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Laurent DUMAS Université de Versailles St-Quentin-en-Yvelines
Jean-Baptiste HIRIART-URRUTY Université Toulouse III - Paul Sabatier
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Résumé

Ces dernières années, un nombre considérable d’applications industrielles réelles impliquant
des variables mixtes et des simulateurs coûteux en temps ont été réalisées, par exemple, chez
Safran Tech et IFPEN, des conceptions optimales de turbine de moteur d’hélicoptère, de lignes
d’amarrage d’éoliennes offshore, de stators et de rotors de moteurs électriques,. . . Dans ces
problèmes d’optimisation non linéaire, les dérivées de la fonction objectif (et, éventuellement des
fonctions contraintes) ne sont pas disponibles et ne peuvent pas être directement approximées.
Une autre difficulté est que ces problèmes impliquent des variables de nature hétérogène: un
nombre variable de composants (variables entières), différents matériaux (variables catégorielles,
généralement non ordonnées), la présence ou non de certains composants (variables binaires) et
des variables continues décrivant les dimensions/caractéristiques des pièces de la structure.

Cette thèse a pour but de développer et d’adapter des méthodes d’optimisation sans dérivées
(ou DFO pour Derivative-Free Optimization) applicables à différents types d’applications, dont
la conception optimale des moteurs d’hélicoptère. Dans la première partie, nous nous concen-
trons sur le développement et l’adaptation d’une méthode DFO aux problèmes avec variables
mixtes continues et discrètes présentant une symétrie cyclique, caractéristiques présentes dans
le problème d’optimisation des pales d’une turbomachine de moteur. À cette fin, nous intro-
duisons une distance basée sur les colliers (necklace distance) et adaptons une distance basée
sur les colliers pour une méthode d’optimisation du type région de confiance. Avant d’appliquer
notre méthode à un cas applicatif simplifié fourni par Safran, nous construisons un ensemble
de fonctions tests issues de la littérature que nous adaptons pour obtainir un emsemble de
problèmes mixtes à symétrie cyclique. Notre méthode est évaluée sur ces cas tests et comparée à
des méthodes d’optimisation sans dérivées de l’état de l’art. Nous donnons également une preuve
de convergence locale de notre méthode adaptée.

Dans la deuxième partie, nous nous consacrons à la planification d’expériences dans un espace
mixte (variables continues et discrètes) en étendant à cet espace mixte les approches basées sur
des méthodes à noyaux pour estimer des distributions de probabilité. Cette partie de la thèse
est motivée par le besoin d’améliorer la phase d’initialisation de l’algorithme d’optimisation. Le
but étant de permettre une meilleure exploration de l’espace des variables mixtes, guidée par les
informations a priori disponibles (types de variables, symétrie, corrélations,...). Nous illustrons
également le potentiel de l’approche proposée dans le cadre plus classique de l’approximation
d’une fonction par un méta-modèle pour des variables mixtes continues et discrètes mais aussi
pour des séries temporelles.
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Enfin, nous donnons des pistes d’amélioration de la méthode d’optimisation proposée pour une
meilleure exploration de l’espace des variables de conception pour éviter d’être piégé dans des
minima locaux.

Mots-clés: Optimisation mixte en nombres entiers, optimisation sans dérivée, simulation boîte
noire, symétrie cyclique distance de collier, plan d’expériences, région de confiance.



Abstract

In recent years, there has been a considerable number of industrial applications that involve
mixed variables and time-consuming simulators, e.g., at Safran Tech and IFPEN: optimal designs
of aircraft engine turbine, of mooring lines of offshore wind turbines, of electric engine stators
and rotors,. . . In these nonlinear optimization problems, derivatives of the objective function
(and, possibly of the constraint functions) are not available and cannot be directly approximated.
Another difficulty is that these problems involve heterogeneous nature variables: a varying
number of components (integer variables), different materials (categorical variables, usually non-
ordered), the presence or not of some components (binary variables), and continuous variables
describing dimensions/characteristics of the structure pieces.

This thesis aims to develop and adapt Derivative-Free Optimization (DFO) methods for different
types of applications, including the optimal design of aircraft engines. In the first part, we focus
on the development and adaptation of a DFO method to problems with continuous and mixed
discrete variables exhibiting a cyclic-symmetry property. For that purpose, we introduce the
necklace distance and tailor accordingly the trust-region constraints of the optimization problems.
Before running our adapted method on a simplified simulation provided by Safran, we build a
set of benchmark functions by transforming them into a set of cyclic-symmetry test functions. We
run our method on these benchmark functions and on a Safran’s simulated instance with a large
number of repetitions to study the robustness of the method compared to other state-of-the-art
methods. We also give a local convergence proof of our adapted method.

In the second part, we focus on the design of experiments in mixed continuous and discrete
variables space by extending the kernel-embedding distribution from continuous space to mixed
discrete variables case. This part of the thesis is motivated by the need to improve the initialization
phase of the optimization algorithm with a better exploration of the space of mixed variables,
guided by the available prior information (types of variables, symmetry, correlations, ...). We
illustrate the potential of the proposed approach in the more classical framework of meta-model
function approximation for continuous and discrete mixed variables, and also for time series.

Finally, we give ideas to improve the proposed optimization method for a better exploration of
the space of design variables to avoid being trapped in local minima.

Keywords: Mixed integer non-linear programming, derivative free optimization, black-box
simulation, cyclic-symmetry necklace distance, design of experiments, trust region.
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1Introduction

„It is through science that we prove, but through
intuition that we discover.

— Henri Poincaré
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This thesis stems from the collaboration between IFP Energies Nouvelles, Safran Tech and École
Nationale de l’Aviation Civile (ENAC). The aim is to study and provide an algorithm to solve
mixed continuous and discrete non-linear problems arising from industrial applications.

One of the motivating applications of the thesis is the optimal design of the turbine blades
of a helicopter engine. The objective is to maximize the compressor efficiency under some
stability constraints (minimizing vibrations). This involves very expensive mechanical simulations
(solid and fluid mechanics), typically involving computer runs of the order of several hours
for evaluating one design configuration set. Some continuous parameters describe the blade
shapes, e.g., the thickness, length of the blades, and binary variables locate the different types of
blade geometries that are considered. The lack of analytical form of the objective function, the
appearance of discrete variables as well as the symmetry property provides challenging but also
interesting problems.

This chapter is structured as follows: Section 1 introduces Safran’s application context. In Section
2, we describe the idea of the reduced-order model which is currently used in practice. Section
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3 presents the main contributions of the work. Finally, the outline of the thesis is presented
followed by the list of the publications.

1 The motivating application

In the context of turbomachine design, manufacturing operations possibly affect the structural
cyclic symmetry and can increase the forced response amplitudes. As a result, vibration appears
in the system and destroys the engine. Therefore, minimizing vibration to obtain a stable engine
is important.

1.1 Motivation

Air traffic is one of the most important means of transport nowadays, especially in Europe. There
are around 8000 daily flights. Moreover, the amount of people travelling by airplane increases
every year by around 5 %. Air traffic is associated with very high costs of fuel [3, 53], and also
with a huge budget for the maintenance and manufacturing of the new engines.

Table 2 shows the fuel consumption for aircraft: if we can reduce by 0.5% the amount of fuel
bust, we can gain around 410 million US $ per year. Therefore, reducing fuel consumption (by
increasing engine efficiency) and maintenance costs (by decreasing vibrations) are two major
concerns of the aeronautics industry.

Tab. 2.: Fuel consumption for aircraft and impact of the small reduction from 2016.

World fuel consumption (liters) Corresponding price (US $)

∽ 240.1012 ∽ 83.109

0.5% Ó 410.106 Ó

1.2 Turbomachines

There are several ways to optimize cost in aviation: through optimizing trajectories, arrangements
of passengers (through the design of seat arrangement), cargo storage, etc. Our study concen-
trates on optimizing the design of turbomachines by maximizing the efficiency (compressor) and
by minimizing vibrations. Turbomachines Figure 1 or gas turbines are complex systems that
are used in the aerospace, automotive, and power generation industries. Blades are important
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components that allow the exchange of energy with the flow. During the operation of the turbo-
machine, vibrations occur, mainly due to the excitation by modification of the aerodynamic flow
and also resulting from a coupling between the flow and the movement of the blades [74].

Fig. 1.: Illustration of a turbomachine (from [74]).

In the particular application proposed by SAFRAN, the main idea is to optimize the so-called
tuning and mistuning blade shapes in the engine turbine, and to find the optimal distribution of
the resulting two shapes on the disk. The objective is to minimize the vibration of the compressor
by changing the shapes of the compressor blades. Here, a single objective function evaluation
may require several hours of computation time. This optimization problem involves a vector,
x P Rm, of m continuous variables, each of which describes one blade shape parameter, such as
the thickness or the length of the blades. There are also integer variables that locate pre-defined
possible blade geometries around the disk, as in [23]. In this study, we focus on the case involving
only two different blade geometries; if we consider n blades, their relative positions are indicated
with a binary vector y P t0, 1un, where yi indicates whether the ith blade is of a given type (a) or
of the other type, (b), for i “ 1, 2, . . . , n. Figure 2 (left) illustrates the case with n “ 23 blades
with the two possible types of blade geometry. Figure 2 (right) displays, for the case of n “ 6
blades, all the distinct arrangements and their equivalent configurations obtained by rotation.

Fig. 2.: Examples of blade configurations for two different geometries (from [74]).

1.3 Optimization challenges

Due to the complexity of fluid dynamic systems, we are not able to obtain an analytical form
of the objective function, as well as physical-constraints functions. Therefore, the optimization
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problem that we are dealing with is a derivative-free optimization or blackbox simulator problem.
Derivative-free optimization is a field of applied mathematics that concerns optimization problems
without any information of derivatives of the objective function. We list in the following some
mathematical challenges that must be addressed:

• No information of derivatives of the objective function and, possibly of some physical-
constraint functions.

• There is a combinatorial problem linked to the presence of discrete variables.

• The cyclic symmetry property of the problem yields a huge number of redundant arrange-
ments.

Regarding this cyclic-symmetry challenge, remark that: two blade disks that differ only by a
rotation of the pattern around the disk not only lead to a same value of the objective function,
but also correspond to identical compressors. The number of equivalent solutions also rapidly
increases with the number of blades, n, as illustrated in Table 3. Particularly, in this type
of application, one simulation can cost several hours or more. Therefore, we aim to avoid
recomputing during the optimization process, the costly objective-function value at equivalent
configurations.

Tab. 3.: Number of distinct solutions for n blades (from [74]).

Total number of Number of distinct Total number of
blades on the disk arrangements arrangements

2 3 4

3 5 8

6 14 64

12 352 4096

20 52488 1048576

The next section presents the Reduced Order Model (ROM) to reduce the computational cost of
optimization for such highly combinatorial problems.
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2 Reduced Order Model (ROM)

Two blade disks that differ only by a rotation of the pattern around the disk lead to the same
value of the forced response on the disk. Such arrangements should obviously be considered
as identical solutions. Recall that when the number of blades is increasing, the number of such
equivalent solutions rapidly increases (Table 3).

For an instance of our problem involving n blades, we can roughly approximate the number

of distinct arrangements by
2n

n
. Reducing these redundancies will significantly reduce the

combinatorial complexity of the optimization problem and, consequently, the computational cost
of the envisaged optimization approach. Therefore, the methodology based on reduced-order
modeling method is proposed.

Suppose we have two types of blades, A and B, that need to be located at n locations on the
disk. In [49], the authors present a physical discussion about the problem of redundancy: in
the presence of strong coupling, i.e., if there are few switches (changes from A to B of from
B to A) or if there exists a series of groupings of two consecutive blades of the form AA or
BB (e.g., 7B5A: 7 consecutive blades B and 5 consecutive blades A), the vibration responses
between blades tend to be globally uniform at the wheel. While, in the case of low coupling, i.e.,
if there are many switches or if the basic grouping forming the pattern are no longer AA and
BB but rather AB and BA (e.g., 1A1B2A2B), the responses tend to be located on some blade
neighbors.

If the optimal distribution of the blade geometry presents few alternations of the two different
shapes, it can roughly be described by a distribution of patterns of the types AA or BB. On the
other hand, if the optimal distribution presents many alternations of the two different shapes, one
should rather use patterns AB or BA. In both cases, the idea is to consider the distribution by
groups of two blades in view of obtaining a model of lower dimension that deals with

n

2 groups
instead of n blades. The idea of ROM is to consider n{2 groups of two blades with two possibilities
for each group. We group either patterns AA and BB if there are few switches (high coupling),
or AB and BA in the case where there are many switches (low coupling). For illustration, a
disk with 10 blades consists of 108 distinct distributions of two types of blades, whereas a ROM
approach leads to a problem involving 5 groups and only 8 distinct distributions.

A ROM optimization methodology consists of two main steps. It first optimizes in the two reduced
spaces for patterns AA{BB, and then for patterns AB{BA considering on groups of 2 blades in
order to provide good initial guesses for the orginal n blades problem.Then, a local search limited
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Fig. 3.: Illustration of a case with 23 blades with groups AA´BB (from [74]).

to, for instance performing one flip changing one A geometry to a B geometry or vice-versa from
these initial guesses provides what are may call a "local" solutions to the original problem.

ROM reduces the dimension of the discrete space, which in turn tends to reduce the computation
time required for each sub-problem. A disadvantage however is that it is likely to remove a large
number of possibilities which will not be explored, leading thereby to a sub-optimal solution.
For instance, for the problem involving n “ 12 blades, ROM removes 324 disk configurations.
Out of 352 distinct configurations as each of the two subproblem considers only 14 distinct
configurations. This motivates our study to look for another method to address the above-
mentioned cyclic symmetry property to ensure that all the distinct arrangements are considered.
In Chapter 5 of Part I, we will propose an adapted mathematical optimization method for this
type of problem.

3 Thesis contributions

The three main contributions of the thesis are:

• Development of a new mixed continuous and discrete variables derivative-free optimization
method based on trust-region method, [27] for cyclic-symmetry problems, called DFOb-
dneck. The originality of our approach is the introduction of the necklace distance which
avoids recomputing expensive simulations corresponding to the equivalent configurations.

• A theoretical convergence proof of the mixed-integer DFO method (evoked in [25] but
never published) is provided. This proof is then further extended into a convergence proof
of DFOb-dneck.
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• A new design of experiments method based on a kernel-embedding probability distribution
for mixed discrete variables problems.

A secondary contribution includes the proposition of benchmark cyclic-symmetry test functions
and numeric comparison of our optimization approach with state-of-the-art methods such as
NOMAD, RBFOpt, and DFLBOX.

4 Outline of the thesis

We begin by recalling in Chapter A the notation and some mathematical background necessary
for the readers to follow the thesis. The rest of the thesis is composed of three parts that are
detailed as follows:

Derivative-free mixed binary necklace optimization. In this first part, we focus on optimization
methods for solving derivative-free problems:

• Chapter 2 gives an overview of blackbox optimization methods for mixed discrete variables
problems.

• Chapter 3 carries out a review of the continuous DFO trust-region method.

• Chapter 4 focuses on the derivative-free trust-region methods for mixed binary problems.
Our contribution is the convergence proof of the original method proposed in [25].

• Chapter 5 presents our two main contributions. First, we introduce a new optimization
method for cyclic-symmetry problems, named DFOb-dneck which is based on DFOb-dH .
Our second contribution, is the proposal of a set of benchmark functions adapted to
cyclic-symmetry problems. These functions were used as tests for our method and for
state-of-the-art methods. A simplified simulation provided by Safran is also tested.

• Chapter 6 shows an analysis result of methods about the impact of number of points in the
interpolation set.

Design of experiments in mixed continuous and discrete variables space. Blackbox model-
based methods can be significantly impacted by the initial design (the points at which the objective
function is evaluated before optimization). The choice of the initial design has a strong influence
on how well the search domain will be explored.
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• Chapter 7 reviews about design of experiments methods in continuous space and in mixed
discrete space.

• Chapter 8 presents one of the main contributions of the thesis: the introduction of two
extended kernel-embedding probability distribution DoEs to mixed discrete variables space.
We also give examples with a large range of application types.

Escaping from local minima. This part is dedicated to escaping from local solutions by applying
restart techniques.

5 Publications

The work of this thesis yielded the following publications:

• T. T. Tran, D. Sinoquet, S. D. Veiga, and M. Mongeau. (2020) An adapted derivative-free
optimization method for an optimal design application with mixed binary and continuous
variables. In: Le Thi H., Le H., Pham Dinh T., Nguyen N. (eds) Advanced Computational
Methods for Knowledge Engineering. ICCSAMA 2019. Advances in Intelligent Systems and
Computing, vol 1121. Springer. https://doi.org/10.1007/978-3-030-38364-0_8.

• T. T. Tran, D. Sinoquet, S. D. Veiga, and M. Mongeau (2021) Derivative-free mixed binary
necklace optimization for cyclic-symmetry optimal design problems. Accepted (on Aug 27,
2021) to be published in Optimization & Engineering.

• T. T. Tran, D. Sinoquet, S. D. Veiga, and M. Mongeau (2021) Design of Experiments for
mixed continuous and discrete variables problems. (In preparation, to be submitted).
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Part I

Derivative-free mixed binary necklace
optimization





2Introduction to blackbox optimization
methods for mixed integer variables

This part corresponds to the article entitled “Derivative-free mixed binary necklace optimization
for cyclic-symmetry optimal design problems”, that is accepted for publication in Optimiza-
tion and Engineering (submitted on 15.03.2021, revision submitted on 18.06.2021, accepted
on 27.08.2021), and a technical report entitled “Nonlinear optimization of mixed continuous
and discrete variables for black-box simulators", https://hal-ifp.archives-ouvertes.fr/
hal-02511841/document.

In this chapter, we give an overview of derivative-free optimization for mixed integer variables.
We consider the following bound constrained optimization problem:

$

&

%

min
x,y

fpx, yq

x P rx, x̄s Ă Rm, y P In,
(1)

where x P Rm, y P In are the continuous and discrete variables, respectively, and I denotes
the discrete space (e.g., integer, binary or categorical variables). In this thesis, we focus on
solving problem (1) with mixed continuous and binary variables, i.e., I “ t0, 1u. For integer or
categorical variables problems, encoding can be applied to reformulate the problem so as to deal
with continuous and binary variables in many cases. There is a wide study in encoding categorical
variables. To give the readers a summary, we make a list of encoding methods in Appendix B.

The objective function f is the output of a blackbox numerical simulator with two features:

1. The derivative, ▽f , is not available, we only have access to function values, and

2. It is computationally expensive to evaluate the function f .

There is a large body of works in the operation research community that regards Mixed-Integer
NonLinear Programming problems (MINLP), see for instance [16]. Most deterministic algorithms
for solving MINLP are based on branch-and-bound methods. Briefly, the branch-and-bound
algorithm is based on recursively sub-dividing the set of possible solutions during the branching
step, and estimating bounds on the optimal objective-function value in each branch (the “cut”
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or “bound” operation) to find a solution (see e.g., [33]). In [93], the authors do not create a
search tree but relax the integrality constraints via a sine function that penalizes the variables for
not being integers. Remark that relaxing the binary variables is not possible in our application
context. While convex MINLPs can be tackled by several available software, for instance BONMIN
[17] or SCIP [2], nonconvex problems are more difficult and usually require convexification and
reformulation strategies. Such strategies are either impossible (reformulation) or still need to be
developed when dealing with black-box optimization. This is a real challenge, especially in our
context of objective functions that are computationally expensive to evaluate (several hours or
even days for a single evaluation). Therefore, we choose in this thesis not to focus on (meta)
heuristic methods (e.g., evolutionary algorithms [44] and simulated annealing) due to the large
number of objective function evaluations that such approaches require.

Blackbox optimization algorithms only use the values of the objective function at evaluation
points to perform the optimization. An overview introduction can be found in [6]. A review
and comparison of algorithms and software for derivative-free optimization is presented in [85].
Generally, derivative-free optimization methods can be classified in two main categories which
are direct search methods and model-based methods. Direct Search Methods use systematic rules
to explore the domain. Among direct search methods, we can count:

• Pattern search methods [97]. They consider the behavior of the objective function on
a pattern of points over a rational lattice. A search exploratory strategy moves points in
the vicinity of the current iterate followed by a so-called local poll step. A convergence
proof for nonsmooth functions approaches can be found in [12]. Extension work to mixed
variables problems is introduced in [11].

• Heuristic methods. They include the popular genetic algorithms (GA) [54] which are
based on the evolution of a population of points. More precisely, by sorting the individuals
for reproduction according to an adhoc so called fitness function, the best individuals (with
highest fitness values) are selected to generate new candidate points. For example, crossover
phase is operated to generate offsprings, i.e., new generations of solutions. Then possibly a
mutation step is added to have complete new individuals. The algorithm terminates when
the set of offsprings is not significantly different from the parents (no more improvement).
This method generally requires a large number of evaluations to find a good solution. Some
works extend genetic algorithm to mixed variables problem ([111] is one example). This
extension is usually straightforward by choosing adapted crossover and mutation operators.

• Simplex search methods. These heuristic methods (not to be confused with Dantzig’s
Simplex method for linear programming) include the famous Nelder-Mead algorithm [79]
which is based on the idea of replacing the worst vertex in the set of evaluated points
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with a new one that gives a better value for the objective function by using geometrical
transformations such as expansion, reflection, contraction.

A widely cited DFO algorithm in the family of pattern search methods, NOMAD [1, 61], imple-
ments the Mesh Adaptive Direct Search (MADS) algorithm [8] for black-box optimization under
general nonlinear constraints. MADS is an extension of Torczon’s generalized pattern search
algorithms [97, 7]. MADS principally relies on two main steps. The search step is flexible enough
to allow local and global explorations with generic strategies such diverse as Latin-Hypercube
Sampling (LHS), variable neighborhood search [9] or a Nelder Mead method [14]. The poll
step is critical to the local convergence proof. It involves evaluating the objective function on a
discrete grid that is dynamically updated. More recently, [26] introduced a search strategy that
automatically constructs quadratic models to try and find promising trial points. An extension of
MADS to handle integer variables problems is presented in [13]. The main idea is to harmonize
the minimal granularity of variables with the finest mesh containing all trial points. A different
approach for direct search methods for bound constrained problems, named DFLBOX is intro-
duced in [63]: instead of searching in all the components of the variable, DFLBOX searches the
solution component-wise. The algorithm consists of a continuous and a discrete search procedure
that calculates the step sizes. It removes the sufficient decrease condition on the discrete variables
and updates the iterate by choosing the coordinate that yields the largest objective function
reduction. DFLBOX is extended to a more general constrained problems using the sequential
quadratic penalty approach in [62].

Among model-based methods, ones can identify two main categories in literature:

• Derivative-free trust-region methods. These include for instance the DFO algorithm
of [27], and NEWUOA [86]. These methods are based on local quadratic models that
interpolate the objective function at some evaluated points. The models need to satisfy a
so-called fully-linear or fully-quadratic property to ensure the local convergence [27]. An
exploitation phase minimizes the quadratic approximation within a trust region, while an
exploration step explores the domain in view of diversification. An extension of this work
was first presented in [25] at the SMAI conference.

• Response surface methods which include Radial Basis Function (RBF) based optimization
methods and the Efficient Global Optimization (EGO) method or Bayesian Optimization
based on Gaussian Processes (GP). The surrogate models used in these methods are global
models, i.e., they use a single substitute of the objective function that aims to be sufficiently
predictive in the whole search domain to detect areas of interest with good values of
the objective function (exploration), and that can be refined in these areas (exploitation).
Note that these exploitation and exploration objectives are similar to the goals of the poll
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and search steps of MADS. The RBF method for global optimization was introduced by
Gutmann [48], several variations followed [90, 89, 30], and its extension to mixed discrete
variables problems [77, 51]. EGO [56] is based on a Gaussian process surrogate and
an adaptive strategy to propose new evaluation points based on the so-called expected
improvement criterion, which balances between exploration and exploitation. These types
of methods tackle two main disadvantages, first, the scale of dimension, and the difficulty of
giving an explicit convergence proof. In [76], Gaussian process kernels that are products
of continuous and discrete kernels are integrated into an EGO method framework; the
resulting mixed categorical (involving integer variables not related to effective quantities)
optimization problem is then solved by NOMAD. The strengths and weaknesses of various
types of kernels for Gaussian processes are discussed in [84].

In recent years, there have been considerable studies dedicated to improving derivative-free
optimization algorithms. Some of them focused on overcoming the limitation of Bayesian
Optimization for high dimensional problems. The EGO-CMAS algorithm proposed in [72] is one
example. In this algorithm, an iteration starts with EGO search, then an interruption is set, to
be followed by a CMA-ES search over whole starting points with the initial size (the Covariance
Matrix is computed from simulated points). A Random Embedding BO (REMBO) method was
proposed in [107] where instead of optimizing in the original high-dimension space, the function
is optimized in a reduced-space variable defined by a random projection based on an assumption
of a reduced effective dimensionality of f . In the same year, [58] proposes the Add-GP-UCB
approach which decomposes f as a sum of functions defined in lower-dimensional disjoint spaces
and then use GP for each disjoint domain. SEGOKPLS, SEGOKPLS+K [18] use PCA (Principal
Component Analysis) to find the most informative components of the variable set, and then
apply EGO with an adapted user-defined kernel. A very recent work [95] proposes a method
named CobBO (Coordinate Backoff Bayesian Optimization). If backoff stopping rules are met,
the farthest point (from the current trust region center) of a random sampling is chosen with an
exploration goal, otherwise a Bayesian optimization based on Radial Basis Functions is applied
within the current trust region. There are other methods based on EGO to deal with the problem
of dimensionality. For instance, SEGOMOE (Super Efficient Global Optimization with Mixture
of Experts) [15] constructs different local approximations (experts) for different domains in the
design space. These local approximations can be tailored to deal with disparate local trends in the
function, including flat regions, discontinuities, and regions where there are strong nonlinearities.
Another interesting track combines the response surface algorithms and trust-region methods.
A first stage involves the combination of RBF and trust-region method, for instance, ORBIT
(Optimization by radial basis function interpolation in trust region), [108], and BOOSTERS, [82].
The idea is to replace the quadratic model with more flexible radial basis functions. The second
stage combines EGO and trust-region methods, for instance, TRIKE (Trust-Region Implementation
in Kriging-based optimization with Expected improvement) [91], CYCLONE (CYClic Local search
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in OptimizatioN using Expected improvement) [91], TURBO (TrUst-Region BO solver) [39],
TREGO (Trust-Region Framework for Efficient Global Optimization) [35].

