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Introduction

Background and main results

In this thesis, we study various dispersive equations and their local well-posedness theory. We say that an equation is of dispersive nature when wave solutions of different frequencies propagate at different speeds when no boundary conditions are imposed. There are many important natural phenomena that are described using dispersive equations: they often appear in models in nonlinear optics, they describe the propagation of water waves, and they play a fundamental role in quantum field theory.

One important question in the theory of dispersive equations is whether there exists a solution to the PDEs used to model these physical phenomena. Informally, we say that a PDE is well-posed if a solution exists, it is unique and it depends continuously on the initial conditions of the system. In the case of evolution equations (i.e. involving time), local well-posedness means that such conditions are met for some, possibly short, time. Much of the work in this thesis concerns the problem of establishing well-posedness for a variety of dispersive equations.

Another important aspect of the study of dispersive equations is their connection with the physical phenomena that they should model. One way of connecting the model to the equation is via the description of a discrete system of particles whose interactions follow a particular set of laws dictated by the physical phenomenon, and then letting the number of particles go to infinity. This limit is described by a continuous PDE, and it often constitutes a good approximation to the discrete system when there is a large number of particles. Chapter 3 in this thesis will deal with this problem.

From the mathematical point of view, many of the dispersive equations that we have mentioned are nonlinear. The nonlinear term is often some power of the unknown function, but it sometimes involves derivatives of the unknown function itself. When that happens, the study of these equations becomes more intricate and we say that there is a loss of derivatives. We will elaborate on this later, but one way to handle this problem is to find ways to recover these derivatives. The smoothing effect is a technique that allows us to do just that, and in this thesis we explore how to use it in different contexts.

INTRODUCTION

In order to set the stage, let us write a general form of a one-dimensional dispersive equation:

(1.1)

∂ t u + L(u) = N (u), (t, x) ∈ R 2 u| t=0 = u 0 ,
where L(u) is the linear part of the equation and N (u) is the nonlinear term. To simplify the discussion, suppose that N (u) = 0 and that our initial data u 0 lives in the Sobolev space H s (R) with enough regularity to make the following computations rigorous. We will also assume that the linear term L is a skew-adjoint, constant-coefficient differential operator:

L(u)(x) := n j=0 c j ∂ j x u(x),
where the coefficients c j ∈ C do not depend on x, and n ∈ N 0 is the order of the differential operator L.

By taking the Fourier transform of (1.1), we find that

(1.2) ∂ t u(t, ξ) +   n j=0 c j (-iξ) j   u(t, ξ) = 0.
Because L is skew-adjoint and has constant coefficients, we can write n j=0 c j (-iξ) j = i h(ξ),

for some real valued polynomial h : R → R. The fact that h is real-valued is fundamental, as this is what makes it constitute a dispersive equation. One can then solve the ODE (1.2) and find the following ansatz for the solution:

u(t, x) = ˆR e -it h(ξ)+ix ξ u 0 (ξ) dξ =: W (t)u 0 .

Here {W (t)} t∈R is the one-parameter unitary group (in L 2 (R)) describing the solution to the linear problem associated to (1.1), and deriving linear estimates for W (t) is one of the main ways to study dispersive equations.

Let us now consider the full nonlinear problem (1.1) including N (u). There are several ways to study the local well-posedness of this problem, but the techniques involved may be roughly classified as perturbative or non-perturbative. Examples of non-perturbative methods include conservation laws and monotonicity formulae, but we will not elaborate on these here. Instead, we will rely on perturbative methods which consist in approximating the nonlinear equation by more tractable equations.

Because the formulation in (1.1) requires n derivatives, we often prefer to work with an integral reformulation of the problem given by the Duhamel formula:

(1.3) u(t) = W (t)u 0 + ˆt 0 W (t -t ) N (u(t )) dt .
This is not the only way to reformulate the problem (1.1), but it is convenient in order to study the nonlinear problem as a perturbation of the linear problem, i.e. we view the second summand in (1.3) as a perturbation of W (t)u 0 .

We can now rigorously define what we mean by local well-posedness. We say that (1.1) is locally well-posed in the Sobolev space H s (R) if for any u 0 ∈ H s (R) there exists a time T > 0, an open ball B ⊂ H s (R) containing u 0 , and a subset X ⊂ C([0, T ], H s (R)) such that for each initial data u 0 ∈ B there exists a unique solution u ∈ X to the integral equation (1.3), and such that the map u 0 → u is continuous from B (with the H s (R) topology) to X (with the C([0, T ], H s (R)) topology). The well-posedness is uniform (resp. Lipschitz, C k or analytic) if the solution map u 0 → u is uniformly continuous (resp. Lipschitz, C k or analytic).

One way to study whether (1.3) admits a solution is via the contraction mapping principle. To use this theorem, we define the functional

Φ(u)(t) := W (t)u 0 + ˆt 0 W (t -t ) N (u(t )) dt ,
which is the right-hand side of (1.3), and try to find a space X such that Φ maps X to itself, and such that it is a contraction there. The contraction mapping principle even provides a way to find a solution to the equation as the limit of the sequence:

(1.4) u n (t) := W (t)u 0 + ˆt 0 W (t -t ) N (u n-1 (t )) dt , n ≥ 1.

Finding the space X, however, can be a very difficult task. One way to gain some intuition is by approximating the first few terms in the sequence (1.4) to find a common space where they live. The space X where one can run this type of argument is very different depending on the dispersive equation under consideration, so let us now provide a few examples.

We start with what is arguably the most famous dispersive equation in physics: the nonlinear Schrödinger equation (NLS). Here we consider it in one dimension and with a nonlinearity of degree p, and we write its initial value problem:

(1.5) i∂ t u + ∂ 2 x u = ±|u| p-1 u (t, x) ∈ (0, ∞) × R, p > 1, u| t=0 = u 0 .
The nonlinear Schrödinger equation arises in physics as one of the simplest nonlinear approximations to a dispersive system. It is a Hamiltonian equation that enjoys scaling, translation, 1. INTRODUCTION pseudo-conformal and Galilean symmetries, as well as many conserved quantities, such as mass, momentum and energy.

Because the formulation of NLS given by (1.5) requires two derivatives 1 , we prefer to work with an integral reformulation of the problem given by the Duhamel formula (1.3).

In this case, we do not expect local well-posedness for all regularities s ∈ R. A good heuristic in the case of the nonlinear Schrödinger equation is the regularity s c under which the Ḣs (R)-norm of a solution to (1.5) is invariant under rescaling 2 , i.e.

s c = 1 2 - 2 p -1 .
Generally, we expect local well-posedness for subcritical regularities s > s c , but not for supercritical regularities s < s c . This heuristic is not always accurate, as other symmetries play an important role too. In the case of (1.5), s g = 0 is the Galilean-invariant regularity and thus one really expects local well-posedness for s > max{s c , s g }. 3 When p > 1 is an odd integer, one can easily show that (1.5) is locally well-posed in H s (R) for s > 1 2 . This is due to the fact that H s (R) becomes a Banach space algebra, which makes the nonlinearity very easy to handle. In fact, the Sobolev embedding theorem guarantees that in such cases the solution will be bounded at all times and thus we are in the domain of classical solutions. However, we will be interested in the low-regularity theory for these equations, when the solution is no longer expected to be bounded at all times. A very useful tool to tackle such problems are Strichartz estimates, which allow us to control the solution to the linear Schrödinger equation in time-averaged spaces such as L p t L q x . This control can then be extended to the solution to the fully nonlinear problem via a perturbative argument. See [START_REF] Cazenave | Semilinear Schrödinger Equations[END_REF] and [START_REF] Tao | Nonlinear Dispersive Equations: Local and Global Analysis[END_REF] for a full account and bibliography regarding Strichartz estimates. The basic idea behind them is to combine conservation of mass,

W (t)u 0 L 2 (R) = u 0 L 2 (R) ,
with the dispersive estimate

W (t)u 0 L ∞ (R) |t| -1/2 u 0 L 1 (R)
to obtain a full range of space-time integrability of W (t)u 0 , so that integrability in space can be traded for integrability in time to control the nonlinearity.

Unfortunately, these techniques are not enough to study the local well-posedness of dispersive equations where the nonlinearity involves derivatives. One example of such an equation is the (generalized) Korteweg-de Vries equation (KdV):

(1.6)

∂ t u + ∂ 3 x u + u k ∂ x u = 0, (t, x) ∈ (0, ∞) × R, k ∈ N, u| t=0 = u 0 .
This equation is a model for the propagation of long water waves in a channel. As explained in [START_REF] Tao | Nonlinear Dispersive Equations: Local and Global Analysis[END_REF], the main difficulty to develop a local-well posedness theory for (1.6) that is based on an iterative scheme is precisely the derivative in the nonlinearity. As explained before, one can use the iterative scheme (1.4) to find a candidate for the space X. Let us try the Sobolev space X = H s (R) as an example. Taking H s (R) norms in (1.4), and using the fact that W (t) is unitary leads to the estimate

u n (t) H s (R) ≤ u 0 H s (R) + ˆt 0 u k n-1 (t ) ∂ x u n-1 (t ) H s (R)
dt .

Therefore in order to control s derivatives of u n , we require s + 1 derivatives of u n-1 , which means that we cannot expect to close such an iterative argument using only the space H s (R).

There are different techniques to overcome this loss of derivatives, such as gauge transforms and methods based on energy cancellation (where derivatives falling on "bad" terms are moved to other terms using integration by parts). We will not discuss these in depth, but the latter requires us to work in much higher regularity than we expect from the heuristics based on scaling invariance 4 , which in the case of the KdV equation suggest that it should be well-posed for regularities

s > s c = 1 2 - 2 k .
Instead, we will exploit the following estimate for the solution to the linear KdV equation:

(1.7)

∂ x W (t)u 0 L ∞ x (R,L 2 t (R)) u 0 L 2 (R) .
This is known as smoothing effect, as it allows us to control a derivative of the free solution using only the L 2 (R) norm of the initial data. Kato was the first to establish a local version of this estimate in 1983, [START_REF] Kato | On the Cauchy problem for the (generalized) Korteweg-de Vries equation[END_REF]. According to Linares and Ponce [START_REF] Linares | Introduction to Nonlinear Dispersive Equations[END_REF], Kruzhkov and Faminskii independently obtained a similar result in [START_REF] Kruzhkov | A generalized solution for the Cauchy problem for the Korteweg-de Vries equation[END_REF], which was later generalized to other dispersive equations by Constantin and Saut [START_REF] Constantin | Local smoothing properties of dispersive equations[END_REF], Sjölin [START_REF] Sjölin | Regularity of solutions to the Schrödinger equation[END_REF] and Vega [START_REF] Vega | Schrödinger equations: Pointwise convergence to the initial data[END_REF], among others. In particular, estimate (1.7) was one of the main tools in the work of Kenig, Ponce and Vega on the local well-posedness theory of the KdV equation, [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. The main idea is to use estimate (1.7) directly on the integral equation related to (1.6) written in Duhamel form:

∇ s ∂ x u L ∞ x (R,L 2 t ([0,T ])) u 0 L 2 (R) + ∇ s u k ∂ x u L 1 t ([0,T ],L 2 x (R))
. 4 In fact, local well-posedness has been proved for s ≥ sc in the cases k ≥ 4. The cases k = 1, 2, 3 are more difficult, but there have been great improvements recently in papers by Harrop-Griffiths, Killip and Vis˛an, see [START_REF] Killip | KdV is well-posed in H -1[END_REF][START_REF] Harrop-Griffiths | Sharp well-posedness for the cubic NLS and mKdV in H s (R)[END_REF] for more details.
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Based on the Leibniz rule 5 , the worst contribution to the nonlinear term ∇ s u k ∂ x u should be given by the term where all the derivatives fall on ∂ x u, i.e. u k ( ∇ s ∂ x u). The main advantage of working in the space L ∞ x (R, L 2 t ([0, T ])) is that we can now place this bad term there:

u k ( ∇ s ∂ x u) L 1 t ([0,T ],L 2 x (R)) ≤ T 1/2 u k ( ∇ s ∂ x u) L 2 t ([0,T ],L 2 x (R))
(1.8)

= T 1/2 u k ( ∇ s ∂ x u) L 2 x (R,L 2 t ([0,T ])) T 1/2 u k L 2 x (R,L ∞ t ([0,T ])) ∇ s ∂ x u L ∞ x (R,L 2 t ([0,T ])) = T 1/2 u k L 2k x (R,L ∞ t ([0,T ])) ∇ s ∂ x u L ∞ x (R,L 2 
t ([0,T ])) . This preliminary computation shows that in order to close this argument, one needs some control of the solution in the space L 2k

x (R, L ∞ t ([0, T ])). These are known as maximal function estimates, and they are another fundamental tool in order to establish local well-posedness of the KdV equation 6 .

In this thesis, we exploit a similar smoothing effect in three different contexts. First of all, we use the smoothing effect to develop the local well-posedness theory of a family of nonlocal dispersive equations. Secondly, we exploit a discrete version of a smoothing effect to study a discrete system of particles and how to approximate it by a continuous dispersive equation. Finally, we use an anisotropic version of the smoothing effect to establish the local well-posedness theory of the two-dimensional Dysthe equation, which is used to model oceanic rogue waves.

1.1. Nonlocal dispersive PDEs. In recent years, there has been a growing interest in modeling nonlocal phenomena. These may be nonlocal in space, accounting for long-range particle interactions, or in time, which account for a memory effect. A good way to model them is by using fractional derivatives. Fractional derivatives in time have been used to model some phenomena in physics, such as non-diffusive transport in plasma turbulence [START_REF] Del Castillo-Negrete | Nondiffusive transport in plasma turbulence: a fractional diffusion approach[END_REF], and in economics, such as ruin theory of insurance companies, growth and inequality processes, and high-frequency price fluctuation in financial markets [START_REF] Scalas | The application of continuous-time random walks in finance and economics[END_REF].

Their usefulness in modeling these phenomena is in part due to the connection between fractional derivatives and stochastic processes. Suppose that a Cauchy problem ∂ t u = Au admits a stochastic solution X(t), in the sense that the probability density of such a stochastic process solves the Cauchy problem. Then under some technical conditions, ∂ β t u = Au admits X(E t ) as a solution, where E t = inf{y > 0 | D y > t} is the inverse hitting time of a Lévy process D y whose probability density function has e -s β as its Laplace transform. In fact, stochastic solutions to some fractional Cauchy problems arise as scaling limits of continuous time random walks whose independent identically distributed (i.i.d.) jumps are separated by i.i.d. waiting times, where the probability of waiting longer than time t > 0 decays like t -β for large t [START_REF] Meerschaert | Fractional Cauchy problems on bounded domains[END_REF].

Despite the many recent papers on nonlocal evolution PDEs, it seems that most of the research has been devoted to parabolic equations, such as the work of Allen, Caffarelli and Vasseur for the porous medium equation with a memory effect [START_REF] Allen | A parabolic problem with a fractional time derivative[END_REF][START_REF]Porous medium flow with both a fractional potential pressure and fractional time derivative[END_REF]. We discuss nonlocal PDEs and their background in depth in Chapter 2.

In this thesis, we study a fractional generalization of the NLS equation (1.5), which seems the first instance of a nonlinear dispersive PDE with a memory effect to be rigorously studied. Consider the equation (1.9)

i β ∂ β t u = (-∆ x ) α/2 u ± |u| p-1 u (t, x) ∈ (0, ∞) × R, u| t=0 = u 0 ,
where p > 1 is an odd integer, α > 0 and β ∈ (0, 1). The operator (-∆ x ) α/2 , known as the fractional Laplacian, is given by the Fourier multiplier with symbol |ξ| α , while the operator ∂ β t is the Caputo fractional derivative:

∂ β t u(t, x) = 1 Γ(1 -β) ˆt 0 ∂ τ u(τ, x) (t -τ ) β dτ.
This equation coincides with the NLS equation (1.5) when (α, β) = (2, 1), and it was first proposed by Naber [START_REF] Naber | Time fractional Schrödinger equation[END_REF] and Laskin [START_REF] Laskin | Fractional Schrödinger equation[END_REF]. The case β = 1, α ∈ (1, 2) and p = 3 was first studied in [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF]. In 2015, Hong and Sire extended the range of α and p in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]. We will talk in depth about this equation and its background in Chapter 2, but we informally state some of our results as follows:

Theorem 1.1. Suppose that p > 1 is an odd integer, and that

(1.10) 2 > 1 α + 1 β , s ≥ 1 2 - 1 2(p -1)
.

Then, under some technical conditions, the problem (1.9) is locally well-posed for initial data in H s (R).

Note that (1.9) enjoys a scaling symmetry, and its critical regularity is

s c = 1 2 - α p -1 .
In fact, we also prove that this problem is ill-posed when s < s c , but finding whether (1.9) is locally well-posed for s in the interval

1 2 - 1 2(p -1) > s ≥ s c , 1. INTRODUCTION
or whether one can extend the range of the parameters in (1.10) remains an open problem 7 .

The main obstacle to bridge this gap is a loss of α β -α derivatives produced by the memory effect. The smoothing effect allows us to gain α 2β -1 2 derivatives, which gives rise to the conditions (1.10). We talk more about this matter in Chapter 2. 1.2. Continuum limit of discrete systems. When studying dispersive equations, it is interesting to study their connection with the physical phenomena that they should model. One way of connecting the model to the equation is via the description of a discrete system of particles whose interactions follow a particular set of laws dictated by the physical phenomenon, and then letting the number of particles go to infinity. However, as more particles are added to the system, it is not easy to show that the discrete equations governing them converge to their continuous counterpart, known as continuum limit.

This is especially difficult in the case of dispersive equations due to the fact that many continuous properties such as dispersion or the smoothing effect, upon which most techniques in dispersive PDEs rest, are not readily available in the discrete setting. In this thesis, we address some of these difficulties and propose a discrete model for (1.9).

Before discussing the details of these results, let us present some background on this problem. In 2013, Kirkpatrick, Lenzmann and Staffilani studied a nonlocal discrete model for quantum particles on a lattice with a three-wave interaction (which produces a cubic nonlinearity) [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]. This problems comes from some models used to study charge and energy transport in biomolecules [START_REF] Mingaleev | Models for energy and charge transport and storage in biomolecules[END_REF]. In their paper, Kirkpatrick et al. consider a system of quantum particles positioned in a one-dimensional lattice hZ, for some mesh-size 0 < h 1. Then they consider a discrete wave-function u h : [0, T ] × hZ → C satisfying: (1.11) i∂ t u h (t,

x m ) = h n =m J n-m [u h (t, x n ) -u h (t, x m )] ± |u h (t, x m )| 2 u h (t, x m ), u h | t=0 = f h .
for x m = hm ∈ hZ. The long-range interactions are modelled by the coefficients {J n } n∈Z ⊂ R. The two cases that seem most interesting in practice are an exponentially decaying law, and a law that is inversely proportional to some power of the distance between particles:

J m-n := |x m -x n | -1-α for m = n ∈ Z, α > 1.
The initial distribution f h is the discretization of some continuous function f : R → C, which is defined as follows:

(1.12)

f h (x m ) = 1 h ˆxm+1 xm f (x) dx
for m ∈ Z. 7 In the case p = 3, we probably should not expect local well-posedness all the way to sc. In the work of Hong and Sire [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] for the case β = 1, local well-posedness is obtained when s > sg, where

sg := 1 2 - α 4 ,
is the regularity that is invariant under the (pseudo) Galilean invariance, and their results are sharp as proved in [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF].

The main question is the following: what happens with the system as the distance between particles, h, goes to zero? In [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], Kirkpatrick et al. show that under mild technical conditions, what matters is the asymptotic behavior of these interactions. In other words, if

lim n→∞ |x n | 1+α J n = C α > 0,
for α ∈ (1, 2), then the continuum limit of the solution to (1.11) (in some weak-topology) is the solution to the fractional cubic NLS equation:

(1.13) i ∂ t u = c (-∆ x ) α 2 u ± |u| 2 u, (t, x) ∈ R × R, u| t=0 = f.
In this thesis, we propose a discrete model for (1.9), we show that it is well-posed and that the solution to this system converges to the solution to (1.9) as h → 0. Beyond its usefulness for modeling, this may also be interesting for computational purposes. This is why we use a new and stronger approach than that of [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], based on the work of Hong et al. [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF], to prove strong convergence to the continuum limit (in

L ∞ t ([0, T ], L 2 
x (R))-based spaces) in such a way that the rate of convergence can be quantified.

The main problem when proving these results is the bad behavior of the usual dispersive techniques in the discrete setting. As shown by Ignat and Zuazua [START_REF] Ignat | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF], Strichartz estimates and the smoothing effect are not readily available on the lattice. This is a consequence of critical and inflection points of the symbol associated to the discrete Laplacian, which are not present in the continuous setting. There is however a way to overcome this by restricting the type of initial data that one considers. Given initial data f h : hZ → C in the lattice, there is no smoothing effect available for the discrete problem:

i ∂ t u h + ∆ h u h = 0, (t, x) ∈ [0, T ] × hZ, u h | t=0 = f h ,
but one may recover the smoothing effect if we instead consider:

i ∂ t u h + ∆ h u h = 0, (t, x) ∈ [0, T ] × hZ, u h | t=0 = Π h f 2h ,
where f 2h is the discretization introduced in (1.12) for double the mesh-size 2h. Here, Π h f 2h keeps the value of f 2h at every even node x 2m , and it takes the value

f h (x 2m ) + f h (x 2m+2 ) 2 ,
at every odd node, thus slightly regularizing f h thanks to averaging. Intuitively, this cancels some of the more oscillatory behavior of f h but keeps enough of its properties to not change the limit of the system. Indeed, the continuum limit of both problems is the solution to the linear Schrödinger equation. One can use a similar idea for the nonlinear problem: instead of the usual nonlinearity, one reformulates the problem in terms of an averaged nonlinearity and shows that its continuum limit is the solution to the nonlinear Schrödinger equation.
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Regarding convergence to the continuum limit, Hong et al. [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF] recently improved the weak-convergence of Kirkpatrick et al. [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF] to strong convergence in L ∞ t ([0, T ], L 2 x (R)) for the problem (1.13). In this thesis we generalize their ideas to spaces that allow us to exploit the smoothing effect, such as L p x (R, L q t ([0, T ])). We also show how to use the spaces involved in the local well-posedness theory of the continuous equation to prove strong convergence to the continuum limit via a bootstrap argument. We believe that these techniques could be applied to more general dispersive equations which, unlike NLS (1.5), display a loss of derivatives.

1.3. Oceanic rogue waves. In 2017, Farazmand and Sapsis proposed a model for large water waves in the ocean, also known as rogue waves, based on the Dysthe equation [START_REF] Farazmand | Reduced-order prediction of rogue waves in two-dimensional deepwater waves[END_REF]. These waves pose a threat for marine systems, such as ships and offshore platforms, and therefore it is important to understand when and how they form.

The Dysthe equation was proposed in 1979 to approximate the envelope for the modulation of deep water waves, and can be derived from the incompressible Navier-Stokes equations [START_REF] Dysthe | Note on a modification to the nonlinear Schrödinger equation for application to deep water waves[END_REF]. This approximation is based on an asymptotic expansion: truncating the expansion at order three gives rise to the cubic NLS equation (1.5). However, the NLS equation is only valid to model wave spectra with a narrow bandwidth. Continuing the expansion to fourth-order improves the model and yields the Dysthe equation:

(1.14) ∂ t u + L(u) = N (u), t ∈ R, (x, y) ∈ R 2 u| t=0 = u 0 , where L(u) = - 1 16 ∂ 3 x u + i 8 ∂ 2 x u + 1 2 ∂ x u - i 4 ∂ 2 y u + 3 8 ∂ x ∂ 2 y u
, and the nonlinearity is

N (u) = - i 2 |u| 2 u - 3 2 |u| 2 ∂ x u - 1 4 u 2 ∂ x u + i 2 u ∂ 2 x |∇| -1 (|u| 2 ).
One important feature of this equation is anisotropy, which is a byproduct of a preferred direction during the derivation of the equation. As explained before, one difficulty about this equation is the presence of derivatives in the nonlinearity. In that sense, this equation is reminiscent of the KdV equation, with a notable difference: the interaction between the terms ∂ 3

x u and ∂ x ∂ 2 y u. In this case, exploiting a smoothing effect is more complicated because of the anisotropy. One has to divide the frequency space into three different regions: one where the x direction dominates, one where the y direction dominates, and a final one where both are small. The smoothing effect will be different in each region, and more importantly, the base space where one obtains this gain changes. For instance, the region where x dominates leads to the space L ∞

x L 2 t,y , while for the y direction one requires L ∞ y L 2 t,x . This makes the argument presented in (1.8) much more complicated. However, it also gives rise to a rich well-posedness theory that combines Strichartz estimates, smoothing effect and maximal function estimates.

It is interesting to compare these results to those obtained by Kenig and Ziesler for the Kadomstev-Petviashvili equation [START_REF] Kenig | Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation[END_REF], which is also anisotropic and requires the use of similar ideas.

All in all, we prove the following result:

Theorem 1.2 (Joint with K. Kurianski and G. Staffilani). The Dysthe equation (1.14) is locally well-posed for initial data in H s (R 2 ) for s > 1. Moreover, it is ill-posed for s < 0.

We expect to advance this local well-posedness theory in future works. One particular case of interest is that of a large rectangular domain, which is used in practice for rogue wave prediction [START_REF] Farazmand | Reduced-order prediction of rogue waves in two-dimensional deepwater waves[END_REF].

We now provide an outline of the thesis. In Chapter 2, we develop the local wellposedness theory for the nonlinear Schrödinger equation with memory, and we prove some ill-posedness results in the supercritical regime. In Chapter 3, we propose a discrete model for this equation and show strong convergence to its continuum limit. In Chapter 4, we introduce the Dysthe equation to model oceanic rogue waves, we study its local well-posedness in R 2 , and prove that it is ill-posed below L 2 (R 2 ).

Notation

We will denote by A B an estimate of the form A ≤ CB for some constant C that might change from line to line. Similarly, A d B means that the implicit constant C depends on d. We will often use the big O and little o notation, e.g.

A = O d (B) when A = O(B) as d → 0.
We introduce the notation a-to denote the number a -ε for 0 < ε 1 small enough. Similarly, we denote by a+ the number a + ε for 0 < ε 1 small enough. For 1 ≤ p, q ≤ ∞ and u : R × [0, T ] -→ C, we define

u L p x L q T = ˆR ˆT 0 |u(t, x)| q dt p q dx 1 p
, and also

u L q T L p x = ˆT 0 ˆR |u(t, x)| p dx q p dt 1 q
, with the usual modifications when p or q = ∞. For u : R × [0, ∞) -→ C, we will use the notation L p x L q t and L q t L p x instead, meaning T = ∞. We will also write L p T,x in the case p = q. We also use the standard notation for the spatial Fourier transform

f (ξ) = ˆR e -ix•ξ f (x) dx, 1. INTRODUCTION
as well as f ∨ for the inverse Fourier transform. The fractional Laplacian will be given by the Fourier multiplier:

[(-∆ x ) s 2 f ] ∧ (ξ) := |∇| s f (ξ) = |ξ| s f (ξ).
Similarly,

( ∇ s f ) ∧ (ξ) := (1 + |ξ|) s f (ξ).
The following notation will be used for some Sobolev norms:

f Ḣs (R) := |∇| s f L 2 (R) , f H s (R) := ∇ s f L 2 (R) .
Finally, we will denote by C([0, T ], H s (R)) the space of continuous functions u from a time interval

[0, T ] to H s (R) equipped with the norm sup t∈[0,T ] u(t, •) H s x (R) . CHAPTER 2
Space-time fractional Nonlinear Schrödinger equation 

i β ∂ β t u = (-∆ x ) α/2 u + g(u) (t, x) ∈ (0, ∞) × R, u | t=0 = f ∈ H s (R).
for 0 < α and 0 < β < 1. We consider nonlinearities of polynomial type g(u) = µ|u| p-1 u for an odd integer p and µ = ±1. The operator (-∆ x ) α/2 , known as the fractional Laplacian, is given by the Fourier multiplier of symbol |ξ| α , and the operator with symbol ∂ β t is the Caputo fractional derivative, given by

∂ β t u(t, x) = 1 Γ(1 -β) ˆt 0 ∂ τ u(τ, x) (t -τ ) β dτ.
The case α = 2 and β = 1 is simply the nonlinear Schrödinger equation, which has been extensively studied, see the books [START_REF] Cazenave | Semilinear Schrödinger Equations[END_REF] and [START_REF] Tao | Nonlinear Dispersive Equations: Local and Global Analysis[END_REF] for some results and a list of contributing authors.

Laskin proposed equation (2.1.1) in the case β = 1 (i.e. classical derivative in time) as a fundamental equation in fractional quantum mechanics, explaining that "if the [Feynmann] path integral over Brownian trajectories leads to the well known Schrödinger equation, then the path integral over Lévy trajectories leads to the fractional Schrödinger equation" [START_REF] Laskin | Fractional Schrödinger equation[END_REF]. Later, Naber proposed the time-fractional case arguing that the process could be further generalized to be non-Markovian at all, thus giving rise to a memory effect [START_REF] Naber | Time fractional Schrödinger equation[END_REF].

As explained in [START_REF] Meerschaert | Fractional Cauchy problems on bounded domains[END_REF], if a Cauchy problem ∂ t u = Au admits a stochastic solution X(t), in the sense that the probability density of such a stochastic process solve the Cauchy problem, then under some technical conditions, ∂ β t u = Au admits X(E t ) as a solution, where E t = inf{x > 0 | D x > t} is the inverse hitting time of a Lévy process D x whose probability density function has e -s β as its Laplace transform. In fact, stochastic solutions to some fractional Cauchy problems arise as scaling limits of continuous time random walks whose i.i.d. jumps are separated by i.i.d. waiting times, where the probability of waiting longer than time t > 0 decays like t -β for large t, see [START_REF] Meerschaert | Fractional Cauchy problems on bounded domains[END_REF].

The one-dimensional space-fractional cubic equation (2.1.1), with β = 1 and 1 < α < 2, was first studied in [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF]. This work was later generalized to every dimension and any power-type nonlinearity in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF], where Hong and Sire developed a general local and global well-posedness theory for the space-fractional equation provided the regularity s is greater or equal than the regularity invariant under the Galilean transformation, s g = 1 2 -α 4 , and the regularity invariant under scaling, s c = 1 2 -α p-1 . Their work was further extended in [START_REF]Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF] (see also a series of papers about blow-up [START_REF] Dinh | A study on blowup solutions to the focusing L2-supercritical nonlinear fractional Schrödinger equation[END_REF][START_REF]On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation[END_REF]).

The combined space-time fractional linear equation with a potential has also been studied recently, see for instance [START_REF] Dong | Space-time fractional Schrödinger equation with time-independent potentials[END_REF]. A different type of linear space-time fractional equation was proposed and studied in [START_REF] Emiramad | Time fractional Schrödinger equation[END_REF]. However one should note that their definition of the nonlocal time derivative, although allowing them to keep some group property on the solution operator, does not agree with what Naber proposed in [START_REF] Naber | Time fractional Schrödinger equation[END_REF].

Instead we propose (2.1.1) as a generalization of the nonlinear Schrödinger equation whose linear part agrees with Naber's work. The coefficient i β , as opposed to i, has been a matter of discussion. Naber argues in favor of i β , and among other reasons, he explains that after taking the Laplace transform in time and Fourier transform in space, the choice of i β produces a movement of the pole of the solution along the imaginary axis as β ranges between 0 and 1. However, if one instead chooses i, the pole would move to almost any desired location in the complex plane. Physically, this would mean that a small change in the order of the time derivative could change the temporal behavior from sinusoidal to growth or to decay. Moreover, we would add that if one explores the possibility of extending this work allowing exponents β to vary in the range (1, 2), the choice of i β provides equations which interpolate between the Schrödinger and wave equations, allowing one to remain within the domain of dispersive equations.

Recently, the case of the coefficient i instead of i β has been studied in [START_REF] Su | Dispersive estimates for the time and space fractional Schrödinger equations[END_REF][START_REF]Local well-posedness of semilinear space-time fractional Schrödinger equation[END_REF]. See Remark 2.1.5 for a more detailed discussion about this work.

2.1.2. Background about fractional equations. Classical equations such as the Laplace, heat, wave and even Schrödinger equations admit a generalization with a fractional Laplacian replacing the Laplacian, most commonly defined as a Fourier multiplier:

(-∆) s f = |ξ| 2s f (ξ) for s > 0.
We will refer to such equations as space-fractional equations.

The case of the space-fractional Laplace equation is well-known, see for instance Stein's book [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF] for an approach based on the use of Riesz potentials, or [START_REF] Garofalo | Fractional thoughts[END_REF] for a recent survey. The case of the space-fractional porous medium equation, with a fractional Laplacian and a classical time derivative, has also been studied in a series of papers [START_REF] Pablo | A fractional porous medium equation[END_REF][START_REF]A general fractional porous medium equation[END_REF].

A different approach in the generalization of such classical equations is the substitution of the time derivative for its fractional counterpart. This is a concept that mainly comes from applications, as there are evolution processes whose modelling requires to take into account the past, thus exhibiting a nonlocal behavior in time. There are different ways of making sense of such a fractional derivative in time, but one of the most common ones is to use the Caputo derivative:

∂ β t f (t) = 1 Γ(1 -β) ˆt 0 f (τ ) (t -τ ) β dτ,
for 0 < β < 1, where Γ is the Gamma function.

Such an approach has been taken by Allen, Caffarelli and Vasseur when considering a space-time fractional porous medium equation [START_REF] Allen | A parabolic problem with a fractional time derivative[END_REF][START_REF]Porous medium flow with both a fractional potential pressure and fractional time derivative[END_REF]. These types of problems involving fractional time derivatives have also been studied using probabilistic techniques, for example in [START_REF] Meerschaert | Fractional Cauchy problems on bounded domains[END_REF], where the authors develop stochastic solutions to Cauchy problems of type ∂ β t u = Au on bounded domains via solutions to the classical Cauchy problem ∂ t u = Au.

Fractional derivatives have been used to model some phenomena in Physics, such as non-diffusive transport in plasma turbulence [START_REF] Del Castillo-Negrete | Nondiffusive transport in plasma turbulence: a fractional diffusion approach[END_REF], and in Economics, such as ruin theory of insurance companies, growth and inequality processes, and high-frequency price fluctuation in financial markets [START_REF] Scalas | The application of continuous-time random walks in finance and economics[END_REF].

2.1.3. Background and properties of fractional NLS. Consider the linear case of equation (2.1.1), i.e. g = 0. One may take the Laplace transform in time, the Fourier transform in space, and solve the resulting equation to formally find

(2.1.2) u(t, x) = ˆR e ix•ξ f (ξ) ∞ k=0 t β k |ξ| α k i -β k Γ(β k + 1) dξ.
The power series comes from the Mittag-Leffler function E β (|ξ| α t β i -β ), where

(2.1.3) E β (z) = ∞ k=0 z k Γ(βk + 1)
,

which is an entire function in the complex plane. More details about this derivation can be found in [START_REF] Diethelm | The Analysis of Fractional Differential Equations[END_REF] and Section 2.2.1. We can also perform some scaling analysis for equation (2.1.1). If u is a solution to the equation then so is

u λ (t, x) = λ αβ p-1 u(λ α t, λ β x),
with the obvious rescaling of the initial data. Then one can quickly check that the critical regularity invariant under scaling is

s c = 1 2 - α p -1 .
Note that β plays no role on this formula, and so it coincides with the space-fractional case treated in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] for dimension 1.

An interesting feature is that even the linear equation has no conserved quantities. However, one can use the following asymptotic expansion for the Mittag-Leffler function, which may be found in Chapter 18 of [START_REF] Bateman | Higher Transcendental Functions[END_REF],

(2.1.4) E β (z) = 1 β exp(z 1 β ) - N -1 k=1 z -k Γ(1 -βk) + O(|z| -N ) as |z| → ∞, to control u(t) L 2 x ≤ C uniformly in time.
In fact, one can even show that

lim t→∞ u(t) L 2 x = 1 β f L 2 x ,
i.e. as time passes the mass grows towards 1 β times that of the initial data. Formula (2.1.4) is valid when | arg(z)| ≤ π 2 β and for any integer N ≥ 2. In fact, we will always choose the branch of the complex logarithm for which | arg(z)| < π, so that i -β = e -iβ π 2 and i β = e iβ π 2 . By using a fractional generalization of the Duhamel formula, we can write the solution to the nonlinear problem (2.1.1) as

u(t, x) = ˆR e ix•ξ f (ξ) E β (|ξ| α t β i -β ) dξ (2.1.5) + i -β ˆR ˆt 0 g(τ, ξ) (t -τ ) β-1 E β,β (i -β (t -τ ) β |ξ| α ) e ix•ξ dτ dξ, where g(t, ξ) = ˆR g(u(t, x)) e -iξ•x dx, and (2.1.6) E β,β (z) = ∞ k=0 z k Γ(βk + β) .
This is known as the generalized Mittag-Leffler function, and is an entire function. As before, more details about this can be found both in Section 2.2.1 and [START_REF] Diethelm | The Analysis of Fractional Differential Equations[END_REF].

Because of the difficulties in dealing with this function directly, the following asymptotic formula is helpful, which may also be found in Chapter 18 of [START_REF] Bateman | Higher Transcendental Functions[END_REF],

t β-1 E β,β (i -β t β |ξ| α ) = 1 β i β-1 |ξ| σ-α e -it|ξ| σ (2.1.7) - N k=2 Γ(β -βk) -1 i βk t 1+β(k-1) |ξ| αk + O 1 t 1+βN |ξ| α(N +1)
and is valid as t|ξ| σ → ∞, and for any N ≥ 2, where σ = α β . We again observe an oscillatory part and a monotonous part, which will need to be managed separately.

Remark 2.1.1. As seen in (2.1.2) and (2.1.7), the solution operator does not enjoy the usual group or even semigroup property with respect to time. This is a major obstacle that prevents us from using Strichartz estimates and other techniques that normally rely on this fact. As a result, our treatment is substantially different from the techniques used both for classical NLS and for the purely space-fractional equation in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF].

Statement of results.

Using the notation presented in Subsection 1.5, we now present a local well-posedness result of equation (2.1.1) for a special choice of parameters. All the results that are presented in this chapter have been published in [START_REF] Grande | Space-time fractional nonlinear Schrödinger equation[END_REF].

