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RÉSUMÉ EN FRANÇAIS

Motivations

L’internet des objets (IoT) est l’une des principales tendances technologiques qui ont
émergé ces dernières années. L’internet des objets désigne le réseau de milliards de dis-
positifs physiques dotés de capteurs et de logiciels. Ces dispositifs vont des objets domes-
tiques courants, dont les ressources de traitement et de communication sont très faibles,
voire inexistantes, aux outils industriels dotés de ressources sophistiquées.

En raison de cette connectivité, des défis tels que la sécurité et la confidentialité des
données des utilisateurs sont apparus. Les dispositifs IoT doivent communiquer entre eux
pour échanger les données qu’ils ont collectées ou reçues d’autres dispositifs et réagir aux
informations reçues. Les accès non autorisés aux réseaux IoT, telles que les attaques par
usurpation d’identité, sont des problèmes critiques dans ces systèmes. Par conséquent,
l’une des principales préoccupations en matière de sécurité dans l’utilisation d’objets con-
nectés dans la vie quotidienne est l’authentification, comme la vérification de l’authenticité
d’un dispositif ou l’identification d’un dispositif pour confirmer que les informations sont
reçues d’un utilisateur authentifié et envoyées à celui-ci.

Ces protocoles peuvent être confrontés à des menaces provenant d’un serveur honnête
mais curieux ou d’un adversaire malveillant. Un adversaire honnête mais curieux essaie
d’apprendre les données privées de l’autre partie. Un adversaire malveillant manipule le
protocole pour connaître les données privées de l’autre partie ou générer de faux résultats.
Par conséquent, pour des raisons de sécurité, l’authentification doit se dérouler de manière
à ce que les parties non fiables ne puissent déduire aucune informations auxquelles elles
n’ont pas le droit d’accéder. Pour des raisons de confidentialité, le cloud doit authentifier
les dispositifs IoT sans révéler leur identité exacte.

Les algorithmes de sécurité traditionnels pour l’authentification sont basés sur le stock-
age d’informations secrètes (par exemple, une clé cryptographique) dans des mémoires
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non volatiles, qui risquent d’être copiées, volées ou détruites. Une fonction non clonable
physiquement (PUF) est une primitive de sécurité qui utilise les propriétés physiques
d’un dispositif pour générer une empreinte numérique. Par conséquent, une PUF est
unique à son dispositif, ce qui les rend idéalement adaptées aux réseaux IoT. Elles perme-
ttent l’authentification et l’identification d’objets physiques sans nécessiter de stockage
d’informations secrètes.

Dans l’architecture basée sur les PUF pour l’authentification des dispositifs IoT, pen-
dant l’inscription, le serveur envoie d’abord au client une requête appelée défi, puis enreg-
istre la réponse du dispositif. Ces paires défi-réponse seront stockées dans une mémoire
sécurisée pour permettre l’autorisation du dispositif (par exemple, dans les configurations
PUF optiques, un défi consiste en un point spécifique et les propriétés du faisceau laser
entrant. La réponse correspondante de la PUF est le motif formé par les tavelures sur
l’illumination brute capturée par la caméra CCD). Au moment de l’authentification, le
serveur envoie la même requête à la PUF. Sa réponse au défi est envoyée au serveur, qui
la compare au modèle de réponse stocké dans la mémoire sécurisée, et l’authentification
est accordée si le taux de correspondance est supérieur à un certain seuil.

Les solutions de pointe en matière de sécurité et de confidentialité qui existent pour
la biométrie ne peuvent pas être adaptées à l’IoT. Par exemple, le "Traitement du signal
dans le domaine crypté" utilise une cryptographie avancée comme le cryptage entièrement
homomorphique. Le traitement des données cryptées est beaucoup plus lent et néces-
site une utilisation plus importante de la bande passante par rapport au traitement des
données en clair. Compte tenu des caractéristiques cruciales des réseaux de l’IoT, telles
que le nombre massif de nœuds et les ressources de communication et de calcul limitées
des nœuds, ces techniques de sécurité actuelles ne sont pas efficaces pour l’IoT. Par con-
séquent, le principal défi consiste à développer des protocoles préservant la vie privée et
présentant un bon comportement à l’échelle.

Le traitement des signaux non cryptographiques peut répondre aux exigences de
vitesse. Par exemple, les algorithmes de recherche ANN (Approximate Nearest Neigh-
bors) peuvent trouver l’élément le plus similaire à une requête dans de grandes bases
de données avec une capacité à passer à l’échelle remarquable. Les performances des
ANN seraient bien adaptées à une utilisation dans l’IoT. Cependant, ces algorithmes ne
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disposent pas des fonctionnalités de sécurité et de confidentialité requises et, à notre con-
naissance, ils n’ont pas encore été appliqués aux données PUF.

Cette thèse introduit une nouvelle fonctionnalité liée à l’authentification et l’identification
: la vérification de l’appartenance à un groupe. L’objectif est de vérifier si un dispositif IoT
donné est membre d’un groupe prédéfini de dispositifs connus. Un groupe peut être défini
comme regroupant des dispositifs d’un type particulier comme les équipements médicaux
dans un environnement hospitalier, notamment les scanners CT et IRM, les équipements
à ultrasons et les équipements à rayons X. En effet, cette fonctionnalité renforce la confi-
dentialité, de sorte que la vérification d’un appareil dans un groupe d’appareils se déroule
sans que son identité soit divulguée au cloud.

La vérification de l’appartenance à un groupe est différente des concepts de signa-
ture de groupe ou de signature en anneau en cryptographie, dans lesquels tout mem-
bre du groupe peut signer anonymement des messages sans révéler son identité. Cette
capacité équivaut à prouver que l’on est membre du groupe. Cependant, il n’y a pas
d’enrôlement de gabarits biométriques ou PUF puisque l’adhésion est équivalente à la dé-
tention d’une des clés valides. En outre, ces protocoles ne sont pas compatibles avec l’IoT
car la cryptographie lourde n’est pas adaptée à ces applications. Par conséquent, cette
thèse aborde les protocoles efficaces d’authentification, d’identification et de vérification
de l’appartenance à un groupe qui préservent la vie privée et qui sont appropriés pour les
applications biométriques et IoT.

Contexte

La vérification de l’appartenance d’un objet, d’un dispositif ou d’un individu à un groupe
est une tâche naturelle qui constitue la base de nombreuses applications accordant ou re-
fusant l’accès à des ressources sensibles (bâtiments, wifi, paiement, . . . ). L’appartenance
à un groupe peut être mise en œuvre par un processus en deux phases : une identification
est d’abord effectuée, révélant l’identité de l’individu examiné, suivie d’une vérification
où l’on vérifie si l’individu identifié est bien membre du groupe revendiqué. Cette mise
en œuvre porte atteinte à la vie privée : il n’y a aucune raison fondamentale d’identifier
l’individu avant d’exécuter l’étape de vérification. C’est plus facile mais pas vraiment
nécessaire. Il est fondamental de distinguer les membres du groupe des non-membres,
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mais il n’est pas nécessaire de distinguer les membres les uns des autres.

Les mêmes remarques valent pour l’identification de groupes. Un tel système gère
plusieurs groupes, par exemple en séparant les individus selon l’équipe dans laquelle ils
travaillent. Le but est alors d’identifier le groupe précis auquel appartient un membre,
sans procéder d’abord à l’identification de l’individu.

Sans perte de généralité, la vérification de l’appartenance à un groupe nécessite d’abord
d’acquérir des motifs d’objets (PUF) ou d’individus (trait biométrique) et de les inscrire
dans une structure de données stockée dans un serveur. Ensuite, au moment de la véri-
fication, cette structure de données est interrogée par un client avec un nouveau motif,
et l’accès est accordé ou refusé. La sécurité évalue que la structure de données est suff-
isamment protégée pour qu’un serveur honnête mais curieux ne puisse pas reconstruire
les motifs. La protection de la vie privée exige que la vérification se fasse sans révéler
l’identité.

La nature des motifs peut varier d’une application à l’autre. Par exemple, les motifs
codent des informations relatives aux empreintes digitales, à l’iris ou aux visages des in-
dividus, ou des PUF comme les tavelures capturées à partir d’un plastique transparent
éclairé au laser (voir le chapitre 4).

Il convient de souligner deux propriétés fondamentales des motifs. Le modèle util-
isé au moment de la vérification est une version bruyante de celui acquis au moment de
l’inscription. Les conditions d’éclairage, la pression sanguine, le vieillissement, l’usure, les
conditions physiques transitoires sont des facteurs possibles qui peuvent causer des varia-
tions au moment de l’acquisition. Le protocole de vérification doit absorber ces variations
et faire face à la nature continue des motifs. Cependant, il est très peu probable qu’une
version bruyante du gabarit correspondant à un membre du groupe soit suffisamment
similaire au gabarit enregistré d’un autre membre du groupe. La première propriété est
donc en rapport avec la nature continue et distinguable des motifs. La deuxième propriété
concerne l’indépendance statistique des gabarits enregistrés.

Le scénario opérationnel traditionnel considère un serveur qui exécute la vérification
de l’appartenance à un groupe. Le serveur reçoit les requêtes des clients. Un client
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acquiert un nouveau modèle et interroge ensuite le serveur. Les clients sont de confiance.
Le serveur est honnête mais curieux : il peut essayer de reconstruire les motifs inscrits ou
espionner les requêtes. La conception vise à empêcher le serveur de reconstruire le modèle
privé du système tout en déterminant correctement si un utilisateur est ou non membre
du groupe revendiqué (vérification du groupe) ou en identifiant le groupe d’appartenance
(identification du groupe).

Contributions

Dans cette section, nous énumérons les principales contributions apportées dans cette
thèse.

1- Le chapitre 2 propose un protocole de vérification de l’appartenance à un groupe grâce
à l’utilisation conjointe de deux mécanismes. Le premier consiste à quantifier les motifs
au travers de plongements discrets, ce qui limite la capacité du serveur à reconstruire
les motifs. L’autre consiste à regrouper les motifs dans une représentation de groupe, ce
qui empêche un serveur de déduire une signature spécifique à partir de cette valeur. Des
informations suffisantes doivent être conservées via le processus d’agrégation pour que le
serveur puisse affirmer si une signature de requête est ou non membre du groupe.

Tout d’abord, nous considérons deux blocs de construction indépendants, l’un pour
les plongements, l’autre pour l’agrégation. Ces deux blocs peuvent être assemblés selon
deux configurations: bloc #1 avant bloc #2, le système acquiert puis hache les signatures
avant de les agréger. La configuration opposée est celle où les signatures acquises sont
agrégées avant de hacher le résultat de cette agrégation. L’assemblage des blocs et les
stratégies d’agrégation créent globalement quatre variantes.

Nous considérons un modèle statistique simple pour des motifs de dimension d et
aussi un modèle du motif de requête (par exemple, la corrélation entre les vecteurs pré-
enregistrés et les vecteurs de requête est supérieure à c > 0). En supposant que nous
regroupions les descripteurs n dans un seul groupe, nous analysons les performances, la
sécurité et la confidentialité en fonction des paramètres d, c et n.

Après cela, nous remplaçons ces fonctions passives par des fonctions produisant les
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mêmes types de sortie, mais leurs paramètres sont appris grâce à l’optimisation. Pour les
deux constructions, c’est-à-dire les deux manières d’assembler les blocs, ceci est réalisé en
minimisant une fonction objective additionnant un coût pour la phase de plongements et
un coût pour l’agrégation.

Enfin, plutôt que de considérer les affectations de groupe qui sont prédéterminées, les
affectations de groupe sont également apprises en même temps que les représentations des
groupes. L’idée est de minimiser la distance globale entre les membres du groupe tout en
maximisant la séparation entre les groupes dans le domaine où se réalisent les plongements.
Deux scénarios d’application sont étudiés : la vérification de groupe et l’identification de
groupe. Nous montrons les améliorations à travers une vaste série d’expériences ciblant
la reconnaissance faciale.

2- Dans le chapitre 3, nous analysons un modèle mathématique pour la vérification de
l’appartenance à un groupe. Ce schéma étudie l’impact du degré de parcimonie des car-
actéristiques en haute dimension représentant les membres du groupe sur la qualité des
correspondances (véritablement positives) et leur robustesse au bruit.

On suppose que les séquences suivent un modèle statistique donnant un rôle central
au symbole 0. Nous avons une probabilité différente pour le symbole 0, tandis que les
autres ont une probabilité égale. Ensuite, nous considérons deux configurations : “parci-
monieux” et “dense”, qui font référence au nombre d’éléments nuls et non nuls dans une
séquence. Lorsqu’une séquence est très parcimonieuse, elle contient principalement des
zéros et quelques éléments non nuls, tandis que les séquences dans des environnements
denses contiennent principalement des éléments non nuls.

Pour calculer la représentation de groupe, on calcule d’abord le type (c’est-à-dire
l’histogramme) des symboles n. Étant donné que la cardinalité de l’ensemble des valeurs
de type possibles peut être trop grande, on applique une fonction surjective sur les valeurs
de type. Nous modélisons également la source de bruit par un canal de communication
discret.

Nous présentons trois grandeurs en lien avec la théorie de l’information pour mesurer
les performances du schéma. La compacité et la sécurité dépendent du modèle statistique
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des séquences et du mécanisme d’agrégation. Les performances de vérification dépendent
en outre du canal. Ensuite, nous modélisons le compromis entre sécurité, compacité et
performances de vérification avec ces outils théoriques.

Nous appliquons ce point de vue aux séquences aléatoires binaires et ternaires et mon-
trons que le bruit sur la requête a un impact en lien avec la rareté des séquences. En
termes de performances de vérification, la configuration parcimonieuse peut être optimale
lorsqu’il n’y a pas de bruit, mais l’erreur ne sera jamais égale à zéro en pratique. Cela sig-
nifie qu’il n’est pas facile d’avoir une solution réellement parcimonieuse. De plus, lorsque
les requêtes positives sont moins corrélées avec les motifs préenregistrés, la configuration
dense est plus intéressante en termes de performances de vérification et de niveau de sécu-
rité.

3- Dans le chapitre 4, nous étudions les données expérimentales des fonctions optiques
physiques non clonables fournies par notre partenaire de projet de l’Université d’Eindhoven
pour concevoir des schémas qui permettront l’authentification et la vérification de l’appartenance
au groupe de données de type PUF.

En considérant les valeurs de pixel comme des vecteurs de caractéristiques, nous ex-
plorons certaines propriétés des données PUF en utilisant les caractéristiques intra-, inter-
PUF et inter-Challenge-distance. Étant donné une image tavelée, il n’est pas possible de
détecter de quel PUF l’image provient. De plus, pour un PUF fixe, les corrélations entre
toutes les réponses ne sont pas significatives. Par conséquent, il en bon d’utiliser des PUF
optiques de manière passive et d’avoir une étape de description extrayant des caractéris-
tiques plus distinctes.

Comme les systèmes d’authentification biométrique, nous considérons une paire de
PUF et un défi en tant qu’individu. Nous avons également repensé un réseau siamois
pour produire de courts descripteurs pour les données de mesure PUF. L’objectif est de
s’assurer que deux images avec la même étiquette ont leur plongements rapprochés dans
l’espace de représentation tandis que deux entrées avec des étiquettes différentes sont loin.
Nous apprenons des descripteurs tels que l’inter-PUF et l’inter-Challenge-distance seront
grands, et l’intra-distance sera petit, ce qui permet une authentification fiable des indi-
vidus.
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Ensuite, il est démontré qu’après l’apprentissage des descripteurs, le chevauchement
entre les distributions intra et inter-distance a été réduit de manière significative. Nous
montrons également l’efficacité des descripteurs appris pour les scénarios d’authentification
PUF passive. Nous développons également un schéma de vérification de l’appartenance
à un groupe qui vérifie si la requête PUF correspond à l’un des PUF précédemment in-
scrits d’un groupe donné. Le principal défi consiste à trouver un compromis entre les
performances, la sécurité et la confidentialité. Les propriétés statistiques et le contenu
informatif des descripteurs conçus auront un impact significatif sur ce compromis.
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INTRODUCTION

Motivations

The Internet of Things (IoT) is one of the most leading technology trends that have
emerged in recent years. The Internet of Things refers to the network of billions of phys-
ical devices that are embedded with sensors and software. These devices range from
common household objects which have very low or nonexistent processing and communi-
cation resources to industrial tools with sophisticated resources.

Due to this connectivity, challenges like security and privacy of user data have arisen.
The IoT devices need to communicate with each other to exchange the data they collected
or received from other devices and react to the received information. Unauthorized access
to the IoT networks, such as impersonating attacks, are critical concerns in these systems.
Therefore, one of the most security concerns in the use of connecting objects in every-
day people’s life is authentication, such as verifying if a device is authentic or identifying
a device to confirm that the information is received from and sent to an authenticated user.

These protocols might face threats coming from an honest-but-curious server or a ma-
licious adversary. An honest-but-curious adversary tries to learn the private data of the
other party. A malicious adversary manipulates the protocol to learn the other party’s
private data or generate false output. Therefore, for security reasons, the authentication
should proceed so that untrusted parties cannot infer any information they are not allowed
to. For privacy reasons, the Cloud needs to authenticate IoT devices without revealing
their exact identity.

Traditional security algorithms for authentication are based on storing secret infor-
mation (e.g., cryptographic key) in Non-Volatile Memories, which is at risk of copying,
stealing, and destruction. A physically unclonable function (PUF) is a security primitive
that utilizes the physical properties of a device to generate a fingerprint. Therefore, a
PUF is unique to its device, making them ideally suited for IoT networks. They enable
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authentication and identification of physical objects without requiring any storage of se-
cret information.

In PUF-based architecture for authentication of IoT devices, during the enrollment,
the server first sends the client a query called a challenge and then records the response of
the device. These Challenge-Response pairs will be stored in a secured memory to allow
authorization of the device (e.g., in optical PUF configurations, a challenge consists of
a specific point and the incoming laser beam’s properties. The corresponding response
of the PUF is the raw speckle pattern captured by the CCD camera.). At authentica-
tion time, the server sends the same query to the PUF. Its response to the challenge is
sent to the server, which is compared against the response template stored in the secure
memory, and authentication is granted if the rate of matching is above a certain threshold.

The state-of-the-art security and privacy solutions existing for biometrics cannot be
adapted to IoT. For example, “Signal Processing in the Encrypted Domain” uses ad-
vanced cryptography like fully Homomorphic encryption. Processing encrypted data is
much slower and requires higher bandwidth usage compared to processing data in the
clear. While regarding the crucial characteristics of IoT networks, such as the massive
number of nodes and the limited communication, and computation resources of the nodes,
these current security techniques are not efficient for IoT. Therefore the key challenge is
developing privacy-preserving protocols with good scaling behavior.

Non-cryptographic signal processing can handle the speed requirements. For instance,
Approximate Nearest Neighbors (ANN) search algorithms can find the most similar item
to a query in large databases with remarkable scalability. The ANN’s performance would
be well suited for use in the IoT. However, they do not have the required security and
privacy functionality, and to the best of our knowledge, they have not yet been applied
to PUF data.

This thesis introduces new functionality related to, but different from, authentication
and identification: group membership verification. The goal is to verify if a given IoT
device is a member of a predefined group of enrolled devices. A group can be defined as
devices with a particular type like medical equipment in a hospital environment, including
CT and MRI scanners, ultrasound equipment, and X-ray equipment. Indeed, this func-
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tionality strengthens privacy such that verification of one in a group of devices proceeds
without disclosing its identity to the Cloud.

Group membership verification is different from group signature or ring signature con-
cepts in cryptography, in which any member of the group can anonymously sign messages
without revealing its identity. This ability is equivalent to proving that one is a mem-
ber of the group. However, there is no enrollment of biometric or PUF templates since
membership is equivalent to holding one of the valid keys. Besides, such protocols are
not compatible with the IoT as heavy cryptography is not suitable for these applications.
Therefore, this thesis addresses efficient privacy-preserving authentication, identification
and group membership verification protocols that are appropriate for both biometric and
IoT applications.

Context

The verification that an item, a device, or an individual is a member of a group is a natural
task which forms the basis of many applications granting or refusing access to sensitive
resources (buildings, wifi, payment, . . . ). Group membership can be implemented through
a two-phase process where identification is first performed, revealing the identity of the
individual under scrutiny, followed by a verification phase where it is checked whether or
not the identified individual is indeed a member of the claimed group. That implemen-
tation breaks privacy: there is no fundamental reason to identify the individual before
running the verification step. It is easier but not truly needed. It is fundamental to
distinguish the members of the group from the non-members, but it does not require to
distinguish members from one another.

The same comments hold for group identification. Such a system manages multiple
groups, for example, separating individuals according to the team they work in. The goal
is then to identify the precise group a member belongs to, without proceeding first to the
identification of the individual.

