Introduction

This report presents a selection of results on modular representations of finite reductive groups that the author obtained since his Ph.D. thesis. The problems that we shall focus on in this report fall in three categories:

• Numerical invariants. Classify irreducible representations, compute their dimension and their character. Determine the decomposition matrices and the Cartan matrices of blocks. • Homological invariants. Compute extensions between irreducible representations. Describe the category of representations (of each block) up to abelian, derived or stable equivalence. • Branching rules. Find the cuspidal representations, the corresponding Harish-Chandra series and determine the branching rules for parabolic induction and restriction.

The main techniques for studying the representations of finite reductive groups are of a geometric nature. Following the work of Deligne and Lusztig [START_REF] Deligne | Representations of reductive groups over finite fields[END_REF] for ordinary (characteristic zero) representations, we will explain how these problems can be tackled using the knowledge of mod-cohomology groups and cohomology complexes of Deligne-Lusztig varieties. Along the way, we will present results on the cohomology of these varieties, such as the explicit determination of individual cohomology groups (over Q ) or the determination of the torsion part of these groups (over Z ). Most of these results are inspired by the geometric version of Broué's abelian defect group conjecture [18].

Representations of finite groups

Let G be a finite group and Λ be a commutative ring with unit. By a representation of G over Λ we mean a finitely generated Λ-module endowed with an action of G by linear automorphisms. This is equivalent to a structure of finitely generated ΛGmodule. The representations of G over Λ form an abelian category which we will denote by ΛG -mod. The set of isomorphism classes of simple (or irreducible) objects in this category will be denoted by Irr Λ G .

The ordinary representation theory of G is concerned with the case where Λ = K is a field of characteristic zero which contains enough roots of unity (with respect to the order of G ). In that situation the algebra KG is split semisimple and all the information on the abelian category KG -mod is encoded in its Grothendieck group K 0 (KG -mod). In other words, ordinary representations are determined by their character and the only invariants of representations are of a numerical nature. When Λ = k is a field of positive characteristic -that is for modular representations -the situation is much more complicated. When divides the order of G , the category kG is not semisimple and understanding irreducible representations is not enough to understand the whole category. Other classes of indecomposable representations, such as the projective indecomposable modules (which we will abbreviate by PIMs) play a prominant role in studying the category. In addition, short exact sequences do not split in general and the Grothendieck group K 0 (kG -mod) gives little information on how a representation decomposes and how the composition factors interact with each other. The extra information needed is of a homological nature and is encoded in the extension groups between representations.

In order to study both ordinary and modular representations at the same time, it is convenient to consider representations of G over a discrete valuation ring O whose fraction field is K (a field of characteristic zero) and residue field is k (a field of characteristic ). Such a triple (K, O, k) is called an -modular system. We will usually work with those systems which are obtained as finite extensions of (Q , Z , F ) such that KG is split semisimple. Any KG -module admits an integral form over O, which in turn can be reduced modulo to give a kG -module. This construction depends on the choice of the integral form, but it is well-defined at the level of Grothendieck groups. The corresponding map dec : K 0 (KG -mod) -→ K 0 (kG -mod) is called the decomposition map and its matrix in the bases Irr K G and Irr k G is the decomposition matrix of G . On the other hand, every projective kG -module lifts to a projective OG -module, yielding an embedding K 0 (kG -proj) → K 0 (KG -mod) obtained after extending scalars from O to K. By a character of a projective kG -module P we will often mean its image under this embedding, and we will denote it by [P]. Brauer reciprocity implies that the decomposition matrix is also the matrix of the characters of the PIMs decomposed in the basis Irr K G .

The group algebra KG is split semisimple and therefore it is isomorphic to a product of matrix algebras over K (one for each element in Irr K G ). This is no longer the case for kG or OG when divides the order of G . However, one can still decompose the algebra OG into a direct sum of minimal two-sided ideals called -blocks

OG = B 0 ⊕ B 1 ⊕ • • • ⊕ B r .
The augmentation map OG k factors through a unique block called the principal block, here denoted by B 0 . Each block B i is of the form OGb i for some central primitive idempotent b i in OG . Blocks of kG are the -reduction of blocks of OG . To an -block B one can associate:

• the block idempotent b ∈ Z (OG ) such that B = OGb;

• the ordinary irreducible characters Irr K B lying in the block, which are those irreducible characters χ ∈ Irr K G such that χ(b) = 0; • the category ΛB-mod of representations over the block, where Λ is any ring among (K, O, k). It is a direct summand of the category ΛG -mod: non-zero indecomposable representations V of ΛB correspond to non-zero indecomposable ΛG -modules such that bV = 0; we will say that such representations belong to B; • a conjugacy class of -subgroups of G called the defect groups. They measure how far the block is from being a simple algebra. Defect groups of the principal -block are the Sylow -subgroups of G . The decomposition map preserves the block decomposition, so we can talk about the decomposition matrix of an -block. This numerical invariant will be studied in §2.2 and §2.3 in the case of unipotent blocks of finite reductive groups.

Finite reductive groups and Deligne-Lusztig varieties

Let p be a prime number and let q be a power of p. Let G a be connected reductive group defined over the finite field F q via a Frobenius endomorphism F : G -→ G. The group of rational points G F = G(F q ) is called a finite reductive group. Given any F -stable closed subgroup H of G, we will denote by H := H F the corresponding group of rational points. It follows from the classification of finite simple groups that most of them come from finite reductive groups (up to considering their derived subgroup and modding out by their center). Therefore understanding their representation theory is a very important problem.

In their landmark paper [START_REF] Deligne | Representations of reductive groups over finite fields[END_REF] Deligne and Lusztig introduced a family of algebraic varieties acted on by the finite reductive group G whose -adic cohomology contains all the irreducible representations of G (over Q ). Before recalling their definition we need to fix some data associated to G. We choose an F -stable maximal torus T of G contained in an F -stable Borel subgroup B of G. We denote by W = N G (T)/T the Weyl group and by S ⊂ W the set of simple reflections corresponding to the pair (T, B). Given I ⊂ S we denote by W I the subgroup of W generated by I . The subgroup P I := BW I B is called a standard parabolic subgroup of G. It has a Levi decomposition P I = L I U I where U I is the unipotent radical of P I and L I is the unique Levi complement of P I containing T. Let w ∈ W be such that the pair (I , w ) satisfies the following properties:

• w is I -reduced, that is it has minimal length in the coset W I w ; • w -1 sw ∈ F (I ) for any s ∈ I . (1.2.1)
To the pair (I , w ) we associate the parabolic Deligne-Lusztig varieties

Y(I , w ) /L wF I = g ∈ G/U I | g -1 F (g ) ∈ U I w U F (I ) X(I , w ) = g ∈ G/P I | g -1 F (g ) ∈ P I w P F (I ) .
Note that the definition of Y(I , w ) depends on the choice of a representative of w in N G (T), but we shall not specify it to avoid cumbersome notation. Both varieties are acted on by the finite reductive group G by left multiplication, and the natural projection

G/U I G/P I induces a G -equivariant isomorphism Y(I , w )/L wF I ∼ → X(I , w ).
Their dimension equals (w ), the length of w . Originally, only the case I = ∅ was considered in [START_REF] Deligne | Representations of reductive groups over finite fields[END_REF]. In that case no condition on w is required to define the corresponding Deligne-Lusztig varieties, and we will denote them simply by Y(w ) and X(w ).

Recall that K is a finite extension of Q which is sufficiently large for G . Assume now that = p. Then one can consider the -adic cohomology groups of the Deligne-Lusztig varieties with coefficients in K. They yield representations of G over K. Given θ ∈ Irr K T wF , Deligne and Lusztig defined the virtual character

R w (θ) := i∈Z (-1) i H i c (Y(w ), K) ⊗ T wF θ ∈ K 0 (KG -mod).
They showed that every irreducible representation of G occurs in some R w (θ). The ones occurring in R w (1 T wF ) -where 1 T wF is the trivial character of T wF -are called unipotent.

