
HAL Id: tel-03468027
https://hal.science/tel-03468027

Submitted on 6 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wielding the ZX-calculus, Flexsymmetry, Mixed States,
and Scalable Notations

Titouan Carette

To cite this version:
Titouan Carette. Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Notations.
Computer Science [cs]. Université de Lorraine, 2021. English. �NNT : 2021LORR0200�. �tel-03468027�

https://hal.science/tel-03468027
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Manier le ZX-calcul
Flexsymétrie, systèmes ouverts et limandes

Wielding the ZX-calculus
Flexsymmetry, Mixed States and Scalable Notations

THÈSE

présentée et soutenue publiquement le 23 Novembre 2021

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Titouan Carette

Composition du jury

Rapporteurs : Paul-André Melliès CNRS
Pawel Sobocinski Tallinn University of Technology

Examinateurs : Miriam Backens University of Birmingham
Caroline Collange Inria
Aleks Kissinger University of Oxford

Directeurs : Emmanuel Jeandel University of Lorraine
Simon Perdrix Inria

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Remerciements

J'ai repoussé cela jusqu'au dernier moment mais au bout d'un moment il faut bien y aller. J'ai
pourtant anticipé avec un certain enthousiasme ce que j'écrirais dans ces remerciements, et ce
même bien avant de commencer ma thèse. Mais j'ai, comme beaucoup d'autres choses, beaucoup
changé ces derniers temps. Alors comme convenu rien ne sera comme prévu.

J'ai vu, parmi mes camarades, certains être terrorisés par l'écriture des remerciements,
soucieux de n'oublier personne. J' admets un peu honteusement avoir moi même déjà parcouru
distraitement des manuscrits à la recherche de mon nom, expérience humiliante que j'épargnerai
à tous ici. Car il n'y a pas de noms dans ces lignes, seulement de la gratitude.

Tout d'abord envers mes parents, mes s÷urs et ma famille, qui m'ont soutenu sur la voie que
je me suis choisie. Et si tout à ma tâche, je ne les ai pas vu aussi souvent que je l'aurais voulu
ces dernières années, j'espère qu'ils ne m'en voudront pas trop. J'imagine que la soutenance sera
pour eux un moment un peu étrange mais je suis heureux qu'ils voient ça, car il y a un peu d'eux
dans cette thèse.

Ces 26 dernières années de nombreuses et nombreux professeurs m'ont beaucoup appris, par-
fois à leur insu, et sûrement pas toujours ce qu'ils pensaient m'apprendre, mais il n'empêche que
ce travail est tressé de leurs multiples in�uences.

Mes camarades anarcho-physiciens ont été une réserve d'oxygène académique pour moi. Grace
à eux j'ai su très tôt que la recherche c'est des gens qui cherchent. Un avantage considérable.

J'ai toujours trouvé que les chercheurs fonctionnaient comme les Jedis. J'ai eu le privilège
d'apprendre de deux maîtres aux styles très di�érents. J'éprouve à leur égard une admiration
grandissante alors que j'emprunte des chemins qu'ils ont déjà suivis. Je n'en dirai pas d'avantage
car je pense qu'ils peuvent déjà lire dans ce manuscrit, et sûrement dans tous mes écrits scien-
ti�ques futurs, tout ce que je leur dois.

Ce fut un plaisir et un honneur de frayer aux cotés des mocquassins (le nom est libre de droit
faites vous plaisir). De ceux que je voyais quotidiennement à ceux avec qui je n'ai eu que de
brèves interactions, ils m'ont inondé d'avis, d'histoires et de conseils. J'en suivrai certains, mais
pas tous, je ne suis pas fou non plus.

J'improvise aussi une petite phrase pour vous, qui avez l'habitude de ce genre de choses, pour
vous aussi les spéciaux, et pour vous tous qui savez ce que tendre �èrement un poireau vers le
ciel signi�e, et en�n pour vous qui avez tapé-tourné tant de fois. J'en dis bien sûr bien moins
que ce que j'en pense.

En�n à tous ceux qui m'ont un jour accompagné même brièvement et qui suivent maintenant
d'autres voies, je me souviens.

Peu ont lu ce manuscrit en entier, un peu plus en ont parcouru des fragments. Bien entendu
tout mot correctement orthographié, toute phrase grammaticalement correcte et toute équation
mathématiquement raisonnable est de leur entière responsabilité. Le reste est pour moi.

i

Je ne tombe pas mais je triche, je vis en équipe et ma dernière ligne est à toi.

ii

Introduction

iii

Introduction

iv

Introduction

What is this all about?

At the time when I write this, we have become pretty good at building and running computers,
the physical incarnation of the theoretical Turing machines. The sensation of accomplishment
any human being feels by acknowledging this fact (do you?) takes its source in the Church-Turing
thesis:

Any reasonable model of computation can be simulated by a Turing machine

Accepting implicitly that a Turing machine is a reasonable model of computation, this states
that the most powerful reasonable computational device we can think of can compute as many
things as Turing machines.

This is not a formal statement, and the fuzziest point here is the meaning of reasonable.
A well-accepted interpretation of reasonable is something that a human with pen and paper
can emulate. Another one, often considered equivalent, is something that can be implemented
as an actual machine in the real world. However, the latter interpretation, by replacing the
assumed abilities of humans with pen and paper by the laws of physics, has very di�erent
implications. Formalized in those terms, the Church-Turing thesis sounds like an invitation to
vampires physicists to come and play with Turing machines.

Any computational device that can be built and run in our physical world can be simulated on a
Turing machine

Now if we accept that Turing machines can be built and run in our physical world (and I think
that most people agree that the thing I am now typing this text on is a good approximation)
then this amounts to say that the most powerful computational devices we can build and run in
our universe can compute as many things as Turing machines.

And in fact, when it comes to computability (can I answer the question ?) the Church-
Turing thesis is believed to hold (notice this implies that our universe could perfectly be a huge
simulation running on a Turing machine, Matrix-style). However when it comes to complexity,
(how fast can I answer the question ?), then it seems that digging into the laws of physics can
allow us to grasp a little more speed. This leads to the re�ned Church-Turing thesis:

Any computational device that can be built and ran in our physical world can be e�ciently

simulated on a quantum Turing machine

The situation requires some shifts in our way of thinking. Computer scientists usually design
algorithms on intuitions roughly corresponding to classical physics. Quantum computer scientists
have to carve algorithms from quantum physics. Happily, generations of physicists gave us a solid

v

Introduction

and accurate abstract mathematical model we can rely on. So the situation is more as follows:
quantum computer scientists have to carve algorithms from the abstract mathematical formalism
of quantum physics.

This explains why if the �rst ideas of quantum computers can be traced to conferences of
Richard Feynman in 1981 we have to wait until 1992 for the �rst interesting toy examples of
quantum algorithms: the Deutsch-Jozsa algorithm [1]. The fact that it needed two papers, [1]
and [2], to arrive at the form that is now taught in less than one hour in an introductory course
to quantum computing gives a good idea of how di�cult it is to have those �simple� quantum
computing ideas.

In 1997, Peter Shor gave us our �rst champion, an algorithm able to factorize integers into
prime numbers [3]. This frightened the cryptographers enough for them to invent a brand new
�eld, post-quantum cryptography, only to put our communications out of reach of the recently
sharpened quantum claws. After that, the twenty last years saw slowly but surely increase the
examples of potential applications of quantum computing to interesting real-world problems.

As the history of computing meets its �rst circle, those theoretical games soon shifted from
ideas to technologies. Today, companies and governments show vivid interest in quantum tech-
nologies and their promises. Here we are, in a delicious mixture of theoretical speculations,
engineering challenges, hypes, and business opportunities. The present times are in some ways
the quantum analog of the very youth of classical computers when computer scientists used to
make (now) very laughable predictions about the future of computing.

Having the chance to learn from their example, I will neither advocate that we are at the dawn
of a groundbreaking quantum revolution, nor that the quantum winter, the thermal death of the
�eld, is eventually coming. But I do claim that quantum computing is worth to be investigated,
would it only be for the fact that no �eld before never asked with so much intensity the questions
of the physicality of computing and of the computability of physics.

Now, where does the present thesis �t into this story? As previously said the formalism of
quantum mechanics is very abstract and then designing quantum algorithms is di�cult. So,
attempts have been made to re-express the formalism in a more intuitive way that could allow
to simplify this task. One of those approaches is the ZX-calculus, which has the particularity to
be a graphical language, meaning that quantum computations are represented by diagrams.

The goal of this thesis is to provide insights and extensions of the ZX-calculus with the aim
to make it as operational as possible to handle quantum computations. I see my contribution
as a student as an exercise of reformulation, clari�cation, and notation design. Thus, this thesis
contains mainly two kinds of theorems: the ones showing that the notations are nice, and the
ones already shown by others but here re-proved using the aforementioned nice notations.

What's in this thesis?

A qubit, the quantum unit of information, is represented as a unit norm vector in C2. A pair of
qubits is represented by a vector in the tensor product C2 ⊗ C2 = C4. The run of a quantum
computer, which is the evolution of a register of a number n of qubits, then corresponds to a
unitary map C2n → C2n . The lack of intuition about such huge unitary transformation combined
with the exponentially large size of the matrices representing them led the quantum computer
scientists to prefer a graphical notation to matrices: quantum circuits. Those circuits are very
similar to boolean ones with the crucial di�erence that a gate can have more than one output
and that sharing of input variables is not allowed. In other words, we work in a linear setting,
information can't be copied. All the quantum algorithms and protocols designed so far can then
be depicted by combinations of elementary quantum gates.

vi

An example of such gate is the controlled not gate, usually called the CNot, graphically
denoted as:

The CNot gate has two qubits as inputs and two qubits as outputs, so it corresponds to a
complex matrix of size 4× 4:

r z
def

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The elementary concepts of quantum computing are introduced in detail in Chapter 2 of

this thesis. The CNot gate, like other quantum gates, satis�es various equations that can be
interpreted as rewriting rules for quantum circuits. For example, it is an involution:

=

Each boolean circuit corresponds to a logical formula and then such rewriting rules on boolean
circuits amount to usual term rewriting on formulas. However quantum circuits are more compli-
cated objects, harder to represent as terms, this explains why, in circuit rewriting, the graphical
representation has such an important role. The general theory of graphical languages when we
can draw diagrams from generators like the CNot gate and consider diagrammatic equations like
the above are introduced in Chapter 1 of this thesis. This presentation relies on the language of
category theory that is presented brie�y in Chapter 0.

Now coming back to the CNot gate, it satis�es a more exotic equation involving the swap
gate that exchanges two qubits.

=

If we can compute and see why this rule is sound, it is more di�cult to grasp an intuition on
what is going on here. However, it happens that we can see a CNot gate as the composition of
two more elementary components: copy and addition modulo two:

=
r z

= |x〉 7→ |x〉 |x〉
r z

= |x〉 |y〉 7→ |x⊕ y〉

We see here that this decomposition involves non-unitary linear maps. This is a classic of
mathematics, going through a wider place to obtain a clearer understanding of a smaller one.
The gain is that the equational theory governing those subcomponents is far more intuitive and
simple.

Those two components are in fact special cases of families of n-ary diagrams called spiders:

......

The interactions and behaviours of those spiders are the core of the ZX-calculus, the main
graphical language studied in this thesis, that is introduced in Chapter 3. The ZX-calculus
extends quantum circuits in the sense that any quantum gate can be decomposed into diagrams
of the ZX-calculus, while some diagrams of ZX-calculus have no circuit counterpart.

Another appeal of ZX-calculus is its nice topological behaviour. Spiders appear to be ex-
tremely �exible, we can bend their legs in many ways:

vii

Introduction

= =

My �rst contribution is to propose a formalisation of this property through the notion of
�exsymmetry in Chapter 5, it relies on the notion of paradigm introduced in Chapter 4.

Using �exsymmetry, we see that the exotic equation involving CNots and swaps can be
restated:

=

This equation called the bi-algebra rule and making two spiders interact is the key ingredient
in the de�nition of Z∗-algebras in Chapter 6 where it is shown that the red and green spiders are
not the only ones following this pattern. The introduction of Z∗-algebras and the classi�cation
of all their models in qubits is the second contribution of this thesis. There are essentially three
such structures for qubits, corresponding to the ZX-calculus, ZH-calculus, and ZW-calculus.
Similar behaviour can also appear in other settings, as in the graphical linear algebra introduced
in Chapter 7.

All those calculi can then be used to represent quantum algorithms. But there are two
obstacles. First, those algorithms can involve interactions with the non-quantum world that
require a broader model of computation allowing classical behaviours alongside quantum ones.
This is called mixed state quantum mechanics and a way to extend quantum graphical languages
to this setting is presented in Chapter 8. The extension of ZX-calculus to mixed-state quantum
mechanics is the third contribution presented in this thesis. A second obstacle is the fact that
a quantum algorithm is de�ned by a uniform family of circuits, one for each possible size of the
input. The scalable notations presented in Chapter 9 allow to handle such families, completing
the toolbox necessary to calmly approach quantum algorithm graphically. The scalable notations
are the fourth and last theoretical contribution of this thesis.

All those methods can be used to graphically prove the correction of quantum algorithms.
Examples are provided in Chapter 10, which concludes the thesis.

Chapter 0, 1, 2, 3, 4 and 7 introduces the concepts and necessary notations. If the way of
presenting the material can be new, those chapters don't really contain anything that cannot
be �nd elsewhere in the literature. The other chapters (5,6,8,9 and 10) however present original
contributions, some of which have led to publications:

� Chapter 5 relies on personal unpublished work. A preliminary but erroneous version is
available in [4].

� Chapter 6 is based on an ICALP2020 paper [5] with Emmanuel Jeandel. I have here
reformulated the results using �exsymmetry.

� Chapter 8 is based on an ICALP2019 paper [6] with Emmanuel Jeandel, Simon Perdrix, and
Renaud Vilmart. It has been then extended into a journal paper to appear in TQC2020.

� Chapter 9 is based on an MFCS2019 paper [7] with Dominic Horsman and Simon Perdrix.
I added here some unpublished work with Simon Perdrix available in [8].

� Chapter 10 is based on a QPL2020 paper [9] with Yohann D'Anello and Simon Perdrix. I
added personal work on diagonal maps that can be found in the research report [10].

viii

How does this work relate with others?

I give here a quick survey of the main topics mentioned in the thesis. More detailed discussions
of the literature are available in the corresponding Chapters.

The ZX-calculus has been introduced in [11]. It can be considered as a part of a broader
research project: categorical quantum mechanics, advocating the use of arrows in dagger sym-
metric monoidal categories to represent quantum processes with an emphasis on string diagram
notations. I would say that the main quest of the ZX-calculus community for a decade was to
achieve completeness, meaning �nding a set of rewriting rules able to equate any pair of diagrams
representing the same quantum computation. This has been solved in [12] and [13]. Instrumental
in this result has been the development of other graphical calculus derived from the ZX-calculus,
[14] and [15]. The desire to unify those languages led to the work on Z∗-algebras presented in
Chapter 6.

Extensions of the ZX-calculus to mixed states were already known using the doubling from
[16], an example of applications are the bastard spiders of [17]. However, no complete set of
rewriting rules were known.

The development of scalable notations was motivated by the need for nice representations of
possibly huge quantum processes. A primitive form of scalable notations has been introduced in
[18] for the analysis of quantum error-correcting codes. Similar notations for big wires have also
been used informally in numerous sources using string diagrams, a good example is [17].

My emphasis on the prop formalism for graphical languages comes from [19] where it has
been used to describe graphical linear algebra.

Graphical linear algebra, that inspired the matrix arrows of Chapter 9, has been developed
independently of ZX-calculus in [20]. The �rst paper I know acknowledging the connection
between the two languages is [21]. I personally learned graphical linear algebra through the
blog [22].

Numerous quantum protocols have been formulated in ZX-calculus by generations of Oxford
students. Sadly the corresponding master thesis and reports are often di�cult to �nd, and I
hope one day that all those applications of ZX-calculus will be gathered. I only mention here the
works that directly inspired the examples of Chapter 10. Quantum algorithms based on oracles
have been investigated in [23]. Graph-states have been investigated in [24]. The diagrammatic
Fourier transform has �rst been introduced in [25] and led to the discovery of the spider nest
identities developed in [26] and [27].

ix

Introduction

x

Contents

Introduction iii

Introduction v

Chapter 0 A Pictorial Introduction to Category Theory 7

0.1 Basic notions . 7

0.1.1 Categories and their pictures . 7

0.1.2 Natural transformations . 10

0.1.3 Strict monoidal categories . 13

0.2 Limits and co-limits . 14

0.2.1 Products and Co-products . 14

0.2.2 Co-equalizers . 15

0.2.3 Pull-back and Push-outs . 15

0.3 Monads and Adjunctions . 16

0.3.1 Monad . 16

0.3.2 Adjunctions . 16

0.3.3 Monadic adjunctions . 18

I Prologue 19

Chapter 1 Props and Graphical Languages

1.1 Props . 21

1.1.1 Combinatorial de�nition . 22

1.1.2 Categorical de�nition . 22

1.1.3 Categories of props . 23

1.2 String diagrams . 24

1.2.1 Composing Boxes . 24

1.2.2 Picturing tautologies . 24

1.2.3 Swaps . 25

1

Contents

1.3 Graphical languages . 26

1.3.1 De�nition . 26

1.3.2 Translations . 29

1.3.3 Constructions . 32

Chapter 2 Computer Scientist's Quantum Mechanics 35

2.1 Basics . 35

2.1.1 Deterministic computation . 36

2.1.2 Probabilistic computation . 37

2.1.3 Quantum computation . 37

2.2 The Bloch sphere . 39

2.2.1 From unitaries to rotations . 39

2.2.2 From quantum states to the sphere 40

2.2.3 Noticeable unitaries and the corresponding rotations 41

2.3 Quantum circuits . 42

2.3.1 De�nition . 42

2.3.2 One qubit gates . 43

2.3.3 Multi qubit gates . 44

Chapter 3 ZX-calculus 47

3.1 Spiders . 47

3.1.1 Frobenius algebra . 47

3.1.2 Spider theorem . 49

3.1.3 Cups and caps . 50

3.2 Phases . 52

3.2.1 De�nition . 53

3.2.2 Phase groups . 53

3.2.3 Euler rule and Hadamard . 54

3.3 The calculus . 54

3.3.1 Interactions . 55

3.3.2 Completeness . 55

3.3.3 Variations . 57

II Only Topology Matters 59

Chapter 4 Paradigms in graphical language design 61

4.1 De�nition . 62

2

4.1.1 Paradigmatic generators . 62

4.1.2 Paradigmatic equations . 62

4.1.3 Paradigms . 63

4.2 Paradigmatic graphical languages . 63

4.2.1 De�nition . 64

4.2.2 The new F and U . 64

4.2.3 The paradigmatic monadic adjunction 65

4.3 Examples of paradigms . 68

4.3.1 Props as a paradigm over pros . 68

4.3.2 No paradigmatic equations . 69

4.3.3 Cartesian paradigm . 70

Chapter 5 Flexsymmetry 73

5.1 Introducing �exsymmetry . 73

5.1.1 Flexsymmetric generators . 74

5.1.2 Flexsymmetric paradigm . 74

5.1.3 Flexsymmetry and Frobenius algebras 75

5.2 Flexsymmetrisation . 76

5.2.1 Flexsymmetry up to dualizers . 76

5.2.2 Subdivision . 79

5.2.3 Applications . 83

5.3 Signature graphs . 88

5.3.1 De�nition . 88

5.3.2 The category of signature graphs . 89

5.3.3 Free �exsymmetric props . 90

Chapter 6 Interacting monoids 93

6.1 De�nition . 94

6.1.1 Monoids . 94

6.1.2 Bi-algebra rule . 95

6.1.3 Z∗-algebra . 95

6.2 Classi�cations . 95

6.2.1 Monoids . 95

6.2.2 Bi-algebra pairs . 97

6.2.3 Frobenius algebras . 100

6.3 Putting thing together . 101

6.3.1 Compatibility . 101

3

Contents

6.3.2 Essentially all Z∗-algebras . 103

6.3.3 Relation to known calculi . 104

Chapter 7 Entracte: Graphical Linear Algebra 105

7.1 The language . 105

7.1.1 Matrices . 105

7.1.2 Linear relations . 107

7.1.3 Properties . 109

7.2 In hindsight . 109

7.2.1 Simpli�cations . 110

7.2.2 Flexsymmetric graphical linear algebra 110

7.2.3 As a Z∗-algebra . 111

7.3 Models in Lin . 112

7.3.1 ZW . 113

7.3.2 ZH . 113

7.3.3 ZX . 113

III Add-ons 115

Chapter 8 The Discard Construction 117

8.1 Mixed state categorical quantum mechanics 118

8.1.1 Density matrices . 118

8.1.2 Dagger compact closed categories . 120

8.1.3 CPM construction and environment structures 120

8.2 Discard construction . 121

8.2.1 De�nition . 121

8.2.2 Enough isometries . 123

8.2.3 Completeness . 129

8.3 Application to ZX-calculus . 131

8.3.1 The ZX-Calculus with discard . 131

8.3.2 ZX-calculus with bastard spiders . 132

Chapter 9 The Scalable Notations 135

9.1 Divide and gather . 136

9.1.1 Types . 136

9.1.2 The wire calculus . 136

4

9.1.3 Rewiring theorem . 137

9.2 Scalable construction . 138

9.2.1 De�nition . 139

9.2.2 Properties . 139

9.2.3 Completeness . 141

9.3 Arrows . 143

9.3.1 Function arrows . 145

9.3.2 Red arrows . 145

9.3.3 Yellow arrows . 153

Chapter 10 Drawing quantum computing 155

10.1 Graph states . 156

10.1.1 Graphical representation . 157

10.1.2 Stabilizer properties . 158

10.1.3 Local complementation . 158

10.2 Diagonal gates . 160

10.2.1 De�nition . 160

10.2.2 Graphical transforms . 162

10.2.3 Spider nests . 165

10.3 Algorithms . 167

10.3.1 Oracles . 167

10.3.2 Quantum algorithms relying on a single application of the oracle . . . 168

10.3.3 Iteration and Grover algorithm . 170

Conclusion 175

Bibliography 179

5

Contents

6

Chapter 0

A Pictorial Introduction to Category

Theory

But I emphasize that the notions of category and
functor were not formulated or put in print until the
idea of a natural transformation was also at hand.

Saunders Mac Lanes [28]

The main goal of this chapter is not really to present category theory to a beginner reader
but more to introduce the not-so-well-known graphical notations from [29] and [30] that I use
in the thesis. The �rst section still is a classical presentation of the notions of category, functor,
and natural transformation. The second one introduces 2-categorical string diagrams that are a
generalisation of the string diagrams introduced in Chapter 1. I then introduce the categorical
concepts needed to understand Chapter 2 and Chapter 4 in this graphical framework.

0.1 Basic notions

This section introduces basic de�nitions and notations.

0.1.1 Categories and their pictures

I start by de�ning small categories.

De�nition 1 (Small category). A small category C is de�ned by the following data:

� A set O(C) of objects.

� A family of sets C[a, b] of arrows indexed by pairs of objects (a, b) ∈ C2.

� For each object a an identity arrow: ida ∈ C[a, a].

� For each triple of objects (a, b, c) ∈ O(C)3, a composition map, _ ◦ _ : C[b, c] × C[a, b] →
C[a, c].

The composition and identities are required to satisfy two axioms. Given a, b, c, d ∈ O(C),
f ∈ C[a, b], g ∈ C[b, c] and h ∈ C[c, d]:

7

Chapter 0. A Pictorial Introduction to Category Theory

(identity)

idb ◦ f = f = f ◦ ida
(associativity)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

An example that will appear often is the terminal category 1 which has a unique object ∗
and a unique arrow id∗. An arrow f ∈ C[a, b] is said to be:

� A monomorphism if f ◦ g = f ◦ h ⇒ g = h.

� An epimorphism if g ◦ f = h ◦ f ⇒ g = h.

� An isomorphism if there is f−1 such that f ◦ f−1 = idb and f−1 ◦ f = ida.

We say that to objects a and b are isomorphic if there is an isomorphism f ∈ C[a, b]. There
are various ways to represent graphically the arrows of a category. The most common consists
in seeing categories as oriented graphs. Objects are vertices and arrows are directed edges.

f
a b

The axioms allow to see compositions of arrows as paths between objects in the graph. The
identities are the trivial paths and concatenation of path is the associative composition. We
say that a diagram is commutative or commutes when any pair of paths with the same start
and end represent the same arrow in the category. Commutative diagrams allow a compact
presentation of equations between arrows. For example, the identity and associativity axioms
can be represented by commutative diagrams.

f
a b

a b

idbida

f

f

(identity)

h

a

b

c

d
h ◦ g

f

g ◦ f
(associativity)

Note that here the reasoning is circular since those two axioms are exactly what makes the
graphical representation consistent in the �rst place. In fact, I cheated a bit in those diagrams.
The identity diagram could be collapsed since the identities are already represented by the empty
path and the compositions in the associativity diagram could be represented as a concatenation
of arrows. But then both diagrams are trivial and this is exactly the point! The de�ning axioms
of categories are natively embedded in the graphical representation thus we won't have to use
them explicitly. As it is often stated: we manage to get rid of the bureaucracy. The same
phenomenon occurs with string diagrams.

String diagrams are another graphical representation where objects are represented by strings
and arrows by boxes connected by strings. String diagrams are often said to be the dual of graphs
diagrams, in the sense that edges become vertices and vertices become edges.

a b
f

Here the identity is presented by a simple string and the composition by connecting the boxes.

f g

8

0.1. Basic notions

A reading orientation is needed to make sense of string diagrams. In this thesis, I choose to
write every diagram from left to right.

String diagrams can be thought of as objectless representations of the category. The role of
the objects is played by the identities. This imposes a kind of linearity on the object, strings
only have two ends and then we cannot branch numerous arrows on one object like in graph
diagrams. Thus there is no notion of commutative string diagrams that would allow to represent
equalities in a compact way. In a string diagram, we need to write equality explicitly.

fidb f idaf= =

(identity)

fh ◦ g = f g ◦ f

(associativity)

Again, those string diagrams are clearly unnatural since the very possibility to write them
is based on those axioms. The need to state explicitly the equality in string diagrams is the
reason they are less used than graph diagrams which are ubiquitous in category theory. String
diagrams seem not di�erent enough from regular symbolic writing to be really useful. Graph
diagrams on the contrary can be glued to form larger ones and present a long demonstration in
one (often huge) commutative diagram in which we can follow the steps by identifying the paths
with common ends. The interest of string diagrams really appears in the presence of additional
structure when string diagrams can take care of even more bureaucracy while graph diagrams
have reached their limits. Here I particularly think about monoidal categories or 2-categories.
Then, the explicit equality even allows a direct connection to graph rewriting.

Like most algebraic structures there is a notion of morphism preserving it (which is on a
meta-level a motivation for de�ning the notion of category).

De�nition 2 (Functor). Given two categories C and D, a functor is given by the following
data:

� A map: F : O(C)→ O(D).

� A map: F : C[a, b]→ D[F (a), F (b)].

Those maps are required to satisfy: F (ida) = idF (a) and F (f ◦ g) = F (f) ◦ F (g). A functor
is said:

� faithful if F : C[a, b]→ D[F (a), F (b)] is injective for all a, b ∈ O(C).

� full if F : C[a, b]→ D[F (a), F (b)] is surjective for all a, b ∈ O(C).

� identity on object (i.o.o.) if F : O(C)→ O(D) is the identity.

� essentially surjective (i.o.o.) if for each object b ∈ O(D) there is an object a ∈ O(C)
such that b is isomorphic to F (a).

A functor is said to be an equivalence of category if it is full, faithful, and essentially
surjective. Two categories C and D are said equivalent if there is an equivalence of category
between them, we write C ' D.

In graph diagrams:

9

Chapter 0. A Pictorial Introduction to Category Theory

F (a) F (a)

idF (a)

F (ida)

F (a) F (b)
F (f)

F (c)
F (g)

F (g ◦ f)

In string diagrams we use functor boxes satisfying:

=
F

fg fg=

F F F

For any small category C an identity functor is de�ned by idC(a) = a and idC(f) = f .
The composition of two functors is again a functor. this composition is associative and the

identities also behave as expected. This suggests to de�ne a small category of small categories
whose objects are small categories and arrows the functors. However we then have a foundational
problem, the set of objects would then contains all sets, a contradiction, this is similar to Russel's
paradox. The solutions are then the same. We can use a hierarchy of types, then we de�ne bigger
categories by replacing sets in the de�nition of small categories by collections or classes. Most of
the time those size issues are not a problem. Typically in this thesis, I will never use something
higher than the category of small categories which has a collection of objects which is not a set
but just one step higher in the hierarchy. I'll call such structure categories and will say small
categories when the collection of objects and arrows are proper sets. Instead of the language of
set theory, I will now use type-theoretic notations. I write a : C to say that a is an object of C
and f : a→ b to say that f is an arrow which goes from a to b. The category of small category
and functors is denoted Cat. Those size issues are discussed more in-depth in [31].

Now we can provide numerous examples of categories. The category Set has sets as objects
and functions as arrows. In general, taking sets with an additional structure as objects and
morphisms preserving this structure as arrows provides a category. Those category are often
called concrete. This includes for example the category VectK of vector spaces over a �eld K
and K-linear maps. Examples of non-concrete categories are the category Rel whose objects are
sets and arrows are relations or any pre-order seen as a category whose objects are elements and
arrows represent the order relation.

An example of functor is 〈_〉 : Set→ Set, which maps a set A seen as an alphabet to the set
of words 〈A〉 over this alphabet. A function f : A→ B is mapped to a function 〈f〉 : 〈A〉 → 〈B〉
de�ned by 〈f〉(a1, a2, ..., an)

def

= (f(a1), f(a2), ..., f(an)).

0.1.2 Natural transformations

There is also a notion of arrows between functors: natural transformations.

De�nition 3 (Natural transformation). Given two categories and two functors F,G : C → D
a natural transformation α from F to G is a family of arrows αa : F (a) → G(a), called the
components of α, indexed by the objects of C such that the following diagram commutes for all
a, b : C and f : a→ b:

G(f)

F (a)

F(b)

G(a)

G(b)
αb

αa

F (f)

(naturality)

⇒

10

0.1. Basic notions

I write α : F ⇒ G to say α is a natural transformation from F to G. An example is
given by the natural transformation idSet ⇒ 〈_〉 whose components are de�ned by a 7→ (a).
In graph diagrams, categories are points, functors are arrows and natural transformations are
arrows between arrows or regions of the plane. As for arrows, there are also dual string diagrams
for natural transformations.

C

⇒ GF
α
D

C

GF α

D

The composition βα : F ⇒ H of two natural transformations α : F ⇒ G and β : G ⇒ H

is de�ned to have components (β ◦ α)a
def

= βa ◦ αa. The naturality of the composition follows by
gluing the two naturality squares:

C

G
F

α

D

⇒β⇒ H F (f)

F (a)

F(b)

G(a)

G(b)
αb

αa

G(f)

H(a)

H(b)
βb

βa

H(f)⇒⇒

C

F α

D

Gβ

This composition is associative. Given a functor F : C → D, there is always an identity

natural transformation idF : F ⇒ F with components (idF)a
def

= idF (a) for each object a : C.
The naturality is given by the following square:

F (f)

F (a)

F(b)

F (a)

F (b)

idF (b)

idF (a)

F (f)⇒

C

F

D

F

Those identities allow to see Cat[C,D] as a category with objects the functors and arrows
the natural transformations. The string diagrams for natural transformations are completely
similar to the one for arrows. Indeed the latter can be embedded into the former. Given an
object a : C we can de�ne a functor a : 1→ C, where 1 is the terminal category with a unique
object denoted ∗, de�ned as a(∗) = a and a(id∗) = ida. Then any arrow f : a → b de�nes a
natural transformation f : a⇒ b with components f∗ = f .

ida

a

a

b

b

f

f

idb⇒ a

C

1

bf

This de�ne a faithful functor C → Cat[1,C]. This trick will be use extensively in this
thesis and is extremely useful to represent arrows obtained by composing numerous functors and
natural transformations. If string diagrams for natural transformations generalizes the ones for

11

Chapter 0. A Pictorial Introduction to Category Theory

arrows, they can do a lot more. We will now de�ne how we can make sense of juxtaposition
of string diagrams. Given a natural transformation α : F ⇒ G and a functor H : D → T the
whiskering Hα : H ◦ F ⇒ H ◦G has components Hαa

def

= H(αa) for each objects a : C.

C

⇒ GF
α
D

H

T

HG(f)

HF (a)

HF (b)

HG(a)

HG(b)
H(αb)

H(αa)

HF (f) ⇒

C

F α

D

G

T
H H

Here we just apply the functor H to the commutative diagram representing the naturality
of α. Functoriality directly gives us a new commutative diagram and then, a new natural
transformation. The name whiskering comes from the graph diagram where the extension functor
is like a whisker to the diagram. Given a functor K : L→ C another whiskering αK : F ◦K ⇒
G ◦K can also be de�ned with components (αK)x

def

= αK(x) for each objects x : L.

C

⇒ GF
α
D

K

L

GK(g)

GK(x)
αK(a)

FK(g)

αK(b)

FK(x)

GK(y)FK(y)

⇒
C

F α

D

G

L
K K

The commutative diagram is basically the naturality of α applied on the image of the functor
K. The two whiskering allows to de�ne the vertical composition of natural transformations:
β • α : H ◦ F ⇒ K ◦ G. There are two ways to de�ne such a composition: as Kα ◦ βF or as
βG ◦Hα. The two happen to be the same.

HF (a)

βG(a)

⇒

HG(a) KG(a)

KF (b)

HG(b)

HF (b)

KG(b)

KF (a)

⇒⇒

⇒

βG(b)

βF (b)

βF (a)

KαaKαbHαbHαa

KG(f)

HF (f)

HG(f)

KF (f)

F α

D

C

G

T

KβH

F α

D

C

G

T

Kβ

=

H

12

0.1. Basic notions

The naturality of α makes the Inner square commute and the naturality of β makes the outer
square commutes. Thus the whole diagram is commutative and we can de�ne β •α def

= Kα◦βF =
βG ◦Hα.

C

⇒ GF
α
D

⇒ KH
β
T

F α

D

C

G

T

KβH

We see that the string diagrams for natural transformations allow us to represent vertical
composition by the juxtaposition of diagrams. This composition is associative so no vertical
parentheses are needed. Note that this forces us to represent the transformation ididC as an
empty diagram, in other words, we do not write anything. Those natural transformations act as
identities for the vertical composition. Yes, there is again a category with objects functors and
arrows the natural transformations between functors. But we already have enough abstraction
for everything that will occur in this thesis, it is wiser to stop here.

0.1.3 Strict monoidal categories

We give here the de�nition of strict monoidal categories that is used through the thesis. In the
literature, we generally �nd the most subtle notion of non-strict monoidal category. However,
I choose to restrict the de�nitions for the various categories used in the thesis to avoid the
discussion of the non-strict notion. Any monoidal category is equivalent to a strict one anyway,
see the famous coherence theorem in [32] for more details.

De�nition 4 (strict monoidal category). A small category C is said strict monoidal if it is
equipped with:

� An associative binary operation _⊗_ : O(C)×O(C)→ O(C) called the tensor product.

� An identity object I ∈ O(C) satisfying I ⊗A = A⊗ I = A for all object A ∈ O(C).

� For each objects A,B ∈ O(C), an associative binary operation ⊗ : C[A,B] × C[C,D] →
C[A⊗ C,B ⊗D] such that f ⊗ idI = f ⊗ idI = f and σA,I = σI,A = idA .

Furthermore, we require A⊗_ : f 7→ idA ⊗ f and _⊗B : f 7→ f ⊗ idB to be functors.

There is a notion of strict monoidal functor preserving the tensor product:

De�nition 5 (strict monoidal functor). A functor F : C → D between two strict monoidal
categories is said strict monoidal if F (A ⊗ B) = F (A) ⊗ F (B), F (I) = I and F (f ⊗ g) =
F (f ⊗ F (g)).

This gives us a non-small category MonCat of small strict monoidal categories and strict
monoidal functors.

A strict monoidal category often comes with an additional structure allowing to exchange
the two components of a tensor product A⊗B.

13

Chapter 0. A Pictorial Introduction to Category Theory

De�nition 6 (symmetric strict monoidal category). A strict monoidal category C is said sym-
metric if there is a natural transformation with invertible components σA,B : A ⊗ B → B ⊗ A
and σI,I = idI such that σ−1

A,B = σB,A.

There is also a corresponding notion of functors.

De�nition 7 (symmetric strict monoidal functor). A strict monoidal functor F : C→ D between
two strict monoidal categories is said symmetric if F (σA,B) = σF (A),F (B).

This gives us a non-small category SymMonCat of small symmetric strict monoidal cate-
gories and symmetric strict monoidal functors.

Symmetric strict monoidal categories admit a dedicated graphical notation with string di-
agrams that will not be developed here since it is explained in detail in Chapter 1. Set is
not a symmetric strict monoidal category but we can obtain one if we identify isomorphic sets.
Then a tensor product is given by the Cartesian product and the symmetry map is de�ned by
σA,B : (a, b) 7→ (b, a).

0.2 Limits and co-limits

In this section, we set the notations for families of categorical constructions that will be used
through the thesis. They are all very similar. Indeed, they are a particular case of the more
general notions of limits and co-limits. More details can be found in [32] and [33].

0.2.1 Products and Co-products

Given two objects A and B in a category C we say that A and B have a Co-product if there
is an object A + B, called the co-product of A and B, and two arrows ι1 : A → A + B and
ι2 : B → A+B called the injections satisfying the following universal property. Given any object
C and a couple of arrows f : A→ C and g : B → C, there is a unique arrow [f, g] : A+B → C
such that [f, g] ◦ ι1 = f and [f, g] ◦ ι2 = g.

A

C

B

f g

[f, g]

ι1 ι2
A+B

Such object A + B needs not to be unique but it is unique up to isomorphism. So when
we say A+ B we implicitly assume that we choose one of the possible isomorphic objects. The
sum of two arrows f : A → B and g : C → D is de�ned as f + g

def

= [ι1 ◦ f, ι2 ◦ g]. We have
f + g : A+ C → B + C. A typical example of co-product is the disjoint union in Set.

Dually a product A× B is an object with two arrows π1 : A× B → A and π2 : A× B → B
called the projections satisfying the following universal property. Given any object C and a
couple of arrows f : C → A and g : C → B, there is a unique arrow (f, g) : C → A × B such
that π1 ◦ (f, g) = f and π2 ◦ (f, g) = g.

14

0.2. Limits and co-limits

A

C

B

f g

(f, g)

π1 π2
A×B

The Cartesian product is an example of a product in Set.

0.2.2 Co-equalizers

Given two maps f, g : A→ B in a category C we say that f and g have a co-equalizer if there
is an object C, called the co-equalizer of f and g, and an arrow π : B → C called the projection
satisfying π ◦ f = π ◦ g and the following universal property. Given any object D and any arrow
h : B → D such that h ◦ f = h ◦ g, there is a unique arrow k : C → D such that h = k ◦ π.

A

h

B
f

g

D

π
C

k

Intuitively the co-equalizer corresponds to a quotient. In Set, co-equalizers are obtained by
identifying the images by f and g of the elements in A.

0.2.3 Pull-back and Push-outs

Given two maps f : A→ B and g : A→ C in a category C we say that f and g have a push-out
if there is an object D, called the push-out of f and g, and two arrows h : B → D and k : C → D
satisfying h◦ f = k ◦ g and the following universal property. Given any object X and two arrows
i : B → X and j : C → X such that i ◦ f = j ◦ g, there is a unique arrow t : D → X such that
i = t ◦ h and j = t ◦ k.

A

h

B
f

g

D

X

C
k

i

j

A push-out can be seen as a combination of co-product and co-equalizers, the dual notion
is called pull-back Given two maps f : C → D and g : B → D in a category C, we say that f
and g have a pull-back if there is an object A, called the pull-back of f and g, and two arrows
h : A → B and k : A → C satisfying g ◦ h = f ◦ k and the following universal property. Given
any object X and any arrows i : X → B and j : X → C such that g ◦ j = f ◦ i, there is a unique
arrow t : X → A such that i = k ◦ t and j = k ◦ t.

15

Chapter 0. A Pictorial Introduction to Category Theory

A
h

B

f

g

DC

k

X

i

j

We add a little wedge in the corner of commutative squares to indicate that they are push-out
or pull-back

0.3 Monads and Adjunctions

Natural transformations are the key to de�ne various concepts of category theory. I introduce
in this section two of them, monads and adjunctions.

0.3.1 Monad

Monads are ubiquitous in mathematics, in particular, behind most algebraic structures there is
a monad.

De�nition 8. A Monad is a functor T : C→ C together with two natural transformations:

T

T
TT

unit multiplication

Furthermore those transformations are required to satisfy:

=

(unit laws) (associativity)

= =

A possible intuition is that a monad represents a construction process that builds structures
inductively. In this interpretation, TA is an object of constructions from the object A. The
unit morphism A → TA can be interpreted as the inclusion of building blocks in A as trivial
constructions in TA. The multiplication morphism T 2A → TA is interpreted as an inclusion
stating that all possible constructions are in TA since all constructions obtained from building
blocks in TA can already be seen as constructions in TA.

A typical example is the free monoid monad over Set. 〈_〉 : Set→ Set maps a set to the
free monoid over this set. The unit corresponds to seeing an element of the set as a one-letter
word. The multiplication is seeing a word of words as just one big word.

0.3.2 Adjunctions

Adjunctions are a kind of generalized inverse for functors. They assert a weaker notion than
equivalence of category. There are di�erent equivalent de�nitions of adjunction. The one I use
here is not the most common but is better suited to a graphical representation.

16

0.3. Monads and Adjunctions

De�nition 9 (adjunction). Two functors F : C→ D and U : D→ C are said to be adjoints to
each others if there are two natural transformations η : idC ⇒ U ◦ F , the unit, and ε : F ◦ U ⇒
idD, the co-unit, such that εU ◦Uη = idU and Fε ◦ ηF = idF . We write F a U and say that F
is the left adjoint of U and that U is the right adjoint of F .

This de�nition is in fact easier to memorize with string diagrams. Let the unit and the co-unit
be depicted as:

D
U

D
F

C

co-unit ε

C

U
C

F
D

unit η

Then the conditions to be an adjunction are:

R

R

= RR

L

L
= LL

They are numerous interpretations of adjunctions depending on which speci�c example we
have in mind. I invite the reader to look at [32] for more examples.

The unit and co-unit provide a way to map in a bijective way any arrow f : A→ UB to an
arrow FA→ B as follows:

f 7→
f

A
U

B

F

B
A

g 7→
g

A

U

B

F
B

A

We see here the objects A and B as functors 1 → C and 1 → D. Conversely a bijection
ϕA,B : D[FA,B]→ C[A,UB] which is natural in A an B provides a unit and a co-unit by taking
as components ϕA,FA(idFA) : A→ UFA and ϕ−1

UB,B(idUB) : FUB → B respectively.
A very important property to keep in mind is that limits are preserved by right adjoints

and co-limits by left adjoints. For example for the co-product we have F (A + B) ' FA + FB.
Furthermore F [f, g] = [Ff, FG], F (ι1) = ι1 and F (ι2) = ι2. So F (f + g) = F (f) + F (g).

Given an adjunction we can always de�ne a monad by setting:

F

U
def

=
T

def

= T
TT

F

UF

U

unit multiplication

F

U

We then have a factorization T = U ◦ F .

