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Abstract

Optimization is a mathematical tool that allows to model and solve problems, in
which a criterion is to be optimized. When the function to be minimized and the
constraints that characterize the problem are multivariate polynomial functions, it is
called polynomial optimization. It allows to model many real problems where the
links between the variables are naturally non-linear, as for example in the fields of
physics or electricity. Two main difficulties appear when solving a polynomial opti-
mization problem: the non-convexity of its functions and the integrality of some of
its variables. In the presence of convex functions, we can distinguish two cases. If
the variables are continuous, the problem is polynomial. If this is not the case, the
standard resolution algorithm is the branch-and-bound based on continuous relax-
ation. Under these assumptions, there exist tools that efficiently implement these
algorithms.

Our research focuses on the case where the functions are quadratic and non con-
vex. We have proposed several exact algorithms, each depending on the class of the
problem under study. More precisely, starting from the most specific class, we have
extended our approaches so that they can efficiently handle increasingly complex
problems. From this incremental work comes a hierarchy of methods, where each
new algorithm is a generalization of the previous one. These algorithms work in
two phases. The first one consists in computing a convex quadratic relaxation with
a strong bound. To do this, we first introduce a family of formulations equivalent to
the problem in an extended space of variables. In these formulations, all initial func-
tions are convex, and the only non-convexity lies in an additional constraint and in
the integrality of the variables. Then, within this family, we calculate a quadratic
convex relaxation whose optimal value is maximized by solving a semidefinite pro-
gramming problem. An advantage of our method is that the optimal value of the
obtained relaxation has the same optimal value as the semidefinite relaxation used
to compute it. In the second phase, we solve the initial problem by a branch-and-
bound algorithm based on our tight relaxation. In this way, we take advantage of
the efficiency of convex quadratic programming algorithms, as well as the strength
of the semidefinite programming bounds.

We develop the solver SMIQP (Solver of Mixed-Integer Quadratic Programs)
that implements the proposed algorithms for the quadratic case and is available on-
line 1. This software has allowed us to compare our algorithms on many instances
of the literature, and it is largely competitive with the best existing solvers.

Furthermore, we study several applications. In particular in the field of electric-
ity, where we have specialized our method to the problem of optimal power flows in
an electrical network. We have also improved the solution of classical combinatorial
optimization problems, such as the quadratic assignment problem.

Finally, after considering problems where the functions are quadratic, our work
now focuses on problems where the degree of the function to be minimized can be
arbitrary. Our first results concern the unconstrained binary case. We have proposed
an exact algorithm, which after rewriting the objective function into a quadratic
function, convexifies it by a dedicated approach. This algorithm allows us to ad-
dress instances of an application in the field of physics that were not yet solved.

Keywords Non-linear Optimization, Global Optimization, Discrete Optimiza-
tion, Semidefinite Programming, Experiments, Solver.

1https://github.com/amelie-lambert/SMIQP

https://github.com/amelie-lambert/SMIQP
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Chapter 1

Introduction

Mixed Integer Optimization is a very active area of research. It provides a pow-
erful framework for modeling and solving many problems in different application
areas such as telecommunications, finance and engineering. Although tremendous
progress has been made to efficiently solve optimization problems during the last
decades, there are still some challenging theoretical and practical questions arising
from more and more difficult problems. One such challenging problem is Mixed
Integer Nonlinear Programming (MINLP) which consists in minimizing a nonlinear
function over a feasible region described by nonlinear functions and where some of
the variables are constrained to only take integer values. In recent years MINLP has
received a sustained attention from the research community with the development
of new theoretical results, algorithms and solvers.

In this manuscript, our first purpose is to solve exactly a rich subclass of MINLPs
called Mixed-Integer Quadratically Constrained Programs (MIQCP). These are the
class of MINLPs where the objective function to minimize and the constraints are all
quadratic. Although, somewhat more simple than the general MINLP, MIQCP still
constitutes a very broad and challenging class of problems. By itself, it has appli-
cations in a wide range of areas: chemical process design, optimal control, finance,
telecommunications, and combinatorial optimization. Examples of applications in
those areas are among others: the famous unit commitment problem or the pooling
problem introduced by Haverly [4, 13, 78], the Markowitz portfolio-optimization
problem [62] or the market prices computation [108]. Moreover, it designs graph
theory problems [74], and in particular the Quadratic Assignment Problem (QAP),
that consists in allocating n facilities to n locations while minimizing a quadratic
cost [47]. In the pure continuous case, it also arises in several applications, includ-
ing facility layout [150], package planning [46], chemical process planning [106],
circle packing problems [107, 138], euclidean distance geometry [104], or triangula-
tion problems [8]. Several applications of the box-constrained case, where the only
constraints are the upper and lower bounds on the variables, were mentioned by
Moré and Toraldo in [121]. It also models the Optimal Power Flow (OPF) [119],
a fundamental problem in the domain of electricity networks, that consists in the
determination of the power production at different points of an electricity network
with a minimized production cost.

Moreover, MIQCP generalizes several difficult problems such as binary pro-
gramming, fractional programming, or polynomial programming. This is due to
the fact that these problems can be reformulated into a MIQCP by introducing addi-
tional variables, thus making MIQCP one of the most versatile optimization models.
Methods are available for solving particular cases of MIQCP. If all functions are lin-
ear, we revert to Mixed Integer Linear Programming, which is already NP-hard,
but for which a large body of methods are very well developed. If we assume all
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constraints to be linear the problem reduces to Mixed Integer Quadratic Program-
ming for which a few number of methods have also been proposed. Finally, if the
integer variables are restricted to be binary, we come back to Binary Quadratic Pro-
gramming (BQP) that has itself a large set of applications.

If we assume all quadratic functions to be convex and to describe a convex feasi-
ble region, MIQCP is qualified as convex [123]. If moreover there are no integer vari-
ables, we have a convex problem that can be solved in polynomial time. Thanks to
the later property, convex problems with integer variables can be solved by a branch-
and-bound based on continuous relaxation. In these cases there exist fairly efficient
solvers [30, 82, 69]. The main challenge of MIQCP is the combination of the combina-
torial nature of the integer variables and the non-convexity of the objective function
and constraints. If we assume all integer variables to be bounded MIQCP belongs
to the class of NP-hard problems (if integer variables are unbounded it is undecid-
able). Without convexity assumptions of its functions, problem MIQCP, even with
only continuous variables, is significantly harder to solve. Without convexity the
best solvers, with a fairly efficient implementation, are typically able to solve BQPs
with a few dozens of variables and constraints (e.g. Gurobi [69] or Cplex [82]). If
the integer variables have general bounds, it requires the introduction of additional
variables making the problems even more difficult to solve. In this case, these solvers
are able to solve smaller sized problems even when the objective function and the
constraints are already convex functions.

Traditional approaches for solving MIQCP are based on branch-and-bound al-
gorithms. They consist in a tree search based on two operations: bounding and
branching. Branching strategies depend on the nature of the variables. For integer
variables, branching is commonly done by recursively dividing the solution set into
two subsets in such a way that a current fractional solution is discarded. For continu-
ous variables, branching is done by considering a variable xi whose current interval
is [`i, ui], choosing some value x̄i in ]`i, ui[, and dividing the solution set into two
subsets according to x̄i. Doing this does not directly discard undesired points. How-
ever, when appropriate inequalities involving the bounds `i and ui are added (e.g the
McCormicks inequalities [111]), it may change the structure of the relaxed problem
and improve the bound. This branching is called spatial branch-and-bound in the
global optimization literature and is due to Falk and Soland [55]. There exist several
bounding strategies. The main common is the linearization that rewrites MIQCP as a
MILP [111, 136]. To do so, all products are removed from the problem usually at the
expense of the addition of an important number of variables and constraints. The
method has at least two major drawbacks. First, the resulting MILP is often very dif-
ficult to solve because the continuous relaxation bound is usually very poor. Second,
if any of the initial functions are convex, the information is lost. A second approach
is to build a semidefinite relaxation of MIQCP [10, 135]. The basic idea is the same as
for the linearization, but the relations between the auxiliary variables and the initial
ones are relaxed by use of one semidefinite constraint instead of linear inequalities.
As a result, the quality of the relaxation is much improved. However, solving such
a problem is slow and is thus not suitable for branch-and-bound algorithms where
the relaxation has to be computed a large number of times. Another approach is the
convexification that rewrites MIQCP into a problem that has convex quadratic objec-
tive function and constraints [75, 22, 29]. Generally, this is done by the definition of
a parameterized equivalent convex formulation of MIQCP. Then, thanks to semidef-
inite programming, the parameters can be computed such that they optimize the
bound. The main advantage is that the associated bound captures the strength of
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semidefinite programming. The drawbacks are that convex MIQCP and semidef-
inite programming solvers are usually less developed than their counterparts for
MILP.

Our second aim concerns a broader class of problems where the objective func-
tion can be any polynomial of binary variables. We thus consider Unconstrained
Binary Polynomial (UBP) optimization that allows to formulate many important
problems. For instance, the large class of satisfiability problems known as 3-SAT,
can be formulated as a cubic optimization problem [90]. For higher degrees, there
also exists many applications. For example, the construction of binary sequences
with low aperiodic correlation [19] that is one of the most challenging problems in
signal design theory. Problem (UBP) isNP-hard in general [65]. As in the quadratic
case, practical difficulties come from the non-convexity of the polynomial and of the
binarity of its variables. In the case where the objective function is a polynomial,
but the variables are continuous, Lasserre proposes in [99] an algorithm based on
a hierarchy of semidefinite relaxations. The idea is, at each rank of the hierarchy,
to successively tighten semidefinite relaxations in order to reach its optimal solu-
tion value. It is also proven in [99] that this hierarchy converges in a finite number
of iterations to the optimal solution of the considered problem. Further, this work
has been extended to hierarchies of second order conic programs [7, 67, 93], and
of sparse doubly non-negative relaxation [83]. Although these algorithms were not
originally tailored for binary programming, they can handle (UBP) by considering
the quadratic constraint x2

i = xi. Methods devoted to the binary polynomial case
were also proposed. In [35, 100], the authors use separable or convex underesti-
mators to approximate a given polynomial. Other methods based on linear refor-
mulations can be found in [42, 61, 137, 36], in which linear equivalent formulations
to (UBP) are proposed and then improved. Finally, some approaches are based on
quadratization. We mention the works in [12, 33, 48] that focus on rewriting the poly-
nomial into an equivalent quadratic function with a minimal number of auxiliary
variables.

Obviously, solution methods of the more general class of MINLP are able to solve
MIQCP or UBP. Conventional approaches are based on convex relaxations of the
feasible solution set [17, 139, 140, 141, 154, 155], and some softwares are available,
see for instance Couenne [18], Baron [133], or Scip [144]. We detail here the well
known αbb method [5, 6, 9, 34, 58, 59, 60, 146, 145] that is based on the construction
of a non-linear and convex underestimator of each initial function. For this purpose,
each Hessian matrix is perturbed by an α parameter on its diagonal terms which
allows to make it positive semidefinite. This leads to an increase in the value of the
function which is linearly compensated in order to ensure the underestimation. The
difficulty is then to calculate the value of the α parameter which allows to obtain a
good underestimator. To this end, several methods have been proposed. They are
implemented into the softwares GloMIQO [113, 114, 117] for the quadratic case and
ANTIGONE [115] for the more general cases.

The first contribution of this thesis is an algorithm for solving MIQCP at ε-
optimality. This method is called Mixed Integer Quadratic Convex Reformulation
(MIQCR), and is based on the concept of Quadratic Convex Reformulation (QCR) in-
troduced in [22, 29]. It is based on a reformulation. By this, we mean an algorithm
that works in two phases. The first phase consists in designing an equivalent formu-
lation to the initial problem. The key idea of the method is that we can derive from
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this equivalent formulation a tight convex relaxation that has a quadratic objective
function and linear constraints. We show that using semidefinite programming to
compute this relaxation provides a bound as good as the one of the semidefinite re-
laxation used to calculate it. In the second phase, the equivalent formulation can be
solved to ε-global optimality by a branch-and-bound procedure based on this tight
convex relaxation.

In the specific case where each non-convex relation between two variables in-
volved at least one integer variable, MIQCR can be specialized to be more efficient. In
that case, we are able to compute an equivalent formulation of the initial problem
where the non-convexity only remains in the integrality constraints. Consequently,
the second phase of MIQCR can be delegated to a standard MIQP solver as illustrated
in Figure 1. In the general case, we are not yet able to compute an equivalent formu-
lation where all the functions are convex. We thus compute an equivalent formula-
tion where all the non-convexity is moved into a family of additional constraints, but
also remains into the integrality constraints. Then, we design our own branch-and-
bound process based on the sharp relaxation obtained by relaxing the non-convex
constraints, as illustrated in Figure 2. In both cases, a key advantage of this approach
over a classical branch-and-bound based on a semidefinite programming, is that we
solve once a semidefinite program at the root node of the branch-and-bound algo-
rithm.

FIGURE 1: Method MIQCR in the mixed-pure integer case with convex-
ity assumptions on purely continuous quadratic terms

The idea of convexifying MIQCPs in order to solve it to global optimality is not
new. Indeed, the first convex reformulation method was introduced in the 70’s
by Hammer and Rubin [75] for the case where the variables are binary. This ap-
proach was then refined in method QCR [22, 29] where the authors took advantage
of semidefinite programming to calculate optimal convex reformulations. The com-
mon feature between these methods, and somehow what limits them, is that they
compute the coefficients of convex functions by perturbing only the diagonal terms
of the Hessian matrix. The innovative idea of MIQCR is to allow any perturbation
of the Hessian matrix by increasing the size of the reformulation. This contribution
has unlocked two main challenges for this family of approaches. It first allowed a
theoretical comparison with the literature. Indeed, while the original QCR method
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FIGURE 2: Method MIQCR in the general case

and the standard linearization have uncomparable bound values, a main result is
that they can both be derived from MIQCR framework. This naturally induces a hier-
archy in terms of relaxation bound values, where method MIQCR is the top of it. The
other consequence is the scope of the problems handled by this family of methods.
It is indeed the use of auxiliary variables that has allowed MIQCR to handle integer
variables with general bounds, continuous variables and quadratic constraints.

In the rest of this manuscript, we detail the MIQCR method for the most general
class of quadratic problems. We have chosen to present our different contributions
in a unified way, since their combination gave rise to the final algorithm. In order
to clarify the chronology of our results, we briefly describe in this introduction each
significant contribution.

We start with a new linearization that can handle general integer variables, i.e.
when ` ≤ x ≤ u. A very well-known linearization for quadratic programs with
binary variables is due to Fortet [61] and consists in replacing any product of two
binary variables xi and xj by an additional variable Yij, together with a set of linear
constraints enforcing the equality Yij = xixj. The idea of linearization can be ex-
tended to quadratic programs with general bounded integer variables with a tricky
binary expansion of the general integers. This is what we propose in the Binary
Integer Linearization (BIL) [23, 77] method. We start by replacing each integer
variable by its binary decomposition. Then, our main contribution is to replace in
each product of two different integer variables only one of them by its binary decom-
position. Thus, each integer product becomes an expression of products of a binary
variable by an integer one. Finally, we linearize these new products by the standard
mixed-integer linearization [111].

An alternative to linearization is convexification. The basic idea is to reformu-
late a non-convex quadratic program with binary variables into a convex quadratic
program within the same space of variables. It appeared in Hammer and Rubin [75]
where the authors use the equality x2

i = xi which holds for any binary variable xi,
and the smallest eigenvalue in order to shift the diagonal terms of the Hessian ma-
trix of the objective function and obtain an equivalent convex problem. An improve-
ment of this approach was considered in [22] where the authors perturb the diagonal
terms of the Hessian matrix with non-uniform parameters. In particular, they prove
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that the parameters that lead to the sharper continuous relaxation bound can be de-
duced from the optimal dual solution of the classical semidefinite relaxation. They
also show that the continuous relaxation value of the equivalent formulation has the
same optimal value as the classical semidefinite relaxation. The solution method was
then extended in [29] to the case of binary quadratic programs with linear equalities.
Here, the semidefinite relaxation whose solution gives the best reformulation also
contains the Reformulation-Linearization Technique (RLT) constraints [136]. This
well known algorithm is called Quadratic Convex Reformulation (QCR). When vari-
ables are general integers, the equality x2

i = xi is no longer true. However, we can
generalize the QCR method to this case by adding n new variables zi that model x2

i .
Then, adding linear constraints coming from the linearization BIL we can enforce
equalities zi = x2

i by convex relations. Here again, other null quadratic functions
can be built by squaring the linear equalities in order to get stronger relaxations. This
method that we called Compact Quadratic Convex Reformulation (CQCR) [25] han-
dles MIQCP restricted to general integer variables. An interesting result is that we
come back to method QCR [29] when fixing the bounds ` to 0 and u to 1. Hence,
method CQCR is a generalization of QCR to the general integer case.

The next extension we build in [24] was for the linearly constrained case where
the variables can be integer or continuous, but with the restriction that in the objec-
tive function, all quadratic sub-functions of purely continuous variables are already
convex. As in method BIL, we add new variables Yij that represent the product of
two general integer variables xi and xj. These additional variables allow to widen
the family of potential reformulations since any perturbation of each element of the
Hessian matrix involving at least one integer variable is now considered. In this
extension, the reformulation phase is based on an even stronger semidefinite relax-
ation, called "Shor plus RLT" in the literature [10]. The reformulated problem is
a convex quadratic problem with continuous and binary variables, which can be
solved by a quadratic convex programming solver. This extension was called MIQCR.

In order to improve the efficiency of method MIQCR in the pure integer case, we in-
troduced in [26], a specific branch-and-bound algorithm to solve the equivalent for-
mulation. Constraints Yij = xixj are not linearized but are rather enforced within a
branch-and-bound procedure based on the relaxation of these quadratic constraints
only, i.e. we keep the integrality constraints into our relaxation. The bound is thus
tightened, but at the price of the solution of an integer program at each node of the
branch-and-bound.

Then, we present in [27] MIQCR-Quad an extension to the case of problems with
quadratic inequalities, with the same restriction on the quadratic sub-functions of
purely continuous variables. The quadratic convex reformulation is presented in a
new setting which includes linearization as a particular case. More precisely, the
equivalent problem has additional variables Yij, additional quadratic constraints
Yij = xixj, a convex objective function and a set of valid inequalities. The latter
quadratic equalities are linearized with method BIL, and the best equivalent for-
mulation is computed with semidefinite programming. The obtained equivalent
problem is a convex mixed-integer quadratic program that can be solved by a MIQP
solver. In addition, we prove two interesting results. First, the initial quadratic in-
equalities can be linearized in an optimal reformulation. Second, for any potential
convexification of initial quadratic equalities, the associated reformulation reaches
the "best" bound.
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Next, in [51], we designed the latest algorithm MIQCR-BB that handles any MIQCPs.
Contrarily to the reformulation proposed in [24, 27], and following the ideas of [26],
we keep in our reformulation the non-convex quadratic constraints Yij = xixj. Then,
to solve the reformulated problem, we design a spatial branch-and-bound algorithm
based on the relaxation of constraints Yij = xixj and of the integrality constraints.
This extension solves general MIQCPs to ε−global optimality, with a quadratic con-
vex programming bound value equals to the "Shor plus RLT" semidefinite relax-
ation.