When working with modular representations (over Λ = O or k), one should consider finer linear invariants. Following the work of Broué [18] and Bonnafé-Rouquier [21] we are rather interested in the cohomology complex with compact support The functors R I ,w and * R I ,w are called the Deligne-Lusztig induction and restriction functors. Even though the virtual characters R w (θ) were explicitly computed by Lusztig in [START_REF] Lusztig | Characters of Reductive Groups over a Finite Field[END_REF], little is known about the the individual cohomology groups of the Deligne-Lusztig varieties, let alone the induction and restriction functors.

When w = 1 is the trivial element, the corresponding parabolic Deligne-Lusztig varieties are just the finite sets G /U I and G /P I respectively. In that case the cohomology complexes are given by the corresponding permutation modules, placed in degree 0, and the Deligne-Lusztig induction and restriction functors are induced by exact functors between the abelian categories OL I -mod and OG -mod called the parabolic (or Harish-Chandra) induction and restriction functors. For simplicity we will denote them by R I and * R I respectively.

When is not too small and does not divide q, unipotent -blocks have abelian defect. Their classification, which was determined by Fong-Srinivasan [START_REF] Fong | The blocks of finite general linear and unitary groups[END_REF][START_REF] Fong | The blocks of finite classical groups[END_REF] and Broué-Malle-Michel [19], depends only on the order d (q) of the class of q in k × . The unipotent characters lying in each unipotent block are obtained after a suitable Deligne-Lusztig induction. This provides numerical evidence for the geometric version of Broué's conjecture, see §1.3.

The abelian defect group conjecture

Let G be any finite group, and let B be an -block of G with defect group D. To the block B Brauer associates a block B of N G (D) with the same defect group, the Brauer correspondent of B. There are many results and problems relating the representation theory of the blocks B and B , see for example [START_REF] Malle | Local-global conjectures in the representation theory of finite groups[END_REF] for some examples of open problems. Most of our work is inspired by one of these conjectures, which was stated by Broué in 1988 [18]. Even though it was solved for some classes of groups (e.g. for -solvable groups [START_REF] Harris | Splendid derived equivalences for blocks of finite p-solvable groups[END_REF], symmetric groups or GL n (q) [25]) or under some restriction on the defect (e.g. when D is cyclic [START_REF] Rickard | Derived categories and stable equivalence[END_REF][START_REF] Linckelmann | Derived equivalence for cyclic blocks over a p-adic ring[END_REF][START_REF] Rouquier | From stable equivalences to Rickard equivalences for blocks with cyclic defect[END_REF]), this conjecture remains mostly open in general. However most of its numerical consequences are already known to hold.

When G = G(F q ) is a finite reductive group and q, Broué predicted that the derived equivalence between blocks can be induced by the cohomology complex of a suitable Deligne-Lusztig variety. To simplify its statement, we shall consider principal blocks only, and assume that F acts trivially on W . Let D be a Sylow -subgroup of G . If D is abelian then there exists a pair (I , w ) as in (1. 

∈ B + W satisfies • b is I -reduced, that is s -1 b / ∈ B + W whenever s ∈ I ; • for all s ∈ I there exists t ∈ I such that b -1 sb = F (t) 1 . (1.3.1)
Now, let w 0 be the longest element of W and let w 0 be its lift to B + W . The full-twist π := w 2 0 is a central element in B + W . Then the pairs (I , w ) one should consider for Broué's conjecture are those satisfying

w d = π/π I
where d := d (q) is the order of the class of q in k × , and π I is the full-twist associated with the parabolic subgroup W I .

When I = ∅, that is when the centraliser of a Sylow -subgroup is a torus, the choice of a d-th root of π corresponds to the choice of a specific d-regular element w of W in the sense of Springer [START_REF] Springer | Regular elements of finite reflection groups[END_REF], and was first considered by Broué-Michel in [20]. In that situation, C G (D)

T wF and N G (D)/C G (D) C W (w ) is a complex reflection group whose associated braid monoid is C B + W (w). It is expected that the action of N G (D) on RΓ c (Y(w ), O) comes from a q-deformation of a natural action of C W (w ) T wF , which in turn can be defined from a geometric action of C B + W (w) on X(w ). The case where I is non-empty was studied by Digne-Michel in [START_REF] Digne | Parabolic Deligne-Lusztig varieties[END_REF]. 1 The action of F on B W is induced by the action of F on S and the bijection S ∼ → S. However here F (t) = t since we assumed for simplicity that F acts trivially on W .

Outline of the results

The selection of results presented in this report are arranged in four sections, which we detail below. Cohomology of Deligne-Lusztig varieties. In a joint work with Bonnafé-Rouquier [1] we prove a periodicity conjecture of Digne-Michel-Rouquier relating the -adic cohomology of the Deligne-Lusztig varieties X(πw) and X(w). As a byproduct we obtain the explicit -adic cohomology for the variety X(π) (the case d = 1 in Broué's conjecture). Together with the results in [5], this completes the determination of the -adic cohomology of all the Deligne-Lusztig varieties which are relevant for Broué's conjecture for GL n (q). Brauer trees. With Rouquier and Craven-Rouquier we complete the determination of the planar embedded Brauer trees for the unipotent -blocks [14,3]. We first obtain the Brauer trees corresponding to principal -blocks when d (q) is the Coxeter number, solving a conjecture of Hiss-Lübeck-Malle. This uses the property that the cohomology groups with coefficients in Z of varieties associated to Coxeter elements are torsionfree. We then extend this torsion-freeness result to other characteristics to determine the missing Brauer trees for unipotent -blocks of groups of type E 7 and E 8 . Decomposition matrices. In a series of papers with Malle [8,9,12], we compute explicitly the decomposition matrices of unipotent -blocks of finite reductive groups of small rank (up to SU 10 (q) for finite unitary groups). We also obtain families of decomposition numbers for finite classical groups of any rank, growing with the rank. The new input in our method is the systematic use of the -adic cohomology of Deligne-Lusztig varieties to obtain small bounds on decomposition numbers. We conjecture that the intersection cohomology of these varieties should even yield "small" non-virtual projective modules [7]. We are also interested in the global shape of the decomposition matrices: using the generalised Gelfand-Graev representations we show with Malle in [10] that unipotent cuspidal characters remain irreducible after -reduction. A modified version of these representations is used with Brunat-Taylor in [2] to prove that the matrices have uni-triangular shape. Both of these statements were conjectured by Geck in 1991. Categorical actions. In a joint work with Varagnolo-Vasserot [17,15] we construct categorical actions of Kac-Moody algebras on the category of unipotent representations of classical groups (with the exception of groups of type D). From our categorification result we deduce the branching rule for parabolic induction and restriction and produce many interesting derived equivalences between blocks. In particular we obtain a proof of Broué's conjecture for unipotent -blocks at linear primes . In [16] we show how Deligne-Lusztig induction and restriction functors can also induce interesting categorical actions, and give a conjectural framework for Ennola duality. 

R I ,w ( ( D b (ΛG -mod). * R I ,w h h
In this section we present results obtained in [5] and with Bonnafé-Rouquier in [1] under the restriction that we work with representations over Λ = K ⊃ Q and consider only unipotent representations. In that case the description of the functors R I ,w and * R I ,w amounts to the determination of each individual cohomology group of the parabolic Deligne-Lusztig variety X(I , w), with coefficients in any unipotent K-local system.

2.1.1. Translation by the full twist. We start with the case where I = ∅, corresponding to the case of non-parabolic Deligne-Lusztig varieties. We are interested in computing the -adic cohomology groups of the varieties X(w) where w is a root of the full twist π in the braid monoid, or more generally a root of a power of π, therefore satisfying w d = π r in B + W . In general there are no interesting relations between the varieties X(w), X(w ) and X(ww ). For that reason one should rather work with sheaves on the double flag variety, for which such relations will exist. More precisely, if F denotes the flag variety of G (the variety of all Borel subgroups of G) and ι : x → (x, F (x)) is the inclusion of the graph of F in the double flag variety F × F then one can consider the functor Ind :

D b G (F × F ) -→ D b (KG -mod). F -→ RΓ c (F , ι * F )
Here D b G (F × F ) denotes the G-equivariant bounded derived category of constructible K-sheaves on the double flag variety F × F . The category D b G (F × F ) has a very rich structure which was intensively studied over the past decades. For our purpose, let us just recall that to each element w of the braid group one can associate an element F (w) of that category such that

Ind F (w) RΓ c (X(w), K)[dim F + (w)]
whenever w lies in the braid monoid B + W . In addition, there is a convolution on D b G (F × F ) satisfying F (w) F (w ) F (ww ). Therefore one can hope to deduce results on the cohomology of X(w) using properties of the object F (π) and the relation F (w) d F (π) r whenever w satisfies w d = π r .

