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École doctorale no543

L’École Doctorale SDOSE
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Notations

Rd: d-dimensional euclidean space, with the basis elements {e1, ..., ed}

Sd−1: d−1-dimensional sphere, parametrized either by an angular parametriza-
tion, or as a set of unit vectors in Rd.

~x: x will denote an angular parametrization of Sd−1 while ~x (with the ~· )
will be the corresponding unit vector in Rd (see notation 1 at page 18).

Sd−1
+ : d− 1-dimensional northern hemisphere, that is, subset of Sd such that,

for all x ∈ Sd−1
+ , d-th element in vector parametrization is strictly

positive.

Sd−1
− : d− 1-dimensional southern hemisphere, that is, subset of Sd such that,

for all ~x ∈ Sd−1
+ , d-th element in vector parametrization is strictly

negative.

S: The collection of source points from where the light is emitted.

s: Parametrizing variable for S.

Os: An element of S as a source point in Rd, corresponding to the parameter
s.

R: The reflecting surface.

Rρ: The reflecting surface produced using the general radial function ρ :
Rρ := {~xρ(x)|x ∈ X ⊂ Sd−1

+ } (see page 20)

Rf : The reflecting surface produced using the Kantorovich potential (see
theorem 2.3) f : Rf := {~xef(x)|x ∈ X ⊂ Sd−1

+ } (see page 53)

µs: A measure on Sd−1
+ , depending on the parameter s, describing the in-

tensity of light emitted from the source point corresponding to s.

P(X): A set of Borel probability measures on space X.
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Hb,α(X): A subset of P(X), containing measures that have Holder continuous
densities with the exponent α, bounded from below by b and above by
1
b

(see notation 4 on page 4).

X × Y : A product space comprising of pairs (x, y) built from x ∈ X and y ∈ Y .

µ⊗ ν: A product measure in P(X × Y ), built from measures µ ∈ P(X) and
ν ∈ P(Y ) by µ⊗ ν(A×B) := µ(A)ν(B) for all measurable A ⊂ X and
B ⊂ Y .

f ⊕ g: A function on X × Y , given by f ⊕ g(x, y) := f(x) + g(y) for functions
f : X → R and g : Y → R.

T#µ: A push-forward measure of µ by the map T : X → Y .

〈f ,µ〉X : The duality product between the continuous functions f : X → R and
probability measures µ ∈ P(X).

KL(α | β): Kullback-leibler divergence of a measure α with respect to a measure
β (see (2.22) on page 38).

ε: A regularization parameter for the entropic regularization (see (2.21)
on page 37) of the optimal transport problem (see (2.6) on page 32).

fOTε : Kantorovich potential obtained from solving an entropy regularized
optimal transport problem (see (2.21) on page 37).

fSε : Debiased Kantorovich potential obtained as a µ gradient of the Sinkhorn
divergence functional (2.30) Sε(µ, ν) (see (2.32) on page 41).

f̂ : A c-concave interpolation of the Kantorovich potential f (see (3.27) on
page 62).

f̃ : An entropic interpolation of the Kantorovich potential f (see (3.28) on
page 63).
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Introduction

Since the nineteenth century, electricity has altered human life in many
ways through various applications. Nowadays, when we think about electric-
ity, we usually think about devices and appliances like laptops and smart-
phones or fridges and coffee machines, that were made possible because of
electricity. But we usually forget to mention one of the first aspects where
electricity radically changed human life: Light!

One of the first massive applications of electricity was street and home
lighting, and later also expanded to car lights. This cheap and effective
method of producing light drastically improved the quality of life for most of
the world’s population and made it possible to form ”cities that never sleep”.
However, as everything we humans do on the large scale, it had unintended
consequences.

The extensive amount of light altered the ecosystem of the cities. Once
romanticized herds of fireflies or the view of the night sky became a luxury
of the rural areas. At some point at the end of the twentieth century, an
anecdotal story circulated in the press, that during a major blackout in Los-
Angeles, USA, some people were calling an emergency line to report a sighting
of a ”strange blue cloud in the sky”, only to find out that they were seeing
the Milky Way galaxy for the first time. A good demonstration of how much
excess light is created by the street lights alone is the famous photo (Figure
1) from Mia Heikkila, taken in the town of Kauttua, Finland, in January
2016. During a rare atmospheric event in the cold Finnish winter night, the
wasted light from the street lights did not scatter and created a reverse map
of the town far in the sky.

This problem of having a large amount of extra light around settlements
is known as light pollution. Tackling this problem would provide a twofold
advantage. First, the excess light that we do not use means excess waste
of energy we produce. Secondly, light pollution harms both human health
and the natural ecosystem, hence resolving it would improve the state of the
environment and result in increased quality of life.

One way to tackle this problem is to use lenses and reflectors around the
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Figure 1: The night sky and the reverse map of the town

source of light, which would send all light only to the directions where we need
it. While the main source of light was old-style light bulbs, which produced
a high amount of heat, the lenses and reflectors around them had to be built
from heat-resisting materials, usually glass, which restricted the design. The
development of LED lights (figure 2), which require less energy to produce the
same amount of light, while also operating at a lower temperature, removed
this restriction and allowed the use of more flexible materials, such as plastic.

Figure 2: Structure of an LED light source (picture from lamphq.com)

Therefore, the solution boils down to designing optical systems that send
all the emitted light to only the desired directions. This is a task of illumina-
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tion optics, a branch of optics that deals with constructing optical systems
for lighting. However, soon it became apparent, that simple shapes that
are produced using classical techniques and enjoy rotational or translational
symmetries are not enough to address such problems. This is where freeform
optics, a branch of optics that focuses on the construction of optical systems
that do not necessarily have rotational or translational symmetries, came
into play.

Through this work, we will address a problem at the intersection of illumi-
nation and freeform optics: The far-field reflector problem. This is a problem
of designing a reflector such that it reflects all the light emitted from some
source into the desired distribution. The far-field assumption means that the
reflector is so small compared to both the location that needs to be illumi-
nated and the distance to this location, that it can be regarded as a point
with respect to the location, therefore only the directions of the reflected rays
matter. This assumption usually holds in the applications of lighting, where
the light source and the reflector with a dimension of millimeter to several
centimeters should illuminate areas of tens of meters wide.

Mathematical model for the far-field reflector

problem

The far-field reflector problem is modeled under several idealization as-
sumptions. The most fundamental is that we work under the setup of geo-
metrical optics. This means that we work under the following assumptions:

• Light propagates as a set of rays: straight lines described by their
source of origin and propagation angle.

• When a ray hits the reflecting surface, it is reflected into the new di-
rection which is determined by the reflection map T , given by the ge-
ometrical reflection law (see definition 1).

• The light source S is a set of points in Rd and each point emits light
with some given intensity distribution over the propagation angles.

• For each source point s ∈ S, the reflection map T satisfies the measure-
preserving property (see definition 2) between the emitted and the re-
flected intensities.

The reflector is modeled as a d−1 dimensional surface in Rd. The decision
in how to model the source of light is an important choice. When the source
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(a) The point source to far-field reflector
problem

(b) The extended source to far-field re-
flector problem

Figure 3: The point source to far-field and the extended source to far-field
reflector problem schemes (see chapter 1 for the notations)

is supposed to be drastically smaller than the reflector, it can be modeled
as a point in Rd (usually taken at the origin O for convenience) and emitted
light is therefore modeled as a distribution in directions only (A measure
defined on Sd−1). This choice is known as a point source to far-field reflector
problem.

However in real-life applications, such cases are quite rare, and the source
should be modeled as a subset of Rd. As we have LED applications in mind,
which are rectangular surfaces in R3 where each point emits light in all di-
rections of the upper hemisphere (see figure 2), we model the source S as
a finite diameter subset of Rd−1 (usually containing origin for convenience).
This is known as an extended source to far-field reflector problem. As we
already mentioned, far-field assumption assumes that we are only interested
in the direction of the reflected rays, hence the reflected light is modeled as
a distribution in the directions only (again a measure on Sd−1). For conve-
nience we assume that the source emits light in the direction of the northern
hemisphere Sd−1

+ and the reflections are directed to the southern hemisphere
Sd−1
− . In the figure 3 we present the geometrical setup of those models.

Solving the far-field reflector problem

In the case of the point source problem, each point on the reflector has
no more than one incoming ray. Therefore for each incoming ray, there is
one ”control” dedicated specifically for that ray, that is, a normal at the
reflector, which defines the reflecting direction. In contrast, for the extended
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source problem, each point on the reflector may receive several or even infinite
amount of rays (up to the size of S). Nevertheless, each point on the reflector
still has only one ”control”, the normal at that point, which now defines
reflecting direction for several rays. This indicates, that the extended source
problem might be an over-determined problem. The point source problem
is mathematically well-posed and it can be solved numerically, but those
techniques do not apply to the extended source problem.

Solving the point source to far-field reflector problem

In [Wan96][Wan04](see also [GO03]), Wang showed that the point source
to far-field reflector problem can be formulated as an optimal transport prob-
lem.

The optimal transport problem, first posed by Gaspard Monge in ”Mémoire
sur la théorie des déblais et des remblais” ([Mon81]), is a problem of allocat-
ing the mass optimally, with respect to some given cost of transporting a unit
of mass. Mathematically it can be formulated as finding some ”transfers”
from the mass distributed according to the measure µ defined on the space
X to another space Y with another mass distribution of measure ν, in a way,
that the total cost of this transfer, with respect to some cost function c(x, y)
is minimal. Here c(x, y) gives information about what it costs to transfer a
unit of mass from a position x ∈ X to y ∈ Y .

Wang constructed a cost function, that incorporates the information
about the reflection, and solving an optimal transport problem with this
cost provides a solution of the point source problem. Optimal transport the-
ory provides a range of efficient solvers to tackle this problem. We discuss
their applications to the reflector problem in chapter 3.

Solving the extended source to far-field reflector problem

Solvers for the extended source problem can roughly be split into two
types: heuristic constructive methods, usually based on SMS (Simultaneous
Multy-Surface method, [GBMB+04]) and iterative improvement methods,
which create some parametrization of the reflector, compute the reflection
from this reflector, and then iteratively modify the reflector in order to pro-
duce more accurate reflection (for a recent review of the approaches for the
extended source problem, see [WFZ+18]).

There are various choices through iterative approaches, e.g. how is the
reflector parametrized, how is the reflected distribution obtained, how is this
reflection compared to the desired one, and finally, how are the modifications
made to improve the reflector:
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Some approaches (e.g. [BB19] [BKM+20]) parametrize reflectors as a
general surface in R3 (e.g. by using spline parametrization, or just a set of
points). This approach allows flexibility of deforming the reflecting surface
when trying to produce the desired reflection. However, this might lead to
the design of irregular surfaces, which might not be feasible for production or
even develop ”blind spots” during modifications, meaning that some parts
of the reflector get in the way of light that was supposed to arrive at the
different portion of the reflector.

In some works (see e.g [FCR10] [WZLM21], [LFHL10]), a point source
problem is used to parametrize the reflector. In this approach, a reflector is
built as a solution of some point source problem, which is then illuminated
using the extended source. This approach has more limitations on what
kind of reflection it can produce but has the advantage of making it possi-
ble to guarantee the regularity properties of the reflector, e.g. convexity or
concavity, differentiability under some assumptions on the source and target
measures, etc.

Obtaining the reflection from a given reflector and the source measure
is done using ray-tracing. It is a widely used technique in various optical
applications, based on a discrete sampling of measures and point-wise com-
putation of reflection maps (see e.g. [Gla89] for a good review).

The modifications of the reflector at each iteration are usually based on
the point-wise comparison of the desired and obtained reflections. Applying
the modification depends on the way the reflector was parametrized. For
example, in [BKM+20], spline parametrization is used, which is modified by
doing quasi-newton minimization step on the L2 norm between the desired
and obtained reflections. In [FCR10], where the reflector is parametrized by
the target distribution of the point source problem, modification is applied
by scaling the parametrizing target distribution of the point source problem
with the fraction of the desired and obtained reflections.

Our approach to the far-field reflector problem

In order to solve the point source optimal transport problem, we use the
entropic regularization approach. This approach was introduced for optimal
transport computations in [Cut13] (see [PC18] for a comprehensive review).
Regularization is based on the penalization of the total cost of transfer by
KullBack-Leibler divergence (2.22) (also known as “relative entropy”), mul-
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tiplied by some small parameter ε.
Entropic regularization adds substantial regularity to the optimal trans-

port problem and allows using the Sinkhorn algorithm, an efficient solver
based on iterative projections. But it also introduces the ”entropic bias”,
an error introduced by solving the altered problem. This is discussed in
[FSV+18] where the Sinkhorn divergence correction (2.30) is used to com-
pensate the bias. In chapter 3 we demonstrate that entropic regularization
with this correction can be used to accurately solve the point source problem.

For the extended source, we start by analyzing the relationship between
the point source and extended source problems. In particular, we consider
reflectors generated as a solution of the point source problem between the
fixed source measure µ0 and a target measure ν0, and compute the reflection
ν of the extended source µ from this reflector. We study the relationship
between ν0 and ν, denoted by the functional F(ν0) = ν. We demonstrate
that this functional can be expressed as a non-linear convolution, with a
kernel involving the jacobian of the reflection map and its inverse, while also
depending on ν0.

Note that if we can invert this map, then we can solve the extended source
problem for the desired target ν by finding ν0 = F−1(ν) and building the
corresponding point source reflector. This parametrization fixes the over-
determined feature of the initial extended source problem. But F has a very
complicated non-linear nature, which makes it hard to invert. Moreover, we
are not even guaranteed that the inverse will be well-defined or even exist
for a given desired target ν. Therefore, we resort to the minimization of the
residual ν0 7→ L(F(ν0), ν) with an ad-hoc misfit/loss function L.

Overall, this approach fits in the framework of a regularisation approach
as is customary for ill-posed non-linear inverse problems (see for instance [5]
for a recent review). It is a concept of trying to find a ”best approximation”
of the solution within some class, with respect to some loss/misfit function.
In terms of the reflector problem for the fixed source distribution µ and the
desired target ν, it is based on the following ingredients:

1. A parametric set of admissible reflectors. This is a regularization part,
where parameter set should be chosen so that the problem is guaranteed
to become well-posed, even if the original problem was not. We take
parameter set to be the set of target distributions ν0 and corresponding
reflectors are obtained by solving the point source optimal transport
problem.

2. A forward map, that for a given source distribution and an element
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of the parameter set (corresponding to the reflector), produces the re-
flected distribution. We take the above-mentioned F as the forward
map.

3. A loss/merit function that gives information about the ”closeness” of
the reflected and desired distributions. Ideally, this should be a dis-
tance, or at least convex, positive and reaching the minimum value
of 0 only when the reflected distribution is equal to the desired one.
For this, we use Sinkhorn divergence functional Sε (see 2.30), which
approximates the W 2

2 , squared Wasserstein distance (see definition 6)
between the desired target ν and the obtained reflection F(ν).

Then the regularized solution is the reflector corresponding to the param-
eter ν0, the best approximation of F−1(ν) in the sense that it minimizes the
loss function Sε(F(ν0), ν). The value of the loss function can be seen as a
measure of the quality of the reflector.

In chapter 4 we prove that there exists a minimizer for this loss. We
also use gradient-based optimization techniques, relying on the automatic
differentiation tools, in order to find a minimizer.

Outline of the structure of this work

In chapter 1, we sum up the required notions from optics. First, we
discuss the geometrical reflection law and related concepts used throughout
the whole work. Then we present the geometrical optics setup of point source
and extended source to far-field problems. Finally, we discuss ray-tracing,
a method used to calculate the light distribution of the reflection from the
reflector with the given light source distribution.

In chapter 2, we review the foundations of optimal transport and intro-
duce some fundamental results which will be used later in chapters 3 and
4. We will not present the proofs, but rather focus on explaining the results
and their role. First, we go through the basic concepts such as the dual
formulation of optimal transport problem and the definition of Wasserstein
distance. We then proceed to present the entropic regularization of optimal
transport and its numerical resolution, which will play a crucial role in chap-
ters 3-4. The material covered in this chapter can be found in [Vil08],[San15]
and [PC18].

In chapter 3, we concentrate on the point source problem and its reso-
lution using the optimal transport theory. We start by presenting the con-
struction from [KO03], which leads to the optimal transport formulation of
the point source problem from [Wan04]. We then proceed to present the
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methods for finding such solutions and discuss the necessary adaptations for
applying entropic regularization and the Sinkhorn algorithm to the point
source problem. We also discuss ways of evaluating the obtained solution us-
ing ray-tracing. We then present the corresponding numerical results. Some
of the material covered in this chapter is given in [BIR20].

In chapter 4, we present the study of the extended source problem. We
restrict our attention to the reflectors that are generated as the optimal
transport solutions of a point source problem and analyze the relation be-
tween the extended source and point source problems. Then we propose
a regularization approach to find the ”best approximation” of the desired
reflector with respect to an optimal transport based loss. In the final sec-
tion, we present our numerical simulations, analyzing the choice of different
optimization strategies, choice of ray-tracing, etc. Material covered in this
chapter is given in [BCIR21]. Through this chapter, we will work with the
2-dimensional case in order to emphasize the effect of the extended source
problem and how to tackle it, clearly seen in this simple case as well, while
avoiding non-uniform or weighted grids, discussed in Chapter 3, necessary
for the 3-dimensional case.
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Chapter 1

Optics

Introduction

In this chapter, we sum up the required notions from optics. First, we
discuss the geometrical reflection law and related concepts used throughout
the whole work. Then we present the geometrical optics setup of point source
and extended source to far-field problems. Finally, we discuss ray-tracing,
a method used to calculate the light distribution of the reflection from the
reflector with the given light.

1.1 Geometrical Reflection law and Conser-

vation of Energy

Throughout this document, we will work within the framework of Geo-
metrical optics. This means that we work under the following assumptions:

• Light propagates as a set of rays: straight lines described by their
source of origin and propagation angle.

• When a ray hits the reflecting surface, it is reflected into the new di-
rection which is determined by the reflection map T , given by the ge-
ometrical reflection law (see definition 1 below).

• The light source S is a set of points in Rd and each point emits light
with some given intensity distribution over the propagation angles.

• For each source point s ∈ S, the reflection map T satisfies the measure-
preserving property (see definition 2) between the emitted and the re-
flected intensities.

17



Notation 1. A ray will be described by its point of origin in Rd and its
direction as an element of Sd−1. By convention, x will denote an angular
parametrization of Sd−1 while ~x (with the ~· ) will be the corresponding unit
vector in Rd.

Definition 1 (Snell–Descartes law of geometrical reflection). When a ray of
light, traveling in the direction ~x ∈ Sd−1, hits a reflecting surface at a point
with an outward unit normal ~n, the direction of the reflected ray y = T (x) is
given by

~y = ~T (x) = ~x− 2〈~x,~n〉~n (1.1)

Figure 1.1: Reflection law for the ray x originating from the source s ∈
S, reflected on the surface R with a normal ~n. The angle between the
normal and the reflected ray is equal to the angle between the normal and
the incoming ray.

Definition 2 (Measure preserving property). The map T : X → Y satisfies
the measure-preserving property with respect to the measures µ and ν respec-
tively on X and Y , if for any measurable set E ⊂ Y , ν(E) = µ(T−1(E)).
This relation is denoted by

ν = T#µ (1.2)
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read as T ”pushes forward” µ into ν.
Assuming that the measures µ and ν have densities (abusively denoted by

µ and ν again), we can express the measure-theoretical notion of preserving
the measure as an identity for the functions:

∀E ⊂ Y measurable,

∫
T−1
ρ (E)

µ(x)dx =

∫
E

ν(y)dy (1.3)

We will denote a set of points from which the light is emitted by S ⊂ Rd.
Then the intensity of all the emitted light can be modeled as some measure µ
on the space S×Sd−1. In the same manner, if we denote the reflecting surface
by R, then the intensity of all the reflected light can also be modeled as a
measure ν on the space R× Sd−1. However, throughout this document, we
will work with a far-field assumption (definition 2), which we will introduce
in the section 1.2, where we will disregard the dependence of the reflected
light intensity on R and consider only the directions of the reflected rays.