Without any loss of generality, group membership verification needs first to acquire
templates of items (PUF) or individuals (biometric trait) and to enroll them into a data
structure stored in a server. Then, at verification time, that data structure is queried by
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a client with a new template, and the access is granted or refused. Security assesses that
the data structure is adequately protected so that an honest but curious server cannot
reconstruct the templates. Privacy requires that verification should proceed without dis-
closing the identity.

The nature of templates can vary from one application to the other. For example, the
templates encode information related to fingerprints, iris, or faces of individuals, or PUFs
like speckle patterns captured from laser-illuminated transparent plastic (see Chapter 4).

It is worth highlighting two fundamental properties of the templates. The template
used at verification time is a noisy version of the one acquired at enrollment time. Light-
ing conditions, blood pressure, aging, worn-outs, transient physical conditions are possible
factors that might cause variations at acquisition time. The verification protocol must ab-
sorb such variations and cope with the continuous nature of the templates. However, it is
very unlikely that a noisy version of the template corresponding to one group member gets
similar enough to the enrolled template of any other group member. The first property
is, therefore, in relation to the continuous and distinguishable nature of the templates.
The second property is about the statistical independence of the enrolled templates.

The traditional operational scenario considers a server that runs the group membership
verification. The server receives queries from clients. A client acquires a new template
and then queries the server. Clients are trusted. The server is honest but curious: It
might try to reconstruct the enrolled templates or spy on the queries. The design intends
to prevent the server from reconstructing the private template from the system while
correctly determining whether or not a user is a member of the claimed group (group
verification) or identifying the group of membership (group identification).

Contribution

In this section, we list the main contributions made in this thesis.

1- Chapter 2 proposes a group membership verification protocol through the joint use of
two mechanisms: quantizing templates into discrete embeddings and aggregating several
templates into one group representation. First, we consider two independent procedures,
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one for embedding, the other for aggregating and analyze the performance, security, and
privacy by considering a simple statistical model of the enrolled templates together with a
model of the query template. Thereafter, we replace those passive functions with functions
producing the same types of output, but their parameters are learned through optimiza-
tion. Finally, rather than considering group assignments that are predetermined, group
assignments are also learned together with representations of the groups. We show the
improvements through an extensive series of experiments targeting face recognition.

2- In chapter 3, we analyze a mathematical model for group membership verification. This
scheme investigates the impact of the sparsity level of the high dimensional features rep-
resenting group members on both security, compactness, and verification performances.
It shows it is possible to trade compactness and sparsity for better security or better
verification performance.

3- In chapter 4, we redesign a Siamese network to produce short descriptors for the
PUF measurement data. We show the efficiency of learned descriptors for passive PUF
authentication scenario (which has a similar structure as biometric). Then we design
a practical group membership verification scheme suitable for learned descriptors. The
main challenge is obtaining a trade-off between performance, security, and privacy. The
statistical properties and information content of designed descriptors will have a significant
impact on this trade-off.

Publications

This thesis build on the results previously published in the following publications.

• Marzieh Gheisari, Teddy Furon, Laurent Amsaleg, Behrooz Razeghi, and Slava
Voloshynovskiy. “Aggregation and embedding for group membership veri-
fication.” In IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2019.

• Marzieh Gheisari, Teddy Furon, and Laurent Amsaleg. “Privacy preserving
group membership verification and identification.” In IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2019.
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• Marzieh Gheisari, Teddy Furon, and Laurent Amsaleg. “Group membership
verification with privacy: Sparse or dense?.” In IEEE International Workshop
on Information Forensics and Security (WIFS), 2019.

• Marzieh Gheisari, Teddy Furon, and Laurent Amsaleg. “Joint Learning of As-
signment and Representation for Biometric Group Membership.” In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020.
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Chapter 1

RELATED WORKS

In this thesis, we address privacy-preserving protocols in the context of both biometric
and PUF-based applications. Since a PUF uses the physical characteristics of a device to
produce a fingerprint, a PUF is unique to that device and thus it works like a biometric
for humans. Indeed, IoT networks using PUF can face the same types of problems as
biometric systems. Accordingly, this chapter provides an overview of different schemes to
protect generic biometric template data.

Since the main idea behind our template protection scheme is to aggregate multiple
templates into a unique template, we place a major focus on aggregation. Considering
that this thesis deals with the intersection of security, machine learning, and computer
vision, this chapter describes the classical methods used for data aggregation in the re-
spective domains.

The rest of this chapter is organized as follows. Section 1.1 describes various biometric
template protection methods. Different aggregation mechanisms are discussed in Section
1.2. Finally, Section 1.3 concludes the chapter with a brief summary and discussion.

1.1 Security of data

Many methods have been proposed and investigated in hopes of robustly securing biomet-
ric templates. Template protection schemes can be categorized as biometric cryptosys-
tems, cancelable biometrics and approaches based on signal processing in the encrypted
domain.
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1.1.1 Biometric Cryptosystems

In biometric encryption schemes, biometric templates are associated with a user-specific
key to produce the encrypted biometric template; then, the key can be released only if
a genuine user’s query is given at verification time. Biometric cryptosystem approaches
either bind information with biometric templates or use biometric templates directly to
derive keys. Both strategies produce biometric dependant public data called helper data.
Based on how this helper data is used, there are two subclasses of schemes: key generation
and key binding methods.

In key binding schemes, the users must provide secret information combined with their
biometric templates to generate helper data. At verification time, by applying an appro-
priate key retrieval algorithm to the query sample, the key is recovered from the resulting
helper data. Fuzzy commitment [JW99] and fuzzy vault [JS06] schemes are examples
of key binding methods. In key generation schemes, both the helper data and the key
are generated directly from the biometric template. Fuzzy extractor [DRS04] and secure
sketch schemes [LSM06] are examples of key generating methods.

Most cryptobiometric systems rely on the fuzzy commitment and fuzzy vault schemes.
In fuzzy commitment schemes, a biometric template is committed to a codeword of an
error-correcting code. The difference between them and a hash value of the codeword is
stored as helper data. At verification time, the difference vector is used to reconstruct the
codeword from the query sample. Its corresponding hash is compared to the hash value
stored as part of the helper data [RU10, HAD06, IW09].

There also exist cryptographic protocols setting a key management system to provide
the members of a group with anonymous authentication [SPH99]. There is no enrollment
of biometric or PUF templates since membership is equivalent to holding one of the valid
keys. As for biometric or PUF applications, our scenario is different from authentication,
identification, and secret binding. These applications secure the templates at the server
and/or the client sides but ultimately reveal the user/object’s identity.
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1.1.2 Cancelable Biometrics

Cancelable biometric refers to approaches applying intentional, repeatable distortions of
biometric template based on transformations, which provide a comparison of biometric
templates in the protected domain. The transformations can be performed either in the
signal domain or in the feature domain.

The templates are transformed using a one-way function, which means it is difficult to
recover the original template, even if the transformation and the transformed templates
are publicly available: if the transformed template is compromised, the attacker cannot
acquire the personal information of the user. In addition, the user can revoke, or cancel,
the cancelable biometric template, and a new one can be generated using the same func-
tions with different parameters.

One of the earliest methods for generating cancelable biometric templates was based
on non-invertible geometric transforms. [RCB01] applied geometric transformations in
the image domain. At enrollment, the transform is applied to biometric inputs choosing
application-dependent parameters. At verification time, the query image is transformed,
employing the same parameters, and compared to the stored reference.

Random projection [PPCR10, PPCR11] is a non-invertible transformation that is
broadly used for generating cancelable biometrics. With these methods, the extracted
feature vector x ∈ Rd is projected onto a random subspace W ∈ Rl×d with l < d to
generate the transformed vector. For any verification task to be effective, it is important
that the relative distance between any two points in the original space be preserved as
much as possible in the embedded space.

[TGN06] propose BioHashing method, which is an extension of random projection. In
BioHashing using user-specific Tokenized Random Numbers, l orthogonal random vectors
wi are created. The l bit BioHash is calculated by applying a threshold on the dot product
of the feature vector and all the user-specific random vectors. This technique can also be
considered as a key binding scheme where the secret key is blended with biometric data
to acquire a distorted biometric template, and secret subject-specific tokens (instead of
public helper data) are used at verification.
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Approaches based on feature mixing have also been proposed. [JLK+06] merges two
different feature extraction methods to produce cancelable face biometrics: Principal
Component Analysis (PCA) and Independent Component Analysis (ICA) coefficients are
extracted, and both feature vectors are randomly shuffled and added to create a trans-
formed template.

Cryptographically secure BioTokens is proposed by [Bou06]. The key idea is to split
biometric features into stable and unstable components. For the face, real feature values
are simply split into an integer component and a fractional component. Then, the stable
component is encrypted in a secure fashion, and the unstable part is obscured by applying
non-invertible projections.

Blending biometric data with helper data to derive a distorted version of the biometric
template is known as biometric salting. Some of these salting methods use random noise
patterns, synthetic patterns, and so on to create the transformed templates [ZRC08].
The main limitation of this method is how to determine what amount of artificial pattern
we need to add. The addition of strong noise will reduce the discriminative property of
original templates. In contrast, the addition of a weaker pattern will reduce the code’s
security, making it easier to extract the original template.

Schemes based on one-way functions produce the same code for two identical queries.
Then, for example, the server might attempt to cluster queries from the same client so as
to find the client interests based on the similarity of queries. Razeghi et al., propose to in-
crease uncertainty at the server-side by adding ambiguation noise to the query [RVKT17].

Approaches based on cancelable biometrics and cryptobiometrics suffer from at least
one of the following shortcomings: The first is performance degradation compared to
unprotected systems due to information loss, and the second is they require helper data.
Attacks on this helper data can disclose sensitive information, which compromises the
user’s privacy and the security of the system.

1.1.3 Signal Processing in Encrypted Domain

As an alternative to biometric cryptosystems using helper data, signal processing in the
encrypted domain based on Homomorphic Encryption schemes allow for computations
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to be performed on ciphertexts (encrypted data), with no additional helper data. These
approaches use a regular cryptographic key to encrypt the templates instead of bounding
or generating them from biometric data, and there is no need to decrypt the protected
templates at verification time.

These schemes can be categorized into two classes, Partially homomorphic encryption,
and Fully homomorphic encryption systems. Partially homomorphic encryption schemes
support only a single arithmetic operation, i.e., either addition or multiplication in the
encrypted domain. In contrast, fully homomorphic encryption systems support unlimited
additions and multiplication operations in the encrypted domain.

Biometric authentication methods based on homomorphic encryption [LEB12] were
mostly based on partial homomorphic encryption schemes. Paillier cryptosystem [Pai99a]
is a partially homomorphic encryption scheme which allows a party two types of compu-
tation: to obtain the encryption of the addition of two values available to him only in
encrypted form and also the multiplication of a known integer value and a value available
to him under encryption.

Erkin et al., [EFG+09] proposed a privacy preserving face recognition system for eigen-
faces by using the Paillier cryptosystem. After that, a more efficient approach is developed
in [SSW10] to perform threshold comparison. Barni et al., presented a fingerprint verifica-
tion system based on homomorphic encryption on Fingercode templates in a semi-honest
model [BBC+10], where the query is encrypted while the database stored in the server
is not encrypted, which provides no security to the database. Gomez-Barrero et al.,
[GBMG+17] have developed multi-biometric template protection schemes based on ho-
momorphic encryption (Multi-biometric systems employ multiple biometrics of the same
person in order to improve the recognition rate).

Recently, few works have demonstrated the use of Fully Homomorphic Encryption
schemes, which support arbitrary computations on encrypted data. Gentry [GB09] in-
troduced the first fully homomorphic encryption scheme, which is able to process in the
encrypted domain both addition and multiplication operations at the same time. Hence,
they allow the generation of encrypted inputs for any functionality, generating encryption
of the result that can be employed by untrusted parties without revealing sensitive data.
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Torres et al., attempts to evaluate the capability of Fully Homomorphic Encryption
schemes to protect user privacy in a biometric authentication model. The proposed pro-
tocol achieves promising security results, yet it is very computationally intensive [TBS14].

Although, any function with any complexity can be produced from these basic opera-
tions, they need a large number of operations, so they cannot be implemented efficiently
[ABC+15]. Fully homomorphic encryption schemes also need huge sizes of the keys and
the encrypted messages, thus, causes too high complexity for practical applications.

1.2 Aggregation Strategies

Low cost Partially homomorphic schemes can only protect either the query or the en-
rolled signatures. In order to protect both, we need to use fully homomorphic encryption.
However, Implementation of these schemes in practice is difficult due to their high com-
munication overhead and computational complexity. Our solution is to make database
templates secured by aggregating different templates into one unique template. Following,
we summarize various aggregation mechanisms in computer science, machine learning, and
computer vision.

1.2.1 Aggregation in computer science

Group membership is linked to the well-known Bloom filter used to test whether an ele-
ment is a member of a set. A Bloom filter hashes and blends n elements into one array
of bits R ∈ {0, 1}m thanks to k hash functions.

At enrollment, the data structure is empty. Then, n elements to be enrolled are pro-
cessed sequentially. Thanks to k independent hash functions, one object is mapped into
k indices in {1, . . . ,m}. The bits of R associated with these indices are set to ‘1’ (what-
ever their previous value). A query object is mapped into k indices at query time by the
very same hash functions. The query is then verified as one member of the set if all the
corresponding bits of R equal ‘1’.

A Bloom filter can not cause any false negative, i.e. probability of false negative
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is exactly 0. Whereas it makes false positives with reduced probability at the cost of
a larger array of bits. The number of hash functions minimizing this probability is
k = blog(2)m/nc. Then, the necessary length to meet a required false positive level ε
is m ≥ −n log(ε)/(log(2))2.

Gomez-Barrero et al., [GBRL+18] [RGBB+15] proposed several template protection
schemes based on Bloom filter belonging to Cancelable Biometrics. Basically, the Bloom
filter template protection is used to obscure the data, through a non-invertible transfor-
mation. When Bloom filter is used in the context of privacy, it is demonstrated that a
server cannot infer any information on one specific entry [BBL12]. However, a Bloom
filter can not be used as is in our application for two reasons. First, a Bloom Filter
deals with discrete objects, whereas we consider continuous high dimensional vectors as
the templates. Using Bloom filters in our context would require turning templates into
discrete objects. Designing that quantizer is challenging; it must absorb the noise, i.e. the
difference between the enrolled and the fresh template. Second, at verification time, the
hash of the query cannot be sent in the clear for privacy reasons [BKOS07]. For instance,
Beck and Kerschbaum protect the query with partially homomorphic encryption since
there is no need to protect the filter at the server side [BK13].

Bloom filter is an excellent tool for aggregation when there is absolutely no noise. In
contrast, some contributions in the computer vision domain have demonstrated that it is
possible to aggregate vectors while simultaneously dealing with their continuous nature
and the presence of noise. Our contributions are in part inspired by these techniques.
We, therefore, describe now some of the seminal works in computer vision that deal with
vector aggregation.

1.2.2 Aggregation in computer vision

Aggregating vectors into one representation is a very common mechanism in computer
vision. Local feature descriptors are utilized to characterize image patches and represent
them by vectors. For example, in image classification and image retrieval tasks, aggrega-
tion techniques have been introduced to summarize the information contained in all the
local features extracted from an image into a single descriptor. This section reviews some
of the popular aggregation methods that aggregate local descriptors to learn compact
image representations.
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Bag of Words

For each image in the dataset, regions of interest are detected [Low04, BETVG08] and
characterized by an invariant descriptor, which is d-dimensional. Next, the descriptors
extracted from the training set are clustered into k clusters using the K-means clustering
algorithm, which creates a visual vocabulary. An image is then represented by counting
the occurrence of each visual word or computing the statistics on the deviation from the
cluster centers.

The bag-of-words model [SZ03] can be seen as the first approach that provides such
aggregation to produces a single vector for each image. Each feature x is assigned to the
closest cluster center, and the image is represented as a histogram of occurrences of visual
words. Given a set of local descriptors {x1, . . . , xN} ⊂ Rd and k cluster centers {µ1, . . . ,
µk}, the image representation v obtained as:

vj = 1
N

∑
xi s.t. NN(xi)=µj

1 (1.1)

where NN(x) assigns descriptor xi to its closest visual word from the precomputed visual
vocabulary.

Methods employing significantly less visual words than a standard BoW are also pro-
posed. Some methods such as VLAD [JPD+12] and Fisher vectors [PD07] obtain compact
image representation by compressing BoW representation of an image. In the following,
we will introduce the VLAD and Fisher Vector encodings in detail.

Fisher Vectors

Perronnin and Dance applied the Fisher Vector (FV), which is related to the approxima-
tion of the Fisher kernel, to compute the similarity for image classification [PD07].

The basic idea is to characterize how a sample of descriptors deviates from an average
distribution modeled by a parametric generative model. The Gaussian Mixture Model
(GMM) parameterizes the descriptor space using mean µj, covariance Σj and priors wj for
each visual word j = 1, . . . , k. FV representation first computes the posterior probability
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between the j-th visual word and the i-th descriptor with:

θj(xi) =
exp{−1

2(xi − µj)TΣ−1
j (xi − µj)}∑k

t=1 exp{−1
2(xi − µt)TΣ−1

j (xi − µt)}
(1.2)

The derivative of local descriptors with respect to the means and the covariances of the
GMM is computed with:

αj = 1
N
√
wj

N∑
i=1

θj(xi)Σ
− 1

2
j (xi − µj) (1.3)

βj = 1
N
√2wj

N∑
i=1

θj(xi)Σ−1
j (xi − µj)� (xi − µj)− 1 (1.4)

Finally, the aggregated fisher vector is constructed by concatenating the derivatives (1.3)
and (1.4) for each visual word.

Contrary to the BoW, which counts the occurrences of visual words, i.e. only tak-
ing into account 0-order statistics, the FV provides a comprehensive representation by
employing higher-order statistics related to the descriptors distribution. Furthermore,
because fewer visual words are required to achieve the same level of performance, FV
results in a more efficient representation.

VLAD

The Vector of Locally Aggregated Descriptors (VLAD) is a global image descriptor ag-
gregated from local descriptors, proposed by [JPD+12].

VLAD can be regarded as a non-probabilistic variant of the FV, which also keeps
statistics about the relationship between visual words and local descriptors in addition to
computing frequencies of each visual word, while VLAD applies a more straightforward
aggregation technique.

Like BoW, the VLAD method starts with quantizing the local descriptors of an image
by using a visual vocabulary learned by k-means. VLAD takes into account the aggregated
difference between the visual words and the corresponding descriptors, rather than just
counting the number of descriptors assigned to each visual word.
For each visual word µj , VLAD representation accumulates the residual xi − µj for all
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xi such that NN(xi) = µj. Therefore, the component vj associated with the visual word
µj is computed as:

vj =
∑

xi s.t. NN(xi)=µj

xi − µj (1.5)

Finally, all vectors vj are concatenated into a dk-dimensional vector x (similar to the
Fisher Vector).

Aggregating CNN activations

Convolutional Neural Networks (CNNs) can be regarded as the most powerful feature ex-
tractor used for many computer vision tasks like image retrieval and image classification.
Previously, we reviewed the traditional aggregation mechanism used in computer vision
involving handcrafted local features. In this section, we discuss the more recent research
approaches that aggregate the feature maps from a CNN, to obtain the final image rep-
resentation.

Indeed, the fully connected network can be conceptually understood as an aggrega-
tion mechanism that accumulates the convolutional features. Early application of CNNs
included methods that use the fully-connected layer activations as the global image repre-
sentation [SRASC14, GWGL14, BSCL14]. The work by Razavian et al., replaced the
two fully-connected layer with global pooling to aggregate the convolutional features
[RSCM16]. A compact image representation is constructed in this fashion with dimen-
sionality equivalent to the number of feature maps of the corresponding convolutional
layer.

In particular, the authors of [RSCM16] applied global max-pooling on the feature
maps to obtain the image representation. Similarly, [BL15] showed that sum-pooling over
the feature maps of the last convolutional layer achieves the best performance in image
retrieval. A hybrid scheme is the R-MAC method [TSJ15], which performs max-pooling
over regions and ultimately applies sum pooling on the regional descriptors.

Popular encodings such as BoW, VLAD, and Fisher Vectors are redesigned on top of
CNN activations. [MMO+16] proposed utilizing the BoW method to encode the convolu-
tional features of CNNs. Deep filter banks [CMKV16] formed Fisher Vector representation
within the context of CNN activations. NetVLAD [AGT+16] is also a CNN version of
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the VLAD. To enable the NetVLAD layer to be differentiable, they replaced the hard
assignment of descriptors to clusters (as in the original VLAD) with a soft assignment.
It is shown that NetVLAD outperforms sum and max-pooling of CNN activations for the
same dimensionality of image descriptors.