When performing a spatial branch-and-bound, equalities Yij = xixj are often
relaxed by use of the McCormick’s envelopes that involved the lower and upper
bounds (` and u) on the original variables x. Then, since the branching rules consist
in updating ` or u on a well chosen variable, these inequalities become tighter in
the course of the branch-and-bound, and thus allow to improve the value of the
relaxation at sub-nodes of the tree. In order to improve the behavior MIQCR-BB, we
aim to design quadratic inequalities that are valid at the root node and depend on `
and u. In [31], the authors give a procedure to generate linear cuts involving general
bounds, from the inequalities that describe the boolean quadratic polytope [37, 124].
In [95], we focus on the extension of the regular triangle inequalities to variables that
belong to a generic interval, and propose a new methodology for this case. Then,
we prove that our inequalities are as tight as the ones generated by the procedure
described in [31]. Finally, in MIQCR-T we show how we can integrate them into our
approach. From a general outlook, these inequalities can be used in any branch-and-
bound process based on the relaxation of the Constraints Y = xxT.

In each incremental version of method MIQCR, the equivalent formulation is com-
puted thanks to the solution of a semidefinite relaxation. In practice, due to its size,
the solution of this semidefinite problem often constitutes the bottleneck of MIQCR.
However, once the equivalent formulation is computed, solving the obtained refor-
mulated program is practical, since the continuous relaxation bound of the reformu-
lation is tight. Hence, to handle larger instances we designed in [28, 95] a subgra-
dient algorithm within a Lagrangian duality framework for solving approximately
this large semidefinite program. Then, we parameterize our algorithm obtaining a
dual heuristic that controls the size of the semidefinite relaxation used in the first
phase of the algorithm, and in a sense the tightness of the associated relaxation. Fi-
nally, this algorithm can be viewed as a separation algorithm for selecting the most
violated inequalities of the semidefinite relaxation used.

In addition to our theoretical contributions, we have implemented our algo-
rithms in the software SMIQP (Solution of Mixed-Integer Quadratic Programs),
which is available online [94]. Thanks to SMIQP, we were able to quantify the signif-
icant improvement of the root node gap over other approaches from the literature.
Finally, our experiments on several state-of-the-art benchmarks show that our soft-
ware solves more challenging instances compared to the best existing solvers.

In Figure 3, we recall the different algorithms for exact solution of quadratic op-
timization problems described in this introduction. In particular, we present their
hierarchy where for each arrow the method pointed indicates that it is a general-
ization of the method referred to its starting point.This relationship also holds with
respect to the quality of the relaxation bound value. We also illustrate in this figure
the scope of each method. Finally, the methods that we have developed allow us to
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treat increasingly complex problems while keeping their generalization property in
the hierarchy.

FIGURE 3: Hierarchy and scope of the algorithms of this thesis

Our second contribution is the specialization of MIQCR to classical combinatorial
optimization problems or to applications from industry. We have thus specialized
it to the Quadratic Assignment Problem (QAP) [47]. The results obtained in [50]
show that by taking into account the structure of this problem, our method can
be significantly faster. Moreover, one of the most competitive methods for solving
these problems is an efficient implementation of MIQCR [127]. For real-world prob-
lems, our methods can gain in efficiency and scale by specializing to each problem
addressed. This concerns in particular the results obtained for the Optimal Power
Flow (OPF) [119]. This problem deals with the determination of the power produc-
tion at different nodes of an electric network that minimizes a production cost. It
can be formulated as a QCQP for which we have introduced two specializations of
our method. In [49], we construct a convex quadratic relaxation as tight as the one
obtained with MIQCR, but by solving the compact rank relaxation. Then in [96], again
using the rank relaxation, we compute a relaxation that is equally tight, but much
more compact than that of the previous approach.

The last contribution of this thesis is the extension of quadratic convex reformu-
lation approaches to the case of Unconstrained Binary Polynomial Problems (UBP).
As mentioned above, any polynomial problem can be reformulated as a MIQCP
by adding new variables in a quadratization process. A direct solution approach
is thus a third-phase algorithm: a quadratization phase where we reformulate the
polynomial program into a MIQCP, and then the application of method MIQCR. Un-
fortunately, the large size of the MIQCP obtained after quadratization makes the
whole method impracticable even for quite small instances. In [53], we thus design
a more tricky convexification based algorithm that can handle unconstrained binary
polynomial programs. In fact, we use the structure of the quadratization to com-
pute a convex reformulation. This method is called Polynomial Quadratic Convex
Reformulation (PQCR).
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The manuscript is organized as follows. In Chapter 2, we presents an overview
of method MIQCR. Then, Chapter 3 refers to the applications on which we have spe-
cialized our method. Next, we present in Chapter 4 algorithm PQCR, a quadratic con-
vex reformulation method that handles unconstrained binary polynomial problems.
Finally, Chapter 5 sums up our more significant results and gives further research
directions.
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Chapter 2

MIQCR, a global solution algorithm
for quadratic programs

In this chapter, we present Mixed Integer Quadratic Convex Reformulation (MIQCR),
an algorithm that solves to ε−global optimality MIQCPs. Such a problem can be for-
mulated as (P):

(P)



min f0(x) ≡ 〈Q0, xxT〉+ cT
0 x

subject to
fr(x) ≡ 〈Qr, xxT〉+ cT

r x ≤ br r ∈ R
`i ≤ xi ≤ ui i ∈ I
xi ∈N i ∈ J
xi ∈ R i ∈ I\J

with 〈A, B〉 =
n

∑
i=1

n

∑
j=1

aijbij, and where I = {1, . . . , n}, J ⊂ I , R = {1, . . . , m},

∀ r ∈ {0} ∪ R, (Qr, cr) ∈ Sn ×Rn, b ∈ Rm, and u ∈ Rn. Without loss of generality
we suppose that ` ∈ Rn

+. We assume the feasible domain of (P) to be non-empty.
Problem (P) trivially contains the case where there are quadratic equalities, since
an equality can be replaced by two inequalities. It also contains the case of linear
constraints since a linear equality is a quadratic constraint with a zero quadratic
part.

The method MIQCR works in two stages. The aim of the first phase is to con-
struct a strong quadratic convex relaxation of (P). For this purpose, we introduce
a parametrized family of equivalent formulations to (P) where the functions fr(x)
are rewritten as convex functions. This rewriting leads to the addition of auxiliary
variables and non-convex constraints. We then determine, within this family, the
equivalent formulation whose convex relaxation, i.e. obtained by relaxing the ad-
ditional non-convex constraints, is the tightest. We compute this optimal relaxation
using semidefinite programming.

The second phase consists in solving (P) with a branch-and-bound algorithm
based on this strong quadratic convex relaxation. We separate two cases. When (P)
has only integer variables, we show that we can delegate the branch-and-bound to
any miqp solver. For this, we rewrite (P) as an equivalent problem whose non-
convexity remains only into the integrality constraints. In the general case, we de-
scribe a tailored branch-and-bound algorithm that exploits the integrality of the vari-
ables, but that amounts to a classical spatial branch-and-bound in the purely contin-
uous case.
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Defining a family of convex relaxation is the key point of method MIQCR. Obvi-
ously, the more valid inequalities are considered in this family, the more the asso-
ciated bound will be sharp. In that context, we introduced quadratic inequalities
that are valid for (P). We show that these inequalities are a generalization of the
well known triangle inequalities to the case of general bounds ` and u. Moreover,
by construction these inequalities involved the lower and upper bounds ` and u on
the original variables x. Thus, the behavior of the branch-and-bound algorithm per-
formed in the second phase may be improved since the branching strategies consist
in moving ` and u.

From a theoretical point of view, one wants to consider in the first phase of
method MIQCR a relaxation as sharp as possible. However, from the practical point
of view, computing this relaxation implies the solution of a large semidefinite pro-
gram. As expected, the more the relaxation will be sharp, the more the size of the
semidefinite program will be large. In order to keep our whole algorithm practica-
ble, we designed a tailored sub-gradient algorithm to solve this large semidefinite
program. An important fact is that a feasible solution of this semidefinite relaxation
is sufficient to convexify the functions. We thus parameterized our sub-gradient al-
gorithm and obtained a dual heuristic. This heuristic has a double interest. First
it solves the semidefinite program significantly faster to "nearly global optimality".
Moreover, by construction, we bound the number of valid inequalities considered
in the semidefinite program, and thus of the associated quadratic convex relaxation.
As a consequence, the branch-and-bound algorithm of phase 2 solves at each node
a quadratic convex problem with a reasonable size. In a sense, this heuristic param-
eterizes the tightness of the computed relaxation.

This chapter is organized as follows. In Section 2.1, we present the first phase
of method MIQCR where we compute the best quadratic convex relaxation using
semidefinite programming. Then, in Section 2.2, we describe, depending if we con-
sider problem (P) in the pure integer or in the general case, how we can solve (P)
to ε−global optimality using this best quadratic convex relaxation. Further, in Sec-
tion 2.3, we introduce valid quadratic inequalities. Finally, in Section 2.4, we present
the sub-gradient algorithm for solving the semidefinite relaxation of Phase 1.

2.1 Building a tight quadratic convex relaxation [24, 25, 27,
51]

In this section, we describe the first phase of method MIQCR. First, we present a family
of quadratic equivalent formulations to (P) that is parameterized by a set of posi-
tive semidefinite matrices. By construction, for each equivalent formulation of this
family, it is easy to derive a convex quadratic relaxation. Then, we focus on find-
ing the tightest quadratic convex relaxation within this family. We show that this
best relaxation can be deduced from the optimal dual variables of a semidefinite
relaxation of (P). In particular, we show that, among all the considered quadratic
reformulations of the objective function and of the quadratic inequality constraints,
in an optimal quadratic convex relaxation, the constraints can just be linearized and
only the objective function remains quadratic. Further, we characterize other con-
vex reformulations of the equality constraints that can be considered in an optimal
quadratic convex relaxation. We prove another interesting result: for equality con-
straints, any linear or quadratic convex reformulation of these constraints can be
used to build the best reformulation. Finally, we show that the general framework
of MIQCR method can be viewed as a generalization of the standard linearization.
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Designing a family of quadratic convex relaxations to (P)

We start by introducing a family of equivalent formulations to (P) from which we
will derive a family of convex relaxations. To build these equivalent formulations,
we introduce up to n2 new variables Y to model the products xixj. More formally,
the n2 new variables Y will satisfy :

Yij = xixj ∀(i, j) ∈ I2, or, equivalently Y = xxT

Then, for each r = {0} ∪ R, we consider a positive semidefinite matrix Sr ∈ S+n
and we formulate fr(x) as a sum of a quadratic function of the x variables and a
linear function of the Y variables fr,Sr(x, Y). We define function fr,Sr(x, Y) as follows:

fr,Sr(x, Y) = 〈Sr, xxT〉+ cT
r x + 〈Qr − Sr, Y〉 ∀ r{0} ∪R

It is easy to see that each new function fr,Sr(x, Y) is equal to fr(x) under the
condition Y = xxT. We can now replace each function fr(x) in problem (P) by its
associated reformulated function fr,Sr(x, Y), and we obtain a family of equivalent
problems to (P). We call (PS0,...,Sm) this family that is parameterized by the set of
positive semidefinite matrices S0, . . . , Sm. Hence, problem (P) can be equivalently
stated as:

(PS0,...,Sm)



min f0,S0(x, Y) ≡ 〈S0, xxT〉+ cT
0 x + 〈Q0 − S0, Y〉

s.t.
fr,Sr (x, Y) ≡ 〈Sr, xxT〉+ cT

r x + 〈Qr − Sr, Y〉 ≤ br r ∈ R
Yij = xixj (i, j) ∈ I2

`i ≤ xi ≤ ui i ∈ I
xi ∈N i ∈ J
xi ∈ R i ∈ I\J

Because, by construction, matrices S0, . . . Sm are positive semidefinite the new
objective function f0,S0(x, Y) and the reformulated quadratic constraints fr,Sr(x, Y)
are convex functions. Thus, each equivalent formulation (PS0,...,Sm) has the property
that, when Constraints xi ∈ N and Y = xxT are relaxed, it is a convex problem.
Then, it is now easy to build a family of quadratic convex relaxations to (P), by
relaxing the latter constraints into the well known McCormick envelopes [111] that
are described in setMC:

MC = (x, Y)



Yii ≥ xi i ∈ J
Yij ≤ ujxi + `ixj − uj`i (i, j) ∈ U
Yij ≤ uixj + `jxi − ui`j (i, j) ∈ U
Yij ≥ ujxi + uixj − uiuj (i, j) ∈ U
Yij ≥ `jxi + `ixj − `i`j (i, j) ∈ U
Yji = Yij (i, j) ∈ U
xi ∈ R i ∈ I
Yij ∈ R (i, j) ∈ I2

where U = {(i, j) ∈ I2 : i ≤ j}, where U = {(i, j) ∈ I2 : i < j}, and Con-
straints Yii ≥ xi come from x2

i ≥ xi, a valid inequality for any integer variable.
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Finally, we obtain (PS0,...,Sm) a family of quadratic convex relaxations to (P):

(PS0,...,Sm)


min 〈S0, xxT〉+ cT

0 x + 〈Q0 − S0, Y〉
s.t.
〈Sr, xxT〉+ cT

r x + 〈Qr − Sr, Y〉 ≤ br r ∈ R
(x, Y) ∈ MC

(PS0,...,Sm) includes two extreme cases. The first one is Sr = Qr, when all Qr matri-
ces are already positive semidefinite. In that case, functions fr(x) are left unchanged.
The second one is when all Sr are zero-matrices. In this case, the reformulation con-
sists in replacing each product of two x variables by a Y variable. This amounts to a
complete linearization.

Computing the best quadratic and convex relaxation (P∗)

We then consider the problem of finding a best set of positive semidefinite matrices
S∗0 , . . . , S∗m, in the sense that the optimal solution value of (PS∗0 ,...,S∗m) is as large as
possible. By denoting v(P) the optimal value of problem (P), this problem amounts
to solving the following problem (OPTS):

(OPTS)

{
max

S0,...,Sm�0
v(PS0,...,Sm)

Theorem 1 states that v(OPTS) is equal to the optimal value of a semidefinite pro-
gram which is known as the "Shor plus RLT" semidefinite relaxation of (P). More-
over, it characterizes an optimal set of semidefinite matrices. We called (SDP) the
"Shor plus RLT" semidefinite relaxation of (P):

(SDP)



min f (X, x) ≡ 〈Q0, X〉+ cT
0 x

s.t.
〈Qr, X〉+ cT

r x ≤ br r ∈ R ← αr (1)
Xii ≥ xi i ∈ J ← ϕi (2)
Xij ≤ ujxi + `ixj − uj`i (i, j) ∈ U ← φ1

ij (3)

Xij ≤ uixj + `jxi − ui`j (i, j) ∈ U ← φ2
ij (4)

Xij ≥ ujxi + uixj − uiuj (i, j) ∈ U ← φ3
ij (5)

Xij ≥ `jxi + `ixj − `i`j (i, j) ∈ U ← φ4
ij (6)(

1 xT

x X

)
� 0 ← ρ

x ∈ Rn X ∈ Sn

Theorem 1 It holds that v(OPTS) = v(SDP). Moreover, an optimal solution (S∗0 , . . . , S∗m)
of (OPTS) can be built as follows:

i) ∀r ∈ R, S∗r = 0n (i.e. we linearize the initial quadratic constraints)

ii) S∗0 = Q0 +
m

∑
r=1

α∗r Qr + Φ∗ where:

� α∗ is the vector of optimal dual variables associated with Constraints (1),
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� matrix Φ∗ = Φ1∗ + Φ2∗ −Φ3∗ −Φ4∗ − diag(ϕ∗), where ϕ∗ is the vectors of dual
variables associated with Constraints (2), and Φ1∗, Φ2∗, Φ3∗, and Φ4∗ are the symmet-
ric matrices built from the optimal dual variables φt

ij, t = 1, . . . , 4 associated with Con-
straints (3)–(6). More precisely, if φ1

ij is the dual variable associated to constraint (3),

then Φ1
ij = Φ1

ji =
φ1

ij
2 for i < j, and Φ1

ii = φ1
ii.

Proof.
� To prove that v(OPTS) ≤ v(SDP), we show that for any S̄0, . . . , S̄m ∈ S+n , we have
v(PS̄0,...,S̄m

) ≤ v(SDP), which in turn implies that v(OPTS) ≤ v(SDP) since the right
hand side is constant. For this, we show that, if (x̄, X̄) is feasible for (SDP), then
(x, Y) := (x̄, X̄) is i) feasible for (PS̄0,...,S̄m

) and ii) its objective value is less or equal
than v(SDP). Since (PS̄0,...,S̄m

) is a minimization problem, v(PS̄0,...,S̄m
) ≤ v(SDP)

follows.

i) We prove that (x, Y) is feasible to (PS̄0,...,S̄m
). Obviously (x, Y) ∈ MC, we have

to prove that fr,S̄r
(x, Y) ≤ br:

〈S̄r, xxT〉+ cT
r x + 〈Qr − S̄r, Y〉 = 〈S̄r, x̄x̄T〉+ cT

r x̄ + 〈Qr − S̄r, X̄〉
= 〈S̄r, x̄x̄T − X̄〉+ cT

r x̄ + 〈Qr, X̄〉 ≤ br

from Constraints (1) and (7), and since S̄r � 0.

ii) Let us compare the objective values. For this, we prove that 〈S̄0, x̄x̄T〉+ cT
0 x̄ +

〈Q0 − S̄0, X̄〉 − 〈Q0, X̄〉 − cT
0 x̄ ≤ 0 or that 〈S̄0, x̄x̄T − X̄〉 ≤ 0. This last inequality

follows from S̄0 � 0 and Constraint (7).

� Let us secondly prove that v(OPTS) ≥ v(SDP) or equivalently v(OPTS) ≥ v(D)
where (D) is the dual of (SDP):

(D)



max g(α, Φ, ρ) = −
m

∑
r=1

αrbr +
n

∑
i=1

n

∑
j=i

φ1
ij`iuj +

n

∑
i=1

n

∑
j=i

φ2
ijui`j −

n

∑
i=1

n

∑
j=i

φ3
ijuiuj −

n

∑
i=1

n

∑
j=i

φ4
ij`i`j − ρ

s.t.

S = Q0 +
m

∑
r=1

αrQr + Φ− diag(ϕ) (7)

d = c0 +
m

∑
r=1

αrcr − (U(φ1) + L(φ2)− (U(φ3) + L(φ3)))Tu− (L(φ1) + U(φ2)− (U(φ4) + L(φ4)))T`+ ϕ (8)

Φt
ij = Φt

ji =
φt

ij

2
(i, j) ∈ U , t = 1, . . . , 4 (9)

Φt
ii = φt

ii i ∈ J (10)

Φ = Φ1 + Φ2 −Φ3 −Φ4 (11)(
ρ 1

2 dT

1
2 d S

)
� 0 (12)

α ∈ Rm
+, Φ ∈ Sn, ϕ ∈ Rn

+, φt ∈ R
n(n+1)/2
+ , t = 1, . . . , 4.

where ρ ∈ R+ is the dual variable associated to constraint (7), α ∈ Rm
+ are the dual

variables associated to constraints (1), ϕ ∈ Rn
+ are the dual variables associated to

constraints (2) and φt ∈ R
n(n+1)/2
+ , t = 1, . . . , 4 are the dual variable associated with

constraints (3)–(6), respectively. We denote by U(M) (L(M) resp.) the upper (lower,
resp.) triangle matrix build from the coefficient of M.
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Let (α∗, Φ∗, ρ∗) be an optimal solution to (D), we build the following positive

semidefinite matrices: ∀r ∈ R, S̄r = 0n, and S̄0 = S∗ = Q0 +
m

∑
r=1

α∗r Qr + Φ∗. By

Constraint (12), S̄0 � 0, and (S̄0, . . . , S̄m) forms a feasible solution to (OPTS). The
objective value of this solution is equal to v(PS̄0,...,S̄m

).
We now prove that v(PS̄0,...,S̄m

) ≥ v(D). For this, we prove that for any feasi-
ble solution (x̄, Ȳ) to (PS̄0,...,S̄m

), the associated objective value is not smaller than
g(α∗, Φ∗, ρ∗). Denote by ∆ the difference between the objective values, i.e., ∆ =
〈S̄0, x̄x̄T〉+ cT

0 x̄ + 〈Q0 − S̄0, Ȳ〉 − g(α∗, Φ∗, ρ∗). We below prove that ∆ ≥ 0.