Theorem 2.1.2. Consider the space-time fractional nonlinear Schrödinger initial value problem:

(2.1.8) i t u = (-∆ x )

7 8 u + µ|u| 2 u (t, x) ∈ (0, ∞) × R, u | t=0 = f, Then for every f ∈ H 1 4 (R) there exists T = T ( f H 1/4 (R) ) > 0 (with T (ρ) → ∞ as ρ → 0)
and a unique solution u(t, x) to the associated integral equation given by (2.1.5) satisfying

(2.1.9) u ∈ C([0, T ], H 1 4 (R)), (2.1.10) ∇ 3 4 -u L ∞ x L 2 T < ∞, (2.1.11) u L 4 x L ∞ T < ∞,

and

(2.1.12)

∇ 1 4 u L 8 x L 4 T < ∞.
Moreover, for any T ∈ (0, T ) there exists a neighborhood V of f in H 1 4 (R) such that the map f → ũ from V into the class defined by (??) with T instead of T is Lipschitz.

The techniques used in the proof of Theorem 2.1.2 can be modified to prove the following more general result.

Theorem 2.1.3. Consider the space-time fractional nonlinear Schrödinger initial value problem (2.1.1) with a nonlinearity g(u) = µ|u| p-1 u for some odd integer p ≥ 3, µ = ±1, α > 0 and β ∈ (0, 1). With σ = α β , suppose that

(2.1.13) 2 > 1 α + 1 β , s ≥ 1 2 - 1 2(p -1)
, and

δ ∈ s + σ -α, σ 2 - 1 2(p -1)
.

for some s ∈ R. Then for every f ∈ H s (R) there exists

T = T ( f H s (R) ) > 0 (with T (ρ) → ∞ as ρ → 0
) and a unique solution u(t, x) to the integral equation given by (2.1.5) satisfying

(2.1.14) u ∈ C([0, T ], H s (R)), (2.1.15) ∇ δ u L ∞ x L 2 T < ∞, (2.1.16) u L 2(p-1) x L ∞ T < ∞,

and

(2.1.17)

∇ (s+σ-α)/2 u L 4(p-1) x L 4 T < ∞.
Moreover, for any T ∈ (0, T ) there exists a neighborhood V of f in H s (R) such that the map f → ũ from V into the class defined by (2.1.14)-(2.1.17) with T instead of T is Lipschitz.

Finally, we present a result of analytic ill-posedness for supercritical regularity. According to Holmer [START_REF] Holmer | Local ill-posedness of the 1D Zakharov system[END_REF], this method was introduced by Bourgain in [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations[END_REF]. This type of result appears for example in the work of Holmer himself for the 1D Zhakarov system, [START_REF] Holmer | Local ill-posedness of the 1D Zakharov system[END_REF], the work of Germain on the Navier-Stokes equation, [START_REF] Germain | The second iterate for the Navier-Stokes equation[END_REF], as well as the results of Molinet, Saut and Tzvetkov, [START_REF] Molinet | Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation[END_REF], in the case of the KP-I equation. Lebeau was the first to show the stronger result of loss of regularity in his work on the nonlinear wave equation [START_REF] Lebeau | Non linear optic and supercritical wave equation[END_REF][START_REF]Perte de régularité pour les équations d'ondes sur-critiques[END_REF]. Regarding the nonlinear Schrödinger equation, Bejenaru and Tao proved ill-posedness of the quadratic Schrödinger equation, [START_REF] Bejenaru | Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation[END_REF], Thomann proved loss of regularity for NLS on analytic Riemannian manifolds, [START_REF] Thomann | Instabilities for supercritical Schrödinger equations in analytic manifolds[END_REF], and Alazard and Carles showed loss of regularity for supercritical NLS, [START_REF] Alazard | Loss of regularity for supercritical nonlinear Schrödinger equations[END_REF], among other results. Theorem 2.1.4. Consider the initial value problem:

i β ∂ β t u = (-∆ x ) α 2 u + µ|u| p-1 u, (t, x) ∈ [0, T ] × R, u| t=0 = f ∈ H s (R),
where α > 0, β ∈ (0, 1), and µ = ±1. If p ≥ 3 is an integer, then the initial data-to-solution map from H s (R) to C t ([0, T ], H s x (R)) is not C p for s < s c = 1 2 -α p-1 . If p = 2, then the initial data-to-solution map from H s (R) to C t ([0, T ], H s x (R)) is not C2 for any s.

We finish this section with a few remarks about the results in this chapter.

Remark 2.1.5. Between the publication of the results in this chapter on Arxiv and its publication on SIMA, [START_REF] Grande | Space-time fractional nonlinear Schrödinger equation[END_REF], two papers were posted on Arxiv about a similar equation with coefficient i instead of i β [66, 67]:

(2.1.18)

i∂ β t u = (-∆ x ) α 2 u + µ|u| p-1 u, (t, x) ∈ (0, T ) × R n , u| t=0 = f.
For initial data f ∈ L r (R n ), for general dimension n and under certain technical conditions on the admissible triplet (q, r, p), the authors prove local well-posedness of (2. 1.18) 

in the space C b ([0, T ), L r (R n )) ∩ L q ([0, T ), L p (R n )).
Beyond our arguments in favor of i β instead of i explained in the introduction, one might wonder whether similar techniques could be used in our equation. Unfortunately, the Fourier multiplier that appears in the solution to (2.1.18), E β (-it β |ξ| α ), displays very different asymptotics compared to ours, E β (i -β t β |ξ| α ). As an illustrative example, consider the case β ∈ ( 1 2 , 1), where (2.1.4) is still valid. Note that the argument in the exponential has negative real part for z = -it β |ξ| α , and thus decays. Therefore their asymptotics are in fact dominated by the "good" term t -β |ξ| -α and the mass of their solution tends to zero as time passes. The same happens with the Fourier multiplier acting on the nonlinearity, which is now E β,β (-it β |ξ| α ). Its leading behavior is now given by a good term, instead of a complex exponential as in (2.1.7), and so there is no loss of derivatives that needs to be overcome. This allows for the use of standard techniques similar to Strichartz estimates that lead to the results explained above. However, one could argue that the fact that their Fourier multiplier does not display an asymptotically oscillatory behavior (and instead decays) is an argument against the use of ( 

1 2 - 1 2(p -1) > s ≥ s c = 1 2 - α p -1 ,
local well-posedness remains an open question.

In the case p = 3, we probably should not expect local well-posedness all the way to s c . Indeed, in the case β = 1, local well-posedness is obtained when s > max{s c , s g }, where

s g := 1 2 - α 4 ,
is the regularity that is invariant under the (pseudo) Galilean invariance, see [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]. When p ∈ (1, 5) and β = 1, local well-posedness holds only for s > 1 2 -α 4 > s c , and this result is sharp in the cubic case, as proved in [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF]. This suggests that a similar thing might happen for (2.1.1) when p = 3.

In the case of the KdV equation, extending the local well-posedness results presented in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] to negative regularities required the use of X s,b spaces, see [START_REF] Kenig | Oscillatory integrals and regularity of dispersive equations[END_REF]. Similar ideas might be necessary to overcome the gap in our case too.

Incidentally, closing this gap would probably allow an accurate comparison between the solution to (2.1.1) and the second iterate described in Theorem 2.1.4, in order to prove a stronger result of ill-posedness known as norm inflation.

Remark 2.1.8. Because of (2.1.7), if one tries to take the

L ∞ T L 2 x norm of ˆR ˆt 0 g(τ, ξ) (t -τ ) β-1 E β,β (i -β (t -τ ) β |ξ| α ) e ix•ξ dτ dξ,
we seem to lose σ -α derivatives, which is an obstacle to closing the contraction-mapping argument. In order to circumvent this problem, we exploit some smoothing effect of the linear operator, which explains the choice of norm in (2.1.15). Note that this is not an issue in the space-fractional case (β = 1) because then σ = α.

Remark 2.1.9. The smoothing effect mentioned above is however limited. As will be seen in Proposition 2.2.1, one can balance the loss of derivatives only if

(2.1.19) σ -1 2 > σ -α,
which restricts the range of parameters to that presented in (2.1.13).

Remark 2.1.10. Even if one could somehow control some H s x norm of the solution globally in time, one may not easily iterate this local well-posedness result towards global wellposedness. This is precisely because of the memory effect, which also manifests itself in the lack of time-translation invariance. In other words, suppose we solve equation (2.1.1) for initial data f = u(0) in an interval [0, T ] given by Theorem 2.1.3, and let that solution be u(t). Then consider the IVP (2.1.1) for initial data f = u(T ) this time, and its solution v in some small time interval. If β were 1, we would expect v(t) = u(t + T ) to hold in this interval of existence, thereby extending the lifespan of our solution. However, this fails for β < 1. Instead, the right equation in the second step would be

(2.1.20) i β -T ∂ β t v = (-∆ x ) α/2 v + g(v) (t, x) ∈ (0, ∞) × R, v | t=0 = u(T ).
where -T ∂ β t v, is a different version of the Caputo derivative:

-T ∂ β t v(t, x) = 1 Γ(1 -β) ˆt -T ∂ τ v(τ, x) (t -τ ) β dτ.
Unfortunately, it is not clear that solving (2.1.20) produces an advantage over dealing with (2.1.1) directly, and therefore more research in this direction might be necessary.

Remark 2.1.11. The requirement that p be an integer in Theorem 2.1.4 is not necessary. For noninteger p, instead of the initial data-to-solution map, one should speak about the second iterate of the following iteration scheme:

i β ∂ β t u k+1 = (-∆ x ) α 2 u k+1 + µ|u k | p-1 u k , (t, x) ∈ [0, T ] × R, u k+1 | t=0 = f ∈ H s (R),
where u 1 is the linear flow. Then the statement of Theorem 2.1.4 becomes the following: when p ≥ 3, the map from initial data in H s (R) to the second iterate in C t ([0, T ], H s x (R)) is not continuous whenever s < s c = 1 2 -α p-1 . For 1 < p < 3, this map will not be continuous for any s.

Remark 2.1.12. One might wonder if an ill-posedness result based on a small dispersion approach to show phase decoherence would be possible, in the spirit of the work in [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF]. There are several complications with this approach, such as the lack of symmetries available in our equation, the loss of derivatives, and the need for a better understanding of the behavior of the solution to the no-dispersion fractional ODE.

2.1.5. Outline. This chapter is organized as follows. In Section 2.2, we prove linear estimates with respect to the norms given in (2.1.14)-(2.1.17). In order to do this, we use a representation of the solution given by a Fourier multiplier for which we only have asymptotic formulas, and thus it requires a somewhat different treatment on small and large frequencies, as well as studying a remainder. In Section 2.3, we employ these linear estimates to prove Theorem 2.1.2, which is similar to Theorem 2.1.3 for a special but illustrative choice of parameters, which simplifies the exposition. In Section 2.4, we provide the proof of Theorem 2.1.3 in full generality. In Section 2.5, we prove Theorem 2.1.4.

Additionally, we compile the following list of symbols and parameters that are specific to this chapter:

• α -the order of the fractional Laplacian (-∆ x ) α 2 .

• β -the order of the Caputo derivative in time ∂ β t . • σ -the ratio α β . • p -the degree of the power-type nonlinearity.

• γ = σ-1
2 -the gain in the linear part thanks to the smoothing effect.

• γ = α -σ+1
2 -the gain in the nonlinear part thanks to the smoothing effect.

2.2. Linear estimates 2.2.1. On the representation of solutions. Consider the linear space-time fractional Schrödinger equation eq. (2.1.1) with g = 0. By taking the Fourier transform in space and the Laplace transform in time, we obtain

i β s β u(s, ξ) -i β s β-1 f (ξ) = |ξ| α u(s, ξ),
and thus

u(s, ξ) = i β s β-1 i β s β -|ξ| α f (ξ).
After inverting these transforms, we find

u(t, x) = ˆR e ix•ξ f (ξ) ∞ k=0 t β k |ξ| α k i -β k Γ(β k + 1) dξ,
which was already given in (2.1.2).

For completeness, we now present the main ideas on how this function formally solves equation (2.1.1) in the case g = 0. The full details can be found in [START_REF] Diethelm | The Analysis of Fractional Differential Equations[END_REF].

With u as in (2.1.2), we formally have

∂ t u(t, x) = ˆR e ix•ξ f (ξ) ∞ k=1 βkt β k-1 |ξ| α k i -β k Γ(β k + 1) dξ,
and therefore,

∂ β t u(t, x) = 1 Γ(1 -β) ˆR e ix•ξ f (ξ) ∞ k=1 βk|ξ| α k i -β k Γ(β k + 1) ˆt 0 τ β k-1 (t -τ ) β dτ dξ.
One can easily check that the τ -integral is essentially a Beta function:

ˆt 0 τ β k-1 (t -τ ) β dτ = ˆ1 0 t β k-1 τ β k-1 t β (1 -τ ) β t dτ = t β(k-1) Γ(βk) Γ(1 -β) Γ(βk -β + 1) .
Consequently, and after using the identity Γ(z + 1) = z Γ(z),

∂ β t u(t, x) = 1 Γ(1 -β) ˆR e ix•ξ f (ξ) ∞ k=1 βkt β(k-1) |ξ| α k i -β k Γ(βk) Γ(1 -β) Γ(β k + 1)Γ(βk -β + 1) dξ = ˆR e ix•ξ f (ξ) ∞ k=1 t β(k-1) |ξ| α k i -β k Γ(βk + 1) Γ(β k + 1)Γ(βk -β + 1) dξ = ˆR e ix•ξ f (ξ) ∞ k=0 t βk |ξ| α (k+1) i -β (k+1) Γ(βk + 1) dξ = I.
On the other hand, we consider the other term involved in equation (2.1.1), which formally gives

(-∆ x ) α/2 u = ˆR e ix•ξ f (ξ) ∞ k=0 t β k |ξ| α (k+1) i -β k Γ(β k + 1) dξ = II.
Therefore I and II coincide after multiplying the former by the i β factor. Now consider the nonlinear space-time fractional Schrödinger equation, as defined in (2.1.1). Once again, we simply provide a brief exposition, since the full details may be found in [START_REF] Diethelm | The Analysis of Fractional Differential Equations[END_REF]. A representation for the solution to the nonlinear equation was given in (2.1.5), where the Fourier transform of the inhomogeneous part is precisely

h(t, ξ) = i -β ˆt 0 g(τ, ξ) (t -τ ) β-1 E β,β (i -β (t -τ ) β |ξ| α ) dτ (2.2.1) = ∞ k=0 i -β(k+1) |ξ| αk (J βk+β g)(t, ξ),
where

(J ν g)(t, ξ) := 1 Γ(ν) ˆt 0 g(τ, ξ)(t -τ ) ν-1 dτ ,
which is based on the definition of E β,β in (2.1.6). One can check that J ν 1 J ν 2 = J ν 1 +ν 2 for any ν 1 , ν 2 > 0.

All we need to do now is to show that h is a particular solution of the following Cauchy problem:

(2.2.2)

i β ∂ β t u = |ξ| α u + g, u | t=0 = 0.
We have the following formal equalities:

I = |ξ| α h(t, ξ) = ∞ k=0 i -β(k+1) |ξ| α(k+1) J βk+β g(t) II = i β ∂ β t h(t, ξ) = ∞ k=0 i -βk |ξ| αk ∂ β t J βk+β g(t).
Note that ∂ β t = D β t (id -ev 0 ), where id is the identity, ev 0 f = f (0) and

D β t f := 1 Γ(1 -β) d dt ˆt 0 f (s)(t -s) -β ds = d dt J 1-β f.
The proof of this fact follows directly from integration by parts. Then one shows the following identity

∂ β t J β = D β t (J β -ev 0 J β ) = D β t J β = d dt J 1-β J β = d dt J 1 = id,
by the fundamental theorem of calculus, having also used the fact that ev 0 J β = 0. With all this in mind, let us show that h in (2.2.1) formally satisfies the equation in (2.2.2):

II -I = ∞ k=0 i -βk |ξ| αk ∂ β t J β J βk g - ∞ k=0 i -β(k+1) |ξ| α(k+1) J βk+β g = ∞ k=0 i -βk |ξ| αk J βk g - ∞ k=0 i -β(k+1) |ξ| α(k+1) J βk+β g = J 0 g = g.
It is also obvious that h | t=0 = 0.

Based on this analysis, we introduce the following operators for f : R -→ C,

S t f (x) = ˆR e -it|ξ| σ χ {t|ξ| σ ≤M } f (ξ) e ixξ dξ, T t f (x) = ˆR t -β |ξ| -α χ {t|ξ| σ >M } f (ξ) e ixξ dξ, (2.2.3) U t f (x) = ˆR E β (i -β t β |ξ| α ) χ {t|ξ| σ ≤M } f (ξ) e ixξ dξ,
where χ {t|ξ| σ ≤M } = χ(t, ξ) denotes a smooth function supported on the set

{(t, ξ) ∈ (0, ∞) × R | t|ξ| σ ≤ 2M } for some large M > 0, satisfying χ(t, ξ) = 1 if t|ξ| σ ≤ M . Similarly, we will denote χ {t|ξ| σ >M } := 1 -χ {t|ξ| σ ≤M } .
The operators S t and U t will capture the behavior of the solution (2.1.2) when t|ξ| σ is small, whereas e it|∇| σ and T t will do so for large t|ξ| σ , based on the first and second terms of the asymptotic formula (2.1.4).

Similarly, the following multiplier operators will also play a role when dealing with the nonlinearity:

St f (x) = ˆR |ξ| σ-α e -it|ξ| σ χ {t|ξ| σ ≤M } f (ξ) e ixξ dξ, Tt f (x) = ˆR t -1-β |ξ| -2α χ {t|ξ| σ >M } f (ξ) e ixξ dξ, (2.2.4) Ũt f (x) = ˆR t β-1 E β,β (i -β t β |ξ| α ) χ {t|ξ| σ ≤M } f (ξ) e ixξ dξ.
As before, the operators St and Ũt will capture the behavior of the second term in (2.1.5) when t|ξ| σ is small. For large values of t|ξ| σ , the operators |∇| σ-α e it|∇| σ and Tt will be used, based on the first and second terms in (2.1.7).

L ∞

x L 2 T estimates -smoothing effect. The following two propositions are a generalization of Theorem 3.5 in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF].

Proposition 2.2.1. Let γ = σ-1 2 ≥ 0. Then (2.2.5) |∇| γ e -it|∇| σ f L ∞ x L 2 t f L 2 x .
Proof. We define

F (t, x) := ˆR |ξ| γ e -it|ξ| σ f (ξ)e ixξ dξ.
Then we can rewrite this as:

F (t, x) = ˆ∞ 0 ξ γ e -itξ σ f (ξ)e ixξ + f (-ξ)e -ixξ dξ = ˆ∞ 0 ξ γ e -itξ σ f (x, ξ)dξ = 1 σ ˆ∞ 0 µ γ+1 σ -1 f (x, µ 1 
σ )e -itµ dµ.

By the Plancherel identity,

F (x) 2 L 2 t = ˆ∞ 0 1 σ µ γ+1 σ -1 f (x, µ 1 σ ) 2 dµ = ˆ∞ 0 1 σ ξ 2γ+1-σ | f (x, ξ)| 2 dξ = ˆ∞ 0 1 σ | f (x, ξ)| 2 dξ. Finally, since sup x | f (x, ξ)| 2 ≤ 2| f (ξ)| 2 + 2| f (-ξ)| 2 we obtain F L ∞ x L 2 t f L 2 x .
From the linear estimate in Proposition 2.2.1 we obtain the following:

Proposition 2.2.2. For γ = σ-1 2 ≥ 0 and a fixed time T > 0, we have

|∇| γ ˆt 0 e -i(t-t )|∇| σ G(t , x) dt L ∞ x L 2 T G L 1 T L 2 x .
Proof. The dual of the estimate (2.2.5) is

(2.2.6) |∇| γ ˆ∞ -∞ e it |∇| σ g(t , x) dt L 2 x g L 1 x L 2 t .
From this estimate, consider the function g(t , x) := χ [t,T ] (t ) g(t , x), which is clearly dominated by g and therefore is also in L 1

x L 2 t . We substitute this in (2.2.6) and obtain

|∇| γ ˆT t e it |∇| σ g(t , x) dt L 2 x g L 1 x L 2 ([t,T ]) .
Since the operator e -it|∇| σ is unitary,

e -it|∇| σ |∇| γ ˆT t e it |∇| σ g(t , x) dt L 2 x g L 1 x L 2 ([t,T ]) .
We now take the L ∞ T norm:

(2.2.7)

|∇| γ ˆT t e -i(t-t )|∇| σ g(t , x) dt L ∞ T L 2 x g L 1 x L 2 T .
Finally, consider

|∇| γ ˆt 0 e -i(t-t )|∇| σ G(t , x) dt L ∞ x L 2 T = sup g L 1 x L 2 T =1 ˆT 0 ˆR g(t, x) |∇| γ ˆt 0 e -i(t-t )|∇| σ G(t , x) dt dx dt = sup g L 1 x L 2 T =1 ˆT 0 ˆR G(t , x) |∇| γ
ˆT t e -i(t -t)|∇| σ g(t, x) dt dx dt .

Now we finish by using the Hölder inequality together with (2.2.7).

Proposition 2.2.3. For any 0 ≤ γ < γ = σ-1 2 , the operator T t defined in (2.2.3) satisfies

|∇| γ T t f L ∞ x L 2 T T γ-γ σ f L 2 x .
Proof. By the Minkowski inequality,

|∇| γ T t f L ∞ x L 2 T ≤ ˆR t -β |ξ| γ -α χ {t|ξ| σ >M } f (ξ) L 2 T dξ = ˆR |ξ| γ -α | f (ξ)|χ {|ξ| σ > M T } ˆT M |ξ| σ t -2β dt 1 2 dξ = ˆR |ξ| γ -α | f (ξ)|χ {|ξ| σ > M T } T 1-2β 1 -2β - 1 1 -2β M |ξ| σ 1-2β 1 2 dξ.
We shall see later that the assumption β > 1 2 will happen naturally, so now observe that because of the characteristic function we have the following bound

|∇| γ T t f L ∞ x L 2 T M,β ˆR |ξ| γ -α | f (ξ)|χ {|ξ| σ > M T } |ξ| α-σ 2 dξ = ˆR |ξ| γ -σ 2 | f (ξ)|χ {|ξ| σ > M T } dξ ≤ f L 2 x ˆR |ξ| 2γ -σ χ {|ξ| σ > M T } dξ 1 2
.

The condition 2γ -σ < -1 is necessary to ensure integrability in the previous inequality.

Finally we look at what happens for small frequencies.

Proposition 2.2.4. For any 0 ≤ γ < γ = σ-1 2 , the operator U t defined in (2.2.3) satisfies

|∇| γ U t f L ∞ x L 2 T T γ-γ σ f L 2 x .
Proof. Let us remember the definition of this operator

U t f (x) = ˆR E β (i -β t β |ξ| α ) χ {t|ξ| σ ≤M } f (ξ) e ixξ dξ,
where σ = α β . Note that the series defining the function E β is absolutely convergent in the support of χ {t|ξ| σ ≤M } , see (2.1.3). Using this fact together with the Minkowski inequality we find

|∇| γ U t f L ∞ x L 2 T ˆR | f (ξ)||ξ| γ ˆmin(T, M |ξ| σ ) 0 dt 1 2 dξ ˆR | f (ξ)||ξ| γ -σ 2 χ {T |ξ| σ >M } dξ + T 1 2 ˆR | f (ξ)||ξ| γ χ {T |ξ| σ ≤M } dξ f L 2 x ˆR |ξ| 2γ -σ χ {T |ξ| σ >M } dξ 1 2 + f L 2 x T 1 2 ˆR |ξ| 2γ χ {T |ξ| σ ≤M } dξ 1 2
, Again, one sees that the condition 2γ -σ < -1 is required to ensure integrability, and the exponent in T coincides for both integrals. The same argument proves the following result:

Proposition 2.2.5. For any 0 ≤ γ < γ = σ-1 2 , the operator S t defined in (2.2.3) satisfies

|∇| γ S t f L ∞ x L 2 T T γ-γ σ f L 2 x .
We now rewrite Proposition 2.2.1 and Proposition 2.2.2 in a clearer way for the purpose of estimating what will be the nonlinear part of the equation.

Proposition 2.2.6. Let γ = α -σ+1 2 .
Then

|∇| γ |∇| σ-α e -it|∇| σ f L ∞ x L 2 t f L 2 x , |∇| γ ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) dt L ∞ x L 2 T G L 1 T L 2 x .
Note that the only way to gain derivatives is if γ > 0, which yields the condition

2 > 1 α + 1 β , α > 0, β ∈ (0, 1).
In particular, this implies that α > 1 and β > 1 2 . Similarly, we need the analog of this result for the other multiplier operators taking part in the nonlinear piece. Proposition 2.2.7. For any 0 ≤ γ < γ = α -σ+1 2 the operator Tt defined in (2.2.4) satisfies

|∇| γ ˆt 0 Tt-t G(t , x) dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x .
Proof. By the Minkowski inequality,

|∇| γ ˆt 0 Tt-t G(t , x) dt L ∞ x L 2 T ≤ ˆT 0 ˆR |ξ| γ -2α | G(t , ξ)| χ {t ≤t} (t -t ) 1+β χ {(t-t )|ξ| σ >M } L 2 t ([0,T ]) dξdt ˆT 0 ˆR |ξ| γ -2α | G(t , ξ)| χ {(T -t )|ξ| σ >M } |ξ| σ+2α M 1+2β - 1 (T -t ) 1+2β 1 2 dξdt (2.2.8) ˆT 0 ˆR |ξ| γ -α+ σ 2 | G(t , ξ)| χ {(T -t )|ξ| σ >M } dξdt ˆT 0 G(t) L 2 x ˆR |ξ| 2γ -2α+σ χ {(T -t )|ξ| σ >M } dξ 1 2 dt ˆT 0 G(t) L 2 x (T -t ) γ-γ σ dt ≤ T γ-γ σ G L 1 T L 2
x .

The proofs of the following results are analogous to the ones before and so we will omit them.

Proposition 2.2.8. For any 0 ≤ γ < γ = α -σ+1 2 the operator Ũt defined in (2.2.4) satisfies

|∇| γ ˆt 0 Ũt-t G(t , x) dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x .
Proposition 2.2.9. For any 0 ≤ γ < γ = α -σ+1 2 the operator St defined in (2.2.4) satisfies

|∇| γ ˆt 0 St-t G(t , x) dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x .
Now it is time to put all these results together:

Theorem 2.2.10 (Norm homogeneous version). Let 0 ≤ γ < γ = σ-1 2 , and 0 ≤ γ < γ = α -σ+1 2 .
Then

|∇| γ e -it|∇| σ f L ∞ x L 2 T f L 2 x , |∇| γ S t f L ∞ x L 2 T T γ-γ σ f L 2 x , |∇| γ T t f L ∞ x L 2 T T γ-γ σ f L 2 x , |∇| γ U t f L ∞ x L 2 T T γ-γ σ f L 2 x .
Additionally,

|∇| γ ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x)dt L ∞ x L 2 T G L 1 T L 2 x , |∇| γ ˆt 0 St-t G(t , x)dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x , |∇| γ ˆt 0 Tt-t G(t , x)dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x , |∇| γ ˆt 0 Ũt-t G(t , x)dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x . Theorem 2.2.11 (Norm nonhomogeneous version). Let 0 ≤ γ < γ = σ-1 2 , and 0 ≤ γ < γ = α -σ+1 2 . Then ∇ γ e -it|∇| σ f L ∞ x L 2 T (1 + T 1 2 ) f L 2 x , ∇ γ S t f L ∞ x L 2 T (T γ-γ σ + T 1 2 ) f L 2 x , ∇ γ T t f L ∞ x L 2 T (T γ-γ σ + T 1 2 ) f L 2 x , ∇ γ U t f L ∞ x L 2 T (T γ-γ σ + T 1 2 ) f L 2 x .
Moreover,

∇ γ ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x)dt L ∞ x L 2 T (1 + T 1 2 ) G L 1 T L 2 x , ∇ γ ˆt 0 St-t G(t , x)dt L ∞ x L 2 T (T γ-γ σ + T 1 2 ) G L 1 T L 2 x , ∇ γ ˆt 0 Tt-t G(t , x)dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x , ∇ γ ˆt 0 Ũt-t G(t , x)dt L ∞ x L 2 T (T γ-γ σ + T 1 2 ) G L 1 T L 2 x .
Proof.

We write f = P ≤1 f + P >1 f where

(P ≤1 f ) ∧ = φ(ξ) f (ξ) for φ ∈ C ∞ c (R) and supp(φ) ⊂ B(0, 1), and (P >1 f ) ∧ = (1 -φ(ξ)) f (ξ).
Take for example

∇ γ e -it|∇| σ f L ∞ x L 2 T ≤ ∇ γ e -it|∇| σ P ≤1 f L ∞ x L 2 T + ∇ γ e -it|∇| σ P >1 f L ∞ x L 2 T .
Let f = ∇ γ P >1 f . Then by Proposition 2.2.1 and the fact that these operators commute,

∇ γ e -it|∇| σ P >1 f L ∞ x L 2 T = e -it|∇| σ f L ∞ x L 2 T |∇| -γ f L 2 x = |∇| -γ ∇ γ P >1 f L 2 x f L 2
x , which follows from the fact that |∇| -γ ∇ γ P >1 is a bounded operator from L 2

x to L 2 x . On the other hand, by the Minkowski inequality

∇ γ e -it|∇| σ P ≤1 f L ∞ x L 2 T = ˆR e -it|ξ| σ e ixξ φ(ξ) ξ γ f (ξ) dξ L ∞ x L 2 T (2.2.9) T 1 2 ˆR |φ(ξ) f (ξ)| dξ T 1 2 f L 2 x T 1 2 f L 2 x .
The idea for the others will be the same, since all S t , T t and U t composed with P ≤1 are bounded. Now let's look at the estimates that we will use on the nonlinear part. Take for instance

∇ γ ˆt 0 Ũt-t G(t , x)dt L ∞ x L 2 T (T γ-γ σ + T 1 2 ) G L 1 T L 2
x , and let's prove it is true for P ≤1 G and P >1 G. Proposition 2.2.7 yields:

ˆt 0 Ũt-t (P >1 G)(t , x)dt L ∞ x L 2 T T γ-γ σ G L 1 T L 2 x ,
as explained before.

An argument such as (2.2.9) based on repeated use of the Minkowski inequality yields ˆt 0 Ũt-t (P ≤1 G)(t , x)dt

L ∞ x L 2 T T 1 2 G L 1 T L 2 x .
Note that this step is not necessary for Tt-t because it is supported on the set

{(t - t )|ξ| σ > M } which does not intersect {|ξ| ≤ 1} for M > T . 2.2.3. L ∞ T L 2 x estimates.
Proposition 2.2.12. Using the definitions for S t , T t and U t given in (2.2.3), we have

e -it|∇| σ f L ∞ T L 2 x f L 2 x , S t f L ∞ T L 2 x f L 2 x , T t f L ∞ T L 2 x f L 2 x , U t f L ∞ T L 2 x f L 2 x .
Proof. We use the Plancherel theorem, and then the fact that every one of the multipliers involved are bounded.

The Minkowski inequality immediately implies:

Proposition 2.2.13. The following estimate holds:

ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) dt L ∞ T L 2 x |∇| σ-α G L 1 T L 2 x .
Proposition 2.2.14. For St , Tt and Ũt as defined in (2.2.4) we have

ˆt 0 St-t G(t , x) dt L ∞ T L 2 x T β-1 2 G L 2 T,x , ˆt 0 Tt-t G(t , x) dt L ∞ T L 2 x T β-1 2 G L 2 T,x , ˆt 0 Ũt-t G(t , x) dt L ∞ T L 2 x T β-1 2 G L 2 T,x . 
Proof. For Tt , we use the Minkowski inequality, the Plancherel theorem, then the cut-off and finally the Cauchy-Schwarz inequality:

ˆt 0 Tt-t G(t , x) dt L ∞ T L 2 x sup 0≤t≤T ˆt 0 (t -t ) -1-β |ξ| -2α | G(t , ξ)|χ {(t-t )|ξ| σ >M } L 2 ξ dt sup 0≤t≤T ˆt 0 (t -t ) -1+β G(t ) L 2 x dt G L 2 T L 2 x sup 0≤t≤T ˆt 0 (t -t ) -2+2β dt 1 2
.

The proofs for the corresponding inequalities involving St and Ũt are analogous.

L p

x L ∞ T estimates -maximal function. Now we are interested in studying what happens with these operators in spaces like L p x L ∞ T for p ≥ 4. For the oscillatory part, there are global estimates that we may use. The following result can be found in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] as Lemma 3.29, and also as Theorem 1 in [START_REF]Homogeneous maximal estimates for solutions to the Schrödinger equation[END_REF]. We give its proof for completeness and because the proof in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] depends on Lemma 3.28 in the same paper, which has a minor issue that we fix.

Proposition 2.2.15. Suppose that σ > 1 and f ∈ S(R), the Schwartz space. The inequality

(2.2.10) e -it|∇| σ f L p x L ∞ t |∇| s f L 2
x holds if and only if p = 2 1-2s and 1 4 ≤ s < 1 2 . Proof.

Step 1: Uniform decay. Without loss of generality, we will assume that f is a Schwartz. Define I(t, x) = ˆR e -it|ξ| σ +ixξ 1 |ξ| s dξ. We want to show that (2.2.11)

|I(t, x)| |x| s-1 ,
independently of t. Note that it is enough to prove (2.2.11) for t = 1 by a homogeneity argument. However, we choose to prove it without using this fact to illustrate a more general idea applicable to other operators that do not enjoy such homogeneity. Without loss of generality, we will assume that t > 0. We may also assume that |x| > 1, since otherwise we use the fact that |I(t, x)| 1 to get a stronger result. We begin by subdividing the region of integration into three parts

Ω 1 := {ξ ∈ R | |ξ| ≤ |x| -1 }, Ω 2 := {ξ ∈ R -Ω 1 | |x -σt|ξ| σ-1 | ≤ σ -1 2σ |x|}, Ω 3 := R -Ω 1 ∪ Ω 2 .
Technically we should distinguish ξ > 0 and ξ < 0 and define Ω ± j so that we may differentiate the function |ξ| σ comfortably. However, the proof is similar and thus we will implicitly assume that ξ > 0 for convenience, so that d dξ |ξ| σ = σ|ξ| σ-1 . We also define

I j (t, x) := ˆΩj e -it|ξ| σ +ixξ 1 |ξ| s dξ.
It is straight-forward to show that

|I 1 (t, x)| |x| s-1 .
We now move on to the second integral. If ξ ∈ Ω 2 , we have that

x t -σ|ξ| σ-1 ≤ σ -1 2σ x t .
From this inequality one may show that there exist c 1 , c 2 > 0 such that (2.2.12)

c 1 x t ≤ |ξ| σ-1 ≤ c 2 x t .
In order to estimate I 2 we use Van der Corput's lemma (Lemma A.1):

|I 2 (t, x)| sup ξ∈Ω 2 |ξ| -s (t|ξ| σ-2 ) -1/2 sup ξ∈Ω 2 |ξ| 1 2 -s (t|ξ| σ-1 ) -1/2 sup ξ∈Ω 2 |ξ| 1 2 -s |x| -1/2 |x| s-1 .
The second inequality follows from (2.2.12). The third inequality follows from the fact that |ξ| ≥ |x| -1 in Ω 2 , together with s ≥ 1 2 , which explains the hypothesis in our theorem. Finally, we study I 3 . If ξ ∈ Ω 3 , we have that |ξ| ≥ |x| -1 and also

x t -σ|ξ| σ-1 ≥ σ -1 2σ x t .
Therefore, we may integrate by parts the following:

I 3 (t, x) = ˆΩ3 d dξ e -it|ξ| σ +ixξ 1 x -σt|ξ| σ-1 1 |ξ| s dξ.
The desired decay comes from integrating |ξ| -s-1 in the region {|ξ| ≥ |x| -1 }.

Step 2: T T * argument. By duality (2.2.10) is equivalent to

ˆR |∇| -s e -it|∇| σ g(t, x) dt L 2 x g L p x L 1 t ,
where p is the dual exponent to p. However, we also have that

ˆR |∇| -s e -it|∇| σ g(t, x) dt 2 L 2 x = ˆR ˆR g(t, x) ˆR |∇| -2s e -i(t-τ )|∇| σ g(τ, x) dτ dt dx. Therefore, (2.2.10) is equivalent to ˆR |∇| -2s e -i(t-τ )|∇| σ g(τ, x) dτ L p x L ∞ t g L p x L 1 t .
In order to prove this last bound, we use the Hardy-Littlewood-Sobolev inequality and (2.2.11)

ˆR |∇| -2s e -i(t-τ )|∇| σ g(τ, x) dτ

L p x L ∞ t = |∇| -2s e -it|∇| σ * t,x g L p x L ∞ t ≤ |∇| -2s e -it|∇| σ * t,x |g| L p x L ∞ t |x| 2s-1 * t,x |g| L p x L ∞ t ≤ |x| 2s-1 * x g L 1 t L p x g L 1 t L p x .
The other operators can be treated as follows.

