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Mathématiques.

2020/2021





To my beloved parents Kheira Belalia and Djelil ...



Acknowledgment

I would like to thank all the people who have helped me from far or near to
accomplish this modest work.

First and foremost, I would like to express my deepest gratitude to my
supervisor Prof. Fernando León-Saavedra for making this work possible.
Throughout my training, you have encouraged me to give the best version of
myself in research, and you have always been there for motivating me to do more.
Your professionalism as well as your warm spirit are unparalleled. I hope you will
find, in this thesis, the reflection of your efforts.

My sincere gratitude goes to my supervisor Prof. Mohammed Hichem Mortad
who inspired me through his works and books to love the Theory of Operators.
Thank you very much for inspiring me, for your guidance, patience, and
understanding.

I would like to acknowledge my co-authors Mr. Souheyb Dehimi, Mr. Bent
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Notation

C the set of complex numbers.
Ĉ = C ∪ {∞} the Riemann sphere.
D = {z ∈ C : |z| < 1} the unit disk of C.
∂D = {z ∈ C : |z| = 1} the unit circle.
D(a, r) = {z ∈ C : |z − a| < r} disk centered on a ∈ C of radius r > 0.
Π = {z ∈ C : Im(z) > 0} the upper half plane of the complex plane
αp(z) = p−z

1−pz the involution automorphism exchanging 0 and p ∈ D.
X a Banach space.
F a Fréchet space.
H a Hilbert space.
B(X ) the algebra of bounded linear operators on a Banach space X .
σp(A,X ) := {λ ∈ C : ∃x ∈ X x 6= 0 : Ax = λx} the point spectrum of the
operator A on X .
Ext(T,X ) := {X ∈ B(X ) : TX = λXT for some λ ∈ C} the extended
spectrum of T on X .
Hp(D) := Hp Hardy spaces
‖f‖p norm of f ∈ Hp(D).
Dβ weighted Dirichlet spaces
B the backward shift.
F the forward shift.
Mf multiplication operator by the fixed function f .
Cϕ composition operator induced by the function ϕ.
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Introduction

Let X be a complex Banach space and let B(X ) be the algebra of all
bounded linear operators on X . We say that a complex scalar λ is an
extended eigenvalue of T ∈ B(X ) provided that there exists a non-zero
bounded linear operator X on X such that TX = λXT . In this case, X is
called an extended eigenoperator for T corresponding to the extended
eigenvalue λ. Equivalently, we can simply say that X λ-commutes with T .
Throughout this manuscript, we shall denote by Ext(T,X ) the set of the
extended eigenvalues of T ∈ B(X ).

The study of extended eigenvalues of a bounded operator has its origin
in the study of the Invariant Subspace Problem. Recall that this Functional
Analysis famous open problem is stated as follows:

Does every bounded linear operator T on a separable,
infinite-dimensional Hilbert space H have a nontrivial invariant
subspace? That is, do there exist a closed subspace M of H with
M 6= {0} and M 6= H such that TM⊂M?

Using the Schauder fixed-point Theorem, V. I. Lomonosov [62] showed in
1973 that if a bounded operator (non-multiple of the identity) commutes
with a compact operator on a Banach space, then it has a non-trivial
hyperinvariant subspace. Recall that a subspace M is said to be
hyperinvariant for an operator T if TM ⊂ M and XM ⊂ M for every
bounded operartor X that commutes with T . Six years later, S. Brown [19]
and the mathematicians H. W. Kim, R. L. Moore, and C. M. Pearcy showed
independently in [48] that if A has a non-zero compact eigenoperator then A
has a closed hyperinvariant (and thus an invariant) subspace on H.

One of the aims of our investigation is to study different questions related to
the extended eigenoperators and extended eigenvalues of some bounded linear
operators on Banach spaces (or eventually on Fréchet spaces). For instance,
what is the extended-spectrum of composition operators on weighted Hardy
spaces? What if we consider operators λ-commuting with the differentiation
operator on the space of entire functions? Under which conditions are they
hypercyclic?
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IV Introduction

This manuscript is structured as follows:

Chapter 1 is a preliminary chapter in which some basic definitions and
some results related to bounded and unbounded operators, are introduced.

In Chapter 2, we provide a characterization of when the Cesáro means of
higher-order are hypercyclic on Banach spaces. Moreover, we establish
necessary conditions on the extended-spectrum of a bounded linear operator
for convex-cyclicity. Then, we use these results to gather some examples of
operators that are not convex-cyclic. At the end, we ask whether the latter
result can be strengthened to show its non-Supercyclicity. We answer this
question negatively by giving a counterexample. Finally, as we shall see in
Chapter 4, this result is no longer true for continuous linear operators on
Fréchet spaces.

In Chapter 3, we fully characterize the hypercyclicity of the extended
eigenoperators of the differentiation operator D in the space of entire
functions. In particular, if T is an extended eigenoperator of D associated
with the extended eigenvalue λ, we show that T is hypercyclic if and only if
the modulus of λ is greater than 1 and T is not a multiple of a composition
operator induced by an affine endomorphism of C.

Chapter 4 is mainly devoted to extend an investigation which begun in
[55] on Hardy spaces. We shall focus in this chapter on the study of extended
eigenvalues of linear fractional composition operators defined on weighted
Hardy spaces. Depending on the classification of the linear fractional
self-map on the unit disc, we compute the extended spectrum. The case
when the self-map fixes one interior fixed point in the unit disk and another
one outside of its closure is completely solved.

Chapter 5 deals with unbounded linear operators. The Theory of
Unbounded Operators was mainly developed by J. von Neumann and M.
Harvey Stone in the 1930s. This theory stands between Mathematics and
Physics. For instance, it plays a major role in the Theory of Differential
Equations as well as Quantum Mechanics. In this part of the thesis, it
should be noticed that a bounded operator can be defined on a subspace of
Hilbert space, unlike the previous chapters where a bounded operator was
always defined on the entire Fréchet (or Banach) space.

Recall that if A and B are two linear operators with respective
domains D(A) and D(B), then B is said to be an extension of A if
D(A) ⊆ D(B) and Ax = Bx, for all x ∈ D(A). In this case, we shall write
A ⊆ B. A bounded linear operator T on a Hilbert space is said to intertwine
two linear operators A and B if TA ⊆ BT . Particularly, if A = B, then we
say that T commutes with A. Certainly, one of the fundamental results
related to these intertwining relations is the Fuglede Theorem. In [37], B.
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Introduction V

Fuglede proved the following theorem: ”If an operator intertwines two
normal operators, then it intertwines their adjoints”. Throughout Chapter 5,
we shall investigate the following related conjecture which appeared in [64]:

Let T be an operator and let B ∈ B(H) be normal. Does BT ⊂
TB∗ imply B∗T ⊂ TB?

Observe that when T ∈ B(H), then the previous conjecture is a
Fuglede-Putnam version. Therefore, it is interesting to investigate this
problem when T is an unbounded closed operator. Notice in the end that the
conjecture is not covered by any of the known unbounded generalizations of
Fuglede-Putnam Theorem.
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Resumen

La densidad de las órbitas y la conmutatividad salvo un factor multiplicativo
de los operadores lineales acotados han resultado de gran interés para los
teóricos de operadores durante las últimas décadas. Este interés proviene de
la relación que existe entre el estudio de las propiedades orbitales y
espectrales de los operadores lineales sobre espacios de Banach y el problema
del subespacio invariante. Como consequencia, la investigación sobre la
Teoŕıa de la Hiperclicidad ha aumentado considerablemente. En este
manuscrito, caracterizamos la hiperciclicidad de los medias de Cesàro de
orden superior sobre espacios de Banach. Demostramos algunas condiciones
suficientes sobre el espectro extendido de un operador lineal acotado que
garantizan su no ciclicidad-convexa. La noción de ciclicidad-convexa fue
introducida por H. Rezaei en [83] en 2013. Es una noción que garantiza la
ciclicidad y a su vez es necesaria para la hiperciclicidad. Caracterizamos la
hiperciclicidad de los operadores que conmutan, salvo factor multiplicativo,
con el operador de diferenciación, en el espacio de las funciones enteras con la
topologia de la convergencia uniforme sobre conjuntos compactos. Nuestros
resultados son una extensión de algunos de los resultados más clásicos
relacionados con el operador de diferenciación, es decir, los de G. Godefroy y
J. H. Shapiro [39], y Aron y Markose [2]. A continuación, consideramos
algunos operadores particulares, como los operadores de composición en
espacios de Hardy ponderados. Estos operadores han sido estudiados
intensamente por varios matemáticos en el espacio de Hardy, véase el reciente
trabajo [54]. Aunque sabemos menos cosas sobre estos operadores en
espacios de Hardy con pesos, hemos calculado por completo el espectro
extendido de los operadores de composicion que son inducidos por una
transformación bilineal que fija un punto interior del disco unitario y uno
exterior de su cierre. En concreto, tratamos los casos eĺıptico, loxodrómico y
un subcaso hiperbólico. Por último, pasamos al estudio de los operadores no
acotados más generales. Después del art́ıculo de von Neumann [99], la
conmutatividad y las relaciones de entrelazamiento de los operadores no
acotados han sido desarrolladas por muchos matemáticos. Entre estos
matemáticos, citamos a Fuglede, cuyo teorema fue una mejora del teorema
espectral para operadores normales. Finalmente, demostramos una nueva
versión del Teorema de Fuglede para operadores normales no acotados.
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Abstract

The density of orbits and commutativity up to a factor of bounded linear
operators have become of great interest for Operator Theorists during the last
decades. This interest comes from the relationship that exists between the
study of orbits and spectral properties of linear operators on Banach spaces
and the Invariant Subspace Problem. As a consequence, the research on the
Theory of Hyperclicity has increased considerably. In this manuscript, we
characterize the hypercyclicity of the Cesàro means of higher-order on Banach
spaces. We prove some sufficient conditions on the extended-spectrum of a
bounded linear operator that guarantee its non convex-cyclicity. The notion
of convex-cyclicity, was introduced by H. Rezaei in 2013 (see [83]). It is a
sufficient condition for cyclicity and a necessary condition for hypercyclicity.
We characterize the hypercyclicity of operators commuting up to a factor with
the differentiation operator in the space of entire functions equipped with
the topology of uniform convergence for compact sets. Our results are an
extension of some of the most classical results related to the differentiation
operator, that is, the ones of G. Godefroy and J. H. Shapiro [39], and R. Aron
and D. Markose [2]. Next, we consider some particular operators, such as
composition operators in weighted Hardy spaces. These operators have been
studied intensely by several mathematicians in the Hardy space, see the recent
of [54]. Although we know fewer things about these operators in weighted
Hardy spaces, we calculated the extended-spectrum of composition operators
that are induced by a bilinear transformation that fixes an interior point of
the unit disk and an exterior one of its closure. Namely, we treat the elliptic,
loxodromic cases and a hyperbolic subcase. Finally, we continue to the study
of the more general unbounded operators. After the paper of von Neumann
[99], commutativity and intertwining relations of unbounded operators have
been developed by many mathematicians. Among these mathematicians, we
state Fuglede whose Theorem was an improvement of the Spectral Theorem
for Normal Operators. We show a new version of the Fuglede Theorem for
unbounded normal operators.

State of the art

In this section, we will discuss the research done before the publication of
our articles [7, 9]. It is not our scope to write an exhaustive description of
the current state of knowledge. However, we shall outline some ideas and
comments on each chapter.

Chapter2: The notion of Cesàro-hypercyclicity appeared for the first
time in León-Saavedra’s paper [58] in 2002. Ever since, several researchers
have been interested in the study of Cesàro-hypercyclic operators (see for
instance [22, 25, 26, 33, 58]). In 2013, H. Rezaei introduced the concept of
convex-cyclicity in [83]. The two properties are important as they guarantee
cyclicity of bounded linear operators. Moreover, both notions are closely
related as the Cesàro-hypercyclicity implies convex-cyclicity. Recently,
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convex-cyclic operators have been studied in [1, 34, 97]. León-Saavedra
characterized the hypercyclicity of the powers of bounded linear operators in
terms of the Cesàro-hypercyclicity. In 2016, T. Bermúdez-Bonilla and N. S.
Feldman [12] characterized the hypercyclicity of the powers of a bounded
linear operator in terms of the hypercyclicity of a certain convex means. In
our work [9], we show that it is possible to characterize the
Cesàro-hypercyclicity of higher-order of an operator T ∈ B(X ) using its
powers.

Chapter3: The first theorems in the Theory of Hypercyclicity are
certainly attributable to G. D. Birkhoff [16] and G. R. McClane [63] who
proved, respectively, the hypercyclicity of the translation operator and the
differentiation operator in the space of entire functions. Ever since, the
interest in the hypercyclicity of linear continuous operators in Fréchet spaces
has increased significantly. Surely, one of the most impressive works related
to this topic is the one of G. Godefroy and J. H. Shapiro [39] which is cited
more than 670 times. In their work, they proved that each non-scalar
operator commuting with the differentiation operator is hypercyclic. In [8],
we characterize when operators commuting up to a factor with the
differentiation operator are hypercyclic, extending the results of G. Godefroy
and J. H. Shapiro.

Chapter4: The notion of extended eigenvalues was introduced by A.
Biswas, A. Lambert, and S. Petrovic in [17] in 2002. The investigation of
extended eigenvalues has its beginning within the application of the famous
theorem of Lomonosov and a fortiori within the study of the Invariant
Subspace Problem. Much research has been done to compute the set of all
extended eigenvalues of bounded linear operators on Banach spaces. This is
what is usually called the computation of the extended-spectrum. In 2019, M.
Lacruz, F. León-Saavedra, S. Petrovic, and L. Rodŕıguez-Piazza calculated in
[54] the extended spectrum for composition operators in the classical Hardy
space of analytic functions. In our work [10], we aim in the same direction in
the more generalized weighted Hardy spaces. Although we lose a lot of data
in the transition from the Hardy space to weighted Hardy spaces, we treated
the elliptic and loxodromic cases and a hyperbolic nonautomorphic sub-case
successfully. Currently, we are collecting the missing pieces to treat the
parabolic and hyperbolic cases (our work is still under development).

Chapter5: In 1942, J. von Neuman proved in [99] that if the matrix B
commutes with the matrix N , with N being normal (that is BN = NB with
N∗N = NN∗), then B commutes with N∗. A natural question was then
raised by the same author who asked whether his result remained true in the
case of infinite-dimensional spaces. In 1950, B. Fuglede answered this question
affirmatively for a non-necessarily bounded normal operator N and a bounded
operator B (see [37]). Since then, this result has been referred to as the Fuglede
Theorem. Almost simultaneously, P. R. Halmos gave another proof in [41]
where both of B and N were assumed to be bounded. In 1951, C. R. Putnam
generalised the Fuglede Theorem to two normal operators (see [81]). Namely,
if B ∈ B(H) and N and M are non-necessarily bounded normal operators
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then B intertwines N and M if and only if it intertwines their adjoints N∗ and
M∗. That is:

BN ⊆MB if and only if BN∗ ⊆M∗B.

There are different proofs of the Fuglede-Putnam Theorem besides the
previously cited ones. For instance, M. Rosenblum provided a very nice and
elegant proof in [86] based upon the Liouville Theorem. In 1959, S. K.
Berberian observed that Fuglede’s version was in fact equivalent to
Putnam’s, which was an interesting discovery. Ever since, much work has
been done on these intertwining relations and several generalisations have
been made in this sense (see [66, 68, 69, 76, 82] for instance). The majority
of these generalizations seem to go in one direction. That is, towards
weakening the normality hypothesis, regardless of the fact that the first
version still has some uncharted territories. For example, in [64], M.H.
Mortad et al. proposed a conjecture related to unbounded normal operators.
It is our scope in [7] to treat this conjecture and to see in which cases it holds
and in which cases it doesn’t do.

Objectives

At the outset, we had some initial purposes that were completely achieved.
Along the way, new problems related to our initial work arose. These problems
were then our new aims. During our research, we planned few questions that
we answered afterward in [7, 8, 9, 10]. Basically, we were expecting to

1 characterize the Cesàro-Hypercicylicity of higher order of bounded linear
operators on separable Banach spaces.

2 compute the extended spectrum of linear fractional composition
operators on weighted Hardy spaces.

3 characterize the hypercyclicity of operators commuting up to a factor
with the differentiation operator on the space of entire functions.

4 answer an open question raised in [64] about intertwining relations for
unbounded normal operators and related to Fuglede’s theorem.

Methodology

During my training period, I have been able to attend several congresses, some
of them are national and others are international. Through these congresses,
I had the opportunity to meet many researchers in the field with whom I have
discussed fruitfully my research problems. It is said that ”From the discussion
comes the light”, and this is certainly true as I was able to shed light on many
ideas I had in mind.
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X Formal aspects

During these last 3 years, I have been able to assist the Functional Analysis
seminars of the research group FQM257. These seminars have allowed me
to broaden my knowledge on different disciplines of the subject. They were
generally held weekly on the Puerto Real campus. During the pandemic, Zoom
or Google Meet sessions were held.

During my stay in Oran, I had regular meetings with my supervisor
Hichem. Our method of dealing with problems was generally as follows:
either we tried to prove our results by providing a demonstration or we
looked for counter-examples to prove the opposite. During our meetings, we
also discussed Hichem’s achievements: his books [72, 73] and recent articles.
As a result, I was always up to date on the novelty of his research. In the
2019 winter, Hichem had presented seminars on the Matrices of Unbounded
Operators. These seminars complemented my research work and helped me
to have a better understanding of the behaviour of this class of operators.
During these meetings, we also obtained some modest results on posinormal
operators.

My supervisor Fernando and I had daily meetings during my stay in Jerez.
Our work rhythm was intense and very exciting. Many questions were asked,
and with multiple techniques, we tried to find answers to our interrogations.
We could solve several problems while others are still open. During the past
three years, Fernando has given interesting seminars, for instance El fárrago
de punto fijo (2019) and Las aventuras de Volterra (2020). Fernando has also
encouraged me to make oral and poster communications in the II Workshop
of Functional Analysis and the BYMAT conferences.

Finally, for my research, I had to use the bibliographic databases
MathSciNet and Google Scholar. I also used the social academic network
ResearchGate. The shadow libraries Sci-Hub and Library Genesis have also
been of great use to me.

Conclusions and impact

During our research, we were able to solve several problems related to the
Theory of Bounded and Unbounded Operators. Mainly: :

1 We characterized when the Cesáro means of higher order are hypercyclic
on Banach spaces. More precisely, we showed that a bounded linear
operator T is (p) Cesàro-hypercyclic if and only if there exists a vector

x such that Tn(x)
np

is dense in X (see Theorem 2.2.3).

2 We proved that if T is a bounded linear operator with arbitrary large
extended eigenvalues then T cannot be convex-cyclic. (see Theorem
2.3.2)

3 On weighted Hardy spaces H2(β), we computed the extended spectrum
of composition operators that are induced by linear transformations that
fix one interior fixed point of the unit disk and an other exterior one. To
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be more explicit, if ϕ is an elliptic transformation with canonical form
ϕ(z) = ωz for some ω ∈ ∂D \ {1}, then

Ext(Cϕ,H2(β)) = {ωn : n ∈ Z},

and if ϕ is a loxodromic or a hyerbolic nonautomorphism transformation
with canonical form ϕ(z) = c(z − p) + p, |c| < 1, then

Ext(Cϕ,H2(β)) = {cn : n ∈ Z},

(see Theorem 4.2.1 and Theorem 4.3.1 respectively).

4 We completely characterized when the extended eigenoperators of the
differentiation operator D are hypercyclic on the space of entire
functions. Accurately, if T is such that DT = λTD for some complex
scalar λ, then T is hypercyclic if and only if |λ| ≥ 1 and T is not a
multiple of a composition operator induced by an affine endomorphism
of C.

5 We deduced that the operators λ-commuting with the adjoint of the
Cesàro operator in H2 are not hypercyclic (see Corollary 3.7.4).