To sum up, through this work we always assume that the reflection on
the surface R is given by the map T : S ×X ⊂ Sd−1 → Y ⊂ Sd−1 satisfying
the reflection law (1.1), and for each s ∈ S, Ts is a measure-preserving map
between the emitted intensity µs and the reflected intensity νs = Ts#µs. The
total reflected intensity T#µ is then given by:

ν :=

∫
S

νs ds =

∫
S

Ts#µs ds (1.4)

The angular parametrization of the reflecting direction will be denoted
by y = Ts(x). When the source S contains only one point, we will drop the
subscript s.

1.2 Point source to far-field reflector problem

model

In the point source to far-field reflector problem two ”idealization” as-
sumptions are made, the point source assumption and the far-field assump-
tion.

Assumption 1 (The point source assumption). The point source assumption
means that the light source is so small compared to the reflector, that it can
be regarded as a point, usually taken at the origin O ∈ Rd. More formally,
we assume that S = {O}. Hence light emitted from it will have a density µ
in directions only (in a subset of Sd−1).
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Figure 1.2: Visual description of point source to far-field problem

Assumption 2 (The far-field assumption). The far-field assumption means
that the reflector R is so small compared to both the illumination scene and
the distance to it, that it can be regarded as a point source. Therefore only the
directions of the reflected rays matter, that is, the reflected light distribution
ν is defined on a subset of Sd−1.

Problem 1 (The point source to far-field reflector problem). The point
source to far-field reflector problem (from now on referred to as point source
problem) is to find a reflector R, that will reflect the given source distribution
µ into the given desired target distribution ν, in the sense of (1.2)

We will always restrict the supports of the distributions µ and ν to re-
spectively Sd−1

+ and Sd−1
− .

Following [Wan04], we parametrize the reflector R using x ∈ X a fixed
subset of the upper hemisphere Sd−1

+ and a given positive ”radius” function
ρ ∈ C1(X,R). With these notations the reflector is modeled as:

Rρ = {~xρ(x)|x ∈ X ⊂ Sd−1
+ } (1.5)
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Remark 1.1. Note that in this parametrization, reflectors Rcρ for any c > 0
induce the same angular distribution ν.

In this work, we use the theory of optimal transport in order to solve the
point source problem. This approach was developed in [Wan96][Wan04] and
will be discussed in Chapter 3. The optimal transport theory gives access to
new efficient solvers to tackle the reflector problem. We discuss those solvers
in Chapter 2 and their adaptations to the reflector problem in Chapter 3.

1.3 Extended source to far-field reflector prob-

lem model

Figure 1.3: Visual description of extended source to far-field problem

The extended source problem follows the same far-field setup as the point
source, but drops the point source assumption 1 on the light source. Hence,
the light source is not a point, but a finite diameter subset S of Rd−1, the
subspace orthogonal to ed, the d-th basis element of Rd. For convenience of
notation, we assume that the origin O := ORd is always in S.
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Each point s ∈ S emits light in directions only, with the probability
distribution µs supported on some subset of Sd−1

+ . The total light source
distribution µ is defined on the product of spatial and directional spaces,
that is, on S × Sd−1

+ . In order to avoid the normalization constant when
treating both µ and all µs as the probability measures (µ(S × S+) = 1 and
µs(S+) = 1), we will always take d − 1 dimensional Lebesgue measure of S
to be 1 (except of course when in the point source regime, where S contains
only one point).

Note that, unlike the point source case, the reflector is not invariant under
scaling (remark 1.1). When the reflector is parametrized with the angular
parametrization from the origin O, different scalings of that parametrization
will have different intersections with a ray originating from another source
point. Therefore, it is important to quantify the distance between the re-
flector R and the source S. For this, we define a ”reflector height”, a value
hR, corresponding to the distance between the origin O and the point on
the reflector, corresponding to the vector ed in the angular parametrization
from the origin. As we use the far-field assumption 2, the reflected target
distribution ν is again defined in directions only.

Problem 2 (The extended source to far-field reflector problem). The ex-
tended source to far-field reflector problem (from now on referred to as ex-
tended source problem) is to find a reflector R, with a given height hR, that
will reflect the given extended source distribution µ into the given desired
target distribution ν in the sense of (1.4)

Remark 1.2 (Ill-posedness). Existence of a reflector for the point source
problem is known and will be detailed in chapter 3. The extended source
problem can be understood as a collection of point source problem, one for
each point in S, sharing the same unknown reflector. The target illumination
constraint is unchanged but there are as many source constraints as points in
S. The problem is very likely to be over-determined and therefore ill-posed
except maybe for very specific data. We are not aware of a mathematical
theory (or partial theory) of existence.

1.4 Ray-tracing

Problems 1 and 2 are the inverse problems of the following ”forward”
problem:

Problem 3. Given the light source distribution µs and a reflector R, what
is the distribution ν of the reflection from this reflector?

22



Formally, the solution to this problem is to compute the push-forward of
µs by the reflection maps Ts and then integrate over s. In practice, comput-
ing those push-forwards analytically is rarely possible (except for some very
specific simple reflectors).

On the other hand, there is a simple numerical solution to this problem,
known as ray-tracing. It is based on a discrete sampling of the measures,
and point-wise computation of reflection maps.

Ray-tracing is a widely used technique in various optical applications.
For a good review we suggest [Gla89]. Here we present two approaches to
ray-tracing, designed for the extended source problem. The point source
problem can be considered as a particular case in which the source set S
contains only one point.

1.4.1 Forward ray-tracing

The first, referred to as ”forward ray-tracing ”, is commonly used in the
optics community.

We assume that the {µs}s∈S are given as discrete measures µs :=
∑Ns

i=1 µs,iδxs,i ,
each family {xs,i}i=1..Ns being a discretisation of S1

+. We also assume S is a
discrete set and the positive coefficients µs,i are normalized:

∑
s∈S

Ns∑
i=1

µs,i = 1 (1.6)

Then for a given reflectorR and the corresponding family of the reflection
maps {Ts}, the discrete reflected distribution ν̄ :=

∑
s Ts#µs is given by:

ν̄ =
∑
s∈S

∑
i

µs,i δys,i , where ys,i = Ts(xs,i) (1.7)

Remark 1.3. This form of the reflected distribution is a consequence of the
measure preserving property (definition 2) of the reflection maps Ts applied
to the discrete measures.

This approach is not limited by the number of rays that can be traced,
except for the computational time. Assuming enough resources, it allows to
accurately approximate the continuous illumination.

The computation of x 7→ Ts(x) requires the normal ns to R at the inter-
section between the ray traced from Os in the direction ~x and the reflector.

When the source S contains only one point, this intersection is easier to
find, since the reflector is parametrized using the same variable. Even when
R is defined on a different discretization {x′j}j≤M , it is usually possible to
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Figure 1.4: When the reflector R is only computed on the discretization
points (black dots), one needs to find the intersection of the sampled rays
(blue arrows) with the interpolation of the surface (black dashed curve).
This intersection happens at different positions for the rays with the same
direction, depending on the starting point on the source S

find the value of the interpolation of R at ~x and corresponding normal in
”constant” number of operations O(1).

On the other hand, when working with the extended source, so that S
contains more points, finding the intersection becomes more complicated,
since either reflector should be completely reparametrized for each source
point, or a search procedure is necessary for pinpointing the intersection
(see figure 1.4). Because of this, computation for a large number of rays
becomes time-consuming even for the simplest, linear (bi-linear for d=3)
interpolations.

Note also that the quality of the ray-tracing depends on the quality of
the samplings {xs,i}. It is well-known (see e.g. [Dav92]) that monte-carlo
samplings have an error of order 1/

√
N where N is the number of samples.
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To be more precise,
∫
X
µ− 1

N

∑
i≤N µ(xi) ∼ 1√

N
for the monte-carlo samplings

{xi}i≤N . This is known as the ”curse of diminishing returns”, since a linear
improvement of the quality of the ray-tracing requires quadratic increase in
the number of points used. This can be slightly improved in various ways,
by using a structured grid (see e.g. [Dav92] for the details). We will use a
quasi monte-carlo grid (see e.g. [Wom17]), which will be discussed in Chapter
3.2.1.

1.4.2 Backward ray-tracing

In order to speed up the computations, we can also use another method,
which we will refer to as ”backward ray-tracing ”.

In this approach, we do not fix the sampling of the source, but instead,
we assume that we have access to a continuous analytic density for µs and
we construct a sampling corresponding to a prescribed discrete support in
angular parametrization.

In other words, we look at the discretization points on the reflector, and
for each source point s ∈ S, we only consider the rays originating from this
source that will intersect the reflector at the discretization points (see figure
1.5). Of course, in order to produce a good sampling of the source measure,
some correction of weights will also be necessary. We outline this construc-
tion below.

The angular discretization {x0,i}i of Sd−1
+ for the O center source point

is taken to be the same as the support of the discrete reflector. Normals at
those points can be computed by computing the gradient of ρ (e.g by finite
differences, computing the gradient of the interpolation, etc.).

Then, for all s ∈ S we can induce a new (possibly non-uniform) dis-
cretization {xs,i}i on Sd−1

+ for the source point Os by taking the angular rep-
resentation of vectors connecting Os to points {~x0,iρ(x0,i)}i on the discrete
reflector (see figure 1.5).

In order to account for the non-uniformity of this discretization, we per-
form a piecewise constant approximation of the density on this grid and use
the corresponding correction term ∆s,i. For d=2, following the idea of trape-
zoidal rule, this correction can be ∆s,i := (xs,i+1 − xs,i−1)/2. For d=3, the
formula for ∆s,i can be more involved, as it involves computations of the
areas of quadrilaterals, but it follows the same concept.

Finally, we use the following empirical approximation

µ '
∑
s

∑
i

∆s,iµs(xs,i)δxs,i (1.8)
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Figure 1.5: When the reflector R is only computed on the discretization
points (black dots), one can induce a discretization on the directions (blue
dashed arrows), which will be different for each point on the source S. Such
construction guarantees that the intersection points will coincide with the
discretization points of the reflector

Which provides the following reflected distribution:

ν̄ =
∑
s∈S

∑
i

∆s,iµs(xs,i) δys,i , where ys,i = Ts(xs,i) (1.9)

There are various ways to improve this strategy by optimizing the weights
∆s,i using different estimators. The number of rays is fixed and is the same as
the discretization of the problem and there is no intersection with the reflector
point to compute. Also note that the normal of R, which is used to compute
the reflection maps {Ts}, need to be computed only at the discretization
points of R and not for each ray as in forward ray-tracing.

The drawback of this approach lies in the quality of the discretizations
{xs,i}, which cannot be controlled directly. However, in practice (see figure
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4.8) it does not seem to be a problem.

1.4.3 The ”Binning” technique

The above discussed ray-tracing methods generate discrete point cloud
{ys,i = Ts(xs,i)}s,i distributions in the angle space Sd−1

− with weights ws,i. It
could be desirable to have this distribution on a grid or another set of points
denoted here {zk} (e.g to have the reflected distribution in the form of a
pixelized picture, or because the desired target density is given on such grid:
ν =

∑
k νkδzk and one wishes to do a point-wise comparison).

To achieve this, we define “bins” {Bk}, that is, a disjoint cells covering of
Y with centers zk. For d = 2 and assuming the zk are ordered, we use Bk =
[ zk+zk−1

2
, zk+zk+1

2
). For d = 3 the shape of the bins can be more complicated,

but if zk are induced by some structured grid, this structure will dictate what
the shape should be.

The ”binned” approximation is constructed by summing the weights of
all rays falling into an each bin Bk to obtain ν̄(zk) :=

∑
{i:T (xi)∈Bk}wi.

However, the final discrete distribution ν̄ is usually noisy, in the sense that
neighbouring bins might have different number of rays, resulting in oscillating
values from bin to bin, even when the desired target is supposed to be smooth.
To resolve this problem, we do a convolution with the Gaussian kernel, with
σ = 5/N (where N is the number of bins), which averages the values of
neighboring bins and results in a smooth distribution. The choice σ = 5/N
was made empirically, governing the width of the smoothing window (the
main contribution in convolution comes from 5 closest bins).

In figure 1.6 we demonstrate the ”raw” binning and its smoothed coun-
terpart. For this, we use a Gaussian distribution N 3π

2
, π
21

, with a mean 3π/2

and deviation π/21. We obtain a point cloud sampling of this distribution
(all weights are equal) with 100000 points using pytorch. We then bin this
sampling into 1000 equal bins of the interval [9π

8
, 15π

8
].
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Figure 1.6: Binning of a point cloud (sampled from N 3π
2
, π
21

) with(orange) and

without(blue) smoothing.
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Chapter 2

Optimal transport

Introduction

In this chapter, we review the foundations of optimal transport and in-
troduce some fundamental results which will be used later in chapters 3 and
4. We will not present the proofs, but rather focus on explaining the results
and their role. First, we go through the basic concepts such as the dual
formulation of optimal transport problem and the definition of Wasserstein
distance. We then proceed to present the entropic regularization of optimal
transport and its numerical resolution, which will play a crucial role in chap-
ters 3-4. The material covered in this chapter can be found in [Vil08],[San15]
and [PC18].

2.1 Basics from optimal transport

2.1.1 Dual formulation and stability of optimal trans-
port

The optimal transport problem, first posed by Gaspard Monge in ”Mémoire
sur la théorie des déblais et des remblais” ([Mon81]), is an optimal mass al-
location problem, with respect to some given cost of transporting a unit of
mass. Mathematically it can be formulated as finding some ”transfers” from
the mass distributed according to the measure µ defined on the (possibly
discrete) space X to another (possibly discrete) space Y with another mass
distribution of measure ν, in a way, that the total cost of this transfer, with
respect to some cost function c(x, y) is minimal. Here c(x, y) gives informa-
tion about what it costs to transfer a unit of mass from a position x ∈ X to
y ∈ Y .
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As we will apply optimal transport theory to the problems where the
conservation of mass is assumed, we will always consider µ(X) = ν(Y ) = 1.
Intuitively this means that no mass is ”lost” during the transport, and no
extra mass appears at the destination. The case µ(X) 6= ν(Y ) is referred to
as ”Unbalanced optimal transport problem”, which we will not discuss here,
and instead refer the interested readers to [CPSV15] [CPSV18] [KMV16]
[LMS18].

In the original formulation of Monge, the set of ”transfers” was a set of
measure-preserving maps.

Problem 4 (Monge Problem). Given two complete separable metric spaces
with borel probability measures, (X,µ) and (Y, ν), and a continuous function
c(x, y) : X × Y → R bounded from below. Find a minimizer of the following
functional:

inf
T

∫
X

c(x, T (x)) dµ (2.1)

Where the infimum is taken over all measure-preserving maps T from
(X,µ) to (Y, ν)

This choice of transfers has a major drawback. First, in general, one can
not guarantee that the infimum can be achieved by a map (There are various
examples of such cases, for the details see e.g. [Vil08]). Even in the cases
where this can be guaranteed, it is still difficult to analyze this formulation
of the problem, since the set of measure-preserving maps is not closed under
any reasonable convergence, appropriate to this problem.

Monge problem remained mostly unstudied till the middle of the 20th
century when Leonid Kantorovich proposed a relaxed formulation of this
problem in [Kan42]. Under this relaxation, the ”transfers” are not maps
anymore, but transport plans, that is, coupling measures γ on the product
space X×Y . For each couple of measurable sets A ∈ X, B ∈ Y , this measure
γ(A× B) tells us how much mass from A should be transported to B. The
measure γ should also satisfy the mass conservation property: all the mass
from X should go to Y , and also, no new mass should be created. This
translates into the following marginal constraints for the transport plan: For
all measurable A ∈ X and B ∈ Y , γ(A× Y ) = µ(A) and γ(X ×B) = ν(B).
Clearly this implies that γ should also be a probability measure (γ(X×Y ) =
µ(X) = ν(Y ) = 1). For a given metric space Z, we will denote the set of all
Borel probability measures on Z by P(Z).

Problem 5 (Kantorovich relaxation). Given two complete separable metric
spaces with probability measures, (X,µ) and (Y, ν), and a continuous function
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c(x, y) : X × Y → R bounded from below. Find a minimizer of the following
functional:

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ (2.2)

Where the infimum is taken over all coupling measures between µ and ν:

Π(µ, ν) := {γ ∈ P(X × Y )|γ(· × Y ) = µ(·), γ(X × ·) = ν(·)} (2.3)

Kantorovich formulation has several advantages. First of all, Π(µ, ν) is
never empty, since it always contains µ ⊗ ν. Second, the set of transport
plans Π(µ, ν) is convex and compact with respect to the weak convergence
(see e.g. [Vil08],[AG09])

Definition 3 (Weak Convergence of Measures). Given a metric space X
and a set of all probability measures P(X) on it, we say that the sequence
of measures µk ∈ P (X) converge weakly to a measure µ ∈ P(X), iff the
following holds: ∫

X

φ dµk →
∫
X

φ dµ for all φ ∈ Cb(X) (2.4)

Where Cb(X) denotes a set of bounded continuous functions.

Remark 2.1. It is well-known (as a Portmanteau theorem, see e.g. [Bil99])
that the weak convergence still holds if (2.4) is verified only for bounded Lip-
schitz functions.

Convexity and compactness of Π(µ, ν) provides existence of an optimal
plan (the minimizer of the Kantorovich functional), under very mild assump-
tions on the spaces X, Y and the cost c. For example, if X, Y are complete
separable metric spaces and c is bounded from below, then the optimal plan
exists for any µ ∈ P(X) ν ∈ P(Y ).

Also note that every measure-preserving map T can induce a transport
plan γT := (Id, T )#µ, a measure concentrated on the graph of T, that for
the sets A×B measures the portion of T−1(B) contained in A:

γT (A×B) = µ((Id, T )−1(A×B)) = µ(A ∩ T−1(B))

Hence it is clear, that the minimal value of Kantorovich functional can
not be larger than the value of Monge functional. Conversely, however, the
minimizer transport plan γ might not be induced by a map. But the value
obtained by this minimizer is actually equal to the infimum of the Monge
functional, under mild assumptions on the spaces and the cost function. More
precisely, the following theorem holds (even if the optimal map T does not
exist):
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Theorem 2.2 (see e.g. [Pra07]). Given two complete separable metric spaces
with probability measures, (X,µ) and (Y, ν), and a continuous function c(x, y) :
X × Y → R bounded from below. Assume that the measure µ has no atoms,
then

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ = inf
T

∫
X

c(x, T (x)) dµ (2.5)

Note that the requirement for the cost c to be bounded from below is
always satisfied when working with compact spaces X and Y , as we take c
to be continuous.

The above-mentioned advantages allow a far larger set of mathematical
tools to be applied to the relaxed problem. In particular, Kantorovich proved
the duality-type theorem from linear programming for the relaxed problem.

Notation 2. From now on, in order to keep a unified representation for
the discrete and continuous cases, we will switch from integral notation to a
”duality product” notation: 〈f ,µ〉X :=

∫
X
fdµ denoting the duality product

between continuous functions and probability measures over X. This notation
will also allow us to denote measures and their densities with the same letter,
avoiding the further complications of the notations.

Theorem 2.3 (Kantorovich Duality [Kan42]). Given two complete separable
metric spaces with probability measures, (X,µ) and (Y, ν), and a continuous
function c(x, y) : X×Y → R bounded from below. Then the following duality
holds

OT (µ, ν) := min
γ∈Π(µ,ν)

〈c, γ〉X×Y = sup
(f,g)∈D

〈f ,µ〉X + 〈g, ν〉Y (2.6)

Where the dual constraint set is:

D := {(f, g) ∈ C(X)× C(Y )|f(x) + g(y) ≤ c(x, y)} (2.7)

The solutions of the dual problem (f, g) are called Kantorovich potentials,
and they play a crucial role in the optimal transport theory, as well as in
this work. For any (x, y) in the support of an optimal plan γopt, f and g
saturate the dual constraint, that is, f(x) + g(y) = c(x, y) for all (x, y) ∈
supp(γopt). Moreover, they are related to each other by the relation known
as c-transformation: f = gc and g = f c.