C ` DT

F

U

We can check graphically that the monad laws hold:

= = =

17

Chapter 0. A Pictorial Introduction to Category Theory

0.3.3 Monadic adjunctions

The notion we de�ne here will be used mostly in Chapter 4. If each adjunction provides a monad
the converse also holds. Given any monad T : C → C, we can factorize it into an adjunction
F a U with F : C→ CT and U : CT → C where CT is called the Eilenberg-Moore category
of the monad T . This factorization is not unique but satis�es a universal property. Given any
adjunction such that there is a unique functor K called the comparison functor such that this
diagram commute:

C ` CT

T F

U

`

D

L R
K

See [32] for more details on the construction of CT . An adjunction F a U is said to be
monadic when D is equivalent to CT , in other words, if and only if the comparison functor K
is an equivalence of category. In this situation, all objects in D can be seen as co-equalizer of
free objects, i.e., objects of the form FX.

FUFUA AFUA

A proof of this can be found in [34]. Intuitively all objects in D can be presented as free
construction over objects of C quotiented by equations. There is a very useful theorem to prove
such fact:

Theorem 1 (Beck's monadicity theorem). A functor U : D→ C is monadic if:

� U has a left adjoint.

� U is conservative, i.e., if Uf is an isomorphism then f is an isomorphism.

� D has and U preserves co-equalizers of U -split pairs

A U -split pair in this theorem is a pair f, g : A → B such that there is an h : UB → C,
s : C → UB and t : UB → UA such that: h ◦ Ug = h ◦ Uf , Uf ◦ t = idUB, h ◦ s = idC and
Ug ◦ t = s ◦ h.

UA CUB
Uf

Ug

h

st

Proofs of this theorem can be found in [32] or [34].

18

Part I

Prologue

19

Chapter 1

Props and Graphical Languages

I think that my model has much more actually to do
with mime. But there ought to be something worth
seeing not just worth hearing. I want to see props
and stu�.

Keith Johnstone, interviewed by Hugh Tebby,
[35]

Drawing ideas is not a new trend. The history of science is �lled with diagrams, schemata,
and visual representations of all sorts. Most of them are considered as illustrations or analogies
that allow to quickly build intuition on a problem. But some of them come with more restrictions
and structures. That's the case of Circuit Diagrams [36] or control �ow graphs [37]. At some
point, such representation becomes formalized enough to not only convey ideas but rigorous
proofs. Then graphics are not illustrations anymore but a language in itself.

Formal graphical representations are far too diverse to dare hope for a satisfying unifying
theory. However, we can restrict to families of diagrams that share common ways to be drawn,
composed, and interpreted. This is the case of string diagrams representing processes as boxes
with inputs and outputs linked together with strings. They happen to be all uni�ed through the
notion of prop.

I spent a lot of time thinking about the right formalism to unify my favourite graphical
languages. I am still not completely satis�ed by the result in some fringe cases but at least
the formalism is expressive enough to encompass all the material I choose to include in this
thesis. This formalism relies on category theory and categorical universal algebra. The graphical
formalism for natural transformations introduced in Chapter 0 will be used extensively.

1.1 Props

Props have �rst been introduced in [38] as an acronym. PROP stands for PROduct and Permu-
tation category 1. PROPs being ubiquitous in this thesis I just write prop, following the remark
of Baez, Coya, and Rebro in [36] that props should be considered as ordinary mathematical
citizens like groups or monoids.

1We might never know if this contrived acronym was chosen naively or designed on purpose with in mind to

the numerous puns allowed by the polysemy of the word prop.

21

Chapter 1. Props and Graphical Languages

1.1.1 Combinatorial de�nition

I start with a combinatorial de�nition of props. The set of lists over a set C is denoted 〈C〉.
A list is denoted −→a and its elements ai. Concatenation is denoted additively −→a +

−→
b and the

empty list is denoted 0. A list with one element will just be denoted by this element.

De�nition 10 (Props combinatorially). A prop P is a set of colours C together with sets of

arrows indexed by pair of lists of colours denoted P[−→a ,
−→
b]. Furthermore we require:

� An associative horizontal composition operation ◦ : P[
−→
b ,−→c]×P[−→a ,

−→
b]→ P[−→a ,−→c].

� An associative vertical composition operation ⊗ : P[−→a ,
−→
b]×P[−→c ,

−→
d]→ P[−→a +−→c ,

−→
b +
−→
d].

� For each colour a ∈ C identities ida ∈ P[a, a].

� An identity for the empty list id0 ∈ P[0, 0].

� For each pair of colours a, b ∈ C a swap σa,b ∈ P[a+ b, b+ a].

De�ning inductively:

� id0
def

= id0.

� id−→a +
−→
b

def

= id−→a ⊗ id−→b .

� σ0,−→a
def

= σ−→a ,0
def

= id−→a .

� σ−→a +
−→
b ,−→c +

−→
d

def

= (id−→c ⊗ σ−→a ,−→d ⊗ id−→b) ◦ (σ−→a +−→c ⊗ σ−→b +
−→
d

) ◦ (id−→a ⊗ σ−→b ,−→c ⊗ id−→d).

The following equations must hold:

� (Interchange law) (f ◦ h)⊗ (g ◦ k) = (f ⊗ g) ◦ (h⊗ k).

� (Horizontal identity) f ◦ id−→a = id−→
b
◦ f = f .

� (Vertical identity) f ⊗ id0 = id0 ⊗ f = f .

� (Involution) σb,a ◦ σa,b = ida+b.

� (Naturality) (id−→c ⊗ σ−→c ,−→d) ◦ (f ⊗ id−→
d

) = (id−→
d
⊗ f) ◦ σ−→a +

−→
b ,
−→
d
.

All these abstract combinatorial de�nitions will become clear once the string diagrams will
be introduced. Note this de�nition corresponds to the concategories in [39].

1.1.2 Categorical de�nition

Equivalently props can be de�ned as a particular kind of category.

De�nition 11 (Props categorically). A prop is a symmetric strict monoidal category whose
monoid of objects is freely spanned by a set C of colours.

22

1.1. Props

I follow [40] in using the word prop for what is usually called coloured prop in the literature.
Usually, prop is used to describe what I call monochromatic props, i.e., a prop whose set of
colours is a singleton. In the monochromatic case, the unique colour is denoted 1. Then each
object can be uniquely designed by a natural number n ∈ N.

Example 1. The monochromatic prop Fun as for arrows n → m the functions n → m where
n and m denote the �nite sets {1, . . . , n} and {1, ,m}. The tensor product ⊗ corresponds to the
disjoint union of sets and functions. The composition ◦ is the usual composition of functions. 0
is the empty set. The swap is the unique non trivial bijection 2→ 2.

The main di�erence between props and strict monoidal category is that strict monoidal
categories can have non-trivial relation between tensors of objects which is not the case of props.
This speci�city is in fact why props are more suited to graphical representation.

1.1.3 Categories of props

A prop morphism is a strict monoidal functor that maps colours to colours. Combinatorially,
given two props P and Q with colours CP and CQ, a prop morphism F : P → Q is de�ned by

a function F : CP → CQ and a family of functions F−→a ,−→b : P[−→a ,
−→
b]→ Q[〈F 〉(−→a), 〈F 〉(

−→
b)] such

that:

� Fa,a(ida) = ida

� F−→a ,−→c (g ◦ f) = F−→
b ,−→c (g) ◦ F−→a ,−→b (f)

� F−→a +
−→
b ,−→c +

−→
d

(f⊗) = F−→a ,−→c (f)⊗ F−→
b ,
−→
d

(g)

� F−→a +
−→
b ,
−→
b +−→a (σ−→a ,

−→
b

) = σ
F (−→a),F (

−→
b)

We clearly have a category Props with props as objects and prop morphisms as arrows. Prop
is a subcategory of SymMonCat but not a full one. Given a set of colours C, the category
C-Prop has C-coloured props as objects and identity on objects prop morphisms as arrows.
Again C-Prop is then a non-full subcategory of Prop. Note that 1-Prop is the category of
monochromatic props.

C-Prop Prop SymMonCat

Prop has been studied in [40] where it is shown that it is complete and co-complete This is
also the case of the category C-Prop of C-colored prop. I give some examples of constructions
in this category that we will encounter later.

Let P and Q be C-coloured props. Then the product P×Q is de�ned by (P×Q)[−→a ,
−→
b]

def

=

P[−→a ,
−→
b] × Q[−→a ,

−→
b]. More generally, all limits can be computed pointwise in a similar way.

Colimits are more subtle, informally the co-product of P + Q has for arrows the constructions
made from composition and tensors of swaps and arrows from P and Q, quotiented by all the
expected relations concerning swaps, tensors, composition and of course all the relations that
were already true in P and Q. In the same idea co-equalizers are obtained by identifying the
necessary arrows. More concrete examples of such colimits will appear later together with explicit
constructions with generators and equations.

23

Chapter 1. Props and Graphical Languages

1.2 String diagrams

String diagrams are a graphical notation to represent arrows in props. They are generalisations
of Penrose notations for tensors to morphisms in any monoidal category or to be more exact, in
any prop.

1.2.1 Composing Boxes

An arrow f : −→a →
−→
b in a C-coloured prop P is denoted by a diagram whose inputs are wires

corresponding to the colors of −→a and outputs are wires corresponding to the colors in
−→
b . Arrows

and identities are depicted:

f

f : −→a →
−→
b

......

ida : a→ a id0 : 0→ 0

Note that I will only add additional information on the wires when it is not clearly conveyed
by the types of boxes. id0 is depicted as an empty diagram and ida by a wire of type a. The
horizontal and vertical compositions are depicted:

g

f ⊗ g : −→a +−→c →
−→
b +
−→
d

......

f ◦ g : −→a → −→c

f
g... f

According to its inductive de�nition, id−→a is denoted by wires of type ai in parallel:

id−→a : −→a → −→a

...

By construction string diagrams cannot handle equalities between tensors of objects. Indeed
if a ⊗ b = c we are in a weird situation in which we don't know if we need two wires of type a
and b or one wire of type c. String diagrams are not for strict monoidal categories but for props.
Props are exactly the strict monoidal categories where such equalities are never a problem since
every object can be uniquely decomposed into colours. So we only need one type of wire for each
colour to represent any object.

1.2.2 Picturing tautologies

The key interest of graphical notations compared to usual formulas is that most axioms of props
are directly embedded into the formalism.

The notation natively lacks the parenthesis necessary to di�erentiate the two hand sides of
the associativity of both compositions.

g

(vertical associativity)

......

f

......

g... f

h

......

= g

......

f

......

h

...... h...

g... fh...

=

(horizontal associativity)

...

...

24

1.2. String diagrams

But the same economy can also be reached in formulas by dropping the parenthesis. The
real advantage of graphical notation concerns the interchange law.

g... f

=
g... ...h...

(interchange law)

g... f

g... ...h...

...

...

Here we avoid a huge amount of bureaucratic parenthesis manipulation. A similar phe-
nomenon occurs with identities.

=

(Horizontal identity)

f f = f

These notations hide identities inside wires and thus diagrams natively satisfy the horizontal
identity axiom.

=

(vertical identity)

f

f
= f

The same happens with the vertical identity axiom, id0 being the empty diagram we can
arbitrarily consider it to be there or not.

1.2.3 Swaps

The last ingredient of the axiomatisation of props missing is the swap. The swaps are depicted
by crossings of wires:

σa,b : a+ b→ b+ a

Swaps being involutive have then a direct topological interpretation:

(Involution)

=

The naturality of the swap corresponds to the fact that any arrow can go through the wires:

=

(Naturality)

f
... f...

Note that when f itself is taken to be a swap maps we recover the Yang-Baxter equation
from knot theory [41]:

25

Chapter 1. Props and Graphical Languages

Yang-Baxter

=

In fact, string diagrams are a model of one-dimensional strings evolving in a four-dimensional
space. Indeed, the di�erent wires can pass through each other which is not possible in three
spatial dimensions where a notion of braiding would be necessary.

There are two di�erent stances concerning the string diagrams notation. The �rst is to think
of it as a convenient way to represent things quite informally knowing that if really needed we can
easily translate back from topological manipulations to the combinatorial axioms. The second
is to rely on the work of [42] or [43] where it is shown that with a good topological de�nition of
what are string diagrams it can be rigorously shown that there are sound. In other words: we
can't obtain equalities by topological manipulations of string diagrams if they don't follow from
the axioms of props.

1.3 Graphical languages

In this section, we �x a given set of colours C. Identifying props with string diagrams our
goal is to study the presentations of props by generators and equations. The idea is to �t the
presentation of props into the general framework of categorical universal algebra [34]. We will
de�ne a category of signatures corresponding to families of generators. Then we will de�ne a free
functor F that maps a signature to the free prop generated by those generators. An equation can
then be seen as a co-equalizer in the category of props which identify some diagrams to others.
A graphical language will then be de�ned as a signature together with maps whose co-equalizer
corresponds to the equations.

1.3.1 De�nition

In universal algebra, the signature of a C-coloured prop is given by a set of generators |Σ|
together with an arity function a : Σ → 〈C〉2 where 〈C〉 is the free monoid spanned by the set
of colours C. Given a generator f ∈ |Σ|, a(f) = (a, b) is called the type of f and we often write
f : a → b. In a categorical setting it is more convenient to organize those data in a more type
oriented structure.

De�nition 12 (Signature). A C-coloured signature is a functor Σ : 〈C〉2 → Set where 〈C〉2 is
seen as a discrete category.

This functor matches each possible type to a set of generators of this type. Note that this
set can be empty. De�ning |Σ| def=

⊎
(a,b)∈〈C〉2 Σ(a, b) and a : G 7→ (a, b) if G ∈ Σ(a, b) we recover

the usual de�nition. Conversely de�ning Σ(a, b)
def

= a−1{(a, b)} gives a functor in Set〈C〉
2

. The
two descriptions are completely equivalent.

Example 2. In practice, to de�ne a signature we use string diagrams to denote the generators

and use a set inspired notation. For example Ms
def

= { , } is a monochromatic signature
with two generators of respective types 0 → 1 and 2 → 1. Hence we have Ms[0, 1] = { },
Ms[2, 1] = { } and Ms[n,m] = ∅ for all other n and m.

26

1.3. Graphical languages

The functor point of view allows to de�ne a signature map as a natural transformation. A
signature map α : Σ→ Σ′ is a set of functions αa,b : Σ(a, b)→ Σ′(a, b). There is a category of

C-coloured signatures which is exactly the functor category Set〈C〉
2

. It will be denoted C-Sig.
This category is a pre-sheaf category over Set, and then it inherits most of its properties.

C-Sig is complete and co-complete, in fact all limits and colimits can be computed point-
wise. In particular the co-product of two signatures Σ and Σ′ satis�es (Σ + Σ′)(−→a ,

−→
b) =

Σ(−→a ,
−→
b)
⊎

Σ′(−→a ,
−→
b). There is also an empty signature de�ned by ∅(−→a ,

−→
b)

def

= ∅ which is an
initial object. C-Sig satis�es the external axiom of choice, so every epimorphism splits, i.e., a
signature map whose components are surjective has a left inverse.

Given a C-coloured prop P it is always possible to gather its arrows into a signature U(P)

de�ned as U(P)(−→a ,
−→
b)

def

= P[−→a ,
−→
b]. Then by de�nition any morphisms of C-coloured props

f : P → Q gives a family of functions f−→a ,−→b : P[−→a ,
−→
b] → Q[−→a ,

−→
b]. So f de�nes a natural

transformation U(f) : U(P)→ U(Q). This de�nes a functor U : C-Prop→ C-Sig.
It is shown in [36] that the functor U has a left adjoint F : C-Sig→ C-Prop. Intuitively this

functor maps a signature to a prop whose arrows are the string diagrams built from generators
and swaps using composition and tensor product. Those diagrams are quotiented by the prop
axioms.

The adjunction F a U is monadic, meaning that the category C-Prop is equivalent to
the Eilenberg-Moore category of U ◦ F -algebras, see [34] for more on this. We de�ne a unit η :
idC-Sig ⇒ U◦F and a co-unit ε : idC-Sig ⇒ U◦F . The unit has components ηΣ : Σ→ UFΣ which
map a generator to the diagram composed of this generator only. The co-unit has components
ηΣ : FUP → P which map a diagram composed of arrows in P to the arrow of P obtained
by interpreting the formal composition and tensor product of diagram by the composition and
tensor product in P. Graphically, those two natural transformations will be denoted:

εη

De�nition 13 (Family of equations). A family of equations over a C-coloured signature Σ
is a tuple

(
En, E`, Er

)
where En is a C-coloured signature of names, E` : En → UF (Σ) is the

left hand side signature map and Er : En → UF (Σ) is the right hand side signature map.

En UFΣ

E`

Er

Here we have denoted the signature map E` as a natural transformation between two constant
functors.

En
U

E` F
Σ

The input corresponds to the functor En : 1 → C-Sig. The three outputs of the diagram
correspond to the functors Σ : 1→ C-Sig, F : C-Sig→ C-Prop and U : C-Prop→ C-Sig.

27

Chapter 1. Props and Graphical Languages

An equation of C-coloured prop is then obtained by choosing a type (−→a ,
−→
b) ∈ 〈C〉2 and a

name n ∈ En(−→a ,
−→
b). The corresponding equation is lE

(−→a ,
−→
b)

(n)
(n)
≡ rE

(−→a ,
−→
b)

(n) where `E
(−→a ,
−→
b)

(n), rE
(−→a ,
−→
b)

(n) ∈

UFΣ[−→a ,
−→
b] are diagrams built from generators of Σ. So families of equations are a way to gather

by types a set of equations.

The empty family of equation is de�ned by ∅n def

= ∅, ∅` and ∅r are both the unique map
∅ → UFΣ from the initial signature ∅.

Example 3. In practice we de�ne a family of equations as a set of equation between string

diagrams. For example using the monochromatic signature Ms
def

= { , } previously de�ned, we
introduce the family of equations:

Me
def

=
{

= , = , = , =
}

The set of names is:

Mn
e

def

= {(associativity), (left unit), (right unit), (commutativity)}

Considering more precisely the case of the (commutativity) equation we have:

M`
e : (commutativity) 7→ and Mr

e : (commutativity) 7→

Sometimes we might by a slight abuse of notation fuse some equations together and write:

Me
def

=
{

= , = = , =
}

De�nition 14 (Graphical Language). A C-coloured graphical language L is a pair (Ls,Le) where
Ls is a C-coloured signature and Le is a C-coloured family of equations over the signature Ls.

To each graphical language L corresponds a prop
•
L de�ned as the co-equalizer:

FLne FLs
L`e

•
L

Lπ

Lre

To be rigorous
•
L is only de�ned up to prop isomorphisms. However, we will consider that

we choose one of the isomorphic props. This choice will have absolutely no consequences.

Example 4. The monochromatic signature Ms and the family of equations Me introduced before
describe a graphical language M called the graphical languages of monoids. In practice we present
graphical languages as follows:

The language M of monoids

28

1.3. Graphical languages

Generators Ms

Equations Me

= = = =

1.3.2 Translations

In this section, we de�ne a category of graphical languages whose arrows are translations.

De�nition 15 (Translation). A translation between two graphical languages L and Y is a
signature map τ : Ls → UFYs satisfying the soundness condition:

Yπ
τ

LreL`e =
Yπ

τ

Intuitively, the soundness condition ensures that equality is preserved by the translation, in
other words, two equivalent diagrams in L are translated into two equivalent diagrams in Y.

The soundness condition admits an equivalent de�nition that will be very useful to us.

Proposition 1 (Alternative soundness condition). A signature map τ : Ls → UFYs satis�es

the soundness condition if and only if there exists a prop morphism
•
τ :

•
L →

•
Y such that:

Yπ
τ = Lπ •

τ

Furthermore, if this morphism exists it is unique.

Proof. Given a signature map τ : Ls → UFYs satisfying the soundness condition, it follows
directly from the universal property of the co-equalizer that there is a unique C-coloured prop

morphism
•
τ :

•
L →

•
Y such that:

Yπ
τ = Lπ •

τ

Conversely if such morphism exists then the soundness condition is satis�ed:

Yπ
τ

LreL`e =
Yπ

τ
=

L`e
Lπ •

τ

=
Lre

Lπ •
τ

This alternative condition allows to show that translations form a category.

29

Chapter 1. Props and Graphical Languages

Proposition 2. There is a category GL with objects the graphical languages and arrows the
translations. The composition of two translations is de�ned as:

τ
ν

ν ◦ τ def

=

and the identities as:

idL
def

=

Proof. This composition is associative. Given three translations τ : L → Y, ν : Y → Z and
κ : Y → Z:

= = =τ
ν ν

κ
κ

τν ◦ τ

κ
τ

κ ◦ ν

Here the key step relies on the associativity of the monad U ◦ F . We check that ν ◦ τ satisfy

the alternative soundness condition by setting:
•

(ν ◦ τ)
def

=
•
ν ◦ •

τ .

τ
ν

ν ◦ τ =
Zπ Zπ

τ=
Yπ •

ν
= Lπ •

τ
•
ν

We check that idL satisfy the alternative soundness condition by setting:
•
idL

def

= id •
L
.

=
idL

Lπ Lπ

= Lπ

This construction acts as the identity for the composition of translations. Given a translation
τ : L → Y we have:

τidY ◦ τ = τ=

and

τ ◦ idL = τ=
τ

Here we see that the unit law of the monad U ◦ F is used.

This last proof gives us even more: a functor • : GL→ Prop.

Proposition 3. There is a full and essentially surjective functor • : GL → Prop de�ned by

L 7→
•
L and τ 7→ •

τ .

30

1.3. Graphical languages

Proof. The functoriality of • follows directly from the previous proof where it is shown that
•
idL

def

= id •
L

and
•

(ν ◦ τ)
def

=
•
ν ◦ •

τ .

To show that • is essentially surjective we use the fact that the adjunction F a U is monadic.
So C-Prop is equivalent to the Eilenberg-Moore category of the monad U ◦ F . Thus any prop
P can be seen as the following co-equalizer:

FUFUP PFUP

A proof of this can be found in chapter 3 of [34]. From this we construct a graphical languages

P de�ned by Ps
def

= UP, Pne
def

= UFUP and:

P`e Predef

=
def

=

We have:

P`e Pre
= ===

And then it follows that:
•
P ' P.

To show that • is full we consider a prop morphism f :
•
L →

•
Y . We recall that C-Sig inherit

from Set the external axiom of choice. The projection Yπ is an epimorphism by de�nition. Let

s :
•
Y → FYs be a section of Yπ.

def

=Yπs

We de�ne the translation φ : L → Y as

def

= fYπ s
φ

Checking the alternative soundness condition gives us:

=
fYπ s

φ
Yπ Yπ

= fYπ

So
•
φ = f and • is full.

This last functor is clearly not faithful. The same prop morphism can be described by di�erent

translations. We say that two graphical languages are equivalent and write L ∼ Y if
•
L =

•
Y .

31

Chapter 1. Props and Graphical Languages

De�nition 16 (Interpretation). An interpretation of a C-coloured graphical language L into

a C-coloured prop P is a C-coloured prop morphism J_K :
•
L → P. L is said universal for P if

J_K is full and complete for P if J_K is faithful.

Note that there is always a trivial universal and complete interpretation of L into
•
L : the

identity!

Example 5. In practice the adjunction F a U allows us to describe an interpretation by matching
each generator in the signature to an arrow in the model prop. There is an interpretation of M
into Fun given by:

J K def

= ∅ → 1 J K def

=

{
1 7→ 1

2 7→ 1

This interpretation is universal and complete, in fact the string diagram of M matches the
potatoe diagrams sometimes used to write functions between �nite sets:

→

1.3.3 Constructions

Now that graphical languages are well established we study the various ways to manipulate them.

De�nition 17 (Free graphical language). Given a C-coloured signature Σ, the free graphical

language Σ over the signature Σ is de�ned by Σs
def

= Σ and Σe
def

= ∅.

In practice denoting the free graphical language in the same way as the signature is never a
problem, it will even be convenient later. There is an inclusion functor C-Sig→ C-GL mapping

a signature to the corresponding free graphical language. We have
•
Σ = FΣ and Σπ = idFΣ.

De�nition 18 (Sums). The sum of two graphical languages L and Y is de�ned by (L+ Y)s
def

=

Ls+Ys, (L+ Y)e
def

= Le+Ye, where the sum of two familly of equations is de�ned as (L+ Y)ne
def

=
Lne + Yne and:

(L+ Y)`e
def

=

[
L`e

ι1
, Y`e

ι2

]

(L+ Y)re
def

=

[
Lre

ι1
, Yre

ι2

]

Where ι1 : Ls → Ls + Ys and ι2 : Ys → Ls + Ys are the injections of the co-product

Here we need to be careful, the sum is not a co-product in the category of graphical languages
however we do have a proper co-product in the category of props.

In practice, the resulting graphical language has for generator the disjoint union of both sets
of generators and for equations the disjoint union of both sets of equations.

32

1.3. Graphical languages

Proposition 4.
•

(L+ Y) '
•
L +

•
Y

Proof. Since co-products commute with co-equalizers and F preserves co-products, we have the
following co-equalizer:

F (Lne + Yne) F (Ls + Ys) •
L +

•
Y

+
Yπ

Lπ

L`e

Y`e

+

Lre

Yre

+

The injections of F (Ls + Ys) are Fι1 and Fι2 so:

L`e

Y`e

+ =

()
◦ F

([
L`e

ι1
, Y`e

ι2

])

Lre

Yre

+ =

()
◦ F

([
Lre

ι1
, Yre

ι2

])

•
(L+ Y) and

•
L +

•
Y are then co-equalizers of the same maps and then:

•
(L+ Y) '

•
L +

•
Y .

De�nition 19 (Quotients). The quotient of a graphical languages L by a family of equations E

over Ls is de�ned as
(L /E

)
s

def

= Ls,
(L /E

)n
e

def

= Lne + En and:

(L /E
)`
e

def

=

[
L`e

,
E`

] (L /E
)r
e

def

=

[
Lre

,
Er

]

In practice, quotienting amounts to add new equations to a graphical language. This corre-
sponds to a co-equalizer of props.

Proposition 5. FEn
•
L

•
L /E

E`e
Lπ

Ere
Lπ

π

is a co-equalizer in C-Prop.

Proof. We use the following diagram:

33

Chapter 1. Props and Graphical Languages

F (Lne + En)

FLne

FEn FLs

FLs

FLs

•
L /E

P
•
L

E`e

Lπ

Ere

Lre

Lre

π

L /E π

f

g
ι1

ι2

L /E
r
e

L /E
`
e

By de�nition of
(L /E

)`
e
and

(L /E
)r
e
, the lower left rectangle commutes. Then the universal

property of
•
L gives us a unique π :

•
L →

•
L /E making the right square commutes. Now the

fact that the right and upper left rectangles commute ensures us that π behaves as expected.

It remains to show the universal property. Let f :
•
L → P be a prop morphism satisfying

the co-equalizer property. Using the commutativity of the two left rectangles and the universal
property of the co-product we see that f also satis�es the universal property of the co-equalizer
•
L /E . So there is a unique prop morphism g :

•
L /E → P making the right triangle commute.

With this notation it follows that for any graphical language L we have L = Ls
/
Le .

By de�nition, we have Σ
/

(E +R) =
(
Σ /E

)
/R . Furthermore, given a sum of signatures

Σ + Γ, any family of equation over Σ can be canonically extended to a family of equation over
the signature Σ + Γ by setting:

E`ι

def

= E`

ι1
and Erι

def

= Er

ι1

We often simply denote E′ as E when the signature is given by the context. Then we have(
Σ /E

)
+Γ = (Σ + Γ) /E . This allows easy algebraic manipulation on graphical languages with-

out the need to come back to categorical universal algebra. As an example, the axiomatisation
of the sum of two graphical languages is:

L+ Y = Ls
/
Le + Ys

/
Ye =

(
Ls + Ys

/
Ye
) /
Le = (Ls + Ys)

/
Ye
/
Le = (Ls + Ys)

/
(Ye + Le)

Example 6. Coming back a last time to our running example of commutative monoids, we have:

M = { , }
/{

= , = = , =
}

From now on I will mainly use those notations and come back to the categorical formalism
only when it can't be avoided.

34

Chapter 2

Computer Scientist's Quantum

Mechanics

Mit dem Geschirrwaschen ist es doch genau wie mit
der Sprache [der Physik]: Wir haben schmutziges
Spülwasser und schmutzige Küchentücher, und doch
gelingt es, damit die Teller und Gläser schlieÿlich
sauberzumachen.

Niels Bohr, quoted by Werner Heisenberg [44].

Quantum mechanics has a weird status among physical theories. It has been tested many
times with a remarkable amount of precision and it can't be questioned that it is an excellent
description of reality. But at the same time its foundations are permanently discussed and more
than a century after its introduction there is still no consensus on a preferred way to interpret the
mathematical theory, or even if such an interpretation is necessary or not. I will not explicitly
take any position here, even if Categorical Quantum Mechanics, the original research program
to which this work is a small contribution, is clearly not neutral in such debates.

I will only introduce the part of quantum mechanics relevant to present the work in this
thesis. Clearly, this chapter is more an exposition of the point of view and notations I will adopt
than a real introduction to the subject. Everything will be �nite-dimensional and dynamics will
only be considered through discrete jumps. Our object of study is also completely abstract. I
manipulate qubits without any consideration for their physical implementations. So there is no
Hamiltonian, no Schroedinger equation, no spins, no particles nor �elds in this chapter. Be either
reassured or disappointed.

2.1 Basics

In this section, I will introduce the basic notions of quantum mechanics through the example
of a computer. I will stay evasive on purpose on the exact kind of computational model I have
in mind since it doesn't matter. The main point is to consider a physical system evolving in
a discrete-time. I choose for pedagogical reasons to introduce the desired notions step by step
through the deterministic, probabilistic, and �nally quantum case. If this makes sense from the
mathematical point of view, it is completely wrong when it comes to physics. Deterministic and

1The language of physics is like dish washing: we have dirty rinsing water and dirty kitchen towels, and yet

we manage to clean the plates and glasses.

35

Chapter 2. Computer Scientist's Quantum Mechanics

probabilistic computation are not special cases of the pure quantum mechanics presented here.
This can only be said of mixed state quantum mechanics that will be introduced later in Chapter
7.

2.1.1 Deterministic computation

Let's consider a deterministic computer A. It has an initial state and when started it evolves
through discrete steps. At a given tick t, the �nite set of possible states of A is denoted Xt. This
state can be completely described by a collection of bits. I denote 2 the two-element set {0, 1}.
A state of A at tick t can then be seen as an elements of 2nt where nt ∈ N is large enough such
that A at tick t can be described by nt bits, that is log2(|Xt|) ≤ nt.

De�nition 20 (Deterministic state). A deterministic state of size n is a binary word denoted
|x〉 with x ∈ 2n.

It is not possible to know the exact dynamic of A without additional information. However,
in general the evolution of A between tick t and t+ 1 will correspond to a function f : 2n → 2m

where n is large enough to describe A at tick t and m ∈ N is large enough to describe A at tick
t + 1. Moreover, given any function f : 2n → 2m, nothing prevent us to build a machine that
being in state |x〉 at tick t, is in state |f(x)〉 at tick t + 1. Thus, all functions f : 2n → 2m are
admissible dynamics.

De�nition 21 (Deterministic computation). A deterministic computation is a function f :
2n → 2m.

It might seem odd to reduce everything to bits but doing this allows us to make everything
as simple as possible and to consider a well-behaved prop. Furthermore, this is what is usually
done in quantum computing. Such functions can be represented as matrices inM2m×2n(2) which
have exactly one 1 in each column matching each possible inputs to a unique output. We call
such matrices deterministic. The composition of matrices then corresponds to the composition
of functions. A state is then a column matrix with 2n row with exactly one 1 indicating which
of all possibilities the state corresponds to. In particular, we have:

|0〉 def

=

(
1
0

)
and |1〉 def

=

(
0
1

)
.

Given two such computers A and B, they can be seen as one big computational system
A×B by taking the Cartesian product of the states and the Cartesian product of the transition
functions. Note that the number of bits necessary to describe the composed system is obtained
by addition. In fact, 2n × 2m = 2n+m. An important point to state here is that to describe a
compound system, it is enough to give the states of the components separately. This obvious
fact is not true in the non-deterministic setting. Those constructions can be gathered in a prop.

De�nition 22 (Det). Det is the monochromatic prop whose arrows n→ m are the determin-
istic matrices inM2m×2n(2), i.e., the matrices with exactly one 1 in each column. Composition
is given by the matrix product and tensor product by the Kronecker product.

The Kronecker product M ⊗ N ∈ M2c+d×2a+b(2) of two matrices M ∈ M2c×2a(2) and
N ∈ M2d×2b(2), is de�ned by (M ⊗N)i,k,j,` = Mi,jNk,`. Deterministic states are arrows 0→ n
in Det.

36

2.1. Basics

2.1.2 Probabilistic computation

Now we allow probabilistic behaviours. For example, the computer can toss a coin and then store
the result in the memory. Then the computer will be described by probabilistic bits which can be
written as formal convex sums p0 |0〉+ p1 |1〉, where p0 and p1 are respectively the probability to
observe the deterministic state |0〉 and |1〉. By de�nition p0 +p1 = 1. The state of a probabilistic
computer is then an element of the convex hull of 2n for a large enough integer n.

De�nition 23 (Probabilistic state). A probabilistic state of size n is a convex sum
∑
x∈2n

px |x〉

with px ∈ [0, 1] and
∑
x∈2n

px = 1.

Looking at the dynamic, this time, we cannot allow any functions between the convex hulls.
We need to restrict to functions mapping convex sums to convex sums. Probabilistic states can
be represented by column vectors whose coe�cients are in [0, 1] and sums to 1. Probabilistic
computation then corresponds to stochastic matrices.

De�nition 24 (Probabilistic computation). A Probabilistic computation is a stochastic

matrix inM2m×2n([0, 1]), i.e., a matrix such that each column sums to 1.

Each coe�cient gives the conditional probability to obtain a deterministic state starting from
another deterministic state. In the same idea, probabilistic states are column stochastic matrices
describing a probability distribution over the deterministic states.

The case of composite probabilistic systems is more subtle than the deterministic one. In
fact, the correct state space of A × B is not the Cartesian product of the state spaces of A
and B, but the convex hull of this Cartesian product. This implies that some composite states
contain correlations that cannot be expressed by a state of A and a state of B. If there are no
correlations between two systems the composite dynamic is obtained by taking the Kronecker
product of the corresponding stochastic matrices.

This de�ne a prop Sto whose objects are integers and arrows n→ m are stochastic matrices
inM2m×2n([0, 1]).

De�nition 25 (Sto). Sto is the monochromatic prop whose arrows n → m are the stochastic
matrices inM2m×2n(2), i.e., the matrices whose column sum to 1. Composition is given by the
matrix product and tensor product by the Kronecker product.

Since deterministic matrices are stochastic, Det is a sub-prop of Sto. If the state of the
computer is probabilistic, in real life, we only have access to one outcome of the distribution
with a given probability. This is another clear di�erence with the deterministic case. We have
to take into account a procedure to extract results, the information stored in the coe�cients is
not directly accessible.

2.1.3 Quantum computation

A �rst approach is to see quantum computers as more complicated probabilistic ones. A quantum
state is still given by a formal sum of deterministic states, but this time, with complex coe�cients.
Furthermore, two quantum states are considered physically equivalent if there are equal up to
multiplication by a complex number. Formally, a qubit, the quantum equivalent of a bit, has
state space the complex projective space CP1, i.e., the set of complex lines in the two-dimensional
complex space. In practice, given such a complex line we choose a normed directing vector. Let
|0〉 and |1〉 be a basis of C2 representing the deterministic states, the computational basis. A

37

Chapter 2. Computer Scientist's Quantum Mechanics

qubit can be written a |0〉 + b |1〉, where a, b ∈ C such that |a|2 + |b|2 = 1, the coe�cient a and
b are called amplitudes. We say that the qubit is a superposition of |0〉 and |1〉. We end up
with vectors that look likes generalized probability distributions. As for a real line, the choice of
a directing vector is not unique, it is up to a phase, i.e., a modulus one complex number. We
must always remember that a normed complex vector describes a quantum state only up to a
global phase.

De�nition 26 (Quantum state). A Quantum state of size n is a formal sum
∑
x∈2n

ax |x〉 with

ax ∈ C and
∑
x∈2n

|ax|2 = 1. Furthermore two quantum states |φ〉 and |ψ〉 are equivalent if there

is ω ∈ C such that |φ〉 = ω |ψ〉.

When it comes to composite systems, we are in a similar situation as for probabilistic states.
Given two systems A and B described by vectors in C2n and C2m , the composite system is
described by vectors in the tensor product C2n ⊗ C2m = C2n+m . As in the probabilistic case,
we have separated states, that can be written as the tensor product of smaller states, but also
entangled states, which cannot be factorized. An example of entangled state is the Bell state

1√
2
|00〉+ 1√

2
|11〉.

Like in the probabilistic case we don't have access directly to a quantum state we need to
measure it. When we measure a quantum state it collapses to the deterministic state |x〉 with
probability |ax|. This is called the Born rule. So the dynamic is given by norm preserving
linear maps able to preserve those probabilities. C2n has a Hermitian scalar product de�ned in
such a way that the |x〉 form an orthonormal basis. The scalar product is denoted 〈φ|ψ〉. The

dagger of a matrix M is de�ned as M †
def

= M
t
, we take the complex conjugate of the coe�cients

of the transpose. The dagger of |φ〉 is denoted 〈φ| def= |φ〉†.

De�nition 27 (Quantum computation). A quantum computation is an isometry inM2m×2n(C),
i.e., a matrix V satisfying V †V = I.

This allows to de�ne a prop of quantum computation.

De�nition 28 (The prop Qub). Qub is the monochromatic prop whose arrows n→ m are the
isometries inM2m×2n(C). Composition is given by the matrix product and tensor product by the
Kronecker product.

Det is not a sub-prop of Qub since some deterministic maps are not injective and hence not
isometries. However, the reversible matrices in Det are in Qub. Sto is also not a sub-prop of
Qub for similar reason. But this time even the reversible matrices in Sto are not in Qub since
the square of the coe�cient in the columns of a stochastic matrix usually sums to strictly less
than 1. One could think about taking the square roots of the coe�cients in Sto to match the
Born rule, but this is not functorial. De�nitely, stochastic maps are very di�erent from quantum
ones.

Now that we have introduced the mathematics of basic quantum mechanics it's time to say
how seeing quantum systems as generalized probabilistic ones is misleading. In the probabilistic
case, the di�erence between probabilistic and deterministic states is clear. Probabilistic states
represent uncertainty but there are no doubts that only the deterministic states correspond
to physical reality. This is not the case in quantum mechanics, being a superposition only
makes sense with respect to an arbitrarily chosen basis. For example, some polarizations of a
photon are superpositions of others. However, we cannot say that some polarizations are more
fundamental or real than others. In our case, the illusion of similarity comes from the �xed

38

2.2. The Bloch sphere

computational basis, but another choice of basis would have described the same process. This
choice of basis only matters when it comes to measurements. Indeed, we presented the Born rule
in the computational basis. In general, given an observable state |φ〉, the probability to observe
the quantum state |ψ〉 in state |φ〉 is | 〈ψ|φ〉 |.

We see here more clearly why numerous phenomena, like entanglement or non-cloning, con-
sidered as counterintuitive in the quantum case are accepted by everyone in the probabilistic case.
Convex sums are almost universally considered as non-physical while the ontology of quantum
states is still a highly discussed topic.

2.2 The Bloch sphere

In this section, we will study more closely the mathematical structure of qubits. Qubits admit a
nice visualisation: the Bloch sphere.

2.2.1 From unitaries to rotations

Quantum computations are modeled by unitaries. Studying one qubit computation amounts to
study the group U(2) of 2 × 2 complex matrices satisfying U †U = UU † = I. Note that U(1) is
the group of modulus one complex numbers. There is a close link between U(2) and the group
SO(3) of rotations in R3. The determinant of a unitary is always of modulus 1 and any unitary
can be written:

U = e
iα
2 S with det(U) = eiα and S ∈ SU(2), the subgroup of U(2) with S = 1.

This decomposition is not unique, there are exactly two possibilities: U = e
iα
2 S and U =

−e
iα
2 (−S). Any matrix S ∈ SU(2) is of the form:

S =

(
z −w
w z

)
with z, w ∈ C such that |z|2 + |w|2 = 1.

From this �rst form can be deduced another one by introducing the Pauli matrices:

I
def

=

(
1 0
0 1

)
X

def

=

(
0 1
1 0

)
Y

def

=

(
0 −i
i 0

)
Z

def

=

(
1 0
0 −1

)
Setting z = a+ id and w = b− ic we get:

S = aI + biX + ciY + diZ with a, b, c, d ∈ R such that a2 + b2 + c2 + d2 = 1.

There is a unique θ ∈ [0, 2π[such that a = cos(θ2) and sin(θ2)2 = b2 + c2 + d2. So any unitary
U ∈ U(2) can be written:

U = eiα
(
cos(θ2)I + | sin(θ2)| (nxX + nyY + nzZ)

)
with |nx|2 + |ny|2 + |nz|2 = 1.

Indeed, If sin(θ2) 6= 0 then we take nx = b
| sin(θ

2
)| , ny = c

| sin(θ)| and nz = d
| sin(θ)| . Else if

sin(θ2) = 0 any unit vector −→n = (nx, ny, nz) works.
This decomposition allows to map any unitary to a couple (θ,−→n) where θ ∈ [0, 2π[and

−→n ∈ R3 with ||−→n || = 1. This correspond to a rotation of angle θ around the axis directed by
−→n . In fact this map is a group morphism R : U 7→ RU . This mapping is not one to one, if we

39

Chapter 2. Computer Scientist's Quantum Mechanics

look at the antecedent of the identity rotation we �nd exactly the matrices eiαI. So this map

provides a group isomorphism U(2)
/
U(1) ' SO(3).

The decomposition into Pauli matrices gives us a direct way to see unitaries as rotations. All
Pauli matrices correspond to rotations of angle θ = π around the corresponding axis. Also, all
diagonal unitaries are of the form aI + biZ and then, correspond to rotations around the Z axis.

2.2.2 From quantum states to the sphere

We can now describe the Bloch sphere. We represent each unit vector of C2 by a point on the
unit sphere of R3. By convention, we set |0〉 to be represented by the north pole of the sphere
with coordinates (0, 0, 1). For any state |x〉 if there is a unitary U such that |x〉 = U |0〉, we want
to represent |x〉 by the point RU (0, 0, 1) on the sphere. We will need the following fact:

RU (0, 0, 1) = RU ′(0, 0, 1) ⇔ U †U ′ is diagonal.

Indeed since R is a group morphism RU†U ′(0, 0, 1) = (0, 0, 1). So RU†U ′ is a rotation around
the Z axis and hence U †U ′ is diagonal.

Now let's show that our mapping on unit vector is well de�ned. Given two unitaries U and
U ′ such that |x〉 = U |0〉 and |x〉 = U ′ |0〉 we get U †U ′ |0〉 = |0〉 so U †U ′ is diagonal and then
RU (0, 0, 1) = RU ′(0, 0, 1). If two unit vector |x〉 and |y〉 have the same image on the sphere then
there are two unitaries such that |x〉 = U |0〉 and |y〉 = U ′ |0〉. Furthermore U †U ′ is diagonal
hence U ′U † is diagonal. But |y〉 = U ′U † |x〉 so there is α ∈ R such that |y〉 = eiα |x〉. This gives
us a one-to-one mapping CP1 → S2. Each quantum state corresponds to a unique point on the
sphere.