6 We proved a new version of the Fuglede Theorem for unbounded
operators. Namely, if B ∈ B(H) is normal with a finite point spectrum
and T is a non-necessarily bounded operator, then
BT ⊂ TB∗ implies B∗T ⊂ TB (see Theorem 5.1.1).
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León-Saavedra, and Maŕıa Pilar Romero De La Rosa. Hypercyclicity of
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Chapter 1

Preliminaries

This chapter aims to gather some general known results related to bounded
and unbounded operators. We shall divide it into six sections. The first
section deals with linear fractional transformations on the extended
complex-plane. The classification of these transformations on the unit disk is
fundamental to our work in Chapter 4. The second section aims to introduce
some classical spaces of analytic functions such as the Fréchet space of entire
functions and weighted Hardy spaces. In the third section, we introduce
composition operators induced by a linear fractional transformation of the
unit disk. These operators are mainly considered in Chapters 4. In the
fourth section, some properties of hypercyclic operators are given. This
section aims specifically to recall the Hypercyclicity Criterion which will be
discussed in Chapter 3. Finally, the fifth and last sections aim to give some
known results on unbounded linear operators on Hilbert spaces.

1.1 Self-maps of the Unit Disk

In this section, we define linear fractional transformations on the extended
complex plane and then we classify them on the unit disk. This classification
is essential to our results in Chapter 4. Most of the results that we shall recall
can be found in [94, Chapter 0] and/or [21] for instance.

The general form of a linear fractional transformation (also called a Möbius
transformation) is given by

ϕ(z) =
az + b

cz + d
for all z ∈ Ĉ := C ∪ {∞},

where a, b, c and d are any complex numbers satisfying ad − bc 6= 0. If
ad = bc, the linear fractional transformation (abbreviated LFT) defined above
is a constant. It is easy to see that ϕ is always a bijective holomorphic function
on the Riemann sphere Ĉ . Its inverse is given by the expression:

ϕ−1(z) =
dz − b
−cz + a

for all z ∈ Ĉ.

Clearly ϕ−1 is also a Möbius transformation. In fact, the set of all LFTs on Ĉ
is a group under composition. Any Möbius transformation is determined by
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2 CHAPTER 1. PRELIMINARIES

its action on three points.
Recall now that automorphisms of the unit disk are of the form:

αp(z) = λ
z − p
pz − 1

with |λ| = 1 and |p| < 1. (1.1)

and where p and λ are explicitly given by:

p = ϕ−1(0) and, λ = − ϕ′(0)

|ϕ′(0)|
.

Indeed, without loss of generality, we may assume that ad − bc = 1. In this
case, any LFT can be expressed as:

ϕ(z) = α
z − β
γz − 1

, α 6= 0, βγ 6= 1.

where α =, β = and γ =. To prove that ϕ has the form 1.1 , we only need to
show that α = λ and that γ = β with |λ| = 1 and |β| < 1. We know that for
all z ∈ D satisfying |z| = 1, we have |ϕ(z)| = 1. Thus, proceeding with some
computations, we obtain:

|ϕ(z)| = |α| |z − β|
|γz − 1|

= 1⇐⇒ |α|2|z − β|2 = |γz − 1|2

⇐⇒ |α|2(z − β)(z − β) = (γz − 1)(γz − 1)

⇐⇒ |α|2(1 + |β|2)− 2|α|2Re(βz) = |γ|2 + 1− 2Re(γz).

By identification, we have: |α|2(1 + |β|2) = |γ|2 + 1 and β|α|2 = γ. It is clear
that those two equations imply that either |α| = 1 or |βα| = 1. Indeed, if
|βα| = 1 then β|α|2 = γ would imply |βα|2 = βγ = 1, a contradiction. Hence,
|α| = 1, and:

γ = β|α|2 = β.1 = β.

Obviously, |β| < 1, since

|β| = |β|.1 = |β||α| = |βα| < 1.

Now, observe that for z ∈ D we have

ϕ−1(z) =
z − λp
pz − λ

=⇒ ϕ−1(0) = p.

The derivative of ϕ is given by:

ϕ′(z) = λ
|p|2 − 1

(pz − 1)2
.

At the origin, we have;

ϕ′(0) = λ(|p|2 − 1).

2



CHAPTER 1. PRELIMINARIES 3

Since |λ| = 1, we obtain:

ϕ′(0)

|ϕ′(0)|
= λ
|p|2 − 1

||p|2 − 1|
,

but,
|p|2 − 1

||p|2 − 1|
= −1.

Because:
|p| < 1 =⇒ |p|2 < |p| < 1 =⇒ |p|2 − 1 < 0.

Thus, λ = − ϕ′(0)
|ϕ′(0)| .

If λ = 1, we obtain the involution automorphism of the unit disk that
exchanges the points p and 0.

1.1.1 Classification of linear fractional transformations

Recall that any Möbius transformation ϕ has either one double fixed point or
two simple fixed points. Indeed, the equation ϕ(z) = z is equivalent to solve:

cz2 + (d− a)z − b = 0. (1.2)

If c 6= 0, the solutions of the quadratic equation in (1.2) are the two fixed
points:

a− d±
√

(a− d)2 + 4bc

2c
. (1.3)

Now, if c = 0, then ϕ fixes ∞. The quadratic equation in (1.2) becomes an
equation of one degree with solution:

z =
b

d− a
.

At this point, we observe that ∞ is the only fixed point if and only if:

a = d and b 6= 0

and the transformation in this case can be expressed as:

ϕ(z) = z +
b

d
.

In the case when ϕ fixes one fixed point (of double multiplicity), we say that
ϕ is parabolic on the Riemann sphere Ĉ. Otherwise, if ϕ is not parabolic then
ϕ has two distinct fixed points α and β in Ĉ. In this case, we can see that ϕ
is conjugate to ψ(z) = λz where λ is a complex scalar. That is, there exists a
linear fractional transformation φ such that:

ψ = φ ◦ ϕ ◦ φ−1 with ψ(z) = λz.

3



4 CHAPTER 1. PRELIMINARIES

Indeed, let us consider φ(z) = z−α
z−β then φ takes α to 0 and β to ∞. It is

easy to see that ψ := φ ◦ ϕ ◦ φ−1 fixes both 0 and ∞. Hence, ψ must have the
form ψ(z) = λz, where λ is some complex number.

Now, the classification of the linear fractional map ϕ depends on λ . This
scalar is called a multiplier of ϕ.

Definition 1.1.1. Suppose ϕ ∈ LFT (Ĉ) is neither parabolic nor the identity.
Let λ 6= 1 be the multiplier of ϕ. Then ϕ is called:

• Elliptic if |λ| = 1.

• Hyperbolic if λ > 0.

• Loxodromic if ϕ is neither elliptic nor hyperbolic.

Consequently, parabolic maps are conjugate to translations, elliptic maps to
rotations, hyperbolic ones to positive dilations and loxodromic ones to complex
dilations.

1.1.2 Classification of linear fractional self-maps on the
unit disk

If ϕ is a linear fractional self-map of the unit disk, that is ϕ(D) ⊂ D then the
classification ϕ on D is based on the location of its fixed points. More precisely,
we have the following theorem:

Theorem 1.1.2. Let ϕ be a lineal fractional map of the unit disk D such that
ϕ(D) ⊂ D. Then

• If ϕ is parabolic then its fixed point is in ∂D.

• If ϕ is hyperbolic then one of the fixed points is in D and the other one
is outside D.

• If ϕ is elliptic or loxodromic then one of the fixed points in D and the
other one is outside D.

The proof of the previous folklore-theorem can be found in [30,
Proposition 4.47] for instance. In what comes, we will prove the parabolic
case. Our proof is different from the one in [30].

Assume that ϕ is parabolic and that p ∈ D is its fixed point. Then, let
ψ := αp ◦ ϕ ◦ αp, for z ∈ D. It is easy to check that ψ fixes zero. Hence, ψ is
holomorphic on D with ψ(0) = 0 and |ψ| ≤ 1. Furtheremore,

ψ′(0) = α′p(p)ϕ
′(p)α′p(0) = ϕ′(p).

Since ϕ is parabolic then ϕ′(p) = 1. Hence:

ψ′(0) = 1.

4



CHAPTER 1. PRELIMINARIES 5

Clearly, all conditions of Schwarz lemma are satisfied. We deduce then that

ψ(z) = λz with |λ| = 1.

This means that ψ is a rotation with two distinct fixed points: a contradiction.
Thus, p cannot be in D. In the same way, we show that p cannot be in Ĉ \ D
by the map z 7−→ 1

z
. Indeed, suppose that p ∈ Ĉ \ D is the fixed point of ϕ.

Then 1
p
∈ D. Hence, the involution automorphism α 1

p
is well defined.

Let us consider ψ := α 1
p
◦ϕ◦α 1

p
, then ψ(D) ⊂ D. Besides, ψ fixes∞. However,

ϕ is parabolic then ψ is a translation. As ∞ is its unique fixed point then it
has form:

ψ(z) = z + b

for some b ∈ C \ {0}: a contradiction. There is no translation that takes the
unit disk into itself. Therefore, p cannot be in Ĉ\D. Consequently, we deduce
that p ∈ ∂D.

We refer the readers to [94, Chapter 0] and to [21] for more details on linear
fractional transformations.

1.2 Introduction to Some Function Spaces

In this section, we shall introduce some function spaces. We start here with
the Fréchet space of entire functions:

1.2.1 Space of entire functions

Let C denote the complex plane and let H(C) be the space of entire functions
on C. Remember that each entire function f can be represented as a power
series:

f(z) =
∑
n≥0

anz
n,

where (an)n∈N is a sequence of complex numbers and z ∈ C. The series
converges in the whole complex plane. Moreover, the coefficients (an)n∈N are
just Taylor’s coefficients and are given by:

an =
f (n)(0)

n!
, ∀n ∈ N.

Using Cauchy’s estimates, it can be shown that for 0 < R <∞ and z ∈ D(0, R)
one has:

|an| ≤
MR

Rn
, where MR = sup

|z|=R
|f(z)|.

Now, let us focus on the topology of H(C). It is known that H(C) endowed
with the topology of the uniform convergence on compact sets of C is a Fréchet
space. We say that a sequence of entire functions (fk)k converges to f in H(C)
if and only if for all natural n, we have:

pn(fk − f)→ 0 as k →∞,

5



6 CHAPTER 1. PRELIMINARIES

where (pn)n is the following increasing sequence of seminorms:

pn(f) := sup
|z|≤n
|f(z)|.

The concept of normal families shall be used in Chapter 3. Let us recall
the definition of this notion:

Definition 1.2.1. Let F be a family of complex-valued functions on a planar
domain Ω. F is called normal family if one the following situations is satisfied:

1 Each sequence of elements of F has a subsequence which converges
uniformly to some analytic function on compact sets of Ω.

2 Each sequence of elements of F has a subsequence which converges to ∞
uniformly on compact sets of Ω.

Some authors omit the second part of the previous definition. Now, we
give an example of a normal family.

Example 1.2.2. Set F = {zn}. Then F is a normal family on D because
every subsequence of F converges uniformly (to 0) on compact sets of D. On
the other hand, F is also normal on C \D because each subsequence converges
to ∞ uniformly on compact sets of C \ D.

One of the most known results related to normal families is Montel’s
Theorem, which is stated as follows:

Theorem 1.2.3 (First version of Montel’s Theorem). Let Ω be a domain in
the complex plane. Let F be a family of holomorphic functions on Ω. If for
each compact K ⊂ Ω, there is a positive constant CK such that:

|f(z)| ≤ CK

for all z ∈ K and f ∈ F , then F is a normal family.

The proof of the latter can be obtained by applying the Arzelà-Ascoli
Theorem. We refer to [90, p. 35] for more details on the proof. Now, we
announce a stronger corollary of Montel’s Theorem:

Theorem 1.2.4 (Second version of Montel’s Theorem). Let F be a family of
meromorphic functions on an open set Ω. Assume that F is not normal at z0
for some z0 ∈ Ω. If U ⊂ Ω is a neighborhood of z0 then⋃

f∈F

f(U)

is dense in C.

The foregoing theorem can be proved using the first version of Montel’s
Theorem and the so-called Zalcman’s Lemma. Other results related to normal
families can be found in [65, 90] for instance.

6



CHAPTER 1. PRELIMINARIES 7

1.2.2 Hardy spaces

In 1915, G. H. Hardy introduced some spaces of analytic functions on the
unit disc in his paper [43]. It was until 1923 that the Hungarian
mathematician F. Riesz [85] named these spaces after Hardy. Ever since, the
so-called Hardy spaces have been studied intensely. In this section, we recall
some standard properties of these spaces. We shall need these properties in
the second part of Chapter 3. If the readers wish to broaden their knowledge
about Hardy spaces, they may consult Duren’s book [29] for instance.

Let D be the unit disk of the complex plane C and letH(D) be the collection
of all holomorphic complex-valued functions on D.

For 0 < p < ∞, Hardy spaces which we denote by Hp, are defined as
follows:

Hp := Hp(D) =
{
f ∈ H(D) : lim

r−→1−

∫ 2π

0

|f(reit)|pdt <∞
}
.

It is not difficult to check that for any 1 ≤ p <∞ these spaces equipped with
the norm

‖f‖p :=
(

lim
r−→1−

Mp(f, r)
)1/p

, (f ∈ Hp)

where

Mp(f, r) =
1

2π

∫ 2π

0

|f(reit)|pdt,

are Banach spaces. If p and q are such that 1
p

+ 1
q

= 1, we say that p and q are

conjugate. If, moreover, p = 2, then H2 is a Hilbert space with respect to the
inner product:

< f, g >H2= sup
0<r<1

∫ 2π

0

f(reiθ)g(reiθ)dθ.

Since H2 is isomorphic to `2(N), H2 can be equivalently defined as following:

H2 =
{
f ∈ H(D), f(z) =

∑
n≥0

anz
n :

∞∑
n=0

|an|2 <∞
}
.

This equivalence is mainly due to the Identity of Parseval. What is
interesting about H2 is that any norm of a function f ∈ H2 has also the
integral representation ‖f‖22 = limr−→1−M2(f, r) and this has many
advantages.
Now, let H∞(D) be the collection of all holomorphic bounded complex-valued
functions on the unit disk D. The space H∞ equipped with the norm

‖f‖∞ := sup
|z|<1

|f(z)|, (f ∈ H∞)

is also a Banach space and for any p and q such that 0 < p < q <∞, we have:

H∞ ⊂ Hq ⊂ Hp.

The reverse inclusions are not true. Another interesting fact about Hardy
spaces is their invariance under multiplication by a bounded function on D,
that is, if f ∈ H∞ and g ∈ Hp then fg ∈ Hp.

7



8 CHAPTER 1. PRELIMINARIES

1.2.3 Weighted Hardy spaces

For each sequence β = (βn)n∈N of positive numbers satisfying

lim inf
n→∞

(βn)1/n ≥ 1, (1.4)

the weighted Hardy spaces H2(β) are the Hilbert spaces of all holomorphic
functions f(z) =

∑∞
n=0 anz

n ∈ H(D) for which

‖f‖β:=
( ∞∑
n=0

|an|2β2
n

)1/2
<∞.

The norm above is induced by the inner product:〈 ∞∑
n=0

anz
n,
∞∑
n=0

bnz
n
〉

=
∞∑
n=0

anbnβ
2
n.

If β ≡ 1, then H2(1) is just the classical Hardy space H2(D). If β = (n + 1)γ

for γ ∈ R, the weighted Hardy spaces are just the weighted Dirichlet spaces
Dγ. Furthermore, the set {en : n ∈ N} where en(z) = zn

βn
forms an orthonormal

basis of H2(β).

1.3 Some Classical Operators

We start this section by gathering some known results about composition
operators induced by linear fractional transformations on weighted Hardy
spaces. Most of theses results can be found in [38, 94, 102].

1.3.1 Composition operators

Let ϕ : D −→ D be a holomorphic self-map of the unit disk D. Then ϕ induces
a linear composition operator Cϕ on H(D) defined by:

Cϕf := f ◦ ϕ.

The operator Cϕ is obviously continuous on H(D) while the boundedness of Cϕ
on the classical Hardy space H2(D) is non trivial. In fact, this boundedness
is due to the non-trivial Littlewood Subordination Principle. In 1925, J. E.
Littlewood [61] showed that Cϕf ∈ H2(D) whenever the function ϕ fixes the
origin.

Theorem 1.3.1 (Littlewood’s Subordination Principle). Let ϕ be a
holomorphic self-map of the unit disk that fixes the origin then for each
f ∈ H2(D), we have:

Cϕf ∈ H2(D).

Furthermore, Cϕ is a contraction on H2(D).

8



CHAPTER 1. PRELIMINARIES 9

Litlewood’s subordination principle proof. First, suppose that f ∈ H2(D) is
polynomial, then f ◦ ϕ is bounded in D. So, f ◦ ϕ ∈ H2(D). Let f(z) =∑∞

n=0 f̂(n)zn with f̂(n) = f (n)(0)
n!

and let B : H2(D)→ H2(D) be the backward

shift defined by Bf(z) =
∑+∞

n=0 f̂(n + 1)zn, for all z ∈ D. Then, firstly, it
can be checked that f(z) = f(0) + zBf(z) for allz ∈ D and secondly that the
equality Bnf(0) = f̂(n) holds for all n ∈ N and z ∈ D. Since ϕ is a self-map,
we can substitute z by ϕ(z) in the first property of the backward shift, hence:

f(ϕ(z)) = f(0) + ϕ(z)Bf(ϕ(z)),

which we can write in terms of operators:

Cϕf = f(0) +MϕCϕBf.

Thus, we have:
‖Cϕf‖22 ≤ |f(0)|2 + ‖CϕBf‖22.

Substituting f by Bf , we obtain:

‖CϕBf‖22 ≤ |Bf(0)|2 + ‖CϕB2f‖22,

Inductively, substituting f byBf , B2f ..., we have:

‖CϕBnf‖22 ≤ |Bnf(0)|2 + ‖CϕBn+1f‖22, n ≥ 0.

Summing and simplifying those last inequalities yields to :

‖Cϕf‖22 ≤
n∑
k=0

|Bkf(0)|2 + ‖CϕBn+1f‖22.

Since f is a polynomial of degree n, Bn+1f = 0. Hence, the last inequality
becomes:

‖Cϕf‖22 ≤
n∑
k=0

|Bkf(0)|2.

Using the second property of the backward shift above we obtain:

‖Cϕf‖22 ≤
n∑
k=0

|Bkf(0)|2

=
n∑
k=0

|f̂(k)|2

= ‖f‖22.

Finally, by a limit procedure, we extend the above inequality for any f in
H2(D). For all z ∈ D, let:

fn(z) =
n∑
k=0

f̂(k)zk

9



10 CHAPTER 1. PRELIMINARIES

be the n-th partial sum of Taylor series of f . We see easily that:

‖fn‖2 ≤ ‖f‖2,

and that:
‖fn − f‖2 −→ 0 as n→∞.

Furthermore, we know that H2 convergence implies uniform convergence on D.
Hence, fn −→ f uniformly on each compact K of D and therefore fn ◦ ϕ −→
f ◦ ϕ on K too. Hence, ‖fn ◦ ϕ‖2 ≤ ‖fn‖2. For a fixed 0 < r < 1, we have:

M2(f ◦ ϕ, r) = M2( lim
n→+∞

fn ◦ ϕ, r)

= lim
n→+∞

M2(fn ◦ ϕ, r) (By uniform convergence.)

≤ lim sup
n→∞

‖fn ◦ ϕ‖2

≤ lim sup
n→∞

‖fn‖2

≤ ‖f‖2.

Now, let r tend to 1, then we have finally the desired result:

‖f ◦ ϕ‖2 ≤ ‖f‖2.

This completes the proof.

Using the involution automorphism αp of D, J. V. Ryff [88] extended this
result and showed that Cψ is bounded on H2(D) where the self-map ψ does
not necessarily fix the origin. In fact, linear fractional composition operators
are bounded in all Hardy spaces Hp (see e.g. [21, 94]).

On weighted Dirichlet spaces, composition operators induced by linear
fractional self-maps are also bounded. That is:

Cϕ ∈ B(Dγ), ∀γ ∈ R.

This result is mainly due to P. Hurst [46] and N. Zorboska [101].
It is still an open problem to characterize the holomorphic selfmaps of the

unit disk inducing bounded composition operators on weighted Hardy spaces
H2(β). In [102, 103, 104], N. Zorboska studied intensively composition
operators on weighted Hardy spaces, obtaining results on boundedness,
compactness and cyclicity. More recently, new striking results on the
boundedness problem have been obtained in [56].