Definition 4 (c-transform). Given spaces X and Y , and a continuous func-
tion c(x, y) : X × Y → R bounded from below, c-transform of the function
f : X → R is given by:

f c(y) = inf
x∈X

c(x, y)− f(x) (2.8)
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And similarly, for the function g : Y → R, the c-transform is given by:

gc(x) = inf
y∈Y

c(x, y)− g(y) (2.9)

Functions that can be expressed as a c-transform of some function, are
known as c-concave functions.

Assuming that X, Y are smooth manifolds, support of ν is connected,
µ does not give mass to the sets with Hausdorff dimension less or equal to
d− 1 (where d is the dimension of X) and the cost function c(x, y) satisfies
the regularity assumptions A1-A3 (see appendix A), the solution for the
Kantorovich problem γ is actually concentrated on an optimal map T , which
is a solution of the Monge problem, γ = (Id, T )#µ , and T saturates the dual
constraint for all x ∈ supp(µ) (see e.g. [Loe09]):

f(x) + g(T (x)) = c(x, T (x)) (2.10)

Also, T can be computed using the potential f by the following relation:

T : x→ y := {y → ∇xc(x, y)}−1 (∇xf(x)) (2.11)

The necessary regularity assumptions mentioned above, are technical and
always satisfied for all the applications presented through this work. There-
fore we proceed without discussing them here and postpone their presentation
to the appendix A.

One useful property of the optimal transport is that it is ”stable” with
respect to the changes in marginals or the cost. This means that if we
approximate the marginals using discretizations, or we don’t know exact
marginals or exact values of the cost for the given real-world problem and
hence we use approximations, we can still obtain solutions that are close to
the solution of the original problem.

Theorem 2.4 (Stability of optimal transport plans (see e.g [Vil08])). Given
two complete separable metric spaces with probability measures, (X,µ) and
(Y, ν), and a continuous function c(x, y) : X × Y → R bounded from below.
Let {ck}k∈N be a sequence of continuous cost functions converging uniformly
to c, {µk}k∈N and {νk}k∈N converging weakly to respectively µ and ν, and for
each k let γk be an optimal transport plan between µk and νk with respect to
the cost ck.

If

∀k ∈ N 〈ck, γk〉X×Y < +∞ and lim inf
k∈N

〈ck, γk〉X×Y < +∞
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Then γk converges weakly (up to the extraction of a subsequence) towards
a plan γ, the total cost 〈c, γ〉X×Y is finite and γ is an optimal plan between
µ and ν

This result also translates into the stability of the Kantorovich potentials,
where the uniform convergence can be established (again, up to the extraction
of a subsequence, if the limiting optimal plan is not unique).

Theorem 2.5 (Stability of Kantorovich potentials (see e.g [San15])). Given
two complete separable metric spaces with probability measures, (X,µ) and
(Y, ν), and a continuous function c(x, y) : X × Y → R bounded from below.
Let {ck}k∈N be a sequence of continuous cost functions converging uniformly
to c, {µk}k∈N and {νk}k∈N converging weakly to respectively µ and ν, and for
each k let (fk, gk) be pair of (normalized by f(x0) = 0 for some fixed x0 ∈ X)
Kantorovich potentials for the optimal transport problem between µk and νk
with respect to the cost ck.

If

∀k ∈ N 〈ck, γk〉X×Y < +∞ and lim inf
k∈N

〈ck, γk〉X×Y < +∞

Then (fk, gk) converges uniformly (up to extraction of a subsequence) to-
wards a pair of Kantorovich potentials (f, g), for the optimal transport prob-
lem between µ and ν with a cost c.

It is worth noting that the similar stability result for optimal maps is
more restrictive in general. It requires the source measure µ to be stable and
to assume the existence of optimal transport map in the limiting case.

Theorem 2.6 (Stability of optimal transport maps (see e.g [Vil08])). Given
two complete separable spaces with probability measures, (X,µ) locally com-
pact and (Y, ν) general, and a continuous function c(x, y) : X × Y → R
bounded from below. Let {ck}k∈N be a sequence of continuous cost functions
converging uniformly to c, {νk}k∈N converging weakly to ν.

Assume that for each k there exists a Tk an optimal transport map between
µ and νk with respect to the cost ck such that total cost is finite. Also, assume
that there exists an optimal map T from µ to ν with respect to c and the total
cost is finite.

Then Tk converges to T in probability:

∀ε > 0 µ ({x ∈ X|dX(Tk(x), T (x)) ≥ ε}) −−−→
k→∞

0 (2.12)

On one hand, those stability results are a useful tool for studying the
optimal transport problem and finding approximate solutions. On the other
hand, it also allows to study (2.6) as a functional on the set of probability
measures.
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2.1.2 µ 7→ OT (µ, ν) and ν 7→ OT (µ, ν) functionals

In order to avoid extra technicalities, through this subsection X and Y
will be compact subsets of Rd. We consider the functionals µ 7→ OT (µ, ν) for
some fixed ν ∈ P(Y ) and ν 7→ OT (µ, ν) for some fixed µ ∈ P(X), defined
respectively on P(X) and P(Y ), and discuss their continuity, convexity and
differentiability.

The continuity of those functionals with respect to the weak conver-
gence of measures can be deduced using the stability results and the classical
compactness arguments. Moreover, compactness is essential for continuity,
and without this assumption, in general, one can only hope for lower semi-
continuity.

Theorem 2.7 (Continuity of µ 7→ OT (µ, ν), ν 7→ OT (µ, ν) (see e.g [San15])).
Given X and Y compact, a continuous cost function c : X × Y → R and a
fixed distribution ν ∈ P(Y ) (resp. µ ∈ P(X)), the functional µ 7→ OT (µ, ν)
(resp. ν 7→ OT (µ, ν)) is continuous with respect to the weak convergence of
measures in P(X) (resp. P(Y )).

If X and Y are not compact, then in general only lower semi-continuity
holds, and in this case, c can also be assumed to be only lower semi-continuous.

The convexity of those functionals is a direct consequence of the Kan-
torovich duality (2.6), as they are expressed as a supremum of linear func-
tions. However a-priory one does not have a strict convexity, which holds
only for some special cases. In contrast, the entropic regularization of op-
timal transport problem, that we discuss in section 2.2.1, is always strictly
convex.

In order to discuss differentiability, one should first define what it means
for a functional on P(X) to be differentiable, or in other words, define its
first variation.

Definition 5. Given a functional F : P(X)→ R, we denote by ∇µF (µ) (if it
exists) a measurable function, such that for any χ := µ1−µ with µ1 ∈ P(X),
the following equality holds

lim
ε→0

F (µ+ εχ)− F (µ)

ε
= 〈∇µF (µ),χ〉X (2.13)

Note that since χ is a difference of probability measures, its total mass is 0,
hence 〈C,χ〉X = 0 for any constant C and therefore, ∇µF (µ) is defined only
up to an additive constant.

Theorem 2.8 (Differentiability of µ 7→ OT (µ, ν), ν 7→ OT (µ, ν) (see e.g
[San15])). Given X and Y compact, a continuous cost function c : X×Y → R
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and a fixed distribution ν ∈ P(Y ), the functional µ 7→ OT (µ, ν) is convex
and its subdifferential at some µ0 ∈ P(X) is given by the set of Kantorovich
potentials of the optimal transport problem:{

f ∈ C0(X)|〈f ,µ0〉X + 〈f c, ν〉Y = OT (µ0, ν)
}

(2.14)

Moreover, if the solution of optimal transport problem is unique, or equiva-
lently, the Kantorovich potential is also unique up to an additive constant,
then the gradient”(first variation) of µ 7→ OT (µ, ν) exists at µ0, and is given
by f :

∇µOT (µ0, ν) = f (2.15)

Same result holds for ν 7→ OT (µ, ν), with the second Kantorovich potential
g:

∇νOT (µ, ν0) = g for 〈gc,µ〉X + 〈g, ν0〉Y = OT (µ, ν0) (2.16)

2.1.3 Wasserstein Metrics

One useful application of optimal transport is the case where the spaces
X and Y are the same complete separable metric space with a metric d and
the cost function c(x, y) is some p-th (1 ≤ p < ∞)power of that metric:
c(x, y) = 1

p
dp(x, y). In this setting, optimal transport can define a metric on

the space of probability measures P(X) on X with a finite p-th moments:

Pp(X) :=

{
µ ∈ P(X)|

∫
X

dp(x, x0) dµ <∞
}

for some x0 ∈ X (2.17)

Definition 6 (Wasserstein Metric). Given a complete separable metric space
X with a metric d, for a given 1 ≤ p <∞, one can define a metric on Pp(X)
using the following optimal transport Problem:

Wp(µ, ν) :=

(
min

γ∈Π(µ,ν)

〈
1

p
dp, γ

〉
X×X

) 1
p

= (OT (µ, ν))
1
p (2.18)

Theorem 2.9 (see e.g [Vil08]). For a complete separable metric space X
with a bounded metric d, Wp for any 1 ≤ p < ∞ defines a metric on the
space Pp(X), which metrizes the weak convergence.

Remark 2.10. The requirement of a bounded metric can be relaxed by several
means. One way is to require the existence of another bounded metric d̃
inducing the same topology (e.g. d̃ = d/(d+1)). Another is to require weakly
convergent measures, to also maintain convergence of p-th moments.
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As we plan to use the Wasserstein metric in the framework of the geo-
metric optics, and as in this case the reflection maps are measure-preserving
maps, it is worth to note that this metric allows estimating the distance
between push-forward measures.

Lemma 2.11. Given two Polish spaces (X, dY ) and (Y, dY ), with Borel prob-
ability measures µ1, µ2 on X and Lipschitz continuous map T : X → Y with
Lipschitz constant Lip(T), Then

Wp(T#µ1, T#µ2) ≤ Lip(T )Wp(µ1, µ2) (2.19)

This lemma is not hard to prove and most likely many experts are aware
that it holds, but as we could not find any references in the literature, we
include the proof in the appendix B.

Remark 2.12. The above lemma can be applied to the Monge maps T : X →
Y under mild regularity assumptions: When the target support Y is convex
and the source and target densities µ and ν smooth enough (C1,α is sufficient)
and bounded below and above by positive constants, a classic regularity result
by Caffarelli [Caf92] gives sufficient regularity to get

Lip(T ) ≤ K (2.20)

where the constant K only depends on the dimension d and the data µ and
ν. See [PF14] for further refinements and discussions.

2.2 Entropic optimal transport and Sinkhorn

algorithm

2.2.1 Entropic regularization of optimal transport

The entropic regularization approach was introduced for optimal trans-
port computations in [Cut13] (see [PC18] for a comprehensive review). Regu-
larization of the Kantorovich problem (2.6) is based on the following KullBack-
Leibler divergence or “relative entropy” (KL) penalization :

OTε(µ, ν) := min
γε∈Π(µ,ν)

〈c, γε〉X×Y + ε KL(γε |µ⊗ ν) =

max
fε,gε

〈fε,µ〉X + 〈gε, ν〉Y − ε
〈

exp

(
1

ε
(fε ⊕ gε − c)

)
− 1,µ⊗ ν

〉
X×Y

(2.21)
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where ε > 0 is a small regularization parameter and

KL(γ |µ⊗ ν) :=

〈
log

(
γ

µ⊗ ν

)
, γ

〉
X×Y

+ 〈1,µ⊗ ν〉X×Y − 〈1, γ〉X×Y
(2.22)

if γ << µ⊗ ν and +∞ otherwise.

The primal-dual optimality condition is given by

γε = exp

(
1

ε
(fε ⊕ gε − c)

)
µ⊗ ν. (2.23)

The optimal entropic plan is therefore a “scaling” of a fixed kernel exp(−1
ε
c)

by the regularized Kantorovich potentials fε and gε. Note that, as dis-
cussed in section 2.1, the optimal plan γ of an unregularized problem (2.6) is
”sparse” in the sense that it is supported on the graph of a monge map
T (or eqivalently, on the points (x, y) that saturate the dual constraint:
f(x) + g(y) = c(x, y)). In contrast, γε is diffuse, that is, it is supported
on the whole supp(µ) × supp(ν). However, note that when ε goes to 0, the
values exp

(
1
ε
(fε ⊕ gε − c)

)
become exponentially small for the points (x, y)

for which fε(x) + gε(x) is strictly smaller then c(x, y).
Entropic regularization adds substantial regularity to the optimal trans-

port problem. In particular, the functional 〈c, γ〉X×Y + εKL(γ |µ ⊗ ν) is
strictly convex with respect to γ for any ε > 0, which results in the existence
of unique minimizer γε (see e.g [PC18]).

The differentiability of µ→ OTε(µ, ν) and ν → OTε(µ, ν) follow the same
path as for the unregularized functional OT (µ, ν).

Theorem 2.13 ([FSV+18]). Under the assumptions of theorem 2.8, the first
variations of µ→ OTε(µ, ν) and ν → OTε(µ, ν) at respectively µ0 and ν0 are
given by:

∇µOTε(µ0, ν) = fε ∇νOTε(µ, ν0) = gε (2.24)

Where fε and gε are corresponding first and second regularized Kantorovich
potentials.

Moreover, this regularization adds extra smoothness to the discrete prob-
lem as well. In fact, in [LRPC18] it is demonstrated that the discrete version
of the regularized functional is C∞ smooth with respect to the input data
(the discretization vectors of the source and target measures).

Theorem 2.14 ([LRPC18]). Let ∆n denote a (probability) simplex ∆n :=
{v ∈ Rn | vi > 0,

∑n
i=1 vi = 1}. One can identify the measure on the discrete

space with N points, with an element of ∆N . Under this identification, the
functional OTε(µ

N , νM) : ∆N ×∆M → R is C∞ smooth in the interior of its
domain.

38



2.2.2 Sinkhorn Algorithm

Numerical solutions of the entropic optimal transport problem are pro-
duced under the discretization of this problem, replacing (X, Y , c , µ, ν) by
(XN , YN , c

N , µN νN):

XN = {xi}i≤N , YN = {yj}j≤N , cN := {c(xi, yj)}i,j≤N and

µN =
N∑
i=1

µN(xi)δxi , νN =
N∑
j=1

νN(yj)δyj ,
N∑
i=1

µN(xi) =
N∑
j=1

νN(yj) = 1

(2.25)
Using this discretization we get the following discrete non-linear system

of optimality:

OTε,N := max
fε,gε

〈
fε,µ

N
〉
XN

+
〈
gε, ν

N
〉
YN

− ε
〈

exp

(
1

ε
(fε ⊕ gε − cN)

)
− 1,µN ⊗ νN

〉
XN×YN

. (2.26)

where we use the same notation (fε, gε) for discrete vectors in RN .

This system is solvable using Sinkhorn algorithm. It corresponds to a
block coordinate (fε and gε) ascent :

Initialize with g0
ε = 0Y and then iterate (in k):

fk+1
ε =− ε log

(〈
exp

(
1

ε
(gkε − cN)

)
, νN

〉
YN

)

gk+1
ε =− ε log

(〈
exp

(
1

ε
(fk+1
ε − cN)

)
,µN

〉
XN

)
(2.27)

For a fixed ε, those iterations converge in k towards a solution (fε, gε)
of the regularized problem OTε,N . The rate of this convergence is linear for
simple costs and asymptotic to 1 − ε (see [PC18]) again), meaning that the
following estimate holds for large enough k: ||fkε − fε|| = O(1− ε)k.

The exponential convergence of the valueOTε(µ, ν) towardOT (µ, ν) when
ε→ 0 is established and studied in the continuous [Lé13] and discrete setting
[CM94].

The numerical stability of Sinkhorn iterations depends on the transport
scale of the data τ = supx∈X c(x, T (x)) and ε. The variable memory in
computers overflows or underflows when the ratio τ/ε is too large. Decreasing
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ε below a certain threshold is, therefore, a numerical difficulty. A good review
of existing hacks and methods to mitigate this problem can be found in
[Sch16] and we re-discuss this in section 2.2.4.

The potentials computed using Sinkhorn iterations (2.27) are defined
on the discrete sets XN and YN but they admit a canonical extension on
the whole space by replacing cN(xi, yj) respectively by c(x, yj), x ∈ X and
c(xi, y), y ∈ Y . Omitting the iteration index :

f [gε](x) = −ε log

( ∑
j=1...N

exp

(
1

ε
(gε(yj)− c(x, yj))

)
νN(yj)

)
, ∀x ∈ X.

(2.28)
We will be interested in the convergence of fε as ε→ 0 and N →∞. To

the best of our knowledge, the joint convergence in N and ε has only been
studied in [Ber17], we reproduce partially his results :

Theorem 2.15 (Berman joint convergence [Ber17] ). Assume µ and ν have
C2,α and positive densities, and that N and ε are dependent parameters : N ≈
(1/ε)d where d is the dimension of the problem. A technical condition on the
sequence of discretization (XN , YN , c

N , µN νN) called “density property” (see
Remark 2.16 below) is also necessary. Then there exists a positive constant
A0 such that for any A > A0 the folowing holds : setting mε = [−A log(ε)/ε]
the continuous interpolation provided by f [gmεε ], built using the cannonical
extension (2.28) from the discrete Sinkhorn iterate at k = mε, satisfies the
estimate

sup
X
|f [gmεε ]− f | ≤ −Cε log(ε), (2.29)

for some constant C (depending on A) and f is an optimal potential for
(2.6).

Remark 2.16 ( Density property Lemma 3.1 [Ber17] ). The “density prop-
erty” in theorem 2.15 is defined as follows. For any given open set U inter-
secting the support X of µ (same for Y and ν)

lim inf
ε→0

ε log(µN(U)) = 0.

For the flat space X ⊂ Rd, this condition is enough. For curved surfaces, a
technical generalization is required. But in both cases, this density property
ensures that the discretization of X and µ (2.25) is such that, for any U ⊂ X
the sequence of approximations µN(U) never converges faster to 0 than ε
(remember that N ≈ (1/ε)d). For X = Rd, uniform grids are fine. For curved
spaces, extra precautions need to be made to make sure that this property is
satisfied. We postpone the presentation of the general form of this property
to the appendix C.
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2.2.3 Entropic bias and Sinkhorn Divergence

From now on, the potentials computed using Sinkhorn iterations (2.27)
are denoted by fOTε and gOTε .

Entropic optimal transport is popular to approximate transport distances
between probability measures, since, as already mentioned, the Entropic cost
OTε(µ, ν) is known to converge exponentially fast to OT (µ, ν) = OT0(µ, ν)
with ε [CM94].

However, in many applications, the transport plan and the Kantorovich
potentials are more important than the cost value itself. The error estimate
for the potentials, (2.29) in theorem 2.15 has an infinite slope at ε = 0. And
due to the numerical stability limit, imposed when decreasing ε in (2.27),
there is a substantial problem when trying to approximate the potentials
with high precision.

For the case where X = Y and the cost c(x, y) = 1
p
dp(x, y), this problem

is discussed in [FSV+18] where it is proposed, in order to correct the bias
without decreasing ε under the numerical stability limit, to subtract the
“diagonal terms” to correct the entropic cost :

Sε(µ, ν) = OTε(µ, ν)− 1

2

(
OTε(µ, µ) +OTε(ν, ν)

)
. (2.30)

Quite remarkably, the authors show that this quantity, called Sinkhorn
divergence, remains positive and is strictly convex. It also obviously vanishes
for µ = ν which is not the case for OTε. Thanks to the symmetry, there is
only one dual potential for each of the diagonal problems. We denote them
fµε and f νε . They can be computed using independent Sinkhorn iterations :

fµ,k+1
OTε

=− ε log

(〈
exp

(
1

ε
(fµ,kOTε

− cN)

)
,µ

〉
X

)
f ν,k+1
OTε

=− ε log

(〈
exp

(
1

ε
(f ν,kOTε − c

N)

)
, ν

〉
Y

)
. (2.31)

The µ gradient of Sε, denoted by fSε may be formed by a simple subtrac-
tion. An open question is whether this correction :

fSε = fOTε − f
µ
OTε

, (2.32)

is a better approximation to f than fOTε . Numerical simulations of W2

gradient flows in [FSV+18] do indicate this is the case.
Note finally that solving Sε has the same complexity as OTε as the di-

agonal problems typically converge faster in terms of Sinkhorn iterations
([FSV+18]).
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Remark 2.17 (Asymptotics of OTε). The entropic bias may be related for-
mally to asymptotic results on the difference between OT and OTε, see [CT19]
[Pal19] for recent publications on this subject.