In [1] we focused our attention on F (π). There is a filtration on the category D b G (F × F ) coming from Kazhdan-Lusztig theory such that the convolution by F (π) on each subquotient is isomorphic to a shift of the identity functor. Using results of Lusztig [START_REF] Lusztig | Unipotent representations as a categorical centre[END_REF] on the functor Ind defined above, we were able to transfer that property to the category D b (KG -mod) and to show that the cohomology of the Deligne-Lusztig varieties X(πw) and X(w) differ only by shifts on each isotypic component.

Theorem 2.1.1 (Bonnafé-D.-Rouquier [1, Thm. B]).
Let ρ be a unipotent character of G and A ρ be the degree of the degree polynomial of ρ. Then for every w ∈ B + W we have ρ ;

H i+4 dim F -2Aρ c X(πw), K G = ρ ; H i c X(w), K G .
This result was conjectured by Digne-Michel-Rouquier in [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF] based on explicit calculations for groups of small rank. Applied to the element w = 1, it gives the individual -adic cohomology groups of the variety X(π), or more generally of the variety X(π r ), and shows that odd-degree cohomology groups vanish. This was originally conjectured by Broué-Michel in [20].

Another consequence of the properties of the functor Ind is that the cohomology of X(w) is invariant under conjugation by the braid group. This was also conjectured by Digne-Michel-Rouquier in [START_REF] Digne | Cohomologie des variétés de Deligne-Lusztig[END_REF].

Theorem 2.1.2 (Bonnafé-D.-Rouquier [1, Thm. A]). Let w, w ∈ B +
W and x ∈ B W . Assume that w = x -1 w F (x). Then for every i ∈ Z there is an isomorphism of KG -modules H i c X(w), K H i c X(w ), K . Such a result was already obtained by Deligne-Lusztig [START_REF] Deligne | Representations of reductive groups over finite fields[END_REF] when x divides w on the left in the braid monoid. In that case the element x defines an equivariant homomorphism X(w) → X(w ) inducing the equivalence at the level of the cohomology. We used properties of the functor Ind to drop the assumption on x. We plan to show in a subsequent work that our construction gives an action of C B W (w) on H i c X(w), K . The construction of such actions is part of the strategy towards a proof of the geometric version of Broué's conjecture as we explained in §1.3.

Deligne-Lusztig varieties for GL n (q)

. Let G = GL n be the general linear group over F p , let q be a power of p and let F : (a ij ) -→ (a q ij ) be the Frobenius map associated to the natural F q -structure on G, so that G = GL n (q). The unipotent representations of GL n (q) all lie in the principal series. They are therefore parametrised by irreducible representations of the symmetric group S n , which are in turn labelled by partitions of n. We write

{Partitions of n} ∼ ←→ {Unipotent representations of GL n (q)} λ -→ ∆(λ)
with the convention that ∆(n) is the trivial representation whereas ∆(1 n ) is the Steinberg representation.

The finite Levi subgroups L wF I which are relevant for Broué's abelian defect group conjecture are the ones which possess a unipotent representation with central -defect.

These subgroups are all of the form

L wF I GL n-ad (q) × GL 1 (q d ) × • • • × GL 1 (q d ) a factors
where d := d (q) is the order of q in F × . In that case the unipotent constituents of R I ,w (∆(µ)) are the unipotent representations ∆(λ) where λ is obtained by adding successively a d-hooks to µ. When µ is a d-core and > n, these are exactly the unipotent representations in an -block. A natural choice of w is given in [5]: it is a d-th root of π/π I and behaves well with respect to composition of Lusztig induction and restriction (in other words, with respect to increasing or decreasing the integer a). Note that other roots are conjugate under the braid group, and therefore other choices should not affect the cohomology of X(I , w) once we have shown a suitable generalisation of Theorem 2.1.2 to the parabolic setting.

Theorem 2.1.3 (D. [5,Cor. 3.2]). Let (I , w) be as above, so that in particular L wF I GL n-ad (q) × GL 1 (q d ) a for some a, d ≥ 1. Let µ be a partition of nad. Then each individual -adic cohomology group with coefficients in the local system associated with ∆(µ)

H i c X(I , w), ∆(µ) can be explicitly computed. Moreover, if i = j then H i c X(I , w), ∆(µ) ; H j c X(I , w), ∆ (µ) GLn(q) 
= 0.

This theorem was previously known to hold in very specific cases, namely when L wF I is isomorphic to one of the tori GL 1 (q d ) [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF] or GL 1 (q d ) × GL 1 (q) [START_REF] Digne | Endomorphisms of Deligne-Lusztig varieties[END_REF]. In that case only non-parabolic varieties and trivial local systems are involved, and the description of H i c X(w), K is easy to state. However, when I is non-empty, the degree of the cohomology groups in which ∆(λ) occurs depends on the various d-hooks that are added to µ. These can be read off from the dimension of ∆(λ) and ∆(µ). Conjectural formulae for the cohomology of Deligne-Lusztig varieties were stated by Craven in [START_REF] Craven | Perverse equivalences and Broué's conjecture II: The cyclic case[END_REF], involving indeed the degrees of the various unipotent characters involved. The stronger form of [5,Cor. 3.2] shows that Craven's conjecture holds for GL n (q). The proof of the theorem relies on the relation between parabolic induction/restriction and Lusztig induction/restriction. It can be seen as a version of the Mackey formula at the level of the functors (not just the virtual characters). Since all unipotent representations of GL n (q) lie in the principal series, this is enough to get an inductive strategy to prove Theorem 2.1.3. The limit cases, where d = n and d = 1, were settled respectively by Lusztig in [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF] and by Bonnafé-Rouquier and the author (see Theorem 2.1.1).

Remark 2.1.4. A version of Theorem 2.1.3 over Z was proved by the author's Ph.D. student Parisa Ghazizadeh, in the case where µ is the trivial partition, and the Sylow -subgroups of GL n (q) are cyclic [START_REF] Ghazizadeh | On the torsion part in the cohomology of Deligne-Lusztig varieties[END_REF].

Brauer trees of unipotent blocks

When the defect groups of a block are cyclic, the category of representations of the block is encoded in a combinatorial object, called the Brauer tree. The tree together with its planar embedding describes the block up to Morita equivalence, and the structure of any indecomposable module can be read off from the tree.

Let us quickly recall how the planar embedded tree is constructed. Given an -block B with cyclic defect groups, there is a set Exc K B ⊂ Irr K B called the set of exceptional characters of B such that if we define χ exc := χ∈Exc K B χ then the character of any projective indecomposable kG -module P in kB is given by [P] = χ + χ with χ = χ and χ, χ ∈ {χ exc } (Irr K B Exc K B). The Brauer tree Γ B of B is the graph with vertices labelled by {χ exc } (Irr K B Exc K B) and edges χ ---χ for every PIM P such that [P] = χ + χ . The edges of the Brauer tree are therefore labelled by PIMs or equivalently by simple kB-modules (via their projective cover). The knowledge of the Brauer tree, together with the multiplicity m = χ exc ; χ exc of the exceptional vertex, is equivalent to the knowledge of the decomposition matrix. In addition, there exists a unique ordering around each vertex of Γ B such that if V and V are two simple kB-modules labelling edges incident to a given vertex then V follows immediately V (in the anti-clockwise order) if and only if Ext 1 kG (V , V ) = 0. This defines a planar embedding of the tree.

When B is a unipotent block of a finite reductive group G , the non-exceptional characters are exactly the unipotent characters in B. Most of the PIMs in the block are obtained by parabolic induction from Levi subgroups and their character can be computed from the corresponding Hecke algebra. As in §2.3, the difficulty is often to deal with the case of cuspidal modules and their projective covers. In this section we explain how to use the cohomology complexes of Deligne-Lusztig varieties to get information on the character of these PIMs (which gives the tree as a graph) and on extensions between simple modules (which gives the planar embedding). This is based on joint works with Craven and Craven-Rouquier [14,3] which finish the determination of all the planar embedded Brauer trees for unipotent -blocks.