This part gave an overview of derivative-free optimization algorithms, a class of methods built to
tackle expensive black-box optimization problems. In the next chapter, we present in more detail
derivative-free optimization trust-region methods.
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In this chapter, we address the bounded constrained problem of the form

#

min
x
fpxq

x P rx, x̄s,
(2)

where x P Rm is a vector of continuous variables. The objective function f is the output of
a black-box numerical simulator. We further assume that f is smooth with respect to x and
bounded from below to guarantee convergence of the algorithm (see [27, 6]). We also assume
that derivatives of f exist but unavailable.

We now begin with the basic background required for the trust-region method framework. We
first outline the basic framework of trust-region method, and then describe the derivative-free
trust-region methods.

1 Trust-region framework basics

We begin by providing a review of the trust-region framework for continuous optimization when
derivatives of f are available, see [81] for details. In trust-region methods, at each iteration k, we
build a quadratic model rmk around the current iterate xk. Remark that this model is a tangent
model with exact gradient at the center of the trust region.
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This model is assumed to approximate the objective function sufficiently well in a neighbourhood
of center xk called the trust region, which is defined based on the center and radius pair pxk,∆kq,
where ∆k ą 0:

Bpxk,∆kq “ tx P Rm : ∥x´ xk∥k ď ∆ku.

The trust region norm ∥.∥k can be taken from the standard 2´norm ∥.∥2 or the infinite norm. To
determine the next iterate xk`1, we solve a quadratic sub-problem of the form

min
sPBp0,∆kq

rmkpxk ` sq, (3)

where rmkpxk ` sq “ fpxkq ` gT
k s `

1
2s

THks, gk is the gradient of f at xk, Hk is a symmetric
approximation of the Hessian of f at xk, and s P Rm. The approximate solution obtained, sk,
should satisfy the condition

rmkpxkq ´ rmkpxk ` skq ě
κd

2 ∥gk∥ mint
∥gk∥
∥Hk∥

,∆ku,

where κd P p0, 1s is a constant. Taylor’s theorem guarantees the existence of a trust region that
guarantees condition, but it does not give its precise radius. Therefore, updating and adjusting
the trust-region radius after each iteration is necessary. Given an approximate solution sk of (3),
the trust-region radius is updated depending on the ratio of actual improvement and predicted
improvement

ρk “
fpxkq ´ fpxk ` skq

rmkpxkq ´ rmkpxk ` skq
.

If the model reduction matches well the actual reduction of the objective function (when ρk ą 0
and near 1), the candidate sk is accepted and the trust region radius is possibly increased.
Otherwise, the candidate is rejected and the trust region radius is decreased. We run the
loop until convergence criteria on minimal gradient norm and minimal trust-region radius are
reached.
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Algorithm 1: Derivative based trust region algorithm, see [81]
Input: x0, 0 ă ∆0 ď ∆max, 0 ă γ0 ă 1 ă γ1, 0 ď η0 ă η1 ď 1
0. Initialization. Compute fpx0q,▽fpx0q. Set k “ 0
1. Model definition. Build the quadratic model rmk in Bpxk,∆kq

2. Solve sub-problem (3)
sk P argminsPBpxk,∆kq rmkpxk ` sq.

3. Center update. Compute

ρk “
fpxkq ´ fpxk ` skq

rmkpxkq ´ rmkpxk ` skq
.

Set:

xk`1 “

$

&

%

xk ` sk if ρk ě η0,

xk if ρk ă η0.

4. Trust region update

∆k`1 “

$

’

’

’

&

’

’

’

%

mintγ1∆k,∆maxu if ρk ě η1,

∆k if η0 ď ρk ă η1,

γ0∆k if ρk ă η0.

When the derivatives are not available, we build an interpolation model based on a set of
given simulations (f values). In this case, the model is considered as a valid approximation
of the objective function under some conditions which mainly depend on the geometry of the
interpolation set. If the model does not satisfy these conditions, a new point is added to the
interpolation set to improve the accuracy of the model. This is detailed in the next section.

2 Derivative-free trust-region methods

The basic idea of DFO trust region methods [27] is to replace the problem, which involves
expensive simulations with no information about the derivatives, by a simpler problem (linear or
quadratic form) for which we have derivatives. Then, we minimize the simpler problem using
the idea of classical trust-region methods. At each iteration, we solve the sub-problem to find
the possible candidate for the next iteration. Similarly to derivative-based trust region methods,
if the model is qualified as valid (according to the ratio between the actual improvement and
the predicted improvement), we decide to increase, decrease or keep the current trust-region
radius and choose the solution of the sub-problem as the center of the new trust-region, or not.
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We keep running the algorithm until stopping criteria are met, typically when the trust region
and the norm of the gradient of the model are small enough.

The main differences between derivative free and derivative based trust region methods are:

• the quadratic models are based on a given interpolation set (available simulations),

• the Taylor expansion error bound is replaced by fully-linear or fully-quadratic model proper-
ties, or model qualification condition.

In the next section, we focus on the model construction and the necessary properties of the
geometry of the interpolation set to control the error bounds of the models.

2.1 Geometry of the interpolation set

Consider a set of sample points given by

X “ tx0, x1, . . . , xpu,where xi P Rm, i “ 1, 2, . . . , p. (4)

where p ă pm` 1qpm` 2q{2, we denote by p1 the number of points of the sample set. Thus,
p1 “ p` 1.

We would like to build a quadratic model rmpxq which interpolates the points in X. If p1 “

pm` 1qpm` 2q{2, the problem (2) is a quadratic interpolation problem. If p1 ą pm` 1qpm` 2q{2,
the problem is over-determined, whereas p1 ă pm` 1qpm` 2q{2, it is under-determined. In
typical applications, the problem is under-determined since the simulations are computationally
expensive.

Let rmpxq denote the polynomial of degree d (e.g., d “ 1 with 1 ă p1 “ m ` 1 or with d “

2,m` 1 ă p1 ď pm` 1qpm` 2q{2) that interpolates fpxq at the points in X that:

rmpxiq “ fpxiq, i “ 0, . . . , p. (5)

Let us consider Pd
m the space of polynomials of degree ď d in Rm and a basis ϕ “ tϕ0, ϕ1, ϕ2, . . . , ϕpu.

We can express rmpxq as

rmpxq “

p
ÿ

i“0
αiϕipxq, (6)
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for some coefficients αi, i “ 0, . . . , p,. It is clear that rmpxq is determined if the values of α0, . . . , αp

are determined. From (5) and (6), the coefficients α are found by solving the following linear
system

¨

˚

˚

˚

˚

˝

ϕ0px0q ϕ1px0q . . . ϕppx0q

ϕ0px1q ϕ1px1q . . . ϕppx1q

...
...

...
ϕ0pxpq ϕ1pxpq . . . ϕppxpq

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

α0

α1
...
αp

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

fpx0q

fpx1q

...
fpxpq

˛

‹

‹

‹

‹

‚

, (7)

or, equivalently, in matrix form:
Mpϕ,Xqα “ fpXq,

where Mpϕ,Xq and fpXq represent respectively the matrix and right-hand side vector of the
system 7. If Mpϕ,Xq is non-singular (i.e., has full rank) then the system has a unique solution.
In this case, the interpolation set X is said to be poised. Thus, if X is a poised set, then the
interpolating polynomial rmpxq exists and is unique.

In [27] the authors prove that if the interpolation set is poised, then the condition number of
Mpϕ,Xq does not depend on the choice of the basis. The condition number of Mpϕ, X̂q can be
considered as a measure of the poisedness of X, where X̂ is a scaled interpolation set (detail in
[27])

X̂ “
1
∆ rx1 ´ x0, . . . , xp ´ x0s,

with ∆ “ ∆pXq “ max
1ďiďp

∥xi ´ x0∥.

In practice, we choose for ϕ the natural basis

t1, x1, x2, . . . , xm,
1
2x

2
1, x1x2, . . . ,

1
pd´ 1q!x

d´1
m´1xm,

1
d!x

d
mu, (8)

Definition 3.1. (Lagrange polynomials) Given a set of interpolation points X “ tx0, x1, . . . , xpu,
a basis of p1 “ p`1 polynomials ljpxq, j “ 0, . . . , p, in Pd

m is called a basis of Lagrange polynomials
if

ljpxiq “

$

&

%

1 if i “ j,

0 if i ‰ j.

If X is poised, then the basis of Lagrange polynomials exists and is unique.

Definition 3.2. (Λ´ poisedness) Let Λ ą 0 and a set B P Rm be given. Let tϕipxqu
p
i“0 be a basis

of Pd
m. A poised set X “ tx0, x1, . . . , xpu is said to be Λ´poised in B if and only if
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1. for the basis of Lagrange polynomials associated with x, one has

Λ ě max
0ďiďp

max
xPB

|lipxq|,

or, equivalently,

2. for any x P B there exists λpxq P Rp1 such that

p
ÿ

i“0
λipxqϕpxiq “ ϕpxq, with ∥λpxq∥8 ď Λ,

or, equivalently,

3. replacing any points in X by any x P B can increase the volume of the set tϕpxiq, i “

0, . . . , pu at most by a factor Λ, where the volume is defined as

volpϕpXqq “
|detpMpϕ,Xqq|

p1! .

One note that if a set is Λ1- poisedness then it is also Λ2-poisedness with Λ1 ă Λ2, but the reverse
does not always hold.

2.2 Fully-linear and fully-quadratic models

As mentioned before, in trust-region methods, the quality of the model approximation should be
controlled just as for Taylor expansion models. To formalize this idea, the class of fully-linear and
fully-quadratic models is introduced and detailed in [27].

We suppose that x0 is given as the initial iterate. We define the level set

Lpx0q “ tx P Rm : fpxq ď fpx0qu.

We do not only consider the objective function f within the level set, but also extend to the
enlarged region

Lenlpx0q “
ď

xPLpx0q

Bpx,∆maxq.

Assumption 3.1. Suppose x0,∆max are given. Assume that f is continuously differentiable in an
open domain containing the set Lenlpx0q and that ▽f is Lipschitz continuous on Lenlpx0q
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Definition 3.3. (Class of fully-linear models) Let a function f : Rm Ñ R, that satisfies
Assumption (3.1), be given. A set of model functions M “ t rmpxq : Rm Ñ R, rmpxq P C1u is called
a fully-linear class of models if the following hold:

1. There exist positive constants κef , κeg and νm
1 such that for any x P Lpx0q and ∆ P p0,∆maxs

there exists a model function rmpx ` sq P M, with Lipschitz continuous gradient and
corresponding Lipschitz constant bounded by νm

1 , and such that

• the error between the gradient of the model and the gradient of the function satisfies

∥▽fpx` sq ´ ▽rmpx` sq∥ ď κeg∆, @s P Bp0,∆q, (9)

• the error between the model and the function satisfies

|fpx` sq ´ rmpx` sq| ď κef ∆2, @s P Bp0,∆q. (10)

Such a model rm is called fully linear on Bp0,∆q.

2. For this class M there exists an algorithm, which we will call a "model-improvement"
algorithm, that in a finite, uniformly bounded (with respect to x and ∆) number of steps
can

• either establish that a given model rm P M is fully linear on Bpx; ∆q

• or find a model m̄ P M that is fully linear on Bpx; ∆q.

One example to illustrate the notion of fully linear model is the first-order Taylor approximation
of a continuously differentiable locally Lipchitz function, i.e., f P C1`.

Assumption 3.2. Suppose x0 and ∆max are given. Assume that f is twice continuously differentiable
in an open domain containing the set Lenlpx0q and that ▽2f is Lipchitz continuous on Lenlpx0q.

Definition 3.4. (Class of fully-quadratic models) Let a function f : Rm Ñ R, that satisfies
Assumption (3.2) , be given. A set of model functions M “ t rmpxq : Rm Ñ R, rmpxq P C2u is
called a fully-quadratic class of models if the following hold:
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1. There exist positive constants κef , κeg, κeh and νm
2 such that for any x P Lpx0q and ∆ P

p0,∆maxs there exists a model function rmpx` sq P M, with Lipschitz continuous Hessian
and corresponding Lipschitz constant bounded by νm

2 , and such that

• the error between the Hessian of the model and the Hessian of the function satisfies

∥▽2fpx` sq ´ ▽2
rmpx` sq∥ ď κeh∆, @s P Bp0,∆q, (11)

• the error between the gradient of the model and the gradient of the function satisfies

∥▽fpx` sq ´ ▽rmpx` sq∥ ď κeg∆2, @s P Bp0,∆q, (12)

• the error between the model and the function satisfies

|fpx` sq ´ rmpx` sq| ď κef ∆3, @s P Bp0,∆q. (13)

Such a model rm is called fully quadratic on Bpx; ∆q.

2. For this class M there exists an algorithm, which we will call a "model-improvement"
algorithm, that in a finite uniformly bounded (with respect to x and ∆) number of steps
can

• either establishes that a given model rm P M is fully quadratic on Bpx; ∆q

• or finds a model m̄ P M that is fully quadratic on Bpx; ∆q.

It is clear that the class of fully quadratic models is better than the class of fully linear models in
terms of Taylor-like bounded error, but we will see after that we need more functions evaluations
to build a fully quadratic model.

2.3 Building the trust-region model

Next, we indicate how to construct a fully-linear (or fully-quadratic) model in the particular
context of polynomial interpolation and regression.

Note that we only consider DFO problems whose initial sample set has at least m` 1 points.
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Case where the number of interpolation points is exactly equal to m` 1.

We build a linear interpolation function LXpxq :“ α0 ` αT
1 x where pα0, α1q is the solution of

r1 Xs

˜

α0

α1

¸

“ fpXq. (14)

If the interpolation set X is poised, then there exists only one linear interpolation model whose
coefficients satisfy (14).

Case where the number of interpolation points is larger than m ` 1 and smaller than
pm` 1qpm` 2q

2 .

To build the model in this case, we can use a least-square regression function LXpxq with the
same form as in the case of linear interpolation, but pα0, α1q is now the solution of

min
α0,α1

«

p
ÿ

i“0
pα0 ` αT

1 x
i ´ fpxiqq2

ff

. (15)

We can also use the minimum Frobenius norm interpolation model MXpxq “ α0 ` αx `

1
2x

THx,H “ phi,jq where pα0, α,Hq is the solution of the following quadratic optimization
problem

min
pα0,α,Hq

1
2

m
ÿ

i“1

m
ÿ

j“1
h2

i,j

α0 ` αTxi ` 1
2pxiqTHxi “ fpxiq, i “ 0, . . . , p,

H “ HT .

. (16)

Case where the number of interpolation points is exactly pm`1qpm`2q

2 .

We build the quadratic interpolation function MXpxq “ α0 ` αTx` 1
2x

THx, where pα0, α
T , Hq

is the unique solution of

α0 ` αTxi `
1
2pxiqTHxi “ fpxiq, i “ 0, . . . , p. (17)

One notes that the quadratic interpolation is fully linear if X is poised. Comparing with the linear
interpolation, the error bounds of the quadratic interpolation are tighter, and the function MX

provides both approximations of the gradient and the Hessian. Therefore, in terms of iterations,
quadratic interpolation can converge much faster, but it requires more points in the interpolation
set.

Case where the number of interpolation points is larger than pm`1qpm`2q

2
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In this case, we use regression to build the model as in the case where we have more than m` 1
points for linear models.

To guarantee the fully-linear (or fully-quadratic) property of a model, we first have to check that
the interpolation set is poised. If the sample set is not poised, we need to improve its poisedness,
as explained in the next section.

2.4 Model improvement

It is essential to check and improve the model during the optimization iterations. Firstly, we need
to "improve " the sample set to ensure its poisedness. In [27], the authors give two main ways
to improve the sample set: one based on the Lagrange polynomials and one based on the LU
factorization. In our study, we focus on LU factorization to improve the model. The following
model improvement algorithm is applied before each model update.

Algorithm 2: Improving poisedness of X via LU factorization, see [27]
0. Initialization
Initialize the pivot polynomial basis with some basis, e.g., the monomial basis (8),
uipxq “ ϕipxq, i “ 0, . . . , p. Select pivot threshold ξ ą 0.

For i “ 0, . . . , p

1. Point selection: If ji is found such that |uipx
jiq| ě ξ, swap xji and xi. Otherwise,

recompute xi as
xi P argmaxxPB |uipxq|.

Stop if |uipx
iq| ă ξ.

2. Gaussian elimination: For j “ i` 1, . . . , p

ujpxq Ð ujpxq ´
ujpxiq

uipxiq
uipxq.

To illustrate the algorithm, we consider an example with a given initial set X0 and three iterations
of the improvement algorithm X1, X2 and X3 (see Figure 4):

X0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0
0.1 0
0.5 0
0.6 0.1
0 0.3
0 0.7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, X1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0
0.6 0.1
0 0.7

0.5 0
0.1 0

´0.7 ´0.7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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X2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0
´0.7 ´0.7

0 0.7
0.6 0.1
0.1 0

0.9899 ´0.9899

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, X3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

07 0
0.9899 ´0.9899
´0.7 ´0.7

0 0.7
0.6 0.1

´1.4 1.4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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Fig. 4.: Improvement of the interpolation set via LU factorization: X0 and X1 (top); X2 and X3 (bottom).

Another way to improve the model is to use Lagrange polynomials. In [86] the author uses the
definition of Λ “ max0ďiďp maxxPB |lipxq| and maintains the sample set X by choosing a point
entering or leaving the set X so that the value of Λ is reduced. To do that, the farthest point from
the center of the trust region is removed, i.e., the point of X associated with the largest value of
Lagrange polynomials in absolute value.

Convergence results: The derivative-free trust-region method is a local method. The local
convergence for continuous problems is proven in [27]. The validity of the convergence of
our model is based on the fully-linear or fully-quadratic property in definition (3.3) and (3.4),
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which is guaranteed by the poisedness of the interpolation set. Besides, the model must satisfy
inequality (10.10) in [27]

@k, rmkpxkq ´ rmkpxk ` skq ě
κ

2 ∥▽rmkpxkq∥ minp
∥▽rmkpxkq∥

∥Hk∥
,∆kq,

for some constant κ P p0, 1q. The first-order critical-point convergence lim
kÑ`8

∥▽fpxkq∥ “ 0 is

shown in Theorem (10.13) in [27].

3 Conclusion

In this chapter, we presented a basic framework of trust-region methods as well as DFO trust-
region methods for continuous problems. We emphasized that the local convergence is guaranteed
based on the so-called fully-linear and fully-quadratic properties. In the next chapter, we present an
extension of DFO trust-region methods from continuous variables problems to mixed continuous
and binary problems that was initially proposed in [25].
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This chapter discusses the main ingredients of the DFOb-dH algorithm, an extension of DFO
trust-region methods to mixed continuous and binary variables proposed in [25]. It will serve as
the key building block when proposing our new algorithm in Chapter 5. After summarizing the
algorithm, we focus on the theoretical proof of its local convergence, which was not explicitly
provided in the original presentation [25].

The algorithm DFOb-dH aims at improving iteratively a starting feasible solution by solving
quadratic optimization “sub-problems" based on quadratic approximation models of the objective
function. It starts with a set, Z, of interpolation points at each of which the objective function
value is known. Each main iteration involves two main phases: exploitation and exploration.
In the exploitation phase, a quadratic model, m̃, of the objective function is built with fixed y,
then some numerical condition (poisedness) for the interpolation set, Z, is verified, and otherwise
the interpolation set is updated. A better current solution is sought by solving trust-region
quadratic optimization subproblems yielding updates of Z, and of the radii of the trust regions.
The distance upon which is based the definition of the trust region for the discrete part, t0, 1un,
of the search space is the Hamming distance which can be formulated in a linear constraint:

dHpȳ, ỹq “
ÿ

j:ỹj“0
ȳj `

ÿ

j:ỹj“1
p1 ´ ȳjq, (18)

for ȳ, ỹ P t0, 1un. Roughly speaking, this distance simply computes the minimal number of flips
(from 0 to 1, or from 1 to 0) required to transform ȳ into ỹ. Then, an exploration phase is added to
help the optimization explore wider the binary domain. The convergence result we are about to
present in this section is in fact driven totally by the exploitation phase, which solves a continuous
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quadratic optimization subproblem by temporarily fixing the value of the discrete variables y,
and by building fully-linear models of the continuous objective function fp¨, yq.

The outline of the chapter is as follows: Section 1 presents a mixed quadratic model construction
based on the mixed interpolation set. Section 2 provides a review of the state-of-the-art initial
design methods that are used in DFO. Sections 3 and 4 present the exploitation and explo-
ration steps in DFOb-dH respectively. We end up with the complete DFOb-dH algorithm, some
conclusions and discussion for this chapter in Section 4.

1 The quadratic model

This subsection details how the trust-region quadratic sub-problem model at iteration k, rmk, is
built. We consider the vector of optimization variables z “ px, yq, wherex P Rm, y P t0, 1un. By
adding binary variables, the notation of the interpolation set becomes

Z “ tz0, z1, . . . , zpu, where zi P Rm ˆ t0, 1un.

The classification of problems based on the value of p is unchanged, but with dimension m` n

(for mixed continuous and binary) instead of m (for continuous). We keep all the notations and
definitions from Chapter 2, but with mixed binary z “ px, yq variables.

Suppose that one is given a set of points zi “ pxi, yiq, xi P Rm, yi P t0, 1un, i “ 0, 1, . . . , p,
at which the objective function is evaluated with values f i :“ fpxi, yiq, i “ 0, 1, . . . , p, where
p ą m` n. The derivative-free trust-region algorithm for mixed binary variables is based on the
local quadratic model

rmα,g,Hpzq “ α ` gT z `
1
2z

THz,

with z “ px, yq, x P Rm, y P t0, 1un, and where the coefficients α P R, g P Rm`n, and H, a
pn`mq ˆ pn`mq real symmetric matrix, are solutions of the regularized fitting problem

$

&

%

min
α,g,H“HT

1
2∥H∥2

F

rmα,g,Hpziq “ f i, i “ 0, 1, . . . , p,
(19)

where ∥.∥F is the Frobenius norm. From a computational perspective, subproblem (19) can
be addressed by NLP solvers such as IPOPT (see details in [106]). For the sake of notational
simplicity, in the sequel, the model rmα,g,H will simply be denoted by rm.

The interpolation set needs to satisfy some conditions to ensure the uniqueness of the solution
of the fitting problem (19). Let d “ 1 or 2, and let tϕiu

h´1
i“0 be the natural basis of the space
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of polynomials of degree ď d in Rm`n (h is then simply the dimension of this space). In our
context where y P t0, 1un, and when d “ 2, the ϕi elements of this basis are the components of
the vector:

ϕpzq “ p1, x1, . . . , xm, y1, . . . , yn,
1
2x

2
1, . . . ,

1
2x

2
m, . . . , xixj , . . . , xiyj , . . . ,

xmyn, y1y2, . . . , yiyj , . . . , yn´1ynq,
(20)

since the purely quadratic terms in the yi’s are discarded (since y2
i “ yi). As a consequence, one

has h “ pm` n` 1qpm` n` 2q{2 ´ n.

The proof of maintaining a Λ´poised sample set in a finite number of steps is evoked in [25]. We
give the proof in the following lemma for the case of mixed continuous and binary variables, and
d “ 1 or 2. Remark that we only consider a proper mixed continuous and binary case, the pure
continuous proof can be found in [27], and the pure binary case can be asset easily.

Lemma 4.1. Let vTϕpzq be a quadratic polynomial of degree at most d (d “ 1 or 2), where ϕpzq is
defined above and ∥v∥8 “ 1. Then, there exists a constant σ8 ą 0, independent of v, such that

max
xPBp0,1q,yPB

|vTϕpzq| ě σ8. (21)

For d “ 1, σ8 ą 0 and for d “ 2, σ8 ě
1
4 , where Bpxk,∆kq is the ball centered at xk with radius

∆k, and where B indicates the binary set t0, 1un.

Proof. We first show that such a constant σ8 exists. Let us consider

ψpvq “ max
xPBp0,1q,yPB

|vTϕpzq|. (22)

We see that ψpvq is a norm in the space of vector v. Since the ratio of any two norms in finite
dimensional spaces can be uniformly bounded by a constant, there exists a σ8 ą 0 such that
ψpvq ě σ8∥v∥8. The constant σ8 is defined as:

σ8 “ min
∥v∥8“1

ψpvq. (23)

Thus, if v has l8´norm one then ψpvq ě σ8 and there exits a continuous vector x P Bp0, 1q and
a binary y P B such that |vTϕpzq| ě σ8.
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We demonstrate for the two cases: for d “ 1, there exists σ8 ą 0 and d “ 2, σ8 ě
1
4 .

For d “ 1, the natural polynomial basis of degree one is

ϕpzq “ r1, x1, x2, . . . , xm, y1, y2, . . . , ynsT .

Let u “ rv1, v2, . . . , vm`1sT and w “ rvm`2, vm`3, . . . , vm`n`1sT . Remark that we consider
the mixed continuous and binary case, it means ∥u∥8 ‰ 0 and ∥v∥8 ‰ 0. Therefore, ψpvq

becomes max
xPBp0,1q,yPB

|v1 ` uTx`wT y| which reaches an optimal value when x “
u

∥u∥
and when y

is chosen as

yi “

$

&

%

1, ifwi ą 0,

0, otherwise,

or when x “ ´
u

∥u∥
and when

yi “

$

&

%

1, ifwi ă 0,

0, otherwise.

Thus, the optimal value of ψpvq is |v1| ` ∥u∥ `
ř

yi“1
|wi| ą 0. This ends the proof of the first case.

For the case where d “ 2: the natural polynomial basis of degree 2 is given as

ϕpzq “ t1, x1, x2, . . . , xm, y1, y2, . . . , yn,
1
2x

2
1, . . . ,

1
2x

2
m, . . . , xixj , . . . , xiyj , . . . , xmynu.

Since ∥v∥8 “ 1, by the definition of l8´norm, there exits i : |vi| “ 1. Thus, one of the coefficients
of the polynomial qpzq “ vTϕpzq is equal to either 1 or ´1 (corresponding to linear part in the

basis 1, x1, . . . , xm, y1, . . . , yn) or
1
2 , or ´

1
2 (corresponding to the quadratic part in the basis

1
2x

2
1, . . . ,

1
2x

2
m, . . . , xixj , . . . , xiyj , . . . , xmyn).

