the upper bound on the ball number

given in Theorem 2.1.1 for rational links. We conclude with an unexpected relation

between the arithmetical properties of rational links and the inversive coordinates

of a tangency point of two spheres in an orthoplicial necklace representation. The

latter puts forward a connection between continued fractions, a cubic Apollonian

packing and a Diophantine equation.

6.2 Orthoplicial necklace representations

We say that a necklace representation of a link is orthoplicial if it is contained in

an orthoplicial Apollonian packing. In the following result, we show that any link

admits an orthoplicial necklace representation.

Theorem 6.2.1. Any link admits a necklace representation in any orthoplicial Apollonian

sphere packing.

Proof. Let L be a link. By Th. 1.2.3, there is an n-braid γ such that its closure is iso-

topically equivalent to L. We shall show that the closure of γ can be constructed geo-

metrically in the carrier of the orthoplicial Apollonian sphere packing [BO4 ]12 shown

in the Figure 5.2.
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First, we construct the Apollonian section Σ12 := Γ12 · [BO4 ]12 ⊂ Ω([BO4 ]12) where

Γ12 := ⟨s1234, s1234, s1234, s1234⟩ (6.1)

We have that Σ12 is an infinite sphere packing whose carrier is a square-grid with

two vertices, one above the other, at the center of each square. Therefore, via square-

grid diagrams, we can construct a polygonal path in the carrier of Σ12 equivalent to

the closure of γ by using the vertices at the center of the squares for the crossings

(see Fig. 6.2). Since Möbius transformations preserving the orientation of R3 are am-

bient isotopies, the Möbius uniqueness of the orthoplex implies that any orthoplicial

Apollonian sphere packing contains a necklace representation of L.

b3

b−3 b−4

b4

b−2

s1234

s1234

s1234s1234

Figure 6.2: (Left) [BO4 ]12 with the generators of Σ12, view from above; (top right)

a square-grid braid diagram of the trefoil knot and the corresponding embed-

ding of the trefoil in the carrier of Σ12 (bottom right).

The method used in the previous proof can be used to give an upper bound of

the ball number of a link in terms of its braid length. However, this method only

improves the upper bound of Theorem 2.1.1 for links whose braid index is 2.

Corollary 6.2.1. Let L be a link with braid index equal to 2. Then,

ball(L) ≤ 4cr(L)
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Proof. Let L be a link equivalent to a closed 2-braid with n crossings. The corre-

sponding square-grid diagram is a reduced alternating diagram of L. Therefore,

by Th. 1.2.1, cr(L) = n. On the other hand, by using the half-spaces b1 and b2 in

Σ12 for closing the 2-braid, we can obtain a necklace representation of L with 4n

spheres.

The closure of a 2-braid with n crossings is equivalent to the rational link C(n).

In the next section, we shall extend the improved upper bound of Corollary 6.2.1 to

every rational link with the help of a cubical Apollonian section of an orthoplicial

Apollonian packing.

6.3 Algebraic links in the cubical Apollonian section

In order to simplify the latter computations, instead of working with the ortho-

plicial sphere packing B↑x
O4 where the cubical Apollonian section was defined in the

proof of Prop. 5.3.1, we consider the orthoplicial sphere packing B↑z
O4 obtained by re-

labelling of B↑x
O4 according to the Figure 6.3. We call the given labelling the z-labelling.

Analogously to the x-labelling, a label i is positive in the z-labelling if and only if

the third coordinate of the center of bi is positive.

b1b−4

b3 b−2

b−1 b4

b−3b2

x

y

Curvature Center Inversive coordinates

b1 1− 1/
√
2 (
√
2 + 1) ( 1 1 1) 1/

√
2 ( 1 1 1 1

√
2)

b2 1 + 1/
√
2 (
√
2− 1) (−1 1 1) 1/

√
2 (−1 1 1 −1

√
2)

b3 1− 1/
√
2 (
√
2 + 1) (−1 −1 1) 1/

√
2 (−1 −1 1 1

√
2)

b4 1 + 1/
√
2 (
√
2− 1) ( 1 −1 1) 1/

√
2 ( 1 −1 1 −1

√
2)

b−1 1 + 1/
√
2 (
√
2− 1) (−1 −1 −1) 1/

√
2 (−1 −1 −1 −1

√
2)

b−2 1− 1/
√
2 (
√
2 + 1) ( 1 −1 −1) 1/

√
2 ( 1 −1 −1 1

√
2)

b−3 1 + 1/
√
2 (
√
2− 1) ( 1 1 −1) 1/

√
2 ( 1 1 −1 −1

√
2)

b−4 1− 1/
√
2 (
√
2 + 1) (−1 1 −1) 1/

√
2 (−1 1 −1 1

√
2)

Figure 6.3: The orthoplicial sphere packing B↑z
O4 .
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We define the orthocubical sphere packing as the cubical Apollonian section of

Ω(B↑z
O4) given by ΣC := ΓC · B↑z

O4 where

ΓC := ⟨s1234, s1234, s1234, s1234, s1234, s1234⟩

Here, the plane HC intersecting all the spheres of ΣC is the plane {z = 0} (c.f. proof

of Prop. 5.3.1 (cubical section)). Let BC3 be the cubical circle packing corresponding

to ΣC . As it was done in Figure 5.9, the disks of Ω(BC3) whose center is above (resp.

below) the plane {z = 0} are represented in black (resp. white). We call this coloring

the z-coloring. By extending the z-coloring to the vertices of the tangency graph of

Ω(BC3), we obtain a proper 2-coloring of the tangency graph Ω(BC3). This graph is

a spanning subgraph of the tangency graph of ΣC . The missing edges are exactly

those which join the vertices of the same color belonging to the same square-face.

We call these edges the diagonal edges.

Figure 6.4: (Top left) B↑z
O4 with its carrier and the plane {z = 0}, view from

above; (top right) the corresponding cubical circle packing BC3 with the z-

coloring; (bottom left) the tangency graph of B↑z
O4 with the z-coloring; (bottom

right) the tangency graph of BC3 with the z-coloring.
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We point out that any two tangent spheres of ΣC joined by a non-diagonal edge

meet at the plane {z = 0}. A diagonal edge shall be called black or white according

to the color of the joined vertices. Diagonal edges will play an important role in the

construction of necklace representations in order to represent the crossings. With

the information given by the z-coloring, the over/under crossing information can

be deduced from the color of the vertices of the diagonal edges (Fig. 6.5).

Figure 6.5: An orthocubical necklace representation of the trefoil knot (left) and

the corresponding cubical diagram (right).

6.3.1 Orthocubical shifts

We consider the dual B∗
C3 = {d1, d2, d3, d−1, d−2, d−3} with the antipodal labelling

depicted in Figure 6.6 and the elements {r12, r13, r23, r−13, r−23, r−33} ⊂ Sym(B∗
C3)

where rij denotes the inversion which exchanges the disks di with dj , d−i with d−j ,

and fixes the rest. In B∗
C3 we have that r12 corresponds to the reflection on the line

{x = y}, r±i3 is the inversion on the circle centered at ±ei and radius
√
2, for i = 1, 2,

and r−33 is the inversion on the unit circle centered at the origin (see Fig. 6.6).
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d1

d2

d3

d−3

d−2

d−1

r13

r23

r−23

r−13

r−33

r12

Figure 6.6: The disks of the dual B∗
C3 in blue and the walls of the symmetries

{r12, r13, r23, r−13, r−23, r−33} in dashed lines.

Since Sym(BC3) = Sym(B∗
C3), the elements {r12, r13, r23, r−13, r−23, r−33} belong also

to the symmetrized Apollonian group SA(BC3). We define the cubical shifts as the

elements {µx, µy, µz, µ−x, µ−y, µ−z} ⊂ SA(BC3) given by

µ±x := s±1 r±13 µ±y := s±2 r±23 µ±z := s±3 r−33 (6.2)

where si denotes the inversion on the disk di ∈ B∗
C3 . In the Figure 6.7, we show the

action of the cubical shifts on the carrier of BC3 . We notice that µ±x and µ±y preserve

and µ±z reverses the z-coloring, and the subgroup generated by {µx, µy, µ−x, µ−y, µ−z}
is free.
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µx

µy

µ−x

µ−y

µz

µ−z

Figure 6.7: The action of the cubical shifts on the cubical carrier.