However, all the aggregation approaches that exist in the computer vision domain are
designed to facilitate the identification of similar elements in images and have no security
or privacy capabilities. Another recent aggregation method better fits with the security
and privacy requirements that we need. In [IFG+17], Iscen et al., design a strategy for
packing a random set of image descriptors into a unique high-dimensional vector. One
salient property of that strategy is that the similarity between images can be determined
by solely comparing these (few) aggregated vectors to the description of the query, without
the need of the original (and numerous) raw image descriptors. This saves space (memory
footprint of the database) and time (complexity at query time). These gains are the main
motivation of [IFG+17].

1.2.3 Aggregation in machine learning

This section explores the aggregation mechanisms used in machine learning, where the
concept of aggregation is used in this domain with the purpose of keeping memory.

Associative memory is a data structure that maps the input pattern x ∈ Rm to an
output pattern y ∈ Rn. Associative memories store paired patterns (xk,yk). Neural
networks have been used as associative memories. Associative memory is represented by
a matrix W whose components wij can be seen as the synaptic weights. Then, given an
input pattern, the associative memory produces the paired output pattern.

Associative memories have learning and recall phases: storing and retrieving. In the
learning (storing) phase, pairs of patterns are given then, the connections between neu-
rons are modified, such that an “aggregated representation” of the stored patterns is
constructed. During the recall (retrieval) phase, given a noisy version of a memorized
pattern, the memory should retrieve the most relevant pattern that was stored.
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Linear associator [Koh72, And72], the Hopfield neural networks [Hop82] and bidirec-
tional associative memory models [Kos88] are some of the most popular artificial neural
networks used to design associative memories. Many studies have also been performed to
increase the maximum number of patterns that can be stored and then correctly retrieved
by such models.

The linear associator is the simplest associative memory model, a feed-forward net-
work with an input layer and an output layer. All input units are connected to all the
output units via the connection weight matrix W = [wij]m×n, which stores the K dif-
ferent associated pattern pairs. During storing, the weights are modified according to
Hebbian learning rule [Heb49] as W = ∑K

k=1 xk × yk, where × denotes outer product.
After memorization, given an input pattern, the stored pattern is retrieved by one step
of feed-forward computation.

Since the paired pattern is computed by a linear combination of the input patterns, a
perfect retrieval can only happen if all the input patterns are pairwise orthogonal. Thus
the number of patterns that the network can store is limited by the correlation among
the input patterns.

Generally, any pattern recognition task can be considered to be a model of associative
memory. For instance, in the image classification problem, an image is given to the
network, and the task is to label the image. In connection with associative memory,
the network stores a set of memory vectors. Then at query time, an incomplete pattern
similar to one of the stored memories is fed to the network, and the task is to recover the
full memory (recall the label) [VS08].

1.3 Conclusion

This thesis focuses on privacy preserving group membership verification procedures, check-
ing whether an item or an individual is a member of a group. Our main contribution relies
on the aggregation and the embedding of several distinctive templates into a unique and
compact vector representing the members of a group, which allows a good assessment of
the membership property at test time and also provides privacy and security. For secu-
rity reason, the group representations must be adequately protected so that a honest but
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curious server cannot reconstruct the signatures. For privacy reasons, verification should
performed anonymously without disclosing identities.

Existing aggregation approaches in computer vision tasks attempt to aggregate mul-
tiple descriptors into one unique representation in order to facilitate the identification of
similar elements in images. In face recognition tasks, multiple faces captured from the
same person are also aggregated in order to enhance the robustness of features against
changes in poses and expressions. However, these works are not concerned with privacy
and security issues; we draw inspiration from them for our work.

Signal processing in the encrypted domain can provide a solution to group membership
verification. At enrollment time, each template is quantized and protected with homo-
morphic encryption. The query is protected in the same manner at the verification stage.
This allows to compute distances between the query and the templates in the encrypted
domain and also compare the encrypted results to a threshold. These encrypted compar-
isons are sent back to the clients which decrypt and check whether there is at least one
positive. Security and privacy are as high as the security of the cryptographic primitives.
Homomorphic encryption, however, practical implementations of such schemes is a big
challenge, suffering from large communication overhead and computational complexity.

Ultimately, low cost partially homomorphic encryption schemes which protect either
the query or the enrolled signatures can be leveraged on top of our work. This means
that the query will be protected by a partially homomorphic scheme while the security
of database templates is provided by aggregation. Hence, more secure protocols will be
built by combining such an encryption approach with our group membership verification
scheme, where unauthorized parties cannot infer any information that they are not al-
lowed to.

It should be noted that, the state-of-the-art is mature in the field of partilaly homo-
morphic encryption schemes so any further analysis falls outside the scope of this thesis.
Although, this protocol is not implemented, our scheme is developed in compliance with
this protocol. As all aggregated vectors are quantized to ensure adoption by cryptographic
algorithms.
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Chapter 2

AGGREGATION AND EMBEDDING FOR

GROUP MEMBERSHIP

Introduction

Group membership verification protocols first enroll eligible signatures into a data struc-
ture stored at a server. Then, at verification time, the structure is queried by a client
signature and the access is granted or not. For security, the data structure must be ade-
quately protected so that a honest but curious server cannot reconstruct the signatures.
For privacy, verification should proceed anonymously, not disclosing identities.

A client signature is a noisy version of the enrolled one, e.g. due to changes in lighting
conditions. The verification must absorb such variations and cope with the continuous
nature of signatures. They must be such that it is unlikely that a noisy version for one
user gets similar enough to the enrolled signature of any other user. Continuity, discrim-
inability and statistical independence are inherent properties of signatures.

The rest of the chapter is organized as follows. In Section 2.1, the group assignment is
fixed, and group representation is computed using fixed embedding and aggregation func-
tions. Then, in order to improve the performance of our group membership verification
protocol, in Section 2.2, aggregation and embedding are learned jointly based on prede-
fined assignments. Finally, in Section 2.3, group assignment, aggregation and embedding
functions are learned all together.
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Figure 2.1 – Block diagram of the proposed model.

2.1 Aggregation and embedding for group member-
ship verification

We propose a group membership verification protocol preventing a curious but honest
server from reconstructing the enrolled signatures and inferring the identity of querying
(trusted) clients. It combines two building blocks:
Block #1: One building block hashes continuous vectors into discrete embeddings. This
lossy process limits the ability of the server to reconstruct signatures from the embeddings.

Block #2: The other building block aggregates multiple vectors into a unique repre-
sentative value which will be enrolled at the server. The server can therefore not infer
any specific signature from this value. Sufficient information must be preserved through
the aggregation process for the server to assert whether or not a querying signature is a
member of the group.

These two blocks can be assembled according to two configurations: block #1 before
block #2, the system acquires and then hashes the signatures before aggregating them.
The opposite configuration is where acquired signatures are aggregated before hashing
the result of this aggregation.
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At query time, the newly acquired signature is always hashed before being sent to
the server. Weaknesses and strengths of these two configurations are explored in the
following.

2.1.1 Notations and definitions

Signatures are vectors in Rd. If N users/items belong to the group, then the protocol
considers N signatures, S = {x1, . . . , xN} ⊂ Rd. The signature to verify is a query
vector q ∈ Rd. Group membership verification considers two hypotheses linked to the
continuous nature of the signatures:
H1: The query is related to one of the N vectors. For instance, it is a noisy version of

vector j, q = xj + n, with n to be a noise vector.
H0: The query is not related to any vector in the group.

We first design a group aggregation technique s which computes a single representation
from all N vectors r := s(S). This is done at the enrollment phase. Variable ` denotes
the size in bits of this representation.

At the verification phase, the query q is hashed by a function e of size ` in bits. This
function might be probabilistic to ensure privacy. The group membership test decides
which hypothesis is deemed true by comparing e(q) and r. This is done by first computing
a score function c and thresholding its results: t := [c(e(q), r) > τ ].

Verification Performances

The performance of this test are measured by the probabilities of false negative, pfn(τ) :=
P(t = 0|H1), and false positive, pfp(τ) := P(t = 1|H0). As τ varies from −∞ to +∞,
these measures are summarized by the AUC (Area Under Curve) of the ROC (Receiver
Operating Characteristic) curve. Figure 2.2 shows the AUC graphically. Another figure
of merit is pfn(τ) for τ s.t. pfp(τ) = ε, a required false positive level.

Security and Privacy

A curious server can try to reconstruct a signature x from its embedding (for instance the
query): x̂ = rec(e(x)). This endangers privacy of the querying user. The mean squared
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error assesses how accurate is this reconstruction:

MSEP = d−1
E(‖X− rec(e(X))‖2) (2.1)

The best reconstruction is known to be the conditional expectation: x̂ = E(X|e(x)).

Reconstructing an enrolled signature from the group representation is even more chal-
lenging. For the security of the enrolled templates, a curious server can only reconstruct a
single vector x̂ from the aggregated representation, and this vector serves as an estimation
of any template in the group:

MSES = (dN)−1
N∑
j=1

E(‖Xj − X̂‖2) (2.2)

2.1.2 Verification for a few group members

This section discusses the verification protocol when N is small. We study the two differ-
ent configurations for assembling block #1 and block #2.

Block #1: Embedding. An embedding e : Rd → A` maps a vector to a sequence of
` discrete symbols. This quantization shall preserve enough information to tell whether
two embeddings are related, but not enough to reconstruct a vector. We intentionally
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choose the sparsifying transform coding described in [RVKT17, RV18] for its security and
privacy good properties. It projects x ∈ Rd on the column vectors of W ∈ Rd×`. The
output alphabet A = {−1, 0,+1} is imposed by quantizing the components of Wx. The
` − S components having the lowest amplitude are set to 0. The S remaining ones are
quantized to +1 or -1 according to their sign.

e : Rd → A` (2.3)
x 7→ e(x) = TS(WTx).

Block #2: Aggregation. Aggregation a processes a set of input vectors to produce a
unique output vector.

Whereas the embedding function e is fixed, we can have two constructions: The aggrega-
tion of embeddings (AoE) or the embedding of the aggregation (EoA).

AoE When block #1 is used before aggregation, that is, when considering s = a ◦ e,
then a : A`×N → A`. The group representative vector r is computed as:

r = aAoE ({e(xi)}i∈S) . (2.4)

EoA When block #2 is used before block #1, that is when considering s = e ◦ a, then
a : Rd×N → Rd:

r = e(aEoA(X)), (2.5)

where X is the d× |S| matrix storing the templates of the group.

Aggregation strategies

The nature of a highly depends on the type of vector the aggregation function receives.
When considering s = e ◦ a, then a gets continuous signatures. In this case it is possible
to design two aggregations schemes that are:

a(S) =
∑
x∈S

x = X1N or (2.6)

a(S) = (X†)>1N . (2.7)
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where X := [x1, . . . ,xN ] is the d × N matrix, 1N := (1, . . . , 1)> ∈ RN , and X† is
the pseudo-inverse of X. Equation (2.6) is called the sum and (2.7) the pinv schemes
in [IFG+17].

When considering s = a ◦ e, then a gets the embeddings of the signatures. Two
additional aggregation strategies are the sum and sign pooling (2.8) and the majority
vote (2.9):

r = sign(
∑
x∈S

e(x)) or (2.8)

ri = arg max
s∈{−1,0,1}

|{x ∈ S|e(x)i = s}| (2.9)

Four resulting schemes

The assemblage of the blocks and the aggregation strategies overall create four variants.
We name them:

• EoA-2.6: this scheme sums the raw signatures into a unique vector before embed-
ding it in order to obtain r. It therefore corresponds to the case where s = e ◦ a, the
aggregation a being defined by (2.6).

• EoA-2.7: here also, aggregation precedes embedding, s = e ◦ a, and a is defined
by (2.7).

• AoE-2.8: this scheme embeds each signature before aggregating with sum and sign
pooling as defined by (2.8).

• AoE-2.9: here also, embedding precedes aggregation, but the majority vote is used
as defined by (2.9).

The score function c comparing the hashed query with the group representation is
always c(e(q), r) = −‖e(q)− r‖.

2.1.3 Reconstruction and Verification

This section makes the following assumptions: i) Enrolled signatures are modelled by
X ∼ N (0d, σ2

xId), ii) Square orthogonal matrix W known by the attacker. It should be
noted that this advantage is granted and may not reflect reality.
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Ability to reconstruct from the embedding

Now that W preserves the norm, the MSEP on X is the same as the mean square re-
construction error on Z = WX, which is also white Gaussian distributed. Thanks to
the independance of the components of Z, the conditional expectation can be computed
component-wise. We introduce the density function conditioned on the interval Rs ⊂ R:

f(z|Rs) := φσx(z).1Rs(z)/P(Z ∈ Rs), (2.10)

with intervals R0 = [−λ, λ], R1 = (λ,+∞), and R−1 = (−∞,−λ). Function φσx is the
p.d.f. of Z ∼ N (0;σ2

x) and 1Rs is the indicator function of interval Rs.

Observing the i-th symbol of e(x) equals s reveals that zi ∈ Rs. This component
is reconstructed as ẑi(s) := E(Z|Rs). Note that ẑi(0) = 0 because f(z|R0) is symmet-
ric around 0. For s = 1, the reconstruction value equals ẑi(1) =

∫+∞
−∞ z.f(z|R1)dz =

σy
p1
√

2πe
− λ2

2σ2
x , where p1 := P(Z ∈ R1) = Φ(−λ/σx). By symmetry, ẑi(−1) = −ẑi(1), and

MSEP admits the following close form:

MSEP = σ2
x.MSE(λ) (2.11)

MSE(λ) := 1− 1
πΦ(−λ/σx)

e
− λ

2
σ2
x . (2.12)

This quantity starts at 1− 2π−1 when λ = 0. The embeddings are then full binary words
(p1 = 1/2). All components are reconstructed by ±ẑi but with a large variance. As λ
increases, this variance decreases but less non-null components are reconstructed. MSE(λ)
achieves a minimum of ≈ 0.19 for λ ≈ 0.60, where 55% of the symbols of an embedding
are non null. Then, MSE(λ) increases up to 1 for a large λ: the embeddings becomes
sparser and sparser. When fully zero, each component is reconstructed by 0, and MSEP
equals σ2

x.

Ability to reconstruct the signatures

The curious server tries to reconstruct a unique vector x̂ from r which represents the N
enrolled signatures. Note that r is scale invariant: scaling the signatures by any positive
factor does not change r. Suppose that the curious server reconstructs x̂ = κu. The best
scaling minimizing MSES (2.2) is: κ? = ‖u‖−2u>m, with m := N−1∑N

j=1 xj. The curious

43



Partie , Chapter 2 – Aggregation and Embedding for Group Membership

server can not compute κ? giving birth to a larger distortion:

MSES ≥
N∑
j=1
‖xj‖2 −N (u>m)2

‖u‖2 . (2.13)

This lower bound is further minimized by choosing u ∝m.

Therefore, aggregation (2.6) is less secure as the other schemes do not allow the recon-
struction of m. In the worst case (2.6), the curious server estimates m byN−1rec(e(a(S))):

d.MSES = E‖Xj −N−1rec(a(S))‖2 (2.14)

= E‖Xj −
a(S)
N
‖2 + E‖a(S)− rec(a(S))‖2

N2 .

The first term is the squared distance between Xj and m, whereas the second term
corresponds to the error reconstruction for inverting the embedding. In the end:

MSES = σ2
x

(
1− 1

N
(1−MSE(λ))

)
. (2.15)

This figure of merit increases with N because MSE(λ) ≤ 1, ∀λ ≥ 0: Packing more
signatures increases security.

Verification performance

We compare to a baseline defined as a Bloom filter optimally tuned for given N and pfp

having length `B = dN | log pfp| log(2)−2e [FCAB00]. An embedding e is mandatory to
first turn the real signatures into discrete objects. This means that, under H1, a false
negative happens whenever e(xj + n) 6= e(xj).

Figure 2.3 shows the AUC vs. MSE (2.11) for the schemes of Section 2.1.2 for different
sparsity S/d. Two schemes performs better. For low privacy (small MSEP ), EoA-2.7
achieves the largest AUC (with 0.5 ≤ S/d ≤ 0.6) ; for high privacy, AoE-2.8 is recom-
mended (with S/d ≥ 0.85). In these regimes, the performances are better than the Bloom
filter.

Figure 2.4 shows how the verification performances decrease as the number N of
enrolled signatures increases. As mentioned in [IFG+17], the behavior of the aggregation
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scheme depends on the ratio N/d. The longer the signatures, the more of them can be
packed into one representation.

2.1.4 Verification for multiple groups

When N is large, aggregating all the signatures into a unique r performs poorly. Rather,
for large N , we propose to partition the enrolled signature into M > 1 groups, and to
compute M different representatives, one per partition.

Random assignment: The signatures are randomly assigned into M groups of size
n = N/M .

Clustering: Similar signatures are assigned to the same group. We used k-means algo-
rithm to do so. Yet, the size of the groups is no longer constant.

Verification performance

Denote by (p(k)
fp , p

(k)
tp ) the operating point of group number k, 1 ≤ k ≤ M . The overall

system outputs a positive answer when at least one group test is positive. Denote by
(Pfp(M), Ptp(M)) the performance of the global system. Under H0, the query is not
related to any vector. Therefore,

Pfp(M) = 1−
M∏
k=1

(1− p(k)
fp ), (2.16)

Under H1, the query is related to only one vector belonging to one group. A false negative
occurs, if this test produces a false negative and the other tests a true negative each:

Pfn(M) =
M∑
k=1

nk
N
p

(k)
fn
∏
l 6=k

(1− p(l)
fp ). (2.17)

The operating point of a group test is mainly due to the size of the group. The random as-
signment creates even groups (ifM dividesN), so these share the operating point (pfp, ptp).

Figure 2.5 shows the experimental AUC and the one predicted by (2.16) and (2.17)
when M ranges from 8 to 512. Since clustering makes groups of different sizes, we show
the performances versus nmin = min1≤k≤M(nk), where nk is the size of k-th group. The
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theoretical formulas are more accurate for random partitioning where the group are even.
Estimations of (p(k)

fp , p
(k)
fn ) were less precise with the clustering strategy, and this inaccu-

racy cumulates in (2.16) and (2.17).

Clustering improves the verification performances a lot especially for EoA-2.7. A
similar phenomenon was observed in [IFG+17]. Yet, Figure 2.6 shows that it does not
endanger the system: MSES is only slightly smaller than for random assignment, and
indeed close to 1 for nmin ≥ 100. This is obtained for M = 32 for EoA-2.7 giving
AUC = 0.97. The space is so big that the clusters are gigantic and not revealing much
about where the signatures are. However, the anonymity is reduced because the server
learns which group provided a positive test. This is measured in term of k-anonymity by
the size of the smallest group, i.e. nmin. Figure 2.5 indeed shows the trade-off between
k-anonymity and the verification performances.

2.2 Learning aggregation and embedding jointly

In the previous section we proposed a privacy preserving group membership verification
protocol quantizing templates into discrete embeddings and aggregating multiple embed-

47



Partie , Chapter 2 – Aggregation and Embedding for Group Membership

0 100 200 300 400 500

n min

0.75

0.8

0.85

0.9

0.95

1
M

S
E S

EoA -2.6 (random)
A oE-2.7 (random)
EoA -2.6 (clustering)
A oE-2.7 (clustering)

Figure 2.6 – Multiple groups: MSES vs. nmin. N = 4096, d = 1024, σ2
n = 10−2, S/d = 0.6

(EoA-2.6) or 0.85 (AoE-2.7).

dings into a group representation. That scheme has several desirable properties: It is
pure signal processing and linear algebra, hence it is cheap to run; quantization and ag-
gregation fully succeed to make reconstruction difficult and impede identification; it is
demonstrated to allow trading-off the strength of its security against group verification
error rates.

That work, however, is fully deterministic in the sense that it sticks to a set of hard
coded rules that drive the way templates are embedded, how they are grouped and then
aggregated into group representations. Although well justified and sound, these rules
govern the behavior of two independent procedures, one for embedding, the other for
aggregating. In the next section we show that jointly considering the embedding and
aggregation stages results in better performances, i.e. a better membership verification
without damaging security.
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2.2.1 Variants of the Protocol

This work aims at learning the aggregated vectors and the embeddings jointly. For both
construction, this is done by minimizing an objective function summing a cost for embed-
ding CE and a cost for aggregating CA.

For AoE (first embed, then aggregate), denote E ∈ A`×N the matrix storing the em-
beddings of the enrolled templates. Like for X, we write E := [E1, . . . ,EM ] with Eg the
matrix gathering the embeddings of the templates of group Sg.

For EoA (first aggregate, then embed), denote A := [a1, . . . , aM ] ∈ Rd×M the matrix
gathering the aggregations of the templates enrolled in a group.

Matrices E and A will be defined through optimization problems detailed below. For
the embedding, function e is still prototyped according to (2.3). Papers [RVKT17, RV18]
show that privacy and security stem from the sparsifying transform. Only its matrix W
is learned.