Proposition 2.2.16. For p > 2 and T t as defined in (2.2.3), we have

T t f L p x L ∞ t |∇| s f L 2 x , where s = 1 2 -1 p .
Proof. We define

T t (x) := ˆR t -β |ξ| -α χ {t|ξ| σ >M } e ixξ dξ,
which is well-defined because we are working under the assumption that α > 1. Recall that σ = α β and consider

|∇| -s T t (x) = ˆR t -β |ξ| -s-α χ {t|ξ| σ >M } e ixξ dξ,
Our goal is to prove that (2.2.13) |∇| -s T t (x) s |x| s-1 for all x ∈ R, and for any s ∈ [0, 1] independently of time. By using

|∇| -s T t (x) = t s-1 σ (|∇| -s T 1 )(t -1 σ x),
which follows by rescaling, we can rewrite inequality (2.2.13) as

t s-1 σ (|∇| -s T 1 )(t -1 σ x) s |x| s-1 , (|∇| -s T 1 )(t -1 σ x) s t 1-s σ |x| s-1 = |t -1 σ x| s-1 , |∇| -s T 1 (x) s |x| s-1 . (2.2.14)
And therefore, it is enough to prove (2.2.13) in the case t = 1, namely

|∇| -s T 1 (x) = ˆR |ξ| -s-α χ {|ξ| σ >M } e ixξ dξ.
By absolute integrability we have |∇| -s T 1 (x) s 1, which we will use when |x| is small. For |x| > 2, we integrate by parts:

|∇| -s T 1 (x) = ˆR |ξ| -s-α χ {|ξ| σ >M } 1 ix d dξ e ixξ dξ = - ˆR 1 ix d dξ |ξ| -s-α χ {|ξ| σ >M } e ixξ dξ.
Once again, the derivative of the function is absolutely integrable and so

|∇| -s T 1 (x) s |x| -1 .
Combining the O(1) and the O(|x| -1 ) bounds, (2.2.14) follows. At this stage, while we could use the full decay O( x -1 ) to complete the proof of this proposition, we prefer to follow a strategy of proof that also works for the other operators where this decay is not available. Finally, we use the Hardy-Littlewood-Sobolev inequality to prove the final bound

|∇| -s T t f L p x L ∞ T = (|∇| -s T t ) * f L p x L ∞ T ≤ sup t ||∇| -s T t | * |f | L p x (2.2.15) s | • | s-1 * |f | L p x s f L 2 x . (2.2.16)
The assumption s = 1 2 -1 p > 0 is a necessary hypothesis to use the Hardy-Littlewood-Sobolev inequality (see [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF]). Proposition 2.2.17. For p > 2 and U t as defined in (2.2.3), we have

U t f L p x L ∞ t |∇| s f L 2 x , where s = 1 2 -1 p (and for p = ∞ we have s = 1 2 ).
Proof. We define

U t (x) := ˆR χ {t|ξ| σ ≤M } E β (i -β t β |ξ| α ) e ixξ dξ = ˆR χ {t|ξ| σ ≤M } ∞ k=0 i -βk t βk |ξ| αk Γ(βk + 1) e ixξ dξ .
By rescaling, it suffices to prove (2.2.17)

|∇| -s U 1 (x) s |x| s-1 ,
for s ∈ [0, 1), and then use the Hardy-Littlewood-Sobolev inequality as in (2.2.15). In order to prove (2.2.17) we can directly use integration by parts together with the fact that this integral is bounded for every x (remember that the series converges absolutely in the support of χ).

|∇| -s U 1 (x) = ˆR |ξ| -s χ {|ξ| σ ≤M } ∞ k=0 i -βk |ξ| αk Γ(βk + 1) e ixξ dξ = ˆ|ξ|≤|x| -1 |ξ| -s χ {|ξ| σ ≤M } ∞ k=0 i -βk |ξ| αk Γ(βk + 1) e ixξ dξ + ˆ|ξ|>|x| -1 |ξ| -s χ {|ξ| σ ≤M } ∞ k=0 i -βk |ξ| αk Γ(βk + 1) e ixξ dξ = I 1 + I 2 .
Therefore:

|I 1 (x)| ˆ|ξ|≤|x| -1 |ξ| -s dξ ∼ |x| s-1 , |I 2 (x)| ˆ|ξ|>|x| -1 1 x d dξ |ξ| -s χ {|ξ| σ ≤M } ∞ k=0 i -βk |ξ| αk Γ(βk + 1) e ixξ dξ ≤ 1 |x| ˆ|ξ|>|x| -1 d dξ |ξ| -s χ {|ξ| σ ≤M } ∞ k=0 i -βk |ξ| αk Γ(βk + 1) dξ |x| s-1 .
The last inequality follows from the fact that the series is absolutely convergent in any compact interval in ξ, as well as its derivatives, and so the leading behaviour comes from d dξ |ξ| -s ∼ |ξ| -s-1 which integrates to around |x| s . One may prove the following using similar ideas.

Proposition 2.2.18. For p > 2 and S t as defined in (2.2.3), we have

S t f L p x L ∞ t |∇| s f L 2 x , where s = 1 2 -1 p (and for p = ∞ we have s = 1 2 ).
Now let us study what will constitute the nonlinear terms under the same norm.

Proposition 2.2.19. For p ≥ 4 and G(t, •) ∈ S(R) pointwise for each t ∈ [0, T ], we have ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) dt L p x L ∞ T |∇| σ-α+s G L 1 T L 2 x , where s = 1 2 -1 p . Proof. Let f t (x) := e it |∇| σ |∇| σ-α G(t , x
), then by applying Proposition 2.2.15 and the fact that the operator is unitary we have

ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) dt L p x L ∞ T ≤ ˆT 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) L p x L ∞ t ([0,T ]) dt = ˆT 0 e -it|∇| σ f t (x) L p x L ∞ t ([0,T ]) dt ˆT 0 |∇| s f t (x) L 2 x dt = ˆT 0 e -it |∇| σ |∇| σ-α+s G(t , x) L 2 x dt = ˆT 0 |∇| σ-α+s G(t , x) L 2 x dt .
Proposition 2.2.20. For p > 2 and St as defined in (2.2.4), we have

ˆt 0 St-t G(t , x) dt L p x L ∞ T |∇| σ-α+s G L 1 T L 2 x , for s = 1 2 -1 p . Proof. Note that |∇| -s-σ+α St = |∇| -s S t (x)
, and therefore we may use Proposition 2.2.18

for the operator

S t ˆt 0 |∇| -s-σ+α St-t G(t , x) dt L p x L ∞ T = ˆt 0 |∇| -s S t-t G(t , x) dt L p x L ∞ T ≤ ˆT 0 |∇| -s S t-t G(t , x) L p x L ∞ t ([t ,T ]) dt ˆT 0 G(t , x) L 2 x dt .
Remark 2.2.21. We can also prove the bound

ˆt 0 St-t G(t , x) dt L p x L ∞ T T β-1 2 |∇| s G L 2 T,x
.

The main idea is to write

|∇| -s S t (x) := ˆR |ξ| -s+σ-α χ {t|ξ| σ ≤M } e it|ξ| σ +ixξ dξ =t β-1 ˆR |ξ| -s χ {t|ξ| σ ≤M } (t 1-β |ξ| σ-α ) e it|ξ| σ +ixξ dξ,
and then we treat the piece in parentheses as a bounded function and proceed as with the proof for Ũt below. The difference is that this second proof only works for finite T , whereas the one for Proposition 2.2.20 works for T = ∞ as well.

Proposition 2.2.22. For p > 2 and Tt as defined in (2.2.4), we have

ˆt 0 Tt-t G(t , x) dt L p x L ∞ T |∇| σ-α+s G L 1 T L 2 x , for s = 1 2 -1 p . Moreover , ˆt 0 Tt-t G(t , x) dt L p x L ∞ T T β-1 2 |∇| s G L 2 T,x
.

Proof. Both proofs are analogous to those of Proposition 2.2.20.

Proposition 2.2.23. For p > 2 and Ũt as defined in (2.2.4), we have

ˆt 0 Ũt-t G(t , x) dt L p x L ∞ T T β-1 2 |∇| s G L 2 T,x , for s = 1 2 -1 p .
Proof. In this case we need to be slightly more careful. Based on the definition of Ũt in (2.2.4) we let

|∇| -s U t (x) := ˆR t β-1 |ξ| -s χ {t|ξ| σ ≤M } ∞ k=0 t βk i -βk |ξ| αk Γ(βk + β) e ixξ dξ,
where σ = α β . As with |∇| -s U t , one proves that |∇| -s U t (x) s t β-1 |x| s-1 , where the implicit constant is independent of time. Then

sup t∈[0,T ] ˆt 0 |∇| -s U t-t * G t dt ≤ sup t∈[0,T ] ˆt 0 ||∇| -s U t-t | * |G t | dt sup t∈[0,T ] ˆt 0 |t -t | β-1 |x| s-1 * |G t (x)| dt = |x| s-1 * sup t∈[0,T ] ˆt 0 |t -t | β-1 |G t (x)| dt ≤ |x| s-1 * sup t∈[0,T ] ˆt 0 |t -t | 2(β-1) dt 1 2 G(t , x) L 2 t ([0,t]) = |x| s-1 * T β-1 2 G(t , x) L 2 T ,
and we finish by using the Hardy-Littlewood-Sobolev inequality. We sum up these results in the following:

Theorem 2.2.24. Suppose 4 ≤ p < ∞ and s = 1 2 -1 p , and α > σ+1 2 . Then

e -it|∇| σ f L p x L ∞ T |∇| s f L 2 x , S t f L p x L ∞ t |∇| s f L 2 x , T t f L p x L ∞ t |∇| s f L 2 x , U t f L p x L ∞ t |∇| s f L 2 x . Moreover, ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) dt L p x L ∞ T |∇| σ-α+s G L 1 T L 2 x , ˆt 0 St-t G(t , x) dt L p x L ∞ T |∇| σ-α+s G L 1 T L 2 x , ˆt 0 Tt-t G(t , x) dt L p x L ∞ T |∇| σ-α+s G L 1 T L 2 x , ˆt 0 Ũt-t G(t , x) dt L p x L ∞ T T β-1 2 |∇| s G L 2 T,x
.

The norm non-homogeneous version of this theorem follows from the estimate

|∇| s f L 2 x ≤ ∇ s f L 2 x
for s ≥ 0.

Additional estimates using interpolation.

In this subsection, we interpolate our estimates between L ∞

x L 2 T and L

2(p-1) x

L ∞ T in order to obtain estimates in the space L

4(p-1) x L 4
T . The motivation is to give a possible pathway to generalize some of these results for power-type nonlinearities where p is not odd. There is still a technical obstruction that we will highlight during the proof which must be overcome. These type of estimates could also be useful to handle other nonlinearities that are not of power-type.

We will follow an approach similar to that of [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. Because we use norms with integration in time before integration in space, interpolation theory in these spaces is more subtle than that of usual L p spaces. Therefore, we compile a list of necessary results from abstract interpolation theory. Proposition 2.2.25 (See [START_REF] Blasco | Interpolation between H 1 B 0 and L p B 1[END_REF]). Suppose that B 0 and B 1 are Banach spaces such that B 0 ∩B 1 is dense in both B 0 and B 1 , and

B * 0 ∩ B * 1 is dense in both B * 0 and B * 1 . Then [BMO(B 0 ), L p (B 1 )] θ = L q ([B 0 , B 1 ] θ )
where p ∈ (1, ∞) and 1 q = θ p .

This result implies the following Corollary 2.2.26. Let p, q ∈ (1, ∞) and

1 r = 1 -θ p , 1 = 1 -θ q + θ 2 . Then [BMO x (L 2 t ), L p x L q t ] θ = L r x L t .
Note however that this result does not cover the case q = ∞, which is precisely what we need. To obtain this edge case one must use two results. The first one is Lemma 2.2.27 (See [START_REF] Bergh | Grundlehren der mathematischen Wissenschaften[END_REF]). For

1 r = θ p + 1 -θ m , 1 s = θ q ,
we have

[L p x L q t , L m x L ∞ t ] θ = L r x L s t .
The second result is Wolff's reiteration theorem:

Proposition 2.2.28 (See [71]). Let A 1 , A 2 , A 3 , A 4 be Banach spaces such that A 1 ∩ A 2 is dense in A 2 and A 3 . Let θ 1 , θ 2 ∈ (0, 1) such that [A 2 , A 4 ] θ 1 = A 3 and [A 1 , A 3 ] θ 2 = A 2 . Then [A 1 , A 4 ] η = A 2 where η = θ 1 θ 2 1 -θ 2 + θ 2 2 .
Using this results, Kenig, Ponce and Vega showed Proposition 2.2.29 (Corollary 3.10 in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]). Let 1 < p < ∞, then

[BMO x (L 2 t ), L p x L ∞ t ] θ = L r x L t , where 1 r = θ p , 1 = 1 -θ 2 .
Given that our previous results involve the space L ∞ x L 2 t as opposed to BMO x (L 2 t ), we need a result that connects these two spaces. This is a consequence of Theorem 1.3.d in [START_REF] Rubio De Francia | Calderon-Zygmund theory for operatorvalued kernels[END_REF].

Lemma 2.2.30. For ω ∈ R and any function f ∈ L ∞ x L 2 t we have |∇| iω f BMOx(L 2 t ) ≤ C ω f L ∞ x L 2 t .
Proof.

We want to use Theorem 1.3.d in [START_REF] Rubio De Francia | Calderon-Zygmund theory for operatorvalued kernels[END_REF]. This result applies to general singular operators T mapping A-valued functions to B-valued functions, where A and B are Banach spaces. A singular operator must satisfy a few conditions:

(1) T must be a bounded operator from L q (A) to L q (B) for some 1 ≤ q ≤ ∞.

(2) There must exist a kernel K such that T f (x) = ˆK(x -y)f (y) dy for all f ∈ L q (A) with compact support and for a.e. x / ∈ supp(f ).

(3) The kernel K must satisfy the Hörmander condition:

(2.2.18)

ˆ|x|>2|y| K(x -y) -K(x) dx ≤ C(K) < ∞.
In our case, A = B = L 2 t and T = |∇| iω . For completeness, we check these conditions:

(1) This holds for q = 2, as we can interchange

L 2 x L 2 t = L 2 t L 2
x and use the fact that |∇| iω is unitary in L 2

x to obtain an operator norm that is uniform in ω.

(2) In our case the kernel is

K(x) = ˆR e ix ξ |ξ| iω dξ.
We only need K to be well-defined away from x = 0. One can check that |ξ| iω is actually a homogeneous distribution of order iω, and thus K is also a homogeneous distribution. In fact

(2.2.19) K(x) ∼ |x| -1-iω Γ(1 + iω) sinh( π 2 ω)
and there is no delta function as long as ω = 0. (3) We check that K does indeed satisfy (2.2.18) directly:

ˆ|x|>2|y| |K(x -y) -K(x)| dx ∼ ˆ|x|>2|y| ˆ1 0 |x -ty| -2-iω |y| dt dx ≤ 2 ˆ∞ 2 ˆ1 0 |r -t| -2-iω dt dr ˆ1 0 ˆ∞ 2 |r -t| -2 dr dt ˆ1 0 |2 -t| -1 dt < ∞,
uniformly in y.

Remark 2.2.31. The constant C ω only depends only on C(K) in (2.2.18) and the norm of the operator T from L q (A) to L q (B). In our case, the latter is uniform in ω and we simply need to check that C(K) in the Hörmander condition, (2.2.18), grows at most polynomially in |ω|. This boils down to controlling the constant in (2.2.19). Using the fact that

Γ(1 + iω) = πω sinh(πω) 1 + ω 2 ,
it turns out the sinh growth in (2.2. [START_REF]Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]) is balanced and in the end

C(K) (1 + |ω|) 3/2 .
In fact the only feature of C ω that truly matters is that it grows more slowly than a double exponential.

With these results in mind, we can finally prove the following result.

Proposition 2.2.32.

Let γ = σ-1 2 , s = 1 2 -1 2(p-1)
and p ≥ 3. Then we have:

e -it|∇| σ f L 4(p-1) x L 4 t |∇| s-γ 2 f L 2 x .
Proof. For z ∈ C with Re(z) ∈ [0, 1], define the operator

T z f := |∇| γz-(1-z)s e -it|∇| σ f.
Consider the case z = iω for ω ∈ R, then

T iω f = |∇| -s |∇| iω(γ+s) e -it|∇| σ f.
One can check that a similar proof to that of Proposition 2.2.15 works for the operator |∇| iω(γ+s) e -it|∇| σ , and it yields

T iω f L 2(p-1)
x

L ∞ t (1 + |ω|) N f L 2 x
for some natural number N high enough, independent of ω.

Next consider the case z = 1 + iω for ω ∈ R. Then

T 1+iω f = |∇| γ |∇| iω(γ+s) e -it|∇| σ f.
Then one can check the proof of Proposition 2.2.1 and see that it can be extended to the operator |∇| iω(γ+s) e -it|∇| σ without barely any changes. This, together with Lemma 2.2.30 yields:

T 1+iω f BMOxL 2 t (1 + |ω|) N T 1+iω f L ∞ x L 2 t (1 + |ω|) N f L 2 x .
Finally, the Stein interpolation theorem yields the desired result (see for instance Theorem 1.22 in [START_REF] Duoandikoetxea | Fourier Analysis[END_REF]).

Similar arguments allow us to interpolate between the smoothing effect and maximal function estimates for the other operators S t , T t and U t , as well as estimates for Duhamel terms such as ˆt 0 e -i(t-t )|∇| σ G(t , x) dt .

These arguments are by now standard, see [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] for many such examples. Thus interpolation between Theorem 2.2.10 and Theorem 2.2.24 yields:

Theorem 2.2.33. Let γ = σ-1 2 , s = 1 2 -1 2(p-1) , 0 ≤ γ < γ, γ = α -σ+1 2 , 0 ≤ γ < γ and p ≥ 3. Then we have e -it|∇| σ f L 4(p-1) x L 4 T |∇| s-γ 2 f L 2 x , S t f L 4(p-1) x L 4 T T γ-γ 2σ |∇| s-γ 2 f L 2 x , T t f L 4(p-1) x L 4 T T γ-γ 2σ |∇| s-γ 2 f L 2 x , U t f L 4(p-1) x L 4 T T γ-γ 2σ |∇| s-γ 2 f L 2 x . Moreover, ˆt 0 |∇| σ-α e -i(t-t )|∇| σ G(t , x) dt L 4(p-1) x L 4 T |∇| σ-α+s-γ 2 G L 1 T L 2 x , ˆt 0 St-t G(t , x) dt L 4(p-1) x L 4 T T γ-γ 2σ |∇| σ-α+s-γ 2 G L 1 T L 2 x , ˆt 0 Tt-t G(t , x) dt L 4(p-1) x L 4 T T γ-γ 2σ |∇| σ-α+s-γ 2 G L 1 T L 2 x , ˆt 0 Ũt-t G(t , x) dt L 4(p-1) x L 4 T T β 2 + γ-γ 2σ |∇| s-γ 2 G L 2 T,x . 2.3. Proof of Theorem 2.1.2
In order to simplify our exposition, we will consider a special case of the initial value problem (2.1.1). Namely, consider a cubic nonlinearity p = 3, and the following specific values for the parameters

α = 7 4 , β = 7 8 , σ = 2, γ = 1 2 , γ = 1 4 ,
which clearly satisfy the conditions in (2.1.13).

Based on the integral equation (2.1.5), we define the following operator

Φ(v) := ˆR f (ξ) E β (|ξ| α t β i -β )e ix•ξ dξ (2.3.1) + i -β ˆt 0 ˆR g(τ, ξ) (t -τ ) β-1 E β,β (i -β (t -τ ) β |ξ| α ) e ix•ξ dξdτ, where g(τ, ξ) = ˆR |v(τ, x)| 2 v(τ, x)e -ix•ξ dx .
We remind the reader of the notation a-to denote the number a -ε for 0 < ε 1 small enough. Similarly, we denote by a+ the number a + ε for 0 < ε 1 small enough. Now we define the norms

η 1 (v) = ∇ 3 4 -v L ∞ x L 2 T , η 2 (v) = ∇ 1 4 v L ∞ T L 2 x , η 3 (v) = v L 4 x L ∞ T , η 4 (v) = ∇ 1 4 v L 8 x L 4 T ,
and let Λ T := max j=1,2,3,4 η j . Then consider the space

X T := {v ∈ C([0, T ], H 1 4 (R)) | Λ T (v) < ∞}.
Our goal is to show that for small enough T , there exists a ball B R ⊂ X T such that Φ : B R -→ B R is a contraction, and then apply the contraction mapping theorem. Before we do that, we prove a useful lemma.

Lemma 2.3.1. For j = 1, 2, 3, 4 the following inequality holds

η j (Φ(v)) η j (e -it|∇| σ f ) + η j (S t f ) + η j (T † t f ) + η j (U t f ) + η j ˆt 0 |∇| σ-α e -i(t-t )|∇| σ g(t , •) dt + η j ˆt 0 St-t g(t , •) dt + η j ˆt 0 T † t-t g(t , •) dt + η j ˆt 0 Ũt-t g(t , •) dt .
where T † t and T † t satisfy the same estimates as T t and Tt , respectively.

Proof. Let u be the linear part of Φ(v), and remember that χ := χ {t|ξ| σ ≤M } is a smooth function such that χ = 1 if t|ξ| σ ≤ M and χ = 0 if t|ξ| σ > 2M . Let P χ u = χ u. Then we have

u = P χ u + P 1-χ u = U t f + P 1-χ u = U t f + e -it|∇| σ f -P χ e -it|∇| σ f + P 1-χ u -P 1-χ e -it|∇| σ f = U t f + e -it|∇| σ f -S t f + P 1-χ u -e -it|∇| σ f .
Now by (2.1.4), the Fourier multiplier corresponding to P 1-χ u -e -it|∇| σ f may be controlled as follows for large enough M

(1 -χ(t, ξ)) E β (|ξ| α t β i -β ) -e -it|ξ| σ (1 -χ(t, ξ)) 1 t β |ξ| α .
As a result, one can check that P 1-χ u -e -it|∇| σ f satisfies the same estimates as T t , since in every proof involving T t the absolute value was taken at some stage. The idea for the nonlinear part of Φ(v) is similar.

Let us start by taking the first norm of (2.3.1). We will use a combination of Lemma 2.3.1 and Theorem 2.2.11 to control the two terms that form Φ(v). Let us remind the reader of the estimates proved in Theorem 2.2.11 for the particular case of our parameters.

∇ 1 2 e -it|∇| 2 f L ∞ x L 2 T (1 + T 1 2 ) f L 2 x , ∇ 1 2 -S t f L ∞ x L 2 T T 0+ (1 + T 1 2 ) f L 2 x , ∇ 1 2 -T t f L ∞ x L 2 T T 0+ (1 + T 1 2 ) f L 2 x , ∇ 1 2 -U t f L ∞ x L 2 T T 0+ (1 + T 1 2 ) f L 2 x , ∇ 1 4 ˆt 0 |∇| 1 4 e -i(t-t )|∇| 2 G(t , x)dt L ∞ x L 2 T (1 + T 1 2 ) G L 1 T L 2 x , ∇ 1 4 - ˆt 0 St-t G(t , x)dt L ∞ x L 2 T (T 0+ + T 1 2 ) G L 1 T L 2 x , ∇ 1 4 - ˆt 0 Tt-t G(t , x)dt L ∞ x L 2 T T 0+ G L 1 T L 2 x , ∇ 1 4 - ˆt 0 Ũt-t G(t , x)dt L ∞ x L 2 T (T 0+ + T 1 2 ) G L 1 T L 2
x .

These estimates above, together with Lemma 2.3.1 allow us to control (2.3.1) in terms of η 1 as follows:

η 1 (Φ(v)) (1 + T 1 2 ) (1 + T 0+ ) ∇ 1 4 f L 2 x (2.3.2) + (1 + T 0+ + T 1 2 ) ∇ 1 2 (|v| 2 v) L 1 T L 2 x .
Note the gain in derivatives in this norm, almost 

η 2 (Φ(v)) ∇ 1 4 f L 2 x + T 3 8 (1 + T 1 8 ) ∇ 1 2 (|v| 2 v) L 2 T,x .
Note that in this case we clearly lose 1 4 derivatives in the nonlinear part. We take the third norm, which we control thanks to Theorem 2.2.24 and Lemma 2.3.1.

(2.3.4)

η 3 (Φ(v)) ∇ 1 4 f L 2 x + T 3 8 ∇ 1 2 (|v| 2 v) L 2 T,x
.

Let us highlight once again the loss of 1 4 derivatives in the linear part and 1 2 in the nonlinear part.

Finally, we take the last norm, which can be controlled thanks to Theorem 2.2.33 and Lemma 2.3.1.

η 4 (Φ(v)) (1 + T 1 2 ) (1 + T 0+ ) ∇ 0+ f L 2 x (2.3.5) + T 7/16 (1 + T 0+ + T 1 2 ) ∇ 3 8 + (|v| 2 v) L 2 T,x .
Note that 0+ here is really ε/2, as opposed to 0+ in (2.3.2) where it is ε. However, such details are not important to our analysis and thus we will not highlight them again.

We can simultaneously estimate (2.3.2)-(2.3.5) by controlling the quantity

∇ 1 2 (|v| 2 v) L 2 T,x
in terms of η 1 , η 2 , η 3 and η 4 . To this end, we use the following nonlinear estimate:

Lemma 2.3.2. Using the notation above, we have 

∇ 1 2 (|v| 2 v) L 2 T,x Λ(v)
Λ T (Φ(v)) f H 1/4 x + T 3 8 Λ T (v) 3 . Pick B R = {v ∈ X T | Λ T (v) < R} and R such that f H 1/4 x R 2 .
Then we have that Φ : B R -→ B R as long as T 3 8 R 3 R 2 , which happens for T small enough. We still must prove that Φ(v) is actually in C([0, T ], H 1 4 (R)), but we do that for the general case in Lemma 2.4.3, which can be found in Section 2.4 below. Now we prove that Φ is a contraction. By using the same ideas as in (2.3.2)-(2.3.5) together with T ≤ 1 we quickly find

Λ T (Φ(v) -Φ(u)) T 3 8 ∇ 1 2 (|v| 2 v -|u| 2 u) L 2 T,x .
In order to deal with this last term, we use the following estimate based on the fundamental theorem of calculus:

|v| 2 v -|u| 2 u L 2 T H 1/2 x ˆ1 0 |v + λ(u -v)| 2 (u -v) L 2 T H 1/2 x dλ.
Then a nonlinear estimate such as the one in Lemma 2.3.2 yields

Λ T (Φ(v) -Φ(u)) T 3 8 [Λ T (v) 2 + Λ T (u) 2 ] Λ T (v -u) T 3 8 R 2 Λ T (v -u),
so that by making T smaller (if necessary), we can arrange CT

3 8 R 2 < 1. Therefore Φ is a contraction on the ball B R = {v | Λ T (v) < R ∼ f H 1/4 x }.

General proof of Theorem 2.1.3

In this section, we provide the proof of Theorem 2.1.3 for general values of the parameters involved. As we did before, we define the following operator based on the integral equation given in (2.1.5),

Φ(v)(t, x) = ˆR e ix•ξ f (ξ) E β (|ξ| α t β i -β ) dξ (2.4.1) + i -β ˆt 0 ˆR g(τ, ξ) (t -τ ) β-1 E β,β (i -β (t -τ ) β |ξ| α ) e ix•ξ dξdτ, where g(τ, ξ) = ˆR |v(τ, x)| p-1 v(τ, x)e -ix•ξ dx. Now we define η 1 (v) = ∇ δ v L ∞ x L 2 T , η 2 (v) = ∇ s v L ∞ T L 2 x , η 3 (v) = v L 2(p-1) x L ∞ T , η 4 (v) = ∇ (s+σ-α)/2 v L 4(p-1) x L 4 T ,
for some s and some δ to be chosen later, and let Λ T := max j=1,2,3,4 η j . Then consider the space

X T := {v ∈ C ([0, T ], H s (R)) | Λ T (v) < ∞}.
Our goal is to show that for small enough T , there exists a ball B R ⊂ X T such that Φ : B R -→ B R is a contraction, and then apply the contraction mapping principle.

Let us start by taking the first norm of (2.4.1), where we will use Theorem 2.2.11 and Lemma 2.3.1.

η 1 (Φ(v)) (1 + T 1 2 ) (1 + T γ-γ σ ) ∇ δ-γ f L 2 x (2.4.2) + (1 + T γ-γ σ + T 1 2 ) ∇ δ-γ (|v| p-1 v) L 1 T L 2 x .
Now we look at the second norm of (2.3.1). Proposition 2.2.12, Proposition 2.2.13 and Proposition 2.2.14 combined with Lemma 2.3.1 yield

(2.4.3) η 2 (Φ(v)) ∇ s f L 2 x + T β-1 2 (1 + T 1-β ) ∇ s+σ-α (|v| p-1 v) L 2 T,x
.

In order to be able to eventually control the nonlinear part with η 1 , we require s + σ -α ≤ δ, as well as s ≥ δ -γ to control the linear part too. These two conditions on s, δ are perfectly compatible, and one may easily check that are equivalent to α > σ+1 2 as stated in the hypothesis of Theorem 2.1.3, see (2.1.13).

We take the third norm, which we control thanks to Theorem 2.2.24 and Lemma 2.3.1.

(2.4.4)

η 3 (Φ(v)) ∇ s f L 2 x + T β-1 2 ∇ s+σ-α (|v| p-1 v) L 2 T,x
.

Finally, we take the last norm and use Theorem 2.2.33 as well as Lemma 2.3.1,

η 4 (Φ(v)) (1 + T γ-γ 2σ ) ∇ s-γ 2 f L 2 x (2.4.5) + T β 2 (1 + T γ-γ σ + T 1 2 ) 1/2 ∇ s+σ-α-γ 2 (|v| p-1 v) L 2 T,x . (2.4.6)
Therefore, we can simultaneously estimate (2.4.2)-(2.4.5) by controlling the quantity

∇ s+σ-α (|v| p-1 v) L 2 T,x
in terms of η 1 , η 2 , η 3 and η 4 . That is the purpose of the following lemma.

Lemma 2.4.1. For an odd integer p ≥ 3, we have that

∇ s+σ-α (|v| p-1 v) L 2 T,x Λ(v) p .
Proof. First of all, let us write:

∇ s+σ-α (|v| p-1 v) = ( ∇ s+σ-α |v| p-1 ) v + |v| p-1 ( ∇ s+σ-α v) + ∇ s+σ-α (|v| p-1 v) -( ∇ s+σ-α |v| p-1 ) v -|v| p-1 ( ∇ s+σ-α v) = I + II + III.
We will show that each of these three terms are controlled by Λ T (v) p .

(1) First term. By the Holder inequality,

|v| p-1 ( ∇ s+σ-α v) L 2 T,x η 3 (v) p-1 η 1 (v)
as long as δ ≥ s + σ -α.

(2) Third term. To deal with this term, we use the Leibniz rule, Theorem A.5,

∇ s+σ-α (|v| p-1 v) -( ∇ s+σ-α |v| p-1 ) v -|v| p-1 ( ∇ s+σ-α v) L 2 T,x η 4 (v) ∇ (s+σ-α)/2 |v| p-1 L q x L 4 T where (2.4.7) 1 2 = 1 q + 1 4(p -1)
.

Now we may use the fractional chain rule, Theorem A.4, on the last term:

∇ (s+σ-α)/2 |v| p-1 L q x L 4 T |v| p-2 L 2(p-1) p-2 x L ∞ T ∇ (s+σ-α)/2 v L 4(p-1) x L 4 T = η 3 (v) p-2 η 4 (v), as long as (2.4.8) 1 4(p -1) + p -2 2(p -1) = 1 q .
One can check that (2.4.7) and (2.4.8) are compatible. (3) Second term. By the Holder inequality,

( ∇ s+σ-α |v| p-1 ) v L 2 T,x η 3 (v) ∇ s+σ-α |v| p-1 L q 1 x L 2 T , where q 1 = 2(p-1)
p-2 . Now we would use the fractional chain rule, except we can't because it does not cover the edge case we need. Therefore, we instead write |v| p-1 as a product of v and v, say

|v| p-1 = v P p-2 (v)
where P p-2 (v) is a product of p -2 factors of either v and v. Then

∇ s+σ-α |v| p-1 = ( ∇ s+σ-α v) P p-2 (v) + ( ∇ s+σ-α P p-2 (v)) v + ∇ s+σ-α |v| p-1 -( ∇ s+σ-α v) P p-2 (v) -( ∇ s+σ-α P p-2 (v)) v .
As before, we control the first term with the Holder inequality:

( ∇ s+σ-α v) P p-2 (v) L q 1 x L ∞ T η 1 (v) P p-2 (v) L q 1 x L ∞ T η 1 (v) η 3 (v) p-2 .
The last term (the error term) can be controlled as explained in the step before.

For the second term ( ∇ s+σ-α P p-2 (v)) v one uses the Holder inequality:

( ∇ s+σ-α P p-2 (v)) v L q x L 2 T η 3 (v) ∇ s+σ-α P p-2 (v) L q 2 x L 2 T .
This time, q 2 = 2(p-1) p-3 . Now the main idea is clear: write P p-2 (v) = v P p-3 (v) and use induction on p.

The last step, when we have P 2 (v) = v v has been dealt with in the previous step thanks to the norm η 4 .

Remark 2.4.2. As explained before, one critical step is to use induction and the Leibniz rule to control the term

( ∇ s+σ-α |v| p-1 ) v L 2 T,x
. Ideally, we would like to estimate this term using the fractional chain rule as follows:

(2.4.9)

( ∇ s+σ-α |v| p-1 L q 1 x L 2 T |v| p-2 L 2(p-1) p-2 x L ∞ T ∇ s+σ-α v L ∞ x L 2 T .
However, this edge case is not covered by Theorem A.4, where p 2 cannot be ∞. This is mainly a limitation coming from interpolation theory. That is why we instead iterate the Leibniz rule, which in turn requires that we work with odd p, so that the nonlinearity is a product of v and v. The key point is that the Leibniz rule allows us to distribute derivatives in the last step when P 2 (v) = v v, where the norm η 4 plays its role. In order to generalize this result for other p one needs to overcome this technical difficulty.

By assuming that T ≤ 1 and using Lemma 2.4.1, we may rewrite (2.4.2)-(2.4.5) as

Λ T (Φ(v)) f H s x + T β-1 2 Λ(v) p . Pick B R = {v ∈ X T | Λ T (v) < R} and R such that f H s x R 2 . Then we have that Φ : B R -→ B R as long as C T β-1 2 R p < R 2 ,
which happens for T small enough. We still must prove that Φ(v) is actually in C ([0, T ], H s (R)), but we do that in Lemma 2.4.3 below. Now we prove that Φ is a contraction. By using the same ideas as in (2.4.2)-(2.4.5) together with T ≤ 1 we quickly find

Λ T (Φ(v) -Φ(u)) T β-1 2 ∇ s+σ-α (|v| p-1 v -|u| p-1 u) L 2 T,x .
We then use the fundamental theorem of calculus to write

|v| p-1 v -|u| p-1 u L 2 T H s+σ-α x ≤ ˆ1 0 p|v + λ(u -v)| p-1 (u -v) dλ L 2 T H s+σ-α x ≤ p ˆ1 0 |v + λ(u -v)| p-1 (u -v) L 2 T H s+σ-α x dλ.
A similar argument to that in Lemma 2.4.1 then yields

Λ T (Φ(v) -Φ(u)) T β-1 2 R p-1 Λ T (v -u),
so that by making T smaller (if necessary), we can arrange

T β-1 2 R p-1 < 1. Therefore Φ is a contraction on the ball B R = {v | Λ T (v) < R ∼ f H s x } with s = 1 2 -1 2(p-1)
.

Finally, we give the proof that Φ(v) is continuous for completeness.

Lemma 2.4.3. Φ(v) ∈ C ([0, T ], H s (R)) whenever v ∈ X T .
Proof.

Let lin t v be the linear part of Φ(v). It is then easy to show that lin t v ∈ C ([0, T ], H s (R)). Firstly, we use the Plancherel theorem to write

lin t v H s x = | f | 2 ξ 2s |E β (i -β t β |ξ| α )| 2 1 2 L 1 ξ .
Then we use the Dominated convergence theorem, together with the fact that

| f | 2 ξ 2s |E β (i -β t β |ξ| α )| 2 M | f | 2 ξ 2s ∈ L 1 ξ
uniformly in t, and also the fact that

E β (i -β t β |ξ| α ) is continuous in t.
Therefore, we only need to prove that non t v, the nonlinear part of Φ(v), also lives in C ([0, T ], H s (R)). Suppose 0 ≤ t 2 < t 1 ≤ T , and consider

non t 1 v -non t 2 v 2 H s x = ˆR ˆt1 0 g(t 1 -τ, ξ) τ β-1 E β,β (i -β τ β |ξ| α ) dτ - ˆt2 0 g(t 2 -τ, ξ) τ β-1 E β,β (i -β τ β |ξ| α ) dτ 2 ξ 2s dξ = ˆR ˆt1 t 2 g(t 1 -τ, ξ) τ β-1 E β,β (i -β τ β |ξ| α ) dτ + ˆt2 0 [ g(t 1 -τ, ξ) -g(t 2 -τ, ξ)] τ β-1 E β,β (i -β τ β |ξ| α ) dτ 2 ξ 2s dξ I + II, where I = ˆR ˆt1 t 2 g(t 1 -τ, ξ) τ β-1 E β,β (i -β τ β |ξ| α ) dτ 2 ξ 2s dξ, II = ˆR ˆt2 0 [ g(t 1 -τ, ξ) -g(t 2 -τ, ξ)] τ β-1 E β,β (i -β τ β |ξ| α ) dτ 2 ξ 2s dξ.
We first focus on I. By Lemma 2.3.1, the multiplier τ β-1 E β,β (i -β τ β |ξ| α ) can be controlled by those associated to |∇| σ-α e -iτ |∇| σ , Tτ , Sτ and Ũτ , and so we should consider each case separately. We treat one as an example. As t 2 → t 1 , ˆR ˆt1

t 2 g(t 1 -τ, ξ) |ξ| σ-α e -iτ |ξ| σ dτ 2 ξ 2s dξ ≤ ˆR ˆt1 t 2 | g(t 1 -τ, ξ)| dτ 2 ξ 2(s+σ-α) dξ ≤ g(t 1 -•) 2 L 2 ([t 2 ,t 1 ],H s+σ-α x ) |t 1 -t 2 | ≤ ∇ s+σ-α g 2 L 2 T,x |t 1 -t 2 | → 0
where we used the Cauchy-Schwartz inequality and the fact that ∇ s+σ-α g L 2 T,x is finite as long as v ∈ X T , which was shown in Lemma 2.4.1. The other cases are treated analogously. Now we focus on II. By Lemma 2.3.1, one can control this quantity by the multipliers associated to |∇| σ-α e -iτ |∇| σ , Tτ , Sτ and Ũτ . Once again, we treat one case as an example:

ˆR ˆt2 0 [ g(t 1 -τ, ξ) -g(t 2 -τ, ξ)] |ξ| σ-α e -iτ |ξ| σ dτ 2 ξ 2s dξ ≤ ˆR ˆt2 0 g(t 1 -τ, ξ) -g(t 2 -τ, ξ) dτ 2 ξ 2(s+σ-α) dξ ≤ t 2 ˆR ˆt2 0 | g(t 1 -τ, ξ) -g(t 2 -τ, ξ)| 2 ξ 2(s+σ-α) dτ dξ = t 2 ˆR ˆT 0 χ {0≤τ ≤t 2 } | g(t 1 -t 2 + τ, ξ) -g(τ, ξ)| 2 ξ 2(s+σ-α) dτ dξ.
Now we take t 2 → t 1 and use the dominated convergence theorem, since

ξ 2(s+σ-α) ˆT 0 χ {0≤τ ≤t 2 } | g(t 1 -t 2 + τ, ξ) -g(τ, ξ)| 2 dτ ≤ 2 ξ 2(s+σ-α) ˆT 0 | g(τ, ξ)| 2 dτ ∈ L 1 ξ
independently of t 2 , as was shown in Lemma 2.4.1. Of course, we also need to show that

ˆT 0 χ {0≤τ ≤t 2 } | g(t 1 -t 2 + τ, ξ) -g(τ, ξ)| 2 dτ
is continuous on t 2 . But this follows from the translation continuity of L p norms, together with the fact that g(•, ξ) ∈ L 2 ([0, T ]) for a.e. ξ.