Let us consider only the cases where one of the coefficients of qpzq is 1 or
1
2 (the cases ´1 or ´

1
2

are analyzed similarly).
The largest coefficient in absolute value in v corresponds to a term which is either a constant

term, a linear term xi or yi, a quadratic term
1
2x

2
i or xixj or xiyj . Let us restrict all variables that

do not appear in this term to zero. We will show that the maximum absolute value of qpzq is at

least
1
4 by considering six cases of different terms that correspond to the largest coefficient. In

each case we will evaluate qpzq at several points in the unit ball and show that at least at one of

these points one has |qpzq| ě
1
4 :

• qpzq “ 1: it implies directly |qpzq| ě
1
4
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• qpzq “ xi `
1
2αx

2
i ` δ: in this case we have

qp1q “ 1 `
α

2 ` δ, qp´1q “ ´1 `
α

2 ` δ.

If
α

2 ` δ ă 0 then |qp´1q| ą 1, otherwise, if
α

2 ` δ ě 0 then |qp1q| ě 1.

• qpzq “ yi ` δ: if |δ| ě
1
4 , then |qpx, 0q| “ |δ| ě

1
4 . Otherwise,

´1
4 ă δ ă

1
4 and then

|qpx, 1q| “ |1 ` δ| ą
3
4 .

• qpzq “
1
2x

2
i ` αxi ` δ: in this case we have:

qp1q “
1
2 ` α ` δ, qp´1q “

1
2 ´ α ` δ.

It is satisfied directly if one of the inequalities |qp1q| ě
1
4 or |qp´1q| ě

1
4 holds. In both

cases |qp1q| ă
1
4 and |qp´1q| ă

1
4 , by adding these inequalities, we have

´1
2 ă 1 ` 2δ ă

1
2

implies that δ ă
´1
4 , and also we have qp0q “ δ ă

´1
4 . Thus, we have |qp0q| ą

1
4 .

• qpzq “ xixj `
1
2αx

2
i `

1
2βx

2
j ` γxi ` `δxj ` ϵ: in this case, we consider qpzq at four points

p1 “ p
1

?
2
,

1
?

2
q, p2 “ p

1
?

2
,

´1
?

2
q, p3 “ p

´1
?

2
,

1
?

2
q, p4 “ p

´1
?

2
,

´1
?

2
q. We have

qpp1q “
α ` β

4 `
1
2 `

γ ` δ
?

2
` ϵ, qpp3q “

α ` β

4 ´
1
2 ´

γ ´ δ
?

2
` ϵ,

qpp2q “
α ` β

4 ´
1
2 `

γ ´ δ
?

2
` ϵ, qpp4q “

α ` β

4 `
1
2 ´

γ ` δ
?

2
` ϵ.

As a result, we obtain qpp1q´qpp2q “ 1`
?

2δ and qpp3q´qpp4q “ ´1`
?

2δ. If δ ď 0, we have

qpp1q ´ qpp2q ď 1. If |qpp1q| ă
1
2 , then |qpp2q| ě

1
2 . Otherwise, δ ą 0, qpp3q ´ qpp4q ě ´1.

Thus, if |qpp3q| ă
1
2 , then qpp4q ď

´1
2 .

• qpzq “ xiyj `
1
2αx

2
i ` βxi ` γyj ` δ: in this case, we evaluate qpzq at six points with the

evaluation as follows

qp0, 0q “ δ, qp´1, 0q “
α

2 ´ β ` qp0, 0q,

qp0, 1q “ γ ` δ, qp1, 1q “
α

2 ` p1 ` βq ` qp0, 1q,

qp1, 0q “
α

2 ` β ` qp0, 0q, qp´1, 1q “
α

2 ´ p1 ` βq ` qp0, 1q.
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From the last two equations, we have

qp1, 1q ´ qp´1, 1q “ 2 ` 2β.

We prove that with all the possible values of β, we can find at least one point which satisfies
the lemma. If β ě 0, we have

qp1, 1q ´ qp´1, 1q “ 2 ` 2β ě 2.

If |qp´1, 1q| ă 1 then qp1, 1q ą 1, otherwise, if |qp´1, 1q| ą 1 it is trivial.

If
´1
2 ă β ă 0, we have

qp1, 1q ´ qp´1, 1q ą 1,

then: if |qp1, 1q| ă
1
2 , we have ´qp´1, 1q ą 1 ´ qp1, 1q ą

1
2 , so we obtain |qp´1, 1q| ą

1
2 .

Otherwise, if |qp1, 1q| ą
1
2 , the result is trivial.

If β ď
´1
2 , from the third and the fourth equations, we have

qp1, 0q ´ qp´1, 0q “ 2β ď ´1.

In this case, if |qp´1, 0q| ă
1
2 , then qp1, 0q ă

´1
2 , which implies that |qp1, 0q| ą

1
2 . Otherwise,

if |qp´1, 0q| ě
1
2 , the result is trivial.

In order to define the poisedness of the interpolation set Z, we need first to define the corre-
sponding pp` 1q ˆ h interpolation matrix:

M :“

¨

˚

˚

˚

˚

˝

ϕ0pz0q ϕ1pz0q . . . ϕhpz0q

ϕ0pz1q ϕ1pz1q . . . ϕhpz1q

...
...

...
ϕ0pzpq ϕ1pzpq . . . ϕhpzpq

˛

‹

‹

‹

‹

‚

. (24)

Let us consider the three possible cases for the dimensions of M (related to the number, p` 1, of
interpolation points and to the cardinality, h, of the basis – recall that m` n` 1 ď p):

• h “ p` 1 (determined case): Following [27], the interpolation set Z is said to be poised if
the determinant of M is non-zero.
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• p` 1 ă h (under-determined case): Again, as in [27], Z is poised if M is full column rank
(rankpMq “ minpp, hq “ p).

• h ă p ` 1 (over-determined case): In this case we propose to remove p ´ h points from
the interpolation set (we shall define precisely in the algorithm which points should be
eliminated), so that one falls into one of the two previous cases.

A so-called ill-geometry situation leading to a non-poised interpolation set occurs when for
instance at some iteration, two or more interpolation points collapse or are affinely dependent.
This results in non-uniqueness of solutions of the fitting problem (19). There is also an ill-
geometry problem in the case of a near-singular interpolation matrix (when two interpolation
points are too close to each other for example). To prevent this scenario, an improvement
step based on LU factorization is set up in the mixed space Rm ˆ t0, 1un, inspired from the
continuous version of Section 2.2.4 from [27], and detailed in Algorithm 3. It involves solving a
mixed-integer quadratic programming problem (MIQP) to be defined below.

Algorithm 3 provides a poised interpolation set such that when Gaussian elimination is applied
to the interpolation matrix M , the absolute value of all pivots are not smaller than the chosen
threshold ξ.
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Algorithm 3: Improving poisedness of Z in the mixed trust region B, extended from [27]
0. Initialization
Choose an initial pivot polynomial basis with some basis uipzq, i “ 0, 1, . . . , h, e.g., the
monomial basis ϕpzq given by (20).

Select a pivot threshold ξ ą 0.
For i “ 0, 1, . . . , h

1. Point selection:

• If there exists an index j P ti, i` 1, . . . , |Z|u such that |uipz
jq| ě ξ,

swap zj and zi in set Z,

• Otherwise, recompute zi as

zi P argmaxzPB |uipzq|, (25)

where B is the trust region we are considering.

Stop if |uipz
iq| ă ξ.

2. Gaussian elimination: For j “ i` 1, i` 2, . . . , p

ujpzq Ð ujpzq ´
ujpziq

uipziq
uipzq.

From a computational perspective, subproblem (25) can be addressed by a MIQP solver such as
CPLEX or BONMIN.

The introduction of binary variables requires an adapted trust-region definition. In the presenta-
tion [25], the authors introduce an ∥.∥8 (l8-norm) trust region for the continuous variables, and
a Hamming-distance trust region for the binary variables.

Assuming in the sequel that the current iterate under consideration is px0, y0q, the mixed trust
region is defined as

Bpx0,∆xq ˆ Bpy0,∆yq, (26)

where
Bpx0,∆xq “ tx P Rm : ∥x´ x0∥8 ď ∆xu, (27)

and
Bpy0,∆yq “ ty P t0, 1un : dHpy, y0q ď ∆yu, (28)

for some given trust-region radii ∆x and ∆y.
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In what follows, we detail the major stages of the DFOb-dH algorithm.

2 Initial interpolation set

This subsection details the choice of the initial interpolation set (also often referred to as the
initial design) in DFOb-dH .

In order to construct a first quadratic model, one requires an interpolation set that contains
a sufficient number of points together with the corresponding objective function values. As
indicated in [27], for DFOb-dH this number is often taken equal to m ` n ` 1. Further, these
points need to satisfy strict geometry conditions for the interpolation problem to be well posed.
As remarked in [105], a “good” design of experiments (DoE) not only needs to be affinely
independent, but should additionally satisfy space-filling, non-collapsing properties [41].

There are several methods to choose a given number of sample points in a continuous space, such
as factorial designs, Latin Hypercube Sample (LHS), and Optimal LHS designs (see e.g. [105]).
However, here we deal with mixed continuous and binary variables problems: we need to provide
a DoE in the mixed space Rm ˆ t0, 1un. When the dimension is small, one way to proceed is to
sample among 2n`m corner points of the boundary box: for example [48] proposes a strategy
that chooses m` n` 1 corner points plus the central point of the box. For larger dimensions, a
popular strategy is the Latin Hypercube Sample (LHS) [66, 109], originally used for generating
samples for continuous variables in a bounded subset. However, points sampled by this strategy
will surely not satisfy our binary constraints.

In our implementation, we therefore proceed as in [30] for the RBFOpt algorithm: we first
construct a Latin Hypercube Design with maximin distance criterion of m` n` 1 points in the
considered bounded subset of Rm`n, then we round the n components associated with the binary
variables to zero or one. Remark that rounding recovers the binary domain but may destroy the
desirable properties of LHS or, even worse, it may generate identical points. A future track of our
research should therefore be dedicated to improving the method for generating the initial design
of experiments.

Two main phases of DFOb-dH remain to be specified: the exploitation and the exploration phases.
The exploitation phase attempts at finding locally-optimal solutions of the optimization problem
with fixed binary variables. The exploration phase focuses on escaping from local minima when
we cannot improve the current local solution, by exploring the binary domain.
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3 Exploitation phase

The next step - that will be denoted Step 1a - involves solving a continuous quadratic-programming
(QP) subproblem temporary fixing the binary variables y to the associated current values of the
trust region center, yk:

#

min
x

rmkpx, ykq

s.t. ∥x´ xk∥8 ď ∆x,k,
(29)

where rmk is the current model at the kth iteration, pxk, ykq is the current iterate, and ∆x,k is the
trust-region radius with respect to the continuous variables x at iteration k. Note that the infinity
norm l8 is used to define the trust region with respect to continuous variables for the sake of
subproblem simplification (leading to bound constraints). In practice, IPOpt is applied to solve
this QP subproblem.

The following step, Step 1b, tests whether the solution, x˚, of (29) should be accepted, based on
the ratio, ρ, of the true improvement in f brought by x˚, over the improvement predicted by the
model:

ρ “
fpxk, ykq ´ fpx˚, ykq

rmkpxk, ykq ´ rmkpx˚, ykq
, (30)

where one remarks that the denominator is always negative since x˚ is solution of (29). We
introduce ηgood, ηok, and ηtol, some pre-defined acceptance threshold values such that ηgood ą

ηok ą ηtol ą 0.

If ρ ě ηtol, the new iterate is accepted (successful iteration), If ρ ă ηtol, the solution is rejected
(unsuccessful iteration).

This exploitation phase (referred to as Step 1 in the sequel) is summarized in Algorithm 4.

Algorithm 4: Exploitation phase of DFOb-dH (Step 1) at iteration k

Step 1a (TR QP)

• Solve (29) for fixed y “ yk in Byk
pxk,∆x,kq to get x˚

• Evaluate fpx˚, ykq; if nsimu “ nsimu Ñ STOP

• Add ppx˚, ykq, fpx˚, ykqq to Zk; p Ð p` 1

Step 1b (Validation)
Compute the acceptance ratio ρ via (30)

• If ρ ě ηtol (successful Step 1): xk Ð x˚

else (unsuccessful Step 1): xk is rejected.
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4 Exploration phase

After a successful Step 1 with fixed yk, the following step (which will be referred to as Step 1.5a)
attempts to improve the current-iterate solution, pxk, ykq, in the mixed-variable search space by
solving the mixed binary quadratic subproblem:

$

’

’

&

’

’

%

min
xPRm,yPt0,1un

rmkpx, yq

s.t. ∥x´ xk∥8 ď ∆x,k,

dHpy, ykq ď ∆y,k.

(31)

In practice, this subproblem is addressed by MIQP solvers such as CPLEX or BONMIN.

Then, a validation step (referred to as Step 1.5b) checks if the solution of Step 1.5a provides a
solution y˚ ‰ yk, and whether the corresponding objective-function value, fpx˚, y˚q, associated
to this solution is smaller than the current best objective-function value.

In case of an unsuccessful Step 1.5a (i.e., no improvement in the minimization of f or failure in
solving (31)), we continue with the same yk, with a trust-region management with respect to the
x component, and a new Step 1 to improve the current solution with y fixed to the value yk:

• If ρ ą ηgood, then the solution px˚, ykq is accepted and the model is considered as a “good”
predictor of f , the trust-region size is then increased;

• If ρ P rηok, ηgoods, then the solution is accepted and the model is considered as sufficiently
predictive, the trust-region size remains unchanged;

• If ρ ă ηok, then px˚, ykq is rejected and the model is not considered sufficiently predictive.
The trust-region radius is then reduced.

This trust-region management (which will constitute Step 2) can be summarized as:

∆x,k`1 “

$

’

’

’

&

’

’

’

%

2∆x,k if ρk ě ηgood,

∆x,k if ηok ď ρk ă ηgood,
1
2∆x,k if ρk ă ηok.

If the solution of (31) does not yield improvement with respect to the current center px˚, y˚q, and
the pre-defined minimal value of the trust-region size, ∆x, is reached, then px˚, y˚q is considered
to be a locally-optimal solution. In this case, the algorithm explores in a Step 3 the binary search
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space using no-good cuts, analogous to those introduced in [32] for general mixed optimization
problems. The aim of no-good cuts were to remove a point that was integer, but not feasible for
all the constraints which we can informally call the “no-good” solutions. This leads in our case to
relaxing the trust-region constraint:

dHpy, y˚q ď K,

for some K ą 0, and to force the algorithm to move away from the current locally-optimal
solution by adding the extra (no-good cut) constraint:

ÿ

j:y˚
j “0

yj `
ÿ

j:y˚
j “1

p1 ´ yjq ě K˚, (32)

where K˚ P N˚ is some user-defined discrepancy value strictly greater than 1. Note that for
a given xk, several such no-good cut constraints are likely to cumulate, as there will be one
constraint of the form (32) corresponding to each of the different y˚ values obtained. The set of
no-good cut constraints at iteration k is denoted by ΩNGC

k . If the exploration does not provide
us a better solution, an add-points step is added. In this particular step, we allow to add an
user-defined number of points generated by DoEs method. The exploration step (Step 1.5) is
summarized in Algorithm 5.

Algorithm 5: Exploration phase of DFOb-dH (Step 1.5) at iteration k

Step 1.5a (MIQP subproblem)

• is_new_NGC “ 0

• Solve MIQP (31) in Bpxk,∆x,kq ˆ pBpyk,∆y,kq X ΩNGC
k q to get px˚, y˚q

• Evaluate fpx˚, y˚q if nsimu “ nsimu Ñ STOP

• Add ppx˚, y˚q, fpx˚, y˚qq to Zk; p Ð p` 1

Step 1.5b (Validation)

• If y˚ ‰ yk and fpx˚, y˚q ă min
px,yqP|Zk|XpRmˆΩNGC

k q

fpx, yq

(successful step 1.5): ∆x,k Ð ∆x,0, pxk, ykq

else (unsuccessful step 1.5)

If y˚ ‰ yk: ∆y,k Ð ∆y,k ´ 1

The algorithm finally ends when the maximal budget of objective-function evaluations or the
maximal number of no-good cuts is reached. The maximal number of possible no-good cuts is
theoretically equal to 2n ´ 1 (for n binary variables). We shall see later that in the context of
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cyclic symmetry, it is in fact approximately 2n{n. But more importantly, with this type of property
we will see that the definition of no-good cuts in (32) is not sufficient to discriminate equivalent
configurations.

The complete DFOb-dH algorithm is outlined in Algorithm 6.
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Algorithm 6: DFOb-dH algorithm
Initialization

• Given initial TR radii 0 ă ∆x ă ∆x,0 ă ∆x, 0 ă ∆y ă ∆y,0 ă ∆y, and tolerances
ηgood ą ηok ą ηtol ą 0, a maximal budget of evaluations nsimu ą p, maximal number of
no-good cut constraints nNGC ą 0, and a corresponding discrepancy value K˚ ą 0.

• Initial interpolation set Z “ tpzi, f iqui“0,1,...,p, where zi “ pxi, yiq, f i “ fpziq

• Define initial iterate px0, y0q P argmini“0,1,...,p fi

• Set k “ 0, ΩNGC
0 “ t0, 1un, is_new_NGC “ 0

Iteration k:

Step 0 (Model update and improvement)

• Build quadratic model rmkpx, yq (cf. Section 1)

• Improve poisedness of Zk by solving a TR MIQP in Bpxk,∆x,kq ˆ Bpyk,∆y,kq (Algorithm
3)a

• If nsimu “ nsimu Ñ STOP

if is_new_NGC “ 1 : go to Step 1.5

Step 1 (Exploitation phase): Algorithm 4 (cf. Section 3)

• If unsuccessful Step 1: go to Step 2

Step 1.5 (Exploration phase): Algorithm 5 (cf. Section 4)

• If successful Step 1.5: k Ð k ` 1 and go to Step 0

Step 2 (TR update and local convergence check)

• If ρ ď ηok: ∆x,k Ð ∆x,k{2

• If ρ ě ηgood: ∆x,k Ð 2∆x,k

• If ∆x,k ą ∆x: k Ð k ` 1 and go to Step 0

Step 3 (Exploration after local convergence)

• Adding a new no-good cut : ΩNGC
k Ð ΩNGC

k X ty P t0, 1un : dHpy, ykq ě K˚u,
nNGC Ð nNGC ` 1; is_new_NGC “ 1

• Reinitialize TR radii: ∆x,k Ð ∆x,0, ∆y,k Ð ∆y

• If nNGC ď nNGC : k Ð k ` 1 and go to Step 0

else: Ñ STOP

aAlgorithm 3 adds possibly in Zk new points to be simulated.
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5 Local convergence results

In order to avoid ill-conditioning and ensure the local convergence of the algorithm, we rely
on a class of so-called fully-linear models [27] within the chosen trust region. As shown in
[27] for continuous problems, if an interpolation set is poised, then the model obtained by
solving the minimal Frobenius fitting problem is fully linear in the trust region of size ∆x “

max
i“1,2,...,p

p∥xi ´ x0∥8q defined by the interpolation points, which ensures a control of the model

error by controlling the size of the trust region and the interpolation set poisedness with the
model improvement step.

In our case, we ensure the local convergence of our algorithm by considering the subproblem
with fixed binary variables, and by checking that the model for fixed y “ y0 is fully linear in the
trust region:

By0px0,∆xq “ tpx, y0q : x P Rm and ∥x´ x0∥8 ď ∆xu.

Note that, in our implementation, the model improvement step (Algorithm 3) is performed in
Bpx0,∆xq ˆ t0, 1un, where Bpx0,∆xq is defined by (27). This allows a larger exploration with
respect to binary variables than an improvement step in the mixed trust region Bpx0,∆xq ˆ

Bpy0,∆yq while still fulfilling the required assumptions for Lemma 4.2 below. In the following,
we give the proof of fully-linear models for fixed y “ y0.

Assumption 4.1.

• f P C1` is a continuously differentiable function with respect to the x variables, and ▽xf is
Lipschitz-continuous in a closed subset, Ω, of the optimization domain, Rm ˆ t0, 1un;

• The interpolation set of p` 1 points, Z, is poised in Bpx0,∆xq ˆ t0, 1un where p ą m` n and
∆x “ max

i“1,2,...,p
p∥xi ´ x0∥8q.

Assumption 4.2.

At every iteration k of the Algorithm (6), the Frobenius norm of the model Hessian evaluated at
iterate pxk, ykq, Hk, is bounded.
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Lemma 4.2. Let px0, y0q be the initial iterate. Under Assumption 4.1 and Assumption 4.2, the model
rmp¨, y0q which is constructed from rmpx, yq by fixing y “ y0 is fully linear in By0px0,∆xq. In other
words, for all x P By0px0,∆xq, there exist κ˚

f , κ
˚
g ą 0 such that:

|fpx, y0q ´ rmpx, y0q| ď κ˚
f ∆2

x, (33)

and
∥▽xfpx, y0q ´ ▽x rmpx, y0q∥2 ď κ˚

g∆x. (34)

Proof. The model constructed in mixed space is given as:

rmpzq “ c` gT z `
1
2z

THz,

where z “ px, yq, g “ pgx, gyq, H “

˜

Hxx Hxy

Hyx Hyy

¸

, Hxy “ Hyx, and where Hxx, Hyy are

symmetric matrices.
Thus, the model with y fixed to y0 is defined as follows:

rmpx, y0q “ c̄x ` ḡxx`
1
2x

T H̄xx, (35)

with c̄x “

´

c` gT
y y0 `

1
2y

T
0 Hyyy0

¯

, ḡxx “

´

gT
x `Hxyy0

¯

and H̄x “ Hxx.

The gradient of rmpx, y0q with respect to x is therefore:

▽x rmpx, y0q “ ḡx ` H̄xx.

To be convenient, let us introduce the following notations: f0pxq “ fpx, y0q, rm0pxq “ rmpx, y0q,
▽f0pxq “ ▽xfpx, y0q , ▽rm0pxq “ ▽x rmpx, y0q and B0p∆xq “ By0px0,∆xq.

We define
errf

0 pxq “ rm0pxq ´ f0pxq,

errg
0pxq “ ▽rm0pxq ´ ▽f0pxq.
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For all xi P B0p∆xq, we develop

pxi ´ xqT errg
0pxq “ pxi ´ xqT pH̄xx` ḡx ´ ▽f0pxqq

“ pxi ´ xqT H̄xx` pxi ´ xqT ḡx ´ f0pxiq ` f0pxq

` rf0pxiq ´ f0pxq ´ pxi ´ xqT▽f0pxqs

“ m0pxiq ´m0pxq ´
1
2pxi ´ xqT H̄xpxi ´ xq ´ f0pxiq ` f0pxq

` rf0pxiq ´ f0pxq ´ pxi ´ xqT▽f0pxqs

“ errf
0 pxiq ´ errf

0 pxq ´
1
2pxi ´ xqT H̄xpxi ´ xq

` rf0pxiq ´ f0pxq ´ pxi ´ xqT▽f0pxqs.

(36)

Since f0 is continuously differentiable, we have:

rf0pxiq ´ f0pxq ´ pxi ´ xqT▽f0pxqs “

ż 1

0
pxi ´ xqT p▽f0px` tpxi ´ xqq ´ ▽f0pxqqdt,

which implies that

pxi ´ xqT errg
0pxq “

ż 1

0
pxi ´ xqT p▽f0px` tpxi ´ xqq ´ ▽f0pxqqdt

` errf
0 pxiq ´ errf

0 pxq ´
1
2pxi ´ xqT H̄xpxi ´ xq.

(37)

Using (37) with x “ x0, we obtain:

pxi ´ x0qT errg
0pxq “ pxi ´ xqT errg

0pxq ´ px0 ´ xqT errg
0pxq

“

ż 1

0
pxi ´ xqT p▽f0px` tpxi ´ xqq ´ ▽f0pxqqdt` errf

0 pxiq

´
1
2pxi ´ xqT H̄xpxi ´ xq

´

ż 1

0
px0 ´ xqT p▽f0px` tpx0 ´ xqq ´ ▽fpxqqdt´ errf

0 px0q

`
1
2px0 ´ xqT H̄xpx0 ´ xq.

(38)

First, note that errf
0 px0q “ 0. Then, for each terms of (38), we obtain the following upper bounds:
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• From the Lipschitz property of f0pxq (Assumption 4.1), one has:

ˇ

ˇ

ż 1

0
pxi ´ xqT p▽fpx` tpxi ´ xqq ´ ▽fpxqqdt

ˇ

ˇ ď
1
2ν∥xi ´ x∥2

ď
1
2νp2∆xq2

ď 2ν∆2
x.

(39)

• In the same way, we have:

ˇ

ˇ

ˇ

ż 1

0
px0 ´ xqT p▽fpx` tpx0 ´ xqq ´ ▽fpxqqdt

ˇ

ˇ

ˇ
ď

1
2ν∥x0 ´ x∥2 ď

1
2ν∆2

x. (40)

• In the following two inequalities, note that ∥H̄x∥F is bounded from Assumption 4.2:

ˇ

ˇ

ˇ

1
2pxi ´ xqT H̄xpxi ´ xq

ˇ

ˇ

ˇ
ď

1
2∥H̄x∥F ∥xi ´ x∥2 ď

1
2∥H̄x∥F p2∆xq2 ď 2∥H̄x∥F ∆2

x. (41)

ˇ

ˇ

ˇ

1
2px0 ´ xqT H̄xpx0 ´ xq

ˇ

ˇ

ˇ
ď

1
2∥H̄x∥F ∥x0 ´ x∥2 ď

1
2∥H̄x∥F ∆2

x. (42)

• There exists ϵ1 ą 0 such that
|errf

0 pxiq| ď ϵ1∆2
x, (43)

which can be shown by contradiction. Indeed, suppose that we have

|errf
0 pxiq| ą ϵ1∆2

x @ϵ1 ą 0. (44)

By definition of errf
0 and from the continuity assumption on f0 and rm on B0p∆xq, there

exist ϵ1, ϵ2 ą 0 such that:

|errf
0 pxiq| “ |f0pxiq ´ rm0py0q|

“ |f0pxiq ´ f0px0q ` rm0px0q ´ rm0pxiq|

ď |f0pxiq ´ f0px0q| ` | rm0px0q ´ rm0pxiq|

ď pϵ1 ` ϵ2q∆x. (45)

Thus, setting ϵ1 “
ϵ1 ` ϵ2
∆x,min

ě
ϵ1 ` ϵ2

∆x
in (44) contradicts (45).
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Thus, we find from (38) and the inequalities (39 – 43):

|pxi ´ x0qT errg
0pxq| ď

5
2∆2

x

´

ν ` ∥H̄x∥F ` ϵ
¯

, (46)

with ϵ “
2
5ϵ

1.
Using Cauchy-Schwarz inequality, we obtain:

∥errg
0pxq∥2 ď

5
2∆x

´

ν ` ∥H̄x∥F ` ϵ
¯

. (47)

Consider the matrix X “
1

∆x

“

x1 ´ x0, x
2 ´ x0, . . . , x

p ´ x0
‰

.