For simplicity we will assume throughout this section that F defines a split F qstructure on G, by which we mean that F acts trivially on the Weyl group of G. As in §1.2 we will write d (q) for the multiplicative order of the image of q in k × . Recall that many properties of unipotent -blocks depend on d (q) rather than on the specific prime number or the prime power q.

2.2.1. Mod-cohomology of Deligne-Lusztig varieties. Fix a pair (I , w ) as in (1.2.1) and denote by X := X(I , w ) the corresponding parabolic Deligne-Lusztig variety. Since F is assumed to act trivially on W , it fixes the pair (I , w ) and therefore induces an endomorphism of X. By considering the cohomology complex RΓ c (X, k) in a suitable category, it decomposes according to the generalised eigenspaces of

F RΓ c (X, k) λ∈k RΓ c (X, k) (λ) .
The idea is to choose λ ∈ k such that the corresponding eigenspace C := RΓ c (X, k) (λ) is "small", that is, has at most two non-zero cohomology groups (see §2.2.2 for the consequences). Checking this property requires to know that (a) the generalised λ-eigenspaces of F on the -adic cohomology groups H i c (X, K) vanish outside one or two specific degrees; (b) the generalised λ-eigenspaces of F on the cohomology groups H • c (X, O) are torsion-free. It is in general unknown how to determine the invidual -adic cohomology groups of Deligne-Lusztig varieties outside the case of G = GL n (q), unless I = ∅ and w is a regular element of small length. In [14,3] we mostly focused on the case where w is a Coxeter element for which H • c (X, K) was computed by Lusztig in [START_REF] Lusztig | Coxeter orbits and eigenspaces of Frobenius[END_REF]. Our contribution to (b) is given by the following theorem. Recall that we assumed that F induces a split F q -structure on G and that d (q) denotes the multiplicative order of q in k × . Theorem 2.2.1 (D.-Rouquier [14], Craven-D.-Rouquier [3, §5]). Let w be a Coxeter element and let X(w ) be the corresponding Deligne-Lusztig variety. The cohomology of X(w ) with coefficients in Z is torsion-free in the following cases:

• d (q) ≥ h where h is the Coxeter number (the order of w );

• d (q) ∈ {9, 10, 14} and G is quasi-simple of type E 7 ;

• d (q) ∈ {9, 12, 15, 18, 20, 24} and G is quasi-simple of type E 8 .

Under mild assumptions on , we expect the cohomology of varieties attached to Coxeter elements to always be torsion-free. This is known in the case where G = GL n (q) [22]. Here, the restriction on G and d (q) in Theorem 2.2.1 comes from the fact that we were specifically interested in the Brauer trees of unipotent -blocks of exceptional groups of type E 7 and E 8 for these specific values of d (q), since they were the only ones left undetermined prior to our work. Note that for proving Theorem 2.2.1 one already needs to know the structure of some PIMs, which is why it is easier to work with blocks with cyclic defect groups.

When w is no longer a Coxeter element, one does not know in general the individual -adic cohomology groups of X(w ). To solve this problem we replaced X(w ) by a smooth compactification X(w ) whose -adic cohomology can be explicitly computed using Lusztig's work [START_REF] Lusztig | Characters of Reductive Groups over a Finite Field[END_REF]. The problem of computing the torsion in the cohomology with coefficients in Z can be handled with the following proposition. In particular, if G is an -group then the cohomology of X(w ) is torsion-free. Under the assumption that d (q) is large, all the proper standard Levi subgroups L I ⊂ G are -groups, therefore the torsion part in the cohomology must be cuspidal. Having some control on where the cuspidal representations can occur in the cohomology is then crucial to solve problem (b) for X(w ).

When does not divide the order of L wF I , the cohomology complex RΓ c (X, k) is perfect, and so is any of the generalised eigenspaces of F . Thus the complex RΓ c (X, k) (λ) can be represented by a bounded complex whose terms are finitely generated projective kG -modules. When divides |L wF I |, this is no longer the case in general, but it can be interesting to look at the image of RΓ c (X, k) in the stable category, that is when we mod out by the thick subcategory of perfect complexes. The following result gives an explicit description of this image under some extra assumptions on and w . W be its lift to the braid group. We assume that

• w d (q) = π where π is the full-twist (see

§1.3); • C W (w ) = w ; • the Sylow -subgroups of G are cyclic. Then for all m ∈ Z RΓ c (X(w ), k) (q m ) k[-2m]
in the stable category kG -stab.

We will explain in the next section how this was used in [14,3] to determine the missing Brauer trees of unipotent -blocks.

2.2.2. Application to the determination of Brauer trees. Given a kG -module M with projective cover P M we denote by ΩM the module Ker(P M M). The operator Ω is called the Heller operator. Even though ΩM is well-defined up to isomorphism, Ω is not functorial in the category of kG -modules. For i ≥ 1 we define inductively Ω i M := Ω(Ω i-1 M) with the convention that Ω 0 M is the minimal submodule of M such that M/Ω 0 M is projective. For i < 0 we set Ω i M := (Ω -i M * ) * . Now let B = OGb be an -block of G with cyclic defect groups and let Γ B be its corresponding planar embedded Brauer tree. Leaves of the tree are labelled by those ordinary irreducible characters in the block which remain irreducible afterreduction. Let χ be such a character and let V be the simple kG -module corresponding to its -reduction. Then the kG -modules V , ΩV , Ω 2 V , ... lift to characteristic zero, and the sequence of their ordinary characters -the Green walk -determines Γ B [START_REF] Green | Walking around the Brauer tree[END_REF]. The strategy in [14,3] consists in computing many terms of this sequence using the cohomology complexes of Deligne-Lusztig varieties studied in §2.2.1. For that purpose, recall that the stable category kG -stab is obtained from the module category kG -mod by modding out the morphisms which factor through a projective kG -module. It has a triangulated structure with suspension given by the inverse of the Heller operator Ω. Equivalently, it is the quotient of D b (kG -mod) by the thick subcategory of perfect complexes. Let C be a bounded complex of OG -modules coming from the generalised eigenspace of F on bRΓ c (X, O) for some Deligne-Lusztig variety X. We choose X such that we are in one of the following three situations:

• C is perfect and H • (C ) vanishes outside the degree r . Then H r (C ) is a projective OG -module with character H r (KC ). This gives usually one edge in the Brauer tree. • C is perfect and H • (C ) vanishes outside the degrees r and s > r . Then there is a distinguished triangle in D b (kG -mod)

kC -→ H s (kC )[-s] -→ H r (kC )[-r + 1] .
Since kC is perfect, the image of this triangle in the stable category yields an isomorphism Ω s H s (kC ) Ω r -1 H r (kC ) in kG -stab. If in addition V = H s (kC ) is irreducible, then it corresponds to a leaf in the Brauer tree and H r (KC ) is the character of the lift of Ω s-r +1 V . Using the Green walk, this is often enough to locate the vertex labelled by H r (KC ) in Γ B . • C is not perfect but we are in the situation of Theorem 2.2.3, where kC = bRΓ c (X, k) (q m ) for some m ≥ Z and B = OGb is the principal -block. If in addition H • (C ) vanishes outside the degree r then we get H r (kC )[-r ] k[-2m] in kG -stab, from which we deduce that the lift of Ω 2m-r k has character H r (KC ). Again, using the Green walk and partial knowledge on the Brauer tree, one can deduce where the vertex labelled by H r (KC ) is in the tree.

The extra information on the Green walk given by the cohomology complexes of Deligne-Lusztig varieties is enough to determine the planar embedded Brauer trees of all the Brauer trees of unipotent -blocks of exceptional groups. Prior to our work only algebraic methods had been used to determined the Brauer trees. These were proven enough for classical groups by Fong-Srinivasan [START_REF] Fong | Brauer trees in GL(n, q)[END_REF][START_REF] Fong | Brauer trees in classical groups[END_REF], and for exceptional groups [23,[START_REF] Shamash | Brauer trees for blocks of cyclic defect in the groups G 2 (q) for primes dividing q 2 ± q + 1[END_REF][START_REF] Geck | Generalized Gelfand-Graev characters for Steinberg's triality groups and their applications[END_REF][START_REF] Hiss | The Brauer trees of the Ree groups[END_REF][START_REF] Wings | Über die unipotenten Charaktere der Gruppen F 4 (q)[END_REF][START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of types F 4 and 2 E 6[END_REF][START_REF] Hiss | The Brauer trees of the exceptional Chevalley groups of type E 6[END_REF] with the exception of E 7 and E 8 , and without the planar embedding in some cases. Most of our work was to handle the case of large trees in E 7 and E 8 using the methods sketched above.