X E

RA

Embedding

Aggregation

Embedding
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W

Aggregation
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Figure 2.7 – Overview

For EoA, Figure 2.7 shows that it starts from X to create A before outputting R
using matrix W. This defines the optimization problem:
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min
A,W,R

γCA
EoA(X,A) + CE

EoA(A,R,W), (2.18)

where γ is the penalty parameter, A ∈ Rd×M , W ∈ Rd×`, and R ∈ A`×M .

On the other hand, Figure 2.7 shows that for AoE, we start from X to create E using
matrix W before outputting the group representations R. This defines the optimization
problem:

min
E,W,R

CE
AoE(X,W,E) + ξCA

AoE(E,R), (2.19)

with E ∈ A`×M , W ∈ Rd×`, and R ∈ A`×M .
Under both constructions, the optimization is joint because the embedding and the

aggregating costs share a common variable (A or E). What follows define the costs and
solve the optimization problems.

AoE: Aggregation of Embeddings

This scheme first embeds and then aggregates by solving (2.19). The cost for embedding
is defined as:

CE
AoE(X,W,E) :=

N∑
i=1

∥∥∥ei −W>xi
∥∥∥2

2
, (2.20)

= ‖E−W>X‖2
F . (2.21)

This term represents the quantization loss of an embedding e w.r.t. a template x in the
transformed domain.

For each group of embedded templates, the aggregated vector should satisfy some
properties as well:

• For each group the overall distance between group members and the aggregated
vector is minimized.

• Aggregated vector should be represented as a sparse ternary code.

The cost of aggregation is then defined as

CA
AoE(E,R) :=

M∑
g=1
‖Eg − rg1>|Sg |‖

2. (2.22)
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We add the following constraints:

W>W = I`, (2.23)
‖ei‖0 ≤ S, ∀i ∈ [N ] (2.24)
‖rg‖0 ≤ S ∀g ∈ [M ]. (2.25)

The constraint makes sure that the representative r is sparse, ternary, and diverse.

We propose to optimize problem (2.19) iteratively by alternating updates of one pa-
rameter while fixing the remaining ones. Each step minimizes the total cost function
lower bounded by 0, insuring a convergence to a local minimum.

W-Step. We fix E and R and update W by solving:

min
W

∥∥∥E−W>X
∥∥∥2

F

s.t. W>W = I`
(2.26)

This problem is a least square Procruste problem with orthogonality constraint. By
setting S := XE>, [Sch66] shows that W = UV>, where U contains the eigenvectors
corresponding to the ` (` < d) largest eigenvalues of SS> and V contains the eigenvectors
of S>S.

E-Step. W and R being fixed, we can solve the problem for each Eg independently:
∀g ∈ [M ],

min
Eg

∥∥∥Eg −W>Xg

∥∥∥2

F
+ ξ

∥∥∥Eg − rg1>|Sg |
∥∥∥2

F

s.t. Eg ∈ A`×|Sg |, ‖ei‖0 ≤ S, ∀i ∈ Sg.
(2.27)

According to [RVKT17], we first find the solution without considering the constraints and
then apply ternarization function TS (2.3) to obtain sparse codes. Therefore Eg is found
as:

Eg = TS(W>Xg + ξrg1>|Sg |). (2.28)
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R-Step. Like for the E-step, updating each group representation rg is done indepen-
dently, while fixing W and E:

min
rg

∥∥∥Eg − rg1>|Sg |
∥∥∥2

F

s.t. rg ∈ A`, ‖rg‖0 ≤ S.
(2.29)

Then the representative of g-th group is obtained as:

rg = TS(Eg1|Sg |). (2.30)

EoA: Embedding of Aggregation

We now consider the construction of (2.18) that first aggregates and then embeds. The
cost of the aggregation is defined as:

CA
EoA(X,A) :=

M∑
g=1

∥∥∥X>g ag − 1|Sg |
∥∥∥2

2
+ η ‖ag‖2

2 . (2.31)

Minimizing this cost amounts to equalize the similarity between each members of the
group and the aggregated vector a. The cost for embedding is defined as previously:

CE
EoA(A,R,W) := ‖R −W>A‖2

F . (2.32)

As for the constraints:

W>W = I`, (2.33)
rg ∈ A`, ‖rg‖0 ≤ S, ∀g ∈ [M ]. (2.34)

The optimization problem (2.18) with these costs and constraints is solved by iterating
the following steps.

W- Step. Like for (2.26), updating W while R, A are fixed is a Procruste problem
under orthogonality constraint:

min
W

∥∥∥R −W>A
∥∥∥2

F
,

s.t. W>W = I`.
(2.35)

52



2.2. Learning aggregation and embedding jointly

Similar to (2.26), we define S := AR>. The solution is found as W = UV>, where U
contains the eigenvectors corresponding to the ` largest eigenvalues of SS> and V the
eigenvectors of S>S.

A- Step. When fixing W and R, the aggregated vector for each group g ∈ [M ] is found
independently by minimizing:

min
ag

∥∥∥rg −W>ag
∥∥∥2

2
+ γ(

∥∥∥X>g ag − 1|Sg |
∥∥∥2

2
+ η ‖ag‖2

2), (2.36)

whose solution is

ag = (WW> + γ(XgX>g + ηId))
−1(Wrg + γXg1|Sg |).

R- Step. Projection matrix W and the group aggregations A are fixed. The group
representatives are obtained by applying sparse ternarization function on the projected
aggregated vectors: R = TS(W>A).

2.2.2 Experiments

We implemented the group membership protocol that is described in Section 2.1. Ex-
perimenting with this implementation gives the baseline performances. Note that the
experimental part of Section 2.1 only deals with synthetic data. However, the sequel
presents comparisons on real data.

Experimental Setup

We evaluate the performances of the above scheme with face recognition. Face images are
coming from LFW [HMBLM08], CFP [SCC+16] and FEI [TG10] databases. Face descrip-
tors are obtained from a pre-trained network based on VGG-Face architecture [PVZ+15].
The output vector of the penultimate layer (i.e. before the final classifier layer) is PCA
reduced to a lower dimension (d = 1, 024 for LFW and CFP, d = 256 for FEI database),
and then L2-normalized. The result is the template x ∈ Rd. The values of `, S, ξ, γ and
η are set empirically as 0.9d, 0.7l, 1, 104 and 1 respectively. Also, not all individuals from
these databases are enrolled.
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LFW. Labeled Faces in the Wild contains 13,233 images of faces collected from the web.
We used cropped LFW images. The enrollment set consists of N = 1, 680 individuals with
at least two images in the LFW database. One random template of each individual is
enrolled in the system, playing the role of xi. The other templates are used for queries.
These are partitioned into two subsets: templates that are correlated with xi with a
similarity bigger than 0.95 form the “easy queries” set; the remaining templates with a
similarity bigger than 0.9 form the “hard queries” set. The remaining individuals not
enrolled in the system (5, 749−N) play the role of impostors (hypothesis H0).

CFP. The Celebrities in Frontal-Profile (CFP) database is composed of 500 subjects
with 10 frontal and 4 profile images for each subject in a wild setting. We only use the
frontal images. The impostor set is a random selection of 100 individuals. One random
template of the remaining individuals is enrolled in the system. Like the setting described
for LFW, we have two subsets of queries.

FEI. We use frontal and pre-aligned images of the Brazilian FEI database. There are
200 subjects with two frontal images (one with a neutral expression and the other with a
smiling facial expression). The database is created by random sampling 150 individuals.
For each identity, one random image is enrolled while the other is used as query. The
remaining individuals are considered as impostors.

At the enrollment phase, all groups have exactly the same number of members:
|Sg| = m,∀g ∈ [M ]. Individuals are randomly assigned to a group. The performances
of the system are gauged with error probabilities evaluated by Monte Carlo estima-
tor over the testing set. Since N is not so large, the confidence interval at 95% is
≈ ±N−1/2 = ±2.5%, which prevents us from estimating small probabilities. Therefore,
we put our system under stress by selecting a hard setup.

First, note that LFW and CFP are difficult datasets due to the ‘in the wild’ variations
(poses, illuminations, expressions and occlusions). They do not reflect the application of
accessing a building (as mentioned in the Introduction) where the capture environment
is more under control and the individuals collaborate. Second, not only the dimension of
the templates have been reduced but also the length of the embeddings and the group
representation (` = 0.9d) with a sparsity of S = 0.7l (unless stated otherwise). Probabil-
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ities of errors are then big but measurable with accuracy. We believe that this protocol
makes sense to benchmark approaches.

Two applications scenarios are investigated: group verification and group identifica-
tion.

Group verification. A user claims she/he belongs to group g. This claim is true under
hypothesis H1 and false under hypothesis H0 (i.e. the user is an impostor). Her/his
template q is embedded, and (e(q), g) is sent to the system, which compares e(q) to the
group representation rg. The system accepts (t = 1) or rejects (t = 0) the claim. This
is a two hypothesis test with two probabilities of errors: Pfp := P(t = 1|H0) is the false
positive rate and Pfn := P(t = 0|H1) is the false negative rate. The figure of merit is Pfn

when Pfp = 0.05.

Group identification. The scenario is an open set identification where the querying
user is either enrolled or an impostor. The system has two steps. First, it decides whether
or not this user is enrolled. This is verification as above, except that the group is unknow:
The system computes δj = ‖e(q) − rj‖, ∀j ∈ [M ]. The system accepts (t = 1) if the
minimum of these M distances is below a given threshold τ . The figure of merit is Pfn

when Pfp = 0.05.
When t = 1, the system proceeds to the second step. The estimated group is given

by ĝ = arg minj∈[M ] δj. The figure of merit for this second step is Pε := P(ĝ 6= g) or the
Detection and Identification Rate DIR := (1− Pε)(1− Pfn).

Exp. #1: Comparison to the baseline

Figure 2.8 shows that our method brings improvement compared to the baseline, since
the AoE and the EoA plots are way below the ones corresponding to the baseline. The
high probabilities of false negatives for the baseline are caused by the great losses in
information: AoE (Baseline) looses information from each template it embeds before
the aggregation—the accumulated losses are therefore great; EoA (Baseline) has better
performances since plain templates are first aggregated before running the embedding
step which causes less information loss.

Our method does not suffer that much from this information loss: EoA and AoE have
roughly similar performances, with much more acceptable Pfn values.
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Figure 2.8 – Performances comparison with baselines for varying group size m. Pfn at
Pfp = 0.05 for group verification (solid), the first step of group identification (dashed),
and Pε for the second step of group identification (dotted).

Exp. #2: Detection and Identification Rate

Figure 2.9 compares the DIR performances for group identification with m = 16. Our
schemes have results close to perfection on the FEI dataset. Easy queries are correctly
handled on CFP but not on the LFW dataset at this size of group. Hard queries are
more difficult to cope with. This is explained by the poor correlations they have with
their corresponding xi. That poor correlation, already existing on the original templates,
before any embedding or aggregation, can only lower the performances of any membership
identification scheme.

Figure 2.10 shows the impact of the size of group on DIR. Packing more templates
into one group representation is detrimental even if the queries are well correlated with
their corresponding enrolled template. This suggests to split large groups into subgroups
of size lower or equal to m = 32. This restricts privacy to m-anonymity as the server is
now able to identify the subgroup a query belongs to.

Exp. #3: Easy vs. Hard Queries

Figure 2.11 gives an additional perspective on the phenomenon highlighted above, that is,
the genuine similarity between the query and the enrolled template is a key factor. Easy
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Figure 2.9 – The Detection and Identification Rate (DIR) vs. Pfp for group identification.
Performances for hard queries are plotted in dashed lines.

0 0.2 0.4 0.6 0.8 1

P
fp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
I
R

m=32

EoA (Baseline) AoE (Baseline) EoA AoE

0 0.2 0.4 0.6 0.8 1

P
fp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
I
R

m=64

Figure 2.10 – The Detection and Identification Rate (DIR) vs. Pfp for group identification
on FEI.
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Figure 2.11 – The impact of the similarity of the query with the enrolled template on
group verification and identification.

queries are very well handled whereas hard queries are more problematic. Put differently,
the proposed method do not severely degrade the recognition power of the descriptors
obtained through the VGG16 network.

Descriptors poorly correlated already at the image level can only cause poor performance
once embedded and aggregated. This is also shown in Figure 2.12 which displays some
enrolled and querying faces of the ‘in the wild’ datasets LFW and CFP. All the failed
identification examples show a change of lighting, pose or expression, and / or occlusion.
Yet, such changes do not automatically give a failure.

Exp. #4: Security and Privacy

As for the security and privacy, the quantities (2.1) and (2.2) were measured as empiri-
cal average over the dataset. Knowing that the query has unit norm, the reconstruction
mechanism yields a unit vector as follows: q̂ = We(q)/‖We(q)‖. The quality of the
reconstruction mainly depends on the sparsity factor S. When S is small, the template
is reconstructed with few columns of W. When S is big, more columns are used but the
amplitude modulating each column is coarsely reconstructed.
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Figure 2.12 – Examples of group identification on CFP(left) and LFW(right). Blue frames
indicate enrolled samples, green / red frames successful / failed queries, respectively.
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Figure 2.13 – The impact of sparsity factor S on the trade-off between security and
performances, on FEI with m = 32 and S/d ∈ (0.1, 1).
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Figure 2.13 demonstrates the trade-off between security and performance for different
sparsity levels. In this figure, the horizontal axis is Pfn so it represents the performance
and the vertical axis is MSE. As we measure the security by the ability of the server to
reconstruct enrolled signatures from group representations i.e. MSES and for privacy we
consider the ability of the server to reconstruct the query from its embedding i.e. MSEP .

There might be two values of S, one small, one large, providing the same reconstruction
MSE. However, these two values do not yield the same performances. Also, reconstructing
enrolled templates is even more difficult due to the aggregation (see (2.2)). Overall, we
observe that our method has decreased the security a little, but the trade-off between
security and performances is more interesting especially for AoE.

2.3 Joint learning of assignments and representations

In the previous section, we proposed a framework based on aggregation and embedding
of several templates into a unique vector representing the members of a group. That
work, however, is deterministic in the sense that it learns group representations based
on predefined groups. This section introduces an optimization problem to learn jointly
the group representations and group assignments and shows that it can achieve better
performance without damaging the security. This addresses scenarios where the number
of members is very large. Their signatures can not be packed into one unique group
representation with a technique like section 2.2. Therefore, members are assigned to
different groups automatically. An additional light cryptographic protocol is deployed to
secure their privacy during group verification.

2.3.1 Formulation of the optimization problem

The embedding, the assignment, and the group representations are learned jointly at
enrollment, and given to a server. Biometric signatures are modelled as vectors in Rd.
X ∈ Rd×N is the matrix of the signatures to be enrolled into M groups. The group
representations are stored column wise in ` ×M matrix R. The group representations
are quantized and sparse i.e., rg ∈ A` with A = {−1, 0,+1} and ‖rg‖0 ≤ S < `, ∀g ∈ [M ].
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Our group membership protocol aims at jointly learning the partition, the embedding
and the group representations. The key is to introduce the auxiliary data E = [e1, . . . ,
eN ] ∈ A`×N the hash codes of enrolled signatures and Y ∈ RM×N the group indicator
matrix (yi,j = 1 if ej is assigned to i-th group). Then, the optimization problem is
composed of a cost for embedding CE and a cost for partitioning CA,G:

min
W,R,Y

CE(X,W,E) + CA,G(E,Y,R), (2.37)

The embedding cost is the loss for quantizing signatures:

CE(X,W,E) :=
N∑
i=1

∥∥∥ei −W>xi
∥∥∥2

2
. (2.38)

The assignment aims at grouping together signatures sharing similar hash codes: the
overall dissimilarity between members and their group representation is minimized while
the separation between two groups is maximized. Inspired by Linear Discriminant Anal-
ysis, we consider variance to measure dissimilarity. The within-group scatter matrix Sw
and the between-group scatter matrix Sb are defined as

Sw =
M∑
g=1

∑
i∈Yg

(ei − rg)(ei − rg)> = (E−RY)(E−RY)>

Sb =
M∑
g=1

rgr>g = RY(RY)>

where Yg = {i ∈ [N ] : yg,i = 1}. The cost for partitioning is CA,G = λTr(Sw)− γTr(Sb)
for some λ, γ in R+.

In the end, the objective function is formulated as:

min
W,R,Y

‖E−W>X‖2
F + λTr(Sw)− γTr(Sb)

s.t. WTW = I`
Y ∈ {0, 1}M×N , ‖yi‖1 = 1 ∀i ∈ [N ]
ei ∈ A`, ‖ei‖0 ≤ S

rg ∈ A`, ‖rg‖0 ≤ S

(2.39)

The constraint on Y ensures that each signature belongs to exactly one group.
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2.3.2 Suboptimal solution

The solution of (2.39) is found by iterating the following steps:

W-Step. We fix E, R, Y and update W by solving:

min
W

∥∥∥E−W>X
∥∥∥2

F

s.t. W>W = I`
(2.40)

This problem is again a least square Procruste problem with orthogonality constraint.
By setting S := XE>, [Sch66] shows that W = UV>, where U contains the eigenvectors
corresponding to the ` (` < d) largest eigenvalues of SS> and V contains the eigenvectors
of S>S.

E-Step. Given W, Y and R, (2.39) amounts to:

min
E

∥∥∥E−W>X
∥∥∥2

F
+ λ ‖E−RY‖2

F

s.t. ei ∈ A`, ‖ei‖0 ≤ S
(2.41)

We first find the solution relaxing the constraints and then apply ternarization function
TS to obtain sparse codes:

E = TS(W>X + λRY). (2.42)

(R,Y)-Step. When fixing W and E, the assignment and group representations are
found by minimizing:

min
R,Y

‖E−RY‖2
F −

λ

γ
Tr(RYY>R>)

s.t. Y ∈ {0, 1}M×N , ‖yi‖1 = 1 ∀i ∈ [N ]
rg ∈ A`, ‖rg‖0 ≤ S

(2.43)

As E is fixed, Tr(EE>) is irrelevant to Y, thus minimizing (2.43) is equivalent to:

min
R,Y

∥∥∥∥∥ λ

λ− γ
E−RY

∥∥∥∥∥
2

F

. (2.44)

Relaxing the ternarization constraint, (2.44) is solved by a k-means clustering algorithm,
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i.e.iteratively:

• Update assignments: Each item is assigned to its nearest group representative.

• Update centroids: g-th centroid is the mean of all ẽi in group g.

Then the group representation rg is found by applying ternarization function on g-th
centroid.
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Figure 2.14 – Performances comparison for varying group size m. Pfn at Pfp = 0.05 for
group verification.

2.3.3 Experiments

This section presents the datasets used in our experiments and investigates the perfor-
mance of the JLAR for two application scenarios. We compare JLAR with EoA-SP, AoE-
SP (Signal Processing approach, Section 2.1) and EoA-ML, AoE-ML (Machine Learning
approach, Section 2.2). For the baselines N individuals of each dataset are enrolled intoM
random groups but for JLAR the algorithm learns how to partition the enrolled templates.

Face Datasets

We use LFW and CFP datasets that introduced in Section 2.2.2. Here again, face descrip-
tors are obtained from a pre-trained network based on VGG-Face architecture [PVZ+15]
followed by PCA and then L2-normalization with d = 1, 024.
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IRIS Datasets

Iris images are prepossessed by the following steps: iris localization, iris normalization
and image enhancement. Then the feature vectors are extracted by Gabor filters.

CASIA-IrisV1 [oSIoA]. The database includes 756 iris images from 108 eyes of
Chinese persons. The images stored in the database were captured within a highly con-
strained capturing environment. 3 images were collected in a first session and 4 images
in a second session. The database is created by randomly sampling N = 80 individuals
to be enrolled, and Nq = 28 impostors.

MMU2 [Uni]. This dataset contains 995 images corresponding to 100 people with
different age and nationality from Asia, Middle East, Africa and Europe. Each of them
contributes to 5 iris images for each eye. We exclude 5 left eye iris images due to cataract
disease.

Group Verification

A user claims she/he belongs to group g. This claim is true under hypothesis H1 and false
under hypothesis H0 (i.e. the user is an impostor). Her/his signature q is embedded into
p = e(q), and (p, g) is sent to the system, which compares p to the group representation
rg. The system accepts (t = 1) or rejects (t = 0) the claim. This is a two hypothesis
test with two probabilities of errors: Pfp := P(t = 1|H0) is the false positive rate and
Pfn := P(t = 0|H1) is the false negative rate. The figure of merit is Pfn when Pfp = 0.05.

Figure 2.14 compares the performance of JLAR with baselines for group membership
verification. Overall, JLAR gives a better verification performance, especially on CASIA.
Since our method tries to simultaneously learn group representations and assignment, it
aggregates similar embedded vectors and this looses less information.