A direct formula can be given. Given a unit vector |x〉 = z |0〉+ w |1〉, up to a global phase

we can assume that z ∈ R and write |x〉 = cos(θ2) |0〉+ sin(θ2)eiα |1〉. Setting Ux
def

=

(
z −w
w z

)
we

have |x〉 = Ux |0〉 and Ux = cos(θ2)I + | sin(θ2)| (cos(φ)X + sin(φ)Y). The corresponding rotation
RUx is of angle θ around an axis in the plan XY directed by the angle φ. The corresponding
point has then coordinates (cos(θ), sin(θ) cos(φ), sin(θ) sin(φ)). Any point of the sphere can be
reached from |0〉 by one and only one such rotation giving us a perfect correspondence between
CP1 and S2.

|0〉

|1〉

|+〉|−〉

Bloch sphere

The poles are reached by |0〉 and |1〉. The intersections of the sphere with the X axis are

reached by the vectors of the diagonal basis: |+〉 def

= 1√
2
|0〉+ 1√

2
|1〉 and |−〉 def

= 1√
2
|0〉 − 1√

2
|1〉.

40

2.2. The Bloch sphere

2.2.3 Noticeable unitaries and the corresponding rotations

We now introduce the most common unitaries. We already noted that Pauli matrices are uni-
taries. X,Y and Z correspond respectively to rotations of angle π around the X, Y and Z axis.

In general we de�ne the phase-shift gates: Z(θ)
def

=

(
1 0
0 eiθ

)
. They correspond to rotations of

angle θ around the Z axis.

|0〉

|1〉

|+〉|−〉

Rotation around the Z axis

θ

|0〉

|1〉

|+〉|−〉

Rotation around the X axis

θ

Rotations around the X axis are reached by the gates X(θ)
def

= 1
2

(
1 + eiθ 1− eiθ
1− eiθ 1 + eiθ

)
.

Another common unitary is the Hadamard gate H
def

= 1√
2

(
1 1
1 −1

)
. The Hadamard gate is

of the form H = −i
(

1√
2
iX + 1√

2
iZ
)
. It then corresponds to a rotation of angle π around the

diagonal axis in the XZ plane. This rotation maps the Z axis to the X axis and vice versa. This
is coherent with the fact that H |0〉 = |+〉 and H |1〉 = |−〉. The π angle is compatible with the
fact that H2 = I.

|0〉

|1〉

|+〉|−〉

π

Rotation corresponding to H

The Hadamard gates exchanges the Z and X axis. In fact we have HZ(θ)H = X(θ). In
practice I will not use the rotations around the Y axis, but those can be recovered de�ning
Y (θ) = X(π2)Z(θ)X(−π2).

From now on we will simplify the model and do not discuss anymore the subtlety of projective
spaces. I will call qubit a unit vector in C2 and consider the Bloch sphere as a useful way to gain
intuition about U(2). Of course, we will keep in mind that when it comes to physics, the global
phases don't matter.

41

Chapter 2. Computer Scientist's Quantum Mechanics

2.3 Quantum circuits

We've seen that for one qubit quantum computation, the Bloch sphere allows us to intuitively
grasps what is the e�ect of a computation. However, when considering more than one qubits no
such visualizations are available. At least, not in dimensions normal human's brains are used
to. To understand bigger unitaries we decompose them into elementary ones and display this
decomposition graphically in the form of quantum circuits.

2.3.1 De�nition

It is time to introduce our �rst quantum graphical language. To be honest, more than a graphical
language, quantum circuits are just string diagrams representing Qub. Thus the graphical
language Circ has for generators all isometries and for equations every equation that holds in

Qub. We have:
•

Circ ' Qub. The corresponding string diagrams are called quantum circuits

and the boxes quantum gates.

V

The quantum gate corresponding to the isometry V

We denote J_K :
•

Circ → Qub the prop morphism that associates to each quantum gate
n→ m the corresponding unitary matrix.

Since unit vectors are isometries 0→ 1 any qubit can also be represented in Circ:

|φ〉

Diagramatic representation of the state φ

The arrows n → m in Qub always satisfy n ≤ m. Arrows 0 → 0 corresponds to phases.
Usually, quantum circuits are used to represent unitaries. In fact, any isometry can be seen as
a unitary in which states have been plugged in some inputs. So we can see Circ as the unitary
quantum circuits together with preparation of qubits states. In fact, allowing only preparations
of |0〉 is enough.

U
|φ〉

An isometry built from a unitary and a prepared state

The question of the possibility of designing a compact graphical language axiomatizing Qub,
with few generators and equations, remains open as I write this thesis. This question is important.
In fact, one big advantage of the circuit representation against the matrices is the size. Describing
unitaries requires an exponential number of coe�cients, 22n if it acts on n-qubits. However, in
practice, we use very speci�c kinds of unitaries, and then one can hope that not all this complexity

42

2.3. Quantum circuits

is required to describe those computations. That is, we can sometimes use polynomial circuits
to represent exponentially huge matrices. The problem is then to rewrite circuits e�ciently.
The application is mainly the simulation of unitary evolutions and the compilation of quantum
programming languages. Those considerations have led numerous people to look for an interesting
set of basic gates. The choice of a set of basic gates depends on di�erent parameters. Clearly, we
want them to be expressive enough, we say that a set of gates is universal if any unitary can
be built from the basic set of gates. Universality is, of course, a very strong property, in practice
we can allow the weaker approximate universality, meaning that we can always build, from
the basic gates, unitaries that are arbitrary close, for the usual distance, to any target unitary.
I will provide examples later.

Finally, a last factor is the physical realizability of such gates. This is extremely dependant
on the exact physical hardware we aim for and is not really the subject of this thesis. Thus
the choice of a particular set of gates is here mostly motivated by mathematical reasons. For
example, the swap gate will play a prominent role here because it is fundamental in the de�nition
of props. However, in practice, the swap gate is di�cult to implement on most physical hardware
and is usually obtained by combining other gates with more obvious physical implementation.

2.3.2 One qubit gates

A lot has already been said in the previous section about one-qubit gates and their relations to
rotations of the Bloch sphere. Here I will focus on rewriting rules between them. Most of those
rules follow directly from the Bloch sphere point of view. In circuits the phase-shift gates are
denoted:

Z(θ) X(θ)

First, the phase shift gates around the same axis combine by adding their angles as expected
from rotations.

Z(α) Z(β) Z(α+ β)=

If θ ≡ π[2π] we omit the angle and just write X and Z which are exactly the Pauli gates. The
X gate is also called the Not gate since X |x〉 = |∧x〉. The Not gate has interesting interactions
with Z phase gates given by the π commutation rule:

X Z(θ) = XZ(−θ)
eiθ

Here we used a �oating scalar eiθ to represent 0→ 0 unitaries. We see that Z does not treat
|0〉 and |1〉 symmetrically. |0〉 is strictly preserved while |1〉 is only preserved up to a −1 phase
that must be compensated in the commutation rule.

The Hadamard gate, H, is denoted:

H H H =

As we have seen, it as for e�ect to exchange the Z and X axis so it naturally translates Z
phase gates into X phase gates:

H= Z(θ)HX(θ)

43

Chapter 2. Computer Scientist's Quantum Mechanics

The H gate can be expressed from phase shifts:

X(π2)Z(π2)H = X(π2)

More generally, any one-qubit unitary can be obtained from phase shifts gates. This corre-
sponds to the decomposition of rotations into Euler angles:

X(γ)Z(β)U = X(α)
eiθ

From what we said above it follows that {H,Z(θ), eiθI}, where θ can take all values in [0, 2π[,
is a universal set of gates for one qubit unitaries. It is only approximately universal if we only
allow θ to be of the form kπ

4 . The gate Z(π4) is called the T gate. The set obtained from this
set of gates is called the Cli�ord+T fragment. The not universal nor approximately universal
Cli�ord fragment corresponds to values of θ of the form kπ

2 .
We see also that we can obtain a complete graphical language for one-qubit unitaries if we

manage to explain how decomposition into Euler angles can be composed. This is done via the
Euler rule:

X(β3)Z(β2)= X(β1)Z(α3)X(α2)Z(α1)
eiγ

Where: x+ def

= α1+α3
2 , x−

def

= x+−α3, z
def

= cos(α2
2) cos(x+)+i sin(α2

2) cos(x−), z′
def

= cos(α2
2) sin(x+)−

i sin(α2
2) sin(x−), β1

def

= arg(z) + arg(z′), β2
def

= 2 arg(i + | zz′ |), β3
def

= arg(z) − arg(z′) and γ =

x+ − arg(z) + π−β2
2 .

This provides a complete and universal graphical language for the one-qubit fragment of
Qub. Obtaining such a set of rules for multi-qubit gates is more di�cult.

2.3.3 Multi qubit gates

Now we move to gates acting on more than one qubits. The �rst obvious example is the swap
gates de�ned as SWAP |x〉 |y〉 = |y〉 |x〉 and usually depicted:

However in direct connection with the prop formalism, since the SWAP gate makes Qub a
prop, I will prefer the crossing notation that we saw before.

It is also common in the circuit community anyway. This gate satis�es what is expected of
a symmetry map:

= =U
... U...

A very common family of multi qubits gates are the controlled gates. Given a unitary
U the controlled gate CU is de�ned by CU |0x〉 def

= |0〉 |x〉 and CU |1x〉 def

= |0〉U |x〉. They are
depicted as:

44

2.3. Quantum circuits

U

And we have CU =

(
I

U

)
.

Famous gates like the CNot, CZ, Friedkin, or To�oli gates are in this family and correspond
respectively to controlling the X, Z, swap, and CNot gates.

CZ CNot Fredkin To�oloi

The most common of them remains the CNot gate acting as CNot |x〉 |y〉 = |x〉 |x⊕ y〉. It is
an involution:

=

The CNot has interesting interactions with phase shifts:

=
Z(θ)

X(θ)

Z(θ)

X(θ)
=

Using swaps we can also de�ne the upside-down CNot which can also be obtained using
Hadamard gates:

= =
H

HH

H

The following identity is very important, it that will appear numerous times in this thesis in
various forms:

=

A good surprise is that adding the CNot gate to any universal set of gates for one qubit
unitaries is enough to scale universality to multi-qubit gates. However, �nding a nice set of
equations to obtain a complete graphical language for Lin is a very di�cult question that is
still open. Quantum circuits remain the most common way to represent quantum computation.
They can be found in any introduction to quantum computing like [45] and [46]. This is also
the language used in most modern quantum computing papers. However, we will see in the next
chapter that there is now more competition in the world of quantum graphical languages.

45

Chapter 2. Computer Scientist's Quantum Mechanics

46

Chapter 3

ZX-calculus

�What's that? You want to know if Anansi looked
like a spider? Sure he did, except when he looked
like a man. No, he never changed his shape. It's
just a matter of how you tell the story. That's all.�

Neil Gaiman, Anansi Boys

The ZX-calculus can be summarized very quickly (and of course a little bit erroneously) as an
extension of quantum circuits to linear but possibly non-unitary maps. More precisely, quantum
circuits are interpreted as isometry and ZX diagrams as linear maps. Thus any quantum circuit
corresponds to a ZX diagram but the converse does not hold. At �rst, such extension appears
to be a mathematical curiosity that drives us away from physical reality. I must admit this is
indeed partially true, even if seeing diagrams as computation in an un-normalized post-selected
model of quantum mechanics can give us back some physical intuition on this matter.

However, this extension to linear maps has also several advantages. The most obvious one
follows for the recent achievement of completeness results for the ZX calculus, see [47] for a more
detailed history. If we do not know any complete set of rules for circuits with respect to unitaries
we do for ZX calculus with respect to linear maps. It has since then become a fashionable sport
to take a quantum circuit, translate it into ZX-calculus, use the �exibility of the ZX rules to
rewrite it and then, apply a lot of clever tricks to �nd our way back to quantum circuits. Such
methods have led to very competitive inputs in the race for quantum circuit simpli�cation [48].
Another advantage is the nice topological behaviour of ZX diagrams, they can be represented by
graphs and then be manipulated by graphical proof assistants [49]. Finally being more �exible
than circuits allows numerous applications to post-selected processes [50],[51].

In this chapter, I will present various aspects of the calculus and will only formally de�ne the
exact graphical language at the end.

3.1 Spiders

The main building blocks of ZX calculus are the green and red spiders.

3.1.1 Frobenius algebra

What I call Frobenius algebra in this thesis are in fact commutative Frobenius algebras. There
exist also non-commutative Frobenius algebras but they will not appear in this thesis. We start
by de�ning the following monochromatic graphical language.

47

Chapter 3. ZX-calculus

The language F of Frobenius algebras.

Generators Fs

Equations Fe

= = = =

==

= == =

Note that this language can also be de�ned from the language of monoids introduced in
Chapter 1 as:

F = {M + Mop}
/{

==
}

Where Mop is the the same as M where all generators and equation are mirrored. We also
de�ne special Frobenius algebras:

SF def

= F
/
{ = }

De�nition 29 (Frobenius algebra). We say that a monochromatic prop P has a Frobenius

algebra when there is a monochromatic prop morphism
•
F → P.

In ZX calculus we will use two Frobenius algebras, denoted by the colours green and red.
Like all generators of ZX calculus, those Frobenius algebras have interpretation in the prop of
linear maps.

De�nition 30 (Lin). The monochromatic prop Lin has for maps n → m the matrices in
M2m×2n(C). Composition is the matrix product and the tensor is the Kronecker product.

There is no canonical choice for the interpretation of ZX, but di�erent possibilities that
are usually similar up to normalizing scalars. In this thesis I will use the well tempered
normalization from [52].

J K def

= 4
√

2

(
1
0

)
J K def

= 1
4√2

(
1 0 0 1
0 1 1 0

)
J K def

= 4
√

2
(
1 0

)
J K def

= 1
4√2


1 0
0 1
0 1
1 0



J K def

= 1
4√2

(
1
1

)
J K def

= 4
√

2

(
1 0 0 0
0 0 0 1

)
J K def

= 1
4√2

(
1 1

)
J K def

= 4
√

2


1 0
0 0
0 0
0 1


48

3.1. Spiders

With this interpretation we have:

= J K =
√

2

Those Frobenius algebras are not special. Each time we want to remove a loop we need a
scalar.

= =

With Frobenius algebras, we can use vertical wires that should not exist in string diagrams.
However here the rules of ZX calculus allows to write such wires without ambiguity, in fact:

=def

=

Frobenius algebras enjoy a very nice graphical calculus.

3.1.2 Spider theorem

Given a Frobenius algebra, we will de�ne a family of maps called spiders.

De�nition 31 (Spiders). The spiders sn,m : n→ m, with n,m ∈ N, are de�ne inductively as:

s0,0 = s0,1 s1,0

s1,1 s2,1s1,2

= =

= = =

sn,m+1 = sn+1,m=

In general we write:

sn,m =

There are in fact numerous ways to inductively de�ne sn,m, however, the equations de�ning
Frobenius algebras ensure that all de�ne the same spider. With this de�nition:

def

= and def

= .

The main interest of spiders is that they admit a very nice composition rule called spider

fusion this is given by the spider theorem.

Theorem 2 (Spider theorem). Given a Frobenius algebra, the corresponding spiders composes
as follows:

=

... ...

... ...
... ...

Proof. See [53] for a distributive law approach and [17] for a graphical proof.

In the case of special Frobenius algebras the spider theorem can be extended:

49

Chapter 3. ZX-calculus

=
... ...

... ...
...

When it is required that there is at least one wire linking the two spiders. From now on,
since they will be ubiquitous in this thesis, I will use shortcut notations for Frobenius algebras:

{... ...} def

= { , , , }

and

{
... ...

... ...
... ...=

}
def

=


= , = = ,

== ,

= , ==

.

In the case of special Frobenius algebra I will use:{
... ...

... ...
... ...=...

}
def

=

{
... ...

... ...
... ...=

}
+ { = }.

So the corresponding graphical languages will be written:

F =
/{

... ...

... ...
... ...= , = , =

}
and

SF =
/{

... ...

... ...
... ...=... , = , =

}

3.1.3 Cups and caps

We now introduce symmetric compact structures.

The language S of symmetric compact structures.

Generators Ss

Equations Se

= = = =

The notion of symmetric compact structure allows to de�ne a corresponding notion of props.

50

3.1. Spiders

De�nition 32 (symmetric compact closed props). A prop P is symmetric compact closed if for

each colour c there is a prop morphism Fc :
•
S → P such that Fc(1) = c.

The name compact closed comes from other categorical points of view on this de�nition.
Symmetric compact structures allows to de�ne arrows 0→ n+ n and n+ n→ 0 by:

...

...

...

...

The transpose of an arrow is de�ne as:

f... ...

...

...

f t... ... =

We have (f t)t = f . This gives a monochromatic prop morphism _t : Pop → P. In ZX
calculus there is a compact structure with interpretation in Lin:

r z
def

=
∑

x∈2 |xx〉 =


1
0
0
1

 r z
def

=
∑

x∈2 〈xx| =
(
1 0 0 1

)

With this interpretation the transpose of diagrams corresponds to the transpose of matrices
in Lin, we have

q
f t

y
= JfKt.

Any Frobenius algebra directly provides a cup and a cap de�ned by:

They always satisfy the equations de�ning compact structures.

= = = =

There is an alternative de�nition of Frobenius algebras using compact structures that will be
used in Chapter 5.

Lemma 1 (alternative de�nition of F). We have:

F ' {M + S}
/{

=
}

Proof. We start with the alternative de�nition and will show how to recover the original one.
We de�ne:

def

=
def

=

By transposing everything we directly obtain the equations:

51

Chapter 3. ZX-calculus

= == =

It remains to show == . We only show one side, the other can be shown
symmetrically.

= = = =

= = =

Conversely setting:

= =

we have:

= = = =

Note that in ZX calculus both Frobenius algebras induce the same compact structures:

= == =

In particular, the canonical compact structure being equal to the compact structure induced
by the green Frobenius algebra we can bend the legs of green spiders. The same holds for red
spiders.

...=...=

Similar properties often referred to as the Only Topology Matters paradigm, will be
addressed in depth in Chapter 5.

3.2 Phases

Starting from a Frobenius algebra in a monochromatic prop we can de�ne a family of arrows
that interact nicely with spiders.

52

3.2. Phases

3.2.1 De�nition

Intuitively phases are invertible 1→ 1 arrows that can go through spiders:

De�nition 33. Phases A phase of a Frobenius algebra is an invertible arrow f : 1 → 1 such
that:

f
= f

f
=

This de�nition allows to introduce without ambiguity generalized spiders indexed by phases:

=α...
α

Those are the spiders that will occur in ZX calculus.

3.2.2 Phase groups

Phases always form a group. In fact, the composite of two phases is a phase, the identity
id1 : 1 → 1 is a phase and all phases are invertible and those inverse are also phases. Thus, in
any prop, when we have a Frobenius algebra we have an associated phase group G.

So we represent phases as spiders 1→ 1 indexed by elements of the phases group. The phase
group is Abelian.

=f g f g =
f

g
g

f
= f

g
= fg=

So we will use an additive notation for the phase group. This gives:

x y = x+ y

Note that given an invertible scalar, that is an invertible arrow s : 0 → 0 then s ⊗ id1 is a
phase. So the group of invertible scalars is always a subgroup of the phase group.

In ZX calculus up to invertible scalars the phase groups of the green and red Frobenius
algebras are both isomorphic to C∗. Phases have the following form:

J x K def

=

(
1 0
0 x

)
J x K def

= 1
2

(
1 + x 1− x
1− x 1 + x

)
However the ZX calculus does not use all those phases but only a subgroup isomorphic to U,

the group of modulus one complex numbers. The phases that will be used are of the form:

J α K def

=

(
1 0
0 eiα

)
J α K def

= 1
2

(
1 + eiα 1− eiα
1− eiα 1 + eiα

)
Then we can compose them by taking addition modulo 2π. And even extend this to spider

fusion:

=

α... ...

... ...
... ...

β

α+ β

Note that: 0 = = .

53

Chapter 3. ZX-calculus

3.2.3 Euler rule and Hadamard

ZX calculus contains two di�erent Frobenius algebras and then two families of phases. We can
go from red to green and back using the Hadamard gate which is denoted in ZX:

With J K def

= 1√
2

(
1 1
1 −1

)
. We have:

α... ... = α... ...

This provides a symmetry between red and green called colour swap, ensuring that given
any equation, we can obtain a second one by colour swapping, that is, exchanging red and green
in the diagram. The Hadamard gate is here a generator but we have already seen in Chapter 2
that it can in fact be obtained from the red and green phases.

= π
2

π
2

π
2

π π
4

Following the same road as in Chapter 2 this leads us to consider the Euler rule for ZX
calculus.

= β2β1 β3

π γ

α2α1 α3

Where: x+ def

= α1+α3
2 , x−

def

= x+−α3, z
def

= cos(α2
2) cos(x+)+i sin(α2

2) cos(x−), z′
def

= cos(α2
2) sin(x+)−

i sin(α2
2) sin(x−), β1

def

= arg(z) + arg(z′), β2
def

= 2 arg(i + | zz′ |), β3
def

= arg(z) − arg(z′) and γ =

x+ − arg(z) + π−β2
2 .

In fact, it has been shown in [54] that a more general rule encompassing the decomposition
of the Hadamard gate can be given, this is the one we will keep from now on:

= β2β1 β3

π γ

α1 α2

Where: x+ def

= α1+α2
2 , x−

def

= x+ − α2, z
def

= − sin(x+) + i cos(x−), z′
def

= cos(x+) − i sin(x−),

β1
def

= arg(z) + arg(z′), β2
def

= 2 arg(i+ | zz′ |), β3
def

= arg(z)− arg(z′) and γ = x+ − arg(z) + π−β2
2 .

Note what we have seen so far is already enough to provide a ZX calculus that is universal
and complete for one qubit unitaries. We will now enrich the calculus with multi-qubit gate
consideration that will need to the completeness result for Lin.

3.3 The calculus

Now that we understand the building blocks of ZX we make them interact.

54

3.3. The calculus

3.3.1 Interactions

The two Frobenius algebra of ZX have a very special relation called strong complementarity
and corresponding to the following equations:

= = =

From those equations we can deduce the following useful fact called the Hopf rule:

=

In ZX calculus the states of the computational basis are represented by red spiders up to a
normalization scalar.

Then the copy rule allows to see the green spider as a copying mechanism. This is not
contradictory with the no-cloning theorem, this copy can only duplicate the computational basis,
not arbitrary states. For example, it does not duplicate |+〉 that corresponds up to a scalar to a
green one-legged spider.

= =π
π

π
= 6=

The red spider is closely linked to the Xor gate, indeed:

= =
π

π

=
π

π =
π

π

From this, it follows that the CNot admits a very nice representation in ZX calculus.

= =

We again used vertical wires since here there is no ambiguity. This allows to give interpreta-
tions of the bi-algebra and Hopf rules. If we rotate the two rules see that the Hopf rule ensures
that the CNot is an involution and the bi-algebra rule corresponds to the identity relating swaps
and three CNots.

= = = =

Hopf rule Bi-algebra rule

3.3.2 Completeness

It is now time to formally give the generators and equations of ZX calculus.

The graphical language ZX.

55

Chapter 3. ZX-calculus

Generators ZXs

α... ... α... ...

Equations ZXe

= =

=

α... ...

... ...
... ...

β

α+ β α... ... = α... ...

= = =α

= β2β1 β3

π γ

α1 α2

x+ def

= α1+α2
2

x−
def

= x+ − α2

z
def

= − sin(x+) + i cos(x−)

z′
def

= cos(x+)− i sin(x−)

β1
def

= arg(z) + arg(z′)

β2
def

= 2 arg(i+ | zz′ |)
β3

def

= arg(z)− arg(z′)

γ = x+ − arg(z) + π−β2
2

All the rule that we have presented so far follow from these. We now sum up the interpreta-
tions we have given so far we have:

r
α... ...

z
def

= 2
n+m−2

4

(
|0〉n 〈0|m + eiα |1〉n 〈1|m

)
r

α... ...
z

def

= 2
2−n−m

4
∑

x∈2n+m

1+e
iα+i

(
n+m⊕
i=0

xi

)
2 |x1, ..., xn〉 〈xn+1, ..., xn+m|

J K def

= 1√
2

(
1 1
1 −1

) r z
def

=
∑
x,y∈2

|xy〉 〈yx|

r z
def

= |00〉+ |11〉
r z

def

= 〈00|+ 〈11|

With this interpretation, the set of rules is complete for Lin.

Theorem 3 (Completeness). Given two diagram D and D′ over the signature ZXs:

JDK = JD′K ⇔ ZXπ(D) = ZXπ(D′)

Proof. See [54]

So in theory we could completely replace matrices with diagrams. Of course, there is no
magic here. If we look to normal forms for ZX calculus like the one of [55], we end up seeing the
matrix appearing in the diagram. However, in some speci�c situations, ZX calculus has a clear
advantage over linear algebra.

56

3.3. The calculus

3.3.3 Variations

The ZX-calculus we presented here is only one among many variations.
First, one can change the normalisation, the scalars in the interpretation of generators. This

makes scalars appearing and disappearing in the rules. The well-tempered normalisation of [52]
I choose here has the advantage that the yellow box is really the Hadamard gate and does the
colour swap in a clean way. Furthermore, the CNot as a scalar free representation and copies,
bi-algebra, and Hopf rules do not add any scalars. However the two main drawbacks are that we
can't obtain the computational basis states without �oating scalars and the Frobenius algebras
are not special, we need to add a scalar to remove loops. I personally prefer this normalization
since it provides a direct connection with circuits and simpli�es the computation since copies
and bi-algebras are ubiquitous while loops are in my experience rare.

There are also alternative sets of rules that are complete. Most of them exist for historical
reasons since the power of the Euler rule was not discovered directly. See [47] for an history of
the completeness results. There are also variations of ZX adding new generators to simplify the
rules. This is the case of the ∆ZX of [56] which introduces the triangle:

J K def

=

(
1 1
0 1

)
Variations also exist while the whole phase group of the Frobenius algebra is used and not

only modulus-one complex numbers [57]. Even more exotic variations allow generalized phases
indexed by quaternions [58].

Finally, numerous calculi have been developed for fragments, that is calculi which are com-
plete and universal for subcategories of Lin like [59] or [12]. The set of rules can be simpler since
they were for most of them intermediary steps in the long road toward the completeness for Lin.

57

Chapter 3. ZX-calculus

58

Part II

Only Topology Matters

59

Chapter 4

Paradigms in graphical language design

You should not have a favourite weapon. To become
over-familiar with one weapon is as much a fault as
not knowing it su�ciently well. You should not
copy others, but use weapons which you can handle
properly.

Miyamoto Musashi in [60]

In this thesis, we choose as a de�nition of graphical language a prop presented by generators
and equations. But this de�nition is too general for some purposes. Graphical proof assistants
like Quantomatic [49] and PyZX [61] allow to manipulate graphical languages and can be used
to check or even automatically �nd graphical proofs. When the ∆ZX-calculus of [56] was imple-
mented in Quantomatic, the triangle generator, that we introduce in Chapter 3, was an obstacle.
In fact, both Quantomatic and PyZX consider the generators in string diagrams as vertices in
a graph, imposing equations on the triangle which are not true in ∆ZX-calculus. Here we see
clearly that arbitrary props presented by generators and equations were clearly not the de�nition
of graphical languages the developers of those softwares had in mind. In this chapter, we in-
troduce a notion of paradigm which allows to consider restricted families of graphical languages
without rebuilding from scratch the theory introduced in Chapter 1. A paradigm de�nes some
canonical generators and equations that are assumed to be true in any paradigmatic graphical
language. Those generators and equations are then considered as fundamental and will not ap-
pear explicitly in the de�nitions of graphical languages once it has been stated that we work in a
given paradigm. To provide a concrete example, monoids are semi-groups that always come with
an additional generator, the unit, and additional equations, the unit laws. We can see monoids as
a paradigm over semigroups and then work in the framework of monoids where the unit is always
implicitly there and satis�es the same implicit unit laws. This allows to simplify the presentation
of props by hierarchizing the equations and emphasizing the ones that really matter. Paradigms
also allow to organise in a unique framework di�erent approaches to graphical languages. The
paradigm corresponding to the graphical languages of Quantomatic and PyZX will be introduced
and studied in detail in Chapter 5. I expect the connection between paradigms and graphical
proof assistants softwares to be more general. In fact, a paradigm corresponds to a notion of
free paradigmatic prop. Characterizing those free paradigmatic props allows to design dedicated
data structures and algorithms for automatic rewriting.

61

Chapter 4. Paradigms in graphical language design

4.1 De�nition

The de�nition of paradigm relies heavily on the categorical framework of Chapter 1. The goal here
is to de�ne everything in such a way that the properties of props transfer nicely to paradigmatic
props. For the rest of this Chapter, we �x a set of colours C.

4.1.1 Paradigmatic generators

We want to promote some generators as more fundamental than the others.

De�nition 34 (Paradigmatic generators). We de�ne a signature ps gathering Paradigmatic
generators.

Since we want paradigmatic generators to be present in any paradigmatic graphical language
we will require that the signature of the paradigmatic graphical languages is of the form: Σ + ps
where Σ can be any signature. In practice, we will present paradigmatic generators as we present
any signature. Like in Chapter 1, we will use a running example, the Cartesian paradigm

denoted car.

Example 7. The paradigmatic generators of car are gathered in the signature:

cars
def

=
{

,
}

4.1.2 Paradigmatic equations

The de�nition of paradigmatic equations is more subtle since they are allowed to depend on some
generators.

De�nition 35. A family of paradigmatic equations is a tuple pe
def

= {pn, p`, pr} where pn :
C-Sig → C-Sig is a functor and p`, pr : pn ⇒ UF (_ + ps) are two natural transformations
de�ning for each signature Σ a family of equation p(Σ)e over the signature Σ + ps de�ned as:

p(Σ)ne
def

= pnΣ, p(Σ)`e
def

= p`Σ and p(Σ)re
def

= prΣ.

Lets look more closely at this de�nition. The signature Σ contains the non-paradigmatic gen-
erators. The paradigmatic equations involve at the same time paradigmatic and non-paradigmatic
generators so they must be over the signature Σ +ps. The functor pn : C-Sig→ C-Sig associate
to each signature Σ a set of names pΣn

e = pe(Σ) that will de�ne the paradigmatic equations.
It remains to de�ne the left and right hand side signature maps. This is done by the natural
transformations p` and pr whose components in Σ are of type p(Σ)ne → UF (Σ + ps).

Informally, we require the naturality of p` and pr to ensure that the paradigmatic equations
are de�ned uniformly from the signatures. Thus, two signatures with similar generators give
similar equations. We will see formally how this is working later when we will tackle the cate-
gorical framework. In practice, we present a family of paradigmatic equations in the same way
we present normal families of equations. The only di�erence is that explicit dependence in the
generators in Σ will appear.

Example 8. The paradigmatic family of equation care is de�ned as:

62

4.2. Paradigmatic graphical languages

care
def

=

= , == , =

∀x ∈ |Σ| :

=xn{ }m }n , =x
x

x

...

...
n{ n{

}m

}m

}m

}m


4.1.3 Paradigms

We can now de�ne properly what a paradigm is.

De�nition 36 (Paradigm). A paradigm p is a tuple p
def

= (ps, pe) where ps is a signature
gathering paradigmatic generators and pe is a paradigmatic family of equations over the signature
ps.

As for graphical language, in practice, we will not use the full categorical formalism but
informally present the paradigm.

Example 9 (Cartesian paradigm). The Cartesian paradigm car over monochromatic props
is presented as:

The Cartesian paradigm car

Paradigmatic generators cars

Paradigmatic equations care

= , == , =

∀x ∈ |Σ| :

=xn{ }m }n , =x
x

x

...

...
n{ n{

}m

}m

}m

}m

We will come back to this paradigm and discuss it more in-depth later in this chapter.

4.2 Paradigmatic graphical languages

We now focus on how paradigms allow us to de�ne paradigmatic graphical languages. We �x a
paradigm p.

63

Chapter 4. Paradigms in graphical language design

4.2.1 De�nition

De�nition 37 (Paradigmatic graphical language). A Paradigmatic graphical language is a
graphical language L of the form Ls = Σ + ps and Le = E + p(Σ)e where Σ is a signature and E
is a family of equations over the signature Σ + ps.

The category GLp of paradigmatic graphical languages is a subcategory of GL. The
objects are the paradigmatic graphical languages. The arrows are the translations of the form:[

α ,
ι2

]
: Σ + ps → UF (Σ′ + ps)

They map paradigmatic generators to paradigmatic generators. We have a faithful inclusion
functor · : GLp → GL. The category of paradigmatic props C-Propp is the image of GLp

by the functor
•· ◦ ·. It is a subcategory of C-Prop and the faithful inclusion functor is also

denoted · : C-Propp → C-Prop. We have a pull-back square ensuring the equation
•
L =

•
L :

C-Propp

•·

·

GLp GL

C-Prop

•·

·

4.2.2 The new F and U

We construct the following diagram that we will explain in details:

C-Prop

C-Sig

F p

Up

C-Propp

GLGLp

F

U

iip

·

a `

•· •··

Given a signature Σ we can construct the free paradigmatic graphical language over it
ip(Σ).

Lemma 2. There is a functor ip : C-Sig→ GLp de�ned by ip(Σ)
def

= (Σ + ps)
/
p(Σ)e and:

f 7→

[
ι1

f ,
ι2

]
.

Furthermore: εΣ′+Σp ◦ ip(α) = F (f + idps) = F (f) + idFps.

Proof. The functoriality of ip follows from the de�nition of paradigmatic equations by natural
transformations. The naturality enforces the soundness condition in the following diagram:

64

4.2. Paradigmatic graphical languages

FpnΣ

FpnΣ′ F (Σ′ + ps)
•

ip(Σ′)

ip(Σ′)π

F (Σ + ps)

p`
Σ′

pr
Σ′

p`Σ

prΣ

f f +

•
ip(Σ)

ip(Σ)π

We already noticed in Chapter 1 that
•· ◦ i = F . So we de�ne F p def

=
•· ◦ ip and Up def

= U ◦ ·.
F p sends a signature to the free paradigmatic prop. Up is a forgetful functor from paradigmatic
props to signatures.

4.2.3 The paradigmatic monadic adjunction

Our goal is now to show that F p and Up can be given the same status as F and U . That is, that
we have a monadic adjunction F p a Up. This will show that we can manipulate paradigmatic
graphical languages in the same way we manipulate graphical languages.

Theorem 4. F p a Up is a monadic adjunction.

Proof. We will use Beck's monadicity theorem to show that Up is monadic. See [32] for more
details. We need three conditions:

• Up is conservative. That is if Upf is an isomorphism then f is an isomorphism.

We have Up = U ◦ ·, U is monadic and then conservative so we just have to show that · is
conservative. Let f : P → Q be an arrow in Propp such that f is an isomorphism. So there is
an arrow f−1 in Prop such that f ◦ f−1 = idQ and f−1 ◦ f = idP . We need to show that f−1 is
in Propp.

We will come back to graphical languages and translations. By de�nition, there are two

paradigmatic graphical languages L,Y : GLp such that
•
L = P and

•
Y = Q, and a translation

α : L → Y such that
•
α = f . We construct β : Y → L in GLp such that

•
β = f−1. Taking a

section s of πL. We de�ne:

β
def

=

[
ι1

Yπ f−1 s ,
ι2

]
.

We now check the soundness condition. This will at the same time proves that β is a well

de�ned translation and that
•
β = f−1. We have:

β
Lπ

ι1
ι1

Yπ f−1 s Lπ
ι1

Yπ f−1 s Lπ
ι1

Yπ f−1= = =

and

65

Chapter 4. Paradigms in graphical language design

β
Lπ

ι2
= = f f−1

ι2 ι2Lπ
Lπ =

ι2
Lπ =

ι2 ι2 ι2
Yπ

Yπ
Yπ

f−1

f−1

f−1= =
α

So the soundness condition holds from the universal property of F (Ys) + F (ps).

• Up has a left adjoint. We show that F p is this left adjoint.

We check the universal property. Given a signature Σ. Using UpF pΣ = U
•
ipΣ = U

•
ipΣ ,

we de�ne a morphism ηpΣ : Σ→ UpF pΣ:

ι1

ipΣπ

Given a paradigmatic prop P and a map f : Σ → UpP we need to show there is a unique
map satisfying UpF p(f)◦ηpΣ = f . We start by uniqueness. Let g : F pΣ→ P be a map such that
Upg ◦ ηpΣ = f .

Σ

UpP

UpF pΣ

ι1

ipΣπ

f

g ⇔

Σ

UP

UFΣ

ι1

ipΣπ

g

f

Since U has a left adjoint F , the universal property gives:

Ff =
ι1

ipΣπ g .

Since ipΣπ is an epimorphism then g ◦ ipΣπ uniquely characterizes g. Furthermore by
de�nition of paradigmatic translations we know that g ◦ ipΣπ ◦ Fι2 doesn't depends on g.
So by the universal property of the co-product F (Σ)+F (ps) a g satisfying this property is unique.

Now for existence, we take a section s : P → FP s of P π and de�ne:

γ
def

=

[
f

s ,
ι2

]
and g

def

=
•
γ

It satis�es:

f
s

ι1

ipΣπ
•
γ

=
Pπ

γι1 =
Pπ

f=

66

4.2. Paradigmatic graphical languages

hence F p a Up.

• Propp has and Up preserves co-equalizers of Up-split pair.

We consider a Up-split pair f, g : P → Q. This means we have a split co-equalizer:

h
Upf

Upg
UpP UpQ ∆ ⇔ h

Uf

∆
Ug

UQUP

f and g form a U -split pair and then, since U is monadic we know that they admit a co-
equalizer preserved by U :

f

g
QP

We will construct a paradigmatic graphical language Z such that
•
Z is a co-equalizer of f

and g in C-Prop and of f and g in C-Propp.

Let L and Y be paradigmatic graphical languages such that
•
L = P and

•
Y = Q. Since

•·
is full we can take two paradigmatic translations α, β : L → Y such that

•
α = f and

•
β = g.

We de�ne a family of equation E def

= (Ls, α, β) over the signature Ys. We de�ne Z def

= Y /E .

We know that
•
Z is a co-equalizer in C-Prop.

f

g
P Q

FLs Z

β
Yπ

α
Yπ

Lπ

•()
Q

The soundness condition makes the diagram commute, and Lπ being an epimorphism, it

follows that
•
Z is a co-equalizer of f and g. Here, by construction, Z is a paradigmatic

graphical language, and is a paradigmatic translation.
It remains to show that we have a proper co-equalizer in C-Propp. Given a paradigmatic

prop R and a paradigmatic prop morphism t satisfying the property we have a unique prop

morphism h such that h◦
•()

= t. Let τ be a paradigmatic translation such that
•
τ = t. We

have:

•
τ ◦

•()
=

•

τ ◦
()

=
•
τ = t

so
•
τ = h and h is a paradigmatic prop morphism. One can be surprised that τ is a valid

antecedent for h and t at the same time, in fact, the di�erence here is in the typing of the trans-
lation, the similarity follows from the fact that the codomain of the translations are di�erent

67

Chapter 4. Paradigms in graphical language design

graphical languages but with the same signature. So we see that Propp has co-equalizers and ·
preserves them.

Finally the Beck monadicity theorem gives us a monadic adjunction F p a Up.

This adjunction provides a monad over C-Sig. We happen to be in the same situation
as before with F a U . De�ning graphical languages in the same way we did in Chapter 1
with respect to this new monad gives us exactly GLp. We can now work with paradigmatic
graphical languages where the paradigmatic generators and equations are implicitly embedded
in the language. If needed, we can still use the functor · to work in props and then show that
we can go back in the paradigm.

4.3 Examples of paradigms

We end this chapter by giving some examples of paradigms.

4.3.1 Props as a paradigm over pros

Our �rst example is a bit forced since we don't consider paradigm over props but pros. A pro

is de�ned in exactly the same way as a prop but without any requirement on the presence of a
symmetric structure. Presentations of pros can be de�ned exactly in the same way as presentation
of props as it was done in Chapter 1. Thus we have a notion of graphical language without swaps.
From here we can recover props as a paradigm. There is one paradigmatic generator, the swap:

: 2→ 2

and the paradigmatic equations assert the expected properties of a prop. note that if some
paradigmatic equations only require paradigmatic generators, the paradigmatic equations ensur-
ing naturality require all non-paradigmatic generators.

The Prop paradigm prop

Paradigmatic generators props

Paradigmatic equations prope

= , =

∀x ∈ |Σ| :

=x
... x...

68

4.3. Examples of paradigms

Here asserting that all generators go through the swap is enough to recover the naturality of
the swap by compositionality. However, we have to assert explicitly the Yang-Baxter equation,
which does not directly follow since the swap is a paradigmatic generator.

Considering props as a paradigm over pros leads to the question of iterating paradigms. If
in theory, the categorical machinery might work, in practice it could be tricky. For example, the
paradigmatic generators of the �rst paradigm would not contribute to the paradigmatic equations
of the second, such thing would have to be taken into account. To avoid such technicalities and
to keep with what has been explicitly presented in the thesis we will always de�ne clearly our
paradigms in one step starting from props, even if some more involved presentation might be
possible.

4.3.2 No paradigmatic equations

Given a graphical language L we obtain a paradigm l by setting ls
def

= Ls and l(Σ)e
def

= Le.
Such paradigms are simple in the sense that the paradigmatic equations only depend on the
paradigmatic generators and do not involve non-paradigmatic ones.

The compact closed paradigm

We de�ne a paradigm asserting that a prop is equipped with a compact structure. We call it the
compact closed paradigm and the paradigmatic props will be called compact closed props.
As expected, the paradigmatic generators as just the cup and the cap and the paradigmatic
equations ensure that those two form a compact structure.

The compact closed paradigm c

Paradigmatic generators cs

Paradigmatic equations ce

= = = =

Working in this paradigm there are additional things we need to take into account compared
to ordinary props. A translation will automatically send the canonical compact structure to the
canonical compact structure. So we need to keep in mind that two props can be equivalent as
props but di�erent as compact closed props since they don't have the same canonical compact
structure. In general, when we give an interpretation for a paradigmatic prop we always have to
precise what are the canonical paradigmatic generator in the model.

This paradigm will be used extensively in Chapter 5.

Hyper-graph categories

Hyper-graph categories were de�ned numerous times and given various names, see [62] for details.
Restricting ourselves to props, the idea is that we are given a canonical special Frobenius algebra

69

Chapter 4. Paradigms in graphical language design

that is informally considered as an extension of wire. Then more than two generators can be
connected to the same wire, in the same way, that more than two vertices can be connected
to the same hyper-edge in a hyper-graph hence the name. Such situations are common when
copying and sharing data is an option. Another interesting example are the nodes of an electric
circuits diagram which are required to satisfy Kirchho�'s law [36].

The hyper graph paradigm h is de�ned as:

The hyper graph paradigm h

Paradigmatic generators hs

... ...

Paradigmatic equations he

=
... ...

... ...
...

Here we used the spider notation for Frobenius algebras introduced in Chapter 3. As for the
paradigm c, the paradigmatic equations do not depend on non-paradigmatic generators.

4.3.3 Cartesian paradigm

Another way to build paradigms is to state that all generators must be morphisms of a given
structure. This is the case for the Cartesian paradigm.

The Cartesian paradigm car

Paradigmatic generators cars

Paradigmatic equations care

= , == , =

∀x ∈ |Σ| :

=xn{ }m }n , =x
x

x

...

...
n{ n{

}m

}m

}m

}m

70

4.3. Examples of paradigms

Cartesian props are exactly the props in which the tensor product is a product and the tensor
unit a terminal object, we call them. The projections can be de�ned as:

π1 π2def

=
def

=

With this de�nition we have for all f : n→ m:

= f

f

f

f =

Which implies for all f, g : n→ m:

π1 ◦ f = π1 ◦ g ∧ π2 ◦ f = π2 ◦ g ⇒ f = g

Conversely, the diagonal and terminal maps satisfy the equations, and then any prop with a
product as tensor and a terminal object as tensor unit �ts into the Cartesian paradigm.

The dual paradigm carop is also interesting.