We define the orthocubical shifts as the elements {µ̂x, µ̂y, µ̂z, µ̂−x, µ̂−y, µ̂−z} ⊂ SA(B↑z
O4)

corresponding to the cubical shifts after conjugation with ψ−1
C , where ψC is the bijec-

tion mapping ΣC to Ω(BC3) described in the proof of Prop. 5.3.1. According to the

z-labelling, we have that

µ̂x = s1234 r̂34 µ̂y = s1234 r̂23 µ̂z = s1234 r̂−13r̂−24

µ̂−x = s1234 r̂12 µ̂−y = s1234 r̂23 µ̂−z = s1234 r̂−13r̂−24

where, r̂ij ∈ Sym(B↑z
O4) denotes the inversion which exchanges the spheres bi with bj ,

b−i with b−j , and fixes the rest of spheres of B↑z
O4 .
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6.3.2 An upper bound on the ball number of rational links

We shall present here a discrete analogue of algebraic links by using the algebraic

structure given by the Apollonian groups of the orthocubical sphere packing.

First, we define an orthocubical path γ as a polygonal curve in the carrier of ΣC

connecting the centers of two spheres of ΣC . Orthocubical paths shall be represented

by cubical diagrams (see Figure 6.5) which are obtained by adding the diagonal edges

to the carrier of the corresponding cubical Apollonian packing. We recall that the

over/under information for the crossings in the cubical diagrams is given by the

color of the vertices in the diagonal edges (black=over/white=under). We shall also

encode an orthocubical path by a vector (ci1 , · · · , cin) which denotes the centers of

the spheres in the linear order induced by γ. The endpoints of γ are the centers ci1
and cin and the length of γ, denoted by |γ|, is the number n counting the centers in γ.

Since we shall consider unoriented paths, and the concatenation of two paths gives

another path, vectors encoding orthocubical paths must be considered modulo the

following relations:

(i) (Symmetry) (ci1 , . . . , cin) = (cin , . . . , ci1)

(ii) (Concatenation) {(ci, · · · , cj), (cj, · · · , ck)} = {(ci, · · · , cj, · · · , ck)}

Let T be the tetrahedron T := conv({c1, c−2, c3, c−4}) where ci is the center of

the sphere bi ∈ B↑z
O4 . We define an orthocubical tangle as a 2-tangle (T , t ) where

t is a collection {γ1, γ2, . . . , γm} of m ≥ 2 disjoint orthocubical paths contained in

T satisfying that the endpoints of γ1 and γ2 are {c1, c−2, c3, c−4} and the rest of the

orthocubical paths are closed. The length of t , denoted by | t |, is the sum of the

lengths of the orthocubical paths in t . We denote by t0 , t1 and t∞ the elementary

orthocubical tangles depicted in Fig. 6.8.
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c1c−4

c3 c−2

t0

c1c−4

c3 c−2

t1

c1c−4

c3 c−2

t∞

Figure 6.8: The elementary orthocubical tangles.

Now we introduce the orthocubical tangle operations. We define

(i) the orthocubical sum t +O t′ := µ̂−x t ∪ {(c−1, c4), (c−3, c2)} ∪ µ̂x t
′ .

t

c1c-4

c-2c3

t

t′

c1c-4

c-2c3

t′

t t′

c1c-4

c-2c3

c-3c2

c4c-1

t +O t′

and the unary operations

(ii) the orthocubical flip FO t := r̂24 t ,

(iii) the orthocubical positive half-twist H+
O t := t1 +O t ,

(iv) the orthocubical negative half-twist H−
O t := µ̂x t ∪ {(c3, c−1, c−3), (c−4, c2, c4)}.

c1c-4

c−2c3

t

t

c1c-4

c−2c3

t

FO t

c1c-4

c-2c3

c-3c2

c4c-1
t

H+
O t

c1c-4

c-2c3

c-3c2

c4c-1
t

H−
O t

Figure 6.9: Orthocubical unary operations of tangles.

The orthocubical tangle closures are given by:
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- The orthocubical numerator

NO t := t ∪ {(c1, µ̂z(c1), µ̂z(c−4), c−4), (c3, µ̂z(c3), µ̂z(c−2), c−2)}.

- The orthocubical denominator

DO t := t ∪ {(c1, µ̂z(c1), µ̂z(c−2), c−2), (c3, µ̂z(c3), µ̂z(c−4), c−4)}.

t

t

c1c-4

c-2c3

t

NO t

µz(c1)µz(c-4)

µz(c-2)µz(c3)

c1c-4

c-2c3

t

DO t

µz(c1)µz(c-4)

µz(c-2)µz(c3)

c1c-4

c-2c3

Figure 6.10: The orthocubical tangle closures.

The orthocubical elementary tangles, orthocubical tangle operations and the or-

thocubical closures are isotopically equivalent to their homonym in the 2-tangle

definitions. Thus, we can mimic Conway’s algorithm to construct an orthocubical

rational tangle t (a1, · · · , an) equivalent to the rational tangle t(a1, · · · , an) by

t (a1, · · · , an) :=MO(a1) · · ·MO(an) t∞ where MO(ai) :=

{
(H+

O)
aiFO if ai ≥ 0

(H−
O)

aiFO if ai < 0

(6.3)

By combining the orthocubical rational tangles with the orthocubical operations

(+O, FO, NO, DO) we have the following.

Proposition 6.3.1. Any algebraic link admits a necklace representation in the orthocubical

sphere packing.

The orthocubical version of Conway’s algorithm also allows us to improve the

upper bound on the ball number of rational links.

Theorem 6.3.1. Let L be a rational link. Then

ball(L) ≤ 4cr(L)
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Proof. LetL be a link equivalent to the closure of rational tangle tp/q, where p/q ∈ Q∪
{∞}. Let a1+ 1

···+ 1
n

be a continued fraction expansion of p/q where all the coefficients

have the same sign (a1 might be zero). Then, L is equivalent to the rational link

C(a1, . . . , an). If n = 1, then the upper bound was given in the Corollary 6.2.1. Let

us suppose that n ≥ 2. Since the ball number of a link and its mirror is the same,

we can suppose that a1 ≥ 0 and ai ≥ 1 for 2 ≤ i ≤ n. By the equivalence between

orthocubical rational tangles and rational tangles, we have that L is equivalent to

the orthocubical tangle closure NO t where

t = (H+
O)

a1FO · · · (H+
O)

anFO t∞

= (H+
O)

a1FO · · · (H+
O)

an t0

= (H+
O)

a1FO · · · (H+
O)

an−1( t1 + t0 )

≃ (H+
O)

a1FO · · · (H+
O)

an−1 t1 since t1 + t0 ≃ t1

=: t′

It follows from the definition of the orthocubical tangle operations that

| t′ | = 4(a1 + . . .+ an − 1) + | t1 |

= 4(a1 + . . .+ an)

= 4cr(L) by Eq. (1.20).

Finally, since ai ≥ 1, the orthocubical paths (c1, c−4) and (c3, c−2) are not in t′ . There-

fore, we can use these paths to close t′ , and in this way obtain a necklace represen-

tation of L with 4cr(L) spheres.

The improved upper bound can be extended to algebraic links admitting an al-

ternating algebraic presentation of sums and flips of rational tangles. In the non-

alternating case, the number of spheres in the orthocubical necklace representation

may be reduced to less than 4 times the crossing number. The first non-trivial ex-

ample that we have found satisfying this property, is precisely the Pretzel knot

P (3,−2, 3) (Fig. 1.12). This knot is not alternating [30], it admits an orthocubical

necklace representation with 28 spheres (Fig. 6.11), and its crossing number is 8

[30]. However, it becomes more difficult to establish a relation with the crossing

number in the non-alternating case since, in general, the crossing number does not

correspond to the sum of the crossings of its rational factors.
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Figure 6.11: An orthocubical representation of the Pretzel knot P (3,−2, 3) with

28 spheres.

6.4 A geometric interpretation of continued fractions

In the words of Karpenkov, the ubiquity of continued fractions is due to the

simple operations that compose a continued fraction: sum a + b and inversion 1/a

[58]. When a mathematical object admits an analogue of these two operations, there

is probably a way to connect it with a rational number via continued fractions.

In [19], Chaubey, Fuchs, Hines and Stange related continued fractions with the

tetrahedral Apollonian packings and Pythagorean triples by using the generators of

the Super Apollonian group introduced in [45] which is provided by the Lorentzian

model of the space of disks. In this last section, we shall show that the continued

fraction involved in the construction of a rational tangle can be read from the in-

versive coordinates of a tangency point in the orthocubical version of Conway’s

algorithm. This result might be related with another work of Stange [96], where the

author computed the complex coordinates of the tangency points of certain disks in

the standard tetrahedral Apollonian packing by relating Apollonian packings with

another work of Conway and Fung on quadratic forms [27].
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Definition 6.4.1. Let tp/q be a rational tangle with positive continued fraction expansion

a1 +
1

···+ 1
an

= p
q
. We define:

- The first edge of tp/q as the segment êp/q of t (a1, · · · , an) containing the center c1.