2.5. Ill-posedness 2.5.1. Setup. We consider the initial value problem:

(2.5.1)

i β ∂ β t u = (-∆ x ) α 2 u + µ|u | p-1 u , u | t=0 = f, with α > 0, β ∈ (0, 1), σ := α β , µ = ±1
, small and smooth initial data. From now on we will consider the case µ = 1, since both cases are handled similarly.

Note that the initial data-to-solution map from

H s (R) to C t ([0, T ], H s x (R)) of (2.1.1) will be C k if and only if the map that sends f ∈ H s (R) → (∂ k u ) =0 ∈ C t ([0, T ], H s x (R))
is continuous. More precisely, suppose that u admits an asymptotic expansion of type

u = u 1 + 2 u 2 + . . .
By plugging this into (2.5.1) and matching the coefficients of the powers of , we find that u 1 is simply the solution to the linear problem with initial datum f , i.e.

(2.5.2)

i β ∂ β t u 1 = (-∆ x ) α 2 u 1 u 1 | t=0 = f.
In the same way, u 2 = . . . = u p-1 = 0, since they solve:

i β ∂ β t u j = (-∆ x ) α 2 u j u j | t=0 = 0.
Finally u p will satisfy:

(2.5.3) i β ∂ β t u p = (-∆ x ) α 2 u p + |u 1 | p-1 u 1 , u p | t=0 = 0.
By the fractional Duhamel principle, and denoting the nonlinearity g(u) := |u| p-1 u as usual, we obtain that

u p (t) = i β ˆt 0 (t -s) β-1 E β,β ((t -s) β i -β | • | α ) g(u 1 )(s, •) ∨ ds.
Suppose that we have a solution u j for each of these IVPs we mentioned before (only j ∈ {1, p} are nonzero), which exists in some common time interval [0, T * ], for some small enough T * . Our goal is to show that the operator that maps f to u p is not continuous from

H s x to C([0, T * ], H s x ) for s < s c = 1 2 -α p-1
, however small T * is. We consider the following family of initial data:

f N (ζ) := N ε-s χ [N -1 N 2ε ,N ] (ζ) for some ε > -1
2 which will be specified later. Here χ A denotes the characteristic function on the set A. Note that the coefficient has been chosen so that

f N H s = 1 + O(N -1-2ε )
for large N .

2.5.2. Computations. Now we approximate u 1 , the solution of the linear problem (2.5.2). Recall that as t β |ζ| α → ∞, we have the asymptotics:

E β (t β i -β |ζ| α ) = 1 β e -it|ζ| σ + c t -β |ζ| -α + l.o.t,
where l.o.t denotes lower order terms with respect to the product t -β |ζ| -α , see (2.1.4). Note that we are working with ζ in the interval [N -1 N 2ε , N ], and therefore t -β |ζ| -α and t -β N -α are comparable. Proposition 2.5.1. Suppose that ε > σ-1 2 . Then the following approximation is valid for large t β N α :

(2.5.4) u 1 (t, x) = N ε-s e -itN σ 1 -e -ixN -2ε ix e ixN + l.o.t.
Proof. For large t β N α , we may use the asymptotics of E β to write:

u 1 (t, x) = ˆR E β (t β i -β |ζ| α ) f N (ζ)e ixζ dζ = N ε-s e -itN σ ˆζ∈[N-1 N 2ε ,N ] e -it(|ζ| σ -N σ ) e ixζ dζ + N ε-s ˆζ∈[N-1 N 2ε ,N ] t -β |ζ| -α e ixζ dζ + l.o.t.
By the binomial approximation and the Taylor series for the exponential, we have:

(2.5.5)

e -it(|ζ| σ -N σ ) = 1 + O(t N -2ε+σ-1 ).
At this stage, we add the condition σ-1 2 < ε for the error to be small (and decreasing with N ). Note that this allows the possibility of ε being negative if σ falls below 1.

Using this, one can show that ˆζ∈[N-1

N 2ε ,N ] e -it(|ζ| σ -N σ ) e ixζ dζ = e ixN 1 -e -ixN -2ε ix + l.o.t
Using the fact that |ζ| -α -N -α = O(N -α-1-2ε ), we obtain for the second integral:

N ε-s ˆζ∈[N-1 N 2ε ,N ] t -β |ζ| -α e ixζ dζ = N ε-s t -β N -α e ixN 1 -e -ixN -2ε ix + l.o.t,
Combining these two, we obtain (2.5.4).

We may now compute the nonlinearity (up to a constant). From now on, we use the notation x p := |x| p-1 x for simplicity.

g(u 1 )(t, x) = N p(ε-s) e -itN σ 1 -e -ixN -2ε ix p e ixN + l.o.t.
We also compute its Fourier transform:

(2.5.6)

g(u 1 )(t, ξ) = N p(ε-s) e -itN σ h p,N (ξ) + l.o.t.
where (2.5.7)

h p,N (ξ) := ˆR 1 -e -ixN -2ε ix p e ix(N -ξ) dx.
Remark 2.5.2. One example of a lower order term would be a term such as h p-1,N convolved with an error term from (2.5.4), e.g.

(2.5.8)

e -it(|ζ| σ -N σ ) -1 χ [N -1 N 2ε ,N ]
. However, we will soon see that as long as we carry our analysis in an interval slightly smaller than [N -1 N 2ε , N ], the contributions from these terms are indeed smaller than that of h p,N . Later in Proposition 2.5.4 we will show that h p,N has size N -2ε(p-1) , while other terms such as the convolution of h p-1,N and (2.5.8) have size N -2ε(p-2) • N -2ε t N σ-1-2ε , which is smaller thanks to the fact that t N σ-1-2ε

1 and σ-1 2 < ε.

Now we may approximate u p , the solution to (2.5.3), by the fractional Duhamel formula (see (2.1.5)). There are three important intervals when doing this:

J 1 = [0, CN -σ ], J 2 = [CN -σ , T -C|ξ| -σ ] and J 3 = [T -C|ξ| -σ , T ],
where C is some large constant so that the asymptotics we have mentioned are valid.

u p,N (T, ξ) = 3 j=1 ˆJj (T -t) β-1 E β,β ((T -t) β i -β |ξ| α ) g(u 1 )(t, ξ) dt (2.5.9) =: I + II + III,
where E β,β is the generalized Mittag-Leffler function given in (2.1.6).

The contributions of integrating over the intervals J 1 and J 3 will later be shown to produce lower order terms, and thus do not affect the leading term of these computations, which is given by the integration over J 2 . Note that the fact that J 2 is nonempty depends on (2.5.10)

T > C|ξ| -σ + CN -σ
for some large constant C. We will see later that our choice of ξ (proportional to N ) will allow T (and the lifespan of u p ) to be as small as needed despite this condition.

We are now ready to give a sketch of what the main argument will be. If the initial data-to-solution map were C p , we should have a bound of the type

f H s u p Ct([0,T * ],H s x (R)) ≥ u p (T ) H s x (R)
, valid for every initial data f and every T ≤ T * . When plugging in f N , we obtain (2.5.11)

1 • s u p,N (T ) L 2 ξ (R) ≥ • s u p,N (T ) L 2 ξ (I N )
, where I N is some interval of ξ that we may choose to optimize our results. One would like to take I N to be R, but the approximations we will develop for u p,N will not be valid nor relevant on such a large set.

We claim that the optimal choice is essentially the following:

(2.5.12)

I N := [N -N -2δ , N ]
for any δ = ε+. This choice will be justified in Proposition 2.5.4 and Proposition 2.5.5 below.

Note also that for ξ ∈ I N , condition (2.5.10) is satisfied for any lifespan T , no matter how small, as long as N ≥ N 0 (T ) ∼ T -1 σ . We now present the asymptotic behavior of u p,N given in (2.5.9). Proposition 2.5.3. For ξ ∈ I N and all N ≥ N 0 (T ) ∼ T -1 σ , the following approximation holds:

u p,N (T, ξ) = N p(ε-s) h p,N (ξ) e -iT |ξ| σ N σ-α T + l.o.t.
Proof. We divide the proof in several steps where we estimate the terms I, II and III in (2.5.9).

Step 1. We start by estimating II given by intergration over the interval J 2 defined in (2.5.9). For large (T -t)|ξ| σ , we may combine the asymptotics of E β,β in (2.1.7) with (2.5.6) to write:

II =N p(ε-s) h p,N (ξ) e -iT |ξ| σ |ξ| σ-α ˆJ2 e it(|ξ| σ -N σ ) dt + N p(ε-s) h p,N (ξ) ˆJ2 |ξ| -2α (T -t) -1-β e -itN σ dt + N p(ε-s) h p,N (ξ) ˆJ2 |ξ| σ-α e -i(T -t)|ξ| σ t -pβ N -pα dt + N p(ε-s) h p,N (ξ) ˆJ2 |ξ| -2α (T -t) -1-β t -pβ N -pα dt + l.o.t. =II 1 + II 2 + II 3 + II 4 + l.o.t.
We claim that the top order behavior is given by II 1 . Note that

|ξ| σ-α ˆJ2 e it(|ξ| σ -N σ ) dt =N σ-α ˆJ2 dt + N σ-α ˆJ2 O(tN -2δ+σ-1 ) dt (2.5.13) =N σ-α T + l.o.t. (2.5.14)
One can show that the integral in II 2 satisfies the following bound:

ˆJ2 c|ξ| -2α (T -t) -1-β e -itN σ dt ≤ |ξ| -α .
Using the fact that ξ ∼ N (since we are in I N ), it follows that II 2 is a lower order term with respect to II 1 . II 3 is controlled as follows:

ˆJ2 (|ξ| σ-α e -i(T -t)|ξ| σ t -pβ N -pα dt |ξ| σ-α N -pα T 1-pβ -|ξ| -σ+pα ,
For ξ ∈ I N and fixed T , this is a lower order term with respect to II 1 . II 4 is handled in the same way.

Step 2. Now we show that the contribution of III is negligible. In J 3 , the asymptotic formula for E β,β is not valid anymore, but we still have the following representation thanks to (2.5.6):

III = h p,N (ξ) ˆJ3 (T -t) β-1 E β,β ((T -t) β i -β |ξ| α ) N p(ε-s) e -itN σ dt + l.o.t.
Because we are in J 3 , we have that (T -t) β |ξ| α is bounded above by a constant. Since the function E β,β is continuous, it is also bounded in such an interval and therefore we have the estimate:

|III| |h p,N (ξ)| ˆJ3 (T -t) β-1 N p(ε-s) dt |h p,N (ξ)| N p(ε-s) ˆC|ξ| -σ 0 t β-1 dt |h p,N (ξ)| N p(ε-s) |ξ| -α .
Then since ξ ∈ I N , the term |ξ| -α has order N -α , making the contribution of III smaller than that of II.

Step 3. We finally deal with the contribution of I. In J 1 the asymptotics for E β are not valid and thus the formula we had for g(u 1 ), namely (2.5.6), will not work. However, we can compute these elements again:

u 1 (t, x) = ˆR E β (t β i -β |ζ| α ) f N (ζ)e ixζ dζ = N ε-s E β (t β i -β N α ) ˆζ∈[N-1 N 2ε ,N ] e ixζ dζ + l.o.t. = N ε-s E β (t β i -β N α ) e ixN 1 -e ixN -2ε ix + l.o.t.
after using the Taylor expansion

E β (t β i -β |ζ| α ) = E β (t β i -β N α ) + O(t β N -2ε+α-1
) together with the fact that t β N -α in J 1 .

As before, one may show that

g(u 1 )(t, x) = N p(ε-s) E β (t β i -β N α ) p e ixN 1 -e ixN -2ε ix p + l.o.t.
Remember that E β (t β i -β N α ) is bounded in J 1 , and so it does not increase the order of the error. Finally,

g(u 1 )(t, ξ) = N p(ε-s) E β (t β i -β N α ) p h p,N (ξ) + l.o.t.
All in all,

I = N p(ε-s) h p,N (ξ) ˆJ1 (T -t) β-1 E β,β ((T -t) β i -β |ξ| α ) E β (t β i -β N α ) p dt + l.o.t.
Combining (2.1.7) with the fact that E β (t β i -β N α ) is bounded, and recalling that ξ ∈ I N , we obtain:

|I| N p(ε-s) |h p,N (ξ)| ˆCN -σ 0 |ξ| σ-α dt = N p(ε-s) |h p,N (ξ)| N σ-α t CN -σ 0 = N p(ε-s) |h p,N (ξ)| N -α .
Once again, this is of lower order than the contribution of II.

2.5.3. The function h p,N . Our goal now is to understand the behavior of h p,N (ξ) with respect to N , which will motivate our choice of interval I N in (2.5.12). Proposition 2.5.4. Suppose that p > 1 and δ = ε+, and ξ ∈ I N . Then

(2.5.15) h p,N (ξ) = c p N 2ε(1-p) + o(N 2ε(1-p) ),
uniformly in ξ ∈ I N .

Proof. After a change of variables:

h p,N (ξ) = ˆR 1 -e ixN -2ε ix p e ix(N -ξ) dx = N 2ε(1-p) ˆR 1 -e ix ix p e ixN 2ε (N -ξ) dx.
Remember that e ixN 2ε (N -ξ) = 1 + O(xN 2(ε-δ) ) as long as x is small enough. We divide the integral into two pieces to exploit this fact. The first piece is estimated as follows:

ˆ|x|<N δ-ε 1 -e ix ix p e ixN 2ε (N -ξ) dx = ˆ|x|<N δ-ε 1 -e ix ix p dx + ˆ|x|<N δ-ε 1 -e ix ix p O(xN 2ε-2δ ) dx = ˆR 1 -e ix ix p dx - ˆ∞ N δ-ε O(|x| -p ) dx + O(N ε-δ ) ˆ|x|<N δ-ε 1 -e ix ix p dx = c p + O(N (δ-ε)(1-p) ) + O(N ε-δ ).
The second piece gives:

ˆ|x|>N δ-ε 1 -e ix ix p e ixN 2ε (N -ξ) dx = ˆ|x|>N δ-ε O(|x| -p ) dx = O(N (δ-ε)(1-p) ),
which concludes the proof. Finally, we show that I N defined in (2.5.12) is indeed the best choice of interval for the purpose of maximizing h p,N with respect to N . Proposition 2.5.5. Let p > 1 be an odd integer. Outside an interval comparable (in width and center) to [N -N -2ε , N ], the function h p,N (ξ) will display an exponential decay in N . This means that our choice of interval I N = [N -N -2δ , N ] for δ = ε+ is essentially optimal.

Proof. Define the function:

(2.5. [START_REF] Dickinson | Approximative Riemann-sums for improper integrals[END_REF])

F (λ) := ˆR 1 -e -ix ix p e ixλ dx.
The change of variables x → -x shows that F (λ) = F (1 -λ). Suppose for now that λ / ∈ [0, 1], then the fact that F is symmetric around 1 2 implies we can assume that λ < 0 without loss of generality. Now consider the extension of the integrand to the complex plane:

(2.5.17)

H(z) := 1 -e -iz iz p e izλ .
We can choose a rectangular shape that goes from -R to R, then from R to R -i, then R -i to -R -i and finally from -R -i to -R. We will label each of the sides of this rectangle L 1 , . . . , L 4 respectively. Then by the Cauchy integral theorem:

F (λ) = lim R→∞ ˆL1 H(z) dz = -lim R→∞ 4 j=2 ˆLj H(z) dz,
assuming that these limits exist, as we will show soon. It is easy to check that as R → ∞, the integrals over L 2 and L 4 vanish. As R → ∞, the integral over L 3 will yield a term bounded by the following:

e λ ˆ∞ -∞ |ix + 1| -p dx = c p e λ .
Remember we are working under the assumption that λ = λ(N, ξ) = N 2ε (N -ξ) < 0. Suppose that we consider ξ ∈ [a(N ), b(N )]. For a fixed ξ in such an interval, unless ξ = N + O(N -2ε ), the limit lim N →∞ λ(N, ξ) will be -∞, which will produce exponential decay. Consequently, the only ξ that matter are those that satisfy ξ = N + O(N -2ε ). In particular, a(N ) and b(N ) admit such a representation. Since a(N ) ≥ N , the best we can do to maximize the interval is to take a(N ) = N . Then by the above, b(N ) = N +cN -2ε +o(N -2ε ) for some positive c.

Thus this interval is essentially comparable to I N in (2.5.12), and it is produced by taking only those λ near zero. Using the symmetry of F one can do the same for λ near 1, and get a similar interval, which again does not improve the result.

Finally, we also assumed that λ / ∈ [0, 1] when we carried out this argument. That means that the only way in which we could potentially improve our interval is by including these numbers. However, these correspond to those ξ satisfying

0 < N 2ε (N -ξ) < 1 ⇔ N -N -2ε < ξ < N.
Once again, these produce intervals for ξ comparable to those we have already considered. Remark 2.5.6. Note that the choice of I N is not only optimal for h p,N , as proved by Proposition 2.5.5, but it is also optimal for the asymptotic lower bound on the H s -norm of u p,N . Indeed, note that the Taylor approximations we have used in Proposition 2.5.3 would be useless unless ξ = N + o(N ) (see for instance (2.5.13)). Therefore, ξ depends polynomially on N in our approach. By carefully checking the proof of Proposition 2.5.3, we can see that all the lower order terms grow at most polynomially in ξ and N , and thus polynomially in N . By Proposition 2.5.5, the function h p,N will decay exponentially outside of I N , and so even when multiplied by any of these polynomial terms in N that appear in Proposition 2.5.3, it will not improve the asymptotic lower bound we have obtained there. By (2.5.11), if the initial data-to-solution map were C 3 it would follow that:

1 • s u 3,N (T ) L 2 ξ (I N )
, for any fixed T (as small as necessary).

By Proposition 2.5.3, we may estimate this by the leading order and disregard the lower order terms:

1

N s N 3(ε-s) h 3,N (ξ) e -iT |ξ| σ N σ-α T L 2 ξ (I N )
.

Using (2.5.15) and disregarding the lower order terms again, we obtain:

1 N 3(ε-s) N -4ε N s+σ-α T |I N | 1 2 = N 3(ε-s) N -4ε N s+σ-α T N -δ = T N -2s-ε+σ-α-δ .
This inequality is valid for any fixed T in the lifespan of the solution and any N > N 0 (T ) T -1 σ . If the exponent of N were positive, we would reach a contradiction by taking N → ∞. Therefore, we will have that the data-to-solution map is not C 3 whenever:

-2s -ε + σ -α -δ > 0 ⇔ -2s + σ -α > ε + δ.
Remember that we have the condition ε > σ-1 2 from the hypothesis of Proposition 2.5.1. Using this, together with δ = ε+ we obtain:

-2s + σ -α > σ -1 ⇔ 1 2 - α 2 = s c > s,
as we wanted to prove.

Main argument.

Unfortunately, the argument we used for the case p = 3 does not provide a sharp result in the case p > 3. For that reason, we introduce some scaling symmetry as a way to add an extra parameter that allows us to exploit the time variable.

Consider the rescaled initial data:

f λ,N (x) := λ -αβ p-1 f N (λ -β x),
The coefficient λ -αβ p-1 is given by rescaling the problem (2.5.1). This initial data satisfies:

f λ,N L 2 = λ -αβ p-1 + β 2 N -s , f λ,N Ḣs = λ -αβ p-1 +β( 1 2 -s) . (2.5.18) We note that u 1,λ (t, x) = λ -αβ p-1 u 1 (λ -α t, λ -β x)
solves the rescaled version of (2.5.2). This can in turn be used to find

u p,λ (t, x) = λ -αβ p-1 u p (λ -α t, λ -β x),
which solves the rescaled version of (2.5.3). We repeat the steps in (2.5.11) with these functions. If the initial-data-to-solution map were C p from H s (R) to C([0, T ], H s (R)), we would have:

(2.5.19) f λ,N H s u p,λ,N (T ) H s | • | s u p,λ,N (T, •) L 2 (I N,λ ) .
We set I N,λ = λ β I N so that we can use the knowledge we developed about u p,N on this interval. Then

| • | s u p,λ,N (T, •) L 2 (I N,λ ) = | • | s λ -αβ p-1 +β u p,N (λ -α T, λ β •) L 2 (I N,λ ) (2.5.20) = | • | s λ -αβ p-1 + β 2 -sβ u p,N (λ -α T, •) L 2 (λ -β I N,λ ) = λ -αβ p-1 + β 2 -sβ | • | s u p,N (λ -α T, •) L 2 (I N ) .
We also set λ := λ(N ) = N b for some power b ∈ R to be defined later. However, there are some conditions on what this exponent could be. First of all, (2.5.10) gave us a necessary condition for the interval J 2 to be nonempty that we now must rescale:

λ -α T N -σ , ⇔ T N bα-σ .
Therefore in order for the estimates that we previously developed to be valid for any small T , we require:

(2.5.21) σ > bα.

Similarly, the approximations we developed for u 1 , g(u 1 ), . . . depended on working with times that satisfied that O(tN -2ε-1+σ ) was a term of lower order than O(1). See for instance (2.5.5). This should hold in the whole interval J 2 , and in particular at the end of that interval J 2 after rescaling:

λ -α T N -2ε-1+σ = o(1), ⇔ N -αb-2ε-1+σ = o(1).
In other words, (2.5.22) σ -2ε -1 < αb.

Note that this condition replaces the requirement for ε to be greater than σ-1 2 that we had in Proposition 2.5.1 -in fact we expect that it will give us greater flexibility with the range of ε.

Remark 2.5.7. One might wonder whether (2.5.21) and (2.5.22) are the only conditions limiting the range of b. To find all such conditions one must go back to the approximations we developed for u 1 , g(u 1 ), . . . in Proposition 2.5.3. However, note that most errors in such approximations depend on the product of powers of t β and N α , which will be small thanks to (2.5.21). As an example, note that in the asymptotic expansion of E β in (2.1.4) there is a term in t -β |ξ| -α which, after integration over J 2 , produced terms similar to T 1-β N -α . When T was fixed, such terms were of lower order in N than the leading term. After scaling, T becomes λ -α T = N -αb T so these terms become T 1-β N -bα(1-β)-α . Instead, the leading term in (2.1.4) only contributes with N -bα T . Therefore, for the leading behavior to stay the same, we would need to add the condition:

-bα(1 -β) -α < -bα ⇔ bβ < 1,
which, as expected, agrees with (2.5.21).

Remark 2.5.8. In the previous computations, we are assuming that some H s norms are controlled by Ḣs norms, which is true for the functions we are considering regardless of s. For instance, in the case of f λ N , we have the following:

λ 2αβ p-1 f λ,N 2 
H s ∼ λ (1-2s)β f N Ḣs + λ (1-2s)β ˆ|ξ|<λ β | f N (ξ)| 2 (λ 2sβ -|ξ| 2s ) dξ = λ (1-2s)β + λ (1-2s)β ˆ|ξ|<λ β | f N (ξ)| 2 (λ 2sβ -|ξ| 2s ) dξ.
Note that for N large enough

ˆ|ξ|<λ β | f N (ξ)| 2 (λ 2sβ -|ξ| 2s ) dξ = 0,
thanks to the fact that the set over which the integration happens will be empty for large enough N , given ξ ∈ I N , λ = N b and (2.5.21). The same happens in the bound for u p,λ,N (T ) used in (2.5. [START_REF]Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]), since we are integrating over I N .

We are now ready to finish the proof of Theorem 2.1.4. Suppose that the initial datato-solution map were C p . Then (2.5.18), (2.5. [START_REF]Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]) and (2.5.20) would yield:

λ -αβ p-1 +β( 1 2 -s) = f λ,N Ḣs λ -αβ p-1 + β
As before, we set

I N := [N -N -2δ , N ] for δ = ε+.
Then the rescaled version of Proposition 2.5.3 gives:

1 N p(ε-s) h p,N (ξ) N s+σ-α λ -α T L 2 ξ (I N )
, after disregarding lower order terms. We now use (2.5.15), and disregard the lower order terms again to get a lower bound:

1 N p(ε-s) N 2ε(1-p) N s+σ-α λ -α T L 2 ξ (I N )
.

After integration,

1 N p(ε-s) N 2ε(1-p) N s+σ-α λ -α T |I N | 1 2 .
Setting λ := N b yields:

1 T N -αb+p(ε-s)+2ε(1-p)+s+σ-α-δ ,
for any small T and all N ≥ N 0 (T ) T 0-. If the exponent of N were positive we would reach a contradiction after taking N → ∞. Therefore, the data-to-solution map will not be C p whenever the following condition holds:

-αb + p(ε -s) + 2ε(1 -p) + s + σ -α -δ > 0.
After some computations, and using that δ = ε+ we obtain:

(2.5.23)

-αb + (1 -p)ε + σ -α > (p -1)s.
At this stage, we must choose ε and b that maximize the upper-bound subject to conditions (2.5.21) and (2.5.22). When p ≥ 3, the optimal choice is to take

b := 1 β -, and 
ε := σ -1 -αb 2 +,
which yields the range s c > s.

When p = 2, the quantity -αb + (1 -p)ε + σ -α in (2.5.23) can be made as large as we want under conditions (2.5.21) and (2.5.22), which shows that the initial data-to-solution map from H s (R) to C t ([0, T ], H s x (R)) will not be C 2 for any regularity s, no matter how large.

CHAPTER 3

Continuum limit for discrete NLS with memory effect In this chapter, we study how to rigorously derive an NLS-type equation with memory effect as the continuum limit of a family of discrete equations which exhibit long-range interactions and a memory effect. This discrete model is interesting because it improves the understanding of the physical properties of its continuum limit. Furthermore, it is also important for computational purposes, since it enables the implementation of a finite difference scheme on the lattice whose solution converges to the solution of the continuous problem.

We study a family of discrete equations whose continuum limit will be the solution of the equation we introduced in Chapter 1, i.e.

(3.1.1)

i β ∂ β t u = (-∆ x ) α 2 u ± |u| 2 u (t, x) ∈ (0, ∞) × R, u| t=0 = f ∈ H s (R),
where α ∈ (1, 2) and β ∈ (0, 1). Let us recall that (-∆ x ) α 2 denotes the fractional Laplacian, which is given by the Fourier multiplier |ξ| α , and ∂ β t denotes the Caputo derivative:

∂ β t u(t) = 1 Γ(1 -β) ˆt 0 ∂ τ u(τ ) (t -τ ) β dτ.
Note that α = 2 and β = 1 give the cubic nonlinear Schrödinger equation. A fractional α represents long-range interactions, while a fractional β accounts for a memory effect.

As a first step to discretize (3.1.1), let us consider the case β = 1. This problem was first studied by Kirkpatrick, Lenzmann and Staffilani in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]. In their paper, they consider a system of quantum particles positioned in a one-dimensional lattice hZ, for some small enough mesh-size 0 < h 1. Then they consider a discrete wave-function

u h : [0, T ]×hZ → C satisfying: (3.1.2) i∂ t u h (t, x m ) = h n =m J n-m [u h (t, x n ) -u h (t, x m )] ± |u h (t, x m )| 2 u h (t, x m ), u h | t=0 = f h .
for x m = hm ∈ hZ. The cubic nonlinearity represents a three-wave interaction, where a + sign corresponds to a repulsive on-site self-interaction, andcorresponds to the focusing case. The initial distribution f h is the discretization of some continuous function f : R → C, which is defined as follows:

(3.1.3)

f h (x m ) = 1 h ˆxm+1 xm f (x) dx for m ∈ Z.
The long-range interactions are modelled by the kernel {J n } n∈Z . An example of these interactions could be a law that is inversely proportional to some power of the distance between particles:

J m-n := |x m -x n | -1-α for m = n ∈ Z.
This power decay is precisely one of the models used in practice to study charge and energy transport in biomolecules, see [START_REF] Mingaleev | Models for energy and charge transport and storage in biomolecules[END_REF].

The main question is the following: what happens with the system as the distance between particles, h, goes to zero? In [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], the authors show that under mild technical conditions, what matters is the asymptotic behavior of these interactions. In other words, if

(3.1.4) lim n→∞ |x n | 1+α J n = C α > 0,
for α ∈ (1, 2), then the continuum limit of the solution to (3.1.2) (as h → 0) is the solution to the fractional cubic NLS equation:

(3.1.5) i ∂ t u = c (-∆) α 2 u ± |u| 2 u, u| t=0 = f.
It is interesting to mention that when α ≥ 2, the interactions decay so fast that only local effects matter in the continuum limit, so in those cases the continuum limit is the solution to the cubic NLS equation (but note that condition 3.1.4 must be slightly modified).

Unfortunately, there are some drawbacks to the methods used in this paper:

• The initial data must be in H α/2

x (R) for α > 1. This is due to the use of the Sobolev embedding

H 1/2+ x (R) → L ∞
x (R) to deal with the nonlinearity in the proof of local well-posedness of the discrete equation.

• Weak convergence of the discrete solution u

h to u in L ∞ t ([0, T ], H α/2
x (R)) by means of the Banach-Alaoglu theorem.

The first issue is a consequence of the bad behavior of Strichartz estimates on the lattice. As proved by Ignat and Zuazua in [START_REF] Ignat | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF], dispersion and local smoothing are not readily available on the lattice. The intuition behind this phenomenon is the following: in the continuous setting, the fractional Laplacian (-∆) α/2 corresponds to the Fourier multiplier |ξ| α . In the discrete setting, we try to approximate this multiplier on a large box [-π h , π h ] by a function w(h, ξ) (which depends on the kernel J above) as h goes to zero. These two functions have similar behavior near zero, but w(h, ξ) has critical points and points of inflection that are not present in |ξ| α . By taking pathological initial data whose support contains those critical points, one can create lattice resonance and show the lack of (uniformin-h) smoothing effect. See Section 3.2.2 for more information.

There are several ways around this issue. At the cost of losing derivatives, Strichartz estimates that are uniform in the mesh-size h can be proved on the lattice hZ, thus avoiding this pathological behavior. However, (3.1.1) already displays a loss of derivatives, so losing additional derivatives is far from ideal. In [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], the authors work in L 2

x -based spaces, and use the Sobolev embedding

H 1/2+ x (R) → L ∞
x (R) instead of Strichartz estimates to handle the cubic nonlinearity present in NLS. They do not face a loss of derivatives, but this strategy forces them to work in higher regularity than would be needed in the continuous setting. This argument is also very dependent on L 2

x -based spaces, which does not generalize well to spaces where Strichartz estimates can be used or to mixed L p x L q t spaces, which are common when working with a smoothing effect. Another way around the issue of weak dispersion in the discrete setting is filtering the initial data, as proposed in [START_REF] Ignat | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF]. Instead of considering initial data f h : hZ → C, we will consider its discretization f 2h : 2hZ → C, where we doubled the mesh-size. Then we will perform a discrete interpolation Π h f 2h as follows: at every "even" particle x 2m we keep the value f 2h (x 2m ), and at every "odd" particle x 2m+1 , we take the average of its neighbors:

(3.1.6) f 2h (x 2m ) + f 2h (x 2m+2 ) 2 .
Intuitively, this cancels some of the more oscillatory behavior of f h but keeps enough of its properties to not change the limit of the system. Most importantly, the smoothing effect does hold for filtered initial data.

The second issue mentioned before, concerning weak convergence to the limit, was addressed in a recent work of Hong and Yang [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF]. In this paper, the authors consider the difference between the linear interpolation of the solution to the discrete problem, p h u h , given by (3.1.2) and the solution to the continuous problem, u, given by (3.1.5). By carefully comparing linear and nonlinear terms of their respective initial value problems and using the Gronwall inequality, they manage to improve the results in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF] to strong convergence. In the process, they obtain a bound of the form:

sup t∈[0,T ] p h u h (t) -u(t) L 2 x ≤ C T, f H α/2 x (R) h α 2+α .
Recently, they managed to extend their results to the torus T d , see [START_REF] Hong | Finite difference scheme for two-dimensional periodic nonlinear Schrödinger equations[END_REF].

In this chapter, we generalize this approach to work in other spaces that are more appropriate in order to exploit the smoothing effect, such as L p x L q t . We combine these ideas with averaging of initial data to construct a discrete model for (3.1.1). A final bootstrap argument then yields strong convergence to the continuum limit.

Statement of results. Consider the following discrete problem

: (3.1.7) i β ∂ β t u h = (-∆ h ) α 2 u h ± Π h R h |u h | p-1 u h , (t, x) ∈ [0, T ] × hZ, u h | t=0 = Π h f 2h ,
where f 2h is the discretization of some continuous function f as defined in (3.1.3), the operator Π h is the discrete interpolator, as described in (3.1.6) and R h is the "restriction" operator that takes a function on the lattice hZ to a function on the lattice 2hZ, i.e.

R h f h (x) = f h (x) for x ∈ 2hZ.
We define the operator (-∆ h ) α 2 as follows:

(-∆ h ) α 2 u h (x m ) := h n =m u(t, x n ) -u(t, x m ) |x n -x m | 1+α .
This choice of operator is motivated by applications to biomolecules, see [START_REF] Mingaleev | Models for energy and charge transport and storage in biomolecules[END_REF]. However, note that it does not agree with the usual definition of (-∆ h ) α 2 using functional calculus, where one would take the α 2 power of the symbol associated to -∆ h . In any case, our general strategy of proof does apply to other operators, including the alternative definition of (-∆ h ) α 2 using functional calculus. Using the definition of the discrete L p h spaces given in Section 3.2.1, we present the following well-posedness result, which is analogous to its continuous counterpart: Theorem 2.1.3. 

2 > 1 α + 1 β , s ≥ 1 2 - 1 2(p -1)
, and

δ ∈ s + σ -α, σ 2 - 1 2(p -1)
,

where α ∈ (0, 2) and β ∈ (0, 1).Then for every f ∈ H s (R) there exists T = T ( f H s (R) ) > 0 (with T (ρ) → ∞ as ρ → 0) and a unique solution u h (t) to the integral equation associated to (3.1.7) satisfying

(3.1.9) u h ∈ C([0, T ], H s h ), (3.1.10) h -1 ∇ δ u h L ∞ h L 2 T < ∞, (3.1.11) u h L 2(p-1) h L ∞ T < ∞, and 
(3.1.12) h -1 ∇ (s+σ-α)/2 u h L 4(p-1) h L 4 T < ∞.
Moreover, for T < T , the map f → u h from H s (R) to the space defined by (3.1.9)-(3.1.12) (with T instead of T ) defined by solving the integral equation associated to (3.1.7) is locally Lipschitz.

Remark 3.1.2. As explained in the previous chapter, the condition 2 > 1 α + 1 β in (3.1.8) is necessary for the smoothing effect to overcome the loss of derivatives. Indeed, the smoothing effect allows us to gain σ-1 2 derivatives, while we have a loss of σ -α derivatives.

Remark 3.1.3. Note that the condition 2 > 1 α + 1 β together with β ∈ (0, 1) implies that α > 1 and β > 1 2 . Therefore we will consider only this range of parameters from now on.

Once we have a solution to the continuous problem u, given by Theorem 2.1.3, and a solution to the discrete problem u h , given by Theorem 3.1.1, we may consider the linear interpolation of u h . For x ∈ [x m , x m+1 ),

(3.1.13) p h u h (t, x) := u h (t, x m ) + u h (t, x m+1 ) -u h (t, x m ) h • (x -x m ).
In this way, both u and p h u h live in a common space C([0, T ], H s x (R)), and we may study the limit as h → 0. Theorem 3.1.4 (Continuum limit). Let α ∈ (1, 2), β ∈ ( 1 2 , 1) and σ = α β . Consider the fractional Schrödinger equation

i β ∂ β t u = (-∆) α 2 u ± |u| p-1 u, (t, x) ∈ [0, T ] × R, u| t=0 = f,
and the discrete model

i β ∂ β t u h = (-∆ h ) α 2 u h ± Π h R h |u h | p-1 u h , (t, x) ∈ [0, T ] × hZ, u| t=0 = Π h f 2h . Suppose that 2 > 1 α + 1 β , s = 1 2 - 1 2(p -1)
, s := max{s + σ -α+,

1 2 +} < 1,
and suppose that f ∈ H s (R). Then there exists a time T > 0 such that both the solution to the continuous problem, u, and the solution to the discrete problem, u h , exist, and

p h u h h→0 ----→ u strongly in L ∞ T H s x .
Remark 3.1.5. The condition s + σ -α < 1 is a byproduct of working with the linear interpolation p h u h , since the regularity of a piecewise linear function is limited. However, this could be removed by using a more sophisticated quadratic interpolation.

Remark 3.1.6. Let us give some intuition on the conditions for the parameters. Suppose that p = 3, so that s = 1 4 . Once we fix α, the range for β follows from the conditions:

2 > 1 α + 1 β , and s + σ -α < 1,
For example, if α = 3/2 we obtain the range β ∈ ( 3 4 , 1), and thus σ < 2 (the second condition forces σ < 9/4 which is weaker). As α decreases towards 1, the range for β is reduced to a small neighborhood of 1. In other words, more dispersion allows for more memory. Remark 3.1.7. We only consider the case α < 2 because the Fourier multiplier associated to the discrete Laplacian changes its behavior near zero as α passes the threshold α = 2. For α < 2 this multiplier behaves like |ξ| α as ξ → 0, while for α > 2 its leading behavior is |ξ| 2 as ξ → 0. Finally when α = 2, it behaves like -(log |ξ|) |ξ| 2 as ξ → 0. This is the threshold that determines whether long-range particle interactions give rise to local or nonlocal behavior in the continuum limit, like in the work of Kirkpatrick et al. [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]. We expect that most of the techniques in this work can be extended to the case α ≥ 2, but the leading order of many estimates would be different and thus we decided to focus on the case α < 2.

3.1.3. Outline. In section 2, we review some basic tools on the lattice and discuss the difficulties with dispersion and smoothing effect there. In section 3, we prove well-posedness of the discrete equation on the lattice uniformly in the mesh-size. This proof requires some modifications compared to its continuous counterparts given the difficulties discussed in the previous section. Finally, in section 4 we study the continuum limit and prove Theorem 3.1.4.

Finally, we compile a list of some symbols commonly used in this chapter:

• α: number of space derivatives, given by Laplacian (-∆) α 2 . • β: number of time derivatives, given by the Caputo derivative ∂ β t . • σ: ratio α/β. • p: degree of power-type nonlinearity.