1.3.2 Multiplication operators

As one may notice in [54], multiplication operators are a very nice source of
extended eigenoperators for composition operators on H2(D). Unfortunately,
this is not always the case on weighted Hardy spaces H2(β). For instance, the
multipliers of the particular weighted Dirichlet spaces Dγ are really not obvious
to describe, specially when the parameter γ is strictly positive. Indeed, when

10
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γ < 0, we already know that the multiplication operator Mf is bounded on
Dγ whenever its symbol f belongs to H∞(D). If γ ≥ 0, another necessary
condition is that f ∈ Dγ. In both cases, we do see that the boundedness of
the symbol f on the unit disk is mandatory. However, this is not sufficient
and it does not ensure us that Mf is well defined on Dγ when γ is positive. In
his paper [96], D. A. Stegenga gave a necessary and sufficient condition for a
function f to be a multiplier of the classical Dirichlet space D = D(D). Some
years later, S. Axler and A. L. Shields [3] extended this result to Dirichlet
spaces D(Ω) and Bergman spaces A(Ω) where Ω is an open connected set of
the complex plane C. R. Kerman and E. Sawyer [47] (among others) also gave
a characterization using Carleson measures.

1.4 Hypercyclicity

During the last decades, a lot of mathematicians have been attracted to the
study of hypercyclic operators. The study of these operators is related to
dynamical systems of partial differential equations, Chaos Theory and much
more. Probably, one of the major interests comes from the relation that exists
between hypercyclic operators and the famous Invariant Subspace Problem:

An operator T has no non-trivial closed invariant subspace on X
if and only if every nonzero vector x of X is cyclic for T .

and:

An operator T has no non-trivial closed invariant subset on X if
and only if every nonzero vector x of X is hypercyclic for T .

Throughout this section, X is assumed to be a separable Fréchet space.
Now, we recall the following basic definitions:

Definition 1.4.1. A bounded linear operator T defined on a Fréchet space X
is said to be:

• Cyclic if there exists a vector x ∈ X such that the linear span

span{T nx : n ≥ 0}

is dense in X .

• Hypercyclic if there exists x ∈ X such that the orbit

Orb(x, T ) := {T nx : n ≥ 0}

is dense in X .

If we deal with a sequence of bounded operators {Tn}n≥0 then:

11



12 CHAPTER 1. PRELIMINARIES

Definition 1.4.2. We say that a sequence {Tn}n≥0 of bounded operators
defined on a Fréchet space X is hypercyclic if there exists a vector x ∈ X
such that

{Tnx : n ≥ 0}
is dense in X .

A good source of information about hypercyclic operators can be found in
[6, 30] for instance.

1.4.1 Hypercyclicity Criterion

Since the first examples of hypercyclic operators due to G. D. Birkhoff [16]
and G. R. MacLane [63], conditions implying hypercyclicity have been
studied intensely. In this section, we will announce some of these and recall
the well-known ”Hypercyclicity Criterion”.

There is no doubt that the Hypercyclicity Criterion was discovered from
the one of C. Kitai. This last criterion appeared in Kitai’s thesis in 1982 (see
[50]). Recall that this criterion says that if there exist dense subsets X0 and Y0
of X and a map S : Y0 → Y0 such that T n and Sn converges to zero pointwise
in X0 and Y0 respectively, and S is the right inverse of T in Y0, then the
operator T is hypercyclic. In fact, C. Kitai showed that T is mixing. Mixing
property is stronger than hypercyclicity. We will not deal with that property
in this manuscript.

What is surprising in Kitai’s Criterion is that neither the linearity nor
the continuity of the map S on Y0 is needed. Some years later, Gethner and
J. H. Shapiro rediscovered the Hypercyclicity Criterion of Kitai and replaced
the sequence (n)n appearing in that criterion by an increasing sequence (nk)k
of positive integers. The following criterion is a slightly modified version of
Kitai/Gethner-Shapiro Criterions and it is due to J. Bès and A. Peris (see [20]).
This version only requires to T nkSnk to converge pointwise to the identity.

Theorem 1.4.3 (Hypercyclicity Criterion). Let T ∈ B(X ). If there exist dense
subsets X0 and Y0 of X , an increasing sequence (nk)k of positive integers and
maps Snk : Y0 → X such that:

i T nkx→ 0, ∀x ∈ X0.

ii Snky → 0, ∀y ∈ Y0.

iii T nkSnky → y, ∀y ∈ Y0.

Then T is hypercyclic.

Proof. First, let ‖.‖ denote the F− norm of X . The proof of Hypercyclicity
Criterion is based on the construction of a vector x ∈ X such that the orbit
{T nx : n = 0, 1, 2, · · · } is dense in X . Indeed, by separability of X , we can
choose a sequence (yj)j≥1 ⊂ Y0 that is dense in X and we can show that there
exist xj ∈ X and positive integers kj such that

x = x1 + Snk1y1 + x2 + Snk2y2 + x3 + Snk3y3 + · · ·

12
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is a hypercyclic vector for T . Indeed, we can construct the xj, for j ≥ 1 by
recursion as follows:

‖xj‖ <
1

2j
and ‖T nklxj‖ <

1

2j
(1.5)

‖Snkj yj‖ <
1

2j
and ‖T nklSnkj yj‖ <

1

2j
(1.6)

‖T nkjSnkj yj − yj‖ <
1

2j
and

∥∥∥T nkj( j−1∑
l=1

(xl + Snklyl) + xj

)∥∥∥ < 1

2j
(1.7)

where l = 1, ..., j − 1. The conditions ii. and iii. and the linearity of T ensure
that the previous inequalities hold for x1 = 0. Hence, the case j = 1 is true.
For j ≥ 2, we can suppose that (xi)

j−1
i=1 and (ki)

j−1
i=1 have been constructed.

Since by assumption X0 is dense in X , there exist some xj such that (1.5)
holds and

∑j−1
l=1 (xl + Snklyl) + xj belongs to X0. If we let j tend to infinity

then our assumptions i., ii. and iii. also ensure (1.6) and (1.7). Hence, the
series

∑∞
j=1(xj + Snkj yj) is convergent and we can write:

∞∑
l=1

(xl + Snklyl) =

j−1∑
l=1

(xl + Snklyl) + xj + Snkj yj +
∞∑

l=j+1

(xl + Snklyl).

The linearity of T leads to:

T nkjx = T nkj
( j−1∑
l=1

(xl+Snklyl)+xj

)
+T nkjSnkj yj+

∞∑
l=j+1

T nkjxl+
∞∑

l=j+1

T nkjSnklyl.

Let Inkj = ‖T nkjx− yj‖ then we have:

Inkj =
∥∥∥T nkj( ∞∑

l=1

(xl+Snklyl)+xj

)
+T nkjSnkj yj−yj+

∞∑
l=j+1

T nkjxl+
∞∑

l=j+1

T nkjSnklyl

∥∥∥.
Using the inequalities (1.5), (1.6) and (1.7), we obtain

Inkj ≤
1

2j
+

1

2j
+

∞∑
l=j+1

1

2l
+

∞∑
l=j+1

1

2l
=

4

2j
→ 0 as j →∞.

Therefore, ‖T nkjx− yj‖ → 0. the density of the (yj)j≥1 implies the density of
the orbit of T generated by x. This completes the proof.

At this stage, we should point out that Gethner-Shapiro version of
Hypercyclicity Criterion is equivalent to the one of J. Bès and A. Peris (see
[30, p. 81]). However, J. Bès and A. Peris version is easy to use.

Sufficient conditions ensuring the hypercyclicity of a sequence of bounded
linear operators (Tn)n≥1 are given in the following corollary:

13



14 CHAPTER 1. PRELIMINARIES

Theorem 1.4.4 (Hypercyclicity Criterion for sequences). Let X and Y be
two separable Fréchet spaces. For n ≥ 1, let Tn : X → Y be a sequence of
continuous linear operators. If there exist dense subsets X0 ⊂ X and Y0 ⊂ Y,
an increasing sequence (nk)k of positive integers and maps Snk : Y0 → X such
that:

i Tnkx→ 0, ∀x ∈ X0.

ii Snky → 0, ∀y ∈ Y0.

iii TnkSnky → y, ∀y ∈ Y0.

Then the sequence (Tn)n is hypercyclic.

The proof of the previous theorem is similar to one of the Hypercyclicity
Criterion and we omit it. Another consequence of the Hypercyclicity Criterion
was given in [39] by G. Godefroy and J. H. Shapiro who proved the following
result:

Corollary 1.4.5 (Eigenvalues Criterion). Let T be a continuous linear
operator in a separable Frechet space X . Assume that the subspaces:

X0 = span{x ∈ X ; Tx = λx for some λ ∈ K with |λ| < 1}

and

Y0 = span{x ∈ X ; Tx = λx for some λ ∈ K with |λ| > 1}

are dense in X . Then T is hypercyclic.

Proof. It suffices to apply the Hypercyclicity Criterion for the sequence of
integers (n)n≥0. Let x ∈ X0, then x can be expressed as x =

∑m
k=0 αkxk

where Txk = λkxk with |λk| < 1 and αk ∈ K. Hence, by linearity we have:
Tx =

∑m
k=0 αkλkxk and T nx =

∑m
k=0 αk(λk)

nxk → 0 as n → ∞. Similarly,
each y ∈ Y0 can be expressed as y =

∑m
k=0 βkyk where Tyk = µkyk with

|µk| > 1 and βk ∈ K. Let Sn : Y0 → X be defined by Sny =
∑m

k=0 βk
1
µnk
yk then

clearly Sn → 0 as k → ∞ and for all n ≥ 0 and y ∈ Y0 we have T nSny = y.
Hence, according to Hypercyclicity Criterion, T is hypercyclic.

At this point, we should point out that the Hypercyclicity Criterion is
stronger than Eigenvalues Criterion. Indeed, there exist some bounded
operators that satisfy Kitai’s Criterion without satisfying the Eigenvalues
one. For instance, hypercyclic operators with empty point spectrum, such as
some unilateral weighted backward shifts, have that property (see
[40, 59, 89]).

In 2001, a very interesting question was asked by F. León-Saavedra and
A. Montes-Rodŕıguez in [59]: Does every hypercyclic operator satisfy the
Hypercyclicity Criterion? J. Bès and A. Peris showed previously that an

14
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operator T satisfies the Hypercyclicity Criterion if and only if the direct sum
T ⊕ T is hypercyclic (see [20]). In 2006, M. De La Rosa and C. Read proved
in [27] the existence of a hypercyclic operator whose direct sum T ⊕ T is not
hypercyclic. Thus, they answered the question of F. León-Saavedra and
Montes-Rodŕıguez in the negative. Other interesting counterexamples were
found later by F. Bayart and E. Matheron (see [4]).

1.4.2 MacLane’s and Birkhoff’s operators

Let D : H(C) → H(C) denote the continuous linear differentiation operator
defined by:

Df(z) = f ′(z), ∀z ∈ C.

This operator is generally called MacLane’s operator due to his paper [63]. In
this section, we shall provide some results related to operators that commutes
with D on H(C). That is, operators T satisfying

DT = TD, (1.8)

in H(C). One non trivial example satisfying (1.8) is the translation operator
Ta defined by

Taf(z) = f(z + a), ∀z ∈ C.

for some fixed a ∈ C. This operator is named after G. D. Birkhoff by means
of his paper [16].

From another point of view, operators commuting with Birkhoff’s operator
are called, by definition, convolution operators. Thus, MacLane’s operator is a
simple example of a convolution operator. There is a big connection between
these two operators. Indeed, for any f ∈ H(C) and any z ∈ C, we have:

Taf(z) = f(z + a) =
∞∑
n=0

f (n)(z)

n!
an =

∞∑
n=0

(aD)n

n!
f(z) (1.9)

In fact, we shall see later that an operator T commutes with MacLane’s
operator if and only it commutes with Birkhoff’s operator.

We shall point out, in advance, that most of the following results (and their
proofs) can be found in [30, Chapter 4] and/or in [6, Chapter 1]. First, let us
recall the following definition:

Definition 1.4.6. An entire function ϕ ∈ H(C) is said to be of exponential
type provided that there exist two constants α, β > 0 such that:

|ϕ(z)| ≤ αeβ|z|, ∀z ∈ C.

Using Cauchy’s estimates, it can be shown that an entire function ϕ(z) =∑∞
n=0 anz

n is of exponential type if and only if

|an| ≤M
Rn

n!
, ∀n ∈ N

15
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where M,R > 0 are some finite constants. Some simple examples of entire
functions of exponential type are eαz, sinαz and cosαz with α ∈ C.

Functions of operators can be undefined, in general. The following
proposition deals with functions of the differentiation operator D. It asserts
that if ϕ is an entire function of exponential type then the operator ϕ(D) is
continuous in H(C).

Proposition 1.4.7. Let ϕ(z) =
∑∞

n=0 anz
n be an entire function of exponential

type. Then for every entire function f the operator:

ϕ(D)f =
∞∑
n=0

anD
nf

is continuous on H(C).

Proof. Let f ∈ H(C) and |z| ≤ m. Using Cauchy estimates, we know that

|an| =
∣∣∣f (n)(z)

n!

∣∣∣ ≤ 1

mn
sup
|z|≤m

|f(z)|, ∀n ∈ N.

Moreover, since by assumption ϕ is of exponential type, there exist two
constants M,R > 0 such that

|an| ≤M
Rn

n!
, ∀n ∈ N.

Hence, according to these estimations we get:

|anf (n)(z)| ≤ |an|
n!

mn
sup
|z|≤2m

|f(z)| ≤M
Rn

n!

n!

mn
sup
|z|≤2m

|f(z)| = M
(R
m

)n
sup
|z|≤2m

|f(z)|.

If R
m
< 1 then

∑∞
n=0 anf

(n)f(z) converges uniformly on D(0,m). Thus, the
series ϕ(D)f =

∑∞
n=0 anf

(n)f(z) is convergent in H(C). Moreover, for R
m
< 1,

the geometric series
∑∞

n=0

(
R
m

)n
converges to 1

1−R/m and we have:

pm(ϕ(D)f) ≤ Cp2m(f)

where C = M
1−R/m . Hence, ϕ(D) is a continuous operator on H(C).

In particular, since ϕ(z) = eaz is of exponential type and taking into
account the relation in (1.9), we deduce (by taking bn = an/n! in the previous
proposition) that:

Ta = eaD.

That is:
Ta = ϕ(D), where ϕ(z) = eaz.

The next theorem characterizes convolution operators. As we shall see in
Chapter 3, this theorem shall be applied several times and will be of great
importance.

16
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Theorem 1.4.8. Let T ∈ B(H(C)). Then the following statements are
equivalent:

i. T commutes with the differentiation operator D.

ii. T commutes with each translation operator Ta, a ∈ C.

iii. There exists an entire function ϕ of exponential type such that T = ϕ(D).

Proof. Assume that T commutes with the differentiation operator D. Then
we have:

TTaf = T

∞∑
n=0

an
n!
Dnf =

∞∑
n=0

T
an
n!
Dnf =

∞∑
n=0

an
n!
Dn(Tf) = TaTf.

To show the second implication, assume that T commutes with Ta. For
each f ∈ H(C), consider the continuous map f 7→ Tf(0). By continuity, there
exist a positive constant M > 0 and R ∈ N such that

|Tf(0)| ≤M sup
|z|≤R

|f(z)|

For n ∈ N ∩ {0}, denote en(z) = zn and set an = Tf(0)
n!

. Hence, we have:

|an| ≤M
Rn

n!

which is equivalent to say that the entire function ϕ(z) :=
∑∞

n=0 anz
n is of

exponential type. According to Proposition , ϕ(D) is a continuous operator in
H(C). We have:

(ϕ(D)en)(0) = (
∞∑
n=0

anD
nzn)(0) = ann! = (Ten)(0)

The density of the monomials en in H(C) allows us to conclude that:

(ϕ(D)f)(0) = (Tf)(0), ∀f ∈ H(C).

Moreover, since the translation operator commutes with ϕ(D), we have:

ϕ(D)f(z) = ϕ(D)Tzf(0) = Tzϕ(D)f(0) = TzTf(0) = TTzf(0) = Tf(z)

That is:
ϕ(D)f = Tf ∀f ∈ H(C),

or simply, T = ϕ(D), as wanted.
Finally, assume that T = ϕ(D) for some entire function ϕ of exponential

type. The continuity of D in H(C) leads to:

TDf =
∞∑
n=0

anD
nDf =

∞∑
n=0

D(anD
nf) = D

∞∑
n=0

anD
nf = DTf,

for any entire function f . Thus, T commutes with D and the third and last
implication is proved.

17
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Now, we shall announce a strong result ensuring the hypercyclicity of
operators commuting with the differentiation operator D:

Theorem 1.4.9 (Godefroy-Shapiro Theorem). Let T be a continuous linear
operator on H(C). Assume that T is not a scalar multiple of the identity such
that:

DT = TD

then T is hypercylic.

Proof. Assume that T is a continuous linear operator, non scalar multiple of
the identity, that commutes with D. According to Proposition 1.4.8,there
exists an entire function ϕ(z) =

∑∞
n=0 anz

n of exponential type such that
T = ϕ(D). Since T is not a scalar multiple of the identity, ϕ is nonconstant.
For λ ∈ C, consider the exponential function eλ(z) = eλz, z ∈ C. It is know
that if a set Λ ⊂ H(C) has an accumulation point then the span{eλ, λ ∈ Λ} is
dense in H(C) (see [30, p. 45]). Now, observe that we have:

ϕ(D)eλ(z) =
∞∑
n=0

anD
neλz =

∞∑
n=0

anλ
neλz = ϕ(λ)eλ(z),

that is:
Teλ = ϕ(λ)eλ.

Thus we have:

span{eλ : |ϕ(λ)| < 1} ⊂ span{f ∈ H(C); Tf = λf for some λ ∈ C with |λ| < 1}

Since the set {λ ∈ C : |ϕ(λ)| < 1} has an accumulation point, we deduce that
span{eλ : |ϕ(λ)| < 1} is dense in C. Therefore,

span{f ∈ H(C); Tf = λf for some λ ∈ C with |λ| < 1}

is dense in H(C). With similar arguments, we deduce that

span{f ∈ H(C); Tf = λf for some λ ∈ C with |λ| > 1}

is also dense in H(C). The Eigenvalues Criterion implies that T is hypercyclic,
as wanted.

It is worth of note to mention that Godefroy-Shapiro Theorem does not
hold in Banach spaces, because contractions are not hypercyclic.

18
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Our purpose now is to give a brief introduction to unbounded operators
on Hilbert spaces. This class of operators appears naturally in Quantum
Mechanics and it also plays a major role in PDEs.

In Section 1.5, we shall announce some basic definitions and results related
to some subclasses of unbounded operators. That is, we introduce closed
operators, self-adjoint operators, and normal ones and illustrate them with a
few examples. Then, in Section 1.6, we shall see one of the fundamental results
related to unbounded normal operators: the Fuglede-Putnam Theorem. The
generalization of the latter constitutes our main investigation in [7]. Finally,
we mention that most of the results that we will recall in the next sections
appear in Schmudgen’s Book [93] and/or J. Weidmann’s book [100].

1.5 Unbounded Operators on Hilbert Spaces

We start by giving some basic definitions. Notice that some of these definitions
might be different elsewhere.

1.5.1 Some basic definitions

Definition 1.5.1 (Linear operators). Let H and K be two Hilbert spaces. A
linear operator T from H into K is a linear mapping of a subspace D(T ) of H
into K. That is, for all x, y ∈ D(T ) and all α, β ∈ C, the operator T satisfies

T (αx+ βy) = αT (x) + βT (y).

The subspace D(T ) is called the domain of T .

If D(T ) is dense in H, we say that T is densely defined. The concept of
domain plays an important role for unbounded operators. For instance, one
particular domain is

D(T ) = {x ∈ H : Tx ∈ K},
which is called the maximal domain. By considering the same symbol T on
different domains, completely different operators can be obtained.
Now, recall that the subspace

ranT := T (D(T )) = {Tx : x ∈ D(T )}

is called the range (or the image) of T and the subspace

kerT = {x ∈ D(T ) : Tx = 0}

is called the kernel (or the null space) of T .