- The first tangency point of tp/q is the tangency point η̂p/q of the two spheres corre-

sponding to the vertices of êp/q in the orthocubical sphere packing.

We shall represent both êp/q and η̂p/q by their respective projections ep/q and ηp/q

in the cubical diagrams as is shown in Fig. 6.12.

c1c−4

c−2c3

e3/2

η3/2

Figure 6.12: The projection of the first edge (red) and first tangency point

(green) of the rational tangle t3/2 in a cubical diagram.
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Since the vertices of ep/q have different colors under the z-coloring, we have that

η̂p/q lies in the plane {z = 0}. This implies that the Cartesian coordinates of η̂p/q
can be computed from the Cartesian coordinates of ηp/q by adding 0 in the third

coordinate. The inversive coordinates of the latter will allow us to find the fraction

p/q from the geometric construction of the corresponding orthocubical tangle when

the fraction is positive.

Theorem 6.4.1. For every coprime integers p, q with q ≥ 0 and p ≤ 1, we have

i(ηp/q) =


p2

q2

(p− q)2
√
2(p2 − pq + q2)

 (6.4)

Proof. The positiveness of p and q implies that we can find a positive continued

fraction expansion a1 + 1
···+ 1

an

= p/q with a1 ≥ 0 and ai ≥ 1 for every i > 1. Let ηp/q
and η∞ be the first tangency points of tp/q and t∞ respectively. By the definition of

the orthocubical Conway’s algorithm (c.f. 6.3), we have that

êp/q = (c1, m̂a1 · · · m̂an(c−2))

where m̂ai := µ̂ai
x r̂24. Recall that µ̂x is an orthocubical shift and r̂24 ∈ Sym(B↑z

O4).

Therefore,

η̂p/q = m̂a1 · · · m̂an(η∞)⇒ ηp/q = ma1 · · ·man(η∞)

where mai = µai
x r12 = (s1 r13)

ai r12. The elements s1, r13 and r12 are the elements of

Sym(B∗
C3) described at the beginning of Section 6.3.1. The inversive coordinates of

η∞ and the matrices representing s1, r13 and r12 can be computed with Equations

(1.11) (we chose λ = 1√
2
) and (1.14), which give

i(η∞) =


1

0

1
√
2

 s1 7→ S1 =


−3 0 0 2

√
2

0 1 0 0

0 0 1 0

−2
√
2 0 0 3


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r13 7→ R13 =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 r12 7→ R12 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


Consequently, mk is represented by the matrix M(k) := (S1R13)

kR12. By induc-

tion on k, we find that

M(k) =


0 1− k2 −k(k + 2)

√
2k(k + 1)

1 0 0 0

0 −k(k − 2) 1− k2
√
2k(k − 1)

0 −
√
2k(k − 1) −

√
2k(k + 1) 2k2 + 1


We prove the statement of the theorem by induction on the number of coefficients n

in the fraction expansion of p/q. For n = 1 (so p = a1 and q = 1) we have

M(a1)


1

0

1
√
2

 =


a21

1

(a1 − 1)2
√
2(a21 − a1 + 1)


which satisfies the theorem.

Now let us suppose the theorem to be true for n− 1. Let r/s = a2 +
1

···+ 1
an

. Then,

M(a1)M(a2) · · ·M(an)


1

0

1
√
2

 = M(a1)


r2

s2

(r − s)2
√
2(r2 − rs+ s)



=


(ra1 + s)2

r2

(ra1 + s− r)2
√
2((ra1 + s)2 − r(ra1 + s) + r2)


We finally notice that

ra1 + s

r
= a1 +

s

r
= a1 +

1

r/s
= a1 +

1

a2 +
1

···+ 1
an

=
p

q

so the theorem holds for n.
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The following two corollaries follow from the previous theorem and the formula

giving the inversive coordinates of a point.

Corollary 6.4.1. For every p/q > 0, ηp/q is the first point in the intersection of the circle

centered at (1 +
√
2, 1 +

√
2) and radius 1 +

√
2 with the line {p2y = q2x}.

25y = 9x

η5/3

Figure 6.13: The cubical Apollonian packing Ω(BC3) under the z-coloring with

plot range [0, 1+
√
2]× [0, 2(

√
2−1)], together with the first tangency point η5/3

obtained as the intersection described in Corollary 6.4.1. For every p ≥ q > 1,

the fraction p/q is printed at the center of the white disk corresponding to the

vertex ep/q distinct from c1.

Corollary 6.4.2. The Diophantine equation x4 + y4 + z4 = 2t2 has an infinite number of

primitive solutions.

Proof. Let p and q be two coprime positive integers. Since points of R̂2 correspond

to light-like vectors of L3,1, we have

⟨ηp/q, ηp/q⟩ = i(ηp/q)
TQ4i(ηp/q) = 0 (6.5)

where Q4 = diag(1, 1, 1,−1). By combining Equations (6.4) and (6.5), we obtain a

primitive solution of the Diophantine equation by setting

x = p, y = q, z = p− q and t = p2 − pq + q2





Conclusions: current and future work

We summarize here the main results of this thesis and we discuss the current work

and future perspectives.

7.1 Möbius uniqueness

In Chapter 1, we have discuss the notion of Möbius uniqueness for planar graphs,

which arises from the uniqueness of planar embeddings of graphs under Möbius

transformations involved in the KAT theorem. We then extend this notion to edge-

scribable polytopes in Chapter 3. We studied the Möbius uniqueness for most of

regular polytopes, and used the derived results in the Chapters 4, 5 and 6. In partic-

ular, we have shown that the family of d-simplices, (d+ 1)-cross polytopes, (d+ 1)-

cube for every d ≥ 2, and also the 24-cell, are Möbius unique (Corollaries 3.6.1, 3.6.4,

3.6.5). For the non-regular case, we have shown that the non-regular 2-polytopes

are not Möbius unique (Corollary 3.6.2), contrarily to the 3-polytopes, which, as

a consequence of the Midsphere Theorem, are all Möbius unique. Unfortunately,

for d ≥ 4, there is no analogue of the Midsphere Theorem, but we believe that all

edge-scribable 4-polytopes are Möbius unique. In light of all this, we propose the

following conjecture, see [82].

Conjecture 1. For every d ≥ 3, all edge-scribable d-polytopes are Möbius unique.

In view of the family of polytopes that we found to be Möbius unique, a natural

next step would be to show the validity of the Conjecture 1 for regular polytopes.

Question 1. Are the 600-cell and the 120-cell Möbius unique?

After discussing Möbius uniqueness, we introduced a related spectral invariant

for edge-scribable polytopes that are Möbius unique that we have called Möbius

spectra. On the other hand, the well-known Steinitz’s Theorem [97] states that the

graph of a polyhedron is a 3-connected simple planar graph. Such graphs are usu-

ally called polyhedral graphs. Since all the polyhedra are edge-scribable and Möbius
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unique, the Möbius spectra can be defined for any polyhedral graph. Möbius unique-

ness implies that the Möbius spectra does not depend on the edge-scribed realiza-

tion. It would be interesting to verify if the Möbius spectra is a complete invari-

ant for edge-scribable Möbius unique polytopes and, in particular, for polyhedral

graphs.

Question 2. Are there two combinatorially different edge-scribable and Möbius unique (d+

1)-polytopes with the same Möbius spectra? In particular, are there two non-isomorphic

polyhedral graphs with the same Möbius spectra?

7.2 Integral packings

Among the many corollaries of the Polytopal Descartes’ theorem proved in Chap-

ter 4, we obtained the integrality conditions needed to construct integral Apollonian

packings based on the Platonic solids. Queries studied in the literature about the be-

havior of the integers (multiplicity, density, primes...) appearing in the integral tetra-

hedral Apollonian packings [38, 40, 12, 64] , can be also considered for the Platonic

Apollonian packings. For instance, by comparing the integrality conditions of tetra-

hedral (Eq. 4.33) and icosahedral Apollonian packings (Prop. 4.3.6), we find that

every triple of integers which produces an integral tetrahedral Apollonian packing

also produces a φ-integral icosahedral Apollonian packing (see Fig. 7.14).
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Figure 7.14: An integral tetrahedral (left) and a φ-integral icosahedral (right)

Apollonian packings both with initial curvatures (−4, 8, 9).
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Question 3. What is the maximum number of distinct integers that one can find in an

icosahedral Apollonian packing?