We recall that the interpolation set Z is defined as

Z “

¨

˚

˚

˚

˚

˝

x0 y0

x1 y1

...
...

xp yp

˛

‹

‹

‹

‹

‚

. (48)

Since Z is poised, Z is full rank, i.e., rankpSq “ minpp,m ` nq “ m ` n, based on the fact that
p ą m ` n (see Section 1), and the m column vectors x0, x

1, . . . , xp are linearly independent.
Therefore, XT is a non-singular matrix.

We have

XT errg
0pxq “

1
∆x

»

—

—

–

px1 ´ x0qT

...
pxp ´ x0qT

fi

ffi

ffi

fl

errg
0pxq. (49)

Then, we obtain from inequality (46):

∥XT errg
0pxq∥8 “

1
∆x

max
i“1,...,p

|pxi ´ x0qT errg
0pxq|

ď
1

∆x

«

5
2∆2

x

´

ν ` ∥H̄x∥F ` ϵ
¯

ff

“ ∆x

«

5
2

´

ν ` ∥H̄x∥F ` ϵ
¯

ff

.

(50)

Moreover, we have:
∥errg

0pxq∥2 “ ∥X´TXT errg
0pxq∥2

ď ∥X´T ∥2 ∥XT errg
0pxq∥2.

(51)
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Thus, we obtain:

∥errg
0pxq∥2 ď

?
m∥X´T ∥2 ∥XT errg

0pxq∥8 ď
?
m∥X´T ∥2 ∆x

«

5
2

´

ν ` ∥H̄x∥F ` ϵ
¯

ff

. (52)

Recovering errf
0 pxq by equation (37), we have:

|errf
0 pxq| ď ∥errg

0pxq∥∆x ` 2ν∆2
x ` 2∥H̄x∥F ∆2

x ` |errf
0 pxiq|

ď

«

?
m∥X´T ∥2

5
2

´

ν ` ∥H̄x∥F ` ϵ
¯

` 2pν ` ∥H̄x∥F q ` ϵ1

ff

∆2
x.

(53)

We complete the proof by the definition of the two required constants:

κ˚
g “

5
2

?
m∥X´T ∥2

´

ν ` ∥H̄x∥F ` ϵ
¯

, (54)

and
κ˚

f “

´

ν ` ∥H̄x∥F q

¯´5
2

?
m∥X´T ∥2 ` 2

¯

`
5
2ϵ

´?
m∥X´T ∥2 ` 1

¯

. (55)

We can now state the local convergence of the algorithm.

Theorem 4.1. Let Assumptions 4.1 and 4.2 hold. Then,

lim
kÑ8

▽xfpxk, yk´1q “ 0, (56)

or all the limit points of the sequence of iterates in Algorithm 6 are first-order critical points.

The proof is obtained by following the same process as in [27] (Theorem 10.13): from the
results of Lemma 4.2 above, we can prove the local convergence (convergence for fixed y) of
the algorithm with the additional assumption that f is bounded from below for all px, yq P Ω, a
closed subset of Rm ˆ t0, 1un.

REMARK 4.1. As explained in [28], an interpolation point outside By0px0,∆xq has to be replaced
in order to ensure a fully-linear model. However, in practice, in order to save expensive objective-
function evaluations, we allow to go on with a model that is not certified to be fully linear when
it yields effective progress in the minimization of the function.

48 Chapter 4 DFOb-dH : A derivative-free trust-region method for mixed binary problems



6 Conclusion

This chapter provides the main ingredient of DFOb-dH , a derivative-free optimization method
for mixed continuous and binary variables problems. Unfortunately, based on the fact that the
Hamming distance cannot detect the equivalent configurations in the binary part of the variables,
the method is not satisfying to address cyclic-symmetry problems. In the next chapter, we give
our efforts to adapt DFOb-dH to this type of problem.
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5DFOb-dneck: A DFOb method for
cyclic-symmetry problems
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We begin the chapter by recalling our target application: the optimal design of the blade shape
of a turbine for aircraft’s engine in order to minimize the vibrations. The aim is to optimize the
blade arrangement on the disk of two different pre-defined shapes of blades: a reference shape
called A and a mistuning shape B. A binary variable yi is associated with each blade location,
taking value 0 for shape A and value 1 for shape B. The optimization solution provides the
distribution of the two shapes around the turbine disk.

The reduced order model (ROM) is commonly used for addressing this problem. However, ROM
removes a large number of possibilities for optimization, in the sense that ROM considers two
reduced subproblems but the cyclic symmetry property remains and is not taken into account
explicitly in the standard optimization workflow. For instance, in the case of n “ 12 blades,
ROM considers two subproblems with 6 binary variables, which ends up with only 28 distinct
arrangements (14 for each sub-problem), while the total number of distinct arrangements in
the original problem is 352, and the removed configurations could be "useful" candidates for the
optimization.
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Therefore, we define a new distance (to be used within the DFOb algorithm) to model the cyclic
symmetry and avoid the redundancy. This new distance is expected to have a simple form. As
noted in the previous chapter, the standard Hamming distance does not appear appropriate for
this target.

In this chapter, we focus on defining this new distance, which is inspired by the concept of
"necklace" in literature [42, 43]. In addition, the adaptation of the optimization method to this
new distance is discussed.

1 Necklace context

To avoid useless costly evaluations of the numerous equivalent solutions for cyclic-symmetry
problems, engineers typically resort to simplifications or adapted strategies (such as the reduced-
order model methodology [23, 24]) to reduce the optimization problem dimension. However,
such simplifications are likely to discard interesting or even optimal configurations.

1.1 Concept of “necklace"

In order to avoid re-evaluating costly objective-function evaluations at equivalent blade arrange-
ments, we propose to use the concept of necklace [42, 43].

The idea of arranging two different types of blade shapes on the disk is similar to distribute two
different colors of beads on a necklace. In the application field of this concept, we identify several
promising distances.

Definition 5.1. (Necklace) Let k and n be strictly positive integers. In combinatorics, a k-
ary necklace of length n is an equivalent class of n-character strings over an alphabet

řk
“

ta1, . . . , aku of size k, taking all rotations as equivalent. It represents a structure with n circularly
connected beads with k available colors.

Let Neckpnq be the set containing all the necklaces of length n. For instance, considering the
necklace with 2 colors and 4 beads (n “ 4, k “ 2,

řk
“ t0, 1u), we have the following list of

representative necklaces (in red color) and all rotations (in black):
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0000 0001 0011 0101 0111 11111
0010 0110 1010 1110
0100 1100 1101
1000 1001 1011

Our application can be seen as a 2-colors necklace optimization with a fixed number of beads.

The number of distinct arrangements is approximately
2n

n
as mentioned in the turbine application

[49, 74]. By using the result from [42], we obtain that the exact number of necklaces for a

given number of beads n is equal to
1
n

ř

d|n ϕpdq2n{d, where ϕ is Euler’s totient function, i.e., the
function that counts the positive integers up to n that are relatively prime to n, and where the
summation is taken over all divisors, d, of n.

There are numerous applications of the concept of necklace, many of them are based on necklace
distances such as similarity of different types of music [98, 99, 100], the dissimilarity of DNA in
biology [4], calculating the leap years and design calendars [34], painting car in manufacturing
[68]. In the the next section, we review some usual necklace distances.

1.2 Survey of necklace distances

The study of distances in continuous space is well known and widely studied in the literature.
Nevertheless, in the discrete space, there is a limitation of defining a distance: the choice of a
distance depends on the problem formulation. Taking into account cyclic symmetry property
is a challenge of our problem as it can save a large number of simulations in the optimization
procedure. There exists several distances for measuring the difference between two discrete
strings. We list the main ones in the following.

Definition 5.2. (The Hamming distance) Given two binary strings y “ py1, . . . , ynq and y1 “

py1
1, . . . , y

1
nq, the Hamming distance between y and y1 is given by

dHpy, y1q “

n
ÿ

i“1
|yi ´ y1

i|. (57)

The Hamming distance is easily computed in Opnq operations. The constraint dHpy, yref q ď c,
for a given binary string yref and constant c, is linear.
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Definition 5.3. (Varshamov distance) Given two binary strings y “ py1, . . . , ynq and y1 “

py1
1, . . . , y

1
nq, the Varshamov distance between y and y1 is given by

dV py, y1q “ maxpN01py, y1q, N10py, y1qq, (58)

where N01py, y1q “ #tpyi, y
1
iq : yi “ 0, y1

i “ 1u and N10py, y1q “ #tpyi, y
1
iq : yi “ 1, y1

i “ 0u,
where # denotes the cardinality of the set.

One has:

N01py, y1q “

n
ÿ

i“1
p1 ´ yiqy

1
i “

n
ÿ

i“1
y1

i ´

n
ÿ

i“1
yiy

1
i,

and

N10py, y1q “

n
ÿ

i“1
p1 ´ y1

iqyi “

n
ÿ

i“1
yi ´

n
ÿ

i“1
y1

iyi.

Therefore, we have:
dV py, y1q “ max

`

∥y∥1, ∥y1∥1
˘

´ yT y1.

For more details, see [29]. Varshamov distance can detect cases where the number of 1s in string
y is larger than the number of 1s in string y1.

Definition 5.4. (The swap distance) y and y1 are as above. Assume that y and y1 have the same
number of 1, U “ pu1, . . . , ukq, V “ pv1, . . . , vkq where ui, vi are the indices such that yui “ 1 and
y1

vi
“ 1. The swap distance is given by

dswappy, y1q “ dswappU, V q “

k
ÿ

i“1
|ui ´ vi|. (59)

In [5] the authors use the swap distance to measure the similarity of two rhythms (application in
classification of types of music) or in bioinformatics where the two strings to be compared are
chain polymers. Computing U, V from y, y1 costs Opnq operations and Toussaint [101] states that
the swap distance can be computed in Opn2q. However, in [5], the authors introduce algorithms
computing the swap distance in Opk2q and Opk3q operations.

Definition 5.5. (The Hamming distance with shifts) Given y, y1 two binary strings, we define
three types of operations on y:

• An insertion, inspiq, changes yi from 0 to 1 with cost cins;
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• A deletion, delpiq, changes yi from 1 to 0 with cost cdel;

• A shift, shpi, jq, changes yi from 1 to 0 and yj from 0 to 1 with cost ∥i´ j∥csh.

The Hamming distance with shifts between y and y1 is the minimum cost of a sequence of
operations that transform y to y1.

The Hamming distance with shifts was mentioned in [70]. It measures not only the number of
mismatches but also how far apart the mismatches occur.

We note that with the values of cins “ cdel “ 1, csh “ 8, the Hamming distance with shifts
reduces to the Hamming distance, and when cins “ cdel “ 8, csh “ 1, it reduces to the swap
distance.

In [69] the author states that the Hamming distance with shifts can be computed in Opnq

operations.

Definition 5.6. (The Euclidean interval vector distance) Given y, y1 two binary sequences of
the same length, we represent them as their interval vectors U 1 “ pu1

1, . . . , u
1
kq, V 1 “ pv1

1, . . . , v
1
kq

where u1
i, v

1
i are the number of 0 elements between two 1s values (taking into account the

rotations). For instance, X “ p1100100000q can be represented as X “ p0, 2, 5q. Then, the
Euclidean interval vector distance for two binary strings with the same length and the same
number of 1s is given by

dEpy, y1q “

g

f

f

e

k
ÿ

i“1
pu1

i ´ v1
iq

2. (60)

The interval vectors can be computed from the given binary sequences in Opnq operations, and
dEpy, y1q can be computed in Opkq operations, where k is the number of 1s in the sequence. We
note that this distance does not take into account the cyclic symmetry property.

Definition 5.7. (The interval-difference vector distance) Given y, y1 two binary sequences
and U 1 “ pu1

1, . . . , u
1
kq, V 1 “ pv1

1, . . . , v
1
kq their interval vectors. For each sequence, we define

new sequences, Z “ pz1, . . . , zkq,with zi “ u1
i`1{u1

i, i “ 1, . . . , k ´ 1, zk “ yk{u1
1 and Z1 “

pz1
1 , . . . , z

1
kq,with z1

i “ v1
i`1{v1

i, i “ 1, . . . , k ´ 1, z1
k “ y1

k{v1
1. The interval difference vector

distance is

dIDpy, y1q “

´

k
ÿ

i“1

maxpzi, z
1
i q

minpzi, z1
i q

¯

´ k. (61)
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In [98] dIDpy, y1q is computed in Opnq operations.

Definition 5.8. (Minimum distance of pair assignment (MDPA)) Given y, y1 two integer
sequences, MDPA is defined as

dMDP Apy, y1q “ min
Y,Y 1

´

n
ÿ

i,j“1
|yi ´ y1

j |

¯

. (62)

The definition can be applied to two binary strings.

There are other distances related to the necklace application field, such as the chronotonic distance
or the geometry distance [101, 98]. We listed above the main formulations to see how the cyclic
symmetry could possibly be taken into account. In the next section, we present a new necklace
distance tailored to our application.

2 An adapted distance for cyclic-symmetry problems

To avoid useless costly evaluations of the numerous equivalent solutions for cyclic-symmetry
problems (as illustrated in Table 3), scientists and engineers typically resort to simplifications
or adapted strategies (such as the reduced-order model methodology [23, 24]) to reduce the
optimization problem dimension. However, such simplifications are likely to discard interesting
or optimal configurations.

This section first defines a new distance to be used in algorithm DFOb so as to avoid to evaluate
the costly blackbox objective function at configurations that were previously evaluated (equivalent
solutions), without arbitrary removal of (potentially good) candidate configurations. The new
distance should lead to constraints easily manageable in efficient optimization methods, just
like the Hamming distance which leads to linear constraints (cf. (18) and (32)). Then, in
Subsection 2.2 we propose a reformulation of the algorithm optimization subproblems with this
new distance for both the exploitation and the exploration phases. Subsection 2.3 summarizes
the adapted algorithm, named DFOb-dneck, and provides the local convergence statement.

2.1 The necklace distance

Our blade design application can be seen as a 2-color (or binary) necklace optimization problem
involving a fixed number, n, of beads (the number of reference blade shapes). The number of
distinct arrangements in our applicative context is therefore given by the number of n-bead
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necklaces:
1
n

ř

d|n ϕpdq2n{d, where ϕ is Euler’s totient function (the number of positive integers
between 1 and n that are relatively prime to n) and the summation is taken over all divisors d of
n.

The new distance we shall use is inspired from the particular lp necklace alignment distance (de-
noted lp NAD) where p “ 1 [19]. Given two vectors of n real numbers, v “ pv1, v2, . . . , vnq, v1 “

pv1
1, v

1
2, . . . , v

1
nq, vi, v

1
i P r0, 1q, the lp NAD is defined as:

dlpNADpv, v1q “ min
c,s

n
ÿ

i“1
pd0ppvi ` cq mod 1, v1

pi`sq mod nqqp, (63)

where c P r0, 1q is a clockwise rotation angle of the first necklace relative to the second necklace,
s P t0, 1, . . . , n ´ 1u is the perfect matching (best possible shift) between beads, and d0 is the
distance:

d0pvi, v
1
jq “ mint|vi ´ v1

j |, p1 ´ |vi ´ v1
j |qu

(see [19] for more detail).

Taking into account the fact that our applications involve uniformly-distributed discrete locations,
we set the rotation angle to the constant value c “ 0, and we replace d0 with the simple univariate
Euler distance (|vi ´ v1

j |). This yields the discrete necklace distance:

Definition 5.9. Given two k-ary necklaces of length n: u “ pu1, u2, . . . , unq and u1 “

pu1
1, u

1
2, . . . , u

1
nq, where ui, u

1
i P ta1, a2, . . . , aku, i “ 1, 2, . . . , n, the discrete necklace distance

between u and u1 is:

d˚
neckpu, u1q “ min

s“1,2,...,n

n
ÿ

i“1
|ui ´ u1

i`s|. (64)

For the purpose of the present study which considers only two possible types of blade design, we
focus on the case where k “ 2 and the alphabet ta1, . . . , aku reduces to t0, 1u. This leads to the
binary necklace distance, denoted dneck, on which our algorithm DFOb-dneck will be based:

Definition 5.10. Given y, y1 P t0, 1un, the binary necklace distance between y and y1 is:

dneckpy, y1q “ min
i“1,2,...,n

dHpy,Rotipy1qq, (65)

where dH denotes the Hamming distance, and Rotipyq is the rotation of y by i positions.
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For example, considering two binary strings: y “ p0, 1, 0q and y1 “ p1, 1, 0q. One has: dHpy, y1q “

1, dHpy,Rot1py1q “ dHpy, p0, 1, 1qq “ 1, dHpy,Rot2py1qq “ dHpy, p1, 0, 1qq “ 2. Using Definition
(65): dneckpy, y1q “ 1.

Metric properties of the necklace distance dneck.

It is clear that dneck is a distance since, for any y, y1, y2 P t0, 1un, it satisfies the following
properties:

Proposition 5.1. (Non-negativity property) dneck has the non-negativity property

dneckpy, y1q ě 0,@y, y1 P t0, 1un.

Proof. The statement is a corollary of the non-negativity property of the Hamming distance.

Proposition 5.2. (Reflexivity property) dneck has the reflexivity property

dneckpy, yq “ 0.

Proof. Since dHpy, yq “ 0 holds true, 0 is the minimum bound of dneckpy, y1q. Therefore
dneckpy, yq “ 0.

Proposition 5.3. (Commutativity property) dneck has the commutativity property

dneckpy, y1q “ dneckpy1, yq.

Proof. Based on the fact that dHpy,Rotipy1qq “ dHpy1, Rotn´ipyqq, thus min
i
dHpy,Rotipy1qq “

min
i
dHpy1, Rotn´ipyqq “ min

i
dHpy1, Rotipyqq.

Proposition 5.4. (Triangle inequality property) dneck satisfies the triangle inequality property:

dneckpy, y1q ď dneckpy, y”q ` dneckpy”, y1q.

Proof. Direct consequence of the triangle inequality property of the Hamming distance.
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To state the next metric property, we need to introduce the following definition:

Definition 5.11. (Cyclic symmetry property in distance) We say that a distance d has the cyclic
symmetry property if

dpy, y1q “ 0 ðñ y P Rotpy1q,

for any given two distinct vectors y, y1.

Proposition 5.5. (Cyclic symmetry property) dneck has the cyclic symmetry property. In other
words

dneckpy, y1q “ 0 ðñ y P Rotpy1q,@y, y1 P t0, 1un.

Proof. To prove this statement, we prove both implications:

1. Proof of the first implication ” ùñ ”: ”dneckpy, y1q “ 0 ùñ y P Rotpy1q

Assume dneckpy, y1q “ 0 then min
r

pdHpy,Rotrpy1qqq “ 0, which implies that there exists

i P t1, 2, . . . , nu such that: dHpy,Rotipxqq “ 0, by the metric property of Hamming distance
dHpy,Rotipy1qq “ 0 ðñ y “ Rotipy1q.

2. Proof of the second implication ” ðù ”: y P Rotpy1q ùñ dneckpy, y1q “ 0.
If y P Rotpy1q then there exists i P t1, 2, . . . , nu such that y “ Rotipy1q, which implies
dHpy,Rotipy1qq “ 0. Then, min

r
dhpy,Rotrpy1qq “ 0, hence dneckpy, y1q “ 0.

This invariance property will ensure that equivalent solutions are considered as identical solu-
tions.

Unfortunately, contrary to the Hamming distance (see Equations (18) or (32) for instance), a
constraint involving the binary necklace distance cannot be straightforwardly expressed as linear
constraints (due to the “min" operator involved in the definition of dneck). The next section
proposes a way to address this critical issue for adapting Algorithm 6 to the new distance dneck

(which will replace the Hamming distance) so as to obtain an algorithm, that we shall name
DFOb-dneck, that deals only with linear constraints.
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2.2 Reformulation of the QP subproblems involving the necklace
distance

The incorporation of the new distance dneck in the QP subproblems involves specific modifications
in the formulation of the no-good cuts and of the trust-region constraints.

Necklace-distance based no-good cuts. In order to replace the Hamming distance by the
necklace distance in the formulation of no-good cuts, first note that for any real numbers
a1, a2, . . . , an and any positive integer K˚, one has:

min
i“1,2,...,n

taiu ě K˚ ðñ ai ě K˚, i “ 1, 2, . . . , n. (66)

Now, letting y, y0 P t0, 1un and using the above equivalence with ai “ dHpy,Rotipy0qq, i “

1, 2, . . . , n, one straightforwardly obtains:

min
i“1,2,...,n

tdHpy,Rotipy0qqu ě K˚ ðñ dHpy,Rotipy0qq ě K˚, i “ 1, 2, . . . , n, (67)

or
dneckpy, y0q ě K˚ ðñ dHpy,Rotipy0qq ě K˚, i “ 1, 2, . . . , n. (68)

To summarize, one can formulate a no-good cut that avoids useless costly evaluations by using
n linear constraints since (68) involves n Hamming-distance inequalities, each of which can be
written under the form of a linear inequality following (18).

Necklace-distance based trust regions. The way we replace Hamming distances by binary
necklace distances in the exploration phase (more precisely, in the trust-region mixed binary
quadratic sub-problem (31) of Step 1.5 of Algorithm 6) is less straightforward.

We consider the mixed binary optimization problem:

$

’

’

’

’

&

’

’

’

’

%

min
x,y

rmkpx, yq

s.t. ∥x´ xk∥8 ď ∆x,k,

dneckpy, ykq ď ∆y,k,

y P t0, 1un,

(69)

where rmk : Rm ˆ t0, 1un Ñ R is a quadratic function, and xk P Rm, yk P t0, 1un, ∆x,k,∆y,k P R
are given.
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We propose to replace (69) by the following perturbed problem which involves an auxiliary
variable t:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

min
x,y,t

rmkpx, yq ` µt

s.t. ∥x´ xk∥8 ď ∆x,k,

t “ min
i“1,2,...,n

dHpy,Rotipykqq,

t ď ∆y,k,

y P t0, 1un,

(70)

where µ ą 0 is a weighting parameter. We shall see in Subsection 2.3 that setting µ to a small-
enough value conserves the fully-linear property of the perturbed model, thus ensuring the local
convergence (Lemma 5.1 in next section) of the algorithm DFOb-dneck to be presented.

Consider now the related mixed binary quadratic problem:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

min
x,y,ỹ,t

rmkpx, yq ` µt

s.t. ∥x´ xk∥8 ď ∆x,k,

t ě dHpy,Rotipykqq ´Mỹi, i “ 1, 2, . . . , n,
t ď ∆y,k,
n

ÿ

i“1
ỹi “ n´ 1,

y, ỹ P t0, 1un,

(71)

where M is some large-enough positive constant (one can easily verify that in fact it suffices to
set M to the value n` 1) and ỹ is a vector of n auxiliary binary variables.

In the sequel we shall write that two optimization problems are equivalent if an optimal solution
of one problem straightforwardly provides an optimal solution of the other problem, and vice
versa. Proposition 5.6 below is introduced in order to show that the new problem (71) (involving
only linear constraints) is equivalent to problem (70). Since the essential difficulty resides in
the “min" constraint of (70) and in the Hamming-distance constraints of (71), the proposition
statement disregards the trust-region constraint on x and the constraint t ď ∆y,k (both of which
are straightforwardly modeled in an MIQP). Corollary 5.1 below will establish the equivalence of
problems (70) and (71), as a special case of Proposition 5.6.

Proposition 5.6. (Mini-min reformulation) Let µ ą 0 be a given constant, N,n be positive integers,
and let f : Ω Ď RN Ñ R be a quadratic function, gi : Ω Ñ R, i “ 1, 2, . . . , n, be real-valued
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functions satisfying 0 ď gipzq ď M , for all z P Ω, for some M ą 0. Then, the two following
optimization problems are equivalent:

$

&

%

min
z,t

fpzq ` µt

s.t. t “ min
i“1,2,...,n

tgipzqu.
(P1)

$

’

’

’

’

&

’

’

’

’

%

min
z,ỹ,t

fpzq ` µt

s.t. t ě gipzq ´Mỹi, i “ 1, 2, . . . , n
řn

i“1 ỹi “ n´ 1,
ỹi P t0, 1u, i “ 1, 2, . . . , n.

(P2)

Proof. We prove the proposition in two steps:

• firstly, we show that, (P2) is a relaxation of (P1) in the sense that if pz̄, t̄q is a feasible
solution of (P1), then pz̄, ȳ, t̄q is a feasible solution of P2;

• secondly we prove that any optimal solution pz˚, y˚, t˚q of (P2) is feasible for (P1).

Let us consider the first assertion: (P2) is a relaxation of (P1).

Let pz̄, t̄q be a feasible solution of (P1).
Consider now the point pz̄, ȳ, t̄q where, for i “ 1, 2, . . . , n:

ȳi :“

$

&

%

0, if i is the smallest index such that t̄ “ min
i“1,2,...,n

tgipz̄qu,

1, otherwise.
(72)

Let I be the unique index i such that ȳi “ 0.

From the definition of ȳ , we note that:

• t̄ “ gIpz̄q,

• ȳI “ 0,

• ȳi “ 1 for all i ‰ I.
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Then, for i ‰ I, the constraint t̄ ě gipz̄q ´M holds since

t̄ “ gIpz̄q “ min
i“1,2,...,n

tgipz̄qu ě 0 ě gipz̄q ´M.

And for i “ I, t̄ ě gIpz̄q ´M holds also since

t̄ “ gIpz̄q ě gIpzq ´MȳI “ gIpz̄q.

Then, pz̄, ȳ, t̄q is feasible for (P2).

For the second step, let us now show that: if pz˚, y˚, t˚q is an optimal solution of (P2), then
pz˚, t˚q is feasible for (P1), i.e., we want to prove that t˚ “ min

i“1,2,...,n
tgipz

˚qu.

By contradiction, we shall suppose that this optimal solution of (P2) is such that

t˚ ‰ min
i“1,2,...,n

tgipz
˚qu.

Let us consider two cases:

• either t˚ ă min
i“1,2,...,n

tgipz
˚qu,

• or t˚ ą min
i“1,2,...,n

tgipz
˚qu.