The co-Cartesian paradigm carop

Paradigmatic generators carops

Paradigmatic equations carope

= , = = , =

∀x ∈ |Σ| :

=x... }mn{ }n , = x...
x... ...

x... ...

...

...

n{n{
}m }m

n{ n{

A model of this paradigm in set is given by taking the addition on R as white monoid. Then
the paradigm exactly ensures that all generators are linear maps. This duality between copy and
addition will be developed further in Chapter 7.

71

Chapter 4. Paradigms in graphical language design

72

Chapter 5

Flexsymmetry

Dans une thèse, il faut inventer un mot.a

aYou have to coin at least one word in a PhD.

Emmanuel Jeandel [63]

I had numerous discussions about how to hierarchize the equations of ZX-calculus, arguing
about which equation follows from the axioms of Frobenius algebra, which from the axioms of
props, etc..., those shaped the presentation I gave in Chapter 3. A connected discussion was
about the Only Topology Matter paradigm (here paradigm doesn't have the formal sense of
Chapter 4) mentioned in [64] and later rebranded Only Connectivity Matter. This informal
paradigm states that diagrams can be manipulated as graphs. Indeed, a great amount of the
elegance of graphical languages like the ZX-[64], ZW-[65] and ZH-[66] comes from this fact. This
allows intuitive graphical manipulations and then simpler implementation into graphical proof
assistant softwares [49]. A formal de�nition of Only Topology Matter has been made in [67], but
does not rely on equational theories. The main motivation to de�ne �exsymmetry was to provide
this equational characterization. This is in fact what led to rigorously de�ne the paradigms of
Chapter 4 in the �rst place.

Flexsymmetry has a strong link with Frobenius algebras. Frobenius algebras can interact
with various compact structures being �exsymmetric with respect to some and not with respect
to others. So some graphical calculi of interest, even if they are built from Frobenius algebras,
fail to satisfy the only topology matter paradigm in a broad sense. Examples are the ∆ZX-
calculus of [56], the qutrit ZX-calculus of [68] or the graphical linear algebra of [20] which will be
developed in more details in Chapter 7. Investigating those led to equations very similar to the
ZW-calculus of [65] and suggested a way to modify their axiomatisation to recover �exsymmetry.

5.1 Introducing �exsymmetry

Our goal is to de�ne a paradigm such that paradigmatic diagrams behave essentially as graphs.
From now on we work in the compact closed paradigm c de�ned in Chapter 4. So all graphical
languages come with a canonical symmetric compact structure.

73

Chapter 5. Flexsymmetry

5.1.1 Flexsymmetric generators

Given a graphical language L we de�ne what it means to be able to exchange the inputs and
outputs of a diagram.

De�nition 38 (Flexsymmetry). Let D : n → m be a diagram in a compact closed graphical
language L. D is said �exsymmetric if the equation:

D
σ

...

......

... ...

...
=

D

...

... ...

...

holds in L for all permutations of n+m wires σ.

In this de�nition, the permutation box σ represents a combination of swaps that implement
the corresponding permutation between the wires. Such a diagram is unique up to prop axioms.
It follows directly from this de�nition that the cup the cap and the identity are �exsymmetric.
However, the swap isn't. Note that this property is absolutely not compositional, we can perfectly
obtain non �exsymmetric diagrams from �exsymmetric ones and conversely.

When a diagram is �exsymmetric we can think of it as one big graph vertex. In practice,
this corresponds to a simpli�ed representation for a �exsymmetric diagram D:

D = D

Note that here we just choose a particular permutation of the wire but they are all equivalent
by �exsymmetry.

5.1.2 Flexsymmetric paradigm

The �exsymmetric paradigm then ensures that all generators of a language satisfy the �exsym-
metry equation.

De�nition 39 (Flexsymmetric paradigm). The �exsymmetric paradigm f is de�ned by:

The �exsymmetric paradigm f

74

5.1. Introducing �exsymmetry

Paradigmatic generators fs

Paradigmatic equations fe

= = = =

∀x ∈ |Σ| :

x
σ

...

......

... ...

...
=

x

...

... ...

...

for all σ, permutation of n+m elements.

Notice that only the generators are required to be �exsymmetric not all diagrams nor the
swap.

Following Chapter 4, this allows to de�ne �exsymmetric graphical languages and �exsym-
metric props. By de�nition, a �exsymmetric prop is a prop that can be axiomatized by a
�exsymmetric graphical language. This is clearly not the case with all props. An easy example
is given by taking any prop and freely adding a 1→ 1 arrow which, by de�nition, will cause any
attempt to enforce the �exsymmetry equation to fail.

5.1.3 Flexsymmetry and Frobenius algebras

The �exsymmetry paradigm provides a new point of view on Frobenius algebras. First, the
language F of Frobenius algebras de�ned in Chapter 3 �ts in the paradigm. In fact, given
a Frobenius algebra, we directly have a symmetric compact structure and all generators are
�exsymmetric with respect to this compact structure. The converse question is: how simple can
be the axiomatization of F if we remove the redundant equations that follow from �exsymmetry?
The answer is surprisingly nice.

Lemma 3. Let Mf be the graphical language of monoids M seen in the �exsymmetric paradigm
f. We have:

F 'Mf

Proof. We just have to use the alternative de�nition of Frobenius algebras given in Chapter 3.
First, is directly �exsymmetric, since there are no non-trivial permutations on one wire.
So we just show that the �exsymmetric equation is equivalent to the one from the alternative

de�nition. One can generate the group of permutations on three elements using one transposi-
tion and one 3-cycle. The monoid being commutative, this directly gives us the �exsymmetric
equation for one transposition, the one exchanging the two inputs of the multiplication. It only
remains to show it for a 3-cycle:

75

Chapter 5. Flexsymmetry

= ⇔ = ⇔ =

So in the �exsymmetric paradigm if we need spiders, instead of specifying the entire Frobenius
algebra, we only have to provide half of it, that is, a monoid. Thus, in the �exsymmetric
paradigm, the shortcuts for spider and spider fusion will design the signature and equations of
monoids and not Frobenius algebras.

5.2 Flexsymmetrisation

In the introduction of this chapter, I mentioned various languages that fail to �t in the �exsym-
metric paradigm. In fact, under some conditions, it is possible to �x this by slightly modifying
the graphical language.

5.2.1 Flexsymmetry up to dualizers

The de�nition of �exsymmetry implies the choice of a canonical symmetric compact structure.
However, distinct symmetric compact structures may be available in the same prop. We will
study a particular but very common case when the notions of �exsymmetry with respect to two
di�erent compact structures are linked. We �rst look at how we can switch between two compact
structures by slightly modifying a graphical language.

Given a prop with two symmetric compact structures
{

,
}
and

{
,
}
, the dualizer

d : 1→ 1 is de�ned as:

def

= .

It is an invertible map with inverse . It is self transpose for both compact structure.

Furthermore we have:

= and = .

We say the the two structures are compatible if the dualizer is an involution. In this case
we can use the notations:

= and = .

Notice that, conversely, given a self transpose involution for a given compact structure, we
can, in the same way, construct a new compatible one whose dualizer will be the considered
involution.

Our goal is to replace the canonical compact structure in a compact closed graphical language
with another compatible one without changing the prop. We then replace all occurrences of cups
and caps in the equations with the modi�ed version composed or pre-composed with the dualizer
d. This is simple but making it formal requires some care, especially if the diagram representing
the dualizer itself involves cups and caps. To avoid such circles we �rst add freely a generator.
We then implement the substitution on all equations but with the new generator instead of the

76

5.2. Flexsymmetrisation

dualizer. Finally, we will quotient by an additional equation that identi�es the dualizer and the
new generator.

Now we take the time to formalise this strategy. Let L be a compact closed graphical language.

We have L = (Ls + cs)
/

(Le + c(Σ)e) . We de�ne a free graphical language Y def

= {Y : 1 → 1}
with only one 1→ 1 generator and no equations. The language L+Y is then exactly the language
L to which is added freely a generator 1→ 1.

We de�ne a signature map Ls+cs → UF (Ls + cs + Y) which modi�es the compact structure:

γ
def

=

[
ι1

, γ′

]
Where:

γ′ : 7→ γ′ : 7→

With Y : 1 → 1 pictured as dotted node. We use this signature map to turn the family Le
of equations over Ls + cs into a family sZLe of equations over the signature Ls + Y + cs that
will add the dualizer to the compact structure. Our goal in doing this is that since the dualizer
is involutive, replacing the compact structure in sZLe gives back the equations of Le. Given a
family of equations E over a signature Σ and a signature map α : Σ → UFΣ′ we de�ned the
family of equations α ◦ E over the signature Σ′ as:

(α ◦ E)n
def

= En (α ◦ E)l
def

= El

α
(α ◦ E)r

def

= Er

α

The idea is that α ◦E is the same as E but where the left and right hand-side diagrams have
been replaced by their translations through α.

For convenience, I will write γZ instead of

(
γ

)
(Z) for the diagram Z where the

signature map γ has been applied to all generators.

De�nition 40 (cup-cap switch). Let L be a graphical language under the paradigm c. Let

Z ∈ UF (Ls + cs) be a diagram such that LπZ is a self-transposed involution in
•
L . The

cup-cap switch of the graphical language L by the dualizer Z is de�ned as:

sZL
def

= (Ls + cs + Y)
/

(γ ◦ Le + ce + γ ◦ ce + {Y = γZ})

Note that since c(Ls)e = c(Ls+Y)e then we just write ce and sZL is a paradigmatic graphical
language for c.

In practice the dualizer will often be a generator of L and then the process really just amounts
to replace the cups and caps. The cup-cap switch leads to an equivalent language.

Lemma 4. L ' sZL.

Proof. We show that γ de�nes a translation L → sZL providing an isomorphism of props
•
γ .

First we need to check the soundness condition, in other word that the equations of L trans-
ported by γ still hold in sZL. This holds directly since Le and ce transformed into γ ◦ Le and
γ ◦ ce which are among the equations of sZL. So γ can be seen as a translation L → sZL.

Now we construct an inverse de�ned as:

77

Chapter 5. Flexsymmetry

γ−1 def

=

[
ι1

, γ′′ , Y 7→ Z

]
Where:

γ′′ : 7→
Z

γ′ : 7→ Z

We have γ−1 ◦ γ = id as translation:

ZZ7→
γ γ−1

7→ =

But we still have to check soundness. First γ ◦ Le and γ ◦ ce transformed into γ−1 ◦ γ ◦ Le
and γ−1 ◦ γ ◦ ce which are equivalent to Le and ce since Z ◦ Z = id in L. γ−1ce holds in L, it
fact those equations state that Z is a self-transposed involution. Finally the equation Y = γZ
transforms into Y = γ−1γZ which is equivalent to Z = Z, and this obviously holds. So γ−1 is a
valid translation.

We already know that
•
γ−1 ◦

•
γ = id, it remains to look at

•
γ ◦

•
γ−1 . This signature map

leaves Ls invariant. For the compact structure we have:

γZ7→
γγ−1

7→ =Z =

And �nally for Y :

γZ7→
γγ−1

7→ =Z

So
•
γ is an isomorphism of props and L ' sZL.

Here is a concrete example of cup-cap switch.

Example 10. We consider the following compact closed graphical language L:

Generators Ls

x

Equations Le

x

x
= x

x=

An admissible self transposed and involutive dualizer is:

xdef

=Z

78

5.2. Flexsymmetrisation

Then the graphical language sZL is:

Generators sZLs

x

Equations sZLe

x

x
= x=

= = =

x

x

We now come back to �exsymmetry. In general, a generator that is �exsymmetric for a given
symmetric compact structure will not be �exsymmetric for another. But in the case where the
two compact structures are compatible we can introduce a weaker version of �exsymmetry.

De�nition 41 (Flexsymmetry up to dualizer). Let D : n→ m be a diagrams in a compact closed
graphical language L and : 1→ 1 be a self transposed involution. D is said �exsymmetric
up to dualizer if the equation:

D
σ

...

... ...

... ...

...

=
D

...

... ...

...

holds in L for all permutations of n+m wires σ.

Notice that if the dualizer is the identity we recover the normal notion of �exsymmetry. We
see that depending on which compact structure we see as canonical we can exchange between
�exsymmetry and �exsymmetry up to dualizer by applying a cup-cap switch.

D
σ

...

... ...

... ...

...
=

D
σ

...

... ...

... ...

...
=

D

...

... ...

...
.

We see that another way to recover �exsymmetry from �exsymmetry up to dualizer would be
to de�ne a transformation that hides the necessary dualizers inside the diagrams. This is exactly
the point of subdivision.

5.2.2 Subdivision

In practice, subdivision is very similar to the cup-cap switch. We replace each occurrence of some
generators in the equations with the same generators composed with dualizers. The generators
we want to subdivide are gathered in a signature ∆ which is a sub-signature of Ls.

79

Chapter 5. Flexsymmetry

De�nition 42 (Subdivision of diagrams). Provided a signature Σ, a sub signature ∆ ⊆ Σ and
a diagram Z ∈ F (Σ)[1, 1]. The subdivision is de�ned by the signature map:

§Z|∆ : Σ→ UF (Σ)

x ∈ Σ(n,m) 7→

{
Z⊗m ◦ x if x ∈ ∆(n,m)

x if x /∈ ∆(n,m)

The name subdivision comes from the fact that this operation corresponds to subdividing
some edges of the underlying graph.

Example 11. A Subdivision with Σ
def

=
{

, ,
}
, Z

def

= and ∆
def

=
{ }

gives:

γ
: 7→ .

We now extend this to the whole graphical language. We will always subdivide by an invo-
lution.

De�nition 43 (Subdivision of graphical languages). Given a graphical language L, a sub-
signature ∆ ⊂ Ls, and a diagram Z ∈ UF (Ls)[1, 1]. The subdivision of L by Z is de�ned
by:

§Z|∆L
def

= (Ls + Y)
/(
§Z|∆ ◦ Le +

{
Y = §Z|∆Z

}
+
{
Y 2 = id

})
.

As cup-cap switch, subdividing a graphical language does not change its corresponding prop.

Lemma 5. Given a graphical language L, a subset ∆ ⊂ Ls, and a diagram Z ∈ F (Ls)[1, 1] such

that Lπ(Z) is an involution in
•
L we have L ' §Z|∆L.

Proof. The proof is extremely similar to what we have done with cup-cap switch. Let §Z|∆ be
de�ned as:

§Z|∆ : Ls → UF (Ls + Y)

x ∈ Ls(n,m) 7→

{
Y ⊗m ◦ x if x ∈ ∆(n,m)

x if x /∈ ∆(n,m)

We show that §Z|∆ de�nes a translation L → §Z|∆L providing an isomorphism of prop
•
§Z|∆ .

First we need to check the soundness condition, in other word that the equations of L trans-
ported by §Z|∆ still hold in §Z|∆L. This holds directly since Le is transformed into §Z|∆ ◦ Le
which are among the equations of §Z|∆L. So §Z|∆ can be seen as a translation L → §Z|∆L.

Now we construct an inverse de�ned as:

§−1
Z|∆ : Ls + Y→ UFLs

x ∈ Ls(n,m) 7→

{
Z⊗m ◦ x if x ∈ ∆(n,m)

x if x /∈ ∆(n,m)

Y 7→ Z

We have §−1
Z|∆ ◦ §Z|∆ = id as translation:

80

5.2. Flexsymmetrisation

7→
§Z|∆ §−1

Z|∆
7→ =x... ... x... ... x... ...

Z

Z

Z

Z
x... ...

We still have to check soundness. First §Z|∆ ◦ Le is transformed into §−1
Z|∆ ◦ §Z|∆ ◦ Le which

is equivalent to Le since Z ◦Z = id in L. Y ◦ Y = id is transformed into Z ◦Z = id which holds
in L. Finally the equation Y = §Z|∆Z is transformed into Y = §−1

Z|∆§Z|∆Z which is equivalent

to Z = Z, and this obviously holds. So §−1
Z|∆ is a valid translation.

We already know that
•
§−1
Z|∆ ◦

•
§Z|∆ = id, it remains to look at

•
§Z|∆ ◦

•
§−1
Z|∆ . This signature

map leaves Ls invariant. And for Y :

§Z|∆Z7→
§Z|∆§−1

Z|∆
7→ =Z

So
•
§Z|∆ is an isomorphism of props and L ' §Z|∆L.

As promised subdivision can be used together with cup-cap switch to act on �exsymmetry in
di�erent ways, allowing to exchange �exsymmetry and �exsymmetry up to dualizers. Subdividing
a generator �exsymmetric up to a dualizer by this dualizer gives a �exsymmetric generator.
Subdividing a �exsymmetric generator by a dualizer gives a generator �exsymmetric up to this
dualizer. A cup-cap switch with respect to a dualizer turns the �exsymmetric generator into
generator �exsymmetric up to this dualizer. A generator that is �exsymmetric up to a dualizer
will be �exsymmetric after a cup-cap switch with respect to this dualizer.

Now that cup-cap switch and subdivision are de�ned, we come back to Spiders. Subdividing a
Frobenius algebra provides an interesting structure. Let I def

=
(
Y : 1→ 1, {Y 2 = id}

)
and ∆

def

= Fs,
remember that we took the convention to write instead of Fs in a graphical languages
without any paradigm. A subdivided Frobenius algebra is de�ned by the graphical language:

§F def

= §Z|

(
(F + I)

/{
=

})

The graphical language §F of subdivided Frobenius algebras

81

Chapter 5. Flexsymmetry

Generators §Fs

Equations §Fe

= = = = =

= =

= = =

= =

Subdivision provides a translation L → §Z|∆L that allows to translate directly some results
to the subdivided version, just by subdividing everything. We call the subdivided version of the
spider theorem the harvestman theorem.

Theorem 5 (harvestman theorem). Given a subdivided Frobenius algebra one can uniquely de�ne

the harvestmen with n inputs and m outputs as hn,m
def

= §Z|∆sn,m satisfying a fusion rule:

......

......
=

......

......
.

Such structures already appeared in ZW-calculus [65] and ZH-calculus [66]. We also directly
have a characterization in terms of �exsymmetric subdivided monoid §M.

The graphical language §M of subdivided monoids

Generators §Ms

Equations §Me

= = =

= =

82

5.2. Flexsymmetrisation

In the same way than spiders are �exsymmetric monoids, harvestmen are �exsymmetric
subdivided monoids.

Lemma 6. §Mf ' §F.

Proof. We have:

§F ' §Z|

(
(F + I)

/{
=

})
' (F + I)

/{
=

}
'(

Mf + I
)/{

=

}
' (M + I)f

By de�nition §M 'M + I, however this not directly tells us that §Mf ' (M + I)f. If we look
at the �exsymmetric equations after the subdivision we see that we have �exsymmetry only up
to the dualizer Z, to obtain proper �exsymmetry we then use a cup-cap switch this gives:

§Mf ' sZ§Mf ' (M + I)f.

And �nally §Mf ' §F.

In a �exsymmetric context, we will use the same shortcut with harvestmen as with spiders
and use harvestmen and the harvestmen fusion rule to denote respectively the signature and the
equations of §M.

The main application we will make of subdivision is the softening of spiders, which is de�ned
in the following lemma.

Lemma 7 (Softening). Given a monoid �exsymmetric up to dualizer, subdividing it by this
dualizer gives a �exsymmetric subdivided monoid.

Proof. Subdivided a monoid gives a subdivided monoid by de�nition. We only have to show
that we obtain �exsymmetry from �exsymmetry up tu dualizer. It follows from the following
graphical manipulation:

= = =

Softening then turns spiders into harvestmen.

5.2.3 Applications

In this section, we investigate various concrete applications of cup-cap switch, subdivision, and
softening.

83

Chapter 5. Flexsymmetry

Flexsymmetric ∆ZX-calculus

The ∆ZX-calculus was introduced in [56]. This language was di�cult to implement in the
graphical proof assistant Quantomatic [49] because of the triangle generator:

J K =

(
1 1
0 1

)
.

In fact Quantomatic is designed to see diagrams as graphs and then can only deal with
�exsymmetric generators. With respect to the canonical compact structure of ∆ZX, being
�exsymmetric is equivalent to being self-transposed. This is not the case of the triangle. However

it is �exsymmetric up to the NOT dualizer with interpretation: J π K def

=

(
0 1
1 0

)
. Subdividing

the triangle by this NOT dualizer gives a �exsymmetric generator with interpretation:

J π K def

=

(
1 1
1 0

)
.

Flexsymmetric graphical Abelian group algebra

It has been pointed many times that ZX-calculus is a particular case of a graphical calculus for
group algebras [69, 70, 71]. Here we restrict to the group algebra over C for a �nite Abelian.
group G.

De�nition 44 (Group algebra). Given a �nite Abelian group (G, ?, e) the group algebra C[G] is
the C-algebra spanned by the |g〉 for g ∈ G, in other words any element is of the form:

∑
g∈G

ag |g〉

with ag ∈ C. The convolution product is de�ned as:(∑
g∈G

ag |g〉

)
∗
(∑
h∈G

bh |h〉
)

=
∑

h,g∈G
agbh |g ? h〉.

The language is generated by two spiders. The interpretation is given into the monochromatic
prop with arrows n→ m the matrices inM|G|m×|G|n(C).

r
......
z

def

= |−→x 〉 7→ |G|
m+n−2

4
∑
yj∈G

δx1=···=xn=y1=···=ym |−→y 〉

r
......
z

def

= |−→x 〉 7→ |G|
2−m−n

4
∑
yj∈G

δ?
i
xi=?

j
yj
|−→y 〉

r z
= |xy〉 7→ |yx〉

r z
=
∑
x∈G
|xx〉

r z
=
∑
y∈G
〈yy|

The green spider is �exsymmetric with respect to the compact structure. The red spider is
�exsymmetric up to the dualizer : |g〉 7→

∣∣g−1
〉
. Softening the red spiders gives �exsymmetric

harvestmen:
r

......
z

def

= |−→x 〉 7→ |G|
2−m−n

4
∑
yj∈G

δ(?
i
xi

)
?

(
?
j
yj

)
=e
|−→y 〉

84

5.2. Flexsymmetrisation

leading to a �exsymmetric language. Here, we do not claim to be complete.

The �exsymmetric graphical language GA of Abelian group algebras

Generators GAs

......

Equations GAe

...

......

... ...
=

......

......
...

... ...

......
=

......

......

= =

=

=

= =

= =

If G = Z /dZ we can add an additional generator 1 → 1 with interpretation the Fourier
transform:

J K def

= |x〉 7→ 1√
d

d−1∑
j=0

e
2ijπ
d |j〉

and satisfying:

... ... =

The qudit ZX-calculus [70] is a special case of the group algebra construction with G = Z
dZ .

In the case of qubits, where d = 2, the dualizer is the identity and then we recover the qubit ZX-
calculus which is directly �exsymmetric. However, in the case d ≥ 3, harvestmen are necessary.
This gives an equivalent �exsymmetric presentation of the qutrit ZX-calculus [72]. In [72] some
topological lemmas are shown which would directly follow from �exsymmetry. Furthermore, this
presentation allows us to avoid the inverse Fourier transform as an explicit generator.

The black cap ZW-calculus (black fragment)

One of the starting points of this work was the odd look of equations of ZW-calculus. They
are subdivided versions of more familiar equations. To see this we will only consider the black
harvestman fragment of the ZW-calculus. The black harvestman has for interpretation:

85

Chapter 5. Flexsymmetry

r
... ...

z
def

=
∑
|xy|=1

|y〉 〈x|

Where |xy| is the Hamming weight (the number of 1) in the binary word xy, the concatenation
of the binary words x and y.

We can see this harvestman as arising from the subdivision of two spiders, the indigo and
the orange, which are the transpose of each other:

...... def

=
r

......
z

=
∑
|xy|=1

|y〉 〈x|

... ... def

=
r
... ...

z
=

∑
|xy|=1

|y〉 〈x|

r z
= |xy〉 7→ |yx〉

r z
= 1

2 |01〉+ |10〉

r z
= 1

2 〈01|+ 〈10|

Those two spiders are both �exsymmetric up to the dualizer = |x〉 7→ |x〉 with respect to
the canonical compact structure of the ZW-calculus. Thus, a cup-cap switch gives two �exible
spiders satisfying equations close to those of the ZX-calculus given in Chapter 3.

The �exsymmetric graphical language BZW of the black fragment of the ZW -calculus.

Generators BZWs

...

Equations BZWe

......

......
=

......

......

......

... ...
=

......

......

... ... = = =

=

=

Those spiders are not special but anti-special. More details about anti-special spiders can

be found in [17]. The generators satisfy the equation = involving the fermionic

swap with interpretation:
r z

def

= |xy〉 7→ (−1)x∧y |yx〉. However the fermionic swap is not

�exsymmetric with respect any of the two compact structures considered.

86

5.2. Flexsymmetrisation

The monochromatic ZX-calculus

The ZX-calculus corresponds to GA with G = Z /2Z and the Hadamard gate denoting the
Fourier transform. As said before this language is already �exsymmetric, however using cup-
cap switch and softening gives an interesting equivalent language. Applying a cup-cap switch
with gives two monoids �exsymmetric up to . If we soften the green spider we obtain a
�exsymmetric subdivided monoid that surprisingly can also be expressed in function of the red
spider: def

= = We then obtain a new language with interpretation:

r
......
z

= 2
n+m−2

4 |+〉⊗m 〈0|⊗n + eiα |−〉⊗m 〈1|⊗n

r z
= |xy〉 7→ |yx〉

r z
= |0+〉+ |1−〉

r z
= 〈0+|+ 〈1−|

where |+〉 def

= |0〉+|1〉√
2

and |−〉 def

= |0〉−|1〉√
2

. Translating the axioms of [54] gives a complete calculus
for qubits relying on only one harvestman.

The �exsymmetric graphical language M-ZX of monochromatic ZX-calculus

Generators M-ZXs

......

Equations M-ZXe

α

β

......

......
=

α+ β

......

......
=

α
=

=

α1α2

=

π γ

β1 β2 β3

β1 = arg(z) + arg(z′)
β2 = 2arg(i+ | z

z′ |)
β3 = arg(z)− arg(z′)

γ = x+ − arg(z) + π−β2
2

x+
def
= α1+α2

2

x−
def
= x+ − α2

z
def
= − sin(x+) + i cos(x−)

z′
def
= cos(x+)− i sin(x−)

z′ = 0⇒ β2 = 0

87

Chapter 5. Flexsymmetry

5.3 Signature graphs

We now try to make precise the correspondence between �exsymmetric languages and graphs by
giving an explicit construction of F fΣ. This provides a possible implementation of �exsymmetric
graphical languages using what we call signature graphs.

5.3.1 De�nition

Informally, given a monochromatic signature Σ, a signature graph over Σ is an open graph,
with inputs and outputs, whose internal vertices correspond to generators in |Σ|. Furthermore,
those internal vertices must have a degree equal to the total arity, number of inputs plus number
of outputs of the corresponding generator.

De�nition 45 (Signature graphs). Given a signature Σ, a signature graph is a tuple (G, i, o, l).
G is a (vertex) coloured multi graph with set of colours |Σ|] {I,O}. We call input vertices,
respectively output vertices, and denote In(G), respectively Out(G), the set of vertices coloured
with I, respectively O. The other vertices are called generator vertices. G must satisfy:

� A vertex in In(G)
⋃
Out(G) has degree one.

� A generator vertex, coloured in x ∈ Σ(n,m), has degree n+m.

i : J1, |In(G)|K → In(G) and o : J1, |Out(G)|K → Out(G) are bijective labelling functions. l ∈ N
is a natural number called the number of loops.

Each generator vertex corresponds to a generator in the signature. The inputs and outputs
vertices correspond respectively to the inputs and outputs of diagrams. For a signature graph
G the notation G : n → m means that n = |In(G)| and m = |Out(G)|. A signature graph is
represented graphically as G together with an additional node indicating its number of loops l.

Example 12. As an example, we represent the signature graph corresponding to a generator
2→ 1 as:

1

2

1

0

A more complicated example of a signature graph based on the same generator:

2

1 2

3

1

De�nition 46 (Signature graph isomorphism). Two signature graphs are said isomorphic if
there is a graph isomorphism preserving the colours and the labeling of inputs and outputs between
them, and they have the same loop count.

In practice, we will always consider two isomorphic signature graphs to be the same. Our
de�nition of signature graph match closely the de�nition of labeled graphs in [67]. But here we
will extend this de�nition to form a prop.

88

5.3. Signature graphs

5.3.2 The category of signature graphs

We de�ne the composition of two signature graphs intuitively by plugging outputs into inputs.

De�nition 47 (Composition of signature graphs). The composition H ◦G of a signature graph
G : a→ b with a signature graph H : b→ c is constructed as follow:

� Take the disjoint union of the two graphs G+H, we call interface vertices the vertices in
In(H)

⋃
Out(G).

� For all 1 ≤ j ≤ b add an edge (iH(j), oG(j)). Now each interface vertex has degree 2.

� Remove all cycles of interface vertices, let k be the number of cycles removed.

� Replace all chain of interface vertices between non-interface vertices x and y by an edge
(x, y).

Then In(H ◦G)
def

= In(G), Out(H ◦G)
def

= Out(H), iH◦G
def

= iG, oH◦G
def

= oH and lH◦G = lG+lH+k.

In the construction, the only cycles that can occur are those arising from the composition of

1

2

0

and
1

2

0

. This creates a loop that is taken into account by incrementing the number of loops of

H ◦G.

Example 13. We compute: 
1

1

22

3

1337
 ◦


1

2

1

2

3

666


We start by the union graph, colouring the interface vertices in grey:

1

1

2

1

2

1

2

3

2

3

→
1

1

2

1

2

1

2

3

2

3

→
1

1

2

1

2

1 →
2

11

2

We had to remove one cycle so here k = 1. Finally:
1

1

22

3

1337
 ◦


1

2

1

2

3

666
 =


2

11

2

2004


We de�ne a tensor of signature graphs by taking the union graph and relabelling the inputs
and outputs.

89

Chapter 5. Flexsymmetry

De�nition 48 (Tensor of signature graphs). The tensor H ⊗G of a signature graph G : a→ b
with a signature graph H : c → d is the disjoint union of the two graphs G + H. We set

In(G ⊗ H)
def

= In(G)
⋃
In(H), Out(G ⊗ H)

def

= Out(G)
⋃
Out(H), lG⊗H = lG + lH , iG⊗H(j)

def

=

iG(j) if j ≤ a and else iH(j − a), oG⊗H(j)
def

= oG(j) if j ≤ b and else oH(j − b).

Example 14. The only subtlety here is the relabelling:


1

2

1

2

3

666
⊗


1

1

22

3

1337
 =



1

2

3

5

1

4

2

3

4

5

2003


Proposition 6. The category Sig-grΣ with objects the natural numbers and morphisms the
signature graphs over Σ up to signature graph isomorphism is a monochromatic compact closed

prop. The identities are given by the signature graphs:
1 1

n n

...
0

. The cup and cap are respectively
1

2

0

and
1

2

0

. The swap is
2

11

2

0

.

Proof. When composing three signature graphs the two interfaces have no vertex in common
this ensures the associativity of composition. The identities are given by the signature graphs of

the form:
1 1

n n

...
0

. So Sig-grΣ is a category.

The tensor is associative and the tensor unit identity is the empty signature graphs: 0 .
The functoriality follows from the fact that when taking the tensor product of two com-

positions, we can take the disjoint union of the interfaces and see it as the interface for the
composition of the two tensors.

The symmetries are generated by the involutive swap signature graphs
2

11

2

0

. The naturality

follows from signature graph isomorphisms.
So Sig-grΣ is a prop.

Finally,
1

2

0

and
1

2

0

form a compact structure.

5.3.3 Free �exsymmetric props

The link between signature graphs and the �exsymmetry paradigm is given by the following
theorem:

Theorem 6. Sig-grΣ ' F fΣ

90

5.3. Signature graphs

Proof. Given a morphism f : n→ m in F fΣ we will show how to interpret it as a signature graph.

Using the compact structure each generator g : a→ b corresponds to a state g : 0→ a+b:
g

......

......
.

The �exsymmetry equations exactly mean that those states are symmetric (we can permute the
outputs) for all g ∈ Σ. So in a diagram representing f , we can see the generators as big vertices.
Thus f is completely characterized by giving a list of vertex generators and how there are linked
with each other and with the n inputs and m outputs. In other words, f is uniquely de�ned by a
Σ-graph. Conversely, all interpretations of a signature graph as a string diagram are equivalent
modulo the �exsymmetric equations.

This provides a bijective mapping between F fΣ[n,m] and Sig-grΣ[n,m]. This mapping
corresponds to a full and faithful prop morphism F fΣ→ Sig-grΣ hence an isomorphism of prop.
So F fΣ ' Sig-grΣ.

A �exsymmetric graphical language can be soundly represented by a signature graph quo-
tiented by equations. The �exsymmetric paradigm then corresponds to only topology matter in
the following sense: diagrams are basically graphs. Seeing string diagrams as formal combinato-
rial objects is not a new idea, they were �rst described topologically in [42]. An approach more
similar to mine are the string graphs of [73] which can be seen as more complex signature graphs
that can characterize FΣ, the free prop over Σ. Any graphical language can be represented as
string graphs quotiented by equations. The signature graphs are simpler than string graphs,
the key here is the symmetric compact structure and the �exsymmetry equations that allow to
quotient and drop many subtleties in the description of string diagrams.

91

Chapter 5. Flexsymmetry

92

Chapter 6

Interacting monoids

Numerous graphical calculi with interpretations in Lin have been de�ned in the last decades.
The ZX-calculus [64] relies on the interaction of the two mutually unbiased bases Z and X.
Then the ZW-calculus [65] was built on two tripartite entanglement classes, the GHZ, and W-
states. Finally, the ZH-calculus [66] has been introduced to represent easily hyper-graph states.
At some point, it became unsure if the future of categorical quantum mechanics will see the
multiplication of languages or if one would become hegemonic. In the latter case, the duel
was mostly between ZX and ZH. In fact, if ZW-calculus was instrumental in the achievements
of completeness, it never really spread out of a small community despite some applications to
fermionic quantum computing [74]. Concerning the multiplication of languages we discovered
that in a sense, everything interesting was already on the table. This has been done in [5] and
this chapter is built on this work. ZX, ZW, and ZH are very similar and share a common core
structure. The study of harvestmen and �exsymmetry presented in Chapter 5 gives insights
on this common structure and allows us to �nd all the possible graphical languages on qubits
sharing this structure. In fact, the space of qubits is a very small space, and then not too many
structures are available. The only non-trivial candidates are essentially ZX, ZW, and ZH.

There exist some other formalisms trying to unify graphical languages, in particular in the
context of interacting Frobenius algebras [21] or Hopf-Frobenius algebras [75]. However, these
formalisms usually require too much structure and fail to capture all three examples simultane-
ously. Typically they do not capture the ZW -calculus.

93

Chapter 6. Interacting monoids

6.1 De�nition

We start by de�ning the common structure shared by the quantum graphical languages.

6.1.1 Monoids

The graphical languageM of monoids has been introduced in Chapter 1. A model of this language
in Lin corresponds exactly to a two-dimensional complex unital commutative algebra. An easy
way to build some example are monoids algebras.

Example 15 (monoid algebra [76]). Given a monoid M = (X, ∗, e) with d elements, we can
de�ne a d-dimensional unital algebra C[M] by indexing each element of a basis by the elements
of M .

J K = |e〉
r z

= |i〉 |j〉 7→ |i ∗ j〉

If M is a group, we will speak of a group algebra.
Starting from a monoid M of cardinality d+1 that contains a zero element (that we note ⊥),

we can build a contracted algebra KM by essentially the same construction, but identifying the
element ⊥ with the matrix 0. An example of this construction is the co-copy. Considering the
monoid de�ned by i ∗ j = i if i = j and ⊥ otherwise. We obtain

J K =
∑
i
|i〉

r z
= |i〉 |j〉 7→ δi,j |i〉

We will be mainly interested in four examples that we call Z, X, H and W . Working in the
basis (|0〉 , |1〉). They correspond to contracted algebras CM .

Z |0〉 |1〉
|0〉 |0〉 0

|1〉 0 |1〉

X |0〉 |1〉
|0〉 |0〉 |1〉
|1〉 |1〉 |0〉

H |0〉 |1〉
|0〉 |0〉 |0〉
|1〉 |0〉 |1〉

W |0〉 |1〉
|0〉 |0〉 |1〉
|1〉 |1〉 0

Those multiplication tables describe the behaviour of the algebras on |0〉 and |1〉. We see
that Z behaves like a Kronecker delta ensuring equality, X is the XOR gate, H the AND gate
and W is the e�ect algebra on two elements.

The corresponding matrix representations in the computational basis are:

Z

(
1 0 0 0
0 0 0 1

) (
1
1

)
X

(
1 0 0 1
0 1 1 0

) (
1
0

)
H

(
1 1 1 0
0 0 0 1

) (
0
1

)
W

(
1 0 0 0
0 1 1 0

) (
1
0

)

A co-monoid is a model of the graphical language Mop of co-monoids mentioned in Chapter
3. In Lin all co-monoids are obtained by transposing a monoid. We de�ned four examples called
Z, X, H and W :

Z


1 0
0 0
0 0
0 1

 (
1 1

)

X

1
2


1 0
0 1
0 1
1 0

 (
2 0

)

H


1 2
0 −1
0 −1
0 1

 (
1 2

)

W


0 0
1 0
1 0
0 1

 (
0 1

)

Those co-monoids respectively form Frobenius algebras with the monoid denoted by the same
letter. Note that only Z is the transposed of Z.

94

6.2. Classi�cations

6.1.2 Bi-algebra rule

Given a monoid
{

,
}

and a co-monoid
{

,
}

we say that they form a bi-

algebra pair if the equation:

=

holds in Lin. A large family of examples is given by the interaction of the copy co-monoid
with any monoid algebra. We denote bi-algebra pairs AB where A is a co-monoid and B is a
monoid. Thus, examples of bi-algebra pairs are ZZ, ZX, ZW , and ZH.

6.1.3 Z∗-algebra

We now focus on bi-algebra pairs in a �exsymmetric context. Our goal is to obtain a �exsym-
metric graphical language. Given a bi-algebra pair, we can �nd a compact structure making the
monoid �exsymmetric and another one making the co-monoid �exsymmetric. However, nothing
tells us that those compact structures are the same. But if they are compatible we can still use
softening of Chapter 5 to obtain a �exsymmetric graphical language. This is the de�nition of a
Z∗-algebra: a bi-algebra pair together with two compatible compact structures, one making the
monoid �exsymmetric and the other making the co-monoid �exsymmetric. By convention, we
will choose as canonical compact structure the one corresponding to the co-monoid. This allows
a shorter de�nition:

The �exsymmetric graphical language Z

Generators Zs

......

Equations Ze

......

......
=

......

......
= =

A Z∗-algebra is then a model of Z in Lin. We can �nd some constructions related to Z∗-
algebras in [77] and [78].

6.2 Classi�cations

We now look for all possible monoids and bi-algebra pairs in Lin.

6.2.1 Monoids

The classi�cation of all unital commutative algebras of dimension two has been known for a long
time [79]: there are only two algebras up to isomorphism.

95

Chapter 6. Interacting monoids

Theorem 7 ([79]). In Lin, any monoid is isomorphic either to Z or to W .

Proof. We are looking for all unital algebras up to isomorphism in C2.
Given an algebra with unit, we choose a basis (|0〉 , |1〉) where |0〉 is the unit. Then the matrix

representation of the monoid is

(
1 0 0 x
0 1 1 y

)
. The change of basis

(
1 y

2
0 1

)
gives

(
1 0 0 λ
0 1 1 0

)
with λ := x+ y2

2 . Let

(
a b
c d

)
be an invertible matrix. Its determinant is ∆ := ad− bc 6= 0. We

want:

(
a b
c d

)(
1 0 0 λ
0 1 1 0

)(
d −b
−c a

)⊗2

= ∆2

(
1 0 0 µ
0 1 1 0

)

this gives the following system:



∆ = ad− bc 6= 0

∆2 = ad2 − 2bcd+ λac2

0 = c
(
b2 − λa2

)
∆2µ = λa3 − ab2

0 = c
(
λc2 − d2

)
∆2 = ad2 − λac2

0 = b2c− 2abd+ λa2c

If c 6= 0 then we have d2 = λc2 and then ∆2 = 0, a contradiction. Setting c = 0 the system
reduces to:



∆ = ad 6= 0

∆2 = ad2

∆2µ = λa3 − ab2

0 = −2abd

c = 0

⇒



∆ = ad 6= 0

∆2 = ad2

∆2µ = λa3

b = 0

c = 0

⇒



d 6= 0

µ = λ
d2

a = 1

b = 0

c = 0

Finally we have a = 1, b = 0, c = 0 and d 6= 0. The equivalence classes correspond to the
elements of C up to multiplication by non-zero squares. In C there are only two λ = 0 and

λ 6= 0. The case λ 6= 0 admit a very simple representative: the change of basis 1√
2

(
1 −1
1 1

)
gives

(
1 0 0 0
0 0 0 1

)
. So we obtain two representatives Z and W .

Note that this also provides a classi�cation of all co-monoids up to isomorphisms. The
monoids Z, X, and H are isomorphic and by duality, the co-monoids Z, X, and H are also
isomorphic.

96

6.2. Classi�cations

6.2.2 Bi-algebra pairs

The classi�cation of bi-algebra pair is also already known, we �nd a classi�cation of low dimension
bi-algebras in [80]. For the sake of completeness, we will also prove it here in our notations.

To simplify our classi�cation up to isomorphism, we start by identifying all the algebra
automorphisms in Lin.

Lemma 8. The unique non-trivial automorphisms of Z and W are respectively

(
0 1
1 0

)
and the

matrices of the form

(
1 0
0 a

)
with a ∈ C∗.

Proof. We start with Z:(
a b
c d

)(
1 0 0 0
0 0 0 1

)(
d −b
−c a

)⊗2

= ∆2

(
1 0 0 0
0 0 0 1

)
this gives the following system: 

∆ = ad− bc 6= 0

∆2 = ad2 + bc2

0 = −ab (c+ d)

0 = ab (a+ b)

0 = cd (c+ d)

0 = −cbd− dac
∆2 = cb2 + da2

If a = 0 then: 

∆ = bc 6= 0

∆2 = bc2

0 = cd (c+ d)

0 = −cbd
∆2 = cb2

⇒


∆ = bc 6= 0

∆2 = bc2

∆2 = cb2

d = 0

⇒


d = 0

b = 1

c = 1

the solution is

(
0 1
1 0

)
. If a 6= 0 and b 6= 0 we then have ∆ = 0, a contradiction. If a 6= 0

and b = 0: 

∆ = ad 6= 0

∆2 = ad2

0 = cd (c+ d)

0 = −dac
∆2 = da2

b = 0

⇒



∆ = ad 6= 0

∆2 = ad2

∆2 = da2

c = 0

b = 0

⇒


a = d = 1

c = 0

b = 0

the solution is

(
1 0
0 1

)
. Now for W :

97

Chapter 6. Interacting monoids

(
a b
c d

)(
1 0 0 0
0 1 1 0

)(
d −b
−c a

)⊗2

= ∆2

(
1 0 0 0
0 1 1 0

)
this gives the system:



∆ = ad− bc 6= 0

∆2 = ad2 − 2bcd

0 = b2c

0 = ab2

0 = cd2

∆2 = ad2

0 = cb2 − abd

⇒


∆ = ad 6= 0

∆2 = ad2

b = c = 0

⇒


d 6= 0

a = 1

b = c = 0

the solutions are the matrices

(
1 0
0 d

)
with d 6= 0.

This result allows us to �nd all the bi-algebra pairs up to isomorphisms.

Lemma 9. In Lin, up to isomorphism, the only bi-algebra pairs are ZZ, ZX, ZW , ZH, and
the transpose of ZW .