In Chapter 5, we applied the techniques used in the previous chapters on the or-

thoplicial Apollonian packings studied by Dias [33] and Nakamura [79]. Moreover,

we have introduced the notion of Apollonian section as an algebraic generalization

of geometric cross-sections. We found that the tetrahedral, octahedral and cubical

Apollonian packings studied in Chapter 4 can be found as slices of the orthoplicial

Apollonian packing. The main point of this result is that the inclusion between the

different Apollonian packings, is not only geometrically obtained (or algebraically

regarding Apollonian groups) but also arithmetically, that is, every integral tetrahe-

dral, octahedral and cubical Apollonian packing can be obtained by intersecting an

integral orthoplicial Apollonian packing with a plane (Th. 5.3.1).

An interesting open problem in number theory on Apollonian circle packings is

the Local-to-Global conjecture of Graham et al. [44], and improved by Fuchs and

Sanden [39]. This conjecture says that in any integral tetrahedral Apollonian circle

packing Ω(BT 3), every integer avoiding certain restrictions modulo 24 must appear

as the curvature of Ω(BT 3). Zhang [105], Kontorovich [62], Dias [33] and Nakamura

[79] proved the analogue of the Local-to-Global conjecture for octahedral, simpli-

cial and orthoplicial Apollonian packings, respectively. We believe that Th. 5.3.1

may be helpful to better understand the original Local-to-Global conjecture in the

tetrahedral case.

The choice of studying orthoplicial Apollonian packings in Chapter 5, among

the Apollonian packings based on regular 4-polytopes like the simplex or the hy-

percube, was not arbitrary. We decided to explore this case from the results on

the ball number that are developed in the last chapter of this thesis. Nevertheless,

we believe that it would be interesting to study the Apollonian groups, packings

and sections of the other regular 4-polytopes. On the integrality side, numerical

experiments on the Apollonian packing of the 24-cell suggested the following two

conjectures, see [84].

Conjecture 2. Let BR4 be a standard polytopal sphere packing, obtained by rescaling a 1-

CBP projection of the 24-cell by a factor of 1√
3
. Then, the set of curvatures of its Apollonian

packing Ω(BR4) is N.
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Conjecture 3. There is a chain of tangent spheres (b0, b1, . . .) ⊂ Ω(BR4) such that, for every

n ∈ N, the curvature of bn is n.

Figure 7.15: The sphere packing BR4 (left) and its Apollonian packing Ω(BR4)

(right) with the curvatures.

7.3 Diophantine equations

Besides the quadratic equations obtained by the Descartes’ theorem and its gen-

eralizations, the curvatures of an integral Apollonian packing have been used to

find integers solutions to other Diophantine equations [60, 37]. In Corollaries 4.2.5

and 6.4.2, we have presented two geometric methods based on integral polytopal d-

ball packings to obtain solutions of several Diophantine equations. The first method

follows from the Polytopal Descartes’ theorem, and is obtained from the curvatures

in the corresponding integral packing, as usual. The second method is slightly dif-

ferent, since the solutions do not come from the curvatures, but from the inversive

coordinates of tangency points in a polytopal Apollonian packing. We believe that

the parametrization given in Eq. (??) gives all the positive primitive solutions of the

Diophantine equation in Cor. 6.4.2, which is equivalent to the following conjecture.

Conjecture 4. The positive primitive integer solutions of x4+y4+z4 = 2t2 are in bijection

with the set of first tangency points ηp/q with p and q positive coprime integers.
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7.4 Necklace representations and the ball number

In Chapters 2 and 6, we presented two methods of construction of necklace rep-

resentations of knots and links with relatively few spheres. The first method is based

on the KAT theorem and yields the first upper bound on the ball number of nonsplit-

table and nontrivial links, which is 5 times the crossing number. The second method

uses the fractal structure of the orthoplicial Apollonian packing and improves the

previous upper bound for rational links to 4 times the crossing number. In addition,

all the necklace representations that we found with less than 4 times the crossing

number, such as the Pretzel knot P (3,−2, 3) (Fig. 6.11), were for non-alternating

knots or links. The reason is that non-alternating crossings can be done with fewer

spheres. Hence, we believe that the second upper bound is actually tight for alter-

nating links. This leads to the following conjecture, see [81].

Conjecture 5. The ball number of an alternating link L is 4cr(L).

Regarding lower bounds on the ball number, we were not able to find any non-

trivial lower bound other than the one provided by the stick number. On this line,

Maehara compared in [71] the stick number against the pearl number (defined sim-

ilarly as the ball number but with equal size spheres) and gave non-trivial lower

bounds on the pearl number of knots.

We have chosen the orthoplex for the construction of necklace representations for

two main reasons. Firstly, it is the only regular 4-polytope whose standard Apollo-

nian packing contains clearly a square-grid in the carrier (Fig. 6.2). This is due to

the fact that the edge-link of the orthoplex is a square, unlike the other regular 4-

polytopes, whose edge-link is a triangle (4-simplex, hypercube, 24-cell and 120-cell)

or a pentagon (600-cell). The latter was used to prove that the orthoplicial Apollo-

nian packing has a structure complex enough to contain any link in its carrier (Th.

6.2.1). Secondly, such structure is manageable, since it can be seen as the action of

a reflection group with relatively few generators. This was helpful in order to find

the good elements in the corresponding symmetrized Apollonian group to produce

the desired constructions. We believe that analogous methods, for the other regular

4-polytopes, should be considered. For instance, we have started to explore neck-

lace representations of three interesting links, that can be found in a CBP projection
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of the orthoplexO4, 24-cellR4 and 600-cell I4, respectively. For the construction, we

use a well-known fact, that the vertices of three 4-polytopes O4, R4 and I4, can be

equally partitioned into 2, 4 and 12 subsets of 4, 6 and 10 vertices, respectively, where

each subset is contained in a fiber of the Hopf fibration (see [29, 5, 87]). On the other

hand, it is also known that the link obtained from selecting n fibers in the Hopf

fibration is a link of n components satisfying that any two form a Hopf link [54].

Let us denote this link by Hf(n). Therefore, the latter partitions produce necklace

representations of the links Hf(2), Hf(4) and Hf(12), respectively. It seems that

the number of spheres obtained from this construction, with respect to the crossing

number, is much smaller than the constructions presented here. We show in Figures

7.16, 7.17 and 7.23 the three constructions.

Figure 7.16: The Hopf link Hf(2) (left), and the construction of a necklace

representation of Hf(2) with 8 spheres contained in a 0-CBP projection of the

orthoplex.

Figure 7.17: The link Hf(4) (left) and the construction of a necklace represen-

tation of Hf(4) in a 0-CBP projection of the 24-cell.
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Figure 7.18: The link Hf(12) (top left) and the construction of a necklace rep-

resentation of Hf(12) in a 0-CBP projection of the 600-cell.

Finally, we would like to point out an important difference between the differ-

ent methods of construction of necklaces. Since the algorithms of circle packings,

induced by the KAT theorem, are an infinite limit process, the inversive coordi-

nates obtained by the method given in Chapter 2 have approximate values. On the

contrary, the orthoplicial necklace representations obtained by either closing ortho-

plicial braids or the orthocubical Conway’s algorithm, give algebraic values for the

inversive coordinates of the spheres. We believe that this can be interesting for the

study of the hyperbolic volume of hyperbolic 3-manifolds [41].

7.5 Further knotted constructions

Beyond knots and links, we are also applying the techniques developed in this

thesis in the realization of other spatial constructions. We recall that a Seifert surface

of a link is an oriented surface containing the link as a boundary. By applying the
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Seifert’s algorithm [90] to orthocubical diagrams of rational links, we are able to con-

struct polyhedral Seifert surfaces of links with a small number of planar triangles.

In Fig. 7.19, we show a polyhedral Seifert surface of the knot 41 = C(2, 2) with 18

triangles, obtained from an orthocubical diagram.

Figure 7.19: A polyhedral Seifert surface of the knot 41 with 18 triangles.

7.6 Software Polytopack

Besides the theoretical topics investigated in this thesis, we developed a software

on Mathematica [57] that we called Polytopack [85] and used to plot all the 2D and

3D figures of this thesis. This helped us to better understand some objects, testing

geometric properties on necklace representations, as well as the arithmetical behav-

iors of the curvatures of Apollonian packings. This software has been continuously

improved through the last years, and it counts now with multiple options dealing
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with polytopes, Apollonian packings and knots. Polytopack will eventually be

made available for researchers and other users interested in these topics.

Below, we give a few examples of the tools that have been implemented in

Polytopack.

Figure 7.20: Manipulation of a polytopal circle packing with Polytopack.
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Figure 7.21: Manipulation of a polytopal sphere packing with Polytopack.
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We end by illustrating some mathematical applications of Polytopack that

have not been treated in this dissertation.