Note that, although LFW and CFP are difficult datasets due to the “in-the-wild”
variations, the group membership verification task is handled well even for large group
sizes. This is not the case for iris datasets. As mentioned before, we make use of VGG-
Face for face datasets while for iris, traditional feature extraction algorithms are used. So,
the big difference in overall analysis shows how the feature space affect the performance
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of group membership tasks.

Group Identification

The scenario is an open set identification where the querying user is either enrolled or an
impostor. The system proceeds in two steps. First, it decides whether or not this user
is enrolled. This is verification as above, except that the group is unknow: The system
computes δj = ‖p − rj‖, ∀j ∈ [M ], and accepts (t = 1) if the minimum of these M
distances is below a given threshold τ . The figure of merit is Pfn when Pfp = 0.05.

When t = 1, the system proceeds to the second step. The estimated group is given
by ĝ = arg minj∈[M ] δj. The figure of merit for this second step is Pε := P(ĝ 6= g) or the
Detection and Identification Rate DIR := (1− Pε)(1− Pfn).

Figure 2.15 shows that JLAR brings improvement compared to the baselines and the
improvement is also better as the size of groups increases.

The impact of the group size on DIR is illustrated in Figure 2.16. Obviously, packing
more signatures into one group representation is detrimental. It gets worse when the
queries are not well correlated with the enrolled signature.

Security and Privacy Analysis

A curious server can only reconstruct a single vector r̂g = rec(rg) from the group repre-
sentation rg, and this vector serves as an estimation of any signature in the group. We
measure the security by 2.2 which is the mean square error over the dataset. Also, for
the privacy of the query template, a curious server can reconstruct the query template q
from its embedding as given in Equation 2.1. These reconstructions are possible only if
matrix W is known. This is not the case in practice, so we give here an extra advantage
to the curious server.

Figure 2.17 compares security with AoE-ML, where the assignment was imposed ran-
domly, i.e. not learned. Different levels of sparsity are tested. Performance is represented
on the horizontal axis by Pfn, and security and privacy are measured on the vertical axis
by MSE. For security, we measure the server’s ability to reconstruct enrolled signatures
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Figure 2.15 – Performances comparison for varying group size m on group identification
for CFP(left) and LFW(right). Pfn at Pfp = 0.05 for the first step of group identification
(solid) and Pε for the second step of group identification (dashed).
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Figure 2.16 – The Detection and Identification Rate (DIR) vs. Pfp for group identification
on CASIA-IRISV1.
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from group representations, and for privacy, we measure the server’s ability to reconstruct
the query from its embedding.

The reconstruction error of queries are close in either case, yet learning the assignment
improves verification performance. Reconstructing enrolled signatures is more difficult due
to the aggregation. However, learning the assignment by similarity correspondence in the
embedded domain decreases the security slightly while improving the performance a lot.
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Figure 2.17 – Investigation of trade-off between security and performance for varying
sparsity level S on CFP (with m = 25) and CASIA-IrisV1 (with m = 16).

2.3.4 Security Protocols

This section gives an example of a cryptographic protocol exploiting the group represen-
tations. The experimental section showed that grouping secures the enrolled signatures,
but ternarization alone provides less protection to the query. Therefore, this protocol
strengthens the protection of the querying user. For security reason, the server only ma-
nipulates query and the distances in the encrypted domain. For privacy reason, the server
only learns that the query is close enough to one group representation, but it cannot tell
which group exactly. We assume honest but curious user and server.
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This protocol also justifies choices of our scheme: Queries and group representa-
tions are heavily quantized onto a small alphabet A. They are long vectors but sparse:
only S components will be processed in the encrypted domain. Moreover, we have
‖p − r‖2 ∈ [0, 2S]. These facts ease the use of partial homomorphic encryptions with
limited module, whence a low complexity and expansion factor. The group represen-
tations remain in the clear on the server side, and we do not need fully homomorphic
encryption.

The user generates a pair of secret and public keys (skU , pkU) for an additive homo-
morphic cryptosystem e(·) (say [Pai99b]), and sends the query encrypted component-wise.
The server computes its correlation with group representation rg:

e(p>rg, pkU) =
∏

i:rg(i) 6=0
e(p(i), pkU)rg(i). (2.45)

The server also generates a key pair (skS, pkS) for a multiplicative homomorphic cryp-
tosystem E(·) (say [Elg85]), and sends the user (E(e(p>rg, pkU), pkS))g. The user ran-
domly permutes the order of these quantities and masks them by multiplying them by
E(1, pkS). This yields another semantically secure version of the ciphertexts thanks to the
multiplicative homomorphy of E(·). The server decrypts (e(p>rk, pkU))k, but the permu-
tation prevents connecting k back to the group index g. Again thanks to homomorphy,
the server computes (e(ak(2S− 2p>rk− τ) + bk), pkU))g where (ak, bk) are random signed
integers. The user decrypts and sends (ak(‖p − rk‖2 − τ) + bk)k to the server. The user
cannot guess the distances ‖p− rk‖2 thanks to the masking (ak, bk)k, not even the sign of
(‖p− rk‖2 − τ). The server can do this (since it knows (ak, bk)) and thus learns whether
there is one group where (‖p− rk‖2 − τ) is negative.

2.4 Conclusion

This chapter proposed schemes for group membership verification and identification. The
keystones are the aggregation and embedding functions. They prevent accurate recon-
struction of the enrolled signatures while recognizing noisy version. The server is only able
to link each signature to its group number. Yet, the full identity of the user is preserved.

The first proposed scheme is based on defining fixed aggregation and embedding func-
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tions. Then we replaced those hand-crafted functions and their hard-coded parameters
with functions producing identical types of output, but their nature and parameters are
learned through optimization processes, learning provides a serious performance improve-
ment over fixed settings.

After that, in addition to group representation, group assignments are also learned.
Instead of random assignment, the groups formed based on similarity. The idea is to
minimize the overall distance between group members while maximizing the separation
between groups in the embedded domain, which provides an additional improvement.

However, this learning was not completely free. Some guidances were still imposed,
especially the prototyping of the embedding based on a sparse ternary quantization. This
is mainly for inheriting the security and privacy properties of this lossy information pro-
cessing. It is not clear whether an alternative approach does exist.
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Chapter 3

SPARSE OR DENSE

Introduction

The approaches proposed in the previous chapter face severe limitations. Basically, it
seems impossible to create features representing groups having many members. In this
case, the probability to identify true positives vanishes and the false negative rate grows
accordingly. Furthermore, the robustness of the matching procedure fades and becomes
unable to absorb even the smallest amount of noise that inherently differentiate the en-
rolled template of one member and the template captured at query time for this same
member. In contrast, features representing only few group members are robust to noise
and cause almost no false negatives. It seems that these limitations originate from the
sparsity level of the features representing group members.

This chapter investigates the impact of the sparsity level of the high dimensional fea-
tures representing group members on the quality of (true positive) matches and their
robustness to noise. We consider two setups: “sparse” and “dense,” which refer to the
number of zero vs. non-zero elements in a sequence. When a sequence is sparse, it con-
tains mostly zeros and few non-zero elements, whereas sequences in dense settings contain
mostly non-zero elements. This study shows that it is possible to trade compactness and
sparsity for better security or better verification performance.

Section 3.1 first considers the aggregation of discrete random sequences, and models
this trade-off with information theoretical tools. Section 3.2 applies this viewpoint to
binary random sequences and shows that the noise on the query has an impact depending
upon the sparsity of the sequences. Section. 3.3 bridges the gap between the templates, i.e.
real d-dimensional vectors, and the discrete sequences considered in the previous sections.
Section. 3.4 gathers the experimental results for a group membership verification based
on faces. Section 3.5 explores some studies on ternary sequences.
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3.1 Discrete Sequences

This section considers the problem of creating a representation Y of a group of n se-
quences {X1, . . . ,Xn}. The use of Y is to test whether a query sequence Q is a noisy
version of one of these n original sequences. This test is done at query time when the
original sequences are no longer available and all that remains is the representation Y.

The sequences are elements of Xm where X is a finite alphabet of cardinality |X |, say
X := {0, 1, . . . , |X | − 1}. The sequence follows a statistical model giving a central role to
the symbol 0. The symbols of the sequences are independent and identically distributed
with

P(X = s) =

1− p(|X | − 1) if s = 0

p otherwise
(3.1)

for p ∈ (0, 1/|X |]. Sparsity means that probability p is small. The opposite, density
means that p is close to 1/|X | so that X is uniformly distributed over X .

3.1.1 Structure of the group representation

We impose the following conditions on the aggregation a(·) computing the group repre-
sentation Y = a(X1, . . . ,Xn):

• Y is a discrete sequence of the same length Y ∈ Ym,

• Symbol Y (i) only depends on symbols {X1(i), . . . , Xn(i)},

• The same aggregation is made index-wise: with abuse of notation Y (i) = a(X1(i), . . . , Xn(i)),
∀i ∈ [m],

• Y (i) does not depend on any ordering of the set {X1(i), . . . , Xn(i)},

These requirements are well known in traitor tracing and group testing as they usually
model the collusion attack or the test results over groups. Here, they simplify the analysis
reducing the problem to a single letter formulation where index i is dropped involving
symbols {X1, . . . , Xn}, Y and Q.

These conditions motivate a 2-stage construction. The first stage computes the type
(a.k.a. histogram or tally) T of the symbols {X1, . . . , Xn}. Denote by T|X |,n the set of

72



3.1. Discrete Sequences

possible type values. Its cardinality equals |T|X |,n| =
(
n+|X |−1
|X |−1

)
which might be too big.

The second stage applies a surjective function r : T|X |,n → Y , where Y is a much smaller
set.

3.1.2 Noisy query

At enrollment time, the system receives n sequences, aggregates them into the compact
representation Y, and then forgets the n sequences. At query time, the system receives a
new sequence Q conforming with one of the following hypotheses:

• H1: Q is a noisy version of one of the enrolled sequences. Without loss of generality,
Q = X1 + N.

• H0: Q = X0 + N, where X0 shares the same statistical model but it is independent
of {X1, . . . ,Xn}.

We model the source of noise (due to different acquisition conditions) by a discrete com-
munication channel. It is defined by function W : X × X → [0, 1] with W(q|x) := P(Q =
q|X = x). We impose some symmetry w.r.t. the symbol 0: W(s|0) = η0 and W(0|s) = η1,
∀s ∈ X\{0}.

At query time, the system computes a score S = s(Q,Y) and compares to a threshold:
hypothesis H1 is deemed true if S ≥ τ . This test leads to two probabilities of error:

• Pfp(n,m) is the probability of false positive: Pfp(n,m) := P(S ≥ τ |H0).

• Pfn(n,m) is the probability of false negative: Pfn(n,m) := P(S < τ |H1).

The emphasis on (n,m) is natural. It is expected that: i) the more sequences are aggre-
gated, the less reliable the test is, ii) the longer the sequences are, the more reliable the
test is.

3.1.3 Figures of merit (C, S,V)

The section presents three information theoretic quantities (expressed in nats) measuring
the performances of the scheme. The first two depends on the statistical model of X
(especially p) and the aggregation mechanism a. The last one depends moreover on the
channel.
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Compactness C

The compactness of the group representation is measured by the entropy C := H(Y ). It
roughly means that the number of typical sequences Y scales exponentially as emH(Y ),
which can be theoretically compressed to the rate of H(Y ) nats per symbol; obviously,
the smaller, the better.

Security S

We consider an insider aiming at disclosing one of the n enrolled sequences. Observing the
group representation Y, its uncertainty is measured by the equivocation S := H(X|Y ).
This means that the insider does not know which of the emH(X|Y ) typical sequences the
enrolled sequences are. Here, the larger the better.

Verification V

In our application, the requirement of utmost importance is to have a very small proba-
bility of false positive. We are interested in an asymptotical setup where m→ +∞. This
motivates the use of the false positive error exponent as a figure of merit:

Efp(n) := lim
m→+∞

− 1
m

logPfp(n,m). (3.2)

If Efp(n) > 0, it means that Pfp(n,m) exponentially vanishes as m becomes larger. The
theory of test hypothesis shows that Efp(n) is upper bounded by the mutual information
V := I(Y ;Q) where Q is a symbol of the query sequence, i.e. a noisy version of X1. It
means that the necessary length for achieving the requirement Pfp(n,m) < ε is, according
to [Sha59]:

m ≥ − log ε
V . (3.3)

Therefore, the larger the quantity the better it is.

3.1.4 Noiseless setup

The bigger V and S, the better the performance in terms of verification and security.
Yet, they can not be both big at the same time. The noiseless case when the channel
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introduces no error and Q = X simply illustrates the trade-off:

V ≤ C (3.4)
V + S = H(X), (3.5)

with H(X) = − log p0 + (1− p0) log p
p0

and p0 := P(X = 0) (3.1). For a given |X |, H(X)
is maximised by the dense solution: H(X) ≤ log |X | with equality for p = 1/|X |.

3.2 Binary alphabet

This section explores the binary case where X = {0, 1}. We first set the surjection as the
identity function s.t. Y = T . Then, the impact of the surjection is investigated.

3.2.1 Working with types

In the binary case, there are n + 1 type values. There can be uniquely labelled by the
number of symbols ‘1’ in {X1, . . . , Xn}, i.e. T = ∑n

i=1Xi ∼ B(n, p).

Verification

In the noiseless case, after some rewriting:

V = h(p)−
n∑
t=0

P(T = t)h
(
t

n

)
, (3.6)

with h(p) := −p log(p)− (1− p) log(1− p), the entropy of a Bernoulli r.v. B(p). In dense
setup that p = 1/2 and n is large:

V = 1
2n + o

( 1
n

)
. (3.7)

This is not the maximum of this quantity. For large n, the best option is to set

p = α

n
, V = β

n
+ o

( 1
n

)
, (3.8)

with α = 1.338 and β = 0.580, which is a sparse setup. This was proven in the totally
different application of traitor tracing [Laa15, Prop. 3.8].
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This section outlines two setups: the dense setup where p = 1/2, and the sparse setup
where p = α

n
goes to 0 when more sequences are packed in the group representation. Both

setups share the asymptotical property that V ≈ κ/n for large n. According to (3.3),
i.e. m ≥ −n log ε

κ
, we can pack a big number n of sequences into one group representation

provided that their length m scales proportionally to n.

Compactness

The figure of merit for compactness for types is just C = H(T ) where T follows a binomial
distribution: T ∼ B(n, p). In the dense setup p = 1/2, the binomial distribution is
approximated by a Gaussian distribution N (n/2;n/4) providing:

C = 1
2 log

(
πen

2

)
+O

( 1
n

)
. (3.9)

In the sparse setup p = α/n, the binomial distribution is approximated by a Poisson
distribution P(α) [Boe88]:

C ≈ α(1− log(α)) + e−α
+∞∑
j=0

αj log(j!)
j! . (3.10)

This shows that the types are not compact in the dense setup, and the compactness
increases with n, while it approximatively remains constant in the sparse setup.

Security

Thanks to (3.5), we only need to calculate H(X) = h(p). In the dense setup, H(X) =
log(2) and S converges to H(X) as n increases. Merging into a single representation
protects an individual sequence. If sparse,

H(X) = α

n

(
1− log α

n

)
+ o

( 1
n

)
. (3.11)

Therefore, S converges to zero as n increases, contrary to the dense setup. It might be
more insightful to see that the ratio of uncertainties before and after observing T , i.e.
H(X)/H(X|T ), converges to 1 in both cases. Merging does provide some security but
sparsity is more detrimental.
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3.2.2 Adding a surjection

The motivation of the surjection onto a smaller set Y is to bound C as C ≤ log |Y|, ∀n.
The Markov chain Q→ X1 → T → Y imposes that V := I(Y ;Q) ≤ I(T ;Q).

Let us first explain how V is computed. Denote Pi(q, y) := P(Q = q, Y = y|Hi) and
channel W (q|x) := P(Q = q|X = x), ∀y ∈ Y , q ∈ X and i ∈ {0, 1}. Then,

V =
∑
q,y

P1(q, y) log P1(q, y)
P0(q, y) , (3.12)

with P0(q, y) = P(Q = q)P(Y = y), since underH0, the variablesQ and Y are independent
and

P1(q, y) =
∑
x∈X

P(Y = y,X = x)W (q|x). (3.13)

We assume here the noiseless setup allowing to write P(Y = y,X = x) as P1(x, y).
Inspired by traitor tracing, we consider a probabilistic surjection where P(r(t) = 1) = θt.
The vector θ ∈ [0, 1]n+1 parametrizes the surjection. Denote by ∇θV(t) the derivative
w.r.t. θt. After some lengthy calculus:

∇θV(t) = n−1K1(p,θ)(t− nK2(p,θ)), (3.14)
K1(p,θ) = P(T = t)∆,

K2(p,θ) = h′(P1(0, 1))− h′(P(Y = 1))
∆ ,

∆ = h′(P1(0, 1))− h′(P1(1, 1)).

It is not possible to cancel the gradient ∇θV. The optimal θ thus lies on the bound-
ary of the hypercube [0, 1]n+1. This makes the surjection deterministic. Assuming
P(Y = 1|X = 0) < P(Y = 1|X = 1), then 0 < K1(p,θ) and 0 < K2(p,θ) ≤ 1 be-
cause h′(·) is strictly decreasing. This makes ∇θV(0) < 0 and θ0 must be set to the lowest
possible value, i.e. θ0 = 0, to increase V at most. This is indeed the case for any θt with
t < K2(p,θ). In the same way, θn = 1 and so is θt if t > K2(p,θ). Yet, for a given θ,
K2(p,θ) ranges from 0 to 1 as p increases from 0 to 1. Therefore, θ = (0, . . . , 0, 1, . . . , 1)
is optimal only over an interval of p.

Two examples are the following:
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• For n odd and p = 1/2, θt = 0 if t ≤ (n+ 1)/2, and 1 otherwise is optimal because
K2(1/2,θ) = 1/2 (P(Y = 1) = 1/2 and P1(0, 1) = 1− P1(1, 1)).

• The surjection θ = (0, 1, . . . , 1) makes P1(1, 1) = 1 so that ∇θV(t) = +∞ if t > 0
and < 0 for t = 0.

Therefore it shows that for |Y| = 2, this loss is minimized for:

r(t) =

0 if t < tp

1 otherwise
(3.15)

where tp is a threshold depending on p. In the dense setup, tp = (n+1)/2 and the surjection
corresponds to a majority vote collusion in traitor tracing (or a threshold model in group
testing). Hence, by [Laa15, Prop. 3.4]:

V = 1
nπ

+ o
( 1
n

)
. (3.16)

In the sparse setup tp = 1 which corresponds to an ‘All-1’ attack in traitor tracing (or the
perfect model in group testing). Then the best option is to set p = log(2)/n and [Laa15,
Prop. 3.3]:

V = (log(2))2

n
+ o

( 1
n

)
. (3.17)

From (3.3), the necessary length is m ≥ −n log(ε)/(log(2))2.

Figure 3.1 illustrates the trade-off between security, verification, and compactness for
noiseless setup. It shows that the surjection provokes a loss in verification. In this figure,
the above results are summarized by triangle and stars. The blue and green triangles
correspond to dense setup (3.7), (3.16), and the blue, red stars correspond to sparse setup
(3.8), (3.17). The main property V ≈ κ/n still holds but the surjection lowers κ from 0.5
to 0.32 (dense), from 0.58 to 0.48 (sparse). The sparse setup is still the best option w.r.t.
V.

3.2.3 Relationship with the Bloom filter

A Bloom filter is a well-known data structure Y ∈ {0, 1}m designed for set membership,
embedding items to be enrolled into Y thanks to k hash functions. Its probability of false
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Figure 3.1 – The trade-off (S,V,C) for X = {0, 1}, n = 16, Y = T (blue), Y = r(T ) for
‘All-1’ (red) and majority vote (green). Dashed plot represents the projection onto C = 0.
Triangles and stars summarize results (3.7) to (3.17).
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negative is exactly 0, whereas the probability of false positive is not null. The number of
hash functions minimizing Pfp(n,m) is k = blog(2)m/nc. Then, the necessary length to
meet a required false positive level ε is m ≥ −n log(ε)/(log(2))2.

These numbers show the connection with our scheme (3.17). At the enrollment phase,
the hash functions indeed associate to the j-th item a binary sequence Xj indicating
which bits of Y have to be set. This sequence is indeed sparse with k/m ≈ log(2)/n. The
necessary length is the same. Indeed, the enrollment phase of a Bloom filter is nothing
more than the ‘All-1’ surjection.

The only difference resides in the statistical model. There is at most k symbols ‘1’
in sequence Xj whereas, in our model, that follows a binomial distribution B(m, p). Yet,
asymptotically as m → ∞, by some concentration phenomenon, the two models get
similar. This explains why we end up with similar optimal parameters. Yet, the Bloom
filter only works when the query object is strictly identical to the one enrolled, whereas
the next section shows that our scheme is robust to noise.