Let Iy˚ denote the unique index i such that y˚
i “ 0.

Then, yIy˚ “ 0 and y˚
i “ 1, for all i ‰ Iy˚ .

Using the fact that pz˚, y˚, t˚q is a feasible solution for (P2), we have

t˚ ě gIy˚ pz˚q. (73)

In the first case, with t˚ ă min
i“1,2,...,n

tgipz
˚qu, we have

gIy˚ pz˚q ě min
i“1,2,...,n

tgipz
˚qu ą t˚,

which contradicts (73).
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Therefore, the second case necessarily holds, i.e., t˚ ą min
i“1,2,...,n

tgipz
˚qu. Consider now a solution

pz̄, ȳ, t̄q defined as follows:
z̄ “ z˚,

t̄ “ min
i“1,2,...,n

tgipz
˚qu,

(74)

and

ȳi :“

$

&

%

0, if i is the smallest index satisfying gipz
˚q “ min

i“1,2,...,n
tgipz

˚qu,

1, otherwise,
(75)

where I˚ “ ti : gipz
˚q “ min

i“1,2,...,n
tgipz

˚quu.

We have:

• This new solution pz̄, ȳ, t̄q is feasible for (P2). Indeed, for i ‰ I˚, the ith constraint,
t ě gipzq ´ Myi, is satisfied for pz̄, ȳ, t̄q, since M is an upper bound for the function gipzq

and ȳi “ 1.

If i “ I˚, then on the one hand min
i“1,2,...,n

tgipz
˚qu “ t̄, and on the other hand gI˚pz̄q “

gI˚pz˚q “ min
i“1,2,...,n

tgipz
˚qu by definition of I˚. Therefore, the I˚th constraint of (P2) is

satisfied for pz̄, ȳ, t̄q.

• In terms of objective-function values, it is clear that

fpz˚q ` µt˚ ą fpz̄q ` µt̄,

since by hypothesis t˚ ą min
i“1,2,...,n

tgipz
˚qu, while t̄ “ min

i“1,2,...,n
tgipz

˚qu. This contradicts the

optimality of pz˚, y˚, t˚q.

Corollary 5.1. The two problems (70) and (71) are equivalent.

Proof. Consider the special case of Proposition 5.6 where Ω “ Rm ˆ t0, 1un, z “ px, yq, and
N “ m ` n, and restrict both feasible sets of (P1) and (P2) by adding the two constraints:
∥x´ xk∥8 ď ∆x,k and t ď ∆y,k.
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2.3 Algorithm DFOb-dneck

The algorithm we are introducing in this work to deal with derivative-free mixed binary opti-
mization problems is a modified version of DFOb-dH in which we replace the Hamming distance,
dH , with the necklace distance, dneck. To do so we use the above formulation of the no-good
cut constraints as linear constraints, and the reformulated MIQP subproblem. This subsection
presents the new algorithm DFOb-dneck and establishes its local convergence.

The new algorithm is named Derivative-Free trust-region method for mixed binary necklace
optimization, and is denoted DFOb-dneck. It follows exactly the steps of DFOb-dH (Algorithm 6,
given at the end of Chapter 3), except for the following specific changes:

• In Step 1.5a:
Solve MIQP subproblem (71), instead of MIQP subproblem (31).

• In Step 3:
Replace, in the new no-good cut, the Hamming-distance inequality:

dHpy, ykq ě K˚,

by the n inequalities:
dHpy,Rotipykqq ě K˚, i “ 1, 2, . . . , n,

which are linear constraints equivalent to dneckpy, ykq ě K˚ by (68).

Let us now derive a result of local convergence for the new algorithm DFOb-dneck, analogous to
that established in Lemma 4.2 and Theorem 4.1 for DFOb-dH . First, let us consider the perturbed
model:

rmϵpx, y0q “ rmpx, y0q ` ϵ, (76)

with ϵ “
ϵ1∆2

x

n
ď ϵ1∆2

x, where ϵ1 ą 0 is some small pre-defined value (in our computational

results, we choose ϵ1 “ 10´8).

Lemma 5.1. Under Assumption 4.1 and Assumption 4.2, the perturbed model rmϵp¨, y0q (defined
with fixed y “ y0) is fully linear in By0px0,∆xq. In other words, for all x P By0px0,∆xq, there exist
positive constants κϵ

f , κ
ϵ
g such that:

|fpx, y0q ´ rmϵpx, y0q| ď κϵ
f ∆2

x, (77)
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and
∥▽xfpx, y0q ´ ▽x rmϵpx, y0q∥2 ď κϵ

g∆x, (78)

with κϵ
f “ κ˚

f ` ϵ1, and κϵ
g “ κ˚

g , and where κ˚
f and κ˚

g are the constants of Lemma 4.2.

The proof is a straightforward adaptation of the proof of Lemma 4.2.

As for the convergence proof (detailed in Lemma 4.2) for the DFOb-dH algorithm, from Lemma 5.1
and with the additional assumption that f is bounded from below, we can prove that the
algorithm DFOb-dneck is locally convergent, following the lines of the proof of convergence of the
(continuous) DFO algorithm in [27] (Theorem 10.13).

3 Numerical results

This section presents comparative numerical results. After briefly presenting the comparison
methodology, we propose in Subsection 3.1 a set of benchmark mixed binary optimization
problems that features cyclic symmetry. It consists of a set of 25 instances constructed by
transforming existing analytical test problems from the literature, plus one completely original
problem related to the design of compressor blades in a helicopter turbomachine. Subsection 3.2
reports numerical results on the 25-instance set, while Subsection 3.3 presents comparative
results on the helicopter application problem.

We compare the two versions of our DFOb method (denoted DFOb-dH for the version involving
the Hamming distance, and DFOb-dneck for the one with the necklace distance) with three
state-of-the-art mixed integer derivative-free optimization methods:

• The mesh adaptive direct search algorithm implemented in NOMAD software [1, 61],

• The surrogate-based optimization method implemented in RBFOpt [30] (based on radial
basis functions),

• The derivative-free line-search bound constrained method, DFLBOX [63].

Following the methodology proposed in [73], we compare the solvers’ performances in terms
of number of evaluations of the objective function. This is a classical indicator for applications
involving expensive objective-function evaluations where a solver is evaluated through its capacity
to achieve a given function reduction within a limited budget of simulations (evaluations of the
objective function). Remark that we did not integrate techniques to overcomes cyclic symmetry
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property of other DFO methods. One technique can be use to avoid recomputing equivalent
solutions is to check if one equivalent necklace is evaluated, if so we neglect this solution and go
to other candidates.

In our comparisons we consider that a method solves a problem if it provides a solution x̄

satisfying the following criterion on the objective-function value:

fpx0q ´ fpx̄q ě p1 ´ τqpfpx0q ´ f˚q, (79)

where, in the sequel, f˚ denotes the best function value found by any solver (or the global-
minimum value, if known), x0 is the starting point for each solver (or the best point of the initial
interpolation points), and τ is the desired accuracy, a user-defined tolerance value (in our tests,
τ “ 10´3 or 10´5). If a solver does not provide a solution that satisfies (79), we consider that it
fails.

Performance and data profiles (see [73]) are complementary tools to compare solvers on a
collection of problems.

For a set of np problems P “ tp1, p2, . . . , pnpu, and the set of ns solvers S “ ts1, s2, . . . , snsu, we
define the performance criterion for a solver s, a problem p and a required precision tol by

tp,s “ number of simulations required for s to solver p at precision tol.

tp,s “ 8 if solver s fails on solving problem p. A performance ratio over all the solvers is defined
by

rp,s “
tp,s

minttp,s, s P Su
ě 1, for a given problem p.

For η ě 1, we define a distribution function ρs for the performance ratio for a solver s as

ρspηq “
1
np
cardtp P P, rp,s ď ηu ď 1, for a given solver s,

with card denotes the cardinal of a set. This distribution computes the number of problems p
that are solved with a performance ratio below a given threshold η. If the value of ρspηq is near 1,
it means that the solver is good and can solve almost all the problems. The performance profiles
is a graph of the function ρspηq, η ą 1.

The performance profile of a solver depends therefore on the other solvers tested. For instance,
the value of the performance profile of a given solver for a performance ratio of 2 is the number
of problems solved by this solver within less than twice the number of evaluations required by
the most efficient solver for each problem. However, this does not give an accurate information
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on the number of evaluations required by a solver to solve a whole collection of problems. This is
the reason why data profiles are widely used to compare DFO methods. Data profiles give the
fraction of problems that can be solved within a given number of objective-function evaluations.
Data profiles therefore provide the performance of the solvers for any given simulation budget.

With expensive optimization problems, we are interested in the performance of solvers as a
function of the number of function evaluations which leads to the definition of data profiles. The
data profile for a solver s is the fraction of problems that are solved within a fixed simulation
budget κ

dspαq “
1
np
cardtp P P : tp,s

nv ` 1 ď κu,

with nv the number of variables of problem p. It is normalized by nv ` 1 since the number of
simulations grows when the number of variables increase.

Table 4 summarizes the options and the main parameter values used in our comparison for the
five solvers under study: DFOb-dH , DFOb-dneck, NOMAD, RBFOpt and DFLBOX.

Tab. 4.: Solver parameters and options used for the benchmark.

Maximal number of
objective-function
evaluations

300

All
solvers

Initial design description LHS design with rounding of
discrete variables (default op-
tion of RBFOpt)

For NOMAD and DFLBOX: the
initial point is the best point of
the initial design

Initial design size m` n` 1 points

Trust-region radii for
continuous variables

∆x,0 “ 1 ∆x “ 10´3,∆x “

102

DFOb Trust-region radius for bi-
nary variables

∆y,0 “ 2

Maximal number of
no-good cuts

minp14, 2n ´ 1q, if n ď 6

20, otherwise

No-good cut parameter K˚ “ 1
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3.1 New mixed binary optimization test problems featuring cyclic
symmetry

This subsection details how we build 25 mixed binary cyclic-symmetry analytical benchmark
problems from instances of the literature, and it also presents a simplified real-life application
from Safran for designing the compressor blades of a helicopter turbomachine.

The 25 analytical benchmark problems. To our knowledge, no instance of cyclic-symmetry mixed
binary optimization problems are proposed in the literature. The last two columns of Table 5 list
the name and the source of 25 optimization problems that we selected to build our 25-instance
benchmark problem set, more details in Appendix 2. Originally these benchmark problems
involve continuous optimization variables only. Some of these optimization problems also include
constraints. The present study considers mixed binary optimization problems featuring cyclic
symmetry and involving only bound constraints. Thus, we describe now how we transform these
instances from the literature into new mixed binary bound-constrained optimization problems
featuring cyclic symmetry. A first step in this transformation process is to propose intermediate
mixed categorical (involving integer variables not related to effective quantities) optimization
problems.

The 10 instances from [64] are associated with continuous-optimization minimax problems of the
form:

min
xPrx,x̄s

F pxq :“ max
wPt1,2,...,lu

fwpxq,

where l ě 2, and f1, f2, . . ., fl are given functions. We transform these instances into mixed
categorical problems of the form:

min
xPrx,x̄s,wPt1,2,...,lu

F̃ px,wq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

f1pxq, ifw “ 1,

f2pxq, ifw “ 2,
...

flpxq, ifw “ l,

(80)

for which the integer w is the category variable.

For each of the 15 remaining benchmark problems (the 12 problems from [50, 36, 80] and the
three problems from [71]), the transformation into a mixed categorical problem goes as follows.
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Tab. 5.: Analytical necklace-optimization benchmark problems

Test problem m n source instance reference

Branin-nl 1 3 Branin [36]

Camel-nl 1 3 Camel [36]

Goldstein-Price-nl 1 3 Goldstein-Price [36]

Hartman3-nl 2 3 Hartman3 [36]

Hartman6-nl 5 3 Hartman6 [36]

Shekel7-nl 3 3 Shekel7 [36]

Shekel10-nl 3 3 Shekel10 [36]

HS2-nl 1 3 HS2 [50]

HS29log-nl 1 3 HS29log [50]

HS3-nl 1 3 HS3 [50]

CB1-nl 2 2 CB1 [64]

CB2-nl 2 2 CB2 [64]

MAD1-nl 2 2 MAD1 [64]

MAD2-nl 2 2 MAD2 [64]

QL-nl 2 2 QL [64]

Pentagon-nl 6 3 Pentagon [64]

RosenSuzuki-nl 4 3 RosenSuzuki [64]

WF-nl 2 2 WF [64]

Wong2-nl 10 4 Wong2 [64]

Wong3-nl 20 6 Wong3 [64]

Perm6-nl 5 3 Perm6 [80]

Perm8-nl 7 3 Perm8 [80]

Ex8-1-1-nl 1 3 Ex8-1-1 [71]

Ex8-1-4-nl 1 3 Ex8-1-4 [71]

Sporttournament06-nl 14 3 Sporttournament06 [71]

We first restrict the last continuous variable, say xend, to take only a finite number of values in
the discretized-interval set:

Xend :“
#

xend ` pw ´ 1q
x̄end ´ xend

l ´ 1 : w “ 1, 2, . . . , l
+

,
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where xend and x̄end are respectively the lower and upper bounds of the variable xend in the
original problem, and where the number, l, of categories is to be set by the user. One thereby
obtains a mixed categorical optimization problem involving an objective function of the form
F̃ px,wq, where w is a category variable (w P t1, 2, . . . , lu). In our numerical tests, we set the
number of categories to l “ 4 for these 15 benchmark problems (i.e., other than those that
originate from minimax problems, for which l is given by the original instance).

After transforming the 25 problems into mixed categorical problems as above, we then artificially
introduce a cyclic symmetry by associating to each value of the categorical variable, w, a necklace
(with all the solutions corresponding to its rotations). For instance, if a categorical variable w
takes three values in t1, 2, 3u (case where l “ 3), the mixed categorical problem of minimizing
F̃ px,wq is transformed into a mixed binary problem with cyclic symmetry by considering the
following new objective function:

min
xPrx,x̄s,yPt0,1u2

fpx, yq :“

$

’

’

’

&

’

’

’

%

F̃ px, 1q, if y “ p0, 0q,

F̃ px, 2q, if y “ p0, 1q, p1, 0q,

F̃ px, 3q, if y “ p1, 1q.

(81)

The resulting new mixed binary necklace-optimization instances are listed in Table 5 together
with the number of continuous variables (m), the number of binary variables (n), the name of
the original instance from which it was constructed together with the literature reference. The
particular choice of problems is motivated by the sake of comparing methods on a diverse range
of problem dimensions and difficulties, including the presence of multiple local minima.

Safran’s helicopter application. As mentioned in Chapter 1, the present study is motivated by an
application provided by Safran: proposing a design of the turbine blades of a helicopter engine
that minimizes the vibrations of the compressor. This application involves m “ 1 continuous
optimization variable controlling the frequency amplitude, and a vector of n “ 12 binary decision
variables describing the layout of two reference types of blades on the turbine disk. Safran’s
engineers provide us a surrogate model built from costly real simulations (several hours of
computer time are required for one real single simulation) to allow the computational comparison
of the five optimization solvers under study.

3.2 Results obtained on the 25 analytical problems

The results obtained with DFOb-dH , DFOb-dneck, NOMAD, RBFOptand DFLBOX over the 25
analytical problems are presented under the form of performance profiles (Figure 5) and data
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profiles (Figure 6). The required accuracy is set to τ “ 10´3. The number of objective-function
evaluations necessary to reach the best known solution for each problem is also displayed in
Figure 7. If the solution is not reached by a solver, no point is displayed but the percentages
of successes are indicated for each solver. For all the numerical results, DFOb-dH results are
displayed in blue, DFOb-dneck results in red, NOMAD results in black, RBFOpt in magenta, and
DFLBOX in cyan.

These three figures show that for this benchmark of 25 analytical problems, DFOb-dneck performs
overall the best among the four other optimization methods.

The new method DFOb-dneck succeeds to solve 72% of the 25 problems, whereas RBFOpt succeeds
to solve 68%, DFOb-dH 64%, NOMAD and DFLBOX 60%.

The performance profiles of Figure 5 reveal that for a (number-of-simulation) performance ratio
equal to 1 (to indicate the percentage of problems for which the solver does as well as the best
solver), DFLBOX, DFOb-dneck, and RBFOpt reaches the best value: 36%.

Figure 5 also shows that the new necklace distance improves the efficiency of the DFOb method
when addressing cyclic-symmetry optimization problems, as DFOb-dH solves only 28% of the
problems with the minimal number of objective-function evaluations.

In addition, the data profiles of Figure 6 illustrate that DFOb-dneck solves most problems with a
relatively small number of objective-function evaluations. For instance, 62% of the problems are
solved within a number of simulations less than 15 times the number of variables.

Finally, Figure 7 shows that: DFLBOX requires a small number of simulations (less than 200)
for the 60% of the problems it succeeds to solve, the two DFOb methods need less than 200
function evaluations for all successful problems but one (only one successful problem requires
270 function evaluations for each solver), whereas RBFOpt and NOMAD require more than 200
objective-function evaluations for 29.4% and 66.7% of their successful problems, respectively.

To summarize, the results obtained on this benchmark of 25 analytical functions demonstrate the
efficiency of the DFOb methods within a limited budget of function evaluations. Moreover, 18
out of the 25 problems are solved by DFOb-dneck with, generally, a smaller number of function
evaluations compared with the two state-of-the-art solvers NOMAD and RBFOpt. DFLBOX method
shows good performances in terms of number of simulations but is able to solve fewer problems
than the DFO methods and RBFOpt.
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Fig. 5.: Performance profiles of the five solvers for the 25 analytical problems

Fig. 6.: Data profiles of the five solvers for the 25 analytical problems
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Fig. 7.: Number of function evaluations to reach f˚ up to τ “ 10´3 for each of the 25 analytical problems
for the five solvers (successful runs only) together with percentage of successes (in parentheses)

In order to investigate the impact of problem dimension on the performance of the different
methods, we analyze separately the subset of the 10 benchmark problems that involve 3 or
more continuous variables (Figures 8, 9, and 10). RBFOpt and DFOb-dneck succeed to solve 7
problems over 10, whereas DFOb-dH and NOMAD only solve 5 problems, and DFLBOX only 4.
These results indicate that, for higher-dimensional problems, RBFOpt and DFOb-dneck reach the
best performances, and DFLBOX the worst ones. This is not completely surprising as DFOb-dH ,
DFLBOX and NOMAD are local optimization methods (with respect to the continuous search
space, Rm). The new method DFOb-dneck, is also a local solver but with the help of the new
distance, it succeeds to find better solutions within the budget of simulations. RBFOpt is designed
to address global optimization problems. Current research work is dedicated to this global-
optimization issue via the proposition of a diversification search strategy for DFOb-dneck in the
continuous search space, Rm.

3.3 Design of compressor blades in a helicopter turbomachine

In this subsection, we present results for a simplified optimal design application provided by
Safran. Contrary to the benchmark of the previous subsection, this is a real-life cyclic-symmetry
application.
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Fig. 8.: Performance profiles of the five solvers for the 10 highest dimension analytical problems

Fig. 9.: Data profiles of the five solvers for the 10 highest dimension analytical problems
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Fig. 10.: Number of function evaluations to reach f˚ up to τ “ 10´3 for each of the 10 highest dimension
analytical problems for the five solvers (successful runs only) together with percentage of success
(in parentheses)

For the sake of fair comparison, we repeat 50 runs of each of the four solvers. Each run starts
with a different design of experiments (of cardinality n`m` 1 “ 14), following the construction
process described in Section 2. Again, we report performance (Figure 11) and data profiles
(Figure 12), as well as the number of iterations (Figure 13) to reach, this time, a reduced accuracy
of τ “ 10´5 is mainly considered (due to the scale of the objective function) on the function
reduction (79) associated with these 50 runs, we also show the results with the accuracy of
τ “ 10´3 after.

Considering first the results with the accuracy τ “ 10´5. DFLBOX shows very good performances
on this test case: it can solve all of the 50 repetitions within a very small number of simulations. As
already noticed on the benchmark function results, DFLBOX is more efficient on small-dimensional
problems than on large ones. For this application, which involves only one continuous variable, it
clearly outperforms the four other methods. DFLBOX algorithm is based on line searches in each
coordinate direction for both continuous and discrete variables.The analysis of the results of this
blackbox optimization problem revealed its particular structure: for all feasible combinations of
values of the binary variables tested (a few hundreds), the minimum of the function corresponds
to the same value of the continuous variable. In other words, this simplified optimal design
application problem appears to be separable. Indeed, we observed that for all tested combinations
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of the n “ 12 binary variables, the resulting univariate continuous optimization problem yields
the same optimal value for the continuous variables. As a consequence, one could therefore
separately minimize the univariate continuous problem for one combination of values of the
binary variables, then fix the continuous variables to the corresponding value, and then finally
address the resulting combinational combination problem (in 12 binary variables) The relaxation
used in DFLBOX works very well on such a problem: one continuous variable and 12 binary
variables; this methodology is indeed quite efficient as shown in the presented results.

Concerning the four other methods, the results show the very good performance of DFOb-dneck,
as it reaches the value f˚ (up to τ accuracy) for 88% of the runs, compared with 84%, 56% and
78% for DFOb-dH , NOMAD and RBFOpt, respectively. One therefore observes that, depending on
the initial design of experiments, some runs do not achieve to reach the required reduction of
the objective function. However, the two versions of DFOb are robust methods with regard to
the initial design, with more than 80% of success within the budget of simulations. Data profiles
in Figure 12 show the robustness of the DFOb methods and their good performances in terms
of number of simulations compared to RBFOpt and NOMAD methods. Figure 13 illustrates the
efficiency of DFOb-dneck, with only one successful run that requires more than 150 simulations.
Finally, Figure 16 displays the distribution of the 50 solutions found by DFOb-dneck for each of the
50 runs. For 88% of the runs, DFOb-dneck converged to a point, denoted px˚, y˚

1 q, corresponding
to the minimal objective-function value f˚ (probably a global minimum); the remaining runs
terminated with three other (locally-optimal) solutions, denoted px˚, y˚

2 q, px˚, y˚
3 q and px˚, y˚

4 q.
All the runs converged to the same value of the continuous-variable component: x˚ “ 0.03
(corresponding to some geometry feature of the blades). The discrete-variable components of
these four different solutions found by DFOb-dneck are displayed in Figure 17, where the 0 and 1
values correspond to different pre-defined types of blades.
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Fig. 11.: Performance profiles of the five solvers for the blade design application with 50 repetitions,
accuracy τ “ 10´5

Fig. 12.: Data profiles of the five solvers for the blade design application with 50 repetitions, accuracy
τ “ 10´5
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Fig. 13.: Number of function evaluations to reach f˚ up to τ “ 10´5 for each of the 50 runs of the blade
design application for the five solvers (successful runs only) together with percentage of success
(in parentheses)

The results with the accuracy τ “ 10´3 are shown in the Figures (15,14). The results are
slightly different compare to the above results with the accuracy of 10´5: RBFOpt shows a better
performance with 90% of successes runs. The results stay the same for four other methods:
DFOb-dH , DFOb-dneck, NOMAD, and DFLBOX.
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Fig. 14.: Performance profiles of the five solvers for the blade design application with 50 repetitions,
accuracy τ “ 10´3

Fig. 15.: Data profiles of the five solvers for the blade design application with 50 repetitions, accuracy
τ “ 10´3
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Fig. 16.: Distribution of the binary component of the 50 solutions found by DFOb-dneck for the blade
design application.

4 Conclusion

In this chapter we addressed derivative-free mixed binary optimization problems involving a
cyclic symmetric property, by proposing an adapted distance, dneck (necklace distance), for
the binary search space. We presented theoretical results related to the linear formulation of
constraints involving this necklace distance that allowed us to integrate dneck in the trust-region
derivative-free method DFOb-dH proposed by [25] for mixed binary problems, in place of the
Hamming distance. The convergence of both DFOb-dH and that of the adapted algorithm, named
DFOb-dneck, to a locally-optimal solution was proved.

We proposed 25 analytical mixed binary cyclic-symmetry test problems built from a collection of
continuous-optimization instances from the literature. The DFOb-dneck method was evaluated
on these analytical instances as well as on a surrogate approximation of a real optimal design
application. Three state-of-the-art derivative-free mixed binary optimization solvers, NOMAD,
DFLBOX and RBFOpt, were also applied for comparison.
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Fig. 17.: The four solutions found by DFOb-dneck for the blade design application (the continuous
component has the same common value: x˚ “ 0.03)
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6
Further analysis on the optimization
parameters

This chapter provides an analysis of the impact of the number of points, nDoE, in the interpolation
set on the performance of the DFOb-dneck algorithm in Chapter 5. Two options are studied:
nDoE “ n`m` 1 and nDoE “ 2pn`mq ` 1 over the 25 analytical problems detailed in Table
6. The initial designs are generated by the adapted greedy algorithm which will be described in
detail in Part II.

We repeat 20 runs for each problem, so in total we have 500 runs. We report the results in
performance profiles (Figure 18), data profiles (Figure 19), and the number of iterations (Figure
20). Results for DFO-dneck with nDoE “ n`m` 1 are displayed in blue, whereas the results for
DFO-dneck with nDoE “ 2pm` nq ` 1 are in red.