Figure 7.22: Deformations of 3D-meshes with sphere packings preserving the

tangency graph.

Figure 7.23: Deformations of knots and links preserving the knot-type.

Figure 7.24: Projective transformations of edge-scribed polyhedra preserving

edge-scribedness.
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Figure 7.25: Projective transformations of inscribed polyhedra preserving in-

scribedness.

Figure 7.26: Study of internal structures of the ball-arrangement projections of

4-polytopes.





APPENDIX A

Appendices

d Name Notation Schläfli symbol Eigenvalues Multiplicities Midsphere ratio

d = 1 p-gone (p ≥ 3) - {p} Not Möbius unique for p > 3 tan(π/p)

d ≥ 1 (d+ 1)-Simplex T d+1 {3, . . . , 3︸ ︷︷ ︸
d−1

, 3} −d 1 √
d+2
d2 d+ 1

d ≥ 2

(d+ 1)-Cross polytope Od+1 {3, . . . , 3︸ ︷︷ ︸
d−1

, 4} −2(d+ 1) 1

14 d+ 1

0 d

(d+ 1)-Cube Cd+1 {4, 3, . . . , 3︸ ︷︷ ︸
d−1

} −2d+1d 1

d−1/22d+1 d+ 1

0 2d+1 − d− 2

d = 2

Icosahedron I3 {3, 5}
−12φ2 1

φ−14(φ2 + 1) 3

0 8

Dodecahedron D3 {5, 3}
−20φ4 1

φ−220φ2 3

0 16

d = 3

24-cell R4 {3, 4, 3}
−72 1

3−1/224 4

0 19

600-cell I4 {3, 3, 5} Möbius unique? 5−1/4φ−3/2

120-cell D4 {5, 3, 3} Möbius unique? 3−1/2φ−3

Table A.1: Notations, Möbius spectra and midsphere ratio of regular (d + 1)-
polytopes for d ≥ 1.



Table A.2: CBP projections of the Platonic solids.

Vertex centered at ∞ Edge centered at ∞ Face centered at ∞ Edge-scribed realization

T 3

Tetrahedron
{3, 3}

κP =
√

1/2

h0 =
√

1/6

h1 =
√

1/2

h2 =
√

1/6

Layer n Curvatures
1 1 κP − 3h0

2 3 κP + h0

Layer n Curvatures
1 2 κP − h1

2 2 κP + h1

Layer n Curvatures
1 3 κP − h2

2 1 κP + 3h2

O3

Octahedron
{3, 4}

κP = 1

h0 =
√
2

h1 = 1

h2 =
√

2/3

Layer n Curvatures
1 1 κP − h0

2 4 κP
3 1 κP + h0

Layer n Curvatures
1 2 κP − h1

2 2 κP
3 2 κP + h1

Layer n Curvatures
1 3 κP − h2

2 3 κP + h2

C3

Cube
{4, 3}

κP =
√
2

h0 =
√

1/3

h1 =
√
2

h2 = 1

Layer n Curvatures
1 1 κP − 3h0

2 3 κP − h0

3 3 κP + h0

4 1 κP + 3h0

Layer n Curvatures
1 2 κP − h1

2 4 κP
3 2 κP + h1

Layer n Curvatures
1 4 κP − h2

2 4 κP + h2

I3

Icosahedron
{3, 5}

κP = φ

h0 =
√

(φ2 + 1)/5

h1 = 1

h2 = φ−1
√

1/3

Layer n Curvatures
1 1 κP −

√
5h0

2 5 κP − h0

3 5 κP + h0

4 1 κP +
√
5h0

Layer n Curvatures
1 2 κP − φh1

2 2 κP − h1

3 4 κP
4 2 κP + h1

5 2 κP + φh1

Layer n Curvatures
1 3 κP − φ3h2

2 3 κP − h2

3 3 κP + h2

4 3 κP + φ3h2

D3

Dodecahedron
{5, 3}

κP = φ2

h0 = φ
√

1/3

h1 = 1

h2 =
√

(φ−2 + 1)/5

Layer n Curvatures
1 1 κP − 3h0

2 3 κP −
√
5h0

3 6 κP − h0

4 6 κP + h0

5 3 κP +
√
5h0

6 1 κP + 3h0

Layer n Curvatures
1 2 κP − φ2h2

2 4 κP − φh2

3 2 κP − h2

4 4 κP
5 2 κP + h2

6 4 κP + φh2

7 2 κP − φ2h2

Layer n Curvatures
1 5 κP − φ3h2

2 5 κP − h2

3 5 κP + h2

4 5 κP + φ3h2



Table A.3: CBP projections of the regular 4-polytopes.

Vertex centered at ∞ Edge centered at ∞ Ridge centered at ∞ Facet centered at ∞

T 4

4-Simplex
{3, 3, 3}

κP =
√

3/5

h0 =
√

1/10

h1 =
√

2/15

h2 =
√

2/15

h3 =
√

1/10

Layer n Curvatures
1 1 κP − 4h0

2 4 κP + h0

Layer n Curvatures
1 2 κP − 3

2
h1

2 3 κP + h1

Layer n Curvatures
1 3 κP − h2

2 2 κP + 3
2
h2

Layer n Curvatures
1 4 κP − h3

2 1 κP + 4h3

O4

Orthoplex
{3, 3, 4}

κP = 1

h0 =
√
2

h1 = 1

h2 =
√

2/3

h3 =
√

1/2

Layer n Curvatures
1 1 κP − h0

2 4 κP
3 1 κP + h0

Layer n Curvatures
1 2 κP − h1

2 4 κP
3 2 κP + h1

Layer n Curvatures
1 3 κP − h2

2 2 κP
3 3 κP + h2

Layer n Curvatures
1 4 κP − h3

2 4 κP + h3

C4

Hypercube
{4, 3, 3}

κP =
√
3

h0 = 1

h1 =
√

1/3

h2 =
√
2

h3 = 1

Layer n Curvatures
1 1 κP − 2h0

2 4 κP − h0

3 6 κP
4 4 κP + h0

5 1 κP + 2h0

Layer n Curvatures
1 2 κP − 3h1

2 6 κP − h1

3 6 κP + h1

4 2 κP + 3h1

Layer n Curvatures
1 4 κP − h2

2 8 κP
3 4 κP + h2

Layer n Curvatures
1 8 κP − h3

2 8 κP + h3

R4

24-cell
{3, 4, 3}

κP =
√
3

h0 = 1

h1 =
√

1/3

h2 =
√

2/3

h3 =
√
2

Layer n Curvatures
1 1 κP − 2h0

2 8 κP − h0

3 6 κP
4 8 κP + h0

5 1 κP + 2h0

Layer n Curvatures
1 2 κP − 3h1

2 3 κP − 2h1

3 6 κP − h1

4 2 κP
5 6 κP + h1

6 3 κP + 2h1

7 2 κP + 3h1

Layer n Curvatures
1 3 κP − 2h2

2 6 κP − h2

3 6 κP
4 6 κP + h2

5 3 κP + 2h2

Layer n Curvatures
1 6 κP − h3

2 12 κP
3 6 κP + h3



I4

600-cell
{3, 3, 5}

κP =
√
5φ3/2

h0 = 1

h1 = (φ2 + 1)−
1
2

h2 = (φ4 + 1)−
1
2

h3 = (φ3 + 1)−
1
2

Layer n Curvatures
1 1 κP − 2φh0

2 12 κP − φ2h0

3 20 κP − φh0

4 12 κP − h0

5 30 κP
6 12 κP + h0

7 20 κP + φh0

8 12 κP + φ2h0

9 1 κP + 2φh0

Layer n Curvatures
1 2 κP − (φ3 + φ)h1

2 5 κP − (φ3 + 1)h1

3 10 κP − φ3h1

4 2 κP − (φ2 + 1)h1

5 5 κP − (φ3 − 1)h1

6 10 κP − φ2h1

7 10 κP − φh1

8 10 κP − h1

9 12 κP
10 10 κP + h1

...
...

...
17 2 κP + (φ3 + φ)h1

Layer n Curvatures
1 3 κP − (φ4 + φ)h2

2 2 κP − (φ4 + 1)h2

3 6 κP − φ4h2

4 6 κP − (φ3 + φ)h2

5 6 κP − (φ3 + 1)φh2

6 6 κP − φ3h2

7 3 κP − (φ3 − 1)h2

8 12 κP − φ2h2

9 6 κP − φh2

10 6 κP − h2

11 8 κP
12 6 κP + h2

...
...