3.3 Real vectors

This section deals with real vectors: n vectors to be enrolled {~x1, . . . , ~xn} ⊂ Rd, and the
query vector ~q ∈ Rd. All have unit norm. An embedding mechanism E : Rd → Xm

makes the connection with the previous section. As in [AIL+15], this study models the
embedding as a probabilistic function.

3.3.1 Binary embedding

For instance, for X = {0, 1}, a popular embedding is:

X(i) = [~x>~Ui > λx], ∀i ∈ [m] (3.18)

where ~Ui
i.i.d.∼ N (~0d, Id). This in turn gives i.i.d. Bernoulli symbols {X(i)} with p =

1− Φ(λx) if ‖~x‖ = 1.

As illustrated in Figure 3.2, at the query time, the embedding mechanism uses the
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Figure 3.2 – Binary embedding using random projection.

same random vectors but a different threshold:

Q(i) = [~q>~Ui > λq], ∀i ∈ [m]. (3.19)

Under H1, suppose that ~q>~x = c < 1. This correlation defines the channel X → Q

with the error rates:

η0 = P(Q = 1|X = 0) = P(~q>~U > λq|~x>~U ≤ λx), (3.20)
η1 = P(Q = 0|X = 1) = P(~q>~U ≤ λq|~x>~U > λx). (3.21)

Let z = ~x>~U , then ~q>~U can be represented as cz +
√

1− c2γ, where z and γ are i.i.d
standard normal with density functions fz and fγ. The collision probability P(~x>~U >

λx, ~q
>~U > λq) is:

P(X = 0, Q = 0) =
∫ λx

−∞

∫ λq−cz√
1−c2

−∞
fγ(γ) fz(z) dγ dz. (3.22)

The error rate η0 = 1− P(X=0,Q=0)
P(X=0) is computed as:

η0 = 1− 1
(1− p)

√
2π

∫ λx

−∞
Φ
(
λq − cz√

1− c2

)
e−

z2
2 dz. (3.23)

and similarly η1 has the expression:

η1 = 1− 1
p
√

2π

∫ ∞
λx

[
1− Φ

(
λq − cz√

1− c2

)]
e−

z2
2 dz. (3.24)
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3.3.2 Induced channel

For this embedding, the parameters (λx, λq, c, d) for the vectors define the setup (p, η0, η1)
for the sequences. It is a priori difficult to find the best tuning (λx, λq). For a fixed λx,
η0 decreases with λq while η1 increases.

Suppose that η is a parameter of the channel W (·|·). Then

∂V
∂η

=
∑
q,y

∂P1(q, y)
∂η

log P1(q, y)
P0(q, y) , (3.25)

because ∑q,y
∂P1(q,y)

∂η
= ∂

∑
q,y

P1(q,y)
∂η

= 0 and ∑q,y
P1(q,y)
P0(q,y)

∂P0(q,y)
∂η

= ∑
q
∂P(Q=q)

∂η
= 0.

Suppose now that η = η0 := W (q|0),∀q ∈ X\{0}. Then,

∂P1(q, y)
∂η0

= P (X = 0, Y = y) ,∀q ∈ X\{0}. (3.26)

Taking (3.25) around the noiseless channel where η0 = 0 and P(X = 0, Y = y) = P1(0, y)
because Q = X:

∂V
∂η0

∣∣∣∣∣
η0=0

=
∑
y,x6=0

P1(0, y) log P1(x, y)
P0(x, y) + . . . (3.27)

We only express the first terms to outline that if P1(x, y) = 0 while P1(0, y) and hence
P0(x, y) are not null, then this derivative goes to −∞. A small deviation from the noise-
less case with η0 6= 0 has a major detrimental impact on V. That situation happens
for sure when working with type, i.e. Y = T : Consider the null type t0 obtained when
X1 = . . . = Xn = 0: P1(0, t0) > 0 while P1(x, t0) = 0, ∀x 6= 0.

One can prove that the surjection can mitigate this effect if ∃t 6= t0 : r(t) = r(t0) and
P1(0, t) > 0. This happens with the majority vote of the dense setup, but unfortunately,
not with of the ‘All-1’ surjection in the sparse setup. Therefore V is sensitive to η0 espe-
cially with the ‘All-1’ surjection of the sparse solution.

Figure 3.3 shows indeed that the dense solution, i.e. the green line, where (λx, λq) =
(0, 0)) is more robust, unless c is very close to 1. Here, we enforce a surjection (identity,
All-1, or majority vote) and make a grid search to find the optimum (λx, λq) for a given c.
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3.3. Real vectors

It happens that these parameters are better set to 0, i.e. dense solution, for the identity
and majority vote. As for the ‘All-1’ surjection, we observe that λx is s.t. p ≈ 1/n and
λq is slightly bigger than λx to lower η0. Yet, this sparse solution is not as good as the
dense solution unless c is close to 1, i.e. the query vector is very close to the enrolled vector.

This observation holds only for the embedding function (3.18). Hashing functions less
prone to error η0 may exist.
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Figure 3.3 – V as a function of correlation c, d = 256, n = 15.

3.3.3 Score computation

Without surjection, at query time, the system computes a score S = s(Q,T) and compares
to a threshold. Here the scores are computed based on:

s(Q,T) =
m∑
i=1

W (T (i), Q(i)), (3.28)

where each element of the weight matrix W ∈ R|T |×|X | is estimated as:

W (T (i), Q(i)) = log
(
P(T = T (i)|Q = Q(i))

P(T = T (i))

)
. (3.29)
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For example in binary case we have:

P(T = t|Q = 1) = P(T = t|X = 1)P(X = 1|Q = 1) + P(T = t|X = 0)P(X = 0|Q = 1) (3.30)

where P(X = 1|Q = 1) = p(1−η1)
η0(1−p)+p(1−η1) and P(T = t|X = 1) =

(
n−1
t−1

)
pt−1(1− p)n−t

3.4 Experimental work
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Figure 3.4 – Verification performance Pfn@Pfp = 0.05 vs. group size n for the baselines
(see Section 3.4.2) and Types.

We evaluate this scheme with face recognition. Face images are coming from LFW,
CFP and FEI databases that introduced in Section 2.2.2. For each dataset, N individuals
are enrolled into random groups. There is the same number Nq of positive and negative
(impostors) queries.

3.4.1 Experimental Setup

Face descriptors are obtained from a pre-trained network based on VGG-Face architecture
followed by PCA [PVZ+15] . FEI corresponds to the scenario of employees entering in a
building with face recognition, whereas CFP is more difficult, and LFW even more diffi-
cult. To equalize the difficulty, we apply a dimension reduction (Probabilistic Principal
Component Analysis [TB99]) to d = 128 (FEI), 256 (CFP), and 512 (LFW). The pa-
rameters of PPCA are learned on a different set of images, not on the enrolled templates
and queries. The vectors are also L2 normalized. With such post-processing, the average
correlation between positive pairs equals 0.83 (FEI), 0.78 (CFP), and 0.68 (LFW) with a
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standard deviation of 0.01. Despite the dimension reduction, the hardest dataset is LFW
and the easiest FEI.

In one simulation run, the enrollment phase makes random groups with the same
number n of members. A user claims she/he belongs to group g. This claim is true under
hypothesis H1 and false under hypothesis H0 (i.e. the user is an impostor). Her/his
template is quantized to the sequence Q, and (Q, g) is sent to the system, which compares
Q to the group representation Yg. This is done for all impostors and all queries of enrolled
people. One Monte-Carlo simulation is composed of 20 runs. The figure of merit is Pfn

when Pfp = 0.05.

3.4.2 Exp. #1: Comparison to the baselines

The Types scheme is compared to the following baselines:

• EoA-SP and AoE-SP: Signal Processing approach, Section 2.1

• EoA-ML and AoE-ML: Machine Learning approach, Section 2.2

The drawback of these baselines is that the length m of the data structure is bounded.
Here, it is set to maximum value, i.e. m = d the dimension of templates.

This scheme allows more freedom. Setting m = 8 × d produces a much bigger repre-
sentation. It is not surprising that this scheme is better than the baselines. Figure 3.4
validates our motivation to get rid of the drawback of the baselines with limited m, to
achieve better verification performance. These results are obtained with the dense solu-
tion. Indeed, despite all our efforts, we could not achieve better results with the sparse
solution. This confirms the lesson learnt from Figure 3.3: the dense solution outperforms
the sparse solution when the average correlation between positive pairs is lower than 0.95.

The improvement is also better as the size of groups increases. We explain this by the
use of the types, i.e. Y = T . Equation (3.9) shows that C increases with n for the dense
solution, compensating for aggregating more templates.
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3.4.3 Exp. #2: Reducing the size of the group representation

There are two ways for reducing the size of the group representation. The first means
is to decrease m, the second means is to lower C thanks to a surjection. Section 3.2.2
presented optimal surjections from T2,n to Y = {0, 1}. We found experimentally good
surjections to sets Y for |Y| ∈ {3, 4, 8}.

This is done according to the following heuristic. Starting from T2,n, we iteratively
decrease the size of Y by one. This amounts to merge two symbols of Y . By brute force,
we analyse all the pairs of symbols measuring the loss in V induced by their merging.
By merging the best pair, we decrease the number of symbols in Y by one. This process
is iterated until the targeted size of Y is achieved. This heuristic is not optimal, but
it is tractable. Figure 3.5 compares these two means of reducing the size of the group
representation. Employing a coarser surjection is slightly better in terms of verification
performances.
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Figure 3.5 – Verification performance Pfn@Pfp = 0.05 vs. mC, for n = 16. This quantity
is reduced by decreasing m (dashed lines) or by decreasing C thanks to a surjection (solid
lines).
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3.5 Ternary Alphabet

The binary alphabet was discussed in Section 3.3, and some results using this binary em-
bedding are presented in Section 3.4. Now, this section investigates the ternary embedding
where X = {−1, 0, 1}. The symbols are i.i.d. distributed with:

P(X = s) =

1− 2p if s = 0

p otherwise
(3.31)

for p ∈ (0, 1/3]. Sparsity means that probability p is small, density means that p is close
to 1/3 so that X is uniformly distributed over X . Also, the statistical model for vectors
~x and ~q differs from the previous section. This illustrates the versatility of our framework.

Denote np and nn the number of symbols 1 and −1 in {X1, ..., Xn} respectively. The
type values in ternary case can be labeled by T = {s, nn}, where s = np + nn. Then,
s ranges from 0 to n and nn goes from 0 to s. The cardinality of the set of possible
type values equals

(
n+2

2

)
. To reduce the size of this set, two surjective function can be

applied: sum and majority vote. The sum computes sum over n symbols that ranges
in {−n, ..., 0, ..., n}, while majority vote is the symbol that appears most frequently that
ranges in {−1, 0,+1}.

This embedding is defined as:

X(i) = Tλx(~x) = sign(~x>~Ui − λx)[|~x>~Ui| > λx],∀i ∈ [m] (3.32)

where U is a matrix whose entries are drawn randomly from independent and identically
distributed (i.i.d.) Gaussian distribution i.e. ~Ui

i.i.d.∼ N (~0d, Id). Assume that enrolled
vectors ~x are distributed as N (~0d, σ2

xId). At query time a noisy version of ~x is received
as ~q = ~x + ~ω, where ~ω ∼ N (~0d, σ2

ωId). Then the same embedding but with different
threshold is applied on query:

Q(i) = Tλq(~q) = sign(~q>~Ui − λq)[|~q>~Ui| > λq], ∀i ∈ [m] (3.33)

Then, the enrolled and query symbols computed as X = Tλx(z) and Q = Tλq(z + γ)
respectively, where z = ~x>~U and γ = ~ω>~U .
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Consider fz and fγ as the probability density function of the normal distribution. As
the joint probability distribution of X and Q is illustrated in Figure 3.6:

P0,1 =
∫ λx

−λx

∫ +∞

λq−z
fz(z)fγ(γ)dγdz (3.34)

P1,0 =
∫ +∞

λx

∫ λq−z

−λq−z
fz(z)fγ(γ)dγdz (3.35)

P−1,1 =
∫ −λx
−∞

∫ +∞

λq−z
fz(z)fγ(γ)dγdz (3.36)

The error rates of the channel are expressed as:

η0 = P(Q = 1|X = 0) = 1
(1− 2p)

√
2π

∫ λx

−λx
Φ
(
−λq − z
σω

)
e−

z2
2 dz, (3.37)

η1 = P(Q = 0|X = 1) = 1
p
√

2π

∫ ∞
λx

[
Φ
(
λq − z
σω

)
− Φ

(
−λq − z
σω

)]
e−

z2
2 dz, (3.38)

η2 = P(Q = −1|X = 1) = 1
p
√

2π

∫ ∞
λx

Φ
(
−λq − z
σω

)
e−

z2
2 dz. (3.39)

z

γ
γ = λq − z

γ = −λq − z

P0,1

P1,0

P−1,0

P0,−1

P1,1

P−1,1

P−1,−1

P1,−1

P0,0 λx−λx
z

γ

Figure 3.6 – The figure depicts the regions Ax,q, where Px,q = P(X = x,Q = q) =∫ ∫
Ax,q fz(z)fγ(γ)dγdz.

From Figure 3.6, following relations can be derived P1,1 = P−1,−1, P1,0 = P−1,0 and
P1,−1 = P−1,1. The expected value of squared distances between enrolled and query
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z

γ
γ = λq − z

γ = −λq − z
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P−1,1
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Q̄0,1

Q0,1

λx−λx

P0,1

z

γ

γ = −λq − z

Figure 3.7 – The bounds for P0,1

symbols E[d(X,Q)] is computed as:

E[||X −Q||22] =
∑

x,q∈{−1,0,+1}
Px,q||x− q||22 = 2P0,1 + 2P1,0 + 8P−1,1 (3.40)

Now, we are interested in finding what happens if the amount of noise gets too large,
i.e. lim

σω→∞
E[||X − Q||22]. As illustrated in Figure 3.7, the bounds for P0,1 is found as

Q0,1 ≤ P0,1 ≤ Q̄0,1:

Q0,1 =
∫ λx

−λx
fz(z)dz

∫ −λq−λx
−∞

fγ(γ)dγ = Φ
(
−λq − λx

σω

)[
Φ
(
λx
σx

)
− Φ

(
−λx
σx

)]
(3.41)

Q̄0,1 =
∫ λx

−λx
fz(z)dz

∫ 0

−∞
fγ(γ)dγ = Φ(0)

[
Φ
(
λx
σx

)
− Φ

(
−λx
σx

)]
, (3.42)

By setting t as max(λq, k
√
σω), the bounds for P1,0 + P−1,1 and P−1,1 are computed as:

∫ t

λx
fz(z)dz

∫ λq−t

−∞
fγ(γ)dγ ≤ P1,0 + P−1,1 ≤

∫ ∞
λx

fz(z)dz
∫ λq−λx

−∞
fγ(γ)dγ =

Φ
(
λq − t
σω

)[
Φ
(
t

σx

)
− Φ

(
λx
σx

)]
≤ P1,0 + P−1,1 ≤ Φ

(
λq − λx
σω

)[
1− Φ

(
λx
σx

)]
(3.43)
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∫ t

λx
fz(z)dz

∫ −λq−t
−∞

fγ(γ)dγ ≤ P−1,1 ≤
∫ ∞
λx

fz(z)dz
∫ −λq−λx
−∞

fγ(γ)dγ =

Φ
(
−λq − t
σω

)[
Φ
(
t

σx

)
− Φ

(
λx
σx

)]
≤ P−1,1 ≤ Φ

(
−λq − λx

σω

)[
1− Φ

(
λx
σx

)]
(3.44)

which then results in lim
σω→∞

E[||X −Q||22] = 3− 2Φ
(
λx
σx

)
, which increases from 1 to 1.667

as p ranges from 0 (sparse setup) to 1/3 (dense setup).
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Figure 3.8 – Verification performance V vs. p for ternary embedding. Y = T (blue), Y =
r(T ) for sum (red) and majority vote (green). Solid line indicates a noiseless case, dashed
line indicates (η0 = 0.1, η1 = η2 = 0), dot-dashed line indicates (η1 = 0.1, η0 = η2 = 0),
and dotted line indicates (η2 = 0.1, η0 = η2 = 0).

As discussed in Section 3.1.2 verification performance can be measured by the mutual
information V := I(Y ;Q). We compute this quantity for varying p ∈ (0, 1/3] for both
noiseless and noisy setups. Figure 3.8 compares verification performance for different
aggregation mechanisms.

Obviously applying surjection on type values causes information loss, so the mutual
information for sum and majority vote is lower. Similarly, compared to sum, this quantity
reduces by applying majority vote function.
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3.6. Conclusion

Like the binary case, the optimal thing is to pack sequences that are sparse with p = α
n
.

If we want to pack more sequences, we need sparse sequences to have the maximum of
mutual information. This figure also shows that the mutual information is more sensitive
to η0 for the sparse setup, so the sparse setup can be optimal when there is no noise.
Unlike the binary case, V takes the bigger values in general.
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Figure 3.9 – Verification performance V for varying c in Ternary case.

The error probabilities (η0, η1, η2) are defined based on parameters (λx, λq, c). For a
given c, we can find the best tuning of (λx, λq). Figure 3.9 shows the mutual information
quantity for varying correlation c (σω in this model). We observed that when correlation
is lower, these parameters are better set to something like 0.43 to have p ≈ 1/3, i.e. dense
setup. Also, the sum outperforms majority vote and the improvement is also better as
the the query vector is very close to the enrolled vector.

3.6 Conclusion

Since the sparsity of the embeddings seemingly plays a crucial role in the performance
verification. This chapter proposed a mathematical model for group membership ver-
ification, allowing to reveal the impact of sparsity on both security, compactness, and
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verification performances.

We studied both binary and ternary alphabets. It shows that in terms of verification
performance, the sparse setup can be optimal when there is no noise, but η0 will never be
equal to zero in practice. It means that it is not easy to have a sparse solution.

When we are operating in the low-SNR regime where the positive queries are less cor-
related with the enrolled templates, the dense setup is more interesting in terms of both
verification performance V and security level S.

Nevertheless, there are still some shortcomings in this study. First, tuning of λ is
challenging because it fixes both p and channel error probability. Second, this observa-
tion holds only for this embedding function. We only considered a simple model where
we have a symbol 0 with a different probability, while the others are equal. We do not
know what the best embedding is. Maybe it is better to learn the embedding model from
a training set.

92



Chapter 4

DESIGN OF PRACTICAL IOT
AUTHENTICATION

Regarding the goals of the ID_IOT project, in this chapter, we study experimental data
from Optical Physical Unclonable Functions (PUFs) provided by our partner from the
University of Eindhoven to design schemes that will enable authentication and group
membership verification of PUF data.

Section 4.1 introduces the basics of PUFs. In Section 4.2, we provide an overview
of the ID_IOT project and how we handle the data that is available to us. Section 4.3
discusses producing compact representations for Optical PUFs to make them suitable
for authentication protocols. In section 4.4, we describe the design of a practical group
membership verification scheme by using descriptors provided in Section 4.3.

4.1 PUF Initial definitions

A Physically Unclonable Function (PUF) is a physical object that takes an input challenge
and produces the output response in a way that is unique to its physical structure and
cannot be reproduced (unclonable). For a particular challenge, no two objects generate
the same response. The combination of a challenge and its response is referred to as a
Challenge-Response Pair (CRP).

Physically unclonable functions are most commonly used for authentication. PUF-
based authentication does not require classical cryptographic assets, making it fitting for
IoT devices. The PUF authentication process consists of two phases: enrollment and
authentication. Traditional PUF-based authentication protocols work as follows: During
the authentication phase, the server applies a randomly chosen challenge to the PUF. The
device sends back the PUF response. Then the device is authenticated if the measured
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response matches the corresponding stored response in the database. However, many of
these lightweight protocols are vulnerable against spoofing attacks. We need to study
PUF properties to choose the type of the protocol that optical PUFs can be used for.

Optical PUF

Optical PUF is a scattering medium that scrambles the coherent light propagating inside
them and produces apparently random speckle patterns. The propagation of light through
this medium is complex and unpredictable. Thus, the output pattern is dependent on the
physical properties of the scattering medium.

The input to a PUF is considered as a challenge, and the PUF produces a unique
output response. Challenge Ci to an optical PUF consists of a location at which the
laser beam directs towards and the incoming laser beam’s properties such as the angle
of incidence, etc. The corresponding response Ri of the PUF is the raw speckle pattern
captured by the CCD camera.

4.2 ID_IOT

The project "IDentification for the Internet Of Things" is a collaboration between the
Technical University of Eindhoven, INRIA (France), and the University of Geneva. There
will be a huge number of devices with very low or no processing and communication re-
sources, coupled with a small number of high-power devices in the Internet of Things.
ID_IOT addresses privacy-preserving algorithms for authentication and identification of
huge numbers of low-power devices in the IoT. The essential tasks in the IoT will be to
verify if an object is authentic or to identify an object. Weak devices, which are most
ubiquitous, cannot rely on cryptography to authenticate themselves.