The linear equation

Definitions on the lattice. Consider the space L 2

h := 2 (hZ) on the lattice, given by functions u h : hZ → C such that

m∈Z |u h (x m )| 2 < ∞,
where x m = mh for m ∈ Z. We define the inner product and norm

(u h , v h ) L 2 h := h m∈Z u h (x m ) v h (x m ), u h 2 L 2 h = (u h , u h ) L 2 h .
For a function u h : hZ → C in L 2 h , we define its Fourier transform, u h : [-π, π] → C, as follows:

u h (ξ) = m∈Z u h (x m ) e -iξm .
Note that we choose this version of the Fourier transform, as opposed to taking e -iξxm , so that the Fourier transform of u h is defined in [-π, π] regardless of h. With this definition, the Parseval identity yields

(u h , v h ) L 2 h = h ˆπ -π u h (ξ) v h (ξ) dξ,
and the following inversion formula holds:

u h (x m ) = 1 √ 2π ˆπ -π u h (ξ) e imξ dξ.
For a function u h : hZ → C in L 2 h , we define discrete fractional Laplacian on the lattice hZ as (3.2.1)

(-∆ h ) α/2 u h (x m ) = h n =m u h (x m ) -u h (x n ) |x m -x n | 1+α .
Note that the Fourier transform of (3.2.1) is

h -α m∈Z n =m u h (x m ) -u h (x n ) |m -n| 1+α e -iξm = h -α w(ξ) u h (ξ), where (3.2.2) w(ξ) = n =m 1 -e -iξ(m-n) |m -n| 1+α = 2 ∞ n=0 1 -cos ξn |n| 1+α ≥ 0.
Similarly, we define the H s h norm on the lattice as follows:

u h 2 H s h := h ˆπ -π (1 + h -2s |ξ| 2s ) | u h (ξ)| 2 dξ.
As explained in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], it is easy to show that this norm is equivalent to the one given by the inner product defined before:

u h L 2 h + (-∆ h ) s/2 u h L 2 h .
The normed space Ḣs h is defined analogously. For s = 1, we have one more useful equivalent norm for H 1 h , given by

u h L 2 h + D + h u h L 2 h , where D + h is a forward difference: (3.2.3) D + h u h (x m ) = u h (x m+1 ) -u h (x m ) h .
More generally, we define the space L p h (which agrees with p (hZ) with additional scaling) for 1 ≤ p < ∞ as the space of functions u h : hZ → C such that

u h L p h := h m∈Z |u h (x m )| p 1/p < ∞.
In the case p = ∞, we take the norm given by the supremum. Remark 3.2.1. In [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], a more general discretization of the Laplacian is considered. In particular, they define

L J h u h (x m ) := h n =m J n-m [u h (x m ) -u h (x n )] .
The coefficients {J n } |n|≥1 , which account for long-range particle interactions, must satisfy the following conditions:

• J 1 > 0,

• J n = J -n ≥ 0 for all |n| ≥ 1, and

• lim |n|→∞ |x n | 1+α J n = C α > 0.
As a consequence, w in (3.2.2) would also depend on {J n } |n|≥1 , but their results only depend on the asymptotic behavior of this sequence. Unfortunately, we cannot yet handle such a general situation, since we will need to exploit deeper properties of w, such as knowledge about the zeroes of w and w . This requires a more careful analysis that we can't yet carry out for a general kernel.

We define the discretization of a function f : R → C as follows:

(3.2.4)

f h (x m ) = 1 h ˆxm+1 xm f (x) dx, for x m ∈ hZ.
Then we have the following result: Proposition 3.2.2 (Lemma 3.6 in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]). Suppose that f ∈ H s (R) (resp. Ḣs (R)) for some 0 ≤ s ≤ 1. Then we have

f h H s h f H s (R) , f h Ḣs h f Ḣs (R) ,
where the implicit constants are independent of h.

The proof is an application of complex interpolation between s = 0 (straight-forward) and s = 1 (which is based on (3.2.3)).

Another important result is the discrete analog of the Sobolev embedding theorem:

Lemma 3.2.3 (Discrete Sobolev inequality, Lemma 3.1 in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]). For every

1 2 < s ≤ 1, there exists a constant C = C(s) > 0 independent of h > 0 such that u h L ∞ h ≤ C u h H s h for all u h ∈ H s h .
In the following lemma, we summarize some useful facts about the function w defined in (3.2.2). Some of these results follow from properties of the polylogarithm, but we give the proof for completeness. (1) There exist constants c 1 , c 2 > 0 such that

c 1 |ξ| α ≤ w(ξ) ≤ c 2 |ξ| α ξ ∈ [0, π].
(2) w is one-to-one on the interval [0, π].

(3) w is differentiable and w (ξ) = O(|ξ| α-1 ) as ξ → 0.

(4) w (ξ) > 0 for every ξ ∈ (0, π).

(5) w(ξ) = c|ξ| α + O(|ξ| 2 ) as ξ → 0.

(6) There exist some c 1 , c 2 > 0 such that

c 1 |ξ| α-1 (π -ξ) ≤ w (ξ) ≤ c 2 |ξ| α-1
for every ξ ∈ (0, π). (7) w is differentiable in (0, π], and w (ξ) = O(|ξ| α-2 ) as ξ → 0. (8) w (ξ) is monotone decreasing on (0, π) and has a simple zero at ξ 0 ∈ (0, π 2 ).

Remark 3.2.5. From now on, we will assume that we normalize w so that c = 1 in part (5).

Proof.

(1) See Appendix A in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF] or the proof for w in step (3) below, which is analogous.

(2) It follows from the previous step and part (4) below.

(3) It is easy to prove that

w (ξ) = 2 ∞ n=1 sin ξn n α .
Then we can write

w (ξ) ξ α-1 = 2 ∞ n=1 ξ (ξn) α sin ξn. Therefore, lim ξ→0 w (ξ) ξ α-1 = 2 ˆ∞ 0 sin y y α dy =: c α = π 2 Γ(α) sin απ 2 > 0.
This can be found in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]. See [START_REF] Dickinson | Approximative Riemann-sums for improper integrals[END_REF] for a careful proof ot the first equality. (4) Note that (3.2.5)

w (ξ) = Li α (e iξ ) -Li α (e -iξ ) 2i ,
where Li α (z) stands for the polylogarithm. This special function admits the following representation Li α (z) = 1 Γ(α) ˆ∞ 0 y α-1 e y /z -1 dy for z ∈ C (except when z is real and z ≥ 1). Using this, one can show that (3.2.6) w (ξ) = sin ξ Γ(α) ˆ∞ 0 y α-1 e y e 2y -2 cos ξ + 1 dy.

For a fixed ξ ∈ (0, π), sin ξ is positive and the integrand is always positive and integrable. One may even prove that w (ξ) = O(|ξ| α-1 ) as ξ → 0 from this formula. (5) For small ξ > 0, we divide the integration in (3.2.6) over three subintervals: [0, ξ],

[ξ, 1] and [1, ∞). It is easy to check that the first two give a term in O(|ξ| α-2 ), while the last integral gives O(1). After multiplication by sin ξ ∼ ξ, we obtain that

w (ξ) = c |ξ| α-1 + O(|ξ|),
which yields the desired expansion for w(ξ) upon integration. (6) It follows from the fact that w is continuous, w (0) = w (π) = 0, w (ξ) ≥ 0 and w (ξ) = O(|ξ| α-1 ) near ξ = 0. The behavior at ξ = π follows from the factor sin ξ in (3.2.6). ( 7) From (3.2.5), it is enough to show that Li α (e iξ ) is differentiable for ξ ∈ (0, π], and its derivative is i Li α-1 (e iξ ). Recall that Li α (e iξ ) = 1 Γ(α) ˆ∞ 0 e iξ y α-1 e y -e iξ dy =:

ˆ∞ 0 f (ξ, y) dy.

By the dominated convergence theorem, we only need to show that f is differentiable and that |∂ ξ f (ξ, y)| ≤ F (y) ∈ L 1 (dy) for a.e. ξ. Fix ξ 0 ∈ (0, π] and consider a neighborhood ξ ∈ (ξ 0 -ε, ξ 0 + ε) for ε > 0 small enough. Then the denominator of f is bounded away from zero and the function is differentiable. In particular

∂ ξ f (ξ, y) = 1 Γ(α) i e iξ y α-1 e y -e iξ + 1 Γ(α) i e 2iξ y α-1 (e y -e iξ ) 2 = 1 Γ(α) i e iξ (e y -e iξ ) y α-1 (e y -e iξ ) 2 + 1 Γ(α) i e 2iξ y α-1 (e y -e iξ ) 2 = 1 Γ(α)
i e iξ e y y α-1 (e y -e iξ ) 2 .

Note that

|∂ ξ f (ξ, y)| y α-1 e y inf ξ∈B(ξ 0 ,ε) |1 -e iξ-y | ∈ L 1 (dy).
Finally, integration by parts yields:

d dξ Li α (e iξ ) = ˆ∞ 0 1 Γ(α)
i e iξ e y y α-1 (e y -e iξ ) 2 dy = i Γ(α -1) ˆ∞ 0 e iξ y α-2 e y -e iξ dy = i Li α-1 (e iξ ).

This integral representation gives the bound Li α-1 (e iξ ) = O(|ξ| α-2 ) as ξ → 0, which follows for w thanks to the identity

w (ξ) = 1 2 Li α-1 (e iξ ) + 1 2
Li α-1 (e -iξ ).

(8) From this equality, we may write

w (ξ) = 1 Γ(α -1) ˆ∞ 0 y α-2
e y cos ξ -1 e 2y -2e y cos ξ + 1 dy.

Note that α > 1 is critical for local integrability around zero.

From the previous step, we know that lim ξ→0+ w (ξ) = +∞. Note also that w (ξ) < 0 for ξ ∈ π 2 , π , since the integrand will be negative. Therefore there exists at least one point ξ 0 < π 2 such that w (ξ 0 ) = 0. We want to show that w is monotone decreasing, and thus this point is unique.

To do that, we show that the integrand is monotone decreasing in ξ. The derivative with respect to ξ of the integrand is y α-2 sin ξ e y -e 3y (e 2y -2e y cos ξ + 1) 2 ≤ 0, which concludes the proof. Note that the derivative of the integrand might not be integrable itself.

Discrete linear equation. We now study a natural generalization of the linear continuous equation. For

f ∈ H s (R), 0 ≤ s ≤ 1 consider the problem i β ∂ β t u h = (-∆ h ) α 2 u h , (t, x) ∈ [0, T ] × hZ, u h | t=0 = f h , (3.2.7)
where f h is the discretization of f as defined in (3.2.4).

As explained in chapter 1, one may take the Fourier transform in space and Laplace transform in time, and obtain the following representation for the solution:

u h (t, ξ) = f h (ξ) ∞ k=0 i -βk t βk h -αk w(ξ) k Γ(kβ + 1) = E β (i -β t β h -α w(ξ)) f h (ξ).
As in the continuous case, our Fourier multiplier is given by the Mittag-Leffler function:

(3.2.8) E β (z) = ∞ k=0 z k Γ(kβ + 1)
.

This function is an entire function in the complex plane. More details about this derivation may be found in chapter 1. We will write the solution of the linear equation as follows:

(3.2.9)

u h (t) = L h,t f h := E β (i -β t β h -α w(•)) f h (•) ∨ ,
where ∨ denotes the inverse Fourier transform. The Mittag-Leffler function enjoys the following asymptotics:

(3.2.10)

E β (z) = 1 β e z 1/β + N -1 k=1 z k Γ(1 -βk) + O(|z| -N ), as |z| → ∞.
This is valid when | arg(z)| ≤ βπ 2 and for any integer N ≥ 2. See chapter 18 in [START_REF] Bateman | Higher Transcendental Functions[END_REF] for more information.

Using (3.2.10) one can show that our Fourier multiplier is uniformly bounded and therefore the solution to (3.2.7) satisfies:

L h,t f h H s h f h H s h f H s (R)
where the implicit constants are independent of t and h.

Consider now the inhomogeneous equation:

i β ∂ β t u h = (-∆ h ) α 2 u h + g h , (t, x) ∈ [0, T ] × hZ, u h | t=0 = f h . (3.2.11)
where we will later set g h to be a power-type nonlinearity depending on u h . By using a fractional generalization of the Duhamel formula, we can write the solution to (3.2.11) as

(3.2.12) u h (t, x m ) = 1 √ 2π ˆπ -π E β (i -β t β h -α w(ξ)) f h (ξ) e imξ dξ + i -β √ 2π ˆt 0 ˆπ -π (t -t ) β-1 E β,β (i -β (t -t ) β h -α w(ξ)) g h (t , ξ) e imξ dξ dt .
where

(3.2.13) E β,β (z) = ∞ k=0 z k Γ(kβ + β)
is the generalized Mittag-Leffler function, which is also entire in the complex plane. The asymptotics for this function are as follows: 

t β-1 E β,β (i -β t β h -α w(ξ)) = 1 β i β-1 (h -α w(ξ)) 1-β β e -it(h -α w(ξ)) 1/β + N k=2 Γ(βk -β) -1 t 1+(k-1)β h -kα w(ξ) k (3.2.14) + O t -1-N β h (N +1)α w(ξ) -N -1 as t β h α |w(ξ)| → ∞.
φ h (ξ) := h -σ w(ξ) 1/β
so that the leading terms in (3.2.10) and (3.2.14) are e -itφ h (ξ) and φ h (ξ) 1-β e -itφ h (ξ) respectively.

Our first goal would be to show local well-posedness of the initial value problem (IVP) given by (3.2.12). The main problem is that we are losing derivatives in our basic L ∞ t L 2 hestimate. Indeed, note that by Lemma 3.2.4 the leading order in (3.2.14) is of size

h α-α β w(ξ) 1 β -1 ∼ ξ h α β -α
, where the exponent is positive because β < 1. In chapter 1, we presented a way to overcome this loss of derivatives for the continuous equation. In that setting, the idea is to exploit some smoothing effect by working in the space X s T ⊂ C t ([0, T ], H s x (R)) of functions with finite smoothing and maximal norms.

Under some technical conditions on the parameters, a fixed point argument yields an interval of existence [0, T ] where T only depends on an inverse power of the H s x (R)-norm of the initial data. Consequently, a reasonable idea would be to work in the discrete analog of the space X s T above, and prove that the IVP given by (3.2.12) is locally well-posed. However, this is not possible because the smoothing effect is not readily available in the discrete setting: Theorem 3.2.6 (Theorem 2.2 in [START_REF] Ignat | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF]). Let t > 0 and s > 0. Consider

∆ h ϕ h (x m ) := ϕ h (x m+1 ) -2ϕ h (x m ) + ϕ h (x m-1 h 2
and let L h,t ϕ h be the solution to the following IVP: 

i ∂ t u h (t, x) + ∆ h u h (t, x) = 0, (t, x) ∈ [0, T ] × hZ, u h | t=0 = ϕ h . Then (3.2.16) sup h>0, ϕ h ∈L 2 h h |xm|≤1 |(-∆ h ) s/2 L h,t ϕ h (x m )| 2 ϕ h 2 L 2 h = ∞, and 
(3.2.17) sup h>0, ϕ h ∈L 2 h h |xm|≤1 ´t 0 |(-∆ h ) s/2 L h,t ϕ h (x m )| 2 dt ϕ h 2 L 2 h = ∞. Remark 
> r 0 ≥ 1, sup h>0, ϕ h ∈L r 0 h L h,t ϕ h L r h ϕ h L r 0 h = ∞, and sup h>0, ϕ h ∈L r 0 h L h,t ϕ h L 1 ([0,T ],L r h ) f h L ϕ h h = ∞.
In this case, the problematic points are the points of inflection of the Fourier multiplier associated to ∆ h , and the result remains true if we only take the supremum over those ϕ h ∈ L r 0 h supported on a set that contains at least one such point. The intuition behind this phenomenon is the following: in the continuous setting, the fractional Laplacian (-∆ x ) α 2 corresponds to the Fourier multiplier |ξ| α . In the discrete setting, we try to approximate this on [-π h , π h ] by h -α w(hξ) (as the mesh-size h tends to zero). These two functions have similar behavior near zero, as shown in Lemma 3.2.4. However, h -α w(hξ) has critical points that are not present in |ξ| α , see fig. 3.2.1. By taking pathological initial data supported in those critical points, one can obtain a result such as the one in (3.2.16)-(3.2.17). However, those critical points are not present in the continuous setting, which suggests that such a discrete model cannot be expected to capture the continuous behavior. As proposed in [START_REF] Ignat | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF], one can get around this issue by filtering the initial data.

Filtering initial data. For a function

f 2h ∈ L 2 2h
, define the discrete interpolation operator Π h : L 2 2h → L 2 h as follows:

Π h f 2h (x 2m ) = f 2h (x 2m ), (3.2.18) Π h f 2h (x 2m+1 ) = f 2h (x 2m ) + f 2h (x 2m+2 ) 2 ,
for m ∈ Z. Note that this operator can be defined in more general

L p h -spaces, 1 ≤ p ≤ ∞.

Let us also define the injection i

h : L 2 2h → L 2 h : (3.2.19) (i h f )(x) = f (x) if x ∈ 2hZ, 0 if x ∈ hZ -2hZ.
The following simple result allows us to compare the norms of filtered data.

Lemma 3.2.9. For any f 2h : 2hZ → C in L 2 2h we have that

f 2h L 2 2h ∼ Π h f 2h L 2 h .
Proof. Note that

f 2h 2 2 (2hZ) = k∈Z |f 2h (x 2k )| 2 ≤ k∈Z |f 2h (x 2k )| 2 + f 2h (x 2k ) + f 2h (x 2k+2 ) 2 2 = Π h f 2h 2 2 (hZ) .
The following result is based on Lemma 3.1 in [START_REF] Ignat | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF], and it states that filtering is equivalent to applying a Fourier multiplier operator. The key idea is that this multiplier vanishes at the critical points of w(ξ) (and nowhere else). (3.2.20)

Π h f 2h (ξ) = 2 cos 2 ξ 2 i h f 2h (ξ).
Proof. Consider f 2h : 2hZ → C of rapid decay. Then we have

Π h f 2h (ξ) = k∈Z f 2h (x 2k ) e -i2ξk + k∈Z f 2h (x 2k ) + f 2h (x 2k+2 ) 2 e -iξ(2k+1) = k∈Z f 2h (x 2k ) e -iξ(2k-1) 2 + e -i2ξk + e -iξ(2k+1) 2 = k∈Z f 2h (x 2k ) e -i2kξ (1 + cos ξ) = (1 + cos ξ) i h f 2h (ξ) = 2 cos 2 ξ 2 i h f 2h (ξ).
As we will see in the next section, although the smoothing effect does not hold in L 2 h , it does hold in the subspace Π h L 2 2h ⊂ L 2 h .

Lwp of the discrete model

Based on the approach discussed in the previous section, consider the inhomogeneous problem:

i β ∂ β t u h = (-∆ h ) α 2 u h + g h , (t, x) ∈ [0, T ] × hZ, u h | t=0 = Π h f 2h , (3.3.1)
where α ∈ (1, 2), β ∈ ( 1 2 , 1), and f 2h is the discretization of f ∈ H s (R) as defined in (3.2.4). We will also take

g h (t, x) = ±Π h R h |u h (t, x)| p-1 u h (t, x) for (t, x) ∈ [0, T ] × hZ,
where Π h was is the averaging defined in (3.2.18), and R h : L 2 h → L 2 2h is the "restriction" operator which takes a function on the lattice hZ to a function on the lattice 2hZ, i.e.

R h f h (x) = f h (x) for x ∈ 2hZ.
The proof that (3.3.1) is locally well-posed, which we stated as Theorem 3.1.1, is analogous to its continuous version, Theorem 2.1.3, except for a few details that must be handled carefully. In order to keep the exposition brief, we devote the remainder of this section to explain what those differences are, exemplified by the most important linear estimates needed in the proof of Theorem 3.1.1.

Let us write the initial value problem associated to (3.3.1) as:

u h (t) = L h,t Π h f 2h ± i -β ˆt 0 N h,t-t Π h R h |u h (t )| p-1 u h (t ) dt = L h,t Π h f 2h ± i -β ˆt 0 N h,t-t g h (t ) dt .
where we use the following notation:

L h,t f h = E β (i -β t β h -α w(•)) f h ∨ , N h,t g h = t β-1 E β,β (i -β t β h -α w(•)) g h ∨ .
The following theorem is the discrete analog to the results in Section 2.2. We omit the proof since it is just an application of a uniform bound on the Fourier multiplier associated to the operators L h,t and N h,t , which follows from the asymptotics in (3.2.10) and (3.2.14).

Theorem 3.3.1. Let α > 0, β ∈ (0, 1) and σ = α β . Then we have that: 

L h,t f h L ∞ T L 2 h f h L 2 h . ˆt 0 N h,t-t g h (t ) dt L ∞ T L 2 h max{T 1/2 , T β-1 2 } h -1 ∇ σ-α g h L 2 T L 2 h . Remark 
φ h (ξ) := h -σ w(ξ) 1/β .
Then we have that

|h -1 ∇| σ-1 2 e -itφ h (∇) Π h f 2h L ∞ h L 2 t Π h f 2h L 2 h . Proof. Let W (t)g(x)
= ˆΩ e -itφ(ξ) g(ξ) e ixξ dξ.

By theorem 4.1 in [START_REF] Kenig | Oscillatory integrals and regularity of dispersive equations[END_REF], we have that

sup x W (t)g 2 L 2 t ˆΩ | g(ξ)| 2 |φ (ξ)| dξ as long as φ = 0 in the open set Ω ⊂ R.
The result remains true when φ has zeroes as long as the right hand side is finite.

In our case, we set Ω = (-π, π) and

φ h (ξ) := h -σ w(ξ) 1 β , so that, for x m = mh, W (t)Π h f 2h (x m ) = ˆπ -π e -itφ h (ξ)+imξ Π h f 2h (ξ) dξ.
Then theorem 4.1 in [START_REF] Kenig | Oscillatory integrals and regularity of dispersive equations[END_REF], Lemma 3.2.4 and (3.2.20) yield

|∇| σ-1 2 e -itφ h (∇) Π h f 2h 2 L ∞ h L 2 t ˆπ -π | Π h f 2h (ξ)| 2 |ξ| σ-1 |φ h (ξ)| dξ 8βh σ ˆπ -π | i h f 2h (ξ)| 2 cos 4 ξ 2 |ξ| σ-1 |w (ξ)| |w(ξ)| 1 β -1 dξ h σ ˆπ 0 (| i h f 2h (ξ)| 2 + | i h f 2h (-ξ)| 2 ) (π -ξ) 4 |ξ| σ-1 |ξ| α-1 (π -ξ) |ξ| σ-α dξ h σ ˆπ -π | i h f 2h (ξ)| 2 dξ = h σ-1 i h f 2h 2 L 2 h h σ-1 Π h f 2h 2 L 2 h .
The rest of the estimates that involve the smoothing effect admit a similar proof, so we omit them. We summarize them in the following theorem, which is the discrete version of Theorem 2.2.11.

Theorem 3.3.4. Let α > 1, β ∈ ( 1 2 , 1
) and σ = α β . Then we have that

h -1 ∇ σ-1 2 -L h,t Π h f 2h L ∞ h L 2 T T 1 2 + Π h f 2h L 2 h , h -1 ∇ σ-1 2 - ˆt 0 N h,t-t Π h g 2h (t ) dt L ∞ h L 2 T T 1 2 T 1 2 + Π h g 2h L 2 T H σ-α h .
We now explain how to prove our maximal function estimates. Not only does this estimate require handling critical points of φ h (ξ), but also zeroes of the second derivative φ h (ξ). This was not a problem when we had |ξ| σ , but now it will be given the following result.

Lemma 3.3.5. For α ∈ (1, 2) and β ∈ ( 1 2 , 1), define

φ h (ξ) := h -σ w(ξ) 1/β .
Then φ h (ξ) has a unique zero ξ 1 ∈ [0, π]. Moreover, ξ 1 > ξ 0 , where ξ 0 ∈ (0, π) is the unique zero of w given by Lemma 3.2.4.

Proof. Without loss of generality, we may assume that h = 1. Then a zero, ξ 1 , of φ 1 must satisfy:

(3.3.2) 1 β -1 w(ξ 1 ) 1 β -2 w (ξ 1 ) 2 + w(ξ 1 ) 1 β -1 w (ξ 1 ) = 0.
By Lemma 3.2.4, the first summand in (3.3.2) is positive, and w is monotone decreasing with a unique zero ξ 0 . Since w is positive everywhere, there can be no zero of φ 1 in the region where w is positive.

Note also that φ 1 (π) = w(π) 1 β -1 w (π) < 0 thus there must be at least one zero ξ 1 , which must lie in the interval (ξ 0 , π), the region where w < 0. As ξ ∈ (ξ 0 , π) grows, w (ξ) decreases (because w < 0 there) and w(ξ) increases. Consequently, the first summand in

(3.3.2), w (ξ) 2 w(ξ) 2-1 β ,
must decrease as ξ ∈ (ξ 0 , π) grows (note that the exponent 2 -1 β is positive). The second summand in (3.3.2), w(ξ) 1 β -1 w (ξ), becomes more negative as ξ ∈ (ξ 0 , π) grows, because w is increasing and w is negative and monotone decreasing. Thus the sum of the first and second summands must become more negative as ξ ∈ (ξ 0 , π) grows. Consequently, there can only be one zero.

Proposition 3.3.6 (Maximal function). Consider f h : hZ → C in L 2
h and let

φ h (ξ) := h -σ w(ξ) 1/β .
Then for s = 1 2 -1 p , p ∈ [4, ∞) and σ > 1, we have

(3.3.3) e -itφ h (∇) f h L p h L ∞ t |h -1 ∇| s f h L 2 h . Proof.
Step 1: Uniform decay. We will use the same strategy of proof as in Proposition 2.2.15, with a few key changes. For m ∈ Z, consider

I(t, h, m) = ˆπ -π e -itφ h (ξ)+imξ h s |ξ| s dξ = h ˆπ h -π h e -itφ h (hξ)+imhξ 1 |ξ| s dξ.
For 1 2 ≤ s < 1, we wish to establish the estimate

(3.3.4) |I(t, h, m)| h s |m| s-1 ,
where the implicit constant is independent of t and h. We subdivide the region of integration into:

Ω 1 := {ξ ∈ - π h , π h | |ξ| ≤ |mh| -1 , or |ξ ± h -1 ξ j | |mh| -1 for j = 1, 2}, Ω 2 := {ξ ∈ - π h , π h -Ω 1 | |mh -th φ h (hξ)| ≤ σ -1 2σ |mh|}, Ω 3 := - π h , π h -Ω 1 ∪ Ω 2 ,
where ±ξ 1 are the zeroes of φ h and ±ξ 2 those of φ h .

For j = 1, 2, 3, we write

I j (t, h, m) := h ˆΩj e -itφ h (hξ)+imhξ 1 |ξ| s dξ.
In the case of Ω 1 , the decay given by (3.3.4) follows directly from integrating the absolute value of the integrand.

On Ω 2 , we can use Lemma 3.3.5 to argue that |h 2 φ h (hξ)| ∼ |ξ| σ-2 . This is its behavior near zero, but we have removed a neighborhood of its only zero, so we may use continuity elsewhere to extend the bound to the whole set Ω 2 .

By the Van der Corput lemma, see Lemma A.1, we have:

|I 2 (t, h, m)| h sup ξ∈Ω 2 |ξ| -s (t h 2 φ h (hξ)) -1/2 h sup ξ∈Ω 2 |ξ| -s (t |ξ| σ-2 ) -1/2
On Ω 2 we also have that |ξ| σ-1 ∼ |h φ h (hξ)| ∼ |mh| t , since we removed ξ 2 , the only point where φ h vanishes. Additionally, |ξ| > |mh| -1 in this region. All in all,

|I 2 (t, h, m)| h sup ξ∈Ω 2 |ξ| -s (t |ξ| σ-2 ) -1/2 h sup ξ∈Ω 2 |ξ| -s (|mh| |ξ| -1 ) -1/2 h sup ξ∈Ω 2 |ξ| 1 2 -s |mh| -1/2 h |mh| s-1 2 |mh| -1/2 = h s |m| s-1 .
To prove the desired decay over Ω 3 , we integrate by parts, having excluded all problematic points on Ω 1 and all points where the phase vanishes on Ω 2 .

Step 2: T T * argument. Now we explain how to obtain (3.3.3) from (3.3.4). By duality, (3.

3.3) is equivalent to ˆR |h -1 ∇| -s e -itφ h (∇) g h (t, •) dt L 2 h g h L p h L 1 t ,
where p is the dual exponent of p. However, we also have that

ˆR |h -1 ∇| -s e -itφ h (∇) g h (t, •) dt 2 L 2 h = h m∈Z ˆR g h (t, mh) ˆR |h -1 ∇| -2s e -i(t-τ )φ h (∇) g h (τ, mh) dτ dt. Therefore, (3.3.3) is also equivalent to ˆR |h -1 ∇| -2s e -i(t-τ )φ h (∇) g h (τ, •) dτ L p h L ∞ t g h L p h L 1 t .
In order to prove this last bound, we use (3.3.4) and the Hardy-Littlewood-Polya inequality, which is a discrete version of the well-known Hardy-Littlewood-Sobolev inequality (see [START_REF] Stein | Discrete analogues in Harmonic Analysis II: Fractional integration[END_REF]):

ˆR |h -1 ∇| -2s e -i(t-τ )φ h (∇) g h (τ, mh) dτ

L p h L ∞ t = |h -1 ∇| -2s e -itφ h (∇) * t,m g h L p h L ∞ t ≤ |h -1 ∇| -2s e -itφ h (∇) * t,m |g h | L p h L ∞ t h 2s |m| 2s-1 * t,m |g h | L p h L ∞ t ≤ h 2s |m| 2s-1 * m g h L 1 t L p h g L 1 t L p h .
Note that the factor h

2s+ 1 p from the L p h -norm is equal to the factor h 1 p present in the L p h -norm.
The rest of the maximal function estimates required to prove Theorem 3.1.1 are analogous to those found in the continuous setting, see Theorem 2.2.24, as long as one handles zeroes of φ h and φ h as explained in these two examples. We summarize them below. Theorem 3.3.7. Let α > 1, β ∈ ( 1 2 , 1) and σ = α β . For p ≥ 4 and s = 1 2 -1 p we have:

L h,t f h L p h L ∞ T h -1 ∇ s f h L 2 h , ˆt 0 N h,t-t g h (t ) dt L p h L ∞ T max{T 1 2 , T β-1 2 } h -1 ∇ s+σ-α g h L 2 T L 2 h .
Finally, we would like to interpolate between the maximal function estimates and the smoothing effect, following the approach Section 2.2.5. Luckily, the fact that we are working with discrete spaces makes this step simpler, since we do not need to work with functions with bounded mean oscillation thanks to Theorem 5.6.3 in [START_REF] Bergh | Grundlehren der mathematischen Wissenschaften[END_REF]: Lemma 3.3.8. Let A be a Banach space, s ∈ R and q ∈ (0, ∞]. Let s q (A) be the space of sequences (a n ) n∈N ⊂ A (the set of subindices may also be Z) such that n∈N (2 ns a n A ) q 1/q < ∞.

Then for θ ∈ (0, 1), s 1 , s 2 ∈ R and Banach spaces A 0 , A 1 , we have that

s 0 q 0 (A 0 ), s 1 q 1 (A 1 ) θ = s q ([A 0 , A 1 ] θ ) , where s = (1 -θ) s 0 + θ s 1 , 1 q = 1 -θ q 0 + θ q 1 .
Remark 3.3.9. For our purposes, (q 0 , q 1 ) = (∞, p), A 0 = L 2 T and A 1 = L ∞ T . Note that Theorem 5.1.1 in [START_REF] Bergh | Grundlehren der mathematischen Wissenschaften[END_REF] guarantees that

[A 0 , A 1 ] θ = L p θ for 1 p θ = 1-θ 2 .
Remark 3.3.10. Let us highlight the difference between this result and Theorem 5.1.2 in [START_REF] Bergh | Grundlehren der mathematischen Wissenschaften[END_REF], which is the continuous case (with L q instead of q ). In the latter, the endpoint q 0 = ∞ is not included, which is why we need BMO x .

This result together with the Stein (complex) interpolation theorem yields the following

Theorem 3.3.11. Let α > 1, β ∈ ( 1 2 , 1), σ = α β , γ = σ-1 2 and γ = α -σ+1 2 . For p ≥ 3, s = 1 2 -1 2(p-1)
, 0 ≤ γ < γ and 0 ≤ γ < γ we have:

L h,t Π h f 2h L 4(p-1) h L 4 T T 1 2 + h -1 ∇ s-γ 2 Π h f 2h L 2 h , ˆt 0 N h,t-t Π h g 2h (t ) dt L 4(p-1) h L 4 T max{T 1 2 , T β 2 } T 1 2 + h -1 ∇ σ-α+s-γ 2 Π h g 2h L 2 T L 2 h .
These are the linear estimates needed to prove Theorem 3.1.1. The argument, based on the Banach fixed point theorem, is analogous to that in Section 2.4 and thus we omit it. 

p h u h (t, x) = u h (t, x m ) + D + h u h (t, x m ) • (x -x m ),
where D + h is the forward difference defined in (3.2.3). Our goal is to show that the interpolation of the discrete solution, p h u h , converges to the continuous solution u in some way. In [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], Kirkpatrick, Lenzmann and Staffilani prove that

{p h u h } h>0 and {∂ t p h u h } h>0 are uniformly bounded in L ∞ T H α/2 x and L ∞ T H -α/2 x
, respectively. Then the Banach-Alaoglu theorem allows them to extract a weak- * convergent subsequence, whose limit is shown to be u, the solution of the continuous IVP.

This result was improved to strong convergence in [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF]. Their approach is based on studying the difference u(t) -p h u h (t) L 2

x by using their respective IVPs and a careful estimation of the error terms, together with the Gronwall inequality. Although more technical than [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF], this approach seems quite robust to prove continuum limits of more general discrete problems, and so it will be our choice.

The goal in this section is to generalize these ideas to work in more general spaces based on L p x L q T , which is what our equation requires. Instead of the Gronwall inequality, we will use the method of continuity to obtain strong convergence.

In particular, consider the continuous and discrete IVPs:

u(t) = L t f ± i -β ˆt 0 N t-t |u(t )| p-1 u(t ) dt . p h u h (t) = p h (L h,t Π h f 2h ) ± i -β p h ˆt 0 N h,t-t Π h R h |u h (t )| p-1 R h u h (t ) dt .
where we use the following notation:

L t f = E β (i -β t β | • | α ) f ∨ , (3.4.2) L h,t f h = E β (i -β t β h -α w(•)) f h ∨ , (3.4.3) N t g = t β-1 E β,β (i -β t β | • | α ) g ∨ , (3.4.4) N h,t g h = t β-1 E β,β (i -β t β h -α w(•)) g h ∨ . (3.4.5) 
Note that we will use the same notation for the continuous Fourier transform and the discrete Fourier transform as long as there is no risk of misinterpretation.

The main idea is to consider the difference u -p h u h in the space where we we have local well-posedness for the continuous equation. This requires studying the operators L t -p h L h,t and N t -p h N h,t in the appropriate norms to exploit cancellation and obtain some terms that are o h (1) as h → 0, as well as some other terms that can be controlled in terms of the initial data and u -p h u h .

In the rest of this section, we first introduce some useful results about linear interpolation p h . Then we study the operators L t -p h L h,t and N t -p h N h,t in the appropriate norms. Finally, we give the proof of the continuum limit.

Interpolation.

We summarize some results concerning the operator p h . Most of these results are well-known so we will omit the proofs. Lemma 3.4.1 (Lemma 3.7 in [START_REF] Kirkpatrick | On the continuum limit for discrete NLS with long range interactions[END_REF]). For 0 ≤ s ≤ 1 we have

p h f h H s x f h H s h .

The proof is based on complex interpolation between L 2

h and H 1 h , where the equivalent norm given by forward differences is useful.

The following result can be proved by a direct computation of the Fourier transform.

Lemma 3.4.2 (Lemma 5.5 in [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF]). Let

f h ∈ L 2 h . Then (3.4.6) p h f h (ξ) = P h (ξ) f h (hξ),
where

P h (ξ) := ˆh 0 e -ixξ dx + e ihξ -1 h ˆh 0 x e -ixξ dx.
Remark 3.4.3. Note that each side of (3.4.6) represents a different type of Fourier transform (continuous and discrete), but the equality holds for all ξ ∈ R by taking the periodization of the right-hand side.

We now present the relationship between discretization and interpolation, which is based on Proposition 5.3 in [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF]. See also Chapter 6 in [START_REF] Ladyzhenskaya | The Boundary Value Problems of Mathematical Physics[END_REF].

Lemma 3.4.4. Let f ∈ H s 2
x (R) and let f h be its discretization according to (3.2.4). For

0 ≤ s 1 ≤ s 2 ≤ 1 we have p h f h -f H s 1 x h s 2 -s 1 f H s 2
x , where the implicit constant does not depend on h.

The results summarized so far will be necessary tools when studying L t -p h L h,t . We now present some other results that will allow us to estimate the nonlinearity N t -p h N h,t . The first one is a generalization of Proposition 5.8 in [START_REF] Hong | Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit[END_REF]. Lemma 3.4.5. Let p ≥ 3 be an odd integer. For 0 ≤ s 1 ≤ s 2 ≤ 1 we have

|p h u h | p-1 p h u h -p h (|u h | p-1 u h ) H s 1 x h s 2 -s 1 u h p-1 L ∞ h u h H s 2 h ,
where the implicit constant does not depend on h.

Proof.

Fix s 1 ≥ 0. The proof is an application of complex interpolation between the cases (s 1 , s 2 ) = (0, 0), (0, 1) and (1, 1). The case (0, 0) is trivial and follows from the Hölder inequality.