∆ = 〈S̄0, x̄x̄T〉+ cT
0 x̄ + 〈Q0 − S̄0, Ȳ〉+

m

∑
r=1

α∗r br −
n

∑
i=1

n

∑
j=i

φ1
ij`iuj −

n

∑
i=1

n

∑
j=i

φ2
ijui`j

+
n

∑
i=1

n

∑
j=i

φ3
ijuiuj +

n

∑
i=1

n

∑
j=i

φ4
ij`i`j + ρ∗

= 〈S̄0, x̄x̄T〉+ cT
0 x̄− 〈

m

∑
r=1

α∗r Qr + Φ∗, Ȳ〉+
m

∑
r=1

α∗r br −
n

∑
i=1

n

∑
j=i

φ1
ij`iuj −

n

∑
i=1

n

∑
j=i

φ2
ijui`j

+
n

∑
i=1

n

∑
j=i

φ3
ijuiuj +

n

∑
i=1

n

∑
j=i

φ4
ij`i`j + ρ∗

since Q0 − S̄0 = −(
m

∑
r=1

α∗r Qr + Φ∗)

= 〈S̄0, x̄x̄T〉+ cT
0 x̄ +

m

∑
r=1

α∗r (br − 〈Qr, Ȳ〉)− 〈Φ∗, Ȳ〉 −
n

∑
i=1

n

∑
j=i

φ1
ij`iuj −

n

∑
i=1

n

∑
j=i

φ2
ijui`j

+
n

∑
i=1

n

∑
j=i

φ3
ijuiuj +

n

∑
i=1

n

∑
j=i

φ4
ij`i`j + ρ∗

≥ 〈S̄0, x̄x̄T〉+ cT
0 x̄ +

m

∑
r=1

α∗r cT
r x̄− 〈Φ∗, Ȳ〉 −

n

∑
i=1

n

∑
j=i

φ1
ij`iuj −

n

∑
i=1

n

∑
j=i

φ2
ijui`j

+
n

∑
i=1

n

∑
j=i

φ3
ijuiuj +

n

∑
i=1

n

∑
j=i

φ4
ij`i`j + ρ∗

as cT
r x̄ + 〈Qr, Ȳ〉 ≤ br and α∗r ≥ 0. Moreover, by Constraint (11) we get:

∆ ≥ 〈S̄0, x̄x̄T〉+ cT
0 x̄ +

m

∑
r=1

α∗r cT
r x̄− 〈φ1 + φ2 − φ3 − φ4 − diag(ϕ), Ȳ〉 −

n

∑
i=1

n

∑
j=i

φ1
ij`iuj

−
n

∑
i=1

n

∑
j=i

φ2
ijui`j +

n

∑
i=1

n

∑
j=i

φ3
ijuiuj +

n

∑
i=1

n

∑
j=i

φ4
ij`i`j + ρ∗
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By constraints of setMC, and since all coefficients φt
ij are non-negative, we get:

∆ ≥ 〈S̄0, x̄x̄T〉+
(

c0 +
m

∑
r=1

αrcr − (U(φ1) + L(φ2)− (U(φ3) + L(φ3)))Tu

− (L(φ1) + U(φ2)− (U(φ4) + L(φ4)))T`+ ϕ
)T

x̄ + ρ∗

= 〈S̄0, x̄x̄T〉+ d∗T x̄ + ρ∗

We end the proof by showing that 〈S̄0, x̄x̄T〉+ d∗T x̄+ ρ∗ ≥ 0. From Constraint (12),

we know that for all x ∈ Rn,
(

1
x

)T (
ρ∗ 1

2 d∗T
1
2 d∗ S̄0

)(
1
x

)
≥ 0 , which prove that

∆ ≥ 0.
2

We call (P∗) our optimal quadratic convex relaxation of (P) that has linear con-
straints:

(P∗)


min f0,S∗0 (x, Y) ≡ 〈Q0 +

m

∑
r=1

α∗r Qr + Φ∗, xxT〉+ cT
0 x− 〈

m

∑
r=1

α∗r Qr + Φ∗, Y〉

s.t.
fr,S∗r (x, Y) ≡ 〈Qr, Y〉+ cT

r x+ ≤ br ∀r ∈ R
(x, Y) ∈ MC

We describe here how we deal with the presence of a linear inequalities aT
r x ≤ br

in (P). Indeed, in Theorem 1 these inequalities are not taken into account in the
computation of (P∗). A simple way to consider these inequalities into the convexifi-
cation process is to add the valid RLT quadratic inequality ∑

r∈R
xTaraT

r x ≤ b2
r to (P) in

a pre-processing phase. They then will be handled as any initial quadratic inequality
of problem (P).

Two advantages of method MIQCR are in order:

i) the optimal value of (P∗) is equal to the optimal value of (SDP). Hence, in a
branch-and-bound algorithm where the bounding step is the solution of (P∗),
the root-node gap is the same as the SDP-relaxation gap which is known to
be strong. In [10, 17] it is recalled that (SDP) dominates six other considered
semidefinite relaxations. It is further shown that it provides the same bound as
the doubly non-negative relaxation.

ii) (P∗) is a quadratic convex program with linear constraints that can be solved
efficiently by standard miqp solvers for medium size instances.

In Theorem 1, we state that we can linearize the inequality constraints to reach
the "Shor plus RLT" semidefinite bound. In the next section, we prove a stronger re-
sult : any convexification of the equality constraints leads to a relaxation that reaches
this best bound.
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Which convexifications work for the equality constraints ?

In method MIQCR the fact that we linearize the constraints is an advantage from the
computational point of view since efficient mixed-integer quadratic convex solvers
are available. However, if we consider the size of the relaxation, the complete lin-
earization of all constraints requires to introduce up to n2 new variables Yij. Then,
a natural question arises: is-it possible to reach the "Shor plus RLT" semidefinite
bound value by convexifying differently the constraints ? In this section, we answer
to this question for the equality case.

Here, we study the case where the initial problem contains some quadratic equal-
ity constraints. Without loss of generality, we consider the case of just one equality,
〈Q1, xxT〉+ cT

1 x = b1, which corresponds to the first two inequalities. More formally,
the initial quadratic constraints in (P) are precisely:

〈Q1, xxT〉+ cT
1 x ≤ b1

〈−Q1, xxT〉 − cT
1 x ≤ −b1

〈Qr, xxT〉+ cT
r x ≤ br r ∈ R\{1, 2}

We start by the following observation. In an optimal quadratic convex relaxation
described by Theorem 1, we have:

S∗0 = Q0 + (α∗1 − α∗2)Q1 +
m

∑
r=3

α∗r Qr + Φ∗

and thus we get the following objective function of (P∗):

f0,S∗0
(x, Y) = 〈Q0 + (α∗1 − α∗2)Q1 +

m

∑
r=3

α∗r Qr + Φ∗, xxT〉+ cT
0 x

− 〈(α∗1 − α∗2)Q1 +
m

∑
r=3

α∗r Qr + Φ∗, Y〉

= 〈Q0, xxT〉+ cT
0 x + 〈

m

∑
r=3

α∗r Qr + Φ∗, xxT −Y〉+ (α∗1 − α∗2)
(
〈Q1, xxT −Y

)
and since 〈Q1, Y〉+ cT

1 x = b1

f0,S∗0
(x, Y) = 〈Q0, xxT〉+ cT

0 x + 〈
m

∑
r=3

α∗r Qr + Φ∗, xxT −Y〉+ (α∗1 − α∗2)
(
〈Q1, xxT〉+ cT

1 x− b1

)
We recognize the initial equality constraint multiplied by an unsigned scalar pa-

rameter ν = α∗1 − α∗2 . Hence, if equality constraints are considered in the initial
formulation and when we build the optimal solution (S∗0 , . . . , S∗m) as in Theorem 1,
it amounts to explicitly integrating equality constraints into the objective function
multiplied by a scalar parameter.

We now consider a slightly different reformulation scheme where the equality
constraint is lifted in the objective function weighted by a scalar ν. We thus build the
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following convex relaxation (PS0,S1,S′1,S3,...,Sm,ν):

min f0,S0,ν(x, Y) ≡ 〈S0, xxT〉+ cT
0 x + 〈Q0 − S0, Y〉+ ν

(
〈Q1, xxT〉+ cT

1 x− b1

)
s.t.
〈S1, xxT〉+ cT

1 x + 〈Q1 − S1, Y〉 ≤ b1 (13)

〈S′1, xxT〉 − cT
1 x− 〈Q1 + S′1, Y〉 ≤ −b1 (14)

〈Sr, xxT〉+ cT
r x + 〈Qr − Sr, Y〉 ≤ br ∀r ∈ R

(x, Y) ∈ MC

Finding the best relaxation within this new scheme amounts to solving problem
(OPTS,ν):

(OPTS,ν)

 max
ν∈R, S0+νQ1�0

S1,S′1,S3...,Sm�0

v(PS0,S1,S′1,S3,...,Sm,ν)

We state in Theorem 2 that when quadratic equalities are explicitly integrated
into the objective function, in an optimal solution to (OPTS,ν), matrices S1 and S′1
associated to the equality constraint can be any positive semidefinite matrices.

Theorem 2 Let (ν∗, S∗0 , S∗1 , S
′∗
1 , S∗3 , . . . , S∗m) be an optimal solution to (OPTS,ν), then for

any semi-definite matrices S̄1, S̄′1, the solution (ν∗, S∗0 , S̄1, S̄′1, S∗3 , . . . , S∗m) is also an optimal
solution to (OPTS,ν).

Proof sketch. The proof is based on the equivalence between (OPTS,ν) and the
following problem:

(OPT′S,ν)

 max
ν∈R, S0+νQ1�0

S3...,Sm�0

v(P′S0,S3,...,Sm,ν)

where (P′S0,S3,...,Sm,ν) is (PS0,S1,S′1,S3,...,Sm,ν) without Constraints (13) and (14). We have:

� v(OPTS,ν) ≥ v(OPT′S,ν) since v(PS0,S1,S′1,S3,...,Sm,ν) ≥ v(P′S0,S3,...,Sm,ν).

� v(OPTS,ν) ≤ v(OPT′S,ν) can be proved by showing that v(OPTS,ν) = v(DOPTS,ν) ≤
v(OPT′S,ν), where (DOPTS,ν) is obtained by dualizing Constraints (13) and (14), and
the equality comes from convexity of both problems.

2

Let us now state Corollary 1 that shows that for any equivalent reformulated
equality constraints the value of the best reformulation is reached.

Corollary 1 v(OPTS,ν) = v(SDP) = v(OPTS)

Proof. We know by Theorem 1 that v(SDP) = v(OPTS). Moreover, by convexity
and by dualizing the first two inequalities of (SDP) which are equivalent to the
equality 〈Q1, X〉+ cT

1 x = b1, we obtain v(SDP) = v(OPT′S,ν). Thus, as v(OPTS,ν) =
v(OPT′S,ν) by Theorem 2, we obtain v(OPTS,ν) = v(SDP). 2

Thus, in some specific cases, when for instance the matrix Q0 − S∗0 is sparse,
convexify the objective function can require to introduce a few variables Yij. In that
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case, it could be interesting from the computational point of view to first replace
each inequality constraint by an equality using a slack variable. Then, by explicitly
integrating these equalities into the objective function, one can convexify them by
perturbing, for instance, only their diagonal terms, and thus by the addition of much
less variables in comparison to a complete linearization.

A generalization of the classical linearization

One can note the generality of our first phase that works with any set of positive
semidefinite matrices S0, . . . , Sm. As mentioned in the introduction, branch-and-
bound algorithms developed to solve (P) are classically based on complete lineariza-
tion which corresponds to reformulation (PS0,...,Sm) where we set all matrices to 0n.
Hence, a valuable contribution is that this general scheme includes linearization of
the objective function and of the constraints as a particular reformulation. From this
remark, we can deduce Corollary 2.

Corollary 2 Take the following feasible solution to (OPTS) that amounts to the complete
linearization of (P):

S̄r = 0n r ∈ {0} ∪R

Obviously, we have v(PS̄0,...,S̄m
) ≤ v(P∗). In other words, the bound obtained by the com-

plete linearization is weaker than the bound we get with the solution of (P∗).

Method MIQCR also generalizes other methods that we design, and that we shortly
described in the introduction. In particular, the Binary Integer Linearization
(BIL) [23], and the Compact Quadratic Convex Reformulation (CQCR) [26].

2.2 Spatial branch-and-bounds based on our relaxation [23,
24, 26, 27, 51]

In this section, we present the second phase of method MIQCR, where we distinguish
two cases. We start in Section 2.2 by considering problem (P) with only integer vari-
ables. In this case, it is possible to rewrite the non convex constraints Y = xxT as
a set of linear inequalities. We then obtain an equivalent formulation to (P) with a
quadratic and convex objective function, linear constraints, and where all the non-
convexity remains in the integrality constraints. Such a formulation can then be
solved by a standard mixed-integer quadratic convex solver. Then, we present in
Section 2.2 the general case, where problem (P) contains continuous and/or integer
variables. In this case, we cannot build an equivalent convex formulation of con-
straints Y = xxT. We then design a specialized spatial branch-and-bound algorithm
that is based on our best quadratic convex relaxation (P∗), and that exploits the in-
tegrality of some of the variables.

Global solution in the pure integer case: solution by an equivalent quadratic
convex formulation

We start with the case where (P) has only integer variables, i.e. when I = J . To
simplify the presentation, we consider that for all i ∈ I , the lower bounds `i on
variables xi are set to 0 with the appropriate change of variable. In this case, it is
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possible to replace the following non-convex set of constraints:
Y = xxT

0 ≤ x ≤ u
x ∈N|J |

by the set of linear inequalities we introduced with method BIL (Binary Integer
Linearization) [23]. The idea is that each variable xi is replaced by its unique bi-

nary expansion xi =
blog(ui)c

∑
k=0

2ktik by introducing new binary variables tik. We can

then express the product Yij of two variables xi and xj as a linear function of the

products of a variable x by a variable t: Yij =
blog(ui)c

∑
k=0

xj2ktik. These products are

then linearized by replacing them with another auxiliary variable z and an appro-
priate set of linear constraints. To get closer to the convex hull, we furthermore add
the McCormick inequalities on variables Y that are not redundant. We obtain the
following set L:

L = (x, Y, z, t)



xi =
blog(ui)c

∑
k=0

2ktik i ∈ J

Yij =
blog(ui)c

∑
k=0

2kzijk (i, j) ∈ J 2

zijk ≤ ujtik (i, k) ∈ W , j ∈ J
zijk ≤ xj (i, k) ∈ W , j ∈ J
zijk ≥ xj − uj(1− tik) (i, k) ∈ W , j ∈ J
zijk ≥ 0 (i, k) ∈ W , j ∈ J
Yii ≥ xi i ∈ J
Yij ≥ ujxi + uixj − uiuj (i, j) ∈ J 2

Yji = Yij (i, j) ∈ J 2 : i 6= j
tik ∈ {0, 1} (i, k) ∈ W

whereW = {(i, k) : i ∈ J , k = 0, . . . , blog(ui)c}. The number of binary variables

is |W| =
n

∑
i=1

(1 + blog(ui)c) and the number of real variables is n + n2 + n|W|, so

that the set L has O(n|W|) variables and constraints. We obtain the following best
equivalent convex formulation to (P):

(P∗I )


min f0,S∗0 (x, Y) = 〈Q0 +

m

∑
r=1

α∗r Qr + Φ∗, xxT〉+ cT
0 x− 〈

m

∑
r=1

α∗r Qr + Φ∗, Y〉

s.t.
fr,Sr(x, Y) ≡ 〈Qr, Y〉+ cT

r x ≤ br r ∈ R
(x, Y, z, t) ∈ L

An important remark is that problem (P∗I ) has the same value as problem (P) at
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each integer point, thus it is not anymore a relaxation, but an equivalent formula-
tion. Moreover, in (P∗I ) only the binarity of variables tik is non-convex. Relaxing
these constraints leads to a quadratic convex optimization problem which optimal
value can be computed in polynomial time. Hence, problem (P∗I ) can for exam-
ple be handled by a mixed-integer quadratic programming solver which performs a
branch-and-cut algorithm to solve it.

An interesting result is stated in Theorem 3. Indeed, it implies that the contin-
uous relaxation of (P∗I ) obtained by relaxing Constraints tik ∈ {0, 1} has the same
optimal value as (P∗). As a consequence, the bound at the root node gap of the
quadratic convex programming solver equals to the optimal value of the "Shor plus
RLT" semidefinite relaxation (SDP).

Theorem 3 Let L the polyhedron obtained from set L by relaxing Constraints tik ∈ {0, 1}
into 0 ≤ tik ≤ 1. The projection of L on variables x and Y is the polyhedronMC. We thus
have v(P∗I ) = v(P∗) = v(SDP).

This linearization set L of equalities Yij = xixj can also be used when xi is an
integer variable and xj a continuous one. In particular, in [24, 27] we present an
extension of this method to the mixed-integer case, with the restriction that in each
function fr(x), all the quadratic convex terms of real variables describe a convex
function. This extension is also based on this linearization.

Global solution in the general case: solution with a branch-and-bound based
on (P∗)

We now propose a branch-and-bound algorithm where we keep the integrality con-
straints into the relaxation (P∗). Consequently, we solve at each node of the branch-
and-bound process a mixed-integer quadratic convex program that we use to get a
lower bound over the original problem (P). Then, we propose different branching
rules according to the nature of a product of two variables, i.e. integer by integer,
integer by continuous, or continuous by continuous. More formally, at each node of
the branch-and-bound we solve the following mixed-integer quadratic program:

(P∗MI)



min f0,S∗0 (x, Y) = 〈Q0 +
m

∑
r=1

α∗r Qr + Φ∗, xxT〉+ cT
0 x− 〈

m

∑
r=1

α∗r Qr + Φ∗, Y〉

s.t.
fr,Sr(x, Y) ≡ 〈Qr, Y〉+ cT

r x+ ≤ br r ∈ R
(x, Y) ∈ MC
xi ∈N i ∈ J

Obviously, v(P∗MI) ≥ v(P∗), and consequently, the branch-and-bound based on
(P∗MI) starts with an even better bound than the "Shor plus RLT" semidefinite relax-
ation.