Definition 1.5.2 (Bounded operator). Let H and K be two Hilbert spaces. A
linear operator T : D(T ) ⊂ H → K is said to be bounded on D(T ) if there
exists a constant M > 0 such that

‖Tx‖K ≤M‖x‖D(T ) ∀x ∈ D(T ).

19
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If D(T ) = H, then we shall write T ∈ B(H,K). We then say that T is
everywhere defined. In such a case, the quantity

‖T‖ := sup
‖x‖H 6=0

‖Tx‖K
‖x‖H

is finite and is called the operator norm of T . If T is not bounded, we say that
T is unbounded.

Example 1.5.3. Consider the space `2 of all square summable sequences,

equipped with the norm ‖x‖2=
(∑
|xi|2

)1/2
for x = (xi)

∞
i=0 ∈ `2. Let

M : `2 → `2 be such as:

M(x0, x1, · · · ) = (x0, 2x1, 2
2x2, · · · , 2nxn, · · · ).

The operator M is not bounded on `2. Indeed, there exists a non-zero vector
en+1 = (0, 0, · · · , 0, 1, 0, · · · ) ∈ `2, where the element 1 is in the (n + 1)th
position; such that ‖en+1‖2= 1 and ‖Men+1‖2= 2n → ∞ as n → ∞.
Hence, M is unbounded on `2.

Another interesting example, for instance, is the multiplication operator
Mϕ on L2(R) where ϕ is a measurable function on R. The boundedness of
this operator depends on the behavior of ϕ on R. It can be shown that Mϕ ∈
B(L2(R)) if and only if ϕ is essentially bounded, that is, if there exists a
constant C > 0 such that |ϕ(x)| ≤ C almost everywhere in R. For a proof,
see e.g. [100, p.54]. For more interesting properties of this operator, we refer
to [73, Exercise 10.3.9] where this operator has been studied in detail.

1.5.2 Sum, product and extension of unbounded
operators

Now, we introduce basic operations on linear operators:

Definition 1.5.4. Let T and S be two linear operators.

• The operator αT is defined by

(αT )x = α(Tx) for x ∈ D(αT ) = D(T ).

• We define the sum T + S by

(T + S)(x) = T (x) + S(x), for x ∈ D(S + T )

where
D(T + S) = D(T ) ∩D(S).

• The product ST is defined by

(ST )x = S(Tx) for x ∈ D(ST )

where
D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}.

20
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• The operator T is called an extension of S (or S a restriction of T ) if

D(S) ⊂ D(T ) and Tx = Sx for x ∈ D(S).

In this case, we write S ⊂ T (or S ⊃ T ).

Remark 1.5.5. When dealing with unbounded operators, we usually
encounter issues with their domains. In particular, it is quite conceivable to
have D(T 2) = {0} even when T is densely defined. For instance, it was
shown in [73, Example 10.1.3] that if C∞0 (R) is the set of infinitely
differentiable functions whose support is compact and F0 is the usual
L2(R)-Fourier transform restricted to C∞0 (R), that is F0f = f̂ , then

D(F2
0 ) = {f ∈ C∞0 (R) : f̂ ∈ C∞0 (R)} = {0}.

For more sophisticated examples, see e.g. [23, 28, 91]. It is also likely to
have D(T )∩D(S) = {0} even for some strong classes of operators. This follows
from a famous von Neumann Theorem. More details and explicit constructions
of such examples may be consulted in [51].

1.5.3 Closed operators

In the unbounded operator setting, closed operators may be perceived as the
natural substitutes of the bounded ones. Before defining this class of operators,
recall that the graph of a linear operator T from H into K is denoted by G(T )
and is defined as follows:

G(T ) =
{

(x, Tx) : x ∈ D(T )
}
⊂ H ×K.

Definition 1.5.6 (Closed operator). An operator T from H into K is said to
be closed if its graph G(T ) is closed in H ×K. That is, T is closed if and only
if for all (xn)n ⊂ D(T ) if xn → x and Axn → y, then x ∈ D(A) and y = Ax.

Example 1.5.7 (c.f. [67]). Let ϕ be a measurable function in R and let Mϕ be
the multiplication operator induced by ϕ on L2(R). We claim that Mϕ is closed.
Let fn ∈ D(Mϕ) be such that ‖fn − f‖2 → 0 and ‖Mϕfn − g‖2 → 0. Since
the space (L2(R), ‖.‖2) is complete and both of (fn) and (ϕfn) are Cauchy,
we have f, g ∈ L2(R). Moreover, we know that there exists a subsequence
(fnk)k ⊂ (fn)n such that limk→∞ fnk(x) = f(x) for almost every x in R (see
[87, 3.12 Theorem]). So, we have

lim
k→∞

ϕ(x)fnk(x) = ϕ(x)f(x) for almost every x in R.

Since ϕfn → g in L2(R), every subsequence (ϕfnk) ⊂ (ϕfn) converges to g
in L2(R). Hence, (ϕfnk) too has an a.e. convergent subsequence to g. So,
we have lim

j→∞
ϕfnkj = g and lim

k→∞
ϕfnk = ϕf a.e. in R. Therefore g = ϕf a.e.

in R, and hence in L2(R). We also have ϕf ∈ L2(R) as g ∈ L2(R). Thus,
f ∈ D(Mϕ) and g = ϕf in L2(R), that is Mϕ is closed.
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By the Closed Graph Theorem, any closed linear operator between
Banach spaces is bounded. Nevertheless, when the domain of T is not the
whole space, there are many examples of closed operators which are not
bounded, and bounded ones which are not closed (see e.g. [73]).

The sum and the product of two closed operators are not necessarily
closed. Indeed, it suffices to consider a closed operator T whose domain D(T )
is non-closed, and to observe that neither T − T = 0D(T ) nor 0HT = 0D(T ) is
closed, because if a bounded operator is defined on some domain D, then this
operator is closed if and only if D is closed in H (see [100, Theorem 5.2.]).

1.5.4 Self-adjoint operators

An important subclass of closed operators is that of self-adjoint ones. Before
we start, we point out that the notation 〈., .〉 stands for the scalar product.
Let T be a densely defined linear operator from (H, 〈., .〉H) into (K, 〈., .〉K).
To define the adjoint of T , we shall consider the following domain:

D(T ∗) = {y ∈ K : ∃u ∈ H : 〈Tx, y〉K = 〈x, u〉H ∀x ∈ D(T )}.

Observe that, according to Riesz Theorem, a necessary and sufficient condition
for y ∈ K to belong to D(T ∗) is the continuity of the linear functional x 7→
〈Tx, y〉K on D(T ). Since D(T )

H
= H, the vector u is uniquely determined by

y. Hence, by setting T ∗y = u, we see that the linear mapping T ∗ from K into
H is well-defined and linear. The operator T ∗ is called the adjoint operator of
T .

Definition 1.5.8 (Adjoint operator). Let T be a densely defined linear
operator from (H, 〈., .〉H) into (K, 〈., .〉K). The operator T ∗ satisfying

〈Tx, y〉K = 〈x, T ∗y〉H , for all x ∈ D(T ), y ∈ D(T ∗)

is called the adjoint operator of T .

Definition 1.5.9. Let T be a densely defined linear operator on a Hilbert space
H. Say that

• T is symmetric if T ∗ is an extension of T , that is: T ⊂ T ∗.

• T is self-adjoint if T = T ∗.

Example 1.5.10. Consider the same operator as in Example 1.5.7. It was
shown in [93] that Mϕ is self-adjoint if and only if ϕ is real-valued almost
everywhere.

The next proposition provides some properties of the adjoint operation.

Proposition 1.5.11. Let S and T be linear operators from H into K such
that T is densely defined. Then:
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i T ∗ is a closed linear operator from K into H.

ii (ran(T ))⊥ = ker(T ∗).

iii If T ∗ is densely defined, then T ⊂ (T ∗)∗ := T ∗∗.

iv If S ⊂ T , then T ∗ ⊂ S∗.

v (λT )∗ = λT ∗.

vi If S + T is densely defined, then S∗ + T ∗ ⊂ (S + T )∗. Moreover, if
S ∈ B(H), then (S + T )∗ = S∗ + T ∗.

For a proof, see [93, Proposition 1.6]. It is known that (ST )∗ = T ∗S∗

whenever S ∈ B(H,K) and T ∈ B(K,L). However, this equality does not
hold in general. In fact, while dealing with (unbounded) linear operators, the
only thing we can be sure of is the inclusion T ∗S∗ ⊂ (ST )∗. The following
proposition gives a condition on S for the reverse inclusion to hold.

Proposition 1.5.12. Let S and T be linear operators from H into K and
from K into L respectively. Assume that ST is densely defined then:

i If D(S) is dense in K, then T ∗S∗ ⊂ (ST )∗.

ii If S ∈ B(K), then (ST )∗ = T ∗S∗.

The proof can be found in [93, p.10] for instance.
The next proposition relates symmetric operators to self-adjoint ones. It

states that if a symmetric operator is an extension of a self-adjoint operator
then the two operators must be equal. The proof is straightforward and we
omit it.

Proposition 1.5.13. Self-adjoint operators are maximally symmetric.

1.5.5 Normal operators

Definition 1.5.14. Let T be a densely defined linear operator on a Hilbert
space H. T is said to be normal provided that T is closed and T ∗T = TT ∗.

It is obvious that any self-adjoint operator is normal.

Remark 1.5.15. If T is normal then T ∗ is normal too. However, the converse
is not true in general. To see that it suffices to consider the identity operator
ID whose domain is non-closed. Hence ID is not normal since it is not even
closed. Nevertheless, its adjoint (ID)∗ = IH is normal.

Proposition 1.5.16. If T is closed and T ∗T ⊂ TT ∗, then T is normal.

Proof. The closedness of T implies the self-adjointness of T ∗T and TT ∗.
Since by assumption, T ∗T ⊂ TT ∗ and self-adjoint operators are maximally
self-adjoint, Proposition 1.5.13 yields to the wanted result.
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Theorem 1.5.17. Let N be a normal operator. Then

i D(N) = D(N∗).

ii ‖Nx‖ = ‖N∗x‖, for all x ∈ D(N).

iii N is maximally normal.

A proof of can be consulted in [87, 12.12 Theorem].

Corollary 1.5.18. Let N be a normal operator on a Hilbert space H then
kerN = kerN∗.

Corollary 1.5.19. Normal operators are maximally self-adjoint.

1.5.6 Matrices of Unbounded Operators

In this section, we define matrices of operators and their adjoints.

Definition 1.5.20. Let A, B, C and D be four unbounded operators, and let
D(A), D(B), D(C) and D(D) be their respective domains. Then

T =

(
A B
C D

)
defines a matrix of operators on D(T ) = D(A) ∩ D(C) ⊕ D(B) ∩ D(D).
Moreover, for each (x, y) ∈ D(T ), we have

T

(
x
y

)
:=

(
Ax+By
Cx+Dy

)
.

Matrices of unbounded operators could behave differently from their
bounded counterparts. For instance, if we assume that all of the entries of an
operator matrix T are unbounded then it might be thought that T too is
unbounded. This is not the case as it can occur that T is bounded while
none of its entries is.

When dealing with bounded entries, that is, when considering A ∈ B(H),
B ∈ B(K,H), C ∈ B(H,K) and D ∈ B(K), the adjoint of the matrix operator
T is given by: (

A B
C D

)∗
=

(
A∗ C∗

B∗ D∗

)
. (1.10)

In particular, we notice that the anti-diagonal operator matrices(
0 A
A∗ 0

)
and

(
0 A∗

A 0

)
are always self-adjoint.

However, if at least one of the entries of the matrix is not necessarily
bounded and not everywhere defined, then Equality 1.10 does not hold in
general. Fortunately, when the matrix is diagonal or anti-diagonal, we
particularly have the following result:
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Proposition 1.5.21. Let A, B, C and D be unbounded densely defined

operators and let T =

(
A 0
0 D

)
and S =

(
0 B
C 0

)
. Then we have

T ∗ =

(
A∗ 0
0 D∗

)
and S∗ =

(
0 C∗

B∗ 0

)
. Moreover,

• T is self-adjoint if and only if A and D are self-adjoint.

• S is self-adjoint if and only if B is closed and B∗ = C.

For a proof, see [98, Proposition 2.6.3] for example.

Corollary 1.5.22. If A is closed, then T =

(
0 A
A∗ 0

)
is self-adjoint.

1.6 On some Fuglede-Putnam Theorems

We start by giving the first version of the Fuglede Theorem [37] in an
unbounded setting.

Theorem 1.6.1 (Fuglede Theorem). Let B ∈ B(H) and let N be normal. If
BN ⊆ NB, then BN∗ ⊆ N∗B.

C. R. Putnam proved in [81] that Fuglede Theorem holds for two normal
operators, thus extending the result of B. Fugelde.

Theorem 1.6.2 (Fuglede-Putnam Theorem). Let B ∈ B(H) and let N and
M be normal operators. If BN ⊆MB, then BN∗ ⊆M∗B.

Before passing to the proof of Fuglede-Putnam Theorem, it is worth to
mention that S. K. Berberian proved the equivalence between these two
theorems in 1959. The idea was to apply Fuglede Theorem to the operator
matrices: (

N 0
0 M

)
and

(
0 0
B 0

)
,

then deduce the more general Fuglede-Putnam Theorem (see [11]).

The simplest and shortest proof of Fuglede-Putnam Theorem is due to M.
Rosenblum [86].

Rosenblum’s proof. First, we assume that N and M are bounded. By
induction, it can be easily shown that

BNn = MnB for n = 1, 2, 3, · · ·

Hence, we have eiλMB = BeiλN ; where e stands for the exponential function
and λ is the conjugate of an arbitrary complex scalar λ . So, we can write

B = eiλMBe−iλN . (1.11)
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Now, notice that λN + λN∗ and λM∗ + λM are self-adjoint, so their
exponentials are unitary. Hence, we have ‖e−i(λN+λN∗)‖ = ‖ei(λM∗+λM)‖ = 1.
For a complex scalar λ, set

f(λ) = eiλM
∗
Be−iλN

∗
. (1.12)

Using 1.11, we can write

f(λ) = eiλM
∗
Be−iλN

∗
= eiλM

∗
eiλMBe−iλNe−iλN

∗

The normality of M and N entails :

f(λ) = ei(λM
∗+λM)Be−i(λN+λN∗)

So, we have:
‖f(λ)‖ ≤ ‖B‖

Thus, f is a bounded entire function. According to Liouville’s Theorem, f is
constant. That is:

f(λ) = f(0) = B, ∀λ ∈ C. (1.13)

By 1.12, we obtain that
BeiλN

∗
= eiλM

∗
B.

Taking derivative with respect to λ, we obtain iBN∗eiλN
∗=iM∗eiλM

∗
B. Finally,

by setting λ = 0, we obtain the desired result for bounded operators. Now,
assume that the operators N and M are possibly unbounded operators and
that D(N) and D(M) are their respective domains. By Theorem 1.5.17, we
know that D(N) = D(N∗) and D(M) = D(M∗). We have

D(BN∗) = D(N∗) = D(N) = D(BN)

Since by assumption BN ⊆MB and M is normal, we get

D(BN∗) = D(MB) = D(M∗B)

Let a < ∞ and let ha be the characteristic function of D(0, a). It is known
from the Spectral Theorem that Nha(N) and Mhb(M) are normal bounded
operators. Moreover, we have:

[hb(M)Bha(N)]Nha(N) = Mhb(M)[hb(M)Bha(N)].

According to what has been shown previously in the bounded case, we get

[hb(M)Bha(N)][Nha(N)]∗ = [Mhb(M)]∗[hb(M)Bha(N)].

Leting a→∞ and then b→∞, we finally get BN∗ ⊆M∗B.

Fuglede-Putnam Theorem has many applications. For instance, some
simple consequences of this theorem are the following corollaries:
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Corollary 1.6.3. Let M,N ∈ B(H) be normal. If M and N are similar, then
they are unitarily equivalent.

Corollary 1.6.4. Let N be an unbounded normal operator and let B ∈ B(H).
Then the following statements are equivalent:

i BN ⊂ NB.

ii BN∗ ⊂ N∗B.

iii B∗N ⊂ NB∗.

iv B∗N∗ ⊂ N∗B∗.

Proof. Assume that BN ⊂ NB. Fuglede Theorem implies BN∗ ⊂ N∗B
Taking the adjoint of both sides and using the fact that N is closed leads to
B∗N ⊂ NB∗. Applying again Fuglede theorem gives B∗N∗ ⊂ N∗B∗. Finally,
since N is closed and B is bounded, taking the adjoint of both sides once more
entails BN ⊂ NB.

The sum and the product of two normal operators may not be normal.
However, by adding a commutativity condition, we can establish their
normality. The following result is proved in [75].

Corollary 1.6.5. Let N and M be normal operators such that M ∈ B(H).
Assume that N commutes up to a factor with M , that is MN ⊂ λNM 6= 0
for some scalar λ. Then NM is normal if and only if |λ| = 1.

Remark 1.6.6. For λ = −1, that is, when NM ⊂ −MN , the sum N + M
need not to be normal even though N and M are normal and bounded. A
counterexample can be found in [71].

The next result was shown in [70].

Corollary 1.6.7. Let N ∈ B(H) be normal and let M be a non-necessarily
bounded normal operator such that NM ⊂ MN . Then the sum N + M is
normal.
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Chapter 2

Cesàro Means and
Convex-Cyclic Operators.

The present chapter deals with convex-cyclicity and Cesàro-hypercyclicity of
higher order of bounded linear operators on separable Banach spaces. In
Section 2.1, we recall some basic definitions and some results related to
generalized Cesàro-means and convex-cyclicity. In Section 2.2, we
characterize when the Cesàro means of higher order are hypercyclic, that is,
when an operator T is (p) Cesàro-hypercyclic for p ∈ N ∪ {0}. Next, in
Section 2.3, we prove that if a bounded linear operator has arbitrary large
extended eigenvalues then it cannot be convex-cyclic. We end this chapter by
gathering some examples of non convex-cyclic operators. Specifically, we
study composition operators on the Hardy space H2 and the bilateral
weighted backward shifts on `p(Z). Finally, we highlight that the above
conditions on the extended eigenvalues are no longer true for an operator to
be non-supercyclic.

The results appearing in this chapter are published in [9].

2.1 Background

In order to fix some ideas, we shall recall some definitions and results related
to Cesàro-hypercyclicity of higher order and convex-cyclicity. In 2002, F.
León-Saavedra introduced the notion of Cesàro-hypercyclicity in [58]. Since
then, this property has been studied and investigated by many
mathematicians and a lot of questions were asked. For instance, what is the
relation between Hypercyclicity and Cesàro-hypercyclicity? In which cases
the results for hypercyclic operators hold for Cesàro-hypercyclicity? Is there
a Kitai Criterion’s type for Cesàro-hypercyclicity? These questions among
others were mostly answered in [22, 25, 26, 33, 58]. In 2013, the notion of
convex-cyclicity was introduced by H. Rezaei in [83]. Convex-cyclicity is
weaker than Cesàro-hypercyclicity but, equally, it has too many interesting
properties. We refer to [1, 34, 97] for results related to this concept. In this
section, we shall see more details on convex-cyclic operators and Cesàro
hypercyclic operators of higher order.
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2.1.1 Convex-cyclic operators

First, let us recall the notion of convex polynomials:

Definition 2.1.1. A polynomial p(z) = a0 + a1z + · · · + anz
n is said to be

convex if ai ≥ 0, ∀i = 0, ..., n and a0 + · · ·+ an = 1.

Example 2.1.2. For z ∈ C, the polynomial p(z) = 1+z+z2+...+zn

n+1
is convex in

C.

Denote by Cv[x] the semigroup of convex polynomials. Now, convex-cyclic
operators are defined as follows:

Definition 2.1.3. A bounded linear operator T : X → X is convex-cyclic if
there exists x ∈ X such that

{p(T )x : p ∈ Cv[x]}

is dense in X .

Equivalently, T ∈ B(X ) is said to be convex-cyclic if there exists a vector
x ∈ X such that the convex hull generated by the orbit of T under x is dense
in X . In such a case, x is called a convex-cyclic vector for T .

There are many examples of convex-cyclic operators. The next proposition
appeared in [83] and was deduced from [89].