Decomposition matrices of unipotent blocks

In this section we present a selection of results obtained on -decomposition numbers of finite reductive groups in transverse characteristic. Recall from §1.1 that these numbers encode how ordinary (i.e. characteristic zero) irreducible representations decompose after -reduction. Using Brauer reciprocity, computing -decomposition numbers amounts to computing the characters of projective indecomposable modules (PIMs). A standard method for constructing projective modules is to induce projective modules from Levi subgroups using the parabolic induction functor. The decomposition of the induced module into indecomposable summands is governed by the representation theory of its endomorphism algebra, which is well-understood in general. However, this does not account for the cuspidal representations, which cannot be obtained from a proper parabolic induction. To solve this problem we shall consider here three different constructions of projective modules, two of which rely on Deligne-Lusztig theory:

• By considering the Deligne-Lusztig induction of a projective module. This gives a complex of projective modules, whose character is only a virtual projective module in general. For this construction to be helpful one needs to have some control on the multiplicities of the PIMs appearing in this virtual character. This is explained in §2.3.1. • By inducing "small" representations from -groups (such as unipotent groups).

We obtain this way the so-called generalised Gelfand-Graev representations and their modified version by Kawanaka (see §2.3.2 and §2.3.3). These representations are projective but their irreducible constituents can have very large multiplicities.

• By considering the Alvis-Curtis dual of the intersection cohomology of Deligne-Lusztig varieties. Unlike the usual cohomology we conjecture that the corresponding character is the character of an actual projective module. It has few indecomposable summands, and therefore it gives a powerful (yet conjectural) tool to compute the decomposition numbers, see §2.3.4.

We will focus our attention on unipotent -blocks. When is not too small and does not divide q, the unipotent characters form a basic set for these blocks (see [START_REF] Geck | Basic sets of Brauer characters of finite groups of Lie type[END_REF][START_REF] Geck | Basic sets of Brauer characters of finite groups of Lie type II[END_REF]) which means that it is enough to study the -reduction of unipotent characters. Consequently we will restrict our attention to the square matrix D uni of the -decomposition matrix whose rows are indexed by the unipotent characters:

          D uni . . . . . . . . .           .
More specifically, we will present recent progress made on the following problems:

• Computing the -decomposition numbers for groups of small rank (including exceptional groups). • Studying the shape of D uni .

• Bounding decomposition numbers independently from q. Only limited results on these problems were obtained using purely algebraic methods. As in the case of Brauer trees (see §2.2), our approach relies on a systematic use of the geometric tools, many of them coming from Deligne-Lusztig theory.

Most of our results are valid when and p satisfy extra assumptions, such as being good or very good for G. This means one often needs to exclude the small primes 2, 3 and 5, or even the divisors of n when working with groups of type A n-1 . We work here with representations with coefficients in a finite field k of characteristic = p, in which case the cohomology complex of Y(w ) with coefficients in k is perfect. In other words

Relations on decomposition numbers with

RΓ c (Y(w ), k) C • = (• • • 0 → C 0 → C 1 → • • • → C 2 (w ) → 0 • • • )
can be represented by a bounded complex C • whose terms are finitely generated projective kG -modules. Bonnafé-Rouquier proved in [21,Prop. 8.10 and 8.12] that if C • is taken to be minimal up to homotopy equivalence, then "new" projective representations are necessarily located in degree i = (w ), the length of w . Here, we are rather interested in the characters of the representations, that is their image in the Grothendieck group K 0 (kG -proj). From the previous complex one can define

P w := i∈Z (-1) i+ (w ) [H i c (Y(w ), k)] = i∈Z (-1) i+ (w ) [C i ]
which is only a virtual projective representation in general. As observed in [4], Bonnafé-Rouquier's result gives some control on the multiplicity of "new" PIMs in the virtual representation P w .

Lemma 2.3.1. Let P be a projective indecomposable kG -module and [P] ∈ K 0 (kG -proj) be its character. If [P] occurs in P w but not in any P v for v < w then it occurs with positive multiplicity in P w .

It turns out that it is often enough to get very small bounds on decomposition numbers, by extracting projective modules from the Deligne-Lusztig characters which are close to being indecomposable. This was first achieved for groups of small rank in [4], such as G 2 (q), and shown to be a powerful method by Malle and the author in [8,9,12]. Theorem 2.3.2 (D.-Malle). Under some mild assumptions on and up to very few missing entries, the decompositions matrices of the unipotent -blocks of the following groups are explicitly determined:

• G = SU n (q) for n ≤ 10;

• G = SO 9 (q) and Sp 8 (q); • G = SO ± 2n (q) for n ≤ 6;

• G = E 6 (q) and 2 E 6 (q); • G = F 4 (q).
For example, the 30×30 matrices for SU 9 (q) were explictly computed when > 15. Note that prior to our work, only the 3 × 3 matrices for SU 3 (q) were known [START_REF] Okuyama | Decomposition numbers of SU(3, q 2 )[END_REF].

In addition to obtaining the full decomposition matrix for groups of small rank, the method in [4] was also used to determine families of decomposition numbers for classical groups. We give here the example of the finite special unitary groups SU n (q) to illustrate how fast the numbers can grow with respect to the rank. Their unipotent characters ∆(λ) are labelled by partitions λ of n, where by convention ∆(1 n ) is the Steinberg character. It is usually the unipotent character whose -reduction is the most difficult to decompose, as it contains many cuspidal simple constituents. There is also a natural parametrisation {P(λ)} λ n of unipotent PIMs by partitions of n such that the matrix D uni = ∆(λ) ; P(µ) has a lower uni-triangular shape with respect to the dominance order on partitions. Another important result in [8] is the determination of the decomposition numbers for small λ and µ, which corresponds to the bottom-right corner of D uni . 

(q + 1). Let b, c ≤ n/3 + 1. Then ∆(2 b 1 n-2b ) ; P(2 c 1 n-2c ) SUn(q) =      n-c-b c-b if b ≤ c, 0 otherwise.
As a consequence, there are decomposition numbers of SU 3m (q) which equal 2m m , and hence cannot be bounded above by any polynomial function in the rank.

This result is compatible with James's row and column removal rule, which is known to hold for GL n (q) only [START_REF] James | The decomposition matrices of GLn(q) for n ≤ 10[END_REF]. We conjectured in [8,Conj. C] that such a rule also holds for finite unitary groups.

Let us mention another consequence of the work in [9]. Using the explicit knowledge of the -decomposition matrix for Sp 8 (q), we could exhibit a counter-example to the uniqueness of the supercuspidal support for unipotent representations. This counterexample was lifted to the corresponding p-adic group by Dat in [START_REF] Dat | Simple subquotients of big parabolically induced representations of p-adic groups[END_REF], giving a negative answer to a long-standing question in modular representation theory of p-adic groups.

Generalised Gelfand-Graev representations.

A second approach for constructing projective representations is to induce representations from -groups, which are therefore projective. The generalised Gelfand-Graev representations (GGGRs) are a special kind of such representations which are parametrised by unipotent classes of the finite reductive group considered. Given a unipotent element u of G we denote by Γ u the corresponding GGGR (see for example [2, §6] for the definition) . Up to isomorphism, it depends only on the G -conjugacy class of u. When u is a regular unipotent element then Γ u is the usual Gelfand-Graev representation; it is multiplicity-free and contains only one character in each Lusztig series. The other extreme is the case of the trivial element u = 1: the corresponding GGGR is the regular representation OG of G . In fact, outside of the regular unipotent classes, the GGGRs have indecomposable summands whose multiplicity is a polynomial in q.