We now present our branching rules. For (x̄, Ȳ) an optimal solution to (P∗MI), we
select a pair of indices (i, j) such that x̄i x̄j 6= Ȳij, and depending on the nature of the
variables xi and xj, we branch as follows:

• if xi and xj are integers, we have 3 cases that amounts in a separation in 5
branches (cf. Figure 4b): we set xi to x̄i and xj to x̄j (branch 1), we set xi to
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x̄i and separate on xj (branches 2 and 3), and we separate on xi (branches 4
and 5).

• if xi is integer and xj is continuous, we have 2 cases that amounts in a separa-
tion in 3 branches (cf. Figure 5a): we set xi to x̄i (branch 1), and we separate on
xi (branches 2 and 3).

• if xi and xj are continuous, we classically separate on xi with any value vi such
that `i < vi < ui (cf. Figure 5b).

(A) Generic scheme of our branch-and-bound

Branch 1 ⇐⇒ xi = x̄i and xj = x̄j
Branches 2 and 3 ⇐⇒ xi = x̄i and xj 6= x̄j
Branches 4 and 5 ⇐⇒ xi 6= x̄i

(B) Branching rule when (i, j) ∈ I2

FIGURE 4: Generic Scheme of the branch-and-bound, and branching
rule when for integer variables

Branch 1 ⇐⇒ xi = x̄i
Branches 2 and 3 ⇐⇒ xi 6= x̄i

(A) Branching rule when (i, j) ∈ J × (I\J )
(B) Branching rule when (i, j) ∈ (I\J )2

FIGURE 5: Branching rule when at least on variable is continuous

One originality of our algorithm lies in the fact that, at each node of the search
tree, we choose to compute a bound that comes from the solution of the mixed-
integer program (P∗MI). Of course, to solve (P∗MI) the solver develops its own Branch
and Bound algorithm. An illustration of the generic scheme of our Branch and
Bound is presented in Figure 4a.
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Obviously, it is also possible to relax the integrality constraints to come back to
a classical spatial branch-and-bound, where the separation for integer variables is
handled as in branches 4 and 5 of Figure 4b, while for the mixed and pure con-
tinuous cases the separation is handled as in Figure 5a and 5b, respectively. In the
context of pure continuous variables, we used this approach in [51, 95].

A last remark concerns the specific case of binary quadratic programming. It is
well know that the McCormick inequalities [111] combined with binary constraints
are equivalent to equalities Yij = xixj. We can trivially deduce that in (P∗MI) Con-
straints Yij = xixj are redundant, and thus that our branch-and-bound is not rele-
vant for binary quadratic programming, since the whole process amounts to solve
the root node of Figure 4a.

2.3 Generation of valid quadratic inequalities to strengthen
MIQCR [95]

Whether they are based on linearization or convexification, spatial branch-and-bound
algorithms for MIQCPs have in common the relaxation of equalities Yij = xixj by
use of the McCormick’s envelopes. These inequalities involve the lower and upper
bounds (` and u) on the original variables x. Then, since the branching rules consist
in updating ` or u on a well chosen variable, they become tighter in the course of the
branch-and-bound, and allow to improve the value of the relaxation at sub-nodes of
the tree. In order to improve the behavior of the second phase of MIQCR, we aim to
design inequalities that improve the value of the root node relaxation, but also dy-
namically tighten the sub-node relaxations by involving ` and u. In [31] a procedure
was introduced to generate inequalities involving general bounds [`, u], from the in-
equalities that describe the boolean quadratic polytope [124, 151, 37]. In this section,
we focus on the generalisation of the regular triangle inequalities1. We start by the
presentation of our methodology to extend these inequalities to general bounds, ob-
taining a total of 12 valid inequalities. Then, we prove that our inequalities are as
tight as the 4 inequalities generated by the procedure described in [31].

We now describe how we generate the general triangle inequalities that strengthen
(P∗). As the McCormick’s envelopes, they are derived from the ranges [`i, ui] of each
variable xi. The idea is to consider ∀(i, j, k) ∈ V = {(i, j, k) ∈ I3 : i < j < k}, three
variables xi, xj and xk, and we have (ui − xi)(uj − xj)(uk − xk) ≥ 0, or equivalently:

ukxixj + ujxixk + uixjxk − uiukxj − ujukxi − uiujxk + uiujuk ≥ xixjxk

using the McCormick inequality xjxk ≥ `jxk + `kxj − `j`k, we get:

ukxixj + ujxixk + uixjxk − uiukxj − ujukxi − uiujxk + uiujuk ≥ xi(`jxk + `kxj − `j`k)

or equivalently the new quadratic inequality:

(`k − uk)xixj + (`j − uj)xixk − uixjxk + uiukxj + (ujuk − `j`k)xi + uiujxk − uiujuk ≤ 0

In the example above, we also could have chosen to use the other McCormick
envelope, i.e. −xjxk + ujxk + ukxj − ujuk ≤ 0, to substitute the product xjxk, or, to

1{−Yij −Yik −Yjk + xi + xj + xk ≤ 1, Yik −Yij + Yjk − xk ≤ 0, Yij −Yik + Yjk − xj ≤ 0, Yik −Yjk + Yij − xi ≤ 0}
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substitute either the product xixj or xixk by one of its two McCormick over estima-
tors leading to 6 different inequalities. Hence, by considering all possible combina-
tions of the the products of degree 3 of Constraints `i ≤ xi ≤ ui, we obtain 8 families
of 6 inequalities with a total of 48 inequalities.

These inequalities are obviously valid by construction. The question is now to
determine which families of inequalities, when they are linearized using the auxil-
iary variables Y, are non redundant in (P∗). We proved in [95] that 12 out of 48 of
them cut feasible solutions of (P∗).

Proposition 1 The inequalities of set T cut feasible solutions of (P∗):

T = (x, Y)



(`k − uk)yij + (`j − uj)yik − uiyjk + uiukxj + (ujuk − `j`k)xi + uiujxk − uiujuk ≤ 0 (i, j, k) ∈ V
(`k − uk)yij − ujyik + (`i − ui)yjk + (uiuk − `i`k)xj + ujukxi + uiujxk − uiujuk ≤ 0 (i, j, k) ∈ V
−ukyij + (`j − uj)yik + (`i − ui)yjk + uiukxj + ujukxi + (uiuj − `i`j)xk − uiujuk ≤ 0 (i, j, k) ∈ V
(uj − `j)yik + (`k − uk)yij + uiyjk + (`juk − uj`k)xi − ui`kxj − uiujxk + uiuj`k ≤ 0 (i, j, k) ∈ V
ujyik + (`k − uk)yij + (ui − `i)yjk − uj`kxi + (`iuk − ui`k)xj − uiujxk + uiuj`k ≤ 0 (i, j, k) ∈ V
(uk − `k)yij + uiyjk + (`j − uj)yik − uiukxj + (uj`k − `juk)xi − ui`jxk + ui`juk ≤ 0 (i, j, k) ∈ V
ukyij + (ui − `i)yjk + (`j − uj)yik − uiukxj − `jukxi + (`iuj − ui`j)xk + ui`juk ≤ 0 (i, j, k) ∈ V
(uk − `k)yij + (`i − ui)yjk + ujyik + (ui`k − `iuk)xj − ujukxi − `iujxk + `iujuk ≤ (i, j, k) ∈ V
ukyij + (`i − ui)yjk + (uj − `j)yik − `iukxj − ujukxi + (ui`j − `iuj)xk + `iujuk ≤ 0 (i, j, k) ∈ V
−uiyjk + (uj − `j)yik + (uk − `k)yij + ui`kxj + (`j`k − ujuk)xi + ui`jxk − ui`j`k ≤ 0 (i, j, k) ∈ V
(ui − `i)yjk − ujyik + (uk − `k)yij + (`i`k − uiuk)xj + uj`kxi + `iujxk − `iuj`k ≤ 0 (i, j, k) ∈ V
−ukyij + (ui − `i)yjk + (uj − `j)yik + `iukxj + `jukxi + (`i`j − uiuj)xk − `i`juk ≤ 0 (i, j, k) ∈ V

Proposition 2 states that these inequalities amounts to the regular triangle in-
equalities in the specific case where `i = 0, and ui = 1, for all i ∈ I.

Proposition 2 The set of inequalities T is an extension of the regular triangle inequalities,
introduced in [124] for the box constrained case (i.e. xi ∈ [0, 1]), to the general case (i.e.
xi ∈ [`i, ui]).

We now compare the set of inequalities T with the inequalities generated by the
method of [31]. This generic methodology allows to transform each inequality valid
for variables belonging to [0, 1] into a new inequality valid for variables with general
bounds. By Applying their transformation to regular triangle inequalities, we get for
all (i, j, k) ∈ V , the following set B of constraints:


(`k − uk)Yij + (`j − uj)Yik + (`i − ui)Yjk + (uiuk − `i`k)xj + (ujuk − `j`k)xi + (uiuj − `i`j)xk − uiujuk + `i`j`k ≤ 0

(uj − `j)Yik + (`k − uk)Yij + (ui − `i)Yjk + (`juk − uj`k)xi + (`iuk − ui`k)xj + (`i`j − uiuj)xk − `i`juk + uiuj`k ≤ 0

(uk − `k)Yij + (`j − uj)Yik + (ui − `i)Yjk + (uj`k − `juk)xi + (`iuj − ui`j)xk + (`i`k − uiuk)xj − `iuj`k + ui`juk ≤ 0

(uj − `j)Yik + (`i − ui)Yjk + (uk − `k)Yij + (ui`j − `iuj)xk + (ui`k − `iuk)xj + (`j`k − ujuk)xi − ui`j`k + `iujuk ≤ 0

We start by observing that Inequalities of set B can be generated with the same
methodology. Indeed, starting again with the valid inequality:

ukxixj + ujxixk + uixjxk − uiukxj − ujukxi − uiujxk + uiujuk ≥ xixjxk (i)

and using inequalities −xjxk + `jxk + `kxj − `j`k ≤ 0, and xi − `i ≥ 0, we get:

0 ≥ (xi − `i)(−xjxk + `jxk + `kxj − `j`k)

or equivalently

xixjxk ≥ (xi − `i)(`jxk + `kxj − `j`k) + `ixjxk (ii)
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Combining inequalities (i) and (ii), and using variables Y for linearizing the ob-
tained constraints, we get the first inequalities of set B. The other inequalities can
be generated symmetrically. We observe that the difference between sets T and B
comes from a change of variables associated to a translation of the bounds ` to 0.
Proposition 3 states that set T is as strong as set B.

Proposition 3 The set T is as strong as the set B.

In [31], the set B and many other valid inequalities are used into a branch-and-
cut algorithm that is based on a linear relaxation. Here we aim to use the inequalities
of the set T into the convexification process of MIQCR. For this purpose, we handle
the new cuts as classical quadratic inequalities, and we consider the following "Shor
plus RLT plus Triangle" semidefinite relaxation:

(SDP′)



min f (X, x) = 〈Q0, X〉+ cT
0 x

s.t.〈Qr , X〉+ cT
r x ≤ br r ∈ C← αr (1)

Xii ≥ xi i ∈ J← ϕi (2)

Xij ≤ ujxi + `ixj − uj`i (i, j) ∈ U ← φ1
ij (3)

Xij ≤ uixj + `jxi − ui`j (i, j) ∈ U ← φ2
ij (4)

Xij ≥ ujxi + uixj − uiuj (i, j) ∈ U ← φ3
ij (5)

Xij ≥ `jxi + `ixj − `i`j (i, j) ∈ U ← φ4
ij (6)

(`k − uk)Xij + (`j − uj)Xik − uiXjk + uiukxj + (ujuk − `j`k)xi + uiujxk − uiujuk ≤ 0 (i, j, k) ∈ V ← δ1
ijk (15)

(`k − uk)Xij − ujXik + (`i − ui)Xjk + (uiuk − `i`k)xj + ujukxi + uiujxk − uiujuk ≤ 0 (i, j, k) ∈ V ← δ2
ijk (16)

−ukXij + (`j − uj)Xik + (`i − ui)Xjk + uiukxj + ujukxi + (uiuj − `i`j)xk − uiujuk ≤ 0 (i, j, k) ∈ V ← δ3
ijk (17)

(uj − `j)Xik + (`k − uk)Xij + uiXjk + (`juk − uj`k)xi − ui`kxj − uiujxk + uiuj`k ≤ 0 (i, j, k) ∈ V ← δ4
ijk (18)

ujXik + (`k − uk)Xij + (ui − `i)Xjk − uj`kxi + (`iuk − ui`k)xj − uiujxk + uiuj`k ≤ 0 (i, j, k) ∈ V ← δ5
ijk (19)

(uk − `k)Xij + uiXjk + (`j − uj)Xik − uiukxj + (uj`k − `juk)xi − ui`jxk + ui`juk ≤ 0 (i, j, k) ∈ V ← δ6
ijk (20)

ukXij + (ui − `i)Xjk + (`j − uj)Xik − uiukxj − `jukxi + (`iuj − ui`j)xk + ui`juk ≤ 0 (i, j, k) ∈ V ← δ7
ijk (21)

(uk − `k)Xij + (`i − ui)Xjk + ujXik + (ui`k − `iuk)xj − ujukxi − `iujxk + `iujuk ≤ (i, j, k) ∈ V ← δ8
ijk (22)

ukXij + (`i − ui)Xjk + (uj − `j)Xik − `iukxj − ujukxi + (ui`j − `iuj)xk + `iujuk ≤ 0 (i, j, k) ∈ V ← δ9
ijk (23)

−uiXjk + (uj − `j)Xik + (uk − `k)Xij + ui`kxj + (`j`k − ujuk)xi + ui`jxk − ui`j`k ≤ 0 (i, j, k) ∈ V ← δ10
ijk (24)

(ui − `i)Xjk − ujXik + (uk − `k)Xij + (`i`k − uiuk)xj + uj`kxi + `iujxk − `iuj`k ≤ 0 (i, j, k) ∈ V ← δ11
ijk (25)

−ukXij + (ui − `i)Xjk + (uj − `j)Xik + `iukxj + `jukxi + (`i`j − uiuj)xk − `i`juk ≤ 0 (i, j, k) ∈ V ← δ12
ijk (26)(

1 xT

x X

)
� 0

x ∈ Rn X ∈ Sn

By applying Theorem 1, we calculate S∗0 = Q0 +
m

∑
r=1

α∗r Qr + Φ∗ + ∆∗ where:

• α∗ and Φ∗ are computed as described in Theorem 1

• ∆∗ = ∑
(i,j,k)∈V

12

∑
t=1

δt∗
ijkQt

ijk, with δt∗
ijk, t = 1, . . . , 12 the optimal dual variables associ-

ated with Constraints (15)–(26), and Qt
ijk the Hessian matrices of the associated

constraints.
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We thus obtain the following quadratic convex relaxation of (P):

(P
′∗
)



min 〈Q0 +
m

∑
r=1

α∗r Qr + Φ∗ + ∆∗, xxT〉+ cT
0 x− 〈

m

∑
r=1

α∗r Qr + Φ∗ + ∆∗, Y〉

s.t.
fr,Sr(x, Y) ≡ 〈Qr, Y〉+ cT

r x+ ≤ br r ∈ C
(x, y) ∈ MC
(x, y) ∈ T

Corollary 3 It holds that v(P
′∗
) = v(SDP′).

Observe that inequalities of set T can be used in any convex relaxation of (P)
that relax the non-convex constraints Y = xxT.

In order to manage the huge size of (SDP′), we propose a trick that can be ap-
plied when problem (P) contains only continuous variables. We know by Proposi-
tion 2 that when for all i ∈ I, ui = 1 and `i = 0, the 12 general Triangle inequalities
of T can be equivalently reduced to the 4 standard triangle inequalities. Then, in
this case, one can proceed as follows:

i) Apply a change of variables on (P) such that the new variables x̄i belongs to
[0, 1], via the equations x̄i =

xi−`i
ui−`i

.

ii) Solve (SDP′) only with the 4 families of regular triangle inequalities and deduce
the optimal matrix S∗0 .

iii) Add to the constraint set of the relaxation (P
′∗
) the appropriate "duplication" of

each active inequality of an optimal solution of (SDP′).

However, in the general integer case, this change of variable is not possible, and
in that case there exists a huge number of general Triangle (O(n3)). We present
in Section 2.4 how we separate these inequalities within the solution of the huge
semidefinite program (SDP′) that we need to solve.

2.4 A dual heuristic for computing our convex relaxation [28,
95]

In practice, due to its size, the solution of the semi-definite problem of Phase 1 often
constitutes the bottleneck of MIQCR method. However, once the equivalent formula-
tion is computed, solving the obtained reformulated program is practical, since the
continuous relaxation bound of the reformulation is tight. Hence, to handle larger
instances method MIQCR needs an appropriate algorithm to solve Phase 1. In this sec-
tion, we present a sub-gradient algorithm within a Lagrangian duality framework
for solving (SDP′) approximately following the procedure introduced in [57]. Then,
we parameterize our algorithm obtaining a dual heuristic for solving (SDP′). In
fact, we use this dual heuristic for selecting the p most violated inequalities of the
"Shor plus RLT plus Triangle" semi-definite relaxation. It can thus be viewed as a
separation method of sets MC and T . With this suitable algorithm, the time for
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computing Phase 1 significantly decreases and allows us to handle large-scale in-
stances. Moreover, we obtain also a speed up of Phase 2, since by construction the
equivalent formulation computed with the new algorithm can be smaller than the
reformulation obtained with a standard semi-definite solver. Indeed, the density of
the matrix Q0 − S∗0 influences the size of the reformulated problem. One thus can
ask which structure for this matrix would best fit with MIQCR. We do not yet theoret-
ically answer to this question, but with the bundle method proposed in this section,

we are able to control the size of problem (P
′∗
).

Before a brief description of the method, we start by three observations:

i) any set of positive semidefinite matrices S̄0, . . . , S̄m can be used to make the
relaxation (P′S̄0,...,S̄m

) convex.

ii) from any feasible dual solution (α, Φ, ∆) of (SDP′), the associated relaxation
(P′S0,...,Sm

) is convex. Hence, we do not need to solve (SDP′) to global optimality
to compute a convex relaxation.

iii) from any nearly feasible dual solution (α, Φ, ∆) of (SDP′), if f0,S0(x, Y) is not
convex, we can always make it convex by taking (α, Φ + diag(−λmin), ∆) where
λmin is the smallest eigenvalue of the Hessian matrix of function fS0,...,Sm(x, Y).