Proposition 2.1.4. Let {en}n∈N be the canonical basis of `2. Let T be the
unilateral backward weighted shift defined in `2 by:

Ten = ωnen−1, n ≥ 1, T e0 = 0

where {ωn}n∈N is a nonzero bounded sequence of weights. Then T is hypercyclic
if and only if and only if there exists a sequence of positive integers {nk}k∈N
such that

lim
k→∞

nk∏
i=0

ωi =∞.

Example 2.1.5. Let T be the unilateral backward weighted shift defined in `2

with the weight sequence (2, 2, ..., 2, ...). Since limn→∞ 2n = ∞, it comes that
T is convex-cyclic.

Convex-cyclicity is an intermediate property between hypercyclicity and
cyclicity. Precisely, we have the following implications:

Hypercyclicity =⇒ Convex-cyclicity =⇒ Cyclicity.

Just like cyclicity, convex-cyclicity can occur in finite dimension (it
suffices to consider convex polynomials of degree at most n of matrices). Let
us denote by Mn×n(K) the set of all square matrices of dimension n× n over
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a field K.

In his article [83], H. Rezaei characterized when a finite square matrix is
convex-cyclic in terms of its eigenvalues. In 2017, Feldman and McGuire
corrected this characterization (see [34]). Namely, they proved the following:
if T ∈ Mn×n(R) then T is convex-cyclic on Rn if and only if T is cyclic and
its (real and complex) eigenvalues are contained in C \ (D∪R+). Moreover, if
T ∈ Mn×n(C) then T is convex-cyclic on Cn if and only if T is cyclic and its
eigenvalues λj ∈ C \ (D ∪ R) for all 1 ≤ j ≤ n with λi 6= λj for all
1 ≤ i < j ≤ n.

In particular, if T ∈ Mn×n(C) is diagonal then T is convex-cyclic if and
only its eigenvalues (λi)

i=n
i=1 are distinct pure complex numbers located outside

the closed unit disk. That is , Imλi 6= 0 and |λi| > 1 for all 1 ≤ i ≤ n. If we
assume T ∈Mn×n(R) to be diagonal then A is convex-cyclic if and only if its
eigenvalues are all distinct and λi < −1 for all 1 ≤ i ≤ n.

Example 2.1.6. Let

A =

(
−2 0
0 −3

)
and B =

(
3− 4i 0

0 1 + 5i

)
then A and B are convex-cyclic matrices on M2×2(R) and M2×2(C)
respectively. Trivial examples of non convex-cyclic operators are the zero and
the identity operators.

The powers of a convex-cyclic operator are in general not convex-cyclic.
In 2014, F. León-Saavedra and Romero De La Rosa were the first ones to
give a counterexample. In their article [60], they proved the existence of a
convex-cyclic operator T on infinite dimensional spaces such that T 3 fails to
be convex-cyclic. In 2016, Bermúdez, Bonilla and S. Feldman provided in [12]
another example of an operator T such that T 2 is not convex-cyclic. Unlike
the example of F. León-Saavedra and Romero De La Rosa, they required
moreover to the adjoint of T to have an empty point spectrum .

In [83], H. Rezaei showed some necessary conditions for an operator T ∈
B(X ) to be convex-cyclic in an infinite dimensional separable Banach space
X . Precisely, he showed the following proposition:

Proposition 2.1.7. Let T ∈ B(X ). If T is convex-cyclic then:

i. ‖T‖ > 1.

ii. sup{‖T n‖ : n ≥ 1} = +∞.

iii. σp(T
∗) ∩ (D ∪ R) = ∅ if X is a complex Banach space. And,

σp(T
∗) ∩ [−1,+∞) = ∅ if X is a real Banach space.

Another interesting necessary condition involving spectral properties of T
is the following:
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Theorem 2.1.8. [83, Theorem 3.6] Let X be a complex separable Banach
space and let T ∈ B(X ). If T is convex-cyclic then every component of σ(T )
must intersect C \ D.

Since the point spectrum is included in the spectrum, we deduce the
following:

Lemma 2.1.9. Let X be a complex Banach space and let T ∈ B(X ). If T is
convex-cyclic then σp(T

∗) ∩ D = ∅.

In the Theory of Linear Chaos, Lemma 2.1.9 provides a relation between the
density of orbits of an operator and its spectral properties. Precisely, Lemma
2.1.9 provides a necessary condition (that involves the point spectrum) of a
bounded linear operator to be convex-cyclic. Similarly to this result, we will
prove in Section 2.3 new conditions on the extended spectrum of an operator
that guarantee its non convex-cyclicity (see Theorem 2.3.2).

2.1.2 Cesàro means of higher order

Generalized Cesàro means have been investigated by many mathematicians.
If we consider powers of operators, it has been noticed in the recent results of
Aleman-Suciu and Zemánek [1, 97] that the Cesàro means of higher order play
an important role in Operator Ergodic Theory. Moreover, these means appear
naturally in the Theory of Summability of power series (see [42, 80, 105]).

We start by recalling the following definitions:

Definition 2.1.10. For n, p ∈ N ∪ {0}, the Cesàro means of order p of T ∈
B(X ), denoted by M

(p)
n (T ), are defined as follows:

M
(p)
0 (T ) = I, M0

n(T ) = T n

and for n, p ∈ N:

M (p)
n (T ) :=

p

(n+ 1) · · · (n+ p)

n∑
j=0

(j + p+ 1)!

j!
M

(p−1)
j (T ).

In particular for p = 1, we denote

Mn(T ) = M (1)
n (T ) =

1

n+ 1

n∑
j=0

T j.

Definition 2.1.11. Let p ∈ N ∪ {0}. An operator T ∈ B(X ) is said to
be (p)-Cesàro-hypercyclic, or Cesàro-hypercyclic of order (p), if there exists a
vector x ∈ X such that the subset

{M (p)
n (T )x : n ≥ 0}.

is a dense in X .
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It is obvious from Definitions 2.1.10 and 2.1.11 that Cesàro-hypercyclicity
of order (0) is just hypercyclicity (see Definition 1.4.1). To follow the same
path as in [58], Cesàro-hypercyclicity of order (1) shall simply be called
Cesàro-hypercyclicity.

The following characterization is due to F. León-Saavedra and it provides
a large number of examples of Cesàro-hypercyclic operators:

Proposition 2.1.12. [58, Proposition 3.4] Let {en}n∈Z be the canonical basis
of `2(Z). Let T be the bilateral weighted shift defined in `2(Z) by:

Ten = ωnen−1

where (ωn)n∈Z is a bounded weight sequence. Then T is Cesàro-hypercyclic if
and only if there exists an increasing sequence (nk) of positive integers such
that for any integer q such that:

lim
k→∞

∏nk
i=1 ωi+q
nk

=∞ and lim
k→∞

∏nk−1
i=0 ωq−i
nk

= 0

Example 2.1.13. [58, Example 3.6] Let T be the bilateral weighted shift
defined in `2(Z) with the weight sequence:

ωn =

{
1 if n < 0

2 if n ≥ 0.

Then we have: ∏n−1
i=0 ωq−i
n

=
c

n
→ 0, as n→∞

where c =
∏n−1

i=0 ωq−i is a finite constant and∏n
i=1 ωi+q
n

=

{
2n

n
if q > 0

2n+q

n
if q ≤ 0

tends to ∞ as n → ∞. According to Proposition 2.1.12, T is
Cesàro-hypercyclic.

Going back to the definition of the Cesàro means, observe that we have:

Mn(T ) = q(T ) where q(z) =
1

n+ 1

n∑
k=0

zk.

Since the polynomial q is convex, it turns out that every Cesàro-hypercyclic
operator is convex-cyclic. Thus, the following implications hold:

Cesàro-hyprcyclicity =⇒ Convex-cyclicity =⇒ Cyclicity
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At this point, one may wonder about the relation between hypercyclicity and
Cesàro-hypercyclicity. F. León-Saavedra showed in [58] that neither
hypercyclicity implies Cesàro-hypercyclicity, nor Cesàro-hypercyclicity
implies hypercyclicity. In fact, on the one hand, he proved that every
Cesàro-hypercyclic unilateral weighted shift is hypercyclic. On the other
hand, he showed the existence of a bilateral weighted shift which is
Cesàro-hypercyclic but without being hypercyclic (see Example 2.1.13). In
the same paper [58], F. León-Saavedra showed that:

T is Cesàro-hypercyclic if and only if the sequence Tn

n
is hypercyclic.

As a consequence, he provided a sufficient condition (involving the powers
of the operator) for convex-cyclicity. More recently, Bermúdez-Bonilla and
Feldman [12] have proved the following result:

Let c > 1, then the convex means c−1
cn+1−1

∑n
k=0 c

n−kT k is hypercyclic

if and only if Tn

cn
is hypercyclic.

As we shall see in the next section, it is possible to characterize when an
operator T ∈ B(X ) is Cesàro-hypercyclic of higher order using the powers of
T (see Theorem 2.2.3).

2.2 Cesàro-hypercyclic Operators of Higher

Order

Let p ∈ N and consider a bounded linear operator T on a separable Banach
space X . In this section, we shall prove that T is (p)- Cesàro hypercyclic if
and only if there exist x ∈ X such that the orbit {Tn

np
(x)}n≥0 is dense in X . To

prove this characterization, we shall need the following preliminary results:

Lemma 2.2.1. Let T be an operator and let us assume that {λn}n≥0 is a
sequence of complex numbers which is not dense in C. If there exists a vector
x ∈ X such that {λnM (p)

n (T )(x)}n≥0 is dense in X (p ≥ 1) then ran(T − I) is
dense in X .

Proof. Indeed, let x ∈ X be such that {λnM (p)
n (T )x}n≥0 is dense in X . If

ran(T − I) is not dense, choose y0 ∈ ker(T ? − I) \ {0}. Since M
(p)
n (T ) are

convex combinations of T , we have that M
(p)
n (I) = I, therefore

{
〈
λnM

(p)
n (T )x, y?0

〉
}n≥0 = {λn〈x,M (p)

n (T ?)y?0〉}n≥0
= {〈x,M (p)

n (I)y?0〉}n≥0 = {λn〈x, y?0〉}n≥0

which is not dense in C, a contradiction.

In fact, we will show later that if T is (p)-Cesàro hypercyclic (p ≥ 1) then
σp(T

?) = ∅. The following Lemma is the key of the proof of Theorem 2.2.3.
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Lemma 2.2.2. Let {λn}n≥0 be a bounded sequence of complex numbers and

p ≥ 1. Then the sequence of operators {λnM (p)
n (T )}n≥0 is hypercyclic if and

only if the sequence
{
λn−1

M
(p−1)
n (T )
n

}
n>0

is hypercyclic.

Proof. Indeed, let us suppose that there exists x ∈ X such that
{λnMp

n(T )(x)}n≥0 is dense in X . Since ran(T − I) is dense, the subset

(T − I)
(
{λnM (p)

n (T )(x)}n≥0
)

must be dense in X . Then, by the well known formula

(T − I)M (p)
n (T ) =

p

n+ 1

(
M

(p−1)
n+1 (T )− I

)
,

we obtain

(T − I)
(
{λnM (p)

n (T )(x)}n≥0
)

= λn
p

n+ 1
M

(p−1)
n+1 (T )(x)− λnx

n+ 1
. (2.1)

Since the last term converges to 0, we obtain that the orbit p
n+1

M
(p−1)
n+1 (T )(x)

is dense, that is, the sequence
{
λn−1

M
(p−1)
n (T )
n

}
n>0

is hypercyclic as we desired.

Conversely, if
{
λn−1

M
(p−1)
n (T )
n

}
n>0

is hypercyclic, there exists some x such

that the subset defined by the orbit of the second term in (2.1) is dense in

X . This implies that (T − I)
(
{λnM (p)

n (T )(x)}n≥0
)

is dense. In other words,

the sequence {λnM (p)
n (T )}n≥0 is hypercyclic, with hypercyclic vector (T − I)x.

This completes the proof of the lemma.

Theorem 2.2.3. Let T be a bounded linear operator defined on a separable
Banach space X and p ∈ N. Then, T is (p)-Cesàro-hypercyclic if and only if
there exists a vector x such that {Tn

np
(x)}n>0 is dense in X .

Proof. Assume that T is (p)- Cesàro hypercyclic, then there exists x ∈ X
such that {M (p)

n (T )x} is dense in X , then applying Lemma 2.2.2 we obtain

that 1
n
M

(p−1)
n (T )(x) is dense in X . Applying again Lemma 2.2.2, we obtain

that { 1
(n−1)(n)M

(p−2)
n (T )(x)} is dense in X . Recursively, we obtain that

{ 1
(n−p)(n−p+1)···(n)T

n(x)}n≥p+1 must be dense in X , or equivalently

{Tn
np

(x)}n>0is dense in X .

Theorem 2.2.4. Let T be a (p) Cesàro-hypercyclic operator, then σp(T
?) = ∅.

Proof. Indeed, let us suppose that there exists x ∈ X such that {Tnx
np
} is dense

in X . By way of contradiction, let us suppose that y?0 ∈ Ker(T ? − λI) \ {0}
then the following subset should be dense in C:〈

T nx

np
, y?0

〉
=
λ
n

np
〈x, y?0〉

a contradiction.

As it was mentioned before, the hypercyclicity of an operator does not imply
its Cesàro means hypercyclicity and viceversa (see again Section 3 in [58]). In
a similar manner, we can obtain examples of operators that are (p− 1)-Cesàro
hypercyclic and that are not (p)-Cesàro hypercyclic (and viceversa).
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2.3 Convex-cyclic Operators and Extended

Eigenvalues

Let λ be an extended eigenvalue of T ∈ B(X ), that is λ satisfies TX = λXT for
some non-zero bounded linear operator X. Recall that the set of all extended
eigenvalues of T is called the extended spectrum. We shall see in what follows
some necessary conditions for an operator T ∈ B(X ) to be convex-cyclic.
These conditions involve the extended spectrum of T .

Proposition 2.3.1. Let T ∈ B(X ). Suppose that there exists an extended
eigenvalue λ such that ‖T‖ ≥ |λ|. Let X be the eigenoperator associated to λ
and assume that X has right inverse. Then T is not convex-cyclic.

Proof. Let R be the right inverse of X, then p(T ) = Xp(λT )R which implies
that if x is a convex cyclic vector for T , then the subset {p(λT )Rx : p ∈
Cv[x]} must be dense in X . A contradiction because this subset is bounded.

Theorem 2.3.2. Let T be a bounded linear operator. Let us suppose that
there exists an extended eigenvalue λ such that ‖T‖ ≤ |λ|. Then T is not
convex-cyclic.

Proof. Let p be a convex polynomial. Since ‖T‖ ≤ λ, the operator p
(
1
λ
T
)

is a contraction and since λ is an extended eigenvalue, we have the following
equation:

p

(
1

λ
T

)
X = Xp(T ) (2.2)

where X is an extended eigenoperator associated to the extended eigenvalue
λ. Let y be a convex-cyclic vector for T , then we claim that Xy 6= 0. Indeed,
if Xy = 0, then by (2.2) we observe that for every convex polynomial p,
Xp(T )y = 0. That is: X is zero on a dense subset. Since X is continuous, we
conclude that X = 0, a contradiction.

Let y be a convex cyclic vector for T , then we can suppose without loss of
generality that ‖y‖ = 1, ‖X‖ = 1 and Xy 6= 0. Let us fix ε > 0, and let us
consider r > 1 large enough such that ‖X(ry)‖ > 1 + ε. Since y is a convex
cyclic vector, there exists a convex polynomial q such that ‖q(T )y − ry‖ < ε.
Hence, we obtain:

‖Xq(T )y‖ = ‖Xq(T )y −Xry +Xry‖ ≥ ‖X(ry)‖ − ‖Xp(T )y −X(ry)‖ > 1.

On the other hand, if we look at the first term of the equation in (2.2), since
q
(
1
λ
T
)

is a contraction, we have∥∥∥∥q(1

λ
T

)
Xy

∥∥∥∥ ≤ 1

a contradiction.
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Since generalized Cesàro means are convex sums, Theorem 2.3.2 allows us
to obtain a large number of examples of operators that are not convex-cyclic.
Indeed, let us apply our result to some concrete examples of operators. We
point out that the extended spectra of these operators are already computed
in [53, 54, 55] and [57].

Example 2.3.3. Bilateral weighted shifts. Let (wn)n∈Z be a bounded sequence.
The bilateral weighted shift is defined on the canonical basis {en}n∈Z as

Bek = wkek+1, k ∈ Z.

It is known ([53]) that every bilateral weighted shift has one of the following
extended spectra: a) D b) T c) C \ {0} and d) C \ D.

Then, according to Theorem 2.3.2, if the extended spectra of B is C \ {0}
or C \ D, then B is not convex-cyclic. Taking into account the relationship
between the extended spectrum of B and its adjoint B?, we deduce that if the
extended spectrum of B is D then B? is not convex-cyclic.

The case in which the extended spectrum of B is the unit circle T, our result
does not apply.

Example 2.3.4. Cesàro operators. The discrete Cesàro operator is defined
on the sequences spaces `p as

C0(x1, x2, · · · ) = (x1,
x1 + x2

2
,
x1 + x2 + x3

3
, · · · ).

The extended spectrum of C0 is the interval [0,∞) (see [55]). Therefore
according to Theorem 2.3.2, the Cesàro operator C0 is not convex cyclic on
`p.

On the other hand, the continuous Cesàro operator C1f(x) = 1
x

∫ x
0
f(s) ds

is hypercyclic on Lp[0, 1], 1 < p <∞ (see [57]) and since the extended spectrum
is the subset (0, 1] ([55]), using Theorem 2.3.2, we obtain that its adjoint C?

1

is not convex-cyclic.

Example 2.3.5. Composition operators. Let ϕ be a parabolic
non-automorphism linear fractional self map of the unit disk. The symbol ϕ
induces a bounded composition operator Cϕ on the Hardy space H2(D). It
was proved by Rezaei ([83] [Theorem 5.2]) that the operator Cϕ is not
convex-cyclic. Recently, F. León-Saavedra, M. Lacruz, L.R. Piazza and S.
Petrovic computed in [54] the extended eigenvalues for composition operators
induced by linear fractional self maps of the unit disk. When the symbol is
parabolic non-automorphism, they obtained that the extended spectrum
contains arbitrarily large and arbitrarily small values. Hence, applying
Theorem 2.3.2, we obtain that Cϕ and C?

ϕ are not convex-cyclic.

The conditions in Theorem 2.3.2 are not sufficient in order for an operator
to be non supercyclic. The following example shows that there exist operators
satisfying these conditions and yet they are supercyclic.
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Example 2.3.6. Unilateral weighted backward shifts. Let us consider an
injective unilateral weighted backward shift B defined on the canonical basis
of `p(N) or c0 by

Ben = wnen−1, n ≥ 1

and Be0 = 0. The classical result by Hilden and Wallen ([44]) shows that
every unilateral backward shift is supercyclic. On the other hand, the extended
spectra of the unilateral backward shift (it was computed by S. Petrovic in [79])
is either C \ {0} or D \ {0}. In short, there are supercyclic operators with
arbitrarily large extended eigenvalues.

2.4 Some Open Questions

The Cesàro means can be extended for real numbers α ∈ R \ {−1,−2, · · · }
(see [31, 32]). If α ∈ R \ {−1,−2, · · · }, then the numbers Aαn are defined as
follows:

Aαn =
(α + 1)(α + 2) · · · (α + n)

n!
,

the following identity follows:

Aα+1
n =

n∑
k=1

Aαk .

The Cesàro means of order α are defined as the convex combinations:

Mα
n (T ) =

1

Aαn

n∑
k=1

Aα−1n−kT
k

and the following relations are still true:

Aαn+1 − Aαn = Aα−1n+1 (2.3)

for all α ∈ R and n ≥ 0. And using the above equation, we obtain:

Mα
n (T )(T − I) =

α

α + n
Mα−1

n+1 (T )− α

n+ 1
I.

It would be nice if we could extend Theorem 2.2.3 for Cesàro means with
arbitrary real α ∈ R\{−1,−2, · · · }. In this direction, we should note that if p
is a natural number then the successive finite differences (2.3) stabilize. On the
other hand, if α ∈ R \ {−1,−2,−3, · · · }, those successive finite differences do
not stabilize. The ideas in the proof of Theorem 2.2.3 also yield the following
result:

Theorem 2.4.1. Let α ∈ R \ Z, let β = α− [α] where [α] denotes the integer
part of α. Then, the Cesàro means {Mα

n (T )} are hypercyclic if and only if the

sequence {M
β
n (T )

n[α] } is hypercyclic.
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Chapter 3

Operators λ–commuting with
the Differentiation Operator
and Hypercyclicity.