Here we give the formula for the d2 cost on a smooth, connected, and
closed d-dimensional Riemannian manifold X = Y , with a volume measure
vol re-scaled to be a probability measure. [CT19] gives result for more general
reference measures m = euvol and theorem 1 in [Pal19] also treats more costs
in the form c := g(x− y), g convex.

If µ and ν have smooth densities ρ0 and ρ1 with respect to vol, then the
following asymptotic behavior for small ε holds :

OTε(µ, ν)−OT (µ, ν) = dε log
(√

2πε
)

+
ε

2
(KL(µ|vol) +KL(ν, vol))

(2.33)

+
ε2

8
I(µ, ν) +O(ε2).

Where I(µ, ν) is a certain ”energy” term involving the W2 geodesic ρt#vol
connecting µ to ν.

I(µ, ν) :=

∫
X

∫ 1

0

|∇log(ρt)|2ρt dt vol (2.34)

Using (2.33) and that OT (µ, µ) = OT (ν, ν) = 0, I(µ, µ) = I(ν, ν) = 0 we
first note that the Sinkhorn Divergence correction removes at least the leading
terms :

1

2
(OTε(µ, µ) +OTε(ν, ν)) = dε log

(√
2πε
)

+
ε

2
(KL(µ|vol) +KL(ν, vol))+O(ε2)

(2.35)

Formally taking the gradient in µ of equation (2.33) (except for the terms
of order ε2) we get for small ε :

fOTε ' f − ε

2
log(µ). (2.36)

It gives some indication at the leading order of the entropic bias in the po-
tential.

Finally, note that the density property discussed in Remark 2.16 requires
for the first order bias term to converge to 0 when discrete mesures µN con-
verge to original measure µ.
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2.2.4 Computational efficiency of the Sinkhorn algo-
rithm

The simplest implementation of Sinkhorn algorithm requires O(N2) op-
erations per iteration. If we use the relation between discretization and
entropic parameters in theorem 2.15, we need at least O(N

1
d log(N

1
d )) itera-

tions to reach O(ε log(ε)) precision for the Kantorovich potential. This takes

us to a pessimistic O(N
2d+1
d log(N

1
d )), far from the optimal complexity of

semi-discrete optimal transport solvers for example.

This can be largely improved in practice by using a multi-scale method
in ε and N . In the case of small ε, the limit of the entropic plan concen-
trates on the graph of the optimal transport map. The bandwidth of (2.23)
decreases with ε and coarser scales in this parameter can be used to restrict
the relevant support on which to perform the summation in the Sinkhorn
iterates. This approach has been proposed and tested in [Sch16] and [Fey19]
and experimentally yields a O(N logN) operations cost. Here we present
those concepts, which are used later in simulations of chapters 3 and 4.

ε scaling

As discussed in section 2.2.2, decreasing ε would result in a more accurate
solution for (2.6). On the other hand, the convergence rate 1 − ε suggests
that smaller ε we take, higher number of iterations will be required for the
Sinkhorn algorithm to converge. Also, taking ε too small would result in
numerical overflows due to the exponential terms of order e

1
ε in (2.27)

As discussed in [Sch16], the problem of numerical stability can be tackled
by working with the increments of the potentials rather than full potentials
during the iterative steps.

That is, if we look at the updates fk+1
ε and gk+1

ε in (2.27) as fk+1
ε =

fkε + f̄k+1
ε and gk+1

ε = gkε + ḡk+1
ε , then by moving previous approximations

to the right hand side, we will get the following new iterative scheme for the
increments:

f̄k+1
ε = −ε log

(〈
exp

(
1

ε
(gkε + fkε − cN)

)
, νN

〉
YN

)
(2.37)

fk+1
ε = fkε + f̄k+1

ε

ḡk+1
ε = −ε log

(〈
exp

(
1

ε
(fk+1
ε + gkε − cN)

)
,µN

〉
XN

)
gk+1
ε = gkε + ḡk+1

ε
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Those iterations will be more stable due to the saturation property of the
optimizing potentials. This property tells us that quantity f(xi) + g(yj) −
c(xi, yj) is zero for exact potentials and optimal pairs (xi, yj) while being
strictly negative for non-optimal pairs. Therefore, when the iterates fkε and
gkε are close to the true potentials, new updating steps would not cause a
numerical overflow.

However, this approach alone would not help at the first steps of the
algorithm, since we have no guarantees that initial approximations would be
close to the exact potentials, and for small ε we could get an overflow at the
first iteration. In order to avoid this, a possible approach would be to start
with higher values of ε and gradually decrease it to the desired final value
εfinal (see [Sch16] [OR15]).

More formally, one can define a sequence of regularization parameters
εk → εfinal and use εk at k-th iteration in (2.37). A common choice is to
start with ε0 = 1 and use a scaling parameter λ ∈ (0, 1) to define εk :=
max{εfinal, λkε0}.

Remark 2.18. It has been empirically established (see [Sch16] and refer-
ences therein), that the above-discussed approach of gradually decreasing εk
at each iteration, not only provides a more numerically stable scheme but
also increases the convergence speed. In other words, a smaller number of
iterations is required for achieving a given error threshold with decreasing εk
at each iteration, then while using fixed εfinal for all iterations.

Discretization scaling

The entropic regularization with ε acts as a smoothing filter on the source
and target densities, which smoothes out any details that are on the finer scale
then ε [Sch16] (see also [Ber17]). This means that using Sinkhorn iterations
with discretizations such that mini,j d(xi, xj) << ε does not provide any
valuable improvement over working with discretizations that are on the scale
of ε.

Therefore, it would be more efficient to also use a sequence of discretiza-
tions (XNk , YNk , c

Nk , µNk , νNk) whereNk = O( 1
εk

)d (where d is the dimension

of the problem). In order to implement this approach, one would need to
find a way to interpolate approximations fkεk , g

k
εk

on the discretization XNk+1
,

YNk+1
respectively, while they are computed on the grids XNk , YNk . For this
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one can use the canoncial extension formula (2.28) for both potentials:

f̃kεk(x) :=− εk log

( ∑
j=1..Nk

exp

(
1

εk
(gkεk(yj)− c(x, yj))

)
νNk(yj)

)
, ∀x ∈ X.

(2.38)

g̃kεk(y) :=− εk log

( ∑
i=1..Nk

exp

(
1

εk
(fkεk(xi)− c(xi, y))

)
µNk(xi)

)
, ∀y ∈ Y.

(2.39)

Therefore, at k-th iteration, we can take k − 1-th approximations to be
restrictions of f̃k−1

εk
(x) and g̃k−1

εk
(y) on the spaces XNk and YNk respectively.

Putting it all together, we obtain the following iterative procedure in k:

fk−1
εk

= f̃k−1
εk−1
|XNk gk−1

εk
= g̃k−1

εk−1
|YNk (2.40)

f̄kεk = −εk log

(〈
exp

(
1

εk
(gk−1
εk

+ fk−1
εk
− cNk)

)
, νNk

〉
YNk

)
fkεk = fk−1

εk
+ f̄kεk

ḡkεk = −εk log

(〈
exp

(
1

εk
(fkεk + gk−1

εk
− cNk)

)
,µNk

〉
XNk

)
gkεk = gk−1

εk
+ ḡkεk

In this setting, taking εfinal to 0 means also refining the discretization.
This fits into the setup of the Theorem 2.15, but as already mentioned in
remark 2.18, in practice, by the effect of ε scaling, the convergence rate is
much faster.

Cutoff of iterations

The combination of the ε scaling and discretization scalings give us a
threefold advantage: Firstly, we avoid the stability issues of overflow, and can
decrease epsilon further than naive implementation would allow. Secondly, ε
scaling provides better convergence, reducing the number of iterations neces-
sary to achieve the desired accuracy. Lastly, discretization scaling allows us
to perform a portion of those iterations on the coarser discretizations than
desired final discretization, reducing the time necessary for computing those
iterations.

But even with all this benefits, final iterations that happen on the finest
discretization still require N2 operations. This can be reduced using again
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the saturation property f(xi) + g(yj)− c(xi, yj) = 0 for optimal pairs (xi, yj):

When εk is small, the values e
1
εk

(fkεk
(xi)+g

k−1
εk

(yj)−cNk (xi,yj)) become extremely
small when the pairs (xi, yj) are far from the graph of optimal pairs, since
f(xi) + g(yj)− c(xi, yj) is strictly smaller then 0.

In other words, during the iterations, many of the summands will be
arbitrarily small and will not contribute to the total sum. Therefore, it is
possible to exclude those summands from the iteration, without affecting the
final result.

Given some tolerance threshold η, define:

Jk(i) :=
{
j | e

1
εk

(fkεk
(xi)+g

k−1
εk

(yj)−cNk (xi,yj)) > η
}

(2.41)

Ik(j) :=
{
i | e

1
εk

(fkεk
(xi)+g

k−1
εk

(yj)−cNk (xi,yj)) > η
}

(2.42)

And commence the following iterations in k:

fk−1
εk

= f̃k−1
εk−1
|XNk gk−1

εk
= g̃k−1

εk−1
|YNk

f̄kεk(xi) = −εk log

 ∑
j∈Jk(i)

exp

(
1

εk
(gk−1
εk

(yj) + fk−1
εk′;

(xi)− cNk)
)
νNk(yj)


fkεk = fk−1

εk
+ f̄kεk

ḡkεk(yj) = −εk log

 ∑
i∈Ik(j)

exp

(
1

εk
(fkεk(xi) + gk−1

εk
(yj)− cNk)

)
µNk(xi)


gkεk = gk−1

εk
+ ḡkεk

Note that as ε scaling speeds up convergence, it is easy to estimate the
index sets Jk and Ik when εk becomes small. They can be estimated in a
way that they don’t exceed log(N) in size, hence reducing the iterations cost
to N log(N), without evaluating the value at every pair (i, j) individually
(which would still require N2 operations and defeat the purpose of using this
approach).

The true complication of this approach comes from memory management.
It is common knowledge in software engineering, that arranging computations
in a way that memory is accessed in a continuous way, so that processor
doesn’t have to wait for the delivery of necessary memory components, pro-
duces better practical computational time even when the theoretical count
of operations is far larger.

Therefore, combining all three approaches described in this section is
a delicate software development task. Implementations for CPU usually re-
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quire different solutions than for GPU. For the CPU implementation of those
approaches see [Sch16], and for the GPU implementation see [Fey19].
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Chapter 3

Point source problem

Introduction

In this chapter, we start by presenting the construction from [KO03],
which leads to the optimal transport formulation of the point source problem
from [Wan04]. We present the methods for finding such solutions. We discuss
the necessary adaptations for applying entropic regularization and Sinkhorn
algorithm to the point source problem. We also discuss ways of evaluating the
obtained solution using ray-tracing. We then present the numerical results.

3.1 An optimal transport model for the point

source problem

3.1.1 Constructing a solution of point source problem
using paraboloids

In [Wan96] [Wan04], Wang showed that one can solve the point source
problem using optimal transport. Here we first present the intuition which
provides the optimal transport formulation and then formalize the way such
solution is built.

Intuitive construction of the Reflector

First consider the case when the desired target ν = δy for some y ∈ Y ,
that is, we want to send all the rays coming from O to the same angle y. It
is a well-known property of paraboloids, that they reflect all the rays coming
from the focus in the parabola axial direction. Hence we can use a paraboloid
with a focus O and axial angle y to achieve the desired target ν = δy.
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Such paraboloid can be expressed in the radial parametrization as

Γp := {~xp(x)|x ∈ Sd−1
+ } where p(x) := py,C(x) =

C

1− 〈~x, ~y〉 (3.1)

where and C is the distance between the focus and the directrix (or in
other words, C/2 is the focal length, aka the distance between the focus and
the ”tip” of the paraboloid).

Now consider the case where ν is supported on two angles y1 and y2.
Then, we can build two paraboloids, parametrized using functions p1 and
p2 (with constants C1 and C2), both focused at O and with axial angles
respectively y1 and y2. Take as a reflector their ”envelope”, that is,

R = {~xmin{p1(x), p2(x)}} (3.2)

Then all the light will be reflected in the two desired directions. However, in
this case we also have to take care how much of the light intensity goes into
each direction. Assume that the source measure µ has a continuous density,
and the desired target ν has a form ν = α1δy1 + α2δy2 . Then, according
to the measure-preserving property 1.2, we need to have µ(T−1(y1)) = α1

and µ(T−1(y2)) = α2 for the reflection map T corresponding to the given
reflector. To achieve this, we can adjust the distances from the focus C1 and
C2 relative to each other.

As shown on figure 3.1, increasing C2 would take the paraboloid Γp2 away
from focus, reducing T−1(y2) and conversely, decreasing C2 expands T−1(y2).
Therefore, µ(T−1(y2)) depends continuously on C2, so it can be adjusted in
a way that T#µ gives the desired ν.

This construction can be generalized for arbitrary N points as a support
of ν =

∑
i≤N αiδyi (see [KO03]), that is, we can find the set of paraboloids

{pi}i≤N with coefficients {Ci}i≤N , such that the reflection map T , corre-
sponding to the reflector obtained by the following radius function pushes
forward µ into ν:

ρ(x) := min
i≤N

Ci
1− 〈~x, ~yi〉

. (3.3)

Taking the logarithm of this relation, and defining f(x) := log(ρ(x)) and
g(yi) := − log(Ci), we recover the following:

f(x) = min
i≤N
− log(1− 〈~x, yi〉)− g(yi) (3.4)

Here one can recognize the semi-discrete version of the c-transform rela-
tion (2.8) with the cost function
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Figure 3.1: When the paraboloid Γp1 := {x̂p1(x)} with a focal direction y1

is fixed, taking paraboloid Γp2 with a focal direction y2 induced by p2 closer
(Γ
′
p2

, dashed) to the focus O results in reflecting surface changing from the
green to red, resulting in increasing the amount of light sent to y2 (and
correspondingly decreasing the amount sent to y1). Similarly, taking Γp2
further (Γ

′′
p2

, dotted) from the focus O results in reflecting surface changing
from green to blue, resulting in decreased amount of light sent to y2 (and
correspondingly increasing the amount sent to y1)

c(x, y) := − log(1− 〈~x, ~y〉) (3.5)

This suggests that the solution (at least for the discrete target) can be
found among the c-concave functions. Moreover, the measure-preserving
requirement for the reflection map T is the same as the measure-preserving
constraint for the optimal transport problem (2.1). This intuitively suggests
that the solution for the reflector problem could be found by solving an
optimal transport problem with the above cost (3.5).
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As mentioned above, this intuition was formalized by Wang in [Wan96]
and [Wan04]. The solution of the reflector problem was constructed based on
the supporting paraboloids. Also, the relation between the radius function
ρ and the Kantorovich potential of the optimal transport problem with the
cost (3.5) was established. We present this construction and the result below.

Envelope of paraboloid solution of the reflector problem

For the reflector,Rρ, the supporting paraboloid at point ~x∗ is a paraboloid
that touches the reflector at ~x∗, and is above it for any other point. More
formally, we say that Γp is a supporting paraboloid for Rρ at a point ~x∗, if{

ρ(x∗) = py,C(x∗)

ρ(x) ≤ py,C(x) ∀x ∈ X
(3.6)

Definition 7 (Admissible reflector). The function ρ and the corresponding
reflector Rρ are called admissible if Rρ has a supporting paraboloid at every
point.

In [Wan04] Wang proved that solving an optimal transport problem with
the reflector cost (3.5) provides the reflection map from an admissible reflec-
tor, which is a solution to the point source problem.

Theorem 3.1 ([Wan04]). If X ⊂ Sd−1
+ and Y ⊂ Sd−1

− are connected domains,
µ and ν have positive bounded densities on X and Y respectively, then the
Kantorovich potential soltions (f, g) of the optimal transport problem (2.6)
with the reflector cost c(x, y) := − log(1 − 〈~x, ~y〉) solve the point source re-
flector problem in the sense that the radius function ρ = ef is admissible and
the reflection from the corresponding reflector is given by the optimal map T .

Note that the Kantorovich potential f is a c-transform of g with the
reflector cost:

f(x) = min
y
c(x, y)− g(y) = min

y
−log (1− 〈~x, ~y〉)− g(y) (3.7)

Taking the exponent in e of this constraint gives a continuous version of
(3.3):

ef(x) = min
y

e−g(y)

1− 〈~x, ~y〉 (3.8)

On the other hand, as an optimal map, T saturates the dual constraint.:
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f(x) + g(T (x)) = c(x, T (x)) = −log
(

1−
〈
~x, ~T (x)

〉)
(3.9)

Taking g to the other side and taking the exponent of both sides, gives:

ef(x) =
e−g(T (x))

1−
〈
~x, ~T (x)

〉 (3.10)

Combining all this and setting ρ(x) = ef(x), we can see that the supporting
paraboloid for the reflector Rρ at a fixed x∗ is given by a paraboloid with
C = e−g(T (x∗)) and axial direction T (x∗).

As the reflector has a supporting paraboloid at every point, it is a strictly
convex surface, hence differentiable almost everywhere. At the differentiabil-
ity points, the tangent and normal of the surface coincide with the tangent
and normal of the supporting paraboloid at that point. Therefore, as the
normal determines the reflection (see (1.1)), at differentiability points the
reflecting direction from the surface Rρ is given by T (x).

Finally note that as an optimal map, T pushes forward µ into ν, there-
fore it automatically satisfies the measure-preserving property (1.2) of the
reflection map.

Notation 3. From now on, we will denote reflectors induced by the Kan-
torovich potential f by

Rf :=
{
~xef(x)|x ∈ Sd−1

+

}
(3.11)

Note that this is a slight abuse of notation, as for general ρ we denoted
by Rρ reflector built from the radial function ρ, while for the Kantorovich
potential f , Rf is built from the radial function ef .

Remark 3.2 (Adaptation of the cost (3.5) to other optical setups). Con-
structions similar to the above exist for the problem of designing the lens
surfaces as well. In that setup, light travels into a medium with some re-
fractive index k1 until it hits the surface of this medium, outside of which is
another medium with the refractive index k2. Defining κ := k2

k1
, lens cost has

the form:

c(x, y) = log(1− κ〈~x, ~y〉) (3.12)

Depending on whether κ is larger or smaller than 1, different construc-
tions of the surface are necessary, e.g. using ellipsoids or hyperboloids instead
of paraboloids, taking max-envelope instead of min-envelope. But not all of
those constructions satisfy the A3 condition from appendix A. A good review
on which constructions satisfy this condition and how to tackle the cases
which do not, can be found in [Mey18].
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3.1.2 Reflector cost and the corresponding numerical
approaches

The reflector cost satisfies the regularity assumptions necessary for deriv-
ing the results presented in Chapter 2 (see Appendix A for the statement of
the assumptions). Therefore, as long as the source measure does not have
atoms, the transport map T always exists, is computable using the formula
(2.11) and corresponds to the reflection map. Moreover, although the cost
function c is not a distance on the sphere Sd−1, it is a function of a distance:
c(x, y) = −log(|x− y|2/2).

Intuitively, this means that reflecting direction T (x) produces the least
transport cost, when it is farthest from x, which in the case of the sphere
Sd−1 means −x. When the distance between T (x) and x becomes smaller,
the cost of transportation becomes larger. In other words, the cost function
penalizes deviation of the reflected ray from the opposite direction of the
incoming ray, as argminy c(x, y) = −x.