We now present a bundle method to obtain a reasonable solution of (SDP′). We
start by rewriting (SDP′) as a maximization problem:

(SDP′H,H′)



max f (X, x) = −〈Q0, X〉 − cT
0 x

s.t.
(X, x) ∈ S
ht

ij(X, x) ≤ 0 (i, j, t) ∈ H

h
′t
ijk(X, x) ≤ 0 (i, j, k, t) ∈ H′

where:

S =



〈Qr, X〉+ cT
r x ≤ br r ∈ R

Xii − uixi − lixi + uili ≤ 0 i ∈ I
−Xii + uixi + uixi − uiui ≤ 0 i ∈ I
−Xii + lixi + lixi − lili ≤ 0 i ∈ I
−Xii + xi ≤ 0 i ∈ J(

1 xT

x X

)
� 0

x ∈ Rn X ∈ Sn

and for all (i, j, t) ∈ H = {(i, j, t) := {(i, j) ∈ I2i < j, t = 1, . . . , 4}, ht
ij(X, x) are the

non-diagonal McCormick envelopes:

ht
ij(X, x) =


Xij − ujxi − `ixj + uj`i t = 1 (3)
Xij − uixj − `jxi + ui`j t = 2 (4)
−Xij + ujxi + uixj − uiuj t = 3 (5)
−Xij + `jxi + `ixj − `i`j t = 4 (6)
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and for all (i, j, k, t) ∈ H′ = {(i, j, k, t) : (i, j, k) ∈ V , t = 1, . . . , 12}, h
′t
ijk(X, x) are the

general triangle inequalities:

h
′ t
ijk(X, x) =



(`k − uk)Xij + (`j − uj)Xik − uiXjk + uiukxj + (ujuk − `j`k)xi + uiujxk − uiujuk t = 1 (15)

(`k − uk)Xij − ujXik + (`i − ui)Xjk + (uiuk − `i`k)xj + ujukxi + uiujxk − uiujuk t = 2 (16)

−ukXij + (`j − uj)Xik + (`i − ui)Xjk + uiukxj + ujukxi + (uiuj − `i`j)xk − uiujuk t = 3 (17)

(uj − `j)Xik + (`k − uk)Xij + uiXjk + (`juk − uj`k)xi − ui`kxj − uiujxk + uiuj`k t = 4 (18)

ujXik + (`k − uk)Xij + (ui − `i)Xjk − uj`kxi + (`iuk − ui`k)xj − uiujxk + uiuj`k t = 5 (19)

(uk − `k)Xij + uiXjk + (`j − uj)Xik − uiukxj + (uj`k − `juk)xi − ui`jxk + ui`juk t = 6 (20)

ukXij + (ui − `i)Xjk + (`j − uj)Xik − uiukxj − `jukxi + (`iuj − ui`j)xk + ui`juk t = 7 (21)

(uk − `k)Xij + (`i − ui)Xjk + ujXik + (ui`k − `iuk)xj − ujukxi − `iujxk + `iujuk t = 8 (22)

ukXij + (`i − ui)Xjk + (uj − `j)Xik − `iukxj − ujukxi + (ui`j − `iuj)xk + `iujuk t = 9 (23)

−uiXjk + (uj − `j)Xik + (uk − `k)Xij + ui`kxj + (`j`k − ujuk)xi + ui`jxk − ui`j`k t = 10 (24)

(ui − `i)Xjk − ujXik + (uk − `k)Xij + (`i`k − uiuk)xj + uj`kxi + `iujxk − `iuj`k t = 11 (25)

−ukXij + (ui − `i)Xjk + (uj − `j)Xik + `iukxj + `jukxi + (`i`j − uiuj)xk − `i`juk t = 12 (26 )

We now consider a partial Lagrangian dual of (SDP′) where we dualize the set
of constraintsMC ∪ T , i.e. constraints (3)–(6) and (15)–(26). For this, with each con-
straint ht

ij(X, x) ≤ 0 of (SDP′H,H′) we associate a non-negative Lagrange multiplier

φt
ij, and with each constraints h

′t
ijk(X, x) ≤ 0 a non-negative Lagrange multiplier δt

ijk.
We get the following partial Lagrangian:

LH,H′(X, x, φ, δ) = −〈Q0, X〉 − cT
0 x− ∑

(i,j,t)∈H
φt

ijh
t
ij(X, x)− ∑

(i,j,k,t)∈H′
δt

ijkh
′t
ijk(X, x)

and we obtain the dual functional

gH,H′(φ, δ) = max
(X,x)∈S

LH,H′(X, x, φ, δ)

By minimizing this dual functional we obtain the partial Lagrangian dual prob-
lem (LDH,H′) associated with (SDP′H,H′),

(LDH,H′)

{
min

φt
ij ≥ 0, (i, j, t) ∈ H

δt
ijk ≥ 0, (i, j, k, t) ∈ H′

gH,H′(φ, δ)

We recall here the outline of the bundle method. For a given φ̄t
ij ≥ 0 and ¯δt

ijk ≥ 0,
we evaluate gH,H′(φ̄, δ̄) and determine the associate primal solution (X̄, x̄), such
that gH,H′(φ̄, δ̄) = LH,H′(X̄, x̄, φ̄, δ̄). We call a pair ((φ̄, δ̄), (X̄, x̄)) a matching pair
for gH,H′ . Evaluating function gH,H′ for given (φ̄, δ̄) amounts to maximize a linear
function in (X, x) over the set S. This is a semi-definite program that has much
less constraints than (SDP′H,H′) and can be solved efficiently by interior-point meth-
ods. From the solution (X̄, x̄), we compute a sub-gradient (ht

ij(X̄, x̄), h
′t
ijk(X̄, x̄)) ∈

∂gH,H′(φ̄, δ̄). The bundle method is an iterative algorithm that maintains at each iter-

ation k a "best" approximation (φ̂k, δ̂k) and a sequence X =
(
(X̄1, x̄1), . . . , (X̄k, x̄k)

)
where ((φ̂k, δ̂k), (X̄i, x̄i)) is a matching pair. Then, from the sequence X , the best ap-
proximation (φ̂k, δ̂k), and the new sub-gradient, the bundle method computes a new
value (φ̂k+1, δ̂k+1) that will be used at the next iteration.
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The number of elements in H ∪ H′ is 4(n
2) + 12(n

3). However, we are interested
only in the subset of H ∪H′ for which the constraints ht

ij(X, x) ≤ 0 and h
′t
ijk(X, x) ≤ 0

are tight at the optimum. The idea is to dynamically add and remove constraints in
the course of the algorithm. Then, we now considerH ⊆ H andH′ ⊆ H′, and work
with the function:

gH,H′(φ, δ) = max
(X,x)∈S

LH,H′(X, x, φ, δ).

Initially we set H ∪ H′ = ∅ and after a first function evaluation we separate
violated inequalities and add the elements to set H ∪H′ accordingly. We keep on
updating this set in course of the bundle iterations by removing elements with asso-
ciated multiplier close to zero and separate newly violated constraints.

In our context, we know that any feasible dual solution to (SDP′H,H′) allows us to
build a quadratic convex relaxation of (P). The more this solution is close to the opti-
mum, the more the associated bound at the root node of the branch-and-bound pro-
cess is sharp. A possible way to get such a solution is to drop some constraints
from MC ∪ T of (SDP′H,H′) and compute a dual "nearly" optimal solution (ᾱ, Φ̄, ∆̄)
of the reduced problem. Then, a feasible dual solution to (SDP′H,H′) can be obtained
by completing (ᾱ, Φ̄, ∆̄) with zeros for those dual variables φt

ij and δt
ijk correspond-

ing to the dropped constraints. To carry out this idea, we consider a parameter p
that is an upper bound on the cardinality of H ∪H′, i. e. |H ∪ H′| ≤ p. In other
words, p is the maximum number of constraints considered in the reduced problem.
Introducing this parameter p leads to a dual heuristic that has two extreme cases:

• if p = 4(n
2) + 12(n

3), we solve (SDP′H,H′) and get the associated dual solution as
described in Theorem 1.

• if p = 0, we make a single iteration: we get the optimal solution of the re-
duced problem obtained from (SDP′H,H′) where we drop all constraints of
MC ∪ T (this amounts to solving the "Shor plus diagonal RLT" semi-definite
relaxation).

The algorithm returns a solution (Φ∗, ∆∗) having at most p positive components.
Thus, the number of variables Yij of problem (P

′∗) is also at most p only and Phase 2
can also be solved much faster. This parameter p controls the size, and in a sense the
tightness, of the semi-definite relaxation used for computing the equivalent formu-
lation of method MIQCR. Finally, we use the dynamic bundle method to separate the
set of valid inequalitiesMC ∪ T during the solution of (SDP′).

2.5 Conclusion and experiments

Our algorithm MIQCR is summed up in Algorithm 1. It is implemented in the open
source software Solution of Mixed Integer Quadratic Programs (SMIQP) [94].
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Algorithm 1 MIQCR(P)

Phase 1: Building the quadratic convex relaxation (P∗)
Solve (SDP) (or (SDP′)) by the Bundle algorithm described in Section 2.4, and
determine matrix S∗0 from the optimal dual solutions as described in Theorem 1
(or Corollary 3). For the constraints take Sr = 0n for all r ∈ R.
Phase 2: Solving (P) using (P∗)
Develop a spatial branch-and-bound where the branching rules follows the de-
scription of Section 2.2, depending of the nature of the variables xi and xj involved
in the violation of the constraint Yij = xixj.

We now give an illustration of the experimental behavior our methods thought
two sets of instances. We compare our algorithms MIQCR and MIQCR-T with the
solvers Baron [133] and Gurobi [69]. We used 2 sets of instances. The first one con-
sists in 135 instances of pure-continuous quadratically constrained quadratic pro-
grams from [16] called unitbox. The second one consists in inequality constrained
pure-integer instances of class (IQCP5) from [27]. Our experiments were carried out
on a server with 2 CPU Intel Xeon each of them having 12 cores and 2 threads of 2.5
GHz and 4 ∗ 16 GB of RAM using a Linux operating system.

Results for the unitbox instances

Each unitbox instance from [16] consists in minimizing a quadratic function of
n continuous variables in the interval [0, 1], subject to m quadratic inequalities. For
the considered instances, n varies from 8 to 50, and m from 8 to 100. We set the
time limit to 2 hours. For the solver Baron, we use the multi-threading version of
Cplex 12.9 ([82]) with up to 64 threads. For methods MIQCR and MIQCR-T, we used
the solver csdp ([32]) together with the Conic Bundle library ([79]) for solving semi-
definite programs, as described in Section 2.4. We used the C interface of the solver
Cplex for solving the quadratic convex relaxations at each node of the search tree.
For computing feasible local solutions, we use the local solver Ipopt ([147]). Param-
eter p is set to 0.4 · |MC| for MIQCR, and to 0.04 · |MC ∪ T | for MIQCR-T.

In Figure 6, we present the performance profile of the CPU times for methods
MIQCR-T, MIQCR, and the solvers Baron 19.3.24 and Gurobi 9.1.1 for the unitbox
instances. We observe that MIQCR-T and MIQCR outperform the compared solvers in
terms of CPU time and number of instances solved. More precisely, Baron solve 109
instances, Gurobi solves 114 instances, MIQCR solves 119 instances, and MIQCR-T solves
128 instances out of 135 within the time limit.

We end with the following observations for methods MIQCR and MIQCR-T. First,
the initial gap is smaller for MIQCR-T than for MIQCR: we pass from 2.47% to 1.98%
on average on the 135 instances. Surprisingly, the CPU time for solving the semi-
definite relaxation is divided by 2.7 on average for MIQCR-T in comparison to MIQCR.
This is due to the sub-gradients considered in the course of the Conic Bundle algo-
rithms that can be different for the two methods. Another consequence of the use of
the new inequalities within the branch-and-bound process is the significant reduc-
tion of the number of nodes (by a factor 3.3). Hence, we can also see a reduction of
CPU time for this phase, and the total time is divided by a factor 2 for MIQCR-T.
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FIGURE 6: Performance profile of the CPU time for the unitbox in-
stances with n = 8 to 50 with a time limit of 2 hours.

Results for the IQCP5 instances

Each IQCP5 instance consists of minimizing a quadratic function of n general
integer variable subject to 5 quadratic inequality constraints. For the considered in-
stances, n varies from 10 to 50, and the each variable belongs to the interval [0, 20].
We set the time limit to 2 hours. For methods MIQCR and MIQCR-T, we used the solver
Mosek [122] together with the Conic Bundle library [79] for solving semi-definite pro-
grams. For solving these instances, we used the linearization BIL. Hence, the impact
of the general triangle inequalities lies in the root node relaxation value. For solving
the equivalent integer convex quadratic formulation, we used the C interface of the
solver Gurobi [69]. Parameter p is set to 0.4 · |MC| for MIQCR, and to 0.015 · |MC ∪T |
for MIQCR-T.

FIGURE 7: Performance profile of the total time for the IQCP5 in-
stances with n = 10 to 50 with a time limit of 2 hours.
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In Figure 7, we present the performance profile of the CPU times for methods
MIQCR-T, MIQCR, and for the solvers Baronand Gurobi. We observe that algorithm
MIQCR-T outperforms the compared methods. In particular, Baron solve 21 instances,
Gurobi solves 35 instances, MIQCR solves 44 instances, and MIQCR-T solves 46 in-
stances out of 50 within the time limit. These results show the strong impact of
the new valid inequalities on the sharpness of the root bound, since the initial gap is
divided by a factor of 2.5 for MIQCR-T compared to MIQCR.

Conclusion

In this chapter, we consider the general problem (P) of minimizing a quadratic
function subject to quadratic constraints where the variables can be integer or con-
tinuous. To solve (P), we start by designing an equivalent formulation to (P), then
we solve a semi-definite program in order to build a strong quadratic convex re-
laxation of (P) that captures its tightness. A significant result is that our frame-
work generalizes the standard linearization. We then develop an appropriate spatial
branch-and-bound to solve the reformulated problem based on this relaxation. We
also introduce quadratic inequalities, valid for our convex relaxation, that generalize
the regular triangle inequalities. In addition to tighten the root relaxation, they also
improve the behavior of the spatial branch-and-bound, since they involve the upper
and lower bounds on the variables that move at each node of the search tree. Finally,
we present a sub-gradient algorithm to solve our semi-definite relaxation. This last
algorithm has two roles. First, it is used to separate the inequalities, and moreover it
serves as a dual heuristic.
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Chapter 3

Specialization of method MIQCR to
two applications

In this chapter, we specialize method MIQCR on two problems. The first one is a
classical combinatorial optimization problem: the quadratic Assignment Problem
(QAP), for which the exact resolution is still a challenge even for the best algorithms
of the literature. The second is a purely continuous problem: the Optimal Power
Flow (OPF), for which only a few exact solution methods are available. For these
two problems, we show that by taking advantage of their structure, we can improve
the efficiency of method MIQCR and therefore deal with larger instances.

3.1 The Quadratic Assignment Problem (QAP) [50]

The Quadratic Assignment Problem (QAP) was introduced by Koopmans and Beck-
mann in 1957 as a mathematical model for the location of indivisible economical ac-
tivities [92]. Consider the problem of allocating n facilities to n locations, with the
cost being a function of the distance and flow between the facilities plus the costs
associated with placing a facility at a certain location. The objective is to assign each
facility to a location such that the total cost is minimized. Specifically, let n be the
number of facilities and locations and denote by I the set I = {1, 2, . . . , n}. We are
given three n× n input real matrices A = (aij), B = (bkl), and C = (cik), where aij
is the flow between facility i and facility j , bkl is the distance between location k and
location l, and cik is the cost of placing facility i at location k. A general formulation
was introduced by Lawler [102]. In this version, we are given a four-dimensional
array Q = (qijkl) of coefficients instead of the three matrices A, B and C, where the
coefficients of C are shifted to the diagonal terms of matrix Q. The problem can be
stated as:

(QAP)



min f (x) = ∑
(i,j,k,l)∈I4

qijklxijxkl

s.t.
n

∑
i=1

xij = 1 j ∈ I (27)

n

∑
j=1

xij = 1 i ∈ I (28)

xij ∈ {0, 1} (i, j) ∈ I2 (29)

where, in a facility location application, the decision variable xij corresponds to fa-
cility i being assigned to location j, and qijkl is the cost incurred by assigning facility
i to location j and facility k to location l.
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Sahni and Gonzalez [134] have shown that the (QAP) isNP-hard. Although ex-
tensive research has been done for more than four decades, the (QAP) remains one
of the hardest optimization problems. In the more general case, where the Hessian
matrix of the objective function is fully dense, no exact algorithm can solve problems
of size n > 35 in reasonable computational time nowadays. This problem appears in
many applications such as chip design [76], scheduling, process communications, or
turbine balancing. Another application discusses a campus planning problem with
the objective to minimize the total walking distance between the buildings [45]. A
related hospital lay-out model was also considered in [54].

Several algorithms have been introduced to solve (QAP) mainly based on branch-
and-bound techniques. To compute polynomial bounds, many linearizations of the
quadratic objective function have been proposed [3, 2, 63, 89, 102]. Other families
of underestimators have also been introduced, and in particular those based on the
eigenvalues of the formulation of [92]. It was first proposed by Finke et al. [56],
and then improved and generalized in [70, 71, 72, 73, 128, 130]. Anstreicher and
Brixius [11] developed a powerful bounding technique which is based on convex-
ity arguments for quadratic programs. Finally, many semidefinite relaxations have
been considered for this problem, see [88, 152, 153, 131, 129, 132]. In the following,
we propose to construct convex quadratic reformulations of (QAP) based on two of
these semidefinite relaxations: the R2 [153] and R4 [131] relaxations.

Equivalent quadratic convex formulations to (QAP)

We consider the problem of reformulating (QAP) by an equivalent quadratic 0-1
program. For this purpose, we propose to perturb the objective function f (x) with
quadratic functions that vanish on the feasible domain of (QAP). Thus, we consider
the following three sets of functions:

(i) equalities (x2
ij − xij) = 0 for all (i, j) ∈ I2, that are satisfied for any binary

variable.

(ii) equalities xijxil = 0 for all (i, j, l) ∈ I3 : j < l coming from the fact that a facility
cannot be affected to more than one location.

(iii) equalities xijxkj = 0 for all (i, j, k) ∈ I3 : i < k coming from the fact that a
location cannot be affected to more than one facility.

We now introduce real scalar parameters : βij ∀ ∈ (i, j) ∈ I2, λijl ∀(i, j, l) ∈ I3 :
j < l, and λ′ijk ∀(i, j, k) ∈ I3 : i < k, and the following quadratic function :

fβ,λ,λ′(x) = f (x) + ∑
(i,j)∈I2

βij(x2
ij − xij) + ∑

(i, j, l) ∈ I3

j < l

λijlxijxil + ∑
(i, j, k) ∈ I3

i < k

λ′ijkxijxkj

It is clear that if x is feasible for (QAP), then f (x) = fβ,λ,λ′(x). Hence, problem
(QAP) is equivalently stated as:

(QAPβ,λ,λ′)

{
min fβ,λ,λ′(x)
s.t. (27)− (29)

We now calculate parameters (β∗, λ∗, λ
′∗) that make convex function fβ,λ,λ(x),

and that maximize the value of (QAPβ,λ,λ′) the continuous relaxation of (QAPβ,λ,λ′).
For this, we consider the semidefinite relaxation (SDPR2) introduced in [153]:
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(SDPR2)



min f (X, x) = 〈Q, X〉
s.t. (27)(28)

Xijij − xij = 0 (i, j) ∈ I2 ← βij (30)
Xijil = 0 (i, j, l) ∈ I3, j < l ← λijl (31)

Xijkj = 0 (i, j, k) ∈ I3, i < k ← λ′ijk (32)(
1 xT

x X

)
� 0 (33)

x ∈ Rn2
X ∈ Sn2 (34)

Theorem 4 We have v(SDPR2) = v(QAPβ∗,λ∗,λ′∗). Moreover, the optimal β∗, λ∗, λ
′∗ are

the vectors of optimal dual variables associated to Constraints (30)-(32) respectively.