These three figures show that, for this 25 analytical problems, the results are similar for the two
sizes of DoE: nDoE “ 2pm`nq`1 and nDoE “ m`n`1: DFOb-dneck with nDoE “ 2pm`nq`1
succeeds to solve 86.5% of the problems, whereas DFOb-dneck with nDoE “ m` n` 1 succeeds
to solve 86.3%. The performance profiles in Figure 18 show that for a ratio equal to 1, DFOb-dneck

with nDoE “ m`n`1 reaches the best value: 43.9%, while DFOb-dneck with nDoE “ 2pm`nq`1
yields a value of 58.3%. The data profiles of Figure 19 and the number of simulations to reach
the best solutions in Figure 20 show very similar results for nDoE “ m ` n ` 1 and for
nDoE “ 2pm` nq ` 1.
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Fig. 18.: Performance profiles of DFOb-dneck with nDoE “ m` n` 1 and nDoE “ 2pm` nq ` 1 for the
25 analytical problems

Fig. 19.: Data profiles of DFOb-dneck with nDoE “ m ` n ` 1 and nDoE “ 2pm ` nq ` 1 for the 25
analytical problems
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Fig. 20.: Number of function evaluations to reach f˚ up to τ “ 10´3 for each of the 25 analytical problems
for DFOb-dneck with nDoE “ m ` n ` 1 and nDoE “ 2pm ` nq ` 1 (successful runs only)
together with percentage of success (in parentheses)

The results show that the number of points in the interpolation set has a small impact in the
optimization procedure (when this number is relatively small, since we are considering an
expensive-simulation context). It is likely that, the distribution of the points itself is more
impactful. We suspect that an initial set of well-distributed points, especially for the set of discrete
variables, provides useful information to build good approximation models for the optimization
and should help to avoid local solutions. Therefore, the second part of the thesis is dedicated to
the design of experiments in which we can generate a “good” initial design for the optimization.
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Conclusion

Part I presents the main materials for the first subject of the thesis which is dedicated to derivative-
free optimization trust-region methods. The work is an extension of [25], adapted to cyclic
symmetry problems. The contribution of the author in this part is, first, the convergence proof of
the original work in [25], a new method, DFOb-dneck, and its convergence proof. This method
is an extension of the original method DFOb-dH for cyclic symmetric problems with mixed
continuous and binary variables. The introduction of the proposed necklace distance allows
to deal with the symmetry and to define new sub-problems for the trust region method so
that the problem can be addressed by standard MINLP solvers. The preliminary comparative
results obtained on a benchmark of test functions and on the application provided by Safran
are very encouraging in terms of both robustness and of simulation costs when compared to
state-of-the-art methods.
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Part II

Design of experiments in mixed continuous and
discrete space





7Design of experiments for continuous
variables problems

Contents
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Design of experiments (DoE) are used in various contexts such as optimization or uncertainty
quantification based on a time-consuming numerical simulator. It aims to select a limited number
of values to assign to the simulator input variables that give a maximal knowledge on the
simulator outputs of interest.

In recent years, the need for efficient design of experiments has emerged as a key research area
for analyzing complex physical numerical models. Indeed, such models are usually expensive
to evaluate, sometimes several hours or even days are required to run one single simulation,
which means that using them to conduct optimization studies or uncertainty quantification and
sensitivity-analysis investigations is in general too computationally demanding. In the computer
experiments community, the standard practice thus consists in building a surrogate model of
the numerical code and use it as a proxy for all further intensive computations required by
optimization or uncertainty propagation. However, the final surrogate model accuracy heavily
depends on the available samples of the computer code inputs/outputs relationship. For this
task, it is critical to build a Design of Experiments (DoE) which provides information about all
portions of the experimental region. For example, two appealing concepts are the so-called space
filling, [105, 92] and the Latin Hypercube Sampling (LHS) [67]. If designs of experiments for
continuous variables have been extensively studied with several space-filing criteria minimax and
maximin [87], discrepancy [96], maximum projection [57], the case where models involve both
continuous and discrete input variables has been much less investigated and tested.

This chapter focuses on design of experiments in the continuous space D “ Rm. Remark that as
mentioned in [105], the two most important requirements for a good DoE are:
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• Space-filling property: The design points should be uniformly spread over the entire design
space

• Noncollapsing property: Two design points should not share any coordinate values if we
not know a priori which dimensions are important

This chapter is organized as follows. In Sections 1, 2, 3, and 4 we present the geometrical,
marginal, low discrepancy and super-sample from kernel herding designs for continuous variables
problems respectively.

1 Geometrical designs

In this class of DOEs, one uses a deterministic procedure to create initial designs. We highlight
some space-filling designs:

Full factorial designs [40]. It is the most straightforward method to create initial sets uniformly.
The main idea is to divide each dimension i into ni intervals, called cells, of equal length, then
select the centers of these cells to constitute the DoE n1 . . . nm cells. It is clear that the sample
set obtained by full factorial designs are highly uniform, but the noncollapsing property is not
satisfied. Moreover, a full-factorial design can only be used if the number of sampling points is of
the form n1 . . . nm.

Fractional factorial designs [40]. It is a variation of the full factorial designs in which one only
uses a fraction of the sample set created by the full factorial designs.

2 Marginal designs

Latin Hypercube Sample (LHS) designs [67]. LHS divides each axis into n intervals of equal
length so that one considers nm cells, then selects n points in each of these nm cells so that there
are no two points with the same coordinate in any dimension. To do that, one can for instance
simply perturb the coordinates of the points as needed, starting from the beginning.

Optimal LHS designs [55]. This type of design aims at improving the space-filling property of
LHS by using either the minimax distance:

min
|S|“p

max
xPD

dpx, Sq,
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where dpx, Sq “ min
x1PS

dpx, x1q, p is the number of required points; or by using the maximin

distance:
max
|S|“p

min
x,x1PS

dpx, x1q.

3 Low discrepancy designs

Discrepancy is a concept for measuring the “difference" between uniform point distribution and a
given point distribution. For instance, in the case of dimension 1, given the empirical distribution
FN of a set X of N points x1, x2, . . . , xN , and FU a uniform distribution on r0, 1s, we define the
discrepancy, DN pXq, by:

DN pXq “ sup
xPr0,1s

|FN pXq ´ FU pXq|.

From the above description, if a sample set has lower discrepancy, it approximates the empir-
ical distribution better. The low discrepancy design can be based on Sobol sequences, Halton
sequences, Hammersly sequences or Faure sequences (details in [41]). However, in the im-
plementing scope of this study, we focus on adapting the low discrepancy design based on
Sobol sequences to a mixed binary and continuous space, which will be presented in the next
subsection.

Low discrepancy designs based on Sobol sequences

Low discrepancy designs based on Sobol sequences are defined from primitive polynomials over
the finite field Z2 “ t0, 1u (i.e., with coefficients either 0 or 1):

Definition 7.1. A polynomial, pptq, of degree s of the form ts ` u1t
s´1 ` . . . ` us´1t ` us is

primitive over Z2 if it is irreducible and it has order 2s ´ 1.

The term of irreducible signifies polynomials which cannot be factored into nontrivial polynomials
over the field. The order of polynomial is the smallest positive number i such that pptq divides
ti ´ 1 (or ti ` 1).

Definition 7.2. A Sobol sequence S “ tx0, x1, . . . , xN´1u in dimension 1 is defined as:

xi “
1
2h

p‘
hi
k“1pklkq,

where pp1, p2, . . . , phq is the binary representative of i, hi “

$

&

%

1 ` tlog2u if i ‰ 0,

1 if i “ 0,
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and ‘ refers to the addition in Z2, and each lk, k ą s is obtained using the following recurrence
relationship:

lk “ 2u1lk´1 ‘ 22u2lk´2 ‘ . . .‘ 2s´1us´1li´s`1 ‘ p2sli´s ‘ li´sq,

where uk are the coefficients of a primitive polynomial degree s over Z2, and l1, . . . , ls must be
odd integers such that 1 ď lk ď 2k, k “ 1, 2, . . . , s. In order to construct a Sobol sequence in
dimension d, we choose d distinct primitive polynomials.

A low discrepancy design based on Sobol sequences is rapid to build given the binary’s repre-
sentative. However, due to the recurrence relation, the new points constructed tend to be in the
vicinity of the previous iteration.

4 Super-sample from kernel herding

Another type of method in this class DoEs is based on Maximum Mean Discrepancy (MMD) de-
signs, called kernel herding [22]. MMD (or kernel distance) between two probability distributions
PX1 and PX2 is defined as follows:

MMD2pPX1 ,PX2q “ ∥µPX1
´ µPX2

∥2
Hk
, (82)

where Hk is a Reproducing Kernel Hilbert Space (RKHS) with kernel k and µP “
ş

kpx, .qdPpxq

is the representative of the probability distribution P. Recall that, a RKHS is a Hilbert space in
real-value functions in a closed bounded subset X of Rm with the property that for each t P X

the evaluation functional is a bounded linear functional.

We start with two important definitions to follow up this part:

Definition 7.3. (Positive definite kernel, [52]) Consider the domain I. A function k : I ˆ I Ñ R,
is a positive definite (p.d) if it satisfies the two following criterion

1. symmetric: for any pair of inputs xi, xj P I, k satisfies

kpxi, xjq “ kpxj , xiq,
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2. positive definite: for any p inputs x1, x2, . . . , xp P I and any p constants c1, c2, . . . , cp P R, k
satisfies

p
ÿ

i“1

p
ÿ

j“1
cicjkpxi, xjq ě 0.

Definition 7.4. (Stationary kernel (or translation invariant kernel), [52]) A stationary kernel
k can be expressed in terms of a multivariate function k̃ : Rm Ñ R of a single m´dimensional
variable, i.e.,

kpx1, x2q “ k̃px1 ´ x2q, x1, x2 P Rm.

A standard example is given by the anisotropic Gaussian kernel:

kpx1, x2q “

m
ź

l“1
e´λ2

l px1
l ´x2

l q2
.

If X1 „ PX1 and X2 „ PX2 we can expand MMD2 to get an expression involving kp¨, ¨q explicitly:

MMD2pPX1 ,PX2q “ EX1,X 1pkpX1, X
1qq ` EX2,X2pkpX2, X

2qq ´ 2EX1,X2pkpX1, X2qq, (83)

where X 1 „ PX1 and X2 „ PX2 are independent copies of X1 and X2 respectively.

To build DoEs based on MMD, suppose that we have a target probability distribution PX given as
a sample, i.e.,

PX “
1
N

N
ÿ

i“1
δxi , (84)

where pxiqi“1,2,...,N is the given sample of size N , δx is the mass function at x. Typically N will
be large.

We want to find a probability distribution PX1 which approximates PX , in the sense of the MMD,
with the following form:

PX1 “
1

nDoE

nDoE
ÿ

j“1
δx1

j
, x1

j P X1, (85)

where nDoE is the number of required sample points and is strictly smaller than N . One can
choose the x1

j , j “ 1, 2, . . . , nDoE so that PX1 represents the target probability distribution PX .
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To find px1
j qj“1,2,...,nDOE we have to solve the following optimization problem:

min
x1

1,x1
2,...,x

n1
DOE

MMD2p
1

nDOE

nDOE
ÿ

j“1
δx1

j
,

1
N

N
ÿ

i“1
δxiq. (86)

If nDoE is large, the optimization problem might be difficult to solve, since it is a nonlinear and
non-convex problem. A possible work-around is to use a greedy approach where we optimize
x1

1 first, then x1
2, and so on. In kernel-herding [22], a greedy sequential algorithm is proposed,

which consists of the following steps:

x˚
1 “ argmaxxPU

1
N

N
ÿ

j“1
kpx, ujq,

x˚
t`1 “ argminxPU

1
t` 1

t
ÿ

i“1
kpx, x˚

t q ´
1
N

N
ÿ

j“1
kpx, ujq.

From a computational perspective, in this case we only have to compute kp¨, ¨q for the samples

pxjq, so we can precompute
1
N

N
ř

j“1
kpx1, xjq for all x1 P tx1, x2, . . . , xN u.

Regarding the choice of the kernel, we assume that pxjq are continuous variables that lie in Rm;
we have to specify a kernel function kp., .q;

k :Rm ˆ Rm ÝÑ R

px, zq ÝÑ kpx, zq
(87)

Starting from a kernel k̃ : R ˆ R ÝÑ R defined in dimension 1, we can typically define the kernel
in dimension m by two ways; either “isotropic":

kpx, x1q “ k̃p∥x´ x1∥q,

or by “tensorization":

kpx, x1q “

m
ź

l“1
k̃pxl, x1lq.

We use tensorization to construct the multidimentional kernel in our case.

Besides the kernel-herding approach that tries to minimize MMD, the Kernel Stein Discrepancy
(KSD) [96] is also a tool to measure MMD. The main difference between these two approaches
is that the greedy algorithm (see Algorithm 7 above) requires that the target distribution µ is
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Algorithm 7: Greedy algorithm for continuous-variable problems
Input: pxjqj“1,2,...,N , nDoE , and a p.d kernel k

• Precompute
1
N

N
ÿ

j“1
kpx1, xjq, @x1 P pxjq.

• Compute

x1˚
1 “ argmaxx1PX1

1
N

N
ÿ

j“1
kpx1, xjq. (88)

• For t “ 1, 2, . . . , nDoE:

x1˚
t`1 “ argminx1Ptx1,x2,...,xN u

1
t` 1

t
ÿ

i“1
kpx1, x1˚

t q ´
1
N

N
ÿ

j“1
kpx1, xjq. (89)

Return x1˚
1 , x1˚

2 , . . . , x1˚
nDoE

either explicit or can be easily approximated by sampling, whereas KSD can be used in the case
where µ is not explicit, such as when it arises as an intractable posterior in a Bayesian context.
Thus, the two methods have the same goal, but a different way of approach. As mentioned in the
introduction section, there exists an extended KSD measure approach for discrete space with a
new choice of “discrete" Stein operation [112], which is considered as a state-of-the-art method.
However, in our case, when the experimental region is given, it is possible to generate a target
distribution by uniformly sampling points over the domains. That is why we decided to use
kernel herding in this context.

Remark that to apply the kernel-herding algorithm, the kernel to be used must necessarily be
positive definite.

Besides, we can count random design which is one of the simplest way to sample points. It
generates points randomly in the design space. This type of design has low uniformity, i.e., design
points are not uniformly spread over the domain, and it is possible to have duplicated points.

There are model-based DOEs which assume the form of the function to evaluate based on the
correlation definition, also known as statistical designs. Some popular methods in this class can
be counted such as D-optimality, I-optimality and G-optimality designs, [105]. Nevertheless, in
this framework, we do not concentrate on this class of method so we only list them here for the
readers to have a larger view of DOEs.
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In this section, we focus on the specific case of models with mixed experimental region defined
as

D “ tz “ px, yq P Rm ˆ Inu,

where x P Rm, and y P In are the continuous and discrete variables, respectively, and where I
denotes the discrete space.

1 Introduction to mixed continuous and discrete variables
DoEs

For handling mixed DoEs, the first proposed approaches mainly consisted on simple extensions
of continuous LHS, either by randomly discretizing continuous values [67] or by rounding
continuous DoEs to obtain feasible integer candidates [30, 75]. These techniques can recover
the integer domain but may destroy the desirable properties of the original DoEs, or even worse,
they may generate identical points which must be avoided. On the other hand, it is possible to
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generate independently a LHS for every given discrete possible values [92] or use a so-called
Sliced LHS, with LHS for the continuous factor which is sliced into groups of smaller LHS designs
associated with different discrete levels [88]. Although popular, these last two approaches usually
require a very large number of samples when the number of discrete variables increases. A recent
work [83] proposes to sample continuous variables through a single continuous LHS, while the
discrete variables are obtained by randomly assigning an equal number of data samples to each
discrete value. A different line of work mainly studied in the machine learning research area
relies on the approximation of probability measures with an empirical probability distribution
supported by a small number of points, also called quantization [46]. Interestingly, this point of
view will be the main ingredient of our proposal.

More precisely, we will focus on the framework of kernel-embedding of probability distributions
[94], which offers mathematical tools to define distances between probability distributions which
can be very efficiently computed. It is then straightforward to recast the problem of finding a
DoE with good space-filling properties as an optimization problem, where one wants to find the
empirical probability distribution (the DoE) which is as close as possible to a target probability
measure (for example the uniform measure on the feasible experimental region). For continuous
probability measures, this point of view has already been proposed with the name of kernel
herding [22] or support points [65]. Note that the target distribution here can either be given
explicitly or as an empirical distribution itself but with a large number of points. Here, our goal
is to extend this framework to the mixed case.

This chapter is organized as follows. First, we present in Section 2 a naive extension of
continuous DoEs which will serve as a baseline for numerical comparisons. In Sections 3 and 4
two novel methods based on kernel-embedding are introduced and discussed with their respective
advantages and imitations. Extensive numerical experiments are finally conducted in Section 6,
where we show that on a variety of problems the kernel point of view clearly surpasses standard
approaches.

2 Straightforward transformation of a continuous DoE into
a mixed DoE

Recall that our experimental mixed region is

D “ tz “ px, yq P Rm ˆ Inu. (90)

where x P Rm, y P In are the continuous and discrete variables, respectively, and I denotes
the discrete space. Our goal is to select nDoE representative points from D. Inspired from
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previous works [102], [103]), we first propose a straightforward algorithm which is based on
the projection from continuous space to integers representing the distinct indices of discrete
variables. We first generate a DoE for the discrete variables as detailed in the pseudo-code given
in Algorithm 8.

Algorithm 8: Projected DoE for discrete variables
Input: n, nDoE
0. Pre-processing

• Compute all nlevels distinct discrete arrangements of size n and arrange them in the matrix
L

• Compute the weight, w “
1

nlevels

1. Main computation

• Build a continuous DoE of size nDoE in dimension 1: U “ tu1, . . . , unDoE u

• Assign discrete values according to the following rule:
if ui P ppj ´ 1qw, jws, i “ 1, . . . , nDoE , j “ 1, . . . , nlevels then assign the j´th row of L to yi

Return y1, . . . , ynDoE

The choice of the method to generate the continuous DoE is left to the user, but for the sake
of having a uniform distribution in the discrete space, it is recommended to either use a low
discrepancy method such as Sobol sequences, Halton sequences or others (see details in [41]), or
standard space-filling DoEs such as the minimax or maximin ones for example [67, 87].

Remark that this adaptation focuses on picking distinct discrete candidates. If it yields badly-
distributed points (this will happen if the continuous DoE is of poor quality), then the algorithm
can post process duplicated discrete points (which need to be avoided). Algorithm 8 only provides
the DoE for discrete variables: in order to obtain the full DoE in mixed space, the continuous parts
are generated separately by another continuous DoE and added to the output of Algorithm 8. In
the numerical comparisons of Section 5, we shall use a Sobol sequence and a classical LHS for
both continuous DoEs.

3 Greedy-MDS: kernel herding and multi-dimensional
scaling

In this section, we propose a first extension of the previous greedy algorithm to mixed continuous
and discrete space by using Multi-Dimensional Scaling (MDS). The main idea is to apply MDS to
build a continuous encoding of the discrete variables.
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Continuous encoding of discrete variables is a standard way to handle mixed variables in
regression or classification problems. Successful strategies rely on a data-driven approach,
where the encoding is optimized during the supervised learning task [47, 113]. However in
our unsupervised setting, such approaches cannot be envisioned. In order to circumvent this
limitation, we take a different road by assuming that an user-defined distance in the discrete
space characterizing any prior information is available. Such a distance can include symmetry
properties such as in the numerical experiments presented below, or hand-crafted correlation
given by experts of the phenomenon under study. Once this distance is available, it can be used
to compute all the pairwise distances between the points from the target distribution ui.

MDS can then be applied to this distance matrix. Indeed, MDS is a technique that creates a
map displaying the relative positions of a number of objects, given only a table of distances
or dissimilarities between them. In another words, MDS translates the information about the
pairwise distances among a set of N objects (normally in a high dimensional space) into a
configuration of N points mapped into a smaller dimensional space preserving the distances as
much as possible. Suppose that we have a set of N points tu1, u2, . . . , uN u for which we know all
the pairwise distances dij “ dpui, ujq. The output of MDS is a new set of points v1, v2, . . . , vN in
a Euclidean space such that their Euclidean distance approximates dij , i.e., dij « d̂ij “ }vi ´ vj}.
The dimension of this Euclidean space is chosen by the user, with a maximum equal to N ´ 1.
To measure how well the original set of data are represented by the MDS model, it is typical to
use the goodness-of-fit values, or stress values [59], based on the differences between the actual
distances and their predicted values:

stress “

d

ř

pdij ´ d̂ijq2
ř

d2
ij

. (91)

Based on the stress values, [59] asserts how the MDS model performs: if stress “ 0 the MDS
model is said to be perfect, if stress “ 0.025 the MDS model is said to be excellent, if stress “ 0.05
the MDS model is said to be good, if stress “ 0.1 the MDS model is said to be fair, and finally if
stress “ 0.2 the MDS model is said to be poor.

Our proposal, called greedy-MDS, is then to apply a preliminary MDS step for all the discrete
variables Y “ ty1, y2, . . . , yN u in the large target sample for which we have all the pairwise
distances defined by the user. After this step, we have a continuous encoding V “ tv1, v2, . . . , vN u

of the discrete variables, which can be stacked with the continuous variablesX “ tx1, x2, . . . , xN u.
This gives a new representation of the large target sample with only continuous values. Then, we
use kernel-herding from Algorithm 7 with a standard continuous kernel to obtain a small subset
of points which represents as well as possible the target distribution. The last step is finally to
invert the encoding: this is an easy task, since by bijection we exactly know the correspondence
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between the original discrete values and their encoding. A pseudo-code is given in Algorithm 9
below.

Algorithm 9: Greedy-MDS algorithm.
Input: nDoE, d, Y

1. Pre-processing step

• Compute d, the matrix of distances dij “ dpyi, yjq for all yi, yj P Y .

• MDS step: apply MDS to d, obtain accordingly continuous points, u1, . . . , uN

• Stacking with continuous variables: for each ui, i “ 1, . . . , N , add a large number of
continuous values, save in matrix R

2. Greedy algorithm Algorithm 7 with inputs R,nDoE.

3. Retrieve the original values by inverting MDS

A strong potential limitation of Greedy-MDS lies in the choice of the user-defined distance. Indeed,
very poor distance reconstruction performance can occur in practice, meaning that MDS cannot
find an encoding which is able to well preserve the pairwise distances even with a maximum
dimension of N ´ 1. To circumvent this issue, we observed numerically that in practice MDS has
a much better reconstruction performance if instead of relying on a user-defined distance, we
employ a user-defined kernel k for discrete variables and build the corresponding kernel-induced
pseudo-distance

dkpu, vq “
a

kpu, uq ` kpv, vq ´ 2kpu, vq.

Note however that requiring a user-defined kernel is much more demanding than just a distance,
and that if a kernel is available the following approach should be preferred.

4 Adapted-Greedy: directly using a kernel defined in the
mixed space

In this section, we propose an adapted greedy algorithm for mixed continuous and discrete
variables problems that takes into account directly an appropriate mixed kernel inside the greedy
algorithm 7, appropriate being related here to the distance and type of information that are given
by the user. The first step is to build a positive definite kernel on the discrete variables from a
given distance dp¨, ¨q. The naive approach consists in generalizing the Laplace kernel as follows:

kpy, y1q “ e´γdpy,y1q
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for any values y and y1 of the discrete variables. Unfortunately this does not provide a positive
definite kernel in general [104]. A particular case of interest where this result holds concerns
binary variables with the Hamming distance, dHpy, y1q, where the kernel

kHpy, y1q “ e´γdH py,y1q (92)

is positive definite for any γ ą 0, see [52]. For the general case, we have to follow a different
road and build upon the work of [110] where they introduce the so-called soft string kernel. For
any distance d between any variables u and v in a space I, it is given by

ksoftpu, vq :“
ż

ωPI

ppωqe´γpdpu,ωq`dpv,ωqqdω (93)

where ppωq : I Ñ R is a probability distribution over I, and it can be proved that it is positive
definite [110]. When I is a discrete space it boils down to the discrete sum

ksoftpu, vq :“
ÿ

ωPI
ppωqe´γpdpu,ωq`dpv,ωqq. (94)

Interestingly, for a uniform distribution, this kernel is an approximation of the naive proposal
above, by using well-known approximation results for the LogSumExp function (LSE). More
precisely, the LSE function reads

LSEpx1, x2, . . . , xnq “ logpex1 ` ex2 ` . . .` exnq

and is an approximation to the maximum maxpx1, . . . , xnq [60]. Consequently, we also have

minpx1, . . . , xnq « ´ logpe´x1 ` e´x2 ` . . .` e´xnq.

Now if p is a uniform distribution on I, meaning that @ω P I, ppwq “ p0 the soft string kernel
simplifies as follows

ksoftpu, vq “
ÿ

ωiPI
p0 e

´γpdpu,ωiq`dpv,ωiqq,

“
ÿ

ωiPI
ep´γηi`logpp0qq,

(95)

with ηi “ dpu, ωiq ` dpv, ωiq and applying ´ log to both sides leads to

´ logpksoftpu, vqq “ ´ log
˜

ÿ

ωiPI
ep´γηi`logpp0qq

¸

« min
i

pγηi ´ logpp0qq
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using the approximation of the minimum given above. From the distance triangle inequality we
also have ηi ě dpu, vq, which means that min

i
pγηi ´ logpp0qq “ γdpu, vq ´ logpp0q. This finally

gives
ksoftpu, vq “ elogpksoftpu,vqq

« e´pγdpu,vq´logpp0qq

“ p0 e
´γdpu,vq.

This result can help interpret ksoft as a positive-definite approximation of the Laplace kernel
where we would inset the distance d.

Combining one of the above kernels (92) or (94) for the discrete variables and any kernel kcont

for the continuous variables is finally straightforward with tensorization, and leads to a mixed
kernel that can directly be used in kernel herding.

Extension beyond mixed variables problems.

Interestingly, the Adapted-Greedy approach presented before is generic, in the sense that we
discussed building a kernel adapted for discrete variables, but the same principle can be applied
to any other type of variables provided the user can provide a kernel or a distance. A prominent
example in computer experiments involves time series variables, for which it is usually a challenge
to build a space-filling DoEs. Some previous works are for example based on decomposition
of functional data on orthogonal bases such as in [78], but here we can directly make use of
the literature on kernels for time-series data. We can for example propose a normalized kernel
between two time series uptq and vptq involving the recently proposed global alignment kernel
[31]:

KGAKpuptq, vptqq “ Kpuptq, vptqq ´
1
2pKpuptq, uptqq `Kpvptq, vptqqq, (96)

where K is the global alignment kernel for same length time series

Kpuptq, vptqq “

|
ź

i“1
e´ϕσpuptiq,vptiqq, (97)

with ϕσpuptiq, vptiqq “
1

2σ2 ∥uptiq ´ vptiq∥2 ` logp2 ´ e´
∥uptiq´vptiq∥2

2σ2 q. We will see in Section 5 how
it performs numerically on a time series example.

5 Numerical experiments

The aim of this section is to demonstrate the large range of applicability of the proposed
design of experiment methods. The first application is the surrogate modelling of the simulated

5 Numerical experiments 105



performances of an electric engine with respect to design parameters of the rotor component. This
application deals with continuous, integer and categorical variables. Then, we consider the case
of cyclic-symmetry problems, with continuous and binary variables, motivated by an application
of optimal design of the turbomachine of an helicopter engine [102]. For these specific problems,
we address two different operational objectives: (a) surrogate modelling illustrated on various
benchmark functions and (b) the choice of initial points for the shape optimization problem of
the turbomachine. Finally, our DoE methods are applied to two examples involving time series.