There is a notion of cuspidal unipotent elements which parallels that of cuspidal representations, see [START_REF] Geck | Cuspidal unipotent classes and cuspidal Brauer characters[END_REF]. With Malle we showed in [10] that a unipotent PIM whose head is cuspidal occurs as a direct summand of some GGGR attached to a cuspidal unipotent element. This proves that the projective module

Γ := I ⊂S u∈(L I ) uni /∼ cuspidal R I (Γ u )
is a progenerator for the category of unipotent representations. Here, I runs over the F -stable subsets of simple reflections, R I is the parabolic induction functor (see §1.2) and u runs over the cuspidal unipotent elements of L I up to conjugation. Even though unipotent characters can have large multiplicity in Γ, this is not the case for cuspidal characters. Indeed, if ρ is a cuspidal unipotent character occurring in R I (Γ u ) for a cuspidal unipotent element u of L then using a combination of results of Geck-Malle [START_REF] Geck | Cuspidal unipotent classes and cuspidal Brauer characters[END_REF], Geck-Hézard [START_REF] Geck | On the unipotent support of character sheaves[END_REF] and Lusztig [START_REF] Lusztig | A unipotent support for irreducible representations[END_REF] we have that

• L must be equal to G since ρ is cuspidal, • the geometric class G • u attached to u is the smallest cuspidal unipotent class of G,
• the multiplicity of ρ in Γ u is 1, and this happens for a unique rational conjugacy class in (G • u) F .

Consequently, ρ occurs in Γ with multiplicity one. This shows the following result, which was conjectured by Geck in 1991 [START_REF] Geck | Verallgemeinerte Gelfand-Graev Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie-Typ[END_REF].

Theorem 2.3.4 (D.-Malle [10,Thm. 3.2]). Assume that is a very good prime for G and that q is a power of a good prime for G. Then every cuspidal unipotent character remains irreducible after -reduction.

In other words, all the entries in a row of D uni corresponding to a cuspidal character are zero, except for one entry which equals 1. It is a valuable result for classifying irreducible representations in positive characteristic since it gives a concrete cuspidal representation over k ⊃ F which is liftable to K ⊃ Q . Note that the result was later generalised in joint work with Malle [11,Thm. 4.3] to unipotent characters which are the "smallest" within their Harish-Chandra series.

Kawanaka characters.

When G = GL n , both unipotent characters and unipotent classes of G are parametrised by partitions of n. If u λ is a unipotent element with Jordan blocks of size λ * (the conjugate partition), then the corresponding GGGR involves only unipotent characters labelled by partitions which are smaller that λ (for the dominance order ). More precisely,

[Γ u λ ] ∈ ∆(λ) + µ λ

N∆(µ).

This has the following consequence, which was observed by Geck in [START_REF] Geck | On the decomposition numbers of the finite unitary groups in non-defining characteristic[END_REF]: one can label the unipotent Brauer characters by partitions in such a way that the -decomposition matrix of G has a uni-triangular shape with respect to the dominance order on partitions.

With Brunat and Taylor [2], we generalised this result to all finite reductive groups using a modified version of GGGRs due to Kawanaka. To any O. This shows that the decomposition matrix of unipotent -blocks has uni-triangular shape, whenever and p are not too small. This was conjectured by Geck in 1990 [START_REF] Geck | Verallgemeinerte Gelfand-Graev Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie-Typ[END_REF].

F -stable special unipotent class O = G • u of G Lusztig
Corollary 2.3.6 (Brunat-D.-Taylor [2, Thm. A]). Assume that is a very good prime for G and q is a power of a good prime for G. Given any total ordering O 1 • • • O r of the special unipotent classes of G refining the closure relations, the irreducible unipotent Brauer characters of G can be ordered such that the decomposition matrix of the unipotent -blocks of G has the following shape

        D Or 0 • • • 0 D Or-1 . . . . . . . . . . . . . . . 0 • • • D O1 • • • • • •        
, where each diagonal block D O i is the identity matrix, whose rows are indexed by unipotent characters with unipotent support O i .

As a byproduct we obtain an Aut(G )-equivariant bijection between unipotent characters and unipotent Brauer characters. This can be helpful in many situations, for example for describing the branching rules of parabolic induction/restriction in terms of the crystal graph of some charged Fock space (see §2.4.1). Another example is the inductive Alperin Weight Conjecture for simple groups (see [START_REF] Malle | Local-global conjectures in the representation theory of finite groups[END_REF]), where understanding the action of Aut(G ) on Brauer characters is crucial.

2.3.4. Intersection cohomology of Deligne-Lusztig varieties. Finally, in a joint work with Malle [7] we suggested a conjectural construction of projective representations which have very few indecomposable summands, and therefore give a lot of information on D uni . Instead of considering the cohomology of the Deligne-Lusztig variety X(w ) for some w ∈ W , which gives the usual Deligne-Lusztig character, we consider the intersection cohomology

IR w := i∈Z (-1) i IH i (X(w ), K).
Then IR w is only a virtual character. Nevertheless, Lusztig showed in [START_REF] Lusztig | Characters of Reductive Groups over a Finite Field[END_REF] that there is a duality D on (signed) characters of finite reductive groups such that D(IR w ) is, up to a sign, the character of an actual representation. Our conjecture predicts that this also holds in positive characteristic. The restriction on comes from the fact that we want the unipotent characters to form a basic set of characters for the unipotent -blocks. In that case every integer combination of unipotent characters is the unipotent part of a virtual projective character. Our conjecture predicts that in the case of D(IR w ) one should get an actual projective character.

Many important results can be deduced from the conjecture. For example, it forces the decomposition numbers to be bounded independently from q. Indeed, the multiplicities of unipotent characters in D(IR w ) do not depend on q. They can be computed from the value at 1 of Kazhdan-Lusztig polynomials and the values of irreducible characters of W . It is actually expected that decomposition numbers of unipotent -blocks do not depend on q when is not too small. Conjecture 2.3.7 also gives a new proof of the fact that D uni has a uni-triangular shape (see §2. 3.3). This comes from the fact that the unipotent characters occurring in D(IR w ) lie in families which are smaller than the 2-sided cell containing w . Note finally that the bounds on decomposition numbers are often sharp in the case where | (q + 1). This is generally the most difficult case for computing decomposition numbers.

Categorical actions on unipotent representations of classical groups

In this final section we present results obtained in a series of papers with Varagnolo-Vasserot about the construction of actions of Lie algebras on the category of unipotent representations of finite general unitary groups and finite classical groups of types B and C .

Let g be a simply-laced Kac-Moody algebra with Chevalley generators {e i , f i } i∈I . One way to make g act on an abelian category V is to produce biadjoint pairs of exact endofunctors {(E i , F i )} i∈I of V inducing an integrable action of g on the complexified Grothendieck group C ⊗ Z K 0 (V) of V. Chuang-Rouquier [25], Khovanov-Lauda [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups I[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups II[END_REF], and Rouquier [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] showed that more structure is needed to obtain interesting actions. The extra structure is given by natural transformations of E i and E i E j satisfying the relations of a so-called quiver-Hecke algebra of the same type as g. In our setting V will be the category of unipotent representations of a series of finite classical groups (with the exception of groups of type D) and the functors E i , F i will be constructed from the parabolic induction and restriction functors. Our categorification result has two important consequences:

• the branching graph of the parabolic induction and restriction is given by the crystal graph of a well-identified level 2 Fock space;

• two unipotent -blocks with conjugate weights are derived equivalent.

We will explain how this shows in particular that Broue's abelian defect group conjecture holds for unipotent -blocks of these classical groups when is a linear prime.

2.4.1. Parabolic induction and restriction. As before we will work with representations over a field k of positive characteristic with q. We will assume in addition that is odd when working with classical groups of type B and C . We will denote by kG -umod the category of unipotent representations of the finite reductive group G . Under the assumptions on and for the groups considered in this section, the unipotent characters form a basic set [START_REF] Geck | Basic sets of Brauer characters of finite groups of Lie type[END_REF] and therefore their image under the decomposition map yields a Z-basis of K 0 (kG -umod).

To simplify the exposition of our results, we will work with the finite symplectic groups G n = Sp 2n (q). Using standard Levi subgroups of G n+1 of the form G n × GL 1 (q) one obtains a natural chain of subgroups

G 0 ⊂ G 1 ⊂ • • • ⊂ G n ⊂ G n+1 ⊂ • • • together with the parabolic induction and restriction functors • • • F -- m m E kG n -umod F -- m m E kG n+1 -umod F -- m m E • • •
Here we assume that k = F so that all the group algebras kG n are split. We can form the category kG • -umod := n∈N kG n -umod.