A significant advantage of this formulation is that we remain in the space of the
initial variables of (QAP). This formulation is efficient for solving exactly instances
of (QAP) of medium size. However, for larger instances, it is limited by the quality
of the bound it provides. This is why we propose to improve this reformulation,
by adding auxiliary variables Y that model the products xxT. More precisely, let
φijkl ≥ 0 ∀(i, j, k, l) ∈ I4 i 6= k and j 6= l be real scalar parameters, and the following
function:

fβ,λ,λ′,φ(x, Y) = fβ,λ,λ′(x)− ∑
(i, j, k, l) ∈ I4

i 6= k
j 6= l

φijkl(xijxkl −Yijkl)

It is clear that if x is feasible for (QAP) and Yijkl = xijxkl , then f (x) = fβ,λ,λ′,φ(x, Y).
To get the equivalence, we then have to enforce equalities Yijkl = xijxkl . As φijkl ≥ 0,
and since additional variables Yijkl only appear in the objective function, it is easy to
see that in an optimal solution Yijkl will be set to its smallest possible value. Hence,
we get the following equivalent formulation to (QAP):

(QAPβ,λ,λ′,φ)


min fβ,λ,λ′,φ(x, Y)
s.t. (27)− (29)

yijkl ≥ xij + xkl − 1 (i, j, k, l) ∈ I4, i 6= k, j 6= l

yijkl ≥ 0 (i, j, k, l) ∈ I4, i 6= k, j 6= l

To calculate the optimal parameters (β∗, λ∗, λ
′∗, φ∗), we show that its continu-

ous relaxation, (QAPβ,λ,λ′,φ), reaches the value of the "Shor plus RLT" semidefinite
relaxation by solving the semidefinite relaxation (SDPR4) [131] which is of smaller
size:

(SDPR4)


min f (X, x) = 〈Q, X〉
s.t. (27)(28)
(30)− (34) (35)
−Xijkl ≤ 0 (i, j, k, l) ∈ I4, k 6= i, j 6= l ← φijkl (36)
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Theorem 5 We have v(SDPR4) = v(QAPβ∗,λ∗,λ′∗,φ∗). Moreover, the optimal β∗, λ∗, λ
′∗

are deduced as in Theorem 4, and the optimal φ∗ is the vector of optimal dual variables
associated to Constraint (36).

A proof of Theorem 5 comes from Theorem 1 and from the fact that constraints :
Yijkl − 1− xij − xkl ≥ 0 are redundant in (SDPR4) [21].

Short computational results

We present some experiments on the Nugent instances from QAPLIB [38]. We com-
pare our two algorithms, denoted by Algorithm R2 and Algorithm R4, with the
solver Cplex. The results are presented in table 1. Each line corresponds to one
instance which Name is nug_n, where n is the number of facilities and of locations.
Column Gap is

∣∣∣∣Opt− Cont
Opt

∣∣∣∣ ∗ 100 , where Cont is the optimal value of the continuous
relaxation, and Opt is the optimal solution value of the instance. Column Time
is the total CPU time including the reformulation time. It is limited to 3 hours,
and if the optimum is not found within this time, we present the final gap (g%),

g =

∣∣∣∣Opt− b
Opt

∣∣∣∣ ∗ 100 where b is the best bound obtained within the time limit. We observe
that Algorithm R2 and Algorithm R4 outperform Cplex in terms of initial gap and
Total CPU time. Indeed, Cplex has always an initial gap of 100% since it starts its
branch-and-bound procedure with a bound equals to 0. Then, we notice that the
initial gap obtained with Algorithm R4 is always smaller than the gap obtained by
Algorithm R2. Finally, Cplex is unable to solve instances with more than 12 initial
variables while Algorithm R2 and Algorithm R4 solve instances with up to 18 vari-
ables within the 3 hours of CPU time.

Algorithm R2 Algorithm R4 Cplex
Name Gap Time Gap Time Gap Time
nug03 0.0 1 0.0 0 100 2
nug06 5.5 4 0.9 1 100 3
nug12 9.3 33 3.5 69 100 1273
nug14 6.7 87 1.7 213 100 (49.0%)
nug15 8.4 153 2.4 380 100 (58.2%)
nug16a 6.2 309 1.8 658 100 (71.3%)
nug16b 12.9 1847 4.2 779 100 (56.6%)
nug17 7.5 1119 2.5 1281 100 (75.6%)
nug18 7.8 6436 3.0 3499 100 (76.9%)
nug20 9.1 (5.0%) 3.6 (2.6%) 100 (86.8%)

Average 7.3 1110 (9) 2.4 764 (9) 100 426 (3)

TABLE 1: Results for Algorithm R2, Algorithm R4, and Cplex for the
Nugent instances (n = 3 to 20, time limit 3 hours).

3.2 The Optimal Power Flow (OPF) [49, 96]

The Optimal Power Flow (OPF) problem consists in the determination of the power
production at different points of an electric network that minimizes a production
cost. The electrical transmission network is modeled by a graph G = (N , E). Each
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network point belongs to the set N of nodes (i.e the set of buses), and their connec-
tions (i.e. the set of transmission lines) are modeled by the set of edges E . We assume
that there is an electric demand at each node also called load. We distinguish two
classes of nodes: N = Ng ∪ Nd, where Ng is the set of nodes that generates and
flows the power (the generator nodes), andNd is the set of nodes that only flows the
power (the consuming nodes). The aim of the OPF problem is to satisfy demand of
all buses while minimizing the total production costs of the generators such that the
solution obeys Ohm’s law and and Kirchhoff’s law.

This problem is naturally formulated with complex variables. Let Y ∈ Cn×n,
where |N | = n be the admittance matrix, which has component Yi,k = Ri,k + jIi,k
for each line (i, k) of the network, and Ri,i = ri,i −∑

i 6=k
Ri,k, Ii,i = ii,i −∑

i 6=k
Ii,k, where

ri,i (resp. ii,i) is the shunt conductance (resp. susceptance) at bus i, and j2 = −1.
Let pi, qi be the real and reactive power output of the generator node i, and pi, qi
the given real and reactive power output of the load node i. We consider here the
complex voltage in the rectangular form: Vi = ei + j fi where |Vi|2 = e2

i + f 2
i is the

voltage magnitude, and we denote by δ(i) the set of adjacent nodes of bus i. With
the above notation, the OPF problem can be modeled by the well known rectangular
formulation of [142]:

(OPF)



min h(p) = ∑
i∈Ng

(
Ci,i p2

i + ci pi

)
s.t.

pi − pi = Ri,i(e2
i + f 2

i ) + ∑
k∈δ(i)

[
Ri,k(eiek + fi fk)− Ii,k(ei fk − ek fi)

]
i ∈ Ng (37)

−pi = Ri,i(e2
i + f 2

i ) + ∑
k∈δ(i)

[
Ri,k(eiek + fi fk)− Ii,k(ei fk − ek fi)

]
i ∈ Nd (38)

qi − qi = −Ii,i(e2
i + f 2

i ) + ∑
k∈δ(i)

[
− Ii,k(eiek + fi fk)− Ri,k(ei fk − ek fi)

]
i ∈ Ng (39)

−qi = −Ii,i(e2
i + f 2

i ) + ∑
k∈δ(i)

[
− Ii,k(eiek + fi fk)− Ri,k(ei fk − ek fi)

]
i ∈ Nd (40)

vi ≤ e2
i + f 2

i ≤ vi i ∈ N (41)

p
i
≤ pi ≤ pi i ∈ Ng (42)

q
i
≤ qi ≤ qi i ∈ Ng (43)

(e, f ) ∈ (Rn, Rn), (p, q) ∈ (R|Ng |, R|Ng |) (44)

where C ∈ S+
|Ng| is a diagonal and semi-definite matrix, c ∈ R|Ng| is the vector of

linear costs of the power injection at each generator node, (v, v) ∈ (Rn, Rn) are the
bounds on the voltage magnitude, and (p, p, q, q) ∈ (R|Ng|, R|Ng|, R|Ng|, R|Ng|).

(OPF) has 2(n + 2|Ng|) variables, 2n quadratic equalities (37)-(40) that enforces
the active and reactive power balances at each node, 2n quadratic inequalities (41)
that models the voltage magnitude, and 4|Ng| box constraints (42)-(43). We observe
that the structure of this formulation is specific. First, only variables p are involved
into the objective function. Moreover, the matrix C is diagonal and positive semi-
definite, hence function h(p) is convex and separable. It follows that the non con-
vexities only come from the quadratic constraints (37)-(41) where variables e and f
are only involved into quadratic forms, while variables p and q only in linear forms.

The first results of the literature for solving the OPF problem were focused on
optimal local solutions, mostly by adapting interior point methods, see, e.g., [149,
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142, 86, 148]. In the context of global optimization, one requires furthermore to de-
termine lower bounds on the OPF problem. For this, the second-order cone pro-
gramming (SOCP) and the semidefinite programming relaxations were first used
(see [84, 15, 14, 101]). The most used semidefinite relaxation, also named rank re-
laxation, leads to very tight lower bounds on the OPF problem. In particular, it was
proven in [64] that this relaxation is exact for a restricted class of problems and under
some assumptions. In other cases, where it is not exact, it can be strengthen until the
optimal solution value, following the ideas of the hierarchy of moment relaxation
problems ([97, 125]). This approach was specialized in the context of the OPF prob-
lem in [87], and showed its efficiency to solve small-sized problems. It was also used
in [118] to strengthen the lower bounds for larger problems. Unfortunately, in prac-
tice, using interior point methods for solving several large SDP relaxations, which
sizes increase at each rank of the hierarchy, is intractable for large networks. Sev-
eral specialized algorithms that exploit the sparsity of power networks were thus
proposed as in [84, 85, 120, 118, 109]. More recently, several cheaper computable
convex relaxations were introduced for the OPF problem. For instance, linear and
quadratic envelopes for trigonometric functions in the polar formulation of the OPF
problem are constructed in [39, 40, 41], and strong SOCP relaxations were introduced
in [91]. These polynomial bounds can then be used within a spatial branch-and-
bound framework to solve the problem to global optimality.

In this section we present two specializations of our approaches to (OPF). In the
first method RC-OPF [68, 49], we focus on the semidefinite relaxation to be solved to
compute the best convex quadratic relaxation. We show that it is possible to reach
the bound provided by the "shor plus RLT" semidefinite relaxation by solving the
rank relaxation. Thus, the time to compute the best relaxation is significantly re-
duced. In RC-OPF, the equivalent problem has a quadratic convex objective function
and linear constraints. Moreover, it has a size of O((2n)2), since it relies on the in-
troduction of (2n)2 additional variables that model all the possible products of the
original variables. Unfortunately, in practice enforcing these (2n)2 equalities can
be very time consuming. In the second method COPF [96], we propose a compact
convex quadratic relaxation which also reaches the rank relaxation value. This re-
laxation has only O(n) auxiliary variables and constraints, and quadratic convex
objective function and constraints. We thus get a significantly smaller convex relax-
ation than is method RC-OPF, that is as tight as the rank relaxation. A key advantage
of our compact relaxation is that we only have to enforce the equality between 2n
additional variables and their corresponding products to prove global optimality.

The algorithm RC-OPF [68, 49]

The equivalent quadratic formulation of RC-OPF directly follows from method MIQCR.
For simplicity, we start by rewriting the initial equality constraints (37)-(40) by using
the notation y = (p, q) ∈ R2|Ng| and x = (e, f ) ∈ R2n as follows:

〈Ar, xxT〉+ aT
r y = br r ∈ C (45)

where C = (Ng,Ng,Nd,Nd), with |C| = 2n, and ∀ r ∈ C, Ar ∈ S2n is the Hessian
sub-matrix of the rth constraints within (37)-(40), that corresponds to the quadratic
terms involving variables e and f only, ar ∈ R2|Ng| is the vector of linear coefficients
of constraint r, and b ∈ R2n where br is the the right-hand side of constraint r.
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Now, we consider a semi-definite matrix S ∈ S+
2n, and the matrix variable X ∈

S2n that modeled the products xxT, and we obtain the following family of equivalent
formulations to (OPF):

(OPFS)



min fS(p, x, X) = ∑
i∈Ng

(
Ci,i p2

i + ci pi

)
+ 〈S, xxT − X〉

s.t.
(42)(43)
〈Ar, X〉+ aT

r y = br r ∈ C (46)
vi ≤ Xi,i + Xi+n,i+n ≤ vi i ∈ N (47)
X = xxT (48)
x = (e, f ) ∈ R2n, y = (p, q) ∈ R2|Ng|, X ∈ S2n (49)

We now build (OPFS), the convex relaxation of (OPFS), obtained by replacing
the non-convex equalities (48) by the McCormick envelopes. For this, we need upper
and lower bounds on each variable xi, we use trivial bounds that can be deduced
from Constraints (41), i.e. `i = −

√
vi and ui =

√
vi.

We know by Theorem 1, that we can compute the best matrix S∗ that maximizes
the value of (OPFS) using the dual optimal solutions of the "Shor plus RLT" semi-
definite relaxation of (OPF). We state in Theorem 6 that the best matrix S∗ can also
be derived from an optimal dual solution of (SDPOPF), the rank relaxation of (OPF):

(SDPOPF)



min h(Y, p) = ∑
i∈Ng

(
Ci,iYi,i + ci pi

)
s.t.
〈Ar, X〉+ aT

r y = br ∀r ∈ C ← βr (50)
Xi,i + Xi+n,i+n ≤ vi i ∈ N ← αi (51)
−Xi,i − Xi+n,i+n ≤ −vi i ∈ N ← αi (52)
p

i
≤ pi ≤ pi i ∈ Ng (53)

q
i
≤ qi ≤ qi i ∈ Ng (54)[
1 yT

y Y

]
� 0 (55)

X � 0 (56)
y ∈ R2|Ng|, (Y, X) ∈ (S2|Ng|, S2n)

Theorem 6 We have v(SDPOPF) = v(OPFS∗). Moreover, the optimal matrix S∗ can be
derived from the dual optimal values of (SDPOPF) as follows:

S∗ = ∑
r∈C

β∗r Ar + diag(α∗)

where β∗ is the vector of optimal dual variables associated to Constraints (50), vectors α∗

and α∗ are the vectors of optimal dual variables associated to Constraints (51) and (52)
respectively, α∗ =

(
(α∗ − α∗), (α∗ − α∗)

)
, and diag(α∗) is the diagonal matrix where each

diagonal term equals α∗i .

To prove Theorem 6, it is sufficient to show that the inequalities of set MC are
redundant in (SDPOPF).
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Hence, for computing the best convex relaxation of the OPF problem, we need to
solve a semi-definite relaxation with a significant fewer number of constraints than
the "Shor plus RLT" classically used in method MIQCR. Moreover, doing this ensure us
to reach the best possible bound within our family of equivalent convex relaxation.

The algorithm COPF [96]

We now present method COPF. The idea is to build an equivalent problem to (OPF),
where the original constraints are convexified using only 2n auxiliary variables z =
(ze, z f ) ∈ R2n that model the squares of the initial variables e and f :{

ze
i = e2

i i ∈ N (57)

z f
i = f 2

i i ∈ N (58)

Using these new variables it is easy to rewrite Constraints (41) into a convex form
by simply linearizing them, and we get:

vi ≤ ze
i + z f

i ≤ vi i ∈ N (59)

We now handle the equality constraints. For this, the first step is to transform
each equality (45) into two inequalities:

{
〈Ar, xxT〉+ aT

r y ≤ br r ∈ C
〈−Ar, xxT〉 − aT

r y ≤ −br r ∈ C

Then, to make them convex, we apply the smallest eigenvalue method intro-
duced in [75]. Let λr = λmin(Ar) (λ′r = λmin(−Ar), resp.) be the smallest eigenvalue
of matrix Ar (−Ar, resp.), and the following inequalities:

〈Ar, xxT〉+ aT
r y− λr

2n

∑
i=1

(x2
i − zi) ≤ br r ∈ C (60)

〈−Ar, xxT〉 − aT
r y− λ′r

2n

∑
i=1

(x2
i − zi) ≤ −br r ∈ C (61)

We recall that for all i ∈ N , xi = ei, xi+n = fi, zi = ze
i , and zi+n = z f

i . It is easy to
prove that Constraint (60)-(61) are convex. Moreover, if ∀i x2

i = zi, they are equiva-
lent to equalities (45). Hence, by replacing Constraints (37)-(41) by Constraints (57)-
(61), we obtain an equivalent problem to (OPF) where the only non-convexity re-
mains into the equalities (57)-(58). Then, we get a quadratic convex relaxation of
(OPF) by relaxing the latter equalities with the following set of convex inequalities:

D = (x, z)
{

zi ≤ (ui + `i)xi − ui`i

zi ≥ x2
i
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We now rewrite the objective function of (OPF). Let (φ, α) ∈ (R2n, R2n) be two
vector parameters, we build the following parameterized function:

hφ,α(x, y, z) =h(y) + ∑
r∈C

(
φr(〈Ar, xxT〉+ aT

r y− br)
)
+ ∑

i∈N
αi

(
x2

i + x2
i+n − zi − zi+n

)
where h(y) is the initial objective function. Observe that there exist parameters (φ, α)
such that hφ,α is a convex function. Indeed, as mentioned above, function h(y) is
convex and separable. Now, the two additional terms are linear in y and z, and pure
quadratic in x. By taking ∀ r ∈ C, φr = 0, and ∀i ∈ N , αi any non negative value, the
associated function hφ,α(x, y, z) is obviously convex.

We thus obtain the following family of quadratic convex relaxations to (OPF):

(OPFφ,α)



min hφ,α(x, y, z)
s.t.
(42)(43)(57)− (61)
(x, z) ∈ D (62)

x = (e, f ) ∈ R2n, y = (p, q) ∈ R2|Ng| (63)

Problem (OPFφ,α) is a compact quadratic convex relaxation to (OPF), since we
only add O(n) variables and constraints to the original formulation

We are now interested in the best parameters (φ∗, α∗) that maximize the optimal
value of (OPFφ,α) while making convex the parameterized function hφ,α. We state in
Theorem 7 that these best parameters can be deduced from the dual optimal solution
of the rank relaxation of (OPF).

Theorem 7 We have v(SDPOPF) = v(OPFφ∗,α∗). Moreover, the best parameters φ∗, α∗

can be deduced as in Theorem 4.

Some computational results

We illustrate on some experiments the behavior of the algorithms RC-OPF and COPF for
exact solution of instances of the PG-lib library [126]. We compare COPF with the non-
linear solver Baron [133]. Our experiments were carried out on a server with 2 CPU
Intel Xeon each of them having 12 cores and 2 threads of 2.5 GHz and 4 ∗ 16 GB of
RAM using a Linux operating system. We set the time limit to 3 hours for all meth-
ods. For the solver Baron, we use the multi-threading version of Cplex 12.9 [82]
with up to 64 threads. For methods COPF and RC-OPF, we used the semidefinite
solver Mosek [122] for solving semidefinite programs. At each node of the spatial
branch-and-bound, we used the solver Mosek for solving the QCQP of method COPF,
and the solver Cplex 12.9 for solving QP of method RC-OPF. For computing feasible
local solutions, we use the local solver Ipopt [147].