An operator T acting on a separable F-space X is called hypercyclic if there
exists f ∈ X such that the orbit {T nf} is dense in X . In this chapter, we
determine when an operator that λ-commutes with the operator of
differentiation on the space of entire functions is hypercyclic, extending
results by G. Godefroy and J. H. Shapiro [39] and R. M. Aron and D.
Markose [2]. The results we obtained are collected in [8].

3.1 Background

The term λ-commuting was introduced by J.B. Conway and G. Prǎjiturǎ in
[24]. More recently, a complex number λ is called an extended eigenvalue of an
operator T if there exists a non-zero continuous operator X, which is called an
extended λ-eigenoperator of T , such that TX = λXT . Extended eigenvalues
and extended eigenoperators are naturally born to improve V. Lomonosov’s
famous result on the invariant subspace problem ([19, 49, 62]) and their study
is currently under development (see [52, 53]).

Let H(C) be the space of entire functions endowed with the topology of
uniform convergence on compact subsets. G. D. Birkhoff ([16]) proved in 1929
that translation operators on H(C) are hypercyclic. In 1952, G. R. MacLane
([63]) proved the same result for the differentiation operator D onH(C). These
results appear to be the first hypercyclicity theorems for operators.

In 1991, G. Godefroy and J. H. Shapiro (see [39]) unified Birkhoff’s and
MacLane’s results by proving that each non-scalar operator that commutes
with D is hypercyclic. The simplicity and beauty of this statement is striking,
and it is worthy to note that there is no analogous result in the context of
Banach spaces since contractions on these spaces are never hypercyclic. This
result has been improved and extended in different directions, making [39] one
of the most cited papers on hypercyclic operators. A step further in Godefroy
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and Shapiro’s result arises with the following question:

Suppose that T is an operator on H(C) which is an extended
λ-eigenoperator of D; that is, DT = λTD. Is T hypercyclic?

At first glance, this question seems difficult because there are examples of
non-trivial extended eigenoperators of D which are not hypercyclic. The first
one was discovered by L. Bernal and A. Montes (see [14]), who showed that the
composition operator Cλ,bf(z) = f(λz+b) induced by the affine endomorphism
ϕ(z) = λz+ b is hypercyclic if and only if ϕ is a proper translation (λ = 1 and
b 6= 0). It is easy to see that Cλ,b is an extended λ-eigenoperator of D. From
these facts, it can be suspected that there are many extended eigenoperators of
D that are not hypercyclic. But, is there a non-trivial one that is hypercyclic?
R. M. Aron and D. Markose answered this question affirmatively. Denoting
Tλ,bf(z) = f ′(λz + b), then Tλ,b is an extended λ-eigenoperator of D, and Tλ,b
is hypercyclic if and only if |λ| ≥ 1 (see [2, 35, 55]).

In this chapter, we fully characterize when an extended eigenoperator of D
is hypercyclic by proving the following result:

Main Theorem. Let T be an extended λ-eigenoperator of D, λ 6= 1. Then T
is hypercyclic if and only if |λ| ≥ 1 and T is not a multiple of the composition
operator Cλ,b induced by an affine endomorphism.

This chapter is organized as follows. In Section 3.2, We show that an
extended λ-eigenoperator T of D can be factorized as T = Rλφ(D), where
Rλf(z) = f(λz) and φ is an entire function of exponential type. So we can
study the hypercyclicity of T in terms of the properties of φ and λ. We also
show that φ has no zeros if and only if Rλφ(D) is a nonzero multiple of Cλ,b,
and it is not hypercyclic in this case.

We divide the rest of the proof of the Main Theorem in cases (assuming
that φ has an isolated zero) which are treated in successive sections:

3.3: |λ| < 1 and λn = 1 for some n ∈ N;

3.4: |φ(0)| > 1 and |λ| ≥ 1;

3.5: 0 < |φ(0)| ≤ 1 and |λ| > 1;

3.6: 0 < |φ(0)| ≤ 1 and |λ| = 1;

3.7: φ(0) = 0 and |λ| ≥ 1.

Thus, the main result is obtained by considering different cases for the
values of λ and φ(0), which share a similar flavour to recent studies on
algebras of hypercyclic vectors for convolution operators by F. Bayart, J. Bès
and coworkers [15, 5].

Each particular case is solved by a different method. Using some arguments
borrowed from [39], we prove the cases |λ| < 1 and λ is a root of the unity.
However, new ideas are needed to solve the rest of the cases.
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In the case |λ| ≥ 1 and |φ(0)| > 1, we analyze the action of T on the
exponentials eaz, and we show that T has a dense generalized kernel. Then we
construct the right inverse required by the Hypercyclicity Criterion using the
triangularity of T and a linear algebra argument.

When |λ| > 1 and 0 < |φ(0)| ≤ 1, the operator T = Rλφ(D) is not injective.
So the right inverse needed to apply the Hypercyclicity Criterion is not unique,
and the construction in the previous section does not provide a right inverse
in this case. However, using the Pólya representation of an entire function, we
obtain an integral representation of the powers of the operator which allows
us to find a sequence of right inverses for the powers of the operator. With
this sequence of right inverses and the Hypercyclicity Criterion we prove the
desired result.

The case 0 < |φ(0)| ≤ 1 and λ a irrational rotation is the most intriguing
one. When λ is a root of unity, the problem can be solved using a result
on powers of hypercyclic operators, but when λ is an irrational rotation the
solution is different. In many cases; e.g., when φ(z) is a polynomial p(z) or
φ(z) = p(z)ez, we can deduce the result by standard arguments. However, as
far as we know, these arguments cannot be used in the general case, and the
problem requires an argument involving normal families. Montel’s Theorem
plays an important role in guaranteeing the universality of a family of functions
on the complex plane: it is the key of the proof.

A different treatment is needed also in the case φ(0) = 0, including the
operator Tλ,b, which is different from those used in [2, 35, 55]. We need to
refine the computations in the case |φ(0)| > 0 and |λ| ≥ 1 using the complex
Volterra operator.

Along this chapter, φ will be a non-zero entire function of exponential type:
there are constants A,B > 0 such that |φ(z)| ≤ AeB|z| for all z ∈ C. We will
denote by spanA the subspace generated by a subset A of a vector space.

We close this chapter by giving an example of a bounded linear operator
on a Banach space such that all its related extended eigenoperators are not
hypercyclic.

3.2 Factorization of Operators λ-commuting

with the differentiation operator

Now, we give a result inspired by [55] that will be central in our discussion.

Proposition 3.2.1. Let T be an operator on H(C). Then DT = λTD for
some 0 6= λ ∈ C if an only if T = Rλφ(D) with Rλf(z) = f(λz) for z ∈ C and
φ an entire function of exponential type.

Proof. Suppose that DT = λTD with λ 6= 0. Given f ∈ H(C) and λ ∈ C\{0},
the operator R1/λ is an extended (1/λ)-eigenoperator of D, that is, DR1/λ =
1
λ
R1/λD. Besides,

R1/λTDf =
1

λ
R1/λDTf =

1

λ
λDR1/λT = DR1/λTf.
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Hence, R1/λT commutes with D. By Proposition 5.2 in [39], there exists an
entire function φ of exponential type such that R1/λT = φ(D). Since R1/λ is
invertible with inverse Rλ, we deduce that T = Rλφ(D). Conversely, if there
exists an entire function φ of exponential type such that T = Rλφ(D), since
Dφ(D) = φ(D)D, DT = λTD.

The following result takes care of the case in which φ has no zeros. Thus
we can assume that φ has an isolated zero in the remaining sections.

Proposition 3.2.2. Let 1 6= λ ∈ C. Then T = Rλφ(D) is a multiple of Cλ,b
if and only if φ has no zeros on C. In this case T is not hypercyclic.

Proof. If φ(z) 6= 0 for all z ∈ C, we can define the logarithm of φ(z) (see, e.g.,
p. 226 in [45]), and there exists an entire function g such that φ(z) = eg(z).
Since φ is entire of exponential type, g(z) = az + b for some a, b ∈ C. Thus
Tf(z) = ebf(λz + a), which is not hypercyclic when λ 6= 1 (see [14]). Indeed,
set c = a/(1 − λ), the fixed point of the map λz + a. If f is hypercyclic
for T then, the orbit T nf(c) should be dense in C. However the sequence
T nf(c) = enbf(c) is either bounded (if |eb| ≤ 1) or diverges to infinity (if
|eb| > 1), a contradiction, which gives the desired result.

Propositions 3.2.1 and 3.2.2 provide a way to study our problem by looking
at the properties of φ and λ.

3.3 The cases |λ| < 1 and λ is a root of 1

In the first case we will show that T = Rλφ(D) is not hypercyclic. At first
glance, one may think that the cases of Fréchet spaces and Banach spaces are
similar. However, using some ideas of [9], we will show that in the Banach
space setting an extended λ-eigenoperator with |λ| < 1 is not hypercyclic, but
this is no longer true for Fréchet spaces.

Proposition 3.3.1. Let A and T be two operators on a Banach space. If T
is an extended λ-eigenoperator of A and |λ| < 1 then T is not hypercyclic.

Proof. Assume that T is hypercyclic. Then there exists x ∈ X such that
{T nx}n≥1 is dense in X . Hence, {AmT nx}n≥1 is also dense in Am(X ) for each
m ≥ 1. Since |λ| < 1, we can choose m ≥ 1 such that |λ|m‖T‖ ≤ 1. Observing
that AmT n = λnmT nAm, we have:

‖AmT nx‖ = |λ|nm‖T nAmx‖ ≤ |λ|nm‖T n‖‖Amx‖ ≤ ‖Amx‖.

Hence, we get a contradiction, and T cannot be hypercyclic.

Proposition 3.3.1 is not true in Fréchet spaces:

Example 3.3.2. For |λ| > 1, Tλ,bD = (1/λ)DTλ,b. Hence D is an hypercyclic
extended (1/λ)-eigenoperator of Tλ,b with |1/λ| < 1.

However, our case is not one of these examples:
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Theorem 3.3.3. If |λ| < 1 and T is an extended λ-eigenoperator of D then
T is not hypercyclic.

Proof. First, we give a representation of T similar to one in the proof of
Proposition 5.2 in [39]. We consider Λ ∈ H(C)∗ defined by Λf = Tf(0). By
the Hahn-Banach theorem and the Riesz Representation theorem, there
exists a complex Borel measure µ with compact support in C such that

Λf = Tf(0) =

∫
f(w) dµ(w)

for all f ∈ H(C). For each α ∈ C we consider the translation operator τα
defined by ταf(z) = f(z + α). Since

f(z + α) =
∞∑
k=0

f (k)(z)
αk

k!
=

(
∞∑
k=0

αk

k!
Dk

)
f(z)

we have ταT =
(∑∞

k=0
αk

k!
Dk
)
T = T

(∑∞
k=0

λkαk

k!
Dk
)

= Tτλα. Therefore

Tf(z) = (τzTf)(0) = (Tτλzf)(0) =

∫
f(λz + w) dµ(w)

for each f ∈ H(C). Iterating the above equality we get:

T nf(z) =

∫
· · ·
∫
f(λnz + λn−1w1 + · · ·+ wn) dµ(wn) · · · dµ(w1).

Thus, if the disc D(0, R) contains the support of µ, since

|λnz + λn−1w1 + · · ·+ wn| ≤M(|z|) = |λn||z|+ 1− |λ|n

1− |λ|
R,

for |z| ≤ r each element of the argument of f in the above integral lies in the
disk D(0,M(r)). Hence, for f ∈ H(C) and |z| ≤ r we get:

|T nf(z)| ≤ sup
|z|=M(r)

|f(z)| ‖µ‖n,

where ‖µ‖ denotes the total variation of µ.
Assume there exists f ∈ H(C) such that {T nf}n≥1 is dense in H(C). Since

|λ| < 1, there exists m ∈ N such that |λ|m < 1/‖µ‖. Since D has dense range,
{DmT nf}n≥1 is dense in H(C). However, for |z| ≤ r we get

|DmT nf(z)| = |λ|mnT n(Dmf)(z)| ≤ |λ|mn‖µ‖n max
|z|≤M(r)

|Dmf(z)|

which goes to 0 as n→∞, a contradiction. Thus T is not hypercyclic.

When λ is a root of 1, the result of Godefroy and Shapiro for λ = 1 allows
us to prove the following result.
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Theorem 3.3.4. If λn0 = 1 6= λ and T = Rλφ(D) is not a multiple of Cλ,b
then T is hypercyclic.

Proof. If λn0 = 1 then Rn0
λ = I. Hence,

T n0f =
(
Rλφ(D))n0f = (φ(D)φ(λD) · · ·φ(λn0−1D)

)
f.

Thus, if Φ(z) =
∏n0−1

j=0 φ(λjz) is not constant, then T n0 = Φ(D) is hypercyclic
by [39, Theorem 5.1]. Hence T is hypercyclic.

If Φ = 0 then T = 0, and if Φ is a nonzero constant function, then φ has
no zeros, and T is a multiple of Cλ,b by Proposition 3.2.2.

3.4 The case |φ(0)| > 1 and |λ| ≥ 1

This case can be dealt with by using a standard argument.

Theorem 3.4.1. Assume |φ(0)| > 1, |λ| ≥ 1, and λ is not a root of the unity.
If T = Rλφ(D) is not a multiple of Cλ,b then T is hypercyclic.

Proof. By Proposition 3.2.2, there exists a ∈ C, a 6= 0, such that φ(a) = 0.
We consider the subset X0 = span {e(a/λn)z ; n ≥ 0}.

Since |λ| ≥ 1 and λ is not a root of the unity, the set {a/λn : n ∈ N} has
an accumulation point in C; hence X0 is dense in H(C). On the other hand,
since T ne(a/λ

k)z = 0 if n > k, T n converges to zero pointwise on X0.
We will construct a mapping S on a dense subset Y0 such that Sny → 0 for

all y ∈ Y0, and TS = IdY0 . First, observe that the subspace Pn of polynomials
of degree less or equal than n is invariant under T = Rλφ(D), and the action of
T on Pn can be represented by a finite triangular matrix with diagonal entries
φ(0)λk, k ≥ 0. Since λ 6= 1, T has n + 1 different eigenvalues in Pn. Thus,
there exists a sequence {pk : k ≥ 0} of polynomials with degree of pk equal to
k such that Tpk = φ(0)λkpk for all k ≥ 0, and

Y0 = span {pk(z) : k ≥ 0}

is the subspace of polynomials, which is dense. We define Spk = 1
φ(0)λk

pk and

extend S to Y0 by linearity. Since |φ(0)| > 1, Snpk → 0 as n → ∞ for every
|λ| ≥ 1, hence Sny → 0 as n→∞ for all y ∈ Y0. Therefore, the Hypercyclicity
Criterion implies that T is hypercyclic.

3.5 The case 0 < |φ(0)| ≤ 1 and |λ| > 1.

In this case, if we use the inverse defined as in the previous section; that is
Spk = 1

φ(0)λk
pk, then |φ(0)λn| > 1 for n > n0 for some n0. This implies that

Skpn → 0 for all n > n0. However on the subspace of polynomials of degree
less or equal than n0 we do not have convergence to zero.

It was pointed out in [13] that φ(D) is injective if and only if it is a multiple
of Cλ,b. Thus our operator is not injective, so its right inverse is not unique,
and we will overcome the obstacle by defining a different right inverse.
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Let f be an entire function of exponential type f(z) =
∑∞

n=0 anz
n. The

Borel transform of f is defined as

Bf(z) =
∞∑
n=0

n!an
zn+1

.

It is well known that Bf(z) is analytic on |z| > c for some c > 0. In
particular, for the monomials fn(z) = zn/n! we have Bfn(z) = 1/zn+1 which
is analytic on |z| > 0.

Pólya representation of f (see [18] p. 78) asserts that if Bf(z) is analytic
on |z| > c then for any R > c, we have

f(z) =
1

2πi

∮
|t|=R

eztBf(t) dt.

Using this representation, if φ(D) =
∑∞

n=0 φnD
n, then

Rλφ(D)f(z) = Rλ

(∑
n

φn
1

2πi

∮
|t|=R

tnetzBf(t) dt

)

= Rλ
1

2πi

∮
|t|=R

(∑
n

φnt
n

)
eztBf(t) dt

=
1

2πi

∮
|t|=R

φ(t)eλztBf(t) dt.

And iterating the above formula, we get:

(Rλφ(D))n f(z) =
1

2πi

∮
|t|=R

φ(t)φ(λt) · · ·φ(λn−1t)eλ
n−1ztBf(t) dt.

On the other hand, denoting ω = 1/λ, if for some R > c we define

S1f(z) =
1

2πi

∮
|t|=R

1

φ(ωt)
eωztBf(t) dt,

arguing as in the above computation of Rλφ(D)f(z) we get Rλφ(D)S1f = f .

The next result will be needed to prove this case.

Proposition 3.5.1. Let P (z) = c(1− z/a) with c 6= 0 6= a. Then there exists
a sequence (Rk) of positive numbers converging to ∞ such that for each n ≥ 0,

(Lkfn)(z) =
1

2πi

∮
|t|=Rk

1

P (ωt) · · ·P (ωkt)
eω

kztBfn(t) dt (3.1)

converges to zero, uniformly on compact subsets, as k →∞.

Proof. Since |ω| < 1 the subset X0 = span {eaωnz : n ≥ 0} is dense in H(C).
Moreover for each x0 ∈ X0, T

nx0 = 0 for n large enough. We choose M0 ≥ 1
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such that |P (z)| ≥ 1 for |z| ≥M0, set Rk = |λ|kM0, define Lk on fn(z) = zn/n!
by

Lkfn(z) =
1

2πi

∮
|t|=Rk

1

P (ωt) · · ·P (ωkt)
eω

kztBfn(t) dt.

If |t| = Rk = |λ|kM0 and 1 ≤ j ≤ k, then |ωjt| = |λk−j|M0 ≥ M0.
Therefore |P (ωjt) ≥ 1 and

|Lkfn(z)| ≤ 1

2π
2πRk e

M0|z| 1

Rn+1
k

=
eM0|z|

Rn
k

→ 0

uniformly on compact subsets as k →∞.

Theorem 3.5.2. Suppose that φ vanishes at some a ∈ C and 0 < |φ(0)| ≤ 1.
If |λ| > 1 then T = Rλφ(D) is hypercyclic.

Proof. Again, since |ω| < 1, the subset X0 = span {eaωnz : n ≥ 0} is dense
in H(C), and if x0 ∈ X0 then T nx0 = 0 for n large enough. Let n0 be the
first natural number satisfying |φ(0)λn0+1| > 1. The proof will be finished if
we can define a sequence of mappings Sk on the monomials fn (n = 0, . . . , n0)
satisfying

1 Skfn → 0 uniformly on compact subsets as k →∞, and

2 (Rλφ(D))kSkfn → fn uniformly on compact subsets as k →∞.

We denote P (z) = φ(0)(1− z/a). First we define Sk on f0. By Proposition
3.5.1, there exists a sequence of positive numbers Rk →∞ such that

Lkfnn =
1

2πi

∮
|t|=Rk

1

P (ωt) · · ·P (ωkt)
eω

kztBfn(t) dt→ 0

uniformly on compact subsets as k →∞ for n = 0, . . . , n0.
Taking Skf0 = Lkf0, we get (Rλφ(D))kSkf0 = f0. Indeed, denoting

Φk(t) =
φ(ωt)

P (ωt)
· · · φ(ωkt)

P (ωkt)
,

and observing that Φk(0) = 1, we get

(Rλφ(D))kSkf0(z) =
1

2πi

∮
|t|=Rk

Φk(t)e
ztdt

t
= 1,

where the last equality follows from the fact that the function Φk(t)e
zt is

analytic: the integral is equal to the residue of Φk(t)e
zt(1/t), which is 1.