PUFs are ideal for IoT applications because they enable authentication and identifi-
cation of physical objects without the need for any cryptography or storage of secret in-
formation. ID_IOT intends to address these problems using privacy-preserving database
structures and algorithms with good scaling behavior. A brief recap of the project is that
the project will contribute to improving both the theory and practice of PUF technologies
for IoT authentication and identification scenarios.
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The Optical PUF data that we will discuss in the following is prepared by our partner
from the Technical University of Eindhoven. We have not been involved in the production
of the data. Our task is to design the protocols that will enable authentication, identifi-
cation, and group membership verification scenarios using the PUF data. The following
explores some properties of the PUF data, which points out that an essential requirement
is to have short descriptors for the PUF measurement data. Then, we implement authen-
tication and group membership verification schemes for this PUF data using the learned
descriptors.

4.2.1 Data Preparation

In our dataset, 20 different Zinc Oxide (ZnO) medium of different thickness are used as
PUFs. A Spatial Light Modulator (SLM) is also used to transform the laser light into
a random challenge. A camera is placed at the output side, and is only sensitive to the
intensity of the output light field. Therefore the speckle images captured by a camera
contains information only about the absolute value of the output light field, and the phase
information is lost.

We use raw speckle images provided by Ravitej Uppu [UWG+19] from the University
of Twente. The raw data is whatever the camera recorded, i.e., the absolute value of the
output response. We refer to this dataset as Real-Dataset. The experimental setup is
illustrated in Figure 4.1.

Moreover, in another experiment, instead of using a SLM, a scanning mirror is used
to challenge the PUF from different angles. Then the complex response, i.e., phase and
the intensity of the outgoing light, is measured using a method called off-axis holographic
method. We call the complex speckle images gathered in this experiment as Complex-
Dataset.

The output speckle pattern produced by the experiments are images of size 600 ×
600. The data collected in this experiment consists of 919 images corresponding to 919
challenges. The experiment measures both horizontal and vertical polarization, and also
both types of polarized light are used as input, resulting in four cases: horizontal input
and horizontal output, vertical input and vertical output, vertical input and horizontal

95



Partie , Chapter 4 – Design of practical IoT authentication

Figure 4.1 – Experimental setup used in Real-Dataset measurement.

output, horizontal input and vertical output.

4.2.2 Distinguishing PUFs

The intra-, inter-PUF, and inter-Challenge-distance characteristics which assess PUF
properties are calculated as follows:

• For a particular pair of challenge and PUF, the intra-distance measures the distance
between the two responses resulting from applying this challenge to this PUF with
these two different polarizations.

• For a particular pair of challenge and polarization, the inter-PUF-distance between
two different PUFs measures the distance between the two responses resulting from
applying this challenge with this polarization to both PUFs.

• For a particular pair of PUF and polarization, the inter-Challenge-distance measures
the distance between the two responses resulting from applying these two different
challenges to this PUF with this polarization.
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Figure 4.2 – Examples of speckle images for visualizing Intra-distance. (hh:horizontal
input and output polarization, vv: vertical input and output polarization)
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Figure 4.3 – Examples of speckle images for visualizing Inter-PUF distance. (hv: hori-
zontal input and vertical output polarization)
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Figure 4.4 – Examples of speckle images for visualizing Inter-Challenge distance

Figure 4.2, 4.3 and 4.4 show examples of speckle images (amplitudes) from Complex-
Dataset for visualization of intra-, inter-PUF, and inter-Challenge-distance concepts.

In Figure 4.5, the three Euclidean distances are summarized by presenting histograms
displaying the frequency of occurrence of each distance observed over several different
challenges, polarization cases, and PUFs. The distances are computed by Euclidean norm
of the differences between pixel values of two speckle patterns.
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Figure 4.5 – Intra-, inter-PUF, and inter-Challenge-distance distributions. The x-axis
represents Euclidean distance and the y-axis represents normalized frequency.
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Inter-PUF-distance signifies a concept of uniqueness, i.e., it determines how much it
is possible to distinguish two PUFs based on their output speckle images. This plot indi-
cates that given a speckle image, it is not possible to detect from which PUF the image
originates. Moreover, for a fixed PUF, the correlations between all responses are not sig-
nificant. Thus, they can not be distinguished from the responses of another PUF. Since
we observe that there is no clear separation between these three distributions, we decide
to 1) use optical PUFs in a passive way and 2) have a description stage extracting more
distinguishable features.

Like biometric authentication systems, we consider a pair of PUF and challenge as
an individual. Here the dataset consists of 20 × 919 identities with four images for each
individual, including speckle images of all four different polarizations. Ultimately, in this
setting, we learn descriptors such that the inter-PUF and inter-Challenge-distance will
be large, and the intra-distance will be small, which allows reliable authentication of
individuals.

4.3 Learning Descriptors

A fundamental requirement for an efficient and scalable privacy-preserving authentication
is to have short descriptors for the PUF measurement data. In this section, we aim to
provide descriptors for speckle patterns obtained from Optical PUF responses. Such
descriptors have not been studied in the literature in the context of PUF authentication
protocols.

4.3.1 Preprocessing

In order to reduce the processing time for analyzing speckle images, we need to resize
them. Two resizing process we can think of are cropping or scaling the images. The size
of the images is reduced by a scale of 0.5 to obtain 300 × 300 images, and so do the
cropping methods.

We also have two cropping strategies: cropping #1 that crop the image such that
the center of mass of the image is in the middle. This center is found by computing
the image moments which are defined as the average intensity of the pixels of an im-
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age. The (p, q)−moment for a greyscale image where the pixel intensities are I(i, j) is
Mp,q = ∑

i

∑
j i
pjqI(i, j). By normalizing the first-order moments M0,1 and M1,0 by M0,0,

we get the center of mass’ coordinates, i.e. , Cx = M1,0
M0,0

and Cy = M0,1
M0,0

. Cropping #2
detects the center of the location of the brightest area in the image, where the coordinate
of the brightest area is found by thresholding the image and clearing the borders, then
crops the area centered on this point.

Figure 4.6 shows the result of two cropping process applied on a speckle image from
both datasets. The area to be cropped is shown with the red square. It looks that the
two cropping strategies work more similarly on Complex-Dataset, whereas they work dif-
ferently on the Real-Dataset. In real images, it might be due to the noise that the center
of mass is not located in the center of the brightest area. Indeed, in the Real-dataset,
the speckle patterns consist of bright spots, yet, the dark area is much more dominant,
so cropping the image by computing the center of mass does not give us the part of the
image we are interested in. On the contrary, there is high contrast in the images of the
Complex-dataset, and the bright spot looks much stronger.

To determine how the three different ways of resizing (i.e. , scale reduction and crop-
ping #1 and cropping #2) affect the recognition process, we used raw images in an
authentication protocol where the system performs a one-to-one comparison of a query
response image against a specific speckle image stored in a database at enrollment.

At each time, half of the individuals in the dataset are selected randomly for enroll-
ment. One random template of each individual is enrolled in the system, playing the
role of xi and one other is used for the query. The remaining individuals not enrolled in
the system (N/2) play the role of impostors. We repeat this process several times and
average the results in terms of probability of true positive Ptp when the probability of
false positive Pfp = 0.01.

Table 4.1 shows the performance on raw images of Real-Dataset and Complex-Dataset
with three resizing strategies. It shows as it is expected the Complex-Dataset contain more
information than Real-Dataset. It is supposed that converting the raw images to complex
images is done with kind of denoising which enhances the signal.
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(d) Complex-Dataset, Cropping #2

Figure 4.6 – Cropping
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Data Ptp@Pfp = 0.01
Cropping #1 (Real-Dataset) 0.049
Cropping #2 (Real-Dataset) 0.030
Scaling (Real-Dataset) 0.059
Cropping #1 (Complex-Dataset) 0.179
Cropping #2 (Complex-Dataset) 0.018
Scaling (Complex-Dataset) 0.729

Table 4.1 – The authentication performance on raw images

We need some kind of image enhancing that enables the system to distinguish the
images even more. In the following, we feed the resized images to a deep neural network
and see to what extent the network will be able to learn this denoising to improve the
verification results.

4.3.2 Siamese Networks

A Siamese Neural Network is a type of neural network containing two or more instances
of the same model with the same architecture, with the same parameters and weights.
Here, the goal is to make sure that two images with the same label have their embedding
close together in the embedding space while two inputs with different labels have their
embedding far away. This is the central idea behind the Siamese Networks.

In the case of standard classification, where a neural network learns to predict multiple
classes, deep neural networks need a large number of images for each of the classes during
the training. Besides, when we need to add or remove new classes to the data, we must
re-train the model again. Since Siamese Networks learns to differentiate between images,
learning their similarity instead of classifying the images, we can classify new classes of
data by comparing the images without training the network again.

As in our application, descriptors should be learned to minimize the overlap between
intra and inter-distances. In addition, we do not have enough data for each PUF, and
also, the number of PUFs is huge. This type of networks would be perfect.

Triplet loss [SKP15] is used to train a Siamese Network. Triplet loss [3] takes three
inputs: an anchor a (or the reference input), a positive p of the same identity as the
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Figure 4.7 – Training of Siamese Network with Triplet Loss.
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anchor, and a negative n with a different identity from the anchor.

As illustrated in Figure 4.7, first, we compute the d dimensional embedding of each
image by feeding them to the same CNN with the same parameters. Then, using some
distance function d, these three embeddings are passed to the Triplet Loss function, which
is defined as:

L = max(d(a, p)− d(a, n) +margin, 0) (4.1)

Minimizing the loss function 4.1, pushes d(a, p) to 0 and d(a, n) to be greater than
d(a, p) + margin. In other words the anchor is pushed away from the negative while
pushed closer to the positive.

The critical point is how to prepare triplet batches for training as some triplets are
more useful than others. By online triplet mining, we compute useful triplets for each
batch of inputs. Given a batch of B examples consisting of P different PUFs with K

challenges each, we compute the B embeddings, which provides us a maximum of B3

triplets. Most of these triplets are not valid since they do not include two positives and
one negative. Then we use the Batch-hard strategy, which works as follows: for each
anchor input, it selects the hardest positive, i.e., a positive with the biggest distance
d(a, p) and hardest negative, i.e., a negative with smallest d(a, n) among the batch. This
procedure produces PK triplets, which are the hardest among the batch.

Implementation Details We employed ResNet-50 [HZRS16] as the backbone CNN
model to produce the embeddings. The embedding dimension is set to 1024. We split the
dataset into train, validation, and test subsets using a 70/20/10 ratio. The mini-batch
consists of 64 images with 16 different PUFs and four images per identity in each mini-
batch. The margin is set to 0.3. The training process takes 400 epochs in total. Adam
optimizer, with a learning rate of 0.001 optimizes the model parameters. We implemented
the experiments in Pytorch. We saved the checkpoint with the highest authentication
accuracy on the validation set and evaluated it on the test set as the accuracy of the
model.

Results Using one of the preprocessing procedures, we train a network to learn descrip-
tors. Here, we use the same input data as in Section 4.2.2 and compute intra-, inter-PUF,
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and inter-Challenge distances, to see how the learned descriptors are helpful to distinguish
between PUF responses.

As Figure 4.8 illustrates, the overlap between intra and inter-distance distributions
has been reduced significantly. Especially on Real-Dataset, the discrimination is stronger.
Moreover, the separation between inter-PUF and inter-Challenge distances in Figure 4.8b
is exciting and might help further analysis.
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Figure 4.8 – Intra-, inter-PUF, and inter-Challenge-distance distributions after learning
descriptors.

In order to assess the efficiency of the trained model on test split, the descriptors are
computed by feeding the speckle images into the trained network and evaluated in an au-
thentication scenario. Table 4.2 shows the authentication performance on both datasets
with three preprocessing strategies.

As Table 4.2 shows, compared to the authentication results computed on the raw im-
age (Table 4.1), the network learns very well on Real-Dataset, which are noisy. Indeed,
the network succeeds in removing the noise from real images and achieving as much per-
formance as when learned on complex images that are supposed to have better quality
and contain much more information. Besides, we noticed that cropping is not the best
way to reduce the size of the images; especially on Complex-dataset cropping causes huge
information loss.
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Data Ptp@Pfp = 0.01
Cropping #1 (Real-Dataset) 0.952
Cropping #2 (Real-Dataset) 0.964
Scaling (Real-Dataset) 1
Cropping #1 (Complex-Dataset) 0.512
Cropping #2 (Complex-Dataset) 0.016
Scaling (Complex-Dataset) 0.9996

Table 4.2 – The authentication performance on test set after learning descriptors

Learning the descriptors with image scaling achieves the best performance and works
on both datasets equally well. Thus, it is still unclear which dataset is more efficient to
use in this context. Yet, the Real dataset seems closer to real-life application, which is less
complicated to capture. In the following, we make the problem more difficult to assess
how different these two datasets behave ultimately.

4.4 Group Membership Verification

By manipulating descriptors designed in the last section, we develop a group membership
verification scheme that checks whether the PUF query matches one of the previously
enrolled PUFs of a given group.

Similar to experimental setup described in Section 2.2.2, the set of PUFs is parti-
tioned into M groups such that all the groups have the same cardinality, m. The PUF
responses that enrolled are the vectors {x1, . . . , xN} ⊂ Rd. The output of the enrollment
is a l ×M matrix R = [r1, . . . , rM ] composed of the representations of the M groups.
The group representations are quantized and sparse: rg ∈ Al with A := {−1, 0, 1} and
‖rg‖0 ≤ S < l, ∀g ∈ {1, 2, . . . ,M}.

A PUF query claims that it belongs to group g. This claim is valid under hypothesis
H1 and false under hypothesis H0. The PUF response q is embedded onto Al, the embed-
ding, and the claimed group number g is sent to the system, which compares the embedded
query to the group representation rg. The system accepts (t = 1) or rejects (t = 0) the
claim. This is a two hypothesis test with two probabilities of errors: Pfp := P(t = 1|H0)
is the false positive rate and Ptp := P(t = 1|H1) is the true positive rate.
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We evaluate the group membership verification protocol based on the following metrics:

• Verification performance: The ability of the protocol to correctly perform the
verification task that we considered Ptp(τ) for τ s.t. Pfp(τ) = 0.05

• Privacy: A curious server can reconstruct the query response from its embedding.
The mean squared error assesses how accurate is this reconstruction.

• Security: As for the security of the enrolled templates, a curious server can recon-
struct a single vector x̂ from the group representation, which is the same for all the
members of that group.

Exp #1: Complex-Dataset vs. Real-Dataset Figure 4.9 compares the verification
performance and the security of group representations for varying group size m on two
datasets.

Here, images are resized in two different scales to determine how various sizes affect
the verification process. The images are either resized to the input size of Res-Net50,
which is 224 × 224 or 300 × 300. In the latter case, because the input image size to the
network is 300 × 300 instead of 224 × 224, an adaptive pooling with the output size of
1× 1 is applied before the fully connected layer (the kernel size is selected automatically
to produce an output of the given dimensionality).

We observe that verification performances decreases and security increases as the num-
ber of enrolled signatures increases. Yet the trade-off between security and performance is
more impressive on Real-Dataset with images of size 224×224. It makes sense since images
with smaller sizes carry less information. Besides, real images contain less information
than complex images.

As Real-Dataset results in better performance in terms of both security and perfor-
mance, we use this dataset for the following experiments.

Exp #2: Comparison of Performance of different schemes In this experiment,
we compared different schemes proposed in Chapter 2; group representation can be com-
puted by one of the following schemes:
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Figure 4.9 – Trade-off between security and performance for varying group size m on two
datasets with different image sizes

• EoA-pinv first aggregates the raw signatures Xg := [xg,1, . . . ,xg,m] into a unique
vector as (X†g)>1m, then the group signature is computed by embedding the aggre-
gated vector.

• AoE-sum embeds each signature before aggregating with sum pooling and then
applies sign to obtain group representation.

• EoA-ML described in Section 2.2.1 learns group representation and embedding
jointly based on the embedding of aggregated vectors.

• AoE-ML learns the group signatures with the aggregation of embedding construc-
tion, explained in Section 2.2.1.

• JLAR introduced in Section 2.3 aims to learn assignments and group representa-
tions jointly.

Figure 4.10 demonstrates that the plot corresponding to the JLAR is way above the
rest of the plots. In fact, the small verification performance for those plots is caused by
the significant losses in information. In contrast, JLAR tries to learn group representation
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Figure 4.10 – Performance comparison of different schemes for varying group size m

and assignments simultaneously, which assigns similar vectors into groups so as to lose
less information.

Exp #3: Investigating the impact of sparsity Security and privacy are measured
by the ability to reconstruct signatures from group representations and embeddings re-
spectively. In this experiment, we examine how the sparsity level affect the reconstruction
of query and group representation.

Figure 4.11 illustrates following fact. First, thanks to aggregation, reconstruction
of enrolled PUFs from group representation is more complicated than reconstructing the
query from its embedding. Second, even though in JLAR assignment is based on similarity
of PUF responses, it achieves the desired balance between security and performance.

4.5 Conclusion

This chapter explored two types of experimental data obtained from optical PUFs: PUF
measurements captured by a camera and the complex speckle images measured by ap-
plying a few corrections. In order to use the available PUF data in a setting similar to
biometric applications, descriptors must be learned to differentiate different PUF mea-
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Figure 4.11 – The impact of sparsity factor with m = 16, S/d ∈ [0.1, 1]

surements. The learning is modeled so as to minimize the distance between responses
that result from the same PUF (intra-distance), whereas the distance between responses
from different PUF is maximized (inter-distance).

Both datasets proved to have quite interesting results during the authentication pro-
cedure. In addition, we examined the group membership verification schemes using the
learned descriptors. The study shows that joint learning of group representations and
group assignments can lead to better results. This implies that rather than random as-
signment, groups should be formed in such a way that similar PUF responses would be
assigned to the same group.

Here we considered a pair of PUF and challenge as one individual. It is more desirable
if each PUF is regarded as one individual and the descriptors learned so that the correla-
tion between challenges of a given PUF is maximized. Yet, there are some limitations with
available data in this setting. First, the limited number of classes (we have 20 classes);
Second, we still do not know how to generate noisy measurements, i.e., imposter examples.

However, in Figure 4.8b, disregarding intra-distances, we observe robust discrimination
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between inter-PUF and inter-Challenge distance distribution of learned descriptors, which
means that even training under the current setting distinguishes between PUFs in the
other setting.
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CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions to this thesis, followed by some future research
directions.

Conclusion

Throughout this thesis, we study the privacy-preserving group membership verification
problem. The procedure that determines whether an item or individual is a member of
a group. The core component of our work constructs a compact group representation.
The procedure is based on aggregating and embedding of templates of the group member
that keeps track of the membership property at test time as well as providing privacy and
security.

We demonstrate that our schemes provide security as the group representation is suf-
ficiently protected. This makes it impossible to reconstruct the signatures from group
representations while identifying noisy versions of them. Further, the server is only able
to link each signature to its group number. Identity is not revealed during verification, so
privacy is preserved as well.

The keystones are the aggregation and embedding functions. So, in Chapter 2, first,
we explore approaches in which aggregation and embedding of group members are based
on deterministic functions. Afterward, we replace those passive functions and hard-coded
parameters with functions producing the same types of output, but their parameters are
learned through optimization.

We also explore the group identification protocol that identifies which specific group
the individual belongs to without disclosing its identity. However, group identification, a
1-to-many task is more challenging than group verification, a 1-to-1 problem. We demon-
strate that this can also be handled well.
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Subsequently, rather than considering group assignments that are predetermined,
group assignments are also learned together with representations of the groups. With
this approach, the enrolled signatures are grouped according to similarities, aiming to
reduce the overall distance between group members while increasing separation between
groups within the embedded domain.

We argue that the performance of group membership verification may be affected by
the sparsity of the embeddings. Chapter 3 presents a mathematical model for group
membership verification, which reveals the impact of sparsity on both security and com-
pactness, along with verification performance.

Our studies on binary and ternary alphabets point to the following conclusions. First,
the sparse setup can be considered optimal with regard to verification performance under
the assumption that there is no noise. Yet, in practice, the channel error will always
be greater than zero, which indicates that it is relatively challenging to have a sparse
solution. Second, the dense setup is impressive in terms of security level as well as veri-
fication performance under low-SNR conditions that the genuine are less correlated with
the enrolled templates.

Chapter 4 discusses the experiments we conducted as part of the ID_IOT project. We
examine two datasets of experimental data obtained from optical PUFs. The first includes
PUF measurements captured by a camera, and the second contains complex speckle im-
ages measured by applying a few corrections. We assume that PUF authentication will
have a similar structure as biometrics. The problem is how to generate descriptors for
PUF responses so that enabling the system to distinguish between PUFfs. Descriptors
are learned by training a neural network such that the distance between responses from
a given PUF is minimized (intra-distance) while the distance between responses from dif-
ferent PUFs is maximized.