5.1 Design of experiments for a surrogate model with continuous,
integer and categorical variables

The first application relates to the optimal design of an electric engine with respect to the rotor
component. The purpose of this study is to choose a set of values of the design variables that will
be used to perform simulations of the engine operation in order to build surrogate models of the
maximal power and of the maximal torque of the engine. The simulations are performed with the
FEMM simulator1 designed for electromagnetic problems. The design variables are composed of
one continuous variables (the rotor length), 2 integer variables (number of wires and number of
coils) with respectively 4 and 11 feasible values and one categorical variable that characterizes the
type of rotor geometry (with 16 possible types of rotor). For this problem, we used a tensorized
kernel composed of a Gaussian kernel for continuous variables and the kernel (92) based on
the Hamming distance applied to mixed binary variables resulting from the encoding of integer
and categorical variables. Here we compare designs of experiments built with adapted-greedy
approach to the projected LHS (algorithm 8) with a number of points ranging from 20 to 100
points. Surrogate models based on Gaussian processes and adapted kernel for mixed continuous
and categorical variables ([76], [88] ) are built from the simulations performed on these designs.
The accuracy of the obtained surrogate models is assessed by

1 ´Q2pF, F̂ q “

řNv
i“1pFi ´ F̂iq

2
řN

i“1pFi ´ F̄ q2
, (98)

where Q2, the predictive accuracy coefficient, is computed on a new set of validation points of
size Nv, N “ Nv ` nDOE is the total number of simulations including the points of the DoE, F
is the vector of simulated values, F̂ is the vector of predicted values (via the surrogate model)
and F̂ is the mean of F . In our experiments, we choose Nv “ 300 validation points obtained
by a projected LHS method. In Figure 21, we study the predictivity of each model built from
the designs of experiments for the two simulator outputs of interest, the maximal torque and
the maximal power of the electric machine. We achieve a better predictivity (smaller values of

1https://www.femm.info/wiki/HomePage
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1 ´Q2) of the surrogate models for the adapted-greedy method compared to projected LHS for
both responses of interest and for all the design sizes.

Fig. 21.: Accuracy of the surrogate models of the maximal torque (left) and the maximal power (right)
built with designs of experiments obtained by the projected LHS method (in blue) and by the
adapted-greedy algorithm (in red). The size of the designs, nDOE , ranges from 20 to 100.

5.2 Design of experiments for cyclic-symmetry problems involving
continuous and binary variables

The study of such cyclic-symmetry problems is driven by an application of optimal design for
turbine blades in an helicopter engine [74], which involves mixed continuous and binary input
variables.

We first apply our novel DoE methods on a set of benchmark functions (all with cyclic symmetry)
with the aim of estimating the expectation of the actual functions. The second application
presented in this section focuses on the choice of the initial points of an optimization method.

For both applications, the functions of interest are not affected by cyclic permutations of the
vector of binary variables:

fpx, y1q “ fpx, yq, @px, yq P Rm ˆ t0, 1un (99)

@y1 P t0, 1un such that Di P t1, 2, . . . , nu Rotipy1q “ y,
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with Rotipyq is the rotation of y by i positions.
For the MDS-greedy and the adapted-greedy methods, we use a tensorized kernel with, for the
binary variables, the soft kernel (94) with the necklace distance ([102])

dneckpy, y1q “ min
i“1,2,...,n

dHpy,Rotipy1qq, (100)

where dH denotes the Hamming distance. A necklace of binary variables y P t0, 1un is defined as
the equivalence class of binary vectors considering all rotations as equivalent vectors (analogy
with a necklace of n beads of 2 colors represented by 0 and 1 values): Ny “ tRotipyq @i P

t1, 2, . . . , nuu.

Results for expectation estimation

The benchmark consists of 6 different functions chosen from [36, 64, 80, 22], listed in table
6. These functions were set up originally for continuous optimization purpose. Therefore, we
transform them into mixed binary functions with cyclic symmetry following the methodology
of [102]. The problem dimensions are listed in Table 6 with a number of continuous variables
ranging from 1 to 10 and a number of binary variables from 4 to 7 corresponding to 6 to 20
distinct necklaces.

Problem name Dimension # distinct binary vectors (necklaces) Reference

sinp∥x∥q 2 ˆ 7 20 [22]

Wong2 10 ˆ 4 6 [64]

Branin 1 ˆ 7 20 [36]

Hartman3 3 ˆ 6 14 [36]

Perm6 5 ˆ 5 10 [80]

Perm8 7 ˆ 5 20 [80]
Tab. 6.: List of benchmark functions.

DoE are built with the methods introduced in Section 3: two projected designs (8) based on
LHS and Sobol sequence and our two methods based on kernel embeddings: greedy-MDS and
adapted-greedy. These results are compared with random sampling and standard LHS with
rounded values for binary variables. The empirical means of the benchmark functions for each
necklace are computed from the points of the DoE and compared with the empirical means
computed with a very large set of points obtained by Monte-Carlo sampling (104 evaluations).

108 Chapter 8 Design of experiments for mixed continuous and discrete variables problems



For each DoE δnDoE , the accuracy of the estimations is rated by the root mean squared errors of
the function expectations at the different necklaces

ErrorpδnDoE q “

g

f

f

e

1
nneck

nneck
ÿ

h“1
pF ref

h ´ FDoE
h q2, (101)

where nneck is the number of necklaces, F ref
h and FDoE

h are respectively the empirical expectations
of the function for the Monte-Carlo sampling points and the points of the DoE for the necklace
h.

The results of 20 repeated runs of the 6 methods with a design size nDOE “ k nneck, k ranging
from 1 to 27, are shown in Figure 22. Figure 23 provides the distributions of estimation errors
for each necklace obtained by one run of the 6 methods on Branin test case with a design size
of 100 points (k “ 5). We observe on both Figures that the approximation errors are much
smaller for greedy-MDS and adapted-greedy methods compared to the four others whereas the
two projected methods based on LHS and Sobol sequences provide slightly better global results
on the benchmark compared to standard methods with rounded values (Figure 22).

Results for initial design of optimization

The aim of the turbine application from [74, 102] is the design of the turbine blades of an
helicopter engine in order to minimize the vibrations of the compressor. This optimization
problem involves one continuous parameter controlling the frequency amplitude and a vector of
12 binary variables describing the repartition of two reference blades on the turbine disk. In [102],
the authors propose an adapted optimization method based on a derivative-free trust-region
method that uses the necklace distance (100) to take into account the cyclic symmetry of the
problem. In this work, the initial set of points are chosen by a LHS procedure with rounded
values for binary variables. We compare here these optimization results with the results obtained
with the same optimization method coupled with two types of initial DoE: the projected LHS and
adapted-greedy methods. As for previous benchmark functions, the chosen kernel for the latter is
a tensorized kernel of a Gaussian kernel for continuous variables and the softmax kernel with
necklace distance. The size of the initial DoE is n`m` 1 “ 14 and 100 repetitions of each DoE
methods and associated optimizations are run. The results are reported in data and performance
profiles in Figures 24 and 25, respectively. As explained in [73], the data and performance
profiles with respect to the number of function evaluations are convenient tools to compare
the performances of derivative-free optimization methods, counting the ratio of successful runs
for each solver with respect to a chosen criterion, the number of simulations in our study. We
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Fig. 22.: Median RMSE (in log-scale) of the estimation of benchmark function expectation obtained with
5 repetitions of the 6 methods: a random sampling and a standard LHS with rounded values
for binary variables, 2 projected methods based on Sobol sequence and projected LHS, the
greedy-MDS and adapted-greedy methods.
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Fig. 23.: Distributions of estimation errors for each necklace of the Branin function obtained with 6
methods: a random sampling and a standard LHS with rounded values for binary variables, 2
projected methods based on Sobol sequence and projected LHS, the greedy-MDS and adapted-
greedy methods. The size of the DoE is 100 points.
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consider that an optimization run is successful if the best solution z̄ obtained within a given
number of function evaluations satisfies

fpz0q ´ fpz̄q ě p1 ´ τqpfpz0q ´ f˚q, (102)

where, in the sequel, f˚ denote the best function value found by any solver (or the global-
minimum value, if known), z0 is the best point of the initial point for each run and τ is the
desired accuracy, a user-defined tolerance value (in our tests, τ “ 10´5). If a run does not
provide a solution that satisfies (102), we consider that it fails. The data profile displays the ratio
of successful runs of each solver over the total number of runs with respect to the number of
simulations (normalized by the number of variables: n`m` 1 “ 14), whereas the performance
profile displays this ratio with respect to a performance ratio that is, in our case, the ratio between
the number of evaluations needed by a given method to satisfy the condition (102) and the
smallest number of evaluations for all the compared methods.

Figures (24 and 25) show that the optimization method coupled with DoEs generated by projected
LHS is the most robust method with 90% of successful runs, while the optimization coupled with
adapted-greedy method succeeds to solve 88% of problems. The optimization method coupled
with LHS with rounded values for binary variables is the least robust method with only 82% of
successful runs. The optimization method coupled with adapted-greedy DoE appears to be less
efficient for small budgets of simulations. For this kind of derivative-free optimization methods
coupled with expensive simulators, the sizes of initial set are generally small in order to limit
the number of expensive simulations. In the presented application, the size of the initial set
(14) is small compared to the number of necklaces (equal to 352). This can explain the small
differences between the results of the optimization method coupled with the three DoE methods:
the exploration of the input space is done essentially along the optimization iterations and not
during the initial phase.

5.3 Design of experiments for times series

To illustrate the ability of the proposed DoEs to be applied to kinds of variables other than the
mixed discrete case, we propose in this section to apply the greedy-MDS and the adapted-greedy
approaches coupled with the global alignment kernel (see (96) in Section 4) to two time series
examples and compare the results with those obtained with some state-of-the-art approaches.

We consider two analytical functions with a functional input random variable V ptq that is known
through a sample of 200 realizations. Two cases are studied: V is either a standard Brownian
motion (Figure 26) or a Max-stable process (Figure 27). The aim of these experiments is to
estimate the expectation of the function with respect to the functional variable V ptq with a limited
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Fig. 24.: Safran’s application: data profiles of the optimization runs with 100 initial DoE obtained with
3 methods: LHS with rounded values for binary variables, projected LHS, and adapted-greedy
methods.

number of samples of V . To achieve this goal, [45, 37] propose a greedy functional data-driven
quantization approach coupled with a functional principal component analysis (FPCA) to reduce
the dimension of V to a finite (small) dimension. The impact of the number of components in
FPCA on the explained variance of the functional data for two types of uncertainties (Brownian
and Max-stable processes) is discussed in [38]. For the presented numerical experiments, we
choose 8 components that explain respectively 97.6% and 70% of the data variance. We propose
here to compare this quantization method to our two DoE methods applied directly in the
functional domain with the global alignment kernel KGAK introduced in Subsection 3 for time
series. The greedy-MDS method relies on the associated kernel distance defined as

d2
GAKpuptq, vptqq “ KGAKpuptq, uptqq `KGAKpvptq, vptqq ´ 2KGAKpuptq, vptqq. (103)

A standard LHS method applied in the reduced space obtained by FPCA is also evaluated. The
two studied functions are defined as

f1 : px, V q Ñ x2
1 ` 2x2

2 ´ 0.3 cosp3πx1q ´ 0.4 cosp4πx2q ` 0.7 `

T
ż

0

eVtdt, (104)
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Fig. 25.: Safran’s application: of the optimization runs with 100 initial DoE obtained with 3 methods:
LHS with rounded values for binary variables, projected LHS, and adapted-greedy methods.

where we fix x1 “ 50 and x2 “ ´80, and

f2 : px, V q Ñ 2x2
1 ` x2

2 ´ 0.3 cosp3πx1q ´ 0.4 cosp4πx2q ` 0.7 `

T
ż

0

2 sinpVtqdt, (105)

where x1 “ 50 and x2 “ ´80.

We apply the 4 DoE methods for the functions f1 and f2 and the two functional data, Brownian
motion and max-stable process, with various sizes of DoE equal to 20, 40 and 60 chosen among
the 200 available realizations of V . The performances of the methods are measured in terms
of accuracy and computational time in Tables 7, 8, 9, and 10. The errors are computed as the
relative errors of the expectation estimations based on the obtained DoE and the estimation
based on the 200 realizations. The results of LHS and quantization methods are the means of the
results obtained for 50 repeated runs.

The quantization method which is dedicated to the expectation estimation gives often the best
results but our two methods provide close results in terms of accuracy whereas the results of the
LHS method applied in the reduced space are not as accurate in general. In terms of computational
time, our two methods are more efficient than the quantization method implementation of [37].
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Fig. 26.: 200 realizations of a Brownian motion. The thick blue curves are the 10 curves selected by the
first iterations of the adapted-greedy algorithm.

Moreover, these methods directly consider the functional variable and do not require to apply a
dimension reduction method.

Tab. 7.: Computational times and relative errors of the expectation estimation obtained for the function
f1 with the functional data of Brownian motion. 4 methods are evaluated: the adapted-greedy
and MDS-greedy methods coupled with the global alignment kernel, the LHS method and the
quantization method coupled with the FPCA dimension reduction method. The best values
among the 4 methods are indicated in bold.

Adapted-greedy Greedy-MDS LHS + FPCA Quant.+FPCA

nDoE time(s) errors time(s) errors time(s) errors time(s) errors

20 0.04 8.3.10´8 0.02 1.9.10´7 0.08 1.6.10´7 0.36 1.3.10´7

40 0.072 9.3.10´8 0.027 2.5.10´7 0.096 2.9.10´8 0.94 6.8´9

60 0.109 1.6.10´8 0.030 4.1.10´8 0.11 5.7.10´8 2.04 1.6´8

6 Conclusions

The aim of this chapter is to propose design of experiments methods adapted to mixed discrete
and continuous variable problems. A first proposal is the straightforward extension of continuous
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Fig. 27.: 200 realizations of a Max-stable process. The thick blue curves are the 10 curves selected by the
first iterations of the adapted-greedy algorithm.

DoE techniques as low discrepancy methods or standard space filling approaches coupled with
the projection from continuous space to integers representing the distinct indices of discrete
variables. A second proposed approach relies on kernel-embedding of probability distributions
extended to mixed continuous and discrete space, which leads to two new methods: greedy-MDS
and adapted-greedy. These methods are generic and can address other types of objects than
mixed discrete and continuous variables, provided that a suitable kernel is available. A variety of
useful kernels are presented: in particular, the softmax kernel that can be built from any distance
and ensures the positive-definite property and the global alignment kernel that is suited to time
series.

We illustrate the performances of the proposed DoE methods in various context: building a
training data set for a surrogate model handling continuous, integer and categorical variables,
and for the estimation of the expectation of a function with cyclic symmetry for a vector of binary
variables, choosing initial points of a mixed binary and continuous shape optimization problem
for an helicopter engine, and finally DoE for time series for expectation estimation of a function
that depends on a functional variable.

Future studies can be carried on with other types of objects and associated kernels (images,
graphs ...) and also with different operational objectives. For instance, the exploration step
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Tab. 8.: Computational times and relative errors of the expectation estimation obtained for the function
f1 with the functional data of Max-stable process. 4 methods are evaluated: the adapted-greedy
and MDS-greedy methods coupled with the global alignment kernel, the LHS method and the
quantization method coupled with the FPCA dimension reduction method. The best values
among the 4 methods are indicated in bold.

Adapted-greedy Greedy-MDS LHS + FPCA Quant.+FPCA

nDoE time(s) errors time(s) errors time(s) errors time(s) errors

20 0.036 2.3.10´7 0.028 2.10´6 0.071 1.7´6 0.353 5.4.10´7

40 0.073 1.8.10´6 0.034 1.6.10´8 0.09 8.10´7 0.93 3.2´7

60 0.11 5.10´7 0.039 4.1.10´7 0.11 3.8.10´7 1.93 2.10´7

Tab. 9.: Computational times and relative errors of the expectation estimation obtained for the function
f2 with the functional data of Brownian motion. 4 methods are evaluated: the adapted-greedy
and MDS-greedy methods coupled with the global alignment kernel, the LHS method and the
quantization method coupled with the FPCA dimension reduction method. The best values
among the 4 methods are indicated in bold.

Adapted-greedy Greedy-MDS LHS + FPCA Quant.+FPCA

nDoE time(s) errors time(s) errors time(s) errors time(s) errors

20 0.036 3.10´7 0.022 6.3.10´7 0.05 5.5.10´7 0.33 2.3.10´7

40 0.072 2.7.10´7 0.027 7.6.10´7 0.07 1.8.10´7 0.89 6.1.10´8

60 0.11 3.10´8 0.03 1.1.10´8 0.09 1.1.10´7 1.9 2.5.10´8

in global optimization methods such as surrogate optimization or direct search methods could
exploit the proposed DoEs for mixed continuous and discrete problems or other type of variables
provided that some prior information is available and can be associated to a kernel or a distance
(as we did for cyclic symmetry).
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Tab. 10.: Computational times and relative errors of the expectation estimation obtained for the function
f2 with the functional data of Max-stable process. 4 methods are evaluated: the adapted-greedy
and MDS-greedy methods coupled with the global alignment kernel, the LHS method and the
quantization method coupled with the FPCA dimension reduction method. The best values
among the 4 methods are indicated in bold.

Adapted-greedy Greedy-MDS LHS + FPCA Quant.+FPCA

nDoE time(s) errors time(s) errors time(s) errors time(s) errors

20 0.036 5.2.10´7 0.028 1.1.10´6 0.071 2.8.10´6 0.35 1.6.10´6

40 0.073 1.9.10´6 0.034 1.9.10´6 0.091 1.10´6 0.91 8.9.10´7

60 0.11 4.10´7 0.04 2.1.10´6 0.11 8.1.10´7 1.91 6.3.10´7
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Part III

Escaping from local minima





9Escaping from local minima

„Life is like riding a bicycle. To keep your balance you
must keep moving.

— Albert Eistein
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Global optimization, is an attractive objective for many applications dealing with complex multi-
modal functions. We mentioned in Part I that DFO methods, for instance, DFOb-dH or adapted
method DFOb-dneck, guarantee convergence but only toward a local minimum. As we test and
compare DFOb-dneck with RBFOpt (which is declared as a global method) in the previous part,
we observe that for some instances, our DFO method is comparable, or even more efficient than
RBFOpt with the same accuracy. Nevertheless, DFO trust-region methods may be trapped in
a local minimum without exploring regions that includes a globally optimal solution. There
are techniques have been used in DFO literature for escaping from local minima, for example
multi-start mechanism using in RBFOpt [30] or in the work of [48], restart strategy in [21], or
multistart using multi-level single linkage or maximum information from previous evaluations in
GORBIT [109].

Our idea to circumvent this drawback is a restart strategy coupled with an augmented DoE
strategy. Section 1 presents the principle of an augmented DoE based on the sampling of the
discrete variable space. Section 2 introduces three restart strategies including two original
proposals. Section 3 gives preliminary results. Section 4 concludes this third part of the thesis.
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1 Augmented DoE strategies for sampling a discrete
variable space

The purpose of this section is the improvement of the standard “add-points" step (see Chapter
3, Part I) as a diversifying strategy to help the exploration step for new values of the binary set y.
As we mentioned, the current “add-points step" chooses a user-defined number of new points
which only need to satisfy the trust-region and no-good cuts constraints without any requirement
regarding the available simulated points and the spreading of the points. We propose here a strat-
egy that uses the information of the available simulated points to anticipate whether we should
explore more or less the continuous search space for a given binary configuration (or necklace).
The proposed method is an extension of the DOE methods proposed in Part II integrating a given
initial design of experiments (the available simulated points) to be completed.

Our strategy is based on the sampling method proposed in [76] for general mixed continuous
and categorical variables in the Bayesian optimization context. In the context of cyclic-symmetry
problems, we adapt the sampling method by considering each necklace as one category of a
categorical variable, called level in [76].

The authors of [76] define a discrete probability distribution in the categorical space that takes
into account the density of available evaluated points at each level. The discrete probability of
level ci is defined as

pk,i “ αkp
g
k,i ` p1 ´ αkqpm

k,i,@i “ 1, 2, . . . , nlevels, (106)

where k is the optimization iteration counter, αk P r0, 1s is a weighting parameter, the quantity
pg

k,i stands for the probability that the level ci has not been fully explored (it is large when the
number of simulations associated with this level is small) and is computed as:

pg
k,i “ 1 ´

ˆ

nk,i

nk

˙l

, (107)

where nk,i and nk are respectively the number of evaluated points in the level ci and the total
number of evaluations of the objective function over all the levels at iteration k; l ą 0 is a

user-defined parameter (that we shall set to
1
2 in the implementation); the term pm

k,i is the
probability that the level ci has a high potential of containing the minimum of the objective
function, which is approximated by:

pm
k,i “

SR
k,i

řnlevels
j“1 SR

k,j

, (108)
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where SR
k,i is the sigmoid function calculated by:

SR
k,i “

1
1 ` esk,i´fmin

, (109)

and
sk,i “ f̄k,i ´ 2σk,i, (110)

with fmin, f̄k,i and σk,i are respectively the current minimum objective-function value, the mean
of the evaluated objective function values and the corresponding standard deviation in the level
ci; pk,i are for all levels i “ 1, 2, . . . , nlevels which give, for each level, the probabilities that it has
not been sufficiently explored. This probability distribution p “ ppk,1, pk,2, ..., pk,nlevels

q is sampled
to obtain a target distribution for our DOE method: MDS greedy or adapted-greedy DOE method
(see Part II), completed with the available simulated points. The greedy algorithm is applied from
the given set of simulated points instead of starting with an empty set as the original proposal.

We illustrate the proposed method on the toy problem introduced in [76], called DS-MM function
in the sequel, with m “ 1 continuous and n “ 5 binary variables. Remark that the original
problem is adapted to a mixed cyclic binary problem, with the following piecewise-defined
function involving 8 univariate functions

fpx, yq “

$
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cosp3.6πpx´ 2qq ` x´ 1 if y “ p0, 0, 0, 0, 0q,

2 cosp1.1πexq ´
x

2 ` 2, if y “ p0, 0, 0, 0, 1q,

´x5

2 ` 1, if y “ p0, 0, 0, 1, 1q,

´ cosp
5π
2 xq2?

x´
logpx` 0.5q

2 ´ 1.3, if y “ p0, 0, 1, 0, 1q,

´x2

2 , if y “ p0, 0, 1, 1, 1q,

2 cosp
π

4 e
´x4

q2 ´
x

2 ` 1, if y “ p0, 1, 0, 1, 1q,

x cosp3.4πxq ´
x

2 ` 1, if y “ p0, 1, 1, 1, 1q,

x

ˆ

´ cosp
7π
2 x´

x

2 q

˙

` 2, if y “ p1, 1, 1, 1, 1q.

(111)

We shall use this function as a test function for optimization in Section 3. As we can see in Figure
28, this function has several local minima and some of the individual one-dimension functions
(corresponding to each level) are strongly correlated or anti-correlated. The global minimum
is marked as a circle point in the individual function associated to level 4 (noted OF4). Finally,
we observe that four individual functions have the local minima OF1, OF4, OF7, OF8, whereas
the four others (OF2, OF3, OF5, OF6) are almost flat. As a result, we would expect that the
augmented can put more points in these levels.
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Fig. 28.: The eight individual one-dimensional functions for DS-MM example. The global minimum is
located at x “ 0.808, y “ p0, 0, 1, 0, 1q, the objective-function value is ´2.329.

The augmented DoE strategy can be compared to a uniform sampling (as used in the standard
add-point step of DFOb method) in Figures 29 and 30. In both figures, we fix the set of available
evaluated points (10 points) represented by the green points. The added points are represented
by blue stars.

We realize two experiments: one with five adding points (see Figure 29), the other one with ten
points (see Figure 30). On the left-hand side, the points provided by the standard procedure
are displayed, whereas on the right-hand side points added by the augmented DoE algorithm
are plotted. We observe, for two experiments, that the new procedure proposes points on the
levels that were not already explored and with a minimization potential learnt from the available
simulated points.

2 Restart strategies

This section presents different restart strategies that allow the DFO trust-region methods DFOb
to escape from local minima based on ideas proposed in [48, 77, 21] for continuous derivative-
free trust-region method. In [48, 77], the authors use a mechanism to restart the algorithm
from completely new initial points whenever certain conditions are satisfied. Beside this hard-
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Fig. 29.: Five points (blue stars) to complete the set of ten evaluated points (green circles) by the standard
procedure (left) and by the augmented DoE method (right).

Fig. 30.: Ten points (blue stars) to complete the set of ten evaluated points (green circles) by the standard
procedure (left) and by the augmented DoE method (right).
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restart strategy, the authors in [21] propose an adapted soft restart which allows one to use
the information from the evaluated points and restart with the algorithm scale of 1.1∆0: the
algorithm starts with a trust-region radius set to 1.1∆0, where ∆0 is the initial radius.

Another attractive track is the multistart strategy, proposed for example in the method GORBIT
[108]. The principle of this tactic is to start the algorithm from different starting points in
parallel.

In our work, we integrate the above hard restart in the DFOb method, and we propose two other
restart methods: complete soft restart and partial soft restart. The next three subsections will give
more details on the three approaches.

We choose two conditions proposed in [21] to trigger the restart strategies, we involve restart
when either:

• The trust-region radius at the current iteration k, ∆k, is small,

• The decrease of the objective function over consecutive iterations is too small.

Remark that we also use the re-initialized value of the trust-region radius followed by the adapted
soft restart in [21]: we increase the trust-region radius to 1.1∆0.

2.1 Hard restart

The idea of hard restart is to restart the algorithm from totally new starting points which are
generated from the same mechanism as generating the initial interpolation set. The advantage of
this restart type is its simplicity of implementation. When the algorithm detects that it is trapped
in the valley of a local solution, the algorithm stops and restarts from a new initial interpolation
set.

However, this strategy has some drawbacks also. First, it is not guaranteed that the algorithm will
not converge towards in the same local minimum again. Second, it is clear that with this strategy,
the users do not use any information, i.e., objective function evaluations, from the previous runs,
which is not efficient, especially in the context of blackbox optimization where we want to save
expensive simulations.
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2.2 Complete soft restart

Our first proposal restart strategy restarts the algorithm with a subset of starting points that are
chosen among already-evaluated objective-function points. The intuition comes from the fact
that, ordinarily, the condition of restarting is met after a certain number of iterations that may
provide a good exploration of the domain to set up a new initial interpolation set.

The advantage of this method is that we have no waste of new simulations to set up the new
initial interpolation set. However, it can happen that the set of evaluated points are not very well
distributed over the domain, yielding a set of starting points that can be biased. Also, like the
hard restart, it is possible that the algorithm converges towards a local solution that was already
explored.