Next we define Sk on f1. Since Φk(t) is an entire function and Φk(0) = 1,

we can write Φk(z) =
∑∞

j=0 a
(k)
j tk with a

(k)
0 = 1 for all k. Also, the second

term of the Cauchy product
(∑∞

j=0
zj

j!
tj
)
·
(∑∞

j=0 a
(k)
j tk

)
coincides with

1

2πi

∮
|t|=Rk

Φk(t)e
ztdt

t2
= z + a

(k)
1 .
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So defining

Skf1(z) =
1

2πi

∮
|t|=Rk

Φk(t)e
ztdt

t2
− a(k)1 Skf0,

we get (Rλφ(D))kSkf1 = f1, and (Skf1) converges uniformly to zero on

compact sets provided (a
(k)
1 ) is bounded. By the chain rule,

a
(k)
1 = (ω + . . . + ωk)c, where c is the derivative at zero of the function

ϕ(z)/P (z). Since |ω| < 1 the sequence (a
(k)
1 ) is bounded.

Assume that Skfj has already been defined for 0 ≤ j < m, satisfying
Skfj → 0 as k →∞ uniformly on compact subsets, (Rλφ(D))kSkfj = fj, and

(a
(k)
j )k∈N bounded. Let us construct Skfm. Since

Lkfm(z) =
1

2πi

∮
|t|=Rk

Φk(t)e
zt dt

tm+1
= cm

=
m∑
j=0

zj

j!
a
(k)
m−j = fm(z) +

m−1∑
j=0

a
(k)
m−jfj(z),

defining

Skfm = Lkfm −
m−1∑
j=0

a
(k)
m−jSkfj

we get (Rλφ(D))Skfm = fm by construction, and Skfm → 0 uniformly on

compact subsets provided the sequence (a
(k)
m ) is bounded for all k ∈ N, which

follows directly by Leibniz rule. Indeed, denoting ϕ(z) = φ(z)/P (z),

|a(k)m | =
∣∣[ϕ(ωz), . . . , ϕ(ωkz)](m)(0)

∣∣
=

∣∣∣∣∣ ∑
h1+...+hk=m

(
m

h1, . . . , hk

) k∏
t=1

(ϕ(ωtz))(ht)(0)

∣∣∣∣∣
≤

∑
h1+...+hk=m

(
m

h1, . . . , hk

) k∏
t=1

ωtht |(ϕ(ht)(0))|

≤ C(ω + . . .+ ωk)m,

where C = maxmj=1 |ϕj(0)|m. Since ϕ(0) = 1, we can construct a sequence of
mappings Sk acting on fn, n = 0, . . . , n0, satisfying all the requirements we
desired, and this finishes the proof.

3.6 The case 0 < |φ(0)| ≤ 1 and |λ| = 1.

We take λ = e2πiθ with θ an irrational number, since the case λ is a root of
the unity has already been studied in Section 3.4, and we set ω = λ−1.

By Proposition 3.2.2 we can suppose that φ has a zero at some point
α 6= 0. To apply the Hypercyclicity Criterion, we consider the dense subset
X0 = span {eωnαz : n ≥ 1}, where the powers of T = Rλφ(D) are eventually
zero, and we will find a dense subset of the form Y0 = span {ebz : b ∈ U},
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where U has a cluster point in C, and a map S : Y0 → Y0 such that Sn

converges pointwise to zero on Y0 and TS = IdY0 .
Taking Sebz = φ(ωb)−1ewbz we get

Snebz =
1

φ(ωb) · · ·φ(ωnb)
eω

nbz,

so we only have to show that Snebz → 0 as n→∞ uniformly on compact sets.
Since the modulus of the term eω

nbz on a compact subset can be controlled
independently on n, it should be sufficient to show that

φ(ωb) · · ·φ(ωnb)→∞,

pointwise on U . Suppose that φ(z) = p(z) is a monic polynomial (monic is
for simplicity), thus p(z) = (z− a1) · · · (z− an), let R0 = max1≤j≤n{|aj|, 2}. If
|b| > 2R0 we obtain that |p(µb)| > Rk

0 for all |µ| = 1, hence

|p(ωb) · · · p(ωnb)| ≥ Rnk
0 →∞

as n→∞. Thus, we can choose U = {b ∈ C : |b| > 2R0}.
Suppose that φ has an exponential term, that is φ(z) = eazp(z), and p(z)

is again a polynomial. Then

φ(ωb) · · ·φ(ωnb) = e(ω+···+ω
n)abp(ωb) · · · p(ωnb).

Since the product p(ωb) · · · p(ωnb) goes to ∞ as n→∞ for |b| big, we need to
show that the first term of the product is bounded below. Writing

e(ω+···+ω
n)ab = e(1−ω

n) ωab
1−ω ,

and selecting b = (1− ω)R/(aω) with R big enough we obtain:

|e(ω+···+ωn)ab| = e(1−cos(nθ))R ≥ eR.

Thus, it is sufficient to consider U = {(1− ω)R/(aω) : R ≥ 2R0|a|}.
At first glance, one might think that the above ideas can be applied to

prove the case in which φ has infinitely many zeros, simply by cutting the
infinite product into a polynomial by a tail. However, to control the tail of the
product, we must consider z away from the zeros of the tail. But at the same
time, to get divergence of the iteration of the polynomial, we must choose
z larger than the zeros of the polynomial. Since both requirements are not
compatible, we need a new proof for the case of infinite zeros.

Let rk < rk+1 be the absolute values of two zeros of the function φ so that
the set A = {z : rk < |z| < rk+1} is free of zeros, and let us denote

fn(z) = φ(ωz)φ(ω2z) · · ·φ(ωnz).

Proposition 3.6.1. Assume that there is z0 ∈ A such that lim supn fn(z0) =
∞. Then T = Rλφ(D) is hypercyclic.
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Proof. Let {nk} be a subsequence such that limk fnk(z0) = ∞. By the
Hypercyclicity Criterion, it is sufficient to consider the dense subset

Y0 = span {eωkz0z : k ≥ 1}

and find {nk}k such that the sequence of iterates Snk , given by

Snkebz =
1

φ(ωb) · · ·φ(ωnkb)
eω

nk bz,

converges to zero pointwise on Y0. Indeed, let K ⊂ A be a closed annulus
containing z0. Since φ does not vanish on K, denoting m > 0 the minimum
and M the maximum of |φ(z)| on K, and fixing l ∈ N, we get∣∣∣Snk(eωlz0z)∣∣∣ =

∣∣∣∣ 1

φ(ωl+1z0)φ(ωl+1z0) · · ·φ(ωnk+lz0)
eω

l+nkz0z

∣∣∣∣
=

∣∣∣∣ φ(ωz0)φ(ω2z0) · · ·φ(ωlz0)

φ(ωnk+1z0)φ(ωnk+2z0) · · ·φ(ωnk+lz0)

∣∣∣∣ ∣∣∣∣ 1

fnk(z0)
eω

l+nkz0z

∣∣∣∣
≤
(
M

m

)l ∣∣∣∣ 1

fnk(z0)
eω

l+nkz0z

∣∣∣∣→ 0

uniformly on compact sets as nk →∞, and we get the desired result.

Proposition 3.6.1 reduces our problem of the hypercyclicity of T = Rλφ(D),
to find z0 ∈ U such that lim sup fn(z0) = ∞. In Theorem 3.6.3 we will show
that such z0 ∈ U exists. This problem is connected with extremal behaviour
of the family F = {fn}n≥1. Specifically we are looking for an open subset
G such that F is normal at no point of G. Then Montel’s Theorem shows
that F restricted to G is universal, therefore there exists z0 ∈ G such that
{fn(z0)}n≥1 is dense in C. In particular, there exists a subsequence {nk}k such
that limk→∞ fnk(z0) =∞, as we wish to show.

We need the following result:

Lemma 3.6.2. Let ω be an irrational rotation, let rk < rk+1 be the absolute
values of two zeros of φ so that A = {z : rk < |z| < rk+1} is free of zeros, and
let z0 ∈ A. If the family F = {fn(z)}n is uniformly bounded on a neighborhood
of z0 then F is uniformly bounded on D(0, |z0|).

Proof. Indeed, we select a closed ball B0 centered at z0 such that F is uniformly
bounded on B0. We can suppose that B0 is strictly contained in the annulus
{z : rk < |z| < rk+1}. Now we will show that F is uniformly bounded on
D(0, |z0|). Indeed, since {wn : n ≥ 1} is dense in ∂D, by the compactness of
∂D(0, |z0|) there is an integer n0 (see Figure 3.1) such that

∂D(0, |z0|) ⊂ B0 ∪ ωB0 ∪ · · · ∪ ωn0B0.

Since A = B0 ∪ · · · ∪ ωn0B0 is strictly contained in {z : r0 < |z| < r1} and
φ does not vanish on A, let m = inf{|φ(z) : z ∈ A} > 0.
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Figure 3.1: ω = e
√
2πi, and n0 = 100.

By the modulus maximum principle, since A contains the boundary of
D(0, |z0|), the family F is uniformly bounded on D(0, |z0|) provided F is
uniformly bounded on A = B0 ∪ · · · ∪ ωn0B0. Since F is uniformly bounded
on B0, let M such that |fn(z)| < M for all z ∈ B0 and fn ∈ F . Let us show
that F is uniformly bounded on each ωkB0, 1 ≤ k ≤ n0. Indeed each element
in ωkB0 have the form ωkz with z ∈ B0. Thus,

|fn(ωkz)| = |φ(ωk+1z) · · ·φ(ωk+nz)| = |fn+k(z)|
|fk(z)|

≤ M

mk
,

for all ωkz ∈ ωkB and fn ∈ F . Therefore F is uniformly bounded on D(0, |z0|)
as we wanted to show.

Theorem 3.6.3. Suppose that ω is an irrational rotation and 0 < |φ(0)| ≤ 1.
Then T = Rλφ(D) is hypercyclic.

Proof. We will show that there exists z0 such that lim supn fn(z0) = ∞. So
the result follows from Proposition 3.6.1.

Case |φ(0)| = 1. By way of contradiction, suppose that {fn(z0)}n≥1 is
bounded for each z0. We claim that there exists an open subset G such that
F = {fn(z)} is normal at no z0 ∈ G. Indeed, let r0 < r1 be the radii of the
two smallest circles centered at 0 containing zeros of φ. We select z0 such
that r0 < |z0| < r1, and suppose that F is normal in z0. Since the orbit
{fn(z0)}n≥1 is bounded, we can select a closed ball B0 centered at z0, such
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that F is uniformly bounded on B0. By Lemma 3.6.2, F is uniformly bounded
on D(0, |z0|). Now, by Montel’s Theorem, there exists a subsequence fnk that
converges uniformly on the compact subsets on D(0, |z0|) to some function f
analytic on D(0, |z0|). Let a be a zero of φ of modulus r0. Then, for each
k, ω−ka is a zero of fn for n ≥ k, hence f(ω−ka) = 0 for every k. Since
{ω−ka}k≥1 has an accumulation point, we get that f = 0. However |fn(0)| = 1
for all n, a contradiction. Therefore F is normal at no point of the annulus
{z : r0 < |z| < r1}.

Let G be a non-empty open set such that F is normal at no point z ∈ G.
We claim that the family {fn|G} is transitive; i.e., there exists z0 ∈ G such
that {fn(z0)}n≥1 is dense in C. Indeed by Birkhoff’s transitivity Theorem (see
[30, Theorem 1.16]), it is sufficient to show that for each open subsets U ⊂ G
and V ⊂ C there exists n such that fn(U) ∩ V 6= ∅. By Montel’s Theorem,
since F is not normal on U , the subset ∪nfn(U) is dense in the complex plane,
thus ∪nfn(U)∩ V 6= ∅, therefore there exists n such that fn(U)∩ V 6= ∅ as we
desired. This fact contradicts the initial asumption and proves the result.

Case 0 < |φ(0)| < 1. As in the previous case, we suppose that for each z0
the orbit {fn(z0)}n≥1 is bounded. Let 0 < r0 < r1 < r2 < · · · be sequence of
the radii of the circles centered at 0 containing zeros of φ. Since φ is an entire
function of exponential type, by Hadamard’s Theorem we can deduce that
φ(z) = φ(0)(1 − z

r0
)ϕ(z) where ϕ(z) is an entire function satisfying ϕ(0) = 1.

Take k0 large enough so that |φ(0)|
(
rk0
r0
− 1
)
> 1. As in the previous case, we

will show that if z0 is in the annulus rk0 < |z| < rk0+1, then F is not normal at
z0. Indeed, since {fn(z0)}n≥0 is bounded, if F were normal at z0, F would be
uniformly bounded on a disk B0 centered at z0. By Lemma 3.6.2, F would be
uniformly bounded on D(0, |z0|) and there exists M > 0 such that |fn(z)| ≤M
for all z with |z| = |z0|, and for all n ≥ 1.

We consider the functions Φn(z) = ϕ(ωz) · · ·ϕ(ωnz). For |z| = |z0| > rk0
we get |φ(z)| ≥ |ϕ(z)|, and thus |Φn(z)| ≤ |fn(z)| ≤M for |z| = |z0| and n ≥ 1.
This fact implies that Φn(z) converges uniformly on the compact subsets of
D(0, |z0|) to a function f(z) analytic on D(0, |z0|). Again, we get that f has
an infinite numbers of zeros with an accumulation point in C, therefore f = 0.
However, Φn(0) = 1 for all n, a contradiction. Thus F is normal at no point
of the annulus G = {z : rk0 < |z| < rk0+1} and, arguing as in the previous
case, we get z0 ∈ G such that {fn(z0)}n≥1 is dense in C, a contradiction with
the initial asumption which proves the result.

3.7 The case φ(0) = 0 and |λ| ≥ 1

The operator Tλ,b of R. Aron and D. Markose is included in this case with
φ(z) = zebz.

Theorem 3.7.1. Assume φ(0) = 0. If |λ| ≥ 1 then T = Rλφ(D) is
hypercyclic.
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Proof. We write φ(z) = zmψ(z) with ψ(0) 6= 0 and we denote by X0 the set of
complex polynomials p(z). Note that T np(z) = 0 for n > deg(p).

Set Aλ = Rλψ(D) so that T = AλD
m. Since ψ(0) 6= 0, as in the proof

of Theorem 3.4.1, the subspace of polynomials of degree less or equal to n
is invariant under the operator Aλ and the eigenvalues are simple on that
subspace. We denote p0, p1, · · · pk the polynomials of degree ≤ k which are the
eigenvectors associated to ψ(0)λk, that is, Aλpk = ψ(0)λkpk for k ≥ 0.

Let V be the complex Volterra operator defined by

V f(z) =

∫ z

0

f(ξ)dξ, (z ∈ C).

The equation TV mpk = Aλpk = ψ(0)λkpk gives us the key to construct the
maps Sk required by the Hypercyclicity Criterion. Indeed, let us define

Skpn =
V mkpn

λmλ2m · · ·λ(k−1)m(ψ(0)λn)k
,

and extend Sk to Y0 = span {pk(z) : k ≥ 0} by linearity. Since V k1
ψ(0)k

→ 0

uniformly on compact sets as k →∞, we obtain that 1
ψ(0)k

V mkpn → 0 inH(C).

Hence, since |λ| ≥ 1,

|Sk(pn)(z)| ≤ |V
mkpn(z)|
|ψ(0)|k

→ 0

uniformly on compact sets. To check that T kSk = IdY0 , note that

T k = AλD
mAλD

m · · ·AλDm, (k times).

Since Aλ is an extended λ-eigenoperator of D, DmAλ = λmAλD
m. Therefore

T k = λmλ2m · · ·λ(k−1)mAkλDkm, hence

T kSkpn = T k
(

V mkpn
λmλ2m · · ·λ(k−1)m(ψ(0)λn)k

)
=

Akλpn
ψ(0)kλnk

= pn,

and the Hypercyclicity Criterion implies that T is hypercyclic.

We end this chapter by showing that there is a bounded linear operator on
a Banach space which has no hypercyclic extended eigenoperators. This will
be an application of Proposition 3.3.1.

Lemma 3.7.2. Consider the operator A : Hq −→ Hq, q ≥ 1 defined by:

Af(z) =
1

z − 1

∫ z

1

f(ξ)dξ, (z ∈ D)

then A does not have any hypercyclic extended eigenoperator in Hq.

The key for proving this lemma is a theorem that appeared in [55] and
which uses the concept of rich point spectrum. We recall the readers that an
operator T ∈ B(X ) is said to have a rich point spectrum if the interior of
its point spectrum is non-empty and that for each open disk D of σp(T ), the
family of the eigenvectors

⋃
z∈D ker(T − z) is a total subset on X .

51



52 CHAPTER 3. OPERATORS λ–COMMUTING WITH D

Theorem 3.7.3. [55, Theorem 3.2] Let A ∈ B(X ). Assume that A has a rich
point spectrum and that σp(A) = D(r, r) for some r > 0. If λ ∈ Ext(A,X )
then λ is real and λ ∈ (0, 1]

The proof of Lemma 3.7.2 is straightforward. Indeed, observe that
according to [78, Theorem B], the operator A has a rich point spectrum in
Hq. Moreover, it is known from [84, 95] that:

σp(A, Hq) = D
( q

2(q − 1)
,

q

2(q − 1)

)
.

Applying Theorem 3.7.3, we have:

Ext(A, Hq) ⊂ (0, 1].

Hence, by Proposition 3.3.1 , we deduce that no extended eigenoperator of A
is hypercyclic.

Finally, observe that if q = 2, then A is known to be the adjoint of the
Cesàro operator in H2. Hence, we deduce particularly that:

Corollary 3.7.4. The adjoint of the Cesàro operator in H2 has no hypercyclic
extended eigenoperators.
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Chapter 4

Extended Eigenvalues of
Composition Operators.

In weighted Hardy spaces H2(β), invariant under automorphisms, we
completely compute the extended eigenvalues of composition operators Cϕ
induced by lineal fractional self-maps ϕ of the unit disk D with an interior
fixed point in D and another one outside D. Such classes of transformations
include elliptic and loxodromic cases and a hyperbolic nonautomorphic
sub-case. Our work [10] can be seen as a continuation of the work [54] of M.
Lacruz, F. León-Saavedra, S. Petrovic, and L. Rodŕıguez-Piazza who have
completely calculated the extended spectra of Cϕ in H2(D).

4.1 Background

Recall that a complex number α is said to be an extended eigenvalue of Cϕ if
there exists a non-zero operator X such that CϕX = αXCϕ. We shall denote
by Ext(Cϕ,H2(β)) the collection of such scalars α and we shall call it the
extended spectra of Cϕ in H2(β).

In this chapter, we are interested in finding the extended-spectrum of
bounded composition operators on H2(β). At this step, we mention that it is
still an open problem to characterize the holomorphic selfmaps of the unit
disk inducing bounded composition operators on H2(β). N. Zorboska
[102, 103, 104] studied intensively composition operators on weighted Hardy
spaces, obtaining results on boundedness, compactness and cyclicity. More
recently, new striking results on the boundedness problem have been
obtained in [56]. In our work, we will require on the space H2(β) invariance
under automorphism. We compute the extended-spectrum for bounded
composition operators induced by linear fractional self-maps of the unit disk
with an interior fixed point in D and another one outside D.

Finally, observe that several properties are lost in the transition from the
Hardy space H2(D) to the weighted Hardy spaces H2(β). For instance, the
authors in [54] used basic properties of analytic Toeplitz operators on the
Hardy space that are no longer true on H2(β). We overcome this difficulty by
constructing some triangular operators that will replace the Toeplitz operators
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used in [54].

4.2 Composition Operators Induced by

Elliptic Automorphism

Let Cϕ be a composition operator induced by an elliptic self-map of the unit
disk. Since H2(β) is automorphism invariant we can assume without loss of
generality that the fixed points of ϕ are 0 and ∞, and that ϕ has the form:

ϕ(z) = ωz, ω ∈ ∂D \ {1}. (4.1)

That is, in particular, on weighted Hardy spaces, composition operators
induced by elliptic self-maps of the unit disk, are bounded.

Theorem 4.2.1. Assume that H2(β) is automorphism invariant. If Cϕ is
composition operator on H2(β) induced by an elliptic self-map ϕ of the unit
disk then:

Ext(Cϕ,H2(β)) = {ωn : n ∈ Z}.