Proof. There are only two co-monoids up to isomorphism, the transpose of Z and W . Note that
Zt = Z.

Any monoid is of the form:

(
a b b c
d e e f

)
.

We start by �nding all the monoids satisfying the bi-algebra rule with W t.
We want:

W t ◦
(
a b b c
d e e f

)
=

(
a b b c
d e e f

)⊗2

I2 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ I2

W⊗2

This gives the following system:



0 = a (a− 1)

0 = d (a− 1)

0 = d2

0 = b (2a− 1)

0 = e (a− 1) + dc

0 = de

0 = c (2a− 1) + 2b2

0 = f (a− 1) + 2be+ cd

0 = 2df + 2e2

⇒



0 = a (a− 1)

d = 0

0 = b (2a− 1)

0 = c (2a− 1) + 2b2

0 = f (a− 1) + 2bc

e = 0

⇒



if a = 0:


a = 0 b = 0

c = 0 d = 0

e = 0 f = 0

if a 6= 0:


a = 1 b = 0

c = 0 d = 0

e = 0 f ∈ C

98

6.2. Classi�cations

The only rank 2 solution are the

(
1 0 0 0
0 0 0 f

)
with f ∈ C∗. They are monoids with units(

1
1
f

)
. Since

(
1 0
0 f

)
is an automorphism of W t this gives a unique pair up to isomorphism:

W tZ.
Now with Z, we want:

Z ◦
(
a b b c
d e e f

)
=

(
a b b c
d e e f

)⊗2

I2 ⊗


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗ I2

∆Z
⊗2

This gives the following system:


a = a2 0 = ad d = d2

b = b2 0 = be e = e2

c = c2 0 = cf f = f2

⇔


a, b, c, d, e, f ∈ {0, 1}
(a 6= 1) ∨ (d 6= 1)

(b 6= 1) ∨ (e 6= 1)

(c 6= 1) ∨ (f 6= 1)

The rank 2 solutions are:

(
1 0 0 0
0 0 0 1

) (
1 0 0 1
0 1 1 0

) (
0 1 1 0
1 0 0 1

) (
1 1 1 0
0 0 0 1

)
(

1 0 0 0
0 1 1 1

) (
1 0 0 0
0 1 1 0

) (
0 1 1 0
0 0 0 1

) (
0 0 0 1
1 0 0 0

)
(

0 1 1 1
1 0 0 0

) (
0 0 0 1
1 1 1 0

) (
0 0 0 1
0 1 1 0

) (
0 1 1 0
1 0 0 0

)

Since

(
0 1
1 0

)
is an automorphism of ∆Z , this reduces the possibilities to:

(
1 0 0 0
0 0 0 1

) (
1 0 0 1
0 1 1 0

) (
1 1 1 0
0 0 0 1

) (
1 0 0 0
0 1 1 0

)
(

0 0 0 1
1 0 0 0

) (
0 0 0 1
1 1 1 0

) (
0 1 1 0
1 0 0 0

)
But among them the last three are not algebras, they are not associative, a counter example

for the three maps is the evaluation of (|0〉 ∗ |0〉) ∗ |1〉 versus |0〉 ∗ (|0〉 ∗ |1〉). The other are the
algebras Z, X, H and W .

This gives 4 pairs, ZZ, ZX, ZW and ZH.

From now on we will not take into account the transpose of ZW since we can recover all
results involving it by transposing what we �nd with ZW .

99

Chapter 6. Interacting monoids

6.2.3 Frobenius algebras

We now characterize all Frobenius algebras in Lin. We know from Chapter 5 that this just
amounts to �nd all the compact structures making the monoids �exsymmetric. To �nd those
compact structures we use the following lemma.

Lemma 10. Given a monoid
{

,
}
and a compact structure

{
,
}
satisfying:

=

then any other compact structure
{

,
}
satisfying:

=

is of the form:

=
α

=
α−1

where α is a phase, which means it is invertible and satis�es:

=
α

α .

Conversely, all phases de�ne compact structures satisfying the equation.

Proof. We start by showing that a compact structure of the form:

=
α

=
α−1

satis�es the �exsymmetry equation:

=

α
α

=

α

=
α

Now given a second compact structure satisfying the �exsymmetry equation. We have:

= =

It only remains to show that is a phase:

= = = = =

100

6.3. Putting thing together

Note that the dual result for co-monoids also holds. So we just have to describe the phase
groups of the monoids and co-monoids involved in bi-algebra pairs to obtain all the Frobenius
algebras of interest for us. The phases of the Z, X, W and H monoids are of the form:

Z

a, b ∈ C∗
a

(
1 0
0 b

)
X

a, b ∈ C∗
a
2

(
1 + b 1− b
1− b 1 + b

)
H

a, b ∈ C∗
a

(
1 1− b
0 b

)
W

a ∈ C∗ b ∈ C
a

(
1 0
b 1

)

The phase group of Z, X and H is C∗×2. The phase group of W is C∗××C+. We see without
surprise that the group of invertible scalars C∗× appears in both groups.

For each monoid Z, X, H and W we de�ne a canonical compact structure making them
�exsymmetric:

Z


1
0
0
1

 (
1 0 0 1

)

X

1
2


1
0
0
1

 (
2 0 0 2

)

H


2
−1
−1
1

 (
1 1 1 2

)

W


0
1
1
0

 (
0 1 1 0

)

6.3 Putting thing together

Now that we know all the bi-algebra pairs and all compact structures making the di�erent parts
of those pairs �exsymmetric we look for the compatible compact structures.

6.3.1 Compatibility

All bi-algebra pair we consider are of the form ZA where A is a monoid. We have de�ned a
canonical compact structures for each monoid A. We call the dualizer of the pair dZA, the
dualizer between the canonical compact structure of A and the compact structure of Z. We
have:

dZZ =

(
1 0
0 1

)
dZX =

(
1 0
0 1

)
dZH = 1√

2

(
1 1
1 −1

)
dZX =

(
0 1
1 0

)
All the other possible compact structures are obtained by composition with a phase. Given

a phase α of Z and a phase β of A, we denote ZαAβ the bi-algebra pair ZA together with the
pair of compact structures indexed by α and β. For ZαAβ to form a Z∗-algebra we need the two
compact structures to be compatible, this corresponds to the equation:

β ◦ dZA ◦ α = α−1 ◦ d−1
ZA ◦ β−1.

We will write phases as couple (a, b) ∈ C∗ for Z, X and H and as couple (a, b) ∈ C∗ × C for
W . We can now describe the compatible pairs.

Theorem 8. The only Z∗-algebras up to isomorphism in Lin are, with a, b ∈ C∗: Z(a,b)Z(1
a
, 1
b
),

Z(a,b)Z(− 1
a
, 1
b
), Z

(a,b)Z(1
a
,− 1

b
), Z

(a,b)Z(− 1
a
,− 1

b
), Z

(a,1)X(2
a
,1), Z

(a,1)X(− 2
a
,1), Z

(a,−1)X(2
a
,1), Z

(a,−1)X(− 2
a
,1),

Z(a, 4
a2b2

)X(b,−1), Z
(a,−1)X(b, 4

a2b2
), Z

(a, 1
a2b2−1

)
H

(b, 1−a
2b2

a2b2
)
with a2b2 6= 1, and Z(a, 1

a2b2
)W(b,0).

101

Chapter 6. Interacting monoids

Proof. The candidate Z∗-algebras are ZαZβ , ZαXβ , ZαWβ and ZαHβ . We check compatibility
for all of them.

� ZαZβ : The dualizer of ZZ is the identity. Let α = (a, b) and β = (c, d), a, b, c, d ∈ C∗. Zα
and Zβ are compatible i�

c

(
1 0
0 d

)
a

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)
1
c

(
1 0
0 1

d

)
This gives the system: {

a2c2 = 1

b2d2 = 1

The Z∗-algebras are then Z(a,b)Z(1
a
, 1
b
), Z

(a,b)Z(− 1
a
, 1
b
), Z

(a,b)Z(1
a
,− 1

b
) and Z(a,b)Z(− 1

a
,− 1

b
).

The dualizer is the identity for Z(a,b)Z(1
a
, 1
b
).

� ZαXβ : The dualizer of ZX is 1
2 , its inverse is 2. let α = (a, b) and β = (c, d), a, b, c, d ∈ C∗.

Zα and Xβ are compatible i�

c

(
1 + d 1− d
1− d 1 + d

)
a
2

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)
2
c

(
1 + 1

d 1− 1
d

1− 1
d 1 + 1

d

)
This gives the system:


(da2c2 − 4)(1 + d) = 0

(a2c2bd+ 4)(1− d) = 0

(a2c2b2d− 4)(1 + d) = 0

⇔



if d = −1 then

{
d = −1

a2c2b = 4

if d = 1 then


d = 1

a2c2 = 4

b2 = 1

else

{
b = −1

da2c2 = 4

The Z∗-algebras are then Z(a,1)X(2
a
,1), Z

(a,1)X(− 2
a
,1), Z

(a,−1)X(2
a
,1), Z

(a,−1)X(− 2
a
,1), Z

(a, 4
a2b2

)X(b,−1)

and Z(a,−1)X(b, 4
a2b2

). The dualizer is the identity for Z(a,1)X(2
a
,1).

� ZαHβ : The dualizer of ZH is

(
2 −1
−1 1

)
and its inverse is

(
1 1
1 2

)
. let α = (a, b) and

β = (c, d), a, b, c, d ∈ C∗. Zα and Hβ are compatible i�

c

(
1 1− d
0 d

)(
2 −1
−1 1

)
a

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)(
1 1
1 2

)
1
c

(
1 1− 1

d
0 1

d

)
This gives the system:

102

6.3. Putting thing together


a2c2(d+ 1) = 1

a2c2bd = −1

a2c2b2d2 = 1 + d

⇔


a2c2 6= 1

b = 1
a2c2−1

d = 1−a2c2
a2c2

The Z∗-algebras are Z
(a, 1

a2b2−1
)
H

(b, 1−a
2b2

a2b2
)
with a2b2 6= 1. The dualizer is the Hadamard

gate in the case a = 1 and b =
√

2.

� ZαWβ : the dualizer of ZW is

(
0 1
1 0

)
. Let α = (a, b) and β = (c, d), a, b, c ∈ C∗, d ∈ C.

Zα and Wβ are compatible i�

c

(
1 0
d 1

)(
0 1
1 0

)
a

(
1 0
0 b

)
= 1

a

(
1 0
0 1

b

)(
0 1
1 0

)
1
c

(
1 0
−d 1

)

This gives the system:

{
d = 0

a2c2b = 1
.

The Z∗-algebras are Z(a, 1
a2b2

)W(b,0). The dualizer is the NOT gate in the case a = 1 and
b = 1.

6.3.2 Essentially all Z∗-algebras

Now we have an exhaustive list of all Z∗-algebra in Lin. Now we will investigate this list in
detail. In fact, most of the calculi of this list are here because of some symmetries that are
broken by the de�nition of Z∗-algebras.

All our phase groups contain C∗× as a subgroup corresponding to �oating scalars. So given a
Z∗-algebra we can directly obtain another one by multiplying one compact structure by a scalar
and dividing the other by the same scalar. This fact appears clearly in the classi�cation when we
always see a free a in the phases of Z. We can thus classify the Z∗-algebras up to scalar setting
a = 1, this gives:

Theorem 9. The only Z∗-algebras up to isomorphism and up to scalars in Lin are, with
a, b ∈ C∗: Z(1,b)Z(1, 1

b
), Z

(1,b)Z(−1, 1
b
), Z

(1,b)Z(1,− 1
b
), Z

(1,b)Z(−1,− 1
b
), Z

(1,1)X(2,1), Z
(1,1)X(−2,1),

Z(1,−1)X(2,1), Z
(1,−1)X(−2,1), Z

(1, 4
b2

)X(b,−1), Z
(1,−1)X(b, 4

b2
), Z

(1, 1
b2−1

)
H

(b, 1−b
2

b2
)
with b2 6= 1, and

Z(1, 1
b2

)W(b,0).

We can now gather the calculus by groups. The existence of di�erent instances for the ZZ,
ZX, ZH, and ZW calculi comes from interesting commutation properties between phases of the
two algebras.

� Z(1,b)Z(1, 1
b
), Z

(1,b)Z(−1, 1
b
), Z

(1,b)Z(1,− 1
b
) and Z(1,b)Z(−1,− 1

b
) can be related to each other

using the fact that the phases are the same, so they all commutes.

103

Chapter 6. Interacting monoids

� Z(1,1)X(2,1), Z
(1,1)X(−2,1), Z

(1,−1)X(2,1) and Z(1,−1)X(−2,1) can be related to each other
thanks to what is called the π-commutation rule: (1, λ)Z ◦ (1,−1)X = λ(1,−1)X ◦ (1, 1

λ)Z
where (a, b)Z is a phase of Z and (a, b)X is a phase of X..

� Z(1
b
,b2)X(2,−1) and Z(1,−1)X(2b, 1

b2
) ⇒ are related by the Hadamard isomorphism between

X and Z and the aforementioned π commutation rule.

� Z(1, 1
b2

)W(b,0) ⇒ also relies to the π commutation rule but where the phase (1,−1)X is
expressed as the dualizer of ZW .

� Z
(1, 1

b2−1
)
H

(b, 1−b
2

b2
)
with b2 6= 1 ⇒ provides the following commutation rule: 2λ+1

λ (1, λ)Z ◦

H ◦ (1, 1
2

1
λ+1)H = (1, 2(λ + 1))H ◦ H ◦ (1, 1

λ)Z where (a, b)Z is a phase of Z, (a, b)H is a
phase of H and H is the Hadamard gate.

6.3.3 Relation to known calculi

We will now compare the calculi we obtain with the literature.

� The ZZ-calculus never has been really considered, as having two identical spiders is not
useful. However, its existence is not happenstance: in general, a Frobenius algebra would
not make a bialgebra with itself. In this case, it works as Z is a special Frobenius algebra.

� The ZX-calculus [64] corresponds to what we call ZX(2,2). This is a particular calculus
as the dualizer is trivial: both algebras have the same compact structure (up to scalars).
There are a few substantial di�erences between our calculus and the ZX-calculus. Instead
of using all possible phases in C?, the authors use phases in the unit circle. Subsequent work
[13] introduced so-called lambda boxes to restore all phases. Second, the ZX(2,2)-calculus
is a bit awkward as the two Frobenius algebras Z and X(2,2) are not isomorphic, but only
isomorphic up to a scalar. By rescaling the X algebra, we can obtain a calculus where
both algebras are dual, at the price of a slightly di�erent bialgebra rule. The isomorphism
corresponds to the Hadamard matrix; as this matrix is symmetric, we can add it to our
language without losing �exsymmetry, and we obtain this way the ZX-calculus de�ned in
[64].

� The ZW -calculus as discussed in [74, 81] is exactly what we call ZW . The calculus,
however, does not use phases on the black nodes. The original ZW -calculus introduced in
[hadzihasanovic2015diagrammatic] by the same author is slightly di�erent. Intuitively
it corresponds to a di�erent kind of graphical language where the Z and W Frobenius
algebras have been subdivided like in Chapter 5 in order to be compatible with a third
compact structure. This led to a language with two harvestmen.

� The ZH-calculus as discussed in [66] is exactly what we call ZH(
√

2,− 1
2

). However the

authors do not use phases on the white node, and use a di�erent parametrizations of the
phases on the black node. The phase they call x is what we would call the phase (1, 1−2x)H .
This makes the spider rule more awkward in their calculus.

104

Chapter 7

Entracte: Graphical Linear Algebra

�Linear algebra is the Claude Makélélé of science
and mathematics"

Pawel Sobocinski in [22]

This chapter is an introduction to a graphical language which will be used extensively in
Chapter 9 and Chapter 10. The idea is to provide a graphical language that is able to express
various parts of linear algebra in a graphical way. To do so the interpretations of diagrams
are not linear maps as expected but linear relations, an extension of linear maps in a similar
way that relations extend functions. This extension to a more exotic semantics reminds the
situation of ZX-calculus with respect to quantum circuits. The analogy can go further since
the similarity between ZX-calculus and graphical linear algebra is also present on the graphical
level. This is this similarity that will be thoroughly exploited in Chapter 9. If the connection
between the two languages is widely acknowledged by the two communities, the languages are
still evolving quite independently. The focus of the graphical algebra community is mainly to
provide semantics to more and more computational models while the ZX community is mostly
dedicated to the possible applications to various areas of quantum computing. Here I will present
how the concepts developed in Chapter 5 and Chapter 6 for quantum graphical languages also
provide some insights on graphical linear algebra. And then we will see how graphical linear
algebra can be useful in manipulated quantum graphical languages.

7.1 The language

In the same way, I introduced ZX-calculus in Chapter 3, I will present separately di�erent
components of the language and will only later provide a clear and compact axiomatization. So
for now I will refer to the graphical language of graphical linear algebra as GLA.

7.1.1 Matrices

We start by de�ning the generators of GLA that can be interpreted as linear maps and to do so
we introduce the prop MatR where R is a semi-ring.

De�nition 49 (MatR). Given a semi-ring R the monochromatic prop MatR has for arrows
n → m the matrices in Mm×n(R). The composition is given by the matrix product and the

tensor product by the direct product of matrices de�ned by A⊕B def

=

(
A 0
0 B

)
.

105

Chapter 7. Entracte: Graphical Linear Algebra

Even is both have matrices as arrows, MatC is very di�erent from Lin de�ned in chapter 3.
Informally, there is more space in Lin since the Kronecker product has a higher dimension than
the direct product. For example, there is only one scalar in MatR, the empty matrix with zero
rows and columns.

The swap generator has for interpretation:

q y
def

=

(
0 1
1 0

)
The tensor product in MatK is a product so we can de�ne a copy and erasing while this is

impossible in Lin. Those copy and erasing maps are generators of GLA de�ned as:

r z
def

=

(
1
1

)
J K def

=
(
.
)

Where
(
.
)
is the empty matrix with one column and zero rows corresponding to the unique

R-linear map R→ {0}. Those generators satisfy the equations of a co-monoid, corresponding to
the graphical language Mop we already encountered in Chapter 3.

The addition provides a monoid in MatR de�ned by:
r z

def

=
(
1 1

)
J K def

=
(
.
)

Where
(
.
)
is the empty matrix with one row and zero columns corresponding to the unique

R-linear map {0} → R.
Addition and copy together form the following graphical language.

The graphical language B of bi-algebras

Generators Bs

Equations Be

=

=

==

=

=

=

=

=

=

In fact this graphical language is complete for the prop MatN [82]. We can represent the
matrices as bipartite graphs. The matrix then corresponds to the bi-adjacency matrix of the
graph. We will represent such graphs as:

A def

= A
...

...

106

7.1. The language

A here is a m×n matrix with integer coe�cient and represents a diagram n→ m. The black
vertices are on the left and the white vertices on the right, hence the orientation of the notation.
We have the following relations:

A B ... = BA

B

A

= A⊕B

A = ... A = ...

A
...

...
= ...

...

...

A ...

A ...
A... ...

...

...
=...

...

...

A...

A...

...
...

...

A...

A...
... = A+B

The interaction with the black co-monoid corresponds to copy and erasing. The interaction
with the white monoid exactly states the linearity of A, the fact that A0 = 0 and A(x + y) =
Ax+Ay.

7.1.2 Linear relations

We will now extend the language with more generators and equations. To do so we will not work
with a general semi-ring R anymore but with a �eld K.

De�nition 50 (Linear relations). A linear relation is a relation R between two K-vector spaces
V and W such that 0 is related to 0, i.e., 0R0, and R has to be stable by addition, that is: if
xRy and x′Ry′ then x+ x′Ry + y′.

An equivalent and more compact de�nition of linear relations R : V → W is a subspace of
V ⊕W . This de�nes a prop.

De�nition 51 (LinRelK). Given a �eld K, the monochromatic prop LinRelK has for arrows
n→ m the linear relations Kn → Km.

We can now de�ne the full graphical language GLA.

The graphical language GLA of graphical linear algebra

107

Chapter 7. Entracte: Graphical Linear Algebra

Generators GLAs

Equations GLAe

=

=

=

==

=

=

=

=

=

=

=

=

=

=

=

=

=

= =

=

=

= =

=

=

= =

=

=

==

= =

=

= =

==

=

kk

∀k > 0,

k k= =

Where the k stands for k wires in parallel. I gave here a huge set of equations that provide
a good idea of the admissible rules and the di�erent symmetries that the language enjoys. Of
course, this set is not optimal, and more compact presentations have been given in [19] or [22].
The spider notation can reduce it, even more, this will be the object of a later section.

We see that the language feature an antipode 1 → 1 and two special Frobenius algebras
whose spiders have for interpretations:

108

7.2. In hindsight

r
......
z

def

= {((x, · · · , x), (x, · · · , x)) , x ∈ Q}

r
......
z

def

=

{
(−→x ,−→y) ,

∑
i
xi =

∑
j
yj

}
J K def

= {(x,−x) , x ∈ Q}

q y
def

= {((x, y), (y, x)) , x, y ∈ Q}

J K def

= {((x, x), 0) , x ∈ Q}

J K def

= {(0, (x, x)) , x ∈ Q}

where −→x def

= (x1, · · · , xn) and −→y def

= (y1, · · · , ym). Here we also gave the interpretation of the
swap and of the compact structure corresponding to the black spider.

This language have been shown to be complete for LinRelQ [19]. We can obtain a graphical
language complete for LinRelF2 , where F2 is the �eld with two elements, by setting:

=

And then the in�nite family of equations indexed by k is redundant in this case.

7.1.3 Properties

We state here numerous properties of linear relations that can be expressed purely graphically
using graphical linear algebra.

A A ... = ...A = ... ⇔⇔A is injective

A A ... = ...A = ... ⇔⇔A is surective

We see here that the linear relations allow us to de�ne backward matrices that do not in
general correspond to linear maps. In general, the behaviours of those di�erent kinds of diagrams
are governed by the extremely powerful matrix interaction equation:

C D ...= ⇔ Im

(
C
D

)
= Ker

(
A B

)
A B ...

There is a lot more that can be expressed using graphical linear algebra but we will not need
more for the application to quantum computing of Chapter 9 and 10. I invite the interested
reader to look at the references given at the beginning of this chapter.

7.2 In hindsight

Now that we have de�ned GLA we will see how the concepts introduced in Chapter 5 and 6 can
shed new light on this graphical language.

109

Chapter 7. Entracte: Graphical Linear Algebra

7.2.1 Simpli�cations

The presentation we gave of GLA is clearly not the more compact. It has been shown in [22]
how to reduce dramatically the number of equations. The antipode can be derived as a dualizer
between the black and white compact structure. We can gather the equations de�ning the two
Frobenius algebras with the spider convention. This gives a simpli�ed presentation.

The graphical language GLA of graphical linear algebra

Generators GLAs

......

Equations GLAe

=

=

==

=

=

= =

=

=

=

=

=

=

=

=

...

... ...

......

=

... ...

......

=

kk

∀k > 0,

k k= =

In this form, the structure of graphical linear algebra appears very similar to the graphical
calculus based on Z∗-algebras. We will investigate this similarity further.

7.2.2 Flexsymmetric graphical linear algebra

Graphical linear algebra has a compact structure and features two Frobenius algebras. It is
natural to try to axiomatize it in �exsymmetric way. In fact, this can be done in a very similar
way to the graphical Abelian group algebra example of Chapter 5.

The white spiders are �exsymmetric up to the dualizer . Softening them gives an harvest-
men de�ned as def

= , with interpretation:

r
......
z

=

{
(−→x ,−→y) ,

∑
i
xi +

∑
j
yj = 0

}

we see directly in the interpretation how softening has broken the asymmetry between inputs
and outputs. One has then a complete �exsymmetric graphical language.

110

7.2. In hindsight

The �exsymmetric graphical language GLA of graphical linear algebra

Generators GLAs

......

Equations GLAe

...

......

......
=

... ...

......
...

... ...

......

=
...

...

...

...

= =

= = = =

∀k > 0,

kk = = kk

The reduction of the number of axioms seems radical but a lot of the original rules are in
fact hidden into the spider convention or redundant under �exsymmetry.

7.2.3 As a Z∗-algebra

In its �exsymmetric form GLA clearly appears as a model of Z∗-algebra in LinRelQ. In fact,
we can prove that it is the only interesting Z∗-algebra there.

It turns out that there are only two monoids in LinRelK, and they are not isomorphic: the
monoid given by the subspace {(x, x, x), x ∈ K} and the monoid given by {(x, y, x+y), x, y ∈ K}.
Their respective phase groups are both trivial. Both these monoids, which we call B and N ,
actually happen to have Frobenius algebra structures. We then also have two co-monoids B and
N

Lemma 11. There are only four Z∗-algebras in LinRelK: BB, NN , BN and NB.

As these are the only potential candidates, we just have to check that they indeed give
Z∗-algebras.

Proof. We start by showing that N and B are the only monoids and that their phase groups are
trivial.

A subspaceM ofK3 is unital i� ∃u ∈ K, ∀x, y ∈ K, ((u, x, y) ∈M ⇔ x = y)∧((x, u, y) ∈M ⇔ x = y).

The trivial subspaces {0, 0, 0} and K3 don't satisfy this property.

111

Chapter 7. Entracte: Graphical Linear Algebra

IfM is of dimension one then there is a vector (a, b, c) such that ∀x, y, z ∈ K, (x, y, z) ∈M ⇔
∃λ ∈ K, (x, y, z) = (λa, λb, λc).

If M has a unit u, given an x ∈ K we have (x, u, x) ∈M and then ∃λK, x = λa, u = λb, x =
λc). We know that λ 6= 0 else all triples (x, u, y) would be in M . This gives a = c, by symmetry
we have also b = c. The only unital subspace of dimension one is N . It is also associative and
thus is a monoid.

If M is of dimension 2 then there is a vector (a, b, c) such that ∀x, y, z ∈ K, (x, y, z) ∈ M ⇔
∃λ ∈ K, ax+ by + cz = 0.

If M has a unit u, given any x ∈ K we have (x, u, x) ∈ M and then ax+ bu+ cx = 0. This
gives bu = 0 and c = −a. By symmetry we also have au = 0 and c = −b. If a = b = c = 0 then
all triple would be in M . We deduce that a = b = −c 6= 0 and u = 0. The only unital subspace
of dimension 2 is µB. It is also associative and thus is a monoid.

Finally B and N are the only monoids in LinRelK.

Now let α be a phase of µN , if (x, y) ∈ α then the phase's de�nition gives us that x = y, so
α = id or α = (0, 0) the only invertible possibility is id. Now let β be a phase of µB, if (x, y) ∈ α
then the phase's de�nition gives us that for all z ∈ K (x+ z, y + z) ∈ α, thus α = id or α = K2

the only invertible possibility is id. So both phase groups are trivial.

So there is only one compact structure making respectively B and N �exsymmetric. So BB,
NN , BN , and NB are the only candidates and we can check that they form Z∗-algebras.

BB and NN are trivial in the sense that they arise from special Frobenius algebras. BN is
just a dual version of NB obtained by transposing everything, therefore the graphical calculi of
[83], corresponding to BN , is essentially the only Z∗-algebra for this prop.

7.3 Models in Lin

It is now clear that quantum graphical languages share strong bonds with graphical linear algebra.
In this section, we will look at how direct this connection can be made by looking for models of
GLA. More precisely we will look at prop morphisms B→ Lin. Those models will be extremely
useful in Chapter 9 and 10 where we will use them to describe in a compact way huge graphical
structures.

The main idea is that each time we have a bi-algebra then the bipartite graphs obtained from
this model correspond to matrices the semi-ring (N,+,×).

However, in general, our interpretation B→ Lin will not be injective, and then two di�erent
integer matrices denote two bipartite graphs that are in fact equivalent in Lin. Sometimes,
this quotient happens in a very nice way that only amounts to look at matrices over another
semi-ring, but weirder behaviours are also possibles. Thus we will proceed as follows, �rst, we
will look at the 1 × 1 matrices, this will give us a �rst quotient allowing us to denote bipartite
graphs by matrices over a semi-ring which is a quotient of (N,+,×). Then, we will check if this
is enough, meaning that two di�erent matrices over this semi-ring correspond to bipartite graphs
that are not equivalent in Lin.

112

7.3. Models in Lin

A basis of C2n is denoted by the |x〉 where x is a binary word of size n. ei is the binary
word with 0 everywhere except in the ith coordinate where it is 1. The three bi algebras we will
consider all share the same co-monoid de�ned by:

r z
=


1 0
0 0
0 0
0 1

 and J K =
(
1 1

)
.

7.3.1 ZW

We start by the most ill behaved example. The ZW bi-algebra gives a model of B, it is de�ned
by:

r z
=

(
1 0 0 0
0 1 1 0

)
and J K =

(
1
0

)
.

Looking at the 1 × 1 matrices, we have = . Thus, we are working

with matrices over the semi-ring (N,+,×)
/

(2 = 3) . However, not all {0, 1, 2}-matrices have a

distinct interpretation. If A is a {0, 1}-matrix then A|ej〉 = |Aj〉, but if A has a 2 in the jth
column then for all x such that xj = 1 we have A|x〉 = 0. We cannot distinguish the coe�cients
in a column with a 2. So the bipartite graphs correspond to matrices with only {0, 1}-coe�cients
except in some columns which are full of 2s. We see that it seems that we can't do a lot by using
graphical linear algebra inside of the ZW-calculus. Happily, we will be luckier with ZH and ZX.

7.3.2 ZH

The ZH bi-algebra gives a model of B, it is de�ned by:

r z
=

(
1 1 1 0
0 0 0 1

)
and J K =

(
1
0

)
.

Looking at the 1×1 matrices, we have = , which essentially means �2 = 1�. As a

consequence, we are working with matrices over the semi-ring (N,+,×)
/

(2 = 1) . This is exactly

the boolean semi-ring (∨,∧). There is no more quotienting since A|ej〉 = |Aj〉 where Aj is the
jth column of A. All bipartite graphs corresponding to {0, 1}-matrix are then di�erent. Here
we have an interesting model of B that allows to consider matrices over the boolean semi-ring
inside of the ZH-calculus. Those are the yellow arrows that will be introduced in Chapter 9.

7.3.3 ZX

The ZX-calculus is clearly the quantum graphical language sharing the most with graphical
algebra. The connection can be made by looking at GLAF2 where F2 is the �eld with two
elements [21].

The ZX bi-algebra is de�ned by:

r z
=

(
1 0 0 1
0 1 1 0

)
and J K =

(
1
0

)
.

113

Chapter 7. Entracte: Graphical Linear Algebra

Looking at the 1× 1 matrices, we have = . We are working with matrices

over the semi-ring (N,+,×)
/

(2 = 0) . This is the �eld F2. We can see F2 as the set 2 equipped

with the XOR sum ⊕. There is no more quotienting since A|ej〉 = |Aj〉. All {0, 1}-matrices have
a distinct interpretation. Those are the red arrows of Chapter 9.

In ZX, we can have a common compact structure making at the same time Z and X �exsym-
metric, which is not the case for ZH or ZW. So we can also represent the backward matrices by
transposing and hence any linear relation. However, we now have to be extremely careful since
in our version of ZX-calculus the spider are only special up to a scalar, i.e., they satisfy:

6==

This implies that we don't really obtain a prop morphism GLA→ Lin but a prop morphism
GLA → Lin /scal where Lin /scal is the prop Lin quotiented by identifying all the non zero
scalars to 1. One could speak of a projective model.

This interpretation of linear relations in ZX-calculus can be summarized by a modi�ed version
of the matrix interaction equation able to handle scalars:

C D ...=A B ...

(F)k

⇔ Im

(
C
D

)
= Ker

(
A B

)
Where k

def

= dim

(
Ker

(
C
D

))
and JFK = 1√

2
. Here the boxes represent red/green bipartite

graphs in ZX-calculus. We will come back to this way to see linear relation inside the ZX-calculus
in details later in Chapter 8.

114

Part III

Add-ons

115

Chapter 8

The Discard Construction

Nan, mais j'assume. Moi j'aime bien.a

aI take full responsibility, I like that.

Simon Perdrix on drawing grounds [84]

While pure quantum evolutions correspond to linear maps over Hilbert spaces, probability
distributions over quantum states as well as some quantum evolutions like measuring a quan-
tum system can be represented by means of density matrices and completely positive maps.
The category of completely positive maps has been already studied [85], and in particular, the
connection between the pure and mixed state approaches is a central question in categorical
quantum mechanics. Selinger introduced a construction called CPM to turn a category for pure
quantum mechanics into a category for density matrices and completely positive maps [16]. An-
other approach to relate pure quantum mechanics to the general one is the notion of environment
structure [86, 87, 88]. The CPM-construction and the environment structure approaches have
been proved to be equivalent [87]. In [89] completely positive maps are represented by doubling
the wires, this can be seen roughly as another way to present the CPM-construction.

In terms of graphical languages, the environment structure approach cannot be used in a
straightforward way to extend a graphical language beyond pure quantum mechanics. Roughly
speaking the environment structure approach provides second-order axioms which associate with
any equation on arbitrary (non necessarily pure) evolutions an equivalent equation on pure
evolutions. Such a second-order axiom cannot be easily handled by an equational theory on
diagrams. Regarding the CPM-construction, the main property which has been exploited in
[89] is that CPM(C) is essentially a subcategory of C. Thus one can use a graphical language
that has been designed for C in order to represent morphisms in CPM(C): Given a complete
graphical language for C, we can use a subset of the pure diagrams to represent the evolutions in
CPM(C). The main caveat of this approach is that this subset is not necessarily closed under the
equational theory on pure diagrams, and as a consequence does not provide a complete graphical
language for CPM(C).

In [90], it was shown that the category CPTP of completely positive trace-preserving maps
is the universal monoidal category with a terminal unit and a functor from the category of
isometries. In this chapter we build upon this result by introducing a new construction, the
discard construction, which transforms any †-symmetric monoidal category into a symmetric
monoidal category equipped with a discard map. Roughly speaking this construction consists
of making any isometry causal. Indeed, in quantum mechanics, the isometries (linear maps U
such U † ◦U = I) are known to be causal, i.e., applying U and then discarding the subsystem on

117

Chapter 8. The Discard Construction

which it has been applied is equivalent to discarding the subsystem straight away. Speci�cally,
the discard construction proceeds as follows: �rst, the discard is added to the subcategory of
isometries, making the unit of the tensor a terminal object in this subcategory, as pointed out
in [90]. Then the discard construction is obtained as the push-out of the resulting category and
the original one.

The discard construction does not always produce an environment structure for the original
category, and thus is not equivalent to the CPM construction in general. However, a necessary
and su�cient condition for the two constructions to be equivalent is that the initial category
has enough isometries. We will see that most of the categories usually used in the context of
categorical quantum mechanics, like Lin, Stab or Rel, do have enough isometries. However
Cli�ord+T does not.

The discard construction also provides a simple recipe to extend the equational theory of
ZX-calculus into a complete axiomatization for mixed-state quantum mechanics.

This chapter has some speci�cities compared with the others. We will here work with the
general symmetric strict monoidal categories introduced in Chapter 0 instead of props. Also,
we will not see our extension as a paradigm since the notion of paradigm presented in Chapter
4 is too weak for this construction. Furthermore, I will exceptionally use the top to bottom
convention to write string diagrams.

8.1 Mixed state categorical quantum mechanics

In Chapter 2 we have introduced pure quantum mechanics where all evolutions are isometries.
In such a model the measurement process cannot be represented since it requires classical non-
determinism. In other words, we would need the possibility to consider probabilistic combinations
of qubits and the associated stochastic quantum map. Such a model, which is the reunion of
classical and quantum is achieved by the density matrix representation.

8.1.1 Density matrices

We will extend the model of quantum computation de�ned in Chapter 2.

De�nition 52. Density matrices A mixed state will be represented by a matrix ρ inM2×2(C)
which is required to satisfy ρ† = ρ, tr(ρ) = 1 and must be positive semi-de�nite, in other
words for any x ∈ C2 we must have x†ρx ≥ 0. Such matrix ρ is called a density matrix.

Given a quantum state |φ〉 we obtain the corresponding density matrix by multiply it with
its dagger:

|φ〉 7→ |φ〉 〈φ|

To obtain the density matrix for a probabilistic mixture of the qubits |xi〉 occurring respec-
tively with probability pi such that

∑n
i=1 pi = 1, we take the convex sum of the density matrices

corresponding to each qubits :
∑n

i=1 pi |xi〉 〈xi|. It can be checked that this satis�es the properties
of a density matrix.

Conversely, any density matrix can be written in this form. So density matrices exactly
correspond to probabilistic mixtures of qubits.

Composite systems are de�ned by taking the Kronecker product of density matrices. A
quantum process is then naturally de�ned as a linear map sending density matrices to density
matrices, that is a trace-preserving positive linear map. But this is not su�cient, sadly, being

118

8.1. Mixed state categorical quantum mechanics

positive is not stable by tensor product. So we restrict to the trace-preserving positive maps φ
such that for all k ∈ N, φ ⊗ idMk×kC is positive. We call them trace preserving completely

positive maps or CPTP maps and they are stable by tensor product. So we can de�ne a
prop.

De�nition 53 (CPTP). The monochromatic prop CPTP has for arrows n → m the trace
preserving completely positive linear mapsM2n×2n(C)→M2m×2m(C). The tensor product being
the usual tensor product of linear maps.

In the same way that Lin generalizes Qub we can de�ne a generalization of CPTP by
dropping the trace-preserving condition.

De�nition 54 (CPM). The monochromatic prop CPM has for arrows n→ m the completely
positive linear maps M2n×2n(C) → M2m×2m(C). The tensor product being the usual tensor
product of linear maps.

Given a linear map V : C2n → C2m we can de�ne a completely positive map:

ρ 7→ V ρV †

Such maps are called pure and provide a prop morphism Lin→ CPM. If V is an isometry
then we obtain a CPTP maps and then a prop morphism Qub → CPTP. Some completely
positive maps are not pure. An example is given by the trace:

ρ 7→ tr(ρ)

This map is extremely important, we call it the discard map and denote it by a ground:

J K def

= ρ 7→ tr(ρ)

In fact, in a sense, the discard map is the source of all impurity. The Stinespring dilation
theorem tells us that any completely positive map is the composition of a pure map and a discard
map.

Theorem 10 (Stinespring dilation theorem). Given any completely positive linear map φ :

M2n×2n(C) → M2m×2m(C) we can �nd a linear map V : C2n → C2k+m such that φ is of the
form:

φ(ρ) =

(
M

2k×2k
(C)

⊗ idM2m×2m (C)

)
(V ρV †)

Furthermore, V is unique up to isometries, that is, if another linear map V ′ : C2n → C2k
′+m

satis�es the same property then (up to exchanging V and V ′) there is an isometry K : C2k → C2k
′

such that (idC2m ⊗K) ◦ V = V ′.

119

Chapter 8. The Discard Construction

8.1.2 Dagger compact closed categories

The structure of Hilbert spaces can be abstracted with category theory. A † strict symmetric
monoidal category (†-SMC) C is a strict symmetric monoidal category with an i.o.o. (identity
on objects) involutive and contravariant SMC-functor (.)† : C → C. That is, every morphism
f : A→ B has a dagger f † : B → A such that f †† = f . Moreover the dagger respects the swaps
σ†A,B = σB,A. The dagger is a central notion in categorical quantum computing and can be used
to de�ne speci�c properties of morphisms:

De�nition 55. f : A→ B is an isometry if f † ◦ f = idA, i.e.,
f

f†
= .

Most of the categories we will consider are furthermore compact closed: A dagger compact
category (†-CC) is a †-SMC where every object A has a dual object A∗ such that for all objects
A, there are two morphisms A A∗ : A⊗A∗ → I and AA∗ : I → A∗ ⊗A satisfying:

= A
A

A
A∗ , = A∗

A∗

A∗
A and (A A∗)† =

A∗

A∗

A

A
.

Together with Qub, Lin, CPM and CPTP we will also consider the prop Stab and
Cli�ord+T. Stab is the sub-prop of Lin which is �nitely generated by the Cli�ord opera-
tors: H, S, CNot, the state |0〉, the projector 〈0|, and the scalar 2 where:

H = 1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
CNot =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |0〉 =

(
1
0

)
〈0| = (1 0)

Those are amongst the most commonly used gates in quantum computation (see [91] for

details). Clifford+T is the same as Stab but with the additional generator T =

(
1 0

0 ei
π
4

)
.

The morphisms of Clifford+T are exactly the matrices with entries in the ring Z[i, 1√
2
] [92].

Contrary to Stab, Clifford+T is approximately universal in the sense of Chapter 2.

8.1.3 CPM construction and environment structures

Connecting the pure quantum mechanics and mixed state quantum mechanics is a central ques-
tion in categorical quantum mechanics. Selinger pointed out that any †-CC for pure quantum
mechanics can be turned into a category for density matrices and completely positive maps via
the CPM construction [16]:

De�nition 56. Given a †-CC C, let CPM(C) be the †-CC with the same objects as C such that

CPM(C)[A,B] =

 f

A

B

f∗
A∗

B∗C C∗

, f ∈ C[A,B ⊗ C]

, where g∗
A∗

B∗

g†
B

A

:=
A∗

B∗
.

Applying it to Lin one obtains the category CPM of completely positive maps. The CPM
construction can also be applied to Stab and Clifford+T. Notice that the CPM construction
has been then extended to not necessarily compact categories [87].

Another approach to relate pure quantum mechanics to the general one is the notion of
environment structure [86, 87, 88]. The notion of puri�cation is central in the de�nition of

120

8.2. Discard construction

environment structure. Intuitively, it means that (1) there is a discard morphism for every
object; (2) any morphism can be puri�ed, i.e., decomposed into a pure morphism followed by a
discarding map, and (3) this puri�cation is unique up to a certain equivalence relation. More
formally:

De�nition 57. An environment structure for a †-CC C is a CC C with the same objects as C,
an i.o.o SMC-functor ι : C→ C and for each object A a morphism A : A→ I such that:

(1)
I

= 1I , and for all A,B : C,
A
⊗

B
=

A⊗B
.

(2) For all f : A→ B in C, there is an f ′ : A→ B ⊗X in C such that: f = ι(f ′)

(3) For any f : A→ B ⊗X and g : A→ B ⊗ Y in C: f ∼cp g ⇔ ι(f) = ι(g)

where the relation ∼cp is de�ned as: f ∼cp g ⇔
f

f †
=

g

g†

Notice that ∼cp is technically not a relation on morphisms but on tuples (A,B,X, f) with
f ∈ C[A,B ⊗ X]: (A,B,X, f) ∼cp (C,D, Y, g) if A = C,B = D and f, g satisfy the graphical
condition represented above. By abuse of notation, we write f ∼cp g, as the other components of
the tuple will be usually obvious from context. We will do the same for our relation ∼iso latter.

CPM is actually an environment structure for the category Lin, and more generally for any
†-CC C, CPM(C) is an environment structure for C and conversely any environment structure
for C is equivalent to CPM(C) [87]. Actually one can notice that CPM(C)[A,B] is nothing but
the set of equivalence classes of ∼cp.

8.2 Discard construction

We introduce a new construction, the discard construction, which consists in adding a discard
map for every object of a †-SMC, and thus intuitively transforming a category for pure quantum
mechanics into a category for general quantum evolutions.

Causality is a central notion in quantum mechanics which has been axiomatised using a dis-

card map as follows [93]: f : A→ B is causal if and only if f = . Amongst the pure quantum

evolutions, the isometries are causal evolutions. The discard construction essentially consists in
making any isometry causal. Thus, whereas the CPM construction relies on completely positive
maps and the environment structures on the concept of puri�cation, the discard construction
relies on causality.

8.2.1 De�nition

We introduce the new construction in three steps. First, given a †-SMC, one can consider its
subcategory of isometries:

De�nition 58. Given a †-SMC C, Ciso is the subcategory with the same objects as C and
isometries as morphisms, i.e., for all A,B : C, Ciso[A,B] = {f : C[A,B], f † ◦ f = 1A}.