...
21 3 κP + (φ4 + φ)h2

Layer n Curvatures
1 4 κP − φ4h3

2 4 κP − (φ3 + φ)h3

3 6 κP − (φ3 + 1)h3

4 12 κP − φ3h3

5 12 κP − φ2h3

6 12 κP − φh3

7 4 κP − h3

8 12 κP
9 4 κP + h3

...
...

...
15 4 κP + φ4h3

D4

120-cell
{5, 3, 3}

κP = φ3
√
3

h0 =
√

1/2

h1 = (φ4 + 1)−
1
2

h2 = (φ2 + 1)−
1
2

h3 = 1

Layer n Curvatures
1 1 κP −

(
φ5 − φ−1

)
h0

2 4 κP −
(
φ5 − 1

)
h0

3 12 κP −
(
φ4 + φ2

)
h0

4 24 κP −
(
φ4 + φ

)
h0

5 12 κP −
(
φ4 + 1

)
h0

6 4 κP −
(
φ4 + φ−1

)
h0

7 24 κP − φ4h0

8 24 κP −
(
φ3 + φ

)
h0

9 32 κP −
(
φ3 + 1

)
h0

10 24 κP − φ3h0

11 12 κP −
(
φ2 + 1

)
h0

12 24 κP −
(
φ2 + φ−1

)
h0

13 28 κP − φ2h0

15 24 κP − φh0

16 24 κP − h0

17 54 κP
18 24 κP + h0

...
...

...
33 1 κP +

(
φ5 − φ−1

)
h0

Layer n Curvatures
1 2 κP − (φ6 + φ2)h1

2 6 κP − (φ6 + φ)h1

3 3 κP − (φ6 + 1)h1

4 12 κP − φ6h1

5 6 κP − (φ6 − 1)h1

6 12 κP − (φ6 − φ)h1

7 18 κP − (φ5 + φ3)h1

8 12 κP − (φ5 + φ2)h1

9 14 κP − (φ5 + φ)h1

10 12 κP − (φ5 + 1)h1

11 18 κP − φ5h1

12 6 κP − (φ5 − 1)h1

13 24 κP − (φ4 + φ2)h1

14 15 κP − (φ4 + φ)h1

15 2 κP − (φ4 + 1)h1

16 24 κP − φ4h1

17 18 κP − (φ3 + φ)h1

18 12 κP − (φ3 + 1)h1

19 18 κP − φ3h1

20 24 κP − φ2h1

21 18 κP − φh1

22 12 κP − h1

23 24 κP
24 12 κP + h1

...
...

...
47 2 κP + (φ6 + φ2)h1

Layer n Curvatures
1 5 κP − (φ5 + φ2)h2

2 10 κP − (φ5 + φ)h2

3 10 κP − (φ5 + 1)h2

4 20 κP − φ5h2

5 10 κP − (φ5 − 1)h2

6 20 κP − (φ4 + φ2)h2

7 20 κP − (φ4 + φ)h2

8 10 κP − (φ4 + 1)h2

9 30 κP − φ4h2

10 20 κP − (φ3 + φ)h2

11 20 κP − (φ3 + 1)h2

12 30 κP − φ3h2

13 5 κP − (φ3 − 1)h2

14 30 κP − φ2h2

15 30 κP − φh2

16 20 κP − h2

17 20 κP
18 20 κP + h2

...
...

...
35 5 κP + (φ5 + φ2)h2

Layer n Curvatures
1 20 κP − φ4h3

2 20 κP − (φ3 + φ)h3

3 30 κP − (φ3 + 1)h3

4 60 κP − φ3h3

5 60 κP − φ2h3

6 60 κP − φh3

7 20 κP − h3

8 60 κP
9 20 κP + h3

...
...

...
17 20 κP + φ4h3



Bibliography

[1] ADAMS, C. C. The knot book. American Mathematical Soc., 1994. (Cited on

pages 17 and 22.)

[2] ADAMS, C. C. Why knot: knots, molecules and stick numbers. (Cited on

page 25.)

[3] ALEXANDER, J. W. A lemma on systems of knotted curves. Proceedings of the

National Academy of Sciences of the United States of America 9, 3 (1923), 93. (Cited

on page 23.)

[4] ANISHCHIK, S. V., AND MEDVEDEV, N. N. Three-dimensional Apollonian

packing as a model for dense granular systems. Phys. Rev. Lett. 75 (1995),

4314–4317. (Cited on page 1.)

[5] BANCHOFF, T. Torus Decompostions of Regular Polytopes in 4-space. 11 2013,

pp. 257–266. (Cited on page 128.)

[6] BARAGAR, A. Higher dimensional Apollonian packings, revisited. Geometriae

Dedicata 195, 1 (Aug 2018), 137–161. (Cited on page 88.)

[7] BEECROFT, P. Properties of circles in mutual contact. Lady’s and Gentleman’s

Diary 139 (1842), 91–96. (Cited on pages 44 and 70.)

[8] BEZDEK, K., AND REID, S. Contact graphs of unit sphere packings revisited.

Journal of Geometry 104, 1 (2013), 57–83. (Cited on page 15.)

[9] BOBENKO, A., AND SPRINGBORN, B. Variational principles for circle patterns

and Koebe’s theorem. Transactions of the American Mathematical Society 356 (02

2004). (Cited on page 51.)

[10] BOLT, A., BUTLER, S., AND HOVLAND, E. Apollonian Ring Packings. Con-

nections in Discrete Mathematics: A Celebration of the Work of Ron Graham (2018),

283. (Cited on pages 44 and 84.)



[11] BOS, E. J. Princess Elizabeth of Bohemia and Descartes’ letters (1650–1665).

Historia Mathematica 37, 3 (2010), 485–502. Contexts, emergence and issues

of Cartesian geometry: In honour of Henk Bos’s 70th birthday. (Cited on

page 69.)

[12] BOURGAIN, J., AND FUCHS, E. A proof of the positive density conjecture for

integer Apollonian circle packings. Journal of the American Mathematical Society

24, 4 (2011), 945–967. (Cited on page 124.)

[13] BOWERS, P. L. Combinatorics encoding geometry: the legacy of Bill Thurston

in the story of one theorem. In In the Tradition of Thurston. Springer, 2020,

pp. 173–239. (Cited on page 15.)

[14] BOYD, D. W. A new class of infinite sphere packings. Pacific Journal of Mathe-

matics 50, 2 (1974), 383 – 398. (Cited on pages 13 and 73.)

[15] BREU, H., AND KIRKPATRICK, D. G. On the complexity of recognizing inter-

section and touching graphs of disks. In Graph Drawing (Berlin, Heidelberg,

1996), F. J. Brandenburg, Ed., Springer Berlin Heidelberg, pp. 88–98. (Cited on

page 15.)

[16] BRIGHTWELL, G. R., AND SCHEINERMAN, E. R. Representations of planar

graphs. SIAM Journal on Discrete Mathematics 6, 2 (1993), 214–229. (Cited on

pages 44, 51 and 54.)

[17] CALVO, J. A. Geometric knot spaces and polygonal isotopy. Journal of Knot

Theory and Its Ramifications 10, 02 (2001), 245–267. (Cited on page 26.)

[18] CECIL, T. E. Lie sphere geometry. Springer, 2008. (Cited on pages 5 and 9.)

[19] CHAUBEY, S., FUCHS, E., HINES, R., AND STANGE, K. The dynamics of

super-Apollonian continued fractions. Transactions of the American Mathemati-

cal Society 372, 4 (2019), 2287–2334. (Cited on page 117.)

[20] CHEN, H. Ball Packings and Lorentzian Discrete Geometry. PhD thesis, 2014.

(Cited on page 5.)



[21] CHEN, H. Apollonian ball packings and stacked polytopes. Discrete & Com-

putational Geometry 55, 4 (2016), 801–826. (Cited on pages 1, 14, 44, 49, 59, 69

and 105.)

[22] CHEN, H. Even more infinite ball packings from Lorentzian root systems. The

Electronic Journal of Combinatorics 23, 3 (2016). (Cited on page 61.)

[23] CHEN, H., AND LABBÉ, J. P. Lorentzian Coxeter systems and Boyd–Maxwell

ball packings. Geometriae Dedicata 174, 1 (Feb 2015), 43–73. (Cited on pages 15,

61 and 88.)

[24] CHEN, H., AND PADROL, A. Scribability problems for polytopes. European

Journal of Combinatorics 64 (2017), 1–26. (Cited on pages 48 and 59.)

[25] COLLINS, C. R., AND STEPHENSON, K. A circle packing algorithm. Computa-

tional Geometry 25, 3 (2003), 233–256. (Cited on page 40.)