Proof. Let α ∈ Ext(Cϕ,H2(β)) then there exists a non-zero bounded operator
X on H2(β) such that CϕX = αXCϕ. In particular, for all m ∈ N, the
functions zm satisfy:

CϕXz
m = αXCϕz

m = αXzm ◦ ϕ(z) = αωmXzm.

Clearly, Xzm 6= 0 for some m ∈ N. Otherwise, we would have X ≡ 0 on
H2(β). This contradicts the fact that X is an extended eigenoperator for Cϕ.
Hence, Xzm 6= 0 and αωm ∈ σp(Cϕ,H2(β)) (see [21, Theorem 7.1]). So, there
exists m0 ∈ N such that αωm = ωm0 . So α = ωn with n = m0 − m ∈ Z.
Therefore, α ∈ {ωn : n ∈ Z} and the direct inclusion is proved.

For the converse inclusion, let ek(z) = zk

βk
be the orthonormal basis of

H2(β). We consider the forward shift operator F acting on the basis as follows:

Fek = ek+n where n ∈ N.

Observe now that for all natural k, we have:

CϕFek = Cϕek+n = ωk+nek+n,

and on the other hand,

FCϕek = F (ωkek) = ωkek+n.

Hence, we obtain:
CϕFek = ωnFCϕek, ∀k ∈ N

which means that {ωn : n ∈ N} ⊂ Ext(Cϕ,H2(β)).
We claim now that {ω−n : n ∈ N} is also a subset of Ext(Cϕ,H2(β)).

Consider the backward shift operator X = Bn that shifts back the coefficient
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n-time to the left that is: Bnek = ek−n if k ≥ n and Bnek = 0 if k < n. X is
clearly bounded, moreover, for all z ∈ D, we have:

CϕXek(z) = Cϕek−n(z) = ωk−nek−n(z).

On the other hand, we have:

1

ωn
XCϕek(z) = =

ωk

ωn
Xek(z)= ωk−nek−n(z),

So, for all k ≥ n > 0, we have:

CϕXek =
1

ωn
XCϕek. (4.2)

It is clear that if k < n < 0, CϕXek = 0 = 1
ωn
XCϕek. Since ek is an

orthonormal basis, the Equality 4.2 is true for all functions in H2(β). Hence,
CϕB

n = 1
ωn
BnCϕ and ω−n is an extended eigenvalue of Cϕ. Finally, for n =

0 and by taking X = IH2(β), we observe that ω0 = 1 ∈ Ext(Cϕ,H2(β)).
Therefore, we obtain:

{ωn : n ∈ Z} ⊂ Ext(Cϕ,H2(β)).

The desired equality is deduced.

We stress here the difficulty to extend the results from the Hardy space to
other analytic function spaces. To find extended eigenoperators the authors
in [54] used the good properties of Toeplitz operators on H2(D). For instance,
Mz is bounded on H2(D) however, these Toeplitz operators are not necessarily
bounded on H2(β).

4.3 Composition Operators Induced by

Loxodromic/hyperbolic

nonauotomorphism Transformations

We consider now composition operators Cϕ induced by non-elliptic self-maps
ϕ of D that fix an interior point of D and another one outside of its closure.
In the frame of this configuration we cite the loxodromic case and a (sub)case
of hyperbolic nonautomorphism. These two classes of maps behave quite
similarly in terms of fixed points. Automorphism invariance of H2(β) allow
us to suppose without loss of generality that the exterior fixed point is +∞.
In such a case, ϕ has the form

ϕ(z) = k(z − p) + p ; |k| < 1

where p ∈ D is the interior fixed point.
The extended-spectrum of Cϕ in this case is characterized in the next

theorem:
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Theorem 4.3.1. Assume that H2(β) is automorphism invariant. If Cϕ is a
bounded composition operator on H2(β) induced by a non-elliptic self-map of
the unit disk with a fixed point in D and another one outside of D, then:

Ext(Cϕ,H2(β)) = {kn : n ∈ Z}

where k = ϕ′(0).

Proof. An easy computation shows that the Köenigs map in such a case is
σ(z) = z − p. That is, Cϕσ(z) = kσ(z) with 0 < |ϕ′(0)| = |k| < 1. Since the
set {σn : n ≥ 0} is a total set in H2(β), according to [54, Lemma 2.6], we
obtain that Ext(Cϕ,H2(β)) ⊂ {kn : n ∈ Z}.

For the reverse inclusion, we first show that {kn, n < 0} ⊂ Ext(Cϕ,H2(β)).
For that, define the linear map

Xσn =

{
ωnσ

n−1 n ≥ 1

0 n = 0

which can be defined by linearity on a dense subset of H2(β). In what follows,
we will show that X can be extended to a bounded operator on H2(β) for a
suitable choice of the weight sequence (ωn)n∈N. Indeed, let us define X as the
following triangular operator:

X(zn) = X((z − p+ p)n)) =
n∑
k=0

(
n

k

)
pn−kX(z − p)k

=
n∑
k=1

(
n

k

)
pn−kωk(z − p)k−1

Set 0 < s < 1 such that |p| + s < 1 and let us define ωk = sk

‖(z−p)k−1‖β
,

k ≥ 1. Since:

‖Xzn‖β ≤
n∑
k=1

(
n

k

)
|p|n−kωk‖(z − p)k−1‖β

=
n∑
k=1

(
n

k

)
|p|n−ksk = (|p|+ s)n − |p|n

we get that for any f(z) =
∑∞

n=0 anz
n ∈ H2(β):

‖X(f)‖β ≤
∞∑
n=0

|an|‖X(zn)‖β

≤

(
∞∑
n=0

|an|2β2
n

)1/2( ∞∑
n=0

‖X(zn)‖2β
β2
n

)1/2

≤

(
∞∑
n=0

[(|p|+ s)n − |p|n]2

β2
n

)1/2

‖f‖β,
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Notice that, by using (1.4), the series
∑∞

n=0
[(|p|+s)n−|p|n]2

β2
n

is convergent.

Thus, we have proved that X is bounded on H2(β) as desired.
Now, observe that CϕX

m = k−mXmCϕ for m ≥ 0. Indeed, it is sufficient
to verify the last equality on the total set {σn : n ≥ 0}. On the subset
{σn : n ≥ m}, we have:

CϕX
mσn = Cϕ(ωnωn−1...ωn−m+1σ

n−m)

= ωnωn−1...ωn−m+1Cϕσ
n−m

= ωnωn−1...ωn−m+1k
n−mσn−m

= k−mknωnωn−1...ωn−m+1σ
n−m

and on the other hand:

XmCϕσ
n = Xmknσn

= knXmσn

= knωnωn−1...ωn−m+1σ
n−m.

Notice that X = 0 on the subset {σn, : n < m}, hence,

CϕX
m = k−mXmCϕ,

which implies that km ∈ Ext(Cϕ,H2(β)) for all m ≤ 0.
Now, we shall show that km ∈ Ext(Cϕ,H2(β)) for all m ≥ 0. Again let us

define the map Xσn = ωnσ
n+1, which can be extended by linearity on a dense

subset. We shall prove that X is a bounded linear operator on H2(β) for a
suitable weight sequence {ωn}. Indeed, let us define X as the operator:

X(zn) = X((z − p+ p)n) =
n∑
k=0

(
n

k

)
pn−kωk(z − p)k+1.

By setting ωk = sk

‖(z−p)k+1‖β
, for some s > 0 such that |p|+ s < 1 we get:

‖X(zn)‖β ≤ (|p|+ s)n,

which implies that for any f ∈ H2(β)

‖Xf‖β ≤
∞∑
n=0

|an|‖X(zn)‖β

=

(
∞∑
n=0

(|p|+ s)2n

β2
n

)1/2( ∞∑
n=0

|an|2β2
n

)1/2

= C‖f‖β

which proves the boundedness of X on H2(β).
Doing similarly the same process as before, it can be checked that

CϕX
mσn = kmXmCϕσ

n for n ≥ 1. Hence, we have km ∈ Ext(Cϕ,H2(β)) for
m ≥ 0. Finally, we conclude that Ext(Cϕ,H2(β)) = {ϕ′(0)n : n ∈ Z}, as we
wanted.
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Remark 4.3.2. We point out that it is unusual to obtain results on
boundedness of Cϕ without a restriction on the weight sequence (βn) (see
[56]). On the other hand, we remark that when the map has another fixed
point configuration, the problem becomes a bit intractable. The existing
results in the Hardy space depend on the good characterization of the Toeplitz
operators in such spaces, which are not so nice for weighted Hardy spaces.
Moreover, for some maps such as the parabolic nonautomorphic case, the
proof in Hardy’s space [54] is based on some specific results which are only
true for the Hardy space. Namely, such an operator is similar to a
multiplication operator in the space of Sobolev. Finally let us see that the
proof of Theorem 4.3.1 uses the algebraic form of the Köenigs map. If H2(β)
is not automorphism invariant we can not apply the same trick.
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Chapter 5

An Unbounded Version of the
Fuglede Theorem Related to
Normal Operators

The Fuglede Theorem plays an important role when studying normal
operators. The main application of this theorem is the fact that it weakens
some assumptions in the statement of the Spectral Theorem for normal
operators. Related to this theorem, M. Meziane and M.H. Mortad proposed
the following conjecture in [64]:

Conjecture 5.0.1. Let A be an operator (densely defined and closed if
necessary) and let B ∈ B(H) be normal. Then

BA ⊂ AB∗ =⇒ B∗A ⊂ AB.

In this chapter, we will take a closer look at this conjecture. Specifically,
in Section 5.1, we show that Conjecture 5.0.1 holds true in the case B has a
finite pure point spectrum (see Theorem 5.1.1). Then, in Section 5.2, we show
that the conjecture is not true even when we assume that A is self-adjoint and
B is unitary (see Proposition 5.2.1). Finally, we provide a pair of a closed and
self-adjoint unbounded operators which is not intertwined by any bounded or
closed operator except the zero operator.

5.1 On a New Version of the Fuglede Theorem

for Unbounded Operators

In this setion, we prove that the conjecture 5.0.1 holds true in case B has a
finite pure point spectrum.

Theorem 5.1.1. Let B be a bounded normal operator with a finite point
spectrum and let A be an unbounded operator on a complex Hilbert space H.
Let f, g : C→ C be two functions. Then

BA ⊂ Af(B) =⇒ g(B)A ⊂ A(g ◦ f)(B).
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Proof. Using induction, we verify that BmA ⊂ A(f(B))m for all m ≥ 0.
Therefore,

p(B)A ⊂ A(p ◦ f)(B)

for any polynomial p ∈ C(X).
By assumption, B has a point spectrum with finitely many distinct

eigenvalues λj, j ∈ {1, · · · , n}, and corresponding eigenprojectors Ej adding
up to the identity operator I, so B =

∑n
j=1 λjEj is the spectral

representation of B. Now, using the Lagrange interpolation theorem, we find
a polynomial p such that p(λj) = g(λj) and p(f(λj)) = g(f(λj)) for all j.
From p(B)A ⊂ A(p ◦ f)(B), we obtain

g(B)A = p(B)A ⊂ A(p ◦ f)(B) = A(g ◦ f)(B).

Corollary 5.1.2. With A and B as in Theorem 5.1.1, we have

BA ⊂ AB∗ =⇒ B∗A ⊂ AB.

Proof. It suffices to apply Theorem 5.1.1 to the functions f, g : z 7→ z, so that
g ◦ f becomes the identity map on C.

A similar reasoning applies to establish the following consequence:

Corollary 5.1.3. With A and B as in Theorem 5.1.1, we likewise have

BA ⊂ AB =⇒ B∗A ⊂ AB∗.

Using an idea by Berberian, we may generalize this result to the case of
two normal operators whereby we obtain a Fuglede-Putnam style theorem.

Proposition 5.1.4. Let B and C be bounded normal operators with a finite
point spectrum and let A be an unbounded operator on a complex Hilbert space
H. Then

BA ⊂ AC =⇒ B∗A ⊂ AC∗.

Proof. Define B̃ on H ⊕ H by B̃ =

(
B 0
0 C

)
and let Ã =

(
0 A
0 0

)
with

D(Ã) = H ⊕D(A). Since BA ⊂ AC, it follows that B̃Ã ⊂ ÃB̃ for D(B̃Ã) =
H ⊕ D(A) ⊂ H ⊕ D(AC) = D(ÃB̃). Now, since B and C are normal, so is
B̃. Finally, apply Corollary 5.1.3 to the pair (B̃, Ã) to get B̃∗Ã ⊂ ÃB̃∗ which,
upon examining their entries, yields the required result.

Corollary 5.1.5. Let B and C be bounded normal operators with a finite point
spectrum and let A be a densely defined operator on a complex Hilbert space
H. Then

BA ⊂ AC =⇒ CA∗ ⊂ A∗B.

Proof. Merely use the foregoing result, then take adjoints.
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5.2 Intertwining Relations and

Counterexamples

One may wonder whether BA ⊂ AB∗ implies B∗A ⊂ AB in the events of the
self-adjointness of A and the normality of B ∈ B(H)? The next example says
that this is untrue, thus providing a counterexample to Conjecture 5.0.1.

Proposition 5.2.1. There is a unitary B ∈ B(H) and a self-adjoint A with
domain D(A) ⊂ H such that BA ⊂ AB∗ but B∗A 6⊂ AB.

The proof is based on the following example (which appeared in [36]):

Example 5.2.2. There exists a unitary U ∈ B(H) and a closed and symmetric
T with domain D(T ) ⊂ H such that UT ⊂ TU but U∗T 6⊂ TU∗.

Now, we prove Proposition 5.2.1.

Proof. Consider a unitary U ∈ B(H) and a densely defined closed T such that
UT ⊂ TU and U∗T 6⊂ TU∗ (as in Example 5.2.2). Take

B =

(
U 0
0 U∗

)
and A =

(
0 T
T ∗ 0

)
.

ThenB is unitary onB(H⊕H) and A is self-adjoint with domainD(T ∗)⊕D(T )
(thanks to the closedness of T ). Besides,

BA =

(
0 UT

U∗T ∗ 0

)
and AB∗ =

(
0 TU

T ∗U∗ 0

)
.

Since UT ⊂ TU , it follows by taking adjoints that U∗T ∗ ⊂ T ∗U∗ making
BA ⊂ AB∗. Since U∗T 6⊂ TU∗ is equivalent to UT ∗ 6⊂ T ∗U , we get that

B∗A 6⊂ AB

as D(B∗A) 6⊂ D(AB).

Fuglede found (in [37]) a densely defined closed operator which does not
commute with any bounded operator except scalar ones (i.e. those of the form
αI where α ∈ C). The next results lie within the same scope but are with a
different aim and different assumptions.

The example we are about to give is based upon a newly obtained densely
defined closed operator (see [28] and [74]) B with domain D(B) ⊂ L2(R) ⊕
L2(R) which obeys:

D(B2) = D(B∗2) = {0}.

Recall that M. Nǎimark was the first one who found an example of a closed
symmetric operator S with D(S2) = {0} (see [77]). P. R. Chernoff then found
a simpler closed, unbounded, densely defined, symmetric and semi-bounded
operator T such that D(T 2) = {0} (see [23]). It is worth noticing that K.
Schmüdgen obtained in [91, 92] almost simultaneously with P. R. Chernoff
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that every unbounded self-adjoint operator possesses two closed symmetric
restrictions S and T such that

D(S) ∩D(T ) = {0} and D(S2) = D(T 2) = {0}.

To close this digression, notice that none of the counterexamples by P. R.
Chernoff and K. Schmüdgen are helpful in the second part of the proof. Indeed,
while these examples are quite strong they do not entail D

(
T ∗2
)

= {0} for
the simple reason that if T is symmetric (and densely defined), i.e. T ⊂ T ∗,
then T ∗T ⊂ T ∗2. By the closedness of T , it follows that T ∗2 must be densely
defined (as T ∗T is self-adjoint, and in particular densely defined).

Example 5.2.3. There are a self-adjoint operator A and a densely defined
closed operator B which are not intertwined by any (everywhere defined)
bounded operator except the zero operator. Also, the same pair A and B in
the opposite order cannot be intertwined either by any bounded operator
except the zero operator.

Let H = L2(R) ⊕ L2(R). Let A be any unbounded self-adjoint operator
with domain D(A) ⊂ H and B be a densely defined closed operator such that

D(B2) = D(B∗2) = {0}.

Let T ∈ B(H). Then, clearly

TA ⊂ BT =⇒ TA2 ⊂ BTA ⊂ B2T.

Hence

D(A2) = D(TA2) ⊂ D(B2T ) = {x ∈ H : Tx ∈ D(B2) = {0}} = kerT.

Since A2 is densely defined, it follows that kerT = H, that is, T = 0, as
required.

Now, we pass to the second statement. Let S ∈ B(H). Then plainly

SB ⊂ AS =⇒ S∗A ⊂ B∗S∗.

As before, we obtain
S∗A2 ⊂ B∗2S∗.

Similar arguments as above then yield S∗ = 0 or simply S = 0, as needed

In the preceding example and in the case of the operator T , we did not really
need to work on L2(R). In fact, any closed operator B such that D(B2) = {0}
will do. Thanks to Schmüdgen’s construction, there are plenty of them. Having
made this observation, we may state the following examples:

Example 5.2.4. There are a self-adjoint operator A and a densely defined
closed symmetric operator B (with B ⊂ A) which are not intertwined by any
(everywhere defined) bounded operator except the zero operator.
Indeed, take any unbounded self-adjoint operator A, then consider any of its
two closed symmetric restrictions and denote it by B (with D(B2) = {0}).
Finally, consider T ∈ B(H) such that TA ⊂ BT . Then obtain T = 0 as
carried out above.
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Now, we consider the case where all operators involved are closed.

Example 5.2.5. There are two densely defined closed operators A and B
which are not intertwined by any densely defined closed operator apart from
the zero operator. Indeed, let A be a densely defined closed operator with
domain D(A) such that A2 = 0 on D(A2) = D(A), (an explicit example is to
consider e.g.

A =

(
0 C
0 0

)
where C is any unbounded closed operator with domain D(C)). Now, let B
be a closed operator satisfying D(B2) = {0}. Clearly

TA ⊂ BT =⇒ TA2 ⊂ B2T.

But
D(TA2) = {x ∈ D(A2) : A2x = 0 ∈ D(T )} = D(A)

and D(B2T ) = kerT . Since D(A) ⊂ kerT ⊂ H, upon passing to the closure
(w.r.t. H), it follows that kerT = H because kerT is closed for T is closed.
Therefore, Tx = 0 for all x ∈ D(T ). Accordingly, T = 0 everywhere, as
coveted.

5.3 An Open Question

Easy arguments allow us to show that BA = AB∗ does imply that B∗A = AB
when B is unitary and A is any (unbounded) operator. If we further assume
that A is self-adjoint, then BA = AB∗ signifies that BA is self-adjoint and
B∗A = AB means that B∗A is self-adjoint. A similar problem is: If B ∈ B(H)
is normal and A is (unbounded) self-adjoint, then does one have

BA is self-adjoint⇐⇒ B∗A is self-adjoint?

Recall that the previous question has a positive answer when A ∈ B(H).
However, this is untrue in the case of two unbounded operators. To see this,
consider the following example (which appeard in [69])

Af(x) = (1 + |x|)f(x) and Bf(x) = −i(1 + |x|)f ′(x)

on their respective domains

D(A) = {f ∈ L2(R) : (1 + |x|)f ∈ L2(R)}

and
D(B) = {f ∈ L2(R) : (1 + |x|)f ′ ∈ L2(R)}

where the derivative is taken in the sense of distributions. It is known that B
is normal on D(B) and that its adjoint is given by:

B∗f(x) = −isgn(x)f(x)− i(1 + |x|)f ′(x).
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From [69], we know that AB∗ = BA. Since A−1 ∈ B(L2(R)), it follows
that (BA)∗ = AB∗ making BA self-adjoint. However, B∗A is not self-adjoint
as we do not even have AB ⊂ B∗A (as maybe checked again in [69]).

Going back to the main question, observe that if BA is closed, then B∗A
is necessarily closed (and conversely). Indeed, the normality of B gives

‖B∗Ax‖ = ‖BAx‖, ∀x ∈ D(B∗A) = D(BA) = D(A).

Hence, the graph norms of B∗A and BA coincide and hence the closedness of
one implies the closedness of the other, and that’s the best we have obtained
so far.
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