When

(q -1) the parabolic induction and restriction functors (F, E) give a biadjoint pair of exact endofunctors of this abelian category. From Lusztig's classification of unipotent characters we get an explicit description of the action of E and F on the Grothendieck group of these categories. Let us explain how it can be rephrased in terms of level 2 Fock spaces. The group G n has a cuspidal unipotent character if and only if n = t 2 + t for some t ∈ N. In that case the characters lying in the Harish-Chandra series above that cuspidal character are parametrised by the irreducible representations of a Hecke algebra of type B, hence by bipartitions. This Hecke algebra has generators T 0 , T 1 , ... satisfying the braid relations of type B and quadratic relations with parameters Q t = ((-q) t , (-q) -1-t ) for T 0 and (q, -1) for the other T i 's. We deduce that each unipotent character of G n is parametrised by a pair (λ, t) where λ is a bipartition of size nt 2 -t. On the other hand, we can form the level 2 Fock space F(Q t ) with charge Q t as the complex vector space equipped with a standard basis |λ, Q t indexed by bipartitions. This yields an isomorphism of vector spaces

t∈N F(Q t ) ∼ → C ⊗ Z K 0 (kG • -umod) (2.4.1)
sending |λ, Q t to the image under the decomposition map of the corresponding unipotent character. Let q be the image of q in k × . Each Fock space F(Q t ) has a natural action of a Kac-Moody algebra g = e i , f i i∈I whose quiver has vertices labelled by I = qZ ∪ -q Z and arrows given by multiplication by q. The parabolic induction and restriction maps [F] and [E] on the right-hand side of (2.4.1) correspond to the action of f = i∈I f i and e = i∈I e i on the Fock spaces.

The main result in [17] and [15] is a categorification of the isomorphism (2.4.1). It holds more generally when (G n ) n∈N is one of the series GU 2n (q), GU 2n+1 (q), SO 2n+1 (q) or Sp 2n (q), with a suitable change of the charge Q t and the Lie algebra g. 

11]).

There is a categorical action of g on kG

• -umod such that t∈N F(Q t ) ∼ → C ⊗ Z K 0 (kG • -umod)
as g-modules.

A similar result was previously known in the case of finite general linear groups GL n (q) by the work of Chuang-Rouquier [25]. In that case, unipotent characters are labelled by partitions and there is only one level 1 Fock space to consider, since all the unipotent characters lie in the principal series.

Let us explain two main consequences of our result. The first one concerns the branching rules for the parabolic induction and restriction F and E, which was the original motivation for our work. The branching graph of kG • -umod is the graph whose vertices are labelled by the simple unipotent kG • -modules, and whose arrows are given by T → T whenever T appears in the head of the induction F(T ), or equivalently whenever T appears in the socle of the restriction E(T ). By Theorem 2.4.1, the graph can be "colored" by I : we write T i -→ T whenever T appears in the head of the induction F i (T ). On the other hand, one can attach a so-called crystal graph to the Fock space F(Q t ) which depends on the choice of a pair s t ∈ Z 2 such that Q t = q st . The advantage is that one has an explicit description of this graph in terms of the combinatorics of Young diagrams of charged bipartitions, see for example [48, §6.2]. It was conjectured by Gerber-Hiss-Jacon [START_REF] Gerber | Harish-Chandra series in finite unitary groups and crystal graphs[END_REF] that s t can be chosen such that the two graphs match; we showed in [17,15] how their conjecture can be deduced from our categorification result. 

37]

). There is a choice of s t for each t ∈ Z such that the union of the crystal graphs of the Fock spaces F(Q t ) coincides with the colored branching graph of the parabolic induction and restriction.

Note that by Corollary 2.3.6 the simple unipotent kG • -modules are labelled by the unipotent characters, hence by charged bipartitions. The identification of the crystal graph with the branching graph preserves this labelling. This was shown for finite unitary groups in [17], but not for other classical groups since at that time Corollary 2.3.6 was not know to hold in general. This was however later checked in joint work with Norton [13].

Another important consequence of Theorem 2.4.1 is the construction of derived equivalences for unipotent blocks. This was one of the original motivations of the work of Chuang-Rouquier, in order to prove Broué's conjecture for finite general linear groups. In [25] it is shown that categorical actions of g on V produce derived equivalences of V permuting blocks. The permutation of the blocks is given by the action of the affine Weyl group of g on the weight spaces of the g-module C ⊗ Z K 0 (V). This permutation was explicitly computed in [17,15] for our level 2 Fock spaces. As a byproduct, we obtain a proof of Broué's conjecture in the case of linear primes. Recall that q denotes the image of q in k.

Theorem 2.4.3 (D.-Varagnolo-Vasserot [17,Thm. 4.34] and [15,Thm. 6.20]). Assume that we are in one of the following cases:

• G n = GU 2n (q) or GU 2n+1 (q) and the order of -q in k × is even; • G n = SO 2n+1 (q) or Sp 2n (q) and the order of q in k × is odd. Then any unipotent -block of G n with abelian defect groups is derived equivalent to its Brauer correspondent.

The assumption that is a linear prime (which is given by the assumption on the order of q or -q in k × ) is needed in order to use the fact that "good" blocks (in the sense of [START_REF] Livesey | On Rouquier blocks for finite classical groups at linear primes[END_REF]) satisfy Broué's conjecture. This is not known to hold yet when is a unitary prime, but our categorification result shows nevertheless that any unipotent -block is derived equivalent to a "good" block.

2.4.2. Deligne-Lusztig induction and restriction. In [16] we considered a similar situation to §2.4.1, where parabolic induction and restriction functors F and E are replaced by Deligne-Lusztig induction and restriction, which are now exact functors between the bounded derived categories of kG • -modules:

• • • F . . l l E D b (kG n -umod) F . . n n E D b (kG n+1 -umod) F , , n n E • • •
This is particularly suited to the case where G n = GU n (q), since there is no parabolic induction from GU n (q) to GU n+1 (q). From the finite reductive groups perspective, this is somehow more natural, as one can expect the natural transformation of E and E 2 to come from endomorphisms of the corresponding Deligne-Lusztig varieties, such as the Frobenius endormorphisms or more generally from the braid group actions considered in [1].

In [16] we studied the specific example of G n = GL n (q). As mentioned in §2.4.1, the complexified Grothendieck group of the category kG • -umod := n≥0 kG n -umod is naturally isomorphic to a level 1 Fock space. It has a basis labelled by partitions, and it has an action of the Kac-Moody algebra g = sl d , whenever d := d (q) ≥ 2. Chuang-Rouquier showed in [25] that it is categorified by the (truncated) parabolic induction and restriction functors. Here we consider instead Deligne-Lusztig induction and restriction functors given by the cohomology of the Deligne-Lusztig varieties attached to the full-twist. More precisely, for each n ≥ 0 we set I = {s 1 , ... , s n-1 } and w := π/π I = s 1 • • • s n s n • • • s 1 . The Levi subgroup L wF I of GL n+1 (q) is isomorphic to GL n (q)×GL 1 (q). When |GL 1 (q)| (i.e. when d ≥ 2) we can form the exact functors

F := R I ,w • Inf Gn×GL1(q) Gn
= RΓ c Y(I , π/π I )/GL 1 (q), k ⊗ Gn -E := Inv GL1(q) • * R I ,w = RHom kGn+1 RΓ c (Y(I , π/π I )/GL 1 (q), k),between the derived categories of kG n -umod and kG n+1 -umod. Conjecturally, they correspond to a version of parabolic induction and restriction with respect to the heart of a non-standard t-structure of D b (kG • -umod). This cannot be seen at the level of the Grothendieck groups, therefore one obtains a different categorification of the same g-module structure on K 0 (kG • -umod). The proof of this theorem uses the odd-degree vanishing of the -adic cohomology of X(π) (see Theorem 2.1.1). A modular analogue of this property would show that there is a perverse equivalence which intertwines the categorification in Theorem 2.4.4 and the original one by Chuang-Rouquier in [25]. Let us mention that Theorem 2.4.4 generalises to the case of Deligne-Lusztig varieties attached to the longest element w 0 of S n . In the latter case one obtains functors between derived categories of modules for GL n (q) and GL n+2 (q) which categorify a sum of level 2 Fock space representations. This should be obtained from the categorification in §2.4.1 by a change of t-structure and would give a categorical version of Ennola duality between GL n (q) and GU n (q).