[26] CONWAY, J. H. An enumeration of knots and links, and some of their alge-

braic properties. In Computational problems in abstract algebra (1970), Elsevier,

pp. 329–358. (Cited on pages 21 and 22.)

[27] CONWAY, J. H., AND FUNG, F. Y. The sensual (quadratic) form. No. 26. Cam-

bridge University Press, 1997. (Cited on page 117.)

[28] COXETER, H. S. M. The problem of Apollonius. The American Mathematical

Monthly 75, 1 (1968), 5–15. (Cited on page 44.)

[29] COXETER, H. S. M. Regular Polytopes. Dover books on advanced mathematics.

Dover Publications, 1973. (Cited on pages 48, 50 and 128.)

[30] CROMWELL, P. R. Knots and Links. Cambridge University Press, 2004. (Cited

on pages 17, 19, 22 and 116.)

[31] D’ALEXANDRIE, P., AND VER EECKE, P. Pappus d’Alexandrie: la collection math-

ématique. Desclée de Brouwer, 1933. (Cited on page 1.)

[32] DIAO, Y. Minimal knotted polygons on the cubic lattice. Journal of Knot Theory

and its Ramifications 2, 04 (1993), 413–425. (Cited on page 26.)



[33] DIAS, D. The Local-Global Principle for integral generalized Apollonian

sphere packings. arXiv: Number Theory (2014). (Cited on pages 2, 87, 91

and 125.)

[34] ELRIFAI, E. A. On stick number of knots and links. Chaos, Solitons & Fractals

27, 1 (2006), 233–236. (Cited on page 24.)

[35] EPPSTEIN, D., KUPERBERG, G., AND ZIEGLER, G. M. Fat 4-polytopes and

fatter 3-spheres. arXiv: Combinatorics (2002). (Cited on pages 44 and 58.)

[36] FELSNER, S., AND ROTE, G. On primal-dual circle representations. In SOSA

(2019). (Cited on pages 44 and 51.)

[37] FRISCH, S., AND VASERSTEIN, L. Polynomial parametrization of Pythagorean

quadruples, quintuples and sextuples. Journal of Pure and applied Algebra 216,

1 (2012), 184–191. (Cited on page 126.)

[38] FUCHS, E. Counting problems in Apollonian packings. Bulletin of the American

Mathematical Society 50 (2013), 229–266. (Cited on pages 80 and 124.)

[39] FUCHS, E., AND SANDEN, K. Some experiments with integral Apollonian

circle packings. Experimental Mathematics 20, 4 (2011), 380–399. (Cited on

page 125.)

[40] FUCHS, E., STANGE, K. E., AND ZHANG, X. Local-global principles in circle

packings. Compositio Mathematica 155, 6 (2019), 1118–1170. (Cited on pages 80

and 124.)

[41] GABAI, D., HARAWAY, R., MEYERHOFF, R., THURSTON, N., AND YARMOLA,

A. Hyperbolic 3-manifolds of low cusp volume, 2021. (Cited on pages 2, 25

and 129.)

[42] GABAI, D., AND THURSTON, W. P. Genera of Arborescent Links: 1986, vol. 339.

American Mathematical Soc., 1986. (Cited on page 22.)

[43] GOSSET, T. The Hexlet. Nature 139 (1937), 62. (Cited on page 70.)



[44] GRAHAM, R., LAGARIAS, J. C., MALLOWS, C. L., WILKS, A. R., AND YAN,

C. H. Apollonian circle packings: number theory. Journal of Number Theory

100, 1 (2003), 1–45. (Cited on pages 1 and 125.)

[45] GRAHAM, R., LAGARIAS, J. C., MALLOWS, C. L., WILKS, A. R., AND YAN,

C. H. Apollonian circle packings: Geometry and group theory i. the Apollo-

nian group. Discrete & Computational Geometry 34, 4 (2005), 547–585. (Cited on

pages 1, 14, 60, 61 and 117.)

[46] GRAHAM, R., LAGARIAS, J. C., MALLOWS, C. L., WILKS, A. R., AND YAN,

C. H. Apollonian circle packings: Geometry and group theory II. super-

Apollonian group and integral packings. Discrete & Computational Geometry

35 (09 2006), 1–36. (Cited on pages 1, 60 and 61.)

[47] GRAHAM, R., LAGARIAS, J. C., MALLOWS, C. L., WILKS, A. R., AND YAN,

C. H. Apollonian circle packings: Geometry and group theory III. higher

dimensions. Discrete & Computational Geometry 35 (2006). (Cited on pages 1,

60 and 61.)

[48] GRÜNBAUM, B., KAIBEL, V., KLEE, V., AND ZIEGLER, G. M. Convex polytopes.

Springer, New York, 2003. (Cited on page 46.)

[49] GUETTLER, G., AND MALLOWS, C. L. A generalization of Apollonian packing

of circles. Journal of Combinatorics 1 (01 2008). (Cited on pages 44 and 70.)

[50] HLINENY, P. Touching graphs of unit balls, vol. 1353. 04 2006, pp. 350–358.

(Cited on page 15.)

[51] HONG, K., KIM, H., OH, S., AND NO, S. Minimum lattice length and ro-

pelength of knots. Journal of Knot Theory and Its Ramifications 23, 07 (2014),

1460009. (Cited on page 24.)

[52] HONG, K., NO, S., AND OH, S. Upper bound on lattice stick number of

knots. In Mathematical Proceedings of the Cambridge Philosophical Society (2013),

vol. 155, Cambridge University Press, pp. 173–179. (Cited on page 26.)



[53] HONG, K., NO, S., AND OH, S. Links with small lattice stick numbers. Jour-

nal of Physics A: Mathematical and Theoretical 47, 15 (2014), 155202. (Cited on

page 25.)

[54] HOPF, H. Über die abbildungen der dreidimensionalen sphäre auf die

kugelfläche. In Selecta Heinz Hopf. Springer, 1964, pp. 38–63. (Cited on

page 128.)

[55] HUH, Y., AND OH, S. Lattice stick numbers of small knots. Journal of Knot

Theory and Its Ramifications 14, 07 (2005), 859–867. (Cited on page 25.)

[56] HUH, Y., AND OH, S. An upper bound on stick number of knots. Journal of

Knot Theory and Its Ramifications 20, 05 (2011), 741–747. (Cited on page 26.)

[57] INC., W. R. Mathematica, Version 12.2, 2021. Champaign, IL. (Cited on

page 130.)

[58] KARPENKOV, O. Geometry of continued fractions, vol. 26. Springer Science &

Business Media, 2013. (Cited on page 117.)

[59] KAUFFMAN, L. H. State models and the Jones polynomial. Topology 26, 3

(1987), 395–407. (Cited on page 18.)

[60] KOCIK, J. On a Diophantine equation that generates all integral Apollonian

gaskets. ISRN Geometry 2012 (Apr 2012), 348618. (Cited on page 126.)

[61] KOEBE, P. Kontaktprobleme der konformen Abbildung. Hirzel, 1936. (Cited on

page 15.)

[62] KONTOROVICH, A. The local-global principle for integral soddy sphere pack-

ings. Journal of Modern Dynamics 15, 0 (2019), 209–236. (Cited on pages 105

and 125.)

[63] KONTOROVICH, A., AND NAKAMURA, K. Geometry and arithmetic of crys-

tallographic sphere packings. Proceedings of the National Academy of Sciences

116, 2 (2019), 436–441. (Cited on pages 44, 61 and 88.)



[64] KONTOROVICH, A., AND OH, H. Apollonian circle packings and closed horo-

spheres on hyperbolic 3-manifolds. Journal of the American Mathematical Society

24, 3 (2011), 603–648. (Cited on page 124.)

[65] KRANZ, J., ARAÚJO, N., ANDRADE JR, J., AND HERRMANN, H. J. Complex

networks from space-filling bearings. Physical Review E 92, 1 (2015), 012802.

(Cited on page 1.)

[66] KUPERBERG, G., AND SCHRAMM, O. Average kissing numbers for non-

congruent sphere packings. arXiv preprint math/9405218 (1994). (Cited on

page 15.)

[67] KWOK, S., BOTET, R., SHARPNACK, L., AND CABANE, B. Apollonian packing

in polydisperse emulsions. Soft Matter 16 (2020), 2426–2430. (Cited on page 1.)

[68] LACHLAN, R. Xv. on systems of circles and spheres. Philosophical Transactions

of the Royal Society of London, 177 (1886), 481–625. (Cited on page 70.)

[69] LAGARIAS, J., MALLOWS, C. L., AND WILKS, A. Beyond the Descartes circle

theorem. The American Mathematical Monthly 109 (2001). (Cited on pages 60,

70 and 93.)