121

Chapter 8. The Discard Construction

Notice that Ciso is an SMC but usually not a †-SMC. Any †-SMC-functor F : C → D
between two †-SMC can be restricted to their subcategories of isometries leading to an SMC-
functor Fiso : Ciso → Diso. Thus there is a restriction functor iso : †-SMC → SMC. Note
that this functor preserves fullness and faithfulness. One always has an inclusion i.o.o. faithful
SMC-functor: iiso : Ciso → C.

In quantum mechanics, isometries are causal evolutions, i.e., applying an isometry and then
discarding all outputs is equivalent to discarding the inputs straight away. As pointed out
in [90], adding discard maps to the category of isometries would make I a terminal object.
Such a category is said to be a�ne symmetric monoidal category (ASMC). We de�ne the a�ne
completion of an SMC:

De�nition 59. Given an SMC C, we de�ne C! as C with an additional morphism !A : A→ I
for each object A : C. We denote the functor i! : C → C! which is strict monoidal and i.o.o.
We further impose that 1I = !I , and that for all f : C[A,B], !B ◦ i!(f) = !A. This makes I a
terminal object in C!, and thus C! is an ASMC.

Notice by the way that !A ⊗ !B = 1I ◦ (!A ⊗ !B) = !I ◦ (!A ⊗ !B) = !A⊗B. Again
given a functor F : C → D, one can de�ne a functor F ! : C! → D! by F !(!A) = !i!(F (A))

and F !(f) = i!(F (f)) for the other morphisms. In [90], Huot and Staton show that CPTPM,
the category of completely positive trace-preserving maps, is equivalent to Lin !

iso, thus giving a
characterisation of it via a universal property. We extend this idea to non-trace preserving maps
by proceeding to a local a�ne completion of the subcategory of isometries.

We de�ne the category C as the pushout of C and C !
iso:

De�nition 60. Given a †-SMC C, C is de�ned as the pushout in the category of a symmetric
monoidal categories:

Ciso

C !
iso

C

C

iiso

i!

ι
C !

iso

ιC

The existence of this pushout follows from the fact that the forgetful functor from strict sym-
metric monoidal categories to categories StrictSymMonCat → Cat preserves co-equalizers,
and from [94, Theorem 9.3.9]. As all our functors are i.o.o., we can also describe it simply combi-
natorially. The objects of C are the same as C. Its morphisms are equivalence classes generated
by formal composition and tensoring of morphisms in C !

iso and C. The equivalence relation is
generated by the equations of both categories augmented with equations i!(f) = iiso(f) for all
f in Ciso. The functors ιC and ι

C !
iso

are the natural ways to embed C and C !
iso. We will see

those formal compositions as string diagrams whose components are morphisms of C and C !
iso

wired to each other. Two diagrams represent the same morphism if we can rewrite one into the
other applying the equations of both categories and i!(f) = iiso(f) for all f in Ciso. This forms
a well-de�ned SMC.

Since the only morphisms in Ciso which are not identi�ed with the morphisms of C are those
that contain !A, we can see C as C augmented with discard maps which delete isometries. A
more detailed description of pushouts of props can be found in [95].

De�nition 61. The discard map on an object A is de�ned in C by
A

def

= ι
C !

iso

(!A).

122

8.2. Discard construction

Notice, that for any isometry f : A→ B in C , f = , thus any isometry is causal.

8.2.2 Enough isometries

In order to compare the C construction with environment structures and the CPM construction
we need to study in detail the puri�cation process in C . First notice that any morphism of C
admits a puri�cation:

Lemma 12. Let C be a †-SMC. For all f : C [A,B], there is an X : C and an f ′ : C[A,B⊗X]

such that f = ιC(f ′).

Proof. Given any morphism f : C [A,B], we take a diagram representing it. Using the naturality
of the symmetry we obtain an equivalent diagram in C where all the discards have been pushed

to the bottom right: f ′′ . There are no discards among the components of the part f ′′ of

this diagram. So it represents a morphism in the range of ιC and then there is an f ′ : C[A,B⊗X]
such that:

f = ιC(f ′)

In other words, f ′ is a puri�cation of f .

The puri�cation needs not to be unique, however, it satis�es an essential uniqueness condition.
To state it we de�ne the relation ∼iso.:

De�nition 62. Let C be a †-SMC, and two morphisms f : A→ B⊗X, g : A→ B⊗Y . f ∼iso g

if there are two isometries u : X → Z and v : Y → Z, such that
f

u =
g

v .

Notice that the relation ∼iso is not transitive, thus we consider ∼+
iso its transitive closure to

make it an equivalence relation. It is easy to show that if f ∼+
iso g then f and g purify the same

morphism of C . The converse is also true:

Lemma 13. For all f : A→ B ⊗X and g : A→ B ⊗ Y : f ∼+
iso g ⇔ ιC(f) = ιC(g)

Proof of Lemma 13.

(⇒) It is enough to show f ∼iso g ⇒ ιC(f) = ιC(g) since equality is transitive.

f ∼iso g ⇔ there are two isometries u : X → Z and v : Y → Z such that
f

u
=

g

v

and then:

123

Chapter 8. The Discard Construction

f

u
=

g

v
⇒

ιC(f)

ιC(u)
=
ιC(g)

ιC(v)

⇒
ιC(f)

ιC(u)
=
ιC(g)

ιC(v)
⇒ ιC(f) = ιC(g)

(⇐) We have ιC(f) = ιC(g) in C . To do the proof, we will have to go back to the de�nition

of the category C as a pushout. Recall that two terms are equal if one can rewrite one
into the other using the equations de�ning C .

We can assume that, among those steps, the only one involving discards are isometry
deletion/creation. Diagrammatically this amounts to saying that the discards are never
moved, in fact, one can always move the other morphisms to make them interact with the
discards.

Doing this, we ensure that all intermediary diagrams in the chain of equations are of the

form ιC(k) for some k. Therefore, to prove the result for a chain of equations of arbitrary

size, it is enough to do it just for one step of rewriting.

Consider then this step of rewriting. There are two cases. Either we have used an equation
which, by identi�cation, can be seen as an equation of C, that is which involves no discards.
Then by functoriality of ιC we recover that f = g and therefore f ∼iso g. Or the equation
involves a discard which has deleted an isometry u. Then one of the upper part, let's say

ιC(f), can be written ιC(f) =
ιC(g)

u
. But u being an isometry, there exists u′ in C

such that ιC(u′) = u. Hence, we have f =
g

u′
in C. It follows that f ∼iso g.

So the puri�cation is unique up to ∼+
iso. Lemma 13 also gives an alternative de�nition of C

which relates more easily to the CPM construction. It is the same construction as CPM with
∼cp replaced by ∼+

iso. In other words C [A,B] is the set of equivalent classes of ∼+
iso.

As we have introduced a new discard construction, a natural question is whether C is an
environment structure for C. To be an environment structure, three conditions are required.
The �rst two are satis�ed: C has a discard morphism for every object and every morphism can
be puri�ed. The third one is the uniqueness of the puri�cation: according to the de�nition of
the environment structures, f and g purify the same morphism if and only if f ∼cp g whereas

124

8.2. Discard construction

according to Lemma 13, f and g purify the same morphism if and only if f ∼+
iso g. As a

consequence C is an environment structure for C if and only if ∼cp=∼+
iso. It turns out that

one of the inclusions is always true:

Lemma 14. For any †-SMC category C, we have ∼+
iso⊆∼cp.

Proof of Lemma 14. Since ∼cp is transitive it is enough to show that ∼iso ⊆ ∼cp. Let f : A →
B⊗X and g : A→ B⊗Y s.t. f ∼iso g. Then there are two isometries u : X → Z and v : Y → Z

such that
f

u
=

g

v
and then:

f

f †
=

f

f †

u

u†
=

g

g†

v

v†
=

g

g†

So f ∼cp g.

As a consequence, if ∼cp 6=∼+
iso, it means that there are some morphisms f, g that are equal

in ∼cp but cannot be proved equal in ∼+
iso. Intuitively it means that the category has not enough

isometries to prove those terms equal, which leads to the following de�nition:

De�nition 63. A †-SMC category C has enough isometries if the equivalence relations ∼cp and
∼+

iso of C are equal.

Lemma 15. Given a †-SMC C, the following properties are equivalent:

1. C has enough isometries;

2. C is an environment structure for C;

3. C ' CPM(C).

Proof of Lemma 15. [(1) ⇔ (2)] First C has the same object as C and ιC : C → C is a
SM-functor. We need to check the three conditions hold:

• Since ι
C !
iso

is strict monoidal one has:

I
= ι

C !
iso

(!I) = ι
C !
iso

(idI) = idI

A
⊗

B
= ι

C !
iso

(!A)⊗ ι
C !
iso

(!B) = ι
C !
iso

(!A ⊗ !B)

= ι
C !
iso

(!A⊗B) =
A⊗B

So the �rst condition is satis�ed.

• The second condition is Lemma 12.

125

Chapter 8. The Discard Construction

• According to Lemma 14, ∼+
iso ⊆ ∼cp, thus the third condition is satis�ed if and only if ∼cp

⊆ ∼+
iso.

[(1)⇔ (2)] Direct consequence of the fact that D is an environment structure for C i� D is
equivalent to CPM(C) [87].

Notice that if C has enough isometries, the discard construction provides a de�nition of
CPM(C) via a universal property. This gives a more direct way to build the environment,
avoiding to deal with the equivalence classes of the CPM construction.

The notion of environment structures has also been generalised to the non-compact case [87].
Even if our construction does not require a compact structure, we chose here to focus on the
compact case for two reasons. First, for now, the relation of our construction with environment
structures is only clear with this hypothesis. Second the CP∞ construction of [87] leads to a
degenerate category when applied on the subcategory of isometries in Lin, this suggests that
there might not have general connections between our construction and CP∞.

Let's focus for a moment on the category Causal CPM(C) of causal maps, that is the sub-
category of maps cancelled by the discards in CPM(C). We have that: ∼cp⊆∼+

iso⇒ C !
iso '

Causal CPM(C). In fact by Lemma 15, CPM(C) ' C , and then the subcategory Causal CPM(C)
is equivalent to the subcategory of maps cancelled by the discards in C which is equivalent to
C !

iso. Causal CPM(Lin) being exactly CPTP, we have recovered the result of [90].
We consider the usual subcategories of Lin used for pure quantum mechanics and show in

each case whether the discard construction produces an environment structure or not. First of
all, thanks to the Stinespring dilation theorem, Lin is not only an environment structure for
Lin, but the relation ∼iso is also transitive in this case:

Proposition 7. Lin is an environment structure for Lin. Furthermore ∼+
iso=∼iso.

Proof. Let f : A→ B⊗X and g : A→ B⊗Y be two linear maps such that f ∼cp g. By de�nition:

f

f †
=

g

g†
. It follows that the two superoperators ρ 7→ trX(f †ρf) and ρ 7→ trY (g†ρg) are equal

and then by the Stinespring dilation theorem (see for example [90]), there are isometries u and

v such that
f

u
=

g

v
. In other words f ∼iso g. This shows that ∼cp⊆∼iso which is even

stronger than having enough isometries. From Lemma 14 it follows that ∼+
iso⊆∼iso.

Such property is also true of the category Rel of sets and relations, giving an alternative
description to the category CPM(Rel) studied in [96] and [97].

Proposition 8. Rel is an environment structure for Rel. Furthermore ∼+
iso=∼iso.

Proof. We just have to show that ∼+
iso⊆∼iso in Rel. R : A → B is an isometry in Rel i�

∀(x, y) ∈ A×A:

∃z ∈ B, (x|z) ∈ R ∧ (y|z) ∈ R ⇔ x = y

In other words, R must be total and injective in the relational sense. Given two relations
F : A→ B × C and G : A→ B ×D we have F ∼+

iso G i� ∀(a, b, a′, b′) ∈ A×B ×A×B:

126

8.2. Discard construction

∃c ∈ C, (a|b, c) ∈ F ∧ (a′|b′, c) ∈ F ⇔ ∃d ∈ D, (a|b, d) ∈ G ∧ (a′|b′, d) ∈ G

We denote F|c = {(a, b) ∈ A × B, (a|b, c) ∈ F} and G|d = {(a, b) ∈ A × B, (a|b, d) ∈ G}.
Given two relations F : A → B × C and G : A → B ×D we have F ∼iso G i� there exists two
isometries U : C → H and V : D → H such that: ∀(a, b, h) ∈ A×B ×H:

∃c ∈ C, (a|b, c) ∈ F ∧ (c|h) ∈ U ⇔ ∃d ∈ D, (a|b, d) ∈ G ∧ (d|h) ∈ V

Let F : A → B × C and G : A → B × D be two relations such that F ∼+
iso G. We de�ne

two relations U : C → {0, 1} × C ×D × A× B and V : D → {0, 1} × C ×D × A× B as: forall
(c, c′, d, d′, a, b) ∈ C × C ×D ×D ×A×B,

(c|0, c′, d′, a, b) ∈ U ⇔ c = c′ ∧ F|c = ∅
(c|1, c′, d′, a, b) ∈ U ⇔ c = c′ ∧ (a|b, c′) ∈ F

and:

(d|0, c′, d′, a, b) ∈ V ⇔ d = d′ ∧ G|c = ∅
(d|1, c′, d′, a, b) ∈ V ⇔ d = d′ ∧ (a|b, d′) ∈ G

U and V are isometries. We only show it for U , the case of V being perfectly symmetric.
Given (c, i, c′, d, a, b) ∈ C × {0, 1} × C ×D × A× B, (c|i, c′, d, a, b) ∈ U implies by construction
that c = c′. So U is injective. Given any c ∈ C, if F|c = ∅ then: (c|0, c, d, a, b) ∈ U for all
(d, a, b) ∈ D × A × B. Else, if F|c 6= ∅ then there is (a, b) ∈ A × B such that (c|1, c, d, a, b) ∈ U
for all d ∈ D. So U is total.So U is an isometry.

Given (a, b, i, c′, d′, a′, b′) ∈ A×B × {0, 1} × C ×D ×A×B, we need to prove:

∃c ∈ C, (a|b, c) ∈ F ∧ (c|i, c′, d′, a′, b′) ∈ U ⇔ ∃d ∈ D, (a|b, d) ∈ G ∧ (d|i, c′, d′, a′, b′) ∈ V

We distinguish to cases:

� If i = 0:

∃c ∈ C, (a|b, c) ∈ F ∧ (c|0, c′, d′, a′, b′) ∈ U ⇔ ∃d ∈ D, (a|b, d) ∈
G ∧ (d|0, c′, d′, a′, b′) ∈ V

Unfolding the de�nition of U and V gives:

∃c ∈ C, (a|b, c) ∈ F ∧ F|c = ∅ ⇔ ∃d ∈ D, (a|b, d) ∈ G ∧ G|d = ∅

Both assertions are false so the equivalence holds.

� If i = 1:

∃c ∈ C, (a|b, c) ∈ F ∧ (c|1, c′, d′, a′, b′) ∈ U ⇔ ∃d ∈ D, (a|b, d) ∈
G ∧ (d|1, c′, d′, a′, b′) ∈ V

Unfolding the de�nition of U and V gives:

127

Chapter 8. The Discard Construction

∃c ∈ C, (a|b, c) ∈ F ∧ (a′|b′, c) ∈ F ⇔ ∃d ∈ D, (a|b, d) ∈ G ∧ (a′|b′, d) ∈ G

But this is exactly F ∼+
iso G.

Notice that in general, the property of having enough isometries does not transfer to full
subcategories: If D is a full subcategory of C, we might have f ∼+

iso g in C but f 6∼+
iso g in D.

This could happen for two reasons: First the chain of intermediate morphisms that prove that
f ∼+

iso g might live outside of D. Second, the isometries that �prove� that f ∼+
iso g in C might

have codomain outside of D.
If our category is not a full subcategory, then everything falls apart, and �nding conditions

that guarantee that C is an environment structure for C is not easy.
For subcategories of Lin, necessary conditions can be given. This category has the peculiarity

that ·∗ is the identity on objects and that f∗∗ = f for all morphisms (·∗ maps a matrix to its
conjugate matrix). In particular, for any state φ : I → I ⊗ X, we have φ∗ ∼cp φ. Indeed
φ φ∗ = φ∗ φ .

So a necessary condition for a subcategory of Lin to behave nicely is that for all states φ,
we have φ∗ ∼+

iso φ. This is the case in Stab: Given a stabilizer state φ, there always exists a
unitary U in Stab s.t. Uφ = φ∗. In fact:

Proposition 9. Stab is an environment structure for Stab.

The main idea of the proof is to use the map/state duality and structural results about
bipartite stabilizer states [98].

Proof. First of all, since Stab is compact closed, using the map/state duality, proving the result
for states is su�cient. Since all the non-zero scalars are invertible in Stab we can furthermore
without loss of generality focusing on normalized states. Consider two states d1 : A ⊗ X and
d2 : A⊗Y in Stab such that d1 ∼cp d2. The point of focusing on normalized states is that we can

decompose using [98] so that di =

|0〉⊗ni

Ai Bi

|0〉⊗mi

where Ai and Bi are unitaries in Stab.

De�ning A′i
def

=

|0〉⊗ni

Ai we have that di ∼iso A
′
i since we just have deleted isometries. So, by

transitivity, to prove d1 ∼+
iso d2 we just have to show A′1 ∼iso A

′
2. But since d1 ∼cp d2 in Stab

we also have d1 ∼cp d2 in Lin and so by Lemma 7, d1 ∼+
iso d2 in Lin. By transitivity A′1 ∼

+
iso A

′
2

in Lin and so by Lemma 7 A′1 ∼iso A
′
1 in Lin. So there are two unitaries u and v such that

|0〉⊗n1

A1 u =

|0〉⊗n2

A2 v . In Lin any isometry can be written as an unitary with ancillas. In

other words there is an unitary u′ such that: u =
u′

|0〉⊗k

, composing by u′† on both side and

128

8.2. Discard construction

denoting w = u′† ◦ v one has:

|0〉⊗n1

A1
|0〉⊗k

=

|0〉⊗n2

A2 w . It only remains to show

that the isometry w is in Stab since the isometry on left hand side is clearly in it. This is given

by:

|0〉⊗n1

A1

A†2

|0〉⊗n2

|0〉⊗k
= w so A′1 ∼iso A

′
1 in Stab and then d1 ∼cp d2.

No such unitary exists in general in Clifford+T: For almost all states φ, there is no unitary
U (and actually no morphism at all) s.t. Uφ = φ∗. Clifford+T therefore has not got enough
isometries:

Proposition 10. (Clifford+T) is not an environment structure for Clifford+T. More pre-
cisely, there exists a state φ s.t. φ ∼cp φ

∗ but φ 6∼+
iso φ

∗. One can take for example φ = 1 + 2i
(in this case φ is a state with no input and outputs, hence a scalar).

Proof. First note that, in any †-SMC category, if f ∼+
iso g then there is a morphism (usually not

an isometry) w such that f =
g

w
.

This is true if f ∼iso g: From
f

u
=

g

v
we immediately get f =

g

v

u†
.

The result then follows by a straightforward induction.
Now take φ = 1 + 2i and φ∗ = 1− 2i. The scalars are in Clifford+T since their entries are

in Z[i, 1√
2
], and are clearly ∼cp equivalent. Now let's suppose 1 + 2i ∼+

iso 1 − 2i. Then by the

previous remark, there exists a morphism u such that (1−2i)u = 1+2i. But the only possibility
for u is 4i−3

5 , which is not in Z[i, 1√
2
], a contradiction.

Note that for all categories above, we have ∼+
iso = ∼iso. That it holds in Lin is a consequence

of the Witt extension theorem: Every isometry f : A → B is equal to a unitary g : B → B
pre-composed with a canonical embedding from A to B. It it well known in Stab and it is true
in Clifford + T by [99, Lemma 5].

8.2.3 Completeness

We now focus on the behaviour of interpretation functors with respect to the discard construction.
The discard construction de�nes a functor (_) : †−SMC → SMC. Indeed, given a †-SMC
functor F , Fiso and F !

iso uniquely de�ne a functor F by push-out.

129

Chapter 8. The Discard Construction

Diso

D !
iso

D

D

Ciso

C !
iso

C

C

F is
o

F
!
iso

F

F

The following lemma and theorem are the main tools to apply the discard construction to
graphical languages:

Lemma 16. If F is faithful and if Fiso : Ciso → Diso is full and surjective on objects, then
F (f) ∼+

iso F (g)⇒ f ∼+
iso g.

Proof. First, remark that if F (`) ∼iso k, then there exists h s.t. F (h) = k. Indeed, under the

hypothesis, there are two isometries u and v such that:
F (`)

u
=

k

v
. Since Fiso is full and

surjective on objects, there are two isometries a and b such that F (a) = u and F (b) = v.

F (`)

F (a)
=

k

F (b)
⇒

F (`)

F (a)

F (b)
†

= k ⇒ F


`

a

b†

 = k

The �rst implication uses the fact that F (b) is an isometry. So k is in the image of F .
By the �rst remark, it is therefore su�cient to prove the result if F (f) ∼iso F (g). Since

Fiso is full and surjective on objects, there are two isometries a and b such that F (a) = u and
F (b) = v. Therefore

F (f)

F (a)
=

F (g)

F (b)
⇒ F


f

a

 = F


g

b

⇒
f

a
=

g

b

The second one holds because F is faithful. The last equation is the de�nition of f ∼iso g.

Theorem 11. Let C and D be two †-SMCs and F : C → D a †-SMC-functor. If F is faithful
and if Fiso : Ciso → Diso is full and surjective on objects, then F : C → D is faithful. If
furthermore F is full then F is full and faithful.

Proof. Let f and g be two morphisms such that F (f) = F (g). By Lemma 12, f and g can
be puri�ed:

F

ιC(f ′)

 = F

ιC(g′)

⇒ ιDF (f ′) = ιDF (g′)

130

8.3. Application to ZX-calculus

The implication follows from the upper face of the commutative cube. By Lemma 13 we have

F (f ′) ∼+
iso F (g′). By Lemma 16, f ′ ∼+

iso g
′. Then Lemma 13 gives ιC(f ′) = ιC(g′) that is f = g,

F is faithful.

Notice that the hypothesis on Fiso is very strong, we want it to be surjective on objects as
we do not want to lose even one isometry. If F is only required to be essentially surjective then
our theorem holds only if the isomorphisms between objects are also unitary. In fact, the proper
framework to express this condition would be to consider †-categories and not categories as being
fundamental in the spirit of [100].

Reformulating for graphical languages this gives:

Corollary 1 (of Theorem 11). Given a †-CC C with enough isometries, if G is a †-CC universal
complete graphical language for C then G is a universal complete language for CPM(C).

This provides a general recipe. We start with a universal complete graphical language G. We
build G , by Theorem 11, J.K : G → C is full and faithful. Furthermore C ' CPM(C). G
as a prop can be presented by adding one new generator to the signature Σ and one equation
for each isometry of G. Note that we add one equation for each isometry in G and that's all,
there is no recursive process involved. In general, if one is provided with a spanning set of the
isometries, the number of equations can be drastically reduced. We just need one equation for
each element of this set. We then obtain a universal complete graphical language. For example if
one �nds an axiomatisation of quantum circuits complete for Liniso then the discard construction
will apply since Liniso obviously has enough isometries.

8.3 Application to ZX-calculus

We will now brie�y review the extension of the ZX-calculus of Chapter 3. It is universal and
complete for Lin. We will apply the recipe with a well-chosen spanning set and provide the
additional axioms involving .

8.3.1 The ZX-Calculus with discard

We now come back to the ZX calculus of Chapter 3, Theorem 11 provides a recipe for transforming
the language for mixed states and CPMs. The resulting language ZX can be seen as a prop
with the generators of the ZX-Calculus, augmented with and with the axiomatisation enriched
with { ◦D = | D† ◦D = I}. We actually do not need an in�nite axiomatisation. Indeed,
the set of isometries of the ZX-Calculus can be �nitely generated.

Using (eiα, |0〉, H, RZ(α), CNot) as spanning set of the isometries [91], we obtain only �ve
axioms:

α
=

π
= =

=α =

131

Chapter 8. The Discard Construction

Here, to obtain more elegant axioms in interaction with the well-tempered normalization used
in Chapter 3, I rede�ned the semantic of the ground as:

J K def

= ρ 7→ 1√
2

tr(ρ)

The ground is then no longer normalized. So one needs to add the relevant scalars in the
diagrammatic characterization of isometries. Notice that in the case of unitaries, when the input
space has the same dimension as the output space, those additional scalars cancel, and then the
equation is exactly the same.

In fact, the �rst axiom follows from the others :

α

π
=

α

π
=

α

π =

α

π
=

α

π

π

=

π

π

α
=

π

α = π = =

The �nal axiomatisation is then:

= = =α =

Notice that the last axiom, which means that CNot is causal, is equivalent to the following
equation, �rst introduced in [88]:

=

In this equation, the bottom part of the right hand side is nothing but a maximally mixed state

(i.e., the states
(

1
0

)
and

(
0
1

)
uniformly at random). Moreover, and can be interpreted

as measurements in the complementary basis, thus the equation means that measuring a system
according to two complementary bases is equivalent to discarding the system and replacing it
with a maximally mixed state.

8.3.2 ZX-calculus with bastard spiders

In this section, contrary to the previous ones, we do not apply the ground construction to a
graphical language, instead, we consider the extension of the ZX-calculus introduced in [89] for
representing mixed states and classical channels. The main idea is to add two additional spiders,
a new kind of green and a new kind of red spiders, the so-called bastard spiders depicted as
follows:

...

...
and

...

...
They respectively represent decoherence in the Z and X basis. The behaviour of a bastard

spider would be represented in the ZX -calculus as a standard spider with a ground attached

132

8.3. Application to ZX-calculus

to it:
...

...
!

...

...
which respectively represent decoherence in the Z and X basis.
We give here an axiomatisation of those bastard spiders and show that it is equivalent to the

discard construction, and then complete for quantum operations.
The new generators behave the same way as vanilla red and green spiders with respect to

fusion and Hadamard gate:

...

...

...

...
=

...

...

...

...
=

...

...

They also satisfy the following axioms:

=
...

...
α

...

...
=

...

...

...

...

...

...
=

...

...

...

...
=

We call the ZX-calculus augmented by those generators and equations ZXb.

Lemma 17. ZXb ' ZX

Proof of Lemma 17. Since both categories have the same objects we exhibit a full and faithful
functor F : ZXb → ZX de�ned as the identity on the ZX part and which acts on the bastard

spiders as: F

(
...

...

)
=

...

...
and the colour swap for the red bastard spiders.

First we need to show that F is well de�ned. In other words that the images of the additional
equations of ZXb are still equal in ZX :

F
()

= = = = F
()

F

(
...

...

...

...

)
=

...

...

...

...
=

...

...
=

...

...
= F

(
...

...

)

F

(
...

...
α

...

...

)
=

...

...
α

...

...
= α

...

...
=

...

...
= F

(
...

...

)

F

(
...

...

...

...

)
=

...

...

...

...
=

...

...

...

...
= F

(
...

...

...

...

)
F
()

= = = F
()

F

 ...

...

 =
...

...
=

...

...
=

...

...
= F

(
...

...

)

133

Chapter 8. The Discard Construction

F is full, an antecedent of being given by : F
()

= = .

For the faithfulness we show that the additional equations of ZX hold in ZXb via the
translation → :

=

= =

α =

= = = =

So F is an equivalence of category.

Remark: [89] also includes a new type of classical wire. However, we choose to drop it, �rst
because it is not necessary to fully describe quantum operation, but mainly because even if a
new type of wire could have been properly handled by the use of coloured props, the composition
of bastard spiders of distinct colours through classical wire is ill-de�ned, which is inconsistent
with a presentation with generators and equations.

134

Chapter 9

The Scalable Notations

�I've paid one PhD for each of those dots!"

Bob Coecke

We have seen in Chapter 3 that ZX-calculus diagrams are as powerful as matrices in terms of
expressiveness. In Chapter 8 we saw that this equivalence between the two formalisms extends
to mixed states quantum mechanics. In some situations, diagrams are a lot more compact
than matrices and then allow short and intuitive computation that would involve very large
matrices. However, in practice, we often work with matrices in an abstract way, allowing to
reason on arbitrarily large families of quantum computations. Typical examples are the quantum
algorithms that require the description of di�erent quantum circuits for each possible size of the
input.

A diagrammatic take on such families of circuits involves usually very big diagrams which
are hard to draw, hard to read, or worst, feature the infamous informal three dots (note this
has already been done several times in this thesis). This appeared quickly as a big weakness of
diagrams: they do not scale well. Those considerations started the �dot war" and numerous solu-
tions were proposed to tackle those scalability issues. Examples are the bang boxes introduced in
[101] that provide a way to duplicate and erase part of a diagram. They form a meta-language ad-
mitting a �rst-order logic able to handle families of equations between diagrams. More generally,
context-free grammars for graphical languages have been developed [102].

In this chapter, I will present yet another possibility: scalable notations. The main idea
behind this is to stay strictly in the prop formalism without adding anything too exotic. This
has the advantage that we can de�ne everything in the framework described in Chapter 1.
Scalable notations are quite primitive compared to the mathematical elegance of bang boxes or
diagrammatic grammars. As a consequence, they are easier to manipulate but in general less
powerful. However, we will see in Chapter 10 that they still are expressive enough to handle
some basic quantum algorithms.

The �rst prototype of scalable notations can be found in [18], where the authors demonstrated
that the ZX-calculus can be used in practice to design and verify quantum error-correcting codes.
We have presented a formalisation of those notations in [7]. I will give here a slightly updated
presentation.

135

Chapter 9. The Scalable Notations

9.1 Divide and gather

Before stating the construction allowing to apply the scalable construction on actual graphical
language, we will start by presenting separately the di�erent ingredients that will be combined
later.

9.1.1 Types

The idea is to add to a monochromatic prop new types representing collections of wires. Typically
we will be able to work with a tensor of n wires or with only one wire of size n representing those
n wires in a compact way. Formally, with a N∗-coloured prop, where N∗ stands for N\{0}. Let P
be a monochromatic prop and SP be the N∗-coloured prop that we construct. To di�erentiate
clearly the two props we will use di�erent notations.

In a N∗-coloured props, a wire of colour n ∈ N will be denoted [n]. [0] denotes the tensor
unit. We write the tensor product ⊗ and denotes [n]m the tensor product [n] ⊗ · · · ⊗ [n] of m

copies of [n]. By convention we set [n]0
def

= [0]. We see that all object in SP are of the form⊗m
i=1[ni]. Given an object a of SP, its size |a| ∈ N is de�ned inductively as |a ⊗ b| def= |a| + |b|

and |[n]| def= n. We say that a wire is small if it is of size 1. We say that a wire is big if it is of
any size. When it comes to string diagrams we take the convention to denote the small wire by
thin string and the big wire by bold strings. In general we will only indicate the colours on the
wires if necessary, and in this case, we will use the strike wire notation.

[1] [1] [n]
[n]

[n]

9.1.2 The wire calculus

We can clearly see the types of P as types of SP with n 7→ [1]n. The interest of SP is that we
can now consider a type [n+m] which is di�erent from the type [n]⊗ [m]. However it is possible
to make those types interact together using two generators called dividers and gatherers.

They are depicted as follows:

[n+ 1]
[1]

[n]
[n+ 1]

[1]

[n]

The N∗-coloured signature containing the dividers δn : [n+ 1]→ [1]⊗ [n] for any size n ∈ N∗

is denoted ∆. By convention δ0
def

= id[1] so it is not necessary to make it a part of ∆.
In the same way, the N∗-coloured signature containing the gatherers γn : [1]⊗ [n] → [n+ 1]

for any size n ∈ N∗ is denoted Γ. By convention γ0
def

= id[1] so it is not necessary to make it a
part of Γ.

We de�ne two families of equations over ∆ + Γ.
The family of elimination rules Elim gather the equations:

=

For any size n ∈ N∗.
The family of expansion rules Exp gather the equations:

=

136

9.1. Divide and gather

For any size n ∈ N∗. Note that those rules are compatible with the convention δ0 = γ0 = id[1].
So we can write in full generality for all n ∈ N:

γn ◦ δn = id[n+1] and δn ◦ γn = id[1] ⊗ id[n].

We now de�ne the calculus of wires.

De�nition 64 (W-calculus). The wire calculus W is de�ned as the N∗-coloured graphical
language:

W def

= (∆ + Γ)
/

(Elim + Exp)

In W, the role of dividers and gatherers is perfectly symmetric, thus we have
•
W '

•
W op. So

each time something is shown for dividers it also holds for gatherers by duality. The expansion

and elimination rules exactly state that gatherers and dividers are isomorphisms hence
•
W is

a groupoid. We also see that all the generators preserve the size. So there is cannot be any
morphism of type a→ b when |a| 6= |b|. The converse is also true.

We de�ne inductively, for any object a of a N∗-coloured prop, δa : a → [1]|a| as δ[0]
def

= id[0],

δ[1]
def

= id[1], δ[n+1]
def

=
(
[1]⊗ δ[n]

)
◦ δn and δa⊗b

def

= δa ⊗ δb.
Similarly, we de�ne inductively, for any object a of a N∗-coloured prop, γa : [1]|a| → a as

γ[0]
def

= id[0], γ[1]
def

= id[1], γ[n+1]
def

= γn ◦
(
[1]⊗ γ[n]

)
and γa⊗b

def

= γa ⊗ γb.

δ[3]
def

= γ[3]⊗[2]
def

=

So given two types a and b such that |a| = |b| we have always an arrow γb ◦ δa : a→ b. So in
general:

•
W [a, b] 6= ∅ ⇔ |a| = |b|.

We can even go further in the description of the structure of W.

9.1.3 Rewiring theorem

We now show a kind of coherence theorem for W.

Theorem 12 (Rewiring theorem). Given two types a and b we have |a| 6= |b| ⇔
•
W [a, b] = ∅

and |a| = |b| ⇔
•
W [a, b] ' PN[|a|, |b|]

In other words, the arrows in
•
W are basically permutations over the simple wires contained

in the input and output types.

Proof. We will show that for any diagram ω : a → b we have ω = Γb ◦ σ ◦ ∆a where σ is a
permutation of type [1]|a| → [1]|b|. This will provide the expected bijection ω 7→ σ between
•
W [a, b] and PN[|a|, |b|].

137

Chapter 9. The Scalable Notations

To do so we de�ne, for each wire in the diagram, its situation as a couple of elements of
{i, o, d, g}. The situation of a wire describes what the wire links to what: i stands for input, o
for output, d for non identity divider, and g for non identity gatherer. For example, a wire which
links an input to an output has situation (i, o) and a wire linking a gatherer to a divider has
situation (g, d). The possible situations for a small wire are: (i, o), (i, g), (d, o), and (d, g). The
possible situations for a big wire are the same plus (i, d), (d, d), (g, o), (g, g) and (g, d).

We say that a diagram is expanded if it contains no big wire in one of the bad situations
which are (g, d) and (d, g).

The expanded condition enforces a unique structure. In fact, the only expanded diagrams
are exactly the one of the form γb ◦ σ ◦ δa. Thus it only remains to show that any diagram can
be rewritten into an expanded one.

We proceed by induction on the size of the biggest big wire in a bad situation.
If there are no such wires then we are already in expanded form. Else, we consider the biggest

wires in a bad situation. If a wire is in situation (g, d) then the elimination rule can be applied
and decreases strictly the size of the big wires in bad situations. If a wire is in situation (g, d)
then the expansion rule can be applied and decreases strictly the size of the big wires in bad
situations. Thus all the wires in bad situations can be removed and replaced by wire with a
strictly smaller size. Then by induction, all diagrams can be rewritten into expanded form.

This gives us a clear understanding of what
•
W looks like as a category. The rewiring

theorem works as a coherence result in the sense that any well-typed equation involving only
dividers and gatherers holds. This gives us total freedom to rewire the way we want as soon as
we preserve the order of the wires.

The way the dividers and gatherers are de�ned, taking the wires one by one, is useful to
come up with a normal form but is still quite restrictive. We can de�ne generalized dividers and
gatherers able to relate a wire of size n+m to one wire of size n and one wire of size m.

δn,m : [n+m]→ [n]⊗ [m] is de�ned as δn,m
def

=
(
γ[n] ⊗ γ[m]

)
◦ δ[n+m].

γn,m : [n]⊗ [m]→ [n+m] is de�ned as γn,m
def

= γ[n+m] ◦
(
δ[n] ⊗ δ[m]

)
.

We depict them as:

[m]
[n+m]

[n]

The rewiring theorem ensures that this is the only way to de�ne those generalizations without
permuting wires. We also know exactly what kind of equation they satisfy: all the well types
one preserving the order of wires. In particular, an associativity-like law holds for generalized
dividers and gatherers allowing us to de�ne n-ary generalizations.

:= =

In full generality we can unambiguously de�ne the rewiring maps a→ b for a and b satisfying
|a| = |b| as γb ◦ δa.

We now proceed to make a monochromatic prop interacting with dividers and gatherers
through the scalable construction.

9.2 Scalable construction

We will now describe how to construct a N∗-coloured graphical language from a monochromatic
one. The idea is to extend the monochromatic generators to big wires and then make them
interact with the dividers and gatherers.

138

9.2. Scalable construction

9.2.1 De�nition

Given a monochromatic signature Σ, let SkΣ be the N∗-coloured signature de�ned as SkΣ([k]n, [k]m)
def

=

Σ(n,m). We denote Sσ
def

=
⊎
k∈N∗ SkΣ. In Sσ, each generator x ∈ Σ(n,m) admits a scaled ver-

sion of size k, Sks ∈ Sσ([k]n, [k]m). By convention we set S0x = id0 but do not include it in the
signature.

Given a family of equations E over Σ we have a family of equations SkE
def

= Sk ◦E over SkΣ
de�ned by composing a family of equations with a signature map in the same way we did in
Chapter 5. We de�ne the family of equations SE

def

=
⊎
k∈N∗ SkE. Intuitively, SE ensures that

the equations valid for generators in Σ also hold for their scaled version in SΣ.
We de�ne the family of distribution rules Dist over the signature SΣ + ∆ + Γ as the union

of all equations de�ned for each generator x ∈ Σ(n,m) and k ∈ N∗ as:

...Sk+1(g)... = ...

...

...S1(g)

Sk(g)

...

...

...

De�nition 65 (Scalable graphical language). Given a monochromatic graphical language L, we
de�ne an N∗-coloured graphical language SL as:

SL def

= (SLs + W)
/

(SLe + DistΣ)

9.2.2 Properties

Numerous properties follow from the construction. First, we de�ne the scaling maps.

De�nition 66 (scaling functors). For every k ∈ N∗, the scaling functor Sk :
•
L →

•
SL is

de�ned by 1 7→ [1] and x 7→ Skx.

Note that this de�nition is sound since Sk ◦E are among the equations of SL for any k ∈ N∗.
We set the convention S0 : x→ id[0]. We see that SL contains a copy of L for each k.

These functors ensure that any equation between diagrams still holds at a large scale. And
one application of the scaled rule is in fact hiding k parallel applications of the original rule.

We can increase the size of scaled generators using the thickening functors.

De�nition 67 (Thickening functors). We de�ne inductively the thickening functors Tk :
•
SL →

•
SL

as Tk([n])
def

= [kn], T1
def

= id •
SL

and

...Tk+1(f)... def

= ...

...

...T1(f)

Tk(f)

...

...

...

We have Tl ◦ Tk = Tlk and the distribution rules imply Tl ◦ Sk = Skl.
To come back from SL to L we can use the wire stripping functor.

De�nition 68 (Wire stripper functor). The wire stripper functor | · | :
•
SL →

•
L is de�ned

on objects as a 7→ |a|, where |a| is the previously de�ned size of the type a, and on arrows by
|δk| = idk, |γk| = idk and |S1x| = x for all generators x ∈ Ls.

139

Chapter 9. The Scalable Notations

Using the distribution rules any scaled generators can be expressed as divides, gatherers, and
generators S1 so it is enough to de�ne the behaviour of | · | on those generators. The soundness
follows from

Note that we have | · | ◦ S1 = id •
L
. Note that the transformations | · | ◦ Sk have been called

monoidal multiplexing in [103] where it is shown that they amount to take a tensor product of
k copies of the original diagram and add a permutation on the inputs and outputs. A way to
understand those additional permutations is to see a scaled diagram as a parallel juxtaposition
of copies of the same diagram in a three-dimensional space that has been then projected into a
two-dimensional space. Then, parallel wires have no choice but to cross, hence the permutations.

De�nition 69 (Boxing functor). The boxing functor [_] : SL → SL is de�ned as a 7→ [|a|]
on objects, where [|a|] is the type of a unique big wire whose size is the one of the type a, and as
f 7→ γ[|b|] ◦ δb ◦ f ◦ γa ◦ δ[|a|] on morphisms f : a→ b.[

f

]
def

= f

If the Sk, Tk and | · | are strict monoidal functors it is not the case of [·] that satis�es:

[f ⊗ g] =
[f]

[g]

We expect most of the properties of L to be re�ected in SL. Here are some speci�c examples.
If L is a dagger category then SL inherits this structure by setting δk

† def

= γk. Then we have
γk
† = δk and the expansion and elimination equations state that dividers and gatherers are

unitary maps.
If L is compact closed then so is SL. Using the scaled version of the cups and caps, we have:

def

=

and then γkt = δk. However, note that some intuitive topological moves do not hold:

= 6= .

Another possibility is to take
def

= . Then we recover the topology but we lose the

correspondence between equations on simple wires and their scaled version.
When we have a compact structure, then an iteration mechanism is available.

Lemma 18 (Iteration). Given any diagram f : a→ a in SD:

Tk+1([f])

[(k + 1)a]

[ka][a]

[a] [a]

=
(

[f]
)k+1

140

9.2. Scalable construction

Proof. By induction, for k = 0:

T1([f])

[a] [a]
=

[a][a]
T1([f]) =

[a] [a]
T1([f]) = [f]

For k > 0, let k = l + 1:

Tl+2([f])

[(l + 2)a]

[(l + 1)a][a]

[a] [a]

=

[(l + 2)a]

[a]

[a]
T1([f])

Tl+1([f])

[a]

=

[a]

[a]

[a]
[f]

Tl+1([f])

[a]

=

[(l + 1)a]

[a]

[a]
[f]

Tl+1([f])

[a]

[a]

=

[(l + 1)a]

[a]

[a]
[f]

Tl+1([f])

[a]

[a]

= Tl+1([f])

[(l + 1)a]

[la][a]

[a] [a]
[f]

[a]

This allows to represent for loops graphically. In practice, we need to compute the thickening
of the boxed diagram. Thickening a scaled generator is by de�nition very easy, this only increases
the size of every wires and generators. However, thickening a divider or a gatherer involves a
permutation of the wires. This allows to apply the iteration mechanism as soon as we have a
good representation of permutations.

9.2.3 Completeness

All the properties of SL follow from a structure theorem which can be seen as an extension to
SL of the rewiring theorem.

Lemma 19 (Normal form). All diagrams f : a→ b in SL are of the form :

f = γb ◦ S1(|f |) ◦ δa

Proof. We use the same method as in the proof of the rewiring theorem. In SL, there are new
wire situations: s represents a simple generator and S. The new possible situations for a simple
wires are (i, s), (d, s), (s, s), (s, g) and (s, o). For a big wire the new situations are (i, S), (d, S),
(g, S), (S, S), (S, g), (S, d) and (S, o).

141

Chapter 9. The Scalable Notations

A diagram of SL is in expanded form if it contains no big wire in one of the bad situations
which are (g, d), (d, g), (i, S), (d, S), (g, S), (S, S), (S, g), (S, d) and (S, o).