In proposition 3.4 we summarize some of the results and properties of
the reflector cost c(x, y) = − log(1 − 〈~x, ~y〉), the Kantorovich potential f
obtained by solving the corresponding optimal transport problem and the
reflector constructed from it. The regularity of the Kantorovich potential f is
established for source and target measures with Holder continuous densities,
that are bounded away from 0 and infinity.

Notation 4. For the Riemannian manifold X, Hb,α(X) with 0 < α < 1 and
b > 0, will denote the subset of P(X), containing measures that are absolutely
continuous with respect to the volume measure vol of X with densities that
have Holder continuous derivatives with the exponent α, and are bounded
from below by b and above by 1

b
:

Hb,α(X) :=

{
µ ∈ P(X) |µ(x) ∈ C1,α,∀x∈X b < µ(x) <

1

b

}
(3.13)

Remark 3.3. Note that, as a consequence of Arzela-Ascoli theorem, if X
(and hence P(X)) is compact, then Hb,α(X) is a compact subset of P(X).

Proposition 3.4.

(i) The reflector cost defined on Sd−1
+ ×Sd−1

− satisfies the regularity assump-
tions A1-A3 from the Appendix A (see e.g. [Loe13]).

(ii) If µ and ν are from Hb,1 for some b > 0 and 0 < α < 1 , then f is
bounded in C3,α (see [Loe13] and references therein).
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(iii) The reflector Rf , a d− 1 dimensional surface in Rd produced using the
Kantorovich potential f , is strictly convex. (A direct consequence of
the supporting paraboloids construction)

There have been various works about solving the point source reflector
problem using optimal transport. Here we briefly summarize the general
classes of numerical methods for solving the optimal transport problem and
their comparative advantages and disadvantages. For a more detailed pre-
sentation we suggest e.g. [PC18] [San15] [LS18]. We also discuss their appli-
cations for the point source problem problem.

Linear Programming approach

The first is the linear programming approach. This assumes that the data
in discrete form as in (2.25), which provides a natural discretization of the
OT problem (2.6):

OTN(µN , νN) := min
γN∈Π(p,q)

〈
cN , γN

〉
XN×YN

(3.14)

where

Π(µN , νN) :=
{
γN ∈ RN×N

+ |
〈
1XN , γ

N
〉
YN

= µN ,
〈
1YN , γ

N
〉
XN

= νN
}
(3.15)

Problem (3.14) is a discrete linear programming problem that can be
solved numerically using standard linear programming solvers. This approach
was suggested for the point source problem in [Wan04]. The main drawback
of this method is its high dimensionality. It is a linear problem with N ×
N unknowns and 2N constraints. Numerical resolution with linear solvers
which have cubic complexity in the number of unknowns is therefore out of
reach for reasonable discretizations (typically N > 100).

Partial Differential approach

Assuming sufficient smoothness to interpret the measure-preserving prop-
erty of the transport map T in a pointwise sense gives us the Jacobian equa-
tion:

µ(x) = ν(T (x))det(JT (x)) (3.16)

Plugging the expression (2.11) in the above, gives a Monge-Ampère type
PDE:

det(J{y→∇xc(x,y)}−1(∇xf(x))(x)) =
µ(x)

ν
(
{y → ∇xc(x, y)}−1 (∇xf(x))

) (3.17)
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Remark 3.5. The Monge-Ampere type equation can be derived for the point
source problem using the measure-preserving property of the reflection map.

Let Tρ denote a reflection map from the reflector Rρ. Let D ⊂ X be
the set of differentiability points of T . On this set we can understand (1.3)
pointwise, as an equality of the densities, which gives us the Jacobi equation
for Tρ:

det(JTρ(x)) =
µ(x)

ν(Tρ(x))
(3.18)

Computing the value of det(JTρ(x)) in terms of ρ and its covariant deriva-
tive ∇ on Sd−1, yields the following Monge-Ampere type differential equation
for ρ :

η−2 det

(
−∇i∇jρ+ 2

1

ρ
∇iρ∇jρ+ (ρ− η)δi,j

)
=

µ(x)

ν(Tρ(x))
(3.19)

Where η := |∇ρ|2+ρ2

2ρ
and δij is a Kronecker symbol, being 1 when i = j and

0 otherwise. Derivation of this equation is not hard but it involves somewhat
lengthy computations. We refer the interested reader to [Wan96].

A natural boundary condition for this equation is that Tρ should map
support of µ to the support of ν:

Tρ(X) = Y (3.20)

Therefore, solving the Monge-Ampere type equation (3.19) with a bound-
ary condition (3.20), would provide the solution of the reflector problem.

The formulation (3.19) is equivalent to the (3.17), when substituting c
with the reflector cost (3.5).

In order to find the solution of the point source problem using the Monge-
Ampere type PDE, a B-spline collocation method was proposed and imple-
mented in [BHP14], [BHP15] with convincing numerical results and a numer-

ical complexity in O(N
3
2 ), although with a large hidden constant. Another

approach of building monotone discretizations was developed in [BM21]. Wu
[WXL+13] derives the Monge-Ampere equation for a lens surface and solves
the equations using standard finite differences and Newton iterations. Also,
the heuristic solution method of finding the solution of the Monge-Ampere
PDE based on the least-squares approach is presented in [RtI20] [RtTBI19]

for the reflector cost and the numerical study also demonstrates a O(N
3
2 )

complexity.
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Semi-discrete approach

Semi-discrete optimal transport takes advantadge of the special case where
one measure µ has continuous density and the other νN has discrete support
YN as in (2.25). In this case, the dual formulation in (2.6) can be reduced
to a semi-dual discrete optimisation problem through the elimination of the
constraints replacing f by its c-transform:

f(x) = gc(x) = min
y∈YN

(c(x, y)− g(y)) = min
j

(
c(x, yj)− g(yj)

)
(3.21)

and optimizing over the finite vector {g(yj)}j≤N .
It is now well understood that a Newton’s method can be used to solve the

Semi-discrete optimal transport problem under classical regularity hypothesis
for the cost c = 1

2
d2 [Mér11]. The implementation relies on fast (linear time)

computations of a tessellation of the target domain called Laguerre cells :

Lagj = {x, s.t. c(x, yj)− g(yj) < c(x, yi)− g(yi), ∀i ≤ N} ∀j ≤ N.

There have been numerous works on using this method for the reflec-
tor problem. Starting from the pioneering work of [KO03], all the way to
[MMDCMT16]. Semi-discrete optimal transport has been adapted to some
other optical setups as well, such as designing lens surface instead of the
reflector, or collimated sources instead of point source (see e.g. [Mey18]).

However, there is an extra technical difficulty that the efficient Laguerre
cell computations are only available in Rd. Therefore, in order to compute
those on the sphere, one needs to lift the dimension of the computations by
one. Then, one needs to compute Laguerre cells on the sphere as an intersec-
tion of the Laguerre cells in Rd intersected with a triangulation of Sd−1. The
resulting method still has linear complexity, and efficient implementations in
dimensions 2 and 3 are available in [Lec19] and [Lév15].

In this work, we will instead explore the use of entropic optimal transport
approach, discussed in chapter 2.2.1, which is also applicable for the reflector
cost.

3.1.3 Adaptation of Sinkhorn divergences to the re-
flector cost

Using the Sinkhorn algorithm for the reflector cost seems straightforward
at first glance since one can simply use the iterations (2.27) to obtain the
potentials. But as the reflector is built using the function efOTε , the en-
tropic bias discussed in Section 2.2.3 is observed on numerical solutions of
the problem.
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We can see the effect in the simplest “identity” reflector case for example,
where each ray is reflected in its opposite direction, i.e. when ν(y) = µ(y −
π), y ∈ S1

−. The exact potentials f and g are constant and the reflector
R = {~x ef(x)|x ∈ X} is a portion of circle.

Figure 3.2: As ε decreases, reflectors induced from fOTε and f − ε
2

log(µ)
become closer to each other and to the true reflector Rf , but still remain
above it.

Recall from remark 2.17, that the asymptotics of the difference between
the entropic and exact potentials can be expressed by fε = f − ε

2
log(µ).

For the radial function used for constructing the reflector it translates into
efε = ef

µ
ε
2

. When µ decreases, the denominator decreases and the radius

increases, pushing the reflector further from the light source.
We can see this in figure 3.2, for the plane problem (d = 2) and N = 128

discretization points, where we plot the exact reflector induced from f =
const, entropic reflector induced from fOTε , and the reflector obtained by
adding theoretical asymptotic bias to the exact potential: f − ε

2
log(µ), for

4 different values of ε: 1
16

, 1
64

, 1
128

and 1
256

. Remember that the potentials
are defined up to a constant, we therefore adjust the constants so that the
reflectors superimpose at x = π/2.

The source distribution µ is built in a way that it is close to uniform
between the angles π/4 and 3π/4 and decays exponentially fast outside of
it. This is achieved by by summing 16 Gaussian distributions with deviation
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π/32 and means taken within the interval [9π/32, 23π/32]. it is plotted in
figure 3.3. As already mentioned, The target distribution ν(y) = µ(y − π).

Figure 3.3: Source distribution µ for the simulations in figure 3.2
.

As ε decreases, reflectors induced from fOTε and f − ε
2

log(µ) become
closer to each other and to the true reflector, but still remain above it. This
produces a shrinking effect on the reflected distribution (observed e.g in figure
3.10), since the rays reflecting on the biased entropic reflector are reflected
strictly inside the support of ν (see figure 3.4).

In order to deal with this bias, we use the notion of Sinkhorn divergences
(2.30). When the spaces X and Y are different, we can extend the notion of
Sinkhorn divergence as follows :

Sε(µ, ν) = OTε(µ, ν)− 1

2

(
OTε(µ, µ

′) +OTε(ν
′, ν)

)
. (3.22)

where µ′ = argminOT (µ, ·) and ν ′ = argminOT (·, ν).

Note that this is indeed a consistent extension: For the distance costs
c(x, y) = dpp(x, y), when the spaces X and Y are the same, µ′ = µ and ν ′ = ν
as argminy∈Y d(x, y) = x.

Also in the reflector cost case, µ′ and ν ′ correspond to the reflections
of respectively µ and ν on the circular reflector mentioned above. In other
words, that least total cost is induced by reflecting all the rays in the exact
opposite direction. Indeed argminy∈Y −log(1− < x, y >) = −x.

The Kantorovich potential fSε which we need in order to construct the
reflector, can be computed using the same formula as for the distance cost

59



Figure 3.4: In blue and red are rays from µ and ν. Solid and dashed black
curves are RfOTε

and Rf . The dashed rays are reflected in the exact opposite
“identity” direction. The solid rays, reflecting on the biased entropic reflector
are reflected strictly inside the support of ν.
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Sinkhorn divergence (formula 2.32) :

fSε =− ε log

(〈
exp

(
1

ε
(gOTε − cN)

)
, νN

〉
YN

)

+ ε log

(〈
exp

(
1

ε
(fµOTε − cN)

)
,µN

〉
XN

)
(3.23)

3.2 Numerical results

3.2.1 Choice of the Discretization

In Theorem 2.15, the requirement that ε is of order (1/N)
1
d and that

µN , νN satisfy the density condition (Remark 2.16 and the Appendix C) are
closely related. Intuitively this condition means that while choosing the
discretizations µN , νN with N points, it is important to make sure that they
approximate the corresponding distributions µ, ν with integration error of
order (1/N)

1
d for functions which do not oscillate on finer scale then (1/N)

1
d

(see local density condition in the Appendix C).
The general version of the density property can be satisfied on the sphere

Sd−1 using different discretizations. For d = 2, the uniform discretization of
angular parametrization creates a uniform grid that is convenient for com-
putations. However, the angular grid in d = 3 is not uniform with respect to
the area element. This can be corrected by adding the corresponding weights
to the discretization points when building the discrete measure µN , although
the scale of this discretization will be worse than (1/N)d, since the grid will
be finer at the center and become gradually coarser at the sides. This can be
a disadvantage for some applications where a substantial portion of the mass
is away from the center. Different types of projected grids (stereographic
projection from the tangent plane, or projections from the equatorial plane),
suffer similar disadvantages.

One alternative is to use the Quasi Monte-Carlo grids (see [Ber17]), which
are built to minimize the ”worst-case error” coming from the non-uniformity
of the grids. This discretization is defined by bounding the worst-case error
of integration over the desired function space W .

Definition 8. Given a Riemmanian manifold X of dimension d, a corre-
sponding normalized volume form dV , and a discretization XN = xi{i≤N},
the worst case error of XN with respect to function space W is:

WCE(XN ,W ) = sup
f∈W

{∫
X

fdV −
N∑
i=0

f(xi)

}
. (3.24)

61



Then, XN = xi{i≤N} is a Quasi Monte-Carlo discretization of X on length-

scale (1/N)
1
d if for any p ∈ [1,∞) and s > d

p
:

WCE(XN ,W
s
p ) ≤ Cs,p(

N
1
d

)s , (3.25)

where W s
p is a Sobolev space of functions f such that all derivatives of order

s are in Lp(X) and Cs,p is a uniform constant depending only on s and p.

[Ber17] shows that for a density µ which is absolutely continuous with re-
spect to the volume form dV with density ρµ, the discrete approximation µN
which satisfies the density requirements of theorem 2.15 can be constructed
using Quasi Monte-Carlo discretization XN of X as the empirical measure :

µN =
1∑

xi∈XN ρµ(xi)

∑
xi∈XN

ρµ(xi)δxi . (3.26)

When the space X is linear, standard uniform square grids with step-size h
are Quasi Monte-Carlo systems on the lengthscale h. But for curved spaces,
such as a sphere in the case of the reflector problem, constructing Quasi
Monte-Carlo systems is not straightforward and usually they do not have
such a simple structure.

One way of constructing such a discretization on the sphere, which was
used for the simulations in this chapter, is given in [Wom17].

3.2.2 Interpolation for ray-tracing

As discussed in Chapter 1.4.1, forward ray-tracing is a convenient method
for the point source problem. In order to use this method, the continuous
interpolation of the obtained discrete reflector is required. Since we construct
the reflector using the potential f , interpolating the potential also induces
an interpolation on the reflector (and vice versa).

Apart from all the classical interpolation approaches (linear, bi-linear,
spline, etc.), it is also possible to use the structure of the optimal transport
problem in order to obtain an interpolation.

Recall that the Kantorovich potentials are saturating the constraint 2.7.
Moreover, they are c-transforms of each other: f = gc := miny c(x, y)− g(y)
and vice versa. Of course for the discrete solutions fN , gN this relation also
holds in the discrete setting: fN(xi) = minyj c(xi, yj)− gN(yj).

This provides a way to obtain a c-concave interpolation f̂N for fN :

f̂N(x) := min
yj

c(x, yj)− gN(yj) (3.27)
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This interpolation provides a reflector R̂N , which is a true ”envelope of
paraboloids” discussed in Chapter 3.1, meaning that it consists of N patches
of paraboloids. Such a surface, apart from the fact that it is non-smooth,
also sends all light into the discrete target consisting of N axial directions
of the paraboloids. This could be an advantage when one wants to pro-
duce a pixelized target (with sharp changes from section to section) but is a
disadvantage when one wants to approximate a continuous target density.

In order to provide a smooth reflector that would be able to produce con-
tinuous target densities, one can use the entropic optimal transport structure.
In particular, we can use the canonical extension formula (2.28) for the en-
tropic iterations:

f̃N(x) = −ε log

( ∑
j=1...N

e(
1
ε
(gN (yj)−c(x,yj)))νN(yj)

)
, ∀x ∈ X. (3.28)

As the above formula is C∞ smooth, this interpolation creates a smooth
reflecting surface and is a better choice for producing continuous target dis-
tributions.

From now on, we will denote potentials and their corresponding reflectors
obtained using c-concave interpolations by ·̂ and entropic interpolations by ·̃.

3.2.3 Numerical setup

Our inputs are analytical descriptions of the illumination/illuminance µ
and ν described in the test cases section below. All test cases presented in
this Chapter will have the same source and target domains X and Y . The
source domain X ⊂ S2 will be the inverse stereographic projection in the
northern hemisphere of the square domain centered at the origin {(x1, x2) ∈
R2|−0.6 ≤ x1 ≤ 0.6, −0.6 ≤ x2 ≤ 0.6}. Similarly, Y ⊂ S2 will be the inverse
stereographic projection in the southern hemisphere of the same domain.

The outputs are ray-tracing computed according to the following proce-
dure :

1. Computation of fN : The discrete Kantorovich potentials are computed
for the discretizations (µN , νN) induced by the Quasi Monte-Carlo grids
XN and YN respectively according to the formula (3.26).

2. Interpolation of fN : Interpolation will happen either using c-concave
interpolation f̂N or entropic interpolation f̃N as discussed in the pre-
vious section.
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3. Ray-tracing: We will use the forward ray-tracing with a Quasi Monte-
Carlo sampling of the source domain of size M , with the sampling
produced in [Wom17]. We will not use the binning technique discussed
in 1.4.3 and instead display directly the point clouds.

Remark 3.6. The ray-traced distribution of reflected directions (obtained as
a distribution of directions in R3) is then projected using the stereographic
projection from the south pole to the equator plane:

(x, y, z) ∈ R3 → (
x

1 + z
,

y

1 + z
) ∈ R2. (3.29)

Definition 9 ( Parameters and notation for the forward map). In order to
discuss the numerics, we need to introduce a notation for the forward map
induced by the above procedure. This is cumbersome as many parameters are
involved : ε the entropic regularization, N the discretization of the distribu-
tions µ and ν used in the Sinkhorn algorithm. The choice of using or not the
Sinkhorn divergence correction. The choice and notation of the interpolation
for the reflector.

We will use the notation f̂NOTε, f̃
N
OTε

, f̂NSε, f̃
N
Sε

for different potentials, and

R̂N
OTε

, R̃N
OTε

, R̂N
Sε

, R̃N
Sε

for the respective reflectors. The superscript ·N will de-
note the discretization number which was used in order to obtain the solution
of the optimal transport problem (for simplicity, we will use same number for
the source and target). The subscript will identify the regularization param-
eter ε and also weither or not the Sinkhorn divergence correction was used:
·OTε denoting the use of the ”pure” entropic potential and ·Sε denoting the
use of the corrected one using the Sinkhorn divergence. Finally the header ·̂
will denote the use of c-concave interpolation (3.27) while ·̃ will denote the
use of the entropic interpolation (3.28)

We will denote by ν̄M = R̂N
OTε

[µM ] the ray-traced sampling with M rays
(and a similar notation for the other versions of the reflector). Of course,
ν̄M also depends on the choice of the method and other parameters, which
will always be clear from the context. Finally, the N and M discretizations
of the domain are QMC discretizations as explained in section 3.2.1.

3.2.4 Test cases and illustrations

We give here several ray-traced images (produced using the QMC sam-
pling of size M = 1282) as an illustration of the different approximations of
the reflectors. The code together with the data is available on the repository :
https://github.com/ROMSOC
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The numerical procedure is introduced in section 3.2.3. The test cases we
used are described below.

Test Case 1: Square To Circle. The source distribution µ is the
uniform distribution over the inverse stereographic projection of a square :

StP (supp(µ)) = {(x1, x2) ∈ R2| − 0.5 ≤ x1 ≤ 0.5, −0.5 ≤ x2 ≤ 0.5}

The target distribution ν is the uniform distribution over the inverse
stereographic projection of a disk : StP (supp(ν)) = {(x1, x2) ∈ R2|x2

1 +x2
2 ≤

0.52}. Even though the densities are constant, mapping from a non-smooth
support geometry of the square to the smooth geometry of a circle is not a
trivial task.

We show in figure 3.10, from left to right and from top to bottom the
ray-traced images using the reflectors R̂OTε , R̃OTε , R̂Sε , R̃Sε and finally also
the QMC discretization used for νN , N = 64 ∗ 64 points. The regularization
parameter was taken to be ε = 1

2∗64
.