For our experiences, we considered medium-sized data of power networks hav-
ing 3 to 300 buses, and we took the formulation of the OPF described by Con-
straints (37)-(43). We report in Table 1 the characteristics of each instance: its Name,
and the number of Buses, Generators, and Lines of the considered power network. We
also indicate in the column Opt the best solution found by COPF and RC-OPF, within 3
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Name Buses Generators Lines Opt |(x, y)|
caseWB2 2 1 1 9.0567 6
caseWB3 3 1 2 417.2453 8
pglib_opf_case3_lmbd 3 3 3 5 694.5249 12
caseWB5 5 2 6 13.7797 14
pglib_opf_case5_pjm 5 5 5 14 997.0431 20
case6ww 6 3 11 3 126.3145 18
pglib_opf_case14_ieee 14 5 20 2 178.0893 38
pglib_opf_case24_ieee_rts 24 33 38 63 344.6382 114
pglib_opf_case30_as 30 6 41 801.5451 72
pglib_opf_case30_ieee 30 6 41 6 592.9534 72
pglib_opf_case39_epri 39 10 46 133 801.7063 98
pglib_opf_case57_ieee 57 7 80 37 589.3248 128
pglib_opf_case73_ieee_rts 73 99 120 189 741.3755 344
pglib_opf_case89_pegase 89 12 210 106 696.9325 202
pglib_opf_case118_ieee 118 54 186 96 881.5257 344
pglib_opf_case162_ieee_dtc 162 12 284 84 785.2377 348
pglib_opf_case179_goc 179 29 263 750 158.5809 416
pglib_opf_case200_activ 200 38 245 27 557.5673 476
pglib_opf_case240_pserc 240 143 448 - 766
pglib_opf_case300_ieee 300 69 411 - 738

TABLE 2: Characteristics of the considered instances of PG-lib library.

hours of computing time. The column |(y, x)| specifies the dimension of the variable
vector (y, x) in (OPF).

FIGURE 8: Performance profile of the total time for networks with 2
to 300 buses (time limit 3 hours).

In Figure 8, we present the performance profile of the CPU times for methods
COPF, RC-OPF, and the solver Baron 19.3.24. We observe that COPF and RC-OPF sig-
nificantly outperform the solver Baron. In fact Baron solves to optimality only 6 in-
stances out of the 20 considered, the largest of which is pglib_opf_case14_ieee. The
two other approaches are more efficient, since they solve within 3 hours of CPU time,
12 instances for RC-OPF and 14 for COPF. Moreover, this profile shows that COPF is
faster than RC-OPF for these instances.
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Instance COPF RC-OPF
Name Gap |z| UB SDP CPU Nodes |z| UB SDP CPU Nodes
caseWB2 1.947 4 0 1 2 25 8 0 1 - 44265
caseWB3 0.000 6 0 1 1 1 14 0 1 1 0
case3_lmbd 0.000 6 0 1 1 1 18 0 1 1 0
caseWB5 28.093 10 0 1 357 8 267 34 0 1 - 292231
case5_pjm 0.000 10 0 1 1 0 34 0 1 1 0
case6ww 0.000 12 3 1 4 0 56 0 1 1 0
case14_ieee 0.000 28 0 1 1 0 108 0 1 2 0
case24_ieee_rts 0.000 48 0 1 1 0 184 42 1 43 0
case30_as 0.000 60 8 0 8 0 224 0 1 1 0
case30_ieee 0.000 60 0 1 1 0 224 5 1 6 0
case39_epri 0.000 78 1 1 2 0 262 5 1 6 0
case57_ieee 0.003 114 167 1 - 2 659 426 31 1 - 2193
case73_ieee_rts 0.000 146 67 2 70 0 578 191 3 196 0
case89_pegase 0.000 178 31 3 34 0 1002 72 3 76 0
case118_ieee 0.005 236 933 2 - 973 952 2864 5 - 1023
case162_ieee_dtc 1.890 324 342 4 - 353 1444 518 7 - 1033
case179_goc 0.034 358 1517 5 - 343 1246 3045 10 - 1127
case200_activ 0.000 400 420 5 426 0 1380 2156 10 2172 0
case240_pserc - 480 3624 27 - 219 1872 3328 27 - 619
case300_ieee - 600 3295 42 - 29 2236 3124 41 - 1171

TABLE 3: Initial gap, Sizes, CPU times and Nodes for methods
COPF and RC-OPF.

Finally, we present in Table 2, a detailed comparison between methods COPF and

RC-OPF. Column Gap: =

∣∣∣∣Opt− Cont
Opt

∣∣∣∣ ∗ 100, is the initial gap at the root node of

the branch-and-bound, where Cont is the optimal value of the rank relaxation, Opt
is defined as in Table 1, and − indicates that no feasible solution has been found by
the algorithm. Column |z| specifies the number auxiliary variables in the relaxation,
that is also the number of non-convex equalities to force during the spatial branch-
and-bound. Columns UB and SDP report the CPU times in seconds for finding an
initial upper bound and for solving the rank relaxation. Column CPU is the total
CPU time, where − means that the instance is unsolved within the time limit of 3
hours. Finally, Column Nodes is the number of nodes visited by the branch-and-
bound. A first observation concerns the reformulation time which is significantly
shorter than the global resolution time (always less than 42 seconds), while the rank
relaxation is solved directly with a standard semidefinite solver. The zero gap at
the root of the branch-and-bound for 12 instances out of the 20 considered confirms
the strength of the rank relaxation for the OPF problem. On the other hand, these
experiments clearly show that the exact resolution of the instances where the gap
is non-zero remains very hard. Indeed, the method RC-OPF does not solve instances
having only 2 or 5 buses in the considered power network. In fact, during its branch-
and-bound, RC-OPF does not increase the lower bound, despite a large number of
explored nodes. This is not the case for COPF, which, with a much smaller number of
nodes, slightly increases the lower bound over the course of the branch-and-bound,
even for the largest instances. This is because the number of auxiliary variables and
relaxed equalities zi = x2

i is strongly reduced in COPF. Let us finally note that deter-
mining a feasible solution is also difficult in practice, at least with a generic interior
point algorithm. Moreover, the CPU time for this step is not constant since for ex-
ample it goes from 400 to 1380 seconds for the instance pglib_opf_case200_activ.
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Chapter 4

Global solution of binary
unconstrained polynomial
problems

In this chapter, we focus on finding equivalent convex formulations of another sub-
class of MINLP where the objective function can be any polynomial of binary vari-
ables. Such a problem can be stated as follows:

(UBP)


min F(x) =

m

∑
p=1

ap ∏
i∈Mp

xi

s.t.
xi ∈ {0, 1} i ∈ I

where I = {1, .., n}, function F(x) is an n−variable polynomial of degree d having
m monomials. For a monomial p, we denote byMp the subset of I containing the
indexes of the variables involved in p. It follows that d = maxp |Mp|.

We start by the presentation of a direct convexification that we relate and com-
pare to the αbb [6]. With this first solution algorithm, we compute an equivalent
convex formulation to (UBP) in an extended space of variables, but with the same
degree as the original problem. Following the spirit of Quadratic Convex Refor-
mulation approaches, the convex formulation is calculated thanks to the solution
of a semidefinite relaxation involving an approximation of the non constant Hessian
matrix of (UBP). The performance of this approach relies on this approximation than
can be weak for many problems.

Another way to address this problem is to reformulate it first into an equivalent
quadratic problem in a step of quadratization. The main advantage is that the Hessian
matrix of the obtained problem is constant. Motivated by the fact that the application
of methods QCR and MIQCR is inefficient after a quadratization step, we present a
convexification algorithm suitable for (UBP). We call this method PQCR (Polynomial
Quadratic Convex Reformulation). Our contribution is that we use the features of
the quadratization to optimize the convexification phase. As several quadratizations
can be applied to (UBP), it is interesting to evaluate the impact of this choice on the
sharpness of the bound obtained after convexification. We give some first answers
to this question by characterizing families of quadratizations that provide the same
bounds. Finally, the last phase of PQCR consists in solving the convexified problem
using a MIQP solver.
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4.1 A convex reformulation obtained by direct convexifica-
tion [103]

In this section, we present a direct convexification of problem (UBP). We begin by
recalling the main features of the αbb algorithm [6] that applies to MINLPs. It is a
branch-and-bound based on a convex underestimator:

gα(x) = F(x) +
n

∑
i=1

αi(xi − ui)(xi − `i)

A key point of this algorithm is to determine a vector α ∈ Rn that gives a tight
underestimation. Several ways for computing a good α were proposed [6, 5, 9, 110,
116]. The most efficient is derived from the Scaled Gerschgorin’s Theorem [66] and
is computed as follows. The authors first approximate the Hessian matrix H of F(x)
by use of the interval matrix [H] = [H, H] = {H ∈ Sn : H ≤ H ≤ H} that
is a family of matrices where H, H ∈ Sn are given matrices, and the inequality is
considered element-wise. Then, a vector α ∈ Rn that makes any matrix H ∈ [H]
positive semi-definite can be computed as:

αi = max
{

0,−
(

hii −∑
j 6=i

max{|hij|, |hij|}
dj

di

)}
for any d > 0

where hij (hij resp.) is the element (i, j) of matrix H (H resp.)

In [6], the authors also proposes to compute the vector α that minimizes the
separation distance between F(x) and its underestimator gα(x) using semi-definite
programming. In fact they first build a matrix M such that, for any H ∈ [H],
λmin(M) ≤ λmin(H) as follows:

(M)ij =


hii +

1
2 ∑

k 6=i
(hik − hik) if i = j

1
2
(hij + hij) if i 6= j

Then, they look for a diagonal matrix ∆ ∈ Sn that is the optimal solution of the
following semi-definite program:

SDPαbb

{
min〈∆, (u− `)(u− `)T〉
M + ∆ � 0

In practice, the solver ANTIGONE [115] that implements the αbb, does handle poly-
nomial functions only with this α underestimator. Indeed, in this case, each non-
linear function is decomposed into a sum of terms belonging to one of several cate-
gories : linear, bi-linear, tri-linear, convex or general non-convex. Then the treatment
of each terms is as follows: linear and convex are not modified, and bi-linear, tri-
linear are linearized thanks to the McCormick [111] envelopes and extensions [6, 5,
9, 110, 116]. Then, the remaining general non convex terms are underestimated with
a the α underestimator.

We now present an equivalent convex formulation of (UBP) that is also based on
the perturbation of the Hessian matrix of F(x). We introduce n(n−1)

2 new variables
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Yij that represent the products xixj, and we build the following perturbed function:

Fϕ,Φ(x, Y) =
m

∑
p=1

ap ∏
i∈Mp

xi +
n

∑
i=1

ϕi(x2
i − xi) +

n

∑
i=1

n

∑
j>i

Φij(xixj −Yij)

We have the equality Fϕ,Φ(x, Y) = F(x) if x ∈ {0, 1}n, and Yij = xixj, for all
(i, j) ∈ I2 : i < j, and problem (UBP) is thus equivalent to the following linearly
polynomial program (UBPϕ,Φ):

(UBPϕ,Φ)


min Fϕ,Φ(x, Y)
s.t.
(x, Y) ∈ F
xi ∈ {0, 1} i ∈ I

where the set F of Fortet [61] inequalities is:

F = (x, Y)


Yij ≤ xi (i, j) ∈ I2 : i < j
Yij ≤ xj (i, j) ∈ I2 : i < j
Yij ≥ xi + xj − 1 (i, j) ∈ I2 : i < j
Yij ≥ 0 (i, j) ∈ I2 : i < j

Let us first notice that in the binary case, the underestimator gα(x) corresponds to
the function Fϕ,Φ(x, Y), when Φij is fixed at 0 for all (i, j). We can observe that even
in this case, the two approaches are conceptually different. Indeed, our method
constructs a function equivalent to F(x) for each feasible point of (UBP), and the
perturbation ϕ is computed only once before the exploration of the search tree. Then,
a branch-and-bound process whose lower bound is the continuous relaxation value
of the equivalent and convex formulation is performed. The αbb is based on a convex
underestimator computed at each node of the search tree which serves as a lower
bound. In this context, α must be recalculated at each node to ensure the convergence
of the whole algorithm.

We are interested in the best parameters ϕ∗ and Φ∗ that maximize the value of
(UBPϕ,Φ), the continuous relaxation of (UBPϕ,Φ), and make convex Fϕ,Φ(x, Y). More
formally, we want to solve the following problem:

(OPTϕ,Φ)

{
max

H+diag(ϕ)+Φ+�0
v(UBPϕ,Φ)

where H is the Hessian matrix of F(x). Problem (OPTϕ,Φ) is clearly difficult to solve
since H is not constant, but it is possible to calculate feasible solutions. The idea
is to determine a matrix M, such that M � H, for all H ∈ [H], [H] being the
interval matrix associated to the Hessian H of F(x). Then, by computing a ma-
trix perturbation such that M + diag(ϕ) + Φ � 0, we can deduce that the matrix
H + diag(ϕ) + Φ is positive semidefinite. Indeed, since for all H ∈ [H], we have
H + diag(ϕ) + Φ � M + diag(ϕ) + Φ � 0. Given a matrix M, we can therefore de-
duce from Theorem 1, that feasible (ϕ, Φ = φ1 + φ2 − φ3 − φ4) for (OPTϕ,Φ) can be
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derived from the optimal dual variables of (SDPM):

(SDPM)



min f (X, x) = 〈M, X〉
s.t.
Xii = xi ∀i ∈ I ← ϕi

Xij ≤ xi (i, j) ∈ I2 : i < j← φ1
ij

Xij ≤ xj (i, j) ∈ I2 : i < j← φ2
ij

Xij ≥ xi + xj − 1 (i, j) ∈ I2 : i < j← φ3
ij

Xij ≥ 0 (i, j) ∈ I2 : i < j← φ4
ij(

1 xT

x X

)
� 0

x ∈ Rn X ∈ Sn

The performance of the method depends on the computation of matrix M, since it
impacts the value of (SDPM) and by equivalence that of (UBPϕ,Φ). We can of course
use the value of M described above in the context of the αbb, but characterizing a
good matrix M constitutes a future work.

4.2 PQCR, a global solution algorithm for polynomials pro-
grams [52, 53]

In this section, we describe method PQCR. It can be decomposed into three phases.
We start by a quadratization of (UBP), obtaining a MIQP with linear constraints.
This equivalent quadratic formulation depends on the quadratization used. Then,
in a second phase, we propose a convexification based on the quadratization. The
third phase of PQCR consists in submitting the convex quadratic reformulation to a
MIQP solver.

Quadratizations of (UBP)

We start by a description of how we build equivalent quadratic formulations to
(UBP). For this, in each monomial of degree 3 or greater, we iteratively replace each
product of two variables by an additional variable. Thus, each auxiliary variable
models a product of 2 variables which can be initial or auxiliary variables. We start
with the formal definition of a quadratization.

Definition 1 Quadratization Z = (A, E , f , s)
Let A = {n + 1, .., N} be the set of indexes of the additional variables, we define Ei ∀i ∈
I ∪A and mappings f : A → I ∪A and s : A → I ∪A as follows:

• If i ∈ I, i.e. xi is an initial variable, then we set Ei = {i}

• If i ∈ A, i.e. xi is an additional variable, then there exist two indexes ( f (i), s(i)) ∈
(I ∪A)2 such that xi = x f (i)xs(i) and we set Ei = E f (i) ∪ Es(i)

It follows from Definition 1 that, ∀i ∈ I ∪A, Ei is the subset of indexes from I whose
product is equal to xi, precisely: xi = ∏

i′∈Ei

xi′
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We now define a valid quadratization as a reformulation with N variables where
any monomial of degree greater than or equal to 3 is replaced by the product of two
variables.

Definition 2 Valid quadratization
A quadratization Z = (A, E , f , s) with N = |I ∪ A| variables is valid if ∀p : |Mp| ≥ 3,
there exist (j, k) ∈ (I ∪A)2 such thatMp = Ej ∪ Ek and ∏

i∈Mp

xi = xjxk.

Several valid quadratizations exist and can be easily computed. Given a valid
quadratization Z and by considering that x ∈ RN , we derive from Definition 2 the
following reformulation of F into a quadratic form gZ :

gZ (x) = ∑
p:|Mp|≥3
Mp=Ej∪Ek

apxjxk + ∑
p:|Mp|≤2

ap ∏
i∈Mp

xi

Then, by splitting gZ into its quadratic and linear parts, and by introducing Q ∈
SN and c ∈ RN , we will below adopt the following notation for function gZ :

gZ (x) ≡ xTQx + cTx

From Definitions 1 and 2, it holds that ∀i ∈ A where xi = x f (i)xs(i), the value
of gZ (x) equals the value of F(x̃), where x̃ is the vector of initial variables. Our
reformulation of (UBP) into a non-convex mixed-integer quadratic program (QPZ )
follows from all this.

(QPZ )


min gZ (x) = xTQx + cTx
s.t.

x ∈ FZ (64)

with FZ the set of Fortet inequalities [61] that enforces the identity xi = x f (i)xs(i):

FZ



xi ≤ x f (i) i ∈ A (65)
xi ≤ xs(i) i ∈ A (66)
xi ≥ x f (i) + xs(i) − 1 i ∈ A (67)
xi ≥ 0 i ∈ A (68)
xi ∈ {0, 1} i ∈ I ∪A (69)

A tailored quadratic convex reformulation

We now consider the problem of reformulating (QPZ ) by an equivalent quadratic
program with a convex objective function. To do this, we start by adding to gZ (x)
a combination of four sets of functions defined in set SZ that vanish on the feasible
domain FZ :

SZ


x2

i − xi = 0 i ∈ I ∪A (70)
xi − x f (i)xs(i) = 0 i ∈ A (71)
xi − xixj = 0 (i, j) ∈ A× (I ∪A) : Ej ⊂ Ei (72)

xixj − xkxl = 0 (i, j, k, l) ∈ (I ∪A)4 : Ei ∪ Ej = Ek ∪ El (73)
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Constraint (70) comes from the binarity of the variables, and Constraint (71) from
the definition of the quadratisation Z . Constraints (72) and (73) arise from the sym-
metries induced by Z .

We now associate a real scalar parameter to each constraint of SZ : αi for Con-
straint (70), δi for Constraint (71), βij for Constraint (72), and λijkl for Constraint (73).
Then, we introduce the following quadratic function :

gZα,δ,β,λ(x) = gZ (x) + ∑
i∈I∪A

αi(x2
i − xi) + ∑

i∈A
δi(xi − x f (i)xs(i))

+ ∑
(i,j)∈A×(I∪A)

Ej⊂Ei

βij(xi − xixj) + ∑
(i,j,k,l)∈(I∪A)4

Ei∪Ej=Ek∪El

λijkl(xixj − xkxl)

Function gZα,δ,β,λ(x) has the same value as gZ (x) for any x ∈ FZ . Moreover, there
exist vector parameters α, β, δ and λ such that gZα,δ,β,λ is a convex function. Take for
instance, α equals to the opposite of the smallest eigenvalue of Q, and β = δ = λ = 0.

By replacing gZ by the new function, we obtain the following family of convex
equivalent formulations to (QPZ ), and thus to (UBP):

(QPZα,δ,β,λ)


min gα,δ,β,λ(x) = xTQα,δ,β,λx + cT

α,δ,β,λx
s.t.

x ∈ FZ

where Qα,δ,β,λ ∈ SN is the Hessian matrix of gZα,δ,β,λ(x), and cα,δ,β,λ ∈ RN its vector of
linear coefficients.

We are now interested in parameters (α, δ, β, λ) such that gZα,δ,β,λ is a convex func-

tion, and the continuous relaxation (QPZα,δ,β,λ) of (QPZα,δ,β,λ) give the tightest bound.
Theorem 8 states that these best parameters can be deduced from the optimal dual
solution of (SDPZ ):

(SDPZ )



min < Q, X > +cTx
s.t.