Step 1. Consider the case (s 1 , s 2 ) = (1, 1). It suffices to show that:

|p h u h | p-1 p h u h -p h (|u h | p-1 u h ) Ḣ1 x u h p-1 L ∞ h u h Ḣ1 h . Suppose that x ∈ [x m , x m+1
). We write:

|p h u h (x)| p-1 p h u h (x) -p h (|u h | p-1 u h )(x) = |p h u h (x)| p-1 p h u h (x) -|u h (x m )| p-1 u h (x m ) - |u h (x m+1 )| p-1 u h (x m+1 ) -|u h (x m )| p-1 u h (x m ) h • (x -x m ). (3.4.7)
Recall that p ≥ 3 is an odd integer. Then the fundamental theorem of calculus implies:

|a| p-1 a -|b| p-1 b = a p -b p = ˆ1 0 p [a + λ(b -a)] p-1 (b -a) dλ.
We apply this to the first term in (3.4.7).

|p h u h (x)| p-1 p h u h (x) -|u h (x m )| p-1 u h (x m ) Ḣ1 x ([xm,x m+1 )) ˆ1 0 [p h u h (x) + λ(u h (x m ) -p h u h (x))] p-1 (u h (x m ) -p h u h (x))) Ḣ1 x ([xm,x m+1 
)) dλ. Since p -1 is even, we can consider the cases where the derivative hits each of the terms in the last product. We use the Hölder inequality to put the terms with a derivative in Ḣ1

x and all the others in L ∞

x . In all cases we obtain:

|p h u h (x)| p-1 p h u h (x) -|u h (x m )| p-1 u h (x m ) Ḣ1 x ([xm,x m+1 )) h 1/2 u h p-1 L ∞ h |D + h u h (x m )|.
As before, taking squares and summing in m ∈ Z yields the desired inequality. The second term in (3.4.7) may be treated analogously.

Step 2. Finally, we prove the estimate for (s 1 , s 2 ) = (0, 1). Consider the first term in (3.4.7). When x ∈ [x m , x m+1 ), we can estimate this by:

|p h u h (x)| p-1 p h u h (x) -|u h (x m )| p-1 u h (x m ) |p h u h (x)| p-1 + |u h (x m )| p-1 |p h u h (x) -u h (x m )| = |p h u h (x)| p-1 + |u h (x m )| p-1 |D + h u h (x m ) (x -x m )|.
We square this and integrate over x ∈ [x m , x m+1 ).

|p h u h (x)| p-1 p h u h (x) -|u h (x m )| p-1 u h (x m ) 2 L 2 x ([xm,x m+1 )) h 3 u h 2(p-1) L ∞ h |D + h u h (x m )| 2 .
We finally sum in m ∈ Z and obtain:

|p h u h (x)| p-1 p h u h (x) -|u h (x m )| p-1 u h (x m ) 2 L 2 x (R) h 2 u h 2(p-1) L ∞ h u h 2 H 1
x . The second term in (3.4.7) admits a similar argument.

Comparison estimates.

We start this section with a lemma that will allow us to estimate the increment of the Mittag-Leffler functions at infinity. Lemma 3.4.6. Let β ∈ (0, 1) and

z 1 , z 2 ∈ C such that |z i | ≥ M 1 and arg z i = -π 2 β for i = 1, 2. Then (3.4.8) E β (z 1 ) -E β (z 2 ) = 1 β e -i|z 1 | 1/β - 1 β e -i|z 2 | 1/β + O |z 1 -z 2 | |z 1 | |z 2 | .
Proof. The Mittag-Leffler function admits the following integral representation:

E β (z) = 1 2πi ˆC t β-1 e t t β -z dt,
where we choose the branch of the logarithm where -π < arg z ≤ π and C is the Hankel contour: it starts and ends at -∞ and it circles around the disk |t| > |z| 1/β counterclockwise (see [START_REF] Bateman | Higher Transcendental Functions[END_REF]).

There is only one pole of the integrand in this branch, which is given by t p = -i|z| 1/β . We then deform the contour C to a new contour C that starts and ends at -∞ and it circles around the disk |t| ≥ ε counterclockwise. In doing so, the pole falls outside of C so we pick up its residue:

lim t→tp (t -t p ) t β-1 e t t β -z = t β-1 p e tp lim t→tp t -t p t β -t β p = t β-1 p e tp 1 β t 1-β p = 1 β e tp = 1 β e -i|z| 1/β .
All in all, we have

E β (z) = 1 β e -i|z| 1/β + 1 2πi ˆ C t β-1 e t t β -z dt. Suppose we have z 1 , z 2 ∈ C with |z i | ≥ M ≥ 1 and arg z i = -π 2 β for i = 1, 2. Then we can write 1 - t z i ≥ 1 - ε M = c > 0, for all t ∈ C.
Consequently,

E β (z 1 ) -E β (z 2 ) = 1 β e -i|z 1 | 1/β - 1 β e -i|z 2 | 1/β + 1 2πi ˆ C t β-1 e t 1 t β -z 1 - 1 t β -z 2 dt.
It is now easy to show that

ˆ C t β-1 e t 1 t β -z 1 - 1 t β -z 2 dt = ˆ C t β-1 e t z 1 -z 2 (t β -z 1 )(t β -z 2 ) dt ≤ |z 1 -z 2 | c 2 |z 1 | |z 2 | ˆ C |t β-1 e t | dt.
The last integral converges thanks to the exponential.

Remark 3.4.7. Note that we could also prove this result by writing E β (z 1 ) -E β (z 2 ) in terms of the derivative of E β and proving a uniform bound for this derivative. We chose the more general proof above to give the main idea about how asymptotics (and uniform bounds) for the Mittag-Leffler function are obtained.

The same idea can be applied to obtain error bounds for the increment of the generalized Mittag-Leffler function.

Lemma 3.4.8. Let β ∈ (0, 1) and z 1 , z 2 ∈ C such that |z i | ≥ M 1 and arg z i = -π 2 β for i = 1, 2. Then (3.4.9) E β,β (z 1 ) -E β,β (z 2 ) = i β-1 β |z 1 | 1 β -1 e -i|z 1 | 1/β - i β-1 β |z 2 | 1 β -1 e -i|z 2 | 1/β + O |z 1 -z 2 | |z 1 | |z 2 | .
Proof. In this case one uses the integral representation

E β,β (z) = 1 2πi ˆC e t t β -z dt,
and the proof is similar to that of (3.4.8).

As explained before, when estimating the difference u -p h u h we will have to compare linear and nonlinear terms. The following result will let us gain a small power of h when studying the difference L t -p h L t,h by comparing their respective Fourier multipliers, which were defined in (3.4.2). Proposition 3.4.9. For 0 < h < h 0 small enough, α ∈ (1, 2), β ∈ ( 1 2 , 1) and all (t, ξ) ∈ (0, ∞) × R, we have that

(3.4.10) |E β (i -β t β |ξ| α ) -E β (i -β t β h -α w(hξ))| t h 2-α max{|ξ| 2+σ-α , |ξ| 2 }.
Proof. We assume that w is defined in R instead of [-π, π] by taking its periodization. We differentiate two cases: |ξ| 

|E β (i -β t β |ξ| α ) -E β (i -β t β h -α w(hξ))| = O t β |ξ| α -h -α w(hξ) .
From Lemma 3.2.4 we know that

w(ξ) = |ξ| α + O(|ξ| 2 ), which yields |E β (i -β t β |ξ| α ) -E β (i -β t β h -α w(hξ))| = O t β h 2-α |ξ| 2 .
Now consider the case 1 t β |ξ| α . We focus on the top order of (3.4.8):

e -it|ξ| σ -e -ith -σ w(hξ) 1/β t |ξ| σ -h -σ w(hξ) 1/β
Using that h|ξ| 1 and Lemma 3.2.4, we obtain:

|ξ| σ -h -σ w(hξ) 1/β ≤ 1 β h 2-α |ξ| 2+σ-α + O(|ξ| 4+σ-2α h 4-2α ).
The error in (3.4.8) is controlled by:

t β h -α w(hξ) -t β |ξ| α t 2β |ξ| α h -α w(hξ) t -β h 2-α |ξ| 2-2α + O t -β |ξ| 2-α h 2-α t β h 2-α |ξ| 2 + O t -β |ξ| 2-α h 2-α
Step 2. Suppose that 1 h|ξ|. When t β |ξ| α 1, the power series in (3.2.8) yields

|E β (i -β t β |ξ| α ) -E β (i -β t β h -α w(hξ))| = O t β |ξ| α -h -α w(hξ) = O t β |ξ| α t β |ξ| α (h|ξ|) 2-α .
When 1 t β |ξ| α , we use (3.4.8) again:

e -it|ξ| σ -e -ith -σ w(hξ) 1/β 1 h 2-α |ξ| 2-α h 2-α |ξ| 2 t β .
The error in (3.4.8) admits the following bound

t β h -α w(hξ) -t β |ξ| α t 2β |ξ| α h -α w(hξ) 1 t β |ξ| α 1 (h|ξ|) 2-α h 2-α |ξ| 2 t β .
Sometimes we will need to compare the multipliers to first order, and thus we need to study their derivatives too. Proposition 3.4.10. For 0 < h < h 0 small enough, α ∈ (1, 2), β ∈ ( 1 2 , 1) and all (t, ξ) ∈ (0, ∞) × R, we have that

(3.4.11) |ξ| α-1 E β,β (i -β t β |ξ| α ) -h 1-α w (hξ) E β,β (i -β t β h -α w(hξ)) t 2-β h 2-α max{|ξ|, |ξ| 1+σ-α }.
Proof. By Lemma 3.2.4, we know that

h 1-α w (hξ) = |ξ| α-1 + O(h 2-α |ξ|). Therefore |ξ| α-1 E β,β (i -β t β |ξ| α ) -h 1-α w (hξ) E β,β (i -β t β h -α w(hξ)) = |ξ| α-1 E β,β (i -β t β |ξ| α ) -|ξ| α-1 E β,β (i -β t β h -α w(hξ)) -O h 2-α |ξ|E β,β (i -β t β h -α w(hξ))

Using (3.2.14), we know that

O h 2-α |ξ| E β,β (i -β t β h -α w(hξ)) = O h 2-α |ξ| ξ σ-α ,
which is controlled by the error in (3.4.11).

Therefore we only need to prove the desired bound for

E β,β (i -β t β |ξ| α ) -E β,β (i -β t β h -α w(hξ)).
The rest of the proof is very similar to that of (3.4.10), and depends exclusively on (3.4.9) and Lemma 3.2.4, so we omit it. We finally put to good use these two propositions.

Proposition 3.4.11. Let 0 < h < h 0 small enough, α ∈ (1, 2), and β ∈ ( 1 2 , 1). Then for any small ε > 0 there exists some b > 0 small enough such that

L t f -p h L h,t Π h f 2h L 2 x t h 0+ f H ε x , ˆt 0 N t-t p h g h (t ) -p h N t-t ,h g h (t ) dt L ∞ T L 2 x T h 0+ g h L 2 T H σ-α+ε h ,
where the implicit constant in the second equation is controlled by a power of T .

Remark 3.4.12. A similar proof combined with complex interpolation yields:

L t f -p h L h,t Π h f 2h H s 1 x h (s 2 -s 1 )•0+ f H s 2 x , where s 2 ≥ s 1 , s 1 , s 2 ∈ [0, 1],
and the implicit constant depends on a power of T .

Proof. We explain how to prove the first estimate, since the ideas involved in the second are similar. The main tools in the discrete L ∞ T L 2 h estimates, (Theorem 3.3.1), their continuous counterpart (see Proposition 2.2.12), and (3.4.10)- (3.4.11).

Step 1. The following decomposition of L t f -p h L h,t Π h f 2h will be used in many upcoming proofs to exploit cancellation between these operators. We write:

p h L h,t Π h f 2h -L t f =p h L h,t Π h f 2h -L t p h Π h f 2h + L t (p h Π h f 2h -f ) =(p h L h,t Π h f 2h -L t p h Π h f 2h ) * ϕ 1 + (p h L h,t Π h f 2h -L t p h Π h f 2h ) * ϕ 2 + L t (p h Π h f 2h -f ) = I + II + III,
where ϕ 1 is a smooth function whose Fourier transform is supported in the region {ξ ∈ R | |ξ| h -b }, and ϕ 2 is a smooth function whose Fourier transform is supported in the region {ξ ∈ R | h -b |ξ|}, and such that ϕ 1 + ϕ 2 = 1. The constant b > 0 will be chosen later.

By the Plancherel theorem and (3.4.6),

I L 2 x = [E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α )] P h (ξ) Π h f 2h (hξ) L 2 ξ (|ξ| h -b )
By (3.4.10), for any small ε > 0 we have that

I L 2 x t β h 2-α max{|ξ| 2 , |ξ| 2+σ-α } P h (ξ) Π h f 2h (hξ) L 2 ξ (|ξ| h -b ) t β h 0+ p h Π h f 2h H s x (R) t β h sb f H ε x (R) .
Here we see that we must choose b < 2-α 2-ε in the region where |ξ| ≤ 1 and b <

2-α 2+σ-α-ε when |ξ| > 1.
The latter is more restrictive, and thus we choose it.

Now we look at the high frequency part. By the Plancherel theorem and (3.4.6),

II L 2 x = [E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α )] P h (ξ) Π h f 2h (hξ) L 2 ξ (h -b |ξ|) h sb |ξ| s [E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α )] P h (ξ) Π h f 2h (hξ) L 2 ξ (h -b |ξ|) h sb f H s x (R)
, thanks to the fact that E β is uniformly bounded (in other words, each operator p h , L t and L h,t is bounded).

Finally, we tackle the last term

III L 2 x = L t (p h Π h f 2h -f ) L 2 x ≤ p h Π h f 2h -f L 2 x = p 2h f 2h -f L 2 x ≤ h s f H s x
after using Lemma 3.4.4 and the fact that p h Π h f 2h = p 2h f 2h , which is easy to check given that both p h and Π h are linear interpolators. The main idea in the proof before was dividing R into two regions a low frequency part and a high frequency part, which change with h. In the high frequency region, the Plancherel theorem allows us to trade derivatives to gain a small power of h. In that step, it is critical that we are in L 2

x , and therefore it is unlikely that we will be able to generalize that to other norms such as L p

x L q T . For that reason we introduce a cut-off to low frequencies. We define K h as the Fourier multiplier operator given by (3.4.12)

K h f (ξ) = χ |ξ| h -b f (ξ), where 0 ≤ χ ≤ 1 is a smooth function supported in {ξ ∈ R | |ξ| h -b
} with value 1 in a slightly smaller (comparable) region. We will also use the notation ϕ 1 = χ ∨ . In (3.4.12), the value of b > 0 will be fixed later, and might vary in the upcoming results, but its specific value is unimportant for our analysis. Note however, that this value will be related to the rate of convergence to the continuum limit, so it might be interesting to track it for computational purposes. All in all, the goal is to study

L t f -K h p h L h,t Π h f 2h .
Note that in Proposition 3.4.13 we also proved: Proposition 3.4.13. Let 0 < h < h 0 small enough, α ∈ (1, 2), and β ∈ ( 1 2 , 1). Then for any small ε > 0, there exists some b > 0 such that

L t f -K h p h L h,t Π h f 2h L 2 x t h 0+ f H ε
x . and b must satisfy:

0 < b < 2 -α 2 + σ -α -ε .
Moreover, there exists some b > 0 such that

ˆt 0 N t-t K h p h g h (t ) -K h p h N h,t-t g h (t ) dt L ∞ T L 2 x T h 0+ g h L 2 T H σ-α h .
Remark 3.4.14. Note that we do not need to lose derivatives in the estimate of the nonlinearity, since we are in the low-frequency regime. However, this loss will inevitably happen later in the high-frequency region, so there is no reason to improve the low-frequency estimate anyway.

We now see how to gain a small power of h in the estimates involving the smoothing effect. Proposition 3.4.15. Let 0 < h < h 0 small enough, α ∈ (1, 2), β ∈ ( 1 2 , 1) and σ = α β . Then for any small ε > 0, there exists some b > 0 such that:

∇ σ-1 2 -(L t f -K h p h L h,t Π h f 2h ) L ∞ x L 2 T T h 0+ f H ε x .
where the implicit constant is controlled by a power of T , and b must satisfy:

0 < b < 2 -α σ -α + γ -ε + 5 2 .
Moreover, there exists some b > 0 such that

∇ σ-1 2 - ˆt 0 N t-t K h p h g h (t ) -K h p h N t-t ,h g h (t ) dt L ∞ x L 2 T T h 0+ g h L 2 T H σ-α h .
Proof. We focus on the first estimate, since the second estimate is simpler.

Step 1. As before, we decompose:

K h p h L h,t Π h f 2h -L t f =K h p h L h,t Π h f 2h -L t p h Π h f 2h + L t (p h Π h f 2h -f ) =K h (p h L h,t Π h f 2h -L t p h Π h f 2h ) -(1 -K h ) (L t p h Π h f 2h ) + L t (p h Π h f 2h -f ) = I + II + III.
As we explained before, the constant b > 0 will be chosen later.

Let us write γ := σ-1 2 -. We will also assume that our data is supported |ξ| ≥ 1 so that we can substitute ∇ γ by |∇| γ . The case |ξ| ≤ 1 is easier and will be discussed at the end of the proof.

Fix some small ε > 0. Firstly, we use (3.4.10), the Minkowski inequality, and the Cauchy-Schwartz inequality:

|∇| γ I L ∞ x L 2 T ˆ|ξ| h -b |P h (ξ) Π h f 2h (hξ)| t |ξ| 2+σ-α+γ h 2-α dξ L ∞ x L 2 T T 3/2 h 2-α ˆ|ξ| h -b |P h (ξ) Π h f 2h (hξ)| |ξ| 2+σ-α+γ dξ T 3/2 h 2-α p h Π h f 2h H ε x ˆ|ξ| h -b |ξ| 2(γ+2+σ-α-ε) dξ 1/2 T 3/2 h 2-α h -b(σ-α+γ-ε+ 5 2 ) f H ε x .
By choosing b small enough, we can obtain a positive exponent for h.

Step 2. Now we consider the high-frequency part. By the triangle inequality,

∇ γ II L ∞ x L 2 T = ∇ γ L t (1 -K h ) p h Π h f 2h L ∞ x L 2 T .
We use the smoothing effect of the operator L t , see Theorem 2.2.10:

∇ γ II L ∞ x L 2 T (1 -K h ) p h Π h f 2h L 2 x h bε f H ε x .
Step 3. Finally, we consider the last term, where we may again use the smoothing effect for L t , Theorem 2.2.10:

∇ γ III L ∞ x L 2 T = ∇ γ L t (p h Π h f 2h -f ) L ∞ x L 2 T T p h Π h f 2h -f L 2 x T h ε f H ε
x , where the last inequality follows from Lemma 3.4.4.

Before finishing the proof, we explain how to deal with the case where our data is supported in |ξ| ≤ 1. We can mimic Step 1 and estimate |ξ| ≤ 1 directly to obtain the desired bound. Step 2 is not necessary since the regions {h -b |ξ|} and {|ξ| ≤ 1} have empty intersection for h small enough, and Step 3 works equally well for |ξ| ≤ 1, as shown in Theorem 2.2.11.

Finally, we show how to estimate L t -K h p h L h,t in the last norm involved in the local well-posedness theory. While the two previous norms shared many similarities and only required (3.4.10), we will now see that (3.4.11) is necessary in this case.

Proposition 3.4.16. Let 0 < h < h 0 small enough, α ∈ (1, 2), β ∈ ( 1 2 , 1), s = 1 2 -1
p and p ≥ 4. Then for any small ε > 0, there exists some b > 0 such that

L t f -K h p h L h,t f h L p x L ∞ T T h 0+ f H s+ε x ,
where the implicit constant is controlled by a power of T .

Moreover, there exists some b > 0 such that

ˆt 0 N t-t K h p h g h (t ) -K h p h N h,t-t g h (t ) dt L p x L ∞ T T h 0+ g h L 2 T H s+σ-α x
Proof. We will only prove the first estimate, since the ideas involved in the second are similar. The main tools to prove this result are the continuous maximal function estimate Theorem 2.2.24, its discrete counterpart (Theorem 3.3.7), and (3.4.10)- (3.4.11).

Once again we write:

K h p h L h,t f h -L t f =K h p h L h,t f h -L t p h f h + L t (p h f h -f ) =K h (p h L h,t f h -L t p h f h ) -(1 -K h ) (L t p h f h ) + L t (p h f h -f ) = I + II + III.
As we explained before, the constant b > 0 will be chosen later.

Step 1. We first focus on the region

1 t β |ξ| α . Define (3.4.13) |∇| -s T (t, h, x) = ˆR e ixξ |ξ| -s χ |ξ| h -b χ 1 t β |ξ| α E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α ) dξ.
Let

Ω 1 := {ξ ∈ R | |ξ| ≤ |x| -1 } Ω 2 := {ξ ∈ R -Ω 1 | |x -tσ|ξ| σ-1 | ≤ σ -1 2σ |x|} Ω 3 := R -Ω 1 ∪ Ω 2 .
Our goal is to show that

(3.4.14) ||∇| -s T (t, x)| T h 0+ |x| s-1 , uniformly in t ∈ [0, T ].
Let I i (t, h, x) to be the integral over Ω i , so that their sum is (3.4.13). Note that

|I 1 (t, h, x)| ≤ T ˆΩ1 |ξ| -s χ |ξ| h -b h 2-α |ξ| 2+σ-α dξ ≤ T h 2-α h -b(2+σ-α) |x| s-1 ≤ T h 0+ |x| s-1 .
as long as b > 0 is chosen small enough.

In Ω 2 , we use (3.4.8) to write:

E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α ) = e -it|ξ| σ 1 -e it|ξ| σ -itφ h (hξ) + E(t, h, ξ)
and we postpone estimating the error E in this approximation to the next step. We write:

I 2 (t, h, x) = ˆΩ2 e ixξ-it|ξ| σ |ξ| -s χ |ξ| h -b χ 1 t β |ξ| α 1 -e it|ξ| σ -itφ h (hξ) dξ + E(t, h, x). (3.4.15)
In Ω 2 we have that t|ξ| σ-1 ∼ |x| and |ξ| > |x| -1 . We use Van der Corput's lemma and the bound given by (3.4.10).

|I 2 (t, h, x) -E(t, h, x)| sup ξ∈Ω 2 |1 -e it|ξ| σ -itφ h (hξ) | χ |ξ| h -b χ 1 t β |ξ| α |ξ| -s • (t|ξ| σ-2 ) -1/2 sup ξ∈Ω 2 T h 2-α |ξ| 2+σ-α χ |ξ| h -b |ξ| 1/2-s • |x| -1 (t|ξ| σ-1 ) 1/2 = sup ξ∈Ω 2 T 3/2 h 2-α |ξ| 2+ 3 2 σ-α χ |ξ| h -b |ξ| -s • |x| -1 T 3/2 h 2-α h -b(2+ 3 2 σ-α) |x| s-1 = T 3/2 h 0+ |x| s-1 .
Note that in this step we used to get the condition 1 2 ≤ s (see for instance the proof of Proposition 3.3.6), and then a T T * argument halved the loss of derivatives. This condition on s was necessary in order to use the bound |ξ| > |x| -1 . However, we do not need to do that here, because we can bound positive powers of |ξ| by terms in h -b thanks to K h . This allows us to avoid the T T * argument altogether, since now s is allowed to range over (0, 1).

Finally, in Ω 3 we may integrate by parts:

I 3 (t, h, x) ∼ ˆΩ3 e ixξ-it|ξ| σ d dξ 1 x -t|ξ| σ-1 |ξ| -s χ |ξ| h -b χ 1 t β |ξ| α 1 -e it|ξ| σ -itφ h (hξ)
dξ.

Recall that in Ω 3 we have that |x -t|ξ| σ-1 | ≥ |x| and |ξ| > |x| -1 . According to the proof of (3.4.11), we can bound the derivative of our symbol by T 2 h 2-α |ξ| 1+σ-α . Therefore,

|I 3 (t, h, x)| T 2 h 2-α ˆΩ3 |ξ| 1+σ-α |ξ| -s χ |ξ| h -b dξ T 2 h 2-α h -b(2+σ-α) ˆΩ3 |ξ| -s-1 dξ T 2 h 0+ |x| s-1
as long as b > 0 is small enough.

Step 2. Now we estimate the error in (3.4.15). As shown in the proof of (3.4.10),

E(h, t, ξ) = t β h 2-α |ξ| 2-α + O |ξ| 2 h 2-α
in the region h|ξ| 1, which clearly contains our region h b |ξ| 1. As before, we define

E(t, h, x) = ˆR e ixξ |ξ| -s χ |ξ| h -b χ 1 t β |ξ| α E(h, t, ξ) dξ
and our goal is to show

|E(t, h, x)| T h 0+ |x| s-1 .
When |x| is small, we can integrate directly:

|E(t, h, x)| ≤ ˆR |ξ| -s χ |ξ| h -b χ 1 t β |ξ| α h 2-α |ξ| 2-α dξ h 2-α h -b(3-α-s) h 0+ ,
as long as b > 0 is small. When |x| > 2, we integrate by parts and obtain

|E(t, h, x)| ≤ |x| -1 ˆR d dξ |ξ| -s χ |ξ| h -b χ 1 t β |ξ| α E(t, h, ξ) dξ
The top-order term occurs when the derivative hits E, but as shown in the proof of (3.4.11), this only contributes O(t β h 2-α |ξ|). Therefore, we obtain

|E(t, h, x)| T 2 h 0+ |x| -1 .
Combining the bounds for small and large |x|, we have

|E(t, h, x)| T 2 h 0+ |x| s-1 .
Step 3. Now we consider the low frequency case, t β |ξ| α 1. Let

|∇| -s U(t, h, x) = ˆR e ixξ |ξ| -s χ |ξ| h -b χ t β |ξ| α 1 E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α ) dξ.
When |x| ≤ 2, we can use (3.4.10) to get

||∇| -s U(t, h, x)| ≤ ˆR |ξ| -s χ t β |ξ| α 1 χ |ξ| h -b t h 2-α |ξ| 2+σ-α dξ T h 2-α h -b(2+σ-α) ˆR |ξ| -s χ t β |ξ| α 1 dξ T 2 h 0+ .
When |x| > 2, we can use integration by parts:

||∇| -s U(t, h, x)| ≤ |x| -1 ˆR d dξ |ξ| -s χ |ξ| h -b χ t β |ξ| α 1 E β (i -β t β h -α w(hξ)) -E β (i -β t β |ξ| α ) dξ
and use (3.4.11) to control the derivative as we did before. What follows is standard so we omit it. Finally, the decay given by (3.4.14) together with the Hardy-Littlewood-Sobolev inequality prove the desired estimate for I.

Step 4. We now study the term

II = (1 -K h ) (L t p h f h ).
As before, we use the continuous maximal function estimate, Theorem 2.2.24, to yield the desired inequality, and we trade derivatives for powers of h once we are in L 2

x . Finally, we control III = L t (p h f h -f ) with the help of Theorem 2.2.24, which yields:

|∇| -s L t (p h f h -f ) L p x L ∞ T p h f h -f L 2 x h ε f H ε x Finally, one can interpolate between the estimates in L ∞ x L 2 T and L 2(p-1) x L ∞
T to obtain the following result, following the standard approach in Section 2.2.5. In fact, note that despite the many operators applied to f , the map f → L t f -K h p h L h,t Π h f 2h is linear and continuous in the corresponding spaces. Proposition 3.4.17. Let 0 < h < h 0 small enough, α ∈ (1, 2), β ∈ ( 1 2 , 1), σ = α β , γ = σ-1 2 and γ = α -σ+1 2 . For p ≥ 3, let s = 1 2 -1 2(p-1) , 0 ≤ γ < γ and 0 ≤ γ < γ. Then for any small ε > 0, there exists some b > 0 such that

L t f -K h p h L h,t Π h f 2h L 4(p-1) x L 4 T T h 0+ f H s-γ 2 +ε x .
where the implicit constant is controlled by a power of T .

Moreover, there exists some b > 0 such that

ˆt 0 N t-t K h p h g h (t ) -K h p h N h,t-t g h (t ) dt L 4(p-1) x L 4 T T h 0+ g h L 2 T H s+σ-α x .
3.4.4. Main argument. We are now ready to give the main argument of the continuum limit. We will work in the space where we developed the local well-posedness theory. Consider the norms:

η 1 (v) := ∇ s+σ-α v L ∞ x L 2 T , η 2 (v) := ∇ s v L ∞ T L 2 x , (3.4.16) η 3 (v) := v L 2(p-1) x L ∞ T , η 4 (v) := ∇ (s+σ-α)/2 v L 4(p-1) x L 4 T , and define Λ T (v) := max j=1,2,3,4 η j (v).
We define the space

X s T = {v ∈ C([0, T ], H s x (R)) | Λ T (v) < ∞}.
Consider the continuous problem given by (2.1.1). By Theorem 2.1.3, for any s ≥ 1 2 -1 2(p-1) , we have a unique solution to the continuous problem, u ∈ X s T , defined in some time interval [0, T ] depending on the norm of the initial data f H s(R) . By Theorem 3.1.1, we also have a unique solution to the discrete problem given by (3.3.1), u h , in some time interval [0, T ] depending on the norm of the initial data f H s(R) . Without loss of generality, we may assume a common interval of existence for both problems. Let us highlight that s in (3.4.16) and s where we have local-wellposedness for u and u h will be different. In fact, they will be chosen in such a way that s > s.

All in all, we have that u h (t) and u(t) satisfy the initial value problems:

u(t) = L t f ± i -β ˆt 0 N t-t (|u(t )| p-1 u(t )) dt u h (t) = L h,t Π h f 2h ± i -β ˆt 0 N h,t-t Π h R h (|u h (t )| p-1 u h (t )) dt
in their respective spaces C([0, T ], H s x (R)) and C([0, T ], H s h ), where we can take any regularity s ≥ 1 2 -1 2(p-1) that we wish. Recall that the linear and nonlinear operators L t , L h,t , N t and N h,t are defined in (3.4.2).

We take the linear interpolation of u h in order to work in the common space C([0, T ], H s(R)):

u(t) = L t f ± i -β ˆt 0 N t-t (|u(t )| p-1 u(t )) dt (3.4.17) p h u h (t) = p h L t,h Π h f 2h ± i -β ˆt 0 p h N t-t ,h Π h R h (|u h (t )| p-1 u h (t )) dt .
Remark 3.4.18. At this stage, we add the condition:

s + σ -α ≤ 1.
This is merely a technical condition to guarantee that the regularity with which we work, given by (3.4.16), does not exceed the regularity allowed by linear interpolation p h u h . It would be possible to work on higher regularity than H 1 x (R) even with piecewise linear functions using similar ideas. However, it is then better to use a quadratic interpolation of u h , and therefore we restrict ourselves to the case s + σ -α ≤ 1 for now.

We now study the difference between u and K h p h u h in the norm Λ T :

(3.4.18) Λ T (u -K h p h u h ) ≤ Λ T (L t f -K h p h L t,h Π h f 2h ) + Λ T ˆt 0 N t-t (|u(t )| p-1 u(t )) -K h p h N t-t ,h Π h R h (|u h (t )| p-1 u h (t )) dt
We will prove that: Then we have

(3.4.19) Λ T (u -K h p h u h ) ≤ o h (1)+ C(T, f H s ) • Λ T (u -K h p h u h ) 1 + Λ T (u -K h p h u h ) p-1 .
where the constant C(T, f H s ) → 0 as T → 0.

Once we prove this lemma, a standard argument based on the method of continuity shows that (3.4.19) implies the stronger:

(3.4.20) Λ T (u -K h p h u h ) = o h (1)
for small enough T and h.

Finally, (3.4.20) implies that

u -p h u h L ∞ T H s x ≤ u -K h p h u h L ∞ T H s x + (1 -K h )p h u h L ∞ T H s x ≤ Λ T (u -K h p h u h ) + ξ s p h u h L ∞ T L 2 ξ (|ξ| h -b ) o h (1) + h 0+ ξ s+ p h u h L ∞ T L 2 ξ (|ξ| h -b ) o h (1) + h 0+ p h u h L ∞ T H s+ x o h (1) + h 0+ u h L ∞ T H s+ h o h (1) + h 0+ C (T, f H s ) = o h (1),
where in the last step we use the lwp theory for u h (see Theorem 3.1.1). This proves that p h u h converges to the continuum limit u, and completes the proof of Theorem 3.1.4.

3.4.5. Proof of Lemma 3.4.19. We start with the first term in (3.4.18). By Proposition 3.4.13, Proposition 3.4.15, Proposition 3.4.16 and Proposition 3.4.17 we have that:

Λ T (L t f -K h p h L t,h Π h f 2h ) T h 0+ f H s+
x . From now on, the implicit constant when using the symbol might depend on T in a polynomial way, so we drop the notation T .

We now focus on the nonlinearity in (3.4.18):

Λ T ˆt 0 N t-t (|u(t )| p-1 u(t )) -K h p h N t-t ,h Π h R h (|u h (t )| p-1 u h (t )) dt ≤ Λ T ˆt 0 N t-t (|u(t )| p-1 u(t )) -N t-t K h p h Π h R h (|u h (t )| p-1 u h (t )) dt + Λ T ˆt 0 N t-t K h p h Π h R h (|u h (t )| p-1 u h (t )) -K h p h N t-t ,h Π h R h (|u h (t )| p-1 u h (t )) dt = I + II. (3.4.21)
First we deal with II since it is easier. Proposition 3.4.13, Proposition 3.4.15, Proposition 3.4.16 and Proposition 3.4.17 yield

II h 0+ Π h R h |u h | p-1 u h L 2 T H s+σ-α h = h 0+ |u h | p-1 u h L 2 T H s+σ-α h h 0+ C(T, f H s+ ),
after using local well-posedness theory for the discrete equation, see Theorem 3.1.1 (the specific argument relevant for this part is the discrete equivalent of the nonlinear estimate in Lemma 2.4.1). Now we study I. Since the continuous operator N t-t affects both terms, we may use the local well-posedness theory (see Section 2.4) to write:

I |u| p-1 u -K h p h Π h R h (|u h | p-1 u h ) L 2 T H s+σ-α x = |u| p-1 u -K h p 2h R h (|u h | p-1 u h ) L 2 T H s+σ-α x |u| p-1 u -|K h p h u h | p-1 K h p h u h L 2 T H s+σ-α x + |K h p h u h | p-1 K h p h u h -|p h u h | p-1 p h u h L 2 T H s+σ-α x + |p h u h | p-1 p h u h -|p 2h R h u h | p-1 p 2h R h u h L 2 T H s+σ-α x + |p 2h R h u h | p-1 p 2h R h u h -p 2h R h (|u h | p-1 u h ) L 2 T H s+σ-α x + p 2h R h (|u h | p-1 u h ) -K h p 2h R h (|u h | p-1 u h ) L 2 T H s+σ-α x = I 1 + I 2 + I 3 + I 4 + I 5 .
We study these terms separately.

(1) For the first one, we estimate the norm of an expression such as |u| p-1 u -|v| p-1 v in terms of u -v, see Section 2.4.

I 1 = |u| p-1 u -|K h p h u h | p-1 K h p h u h L 2 T H s+σ-α x Λ T (u) p-1 + Λ T (K h p h u h ) p-1 Λ T (u -K h p h u h ). Now note that Λ T (K h p h u h ) ≤ Λ T (u -K h p h u h ) + Λ T (u) Λ T (u -K h p h u h ) + C(T, f H s )
because the continuous equation is well-posed. Therefore,

I 1 C(T, f H s ) + Λ T (u -K h p h u h ) p-1 Λ T (u -K h p h u h ),
where C(T, f H s ) is allowed to change from line to line.

(2) Now we study the second term:

I 2 = |K h p h u h | p-1 K h p h u h -|p h u h | p-1 p h u h L 2 T H s+σ-α x .
We use a rough estimate, together with the discrete Sobolev embedding:

I 2 T K h p h u h p-1 L ∞ x,T + p h u h p-1 L ∞ x,T (1 -K h )p h u h L ∞ T H s+σ-α x u h p-1 L ∞ T H 1 2 + h • h 0+ u h L ∞ T H s+σ-α+ x h 0+ C(T, f H s x )
, by the discrete local well-posedness theory.

(3) For the third term we again use the discrete Sobolev embedding:

I 3 = |p h u h | p-1 p h u h -|p 2h R h u h | p-1 p 2h R h u h L 2 T H s+σ-α x p h u h p-1 L ∞ x,T + p 2h R h u h p-1 L ∞ x,T p h u h -p 2h R h u h L ∞ T H s+σ-α x u h p-1 L ∞ T,h + u h p-1 L ∞ T,h p h u h -p 2h R h u h L ∞ T H s+σ-α x u h p-1 L ∞ T H 1 2 + h p h u h -p 2h R h u h L ∞ T H s+σ-α x h 0+ u h p-1 L ∞ T H 1 2 + h u h L ∞ T H s+σ-α+ h .
The last step, where we gain a small power of h, admits a similar proof to Lemma 3.4.4. (4) To control the fourth term we use Lemma 3.4.5 and the discrete Sobolev embedding,

I 4 = |p 2h R h u h | p-1 p 2h R h u h -p 2h R h (|u h | p-1 u h ) L 2 T H s+σ-α x = |p 2h R h u h | p-1 p 2h R h u h -p 2h (|R h u h | p-1 R h u h ) L 2 T H s+σ-α x h 0+ u h p-1 L ∞ T L ∞ h u h L ∞ T H s+σ-α+ h h 0+ u h p-1 L ∞ T H 1 2 + h u h L ∞ T H s+σ-α+ h h 0+ C(T, f H s x ). (5) 
Finally, we study the term:

I 5 = (1 -K h ) p 2h R h (|u h | p-1 u h ) L 2 T H s+σ-α x h 0+ p 2h R h (|u h | p-1 u h ) L 2 T H s+σ-α+ x h 0+ |u h | p-1 u h L 2 T H s+σ-α+ h h 0+ C(T, f H s x )
, thanks to the local well-posedness theory for the discrete equation (and more particularly, the discrete version of the nonlinear estimate in Lemma 2.4.1).

After combining our findings for I k (k = 1, . . . , 5) and II, one obtains (3.4.19).

CHAPTER 4

Dysthe equation and oceanic rogue waves Background. Ocean waves are called rogue or freak waves when their amplitude exceeds twice the characteristic wave height expected for the given surface conditions [START_REF] Dysthe | Oceanic rogue waves[END_REF]. Such unexpected extreme events pose a threat of catastrophic impacts for a variety of naval infrastructure and, therefore, important to understand. Over the past several decades, there have been many efforts to model and predict the behavior of rogue waves (e.g., [START_REF] Dysthe | Note on a modification to the nonlinear Schrödinger equation for application to deep water waves[END_REF][START_REF] Hasselmann | On the non-linear energy transfer in a gravity-wave spectrum. Part 1: General theory[END_REF][START_REF] Dysthe | Oceanic rogue waves[END_REF][START_REF] Cousins | Reduced-order precursors of rare events in unidirectional nonlinear water waves[END_REF][START_REF] Farazmand | Reduced-order prediction of rogue waves in two-dimensional deepwater waves[END_REF]).