Figures 3.10 (a) and (c) correspond to the c-concave interpolations. This
builds the minimal envelope of the family of parabolae with the focal axis
given by the ν discretization. All rays hitting one parabola end up at the
same position. So up to numerical errors we indeed recover (e), that is νN
even thoughM >> N . Also, the Sε solution performs better at the boundary.

Figures 3.10 (b) and (d) correspond to the entropic interpolations. This
is a smoothing of the c-concave interpolation. The M rays are therefore
distributed more evenly over the support of the target. We observe, for (b),
at the boundary of the support, an important shrinking effect. It is caused
by the entropic bias that was discussed in chapter 2.2.3 and also in section
3.1.3. The figure 3.4 also shows a similar effect in d = 2. As expected, the
Sε (d) solution is effective to de-bias the solution. Except, at the corners of
the square where the map is singular, we see extra artifacts, induced by the
smoothed interpolation.

Test Case 2 : Square to Gaussian. The target distribution ν has a

Gaussian density ρ(x1, x2) = e−
x21+x

2
2

2 over the whole domain of computation.
The source distribution will be the same as in Test Case 1.

Test Case 3 : Square to Square. The source and target distribution
are uniform distribution over the inverse stereographic projection of a square :
StP (supp(ν)) = {(x1, x2) ∈ R2| − 0.5 ≤ x1 ≤ 0.5, −0.5 ≤ x2 ≤ 0.5}.

This test case corresponds to the ”identity reflector” that should be a
portion of a sphere and send every ray into its exact opposite direction. As
demonstrated in section 3.1.3, such a task can be challenging for entropy-
based methods.
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Test Case 4 : Circle To Steep Gaussian. The source distribution
µ is the uniform distribution over the inverse stereographic projection of a
disk StP (supp(µ)) = {(x1, x2) ∈ R2|x2

1 + x2
2 ≤ 0.52}. The target distribution

ν has a Gaussian density ρ(x1, x2) = e−16∗(x21+x22) over the whole domain of
computation.

Test Case 5 : Circle To Two Steep Gaussians. The source distribu-
tion µ is the same as in the fourth. The target distribution ν has a Gaussian
density ρ(x1, x2) = e−16∗((x1−0.25)2+(x2−0.25)2) + e−16∗((x1−0.25)2+(x2+0.25)2) over
the whole domain of computation.

Figures 3.5- 3.9 show the ray-traced images for the 5 test cases with the
reflector R̃N

Sε
with N = 1282 and ε = 1

8∗128
. Those figures show that the

point cloud distribution resembles the desired distribution (shown as a color
graph). However, precise evaluation and more importantly, quantification of
the quality of the approximation is clearly required. We address this in the
next section 3.2.5.

3.2.5 Wasserstein metrics as an error estimator

From the optimal transport point of view, a straightforward evaluation
of our numerical approach would be to build an approximate transport map
T app obtained by plugging the different approximations of the potential f̂NOTε ,

f̃NOTε , f̂
N
Sε

, f̃NSε into formula (2.11) and compare it against the exact solution T .
For the reflector problem, however, only trivial analytical solutions such as
the circle (identity) or a parabola (Dirac target) are known. Also, in general,
it is desirable to be able to evaluate the quality of the obtained solutions of
real-world problems, where the exact solution is not known.

On the other hand and from the optics application point of view, the
main concern is not the shape of the reflector itself (except for designing
constraints), but rather the quality of the produced illumination, which is
the push-forward T app#µ. Therefore, in order to build an error estimator, we
will consider the difference between the push-forward T app#µ and the desired
distribution ν.

For this, we will use the standard L2 Wasserstein distance W2(T app#µ, ν),
or its Sε entropic counterpart, which is known to provide a smooth distance
between empirical distributions [CRL+20]. In order to build a numerically
computable error estimate, we will use the ray-tracing of a QMC-sample µM

of the source measure µ.
First, using the triangle inequality for the Wasserstein metrics we get :

W2(T app#µ, ν) ≤ W2(T app#µ, T
app

#µ
M) +W2(T app#µ

M , ν). (3.30)

66



The first term on the right-hand side (W2(T app#µ, T
app

#µ
M)) can be es-

timated using Lemma 2.11 and inequality (2.20) giving :

W2(T app#µ, T
app

#µ
M) ≤ KW2(µ, µM), (3.31)

where K depends on the data of the problem. The convergence in W 2

norm of such a sampling has been studied in [FG15] and is known to behave

asymptotically as M− 1
2 .

The second term on the right hand side of (3.30) can be approximated
using ν̄M the point-cloud obtained by ray-tracing the computed reflector :

W2(T app#µ
M , ν) ' W2(ν̄M , ν). (3.32)

The continuous densities µ and ν still appear in estimates (3.31-3.32).
The W2 distance can be computed either using semi-discrete optimal trans-
port (see section 3.1.2) which relies on a P1 discretization of the continuous
densities or again using Sinkhorn divergence. This is the choice we made in
this work and µ and ν are discretized on a finer N∞ = 5122 grid.

The error estimates are therefore computed using the Sinkhorn divergence
approximation of the L2 Wasserstein distance on the projection plane with
a smaller ε : W2(., .) '

√
Sε=1e−06(., .), but we will keep the W2 notation

below.
To sum up, we estimate the error of the computed reflector, by considering

the quantity
W2(ν̄M , ν) (3.33)

Computed using the Sinkhorn divergences. In order to interpret this quantity,
we compare it to

W2(µM , µ) (3.34)

while also taking into account the corresponding supports of the source and
the target measures.

3.2.6 Numerical convergence Study in N

In this section M = 1282 the number of rays for the ray-tracing is fixed.
The densities µ and ν are discretized with a finer N∞ = 5122 points orthog-
onal grid on the plane.

In (3.31), for µ as in Test Cases 1,2 and 3 , we obtained with the above
parameters :

W2(µM , µN∞) = 2.355e− 03.. (3.35)

For Test cases 4 and 5, we obtained

W2(µM , µN∞) = 2.310e− 03. (3.36)
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Regarding W2(ν̄M , νN∞) in (3.32), we plot for different tests cases the
convergence curves in N for the different reflector approximation methods
explained in definition 9 and two values of ε : 1/2

√
N, 1/8

√
N .

From the figures 3.11- 3.15 for the 5 test cases we observe :

1. Convergence to error levels comparable to (3.35-3.36) which makes
sense as ν̄M is at best a QMC sampling of ν.

2. Decreasing ε improves the OTε reflectors.

3. Sinkhorn divergence Sε de-biasing is effective, both in the sense of ob-
taining lower errors and being less dependent on the choice of ε.

4. As the target is smooth, the entropic interpolation of Sε solutions are
less dependent on the choice of the discretization, and moderate values
of N are enough to achieve the same error as when using the highest
value of N used here.

3.2.7 Numerical convergence Study in M

In this section, we use the Entropic interpolation method and generate
the potential with the Sinkhorn divergence method as they seemed to per-
formed the best. We then fix N = 1282 and ε = 1/(128 ∗ 8) and study the
dependence of the error term W2(ν̄M , ν) with M where ν̄M = R̃N

Sε
[µM ].

In figures 3.16-3.18 we plot the error curves for Test Cases 1,3 and 5 in
original and log scales. The curves demonstrate that the computed contin-
uous numerical approximation of the reflector(obtained by entropic interpo-
lation of the discrete potential) preserves after ray-tracing the quality of the
illumination/source ray sampling. In particular :

1. The convergence curves are similar to the convergence curves in N
obtained using the Sinkhorn divergence method with ε = 1/(8

√
N) and

the c-concave interpolation. Indeed, with this interpolation method
and a good approximation of the potential, the reflector will send all
the rays onto νN which is also discretized using a QMC system. So
increasing N there and increasing M here results in the same empirical
measure ν̄M = R̃N

Sε
[µM ].

2. In logarithmic scales the curves agree with the M− 1
2 rate predicted by

the theory [FG15].
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3.3 Figures

Figure 3.5: Test Case 1 : Ray-traced reflection ν̄M from R̃S1/8
√
N

(point cloud)

together with the exact desired distribution (color graph)
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Figure 3.6: Test Case 2 : Ray-traced reflection ν̄M from R̃S1/8
√
N

(point cloud)

together with the exact desired distribution (color graph)
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Figure 3.7: Test Case 3 : Ray-traced reflection ν̄M from R̃S1/8
√
N

(point cloud)

together with the exact desired distribution (color graph)
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Figure 3.8: Test Case 4 : Ray-traced reflection ν̄M from R̃S1/8
√
N

(point cloud)

together with the exact desired distribution (color graph)
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Figure 3.9: Test Case 5 : Ray-traced reflection ν̄M from R̃S1/8
√
N

(point cloud)

together with the exact desired distribution (color graph)
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(a) R̂OTε (b) R̃OTε

(c) R̂Sε (d) R̃Sε

(e) νN

Figure 3.10: Test Case 1 : From left to right and from top to bottom the
ray-traced images of µM (M=128*128) using the reflectors R̂OTε , R̃OTε , R̂Sε ,
R̃Sε (check definition 9 for the explanation of the notations) and finally also
the QMC discretization used for νN , N = 64 ∗ 64 points. The regularization
parameter was taken to be ε = 1

2∗64
for all four solutions.
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Figure 3.11: Test Case 1 (h :=
√
N) : W2 distance between ray-traced image

with 1282 points and exact target.

Figure 3.12: Test Case 2 (h =
√
N) : W2 distance between ray-traced image

with 1282 points and exact target.

Figure 3.13: Test Case 3 (h =
√
N) : W2 distance between ray-traced image

with 1282 points and exact target.
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Figure 3.14: Test Case 4 (h =
√
N) : W2 distance between ray-traced image

with 1282 points and exact target.

Figure 3.15: Test Case 5 (h =
√
N) : W2 distance between ray-traced image

with 1282 points and exact target.
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Figure 3.16: Test Case 1 : Convergence of error terms W2(µM , µ), W2(ν̄M , ν),
original (left) and logarithmic (right) scales.

Figure 3.17: Test Case 3 : Convergence of error terms W2(µM , µ), W2(ν̄M , ν),
original (left) and logarithmic (right) scales.

Figure 3.18: Test Case 5 : Convergence of error terms W2(µM , µ), W2(ν̄M , ν),
original (left) and logarithmic (right) scales.
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Chapter 4

Optimal transport
regularization of the extended
source problem

Introduction

In this chapter, we present the study of the extended source problem.
We restrict our attention to the reflectors that are generated as the optimal
transport solutions of a point source problem and analyze the relation be-
tween the extended source and point source problems: Let Rf0 be a reflector
obtained by solving the point source problem with source µ0 ∈ P(Sd−1

+ ) and
target ν0 ∈ P(Sd−1

− ) and let F(ν0) be the reflection of extended source µ
from this reflector. The reflector will inherit the regularity of the optimal
transport point source problem.

We study the properties of this map F : P(Sd−1
− ) :→ P(Sd−1) and prove its

continuity under some regularity assumption for the data. Note that if we can
invert F , then we can solve the extended source problem for the desired target
ν ∈ P(Sd−1

− ) by finding ν0 = F−1(ν) and building the corresponding point
source reflector. Even though this parametrization fixes the over-determined
feature of the initial extended source problem (see remark 1.2), F is formally
a very non-linear convolution. We resort to the minimization of the residual
ν0 7→ L(F(ν0), ν) with an ad-hoc misfit/loss function L.

In the final section, we present our numerical simulations, analyzing the
choice of different optimization strategies, choice of ray-tracing and depen-
dence on the reflector height.

Through this chapter, we will work with the d = 2 case in order to em-
phasize the effect of the extended source problem and how to tackle it, clearly
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seen in this simple case as well, while avoiding non-uniform or weighted grids,
discussed in Chapter 3, necessary for the d = 3 case.

4.1 The extended source reflector parametrized

by the point source problem

In this section, we analyze the relation between the extended source and
point source problems. For a given extended source µ and a desired height
hR of the reflector, we take µ0 as a point source distribution and consider
the reflector generated by the solution of the point source problem with some
target distribution ν0. Then we compute the reflection ν of extended source
µ from this reflector and study the relationship between ν0 and ν.

The reflector ν0 → R at a given height hR is uniquely constructed from
f0 the Kantorovich potential of the point source optimal transport problem:

Rf0 :=
{
~x0e

f0(x0)|x0 ∈ X0, f0(π/2) = hR
}

(4.1)

The reflector curve is a function over the point source angles x0 ∈ X0 ⊂ S1
+

from the origin O0 = OR2 . For simplicity, we take the source S to be an
interval on the horizontal axis, [−0.5, 0.5].

Recall (reflection law (1.1)) that the reflection map T0 for the light emitted
from the origin O is given by the outward normal n0 of the reflector:

T0(x0) = ~x0 − 2〈~x0,~n0(x0)〉~n0(x0) (4.2)

In order to get an expression for the reflection map from other source
points Os := (s, 0), s ∈ S , we need to express the normal in the correspond-
ing angle parametrization denoted xs.

The regularity of the reflectors obtained by solving the point source prob-
lem using optimal transport, summarized in proposition 3.4, allows to have
the following re-parametrization using the angle parameters xs ∈ Xs from
the other source points Os := (s, 0), s ∈ S :

Proposition 4.1 (Re-parametrization of Rf0). Let us assume that X0 =
Xs = S1

+ for all s and hR > 1. Then, for all s ∈ S there exists a reparametriza-
tion As of X0 into Xs and a function fs : Xs → R+ (see figure 4.1) such
that:

(i) The following re-parametrization of the reflector holds :

Rf0 = Rfs := {~xs efs(xs), xs ∈ Xs} (4.3)
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(ii) The outward normal angle in the (4.3) parametrization, denoted ns(xs)
is given by

tan(ns(xs)) =
∂xsfs(xs) cos(xs) + sin(xs)

cos(xs)− ∂xsfs(xs) sin(xs)
(4.4)

(iii) Assuming that the densities µ0 and ν0 are from Hb,α for some 0 < α < 1
and b > 0, the map f0 7→ fs is continuous for the C1(S1

+) topology.

Figure 4.1: Reparametrization from x0 ∈ X0 to xs ∈ Xs

Proof. A preliminary is to verify that the source patch S remains strictly in-
side the reflector convex envelope. Based on the envelope of parabolae prop-
erty (see chapter 3.1), the abscissa of the intersection of the reflector with the

axis supporting the patch (orthogonal to ~π
2
) is bounded below by the abscissa

of the intersection of the axis with the parabola: x0 ∈ S1
− 7→ C

1−cos(π−x0)
and
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symmetrically x0 ∈ S1
− 7→ C

1−cos(x0)
which is reached respectively for x0 = 0

and x0 = π. The constant is fixed by C
1−cos( 3π

2
)

= hR as in (1.5) and therefore

the intersection is bounded below by hR
2

, hence the condition hR > 1.

(i) All points Os = (0, s) on S are therefore in the convex envelope of Rf0 .
The strict convexity of the reflector therefore guarantees that any point
(s, 0) can be connected to any point on the reflector without intersecting
the reflector anywhere else. This provides the re-parametrization (4.3)
and also the uniqueness of xs 7→ fs(xs).

(ii) is a direct consequence of the parametrization (4.3).

(iii) Define As(x0) as the angle of the vector connecting the shifted source
Os to the point Rf0(x0) := ~x0 e

f0(x0). Using parametrization (4.3) one
has

As(x0) := arccos

(
cos(x0)ef0(x0) − s√

e2f0(x0) − 2sef0(x0) cos(x0) + s2

)
(4.5)

and

fs(As(x0)) := log

(√
e2 f0(x0) − 2sef0(x0) cos(x0) + s2

)
. (4.6)

The map x0 7→ As(x0) is bijective, smooth and differentiable like f0

(a consequence of proposition 3.4). By construction at all points on
the reflector n0(x0) = ns(As(x0)) where n0 and ns are respectively the
normals of parametrizations Rf0 and Rfs . Taking the derivative in x0

we get
∂x0As∂x0ns(As) = ∂x0n0 (4.7)

and using the strict convexity of the reflector (proposition 3.4), we find
that ∂x0As cannot vanish. Applying the inverse function theorem As is
therefore a diffeormorphism from S1

+ onto itself. We can now re-write
fs using the new parametrization xs = As(x0):

fs(xs) = log

(√
e2f0(A−1

s (xs)) − 2s cos(A−1
s (xs))ef0(A−1

s (xs)) + s2

)
(4.8)

Which is continuously differentiable with derivative:

∂xsfs(xs) =
ef0(A−1

s (xs))(∂xsA
−1
s )(xs)

e2f0(A−1
s (xs)) − 2s cos(A−1

s (xs))ef0(A−1
s (xs)) + s2

Q (4.9)

Q :=ef0(A−1
s (xs))∂x0f0(A−1

s (xs)) + s sin(A−1
s (xs))

− s cos(A−1
s (xs))∂x0f0(A−1

s (xs))
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Note that fs and ∂xsfs(xs) are expressed analytically using f0, ∂x0f ,
A−1
s and ∂xsA

−1
s (as fractions with non-vanishing denominators and

bounded numerators). Therefore, in order to demonstrate C1 conver-
gence, all we need to do is to establish the continuous dependency of
A−1
s and ∂xsA

−1
s on f0.

This is just a consequence of the inverse function theorem: As ∂x0As
depends continuously on f0 and ∂xsA

−1
s can be expressed by 1/∂x0As.

The continuity of f0 7→ fs for the C1 topology follows.

Using this re-parametrization, we can express Ts, the reflection map from
the reflector R for rays coming from the point s ∈ S, in terms of now re-
parametrized normal ns:

~Ts(xs) = ~xs − 2〈~xs,~ns(xs)〉~ns(xs) (4.10)

Where ns can be given either using (4.4) or using n0 and an inverse of
the transform As:

ns(xs) = n0(A−1
s (xs)) (4.11)

As discussed in Chapter 1.3, the reflected light distribution ν from the
given reflector R illuminated by the extended source of light S with a distri-
bution µ can be given in terms of Ts. Following this construction, we define
the ”Forward Map” ν0 → F(ν0) as the reflection of µ from Rν0 :

F(ν0) :=

∫
S

νs ds where νs = Ts#µs (4.12)

Note that using proposition 4.1, we can construct Ts from fs and ns.
Therefore, we can summarize the construction of the map F in the following
steps:

A: ν0 7→ f0 (or equivalently, T0)
B: f0 7→ {fs}s∈S (or equivalently, {Ts}s∈S)
C: {fs}s∈S 7→ F(ν0) :=

∫
S
Ts#µs ds

Theorem 4.2 (Continuity of F). Under the assumptions of proposition
(3.4)-(4.1) and assuming that µs � µ0 for all s ∈ S, F is continuous for the
weak convergence in Hb,α(S1

−) ⊂ P(S1
−)
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Proof. Throughout this proof, for a target density ν0 we will denote by su-
perscript ν0 the mathematical objects induced by solving the point source
optimal transport problem between µ0 and ν0, e.g. f ν0 will be a Kantorovich
potential for this problem, T ν0 will be a reflection map from Rf

ν0
0

and nν0

will be a normal of Rf
ν0
0

.

Let {ν0,k}k∈N be a weakly convergent sequence in Hb,α(S1
−) converging to

ν0. We need to verify that F(ν0,k) also converges weakly to F(ν0). As F(ν0)
can be expressed as

∫
S
T ν0s#µs, by the linearity of the integration, all we need

is to verify that T
ν0,k
s# µs converge weakly to T ν0s#µs for all s.

The stability of ν0 7→ T ν00 is a classical result (Theorem 2.6), where the
convergence of sequence (T

ν0,k
0 ) (built from (2.11) using the sequence of (f0,k))

holds in probability:

∀ε > 0 µ0

[{
x ∈ S+ | d(T ν00 (x), T

ν0,k
0 (x)) > ε

}] k−→∞−−−→ 0 (4.13)

Note that under the assumptions, T ν00 is induced by the reflection from
the reflector with the continuous normal n = nν0 (see (4.2)). Hence the
convergence of T

ν0,k
0 is equivalent to the convergence of nν0,k . Since we have

the C1 continuity of f0 to fs, and since for all s, T
ν0,k
s is just another reflection

using the reparametrized normal n
ν0,k
s , the above convergence in probability

holds also for all T ν0.ks .