  RΓ c (Y(I , w ), Λ) of the Deligne-Lusztig variety Y(I , w ) with coefficients in Λ. This is well-defined in D b (ΛG-mod-ΛL wF I ), the bounded derived category of finitely generated (ΛG, ΛL wF I )bimodules. The construction of Deligne-Lusztig lifts to an exact functor R I ,w := RΓ c (Y(I , w ), O) ⊗ L OL wF I between the derived categories D b (OG-mod) and D b (OL wF I -mod). Under the identification of the Grothendieck groups of a module category and its bounded derived category, the linear map R w corresponds to the map induced by the functor KR ∅,w at the level of Grothendieck groups. The functor R I ,w has a right adjoint, given by * R I ,w := RHom OG RΓ c (Y(I , w ), O), -.

Conjecture 1 . 3 . 1 (

 131 Broué's abelian defect group conjecture). Let B be a block of OG with defect group D and let B be its Brauer correspondent, a block of ON G (D). If D is abelian then D b (B-mod) D b (B -mod) as triangulated categories.

2 . 1 )

 21 such that C G (D) L wF I . The pair (I , w ) is defined only up to conjugation but Broué predicts that there is a choice of such a pair such that the action of C G (D) on RΓ c (Y(I , w ), O) under the isomorphism C G (D) L wF I extends to an action of N G (D) and that the functor RΓ c (Y(I , w ), O) ⊗ L ON G (D)induces a derived equivalence between the principal blocks of N G (D) and G , or more generally between ON G (D) and the sum of all -blocks of defect D of G . For this property to hold, the complex C := RΓ c (Y(I , w ), O) should be a tilting complex, therefore satisfying • Hom D b (OG -mod) (C , C [n]) = 0 for n = 0; • ON G (D) ∼ → End D b (OG -mod) (C ) via the natural action map. For choosing the suitable pairs (I , w ) it is convenient to work in the braid group or in the braid monoid attached to W , rather than in the Weyl group. Let S be a set in bijection with S. The braid monoid B + W is the monoid generated by S subject to the braid relations sts • • • = tst • • • coming from the Coxeter presentation of (W , S). It embeds in its fraction group B W . Both B + W and B W map naturally onto W . In addition, there is a set-theoretic section W → B + W induced by the bijection S ∼ → S on reduced expressions. The lift under this section of an element w ∈ W will be denoted by w. The definition of Deligne-Lusztig varieties extends to pairs (I , b) where I ⊂ S, and b

  adic cohomology of Deligne-Lusztig varieties Recall from §1.3 that the parabolic Deligne-Lusztig varieties Y(I , w) and X(I , w) which are relevant for the geometric version of Broué's conjecture are associated with roots of π/π I . The cohomology complexes of these varieties induce induction and restriction functors between the bounded derived categories of representations of the finite reductive groups L wF I and G D b (ΛL wF I -mod)

Proposition 2 . 2 . 2 (

 222 Craven-D.-Rouquier[3, Prop. 3.8]). Let V be a simple kGmodule occurring as a composition factor in the torsion part of H • c (X(w ), O). Then V lies in a Harish-Chandra series above a Levi subgroup L I ⊂ G such that | |L I |.

Theorem 2 .

 2 2.3 (D.-Rouquier [14, Cor. 2.11]). Let w ∈ W and w ∈ B +

Theorem 2 . 2 . 4 (

 224 D.-Rouquier[14, Thm. 3.9], Craven-D.-Rouquier[3, Thm. 1.1]). All planar embedded Brauer trees of unipotent -blocks of exceptional groups are explicitly known in terms of Lusztig's parametrisation of unipotent characters.

  Deligne-Lusztig characters. Let w ∈ W and let Y(w ) be the corresponding Deligne-Lusztig variety, see §1.2.

Theorem 2 .

 2 3.3 (D.-Malle [8, Thm. B]). Assume > n and |

  attached a small finite group A O , called the canonical quotient of the component group C G (u)/C G (u) • . Lusztig's classification of irreducible characters of G gives a labelling of unipotent characters by pairs (O, x) where O is an F -stable special unipotent class of G -the unipotent support of the character -and x labels an irreducible representation of the Drinfeld double Dr(A O ) of A O . On the other hand, Kawanaka explained in [58] how one can slightly generalise the definition of GGGRs to form projective modules Γ (O,x) which occur as direct summands of a GGGR Γ v for some unipotent element v lying in the unipotent class dual to O. A similar triangular decomposition holds for the characters of these modules. Theorem 2.3.5 (Brunat-D.-Taylor [2, Thm. B]). Assume Z (G) = {1}. If q is a power of a good prime for G then [Γ (O,x) ] ∈ ∆(O, x) + O O y ∈Irr Dr(A O ) N∆(O , y ). Consequently, given any unipotent character ∆ with unipotent support O one can find a PIM whose character involves ∆ with multiplicity one and only other unipotent characters with unipotent support O such that O

Conjecture 2 .

 2 3.7 (D.-Malle[7, Conj. 1.2]). If is a very good prime for G, the character D(IR w ) is, up to a sign, the unipotent part of the character of a projective kG -module.

Theorem 2 .

 2  Thm. 4.21] and[15, Thm. 6.

Theorem 2 .

 2 4.2 (D.-Varagnolo-Vasserot [17, Thm. 4.

Theorem 2 .

 2 4.4 (D.-Varagnolo-Vasserot [16, Prop. 2.1 and Cor. 2.5]). Let d := d (q) be the order of q in k × . Assume that d ≥ 2. Then the functors F and E induce a categorical action of g = sl d on D b (kG • -umod). Under the identification K 0 (D b (kG • -umod)) ∼ → K 0 (kG • -umod), it categorifies the level 1 Fock space representation of sl d .

2.1. -ADIC COHOMOLOGY OF DELIGNE-LUSZTIG VARIETIES

Phd Students

Reda Chaneb. From September 2015 to October 2019, Olivier Brunat and I supervised Reda Chaneb at the Université Paris 7. Reda's project was centred on the study of decomposition matrices in bad characteristic. Until his work, little was known on these matrices when the characteristic of the coefficient field is "small". Only some small rank groups had been studied using algebraic methods, and Reda's work consisted in adapting and applying the geometric methods in [4]. The purpose was twofold: first, to complete partial results on explicit decomposition matrices for small groups (such as Sp 4 (q) or some exceptional groups); second, to obtain general results for classical groups (basic sets, shape of the decomposition matrix...).

While trying to adapt Geck and Hiss's methods to exhibit basic sets, Reda discovered a general formula for the number of irreducible unipotent Brauer characters. His formula generalises the one obtained by Lusztig for unipotent characters in terms of some special unipotent classes and non-abelian Fourier transforms. It gives a strong evidence for a nice parametrisation of the set of unipotent Brauer characters and modular unipotent character sheaves. His results are published in IMRN [24].

Reda defended his thesis in october 2019 and now works as a high school teacher.

Parisa Ghazizadeh.

From October 2016 to December 2019 I supervised Parisa Ghazizadeh for a Phd thesis at the Université Paris 7. Parisa's project was originally to study the torsion part of the (intersection) cohomology of Deligne-Lusztig varieties.

The methods used are inspired from algebraic geometry and homological algebra but also from modular representation theory of finite groups. Parisa did several computations on certain families of varieties for the general linear group, and showed that the cohomology groups were all torsion-free in that case. The aim of these computations was to prove a general result for GL n (q) which would yield the geometric version of Broué's conjecture, as well as a criterion for the cohomology to be torsion-free, generalising [5] to the modular case. Parisa obtained only a partial result in that direction, which is available as a preprint [START_REF] Ghazizadeh | Mod-cohomology of some Deligne-Lusztig varieties for GLn(q)[END_REF].

She defended her thesis in December 2019 and is now looking for a job as a data scientist.