In 2017, Farazmand and Sapsis studied numerical simulations of large wave prediction for two-dimensional water waves [START_REF] Farazmand | Reduced-order prediction of rogue waves in two-dimensional deepwater waves[END_REF]. Their work supports the hypothesis that large ocean waves can be caused by nonlinear interactions as a result of focusing. By decomposing the surface wavefield into localized Gaussian wave groups and evolving the groups according to the governing envelope equations, they computed the expected maxima of each group and produced a prediction of the maximal future amplitude generated by given initial data. The governing envelope equation that they use is given by the two-dimensional Dysthe equation. This equation was first proposed by Dysthe in [START_REF] Dysthe | Note on a modification to the nonlinear Schrödinger equation for application to deep water waves[END_REF]. It can be derived from the incompressible Navier-Stokes equation, after performing an asymptotic expansion of the modulation of a wavetrain. Truncating this approximation at order three would give rise to the cubic NLS equation. However, the NLS equation is only valid to model wave spectra with a narrow bandwidth. Farazmand and Sapsis found that continuing the expansion to fourth-order improves the model and yields the Dysthe equation: 

∂ t u + L(u) = N (u), t ∈ R, (x, y) ∈ R 2 u | t=0 (x, y) = u 0 (x, y),
where

L(u) = - 1 16 ∂ 3 x u + i 8 ∂ 2 x u + 1 2 ∂ x u - i 4 ∂ 2 y u + 3 8 ∂ x ∂ 2 y u
, and the nonlinearity is given by

N (u) = - i 2 |u| 2 u - 3 2 |u| 2 ∂ x u - 1 4 u 2 ∂ x u + i 2 u ∂ 2 x |∇| -1 (|u| 2 ).
Note that a solution to this equation would conserve the mass (i.e. the L 2 -norm of the initial data). However, there is no scaling symmetry available, which makes the analysis more complicated. Another interesting feature of this equation is anisotropy, which is a byproduct of a preferred direction of propagation during the derivation of the equation.

In this chapter, we study the local well-posedness of this equation. Because of the presence of derivatives in the nonlinearity, Strichartz estimates are not enough to close a contraction mapping argument. The fact that we find linear terms such as ∂ 3

x u is reminiscent of the KdV equation, so one might expect to recover up to two derivatives using the smoothing effect 1 , which should be enough to close a contraction mapping argument. However, there is an important difference with respect to the KdV equation: the interaction between terms such as ∂ 3

x u and ∂ x ∂ 2 y u. This is better understood by looking at the symbol associated to the linear operator:

Φ(ξ, µ) = 1 16 ξ 3 - 3 8 ξµ 2 - 1 8 ξ 2 + 1 4 µ 2 + 1 2 ξ.
The smoothing effect is a fundamentally one-dimensional phenomenon, which is why one expects to derive estimates in a space such as L ∞ x L 2 t,y . A key ingredient of the proof, however, is making sure that ∂ ξ Φ does not vanish away from the origin. Unfortunately, this is not the case for us, which is an important difference with respect to the KdV equation.

A way to overcome this consists of dividing the frequency space into regions where at least one component of ∇Φ is nonzero. There will be two such regions in our analysis, one where ∂ ξ Φ does not vanish and another one for ∂ µ Φ. A third, low-frequency region will be necessary as Φ has two critical points at

( 2 3 , ± √ 10 
3 ). The drawback of this approach is that the base space where we recover derivatives when ∂ ξ Φ is nonzero will be L ∞

x L 2 t,y , while the base space corresponding to the region where ∂ µ Φ is nonzero will be L ∞ y L 2 t,x . This will in turn give rise to different spaces where maximal function estimates are needed, as well as additional complications when estimating the nonlinearity.

Similar techniques have been used by Kenig, Ponce and Vega to study NLS-type equations [START_REF]Small solutions to nonlinear Schrödinger equations[END_REF], with the notable difference that the linear operator ∆ has better properties, as it allows for a more isotropic division of the frequency space. Moreover, they can exploit a scaling symmetry which somewhat simplifies their analysis. Perhaps a better comparison can be drawn to the work of Kenig and Ziesler on the local well-posedness theory of the Kadomstev-Petviashvili equation [START_REF] Kenig | Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation[END_REF]. This equation is also anisotropic, and its study requires a combination of Strichartz estimates, smoothing effect and maximal function estimates too.

Statement of results.

The theorems presented in this chapter are a result of a collaboration with K. Kurianski and G. Staffilani. More precisely, the results in Section 4.2 are part of K. Kurianski's thesis [START_REF] Kurianski | Estimates for solutions to the Dysthe equation and numerical simulations of walking droplets in harmonic potentials[END_REF], while the rest have been obtained jointly during the academic year 2019-20.

1 To be precise, we expect to recover one derivative for the linear term W (t)u0. This gain can sometimes be doubled for the Duhamel term using the Hilbert transform and other techniques introduced by Kenig, Ponce and Vega [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF].

Strichartz estimates

We will first focus on the linear equation. By taking the Fourier transform with (x, y) → (ξ, µ), one finds that the solution to the linear equation is: 

Φ(ξ, µ) = 1 16 ξ 3 - 3 8 ξµ 2 - 1 8 ξ 2 + 1 4 µ 2 + 1 2 ξ.
This function has two critical points:

( 2 3 , ± √ 10 
3 ). There is also one zero of the Hessian: ( 2 3 , 0). As explained in the introduction, this is why we must divide the frequency space into different regions, in which the behavior is quite different.

Dispersive estimates.

The following four regions in Fourier space will be important to our analysis: 

R 0 := (ξ, µ) ∈ R 2 | |ξ| ≤ 100 , (4.2.3) R 1 := (ξ, µ) ∈ R 2 | |ξ| > 100, |µ| < |ξ| 200 , (4.2.4) 
χ 1 (ξ, µ) := [1 -ψ(ξ/µ)] • [1 -ψ(ξ)], (4.2.8) χ 2 (ξ, µ) := ψ(ξ/µ) [1 -ψ(ξ)], (4.2.9) χ 3 (ξ) := 1 -ψ(ξ), . (4.2.10)
In this way, χ i corresponds to the region R i .

For k = 0, 1, 2, 3, let us write

W k (t)f (x, y) := ˆR2 e ixξ+iyµ+it Φ(ξ,µ) f (ξ, µ) χ k (ξ, µ) dξdµ.
For the purpose of deriving Strichartz estimates, only two regions matter: R 0 and R 3 . However, we will need the subdivision given by R 1 and R 2 in the next section.

We now present dispersive estimates for W 0 (t) and W 3 (t). The following results were first presented in Kurianski's PhD thesis [START_REF] Kurianski | Estimates for solutions to the Dysthe equation and numerical simulations of walking droplets in harmonic potentials[END_REF]. Proposition 4.2.1. For u 0 ∈ L 1

x,y , we have the following dispersive estimates:

(4.2.11) W 0 (t)u 0 L ∞ x,y
|t| -1/2 u 0 L 1 x,y , and (4.2.12)

W 3 (t)u 0 L ∞ x,y |t| -1 u 0 L 1 x,y .
Proof. We write W k (t)u 0 = I k (t) * u 0 for k = 0, 3, where the convolution is in the variables x and y, and

I k (t, x, y) = ˆeix ξ+iy µ-it Φ(ξ,µ) χ k (ξ) dξ dµ.
We interpret the right-hand side in the sense of distributions, as being equal to

lim ε↓0 ˆeix ξ+iy µ-it Φ(ξ,µ) e -ε (ξ 2 +µ 2 ) χ k (ξ) dξ dµ
for k = 0, 3.

Step 1. We first prove (4.2.12), and we will assume that t > 0 for simplicity. We first perform the µ-integral of I 3 , i.e. f (t, ξ, y) := ˆe-it ( 1 4 -3 8 ξ) µ 2 +iy µ dµ, and rewrite

I 3 (t, x, y) = ˆeixξ-it( 1 16 ξ 3 -1 8 ξ 2 + 1 2 ξ) χ 3 (ξ) f (t, ξ, y) dξ.
Note that we may compute f explicitly, as it is a complex Gaussian. Indeed,

f (t, ξ, y) ∼ e iy 2 /[t(3ξ/2-1)] √ t 3 2 ξ -1 1/2 .
Note that |1 -3ξ/2| 1 because we are in region R 3 , and that we are assuming that we are in the case ξ > 100 as an example.

We therefore rewrite:

I 3 (t, x, y) = 1 √ t ˆχ3 (ξ)
|1 -3 2 ξ| 1/2 e it ψt,x,y(ξ) dξ, for the phase (4.2.13) ψ t,x,y (ξ) = -

1 16 ξ 3 + 1 8 ξ 2 - 1 2 ξ + x ξ t - |y| t 2 3 2 ξ -1 -1
.

The critical points of the phase occur when We then have three cases to consider in applying the Van der Corput lemma: For Case (i), ξ a and ξ b are outside the region in which χ 3 is nonzero and therefore ψ t,x,y (ξ) has no critical points in the region of interest. We then check that ψ t,x,y is monotonic. Note that if ξ > 100, then

ξ a = 1 2   2 - √ 2 
ψ t,x,y (ξ) ≤ - 3 8 ξ + 1 4 < -C for some constant C > 0. If ξ < -100, then ψ t,x,y (ξ) ≥ - 3 8 ξ + 1 4 > C
for some constant C > 0. Therefore

|ψ t,x,y (ξ)| > C
and hence ψ t,x,y (ξ) is monotonic. So we can apply the Van der Corput lemma and conclude that

1 √ t ˆχ3 (ξ) |1 -3 2 ξ| 1/2 e itψt,x,y(ξ) dξ 1 √ t • 1 t = t -3/2 .
for ξ satisfying the scenario in Case (i).

For Cases (ii) and (iii), we will also show that

|ψ t,x,y (ξ)| ≥ C
for some C > 0.

First, assume we are in Case (ii) and that, without loss of generality, ξ a lies in the region in which |ξ| > 100 and ξ b does not. Therefore, the only critical point of concern is ξ a . We consider the set

Ω a = {ξ : |ξ| > 100 and ξ / ∈ [ξ a -δ, ξ a + δ]} for some 0 < δ 1. If ξ a > 100, then ψ t,x,y (ξ) ≤ - 3 8 ξ + 1 4 -C for ξ ∈ Ω a and some C > 0 since - 9 2 |y| t 2 3 2 ξ -1 -3 < 0 in that region. Similarly, if ξ a < -100, then ψ t,x,y (ξ) ≥ - 3 8 ξ + 1 4 C for ξ ∈ Ω a and some constant C > 0 since - 9 2 |y| t 2 3 2 ξ -1 -3 > 0 in that region. Therefore, |ψ t,x,y (ξ)| > C
for ξ ∈ Ω a and for some C > 0.

For Case (iii), we define the set Ω a as before and define

Ω b = {ξ : |ξ| > 100 and ξ / ∈ [ξ b -δ, ξ b + δ]}
for some 0 < δ 1. We then apply the same argument as in Case (ii) to both ξ a and ξ b . We can therefore conclude that |ψ t,x,y (ξ)| > C in each region. Thus, ψ t,x,y (ξ) is monotonic in both cases (ii) and (iii). We therefore apply the Van der Corput lemma over the regions Ω a and Ω b to see that

1 √ t ˆΩa χ 3 (ξ) |1 -3 2 ξ| 1/2 e itψt,x,y(ξ) dξ = O(t -3/2 ), and 
1 √ t ˆΩb χ 3 (ξ) |1 -3
2 ξ| 1/2 e itψt,x,y(ξ) dξ = O(t -3/2 ). In order to compute the contributions from the critical points, we will use Van der Corput's lemma with the second derivative of the phase, see Lemma A.1. To do this, we first define the functions a(ξ) and b(ξ) by

a(ξ) := χ a (ξ)χ 3 (ξ) 1 -3ξ/2 b(ξ) := χ b (ξ)χ 3 (ξ) 1 -3ξ/2
with χ a (ξ) being a smooth non-negative function supported at [ξ a -δ, ξ a + δ] and χ b (ξ) a smooth non-negative function supported at [ξ b -δ, ξ b + δ] for some 0 < δ 1. We check that ψ t,x,y (ξ) = 0 near ξ a and ξ b . Indeed, ψ t,x,y (ξ) will be zero if and only if

ξ = 2 3 ± 2 4 √ -2 |y| 3t or ξ = 2 3 ± (1 -i)2 3/4 |y| 3t .
The above expressions give real-valued solutions only if ξ = 2/3 and y = 0 simultaneously. However, ξ = 2/3 lies outside the region in which χ 0 is nonzero and therefore does not occur in the support of a(ξ) or the support of b(ξ). Therefore, we may use Lemma A.1 and conclude that the separate contributions from the integrals involving ξ a and ξ b are ˆa(ξ)e itψt,x,y(ξ) dξ |t| -1/2 and ˆb(ξ)e itψt,x,y(ξ) dξ |t| -1/2 .

Their total contribution is therefore

1 √ t ˆχa (ξ)χ 0 (ξ) |1 -3 2 ξ| 1/2 e itψt,x,y(ξ) dξ + 1 √ t ˆχb (ξ)χ 0 (ξ) |1 -3 2 ξ| 1/2 e itψt,x,y(ξ) dξ |t| -1
as t → ∞. By combining this with our results over Ω a ∩ Ω b , we ultimately achieve

|I 3 (t, x, y)| |t| -1
as t → ∞ in region R 3 . Therefore, the Young inequality for convolutions yields estimate (4.2.12).

Step 2. We now prove estimate (4.2.11). Similar to above, we consider

I 0 (t, x, y) = ˆe-itΦ(ξ,µ)+i(xξ+yµ) χ 0 (ξ) dξ dµ.
We may again compute the µ-integral first and obtain

I 0 (t, x, y) = 1 √ t ˆχ0 (ξ)
|1 -3 2 ξ| 1/2 e it ψt,x,y(ξ) dξ, for the phase

ψ t,x,y (ξ) = - 1 16 ξ 3 + 1 8 ξ 2 - 1 2 ξ + x ξ t - |y| t 2 3 2 ξ -1 -1
.

This time we take the absolute value inside the integral, and integrate directly:

|I 0 (t, x, y)| |t| -1/2 ˆ|ξ|<100 1 |1 -3 2 ξ| 1/2 |t| -1/2
. This directly yields estimate (4.2.11) after using the Young convolution inequality.

Main estimates.

We handle the regions R 0 and R 3 separately. We first consider region R 3 in which |ξ| > 100.

Proposition 4.2.2 (Large frequency Strichartz estimate). Assume (q, r) and (q, r) are Strichartz admissible pairs satisfying (4.2.17)

2 q = 1 - 2 r . with (q, r) = (2, ∞). Then W 3 (t)u 0 L q t L r x,y u 0 L 2 x,y (4.2.18) ˆR W 3 (-t )F (t ) dt L 2 
x,y

F L q t L r x,y (4.2.19) ˆR W 3 (t -t )F (t ) dt L q t L r x,y F L q t L r x,y . (4.2.20)
Proof. Interpolating between the conservation of the L 2 -norm and (4.2.12) gives

W 3 (t)u 0 L p x,y |t| -1-2 p u 0 L p x,y .
Once we have this estimate, estimates (4.2.18)-(4.2.20) follow from well-known results by Keel and Tao, see [START_REF] Keel | Endpoint Strichartz estimates[END_REF].

We now consider region R 0 in which |ξ| ≤ 100.

Proposition 4.2.3 (Small frequency Strichartz estimates). Assume (q, r) and (q, r) are Strichartz admissible pairs satisfying (4.2.21) 

2 q = 1 2 - 2 r . with (q, r) = (2, ∞). Then W 0 (t)u 0 L q t L r x,y u 0 L 2 x,y (4.2.22) ˆR W 0 (-t )F (t ) dt L 2 x,y F L q t L r x,y (4.2.23) ˆR W 0 (t -t )F (t ) dt L q t L r x,y F L q t L r x,y . ( 4 
= {(ξ, µ) ∈ R 2 | |ξ| ≤ 100}, R 1 = {(ξ, µ) ∈ R 2 | |ξ| > 100, |µ| < |ξ| 200 }, R 2 = {(ξ, µ) ∈ R 2 | |ξ| > 100, |µ| > |ξ| 200 }.
For now we will deal with the high-frequency regions: R 1 and R 2 . The low-frequency region R 0 will be treated separately at the end of this section.

The reason why we distinguish these regions is because the behavior of Φ(ξ, µ) is different in each of them. For instance, the only critical points fall in the region R 0 . In R 1 we have that

(4.3.1) |∂ ξ Φ(ξ, µ)| = 3 16 (ξ 2 -2µ 2 ) - 1 4 ξ + 1 2 |ξ| 2 whenever (ξ, µ) ∈ R 1 .
In the other region, R 2 , this lower bound is false and in fact this partial derivative can vanish. However, we have that

(4.3.2) |∂ µ Φ(ξ, µ)| = - 3 4 ξ µ - 1 4 |ξ| |µ| whenever (ξ, µ) ∈ R 2 .
These features will give rise to different smoothing effects in different frequency regions, which is another example of the anisotropic nature of the Dysthe equation. 

W k (t)f (x, y) := ˆR2 e ixξ+iyµ+it Φ(ξ,µ) f (ξ, µ) χ k (ξ, µ) dξdµ.
Then we have Proposition 4.3.1.

D x W 1 (t)f L ∞ x L 2 t,y f L 2 x,y , (4.3.3) D x W 2 (t)f L ∞ y L 2 t,x f L 2
x,y . (4.3.4) Remark 4.3.2. Note that the same proof shows that

D y W 2 (t)f L ∞ y L 2 t,x f L 2
x,y . Clearly the boundedness of D x W 1 (t) and that of D y W 2 (t) are the strongest statements. In fact they imply that D s 1

x D s 2 y W k (t) is bounded in the corresponding space for any s 1 + s 2 = 1 and s 1 , s 2 ≥ 0.

Remark 4.3.3. Note also that the same result and proof are true for P D x instead of D x , where P is any Fourier multiplier operator whose symbol is bounded. In this regard, see Theorem 4.1 in [START_REF] Kenig | Oscillatory integrals and regularity of dispersive equations[END_REF] for more general results. We will use this important remark for the operator ∂ x |∇| -1 in Section 4.5.

Proof.

Step 1. We first prove it for W 1 . By the Plancherel theorem,

D x W 1 (t)f L 2 t,y = ˆR e ixξ+it Φ(ξ,µ) |ξ| f (ξ, µ) χ 1 (ξ, µ) dξ L 2 t,µ
Now we do the change of variables ξ = Φ(ξ, µ) whose Jacobian is J(ξ, µ) ∼ |ξ| -2 .

ˆR e ixξ+it Φ(ξ,µ) |ξ| f (ξ, µ) dξ = ˆR e ixΦ -1

µ ( ξ)+it ξ |Φ -1 µ ( ξ)| f (Φ -1 µ ( ξ), µ) χ 1 (Φ -1 µ ( ξ), µ) J(Φ -1 µ ( ξ), µ) d ξ.
We take the L 2 t -norm of the above. The Plancherel theorem yields

D x W 1 (t)f 2 L 2 t,y ˆR2 |Φ -1 µ ( ξ)| 2 | f (Φ -1 µ ( ξ), µ)| 2 |χ 1 (Φ -1 µ ( ξ), µ)| 2 J(Φ -1 µ ( ξ), µ) 2 d ξ dµ = ˆR2 |ξ| 2 | f (ξ, µ)| 2 |χ 1 (ξ, µ)| 2 J(ξ, µ) dξ dµ ˆR2 |ξ| 2 | f (ξ, µ)| 2 |χ 1 (ξ, µ)| 2 |ξ| -2 dξ dµ ˆR2 | f (ξ, µ)| 2 dξ dµ = f 2 L 2
x,y .

We finish by taking the supremum in x.

Step 2. Now we study W 2 . By the Plancherel theorem,

D x W 2 (t)f L 2 t,x = ˆR e iyµ+it Φ(ξ,µ) |ξ| f (ξ, µ) χ 2 (ξ, µ) dµ L 2 t,ξ
.

Now we do the change of variables

μ = Φ(ξ, µ) whose Jacobian is J(ξ, µ) ∼ |ξ| -1 |µ| -1 . ˆR e iyµ+it Φ(ξ,µ) |ξ| f (ξ, µ) dµ = ˆR e iyΦ -1 ξ (μ)+it μ |Φ -1 ξ (μ)| f (ξ, Φ -1 ξ (μ)) χ 2 (ξ, Φ -1 ξ (μ)) J(ξ, Φ -1 ξ (μ)) dμ.
We take the L 2 t -norm of the above. The Plancherel theorem then yields

D x W 2 (t)f 2 L 2 t,x ˆR2 |Φ -1 ξ (μ)| 2 | f (ξ, Φ -1 ξ (μ))| 2 |χ 2 (ξ, Φ -1 ξ (μ))| 2 J(ξ, Φ -1 ξ (μ)) 2 dμ dξ = ˆR2 |ξ| 2 | f (ξ, µ)| 2 |χ 2 (ξ, µ)| 2 J(ξ, µ) dξ dµ ˆR2 |ξ| |µ| | f (ξ, µ)| 2 |χ 2 (ξ, µ)| 2 dξ dµ ˆR2 | f (ξ, µ)| 2 dξ dµ = f 2 L 2
x,y .

Note that we could bound |ξ| by |µ| because we are in the region R 2 . We finish by taking the supremum in y.

This result indicates that we should be able to double this smoothing effect when we consider the inhomogenous term coming from the Duhamel formula. However, since we only lose one derivative in the nonlinearity, Proposition 4.3.1 is enough for our purposes. We can use it directly on the Duhamel term as follows. 

D x ˆt 0 W 1 (t -t )F (t ) dt L ∞ x L 2 T,y F L 1 T L 2 x,y , D x ˆt 0 W 2 (t -t )F (t ) dt L ∞ y L 2 T,x F L 1 T L 2
x,y .

Proof. There are different ways to prove this. One option is to write the dual estimate to (4.3.3) in order to work in L 2

x -based spaces and then use the fact that W (t) is unitary. Another options it to use the Minkowski inequality to write: 

D x ˆt 0 W 1 (t -t )F (t ) dt L ∞ x L 2 T,y ˆT 0 χ [t ,T ] (t) D x W 1 (t -t )F (t ) L ∞ x L 2 T,
D x ˆt 0 W 1 (t -t )F (t ) dt L ∞ x L 2 T,y ˆT 0 F (t ) L 2 x,y dt = F L 1 T L 2
x,y .

Additional linear estimates.

To control the evolution at low-frequencies, we will need a combination of the smoothing effect and Strichartz estimates. We define P 0 to be the Fourier multiplier operator corresponding to the symbol χ 0 (ξ), defined in (4.2.7). Proposition 4.3.5. For any s ∈ R, we have the following estimates:

∂ x ∇ s P 0 u L ∞ x L 2 t,y ∇ s u L 2 t,x,y , ∂ x P 0 u L 2 t L ∞ x,y ∇ 1 2 + u L 2 t,x,y . Proof.
(1) For the first estimate we write (4.3.5)

∂ x ∇ s P 0 u = ˆ|ξ|≤100 e ixξ ξ ∇ s u(ξ, t, y) χ 0 (ξ) dξ.
We take the L 2 t,y norm using the Minkowski inequality:

∇ s P 0 u L 2 t,y ˆ|ξ|≤100 ∇ s u(ξ) L 2 t,y dξ.
Finally, we use the Cauchy-Schwartz inequality (and the fact that the region of integration is compact) to estimate

∇ s P 0 u L ∞ x L 2 t,y ∇ s u L 2 t,x,y
.

The Plancherel inequality finishes the proof. (2) By the Minkowski inequality, we take the L 2 t L ∞ x,y -norm of (4.3.5) (with s = 0) and use the Holder inequality to obtain

∂ x P 0 u L 2 t L ∞ x,y u L 2 t L 2 ξ L ∞ y D y 1 2 + u L 2 t L 2 ξ L 2 y = ∇ 1 2 + u L 2 t,x,y
.

The Sobolev inequality and the Plancherel inequality give the last steps.

Because Strichartz estimates are not available for the pair (q, r) = (2, ∞) but we need to work in that space, we use the Sobolev embedding theorem to get as close as necessary to this space. Lemma 4.3.6. For ε > 0 small enough, consider the admissible pair r = 2 ε and q

= 2 1-ε . Then u L 2 T L ∞ x,y T ε/2 ∇ ε u L q T L r x,y .
Proof. The Sobolev embedding theorem in R 2 allows us to go from L ∞ x,y to W ε,r x,y . Then the Hölder inequality in time allows us to go from L 2 T to L q T and pick up a factor of T ε/2 .

Maximal function estimates

4.4.1. T T * argument. We will follow the techniques in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] and also [START_REF] Kenig | Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation[END_REF], which are useful thanks to the anisotropic nature of the KP equation. Let us start by defining:

I s 1 (t, x, y) := ˆR2 e iξx+iµy+itΦ(ξ,µ) |ξ| -s χ 1 (ξ, µ) dµ dξ, (4.4.1) I s 2 (t, x, y) := ˆR2 e iξx+iµy+itΦ(ξ,µ) |µ| -s χ 2 (ξ, µ) dµ dξ, (4.4.2)
where s > 0 will be made explicit later. This will be the loss of derivatives in the maximal function estimates, and it will be found by a Hardy-Littlewood-Sobolev argument.

We are looking for an estimate such as: 

(4.4.3) W 1 (t)f L 4 x L ∞ t,y D s x f L 2 x,
D -s x W 1 (t)g(t, •, •) dt 2 L 2 x,y = ˆR2 ˆR D -s x W 1 (t)g(t, x, y) dt • ˆR D -s x W 1 (t )g(t , x, y) dt dx dy = ˆR2 ˆR D -s x W 1 (t)g(t, x, y) dt • ˆR D -s x W 1 (-t )g(t , x, y) dt dx dy = ˆR2 ˆR g(t, x, y) ˆR D -2s
x W 1 (t -t )g(t , x, y) dt dt dx dy

g L 4/3 x L 1 t,y ˆR D -2s x W 1 (t -t )g(t , x, y) dt L 4 x L ∞ t,y . 
This means that (4.4.4) is equivalent to:

(4.4.5) ˆR D -2s x W 1 (t -t )g(t , x, y) dt L 4 x L ∞ t,y g L 4/3 x L 1 t,y . Note that ˆR D -2s x W 1 (t -t )g(t , x, y) dt = I 2s 1 * g,
where the convolution is in all three variables t, x, y. Now we may use the Hardy-Littlewood-Sobolev inequality to place this in the desired space. ˆR D -2s

x W 1 (t -t )g(t , x, y) dt

L 4 x L ∞ T,y = I 2s 1 * g L 4 x L ∞ T,y | • | -α * x g L 1 T,y L 4 x g L 4/3 x L 1 T,y . 
Lemma 4.4.1. Suppose that φ(x 0 ) = 0, φ (x 0 ) = 0, and φ (x 0 ) = 0.

Suppose that ψ is smooth and supported in a neighborhood of x 0 which is sufficiently small and contains at most one critical point of φ. Then

I(λ) = ˆeiλφ(x) ψ(x) dx ≈ λ -1/2 e iλφ(x 0 ) ∞ j=0 a j λ -j/2 ,
in the sense that for all N, r ≥ 0

d dλ r   I(λ) -λ -1/2 e iλφ(x 0 ) N j=0 a j λ -j/2   = O(λ -r-(N +2)/2 )
as λ → ∞. Moreover the bounds in the error term depend on upper bounds of finitely many derivatives of φ and ψ in the support of ψ, the size of the support of ψ, and a lower bound for |φ (x 0 )|. Furthermore, a j = 0 for j odd and

a 0 = c -iφ (x 0 ) 1/2 ψ(x 0 ).
It is fundamental that we make sure that the implicit constants from using this result do not depend on any of our variables. In order to do that, we first change variables in the integral defining f and identify the right λ. In this case, λ = y µ 0 , and

f (ξ; t, y) = ˆR e i λ µ µ 0 -µ 2 µ 2 0 α j (µ) dµ = µ 0 ˆR e i λ (μ-μ 2 ) α j (μµ 0 ) dμ.
Note that µ 0 has size 2 j , and therefore α j (μµ 0 ) ≈ α 1 (μ) which has uniform bounds and uniform support on |μ| ∼ 1, thus the new phase φ(μ) = μ -μ2 also admits uniform bounds. Consequently, we can use Lemma 4.4.1 with

I(λ) = ˆR e i λ (μ-μ 2 ) α j (μµ 0 ) dμ.
In particular we have that

I(λ) = a 0 λ -1/2 e iλφ(x 0 ) + E(λ)
and has size t 2 k from the first term. In that case, Lemma A.1 gives the bound:

(4.4.13) |I k,j (t, x, y)| |t 2 k | -1/2 t -1/2 2 -k/2 t -1/2 |x| -1/2 when |x| t2 2k .
We can finally present our findings: Proposition 4.4.2. Suppose that t > 2 -2j-k , k ≥ 7, j ≥ 0 and j < k -4. Then we have that

|I k,j (t, x, y)| |x| -1/2 2 j+k/2 .
where the implicit constant is independent of t, x, y, k, j.

Proof. Let us start with the case |x| t2 2k . We interpolate between (4.4.12) and (4.4.6) (which is still true for I k,j ), and then use that t > 2 -2j-k :

|I k,j (t, x, y)| |x| -1/2 t -1/4 2 j/2+k/4 |x| -1/2 2 j+k/2 .
In the case |x| t 2 2k , we directly use (4.4.13) together with t > 2 -2j-k : where the implicit constant is independent of t, x, y, k, j.

|I k,j (t, x, y)| |x| -1/2 t -1/2 |x| -1/2
Proof. Integrationg by parts gives:

I k,j (t, x, y) = x -1 ˆR e ixξ d dξ (α k (ξ) f (t, x, ξ)) dξ.
Then we may use the trivial bound |∂ ξ f (t, x, ξ)| t 2 3j and |f (t, x, ξ)| 2 j to obtain the bound |I k,j (t, x, y)| |x| -1 max{t 2 3j+k , 2 j }.

Now we use the fact that t ≤ 2 -2j-k to obtain:

|I k,j (t, x, y)| |x| -1 2 j .
Finally, we interpolate between this and (4.4.6) to obtain the estimate |x| -1/2 2 j+k/2 . Remark 4.4.5. These results have been obtained under the assumption that we have a stationary point µ 0 . This is the most difficult case, and therefore these results extend to the case where there is no stationary point. The latter is briefly discussed in Section 4.4.3.

As explained in Section 4.4.1, our final loss of derivatives, s, is chosen to offset the growth of 2 j+k/2 , i.e.

(-2s)

• k + j + k 2 < 0.
This yields a loss of derivatives of s > 3/4. We summarize our findings in the following theorem:

Theorem 4.4.6. Suppose that k ≥ 7, j ≥ 0 and j < k -4. Then we have that 

|I k,j (t, x, y)| |x| -1/2
W 1 (t -t )F (t ) dt L 4 x L ∞ T,y ∇ s F L 1 T L 2
x,y .

Proof. Let χ [0,t] (t ) be a time cut-off. By the Minkowski inequality,

ˆt 0 W 1 (t -t )F (t ) dt L 4 x L ∞ t,y ˆT 0 χ [0,t] W 1 (t -t )F (t ) L 4 x L ∞ T,y dt ˆT 0 W 1 (t -t )F (t ) L 4 x L ∞ T,y dt = I.
Now we define F (t ) := W 1 (-t )F (t ), thus

I = ˆT 0 W 1 (t) F (t ) L 4 x L ∞ T,y dt ˆT 0 ∇ s F (t ) L 2 x,y dt = ∇ s F L 1 T L 2
x,y .

The last step follows from the fact that W 1 (-t ) is unitary in L 2 x,y .

4.4.3.

There is no stationary point. We are in this situation when the stationary point µ 0 is far from the support of α j . The following argument can be carried out whenever µ and µ 0 have different orders of magnitude, or more precisely when

|µ| |µ 0 | > 4, or |µ 0 | |µ| > 4.
If this condition is not met, the same argument as in the case of a stationary point can be used. When this condition is met, we have that |µ -µ 0 | max {|µ|, |µ 0 |} in the support of this α j . Consequently, we expect better decay for f . In fact, we may rewrite This time, the first estimate dominates given that j ≥ k -4. However, this makes no difference and we can still claim that 

ˆR2

e iξx+iµy+itΦ(ξ,µ) α k (ξ) α j (µ) dµ dξ.

However, this time we want to obtain estimates of the form

|I k,j (t, x, y)| ≤ C |y| -1/2 ,
where C might depend on j, k (and we will study the precise dependence), but not t, x. In order to do this, one can repeat the arguments explained for L 4

x L ∞ T,y , while inverting the order of the µ and ξ integrals. Alternatively, we can simply use the results we already have to deduce the right bounds.

Once again, the most difficult situation is when there is a stationary point. In that case, we know that |y| ∼ t 2 j+k (see (4.4.7)). As an example, suppose that we are working in the case where k ≥ 7, j ≥ 0 and j < k -4.

Let us first assume that t > 2 -2j-k . We distinguish two cases:

• When |x| t 2 2k , we recall (4.4.12):

|I k,j (t, x, y)| |x| -1 t -1/2 2 -k/2 .

In particular, this means that |x| 2 k-j |y|, and therefore |I k,j (t, x, y)| |x| -1 t -1/2 2 -k/2 |y| -1 t -1/2 2 j-3k/2 .

We first assume that t > 2 -2j-k . Then |I k,j (t, x, y)| |y| -1 t -1/2 2 j-3k/2 |y| -1 2 2j-k .

Finally, we interpolate this bound with the trivial bound 2 j+k (see (4.4.6)) to obtain |I k,j (t, x, y)| |y| -1/2 2 3j/2 .

• When |x| t 2 2k , we recall (4.4.13):

|I k,j (t, x, y)| t -1 2 -k .

Since |y| ∼ t 2 j+k , we have |I k,j (t, x, y)| |y| -1 2 j .

Once again, we interpolate between this and (4.4.6) to obtain |I k,j (t, x, y)| |y| -1/2 2 j+k/2 .

Finally, we have the case t ≤ 2 -2j-k . In that case the trivial bound gives 2 j+k (see (4.4.6)). However, we can also integrate by parts I k,j (t, x, y) = y -1 ˆR e iyµ d dµ α j (µ) ˆR e ixξ+itP (ξ)-i 3 8 tξµ 2 α k (ξ) dξ dµ.

This yields the estimate |I k,j (t, x, y)| |y| -1 max{2 k , t 2 j+3k }.

Combined with t ≤ 2 -2j-k , we obtain |I k,j (t, x, y)| |y| -1 max{2 k , 2 -j+2k }.

When interpolated with (4.4.6), this yields |I k,j (t, x, y)| |y| -1/2 max{2 k+j/2 , 2 3k/2 }.

Therefore, we obtain very similar growth to what we had in the space L 4

x L ∞ T,y . Similar estimates allow us to control E k,j , as well as other cases such as j ≥ k -4.

In the case where there is no stationary point, we can write f as in (4.4.14) and show that the derivative of the phase is bounded below by t 2 j |µ 0 | ∼ 2 j-k |y|. Then one obtains the bound |f (t, ξ, y)| min{2 k-j |y| -1 , 2 j } 2 k/2 |y| -1/2 .

Then integration in ξ adds a factor of 2 k , which provides the desired bound. We summarize these results in the following Corollary 4.4.9. For s > 3/4 and any r = 1, 2 we have that ˆt 0 W r (t -t )F (t ) dt

L 4 y L ∞ T,x ∇ s F L 1 T L 2
x,y .

For the integral over Ω 2 , named I 2 j , we use the fact that |φ (ξ)| |x|. Indeed, the first term in φ (ξ) has size |x|, the second has size |t P (ξ)| ∼ t, and the latter has size t 2 2j . This final fact follows from the fact that in order to have a stationary point, |y| ∼ t 2 j 1 4 -3 8 ξ .

After integrating by parts, and using the fact that t ≥ 2 -j , we obtain |x| -1/2 t -1 2 -3j/2 |x| -1/2 2 -j/2 . Now suppose that there is no stationary point. In that case, we rewrite the µ-integral (called f ) as in (4.4.14) .

Then the full integral we wish to estimate is I j (t, x, y) = ˆR e ixξ+tP (ξ) f (t, ξ, y) χ 0 (ξ) dξ, which we again divide into two regions To deal with Ω 2 , we differentiate two cases:

• When t 2 j |x|, we have that the derivative of the phase of I 2 -3j/2 t -1 |x| 1/2 2 -j/2 |x| -1/2 .

The last inequality follows from the assumption that t 2 j |x|.

The maximal function estimates for W 0 in the space L 4 y L ∞ T,x can be derived using similar ideas. We summarize these results in the following: Theorem 4.4.10. For any s > 3/4,

W 0 (t)u 0 L 4 x L ∞ t,y ∇ s u 0 L 2 x,y , W 0 (t)u 0 L 4 y L ∞ t,x ∇ s u 0 L 2 x,y , ˆt 0 W 0 (t -t )F (t ) dt L 4 x L ∞ T,y ∇ s F L 1 T L 2
x,y , ˆt 0 W 0 (t -t )F (t ) dt

L 4 y L ∞ T,x ∇ s F L 1 T L 2
x,y .

Contraction mapping argument

Define projections P 0 , P 1 and P 2 in frequency space, corresponding to χ 0 , χ 1 and χ 2 , respectively. We will also need to define the Fourier multiplier operator P 3 := ∂ x |∇| -1 . For s > 1 and fixed T > 0, we define the norms: for (q, r) very close to (2, ∞) as given in Lemma 4.3.6. We define Λ T (u) := max j=1,...,6 η j (u) and consider the space

X s T := {u ∈ L ∞ T H s x,y | Λ(u) < ∞}.
We will consider a ball in this space B R = {u ∈ X s T | Λ(u) < R} for some R > 0 to be decided later.

Let us recall the precise nonlinearity in the Dysthe equation:

N (u) = - i 2 |u| 2 u - 3 2 |u| 2 ∂ x u - 1 4 u 2 ∂ x u + i 2 u ∂ 2 x |∇| -1 (|u| 2 ).
Using the Duhamel formula, our initial value problem can be rewritten as We need to control each of these three terms in terms of the η j 's.

u(t
(1) We decompose

I = ( ∇ s ∂ x u) |u| 2 = 2 i=0 ( ∇ s ∂ x P i u) |u| 2
and treat each summand separately. First, we use the Holder inequality:

( ∇ s ∂ x P 1 u) |u| 2 L 2 T,x,y η 1 (u) η 4 (u) 2 .
Similarly,

( ∇ s ∂ x P 2 u) |u| 2 L 2
T,x,y η 2 (u) η 5 (u) 2 .