Finally we check that for the sequence of maps T ν0.ks : S+ → S−, con-
verging in probability to the map T ν0s with respect to the measure µ0, the
pushforward measures T ν0.ks #µs converge weakly to T ν0s #µs. For this we check
the following convergence for all bounded Lipschitz functions φ (see remark
2.1):

∫
S−
φ(y)T ν0.ks #µs(y)

k−→∞−−−→
∫
S−
φ(y)T ν0s #µs(y) (4.14)

Fix the function φ with a Lipschitz constant Lφ and an ε > 0. Using the
change of variable formula, Lipschitz property of φ and boundedness of S we
get:
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∣∣∣∣∫
S−
φ(y)T ν0.ks #µs(y)−

∫
S−
φ(y)T ν0s #µs(y)

∣∣∣∣ ≤∫
S+
|φ(T ν0.ks (x))− φ(T ν0s (x))|µs(x) ≤∫

S+
LφdS(T

ν0.k
s (x), T ν0s (x))µs(x) ≤∫

S+\Bε
εLφµs(x) +

∫
Bε

diam(S+)Lφµs(x) ≤

εLφ + diam(S+)Lφµs[Bε] (4.15)

Where Bε is the set:

Bε := {x ∈ S+ | d(T ν0s (x), T ν0.ks (x)) > ε} .

Since T ν0.ks converge in probability w.r.t. µ0, the quantity µ0[Bε]
k−→∞−−−→ 0.

This, together with the absolute continuity µs << µ0 implies µs[Bε]
k−→∞−−−→ 0,

which concludes the proof.

The forward map F plays a crucial role in this work. It can be interpreted
as a non-linear convolution, as detailed in the following remark.

Remark 4.3 ( F is formally a non-linear convolution). We start back from
(4.12) and assume (to simplify the exposition) that µs = µ0 for all s. Mean-
ing that the radiation pattern is identical for all points on the finite source.
Using the change of variable formula with the maps Ts, we get, for all y ∈
supp(F(ν0)):

(F(ν0)) (y) =

∫
S

Ts#µ0(y)ds

=

∫
S

µ0

(
T−1
s (y)

) (
∂xsTs|T−1

s (y)

)−1

ds

=

∫
S

ν0

(
T0 ◦ T−1

s (y)
)
∂x0T0|T−1

s (y)

(
∂xsTs|T−1

s (y)

)−1

ds

We now assume that for a fixed y the mapping s 7→ Yy(s) = T0 ◦ T−1
s (y))

(see figure 4.2) is injective and make the change of variable

(F(ν0)) (y) =

∫
Yy(S)

ν0(y′)∂x0T0|T−1

Y−1
y′

(y)
(y)

(
∂xsTY−1

y′ (y)|T−1

Y−1
y′

(y)
(y)

)−1

dy′ (4.16)
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The formula is complicated but shows that ν0 is convolved with a Kernel
involving the Jacobians of the maps Ts and T0:

K(y, y′) := ∂x0T0|T−1

Y−1
y′

(y)
(y)

(
∂xsTY−1

y (y′)|T−1

Y−1
y (y′)

(y)

)−1

(4.17)

and depending on the reflector, hence also on ν0. The map s 7→ Yy(s) can
be interpreted as follows (see also figure 4.2) : given a reflection direction
y and a point s on the finite source, find the shooting angle xs from that
point. Then shoot a ray from the center source point O0 with the same angle
x0 = xs and record the outgoing angle. Given two outgoing angles y and y′,
its inverse returns the coordinate on the finite source for which the shooting
angle with y′ reflection is the same as the shooting angle from O0 yielding y.
For instance y = y′ gives Y−1

y (y) = 0 and K(y, y) = 1.

Figure 4.2: The map s→ Yy(s) defined as T0 ◦ T−1
s (y)
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The convolutional nature of the forward map F is known in the optics
community, although we are not aware of any formal description of the con-
volution kernel in terms of the reflection map. In some works (see [WZLM21]
and references therein) the kernel is approximated to perform the deconvolu-
tion. This approximation either happens by disregarding the dependence on
the variable y, or by restricting source and target measures to some simple
shapes.

4.2 Regularization of the extended source prob-

lem

As already mentioned, if we can invert the map F , then we can solve
the extended source problem for the desired target ν ∈ P(Sd−1

− ) by finding
ν0 = F−1(ν) and building the corresponding point source reflector. Even
though this parametrization fixes the over-determined feature of the initial
extended source problem (see remark 1.2), non-linear convolution nature of
F makes it problematic to invert. We resort to the minimization of the
residual ν0 7→ L(F(ν0), ν) with an ad-hoc misfit/loss function L.

Overall, this approach fits in the framework of a regularisation approach
as is customary for ill-posed non-linear inverse problems (see for instance
[BB18] for a recent review). It is a concept of trying to find a ”best approx-
imation” of the solution within some class, with respect to some loss/misfit
function. In terms of the reflector problem for the desired target ν, it is based
on the following ingredients:

1. A parametric set of admissible reflectors. This is a regularization part.

2. A forward map, which for a given source distribution and an element
of the parameter set (corresponding to the reflector), produces the re-
flected distribution.

3. A misfit/loss function that gives information about the ”closeness” of
the reflected and desired distributions. Ideally, this should be a dis-
tance, or at least convex, positive and reaching the minimum value of
0 only when the reflected distribution is equal to the desired one.

Then the regularized solution is the reflector within the parametric set,
reflection from which minimizes the loss function, and the value of the loss
function is a measure of its quality.
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In the following sections, we discuss those ingredients and our choices,
that provide the compact parameter set and the continuous loss, guaranteeing
the existence of a minimizer.

4.2.1 Parameter set and the forward map

In general, parametric set of admissible reflectors could be any discrete
parameterization of curves (Splines, Bezier ....) where parametrizing vari-
able would be control points and tangents for example (see e.g. [BB19]
[BKM+20]). Although such parameterizations are associated with extra com-
plications when trying to guarantee some desired properties of the reflector,
e.g convexity/concavity.

The point source problem is sometimes used to approach the extended
source problem. For example, this is the approach followed in [FCR10] (see
also [WZLM21], [LFHL10] and the references therein). This is also the ap-
proach pursued in this work, in order to leverage the relation between the
point source and extended source problem, discussed in the previous section:

We take parameter set to be the set of probability measures P(S−) and
denote the parameter by ν0. The reflector is constructed using the Kan-
torovich potential f0 of the point source optimal transport problem between
µ0 and ν0, as in 4.1. This choice guarantees the regularity properties of the
reflector, summarized in proposition 3.4.

The forward map can be implemented in practice using the ray-tracing
(chapter 1.4). Formally, in our case we take the forward map to be (4.12)
from the previous section, summarized in the following steps:

A: ν0 7→ f0 (or equivalently, T0)
B: f0 7→ {fs}s∈S (or equivalently, {Ts}s∈S)
C: {fs}s∈S 7→ F(ν0) :=

∫
S
Ts#µs ds

4.2.2 The loss function

In this work, we use an optimal transport based loss. In Chapter 3.2.5,
we discussed the use of W2 distance on the space S1

− for error estimation
for the point source problem. Since the image of the forward map for the
extended source problem is also a probability distribution on S1

−, it is possible
to use W2(F(ν0), ν) as a loss. However, as we plan to use gradient-based
optimization methods, we avoid taking the square root and instead work
with the squared functional W 2

2 (F(ν0), ν). We approximate this value using
Sinkhorn divergences (2.30), an accurate approximation for small ε, which is
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also smooth (see Theorem 2.14). In order to get a dimensionless loss, we also
use the normalization :

J(ν0) := L(F(ν0), ν) := Sε(F(ν0), ν)/Sε(F(ν), ν) (4.18)

Recall that the denominator can only vanish if the desired prescribed tar-
get ν is equal to F(ν), but due to the convolution-like nature of the map F
(see remark 4.3), this can not happen as long as the reflector height hR 6=∞
and source S contains more than one point.

Our choices of the parametric set, the forward map, and the loss guarantee
the existence of a minimizer, as summarized in the following:

Theorem 4.4. The global cost we minimize is the composition of the for-
ward map F and the loss. If the loss is continuous for the weak topology
on measures (like (4.18)) and the forward map is continuous (Theorem 4.2),
the compactness of Hb,α(Y ) for compact Y ⊂ S−(remark 3.3) guarantees the
existence of a minimizer.

Also note that although Sinkhorn divergence is convex with respect to its
input measures, we are not guaranteed that this will carry to (4.18), since
we obtain it by composing Sinkhorn divergence with a forward map F . In
practice, we can initialize the optimizations using the point source solutions,
which provide a good first approximation, which is crucial in avoiding local
minimizers which are not global (if such exists).

Illustration
Figure 4.3 is a plot of the Loss value using a parametric family of point

source target mixing two Gaussians with varying expectations:

(t, t′) ∈ [0, 1]2 7→ L
(
F(ν

(t,t′)
0 ), ν

)
(4.19)

where ν := F(ν
( 1
3
, 1
3

)

0 ) and

ν
(t,t′)
0 = Nu(t), π

21
+Nv(t′), π

24
, u(t) =

20π

16
+ t

2π

16
, v(t′) =

26π

16
+ t′

2π

16
.

The graph is smooth and convex within the observed domain.

Remark 4.5 (On the differentiability of J). Computation of the loss J can
be summarized into 3 steps:

A: Computation of the solution of the point source problem and construc-
tion of the reflector.
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Figure 4.3: Graph plot of (4.19).

B: Computation of the forward map F(ν0).

C: Computation of the Sinkhorn divergence between the obtained measure
F(ν0) and the desired measure ν.

For step C, the differentiability of the discrete entropic optimal transport
with respect to the input data is given in 2.13, which by definition also apples
to the Sinkhorn divergences. Also in step A we use the Sinkhorn divergence
potential fSε, which is differentiable with respect to ν0.

But for step B, the definition of the forward map itself depends on propo-
sition 4.1 and the convexity of the reflector. This is only established for the
non-entropic ε = 0 reflector.

In practice, fSε is a good approximation of f0 and we used the autodiffer-
entiation and gradient-based optimization methods of Pytorch without any
difficulties.

Remark 4.6 (Other possible choices of the loss function). In [BKM+20], the
regularization method is applied to another optical system, extended source to
far-field lens problem for d = 3. They use the L2 norm between the densities
as a loss, based on the point-wise comparison of desired and obtained target
densities:

JL2(ν0) :=

√
1

D

∫
S

∫
S2+

(ν(y)−F(ν0)(y))2 dsdy (4.20)

It is also worth noting that in [BKM+20] the parameter set used with this
loss is not the set of probability measures, but the set of coefficients of the
bi-cubic splines used for parametrizing the lens surface.
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Also, the simple Gold method ([Gol64]) is used in the context of freeform
optics in industry and also in [FCR10], but only based on heuristics. In
remark 4.8, we discuss that this method is a simplified minimization scheme
of the Kullback-Leibler divergence (2.22).

4.3 Optimization methods for minimizing J

Optimization problems arise in various fields, e.g. statistics, economics,
physics etc, therefore there have been various methods devised for solving
them through the history of mathematics. With the rise of machine learning
and the need to train artificial neural networks, there has been a surge in the
development of new efficient and easily implementable optimization methods
(see e.g. [Rud17] for a recent review).

Here we present the methods that we used for minimizing the loss func-
tion (4.18) to solve the extended source problem. A comparison of their
performance for this task is discussed in section 4.4.

4.3.1 Gradient descent

Gradient descent (also known as batched gradient descent or steepest de-
scent) is now a standard method in optimization, that dates back to Cauchy
([Cau47]).

For the initial guess ν
(0)
0 and a fixed step size or learning rate parameter

lr ∈ (0,∞) gradient descent method iterates in k with an update:

ν
(k+1)
0 = ν

(k)
0 − lr · ∇ν0J(ν

(k)
0 ). (4.21)

Convergence of this method (and its speed) depends on the differentiabil-
ity and convexity properties of J , as well as the choice of the parameter lr.
For the comprehensive analysis see e.g. [Rus06]. In practice, this form of gra-
dient descent is rarely used, and instead is enhanced by some modifications.
For the recent discussion of those modifications, see e.g. [Rud17].

4.3.2 Adam algorithm

Adam (Adaptive momentum) algorithm, proposed in [KB17] is a mod-
ification of the gradient descent method. It keeps the information about
already computed gradient values and uses it to adapt the learning rate.

For the initial guess ν
(0)
0 , a fixed learning rate parameter lr ∈ (0,∞),

initial momentum parameters m0, v0 (usually taken to be identically 0) and
parameters β1, β2 ∈ (0, 1), Adam algorithm iterates in k with an update:
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gk+1 = ∇ν0J(ν
(k)
0 )

mk+1 = β1mk + (1− β1)gk+1

vk+1 = β2vk + (1− β2)g2
k+1

m̄k+1 =
mk+1

1− βk+1
1

v̄k+1 =
vk+1

1− βk+1
2

ν
(k+1)
0 = ν

(k)
0 − lr ·

m̄k+1√
v̄k+1 + 10−8

(4.22)

where all arithmetic operations are understood point-wise.

Remark 4.7 (Convergence of Adam algorithm). In [KB17], the convergence
proof of the Adam algorithm was provided for the convex loss and specific
choices of the parameters. However, in [RKK19] it is demonstrated that
the proof has a flaw and it is possible to construct examples where Adam
algorithm will not converge.

4.3.3 Gold’s method

The analogy between the forward map and a non linear convolution ν =
Kν0 ? ν0 is explained in remark 4.3. Gold method is a heuristic method of
de-convolution (see e.g. [Gol64]). It is used in the context of freeform optics
in [FCR10].

Assuming K is known, for a given ν, Gold algorithm iteratively corrects
ν0 pointwise using:

ν
(k+1)
0 := ν

(k)
0

(
ν

K ? ν(k)
0

)α

, α > 0 (4.23)

This is easy to implement. Clearly when convergent ν
(∞)
F := K ? ν(∞)

0 =
ν. In the case of the reflector problem, Kν0 depends on ν0 and is given in
(4.17). We can replace the convolution by the forward map νF := F(ν0).

Finally remark that ν
(k+1)
0 has to remain a probability measure, thus a re-

normalisation is necessary after every iteration.

Remark 4.8 (A variational formulation of the Gold method). We explain
below that (4.23) is actually linked to the following optimization problem:

ν
(k+1)
0 := arginf

ν0

KL(ν0 | ν(k
0 )) + α KL(νF | ν) (4.24)
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where α is a small positive relaxation parameter and

KL(νF | ν) :=
〈

log(
νF
ν

)− 1, νF

〉
+ 〈1, ν〉 if νF � ν, (4.25)

+∞ otherwise

is the Kullback-Leibler divergence already introduced in (2.22). It is strictly
convex, takes its minimum at ν, and has an infinite slope at 0. Its Gateaux
derivative in νF is formally given by 〈δKL(νF | ν), δν〉 =

〈
log(νF

ν
), δν

〉
. It

forces νF to have the same support as ν, therefore it requires in practice to
bin the rays (see section 1.4.3).

For a small α, (4.24) may be interpreted as a convex penalization of the
direct minimisation of the Kullback-Leibler loss:

LKL(νF , ν) := KL(F(ν0) | ν) (4.26)

If the resulting sequence (ν
(k)
0 ) converges it reaches a minimiser. The vari-

ational formulation (4.24) has strong analogies with the theory of Wasser-
stein Gradient Flows (see e.g [San15]) and some of the techniques developed

in this context are likely to be applicable (for instance
∑

k KL(ν
(k+1)
0 | ν(k)

0 ) is
a convergent series).

Getting back to Gold method, the optimality condition for (4.24) leads to:

log

(
ν

(k+1
0 )

ν
(k)
0

)
= −α∂F

∂ν0

(ν
(k+1
0 ) · log

(
F(ν

(k+1)
0 )

ν

)
(4.27)

This is a non-linear implicit system in ν
(k+1)
0 , and ∂F

∂ν0
(.) is a Jacobian

operator or matrix. If we instead replace it with an identity, (4.23) follows
directly by taking the exponential of this expression and can be seen as a cheap
explicit proxy of (4.24).

4.4 Numerical Results

4.4.1 Experimental setting

Reflector Height. The parameter hR first introduced in 1.5 “measures”
how close the extended source problem is to the point source problem. In
our study, it will vary between 1 and 9. When hR →∞, the extended source
problem approaches the point source problem.
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Source Distribution and discretization. The source patch interval
S = [−0.5, 0.5] will be fixed and the measure µs will always be uniform in
s, that is, for all s ∈ S, µs = µ0. Our approach is not limited to such
measures but this assumption is the simplest and common for applications.
For the source distribution µ0, plotted in figure 4.6, we chose a distribution
close to uniform within some angle opening and decays rapidly outside. To
achieve these requirements, we take the sum of 16 Normal distributions,
with means distributed uniformly within the interval [9π/32, 23π/32] and
deviation σ = π/32.

The number of points discretizing the angle spaces X0,s and the source
interval S, denoted respectively NA and NS, are chosen such that π·hR

NA
' 1

NS
:

the grid steps on the reflector and the source patch are of the same order. The
number of rays N shot is given for backward ray tracing as N = NA × NS.
Setting N and hR therefore also fixes the discretization size. We use NA for
the angular discretization of the supports of the targets ν0 and ν.

On our computer1 taking N = 5 ·106 and hR = 5, the 6GB GPU memory
was working at full capacity (5.8 out of 6GB) and the computation of the
Loss function with backward raytracing needs approximately 30 seconds. In
comparison, it takes approximately 6 seconds for each iteration with N = 105

and the used memory is approximately 1GB. This is the setting for all pre-
sented computations below.

Parametrization of ν0. Formally, the optimization variable is ν0 ∈
P(S1

+). In practice it is parametrized using a classic machine learning method
given below that guarantees that the optimization variable keeps a fixed total
sum of 1:

The actual optimization variable is a vector λ ∈ RNA defined as

λi := log(ν0,i) + log(
∑
i

eν0,i) (4.28)

where the {ν0,i}s discretize ν0 and sum to 1. The point source target entering
the loss function is recovered by the inverse transform

ν0,i :=
eλi∑
j e

λj
(4.29)

Optimal transport computations of the reflector The implemen-
tation of the reflector computation and Sinkhorn divergence is based on

1We run the code on the laptop with a 64bit processor: Intel Core i7-8850H CPU @
2.60GHz x 12 and GPU: Nvidia Quadro P3200 6GB with 1792 CUDA cores.
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Pytorch and the optimal transport platform Geomloss (our implementa-
tion is available at [Cha20]). As observed in Chapter 3, the performance
of the Sinkhorn algorithm and the bias induced by the entropic regulariza-
tion depends on a blurring parameter ε. As seen in Chapter 3, as long as
this parameter is of order 1/NA, the effect of different values on the solution
obtained from the Sinkhorn divergence is not crucial. Moreover, our goal
is not in obtaining a perfect point source solution but a good parametriza-
tion, therefore the accuracy of the point source solution is not crucial either.
Therefore we use the value ε = 1/NA in all our point source computations.
(note that for the computation of the Sinkhorn divergence value for the loss,
Sε(F(ν0), ν), we use the different value of ε = 0.0001 ).

Forward map.
We will be using the ray-tracing as discussed in Chapter 1.4. To com-

pute the normals we will use the entropic canonical extension (3.28). Unless
otherwise stated, we will use the backward ray-tracing (Chapter 1.4.2). We
will use the binning only for plotting purposes. The loss will be computed
on the point cloud without binning. Binning will play a role only for the
simulations involving a Gold’s method, as it requires point-wise operations
which can not be performed on the point clouds.