2.3 Partial soft restart

Our second proposal improves the previous method by starting from a set of points that includes
both already-evaluated points and new points using the augmented DOE method proposed in
section 1.

The advantage of this proposal is that we use the available information from previous simulations,
while ensuring the good properties of the new starting point set.

3 Numerical results

This section presents preliminary comparative numerical results. Subsection 3.1 and Subsection
3.2 report numerical results on the DS-MM and Ackley functions respectively.

We compare five options of DFOb-dneck:

• The standard DFOb-dneck with the standard option of add-point step (named Standard),

• DFOb-dneck with the augmented DoE add-points step (Augmented),

• DFOb-dneck coupling the augmented DoE add-point step and hard restart (A-hard restart),

• DFOb-dneck coupling the augmented DoE add-point step and complete soft restart (A-
complete-soft restart),
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• DFOb-dneck coupling the augmented DoE add-point step and partial soft restart (A-partial-
soft restart).

We set the maximum number of evaluation to 300. The five experiments both share two reference
options and three restart options with the same initial design (generated by adapted-greedy
algorithm, nDoE “ m` n` 1). The value of the parameter αk in the augmented DOE method is
set to 0.01. The maximum number of consecutive discarded iterations is 50.

3.1 Results for the DS-MM function

The first test function is the piecewise-defined DS-MM function (see equation (111)) involving one
continuous and five binary variables (corresponding to 8 individual one-dimensional functions)
as described in section 1.

Figure 31 shows the best current objective-function value achieved by the 5 options, with
respect to the number of objective-function evaluations. The standard, augmented, and coupling
augmented and hard restart DFOb-dneck options yield the same solution with the associated
objective-function value: ´1.948 within 43, 38 and, 38 evaluations respectively. The A-complete-
soft restart method yield the globally optimal solution with associated objective-function value
´2.328 within 66 evaluations. The A-partial-soft restart finds a solution with objective-function
value ´2.319 within 67 evaluations, a minimum local solution at the level (y value) corresponding
to the global solution. Figure 32 shows the solutions obtained by the five options.

3.2 Results for the Ackley function

We now perform a similar study for the well-known Ackley function. The Ackley function is
originally for continuous variables and given by:

fpxq “ ´ae
´b

d

1
m

m
ř

i“1
x2

i

´ e
1
m

m
ř

i“1
cospcxiq

` a` e, (112)

where the parameter values are set to a “ 20, b “ 0.2, c “ 2π and m “ 2. The function is
evaluated on the square xi P r´5, 5s, i “ 1, 2. We use the cyclic-symmetry form construction
from Chapter 5 of Part I with n “ 4 binary variables (corresponding to 6 individual two-
dimensional functions to define the resulting piecewise-defined function). The global minimizer
is x “ p0, 0q, y “ p0, 0, 0, 0q. The associated objective-function value is ´1.7634. The plots of the
6 individual two-dimensional functions associated with the 6 necklaces are shown in Figure 33.
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Fig. 31.: The best current objective-function values versus number of evaluations of DFOb-dneck with
standard, augmented add-point step, hard restart, complete soft restart, and partial soft restart
on the DS-MM function.

We observe in the figure that each individual two-dimensional function has a numerous of local
minima.

Figure 34 shows the best objective-function value achieved by each of the five options on the
Ackley function, with respect to the number of objective-function evaluations. The solution found
by the standard DFOb-dneck has objective-function value: ´1.336 and required 25 evaluations.
The solution found by the augmented DFOb-dneck has objective-function value: ´1.7604 and
required 92 evaluations. For A-hard restart the value is ´1.7521, within 80 evaluations, A-
complete-soft restart yields the objective-function value ´1.7541 within 90 evaluations, and the
solution found by A-partial-soft restart gives objective-function value ´1.7607 and 110 evaluations.
Figure 35 zooms on the main best objective-function values of the Figure 34. Figure 36 plots the
solutions found by the five options; they all correspond to a same value of the binary-variable
vector y corresponding to the first individual two-dimensional function.
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Fig. 32.: Solutions obtained by DFOb-dneck with standard, augmented add-point step, hard restart,
complete soft restart, and partial soft restart on the DS-MM function.

4 Conclusion

In this part of the thesis, we presented several original contributions to escape from local
minima. A first contribution improves the "add-point" step of DFOb methods based on an original
augmented design of experiment based on a discrete distribution taking into account the values
of the available objective-function evaluations and the associated point distribution.

Another contribution is the introduction of two restart strategies based on new initial interpolation
sets using previously simulated points. These methods were compared with the standard DFOb
method, and with some reference restart strategies implemented in DFOb. The preliminary
results obtained on two analytical functions with cyclic symmetry involving several local minima
are encouraging. The proposed methods can also be used with DFOb-dH for general mixed
continuous and binary problems.
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Fig. 33.: Ackley function with two continuous variables and four binary variables (corresponding 6 levels:
y1 “ p0, 0, 0, 0q, y2 “ p0, 0, 0, 1q, y3 “ p0, 0, 1, 1q, y4 “ p0, 1, 0, 1q, y5 “ p0, 1, 1, 1q, y6 “ p1, 1, 1, 1q).

4 Conclusion 131



Fig. 34.: The best current objective-function values versus number of evaluations of DFOb-dneck with the
five options standard, augmented add-point step, hard restart, complete soft restart, and partial
soft restart on the Ackley function.

Fig. 35.: Zoom on the best current objective-function values versus number of evaluations of DFOb-dneck

with the five options.
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Fig. 36.: The two solutions obtained with DFOb-dneck and the five options on the Ackley function.

4 Conclusion 133





General conclusion and perspectives

Conclusion

In this work, we presented several contributions to solve blackbox optimization problems in-
volving computationally expensive simulators with mixed continuous and discrete variables.
Numerous applications of this type of problems arise in the domain of optimal design: in particu-
lar, our research work was motivated by an application provided by Safran Tech for the design of
turbomachine of aircraft.

• The first part of the thesis considers optimization methods for solving derivative-free
problems. We presented an in-depth review of DFOb-dH , a derivative-free trust-region
method for mixed continuous and binary problems based on the Hamming distance. A
first contribution was the convergence proof of this method which was not presented in
the original work that proposed this method. The second contribution is a derivative-free
trust-region method adapted to cyclic-symmetry mixed continuous and discrete problems:
DFOb-dneck method. This method relies on an adapted distance for cyclic-symmetry
problems based on the "necklace" concept from combinatorics. Reformulations of the
subproblems involved in the trust-region method DFOb were built to preserve the MIQP
structure of the subproblems. The convergence proof of this new method is given. The
proposed method was compared to three state-of-the art optimization methods: NOMAD,
RBFOpt and DFLBOX and to the original DFOb-dH method based on usual Hamming
distance. This comparison was performed on a benchmark of 25 functions with cyclic
symetry that was set up from various published benchmarks. The comparison is also done
on an application problem provided by Safran Tech. DFOb-dneck shows robust results within
a limited number of function evaluations.

• The second part of this thesis is dedicated to the design of experiments for mixed continuous
and discrete variables. We propose two extensions of a method based on kernel embedding
of probability distribution for mixed variables space. The proposed methods can be applied
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to various types of variables, provided a positive defined kernel. The performances of
the methods are illustrated on examples with mixed discrete variables, cyclic-symmetry
problems and also time series with dedicated kernels.

• Finally, in the third part of the thesis, new ideas are proposed and evaluated to improve the
robustness of the optimization method DFOb-dneck with respect to not getting trapped in
local minima. Some encouraging preliminary results are presented.

Perspectives This work opens up several research avenues for future studies. From optimization
perspective:

• First, apply the proposed method to an application of the optimal design problem in Safran’s
industrial context with the real complex black-box simulators (rather than on the simplified
version of it).

• Regarding the problem of escaping from local minima:

1. Extend the preliminary study described in Part 3: coupling the DOE methods proposed
in Part 2 with restart strategies proposed in [21].

2. Couple an exploration step based on global surrogate methods (EGO, RBFOpt) with
the proposed trust-region method.

• Extend the proposed optimization methods DFOb for noisy problems: extension of works
of [109] for mixed continuous and discrete variables.

• Extend the proposed optimization method DFOb-dneck to general constrained problems.
One technique can be used is a progressive barrier derivative-free trust-region in [10]: by
using a constraint violation function to ensure the algorithm to find the feasible solutions.

From DoEs points of views:

• Evaluate the proposed DOE methods on various types of problems: for instance, images or
applications with prior information.
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AMathematical Background

We revise some concepts necessary to follow the work in this thesis. Some results in Section 1
and 2 are used in the proof of convergence of our method (see Chapters 4 and 5, Part I). Section
3 presents quadratic programming which is the core of our algorithm.

1 Vector and matrix norms

We begin by introducing the notations used in this thesis: vector and matrix norms, condition
number, quadratic programming and mixed integer quadratic programming.

For a vector x P Rn, p´norms (p ě 1) of x are given by

∥x∥p “

´

n
ÿ

i“1
|xi|

p
¯

1
p
,

and the 8´norm by
∥x∥8 “ max

1ďiďn
|xi|.

Similarly, we define the p´norm of matrices. Let A “ paijqmˆn be a mˆ n matrix. The p´ norms
of A, p ě 1, are defined by

∥A∥p “ sup
x‰0

∥Ax∥p

∥x∥p
,

the 8´norm by

∥A∥8 “ max
i

n
ÿ

j“1
|aij |,

and the Frobenius norm by

∥A∥F “

g

f

f

e

n
ÿ

i“1

n
ÿ

j“1
a2

ij .

Besides satisfying the three norm properties (non-negativity, scalar multiply, triangle inequality),
they also satisfy the "submultiplicative" property

∥AB∥ ď ∥A∥∥B∥.
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There are several useful inequalities for matrix norms, namely

1
?
m

∥A∥1 ď ∥A∥2 ď ∥A∥F ď
?
n∥A∥2 ď n∥A∥1,

and for vector norms
∥x∥8 ď ∥x∥2 ď

?
n∥x∥8.

2 Conditioning

One important property that we use to study a matrix is its condition number which gives a
quantitative information as to whether a matrix is ill-conditioned or well-conditioned. The
condition number of a nˆ n non-singular matrix A is noted χpAq and is given by

χpAq “ ∥A∥.∥A´1∥,

which depends on the chosen norm. The value of the condition number gives an indication on
the difficulty of solving numerically a linear system: the system is easier to solve if its condition
number is small (ideally χpAq equal to 1) and it becomes difficult or unsolvable if the condition
number is going to infinity. More precisely, a small perturbation (due for instance to the finite
precision of the machine or to the imprecision/uncertainty in the data) in the right-hand side
of a system of linear equations can yield an enormous change in its solution when the matrix is
ill-conditioned. If the matrix A is symmetric, there is another way to see the condition number,
which is

χpAq “
max1ďiďn |αi|

min1ďiďn |αi|
,

where α1, . . . , αn are the eigenvalues of A.

3 Quadratic programming and mixed integer quadratic
programming

Quadratic programming (QP)
Quadratic programming is widely studied in the literature as it is often a subproblem for opti-
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mization algorithms. An optimization problem with a quadratic objective function and linear
constraints is called a quadratic program, which can be stated as

$

’

’

’

’

&

’

’

’

’

%

min
x

1
2x

THx` xT g

aT
i x “ bi, i P E ,

aT
i x ě bi, i P I,

where H is a symmetric matrix, E and I are index sets associated with equality and inequality
constraints. If the Hessian H is semi definite positive (SDP), the problem is said to be a convex
QP, otherwise it is a non-convex problem. Solving non-convex problems is more challenging than
solving convex problems as non-convex QPs are NP-hard problems. We can solve QP by using
Interior-Point Methods or Active Set Methods, see for instance [81].

Mixed Integer Quadratic Programming (MIQP)
MIQP is in the form of

$

’

’

’

’

’

&

’

’

’

’

’

%

min
x,z

fpx, zq,

x P Rm, z P Zn,

gpx, zq ď 0.

(113)

where f, and g are quadratic and linear functions, respectively. To solve MIQP, the most common
class of methods is Branch-and-bound algorithms and their extended versions, such as spatial
branch-and-bound, branch-and-reduce, α branch-and-bound (for details see [20, 33]).

3 Quadratic programming and mixed integer quadratic programming 139





BEncoding techniques and list of
benchmark functions

1 Categorical variables encoding techniques

There is a large number of engineering optimization problems with both continuous and discrete
variables. In applications, the discrete variables are sometimes categorical ones; i.e., they refer to
a list or set of categories. Many optimization algorithms cannot deal directly with this type of
variables: the categories must often be converted into numbers.

There are two types of categorical variables: nominal and ordinal variables. The term nominal
refers to no intrinsic ordering, for instance, gender (male and female). Unlike nominal variables,
ordinal variables have a clear ordering.

This section aims to give the readers a short review about different ways of encoding categorical
variables. Since the work is more focused on mixed continuous and binary variables, we will give
more detail on the techniques that convert categorical variables to binaries.

Binary encoding. This is one of the simplest way to encode categorical variables into quantitative
variables (numbers). First, the categorical variables are converted to numeric (integer) numbers,
denoted by l1, l2, . . . , lN , then one applies the following binary encoding to lk, k “ 1, 2, . . . , N :

lk “

tlog2pnqu`1
ÿ

i

bk
i 2i´1,

where bk
i P t0, 1u. Thus, the encoding of lk is pbk

1, b
k
2, . . . , b

k
tlog2pnqu`1q, k “ 1, 2, . . . , N .

One-hot encoding. This includes encoding each categorical variable with a different binary or
boolean variable (also called dummy variable) which takes values 0 or 1, indicating whether a
category is present in an observation.
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2 Benchmark functions

Luksan and Vlcek (2000) benchmark

Problem B.1. CB2.
F pxq “ max

1ďiď3
fipxq,

f1pxq “x2
1 ` x4

2,

f2pxq “p2 ´ x1q2 ` p2 ´ x2q2,

f3pxq “2ex2´x1 .

Problem B.2. CB3.
F pxq “ max

1ďiď3
fipxq,

f1pxq “x4
1 ` x2

2,

f2pxq “p2 ´ x1q2 ` p2 ´ x2q2,

f3pxq “2ex2´x1 .

Problem B.3. QL.
F pxq “ max

1ďiď3
fipxq,

f1pxq “x2
1 ` x2

2,

f2pxq “x2
1 ` x2

2 ` 10p´4x1 ´ x2 ` 4q,

f3pxq “x2
1 ` x2

2 ` 10p´x1 ´ 2x2 ` 6q.

Problem B.4. WF.
F pxq “ max

1ďiď3
fipxq,

f1pxq “
1
2px1 `

10x1
x1 ` 0.1 ` 2x2

2q,

f2pxq “
1
2p´x1 `

10x1
x1 ` 0.1 ` 2x2

2q,

f3pxq “
1
2px1 ´

10x1
x1 ` 0.1 ` 2x2

2q.
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Problem B.5. PENTAGON.

F pxq “ max
1ďiď3

fipxq,

f1pxq “ ´
a

px1 ´ x3q2 ` px2 ´ x4q2,

f2pxq “ ´
a

px3 ´ x5q2 ` px2 ´ x6q2,

f3pxq “ ´
a

px5 ´ x1q2 ` px6 ´ x2q2.

Problem B.6. ROSEN-SUZUKI.

F pxq “ maxtf1pxq, f1pxq ` 10f2pxq, f1pxq ` 10f3pxq, f1pxq ` 10f4pxqu,

f1pxq “x2
1 ` x2

2 ` 2x2
3 ` x2

4 ´ 5x1 ´ 5x2 ´ 21x3 ` 7x4,

f2pxq “x2
1 ` x2

2 ` x2
3 ` x2

4 ` x1 ´ x2 ` x3 ´ x4 ´ 8,

f3pxq “x2
1 ` 2x2

2 ` x2
3 ` 2x2

4 ´ x1 ´ x4 ´ 10,

f4pxq “x2
1 ` x2

2 ` x2
3 ` 2x1 ´ x4 ´ 5.

Problem B.7. WONG 2.

F pxq “ max
1ďiď6

fipxq,

f1pxq “x2
1 ` x2

2 ` x1x2 ´ 14x1 ´ 16x2 ` px3 ´ 10q2 ` 4px4 ´ 5q2 ` px5 ´ 3q2`

2px6 ´ 1q2 ` 5x2
7 ` 7px8 ´ 11q2 ` 2px9 ´ 10q2 ` px10 ´ 7q2 ` 45,

f2pxq “f1pxq ` 10p3px1 ´ 2q2 ` 4px2 ´ 3q2 ` 2x2
3 ´ 7x4 ´ 120q,

f3pxq “f1pxq ` 10p5x2
1 ` 8x2 ` px3 ´ 6q2 ´ 2x4 ´ 40q,

f4pxq “f1pxq ` 10p0.5px1 ´ 8q2 ` 2px2 ´ 4q2 ` 3x2
5 ´ x6 ´ 30q,

f5pxq “f1pxq ` 10px2
1 ` 2px2 ´ 2q2 ´ 2x1x2 ` 14x5 ´ 6x6q,

f6pxq “f1pxq ` 10p´3x1 ` 6x2 ` 12px9 ´ 8q2 ´ 7x10q.
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Problem B.8. WONG 3.

F pxq “ max
1ďiď14

fipxq,

f1pxq “x2
1 ` x2

2 ` x1x2 ´ 14x1 ´ 16x2 ` px3 ´ 10q2 ` 4px4 ´ 5q2 ` px5 ´ 3q2`

2px6 ´ 1q2 ` 5x2
7 ` 7px8 ´ 11q2 ` 2px9 ´ 10q2 ` px10 ´ 7q2 ` px11 ´ 9q2`

10px12 ´ 1q2 ` 5px13 ´ 7q2 ` 4px14 ´ 14q2 ` 27px15 ´ 1q2 ` x4
16 ` px17 ´ 2q2`

13px18 ´ 2q2 ` px19 ´ 3q2 ` x2
20 ` 95,

f2pxq “f1pxq ` 10p3px1 ´ 2q2 ` 4px2 ´ 3q2 ` 2x2
3 ´ 7x4 ´ 120q,

f3pxq “f1pxq ` 10p5x2
1 ` 8x2 ` px3 ´ 6q2 ´ 2x4 ´ 40q,

f4pxq “f1pxq ` 10p0.5px1 ´ 8q2 ` 2px2 ´ 4q2 ` 3x2
5 ´ x6 ´ 30q,

f5pxq “f1pxq ` 10px2
1 ` 2px2 ´ 2q2 ´ 2x1x2 ` 14x5 ´ 6x6q,

f6pxq “f1pxq ` 10p´3x1 ` 6x2 ` 12px9 ´ 8q2 ´ 7x10q,

f7pxq “f1pxq ` 10px2
1 ` 5x11 ´ 8x12 ´ 28q,

f8pxq “f1pxq ` 10p4x1 ` 9x2 ` 5x2
13 ´ 9x14 ´ 87q,

f9pxq “f1pxq ` 10p3x1 ` 4x2 ` 3px13 ´ 6q2 ´ 14x14 ´ 10q,

f10pxq “f1pxq ` 10p14x2
1 ` 35x15 ´ 79x16 ´ 92q,

f11pxq “f1pxq ` 10p15x2
2 ` 11x15 ´ 61x16 ´ 54q,

f12pxq “f1pxq ` 10p5x2
1 ` 2x2 ` 9x4

17 ´ x18 ´ 68q,

f13pxq “f1pxq ` 10px2
1 ´ x9 ` 19x19 ´ 20x20 ` 19q,

f14pxq “f1pxq ` 10p7x2
1 ` 5x2

2 ` x2
19 ´ 30x20q.

Problem B.9. MAD1.
F pxq “ max

1ďiď3
fipxq,

f1pxq “x2
1 ` x2

2 ` x1x2 ´ 1,

f2pxq “ sinpx1q,

f3pxq “ ´ cospx2q.

Problem B.10. MAD4.
F pxq “ max

1ďiď3
fipxq,

f1pxq “ ´ ex1´x2 ,

f2pxq “ sinhpx1 ´ 1q ´ 1,

f3pxq “ ´ logpx2q ´ 1.

Hock and Schittkowski benchmark
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Problem B.11. HS2.
F pxq “ 100px2 ´ x2

1q2 ` p1 ´ x1q2.

Problem B.12. HS3.
F pxq “ x2 ` 10´5px2 ´ x1q2.

Problem B.13. HS29log.

F pxq “ log10p100px2 ´ x2
1q2 ` p1 ´ x1q2q.

Dixon–Szegö benchmark

Problem B.14. Branin.

F pxq “ px2 ´ p
5.1
4π2 qx2

1 `
5
π
x1 ´ 6q2 ` 10p1 ´

1
8π q cospx1q ` 10.

Problem B.15. Camel.

F pxq “ p4 ´ 2.1x2
1 ` x

4{3
1 qx2

1 ` x1x2 ` p´4 ` 4x2
1qx2

1.

Problem B.16. Goldstein-Price.

F pxq “ p1 ` px1 ` x2 ` 1q2p19 ´ 14x1 ` 3x2
1 ´ 14x2 ` 6x1x2 ` 3x2

2qq˚

p30 ` p2x1 ´ 3x2q2p18 ´ 32x1 ` 12x2
1 ` 48x2 ´ 36x1x2 ` 27x2

2qq.

Problem B.17. Hartman3.

a = [ [3 .0 , 0 .1 , 3 .0 , 0 .1] ,
[10 .0 , 10.0 , 10.0 , 10 .0] ,
[30 .0 , 35.0 , 30.0 , 35.0] ]

P = [ [0.36890 , 0.46990 , 0.10910 , 0.03815] ,
[0.11700 , 0.43870 , 0.87320 , 0.57430] ,
[0.26730 , 0.74700 , 0.55470 , 0.88280]]

c = [1 .0 , 1 .2 , 3 .0 , 3 .2]
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F pxq “ ´

4
ÿ

i“1
cie

´
3
ř

j“1
ajipxj´Pjiq2

.

Problem B.18. Hartman6.

a = [ [10.00 , 0.05 , 3.00 , 17.00] ,
[3 .00 , 10.00 , 3.50 , 8 .00] ,
[17.00 , 17.00 , 1.70 , 0 .05] ,
[3 .50 , 0.10 , 10.00 , 10.00] ,
[1 .70 , 8.00 , 17.00 , 0 .10] ,
[8 .00 , 14.00 , 8.00 , 14.00] ]

p = [ [0.1312 , 0.2329 , 0.2348 , 0.4047] ,
[0.1696 , 0.4135 , 0.1451 , 0.8828] ,
[0.5569 , 0.8307 , 0.3522 , 0.8732] ,
[0.0124 , 0.3736 , 0.2883 , 0.5743] ,
[0.8283 , 0.1004 , 0.3047 , 0.1091] ,
[0.5886 , 0.9991 , 0.6650 , 0.0381] ]

c = [1 .0 , 1 .2 , 3 .0 , 3 .2]

F pxq “ ´

4
ÿ

i“1
cie

´
6
ř

j“1
ajipxj´Pjiq2

.

Problem B.19. Shekel7.

a = [ [4 .0 , 1 .0 , 8 .0 , 6 .0 , 3 .0 , 2 .0 , 5 .0] ,
[4 .0 , 1 .0 , 8 .0 , 6 .0 , 7 .0 , 9 .0 , 5 .0] ,
[4 .0 , 1 .0 , 8 .0 , 6 .0 , 3 .0 , 2 .0 , 3 .0] ,
[4 .0 , 1 .0 , 8 .0 , 6 .0 , 7 .0 , 9 .0 , 3 .0] ]

c = [0 .1 , 0 .2 , 0 .2 , 0 .4 , 0 .4 , 0 .6 , 0 .3]

F pxq “ ´

7
ÿ

j“1

1
4

ř

i“1
pxi ´ aijq2 ` cj

.

Problem B.20. Shekel10.

a = [ [4 .0 , 1 .0 , 8 .0 , 6 .0 , 3 .0 , 2 .0 , 5 .0 , 8 .0 , 6 .0 , 7 .0] ,
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[4 .0 , 1 .0 , 8 .0 , 6 .0 , 7 .0 , 9 .0 , 5 .0 , 1 .0 , 2 .0 , 3 .6] ,
[4 .0 , 1 .0 , 8 .0 , 6 .0 , 3 .0 , 2 .0 , 3 .0 , 8 .0 , 6 .0 , 7 .0] ,
[4 .0 , 1 .0 , 8 .0 , 6 .0 , 7 .0 , 9 .0 , 3 .0 , 1 .0 , 2 .0 , 3 .6] ]

c = [0 .1 , 0 .2 , 0 .2 , 0 .4 , 0 .4 , 0 .6 , 0 .3 , 0 .7 , 0 .5 , 0 .5]

F pxq “ ´

1
ÿ

j“1
0 1

4
ř

i“1
pxi ´ aijq2 ` cj

.

GLOBALLIB benchmark

Problem B.21. ex8_1_1

.
F pxq “ cospx1q sinpx2q ´

x1
x2

2 ` 1
.

Problem B.22. ex8_1_4

.
F pxq “ 12x2

1 ´ 6.3x4
1 ` x6

1 ´ 6x1x2 ` 6x2
2.

Problem B.23. Perm6.
β “ 60,

F pxq “

6
ÿ

k“1
p

6
ÿ

i“1
ppi` 1qk ` βqp

xi

pi` 1qk
´ 1qq2 ` 1000.

Problem B.24. Perm8.
β “ 100,

F pxq “

8
ÿ

k“1
p

8
ÿ

i“1
ppi` 1q ` βqpxk

i ´ p
1

pi` 1q
qkq2 ` 1000.

MINLPLib2 benchmark
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Problem B.25. Sporttournament.

F pxq “ 2x1x3 ´ 2x1 ` 2x3 ` 2x1x7 ´ 2x7 ` 2x2x6 ´ 2x2 ´ 2x5 ` 2x2x10´

4x10 ´ 2x3x4 ` 2x4 ´ 2x3x12 ´ 2x3x14 ´ 2x4x5 ` 2x4x9 ´ 2x9´

2x4x15 ` 2x5x6 ´ 2x6 ` 2x5x8 ´ 2x8 ` 2x6x9 ´ 2x7x8 ` 2x7x12`

2x7x13 ` 2x8x10 ` 2x8x15 ` 2x9x11 ´ 2x11 ´ 2x9x13 ` 2x10x11`

2x10x12 ´ 2x13x15 ` 2x14x15.
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