The result of the authentication procedure on both datasets is interesting. Following
that, we analyze the group membership verification protocol using the learned descriptors.
It demonstrates that learning jointly group representation and group assignments results
in a better performance. Therefore, the verification performance depends largely on how
the groups are formed. It is suggested that similar PUF responses be assigned to the
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same group.

Future Work

Here, we discuss some possible directions for future work.

Group membership verification There are some limitations with the group mem-
bership verification schemes proposed in Chapter 2. First, the learning of group represen-
tations is not entirely free. Some guidances are still imposed, especially the prototyping
of the embedding based on a sparse ternary quantization. This is mainly for inheriting
the security and privacy properties of this lossy information processing. We can explore
an alternative approach, such as binary embedding. Second, it is assumed that every
individual belongs to exactly one group. However, in some applications, an individual
can belong to different groups with different access privileges. Third, another strict as-
sumption we have taken is that groups have the same size. It would be more interesting
to develop group membership protocols that allow members to belong to more than one
group and groups can be of different sizes, as well.

Processing in the encrypted domain The protection of enrolled templates is pro-
vided by aggregation. The protection level of the query can be boosted by leveraging
low-cost partially homomorphic encoding schemes on top of our work. In this manner, we
will be able to build more secure protocols by combining such encryption with our group
membership verification scheme. Therefore, unauthorized parties cannot learn anything
that they are not supposed to. Our system is designed in line with this protocol. Quan-
tizing all aggregated vectors ensures adoption by cryptography algorithms. Developing
this protocol can be explored further.

PUF experiments: Assuming a similar structure as biometrics for the PUF authenti-
cation, we consider a pair of PUF and a challenge to be as if they were one individual. The
best course would be for each PUF to be considered as one individual where the same PUF
might have multiple Challenge-Response pairs (in contrast, the current system is enrolled
as a single pair per item). The descriptors are thus learned so that the correlation be-
tween challenges within a given PUF is maximized. Yet, we notice robust discrimination
between the inter-PUF and inter-Challenge distance distributions of learned descriptors
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in Figure 4.8b. So that even by training under the current setup, the PUFs in the other
setting can also be distinguished from one another. With available data, however, some
limitations exist when working in this setting such as: the limited number of PUFs (20
PUFs), and the difficulty in generating noisy measurements, i.e., imposter examples.

The model of embedding: Chapter 3 only examines a simple model where we have
a symbol 0 with a different probability, while the rest are equal. The findings are only
valid for this embedding function. We do not know what the best embedding is. There
could be embedding functions that are less prone to channel errors, so it would be more
interesting to learn the embedding model from a training set. To this end, we propose a
quantization learning scheme presented in the Appendix A.1, which would be a potential
direction for future work.

Learning descriptors and group representations In order to compute the group
representations, we assume that the descriptors have already been obtained (from a pre-
trained network) during a separate phase. However, we can design a neural network for
learning the descriptors as well as their aggregation over a group. In this regard, we
develop a deep architecture, AggNet, which aims to simultaneously learn face descriptors
and the binary group representations suitable for group membership verification tasks.
This is achieved by training the network so that the loss in verification performance
caused by aggregating multiple faces into a single descriptor is minimized. The network
architecture and the loss function of AggNet is introduced in Appendix A.2. This work
is being evaluated, and the results are currently under preparation.
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Appendix A

APPENDIX

A.1 Quantization Learning

We aim to learn an embedding function motivated by the similarity score defined in (3.28).
The embedding function h : Rd 7→ Z partitions the feature space into z cells by mapping a
vector to an integer in Z = {1, ..., z}. Define W ∈ Rz×z as a weight matrix, whereW (i, j)
is an estimation of similarity between cell Ci and Cj. In other words, W (i, j) indicates
that if x is quantized to the i-th cell, how much the probability of mapping q = x + n to
the j-th cell is. Then the similarity between two points x and q is computed as:

Sim(x,q) = Wh(x),h(q) (A.1)

Consider Xref is a set of reference points where each point is associated with a set of
positive points Xp. The embedding function h and weight matrix W are learned by si-
multaneously maximizing the similarity score of positive pairs and also minimizing the
score for negative (nonpositive) pairs. The objective function for each reference point
xref ∈ Xref is defined as:

max
W,iref ,ip,C

1
|Xp|

∑
xp∈Xp

(J (iref , ip,W)− λD(xp, Cip))− λD(xref , Ciref ) (A.2)

J and D are considered as the gain of detection and the penalty of quantization, respec-
tively. iref and ip indicate the index of cells the reference point and the positive point
mapped to. The following two different schemes are proposed based on the definition of
detection gain function J .

117



Mean Cost Function

Consider Xn as the set of negative pairs, then the similarity loss is formulated as:

Jiref = 1
|Xp|

∑
xp∈Xp

W (ip, iref )−
1
|Xn|

∑
xn∈Xn

W (in, iref ) (A.3)

The similarity of negative pairs can be estimated by:

E[W (In, iref )] =
z∑
i=1

piW (i, iref ); pi = P (In = i) = Ni

N
(A.4)

N and Ni denote the total number of points and the number of negative points assigned
to Ci, respectively. Then, we define the overall objective function as:

max
W,C,iref ,ip

∑
xref∈Xref

[ 1
|Xp|

∑
xp∈Xp

(W (ip, iref )− λ||xp − cip ||2)−
z∑

k=1
pkW (k, iref )− λ||xref − ciref ||2]

s.t. g(W) = d
(A.5)

where g defines a constraint on W and ci ∈ Ci. This problem can be solved iteratively by
alternative optimization, updating one parameter while the others are fixed.

Update W: When partitioning is fixed, the optimization problem is:

max
W

z∑
i=1

z∑
j=1

aijW (i, j)

s.t. g(W) = d
(A.6)

Here aij = ∑
xref∈Aj

∑
|Xp|

1[ip=j]

|Xp| − pi and Aj = {xref |iref = j} is a set of reference points
assigned to the j-th cell. Based on the definition of the constraint, we have the following
solutions:

• Unit norm (column-wise): ∑iW (i, j)2 = 1
The Lagrange multipliers found as λj =

√∑z

i=1 a
2
ij

2 and the weight matrix elements
computed by wij = −aij

2λj .

• Unit variance and zero mean (negative scores): The mean and variance for the
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distribution of negative scores is defined as:

E(Sn) =
∑
j

∑
i

pipjW (i, j), V(Sn) =
∑
j

∑
i

pipjW (i, j)2 − E(Sn)2 (A.7)

The weights founds asW (i, j) = −aij−λpipj
2µpipj where λ = −

∑
i,j
aij∑

i,j
pipj

and µ =
√∑

i,j
(aij+λpipj)2

4pipj .

Update partitioning: The weight matrix is fixed; then, the assignments and centroids
are updated by stochastic gradient ascent given in Algorithm 1.

Algorithm 1 Stochastic Gradient Step
for xref ∈ Xref do

i′ref ← iref
for j ∈ {1, ..., z} do

Compute L1(j) =
1
|Xp|

∑
xp∈XpW (ip, j)−

∑z
i=1 piW (i, j)− λ||xref − Cj||2

end for
iref ← arg max

j
L1(j)

for xp ∈ Xp do
for j ∈ {1, ..., z} do

Compute L2(j) =
1
|Xp|W (j, iref )− λ||xp − Cj||2

end for
ip ← arg max

j
L2(j)

end for
if iref = i′ref then
Ciref ← Ciref + η1(xref − Ciref ) . Reinforcing it

else
Ci′
ref
← Ci′

ref
− η2(xref − Ci′

ref
) . getting away

Ciref ← Ciref + η3(xref − Ciref ) . moving closer
end if

end for
return C
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KL Cost Function

Based on KL divergence the distance between positive and negative distributions is:

DKL(P ||N) =
z∑

i,j=1
Pp(ip = i, iref = j) log Pp(ip = i, iref = j)

Pn(in = i, iref = j) (A.8)

The wights are considered as Ŵ (i, j) = log P̂p(ip=i|iref=j)
P̂n(in=i,|iref=j) and the two probabilities are

estimated as:
P̂p(ip = i|iref = j) = ni|j

|Xp| ∗ nref |j

P̂n(in = i|iref = j) = nq − ni|j
|Xp| ∗ (|Xref | − nref |j)

(A.9)

where nref |j = |{xref ∈ Xref |iref = j}|.

Now, the similarity loss is expressed as J = ∑
xref∈Xref Jref (iref ) that:

Jref (iref ) =
z∑
i=1

|{xp ∈ Xp|ip = i}|
|X |p

Ŵ (i, iref ) (A.10)

Here, W is optimized like (A.6) and partitioning is updated in the similar procedure as
Algorithm1 by substituting L1 and L2 as below:

L1(j) =
z∑
i=1

|{xp ∈ Xp|ip = i}|
|X |p

ŵij − λ||xref − Cj||2

L2(j) = Ŵ (j, iref )
|X |p

− λ||xp − Cj||2

(A.11)

A.2 Deep Aggregation

The deep aggregation network, AggNet is used to compute the face descriptors for each
member and aggregate multiple templates to produce a compact binary code for the group
of individuals. Basically, this procedure is carried out for every group so that each group
is represented by a single binary vector. Then, at verification time, a binary hash code
is computed for the query using AggNet. Based on the inner product between the group
representation and the query, a logistic regression classifier is used to score the member-
ship. After this score is determined, it is compared to a threshold, and access to the
system is granted if the score is greater than the threshold.
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Figure A.1 – The Network architecture.

As illustrated in Figure A.1, the network architecture is made up of:

• Feature extractor: Each face is passed through it to extracting one descriptor for
each group member.

• Aggregator: Multiple face descriptors into a single vector by a learnable pooling
layer.

• Hash layer: The aggregated vector is quantized to a binary code.

Note, AggNet is used to generate both the group representation and the individual de-
scriptors. In the following, we will discuss each component of the network in detail.

Feature Extraction

Face descriptors are extracted from input images using convolutional neural networks.
We can use any network for this framework, but here we take an adapted ResNet50
architecture as the backbone. As illustrated in Figure A.2, the ResNet-50 is adapted such
that the last fully connected layer has been removed and instead a fully connected layer of
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size 2048×d is added after the global average pooling layer. Indeed, ResNet-50 reduces the
dimensionality of face descriptors to d. We used ResNet-50 128−D network pretrained on
the VGGFace2. Therefore, in this part, individual descriptors {x1, . . . ,xn} are produced,
where n indicates the number of members in the group. Finally, L2 normalization is
applied to each face descriptor.

I
n
p
u
t

C
o
n
v
1

C
o
n
v
2

C
o
n
v
3

C
o
n
v
4

C
o
n
v
5

F
C
 
1
0
0
0

O
u
t
p
u
t

(Output size)

A
v
g
 
P
o
o
l
i
n
g

C
o
n
v

O
u
t
p
u
t

E
n
c
o
d
e
r

E
n
c
o
d
e
r

Encoder

ResNet-50 Adapted ResNet-50

Figure A.2 – The adapted ResNet.

Aggregation

The aggregation block uses NetVLAD [AGT+16] which is a trainable pooling layer based
on VLAD [JPD+12]. This block aggregates multiple face descriptors into a single d×K
vector ( K is the parameter of the NetVLAD). A fully-connected layer then reduces the
dimension of the feature vector to d. A batch-normalization layer and L2-normalized are
also used to produce the aggregated vector. NetVLAD is briefly discussed in the following.

Given n d-dimensional input descriptors xi and a chosen number of clusters K, the
NetVLAD layer computes a single d × K dimensional vector hg, which is written as a
d×K matrix using the following equation:

Hg(j, k) =
n∑
i=1

eaTk xi+bk∑K
k′=1 e

aT
k′xi+bk′

(xi(j)− ck(j)) (A.12)
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ak, bk and ck for k ∈ {1, . . . , K} are trainable parameters of this block and j indicates
the j-th cluster. For cluster k, there is also a residual term in addition to the first term
that computes the soft-assignment weight of the input vector xi. Then, the aggregated
vector hg is obtained by L2 normalization.

Hashing

The final representation should be binary rather than real-valued. The third part of the
AggNet applies a binarization layer to the deep features to produce binary codes. One
possibility for achieving binary representation is to post-process and convert the learned
real-valued representation, for instance by applying the sign function, mapping positive
values to 1 and negative values to -1 (e.g., thresholding each dimension at 0). As an
alternative, the network F can be directly trained to produce a binary representation.
A simple solution could be to add a layer at the end that applies a sign function to the
outputs of F .

However, the main challenge that prevents the training of deep hashing from being
truly end-to-end is that due to binary constraints on the codes, deep hashing is basically
a discrete optimization problem that cannot be directly solved by back-propagation. In
other words, the use of the sign function in the last layer of a neural network to convert
continuous features into binary codes result in a variant of the vanishing gradient problem
since the gradient of the sign function is zero for all nonzero input and therefore conveys
no information at all.

Because of this ill-posed gradient problem in the optimization with sign activations,
these methods make use of relaxation or approximation. A few works have addressed the
problem of training deep models under the binary constraint. To tackle this problem, we
employ two techniques which are explained in detail in the following.

Greedy Hash [SZHT18] With the newly added layer, b = sgn(h) is used in the forward
pass, but the backward pass keeps the gradient intact, just as if the layer were the identity,
i.e. , ∂L

∂h = ∂L
∂b . It turns out just making this change is enough in training F to produce a

binary representation. It is generally necessary to initialize the weights of the network F
from a model trained without a binarizing layer to avoid divergence during training.
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HashNet [CLWY17] This method handles the non-smooth problem of the sign func-
tion by continuation. HashNet starts the training with a smoothed activation function
tanh(αth) and gradually reduces the smoothness as the training proceeds, i.e. increases αt
until it eventually becomes almost like the sign function as limαt→+∞ tanh(αth) = sign(h).
The operation can be modeled by a multi-stage pretraining process, i.e. training the net-
work with tanh(αth) activation function is used to initialize the network with tanh(αt+1h)
activation function.

Loss Function

Assume that n identities belong to a group and the training batch consists of faces of m
individuals. Once at training time, in a forward pass, the descriptors corresponding to
the n individuals will be aggregated into a single binary hash code bg. As well, for every
identity in the batch, a binary hash code, bi, is computed using the same network.

The association to the group is then determined for each individual by applying a
logistic regression classifier to the scalar product of the two binary codes, i.e. :

score = σ(θ1 〈bg,bi〉+ θ2) (A.13)

where σ(z) = 1
1+exp(−z) is a sigmoid function, and θ1 and θ2 are the slope and bias pa-

rameters of the logistic regression classifier, respectively. For each group member, this
score should ideally be one, and for all other m − n identities in the batch, it should be
zero. The loss indicates how much of a difference there is between this ideal score and
the actual score.

As is the case with most machine learning algorithms, the choice of loss function plays
an important role. In the following, we define two different loss functions.

Weighted Cross Entropy loss For each group, the loss is defined as:

L =
m∑
i=1

wi [gi log(σ(θ1 〈bg,bi〉+ θ2)) + (1− gi) log(1− σ(θ1 〈bg,bi〉+ θ2))] (A.14)

wherem is the size of the training batch and gi is a binary indicator whether i-th individual
belongs to the group or not and also wi is the weight for i-th training image, which is
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used to tackle the data imbalance problem as there are more negatives than positives in
a batch (most gi’s are equal to 0). So the training images are weighted according to the
number of individuals in the group.

Wilcoxon-Mann-Whitney loss The ideal loss function is one, which directly corre-
sponds to the metric by which we evaluate performance (i.e. , AUC or Ptp@Pfp = α).
The AUC can be computed using Wilcoxon-Mann-Whitney (WMW) statistic:

A =

n∑
i,j=1
gi>gj

I (σ(θ1 〈bg,bi〉+ θ2)− σ(θ1 〈bg,bj〉+ θ2))

n(m− n) (A.15)

where I(z) = 1[z > 0] is the unit step function.

However, in the equation above, the AUC is not a smooth function. This can be
smoothed out so that it is differentiable. One way to deal with this, as discussed in the
paper [YDMW03], is approximating Equation (A.15) by:

L =
n∑

i,j=1
gi>gj

R(bi,bj) (A.16)

where:

R(bi,bj) =

(−(Sij − γ))p if Sij < γ

0 otherwise
(A.17)

and Sij = σ(θ1 〈bg,bi〉+ θ2)−σ(θ1 〈bg,bj〉+ θ2). Also, 0 < γ ≤ 1 (usually 0.1 < γ ≤ 0.7)
and p > 1 (usually 2 or 3) are hyperparameters.

Therefore, this loss function penalizes any occurrence where the group membership
probability of the group members is less than the group membership probability of the
other identities in the group.

Hashing with greedy strategy The optimization problem is defined as:

min
b
L(b)

s.t. b ∈ {−1,+1}d
(A.18)
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without the binarization constraint, b is being updated as bt+1 = bt− lr∗ ∂L
∂bt . The closest

binary point to the continuous bt+1 is sgn(bt+1). Thus, based on the greedy principle,
we update b toward this value as it is probable to be the optimal binary solution in each
iteration:

bt+1 = sgn
(
bt − lr ∗ ∂L

∂bt

)
(A.19)

Let h be the output of the NetVLAD layer, to deal with the binarization constrain with
Greedy Hash technique, we need to split Equation (A.19) as:

b
t+1 = sgn(ht+1)

ht+1 = bt − lr ∗ ∂L
∂bt

(A.20)

In order to implement the first item of Equation (A.20), we need to apply sign function
in the forward pass of the hash layer. For the second term, we add a penalty term
‖h − sgn(h)‖3

3 to the loss function L, so that it will be as close to zero as possible.
Then, we see that implementing the second item will be obtained by setting ∂L

∂ht = ∂L
∂bt

in the backward propagation, which means the gradient of b is transmitted to h entirely
[SZHT18].
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Titre : Identification sécurisée pour Internet des objets

Mot clés : Représentation de groupe, plongement, agrégation, vérification, sécurité, confiden-

tialité.

Résumé : Cette thèse aborde le problème de
l’authentification des dispositifs à faible puis-
sance dans l’Internet des objets en introdui-
sant de nouvelles fonctionnalités : la vérifica-
tion de l’appartenance à un groupe et l’iden-
tification. La procédure vérifie si un disposi-
tif IoT donné est membre d’un groupe sans
révéler l’identité de ce membre. De même,
l’identification de l’appartenance à un groupe
indique à quel groupe le dispositif appar-
tient sans connaître son identité. Nous pro-
posons un protocole par l’utilisation conjointe
de deux mécanismes : la quantification des
motifs dans des plongement discrets, rendant
la reconstruction difficile, et l’agrégation de
plusieurs motifs dans une représentation de
groupe, entravant l’identification. Tout d’abord,
nous considérons deux procédures indépen-
dantes, l’une pour l’plongement, l’autre pour

l’agrégation. Ensuite, nous remplaçons ces
fonctions déterministes par des fonctions dont
les paramètres sont appris par optimisation.
Enfin, plutôt que de considérer des affecta-
tions de groupes prédéterminées, les affec-
tations de groupes sont également apprises
avec les représentations des groupes. Nos ex-
périences montrent que l’apprentissage per-
met un excellent compromis entre les perfor-
mances de sécurité/confidentialité et de vérifi-
cation/identification. Nous étudions également
l’impact du niveau de sparsité des fonction-
nalités représentant les membres du groupe
sur les performances de sécurité et de vé-
rification. Nous montrons qu’il est possible
d’échanger la compacité et la sparsité pour
une meilleure sécurité ou de meilleures per-
formances de vérification.

Title: Secure identification for the Internet of Things

Keywords: Group Representation, Embedding, Aggregation, Verification, Security, Privacy.

Abstract: This thesis addresses the problem
of authentication of low power devices in the
Internet of Things by introducing new func-
tionalities: group membership verification and
identification. The procedure verifies if a given
IoT device is a member of a group without re-
vealing the identity of that member. Similarly,
group membership identification states which
group the device belongs to without knowing
the identity. We propose a protocol through
the joint use of two mechanisms: quantizing
templates into discrete embeddings, making
reconstruction difficult, and aggregating sev-
eral templates into one group representation,
impeding identification. First, we consider
two independent procedures, one for embed-

ding, the other for aggregating. Then, we re-
place those deterministic functions with func-
tions whose parameters are learned through
optimization. Finally, rather than considering
group assignments that are predetermined,
group assignments are also learned together
with representations of the groups. Our exper-
iments show that learning yields an excellent
trade-off between security/privacy and verifi-
cation/identification performances. We also
investigate the impact of the sparsity level of
the features representing group members on
both security and verification performances. It
shows it is possible to trade compactness and
sparsity for better security or better verification
performance.