Finally, for P 0 we use Proposition 4.3.5 as follows:

( ∇ s ∂ x P 0 u) |u| 2 L 2
T,x,y

∇ s ∂ x P 0 u L ∞ x L 2
T,y η 4 (u) 2

∇ s P 0 u L 2 T,x,y η 4 (u) 2 T 1/2 η 3 (u) η 4 (u) 2 .

(2) Now we consider the term II = ( ∇ s |u| 2 ) ∂ x u. First we use the Holder inequality:

( ∇ s |u| 2 ) ∂ x u L 2 T,x,y ∇ s |u| 2 L ∞ T L 2 x,y ∂ x u L 2 T L ∞
x,y . For the first factor, we use Theorem A.3 and the Sobolev embedding theorem:

∇ s |u| 2 L ∞ T L 2
x,y

T 1/2 u L ∞ T,x,y ∇ s u L ∞ T L 2
x,y T 1/2 η 3 (u) 2 .

For the second factor, we use Proposition 4.2.2 to control the terms in P 1 and P 2 , and Proposition 4.3.5 for the term in P 0 :

∂ x u L 2 T L ∞ x,y ≤ ∂ x P 0 u L 2 T L ∞ x,y + 2 i=1 ∂ x P i u L 2 T L ∞
x,y (4.5.2) η 3 (u) + η 6 (u).

(3) Finally, let us study the error term III. By the fractional Leibniz rule, Theorem A.2, we have:

III L 2 x,y ∇ s |u| 2 L 2
x,y ∂ x u L ∞ x,y . We may then use the Holder inequality for the L 2

T norm to reduce this to case [START_REF] Allen | A parabolic problem with a fractional time derivative[END_REF].

This shows how to handle the nonlinear term |u| 2 ∂ x u. The term u 2 ∂ x ū is analogous, and the term |u| 2 u is trivial, so we skip them.

We now focus on the term u ∂ 2 x |∇| -1 (|u| 2 ). Recall that we defined P 3 = ∂ x |∇| -1 , which is a pseudo-differential operator of order zero, and thus maps L p x,y to L p x,y continuously for any 1 < p < ∞ (by the Hörmander-Mikhlin multiplier theorem). We can also write u P 3 ∂ x (|u| 2 ) = u P 3 ∂ x (u ū) = u P 3 (∂ x u ū + u ∂ x ū) .

The last two terms admit a similar treatment and therefore we will discuss only the case of u P 3 (∂ x u ū).

We go back to (4.5.1) and plug in this term. We need to estimate the L 2 T,x,y norm of ∇ s [u P 3 (∂ x u ū)]. Once again, we write: The important point is that this term almost behaves as if P 3 were not there, as it is a continuous function once we are in L p x,y -based spaces (1 < p < ∞). However, because of the many different spaces we are using, one must be careful to make sure that all checks out. We proceed to estimate each of these terms separately:

(1) By the Holder inequality, the Sobolev embedding theorem and the fact that P 3 maps L r x,y to L r x,y continuously,

I L 2 T,x,y η 3 (u) P 3 (∂ x u ū) L 2 T L ∞ x,y η 3 (u) ∇ ε P 3 (∂ x u ū) L 2 T L ∞ x,y η 3 (u) ∇ ε (∂ x u ū) L 2 T L ∞
x,y . Now we write:

∇ ε (∂ x u ū) = ( ∇ ε ∂ x u) ū + ∂ x u ( ∇ ε ū) + [ ∇ ε (∂ x u ū) -( ∇ ε ∂ x u) ū -∂ x u ( ∇ ε ū)] = I 1 + I 2 + I 3 .
(a) To control the first term we use the Holder inequality and the Sobolev embedding theorem:

I 1 L 2 T L r x,y ū L ∞ T,x,y ∇ ε ∂ x u L 2 T L r x,y η 3 (u) ∇ ε ∂ x u L 2 T L r
x,y . The last factor is bounded by T 0+ (η 3 (u) + η 6 (u)) after breaking it up using P i (i = 0, 1, 2) and Proposition 4. We treat each case separately: (a) This term explains why we needed to add P 3 to the norms η 1 and η 2 . Indeed, we write

∇ s P 3 ∂ x u = 2 i=0 P i ∇ s P 3 ∂ x u.
The terms in P 1 and P 2 are analogous so we do only one. By the Holder inequality, |u| 2 (P 1 ∇ s P 3 ∂ x u) L 2 T,x,y η 4 (u) 2 η 1 (u).

The term in P 0 is controlled with η 3 (u) thanks to Proposition 4.3.5 (whose proof is identical when including P 3 ). (b) We control this term using the Holder inequality:

II 2 L 2 T,x,y u L ∞ T,x,y ∇ s u L ∞ T L 2 x,y P 3 ∂ x u L 2 T L ∞ x,y η 3 (u) 2 P 3 ∂ x u L 2 T L ∞
x,y . The last factor can be controlled as in (4.5.2). (c) We first use the Hölder inequality to write:

II 3 L 2 T,x,y u L ∞ T,x,y error L 2 T,x,y .
The error term is absolutely analogous to case II 2 after using the fractional Leibniz rule, Theorem A.2.

(3) This final error term, III, is handled as I thanks to Theorem A.2 again.

Back to (4.5.1), these arguments show that Λ(Ψ(u))

∇ s u 0 L 2 x,y + T 1/2 T 0+ Λ(u) 3 . Recall that we are working with u in the ball B R of functions with Λ(u) ≤ R. One can choose R large enough so that ∇ s u 0 L 2

x,y ≤ R 2 and take T small enough to guarantee that C T 1/2 T 0+ R 3 ≤ R 2 . This guarantees that Φ maps B R to B R . In order to show that it is a contraction, we need to consider the difference Φ(u) -Φ(v) for u, v ∈ B R . A similar argument to (4.5.1) then shows that Λ (Ψ(u) -Ψ(v)) T 1/2 ∇ s [N (u) -N (v)] L 2 T,x,y .

Then one pairs each term in N (u) with its corresponding term in N (v). For instance, one has |u| 2 ∂ x u -|v| 2 ∂ x v. The trick is to write it as a sum of various products where at least one of the factors consists of u -v:

|u| 2 ∂ x u -|v| 2 ∂ x v = |u| 2 ∂ x (u -v) + ∂ x v (|u| 2 -|v| 2 ) = |u| 2 ∂ x (u -v) + ∂ x v (|u| 2 -u v + u v -|v| 2 ) = |u| 2 ∂ x (u -v) + ∂ x v u (ū -v) + ∂ x v v (u -v).
Then the same arguments that show that |u| 2 ∂ x u L 2 T H s x,y Λ(u) 3 can be applied to each of these terms to yield

Λ (Ψ(u) -Ψ(v)) T 1/2 ∇ s [N (u) -N (v)] L 2 T,x,y T 1/2 T 0+ R 2 Λ(u -v).
One can reduce the range of T , if necessary, to guarantee that C T 1/2 T 0+ R 2 < 1. This finishes the proof. 4.6. Ill-posedness 4.6.1. Main idea. In this section we study a mild form of ill-posedness for the Dysthe equation. As discussed in Section 2.5, the idea is to solve (4.1.1) for perturbed initial data u 0 . We then write an asymptotic expansion for the solution to this problem, u , in powers of : u = u 1 + 2 u 2 + . . .

By plugging this into (4.1.1) and matching the coefficients of the powers of , one can write explicit equations for u 1 , u 2 , etc. In particular, one finds that u 1 = W (t)u 0 , u 2 = 0 and u 3 solves the equation:

∂ t u 3 + L(u 3 ) = N (u 1 ), u 3 | t=0 = 0,
for L and N as in (4.1.1). This is equivalent to considering the first nontrivial term of a Picard iterative scheme for the Dysthe equation (4.1.1), which would be (4.6.1) W (t)u 0 + ˆt 0 W (t -t )N (W (t )u 0 ) dt = u 1 (t) + u 3 (t).

Our goal in this section is to show that the operator that maps initial data u 0 to u 3 is not continuous from H s (R 2 ) to C([0, T ], H s (R 2 )) for s < 0, no matter how small T is. Note that the existence of u 3 and some small enough T is guaranteed by Theorem 4.1.1. The lack of continuity of the map from u 0 to u 3 is equivalent to the fact that the map from u 0 to the solution to the Dysthe equation (4.1.1) is not C 3 . Moreover, this means that any attempt to prove lwp for the Dysthe equation based on an iterative scheme in H s (R 2 ) like the one described in (4.6.1) must necessarily fail.

Let us briefly discuss some motivation to justify why we obtain ill-posedness for s < 0. As explained before, one issue with the Dysthe equation is the lack of scaling symmetry, so we cannot technically talk about a critical regularity s c that is invariant under rescaling. When such symmetry is available, the connection between the criticality of the problem and scaling is the following:

• in the subcritical case s > s c , we expect high frequencies to evolve linearly for all times, while the low-frequencies will evolve linearly for small times and nonlinearly for large times. • in the supercritical case s < s c , high frequencies are unstable and develop nonlinear behavior in short times.

See Principle 3.1 in Tao's book [START_REF] Tao | Nonlinear Dispersive Equations: Local and Global Analysis[END_REF] and the discussion that follows for more details. Despite the lack of scaling symmetry, the same heuristics can be applied to our equation: we expect the largest contribution to high-frequencies to come from the terms in (4.1.1) involving the largest number of derivatives. Therefore, a reasonable model to understand their behavior and

F * (ξ, µ) = ˆR4 (ξ + ξ 1 -ξ 2 ) 2 [(ξ + ξ 1 -ξ 2 ) 2 + (µ + µ 1 -µ 2 ) 2 ] 1/2 f (ξ + ξ 1 -ξ 2 ) f (ξ 1 ) f (ξ 2 )
g(µ + µ 1 -µ 2 ) g(µ 1 ) g(µ 2 ) dµ 1 dµ 2 dξ 1 dξ 2 . Remark 4.6.2. Note that F * (ξ, µ) ≤ F (ξ) G(µ). More importantly, F , G and F * are realvalued and positive for the (ξ, µ) considered, as well as the coefficient c(N ). Therefore there is no possible cancellation between the term in F * and the term in F G.

Proof.

Step 1. First we use a Taylor expansion:

e -it Ω -1 i Ω = 1 i Ω ∞ k=1 (-it Ω) k k! = -t + ∞ k=2 (-t) k (i Ω) k-1 k! = -t + O(t 2 | Ω|). since ∞ k=2 (-t) k (i Ω) k-1 k! ≤ t ∞ k=1 |t Ω| k ≤ t |t Ω| 1 -|t Ω| ≤ 4 3 t 2 | Ω| < 1 3 t .
Consequently, the contribution from the term |u| 2 ∂ x u to (4.6.4) can be rewritten as g(µ + µ 1 -µ 2 ) g(µ 1 ) g(µ 2 ) dµ 1 dµ 2 dξ 1 dξ 2 .

Using the fact that |t Ω| < 1 4 we have that

|R(t, ξ, µ)| ≤ 1 3 t c(N ) 3 F (ξ) G(µ),
where F (ξ) :=

ˆR2 |ξ + ξ 1 -ξ 2 | f (ξ + ξ 1 -ξ 2 ) f (ξ 1 ) f (ξ 2 ) dξ 1 dξ 2 .
It is now easy to guarantee that this is a lower order term, see Remark 4.6.4 for details.

Step 2. So far we have only taken into account the nonlinear term |u| 2 ∂ x u. Another nonlinear term is |u| 2 u which we study now. This corresponds to a contribution: e -itΦ(ξ,µ) c(N ) 3

ˆR4

e -it Ω -1

i Ω f (ξ + ξ 1 -ξ 2 )g(µ + µ 1 -µ 2 ) f (ξ 1 ) g(µ 1 )

f (ξ 2 ) g(µ 2 ) dξ 2 dµ 2 dξ 1 dµ 1 . Note that the right-hand side is controlled by |tc| -1/2 ( ψ L ∞ + ψ L 1 ). Moreover, if ψ has a finite number of changes of monotinicity, the right-hand side is entirely controlled by |tc| -1/2 ψ L ∞ .

We also record some results that are useful to work with fractional derivatives. The first one is Theorem A.12 in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. See also [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equation[END_REF] for similar estimates, as well as Proposition 3.3 in [START_REF] Christ | Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation[END_REF].

Theorem A.2 (Fractional Leibniz rule). Let s ∈ (0, 1) and 1 < p < ∞. Then

D s x (u v) -D s x u v -u D s x v L p x u L ∞ x D s x v L p x .
The following result is Proposition 3.1 in [START_REF] Christ | Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation[END_REF]. The requirement that u ∈ L ∞ (R) is only to guarantee that D s x u is defined as a distribution, but is otherwise unnecessary.

Theorem A.3 (Fractional chain rule). Suppose that F ∈ C 1 (C) and s ∈ (0, 1). Let p, p 1 , p 2 ∈ (1, ∞) such that

1 p = 1 p 1 + 1 p 2 . If u ∈ L ∞ (R), then D s x F (u) L p x F (u) L p 1 x D s x u L p 2
x . We will also need vector-valued analogues of these two theorems, where the base space is L p x L q t instead of the inverse order. These may be found in the appendix of [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF], which we copy below for completeness.

Theorem A.4 (Vector-valued chain rule). Let s ∈ (0, 1) and let p, q, p 1 , p 2 , q 2 ∈ (1, ∞),

q 1 ∈ (1, ∞] such that 1 p = 1 p 1 + 1 p 2
, and

1 q = 1 q 1 + 1 q 2 . 149 Then D s x F (u) L p x L q T F (u) L p 1 x L q 1 T D s x u L p 2 x L q 2 T
.

Finally, we have

Theorem A.5 (Vector-valued Leibniz rule). Let s ∈ (0, 1), and let s 1 , s 2 ∈ [0, s] such that s 1 + s 2 = s. Let p, q, p 1 , q 1 , p 2 , q 2 ∈ (1, ∞) such that

1 p = 1 p 1 + 1 p 2
, and

1 q = 1 q 1 + 1 q 2 . Then D s x (u v) -D s x u v -u D s x v L p x L q T D s 1 x u L p 1 x L q 1 T D s 2 x u L p 2 x L q 2 T
. Moreover, if s 1 = 0 then q 1 = ∞ is allowed.

Let us mention that there are many such results for other pairs of exponents, but we will not record them here. An example would be the following: q = 1 is allowed as long as s 1 , s 2 ∈ (0, s) strictly, see Theorem A.9 in [START_REF]Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF].
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 54 The case p = 3. At this stage we are ready to prove Theorem 2.1.4 in the case p = 3. Set I N = [N -N -2δ , N ] for δ := ε+.

Theorem 3 . 1 . 1 .

 311 Let σ = α β , and suppose that(3.1.8) 

Lemma 3 . 2 . 4 .

 324 Let α ∈ (1, 2). Then the function w(ξ)

4 πFigure 3 . 2 . 1 . 8 (

 43218 Figure 3.2.1. Graph of w(ξ) 1/β (blue) and |ξ| α/β (red) for α = 1.75 and β = 0.8 (left), and their derivatives (right). Produced with Wolfram Mathematica.

Lemma 3 . 2 . 10 .

 3210 Let f 2h : 2hZ → C be a function in L 2 2h . Then for all ξ ∈ [-π, π],

3. 4 .

 4 Continuum limit 3.4.1. General strategy. By Theorem 3.1.1, for all small h > 0 we have a solution u h : [0, T ] × hZ → C to the discrete problem given by (3.3.1), where T only depends on the norm of the initial data f H s x . By Theorem 2.1.3, we also have a solution u : [0, T ] × R → C to the continuous problem, where we may assume that T is the smallest of both such intervals of existence. Consider the linear interpolation of u h , which we denote by p h u h : [0, T ] × R → C. For x m = hm ∈ hZ and x ∈ [x m , x m+1 ) we define: (3.4.1)

1 h

 1 and t β |ξ| α 1, we may use the power series defining the Mittag-Leffler function, (3.2.8), to write:

Lemma 3 . 4 . 19 .

 3419 Let s ≥ 1 2 -1 2(p-1) as in (3.4.16), and let s = max{s + σ -α+,

( 4 .

 4 1.1) 

( 4 .

 4 2.1) u(t, x, y) = W (t)u 0 (x, y) :=ˆR2e ixξ+iyµ+it Φ(ξ,µ) u 0 (ξ, µ) dξdµ,

R 2 :

 2 = (ξ, µ) ∈ R 2 | |ξ| > 100, |µ| > |ξ| 200, (4.2.5)R 3 := R 1 ∪ R 2 . (4.2.6) Fix a function ψ ∈ C ∞ c (R) such that 0 ≤ ψ ≤ 1, ψ = 1 in B(0, 100) and supp(ψ) ⊂ B(0, 200). We define χ 0 (ξ) := ψ(ξ), (4.2.7)

( i )

 i Both ξ a and ξ b lie in the region |ξ| < 100. (ii) Only one of either ξ a or ξ b lies in the region |ξ| > 100 while the other lies in the region |ξ| < 100. (iii) Both ξ a and ξ b lie in the region |ξ| > 100.

4. 3 . 2 .

 32 Large frequency smoothing effect. For k = 1, 2, let us write

Corollary 4 . 3 . 4 .

 434 With L p T = L p t ([0, T ]) for 1 ≤ p ≤ ∞, we have the following estimates:

( 4 .

 4 4.14) f (t, ξ, y) = ˆR e it( 1 as well as |I k,j (t, x, y)| |x| -1/2 2 3k/2 when t ≤ 2 -2j-k .

W 2 ( 5 .

 25 Maximal function estimates in L 4 y L ∞ T,x .In this section we derive maximal function estimates for the quantity I k,j (t, x, y) =

Theorem 4 . 4 . 8 .

 448 Suppose that k ≥ 7 and j ≥ 0. Then we have that|I k,j (t, x, y)| |y| -1/2 max{2 3k/2 , 2 3j/2 }.uniformly in t and x.By the T T * argument in Section 4.4.1, this implies the following maximal function estimate for any s > 3/4 and any r = 1, 2:W r (t)u 0 L 4 y L ∞ t,x ∇ s u 0 L 2x,y .

|I 2 j

 2 (t, x, y)| |x| -1 t -1/2 sup

Ω 1 : 3 |

 13 = {ξ ∈ R | |ξ| < 100, |ξ -2 < 2 j/2 |x| -1/2 }, Ω 2 := {ξ ∈ R | |ξ| < 100, |ξ -2 3 | ≥ 2 j/2 |x| -1/2 },with the corresponding integrals being I 1 j and I 2 j . One can use the bound |f | 2 j to obtain:|I 1 j (t, x, y)| ˆΩ1 2 j dξ = 2 3j/2 |x| -1/2 .

η 1 2 x 6

 126 (u) := ∇ s+1 P 1 u L ∞ x L 2 T,y + ∇ s+1 P 1 P 3 u L ∞ x L 2 T,y , η 2 (u) := ∇ s+1 P 2 u L ∞ y L 2 T,x + ∇ s+1 P 2 P 3 u L ∞ y L 2 T,x , η 3 (u) := ∇ s u L ∞ T L (u) := ∇ s P 1 u L q T L r x,y + ∇ s P 2 u L q T L r x,y

  η j (Φ(v)) ∇ s u 0 L 2 x,y + ∇ s N (u) L 1 T L 2 x,y ∇ s u 0 L 2 x,y + T 1/2 ∇ s N (u) L 2 T,x,y . (4.5.1)Since N (u) is a sum of four terms, let us start by considering the term |u| 2 ∂ x u. We write∇ s (|u| 2 ∂ x u) = ( ∇ s ∂ x u) |u| 2 + ( ∇ s |u| 2 ) ∂ x u + ∇ s (|u| 2 ∂ x u) -( ∇ s |u| 2 ) ∂ x u -( ∇ s ∂ x u) |u| 2 = I + II + III.

∇

  s [u P 3 (∂ x u ū)] = ( ∇ s u) P 3 (∂ x u ū) + u ∇ s P 3 (∂ x u ū) + [ ∇ s [u P 3 (∂ x u ū)] -( ∇ s u) P 3 (∂ x u ū) -u ∇ s P 3 (∂ x u ū)] = I + II + III.

,

  3.5. (b)The second term is analogous. Indeed, and one proceeds as with I 1 . (c) The error term, I 3 , admits the same control as I 1 after using the fractional Leibniz rule, Theorem A.2. (2) It is important to rewrite II as follows:II = |u| 2 ( ∇ s P 3 ∂ x u) + u ( ∇ s ū) (P 3 ∂ x u) + u ∇ s P 3 (∂ x u ū) -|u| 2 ( ∇ s P 3 ∂ x u) -u ( ∇ s ū) (P 3 ∂ x u) = II 1 + II 2 + II 3 .

-c(N ) 3 3 c(N ) 3 t 2 ˆR4|

 332 t e -itΦ(ξ,µ) F (ξ) G(µ) + R(t, ξ, µ), where|R(t, ξ, µ)| ≤ 4 Ω| |ξ + ξ 1 -ξ 2 | f (ξ + ξ 1 -ξ 2 ) f (ξ 1 ) f (ξ 2 )

Lemma A. 1 (

 1 Van der Corput). Suppose that φ is a real-valuedC 2 function defined in [a, b] such that |φ (x)| > c in [a, b]. Then ˆb a e itφ(x) ψ(x) dx ≤ 10 |t c| -1/2 |ψ(b)| + ˆb a |ψ (x)| dx .

  2.1.18) as a generalization of classical Schrödinger for fractional β.

	Remark 2.1.6. Note that condition (2.1.13) in Theorem 2.1.3 together with α > 0 and
	β ∈ (0, 1) imply that σ > α > 1 and β > 1 2 .
	Remark 2.1.7. Note that there is a gap in the regularities where we have local well-
	posedness, given by Theorem 2.1.3, and the ill-posedness result of Theorem 2.1.4. For
	p ≥ 5, and s in the range

  As before, this is valid when | arg(z)| ≤ βπ 2 and for any integer N ≥ 2.

	Let us set
	(3.2.15)

  3.2.7. Note that our operators L h,t and ∆ h are not quite the same as those in this result. However, the reason behind this theorem still applies to our setting. Indeed, Theorem 3.2.6 is still true if in (3.2.16) and (3.2.17) we take the supremum over those ϕ h ∈ L 2 h supported on a set that contains at least one critical point of the Fourier multiplier associated to ∆ h . Remark 3.2.8. A similar result shows that there are no uniform-in-h dispersive estimates nor Strichartz estimates. Indeed for any t > 0 and r

  3.3.2. Let us highlight the loss of σ -α > 0 derivatives, due to the Fourier multiplier operator N h,t acting on the nonlinear term, see (3.2.14). Now let us explain how to prove the smoothing effect, which is now possible thanks to the operator Π h . Proposition 3.3.3 (Smoothing effect). Consider f 2h : 2hZ → C in L 2 2h and let

  .2.24) Proof. Interpolating between the conservation of the L 2 -norm and (4.2.11) gives

	W 0 (t)u 0 L p x,y	|t| -1 2 1-2 p	x,y u 0 L p	.
	Finally, we use the results of Keel and Tao again, [39].		
	4.3. Smoothing effect	
	4.3.1. Introduction. We divide our frequency space into three regions, which were
	introduced in (4.2.3):			
	R 0			

  y . First we write the dual to estimate (4.4.3):

	(4.4.4)	ˆR W 1 (t)g(t, •, •) dt	x,y L 2	D s x g L 4/3 x L 1 t,y

.

Note that we could replace integration in R t by [0, T ] t in both (4.4.3) and (4.4.4) if we cut-off in time at any stage.

By a T T * argument, the LHS of (4.4.4) can be rewritten as: ˆR

  2 j+k/2 . As a direct consequence, we obtain a similar estimate for the Duhamel term: Corollary 4.4.7. For s > 3/4, we have ˆt 0

	uniformly in t and y.	
	By the T T * argument in Section 4.4.1, this implies the following maximal function esti-
	mate for any s > 3/4:	
	W 1 (t)u 0 L 4 x L ∞ t,y	∇ s u 0 L 2 x,y .

  , which yields the bounds|f (t, ξ, y)| 2 j ,One can also use integration by parts in f , as in (4.4.14), together with the fact that there is no stationary point to obtain the improved estimate:

	(4.4.16)	|∂ ξ f (t, ξ, y)|	2 j 4 -3 | 1 8 ξ|	.
	(4.4.17)	|f (t, ξ, y)|	2 -j 4 -3 t| 1 8 ξ|	

  When t 2 j |x|, then we may use the improved bound (4.4.17) to obtain

	|I 2 j (t, x, y)|	ˆΩ2	2 -j 4 -3 t| 1 8 ξ|	dξ	2 -j t 2 j/2 |x| -1/2
						2 j satisfies:
		|x + tP (ξ)| |x|.
	Thus integration by parts, together with estimate (4.4.16) yields
	|I 2 j (t, x, y)| |x| -1	ˆΩ2	2 j 4 -3 | 1 8 ξ|	dξ |x| -1/2 2 j/2 .

•

  Our goal is to show that Φ : B R → B R (for some T small enough) and that this mapping is Lipschitz.By Proposition 4.2.2, Proposition 4.3.1, Theorem 4.4.6, Corollary 4.4.7, Theorem 4.4.8, Corollary 4.4.9,and Theorem 4.4.10 we have that

	) = W (t)u 0 +	ˆt 0	W (t -t )N (u(t )) dt
	so let us define the function Ψ(u)(t) := W (t)u 0 +	ˆt 0	W (t -t )N (u(t )) dt .

Technically this is only valid for integer s, but allows a generalization to fractional s which is discussed in Appendix A.

These techniques can be combined with Bourgain's X s,b spaces to extend the local well-posedness theory to Sobolev spaces of negative indices[START_REF]The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices[END_REF].1. BACKGROUND AND MAIN RESULTS

SPACE-TIME FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION

-sβ | • | s u p,N (λ -α T, •) L 2 (I N ) .

CONTINUUM LIMIT FOR DISCRETE NLS WITH MEMORY EFFECT

-3 8 ξ) µ (µ-µ 0 ) α j (µ) dµ.
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We present the following: Theorem 4.1.1 (Joint with K. Kurianski and G. Staffilani). The Dysthe equation (4.1.1) is locally well-posed for initial data u 0 ∈ H s (R 2 ), s > 1.

Remark 4.1.2. The maximal function estimates that we derive in Section 4.4 suggest that it might be possible to close the contraction mapping argument for s > 3 4 using similar techniques. Unfortunately, putting back together the different regions where one can use the smoothing effect creates technical difficulties that we overcome with the Sobolev embedding theorem, which forces s > 1.

Despite the fact that there is no scaling symmetry available for this equation, one can gain some intuition about critical regularity by considering equation (4.1.1) where we only keep the top order terms, i.e.

This new equation enjoys a scaling symmetry, and the regularity invariant under it is s c = 0. We discuss this connection in more depth in Section 4. [START_REF] Bergh | Grundlehren der mathematischen Wissenschaften[END_REF]. In this regard, we present the following result: is ill-posed in H s (R 2 ) whenever s < 0, in the sense that the initial data-to-solution map, from H s (R 2 ) to C([0, T ], H s (R 2 )), is not C 3 .

Beyond the local well-posedness theory in R 2 that we present in this chapter, it would be interesting for practical purposes to develop the theory in the two-dimensional torus. Indeed, Farazmand and Sapsis consider the Dysthe equation on a large two-dimensional rectangular domain [START_REF] Farazmand | Reduced-order prediction of rogue waves in two-dimensional deepwater waves[END_REF]. We hope that these results and techniques for R 2 serve as a good starting point to pursue further research in this direction. 4.1.3. Outline. In Section 2, we prove high-frequency and low-frequency Strichartz estimates for the linear Dysthe flow. In Section 3, we study smoothing effect in different frequency regions, as well as additional linear estimates for the low-frequency component. In Section 4, we derive maximal function estimates. In Section 5, we present the contraction mapping argument in detail and finish the proof of Theorem 4.1.1. Finally, in Section 6, we present some counterexamples to local well-posedness and prove Theorem 4.1.3. as long as

where clearly α = α(s) in some way, to be made precise later. Therefore, the goal is to obtain an estimate of the form:

for some C independent of t, y. Instead of working with I 2s 1 , let us define the following quantities

where k, j ≥ 0.

] (and [0, 2] in the case of n = 1). We will implicitly consider the case ξ, µ, t > 0 but an analogous argument allows other possibilities. The relationship between I 2s 1 (t, x, y) above and I k,j (t, x, y) is that:

I k,j (t, x, y).

Note that direct integration yields the trivial estimate

We start our analysis by studying the µ-integral:

The phase is

which has a stationary point when (4.4.7)

Note that the denominator will never vanish since ξ > 100 when k ≥ 7. The second derivative of the phase has size t |ξ|.

We will distinguish various cases in our analysis, depending on whether we are in the case of a stationary point (whenever |µ 0 | ∼ 2 j ) or not. We will also assume that k ≥ 7 and j < k -4, which corresponds to the case of I 2s 1 , and will later consider other possibilities.

4.4.2.

There is a stationary point. In order to have a stationary point, we need |y| ∼ t 2 k+j . Then we can use the following lemma to obtain asymptotics for an oscillatory integrals. There are many versions of this result, so we restrict ourselves to the one found as Lemma 2.5 in [START_REF] Kenig | Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation[END_REF] (note that we added e iλφ(x 0 ) as it seems to be missing): with uniform bounds:

Note that this asymptotic expansion is relevant as long as λ > 1. In this case,

Therefore we are working in the regime where (4.4.8) t 2 -2j-k . Now we simply need to relate this variable λ with the variable of interest ξ. Note that dλ dξ = λ ξ . Consequently, we have that

Moreover, we have that

Using all this, we can now write the ξ-integral:

I k,j (t, x, y) = ˆR e ixξ+it P (ξ) α k (ξ) f (ξ; t, y) dξ,

where

Using (4.4.9) we may write:

where the error term is

Consequently, we will first study the integral given by the top order:

taking into account that |y| ∼ t 2 k+j , that µ 0 was defined in (4.4.7), and that

Recall that the derivative of the phase of I k,j is

The term t P (ξ) has size t2 2k , while the term in y only has size t 2 2j and therefore does not contribute to cancellation (recall that we are in the case j < k -4). In this situation, there are two cases to consider:

and Lemma A.1 gives the estimate:

Note that we have:

All in all, we obtain the bound:

• |x| t2 2k , in which case we do not know whether

Instead of wondering what happens with the derivative of the phase, we use the second derivative, which is:

When µ > 4 µ 0 . In the first case, the derivative of the phase is bounded below by t 2 k+j and therefore Lemma A.1 yields:

Similarly, we can compute ∂ ξ f (t, ξ, y) (necessary for the next step) and use Lemma A.1 again to obtain:

The ξ-integral now becomes ˆR e ixξ+itP (ξ) α k (ξ) f (t, ξ, y) dξ and Lemma A.1 yields better decay than before (using our improved bounds on f and ∂ ξ f ). When µ 0 > 4µ, the derivative of the phase is

and one may obtain the same lower bound as before.

4.4.4. The case of W 2 . We will also need to estimate W 2 in L 4

x L ∞ T,y , as will become clear from the contraction mapping argument in the next section. Let us re-run the argument used for W 1 : the idea is that now we have the same quantity I k,j but consider the case j ≥ k -4 and k ≥ 7.

Fortunately, our arguments are robust enough to carry out with minimal changes: (4.4.6) is still true, as are (4.4.8), (4.4.9) and (4.4.10). (4.4.12) remains true after a small change:

when |x| t2 2j . Now we have |x| t 2 2j instead of t 2 2k since j dominates k. Similarly, (4.4.13) is still valid in the regime where |x| t 2 2j . It is important to note that there is no cancellation of the second derivative, despite the fact that the sign might point to it. Indeed, note that

Therefore, when ξ > 100 both summands have the same sign, and when ξ < -100, the same thing happens.

All in all, we may bound |φ (ξ)| t 2 j whenever |x| t 2 2j , thus recovering (4.4.13). We then obtain |I k,j (t, x, y)| |x| -1/2 2 j+k/2 when t > 2 -2j-k , 4.4.6. The case of W 0 . For low frequencies, maximal function estimates can be derived using similar techniques. The corresponding kernel is

e ixξ+iyµ+itΦ(ξ,µ) α j (µ) χ 0 (ξ) dξ dµ.

Clearly, we have the trivial bound |I j (t, x, y)| 2 j after direct integration. Let us explain how to derive estimates in the space L 4

x L ∞ T,y as an example. Following the proof of Proposition 4.4.4, one may easily use trivial bounds to obtain (4.4.15) |I j (t, x, y)| |x| -1 max{t 2 3j , 2 j }.

After interpolating these with the bound 2 j we obtain

When t ≤ 2 -j , we directly have the desired bound |x| -1/2 2 3j/2 . Let us therefore assume that we have t ≥ 2 -j from now on. We can further restrict ourselves to the case when |x| t 2 3j , given that the opposite situation is dealt with using (4.4.15) directly.

In order to carry out a finer analysis, we need to distinguish whether the phase involved in the µ-integral has a stationary point or not. As before, the case of a stationary point is the more complicated one. Recall that the stationary point is

, see (4.4.7). Because of the singularity at ξ = 2 3 , we must first isolate a neighborhood of this point. The analysis carried out in Section 4.4.2 still holds, and thus we have that the top order of I j is given by I j (t, x, y) = ˆR e iφ(ξ) χ 0 (ξ) 1

where the phase is

We split this integral into two, given by the regions

The integral over Ω 1 , which we will call I 1 j , admits direct integration:

(at least for short times) might be the following PDE:

This PDE does enjoy a scaling symmetry and its critical regularity under it is precisely s c = 0. In the next section, we will see that the terms in this equation constitute the top order of our approximation to u 3 for short times, which might explain the range of s in Theorem 4.1.3 4.6.2. Computations. Consider initial data u 0,N with small support around some high frequency N = (N 1 , N 2 ) ∈ R 2 . In particular, consider

where

• g is an even function such that 0 ≤ g ≤ 1, and with similar properties in the interval

We first consider the linear flow of u 0,N , i.e.

u 1,N (t, x, y) = W (t)u 0,N (x, y).

Our goal will be to approximate the function

The main argument will be as follows: in order for the map from u 0 to u 3 to be continuous we need

Here, R N is a region where we will be able to approximate u 3,N accurately. First of all, we compute the linear flow for our choice of initial data:

Now we wish to compute N (u 1,N ). As an example, let us start by computing the contribution of the term

Using this, together with (4.6.2), we may write:

where

We take its Fourier transform and do the t -integral first:

ˆR4 ˆt 0 e it Φ(ξ,µ) e -it Ω dt . . . dξ 2 dµ 2 dξ 1 dµ 1 + other terms Using (4.6.3) to write this explicitly yields:

where (4.6.5)

We now develop a rigorous approximation to (4.6.4) for short times.

Lemma 4.6.1. Suppose that |t Ω| < 1/4 and that (ξ, µ)

). Then for large enough N , we have that

where

Using the same argument as before, this term admits the following bound

The proof of Lemma 4.6.5 below shows that this is bounded by |t| c(N

. Therefore, this is a lower order term (N -1 1 below the top order).

Step 3. We now consider the nonlinear term u 2 ∂ x u. A similar procedure as the one developed in (4.6.4) for |u| 2 ∂ x u shows that the contribution of u 2 ∂ x u to u 3,N is:

where

As in Step 1, when |t ω| < 1 4 , the top order of this integral is given by

for

The error term admits a similar analysis to that of Step 1. The key point now is that H(ξ) = F (ξ) and S(µ) = G(µ) thanks to the fact that the integrands are even (because f is odd and g is even). Therefore, this top order term actually interacts with the top order term from Step 1. This is why the coefficients in our nonlinearity are important. From (??), the specific nonlinear terms are

Consequently the two terms have the same sign and we will have a top order of:

Step 4. The same ideas can be used to approximate the contribution of u ∂ 2 x |∇| -1 (|u| 2 ) leading to the term in F * that appears in the statement. Now we study the size of Ω as defined in (4.6.5) (the same applies to that of ω).

Lemma 4.6.3. Suppose that

2 ) we have that

Proof.

We use the triangle inequality and the mean value theorem directly on (4.6.5), together with the fact that ξ k ∈ B(N 1 , N 2ε 1 ), and

2 ) for ε < 1/2 and k = 1, 2.

Lemma 4.6.1 tells us that we will have a valid approximation whenever |t Ω| < 1/4, or more precisely when (4.6.6)

Remark 4.6.4. We also need to make sure that the top order in Lemma 4.6.1 controls the error. That can be achieved by restricting ξ to a region where F (ξ) = F (ξ), so that the error term has at most 1 3 of the size of the top order. Since f is positive, we only need to make sure that the sign of ξ + ξ 1 -ξ 2 is positive. However, note that ξ 1 -ξ 2 ∈ B(0, 2 N 2ε 1 ), and in Lemma 4.6.3 we already require ξ ∈ B(N 1 , N 2ε 1 ), so ξ + ξ 1 -ξ 2 must be positive for N 1 large enough (and we will take it to infinity).

With all these ingredients in place, we can finally estimate the size of F and G. Lemma 4.6.5. Suppose that (ξ, µ)

Proof. We do the case of F as an example. Recall that

and recall that f

. Consequently, for such (ξ, ξ 1 , ξ 2 ) we have that

A similar argument shows that

Finally, we can put these results together:

2 ) and that t satisfies condition (4.6.6). Then

where the implicit constant is independent of t, N, ε.

Proof. As long as t satisfies (4.6.6), we use Lemma 4.6.1, and note that the error term is at most 1 3 the size of the leading order. Then we combine this with the results of Lemma 4.6.5.

We are ready to give the main argument: consider R N = B(N 1 , 1 4 N 2ε 1 ) × B(N 2 , 1 4 N 2ε 2 ) for N = (N 1 , N 2 ). Suppose that N 2 N 1 so that the normalization constant is

Then in order for the initial-data-to-solution map to be C 3 in [0, T ], we need to have:

Note that there should exist a common time of existence T for all N as the initial data has size 1.

We can further substitute T by t, and take this as close as we want to the upper bound given by (4.6.6) (note that such t are smaller than any fixed T for N large enough, and thus valid). Then by Theorem 4.6.6, we have that

We set N 2 = 10 -5 N 1 or some other number so that N 2 is proportional to N 1 , but N 1 still dominates, and then take N 1 → ∞. A contradiction would be reached unless

By taking ε := 1 2 -we obtain the condition s ≥ 0. Note that this is far as we can go, ε < 1 2 is necessary for most of the approximations developed so far.

APPENDIX A

Harmonic Analysis

We use this appendix to write down a few useful results from Harmonic Analysis. We start with the Van der Corput lemma, as seen in [START_REF] Kenig | Oscillatory integrals and regularity of dispersive equations[END_REF].