So an expanded diagram contains no big generators and is of the form ω = γb ◦ ν ◦ δa. Where
ν contains no big wire, so S1(|ν|) = ν. Moreover

S1(|ω|) = S1(|γb ◦ ν ◦ δa|) = S1(|γb|) ◦ S1(|ν|) ◦ S1(|δa|) = S1(|ν|) = ν.

So for an expanded diagram ω = γb ◦ S1(|ω|) ◦ δa.
It remains to show that any diagram can be rewritten in expanded form. We proceed by

induction on the size of the biggest big wire in a bad situation.
If there is no such wire then we are already in expanded form. Else, we consider the biggest

wires in a bad situation.
First we apply the expansion rule to remove all the biggest wires in situation (i, S), (d, S),

(S, S), (S, g) and (S, o). If a wire is in situation (g, d) then the elimination rule can be applied
and decreases strictly the size of the big wires in bad situations. If a wire is in situation (g, d)
then the expansion rule can be applied and decreases strictly the size of the big wires in bad
situations. If a wire is in situation (g, S) or (S, d) we apply the corresponding unfold equation.
This decreases strictly the size of the big wires in bad situations. Thus all the wires in bad
situations can be removed and replaced by wire with a strictly smaller size. Then by induction,
all diagrams can be rewritten into expanded form.

From this result it follows that the scalable construction enjoys a universal property:

Lemma 20 (Universal property of SL). The following diagram is a pull-back square:

1N∗ 1{∗}

•
SL

•
L

| · |

!!

| · |

Where 1N∗ is that terminal N∗-coloured prop and 1{∗} is the terminal monochromatic prop.

Proof. The diagram clearly commutes. Now let f : K → 1N∗ and g : K →
•
L be two functors

such that | · | ◦ f =! ◦ g. We de�ne a functor h : K→
•
SL . Given a morphism t ∈ K[a, b] we take

h(t) = γf(a) ◦ S1(g(t)) ◦ δf(b). This is well de�ned since |f(a)| = g(a). We have:

|h(t)| = |γf(a) ◦ S1(g(t)) ◦ δf(b)| = |S1(g(t))| = g(t)

and

!(h(t)) =!(γf(a) ◦ S1(g(t)) ◦ δf(b)) =!f(a),f(b) = f(t).

Now let l : K →
•
SL be another functor such that | · | ◦ l = g and ! ◦ l = f . we have

l(t) ∈
•
SL [l(a), l(b)], the structure theorem gives us: l(t) = γl(a) ◦ S1(|l(t)|) ◦ δl(b) = Γf(a) ◦

S1(g(t)) ◦∆f(b). So l = h. The diagram is a pull-back square.

The universal property allows to lift interpretation functors.

142

9.3. Arrows

De�nition 70 (Scaled interpretation). Given a monochromatic graphical language L with an

interpretation J·K :
•
L → P we de�ned the scaled interpretation J·KS :

•
SL → P ×1{∗} 1N∗ as

JfKS
def

= (|f |, !a,b).

Given f : a→ b in SL, all the information in JfKS is contained in |f | and the type of f . We
will simplify the notation and usually write to describe the interpretation of a scaled diagram
f : a→ b:

JfK = |f | : a→ b

The dividers and gatherers have interpretation:

r z
def

= idn+m : [n+m]→ [n]⊗ [m]
r z

def

= idn+m : [n]⊗ [m]→ [n+m]

We can also directly lift the universality and completeness results.

Lemma 21. J·KS is faithful (respectively full), i� J·K is faithful (respectively full).

Proof. By de�nition P×1{∗} 1N∗ is the pull-back of ! : P→ 1{∗} and | · | : 1N∗ → 1{∗}. Thus J·K

lifts to a unique functor J·KS :
•
SL → P ×1{∗} 1N∗ satisfying | · | ◦ J·KS = J·K ◦ | · |. This functor

is an N∗-coloured prop morphism. Furthermore since ! and | · | are jointly monic then J·KS is
faithful i� J·K is faithful. I� J·K is full then we can reach any map (f, !a,b) in P×1{∗} 1N∗ by taking
Jγb ◦ S1(|f |) ◦ δaKS so J·KS .

These results point out that the scalable construction is syntactic and has no impact on the
semantics. In fact, we even have an equivalence of categories.

Lemma 22. We have
•
L '

•
SL as symmetric strict monoidal categories.

Proof. We consider the wire striper functor | · | :
•
SL →

•
L . It is clearly essentially surjective.

It is also full and faithful since it induces a bijection between
•
SL [a, b] and

•
L [|a|, |b|] by the

normal form theorem. So it is an equivalence of category and
•
L '

•
SL .

9.3 Arrows

We now give more concrete examples of what scalable notations can do. The idea here is
that we can use big wires to encapsulate large graphical structures with nice behaviour into
large generators. In particular, we will be able to restate the results of graphical linear algebra
presented in Chapter 7. We specify the scalable construction to the case of ZX-calculus and
ZH-calculus. In this case we have spiders which are families of monochromatic generators (g(α) :
a → b)α∈A indexed by some parameter α ∈ A. In such a situation, we can index the scaled

version by an element α ∈ Ak. This is de�ned inductively by g1(α)
def

= g(α) and:

gk+1(α)... ... def

=
g(α1)...

gk(α
′)

......
...

...

...
,

143

Chapter 9. The Scalable Notations

with α = (α1,α
′) ∈ Ak+1 and α′ ∈ Ak.

The associated scaled rule, if any, should be a priori de�ned in the same way. For example,
in the ZX-calculus, the phases α and β of two spiders add up when they fuse, so the lists of
phases α and β add up pointwise when scaled spiders fuse.

In what follows, we will use a mix of ZX-calculus and ZH-calculus. The green and red families

of spiders are indexed by phase vectors in
(R /2πZ

)k
, by convention the phase is 0 if not given.

The yellow family of harvestmen is indexed by complex vectors, by convention the phase is a
vector of −1 if not given. They are respectively depicted:

a... ... : ·[k]n → [k]m a... ... : [k]n → [k]mx : [k]n → [k]m

Denoting α1 (resp. x1) the head of the phase vector α (resp. complex vector x) and α′ (resp.
x′) its tail, the arachnids interact with dividers and gatherers with:

α... ...
...

...
=

α′... ...
...

α1... ...
α... ...

...

...
=

α′... ...
...

α1... ...
... ...x

...

...
=

... ...
...

... ...x1

x′

All of them are �exsymmetric and satisfy fusion rules:

α... ...

β... ...
= α+ β

... ...

... ... α... ...

β... ...
= α+ β

... ...

...

... ...
=

... ...

... ...

Note we only de�ne fusion of yellow boxes indexed by phase −1. We recall that the three
arachnids interact with each other in the following way:

... ... = ...
...

... ... = ...
... α... ... = α... ...

The green and red families of spiders and the yellow family of harvestmen indexed phase
vectors are depicted respectively:

r
a... ...

z
def

= 2k
n+m−2

4
∑
x∈2k

eiπ(x·a) |x〉⊗n〈x|⊗m : [k]n → [k]m

r
a... ...

z
def

= 2k
2−n−m

4
∑

xi∈2k

k∏
j=1

1+e
iπ

(
aj+

n+m∑
i=1

xi,j

)
2 |x1 · · ·xn〉〈xn+1 · · ·xn+m| : [k]n → [k]m

r
... ...x

z
def

= 2−k
n+m

4
∑
yi∈2k

k∏
j=1

xj

n+m∧
i=1

yi
|y1 · · · yn〉〈yn+1 · · · yn+m| : [k]n → [k]m

Notice that the vectors for the green and red spiders have coe�cient in 2πR /R and then the
addition of phase vectors is done component-wise modulo 2π. However, we will by a slight abuse
of notation use {0, 1} vectors to denote {0, π} vectors. So the state |x〉 is represented up to a
scalar as a red node indexed by the phase vector x.

144

9.3. Arrows

9.3.1 Function arrows

Given a boolean function f : 2n → 2m we naturally turn it into a linear map C2n → C2m and
de�ne a function arrow.

t
f

|

= |x〉 7→ 2
m−n

4 |f(x)〉

Any function arrow satis�es: x

f
= f(x) ,

f
= and

f
=

f

f

.

Furthermore we de�ne:
f

def

=

(
f

)†
.

Lemma 23. Given a function arrow f :

f is balanced
def⇔ ∀x, y ∈ 2m |f−1 ({x}) | = |f−1 ({y}) | ⇔

f
=

f is injective
def⇔ ∀x, y ∈ 2n (f(x) = f(y)⇒ x = y) ⇔

f
=

f

f

Proof.

f
= ⇔

t
f

|

= J K

⇔
∑
x∈2n

|f(x)〉 =
∑
y∈2m

2
n−m

2 |y〉

⇔ ∀x, y ∈ 2m |f−1 ({x}) | = |f−1 ({y}) |

f
=

f

f

⇔

t
f

|

=

u

w
v

f

f

}

�
~

⇔ ∀x, y ∈ 2n δx=y |f(x)〉 = δf(x)=f(y) |f(x)〉
⇔ ∀x, y ∈ 2n (f(x) = f(y)⇒ x = y)

9.3.2 Red arrows

A function f : 2n → 2m can be seen as a map f : Fn2 → Fm2 , if this map is F2-linear then it
can be described by a matrix A ∈ Mm×n (F2). The red matrix arrows indexed by A is then

de�ned by
A

def

=
f

. Those arrows have been extensively studied in [104] and [8]. Those
red matrix arrows have interesting properties, in fact they correspond to the embedding of the
matrices of Chapter 7 into the ZX calculus. Being F2-linear translates to:

145

Chapter 9. The Scalable Notations

A
= and

A
=

A

A

.

They interact with the dividers and gatherers as:

(
C D

)
=

C

D

and

(
A
B

)
=

A

B

.

We take the convention to omit the all-ones matrices: :=
J where ∀i, j, Ji,j = 1.

We can axiomatise those matrices as:

0
=

1
=

(
C D

)
=

C

D

(
A
B

)
=

A

B

Axioms for matrices, where A ∈ Fa×n2 , B ∈ Fb×n2 , C ∈ Fm×c2 and D ∈ Fm×d2 .

[
A
B

]
and [CD] are

block matrices.

From those axioms, all properties of red matrix arrows follow.
By universality of the scalable construction, we know that the matrix arrows are already

expressible as diagrams. The matrix generator A is actually a compact representation of a
green/red bipartite graphs whose bi-adjacency matrix is A:

Lemma 24. For any A ∈ Fm×n2 ,
A

= A... ... where A represents in the RHS

diagram the adjacency matrix of the bipartite green/red graph.

Proof. By induction on the size m×n of A. If n = m = 1, the result is exactly the zero and one
axioms. if m > 1:

(
A
B

)
=

(
A
B

)
=

A

B =

A... ...

B... ...
=

A... ...

B... ...
=

A... ...

B... ...
=

A
B

... ...

if n > 1:

146

9.3. Arrows

(
A B

)
=

(
A B

)
=

A

B =

A... ...

B... ...
=

A... ...

B... ...
=

A

B
=

A B... ...

Remark 1. All those properties are in fact direct translations of the graphical linear algebra
of Chapter 7. Notice however that our axiomatisation of the matrices strongly relies on their
interaction with the divider and the gatherer, which are not present in [19].

As said before red matrix arrows are copied and erased by green nodes.

Lemma 25. For any A ∈ Fm×n2 ,
A

=

A

A and
A

=

Proof. We start with the copy. By induction on the size m× n of A. If n = m = 1 this directly
follows from the rules of ZX-calculus. If n > 1:

(
A B

)
=

(
A B

)
=

A

B =

A

B =

A

B

A

B

=

A

B

A

B

=

(
A B

)
(
A B

) =

(
A B

)
(
A B

)

If m > 1:

147

Chapter 9. The Scalable Notations

(
A
B

)
=

(
A
B

)
=

A

B =

A

B =

A

B

A

B

=

A

B

A

B

=

(
A
B

)
(
A
B

)
=

(
A
B

)
(
A
B

)

Then we prove erasing. By induction on the size m × n of A. If n = m = 1 this directly
follows from the rules of ZX-calculus. If n > 1:

[AB]
=

[AB]
=

A

B

=

A

B

= =

If m > 1:

[
A
B

]
=

[
A
B

]
=

A

B

=

A

B

= =

We de�ne backward matrices as follows: A :=
A

.

Lemma 26. ∀A ∈ Fm×n2 ,
A H

=
At

where At is the transpose of A.

Proof. By induction on the size m× n of A. If n = m = 1 this directly follows from the rules of
ZX-calculus. If n > 1:

148

9.3. Arrows

[AB]
=

[AB]
=

A

B

=

A

B

=
At

Bt

=
At

Bt

=

[
At

Bt

]
=

[AB]t

If m > 1: [
A
B

]
=

[
A
B

]
=

A

B

=

A

B

=
At

Bt

=
At

Bt

=

[AtBt]
=

[
A
B

]t

As a consequence, conjugating by Hadamard () reverses the orientation and transposes
the matrix. Since conjugating by Hadamard colour-swaps the spiders and preserves the other
generators of the language, one can derive from any equation a new one (up to scalars) which
consists in colour-swapping the spiders, transposing the matrices, and then changing their ori-
entation. For instance, the following Lemma gives that matrices are co-copied and co-erased by
red nodes:

Lemma 27. For any A ∈ Fm×n2 ,
A

=

A

A and
A

=

Notice that if the colour-swap symmetry is already present in Chapter 7, the Hadamard gate
here really internalizes it directly into the graphical language.

Basic matrix operations like addition and multiplication (in F2) can be implemented graphi-
cally:

Lemma 28. For any A,B ∈ Fm×n2 , and any C ∈ Fk×m2 ,

A

B =

A+B

and

A B
=

BA
.

Proof. We start with addition. By induction on the size m× n of A and B. If n = m = 1, this
is the Hopf rule of ZX-calculus. If n > 1:

149

Chapter 9. The Scalable Notations

(
A B

)
(
A′ B′

) =

(
A B

)
(
A′ B′

) =

A

B

A′

B′

=

A

B

A′

B′

=

A

B

A′

B′

=

A

B

A′

B′

=

A+A′

B +B′ =

(
A+A′ B +B′

)
=

(
A B

)
+
(
A′ B′

)

If m > 1:

(
A
B

)

(
A′

B′

)
=

(
A
B

)

(
A′

B′

)
=

A

B

A′

B′

=

A

B

A′

B′

=

A

B

A′

B′

=

A

B

A′

B′

=

A+A′

B +B′ =

(
A+A′

B +B′

)
=

(
A
B

)
+

(
A′

B′

)

Now we prove multiplication. By induction on the size b× a of A and c× b of B.

150

9.3. Arrows

If a = b = c = 1 this follows from the zero and one axioms and the scalar rule. If a > 1:(
A B

)
A′

=

(
A B

)
A′

=

A

B

A′

=

A

B

A′

A′ =

A′A

A′B =

(
A′A A′B

)
=

A′
(
A B

)
If b > 1: (

A
B

)(
A′ B′

)
=

(
A
B

) (
A′ B′

)
=

A

B

A′

B′ =

A′A

B′B =

(
A′A+B′B

)
=

[A′B′]

[
A
B

]

If c > 1: (
A
B

)
A′

=

(
A
B

)
A′

=

A

B

A′

=

A

B

A′

A′ =

AA′

BA′ =

(
AA′

BA′

)
=

(
A
B

)
A′

Whereas all the previous properties about matrices are angle-free, some spiders whose angles
are multiples of π can be pushed through matrices as follows:

Lemma 29. For any A ∈ Fm×n2 , any v ∈ Fn2 and any u ∈ Fm2 ,

v

A
= Av

A
and u

A
= At

A

Proof. By induction on the size m × n of A. If n = m = 1 they are two possibilities: if A = 1
then this is trivial, and if A = 0 then the π is erased by the green node and the equation also
true. If m > 1:

151

Chapter 9. The Scalable Notations

v

(
A
B

)
= v

(
A
B

)
= v

A

B =

A

B

v

v

=

A

B

Av

Av

=
(
Av
Bv

)
A

B =

(
A
B

) (
Av
Bv

)
=

(
A
B

)
v

(
A
B

)

if n > 1:

v

(
A B

)
= v

(
A B

)
= v

A

B =

v1

v0

A

B =

Av0

Bv1

A

B =

A

Av0 +Bv1B =

(
A B

) (v0

v1

)
(
A B

)
=

(
A B

)
v

(
A B

)

Injective matrices enjoy some speci�c properties:

Lemma 30. For any A ∈ Fm×n2 , the following properties are equivalent:

(1) A is injective. (3)
A A

=

(2)
A

= (4)

A

A =
A

Proof. We show this by circular implications:

(1) ⇒ (2): We use the semantics.
r

A
z

= |x〉 7→ 2
n
4 〈Ax| |0〉⊗m. The basis being or-

thonormal: 〈Ax| |0〉⊗m = δAx,0 but since A is injective δAx,0 = δx,0. Besides J K = |x〉 7→
2
n
4 〈x| |0〉⊗n. So

r
A

z
= J K and by completeness:

A
= .

(2)⇒ (3):

A A
=

A
A

= A = = .

152

9.3. Arrows

(4)⇒ (5):
A

A

=

A A
A

=
A

.

(5) ⇒ (1): We come back to the semantics:

t
A

A

|

= |x〉 |y〉 7→ δAx,Ay |Ax〉 and
r

A
z

= |x〉 |y〉 7→ δx,y |Ax〉. So for all x and y δAx,Ay = δx,y, in other words A is injective.

By Hadamard conjugation, we obtain some dual properties for surjective matrices:

Lemma 31. For any A ∈ Fm×n2 , the following properties are equivalent:

(1) A is surjective. (3)
A A

=

(2)
A

= (4)
A

=

A

A

In fact, those last properties of red matrix arrows can be summed up into one meta rule, the
translation of the matrix interaction rule of Chapter 7:

A B
Fh

=
C D

Fk

⇔ Im

(
C
D

)
= Ker

(
A B

)
With k

def

= dim

(
Ker

(
C
D

))
and h

def

= dim
(
coKer

(
A B

))
.

9.3.3 Yellow arrows

Here we investigate the translation of graphical linear algebra into ZH calculus that I presented
brie�y at the end of Chapter 7. As noted in [8], the possibility to index arrows by matrices
is linked to a bi-algebra structure. If the red/green bi-algebra leads to red matrix arrows, the
yellow/green bi-algebra gives us another family of matrix arrows over the boolean semi-ring

B def

= ({0, 1},∧,∨). A function f : 2n → 2m can be seen as a map f : Bn → Bm, if this map is a
homomorphism of B-semi module, that is f(a ∧ b) = f(a) ∧ f(b) and f(1) = 1, then it can be
described by a matrix A ∈Mm×n (B). The yellow matrix arrow indexed by A is then de�ned

by
A

def

=
f

. Being a homomorphism of B-semi module translates to:

π

A
= π and

A
=

A

A

.

Yellow matrix have less properties than red ones. However we still have:

(
A B

)
=

A

B

and

(
A
B

)
=

A

B

.

153

Chapter 9. The Scalable Notations

154

Chapter 10

Drawing quantum computing

If you take nothing else from this blog: quantum
computers won't solve hard problems instantly by
just trying all solutions in parallel.

Scott Aaronson in [105]

Now that we have introduced the discard construction in Chapter 8 and the scalable notations
in Chapter 9 it's time to put everything together and try to apply those abstract constructions to
concrete examples. The idea in this chapter is to test the scalable notations on various quantum
processes. This reveals at the same time the strengths and weaknesses of the notations. From
those examples, we can see where the notations work well and where more developments have to
be done.

In this chapter, we will use a mixture of the discard ZX-calculus and discard ZH-calculus
together with scalable notations. So we have at our disposal red and yellow matrix arrows.

Setting JFK def

= 1√
2
. The spiders and harvestmen of type [k]n → [k]m have interpretations:

r
a... ...

z
def

= ρ 7→ V ρV † with V
def

= 2k
n+m−2

4
∑
x∈2k

ei(x·a) |x〉⊗n〈x|⊗m

r
a... ...

z
def

= ρ 7→ V ρV † with V
def

= 2k
2−n−m

4
∑

xi∈2k

k∏
j=1

1+e
i

(
aj+π

n+m∑
i=1

xi,j

)
2 |x1 · · ·xn〉〈xn+1 · · ·xn+m|

r
... ...x

z
def

= ρ 7→ V ρV † with V
def

= 2−k
n+m

4
∑

xi∈2k

k∏
j=1

x

n+m∏
i=1

xi,j
|x1 · · ·xn〉〈xn+1 · · ·xn+m|

Where the xi are binary words of size k and xi,j is the j-th bit of xi. By convention, if the
phase is not given it is 0 for red and green spiders and -1 for yellow ones. Usually, quantum
algorithms are presented as quantum circuits built from elementary quantum gates. Our language
is expressive enough to represent all of them. The main idea is that our generators decompose
quantum gates into more fundamental parts which equational theory is better understood. The
most common states are represented:

155

Chapter 10. Drawing quantum computing

State |0〉 |1〉 |0〉+|1〉√
2

|0〉−|1〉√
2

Diagram
F

π
F F

π
F

Density Matrix
(
1 0
0 0

) (
0 0
0 1

) (
1
2

1
2

1
2

1
2

) (
1
2
− 1

2

− 1
2

1
2

)
We will also use the mirror image of those states corresponding to e�ects. By doing so we

will obtain post-selected circuits and we will be able to compute amplitudes.
The following table provides the representation of the most common quantum gates. They

are all pure maps, i.e., operators of the form: ρ 7→ V ρV †. We just give the corresponding matrix
V .

Name H Not Z Swap C-Not C-Z To�oli

Gate H Z
Z

Diagram π π

V

(
1√
2

1√
2

1√
2

−1√
2

) (
0 1
1 0

) (
1 0
0 −1

) 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



We will also use the discard map and its transpose which is the non normalized completely
mixed state:

J K def

= ρ 7→ 1√
2n
Tr(ρ) J K def

= ρ 7→ 1√
2n

∑
x∈2
|x〉 〈x|

We recall that the �rst corresponds to discarding data and the second is a uniform proba-
bilistic mixture of states.

10.1 Graph states

Graph-states were among the �rst example of application of the scalable notation in [104]. We

provide here a much nicer representation. A C-Z gate has interpretation


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 and graphical

representation . A composition of C-Z gates on n qubits is called a graph-state operator.

In fact given a graph (V,E) with |V | = n, the associated graph operator G : C2n → C2n is de�ned
as the composition of the C-Z gates on the qubits i and j for each (i, j) ∈ E. Usually we de�ne

the graph-state |G〉 def

= G |+〉⊗n instead of the graph operator. See [106] for more informations
on graph-states.

Example 16. Taking the square graph the corresponding graph state operator is represented as:

156

10.1. Graph states

10.1.1 Graphical representation

If G is a bipartite graph (V0, V1, E) with |V0| = a and |V1| = b then we can write the graph

operator Γ , where Γ is the bi-adjacency matrix of G de�ned by Γi,j = δ(i,j)∈E . Here

the red matrix arrow is applying C-Nots that Hadamard gates turn into C-Z as expected. Given
a non-bipartite graphs (V,E), we build a bipartite graph (V, V,E′). We �x an ordering of the

vertices in V and de�ne: E′
def

= {(i, j), i, j ∈ V, i > j and (i, j) ∈ E}. The ordering ensures that
each edge appears only once. Then the bi-adjacency matrix Γ is upper triangular and satis�es
Γ + Γt = A, the adjacency matrix of G. Thus we call Γ the half adjacency matrix of G.
We then fuse together the copies of the same vertex in the bipartite graph operator with green
nodes:

Γ =
Γ

=

Γ

.

We recognize the typical form of a diagonal operator.

We denote graph state operators Γ
def

=

Γ

.

Example 17. A half adjacency matrix for the square graph is:

Γ
def

=


0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0


The corresponding diagonal operator is:

We have:

Γ Γ′ = Γ + Γ′ and

Γ′

Γ
= Γ⊕ Γ′

We can now provide graphical versions of the properties of graph operators.

157

Chapter 10. Drawing quantum computing

10.1.2 Stabilizer properties

The graph state corresponding to the graph (V,E) can also be characterize as the unique state
preserved by all the operators Vi, de�ned for each i ∈ V as:

Vi
def

= Xi ◦ Z(Γ+Γt)i

G |x〉 =
max∑
|x〉 and for each vertex i ∈ V , G |i〉 = Xi ◦ Z(Γ+Γt)i ◦G

This follows directly from the two following properties of graph operators.

Lemma 32. The graph state operator corresponding to the graph (V,E) satis�es G |0〉 = |0〉 and
G ◦Xi = Xi ◦ Vi ◦G.

Proof. We have:

Γ

=

Γ

=

Γ

= =

and

Γ

i =

Γ

i

ii

= i

Γ

i Γi

= i

Γ

iΓi

= i

Γ

i ΓtiΓi

= i

Γi

(Γ + Γt)i .

This can be seen as a second way to ensure that our construction correctly implements graph
states.

10.1.3 Local complementation

Graph states can be modi�ed by applying phase gates locally on the vertices. More precisely we
have Xu(−π

2) ◦ZNu(π2) ◦G |+〉 = (G ∗u) |+〉 where G ∗u is the graph G locally complemented in
u. Our proof is a scalable reformulation in scalable notations of the one of [24]. We denote Td the
half adjacency matrix of the complete graph on d vertices, which is the strict upper triangular
d× d matrix full of ones. We assume that the vertices in G are ordered such that we �rst have
u, then the neighbourhood of u, and then the other vertices. Denoting + the π

2 phase and − the
−π

2 phase we then want to prove:

Lemma 33. Γ

−

+ = ΓTd

Proof. First we consider the case of star graphs. In this situation the half adjacency matrix that

we call Sd has the form:


0
1
...
1

(0)

. We have:
158

10.1. Graph states

Sd =

Sdi

= = .

Admitting the triangle lemma proved in [24]:

−

++

= .

We prove the generalize version:

Lemma 34.

−

+

=

Td
.

Proof. For n = 1, we have

−

+

= =

Td
. For n = 2, we have

−

+

=

−

++

and
Td

= , this is

exactly the triangle lemma. For n ≥ 3:

Td+1

=

Td

=

Td

=

Td

=

Td

=

Td

+ +

−

=
+ +

−

−

+

=

+

−

+

=

−

+

.

Using the generalized triangle lemma we have:

−

+
Sd =

−

+

=

−

+

=

Td
=

Td

= SdTd
.

And �nally:

159

Chapter 10. Drawing quantum computing

Γ

−

+ =
Γ′

Sd
−

+ =
Γ′

SdTd = ΓTd .

10.2 Diagonal gates

We now take some hindsight and consider diagonal gates that more general than graph states.
The main point of this section is to reproduce with scalable notations some results that have
been �rst proved without them or using bang boxes in [26] and [25].

10.2.1 De�nition

A diagonal gate is a unitary map that is diagonal in the computational basis. In other words,
it is a linear map C2n → C2n such that for each x ∈ 2n, |x〉 are eigenvectors with module one
eigenvalue. The diagonal gates on n qubits form an Abelian group isomorphic to U2n . A phase

function is a semi-boolean function f : 2n → R. To each phase function we can associate
a diagonal gate eiπf : [n] → [n] de�ned by eiπf : |x〉 7→ eiπf(x) |x〉. The correspondence is
not one to one, eiπf = eiπg if and only if there is a k ∈ N such that f = g + 2k. We have
eiπ(f+g) = eiπfeiπg. Graphically, being a diagonal gate is equivalent to being a phase of the

scaled green spider. That is to be a unitary satisfying : U =
U

. We can
represent graphically any diagonal gate with function arrows and phase functions. We de�ne the
set function hn : 2n → 22

n
as: ∀x, s ∈ 2n, h(x)s

def

= δx=s. We can also de�ne hn inductively by

h0() = 1 and hn+1(x0x
′) =

{
hn(x′)0 · · · 0 if x0 = 0

0 · · · 0hn(x′) if x0 = 1
.

Denoting f the vector (f(x))x∈2n , eiπf is pictured:
hn

f

. It has clearly the form of a phase.
Moreover, any map of this form is unitary:

g

f

g

−f

=

g

f

g

−f

=

f −f

g

=

g

= = .

We can check it is a correct representation of e2πf :

x

hn

f

= xx

hn

f

= x

f

hn(x)

= x

f(x)

1

= x

eiπf(x)

De�ning f0(x)
def

= f(0x) and f1(x)
def

= f(1x) we have:

hn+1

f

=

hn

f1

hn

f0

1

160

10.2. Diagonal gates

We can see that:

hn

f1

hn

f0

1

=

hn

f1

hn

f0

1

=
hn

f1f0

1

=
hn

f1f0

=
hn

f0

and

hn

f1

hn

f0

1

1

=

hn

f1

hn

f0

1

1

1

1

=
hn

f1f0

1

=
hn

f0 f1

1
=
hn

f1

1

We now focus on families of diagonal gates that admit speci�c representations.

Hyper-graph operator

When an edge in a graph operator is represented by a controlled Z gate on two vertices, a hyper-
edge in a hyper-graph operator is represented by a multi-controlled Z gate on a subset of the
vertices. They can be easily represented in ZH-calculus by a Hadamard node. A phase function
corresponding to an hyper-edge is de�ned by ∀s, x ∈ 2nξs(x)

def

= δs≤x.

We can depict ξs as:
s

1

where s is the characteristic vector of the subset s. A composition
of such gates is called a hyper-graph operator. We can represent them compactly in scalable

notations. The matrix Hn ∈ {0, 1}2
n × {0, 1}n is de�ned inductively by: H1 =

(
0
1

)
and

Hn+1
def

=



0
...
0

Hn

1
...
1

Hn


.

An hyper-graph operator corresponding to the hyper-graph G on n vertices is entirely de�ned
by the phase function g : 2n → R such that g(s) = δs∈G. Hn is a stack of all possible s ∈ 2n. We

can then draw the hyper-graph operator G:
Hn

g

. We can generalize this to any non {0, 1}
phase functions f : 2n → R of the form: f(s) =

∑
x∈2n

axξs(x). We have:

161

Chapter 10. Drawing quantum computing

hn

f

=

Hn

a

We will see later that in fact, any function arrow admits a representation of this form.

Phase gadgets

Phase gadgets are diagonal gates depicted by
s

α

. They can be represented by the phase

functions de�ned by ∀s, x ∈ 2n,Ωs(x)
def

= x · s. Ωs is depicted:
s

1

. Like for hyper-graphs
operator we can use the set matrix to depict a composition of phase gadget. We can represent
any phase function f : 2n → R of the form: f(s) =

∑
x∈2n

axΩs(x). We have:

hn

f

=

Hn

a

We now apply those representations to graphical transforms.

10.2.2 Graphical transforms

The graphical Fourier theory was introduced in [25]. It was then stated in a mix of bang-boxes
and ellipsis. We restate it here in an ellipsis-free way using scalable notations. We hope this
new presentation allows us to grasp more clearly the underlying phenomena. The theory can be
extended to other semi-boolean transforms. We do it there with the Möbius transform.

Walsh Fourier transform

De�ning χs(x)
def

= 1− 2Ωs(x), the χs form an orthonormal basis of R2n with respect to the scalar

product 〈f |g〉 def

= 1
2n
∑
x∈2n

f(x)g(x). The Walsh Fourier transform of a phase function f is de�ned

by f̂
def

= 1
2n
∑
s∈2n

f(s):

f =
∑
s∈2n

f̂(s)χs =
∑
s∈2n

f̂(s) (1− 2Ωs) =
∑
s∈2n

f̂(s)− 2
∑
s∈2n

f̂(s)Ωs = f(∅)− 2
∑
s∈2n

f̂(s)Ωs

We can use this formula to rewrite the diagonal gate associated with f as a composition of
phase gadgets.

Lemma 35. For all f : 2n → R

hn

f

=

Hn

−2f̂

eiπf(∅)

We provide graphical proof.

162

10.2. Diagonal gates

Proof. Denoting f0(x)
def

= f(0x) and f1(x)
def

= f(1x). Let the Walsh matrix be W
def

= 1
2

(
1 1
1 −1

)
.

The Walsh Fourier transform of a phase function f : 2n → R is f̂
def

= W⊗nf .

(
f̂0

f̂1

)
= W⊗n+1

(
f0

f1

)
= 1

2

(
In In
In −In

)(
W⊗nf0

W⊗nf1

)
= 1

2

(
In In
In −In

)(
f̂0

f̂1

)
=

(
f̂0+f̂1

2
f̂0−f̂1

2

)

So:

f̂0 = f̂0+f̂1
2 f̂1 = f̂0−f̂1

2 f̂0 = f̂0 + f̂1 f̂1 = f̂0 − f̂1

By induction, for n = 1 this is direct, for n ≥ 2: We show
Hn+1

−2f̂

eiπf(∅)

=

hn+1

f

and

Hn+1

−2f̂

eiπf(∅)

1
=

hn+1

f

1
.

We have:
Hn+1

−2f̂

eiπf(∅)

=

Hn

−2f̂1

eiπf(∅)
Hn

−2f̂0

so:

Hn

−2f̂1

eiπf(∅)
Hn

−2f̂0

=

Hn

−2f̂1

eiπf0(∅)
Hn

−2f̂0

=
Hn

eiπf0(∅)−2f̂0

=
hn

f0

and

Hn

−2f̂1

eiπf(∅)

1

Hn

−2f̂0

=

Hn

−2f̂1

eiπf(∅)
Hn

−2f̂0

1

1

=

Hn

2f̂1

eiπf1(∅)
Hn

−2f̂0

1
=

Hn

eiπf1(∅)−2f̂1

1
=

1hn

f1

This equality has been proved in [25].

163

Chapter 10. Drawing quantum computing

Möbius transform

The ξs also form a basis of R2n associated with the Möbius transform, see [107] for details. The
Möbius transform of a phase function f is de�ned by f̃(x) =

∑
s≤x

(−1)|x|+|s|f(s). We have:

f =
∑
s∈2n

f̃(s)ξs

Lemma 36. For all f : 2→ R:

hn

f

=

Hn

f̃

Proof. Let the Möbius matrix be M
def

=

(
1 0
−1 1

)
. The Möbius transform of a phase function

f : 2n → R is f̃
def

= M⊗nf .

(
f̃0

f̃1

)
= M⊗n+1

(
f0

f1

)
=

(
In 0
−In In

)(
M⊗nf0

M⊗nf1

)
=

(
In 0
−In In

)(
f̃0

f̃1

)
=

(
f̃0

f̃1 − f̃0

)

So:

f̃0 = f̃0 f̃1 = f̃1 − f̃0 f̃0 = f̃0 f̃1 = f̃0 + f̃1

By induction, for n = 1 it is direct, for n ≥ 2: We show
Hn+1

f̃

=

hn+1

f

and

Hn+1

f̃

1
=

hn+1

f

1
.

We have:
Hn+1

f̃

=

Hn

f̃1

Hn

f̃0

so:

Hn

f̃1

Hn

f̃0

=

Hn

f̃1

Hn

f̃0

=
Hn

f̃0

=
hn

f0

and

164

10.2. Diagonal gates

Hn

f̃1

1

Hn

f̃0

=

Hn

f̃1

Hn

f̃0

1
=

Hn

f̃1

1
=

1hn

f1

10.2.3 Spider nests

A spider nest identity is a composition of spiderlike diagrams, typically generalized hyperedges,
and phase gadgets, with one big spider and a lot of very small ones. Furthermore, this composi-
tion must be the identity. We end this note by deriving some of them from graphical transforms.
We restrict to symmetric phase functions, that is f(x) only depends of the Hamming weight
of x. We write F : n→ R the function such that f(x) = F (|x|).

Binomial transform

The Möbius transform of a symmetric semi-boolean function is the binomial transform:

f̃(x) =
∑
s≤x

f(s)(−1)|s|+|x| = (−1)|x|
|x|∑
k=0

(|x|
k

)
(−1)kF (k)

We de�ne F̃ (m)
def

=
m∑
k=0

(
m
k

)
(−1)m−kF (k). We have f̃(x) = F̃ (|x|) and F (m) =

m∑
k=0

(
m
k

)
F̃ (k).

We recover the spider nest identity of [27] by computing the Möbius transform of the phase
function G(m) = α1−(−1)m

2 which represent one phase gadget on n qubits with phase α.

G̃(m) =
m∑
k=0

(
m
k

)
(−1)m−kG(k) = α

2

(
m∑
k=0

(
m
k

)
(−1)m−k −

m∑
k=0

(
m
k

)
(−1)m−k(−1)k

)
=

α
2 (δm=0 − (−2)m).

G̃(0) = 0 so we have no �oating scalars. For k ≥ 1, G̃(k) = α(−2)m−1. Setting α = 1
4 we see

that only the �rst terms G̃(1) = 1
4 , G̃(2) = −1

2 and G̃(3) = 1 are relevant for the phase gate.

This has been proved by induction in [27].

Kravchuk transform

The case of the Fourier transform is more complex:

f̂(x) = 1
2n
∑
s∈2n

f(s)(−1)s·x = 1
2n
∑
k∈n

F (k)
∑
|s|=k

(−1)s·x.

∑
|s|=k

(−1)s·x is also a symmetric boolean function equal to the Kravchuk polynomial:

Knk (|x|) def

=
k∑
j=0

(|x|
j

)(n−|x|
k−j

)
(−1)j .

165

Chapter 10. Drawing quantum computing

To see this, consider j as the number of ones in comon between x and s. The Kravchuk polyno-

mials satisfy:
(
n
m

)
Knk (m) =

(
n
k

)
Knm(k) and

n∑
i=0

(
n
i

)
Knk (i)Knl (i) = 2n

(
n
k

)
δk=l.

The Walsh Fourier transform of a symmetric semi-boolean function is then the Kravchuk

transform: F̂ (m)
def

= 1
2n

n∑
k=0

F (k)Knk (m). We have: f̂(x) = F̂ (|x|) and F (m) =
n∑
k=0

F̂ (k)Knk (m).

See [108] for details on transforms of symmetric semi-boolean functions.

We can compute the transform of the phase function H(m)
def

= βδm=n which corresponds to
the generalised hyperedge on n qubits with phase β.

Ĥ(m) = 1
2n

n∑
k=0

H(k)Knk (m) = 1
2n

n∑
k=0

βδk=nKnk (m) = β
2nK

n
n(m) = β

2n (−1)m.

Combining this result with the spider nest identity of the previous section it is possible to
derive the spider nest identity from [26] as it is done in [27]. We end this note by giving an
alternative proof by inversion. We �rst sketch a method to check spider nest identity. We want
to show that for a symmetric phase function ŝ : 2n → R:

Hn

−2ŝ

=

We know Ŝ by reading the coe�cients in the phase gadgets. We compute S using the inversion
formula. Then we check if all values of S are equal modulo 2. If it is the case this means that
the corresponding phase gadget is eiπS(0)In. But this scalar is exactly the one appearing in the
graphical Fourier transform. So simplifying on both sides gives us exactly what we want.

We apply this method to the spider nest identity of [26]. Here, only the Kravchuk polynomials
for k = 0, 1, 2, 3 and n are needed:

Kn0 (m) = 1 Kn1 (m) = −2m+ n Kn2 (m) = 2m2 − 2nm+ n2−n
2 Knn(m) = (−1)m

Kn3 (m) = −4
3m

3 + 2nm2 + (−n2 + n− 2
3)m+ n3−3n2+2n

6

We want to inverse the phase function:

Ŝ(0) = 0 Ŝ(1) = (n−2)(n−3)
16 Ŝ(2) = −n−3

8 Ŝ(3) = 1
8 Ŝ(n) = −1

8 Ŝ(k) = 0 for k 6= 0, 1, 2, 3, n.

Lemma 37. Forall m ∈ J0, nK, S(m) = S(0) mod 2

Proof.

S(m) =
n∑
k=0

Ŝ(k)Knk (m) = Ŝ(1)Kn1 (m) + Ŝ(2)Kn2 (m) + Ŝ(3)Kn3 (m) + Ŝ(n)Knn(m)

=
(n− 2)(n− 3)

16
Kn1 (m)− n− 3

8
Kn2 (m) +

1

8
Kn3 (m)− 1

8
Knn(m)

=
−m3

6
+

3m2

4
− 5m

6
+
n3

48
− n2

8
+

11n

48
− (−1)m

8

Our goal is to check that S(m) mod 2 doesn't depend on m. Thus, we only need the part
of S(m) that depends on m.

166

10.3. Algorithms

S′(m)
def

= −m3

6 + 3m2

4 −
5m
6 −

(−1)m

8 .

Since S′(0) = −1
8 mod 2, we want to check that for each m ∈ N, S′(m) ≡ −1

8 mod 2. To
do so we write m = 12k + l with k ∈ N and l ∈ J0, 11K. We obtain:

S′(12k + l) = −288k3 − 72lk2 + 108k2 − 6kl2 + 18kl − 10k − l3

6 + 3l2

4 −
5l
6 −

(−1)l

8

We see that S′(12k + l) = − l3

6 + 3l2

4 −
5l
6 −

(−1)l

8 mod 2, this only depends on l. Thus we

can just check that for each l ∈ J0, 11K, − l3

6 + 3l2

4 −
5l
6 −

(−1)l

8 = −1
8 mod 2 (which is true).

10.3 Algorithms

Many quantum algorithms are de�ned using oracles. An oracle can be viewed as a black box,
it is not, however, an arbitrary map, a quantum oracle may have some structure: they are
usually quantum encodings of classical functions, moreover, some promises can provide additional
information about the behaviour of the oracle. In the spirit of the ZX-calculus, we decompose, in
this section, classes of quantum oracles into smaller components with better understood algebraic
properties.

A section of the "Dodo book" [89] is dedicated to the description of quantum algorithms in
ZX-calculus (in particular Deutsch-Jozsa and Grover), and a few articles [23, 69] address the
diagrammatic description of quantum oracles.

10.3.1 Oracles

The function arrow of f is unitary if and only if f is a bijection. There is however a standard way
to associate with any function f : 2n → 2m a unitary transformation de�ned as Uf = |x〉 |y〉 7→
|x〉 |f(x)⊕ y〉, often call quantum oracle. As pointed out in [89], the quantum oracle can be

constructed as follows: f : [n]⊗[m]→ [n]⊗[m]. Indeed,

t

f

|

= |x〉 |y〉 7→ |x〉 |f(x)⊕ y〉.

We can double check that quantum oracles are involutions:

f f = f f =
f

=
f

= =

From a quantum oracle, we can easily compute the original function using ancillas.

f

x

Fm = f
x

x

Fm =
f(x)

Fm =
f(x)

Fm

Note that the To�oli gate is in fact the quantum oracle representing the AND gate. Often,
we consider boolean functions, then, another kind of oracle is available. For any boolean function

f : 2n → 2, the diagonal oracle of f is
π

f : [n] → [n]:

u

v
π

f

}

~ = |x〉 7→ (−1)f(x) |x〉. We

can construct the diagonal oracle from the oracle using ancillas:

167

Chapter 10. Drawing quantum computing

f
π

= f
π

= f

π
π

= f
π

We have now enough graphical structures to tackle the most basic quantum algorithms.

10.3.2 Quantum algorithms relying on a single application of the oracle

In this section we provide a diagrammatic treatment of some quantum algorithms that frequently
appear in quantum computing textbooks like [45]. They are oracle-based: given a function that
satis�es some properties (the promise), we want to recover some information about the function
using a minimal number of queries to the corresponding quantum oracle.

Bernstein-Vazirani

The Bernstein-Vazirani algorithm has been introduced in [109]. The goal is to recover a string
of bits encoded into a function.

Input: A function f : {0, 1}n → {0, 1} of the form f(x) = st · x with s ∈ {0, 1}n.

Problem: Find s.