Xii − xi = 0 i ∈ I ∪A ← αi (74)
xi − X f (i)s(i) = 0 i ∈ A ← δi (75)

xi − Xij = 0 (i, j) ∈ A× (I ∪A) : Ej ⊂ Ei ← βij (76)

Xij − Xkl = 0 (i, j, k, l) ∈ (I ∪A)4 : Ei ∪ Ej = Ek ∪ El ← λijkl (77)(
1 xT

x X

)
� 0 (78)

x ∈ RN , X ∈ SN (79)

Theorem 8 We have v(SDPZ ) = v(QPZα∗,δ∗,β∗,λ∗). Moreover, the optimal α∗, δ∗, β∗, λ∗

are the vectors of optimal dual variables associated to Constraints (74)–(77), respectively.

To prove Theorem 8, we must first show that the inequalities of the set FZ are
redundant in (SDPZ ), and then use Lagrangian duality. Our three-phase algorithm
PQCR is summed up in Algorithm 2.
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Algorithm 2 PQCR an exact solution method for (UBP)
Step 1: Apply a quadratization Z = (A, E , f , s) to (UBP).
Step 2: Solve (SDPZ ), deduce optimal values α∗, δ∗,β∗, λ∗ as described in Theo-
rem 8, and build (QP∗).
Step 3: Solve (QP∗) by a branch-and-bound based on continuous relaxation using
a standard miqp solver.

Discussion on the impact of the chosen quadratization [103]

The algorithm PQCR is working for any quadratization Z applied in Step 1, and the
choice of Z impacts the value of the continuous relaxation of the equivalent convex
formulation. Moreover, for a given quadratization Z , there can be several ways to
rewrite the objective function into a quadratic function, depending on the meaning
of the auxiliary variables. This implies that a quadratization Z , is in fact a fam-
ily of quadratizations, where each element differs by the variables involved in the
quadratic objective function gZ . We want therefore caracterize families of quadra-
tizations that are stable by convexification, i.e. that gives the same bound after con-
vexification. A first result is stated in Proposition 1

Proposition 1 Stability of a family of quadratizations.
Given a quadratization Z = (A, E , f , s), suppose there is B = {1, . . . , s} different ways to
express F(x) as a quadratic function leading to |B| quadratic functions gZi and associated
optimal reformulations (QPZ∗i ). We have ∀(i, j) ∈ B × B, v(QPZ∗i ) = v(QPZ∗j ).

Two quadratizations that give the same bound after convexification can be qual-
ified as "equivalent". Then we can choose the one with the smallest size to speed up
the algorithm. We now give a few rules in order to compare these families among
themselves.

Proposition 2 Inclusion of two families of quadratizations.
We consider two quadratization Z1 = (A1, E1, f 1, s1) and Z2 = (A2, E2, f 2, s2) involving
N1 and N2 variables respectively, with N1 ≤ N2 . We say that the quadratizationZ1 ⊂ Z2,
if for any i ∈ {1, . . . , N1}, there exists j ∈ {1, . . . , N2} such that E1

i = E2
j . We have

v(QPZ
1∗
) ≤ v(QPZ

2∗
).

We end with the description of two particular quadratizations. The first is called
full quadratization and consists in the introduction of an additional variable for each
possible product of variables up to degree 2. This is the smallest quadratization that
can be used to quadratically reformulate any polynomial of degree d. This quadra-
tization is not sensitive to the structure of the initial problem since the number of
additional variables only depends on the number of initial variables n. It has been
introduced and used in different frameworks as in [97, 98]. The other one is the par-
tial quadratization that consists in the introduction of an additional variable for each
possible product of variables up to degree 2, but that is present in the objective func-
tion. By Proposition 2, we know that the bound obtained by the partial quadratization
will be always weaker that the one obtained by the full quadratization. However, the
size of the first one is more practicable from a computational point of view.
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A picture of computational results

We consider the low auto-correlation binary sequence (LABS) problem [19]. This
problem has numerous practical applications in communication engineering, or the-
oretical physics. It consists in finding binary sequences with low off-peak auto-
correlations. More formally, given a sequence S = (s1, . . . , sn) with si ∈ {−1, 1},
and an integer k = 1, . . . , n− 1, we consider the auto-correlation of S:

Ck(S) =
n−k

∑
i=1

sisi+k

The problem is to find a sequence S of length n up to a certain distance n0 ≤ n that
minimizes the polynomial:

En0(S) =
n0−1

∑
k=1

C2
k (S)

We use the instances introduced by [105] and available on the MINLPLibwebsite [112].
We convert the variables from {−1, 1} to {0, 1} using the standard transformation
x = s+1

2 . These instances are dense and very hard to solve, and for most of them,
the optimal solution value is not known. To illustrate the computational behavior of
PQCR, we compare it to the solvers Baron [133] and Scip [1]. We present in Figure 9,
the performance profile of the CPU times for PQCR, Baron and Scip over the 19 LABS
instances solved within the time limit of 3 hours by at least one method. We can
see that PQCR outperforms the two solvers both in terms of the total CPU time and
of the number of instances solved. We mention that the number of valid equalities
generated by PQCR in (SDPZ ) can be more than one million for the largest/densest
instances, what required here again an adequate implementation of the semidefinite
solver based on the bundle method described in Section 2.4.

FIGURE 9: Performance profile of the CPU times between PQCR, Baron
17.4.1 and Scip 6.0.2 for the LABS instances - Time limit 3 hours

Last, we increase the time limit for PQCR and compare our results to the best lower
bounds and the best known solution values reported in MINLPLib. We present in Ta-
ble 4 the values of the best solutions (BKN) and of the final lower bounds (BestLB)
obtained by PQCR, and those available on the MINLPLib website. Each line corre-
sponds to one instance stated as unsolved on MINLPLib that is labeled b.n.n0. For
MINLPLib, Columns BKN and BestLB are the best upper and lower bounds, respec-
tively, among the results of the solvers ANTIGONE, Baron, Couenne, Lindo, and Scip.
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We also report the final gaps in Column Gap f =
∣∣∣∣ BKN − BestLB

BKN

∣∣∣∣∗100. We observe that
PQCR solves to optimality 10 unsolved instances (labeled as ∗∗). It also improves the
best known solution values of 13 instances (labeled as #), and improves the final dual
bounds of all the unsolved instances (labeled as ∗). Column Imp is the improvement
factor of PQCR.

Instance MINLPLib[112] PQCR
Name BKN BestLB Gap f BKN BestLB Gap f Imp.
b.25.19∗∗ -14644 -16108 10.00 -14644 -14644.00
b.25.25∗∗ -10664 -12494 17.16 -10664 -10664.00
b.30.15∗∗ -15744 -19780 25.64 -15744 -15744.00
b.30.23∗∗ -30420 -72030 136.79 -30460 -30460.00
b.30.30∗∗ -22888 -54014 135.99 -22888 -22888.00
b.35.09∗∗ -5108 -6312 23.57 -5108 -5108.00
b.35.18∗∗ -31160 -74586 139.36 -31168 -31168.00
b.35.26#∗ -55184 -191466 246.96 -55288 -55484.64 0.36 694
b.35.35#∗ -41068 -290424 607.18 -41068 -41730.96 1.61 376
b.40.10∗∗ -8240 -14618 77.40 -8248 -8248.00
b.40.20#∗ -50516 -162365 221.41 -50576 -51248.66 1.33 166
b.40.30#∗ -94768 -398617 320.62 -94952 -102375.97 7.82 41
b.40.40∗ -67964 -302028 344.39 -67928 -78364.82 15.36 22
b.45.11∗∗ -12740 -30771 141.53 -12748 -12748.00
b.45.23#∗ -85248 -320397 275.84 -85424 -88547.05 3.66 75
b.45.34∗ -152368 -752427 393.82 -152248 -164316.84 7.93 50
b.45.45∗ -112764 -685911 508.27 -112568 -142414.81 26.51 19
b.50.06#∗ -2160 -2921 35.23 -2160 -2199.87 1.85 19
b.50.13∗∗ -23772 -74768 214.52 -23792 -23792.00
b.50.25#∗ -124748 -562446 350.87 -124948 -138994.51 11.24 31
b.50.38#∗ -232496 -1318325 467.03 -232664 -270363.98 16.20 29
b.50.50∗ -168216 -1173058 597.35 -167824 -246094.07 46.64 13
b.55.06#∗ -2400 -3439 43.29 -2400 -2460.02 2.50 17
b.55.14#∗ -33168 -116748 251.99 -33272 -33717.52 1.34 188
b.55.28#∗ -190472 -989145 419.31 -190696 -214840.20 12.66 33
b.55.41∗ -337388 -2494477 639.35 -335840 -474910.72 41.41 15
b.55.55∗ -241912 -1947633 705.10 -241780 -302301.26 25.03 28
b.60.08#∗ -6792 -13915 104.87 -6792 -7008.60 3.19 33
b.60.15#∗ -44896 -169767 278.13 -45232 -46160.31 2.05 136
b.60.30∗ -261048 -1491016 471.17 -260304 -324244.90 24.56 19
b.60.45∗ -478528 -3687344 670.56 -476664 -951320.31 99.58 7
b.60.60∗ -350312 -3021077 762.40 -349560 -496399.25 42.01 18

TABLE 4: Comparison of the best known solution and best lower
bound values of PQCR and of MINLPLib for the unsolved LABS in-
stances. ∗∗: solved for the first time, #: best known solution im-

proved, and ∗: best known lower bound improved
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Chapter 5

Conclusion and future research

In this thesis, we have summarized our main contributions to the exact solution
of mixed-integer polynomial optimization problems. In particular, we started by
considering the case were the functions are quadratic, and we have presented an
overview of our method MIQCR which is dedicated to this class of problem. This algo-
rithm starts with a reformulation phase in which we construct a parameterized fam-
ily of equivalent problems whose functions are convex. The strength of the approach
is that we then compute, within this family, the best quadratic convex relaxation of
the initial problem. Using the powerful tool of semidefinite programming, we ob-
tain a quadratic convex relaxation that is as strong as the semidefinite relaxation
used to compute it. The second phase of our approach is dedicated to the resolution
of the equivalent formulation by a branch-and-bound algorithm. We distinguish
two cases. When the variables are all integer, we can delegate this resolution to stan-
dard quadratic programming solvers. This is not the case in presence of continuous
variables. We thus develop an appropriate spatial branch-and-bound to solve the
reformulated problem where the bounding step solves our strong quadratic convex
relaxation. A significant contribution is that the framework of our approach allows
the generalization of classical methods from the literature, such as the QCR method
or the standard linearization.

We have also proposed a methodology to extend the regular triangle inequalities
defined for binary variables to the case of general bounds. These inequalities bring
two improvements to MIQCR. First, it strengthens the semidefinite relaxation used
to compute the convex quadratic relaxation, and thus improves the bound at the
root node of the branch-and-bound. Secondly, as by construction these inequalities
involve bounds on the variables, they allow the relaxations to be dynamically tight-
ened along the tree. From a general outlook, these inequalities can be used in any
branch-and-bound procedure based on the relaxation of the Constraints Y = xxT.

Our approach requires solving once a semidefinite relaxation with a large num-
ber of constraints. To address this difficulty, we have introduced a heuristic algo-
rithm dedicated to solving our relaxation. It is a subgradient algorithm based on the
dynamic Lagrangian relaxation of the constraints. It is also parameterized, which
allows us to control the number of constraints considered and, at the same time, the
size of the convex relaxation calculated. Since only a few considered constraints are
active at the root node of branch-and-bound, it also serves as a separation algorithm
during which only the most violated constraints are selected.

Then, we have also shown how our generic method can be specialized to two
applications that have particular structures. We first presented our results on the
Quadratic Assignment Problem (QAP). Indeed, using the structural properties of
the QAP, we showed that, while keeping the quality of the bounds, we can con-
struct compact quadratic convex relaxations. This specialization allowed us to solve
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instances of much larger sizes than the original method. Then, we showed that
our methods could be applied to industrial issues. In particular, we worked on
the problem of optimizing the power flow in an electrical network (OPF). For this
problem, we proved that a specialization of our approach allowed us to use a com-
pact semidefinite relaxation, but also to construct convex relaxations of significantly
smaller size than in the original method. This allowed us to handle medium-sized
real instances of this problem.

The last part of this manuscript focuses on the exact solution of a wider class of
problems than MIQCP. These are unconstrained polynomial optimization problems
with binary variables. Our solution algorithm, PQCR, is based on a quadratization of
the polynomial objective function which implies the addition of variables and con-
straints. Then, we have introduced a convexification, which is based on the links
between the initial variables and the auxiliary ones. The solution of the obtained
equivalent convex problem is then delegated to a standard MIQP solver. This ap-
proach has proven to be efficient, since it has been able to solve to optimality still
unsolved instances of an application: the low auto-correlation binary sequence.

Our scientific contributions are twofold. The first one is theoretical and the
second is practical. Indeed, following the incremental theoretical improvement of
method MIQCR, we have implemented the associated software called Solution of
Mixed Integer Quadratic Programs (SMIQP) [94]. To conclude, we summarize in
Table 5 the general features of the algorithms mentioned in this thesis, each of them
having a different scope.

We end this manuscript by giving some perspectives of our work that include
current and future research directions. Our main objective is to open new efficient
theoretical perspectives on the solution of classes of nonlinear optimization prob-
lems that will meet the industrial challenges of tomorrow. To this end, we propose
three lines of theoretical research : quadratic programming, polynomial optimiza-
tion and applications. The second objective

Perspectives for quadratic programming

Method MIQCR generalizes and improves the state of the art, especially for the
bounding step of the branch-and-bound. A natural perspective is to focus on the
improvement of the branching step in order to address increasingly complex prob-
lems. Thus, a future research is to establish an innovative association between our
methods and techniques from the field of constraint programming. More precisely,
we collaborate with researchers who have developed algorithms for solving general
nonlinear optimization problems implemented in the solver IbexOpt [81]. The suc-
cess of their approach is based on a very refined separation mechanism. The first
step of this project is to demonstrate the theoretical and experimental contribution
of this association on the quadratic case. Then, their algorithms being able to solve
general non-linear optimization problems, we plan in a second time to mix our ap-
proaches for wider classes of problems.

Another future research comes from the results related to the construction of a
compact relaxation of the OPF which is a QCQP. It is indeed possible from this re-
laxation to deduce a SOCP relaxation of the OPF. Thus, the idea is to compute sharp
SOCP relaxations, instead of convex quadratic relaxations, by use of semidefinite
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Type Algorithm Main features Scope

LI
N

EA
R

IZ
A

TI
O

N BIL (Binary Integer
Linearization) [23]

Linearization of each product of
two integer variables by replacing
only one of them by its binary de-
composition

IQ
P

C
O

N
V

EX
IF

IC
A

TI
O

N

CQCR (Compact
Quadratic Convex
Reformulation) [25]

Perturbation of diagonal terms of
the Hessian matrix with the best
non uniform vector and use of the
RLT constraints

MIQCR (Mixed Integer
Quadratic Convex
Reformulation)[24, 26]

Perturbation of all the terms of the
Hessian matrix with the best non
uniform matrix and use of the RLT
constraints M

IQ
P1

MIQCR-Quad (Mixed
Integer Quadratic
Convex Reformulation
for quadratic
constraints) [27, 28]

Extension of MIQCR to the case of
quadratic constraints by complete
linearization of them

M
IQ

C
P1

MIQCR-BB (Mixed
Integer Quadratic
Convex Reformulation
with spatial
branch-and-bound) [51]

Extension of MIQCR-Quad to the gen-
eral mixed case by use of spatial
branch-and-bound

M
IC

Q
P

MIQCR-T (Mixed
Integer Quadratic
Convex Reformulation
with General
Triangle) [95]

Improvement of MIQCR-BB by use
of general triangle inequalities into
the SDP and the spatial branch-
and-bound

PQCR(Polynomial
Quadratic Convex
Reformulation) [53]

Quadratization followed by a
tailored convexification that per-
turbs the diagonal and some
non-diagonal terms of the Hessian
matrix

U
BP

TABLE 5: Type, Algorithm, Main Features and Scope of each con-
tributed algorithm

1 convexity assumption on pure continuous quadratic terms

programming. The efficiency of SOCP solvers combined to the compactness of the
tight relaxations would allow us to handle larger problems.

Perspectives for polynomial optimization

We now focus on our results obtained for polynomial optimization problems in
binary variables. Indeed, we have introduced a two-step solution algorithm. The
first step rewrites the polynomial objective function of any degree into a quadratic
function, then, in the second step, we make it convex. The strength of this ap-
proach lies in the fact that we are able to compute the best convexification for a given
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quadratization. A recent work [48] has focused on the design of “good” quadrati-
zations. A natural perspective is to combine our two approaches in order to char-
acterize “good” quadratizations for method PQCR. This collaboration, beyond the
practical improvements, opens up many theoretical perspectives, and in particular
that of determining a convexification that would be stable for any quadratization.

Another line of research deals with unconstrained polynomial problems where
the variables can be continuous. The main idea is to determine for any multivariate
polynomial a separable underestimator, which can be used as a bound in a classical
branch-and-bound algorithm. Indeed, separability is a weaker property than con-
vexity, but such an optimization problem can be solved efficiently by determining
separately the optimal solution of each univariate problem. Thus the aim is to com-
pute the coefficients of a separable polynomial which, over the feasible domain of
variables, minimizes on average the deviation from the value of the initial polyno-
mial. Forcing the separable function to be an underestimator amounts to calculating
a certificate of positivity of a polynomial and this constitutes the main difficulty of
the approach. To overcome it, we use the sum-of-square polynomial which can be
computed using semidefinite programming. By construction, this approach has two
main advantages: a compact formulation since there is no additional variable in
the relaxation, and a scope that covers more general problems. The first results are
promising and open many perspectives.

Applications

Unit Commitment problem is a variant of problem OPF where the optimiza-
tion process determines which generator nodes are switched to on or off. A clas-
sical modelling is to introduce a binary variable for each generator, which role is
to activate or not the appropriate constraints into the QCQP. Since, quadratic con-
vex reformulation methods are initially devoted to integer programming, a natural
perspective is to consider an extension of our methods to this problem.

Another line of research

A final research and application perspective concerns the use of non-linear opti-
mization within supervised learning algorithms. If many researches currently aim at
exploiting artificial intelligence techniques to improve the resolution of optimization
problems, we are interested in the contribution of optimization to the construction
of classification trees. Among the classical supervised learning methods, classifica-
tion trees provide a good compromise between the accuracy of the prediction and
the interpretability of the result obtained. Interpretability [44] is an essential notion
for many applications, such as medical diagnostic assistance, or the automation of
vehicle driving. Classification trees are based on a simple concept where the data
follows a path, starting from its root, and whose branching rules lead to the possible
decisions located at the leaves. Thus, the challenge is to build the structure of the
tree, i.e. to define the rules that define the branches. Classical algorithms for build-
ing classification trees are generally heuristic. In order to obtain classifiers that are
both interpretable and efficient, recent works [20, 143] have focused on the formu-
lation, via linear optimization, of the problem of designing the optimal structure of
classification trees. The resulting classification tree is based on branching rules that
are described by linear functions. In order to improve the prediction quality of such
trees, the objective of our research project is to design optimization models where
the branching rules can be described by separable or non-linear functions.
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