[70] LEIBNIZ, G. W., LOOK, B. C., AND RUTHERFORD, D. Leibniz to Des Bosses: 11

March 1706. Yale University Press, 2007, pp. 30–38. (Cited on page 1.)

[71] MAEHARA, H. Pearl numbers versus stick numbers for knots. Revue Roumaine

de Mathématiques Pures et Appliquées 51 (01 2006). (Cited on page 127.)

[72] MAEHARA, H. On configurations of solid balls in 3-space: Chromatic num-

bers and knotted cycles. Graphs and Combinatorics 23, 1 (2007), 307–320. (Cited

on pages 25 and 105.)

[73] MAEHARA, H., AND NOHA, H. On the graph represented by a family of solid

balls on a table. Ryukyu Math. J 10 (1997), 51–64. (Cited on page 15.)

[74] MAEHARA, H., AND OSHIRO, A. On soddy’s hexlet and a linked 4-pair.

In Japanese Conference on Discrete and Computational Geometry (1998), Springer,

pp. 188–193. (Cited on page 105.)



[75] MAEHARA, H., AND OSHIRO, A. On knotted necklaces of pearls. European

Journal of Combinatorics 20, 5 (1999), 411–420. (Cited on pages 15, 25 and 26.)

[76] MOHAR, B. Circle packings of maps in polynomial time. European Journal of

Combinatorics 18, 7 (1997), 785–805. (Cited on page 44.)

[77] MURASUGI, K. Jones polynomials and classical conjectures in knot theory.

Topology 26, 2 (1987), 187–194. (Cited on page 18.)

[78] MURASUGI, K. Knot theory and its applications. Springer Science & Business

Media, 2007. (Cited on page 24.)

[79] NAKAMURA, K. The local-global principle for integral bends in orthoplicial

Apollonian sphere packings, 2014. (Cited on pages 2, 82, 87, 88, 90, 91, 93, 100

and 125.)

[80] NEGAMI, S. Ramsey theorems for knots, links and spatial graphs. Transactions

of the American Mathematical Society 324, 2 (1991), 527–541. (Cited on page 26.)

[81] RAMÍREZ ALFONSÍN, J. L., AND RASSKIN, I. Ball packings for links. European

Journal of Combinatorics 96 (2021), 103351. (Cited on pages 3 and 127.)

[82] RAMÍREZ ALFONSÍN, J. L., AND RASSKIN, I. A polytopal generalization of

Apollonian packings and Descartes’ theorem. (Cited on pages 3 and 123.)

[83] RAMÍREZ ALFONSÍN, J. L., AND RASSKIN, I. Rational links and the orthopli-

cial apollonian packing. In preparation (2021). (Cited on page 3.)

[84] RASSKIN, I. Regular polytopes, sphere packings and Apollonian sections.

arXiv preprint arXiv:2109.00655 (2021). (Cited on pages 3 and 125.)

[85] RASSKIN, I. Polytopack: a framework for polytopal sphere packings (in

preparation), 2021. (Cited on page 130.)

[86] SAUERBREI, S., HASS, E. C., AND PLATH, P. The Apollonian decay of beer

foam bubble size distribution and the lattices of young diagrams and their

correlated mixing functions. Discrete Dynamics in Nature and Society 2006 (05

2006). (Cited on page 1.)



[87] SCHLEIMER, S., AND SEGERMAN, H. Puzzling the 120-cell. Notices of the

American Mathematical Society 62 (10 2013). (Cited on page 128.)

[88] SCHULTE, E. Analogues of Steinitz’s theorem about non-inscribable poly-

topes. Colloq. Math. Soc. János Bolyai 48 (01 1987). (Cited on page 58.)

[89] SCHULTE, E. Symmetry of polytopes and polyhedra. In Handbook of Discrete

and Computational Geometry, 2nd Ed. (2004). (Cited on page 46.)

[90] SEIFERT, H. Über das geschlecht von knoten. Mathematische Annalen 110, 1

(1935), 571–592. (Cited on page 130.)

[91] SHEYDVASSER, A. Quaternion orders and sphere packings. Journal of Number

Theory 204 (2019), 41–98. (Cited on page 88.)

[92] SODDY, F. The Kiss Precise. Nature 137, 3477 (Jun 1936), 1021–1021. (Cited on

pages 80 and 105.)

[93] SPRINGBORN, B. A. A unique representation of polyhedral types. Centering

via Möbius transformations. Mathematische Zeitschrift 249, 3 (2005), 513–517.

(Cited on page 44.)

[94] STÄGER, D. V., AND HERRMANN, H. J. Cutting self-similar space-filling

sphere packings. Fractals 26, 01 (2018), 1850013. (Cited on page 1.)

[95] STANGE, K. E. The Apollonian structure of Bianchi groups. Transactions of the

American Mathematical Society 370 (05 2015). (Cited on page 84.)

[96] STANGE, K. E. The sensual Apollonian circle packing. Expositiones Mathemat-

icae 34, 4 (2016), 364–395. (Cited on page 117.)

[97] STEINITZ, E. Über isoperimetrische probleme bei konvexen polyedern. (Cited

on page 123.)

[98] STEPHENSON, K. Introduction to circle packing: The theory of discrete analytic

functions. Cambridge University Press, 2005. (Cited on page 14.)

[99] TAIT, P. G. On knots I, II, III, scientific papers, vol. i. Cambridge Univ. Press,

London 18980 (1898), 273–347. (Cited on page 18.)



[100] THISTLETHWAITE, M. B. A spanning tree expansion of the Jones polynomial.

Topology 26, 3 (1987), 297–309. (Cited on page 18.)

[101] THURSTON, W. P. Three-Dimensional Geometry and Topology, Volume 1: Volume

1. Princeton University Press, 2014. (Cited on page 11.)

[102] VAN COTT, C. Relationships between braid length and the number of braid

strands. Algebraic & Geometric Topology 7, 1 (2007), 181–196. (Cited on page 23.)

[103] VARRATO, F., AND FOFFI, G. Apollonian packings as physical fractals. Molec-

ular Physics 109, 23-24 (2011), 2923–2928. (Cited on page 1.)

[104] WILKER, J. B. Inversive geometry. 379–442. (Cited on pages 5, 10, 12, 13

and 53.)

[105] ZHANG, X. On the local-global principle for integral Apollonian 3-circle pack-

ings:. Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, 737

(2018), 71–110. (Cited on page 125.)

[106] ZIEGLER, G. Convex polytopes: Extremal constructions and f-vector shapes.

(Cited on page 46.)


	Abstract
	Résumé
	Résumé étendu
	Introduction
	General background
	The space of oriented hyperspheres
	The spherical model
	The hyperbolic model
	The Lorentzian model
	The Möbius group
	Coordinate systems
	Packings
	Möbius uniqueness of d-ball packable graphs

	Preliminaries on knot theory
	Diagrams of knots and links
	Tangles
	Rational tangles
	Braids
	Polygonal representations


	An upper bound on the ball number
	Introduction
	From links to circle packable graphs
	Square-pyramidal disk arrangements
	The crossing sphere arrangement
	The proof of the upper bound
	An algorithm for knotted necklaces

	Polytopal ball packings
	Introduction
	The projective model of the space of oriented hyperspheres.
	Polytopes
	The ball-arrangement projection.
	Centered Ball Packing projections of regular polytopes

	Duality of polytopal d-ball packings
	Möbius uniqueness of edge-scribable polytopes
	The Möbius spectra
	Non edge-scribable 4-polytopes.

	Apollonian groups and packings
	The Platonic Apollonian Groups


	The Polytopal Descartes' Theorem
	Introduction
	The Polytopal Descartes' Theorem
	Integrality of the Platonic Apollonian packings
	Octahedral Apollonian packings
	Cubical Apollonian packings
	Icosahedral Apollonian packings
	Dodecahedral Apollonian packings


	Apollonian sections of the orthoplicial Apollonian packing
	Introduction
	The orthoplicial sphere packing
	Orthoplicial trinities
	Apollonian groups of the orthoplicial sphere packing

	Apollonian sections
	Construction of orthoplicial Apollonian packings containing a given integral section


	Orthoplicial Apollonian packings and rational links
	Introduction
	Orthoplicial necklace representations
	Algebraic links in the cubical Apollonian section
	Orthocubical shifts
	An upper bound on the ball number of rational links

	A geometric interpretation of continued fractions

	Conclusions: current and future work
	Möbius uniqueness
	Integral packings
	Diophantine equations
	Necklace representations and the ball number
	Further knotted constructions
	Software Polytopack

	Appendices
	Regular polytopes data
	CBP projections of the Platonic solids
	CBP projections of the regular 4-polytopes

	Bibliography