Optimization methods. We will compare three approaches: Explicit
Gradient Descent adjusting the gradient step/learning rate experimentally
(the gradient is obtained using Pytorch autodifferentiation), Adam algorithm
[KB17] as implemented in Pytorch and we also implemented Gold method
(4.23). We use a learning rate lr = 50 for gradient descent, and lr = 0.1
for Adam algorithm. Also, for Gold’s method, we use the power parameter
α = 0.5, which plays a similar role as the learning rate. Unless otherwise
stated, we will always intitialize with ν0 = ν the prescribed target distribution
(this is also the solution for hR = +∞).

4.4.2 Dirac Targets and the convolution effect

We start with a test case that illustrates the convolution effect (remark
4.3) and helps to interpret more general solutions. As discussed in Chapter
3.1, the simplest point source reflector is the parabola mapping any point
(the focal point) source distribution to the direction of the focal axis. We
use a Dirac target distribution ν = δ3π/2, hR = 5. We use backward ray
tracing and Adam optimization.

Figure 4.4 compares the optimization with two initialization : ν0 = ν the
Dirac mass itself and the normal distribution N 3π

2
, π
41

. We do not represent
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the reflector as it does not carry much information. Instead, we plot (left) the
“optimal ” point source target parametrization of the reflector ν0 generated
by the optimization. The Dirac initialization is stationary and the Gaussian
converges to the Dirac solution (right). The convolution effect of the finite
source onto the parabolic reflector is observed (center). In order to produce
this plot, rays are binned as explained in section 1.4.3.

Figure 4.4: Dirac target distribution, two different initializations. (A): Ini-
tialized by the Dirac distribution. (B) Initialized by the Gaussian distribu-
tion. Left: final ’“optimal ” point source target parametrization of the reflec-
tor. Right: normalized loss function value along the optimization. Center:
Target distribution simulated by ray tracing on the reflector generated by
the optimization.

We can also illustrate the convolution effect by playing with the parameter
hR. In figure 4.5 we show the target distribution generated from the reflection
of the finite source for parabolic reflectors with axial direction angles 5π

4
, 3π

2

and 7π
4

, and increasing heights hR 1, 3, 5, 7 and 9. When hR becomes larger,
we approach the point source regime with a Dirac target distribution.

4.4.3 Comparison of optimization methods

Here we will present a comparison of the optimization methods (Adam,
Gradient descent, Gold) for the following test cases (see figure 4.6) with a
reflector height hR = 5 and backward ray tracing.

Test Case 1: ”Uniform”: ν = 2
π
χ] 5π

4
, 7π

4
[ the characteristic function of

the intervall ]5π
4
, 7π

4
[.

Test Case 2: Mixture of ”Two Gaussians”: ν = N 3π
2

+ π
13
, π
21

+

N 3π
2
−π

7
, π
24

(plus normalization).
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(a) Axial direction 5π
4 (b) Axial direction 3π

2 (c) Axial direction 7π
4

Figure 4.5: Finite source reflection on parabolae with different axial direc-
tions and heights hR.

Test Case 3: ”Binary” This test case was inspired by applications
where the target distribution requires the values of the density to be ”pix-
elized”,. We alternate density values of 2 and 1 within the interval [19π/16, 29π/16]
with the step π/16, and a background noise (1.e− 10), then normalize.

Figure 4.7 compares the results obtained using the different optimization
methods and backward ray tracing. The left column (approximated point
source target) is the “optimal” ν0 and the center column the resulting target
obtained by ray tracing (binned) on the corresponding reflector. The discon-
tinuous targets ν (test cases (A) and (C)) are clearly not in the range of the
forward operator F . The point source parametrization of the reflector per-
forms a regularization through the already mentioned nonlinear convolution.
The optimal solution still makes use of diracs/parabola near the discontinu-
ities as it provides the strongest slopes. Gold’s method fails except for the
smooth case (b), and also it is very sensitive to small density values.

In figure 4.8, we explore the choice of the raytracing method (Chapter
1.4) with Adam optimization. Parameters have been tuned to use the same
number of rays in both cases. It seems not to impact the optimization and
justifies a preference for the more computationally efficient backward ray
tracing.

In figure 4.9, we explore the dependence of the extended source problem
on the parameter hR (Chapter 1.4) with Adam optimization and backward
ray tracing. We can see that as hR decreases to 1, it becomes impossible
to accurately approximate the desired targets, likely due to the ill-posed na-
ture of the extended source problem (remark 1.2). The optimization method
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still improves the initial approximation and minimizes the loss. Note that
sometimes the loss values for the case hR = 1 are smaller than others, while
the approximation is visibly worse. This is due to the fact that our loss
function shows improvement from the initial guess. Since our initial guess is
the solution of the point source problem, it is a worse approximation when
the height is smallest, and hence the improvement is higher than for the
other cases. Finally note that sometimes the loss values increase drastically,
but then decrease again. This happens due to the fact that standard Adam
algorithm implementation in pytorch does not check if the step size is appro-
priate for the descent direction and in rare cases it ”overshoots”. However,
as Adam algorithm adjusts the step size after every iteration, it still manages
to ”recover” from such overshooting and decrease the loss.

(a) Source
Distribution µ0

(b) Test Case 1:
Uniform

(c) Test Case 2:
Two Gaussians

(d) Test Case 3:
Binary

Figure 4.6: µ0 and Different desired Target densities
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(a) Test Case 1: Uniform

(b) Test Case 2: Two Gaussians

(c) Test Case 3: Binary

Figure 4.7: Comparison of different optimization methods
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(a) Test Case 1: Uniform

(b) Test Case 2: Two Gaussians

(c) Test Case 3: Binary

Figure 4.8: Comparison of forward/backward ray tracing
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(a) Test Case 1: Uniform

(b) Test Case 2: Two Gaussians

(c) Test Case 3: Binary

Figure 4.9: Solving the extended source problem for different reflector heights
hR
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Conclusion and future work

The proposed optimal transport parameterization of the reflector offers
theoretical guarantees for the optimization of a suitable loss function and
provides a regularized solution. Our 1-D preliminary numerical study shows
the approach is robust and converges at least to a local minimum. This
research can be pursued in many directions, which we summarize in the
following sections.

Heuristics and implementations

First of all, the extension of the code to accommodate d = 3 case (2D re-
flectors) will be of interest for the optics community and especially industry,
since the practical applications are set in this case.

Testing Semi-Discrete optimal transport solvers instead of the entropic
solvers would also be relevant.

It is possible to use the loss (4.18) for a machine learning approach, to
parameterize the map F−1 : ν 7→ ν0 with a convolutional neural network.

General formulation of the regularization approach allows the change of
the optical setup, in the sense of changing the geometrical reflection law
into different, possibly more realistic reflection models as long as they are
computationally efficient and differentiable (at least in the computational
”automatic differentiation” sense). We are thinking for example about an-
alytical BRDF models used in computer graphics and industrial design to
approximate the scattering effects of various materials.

Finally, it is also possible to apply a multi-scale optimization strategy
based on restarting with initializations obtained from an increasing sequence
of the source interval S. In other words, instead of using all NS discretization
points of the source interval S, start from a few discretization points on
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the smaller interval [−η, η] in the middle and gradually increase η and add
discretization points to reach the desired amount. This approach could also
save the computational speed for the iterations at the early stage, as the total
number of rays will be less when using fewer points in the source interval.

Analytical properties of the various ingredi-

ents

Establishing if the loss (4.18) is convex is important for having a the-
oretical guarantee that the solution found using our approach is a global
minimizer.

Note that, even for the smooth test case 2, on figure 4.9 we observe that
the minimizer of F for the height hR = 1 is not in the class Hb,1, for which
the weak continuity was established.

Imposing on the source and target densities of the point source problem
to be in C1,α (see notation 4) provides that the Kantorovich potential is in
C3,α (see proposition 3.4, and also [Loe13]). But we only use continuous
differentiability of the reflector normal (given by the second derivative of
Kantorovich potential) in (4.7), in order to establish the requirements for
the inverse function theorem for the reparametrization map As. Except for
that point, Kantorovich potential from C1,α would be sufficient to guarantee
weak continuity of the forward map F .

In [Loe13] it is established that just boundedness away from 0 and infinity
of the source and target densities can guarantee C1,α Kantorovich potential.
Therefore, providing an alternative proof of a non-vanishing derivative of As,
using only Holder continuous normal, would allow proving the weak conti-
nuity of the forward map F on a more appropriate domain of measures with
densities bounded away from 0 and infinity.

Another interesting open question, related to the reparametrization As
is whether the reparametrized functions fs are c-concave: Remember that
f0, as a Kantorovich potential of an optimal transport problem with the cost
(3.5), is a c-transform of the second Kantorovich potential g0. This translates
into the property of the reflector Rf0 that it has tangential paraboloid with
focus at O = O0 at every point (see chapter 3.1). But we are not aware of
any result, establishing if (under any regularity assumption) there also exists
the family of tangential paraboloids with a focus at Os. Such a result would
mean that every Ts is an optimal map between the source measure µs and
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the reflected measure νs = Ts#µs.

Geometry of the extended source problem

Let R be a reflector with the height hR > 1, defined on the whole S+.
This reflector induces a reflection map T : S × S+ → Y . This map induces a
decomposition of the set S × S+ =

⋃
y∈Y T

−1(y).
Understanding the relation between a given reflector and the correspond-

ing decomposition
⋃
y∈Y T

−1(y) could provide useful insights on the solvabil-
ity (or unsolvability) of the given extended source problem.

Hypothesis 1. Under the assumptions of propositions 3.4 and 4.1, for all
y ∈ Y , T−1(y) is a rectifiable curve in S × S+.

Note that in general, T−1(y) might not be curves: for the parabolic re-
flector with the focus at the origin and some y0 ∈ Y as an axial direction,
T−1(y0) contains at least one point from each s× S+, and all of 0× S+.

Under the above hypothesis, the reflector R reflecting source measure µ
into the target measure ν (in the sense of T#µ = ν) induces a decomposition
T−1(y), such that, the disintegration of the measure µ on this decomposition
and integrating along the curves T−1(y) yields the measure ν. In other words,
integrating the measure µ along the curve T−1(y) gives the value ν(y).

Remark 4.9. Such decomposition of the source space is also observed in
many-to-few dimensional optimal transport (see [CMP17] [MP18]), where
the decomposition is selected amongst the ones induced by the level sets of
∇yc(x, y) and is used to construct the optimal map T .
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Appendix A

Regularity assumptions on the
cost c(x, y)

The regularity assumptions on the cost function c(x, y), which are re-
quired for obtaining regularity results presented in this work, are satisfied
for all costs that we use through this work. They are formulated for the
spaces X and Y which are manifolds of the same dimension d. We present
them here for completeness:

A1 (”Twist condition”) The map y 7→ ∇xc(x, y) is injective for any (x, y) ∈
X × Y .

A2 (”Non-degeneracy”) det(∇xi∇yjc(x, y)) 6= 0 for any (x, y) ∈ X × Y .

A3 (”Ma-Trudinger-Wang (MTW) condition”) ∀x ∈ X, ∀p, ξ, η ∈ TxX(Tangent
space of X at x) such that ξ ⊥ η following holds:∑

i,j,k,l

∇pi,pjak,l(x, p)ξiξkηkηl ≤ 0

Where ak,l(x, p) := ∇2
xk,xl

c(x, (∇xc(x, y))−1 (p)

Remark A.1. The meaning of the MTW condition is hard to see from the
bare definition. Intuitively it puts some geometric requirements for ∇xc.
More precisely, the MTW condition presented above, is equivalent, for C4

costs (see [LT20]), to the following condition, known as Loeper’s condition:
∀x, x0 ∈ X and y1, y2 ∈ Y , ∀θ ∈ (0, 1) such that

∇xc(x, yθ) = θ∇xc(x, y1) + (1− θ)∇xc(x, y2)
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following holds:

max{c(x0, y1)−c(x, y1), c(x0, y2)−c(x, y2)} ≥ c(x0, yθ)−c(x, yθ)+o(|x−x0|2)

Where the second order term o(|x− x0|2) may also depend on θ.
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Appendix B

Wasserstein distance between
push-forwards

Lemma B.1. Given two Polish spaces (X, dY ) and (Y, dY ), with Borel prob-
ability measures µ1, µ2 on X and Lipschitz continuous map T : X → Y with
Lipschitz constant Lip(T), Then

Wp(T#µ1, T#µ2) ≤ Lip(T )Wp(µ1, µ2)

Proof. Let (f, g) be optimal pair of Kantorovich potentials forWp(T#µ1, T#µ2).
Then, for all x, x′ ∈ X

f(T (x)) + g(T (x′)) ≤ dpY (T (x), T (x′)) ≤ Lip(T )pdpX(x, x′)

Where first inequality holds due to fact that admissible pairs for maximiza-
tion in Kantorovich duality approach cost function from below.

Inequality (B) implies that functions f(T (·))
Lip(T )p

and g(T (·))
Lip(T )p

are admissible

pair in the dual form of Wp(µ1, µ2). This leads to following:

W p
p (T#µ1, T#µ2) = min

γ

∫
Y×Y

dpY ((T#µ1, T#µ2)dγ

=

∫
Y

f(y) dT#µ1(y) +

∫
Y

g(y) dT#µ2(y′)

=

∫
X

f(T (x)) dµ1(x) +

∫
X

g(T (x)) dµ2(x)

= Lip(T )p
(∫

X

f(T (x))

Lip(T )p
dµ1(x) +

∫
X

g(T (x))

Lip(T )p
dµ2(x)

)
≤ Lip(T )pW p

2 (µ1, µ2)

Taking p-th root on both sides leads to the desired inequality.
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Appendix C

Local density property for
curved spaces

The density property, discussed in Remark 2.16 requires stronger assump-
tions on the local scale when the underlying space X can have a non-zero
curvature.

Definition 10 (Local density property). The sequence of measures µ(k) on

X satisfy the local density property (at a lengthscale k−
1
2 ), if there exists

s ∈ [2,∞) and constants C1, C2 ∈ R, such that:
For any x0 ∈ X there exists a local coordinate system ξ := (ξ1, ..., ξd)

centered at x0 with the property that for any sequence of functions hk : 2Dk →
R, satisfying |∂|α|hk(x)| ≤ C1e

−|x|2/C1 for all multiindices |α| ≤ s, one has
the following bound:

k−
n
2

∫
Dk

hk(F
(k)
x0

)#(µk − µ) ≤ C2k
−1

Where Dk is a poly-disc centered at the origin with a radius of log(k)

and F
(k)
x0 is the scaled coordinate map from the neighbourhood of x0 into Rd,

defined by F
(k)
x0 (x) := k1/2ξ(x).
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[Cau47] Augustin-Louis Cauchy. Méthode générale pour la résolution
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[PC18] G. Peyré and M. Cuturi. Computational Optimal Transport.
ArXiv e-prints, March 2018.

[PF14] Guido De Philippis and Alessio Figalli. The monge-ampère
equation and its link to optimal transportation, 2014.

[Pra07] Aldo Pratelli. On the equality between monge’s infimum
and kantorovich’s minimum in optimal mass transportation.
Annales de l’I.H.P. Probabilités et statistiques, 43(1):1–13,
2007.

[RKK19] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the
convergence of adam and beyond. CoRR, abs/1904.09237,
2019.

[RtI20] Lotte B. Romijn, Jan H.M. ten Thije Boonkkamp, and
Wilbert L. IJzerman. Inverse reflector design for a point
source and far-field target. Journal of Computational
Physics, 408, 5 2020.

[RtTBI19] L.B. Romijn, J.H.M. ten Thije Boonkkamp, and W.L. IJz-
erman. Freeform lens design for a point source and far-field
target. In Optical Design and Fabrication 2019 (Freeform,
OFT), page FT1B.2. Optical Society of America, 2019.

[Rud17] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms, 2017.
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MOTS CLÉS

Transport Optimal entropique, Algorithme de Sinkhorn, Problème inverse du reflecteur, Source lumineuse
étendue, Optimisation non linéaire.

RÉSUMÉ

Dans ce travail, nous abordons un problème inverse en optique anidolique consistant à déterminer une surface capable
de réflechir une distribution de lumière source à une distribution cible en champ lointain, toutes deux prescrites. La source
lumineuse peut être ponctuelle ou étendue. Lorsque la source est une source ponctuelle , la distribution est supportée
uniquement sur les directions des rayons optiques. Dans ce contexte, le problème inverse est bien posé pour des
distributions de probabilité source et cible arbitraires. Il peut être reformulé comme un problème de transport optimal et
constitue un exemple célébre de transport optimal sous un coût de déplacement non euclidien. Nous explorons l’utilisation
du transport optimal entropique et de l’algorithme Sinkhorn associé pour le résoudre numériquement. La modélisation du
réflecteur étant basée sur les potentiels de Kantorovich, plusieurs questions se posent. Premièrement, sur la convergence
de l’approximation entropique discrète et nous suivons ici les travaux récents de Berman et en particulier les exigences
de discrétisation qui y sont imposées. Deuxièmement, nous montrons que la correction du biais induit par le transport
entropique Optimal peut être atteinte en utilisant la notion récente de divergences Sinkhorn. Pour le problème de source
ponctuelle, nous discutons des outils mathématiques et numériques nécessaires pour produire et analyser les résultats
numériques obtenus. Nous trouvons que l’algorithme Sinkhorn peut être adapté à la résolution du problème de la source
ponctuelle au réflecteur en champ lointain. Nous ne connaissons pas de formulation mathématique similaire dans le cas
de la source étendue : la distribution de lumière source a support sur l’espace produit: domaine physique-directions des
rayons. Nous proposons de tirer parti de la formulation variationnelle bien posée du problème de source ponctuelle pour
construire une paramétrisation lisse du réflecteur et de l’application modélisant la réflexion. Sous cette paramétrisation,
nous pouvons construire une fonction de coût lisse à optimiser pour trouver la meilleure solution dans cette classe de
réflecteurs. Les deux étapes, la paramétrisation et la fonction de coût, sont liées à des distances de transport entropiques
optimales. Nous profitons également des progrès récents des techniques d’optimisation et des implémentations efficaces
de l’algorithme Sinkhorn pour réaliser une étude numérique.

ABSTRACT

In this work, we address the “freeform optics” inverse problem of designing a reflector surface mapping a prescribed
source distribution of light to a prescribed target far-field distribution, for the point light source and the extended light
source. When the source is a point source, the light distribution has support only on the optics ray directions. In this
setting, the inverse problem is well-posed for arbitrary source and target probability distributions. It can be recast as an
optimal transport problem and is a classic example of an optimal transport problem with a non-euclidean displacement
cost. We explore the use of entropic Optimal Transport and the associated Sinkhorn algorithm to solve it numerically. As
the reflector modeling is based on the Kantorovich potentials, several questions arise. First, on the convergence of the
discrete entropic approximation and here we follow the recent work of Berman and in particular the imposed discretization
requirements therein. Secondly, the correction of the bias induced by the entropic Optimal Transport using the recent
notion of Sinkhorn divergences is shown to be necessary to achieve satisfactory results. For the point source problem,
we discuss the necessary mathematical and numerical tools needed to produce and analyze the obtained numerical
results. We find that Sinkhorn algorithm may be adapted to the resolution of the point source to far-field reflector problem.
We are not aware of any similar mathematical formulation in the extended source case: i.e. the source has an “étendue”
with support in the product space: physical domain-ray directions. We propose to leverage the well-posed variational
formulation of the point source problem to build a smooth parameterization of the reflector and the map modeling the
reflection. Under this parametrization, we can construct a smooth cost function to optimize for the best solution in this
class of reflectors. Both steps, the parameterization and the cost function, are related to entropic optimal transport
distances. We also take advantage of recent progress in the optimization techniques and the efficient implementations of
Sinkhorn algorithm to perform a numerical study.

KEYWORDS

Entropic optimal transport, Sinkhorn algorithm, Inverse reflector problem, extended source, Non-linear opti-
mization.