Circuit:
H

H
Uf

|0〉⊗n

|1〉

H
→

π

f

Fn

Reformulating graphically the promise on f gives us:
f

=
st

and then:

π

st

Fn

=
π

st

Fn

=
π

st
π

Fn

=
st

π

Fn

= π

Fn
s

= s

Fn

We see the circuit directly outputs the state |s〉.

Deutsch-Jozsa

The Deutsch-Jozsa algorithm [1] is historically the �rst of all quantum algorithms. Given a
function that is known to be either constant or balanced, the goal is to decide in which case we
are using only one query to the oracle. The version we present here is a little bit more general
than usual since we do not require f to output a single bit. The general principle is the same as
Bernstein-Vazirani,the di�erence is that we are here interested in the probability of outputting
|0〉⊗n.

168

10.3. Algorithms

Input: A function f : {0, 1}n → {0, 1}m which is either constant or balanced.

Problem: Decide whether f is constant or balanced.

Circuit:
H

H
Uf

|0〉⊗n

|1〉⊗m
H

→
π

f

Fn

We compute the amplitude of the outcome |0〉⊗n:

π

f

FnFn

=
π

f

F2n

=
π

π

fF2n

= π

fF2n

We then have two cases:

• If f is balanced then
f

= and π

fF2n

= π

F2n

= 0.

• If f is constant then there exists x ∈ {0, 1}m such that
f

= x :

π

fF2n

= π x

F2n

= π x = 1.

So if the outcome is |0〉⊗n then f is constant otherwise f is balanced.

Simon

Simon's algorithm is more subtle than the algorithm we have seen so far. This algorithm is
probabilistic, moreover, the quantum computation is combined with classical processing. We are
given a strictly periodic function f and the goal is to �nd the period s. The quantum part of
the algorithm is nothing but a random generator that outputs a string y such that y · s = 0, in
a uniform way. Repeating this quantum part several times, gives, with high probability, enough
linearly independent equations to solve the linear system with a classical algorithm and �nd s.

Input:
A function f : {0, 1}n → {0, 1}n with an s ∈ {0, 1}n, s 6= 0n, such that:

f(x) = f(y)⇔ (x = y) ∨ (x⊕ s = y).

Problem: Find s.

Circuit:
H

Uf
H|0〉⊗n

|0〉⊗n
→ f

Fn

169

Chapter 10. Drawing quantum computing

The translation of the promise into a graphical property is less straightforward than with the
algorithms we have seen so far. Let h be an orthogonal projector on s⊥, h is clearly strictly s

periodic. So there is a bijective function g : {0, 1}n → {0, 1}n such that
f

=
h g

. The
circuit reduces to:

Fn

h
g

=
h
g

Fn

=
hgFn

=
hFn

=
hFn

=
hFn

.

Since by de�nition ht = h. We can directly see the resulting state: it is a uniform mixture
of the elements in s⊥. In other words, we can use this circuit to sample uniformly at random
vectors yi such that yi · s = 0.

10.3.3 Iteration and Grover algorithm

The last and most famous algorithm we present is Grover's algorithm [110]. Given a boolean
function f : 2n → 2 such that 1 has a unique preimage x0. The objective is to �nd x0. Roughly
speaking, the algorithm consists in applying k times a combination of the quantum oracle and
a di�usion operator on the superposition of all classical inputs. We then show that choosing k
wisely, the output is |x〉 with a high probability.

Input: A boolean function f : {0, 1}n → {0, 1} such that f−1({1}) = {x} with x ∈ {0, 1}n.

Problem: Find x.

Circuit:
H

H
Uf

|0〉⊗n

|1〉

H H

k

.... Uor →

[kn]

[(k-1)n][n]

[n] [n]

π

f

Fn

π

π

×

Here we need to explain the translation into diagrams. First the ancillas is only here to form
the diagonal oracles we then have:

H

H
Uf

|0〉⊗n

|1〉

H H

k

.... Uor → H Df|0〉⊗n H H

k

.... Dor

translating into diagrams:

170

10.3. Algorithms

H Df|0〉⊗n H H

k

.... Dor →

k

....Fn

π

f

π

π

Now, using the iteration mechanism of Lemma 3 to represent the k queries gives:

k

....Fn

π

f

π

π

→

[kn]

[(k-1)n][n]

[n] [n]

π

f

Fn

π

π

×

The × stands for the matrix resulting of the thickening of the AND gate. The promise

translates to:
f

= x̄ where x̄ is the bit-wise negation of x. Our goal is to compute
the probability of the outcome |x〉. Making the x red phase slides gives:

x
Fn

π

π

Fn

π

x̄

[kn]

××
=

x

F2n

π

π

π

x̄

[kn]

×× =

F2n

π

π

π

π

[kn]

××

Using the iteration mechanism we get:

F2n

π

[2kn]

π

× .

Here we will translate a geometric approach into diagrams.

Lemma 38. Setting ν
def

= 1√
2n−1

, cos(µ2)
def

= −1√
2n

and sin(µ2)
def

=
√

2n−1√
2n

, the map V
def

=

π π

ν

satis�es:

• = V † • V V † =

• = 1
ν V • V

π

π

= µ π
2

−π
2

171

Chapter 10. Drawing quantum computing

Proof. We proceed point by point:

� By rewriting:

V † = ππ

ν

= ππ =

� By rewriting:

= ππ = π π

ν
1
ν = 1

ν V

� First we can check:

u

v
ν2

1

}

~ = J K and then
ν2

1 = . So:

V V † = π π

ν
ππ

ν

=

νν π

=

ν2

π

= =

� First we have : V

π

π

=

π

π

π π

ν

= π π π

ν

. So the

question reduces to show that: π π = π πµ1
π
2

ν
−π
2

1
ν

.

We proceed by induction on n. If n = 1 then ν = 1 and µ = −π
2 :

= ππ = −π
2
−π
2

−π
2

ππ = π µ π
2

−π
2

For n > 1 we need the following observation:

1√
2

(
1 1
1 −1

)
⊗

(
1√

2n−1

2n−1−1√
2n−1

1√
2n−1

−1√
2n−1

)
1 0
0 1
0 1
0 1

 =


1 0
0 1
0 1
0 1


(

1√
2n

2n−1√
2n

1√
2n

−1√
2n

)
.

Graphically:

µ′π π
2

ν ′
−π
2

1
ν′

1

1
1 =

π
µπ π

2

ν
−π
2

1
ν

π
π

with ν ′
def

= 1√
2n−1−1

, cos(µ
′π
2)

def

= −1√
2n−1

and sin(µ
′π
2)

def

=
√

2n−1−1√
2n−1

.

We have:

172

10.3. Algorithms

π π = π
π

π

ππ

The induction hypothesis gives:

π
π

π

πµ′π π
2

ν ′

−π
2

1
ν′

π

And �nally, using the previous observation:

π
π

π

πµ′π π
2

ν ′

−π
2

1
ν′

π
= π πµ1

π
2

ν
−π
2

1
ν

This lemma allows us to rewrite the diagram as follows:

1
ν

F2n

π

[2kn]

πVV †

V †

V

× .

Making the isometries slide gives:

1
ν

F2n

π

[2kn]

π

V V †

× =

1
ν

1
2

µ
F2n

[2kn]

−1
2

= 1
2

F2n

2kµ−1
2

1
ν

The last step being the iteration mechanism. We can now compute the interpretation:

u

v 1
2

F2n

2kµ−1
2

1
ν

}

~ =

∣∣∣∣(1 0
)(cos(kµ) sin(kµ)
− sin(kµ) cos(kµ)

)(
− cos(µ2)
sin(µ2)

)∣∣∣∣2 = cos2(2k+1
2 µ)

So the probability is maximal when 2k+1
2 µ ' 0 mod π. Moreover µ = π± 2√

2n
+ o(1√

2n
), thus

k ' π
4

√
2n.

If the graphical veri�cation of most of the other algorithms we presented are neat and straight-
forward. This approach of Grover's algorithm is still not rigorous enough to be implemented in a
future proof assistant. More works need to be done on the higher-level structure like the iteration
mechanism we have sketched out.

173

Chapter 10. Drawing quantum computing

174

Conclusion

There are di�erent schools when it comes to conclusions. Either it is a cardinal sin to omit it or
if you have nothing more to say then say nothing. For some reason, I am more inclined toward
the second one. However, in the present case, I still have some things to say.

The PhD thesis tells (and I think has to tell) a very di�erent story than what really happened
during three years of research.

When I started my PhD I had a precise plan in mind: designing a graphical language mixing
the ZX-calculus and the proof nets of linear logic to work on higher-order quantum transforma-
tions. I never was really really satis�ed by the result and nothing came out of it but at least
those works already had some scalable notations hidden in them. Very quickly I started to work
on the scalable ZX-calculus with Simon Perdrix and Dominic Horsman. If the main idea were
there very quickly it took a very long time to write them down 2. Meanwhile, I was invited
by Simon Perdrix, Emmanuel Jeandel, and Renaud Vilmart to work on the completeness of the
ZX calculus with grounds. Following discussions with Mathieu Huot this paper ended far more
categorical than expected, but in a good way though.

At some point, I became interested in the links between group algebras and ZX-calculus. I
obtained rules very similar to the ZW-calculus which lead me to consider �exsymmetry and the
softening trick of Chapter 5 for the �rst time. However, it took at least a year to come up with
the paradigms of Chapter 4 to clarify the idea. Looking at so many spiders �nally lead me and
Emmanuel Jeandel to try to �nd all of them which gave the notion of Z∗-algebra presented in
Chapter 6.

In parallel, we had discussions with Robert Booth and Damian Markham on the possibility to
draw the group algebra of in�nite groups. This led me and Robert Booth to work on the endless
sea of dead ends that is the design of graphical languages for continuous-variable quantum
computing, but I still have some hope. The desperate search for valid semantics for such in�nite-
dimensional graphical languages led to discussions with Marc De Visme which ended up with
the extension of SZX calculus to streams of qubits, an old idea that came back to the beginning
of scalable ZX-calculus. Sadly this line of research is not presented in this thesis.

This brings us to another purpose of conclusions, advertising further research and prospects.

� I really think the paradigms of Chapter 3 could be useful to clarify graphical language
design. In my mind, there really is a correspondence between paradigm and implementa-
tion of the paradigmatic graphical languages into proof assistants. I hope I will have the
opportunity someday to provide more support to this claim by developing the paradigm
formalism further. Maybe by extending the notion to a framework where paradigmatic
generators and equations can depend on generators and equations in a natural way?

2Mainly because I was drawing everything in Tikz directly, before what I call the Tikzit miracle. I am very

grateful to the developers of this software that was used for almost all the drawings in this thesis.

175

Conclusion

� Flexsymmetry, introduced in Chapter 5, is, I think, a nice notion that allows in a concise
and formal way to say what we want to say when we speak of graphical languages. Where
graphical here really means related to graphs. I have only developed it in the monochro-
matic case the coloured version might also be of interest, in connection with graphs with
coloured edges. I also did not mention a weaker notion, �excyclicity, that allows to keep a
cyclic ordering of the edges connected to one vertex. This notion is connected to port-graphs
and would allow to tackle the case of non-commutative symmetric Frobenius algebras.

� The classi�cation of Z∗-algebra in Chapter 6 could be done in higher dimensions than two.
I personally think that dimensions 3 and 4 might be of interest, mainly because numerous
notions in physics are de�ned in those dimensions. In even higher dimensions, if we can
look at generalizations of ZX, ZH, and ZW to qudits, I can't think of really good motivation
to do that for now. Furthermore, there are good reasons to expect an in�nite number of
Z∗-algebras up to isomorphism. One could also look at other monoidal categories like we
did for LinRel in Chapter 7.

� The discard construction presented in Chapter 8 only is equivalent to the CPM construction
if we have enough isometries. This leaves open the axiomatization of the Cli�ord+T mixed
state fragment. I personally thought for some time that the discard construction was more
fundamental than the CPM construction which I saw as a direct mimicking of the density
matrix construction. I have since changed my mind seeing the beautiful application of
the CPM construction to other situations [111]. I feel there is still some unifying to do in
the world of mixed-state categorical quantum mechanics. A lot of constructions have been
proposed and the precise links between all of them are obscured by the fact that they all
coincide in the case of Hilbert spaces.

� I now think that the scalable notations of Chapter 9 are more fundamental than I �rst
thought. They were �rst designed with a very pragmatic goal in mind but the more I
worked with them the more I started to remark how natural they are. The distribution
equation seems to hide a natural transformation and the scalable construction seems related
to the work on concategories and stricti�cation [39]. In a sense, the dividers and gatherer
are natural isomorphisms between objects that have been arti�cially di�erentiated to work
into a prop instead of a strict symmetric monoidal category. This might be the subject of
future work.

� In Chapter 10, we have used scalable notations to verify some standard quantum algo-
rithms. For the moment, this work is merely exploratory. Trying to tackle graphically
many algorithms and protocols is the only way to evaluate our graphical methods. The
ultimate goal is to be able to compile high-level quantum programming languages directly
into diagrams. Then a graphical proof assistant could be used to provide proofs of correct-
ness and optimizations. Case studies like this are steps toward a double understanding.
First, how graphical languages must be designed to �t this purpose. Second, what should
be the speci�cations of future graphical proof assistants. Those two perspectives are clearly
entangled.

I expect those research projects to follow the usual ratio of survival of research ideas to more
serious investigations. Which is approximatively one over ten.

My goal in this thesis was to make the diagrammatic methods as operational as possible.
The �exsymmetry paradigm gives a very compact presentation by hierarchizing the di�erent

176

properties of ZX-calculus. The concept of Z∗-algebra makes clear the links between the three
quantum graphical calculi. I think this allows for a pragmatic conjoint use of the three languages
together as I kind of did in Chapter 10.

The extension to mixed states allows us to express measurements, randomness, and classical
control in the language. It even simpli�es some computations by getting rid of the scalars
implementing global phases. I personally think the discard construction has huge advantages
over the doubling in practice but only usage can tell.

Finally, the scalable notations allow compact presentations of quantum protocols. Of course,
there are a lot of other works going in the same direction and I do not claim to have reached an
ultimate presentation of quantum graphical languages, but this was my guiding goal.

As I started my PhD I saw the completeness era come to an end. I believe that we enter into
a period of experimentation. We now see di�erent people from various �elds showing interest in
the ZX-calculus. It seems that it is now time for the graphical languages to be confronted with
all quantum phenomenon one can think of and evolve in consequence. At least, this is what I
see happening on the ZX-discord.

If the work presented here can help anyone have a better grasp of the nature of diagrammatic
methods, or motivate someone to use those notations for anything they like, then those three
years might not have been in vain. Anyway, at least, personally, in hindsight, I overall very
enjoyed it.

177

Conclusion

178

Bibliography

[1] David Deutsch and Richard Jozsa. �Rapid solution of problems by quantum computation�.
In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences 439.1907 (1992), pp. 553�558.

[2] Richard Cleve et al. �Quantum algorithms revisited�. In: Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences 454.1969 (1998),
pp. 339�354.

[3] Peter W. Shor. �Polynominal time algorithms for discrete logarithms and factoring on
a quantum computer�. In: Algorithmic Number Theory, First International Symposium,
ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings. Ed. by Leonard M. Adleman and
Ming-Deh A. Huang. Vol. 877. Lecture Notes in Computer Science. Springer, 1994, p. 289.
doi: 10.1007/3-540-58691-1_68. url: https://doi.org/10.1007/3-540-58691-
1_68.

[4] Titouan Carette. �When Only Topology Matters�. In: arXiv preprint arXiv:2102.03178
(2021).

[5] Titouan Carette and Emmanuel Jeandel. �A recipe for quantum graphical languages�. In:
47th International Colloquium on Automata, Languages and Programming (2020).

[6] Titouan Carette et al. �Completeness of Graphical Languages for Mixed States Quantum
Mechanics�. In: International Colloquium on Automata, Languages, and Programming
(ICALP'19). 2019.

[7] Titouan Carette, Dominic Horsman, and Simon Perdrix. �SZX-Calculus: Scalable Graph-
ical Quantum Reasoning�. In: 44th International Symposium on Mathematical Founda-
tions of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany. Ed. by
Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen. Vol. 138. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 55:1�55:15. doi: 10.4230/LIPIcs.
MFCS.2019.55. url: https://doi.org/10.4230/LIPIcs.MFCS.2019.55.

[8] Titouan Carette and Simon Perdrix. �Colored props for large scale graphical reasoning�.
In: arXiv preprint arXiv:2007.03564 (2020).

[9] Titouan Carette, Yohann D'Anello, and Simon Perdrix. �Quantum Algorithms and Ora-
cles with the Scalable ZX-calculus�. In: arXiv preprint arXiv:2104.01043 (2021).

[10] Titouan Carette. �A note on diagonal gates in SZX-calculus�. In: arXiv preprint arXiv:2012.09540
(2020).

[11] Bob Coecke and Ross Duncan. �Interacting Quantum Observables: Categorical Algebra
and Diagrammatics�. In: New Journal of Physics 13.4 (2011), p. 043016. doi: 10.1088/
1367-2630/13/4/043016. url: https://doi.org/10.1088%2F1367-2630%2F13%2F4%
2F043016.

179

https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016

BIBLIOGRAPHY

[12] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. �A complete axiomatisation of
the ZX-calculus for Cli�ord+ T quantum mechanics�. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM. 2018, pp. 559�568.

[13] Kang Feng Ng and Quanlong Wang. �Completeness of the ZX-calculus for pure qubit
Cli�ord+ T quantum mechanics�. In: arXiv preprint arXiv:1801.07993 (2018).

[14] Amar Hadzihasanovic. �A Diagrammatic Axiomatisation for Qubit Entanglement�. In:
2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science. 2015, pp. 573�
584. doi: 10.1109/LICS.2015.59.

[15] Miriam Backens and Aleks Kissinger. �ZH: A Complete Graphical Calculus for Quan-
tum Computations Involving Classical Non-linearity�. In: Proceedings of the 15th Interna-
tional Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018. Ed.
by Peter Selinger and Giulio Chiribella. Vol. 287. Electronic Proceedings in Theoretical
Computer Science. 2019, pp. 23�42. doi: 10.4204/EPTCS.287.2.

[16] Peter Selinger. �Dagger Compact Closed Categories and Completely Positive Maps�. In:
Electronic Notes in Theoretical Computer Science 170 (2007), pp. 139�163. doi: 10.1016/
j.entcs.2006.12.018. url: https://doi.org/10.1016%2Fj.entcs.2006.12.018.

[17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. isbn: 9781316219317.
doi: 10.1017/9781316219317. url: https://doi.org/10.1017/9781316219317.

[18] Nicholas Chancellor et al. �Graphical structures for design and veri�cation of quantum
error correction�. In: arXiv preprint arXiv:1611.08012 (2016).

[19] Fabio Zanasi. �Interacting Hopf Algebras: the theory of linear systems�. In: PhD thesis,
arXiv preprint arXiv:1805.03032 (2018).

[20] Filippo Bonchi, Paweª Soboci«ski, and Fabio Zanasi. �A categorical semantics of sig-
nal �ow graphs�. In: International Conference on Concurrency Theory. Springer. 2014,
pp. 435�450.

[21] Ross Duncan and Kevin Dunne. �Interacting Frobenius Algebras are Hopf�. In: Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM.
2016, pp. 535�544.

[22] Pawel Sobocinski. Graphical Linear Algebra. url: https://graphicallinearalgebra.
net/.

[23] William Zeng and Jamie Vicary. �Abstract structure of unitary oracles for quantum al-
gorithms�. In: arXiv preprint arXiv:1406.1278 (2014). doi: 10.4204/EPTCS.172.19.

[24] Ross Duncan and Simon Perdrix. �Graph states and the necessity of Euler decomposition�.
In: Conference on Computability in Europe (CiE). Springer. 2009, pp. 167�177.

[25] Stach Kuijpers, John van de Wetering, and Aleks Kissinger. �Graphical fourier theory and
the cost of quantum addition�. In: arXiv preprint arXiv:1904.07551 (2019).

[26] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. �Fast and e�ective techniques for
T-count reduction via spider nest identities�. In: arXiv preprint arXiv:2004.05164 (2020).

[27] Anthony Munson, Bob Coecke, and Quanlong Wang. �AND-gates in ZX-calculus: spider
nest identities and QBC-completeness�. In: ().

[28] Saunders Mac Lane. �The development and prospects for category theory�. In: Applied
Categorical Structures 4.2 (1996), pp. 129�136.

180

https://doi.org/10.1109/LICS.2015.59
https://doi.org/10.4204/EPTCS.287.2
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016%2Fj.entcs.2006.12.018
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://graphicallinearalgebra.net/
https://graphicallinearalgebra.net/
https://doi.org/10.4204/EPTCS.172.19

BIBLIOGRAPHY

[29] Pierre-Louis Curien. �The joy of string diagrams�. In: International Workshop on Com-
puter Science Logic. Springer. 2008, pp. 15�22.

[30] Daniel Marsden. �Category theory using string diagrams�. In: arXiv preprint arXiv:1401.7220
(2014).

[31] Ji°í Adámek, Horst Herrlich, and George E Strecker. �Abstract and concrete categories.
The joy of cats�. In: (2004).

[32] Saunders Mac Lane. Categories for the working mathematician. Vol. 5. Springer Science
& Business Media, 2013.

[33] Steve Awodey. Category theory. Oxford university press, 2010.

[34] Michael Barr and Charles Wells. �Toposes, theories, and triples�. In: Reprints in Theory
and Applications of Categories 12 (2005), pp. 1�287.

[35] Hugh Tebby. Impro etc. url: https : / / improetc . wordpress . com / 2018 / 11 / 20 /

interview-with-keith-johnstone/#more-3436.

[36] John C Baez, Brandon Coya, and Franciscus Rebro. �PROPS IN NETWORK THEORY�.
In: Theory and Applications of Categories 33.25 (2018), pp. 727�783.

[37] Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. �Full abstraction for signal �ow
graphs�. In: ACM SIGPLAN Notices 50.1 (2015), pp. 515�526.

[38] Saunders MacLane. �Categorical algebra�. In: Bulletin of the American Mathematical So-
ciety 71.1 (1965), pp. 40�106.

[39] Paul Blain Levy, Sergey Goncharov, and Lutz Schröder. Traced Concategories. 2018. url:
http://events.cs.bham.ac.uk/syco/2/slides/levy.pdf.

[40] Philip Hackney and Marcy Robertson. �On the category of props�. In: Applied Categorical
Structures 23.4 (2015), pp. 543�573.

[41] Peter Selinger. �A survey of graphical languages for monoidal categories�. In: New struc-
tures for physics. Springer, 2010, pp. 289�355.

[42] André Joyal and Ross Street. �The geometry of tensor calculus, I�. In: Advances in math-
ematics 88.1 (1991), pp. 55�112.

[43] Aleks Kissinger. �Graph rewrite systems for classical structures in�-symmetric monoidal
categories�. PhD thesis. Citeseer, 2008.

[44] Werner Heisenberg. Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik.
Piper verlag, 1969.

[45] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information.
2002.

[46] Noson S Yanofsky and Mirco A Mannucci. Quantum computing for computer scientists.
Cambridge University Press, 2008.

[47] John van de Wetering. �ZX-calculus for the working quantum computer scientist�. In:
arXiv preprint arXiv:2012.13966 (2020).

[48] Aleks Kissinger and John van de Wetering. �Reducing T-count with the ZX-calculus�. In:
arXiv preprint arXiv:1903.10477 (2019).

[49] Aleks Kissinger and Vladimir Zamdzhiev. �Quantomatic: A proof assistant for diagram-
matic reasoning�. In: International Conference on Automated Deduction. Springer. 2015,
pp. 326�336.

181

https://improetc.wordpress.com/2018/11/20/interview-with-keith-johnstone/#more-3436
https://improetc.wordpress.com/2018/11/20/interview-with-keith-johnstone/#more-3436
http://events.cs.bham.ac.uk/syco/2/slides/levy.pdf

BIBLIOGRAPHY

[50] Niel de Beaudrap and Dominic Horsman. �The ZX calculus is a language for surface code
lattice surgery�. In: https://quantum-journal.org/papers/q-2020-01-09-218/ (2017).

[51] Aleks Kissinger and John van de Wetering. �Universal MBQC with generalised parity-
phase interactions and Pauli measurements�. In: arXiv:1704.06504 (2017).

[52] Niel de Beaudrap. �Well-tempered ZX and ZH calculi�. In: arXiv preprint arXiv:2006.02557
(2020).

[53] Stephen Lack. �Composing props�. In: Theory and Applications of Categories 13.9 (2004),
pp. 147�163.

[54] Renaud Vilmart. �A Near-Optimal Axiomatisation of ZX-Calculus for Pure Qubit Quan-
tum Mechanics�. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). 2019. eprint: arXiv:1812.09114. url: https://arxiv.org/
abs/1812.09114.

[55] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. �A Generic Normal Form for
ZX-Diagrams and Application to the Rational Angle Completeness�. In: Proceedings of
the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2019.
eprint: 1805.05296.

[56] Renaud Vilmart. �A ZX-Calculus with Triangles for To�oli-Hadamard, Cli�ord+ T, and
Beyond�. In: QPL 2018. Vol. 287. 2018, pp. 313�344.

[57] QuanlongWang. �Completeness of algebraic ZX-calculus over arbitrary commutative rings
and semirings�. In: arXiv preprint arXiv:1912.01003 (2019).

[58] Hector Miller-Bakewell. �Entanglement and Quaternions: The graphical calculus ZQ�. In:
arXiv preprint arXiv:2003.09999 (2020).

[59] Miriam Backens. �The ZX-Calculus is Complete for Stabilizer Quantum Mechanics�. In:
New Journal of Physics 16.9 (2014), p. 093021. doi: 10.1088/1367-2630/16/9/093021.
url: https://doi.org/10.1088%2F1367-2630%2F16%2F9%2F093021.

[60] Miyamoto Musashi. The Complete Musashi: The Book of Five Rings and Other Works:
The De�nitive Translations of the Complete Writings of Miyamoto Musashi�Japan's Great-
est Samurai. Tuttle Publishing, 2018.

[61] A. Kissinger and John van de Wetering. PyZX. 2018. url: https : / / github . com /
Quantomatic/pyzx.

[62] Brendan Fong and David I Spivak. �Hypergraph categories�. In: Journal of Pure and
Applied Algebra 223.11 (2019), pp. 4746�4777.

[63] Sagesses Vosgiennes. Presses Universitaires Spinalliennes, 2021.

[64] Bob Coecke and Ross Duncan. �Interacting quantum observables: categorical algebra and
diagrammatics�. In: New Journal of Physics 13.4 (2011), p. 043016.

[65] Amar Hadzihasanovic. �ZW calculi: diagrammatic languages for pure-state quantum com-
puting�. In: Logic and Applications LAP 2018 (2018), p. 13.

[66] Miriam Backens and Aleks Kissinger. �ZH: A Complete Graphical Calculus for Quantum
Computations Involving Classical Non-linearity�. In: Proceedings of the 15th International
Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018. Ed. by Pe-
ter Selinger and Giulio Chiribella. Vol. 287. Electronic Proceedings in Theoretical Com-
puter Science. Open Publishing Association, 2019, pp. 23�42. doi: 10.4204/EPTCS.287.2.

182

arXiv:1812.09114
https://arxiv.org/abs/1812.09114
https://arxiv.org/abs/1812.09114
1805.05296
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.1088%2F1367-2630%2F16%2F9%2F093021
https://github.com/Quantomatic/pyzx
https://github.com/Quantomatic/pyzx
https://doi.org/10.4204/EPTCS.287.2

BIBLIOGRAPHY

[67] Quanlong Wang, Simon Perdrix, and Miriam Backens. �Towards a Minimal Stabilizer
ZX-calculus�. In: Logical Methods in Computer Science 16 (2020).

[68] Quanlong Wang. �Qutrit ZX-calculus is complete for Stabilizer Quantum Mechanics�. In:
arXiv preprint arXiv:1803.00696 (2018).

[69] Jamie Vicary. �Topological structure of quantum algorithms�. In: Proceedings of the 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE Computer
Society. 2013, pp. 93�102.

[70] André Ranchin. �Depicting qudit quantum mechanics and mutually unbiased qudit the-
ories�. In: arXiv preprint arXiv:1404.1288 (2014).

[71] Stefano Gogioso and Aleks Kissinger. �Fully graphical treatment of the quantum algorithm
for the Hidden Subgroup Problem�. In: arXiv preprint arXiv:1701.08669 (2017).

[72] Quanlong Wang and Xiaoning Bian. �Qutrit dichromatic calculus and its universality�.
In: arXiv preprint arXiv:1406.3056 (2014).

[73] Aleks Kissinger. �Pictures of processes: automated graph rewriting for monoidal categories
and applications to quantum computing�. In: arXiv preprint arXiv:1203.0202 (2012).

[74] Amar Hadzihasanovic. �The algebra of entanglement and the geometry of composition�.
In: arXiv preprint arXiv:1709.08086 (2017).

[75] Joseph Collins and Ross Duncan. �Hopf-Frobenius algebras and a simpler Drinfeld dou-
ble�. In: Electronic Proceedings in Theoretical Computer Science (2019).

[76] J.S. Ponizovskii. �Semigroup Rings�. In: Semigroup Forum 36 (1987), pp. 1�46.

[77] M Koppinen. �On algebras with two multiplications, including Hopf algebras and Bose�
Mesner algebras�. In: Journal of Algebra 182.1 (1996), pp. 256�273.

[78] Yukio Doi and Mitsuhiro Takeuchi. �BiFrobenius algebras�. In: Contemporary Mathemat-
ics 267 (2000), pp. 67�98.

[79] E Study. �Über Systeme complexer Zahlen und ihre Anwendung in der Theorie der Trans-
formationsgruppen�. In: Monatshefte für Mathematik und Physik 1 (1890), pp. 283�354.

[80] Khadra Dekkar and Abdenacer Makhlouf. �Bialgebra structures of 2-associative algebras�.
In: arXiv preprint arXiv:0809.1144 (2008).

[81] Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. �Two Complete Axiomati-
sations of Pure-state Qubit Quantum Computing�. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS '18. Oxford, United King-
dom: ACM, 2018, pp. 502�511. isbn: 978-1-4503-5583-4. doi: 10.1145/3209108.3209128.
url: http://doi.acm.org/10.1145/3209108.3209128.

[82] Teimuraz Pirashvili. �On the PROP corresponding to bialgebras�. In: Cahiers de topologie
et géométrie di�érentielle catégoriques 43.3 (2002), pp. 221�239.

[83] Filippo Bonchi, Paweª Soboci«ski, and Fabio Zanasi. �Interacting Hopf algebras�. In:
Journal of Pure and Applied Algebra 221.1 (2017), pp. 144�184.

[84] Directed by someone. The wonderful adventures of Simon Perdrix IV: Simon Perdrix and
the wild diagrams. ZX Studio, 2021.

[85] Peter Selinger. �Towards a Quantum Programming Language�. In: Mathematical. Struc-
tures in Comp. Sci. 14.4 (2004), pp. 527�586. issn: 0960-1295. doi: 10.1017/S0960129504004256.
url: https://doi.org/10.1017/S0960129504004256.

183

https://doi.org/10.1145/3209108.3209128
http://doi.acm.org/10.1145/3209108.3209128
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256

BIBLIOGRAPHY

[86] Bob Coecke. �Axiomatic Description of Mixed States from Selinger's CPM-Construction�.
In: Electronic Notes in Theoretical Computer Science 210 (2008). Proceedings of the 4th
International Workshop on Quantum Programming Languages (QPL 2006), pp. 3 �13.
issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.2008.04.014. url: http:
//www.sciencedirect.com/science/article/pii/S1571066108002296.

[87] Bob Coecke and Chris Heunen. �Pictures of complete positivity in arbitrary dimension�.
In: Information and Computation 250 (2016), pp. 50�58.

[88] Bob Coecke and Simon Perdrix. �Environment and Classical Channels in Categorical
Quantum Mechanics�. In: Logical Methods in Computer Science Volume 8, Issue 4 (2012).
doi: 10.2168/LMCS-8(4:14)2012. url: https://lmcs.episciences.org/719.

[89] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi: 10.
1017/9781316219317.

[90] Mathieu Huot and Sam Staton. �Universal Properties in Quantum Theory�. In: Pro-
ceedings of the 15th International Conference on Quantum Physics and Logic, Halifax,
Canada, 3-7th June 2018. Ed. by Peter Selinger and Giulio Chiribella. Vol. 287. Elec-
tronic Proceedings in Theoretical Computer Science. 2019, pp. 213�223. doi: 10.4204/
EPTCS.287.12.

[91] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010. doi: 10.1017/
CBO9780511976667.

[92] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. �A Complete Axiomatisation of
the ZX-Calculus for Cli�ord+T Quantum Mechanics�. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS '18. Oxford, United King-
dom: ACM, 2018, pp. 559�568. isbn: 978-1-4503-5583-4. doi: 10.1145/3209108.3209131.
url: http://doi.acm.org/10.1145/3209108.3209131.

[93] Aleks Kissinger and Sander Uijlen. �A categorical semantics for causal structure�. In: 2017
32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017,
pp. 1�12.

[94] Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer-Verlag, New
York, 1985. url: http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html.

[95] Fabio Zanasi. �Interacting Hopf Algebras � the theory of linear systems�. PhD thesis.
Université de Lyon, 2015. url: http://www.zanasi.com/fabio/#/publications.html.

[96] Daniel Marsden. �A graph theoretic perspective on CPM (Rel)�. In: arXiv preprint arXiv:1504.07003
(2015).

[97] Stefano Gogioso. �A Bestiary of Sets and Relations�. In: arXiv preprint arXiv:1506.05025
(2015).

[98] Koenraad M. R. Audenaert and Martin B. Plenio. �Entanglement on Mixed Stabilizer
States: Normal Forms and Reduction Procedures�. In: New Journal of Physics 7 (2005),
pp. 170�170. doi: 10.1088/1367-2630/7/1/170. url: https://doi.org/10.1088%
2F1367-2630%2F7%2F1%2F170.

[99] Brett Giles and Peter Selinger. �Exact Synthesis of Multiqubit Cli�ord+T Circuits�. In:
Phys. Rev. A 87 (3 2013), p. 032332. doi: 10.1103/PhysRevA.87.032332. url: https:
//link.aps.org/doi/10.1103/PhysRevA.87.032332.

184

https://doi.org/https://doi.org/10.1016/j.entcs.2008.04.014
http://www.sciencedirect.com/science/article/pii/S1571066108002296
http://www.sciencedirect.com/science/article/pii/S1571066108002296
https://doi.org/10.2168/LMCS-8(4:14)2012
https://lmcs.episciences.org/719
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.4204/EPTCS.287.12
https://doi.org/10.4204/EPTCS.287.12
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1145/3209108.3209131
http://doi.acm.org/10.1145/3209108.3209131
http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
http://www.zanasi.com/fabio/#/publications.html
https://doi.org/10.1088/1367-2630/7/1/170
https://doi.org/10.1088%2F1367-2630%2F7%2F1%2F170
https://doi.org/10.1088%2F1367-2630%2F7%2F1%2F170
https://doi.org/10.1103/PhysRevA.87.032332
https://link.aps.org/doi/10.1103/PhysRevA.87.032332
https://link.aps.org/doi/10.1103/PhysRevA.87.032332

BIBLIOGRAPHY

[100] Martti Karvonen. �The Way of the Dagger�. In: arXiv e-prints (2019), arXiv�1904.

[101] Aleks Kissinger and David Quick. �A �rst-order logic for string diagrams�. In: arXiv
preprint arXiv:1505.00343 (2015).

[102] Vladimir Zamdzhiev. �A Framework for Rewriting Families of String Diagrams�. In: Pro-
ceedings Tenth International Workshop on Computing with Terms and Graphs, TERM-
GRAPH@FSCD 2018, Oxford, UK, 7th July 2018. Ed. by Maribel Fernández and Ian
Mackie. Vol. 288. EPTCS. 2018, pp. 63�76. doi: 10.4204/EPTCS.288.6. url: https:
//doi.org/10.4204/EPTCS.288.6.

[103] Apiwat Chantawibul and Paweª Soboci«ski. �Monoidal multiplexing�. In: International
Colloquium on Theoretical Aspects of Computing. Springer. 2018, pp. 116�131.

[104] Titouan Carette, Dominic Horsman, and Simon Perdrix. �SZX-Calculus: Scalable Graphi-
cal Quantum Reasoning�. In: 44th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2019.

[105] Scott Aaronson. Shtetl-Optimized. url: https://www.scottaaronson.com/blog/.

[106] Marc Hein et al. �Entanglement in graph states and its applications�. In: Proceedings of
the International School of Physics �Enrico Fermi� on �Quantum Computers, Algorithms
and Chaos�, arXiv:quantph/0602096; (2006).

[107] Michel Grabisch. �Bases and transforms of set functions�. In: On Logical, Algebraic, and
Probabilistic Aspects of Fuzzy Set Theory. Springer, 2016, pp. 215�231.

[108] Anne Canteaut and Marion Videau. �Symmetric boolean functions�. In: IEEE Transac-
tions on information theory 51.8 (2005), pp. 2791�2811.

[109] Ethan Bernstein and Umesh Vazirani. �Quantum complexity theory�. In: SIAM Journal
on computing 26.5 (1997), pp. 1411�1473.

[110] L. K. Grover. �Quantum Mechanics Helps in Searching for a Needle in a Haystack�. In:
Phys. Rev. Lett. 79 (1997), p. 325. doi: 10.1103/PhysRevLett.79.325. eprint: quant-
ph/9706033.

[111] Cole Comfort and Aleks Kissinger. �A Graphical Calculus for Lagrangian Relations�. In:
CoRR abs/2105.06244 (2021). arXiv: 2105.06244. url: https://arxiv.org/abs/2105.
06244.

185

https://doi.org/10.4204/EPTCS.288.6
https://doi.org/10.4204/EPTCS.288.6
https://doi.org/10.4204/EPTCS.288.6
https://www.scottaaronson.com/blog/
https://doi.org/10.1103/PhysRevLett.79.325
quant-ph/9706033
quant-ph/9706033
https://arxiv.org/abs/2105.06244
https://arxiv.org/abs/2105.06244
https://arxiv.org/abs/2105.06244

BIBLIOGRAPHY

186

Résumé

Cette thèse concerne l'application de langages graphiques à l'informatique quantique. Par lan-
gages graphiques on entend l'usage de diagrammes, très similaires aux circuits, représentant
des évolutions de systèmes quantiques. La these introduit ces langages dans le formalisme de
la théorie des catégories et s'intéresse en particulier à un langage: le ZX-calcul, ainsi qu'à ses
proches parents le ZW-calcul et le ZH-calcul. La notion de �exsymétrie est introduite, décrivant
des diagrammes dont les entrés et sorties sont toutes interchangeables entre elles. La notion est
ensuite utilisée pour classi�er tous les langages similaires au ZX-calcul. Il est montré que les
seuls langages admissibles sont le ZX-calcul, le ZW-calcul et le ZH-calcul. Ensuite est abordée
la question de l'extension de ces langages au cas de systèmes mixtes classiques-quantiques. Une
construction catégorique générale est proposée et est utilisée pour étendre les di�érents langages.
En�n la thèse introduit des notations permettant de représenter de manière compacte des algo-
rithmes quantiques mettant en jeux des diagrammes arbitrairement grands. A�n d'en éprouver
l'e�cacité, ces notations sont utilisées pour montrer graphiquement la correction de di�érents
algorithmes quantiques.

Mots-clés: Informatique quantique, Théorie des catégories, Langages graphiques, ZX-calcul.

Abstract

This thesis is about the application of graphical languages to quantum computing. By graph-
ical language, we mean the use of diagrams, similar to circuits, representing the evolution of
quantum systems. The thesis introduces those languages in the formalism of category theory
and focuses mainly on one language: the ZX-calculus, and its close relatives, the ZW-calculus
and ZH-calculus. The notion of �exsymmetry is introduced, describing diagrams whose inputs
and outputs are all interchangeable. This notion is used to classify all languages similar to the
ZX-calculus. It is shown that the only admissible languages are the ZX-calculus, the ZH-calculus,
and the ZW-calculus. Then is tackled the question of extending those languages to mixed-state
quantum mechanics. A general categorical construction is proposed and is applied to provide
extensions of the di�erent languages. Finally, the thesis introduces notations allowing to handle
in a compact way quantum algorithms relying on arbitrary large diagrams. To challenge their
e�ciency, those notations are used to show the correction of various quantum algorithms.

Keywords: Quantum computing, Category theory, Graphical languages, ZX-calculus.

187

188

189

	Couverture
	Remerciements
	Introduction
	Introduction
	Contents
	A Pictorial Introduction to Category Theory
	Basic notions
	Categories and their pictures
	Natural transformations
	Strict monoidal categories

	Limits and co-limits
	Products and Co-products
	Co-equalizers
	Pull-back and Push-outs

	Monads and Adjunctions
	Monad
	Adjunctions
	Monadic adjunctions

	I Prologue
	Props and Graphical Languages
	Props
	Combinatorial definition
	Categorical definition
	Categories of props

	String diagrams
	Composing Boxes
	Picturing tautologies
	Swaps

	Graphical languages
	Definition
	Translations
	Constructions

	Computer Scientist's Quantum Mechanics
	Basics
	Deterministic computation
	Probabilistic computation
	Quantum computation

	The Bloch sphere
	From unitaries to rotations
	From quantum states to the sphere
	Noticeable unitaries and the corresponding rotations

	Quantum circuits
	Definition
	One qubit gates
	Multi qubit gates

	ZX-calculus
	Spiders
	Frobenius algebra
	Spider theorem
	Cups and caps

	Phases
	Definition
	Phase groups
	Euler rule and Hadamard

	The calculus
	Interactions
	Completeness
	Variations

	II Only Topology Matters
	Paradigms in graphical language design
	Definition
	Paradigmatic generators
	Paradigmatic equations
	Paradigms

	Paradigmatic graphical languages
	Definition
	The new F and U
	The paradigmatic monadic adjunction

	Examples of paradigms
	Props as a paradigm over pros
	No paradigmatic equations
	Cartesian paradigm

	Flexsymmetry
	Introducing flexsymmetry
	Flexsymmetric generators
	Flexsymmetric paradigm
	Flexsymmetry and Frobenius algebras

	Flexsymmetrisation
	Flexsymmetry up to dualizers
	Subdivision
	Applications

	Signature graphs
	Definition
	The category of signature graphs
	Free flexsymmetric props

	Interacting monoids
	Definition
	Monoids
	Bi-algebra rule
	Z*-algebra

	Classifications
	Monoids
	Bi-algebra pairs
	Frobenius algebras

	Putting thing together
	Compatibility
	Essentially all Z*-algebras
	Relation to known calculi

	Entracte: Graphical Linear Algebra
	The language
	Matrices
	Linear relations
	Properties

	In hindsight
	Simplifications
	Flexsymmetric graphical linear algebra
	As a Z*-algebra

	Models in Lin
	ZW
	ZH
	ZX

	III Add-ons
	The Discard Construction
	Mixed state categorical quantum mechanics
	Density matrices
	Dagger compact closed categories
	CPM construction and environment structures

	Discard construction
	Definition
	Enough isometries
	Completeness

	Application to ZX-calculus
	The ZX-Calculus with discard
	ZX-calculus with bastard spiders

	The Scalable Notations
	Divide and gather
	Types
	The wire calculus
	Rewiring theorem

	Scalable construction
	Definition
	Properties
	Completeness

	Arrows
	Function arrows
	Red arrows
	Yellow arrows

	Drawing quantum computing
	Graph states
	Graphical representation
	Stabilizer properties
	Local complementation

	Diagonal gates
	Definition
	Graphical transforms
	Spider nests

	Algorithms
	Oracles
	Quantum algorithms relying on a single application of the oracle
	Iteration and Grover algorithm

	Conclusion
	Bibliography
	Résumé
	Abstract

